
Aalen’s Additive
Regression Model

Introduction

The dominating regression model in survival anal-
ysis is the proportional hazards model (or Cox
model). Although very useful, it is clear that the Cox
model cannot cover all relevant situations and that
alternatives are needed. There are a number of other
possible models, parametric and nonparametric ones.
A member of the latter group is the additive regres-
sion model suggested by Aalen [2, 3]. One reason for
seeking alternatives to the Cox model is that practi-
tioners applying this model may not fully understand
its complexities nor be able to check assumptions
like proportionality. There is undoubtedly a some-
what uncritical use of the Cox model in the medical
field. Clearly, other models may be no more easy to
use, but by trying different approaches, one may get
more insight into the data and develop a more crit-
ical attitude to the whole analysis. After all, there
is no reason to assume that hazards will always be
proportional.

In fact, experience tells one that effects are some-
times proportional, sometimes additive (see Addi-
tive Hazard Models; Additive Model), and often in
between. Even when proportionality is a reasonable
assumption, one often sees that the proportionality
coefficient decreases over time. In fact, this is to be
expected from frailty considerations; one basic con-
sequence of frailty theory is that relative risk will
often be expected to decrease over time. One advan-
tage of the additive regression model presented here
is that effects of covariates are allowed to vary freely
over time. In contrast, when applying Cox analysis
with standard packages, the normal approach will be
to let the coefficients be constant over time and devi-
ations from this may be difficult to incorporate. Thus,
a standard Cox analysis gives no information about
how the effects change over time and valuable infor-
mation may be lost. It may also occur that significant
effects may be masked. For instance, analyzing a set
of survival data, it was found that a covariate indicat-
ing the extent of spread of the cancer (“N-stage”) was
not significant in the Cox analysis, while an additive
model showed a clearly significant effect for the first
year, but with the effect disappearing later [3, Table I
and Figure 7(d)].

From a practical statistical point of view, it has
been asserted that additive effects may be more infor-
mative than proportional effects. A hazard ratio of
2, say, may not be of much interest if the underly-
ing basic hazard is very small. Then, the suggestion
of a substantial effect may be misleading, and the
real effect is better brought out by looking at the
difference between hazards, which is by an additive
approach.

The additive regression model generalizes the Nel-
son–Aalen estimator. For simplicity, assume that
one wants to compare two groups. One way of doing
this would be to make a Nelson–Aalen curve within
each group and then plot the difference between
the two curves. Now, this would be a fine pro-
cedure if the groups were defined by randomiza-
tion, say. Otherwise, one will have to introduce the
covariates, or confounders, which may explain the
difference and adjust for them. The question then
arises how to adjust the difference between two Nel-
son–Aalen curves, and the additive regression model
is an answer to this.

A weakness of the additive approach is that the
hazard rate is not naturally constrained to be positive.
This may have odd effects occasionally, especially
when predicting survival for individuals with extreme
covariates where negative hazard may arise; see [9].
However, this does not prevent the additive model
from being useful in most cases. As pointed out
in [18], there is one important case for which the
possibility of negative hazard rate is no problem,
namely, when modeling excess hazard (see Excess
Risk), for example, in cancer epidemiology. This
subject is discussed further below.

The Additive Model

As indicated by the word “additive”, the model has
a linear structure. To be specific, assume that one
observes the possibly censored life times of a number
of individuals, the censoring times being assumed to
be stopping times in the martingale sense [1] (see
Counting Process Methods in Survival Analysis).
Let λi(t) denote the hazard rate of individual i, n the
number of individuals, and r the number of covariates
in the analysis. Consider the column vector λ(t) of
hazard rates λi(t), i = 1, . . . , n. The linear model is
given as follows:

λ(t) = Y(t)α(t) (1)
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where the n × (r + 1) matrix Y(t) is constructed as
follows: If the ith individual is a member of the
risk set at time t , then the i th row of Y(t) is the
vector Zi (t) = (1, Zi

1(t), Zi
2(t), . . . , Zi

r (t))
′, where

Zi
j (t), j = 1, . . . , r are, possibly time-dependent,

covariate values. If the ith individual is not in the
risk set at time t , then the corresponding row of Y(t)

contains only zeros. All sample paths of Y(t) are
assumed to be left-continuous functions of t .

The vector α(t) = (α0(t), α1(t), . . . , αr(t))
′ con-

tains the important regression information: The first
element is a baseline function; while the remain-
ing elements, called regression functions, measure the
influence of the respective covariates. These functions
are allowed to vary freely over time.

When turning to estimation, we concentrate on the
cumulative regression functions defined by Aj(t) =∫ t

0 αj (s) ds. Let A(t) be the column vector with
elements Aj(t), j = 0, . . . , r . This is estimated by
an approach that is similar to that for ordinary linear
models [2, 3], resulting in the following estimator:

A∗(t) =
∑

Tk≤t

X(Tk)Ik (2)

Here T1 < T2 < · · · are the ordered event times, while
Ik is a column vector consisting of zeros except for
a one in the place corresponding to the subject who
experiences an event at time Tk . The estimator is only
defined over the time interval, where Y(t) has full
rank. The matrix X(t) is a generalized inverse of Y(t)

(see Matrix Algebra) and will ordinarily be defined
by the ordinary least squares inverse:

X(t) = [Y(t)′Y(t)]−1Y(t)′ (3)

The components of A∗(t) are intended to be plotted
against time and to give information about effects of
covariates. Notice that the regression functions are the
derivatives of the cumulative functions, and so it is
the slopes of the plots that are informative. A decreas-
ing slope means a decreasing additive effect (but this
may not imply that the relative effect decreases).

The components of A∗(t) converge asymptoti-
cally, under appropriate conditions, to normal pro-
cesses with independent increments. An estimator for
the covariance matrix of A∗(t) is given by:

Ω∗(t) =
∑

Tk≤t

X(Tk) ID
k X(Tk)

′, (4)

where ID
k is a diagonal matrix with the vector Ik as

diagonal.
The model may also be formulated in terms of

counting processes where the justification of the esti-
mator and its properties is more easily seen [6]. The
linear nature of the additive model fits very nicely
with the counting process apparatus of stochastic inte-
grals and so on. An extensive theory for the model
has been derived, including asymptotic theory, test
statistics, and martingale residuals. The latter ones
and other checking procedures developed for the Cox
model apply equally well to the additive approach
[4]. Various issues concerning the model and its gen-
eralizations have been dealt with in [9, 10, 12, 14,
15, 17].

A practical advice concerning the analysis may be
given: It is usually advantageous to center the covari-
ates (subtracting the mean) before analysis. Then, the
estimate of the cumulative baseline function, A∗

0(t),
will have a clear interpretation, namely, as the esti-
mated cumulative hazard of an “average” individual.

The Semiparametric Additive Risk Model

One practical problem with the additive model in
the above form is that all effects are nonparametric,
thus making the description of some covariate effects
unnecessarily complicated even when it is not needed.
McKeague and Sasieni [15] suggested a very useful
submodel of the additive model

λ(t) = Y(t)α(t) + W(t)γ , (5)

where the first component of the model, Y(t)α(t), is
defined as above and the second component, W(t)γ ,
is defined similarly (W(t) is an n × q dimensional
matrix), and γ = (γ1, . . . , γq) is a regression parame-
ter. The covariates of the model are thus partitioned in
those whose effects depend on time and those whose
effects are constant. Lin and Ying [13] considered a
special case of this model in which the nonparametric
part of the model only contains a baseline. Scheike
[17] suggested a procedure for testing if effects in
the semiparametric model depends significantly on
time, thus making a stepwise model reduction strat-
egy possible. The semiparametric model allows the
data analyst to reduce effects that are not time vary-
ing to a parametric form thus giving a much simpler
description to those effects.
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McKeague and Sasieni [15] derived explicit esti-
mators for A(t) and γ and their standard errors that
are simple to compute.

Example

As an example of the additive analysis, we will use
the (PBC) data on survival of 418 patients with pri-
mary biliary cirrhosis presented in [8]. The source
of our data set is the survival package of S-Plus/R.

The following covariates are included: age (in years),
log(albumin), bilirubin (dichotomized as 0 when
bilirubin is less than 3.25 mg/dl and 1 otherwise),
edema (dichotomized as 0 for no edema and 1 for
edema present now or before), and log(prothrombin
time). Figures 1 and 2 present cumulative regres-
sion functions for the covariates bilirubin and edema.
Pointwise 95% confidence intervals are also indi-
cated. The null hypothesis: αj (s) = 0 over a suit-
able interval, may be tested by the supremum test
of Scheike [17]. Here, it gives the values of 5.72
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Figure 1 Estimated cumulative regression function for covariate bilirubin

0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Survival (years)

C
um

ul
at

iv
e 

re
gr

es
si

on
 fu

nc
tio

n

Covariate: edema

8642

Figure 2 Estimated cumulative regression function for covariate edema
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(p < 0.001) and 4.00 (p = 0.001) for bilirubin and
edema respectively. The plots may be interpreted as
follows: For bilirubin, one sees a strongly positive
slope, especially after 800 days, indicating a long-
term effect on survival. For edema, the slope of the
plot is largest to begin with. In fact, the plot soon
levels off, and so it is clear that the effect of this
covariate on survival is an initial effect that does not
last. This is also found by Fleming and Harrington
([8], p. 191) by studying log(− log(survival)) plots,
but the present procedure is a simpler way of dis-
covering it, and it simultaneously adjusts for other
covariates.

We now illustrate, the use of the semiparamet-
ric model and show that the data can be further
summarized. In Aalen’s additive model with all
covariates (age, log(albumin), bilirubin, edema, and
log(protime)), a test for constant covariate effects [17]
gave the p value 0.88 for log(albumin). We, therefore,
reduced the model to the semiparametric model in
which log(albumin) had a constant effect, and other
effects were time varying. In this model, it was found
that age had a constant effect over time (p = 0.89).
Further, stepwise model reduction lead to a model
in which edema and log(protime) had time-varying
effects (with P-values for constant effects at 0.01 and
0.04, respectively), and the remaining covariates were
found to be well described by constant effects. Biliru-
bin had a constant effect of 0.143 (0.026), age 0.002
(0.001), and log(albumin) −0.263 (0.098). Note, that

the cumulative regression effect of bilirubin shown
in Figure 1 is well approximated by a line with slope
0.143.

Relative Survival Rate

There is an alternative useful representation of the
results of the above analysis [19]. Consider a binary
covariate with values 0 and 1, and let A∗

j (t) be its
cumulative regression function. Instead of plotting
this, one could rather plot R∗(t) = exp(−A∗

j (t)) ver-
sus t . This will be an estimate of the ratio between the
survival curves, namely, the one with covariate value
1 divided by the one with covariate value 0, while
the other covariates are kept constant. The quantity
R∗(t) is similar to what in epidemiology is termed a
relative survival rate (see Excess Mortality).

The relative survival rates have been computed
for the covariates bilirubin and edema in the example
and presented in Figures 3 and 4. One sees that the
relative survival declines to about 35% for bilirubin
and a little above 60% for edema.

Excess Hazard Models

When studying the survival of cancer patients, one
is interested in modeling the excess mortality, which
is the mortality that remains when one subtracts the
expected mortality (which is derived from ordinary
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Figure 3 Estimated relative survival rate for covariate bilirubin
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Figure 4 Estimated relative survival rate for covariate edema

life tables). It is this excess hazard that is supposed
to be the cause-specific hazard related to the disease
in question. Following up work of Andersen and
Væth [7], Zahl [18] has extended the additive model
to the excess hazards framework; see also [20]. Such
excess hazards may well be negative and Zahl has
shown that the additive model may give a better fit
than the proportional hazards model.

Further Developments

The additive risk model, including the semiparametric
version, has certain robustness properties that have
been described along with robust standard errors
in [17].

Estimating transition probabilities in Markov
chains are of great interest in many practical
applications. The additive model is suitable when
one wants to adjust the transition probabilities for
covariates [5]. An application of the additive model to
adjusting for censoring in a more general multistage
framework is given by Satten and Datta [16].

Software

An S-plus program, called Addreg, for making
the cumulative regression plots is available on the
web page www.med.uio.no/imb/stat/addreg/.
Programs developed by T. Scheike are available on

the web page: www.biostat.ku.dk/∼ts/. Also,
a program is available in Stata; see [11]. Finally, the
survival package in S-plus contains a routine called
aareg, which can make the plots described here.
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Aalen–Johansen
Estimator

The survival data situation may be described by the
Markov process with the two states “alive” and
“dead”. Splitting the state “dead” into two or more
states, corresponding to different causes of death,
a Markov model for competing risks is obtained.
Another Markov model of importance for biostatis-
tical research is the illness–death model with states
“healthy”, “diseased” and “dead”. For survival data,
the probability of a transition from state “alive”
to state “dead” may be estimated as one minus
the Kaplan–Meier estimator. The Kaplan–Meier
estimator may be generalized to nonhomogeneous
Markov processes with a finite number of states. Such
a generalization was considered by Aalen [1] for the
competing risks model and independently by Aalen
& Johansen [2] and Fleming [5, 6] for the general
case. In particular, the product–integral formulation
of Aalen & Johansen [2] shows how the estimator,
usually denoted the Aalen–Johansen estimator, can
be seen as a matrix version of the Kaplan–Meier
estimator.

Below, we first consider the competing risks
model and the Markov illness–death model for
a chronic disease. This gives illustrations of the
Aalen–Johansen estimator in two simple situations
where its elements take an explicit form. Then we
present the Aalen–Johansen estimator in general,
and show how it is obtained as the product–integral
of the Nelson–Aalen estimators for the cumulative
transition intensities. We also indicate briefly how
this may be used to study its statistical properties.
A detailed account is given in the monograph by
Andersen et al. [3, Section IV.4].

Competing Risks

Assume that we want to study the time to death and
cause of death in a homogeneous population. This
situation with competing causes of death may be
modeled by a Markov process with one transient state
0, corresponding to “alive”, and k absorbing states
corresponding to “dead by cause h”, h = 1, 2, . . . , k.
The transition intensity from state 0 to state h is
denoted α0h(t) and describes the instantaneous risk of
dying from cause h, i.e. α0h(t) dt is the probability

that an individual will die of cause h in the small
time interval [t, t + dt), given that it is still alive just
prior to t . The α0h(t) are also termed cause-specific
hazard rate functions. For h = 1, 2, . . . , k, we write
P0h(s, t) for the probability that an individual in state
0 (i.e. alive) at time s will be in state h (i.e. dead
from cause h) at a later time t . These transition
probabilities are often termed cumulative incidence
functions. Finally, let P00(s, t) denote the probability
that an individual who is alive (i.e. in state 0) at time
s will still be alive at a later time t . Then

P00(s, t) = exp

[
−

∫ t

s

k∑

h=1

α0h(u) du

]
, (1)

and

P0h(s, t) =
∫ t

s

P00(s, u)α0h(u) du, (2)

for h = 1, 2, . . . , k.
Assume that we have a sample of n individuals

from the population under study. Each individual is
followed from an entry time to death or censoring,
i.e. our observations may be subject to right censoring
and/or left truncation. We denote by t1 < t2 < · · ·
the times when deaths (of any cause) are observed,
and let d0hj be the number of individuals who die
from cause h (i.e. make a transition from state 0 to
state h) at tj . We also introduce d0j = ∑k

h=1 d0hj for
the number of deaths at tj due to any cause, and let
r0j be the number of individuals at risk (i.e. in state
0) just prior to time tj . Then the survival probability
(1) may be estimated by the Kaplan–Meier estimator:

P̂00(s, t) =
∏

s<tj ≤t

(
1 − d0j

r0j

)
, (3)

while the cumulative incidence function (2) may be
estimated by

P̂0h(s, t) =
∑

s<tj ≤t

P̂00(s, tj−1)

(
d0hj

r0j

)
, (4)

for h = 1, 2, . . . , k. Note that (4) is obtained from (2)
by replacing P00(s, u) = P00(s, u−) by P̂00(s, u−)

and α0h(u) du by dÂ0h(u), the increment of the
Nelson–Aalen estimator Â0h(t) = ∑

tj ≤t d0hj /r0j for
the cumulative cause-specific hazard rate function
A0h(t) = ∫ t

0 α0h(u) du.
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The variance of the Kaplan–Meier estimator (3)
may in the usual way be estimated by Green-
wood’s formula (see Kaplan–Meier Estimator),
while when there are no ties in the data,

v̂arP̂0h(s, t) =
∑

s<tj ≤t

[P̂00(s, tj−1)P̂0h(tj , t)]2

× (r0j − 1)r−3
0j d0j

+
∑

s<tj ≤t

P̂00(s, tj−1)
2[1 − 2P̂0h(tj , t)]

× (r0j − 1)r−3
0j d0hj . (5)

By breaking the ties at random, this variance estima-
tor may also be used when there are a small num-
ber of tied observations (see Tied Survival Times).
A more systematic treatment of variance estimation
in the presence of ties is discussed below.

To illustrate the above results, we consider data
on a cohort of uranium miners from the Colorado
Plateau (see, for example, [7]). The cohort consisted
of 3347 Caucasian male miners recruited between
1950 and 1960 and was traced for mortality outcomes
to December 31, 1982, by which time there were
258 lung cancer deaths and 1000 deaths from other
causes. Of these deaths, 145 and 442 occurred
between 40 and 60 years of age. The data were
collected to study the effects of radon exposure and
smoking on mortality, but for our illustrative purposes
we will study the (marginal) risk of death from
lung cancer disregarding the information on these
exposures.

We use the competing risks model with two
competing causes of death, corresponding to “dead
from lung cancer” (state 1) and “dead from other
causes” (state 2), and with age as the time-scale.
Figure 1 shows P̂01(40, t) for 40 < t ≤ 60, i.e. the
estimated risk that a 40 years old miner will die from
lung cancer between 40 and t years of age taking into
account the risk of death from other causes. Pointwise
95% (log-transformed) confidence intervals based on
the approximate normality of the Aalen–Johansen
estimator (cf. below) are also shown. For comparison,
Figure 1 also shows the estimated risk of lung cancer
death disregarding the competing causes of death
(computed as one minus the Kaplan–Meier estimator
treating deaths from other causes as censorings). This
estimate is sometimes interpreted as estimating the
probability of death due to lung cancer, assuming

0.0
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0.08

40 45 50 55 60

Figure 1 Aalen–Johansen estimate for the risk of dying
from lung cancer taking into account the risk of death from
other causes ( - - - - - - ) with 95% log-transformed con-
fidence intervals ( . . . . . . . ). Risk estimate disregarding
other causes of death is also given ( )

this to be the only possible cause of death. Such
an interpretation may be quite speculative, however;
see the discussion in [9, Chapter 7]. The estimate
disregarding competing risks is, of course, larger than
the estimate that takes the competing causes of death
into account; the difference between them increases
with age as the risk of dying from other causes
increases.

An Illness–Death Model

To study the occurrence of a chronic disease as well
as death in a homogeneous population, we may adopt
the Markov illness–death model with states 0, 1 and
2 corresponding to “healthy”, “diseased” and “dead”,
respectively, and where no recovery (i.e. transition
from state 1 to state 0) is possible. The transition
intensities of the model are denoted α01(t), α02(t)

and α12(t) and describe the instantaneous risks of
transitions between the states, i.e. α01(t) dt is the
probability that an individual who is healthy just
prior to time t will get diseased in the small time
interval [t, t + dt), while α02(t) dt and α12(t) dt are
the probabilities that an individual who is disease-
free, respectively diseased, just before time t , will
die in the small time interval [t, t + dt). For an
individual who is healthy (i.e. in state 0) at time s, we
write P01(s, t) for the probability that he is diseased
(i.e. in state 1) at a later time t , while P00(s, t) is the
probability that he is still healthy (i.e. in state 0) at
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that time. Similarly, for an individual who is diseased
(i.e. in state 1) at time s, we let P11(s, t) denote the
probability that he is still alive (i.e. in state 1) at time
t . Then we have

P00(s, t) = exp

{
−

∫ t

s

[α01(u) + α02(u)] du

}
, (6)

P11(s, t) = exp

[
−

∫ t

s

α12(u) du

]
, (7)

P01(s, t) =
∫ t

s

P00(s, u)α01(u)P11(u, t) du. (8)

It is seen that (6) and (7) are of the same form as the
survival probability in the survival data situation.

Assume, then, that we have a sample of n individ-
uals from the population under study, and that each
individual is followed from an entry time to death
or censoring. Exact times of disease occurrences and
deaths are recorded, and we denote by t1 < t2 < · · ·
the times of any observed event (disease occurrence
or death). Furthermore, we let d01j be the number
of individuals who get diseased (i.e. make a transi-
tion from state 0 to state 1) at tj , while d02j and
d12j denote the numbers of disease-free, respectively
diseased, individuals who die at that time. Finally,
we introduce d0j = d01j + d02j for the total number
of transitions out of state 0, and let r0j and r1j be
the number of healthy (i.e. in state 0) and diseased
(i.e. in state 1) individuals, respectively, just prior to
time tj . Then (6) and (7) may be estimated by the
Kaplan–Meier estimators:

P̂00(s, t) =
∏

s<tj ≤t

(
1 − d0j

r0j

)
, (9)

P̂11(s, t) =
∏

s<tj ≤t

(
1 − d12j

r1j

)
, (10)

while an estimator for (8) is

P̂01(s, t) =
∑

s<tj ≤t

P̂00(s, tj−1)

(
d01j

r0j

)
P̂11(tj , t).

(11)

Note that (11) is obtained from (8) by replacing
P00(s, u) = P00(s, u−) by P̂00(s, u−), P11(u, t) by
P̂11(u, t) and α01(u) du by dÂ01(u), the increment of
the Nelson–Aalen estimator Â01(t) = ∑

tj ≤t d01j /r0j

for the cumulative disease intensity A01(t) =∫ t

0 α01(u) du. The variance of the Kaplan–Meier

estimators (9) and (10) may be estimated by
Greenwood’s formula, while

v̂arP̂01(s, t)

=
∑

s<tj ≤t

P̂00(s, tj−1)
2[P̂11(tj , t) − P̂01(tj , t)]2

× (r0j − 1)r−3
0j d01j

+
∑

s<tj ≤t

[P̂00(s, tj−1)P̂01(tj , t)]2(r0j − 1)r−3
0j d02j

+
∑

s<tj ≤t

[P̂01(s, tj−1)P̂11(tj , t)]2(r1j − 1)r−3
1j d12j ,

(12)

when there are no ties in the data, or when a few ties
have been broken at random.

Before we illustrate these results, let us mention
that other interpretations of the states are possible.
In particular, in a study involving the treatment of
cancer, state 0 could correspond to “no response to
treatment”, state 1 to “response to treatment” and
state 2 to “relapse”. The probability P01(s, t) is then
the probability of being in response function sug-
gested by Temkin [10] and sometimes used as an
outcome measure when studying the efficacy of can-
cer chemotherapy. Another interpretation arises in
the study of complications to a disease. Here, state
0 could correspond to “diseased with no complica-
tions”, state 1 to “diseased with complications” and
state 2 to “dead”. This interpretation of the states is
the one relevant for the following illustration.

The Steno Memorial Hospital in Greater Copen-
hagen has, since 1933, served as a diabetes spe-
cialist hospital for patients from the whole of Den-
mark. From the medical records at Steno we use for
illustration data on the 374 female patients referred
between 1933 and 1981 in whom the diagnosis
insulin-dependent diabetes mellitus was established
(usually by a general practitioner or another hospi-
tal) before the age of 10 years and between 1933
and 1972. The patients were followed from first con-
tact with Steno to death, emigration, or December 31,
1984. One of the major complications of insulin-
dependent diabetes is diabetic nephropathy, which is
a sign of kidney failure. Seventeen patients had dia-
betic nephropathy at first admission to Steno, while
76 developed this complication during the observa-
tion period. The seriousness of diabetic nephropathy
is reflected by the fact that among these 93 patients
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54 were observed to die, whereas only 30 of the 281
patients who did not develop diabetic nephropathy
died during the observation period.

We model the disease histories of the patients
by the Markov illness–death model with the states
0 and 1 corresponding to “alive without diabetic
nephropathy” and “alive with diabetic nephropathy”,
respectively, and with diabetes duration as time-scale.
Figure 2 shows P̂01(5, t), i.e. the estimated proba-
bility of being alive with diabetic nephropathy for
patients without this complication five years after the
onset of the disease. Pointwise 95% (log-transformed)
confidence intervals based on the approximate nor-
mality of the Aalen–Johansen estimator (cf. below)
are also shown. It is seen that the probability of
being alive with diabetic nephropathy (among the
group of patients we consider) first increases up to
an estimated value of 17% after 23 years of diabetes
duration, and then declines due to the high mortality
among these patients.

It should be realized that Figure 2 is based on
two crude assumptions. First, calendar time trends in
mortality and incidence of diabetic nephropathy are
not taken into account. Secondly, by using a Markov
process to model the disease histories, the effect on
mortality of the duration of diabetic nephropathy has
been neglected. A point of less importance is that
the exact times of onset of diabetic nephropathy
were not known for nine of the 93 patients with
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Figure 2 Aalen–Johansen estimate of the probability of
being alive with diabetic nephropathy for female patients
with diabetes onset before 10 years of age and with no
sign of diabetic nephropathy five years after the onset of
the disease ( ). Pointwise 95% log-transformed
confidence intervals are also shown ( . . . . . . . )

this complication. For these nine patients, predicted
times for the occurrence of diabetic nephropathy were
used. A further discussion and analysis of the data are
given, e.g. by Borch-Johnsen et al. [4]. The data were
used for illustrative purposes by Andersen et al. [3]
who also describe how the nine predicted times have
been calculated.

The General Case

We then consider a general Markov process with a
finite number of states that may be used to model
the life histories of individuals from a homogeneous
population. Let I = {0, 1, . . . , k} be the state space of
the Markov process, and denote by αgh(t) the transi-
tion intensity from state g ∈ I to state h ∈ I, g �= h.
The transition intensities describe the instantaneous
risks of transitions between the states, so αgh(t) dt is
the probability that an individual who is in state g

just before time t will make a transition to state h in
the small time interval [t, t + dt). Furthermore, for
all g, h ∈ I, we let Pgh(s, t) denote the probability
that an individual who is in state g at time s will be
in state h at a later time t , and we write P(s, t) for
the (k + 1) × (k + 1) matrix of these transition prob-
abilities. Only for simple Markov processes, like the
competing risks and illness–death models considered
earlier, is it possible to give explicit expressions for
the Pgh(s, t) in terms of the transition intensities, cf.
(1), (2) and (6)–(8). We will see later, however, that
the transition probability matrix P(s, t) itself can be
expressed in terms of the (k + 1) × (k + 1) matrix
θ(t) of the transition intensities. First, we review the
Aalen–Johansen estimator for P(s, t) and discuss the
estimation of (co)variances.

Suppose that we have a sample of n individuals
from the population under study. The individuals
may be followed over different periods of time,
so our observations of their life histories may be
subject to left truncation and/or right censoring. A
crucial assumption, however, is that truncation and
censoring are independent so that the entry and
censoring times do not carry any information on the
risks of transitions between the states; cf. Andersen
et al. [3, Sections III.2– 3] for a general discussion.
We assume that exact times for transitions between
the states are recorded, and denote by t1 < t2 < · · ·
the times when transitions between any two states
are observed. Furthermore, for g, h ∈ I, g �= h, we
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let dghj be the number of individuals who experience
a transition from state g to state h at tj , and introduce
dgj = ∑

h�=g dghj for the number of transitions out of
state g at that time. Finally, we let rgj be the number
of individuals in state g just prior to time tj . Then,
the Aalen–Johansen estimator takes the form

P̂(s, t) =
∏

s<tj ≤t

(I + θ̂j ). (13)

Here, I is the (k + 1) × (k + 1) identity matrix, θ̂j is
the (k + 1) × (k + 1) matrix with entry (g, h) equal
to α̂ghj = dghj /rgj for g �= h and entry (g, g) equal
to α̂ggj = −dgj /rgj , and the matrix product is taken
in the order of increasing tj s. For simple models
like the competing risks model and the illness–death
model considered earlier, we are able to give explicit
expressions for the elements of (13), cf. (3), (4), and
(9)–(11). In general, however, this is not possible.
But, in any case, a direct implementation of (13)
is simple using software that can handle matrix
multiplications (see Matrix Computations).

For any g, h, m, r ∈ I, the covariance between
P̂gh(s, t) and P̂mr (s, t) may be estimated by

ĉov[P̂gh(s, t), P̂mr (s, t)]

=
k∑

i=0

∑

l �=i

∑

s<tj ≤t

P̂gi(s, tj−1)P̂mi(s, tj−1)[P̂lh(tj , t)

− P̂ih(tj , t)][P̂lr (tj , t) − P̂ir (tj , t)]

× (rij − 1)r−3
ij dilj , (14)

provided that there are no ties in the data or that a
small number of tied observations have been broken
at random. Formulas (5) and (12) given earlier are
special cases of (14). As an alternative to (14), or to
handle ties in a systematic manner, one may use the
recursion formula:

ĉov[P̂gh(s, tj ), P̂mr (s, tj )]

=
k∑

i=0

k∑

l=0

ĉov[P̂gi(s, tj−1), P̂ml(s, tj−1)]

× (δih + α̂ihj )(δlr + α̂lrj ) +
k∑

i=0

P̂gi(s, tj−1)

× P̂mi(s, tj−1)ĉov(α̂ihj , α̂irj ), (15)

which describes how the estimated (co)variances are
updated at the times of the observed transitions. (The
estimates are constant between the tj s.) Here, δih

is a Kronecker delta, while ĉov(α̂ihj , α̂irj ) equals
(δhrrij − dihj )r

−3
ij dirj when h �= i, r �= i; it equals

−(rij − dij )r
−3
ij dirj when h = i �= r; and it equals

(rij − dij )r
−3
ij dij when h = r = i. When there are no

ties in the data (14) and (15) give identical results.

Product–Integral Representation and
Relation to the Nelson–Aalen Estimator

We now review how the transition probability
matrix may be derived from the transition intensities
αgh(t) and describe how the Aalen–Johansen
estimator is related to the Nelson–Aalen estimators
for the cumulative transition intensities. To this
end, we introduce αgg(t) = −∑

h�=g αgh(t) and
write θ(t) for the (k + 1) × (k + 1) matrix with
element (g, h) equal to αgh(t). Then, the transition
probability matrix P(s, t) is the unique solution
to the Kolmogorov forward differential equation
(∂/∂t)P(s, t) = P(s, t)θ(t) with initial condition
P(s, s) = I. By a general result for product–integrals
(Volterra’s equation), this solution takes the form
P(s, t) = �(s,t][I + θ(u) du]. Alternatively, if we
introduce the (k + 1) × (k + 1) matrix A(t) with
elements Agh(t) = ∫ t

0 αgh(s) ds, we may write

P(s, t) = �
(s,t]

[I + dA(u)]. (16)

This product–integral representation of the transi-
tion probability matrix of a Markov process is not
restricted to the situation where transition intensi-
ties exist. In fact (16) assumes only the existence
of cumulative transition intensities Agh(t), which do
not need to be absolutely continuous.

For g �= h we may estimate the cumula-
tive transition intensity Agh(t) by the Nel-
son–Aalen estimator Âgh(t) = ∑

tj ≤t α̂ghj , while

Âgg(t) = −∑
h�=g Âgh(t) = ∑

tj ≤t α̂ggj . Let Â(t) =
∑

tj ≤t θ̂j be the (k + 1) × (k + 1) matrix with these
elements. By (16) it is reasonable to estimate the
transition probability matrix by P̂(s, t) = �(s,t][I +
dÂ(u)]. But since Â(t) is a matrix of step func-
tions with a finite number of jumps on (s, t], this
is nothing but the Aalen–Johansen estimator (13).
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Thus, the Aalen–Johansen and Nelson–Aalen esti-
mators are related in exactly the same way as are
the transition probability matrix and the cumula-
tive transition intensities themselves. This suggests
that the Aalen–Johansen estimator is the canonical
nonparametric estimator for the matrix of transition
probabilities in a Markov process with a finite num-
ber of states. This statement is supported by the fact
that it may also be given a nonparametric maximum
likelihood interpretation [8].

Martingale Representation and Statistical
Properties

The product–integral formulation of the Aalen–Jo-
hansen estimator is useful for the study of its
statistical properties. We here indicate a few main
steps and refer to Andersen et al. [3, Section IV.4]
for a detailed account. For each g ∈ I we introduce
an indicator Jg(t), which is one if there is at
least one individual in state g just before time t ,
and zero otherwise. Furthermore, for all g, h ∈ I
define A∗

gh(t) = ∫ t

0 Jg(u) dAgh(u), and let A∗(t) be
the (k + 1) × (k + 1) matrix with these elements.
Finally, we introduce P∗(s, t) = �(s,t][I + dA∗(u)],
and note that this is almost the same as P(s, t) (cf.
(16)) when there is only a small probability that one
or more states will be empty at times u between
s and t . By a general result for product–integrals
(Duhamel’s equation), we may then write

P̂(s, t)P∗(s, t)−1 − I

=
∫

(s,t]
P̂(s, u−) d(Â − A∗)(u)P∗(s, u)−1. (17)

Here, Â − A∗ is a (k + 1) × (k + 1) matrix of square
integrable martingales (see Nelson–Aalen Estima-
tor). It follows that the right-hand side of (17) is a
matrix-valued stochastic integral, and therefore itself
a (k + 1) × (k + 1) matrix of mean zero square inte-
grable martingales. As a consequence of this

E[P̂(s, t)P∗(s, t)−1] = I,

so the Aalen–Johansen estimator is almost unbiased.
Furthermore, the predictable variation process of the

matrix-valued martingale (17) suggests an estimator
for the covariance matrix of P̂(s, t)P∗(s, t)−1, and
based on this the (co)variance estimators (14) and
(15) may be derived.

The martingale representation (17) is also key
to the study of the large sample properties of
the Aalen–Johansen estimator. For fixed s it
may be shown that P̂(s, ·), properly normalized,
converges weakly to a matrix-valued Gaussian
process. In particular, when also t is given, the
Aalen–Johansen estimator (13) is asymptotically
multinormally distributed, a fact that was used earlier
in connection with the construction of confidence
intervals.
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Absolute Risk

Absolute risk is defined as the probability that a
disease-free individual will develop a given disease
over a specified time interval given current age and
individual risk factors, and in the presence of com-
peting risks. In mathematical terms, the absolute risk
of developing a disease of interest c1 in the age inter-
val [a1, a2) in the presence of competing risks c2 for
a person of age a1 and with initial covariates x is
given by

π(a1, a2; x) =
∫ a2

a1

h1(u; x) exp

{
−

∫ u

0
[h1(v; x) + h2(v; x)]dv

}
du

exp

{
−

∫ a1

0
[h1(v; x) + h2(v; x)]dv

} ,

(1)

where h1(v; x) and h2(v; x) are, respectively, the
cause-specific hazards of developing c1 and c2 for an
individual with current age v and level x of covari-
ates X. In this formula, the numerator represents the
probability of developing the disease of interest c1

between ages a1 and a2 in the presence of competing
risks c2 while the denominator represents the prob-
ability of being at risk at age a1, namely free of
c1 and c2. This formulation underscores the condi-
tional nature of absolute risk. However, a simpler
and equivalent formulation can be obtained as

π(a1, a2; x) =
∫ a2

a1

h1(u; x)

× exp

{
−

∫ u

a1

[h1(v; x) + h2(v; x)] dv

}
du.

(2)

The hazard h1(u; x) can be expressed as a func-
tion of both the baseline hazard h1(u) (i.e. the
hazard in subjects at baseline level of covariates
x) and the level x of covariates X. For instance,
if the covariates X have a multiplicative effect
on the hazard, then the multiplicative relationship
h1(u; x) = h1(u)rr(u; x) is obtained, where the mul-
tiplier rr(u; x) is the relative rate, also termed the
rate ratio, incidence density ratio, hazard ratio (the
term which is used throughout this article), instanta-
neous relative risk or, loosely, relative risk (see the

section “Related Quantities” below). If the covari-
ates X have an additive effect on the hazard, then
the additive relationship h1(u; x) = h1(u) + d(u; x)

is obtained, where the additive term d(u; x) is the
rate difference or hazard difference or incidence den-
sity difference. Upon considering such expressions,
one can note that the value of absolute risk depends
on both the incidence of disease in the population
and the strength of the relationship between covari-
ates and disease. One consequence is that, while the
hazard ratio is often portable from one population to
another (portability being more questionable for the
rate difference), portability is not a property of abso-
lute risk, as the baseline incidence rate of disease may
vary widely among populations that are separated in
time and location or even among subgroups of popu-
lations, possibly because of differing genetic patterns
or differing exposure to unknown risk factors. Addi-
tionally, competing causes of death (competing risks)
may also have different patterns among different pop-
ulations which might also influence values of absolute
risk.

An important consideration is that covariates
X may be time-dependent (see Time-dependent
Covariate), in which case one must rely on a
more general formulation of (1) and (2) obtained
by (i) replacing initial covariate value x in
π(a1, a2; x) by covariate history in interval [a1, a2),
namely {x(v), a1 ≤ v < a2}, and (ii) by using
generalized versions of cause-specific hazards,
namely h1(v; x(v)) and h2(v; x(v)), in the right-hand
terms of (1) and (2). Eqs. (1) and (2) correspond
to the special case in which covariates X remain
constant throughout the interval. However, unless it is
possible to predict (in a probabilistic or deterministic
manner) the future variation of covariates over
time, estimation is based on (1) or (2) in their
original form, and relies on the initial covariate
value x and the assumption that it remains constant.
This approach is likely to underestimate absolute
risk if covariates the associated risks of which
can only increase with time are considered. Such
variables include, for instance, family history of
breast cancer and number of previous breast biopsies
for benign breast disease, which are used in
estimating the absolute risk of breast cancer from
the Breast Cancer Detection and Demonstration
Project [47] (see the section “Estimation From
Population-Based or Nested Case–Control Studies”
below).
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Range

Absolute risk is a probability and therefore lies
between 0 and 1 and is dimensionless. A value of
0, while theoretically possible, would correspond to
very special cases such as a purely genetic disease for
an individual not carrying the disease gene. A value
of 1 would be even more unusual and might again
correspond to a genetic disease with a penetrance of
1 for a gene carrier (but, even in this case, the value
should be less than 1 if competing risks cannot be
ignored).

Synonyms

The term absolute risk or absolute cause-specific
risk has been used by several authors, includ-
ing Dupont [35], Benichou & Gail [13, 14], Beni-
chou [11], and Langholz & Borgan [62]. However,
it is not a universally accepted term. Alternative
terms include risk [59], individualized risk [47], indi-
vidual risk [94], crude probability [28], crude inci-
dence [60], cumulative incidence [49], cumulative
incidence risk [75] and absolute incidence risk [76].
It should be noted that the definition of the two lat-
ter terms [75, 76] ignores the concept of competing
risks.

Interpretation and Usefulness

Absolute risk provides an individual measure of the
probability of disease occurrence, and can therefore
be useful in counselling. It is well suited to predicting
risk for an individual, unlike the hazard ratio or the
relative risk, which quantify the increase in the prob-
ability of disease occurrence relative to subjects at the
baseline level of risk factors, but do not quantify that
probability itself. Moreover, individualized absolute
risk estimates over specific time intervals are often
more useful than general statements about risk such
as “one in nine women will develop breast cancer
during her lifetime” [3].

Absolute risk has been used as a tool for individual
counseling in breast cancer. Indeed, a woman’s deci-
sion to embark on a program of intensive surveillance
with mammography or even to undergo prophylactic
mastectomy depends on her awareness of the medi-
cal options, on personal preferences, and on absolute
risk. A woman may have several risk factors and

an elevated hazard ratio, but if her absolute risk of
developing breast cancer over the next 10 years is
small, she may be reassured and she may be well
advised simply to embark on a program of surveil-
lance. Conversely, she may be very concerned about
her absolute risk over a longer time period, such as
30 years, and she may decide to undergo prophylactic
mastectomy if her absolute risk is very high [92]. An
assessment of absolute risk (and its range of uncer-
tainty) can help the woman understand the extent of
the risk and can therefore be useful in helping the
woman and her doctor define an acceptable medical
plan [17, 44, 47].

Absolute risk is also useful in designing trials of
interventions to prevent the occurrence of a disease
(see Prevention Trials) because the sample sizes
required for these studies (see Sample Size Deter-
mination for Clinical Trials) depend importantly on
the absolute risk of developing the disease during
the period of study [8]. Absolute risk has also been
used to define eligibility criteria in such studies. For
example, women were enrolled in a preventive trial
to decide whether the drug Tamoxifen can reduce the
risk of developing breast cancer. Because Tamox-
ifen is a potentially toxic drug and because it was
to be administered to a healthy population, it was
decided to restrict eligibility to women with some-
what elevated absolute risks of breast cancer. Only
women over age 59 and younger women whose abso-
lute risks were estimated to equal or exceed that of
a typical 60-year-old woman were eligible to partic-
ipate [8, 93].

Absolute risk can also be important in decisions
affecting public health. For example, in order to esti-
mate the absolute reduction in lung cancer incidence
that might result from measures to reduce exposure
to radon, one could categorize a general population
into subgroups based on age, sex, smoking status,
and current radon exposure levels, and then estimate
the absolute reduction in lung cancer incidence, in
the presence of competing risks, that would result
from lowering radon levels in each subgroup [13, 42].
Such an analysis would complement estimation of
population attributable risk and generalized impact
fractions.

The concept of absolute risk is also useful in a
clinical setting as a measure of the individualized
probability of an adverse event, such as a recur-
rence or death in diseased subjects. In that con-
text, absolute risk depends on prognostic factors of
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recurrence or death, rather than on factors influenc-
ing the risk of incident disease, and the time-scale
of interest is usually time from diagnosis or from
surgery rather than age. Absolute risk is a useful
tool to help define individual patient management
and, for instance, the absolute risk of recurrence in
the next three years might be an important element
in deciding whether to prescribe an aggressive and
potentially toxic treatment regimen. Such an appli-
cation is discussed in Benichou & Gail [13], who
consider the absolute risk of recurrence as a func-
tion of cell type and TN staging in patients with
resected lung cancer. Korn & Dorey [60] provide
other examples. Note that in such a setting, 1 minus
the absolute risk of recurrence differs from the stan-
dard disease-free survival probability (obtained from
the disease-free interval distribution or time to recur-
rence distribution) in that absolute risk takes into
account competing risks (deaths from other causes
than the disease under study). The difference is par-
ticularly large if competing death rates are high com-
pared to the disease-related adverse event rate, as
among older people.

Properties

Two main points need to be emphasized. First, as is
evident from its definition, absolute risk can only be
estimated in reference to a specified time interval.
One might be interested in short time spans (e.g. five
years), long time spans (e.g. 30 years), or even life-
time absolute risk. Of course, absolute risk increases
as the time span increases. In the clinical setting, the
time span might also vary with the context and the
severity of the disease.

Absolute risk can be strongly influenced by the
intensity of competing risks (typically competing
causes of death). Absolute risk varies inversely as
a function of death rates from other causes (denoted
by h2(v; x) in (1) and (2)). The same result in the
clinical setting may lead to differences between 1
minus the absolute risk and the disease-free sur-
vival probability (see the section “Interpretation and
Usefulness” above). Indeed, disease-free survival
applies best in the situation in which no compet-
ing causes (unrelated to the disease under study)
are acting to kill the patient before the occur-
rence of the disease or adverse event of inter-
est [13].

Estimability

It follows from its definition that absolute risk is
estimable if and only if cause-specific hazard rates
for the disease (or event) of interest c1 as well as
death rates from competing causes c2 are estimable
(see Estimation). Therefore, absolute risk is directly
estimable from cohort and case–cohort studies, but
case–control and cross-sectional studies have to be
complemented with follow-up data. Absolute risk
is estimable from nested case–control studies or
population-based case–control studies, in which
the cohort or the specified population from which
cases and controls are selected provides the necessary
complementary information on incidence rates. While
the theoretic possibility exists to complement cross-
sectional studies with follow-up data, such designs
do not seem to have been implemented.

An important feature of absolute risk is that it
takes into account competing risks, that is the pos-
sibility for an individual to die of an unrelated
disease before developing the disease (or disease-
related event) of interest. Absolute risk is identifiable
without any unverifiable competing risk assumptions,
such as the assumption that competing risks act
independently of the cause of interest because, as
Prentice et al. [86] emphasize, all functions of the
cause-specific hazards in (1) and (2) are estimable.
Chiang [28] used the term “crude” probability to
describe absolute risk, the probability of experiencing
c1 in the presence of competing risks c2. This quantity
is relevant for individual predictions and other appli-
cations discussed above rather than the underlying (or
“net” or “latent”) probability of experiencing c1 in the
absence of competing risks. One minus the standard
disease-free survival represents that underlying prob-
ability of experiencing c1 in the absence of competing
risks or under the (unverifiable) assumption of inde-
pendence between time to c1 and time to c2 (see [13,
27, 28, 43, 55, 60] and [86] for more details). The
only competing risk assumption needed to estimate
absolute risk concerns subjects lost to follow-up, who
are assumed to be randomly selected from those at
risk at the time of loss (independent noninformative
censoring) [13].

Sometimes, estimates of competing hazards h2 are
based on external sources such as vital statistics.
For instance, Gail et al. [47] developed breast can-
cer absolute risk estimates and used mortality rates
from year 1979 for all causes except breast cancer



4 Absolute Risk

(see also [11, 13, 14] and [60]). Although (1) and (2)
allow for competing risk hazards h2 to depend on
covariate level x, it is frequently assumed that h2

does not depend on x. It could also be assumed that
h2 depends on a set of covariates X′ that are different
from covariates X.

Estimation from Cohort Studies

Since all cause-specific hazards can be estimated
from cohort studies, it follows that absolute risk can
also be directly estimated from cohort studies. Esti-
mation of cause-specific hazards from cohort data is
a standard topic and details can be found in epidemi-
ology or survival analysis textbooks (see Survival
Analysis, Overview). However, the details of abso-
lute risk estimation have been worked out under
several models, and properties of absolute risk esti-
mates have been studied and compared. A review is
given here.

Covariate-free Estimates of Absolute Risk

The following methods are appropriate for a
homogeneous study population. They are also used
to provide estimates of composite absolute risk in
populations; namely, overall estimates of absolute
risk that do not distinguish among levels of covariates
X. Parametric and nonparametric estimators are
presented.

The “density method” [59, 76, 77] estimates
absolute risk π(a1, a2) by the cumulative (incidence)
risk given by 1 − exp{−Λ(a1, a2)}, where Λ(a1, a2)

is the cumulative hazard for the event of interest,
c1. This formulation ignores competing risks. The
term x is omitted in Λ because an overall rather
than an exposure-specific absolute risk is considered.
This approach is parametric, as it relies on a
piecewise exponential distribution of time to c1,
which corresponds to a piecewise constant hazard
of developing c1. It ignores competing risks, and
therefore applies only in the absence of competing
risks, which constitutes an important limitation.

Benichou & Gail [13] developed direct parametric
estimators of absolute risk. They derived direct esti-
mators of π(a1, a2) based on (1) or (2) (still ignoring
covariates X) under exponential and piecewise expo-
nential models. Under the exponential assumption,
hazards h1 and h2 are constant, while under the piece-
wise exponential assumption, hazards h1i and h2i

are piecewise constant. The expression for π(a1, a2)

under the piecewise exponential assumption is given
by [13]

π(a1, a2) =
∑

i

h1i (h1i + h2i)
−1

× [1 − exp{−(h1i + h2i )∆i}]A(i), (3)

with A(i) = ∏
j exp{−(h1j + h2j )∆j }. In (3), the

sum is taken over all time intervals included in
[a1, a2), i is the corresponding index, h1i (respec-
tively h2i) denotes the (constant) hazard for cause c1

(respectively c2) in interval i, ∆i is the width of inter-
val i, and the product in A(i) is taken over all time
intervals in [a1, a2), but the last one and indexed by
j . For simplicity, a1 and a2 are taken to correspond
to interval bounds.

Hazard rates h1i can easily be estimated by d1i/ti ,
where d1i and ti , respectively, denote the observed
number of events and person-years in interval i.
Analogous estimates of competing hazards h2i are
given by d2i/ti , where d2i denotes the observed
number of events in interval i. Corresponding point
estimates of π(a1, a2) can be obtained by replacing
hazards by their estimates in (3). Under the simple
exponential assumption, no separate intervals are
considered as the hazards h1 and h2 are considered
constant throughout time. Eq. (3) simplifies, as the
sum includes only one term and A(i) equals 1.
Estimates of hazards are obtained as for the piecewise
exponential model with a single interval.

Unlike estimates with the density method, direct
estimates of absolute risk with the exponential and
piecewise exponential assumptions do not ignore
competing risks, therefore providing estimates of the
absolute risk of developing c1 in the presence of
competing risks. Moreover, as for the density method,
absolute risk can be estimated for a much longer
duration than the actual follow-up of individuals in
the study if age is the time scale (open cohort),
provided that there is no secular trend in age-specific
disease incidence.

Variance estimates of the absolute risk estimate
are obtained using the delta method [87], and cor-
responding confidence intervals follow. Details are
given in Benichou & Gail [13] for the exponen-
tial and piecewise exponential models. Properties of
point and variance estimators were studied by Beni-
chou & Gail [13] for the case of a closed cohort.
When the simple exponential model was correct,
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simulations showed no or very little bias in point
estimates of π(a1, a2), and analytic and simulation
results showed that substantial gains in efficiency
could be achieved with a simple exponential analysis.
Simulations showed that exponential and piecewise
exponential analyses yielded nearly nominal coverage
with better results under the log transformation of
π(a1, a2). When a Weibull model with a large shape
parameter of 2 was correct, simulations showed that
only the piecewise exponential analysis with a suffi-
cient number of intervals achieved little or no bias as
well as good coverage, while simpler models led to
serious bias and consequent failure of coverage.

The actuarial method or life table method [23,
33, 39, 41, 59] is an approach that shares similarities
with the piecewise exponential approach, although it
was derived from a less parametric viewpoint. As
with the piecewise exponential approach, time is split
into intervals (indexed by i in this presentation). In
each time interval i, the probability for an individual
at risk at the beginning of the interval to survive the
interval without developing c1 is expressed as

Si =

(
ni − wi

2 − di

)

(
ni − wi

2

) , (4)

where ni denotes the number of subjects in the cohort
at the beginning of interval i, di the number of events
occurring in interval i, and wi the number of subjects
either lost to follow-up or developing c2 (competing
risks) in interval i. The actuarial approach is most
appropriate when grouped data are available and the
actual follow-up in each interval is not known. The
person-years of follow-up for subjects lost to follow-
up or developing c2 in interval i is not used but, if one
assumes that the mean withdrawal time occurs at the
midpoint of the interval, then the denominator in (4)
can be regarded as the effective number of persons at
risk of developing the disease. That is, it represents
the number of disease-free persons that would be
expected to produce di events if all persons could
be followed for the entire interval [38, 59, 66]. It can
be regarded as a refinement of the simple cumulative
method [59, 77] that ignores quantity wi . Absolute
risk is estimated by the cumulative (incidence) risk
which, from the formulation in (4), is obtained as

1 −
∏

i

Si . (5)

Since (5) ignores competing risks, the actuarial
method applies in the absence of competing risks,
which constitutes an important limitation, in an
analogous manner as the density method. Moreover,
as shown by several authors [33, 41], the actuarial
method results in biased estimates of risks even in the
unlikely and most favorable event (in terms of bias)
of all withdrawals occurring at the interval midpoints.
Alternative approaches based on different choices of
the quantity to subtract from ni (choices different
from wi/2) are not subject to less bias [38]. The
problem can be improved best by using narrower
intervals, but this is done at the expense of a larger
random error.

Unlike the piecewise exponential models, the
actuarial method does not require knowledge of
follow-up time in each interval but only knowledge
of the number at risk and the number of withdrawals.
The piecewise exponential approach could, however,
be used without knowledge of follow-up time by
assigning a follow-up time of half the interval width
to subjects who are lost to follow-up or who develop
c1 or c2, in an analogous fashion as with the actuarial
method [13]. The piecewise exponential approach has
several advantages over the actuarial method. Bias is
less of a problem with it, it takes competing risks
into account, it applies naturally to open cohorts, and
it extends easily to regression-based estimators (see
below).

When individual follow-up times are all known, it
is possible to estimate absolute risk nonparametrically

as in Aalen [1], by substituting Ĝ(t1−), the right con-
tinuous Kaplan–Meier estimate [56] of surviving
both c1 and c2 to time a1 into the denominator of (1)

and by replacing the numerator by
∑

Ĝ(t−)R−1(t),
where R(t) is a left continuous process defining the
number of subjects at risk just before t . The summa-
tion is over distinct times in [a1, a2) at which events
c1 occur. The same estimator is discussed by Aalen
& Johansen [2], Kay & Schumacher [57], Gray [49],
Matthews [73], Keiding & Andersen [58], Benichou
& Gail [13], and Korn & Dorey [60].

While nonparametric point estimates are easy to
obtain, variance estimates are more complex and can
be obtained in several ways. Results in Aalen [1,
Theorem 2] can be used, as discussed in Benichou
& Gail [13] and Korn & Dorey [60]. Alternatively,
results in Aalen & Johansen [2, Theorem 4.3] can
be used, as discussed by Keiding & Andersen [58].
Confidence intervals can then be obtained, based on



6 Absolute Risk

the log transformation, as suggested by Benichou &
Gail [13] and Keiding & Andersen [58], or based on
results of Dorey & Korn [34], who treat the lower and
upper limit differently, a procedure that they claim is
advantageous under heavy censoring.

Analytic and simulation results in Benichou &
Gail [13] under exponential survival distributions
show that the loss of efficiency of the nonparamet-
ric method is very small compared to a detailed
piecewise exponential model and that nearly nomi-
nal coverage is obtained with the log transformation
as for the piecewise exponential model. In simu-
lations under a Weibull model with a large shape
parameter of 2, very little bias and near nominal cov-
erage was observed as with the piecewise exponential
model [13]. These results suggest that properties of
the piecewise exponential model and the nonpara-
metric approach agree closely. The nonparametric
approach does not make any assumption on the form
of the hazards, but the piecewise constant assumption
can be made less stringent by increasing the number
of intervals. The piecewise exponential model has the
advantage of simplicity of computation, in that it uses
grouped data rather than individual data. Moreover,
it is well suited to open cohorts.

These approaches yield an overall composite abso-
lute risk and ignore covariates X. In order to obtain
estimates that depend on the level of covariates, the
cohort can be subdivided into subcohorts, and these
approaches applied to resulting subcohorts defined
by levels of X. This approach yields absolute risk
estimates with low precision, however, if the sub-
cohorts are small and have few events, as can hap-
pen if several risk factors have to be considered
jointly (see [47] for further discussion and illustra-
tion, and [7] and [82] for further illustration with the
actuarial method and breast cancer data). In order to
remedy this problem, a natural approach is to model
incidence rates h1 and h2 through regression models.

Covariate Models

Regression-based parametric methods are a direct
extension of parametric methods for composite esti-
mates. For instance, Benichou & Gail [13] studied
exponential and piecewise exponential models. Under
the piecewise exponential model, it is assumed that
hazards for c1 are products of a baseline hazard in
interval i and a function of the covariates, usually
(but not necessarily) expressed as exp(βTx). Baseline

hazards as well as hazard ratio parameters β can be
jointly estimated by maximizing the piecewise expo-
nential likelihood. That likelihood is the same as that
obtained by assuming that the number of events in
each combination of time interval and level of X has
a Poisson distribution with mean given by the prod-
uct of the hazard times the corresponding number
of person-years, that latter number being assumed
constant [52, 61] (see Poisson Regression in Epi-
demiology). It is possible to include time by exposure
interactions in covariates X so that the proportional
hazard assumption is not required. Furthermore, haz-
ards for cause c2 are estimated separately. They are
also assumed to be piecewise constant and can be
assumed to depend on the set of covariates X, a
different set X′ if needed, or on no covariates. A
point estimate of π(a1, a2; x) is obtained by replac-
ing quantities h1i in (3) by quantities h1i exp(βTx),
where h1i denotes the baseline hazard in the latter
expression, and by plugging in maximum likelihood
estimates of the parameters. Corresponding parameter
estimates for competing hazards are estimated sepa-
rately and also plugged in (3). A similar approach
to point estimation can be taken for other paramet-
ric models such as a simple exponential model or a
Weibull model [13].

As described in Benichou & Gail [13], variance
estimates can be obtained by applying the delta
method [87] and relying on the observed informa-
tion matrix for all parametric models. Finite sample
properties were studied by Benichou & Gail [13]
through simulations based on a clinical trial of lung
cancer [48]. Simulations used 392 patients, an accrual
period of three years, and an additional follow-up
of two years. Time to c1 was assumed to be expo-
nentially distributed and to depend on two covariates
forming six joint levels, while time to c2 was assumed
to be exponential and not to depend on any covari-
ates. Point estimates had little bias with piecewise
exponential and exponential analyses. Variance esti-
mates were also little biased and coverage was nearly
nominal with all analyses except for the level of X

with the fewest patients (12 patients) in which vari-
ance estimates and corresponding coverage were too
small. Loss of efficiency could be appreciable when
a detailed piecewise exponential was used compared
to the simple exponential model.

Finally, a semiparametric estimator of abso-
lute risk can be obtained, as outlined in Beni-
chou & Gail [13]. The difference with the piecewise
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exponential approach is that the hazard for c1 is
the product of an unspecified function of time (the
baseline hazard) times a function of the covariates
which is also usually of the form exp(βTx) [31]. As
for the piecewise exponential model, X may include
time by exposure interaction and competing hazards
can be assumed to depend on covariates X or X’
or on no covariates (in the latter case, correspond-
ing survival is estimated nonparametrically using the
Kaplan–Meier product-limit estimator).

The expression for a semiparametric estimate of
absolute risk is given in Benichou & Gail [13,
formula (3.1)] and is a function of partial likeli-
hood estimates [32] of hazard ratio parameters β

and related Nelson–Aalen estimates of cumulative
baseline hazards [6]. From results in Tsiatis [95] and
Andersen & Gill [5] on the joint distribution of these
parameter estimates, Benichou & Gail [13] derived
an asymptotic variance estimator. No formal study of
its finite sample properties has been undertaken.

These regression methods yield estimates of abso-
lute risk with acceptable precision for several covari-
ates. Regression-based methods are therefore well
suited for individual prediction. Parametric or semi-
parametric approaches can be used. The piecewise
exponential estimator seems to provide a good com-
promise between bias and precision, while being easy
to implement both for open and closed cohorts.

Estimation from Population-based or
Nested Case–Control Studies

Case–control studies provide data on the distribu-
tions of exposure respectively in diseased subjects
(cases) and nondiseased subjects (controls) for the
disease under study. These data are used to estimate
hazard ratios or relative risks through the estima-
tion of odds ratios, but are not sufficient to estimate
exposure-specific incidence rates (the terms “hazard”
and “incidence rate” are used indiscriminately in the
remainder of the text) and absolute risks. In order to
do so, case–control data have to be complemented
by follow-up data. Either the cases and controls are
selected from a follow-up study (see Case–Control
Study, Nested) that provides either grouped data
or individual data with survival-type information, or
they are selected from a specified population in which
an effort is made to identify all incident cases diag-
nosed during a fixed time interval (see Case–Control

Study, Population-based) usually in a grouped form
(number of cases and number of persons by age
group). In both situations, full information on expo-
sure is obtained only for cases and controls, but the
complementary data provide information on compos-
ite incidence that can be combined with hazard ratio
estimates to obtain exposure-specific incidence rates,
as has long been recognized [29, 30, 68, 75, 76, 80].

The main estimation problem regards estimation
of exposure- and age-specific hazards or incidence
rates (age is the usual time scale in this context).
Absolute risk estimates are then obtained from (1)
or (2), and the delta-method [87] can be used to
obtain the variance of absolute risk estimates based
on the covariance matrix of incidence rate estimates.
Parametric methods based on the piecewise expo-
nential model (also termed the Poisson regression
model) and the logistic model have been derived
under a full likelihood approach, a pseudo-likelihood
approach, and a hybrid approach. That latter approach
will be described fully, because it has been used to
obtain absolute risk estimates in practice. The for-
mer two approaches will be reviewed more briefly,
because they have not yet been used to derive abso-
lute risk estimates and fewer results are available.
Finally, a semiparametric estimate of absolute risk
based on partial likelihood has been proposed for
nested case–control studies with time-matching of
cases and controls, and will also be reviewed.

Parametric Approaches

The hybrid approach has been proposed by Gail
et al. [47] as a multivariate extension of earlier work
by Miettinen [75]. It relies on the possibility of
estimating composite incidence rates h∗

1i from the
population or follow-up data for each age group i or,
in a more general fashion, for each stratum i defined
by age and other factors observed in the follow-up
or population data such as sex and region. Under
a piecewise exponential assumption, the quantity
h∗

1i is estimated by the ratio d1i/ti of the number
of incident cases of disease c1 to the number of
person–years. Although information on exposure is
obtained on cases and controls only, and not on
the whole cohort or population, baseline incidence
rates h1i (for subjects at the baseline level of all
exposure factors considered) can be obtained through
the relationship [47, 75]:

h1i = h∗
1i (1 − ARi), (6)
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where ARi is the attributable risk for disease c1 in
age group i or, more generally stratum i, for all expo-
sure factors jointly, a quantity estimable from the
case–control data. Gail et al. [47] suggested using
the model-based approach of Bruzzi et al. [25], that
incorporates odds ratios from logistic regression,
for estimating attributable risk, and obtained a point
estimate for h1i . Upon multiplying that estimate by
the corresponding odds ratio from logistic regres-
sion, they obtained an estimate of the incidence rate
for each joint age and exposure level. Finally, inci-
dence rates for competing risks can be obtained from
the follow-up or population data, provided that those
rates are assumed not to be influenced by the expo-
sure factors for c1. The latter assumption stems from
the fact that it would be impossible to estimate hazard
ratios for c2 from case–control data for disease c1. In
fact, Gail et al. [47] used external data on national US
mortality rates to estimate h2i and obtained absolute
risk estimates from the piecewise exponential model
in formula (3).

Variance estimators are complex since incidence
rate estimates involve odds ratio parameters obtained
through logistic regression from the case–control
data and counts of incident cases from the follow-
up or population data. Estimators of variances and
covariances of age- and exposure-specific incidence
rates have been fully worked out by Benichou &
Gail [14] for simple random sampling, stratified
random sampling, frequency matching and individ-
ual matching in a simple setting. The approach relies
on an extension of the delta-method to implicitly
related random variables [12]. It takes into account
all sources of variability; namely, the variance of
hazard ratio estimates and of baseline incidence rate
estimates, as well as the covariance between the two.
Variance estimates of absolute risk estimates are then
obtained through the delta-method [87] and take into
account the variance of competing hazard estimates
unless they are estimated from external sources and
considered fixed, as in Gail et al. [47].

The hybrid approach can be regarded as relying on
two models; namely, the piecewise exponential model
and the logistic model (the conditional logistic model
for individual matching and the unconditional logistic
model for the three other ways of sampling controls).
The baseline incidence rates are obtained by combin-
ing follow-up (or population) data and case–control
data. Benichou & Gail [14] performed simulations
based on the Breast Cancer Detection Demonstration

Project (BCDDP) [9], a large follow-up study of
284 780 women, from which about 3000 cases and
3000 controls were selected (case–control study
within a cohort or case–control study). They used a
sample size of 100 000 women in each replication and
generated piecewise exponentially distributed times
to breast cancer occurrence by considering four age
groups and two exposure factors forming six levels. A
follow-up of five years was considered, and the possi-
bility of dying from other causes (piecewise constant
competing hazards not influenced by any covariates)
was taken into account. Incident cases and frequency-
matched controls were selected from the follow-up
data. They found a small upward bias in absolute risk
estimates due to the small upward bias incurred by
using odds ratios to estimate hazard ratios when the
rare disease assumption is violated in the context of
such a study. Complete variance estimates had very
little bias and yielded confidence intervals with near
nominal coverage. Coverage was improved with the
logit transform. Incomplete variance estimates that
took into account only the variance of hazard ratio
estimates from the case–control data were too small
for small values of absolute risk, because they ignored
the variances of baseline incidence rate estimates, and
too large for larger values of absolute risk, because
they ignored the negative covariances between hazard
ratio estimates and baseline incidence rate estimates.

The hybrid approach was applied to the esti-
mation of absolute risk of breast cancer from the
BCDDP data as a function of age and four risk fac-
tors [47]. Details regarding variance estimation can
be found in Benichou [11], who took into account
special subsampling of cases and controls. Indeed,
not all incident cases were used to estimate composite
hazards and not all selected cases and controls were
used to estimate hazard ratios. In order to implement
these results and estimate absolute risk for new sub-
jects, tables for point estimation were given by Gail
et al. [47]. Practical implementation has been greatly
facilitated by the development of the computer pro-
gram RISK [10] and of graphs [17] that yield point
estimates and confidence intervals of the absolute
risk of developing breast cancer. Absolute risk is a
widely used tool in individual counseling for breast
cancer [17].

A pseudo-likelihood approach and a full likeli-
hood approach have been proposed as alternatives
to the hybrid approach [15]. They also rely on the
piecewise exponential (or Poisson) model or logistic
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model, although other parametric models could be
used. They yield exposure-specific incidence rate
estimates, but have not been fully developed to
obtain absolute risk estimates, although this extension
would be straightforward. Indeed, it would consist
in (i) substituting in (1) or (2) age- and exposure-
specific hazard estimates for disease c1 and compet-
ing hazard estimates in order to obtain point estimates
of absolute risk and (ii) using the delta-method [87]
to derive variance estimates.

The pseudo-likelihood approach was presented by
Benichou & Wacholder [15] in the context of a Pois-
son model (piecewise exponential model) and rests
on the following principles. A full likelihood for the
entire cohort or population could be written and max-
imized if information on exposure were available for
all subjects in the population or cohort rather than just
for the cases and controls. However, one can combine
follow-up or population information in the form of
number of events di and person-years ti for each stra-
tum i with the observed distribution of exposure in
the case–control data to obtain estimates of number
of events d1ij and person-years tij for joint stratum
level i and exposure level j . This is simply done
by multiplying quantities d1i (respectively ti) by the
observed proportion of cases (respectively controls)
at exposure level j in stratum i. The rare disease
assumption is used to obtain person-years from the
conditional distribution of exposure in controls only.
Substituting these estimated quantities, one obtains a
Poisson pseudo-likelihood which is then maximized
to obtain maximum pseudo-likelihood estimates of
incidence rate parameters (baseline incidence rates
and hazard ratios for a multiplicative model). Vari-
ance estimation relies on sandwich variance estima-
tors [64] which allow for taking into account the
additional component of variability incurred by the
use of estimates of quantities d1ij and tij .

The full likelihood approach differs from the
pseudo-likelihood approach in that a full likeli-
hood is written as a function of the incidence
rate parameters to be estimated and a set of nui-
sance parameters for the conditional distribution
of exposure given the stratum in the population.
Rather than using the observed conditional distri-
butions in cases and controls as with the pseudo-
likelihood approach, the nuisance parameters are
estimated jointly with the incidence rate parameters
by maximization of the likelihood [15]. One obtains
fully efficient maximum-likelihood estimates (rather

than maximum pseudo-likelihood estimates) of all
parameters (incidence rate and nuisance parameters),
and variance estimates of the incidence rate param-
eters are obtained directly from the observed infor-
mation matrix. In the context of a Poisson model,
this approach is faced with the potential problem of
a large number of parameters if several risk factors
and stratum levels are considered. Even in the simple
example of Benichou & Wacholder [15], with nine
strata and eight exposure levels only, 60 nuisance
parameters had to be estimated. This problem can
be alleviated if one is willing to consider the logis-
tic rather than the Poisson model, as pointed out by
Greenland [50]. A prospective logistic model can be
applied to the case–control data and yields maxi-
mum likelihood estimates of hazard ratio parameters.
Furthermore, maximum likelihood estimates of base-
line incidence rates are obtained by adding to the
stratum parameter estimates from the logistic model
a term corresponding to the logarithm of the ratio
of sampling fractions among cases and controls in
the stratum [50, 85]. The covariance matrix of esti-
mates of baseline incidence rates and hazard ratios is
obtained as described in Prentice & Pyke [85].

Upon comparing the pseudo-likelihood, full
likelihood and hybrid approach on population-based
case-control data of bladder cancer [51], Benichou
& Wacholder [15] found that the hybrid approach
seemed to be less efficient for incidence rate
estimation than the other two approaches, which
were themselves equally efficient. This efficiency
loss might be due to the following conceptual
difference regarding estimation of baseline incidence
rates and hazard ratios among the three approaches.
With the maximum likelihood and pseudo-likelihood
approaches, these quantities are jointly estimated
and their negative correlations fully accounted for
in variance estimates. With the hybrid approach,
crude incidence rates and hazard ratios are estimated
separately and then combined to obtain stratum-
and exposure-specific incidence rates and, as a
consequence, negative correlations between estimates
of baseline incidence rates and hazard ratios are not as
strong, which results in larger variances [15]. Another
potential advantage of the full likelihood and pseudo-
likelihood approaches is that they directly estimate
hazard ratios rather than odds ratios. Furthermore,
if the Poisson (but not the logistic) model is used,
they can be applied to more general models of risk;
for example, models with an additive form using
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rate difference parameters rather than hazard ratio
parameters [15]. Finally, all three approaches require
that cases and controls be selected at random [67] and
that incident cases or at least a known proportion of
them be fully identified [15].

Semiparametric Approach

The three parametric approaches described above ap-
ply to situations in which controls are not individually
matched to cases. The hybrid approach can han-
dle special cases of individual matching [14] but not
time-matching, which characterizes nested case–con-
trol studies [24, 65, 71]. In that context, Langholz
& Borgan [62] developed a semiparametric approach
which can be regarded as an extension of the semi-
parametric approach for cohort studies described
above (see the section “Estimation from Cohort
Studies” above). The context is that of a nested
case–control study (case–control within a cohort), in
which cases develop from a cohort, and controls are
selected from subjects still at risk. Therefore, indi-
vidual follow-up times are needed and grouped data
are not sufficient.

Incidence rates are expressed as the product of
baseline incidence rates of an unspecified form times
a function of the covariates representing the haz-
ard ratio [31]. Hazard ratio parameter estimates are
obtained from maximizing the partial likelihood of
the Cox regression model for nested case–control
data [81, 84]. Absolute risk estimates are obtained
by combining partial likelihood hazard ratio param-
eter estimates and corresponding cumulative haz-
ard estimates. Langholz & Borgan [62] showed that
their proposed semiparametric estimate is asymp-
totically normal and provided a variance estimator
based on results in Aalen & Johansen [2], Ander-
sen et al. [6], and Borgan et al. [21]. Point estimates
and corresponding variance estimates are based on
simple sums or products of information from the
case–control study, the estimated hazard ratio param-
eters, and the number at risk at the failure times.
Competing risks can be taken into account provided
that it is assumed that occurrence of c2 is not influ-
enced by the risk factors for occurrence of disease
c1. Finite sample properties of this approach have
not been studied. A direct comparison with para-
metric approaches presented above is not possible
because the semiparametric approach applies only to
time-matched data, which the parametric approaches

cannot handle. The semiparametric approach requires
observation of individual follow-up time of each sub-
ject in the original cohort in order to form the risk sets
for each failure time, and enable control selection. It
is therefore potentially less widely applicable than the
parametric approaches but makes no assumption on
the baseline hazard. Finally, it has the advantage over
the available parametric approaches of being able to
handle continuous covariates.

Special Problems

Case–Cohort and Cross-sectional Designs

In the case–cohort design, information on exposure
is gathered only in a subcohort of subjects randomly
selected from the original cohort and among subjects
who develop the disease [83]. It is therefore possi-
ble to estimate exposure-specific incidence rates and
absolute risk directly from case–cohort data. How-
ever, the details of absolute risk estimation have not
been worked out in the literature. Cross-sectional
studies would need to be complemented by follow-up
or population data in order to allow for incidence rate
and absolute risk estimation, but such designs do not
seem to have been implemented (see Case–Control
Study, Prevalent).

Two-stage Case–Control Studies

In two-phase case–control studies [22, 98, 99],
cases and controls are selected from a cohort or
a population, as in a case–control study within a
cohort or a population-based case–control study.
Furthermore, a nested subsample of cases and con-
trols is selected from original cases and controls
on which information is gathered on exposure fac-
tors which are more difficult to obtain, such as
X-ray data or genetic markers. Several parametric
approaches have been developed to allow for haz-
ard ratio and incidence rate estimation by an exten-
sion of the pseudo-likelihood approach for two-stage
case–control data [16], pseudo-conditional likelihood
methods [22, 90], and weighted likelihood meth-
ods [40, 54, 88, 89]. From incidence rate estimates
from these various methods, it would be easy to
obtain absolute risk estimates from (1) or (2).
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Continuous Risk Factors

Absolute risk can be expressed as a function of
both continuous and categorical risk factors. Model-
based estimation methods presented above for cohort
data (see the section “Estimation from Cohort Data”
above) accommodate both types of variables. For
case–control data however, the situation is different.
Among parametric approaches, the hybrid approach
yields point estimates that apply to both types of vari-
ables, but variance estimators have been developed
only for categorical covariates. The full likelihood
and pseudo-likelihood approach only apply to cate-
gorical covariates. The semiparametric approach is
more flexible, in that it fully allows for continuous
risk factors for point and variance estimation.

Time-dependent Risk Factors

Most estimation procedures presented above can
be adapted to take into account time-dependent
covariates. However, when absolute risk is used for
individual prediction, estimation of absolute risk over
time interval [a1, a2) is based on the initial value
of the covariates (i.e. the value at time a1) and
assumes that it stays constant over the whole interval,
unless it is possible to predict (in a probabilistic
or deterministic manner) the future variation of
covariates over time (see the opening text).

Secular Trend

An important feature of the estimation methods
described for cohort and case–control studies is that,
by combining hazard estimates from different age
intervals, absolute risk can be estimated for a much
longer age interval than the actual follow-up of
individuals in the study. To combine these hazard
estimates into a single estimate of absolute risk, one
must assume that there is no secular trend in disease
incidence [59, Chapter 6].

Misclassification of Exposure

Misclassification of exposure could affect the valid-
ity of absolute risk estimates, but this problem,
which has been studied for estimation of other mea-
sures (e.g. odds ratio, hazard ratio, and population
attributable risk; see Measurement Error in Epi-
demiologic Studies) has not been studied for absolute
risk estimation.

Use of Two Time Scales

In some applications, it may be important to consider
two time scales, such as time from entry in the cohort
(e.g. time from surgery, diagnosis, or first exposure)
and age. Korn & Dorey [60] give guidelines and
examples for that situation.

Selection of Risk Factors and Model
Misspecification

Selection of risk factors on which to base absolute
risk estimation is a difficult task. Complex multivari-
ate models containing many risk factors will usually
appear to describe the variation of risk in the data
used to fit the model better than simpler models.
Yet the simpler models often perform as well or bet-
ter in predicting risk in other populations [37]. This
is because complex models fit the statistical anoma-
lies of the given sample as well as the reproducible
features, whereas the simpler models tend to reflect
the reproducible features only. It might therefore be
preferable to choose factors for inclusion in the model
that have been previously demonstrated to be impor-
tant rather than to rely solely on the current data
sample to select factors for inclusion [44].

A related problem is model misspecification
which can lead to severe bias in absolute risk
estimates and has to be considered carefully. Model
misspecification can come from an inappropriate
selection of risk factors, but also from incorrectly
modeling the effect of included risk factors,
from selecting the wrong model for time to
event distribution, or from incorrectly assuming
proportional hazards. Benichou & Gail [13] illustrate
the potential severity of the problem in an example
which suggests that using unsaturated rather than
saturated models for covariate effects can lead to
a systematic error that is potentially larger than
random error (see Generalized Linear Model).

Validation

Given the potentially severe effects of model
misspecification on absolute risk estimation, it is
important to validate models used for absolute risk
estimation. For instance, from internal validation
results and two studies of external validation based
on independent cohorts [20, 94] (see Validation
Study), it appeared that the model developed by
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Gail et al. [47] to estimate absolute risk of breast
cancer from the BCDDP as a function of age
and four risk factors produces valid estimates of
absolute risk for women in regular screening as in the
BCDDP, but yields estimates that tend to be too high
when applied to unscreened or sporadically screened
populations [20, 44, 45, 94], as had been cautioned
in the initial paper [47].

Absolute Risk and Treatment Comparison

It might be useful to use absolute risk as a means
of testing for treatment effect, especially given the
availability of tests for comparing k treatment groups
based on absolute risk [49]. However, use of absolute
risk alone may be misleading. For example, if a can-
cer treatment increases h2 but leaves h1 unaffected,
absolute risk will diminish in the treated group; yet
overall survival is reduced and c1-specific survival
is unchanged. Instead, one should compare overall
survival and estimates of the cause-specific survival
curves in the treated and untreated groups, as is com-
mon practice. If h2 is not affected by treatment,
however, the change in absolute risk is a more real-
istic gauge of treatment benefit than a comparison
of c1-specific survival curves. If both h1 and h2 are
affected, absolute risk gives useful descriptive infor-
mation for summarizing the burden of recurrence in
each group [13].

Overall Adjusted Absolute Risk

In order to obtain an overall measure of absolute risk
at the population level, one might combine individu-
alized estimates to obtain a direct adjusted value for
the entire population by summing estimated values
of absolute risk for a given level of the covariates
over the distribution of the covariates in the refer-
ence population [13]. This procedure would yield a
different estimate than that obtained by covariate-
free estimation of absolute risk from the same pop-
ulation (see the section “Estimation from Cohort
Studies” above). The adjusted procedure would be
analogous to the methods for direct adjustment of sur-
vival curves described by Murphy & Haywood [79],
Makuch [70], and Chang et al. [26], and the variance
estimation methods of Gail & Byar [46] could be
adapted.

Related Quantities

Attack Rate

In the investigation of a local outbreak of a comm-
unicable disease, a measure of interest is the absolute
risk of developing the disease for the duration of
the epidemic or the time during which primary cases
occur. In this situation, absolute risk is often called
an attack rate [59, 69].

Hazard Ratio and Relative Risk

As discussed above (see the section “Interpretation
and Usefulness”), the hazard ratio, also called the
relative rate, rate ratio, incidence density ratio, or
instantaneous relative risk, is a useful measure in
etiologic research that quantifies the strength of the
relationship between exposure and disease, while
absolute risk is more useful in individual prediction
as a measure of the actual probability of disease for a
given risk profile. Large hazard ratios may correspond
to small absolute risks if the disease is rare and
conversely.

Since incidence rates are a function of hazard
ratios in multiplicative models, absolute risk is also
a function of hazard ratios (and of baseline incidence
rates) in those models. Alternatively, additive models
can be used with the rate difference, also called
hazard difference or incidence density difference,
being the relevant parameter instead of the hazard
ratio to measure the effect of covariates.

The term “relative risk” is frequently used to
represent a hazard ratio or its estimator. Strictly
speaking, however, relative risk refers to the ratio
of absolute risks and not of incidence rates [59]. A
synonym is “risk ratio” [76].

Incidence Rate

Absolute risk is a direct function of incidence rates,
as is apparent from (1) and (2) that define abso-
lute risk. As was mentioned above (see the sections
“Estimability” and “Estimation” above), the problems
of absolute risk estimability and estimation essen-
tially reduce to those of incidence rate estimability
and estimation.
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Cumulative Risk and Cumulative Hazard

The relationships between absolute risk and cumula-
tive risk and hazard have been defined in the section
“Estimation from Cohort Studies” above.

Excess Risk

Excess risk [91], also called excess incidence [18,
69, 74], is defined as the difference between the
incidence rates in the exposed and the unexposed.
Like absolute risk, it takes into account the incidence
of the disease in the unexposed and the strength of
the association between exposure and disease. It can
be expressed as the product of the baseline inci-
dence rate times the hazard ratio minus 1, and it
quantifies the difference in incidence that can be
attributed to exposure at the individual level. Other
terms have been used to denote this quantity; namely,
“Berkson’s simple difference” [96], “incidence den-
sity difference” [76], “excess prevalence” [96], and
even “attributable risk” [72, 91].

Population Attributable Risk and Generalized
Impact Fraction

Population attributable risk [63] and the generalized
impact fraction [97] are measures that assess the
public health consequences of an association between
exposure and disease and the potential impact of
prevention measures aimed at eliminating (population
attributable risk) or reducing (generalized impact
fraction) exposure in the population. As was
mentioned above (see the section “Interpretation and
Usefulness” above), absolute risk can be used to
estimate the absolute reduction in incidence that
would result from prevention measures in each
subgroup of exposure, and can therefore be regarded
as a useful complement to population attributable risk
and the generalized impact fraction.

Floating Absolute Risk

The term “floating absolute risk”, introduced by
Easton et al. [36], refers to a concept unrelated to
absolute risk, which may introduce some confusion.
The purpose of those authors was to remedy the
standard problem that hazard ratios are estimated
in reference to a baseline group which in turn
causes hazard ratio estimates for different levels of

exposure to be correlated and may lead to lack of
precision in hazard ratio estimates if the baseline
group is small. The authors proposed a procedure
to obtain hazard ratio estimates unaffected by these
problems. They termed their proposed hazard ratio
estimates “floating absolute risks” to indicate that
their standard errors were not estimated in reference
to an arbitrary baseline group.

Prospects and Conclusions

Despite the substantial development of methods
for estimating absolute risk, there remain important
research issues, including point and variance
estimation for parametric case–control estimators
when continuous risk factors are considered, the
study of finite sample properties of nonparametric and
semiparametric estimators and their comparison with
parametric estimators, the comparison of the three
main parametric approaches in case–control studies,
the study of the effect of exposure misclassification
on absolute risk estimation, and research issues
regarding special problems (see the section “Special
Problems” above).

An important issue is the development of tools
to implement methods for absolute risk estimation.
For instance, a graphic approach has been developed
to convert relative to absolute risk [35]. Graphs [17]
and a computer program [10] have been developed to
estimate absolute risk of breast cancer as a function
of age and four risk factors. More general programs
would be worth developing.

Finally, an important challenge is to increase
awareness of the proper interpretation and use of
absolute risk in practice (e.g. in counseling, see [4,
17, 19, 53] and [78]), as well as of correct estimation
techniques.
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Accelerated Failure-time
Models

Accelerated failure-time models can be simply illus-
trated in the following way. Let T0 be the sur-
vival time, under control conditions, from some ori-
gin to the occurrence of an event of interest, and
suppose that application of a treatment, or expo-
sure to a risk factor, modifies the survival time to
T = T0/θ for some fixed scaling parameter θ . Then
the median survival time under the treatment or
risk factor is 1/θ times the median under the con-
trol, and indeed the time to reach any percentile of
the treatment group will be 1/θ times the time to
reach the corresponding percentile of the controls.
This proportional adjustment of the time-scale repre-
sents the simplest form of the accelerated failure-time
assumption.

The term accelerated failure time derives from
accelerated life testing, particularly in engineering
and similar applications. In these, extrapolation is
often required from high stress levels, designed
to induce rapid failure under laboratory conditions,
to lower stress levels which operate under normal
conditions. The assumed link between the effects
of the different levels is provided by the adjusted
time-scale. Corresponding biostatistical applications
include situations such as carcinogenicity or toxi-
city experiments, in which doses of a high level
are applied under experimental conditions and the
results extrapolated to lower doses via the accel-
erated failure-time assumption (see Extrapolation,
Low Dose).

The Models

Let the proportion of cases in the control group
surviving beyond time t be denoted by S0(t) (the
survival function), and let the survival function under
the treatment or exposure be S(t). Then according to
the accelerated failure-time model the two survival
functions are related by

S(t) = S0(θt),

and the hazard functions (see Hazard Rate) by

λ(t) = θλ0(θt)

(see Survival Distributions and Their Characte-
ristics). Under this assumption,

Pr(log T > t − log θ) = S0(e
t ),

giving a location shift model on the log scale, namely

log T = β0 + log θ + ε,

where ε is a zero mean residual.
More general models are obtained by incorporat-

ing covariates or explanatory variables into θ . If x
is a vector of covariates associated with an individ-
ual, then the survival function, given x, is assumed
to be of the form

S(t |x) = S0[θ(x)t]

for an underlying survival function S0 and function
θ(·), with hazard function

λ(t |x) = θ(x)λ0[θ(x)t].

Correspondingly, log T = β0 + log θ(x) + ε. A par-
ticularly useful form is the loglinear regression
model in which θ(x) = exp(β ′x), which leads to the
linear model log T = β0 + β ′x + ε. Inferences con-
cerning the regression parameters and the ways in
which they influence survival can therefore be made
using log survival times and linear regression meth-
ods, including methods that allow for censored sur-
vival times, where the survival time may be known
only to exceed or be smaller than a given value.
This may result from loss to follow-up, withdrawal
for causes unrelated to the end point of interest
(see Competing Risks), survival beyond the end of
a trial, and so on.

Parametric Models

Parametric models under the accelerated failure-time
assumption are obtained by specifying the under-
lying distribution S0 and the form of dependence
on x through θ(·). Some important special cases
of the underlying distribution include the Weibull,
when S0(t) = exp(−ktα), the lognormal, when log T

has a normal distribution, and the log-logistic, when
S0(t) = 1/(1 + ktα). The last model has received
considerable attention, since one is often interested in
the probability of survival beyond a fixed time (e.g.
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five-year survival rates). If θ(x) = exp(β ′x), then the
logistic transform or log odds ratio is

log

{
S(t |x)

[1 − S(t |x)]

}
= − log k − α log t − αβ ′x,

which is linear in the covariates x, and for fixed
t represents the familiar linear logistic regression
model.

Estimation and Analysis

If we assume a fully parametric form for
the accelerated failure-time model, then standard
parametric inference procedures such as the use of
likelihood methods are applicable, allowing for the
possible presence of censored observations. With
right-censored failure times and i indexing the
individuals, provided the censoring and survival
mechanisms are independent, the likelihood function
is given by

l =
∏

i

λ(yi |xi )
δi S(yi |xi ),

where yi is the observed failure time or the time at
which censoring occurs for the ith individual and
δi is an indicator of censoring taking the value 1
if the failure time is observed and 0 if censored.
Large-sample estimates of standard errors can be
obtained from the observed Fisher information, since
the presence of censoring will generally preclude the
taking of expectations.

The Expectation-Maximization (EM) algorithm
of Dempster et al. [6] often provides a convenient
method of maximizing the likelihood with censored
data (e.g. [5, Chapter 11]). This method is particu-
larly useful if the distribution of Zi = log Ti is a
member of the regular exponential family in the
mean parameter µi with variance Vi . Then the like-
lihood equations corresponding to derivatives of the
log likelihood with respect to the parameters βj in
the mean take the simple form

∑

i

z̃i − µi

Vi

∂µi

∂βj

= 0,

where z̃i is zi if the failure time is observed or
E(Zi |Ti > yi) if the failure time Ti is censored at yi .
This is of the same form as the likelihood equations
when all data are uncensored but with the censored

values replaced by their conditional means. The E-
step in the EM algorithm thus consists of replacing
the censored responses by their estimated conditional
means given the existing parameter estimates and
the time at which censoring occurs, while the M-
step corresponds to parameter updating by solving
the likelihood equations treating the estimated values
as if they were uncensored. The process is iterated
until convergence. In general there will also be other
parameters involved in the model which need to be
estimated. For a discussion of the EM approach with
(log)-normal responses see Aitkin [1].

Buckley & James [2] adopted a similar approach
to deriving a semiparametric procedure in which the
residual distribution remains unspecified. Suppose
that the residuals εi are independent with common
distribution and that µi = β0 + β ′xi . The likelihood
equations then become

∑

i

(z̃i − β0 − β ′xi )xij = 0.

In the method of Buckley & James the condi-
tional expectations for the censored responses are
replaced in the equations by their estimates based
on the Kaplan–Meier product-limit estimator of the
residual distribution. An iterative estimation scheme
analogous to the EM procedure therefore consists
of starting with estimates of the βj , obtaining the
Kaplan–Meier residual distribution, replacing the
censored responses by their estimated conditional
means using the estimated residual distribution, and
solving the normal equations, assuming these were
the true responses, to update the parameter estimates.
Some modifications are needed to account for the
possibility of the Kaplan–Meier means being unde-
fined when the largest residual is censored, and this
will typically introduce some biases into the intercept
estimates for small samples.

Unlike the fully parametric EM algorithm this
iterative scheme need not converge, nor need the
estimating equations have a unique nor exact solution
due to discontinuities and nonmonotonicity. In these
cases zero crossings or values closest to zero can
be used. Extensions to nonlinear regressions or
M-estimators [16] (see Robustness) are conceptually
straightforward.

Whilst the method is simple to describe, obtaining
theoretic properties has proved difficult, in part due
to the issues of censored data in the right-hand tail
of the distribution. Asymptotic properties have been



Accelerated Failure-time Models 3

obtained under some conditions by Ritov [16] and
Lai & Ying [10], who introduce a smooth weighting
function to overcome instability due to censorship.
Practical issues in the estimation of standard errors
have been addressed by Weissfeld & Schneider [27],
Smith [21], and Lin & Wei [11]. Approximations
based on imputation via the data augmentation algo-
rithm were proposed by Wei & Tanner [24] but,
as noted by James [7], they do not appear to offer
many advantages over the Buckley–James approach
(see Missing Data).

Other semiparametric estimation methods have
been proposed by Miller [13] and by Koul et al. [9].
The former is based on minimizing the weighted
sum of squared residuals

∫
ε2 dF̂ (ε), where F̂ is the

Kaplan–Meier estimator of the residual distribution
function, while the latter is based on the observa-
tion that the quantities δiZi/[(1 − G(Zi |xi )] have
mean β0 + β ′xi , where G is the censoring distribu-
tion. Koul et al. use a Bayesian estimator of G, thus
obtaining observable quantities which form the basis
of estimating functions. Both the Miller and Koul
et al. estimators appear to be sensitive to the relation-
ship between the censoring times and the covariates –
the former requiring that censorship relate linearly
with the same slope parameters β, the latter that
there be no relationship (Miller & Halpern [14]).
A comparison of semiparametric methods based on
application to the Stanford heart transplant data is
provided by Miller & Halpern.

Estimates of parameters and derivation of their
properties can be based generally on appropriate
test statistics. In the case of accelerated failure-rate
models the linear rank test statistics with right-
censored data introduced by Prentice [15] provide
a basis for estimation and testing using ranks of
the data. Similar rank procedures have been intro-
duced by Louis [12], Tsiatis [23], and Wei et al. [26].
Ritov [16] discusses the asymptotic equivalence of
the method of Tsiatis and the Buckley–James-type
estimators.

Bayesian methods of analysis in the accelerated
failure-time models are considered by Christensen &
Johnson [3].

Comparison with the Proportional
Hazards Model

It is instructive to compare the accelerated failure-
time model with the proportional hazards model or

Cox model. In the proportional hazards model the
survival function is related to the underlying survival
function S0 by

S(t |x) = S0(t)
φ(x),

and the hazards are related by

λ(t |x) = φ(x)λ0(t)

for some function φ and covariates x. The Cox model
takes the loglinear form φ(x) = exp(β ′x). In practice,
whether it is the accelerated failure-time model or
the proportional hazards model that is appropriate
(if either) will depend on the mechanisms operating
on the survival times through the covariates. The
only distributions that satisfy both the accelerated
failure-time and proportional hazards conditions are
the Weibull distributions with underlying hazard
functions of the form λ0(t) = αktα−1, in which case
φ(x) = θ(x)α .

Ciampi & Etezadi-Amoli [4] suggested that both
accelerated failure-time and proportional hazards
models could be embedded into an extended model
of the form

λ(t |x) = h(α′x)λ0[h(β ′x)t]

for some function h. Then, if α = β we have an
accelerated failure-time model, while if β = 0 the
model is proportional hazards. Comparing the two
thus reduces to testing the values of the parameters
in this embedded model provided the underlying
distribution is not Weibull.

Extensions and Further Reading

In many applications the covariates used for adjust-
ment may also vary with time. Examples include cal-
endar period effects, immunodeficiency status which
changes over time, indicators of receipt of addi-
tional treatments at time t , and so on. Extensions of
regression models to include time-dependent covari-
ates have become relatively routine in many areas
of application. Their incorporation into accelerated
failure-time models leads to

S[t |x(t)] = S0{θ[x(t)]t},
where the notation x(t) now reflects the depen-
dence of the covariates on the time under consid-
eration. Fully parametric analyses in which both
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the underlying distribution and the nature of the
dependence of the covariates on time are com-
pletely specified may be carried out using, for
example, likelihood methods. Robins & Tsiatis [18]
and Robins [17] study an approach to the analysis
of models with time-dependent covariates which is
semiparametric in the sense that the dependence of
the covariates on time is fully specified but where
the underlying distribution S0 remains unspecified.

Useful accounts of accelerated failure-time models
can be found in Kalbfleisch & Prentice [8] and Cox
& Oakes [5]. Wei [25] provides a comprehensive
overview of nonparametric methods of estimation in
accelerated failure-time models, and compares them
with proportional hazards models.

In the econometric literature accelerated failure-
time models are typically referred to as tobit models.

Software

Comprehensive parametric analyses of accelerated
failure-time regression models are available in widely
used packages such as S-PLUS [22] and SAS [19], as
well as many other commercially available packages
(see Software, Biostatistical). These incorporate
response distributions such as the lognormal, Weibull,
log-logistic, and Rayleigh (see Parametric Models
in Survival Analysis) plus their transforms, and
with various forms of censoring. More specialized
survival analysis packages such as Egret [20] also
accommodate censored regression models. Specific
procedures for semi- and nonparametric analyses do
not appear to be widely available.
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Accident and Emergency
Medicine

Accident and emergency medicine is that specialty of
medicine whose practitioners offer immediate medi-
cal care to people with major and minor injuries and
illnesses presenting as emergencies to departments of
Accident and Emergency (A&E) in general hospitals.

The specialty of A&E medicine and A&E depart-
ments in the UK have their counterparts in other
countries. For example, in the United States of Amer-
ica (US), Canada, Sweden, Australia, New Zealand,
and Spain, there are emergency rooms in general hos-
pitals that provide the same service as A&E depart-
ments in the UK. The crucial functions of this service
are the formulation of an early diagnosis, the institu-
tion of immediate therapies, and the timely referral if
needed to the most appropriate specialty or agency to
allow maximum chance of optimum recovery to be
achieved. The conditions with which people present
can vary widely. At one end lie true emergencies,
where lifesaving treatment is needed within the first
hour of onset. At the other end are a vast range of
minor injuries and illnesses that could be managed in
primary care or by individuals themselves.

Historical Development

In the UK, prior to the inception of the National
Health Service (NHS) in 1948, free medical care for
the poor had been varyingly available for several cen-
turies from infirmaries run by local councils and from
independent hospitals funded by charity. Most condi-
tions seen would have been, as now, minor illnesses
and injuries. This pattern of free care for the poor
was followed in other countries. The debate about
whether these minor conditions should be seen in
A&E departments is not new. It was first described
in the Lancet in 1849 [7]. Casualty departments pri-
marily saw people with injuries caused by trauma.
The report of the Medical Advisory Committee of
the Central Health Services Council on Accident and
Emergency Services in 1962, known as the Platt
Report, recommended centralizing casualty services
in general hospitals where all specialties were repre-
sented. They were to become receiving departments
and be managed by orthopedic surgeons because of
the predominance of trauma cases. They were to be

called Accident and Emergency departments. There
was an increasing realization that most of the real
emergencies were medical cases with presenting con-
ditions such as heart attacks and severe asthmatic
or epileptic attacks. There was also much debate,
as now, about whether the main role of such ser-
vices should be to manage major emergency cases or
anyone who presented. Parallel developments have
occurred elsewhere. Early concern about the growth
in the use of emergency departments was raised in the
US in 1966 [22] and in the UK in the 1980s [13].
For example, the annual rate of first attendance at
such departments per 1000 population in England
rose from 105 in 1961 to 218 in 1984 [13]. This
upward trend seems to have finally peaked in 1989 at
a rate of 233 attendances per 1000 population [24].
A&E departments are now an integral part of gen-
eral hospitals in the UK. But the debates about their
true role (managing only emergency cases or offering
an alternative to primary care) and their relation to
trauma centers still rage in many countries [2, 24].

Different Types of Study

Descriptive and Analytical Epidemiology

Many researchers have tried to understand the deter-
minants of the large geographical and temporal vari-
ation in first attendance. Some of these, and many
others, have striven to show either the inappropriate-
ness of much of the attendance at A&E departments
or that much of it could be managed in general
practice, or both. There have been a very large num-
ber of studies of single departments looking at these
issues. Most of these have just used simple descrip-
tive statistics with occasional use of the chi-square
test and simple parametric tests (see Hypothesis
Testing). One of the earliest was reported by Wein-
erman et al.in 1966 [22]. Many of these studies are
referenced in [24] and in the report of the Anglia
and Oxford emergency health care project steering
group [2]. Fairley et al. [5] undertook one of the first
studies of more than one department. They found that
rates of use were highest for the age range 15–44
years, sex-specific rates were higher for males, and
about 10% of attenders are admitted. These results
have been replicated by many others. In general,
the large majority of cases are due to trauma [5],
although medical cases are relatively more common
in inner city areas. Reilly [18] was one of the first to
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show that general practitioners (see General Prac-
tice) could do much of the work undertaken by A&E
departments. Holohan [8] was the first to describe
the concept of social predicament as a key deter-
minant in a large proportion of cases. The concept
of inappropriateness has been much described. But
the first systematic attempt to produce a classifica-
tion scheme was in 1960 by the Nuffield Provincial
Hospitals Trust.

Milner et al. [13] used correlation analysis, mul-
tiple linear regression, multiple logistic regression
and a nonparametric test for the analyses of vari-
ance (see Nonparametric Methods) in their studies
on temporal and geographical use. They found an
eighteen-fold difference among health districts in the
mean annual new attendance rates at A&E depart-
ments in England over the period 1974–1985. There
was a rising trend in these rates which was statis-
tically significant (P < 0.05) for 89% of districts.
There was also a twenty-six-fold difference in the
extent to which new attenders were reviewed [12].
The ratio of return attendances to first attendances
(reattendance ratio) had declined significantly (P <

0.05) in 70% of districts. Investigation of the vari-
ation in the reattendance ratio among eight A&E
departments showed that it was booked reatten-
dance which largely determined sample reattendance
ratios [12].

There is now an NHS common minimum data set
for A&E departments in the UK [16]. This should
facilitate comparative research among A&E depart-
ments.

Clinical Research

Discriminant analysis has been used very success-
fully for producing survival probabilities using logis-
tic functions and regression weightings to allow the
systematic audit of emergency care for cases of
major trauma. This began in the US in the early
1980s with the Major Trauma Outcomes Study [3]
and was later adopted in the UK [21]. The mortal-
ity rate in A&E departments in the UK is much
less than 1% and trauma accounts for less than one-
fifth [20]. Most of the deaths are due to medical
emergencies such as myocardial infarction, stroke, or
asthma [19]. Randomization has proven very diffi-
cult in care for life-threatening emergencies. There
have been no randomized controlled trials (RCTs)
(see Clinical Trials, Overview) of major trauma

centers or emergency helicopter medical services.
Major well-designed comparative studies of these
have been undertaken in the UK without random
allocation by the Medical Care Research Unit in
Sheffield [17]. The major obstacle to randomization
was the organization of care. The emergency nature
of cases interacted with the ability to randomize
responsively and quickly. The Medical Care Research
Unit in Sheffield is currently running a randomized
controlled trial in the UK of paramedical assistance
as the first emergency contact which randomizes the
paramedics rather than the patients. For the less
urgent conditions, informed consent in randomized
controlled trials has usually been sought (see Ethics
of Randomized Trials).

A search of the nine emergency journals on Med-
line for 1995 found only 4% of articles described
RCTs. These were usually studies of minor clinical
developments.

Health Technology Assessment

Weinerman et al. [23] used descriptive statistics and
χ2 analysis to describe the possibilities of medical
triage in 1963 in a pilot study. There have been many
similar subsequent studies which claimed to have
evaluated nurse triage and shown it to be beneficial.
Apart from one, they have all either excluded a
comparative arm, not used valid outcome measures,
or been pilot studies. George et al. [6] in 1992 used
a comparative design with triage being alternately on
and off. They showed that triage patients waited on
average longer than nontriaged. This was especially
so for those most in need of urgent medical care.

Health technology assessment (see Health Ser-
vices Organization in the US) came of age in acci-
dent and emergency medicine with the publication of
an RCT with a cost-effectiveness analysis by Murphy
et al. [15]. This group used valid intermediary out-
come measures and found that general practitioners
(GPs) were more cost effective than hospital doctors
or nurses for managing primary care cases which pre-
sented to an A&E department.

The debate about trauma centers rages on. There is
a shortage of good quality research evidence on the
relative costs and benefits of the alternative forms
of care for patients suffering major trauma. The UK
Department of Health has funded a major compara-
tive study of this [17] which shows, according to the
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Department, that trauma centers are not cost effective
in the shire counties of England.

Laboratory and Basic Sciences

There are many investigations undertaken in A&E
departments in the UK. X-ray testing is the most
common, followed by blood testing [12]. The oppor-
tunities for such tests are great. Head injuries, for
example, are very common, as are twisted ankles.
New technologies, such as MRI scanning or near-
patient testing, are constantly being developed, which
could have a major impact on A&E clinical practice.
So far none of these technologies has been evaluated
as rigorously as new drugs are. The lack of rigor-
ous evaluation of tests is a general finding in health
care. A recent Cochrane Collaboration has been
established to try to rectify this. Details about its work
and testing methodologies can be found on the World
Wide Web at http://wwwsom.fmc.flinders.edu.au

FUSA/COCHRANE/sadtdoc.htm.

In the nine emergency care journals found on
Medline in 1995, the vast majority of original arti-
cles contained descriptive statistics. Correlation and
predictive analysis were much less common.

Statistical Models

In the vast majority of studies only standard
statistical methods have been used. Time series
analysis was used recently to estimate the staffing
requirements of A&E departments at various times
depending on the case-mix presenting [14]. Milner
had previously used the autoregressive integrative
moving average (ARIMA) process (see ARMA and
ARIMA Models) using the Box–Jenkins procedure
to estimate future workloads in the Trent region of
England [11]. Three time series were forecast. These
were the first attendance rate, the ratio of return to
first attendances, and the local resident population
forecasts. These forecasts were then combined to
produce forecasts for the district numbers of first,
return, and total attendances. The theoretical ARIMA
methods were applied without modification. There
were two other examples of studies of emergency
departments in the statistical literature on Medline
in the period 1985–1996. The first was the 1992
National Ambulatory Medical Survey from the
US National Center for Health Statistics. This
was a descriptive survey of a random sample of

attendances at hospital emergency and outpatient
departments [10]. The second described the use of
correspondence analysis as a screening method
for indicants for clinical diagnosis through the
application of the independent Bayesian method [4].

The proximity of the place of residence of an
individual to a health care facility predicts its use
by that individual. This general relationship has been
found to hold for the use of A&E departments by
Ingram et al. [9] and others.

Landmark Studies

Major Trauma Outcomes Studies

The Major Trauma Outcome Studies in the US [3]
and UK [21] have allowed the quality of emergency
care to be examined thoroughly by health care pro-
fessionals as well as by purchasers and providers.
These confidential studies allowed mortality rates for
departments to be compared after adjusting for the
nature and severity of the injury by means of the
Revised Trauma Score and the Injury Severity Score
and the patient’s age.

Deaths in A&E Departments

The battle for the heart and soul of A&E medicine
has long since been won. History and trauma favored
orthopedic surgery. Technology and the diseases of
affluence favored general medicine. The Platt Report
started the revolution in the UK and various learned
bodies continued it. But it was Shalley & Cross who
stopped the debate with their study using descriptive
statistics which showed in 1984 that most preventable
deaths in A&E departments were due to medical
conditions [19].

Inappropriate Attendance

Weinerman relaunched the debate in 1966 about inap-
propriate attendance in the US with a descriptive
study of a case series of 2028 patients [22]. This
followed the Nuffield Provincial Hospitals Study of
casualty services in 1960 and the Platt Report in 1962.
We have still not answered the question about appro-
priateness. We do however understand much better
the policy and health service issues (see Health Ser-
vices Research, Overview).
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Reattendance

Reattendance of a patient at A&E departments was
thought to be determined by the diagnosis and need
for treatment. Milner et al. [12] showed using multi-
ple logistic regression in 1992 that these were minor
influences. The crucial factor was whether the doctor
booked a patient to return. This propensity varied in
an idiosyncratic manner among departments.

Particular Statistical Concepts, Problems,
and Techniques

Accurate, population-based information on the inci-
dence rates of minor injuries and illnesses is not
available in the UK, unlike the US where the National
Health Interview Survey reports this annually [1].
A similar regular survey from time to time in the
UK would help to assess the appropriateness of
the great geographical variation in the use of A&E
departments.

There is a need to develop valid quantitative
health status instruments for common A&E con-
ditions such as twisted ankles, lacerations, head
injuries, and strains and sprains, as well as the uncom-
mon ones such as burns, and ear, nose, throat and
eye disorders. They will have to be simple to admin-
ister. This will allow cost-effectiveness studies of the
various alternative models of care to be undertaken.

Anticipated Developments

The central issue on the use of A&E departments in
the UK is not discovering the determinants of such
use. It is to secure an agreed policy on the basis of
research evidence on the role of A&E departments.
Currently they are providing a combination of ser-
vices for hospital emergencies, minor injuries, alter-
native primary care, major trauma, and/or a fail-safe
system for healthcare. There are two basic options
for coping with the out-of-hours emergency problems
and the overlap between general practice and A&E
departments.

One model is to develop emergency primary
health care centers for out-of-hours work or for a 24-
hours-a-day service. The second model is to develop
primary care within the A&E department. We need to
know the cost effectiveness of these options. When
there is agreement in a locality about the respective

roles of hospital emergency services and general
medical services, then there is an obligation to inform
local people about using these health services appro-
priately.

The Cochrane Collaboration is systematically
reviewing the literature by health problem through
a world-wide collaboration based on Cochrane
Centers and health problem collaborative groups
(http://cochrane@mcmaster.ca). There will be a
systematic attempt to bring together knowledge on
emergency care from the collaborative groups.
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Accident Proneness

Research into the concept of accident proneness was
motivated by the desire to find effective ways of
reducing accidents. The initial hope was to identify
the individuals most “prone” to have accidents and to
nullify their problems in some way. Accident prone-
ness was viewed as a personal psychological factor
which affected the individual’s probability of suffer-
ing an accident. The original context was industrial
accidents during the 1914–1918 war. A very substan-
tial research literature grew up over the succeeding
half-century, especially as road accidents became a
serious social and economic problem.

The concept of an accident as a purely random
event had led Bortkiewicz [2, 3] to develop the Pois-
son distribution as a model for the number, X, of
fatal accidents at work in a given time interval

Pr(X = x) = e−λ λx

x!
, x = 0, 1, 2, . . . , 0 < λ.

(1)

His data sets included the well-known data on deaths
from cavalry horse kicks. The Poisson model assumes
that all individuals have the same probability (propor-
tional to λ) of having an accident. The model implies
that if you remove from the population under con-
sideration those members who have had the highest
number of accidents over a period of time, then this
will have no effect whatsoever on the distribution of
accidents in the population in subsequent periods.

Greenwood & Woods [5] and Greenwood &
Yule [6] challenged the idea of pure randomness in
their investigation into factory accidents. They put
forward three competing hypotheses:

1. Pure chance, leading to the Poisson distribu-
tion, (1).

2. True contagion, i.e. the hypothesis that all indi-
viduals initially have the same probability of hav-
ing an accident, but that this probability changes
each time an accident is incurred. This led to
their “biased distribution”. If the probability of
an accident remains unchanged after the occur-
rence of the first accident, then they described
the outcome as the “burnt fingers distribution”.

3. Apparent contagion, i.e. the hypothesis that indi-
viduals have constant but unequal probabilities
of having an accident. This became known as

accident proneness in the literature. It gives
rise to a mixed Poisson distribution. Greenwood
& Yule’s well-known model for accident data
assumes that the probability of an accident varies
from individual to individual according to a
gamma (c, k) distribution (see Gamma Distri-
bution); the outcome is that the overall distribu-
tion of accidents in the population is a negative
binomial distribution with

Pr(X = x) =
∫ ∞

0
e−λ λx

x!

e−cλckλk−1 dλ

Γ (k)

=
(

k + x − 1
x

)(
1

c + 1

)x(
c

c + 1

)k

,

x = 0, 1, 2, . . . , 0 < c, 0 < k

(2)

(see Contagious Distributions).

However, it is easy to construct a true conta-
gion model which also leads to the negative binomial
distribution of (2) – a good empirical fit of the nega-
tive binomial distribution to population accident data
cannot therefore distinguish between true contagion
and accident proneness.

During the 1950s a number of authors (including
Arbous & Kerrich [1]) tried to detect accident prone-
ness by examining individuals’ accident records in
two consecutive periods. The general finding was that
in practice this bivariate approach requires very large
data sets. Arbous & Kerrich gave a good review of
contemporary theories of accident occurrence.

Cresswell & Froggatt [4] in their study of bus
driver accidents rejected the idea of accident prone-
ness in favor of a fourth model:

4. Spells; here each driver is assumed to be suscep-
tible to random spells (periods of time) during
which accidents may befall him/her randomly
with a probability that is the same for all drivers.
They called the outcome distribution “long” or
“short” according to whether further accidents
might not or might occur randomly outside a
spell. For their long model

Pr(X = x) =
∞∑

j=0

e−jλ(jλ)x

x!

e−φφj

j
,

x = 0, 1, 2, . . . , 0 < λ, 0 < φ.

(3)
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There is no simple expression for these proba-
bilities. The distribution is better known in the
statistical literature as the Neyman type A.

It soon became apparent that the problems of
distinguishing between the various hypotheses are
very severe. The Neyman type A distribution can
easily be given a proneness interpretation [7] and,
similarly, the negative binomial distribution can be
given a spells interpretation.

A major problem which has bedevilled accident
proneness as a concept is its exact definition – how
is proneness to be distinguished from other aspects of
personal risk, e.g. age or experience? This does not
seem to have been resolved satisfactorily.

Prior to 1968, accident models assumed con-
stant environmental risk as opposed to personal risk.
Irwin [8] criticized this assumption and introduced a
fifth type of model:

5. Accident liability and accident proneness; this
incorporates the concept of accident liability
resulting from varying environmental exposure.
Irwin developed a three-parameter “Generalized
Waring” distribution that assumes randomness
while taking into account varying accident lia-
bility as well as varying accident proneness. He
set θ = 1/(c + 1) in (2) and assumed that θ has
a beta(a, b) distribution, giving

Pr(X = x) =
∫ 1

0

(
k + x − 1

x

)
θx(1 − θ)k

× θa−1(1 − θ)b−1 dθ

B(a, b)

= (b + k − 1)!(a + b − 1)!

(b − 1)!(k − 1)!(a − 1)!

× (k + x − 1)!(a + x − 1)!

(a + b + k + x − 1)!x!
,

x = 0, 1, 2, . . . , (4)

where 0 < k, 0 < a, 0 < b. The theory under-
lying this model has been studied in depth by
Xekalaki [11, 12] both for a single time period
and for a subdivided time period. Discrimination
between proneness and liability is theoretically
possible but it is difficult to achieve this in
practice.

Most of the work on proneness and related con-
cepts has involved accident count data and hence
discrete distributions. An alternative approach is to
examine interaccident times (involving continuous
distributions). This has received some attention but it
runs into problems similar to those with count data –
it is particularly difficult to get reliable large-scale
data on interaccident times.

There are two major books on the statistical anal-
ysis of accident data. Both involve large data sets.
The two books display strongly contrasting views
on accident theory – Cresswell & Froggatt [4] favor
the spells hypothesis while Shaw & Sichel [10]
strongly endorse the accident-proneness approach.
Kemp [9] gave a detailed review of work on prone-
ness and related topics from 1920 to 1970. He con-
cluded that “from a practical point of view (e.g.
in terms of its contribution to accident prevention),
the concept of accident proneness had proved singu-
larly ineffectual”. Nevertheless, the study of accident
proneness was valuable in the development of statis-
tical methodology.

By the early 1980s the golden age of accident
proneness theorizing was over. Very little theoretical
research appears to have taken place since then.
Attention had moved towards risk evaluation and
analysis. This may well reflect the view that whether
or not proneness in a narrow sense does exist, in
practice there are other very important factors that
contribute to a particular individual’s accident record.
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liger Ereignisse, Bulletin de l’Institut International de
Statistique 20, 30–111.

[4] Cresswell, W.L. & Froggatt, P. (1963). The Causation of
Bus Driver Accidents. Oxford University Press, London.

[5] Greenwood, M. & Woods, H.M. (1919). A report on
the incidence of industrial accidents upon individuals
with special reference to multiple accidents, Industrial
Fatigue Research Board Report, Vol. 4. HMSO, London.

[6] Greenwood, M. & Yule, G.U. (1920). An inquiry into
the nature of frequency distributions representative of
multiple happenings with particular reference to the
occurrence of multiple attacks of disease or of repeated
accidents, Journal of the Royal Statistical Society, Series
A 83, 255–279.



Accident Proneness 3

[7] Irwin, J.O. (1964). The personal factor in accidents-a
review article, Journal of the Royal Statistical Society,
Series A 127, 438–451.

[8] Irwin, J.O. (1968). The generalized Waring distribution
applied to accident theory, Journal of the Royal Statisti-
cal Society, Series A 131, 205–225.

[9] Kemp, C.D. (1970). “Accident proneness” and discrete
distribution theory, in Random Counts in Scientific Work.
Vol. 2, Random Counts in Biomedical and Social Sci-
ences, G.P. Patil, ed. Pennsylvania State University
Press, University Park, pp. 41–65.

[10] Shaw, L. & Sichel, H.S. (1971). Accident Proneness.
Pergamon Press, Oxford.

[11] Xekalaki, E. (1983). The univariate generalized Waring
distribution in relation to accident theory: proneness,
spells, or contagion?, Biometrics 39, 887–895.

[12] Xekalaki, E. (1984). The bivariate generalized War-
ing distribution and its application to accident theory,
Journal of the Royal Statistical Society, Series A 147,
488–498.

ADRIENNE W. KEMP & C.D. KEMP



Actuarial Methods

Historically, probability theory and statistical meth-
ods have played a central part in actuarial science,
in both theory and practice. Indeed, the motto of
the Institute of Actuaries, the professional body in
England and the first to be established worldwide is
certum ex incertis. Furthermore, the early develop-
ment of these subjects was inextricably linked, with
many of the principal contributors to actuarial the-
ory also making notable contributions to probability
and statistics – for example, John Graunt, Abraham
de Moivre, Thomas Simpson, Daniel and Nicholas
Bernoulli, and Erastus de Forest. Also, some mod-
ern statistical models have little-known actuarial
antecedents, e.g. Böhmer’s development in 1912 of
the product limit estimator of Kaplan–Meier, and Du
Pasquier’s analysis in 1913 of multiple state and com-
peting risk models; see Haberman & Sibbett [28] for
further discussion.

We begin our review with a brief consideration of
the nature of actuarial science. Actuarial science is
concerned with the financial management of financial
security systems – these can be defined as “mecha-
nisms for reducing the adverse financial impact of
random events that prevent the fulfillment of rea-
sonable expectations” [3]. These systems have the
important characteristics of risk transfer and risk
pooling [12] but certain fundamental limitations. For
example, they are restricted to reducing the conse-
quences of random events that create losses that can
be measured in monetary terms. Secondly, such sys-
tems do not directly reduce the probability of a loss
occurring.

Examples of situations where random events may
cause financial losses would include the following:

1. The destruction of property by fire or natural
catastrophe (storm, hail, flood, landslide, earth-
quake, volcanic eruption) is usually considered a
random event in which the loss can be measured
in monetary terms.

2. A damage award imposed by a court as a result
of a negligent event is often considered a random
event with resulting monetary loss.

3. Prolonged illness may occur unexpectedly and
result in financial losses in terms of reduced
income and extra health care expenses.

4. Death of a young adult may occur while long-
term family and business commitments remain
unfulfilled.

5. Survival to an advanced age may deplete an
individual’s resources for meeting the cost of
living, including long-term care.

One of the key tasks for an actuary advising financial
security systems is the management of uncertainty.
This process can be broken down into a number of
distinct stages; for example, one classification would
be: identification of information sources; collection
of data; analysis; model construction (see Model,
Choice of); sensitivity analysis; prediction; moni-
toring the model assumptions in the light of emerg-
ing experience (see Model Checking); updating the
model.

Survival Model (or Life Table): Structure

The survival model is concerned with representing
the mortality of individuals. Here, we consider sin-
gle lives, although the extension to contingencies
involving multiple lives is straightforward [3, 21].
The initial assumption is that the time from birth to
death can be represented by a continuous random
variable T0. We define the distribution function of
T0 and the survival function of T0 as follows:

F0(t) = Pr(T0 ≤ t); (1)

S0(t) = Pr(T0 > t) = 1 − F0(t). (2)

If we consider an individual aged x(> 0) currently,
then we can define a random variable Tx to be
his/her future lifetime, conditional on him/her having
survived to age x. Then the distribution function of
Tx is defined as

Fx(t) = Pr(Tx ≤ t) = Pr(T0 ≤ x + t |T0 > x), (3)

which is written as t qx in actuarial notation (and as
qx in the special case when t = 1), and the survival
function is defined as

Sx(t) = Pr(Tx > t) = Pr(T0 > x + t |T0 > x), (4)

which is written as tpx in actuarial notation.
It is then straightforward to demonstrate the con-

nection between Fx and F0, and between Sx and S0,
namely

Fx(t) = F0(x + t) − F0(x)

1 − F0(x)
(5)
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and

Sx(t) = S0(x + t)

S0(x)
. (6)

The force of mortality at age x, µx , is defined as

µx = lim
h→0

[
Pr(x < T0 ≤ x + h|T0 > x)

h

]
. (7)

The force of mortality is also described as the hazard
rate.

The probability density function of Tx, fx(t), is
defined by

fx(t) = d

dt
Fx(t),

and is linked to the force of mortality through the
following relationship which follows from this defi-
nition:

fx(t) = tpxµx+t , (8)

so that

µx+t = fx(t)

Sx(t)
.

This gives rise to a differential equation for tpx ,

d

dt
tpx = −tpxµx+t , (9)

which can be integrated with the boundary condition
0px = 1 to give the following useful and important
formula:

tpx = exp

(
−

∫ t

0
µx+s ds

)
. (10)

In numerical applications of the survival model it is
common to impose simplifying assumptions on the
distribution of Tx within a particular year of age. The
two most commonly used such assumptions are:

1. a uniform distribution of deaths, i.e.

fx(t) = constant for 0 ≤ t ≤ 1;

2. a constant force of mortality, i.e.

µx+t = constant for 0 ≤ t ≤ 1.

An important modification to the survival model is
the development of a select survival model, for use
in many applications, in particular life insurance. The
survival model is constructed from observations for

certain population groups, differentiated by charac-
teristics such as sex, geographical area, and type of
insurance purchased. The age at entry to the group
under consideration can have a significant influence
on the resulting probabilities.

To focus the discussion, we consider an individual
who has just purchased life insurance at age x.
Since life insurance is carefully underwritten and only
lives in good health are accepted (sometimes after a
medical examination), it is reasonable to expect that a
person who has just purchased insurance at, say, age
x will be in better health than a person who bought
insurance t years ago, say, at age x − t , and is now
also aged x (ceteris paribus). This dependence of
health status on t and x will have an impact on the
probabilities of survival and is allowed for by a select
survival model. Specifically, the probabilities of death
are graded according to age at entry and duration of
membership. The notation is to represent the one-
year conditional probability of death for a person
who entered at age x and who is now aged x + t

as q(x)+t . Then the selection effect is represented by
the sequence of inequalities:

q(x) < q(x−1)+1 < q(x−2)+2 < · · · , (11)

where each probability refers to the conditional prob-
ability of death for a person aged x with different
periods of membership. Empirically, we find that the
selection effect becomes negligible some years, say
r , after entry. We represent this feature by requiring
that

q(x−r)+r = q(x−r−1)+r+1 = · · · = qx.

r is then called the select period and qx is called the
ultimate probability of death at age x.

Selection arises in other practical circumstances,
for example for persons purchasing life annuities and
for those retiring after disablement. This latter case
provides an example of negative selection for which
the inequalities in (11) would be reversed.

The survival model can be traced back to Graunt’s
landmark contribution with the setting up of the
first life table in 1662. The first authors to have
used this life table were the Huygens brothers, who
corresponded on the probabilistic interpretation of
various life table indices. The first life table in the
modern sense is widely attributed to Halley in 1693.
Further historical details can be found [28, 29].
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Survival Model and the Life Table:
Actuarial Applications

In general, life insurance policies involve benefits
payable by the insurer to the policyholder contingent
on the policyholder’s status and, in return, premiums
are payable by the policyholder while he or she is
alive. The benefits may consist of a single payment
or a series of payments, and may be dependent on the
policyholder having just died (as in life insurance) or
being alive (as in an annuity). The financial manage-
ment and control of life insurance depends critically
on the survival model (and life table) which is used
by actuaries in the calculations of premiums, reserves,
surrender values, and other functions; see [3, 21] for
further discussion.

Life insurance mathematics was developed by
de Moivre (with his book of 1725, which was the
first text on this subject) and Simpson (with his book
of 1742), although their prime focus was on annuity
rather than insurance contracts. Dodson was the first
to demonstrate (in 1755) how modern life insurance
could be operated with level annual premiums calcu-
lated on the basis of age at entry, and how this level
charge for an increasing risk leads to the build-up of
a reserve.

Survival Model: Estimation of Parameters

Estimation of Fx(t), Sx(t), fx(t), or µx+t will enable
us to specify the distribution of Tx , given certain
mildly restrictive conditions.

The simplest experiment would be to observe a
large number of individuals, born in a particular time
interval: then the proportion alive at age t > 0 would
provide an estimate of S0(t). This is a nonparametric
approach (see Nonparametric Methods), leading to
a step function which would become more regular
if the sample size were increased. Such an approach
is not practicable because of the length of time it
would take to specify fully the survival function and
because it may not be possible to observe the deaths
of all the lives in the study, because of censoring
(see Censored Data). In medical statistics, however,
this type of experiment is widely used, and estimators
like the Kaplan–Meier (product limit) and the Nel-
son–Aalen estimators have been developed which
allow for censored observations. The so-called actu-
arial estimator also enjoys wide use when the data

are in grouped form [16]. We consider a partition of
the survival period as follows:

0 = t0 < t1 < · · · < tn < tn+1 = ∞,

and assume that the total population of lives at time
t0, N0, is of the same exact age (and suppress age in
the notation). Let di be the observed number of deaths
and wi the number of right-censored observations (or
losses) during the interval (ti , ti+1). Let Ni be the
number of lives at risk at the start of the interval (ti ,
ti+1), i.e. just after time ti .

Then Ni+1 = Ni − di − wi , and the actuarial esti-
mate of F(t) is

F̂ (t) = 1 −
∏

j≥0
tj+1≤t

(
1 − dj

Nj − 1
2wj

)
. (12)

In actuarial practice, it is normal to use a differ-
ent experimental plan and base estimation on data
gathered within a short time interval – for example,
four calendar years for the standard life tables pre-
pared by the UK Continuous Mortality Investigation
Bureau (CMIB). As a consequence, we observe sev-
eral cohorts within a well-defined window rather than
one cohort over its full life history (see Figure 1). As
a result, we might not be sampling from the same dis-
tribution and it may be necessary to impose further
assumptions on our model (for example, that survival
probabilities are constant with respect to calendar
time). Limiting the observation time to a rectangle
defined by a specific period of time and an age inter-
val, say x to x + 1, also introduces censoring: lives
enter observation at a known time and survivors leave
observation at a known time (when the investiga-
tion period ends or on attaining age x + 1), while

Age

Time Time

(a)

Observation
period 

Age

(b)

Figure 1 Lexis diagrams illustrating different experimen-
tal plans. (a) Cohort-based; (b) fixed period
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for deaths and other types of exit (for example, sur-
renders of a policy), the time of exit will be random.
Further discussion of censoring is provided by [1].

To take the actuarial approach further, we follow
Broffit [5] and consider one particular form of cen-
soring. We consider N lives to be observed between
ages x and x + 1. For the ith life we let x + ai be
the age at which observation starts and x + bi the age
at which observation must cease if the life survives
to that age. Then bi = min(1, ai + ci − ei), where ei

and ci are the dates of entry into the study and of the
end of the study. The key point is that ai , ei , and ci ,
and hence bi , are known in advance.

We define two random variables

Di =
{

1, if the ith life is observed to die,

0, if the ith life is not observed to die,

and Ti such that x + Ti = age at which observation
of the ith life ceases.

We also define Wi = Ti − ai , the waiting time or
time spent under observation for the ith life.

We note that

Di =
{

0, if and only if Wi = bi − ai ,

1, if and only if 0 < Wi < bi − ai.

The outcome of observing these random variables is
a sample (di, wi), and we define w = ∑N

i=1 wi and
d = ∑N

i=1 di , the total waiting time and total number
of deaths observed, respectively.

The maximum likelihood estimator for µ is then

µ̂ = D

W
, (13)

where D = ∑N
i=1 Di and W = ∑N

i=1 Wi , and the cor-
responding estimate is µ̃ = d/w.

In many applications the randomness of Wi is
ignored and it is usual to write the realized value
w as Ec

x , the central exposure to risk. Assuming a
constant force of mortality as before, the assumption
that D has a Poisson distribution with parameter
µEc

x leads to the estimator

µ̂ = D

Ec
x

. (14)

The Poisson model is not exact given the above
experimental design, but it is a good approximation
in many applications.

Given the estimated values of µ from (13) or
(14), it is then possible to construct a survival model,

using the standard results described earlier. By using
estimates from successive ages and time periods, it
is also possible to construct a cohort life table, as
depicted schematically in Figure 1(a).

Many of the early life tables were based on the
experience of individuals who purchased annuities
(usually from the government) or who participated in
tontines: for example, those constructed by Struyck
in 1740, Kersseboom in 1742, and Deparcieux in
1746. These life tables were based on the cohort
design of Figure 1(a). In 1749, the Swedish General
Register Office was established and the first national
set of population data started to be collected from
that date. Wargentin combined death registration data
for 1755–1763 and the triennial censuses of 1757,
1760, and 1763 (used to approximate exposed to
risk figures) to estimate values of qx (1766). This
procedure was taken up and developed further by
Price in 1783 to produce the first modern life tables
based on the experimental design of Figure 1(b).
The first published life table in 1828 based on the
mortality experience of an insurance company was
reported by Morgan in 1828.

Multiple State and Multiple Decrement
Models: Structure

The survival model can be regarded as a two-state
model (Figure 2), with two states “alive” and “dead”
and transitions permitted in one direction only. This
model can be extended to include any number of
states, with transitions between them in either direc-
tion. Two examples with important applications in
actuarial work, are the multiple decrement model
(Figure 3, widely used in pensions applications) and
the three-state disability model (Figure 4, widely used
in disability insurance applications).

We consider initially the case where there
are n possible states. Let S(x), 0 ≤ x ≤ ∞, be
a continuous-time, time-inhomogeneous Markov
process with a finite state space (n < ∞), and
suppose that we interpret “S(x) = 1” to mean “the
individual is in state 1 at age/time x”.

1 2

DeadAlive 

Figure 2 Two-state survival model
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Alive
   0

Decrement
        1

Decrement
        2

Decrement
        3

Decrement
        m

•

•

•

Figure 3 Multiple decrement model

Healthy Sick

Dead

1 2

3

Figure 4 Three-state multiple state model

We define the conditional transition probability

tp
ab
x = Pr[S(x + t) = b|S(x) = a],

and the occupancy probability

tp
aa
x =Pr[S(x + u)=a, for all u∈ (0, t)|S(x)=a].

Corresponding to the definition of the force of mortal-
ity, (7), in the survival model, we define the transition
intensity from state a to state b at age x by

µab
x = lim

h→0+

(
hp

ab
x

h

)
, for a �= b.

Then, we can derive the Chapman–Kolmogorov for-
ward differential equations:

∂

∂t
tp

ab
x =

∑

j �=b

tp
aj
x µ

jb
x+t − tp

ab
x µ

bj
x+t (15)

and
∂

∂t
tp

aa
x = −tp

aa
x

∑

j �=a

µ
aj
x+t , (16)

which are generalizations of (9). Given estimates of
the transition intensities, this set of equations (15) can
be solved numerically (see, for example, [8, 31]) or
analytically in certain special cases (see [42] for a
discussion of piecewise constant transition intensi-
ties). Eq. (16) can be integrated directly, in a similar
manner to (9), leading to

tp
aa
x = exp



−
∫ t

0

∑

j �=a

µ
aj
x+s ds



 , (17)

which plays an important role in the estimation of the
transition intensities from observed data.

Semi-Markov Model

In the above discussion, the Markov assumption has
been made: that transition intensities (and probabil-
ities) at time t depend (at least explicitly) on the
current state at that time only. More realistic, and
possibly more complex, models can be constructed
considering, for example:

1. the dependence of some intensities (and proba-
bilities) on the age x at time 0, corresponding,
for example, to the issue of an insurance policy

2. the dependence of some intensities (and probabil-
ities) on the time spent in the current state since
the latest transition to that state

3. the dependence of some intensities (and proba-
bilities) on the total time spent in some states
since the policy issue.

The consideration of point 1 implies the use of issue-
select intensities, corresponding to µ(x)+t for the
survival model and life table. This extension does
not imply the use of more complex models since it is
implicitly allowed for by the Markov assumption for
the process S(t).
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With point 2, the Markovian property of the pro-
cess S(t) is lost. Nevertheless, there are practicable
ways of dealing with this assumption, which is of
practical importance in disability insurance where
transitions from the disabled state would depend on
the duration of the current disability. One general
(and complex) approach leads to semi-Markov pro-
cesses [8, 11], while a simpler approach requires the
“splitting” of some states [11, 31].

The aim of point 3 is to stress the individual’s
life history. This assumption can lead to intractable
models. (However, particular aspects of this assump-
tion can be introduced without a dramatic increase in
complexity.)

Multiple State Models: Actuarial
Applications

As for the survival model, multiple state models are
used for the determination of premiums and reserves
for insurance policies, operating in a multiple state
environment – for example, income protection insur-
ance policies in the UK which provide an annuity
while the individual is “sick or disabled” subject to
certain qualifying conditions [40]. For a further dis-
cussion, see [25].

Correspondingly, the multiple decrement model
is widely used in applications in defined pension
schemes where the actuary’s objective is to determine
the contribution rate for current members and to
calculate reserves at regular intervals and to monitor
the financial health of the scheme.

In some practical applications, it is important to
allow for the effects of selection arising from the
effect of different transitions. For example, where
withdrawals are associated with lower than average
mortality rates, increased mortality in the continuing
population results; where early retirements are asso-
ciated with higher than average mortality, the result
is decreased mortality in the continuing population.

Multiple State Models: Estimation of
Parameters

For illustration we consider the three-state model of
Figure 4; extensions to the more general case are
straightforward. We consider an observation period
of perhaps several calendar years and assume that
each individual represents an independent realization

of the underlying stochastic process, S(y), where y

is the individual’s age. We assume that, while under
observation, we can observe the time and type of
each transition that an individual makes. We focus,
for inference purposes, on the age interval (x, x + 1),
over which we assume that the transition intensities
are constants, µ12

x , µ13
x , µ21

x , µ23
x .

The observations in respect of a single life are
now:

1. the times between successive transitions
2. the numbers of transitions of each type.

The form of the likelihood means that it suffices
to record the total waiting time spent in each state.
Following Sverdrup [51], we then define

Cj = waiting time of the j th life in the healthy state
Wj = waiting time of the j th life in the disabled

state
Sj = number of transitions from healthy −−−→ dis-

abled by the j th life
Rj = number of transitions from disabled −−−→

healthy by the j th life
Dj = number of transitions from healthy −−−→

dead by the j th life
Uj = number of transitions from disabled −−−→

dead by the j th life,

and totals C = ∑N
1 Cj (and so on). It can then be

shown that the maximum likelihood estimators are,
respectively,

µ̂13
x = D

C
, µ̂23

x = U

W
,

µ̂12
x = S

C
, µ̂21

x = R

W
. (18)

We note that each estimator is the ratio of two random
variables: number of transitions and waiting time (or
central exposed to risk).

It may be important to be able to estimate the
moments of these estimators, for example when
comparing the results of two sets of observations
or comparing one experience with a given standard
experience. It is a well-known result of maximum
likelihood theory that the asymptotic distribution of
each µ̂ is normal with mean µ and variance µ/E(C)

or µ/E(W), as appropriate.
The history of the development of multiple state

models has been fully described by [13] and [46].
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These models can be traced back to Bernoulli’s
memoir of 1766, in which he applied the methods of
differential calculus to a problem involving a three-
state decrement model and then solved the resulting
differential equations under certain constraints. The
problem was concerned with the incidence of small-
pox in the population and measuring the efficacy of
inoculation. Bernoulli’s ideas were developed by a
number of authors, in particular Lambert in 1772,
Cournot in 1843, Makeham in 1867, Karup in 1875,
and Du Pasquier in 1912.

Du Pasquier’s work is very significant, presenting
an early application of Markov processes and laying
the foundations for modern actuarial applications to
disability insurance, long-term care insurance, and
critical illness policies, inter alia [40].

Projections

Almost all aspects of the actuarial management of
financial security systems like insurance companies
and pension funds require the projection forward of
the financial status and the underlying cash flows
using a survival model, multiple state model, or
multiple decrement model, as appropriate.

The methods used are essentially those of the com-
ponent method of population projection, and can be
traced back to Webster’s early calculations for the
Scottish Ministers’ Widows Fund set up in 1743.
Techniques, which were originally deterministic, have
now been extended to allow for stochastic projec-
tions, based on simulations, of portfolios of policies
and ultimately of companies.

In life insurance, financial projections require,
inter alia, estimates of mortality rates and withdrawal
rates. For pension schemes, the projections require
estimates of rates of mortality, withdrawal, disability,
and retirement. For health insurance, a multiple-state
model with rates of incidence of disability, recovery,
withdrawal, and mortality would be used. In these
cases, it would be normal to attempt to model the
variation of the probabilities with secular time (as
well as age, for example), so that extrapolations
can be made. The forecasting methods receiving most
attention consist of regression based methods (using
generalized linear models: for example [48]) and
methods based on the Lee-Carter method (for exam-
ple, [34, 35, 44].

In the case of financial calculations associated with
annuities and pensions, it is important to note that the

improving life expectancy and the downward secular
trend in mortality rates (observed in many countries)
(see Morbidity and Mortality, Changing Patterns
in the Twentieth Century) need to be allowed for
explicitly in the calculation of premiums and reserves.
Failure to make such an allowance can have seri-
ous financial consequences for an insurer because
improving life expectancy would mean that benefits
would have to be paid for longer than anticipated. An
example of modeling the impact of mortality trends
as insurance portfolios is [38].

Similarly, where an upward trend in mortality is
suspected, it is important to recognize this in life
insurance calculations. This has been an important
feature of recent discussions in respect of the impact
of AIDS (see [14]).

For health insurance (based on the model in
Figure 4), we would note the likely relationship
between the probability of recovery and the
employment prospects for the individual and the
economic environment [24]. An important area of
recent development has centered on the modeling of
dependence between demographic risks and between
demographic and financial risks. This application has
been based on copulas [18, 49].

Graduation

Graduation may be regarded as the principles and
methods by which a set of observed probabilities is
adjusted to provide a suitable basis for inferences and
further practical calculations to be made.

We consider for the moment a set of age-specific
crude probabilities of death, °qx , or forces of mortality
(i.e. hazard rates), °qx , which have been calculated
from a set of observations. These values can each
be regarded as a sample from a larger population
and thus contain some random fluctuations. If we
believed that the true qx (or µx) were independent,
then the crude values would be our final estimates of
the true, underlying rates. However, a common, prior
opinion about the form of these true rates is that each
is closely related to its neighbors. This relationship
is expressed by the belief that the true rates progress
smoothly from one age to the next. So the next step
is to graduate the crude rates to produce smooth
estimates, q̃x (or µ̃x) of the true rates. This is done
by systematically revising the crude values to remove
the random fluctuations. This can be considered as a
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cheaper and more practicable alternative to increasing
the size of the original investigation.

The graduation process is an essential step in the
construction of a survival model in ensuring that the
model displays the required degree of smoothness.
Then, the functions of practical importance calculated
from the model (and leading to insurance premiums,
reserves, surrender values, etc.) have results that share
this important property of smoothness.

Graduation methods tend to fall under the cate-
gories parametric (see Parametric Models in Sur-
vival Analysis) and nonparametric. For a full review,
readers should consult [2] and [36].

Parametric methods involve the fitting of a math-
ematical function to °qx or °µx , with the parameters
being determined by a formal procedure such as max-
imum likelihood estimation. Although in the context
of the assumed function such methods are efficient
(see Efficiency and Efficient Estimators), they are
always liable to some degree of bias since no preas-
signed function will represent exactly the true (and
unknown) values of qx or µx . Nonparametric meth-
ods aim to give more stable estimates than the crude
values by combining data at different values of x,
but without presupposing any particular mathematical
form for qx or µx . Like parametric methods, they are
liable to give biased estimates, but in such a way that
it is possible to balance explicitly an increase in bias
with a decrease in sampling variation. With nonpara-
metric methods, like kernel methods (see Density
Estimation), the amount of smoothing of the crude
data can be varied continuously over a continuous
range (e.g. by the choice of bandwidth). In contrast,
the smoothness of parametric methods can only be
regulated in discrete steps, for example by increas-
ing the degree of the polynomial or by increasing the
number of knots in a cubic spline. The properties of
such curves will also tend to change abruptly. How-
ever, parametric methods are able to achieve higher
degrees of smoothness than nonparametric methods
through their use of explicit mathematical formulae,
and may be more useful for extrapolation beyond the
data range available.

Parametric Methods

We consider initially the graduation of an index of
mortality like qx or µx with respect to age.

Forfar et al. [17] give a comprehensive description
of the methodology used in the UK to graduate

survival models. We reformulate the methodology
using the framework of generalized linear models
(GLMs); for a full review see [27].

A GLM is characterized by independent response
variables (Yu with u = 1, 2, . . . , n) with distribution
specified by

E(Yu) = mu, var(Yu) = φV (mu)

ωu

(19)

comprising a variance function V , a scale parameter
φ(> 0), and prior weights ωu. Covariates enter via
a linear predictor,

ηu =
p∑

j=1

xujβj , (20)

with specified structure (xuj ) and unknown parame-
ters βj linked to the mean response through a known,
differential, monotonic link function g with

g(mu) = ηu. (21)

The suffices or units u have a structure which is either
intrinsic or imposed. The data comprise realizations
(yu) of the independent response variables, matched
to the structure of the units. Generally, in any one
study, the detail of the distribution and link are fixed,
while the predictor structure may be varied.

Model fitting is by maximizing the quasi log
likelihood (see Quasi-likelihood), leading to a
system of equations in the unknown βj s which
need to be solved numerically. Full details can be
found in [37], which also describes the calculation of
the standard errors for the parametric estimators,
based on standard statistical theory. For members
of the exponential family of distributions (see
Parametric Models in Survival Analysis), the quasi
log likelihood equates to the log likelihood.

The raw data would normally comprise the num-
ber of recorded deaths ax accruing from matching
exposures (or person-years at risk) rx over a range
of ages x, in a specific calendar period.

The approach would then be to model the actual
numbers of deaths Ax as Poisson variables when tar-
geting µx and as binomial variables when targeting
qx . Thus, for µx graduations with responses (Ax),

mx = E(Ax) = rxµx+1/2,

V (mx) = mx, ωx = 1, φ = 1,
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and for qx graduations with responses (Ax),

mx = rxqx, V (mx) = mx

(
1 − mx

rx

)
,

ωx = 1, φ = 1.

The formulas underpinning a (parametric) graduation
can be presented as predictor–link relationships with
age x as the sole covariate.

The most common choice for ηx is to use poly-
nomial predictors, or a set of orthogonal polynomials
(see Orthogonality) for reasons of convenience of
computing and interpretation. Splines and break-point
predictors have also been used.

Parametric models of mortality have a long his-
tory, dating from Gompertz’s “law” of 1825,

µx = exp(b0 + b1x),

Makeham’s modification of 1860,

µx = a0 + exp(b0 + b1x),

and Thiele’s proposal of 1872,

µx = exp(b0 − b1x) + a1 exp

[
− (x − c)2

2b2

]

+ exp(b3 + b4x).

Later suggestions include the use of a logistic family
of curves [39] and Heligman & Pollard’s model
involving a combination of double-exponential and
lognormal curves for representing the odds function
[qx/(1 − qx)] [30]. These mark progress towards a
parametric model for the full age range.

Nonparametric Methods: Moving Weighted
Average Graduation

Moving weighted average graduation methods
(see Moving Average) were among the first
nonparametric methods to be developed. The adjusted
average formulae were largely developed by de Forest
in the 1870s in a series of rather obscure papers which
were rescued from oblivion and the results extended
by Wolfenden [55]. For comments on the importance
of de Forest’s contributions see [50]. In this approach
a weighted average of consecutive crude values is
taken, i.e.

q̂x =
s=m∑

s=−m

as
°qx+s . (22)

The most successful formulas have symmetric coeffi-
cients as = a−s . When considering the optimality of
the coefficients as , it is useful to consider the crude
rate as a random variable and express it as

°qx = qx + rx,

where qx is the true rate and rx is the residual
error. An essential feature of any graduation is
that the graduated rates should be smooth in some
sense. With moving weighted averages (MWA), one
approach is to choose weights that give the smoothest
graduations, ceteris paribus. London [36] provides a
fuller discussion of this approach.

The problems caused by MWA methods failing to
give smoothed values of the first and last m observa-
tions have recently been addressed by Greville [23],
among others.

Nonparametric Methods: Kernel Methods

Kernel estimation methods are used for estimating
a probability density function (see Density Estima-
tion). Thus, if x1, x2, . . . , xn are some observed val-
ues of the random variable X, then the kernel estimate
of the density at x is

f̂ (x) = 1

nb

n∑

i=1

kb(x − xi), (23)

where kb(x) ≡ k(x/b) is a kernel function which
satisfies ∫ ∞

−∞
k(x) dx = 1.

The bandwidth b governs the amount of smoothing
which is applied. The larger the value of b is, the
more smooth is the resulting estimate. In effect, a
kernel density estimate is formed by placing a kernel
function at each data point and then summing these
functions to form the estimate. A more complete
discussion of kernel density estimation is given
in [45, 47].

We assume that for a set of ages xi, i = 1, . . . , n,
we are given a measure of the exposed to risk ei and
the observed number of deaths di .

Two kernel estimators have been suggested, both
of which are closely related to MWA graduation,
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namely

q̂CH
x =

n∑

i=1

dikb(x − xi)

n∑

i=1

eikb(x − xi)

(24)

and

q̂NW
x =

n∑

i=1

°qxi
kb(x − xi)

n∑

i=1

kb(x − xi)

. (25)

In the context of graduation, q̂CH was intro-
duced by Copas & Haberman [9] and q̂NW by
Ramlau–Hausen [41]. The latter is related to the
Nadaraya–Watson estimator and can be viewed as a
continuous analogue of MWA graduation [19]. The
choice of bandwidth is discussed in some detail
in [20].

Nonparametric Methods: Whittaker–Henderson
Methods

The nonparametric methods described above can be
regarded as local, in the sense that the graduated
value at a given age depends only on the observed
values for arguments within a stipulated distance
from the given argument. Global methods allow each
graduated value to depend on all the observed data.
The principal such method is Whittaker–Henderson
graduation, devised by Whittaker [54].

The approach is based on a minimization of

S =
n∑

i=1

wxi
(uxi

− yxi
)2 + h

n−s∑

i=1

(∆suxi
)2, (26)

where yxi
denotes the crude values and uxi

denotes
the resulting graduated values at age xi , with i =
1, 2, . . . , n. S combines a measure of goodness of fit
of the graduation and a measure of the smoothness
of the sequence of graduated values, moderated by a
positive parameter h chosen by the user to reflect the
relative importance that they wish to attach to these
conflicting characteristics. It is common to choose
s = 2 or 3.

When h = 0, S is minimized when uxi
= yxi

so
that no graduation is needed. As h tends to 0, fit
is emphasized over smoothness. When h becomes

large, the second term dominates and in the limit
the graduating curve becomes the least squares fitted
polynomial of degree s − 1.

(wxi
) is a set of positive weights chosen by

the user, although it is common to choose for wxi

the reciprocal of an estimate of the variance of
the observation yxi

. Then, the graduated values uxi

are constrained to be close to the more reliable
observations (i.e. those with smaller variances) and
to be approximately a polynomial of degree s − 1,
where the observations are less reliable.

We can rewrite (26) in matrix notation,

S = (u − y)
′
W(u − y) + h(Ku)

′
Ku, (27)

where y is the vector of observed values, u is the
vector of graduated values, and W is the n × n

diagonal matrix with successive diagonal elements
equal to wxi

. K is an (n − s) × n matrix with entries
kij , where

kij = (−1)s+i−j

(
s

j − i

)
.

It is then straightforward to show that S is minimized
by u satisfying

(W + hK
′
K)u = Wy. (28)

As an extension, the loss function in (26) has
been adapted to the fitting of a continuous curve,
namely the smoothing spline of DeBoor [15]. This
is discussed in more detail in [22].

A Bayesian interpretation of Whittaker–Hender-
son graduation has been provided by Taylor [52],
and Verrall [53] has shown that the approach
is equivalent to a dynamic regression analysis
in which one parameter of the fitted line is
allowed to vary stochastically. A two-dimensional
version of Whittaker–Henderson graduation has been
introduced by Knorr [33].

Other Nonparametric Methods

Related global methods include Bayesian [32] and
information theoretic methods [4].

Tests of a Satisfactory Graduation

Two characteristics of a graduation require exam-
ination: smoothness and goodness of fit to the
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observed data. These qualities are in competition,
as is formalized in the criterion S for Whit-
taker–Henderson graduation; see (26).

The degree of smoothness required of a graduation
is subjective and depends on the use to be made of
the results; for applications in life insurance, it is
essential that the resulting functions (e.g. premiums)
are smooth. A parametric function (not a piecewise
function) may, of course, be assumed to be smooth.
In other cases, it has become customary to examine
low-order finite differences of the graduated values
and to consider their size and progression with respect
to age.

For measuring the goodness of fit, it is common
practice to tabulate the residuals, defined as the dif-
ference between the graduated value and the observed
value at the relevant ages. The diagnostics are aug-
mented by a variety of residual plots (see Residuals
for Survival Analysis), including the normal and
half-normal plots, and a battery of tests (including
the standardized deviations test, cumulative devia-
tions test, serial correlations test, sign test, changes
of sign tests, and grouping of sign tests; see [2] for a
full discussion).

Risk Classification and Regression

An important feature of insurance systems is the
classification of risks for the purposes of fixing
premiums. The classic economic argument in favor
of risk classification is to combat adverse selection,
the tendency of high risks to be more likely to
buy insurance or to buy larger amounts than low
risks [12].

In this context, the proportional hazards model
of Cox [10] has become widely used for the modeling
of the dependence of the force of mortality on a
range of covariates (e.g. sex, blood pressure, weight).
Following the notation of statistics, we let λ denote
the force of mortality (or hazard rate) and then
propose

λ(t, zi) = λ∗(t) exp




p∑

j=1

zijβj



 , (29)

where λ(t, zi ) is the hazard rate at time t for a
person with known covariates given by the vector
zi (with elements zij ), (βi) is a set of parameters to
be estimated, and λ∗(t) is a baseline hazard rate at

time t . Then each factor zi enters the hazard in a
multiplicative fashion. In this formulation, only λ∗(t)
depends on time, but the model can be adapted to
feature time-dependent covariates.

If we assume that the λ∗(t) values are known, then
we can formulate the model as a GLM and hence
produce parameter estimates for the (βj ); examples
are provided by [26, 43].

Results from such studies of insurance mortality
have demonstrated that the total mortality risk can be
represented by a statistical model involving a linear
combination of a number of factors (possibly with
interactions). The results have proved very useful
for insurance purposes. Further, the major medico-
actuarial studies of mortality and survival experience
of insured lives characterized by a range of covariates
have been of considerable importance in public health
terms – for example, the link between build, blood
pressure, and mortality demonstrated by the Build and
Blood Pressure Studies in the US [6, 7].
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Adaptive and Dynamic
Methods of Treatment
Assignment

The simplest design of a randomized clinical trial is
to enter a predetermined number of patients (i.e. use
a fixed sample size) and to assign treatment by ran-
domization with equal probability for each patient.
In practice, trials are rarely conducted in this fash-
ion. More commonly, both the manner in which
patients are allocated a treatment, and the decision
to terminate the study, are based on patient-specific
information that accumulates during the progress of
the trial. The terminology used to identify the dif-
ferent kinds of methods has not been consistent.
However, in this article the following taxonomy will
be used to classify the methods. A dynamic alloca-
tion method is one in which information on patient
covariates that predict the clinical outcome is used to
determine the treatment assignment. By contrast, an
adaptive allocation method is one that uses accumu-
lating outcome data to affect the treatment selection.
In the broad context of adaptive designs, sequential
designs (see Sequential Analysis) are prespecified
analytic rules that guide the decision to terminate the
trial on the grounds that the evidence favoring one of
the treatments has become persuasive.

Dynamic Treatment Allocation

A completely randomized design (see Experimental
Design) is relatively simple to implement and
prevents selection bias. It also ensures that
all hypothetical permutations of the treatment
assignments are equiprobable, under the null
hypothesis, and thus forms the basis for a
conventional permutation test, if this is the analysis of
choice. The disadvantages of complete randomization
include inefficiency in small trials, due primarily
to the risk of imbalanced treatment totals, and
the possibility that important prognostic factors
may also be imbalanced by chance, reducing the
credibility of the results of the trial. The simplest
way to avoid imbalance in treatment totals is
to randomize groups of individuals in “blocks”,
with equal numbers of each treatment in each
block (see Randomized Treatment Assignment).

Imbalance in important prognostic factors can be
reduced by allocating randomly permuted blocks
within the strata (see Stratification) defined by
the factors [26]. This method, randomly permuted
blocks in strata, is probably the most widely used
randomization method, and it is easily implemented,
since all of the allocation sequences can be prescribed
before the start of the trial, by creating sequences of
blocks for each stratum. That is to say, the dynamic
aspects of this method are embedded in the stratum-
specific sequences of allocations, and so no dynamic
calculations are necessary in the course of the trial to
determine the next treatment allocation.

The method of randomly permuted blocks in strata
rapidly degenerates as the number of strata increases.
For example, a trial with five stratification factors,
and three categories for each factor, would have 35 =
243 distinct strata. Therefore, in the course of the trial
many of the strata will accrue few, if any, patients
(unless the sample size is very large), rendering the
blocking ineffective. In effect, the method reduces
to complete randomization as the number of strata
increases. To offset this problem there are a number
of methods that balance the factors individually,
i.e. marginally, without requiring balance within all
factor combinations.

Suppose that there are f factors, and lf levels in
factor f . At any given point in the trial the treatment
allocations of the previous patients will have created
some amount of imbalance among the factors. Let
tijk be the total number of patients in the j th level of
factor i that have been allocated to treatment k, i =
1, . . . , f, j = 1, . . . , lf , k = 1, . . . , r , where r is the
number of treatments. The trial is balanced for factor
i level j to the extent that tij1, . . . , tijr are similar.
If the next patient to be randomized possesses factor
i at the j th level, then one can consider the effect
that each of the possible treatment allocations would
have on this balance. Balance must be characterized
by a mathematical function. Taves [21] proposed
the popular minimization method, where balance is
characterized by the range of treatment totals, and
the treatment is selected by minimizing the sum
of the ranges across all of the factors. Pocock &
Simon [18] proposed a more general version of this
method in which the treatment is selected by a biased
coin randomization, with the biased coin probabilities
determined by the balancing function. They suggested
the use of either the range or the variance as
balancing functions. Their overall balancing function
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involves a weighted sum of the balancing functions
of the individual factors, where the weights could be
assigned on the basis of the relative importance of
the prognostic factors. That is, if t∗ijk(k) represents
the treatment totals if treatment k is allocated, and
if Fij [t∗ijk(k)] is the balance for the j th level of the
ith factor under these circumstances, then the overall
balance is

Bk =
∑

i

∑

j

wiFij [t∗ijk(k)].

Note that only the unique levels of each factor for
the new patient are affected by the choice of k.
The values of Bk are especially easy to update and
compute if the variance is used as the balancing
function [11]. The biased coin probabilities are then
determined on the basis of Bk . For example, if the
r treatment assignments are ranked from the one
that would lead to the least imbalance, k = 1, to
the one that would lead to the greatest imbalance,
k = r , then one of the formulas suggested by Pocock
& Simon is to select p1 > r−1, and set pk = (1 −
p1)/(r − 1) for k = 2, . . . , r . In this case the degree
of randomization is inversely related to p1, and the
design is fully randomized if p1 = r−1. The use of
biased coins in this context, rather than deterministic
allocations, was originally proposed by Efron [10],
in part to ensure that the trial is truly “randomized”,
enabling the calculation of an appropriate reference
distribution for a permutation test (making use of the
biasing probabilities), and in part to reduce the risk
of selection bias.

Numerous other treatment allocation schemes
have been proposed. Notably, it has been shown that
balance is a characteristic of design optimality for
the linear model [7], and efficient designs have been
developed in the context of the theory of optimal
design [3]. Various simulation studies and general
empirical evidence demonstrate that all of these algo-
rithms are effective at balancing stratification factors,
even very early in the trial when there is a risk that
the trial might have to be terminated unexpectedly.
The numerous proposed methods have been reviewed
in detail [14].

The validity of conventional statistical tests sub-
sequent to the use of stratified or minimization-type
schemes has been a topic of debate. In general,
stratification has the effect of making the treat-
ment groups more alike that would be expected by
chance. This tends to make the unadjusted estimator

of the treatment effect more precise, but the variance
estimator is positively biased, and thus unadjusted
statistical tests are conservative. Simon provides a
review of historical discussion of this issue in the
context of agricultural experiments in the 1930s [19].
To correct for this effect, it is necessary to perform
a stratified analysis, stratified by the same factors
employed in the design. This may be inconvenient if
numerous factors were used in a minimization-type
scheme. However, the distortion of the p values is
only substantial for strong prognostic factors, and so
it will typically be unnecessary to adjust for all factors
in the analysis. Biased-coin designs affect the validity
of standard permutation tests owing to the fact that
different allocation sequences are not equiprobable,
and it is possible in theory to correct this problem by
simulating the correct reference distribution [19].

Adaptive Designs

Adaptive designs, i.e. designs which depend on the
accumulating outcome data, have been researched
and discussed extensively since the 1950s. Pioneering
work in this area was accomplished by Armitage,
who adapted the sequential probability ratio test
for application to medical trials [2]. Such a scheme
allows for a formal termination rule at any time
based on a global significance level. That is to
say, it accounts for the fact that multiple analyses
of the data will increase the chances of a false
positive finding, and so the stopping boundaries are
adjusted to offset this multiplicity problem. For many
years this methodology appears to have been well
known but little used. However, a series of papers
in the late 1970s and early 1980s succeeded in
popularizing the concept, via the development of
group sequential stopping rules, in which a relatively
small number of pre-specified interim analyses are
envisaged (see Data and Safety Monitoring). These
new methods were developed in recognition of the
fact that large multicenter trials are usually subject
to regular analyses by data-monitoring committees
(see Data Monitoring Committees). The simplest
method involves setting a single significance level for
each analysis [17]. However, it appears that methods
with very strict criteria early in the trial, and a final
criterion close to the nominal level (e.g. 5%), such as
the O’Brien and Fleming rule, are more popular [15].

An entirely different formulation of this prob-
lem also led to much research and debate, stemming
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from the ideas of Anscombe [1] and Colton [9]. This
approach is designed to optimize the stopping rule
on the basis of an appropriate loss function, in con-
trast to the arbitrariness inherent in using significance
tests. To do this, it is necessary to construct a “patient
horizon”, i.e. the total number of patients either on
the trial or affected by the trial results in the future
via the choice of the best treatment. In this model
the responses to each treatment are assumed nor-
mally distributed with equal variances, and patients
are randomized until the boundary is crossed, after
which all remaining patients are assigned to the supe-
rior treatment up to the patient horizon. The optimal
boundary is evaluated by trading the losses incurred
by randomizing half the patients to the inferior treat-
ment, and the losses incurred by making the wrong
decision and assigning all future patients, up to the
horizon, to the inferior treatment. Tabulated bound-
aries for this problem are provided by Chernoff &
Petkau [8]. Even greater optimization is theoretically
possible by optimizing the proportions randomized to
the treatments on the basis of the emerging data [5,
13]. A perceived problem with this kind of approach
is that the formulation is considered by most experts
to be too simplistic to be a credible approximation
to the realities of clinical research [16]. The patient
horizon is a spuriously precise expression of a vague
concept. As a result, this approach is not used widely.

A closely related formulation is the two-armed
bandit problem [20]. Zelen popularized this concept
in the context of medical trials, calling it the
play-the-winner rule [25]. Conceptually this rule
involves randomly selecting treatments using urn-
sampling, where the numbers of balls in the urn are
changed as outcomes are recorded. If outcomes are
recorded immediately, i.e. before the next allocation,
then a modified play-the-winner rule assigns the
subsequent patient to the same treatment following
a successful outcome, and to the opposite treatment
following a failure. Generalizations to this idea have
been studied by numerous investigators, especially
randomized versions that do not allow deterministic
allocations [24]. The basic rationale presented for
play-the-winner (or biased coin) adaptive designs is
that it is preferable on ethical grounds to assign
more patients to the treatment that appears to be
generating the superior outcomes, and indeed it has
been shown that such designs do allocate fewer
patients to the “inferior” treatment compared with an
equal allocation design, after fixing the probability

of a correct selection [25]. Although this method has
not been used frequently in practice, it was employed
in a highly controversial study of extracorporeal
membrane oxygenation therapy (ECMO) in newborn
infants [4]. This trial was concluded after 12 patients
were treated, only one of whom was allocated the
control treatment (the only failure in the study). The
subsequent permutation-based analysis, calculated
on the basis of the biased-coin design, led to
a marginally significant result [23]. However, the
methodology received much criticism [6], and a
subsequent confirmatory trial involving a randomized
consent design (see Ethics of Randomized Trials)
also led to great controversy [22].

The decision to continue or terminate a clini-
cal trial on the basis of the available evidence is
a highly charged issue that continues to engender
debate among statisticians, clinical investigators, and
ethicists, and even the role of randomization contin-
ues to be disputed. Frequently, in the course of a trial,
relevant data from a related trial or a meta-analysis
(see Meta-analysis of Clinical Trials) become avail-
able, and this may influence the decision to continue
or terminate the study. The merits of formalizing
the use of such information have been debated at
length [12].
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Adaptive Designs for
Clinical Trials

If investigators planning a clinical trial knew all
that was necessary to design it, they would select
an optimal statistical procedure to test the primary
hypothesis of interest. In practice, however, one
rarely has sufficient information available at the time
one designs a trial – the variability of the primary
outcome measure may be unknown, the effect size
uncertain, and the expected compliance to therapy, a
conjecture. Particularly for a long-term study, modi-
fications to standard medical practice that may occur
as the trial progresses may produce unanticipated
changes that affect parameters used to design the
trial. Lacking firm estimates for parameters integral
to the design of a study, the investigators may choose
to sacrifice statistical optimality in exchange for an
adaptive design that provides flexibility. This section
discusses a variety of such adaptive designs for clin-
ical trials.

One can imagine many different types of adapta-
tions. Some adaptive designs, by changing the allo-
cation ratio during the course of the trial (play the
winner trials or drop the loser trials) aim to increase
the probability of assigning the best treatment to the
participants in the trial (see Adaptive and Dynamic
Methods of Treatment Assignment). Other adap-
tive designs incorporate aspects of both a dose-finding
and confirmatory study ; others may allow change in
endpoint or modifications of entry criteria. This arti-
cle discusses a class of adaptive designs that modify
sample size during the course of the trial. Two types
of such designs are available – those whose purpose
is to end a study early if the answers are clear and
those whose purpose is to increase the information in
a trial, either by increasing sample size or length of
follow-up, to maintain desired statistical power. We
deal here primarily with two-stage adaptive designs.
For a general description of the theoretical underpin-
nings of two-stage adaptive designs, see [16].

The types of designs considered in this article
encompass the classes of design with an experimen-
tal and control arm (see Clinical Trials, Overview),
a preselected primary endpoint, and a criterion speci-
fying the requirement to preserve, or nearly preserve,
the preselected Type I error rate. These designs aim
to prevent bias, not only the technical bias defined

by inflation of the Type I error rate, but also bias that
may creep into the study by loosening the protective
firewalls that separate the blinded data from those
involved in the conduct of the study. In particu-
lar, the article addresses sequential analysis, futility
analysis, conditional power (see Cooperative Heart
Disease Trials), and designs that permit changes to
sample size or follow-up time in response to internal
estimates of either variability or effect size. Designs
that allow changes to sample size on the basis of
these internal estimates are called “internal pilot”
designs [23]. Some authors reserve the word “adap-
tive” for the special case of internal pilot designs that
use effect size to modify the sample size. This article
does not discuss more general adaptive designs that
allow such changes as dropping a study arm during
the course of the trial, redefining the primary end-
points, selecting a different test statistic, modifying
the study population, or changing the allocation ratio
during the study.

The oldest type of adaptive design goes by the
name “sequential analysis”. These methods, now part
of the standard tools of biostatistics, have been widely
used for several decades and experienced clinical tri-
alists understand their properties well. While sequen-
tial designs are less efficient than the optimal fixed
sample design, most schemes in common use incur
only small losses in efficiency. They allow a trial
to stop early with the declaration of statistically sig-
nificant benefit for the treated group. Many clinical
investigators expect to see a sequential plan as part
of a clinical trial, especially a long-term trial or a
trial with a clinical outcome. In designing such trials,
biostatisticians should think not only of the primary
endpoint, but also about supportive endpoints and
subgroups of potential importance. Stopping a trial
early may allow declaration of success for the pri-
mary endpoint, but if the sample size is small at the
time the study ends, the observed effect size may con-
siderably overestimate the true effect. Moreover, the
results may have ambiguous interpretations for other
important questions.

A second type of adaptive approach that per-
mits early termination with protection of Type I error
rate is the so-called futility analysis. A trial may be
declared futile if the experimental therapy is not so
bad as to be unsafe, but if the probability of show-
ing benefit is low. In this type of design, the group
watching the trial, often the Data Monitoring Com-
mittee, may recommend ending the trial early if
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it assesses that continuing is “futile”. The method
of assessing futility may be based on conditional
power [13] and the B-value [14]; it may be based
on a confidence limit, or a boundary for excluding a
specific effect [8]. The criterion for defining futility
often depends on the secondary objectives of the trial.
A trial examining proof-of-concept may stop early for
futility if the concept appears unfounded; similarly, a
confirmatory trial, or a trial that follows an unsuccess-
ful one, may have a low threshold for stopping early
and declaring futility. Designers of a first Phase 3
trial (see Clinical Trials, Overview) however, may
be reluctant to stop for futility because they intend to
use data from the trial to learn a lot about the new
therapy and early stopping produces too little infor-
mation for rich exploration of the data. By the same
token, designers of a trial of a therapy in common
use may wish to continue the trial even if the chance
of finding benefit is low because clear evidence of
no efficacy is important for the public health. Futility
analyses that are based on conditional power rely on
the stochastic independence of nonoverlapping peri-
ods of the trial [14].

Internal pilot designs, unlike sequential analysis
and futility analysis, incorporate the possibility of
increased sample size. Two classes of such designs
are available: those that use data internal to the trial
to reestimate one or more nuisance parameters and
those that reestimate the effect size. In both cases,
the new estimate provides the basis for recalculat-
ing sample size. All these designs provide a hedge
against having made poor estimates of parameters
in designing the trial; however, this hedge can be
costly. Midcourse estimates, which are based on a
fraction of the total sample size originally projected,
are often imprecise. This imprecision is more serious
for designs that aim to estimate effect size than they
are for those that estimate nuisance parameters.

The simplest approaches use data from the first, or
internal pilot phase, to estimate variance, and then
apply this new estimate to a sample size formula. A
paper by Stein spawned these methods [22]. Many
variants are available. Some use unblinded data [3,
22, 23], some blinded [11]. Some use formulas that
do not correct for potential inflation of Type I error
rate, and some address the inflation directly. Methods
are available for normal [3–5, 7, 11, 23, 24, 26]
and binomial [10, 12] tests as well as for repeated
measures (see Multiplicity in Clinical Trials) [25].

The blinded and unblinded approaches have dif-
ferent properties. From the point of view of statisti-
cal operating characteristics, the blinded versions are
generally preferable when the specified effect size is
close to the true effect [26]. Especially for binomial
and time-to-failure outcomes (see Survival Analysis,
Overview), choosing between blinded and unblinded
assessment requires balancing the risk of overestimat-
ing the sample size, which can occur in the blinded
cases, with providing too much information to the
investigators, which can occur in unblinded cases. For
example, consider a trial designed to demonstrate a
difference in proportion of failure from 0.4 to 0.3. In
the blinded case, one would expect a pooled event
rate of 0.35. Seeing a rate lower than that would
prompt an increase in sample size. If, however, the
observed rates were 0.4 and 0.1, that is, a 75% reduc-
tion at the first stage, the observed pooled rate of
0.25 would lead to a considerable, and unnecessary,
increase in sample size. A method based on the esti-
mated placebo rate alone would leave the sample size
unchanged.

Both blinded and unblinded methods protect the
Type I error rate quite well. In fact, even naı̈ve esti-
mates that simply calculate the sample size at the
second stage using the estimated rate in the placebo
without any correction for having made an interim
look at the data incur only minimal inflation in Type I
error rate [23]. Other methods, for example, [5] cor-
rect for the look and hence preserve Type I error rate
more precisely. Thus, the criterion for selecting a
method for increasing sample size on the basis of
internal estimates of information (variance, propor-
tion, or hazard should be based less on the operating
characteristics (see Animal Screening Systems) of
the procedures and more on practical contingencies.
If the study team can separate the estimates from the
operation of the study, then unblinded assessments
based on the placebo rates may be appealing; if they
cannot, then blinded methods are preferable.

Several very different methods are available for
internal pilot designs that use effect size as the basis
for changing sample size. Some approaches combine
p-values from the two stages [1]; some base sample
size on conditional power [19]; some rely on unequal
weighing of data from the two phases of the study [6,
15, 20].

Procedures that allow increasing the sample size
to control the conditional power implicitly permit
increasing the sample size if the effect size at
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the interim look is low. The procedure calculates
the conditional power at the first stage and then
increases the sample size to maintain desired con-
ditional power. Consider a two-stage trial that tests a
one-sided (see Alternative Hypothesis) null hypoth-
esis H0. At each stage one calculates p-values, p1

and p2. If p1 ≤ α1 < α, the trial stops and rejects
H0. If p1 > α0 > α, the trial stops for futility. If
α1 ≤ p1 < α0, the trial continues to the second stage
and the final decision is based on a combination
function C(p1, p2) that rejects (does not reject) H0

if C(p1, p2) ≤ c(> c). If α0 = 1, the trial will not
stop for futility and if α0 = 1, the trial will not
stop early [2]. The conditional error function [19],
CE(p1) = Prob(reject H0|p1), is the probability of
rejecting the null hypothesis conditional on observ-
ing a p-value of p1 at the first stage. Let A(p1) be a
monotonic function such that α1 + ∫ α0

α1
A(p1) dp1 =

α. A rule that rejects H0 when p1 ≤ α1 or when
α1 < p1 ≤ α0 and p2 ≤ A(p1) controls the Type I
error rate. If α1 < p1 ≤ α0 then A(p1) is the condi-
tional error function [18]. For a description of various
conditional error functions, see [19].

One simple, very flexible, two-stage method calcu-
lates the z-statistic (see Standard Normal Deviate),
z1 halfway though the trial [20]. The investigators
decide on the basis of z1 whether to increase the sam-
ple size (decreases are not allowed). If they decide not
to change the sample size, the study continues to its
planned end. If they change the sample size, they may
use any method to calculate the second stage sample,
n2. The rejection region is z∗ = (z1 + z2)/21/2 > zα

and the p-value is 1 − Φ{(z1 + z2)/21/2}. Because
Z1 and Z2 are independent standard normal vari-
ates for any sample size function n2(z1), z∗ also has
a standard normal distribution. If the sample size
remains unchanged, then the loss of efficiency is very
small because z∗ is only slightly larger than the usual
fixed-sample z-score.

An option for one-sided tests uses a variance-
spending sequential method [9], a technique that
allows one to change sample size in response to an
effect size different from expected. In these designs,
one constructs a final test statistic using a weighted
average of the sequentially collected data, where the
observed data prior to each stage determines the
weight function for that stage [21]. The goal is to ter-
minate a trial early when the treatment effect is large
or when the new therapy is harmful but to ensure an
adequate sample size when the true effect is small.

The final test statistic is a weighted average of the
test statistics at each stage. One selects the weights to
maintain the variance of the final test statistic in order
to preserve the Type I error rate. Thus, in general, not
all observations have equal weight.

Two other approaches combine sequential analy-
sis with potential increases in sample size [6, 15].
These methods, like the variance-spending sequen-
tial methods above, maintain the Type I error rate
by assigning different weights to different stages of
the study. Consider a trial with K planned interim
analyses. At interim analyses 1, 2, . . . , L, perform the
prespecified group sequential test. At the Lth interim
analysis, if the monitoring boundary is not crossed,
then adjust the sample size, up or down, by the fac-
tor N(δ/∆L) where N is the original sample size per
group and ∆L the observed treatment difference at the
Lth analysis. Both approaches [6] and [15], though
slightly different in theory and implementation, have
similar properties.

While the ability to modify one’s study on the
basis of an observed effect has considerable appeal
(you can have your cake and eat it), the methods
are not problem free. The estimate of effect size
can be quite biased, so special estimators must be
employed. The estimated treatment effect at the end
of the first stage may be imprecise, so the recal-
culated sample size may be either too large or too
small and there is some question about the propri-
ety of changing the effect size one wants to detect.
Moreover, such designs can be extremely inefficient
relative to comparable fixed sample size designs or
classical sequential designs [17].

None of these methods should substitute for a
careful design. Classical sequential analysis, futil-
ity analysis, and sample size recalculation on the
basis of reestimated nuisance parameters incur lit-
tle loss of efficiency; however, adaptive methods that
use effect size to change sample size may be very
inefficient, requiring much larger sample sizes than
a well-designed sequential plan. Thus, one should
be cautious in the use of this type of adaptation.
During the design phase, one should identify the
parameters projected with greatest uncertainty and
select midcourse changes specifically to address those
uncertainties. A strategy that deliberately chooses a
low sample size in the hope that an adaptive design
will bail one out courts serious inefficiency. On the
other hand, failing to modify one’s plans when the
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data from a trial show important deviations from the
expected may render the results of a trial ambiguous.
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Adaptive Sampling

Animal populations are often highly clustered
(see Clustering). For example, fish can form large,
widely scattered schools with few fish in between.
Even rare species of animals may form small groups
that are hard to find. Applying standard sampling
methods such as simple random sampling of plots
to such a population could yield little information,
with most of the plots being empty. Adaptive cluster
sampling, the most well-known form of adaptive
sampling, is based on the simple idea that when some
animals are located on a sample plot, the neighboring
plots (and possibly their neighbors as well) are added
to the sample. The hope is to find the whole cluster.

Methods of estimation were initially developed in
the three pioneering papers of Thompson [27–29]
and the sampling book by Thompson [30]. The
methodology is described in detail by Seber &
Thompson [38], and by Thompson & Seber [51].

Adaptive Methods

With adaptive sampling, the selection of sampling
units (or plots) at any stage of the process depends on
information from the units already selected. Sequen-
tial sampling could therefore be regarded as an adap-
tive method of sampling, but with the sample size
rather than the method of selecting the units being
adaptive. We note that the network (multiplicity)
sampling introduced by Sirken and colleagues [39]
(see [21] for references) is different from adaptive
sampling, though they both use the idea of a network.

Adaptive cluster sampling, which we discuss in
detail below, is the most common adaptive method.
It is a form of biased sampling, technically known
as unequal probability sampling, which arises when
sampling clusters of different sizes. The probability of
selecting a plot will depend on the size of the animal
cluster in which the plot is embedded. We find, not
surprisingly, that the standard Horvitz–Thompson
(HT) and Hansen–Hurwitz (HH) estimators for un-
equal probability sampling (cf. [16] and [18]) can be
modified to provide unbiased estimators.

Another adaptive method, which has been des-
cribed as adaptive allocation, can be used when the
population is divided up into strata or primary units,
each consisting of secondary units. An initial sample

of secondary units is taken in each primary unit. If
some criterion is satisfied, for example the average
number of animals per sampled unit in the primary
unit is greater than some prechosen number, then
a further sample of units is taken from the same
primary unit. Kremers [22] developed an unbiased
estimator for this situation. If the clumps tend to
be big enough so that they are spread over several
primary units, we could use what is found in a
particular primary unit to determine the level of
the sampling in the next unit. This is the basis for
the theory developed by Thompson et al. [49]. Other
forms of augmenting the initial sample which give
biased estimates are described by Francis [14, 15] and
Jolly & Hampton [19, 20].

Adaptive Cluster Sampling

As indicated briefly above, adaptive cluster sampling
begins with an initial sample and, if individuals
are detected on one of the selected units, then the
neighboring units of that unit are sampled as well. If
further individuals are encountered on a unit in the
neighborhood, then the neighborhood of that unit is
also added to the sample, and so on, thus building
up a cluster of units. If the initial sample includes a
unit from a clump, then the rest of the clump will
generally be sampled. Such an approach will give us
a greater number of individuals.

To set out the steps involved in adaptive cluster
sampling, we begin with a finite population of N

units (plots) indexed by their “labels” (1, 2, . . . , N).
With unit i is associated a variable of interest yi

for i = 1, 2, . . . , N . Up till now we have referred
to yi as the number of animals on the ith unit.
However, as well as counting numbers of individuals,
we may wish to measure some other characteristic
of the unit, for example plant biomass or pollution
level, or even just note the presence or absence of
some characteristic using an indicator variable for
yi . In addition to rare species and pollution studies,
we can envisage a wide range of populations that
would benefit from adaptive sampling, for example
populations which form large aggregations such as
fish, marine mammals, and shrimp. It has also been
used for sampling animal habitats [28], and we can
add mineral deposits and rare infectious diseases in
human populations (e.g. AIDS) to our list. Having
defined yi , our aim is to select a sample, observe the
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y values for the units in the sample, and then estimate
some function of the population y values such as
the population total

∑N
i=1 yi = τ or the population

mean µ = τ/N . Before sampling begins we need to
do three things.

The first is to define, for each unit i, a neighbor-
hood consisting of that unit and a set of “neighboring”
units. For example we could choose all the adjacent
units with a common boundary which, together with
unit i, form a “cross”. Neighborhoods can be defined
to have a variety of patterns; the units in a neighbor-
hood do not have to be contiguous. However, they
must have a “symmetry” property, that is if unit j is
in the neighborhood of unit i, then unit i is in the
neighborhood of unit j . We assume, for the moment,
that these neighborhoods do not depend on yi .

The next step is to specify a condition C (for
instance, y > c where c is a specified constant),
which determines when we add a neighborhood or
not, and the third step is to decide on the size of the
initial sample size n1.

We begin the sampling process by taking an initial
random sample of n1 units selected, usually with-
out replacement (see Sampling With and Without
Replacement), from the N units in the population.
Whenever the y value of a unit i in the initial sam-
ple satisfies C, all units in the neighborhood of unit
i are added to the sample. If, in turn, any of the
added units satisfies the condition, still more units
are added. The process is continued until a cluster
of units is obtained which contains a “boundary” of
units called edge units that do not satisfy C. If a
unit selected in the initial sample does not satisfy C,
then there is no augmentation and we have a cluster
of size one. The process is demonstrated in Figure 1
where the units are plots and the neighborhood forms
a cross. Here yi is the number of animals on plot
i and c = 0 so that a neighborhood is added every
time animals are found. In Figure 1(a) we see one
of the initial plots which happens to contain one ani-
mal. As it is on the edge of a “clump” we see that
the adaptive process leads to the cluster of plots in
Figure 1(b).

We note that even if the units in the initial sample
are distinct, as in sampling without replacement,
repeats can occur in the final sample as clusters may
overlap on their edge units or even coincide. For
example, if two nonedge units in the same cluster are
selected in the initial sample, then that whole cluster
occurs twice in the final sample. The final sample

(a) (b)

Figure 1 (a) Initial sample plot; (b) cluster obtained by
adding adaptively

then consists of n1 (not necessarily distinct) clusters,
one for each unit selected in the initial sample.

Unbiased Estimation

Although the cluster is the natural sample group,
it is not a convenient entity to use for theoretical
developments because of the double role that edge
units can play. If an edge unit is selected in the
initial sample, then it forms a cluster of size 1. If it is
not selected in the initial sample, then it can still be
selected by being a member of any cluster for which
it is an edge unit. We therefore introduce the idea
of the network Ai for unit i which is defined to be
the cluster generated by unit i but with its edge units
removed. In Figure 1(b) we get the sampled network
by omitting the empty units from the sampled cluster.
Here the selection of any unit in the network leads to
the selection of all of the network. If unit i is the only
unit in a cluster satisfying C, then Ai consists of just
unit i and forms a network of size 1. We also define
any unit which does not satisfy C to be a network of
size 1 as its selection does not lead to the inclusion
of any other units. This means that all clusters of
size 1 are also networks of size 1. Thus any cluster
consisting of more than one unit can be split into a
network and further networks of size 1 (one for each
edge unit). In contrast to having clusters which may
overlap on their edge units, the distinct networks are
disjoint and form a partition of the N units.

Since the probability of selecting a unit will
depend on the size of the network it is in, we are
in the situation of unequal probability sampling and
the usual estimates based on equal probability sam-
pling will be biased. However, as already mentioned,
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we can consider the Horvitz–Thompson (HT) and
Hansen–Hurwitz (HH) estimators, the latter being
used in sampling with replacement. These estima-
tors, however, require that we know the probability
of selection of each unit in the final sample. Unfortu-
nately these probabilities are only known for units in
networks selected by the initial sample, and not for
the edge units attached to these networks. For exam-
ple, the probability πi that an initial sampling unit
falls in the network containing unit i is

πi = 1 −
(

N − mi

n1

) / (
N

n1

)
,

where mi is the number of units in this network.
Therefore, in what follows, we ignore all edge

units that are not in the initial sample and use only
network information when it comes to computing the
final estimators. Motivated by the HT estimator for
the population mean µ, we consider

µ̂ = 1

N

N∑

i=1

yi

Ii

E[Ii]
,

where Ii takes the value 1 if the initial sample
intersects network Ai , and 0 otherwise. It is clear
that µ̂ is an unbiased estimator for sampling with or
without replacement.

Another possible estimator (motivated by the HH
estimator) that is also obviously unbiased for sam-
pling, with or without replacement, is

µ̃ = 1

N

N∑

i=1

yi

fi

E[fi]
,

where fi is the number of times that the ith unit
in the final sample appears in the estimator, that is
the number of units in the initial sample which fall
in (intersect) Ai determined by unit i. We note that
fi = 0 if no units in the initial sample intersect Ai .
It can be shown that

µ̃ = 1

n1

n1∑

i=1

wi = w,

say, where wi is the mean of the observations in Ai ,
i.e. w is the mean of the n1 (not necessarily distinct)
network means. Di Consiglio & Scanu [12] studied
the asymptotic behaviors of µ̂ and µ̃. They proved
that, under suitable conditions, Hajek’s theorem [17]

for asymptotic normality distribution can be applied
to both estimators. However, confidence intervals
based on asymptotic approximations may not be
appropriate when the sample size is relatively small.
Christman & Pontius [9] used several bootstrap per-
centile methods for constructing confidence intervals
under adaptive cluster sampling. They showed, in a
simulation study, that the coverage by the bootstrap
method was closer to nominal coverage than the nor-
mal approximation.

In addition to the above two types of estimator,
there is a third type of estimator that can be used.
Since a network can be selected more than once, a
more efficient design might be to “remove” a network
from further consideration once it has been selected,
i.e. select networks without replacement. We can than
use an estimator due to Murthy [26]; details are given
by Salehi & Seber [33]. Salehi & Seber [35] gave a
direct proof of Murthy’s estimator which extends the
use of this estimator to sequential and some adaptive
sampling schemes.

Rao–Blackwell Modification

In the above unbiased estimates that we introduced,
we did not make use of the y values from the edge
units. With this loss of information we would expect
to be able to find more efficient estimates using all
the sample data. We now show how we can do this.

An adaptive sample can be defined as one
for which the probability of obtaining the sample
depends only on the distinct unordered y observa-
tions in the sample, and not on the y values outside
the sample. In this case d, the set of distinct unordered
labels in the sample together with their associated y

values, is minimal sufficient for µ. This is proved
for “conventional designs” by Cassel et al. [7] and
Chaudhuri & Stenger [8], and their proofs readily
extend to the case of adaptive designs. (This exten-
sion is implicit in [2] and it is given in [51].) This
means that an unbiased estimator that is not a func-
tion of d can be “improved” by taking the expectation
of the estimator conditional on d to give an esti-
mator with smaller variance. For example, consider
three unbiased estimators of µ, namely y1 (the mean
of the initial sample of n1 units), µ̂, and µ̃. Each
of these depends on the order of selection as they
depend on which n1 units are in the initial sample;
µ̃ also depends on repeat selections; and when the
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initial sample is selected with replacement, all three
estimators depend on repeat selections. Since all three
estimators are not functions of the minimal sufficient
statistic d we can apply the Rao–Blackwell theo-
rem. If T is any one of the three estimators, then
E[T |d] will give a better unbiased estimate, i.e. one
with smaller variance. We find that this estimator now
uses all the units including the edge units. Salehi [30],
using an approach based on the inclusion–exclusion
formula, has derived analytical expressions for the
Rao–Blackwell version of the modified HH and
HT estimators and their variance estimators. Felix-
Medina [13], using a different approach, has also
derived analytical expressions for their variances.

Applications and Extensions

In applications, other methods are sometimes used for
obtaining the initial sample. For instance, in forestry
the units are trees, and these are usually selected by
a method of unequal probability sampling where the
probability of selecting a tree is proportional to the
basal area of a tree (the cross-sectional area of a
tree at the basal height – usually 4.5 feet in the US).
Roesch [29] described a number of estimators for this
situation and derivations are given in [51].

In ecology, larger sample units other than single
plots are often used. For example, a common sam-
pling unit is the strip transect, which we might call
the primary unit. In its adaptive modification, the strip
would be divided up into smaller secondary units,
and if we find animals in one of its secondary units
we would sample units on either side of that unit,
with still further searching if additional animals are
sighted while on this search. Strips are widely used
in both aerial and ship surveys of animals and marine
mammals.

Here the aircraft or vessel travels down a line
(called a line transect) and the area is surveyed on
either side out to a given distance. Thompson [44]
showed how the above theory can be applied to this
sampling situation. He pointed out that a primary unit
need not be a contiguous set of secondary units. For
example, in some wildlife surveys the selection of
sites chosen for observation is done systematically
(with a random starting point) and a single systematic
selection then forms the primary unit (see Systematic
Sampling Methods). We can then select several such
primary units without replacement and add adaptively

as before. Such a selection of secondary units will
tend to give better coverage of the population than a
simple random sample. Acharya et al. [1] used sstem-
atic adaptive cluster sampling (SACS) to sample three
rare tree species in a forest area of about 40 ha in
Nepal. They checked its applicability and showed
that, for some cases, its efficiency of density esti-
mation relative to conventional systematic sampling,
increased by up to 500%.

Clearly other ways of choosing a primary unit
to give better coverage are possible. Munholland &
Borkowski [24, 25] and Borkowski [3] suggest using
a Latin square +1 design selected from a square
grid of secondary units. The Latin square gives a
secondary unit in every row and column of the grid,
and the extra (i.e. +1) unit ensures that any pair of
units has a positive probability of being included in
the initial sample. The latter requirement is needed
for unbiased variance estimation. Salehi [31] sug-
gested using a systematic Latin square sampling +1
design selected from a rectangular grid of secondary
units.

In some situations it is hard to know what c

should be for the condition y > c. If we choose c

too low or too high we end up with a feast or famine
of extra plots. Thompson [48] suggested using the
data themselves, in fact the order statistics. For
example, c could be the rth largest y value in the
initial sample statistic so that the neighborhoods are
now determined by the y values. This method would
be particularly useful in pollution studies where the
location of “hot spots” is important. In a study of
contaminated sites, the advantages and disadvantages
of this sampling scheme, when used along with
composite sampling, have been discussed briefly by
Correl [11].

Another problem, regularly encountered with ani-
mal population studies, is that not all animals are
detected. Thompson & Seber [50] developed tools for
handling incomplete detectability for a wide variety
of designs including adaptive designs thus extending
the work of Steinhorst & Samuel [42]. In the presence
of incomplete detection, Pollard and Buckland [27]
developed an adaptive sampling method in shipboard
line transect survey. The survey effort is increased
when the number of observation exceeds some limit.
This increase is achieved by zigzagging for a period,
after which the ship returns to the nominal (straight
line) cruise track. They use distance sampling theory
(see [6] to find the estimator.
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Often we are in a multivariate situation where
one needs to record several characteristics or mea-
surements on each unit, e.g. the numbers of different
species. Thompson [47] pointed out that any function
of the variables can be used to define the criterion C,
and obtained unbiased estimates of the mean vector
and covariance matrix for these variables.

We can use any of the above methods in con-
junction with stratification. If we do not allow the
clusters to cross stratum boundaries, then individual
stratum estimates are independent and can be com-
bined in the usual fashion. However, Thompson [45]
extended this theory to allow for the case where
clusters do overlap. Such an approach makes more
efficient use of sample information.

Finally we mention the “model-based” or “super-
population” approach (cf. Särndal et al. [37], for
example). Here the population vector y of y values
is considered to be a realization of a random vector
Y with some joint distribution F , which may depend
on an unknown parameter φ. In a Bayesian frame-
work φ will have a known prior distribution. For
this model-based approach, Thompson & Seber [51]
indicate which of the results for conventional designs
carry over to adaptive designs and which of those do
not. They also show in their Chapter 10 that optimal
designs tend to be adaptive.

Relative Efficiency

An important question one might ask about adaptive
sampling is “How does it compare with, say, sim-
ple random sampling?” This question is discussed by
Thompson & Seber [51, Chapter 5] and some guide-
lines are given. Cost considerations are also impor-
tant. Simple examples given by them throughout their
book suggest that there are large gains in efficiency
to be had with clustered populations. Clearly, it will
depend on the degree of clustering in the population.
Two simulation studies that shed some light on this
are given by Smith et al. [40] and Brown [4]. These
two studies suggested that the HT estimator is more
efficient than the HH estimator. Salehi [32] found
some support for this analytically, and recommended
use of the HT estimator despite the HH estimator
being easier to compute.

Adaptive cluster sampling is an efficient method
for sampling rare and clustered populations when
cluster sizes are large relative to unit sizes. Smith

et al. [41] used adaptive cluster sampling for esti-
mating the density of freshwater mussel populations.
Since some of the populations were rare and clus-
tered, but with small cluster sizes, adaptively added
units were mainly edge units, with little or no gain
in efficiency.

Designing an Adaptive Survey

There are several problems associated with adaptive
sampling. First, the final sample size is random and
therefore unknown. Furthermore, as we saw above,
the unit selection probabilities depend on the initial
sample size n1. How then can we use a pilot survey,
for example, to design an experiment with a given
efficiency or expected cost – an approach which is
used for conventional designs such as simple random
sampling? Secondly, if an inappropriate criterion C

for adding neighborhoods is used, then there may be a
“feast or famine” of sampling units. If too many units
are being added at each initially selected unit then we
end up sampling too many units. Alternatively we
might not get enough units. Thirdly, a lot of effort
can be expended in locating initial units as we must
travel to the site of each such unit.

Recently, a two-stage scheme has been developed
by Salehi & Seber [34] which helps us to deal with
all three problems in a reasonably optimal manner.
To use this scheme, we divide the population of (sec-
ondary) units into, say, M primary sampling units
(PSUs), each containing N0 = N/M secondary units.
A simple random sample of m primary units is then
taken and adaptive cluster sampling is carried out
in each of the selected primary units using an ini-
tial sample of n0 units. We again have two schemes,
depending on whether networks are allowed to cross
PSU boundaries or not, and two estimators (HT and
HH) for each scheme. To design such an experiment,
we use the HT estimator with nonoverlapping bound-
aries and choose a pilot sample of mp PSUs but with
the same initial sample size of n0 units in each of the
selected primary units. The theory based on the pilot
survey now works, that is, we can now determine m

to achieve a given efficiency or cost. The reason for
this is that the network selection probabilities in a
PSU are the same for both the pilot survey and the
survey planned; both depend on n0.

Another method of controlling the overall sample
size is to use a method called restricted adaptive
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cluster sampling, proposed by Brown & Manly [5].
Here the units are selected sequentially for the initial
sample until a desired sample size is reached. The
sampling therefore “restricts” the initial sample to one
that produces a final sample size that is either at or
just over the defined limit. The HT and HH estimators
are now biased but under some circumstances the
bias can be estimated well by bootstrapping. Lo
et al. [23] used the restricted method to estimate
Pacific hake larval abundance.

Salehi & Seber refno36 provided an unbiased
estimator for the restricted method. Using a simu-
lation study, they showed that the unbiased estimator
has a smaller mean square error than the biased
estimators. They also considered a restricted method
when the networks are selected without replacement
and obtained its unbiased estimator. Christman and
Lan [10] introduced inverse adaptive cluster sam-
pling, which is a especial case of restricted adaptive
cluster sampling.
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Additive Hazard Models

While most modern analyses of survival data focus
on multiplicative models for relative risk using
proportional hazards models, some work has been
done on the development of additive hazard models.
Aalen’s additive regression model [1, 2, 6, 8] is a
general nonparametric additive hazard model of the
form: ∑

λi(t)xi , (1)

where the λi are nonparametric hazard functions
associated with covariate xi , which may be time-
dependent. Andersen & Væth [3] discuss a special
case of this model of the form

β(t)µ∗(t) + γ (t), (2)

where γ (t) and β(t) are functions to be estimated and
µ∗(t) is a known function describing rates in some
reference population. McKeague & Sasieni [8] dis-
cuss a partly parametric version of (1). For inference
and other issues related to models (1) and (2) see
Aalen’s additive regression model. In what follows
we discuss a class of parametric additive hazard mod-
els that are of special interest in studies in which we
want to describe data on survival in terms of how the
excess risk (or rate) depends on one or more “expo-
sures”, and how these exposure-specific risks depend
on other factors, such as sex, age at exposure, or time
since exposure. These models are used extensively in
studies of radiation effects on cancer [10, 11] and
are applicable in a wide variety of occupational and
other studies.

In many applications it is useful to consider addi-
tive hazard models of the form:

λ0(t, β0, z0) + λ1(t, β1, z1), (3)

λ0(t, β0, z0)[1 + λ1(t, β1, z1)]. (4)

In these models, λ0(·) represents a background
hazard (rate) function that depends on time (t), and
other covariates, z0, with parameters β0, while λ1(·)
describes the excess hazard (excess absolute rate)
(3) or excess relative risk (4) as a function of time
and covariates, z1, with parameters β1. In general,
covariates affecting the excess risk will include some
measure of exposure and may be time-dependent. It is
also common for some covariates, e.g. sex, to affect

both the background and excess risks. That is, some
covariates may appear in both z0 and z1.

When working with parametric additive hazard
models one must specify functional forms for the
background and excess risks. In many problems log-
linear models provide an adequate description of
the background rates. Commonly used models for
the logarithm of the background rate are linear or
polynomial functions of t or log(t), though linear or
quadratic splines in t or log(t) can also be useful.
Other covariates, such as sex or birth cohort, may
affect the intercepts or slopes in such models.

For an exposure, d, it is often useful to consider
excess risk models of the form

λ1(·) = ρ(d, βd)γ (t, z, β1),

where we assume that other factors act multiplica-
tively on the shape of the dose–response function
ρ(·). Dose–response functions may be described
using linear, quadratic, linear spline, categorical, or
other functions of dose, while effect modification
is often modeled using loglinear functions of other
covariates.

For example, in an analysis of mortality from
cancers other than leukemia in Japanese atomic bomb
survivors over a 40-year period it was found that
the effect of radiation could be described quite well
using an additive excess relative risk model in which
the linear dose effect depends on sex and decreases
loglinearly with increasing age at exposure (agex )
with no significant effects of age. One way to write
this model for the excess relative risk is

λ1(·) = β1dose × exp(β2 female + β3 agex),

where female is an indicator variable that is 1 for
women and 0 for men. An alternative model describ-
ing excess absolute cancer death rates for atomic
bomb survivors cancer data in terms of age at death
(age) is

λ1(·) = β1 dose × exp[β2 ln(age)]

= β1 dose × (age)β2 .

These two models were found to describe the excess
cancer risks equally well.



2 Additive Hazard Models

Generalizing the Models

There are a number of useful generalizations and
extensions of models (3) and (4). An important exten-
sion, which is closely related to model (1), general-
izes the simple standardized mortality ratio (SMR)
(see Standardization Methods) used in many epi-
demiologic studies. In particular, external data on
background rates can be incorporated into either
model by inclusion of these rates as a covariate in the
background term, which may also include additional
parameters to describe the ratio of the external back-
ground rates and the rates in the study population.
We can write this background rate model as

λ0(t, z0, β0) = µ∗(t, z0)γ (z0, β0).

Breslow et al. [5] discuss this multiplicative SMR
model in some detail; extension to additive hazard
models is straightforward.

Models (3) and (4) can also be extended to inves-
tigate the joint effects (see Synergy of Exposure
Effects) of multiple exposures by the inclusion of
additional excess hazard terms (for independent addi-
tive effects) or by allowing interactions between
different exposure effects in a single excess hazard
term.

Several authors (e.g. [4] and [9]) have proposed
hybrid parametric families with a continuous index
parameter γ such that models like (3) and (4) cor-
respond to specific values of γ . The method of
Aranda-Ordaz [4] involves the use of a hybrid fam-
ily that includes complementary log–log and nega-
tive complementary log models to analyze survival
data grouped into equal length intervals. This fam-
ily includes models in which the excess hazard or
the log relative risk are modeled as linear functions
of the covariates. Muirhead & Darby [9] proposed a
hybrid model of the form

{λ0(t, β0, z0)
γ + [1 + λ1(t, β1, z1)]

γ − 1}1/γ .

When γ equals 1 this corresponds to the excess
hazard model (4) and, in the limit as γ approaches 0,
it corresponds to the excess relative model (3).

The primary use of these hybrid models is to com-
pare how well the data of interest are described by
models in which either the relative or absolute excess
risk is constant over time. It is generally easier and
more informative to address this question through a
simple comparison of the fits of time-constant excess

hazard and excess relative risk models, together with
analyses of the effect of allowing the excess hazards
or relative risks to depend on time. When excess risks
are allowed to depend on time there is usually little
difference in the fit of models (3) and (4). In this case,
the hybrid models contain little information about the
index parameter (i.e. the profile likelihood function
for γ is quite flat).

Parameter Estimation and Inference

It is generally impractical to develop likelihood-based
estimating function equations for the use of fully
specified parametric models based on (3) and (4) with
ungrouped survival data. However, parameter estima-
tion for both of these classes of models is relatively
straightforward when done using Poisson regression
methods for grouped survival data. With suitable
Poisson regression software it is possible to fit a ver-
sion of model (4) in which the background hazard
is modeled using separate multiplicative parameters
for each time period, possibly, with stratification on
other factors. This model, which is closely related
to the stratified semiparametric proportional hazards
model, can be written

λ0(t, z, β) = ηstλ(z, β), (5)

where the ηst is a parameter describing the hazard for
the t th time period in a stratum, s, defined by other
factors.

Since model (4) is a proportional hazards model,
parameter estimation can also, in principle, be car-
ried out using partial likelihood or counting process
methods; in which case, the background rate would
be replaced by, or include, a nonparametric baseline
hazard function. Lin & Ying [7] outline a method
for fitting simple semiparametric additive excess
rate models (3) (see Semiparametric Regression) to
ungrouped data using counting process methods.

Unfortunately, since the additive models of inter-
est are almost always not simple linear or loglinear
functions of the covariates, standard Poisson regres-
sion and proportional hazards modeling software is
of little use in fitting these models. However, the
Epicure software package, which was designed for
working with general parametric and semiparametric
additive risk models, can compute maximum likeli-
hood estimates for a broad range of additive hazard
models.
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Since parameter estimation for additive hazard
models is generally carried out using likelihood
or partial likelihood methods, inference about
parameters of interest can be carried out using the
standard asymptotic methods, including Wald, score,
and likelihood ratio tests. However, because of
the nonlinear nature of the models and, in many
applications, the limited information on excess risks,
asymptotic standard errors and, hence, hypothesis
tests and confidence intervals based on Wald tests
can be quite misleading. Likelihood ratio tests and
profile likelihood-based confidence intervals are the
preferred methods of inference when working with
additive hazard models.

Hazard functions are, by definition, nonnegative.
This constraint is addressed implicitly by multiplica-
tive hazard models. However, for additive hazard
models it is possible that one of the components of
the hazard (usually the “excess”) can be negative. The
implicit constraint in model (3) is that λ1(·) > −λ0(·),
while that for model (4) is λ1(·) > −1. These implicit
constraints can make it difficult to fit additive haz-
ard models for some data sets. In simple excess risk
models, these constraints can be addressed by the
choice of the parameterization (e.g. modeling the log
of the linear dose–response slope) or by restricting
the range of some parameters (e.g. restricting a linear
dose–response slope in a simple linear excess rela-
tive risk model to be greater than minus one over
the maximum dose). However, these approaches are
inadequate for every problem.

Summary

Parametric additive hazard functions such as those
described in (3) and (4) are useful and, in some
settings, natural, alternatives to the semiparamet-
ric multiplicative hazards that have come to dom-
inate the analysis of survival data in recent years.
These models are especially useful for dose–response

analyses in which one is primarily interested in the
characterization of excess risks and how the excess
depends on other factors. Parameter estimation and
inference for additive hazard models is most eas-
ily carried out using nonlinear models and Poisson
regression methods for grouped survival data.
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Additive Model

It is common, though potentially confusing, in discus-
sions of risks and rates to make a distinction between
additive and multiplicative risk models (e.g. [1,
Chapter 4]). Under the additive or excess risk (rate)
model the risk is described as

R = R0 + E(z), (1)

where R0 is the background risk and E(z) is an excess
risk function associated with “exposure”, z. Under the
multiplicative or relative risk model, “exposure” is
assumed to have a multiplicative effect on the rates:

R = R0 × RR(z), (2)

where RR(z) is the relative risk function.
The confusion in referring to (1) and (2) as addi-

tive and multiplicative models arises because the
functions used to describe the excess risk in (1) or
the relative risk in (2) can include both additive and
multiplicative components. In particular, the simple
excess relative risk model RR(z) = 1 + βz is often
called an additive model. To make a clear distinc-
tion between the form of the risk function and the
nature of the functions used to model the compo-
nents of risk, it is best to describe (1) and (2) as
excess risk and relative risk models, respectively. If
this is done, then the term additive model can be used
to refer to excess or relative risk models that involve
additive components. With this definition of additive
models, excess risk models are intrinsically additive
because they always include the sum of background
and excess risks, while relative risk models may be
either multiplicative, e.g. RR(z) = exp(βz), or addi-
tive, e.g. RR(z) = 1 + βz. Thomas [4] and Breslow

& Storer [2] describe general relative risk functions
that include both additive and multiplicative models.
Realistic excess risk models often involve sums of
multiplicative models for the background and excess
risk functions. For example, in a dose–response anal-
ysis it might be appropriate to allow the excess risk
associated with a given dose (d) to depend on sex
(s) or time since exposure (t) by considering a mul-
tiplicative model for the excess risk of the form

E(d, s, t) = β1sd × t θ .

Preston et al. [3] describe a general class of additive
models that are useful in working with either excess
or relative risks.

The articles on Parametric Models in Survival
Analysis and Poisson Regression in Epidemiology
describe some specific additive models and discuss
methods for parameter estimation and inference with
such models.
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Additive–Multiplicative
Intensity Models

Introduction

The proportional hazards model introduced by Cox
(see Cox Regression Model) has been so dominant
in survival analysis that other models have had a
hard time getting the attention they deserve. The Cox
model is extremely useful and has many desirable
properties, but obviously also has some shortcom-
ings. One important shortcoming is that the model
has a hard time describing time-varying effects (non-
proportional effects), and although some work has
been aimed at extending the model to overcome
this problem [7, 9, 15], there is still some way
to a fully satisfactory apparatus to deal with time-
varying effects. Also, some covariates will have
effects that are not well described as being multi-
plicative, and some of the available tests may reveal
this [13].

One important alternative to the proportional haz-
ards model is the additive hazard model and, in par-
ticular, Aalen’s additive hazard regression model.
Aalen’s additive hazard regression model is com-
pletely nonparametric and includes covariates addi-
tively in the model thus leading to an excess risk
interpretation. The Aalen model is very flexible and
will estimate all covariate effects as time-varying
effects. A semiparametric version of the model was
suggested by McKeague and Sasieni [8] and in a spe-
cial case by Lin and Ying [4] (see Aalen’s Additive
Regression Model). One advantage of the additive
models is that time-varying effects are easy to esti-
mate (with explicit estimators) and that inferential
procedures for making conclusions about the time-
varying effects exist. The semiparametric version of
the model has not received much attention in practi-
cal work but has the advantage that explicit estimators
are given and that the flexibility of the Aalen model
can be used only for those covariate effects where
it is needed, whereas other covariate effects can be
described by parameters.

The additive and multiplicative models postulate
different relationships between the hazard and covari-
ates, and it is seldom clear which of the models
should be preferred. The models may often be used
to complement each other and to provide different
summary measures. Sometimes, however, covariate

effects are best modeled as multiplicative and other
covariate effects are best modeled as being additive,
and then one must combine the additive and multi-
plicative models.

Sometimes the data will only give little guidance
on whether a covariate effect should be described
as multiplicative or additive, but then the choice of
additive or multiplicative effects will not be criti-
cal for the interpretation of the data. We illustrate
in the example how certain tests can be used to
decide if a covariate has an additive or multiplicative
effect.

The additive and proportional hazard models may
be combined in various ways to achieve flexible and
useful models. We shall here consider two mod-
els that are based on either adding or multiply-
ing the multiplicative Cox model and the additive
Aalen model. This leads to two quite different mod-
els that are both quite flexible and useful. When
the models are added, it leads to the proportional
excess hazard models. Several parametric versions
of such models exist (see Additive Hazard Mod-
els). For the version of the proportional excess haz-
ard model considered here, the additive part can
be thought of as modeling the baseline mortality,
whereas the multiplicative part describes the excess
risk due to different exposure levels. When the mod-
els are multiplied, it leads to a flexible model termed
the Cox–Aalen model below. For this model, some
covariate effects are believed to result in multiplica-
tive effects, whereas other effects are better described
as additive. In the article on additive hazard models,
an example from cancer mortality is used to illus-
trate structures similar to those in the Cox–Aalen
model.

Some notation is needed. We here use the count-
ing process formulation. Assume that i.i.d. sub-
jects are observed over some observation period
[0, τ ] and give rise to counting process data
Ni(s) with at risk indicator Yi(s), excess risk
indicator ρi(t), and (p + q)-dimensional covariates
(XT

i (s), ZT
i (s)). Let N(t) = (N1(t), . . . , Nn(t))

T be
an n-dimensional counting process and define matri-
ces X(t) = (Y1(t)X1(t), . . . , Y1(t)Xn(t))

T, Xρ(t) =
(ρ1(t)X1(t), . . . , ρ1(t)Xn(t))

T, and Z(t) = (Y1(t)

Z1(t), . . . , Y1(t)Zn(t))
T. Finally, let diag(wi) denote

an n × n diagonal matrix with elements w1, . . . , wn,
φ(t) = (φ1(t), . . . , φn(t))

T, where φi(t) = ρi(t)

exp(ZT
i (t)β) and define X̃(β, t) = (Xρ(t), φ(t)), an

(p + 1) × n matrix (see Matrix Algebra).
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Proportional Excess Hazard Models

Lin and Ying [5] considered the following addi-
tive–multiplicative intensity model

λ(t) = Y (t)
[
g(ZT(t)β) + λ0(t)h(XT(t)γ )

]
, (1)

where Y (t) is an at risk indicator, (X(t), Z(t)) is
a p + q dimensional covariate vector, (βT, γ T) is a
p + q dimensional vector of regression coefficients
and λ0(t) is an unspecified baseline hazard. Both h

and g are assumed known. One problem with this
model is that only the baseline is time-varying and
therefore data with time-varying effects will often
not be well described by the model. When additional
time-varying effects are included in the model, the
model will get added flexibility and it turns out
that it is relatively simple to extend the model to
deal with time-varying effects such as in the flexible
additive–multiplicate intensity model [6], where the
intensity is of the form

λ(t)=Y (t)
[
XT(t)α(t)) + ρ(t)(λ0(t) exp {ZT(t)β}] ,

(2)

where both Y (t) and ρ(t) are at risk (excess risk)
indicators, α(·) is a q-vector of time-varying regres-
sion functions, λ0(t) is the baseline hazard of the
excess risk term, and β is a p-dimensional vector
of relative risk regression coefficients. The at risk
indicators Y (t) and ρ(t) may be equivalent as in the
Lin and Ying model, but sometimes one will have
a baseline group where there is no excess risk. It
should be verified that the model is identifiable. The
model is an extension of the Lin and Ying model
when g(x) = x and h(x) = exp(x) and the model
is the sum of an additive Aalen model and a Cox
model. Sasieni [10] considered the special case of
this model where αT(t)Xi(t) is replaced by a known
function of Xi(t). We shall consider estimation of
the unknown parameters β, A(t) = ∫ t

0 α(s) ds and
Λ(t) = ∫ t

0 λ0(s) ds; see [6] for additional theoreti-
cal details. Essentially, the model reduces to Aalen’s
additive risk model for known β and this may be uti-
lized to obtain a score equation (see Likelihood) for
β that only depends on observed quantities. Zahl [14]
illustrated the use of the model with examples from
breast and colon cancer.

Using the matrix notation introduced above, we
can write an unweighted version of the score equation

for β as

U(β) =
∫ τ

0
ZT(t)diag(φi(t))[I − X̃(β, t)

× {X̃T
(β, t)X̃(β, t)}−1X̃

T
(β, t)] dN(t) = 0, (3)

where φi(t) = ρi(t) exp(Zi(t)
Tβ).

Now, denoting the solution to the score equation
as β̂, we estimate B = (A(t), Λ(t)) by

B̂(t) =
∫ t

0

{
X̃

T
(β̂, t)X̃(β̂, t)

}−1
X̃

T
(β̂, t) dN(t).

(4)

An alternative estimation strategy is to iterate
between fitting the model with β or A(t) known [14].

The model extends both the Cox and the Aalen
model and may have potential use to investigate
goodness of fit for these models.

The Multiplicative Cox–Aalen Model

A different way of combining additive and multi-
plicative models are given by the Cox–Aalen model
[11, 12]

λi(t) = Yi(t)
[
XT

i (t)α(t)
]

exp(ZT
i (t)β). (5)

The Cox–Aalen allows a very flexible (additive)
description of covariate effects of Xi(t) while
allowing other covariate effects to act multiplicatively
on the hazard. One alternative way of thinking
about the model is to consider it as an
approximation to the general stratified hazard model
λ(t, Xi(t)) exp(ZT

i (t)β) suggested by Dabrowska [1].
Compared to the Dabrowska model, some structure is
introduced to make the estimation easier and to help
facilitate the interpretation of the covariate effects.

To estimate the parameters of the model, an
approximate maximum likelihood score equation is
suggested and the estimators are studied in [11, 12].
The key to solving the model is to notice that for
known β we have a usual Aalen model where the
nonparametric terms can be estimated.

To estimate the regression parameter β, we solve
the score equation

U(β) =
∫ τ

0
ZT(t)[I − W (t, β)X(t)

× {XT(t)W (t, β)X(t)}−1XT(t)] dN(t) = 0, (6)
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where W(t, β) = diag(exp(Zi(t)
Tβ)). This score eq-

uation reduces to Cox’s partial score equation when
X(t) ≡ (Y1(t), . . . , Yn(t))

T. An estimator of the cum-
ulative baseline A(t) = ∫ t

0 α(s) ds is

Â(t) =
∫ t

0

{
XT(t)W (t, β̂)X(t)

}−1
XT(t) dN(t).

(7)

Note the strong resemblance with the Aalen esti-
mator. These estimators may be improved by the use
of weight matrices.

Effect-modification

For models where effects are modeled solely as
either multiplicative or additive, effect-modification
is just another word for interaction (see Effect
Modification) on the chosen scale. For the addi-
tive–multiplicative models considered in the sections
“Proportional Excess Hazard Models” and “The Mul-
tiplicative Cox–Aalen Model”, however, this is no
longer valid.

Generally, multiplicative effects will lead to some
interaction on the hazard, and additive effects will
lead to interaction on the log-hazard. For the pro-
portional excess model, both the multiplicative and
additive effects will lead to interaction on the overall
log-hazard. The model is constructed to give multi-
plicative effects on the excess risk. The multiplicative
effects of the Cox–Aalen model are linear on the
log-hazard and lead to interaction on the hazard, and
vice-versa for the additive effects of the model.

Assume, for example, that gender has a multiplica-
tive effect on some hazard, with males having relative
risk θ compared to that of females, and that some
treatment has an additive (or multiplicative) effect,
with treated having intensity λ1(t) and untreated hav-
ing intensity λ0(t). Then the treated females will have
excess risk e(t) = λ1(t) − λ0(t), whereas the excess
risk for males will be modified by the effect of gender
to θe(t). Note that these properties refer specifically
to the chosen scale at which one considers covariate
effects.

The Cox–Aalen model has the useful property
that it allows effect-modification of the covariates
included in the proportional part of the model;
some examples of the use of such a model is
given under additive hazard models. Note, that the

effect-modification, however, must be the same for
all effects in the additive part of the model (just as in
the Cox model). The model may be extended to allow
different effect-modification for the different effects
in the additive model.

Example

To illustrate the use of the Cox–Aalen model, we
consider the data that was also used to illustrate
the use of the Aalen model (see Aalen’s Additive
Regression Model). The data are given in [2] and
gives the survival on 418 patients with primary biliary
cirrhosis. The source of our data set is the survival
package of S-Plus/R (see S-PLUS and S; R). The
following covariates were used for the modeling:
age, log(albumin), bilirubin (dichotomized as 0 when
bilirubin is less than 3.25 mg/dL and 1 otherwise),
edema (present/not present), and log(prothrombin).
To resemble the analysis for the additive risk model
as closely as possible, we only consider the data for
the first 3000 days.

First, considering the Cox model to fit the data,
a modified version of the cumulative score test [3]
(see [12]) showed that log(prothrombin) had a non-
proportional effect with a P value at 0.001. We
therefore included log(prothrombin) in the additive
part of the model. With log(prothrombin) in the addi-
tive part of the model, a similar score test revealed
that edema had nonproportional effects (p = 0.04).
So even though the test statistic is not dramatic, it
seems preferable with a more flexible description of
the effect of edema.

We therefore consider the Cox–Aalen model with
baseline, edema and log(prothrombin) as additive
components and age, log(albumin), bilirubin as mul-
tiplicative effects. The score test for proportional
effects gave P values 0.12 for bilirubin, 0.91 for
age and 0.81 for log(albumin). The covariates age
and log(albumin) were centered to give a meaning-
ful interpretation of the additive part of the model.
The log-relative risk estimates (standard error) were
1.46 (0.19) for bilirubin, 0.033 (0.0073) for age, and
−2.58 (0.57) for log(albumin).

Figure 1 gives the cumulative effect of edema,
whose shape resembles that of the estimate from
Aalen’s additive risk model. Denote the cumulative
effect of edema as Ae(t). Now, for a subject with
mean age and mean log(albumin) and bilirubin (less
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Figure 1 Cumulative regression function for time-varying
excess risk effect of edema with 95 % pointwise confidence
intervals

than 3.25), the presence of edema leads to a survival
that lowered by exp(−Ae(t) (relative survival). For
a subject with proportional effects leading to a total
relative risk at R, however, the relative survival is
exp(−R · Ae(t)).

Software

Software to fit the models using R (S-plus) is avail-
able from www.biostat.ku.dk/∼ts
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Administrative Databases

Administrative databases are derived from informa-
tion routinely and systematically collected for pur-
poses of managing a health care system [8]. Over
the last few years, hospitals and insurers have often
used such data to examine admissions, procedures,
and lengths of stay. Because of new technologies
allowing linkages between databases (see Record
Linkage) and the increasing availability of compre-
hensive population information, studies using admin-
istrative data no longer need focus just on the
amount and type of care. Instead, the accessibil-
ity and breadth of administrative data have made
them a more general resource for the study of
both health and health care (see Health Services
Research, Overview) [56].

Questions such as the following can be approached
using population-based administrative data:

1. How does the use of procedures, medica-
tions, and other health services vary with per-
sonal characteristics, such as age, gender, race,
income, and health status (see Descriptive Epi-
demiology; Health Care Utilization Data)?

2. How does the use of these services vary with the
source or mechanism of payment (see Health
Care Financing)?

3. How does the use of these services vary across
hospitals, communities, and regions (see Small
Area Variation Analysis)?

4. How do the short-term and long-term outcomes
of health care vary with personal, payer,
and geographic or system characteristics
(see Outcomes Research)?

5. How do total health care costs, and the distri-
bution of component costs, vary with personal,
payer, and geographic or system characteristics?

6. Is high use of specific health services associated
with better outcomes? Are unhealthy popula-
tions “underserved” by the health care system?

7. How have the use of health services and the
outcomes of care changed over time?

8. What is the appropriate level of health care
resources for a population or region?

9. In what areas is the health care system consum-
ing excess resources and, therefore, deserving
of regulatory or market constraints?

10. How are the outcomes and processes of health
care related? Which physicians, hospitals, nurs-
ing facilities, and health plans have the best out-
comes and processes of care? How can the qual-
ity of care provided elsewhere be improved?

11. How does the natural history of disease vary
with personal and geographic characteristics?
How has it changed over time?

12. Are diagnostic or therapeutic methods as effec-
tive in the community as they are in ran-
domized controlled trials (see Clinical Trials,
Overview)?

Figure 1 presents a view of an ideal administra-
tive database with a research registry playing a central
role. Such a registry, with its ability to generate mean-
ingful information on each individual’s life course,
helps multiply the number of health and health care
studies that can be performed. Nonetheless, each of
the associated files – alone or in conjunction with
others – may permit important research.

This article provides an overview of the use
of administrative databases for research on clini-
cal epidemiology, health services, and population
health. We wish to present a framework for under-
standing how administrative data can accurately and
cost-effectively generate health and health care infor-
mation for communities and populations.

Common Types of Administrative Data

The inclusiveness of administrative databases is
strongly related to the requirements of health
insurance plans and regulatory agencies. In Canada,
where the population of each province is covered
by a single insurance plan, health care data are
comprehensive. The more complicated situation in
the US has resulted in a loss of important utilization
data associated with the Medicare and Medicaid
programs [73]. In other developed countries, many
administrative data files hold information about
eligibility or enrollment, life events, claims and
services, special programs, and providers. We present
a brief overview of each type of file in what follows.

Registries

A population registry incorporates information on
birth, death, mobility within a catchment area (such as
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a province), and in- and out-migration for all people
enrolled with an insurance or benefit plan. A registry
is essential for following a study cohort (see Cohort
Study), providing denominators for analyses of rates,
and updating data for each enrolled individual. When
administrative registries are compared and combined
into a research registry which accurately defines the
health insurance status for each resident over many
years the value of the tool is enhanced [64].

A research registry permits extensive checks on
“subject misidentification”. If an individual’s identi-
fiers are incorrect, utilization, loss to follow-up, and
mortality may be misassigned. In one study, a lack
of adjustment for women who were not appropriately
identified, because they either left the province or
changed their health care number, led to a serious
underestimate of the number of women who may
have developed cancer following breast augmenta-
tion [4].

Standardized systems for updating and reviewing
the quality of registry data are critical. Typical
checks on the accuracy of a population registry
rely on other sources of information (disease
registers, vital statistics files, census data, etc.).
Such checks include comparisons between the
number and characteristics of individuals in particular
categories (such as age/gender/place of residence)
with aggregate statistics from organizations such as
the census [28, 64]. Often, there are opportunities
to compare registry information on individual
mortality and loss to follow-up with primary data
collection; these comparisons are particularly useful
in uncovering errors affecting a small percentage of
the population.

Life Events

Acquiring and maintaining up-to-date demographic
information generally requires integrating files from
different sources. Life events such as birth (date and
place), marriage (date and place), and death (date,
place, and cause) are typically recorded in vital statis-
tics files. In Canada, vital statistics files need to be
better coordinated with utilization data maintained by
provincial health departments to provide a standard
health registration number on all death records.

In the US, linkages between vital statistics and
health care utilization files (see Record Linkage)
are rather unusual. However, the Medicare Provider
Analysis and Review dataset from the Health Care
Financing Agency is linked to an enrollment file
indicating the date of death. Some states, such as
California, have also linked patient discharge data
to birth and death records. Both Canadian (through
the Statistics Canada Mortality File) and American
statistical agencies (through the National Center for
Health Statistics’ National Death Index) provide an
additional route for funded investigators to access
mortality data.

Claims and Services

Physician services recorded in an administrative data-
base may include information regarding physician
visits, surgical procedures, immunizations, prescrip-
tion drugs, and diagnostic tests such as Papanicolaou
tests. Descriptive fields identify the patient, the physi-
cian, and, where relevant, the institution. Typically,
each claim describes a single service or event for a
specific patient by a specific provider on a single date.
If a single visit results in several billable services,
more than one computer record may be generated;
attention to detail is critical so that a single test or
service is not counted twice (see Drug Utilization
Patterns).

Documentation requirements affect the extent to
which any recording system captures a population’s
ambulatory care patterns. In Manitoba, neither visits
to the provincial cancer foundation (after the first) nor
visits to health care providers other than physicians
are recorded. However, because of the frequency of
fee-for-service care and the requirement that salaried
physicians submit “dummy” claims, from 90% to
98% of all physician-provided ambulatory care is
captured in the existing system.
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Administrative files describing hospital or nursing
home stays are often maintained by regulatory agen-
cies or provider associations. Each hospital discharge
abstract describes services provided to a patient dur-
ing a specified period in that facility. Most hos-
pital discharge files are similar, including patient
identifiers, demographic information such as gender
and age or birth date, dates of admission and sep-
aration (discharge), diagnostic codes, payer source
and charges, and procedure codes for all surgery
(see Classifications of Medical and Surgical Pro-
cedures). Files for nursing home stays are similar but
usually include little, if any, diagnostic and surgical
information.

Although many private and government programs
maintain files that describe individuals’ use of their
services, the agency managing the data must be will-
ing to permit linkage (see Record Linkage). Ser-
vice files may be maintained by nutrition programs
(e.g. the Women, Infants, Children program in the
US), immunization programs, local public health pro-
grams, education and rehabilitation programs, special
programs for children with developmental disorders,
and various voluntary agencies.

Provider Data

Physician information will obviously depend on the
requirements of the relevant insurer or registrar. Items
such as age, sex, education, specialty, and experience
are likely to be available. Such data are particularly
useful for physician manpower planning (see Health
Workforce Modeling) and for comparisons of prac-
tice patterns among different types of physicians.

Health care organizations often submit data about
their organizational, structural, and financial charac-
teristics to trade associations and regulatory agencies.
This information can be linked to individual-level
data, so that differences in the utilization, costs, and
outcomes of health care can be correlated with institu-
tional characteristics. This permits testing hypotheses
related to the impact of hospital size, ownership,
teaching status, financial health, intensive care avail-
ability, and nurse staffing levels. Provider informa-
tion collected by trade associations may be relatively
difficult to obtain or may be incomplete because par-
ticipation in the data system is typically voluntary.

Uses of Administrative Data

As fiscal restraint and organizational change continue,
administrative databases can help to answer questions
regarding the complex interplay among population
characteristics, health status (see Quality of Life and
Health Status), and health care utilization patterns.
Such analyses can target health reform efforts, high-
light the correlates of apparent overuse or underuse,
and identify low-variation and high-variation services
for which discretion plays a greater role (see Health
Care Utilization Data; Drug Utilization Patterns).
Differences in utilization can be related to:

1. Individual characteristics, such as age, gender,
race, income, education, medical history, and
comorbidity.

2. Payer characteristics, such as the source and
method of payment [15, 42].

3. Characteristics of health care organizations, such
as teaching status, size, ownership, location, and
staffing levels [20].

4. Characteristics of small areas, states and
provinces, and countries [22, 74].

Studies comparing the use of specific health ser-
vices may provide important information for manag-
ing the delivery of preventive health services to an
entire population (e.g. opthalmologic examination of
diabetic patients), for directing additional resources to
generally underserved individuals, and for redesign-
ing health care organizations to deliver higher prior-
ity services [72]. Administrative data are particularly
important for evaluating the impact of changes in
the health care system, such as capitating physician
payment, restricting pharmaceutical formularies, and
closing hospital beds.

Profiling physician use of health services is a
popular application in the 1990s [3]. Hospitals pro-
file their physicians’ length of stay pattern and their
prescribing of high-cost medications. Health plans
describe physician choice of screening tests, as well
as their subspecialty referral rates and hospitaliza-
tion rates. Such studies have revealed, for example,
that physicians vary considerably in their use of
Papanicolaou testing, with some overtesting and oth-
ers markedly undertesting relative to current guide-
lines [65]. Physicians also vary in their management
of breast cancer and in their proclivity to hospitalize,
even after controlling for patient characteristics [21,
61]. Disease-specific utilization measures that assess
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ambulatory care quality and access have several uses:
to reward physicians who use preventive services
appropriately, to counsel physicians who do not, and
to channel patients away from primary care physi-
cians who overuse technology-intensive and subspe-
cialty services [46].

In the US, administrative data are also being used
to profile health care delivery systems, such as health
maintenance organizations (HMOs) and independent
practice associations (IPAs). Large employers and
employer coalitions have pressured health insurance
plans to produce information on quality as well
as on price. In response, the National Committee
for Quality Assurance [48] developed a Health Plan
Employer Data Information System (HEDIS) which
includes a set of quality indicators representing use
of various preventive procedures. To promote more
comprehensive measures, several major purchasers
and managed care advocates established the Founda-
tion for Accountability [76]. Many of these measures
may be based on administrative data, although oper-
ational definitions were not released by early 1997.

Costs

Because of global budgeting, Canadian hospital
databases typically do not include direct cost
data. Most administrative databases in the US,
however, include data on total charges and/or charges
for selected components of care (e.g. pharmacy,
laboratory, supplies). Databases maintained by
payers, such as state Medicaid programs and
insurance companies, also include information on
allowable charges or actual payments to providers.
Although these payments sometimes represent only
a fraction of the billed charges, payments by
government health insurance programs represent a
better measure of public investment than billed
charges. These financial data can be used for five
general types of research:

1. Cost-profiling studies to show the mean costs
incurred by specific physicians, hospitals, and
other health care providers. Similar to the utiliza-
tion profiles discussed above, cost profiles can
be used by health plans to “delist” individ-
ual providers and offer incentives for improved
financial performance.

2. Cost-of-illness studies to estimate the aggregate
cost of medical and nonmedical care for a speci-
fic condition. This aggregate cost may be strati-
fied by payer or by demographic characteristics
to show how the condition’s economic impact is
distributed.

3. Cost-containment studies to evaluate the effects
of various strategies, such as pharmacy benefit
caps, mandatory second-opinion programs, and
preauthorization for hospital care.

4. Cost-effectiveness studies to compare the costs
of various diagnostic or therapeutic strategies
to achieve a given health benefit (e.g. quality-
adjusted life year gained or cancer death pre-
vented).

5. Benefit–cost studies to compare the total econ-
omic costs and benefits of a health-related inter-
vention (see Health Economics).

Outcomes

Administrative data can unobtrusively provide useful
information about selected health outcomes. Death
is perhaps the best example, being well defined,
clearly documented, and easily verified. However,
some administrative data sets only capture in-hospital
deaths, while others suffer from delayed or inexact
reporting of death. In-hospital or 30-day death has
been used as a measure of quality of care for such
high-risk conditions as myocardial infarction, stroke,
pneumonia, and congestive heart failure.

Recently, researchers have refined risk-adjust-
ment models that use administrative data to
estimate expected and risk-adjusted mortality rates
for physicians, hospitals, and health systems.
These risk-adjustment models have been developed
by American government agencies such as the
Health Care Financing Administration [39] and the
California Office of Statewide Health Planning
and Development [41], provider organizations such
as the Hospital Research and Educational Trust,
proprietary organizations such as 3M Health
Information Systems and MediQual Systems [30],
and independent investigators [10, 11]. For most
conditions, these risk-adjustment models do not
discriminate between decedents and survivors as well
as those that include detailed clinical data [31, 39].
This has been most clearly demonstrated for stroke,
pneumonia [33, 34] and coronary artery bypass
surgery [25]. Administrative and clinical data allow



Administrative Databases 5

comparable discrimination only when post-admission
complications are used in estimating the probability
of death [32, 41].

When administrative data are used to estimate
indirectly standardized mortality ratios (see Stan-
dardization Methods) or mortality z scores for hos-
pitals, the results correlate reasonably well with those
of more sophisticated models based on either clinical
data or more carefully abstracted data (e.g. r = 0.75
to 0.87) [25, 32, 39, 59]. In practice, however, hos-
pitals frequently shift above or below any outlier
threshold (e.g. P < 0.05, P < 0.01) when clinical
data are added to, or substituted for, administrative
data. The predictive value of being labeled as a mor-
tality outlier using administrative data may be as low
as 50%–64% [25, 39].

The validity of risk-adjusted mortality estimates
based on administrative data is supported by some,
but not all, studies linking outcomes and processes
of care. Two studies found significant hospital-level
correlations between risk-adjusted mortality mea-
sures and quality problem rates determined by peer
review organizations, although these correlations var-
ied across states and across conditions [26, 71].
Physician-rated preventable deaths for pneumonia
and stroke (but not myocardial infarction) occurred
more often at high-mortality than at low-mortality
hospitals, although explicit process scores did not
differ [12]. Hospitals with low risk-adjusted mortality
after myocardial infarction (based on administrative
data) administered aspirin more quickly and were
more aggressive with catheterization and revascu-
larization than high-mortality hospitals [41]. These
studies suggest that administrative data can be used
to help identify process deficiencies.

For conditions that cause significant morbidity
but are rarely fatal, death has limited utility as a
measure of quality of care. Other measures developed
from administrative data focus on adverse events and
event-free survival, but their validity has not been
well established. These are:

1. Post-operative complications can be identified
using International Classification of Diseases
(ICD)-9-CM diagnoses and procedures. Early
measures suffered from misclassification bias
because they were limited to diagnoses explic-
itly labeled as complications; such diagnoses are
likely to be poorly documented by physicians
and undercoded by hospitals, [10, 40]. More

recent measures, developed both for specific con-
ditions and for broader categories of patients,
demonstrate better face and content validity, but
still lack construct validity (see Health Status
Instruments, Measurement Properties of) [30,
58, 67]. One promising “comorbidity-adjusted
complication risk” measure incorporates physi-
cians’ consensus estimates of the probability that
any secondary diagnosis is a complication of a
given admitting diagnosis, but this has only been
validated to a limited extent [2].

2. Post-operative length of stay may be an indica-
tor of post-operative complications, especially if
one identifies long-stay outliers instead of just
comparing mean lengths of stay. This measure is
free from coding bias and may be more predic-
tive of true complications than measures based on
ICD-9-CM diagnoses [40, 60]. However, length
of stay may be heavily influenced by social fac-
tors, such as marital status and homelessness, and
by the local availability of skilled nursing beds.

3. Post-discharge readmissions can be identified
using linked hospital discharge or claims data.
Being more common than death for most con-
ditions, readmission is a promising measure of
quality [77]. Panels of specialists convened by
the US Health Care Financing Administration
have developed lists of readmission diagnoses
that indicate adverse events after orthopedic, car-
diac, and general surgery [53]. Some investiga-
tors have found that “unplanned” readmissions
are related to unresolved concerns at discharge,
but others found no association with physician
quality-of-care ratings (at one hospital) or quality
problems determined by peer review organiza-
tions [1, 27, 70]. Readmission rates may well be
associated with hospital-bed availability, compli-
cating efforts to link readmissions with quality
measures [17].

4. After certain procedures, such as hip fracture
repair and elective discectomy, reoperations may
represent treatment failures. However, reopera-
tions tend to be low-frequency events and, for
many conditions, may reflect disease progression
more than quality of care. The validity of re-
operation rates as a quality measure is unknown.

5. Emergency room visits and unscheduled physi-
cian visits after hospital discharge can be ascer-
tained using claims data, but the reliability and
validity of such measures are unknown. Given
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the poor quality of outpatient diagnostic coding,
separating routine visits from complications may
be impossible.

In general, administrative data may be a less
biased source of outcomes data than case series
reported from prominent institutions or randomized
controlled trials with rigid eligibility and exclu-
sion criteria. Such information about mortality and
other patient outcomes in the “real world” may help
patients choose among therapeutic options. Given the
universality of administrative data, differences in out-
comes can be related to individual characteristics,
such as age, gender, race, income, education, medical
history, and comorbidity. These analyses can identify
unusual but powerful risk factors for adverse out-
comes and sort out the independent effects of multiple
variables to facilitate clinical decision making.

Studies of characteristics of health care organiza-
tions (teaching status, size, ownership, location, and
staffing levels) can highlight the general features of
high-quality organizations and promote the region-
alization of treatments having a clear association
between hospital/surgeon volume and outcomes (e.g.
coronary bypass surgery, angioplasty [37]). Rela-
tively little research has studied the influence of payer
characteristics, such as the source and method of pay-
ment. Analyses of small areas, states and provinces,
and countries (see Mortality, International Com-
parisons) can elucidate the separate impact of physi-
ologic and sociocultural factors. For example, Ameri-
can–Canadian studies suggest that a one- to four-day
preoperative delay after hip fracture is associated with
mortality simply by being a marker of preoperative
morbidity [62].

Studies using administrative data to evaluate the
comparative effectiveness of specific treatments suf-
fer from the limitations of nonrandomized designs
(see Observational Study), such as confounding
because of self-selection into treatment groups (see
Selection Bias), and potential misclassification of
risk factors and outcomes. However, they appear
useful when a randomized controlled trial is too
costly, impractical, or unethical (because a therapy
has already been adopted as the “standard of care”).
Through careful subset analyses, for example, inci-
dental appendectomy during open cholecystectomy
was found to increase the risk of death [78].

New techniques from economics and epidemi-
ology may also help control for differences in

pretreatment health status. By using instrumental
variables to account for selection bias, McLellan and
colleagues found care within the first 24 hours to have
more effect on myocardial infarction mortality in the
elderly than later invasive procedures [43]. The rate
ratio approach takes an epidemiologic perspective,
using temporal profiles of death rates in the year after
surgery to adjust for preoperative death risk [66].

Administrative data can support both random-
ized and nonrandomized designs. For example,
administrative data external to, and independent of,
a randomized trial were used to construct health
histories of breast disease prior to entry in the contro-
versial Canadian National Breast Screening Study; no
definitive evidence supporting a nonrandom alloca-
tion of women was found [7]. A nonrandomized, but
controlled, approach to introducing competing vac-
cines (e.g. acellular pertussis) (see Vaccine Studies)
could generate product-specific estimates of clinical
effectiveness and serious adverse reactions. Admin-
istrative data could be incorporated into a system
to provide early warning of adverse events follow-
ing administration of vaccines, antibiotics, antiar-
rhythmics, and other medications (see Surveillance
of Diseases; Postmarketing Surveillance of New
Drugs and Assessment of Risk). Many hospitals
already use such systems internally, but they could
be expanded on a regional or national scale.

Interventions

Administrative data can actually be used to
carry out health interventions (if confidentiality
constraints permit contacting individual patients)
(see Confidentiality in Epidemiology). Client-
oriented interventions (e.g. reminder postcards)
and provider-oriented interventions (e.g. targeted
feedback) both appear promising [69]. Although
trials of reminder systems have apparently never been
performed for an entire population, they would not
be difficult to implement from guidelines published
by various task forces on preventive services [52].
Some American health plans are already using
enrollment lists to generate reminders. There are
many unanswered questions about the optimal
number, timing, and type of reminders for preventive
care (see Screening Benefit, Evaluation of).

Other interventions might focus on identifying
candidates for a randomized controlled trial or
patients who seem to have “fallen between the
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cracks” in the health care system. For example,
claims data could be used to identify AIDS patients
who have experienced an episode of Pneumocystis
pneumonia but are not receiving prophylaxis to
prevent recurrence. Administrative data could be
used to identify persons with possible drug–drug
interactions and those who might benefit from
home care services because of their high risk
of institutionalization (see Pharmacoepidemiology,
Adverse and Beneficial Effects).

Characteristics of Administrative Data

Strengths

The unique advantages of administrative data derive
largely from their accessibility, inclusiveness, and
flexibility [19]:

1. Using data that have already been collected
instead of primary data provides an opportunity
to conduct research relatively quickly and cost-
effectively.

2. The natural, real-world setting maximizes exter-
nal validity. Observed outcomes of care using
an experimental design may be less repre-
sentative of “real-world” care than measures
derived from administrative data. The inclusive-
ness of administrative data facilitates selection
of representative samples of people, health care
providers, and institutions for study.

3. Large sample sizes make small effect sizes
detectable.

4. Standards or benchmarks (e.g. for defining
an adequate level of care) can be established
empirically.

5. Long-term demographic trends (e.g. aging
population), changes in utilization, and cost
increases can be disentangled as factors
influencing system-wide costs [9].

6. Unique person-specific identifiers facilitate both
cohort and case–control studies by the
capacity to create comparison groups, to track
individuals over time, and to construct histories
of prior utilization and events [51, 64].

7. Utilization and mortality rates can be compared
across communities to understand better the
relationships among such variables [75].

8. Linkage with other databases creates opportu-
nities for cost-effectively adding information

collected using other methodologies or by other
investigators [49].

9. The absence of the recall bias often associ-
ated with surveys increases the validity of the
constructs or measures generated from admini-
strative data.

10. The reliability and validity of many data sets are
known and monitored; additional studies can be
carried out by comparing records from several
independent sources.

Limitations

Some of the limitations of administrative databases,
and the extent to which they can be overcome, are
presented in the following discussion.

1. Reliability: Maintaining data quality in medical,
hospital, and nursing home files is an ongoing
challenge. Variation in training and supervision
leads to differences in coding styles. Information
on intensive care and emergency room visits is
often not standardized across hospitals. Defini-
tions may be vague or difficult to apply. States
and provinces differ in their definitions of institu-
tions (particularly rehabilitation, long-term care
hospitals, and extended care units). Ethnicity
(see Ethnic Groups) presents particular prob-
lems. In Canada, a definition of Indians with
rights specified by treaty has not been coordi-
nated between different levels of government.
Defining racial categories has also been prob-
lematic in the US, where patients with the same
ethnic heritage may self-identify differently.

2. Validity: Reimbursement using diagnosis-related
groups (DRGs) and public comparisons of risk-
adjusted outcomes may result in bias because of
pressures on reporting entities and fear of bad
publicity [68].

3. ICD-9-CM coding: The lack of operational cri-
teria for defining each disease compromises the
quality of data generated by the International
Classification of Diseases (ICD) system [16].
Variability among clinicians in diagnosing the
same condition differently can produce unreli-
able statistics [38]. The extent to which shifts
in disease rates over time are due to changes
in occurrence, or to technological advances that
generate improved diagnostic methods, can be
difficult to discern. Illness severity and disease
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progression affect both prognosis and therapy,
but these factors can rarely be recorded using
ICD-9-CM.

4. Personal identifiers: Many databases do not have
personal identifiers that permit reliable record
linkage or tracking of individuals over time.

5. Timeliness: Delays in submission and processing
hinder time-dependent studies, leading to criti-
cisms that one-or two-year-old data do not reflect
current practices.

6. Scope: Populations of interest, such as the unin-
sured in the US, may not be included. Generally,
only certain categories of billable services can be
ascertained. Information on conditions (e.g. the
common cold) that do not usually require contact
with the health care system may be incomplete.
Information on activities (e.g. immunizations)
performed by nonmedical health care profession-
als may not be collected [54]. Similarly, hospital
outpatient care was once relatively unimportant
and some information systems still do not cap-
ture these data. Finally, as insurers move away
from fee-for-service payment and toward capi-
tated contracts with medical groups, they should
establish incentives to ensure accurate recording
of contact data.

7. Content: Many important data elements are not
collected. For example, a lack of physiologic data
(e.g. blood pressure, laboratory values) limits
clinical risk-adjustment. Less specific and less
standardized cost data are available in Canada,
where hospitals receive global budgets, than in
the US.

Database Issues: Problems and
Opportunities

Reliability and Validity

Concerns about accuracy can be addressed by
assessing the agreement among several data sources.
In Manitoba, agreement among patient surveys,
physician claims, and clinical measures is relatively
high for diabetes and hypertension; this is reflected
in both overall prevalence and case identification [47,
55]. The flexibility of administrative data easily
permits such sensitivity analysis; varying the number
of years in a patient history or using more stringent
inclusion criteria (for example, requiring more than
one diagnosis) is relatively easy. As histories of

physician visits or hospital stays are incorporated into
statistical models, the availability and quality of such
data will become increasingly important [45, 51].

Discharge abstracts from the index hospitaliza-
tions typically fail to identify many patients with
such conditions as angina, congestive heart failure,
cerebrovascular disease, and prior acute myocar-
dial infarction, although high agreement between
abstracts and hospital records has been observed for
diabetes [36, 64]. The number of co-morbid condi-
tions (see Co-morbidity) identified can be increased
by adding more diagnostic fields to the hospital
discharge abstract, reviewing abstracts from earlier
hospital stays, and using physician claim histories.
In practice, however, increasing the number of co-
morbidities available for each patient has only mod-
erately improved the prediction of outcomes [63].

ICD-9-CM Coding

Using multiple ICD-9-CM codes to capture all cases
of interest addresses problems that arise from use
of a single code [16]. Enumerating asthma diagnoses
on physician claims, along with possibly associated
diagnoses (e.g. bronchitis, chronic obstructive pul-
monary disease), helped estimate the extent to which
an increase in the apparent prevalence of asthma was
real or due to changed diagnostic coding [13]. This is
especially important when a nonspecific ICD-9-CM
code (e.g. unspecified intracranial hemorrhage) may
substitute for a more specific code. Associated codes
may clarify the presentation or severity of the condi-
tion of interest. For example, the severity of a liver
injury may be estimated from the associated surgical
repair codes [56].

Researchers should be familiar with techniques for
assessing the quality of ICD-9-CM coding and with
some of the important findings. Diagnoses are coded
more reliably at the three-digit level than at the four-
or five-digit level, while some diagnoses and proce-
dures are markedly undercoded [35]. In general, cod-
ing quality in the US has improved over the past two
decades [18], major procedures are coded more reli-
ably than minor procedures [57], diagnoses that affect
DRG assignment are coded more reliably than those
that do not [23], and any diagnosis (e.g. mitral regur-
gitation, congestive heart failure) is more likely to be
coded when clinically severe than when mild [36].
Truncation of the data at five or fewer diagnosis fields
leads to systematic underreporting of co-morbidities
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among patients who die [57]. American hospitals
appear to resequence physicians’ diagnoses to opti-
mize reimbursement, so the principal diagnosis may
not always be the cause of admission [29]. Because
of substantial variation in coding quality across facil-
ities [44], hospitals with implausibly low prevalences
of major co-morbidities may legitimately be excluded
from comparative studies [41].

New Directions

Several promising approaches to increasing the scope
and content of research using administrative data are
under way. Record linkage, performed with stringent
controls to protect confidentiality, is critical both
for expanding available data content and facilitating
studies of reliability and validity. Because having
identifiers to permit following individuals and linking
files is so important for research that can benefit the
public, efforts to persuade the jurisdictions that do not
allow such tracking to do so are clearly in order [50].

Primary data collection should be targeted to fill
in gaps in administrative data; for example, public
health nurses can enter childhood immunization data
to supplement physician claims and provide a pic-
ture of population coverage. Since routinely collected
patient information about symptoms and functional
ability might facilitate outcomes research, several
American medical centers have created systems that
include such functional measures as well as tradi-
tional administrative variables.

As noted in the earlier section on reliability and
validity, health status information on individuals
and areas from physician and hospital data can be
compared fruitfully with that produced using other
methodologies [6]. Registry, vital statistics, and cen-
sus data are all being used to construct small area
measures of premature mortality, life expectancy,
and cause-specific mortality [5, 14]. Census data pro-
vide community-level socioeconomic information; in
special circumstances, Canadian individual utilization
data may be linked to the census [28].

Having a single payer with universal cover-
age facilitates developing integrated systems with
population-wide scope. Comparing a Canadian pop-
ulation health information system to what might be
done in the US, Greenfield [24] noted: “Just begin-
ning to collect similar information on those who have
health care coverage or can provide it for themselves

in our disorganized multipayer system would require
a significant expenditure of funds.” Although lack
of data on the American uninsured will remain a
major obstacle to generating a true population health
information system, at least one state (Minnesota) is
building a state-wide data system on all aspects of
health care (see Health Services Data Sources in
the US).

This ability to use multiple files suggests new
ways to look at problems. Thus, the integrated sys-
tem in Manitoba has permitted the examination of
physician supply and hospital bed supply within a
population health context [62]. Ongoing research is
directed toward examining rural hospital performance
using two types of indicators: population-based (to
describe the characteristics of the people living in the
area served by each hospital) and hospital-based (to
“describe the activities at each rural hospital”). Such
contextually sensitive work represents just one new
approach to using administrative data to further our
knowledge of health and health care.
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Admixture in Human
Populations

Human society is stratified primarily because of lin-
guistic and cultural differences. This stratification has
resulted in restrictions on free interbreeding. There is
usually much more interbreeding within a linguis-
tic/cultural stratum than between such strata. Breed-
ing between members of different strata results in
an exchange of genes. Sometimes, because of large-
scale migration, there is a sudden infusion of genes
from one population to another. For example, because
of slave trading from Africa to North America in
the eighteenth century, there has been an exchange
of genes between the African Black and Ameri-
can White gene pools. Since children of marriages
between Blacks and Whites were socially regarded
as belonging to the Black population, this flow of
genes was unidirectional – from Whites to Blacks.
Exchange of genes has effects on disease profiles,
especially in respect of those diseases that are pri-
marily genetic. Human geneticists have long been
interested in estimating extents of admixture between
populations based on genetic data. This is an impor-
tant problem, especially because statistics pertaining
to migration and other demographic parameters are
often unavailable.

Statistical Models and Estimation
Procedures

One Biallelic Locus

Consider a specific allele at a codominant biallelic
genetic locus. (Codominance is assumed for algebraic
simplicity. If there is dominance, minor modifications
in formulas are necessary.) Suppose p1, p2, . . . , pp

are the frequencies of this allele in P populations.
Consider a hybrid population formed by admixture
of these P parental populations in proportions µ1,
µ2, . . . , µP (0 ≤ µi ≤ 1;

∑P
i=1 µi = 1). Then, in the

hybrid population, the frequency of the allele will
be [2]

pH =
P∑

i=1

µipi. (1)

The problem is to obtain estimates of the µis.

For simplicity, suppose P =2. Then, (1) reduces to

pH = µ1p1 + (1 − µ1)p2. (2)

Assuming that p1 and p2 are known without error,

µ1 = pH − p2

p1 − p2
. (3)

The above assumption is crucial and unrealistic since
allele frequencies are, in practice, not known without
error and are estimated from samples of individuals
drawn from the parental and hybrid populations.
If x1, x2, . . . , xP , and xH denote the estimates of
p1, p2, . . . , pP , and pH, then an estimate m1 of µ1 is

m1 = xH − x2

x1 − x2
, (4)

var(m1)≈ var(xH)+m2
1var(x1)+(1−m1)

2var(x2)

(x1 − x2)2
,

(5)

where var(Xi) = xi(1 − xi)/ni = sampling variance
of xi (see Sampling Distributions), and ni =
number of individuals sampled from the ith popu-
lation; i = H, 1, 2, . . . , P .

In the above we have made another crucial
assumption: there are no other sources (e.g. genetic
drift (see Population Genetics)) contributing to the
variances of allele frequencies. In what follows, we
continue to make this assumption. Some references
to studies relaxing this assumption are, however,
provided later.

Several Biallelic Loci

If data on L(> 1) biallelic loci are available, then
one can obtain estimates m

(l)

1 and var(m(l)

1 ) for the
lth locus (l = 1, 2, . . . , L) using (4) and (5). Cavalli-
Sforza & Bodmer [3] suggest the following combined
estimate:

m1 =

L∑

l=1

[
m

(l)

1

/
var

(
m

(l)

1

)]

L∑

l=1

[
1
/

var
(
m

(l)

1

)] , (6)

with

var(m1) = 1
L∑

i=1

[
1
/

var
(
m

(l)

1

)] . (7)
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Multiallelic Loci

As in (1), a single allele provides a single
equation. Thus, if P > 2, estimation of the µis
is not possible without generalizing the model.
Roberts & Hiorns [17] provide the generalization.
Let X = (x1, x2, . . . , xP ) = ((xij ))k×P , where xij

denotes the estimated frequency of the ith
allele (i = 1, 2, . . . , k) at a codominant locus
in the j th parental population (j = 1, 2, . . . , P ).
Let yk×1 = (y1, y2, . . . , yk)

′ denote the estimated
allele frequencies in the hybrid population formed
by admixture of the P parental populations in
proportions µP×1 = (µ1, µ2, . . . , µP )′. Then, if the
xij s are known without error (that is, are actually
known values of the corresponding population
parameters), then

E(y) = Xµ. (8)

Hence, the ordinary least squares estimate, m, of
µ is:

m = (X′X)−1X′y. (9)

Unfortunately, because
∑k

i=1 xij = 1, for all j =
1, 2, . . . , P , X′X is a singular matrix. Roberts &
Hiorns [17, 18] suggest eliminating data on one allele
chosen arbitrarily, so that X′X becomes nonsingular.
However, in that case, the estimates of the admixture
proportions become dependent on which allele is
eliminated.

Elston [7] instead suggests a generalized least
squares solution:

m = (X′V−1X)−1X′V−1y, (10)

where V is the dispersion matrix of y, which is
the dispersion matrix of the underlying multinomial
distribution. Of course, because of the constraint that∑k

i=1 yi = ∑k
i=1 xij = 1, V is singular. Therefore,

as suggested by Roberts & Hiorns [17, 18], in the
present case too, data on one allele need to be
eliminated arbitrarily to ensure nonsingularity of V
and X′V−1X. However, the advantage in using the
generalized least squares approach is that the estimate
m remains the same irrespective of the allele that is
eliminated [7].

In addition to the problem of singularity, uncon-
strained least squares estimation (ordinary or gen-
eralized) does not guarantee mj ≥ 0, for all j =

1, 2, . . . , P , and
∑P

j=1 mi = 1. Elston [7] shows that
the estimates

m∗ = (X∗′
X∗)−1X∗′

y∗, mP = 1 −
P−1∑

j=1

mj ,

(11)

where y∗
k×1 = y − xP , X∗

k×(P−1) is the matrix whose
j th column is xj − xP and m∗

(P−1)×1 = (m1, m2, . . . ,

mP−1)
′, satisfy

∑P
j=1 mj = 1. However, there is still

no guarantee that mj > 0, for all j = 1, 2, . . . , P .
Elston [7] suggests that, in practice, if any of the mj s
is <0, the m should be recomputed with the smallest
mj set equal to 0.

The procedure for maximum likelihood estima-
tion of µ was suggested by Krieger et al. [10] and
improved upon by Elston [7] to accommodate the
constraint

∑P
j=1 µj = 1. Under this model (Eq. (8)),

the likelihood L that nh alleles of type h are observed
in a random sample of 2n alleles (that is, n individ-
uals) from the hybrid population is

L ∝
k∏

h=1

(x′
hµ)nh, (12)

since the nhs follow a multinomial distribution with
parameters (E(y); 2n). In practice, the likelihood
is numerically maximized to obtain the mle of µ

(see [7] for details).
Generalizations of these procedures when allele

frequency data on several loci are available are
straightforward under the assumption that the allele
frequencies are known without error. However, when
we take into account fluctuations due to sampling a
finite number of individuals to estimate allele fre-
quencies in parental and hybrid populations, the pro-
cedure for estimating admixture proportions becomes
statistically more complicated. Long & Smouse [13]
have proposed a maximum likelihood estimation pro-
cedure taking sampling fluctuations into account.
In addition to contemporary sampling fluctuations,
there is another source of stochastic fluctuation of
allele frequencies in each generation due to finite-
ness of population sizes (genetic drift). The effect of
genetic drift is more difficult to take into account.
Some attempts, albeit not completely satisfactory,
have been made in this direction, notably by Thomp-
son [19] and Wijsman [20].
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Estimating Admixture from Genetic
Similarities

Pollitzer [16] first formalized the intuitive notion that
when there is differential gene flow from parental
populations to a hybrid population, there will be
a direct relationship between the amounts of gene
flow and genetic similarities of the hybrid population
from the parental populations. Thus, in principle, it
should be possible to estimate admixture proportions
from observed genetic similarity (or genetic dis-
tance) values. The initial statistical attempt made by
Balakrishnan [1] has come under strong criticism [9,
6]. Chakraborty [4, 5] proposes an estimation pro-
cedure based on Nei’s [14] gene identity coefficient.
This coefficient, Jij , is defined as the probability that
two genes drawn at random, one from the ith pop-
ulation and the other from the j th population, are
identical (i, j = H, 1, 2, . . . , P ). A consistent esti-
mator of Jij is [16]:

Ĵij =

L∑

l=1

rl∑

k=1

xiklxjkl

L
, (13)

where xikl is the frequency of the kth allele at the
lth locus in the ith population; rl is the number of
alleles at the lth locus; and L is the total number of
randomly selected loci from the genome for which
data are available. Chakraborty [5] shows that

E(DH) = Dµ∗, (14)

where DH = (J1H − J1P , J2H − J2P , . . . , JPH −
JPP )′, D = ((Jij − JiP ))P×(P−1), µ∗ = (µ1, µ2, . . . ,

µ(P−1))
′. Hence, the ordinary least squares estimator

of µ∗ is:

m∗ = (D′D)−1D′DH. (15)

While nonsingularity of D′D is assured in this
approach, there is no guarantee that the mj s will be
nonnegative. When negative estimates are encoun-
tered, the strategy mentioned earlier may be adopted.
By considering the dispersion matrix of DH, evaluated
empirically using formulas given in [15] and [12],
generalized least squares estimators of µ∗ are obta-
ined in a straightforward way.

Dynamics of Admixture

In the formulations above we have implicitly assumed
that the admixture is a static, one-time phenomenon.
In reality, there is usually a continued, long-term
exchange of genes among populations. For exam-
ple, as we mentioned in the beginning, migration of
Africans to North America continued for more than a
century. The total period of slave trading was about
three centuries (from about 1650 to 1950), although
the trading predominantly took place in the eighteenth
century. Because of interbreeding with Whites, in
each generation a fraction of the gene pool of African
Blacks brought to North America was replaced by
genes of Whites. Let b0 denote the original frequency
of an allele in Black Africans prior to any interbreed-
ing with Whites, w denote the frequency of this allele
among American Whites and µ denote the fraction
of the gene pool of Blacks replaced per generation
by genes of Whites. (Both w and µ are assumed to
remain constant over generations.) Then, as in (2),

bi = (1 − µ)bi−1 + µw, (16)

where bi denotes the frequency of the allele among
Blacks after i generations of interbreeding.

Thus, from (16), we obtain:

(1 − µ)i = bi − w

b0 − w
. (17)

Using (17), Glass & Li [8] estimated that the accumu-
lated amount of White genes in the American Black
gene pool was 30.6% (µ̂ = 0.0358) based on the
Ro allele frequency of the Rh blood group system
and i = 10 generations (period of admixture ≈300
years; generation time ≈30 years). (This estimate has
subsequently been questioned and revised. See [6]
for a discussion, further references, examples and a
detailed review.)

Data on frequencies of “private” alleles (i.e.
unique alleles present in one population but not in
others) are very helpful for admixture estimation.
However, estimation procedures using such data need
modifications from those presented above [11].

A Caveat

One of the major impediments to admixture estima-
tion in humans has been the lack of accurate identities
of parental populations of a hybrid population. All
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the estimators presented above are quite sensitive
to fluctuations of parental allele frequencies. There-
fore, unless identities of, and allele frequencies in,
parental populations are known accurately, estimates
of admixture may be quite unreliable.
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Admixture Mapping

The mapping of genes that control a trait or a disease
is usually carried out by linkage analysis of family
data on the trait/disease and markers [6]. However,
there are other ways of mapping genes. One of these
is by studying hybrid populations, that is populations
that have arisen as a result of the admixture of two or
more populations. The suggestion that hybrid popu-
lations can provide useful information about linkage
was first pointed out by Rife [7]. Linkage between
two loci results in the nonrandom association of
alleles at the loci [8]. When two diallelic loci with
alleles (A1 and A2) and (B1 and B2), respectively,
are unlinked, then the frequency (fij ) of the gamete
AiBj (i, j = 1, 2) in the population will be

fij = piqj ,

where pi and qj denote, respectively, the frequen-
cies of the alleles Ai and Bj in the population. If
D = f11f22 − f12f21 is used as a measure of the
association of alleles at the two loci in gametes,
which is known as linkage disequilibrium, then D

is expected to be zero if the two loci are unlinked.
However, if the two loci are linked and if θ denotes
the recombination fraction between the two loci, then
in a random-mating population,

D(t) = (1 − θ)tD(0), (1)

where D(0) denotes the initial value of linkage
disequilibrium in the population and D(t) denotes
the value of linkage disequilibrium in the popula-
tion after t generations of random mating [8]. It is
clear from (1) that linkage disequilibrium will decay
rapidly unless the two loci are closely linked, that is
unless θ is close to zero.

The admixture between populations also leads to
linkage disequilibrium between loci [1, 5]. Consider
a population (Z) that is formed by the admixture
of two populations X and Y , in proportions m(�=0)

and (1 − m), respectively. Assume that no further
admixture has taken place in the population Z. Then,

D
(t)
Z = (1 − θ)tD

(0)
Z , (2)

where D
(t)
Z is the linkage disequilibrium in the

admixed population Z in generation t and D
(0)
Z is the

linkage disequilibrium in population Z immediately

after its formation by the admixture of populations X

and Y , which is given by [2]

D
(0)
Z = mD

(0)
X + (1 − m)D

(0)
Y + m(1 − m)

× [p(x)

1 − p
(Y)

1 ][q(x)

1 − q
(Y )

1 ], (3)

where D
(0)
X and D

(0)
Y are the initial linkage disequilib-

ria in populations X and Y , respectively, p
(x)

1 and q
(x)

1
are the frequencies of alleles A1 and A2, respectively,
in population X, and p

(Y)
2 and q

(Y )
2 are these frequen-

cies in population Y . Equation (3) shows that even
if the parental populations X and Y are in linkage
equilibrium, if the allele frequencies in the parental
populations X and Y are different, then there will
be linkage disequilibrium in the admixed population.
If the values of m, t , [p(x)

1 − p
(Y)

1 ] and [q(X)

1 − q
(Y )

1 ]
are known, then θ can be estimated from (2) and (3).
Appropriate likelihood ratio tests have been formu-
lated [2] to test whether an observed value of linkage
disequilibrium in the admixed population is due to
linkage or due to admixture.

As was pointed out by Rife [7], in situations where
the parental populations are of opposite homozygous
genotypes (A1A1B1B1 × A2A2B2B2 or A1A1B2B2 ×
A2A2B1B1), then linkage from data from the admixed
population may be detected in much the same way as
from data on experimental crosses. This idea has been
further extended. Since these extensions are similar
to linkage analysis in experimental crosses, the term
“admixture mapping” has been proposed [10].

With information about the ancestry of alleles at
marker loci in individuals in the admixed population,
one approach [3, 4] has been to test for association
with states of ancestry on chromosomes drawn from
the admixed population, conditioning on parental
admixture. At each locus on each gamete there are
two possible states of ancestry: X or Y . It has been
shown [3] that from Mendel’s law of independent
assortment, conditional on parental admixture, there
is no association between the ancestry of alleles
at different loci if the loci are unlinked. Thus, the
null hypothesis of no linkage is that, conditional on
parental admixture, the odds ratio for the association
between states of ancestry at any two loci on the
same gamete is 1. Rejection of the null hypothesis
is an indication of linkage between the loci under
consideration. Using Bayesian statistical methodol-
ogy, McKeigue et al. [4] have shown that the poste-
rior distribution of parental admixture and ancestry
at each marker locus, conditional on the observed
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marker genotype data, can be generated by Markov
chain simulation. They have also provided a statis-
tical method of detecting linkage and of detecting
misspecification of ancestry-specific allele frequen-
cies within the admixed population under study.

A second approach [10] is based on an extension
of the transmission-disequilibrium test (TDT) [9] (see
Disease-marker Association). However, it should
be noted that the usual TDT is not a special case
of the multipoint TDT proposed [10] for this pur-
pose. In this approach, a statistical method has been
developed by conditioning on the ordered multilocus
genotypes of parents and testing for association of
marker haplotypes with the trait/disease under study.
One major difference between this approach and the
approach described in the previous paragraph is that
the conditioning in this approach is on parental geno-
type, while in the other approach it is by parental
admixture. Another major difference is the nature
of data. While in McKeigue et al.’s [4] approach
genotype data on parents are not essential, Zheng
& Elston’s [10] approach relies on nuclear family
data. In both approaches, association arises only in
the presence of linkage. Modeling in the second
approach [10] is done through frequency distributions
of haplotypes in the admixed population as a function
of population history. Thus, probabilities of haplo-
types on specific trait allele-carrying gametes that are
derived from each of the two parental populations are
calculated taking into account various modalities of
multilocus recombination and the history of admix-
ture. Using these probabilities, a “multipoint TDT”
is derived. Unlike the usual TDT [9], in the present
approach, what is scored is whether a haplotype in a
parent is a transmitted one or a nontransmitted one to
an offspring. The data therefore comprise counts of
transmitted and nontransmitted haplotypes, the like-
lihood of which have been derived under various
assumptions and scenarios [10]. A permutation test
has been proposed as a test of significance [10].

While both approaches described above seem to
perform well in a statistical sense, it remains unclear

which of these two approaches is statistically more
efficient.
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Adoption Studies

Adoption usually refers to the rearing of a nonbiolog-
ical child in a family. This practice is commonplace
after wars, which leave many children orphaned, and
is moderately frequent in peacetime. Approximately
2% of US citizens are adoptees.

Historically, adoption studies have played a promi-
nent role in the assessment of genetic variation in
human and animal traits [10]. Most early studies
focused on cognitive abilities [9], but there is now
greater emphasis on psychopathology [5] and phys-
ical characteristics, such as body mass [20]. Adoption
studies have made major substantive contributions to
these areas, identifying the effects of genetic factors
where they were previously thought to be absent [3,
12, 15].

In recent years the adoption study has been over-
shadowed by the much more popular twin study [17]
(see Twin Analysis). Part of this shift may be due to
the convenience of twin studies and the complex ethi-
cal and legal issues involved in the ascertainment and
sampling of adoptees. Certain Scandinavian coun-
tries – especially Denmark, Sweden and Finland [8,
13, 14] – maintain centralized databases of adoptions
and thus have been able to mount more representative
and larger adoption studies than elsewhere.

The adoption study is a “natural experiment” that
mirrors cross-fostering designs used in genetic stud-
ies of animals, and therefore has a high face validity
as a method to resolve the effects of genes and envi-
ronment on individual differences. Unfortunately, the
adoption study also has many methodological diffi-
culties. First, is the need to maintain confidentiality,
which can be a problem even at initial ascertainment,
as some adoptees do not know that they are adopted.
Recent legal battles for custody fought between bio-
logical and adoptive parents make this a more critical
issue than ever. Secondly, in many substantive areas,
e.g. psychopathology, there are problems with sam-
pling, in that neither the biological nor the adoptive
parents can be assumed to be a random sample of
parents in the population. For example, poverty and
its sequelae may be more common among biological
parents who have their children adopted into other
families than among parents who rear their children
themselves. Conversely, prospective adoptive parents
are, on average, and through self-selection, older and
less fertile than biological parents. In addition, they

are often carefully screened by adoption agencies,
and may be of higher socio-economic status than
nonadoptive parents. Statistical methods (see below)
may be used to control for these sampling biases if a
random sample of parents is available. Some studies
indicate that adoptive and biological parents are quite
representative of the general population for demo-
graphic characteristics and cognitive abilities [19], so
this potential source of bias may not have substan-
tially affected study results.

Thirdly, selective placement is a common method-
ological difficulty. For statistical purposes, the ideal
adoption study would have randomly selected adop-
tees placed at random into randomly selected families
in the population. Often there is a partial matching of
the characteristics of the adoptee (e.g. hair and eye
color, religion and ethnicity) to those of the adopt-
ing family. This common practice may improve the
chances of successful adoption. Statistically, it is nec-
essary to control for the matching as far as possible.
Ideally, the matching characteristics used should be
recorded and modeled. Usually, such detailed infor-
mation is not available, so matching is assumed to
be based on the variables being studied and modeled
accordingly (see below). In modern adoption studies,
these methods are used often [18, 19].

Types of Adoption Study

Nuclear families in which at least one member is not
biologically related to the others offer a number of
potential comparisons that can be genetically infor-
mative (see Table 1). Of special note are monozygotic
(MZ) twins reared apart (MZA) (see Zygosity Deter-
mination). Placed into uncorrelated environments,
the correlation between MZ twins directly estimates
the proportion of variation due to all genetic sources
of variance (“broad heritability”). Estimation of her-
itability in this way is statistically much more pow-
erful than, e.g. the classical twin study that compares
MZ and dizygotic (DZ) twins reared together (MZT

and DZT). With MZA twins the test for heritability
is a test of the null hypothesis that the correlation
is zero, whereas the comparison of MZT and DZT

is a test of a difference between correlations. En-
vironmental effects shared by members of a twin pair
(known as “common”, “shared” or “family” environ-
ment or “C”) are excluded by design. If this source of
variation is of interest, then additional groups of rel-
atives, such as unrelated individuals reared together,
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Table 1 Coefficients of genetic and environmental vari-
ance components quantifying resemblance between adopted
and biological relatives, assuming random sampling, mating
and placement

Variance component

Relationship VA VD VAA VAD VDD ES EP

BP–BC 1
2 0 1

4 0 0 0 1

BP–AC 1
2 0 1

4 0 0 0 0

AP–AC 0 0 0 0 0 0 1

AC–BC 0 0 0 0 0 1 0

BC–BCT
1
2

1
4

1
4

1
8

1
16 1 0

BC–BCA
1
2

1
4

1
4

1
8

1
16 0 0

MZT –MZT 1 1 1 1 1 1 0

MZA –MZA 1 1 1 1 1 0 0

VA – additive genetic; VD – dominance genetic; VAA – ad-
ditive × additive interaction; VAD – additive × dominance
interaction; VDD – dominance × dominance interaction; ES –
environment shared by siblings; EP – environment shared
or transmitted between parent and child. Relationships are:
MZ – monozygotic twin; DZ – dizygotic twin; BP – biologi-
cal parent; BC – biological child; AP – adoptive parent; AC –
adopted child. The subscripts T and A refer to reared together
and reared apart, respectively.

are needed to estimate it. Similar arguments may
be made about across-generational sources of resem-
blance. Heath & Eaves [11] compared the power to
detect genetic and environmental transmission across
several twin-family (twins and their parents or twins
and their children) adoption designs.

Methods of Analysis

Most modern adoption study data are analyzed with
Structural Equation Models (SEM) [2, 17]. SEM is an
extension of multiple linear regression analysis that
involves two types of variable: observed variables
that have been measured, and latent variables that
have not. Two variables may be specified as causally
related or simply correlated from unspecified effects.
It is common practice to represent the variables and
their relationships in a path diagram (see Path Anal-
ysis in Genetics), where single-headed arrows indi-
cate causal relationships, and double-headed arrows
represent correlations. By convention, observed vari-
ables are shown as squares and latent variables are
shown as circles.

Figure 1 shows the genetic and environmental
transmission from biological and adoptive parents to
three children. Two of the children are offspring of
the biological parents (sibs reared together) while the
third is adopted. This diagram may also be consid-
ered as multivariate, allowing for the joint analysis
of multiple traits. Each box and circle then repre-
sents a vector of observed variables. Multivariate
analyses (see Multivariate Analysis, Overview) are
particularly important when studying the relationship
between parental attributes and outcomes in their off-
spring. For example, harsh parenting may lead to
psychiatric disorders. Both variables should be stud-
ied in a multivariate genetically informative design
such as an adoption or twin study to distinguish
between the possible direct and indirect genetic and
environmental pathways.

From the rules of path analysis [22, 23] we can
derive predicted covariances among the relatives, in
terms of the parameters of the model in Figure 1.
These expectations may, in turn, be used in a struc-
tural equation modeling program such as Mx [16] to
estimate the parameters using maximum likelihood
or some other goodness-of-fit function. Often, sim-
pler models than the one shown will be adequate to
account for a particular set of data.

A special feature of the diagram in Figure 1 is
the dotted lines representing delta-paths [21]. These
represent the effects of two possible types of selec-
tion: assortative mating, in which husband and wife
correlate; and selective placement, in which the
adoptive and biological parents are not paired at
random. The effects of these processes may be
deduced from the Pearson–Aitken selection for-
mulas [1]. These formulas are derived from lin-
ear regression under the assumptions of multivari-
ate linearity and homoscedasticity. If we partition
the variables into selected variables, XS, and uns-
elected variables XN, then it can be shown that
changes in the covariance of XS lead to changes
in covariances among XN and the cross-covariances
(XS with XN). Let the original (preselection) covari-
ance matrix of XS be A, the original covariance
matrix of XN be C, and the covariance between
XN and XS be B. The preselection matrix may be
written

(
A B

B′ C

)
.



Adoption Studies 3

S S S S

ABF CBF EBF

BF

ABM CBM EBM

BM

AAF CAF EAF

AF

AAM CAM EAM

AM

a c e a c e a c e a c e

d d
rff

rfm

rmf

rmm

0.5 0.5 0.5 0.5 0.5

z z z z z

ABC CBC EBC

BC1

a c e

ABC CBC EBC

BC2

a c e

AAC CAC EAC

AC1

a c e

Figure 1 Path diagram showing sources of variation and covariation between: adoptive mother, AM; adoptive father, AF;
their own biological children, BC1 and BC2; a child adopted into their family, AC1; and the adopted child’s biological
parents, BF and BM

If selection transforms A to D, then the new covari-
ance matrix is given by

(
D DA−1B

B′A−1D C − B′(A−1 − A−1DA−1)B

)
.

Similarly, if the original means are (xs : xn)
′ and

selection modifies xs to x̃s , then the vector of means
after selection is given by

[xs : xn + A−1B(xs − x̃s)]
′.

These formulas can be applied to the covariance
structure of all the variables in Figure 1. First, the
formulas are applied to derive the effects of assorta-
tive mating, and secondly, they are applied to derive
the effects of selective placement. In both cases, only
the covariances are affected, not the means. An inter-
esting third possibility would be to control for the
effects of nonrandom selection of the biological and

adoptive relatives, which may well change both the
means and the covariances.

Selected Samples

A common approach in adoption studies is to identify
members of adoptive families who have a particular
disorder, and then examine the rates of this disorder in
their relatives (see Ascertainment). These rates are
compared with those from control samples. Two com-
mon starting points for this type of study are (i) the
adoptees (the adoptees’ families method) and (ii) the
biological parents (the adoptees study method). For
rare disorders, this use of selected samples may be
the only practical way to assess the impact of genetic
and environmental factors.

One limitation of this type of method is that
it focuses on one disorder, and is of limited use
for examining co-morbidity between disorders. This
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limitation is in contrast to the population-based
sampling approach where many characteristics – and
their covariances or co-morbidity – can be explored
simultaneously.

A second methodological difficulty is that ascer-
tained samples of the disordered adoptees or parents
may not be representative of the population. For
example, those attending a clinic may be more severe
or have different risk factors than those in the general
population who also meet criteria for diagnosis, but
do not attend the clinic.

Genotype × Environment Interaction

The natural experiment of an adoption study provides
a straightforward way to test for gene–environment
interaction. In the case of a continuous phenotype,
interaction may be detected with linear regression on

1. the mean of the biological parents’ phenotypes
(which directly estimates heritability)

2. the mean of the adoptive parents’ phenotypes
3. the product of points 1 and 2.

Significance of the third term would indicate signif-
icant G × E interaction. With binary data such as
psychiatric diagnoses, the rate in adoptees may be
compared between subjects with biological or adop-
tive parents affected, vs. both affected. G × E interac-
tion has been found for alcoholism [7] and substance
abuse [6].

Logistic regression is a popular method to test
for genetic and environmental effects and their
interaction on binary outcomes such as psychiatric
diagnoses. These analyses lack the precision that
structural equation modeling can bring to testing and
quantifying specific hypotheses, but offer a practical
method of analysis for binary data. Analysis of
binary data can be difficult within the framework
of SEM, requiring either very large sample sizes for
asymptotic weighted least squares [4] or integration
of the multivariate normal distribution over as many
dimensions as there are relatives in the pedigree,
which is numerically intensive.
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Adverse Selection

Some health care providers (e.g., clinicians, hospi-
tals, or HMOs) and insurers serve populations that are
substantially sicker or more difficult to care for than
average. A provider or insurer with sicker than aver-
age patients experiences adverse selection; one with
healthier than average patients has favorable selec-
tion. Action taken to achieve favorable selection is
called “skimming” or “cream skimming”.

Biased selection (either favorable or adverse is
not necessarily a problem, if such differences are
recognized and accounted for when paying for care
or holding providers accountable for their patients’
health outcomes. However, when providers are paid
a fixed price for each patient, or they are penalized
for expending more resources than their peers for

patient care, or for not achieving as good outcomes,
providers will compete to treat healthy patients and
will be discouraged from caring for those with com-
plex problems.
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Age-of-onset Estimation

Age-of-onset estimation refers to the estimation of the
distribution, as a function of age, of the time a trait
first appears. Typically, the time of first occurrence
is measured by the age at diagnosis. Many diseases
exhibit variable age of onset where subjects carry-
ing a susceptibility gene for a disease develop the
disease at an earlier age. Consequently, interest is
in estimating the age of disease onset as a function
of genotype and characterizing how the distribution
may vary across subpopulations, or in the presence
of gene–gene or gene–environment interactions.
Other names for the age-of-onset distribution include
the age-specific penetrance, age-specific risk, cumu-
lative risk, or cumulative incidence.

For many diseases, such as cancer, age is the
primary risk factor; the risk of developing disease
increases with age. However, not all subjects will
develop a specific disease or trait in their lifetime.
Therefore age of onset is studied among living sub-
jects who are at risk for the trait of interest, in the
presence of death from other causes. Observations are
censored for participants on whom the event is not
observed, either because the subjects are unaffected
at time of observation or because they die with-
out ever having developed the trait. In the literature
this has been approached using two different mod-
eling philosophies. One assumes the population is a
mixture of susceptible and nonsusceptible individu-
als, nonsusceptible individuals being subjects who
would never develop the trait no matter how long they
lived [6, 7, 14]. This is the approach that we describe
below. The other philosophy assumes all individuals
are susceptible and would eventually become affected
if they only lived long enough [1, 4, 13, 22, 24].

Let g denote genotype and x a vector of exposures.
Then the cumulative risk at age a1 for a carrier
of genotype g can be expressed using the improper
distribution function

Fg(a1; x) = 1 − Sg(a1; x)

= φg

{
1 − exp

[
−

∫ a1

0
λg (a; x) da

]}
,

(1)

where φg estimates the proportion of subjects who
will develop the trait in their lifetime and λg(a; x)

is the hazard, the instantaneous probability of the

trait developing among subjects at risk, given their
genotype and exposures, as a function of age. For an
individual who is unaffected at age a0, the risk of
developing the trait by age a1 is

π (a0, a1; x) =
∫ a1

a0
hg (a; x) Sg (a; x) Sc (a; x) da

Sg (a0; x) Sc (a0; x)
,

(2)

where hg(a; x) = ∂/∂aFg(a; x)/Sg(a; x) and Sc(a; x)

is the probability of surviving up to age a due to
causes of death unrelated to the trait of interest. For
designing prevention studies or for the purpose of
risk management in unaffected individuals, this lat-
ter quantity may be more relevant than the “pure”
trait-specific cumulative risk given above.

The variability in age of onset as a function of
other exposures, X, can be modeled through the
hazard. The hazard is expressed in two parts: the
hazard of disease onset in subjects with the base-
line levels of exposure, λg(t), and a term involv-
ing the level of exposure, x. Several models may
be proposed. The most common is the proportional
hazards model, λg(t ; x) = λg(t)RR(t ; x), where the
exposures have a multiplicative effect on the base-
line hazard. The multiplicative term of the covari-
ates is often called the hazard ratio or the relative
risk. Alternatively, the effect on the hazard could be
additive as in the additive hazard model, λg(t ; x) =
λg(t) + RD(t ; x), where RD(t ; x) is the risk dif-
ference. A third paradigm is an accelerated failure
time model, λg(t ; x) = λg(t · w(t ; x))w(t ; x), where
the effect of the covariates is multiplicative on age.

Alternative formulations for the age-of-onset dis-
tribution use regressive logistic or regressive linear
models. These approaches model the probability that
an individual is affected at age a by φgwg(a, x), and
the probability that an individual is unaffected at age
a by 1 − φgWg(a, x). The function wg is the logis-
tic or normal density and is modeled as a regressive
function of age a and covariates x; Wg is its corre-
sponding cumulative distribution function.

Uses

Estimating age of onset is important in studies of dis-
ease etiology. Allowing for variable age of onset in
segregation analysis can help find evidence for new
major genes and the use of age-of-onset estimates
in linkage analysis can assist in the localization of



2 Age-of-onset Estimation

putative susceptibility genes. Additionally, estimates
of the proportion of cases explained by a gene as a
function of age of onset may guide the development
of new studies for identifying other risk factors for
disease. For example, the genes BRCA1 and BRCA2
explain a large proportion of breast cancer among
early onset cases but do not explain the majority of
cases among women with late onset disease. There-
fore studies for identifying new risk factors may focus
on cases with late onset breast cancer.

Accurate estimates of age of onset are also impor-
tant for individual genetic counseling and for the
planning of future prevention studies. A subject’s
age-specific cumulative risk for developing disease
may influence the recommended age at which regular
screening should begin or the length of time between
visits. Also, it may influence preventive measures a
subject may take. For a woman who has a low risk
of developing breast cancer, regular surveillance may
be her selected regimen. However, a woman having
a high lifetime risk of breast cancer may opt for a
prophylactic mastectomy. Accurate risk estimates and
their variability will help a patient in determining her
own course of action.

In the design of prevention trials, accurate esti-
mates of age of disease onset are needed for esti-
mating sample size. Another use, shown by a trial
for studying the drug Tamoxifen as a chemopreven-
tive agent for breast cancer, is for screening eligible
study participants. Owing to the potential toxicities
related to the administration of the drug to a healthy
population, investigators enrolled subjects at high risk
of breast cancer. Eligible women were either over the
age of 59 or younger but having the same age-specific
risk as an average 60-year-old woman [18].

Study Design

A careful study design is critical for obtaining good
estimates of age-specific penetrance [7, 20]. First,
the disease may be uncommon. For instance, among
women in the US who live to age 85, one in nine
(11%) will develop breast cancer [2]. Other cancers
such as colon cancer occur less frequently. Four
percent of the US population are expected to develop
colon cancer in their lifetime. A second reason why
a study design is important is that the genes that are
strong risk factors for disease, BRCA1 and BRCA2
for breast cancer and MLH1 and MSH2 for colon

cancer, are rare. Standard cohort and case–control
studies would need prohibitively large sample sizes
to study these genes. As a result, family studies have
been implemented. Family studies have the advantage
that they can be completed relatively quickly. Disease
status on all family members can be obtained in a
single interview and data for several diseases can
be collected at the same time. However, a possible
source of bias includes the differential participation
rates of probands (see Ascertainment) based on
family history of disease [7, 8]. A second source
of bias is reporting error on the disease status of
relatives. Although reporting error is not specific to
family studies, it could occur at a higher frequency.

The following completed or ongoing family study
designs are proposed for estimating age-specific
cumulative risk.

Case–Control Family Study

In a case–control family study, affected study par-
ticipants (“cases”) are selected during a fixed time
period from a population-based sample of newly
identified diseased subjects. Unaffected study par-
ticipants (“controls”) are selected, generally by fre-
quency matching to the cases based on age, sex, and
geographic region of residence. Data are collected
from the study participants on the history of disease
in a specified group of relatives (e.g. first-degree rela-
tives). Blood samples for genotyping may or may not
be obtained from the participants or relatives. When
genotypes on the participants are available, the design
is named the genotyped–proband design [7].

Studies that have published estimates of age-
specific penetrance of breast cancer from a
case–control family study include a study of breast
cancer in the Cancer and Steroid Hormone Study
(CASH) [3] and a study of three US case–control
studies with cases selected for ovarian cancer [23].
Additional estimates using data from breast cancer
(case-only) families were reported from a population-
based study in Australia [10].

Kin–Cohort Design

In the kin–cohort design, study participants are vol-
unteers. They provide a blood sample and complete
a short, self-administered questionnaire reporting on
risk factors and family history of disease in first-
and second-degree relatives. The relatives (“kin”)
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form a cohort from which age-specific cumulative
risk is estimated. A kin–cohort study of Ashkenazi
Jews living in Washington DC provided age-specific
cumulative risk estimates for three BRCA1 muta-
tions [19].

Multistage Sampling

Multistage sampling designs have been proposed for
estimating the penetrance of rare genes in families. In
order to increase the frequency of the gene variants
in the sample, investigators have proposed to over-
sample probands with a positive family history of
disease. In stage 1, participants are stratified based on
their family history of disease in first-degree relatives.
Subjects are then randomly sampled, conditional on
their family history. The University of Southern Cal-
ifornia (USC) Consortium Colorectal Cancer Family
Registry applied a multistage design in developing a
registry of colorectal cancer cases and their families.
They select all cases with a positive family history
of disease and 16% of cases with a negative family
history.

High-risk Families

Samples of high-risk families that were originally
collected for the purpose of linkage analysis have
also been used to characterize age of disease onset.
Such families, generally collected in clinics, have a
large number of affected relatives and variable family
structure. In addition to the usual trait information
on relatives, marker genotypes are measured on a
large number of family members. The Breast Cancer
Linkage Consortium has used a collection of families
having multiple cases of breast and/or ovarian cancer
to characterize age of disease onset. One analysis
focused on families with four or more cases of either
breast or ovarian cancer that reported linkage to
marker D17S579, a genetic marker ∼2 cM distal to
BRCA1 [5].

Estimation Methods

Many approaches have been developed for estimating
age-specific penetrance from family studies. These
include likelihood [1, 6, 7, 9, 14], pseudo-
likelihood [13], marginal likelihood [4], weighted
score [17, 24], and method of moments [22]

approaches. We introduce the different methods for
each of the above-mentioned designs. We begin
by describing the likelihood for the data from a
population-based case–control family study.

Case–Control Family Study. Let g0 denote the
proband’s disease susceptibility genotype and y0 =
(a0, δ0) the phenotype, where a0 is age at diagnosis if
affected or current age if unaffected, and δ0 is disease
status (1 = affected, 0 = unaffected). The phenotypes
and susceptibility genotypes of J relatives are given
by y1 = (y11, . . . , y1J ) and g1 = (g11, . . . , g1J ). For
relatives who died without ever developing the trait,
a1j is their age at death. The likelihood is conditioned
on the disease status of the proband to adjust for their
selection conditional on disease status. Assuming that
phenotypes are conditionally independent within a
family given genotypes, the likelihood contribution
from a single family is

L (�, q; y1|y0)

=

∑

g0,g1

p (g0, g1; q) f (y0|g0; �)

J∏

j=1

f
(
y1j |g1j ; �

)

∑

g0

p (g0; q) f (y0|g0; �)
,

(3)

where the parameter q denotes the susceptibility
allele frequency, p(g0, g1; q) is the probability of
the unobserved family genotypes, and f (y|g; �)

is the density function characterized by the age
of onset parameters �. This density can be from
a logistic function [6, 14]. Alternatively, and the
case we describe in more detail below, it can be
based on a hazard function. The genotype probabil-
ities are computed under the usual assumptions of
Hardy–Weinberg equilibrium, random mating, and
a known mode of inheritance. To incorporate mea-
sured susceptibility genotypes on relatives into a joint
likelihood, the observed genotypes are removed from
the sum in the numerator of (3).

Both parametric and semiparametric models
for the hazard function have been proposed.
Gail et al. [7] parameterize the cumulative risk func-
tion using an improper Weibull function, Fg(a) =
φg{1 − exp[−(γga)αg ]}. Assuming that censoring is
unrelated to genotype, they write the density as

fg (a) = λg (a)δ Sg (a)G (a) , (4)
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where λg(a) = φgαgγ
αg

g aαg−1 exp[−(γga)αg ]/Sg(a)

and G(a) is the probability of surviving all causes
of death unrelated to the disease of interest. Since
G(a) does not depend on genotype, it does not
affect the penetrance estimates. For a semiparametric
modeling approach, Moore et al. [13] propose a
piecewise exponential survival model. A common
set of age cut-points is selected and age intervals
created for estimating separate hazard functions in
gene carriers and noncarriers, e.g. less than 30 years
old, 30–39 years, 40–49 years, 50–59 years, 60–69
years, 70–79 years, 80 or more years. Then they
estimate a constant hazard function for each separate
age interval.

For relatively simple family structures and para-
metric models, the loglikelihood can be directly
maximized or an EM algorithm approach may be
used. For more complex structures a Monte Carlo
EM method may be preferred [12]. Moore et al. [13]
present a pseudolikelihood alternative for estimating
the age-specific risk estimates for their semiparamet-
ric model. All these approaches are analogous to
estimating penetrance parameters in a segregation
analysis. When measured genotypes are incorporated
into the likelihood, it may be referred to as a modified
segregation analysis. These methods assume condi-
tional independence of disease given genotype which,
if violated, can lead to biased penetrance estimates.
Alternative methods that allow for residual famil-
ial correlation have been developed for randomly
sampled families. These are described below for the
kin–cohort design.

Kin–Cohort Design. Wacholder et al. [22] pro-
posed a method of moments approach to estimate
age of onset for the kin–cohort design. Using
Kaplan–Meier methods they estimated the propor-
tion of kin who develop disease separately for carrier
participants and noncarrier participants. Noting that
relatives form a mixture of carriers and noncarri-
ers, they presented a method to decompose the risk
estimates from kin into its genotype-specific parts.
Under dominant gene action, the first-degree rela-
tives of participants who carry a disease mutation
are approximately a 50 : 50 mixture of carriers and
noncarriers. For first-degree relatives of noncarrier
participants the mixture is π : (1 − π), where π is
the population frequency of carrying the variant gene.
Similar to the likelihood-based methods, this analysis
assumes a known mode of inheritance of disease, a

constant gene frequency across age (i.e. censoring
due to the competing risk of death from an unrelated
cause is not a function of the genotype under study),
and homogeneity of risk given the genetic variant
of interest. The primary critique of the analysis is
that the estimates of cumulative risk from the use of
Kaplan–Meier methods can be nonmonotonic. When-
ever a noncarrier kin has an event at a time that the
carrier kin does not, the cumulative risk will decrease.
Also, it does not utilize the disease status of the
proband.

These criticisms can be overcome by a likelihood-
based analysis. Risk estimates derived from like-
lihood-based approaches are always monotonically
increasing. Furthermore, the likelihood includes in-
formation on the proband’s disease status. In the kin–
cohort design, probands are volunteers from the pop-
ulation, so it is not necessary to condition (3) on the
proband’s phenotype. However, an added assumption
is necessary, namely that there is no differential sur-
vival of cases by genotype before the time that they
are selected into the study [7]. Gail et al. [7] showed
that the kin–cohort design allows a modest reduction
in necessary sample sizes compared with standard
epidemiologic cohort or case–control designs. Larger
reductions are possible if additional genotypes from
relatives can be obtained [7].

Other strengths of a likelihood approach are that
it allows for additional modeling of covariates and
also allows the likelihood to be extended to include
the disease status of more distant relatives. How-
ever, these estimates can suffer from their own biases
under model misspecification. As mentioned earlier,
maximum likelihood relies on a conditional inde-
pendence assumption of disease given genotype and
covariates [7] which, if violated, can result in biased
risk estimates. To allow for the residual familial
aggregation of disease arising from shared genetic
and/or environmental effects, a marginal likelihood
approach has been proposed [4]. Alternatively, one
could add a family-specific random effect [12, 16].
Currently, these two approaches are limited to designs
where the study participants are randomly sampled
from a general population.

Multistage Sampling. A weighted score approach
has been proposed for estimating risk from multistage
sampled families [17, 24]. For a two-stage design,
the analysis weights the score contribution of the
data in stage 2 by the inverse of the proportion of
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participants sampled in that stratum. Specifically, if
Sk denotes stratum k (k = 1, 2), then the weighted
score equation is

UW (�) =
2∑

k=1

1

fSk

∑

y∈stage 2

∂

∂�
ln L (�, q; y1, g0|y0),

(5)

where fSk
denotes the fraction sampled in stratum Sk .

In using this approach to design the USC Colorectal
Cancer Family Registry, Siegmund et al. [17] found
that over-sampling probands with a positive family
history of disease could improve the efficiency of the
penetrance estimates in gene carriers.

High-risk Families. The retrospective likelihood is
used for estimating penetrance when families are
sampled based on the occurrence of multiply affected
individuals. This approach is also known as maximiz-
ing the lod score, or the mod score approach [9]. In
this likelihood, marker genotypes (m) are measured
on a large number of relatives, and their distance from
the susceptibility locus is modeled using a recombina-
tion fraction (θ). The contribution to the retrospective
likelihood from a single family is proportional to the
probability of the family marker genotypes given all
phenotypes:

L (�, q, θ ; m|y) ∝

∑

g

f (y|g; �) p (g|m; q, θ)

∑

g

f (y|g; �) p (g; q)
,

(6)

where p(g|m; q, θ) is the probability of unobserved
susceptibility genotypes in the family given the
observed marker genotypes as a function of the
susceptibility allele frequency q and the distance
between the marker and the susceptibility locus, θ .
Random mating and Hardy–Weinberg equilibrium
are assumed. Parameters are estimated using maxi-
mum likelihood and the same conditional indepen-
dence of phenotype given genotype assumptions are
needed. Vieland & Hodge [21] point out that for
general pedigree structures the retrospective likeli-
hood does not provide an exact ascertainment cor-
rection. However, the adjustment based on phenotype
is believed to yield, in general, essentially unbiased
penetrance estimates.

For a discussion of bias and efficiency based
on different likelihood approaches, see Kraft &
Thomas [11].

Populations

The experience of estimating the age-of-onset distri-
bution for breast cancer shows the large variability
that can exist across study populations. Early esti-
mates from a large population-based case–control
study in the US found a 67% risk of breast cancer
by age 70 for women who carried a susceptibility
gene [3]. Cases were young women, aged 20–54,
with newly diagnosed breast cancer. After the cloning
of BRCA1 identified that the gene was a risk factor in
families carrying excess cases of breast and ovarian
cancer, a similar study was undertaken using inci-
dent ovarian cancer cases. That study reported a 69%
risk of breast cancer by age 70, supporting the ear-
lier estimates [23]. Neither of these studies measured
specific genetic variants in their samples.

In studies that have measured specific BRCA1
variants or a linked marker locus, a range of risk esti-
mates for carriers has emerged. The analysis of high-
risk families identified by the Breast Cancer Linkage
Consortium reported an 85% risk of breast cancer
(confidence interval 51%–91%) by age 70 [5]. The
kin–cohort study of Ashkenazi Jews in Washing-
ton DC estimated a risk of 56% [19]; a population-
based sample of Australian women selected for hav-
ing onset prior to the age of 40 reported a risk of
40% [10].

The large variability accompanying many of these
estimates (±15%–20%) does not on its own appear
sufficient to explain the apparent inconsistencies of
the estimates from the high-risk and population-based
samples. One possible explanation for the higher risk
estimates from the multiple-case families is ascertain-
ment bias due to the selection of families showing
linkage to BRCA1 (lod > 1.0). The general practice
of selecting families based on lod scores depends on
the marker distribution in the family and can lead to
overestimates of penetrance in carriers from the retro-
spective likelihood [15]. The authors report that their
estimates are not sensitive to this cut-point so they
believe such bias is negligible in their data. Another
possibility is that the increased risk estimates are cap-
turing a correlation of disease due to unmeasured
risk factors shared among the relatives. This is bio-
logically plausible and can explain the experience
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of genetic counselors that gene carriers in families
having a strong history of disease appear to be at
increased risk of disease over carriers from the gen-
eral population. For this reason, genetic counselors
prefer to counsel subjects based on estimates derived
from families with a similar family history. Estimates
derived from clinic-based families are used for coun-
seling individuals with a strong family history of
disease and estimates derived from population-based
samples are preferred for counseling negative family
history subjects.

Conclusions

Accurate estimates of age of onset are crucial to clini-
cal management and designing disease prevention
studies. They are also valuable in studies of disease
etiology. More work is needed on understanding the
subtleties of applying simple genetic models to com-
plex traits and on extending current methods to fit
more complex models. It will be very important to
characterize how risks vary across different popula-
tions, and their possible modification by exposure,
both environmental and genetic.
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Age–Period–Cohort
Analysis

Age–period–cohort analysis refers to a family of sta-
tistical techniques for understanding temporal trends
of an outcome, such as cancer incidence, in terms
of three related time variables: the subject’s age, the
subject’s date of birth (birth cohort), and calendar
period. The fundamental ideas underlying these three
perspectives of time have been understood by social
scientists and public health researchers for many
years. Early applications of these ideas employed
innovative graphical presentations of data, but more
recently investigators have also employed modeling
and more formal hypothesis testing to understand
better the separate contributions of each of these fac-
tors. Attempts to quantify the contributions of each
factor have forced analysts to address the fact that
age, period, and cohort are linearly dependent factors
whose main effects cannot be uniquely and simulta-
neously estimated. This phenomenon is referred to as
the identifiability problem. Available data do, how-
ever allow one to estimate the degree of curvature or
departure from overall trends.

Suppose that we are interested in whether a
screening program for breast cancer has had an
impact on the incidence rates in a defined popu-
lation. Such a program would identify cases at an
earlier stage when the disease can be more effectively
treated. However, shortening the time to detection
would also be expected to result in a temporary rise
in the calendar year (period) effect before returning to
the long-term time trend. One approach we might try
is to estimate the difference in the period effect before
and immediately after the screening program, but we
shall see that this is not an estimable quantity when
we try to adjust for effects of age and year of birth.
However, we can estimate a change in slope imme-
diately before and after the program began, because
this depends on curvature, and thus it is estimable. In
fact, it may be reasonable to test the hypothesis that
the screening program changes the slope by deflecting
an ongoing trend.

Temporal Perspectives for Events

To understand the rationale for age–period–cohort
analysis, as well as its inherent limitations, we first

define the different time perspectives that give rise
to the dynamic changes in a population, and then
indicate the logical problems that arise when we try
to consider all three factors simultaneously.

Definitions of Age, Period, and Cohort

Age refers to time since birth or, more generally,
to time since a subject entered a study. Period,
on the other hand, refers to the calendar date at
which the outcome was determined. Finally, cohort
identifies the calendar time when an individual
was born, or entered a study; cohort thus provides
an index for generational effects. The purpose of
age–period–cohort analyses is to determine the
separate contributions of age, period, and cohort to
the outcome under consideration.

Vital statistics are often analyzed for age, period,
and cohort effects. These data are readily available,
and sometimes yield early hints on the etiology of a
disease.

Age often influences risk of disease and socioeco-
nomic outcomes. Hence, it would usually be essential
to consider this factor in any analysis.

Period effects tend to be factors that impact
all individuals under observation on a particular
date, regardless of their age. For example, because
everyone breathes essentially the same air, if disease
incidence is affected by ambient air pollution in all
age groups, and if levels of pollutants have changed
over time, then we might expect to see period
effects for each age group. However, not all period
effects need be due to changes in causative agents.
Artifacts, such as changes in medical diagnostic
practice, or technology can introduce changes in
disease incidence that would be manifested in the
data as period effects.

Cohort effects can be attributed to factors related
to the year of birth. A disease that is associated with
poor nutrition in the mother might be expected to
have higher incidence in cohorts born during a war or
a famine. However, cohort effects may not be limited
to events around the time of birth, because the cohort
can also be thought of as a generational identifier. For
example, cigarette smoking most commonly begins in
late teens or early twenties, so that major changes in
the marketing of cigarettes would affect primarily the
generations who happened to be in the vulnerable age
group on the date at which such marketing changes
occurred. Hence, we might expect to see an effect due
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to cohort for diseases that are strongly associated with
the smoking of cigarettes in populations that have
experienced major shifts in cigarette sales.

Early analyses of period and cohort relied mainly
on descriptive plots of the data. More recently,
investigators have tried to formalize the study of
disease trends by fitting models that include time
effects, or by considering nonparametric approaches
to the analysis. These attempts have forced a recog-
nition of the inherent limitation in these analy-
ses, namely a nonidentifiability of some model
parameters.

Collinearity of Age, Period, and Cohort

Figure 1 gives a Lexis diagram, showing the only
possible diagonal paths that may be traversed by
an individual under study, and it also demonstrates
the relationship among the three temporal measures
under consideration. The diagonal paths represent
individual cohorts, c. If an event occurs to an
individual of age a in year p, then a particular cohort
c = p − a must be involved. Hence, a − p + c = 0,
and these time measures are linearly dependent.
This dependence leads to aliasing of parameters,
i.e. a fundamental inability to identify completely
the separate contributions for each of the individual
time factors. We usually think of an effect due to a
particular factor as the contribution from that factor
if other factors are held constant. However, this
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Figure 1 A Lexis diagram showing the relationship
between age, period, and cohort

concept is clearly nonsensical when the factors are
functionally related, as they are here.

Interval Divisions

Population-based data are usually tabulated for the
calculation of rates, by grouping age and period into
categorical intervals, as seen in Table 1. Five- or 10-
year intervals are most commonly used, although for
large regions these rates are often reported annually,
which implies one-year intervals for period. Because
the grouping results in a somewhat crude measure
for age and period, there remains some ambiguity
when one tries to identify a corresponding cohort.
For example, if a death occurred in someone aged
50–54 in 1990–94, then that individual could have
been born as early as January 1, 1935, or as late
as December 31, 1945, a span of 10 years, which
is twice the width of the age and period interval.
In addition, the intervals are overlapping, as we
can see from the fact that for the next age group,
55–59, an individual could have been born between
January 1, 1940, and December 31, 1950. From
the Lexis diagram shown in Figure 1 we can see
the pattern of age and period intervals traversed by
different cohorts. While age and period uniquely
define a cohort, we have lost that uniqueness in
cohort definition when time has been categorized.
Hence, the same cohort may pass through different
age groups during a particular period interval. The
same problem arises for the third time factor, when
any of the other two time factors are categorized.
Tarone & Chu [37] have suggested using a finer
grid when possible. For example, in their analysis
of breast cancer mortality they employ two-year
intervals for age and period. Nevertheless, smaller
overlaps remain.

If we know the cohort for each individual,
then we can obtain nonoverlapping cohort cate-
gories, along with the other two time measures,
by further grouping the data along the diagonal,
as shown in Figure 1 [32]. When the age and
period intervals are of equal width, identical width
cohort intervals can be selected so that each square
is divided into two triangles along the diagonal,
thus achieving the same degree of precision as
age and period, and avoiding the overlap at the
same time.
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Table 1 Observed number of cases, denominators and rates for lung cancer incidence in Connecticut males, 1935–1984

Age 1935–44 1945–54 1955–64 1965–74 1975–84

Number of cases
20–29 1 3 4 6 7
30–39 10 20 28 31 40
40–49 70 115 195 289 281
50–59 247 543 885 1 300 1 418
60–69 395 1 057 1 992 2 780 3 769
70–79 209 790 2 001 3 017 4 354
80–89 60 231 673 1 453 2 270

Denominators
20–29 1 537 781 1 380 360 1 555 934 2 322 128 2 769 374
30–39 1 406 807 1 615 355 1 632 000 1 863 489 2 343 684
40–49 1 258 708 1 493 910 1 800 315 1 727 315 1 800 233
50–59 1 143 763 1 232 189 1 514 848 1 789 483 1 660 060
60–69 770 224 980 496 1 095 932 1 336 181 1 561 113
70–79 437 017 567 892 723 242 756 609 941 025
80–89 145 147 207 148 273 417 345 493 389 562

Rate × 100 000
20–29 0.07 0.22 0.26 0.26 0.25
30–39 0.71 1.24 1.72 1.66 1.71
40–49 5.56 7.70 10.83 16.73 15.61
50–59 21.60 44.07 58.42 72.65 85.42
60–69 51.28 107.80 181.76 208.06 241.43
70–79 47.82 139.11 276.67 398.75 462.69
80–89 41.34 111.51 246.14 420.56 582.71

Graphical Displays of Temporal Trends

Graphical displays offered the first approach for
analyzing the effects of age, period, and cohort.
One may plot the response surface against two
time axes, such as the graph showing lung cancer
incidence rates for women in Connecticut plotted
on the age × period plane shown in Figure 2. The
vertical axis shows the natural logarithm of the
rate per 100 000 person-years experience, and we
shall use this outcome to demonstrate each graphical
method. While such graphs convey a broad picture
of relationships, it is harder to extract some essential
details. It is not easy, and sometimes impossible, to
pick out the magnitude of the incidence in a particular
surface plot. Other features are also unclear in two-
dimensional representations of a three-dimensional
figure, including whether the rates are changing on
one axis, at a fixed value of the other axis. This
is especially difficult for the missing time axis,
i.e. cohort, in this figure. Obvious alternatives to
this particular graph would entail the use of the
age × cohort plane or even the period × cohort plane,
although the latter is not used when, as usual, there is
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Figure 2 Natural log of the lung cancer incidence rates
for Connecticut women plotted against age and period

good reason to believe that age exerts a strong effect
on the response.

An alternative display projects this response sur-
face onto the age × response plane, as shown in
Figure 3. Such figures were used by Korteweg [23]
and others to recognize the effect of birth cohort on
disease incidence. In this graph, solid lines connect
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for Connecticut women by age (solid lines with regular
font connect constant periods, broken lines with italic font
connect constant cohorts)

the age-specific rates for the identical periods, and
broken lines for specific cohorts. Note that the
age-specific rates decline at older ages for the
solid lines corresponding to fixed periods. The con-
stant cohort (broken) lines increase monotonically
with age, consistent with a belief that lung cancer
risk increases with age. Because it is biologically

implausible that rates should decline with age, we
are led to reject the age–period model and, instead,
to consider age and cohort as explanatory factors for
disease trends. Similar reasoning was used by earlier
investigators to suggest cohort as an important factor
for some diseases. The cohort lines also tend to be
more nearly parallel than the period lines, a feature
that is especially relevant for the more formal models
that can be fitted to these rates, as discussed below.

Projections of the response surface on the two
remaining time axes can also be used (Figure 4). Each
line shows either the period or the cohort trend for a
particular age group. Because age so dominates these
trends, these graphs better highlight some of the more
subtle features for period and cohort trends. If these
lines are more nearly parallel for either the period
or the cohort axes, then that factor offers a more
parsimonious description of the age-specific rates.
We use the same scale for period and cohort so that
the bend in a line will have the same visual impact
for either period and cohort. Otherwise, the period
axis would be more spread out, thus visually diluting
some of the curvatures, as we can see in a period plot
of the same data in a typically proportioned graph
in Figure 5. By stretching the period axis, curves
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begin to appear more nearly straight and more nearly
parallel. Because there are generally more cohorts
than periods, the period trends will tend to look
straighter unless we show the axes on the same scale.
Hence, to facilitate the comparison of period and
cohort effects, it is important to use the same abscissal
scale.

Contour plots offer yet another approach for dis-
playing features of the response surface by projecting
lines producing the same response onto the age ×
period plane, as shown in Figure 6. The contours rep-
resent lines of constant lung cancer incidence, and
are labeled according to ln(incidence/100 000). Simi-
lar graphs can be produced using the age × cohort or
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Figure 6 Contour plot for natural log of the lung cancer
incidence rates for Connecticut women by age and period
(cohorts are shown by the diagonal broken lines)

period × cohort planes [22]. Following the lines par-
allel to the age (period) axis, we can tell the rate at
which the surface is increasing by how rapidly we
cross the contour lines. Regions where the contours
are parallel to the age (period) axis do not exhibit a
change in incidence with age (period). Figure 6 also
shows the constant cohorts as diagonal dotted lines,
and we can make similar interpretations with respect
to cohort by observing whether the contours are
crossed or are parallel to this axis. These graphs can
be especially useful when trying to understand com-
plex patterns, such as the contour graph for Hodgkin’s
disease shown in Figure 7, in which there is more
than one mode.

Another refinement that can assist in the interpre-
tation of trends is to smooth the rates before preparing
the contour plot. For example, Cislaghi et al. [7] give
contour plots on the age–cohort plane for observed
rates, fitted rates using a polynomial regression
model, and residuals that show the adequacy of the
model over the entire plane. Other variations include
the use of models with period effects, or spline func-
tions, in place of polynomials.

The cohort lines shown in Figure 6 have a differ-
ent scale because they are diagonals on a rectangular
age × period grid. Weinkam & Sterling [40] propose
the use of a triangular lattice that represents the
plane consisting of the locus of possible combina-
tions of age, period, and cohort in three-dimensional
age–period–cohort space. In this way they are able to
present an identical scale for each time element, while
at the same time using a two-dimensional time plane.
This approach emphasizes that there are really only
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two time dimensions that underlie an age–period-
cohort analysis. Figure 8 shows the contours for the
lung cancer example using this approach. Interpreta-
tion of the graph is similar to that of the contour plots
discussed earlier.

Modeling Temporal Effects

In this section we consider age–period–cohort anal-
yses that arise from fitting models to data. Because
of the identifiability problem that arises from the
collinearity among the time factors, it is impossible
to determine parameters uniquely in models based
on a linear combination of age, period, and cohort
factors. We discuss several proposals to overcome
this difficulty.

Vital statistics are often presented as rates, found
by taking the ratio of the number of events divided
by the total person-years experience. It is common
to assume that the numerator has a Poisson distri-
bution, and that the log rate is a linear function of
specified regressor variables. Models of this form
belong to the class of generalized linear models,
which can be readily fitted using standard statistical
software (see Software, Biostatistical).

Additive Effects

To formulate a linear model for the temporal effects,
we first consider the case where data have been
tabulated by dividing age and period into categories

of equal width. This is the most common situation
in practice, and instances where the interval widths
are different for age and period actually give rise to
still further complications [13, 15]. Let i(= 1, . . . , I )

represent the age groups, j (= 1, . . . , J ) the periods
and k(= 1, . . . , K = I + J − 1) the cohorts. In a
typical table, i represents the row index, j the column
index, and k the upper-left to lower-right diagonals,
beginning with the cell in the lower-left corner of
the table. These indices are also linearly dependent,
k = j − i + I , so the issue of collinearity remains. A
typical additive model can be given by

Yijk = φ0 + φai + φpj + φck + εijk,

where Yijk represents the response (perhaps the log
rate), φ0 is an intercept, other parameters in the
model (φai , φpj and φck) represent age, period, and
cohort effects, and εijk is a random error. This
equation has the same general form as analysis of
variance models, and additional constraints must be
made. One approach is to set the parameters arbitrar-
ily at one level to zero, φa1 = φp1 = φc1 = 0, say.
Alternatively, we can adopt the usual constraints,∑

i φai = ∑
j φpj = ∑

k φck = 0, which will be used
in the remainder of this discussion. Unfortunately,
forcing the parameters to satisfy these constraints
does not entirely resolve the identifiability problem;
a further constraint is necessary if one is to obtain a
unique set of parameter estimates. Many regression
packages allow for the possibility of a linear depen-
dence among the covariates by employing a gener-
alized inverse when fitting a model, which results in
additional arbitrary constraints. The results can differ
widely depending on the constraints used in the ana-
lytical software, and the order in which the factors
are assigned to the model [15].

Linear Dependencies in the Design Matrix. Para-
meters under the usual constraints can be determined
by setting up a dummy variable design matrix. Let
the age columns of the design matrix be given by

A = (A1 A2 . . . AI−1),

where the ith column is defined as

Ai =






1, if ith age group,

−1, if I th age group,

0, otherwise,
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thus yielding the parameters φai , i = 1, . . . , I − 1,
and φaI = −∑I−1

i=1 φai . The period, P, and cohort,
C, components of the design matrix are similarly
defined. Kupper et al. [24, 25] show that the columns
of the overall design matrix formed by concatenating
all three components satisfy

I−1∑

i=1

[
i − I + 1

2

]
Ai −

J−1∑

j=1

[
j − J + 1

2

]
Pj

+
K−1∑

k=1

[
k − K + 1

2

]
Ck = 0.

Thus, these columns are linearly dependent. A con-
dition for the existence of a unique set of parameter
estimates in a regression model is that the design
matrix be of full column rank. Hence, a model
that simultaneously includes age, period, and cohort
effects does not yield a unique set of estimates, which
is referred to as the identifiability problem.

Partitions into Linear and Curvature Effects.
One convenient way of representing trends for a
particular factor is to include the overall trend or
slope and the departure from that trend, namely the
curvature. This approach represents the age effects
obtained under the usual constraints as

φai =
(

i − I + 1

2

)
× βa + γai ,

where βa is the overall slope, and γai is the curvature.
Period and cohort parameters can be represented
in a similar way. Holford [17] proposed using the
usual least squares estimate of the slopes, which
can be expressed as a linear contrast among the age
parameters βa = C × φa, where the contrast vector
has elements

Ci =
[
i − I + 1

2

]
× 12

I (I − 1)(I + 1)

for equally spaced intervals. This is the first-order
orthogonal polynomial contrast (see Polynomial
Approximation). We call βa the “least squares linear
component”. Alternatively, Clayton & Schifflers [8]
use the mean of the successive differences to
represent the slope, which reduces to (φaI −
φa1)/(I − 1), and thus depends only on parameters in
the first and last age groups. Both of these approaches
for defining slopes can also be modified by restricting

the range over which the slope is determined, either
by defining the contrast appropriately in the case
of using least squares, or by choosing groups other
than the first and last when calculating the mean
differences, i.e. using (φai − φai ′)/(i − i ′).

Curvature terms can be determined by taking the
difference between the estimated parameters and the
fitted value from a simple linear regression, i.e. the
residuals. If the least squares linear component is
used, then these residuals are

γai = φai −
[
i − I + 1

2

]
× βa.

Identifiability Problem for Parameters. Because
of the collinearity among the three temporal fac-
tors, a unique set of parameter estimates cannot be
obtained without further constraints. Using different
constraints can change not only the magnitude of the
parameters, but the direction of trend for each time
factor, thus profoundly influencing the conclusions
from an analysis. The partitioning of the temporal
effects into linear and curvature components provides
one useful way of reducing the number of parame-
ters involved in the collinearity, leading to a better
understanding of its effect. It has been shown that
the curvature parameters, such as γai , are invariant,
regardless of the parameterization or constraints on
linear components [15, 33]. The same is not the case
for the slopes (βa, βp, and βc), which can arbitrar-
ily take any value, β· ∈ (−∞, ∞). While each slope
parameter may vary widely, all these parameters can
only do so while maintaining a specific relationship
among themselves. This constrained relationship sug-
gests the use of estimable functions of the parameters,
i.e. functions that do not depend on the constraints
adopted to find a particular set of parameter estimates.

For an arbitrary pair of numbers, (r, s), the lin-
ear function, rβa + sβp + (s − r)βc is invariant to
the particular set of parameters obtained, i.e. it is
an estimable function of the slopes [15]. For exam-
ple, by setting r = s = 1, we see that βa + βp is
estimable. Likewise, r = 0 and s = 1 demonstrate
that βp + βc is estimable, and in a similar fashion
we can find other combinations of the slopes that are
not affected by arbitrary constraints applied to obtain
a particular set of parameters.

The completely unlimited range of values that
can be arbitrarily assigned to an individual slope is
certainly a serious drawback of these analyses. But
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through the use of estimable functions we can see that
if any one slope is determined, then the other two are
immediately identified as well. With this in mind, any
underlying quantity representing the individual slopes
can be expressed as

β∗
a = βa + ν,

β∗
p = βp − ν,

β∗
c = βc + ν,

where βa, βp, and βc are the true slopes and ν is
an indeterminant parameter. For example, if we are
particularly interested in period trends, βp, then it
is disconcerting that the estimated slope might be
either increasing or decreasing depending on the
unknown ν. However, β∗

a also depends on the same
indeterminant constant, so that if it is implausible on
substantive grounds for rates to decrease with age,
then the values for ν that make the age slope negative
must be implausible for β∗

p and β∗
c as well. If one can

somehow show that ν lies within a particular range,
then there is a corresponding range of values that
must hold for the period and cohort effects as well.

We can observe the effect of nonidentifiability of
the linear terms by considering a model in which we
ignore the curvature components

Y = µ + a × βa + p × βp + c × βc.

Because of the linear dependence between the time
factors, we can add 0 = ν × (a − p + c) to the right-
hand side, yielding

Y = µ + a(βa + ν) + p(βp − ν) + c(βc + ν)

= µ + a × β∗
a + p × β∗

p + c × β∗
c ,

which is the model based on parameters obtained
using a particular set of constraints.

Example. To illustrate the result from fitting age–
period–cohort models, consider the data on lung can-
cer incidence in Connecticut men shown in Table 1.
An analysis of deviance for a loglinear model fit-
ted to these incidence rates is shown in Table 2,
suggesting that the model does give a good fit to
the data overall, and that each of the time compo-
nents is statistically significant. The adequacy of the
model can be further confirmed by an analysis of
the residuals. Notice that the change in the scaled
deviance (see Model, Choice of) attributable to age

Table 2 Summary of analysis of deviance from fitting a
loglinear model to the data in Table 1

Source df Scaled deviance P

Goodness of fit 15 15.99 0.3825
Age|period, cohort 5 2907.06 <0.0001
Period|age, cohort 3 118.15 <0.0001
Cohort|age, period 9 464.87 <0.0001

has 7 − 2 = 5 degrees of freedom. The additional
reduction in degrees of freedom arises because a
model that includes period and cohort includes terms
that are completely aliased with linear age. Hence,
the test for the age effect when period and cohort are
included in the model is only a test of age curvature.
Likewise, the contribution for each of the factors is
one less than the usual degrees of freedom that result
from including a categorical factor in a model.

We can observe the alternative sets of parameters
from fitting the various models in Table 3. Despite the
large discrepancies among these models, they each
give identical fitted values. The second column was
obtained by simply including age, period, and cohort
in the regression model. In this instance the program
set a parameter to zero when it discovered the first
column of the design matrix that identified it as not
being of full rank. Hence, the last two cohort effects
are zero.

The third column includes linear age and cohort
terms (period is not included because of the lin-
ear dependence), followed by dummy variables
which constrain the first and last curvatures to
be zero. The coefficients for the age and period
terms correspond to net trends identified by con-
sidering the mean of successive differences, and
the linear age effect estimates βa + βp, and cohort
βc + βp. By dropping the curvatures we can read-
ily see the source of the degrees of freedom for
each effect, because we have applied two constraints
on the components not accounted for by linear
trend.

The final column shows the results of partition-
ing the effects into a least squares slope, and the
corresponding residuals. These can be determined by:
(i) simple linear regression on the parameters where
the slope identifies the linear component and the
residuals are the curvature; (ii) estimating a contrast
using the approach described below; or (iii) forming
a design matrix that is orthogonal to the linear
component [21].



Age–Period–Cohort Analysis 9

Table 3 Alternative parameter estimates obtained by fit-
ting a loglinear model to the data in Table 1

Default Mean Least
constraints change squares

Intercept −4.8338 −18.7566 −8.7477
a + p – 1.5099 1.5433
c + p – 0.3962 0.3738

Age
20–29 −8.0544 0.0000 −0.7816
30–39 −6.1367 0.5754 −0.2449
40–49 −4.0035 1.3661 0.5073
50–59 −2.2868 1.7404 0.8429
60–69 −1.0821 1.6027 0.6665
70–79 −0.3444 0.9980 0.0233
80–89 0.0000 0.0000 −1.0134

Period
35–44 −0.6699 0.0000 −0.1210
45–54 −0.3154 0.1871 0.0713
55–64 −0.1041 0.2309 0.1202
65–74 −0.0322 0.1352 0.0298
75–84 0.0000 0.0000 −0.1003

Cohort
1855 −2.2875 0.0000 −0.6699
1865 −1.7225 0.3362 −0.3165
1875 −1.0593 0.7707 0.1352
1885 −0.6079 0.9933 0.3751
1895 −0.3056 1.0668 0.4658
1905 −0.2121 0.9316 0.3478
1915 −0.1045 0.8104 0.2439
1925 0.0750 0.7612 0.2118
1935 0.0654 0.5228 −0.0093
1945 0.0000 0.2287 −0.2862
1955 0.0000 0.0000 −0.4977

Scaled deviance
(df = 15) 15.99 15.99 15.99

Approaches to Identifiability

By its very nature there cannot be a solution to
the identifiability problem in the usual sense. We
have already seen that alternative constraints can
yield very different parameter trends, as we see
from a graph of the age, period, and cohort effects
in Figure 9. Notice that we can rotate the period
slope 180° without affecting the fit of the model,
but as we rotate period in a clockwise direction,
there is a corresponding counterclockwise rotation
for age and cohort. Proposals for ways to obtain a
particular set of parameter estimates are necessarily
arbitrary, and must be subject to critical evaluation
when trying to interpret the results from an analysis.
A variety of solutions have been proposed, but each

has potentially serious limitations. Alternatively, we
can limit our summaries to estimable functions of
the parameters, thus avoiding the arbitrariness of any
particular solution.

Parameter Constraints. A unique set of parame-
ter estimates for a model of time trends is obtained
by setting constraints on the parameters. Sometimes
these are selected arbitrarily by a regression program
that makes use of a particular generalized inverse
when finding maximum likelihood estimates. How-
ever, it is better for the analyst to specify the con-
straint and to understand the implications of that
constraint.

Drop a Factor. Perhaps the simplest approach to
nonidentifiability is the attempt to avoid it by not
considering all three factors simultaneously. When
fitting such a two-factor model, the interpretation of
the results seems quite straightforward, and it may in
fact be a very reasonable approach if such a model
gives a good fit to the data. However, implicit in
any model that drops one of the factors is that it has
no effect, i.e. there is neither curvature nor a linear
effect due to the factor. As we have already seen,
the latter cannot be addressed from the data so that
there may still be a lingering source of bias in the
parameters – the unidentifiable constant ν – which
could have influence even if the model shows a good
fit to the data.

Equate Two Effects. A second approach to finding a
unique set of parameters is to equate just two of the
effects for one of the model factors [3, 4, 13], rather
than equating all effects for one factor to zero. For
instance, two adjacent period effects may be set equal
to each other because there is reason to believe that no
changes occurred during that epoch, e.g. φp1 = φp2.
A variation on this approach is an assumption that
the mean of the successive differences is zero, which
reduces to φp1 = φpJ in the case of period. This
is actually the constraint automatically specified by
some regression programs for the last factor specified
for a model. This constraint is very simple to apply,
and it forces the parameters to return to their original
level, which can yield parameters that are similar to
those obtained by setting the period slope to zero, as
discussed below.

The advantage of this approach to the nonidentifi-
ability problem is that it is quite simple to understand
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Figure 9 Age, period, and cohort effects in which the period slope takes values −0.2(0.1)0.2.

and apply. In addition, it does not force equality for
all the effects, as is the case when one of the factors is
dropped entirely from the model. Unfortunately, there
is usually no more solid basis for equating two effects
than reasoning such as: “There is no reason to expect
a change during these years; therefore, they will be
assumed to be equal.” It is often true that equality
of the fourth and fifth periods is just as logical as
the first and second in a particular situation, and the
resulting parameter estimates can vary considerably
for these equally plausible assumptions.

Minimize Euclidean Distance to Two-factor Models.
Osmond & Gardner [31] propose an approach that
estimates the unidentifiable parameter, ν. Their
criterion uses the Euclidean distance between the
parameters from the age–period–cohort model, and
a corresponding model that drops one of the factors,
e.g. ‖φ(ν) − φ(c)‖ in the case of a model that
drops cohort. Because age plays a vital role in
most responses, it is not eliminated entirely; but
rather the fitted values from an age-only model are

introduced as offset terms. The estimation criterion is
to minimize

g(ν) = ‖φ(ν) − φ(c)‖
ρc

+ ‖φ(ν) − φ(p)‖
ρp

+ ‖φ(ν) − φ(a)‖
ρa

,

where ρc, ρp, and ρa are the residual mean squares
from the respective models.

While this approach has the advantage of offering
a unique set of model parameters, there is some
question about whether the criterion is appropriate
in general. At one level it seems sensible to give
parameters from two-factor models with poor fit (high
residual mean squares) less weight, until we recall
that we can only estimate curvature in a three-factor
model. A factor with a great deal of curvature will
result in a relatively large residual mean square for the
reduced model, thus receiving less weight according
to the estimation criterion. But it is not clear why
the parameter that identifies linear trend should be
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related to curvature, or indeed to parameters from
a two-factor model that may give a poor fit to the
data. Alternative underlying models for the overall
trends for the time factors can give rise to the
same responses, as we have seen, and this approach
does not guarantee that we will find the “correct”
underlying trend.

Set a Slope to Zero. An alternative to excluding
a factor altogether is to assume that its slope is
zero. For example, we might specify that there is
no period slope, βp = 0 [15]. This approach is an
immediate extension of the deletion method in that
both assume that the overall slope for one factor is
zero; however, this approach does not also require
that all the curvature terms be set to zero. There
may still be unidentifiable bias for all three slopes.
Another variation on this theme is to fix the slope
over a shorter span of time, rather than the entire
span. For example, we might assume that there is no
trend with period for the years 1940–1969, a span of
three 10-year periods.

Roush et al. [34, 35] undertook a systematic study
of cancer incidence using data from the Connecticut
Tumor Registry. This analysis focused primarily on
the curvature effects for each of the time factors,
but in the summary graphs a period slope of zero
was specified, βp = 0. The rationale for this approach
was that: (i) there is a strong biologic basis for an
age effect on cancer, so that if only one factor is
unimportant it is likely to be either period or cohort;
(ii) empirical results strongly suggest that cohort has
a stronger association with cancer incidence than
period; and (iii) the assumption that βp = 0 was
less restrictive than ignoring the effect of period
altogether.

Restrict the Range of the Slopes. Another way to
select constraints on the parameters is to employ
theoretical knowledge about the underlying process
with respect to one of the time factors. Wickrama-
ratne et al. [41] analyzed the effects of age, period,
and cohort on risk of major depression in five US
communities. Although a specific assumption about
the overall trends with period and cohort was not
imposed, it seemed reasonable to assume that there
was not a decreasing trend with either period or
cohort, i.e. βp ≥ 0 and βc ≥ 0. Adding βc to both
sides of the first inequality, and βp to the second
gives βp + βc ≥ βc ≥ 0 and βp + βc ≥ βp ≥ 0. Note

that the upper bounds are estimable in each case.
Similarly, the age slope must satisfy the inequal-
ity βa + βp ≥ βa ≥ βa − βc, which also has estimable
upper and lower bounds. Using these bounds, Wickra-
maratne et al. [41] were able to obtain the qualitative
result that there was an increasing trend in the risk of
major depression in the cohort born during the years
1935–1944, even though it was not possible to obtain
a point estimate for the trend.

Estimable Functions. To avoid the adoption of
arbitrary assumptions, estimable functions of the
parameters offer summaries that are identical for any
particular set of model parameters. In this section we
discuss several estimable functions that have been
found to be useful.

Forecasting Based on Age–Period–Cohort Models.
The problem of forecasting trends is one that is diffi-
cult because one must necessarily make assumptions
regarding trends beyond the range of existing data,
which in general cannot be verified. For example, we
might assume that the trends of the past will con-
tinue into the future, an albeit strong assumption [7,
25] which may well be unwarranted in a particu-
lar instance. Nevertheless, it is an assumption that
is commonly made in other contexts, and it is one
that seems reasonable in the absence of contradic-
tory information. If we make a linear extrapolation
for all three time parameters, then the resulting pro-
jected rates are identifiable [16, 30]. This property
can be demonstrated by using a model that only
includes linear terms, remembering that more com-
plicated models that include curvature terms present
no new problems, because the curvature parameters
are estimable. The resulting model for the ith age,
j th period, and kth cohort is

Yijk = µ + i × βa + j × βp + k × βc.

Following the same cohort in time by increasing the
age and the period index by one unit, gives

Yi+1,j+1,k = µ + (i + 1)βa + (j + 1)βp + k × βc,

and the difference between the two rates,

Yi+1,j+1,k − Yi,j,k = βa + βp,

which is an estimable function of the slopes, as we
have already seen.



12 Age–Period–Cohort Analysis

Drift Based on Mean of Successive Differences. We
have already noted Clayton & Schifflers’ [8, 9] sug-
gestion of using the mean of successive differences
as an estimate of overall trend for a particular fac-
tor. They also proposed the sum of the period and
cohort slopes, βp + βc, as an indicator of the overall
trend for the outcome during the span of time cov-
ered by the data, which they call the net drift. This is
an estimable function of the model parameters, and
hence it is unique. We can estimate the net drift for
any set of parameter estimates by taking the contrast

φpJ − φp1

J − 1
+ φcK − φc1

K − 1
.

Alternatively, we can estimate the drift for any range
of periods and cohorts by using the contrast

φpj∗ − φpj

j ∗ − j
+ φck∗ − φck

k∗ − k
.

Drift Based on Slopes. As an alternative to deter-
mining drift on the basis of the mean of first dif-
ferences, we can use the sum of the least squares
estimates of the slopes. This can be expressed in
terms of a linear contrast among the period and cohort
parameters, βp + βc = (C′

p|C′
c) · (φ′

p|φ′
c)

′, where the
elements of contrast vectors are the first-order orthog-
onal polynomial contrasts defined previously. We
accomplish this by concatenating the slope contrasts
for period and cohort. The variance for the contrast
can be estimated from var(βp + βc) = (C′

p|C′
c) ×

var(φ′
p|φ′

c)(C
′
p|C′

c)
′.

Curvature Estimates. While nonidentifiability of the
slope for a time factor implies that we cannot identify
the overall trend, there remains useful information in
the curvatures or departures from linear trend which
are estimable. In fact, any contrast that is orthogonal
to the first-order contrast for linear trend is estimable
when the equal age and period intervals are used.
Hence, we can determine any aspect of the shape
of the curves, including information on whether the
trends are concave upward or downward.

This approach can also be applied when look-
ing for spikes in the overall trend lines by con-
sidering second differences, such as Dk = φc,k −
2φc,k+1 + φc,k+2 in the case of cohort [8, 36]. Tango
& Kurashina [36] studied such effects by compar-
ing mortality from diabetes, ischemic heart disease,

liver cirrhosis, and suicide around the Showa Era,
1925–1940. They found that men born in this era had
a higher than expected risk compared with the overall
trend among men born in surrounding cohorts. This
particular cohort experienced nutritional deprivation
in adolescence during World War II, and they con-
tributed extensively to the rapid economic expansion
during the 1960s which introduced profound changes
to Japanese society.

Because of the overlapping of cohort intervals,
Tango & Kurashina [36] also suggested estimating
the average of second differences, (Dk + Dk+1)/2.

If we think of second differences as comparing
slopes between adjacent points, then a natural exten-
sion is to consider changes in slopes over longer
spans of time [38]. Suppose that we wish to con-
sider slopes for two such cohort epochs, φc1 and φc2,
respectively. We already know that because of the
identifiability problem, we can only estimate slopes
that are aliased, φ∗

c1 = φc1 + ν and φ∗
c2 = φc2 + ν.

However, the difference is estimable because the
indeterminant constant, ν, is canceled out.

The change in slope can be estimated using
a contrast matrix formed by subtracting vectors
that give slopes over the corresponding epochs. For
example, if C1 is the cohort contrast for the slope
during the first epoch, and C2 during the second,
then the change in slopes is determined by (C1 − C2).
To illustrate this using the 11 cohorts represented in
Table 1, suppose we wish to determine whether there
is a significant change in cohort trend for men born
from the turn of the century until 1925, and men born
in the years following 1925. The resulting contrast
would be

( 0 0 0 0 0 −0.5 0 0.5 0 0 0 )

− ( 0 0 0 0 0 0 0 −0.3 −0.1 0.1 0.3 )

= ( 0 0 0 0 0 −0.5 0 0.8 0.1 −0.1 −0.3 ) ,

which yields a Wald statistic of 1.39 on 1 df, and a
contrast estimate of 0.172 (se = 0.149).

Autoregressive Models for Time Effects. We have
already noted the identifiability of second differences.
Berzuini & Clayton [6] propose an autoregressive
model for the time effects (see ARMA and ARIMA
Models) in which successive parameters are given by

φc,k = 2φc,k−1 − φc,k−2 + εck
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in the case of cohort, with similar expressions for
age and period. Each term is clearly related to the
two previous parameters, along with an added ran-
dom perturbation, εck ∼ N(0, σ 2

c ). Berzuini & Clay-
ton describe a Bayesian method for estimating the
model parameters that employs a Markov chain
Monte Carlo algorithm. One of the interesting exten-
sions that this approach offers is Bayesian forecasting
of rates, which is also an estimable function of the
model parameters, as noted above. This is in con-
trast to the use of an autoregressive model for the
cohort effect by Lee & Lin [26], who used this model
to obtain a unique set of parameter estimates. As
always, unique estimates for the nonestimable func-
tions of the parameters depend on strong, unverifiable
assumptions.

Design Matrices. An alternative to the use of con-
trasts for parameter estimates is to construct a design
matrix with linearly independent columns which will
yield a set of parameter estimates that are unique. Of
course, the usual approach of constructing a design
matrix using dummy variables for each level of age,
period, and cohort will necessarily contain a linear
dependence because of the dependence among the
indices noted above.

A partitioned design matrix that will partition
the effects into the linear and curvature components
described above can be written as

X = [1|AL|AC|PL|PC|CL|CC],

where each row corresponds to the rate in a particular
age and period group. The columns represented by
AL and AC are the linear and curvature components
for age, and the remaining elements of the design
matrix are the corresponding terms for period and
cohort. Regression parameters that correspond to the
components of this design matrix are given by the
vector

� = (φ0|βa|γa|βp|γp|βc|γc)
′.

The column vector for the age slope, AL, may be
defined as having the elements ALi = i − [I + 1]/2
for the ith age group. For period and cohort, the slope
columns, PL and CL, are similarly defined. The linear
dependence in this design matrix is readily apparent
because PL = AL + CL. Thus, a model that includes
AL and CL would have already effectively included
PL. The resulting regression parameter associated

with the remaining AL will actually estimate the sum
of the age and period slopes, βa + βp. Likewise, the
CL parameter would estimate βc + βp. These are two
of the estimable functions of the slopes noted earlier.

Curvature elements of the design matrix are given
by the remaining regressor variables that saturate the
effect. If the first and last columns for age in a design
matrix containing a 0–1 indicator variable for each
category are dropped from the model, then we are
effectively constraining φa1 = φaI , which ultimately
yields slopes that correspond to those obtained by
considering means of successive differences. How-
ever, if we choose to represent the curvatures using
variables that are orthogonal to the linear term, then
we obtain slopes that correspond to the least squares
slopes.

Summary of Estimable Effects. We now summa-
rize the effect of the nonidentifiability problem on
our ability to address questions of scientific interest.
Without making strong assumptions, we cannot esti-
mate overall changes for age, period, and cohort. This
is a severe limitation because some of the most inter-
esting scientific questions relate to whether trends are
increasing or decreasing. However, there remain a
number of questions that can still be addressed using
quantities that are estimable, including:

1. predicted values;
2. slope changes or a deflection of an overall trend;
3. temporary spikes or departures from overall

trend; and
4. net drift or combined period and cohort changes.

Interesting scientific questions can often be framed
in terms of quantities that are estimable, although
it may require us to conceptualize a problem in a
different way. Ultimately, we want to produce valid
estimates, and if we wish to do that without making
strong assumptions about the model parameters, then
we need to limit ourselves to estimable functions.

Nonlinear Effects. The difficulty caused by the
nonidentifiability problem has led some to consider
the use of intrinsically nonlinear models. One exam-
ple is the model used by Moolgavkar et al. [29]:

Yijk = µ + φpj + φck + φai · δj + εijk,

which was also considered by James & Segal [21]. In
this model, φpj and φck represent the effects due to
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period and cohort, respectively. The effect of age,
φai , is included along with a multiplicative factor
involving period, δj , which can modify the effect
of age. Even though a unique set of parameters can
result from this model, the parameters can be difficult
to estimate and they can be inherently unstable. A
special case occurs when

δj = 1, for all j,

which is identical to the usual model, and in instances
where this gives a good fit to data the parameters are
likely to be unstable [9, 36].

Another approach that sometimes leads to non-
linear models involves the theoretical introduction
of external information for one of the parameters,
thus specifying its functional form. For example,
Holford et al. [19] discuss the use of various forms
of the multistage carcinogenesis model described by
Armitage & Doll [1] for use in the analysis of lung
cancer incidence. In this case the effect of age has
the same form as a Weibull hazard

A(a) ∝ aω,

where the parameter ω represents the number of
stages minus one. If the response represents the log
hazard, then the functional form for the age effect
becomes

φai = ω × ln(ai),

which is no longer linear in age. This and related
nonlinear models for age do yield a unique set of
model parameters, thus avoiding the adoption of a
constraint. However, the unique set of parameters
relies heavily on the success of a particular math-
ematical model in describing the effect of age. Even
so, the parameters can be extremely unstable and dif-
ficult to estimate using the usual maximum likelihood
approach. In addition, the estimates of overall trend
can vary widely depending on the model chosen for
the effect of age [27, 28].

Replace Temporal Variables. Underlying most
studies of time trends is the idea that the effect of
time is related to some factor that will affect the out-
come. If this is correct, then a better analysis will
include a more direct measure of the factor, rather
than using time as a surrogate measure. A prob-
lem in using a model that employs information on
causative agents is that we must have population data

on exposure over time. Lung cancer is one instance
where such a study is feasible, because we know
that cigarette smoking is by far the leading cause
of the disease [12, 39], and exposure information is
available. Even so, there are several additional facts
that must be kept in mind when developing a model,
including: (i) smokers often begin in their late teens
or early twenties, a fairly narrow age range, so that
a change in cigarette consumption primarily affects
individuals in these age groups; (ii) there can be a
long lag (over 20 years) between the time one starts
to smoke until cancer is diagnosed; (iii) not every-
one has the same exposure, because some consume
more cigarettes, and some cigarettes pose a greater
risk; (iv) there is a cumulative effect of smoking, so
that individuals who consume the same number of
cigarettes per day at one point in time would have
different cumulative exposures if they began at dif-
ferent times; and (v) individuals who quit smoking
have a risk intermediate between current smokers and
those who never smoked [11].

The contribution to risk from beginning to smoke
is clearly identifiable with birth cohort [see (i) above].
However, the introduction of filters and other manu-
facturing changes in cigarettes would be associated
with a period effect. Other factors could have compo-
nents that are identified with both cohort and period.
For instance, certain generations may be more health
conscious and thus able to quit smoking more readily,
a cohort effect, but the overall population might also
be influenced by a report from the Surgeon General
or an antismoking television advertising campaign, a
period effect.

Brown & Kessler [5] fitted a model to US lung
cancer mortality that used US data on cigarette
composition over time, which would be expected to
affect primarily the period parameters. The period
effect was expressed as a linear function of a measure
of tar, so that the log rate became

Yijk = φ0 + φai + βXj + φck + εijk,

where Xj is a measure of the population’s tar
exposure for the j th period. While estimates of the
prevalence of smoking were not included in the
model, the pattern in the estimated cohort effects
was similar to the temporal pattern of smoking
prevalence, estimated from sample surveys in men
and women. The successful use of information on
changes in cigarette composition in this particular
instance does not necessarily imply that the approach
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will be uniformly successful. If there were a strictly
linear trend in the mean tar content over time, then the
Xj would be linearly dependent on I and k, resulting
once again in nonidentifiability. Along similar lines,
Holford et al. [20] used population information on
the prevalence of smokers, ex-smokers, and mean
years smoked to model incidence rates in Connecticut
(see Smoking and Health).

Higher-order Models

Thus far we have only addressed models that include
main effects for age, period, and cohort. We now
consider work on higher-order models that allow for
interactions, either with the time factors themselves,
or with other groups. The identifiability problem
continues to manifest itself in these more complex
models; nevertheless, it is possible to address some
substantive questions.

Interactions with Temporal Factors. Each of the
models considered above assumes that the effect of a
time factor is not modified by the level of the others,
i.e. there are no interactions. Part of the problem
with considering interactions between these temporal
variables arises because in any two-factor model the
incorporation of an interaction results in a saturated
model. For example, if we only consider age and
period the model becomes

Yij = µ + φai + φpj + φap,ij + εij ,

where φai and φpj are the main effects for age and
period, and φap,ij is the interaction. Comparing this
model with the age–period–cohort model, we can
see that the only difference between the two is that
the first model includes a cohort effect, φck , and
the second an age–period interaction, φap,ij . Because
the interactions saturate the model that only includes
main effects due to age and period, we can think of
the cohort effect as a particular type of age–period
interaction [25]. In a similar way we can describe
the period effect as a particular type of age–cohort
interaction or the age effect as a particular type of
period–cohort interaction, both of which are saturated
models. Fienberg & Mason [14] have studied poly-
nomial models for the three time factors, and have
indicated which interactions can be identified. The
interpretation of interactions in higher-order polyno-
mial models is difficult under the best of circum-
stances, without complicating things still further with

the nonidentifiability problem. Hence, considerable
care is needed when introducing interactions into
these models.

An alternative to polynomial interactions among
temporal factors is simply to split times as, for
example, in the comparison of cohort trends in
breast cancer among women younger and older than
50 [18]. In one study this division was used because
of a suggestion that breast cancer trends may differ
between pre- and postmenopausal women [2]. In this
instance the model may be written as

log λijk =






µ + φai + φpj + φck + φac,k + εijk,

if i < i0,

µ + φai + φpj + φck − φac,k + εijk,

if i ≥ i0,

where φac,k represents the difference from the mean
log rate, and i0 is the age category where the split
is made. This type of interaction would cause no
additional difficulties if we were only considering
an age–period model, but another complication does
arise when cohort is involved. If we follow the cohort
diagonals in a typical table of rates, we see that
by changing the row or age group at which the
interaction occurs, we are at the same time changing
the set of cohorts involved in making inferences about
the interaction.

Interactions with Nontemporal Factors. Non-
identifiability also affects our ability to compare
trends among groups by testing for interactions with
the temporal variables. Once again it is convenient to
partition the trends into linear and curvature compo-
nents and, as before, only the linear terms are affected
by the identifiability problem. We can express the
differences between two groups by

(β∗
a1 − β∗

a2) = (βa1 − βa2) + (ν1 − ν2),

(β∗
p1 − β∗

p2) = (βp1 = βp2) − (ν1 − ν2),

(β∗
c1 − β∗

c2) = (βc1 − βc2) + (ν1 − ν2),

which are clearly aliased. In some circumstances we
may be able to assume that the trends for one of the
factors are identical for the groups. For example, we
may be willing to assume that the age effect reflects
an underlying biological process that is the same for
all populations, i.e. βa1 − βa2 = 0. Hence, equating
the two age linear trends identifies ν1 − ν2, and thus
the remaining slope differences.
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To illustrate how this result can be used in
practice, consider the comparison of lung cancer
trends for men and women in Connecticut. We can
force the age trends to be equivalent for males and
females by fitting a model that includes A, P, C, S,
S·P and S·C, where S represents sex and where a
dot indicates interaction terms. However, we might
question whether it is reasonable to equate the age
trends, because there is a variety of biological factors
that might result in differences between men and
women, including the possible effects of hormonal
changes resulting from the menopause. Hence, we
may have to settle for comparing the estimable
interactions, such as those with curvature trends or
drift. Equating age effects may be more reasonable
when comparing rates for the same gender among
different geographic regions [10]. However, Clayton
& Schifflers [9] indicate that there is still the danger
of regional differences in age-specific exposure to risk
factors which can affect the age parameters.

Polynomials and Splines. In the analyses above,
the time factors are treated as categoric, which allows
for complete curvature flexibility for the trends.
However, in some instances the variances for the
individual responses may be large, such as the case
when rates are based on small numbers of cases. In
these circumstances it may be desirable to smooth
the curvature, either by representing the effects by
polynomials or by using spline functions. For age,
these can represented by

φai =
(

i − I + 1

2

)
βa + Xa2iβa2 + · · ·

+ Xapi × βap,

where Xapi represents a regressor variable for a pth-
order polynomial or a particular term in a spline
function. The usual representation of these regressor
variables is highly collinear with the first-order linear
term, i − (I + 1)/2. Thus, the identifiability problem
can result in parameters that are difficult to interpret,
unless an effort is made to identify the separate
components of trend using the principles discussed
above.

We can partition the effects into least squares
linear components and the remaining curvature by
defining regressor variables that are orthogonal to the
linear components of trend. In the case of polynomi-
als, this can be accomplished by employing orthogo-
nal polynomials, which give rise to underlying slope

parameters that can be interpreted in much the same
way as in the models described earlier. Likewise,
alternative representations of curvature, such as spline
functions, can be constructed by defining variables
that are orthogonal to the linear term. This can be
accomplished for age by using

X∗
a = Xa − La(L′

a × La)
−1 × L′

a × Xa,

where La is a vector of linear regressors, Xa

is a matrix or regressor variable, and X∗
a is the

matrix or regressor variable that is orthogonal to
La. A similar method can be applied to the period
and cohort effects. An example of this method is
shown in an analysis of thyroid cancer incidence in
Connecticut [42].

Nonparametric Methods

A nonparametric approach to the analysis of period
and cohort trends has been developed by Tarone &
Chu [37]. To address the question of a cohort effect,
age-specific rates are compared between adjacent
cohorts and the total number of decreases is used
to construct a permutation test. The null hypothesis
is that there is no trend with cohort, and the mean
and variance of the number of decreases expected out
of n comparisons between successive cohorts in the
same age group are n/2 and (n + 2)/12 respectively.
In a typical rectangular age–period matrix of rates,
not all cohorts are represented by the same number
of age groups. For example, in the data shown in
Table 1 only one age group can be compared for the
1855 and 1955 cohorts, but four each can be made
for the four cohorts from 1885 to 1915. The expected
number of decreases is

1 + 2 + 3 + 4 × 4 + 3 + 2 + 1

2
= 14,

and the sum of the corresponding variances is 4. Only
three decreases are observed in the table, yielding the
test statistic z = (3 − 14)/4 = −2.75, which may be
compared with a standard normal deviate. In this
case we can conclude that the rates are not constant
across the cohorts.

A similar analysis can be conducted across peri-
ods, which results in the same observed and expected
numbers of decreases; only the total variance has
changed. In the example from Table 1, four compar-
isons are made in each of seven age groups, resulting
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in a total variance of 7 × (4 + 2)/12 = 3.5, instead
of 4.

Additional refinements offered by Tarone &
Chu [37] include the consideration of blocks of
cohorts for analysis to address the possibility that
cohort effects may only be important during certain
epochs and not others (see Blocking). This raises the
issue of multiple comparisons that must be taken
into account when trying to interpret the results.
They also suggest comparing the results of analyses
obtained by forming blocks of cohorts with blocks of
periods to determine whether one factor predominates
in the overall direction of the trends.
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Aging Models

Models for aging, senescence, and biologic lifespan
have come under intensive scrutiny in recent years
due to increasing general scientific and medical inter-
est in aging [7]. Projections of “oldest-old mortality”,
i.e. the mortality of those aged 85 or more in human
populations, are important to plan for the future of
society. The future of health care, pension, and social
security systems critically depends on an assessment
of oldest-old mortality and lifespan [9, 22, 25]. Cur-
rently, the most long-lived, well-documented person
was Jeanne Calmont of France, who died at age 122
in 1997, providing an example of how far human
lifespan can extend. Of particular interest recently has
been the study and analysis of an observed slowing of
mortality that occurs for the survivors into the ranks
of the oldest-old (see [5, 15, 29, 32]).

Characteristic features of lifetime data in aging
and demographic research [14], which distinguish
such data from typical survival data such as obtained
in cancer clinical trials, include the following. (i) All
individuals in a cohort enter the study simultane-
ously (no staggered entry). Entry into the study
occurs at a fixed age, often at birth. (ii) A cohort is
observed until the last member is dead, and lifetime
normally refers to the entire lifespan of each individ-
ual. (iii) Censoring and truncation are only seldom
encountered. (iv) The data are usually aggregated in a
life table. The exact time of death is rarely recorded.
The aggregation intervals vary between days (as in
biodemographic studies) to five year intervals (as in
some human studies). The aggregated nature of the
data must be taken into account for model fitting
and inference. (v) The behavior of mortality in the
right tail, including the study of extreme lifetimes, is
of particular interest (oldest-old mortality). (vi) Large
initial total cohort sizes are necessary to assure a suf-
ficiently large group of oldest-old. In some studies,
this is achieved by simultaneously observing many
smaller cohorts, a fact that needs to be taken into
account in the analysis. (vii) Individual-level Covari-
ates and events may be recorded at irregular obser-
vation intervals before death.

In spite of these particular features, the
quantification of aging and mortality is based on
the same concepts as are used in survival analysis
(see Survival Distributions and Their Characte-
ristics). The dynamics of mortality in dependence

on age are usually measured in terms of the force
of mortality, also referred to as instantaneous death
rate, hazard rate, or hazard function. The hazard rate
or force of mortality at age t is defined as

λ(t) = lim
∆→0

1

∆
P(t + ∆ > T ≥ t |T ≥ t),

where T denotes lifetime (assumed to be a contin-
uous random variable). The force of mortality λ(t)

describes the instantaneous risk of dying at age t .
Other functions which equivalently characterize

the lifetime distribution (see Cox [6]) are:

1. The survival function

F(t) = P(T ≥ t), t ≥ 0,

which is related to λ(t) via

F(t) = exp

[
−

∫ t

0
λ(u) du

]
,

λ(t) = − d

dt
log[F(t)].

2. The probability density function

f (t) = lim
∆→0

1

∆
Pr(t ≤ T < t + ∆), t ≥ 0,

which is related to λ(t) via

f (t) = λ(t) exp

[
−

∫ t

0
λ(u) du

]
,

λ(t) = f (t)
∫ t

0
f (u) du

.

3. The remaining life expectancy function, also
referred to as expected residual life function,

r(t) = E(T − t |T ≥ t), t ≥ 0,

where E(·|·) denotes conditional expectation. The
remaining life expectancy function is related to
λ(t) via

r(t) =
∫ ∞

t

exp

[
−

∫ u

t

λ(v) dv

]
du,

λ(t) =
{

d

dt
[r(t)] + 1

} /
r(t).
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Note that r(0) is the expected lifetime from birth
for individuals. The relative merits of hazard func-
tion estimates and remaining life expectancy function
estimates are discussed below in the context of a data
example.

Mortality data typically are in the form of a life
table (ni, di), i ≥ 1, where for time intervals [∆(i −
1), ∆i] of length ∆, ni is the number of subjects
alive and under observation at the beginning of the
interval, and di is the number of observed deaths
in the interval. For data exploration, one usually
computes and plots the central death rate or actuarial
estimate for such data. Evaluated at ti = ∆(i − 1/2),
the central death rate is

q̃c(ti) = 2di

∆(ni + ni+1)
.

The central death rate has a rapidly rising variance
as the numbers of subjects at risk ni declines.

A common approach for further analysis is to
fit a parametric model to the data, using the maxi-
mum likelihood method (see Parametric Models in
Survival Analysis). Given a parametric model with
hazard rate (force of mortality) λ(t, θ), where t ≥ 0
denotes age and θ ∈ Rp, p ≥ 1, is a parameter vec-
tor, the likelihood function is found to be

L(θ) =
∞∏

i=1

{F(∆i, θ) − F [∆(i − 1), θ]}di ,

where F(t, θ) = 1 − exp[− ∫ t

0 λ(u, θ) du] is the
distribution function. The maximum likelihood
estimator is then, as usual, θ̂ = arg maxθ∈Rp L(θ).
Modified versions of L are used for censored data
or special sampling schemes, such as occur in the
nematode study of Brooks et al. [3].

The standard parametric model for aging and mor-
tality data is the Gompertz model [10], which stipu-
lates that the force of mortality rises exponentially,

λ(t) = β0 exp(β1t), β0, β1 > 0, t > 0,

or linearly on the log scale, log[λ(t)] = log β0 + β1t .
This is the hazard rate of an extreme value distri-
bution. The Gompertz model can be motivated in
various ways. It is, for instance, obtained as a special
case in random walk models of aging, considering
physiological age states in a state space [33].

The Gompertz model can also be derived via the
“disposable soma theory” of aging, which assumes

that reproduction takes away resources for repair
and thus leads to faster senescence [2]. Biological
consequences and comparisons of Gompertz and
Weibull models were studied in [23].

Fitting the Gompertz model to mortality data from
various sources, some authors found that, when con-
sidering a sample of fitted parameters, the linear rela-
tionship log β̂0 = c0 − c1β̂1 with positive constants
c0, and c1 [24] appears to hold. While this indicates
simply a negative correlation between the two fit-
ted parameters, far-reaching consequences have been
claimed, including the existence of an upper limit to
human lifespan [8].

Other fairly flexible parametric aging models
which can be derived from various assumptions are
the two-parameter Weibull model [31]

λ(t) = β0

β1

(
t

β1

)β0−1

, β0 > 1, β1 > 0, t > 0,

with

log(λ(t)) = log β0 − β0 log β1 + (β0 − 1) log t,

and the Gompertz–Makeham model [16]

λ(t) = β0 + β1 exp(β2t), β0, β1, β2 > 0.

The latter is an extension of the Gompertz model,
adding a baseline mortality.

Many other parametric distributions may rea-
sonably be fitted to lifetime data; for instance, a
shock model in which the force of mortality is
composed of a sum of parameterized Gaussian-
type peaks [35]. Examples of Gompertz and Gom-
pertz–Makeham hazard rates (force of mortality) are
shown in Figure 1.

Extensions of Gompertz, Gompertz–Makeham,
and other models have been proposed [27] by assum-
ing that the individuals vary randomly in their frailty,
a variation that could be rooted in genetics or environ-
ment. Such random effects models are also referred to
as heterogeneous or compositional models. An exam-
ple is the Gompertz model with frailty,

λ(t |Z) = Z exp(β1t), β1 > 0,

where Z is a random variable with a gamma or
inverse Gaussian distribution. This model has been
discussed by various authors [1, 13].
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Figure 1 Force of mortality shown for two Gom-
pertz models with parameters (β0, β1) = (0.5, 0.2)( )

(β0, β1) = (0.1, 0.4)( . . . . ), and a Gompertz–Makeham
model with parameters (β0, β1, β2) = (0.5, 0.1, 0.2)

(– · – · –)

The idea underlying the frailty approach is
that each individual is following its own frailty-
determined trajectory of mortality. The ensemble
of these random forces of mortality determines the
population force of mortality. It is important to note
that one cannot conclude that an individual force
of mortality is the same as the population force of
mortality. This mistake has been made many times
in the literature, starting with Gompertz [10]. Indeed,
it was demonstrated by Vaupel & Yashin [26] that
even if all individuals in a cohort have monotone
increasing force of mortality, the population force
of mortality may nevertheless be decreasing.
The distinction between population and individual
force of mortality is of great importance for
an understanding of the biologic determinants of
aging.

The problems of overfitting and lack of
interpretability associated with parametric modeling
of aging and mortality have led to recent renewed
interest in nonparametric modeling. This requires
primarily the nonparametric estimation of the force
of mortality from life table data. This problem
has a history of more than a century, starting
with Gram [11] and important contributions by
Hoem [12]. Denote a generic smoother S, like
a smoothing spline or local linear fit or kernel
smoother, based on weight functions Wi and
smoothing scatterplot data (ti , Yi), by

S(t, (ti , yi)i=1,...,n) =
n∑

i=1

Wi(t)Yi .

Letting q̂(t) = S[t, (ti, q̃i)i=1,...,n], which is a
smoothed version of the central death rate, a
reasonably smoothed force of mortality can be
obtained as ([19, 30])

λ̂(t) = − log[1 − q̂(t)].

An analogous estimate for the remaining life
expectancy function is obtained by

r̂(t) = S




t,



ti ,
1

ni

∑

j∈Ni

(Tj − ti )





i=1,...,p




 ,

where Tj is the lifetime of the j th subject, Ni is the
index set of those subjects still at risk at ti , Ni = {j :
Tj ≥ ti}, and ni is the number of elements of Ni . The
implementation of such smoothers requires choice of
a smoothing parameter [18].

As an example for the application of these non-
parametric procedures, and to demonstrate how force
of mortality and remaining life expectancy function
complement each other, consider data on cohorts of
female medflies. For details of these data and their
analysis, see Müller et al. [20]. Force of mortality
and remaining life expectancy function estimates are
shown in Figure 2. They have been computed for two
groups of medflies: a protein-deprived group (solid
lines) and a full-diet group (dashed lines).

A striking finding is a prominent peak in the force
of mortality at around day ten, which appears for the
protein-deprived group only. This peak corresponds
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Figure 2 Nonparametric function estimates for force of
mortality and remaining life expectancy, based on data
of two cohorts of protein-deprived ( ) and full diet
(- - - - ) female medflies of more than 100 000 medflies
each. Estimates of hazard rate (force of mortality) (a) and
of remaining life expectancy function (b): (a) is a modified
version of Figure 1 of Müller et al. [20]
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to a sharp drop in the remaining life expectancy
function at around the same time. It can be interpreted
as the signature of a vulnerable period for female
medflies at reproduction. Since such a phenomenon
would be hard to anticipate with parametric aging
models, this example demonstrates that nonparamet-
ric modeling, properly implemented, is capable of
establishing novel features by letting the data speak
for themselves.

Future work on modeling of aging data is needed
to address a multitude of open questions. This is an
area of research with impact for society, medicine,
and life sciences, in which statisticians can and should
make important contributions. Open problems con-
cern the further development of dynamic stochastic
models [17, 34], and the incorporation of life his-
tory and covariate information for lifetime data [4]
Addressing these problems requires the develop-
ment of innovative lifetime regression models, that
extend the classical tools of models for the decel-
eration of aging of the oldest–old [28] and models
that include and predict secular trends in mortal-
ity, in particular the continuing increases in life
expectancy [21, 28].
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Agreement, Measurement
of

Reliability of measurements taken by clinicians or
diagnostic devices is fundamental to ensure efficient
delivery of health care. Consequently, clinicians and
health professionals are becoming more aware of the
need for evaluating the extent to which measure-
ments are error-free and the degree to which clinical
scores might deviate from the truth. Specifically,
the recorded ratings or findings made during clini-
cal appraisal need to be consistent, whether recorded
by the same clinician on different occasions or by
different clinicians within a short period of time. The
consistency of the ratings reflect agreement, which
is a distinct type of association. A clearly defined
measure of agreement describes how consistent one
clinician’s rating of a patient is with what other clini-
cians have reported (interclinician reliability), or how
consistently a clinician rates a patient over a number
of occasions (intraclinician reliability). High agree-
ment is indicative of how reproducible the results
might be at different times or at other laboratories [9].

Investigators often have some latitude on the
choice of how to measure the characteristics of
interest in assessing agreement between raters. One
practical aspect of this decision may relate to the
implications of measuring the characteristic on a
continuous or categorical scale. For categorical mea-
surements, or when the levels of a continuous char-
acteristic are categorized, the kappa coefficient and
its variants seem to be appropriate tools to mea-
sure agreement among raters. The kappa coefficient
gives an estimate of the proportion of agreement
above chance [12]. For interval or continuous scale
measurements, we estimate interclinician reliability
with the “intraclass correlation coefficient” (ICC)
(see Correlation).

In this paper we review some of the well-known
indices of agreement, the conceptual and statistical
issues related to their estimation, and interpretation
for both categorical and interval scale measurements.

Cohen’s Kappa and Darroch’s Measure of
Category Distinguishability

Let n subjects be classified into c nominal scale
categories 1, . . . , c by two clinicians using a single

rating protocol, and let πjk be the joint probability
that the first clinician classifies a subject as j and the
second clinician classifies the subject as k. Let πj · =∑

k πjk , and π·k = ∑
j πjk . There are two questions

that need to be addressed; the first is related to the
interclinician bias, or the difference between two
sets of marginal probabilities πj · and π·j , while
the second is related to the magnitude of

∑
πjj , or

the extent of agreement of the two clinicians about
individual subjects or objects.

Cohen [12] proposed that a coefficient of agree-
ment be defined by

κ =

c∑

j=1

(πjj − πj ·π·j )

1 −
c∑

j=1

πj ·π·j

(1)

as a measure of agreement between two raters or
clinicians. Cohen’s justification was that the sum of
the diagonal probabilities, π0 = ∑

πjj , is the per-
centage of agreement between the two raters. Since
πe = ∑

πj ·π·j is the probability of random or chance
agreement, it should be subtracted from π0. The
division by 1 − πe results in a coefficient whose max-
imum value is 1, which is attained when πjk = 0, j �=
k. An estimate of κ is obtained by substituting njk/n

for πjk , where njk is the observed frequency for the
j, kth cell.

The definition of κ given in (1) is suitable for c × c

tables with nominal response categories. For ordinal
response, Cohen [13] introduced the weighted kappa,
κw, to allow each cell j, k to be weighted according
to the degree of agreement between the j th and kth
categories. Assigning weights 0 ≤ djk ≤ 1 to the j, k

cell with djj = 1, Cohen’s weighted kappa is

κw =

c∑

j=1

c∑

k=1

djk(πjk − πj ·π·k)

1 −
c∑

j=1

c∑

k=1

djkπj ·π·k

. (2)

The large sampling distribution of the esti-
mated κw has been investigated by Everitt [24]
and Fleiss et al. [35]. The equivalence of κw

to the ICC was shown by Fleiss & Cic-
chetti [32], Fleiss & Cohen [33], Krippendorff [46],
and Schouten [61, 62].
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In many circumstances the categories into which
subjects are classified do not have clear objective def-
initions. As a result, clinicians may interpret the cat-
egory definitions differently and the categories may
not be completely distinguishable from each other,
even by the same clinician. Darroch & McCloud [16]
defined the degree of distinguishability from the joint
classification probabilities for two clinicians. They
derived an average measure of degree of distinguisha-
bility, δ, as

δ = 2
∑

j<k

πjjπkk − πjkπkj

πjjπkk

/
c(c − 1). (3)

We estimate δ by substituting njk/n for πjk .

Aickin’s Alpha for Nominal Responses

It is evident from the definition of κ that it represents
a fraction of subjects not classified in some category
by chance; that is, they are classified for reasons
other than chance. Aickin [2] attempted to make
the notion of “agreement for cause” concrete by
introducing another measure of agreement termed “α-
measure”, later referred to as Aickin’s α. He based
his argument on the idea that subjects to be classified
are drawn from a population which is a mixture of
two subpopulations. The first subpopulation consists
of subjects which are difficult to classify, so that
agreement between the two raters will be by chance
alone. The second subpopulation consists of subjects
that are easy to classify, so the raters will always
agree (agreement for cause). The proposed parameter
α is defined as the fraction of the entire population
that consists of items that are classified identically for
cause rather than by chance.

Interestingly, a case for Aickin’s α can be made
from reviewing the literature on the reliability of
clinical methods. Koran [43] reported a study by
Conn et al. [14] on physicians’ agreement in diag-
nosing varices by esophagoscopy. In that study,
two “experienced endoscopists” examined 39 male
cirrhotic patients for esophageal varices during the
same esophagoscopic examination. When the physi-
cians disagreed, the one not reporting varices usu-
ally reported prominent mucosal folds, with which
varices may be confused. The authors noted that
“most diagnostic difficulties occur in the patients in
whom esophageal varices are small”. Clearly, the

more prominent a sign, the easier it should be to rec-
ognize. One may argue, then, that in the population
of male cirrhotic patients, the fraction with promi-
nent signs is α (those which are easy to classify),
while 1 − α have less prominent signs and therefore
are difficult to diagnose.

According to Aickin’s setup, let πr(j) and
πc(j), j = 1, 2, . . . , c, be any two probability
distributions on the classification categories. The joint
distribution πjk , governing the classification of a
subject by the first clinician in category j , and the
second clinician in category k, is defined by

πjk = (1 − α)πr(j)πc(k) + αs−1djkπr(j)πc(k),

(4)

where djk = 1 if a row classification of j and column
classification of k are considered to be in agreement;
djk = 0 otherwise, and s = ∑

djkπr(j)πc(k).
This can be seen as a mixture of two discrete dis-

tributions. The first occurs with probability 1 − α,
and is a distribution under which the two classifi-
cations are independent with marginal probabilities
πr(j) and πc(k) for the two raters. The second which
occurs with probability α is a distribution under
which there can only be perfect agreement. In this
manner the parameter α acquires its meaning as the
fraction of the population that produces “agreement
for cause” between the two clinicians. A consequence
of (4) is

α =

∑

jk

djkπjk −
∑

jk

djkπr(j)πc(k)

1 −
∑

jk

djkπr(j)πc(k)
. (5)

This shows that the parameter α follows the pattern
of kappa-like statistics given in (1). The fundamental
difference lies in the fact that πr(j) and πc(k) are not
marginal table probabilities, but rather the marginal
probabilities of the subpopulation of difficult-to-
classify patients.

The above model contains 2(c − 1) marginal prob-
abilities and the α parameter (total of 2c − 1 param-
eters). Since the saturated model (see Generalized
Linear Model) contains c2 − 1 parameters, the num-
ber of degrees of freedom are (c2 − 1) − (2c − 1) =
c(c − 2). For model fitting by maximum likelihood
with application to cancer registry data (see Disease
Registers), see Aickin [2].
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Monotonic Agreement

Other measures of agreement for ordinal data, which
do not involve any assumptions concerning the exact
size of the interval between pairs of ordinal classes,
are Kendall’s τ [42] and Goodman and Kruskal’s
γ [37]. These two statistics measure monotonic
agreement. The basic building blocks of most ordinal
measures are the concepts of concordant and discor-
dant pairs of observations. For example, select two
subjects at random from the c × c table and let Xl

and Yl represent the lth subject’s score by the first
and the second rater; Xm and Ym stand for the corre-
sponding score for the mth subject. A pair is said to
be concordant if one of the two subjects is higher (or
lower) on both X and Y than the other person. Specif-
ically, if Xl > Xm and Yl > Ym, or Xl < Xm and
Yl < Ym, then the pair (Xl, Yl)(Xm, Ym) is concor-
dant. The simplest way to calculate the total number
of concordant pairs, NC, is to multiply each cell fre-
quency, njk , by the total number of subjects falling
in cells lying to the right and below it and then sum-
ming the results. If, on the other hand, Xl > Xm and
Yl < Ym, or Xl < Xm and Yl > Ym, then the pair is
discordant. The total number of discordant pairs in a
table, ND, is obtained by multiplying each cell fre-
quency, njk , by the total number of subjects in the
cells lying to the left and below it, and then sum-
ming the results. If there are tied observations, they
are given the average of the ranks they would have
received if there had been no ties. The formula for
τ is

τ = NC − ND
{[(

n

2

)
− T1

] [(
n

2

)
− T2

]}1/2 , (6)

where T1 = 1
2

∑c
j=1 nj ·(nj · − 1), nj · being the num-

ber of tied observations on the j th group of ties of
rater 1, and T2 = 1

2

∑c
j=1 n·j (n·j − 1), n·j being the

number of tied observations in the j th group of ties
of rater 2.

Binary Responses: Agreement in the
2 × 2 Table

One of the most familiar and extensively studied
types of cross-classification in medical research is the
2 × 2 table, as shown in Table 1.

Table 1 Classification probabilities into two categories by
two raters

Clinician 1
Disease No disease

Disease π11 π12 π1·
Clinician 2

No disease π21 π22 π2·

π·1 π·2

In addition to the simplicity of computing
measures of agreement in such tables, many such
measures reduce to functions of the cross-product
ratio, Φ = π11π22/π12π21, which is the most widely
known measure of association in epidemiologic
studies.

Recall that a crude measure of agreement is π0 =
π11 + π22, which is estimated by π̂0 = (n11 + n22)/n.
This measure is equivalent to Dunn & Everitt’s [22]
“matching coefficient of numerical taxonomy”. If the
clinicians are diagnosing a rare condition, the fact
that they agree on the absence of the condition (the
frequency, n22) may be considered uninformative. A
better measure of agreement in this case is estimated
by

s = n11

n11 + n12 + n21
. (7)

This is the Jaccard coefficient of numerical taxon-
omy [20, 22]. Before we discuss other indices of
agreement for binary data, we show the relationship
between association and agreement. Such a relation-
ship is harder to demonstrate when the number of
categories is larger than two.

First, the Pearson product moment correlation in
a 2 × 2 table is

ρ = π11π22 − π12π21

(π1·π2·π·1π·2)1/2 , (8)

and its sample estimate is

ρ̂ = n11n22 − n12n21

(n1·n2·n·1n·2)1/2 . (9)

The value of ρ varies between −1.0 and 1.0. It
equals zero if the two sets of ratings are independent.
From Eq. (8), ρ = 1.0 if π12 = π21 = 0, and ρ =
−1.0 if π11 = π22 = 0. In this sense, the correlation
coefficient gives both the direction and strength of
association.
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If we standardize the 2 × 2 table so that both
row and column marginal totals are (1/2, 1/2) while
the cross-product ratio φ remains unchanged, the
adjusted cell probabilities are

π∗
11 = π∗

22 = 1

2

(
φ1/2

φ1/2 + 1

)

and

π∗
12 = π∗

21 = 1

2

(
1

φ1/2 + 1

)

[7, p. 379]. It can be shown that

ρ = φ − 1

(φ1/2 + 1)2
.

Another well-known measure of association is Yule’s
Q. It is defined as

Q = π11π22 − π12π21

π11π22 + π12π21
= φ − 1

φ + 1
. (10)

Clearly, the cell probabilities in Table 1 can be re-
parameterized and rewritten as functions of any of
the above measures of association. In terms of ρ we
have

π11 = π1·π·1 + ρω,

π22 = π2·π·2 + ρω,

π12 = π1·π·2 − ρω, (11)

and
π21 = π·1π2· − ρω,

where ω = (π1·π2·π·1π·2)1/2. Shoukri et al. [66]
showed that Cohen’s kappa can be written as

κ = 2ρω

π1·π·2 + π·1π2·
(12)

= 2(π11π22 − π12π21)

π1·π·2 + π·1π2·
. (13)

Note that, when the two raters are unbiased rela-
tive to each other, i.e. π1· = π·1, then κ = ρ. It is
also noted that perfect association (ρ = 1) does not
generally imply perfect agreement (unless π1· = π·1).

Rogot & Goldberg [59] proposed another index
of agreement based on the conditional probabilities
π11/π1·, π11/π·1, π22/π2·, π22/π·2. Their proposed
index is

A1 = 1

4

[
π11

π1·
+ π11

π·1
+ π22

π2·
+ π22

π·2

]
. (14)

The chance expected value of A1 was shown by
Fleiss [28] to be 1/2. Hence, their chance corrected
measure is

M(A1) =
A1 − 1

2

1 − 1

2

= 2(π11π22 − π12π21)(
1

π1·π2·
+ 1

π·1π·2

) .

Recently, Hirji & Rosove [40] argued that an ideal
measure of agreement should have the following
characteristics:

1. In the case of perfect agreement, it should yield
a standard value, usually 1.

2. In the case of perfect disagreement, it should also
yield a standard value, of −1.

3. When the two raters are independent, it should
return a value of 0.

They proposed an index of agreement that satisfies
the above characteristics. They defined λi such that

1 + λi = πii

πi·
+ πii

π·i
. (15)

Clearly, 1 + λ1 is the sum of the conditional probabil-
ities of agreement given that the first rater classifies
a patient as diseased and the conditional probability
of agreement given that the second rater classifies
the patient as diseased, and λ2 has a complemen-
tary interpretation. Note that −1 ≤ λi ≤ 1. Hirji &
Rosove [40] defined an overall measure of agree-
ment, λ, as

λ = λ1 + λ2

2
= 2A1 − 1. (16)

It is easy to see that the chance corrected value of λ is
0, and that it satisfies the above three characteristics.
The maximum likelihood estimate of λ is obtained by
replacing πii by nii/n. Hirji & Rosove [40] extended
their index of agreement to the case of multiple
categories.

Armitage et al. [3] proposed, as another index of
agreement, the standard deviation of the subject’s
total scores, where a subject scores 2 if both raters
judged them positive, 1 if one observer judged a
subject positive and the other negative, and 0 if both
observers judged a subject negative. Their index of
agreement is easily shown to be

SD2 = π11 + π22 − (π11 − π22)
2. (17)
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Fleiss [28] noted that the above measure is inade-
quate since it does not have the range of values
required by the traditional index. He suggested rescal-
ing SD2 to become

RSD2 = π11 + π22 − (π11 − π22)
2

1 −
(

π1· + π·1
2

− π2· + π·2
2

)2 , (18)

which will have the desired range of variation. In
fact, RSD2 = 1 if π12 = π21 = 0 and RSD2 = 0 if
π11 = π22 = 0. As before, a consistent estimator of
RSD can be obtained by replacing πij by nij /n.

Under marginal homogeneity (π1· = π·1 = π), or
when the raters are deemed unbiased relative to each
other (as in test–retest reliability studies), Table 1 can
be rewritten as Table 2.

Thus, (11) becomes

π11(κ) = π2 + κπ(1 − π),

π22(κ) = (1 − π2) + κπ(1 − π), (19)

and

π12(κ) = π21(κ) = π(1 − π)(1 − κ).

The maximum likelihood estimates of π and κ are
given, respectively, as

π̂ = 2n11 + n12 + n21

n
(20)

and

κ̂ = 4(n11n22 − n12n21) − (n12 − n21)
2

(2n11 + n12 + n21)(2n22 + n12 + n21)
. (21)

This estimator of κ is identical to the estimator of
an intraclass correlation coefficient for 0–1 data [72,
pp. 294–296; [9]], and was proposed by Scott [63] as
a measure of agreement between two clinicians when
their underlying base rates are the same (i.e. marginal

Table 2 2 × 2 table with marginal homogeneity

Clinician 1

Disease No disease

Disease π11 π12 π

Clinician 2
No disease π21 π22 1 − π

π 1 − π

homogeneity). Bloch & Kraemer [9] derived a sin−1

transformation (see Delta Method) to stabilize the
variance of κ̂ . Calculations of confidence intervals
are eased using such a transformation.

The observed frequencies n11, n12, and n22 fol-
low a multinomial distribution conditional on n =
n11 + n12 + n21 + n22, with estimated probabilities
π̂11(κ), π̂12(κ), and π̂22(κ), where we obtain π̂ij (κ)

by replacing π by π̂ in (20). It follows that

χ2
G = [n11 − nπ̂11(κ)]2

nπ̂11(κ)
+ [n12 − nπ̂12(κ)]2

nπ̂12(κ)

+ [n22 − nπ̂22(κ)]2

nπ̂22(κ)
(22)

has a limiting chi-square distribution with one
degree of freedom.

Donner & Eliasziw [19] obtained corresponding
two-sided confidence limits on κ by finding the
admissible roots (κ̂L, κ̂U) to the equation χ2

G =
χ2

(1,1−α), which is cubic in κ̂ , where χ2
(1,1−α) is the

100(1 − α) percentile point of the chi-square distri-
bution with one degree of freedom. They provided
explicit expressions for κ̂L and κ̂U; this method of
estimation was referred to as the goodness-of-fit
(GOF) method.

The simulation study conducted by Donner &
Eliasziw [18] showed that the coverage levels asso-
ciated with the GOF procedure are close to nominal
over a wide range of parameter values (π, κ) in sam-
ples having as few as 25 subjects.

Some Remarks on the Use of Kappa

The purpose of this Section is to bring to the reader’s
attention some of the conceptual issues that arise
when the kappa coefficient is used as an index of
quality of measurements for a binary variable. Some
of these issues have received attention; we mention,
among others, Carey & Gottesman [11], Spitznagel
& Helzer [69], Feinstein & Cicchetti [25, 26], and
Thompson & Walter [70, 71].

Since the device by which subjects can be cor-
rectly classified may not be available, then neither
of the two raters is a valid indicator of the true
state of the subject to be classified. However, the
magnitude of the simple index of chance corrected
agreement between the two raters may provide a valid
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interpretation of the true state of a subject. Thomp-
son & Walter [70] showed that the kappa coefficient
depends not only on the sensitivity and specificity of
the two raters, but also on the true prevalence of the
condition. They showed that, under the assumption
that the classification errors are conditionally inde-
pendent (an assumption that may hold if the two
raters have a different biological basis for classifying
subjects), kappa is given by

kappa = 2π(1 − π)(1 − θ1 − η1)(1 − θ2 − η2)

p1(1 − p2) + p2(1 − p1)
,

(23)

where π is the true proportion having the condi-
tion, θi = 1 − specificity for the ith rater, ηi = 1 −
sensitivity for the ith rater, and pi = π(1 − ηi) +
(1 − π)θi is the proportion classified as having the
condition according to the ith rater (i = 1, 2). The
strong dependence of kappa on the true prevalence
π complicates its interpretation as an index of agree-
ment. Thompson & Walter [70] stated that it is not
appropriate to compare two or more kappa values
when the true prevalences of the conditions compared
may differ. For further discussion on misinterpre-
tation and misuse of kappa, we refer the reader to
Bloch & Kraemer [9], Thompson & Walter [71], and
Maclure & Willett [52]. Other issues related to mod-
eling of kappa can be found in recent reviews by
Kraemer [45] and Agresti [1].

Agreement of Multiple Raters Per Subject

In the previous section we discussed indices
of agreement for present/absent characteristics as
measured by two raters. Here we discuss the issue of
agreement when more than two raters classify groups
of subjects for dichotomous data. We distinguish
between two situations: (i) when the subjects are
evaluated by the same group of clinicians. This
situation occurs in practice when a group of clinicians
are presented with samples of slides, X-rays, or
radiograms, and based on some clearly identified
protocol each item is classified as having/not having
the characteristic; (ii) when subjects are classified
by different (possibly unequal) numbers of raters.
For example [34], the subjects may be hospitalized
mental patients, the studied condition may be the
presence or absence of some psychological disorder,
and the raters may be those psychiatry residents, out

of a much larger pool, who happen to be on call
when a patient is newly admitted. Not only may
the particular residents responsible for one patient
be different from those responsible for another, but
different numbers of residents may provide diagnoses
on different patients.

Let Yij represent the assessment of the ith subject
by the j th rater, (i = 1, . . . , n; j = 1, . . . , k), with
Yij = 1 if the ith subject is judged by the j th rater to
have the condition, and 0 otherwise. Let Yi· represent
the total number of raters who judged the ith subject
to have the condition, and let y·j represent the total
number of subjects the j th rater judges to have the
condition. Finally, let Y·· represent the total number
of subjects for which the condition is judged to be
present.

Since the raters differ in their sensitivities and
specificities, it may be of interest to test whether
these differences are statistically significant. This
test is equivalent to testing the equality of the
observed marginal probabilities. The appropriate test
of marginal homogeneity for binary data is the use of
Cochran’s Q statistic [27; 20, pp. 141–142].

If we make the a priori assumption of no rater
bias, then an estimate of the reliability kappa can be
obtained from the analysis of variance (ANOVA)
just as if the results were interval scores. From the
ANOVA table a variance components estimate of
reliability is

ρ̂1ω = MSBS − MSE

MSBS + (k − 1)MSE
, (24)

where MSBS is the between-subject mean square,
MSE is the mean square error, and k is the number
of raters. For a reasonably large number of subjects,
ρ̂1ω is approximately equivalent to

R1 = SSBS − (SSBR + SSE)

SSBS + SSBR + SSE
, (25)

where SSBR is the sum of squares due to raters, SSBS
is the sum of squares due to subjects, and SSE is
the error sum of squares. Fleiss [28] demonstrated
that, for k = 2, R1 in (25) is mathematically identical
to κ̂ in (21). Therefore the assumption of marginal
homogeneity in the calculation of chance-corrected
kappa is equivalent to that of ignoring rater bias
using the one-way ANOVA model for derivation of
the variance component estimate of the intraclass
reliability coefficient. If one were not prepared to
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assume the lack of rater bias, then the appropriate
model would either be a two-way random effects
ANOVA, or a two-way mixed model [20, p. 146]
(see Experimental Design). For the random effects
model, the appropriate intraclass correlation can be
estimated by

ρ̂2ωR = σ̂ 2
g

σ̂ 2
g + σ̂ 2

c + σ̂ 2
e
, (26)

where

σ̂ 2
g = MSBS − MSE

k
,

σ̂ 2
c = MSBR − MSE

n
,

σ̂ 2
e = MSE,

and MSBR is the “between raters” mean square.
σ̂ 2

g , σ̂ 2
c , and σ̂ 2

e , are, respectively, the variance com-
ponent estimates for subjects, raters, and error.
Fleiss [28] demonstrated that (26) is approximately
the same as

R2 = SSBS − SSE

SSBS + SSE + 2SSBR
. (27)

For k = 2, R2 is mathematically equivalent to the
estimated value of kappa in (13), i.e.

R2 = κ̂ = 2(n11n22 − n12n21)

n1·n·2 + n·1n2·
. (28)

In the second situation, when subjects are assigned
different numbers of patients, Fleiss & Cuzick [34]
extended the definition of the estimate of kappa to

κ̂ = 1 − 1

n(k − 1)π̂(1 − π̂)

n∑

i=1

Ri(ki − Ri)

ki

, (29)

where

k = 1

n

n∑

i=1

ki, Ri =
ki∑

j=1

yij and π̂ = 1

nk

n∑

i=1

Ri.

They also showed that κ̂ is asymptotically (as n →
∞) equivalent to the estimated intraclass coefficient

κ̂ = MSBS − MSE

MSBS + (k0 − 1)MSE
, (30)

where

k0 = 1

n − 1




∑

ki −
∑

k2
i

∑
ki





(see Fleiss [30]).
Another estimate of the reliability kappa was

constructed by Mak [53], and was given as

κ̃ = 1 − 2

n(n − 1)

×
[
∑

i

Ri

ki

∑

i

ki −Ri

ki

−
∑ Ri(ki − Ri)

k2
i

]
. (31)

When all the ki are equal, the estimators κ̂ of (30)
and κ̃ are asymptotically equivalent as n → ∞.

Agreement of Multiple Readings with
Unanimous and Majority Rules

In this Section we discuss agreement from a different
direction. If a single observation per subject does
not produce a satisfactory value for kappa, then a
sufficient number of repeated observations on each
subject may produce a score close to the consensus
score. Kraemer [44] has shown that, if there are
k independent raters, then the reliability of the
proportion of positive ratings is

R � kκ̂

1 + kκ̂
, (32)

where κ̂ is the estimated kappa when each subject is
measured once by each rater.

Lachenbruch [47] introduced a sequential strat-
egy for the use of the k tests. The tests are assumed
to be given in a fixed order: the second test is applied
after the results of the first are known, the third test
is applied after the results of the second are known,
and so on. We may consider one of two rules for the
combination of the individual test results. To declare
a subject as positive, the unanimity rule requires that
all of the individual tests yield positive results. The
majority rule requires that the majority of the individ-
ual tests yield positive results (which means an odd
number of diagnostic tests being administered).

For example, if we have three diagnostic tests
which are given in a fixed order, the unanimity rule
implies that the negative individuals give the results
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(−), (+−), (++−), while the positives are (+++).
Assuming, for simplicity, that each of the three
tests has the same specificity η and also the same
sensitivity θ , then the specificity of the unanimous
rule is given by

SPEC = 1 − (1 − η)3,

and its sensitivity is

SENS = θ3.

Clearly, SENS < θ , while SPEC > η.
The above derivations are based on the assumption

that θ and η are constant across subjects. Lachen-
bruch [47] considers cases when this assumption is
relaxed. Note also that the above derivations are
dependent on the assumption of independence of the
diagnostic tests. Lui [51] assessed the effect of the
intraclass correlation ρ under the unanimity rule.
When ρ = 1, the multiple reading procedure will
yield the same sensitivity and specificity as those of
a single reading. For small values of ρ, SENS < θ

and SPEC > η, as stated above.

Interval Scale Agreements

In the first part of this review we were concerned
with measures of agreement for categorical responses.
Categories may be nominal, ordinal, or the result of
categorizing a continuous variable. The advantage of
such categorization makes the index of agreement
easier to comprehend and interpret; a disadvantage is
the dependence of the value of the index of agreement
on the number of categories. Hermann & Klieb-
sch [39] demonstrated that quadratically weighted
kappa coefficients tend to increase with the number
of categories. Their findings contrast with findings by
MacLure & Willett [52] for unweighted kappa coeffi-
cients, which decrease with the number of categories.

In the second part of this article, we discuss
agreement for inherently continuous measurement,
whereby categorization may not be advantageous. For
example, if two trained nurses measure the weight
of an infant to the nearest milligram, experience
shows us that the two measurements will usually
not be identical, and that differences of 10–20 g
are not uncommon. Differences may, in part, be
due to the effect of the rater and in part due to
measurement error. Dunn [21] reported that it is

not uncommon among clinical psychologists, for
example, to use linear regression to associate the two
sets of measurements, which is not appropriate when
the two rating devices commit measurement error.
Moreover, product–moment correlation coefficients
are measures of association and should not be used
as indices of agreement.

In his recent review, Dunn [21] classified relia-
bility studies into two types. The first involves the
comparison of two or more raters (or measuring
instruments) and the second explicitly examines the
sources of variability in measurements. The distinc-
tion between the two is not always clear-cut.

The simplest design used to assess the reliability
or the agreement between sets of scores is the
one-way random effects model. Suppose that we
have n patients and we would like to take several
measurements by a single device. How can we assess
the consistency of the set of measurements taken from
each patient? The one-way model stipulates that

Yij = µ + si + eij , (33)

where Yij is the j th measurement taken on the ith
subject, µ is the bias, si is the subject effect, and eij

is a random measurement error, assumed independent
of si , where si ∼ N(0, σ 2

s ) and eij ∼ N(0, σ 2
e ).

The reliability estimate of R is defined as

R = σ̂ 2
s

σ̂ 2
s + σ̂ 2

e

(34)

(see [23, 54, 31], and [4]). Here, σ̂ 2
s and σ̂ 2

e are the
estimates of the corresponding variance components
and are obtained from the one-way random effects
ANOVA. This reliability estimate is the familiar
estimate of the intraclass correlation coefficient (ICC)
(Snedecor & Cochran [68]). It is clear, then, that
a precise estimate of R depends on the precision
of estimating σ 2

s and σ 2
e . It is noted by Dunn [21]

that R is not a fixed characteristic of a measuring
device–it changes with the population of subjects
being sampled. This is analogous to the effect of
prevalence on the kappa statistic. However, the
estimate is useful as an indicator of how a particular
device will perform in a particular clinical setting. As
can be seen from the definition of the ICC estimate
in (34), low ICC occurs when the variation between
subjects is low relative to that within subjects.
This means that, in a typical reliability study it is
desirable to have low differences between readings
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for a given subject and large differences between
subjects. Large between-subject differences usually
reflect the condition where the raters are given the
chance to test their skills with a full range of
a measurement scale. Normal subjects, or subjects
with predefined severity, are examples of a narrow
range study where raters’ reliability is a test only
of agreement on the absence of the condition or a
subsection of the disease scale, and not a test of the
instrument on the full range (see [5]).

Rater Comparison

Two Raters

Bland & Altman [8] described the following clinical
experiment. Data on cardiac stroke volume or blood
pressure using direct measurement without adverse
effects are difficult to obtain. The true values remain
unknown. Instead, indirect methods are used, and a
new method has to be evaluated by comparison with
an established technique. If the new method agrees
sufficiently well with the old, then the old may be
replaced. When the two methods are compared, nei-
ther provides an unequivocally correct measurement.
We need to assess the degree of agreement.

Bland & Altman [8] recommended plotting the
difference between the two measurements (Yi1 − Yi2)

against their mean (Yi1 + Yi2)/2. This plot can be
useful in detecting systematic bias, outliers, and
whether the variance of the measurements is related
to the mean.

Alternatively, we can simply plot Yi1 against Yi2.
We would like to see, within tolerable error, that the
measurements fall on a 45° line through the origin.
Lin [49] provided several graphs demonstrating how
the Pearson correlation coefficient fails to detect any
departure from the 45° line. For example, if the
measurement taken by rater 2(Yi2) has systematic
bias relative to rater 1, i.e. Yi1 = Yi2 − c, where c

is a fixed constant, then Pearson’s correlation will
attain its maximum value of 1 while there is little
or no agreement between Yi1 and Yi2. The least
squares approach may fail to detect departure from
the intercept equal to 0 and slope equal to 1 (see [48;
65, p. 37].

Based on a random sample of n subjects,
where the ith subject provides the pairs of
measurements (Yi1, Yi2) taken by the two raters,
Lin [49] constructed a measure of agreement between

readings which he called “concordance correlation”
(CC). Assuming that (Yi1, Yi2), i = 1, 2, . . . , n, have
a bivariate normal distribution with means µ1, µ2

and covariance matrix
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
, (35)

where ρ is Pearson’s correlation, then the concor-
dance correlation is defined as

ρc = 2ρσ1σ2

σ 2
1 + σ 2

2 + (µ1 − µ2)2
. (36)

Let β1 = ρσ1/σ2 and β0 = µ1 − β1µ2. Then,

ρc = 2β1σ
2
2

(σ 2
1 + σ 2

2 ) + [(β0 − 0) + (β1 − 1)µ2]2
, (37)

and thus the sample estimate of ρc is

ρ̂c = 2s12

s2
1 + s2

2 + (y1 − y2)
2
. (38)

The concordance correlation has the following
properties:

1. −1 ≤ −|ρ| ≤ ρc ≤ |ρ| < 1
2. ρc = 0 if and only if ρ = 0
3. ρc = ρ if and only if σ1 = σ2, µ1 = µ2

4. ρc = ±1 if and only if ρ = ±1, σ1 = σ2, µ1 =
µ2.

It is also clear from (36) that the magnitude of ρc is
inversely related to the bias = |µ1 − µ2|.

As an alternative procedure for assessing agree-
ment between the two raters, Bradley & Black-
wood [10] suggested regressing Yi = (Yi1 − Yi2) on
Xi = (Yi1 + Yi2)/2. A simultaneous test of µ1 = µ2

and σ 2
1 = σ 2

2 is conducted using the F statistic,

F(2, n − 2) =
∑

Y 2
i − SSReg

2MSReg
,

where SSReg and MSReg are the residual sum of
squares and the mean square with n − 2 degrees of
freedom, respectively, from the regression of Y on
X.

Suppose now, as in Bland & Altman [8], that each
of the two raters or methods provides two replicates,
as in Table 3.

Let
xij = µ + si + ξij (39)
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Table 3 Comparing two raters with two replicates per
subject

Subject

Rater 1 2 . . . n

1 x11 x21 xn1

x12 x22 xn2

2 y11 y21 yn1

y12 y22 yn2

and

yij = µ + si + ηij , i = 1, 2, . . . , n; j = 1, 2.

(40)

It is assumed that si ∼ N(0, σ 2
s ), ξij ∼ N(0, σ 2

ξ ),
and ηij ∼ N(0, σ 2

η ), and that si, ξij , and ηij are
mutually independent. As can be seen, the relative
bias between the two raters, µ, is assumed constant.
The above equations represent regression models
where both variables are measured with error.

Dunn [21] suggested that the analysis starts with
estimating the within-subjects mean squares by fitting
two separate one-way ANOVAs – one for each rater.
The estimated reliabilities are

R = BSMS − WSMS

BSMS + WSMS
(41)

(see [31]), where BSMS is the between subjects mean
square and WSMS the corresponding within subjects
mean square.

Let x∗
i = (xi1 + xi2)/2 and y∗

i = (yi1 + yi2)/2.
Grubbs [38] showed that the maximum likelihood
estimates of σ 2

s , σ 2
ξ , and σ 2

η are given, respectively, as
σ̂ 2

s = sxy, σ̂ 2
ξ = 2(sxx − sxy), and σ̂ 2

η = 2(syy − sxy),
where (n − 1)sab = ∑n

i=1(ai − a)(bi − b) and a =
1/n

∑n
i=1 ai .

The null hypothesis that the two raters are
equally precise (H0 : σ 2

ξ = σ 2
η ) can be tested using

a result due to Shukla [67], who showed that
H0 is rejected whenever t0 = r[(n − 2)/(1 − r2)]1/2

exceeds |tn−2,α/2|, where tα/2 is the cutoff point in
the t-table at 100(1 − α/2)% confidence and n − 2
degrees of freedom, and r is Pearson’s correla-
tion between ui and vi , ui = x∗

i + y∗
i , vi = x∗

i − y∗
i .

Approximate 100(1 − α)% confidence limits on the
relative precision q = σ 2

ξ /σ 2
η are

qU = b + √
c

a − √
c
, qL = b − √

c

a + √
c
,

with a = σ̂ 2
η /2, b = σ̂ 2

ξ /2, and c = [t2
α/2(ssssyy −

s2
xy)]/(n − 2).

Regression models with errors in variables, or
structural equations to assess reliability of two
raters, have received considerable attention from
many researchers. For example, we refer the reader
to Kelly [41], Linnett [50], Nix & Dunston [56], and
the earlier work of Deming [17].

Example

Table 4 provides measurements derived from an
experiment in microbiology. The primary aim was
to determine the number of colonies of the E. coli
0157:H7 pathogen in contaminated fecal samples
collected from 12 beef carcasses. For a given faecal
sample, the number of colonies was determined by a
new test (Petrifilm HEC) and by a “standard test” in
two subsamples; results are recorded as the logarithm
of the number of colonies (Table 4). The first two
rows correspond to the repeated determinations based
on the use of the standard test, and the second two
rows correspond to the repeated determinations of
the new test. (These data were kindly provided by Dr
Christine Power from the Ontario Veterinary College,
Guelph, Ontario.)

We begin the analysis by first investigating the
repeatability of each of the two tests separately. Fol-
lowing the recommendations of Bland & Altman [8],
we plotted the difference between the two against
their sum (Figure 1).

Table 4 Logarithm of the number of colonies of E. coli 157:H7 in samples taken from 12 beef carcasses

Test (subsample) 1 2 3 4 5 6 7 8 9 10 11 12

Standard 1 2.356 2.149 2.452 2.255 2.694 2.43 2.322 2.322 2.491 2.322 2.322 2.491
2 2.384 2.263 2.417 2.299 2.684 2.44 2.491 2.041 2.322 2.322 2.491 2.785

New test 1 2.283 2.061 2.322 2.162 2.068 2.322 2.491 2.041 2.322 2.491 2.041 2.785
2 2.265 1.987 2.316 2.127 2.111 2.28 2.491 2.041 2.041 2.71 2.322 2.322
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Figure 1 Plot of the difference, V , vs. the sum, U , with
regression line imposed

Dunn [21] pointed out that the graph can be
extremely useful in (i) allowing us to detect system-
atic bias and (ii) looking for outliers. The regression
of the difference on the sum shows that observa-
tion #5 has a large standardized residual. We sub-
sequently produced a one-way ANOVA to obtain
estimates of the corresponding test–retest reliabili-
ties using the intraclass correlation (41). The results
are given in Table 5.

As can be seen, the two tests have equivalent
test–retest reliability estimates. The models (39) and
(40) assume that the relative biases of the two
estimates are constant. This allows us to estimate the
error variances using the Grubbs [38] method. If X

represents the mean of the standard test log counts,
and Y the mean of the new test log counts, then
σ̂ 2

s = 0.010, σ̂ 2
ξ = 0.026, and σ̂ 2

η = 0.057. It appears

Table 5 ANOVA of the logarithm of the number of
colonies for the standard test and the new test

(a) Standard test (intraclass correlation = 0.61)

Source of variation Sum of squares df Mean square

Cow 0.500 11 0.045
Residual 0.134 12 0.011
Total 0.634 23

(b) New test (intraclass correlation = 0.62)

Source of variation Sum of squares df Mean square

Cow 0.837 11 0.076
Residual 0.215 12 0.018
Total 1.052 23

that the standard test is almost twice as precise as the
new test.

We now proceed to test the significance of the dif-
ference (σ 2

ξ − σ 2
η ). Using the results of Shukla [67],

we have sxx = 0.023, syy = 0.038, and sxy = 0.010.
The Pearson correlation between U = X + Y and
V = X − Y is r = −0.27 and t0 = −0.87. We are
unable to detect a significant difference between σ 2

ξ

and σ 2
η . This may be because the sample size was

insufficient.

Multiple Raters

The simplest reliability study involves having each
member of a sample of n subjects rated once by
each member of a sample of k raters. Raters might
be considered as fixed, or as a random sample drawn
from a potentially larger population of raters. If raters
are assumed fixed, the estimate of reliability can be
obtained from the two-way mixed effects ANOVA
model,

Yij = µ + si + rj + eij , (42)

where Yij is the score of the j th rater on the ith
patient, µ is the bias, si ∼ N(0, σ 2

s ), eij ∼ N(0, σ 2
e ),

and the ri, . . . , rk are the raters effects such that∑
rj = 0. Both si and eij are independent. From

Fleiss [31], the appropriate reliability estimate is

Rf = n(BSMS − WSMS)

n(BSMS) + (k − 1)BRMS
+(k − 1)(n − 1)WSMS

. (43)

The components of (43) are as defined in (41), with
BRMS as the between-raters mean square. If raters
are assumed random, then the added assumptions that
rj ∼ N(0, σ 2

r ) and that rj , si , and eij are mutually
independent give an estimate of reliability identical
to ρ̂2ωR in (26); simplified, this becomes

Rr = n(BSMS − WSMS)

n(BSMS) + k(BRMS) + (nk − n − k)WSMS
.

(44)

Remarks

It is evident that estimation of indices of agreement
for interval scale measurements is tied to estimation
of variance components. The total variance is decom-
posed into subjects effect, raters effect (if raters are
considered random), and the error component. The
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traditional ANOVA, either one-way or two-way, is
used when the data are balanced and/or complete
(no missing data). For unbalanced data, one may use
the maximum likelihood (ML) and restricted maxi-
mum likelihood (REML) [57, 64]. The advantage of
ML or REML methods is that we obtain estimates
of the standard errors of the estimates. Depending
on the nature of the study, more complex designs
other than the ANOVA may be used. Bassin et al. [6]
used crossover designs for method comparisons.
Other designs such as balanced incomplete block
designs [27, 29] and hierarchical designs [36] can be
used for nested reliability studies (see Hierarchical
Models).

We emphasize that there is no single procedure
which can be used to assess raters’ reliability agree-
ment. Bartko [5] pointed out that procedures for
exploring agreement should be based upon the nature
of the study and the purposes of various agreement
measures. Table 6 summarizes the basic formulas
mentioned in this article.

Computer Programs

Cyr & Francis [15] provided a menu-driven PASCAL
program to compute Cohen’s kappa and weighted

Table 6 Summary of basic formulas

Parameter Interpretation

Eq. (1) Cohen’s kappa – nominal-scale measure of
agreement between two raters

Eq. (2) Cohen’s weighted kappa – used as an ordinal
scale measure of agreement between two
raters

Eq. (3) Darroch & McCloud measure of category
distinguishability

Eq. (14) Rogot & Goldberg index of agreement

Eq. (18) Armitage et al.index of disagreement

Eq. (24) Intraclass kappa – obtained from the one-way
random effects model under the assumption
of no interrater bias

Eq. (26) Reliability kappa – obtained from the two-way
random effects model accounting for rater’s
effect

Eq. (36) Concordance correlation – measures the
departure from the 45° line

kappa using the two types of weights, djk .

(i) djk = 1 − (j − k)2

(c − 1)2
, (ii) djk = 1 − |j − k|

c − 1
,

and other user-defined weights.
The SAS software (see Software, Biostatistical)

[60] has a number of procedures referred to as
“PROC” statements. PROC FREQ provides estimates
of a variety of measures of association in c × c con-
tingency tables, including an unweighted estimate of
kappa. As an illustration, using Dunn’s [20, p. 24]
data, PROC FREQ in SAS provides the follow-
ing estimates of kappa: unweighted Cohen’s kappa
(= 0.21) and weighted kappa (= 0.58), using the
weights as described in (ii) above. Alternately, Cyr
& Francis’s, [15] program which uses the quadratic
weights in (i), gives 0.80 as an estimate of weighted
kappa. For multiple raters and the 0–1 category,
estimates of kappa, in (24), (26), and (30), are obtain-
able using PROC ANOVA or PROC GLM in SAS.
The SAS procedures provide the appropriate sum of
squares and the corresponding mean squares to cal-
culate reliability kappa estimates. It is also possible
to use StatXact [55] to calculate Cohen’s kappa or a
weighted kappa statistic.

Estimates of variance components from the bal-
anced one-way random effects, two-way random
effects, and mixed effects models can be obtained
using either PROC ANOVA with the RANDOM
statement or PROC VARCOMP in SAS. For more
complex designs with multiple levels of nesting and
crossing, PROC MIXED in SAS may be used to
estimate the components of variance. For unbalanced
data or when some data points are missing, Robin-
son’s [58] REML program can be used to obtain
estimates of variance components and hence the intr-
aclass correlations. With little programming experi-
ence in SAS, PROC UNIVARIATE, PROC CORR,
and PROC REG are quite easy to implement and may
be used to calculate the concordance correlation and
Bradley & Blackwood [10] statistics.
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Agreement, Modeling of
Categorical

In many situations two observers evaluate and classify
each of n subjects into one of K mutually exclu-
sive categories. For K = 2 a common measure of
chance-corrected agreement between the two raters
is Cohen’s kappa (κ) statistic [6]. The measure has
been extended to K > 2, where the K categories
may be ordered [7] (see Kappa and its Depen-
dence on Marginal Rates). Some authors, e.g.
Agresti [1], argue that a single measure of agree-
ment may be too simple for some situations. For
example, one may want to model agreement after
adjustment for chance agreement and ordinal associ-
ation [1, 2] (see Ordered Categorical Data). Addi-
tionally, covariates may influence the probabilities
of classification and may need to be considered prior
to assessment of agreement [3]. Below we discuss
models that address these issues.

Assumption of Marginal Homogeneity

Let pij be the probability of a subject being classified
in category i by the first rater and category j by the
second rater. Then the marginal probability of clas-
sification into category i for the first rater is pi· =∑

j pij and similarly pj · = ∑
i pij for classification

into category j by the second rater. Some models
of agreement assume that pi· = p·i for i = 1, . . . , K .
This assumption of marginal homogeneity is strin-
gent, but is consistent with the definition of intraclass
correlation for continuous data that assumes equal
means and variances for the two variables [14]. Note
that marginal homogeneity may be a prerequisite for
high agreement [2]. Quite simply, one would not
expect agreement to be high when the marginal totals
are discrepant because the raters are probably not
using the same underlying classification scheme. In
the loglinear model described below, the assumption
of marginal homogeneity is testable.

2 × 2 Tables

For the usual kappa statistic, the row and col-
umn marginal totals in 2 × 2 tables are considered
fixed. Since sample sizes may be small in studies

of agreement, the number of discordant observations
may be small. In this case computing a P value
based on the exact permutation distribution (with
marginals fixed) may be preferable (e.g. as imple-
mented in StatXact 3 for Windows, Cambridge,
MA; (see Exact Inference for Categorical Data).
Alternatively, one can assume marginal homogene-
ity and compute an intraclass correlation [5, 9] as
discussed below. The corresponding permutation dis-
tribution would be conditional on the overall number
of positive and negative responses, but allow the cell
frequencies in Table 1 to vary.

The marginal probability of classification for a
particular subject may depend on one or more subject-
specific covariates as well. For example, a radiologist
may be more likely to classify a mammographic
abnormality as breast cancer in the presence of known
breast cancer risk factors, such as a family history
of breast cancer or advanced age. A stratified kappa
(see Stratification) can be used with weights deter-
mined by the sample size for each covariate combi-
nation comprising the strata [4]. Failure to account
for these confounders (i.e. collapsing across strata)
may lead to inflated estimates of agreement [4].

As the number of confounders becomes large,
the stratified kappa would be based on sparse tables
and would exhibit poor asymptotic behavior. There-
fore, it is desirable to adjust directly for subject-
specific covariates that may influence the raters in
their classification of the subject. For the K = 2
case one can use a logistic regression model for
linking subject-specific covariates to the marginal
probability of classification and include a term for
the intraclass correlation θ [3]. The model does
assume marginal homogeneity, with the subject-
specific covariates influencing each rater’s marginal
probability in the same way.

Let nij be the frequency in the ith row (rater 1) and
the j th column (rater 2). Assuming marginal homo-
geneity leads to the trinomial distribution given in
Table 1. This model (without covariates) is discussed
elsewhere [5, 11]. Note that the model gives θ as the
marginal probability of a positive response for each
rater. Maximum likelihood estimates of ρ and θ are

ρ̂ = 4n11n22 − (n12 + n21)
2

(2n11 + n12 + n21)(2n22 + n12 + n21)

and

θ̂ = 2n11 + n12 + n21

2n
,
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Table 1 Trinomial model

Classification Both positive Discordant Both negative

Frequency n11 n12 + n21 n22

Probability θ2 + ρ θ(1 − θ) 2(1 − ρ) θ (1 − θ) (1 − θ)2 + ρ θ(1 − θ)

with estimated variance estimate for ρ̂ given
by [5, 9]:

var(ρ̂) = 1 − ρ̂

n

[
(1 − ρ̂)(1 − 2ρ̂) + ρ̂(2 − ρ̂)

2θ̂ (1 − θ̂ )

]
.

Using the modeling approach derived below, a score
test of H0 : ρ = 0 can be derived. Without covariates,
the score test is simply nρ̂2, assumed to be distributed
as χ2 (1 df) under the null hypothesis. The estimate
ρ̂ is the intraclass correlation for dichotomous out-
comes. If the formula for the intraclass correlation for
continuous data is applied to the dichotomous data,
then the estimate ρ̂ is obtained [14]. In practice, ρ̂

will be quite close to the kappa statistic and equal to
it when n12 = n21.

Inclusion of Covariates

To include subject-specific covariates, let xi =
(1, xi1, xi2, . . . , xip) be the p + 1 vector of covariates
for subject i. Assume a logit link function
(see Generalized Linear Model) between the mean
θi and the covariate vector xi , i.e. logit (θi) = xiβ,
with β a parameter vector to be estimated. This
multinomial model may be fitted as a conditional
logistic regression model with a generalized relative
risk function [3].

ri = exp(ziβ) + wiρ − wi − 1

3
,

where xi and wi are functions of the covariates and
the observed outcome for person i. This additive risk
function decomposes into a part that incorporates the
covariates, a part that depends on the intraclass cor-
relation, and an “offset”. Confidence limits for θ

may be derived using either a standard Wald interval
or a profile likelihood interval. Alternatives to the
asymptotic bounds are desirable for establishing a
confidence interval for ρ since Wald-based confi-
dence intervals have poor coverage probabilities for
estimates of agreement [4].

The model also allows for easy derivation of a
score test of H0 : ρ = 0. Let Yij indicate whether
the ith person has been classified into the j th cell
of Table 1, i = 1, . . . , n; j = 1, 2, 3. Let β̃ be an
estimate of β assuming ρ = 0, i.e. breaking the
pairing and estimating β using a standard logistic
regression model for the 2n observations. If the risk
(denoted r̃) is based on β̃, then a one-step estimate
of ρ is

ρ̂1−step = 1

n

∑

i

(
Yi1

r̃i1
− 2Yi2

r̃i2
+ Yi3

r̃i3

)

and the score test (χ2 with 1 df; see Likelihood)
of H0 : ρ = 0 is nρ̂2

1−step. Limitations of the model
include the marginal homogeneity assumption and
restriction to K = 2.

Extension to K × K Tables

In many situations ratings are made on a nominal
or ordinal scale with K > 2. Tanner & Young [15]
proposed a loglinear model for nominal scales. Sup-
pose that Yij is the number classified into row i and
column j by raters 1 and 2, respectively. Assume a
Poisson distribution for Yij with the loglink func-
tion log µij = zT

ijβ. A possible model would be log
µij = µ + αi + βj + δij , where the θ and β param-
eters correspond to the marginal distributions for
raters 1 and 2, respectively, and δij is zero for i �= j

and equal to δi otherwise. A test of statistically
significant agreement is given by the difference in
deviances between this model and the independence
model, log µij = µ + αi + βj . The likelihood ratio
test is assumed to have a chi-square distribution
with K degrees of freedom for K > 2. This particu-
lar model is called the “quasi-independence model”
because raters 1 and 2 are assumed to be indepen-
dent given they disagree. The model forces the fitted
values on the diagonal to be equal to the observed
values. An intermediate model is given by con-
straining δ1 = δ2 = . . . δK = δ. This model does not
constrain the diagonals to equal the observed values
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and can be tested against both the independence and
quasi-independence models by likelihood ratio tests.

The above model does not assume marginal
homogeneity, but it is not difficult to make this
assumption and test its validity. The difference in
deviances between models log µij = µ + αi + βj +
δij and log µij = µ + αi + αj + δij has a chi-square
distribution on K − 1 degrees of freedom. The
α parameters for the latter model are estimated
using covariates Xl = I (l = i) + I (l = j) for l =
2, . . . , K , where I is an indicator function. When
K = 2 the likelihood ratio test of H0 : δ = 0 under
marginal homogeneity is identical to that for H0 : ρ =
0 in the first section.

For ordinal categories it is likely that if there is dis-
agreement the two raters choose ratings that are more
similar rather than more distant. A weighted kappa
may be used with weights determined by linear or
squared differences between the scores correspond-
ing to the categories [7]. However, these models can
accommodate covariates only by stratification and
may be too simple for most situations. Accordingly,
Agresti [1] proposed a generalization of the loglin-
ear model intended to accommodate the association
between the two ordinal scales. The discussion below
is based largely on Agresti’s generalization of loglin-
ear models of nominal association [10, 15].

Suppose that ui is the score associated with the ith
category of the ordinal scale with u1 < u2 < . . . <

uK . In most cases ui = i, but the scores could depend
on midpoints of categorized values or on subjective
a priori experience. A possible model is

log µij = µ + αi + βj + uiuj θ + δij ,

where θ indexes the linear-by-linear association and
δij indexes residual agreement between the raters. A
comparison of deviances for this model vs. log µij =
µ + αi + βj + uiuj θ gives a test of agreement on
K degrees of freedom. Unlike the weighted kappa
statistic, “partial credit” for being similar rather than
identical is attributed primarily to association rather
than agreement. Agresti [1] recommends a slightly
simpler model with δ1 = δ2 = · · · = δK = δ, since
the diagonal elements are not constrained to be equal
to the observed values. This model has (K − 1)2 − 2
df for assessing goodness of fit and allows a direct
test of agreement H0 : δ = 0 and/or linear association
H0 : θ = 0.

This model may also be modified to assume
marginal homogeneity:

log µij = µ + αi + αj + uiuj θ + δij ,

with δij either a scalar (δ) or a K-vector on the diag-
onal. The latter model again imposes a perfect fit
on the diagonal. Finally, one can include categor-
ical subject-level covariates that may influence the
marginal probabilities. For example, the subjects may
be grouped into m age groups, and the m(K × K)

tables fit by a common model with age entering as
a main effect. Furthermore, age may be tested as an
effect modifier of δ using interaction terms. Con-
trolling for several confounders simultaneously will
often not be possible due to sparseness of the tables,
however.

Multiple Raters

In many cases several raters will rate all or some of
the subjects and classify them into the K categories.
In this situation extensions to kappa have been
proposed [8, 13]. If all pairwise tables are considered,
the tables are correlated since a rater may appear
in several tables. Schouten [13] proposes using a
jackknife variance estimator to assess significance in
this setting. A unified loglinear model of agreement
across multiple raters is not yet available. Tanner &
Young [15] discuss a loglinear model for comparison
of several raters to a standard.

If marginal probabilities are allowed to vary with
each rater, the number of parameters tends to infinity
when the number of raters does. In this case marginal
homogeneity may be required. One might consider all
pairwise tables in a loglinear model under marginal
homogeneity. It would be necessary to correct the
standard errors using a generalized estimating equa-
tions approach [12]. Alternatively, confidence limits
could be found by bootstrapping the contributions
from each rater.

Example

An agreement and accuracy study was per-
formed to study the ability of radiologists to
classify screening mammograms. The research
was supported by the National Cancer Institute
(CA63731, PI Stephen Taplin, MD). We consider
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only a subset of the data here. Ten radiologists
classified 113 screening mammograms into five cat-
egories: (i) normal; (ii) normal with benign findings;
(iii) probably benign; (iv) suspiciously abnormal; and
(v) highly suspicious of malignancy. The 113 mam-
mograms included a mix of negative and positive
mammograms. Table 2 shows the distribution for a
single pair of raters and Table 3 shows the classifica-
tion for all possible pairing of raters (45) classifying
each of the 113 subjects, yielding a total of 5085
paired ratings.

Data for the two raters in Table 2 were analyzed
using a loglinear model, though sparseness in the
Table may be problematic. The Agresti [1] linear
association model fits well (deviance χ2 = 15.71
on 14 df), but is not significantly different from a
model that assumes marginal homogeneity that also
provides a reasonable fit (deviance χ2 = 21.64 on
18 df). Under the two models, the estimates of the
scalar δ are 1.065 (se 0.466) and 0.862 (se 0.448),
respectively. For the marginal homogeneity model,
both the Wald test (z = 1.923) and likelihood ratio
test (χ2 = 3.38 on 1 df) show weak (one-tailed)
significance for agreement beyond linear association.
By comparison the unweighted and linear weighted
kappas are quite high – 0.620 and 0.774, respectively.

Table 2 Classification by two raters of 113 screening
mammograms

Rater 1

Rater 2 1 2 3 4 5 Total

1 75 1 3 1 0 80
2 1 1 0 0 1 3
3 5 2 4 0 1 12
4 0 0 2 1 3 6
5 0 0 0 0 12 12

Total 81 4 9 2 17 113

Table 3 Pairwise classification by 10 raters of 113 screen-
ing mammograms

Higher rating
Lower
rating 1 2 3 4 5

1 3073 178 631 32 15
2 24 109 13 3
3 217 127 76
4 68 178
5 341

The loglinear model dissects the apparent interrater
agreement into a strong linear association and weak
residual agreement.

If all 45 pairwise tables are considered, then the
median estimate of δ is 0.244 when not assuming
marginal homogeneity and 0.093 under this assump-
tion. In 43 of 45 tables, marginal homogeneity
resulted in a smaller estimate of agreement. Finally,
if one models all 45 tables simultaneously (assuming
marginal homogeneity), then the overall δ estimate is
0.103, but the standard error needs to be corrected
for the induced correlations among pairings.

Conclusions

Agreement between two fixed raters may be modeled
using either a conditional logistic regression model
(K = 2) or a loglinear model (K ≥ 2). The former
allows for continuous or categorical covariates, while
the latter can incorporate only categorical covariates.
More complex models are needed for more than two
raters. Marginal homogeneity may be a prerequisite
for strong agreement to be observed.
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AIDS and HIV

The human immunodeficiency virus (HIV) can be
transmitted from person to person. The immune sys-
tem of individuals infected with HIV deteriorates,
leaving them susceptible to infection and the devel-
opment of various diseases. Certain conditions of
poor health in HIV infected individuals qualify for
a diagnosis of acquired immune deficiency syndrome
(AIDS). Statistical issues associated with data from
the HIV epidemic and HIV/AIDS related studies
emerged soon after AIDS was formally defined in
1982. At that time the number of cases began to
increase alarmingly and early concerns were with
forecasting the incidence of AIDS diagnosis, estimat-
ing the distribution of the survival time with AIDS
and estimating the distribution of the time from infec-
tion until diagnosis with AIDS. The latter time period
is often called the incubation period.

The area of AIDS and HIV data has been a rich
source of statistical challenges, which are reported in
an extensive literature. Fusaro et al. [8] give an anno-
tated bibliography of the early literature. Jewell [11]
reviews some statistical issues associated with the
study of HIV and AIDS data, and some of these are
described in detail in the book by Brookmeyer &
Gail [6].

Extrapolating AIDS Incidence

The rising number of AIDS diagnoses and the
devastating consequence for its victims naturally
generated an interest in the current trend of AIDS
incidence and the likely number of cases in the near
future. Owing to the lack of knowledge about the way
AIDS cases arose, early attempts at forecasting AIDS
incidence were based on fitting curves of a simple
algebraic form to the observed AIDS incidences and
then extrapolating these curves into the future. More
specifically, polynomial regression models in time
were fitted to the AIDS counts, or logarithms of the
counts, and then extrapolated. The basis for making
projections of AIDS incidences by extrapolating fitted
polynomials is weak. Furthermore, the approach does
not give an estimate of the rate of development of
new infections over time, i.e. the HIV infection curve,
which is of considerable interest. For these reasons,
there soon developed an interest in using models that

contain at least some aspects of the way AIDS cases
arise.

Transmission Models for HIV

Only models that describe the way HIV is trans-
mitted from person to person contain all aspects
of the way AIDS cases are generated. There is
a substantial body of work on infectious disease
models (see Communicable Diseases), and attempts
were soon made to adapt these models to HIV
transmission.

There are several features that distinguish the HIV
epidemic from epidemics of other communicable dis-
eases. First, several different modes of transmission
are identified for HIV, such as sexual transmis-
sion, injecting drugs with contaminated needles, and
receiving contaminated blood or blood products dur-
ing medical therapy. This means that comprehensive
models contain many parameters that need to be esti-
mated, from data that are personal, highly sensitive,
and sparse. The models of Hethcote & Van Ark [9]
illustrate this. To keep models simple it is common
to restrict attention to a single risk category with the
assumption that transmission within that group occurs
without significant transmission from infective indi-
viduals in other risk categories.

Another distinguishing feature is that the incuba-
tion period usually has a duration of several years,
with the consequence that knowledge about the dis-
ease, therapy, and behavior change significantly dur-
ing the course of the epidemic. In statistical terms this
means that model parameters do not remain constant.

These difficulties give rise to considerable uncer-
tainty about conclusions reached by the use of trans-
mission models. As a consequence the preferred
methods for assessing the size of the HIV epidemic
and making projections of AIDS incidence are based
on the method of back-calculation, which is now
described.

Reconstructing the HIV Infection Curve

This topic has been a major focus of statistical studies
in the HIV/AIDS area. Reconstruction of the realized,
but unobserved, HIV incidences is of interest because
they indicate the size of the epidemic and are useful
for predicting future AIDS incidences and the health
care costs resulting from AIDS cases.
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Let Ht and At denote the number of HIV infec-
tions and AIDS diagnoses in the discrete time unit
t , typically a quarter, and let τ be the last time unit
for which reliable data are available. We can relate
µt = E(At ), the mean AIDS incidence in time unit t ,
to the HIV incidences at earlier times by

µt =
t∑

s=1

λsft−s , t = 1, 2, . . . , (1)

where λs = E(Hs) and fr is the probability that the
duration of the incubation period is r time units.
This convolution equation holds for any transmission
model, relying only on subjects having independent
incubation periods.

The method of back-calculation, or back-
projection, uses (1) to reconstruct the HIV infection
curve, by a method that ignores the fact that HIV
cases arise by infection. Most versions of the method
of back-projection reconstruct the H1, H2, . . . , Hτ

by estimates of λ1, λ2, . . . , λτ , assuming that a
precise estimate of the incubation period distribution
f0, f1, . . . is available from data of large cohort
studies.

Typically, the H1, H2, . . . , Hτ are assumed inde-
pendent Poisson variates (see Poisson Processes).
This produces a very convenient working model,
because with independent incubation periods it makes
the AIDS incidences independent observations of
Poisson variates with means given by (1), mak-
ing maximum likelihood estimation an option for
λ1, λ2, . . . , λτ . Rosenberg & Gail [24] show that for
large epidemics this model assumption gives similar
results to some other model assumptions. Simulation
results show that this model gives sensible recon-
structed HIV incidences even when data are gener-
ated by a transmission model [3].

Leaving the λs as separate parameters, in the
spirit of functional estimation, makes their esti-
mates overly sensitive to minor perturbations in the
AIDS incidence data, so some form of smooth-
ing (see Nonparametric Regression) needs to be
imposed. When they first proposed back-projection in
the AIDS context, Brookmeyer & Gail [6] assumed a
piecewise constant form for λs, s = 1, 2, . . . , τ ; that
is, the λs take only a small number of distinct values.
However, a smooth parametric form has also been
used for the λs [27], while Isham [10] uses a smooth
parametric form for the µt and deconvolutes (1).

A preference has evolved for leaving the λs

as separate parameters but constraining them to a
smooth form, because no simple natural paramet-
ric form is apparent for the HIV infection curve.
Another, possibly more important, reason for this
preference is a concern that with the use of parametric
models we may not get an appropriate reflection of
how the precision of the reconstructed HIV infection
curve varies over time.

A variety of methods have been explored for
reconstructing the HIV infection curve by smoothing
a nonparametric estimate, including use of the EM
algorithm with a smoothing step added to each
iteration of the usual E- and M-steps for maximum
likelihood estimation [5]. This method is very easy
to program because the iterations involve only simple
explicit expressions. Another approach is to estimate
the λs by penalized maximum likelihood:

L(λ; a) − γΨ (λ).

Here L(λ; a) is the likelihood function correspond-
ing to the observed AIDS cases and Ψ (λ) is a
function that penalizes any estimate that is not suf-
ficiently smooth. For example, Ψ (λ) = ∑

j (λj+1 −
2λj + λj−1)

2 is used by Bacchetti et al. [2].
Bayesian methods seem natural for reconstructing

the HIV infection curve, since posterior probabili-
ties are appropriate descriptions of likely realizations
of unobserved incidences, and these have been used
to get smooth back-projections [18]. Ridge regres-
sion [21] and splines [24] have also been applied to
obtain smooth reconstructions.

AIDS counts alone contain very little information
about HIV infections in the recent past so that,
naturally, reconstruction of the HIV incidences for
recent time units is less precise than reconstruction
for the distant past.

The large number of variations in the methods
of back-projection are matched by an equally wide
range of ways in which changes in the incubation
distribution, over time, have been incorporated. These
changes are needed because the incubation period has
changed over time as a result of both therapy effects
and changes in the definition of AIDS. Early methods
for incorporating the dependence of the fr on the
time of infection were simple and crude, but there
were soon a variety of ways in which these effects
were incorporated in a more descriptive way [6].

Methods for incorporating auxiliary information
into back-projections have been developed to
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improve the precision of reconstructed HIV infection
curves. For example, age at AIDS diagnosis is usually
observed and its inclusion as a covariate improves
precision and enables the estimation of age-specific
relative risks of infection [4].

Estimating the Incubation Distribution
from Retrospective Ascertainment Data

Estimation of the probability distribution for the
incubation period has also been a major focus of
statistical studies in the HIV/AIDS area. It is of
interest because this distribution is needed to advise
patients, to monitor disease progression, and for back-
projection. Its estimation presents difficulties because
the time of infection is usually unknown.

For individuals infected with HIV by a single
blood transfusion it is possible to determine the time
of infection. However, even for data on these sub-
jects, estimation requires new methodology, because
subjects usually enter the study sample only when
they have been diagnosed with AIDS. At this point
their time of infection can only be ascertained retro-
spectively. Shorter incubation periods are overrepre-
sented when subjects are sampled in this way, so
it is important that the method of estimation takes
account of the way the data arise. Lui et al. [19]
estimated the incubation distribution by ignoring the
infection process that led to the data, considering
each retrospectively ascertained incubation time as
an observation from a truncated Weibull distribution.
Medley et al. [20] allow for HIV infections to occur
according to a Poisson process with the rate having a
parametric form λ(t ; β) at time t and taking a para-
metric form f (x; θ) for the incubation distribution.
They consider the forms

λ(t ; β) = exp(β0 + β1t) and λ(t ; β) = β0 + β1t

for the infection rate and consider both the gamma
and the Weibull distributions for f .

As pointed out by Kalbfleisch & Lawless [13],
there is an identifiability problem when we try to
estimate both the Poisson rate, λ, and the incubation
distribution, f , nonparametrically, and this reflects
itself even in the parametric setting by making the
estimates of certain parameters imprecise. Nonpara-
metric estimation of the shape of the incubation
distribution is facilitated by a reparameterization to
reverse-time hazard rates [17].

If it were possible to follow up a random sample
of subjects infected by a blood transfusion, then the
analysis of data on incubation periods would be a
standard problem of survival analysis. Retrospective
ascertainment data is the extreme case when infor-
mation on the incubation period is available only for
AIDS cases. Between these two extremes is the sit-
uation where the incubation periods are known for
those who have developed AIDS and we also know
the time since infection for some of those infected
but still without AIDS. Analysis of such data requires
modeling of the way the HIV infected individuals are
detected.

The effect of covariates on the incubation
distribution can be studied by focusing on the reverse-
time hazard h(x) = f (x)/F (x), where f is the
density and F the distribution function. The analysis
resembles survival analysis [17], and a proportional
hazard regression analysis can be applied in reverse
time [14].

Estimating the Incubation Distribution
from Other Data

Estimation of the incubation distribution from
prospective cohort studies has contributed to the
development of a methodology for interval censored
data. The time of infection is usually unknown,
but tests for antibodies to HIV on subjects over
time produce a time of last seronegative and a time
of first seropositive. This has motivated extensions
of known self-consistency algorithms to deal with
doubly censored data [7], as well as truncation
(see Truncated Survival Times) [26].

With a method analogous to the method of
back-projection, Bacchetti & Jewell [1] use the
convolution equation, (1), to estimate the incubation
distribution by using the λs as estimated from
data on a large cohort study. They obtain a
smooth nonparametric estimate by using a penalized
likelihood approach.

Monitoring Markers of the Immune
System in Subjects

Numerous markers of the state of the immune system
have been considered for monitoring disease pro-
gression. Of these the CD4+ count seems the best
indicator of disease progression. These counts are
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highly variable, and the count declines at a rate that
differs between individuals. The typical analysis fits
a model that is linear in time, using random effects,
to some transformation of the CD4+ counts. The five
papers in Jewell et al. [12, Section 3] give a good
overview of the relevant statistical methodology.

Reporting Delays

Surveillance systems are usually prone to delays
in the registration of cases, and AIDS surveillance
reports are no exception. The number of AIDS cases
in a surveillance report is usually less than the number
of AIDS cases that have actually been diagnosed by
the time of its publication, because of random delays
until dates of AIDS diagnoses are entered onto the
surveillance register (see Surveillance of Diseases).

AIDS surveillance data must be appropriately
corrected for reporting delays before they can be
used either for reconstruction of the HIV infection
curve or for forecasting of AIDS incidence. This was
recognized quite early, and the public access data on
AIDS incidence in the US contain an adjustment for
reporting delays.

Such adjustments require knowledge of the prob-
ability distribution of reporting delays. This distribu-
tion needs to be estimated from data on dates of
diagnosis and subsequent dates of entry onto the
surveillance register. A feature of these data is that
both the date of diagnosis and the date of entry
onto the register usually become available only at
the time of entry onto the register. In other words,
the available data have the same form as retrospec-
tive ascertainment data on the incubation periods of
transfusion-acquired HIV infection, with the conse-
quence that the methods of analysis carry over to
reporting delay data. In particular, the methods of
nonparametric estimation described in Kalbfleisch &
Lawless [13] and Lagakos et al. [17] can be used.

A comprehensive analysis of reporting delay data,
involving covariates, is a useful way of identifying
weaknesses in the reporting system and of detect-
ing changes in the reporting delay distribution over
time. Methods for testing the stationarity of report-
ing delays over time, using a proportional reverse-
time hazards model, are described by Kalbfleisch
& Lawless [13] and Pagano et al. [21]. The use of
generalized linear models for identifying significant
factors, such as geographic region for example, is
described by Zeger et al. [29].

Forecasting AIDS Incidence

Before using AIDS surveillance data to predict future
AIDS incidence the available data must be corrected
for reporting delays. Rosenberg [23] describes a sim-
ple way to do this.

All methods of forecasting extrapolate a curve like
the convolution equation, (1), beyond the period for
which data are available. For example, a prediction
of the AIDS incidence for time unit τ ′, where τ ′ > τ ,
is given by

µτ ′ =
τ ′∑

s=1

λsfτ ′−s . (2)

If a parametric form is assumed for the λs , then its
smaller number of parameters have been estimated
from the available data and extrapolating the time
argument presents no difficulty, but relies on the
assumed parametric form remaining appropriate for
time points in the future. When the λs have been
estimated as separate parameters, i.e. nonparamet-
rically, then (2) contains λτ+1, . . . , λτ ′ , which are
not known. Some assumptions need to be made
about those values. These assumptions are not cru-
cial for short-term predictions since their multipliers
fτ ′−τ−1, . . . , f0 will then be very small, because short
incubation periods are rare.

The fr contained in (2) are assumed known but are
in fact estimated from available data. This means that
knowledge about probabilities fr is very imprecise
for large r , adding to the uncertainty of predictions.

Infectivity

Rates of transmission between individuals are a cen-
tral concern for infectious diseases. HIV can be
transmitted between sexual partners. Estimating the
risk of transmission between partners and determin-
ing the factors that affect this risk has been a focus
of some studies.

To gain an understanding of sexual transmis-
sion of HIV, fundamental questions have had to
be addressed with new statistical methodologies.
Kaplan [15] used simple Bernoulli process models to
investigate whether the number of partners alone can
explain sexual transmission of HIV or whether the
number of sex acts must be counted. Shiboski & Jew-
ell [25] extend the investigation to whether the infec-
tivity changes during the course of a partnership and
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identify factors which influence the infectiousness of
the initial infective partner and the susceptibility of
uninfected partners. Analysis is complicated by lim-
itations in the data, which include uncertainty in the
times of infection of HIV positive individuals. Their
methodology is akin to those of survival analysis.

When there is uncertainty about which partner is
the source of infection, the EM-algorithm can be used
to estimate the probabilities of transmission between
partners.

Methods for Studying Intervention

Treatments intended to delay disease progression in
HIV infected subjects are often therapies for just
one or two of the many AIDS-defining illnesses.
Competing risk models are therefore a natural tool
for the assessment of the effectiveness of therapy
in clinical trials. Another issue requiring statistical
consideration is the assessment of drug compliance
during clinical trials [16], because drugs tend to be
self-administered and have undesirable side-effects.

Trials for determining the efficacy of vaccines
(see Vaccine Studies), often aimed at preventing the
onset of disease rather than preventing infection with
HIV, present special challenges in the HIV/AIDS
context [22]. One major issue of concern, which also
has relevance to trials that assess other therapies
of disease progression, is that the long incubation
period means that estimation of the vaccine efficacy,
with adequate precision, requires a very long trial.
To avoid such delays there is interest in the use of
surrogate endpoints. In particular, a reduction in the
loss of CD4+ cells during HIV infection is considered
a promising sign of vaccine impact.

A second issue of concern is that subjects are
able to determine, by being tested, whether they are
receiving a vaccine rather than a placebo. This may
induce a feeling of security in individuals who know
they are receiving the vaccine, with a possible change
in behavior to less safe sexual practices. This may
obscure a modest protection offered by the vaccine.

Statistical methods have also been used to evaluate
needle exchange programs.

Screening for HIV Infection

The seroprevalence of HIV infection is low in many
parts of the population. In low prevalence regions

there will tend to be more false positives than real
positives. Furthermore, large samples are needed to
obtain a nonzero estimate of the prevalence. This
prompts the pooling of sera samples and performing
tests on the pooled samples. Statistical studies have
shown that not only does this result in cost saving, but
the estimate of the seroprevalence can be improved
significantly [28].
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Akaike’s Criteria

Two of the criteria that have been widely used for
model-choice are associated with H. Akaike.

FPE

If a (not necessarily true) p-parameter linear model
is fitted by unweighted least squares to n observa-
tions y1, . . . , yn, giving fitted values ŷ1, . . . , ŷn and
Residual Sum of Squares (see Analysis of Variance)
(n − p)s2

p, say, then the Final Prediction Error crite-
rion (FPE) may be defined by

FPE =
(

1 + p

n

)
s2
p.

This formula was derived by Jones [6] as the “full
model” value of a model-choice criterion equivalent
to Cp, for observations uncorrelated and homoscedas-
tic (see Scedasticity) with variance σ 2 (see Mallows’
Cp Statistic Statistic). Jones showed that

E(FPE) ≥ E






∑
[ŷi − y ′

i]
2

n




 ,

where y ′
i is an independent replication of yi , with

equality if E(s2
p) = σ 2 (which almost requires the

model to be true after all). The FPE formula was
independently derived by Akaike [1] in the context of
autoregression (see ARMA and ARIMA Models),
as a model-choice criterion in its own right. Provided
p/n and Cp/n are small, FPE and Cp give the
same model ranking: for then, denoting equivalence
or approximate equivalence by ∼=,

FPE ∼=
(

1 + 2p

n

)
RSSp

∼= 1 + Cp

n
.

AIC

For a (not necessarily true) model M with
p parameters θ = (θ1, . . . , θp) and likelihood
function L(θ |y) (taken as a rewritten probability
density function (pdf)), the Akaike Information
Criterion [2] is

AIC = −2 log L[θ̂ (y)|y] + 2p,

where θ̂ maximizes L(θ |y). Under conditions on the
likelihood functions in M that involve their regularity
and high informativeness, AIC is an approximately
unbiased estimate of

EM = Ey{EY [−2 log L[θ̂ (y)|Y ]},
in which Y has, independently, the same unknown
true distribution as the data y. Since the inner
expectation over Y is a respected information theory
index of the discrepancy between the pdf of Y (in
M) for θ = θ̂ (y) and its true pdf, AIC has been well
received as a model-choice criterion.

When M is a normal linear model with indepen-
dent observations with known variance σ 2 and we
take L(θ |y) = exp{−∑

[yi − E(yi)]2/2σ 2},

AIC = (n − p)s2
p

σ 2
+ 2p = Cp + n

so that AIC and Cp are then equivalent. If σ 2 is
one of the estimated parameters in M and we take
L(θ |y) = σ−n exp{−∑

[yi − E(yi)]2/2σ 2}, then

AIC = n log(σ̂ 2
p) + 2p + n + 2,

where σ̂ 2
p = (1 − p/n)s2

p is the maximum likelihood
estimate (mle) of σ 2 in M. When p/n is small,

FPE ∼= log FPE ∼= log(σ̂ 2
p) + 2p

n

and FPE and AIC are then approximately equiva-
lent (which therefore extends to Cp when Cp/n is
small too).

The asserted equivalences or approximate equiv-
alences are purely functional and therefore opera-
tionally effective. “An asymptotic equivalence” of a
different sort was proved by Stone [9] between AIC
and a particular (not necessarily attractive) choice A

of the cross-validatory criterion. The connection is
of limited interest, since it is an operational, approx-
imate equivalence (for small p/n) only when the
model M used to generate both AIC and A is actu-
ally true.

Applications of AIC select models with the small-
est value of AIC, a practice labeled MAICE. This
practice has been widely criticized for its asymptotic
inconsistency in selecting true models, meaning that
it has been theoretically established that, for large n

and small p/n, MAICE may have a high probability
of picking an “over-fitting” model in which there is
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a sharply defined, simpler submodel truly generating
the data. This criticism is misplaced, given that AIC
was designed to optimize, for ordinarily sized data
sets, the approximation of an essentially unidentifi-
able true distribution, by an almost inevitably untrue
model selected by MAICE from some merely reason-
able family of distributions.

This is not to say that there is no room for
improvement in the performance of MAICE in ful-
filling its objective. Most sets of data are not big
enough for the complex inferences that scientists wish
to draw from them. So the practical effectiveness
of model selection methods often depends on their
capacity to handle cases where p/n is not small.
Since the penalty term 2p in AIC was derived for
small p/n, there must be doubts whether AIC can
handle such cases (see p. 83 of the application-
oriented book of Sakamoto et al. [8]). A modification
of AIC to deal with moderate to large p/n has been
proposed by Hurvich & Tsai [5] which has been gen-
eralized to multivariate y by Bedric & Tsai [3] and
Fujikoshi & Satoh [4].

The book by Linhart & Zucchini [7] gives a
useful, nonpartisan overview of the whole area of
model choice, including applications.
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Algorithm

An algorithm is a sequence of instructions for car-
rying out a well-defined task. The term is generally
used to describe a series of logical steps that, when
implemented within a computer program, will per-
form a desired computational task. This article will
discuss issues that are generally important in finding
or choosing such an algorithm.

The task must be specified precisely. The algo-
rithm should then do the task correctly and do it
economically (i.e. with acceptably small computa-
tional and memory cost). These, and several related
points, will be illustrated with reference to some com-
mon tasks. We observe that there are tasks whose
computational demands are so severe that they are
not tractable, on current computers or on any cur-
rently imaginable digital computer.

The sorting of a set of numbers into numerical
order is an unambiguous task. But suppose that the
permutation (rearrangement) that places the numbers
in order is at the same time applied to a second
list of numbers. For example, the permutation of the
numbers in the first row is at the same time applied
to the numbers in the second row.

311 311 231
7 6 9

There are then two solutions. In one of these, the
columns are placed in the order 3, 1, 2. In the second
solution, the columns are placed in the order 3, 2, 1.
There are several possibilities:

• Either result may be acceptable.
• Whenever there is a choice, the original order

is preserved. Thus column 1 would precede col-
umn 2.

• Whenever there is a choice, the numbers in the
second column appear in numerical order.

In file compression, different algorithms will lead
to different compressed files. What is important is
not to obtain the same compressed files, but to make
a substantial reduction in the size of the file, with
modest computational effort. The basis for comparing
algorithms that perform reliably is the trade-off that
they offer between computational requirements for
compression and decompression, and the amount of
compression achieved. For information on widely
used file compression programs and formats, see

the web page http://www.programmersheaven.
com/zone22/cat208/.

Because different internet search engines use
different algorithms, they will not always find the
same sites and they will rank them differently. Some
engines are better for some types of search, for exam-
ple, searching for papers that have been published on
the web, and others for other types of search, for
example, searching for travel information.

The calculation of a variance and linear least
squares are examples of floating point calculations,
that is, calculations with decimal numbers that are
stored using the floating point format that is standard
on modern digital computers. Since these calculations
will be carried out on computers that have limited
floating point precision, two distinct algorithms that
ostensibly solve the same numerical problem will
almost inevitably differ in the precision that they
achieve on an actual computer.

Finally, note the idea of computational complex-
ity. This has to do, not with the complexity of the
code that will carry out the computation, but with
the number of operations that are required. Two
algorithms that handle the same task can have very
different demands; additionally, there are tasks that,
irrespective of the algorithm used, make heavy or
perhaps impossible demands on computer resources.

For example, one way to assess the significance of
a one-sample t-statistic (see Student’s t Statistics)
is to refer it to its permutation distribution, that is,
to the distribution of the statistic that arises from all
the 2n possible assignments of sign (+ or −) to the
n values (see Randomization Tests). With n = 20,
there are 1 048 576 possible assignments of sign, and
the calculation is tractable. With n = 50, however,
and assuming a computer that can handle the calcu-
lation for 106 of the 250 t-statistics in each second,
it will take more than 35 years to complete the cal-
culations. Thus, this calculation is not tractable, for
any except quite small values of n. Additionally, stor-
age of all the 250 t-statistics would require a little
more than a million gigabytes, and might seem an
issue for this calculation. Storage problems can how-
ever be sidestepped by building up information on
the distribution as calculations proceed. Fortunately,
calculation of all 250 t-statistics is for practical pur-
poses unnecessary. By taking a sufficient number of
random samples from the distribution, the distribution
can be estimated with high accuracy.
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Algorithm Design

Where several alternative algorithms are available for
a task, there are various criteria that may be impor-
tant in comparing them. Typically, some algorithms
will be preferred on one criterion (e.g. high numerical
accuracy), and others on other criteria (e.g. computa-
tional time and/or storage requirements).

Strategies for algorithm design vary greatly from
one problem area to another. The issues involved
in designing algorithms for matrix computations
are different from those for the design of sorting
algorithms. Hence the differences in style and con-
tent found between Cormen et al. [7] who examine
algorithms that are widely important in computing,
Higham [11] whose interest is numerical algorithms,
and Monahan [15] who examines algorithms that are
important for statistical calculations.

A widely applicable general strategy is, in essence,
that of top-down programming – complex problems
are broken down into simpler subproblems, which are
then further broken down. It is sometimes possible to
break the problem down into smaller instances of the
same problem, in what is called recursion. Sorting
algorithms are among those that are suited to the
use of recursion [7]. Another widely used device is
iteration, which involves repeated execution of the
same set of statements. Recursive algorithms can
be attractive because of the initial simplicity and
elegance of the code. An iterative version is often
more efficient for the final implementation.

The design of a good algorithm will typically
involve the use of theoretical insights, heuristic argu-
ments that suggest (but do not establish beyond
doubt) effective ways to proceed, trial and error, and
the use of insights from the scrutiny of other algo-
rithms that have a similar purpose.

Specific criteria will now be noted that are impor-
tant for algorithm design. Note that assessment with
respect to such criteria as optimality and accuracy can
depend strongly on the particular computer architec-
ture and organization. Tuning, that is, adaptation of
implementation details, is often required to get the
best performance on a particular computing system.

Optimality

Optimality has to do with computational cost. Often,
the cost is dominated by one particular operation, for
example, multiplication, or number of comparisons

made. Or it may be dominated by sets of operations
that are closely linked, for example, comparisons
made and exchange of elements. Analysis of opti-
mality aims to get results that, as far as possible, are
independent of the different relative costs, on differ-
ent computers, of operations that may be of interest.
Often it is possible to identify operations or sets of
operations that increasingly dominate the cost as the
size of the problem (e.g. the number of elements that
are to be sorted) increases. These are then the focus
of attention. The relative costs of different sorting
algorithms, for the sorting of 10 numbers, are of no
consequence. For sorting a million numbers, the dif-
ference does matter.

Computer Memory or Storage Requirements

Not only do algorithms differ in computational com-
plexity, but also in the amount of storage space that is
required. For example, the usual implementations of
the Mergesort algorithm that I discuss below require
the use of two auxiliary arrays, of total length equal
to the length of the vector that is to be sorted. By
contrast, the Quicksort algorithm sorts in place, that
is, no additional storage is required. This may be a
consideration in choosing between the algorithms.

Simplicity

Simple forms of description make it easier to under-
stand an algorithm, to verify correctness, and to
ensure that the algorithm is robust against unusual or
extreme inputs. In the choice between computational
efficiency and simplicity, the more efficient algorithm
will usually be preferred.

Accuracy and Precision

Questions of accuracy and precision arise because
calculations with real numbers are carried out using
floating point arithmetic. A key issue is to ensure
that inaccuracies do not accumulate unreasonably;
(see Matrix Computations).

Languages for Describing Algorithms

Computer languages, because they trade off ease
of human comprehension against computational effi-
ciency and demands that arise from the tradition of
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the language, may not be ideal for the communica-
tion of algorithms to other humans. This has been a
reason for the use of various forms of pseudocode,
where simplicity, ease of description, and communi-
cation are the major considerations. The syntax may
be modeled on a widely used computer language.

Benefits from using a computer language for
describing as well as for implementing algorithms
include:

• Implementation on actual machines forces reso-
lution of language ambiguities.

• The description is immediately accessible, with-
out explanation of language conventions, to the
community of individuals with skills in the lan-
guage or in a related language.

• The algorithm can be directly exposed to a range
of checks on a computer.

• Changes to the implemented code can be immedi-
ately reflected in the description of the algorithm.
Such changes may be required to correct bugs,
to reduce execution time, to allow the program
to handle a wider range of inputs, or to handle
illegal inputs.

• Once carefully tested, the implementation is im-
mediately available for incorporation into com-
puter programs.

If a computer language is used, it is important to
choose a language whose primitives, that is, the set
of abilities that are immediately available in the lan-
guage, are appropriate for algorithms of this general
type. The Matlab language and associated syntax has
been popular with numerical analysts. For statistical
algorithms, the S language, whether as implemented
in S-PLUS or as in R, may be a good choice. Func-
tions that the algorithm writer may add to the lan-
guage extend the set of “primitives” that are available
for the coding of algorithms. The Perl and Python lan-
guages are widely regarded as versatile tools for text
manipulation, string, and general-purpose program-
ming.

Practical implementations of computer languages
encode a large number of algorithms, which users
of those languages take for granted. These include
algorithms for parsing source language statements
and turning them into more immediately executable
code, algorithms for handling addition, subtraction,
multiplication, and division, algorithms for extracting
square roots, for calculating logarithms, and so on.
Already, in the implementation of the statements of

the computer language that will be used, algorithms
are pervasive. Algorithms for handling such “primi-
tive” operations are primarily a matter for compiler
writers and other specialists, and will not be discussed
further in this article.

Visual Devices

Visual devices can be helpful in the development and
description of algorithms. The best known of these
are flowcharts and structure diagrams. Flowcharts
emphasize the sequence of operations within the algo-
rithm or, more generally, within a computer program.
Structure diagrams emphasize the command struc-
ture of the code. The master routine delegates tasks
to a succession of lower level routines that, in their
turn, delegate tasks to routines that are further down
the hierarchy. There is a preference for algorithmic
descriptions that are associated with simple forms of
structure diagram.

Computational Complexity

Optimality, that is, keeping computational time to a
minimum, is a serious issue for operations that must
be carried out a large number of times. Hence the
emphasis on computational complexity, that is, the
investigation of how the number of operations of
the predominate type increases with the size of the
problem. This has led to attention to the asymptotic
behavior of algorithms, that is, to the behavior as the
size of the problem increases. Sorting algorithms will
be used for illustration.

Bubblesort is a simple comparison-based algo-
rithm. While it is not recommended for practical use,
it is a useful point of reference, in making com-
parisons with more satisfactory algorithms. A first
pass though the data uses the comparison and per-
haps the exchange of adjacent elements to bring the
largest element into the final position. The next pass
then brings the next largest element into the sec-
ond last position, and so on. The algorithm requires
N(N − 1)/2 comparisons and, on average, half that
number of exchanges. In order to simplify the dis-
cussion, exchanges are commonly treated as a tax
on comparisons, with the tax rate varying from one
algorithm to another and from one computer imple-
mentation to another.

It follows from the discussion above that the
computational cost of the Bubblesort algorithm is
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cN (N − 1), where c is a suitably chosen constant,
so that the algorithm is O(N2). For certain special
inputs, there are sorting algorithms, not based on
comparisons, that are O(N ). The relevant constant
c0 will be different, and, indeed, the operations that
dominate the computational cost are not comparisons.
What is important is that for sufficiently large N ,
in this example for N > c0/c, the inequality c0N <

cN2 is satisfied. Recall the earlier remark that the
interest is in computational cost when N is “large”.
Algorithms that are O(N ) or better are said to be
scalable [5].

Two efficient and widely used sorting algorithms
are Mergesort and Quicksort. Mergesort has best-
case, average-case, and worst-case performance that
is O(N logN ). Most implementations require the
use of an auxiliary array for storage of intermediate
results, which can be a disadvantage relative to Bub-
blesort and Quicksort. As usually described, Quick-
sort has best-case and average-case performance that
is O(N logN ), with O(N2) worst-case performance.
The algorithm can however be modified to be O(N
logN ), even in the worst case [7]. Depending on the
computing implementation, the factor by which N

log(N ) must be multiplied to give a realistic time
can be smaller than for Mergesort.

More than Polynomial Complexity

An algorithm that is O(Np) for some p has polyno-
mial complexity. If an algorithm is not O(Np) for any
p, then the computational cost will make the calcu-
lation intractable for any except relatively small N .
An algorithm that is O(N500) would be just about as
intractable as an algorithm that is exponential in N ,
that is, an algorithm that is O(eaN ) for some a > 0.
In practice, however, when polynomial complexity
can be achieved, p is typically quite small, no more
than 3.

In order to illustrate the reach of computational
complexity, consider the naive use of maximum like-
lihood methods such as are described in [8], for
the estimation of evolutionary trees from nucleic
acid sequence data, in what is known as phylo-
genetic reconstruction. With n taxa, the number
of unrooted bifurcating trees with n labelled tips
is (2n − 5)!/[(n − 3)!2n−3]. It can be shown that
this makes the problem, without accounting for the
increase in computation per tree as n increases,
at least O(nn−2). Examination of all likelihoods is

possible only for n less than about 12; for larger n,
it is necessary to resort to one of a number of prob-
abilistic and/or heuristic methods that seem likely to
give a good approximation to the maximum likeli-
hood solution.

A problem with approximate methods is that
it is often impossible to be sure that the prob-
lem has been “solved”, and there has been a con-
tinuing search for “better” methods. The website
http://evolution.genetics.washington.
edu/phylip/software.html is an interesting
source of information on the large variety of soft-
ware and methods that have been developed for the
estimation of evolutionary trees.

There is an important special class of problems
that are said to be NP-complete. For details of the
definition, see [6, 7]. Several are problems of con-
siderable practical importance. For these problems,
no polynomial time algorithm is known. All are
suspected to require more than polynomial time; how-
ever, this has not been proved. Several of them have
polynomial time approximate solutions that are ade-
quate for most practical purposes (Cormen et al.[7]).
One of the best-known examples is the traveling
salesman problem: Given the array of n(n − 1)/2 dis-
tances between n cities that a salesman must visit,
find the minimum distance route that passes through
all n cities. Cook[6] presents an overview of compu-
tational complexity.

Algorithms and Models

Many algorithms that are in practical use lack a
totally convincing theoretical basis. They may be
developed using a heuristic approach, effectively a
trial and error approach that tries what seems to make
sense, then testing it to see whether it works. When
such approaches are used in statistical data analy-
sis, they lead to the use of models that may be
fairly described, following Breiman [4], as algorith-
mic. Although Breiman does not explain how algo-
rithmic models arise, some of the motivations are:

• Extensions of algorithms, for example, normal
theory statistical models, into contexts where the
theory that motivated the models is no longer
plausible.

• Algorithms for models of a learning process,
leading to the use of the term machine learning.
Neural networks have this character.
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• Algorithms that mimic processes that have
been found useful in taxonomic identification
or medical diagnosis (see Computer-aided
Diagnosis. Tree-structured Statistical Methods,
often called decision tree methods (see Decision
Analysis in Diagnosis and Treatment Choice),
mimic the creation of a botanical or other
taxonomic key.

If the purpose of the model is prediction, then
the key issue is the ability to make accurate pre-
dictions for data that are different from those used
for the development of the model. It is important to
devise realistic tests. Further discussion would take
us outside of the scope of this present article. See, in
particular, the contributions of Cox and Efron to the
discussion that followed [4].

Parallel Algorithms

Clustered computing systems, with multiple proces-
sors that can be used in parallel, are now relatively
cheap and straightforward to build; see Computer
Architecture and Organization. The structuring of
algorithms to take advantage of such multiple pro-
cessor systems and their associated software is, in
general, much less straightforward. Problems where
the major part of the computation splits cleanly into
distinct subproblems, so that the structuring is sim-
ple, are said to be embarrassingly parallel. Thus, for a
parallel sort, the data are split into parts, the parts are
sorted separately, and then, as in Mergesort, the sep-
arate parts are merged. Modern computational power,
and such developments as parallel processors, encour-
age the contemplation of methods for which the
computations were formerly prohibitive; for exam-
ple, computer-intensive statistical methods, virtual
reality systems, three-dimensional medical imaging
(see Image Analysis and Tomography), global cli-
mate models, and so on. Growth in computational
power continually extends the range of computations
and their associated algorithms that are of practi-
cal interest.

Future Reading and References

The books by Knuth [12–14] are classics. Harel [10]
has extensive bibliographic notes, useful in indicating

where to look for additional information on pub-
lished algorithms or associated literature. Cormen
et al. [7] is encyclopedic in its coverage. As with
Harel, the focus is on nonnumerical algorithms. For
numerical and matrix algorithms, see [2, 11, 20].
Thisted [21] and Monahan [15] are useful sources of
information on statistical algorithms. For algorithm
design and analysis, see [1, 3, 17, 19]. Algorithm
design is a creative problem-solving activity, to which
the discussion in Pólya [16] is relevant. On algo-
rithms for parallel computing, see [9, 18, 22, 23]; (see
also Computer Architecture and Organization).

Sources of information on algorithms and com-
putation include ACM Transactions on Mathemati-
cal Software, Communications of the ACM, Compu-
tational Statistics, Computer and Mathematics with
Applications, IEEE Transactions on Computers, Jour-
nal of Computational and Graphical Statistics, Jour-
nal of the ACM, SIAM Journal on Computing, and
Statistics and Computing, where research articles
appear regularly.
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Allometry

Allometry is the study of shape differences associ-
ated with size. Shape changes in growing organs or
whole organisms may be triggered by either biologi-
cal or physical needs. For example, a simple spherical
organism may use its entire surface area for nutri-
ent intake and respiration. If the organism doubles in
diameter, then there is a fourfold increase in surface
area, A, and an eightfold increase in volume, V . Food
requirements are likely to be roughly proportional to
volume. Spherical shape can only be maintained if
additional nutrient requirements are met by increas-
ing the efficiency of intake or by the inclusion of an
increasing amount of inactive organic matter (akin
to the woody structure in trees). To both of these
there must be an upper limit at which the organ-
ism must either stop growing or increase its effective
A/V ratio either by (i) convolution or branching, or
(ii) alteration in shape, implying a different growth
rate in some directions or in some parts of the
organism. Animals and plants must also adapt their
structure to meet physical demands. For example, the
strength of a bone is proportional to its cross-sectional
area.

The term allometry is used by some writers
with more specific meanings usually relating to
differences in proportions correlated with changes
in absolute magnitude of the total organism, or
of specific parts under consideration [2]. Variables
measured may be morphological, physiological, or
chemical. Gould also proposed, and this is now
widely accepted, that the term be used regardless
of the mathematical expression used to characterize
the relationship between variables. We emphasize
this point because many bivariate studies have been
concerned with the so-called equation of simple
allometry where two size variables, x and y, satisfy
approximately a relationship of the form

y = αxβ, (1)

or equivalently

ln y = ln α + β ln x. (2)

Relationships of the form (1) or (2) hold between
many pairs of size measurements, e.g. between x =
head height and y = total height for individuals in
man and many other species from a few weeks after

conception to maturity. The ratio x/y decreases with
age because head height decreases as a proportion of
total height. This is allied to the brain being a larger
proportion of total body mass at birth than it is at
maturity, because a relatively large brain is needed
at birth to ensure that essential bodily functions to
maintain life and stimulate growth are possible, but
as the individual grows, other parts of the body (e.g.
arms and legs) grow at a faster rate than the brain so
as to make possible new activities by the developing
individual.

Intuitively we think of size measurements x and
y like lengths and masses as measures of absolute
magnitude, and proportions such as x/y as shape
indicators. If the latter remain constant in time, then
this implies no shape change with respect to the
particular size measurements and this situation is
often described as isometry and corresponds to β = 1
in (1). Eq. (1) was proposed by Huxley [5] and has
been used in a variety of contexts since.

Extensions from a bivariate distribution (p =
2) to a multivariate distribution (p > 2), where
p size measurements are made on organs or parts
of an organism, have received considerable atten-
tion. A diversity of approaches to suitable general-
izations from the case p = 2 have been advocated
by Teissier [9], Jolicoeur [6], Hopkins [4], and oth-
ers, who recommended analyses of size and shape
on the basis of either factor analysis or princi-
pal components analysis. Their approaches were
basically empirical and often required assumptions
which, although intuitively reasonable, were not read-
ily amenable to statistical verification.

Mosimann [8] made a major breakthrough in the
p-variate case by defining size variables and shape
vectors associated, for example, with a set of dis-
tances between specified points. He defines sameness
of shape in terms of vectors x1 and x2 of distances by
a relationship x2 = cx1, where c is a constant. Sub-
ject to certain axioms, he proved several theorems
about size and shape. However, in this context, defi-
nitions of equality of shape of two organisms depend
critically on how many and what measurements are
made. For example, if an animal is 100 cm long from
snout to tail, stands 80 cm high at its back legs, and
the top of its head is 160 cm above ground, then
we may argue on this evidence that it has the same
shape as an animal with corresponding measurements
125 cm, 100 cm, and 200 cm, where c = 1.25. How-
ever, if we know also that the torso length of the
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animals are, respectively, 50 cm, and 40 cm, then we
would no longer consider the animals to be the same
shape.

Bookstein [1] recognized the fundamental weak-
ness in the above approaches to be the linear-
ity implied by distance vectors and the constraints
imposed by Euclidean geometry. He proposed two
approaches to make the analysis of shape and shape
changes more realistic. The first was by introduc-
ing concepts of curvature and tangent directions at
a series of what he called landmark points. The sec-
ond was a formalization of the concept of coordinate
transformations first proposed by Thompson [10]
using biorthogonal grids, and this is relevant also to
more general aspects of morphometrics such as com-
parisons of shapes of corresponding parts of different
species. His analyses are essentially mathematical
rather than statistical in nature although he recog-
nizes the statistical element in the interpretation of
his results. A summary of the recent work on shape
analysis using Euclidean distance matrix analysis can
be found in [7].

For a review of conceptual and statistical difficul-
ties associated with classic bivariate and multivariate
allometry, see [3].
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Alternative Hypothesis

An alternative hypothesis (usually symbolically rep-
resented as Ha: or H1:) is a statement about a
population or set of populations. It stands in con-
tradistinction to the null hypothesis, stating what the
conclusion of the experiment would be if the null
hypothesis were rejected. While the null hypothe-
sis usually expresses what the result of the exper-
iment would indicate if nothing statistically signifi-
cant results (a negative conclusion), the alternative
hypothesis is stated in positive terms, i.e. something
of significance is noted. The alternative hypothe-
sis may be two-sided or one-sided. A two-sided
alternative hypothesis would conjecture that if the
null hypothesis is not acceptable, then the find-
ings might indicate either a larger or smaller value
for a parameter (for one population), or a differ-
ence (direction unspecified) among values for the
parameter across the several populations. Notation-
ally, a two-sided alternative hypothesis would take
the form Ha: θ �= θ0 for a one-population setting,
or Ha: not all θj are equal, for a setting with sev-
eral populations. To illustrate, if µ is the popula-
tion mean for one population and µ0 is the value
specified by the null hypothesis, then Ha: µ �= µ0;
and if µ1 and µ2 are the means for two pop-
ulations, then the alternative hypothesis might be
Ha: µ1 �= µ2.

The alternative hypothesis is one-sided when a
directional relationship is indicated; that is, the value
of a parameter (for one population) is smaller or
larger (but only one direction is hypothesized), e.g.
Ha: θ < θ0. If several populations are being studied,
a one-sided alternative would indicate specific direc-
tional relationships among the values of the parameter
for the several populations, e.g. Ha: θ1 < θ2, if k = 2.

To illustrate, if µ1 is the mean length of hospital-
ization for a population of males following coronary
artery bypass surgery (CABG), and µ2 is the com-
parable parameter for a population of females, then,
if H0: µ1 = µ2, the one-sided alternative hypothesis
might be Ha: µ1 < µ2, i.e. that females have on the
average a shorter postoperative hospitalization than
males. A specific alternative might state how much
shorter, say Ha: µ2 = µ1 − 2; i.e. females average 2
days less than males.

Additional terminology about the null and alter-
native hypothesis is sometimes used, to indicate the
number of possible choices for the parameter under
hypothesis. For example, for one population H0: θ =
θ0 would be called a simple hypothesis because it
specifies only a single choice for θ . On the other hand,
Ha: θ �= θ0, would be termed a composite alternative
hypothesis because there are many possible choices
for θ (i.e. all values �= θ0).

M.A. SCHORK



Alternative Medicine

Alternative medicine is not an entity easy to define.
The World Health Organization (WHO) has de-
fined alternative medicine as all forms of health-care
provision which “usually lie outside the official health
sector” [2], and the US National Institutes of Health
Office of alternative medicine defines it as “thera-
pies that are unproven” [3]. This last definition has
the advantage that a proper evaluation of a therapy
demonstrating its efficacy would move this therapy
from alternative to orthodox. The problem with the
word “alternative” is that most so-called alternative
procedures are not offered as an alternative but rather
as a complement to orthodox medicine; complemen-
tary medicine is therefore an expression which is
often used and has been recommended. However,
restricting the problem to complementary therapies
ignores the fact that some proponents of alterna-
tive methods do reject orthodox medicine, and claim
to offer truly alternative medical systems. The list
of procedures that are considered as complementary
medicine is very long and the most prevalent forms
of therapy are acupuncture, homeopathy, and manip-
ulation, i.e. osteopathy and chiropractic [4].

The proportion of the population reporting use of
complementary medicine varies in Europe between
49% in France and 20% in the Netherlands [5], and
is equal to 34% in the US [3]. Complementary ther-
apies are generally used because they have fewer
side effects than conventional therapies and with the
aim to control symptoms. Despite this wide use,
these practices remain outside of the mainstream
of medicine without being completely accepted nor
completely rejected, and their efficacy has not been
properly evaluated.

Most alternative therapies have been in use for
centuries. Ayur Veda, a traditional healing system
from India, currently popular in the US is 5000
years old. The first Chinese text on acupuncture is
more than 2000 years old, Hahnemann defined the
principles of homeopathy 200 years ago, and Still
developed a system of osteopathy in 1874 [14].

Types of Studies

A substantial number of randomized controlled
trials (see Clinical Trials, Overview) evaluating

alternative medical practice have been conducted,
but few trials used an adequate methodology. The
Groupe de Recherches et d’Essais Cliniques en
Homoeopathie (GRECHO) trial of homeopathy in
post-operative ileus [12] gives a good illustration of a
well conducted trial. Six hundred patients undergoing
planned abdominal surgery were randomized into
four groups (see Randomization), one being left
untreated and the other three receiving, under double
blind conditions (see Blinding or Masking), either
opium plus raphanus or opium plus raphanus placebo
or a double placebo. Opium was at a dilution of
1030 and raphanus at a dilution of 1010. The outcome
(see Outcome Measures in Clinical Trials) was the
time to recovery of bowel movements after surgery.
The sample size was 600, to have a 95% chance
to demonstrate a reduction in the time to recovery
of bowel movements from 100 hours to 80 hours
assuming a standard deviation equal to 40 hours
for this measure (type I error of 5%) (see Sample
Size Determination for Clinical Trials). There
were no significant differences between any of the
groups (P > 0.30). The conclusion of the trial
was that the resumption of intestinal transit is
not affected by placebo or by opium, either alone
or associated with raphanus, in the concentrations
studied.

Most studies are not that carefully designed. It
is not often that the placebo effect is evaluated by
comparing a placebo-treated group with a group left
untreated. Some trials are described as randomized
but show an obvious misconception of randomiza-
tion [1]. The sample size is rarely based on statistical
considerations and is much too small. The analysis
is often biased by exclusion of patients. The main
conclusion is often based on results observed on a
subgroup of patients.

Proper quantitative meta-analyses of clinical tri-
als are very difficult if not impossible to perform
because of the heterogeneity between studies both in
terms of patient selection and, more importantly, in
terms of outcome. Nevertheless, qualitative literature
reviews are feasible although they do not provide a
synthetic measure of the efficacy of the therapy under
study. Meta-analyses of trials evaluating alternative
therapies are also difficult since many trial results are
published in journals not listed in common databases,
and in journals having limited resources to review
clinical trial reports.
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Landmark Studies

Trials of homeopathy have been reviewed by Hill &
Doyon [6] and by Kleijnen et al. [7]. Hill & Doyon’s
review is restricted to 40 randomized trials, and
excludes trials which are described as randomized
but show obvious misconception of randomization,
whereas Kleijnen et al.’s review includes 107 tri-
als of which only 68 are said to be randomized.
The two reviews reach different conclusions: Hill
& Doyon concluding that their review failed to pro-
vide acceptable evidence that homeopathic treatments
are effective, and Kleijnen et al. concluding that
the evidence of clinical trials is positive, but not
sufficient.

Shekelle et al. [16] reviewed studies of the safety
and efficacy of spinal manipulation. Twenty-five con-
trolled trials were identified. The conclusion is that
spinal manipulation is of short-term benefit in the
subgroup of patients with uncomplicated, acute low-
back pain. Data are insufficient concerning the effi-
cacy of spinal manipulation for chronic low-back
pain. This review failed to report the results on the
overall 25 trials.

Richardson & Vincent [15] and Vincent &
Richardson [17] reviewed studies of acupuncture in
the relief of pain including both randomized and
nonrandomized studies. Their conclusion, based on
a selection of studies including those described
by the authors themselves as seriously flawed,
is that there is good evidence for short-term
effectiveness but weaker evidence for longer-term
effectiveness.

Kleijnen et al. [8] identified 13 trials described as
randomized or double-blind evaluating the efficacy of
acupuncture in asthma. They conclude that no studies
of high quality seem to have been published, and that
claims of the efficacy of acupuncture in the treatment
of asthma are not supported by the results of well-
performed clinical trials.

Law & Tang [9], in a review of randomized
controlled trials of smoking cessation interventions
including eight trials of acupuncture on 2759
patients, concluded that acupuncture is ineffective.
Li et al. [10] reviewed studies evaluating the effect
of acupuncture on gastrointestinal function and
disorders, and identified five trials published in China,
two being described as randomized. The conclusion
is that “more systematic, carefully designed and
properly controlled studies are needed”.

In conclusion, there does not seem to be any sound
evidence of the efficacy of the alternative therapies
considered here.

Problems and Solutions

Numerous arguments have been brought forward by
practitioners and proponents of alternative therapies
for not evaluating rigorously alternative therapies,
and these therapies have been considered for a long
time as very difficult, if not impossible, to evaluate.
In 1986, the British Medical Association published
a report [14] which concluded that an assessment of
the value of alternative therapies

would be feasible in the sense of not being totally
impossible. For many therapies a formal trial would
be quite inappropriate. In some cases. . . because the
treatment was alleged to be necessarily different for
each individual patient, it clearly would rule out any
trial based on comparisons between patients.

We think that, in most instances, placebo-controlled
trials are feasible and constitute a necessary first step
since their aim is to establish the efficacy of the
treatment. Placebo-controlled trials are feasible, and
indeed have been conducted to study homeopathy,
acupuncture, and chiropractic, using placebo drugs
for homeopathy and sham acupuncture or a sham
manipulation.

For acupuncture and chiropractic, double-blind tri-
als are not recommended since a truly blind procedure
would have to be carried out by a naive inexperi-
enced practitioner who may not produce an adequate
standard of treatment. Single-blind trials with inde-
pendent outcome assessment are recommended. For
homeopathy, double-blind trials are recommended.
The argument that the treatment has to be adapted
to each case is not a problem if one uses a whole
placebo pharmacopoeia. Contrary to what is stated by
Long & Mercer [11], blinding of the therapist does
not prevent the monitoring of progress and the alter-
ation of treatment; it is perfectly possible to adapt a
placebo treatment.

Practitioners of alternative medicine have argued
that trials were not possible because they thought that
the methodology of trials imposed a strict selection
of the patient population, this selection being based
on a classification of diseases that was not relevant
to them. We think that eligibility and exclusion
criteria may be broadly defined, should correspond



Alternative Medicine 3

to the practice of the therapists, and should respect
the uncertainty principle [18].

In the same spirit, alternative therapies usually
imply a flexible and individualized treatment. In prin-
ciple this is not an obstacle to a placebo-controlled
randomized trial, but varied sham manipulations may
be difficult to organize, and the lack of conviction of
the manipulator performing a sham treatment may be
associated with a poorer outcome, leading to biased
results.

According to Mercer et al. [13], complementary
therapists insist on including both subjective and
objective measures. We argue that the evaluation of
the efficacy of alternative therapies must be based
on a main outcome measure, defined uniquely and
clinically meaningful. The analysis must be unbiased,
based on the intention to treat principle, and include
all randomized patients. The results should not be
based on a subgroup analysis.

In conclusion, alternative therapies must be eval-
uated as rigorously as conventional therapies: trials
should be designed, conducted, and analyzed with
adequate methods, and should also comply with the
principles of the complementary therapy studied.

Meta-analyses, having the quality of the trials
they include, should be avoided because of the poor
quality of the trials performed so far. Overviews
are preferable. They imply a critical review of the
methodology of each trial. They should include noth-
ing but properly randomized trials. Studies where the
treatment assigned to the next patient is predictable
are not considered as adequately randomized. If pos-
sible, the efficacy of the therapy must be evaluated in
an objective manner. It is not adequate to summarize
the result of each trial by the conclusion it claims to
have reached, without any discussion of the validity
of this conclusion.

Anticipated Developments and Unresolved
Problems

It is amazing that these therapies have been in use
for such a long time without ever being properly
evaluated. A meta-analysis of 12 surveys studying
how physicians perceive complementary medicine
in six countries concluded that it may be useful
but that randomized controlled trials were urgently
needed [4]. Despite this conclusion there does not
seem to be any pressure to perform these evaluations.

Because alternative medicine has a cost, the only
incentive for a rigorous evaluation will come, if it
ever comes, from the regulatory authorities or from
health insurance systems, unless the strong lobbies of
practitioners and of manufacturers of homoeopathic
treatments succeed in maintaining the status quo of
wide use without any evidence of efficacy.
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Santé Publique 38, 139–147.

[7] Kleijnen, J., Knipschild, P. & ter Riet, G. (1991).
Clinical trials of homoeopathy, British Medical Journal
302, 316–323.

[8] Kleijnen, J., ter Riet, G. & Knipschild, P. (1991).
Acupuncture and asthma: a review of controlled trials,
Thorax 46, 799–802.

[9] Law, M. & Tang, J.L. (1995). An analysis of the
effectiveness of interventions intended to help peo-
ple stop smoking, Archives of Internal Medicine 155,
1933–1941.

[10] Li, Y., Tougas, G., Chiverton, S.G. & Hunt, R.H. (1992).
The effect of acupuncture on gastrointestinal function
and disorders, American Journal of Gastroenterology 87,
1372–1381.

[11] Long, A.F. & Mercer, G. (1995). Reviewing the State of
the Evidence on Efficacy and Effectiveness of Comple-
mentary Therapies. Nuffield Institute for Health, Uni-
versity of Leeds.

[12] Mayaux, M.J., Guihard-Moscato, M.L., Schwartz, D.,
Benveniste, J., Coquin, Y., Crapanne, J.B., Poitevin, B.,
Rodary, M., Chevrel, J.P. & Mollet, M. (1988).
Controlled clinical trial of homoeopathy in postoperative
ileus, Lancet i, 528–529.

[13] Mercer, G., Long, A.F. & Smith, I.J. (1995). Research-
ing and Evaluating Complementary Therapies: The State
of the Debate. Nuffield Institute for Health, University
of Leeds.

[14] Payne, J.P., Black, D., Brownlee, G., Cundy, J.M.,
Mitchell, G.M., Quilliam, J.P., Rees, L. & Dorn-
horst, A.C. (1986). Alternative Therapy. British Medical
Association, London.



4 Alternative Medicine

[15] Richardson, P.H. & Vincent, C.A. (1986). Acupuncture
for the treatment of pain: a review of evaluative research,
Pain 24, 15–40.

[16] Shekelle, P.G., Adams, A.H., Chassin, M.R., Hur-
witz, E.L. & Brook, R.H. (1992). Spinal manipulation
for low-back pain, Annals of Internal Medicine 117,
590–598.

[17] Vincent, C.A. & Richardson, P.H. (1986). The evalua-
tion of therapeutic acupuncture: concepts and methods,
Pain 24, 1–13.

[18] Yusuf, S., Held, P., Teo, K.K. & Toretsky, E.R. (1990).
Selection of patients for randomized controlled trials:
implications of wide or narrow eligibility criteria, Statis-
tics in Medicine 9, 73–86.

CATHERINE HILL & FRANÇOISE DOYON



American Public Health
Association

The American Public Health Association (APHA) is
the largest organization of public health professionals
in the world, numbering over 31 000 members in
1997 organized into 31 sections and forums represent-
ing the major scientific disciplines and programmatic
concerns of public health. Headquartered in Wash-
ington, DC, the main objective of APHA is the
protection and improvement of public health by exer-
cising leadership in the development of health policy
and action.

APHA programs include publications, conferen-
ces, and advocacy and action on public health issues.
The American Journal of Public Health is a monthly
peer-reviewed scientific journal and The Nation’s
Health is a monthly newsletter reporting on leg-
islation and policy issues. Professional publications
include Control of Communicable Diseases in Man
(15th Ed.), Chronic Disease Epidemiology and Con-
trol, Standard Methods for the Examination of Water
and Wastewater (18th Ed.), Compendium of Meth-
ods for the Microbiological Examination of Foods
(3rd Ed.), and Standard Methods for the Examination
of Dairy Products (16th Ed.). The Annual Meeting
and Exhibition, featuring more than 500 scientific
and special theme sessions, has been attended by
10 000 to 15 000 public health professionals in recent
years. Through its Governing Council and an array
of standing and ad hoc committees, the Associa-
tion makes recommendations on public health policy,
establishes standards in a variety of public health
areas, provides educational material for professional
and lay use, collaborates in research projects, and
enhances the professional stature of public health
workers.

Since its founding in 1872, APHA has been a
vigorous advocate for improving public health pro-
grams, strengthening the legislative and organiza-
tional infrastructure of community programs, and
providing adequate resources to improve the health
of disadvantaged groups. Much of its initial impact
devolved around the control of yellow fever at
the end of the nineteenth century, but it was also
a leading force for international health activities,
promoting a national health board (which finally
resulted in the establishment of the US Department

of Health, Education, and Welfare in 1953) and
advocating sanitation and disease surveillance pro-
grams (see Surveillance of Diseases). Over the years
it helped establish appropriate standards for the inves-
tigation and control of communicable diseases, espe-
cially tuberculosis and venereal diseases, nutritional
disorders, and maternal and child health programs.
The Association was at the forefront in advocating
fluoridation of water supplies, limiting tobacco use,
reduction of occupational and environmental haz-
ards, control of drug abuse, vaccination programs,
and wider choices in reproductive health and family
planning. Recent issues addressed by the Associa-
tion include national health care reform, state and
federal funding for health programs, model commu-
nity health standards, air pollution control, injury and
violence, and HIV/AIDS programs.

The Statistics Section of the APHA

The Vital Statistics Section was founded in 1908 and
renamed the Statistics Section in 1948. When estab-
lished, the Section accounted for about 13% of the
Association’s membership, but with the growth of
the size of APHA and the scope of public health dis-
ciplines and activities, the Section constituted only
1.7% of primary section affiliations in 1997. Follow-
ing a period of steady growth from about 1911 with
93 members until 1971, when it reached 698 mem-
bers, the size of the Statistics Section had declined
to 539 in 1997. The membership in the early twenti-
eth century was dominated by physicians who had
responsibilities for state vital registration systems
(see Vital Statistics, Overview), and by staff of the
Bureau of the Census and of insurance companies
(see Actuarial Methods). By the 1930s, academi-
cians became a prominent portion of the membership,
and this group has tended to dominate in recent years
as biostatistical issues and health research have come
to the forefront of statistical activities. In keeping
with the evolving issues in public health and the inter-
ests of its membership, the Section was first primarily
concerned with establishing a national vital statistics
program (which was first considered complete for
births and deaths in 1932) and in the classification
of causes of death (see Cause of Death, Underlying
and Multiple). Subsequently the Section’s activities
have involved setting standards in statistical practice
including definitions used in vital registration records,
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tabular presentation, contents of statistical reports of
city and state health departments, and use of age
adjustment (see Standardization Methods). In the
1960s, the Section embarked on a project for the
APHA to produce a set of monographs on mortality
and morbidity for a variety of conditions. The 16 Vital
and Health Statistics Monographs were a milestone in
health statistics reporting. The Section has maintained
interest in, and support for, the National Health Sur-
veys conducted by the National Center for Health
Statistics and was an advocate for the formation
of the National Death Index to aid epidemiologic
research (see Health Services Data Sources in the

US). In recent years the Section has dealt with
issues at the cutting edge of health statistics includ-
ing increased use of computers and large databases
(see Administrative Databases), linking of data files
(see Record Linkage), and statistical aspects of clin-
ical trials and health services research.

The Statistics Section sponsors an annual award
in honor of Mortimer Spiegelman to recognize
outstanding young statisticians working in the public
health arena.

MANNING FEINLEIB



American Statistical
Association

The American Statistical Association (ASA) is a
unique organization among professional associations.
ASA’s strength comes from the diversity of its
membership, which includes different educational
levels, disciplines, and types of employers. Mem-
bers include professionally trained B.S., M.S., and
Ph.D. level statisticians, users of statistics, govern-
ment and industry statisticians, economists, psycholo-
gists, chemists, sociologists, and other scientists who
use statistical techniques, as well as policy makers
who have an interest in data. This diversity cre-
ates interaction among members that fosters ASA’s
continuous evolution, including the creation of new
Chapters, Sections, Committees, publications, meet-
ings, and events.

Diversity has been a consistent theme of the ASA
since its beginning in 1839, when five men in Boston
founded the group whose interest was in gathering
and reporting data. Statistics, as a discipline in itself,
was not known at that time. Yet these founders had
an interest in seeing and analyzing data reported by
medical societies, census takers, occupational groups,
and others. Much of their interest was in getting facts
in front of the public for policy debates and research.

The five founders had different backgrounds –
ministry, law, medicine, journalism, and politics.
They were interested in vital statistics, mortality
data, accurate censuses, and analyzing data for guid-
ance in diagnosing problems. In fact, an early ASA
focus was in the accuracy of the US census. Edward
Jarvis, ASA president from 1852 through 1882,
worked with the census to improve classifications.
Early ASA members helped develop the standards
for classification and data presentation.

Much more active advocacy by the ASA took
place then than occurs now. One of the first things
the ASA did after its creation was to launch a critique
of the 1840 census. An interesting debate on how
questions are asked and answered was an ongoing
part of the critique. The ASA was also active in
promoting the creation of a permanent Bureau of the
Census in 1902.

Many other professional societies were begun
between 1860 and 1900, but today most of them
have disbanded. The ASA continued its activities,

expanding its growth and influence throughout the
twentieth century. ASA moved to New York in the
1920s, then to Washington, DC in 1934. The office
is now located in Alexandria, Virginia.

In the beginning, ASA held quarterly meetings
with an invited membership. Those small meetings
grew into an annual meeting that attracts large num-
bers of members and guests; in fact there were over
5500 participants in 2003. Initially, there was no ASA
national office, as the President and Secretary handled
most ASA business in rented office space in Boston.
The ASA now has a staff of 37 led by an appointed
Executive Director.

As ASA grew to include national and interna-
tional members in every field of statistical prac-
tice, ASA organized into Sections, Chapters, and
Committees. Chapters are arranged geographically,
representing 77 areas across the United States and
Canada. Sections are subject-area and industry-area
interest groups covering 22 subdisciplines. Over 60
Committees coordinate meetings, publications, edu-
cation, careers, and special-interest topics involving
statisticians.

To bring together geographically diverse mem-
bers, ASA created local Chapters. Though there are
many Chapters that vie for the honor of being the
first, Los Angeles was the first chartered ASA Chap-
ter. Other groups called themselves Chapters and
had local meetings, but neglected the official charter-
ing. Chapters provide various services for their local
members, depending on their size, constituency, and
needs. Each has at least one meeting a year, but many
have monthly meetings and the Washington Statistical
Society, the Washington DC Chapter, has meetings
almost on a weekly basis. Many of the Chapters
offer short courses, some have social gatherings, and
some publish newsletters posting job openings and
updating members on news and upcoming events.
Chapter members appreciate the opportunities to hear
about new techniques and job opportunities and keep
up with the world of statistics. A Council of Chap-
ters, which includes a representative from each of
the Chapters, was established in 1984 to govern the
Chapters. Nearly half of ASA’s membership belongs
to at least one Chapter.

ASA membership also has vast subject-area diver-
sity – statisticians work in medicine, education, bio-
metrics, business and economics, government statis-
tics, engineering, quality control, computing, consult-
ing, marketing, sports, the environment, and many
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other areas. To be sure that the ASA was meeting the
needs of working statisticians, it began establishing
Sections. The first was the Biometrics Section, estab-
lished in 1938. Though the International Biometric
Society began shortly thereafter, the activity of the
Biometrics Section increased. Indeed, the relationship
between the Biometrics Section and the Society was
strong and continues today. The Biometrics Section
is one of the ASA Sections involved in the program
for the Eastern North American Region’s (ENAR)
Spring Meeting of the Biometric Society. In the mid-
1940s, a Section on the Training of Statisticians, later
renamed the Section on Statistical Education, was
formed. Sections did not proliferate at the rate that
Chapters did. One reason may have been that Sections
were represented on the ASA Board of Directors,
and a second may have been that there was little
encouragement to form new Sections. However, by
the mid-1980s, there was a demand by members to
form more Sections. One vital service of Sections is
their role in formulating the program for the annual
meeting. Each Section has a representative on the
Program Committee and organizes a certain num-
ber of sessions for the annual meeting. In addition,
Sections hold short courses, maintain electronic bul-
letin boards and email lists for their members, write
newsletters, and keep their members informed of new
developments in their fields of interest. There are now
22 active Sections in the ASA, with two-thirds of the
ASA membership belonging to at least one Section. A
Council of Sections, consisting of one representative
from each group, governs the Sections.

Unlike Chapters and Sections, which are responses
to members’ professional interests, Committees are
working groups for ASA internal policies and func-
tions. There are many different kinds of Committees,
some of which take care of internal business such as
ethics, fellows, nominations, and planning. Others are
concerned with minority groups, international partic-
ipation, budgeting, ASA’s relations to other profes-
sional organizations, or management of the ASA’s
growing array of journals and magazines. Committees
are usually appointed by the President and report to
the Board of Directors. There are now over 60 active
Committees in the ASA.

Another important service the ASA offers to its
members is its publications. In 1888, ASA established
the Journal of the American Statistical Association
(JASA), which has long been considered the premier
journal of statistical science and is now the most

widely cited journal in all mathematical sciences.
Though the types of articles in it have changed over
time, it is a strong link to members’ interests, present-
ing articles describing new theories and applications.
JASA is primarily seen as an outlet for the publica-
tion of academic members’ articles, though members
who work in government and industry also publish
there. The American Statistician is aimed at a broader
audience. It has articles on theory as well, but also
contains commentary on statistical issues of the day,
book reviews, software reviews, and a teaching cor-
ner. Amstat News is a monthly magazine with news
about the profession, the activities of the ASA, and
its members.

ASA has expanded its publications over the
years to include eight professional journals, three
magazines, and various brochures and information
kits. Many ASA professional journals are sponsored
jointly with other associations. Technometrics was
developed in the l950s with the now named American
Society for Quality. The Current Index to Statistics
is published with the Institute of Mathematical
Statistics. The Journal of Computational and
Graphical Statistics is produced with the Institute of
Mathematical Statistics and the Interface Foundation
of North America. The Journal of Agricultural,
Biological, and Environmental Statistics is published
jointly with the International Biometric Society. The
Journal of Educational and Behavioral Statistics is
produced with the American Educational Research
Association. ASA also offers a book series in
conjunction with the Society for Industrial and
Applied Mathematics.

As the ASA began working more with people who
used data and were interested in statistics but were not
trained statisticians, the idea for a publication more of
interest to the general public was advanced. Chance
came into being as a publication of Springer-Verlag,
but is now jointly published by Springer-Verlag
and ASA, with all editorial content determined by
ASA. This publication is popular with a large group
of people, but especially among those who teach
statistics at the community college and undergraduate
level. Another publication of more general interest is
Stats: The Magazine for Students of Statistics.

ASA offers many of its journals and magazines
on the Internet. Members have access to the JSTOR
online database of the Journal of the American
Statistical Association and The American Statistician
as a benefit of ASA membership. Access to JSTOR
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allows members to search all ASA journals, including
over 100 years of JASA in full-text format. JASA is
available through JSTOR from 1888, the inaugural
year of the journal, through the volume published
five years prior to the current year. Other journals and
magazines publish abstracts or selected whole articles
on the ASA web page or publication-specific sites.

The ASA has always been interested in educa-
tion. The second Section formed was on the training
of statisticians. For many years, the emphasis was on
educational opportunities for members, or for statisti-
cians. In the last 20 years, the ASA has expanded its
view to include education for nonstatisticians, with
a special emphasis on teaching statistics in grade
schools and high schools. The ASA has developed
workshops, with funding from the National Science
Foundation, for teachers who help transfer knowl-
edge about the collection, analysis, and presentation
of data. Those workshops for teachers of both math-
ematics and science have been very effective. ASA
also offers educational opportunities for members to
include short courses beyond those offered at the
annual meeting.

Similarly, the ASA has expanded its meetings.
The Joint Statistical Meetings (JSM) is the largest
gathering of statisticians held. It is jointly sponsored
by the American Statistical Association, International
Biometric Society (ENAR and WNAR), the Institute
of Mathematical Statistics, and the Statistical Society
of Canada. Attended by more than 5500 people in
2003, activities of the meeting include oral presenta-
tions, panel sessions, poster presentations, continuing
education courses, an exhibit hall with state-of-the-art
statistical products and opportunities, a career place-
ment service, society and Section business meetings,
Committee meetings, social activities, and network-
ing opportunities. The location of JSM changes every
year to ensure all members have an equal opportunity
to attend.

Though an annual meeting for the entire member-
ship is a cornerstone, the ASA has other regular meet-
ings. About every other year there is a conference on

radiation and health, sponsored by one or more fed-
eral agencies, depending on the exact topic. There is
also a workshop cosponsored by ASA and the Food
and Drug Administration that takes place each
year. Certain Sections, including the Survey Methods
Research Section, Health Policy Statistics Section,
and Biopharmaceuticals Section, have meetings or
conferences every other year on topics of interest to
their members. Books that have been highly useful
to practitioners have followed these conferences. In
recent years, the ASA has cosponsored many differ-
ent kinds of meetings, ranging from those focused
on teaching statistics in business schools to those
focused on undergraduate research. The ASA works
with its Sections and Chapters to help in setting
up meetings.

Over the years, the ASA has set up a series of
awards. The most widely known is its selection of
Fellows. Each year, members are elected for this
honor, recognizing their achievements in statistics
and service to the ASA. An annual Founders Award
was established to recognize a few members for
their exceptional service to the ASA. In total, there
are 10 awards given by the national office, plus
those given by individual Chapters, Sections, and
Committees. Most awards are given on an annual or
biannual basis.

The changing needs of the ASA membership
keep pushing the Association forward, developing
new services and products for its members. The
diversity that was present at the beginning of ASA
has been responsible for its growth and success as a
professional association.

For those interested in more information about
the ASA, please contact ASA, 1429 Duke Street,
Alexandria, VA 22314-3402, USA; www.amstat.
org, or email asainfo@amstat.org.

BARBARA BAILAR, WILLIAM B. SMITH &
MEGAN R. KRUSE



Analysis of Covariance

Analysis of covariance (ANCOVA), in modern usage,
describes statistical models in which a model to
compare groups (which usually involves indicator or
dummy variables such as discussed under analysis
of variance), incorporates a continuous covariate or
covariates obtained at the level of the basic measure-
ment unit. The primary focus is usually assumed to
be on potential group differences, not on the contin-
uous covariate(s). Snedecor & Cochran [3] describe
four basic uses for analysis of covariance models.
These include the increase of precision in designed
experiments, the adjustment for sources of bias in
observational studies, to throw light on treatment
effects in randomized experiments (see Randomized
Treatment Assignment), and the study of regres-
sion in multiple classifications. In what follows, we
discuss these basic uses and the statistical modeling
involved. We also discuss the estimation of adjusted
treatment means, and the interpretation and pitfalls
associated with the technique.

Increasing Precision in Designed
Experiments

As discussed in the article on Analysis of Vari-
ance, an experimenter can often group experimental
units into homogeneous sets by blocking on factors
related to the response. The levels of the treatment
can then be assigned, randomly, to the units within a
block. This blocking reduces experimental error, and
increases the precision with which we can make state-
ments about the treatment effects. However, blocking
on all factors related to the response is not feasible,
and even after blocking on major factors, there may
be other variables related to the response, which can
be measured on the experimental units. The analy-
sis of covariance is a statistical technique developed
originally to allow experimenters to incorporate infor-
mation on a factor or factors which varied across
experimental units, and which thus contributed to the
experimental error term in the analysis of variance
models. In agricultural experiments, for example, by
using fields as blocks, a number of climate variables
could be controlled. However, even within a field,
there could be variation in fertility from plot to plot. If
the effect of that fertility variable could be captured in

an appropriate statistical model, then the unexplained
variability would be reduced and, thus, more precise
statements about the effects of the treatments could
be made.

In a study of the effects of drug treatment on
blood pressure, we may determine that age, gender
and treatment center may be important blocking vari-
ables because of their potential relationship to blood
pressure, and the feasibility in a controlled trial of
assigning patients to blocks defined by levels of these
factors. However, a subject’s blood pressure at pretest
will very likely be related to posttest blood pressure.
If we can incorporate information on pretest blood
pressure into the analysis of variance model, then we
should be able to reduce the experimental error term
and make more precise comparisons of the effects of
the drug (see Baseline Adjustment in Longitudinal
Studies). Cox [1] calls such supplementary obser-
vations, which may be used to improve precision,
concomitant variables.

It is important to consider the scientific
requirements, or assumptions, on concomitant
observations [1] in order that comparisons between
treatments “adjusted” for levels of the covariate are
meaningful. These requirements are given below,
along with the consequences of a violation of
the assumptions. In general, if there is a constant
difference in the response between the treatment
groups for all values of the concomitant variable(s),
then the adjusted treatment effect is this constant
difference. However, because we have not had
control of the values of the concomitant variable,
we must rely on a statistical model to make the
adjustment. The following are the requirements for
these concomitant observations.

1. The concomitant observation is assumed to rep-
resent a factor (or a constellation of factors, e.g.
fertility) at the level of the experimental unit
which is unaffected by the treatment. It can be
measured before the treatments are assigned or
applied (e.g. pretest blood pressure), before the
effect of the treatment has had time to develop,
or on some part of the process which is not
related to the assignment of the treatment (e.g.
the time of day that the measurement is taken).
Randomization should ensure that the covariate
does not differ significantly between treatment
groups; however, this can be checked. If the
groups differ with respect to the covariate, they
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will be compared at a value of the covariate
which is not typical of either group. Further, the
statistical model will need to extrapolate beyond
the region where there is the most data for both
groups, and this makes an assumption that the
statistical model is correct in that region, for both
groups. If the treatment does affect the concomi-
tant variable, then adjusting for differences in the
concomitant variable may well “adjust away” the
actual treatment differences.

2. The relationship between the response and the
covariate must be the same for all groups. That
is to say, there is no interaction between the
treatments and the covariate (see Treatment-
covariate Interaction). If there is an interaction,
then it does not make sense to compare the
groups at a single value of the covariate, since
any difference noted will not apply for other
values of the covariate. This assumption is equiv-
alent to saying that the relationship between the
response and the concomitant variable(s) should
appear as parallel curves, one for each treat-
ment group [1]. Again, the assumption of parallel
curves can be checked at the time of modeling.

Adjustment for Bias in Observational
Studies

In observational studies, groups may differ on
factors related to the response because of naturally
occurring phenomena that lead to self-selection into
groups, or historical differences in how groups have
developed. Snedecor & Cochran [3] give the example
of a study examining the relationship between obesity
and physical activity on the job. Since obesity is
related to age, and there may be differences between
the age structures for different occupations, adjusting
for age differences between the workers in the
study by analysis of covariance will help model the
response and adjust for the age bias. However, for
the reasons noted above, considerable care needs to
be taken in the interpretation of such models for the
following reasons.

1. If the occupations differ significantly with respect
to age, then we will obtain a comparison of
the relationship between high and low activity
occupations for an individual of a fixed age.
There may be few individuals of that age in
either occupation, so the comparison may be

meaningless, and will necessarily involve an
extrapolation of the statistical model.

2. The observational nature of the data make it
impossible to determine if it is the physical
inactivity on the job which leads to the obesity, or
whether individuals who are obese select certain
occupations. While the analysis of covariance
may allow for a comparison adjusting for age,
it cannot answer this very basic question.

The Nature of Treatment Effects in
Designed Experiments

In many investigations there will be variables that
can be measured on the experimental units which
can help elucidate the mechanisms responsible for the
treatment effects. For example, in the blood pressure
study mentioned earlier, we could also measure
a subject’s pretest and posttest weight. A natural
question is whether the posttest blood pressure can be
explained by the change in weight which might have
occurred over the course of treatment. Analysis of
covariance provides a modeling approach to examine
the differences between groups in posttest blood
pressure using pretest blood pressure and weight
change as covariates. It is important to note that
adjusting for weight change may, in fact, remove the
difference between groups; however, to claim on this
basis that the drug had no effect would be misleading
if the effect of the drug was to increase weight loss.
In this latter case we might report that there was a
difference between the two groups in posttest blood
pressure (adjusting for pretest differences in blood
pressure), and that, at the same time, there was a
difference in weight loss; the loss of weight was
associated with a reduction in blood pressure.

Again, this example points out the need to be
very careful in interpreting the differences (or lack
thereof) between adjusted means. Cox [1] presents a
thorough discussion of this type of situation, in which
he interprets a series of possible data patterns.

Regression in Multiple Classification

Suppose we wished to model and examine the
relationship between blood pressure and physical
activity across several socioeconomic strata, and age
groups. We could develop a regression model with
indicator variables which coded for socioeconomic
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status and age group, and a continuous variable
which provides the measure of physical activity for
each individual. By adding regression variables which
code for the interaction between socioeconomic status
and physical activity, say, we could assess whether
the relationship between blood pressure and physical
activity was the same for all socioeconomic strata.
If there was no interaction, the significance of the
indicator variables coding for socioeconomic status
would assess whether there are significant differences
in blood pressure between levels of socioeconomic
status, after adjusting for physical activity differences
through the statistical model (i.e. when we compare
two different individuals with the same level of
activity).

Again, the caveats discussed above apply. We
should determine whether physical activity differs
significantly between groups and whether the res-
ponse curves are parallel, before proceeding to dis-
cuss these adjusted means.

The Model

To illustrate the technique, we consider a random-
ized block experiment (see Randomized Complete
Block Designs) in which t treatments are randomly
assigned to experimental units in each of b blocks.
Furthermore, assume that for each experimental unit,
we have a measurement on an explanatory variable
(e.g. pretest blood pressure). If we define the covari-
ate measurement from the plot in the j th block which
received the ith treatment as xij , we can write the
model as

Yij = µ + αi + βj + γ (xij − x ··) + εij ,

with constraints
t∑

i=1

αi = 0,

b∑

j=1

βj = 0.

(Note that the subscript dot indicates that averaging
has been taken over the relevant subscript(s), so x·· is
the average of the covariate over all tb experimental
units.)

In the model, µ represents the overall mean effect,
αi and βj represent the effect of the ith treatment
and j th block, respectively, and εij represents the
unexplained variation in Yij . We usually assume εij ∼
N(0, σ 2), independently.

In addition, we add the term xij − x ·· to reflect the
variation in the covariate about its average; γ is the

regression coefficient associated with that covariate.
If γ = 0, then the covariate information is not related
to the response after adjusting for treatments and
blocks, i.e. there is no increase in precision resulting
from adjusting for the covariate. The transformation
of the covariate from xij to xij − x ·· is useful to
produce a regression variable which is orthogonal
to the mean. Furthermore, note that if xij = x··, then
the expected value of the ith treatment mean is

E
(∑b

j=1 Yij /b
)

= µ + αi . That is, “adjusting for the
covariate” provides an estimate, via the statistical
model, for the treatment mean for a hypothetical
plot with x ·· as covariate value (see subsequent
discussion).

Estimates of Parameters

From this model, the least squares estimates (maxi-
mum likelihood estimates under the above model for
the εij s) are

µ̂ = y..;

α̂i = (yi. − y..) − γ̂ (xi. − x..);

β̂j = (y.j − y..) − γ̂ (x.j − x..);

and

γ̂ =

t∑

i=1

b∑

j=1

(Yij− yi.− y.j + y..)(xij − xi.− x.j + x..)

t∑

i=1

b∑

j=1

(xij − xi.− x.j + x..)
2

.

If we define Eyy , and Exx to be the Residual Sum
of Squares from a randomized block model for the
Yij s and xij s, respectively, and Exy to be the Residual
Sum of Cross-Products, then we have

γ̂ = Exy

Exx

.

Note the similarity between the above expression for
γ̂ and the expression for the least squares estimate
of the slope in a simple linear regression model.
Thus, the estimate of γ is equivalent to that obtained
from a simple linear regression of the residuals
from a randomized block model for the Yij s on the
residuals from a randomized block model for the
xij s. The estimate will be different from zero when
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there is residual variation in the Yij s explained by the
xij s.

The estimate of σ 2 can be obtained as usual from
the ε̂ij s; that is,

σ̂ 2 =

t∑

i=1

b∑

j=1

(Yij − µ̂ − α̂i − β̂j − γ̂ (xij − x..))
2

(t − 1)(b − 1) − 1

= (Eyy − E2
xy/Exx)

((t − 1)(b − 1) − 1)
.

We note that the first term in the numerator is
the Residual Sum of Squares from the random-
ized block model for the Yij s. The second term,
which must be positive, will significantly reduce
the randomized block Residual Sum of Squares for
the Yij s whenever γ̂ is significantly different from
zero.

The extension to additional covariates, or to trans-
formations of the covariates [e.g. adding (xij − x..)

2

to the above model] requires no new theory. It
will become more difficult to compute the required
quantities as the model becomes more complex, but
with existing software these computations are easily
performed.

Adjusted Treatment Means: Estimation
and Testing

As discussed above, the analysis of covariance allows
us to estimate treatment means which are adjusted
for the covariate via the statistical model (i.e. esti-
mated at xij = x..). For example, for the randomized
block design above, the adjusted treatment mean for
treatment i is

b∑

j=1

Ŷij

b
= µ̂ + α̂i

= yi. − γ̂ (xi. − x..).

Thus, if γ̂ is positive (i.e. in general, large val-
ues of Yij are associated with large values of
xij ), and xi. > x.. (reflecting the fact that, on aver-
age, treatment i was applied to units with larger
values of the covariate), then the observed mean
for treatment i will be adjusted downwards, as

required. The ith adjusted treatment mean has
variance

VarianceAdjusted Treatment Mean

= σ 2





1

b
+ (xi. − x..)

2

t∑

i=1

b∑

j=1

(xij − xi. − x.j + x..)
2




,

and, using the estimate for σ 2 given earlier, we can
obtain confidence intervals for any adjusted mean;
the relevant reference distribution being t(t−1)(b−1)−1,
i.e. Student’s t with (t − 1)(b − 1) − 1 degrees of
freedom.

Likewise, we can test an hypothesis based on a
contrast in the adjusted treatment means. If ck is
a t × 1 vector of constants with

∑t
i=1 cik = 0, then,

similarly to the development given in the analysis of
variance entry, the ratio

F =

(
t∑

i=1

cik

Adjusted Treatment

Meani

)2/ t∑

i=1

c2
ik

Residual Mean SquareFull Model
,

will follow the F1,(t−1)(b−1)−1 distribution (i.e. F
distribution with 1 and (t − 1)(b − 1) − 1 degrees
of freedom) under the hypothesis that the contrast in
the (adjusted) treatment means is zero.

To test the global hypothesis that the adjusted
treatment effects are zero, the extra sum of squares
principle F test (see Analysis of Variance) can
be employed. That is, under the hypothesis
H: αi = 0, i = 1, . . . , t , the model becomes

Yij = µ + βj + γ (xij − x..) + εij ,

which is the model for a completely randomized
design (one-way classification) with a covariate
observed on each plot.

If Tyy represents the “Treatments Sum of Squares”
for the response variable under the randomized block
design, and Txx and Txy are defined analogously
for the xij s and the cross-products of the response
and covariate, then, following the discussion of the
randomized block design, we can estimate γ in the
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hypothesized model as

ˆ̂γ =

t∑

i=1

b∑

j=1

(Yij − y.j )(xij − x.j )

t∑

i=1

b∑

j=1

(xij − x.j )
2

= (Exy + Txy)

(Exx + Txx)
.

The Residual Sum of Squares from the hypothesized
model is

Residual Sum of SquaresH: αi=0

=
t∑

i=1

b∑

j=1

((Yij − y.j ) − ˆ̂γ (xij − x..))
2

= Eyy + Tyy − (Exy + Txy)
2

(Exx + Txx)
.

Then, the difference in the Residual Sum of
Squares between the hypothesized model and the full
model forms the basis for the extra sum of squares
principle F test. Thus, if

∆ = Residual SSH: αi=0 − Residual SSFull Model,

then the extra sum of squares principle F test statistic
is

F = ∆/(t − 1)

Residual SSFull Model/((t − 1)(b − 1) − 1)
.

The resulting value can be compared with tables of
the F(t−1),(t−1)(b−1)−1 distribution.

The difference between the two Residual Sums of
Squares in the numerator is

∆ = Tyy −
(

(Exy + Txy)
2

(Exx + Txx)
− E2

xy

Exx

)
,

which we note is the Treatment Sum of Squares for
the response, Tyy , adjusted for the covariate.

With certain software packages (e.g. SAS [4]),
the programs that fit normal linear models will
compute type III sums of squares and mean squares
(see Analysis of Variance). The type III sums of
squares provide, for each source, the sum of squares
after adjusting for all other terms in the model.
Thus, if the covariate is included in a model, the

type III mean square for treatments will be the
relevant numerator for the F test, and the F test will
be provided in the table. For interactive modeling,
such as that provided by GLIM [2] (see Software,
Biostatistical), the change in deviance when the
“factor” coding for treatments is dropped from the
full model, divided by (t − 1), will give the numerator
for the test, the denominator being the deviance for
the full model divided by its degrees of freedom.

Checking Assumptions on the Covariate

In this section we briefly discuss how the important
issues surrounding the meaning of “adjusting for
the covariate” can be assessed. For a discussion of
methods for checking other aspects of the fit of
the model, see Model Checking, Diagnostics, and
Residuals.

The first concern described above is that if the
covariate is significantly different for different treat-
ments, then the adjustment may require extrapolation
beyond the data on which the model was developed
to covariate/treatment combinations which did not
(or may not) occur. This raises both scientific and
statistical concerns. Related to this, if the treatment
affects the covariate, then we may adjust away the
effect of the treatment on the response by adjusting
the treatment means to the same value of the covari-
ate. An analysis of variance conducted on the xij s
will help address this concern. If there are signifi-
cant treatment effects for the xij s, we must be very
careful in interpreting the results of the analysis of
covariance.

The second issue was that the relationship between
the response and the covariate should be a set of
parallel curves, one for each treatment, in order
that we get the same treatment difference at all
values of the covariate. In the linear relationship
case, we can address this issue by adding t − 1
columns to the X matrix, representing the product of
the covariate and each of the t − 1 columns coding
for the treatments. If adding (deleting) these t − 1
interaction columns to (from) the model reduces
(increases) the Residual Sum of Squares significantly,
we have evidence that the curves are not parallel. If
the model contains m columns in X to represent the
effect(s) of the covariate(s), we require m × (t − 1)

additional columns to assess fully the interactions.
These should be added (deleted) in sets of t − 1.
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Thus, we should:

1. Check the covariate(s), via analysis of variance,
for significant treatment effects.

2. Fit the analysis of covariance model, and the
model with interactions between treatments and
the covariate(s). Check the significance of the
interactions of the covariate and treatments.

3. If there is no difference between treatment groups
in the covariate, and no interaction between
treatments and the covariate in the augmented
analysis of covariance model, proceed to the
analysis of covariance as described earlier. If
problems are identified, refer to scatter plots
(see Graphical Displays) of the relationship
between the response and the covariate to
determine the type of statement which can be
made safely.

Comparison with other Modeling
Strategies

Consider the experiment described earlier. Subjects
with high blood pressure are randomly assigned (m
per group) to a drug group or a placebo group. A
pretest measure of blood pressure is taken and then
blood pressure is reassessed at posttest. We have (at
least) three choices for the analysis.

1. Take the difference in blood pressure for each
subject (posttest–pretest), and analyze these dif-
ferences via a paired t test. This analysis inves-
tigates whether the mean blood pressure change
is the same for the two groups.

2. Treat the two measures of blood pressure as the
response, and analyze the data as for a repeated
measures design (see Longitudinal Data Anal-
ysis, Overview). This is an example of the class
of designs described in the analysis of variance
entry where there are two sources of experimen-
tal error to consider: between subjects and within
subjects. The relevant question is whether there
is an interaction between treatment and test. That
is, is the relationship between pre- and posttest
measures the same for both groups?

3. Use the pretest measure as a covariate, and
then conduct an analysis of covariance with
the posttest measure as response. This analysis
compares the mean posttest blood pressure at

the average pretest blood pressure for the two
groups.

To compare these analyses, define Yijk to be the
measured value of blood pressure for the kth test on
the j th subject in the ith group. A model for the first
analysis can be written as

Yij2 − Yij1 = µ∗ + αi + ε∗
ij ,

or

Yij2 = µ∗ + αi + Yij1 + ε∗
ij ,

where µ∗ is the overall mean, αi is the effect of the ith
group, and ε∗

ij , the experimental error term, reflects
the effects of uncontrolled factors which differ from
pretest to posttest for the same subject. We note
that this model is just a special case of the model
developed above for the analysis of covariance.
Specifically, if γ = 1, and µ = µ∗ + y..1, we get the
above model from the analysis of covariance model.
Thus, the analysis of covariance provides a more
general analysis of these data.

A model for the second analysis can be written

Yijk = µ + αi + δij + τk + (ατ)ik + εijk,

where δij and εijk are the between-subjects and
within-subjects experimental error terms, respec-
tively, τk represents the effect of the kth test time,
and (ατ)ik represents the effect of the interaction of
the ith level of treatment group and the kth test time.

In this model, the relevant hypothesis is H :
(ατ)ik = 0, i = 1, 2; j = 1, 2, which states that the
effect of test time is the same for both groups. This
test is algebraically equivalent to the test of no dif-
ference between the adjusted treatment means as
provided by the analysis of covariance. Consequently,
we could model this situation using either approach.
However, the analysis of covariance may be easier to
interpret and explain, and by considering the assump-
tions of no differences in pretest measures, and par-
allel curves for the different treatments, we are more
naturally led to assess whether, for instance, the dif-
ference in posttest blood pressure for each treatment
is the same at all levels of pretest blood pressure.
Furthermore, it provides the additional information
concerning the relationship between the pretest and
posttest blood pressures.
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Concluding Remarks

The above discussion has concentrated on the analy-
sis of covariance in designs in which there is esti-
mation of a single source of experimental error.
More complicated designs, such as those discussed
in the analysis of variance entry, allow for the esti-
mation of two or more sources of error, such as
between-subjects variation due to differences in the
subjects, and within-subjects variation due to differ-
ences between the test times for multiple measure-
ments on the same subject. In such designs, covariate
information could be available on the subjects (e.g.
age) and/or on the test times (e.g. temperature). The
analysis and interpretation of treatment differences
will need to consider the relevant covariates. Again,
this requires very careful modeling to ensure that the
appropriate estimates of error are used in assessing
treatment differences.

This same modeling strategy can be applied
beyond the normal linear model described above
to generalized linear models, allowing for the
adjustment for covariates in a wide range of
models.

Since the analysis of covariance models are just
regression models in which there are both indica-
tor variables and continuous covariates, the theory of
model fitting, and inference about regression param-
eters is not different than that discussed elsewhere
for multiple linear regression models. However, as
with any statistical modeling, it is essential that the
interpretation of the model be correct and clearly pre-
sented. The discussion of these models in Cox [1]
provides an excellent overview of the issues involved
in interpretation.
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Analysis of Variance for
Longitudinal Data

Analysis of variance (ANOVA) methods are some
of the most commonly used techniques for the anal-
ysis of sources of variation in both experimental
and observational studies. It therefore seems quite
natural to ask how they might be adapted for use
on longitudinal data. Typically, one might rec-
ognize data coming from a longitudinal study as
coming from a nested design (a split-plot exper-
iment, for example), with the serial measurements
(subplots) being nested within each of the subjects
(plots). Designs involving repeated or serial mea-
surements differ from the typical nested experiment,
however, in that the times of observation must by
their very nature follow a strict temporal sequence
and that, in general, measurements made on occa-
sions close together will be more highly correlated
than those further apart. Be warned: an analysis that
ignores serial correlation will almost certainly be
invalid.

This article briefly introduces the use of ANOVA
methods for longitudinal data – typically, repeated
measures experiments – and then discusses assump-
tions necessary for their validity, methods of testing
for departures from these assumptions and, finally,
methods for the adjustment of F tests to compen-
sate for these departures. In case the reader feels
that, after reading about the pitfalls of the use of
ANOVA, it would be better to use other methods of
analysis, these other methods (particularly multivari-
ate analysis of variance (MANOVA) and random
effects models for longitudinal data) are briefly men-
tioned. We will illustrate the methods for two simple
repeated measures designs. In the first, each member
of a single group of subjects provides measurements
on each of k separate occasions. The second design
involves the use of two or more groups of subjects,
and again each subject within these groups provides
measurements on k occasions. For both designs it
will be assumed that the timing of the measure-
ments is the same for all subjects, but the spacing
between successive measurements does not, neces-
sarily, remain constant. The more complex repeated
measures designs involving changing treatment con-
ditions over time (crossover designs) will not be
discussed here.

Growth Curves in a Single Group of
Subjects

In this design each member of a group of n subjects
is observed on each of k occasions. The structure of
the data is analogous to that arising from a random-
ized blocks experiment, with the times correspond-
ing to treatments and the subjects being the blocks.
Beware of the differences, however. The order of the
successive measurements in the longitudinal data is
fixed, but the allocation of treatments within blocks
is randomized. There will be serial correlation in
the longitudinal data that will not be present in the
data arising from randomized blocks. The aim of the
analysis, however, is similar. We wish to test for
differences in the means for the different occasions
(treatments), having first allowed for overall subject
(block) differences.

The Assumed Model

The statistical model for the repeated measures data
is given by

Yij = µ + αj + ωi + εij ,

where Yij is the measurement for the ith subject
on the j th occasion, µ is the grand mean, αj is
the effect associated with the j th occasion, ωi the
effect associated with the ith subject and, finally,
εij is the error term for the ith subject on the j th
occasion. Note that as there is no replication of mea-
surements on each occasion we have to assume that
there is no time-by-subject interaction (analogous to
the assumption of no treatment-by-blocks interaction
in the randomized blocks experiment) – this interac-
tion being completely confounded with the error term
in the following ANOVA model. It is very straight-
forward to carry out a routine two-way analysis of
variance and construct an F test for the null hypothe-
sis that αj = 0 for all j . The resulting F statistic for
a test of time trends will have (k − 1) and (n − 1)
(k − 1) degrees of freedom. Note in passing that if
k = 2, the above analysis is equivalent to carrying
out the much simpler paired t test on the changes
between the first and second occasions. The F test
from one is the square of the t statistic from the other,
and the resulting P values are therefore identical.
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Necessary Assumptions for a Test of Time Trends

As in any analysis of variance, in order for the above
F test to be valid we need to make a series of
assumptions. We assume that the repeated measures
are measured on an interval or ratio scale of mea-
surement (see Measurement Scale). We also make
the usual assumptions concerning random sampling
from the population, independence of subjects, and
normality. There is also a homogeneity assumption
similar to that required for between-subjects designs.
This is the assumption that for any two occasions –
say r and s – the difference Yr − Ys must have the
same population variance for every pair of occasions.
The variance of the difference Yr − Ys can be writ-
ten as

σ 2
Yr−Ys = σ 2

Yr + σ 2
Ys − 2cov(Yr , Ys)

= σ 2
Yr + σ 2

Ys − 2ρrsσYrσYs,

where ρrs is the population correlation for measure-
ments taken on occasions r and s. Huynh & Feldt [4]
and Rouanet & Lépine [8] showed that this homo-
geneity of the time-difference variance assumption
is equivalent to the assumption that the population
covariance has a certain form, referred to as spheric-
ity or circularity. A special case of sphericity is
compound symmetry. A covariance matrix possesses
compound symmetry if and only if all the variances
are equal to each other and all the covariances are
equal to each other. An equivalent statement is that all
the repeated measures have the same variance (σ 2

r =
σ 2

s = σ 2, for all r and s) and that the correlations
between measures for all pairs of occasions are equal
(ρrs = ρ, for all r and s, r �= s). Under the assump-
tion of compound symmetry, the variance of the
difference between Yr and Ys becomes 2σ 2(1 − ρ) for
any r and s, r �= s. In summary, compound symme-
try implies sphericity, but not vice versa. In practice,
however, one is unlikely to come across data demon-
strating sphericity but not compound symmetry. One
exception is in a simple follow-up study with k = 2.
In this situation, the sphericity assumption always
holds (there being only two variances and a unique
correlation) but compound symmetry very often will
not (the variation at follow-up being higher than at the
start of the experiment, for example). When k = 2,
the sphericity assumption is not needed and the F test
is always valid, provided, of course, that the other
assumptions are true.

Several tests of sphericity are available, the most
commonly used being that according to Mauchly [6].
These sphericity tests are of limited value, how-
ever, because of their sensitivity to nonnormality. The
Mauchly test seems to be poor for detecting small
departures from sphericity despite the fact that these
small departures can produce substantial bias in the
standard F tests. Several authors, including Hand &
Crowder [3] and Maxwell & Delaney [7], for exam-
ple, recommend making the more realistic assumption
that sphericity does not hold and automatically adjust
the F tests accordingly (see below). The reader can
find a brief discussion of the Mauchly test in [3]. For
tests of departure from compound symmetry, see [8].

Adjustments to the F tests

When the assumption of sphericity is false, it is pos-
sible to perform an adjusted F test of the equality of
means over time. Box [1] derived a measure, usu-
ally denoted by ε, which measures the departure
of the covariance matrix from sphericity. A matrix
that displays sphericity always has an ε-value of
one and departure from sphericity leads to a low-
ering of ε, with an absolute minimum of 1/(k − 1).
Box [1] showed that if one calculates the required
F statistic and compares it with the critical values
from an F distribution with numerator and denom-
inator degrees of freedom given by ε(k − 1) and
ε(n − 1)(k − 1), respectively, then the results will
be approximately correct. On its own, however, this
information is of limited value since we do not know
the true value of ε. One solution to the problem
is to use an estimate of ε, based on the observed
covariance matrix – see [3] for further details. This
is the so-called Greenhouse–Geisser estimate pro-
vided by many software packages. A more refined
estimate of ε, due to Huynh & Feldt [5], is also pro-
duced by these software packages, although Maxwell
& Delaney [7] recommend the routine use of the
Greenhouse–Geisser estimate because the former can
occasionally fail to control properly the Type 1 error
rate. A final option is to use the known lower bound
for ε in the adjustments rather than its estimated
value – see [2]. Here, the adjustment factor is sim-
ply 1/(k − 1). This is a conservative procedure, but
if the F test is still significant after making this
adjustment we can at least feel fairly safe in the
validity of the result. Note that the use of any of
these three adjustments does not need any change in
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the analysis of variance – the observed F statistics
remain unchanged – but simply a change in the
degrees of freedom of the theoretical F variate in
order to obtain a valid P value.

Comparison of Two or More Groups

Typically, we have the results of a randomized con-
trolled trial in which n patients have each been
randomly allocated to one of m treatments. Let us
assume that each treatment group has exactly r

patients allocated to it, and that there are no drop-
outs. Each patient then provides regular follow-up
measurements, yielding a total of k repeated measures
per patient. Here, the analogy is with a traditional
split plot design where the patients are equivalent
to plots and the measures repeated over time are the
subplots. This analogy implies the allocation of the
degrees of freedom in an analysis of variance as in
Table 1. The test of real interest in this context is
that for the treatments by occasions interaction: are
the time trends constant across the m groups? The F

statistic for this interaction is compared to an F dis-
tribution with (m − 1)(k − 1) and m(r − 1)(k − 1)

degrees of freedom. Despite the analogy, however,
the data from this repeated measures design should
not be treated as if it were from a split-plot exper-
iment. The degrees of freedom should be adjusted
using the appropriate Greenhouse–Geisser ε estimate
in order to take into account the likely serial correla-
tion in the data (although, as before, when k = 2 we
do not have a problem). Note again that the adjust-
ments are made to the theoretical F variate, with
no adjustment whatsoever to the observed value of
the test statistic. This is done automatically in many
readily available software packages. Full details are
provided in [7]. It is also important to remember that
even these adjusted F tests are dependent on the
additional assumption necessary for the analysis of
data from this design: the covariance matrices are the

Table 1

Between patients mr − 1
Treatments m − 1
Residual m(r − 1)

Within patients mr(k − 1)

Occasions k − 1
Treatments by occasions (m − 1)(k − 1)

Residual m(r − 1)(k − 1)

same (apart from sampling fluctuations) across the m

treatment groups.

Advantages and Problems with the Use of
ANOVA

The main advantage of the traditional ANOVA
approach to the analysis seems to be both familiarity
(amongst the data analysts and the readers of
the resulting reports) and availability of easy-
to-use software. It is difficult to think of any
others! An alternative, which is quite popular
in the social and behavioral sciences (including
psychiatry), is to drop the assumptions concerning
the correlational structure of the repeated measures
and move on to use explicitly multivariate tests
through the use of MANOVA. Both the adjusted
ANOVA and the MANOVA approaches depend
on the assumption of homogeneity of covariance
matrices across groups, however. The multivariate
approach involves the construction and testing of a
set of transformed variables representing the within-
subject differences for the within-subject factor (here,
occasions) – typically a set of k − 1 orthogonal
polynomial contrasts. When k = 2 the univariate and
multivariate methods are identical. One can carry out
tests on the contrasts separately (is there a significant
linear trend, for example, or is this trend the same in
the m groups?) or as part of a multivariate test (using
Hotelling’s T 2 statistic, for example).

Both the ANOVA and MANOVA approaches are
dependent on complete data. If there are gaps or
drop-outs, the patients with missing data have to
be dropped from the analysis. This might be a
source of considerable bias in the results. Another,
although less common, problem is the collection of
haphazardly spaced data instead of the measurements
being made at fixed times for everyone in the study.
One possible approach is to use random effects
models with either maximum likelihood (ML) or
restricted maximum likelihood (REML) estimation.

One obvious alternative to the use of ANOVA
is to calculate a measure of change for each sub-
ject in the study – the summary measures approach
to the analysis of repeated measures. In the con-
text of the designs discussed above, this might be
an estimate of linear trend. For the first design (k
observations on each of n subjects) one can simply
use a single-sample t test to assess whether this trend
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is statistically significant. It is also very straightfor-
ward to produce confidence intervals for this trend.
For the m-group design we can enter the summary
statistics themselves into a simple one-way ANOVA
to test for group differences. The advantage of the lat-
ter approach is that it is extremely simple to carry out
and the results even easier to interpret than the out-
put from split-plot design (with or without the almost
obligatory adjustments). Although we are still using
ANOVA, we are avoiding the pitfalls arising from
serial correlation by replacing the k repeated mea-
sures by a simple, single, response feature of primary
interest.
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Analysis of Variance

Analysis of variance (ANOVA) is one of the most
commonly used statistical techniques, with applica-
tions across the full spectrum of biostatistics. The
first reference to the technique appeared in the work
of R.A. Fisher [5] in which he discussed the analy-
sis of causes of human variability under a Mendelian
scheme of inheritance (see Mendel’s Laws). The first
reference in Fisher’s published work to the analy-
sis of variance table was in 1923 [7], in a paper on
the response of 12 different varieties of potato to the
application of six manure treatments. The technique
was fully discussed in Fisher’s 1925 book [6].

Overview

One of the principal uses of statistical models is to
attempt to explain variation in measurements. This
variation may be due to a variety of factors, includ-
ing variation from the measurement system, variation
due to environmental conditions which change over
the course of a study, variation from individual to
individual (or experimental unit to experimental unit),
etc. Factors which are not controlled from observation
to observation can introduce variation in measured
values. In designed experiments, the experimenter
deliberately changes the levels of experimental fac-
tors to induce variation in the measured quantities,
to lead to a better understanding of the relationship
between experimental factors and the response (see
Experimental Design). Other factors related to the
response, called blocking factors, can be held fixed
at one level to create a block of homogeneous exper-
imental units which, in the absence of the effects of
other factors, might be expected to produce measured
responses with small variability. The experimental
factors can then be manipulated on the units within
the block. In a second block, the blocking factors can
be held fixed at other levels and the experimental fac-
tors manipulated on the units within the block, etc.
Effective blocking on factors related to the response
can produce more precise estimates of the differ-
ences between the levels of experimental factors,
while, at the same time, allowing more generalizable
conclusions. To ensure that unnecessary variation in
the measured responses is not introduced, other fac-
tors may be deliberately held fixed throughout the

experiment (e.g. use of a standardized measurement
system). Finally, randomization of the experimen-
tal factors to the experimental units serves to balance
the effects of uncontrolled factors across the levels
of the experimental factors to avoid the conscious
or subconscious confounding of uncontrolled fac-
tors with those the experimenter is manipulating (see
Randomized Treatment Assignment).

In observational studies, factors are typically not
controlled – the data are obtained the way nature
provides them. However, modeling and understand-
ing the relationship between the observed values of
the response and the observed values of explana-
tory variables collected with the response remains an
important aim. The lack of control of extraneous fac-
tors either by blocking on levels of factors related
to the response, or through randomization, makes the
interpretation of models for observational data dif-
ficult, even if the basic analysis techniques are the
same.

Analysis of variance is a commonly used tech-
nique for analyzing the relative contributions of iden-
tifiable sources of variation to the total variation
in measured responses. Understanding the potential
sources of variation prior to the development of a
statistical model is very important. To develop an
effective experimental design and/or to aid in the
development and understanding of a statistical model,
factors related to the response can be listed under cat-
egories such as measurement, environment, individ-
ual, method, etc. The cause and effect diagram, from
the statistical process control literature (e.g. [8]), is
an effective way to summarize potential sources of
variation.

In a designed experiment, those variables which
are to be experimentally manipulated, those which are
used to define homogeneous sets of units (blocks),
and those which are carefully controlled at fixed
levels (e.g. measurement system variables) can be
identified. Variables which have not been identified
as experimental, blocking, or controlled factors may
be contributing to variation in the response; however
randomization will offer some insurance that their
effects on the response are not systematically linked
to the levels of the experimental factors.

For data from an observational study, the identi-
fication of such sources of variation can lead to the
development of a statistical model in which varia-
tion in the response variable, associated with avail-
able explanatory variables, is “explained” through
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inclusion of appropriate terms in the model. Again,
variation from observational unit to observational unit
in variables which are not included in the model can
contribute to the “unexplained” (and possibly system-
atic) variation in the response. Finally, as described
above, because the analyst cannot exert control over
the process which gave rise to the data, unequivocal
interpretations of the findings are very difficult, if not
impossible.

The Model

In the description of the model, it will be assumed
that there are n measurements on a response vari-
able, Y , (i.e. Y1, Y2, . . . , Yn), and that associated with
each measured response, there is a (row) vector of
explanatory variables measured on, or related to the
same unit as the response. Denote the elements of
the vector associated with the ith response, Yi , as
xi1, xi2, . . . , xip.

The elements of the vector of explanatory vari-
ables related to the response can be of several types.
These include variables (assumed interval or ratio
scaled; see Measurement Scale) such as age, height,
or fitness score, and possibly higher powers of such
variables (e.g. age2), or other transformations (e.g.
ln age). They can also include indicator or dummy
variables which identify the levels of a nominal
variable such as city or gender, or allow the distinc-
tion between the levels of an ordinal scale variable
(e.g. satisfaction coded from “highly satisfied” to
“completely dissatisfied”). Finally, an intercept term
is usually required in the model. A variable, say xi1,
with xi1 = 1, for i = 1, . . . , n allows for the intercept
term.

The general linear model links the response vari-
able for the ith unit, Yi , to the vector of variables
related to the response. The form of this model is

Yi = β1xi1 + β2xi2 + · · · + βpxip + εi,

i = 1, . . . n(p < n).

In matrix form, the model can be written

Y = Xβ + ε,

where Y is an n × 1 vector of response variables, X
is an n × p matrix which has the (row) vectors of
variables as rows, β is a p × 1 vector of unknown
parameters, and ε is the n × 1 vector of residuals.

The role of the εis is to represent all sources
of variation in the response which have not been
accounted for by the variables included in the model.
Thus, this vector represents the residual, or unex-
plained, variation in the measured response Yi not
accounted for by the model. This variation can be
due to the effects of variables not included in the
model, or to the misspecification of the form of their
effects.

In the design of experiments literature, the εi term
is often called the “experimental error” term to rep-
resent the combined effects of all those factors not
controlled by the experimenter. For example, varia-
tion introduced by the measurement system, variation
due to factors such as temperature or diet which the
experimenter has not controlled, or variation in how
the same treatment was applied to different subjects
or units will contribute to this term. Randomiza-
tion and blinding are designed to ensure, as far as
possible, that the uncontrolled effects are not system-
atically related to terms in the model.

In observational studies, similar factors contribute
to the residual term. However, unlike experiments in
which randomization has been used to assign treat-
ments to experimental units, it is often not reasonable
to assume that such factors are unrelated to terms in
the model.

In what follows we make the usual general linear
model assumptions on the distribution of the εis. That
is, it will be assumed that εi is a random variable with

E(εi) = 0, var(εi) = σ 2; i = 1, . . . , n,

and ε1, ε2, . . . , εn independent.
These assumptions state that, on average, the

residual terms are neither positive or negative so that
the model does not systematically under- or overpre-
dict; that the variation in these terms is the same for
all experimental units and does not depend on the size
of Yi , and that the value of the ith residual term is
not predictive of the value of any other residual term.
These model assumptions can be checked using tech-
niques discussed elsewhere (e.g. [2], and [4]) (see
Residuals).

For tests of hypotheses (see Hypothesis Testing)
about terms in the model, or for the calculation of
confidence intervals for specific model parameters
(β1, β2, . . . , βp; σ 2), an additional assumption which
describes the probability distribution of the εis is
required. By far the most commonly used assumption
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is that
εi ∼ N(0, σ 2).

Taken together, these assumptions imply that the
residual (error) terms behave like an independent
sample from a normal distribution, with mean 0
and common variance σ 2.

Estimation of Parameters

If the columns of the X matrix are linearly indepen-
dent (i.e. X is of rank p), then the least squares
estimate of the p × 1 vector β which is equivalent
to the maximum likelihood estimate of β under the
normal distribution model described above is

β̂ = (X′X)−1X′Y.

The values of the response variable predicted by
the model can then be obtained as

Ŷi = β̂1xi1 + β̂2xi2 + · · · + β̂pxip,

or, in matrix terms,

Ŷ = Xβ̂.

The difference between the measured value of the
response variable, Yi , and the predicted value of the
same variable, Ŷi , is called the ith estimated residual
ε̂i = Yi − Ŷi . If the model describes the data well,
then we would expect Yi − Ŷi to be “small”. How-
ever, if the model is not providing a good descrip-
tion of the data, then Yi − Ŷi will be “large”. It is
these estimated residuals which form the basis for
the model diagnostics, discussed elsewhere, used to
assess the form and fit of the model. Furthermore, the
quantity

∑
ε̂2
i /(n − p), which provides a measure of

the departures from the model, is the usual estimate
of σ 2, the variance of the residuals.

The Analysis of Variance Table

For the analysis of variance, we start with a measure
of the variation in the measured response variables
before any model is established for the Yis. A conve-
nient measure of the total variation in the measured
response variables is given by the Total Sum of
Squares

Total SS =
∑

(Yi − y)2, where y =
∑ Yi

n
,

which is just (n − 1) times the estimated sample
variance of the Yis. If we have chosen an appropriate
form for the model and have included the important
predictors of the response, we expect Ŷi to be close to
Yi . Thus, we will have “explained” a “large” portion
of this variation. In fact, the variation left unexplained
by the model can be summarized by the quantity

Residual SS =
∑

(Yi − Ŷi )
2,

which is just n − p times the estimate of the variance
of εi .

Thus, the variation in the response “explained” by
the model will be the difference between the measure
of the total variation in the response and the variation
unexplained by the model. We have

total variation in the response

= variation explained by the model

+ variation unexplained by the model.

The “explained variation” is called the Model
Sum of Squares (or Regression Sum of Squares).
Algebraically, we can show that

Model SS = Total SS − Residual SS

=
∑

(Yi − y)2 −
∑

(Yi − Ŷi )
2

=
∑

(Ŷi − y)2.

In matrix terms, the split of the Total Sum of
Squares into the Model Sum of Squares and Residual
Sum of Squares can be written as

Y′Y−ny2 = β̂ ′X′Xβ̂−ny2+(Y−X′β̂)′(Y−X′β̂).

It is this decomposition of the total sum of squares
(as a measure of the total variation in the data prior
to model fitting) into that portion “explained” by the
model and that portion left “unexplained” that is the
basis of the analysis of variance.

It is common practice to summarize the results of
the analysis of variance in an analysis of variance
table. The standard format of the table is given in
Table 1. There are columns identifying the source of
the variation, the degrees of freedom associated with
each source, the corresponding sum of squares, and
the mean square (sum of squares divided by degrees
of freedom). Another column, headed “F”, which
gives the ratio of the Model Mean Square and the
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Table 1 The analysis of variance table

Source df Sum of squares Mean square F

Model p − 1 β̂ ′X′Xβ̂ − ny2 (β̂ ′X′Xβ̂ − ny2)/(p − 1)
Mean SquareModel

Mean SquareResidual

Residual n − p (Y − X′β̂)′(Y − X′β̂) (Y − X′β̂)′(Y − X′β̂)/(n − p)

Total n − 1 Y′Y − ny2

Residual Mean Square is usually added. This column
is used for tests of hypotheses associated with sources
of variation which will be discussed later.

As discussed, the Residual Mean Square in the
analysis of variance table provides an estimate of σ 2,
the (assumed constant) variance of the distribution of
the εis.

Tests of Hypotheses – The Extra Sum of
Squares Principle F Test

In most applications of the analysis of variance,
interest will focus on the testing of hypotheses
concerning the regression parameters (i.e. the βis in
the above model). In particular, tests of hypotheses
of the form

H: βk = 0,

or, more generally,

H: βq+1 = βq+2 = · · · = βp = 0,

are the most common. Each of the above is equivalent
to asking whether the variable or variables associ-
ated with the β parameter(s) in the statement of the
hypothesis are related to the response, after adjust-
ing for the effects of other variables included in the
model.

Intuitively, if we fit the full model and compute
the Residual Sum of Squares, and then refit a reduced
model without the variables corresponding to the βis
specified in the hypothesis, we should be able to judge
the appropriateness of the hypothesis by examining
the increase in the Residual Sum of Squares. If the
increase is “large”, then the variables we removed
were important in explaining the variation in the
response, after considering the effect of the variables
remaining in the model. The assessment of whether
this increase in the Residual Sum of Squares is
“large” can be conducted by a statistical test based
on the size of the increase in the Residual Sum

of Squares, standardized by the Residual Sum of
Squares from the full model.

Consider the hypothesis

H: βq+1 = βq+2 = · · · = βp = 0,

and define

∆ = Residual SSReduced Model

− Residual SSFull Model.

Then the test statistic

F = ∆/(p − q)

Residual SSFull Model/(n − p)

assesses the change in the Residual Sum of Squares
per variable removed from the model, relative to the
residual mean square from the full model. That is,
large values of the test statistic occur whenever the
increase in the Residual Sum of Squares is “large”
with respect to what might be expected by chance
alone.

If the full model is assumed to be an adequate
description of the variation in the response,
and if the residuals are assumed to follow the
normal distribution as described above, then under
the hypothesis, H:βq+1 = βq+2 = · · · = βp = 0, the
quantity F behaves like a random variable from
the F(p−q),(n−p) distribution (i.e. F distribution with
p − q and n − p degrees of freedom). Consequently,
a test of significance can be performed in which
the observed value of F , Fobserved, is compared
to the tables of the F(p−q),(n−p) distribution. The
significance level of the data with respect to the
hypothesis is, then, Pr(F(p−q),(n−p) > Fobserved) (see
Level of a Test). Small values of the significance
level are associated with large values of the observed
test statistic, and cast doubt on the hypothesis.

One important application of this principle
involves assessing whether the independent variables,
collectively, explain a significant portion of the



Analysis of Variance 5

variability in the response. In a model with
an intercept term (i.e. xi1 = 1, i = 1, . . . , n) this
involves testing

H: β2 = β3 = · · · = βp = 0.

The reduced model under the hypothesis is

Yi = β1 + εi, i = 1, . . . , n.

In this reduced model, β̂1 = y, and the Residual Sum
of Squares is

Residual SSModel With Intercept Only =
∑

(Yi − y)2,

which is just the Total Sum of Squares for the Yis.
Then if

∆ = Residual SSModel With Intercept Only

− Residual SSFull Model

= Total SS − Residual SSFull Model

= Model SS,

then the extra sum of squares principle F test statistic
is

F = ∆/(p − 1)

Residual SSFull Model/(n − p)

= Model Mean Square

Residual Mean Square
.

The column headed “F” in the analysis of vari-
ance table contains this ratio. When compared with
the F(p−1),(n−p) tables, this statistic provides a test
of whether the combined effect of all independent
variables, and hence the fitted model, explains a sig-
nificant portion of the variability in the response.

Partitioning the Model Sum of Squares

In many applications, interest will focus on exam-
ining various submodels of the fitted model. For
example, in a polynomial regression model

Yi = β1 + β2xi + β3x
2
i + εi,

an obvious question is whether the model involving
only the linear term would describe the data almost as
well as the more complicated quadratic model. Since
the linear model is a special case of the quadratic

model (i.e. β3 = 0), the residual sum of squares
for the best fitting linear model cannot be smaller
than that for the best fitting quadratic model. The
difference,

Residual SS(linear)−Residual SS(linear, quadratic)

= Model SS(linear, quadratic)−Model SS(linear)

= Model SS(quadratic|linear),

if large, indicates that the quadratic model is “explain-
ing” much more of the variation in the measured
response variable than is the linear model. The extra
sum of squares principle F test provides one means
of testing whether the variation explained by the
quadratic term is significant, over and above that
which is explained by the linear term.

Similarly, if the measured response is systolic
blood pressure, xi1 = 1 codes for the intercept, xi2

represents weight and xi3 represents age for the ith
subject, then the difference

Residual SS(Model with weight)

− Residual SS(Model with weight and age),

represents the additional portion of the variation
“explained” when age is added to a model involving
weight, over that explained by a model involving
weight alone. If this difference is large, it suggests
that age is an important variable in the explanation
of the variability in systolic blood pressure even when
the effect of weight has been modeled in this fashion.

If we define Model SS(weight, age) to be the Model
Sum of Squares for a model containing both weight
and age, and Model SS(weight) as the model sum of
squares for a model containing only weight, then we
can define

Model SS(age|weight) = Model SS(weight, age)

− Model SS(weight),

as the “additional” sum of squares explained by age
when added to a model containing weight.

Then, we can modify the Model Sum of Squares
entries in the analysis of variance table to allow us to
look at this partitioning of the Model Sum of Squares.
Since,

Model SS(weight, age) = Model SS(weight)

+ Model SS(age|weight),
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Table 2 Analysis of variance table for the blood pressure example

Source df Sum of squares Mean square F

Model (weight, age) 2 Model SS(weight, age) Model SS(weight, age)/2
Model MS(weight, age)

Residual MS

Model (weight) 1 Model SS(weight) Model SS(weight)/1
Model MS(weight)

Residual MS

Model (age|weight) 1 Model SS(age|weight) Model SS(age|weight)/1
Model MS(age|weight)

Residual MS

Residual n − 2 Residual SS(weight, age) Residual SS(weight, age)/(n − 2)

Total n − 1 Y′Y − ny2

we have the analysis of variance table shown in the
Table 2.

Then F ratios, reading down the column, test
respectively, the hypotheses:

1. The model involving weight and age does not
explain a significant portion of the variation in
blood pressure.

2. The model involving weight alone does not
explain a significant portion of the variation in
blood pressure.

3. After adjusting for weight, age does not explain
a significant portion of the variation in blood
pressure. That is, for individuals of the same
weight, there is no significant linear relationship
between blood pressure and age.

It is important to note that we could also have
decomposed the Model Sum of Squares as:

Model SS(weight, age) = Model SS(age)

+ Model SS(weight|age).

The interpretation of the F tests is analogous to that
described above, with the role of weight and age
reversed. Because of the observational nature of many
data sets, the explanatory variables may be highly
correlated. In such cases, it will often be very difficult
to obtain an unequivocal interpretation of the results
of these F tests. For example, the model involving
both age and weight may be highly significant, but
both Model SS(age|weight) and Model SS(weight|age) may
be small. Conversely, neither age nor weight on its
own may explain a significant portion of the variation
in blood pressure, but the model involving both may
be highly significant. A class of techniques known as
variable selection methods (e.g. [3, 4]) is often used

to attempt to untangle the relationships between the
response variable and correlated predictor variables.

In some software packages (e.g. SAS [12]), the
analysis of variance table output will contain refer-
ence to type I and type III sums of squares. (Types
II and IV are also available but will not be discussed
here.) In brief, with type I sums of squares, the Model
Sum of Squares is decomposed in the order that the
terms are specified in the model. Thus, if the model
is specified as

Yi = β1 + β2xi2 + β3xi3 + εi,

(i.e. Y = Weight + Age),

we get

Model SS(weight, age) = Model SS(weight)

+ Model SS(age|weight),

and the two sums of squares terms on the right of the
equation are provided as the type I sums of squares.

A type III sum of squares is the contribution to the
Model Sum of Squares due to a term in the model
after adjusting for all other terms specified in the
model. Thus, in the example above, the type III sums
of squares would be Model SS(age|weight) and Model
SS(weight|age). Note that type I sums of squares will
total the Model Sum of Squares, whereas the type III
sums of squares will not unless the columns of the
X matrix are orthogonal, as described in the next
section.

Orthogonality

A very special case of partitioning the Model Sum
of Squares occurs when the columns of the X matrix
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are orthogonal (perpendicular) (see Orthogonality).
In general, if two n × 1 (column) vectors x1 and x2

are orthogonal, then

x′
1x2 = 0.

If the columns of the matrix X are mutually
orthogonal (i.e. each pair of columns is orthogonal),
then X′X will be a diagonal matrix. In particular, the
entry in position (j, j) is x′

j xj , where xj is the j th
column of X. The least squares estimate of βj (equiv-
alent to the maximum likelihood estimate under the
assumption of a common normal distribution for the
εis), will be

β̂j =
n∑

i=1

xijYi

/
n∑

i=1

x2
ij ,

and this estimate will not change as orthogonal
columns are added or deleted from the X matrix.

Further, when the columns of X are orthogonal,
the Model Sum of Squares decomposes into p − 1
components, with the j th component given by

(
n∑

i=1

xijYi

)2 /
n∑

i=1

x2
ij .

(Note that the term ny2 which has been used to
correct the Total and Model Sums of Squares for the
intercept term, is just

ny2 =
(

n∑

i=1

1 × Yi

)2 /
n∑

i=1

12,

consistent with the above.)
Thus, the Model Sum of Squares can be written

β̂ ′X′Xβ̂ − ny2

=
p∑

j=1




(

n∑

i=1

xijYi

)2 /
n∑

i=1

x2
ij



 − ny2

=
p∑

j=2




(

n∑

i=1

xijYi

)2 /
n∑

i=1

x2
ij



 ,

and we have a complete decomposition of the Model
Sum of Squares into p − 1 one-degree-of-freedom
sums of squares.

The ratio of any of these one-degree-of-freedom
sums of squares to the Residual Mean Square pro-
vides an F test of the hypothesis that the relevant βi

term is zero. Because of the complete orthogonality,
the sum of squares associated with any column in the
X matrix will not change as columns orthogonal to it
are added to or deleted from the model. Note that in
such cases the type I and type III Sums of Squares
(e.g. SAS [12]) will be equal.

This result is very important to the design of
experiments. As discussed, in the designed experi-
ment, the investigator has freedom to choose the
levels of factors to be manipulated, the combinations
of factors to be used in the experiment, and the
number and construction of blocks which will be
used to produce homogeneous units on which to
experiment. With the proper choice of levels of
experimental factors, and the proper attention to
balance of the experimental factors across blocks, it is
possible to design orthogonality into the experiment.
This makes the analysis of the results relatively
straightforward. More importantly, the interpretation
of the results is clear since the orthogonality of the
design ensures protection against the confounding of
the experimental factors. For example, by randomly
assigning predetermined levels of exercise to the
same number of younger and older subjects, and
measuring blood pressure at a later time, it would be
possible to estimate the effects of exercise on blood
pressure independently of age (and vice versa).

With observational studies, no such balance is
guaranteed. Consequently, it is common to find
explanatory variables which are highly correlated.
The interpretation of the results is difficult. If younger
subjects have lower blood pressure and exercise more
than do older subjects, it may be difficult to separate
the roles of exercise and age on blood pressure.

Analysis of Variance in Designed
Experiments

In this section, we briefly describe the analysis
of variance in designed experiments. The design
of experiments is a very broad topic, and specific
designs are described elsewhere (e.g. [1] and [11])
(see Randomized Complete Block Designs; Latin
Square Designs; Factorial Experiments). However,
we will discuss the use of the analysis of variance
technique with reference to some simple designs to
illustrate the basic features of the technique.
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Consider a randomized block experiment in which
t treatments are to be studied in an experiment
involving b blocks. That is, the experimenter has
isolated b sets of t units each on which to experiment.
The units within a block are similar with respect
to factors thought to be related to variability in
the response. Units in different blocks may well
be quite different with respect to factors thought
to be related to the response. The t treatments are
randomly assigned to the units within a block, and
one measurement is taken from each unit. Thus,
we have n = t × b measurements on the response
variable to analyze.

Note that by assigning different treatments to
relatively homogeneous units, the experimenter has
deliberately introduced variation into the experiment.
However, the sources of this variation are known and,
thus, can be dealt with at the time of analysis.

In what follows, we will assume a fixed effects
model. That is, the inference about the effects of
the treatments, and about the effects of the blocks is
relevant only for the treatments and blocks used in the
particular experiment. Later, we will briefly describe
random effects models in which the treatments
(and/or blocks) are assumed to be a random sample
from a population of treatments (blocks). In such
cases, the inference will apply to the population of
treatments (blocks) from which the actual treatments
(blocks) were a sample.

To better describe the model, we change notation
slightly. Define Yij to be the measured response
of treatment i in block j . Then we describe the
measured value as composed of an effect common
to all observations, the effect due to the treatment
applied, and the effect due to the block which
contains the unit as follows:

Yij = µ + αi + βj + εij , i = 1, . . . , t ;

j = 1, . . . , b.

In this model, µ represents an effect common to
all observations, αi represents the effect of the ith
treatment relative to µ, βj represents the effect of
the j th block relative to µ, and εij represents the
uncontrolled variation (experimental error) from the
unit in the j th block receiving the ith treatment.

While this model may seem different from the
model defined earlier, there is a correspondence
between them which is useful to keep in mind. If
we write the measured values in a tb × 1 column

vector such that the observation on treatment i in
block j is in location i∗ = (j − 1)t + i, then we
have “strung out” the observed values so that the first
observation is on treatment 1 in block 1, the second is
on treatment 2 in block 1, . . ., the t th observation is
on treatment t in block 1. Then observation t + 1 is
the observation on treatment 1 in block 2, etc. We can
then define a matrix X which will contain indicator
variables to code for the different treatments and the
different blocks in the experiment.

For example, define a tb × 1 column vector x1

such that xi1 = 1, for i = 1, . . . , tb, to provide for
an intercept term (µ).

Define t tb × 1 column vectors x2, x3, . . . , xt+1

such that the kth entry of x1+i is 1 if the kth
observation is on treatment i; otherwise the kth entry
of x1+i is 0.

Likewise, define b tb×1 column vectors xt+2, . . . ,

xt+b+1 such that the kth entry of xt+1+j is 1, if the
kth observation is from block j ; otherwise the kth
entry of xt+1+j is 0.

Then we form the matrix X with columns given by
x1, x2, . . . , xt+b+1. For example, if t = 2 and b = 3,
then we get the X matrix shown in Table 3.

With this definition for X, we could write the
model in matrix form as

Y = Xγ + ε,

where Y is the tb × 1 vector of observations “strung
out” as described above, X is given in Table 3, and
γ is a t + b + 1 vector of parameters with

γ ′ = (µ, α1, α2, β1, β2, β3).

However, in this model, X is not of full rank;
the columns of X are not linearly independent. For
example, column 1 is the sum of columns 2 and 3,
and also the sum of columns 4, 5, and 6. Thus, we
cannot obtain unique estimates of the parameters.

Table 3 X matrix for the
randomized block design for
t = 2, b = 3 with no con-
straints





1 1 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1
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However, if we place some restrictions or constraints
on the parameters, we can arrive at estimates which
are useful for describing the variation in the measured
response. There are two commonly used sets of
constraints for models of this type; these will be
briefly described. It is important to note that these
different systems of constraints will lead to different
estimates of the parameters in the model, and the
interpretation of the estimates will depend on the type
of constraint applied. However, tests of hypotheses
about the overall effect of treatments or blocks will
be the same under both sets of constraints.

Indicator Variable Constraints

The simplest way to resolve the issue of linear
dependence in the columns of X is to remove columns
to produce a set which is linearly independent but
which still allow for the estimation of meaningful
quantities. In the example in Table 3, dropping the
second and fourth columns of X gives a matrix which
has linearly independent columns. Dropping these
columns is equivalent to the set of constraints

α1 = 0; β1 = 0.

Under this model, the parameter µ is an estimate of
the mean response from the unit in block 1 which
received treatment 1. The parameter α2 measures the
difference in mean response between units in the
same block which received treatment 2 and those
which received treatment 1. Similarly, β2 represents
the difference in mean response between units in
block 2 and units in block 1 which received the same
treatment. A test of the hypothesis that α2 = 0 is then
a test of no difference between treatments, adjusting
for the differences in blocks, as required.

These constraints are used in many computing
packages (e.g. GLIM [9]). Their major disadvantage
is that, since the columns of X are not orthogonal,
when the parameters related to treatments (blocks) are
dropped from the model, the estimated values of the
other parameters in the model will change, requiring
a refit of the model. However, this disadvantage is
only minor with modern computing packages.

Of course the choice of which columns to drop
is arbitrary. In general, setting up the model so that
natural reference categories are formed has some
advantage for interpreting the results of the analysis.

Analysis of Variance Constraints

An alternative set of constraints which allows for
hand calculation of all quantities required is

t∑

i=1

αi = 0;
b∑

j=1

βj = 0.

Under these constraints, the parameter µ represents
the overall mean response across all units used in
the experiment. The parameter αi represents the
difference in mean response for units treated with
treatment i, relative to the overall mean response.
Similarly, the parameter βj represents the difference
in mean response for units in block j , relative to the
overall mean response.

If we write the model in terms of α2, β2, and β3

using these constraints (i.e. α1 = −α2; β1 = −β2 −
β3), we have the new X matrix, X∗, given in Table 4,
and the model can be written as

Y = X∗γ ∗,

where γ ∗′ = (µ, α2, β2, β3).
In this model the column coding for the mean

effect is orthogonal to those coding for treatment
effects and to those coding for block effects. Sim-
ilarly, the columns coding for treatment effects are
orthogonal to those coding for the block effects. This
orthogonality is a natural result of the balance in
the design (each treatment appears the same num-
ber of times in each block), and the parameterization
of the model. It follows that if this model is fitted and
then the columns coding for the treatment effects are
deleted and the model refitted, the estimates of the
parameters for the mean and for the blocks will be
unchanged. It further follows that we can get an easy
decomposition of the Model Sum of Squares into a
source due to treatments and a source due to blocks.

Table 4 X∗ matrix for the
randomized block design for
t = 2, b = 3 with analysis of
variance constraints





1 −1 −1 −1
1 1 −1 −1
1 −1 1 0
1 1 1 0
1 −1 0 1
1 1 0 1
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These sources will have t − 1 and b − 1 degrees of
freedom respectively due to the single constraint on
the t (b) treatment (block) parameters.

Further it is quite easy to show that the least
squares estimates (maximum likelihood estimates
under the common normal errors model) of the
parameters in the model are

µ̂ = y; α̂i = yi. − y. and β̂j = y.j − y..;

i = 1, . . . , t ; j = 1, . . . , b,

where yi. = ∑b
j=1 Yij /b, and y.j = ∑t

i=1 Yij /t are
the average responses for all units which received
treatment i, and the average response for all units in
block j , respectively. The Residual Sum of Squares
for this model is then

Residual SSFull Model

=
t∑

i=1

b∑

j=1

ε̂2
ij

=
t∑

i=1

b∑

j=1

(Yij − α̂i − β̂j )
2

=
t∑

i=1

b∑

j=1

(Yij − yi. − y.j + y..)
2

=
t∑

i=1

b∑

j=1

(Yij − y..)
2 − b

t∑

i=1

(yi. − y..)
2

− t

b∑

j=1

(y.j − y..)
2.

The quantities b
∑t

i=1(yi. − y..)
2 and t

∑b
j=1(y.j −

y..)
2 are called the Treatments and Blocks Sum

of Squares, respectively. For example, if there is
considerable variability of the yi.s about their mean
(y..), there is evidence that not all the treatments
are producing the same average response and the
Treatments Sum of Squares will be large. Since each
treatment appears in each block, differences between
blocks cannot be accounting for the differences
between the treatment averages. Similar conclusions
will obtain in examining the Blocks Sum of Squares.

The Analysis of Variance Table for the
Randomized Block Design

To develop the analysis of variance table for the
randomized block design, we adopt the analysis of
variance constraints parameterization, and note that
the hypotheses of interest are usually that there is no
difference between the treatments, or no difference
between the blocks; i.e.

H: α1 = α2 = · · · = αt = 0 or

H: β1 = β2 = · · · = βb = 0.

Under the first hypothesis above, the model becomes

Yij = µ + βj + εij ; i = 1, . . . , t ; j = 1, . . . , b,

and we again have, due to the orthogonality of the
columns representing the block parameters and the
column representing the mean parameter, that

µ̂ = y..; β̂j = y.j − y.., j = 1, . . . , b;

and

Residual SSH:αi=0 =
t∑

i=1

b∑

j=1

(Yij − y..)
2

− t

b∑

j=1

(y.j − y..)
2.

Then, to test H: α1 = α2 = · · · = αt = 0, we com-
pute the Extra Sum of Squares Principle F test
statistic.

Let

∆ = Residual SSH:αi=0 − Residual SSFull Model

= Treatments SS.

Then

F = ∆/(t − 1)

Residual SSFull Model/(t − 1)(b − 1)

= Treatments MS

Residual MSFull Model
.

We compare the observed value of the test statistic
to the tables of the F(t−1),(t−1)(b−1) distribution.

The above can be summarized in the analysis of
variance Table given in Table 5.
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Table 5 Analysis of variance table for a randomized block design

Source df Sum of squares Mean square F

Model t + b − 2

Treatments t − 1 b
∑t

i=1(yi. − y..)
2 Treatments SS/(t − 1)

Treatments MS

Residual MS

Blocks b − 1 t
∑b

j=1(y.j − y..)
2 Blocks SS/(b − 1)

Blocks SS

Residual MS

Residual (t − 1)(b − 1) Residual SSFull Model Residual SSFull Model/(t − 1)(b − 1)

Total n − 1 Y′Y − ny2
..

Orthogonal Contrasts for Planned
Comparisons

In many experiments in which t treatments are to be
compared, there may be some a priori (i.e. planned)
comparisons which the investigator has in mind.
For example, suppose that t = 3, and that the three
treatments represent three doses (0, 10, and 20 units)
of a drug. Rather than whether there are differences
between the doses, the question of interest might be
whether the response to the drug changes linearly
with dose.

Factorial designs (see Factorial Experiments;
Factorial Designs in Clinical Trials) provide another
important example. Suppose t = 8 and the eight
treatments represent all combinations of three drugs
(Q, R, and S), each of which has two levels (0 and 20
units). Questions involving comparing the high and
low doses of each drug, and determining whether the
effect of one drug depends on the level of another
drug (i.e. whether there is an interaction between the
drugs), are likely to be more relevant than whether
there is a difference between the eight treatments.

Consider the t means, y1., y2., . . . , yt., as a vector
of t responses, and define a t × (t − 1) matrix C such
that the columns of C are mutually orthogonal and
such that the sum of the t entries in each column
is zero. The columns of C thus defined are called
contrasts. While there may be many ways to define
a set of orthogonal contrasts, generally there will be
a main set which provides the answers to the relevant
analysis questions.

For example, for the question of linearity des-
cribed in the first experiment above, we order the
means so that they correspond to the averages on
units receiving 0, 10, and 20 units, respectively. If we
define the contrast, c′

1 = (−1, 0, 1), then
∑t

i=1 ci1yi.

will be close to zero whenever the first mean and
third mean are of the same size. If this were the case,
there would be no suggestion that the means were
increasing linearly. The contrast c′

2 = (−1, 2, −1)

is orthogonal to c1, and if
∑t

i=1 ci2yi. is close to
zero, it suggests that there is no parabolic (quadratic)
relationship between the means and dose.

For the 23 factorial design described above, let
yqrs represent the mean of all observations when the
qth level of drug Q, the rth level of drug R, and
the sth level of drug S are administered (q, r, s =
1, 2). Consider the matrix C shown in Table 6.
If the treatment means are arranged in the vector
(y111, y211, y121, y221, y112, y212, y122, y222)

′, then the
first column of C is a contrast which, when
applied to the vector of means, assesses whether the
observations on the high and low levels of Q are
equal. Similarly, columns 2 and 4 assess the main
effects of R and S; i.e. whether observations on the
high and low levels of R and S, respectively, are
equal. Column 3 examines whether the difference
between high and low levels of drug Q are different
for the levels of drug R. Similarly, columns 5 and
6 assess the interactions of drugs Q and S, and R
and S, respectively. The final column assesses the
three-way interaction, i.e. whether the interaction of

Table 6 Matrix of contrasts, C, for the
23 factorial design





−1 −1 1 −1 1 1 −1
1 −1 −1 −1 −1 1 1

−1 1 −1 −1 1 −1 1
1 1 1 −1 −1 −1 −1

−1 −1 1 1 −1 −1 1
1 −1 −1 1 1 −1 −1

−1 1 −1 1 −1 1 −1
1 1 1 1 1 1 1
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Q and R depends on the levels of S. In each case, if∑t
i=1 cikyi. is close to zero, we can conclude that the

particular effect is not important.
Because of the orthogonality, the Treatment Sum

of Squares can be decomposed into t − 1 one-degree-
of-freedom sum of squares, each of which can be used
to test whether the corresponding sum is significantly
different from zero. We have

t∑

i=1

(yi. − y..)
2 =

t−1∑

k=1




(

t∑

i=1

cikyi.

)2 /
t∑

i=1

c2
ik



 ,

where cik is the ith entry in the kth column of C. This
result has exactly the same form and follows directly
from the result given earlier on the decomposition of
the Model Sum of Squares when the columns of X are
orthogonal. Here, the “Model Sum of Squares” from
the regression of the vector of means on the columns
of C will be equivalent to the “Total Sum of Squares”
of the means since we have t means and have defined
t − 1 columns in C. Again, there is a one-degree-
of-freedom sum of squares for the “intercept” term.
Indeed, the requirement that the columns of C sum to
zero is to ensure orthogonality with the overall mean.

Thus, the Treatment Sum of Squares (which for
the randomized block design is just b times the
expression on the left above) can be decomposed into
t − 1 one-degree-of-freedom sums of squares. (For
the randomized block design, the kth such sum of
squares would be b(

∑t
i=1 cikyi.)

2/
∑t

i=1 c2
ik).) Each

of these sums of squares can be used to test certain
comparisons among the treatment means, by forming
the F statistic with the sum of squares as numerator
and residual mean square as denominator.

Note that the development given here assumes that
there are the same number of observations on each
treatment, as would be the case in most designs,
including the randomized block design described
above. If the design is unbalanced, this breakup of
the Treatment Sum of Squares may still be possible,
but the C matrix needs to be constructed based on
the original vector of responses, taking the different
numbers of observations into account.

Designs Involving More Than One Source
of Error

In the discussion above, we have considered models
in which, because of the design, it was only pos-
sible to estimate a single measure of experimental

error. As discussed initially, there are many potential
sources of variation in any statistical investigation.
Often through the design used, we may be able to
separate sources of variation (see Variance Compo-
nents) and arrive at different error terms for different
comparisons. We illustrate this briefly with a simple
example. Suppose we are interested in the effect of
a drug on heart rate during exercise. We randomly
assign m individual subjects to one of three levels
of the drug (0, 10, or 20 units). The experimen-
tal procedure involves measuring heart rate, for each
subject, under two exercise conditions (moderate and
extreme), using a standard protocol. Thus, we have
6m measurements in total.

If we consider the factors associated with varia-
tion in heart rate, some of these are factors which
vary from individual to individual (e.g. age, fitness
level, weight, etc.). Others are factors which would
vary between test times on the same individual (e.g.
temperature, fatigue, etc.) In fact, we could measure
the within-subject variation by taking repeat measure-
ments on the same subject under similar conditions,
and measure the between-subject variation by tak-
ing measurements on different subjects under similar
conditions. It is reasonable to think that under similar
conditions there will be more variation from indi-
vidual to individual than from test time to test time
within a single subject (see Longitudinal Data Anal-
ysis, Overview; Split Plot Designs).

The design described above allows us to estimate
the between-subject and within-subject contributions
to the overall experimental error. The between-
subject contributions provide the benchmark against
which to test treatments applied at the level of the
subject (i.e. the levels of the drug). The within
subjects contributions provide the baseline variability
against which to compare treatments applied within
subjects (i.e. the differing exercise regimes, and their
interaction with the dose of the drug).

A model for this experiment includes two sources
of error, which, for this design, are separable. A
model is

Yijk = µ + αi + εij + βk + (αβ)ik + δijk,

where Yijk represents the observation on exercise
level k for the j th subject in the ith drug group;
µ is the overall mean; αi represents the effect of
drug level i(i = 1, 2, 3); βk represents the effect of
exercise level k(k = 1, 2); and (αβ)ik represents the
effect of the interaction of drug level i and exercise
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level k. Furthermore, εij gives the between-subjects
experimental error term for subject j in the ith
drug group, and δijk represents the within-subjects
experimental error term for the measurement on
exercise regimen k, for the j th subject in group i.

For the purposes of estimation, we make the usual
“fixed” effects assumptions, i.e.

3∑

i=1

αi = 0;
2∑

k=1

βk = 0;

3∑

i=1

(αβ)ik =
2∑

k=1

(αβ)ik = 0.

Furthermore, we assume

εij ∼ N(0, σ 2
I ), independently;

and

δijk ∼ N(0, σ 2
II),

independently, and independent of εij .

Under this model, we obtain the following estimates:

µ̂ = y...; α̂i = yi. − y...; β̂ = y.j. − y...;

and

(αβ̂)ik = yi.k − yi.. − y..k + y...,

where the notation again implies averages are taken
over the subscript denoted by a subscript dot. The
sums of squares associated with each of the fixed
effects are obtained as before. That is, the Drug
Groups Sum of Squares is just

Drugs SS =
2∑

k=1

m∑

j=1

3∑

i=1

(yi.. − y...)
2

= 2m

3∑

i=1

(yi.. − y...)
2.

There are two sources of experimental error to
estimate here. The between-subjects residual sum of
squares is obtained by combining both measurements
on the exercise regimen, and measuring the variation
between subjects within drug groups. Thus we obtain,

Residual SSBetween Subjects

=
2∑

k=1

3∑

i=1

m∑

j=1

(yij. − yi..)
2,

which is based on 3(m − 1) degrees of freedom (i.e.
m − 1 degrees of freedom in each of three drug
groups).

The within-subjects residual sum of squares is
the overall residual sum of squares from the model.
It can be thought of as the measure of the total
variation between the measurements made on the
same individual (the total within-individual variation
which has 3m degrees of freedom) less the variation
which the experimenter deliberately induced within
individuals; that is, less the exercise sum of squares
(one degree of freedom) and the drug–exercise
interaction sum of squares (two degrees of freedom).
Thus, it could be calculated as:

Residual SSWithin Subjects

=
3∑

i=1

m∑

j=1

2∑

k=1

(Yijk − yij.)
2

−
3∑

i=1

m∑

j=1

2∑

k=1

(y..k − y...)
2

−
3∑

i=1

m∑

j=1

2∑

k=1

(yi.k − yi.. − y..k + y...)
2,

and it will have 3m − 1 − 2 degrees of freedom.
Then, to test the between-subject effects (i.e. drug

levels) or contrasts involving the means for the drug
groups, we use the residual mean square from the
between-subjects portion of the analysis in the F

test. For the within-subjects sources of variation
(i.e. exercise and the drug–exercise interaction),
we use the residual mean square from the within-
subjects part of the analysis in the F test. An
abbreviated analysis of variance table is shown in
Table 7.

Random Effects and Expected Mean
Squares

In our discussion to this point we have assumed we
were interested only in making statements about the
treatments and blocks actually used in the experiment,
and not some larger population of treatments or
blocks from which those actually used were a random
sample. The theory behind the analysis of variance
allows us to deal with this latter situation. Note
that in designed experiments it is very rare that
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Table 7 Analysis of variance table for the drug–exercise example

Source df Sum of squares F

Between Subjects 3m − 1

Drugs 2 2m
∑

i (yi.. − y...)
2 Drugs MS

Residual MSBetween Subjects

ResidualBetween Subjects 3(m − 1) 2
∑

i

∑
j (yij . − yi..)

2

Within Subjects 3m

Exercise 1 3m
∑

k(y..k − y...)
2 Exercise MS

Residual MSWithin Subjects

Drug × Exercise 2 m
∑

i

∑
k(yi.k − yi.. − y..k + y...)

2 Drug × Exercise MS

Residual MSWithin Subjects

ResidualWithin Subjects 3m − 3 Subtraction from total

Total 6m − 1 Y′Y − ny2
..

either treatments or blocks are chosen randomly from
a larger population. Blocks used in an experiment
may be thought to be representative of the larger
population of blocks; however, it is common for
blocks to be deliberately chosen to span the range
of possible situations in which the treatments may be
applied, and the assumption, at least, that the blocks
are a simple random sample of all blocks is unlikely
to be true.

In sample survey applications it may be more
realistic to think of random samples of blocks (e.g.
towns), and then further random samples within
towns. In such cases we would like the inference to
be made across the population of towns, and not just
those actually used in the data collection.

A full treatment of this topic is not possible
here. However, we illustrate the ideas in a simple
example. For a thorough treatment of the subject
of fixed, random and mixed effects models, see [1]
and [10].

Consider a model for a randomized block experi-
ment

Yij = µ + αi + βj + εij ,

with εij ∼ N(0, σ 2), independently,

and assume the blocks used in the experiment rep-
resent a random sample of blocks from a larger
population. If this population is large relative to the
number of blocks used in the experiment, it may
be reasonable to assume that the block effects have
a distribution which can be described by a normal

probability model. That is, the βj s are randomly
distributed according to the model

βj ∼ N(0, σ 2
B), j = 1, . . . , b, independently,

and independently of the εij s.

Under this model, Yij ∼ N(µ + αi, σ 2 + σ 2
B), and the

model induces a correlation, termed the intra-class
correlation (σ 2

B/(σ 2 + σ 2
B)), between observations in

the same block, while maintaining the independence
of observations in different blocks. The relevant
hypothesis for the lack of block effects is, then,
H: σ 2

B = 0. Interestingly, this hypothesis can be tested
in the same manner as in the fixed effects case,
although the interpretation is different.

For example, consider the Block Mean Square,
t
∑b

j=1(y.j − y..)
2/(b − 1). Then with the fixed ef-

fects assumptions on the αis (i.e.
∑t

i=1 αi = 0),
and using the fact that var(

∑t
i=1 Yij ) = t (σ 2 + (t −

1)σ 2
B), due to the correlation between observations in

the same block, we can derive the expected value of
the Blocks Mean Square as follows:

E(y.j − y..)
2

= var(y.j − y..) + (E(y.j − y..))
2

= var(y.j ) + var(y..) − 2cov(y.j , y..) + 0

= σ 2 + tσ 2
B

t
+ σ 2 + tσ 2

B

tb
− 2t (σ 2 + tσ 2

B)

t2b

= (b − 1)(σ 2 + tσ 2
B)

tb
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So,

E



t

b∑

j=1

(y.j − y..)
2

b − 1



 = σ 2 + tσ 2
B.

In this manner, we can construct expected mean
squares for other sources in the analysis of variance
table. In many designs, these can be useful to indicate
the appropriate mean squares for tests of hypotheses
about effects in the model. For example, for the
randomized block design discussed earlier, Table 8
gives the expected mean squares for the design in
which treatment is a fixed effect and blocks are
assumed to be a random effect.

The table suggests that if σ 2
B = 0, the ratio of the

Blocks Mean Square to the Residual Mean Square
should be close to one, and that large values of this
ratio will cast doubt on H: σ 2

B = 0. In fact, under this
hypothesis, the ratio will have the F(b−1),(t−1)(b−1)

distribution, as before. Similarly, the ratio of the
Treatment Mean Square to the Residual Mean Square
will be large when

∑
α2

i is large; that is, when there
is evidence against H: α1 = α2 = · · · = αt = 0. The
F test applies in this case, as well.

There has been much written on the estimation
of the individual variance terms in models involving
random effects. It is clear that the residual mean
square is an unbiased estimate of σ 2. Further, in the
model discussed above, an unbiased estimate of σ 2

B
is given by

σ̂ 2
B = Block MS − Residual MS

t
,

although it is possible for the estimate to be negative
when calculated in this manner. The intra-class cor-
relation discussed above can likewise be estimated
from these quantities.

While there is no difference in the test statistics for
hypotheses about treatment or block effects between

Table 8 Expected mean squares for the randomized block
design with treatment effects fixed and block effects random

Source df Expected mean square

Model t + b − 2
Treatments t − 1 σ 2 + b

∑
α2

i /(t − 1)

Blocks b − 1 σ 2 + tσ 2
B

Residual (t − 1)(b − 1) σ 2

Total n − 1

this simple mixed model and the fixed effects model
discussed above, there are differences when one
wishes to make confidence interval statements about,
say, the expected value of an observation or treatment
mean taken at a future time. For the fixed effects
model, this will involve specifying both the treatment
and the block since both αi and βj are involved in
the expression for the expected value. The variance
term, var(Yij ), involves just σ 2 and constants; that is

var(µ̂ + α̂i + β̂j ) = σ 2

(
1

b
+ 1

t
− 1

tb

)
.

For the mixed model described above, only specifi-
cation of the treatment is required; the assumption is
that the observation will be taken from a randomly
selected block. Thus, the block effect appears in the
variance expression. So

var(µ̂ + α̂i ) = (σ 2 + σ 2
B)

(
1

b

)

is the variance of a future observation on the ith
treatment.

The development of the expected mean squares
for complicated designs, including mixed effects
designs and designs with more than one source of
error, is beyond the scope of this article. Discussions
and algorithms for determining these expected mean
squares can be found in [1, 10], and [11]. The SAS
computing package [12] will also generate expected
mean squares for a given model specification.
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[10] Scheffé, H. (1961). The Analysis of Variance. Wiley,
New York.

[11] Snedecor, G.W. & Cochran, W.G. (1967). Statistical
Methods, 6th Ed. Iowa State University Press, Ames.

[12] SAS Institute Inc. (1989). SAS/STAT User’s Guide,
Version 6, 4th Ed., Vol .2. SAS Institute Inc., Cary.

(See also Analysis of Covariance; Goodness of Fit;
Multiple Linear Regression)

K.S. BROWN



Analytic Hierarchy
Process

Among the most important decisions made in soci-
ety today are those relating to the life and health of
people. How does one make a decision when faced
with many conflicting factors that determine the best
choice among the available alternatives of that deci-
sion? Most of these factors may be intangibles and
the choice is not simply a matter of making finan-
cial trade-offs. How does one pool the judgments of
doctors and other experts with their varying degrees
of expertise to obtain the best decision? Who should
bear the costs, and how much control should there be,
what should be legal and what should not, who should
receive an organ in transplant operations, and what is
the best treatment for a certain type of disease? If we
have standard measurements for how average people
score on medical tests and if the readings of an indi-
vidual on several tests do not meet these standards,
how far off do they have to be before that individual
is suspected of having a disease? These are examples
of decision making that occur in the health and med-
ical professions (see Decision Analysis in Diagnosis
and Treatment Choice; Decision Theory).

Procedures for finding the answers to such ques-
tions are found in the new and rapidly spreading field
of multicriteria decision making. An application of
this decision-making theory is the analytic hierarchy
process (AHP), which is defined below and also illus-
trated with an example of choosing a hospice.

The Analytic Hierarchy Process (AHP)

The analytic hierarchy process [3, 4, 6, 8] subdi-
vides a complex decision-making problem or plan-
ning issue into its components or levels, and arranges
these levels into an ascending hierarchic order. At
each level of the hierarchy, the components are com-
pared relative to each other using a pairwise compar-
ison scheme. The components of a given level are
related to an adjacent upper level and thereby gener-
ate an integration across the levels of the hierarchy.
The result of this systematic process is a set of pri-
orities or relative importance, or method of scaling
between the various actions or alternatives. The rel-
ative priority weights can provide guidelines for the

allocation of resources among the entities at the lower
level.

Structuring any decision problem hierarchically
is an efficient way to deal with and identify
the major components of the problem. There is
no single hierarchic structure to use in every
problem. When hierarchies are designed to reflect
likely environmental scenarios, corporate objectives,
current and proposed product/market alternatives,
and various medical strategy options, the AHP
can provide a framework and methodology for the
determination of a number of key decisions.

The AHP allows its users flexibility in construct-
ing a hierarchy to fit their needs. The AHP also pro-
vides an effective structure for group decision making
by imposing a discipline on the group’s thought pro-
cesses. The necessity of assigning a numerical value
to each variable of the problem helps decision makers
to maintain cohesive thought patterns by deriving the
relative weight of each component of the hierarchy:
criteria and alternatives. In this manner, one deter-
mines the optimum alternative. The AHP has been
applied successfully to a variety of problems in plan-
ning [10], prioritization [6], resource allocation [10],
conflict resolution [9], decision making, and forecast-
ing or prediction [11], as well as in health care [1, 2,
7]. The AHP is a special case or subset of the analytic
network process (ANP), which uses a network struc-
ture that allows dependence and feedback instead of
a hierarchy.

The AHP focuses on dominance matrices and
their corresponding measurement in contrast with
the proximity, profile, and conjoint measurement
approaches [12]. It goes beyond the Thurston [13]
comparative judgment approach by relaxing the
assumption of normality on the parameters, e.g.
equal variance, zero covariance, and restriction of
the type of comparisons. It is based on a trade-off
concept whereby one develops the trade-off in the
course of structuring and analyzing a series of simple
reciprocal pairwise comparison matrices.

Some Detail

A measurement methodology is used to establish
priorities among the elements within each level or
stratum of the hierarchy. This is accomplished by
asking the decision maker to evaluate each set of
elements in a pairwise fashion with respect to their
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parent element in the adjacent higher stratum. This
measurement methodology provides the framework
for data collection and analysis and constitutes the
heart of the analytic hierarchy process. The degree
of importance of the elements at a particular level
over those in the succeeding level is measured by the
paired comparisons. To ensure meaningful compar-
isons the elements are placed in homogeneous groups
of a few elements in each to ensure consistency, with
a pivot element from one group to the next. Each
paired comparison made by a decision maker pro-
viding the judgments requires estimating how many
times more one element has the property than the
other element. The judgments are expressed verbally
as equal, moderate, strong, very strong, and extreme.
With these judgments are associated the absolute
numbers (how many times more): 1, 3, 5, 7, 9. The
numbers 2, 4, 6, 8 are used for compromise between
the verbal judgments. In addition, reciprocals are used
to represent the inverse comparison. This scale is
used to compare any homogeneous set. When the
elements are not homogeneous, a pivot element is
used to link one cluster to an adjacent cluster. The
choice of scale values to correspond to feelings and
judgments is founded in both theory and in consider-
able experimental work, and is not to be taken lightly.
When applied to comparisons of things whose mea-
surements are already known, using this scale gives
very close values when the judgments are given by
an expert. For the mathematics behind the AHP and
numerous applications, see [3], [5], and [6].

Unlike traditional ways of measurement that begin
with a scale and apply it to measure things, in the
AHP, we begin with things, measure them in pairs
by using the lesser object as the unit, and then
derive a scale of relative values from the pairwise
measurements. The scale comes after and not before
the objects. In this case, we do not need a unit,
we only want relative values and it turns out that
both the comparisons and the derived scale belong
to the strongest possible kind of scale like the real
numbers. It is known as an absolute scale, invariant
under multiplication by the identity.

At each level, a set of priorities is obtained which
numerically corresponds to the relative importance
of the elements of that level relative to an element
at an upper level. For a given level in the hierar-
chy if there are n elements, the solution technique
will result in an n-element eigenvector of local pri-
orities by solving the principal eigenvalue problem

(A − λI)X = 0. The components of the principal
eigenvector correspond to the relative importance
of each element. These priorities are now used as
weighting factors for the eigenvectors generated at
the next lower level in the hierarchy until all levels
are completed. Applying this procedure at each level
and weighting the next level and so on to the lowest
level will result in a composite priority vector for the
alternatives at the bottom level of the hierarchy.

One needs to use the eigenvector to derive the ratio
scale priorities. Other techniques such as the method
of least squares can minimize error but do not
capture the dominance expressed numerically by the
judgments. The eigenvalue process can determine the
true order of dominance despite any inconsistencies
or intransitivities that may occur in the judgments [5].

Example: the Hospice Problem

The following application is explained in greater
detail in [6]. A hospital is concerned with the costs
of the facilities and staffing involved in taking care
of terminally ill patients. Often these patients do
not need as much medical attention as do other
patients. Those who best utilize the limited resources
in a hospital are patients who require the medical
attention of its specialists and advanced technology
equipment–whose utilization depends on the demand
of patients admitted into the hospital. The terminally
ill need medical attention only episodically. Most of
the time such patients need psychological support.
For the mental health of the patient, home therapy
may be most beneficial. From the medical standpoint,
especially during a crisis, the hospital provides a
greater benefit. Costs include economic costs as
well as intangibles, such as inconvenience and pain.
The planning association of the hospital wanted
to develop alternatives for caring for terminally
ill patients and to choose the best one from the
standpoint of the patient, the hospital, the community,
and society at large. To study the problem, one needs
to deal with the benefits and costs of the decision
separately (see Health Economics).

Approaching the Problem

The problem was which hospice to choose. There
were three possible models under consideration:
in Model I, the hospital provides full care to the
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patients; in Model II, the family cares for the patient
at home, and the hospital provides only emer-
gency treatment (no nurses go to the home); and in
Model III, the hospital and the home share patient
care (with visiting nurses going to the home).

Two hierarchies were created by the decision
makers: one for benefits and one for costs (Figures 1
and 2). For both hierarchies, the goal was to choose
the best hospice. That goal is placed at the top of
each hierarchy. The two hierarchies descend from
the more general criteria in the second level to
secondary subcriteria in the third level, then to
tertiary subcriteria in the fourth level, and on to the
alternatives at the bottom or fifth level.

For the benefits hierarchy (Figure 1) we decided
that the decision should benefit the recipient, the
institution, and society as a whole. We located

these three elements on the second level of the
benefits hierarchy. As the decision would benefit
each party differently, it was thought important to
specify the types of benefits for the recipient and the
institution. Recipients want physical, psychosocial,
and economic benefits. We located these benefits
in the third level of the hierarchy. Each of these
in turn needed further decomposition into specific
items in terms of which of the decision alternatives
could be evaluated. For example, while the recipient
measures economic benefits in terms of reduced costs
and improved productivity, the institution needed the
more specific measurements of reduced length of
stay, better utilization of resources, and increased
financial support from the community. There was
no reason to decompose the societal benefits into
third-level subcriteria, and hence societal benefits

Choosing best hospice
(benefits hierarchy)

Institutional benefits
0.26

Societal benefits
0.10

Recipient benefits
0.64

Physical
0.16

Psychosocial
0.44

Economic
0.04

Psychosocial
0.23

Economic
0.03

Death as
a social
issue
0.02

Rehumanization
of medical,

professional,
and health
institutions

0.08

Reduced
IOS

0.006

Better
utilization

of resources
0.023

Increased
dollar support
by community

0.001

Publicity
and PR

0.19
Volunteer

recruitment
0.03

Professional
recruitment
& support

0.06

Reduced costs
0.01

Improved
productivity

0.03

Volunteer
support

0.02
Networking
in families

0.06

Relief of
post-death

distress
0.12

Emotional
support to
family and

patient
0.21Alleviation

of guilt
0.03

Direct care
of patients

0.02

Palliative
care
0.14

0.43 0.12 0.45

Model I
Unit of beds with team
giving home care (as

in a hospital or nursing
home)

Model II
Mixed bed, contractual home care
(partly in hospital for emergency
care and partly in home when

better − no nurses go to the house)

Model III
Hospital and home care
share case management

(with visiting nurses to
the home; if extremely sick
patient goes to the hospital)

Figure 1 Benefits of choosing best hospice
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Choosing best hospice
(costs hierarchy)

Community costs
0.14

Institutional costs
0.71

Societal costs
0.15

Capital
0.03

Operating
0.40

Education
0.07

Bad debt
0.15

Recruitment
0.06

Community
0.01

Training staff
0.06

Staff
0.05

Volunteers
0.01

0.59 0.20 0.21

Model I
Unit of beds with team
giving home care (as

in a hospital or nursing
home)

Model II
Mixed bed, contractual home care
(partly in hospital for emergency
care and partly in home when

better − no nurses go to the house)

Model III
Hospital and home care
share case management

(with visiting nurses to
the home; if extremely sick
patient goes to the hospital)

Benefit/cost ratio

Model I = 0.43
0.59

= 0.729;     Model II =             = 0.600;     Model III =             = 2.1430.12
0.20

0.45
0.21

Figure 2 Costs of choosing best hospice

connect directly to the fourth level. The three hospice
models are located on the bottom or fifth level of the
hierarchy.

In the costs hierarchy there were also three major
interests that would incur costs or burdens: commu-
nity, institution, and society. In this decision the costs
incurred by the patient were not included as a sep-
arate factor. Patient and family could be thought of
as part of the community. We thought decomposi-
tion was necessary only for institutional costs. We
included five such costs in the third level: capital
costs, operating costs, education costs, bad debt costs,
and recruitment costs. Educational costs apply to staff
and volunteers. Since both the costs hierarchy and
the benefits hierarchy concern the same decision, they
both have the same alternatives in their bottom levels,
even though the costs hierarchy has fewer levels.

Note that, even before preference judgments are
introduced, this method of structuring the problem

has changed an unformed problem into a structured
problem.

Judgments and Comparisons

For both the cost and the benefit models, we com-
pared the criteria and subcriteria according to their
relative importance with respect to the parent ele-
ment in the adjacent upper level. For example, one
judges the importance of the three benefits criteria, as
shown in Table 1. Recipient benefits were determined
to be moderately more important than institutional
benefits, and are assigned the absolute number 3 in
the (1, 2) or first-row second-column position. The
reciprocal value is automatically entered in the (2, 1)
position, where institutional benefits on the left are
compared with recipient benefits at the top. Similarly,
a 5, corresponding to strong dominance or impor-
tance, is assigned to recipient benefits over social
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Table 1 Comparing benefits of the hospice major benefit criteria

Institutional
Choosing best hospice Recipient benefits Social benefits Priorities

Recipient benefits 1 3 5 0.64
Institutional benefits 1/3 1 3 0.26
Societal benefits 1/5 1/3 1 0.10

benefits in the (1, 3) position, and a 3, corresponding
to moderate dominance, is assigned to institutional
benefits over social benefits in the (2, 3) position, with
corresponding reciprocals in the transpose positions
of the matrix.

The priorities column at the right in Table 1 is
the normalized eigenvector of the matrix of priori-
ties. A matrix A = (aij ) is consistent if and only if
aij ajk = aik for all i, j , and k. If all the judgments
were consistent, the priorities would be equivalent
to the normalized sum of the elements in each row.
In this case they were not. For example, institu-
tional benefits should dominate social benefits by
5/3 and not 3. The eigenvalue solution, which han-
dles inconsistency, must be used because, in general,
people, though knowledgeable, are somewhat incon-
sistent. The software based on the AHP can show
which judgment is the most inconsistent, and sug-
gest the value that best improves consistency. The
program determined that a13 = 5 is the most incon-
sistent judgment in this matrix, and suggested that
instead of 5, 9 should be used. However, this rec-
ommendation may not lead to priorities in harmony
with one’s understanding of the real world. One might
prefer to leave it at 5 and focus on the second most
inconsistent judgment instead, or change the 5 to a 6
or a 7.

Similar tables were constructed for each of the
other parent nodes in the model. The results of
these tables are weighted and added to derive the
overall priorities of the subcriteria just above the
alternatives – the three models being evaluated. The
first column of Table 2 shows these synthesized
priorities, which sum to one for the benefits and for
the costs.

The decision makers also rated each of the three
hospice models with respect to each covering benefit
and each covering cost. Those ratings are shown in
columns 2, 3, and 4 of Table 2. For example, the first
row shows that Model I provided the most direct care
to the patient and Model II the least. Each of these
rows sums to 1. The synthesis numbers are the sum

of the product of the priorities of the subcriteria and
the model weights.

The benefit/cost ratio in the last row of Table 2
is simply the quotient of the corresponding synthesis
for each model. Model III would be chosen because it
has the highest expected ratio of benefit to cost. This
model – shared management between the hospital
and home care with visiting nurses on a day-to-
day basis, with hospital care for emergencies – was
adopted for the community. Rounding off decimals
gives slightly different numbers from the Benefit to
cost ratios shown in Figure 2.

Finally, we performed a sensitivity analysis by
varying the priorities of the criteria to determine
the stability of the best alternative. We asked, for
example, what would happen if the priority for
institutional costs was less than the 0.71 value it
received (Figure 2). The resulting ranking of the
three models was fairly stable to small or realistic
perturbations in the relative weights of the criteria.

Absolute Measurement–Rating
Alternatives One at a Time

Cognitive psychologists have recognized for some
time that people are able to make two kinds of
comparisons–absolute and relative. In absolute com-
parisons, people compare alternatives with a standard
in their memory that they have developed through
experience. In relative comparisons, they compared
alternatives in pairs according to a common attribute,
as we did throughout the hospice example.

People use absolute measurement (sometimes also
called rating) to rank independent alternatives one
at a time in terms of rating intensities for each of
the criteria. An intensity is a range of variation of a
criterion that enables one to distinguish the quality
of an alternative for that criterion. An intensity may
be expressed as a numerical range of values if the
criterion is measurable or in qualitative terms.

For example, if ranking students is the objective
and one of the criteria on which they are to be ranked
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Table 2 Synthesis

Distributive mode

Benefits Priorities Model I Model II Model III

Direct care of patient 0.02 0.64 0.10 0.26

Palliative care 0.14 0.64 0.10 0.26

Volunteer support 0.02 0.09 0.17 0.74

Networking in families 0.06 0.46 0.22 0.32

Relief of postdeath stress 0.12 0.30 0.08 0.62

Emotional support of family and patient 0.21 0.30 0.08 0.62

Alleviation of guilt 0.03 0.30 0.08 0.62

Recipient economic reduced costs 0.01 0.12 0.65 0.23

Improved productivity 0.03 0.12 0.27 0.61

Publicity and PR 0.19 0.63 0.08 0.29

Volunteer recruitment 0.03 0.64 0.10 0.26

Professional recruitment and support 0.06 0.65 0.23 0.12

Reduced length of stay 0.006 0.26 0.10 0.64

Better utilization of resources 0.023 0.09 0.22 0.69

Increased financial support 0.001 0.73 0.08 0.19

Death as a social issue 0.02 0.20 0.20 0.60

Rehumanization of institutions 0.08 0.24 0.14 0.62

Synthesis 0.428 0.121 0.451

Costs

Community costs 0.14 0.33 0.33 0.33

Institutional capital costs 0.03 0.76 0.09 0.15

Institutional operating costs 0.40 0.73 0.08 0.19

Institutional costs educating community 0.01 0.65 0.24 0.11

Institutional costs training staff 0.06 0.56 0.32 0.12

Institutional bad debt 0.15 0.60 0.20 0.20

Institutional costs recruiting staff 0.05 0.66 0.17 0.17

Institutional costs recruiting volunteers 0.01 0.60 0.20 0.20

Societal costs 0.15 0.33 0.33 0.33

Synthesis 0.583 0.192 0.224

Benefit/cost ratio 0.734 0.630 2.013
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is performance in mathematics, the mathematics
ratings might be: excellent, good, average, below
average, poor; or, using the usual school terminology,
A, B, C, D, and F. Relative comparisons are first
used to set priorities on the ratings themselves. If
desired, one can fit a continuous curve through the
derived intensities. This concept may go against our
socialization. However, it is perfectly reasonable to
ask how much an A is preferred to a B or to a C.
The judgment of how much an A is preferred to a B
might be different under different criteria. Perhaps for
mathematics an A is very strongly preferred to a B,
while for physical education an A is only moderately
preferred to a B. So the end result might be that the
ratings are scaled differently. For example, one could
have the following scale values for the ratings:

Math Physical education

A 0.50 0.30
B 0.30 0.30
C 0.15 0.20
D 0.04 0.10
E 0.01 0.10

The alternatives are then rated or ticked off one at
a time on the intensities.

I will illustrate absolute measurement with an
example. A firm evaluates its employees for raises.
The criteria are dependability, education, experi-
ence, and quality. Each criterion is subdivided into

intensities, standards, or subcriteria (Figure 3). The
managers set priorities for the criteria by comparing
them in pairs. They then pairwise compare the inten-
sities according to priority with respect to their parent
criterion (as in Table 3) or with respect to a sub-
criterion if they are using a deeper hierarchy. The
priorities of the intensities are divided by the largest
intensity for each criterion to put them in ideal form
(second column of priorities in Figure 3).

Table 3 shows a paired comparison matrix of
intensities with respect to dependability. The man-
agers answer the question: which intensity is more
important and by how much with respect to depend-
ability. Finally, the managers rate each individual
(Table 4) by assigning the intensity rating that applies
to him or her under each criterion. The scores of
these intensities are each weighted by the priority
of its criterion and summed to derive a total ratio
scale score for the individual (shown on the right
of Table 4). These numbers belong to a ratio scale,
and the managers can give salary increases precisely
in proportion to the ratios of these numbers. Adams
gets the highest score and Kessel the lowest. This
approach can be used whenever it is possible to set
priorities for intensities of criteria; people can usually
do this when they have sufficient experience with a
given operation. This normative mode requires that
alternatives be rated one by one without regard to
how many there may be and how high or low any
of them rates on prior standards. Some corporations
have insisted that they no longer trust the norma-
tive standards of their experts and that they prefer to

Goal

Dependability
0.4347

Education
0.2774

Experience
0.1755

Quality
0.1123

Outstanding
(0.182) 1.000 

Above average
(0.114) 0.626 

Average
(0.070) 0.385

Below average
(0.042) 0.231

Unsatisfactory
(0.027) 0.148 

Doctorate
(0.144) 1.000 

Masters
(0.071) 0.493

Bachelor
(0.041) 0.285

H.S.
(0.014) 0.097

Uneducated
(0.007) 0.049 

Exceptional
(0.086) 1.000

A lot
(0.050) 0.580

Average
(0.023) 0.267

A little
(0.010) 0.116

None
(0.006) 0.070

Above average
(0.029) 0.518

Average
(0.018) 0.321

Below average
(0.006) 0.107

Unsatisfactory
(0.003) 0.054

Outstanding
(0.056) 1.000

Figure 3 Criteria with priorities and their intensities both prioritized and idealized
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Table 3 Ranking intensities: Which intensity is preferred most with respect to dependability and how strongly?

Above Below
Intensities Outstanding average Average average Unsatisfactory Priorities

Outstanding 1.0 2.0 3.0 4.0 5.0 0.419
Above av 1/2 1.0 2.0 3.0 4.0 0.263
Average 1/3 1/2 1.0 2.0 3.0 0.160
Below av 1/4 1/3 1/2 1.0 2.0 0.097
Unsatisfact 1/5 1/4 1/3 1/2 1.0 0.062

C.R. = 0.015

Table 4 Ranking alternatives. The priorities of the intensities for each criterion are divided by the largest one and
multiplied by the priority of the criterion. Each alternative is rated on each criterion by assigning the appropriate intensity.
The weighted intensities are added to yield the total on the right

Dependability Education Experience Quality
Alternatives 0.4347 0.2774 0.1775 0.1123 Total

1. Adams, V. Outstanding Bachelor A little Outstanding 0.646
2. Becker, L. Average Bachelor A little Outstanding 0.379
3. Hayat, F. Average Masters A lot Below average 0.418
4. Kessel, S. Above av H.S. None Above average 0.369
5. O’Shea, K. Average Doctorate A lot Above average 0.605
6. Peters, T. Average Doctorate A lot Average 0.583
7. Tobias, K. Above av Bachelor Average Above average 0.456

make paired comparisons of their alternatives. Still,
when there is wide agreement on standards, the abso-
lute mode saves time in rating a large number of
alternatives.

Other applications for AHP in the health care
environment are as follows:

1. Choosing the most efficient hospital manage-
ment information supply order system. The main
criteria in this application were cost, speed, sim-
plicity, flexibility, quality, and security. Most of
these criteria had two or more subcriteria which
were used to choose the best of the three alterna-
tives: manual, computer, and Wand system, with
the highest priority going to the last alternative.

2. Choosing a corporate health plan from among
five options: fee for services (FFS), and Health
Maintenance Organization (HMO), which has the
three options: Physician Provider Organization
(PPO), Individual Practice Association (IPA),
and Staff and Group.

3. Selecting the best way to provide health care for
everyone.

4. Performing a benefit/cost analysis to decide on an
infant formula policy: sell to industrial countries,
sell to Third World countries, stop selling.

5. Conducting a benefit/cost analysis as to whether
drugs should be legalized in the US (No was
nearly double Yes).

6. Doing a benefits (B), opportunities (O), costs,
(C) and risks (R) called BOCR analysis to deter-
mine the best of the following five alterna-
tives for solving a physicians heart problem:
bypass operation, medicinal treatment, angio-
plasty, transplant, and doing nothing. When one
does costs and risks, one needs to ask which is
more costly and which is more risky because
the smaller element is used as the unit and the
larger one is estimated as a multiple of that
unit. It cannot be done the other way by esti-
mating the smaller as a fraction of the larger
without using the smaller first as the unity. The
importance of each of the four BOCR merits is
determined by finding the best of the alternatives
with respect to each one. Because there may be
several criteria for each merit and because the
alternatives are put into ideal form for each cri-
terion, the winning or ideal alternative may not
receive an overall value of one for that merit.
That alternative is then rated as a representative
of its merit using a set of strategic criteria and
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their priorities used to evaluate all the decisions
made for this type of problem. Here, the strate-
gic criteria or subcriteria are prioritized as in
a hierarchy and are then each assigned differ-
ent intensities like high medium and low, or
excellent, very good, average, and poor that are
prioritized, then idealized by dividing by the
largest value thus making the priority 1 as the
standard and then assigning an alternative one
intensity for each criterion and finally, multiply-
ing the idealized priorities of the intensities by
the priorities of their corresponding criteria and
adding to obtain the overall importance rating of
that alternative and hence, also of the merit it
represents. In this manner, one obtains a rating
for each of the four BOCR merits. These rat-
ings are then normalized by dividing each value
by their sum to obtain their priorities that are
used to weight the priorities of the alternatives
under each and then take the sum of the ben-
efits and opportunities and subtract from it the
sum of the costs and the risks for each alterna-
tive. We note that the outcome for some or all
the alternatives may be negative and we have
negative priorities.

7. Choosing a treatment for breast cancer, based on
both physician and patient values.

In conclusion, the AHP and its generalization
to feedback networks the Analytic network Process
(ANP) (there is a book on the ANP and its applica-
tions by this author, 2001, RWS Publications) are
finding increasing uses in the medical field. The
software package Super Decisions, enables users to
implement easily the AHP/ANP in decision-making.
It can be downloaded from creativedecisions.net. The
ANP has powerful predictive content as has been
demonstrated in many examples involving market
share and in predicting turn around in the US econ-
omy, and the presidential elections since 1976.
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Analytic Epidemiology

Analytic epidemiology denotes epidemiologic stud-
ies, such as cohort studies, cross-sectional studies,
and case–control studies, that obtain individual-level
information on the association between disease status
and exposures of interest. Such analytic studies often
include individual-level information on potential con-
founders and effect modifiers. Usually such stud-
ies are designed to evaluate predetermined hypothe-
ses concerning possible causal relationships between

exposure and risk of disease (see Causation). Ana-
lytic epidemiology is distinguished from descriptive
epidemiology, which focuses on quantifying trends
and rates of disease in populations and on ecologic
studies that attempt to correlate rates of disease in
populations with average levels of exposure in such
populations. Descriptive studies are often used to
generate etiologic hypotheses that are tested in sub-
sequent analytic studies.

MITCHELL H. GAIL



Ancillary Statistics

In a parametric model f (y; θ) for a random variable
or vector Y, a statistic A = a(Y) is ancillary for θ if
the distribution of A does not depend on θ . As a very
simple example, if Y is a vector of independent, iden-
tically distributed random variables each with mean
θ , and the sample size is determined randomly, rather
than being fixed in advance, then A = number of
observations in Y is an ancillary statistic. This exam-
ple could be generalized to more complex structure
for the observations Y, and to examples in which the
sample size depends on some further parameters that
are unrelated to θ . Such models might well be appro-
priate for certain types of sequentially collected data
arising, for example, in clinical trials.

Fisher [5] introduced the concept of an ancillary
statistic, with particular emphasis on the usefulness of
an ancillary statistic in recovering information that
is lost by reduction of the sample to the maximum
likelihood estimate θ̂ , when the maximum likelihood
estimate is not minimal sufficient.

An illustrative, if somewhat artificial, example is
a sample (Y1, . . . , Yn), where now n is fixed, from
the uniform distribution on (θ, θ + 1). The largest
and smallest observations, (Y(1), Y(n)), say, form a
minimal sufficient statistic for θ . The maximum
likelihood estimator of θ is any value in the interval
(Y(n) − 1, Y(1)), and the range Y(n) − Y(1) is an
ancillary statistic. In this example, while the range
does not provide any information about the value of
θ that generated the data, it does provide information
on the precision of θ̂ . In a sample for which the range
is 1, θ̂ is exactly equal to θ , whereas a sample with
a range of 0 is the least informative about θ .

A theoretically important example discussed in
Fisher [5] is the location model (see Location–Scale
Family), in which Y = (Y1, . . . , Yn), and each Yi

follows the model f (y − θ), with f (·) known but
θ unknown. The vector of residuals A = (Y1 − Y ,

. . . , Yn − Y), where Y = n−1 ∑
Yi , has a distribu-

tion free of θ , as is intuitively obvious, since both
Yi and Y are centered at θ . The uniform example
discussed above is a special case of the location
model, and the range Y(n) − Y(1) is also an ancillary
statistic for the present example. In fact, the vector
B = (Y(2) − Y(1), . . . , Y(n) − Y(1)) is also ancillary, as
is C = (Y1 − θ̂ , . . . , Yn − θ̂ ), where θ̂ is the maxi-
mum likelihood estimate of θ . A maximal ancillary

provides the largest possible conditioning set, or the
largest possible reduction in dimension, and is analo-
gous to a minimal sufficient statistic. A, B, and C are
maximal ancillary statistics for the location model,
but the range is only a maximal ancillary in the loca-
tion uniform.

An important property of the location model is that
the exact conditional distribution of the maximum
likelihood estimator θ̂ , given the maximal ancillary
C, can be easily obtained simply by renormalizing
the likelihood function:

p(θ̂ |c; θ) = L(θ ; y)∫
L(θ ; y) dθ

, (1)

where L(θ ; y) = ∏
f (yi ; θ) is the likelihood function

for the sample y = (y1, . . . , yn), and the right-hand
side is to be interpreted as depending on θ̂ and c,
using the equations

∑
∂{log f (yi ; θ)}/∂θ |θ̂ = 0 and

c = y − θ̂ .
The location model example is readily generalized

to a linear regression model with nonnormal errors.
Suppose that, for i = 1, . . . , n, we have indepen-
dent observations from the model Yi = x′

iβ + σεi ,
where the distribution of εi is known. The vector of
standardized residuals (Yi − x′

i β̂)/σ̂ is ancillary for
θ = (β, σ ) and there is a formula similar to (1) for
the distribution of θ̂ , given the residuals.

It is possible, and has been argued, that Fisher’s
meaning of ancillarity included more than the require-
ment of a distribution free of θ : that it included a
notion of a physical mechanism for generating the
data in which some elements of this mechanism are
“clearly” not relevant for assessing the value of θ ,
but possibly relevant for assessing the accuracy of
the inference about θ . Thus, Kalbfleisch [7] makes a
distinction between an experimental and a mathemat-
ical ancillary statistic. Fraser [6] developed the notion
of a structural model as a physically generated exten-
sion of the location model. Efron & Hinkley [4] gave
particular attention to the role of an ancillary statistic
in estimating the variance of the maximum likelihood
estimator.

Two generalizations of the concept of ancillary
statistic have become important in recent work in
the theory of inference. The first is the notion of
approximate ancillarity, in which the distribution
of A is not required to be entirely free of θ ,
but free of θ to some order of approximation.
For example, we might require that the first few
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moments of A be constant (in θ), or that the
distribution of A be free of θ in a neighborhood
of the true value θ0, say. The definition used by
Barndorff-Nielsen & Cox [1] is that A is qth order
locally ancillary for θ near θ0 if f (a; θ0 + δ/

√
n) =

f (a; θ0) + O(n−q/2). Approximate ancillary statistics
are also discussed in McCullagh [9] and Reid [11].
The notion of an approximate ancillary statistic has
turned out to be rather important for the asymptotic
theory of statistical inference, because the location
family model result given in (1) can be generalized,
to give the result

p(θ̂ |a; θ)
.= c(θ, a)|j (θ̂)|1/2 L(θ ; y)

L(θ̂ ; y)
, (2)

where c is a normalizing constant, j (θ) = −∂2

log L(θ)/∂θ∂θ ′ is the observed Fisher information
function, a is an approximately ancillary statistic,
and in the right-hand side y is a function of θ̂, a.
This approximation, which is typically much more
accurate than the normal approximation to the distri-
bution of θ̂ , is known as Barndorff-Nielsen’s approxi-
mation, or the p∗ approximation, and is reviewed
in Reid [10] and considered in detail in Barndorff-
Nielsen & Cox [1]. In (2) the likelihood function is
normalized by a slightly more elaborate looking for-
mula than the simple integral in (1), but the principle
of renormalizing the likelihood function has still been
applied. A distribution function approximation anal-
ogous to (2) is also available: see Barndorff-Nielsen
& Cox [1] and Reid [11].

Suppose that the parameter θ is partitioned as
θ = (ψ, λ), where ψ is the parameter of interest
and λ is a nuisance parameter. For example, ψ

might parameterize a regression model for survival
time as a function of several covariates, and λ might
parameterize the baseline hazard function. If we
can partition the minimal sufficient statistic for θ as
(S, T), such that

f (s, t; θ) = f (s|t; ψ)f (t; λ), (3)

then T is an ancillary statistic for ψ in the sense of
the above definition. Factorizations of the form given
in (3) are the exception, though, and we more often
have a factorization of the type

f (s, t; θ) = f (s|t; ψ)f (t; ψ, λ) (4)

or
f (s, t; θ) = f (s|t; ψ, λ)f (t; λ). (5)

An example of (4) is the two-by-two table, with
ψ the log odds ratio. The conditional distribution of
a single cell entry, given the row and column totals,
depends only on ψ : this is the basis for Fisher’s exact
test (see Conditionality Principle). Although it is
sometimes claimed that the row total is an ancillary
statistic for the parameter of interest, this is in fact
not the case, at least according to the definition of
ancillarity discussed here. Some more general notions
of ancillarity have been proposed in the literature, but
have not proved to be widely useful in theoretical
developments. Further discussion of ancillarity and
conditional inference in the presence of nuisance
parameters can be found in Liang & Zeger [8] and
Reid [10].

Ancillary statistics are defined for parametric mod-
els, so would not be defined, for example, in Cox’s
proportional hazards regression model (see Cox
Regression Model). Cox [2] did originally argue,
though, that the full likelihood function could be par-
titioned into a factor that provided information on the
regression parameters β and a factor that provided no
information about β in the absence of knowledge of
the baseline hazard: the situation is analogous to (4)
but, as was pointed out by several discussants of [2],
the likelihood factor that is used in the analysis is not
in fact the conditional likelihood for any observable
random variables. Cox [3] developed the notion of
partial likelihood to justify the now standard esti-
mates of β.
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Animal Screening Systems

Animal screening systems are experimental protocols
designed primarily to screen substances in labora-
tory animals for possible adverse effects in humans.
It is necessary to use animals as surrogates for
humans because of ethical concerns associated with
the intentional exposure of human subjects to poten-
tially harmful substances in a controlled experiment
and the frequent lack of comprehensive epidemiol-
ogy data associated with unintentional exposures. The
most important of the animal screening systems are
discussed below.

Long-term Rodent
Toxicity/Carcinogenicity Studies

The objective of long-term rodent carcinogenicity
experiments is to determine if the administration of
a test substance to laboratory animals will alter the
normal pattern of tumor development (see Tumor
Incidence Experiments). The test substance may be
given in the diet or administered by other routes, such
as inhalation, skin paint, or oral gavage. A typical
experiment uses male and female rats and mice, with
three dosed groups and a control, each group con-
taining 50 animals. These animals are given the test
substance for most of their natural lifespan (generally
two years). Following necropsy, tissues taken from
a number of different organ sites are examined
microscopically for evidence of carcinogenic effects.

Important statistical issues that arise in the
design, analysis, and interpretation of long-term
toxicity/carcinogenicity studies include: (i) selecting
the number, magnitude, and spacing of doses [3,
20] (ii) use of survival-adjusted methods in the
evaluation of tumor data [13, 17] (iii) multiple
comparison adjustments for the large number
of tumor sites and types evaluated [11, 15, 36]
(iv) use of historical control data [16, 17] and
(v) adjustment for potentially confounding factors
such as body weight that may be correlated with
tumor incidence [31]. For further discussion of these
issues, see Tumor Incidence Experiments. Studies
of this type are often called bioassays although this
term is more properly applied to experiments for the
estimation of relative potency (see Biological Assay,
Overview).

The carcinogenicity screening assay is the first
step (often denoted the hazard identification phase)
of a broader risk assessment effort to determine the
magnitude of human risk that may be associated with
exposure to the test substance. Thus, another major
statistical issue in this area is the development of
appropriate methodology to permit an extrapolation
of experimental results (i) from high to low doses
and (ii) from species to species [26] (see Extrapo-
lation, Low Dose; Extrapolation). Critical in this
evaluation is the proposed mechanism of action for
the development of tumors and the effective dose of
the chemical reaching the target site [27].

Short-term Toxicity Studies

The long-term rodent bioassay is generally preceded
by short-term (generally 90 day) toxicity studies,
which evaluate variables such as body and
organ weights, histopathology, clinical pathology
(hematology, clinical chemistry, and urinalysis data),
sperm morphology and vaginal cytology, and
immunotoxicology and neurobehavioral effects [4].
In related studies, the metabolism and distribution of
the test substance are also evaluated. The objectives
of these experiments are: (i) to assess chemical
toxicity to permit an appropriate dose selection for the
long-term study; (ii) to identify possible target organs
for adverse effects; and (iii) to understand better the
mechanism which may be responsible for the adverse
effects observed. Statistical issues that arise in the
evaluation of these studies include the multiplicity of
parameters evaluated (see Simultaneous Inference),
adjustment for covariates that may be affecting the
observed responses, and choice of an appropriate
model relating adverse effect to dose.

Screens for Anti-carcinogenesis

While chemically related decreases in tumor inci-
dence frequently occur in long-term rodent carcino-
genicity studies [18], animal studies can also be
designed specifically to screen for anti-carcinogenic
effects. Typically, a known carcinogen (such as
dimethylbenzanthracene) is used to induce site-speci-
fic tumors in a short period of time, and the test
compound is then administered to determine if it
can counteract the development of these induced
tumors [2]. Tamoxifen, now commonly used in
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humans in adjuvant therapy for breast cancer [5],
was first discovered to suppress the growth of chem-
ically induced mammary tumors in rodents [21]. The
knowledge gained from anti-carcinogenesis studies
may also be useful in the design of human clinical
trials. The statistical issues that arise in the design,
analysis, and interpretation of anti-carcinogenesis
screens are similar to those discussed above for tox-
icity/carcinogenicity studies.

A procedure for the mass screening of compounds
for anti-tumor activity should aim to select the small
proportion of active materials, and to reject the higher
proportion of inactive materials, as economically and
reliably as possible. Studies of the operating charac-
teristic curve [22, 29] (see Power) and application of
decision theory [6, 9], support the use of a multi-
stage screen, in which unpromising materials can
be rejected quickly, while more promising ones are
tested further before acceptance.

Reproductive and Developmental
Toxicology Experiments

These studies are designed to evaluate the impact of
chemical exposure or other test agents on the devel-
oping fetus [24] (see Teratology). The objectives of
these experiments are: (i) to assess reproductive per-
formance; (ii) to identify developmental defects due
to exposure to chemicals; (iii) to study the biologic
mechanisms of developmental toxicants; and (iv) to
establish “safe” conditions for their use or consump-
tion by humans [14]. Typically, pregnant dams are
administered the agent of interest during the period
of gestation, and the animals are later sacrificed and
examined to determine whether or not they exhibit
chemically related effects on fetal implantation, mor-
tality, and malformations [19].

The most important statistical issue associated
with the evaluation of developmental toxicity data
is how to take litter effects into account [12, 19].
That is, fetuses sampled from the same female rep-
resent multiple observations on a single experimental
unit (the litter), and it is likely that the individual
fetal responses will be correlated. If this correla-
tion is not taken into account, any calculated test
statistics or confidence intervals could be adversely
affected (see Correlated Binary Data; Multilevel
Models). Other important statistical issues include
the development of tests for multiple binary factors

such as different types of malformations [23], and the
development of mathematical models for low dose
risk estimation [14] (see Dose–Response Models in
Risk Analysis).

Skin Corrosion Tests

The potential for chemicals to cause skin effects such
as corrosion is a concern of industrial toxicologists in
their assessments of possible worker and consumer
safety issues, and animal models have often been used
to screen substances for corrosive effects [25]. One
protocol used for this purpose is the Draize test [8],
in which the test substance is tested on the skin of
albino rabbits. A material is considered corrosive if
the structure of the tissue at the site of contact is
destroyed or changed irreversibly after an exposure
period typically ranging from four hours to 48 hours.

Because of concerns regarding the humane treat-
ment of laboratory animals, one important statistical
issue in this area is to devise a testing strategy that
minimizes animal use. In addition, a high priority
research activity is to develop in vitro methods for
assessing corrosivity that do not require direct expo-
sure of laboratory animals. Several promising new in
vitro methods have been proposed [25, 37].

New Alternative Methods for Screening

Laboratory animal researchers are currently seeking
new screening systems that are as (or more) predic-
tive of human health hazard as the current methods,
but can be conducted in a shorter time frame, with
less expense, and requiring fewer animals. The 1993
NIH Revitalization Act in the US directed the vari-
ous NIH Institutes to develop and validate alternate
methods for acute and chronic safety testing that will
reduce animal use, replace animals with nonanimal
methods or lower species, or refine animal use to
decrease or eliminate pain or distress. Certain of these
alternative methods are discussed below.

Transgenic Animals

One of the potentially most important new alterna-
tive screening systems is the use of transgenic mouse
lines, which provides the opportunity to develop rel-
atively short-term in vivo models to identify carcino-
gens and other toxic agents. Such models include
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transgenic mice carrying reporter genes that may
serve as targets for mutagenic events, or mice car-
rying specific oncogenes or inactivated tumor-supp-
ressor genes that are important factors contributing to
the multistage process of carcinogenesis [7]. Mouse
lines with defined genetic alterations that result in
overexpression or inactivation of a gene intrinsic to
carcinogenesis, but that are insufficient alone for neo-
plastic conversion, are promising models for chemical
carcinogen identification and evaluation. Such stud-
ies may provide advantages in shortening the time
required for bioassays and improving the accuracy of
carcinogen identification [33]. One important statisti-
cal issue in this area is to develop appropriate model
validation procedures.

Fish Models for Carcinogenicity Studies

The US National Toxicology Program (NTP) recently
initiated studies to evaluate the feasibility of using
two small fish models – Medaka and guppy – to
determine the toxic and carcinogenic potential of
selected chemicals. This project will include a
comparative evaluation of molecular lesions in both
the rodent and fish tumors to identify similarities and
differences in activated oncogenes and/or mutations
in tumor-suppressor genes. The greatest screening
potential for fish at this time appears to be as a mid-
tier carcinogenesis screen that could be conducted in
a shorter time frame and less expensively than the
two-year rodent bioassay [32].

Frog Embryo Teratogenesis Assay (FETAX)

This assay is a 96-hour whole-embryo developmen-
tal toxicity test that utilizes embryos of the South
African clawed frog. Embryos are exposed to the
test chemical continuously from the early blastula
to free-swimming larvae stages. FETAX endpoints
can potentially detect all four manifestations of
mammalian developmental toxicity: growth retarda-
tion, structural malformations, death and functional
deficits. An NTP multilaboratory validation study
with 20 coded chemicals (including strong, weak, and
nonteratogens) has recently been completed to deter-
mine further the repeatability and reliability of the
FETAX system [32].

Computer-based Prediction Systems

Another method of reducing the number of animals
used in screening tests is to derive computer-based
systems to predict the outcome of such tests. In the
area of carcinogenicity, a number of different meth-
ods have been proposed, some based on chemical
structure [10, 30] and others based on the activity of
the test compound in surrogate biological test systems
such as mutagenicity and short-term toxicity stud-
ies [1, 34]. These approaches typically employ multi-
ple linear regression techniques, discriminant anal-
ysis, and/or artificial neural network/decision tree
strategies to identify important predictor variables for
the endpoint of interest (see Tree-structured Statis-
tical Methods). For an overview of these various
methods, see Richards [28]. For the results of an
application of these prediction systems to actual car-
cinogenicity data, see [35].
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Anthropometry

That the ancient world was involved in measuring
the human body is not in doubt, although little has
survived in the form of data. The Egyptians measured
the stature of their kings, the Chinese measured height
and head circumference, and in Mesopotamia they
could measure weight on a balance. Sculptors have
always necessarily been aware of body proportions;
Greek sculptors worked to a ratio of one full male
height to 7 1

2 head heights in general and to eight
head heights on occasion, the justification being that
the former reflects the true physical proportion but
the latter the proportion as it appears from eye level.
Aristotle noted that the human body gains in length
between birth and five years about the same amount
as it gains during the rest of its life, an approximation
as valid today as it was in 300 BC.

The Renaissance rediscovered the glories of an-
cient Greece, so it is perhaps not surprising that
although Leon Battista Alberti constructed an instru-
ment for measuring the human body around 1450, its
sole purpose was the making of better statues.

The term Anthropometry can be ascribed to
Johann Sigismund Elsholtz (1623–1688), a German
physician, who entitled his graduation thesis
Anthropometria. He described an anthropometer for
measuring heights and parts of heights of the human
body. A 72 in. man should ideally measure 28 in.
down to the navel, 36 in. to the pubic bone, etc.
and Elsholtz’s interest lay in discerning whether
divergences from these proportions could be ascribed
to various diseases.

The eighteenth century witnessed a surge of
interest in human measurement, led mainly by the
military, who preferred tall soldiers to short ones.
But scientific interest also flourished, and among
those active was George LeClerc, Count of Buffon
(1707–1788), of Buffon’s needle (see Stereology),
who measured the length and weight of a number
of fetuses and newborns. J.G. Roederer (1726–1763)
also measured the length and weight of newborn
infants but with a view to detecting immaturity in
the baby, an early example of the use of measure-
ment as a diagnostic tool. A particular high-water
mark was provided by Buffon’s friend Count Philibert
Guéneau de Montbeillard (1720–1785) who mea-
sured his son’s height some 38 times between birth
and age 19 years and so provided the first known

longitudinal study of human height. Graphs, based on
these data, of height and height velocity – the latter
clearly showing the pubertal growth spurt – can be
seen in Tanner [20], who provides a comprehensive
history of human growth.

Lambert Adolphe Jacques Quetelet (1796–
1874) also made longitudinal measurements of his
son and daughter and two daughters of a friend.
Furthermore, by analyzing very large samples of mea-
surements made on the military, he concluded that
height, as well as other dimensions such as chest
circumference, were normally distributed (Gaus-
sian) in a population. An unfortunate consequence
of this was that he concocted the idea of “l’homme
moyen” – the average man – who represented the
type or standard in the population although, as others
have pointed out, such a person was thereby rather
dull. Quetelet constructed tables of mean heights and
weights for children based on cross-sectional data
although the sample size at each age was rather small.
Moreover, his interest in shape led to his definition
of the Quetelet index, now the body mass index (see
below).

The cephalic index (head width to length ratio)
was an early nineteenth-century invention for use
by anthropologists in characterizing ethnic and racial
groups.

Sir Francis Galton (1822–1911) collected mea-
surements of height, weight, and the circumferences
of chest, upper arm, and head in his study of family
likeness and inherited characteristics that led to the
concept of regression. However, an important impe-
tus to measuring children in the nineteenth century
was social concern about the effects that dismal living
and working conditions were having on the health of
the poor, and much of the work, particularly around
the 1830s, was done in association with the various
Factory Acts. Similar investigations at this time were
carried out in France. Later in the century the British
Association for the Advancement of Science set up
a number of Anthropometric Committees to collect
data on heights, weights, etc. and height surveys, par-
ticularly in schools and colleges, were carried out in
Boston, USA, and Italy.

At the beginning of the twentieth century, longi-
tudinal studies, often measuring many physical vari-
ables, were set up in several centers in Europe and
America. The twentieth century later saw the clin-
ical measuring of several dimensions of the human
body for diagnostic purposes while, in quite different
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areas, measurements were required by the clothing
industry for the making of garments and in the field
of ergonomics for the design of tools and equipment
in the workplace.

Direct Measures

Height (Length)

Height is measured by a stadiometer, on which a hor-
izontal board is brought into contact with the top of
the head and its distance then measured from the foot-
plate. The Harpenden stadiometer contains a dial that
displays the height and needs calibrating at regular
intervals. A number of inexpensive plastic instru-
ments are now available with built-in scales. Some of
these need careful positioning and calibration. During
measurement, the subject’s head should be placed in
the Frankfurt plane; that is, with an imaginary line
drawn from the center of the ear hole to the lower
border of the eye socket set horizontally. A num-
ber of experiments have been carried out with these
instruments, the conclusions being that they are about
equally reliable. In particular Voss et al. [24], after
measuring children and wooden poles, concluded that
a child contributes at least 90% of the error variance
when using one of these instruments, the remain-
der originating with the measurer and the instrument.
They also concluded, in agreement with other work-
ers, that the standard deviation of a single height
measurement is about 0.25 cm. This is an average
value over children, the standard deviation varying
from child to child, with some children being almost
static in their posture while others are rather springy.
Subsequent experiments suggest that this value also
obtains for adults.

Up to age 2 years, it is usual to measure supine
length, rather than height, on a calibrated measuring
mat. The standard deviation of a single measurement
is estimated to be about 0.3 cm in newborn infants
and about 0.4 cm at 6 weeks and 8 months [7].

There are problems in trying to measure a subject
more than once and then averaging the observations
to reduce the effect of measurement error. Several
minutes of activity need to elapse between measure-
ments for them to be independent, and the scale on
the instrument needs to be read by an independent
observer to avoid the very strong bias that can result
when a measurer remembers a previous reading.

In 1724 the Royal Society of London was told
of the Reverend Joseph Wasse’s experiment with a
nail in the wall that he could touch in the morning
but not later in the day owing to diurnal shrinkage
of the human body (see Circadian Variation). This
has been investigated since by many researchers [17],
who have found that daily shrinkage can be greater
than 2 cm, and has led to a stretching method
of measuring height that involves gentle upward
pressure on the mastoid processes. This reduces only
partly the effects of diurnal shrinkage and the variable
posture of the subject. However, as shown in [24],
different measurers stretch by different amounts so
that, in clinical practice, subjects should be measured
on repeated visits to the clinic by the same measurer
and at the same time of day. Seasonal variation in
growth and catch-up growth after illness are also well
known. Hall [12] discusses clinical considerations
in measuring height (as well as weight and head
circumference).

The end of the nineteenth century saw the first
attempts at producing centile charts (see Quantiles)
for height based on cross-sectional data consisting of
a number of heights made at each age. Their purpose
was merely to describe the population, but later such
charts were used for clinical diagnostic purposes or
for screening. Any child with height below some
threshold level, say the 3rd centile, can be referred
and investigated further for possible pathology. To
this end the charts of Tanner et al. [23], modified
by Tanner & Whitehouse [22], were published and
served as the standard in the UK for the next
30 years. They give smoothed 3rd, 10th, 25th, 50th,
75th, 90th, and 97th height (supine length to age 2)
centiles from birth to age about 19 years for boys
and girls separately. The corresponding charts for
the US standards for height were given by Tanner
& Davies [21]. Standards and charts also exist for
several other countries, while much of the developing
world uses charts prepared by the World Health
Organization (WHO), although these are based on
US data.

Charts of height velocity are also given
in [21–23]. If H1 is the height of a subject at time 1
and H2 the height at a later time 2, then D = H2 − H1

is the incremental change in height which, when
measured over the interval of a year, is known as
the height velocity. This can be used for diagnostic
purposes, in particular to detect a child who, although
at an acceptable height, has a growth rate that starts
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to fall. It is, however, subject to a larger measurement
error than height.

Height, but not height velocity, standards for the
UK have now been updated and the corresponding
charts published by the Child Growth Foundation
(CGF), but see Freeman et al. [10] for a full descrip-
tion. As explained by Cole [4], nine centiles are
shown, against the original seven, these being spaced
two-thirds of a standard deviation score (see below)
apart. Data from seven sources were used in the con-
struction of the charts, which were plotted by means
of the LMS method and penalized maximum like-
lihood of Cole & Green [5]. In this, if H(t) is the
height, say, of a male at t years, M(t) is its median,
and S(t) its coefficient of variation (see Standard
Deviation), then L(t) can be found from a Box–Cox
power transformation of H(t) so that

Z =

[
H(t)

M(t)

]L(t)

− 1

L(t)S(t)

has approximately a standard normal distribution.
Once estimates of L(t), M(t), and S(t) have been
obtained, the C100α(t) centile of the height distribu-
tion at age t is given by

C100α(t) = M(t)[1 + L(t)S(t)zα]1/L(t),

where zα is the standard normal deviate corres-
ponding to the centile (zα = 1.341 for the 91st
centile, etc.). In fact, L(t) was not found to differ
significantly from 1 at any age and so was set
uniformly to 1.

It has been suggested that when a child is mea-
sured on two separate occasions, the height observed
on the second occasion should be assessed condition-
ally on the height obtained on the first. If height H ,
at a particular age, has mean µ and standard devia-
tion σ , and h is an observed value of H , then hSDS =
(h − µ)/σ is known as the standard deviation score
(SDS) of h. If H is also normally distributed, then
the centile of hSDS can be determined from the stan-
dard normal distribution. Moreover, the conditional
SDS of h2 given h1 can be found from the relation

(h2|h1)
SDS = (hSDS

2 − ρhSDS
1 )

(1 − ρ2)1/2
,

where ρ is the coefficient of correlation between h1

and h2. This is well over 0.9 in the years approaching
puberty [1].

Note that if D = H2 − H1 is a height velocity,
then the observed velocity conditional on h1 is given
by d|h1 = h2|h1 − h1, so that inferences based on
conditional height at time 2 and conditional velocity
up to time 2 are equivalent.

Weight

Much of what has been written about height also
applies to weight. Modern measuring instruments are
highly reproducible with repeated observations differ-
ing by only a few grams. The main source of variabil-
ity lies in the subject but is not so short term, being
dependent on the contents of the stomach, bowel, and
bladder. Moreover, the weight distribution in a popu-
lation at any age is not generally normally distributed,
although log (weight) is often sufficiently nearly nor-
mal for practical purposes (see Lognormal Distribu-
tion). The charts of Tanner & Whitehouse [22] have
provided the weight and weight velocity standards for
the UK since the 1960s although the weight standards
have now been updated by Freeman et al. [10] and
the corresponding charts published by the CGF. The
LMS method was again used, but the values of L(t)

were found significantly different from 1. The charts
of the US weight standards can be found in Hamill
et al. [14].

The human body often is regarded as made up of
two components, lean body mass and fat. In view
of the latter, body weight can decrease as well as
increase with time. The most commonly used method
for estimating the weights of these two components
involves taking four skinfold measurements with
calipers at four recognized sites, namely the triceps,
biceps, subscapular, and supra-iliac. Body density
can then be estimated by a regression equation of
the form

density = a + b log10 S,

where S is the sum of the four skinfolds in millime-
ters and a and b are constants that depend on the sex
and age of the subject. Body fat percentage can next
be estimated by Siri’s formula,

body fat percentage of total weight

= 100

(
4.95

density
− 4.5

)
,

which is based on the assumption that the density of
fat is 0.9 kg/l and of fat-free mass 1.1 kg/l.
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Finally, body fat weight and, by subtraction from
total body weight, the weight of lean body mass, can
be calculated. Values of the regression coefficients for
adults can be found in Durnin & Wormersley [9].

The situation with children is, however, more
complicated, for a number of reasons, including the
change in the density of fat-free mass with age. In
a validation study of several suggested formulas,
Reilly et al. [18] consider them all sufficiently unre-
liable as to state, “For the time being skinfolds might
best be regarded as indices (rather than measures) of
body fatness in individuals, or means of estimating
body fatness of groups.”

In hospitals and laboratories with suitable equip-
ment, body density can be evaluated more directly by
measuring the weight in air followed by the weight
in water to estimate the volume; or the volume may
be estimated from the amount of water displaced. In
either case, since the aim is to measure the volume of
body tissues alone, a correction needs to be made to
remove residual lung volume from the body volume.

More direct methods of measuring lean body mass,
such as potassium emission counting and dual energy
X-ray absorptiometry (DXA), are available and have
good reproducibility. See Jebb & Elia [16] for a
review of methods.

Other Dimensions

Head circumference is measured in the neonatal
period to detect diseases associated with a large head,
such as hydrocephalus, or a small head. It is measured
with a plastic or metal tape along a line midway
between the eyebrows and the hairline at the front
of the head and the occipital prominence at the back.
The main source of error lies therefore in determining
this line. Height (length), weight, and head circum-
ference are the only dimensions measured in every
child in the UK, and Hall [12] recommends that this
last should be measured before discharge from hos-
pital following birth and again at approximately 6–8
weeks of age. Charts of population standards are usu-
ally available for the early years of life only; the
charts for the UK, published by the CGF, cover just
the first year while those for the US, given in [14],
cover the first three years.

The sitting height (SH) of a subject is measured on
a table with a stadiometer attached, the height being
the distance from the crown of the head to the table.
Unpublished research suggests that the measurement

error involved is larger than that for height in view of
the added difficulty in placing the subject correctly.
Sitting height subtracted from standing height leads
to the subischial leg length (SLL).

A comparison of SH with SLL can aid the
diagnosis of skeletal dysplasias. It is also known that
SH may be disproportionately long relative to SLL in
precocious puberty. UK charts date from 1978 and are
available. They are, however, based on small numbers
of children from several years ago and so should be
treated with caution when used today.

In view of the inherent variability of a height
measurement, clinical practitioners have sought other,
less variable, dimensions that might prove useful in
monitoring growth, particularly over a very short
time period. These include the lengths of individual
bones made from radiographs and the lower leg
length measured on a knemometer, an instrument not
unlike a stadiometer but with the headboard placed
on the knee with the subject in the sitting position.
Since this variable is essentially the sum of a few
bone dimensions, it does indeed display a small
variance. Insufficient correlation with height makes
it unsuitable for making judgments about height.
However, it can be used as an early indicator that
growth hormone is being successful in the treatment
of short stature [25].

Standards and charts have been compiled for a
large number of other measures that are useful in
diagnosing various syndromes. Many of these can be
found in Hall et al. [13].

Derived Measures

Surface Area

Although some earlier attempts at measuring the sur-
face area (SA) of the human body are recorded, the
main work began in about 1850. Several methods
were devised, including coating the body with paper
or adhesive type, surface integration using inked
discs, and triangulation. Interest lay initially in deter-
mining the number of pores on the skin or the total
force exerted on the body by the atmosphere. Over
1000 cases were reported, and these are comprehen-
sively discussed in [3].

The need for such estimation today arises from
the fact that both renal function and dosage of cancer
chemotherapy are expressed in relation to surface
area rather than weight. Clearly the measurement of
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SA by any direct method is impossible in routine
clinical work. However, even from an early period,
estimating formulas were devised based on height H ,
and weight W . Many of these take the form

SA = cHa1Wa2 ,

where a1, a2, and c are constants. One of the first
examples is due to DuBois & DuBois [8] and sets
a1 = 0.725 and a2 = 0.425 if H is measured in cen-
timeters, W in kilograms, and SA in square meters.
This was based on a sample of only nine subjects,
including a male cretin and a female cadaver, and is
still in common use today!

Gehan & George [11] carried out a bivariate
regression analysis on the log of the above model
using as data the 401 postnatal cases given in [3] for
which measured values are listed for all of H , W ,
and SA. This finds a1 = 0.422, a2 = 0.515, and c =
0.0235, values recommended by Bailey & Briars [2],
who extend their analysis to provide standard errors
and explain the equivalence of a number of suggested
models of the above form.

Body Mass Index

A number of weight for height indices have been
suggested for measuring the fatness of an individual,
but the one that has established itself as the standard
in adults is Quetelet’s body mass index (BMI) defined
by W/H 2, where weight W is measured in kilograms
and height H in metres. An individual with a value
less than 20 is generally regarded as underweight,
while one with a value over 25 is overweight.
This latter range is sometimes subdivided into three
(25–30, 30–40, and >40) that define three grades of
obesity.

Despite its routine clinical use in adults, the appli-
cation of BMI to children has always been sus-
pect since its distribution in the population changes
quickly with age up to, and even beyond, adolescence
and maturity. To overcome this problem, Rosen-
thal et al. [19] have shown that, for healthy London
school children between the ages of about 4 1

2 years
and 19, the index W/H 2.88 is independent of height or
age, and they have provided centile charts and nomo-
grams for its use. On the other hand, Cole et al. [6]
have given centile charts of BMI for UK children
from birth to age 23 years on the basis of data used
in updating standards for height and weight. Centile

charts for white US children aged 1–19 years are to
be found in Hammer et al. [15].
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Anticipation

Anticipation denotes a phenomenon characterized by
increasing severity and/or earlier onset of a disease in
successive generations; some definitions also include
greater recurrence risk (see Genetic Counseling)
among the possible factors delineating a progres-
sive degeneration from parent to child across the
generations. Observations of apparent anticipation in
myotonic dystrophy date from the early twentieth
century, and there are indications that the first obser-
vations of the phenomenon may be traceable to the
nineteenth century [4].

In 1948, Penrose [6] noted that the clinical impres-
sion of anticipation could be an artifact induced
by ascertainment bias, and cited ways in which
preferential ascertainment of certain types of pedi-
grees could result in the appearance of anticipation
in hereditary diseases. These included preferential
ascertainment of late onset parents, who may have
had an enhanced likelihood of reproduction relative
to persons with earlier onset, and of children with
very early onset, who might be more likely to attract
medical attention. Both would tend to create the
appearance of earlier onset in the offspring genera-
tion. Another possible source of bias is the simultane-
ous identification of parent–offspring affected pairs,
in which the parent would have had a notably longer
time of exposure to risk of onset, resulting again in a
tendency toward the observation of later onset ages in
the parental generation. Such rationales cast serious
doubt on the reality of anticipation as a biologically
based phenomenon in the minds of many geneticists.

However, in the late twentieth century a new type
of dynamic mutation was linked to the clinical obser-
vation of anticipation in at least some disorders.
In this type of mutation, called trinucleotide repeat
expansion, the number of triplet repeats can increase
with the transmission of genetic material from one
generation to the next (see DNA Sequences; Genetic
Markers). An increased number of such repeats at a
particular genomic site within an individual is asso-
ciated with disease for a set of disorders including
myotonic dystrophy, Friedrich’s ataxia, Huntington
disease, and Fragile X syndrome. Moreover, the num-
ber of repeats has been found to correlate with sever-
ity and onset age, providing a molecular mechanism
explaining the phenomenon of anticipation in these
and other hereditary diseases [7, 8]. A variety of

models have been put forward to explain how such
expansions disrupt gene expression, and there is evi-
dence that the specific mechanism may vary with
the particular syndrome [4]. Because the likelihood
of such expansion can differ with parental gender,
this type of dynamic mutation also provides an expla-
nation for the phenomenon of parent-of-origin effect
often associated with disorders displaying anticipa-
tion (see Parental Effects).

Anticipation has been reported for a growing num-
ber of disorders not found to be associated with trinu-
cleotide repeat expansion, and certainly the existence
of unstable deoxyribonucleic acid (DNA) disorders
does not preclude the possibility of other mechanisms
leading to anticipation [5, 7]. Furthermore, the poten-
tial for ascertainment-related artifact should not be
discounted. Since large, population-based prospective
studies are rare, there is persistent interest in statisti-
cal methods for the detection of anticipation that are
able to appropriately adjust for ascertainment bias. A
number of such approaches have focused on correc-
tion for bias induced by differential age at interview
for pedigree members of different generations. Such
circumstances result in a tendency for parents to
have longer periods of exposure to risk than their
offspring [1, 3, 9]. However, even methods that suc-
cessfully adjust for such truncation effects may be
adversely affected by other commonly encountered
sources of ascertainment bias, including problems
arising from decreased fertility among affected per-
sons and preferential selection of pedigrees with mul-
tiple affected individuals [3, 9]. Simulation studies
have identified difficulties associated with a number
of available methods, including inflation of type I
error rates, and deficiencies of power [1, 3, 9], but
also point toward promising new designs, such as
those utilizing collateral relatives [2], for the statisti-
cal evaluation of anticipation.
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Antidependence Models

One important approach to the analysis of continuous
repeated measurements data uses a linear regres-
sion model to relate the expected value, or mean, of
each subject’s sequence of response measurements
to covariates such as treatment group and time of
measurement. The sequence of observations from
a subject will deviate in some random way from
the postulated regression model. With repeated mea-
surements it cannot typically be assumed that these
deviations, or residuals, are independent and equally
variable – the assumptions that underly conventional
multiple regression analysis. The pattern of variances
and correlations among the residuals from a sub-
ject is called the covariance structure of the repeated
measurements and a full analysis requires this to be
specified as part of the model. The ante-dependence
model defines a family of covariance structures for
repeated measurements.

We assume that we have a repeated measurements
trial or experiment in which all subjects are observed
at the same times relative to the start. There may
be missing values. Many models of covariance struc-
ture have been proposed for this setting, some, such
as the compound-symmetry (or uniform) and station-
ary first-order autoregressive models, depending on
a small number of parameters (see Analysis of Vari-
ance for Longitudinal Data; ARMA and ARIMA
Models; Time Series). Such simple models, partic-
ularly those with variances that are constant across
time, are often too restrictive to provide an ade-
quate representation of the variances and correlations
observed in practice with repeated measurements. At
the other extreme we have the most general model:
the so-called unstructured covariance matrix. This
allows a different variance for each time of mea-
surement and a different correlation for every pair
of time points. With T times of measurement, the
unstructured matrix has T (T + 1)/2 parameters and
this figure grows at the rate of the square of the
number of times. While, by definition, the unstruc-
tured covariance matrix must provide an adequate
model for the observed structure, the large number
of parameters means that, when sample sizes are not
large, the subsequent analysis can be inefficient. The
class of ante-dependence models provides structures
that are intermediate in complexity between the very
simple models with a fixed number of parameters

and the unstructured model. Typically, the number
of parameters in an ante-dependence model grows at
the same rate as the number of time points. The class
includes the unstructured matrix as a least efficient
special case.

The class of ante-dependence covariance struc-
tures can be defined in several ways. The definition,
in terms of conditional independence, illustrates well
the rationale behind the structure and provides a clear
link with the important topic of graphical models [7].
Following Gabriel [1, 2] and Kenward [4] we say that
the sequence of random variables Y1, . . . , YT has an
ante-dependence structure of order r (AD(r)) if, for
every t > r ,

Yt |Yt−1, Yt−2, . . . , Yt−r

is conditionally independent of Yt−r−1, . . . , Y1. In
other words, once we have taken account of the r

observations preceding Yt , the remaining preceding
observations carry no additional information about
Yt . Typically, we would expect r to be small. This
is plausible in many settings, but there are important
exceptions; for example, where changes over time are
nonlinear and times of rapid change vary at random
among subjects.

If the {Yt } follow a Gaussian distribution, then the
assumption of an AD(r) structure is equivalent to the
assumption that the inverse of the covariance matrix
has a band form of order r + 1; that is, all elements
of the inverse are zero except for the leading diagonal
and the r diagonals immediately above and below it.
This establishes an important distinction between the
ante-dependence structure and the majority of mod-
els for repeated measurements covariances structures:
the latter typically impose structure on the covariance
matrix itself rather than the inverse. An important
special case is the AD(1) structure which corresponds
to a tri-diagonal inverse: this is a well-known prop-
erty of processes with a first-order Markov structure,
to which the AD(1) structure corresponds.

The AD(r) structure imposes no constraints on the
constancy of variance or covariance with respect to
time; that is, in terms of second-order moments, it
is not stationary. The familiar stationary autoregres-
sive [AR(r)] covariance structures can be expressed
as special cases of the AD(r) structures. This lack
of stationarity means that the structure is particu-
larly well suited to situations where the variability
fluctuates during the course of a trial and where
intervals between times of measurement are not
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equal. Additional smoothness can be introduced by
imposing a polynomial form on the variances and
auto-regressions as in the so-called “structed ante-
dependence” models [5].

The AD(r) structure can be combined with
any appropriate linear model for the mean profiles
and fitted to data using conventional likelihood
and restricted likelihood methods as described, for
example, in [3]. The resulting inferences are based
on asymptotic results.

The AD structures have an additional advan-
tage when used in the special (and restricted) set-
ting in which the saturated means model is used;
that is, in which a different parameter is used for
each combination of between-subject covariate and
time of measurement. Such models are implicit in
repeated measurements analysis of variance. Under
the AD structure, pivotal likelihood ratio test statis-
tics can be constructed for overall profile compar-
isons for any between-subject comparison and, when
applied to successive differences among the repeated
measurements, for interactions of such comparisons
with time. The test statistics can be calculated in
a simple way from univariate analyses of covari-
ance and have known finite sample distributions.
They can be regarded as generalizations of Wilks’
lambda statistic from repeated measurements mul-
tivariate analysis of variance. Further, the same
construction produces pivotal likelihood ratio statis-
tics with known distributions even when there are
drop-outs; that is, when some sequences terminate
early. Full details are given in [4]. In this way, the
AD structure leads to analyses that provide a practical

likelihood-based alternative to simple analysis-of-
variance-based methods for analyzing repeated mea-
surements with drop-out. The validity of the AD-
based analyses rests on the assumption that the drop-
out process is random [6], while ad hoc methods such
as modified repeated measurements analysis of vari-
ance require the stricter assumption of completely
random drop-out.
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Antithetic Variable

The efficiency of a simulation can be increased by
the judicious use of variance-reduction methods, of
which antithetic variables (or variates) is one exam-
ple, due originally to Hammersley & Morton [2].

The basic idea is simply illustrated in the context
of integral estimation (see Numerical Integration).
Consider the following example, taken from Mor-
gan [4].

The integral,

I =
∫ 1

0
(1 − x2)1/2 dx, (1)

is known to take the value π/4.
If a random sample, U1, . . . , Un, is taken from a

uniform distribution on (0,1), then a crude Monte
Carlo approach estimates I by

Ic = 1

n

n∑

i=1

(1 − U 2
i )1/2. (2)

This is because the integral in (1) can be interpreted
as the expectation, E[(1 − U 2)1/2], where U has the
uniform, U(0, 1) distribution. The estimate, Ic, is then
seen as the sample average, providing an unbiased
estimate of I . It is straightforward to show that

var(Ic) ≈ 0.0498

n
.

The method of antithetic variates estimates I by

IA = 1

2n

n∑

i=1

{
(1 − U 2

i )1/2 + [1 − (1 − Ui)
2]1/2} .

(3)

Clearly, since 1 − U also has a U(0, 1) distribution,
E[IA] = I , but the negative correlation between U

and 1 − U has a variance-reducing effect. If we are
trying to estimate π by these approaches, then the
method of crude Monte Carlo requires a random
sample from the U(0, 1) distribution that is slightly
more than nine times larger than that required by the
approach based on (3) to achieve the same variance.

An attractive practical demonstration of the value
of using antithetic variates is again in terms of estima-
tion π , but through Buffon’s cross replacing Buffon’s
needle (see Stereology); see Hammersley & Mor-
ton [2] and Morgan [4]. In simple computer simula-
tions, antithetic variates can be readily obtained if the
inversion method is employed to transform pseudo-
random U(0, 1) variates to provide realizations of
random variables from other desired distributions;
see Ripley [6]. For examples and variations on this
approach in the context of simulating queueing sys-
tems, see Page [5] and Mitchell [3]. The paper by
Schruben & Margolin [7] provides an application in
a medical context, in which patients with heart prob-
lems queue for beds in a hospital unit. The antithetic
variate approach has wide application; see, for exam-
ple, Green & Han [1].
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ARMA and ARIMA
Models

Public health institutions frequently collect notifi-
cations of diseases, entries into a hospital, injuries
due to accidents, etc. at weekly or monthly inter-
vals. Consecutive observations of such “time series
data” are likely to be dependent. In environmental
medicine, where series such as daily concentrations
of pollutants are analyzed, it is evident that stochas-
tic dependence of consecutive measurements may be
important: a high concentration of a pollutant today,
for example, has a certain inertia, that is, a tendency
to be high tomorrow as well (positive autocorrela-
tion). Dependence of consecutive observations may
be equally important when data such as blood glucose
are recorded within an single patient.

An important class of models having the flexibility
to represent the stochastic dependence of consecutive
data are autoregressive integrated moving average
(ARIMA) models. Box & Jenkins [3] presented a
detailed and influential account of these models and
“ARIMA modeling” has become well established in
such fields as economics and industry. The method of
model identification, estimation, and checking is now
often referred to as “the Box–Jenkins approach” and
ARIMA models are also often called Box–Jenkins
models.

ARIMA models may be particularly useful for
forecasting. Forecasts of epidemiologic time series,
for example, are often needed by public health organi-
zations, since it is clearly of interest to know what fre-
quencies of diseases might be expected in the future
in order to better plan the distribution of resources.
It may also be of interest to assess relations between
two ARIMA time series, a “response” or “output”
series, such as the daily number of patients coming
to a clinic, and “explanatory” or “input” series, such
as daily concentrations of a pollutant, daily mean tem-
perature or other climatic series. Such situations may
be represented adequately by the so-called transfer
function models. Analogous questions arise when
studying time series data recorded in an individual
subject. Studies on individual subjects may have great
potential for the investigation of biological mecha-
nisms. Other questions are concerned with “changes”
of time series: how efficient was a preventive pro-
gram to decrease the monthly number of accidents?

How did the pattern of morbidity in a population
change after an environmental accident? These and
other related questions may be investigated by an
extension of ARIMA modeling [4] called interven-
tion analysis.

The ARMA Model

Denote the observations at equally spaced times
t, t − 1, t − 2, . . . by zt , zt−1, zt−2, . . .. For simplicity
assume that E(zt ) = 0 (otherwise the zt may be
considered as deviations from their mean). Let at ,
at−1, at−2, . . . be a white noise (see Noise and White
Noise) series consisting of independent identically
distributed random variables whose distribution is
normal with mean zero and variance σ 2

a . It is helpful
to think of the at as a series of “random shocks”.

To begin, assume that the present observation, zt ,
is linearly dependent on the previous observation,
zt−1, and on the random shock, at :

zt = φzt−1 + at , where φ is a parameter. (1)

Since zt is regressed on zt−1 it is called an autoregres-
sive model of first order [abbreviated AR(1)] model.

Alternatively, one may express zt as a linear
combination of the present and the previous random
shock:

zt = at − θat−1, where θ is a parameter. (2)

This expression is called a moving average model of
first order [abbreviated MA(1)] model.

The above two basic models are special cases of
two more general models:

zt = φ1zt−1 + · · · + φpzt−p + at , (3)

called an autoregressive model of order p [AR(p)
model] and

zt = at − θ1at−1 − · · · − θqat−q, (4)

called a moving average model of order q [MA(q)
model].

By combining these two equations one obtains
what is called the autoregressive moving average
model of order p and q [ARMA(p, q) model]:

zt = φ1zt−1 + · · · + φpzt−p

+ at − θ1at−1 − · · · − θqat−q . (5)
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This representation is relatively cumbersome to read
and the situation becomes worse when considering
generalizations, for example seasonality. The use of
the backshift operator notation considerably improves
the situation. The backward shift operator B is such
that

Bzt = zt−1, Bkzt = zt−k. (6)

The AR(1) model may then be written:

zt = φzt−1 + at ,

zt − φBzt = at , (7)

(1 − φB)zt = at .

Analogously, the AR(p) model may be written:

(1 − φ1B − · · · − φpBp)zt = at , (8)

and the MA(q) model may be written:

zt = (1 − θ1B − · · · − θqB
q)at . (9)

Combining the AR(p) model and the MA(q)
model, we obtain the ARMA(p, q) model:

(1 − φ1B − · · · − φpBp)zt

= (1 − θ1B − · · · − θqB
q)at

or

φ(B)zt = θ(B)at , (10)

where φ(B) = 1 − φ1B − · · · − φpBp and θ(B) =
1 − θ1B − · · · − θqB

q .
The two polynomials in B, φ(B) and θ(B), are

called the autoregressive and moving average opera-
tors, respectively. If the polynomial φ(B) has com-
plex roots corresponding to φ(B) = 0 (where B is
viewed as a complex variable), then this indicates that
the series contains random or quasi-periodic compo-
nents [3].

To obtain more insight into the structure of the
models, we use the backshift operator notation and
write the AR(1) model in a different form:

(1 − φB)zt = at ,

zt = (1 − φB)−1at ,

or

zt = (1 + φB + φ2B2 + · · ·)at ,

or

zt = at + φat−1 + φ2at−2 + · · · . (11)

Thus, the current observation, zt , is given by an
(exponentially) weighted sum of random shocks. The
relation shows that the AR(1) model can also be rep-
resented by a MA(∞) model. This duality holds, in
general, between AR and MA models. In particular,
the AR(1) and the MA(1) models are both generated
by the white noise series, but they differ strongly
in absorbing the random shocks. This difference is
reflected in the different dependence structure and in
the different forecasting properties of the models.

It has been shown that ARMA(p, q) models may
be represented by a weighted sum of random shocks:

zt = at + ψ1at−1 + ψ2at−2 + · · · (12)

or

zt = ψ(B)at ,

where ψ(B) = 1 + ψ1B + ψ2B
2 + · · ·. Comparing

with (10) we see that ψ(B) = θ(B)/φ(B). zt is the
output from a “linear filter” whose input is white
noise and the “transfer function” ψ(B) is a ratio-
nal function of B. Representation (12) is not used
for estimation since, in general, it contains an infi-
nite number of parameters. However, the ARMA
representation φ(B)zt = θ(B)at contains only p + q

parameters. Often, it is possible to find a parsimo-
nious and adequate ARMA(p, q) representation with
p ≤ 2 and q ≤ 2.

The Nonseasonal ARIMA Model

If the roots of the polynomial φ(B) lie outside the
unit circle, it may be shown than an ARMA(p, q)
process is stationary. Stationarity signifies that the
probability structure of the series does not change
with time. In particular, a stationary series has a con-
stant mean and variance and a covariance structure
that depends only on the difference between two time
points.

Experience in industry, economics and, more re-
cently, in medicine have shown that many time series
are not stationary. However, it has been found that
the series of first differences,

wt = zt − zt−1 = ∇zt , (13)

is often stationary. The symbol ∇ = 1 − B is called
the (ordinary) differencing operator. If a series has
to be differenced one time to obtain stationarity,
then the model corresponding to the original series
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is called an integrated ARMA model of order p, 1, q

or an ARIMA(p, 1, q) model. If differencing has to
be performed d times to obtain stationarity the model
is written

φ(B)∇dzt = θ(B)at (14)

and called an ARIMA(p, d, q) model.
To stabilize the variance it may be useful to con-

sider transformations of the raw data; in particular,
the logarithmic or the square root transformation [3,
11] (see Power Transformations).

The Seasonal ARIMA Model

Box & Jenkins have extended the above concepts
to cope with seasonal time series. The model is
obtained in two steps. Consider the case of monthly
data.

1. An observation for a particular month is related
to the observation for 12 months, 24 months, etc.
previously by

zt − Φ1zt−12 − Φ2zt−24 − · · · − ΦP zt−12P

= αt − Θ1αt−12 − Θ2αt−24 − · · · − ΘQαt−12Q,

or
Φ(B12)zt = Θ(B12)αt , (15)

where the AR and MA operators are now poly-
nomials in B12,

Φ(B12) = 1 − Φ1B
12 − Φ2B

24 − · · · − ΦP B12P ,

Θ(B12) = 1 − Θ1B
12 − Θ2B

24 − · · · − ΘQB12Q,

and
B12αt = αt−12.

Capital letters are used to distinguish this from
the nonseasonal ARIMA model (14).

2. The error component, αt , for a particular month
is related to that for previous months by the usual
ARMA model:

φ(B)αt = θ(B)at . (16)

Joining the seasonal and the nonseasonal parts
gives

φ(B)Φ(B12)zt = θ(B)Θ(B12)at . (17)

Extending the concept of ordinary differencing
to seasonal differencing by forming seasonal dif-
ferences,

wt = zt − zt−s = ∇szt , (18)

where ∇s = 1 − Bs is the seasonal differencing
operator and s = 12, for, for example, monthly
data, one obtains the seasonal ARIMA model:

φ(B)Φ(Bs)∇d∇D
s zt = θ(B)Θ(Bs)at , (19)

abbreviated to the ARIMA(p, d, q)(P, D, Q)s
model.

The Autocorrelation Function and Model
Identification

The dependence structure of a stationary time series
is characterized by the autocorrelation function
(ACF). The ACF is defined as the correlation between
zt and zt+k:ρk = cor(zt , zt+k). k is called the time lag.

The ACF is estimated by the empirical ACF:

rk = ck

c0
, k = 0, 1, 2, . . . ,

where

ck = 1

n

n−k∑

t=1

(zt − z)(zt+k − z) and z = 1

n

n∑

t=1

zt .

(20)

ck are the empirical autocovariances.
The empirical ACF is the main tool for the iden-

tification of the ARIMA model. ACFs of the basic
processes have a typical shape. The ACF of the AR(1)
process decays exponentially. The ACF of the MA(1)
process has only ρ1 nonzero and of the MA(2) pro-
cess only ρ1 and ρ2 nonzero. Valuable complementary
tools for model identification are the partial autocor-
relation function [3] and the inverse autocorrelation
function [5].

To obtain an adequate ARIMA model, Box &
Jenkins have suggested the following procedure (the
“Box–Jenkins method”):

0. “Make the series stationary”, that is, consider
transformations to stabilize the variance, consider
ordinary and seasonal differencing.

1. Choose a provisional model; in particular, by
looking at the empirical ACF.
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2. Estimate the model parameters (standard soft-
ware such as SAS or BMDP allow maximum
likelihood estimation of Box–Jenkins models).

3. Check the adequacy of the model. In particular,
check the ACF of the residuals for white noise.

If the model does not fit the data adequately,
then go back to point 1 and choose an improved
model. Among different models that represent the
data equally well choose the simplest one, that is,
the model with the fewest parameters. If this concept
of parsimony is ignored, poor forecasts may result.

Forecasting

To obtain forecasts ẑt+h for h time units (days,
months, etc.) ahead from an ARIMA model, one
writes the corresponding model equation by replacing
(i) future values of the random shocks a by zero and
past values by observed residuals; (ii) future values
of z by the corresponding forecasts; (iii) past values
of z by their observed values.

The following example illustrates how to obtain
forecasts for an AR(1) model:

h = 1: zt+1 = φzt + at+1,

ẑt+1 = φzt ,

h = 2: zt+2 = φzt+1 + at+2,

ẑt+2 = φẑt+1 = φ(φzt )

= φ2zt , etc. (21)

By continuing this procedure one may see that the
forecasts corresponding to the AR(1) model follow
an exponential curve.

The Transfer Function Model

Box & Jenkins [3] have developed an important
extension allowing us to analyze relations between
an “output” series (e.g. the daily number of patients
with a specified disease coming to a clinic) and one
or several “input” series (e.g. the daily concentra-
tions of pollutants, daily mean temperature, etc.). In
the transfer function models the output series, yt , is
considered to be composed of two parts:

yt = ut + nt . (22)

ut is the part that may be explained in terms of one (or
several) input series xt (concentration of a pollutant,
etc.). nt is an ARIMA process as described above. It
represents the unexplained part of yt (noise process).

It is assumed that the explained part, ut , is given
by a weighted sum of the present and past values of
the input, xt :

ut = v0xt + v1xt−1 + · · · (23)

or

ut = v(B)xt ,

where

v(B) = v0 + v1B
1 + v2B

2 + · · · .

v(B) is called the transfer function or the impulse
response function; v0, v1, . . . are called transfer func-
tion weights. Eq. (23) is not a parsimonious represen-
tation of the transfer function model, but it is useful
for model identification via the “prewhitened cross-
correlation function” (see below).

A parsimonious “rational lag representation” of ut

can be obtained by writing v(B) as the quotient of
two polynomials in B, v(B) = ω(B)/δ(B) [3]. Thus,
ω(B)ut = δ(B)xt and the transfer function model is
given by

yt =
[

ω(B)

δ(B)

]
xt +

[
φ(B)

θ(B)

]
at . (24)

Identification of a Transfer Function
Model

Identification of Univariate Models for Input and
Output Series

The univariate models of the input series are neces-
sary in order to obtain a guess of the transfer function
(via the prewhitened cross-correlation function).

The univariate model of the output series has two
purposes:

1. It provides an initial guess of the noise process,
nt .

2. The residual variance of the univariate model
may be used as a “yardstick” when comparing
different transfer function models.
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The Cross-correlation Function and
Prewhitening

The relation between two time series, xt and yt , is
determined by the cross-correlation function (CCF):
ρxy(k) = cor(xt , yt+k), k = 0, ±1, ±2, . . .. This fun-
ction determines the correlation between the two
series as a function of the time lag, k.

The main tool to identify a transfer function model
is the empirical CCF rxy(k). However, a basic dif-
ficulty arises in the interpretation of the empirical
CCF. As discussed by Box & Jenkins [3] the empir-
ical CCF between two completely unrelated time
series, which are themselves autocorrelated, can be
very large due to chance alone. In addition, the
cross-correlation estimates at different lags may be
correlated. This is due to the autocorrelation within
each individual series.

Box & Jenkins [3] proposed a way out of this dif-
ficulty called “prewhitening”: the ARIMA model for
the input series converts the correlated series xt into
an approximately independent series αt . Applying the
identical operation to the output series, yt , produces a
new series, βt . It may be shown that the CCF between
αt and βt (called the prewhitened CCF) is propor-
tional to the transfer function. Thus, the empirical
prewhitened CCF allows one to obtain a guess of the
transfer function. An analogous iterative procedure as
described above for ordinary ARIMA models leads
to an adequate parsimonious transfer function model.

Example

The purpose of this study was the assessment of
the relation between environmental time series and
respiratory symptoms in preschool children. During
about one year daily concentrations of SO2, NO2

and other environmental time series were collected
in Basle. Simultaneously, the daily number of res-
piratory symptoms per child in a randomly selected
group of preschool children was recorded. This series
is termed “SYMPTOMS”. Since January and Febru-
ary are the months with the strongest winter heating
(SO2), a separate model was identified for this “win-
ter period”. In a first step, ARIMA models for the
individual series SO2, NO2, and SYMPTOMS had to
be identified.

For the input series, SO2, the Box–Jenkins method
of model identification was straightforward. The
mean-range plot [11] of SO2 showed a tendency for

the range to increase with the mean, whereas for
ln(SO2) the range was approximately independent of
the mean, indicating that the logarithmic transforma-
tion stabilizes the variance. Figure 1 (lower curve)
shows the plot of ln(SO2). Figure 2 shows the corre-
sponding ACF and PACF. The observed pattern (slow

Figure 1 Upper curve: series SYMPTOMS × 100. Lower
curve: rescaled series of ln(SO2); Day 1 corresponds to
1 January 1986

Figure 2 (a) Autocorrelation function (ACF) of series
ln(SO2); (b) partial autocorrelation function of series
ln(SO2)
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decay of ACF and marked peak at lag 1 in the PACF)
suggests tentative fitting of an AR(1) model. The
ACF and PACF of the residuals showed no marked
peaks. The goodness-of-fit test [1] showed no sign of
model inadequacy. A similar AR(1) model was found
for the input series NO2.

The output series SYMPTOMS is plotted in Fig-
ure 1 (upper curve). The ACF of this series showed
a similar pattern. Tentative fitting of an AR(1) model
gave an acceptable fit. However, the estimated autore-
gressive coefficient was close to one (φ = 0.96), indi-
cating possible nonstationarity. Thus, for the series
SYMPTOMS one had to choose between two com-
peting ARIMA models. Fitting a MA(1) model to
the series of differences, that is, fitting an ARIMA
(0,1,1) model, showed no sign of model inadequacy.
Akaike’s information criterion (AIC) was 388 for
the AR(1) model and 379 for the ARIMA (0,1,1)
model. In addition, the residual variance was some-
what smaller in the latter model. Both signs indicated
superiority of the (nonstationary) ARIMA (0,1,1)
model over the (stationary) AR(1) model. The cor-
responding estimated univariate model is shown in
the first line of Table 1.

The CCF between the series ln(SO2) and the series
SYMPTOMS before prewhitening was not inter-
pretable: “significant” coefficients are “smeared” over
a large range of positive and negative time lags and
there are typical nonsense coefficients suggesting that
a high number of respiratory symptoms today are
expected to be followed by high pollution during the
next 10 days! After prewhitening, one marked posi-
tive peak is found at time lag zero, while all other
coefficients are not significantly different from zero.

These results suggested the following transfer
function model for yt (SYMPTOMS) and
xt (ln(SO2)):

yt = v0xt + nt , where ∇nt = (1 − θB)at , (25)

or, written compactly in standard notation,

∇yt = v0∇xt + (1 − θB)at . (26)

The diagnostic checks of the residuals of the transfer
function models showed no sign of model inade-
quacy. The same type of model was identified for
SYMPTOMS and ln(NO2) as the input series. In addi-
tion, a two-input model was fitted with ln(SO2) and
ln(NO2) as the input series.

The summary of the models is presented in
Table 1. One sees from the residual variances of
the corresponding one-input models that the series
SO2 contributes more to the explanation of the series
SYMPTOMS than the series NO2. The two-input
model shows no stronger reduction of the residual
variance of SYMPTOMS than the one-input model
with SO2. Thus, the transfer function model revealed
that input is related “instantaneously” with output; in
particular, there is no “delayed” effect of the pollu-
tant (no transfer function weight different from zero
at nonzero time lags). A more detailed discussion of
this example can be found in [10].

Literature

The following suggestions for further reading may be
helpful. A thorough introduction to ARIMA models
and transfer function models may be found in [1].

Table 1 Comparison of univariate and transfer function models fitted for output series yt

(SYMPTOMS) and input series x1t [ln(SO2)] and x2t [ln(NO2)]

Residual
Model type Estimated model variance (×104)

Univariate: ∇yt = (1 − 0.24B)at 0.00387
± 0.13

One-input:
x1t : ln(SO2) ∇yt = 0.078∇x1t + (1 − 0.26B)at 0.00288

± 0.17 ± 0.13
x2t : ln(NO2) ∇yt = 0.068∇x2t + (1 − 0.19B)at 0.00339

± 0.022 + 0.13

Two-input:
x1t : ln(SO2), ∇yt = 0.067∇x1t + 0.025∇x2t + (1 − 0.26B)at 0.00288
x2t : ln(NO2) ± 0.20 ± 0.24 ± 0.13
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An introduction to ARIMA models using biological
and medical datasets is given by Diggle [7]. The
classical reference to ARIMA models is Box & Jenk-
ins [3]. Jenkins [11] provides instructive case studies
in the fields of business, industry and economics. For
studying specific medical time series problems the
following articles are thought to be of interest. Exam-
ples of pitfalls in the analysis of relations between
seasonal series in epidemiology are presented in [2].
Identification of seasonal ARIMA models represent-
ing infectious diseases is presented in some detail
in [8]. A review, examples and references of studies
concerned with ARIMA modeling in medicine are
given in [9]. Applications and references of studies
concerned with ARIMA modeling of single patient
data may be found in [6].
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Artificial Intelligence

Artificial intelligence (AI) has been defined as the
study of artificial systems which exhibit intelligent
behavior. This definition neatly sidesteps the need to
define precisely what “intelligence” itself is!

Research in artificial intelligence splits broadly
into two camps. The first seeks to yield greater
understanding of how naturally intelligent systems
(human brains, for example) function. This area has
developed according to the principle that we can
only be sure we understand the natural system being
investigated if we can build a model which behaves
in the same way as that system. This perspective
views artificial intelligence research as a subdomain
of cognitive psychology. The second camp seeks
to build systems (computer programs, robots, etc.)
which behave in apparently intelligent ways, regard-
less of whether the way in which this behavior
is achieved emulates naturally intelligent systems.
An analogy for the motivation underlying the sec-
ond camp is with flight: we could fly by building
ornithopters, emulating the flapping wings of birds;
but we need not – we could, instead, build a heli-
copter or a fixed wing aeroplane. Instead of a sub-
domain of psychology, then, the second camp might
be viewed as a subdomain of engineering.

Examples of systems of the second kind that can
already be encountered in regular use are expert
systems, natural language understanding systems,
software verification systems, symbolic algebra sys-
tems (see Computer Algebra), and game-playing
machines. The last example here provides a nice illus-
tration of how apparently intelligent behavior can
be achieved without necessarily emulating humans:
chess-playing programs have now been developed
which can compete at grand master level. How-
ever, they achieve their successes through strategies
quite different from those of human grand masters.
In particular, they adopt massive searches of the
state–space of the chess game, whereas humans con-
duct focused searches of a much smaller space.

Artificial intelligence research is fundamentally
interdisciplinary. It overlaps with computer science,
cognitive psychology, statistics, mathematics, engi-
neering, biology, linguistics, and other disciplines,
and has developed through several stages. Early work
was characterized by inflated claims of imminent
achievement. In the context of the time, these were

quite understandable. Such early work picked, as its
problem domains, areas such as logical problems,
puzzles, and the kind of matching problems found in
IQ tests. From a human perspective, problems such
as these clearly require intelligence. The early suc-
cess of computer programs on such problems was
taken to imply that mere scaling up would enable
domains such as natural language understanding and
visual object recognition to be readily tackled. How-
ever, this turned out not to be the case. More than a
question of scale was involved. In retrospect, it can
be seen that the early problem domains were defined
in terms of a small and precise dictionary of concepts.
(The extreme example is arithmetic, with a dictionary
of 14 symbols – the digits and four arithmetic oper-
ators. Computers can perform arithmetic effectively
instantaneously, making a human feel rather stupid
by comparison.) This is in contrast to the huge ill-
defined dictionaries of concepts of more “realistic”
domains. (However, there are real practical problems
which involve well-defined concept dictionaries, and
where modern AI systems, notably expert systems,
have been effectively applied.) As a consequence,
the early expectations of rapid practical applications
were not fulfilled. Instead, a long hard haul has been
required, in which developments in the theory and
methods of AI have been matched and supported by
dramatic developments in computer hardware. The
progress that has been made in AI technology over
the past two decades owes a great deal to the latter.

The bulk of the early work in AI was based
on the symbol manipulation paradigm, mentioned
in the preceding paragraph. In this, a basic dictio-
nary of symbols is defined, along with relationships
between them. These symbols are combined into
more complex structures, with relationships between
these structures; and this is repeated, each time mov-
ing up a level of complexity until extremely complex
structures are created. Achieving structural complex-
ity in this way, by means of series of levels, emu-
lates the situation in other domains. Examples are
using letters to build words, words to build sen-
tences, sentences to build paragraphs, and paragraphs
to build books, or the natural example of atoms,
molecules, cells, and multicellular organisms. Spe-
cial purpose languages (see Computer Languages
and Programs) were developed for AI programming,
notably LISP, which followed this paradigm.

The symbol manipulation approach toward con-
structing intelligent machines has continued, but
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over the past decade a new paradigm has also
attracted considerable interest. This is the connection-
ist paradigm. Digital computers are essentially serial
machines. They read a command, act on it as appro-
priate, and then move on to the next one. Biological
brains, however, are anything but serial. They are
parallel. They consist of huge numbers of cells (neu-
rons), each connected to vast numbers of other cells,
not merely connected to a “preceding” and “follow-
ing” cell. Thus, the fact that the processing speed of
a single neuron is tiny compared to that of a sin-
gle electronic switch becomes irrelevant. With 1000
electronic switches connected in a line, switching at
a rate of one on/off per millisecond, serial computa-
tion means that a second will elapse before a signal
can propagate from one end to the other and switch
them all on. In contrast, if the switches are in parallel,
they can all switch on simultaneously. This paral-
lelism explains how the brain can carry out certain
kinds of operations much faster than can a digital
computer. Recognition of this fact was an early stim-
ulus behind connectionist or parallel approaches to
artificial intelligence.

In the sections that follow we examine some
important subdomains of AI research.

Knowledge Representation

One key to effective problem solving is finding a
good way to think about the problem. In general, the
key to effective knowledge manipulation is finding a
way to represent the knowledge which permits ready
search and restructuring to match the objectives.
Several representations are particularly important
in AI.

Semantic networks have nodes representing ob-
jects, with labeled links connecting these nodes.
The links represent relationships between the objects
and the labels on the links specify attributes and
types of relationships. This is a powerful general
knowledge representation. For example, geometric
diagrams or visual scenes can be represented: objects
might be tables, plates, and cutlery, with relationships
such as “on top of” and “beside” being represented
by links. Perhaps at the other extreme, stories and
verbal discourse can be represented: nodes might
represent individuals and objects within the story,
while changes in the way individuals feel about each
other can be represented by changing values of labels
on links of the net.

Production systems represent knowledge in terms
of antecedent–consequent rules. The left-hand sides,
or antecedents, of such rules consist of a set of
conditions which must be satisfied by the items in
a database. When they are satisfied the rule is said to
fire – it carries out some operation (the consequent),
such as altering the database. The system cycles
through a set of such rules: each time a rule fires
the database is changed, until some terminating state
is reached. This is the basic representation underlying
expert systems (see, for example, the summary of
the MYCIN project described in [2]). In the case
of medical diagnosis, for example, an initial set of
signs and symptoms is fed into the database and the
system cycles through its rule base, updating and
modifying the database until a diagnosis is reached
(see Computer-aided Diagnosis; Decision Analysis
in Diagnosis and Treatment Choice).

Logic has the advantages that it is well-under-
stood, rigorous, and (by definition) completely
formalized. Different kinds of logic – propositional
calculus, first-order predicate calculus, second-order
predicate calculus – permit increasingly complex
situations to be represented. Logical structures
involve predicates, variables, constants, logical
connectives, and quantifiers. In particular, predicates
are building blocks which can take particular values.
Thus blue(book 6) might be used to indicate that
the colour of “book 6” is blue and lift(John, book 6)
might indicate that John lifted book 6. Considerable
effort has gone into developing automatic proof
procedures in logic, so that powerful systems can
be developed. The important AI language Prolog is
based on a subset of predicate calculus.

Search

If knowledge representation is one key to problem
solving, then effective search strategies are the other.
Many problems reduce to finding the best, or at least
a good, solution to a particular question in a space
consisting of a large number of potential solutions.
“Large” here can often mean astronomically vast, so
that no exhaustive search will ever be conceivably
feasible, even by the fastest of imaginable computers
ever. (In chess for example, there are around 10120

possible games. Put this in the context of there
being around 3 × 107 seconds in a year.) Examples
of problems requiring efficient searches are graph
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matching problems (such as matching a parsed input
spoken sentence to a dictionary of sentences, or
matching a segment of a semantic network to the right
part of a larger net), identifying eligible production
rules in a rule base, or finding a proof of a theorem
(in logic, perhaps). This last example requires finding
a path from the premises of the theorem to the
conclusion of the theorem.

Sophisticated search methods, such as branch and
bound or mathematical programming, guarantee find-
ing the global optimum (see Optimization and Non-
linear Equations), and extend the range of problems
from those that can be tackled by exhaustive search,
but even they fail in the face of really large search
spaces.

Of course, efficient search strategies will be famil-
iar to statisticians, in the form of forward and back-
ward stepwise methods in regression (see Variable
Selection), discriminant analysis (see Discriminant
Analysis, Linear), and other model building situ-
ations. Such methods achieve their aim of making
the search feasible by restricting the search to a sub-
space of the complete space – and so risk missing
the global optimum. Classical search methods, such
as steepest descent and other mathematical optimiza-
tion methods, may be stymied by the nature of the
search space: it often involves categorical variables,
so that the function for which an optimum is sought is
not differentiable (or even continuous). Another gen-
eral strategy which can facilitate efficient search is
that of breaking the problem down into components.
For some situations, we might be able to show that
“if A is true” and “if B is true” then the original
problem is solved. If we are lucky, A and B sepa-
rately may be much easier to prove than the original
problem.

Often progress can be made by utilizing problem
specific general guidelines about what might assist in
finding a good solution. Such guidelines are known
as heuristics [7]. Examples of heuristics are summary
values of the estimated strengths of positions in chess
games and the use of samples to infer (with the risk of
error) some general property of a population. We see
from the latter that statisticians are masters at certain
kinds of heuristic reasoning!

Constraints on solutions can be extremely effec-
tive in narrowing down the potential search space.
In vision and speech recognition, for example, we
can utilize information about possible global struc-
tures to restrict the possible components (parts of an

image, words or phonemes in speech) which need to
be tested.

Search strategies can often be described as
tree structures. Suppose, for example, the problem
involves matching the description (of a semantic
net or a logical structure, say) of one structure (A)
to that of another (B). The nodes of a tree might
represent different descriptions of B, with higher
level nodes being general descriptions and lower
level nodes being more specific (filling in the values
or restricting the ranges of variables, for example).
We start at the highest (most general) level – which
A necessarily matches – and work our way down,
looking at more specific descriptions. Our aim is
to find that completely specified description – that
leaf node – of the B tree which matches A. We
can undertake this search depth first or breadth first.
The former involves running right down one branch
until the end is reached and (assuming a perfect
match is not obtained) backing up and following a
neighbouring branch. The latter involves looking a
little bit down all the branches, hoping that some will
be eliminated early on.

Connectionist Approaches

The earliest parallel system explored in depth was
the perceptron. In statistical terms this is a simple
linear model used to predict class membership – as
in linear discriminant analysis. It takes as inputs
the values of several variables and forms their
weighted sum, which is then compared with a
threshold to determine predicted class membership.
The variables thus contribute in a parallel way to
the decision. The difference between discriminant
analysis and the perceptron involves mainly the
parameter estimation methods and the criterion being
optimized. The parameter estimation methods of the
perceptron involve sequential presentation of the
data points, with iterative updating, rather than the
algebraic solution of linear discriminant analysis; and
the perceptron minimizes misclassification rate rather
than the ratio of between-to-within-group distances to
determine the best set of weights.

Unfortunately, as was shown by Minsky &
Papert [5] in an influential book, the capabilities
of the perceptron are severely limited. Minsky &
Papert did describe how to overcome this problem –
by using extra stages of linear combinations and
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applying nonlinear transformations prior to the
combination – but the parameter estimation problems
seemed intractable at the time. It was not until several
years later, with progress in hardware capabilities,
and after several authors had presented estimation
techniques, that interest again picked up. Since then,
the interest that the idea of the neural network
or connectionist approaches have attracted has been
remarkable – especially from a statistical perspective,
since from that perspective such models can be seen
to be mere generalizations of logistic regression
models (and, indeed, alternative, similarly flexible,
statistical models, have also been developed).

One way of looking at neural networks is to
regard them as searching the space of possible
transformations of the vector of input variables, so as
to find a set which permits a highly discriminatory
linear combination. This lies in sharp contrast to
earlier methods of pattern recognition (and, indeed,
discriminant analysis), which required the system
developer to identify good transformations of the
input vectors. It means that little expert knowledge
of the problem domain is required. This is obviously
attractive to many potential users, since it implies a
saving of time and effort.

Conclusions

Although the early promise of quick solutions
did not materialize, steady development, coupled
with the huge advances in computing hardware
(see Computer Architecture and Organization),
has led to significant progress in AI. The widespread
use of computers (often concealed within devices and
machines) means that the impact of this progress is
likely to be substantial over the next few years.

An illustration of one area of development in
which this is likely to be the case is language pro-
cessing. It was realized, some time ago, that perfect
translation between natural languages needed a deep
representation of the ideas being expressed. It is
insufficient, for example, merely to use a huge dic-
tionary of words and expressions. However, effective
language processing systems can be produced if the
aims are less grandiose; in particular, if a restricted
set of expressions are involved or if the system
drives the interaction, as in computer interviewing to
collect data for medical diagnosis (see Computer-
assisted Interviewing). Sophisticated versions of

such systems develop internal models of the patient
as they proceed with the interview. Similar systems
are being developed for computer-aided instruction,
where more focused teaching is possible if the system
refines a model of the student’s abilities and likely
responses as the instruction session proceeds.

One of the difficulties with which AI research has
to cope is the perception that once a problem has
been analyzed and a system built to tackle it, then
“intelligence” is no longer required. In this sense,
AI research is a doomed enterprise. In spite of that,
the results of AI research are beginning to be felt
in everyday life, as computers become more and
more ubiquitous. In many areas, the problems tackled
by AI are identical to those tackled by statisticians.
Each of the two disciplines brings their own strengths
to tackling the problems, and a rich synergistic
interaction can result.

Recommended books in the area include [6]
and [10]. Some medical applications are described
in [9], and its potential role in psychiatry is outlined
in [3]. Neural networks and their relationship to
statistical methods for tackling the same problems
are described in [1, 4], and [8].
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Ascertainment

What is the ascertainment problem? In brief, this
problem arises from the fact that for most genetic dis-
orders of interest, families are not selected for study
at random, but come to the attention of investiga-
tors (i.e. are “ascertained”) via some process which
may or may not be well understood. These devia-
tions from random sampling can introduce bias into
genetic analysis if they are not correctly understood
and allowed for.

In particular, for a segregation analysis one
needs to incorporate the ascertainment model into
the analysis (for example, by including the proba-
bility model for ascertainment in the likelihood of
the genetic model); otherwise, serious distortion may
result. Ascertainment has been believed not to be
an issue for linkage analysis as long as individuals
were ascertained based only on a single trait (e.g. [4]
and [13]), i.e. based on either the trait of interest
or the marker, but not both. However, see also the
section “Sequential Sampling” below.

A very simple example will illustrate the general
principles. Imagine we are studying a genetic dis-
ease, thought to be inherited as a rare recessive (see
Genotype), and we wish to determine whether the
segregation ratio within nuclear families is ≈25%
(as predicted for a rare recessive disease). Imagine
further that we are able to locate every family in our
catchment area with at least one affected child, and
that every such family is willing and able to partic-
ipate in our study. The actual proportion of affected
children that we will observe in this hypothetical
example will be not 25%, but rather a higher pro-
portion. The apparent distortion arises because those
families which, by chance alone, failed to produce
any affected children will not enter the sample. For
example, say we had an ideal population of 10 000
two-child families who were at risk to have an
affected child (i.e. both parents are carriers). With
each birth, such a mating type (pair of parents) has
a probability of 3/4 of having an unaffected child.
Thus, on average, (0.75)2 of these two-child families,
i.e. 5625 families, would have no affected children
and would be unable, a priori, to enter our sam-
ple. Of the remaining 4375 families that would enter
our sample, 3750 would have one affected and one
unaffected child, and 625 would have both children
affected. If we naively counted up the total number

of affected children (3750 + [625 × 2] = 5000) and
divided by the total number of children in our sam-
ple (4375 × 2 = 8750 children), without awareness
of the 5625 families that we did not “see”, we would
estimate the segregation ratio as 57.1%, which is seri-
ously distorted from the expected segregation ratio
of 25%.

Moreover, there is no guarantee that we will even
find every family with at least one affected child.
In many situations families with more affected chil-
dren are more likely to come to the attention of an
investigator than those with fewer affected children,
and this fact can introduce additional distortion into
segregation analysis.

If all details of the ascertainment model are known
and can be modeled probabilistically, then they can
in most cases (except sequential sampling; see below)
be incorporated into the likelihood required for any
type of statistical–genetic analysis. The difficulty
arises when the ascertainment model is not known,
or is not known accurately.

In the next section we explore in some detail
the “classical” ascertainment model of Weinberg [34]
and Morton [23], based on the concept of “probands”.
In the third section we consider some alternative
models, along with their criticisms of the proband
concept. The fourth section considers some other
methods of dealing with ascertainment, other than
incorporating the ascertainment model into the like-
lihood. The fifth section examines two additional
complications: sequential sampling and stoppage. The
final section summarizes the conclusions of this
article.

“Classical” Ascertainment Model

The classical model, also called the π-model, was
formulated by Weinberg [34] and specifically applied
to genetics by Morton [23]. This model requires the
concept of a “proband”, defined by Morton as “an
affected person who at any time was detected inde-
pendently of the other members of the family, and
who would therefore be sufficient to assure selection
of the family in the absence of other probands” [23].
Then the “ascertainment probability” π for an indi-
vidual is defined as the probability that any affected
individual becomes a proband, i.e. is ascertained.
The ascertainment probability for a family is defined
to be the probability that a family has at least one
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“proband”. A family that has at least one proband is
then assumed to be ascertained. Note that the event
“to be ascertained” is defined differently for an indi-
vidual and a family. An individual is ascertained if
s/he becomes a proband, whereas a family is ascer-
tained if it contains at least one proband.

The fundamental quantity that we need to for-
mulate is the probability distribution of r affected
children within s-child families, within our ascer-
tained dataset, i.e.

Pr
s
(r affected children|sibship is ascertained). (1)

We will refer to the quantity in (1) as the “fun-
damental ascertainment probability”, i.e. the funda-
mental segregation probability in the presence of
ascertainment.

These probabilities were originally developed for
nuclear families, i.e. families consisting of two par-
ents and their children, under the assumption that only
children could be probands; however, the formulas
can also be applied to extended pedigrees, in which
any class of members may potentially be probands.

The ascertainment probability π can assume val-
ues in the interval 0 < π ≤ 1. We consider first two
special cases, (a) and (b), then the general formula-
tion, (c).

(a) If every affected individual is sure to become
a proband, then π = 1. This is called “truncate selec-
tion” by Morton [23], or “complete ascertainment” by
many other authors. It follows that every family with
at least one affected member will be ascertained; thus
families with at least one affected member appear
in the dataset in the same relative proportions as
they appear in the general population. Let p rep-
resent the segregation probability (e.g. 0.25 in the
example above). When π = 1, the segregation anal-
ysis likelihood for a sibship of s children takes
on the following relatively simple form, since the
fundamental ascertainment probability in (1) can be
rewritten:

Pr
s
(r affected children|sibship is ascertained)

= Pr(r affected children|≥1 child is affected)

= Pr(r affected children)

Pr(≥1 child is affected)

= Pr(r affected children)

1 − Pr(0 children are affected)
(2)

for r ≥ 1. Therefore

Pr
s
(r affected children|sibship ascertained)

=

(
s

r

)
pr(1 − p)s−r

1 − (1 − p)s
. (3)

The numerator of (3) is a standard binomial probabil-
ity, for an s-child family with r affected children, and
the denominator gives the probability of at least one
affected child, as in the denominator of (2). The com-
plete formula in (3) represents a “truncate binomial”
probability distribution.

Complete ascertainment can arise when one is
able to ascertain every affected person in the pop-
ulation under study – for example, if all population
members belong to a centralized health care sys-
tem or a national health registry. Complete ascer-
tainment may also occur if a disease is severe and
rare, and there exists just one medical center in a
certain geographic area that specializes in that dis-
ease. In such a situation it may be reasonable to
assume that every family in that area with at least
one affected child will come to that center and will
be studied.

Table 1 (right column) summarizes the properties
of truncate selection. Note that the segregation ratio
is distorted because of the at-risk families who hap-
pen not to have an affected child, but that there is no
additional distortion to that.

(b) A completely different kind of scenario occurs
when the probability for any one affected child to
become a proband is very small, and, concomi-
tantly, the probability that any given family will
have more than one proband is essentially zero.
This can happen, for example, if the investiga-
tor ascertains only children attending second grade
within one’s geographic area of study: the prob-
ability that any given affected child will happen
to be in second grade at this time is small; and
essentially no families will have two affected chil-
dren in second grade at the same time. Scenar-
ios such as this correspond to letting π approach
zero. This ascertainment model is known as “sin-
gle selection” or “single ascertainment” and repre-
sents our second special case. It can be shown that
under single ascertainment, the likelihood in (1) is
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Table 1 Features of the classical π -model, applied to s-child sibships, ascertained through the children

π → 0 π in between π = 1

Name
“Single selection” “Multiple incomplete selection” “Truncate selection”
(single ascertainment) (multiple ascertainment) (complete ascertainment)

Number of probands
One proband/sibship >1 proband/sibship, but not every

affected child is a proband
Every affected child is a proband

“Distortion” in the segregation ratio occurs because not every at-risk sibship actually has an affected child

Additional distortion
Sibships with r affected

children occur r times
more often than in their
population proportions

In-between additional distortion No additional distortion; sibships with
≥1 affected child occur in their
population proportions

Probability distribution
Binomial with s − 1,

r − 1. (Exact analytic
maximum likelihood
estimate (MLE) of p)

No special probability distribution.
(No exact analytic MLE of p)

Truncate binomial probability
distribution (No exact analytic MLE
of p)

Application
“Every second-grader. . .”

(see text)
“Real life. . .” (other ascertainment

schemes)
“National Health Registry” (see text)

Equation in text:
(4) (7) (3)

given by

Pr
s
(r affected children|sibship ascertained)

=
(

s − 1
r − 1

)
pr−1(1 − p)s−r . (4)

This represents a simple binomial probability in p,
but applied to a sibship of s − 1 children, of whom
r − 1 are affected.

Since (4) corresponds to simply removing the
proband from the family, the correction for single
ascertainment is sometimes referred to as “discard-
ing the proband”. However, the reader should note
that “discarding the proband” works only for sin-
gle ascertainment of nuclear families with a single
mating type. More generally, one can think of “con-
ditioning on the proband” to allow for single ascer-
tainment [20].

It can also be shown that the probability that a
sibship will be ascertained is then proportional to
the number of affected sibs. For example, a family
with two affected children is twice as likely to
be ascertained as a family with one affected child.

Thus, sibships with multiple affected children will be
over-represented in the sample, compared with their
proportions in the general population. See Table 1,
left column.

This proportionality property is a powerful result
and can be taken as the fundamental defining charac-
teristic of single ascertainment [31]. It can be shown
that in a number of circumstances single ascertain-
ment is “special” in ways that do not hold for
other ascertainment schemes [20]. For example, if
extended pedigrees have been selected under sin-
gle ascertainment, segregation analysis can be per-
formed on them without bias simply by “conditioning
on the proband”, whereas under other ascertainment
schemes, correcting for ascertainment becomes diffi-
cult or even impossible. This remarkable result holds
even if the pedigrees were collected “sequentially”;
see below. In addition, Haghighi & Hodge [18] have
shown that in a simple model of differential parent-
of-origin effects, single ascertainment is the only
situation in which the parent-of-origin effect can be
ignored. However, note that in the case of “stoppage”
(see below), even single ascertainment does not allow
for simple solutions.
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(c) If the probability that an affected individual
will become a proband is neither vanishingly small
nor equal to unity, then some but not all affected
individuals will be probands, and some but not all
families will have multiple probands. This is known
as “(incomplete) multiple selection” or “multiple
ascertainment”, and represents the most complicated
situation under the classical model. The full likeli-
hood is derived as follows:

Pr(r affected children|sibship ascertained)

= Pr(sibship asc’d|r aff. ch.) Pr(r aff. ch.)

Pr(sibship asc’d)
. (5)

The first factor in the numerator of (5), Pr(sibship
ascertained|r affected children), is derived by recog-
nizing that under the assumptions of the proband
model, the probability of an affected child becom-
ing a proband is binomial. Thus, among r affected
children, the probability of at least one proband
equals one minus the binomial probability of no
probands, i.e. 1 − (1 − π)r . The second factor in
the numerator, Pr(r affected children), is the bino-
mial probability for r affected children in an s-child
family,

(
s

r

)
pr(1 − p)s−r . The denominator of (5) rep-

resents the sum of possible numerator terms, summed
over r = 1 to s, i.e.

s∑

r=1

[1 − (1 − π)r ]

(
s

r

)
pr(1 − p)s−r

= 1 − (1 − pπ)s. (6)

Putting together the numerator and denominator of
(5) yields the general likelihood for the π-model
of ascertainment for a nuclear family, with a single
mating type:

Pr
s
(r affected children|sibship ascertained)

=

(
s

r

)
pr(1 − p)s−r [1 − (1 − π)r ]

1 − (1 − pπ)s
. (7)

Equations (3) and (4) are special cases of (7). The
reader can confirm that setting π = 1 in (7) will yield
(3), whereas letting π → 0 in (7) yields (4). The
middle column of Table 1 summarizes the features
of this more general case.

Equations (3), (4) and (7) give the probabilities
for a single s-child family. However, typically a

dataset consists of a number of sibships of different
sizes, so the likelihoods of the individual families
are multiplied across all families. Let R represent the
total number of affected children in all the sibships,
and let C represent the total number of unaffected
children; also, let ns denote the number of s-child
families in the dataset. Then the total log-likelihood
over the whole dataset can be written:

log L(p) = R log p + C log(1 − p)

−
∑

s

ns log[1 − (1 − pπ)s]. (8)

The quantity in (8) is then maximized with respect to
p to yield the desired maximum likelihood estimates
(MLEs).

The π-model can be incorporated into the likeli-
hood for any kind of genetic analysis. Equations (3),
(4), and (7) show the likelihoods for the relatively
simple situation of nuclear families and a single
mating type. Beyond that, numerous extensions are
possible. One we mention briefly is simultaneous esti-
mation of p and π . So far we have assumed that
the ascertainment probability π has a known value,
but in other situations one might need to incorpo-
rate π as an unknown parameter (either as another
parameter of interest to be estimated, or as a “nui-
sance parameter”). One approach is to record the
actual number of probands a in each family. In (7),
replace [1 − (1 − πr)], i.e. the binomial probability
of “at least one proband”, with the binomial probabil-
ity of “exactly a probands”:

(
r

a

)
πa(1 − π)r−a . Thus,

the appropriate probability is now:

Pr
s
(r affected children, a probands|sibship asc’d)

=

(
s

r

)
pr(1 − p)s−r

(
r

a

)
πa(1 − π)r−a

1 − (1 − pπ)s
. (9)

The likelihood is now L(p, π) and can be maximized
to estimate p and π .

For further details, as well as other extensions,
such as multiple parental mating types, multiple
loci, complex pedigrees, etc. the interested reader is
referred to, for example, [5, 6, 9, 12, 17, 23, 27],
and [30].

All these situations involve ascertainment through
the children, or what Morton [23] denoted “incom-
plete selection”. If nuclear families are ascertained
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through the parents (“complete selection”), then the
situation is simpler, and no ascertainment correction
is needed. There is no longer any bias, and the
segregation ratio can simply be estimated from
the standard binomial distribution. For example,
if there were 25 families, of 3 children each,
and of those 75 children, 35 were affected, then
the MLE of segregation ratio p would be sim-
ply p̂ = 35/75 = 0.47. An approximate 95% con-
fidence interval about this estimate, 0.47 ± 1.96
(SEP), where SEP = standard error of the proportion
≈ √

[(0.47)(0.53)/75] ≈ 0.058, would not rule out
a fully penetrant autosomal dominant disease, for
which p = 0.50.

Alternative Ascertainment Models

It has been recognized from the beginning (e.g. [23])
that the concept of “proband” is not always applicable
in real-life situations and that therefore the π-model
does not necessarily hold. Greenberg [15] described
realistic ascertainment scenarios in which whole fam-
ilies are ascertained by processes that do not permit
one to define “probands” meaningfully. For exam-
ple, consider the following “screening” scenario. A
certain proportion of pregnant women come to a cer-
tain clinic to have the fetus screened for a genetic
condition. But once a woman has had an affected
fetus identified, she is much more likely to return
for screening of her subsequent pregnancies. Which
affected fetuses are the “probands”? Whether one
labels only the first identified one as a proband, or
all affected fetuses as probands, one violates the
assumption of independence, which is critical to the
definition of a proband. Greenberg [15] documented
the magnitude of bias and the probability of wrong
conclusions that can be introduced into a segregation
analysis if the investigator mistakenly models ascer-
tainment as a proband-based process when it is not.

Note also that it is not legitimate simply to desig-
nate the first member of the family to come to one’s
attention (that is, the index case) as the “proband”.
Index cases do not necessarily satisfy the indepen-
dence requirement. One common and dangerous error
is to designate the index case as the proband and then
reason that since one has only one index case per fam-
ily, therefore one has satisfied the conditions of single
ascertainment. This is false reasoning [22]. One’s
ascertainment scheme represents single ascertainment

only if the proportionality property described above
is satisfied, i.e. only if families with two affected
children are twice as likely to be ascertained as those
with one affected child, families with three affected
children are three times as likely to be ascertained as
those with one affected child, etc.

Stene [31] and Ewens & Shute [10] discussed
models of family-based ascertainment, for example
such that Pr(family is ascertained|r affected mem-
bers) ∝ rk , where k can be any real number. Thus,
k = 0 corresponds to “complete ascertainment” and
k = 1 to “single ascertainment” above. However,
other values of k, such as k = 2 (“quadratic ascer-
tainment”), do not correspond to any values of π

in the π-model. This implies that the cases π → 0
and π = 1 do not provide “limits” on ascertain-
ment models; rather, there exist numerous possible
ascertainment models that do not fit into the “π”
framework at all. These family-based models do not
designate any individuals as probands, and thus they
circumvent the difficulties in the proband concept.

Let us examine the “quadratic ascertainment”
model more closely, as an example. In this model a
family with, for example, two affected children is four
times more likely to be ascertained than one with one
affected child (as opposed to being twice as likely, as
under single ascertainment). To derive the fundamen-
tal ascertainment probability we return to (5). In the
numerator, the probability Pr(sibship ascertained|r
affected children), which formerly equaled 1 − (1 −
π)r , now equals βr2, where β is the constant of pro-
portionality. Thus, the desired probability becomes

Pr(r affected children|sibship ascertained)

=

(
s

r

)
pr(1 − p)s−rβr2

s∑

r=1

(
s

r

)
pr(1 − p)s−rβr2

, (10)

instead of (7). Simplifying the denominator and can-
celing β yields

Pr(r affected children|sibship ascertained)

=

(
s

r

)
pr(1 − p)s−r r2

sp[1 + (s − 1)p]
. (11)

Equation (11) provides an example of how ascertain-
ment models other than the “classical” one can still
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be formulated precisely and mathematically. It also
illustrates the fact that this “quadratic” model cannot
be viewed as a special case of (7), nor can any child
in these families be identified as the “proband”.

Ginsburg & Axenovich [14] suggested a “cooper-
ative binomial ascertainment” model which allows
the ascertainment probability for an individual to
depend on the number of potential probands per
pedigree.

Even though these alternative ascertainment mod-
els do not fit the mold of the classical π-model, they
can be incorporated into the likelihood if they are
known, as we have seen with quadratic ascertainment
above.

Other Methods of Dealing with
Ascertainment

As mentioned, if one knows the true ascertainment
model, then in theory one can incorporate that prob-
ability model into genetic analyses (except in some
cases of sequential sampling; see below). The major
problem in genetic epidemiology arises when the
ascertainment model is not known. Often human
families come to the attention of investigators via
pathways that are haphazard, ill-defined, or com-
pletely unknown. Thus, it is worthwhile to consider
alternative ways to deal with ascertainment when the
mode of ascertainment is not known or is known only
vaguely.

One way to circumvent the whole problem of
ascertainment is to condition the likelihood on all
information that could possibly have influenced the
ascertainment of the family. For example, if one is
studying nuclear families and does not know how
these families were ascertained, but does know that
ascertainment occurred only via the children, then
one can condition the likelihood on the children’s
phenotypic information [11]. One then has a con-
ditional likelihood, which yields valid maximum
likelihood estimators of genetic parameters. Ewens
& Shute [11] call this an “ascertainment assumption
free” (AAF) approach.

The disadvantage of the AAF approach is that the
resultant estimates of genetic parameters may have
very large variances. In the above example, once one
has conditioned the likelihood on the phenotypes of
the children, there is usually little genetic information
“left” in the parents. In the extreme, if one could

not even be sure through whom ascertainment may
have occurred, one would have to condition on the
phenotypes of all family members, and the variances
of the estimators would be infinite.

Thus, in practice this method is not recommended
for pure segregation analysis. Where this approach
does become practical is when the investigator also
has a marker locus (see Linkage Analysis, Model-
based) that is reasonably tightly linked to the disease.
The resultant analysis can be viewed as a form of
combined segregation-and-linkage analysis. If one
has a linked marker locus, then even though one has
“conditioned out” much of the pure trait information,
the information remaining from the cosegregation of
the marker and the disease can help to determine the
mode of inheritance of the disease. It has been shown
that conditioning on all trait data in a combined
segregation–linkage analysis in this way is equivalent
to maximizing the maximum lod score (see Linkage
Analysis, Model-based) over genetic models. For
more details, see [3, 7, 16, 19], and [25].

Another way to deal with the ascertainment prob-
lem would be to develop good approximations. For
example, Sawyer [26] has suggested that treating
ascertainment as if it is single, even when it is
not single, may provide a reasonable approximation
over a broad range of ascertainment schemes. In
another approach, Rabinowitz [24] proposes using a
pseudo-likelihood, which yields asymptotically unbi-
ased estimates (although variance is inflated) of
genetic parameters under a class of ascertainment
models broader than those allowed by the classical
π-model. More work needs to be done on these and
other approximation-based approaches.

Additional Complications

We conclude with two additional complications,
whose effects are not yet fully understood: sequential
sampling of pedigrees, and stoppage.

Sequential Sampling

We call it sequential sampling when, after a pedi-
gree is ascertained, decisions about who within the
pedigree will be included in the study are made
in a “proband-dependent” or sequential manner. For
example, one possible sequential-sampling rule is:
“Include all available first-degree relatives of the
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proband. For any of these relatives who are affected,
include all their available first-degree relatives. Con-
tinue until no new person included in this way
is affected, i.e. continue until no sampled pedigree
member has any additional affected first-degree rel-
atives”. In an influential paper, Cannings & Thomp-
son [2] considered pedigrees sampled following this
kind of sequential scheme. They showed that under
single ascertainment, conditioning the likelihood on
observed pedigree structure, and dividing by the pop-
ulation probability of a proband, would yield the
correct likelihood (as long as the sequential sam-
pling rules follow certain reasonable commonsense
restrictions). Subsequently, Vieland & Hodge [32]
demonstrated that the result in [2] holds only for sin-
gle ascertainment and, moreover, that under other
modes of ascertainment, the correct likelihood for
these kinds of sampling situations inherently cannot
be formulated – even when the ascertainment model
is known [32]; see also [8]. Rabinowitz’s pseudo-
likelihood [24] still yields asymptotically unbiased
estimates in this situation, but the variance is inflated
and must be approximated (see above).

Later, Vieland & Hodge [33] showed that linkage
analysis is also affected by ascertainment issues when
pedigrees are sampled sequentially, though it is not
clear whether the effect is ever large enough to be
of practical concern [28]. This finding violates the
commonly accepted wisdom that linkage analysis is
immune to ascertainment issues.

Stoppage

Standard segregation analysis assumes that the obser-
ved distribution of sibship sizes in the dataset (FSD =
family-size distribution) is independent of the segre-
gation ratio p. However, for certain serious diseases
with early onset and diagnosis, e.g. autism, parents
may change their original desired family size after
having one or more affected children, thus violat-
ing that assumption. If parents reduce their family
size, then the phenomenon is called “stoppage”. Thus,
stoppage also represents a type of biased ascertain-
ment, in that families will display a smaller number
of affected children than they “should”, based on
the value of the genetic parameter p. This situation
has been investigated by Jones & Szatmari [21] and
Brookfield et al. [1]. More recently, Slager et al. [29]
showed that stoppage can be considered as a spe-
cial case of sequential within-family sampling [2].

They demonstrated that if families are ascertained
completely at “random”,1 the presence of stoppage
does not bias estimates of p, but under any other
ascertainment schemes, including those in (3), (4),
and (7) above, stoppage introduces an additional bias,
which can be quite large. Slager et al. [29] derived
the full correct likelihood for a stoppage model in
which after the birth of each affected child, there is a
stoppage probability d that the parents will have no
more children, even if they had originally intended a
larger family. They showed that unless one already
knows the FSD of the population from which the
data are drawn, correcting for stoppage is difficult.
Even when there is single ascertainment, the like-
lihood does not simplify, unlike in so many other
situations involving single ascertainment.

Conclusions

In this article we have defined the ascertainment prob-
lem and tried to convey some idea of its nature and
importance. We have shown how, starting with basic
probability principles, one can incorporate ascertain-
ment assumptions into genetic analysis, starting with
simple ascertainment models and proceeding to more
complex ones. However, some situations remain dif-
ficult or even intractable, and research still remains
to be done in this area.
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Aspin–Welch Test

The assumptions used in deriving the independent
samples (or two-sample) t test are: (i) within each of
two groups the observations are independently, iden-
tically, and normally distributed; (ii) observations are
independently distributed across groups, and (iii) the
populations from which the observations in the two
groups are drawn have equal variances (see Stu-
dent’s t Distribution; Behrens–Fisher Problem).
If (iii) is violated, then the actual type I error rate,
τ , is near the nominal type I error rate, α, provided
the group sizes are equal and sufficiently large (see
Hypothesis Testing). Results in [8] suggest that the
required sample size is between 8 and 15, depend-
ing on how large a discrepancy between τ and α one
will tolerate. If (iii) is violated and the group sizes are
unequal, then τ < α if the larger sample comes from
the population with the larger variance and τ > α if
the smaller sample comes from this population.

An alternative to the test statistic used in the
independent samples t test is

t ′ = x1 − x2
(

s2
1

n1
+ s2

2

n2

)1/2 .

Welch [9] proposed using t ′ with the approximate
degrees of freedom (APDF) critical value t1−α(ν),
where

ν =

(
σ 2

1

n1
+ σ 2

2

n2

)2

σ 4
1

n2
1(n1 − 1)

+ σ 4
2

n2
2(n2 − 1)

.

In practice ν is estimated by substituting sample
variances for population variances.

Welch [10] proposed a method for approximat-
ing the critical value for t ′ by a power series in
1/fi = 1/(ni − 1) and presented the solution to order
(1/fi)

2:

z

[
1 + (1 + z2)V21

4
− (1 + z2)V22

2

+ (3 + 5z2 + z4)V32

3
− (15 + 32z2 + 9z4)V 2

21

32

]
,

where

Vru =

(
2∑

i=1

(s2
i /ni)

r

f u
i

)

(
2∑

i=1

s2
i /ni

)r

and z = z1−α . Aspin [2] presented the solution to
order (1/fi)

4 and Aspin [3] presented an abbreviated
table of fourth-order critical values.

Results in Lee & Gurland [7] indicate that with
small sample sizes (≤ 9) τ is nearer to α when the
fourth-order critical value is used than it is when the
second-order or the APDF critical values are used.
However, all three critical values controlled τ fairly
well. Algina et al. [1] investigated larger group sizes
and reported that the APDF critical value and the
second-order critical value result in estimates of τ

that typically agree to the third or fourth decimal
place.

Using t ′ to test equality of means has two short-
comings. Yuen [14] demonstrated lower power for
t ′ when the data are long tailed. Both Yuen’s tests
on trimmed means and Wilcox’s [13] test on one-
step M-estimates of location (see Robustness) can
be used to address this problem. Wilcox [12] demon-
strated that when the data in either or both groups
are drawn from skewed populations, the numera-
tor and denominator of t ′ are not independent. The
simulation in Algina et al.indicates that as a result
of the lack of independence large discrepancies can
occur between τ and α. When the larger group is
drawn from the population with the smaller variance,
τ can be much larger than α. If one is willing to
use trimmed means or one-step M-estimates when
the data are skewed, then the second problem can be
addressed by using Yuen’s and Wilcox’s tests, respec-
tively.

Welch [11] generalized the APDF approach to the
one-way layout with G ≥ 3 groups and Johansen [6]
further generalized the approach to multi-way lay-
outs and to test multivariate hypotheses. James [4]
generalized the series approach to the one-way lay-
out and James [5] generalized the approach to test
multivariate hypotheses for the one-way layout.
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For categorical data, measures of association are
used to quantify the degree of relationship between
variables. In particular, a high degree of association
between two variables indicates that knowledge about
the level of one variable increases the ability to
predict accurately the level of the other variable; a
low level of association would indicate that the two
variables tend to be independent of one another.

Interest in measures of association arose as early
as the late 1800s, instigated by the study of mete-
orological phenomena, smallpox vaccinations, and
anthropology. Discussion of such measures began in
earnest in the early 1900s. Pearson [28, 30] believed
that the measure of association should be based on
the correlation for a presumed bivariate continu-
ous distribution that underlies the contingency table;
his tetrachoric correlation for two-by-two contin-
gency tables and contingency coefficient for I × J

tables are such measures. Relying on the inherent
discreteness of the categorical variables involved,
Yule [37, 38] developed measures of association that
assumed nothing about underlying continuous distri-
butions, such as Q (now called Yule’s Q), named
in honor of the Belgian statistician Quetelet. Good-
man & Kruskal [17] wrote a series of four landmark
papers on measures of association for cross classifica-
tions emphasizing interpretable measures, including
a thorough history and bibliography on the subject
(see Goodman–Kruskal Measures of Association).
We will begin our discussion with 2 × 2 tables and
then cover the more complicated case of I × J tables.

2 × 2 Tables

Several measures of association for 2 × 2 tables are
based on the value of the Pearson chi-square (χ2)

statistic. Note that it is inappropriate to use the value
of χ2 itself as a measure of association for two
dichotomous variables because it is a function of the
sample size (see [10, Section 21]); Fleiss [11, p. 59]
provides an example of this point.

In what follows, nij represents the frequency for
the ith level of the row variable and the j th level
of the column variable, i, j, = 1, 2, and a “+” in
the subscript represents summation over the subscript

replaced (e.g. n1+ = n11 + n12). Then, one of the χ2-
based measures of association is the phi coefficient:

φ =
(

χ2

n++

)1/2

,

where

χ2 = n++(n11n22 − n12n21)
2

n1+n2+n+1n+2
.

Two additional measures based on φ are the mean
square contingency, φ2 [8, 28], and Pearson’s [28]
coefficient of contingency:

C =
[

φ2

(1 + φ2)

]1/2

.

Values of φ close to zero indicate very little asso-
ciation, while values of φ close to one imply close to
perfect predictability. The maximum possible value
of φ is 1 if the marginal distributions are equal,
but less than 1 otherwise. Fleiss [11] provides, as a
rule of thumb, that any value of φ less than 0.30 or
0.35 may be taken to indicate no more than trivial
association. There are some disadvantages of the phi
coefficient as a measure of association. For instance,
the value of φ in case–control studies is not com-
parable to the value of φ in cohort studies [11,
Chapter 6]. Also, if one or both of the character-
istics being studied is obtained by dichotomizing a
continuous random variable, then the value of φ is
strongly dependent on where the continuous variable
is divided [6] (see Categorizing Continuous Vari-
ables). This lack of invariance of the phi coefficient,
among other reasons, led Goodman and Kruskal to
recommend against the use of χ2-like statistics as
measures of association, except perhaps as they relate
to loss functions and proportional prediction [17, pp.
10, 26, and 29–30].

A basic measure of association in 2 × 2 tables
is the cross-product ratio or odds ratio (see [37]
and [27]). The odds ratio is defined as

α = p11p22

p12p21
,

where pij represents the probability associated with
the ith row and j th column of the contingency table,
i, j = 1, 2. The odds ratio is useful as a measure of
association because (i) it is appropriate for a number
of different sampling models, (ii) it serves as the
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building block for loglinear model theory, and (iii) it
has a number of important properties, as follows:

1. invariance (except perhaps for direction) under
interchange of rows and/or columns,

2. invariance (except perhaps for direction) under
row and/or column multiplication,

3. clear interpretation: p11/p12 is the odds of an
item being in the first column given that it is in
the first row, and p21/p22 is the corresponding
odds for the second row; then α is the ratio of
these two odds, just as the name implies, and

4. usefulness in I × J tables by considering several
2 × 2 tables.

The value of α falls in [0, ∞) and is symmetric
in the sense that two odds ratios, α1 and α2, with
log α1 = − log α2, represent the same degree of asso-
ciation, but in opposite directions. If α = 1, then the
row variable and column variable are independent;
if α �= 1, then they are associated or dependent. The
observed odds ratio,

a = n11n22

n12n21
,

is the maximum likelihood estimate of α. To con-
struct confidence intervals, note that ln a is normally
distributed with mean ln α for large samples, and

se(ln a) = (n−1
11 + n−1

12 + n−1
21 + n−1

22 )1/2.

For reviews of alternative ways of obtaining con-
fidence intervals for α, see [13] and [11]. Some
authors prefer to add a continuity correction of
0.5 to each of the cell frequencies in the expres-
sions above [11] (see Yates’s Continuity Correc-
tion). Other suggested improved estimates are given
in [4], [12], and [14].

A large number of the measures of association for
2 × 2 tables discussed in [17] are monotone functions
of the odds ratio. For example, Yule’s Q can be
written

Q = (a − 1)

(a + 1)
.

Edwards [9] showed that the odds ratio and func-
tions of it are the only statistics that are invariant to
both row/column interchange and to multiplication
within rows/columns by a constant, and recommends
that they be used to measure association in 2 × 2
tables. See [3] for related results concerning I × J

tables.

Simple measures, such as the difference of pro-
portions, (p11/p1+) − (p21/p2+), and relative risk,
(p11/p1+)/(p21/p2+), have a long history of use.
Goodman & Kruskal [17] noted that the relative risk
was used by Quetelet in 1849. The magnitude of the
relative risk is similar to that of the odds ratio when-
ever the probability of response level one is close to
zero for both groups. For further discussion of these
measures, see [2] and [11].

While single numbers such as the odds ratio can
summarize the association in 2 × 2 tables, it is diffi-
cult to summarize the association in I × J tables for
I > 2 and/or J > 2 by a single number without some
loss of information.

I × J Tables

The above measures can be generalized to I × J

tables, with I > 2 and/or J > 2. For instance, the
association in an I × J table can be described with
a set of (I − 1)(J − 1) odds ratios. Such a set is not
unique; one basic set is

αij = pijpIJ

pIjpiJ

,

i = 1, 2, . . . , I − 1 and j = 1, 2, . . . , J − 1. Or, the
set of local odds ratios is

αij = pijpi+1,j+1

pi,j+1pi+1,j

,

i = 1, 2, . . . , I − 1 and j = 1, 2, . . . , J − 1. Such
sets of odds ratios can be used to describe features
of the association in the table.

The usefulness and interpretation of measures
of association in I × J tables depend upon the
nature of the variables involved (see Measurement
Scale). Generally, a categorical variable is ordinal
(see Ordered Categorical Data), in which case there
is a natural order associated with its levels, or nom-
inal, in which case there is no natural order associ-
ated with the levels. Examples of ordinal variables
are severity of disease (mild, medium, severe) and
opinion (strongly disagree, disagree, neutral, agree,
strongly agree). For nominal variables, we might have
political party affiliation or diagnosis.

Ordinal Variables

For ordinal variables, measures of association
describe the degree to which the relationship is
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monotone, i.e. whether Y tends to increase as X does.
More specifically, a pair of subjects is concordant
if the subject ranking higher on variable X also
ranks higher on variable Y ; they are discordant if
the subject ranking higher on X ranks lower on Y
(see Ranks; Rank Correlation). The pair is tied if
the subjects have the same classification on X and/or
Y . For a pair of observations, the probability of
concordance is

Πc = 2
∑

i

∑

j

pij




∑

h>i

∑

k>j

phk



 ,

and the probability of discordance is

Π d = 2
∑

i

∑

j

pij




∑

h>i

∑

k<j

phk



 .

The difference, Πc − Π d, is used in several mea-
sures of association for ordinal variables; the asso-
ciation is positive if Πc − Π d > 0 and negative if
Πc − Π d < 0.

For those pairs that are untied on both variables,
the probability of concordance is Πc/ (Πc + Π d) and
the probability of discordance is Π d/ (Πc + Π d).
Then, a measure proposed by Goodman & Krus-
kal [17] is gamma, where

γ = (Πc − Π d)

(Πc + Π d)
.

This is simply the difference in the above two
probabilities. In fact, γ tells us how much more
probable it is to get like than unlike orders in the
two classifications when two individuals are chosen
at random from the population.

If C is the observed number of concordant
pairs and D is the observed number of discordant
pairs, then the sample version of gamma is
g=(C−D)/(C+D). Note that −1 ≤ γ ≤ 1; γ = 1
if Π d = 0 and γ = −1 if Πc = 0. That is, |γ | = 1
under monotonicity. Independence implies γ = 0;
however, the converse is not true except in the 2 × 2
case. And, γ is invariant (except for sign) to the
reversal in the category orderings of one variable. For
2 × 2 tables, γ is the same as Yule’s Q, and hence
is related to the odds ratio, α. In fact, γ is a strictly
monotone transformation of α from the [0, ∞) scale
onto the [−1, +1] scale.

There are a number of other ordinal measures of
association that may be useful in a given application,
such as Kendall’s [19, 20] τb and Stuart’s [35] τc.
For a survey of such measures, see [24], [20], [17],
and [1, Chapters 9 and 10].

Nominal Variables

For nominal variables, the concepts of positive/nega-
tive association and monotonicity are no longer
appropriate for measuring the relationship. Instead,
the most interpretable indices are those that describe
the proportional reduction in variance from the
marginal distribution to the conditional distributions
of the response. One such measure is Goodman
& Kruskal’s tau [17] (also called the concentration
coefficient):

τ =

∑

i

∑

j

p2
ij /pi+ −

∑

j

p2
+j

1 −
∑

j

p2
+j

.

Goodman & Kruskal provided the following
interpretation: τ is the proportional reduction in the
probability of an incorrect guess obtained by making
predictions on Y using the classification on X. A large
value of τ corresponds to a strong association because
it indicates that we can guess Y much better when we
know X than when we do not know X.

An alternative index for proportional reduction
in variation, called the uncertainty coefficient, is
proposed by Theil [36]:

U = −

∑

i

∑

j

pij ln(pij /pi+p+j )

∑

j

p+j ln(p+j )
.

Both τ and U take values on [0, 1], and τ = U = 0
is equivalent to the independence of X and Y . The
condition that, for each i, pij /pi+ = 1 for some j (no
conditional variation) is equivalent to τ = U = 1.

The larger τ or U is, the stronger is the association
between the variables. However, note that these
measures tend to decrease as the number of categories
of the response variable increases.
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I × J Tables, Other Cases

The measures of ordinal association mentioned above
are appropriate if one variable is ordinal and the
other is nominal with two categories. If one variable
is ordinal and the other is nominal with more than
two categories, then ridits may be used to measure
the association; see [5, 11, Section 9.4, 25, 32, and 1,
Sections 9.3 and 10.2].

To determine the association between, say, the
ith level of A (row variable) and the B (column)
polytomy, simply collapse all levels of A other than
the ith to form a variable with two levels: the ith
level and all other levels. Then the resulting 2 × J

table can be analyzed. This suggestion was made
by Pearson [29]. This can be generalized to the
study of the association between a particular set of
A categories and a particular set of B categories;
see [17, p. 38].

When two polytomies, X and Y , are nominal
and asymmetric (i.e. X precedes Y chronologically,
causally, or otherwise), Goodman & Kruskal [17]
propose as a measure of association,

λy =

∑

i

max
j

(pij ) − max
j

(p+j )

1 − maxj (p+j )
.

This measure, first suggested by Guttman [18], gives
the proportion of errors that can be eliminated by
taking account of knowledge of the X classifications
of individuals. Similarly, λx may be defined, as well
as a measure for the symmetrical case, λ. See [17, pp.
10–15] for further discussion of these. Another mea-
sure, Somers’ D [34], is an asymmetric modification
of Kendall’s τb (see [17]). Note that the measures τ

and U also treat the variables asymmetrically.
Because λx, λy , and λ depend on marginal fre-

quencies, one may wish to weight columns or rows
(standardization of marginal distributions); see [38].
For example, it may be reasonable to base the asso-
ciation measure on a table for which all X-levels
are equiprobable; an example of this is given in [17,
pp. 15–16]. Other forms of standardization are given
in [27].

More than Two Factors

When there are more than two polytomies, the mul-
tiple association between A and all other variables

can be assessed by forming a two-way table with
rows representing the A-polytomy and columns rep-
resenting all possible combinations of levels of the
remaining polytomies. The partial association in this
case is the association between two of the vari-
ables with the effect of the others averaged out in
some sense. Goodman & Kruskal [17, pp. 30–31]
and Kendall & Stuart [21, pp. 571–575] discuss such
measures.

When combining evidence from several four-fold
tables, it is often of interest to know if the degree
of association is consistent from one group to
another, and if so, what the best estimate of the
common value for the measure of association is.
Mantel & Haenszel [26] proposed a measure that esti-
mates a common odds ratio for several 2 × 2 tables
(see Mantel–Haenszel Methods). Fleiss [11, Chap-
ter 10] and Sokal & Rohlf [33] discuss these issues
further.

Miscellaneous Topics

The traditional χ2-like measures of association,
unlike the λ and γ measures discussed by Goodman
& Kruskal [17], assume the value zero if and only if
there is independence in the cross classification. Note
that independence is sufficient for λ = 0 and γ = 0,
but not necessary. Goodman & Kruskal [17, p. 52]
argue that λ and γ measure one dimension or aspect
of association, and hence may be zero even when
there is association along some other dimension.

A misclassification error can alter the degree
or even direction of an association. A number of
researchers have analyzed the effects of misclassifica-
tion on measures of association; see [31], [22], [23],
[15], and [7].

Measures of agreement are used in cases where
the classes are the same for the two polytomies
(I × I table) but differ in that assignment to level
depends on which of two methods of assignment
is used. For example, two psychiatrists may inde-
pendently classify each of n++ subjects according
to four diagnoses (4 × 4 table), and a measure of
the agreement between their diagnoses is of inter-
est. Measures of association differ from measures of
agreement because there can be strong association
without strong agreement in a table.

The asymptotic sampling theory for association
measures is based on the sampling scheme used
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to generate the contingency table and the sample
estimator for the measure. The most common sam-
pling schemes for contingency tables are based on the
multinomial distribution or the product-multinomial
distribution (i.e. independent multinomial distribu-
tions for each row or column). The estimator used
for a measure of association is simply the sam-
ple analogue of the population measure; in almost
every instance this is the maximum likelihood estima-
tor. Goodman & Kruskal [17, pp. 76–146] develop
formulas for the standard errors of some of their
coefficients under various sampling models; also,
see [16]. While most of the formulas are complex,
major statistical software packages routinely provide
standard errors for many of the measures of associa-
tion (see Software, Biostatistical).
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Association

Two variables may be said to be mutually dependent
if the distribution of values of one variable depends
on the value taken by the other. Association is a
common form of dependence affecting changes in
the mean values, or some other measures of level
of response; association thus implies that the general
level of one variable changes according to the value
of the other variable. In informal usage it often
carries the further implication that the relationship
is monotone; for instance, in statements such as
“Exposure to factor A is associated with an increased
risk of disease B”.

A well-known and very important precept is that
association does not imply causation: two variables
may be associated merely because each is in turn
associated with one or more other variables, although
the two in question are not causally related to each
other (see Correlation). The term “association” is
closely related to, and almost synonymous with, “cor-
relation”. The distinction is that correlation is a mea-
sure of closeness to a linear relationship, between
either the original variables or some transformation
of them, whereas a close association between quanti-
tative variables may be markedly nonlinear. Asso-
ciation need not be monotone: one variable may
tend to rise and then fall as the other increases
(see Correlation, Figure 2).

The term “association” is also used to describe
relationships between categorical variables (see
Association, Measures of). With ordinal variables,
the interest may lie in the degree of concordance;
that is, whether movements along the scale of
categories of one variable tend to be accompanied

by similar movements in the other variable. When
one variable is nominal the order of its categories
is undefined, and association here would imply
merely that the distribution of the other variable
varied with the category of the nominal variable. An
example is the association between blood groups (a
nominal variable) and a particular disease, where the
prevalence or incidence of the disease may vary from
one blood group to another.

Association between two or more random
variables implies departure from independence
(see Statistical Dependence and Independence).
For a description of concepts and measures of
dependence between random variables, see [2]
and [3]. Most measures of dependence, defined
over the range (0, 1), are such that nonzero values
imply positive or negative association. The term
“association” has been used [1] for a specific form
of dependence between a set of random variables,
requiring that any nondecreasing functions of any
pair of variables in the set should be nonnegatively
correlated.
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Assortative Mating

Assortative mating for a characteristic is a process
whereby biological parents are more similar (or occa-
sionally more dissimilar) for a phenotypic trait than
they would be if mating occurred at random in the
population. The two characteristics usually given as
examples in human populations are height and intel-
ligence. There are many others; see, for example, [5,
8] and [11]. The phenotypic similarity can induce
changes in genotypic relationships. Evaluating these
changes is challenging, and usually involves complex
mathematical modeling of genetic inheritance and
environmental effects (see Gene-environment Inter-
action). Furthermore, genetic and environmental fac-
tors that affect those characteristics for which there
is assortative mating may also affect other charac-
teristics, producing an observed correlation between
parents for these other characteristics.

Much of the early literature in population genet-
ics theory considered the effects of assortative mating
on population characteristics, and can be traced back
to Jennings [7] for a phenotypic trait being deter-
mined by a single locus, to Fisher’s notoriously
difficult paper [4] for a continuous characteristic aris-
ing from a multifactorial model, and to Wright’s [15]
formulation of path analysis (which underlies the
approach taken today by some behavioral geneti-
cists). References to some of the more extensive
literature of the 1960s and 1970s can be found in
population genetics texts, such as Crow & Kimura [1]
and Ewens [2]. Recent published scientific literature
appears to be more concerned with assortative mating
in animal populations. For human behavioral traits,
assortative mating is still being incorporated in mod-
els based essentially on a path analysis approach.

The problem in accommodating assortative mat-
ing is that the choice of a mathematical model is
not very clear-cut. Certainly, from the geneticist’s
viewpoint the choice is not as noncontroversial as
it would be if, say, the nonrandom process had been
the result of inbreeding. The essential difficulty in
modeling assortative mating is that different social
and behavioral patterns in the population can pro-
duce different outcomes. There is no agreement con-
cerning these patterns. Furthermore, many assump-
tions must be made, either implicitly or explicitly.
Then, if one takes the traditional, population genetic,
approach of following the process to equilibrium,

the consequences may lack biological (and perhaps
social) relevance or realism. Some of the difficulties
will be overviewed briefly in the context of assorta-
tive mating for a multifactorial trait, based on Fisher’s
classical multifactorial model.

First, a general mathematical representation is
given that distinguishes between two-sided assorta-
tive mating, where each sex is involved in the choice
of mates, and one-sided assortative mating, where
only one sex selects its mates. Let m and mp rep-
resent analogous phenotypic trait values in the male
and male-parent populations, and, similarly, f and
f↑p for the female and female-parent values. Then
for two-sided assortative mating we can write

p(mp, f↑p) = q(m)q(f )a(m, f ), (1)

where p and q represent appropriate probability
functions, and a the assortation function. Under the
hypothesis of random mating, a = 1. Otherwise, a

could be quite complex; for instance, it might repre-
sent a sum over a proportion of the population mating
assortatively with respect to this characteristic and
the remainder at random. For one-sided assortative
mating, we can write

p(mp, f↑p) = q(m)Q(f |m), (2)

where Q is a conditional probability or density. Such
a model is usually not considered particularly realistic
for human populations.

Now consider Fisher’s multifactor model for the
mode of inheritance of a continuous trait [9]. In this
model, it is supposed that the measurements x and y

of males and females, respectively, are the result of
a large number of independently segregating factors,
and are thus normally distributed. Taking the means
as zero and variances as σ 2, the probability that a
measurement lies in the range (x, x + dx) is given by
(2πσ 2)−1/2 exp(−x2/2σ 2) dx (giving q), and analo-
gously for y. Furthermore, it is supposed that the joint
probability distribution of male and female parental
values is bivariate normal with correlation ρ, so the
joint probability for parents of having values in the
ranges (x, x + dx), (y, y + dy) is

[2πσ 2(1 − ρ2)1/2]−1

× exp −
[

(x2 − 2ρxy + y2)

2σ 2(1 − ρ2)

]
dx dy
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(giving p). Substituting into (1) above and solving
we obtain a to be

(1 − ρ2)−1/2 exp −
[

(ρ2x2 − 2ρxy + ρ2y2)

2σ 2(1 − ρ2)

]
.

Although this expression was regarded as the
“relative probability” of a mating between two
individuals with values x and y [4], in theory it can
be unbounded. An interpretation can be given as one-
sided assortative mating, based on the formulation
in (2). To accommodate two-sided assortative mating
and maintain the normality assumptions, selection
against individuals having extreme values needs
to be introduced, and details have been explored
by Wilson [12]. For a single characteristic, the
consequences of introducing a selection function that
maintains the normality assumptions may not be
particularly realistic. For example, the model may
require too large a proportion of the population
to remain biologically celibate. These modeling
problems may be overcome by inbedding the
assortation process into a more complex (and possibly
more realistic) framework [14], so that assortative
mating for a single characteristic is regarded as a
consequence of mixing, simultaneously, over more
than just one variable.

The classical multifactorial model also assumes
that the observed measurement of an individual in the
population can be split into two independent parts, the
genetic value (given by the sum of contributions from
many loci which are assumed initially to be inde-
pendent) and the environmental value. Furthermore,
it is assumed that there is no interaction between
genotype and environment, and no epistatic effects
(see Genotype) between loci. Moreover, Fisher [4]
shows that the genetic value of an individual in the
general population also can be split into two indepen-
dent parts, the representative value and the dominance
deviation value, where the representative value is the
sum taken over all loci of the value of the genotype
at each locus fitted by least squares, and the dom-
inance deviation value is the sum over all loci of
the deviation of the genotypic value at each locus
from this value. If the population is such that ini-
tially each locus is in Hardy–Weinberg equilibrium
and there is linkage equilibrium between loci, then it
can be shown that the effect of assortative mating
is to lose the Hardy–Weinberg equilibrium, and to
produce linkage disequilibrium [12, 13]. Of most

interest historically is the correlation, ρ, between
relatives, and some important examples are

ρ(parent–child) = 1
4c1c2σ

−2(ε2
1 + 2ρε1ε2 + ε2

2)[
1
2σ−2(ε2

1 + ε2
2)

1/2
] = ρc

,

ρ(grandparent–grandchild)= 1
2ρc(1+ρc1c2ε1ε2σ

−2)
[

1
2σ−2(ε2

1 +ε2
2)

1/2
] ,

ρ(sibs) = 1
4c1[1 + c2 − 2c1c

2
2

+ c1c
2
2σ

−2(ε2
1 + ε2

2 + 2ρε1ε2)], (3)

where ε2
1 and ε2

2 are the variances in the populations
of male parents and female parents, and

c1 = var(genetic values)

var(observed values)
, (4)

and

c2 = var(representative values)

var(genetic values)
. (5)

If ε2
1 = ε2

2 = σ 2, then the correlations simplify to
those found by Fisher [4].

These formulas assume no epistasis, no gene–
environment interaction or covariation, as well
as no environmental covariation between relatives.
Although these effects can be incorporated into
statistical analyses (see [6]), there has been no
systematic study of the effects of incorporating all
realistic factors and processes. Moreover, whether a
set of assumptions is reasonable or not depends on
the particular trait being studied, and often will be
controversial, especially as many of the assumptions
will not be verifiable in practice. The effect of
assortative mating on analyses has been investigated
in only a few situations. It has been shown that
assortative mating can affect the estimation and
interpretability of heritability [10], and lowers the
power of linkage studies [3].
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Asymptotic Relative
Efficiency (ARE)

One of the most important problems of statistical
practice is point estimation of an unknown param-
eter, say θ . In most cases, there are many appar-
ently reasonable estimators of θ . For example, if
one wants to estimate the mean of a normally dis-
tributed characteristic, it seems reasonable to estimate
it by the mean of the characteristic from a sam-
ple. Since for normal random variables, the mean
and median are the same, it also seems reasonable
to use the median of the sample values as an esti-
mate. Indeed, each estimate is a consistent estimate in
this case (see Consistent Estimator); i.e. each esti-
mate θ̂ satisfies Pr(|θ̂ − θ | > ε) → 0 as n → ∞, for
any given ε > 0. Asymptotic efficiency is a common
method to discriminate between two reasonable esti-
mates when there is nothing to discriminate between
them from the viewpoint of consistency.

Typically, two consistent estimates, say θ̂1 and
θ̂2, will also have limiting normal distributions, i.e.√

n(θ̂i − θ) → N(0, σ 2
i (θ)), i = 1, 2. In such a case,

it is common to approximate the variance of θ̂i by
σ 2

i (θ)/n. The exact variance of θ̂i may be hard to
calculate for a fixed sample size n, and thus the
approximation really does become important. Since
variance is a natural measure of accuracy of an
estimate, it seems natural to define the efficiency of
θ̂1 with respect to θ̂2 as the ratio σ 2

2 (θ)/σ 2
1 (θ). In

principle, the quantities σ 2
1 (θ) and σ 2

2 (θ) may depend
on the unknown parameter θ . However, fortunately,
in many important problems of statistics, they are
just fixed positive constants not depending on θ , and
therefore the asymptotic relative efficiency (ARE)
σ 2

2 /σ 2
1 has the very appealing interpretation of being

one number summarizing the performance of θ̂1 with
respect to θ̂2. The values of ARE are between 0
and ∞, and ARE > 1 corresponds to θ̂1 being more
efficient than θ̂2.

Example 1 Suppose X1, X2, . . . , Xn are indepen-
dent observations from a N(θ, 1) population. Then,√

n(X − θ) → N(0, 1) in distribution, and
√

n(M −
θ) → N(0, π/2) in distribution, where M is the
median of the sample data X1, X2, . . . , Xn. Thus,
according to our definition, the asymptotic relative
efficiency of the sample median with respect to the

sample mean for a normally distributed population is
2/π ≈ 0.63.

Interestingly, the situation reverses and the sample
median becomes a more efficient estimate if the
observations X1, X2, . . . , Xn are instead obtained
from a population with a double exponential
density, 1/2 exp(−|x − θ |). In this case,

√
n(X −

θ) → N(0, 2) and
√

n(M − θ) → N(0, 1), and the
asymptotic relative efficiency of the sample median
with respect to the sample mean is 2.

Example 2 Sir Ronald Fisher, one of the founding
fathers of much of statistics as we know it today,
once had a communication with A. Eddington,
a noted physicist, about how to estimate the
standard deviation of a normal distribution. Thus,
if X1, X2, . . . , Xn are independent samples from
the N(θ, σ 2) distribution where both parameters are
unknown, the specific question was a comparison of
the two estimates

σ̂1 =
Γ

(
n − 1

2

)

√
2Γ

(n

2

)
[

n∑

i=1

(xi − x)2

]1/2

and σ̂2 =
√

π

[2(n − 1)n]1/2

n∑

i=1

|xi − x|,

based on the mean deviation, where Γ (·) denotes
the Euler gamma function. Each estimate is unbiased
for estimating σ . It is known that σ̂1 is the uniformly
minimum variance unbiased (MVU) estimator of
σ for each fixed sample size. So in fixed samples,
σ̂1 is more efficient than σ̂2. An interesting question
would be if, even asymptotically, it has an ARE > 1.
Using standard methods of large sample theory, it is
seen that

√
n(σ̂1 − σ) → N(0, σ 2/2) and

√
n(σ̂2 −

σ) → N(0, [(π − 2)/2]σ 2) in distribution as n →
∞. Thus, applying the definition of the ARE, the
ARE of σ̂1 with respect to σ̂2 is π − 2, which is
indeed larger than 1.

Efficient Estimates

A question of natural interest is the following: is
there such a thing as a “most efficient” estimate
(see Efficiency and Efficient Estimators), and
how do we formulate such a concept? It turns
out that in parametric estimation problems, it is
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indeed possible to easily formulate such a concept.
Thus, suppose X1, X2, . . . , Xn are independent
observations from a population with density f (x|θ).
The quantity I (θ) = −Eθ [ d2f (x|θ)/ dθ2], whenever
the definition makes sense, is called the Fisher
information function. Let θ̂ be any estimate of θ that
is consistent and asymptotically normal, i.e.

√
n(θ̂ −

θ) → N(0, σ 2(θ)). Then, under some (frequently
satisfied) regularity conditions on the density f (x|θ),
it is true that σ 2(θ) ≥ 1/I (θ) (exceptions may occur
at a “few” values of θ ; this phenomenon is known
as superefficiency, but we will not worry about this).
Thus, any estimate θ̂ of θ which actually attains the
bound σ 2(θ) ≡ 1/I (θ) can be legitimately called an
efficient estimate of θ .

In a given problem there are usually many
efficient estimates of the unknown parameter θ .
Standard methods of estimation typically result in
efficient estimates, although in finite samples they
may have different variances, biases, etc. This
reinforces the fundamental issue that efficiency
and ARE are intrinsically asymptotic indices in
nature, but one hopes that if one estimate is more
efficient than another according to the definition of
ARE, in moderate samples it outperforms the other
estimate as well. Among the standard methods of
point estimation, maximum likelihood estimates and
Bayes estimates typically are all efficient estimates,
although exceptions to these general phenomena can
and do occur. For instance, if the number of nuisance
parameters grows with an increasing sample size,
then maximum likelihood estimates of the most
important parameter will usually not be efficient.
Also, method of moments estimates may not be
efficient even in very simple problems.

Other Measures of Efficiency

Besides point estimation, another very important
problem of statistics is that of hypothesis testing. As
in point estimation, there are usually many reasonable
tests of a specified hypothesis and it is useful to
have a concept of efficiency of one test with respect
to another. Various efficiency measures have been
proposed here too, primarily among them Pitman
efficiency and Bahadur efficiency.

The Pitman efficiency is defined in the following
way: fix a type I error probability or level α,
fix an alternative θ , and specify a desired power

1 − β at this alternative. Let ni(α, β, θ) denote the
minimum sample size required by the ith test, i =
1, 2, to achieve this goal. The Pitman efficiency of
the first test with respect to the second is taken
as the limit of the ratio n2(α, β, θ)/n1(α, β, θ) as
the alternative θ → θ0 at a suitable rate, where θ0

is exactly (the) boundary between the null and the
alternative hypothesis.

Of course, there are a number of subtle issues
involved here. Dependence of this limit on α and β

would make universal interpretation of the efficiency
value difficult. Also, the limit itself should exist
for the definition to make any sense. Finally, the
boundary value θ0 may not be unique. In almost
all problems that commonly occur, fortunately these
subtleties do not cause any problems and one has a
quite good efficiency measure.

Bahadur efficiency proceeds along the same lines,
except that one lets α tend to zero, keeping the
alternative θ fixed. Thus the Bahadur efficiency can
depend on both θ and the desired particular power
1 − β. Fortunately, again, usually dependence on β

does not occur, although dependence on θ does. Thus,
in contrast to the Pitman measure of efficiency, which
is usually one single number, the Bahadur efficiency
measure is a curve or a function – a function of
the specified alternative θ . This is actually good
in some sense, as one has an efficiency measure
that discriminates between two competing tests based
on which alternative values are really important in
the given context. Bahadur’s original approach [3]
was to compare the rates at which the P values
corresponding to the two tests converge to zero at
the specified θ . However, the two descriptions are
equivalent.

Example 3 Suppose X1, X2, . . . , Xn are indepen-
dent observations from the double exponential den-
sity (1/2) exp(−|x − θ |) and we wish to test H0: θ ≤
0 vs. H1: θ > 0. The following two tests appear to
be reasonable (see Sign Tests):

1. Sign test.
Count N = number of sample values > 0.
Reject H0 if N is large.

2. Median test.
Find the median M of the sample values.
Reject H0 if M is large (large positive).

The exact critical values for each test (i.e. what is
to be regarded as a “large” value) can be found
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by large-sample considerations (or even exactly,
although it may involve numerical computing and
randomization).

Now, it turns out that the Pitman efficiency of
the sign test with respect to the median test is 1. So
the Pitman measure does not discriminate between
the two tests. Interestingly enough, the Bahadur
efficiency does, and indeed, Sievers [27] shows that
the Bahadur efficiency of the sign test with respect
to the median test equals

eB(θ)= log
1

{4g(θ)[1−g(θ)]}1/2
{log 2+g(θ) log g(θ)

+ [1 − g(θ)] log[1 − g(θ)]}−1,

where g(θ) = (1/2)e−θ .
eB(θ) is seen to be > 1 for any θ > 0, establishing

for double exponential data that the sign test could
be regarded as a better choice than the median
test. Table 1 gives the Bahadur efficiency at selected
values of θ .

Relevance for Finite Samples

An important practical question is how closely the
ARE approximates the ratio of the variances of
two estimators in finite samples. It is difficult to
give a very general answer to this, but in many
examples the fixed sample relative efficiency seems
to converge monotonically to the asymptotic relative
efficiency, and the approximation becomes quite
close for sample sizes ≥ 25. For example, for
estimating the mean of a normal distribution, the
ARE of the median with respect to the mean differs
from the asymptotic value 2/π by at most 6.8%
for sample sizes ≥ 20. Trimmed means are also
common alternatives to usual sample averages as
estimates of population means (see Trimming and
Winsorization). A certain amount of trimming of
the smallest and the largest observations causes the
effect of potential outliers to be decreased and has
other nice advantages. Usually 5 or 10% trimming
from each side is recommended; see [6]. For the 10%
trimmed mean estimate for estimating a normal mean,

Table 1

θ 0 0.1 0.25 0.5 1 2 5
eB(θ) 1 1.003 1.017 1.057 1.182 1.545 3.214

the fixed sample relative efficiency with respect to
the regular mean differs by at most 2.75% from
the asymptotic value 0.975 for sample sizes ≥ 20.
Thus, there is some empirical evidence that the ARE
reasonably approximates the fixed-sample efficiency
in moderate sample sizes. Expansions of the fixed
sample quantity in which the asymptotic quantity is
the leading term have also been attempted, frequently
on a case-by-case basis. (See [2, 12, 18], and [22] for
such developments.)

Sensitivity with Respect to Underlying
Distribution

It is entirely possible that one estimate or test is
more efficient than another if samples are obtained
from one distribution, but loses these advantages,
maybe drastically, for a fairly similar distribution.
The comparison of the sample median and the
sample mean is a good illustration. The mean has
an efficiency of 1.57 with respect to the median
if samples are known to come from a normal
distribution, but this efficiency drops to 0.5 if
data instead come from double exponential density,
described before. Yet it is not easy to distinguish
between the two distributions from moderate samples
by using common methods, graphical or otherwise.
Bickel & Lehmann [6] provide some concrete results
in this direction. For example, they show that
if samples are obtained from any density that is
symmetric and unimodal about the mean, then the
5% trimmed mean has an ARE of at least 0.83 with
respect to the mean for estimating the population
mean, and, of course, for many such densities the
efficiency is substantially larger than 1. This may be
used as an argument for using the 5% trimmed mean
if concerns about the exact density from which one
is sampling exist. More information on this can be
found in [23] and [28].

Concepts of Higher-order Efficiency

As stated before, in parametric estimation problems,
it is customary to have many estimates which are
fully efficient. It then becomes necessary, at least
from a theoretical standpoint, to have a criterion
to distinguish among them. The concept of second-
order efficiency (now usually referred to as third-
order efficiency) was introduced to address this issue.
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(See [25, 26, 1, 14], and [16] for later developments.)
The idea is to derive an expansion for n times the
variance of a statistic, in which the leading term
is the Fisher information function and subsequent
terms decrease in reciprocals of powers of 1/n.
The second term is used as a comparison among
different estimators, or simply for selecting an
estimator which is first- as well as second-order
efficient. In a peculiar result, Pfanzagl [24] showed
that often first-order efficiency automatically implies
second-order efficiency as well, making it necessary
to consider higher-order efficiencies as a basis
for comparison and selection. Bickel et al. [9] and
Ghosh [15] expand on these results and ideas.

Complex Models

Parametric models using a given functional form
for the density are often convenient choices, and
perhaps restrictive. Similarly, the assumption that the
sample observations are independent also often does
not meet the criteria of realism. Real data often have
a positive serial correlation or have a time series
character. Models broader than parametric can be
of various types; nonparametric models have been
the popular alternative. In standard nonparametric
modeling, very little is assumed about the density
besides some minimal features, mostly to do with
shape and symmetry, unimodality, etc. Intermediate
between fully parametric and fully nonparametric
models are the recent semiparametric models. It
should be mentioned that complexity may arise not
just from more complex models, but also because
the quantity to be estimated is more complex than a
simple thing like a mean or variance. For example,
Bickel & Ritov [8], and Hall & Marron [20] consider
estimation of

∫
[f ′(x)]2 dx, the integrated squared

derivative of a density.
Efficient estimation in complex models has a large

literature, of a substantially more difficult nature,
as expected. The literature includes [4], [7], [10],
[13], [19], [21], and [29]. Efficiency for dependent
samples also has a substantial literature, but is more
scattered. Grenander & Rosenblatt [17] is a classic
reference which established efficiency of the sample
mean for estimating the mean of a stationary process
under quite mild conditions. Brockwell & Davis [11]
give more information and discuss more problems.
Efficient estimation in a relatively recent class of

time series models known as long memory processes
appears to be of a totally different qualitative nature.
This can be seen in [5].
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Attributable Fraction in
Exposed

The attributable fraction in the exposed (AFE) is
defined as the proportion of disease cases that can be
attributed to an exposure factor among the exposed
subjects only [2–5]. It can be formally written as

AFE = [Pr(D|E) − Pr(D|E)]

Pr(D|E)
, (1)

where Pr(D|E) is the probability of disease in the
exposed individuals, E, and Pr(D|E) is the hypo-
thetical probability of disease in the same subjects
but with all exposure eliminated. It is also called the
attributable risk among the exposed [1, 3] and can
be rewritten as

AFE = (RR − 1)

RR
, (2)

a one-to-one increasing function of the relative risk
(RR). It can be seen to equal the attributable risk in
the special case of an exposure present in all subjects
in the population (exposure prevalence of 1).

When the exposure factor under study is a risk
factor (RR > 1), it follows from the above defini-
tion that AFE lies between 0 and 1, and it is usually
expressed as a percentage. AFE increases with the
strength of the association between exposure and dis-
ease measured by the relative risk and tends to 1
for an infinitely high relative risk. AFE is equal to
zero when there is no association between exposure
and disease (RR = 1). Negative values of AFE cor-
respond to a protective exposure (RR < 1), in which
case AFE is not a meaningful measure.

While AFE has some usefulness in measuring the
disease-producing impact of an association between
exposure and disease, it is much less useful than the
attributable risk and does not share the same public
health interpretation. This is because it is only a one-
to-one transformation of relative risk. It does not
take the prevalence of exposure into account, and,
for instance, it can be high even if the prevalence of
exposure is low in the population. Moreover, while
AR estimates for several risk factors can be compared
meaningfully to assess the relative importance of

these risk factors at the population level, such is
not the case with AFE estimates. Indeed, each AFE

estimate refers to a different group which is specific to
the risk factor under consideration (subjects exposed
to that risk factor). However, one advantage of AFE

over attributable risk is that, since it does not depend
on the prevalence of exposure, portability from one
population to another is less problematic than with
attributable risk and depends only on the portability
of relative risk.

Issues of estimability and estimation of AFE

are the same as those for relative risk. AFE can
be estimated from the main types of epidemio-
logic studies (cohort, case–control, cross-sectional,
case–cohort). Point estimates are obtained from point
estimates of relative risk (odds ratio in case–control
studies). Variance estimates can be obtained from
variance estimates of relative risk (odds ratio in
case–control studies) through the delta method [6],
which yields:

var(ÂF E) = var(R̂R)

RR4
, (3)

where R̂R denotes a point estimate of relative risk
(odds ratio in case–control studies), and ÂF E denotes
a point estimate of AFE.
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Attributable Risk

The attributable risk (AR), first introduced by Levin
[45], is a widely used measure to assess the public
health consequences of an association between an
exposure factor and a disease. It is defined as the
proportion of disease cases that can be attributed to
exposure and can be formally written as:

AR = [Pr(D) − Pr(D|E)]

Pr(D)
, (1)

where Pr(D) is the probability of disease in the
population, which may have some exposed (E) and
some unexposed (E) individuals, and Pr(D|E) is
the hypothetical probability of disease in the same
population but with all exposure eliminated.

The AR takes into account both the strength of
the association between exposure and disease and the
prevalence of exposure in the population. This can
be seen, for instance, through rewriting AR from (1),
using Bayes’ theorem, as [15, 53]:

AR = [P(E)(RR − 1)]

[1 + P(E)(RR − 1)]
, (2)

a function of the prevalence of exposure, P(E), and
the relative risk RR. Therefore, while the relative
risk is mainly used to establish an association in eti-
ologic research, AR has a public health interpretation
as a measure of preventable disease. A high relative
risk can correspond to a low or high AR depending
on the prevalence of exposure, which leads to widely
different public health consequences. One implica-
tion is that, while the relative risk is often portable
from one population to another, as the strength of the
association between disease and exposure might vary
little among populations, portability is not a prop-
erty of AR, as the prevalence of exposure may vary
widely among populations that are separated in time
or location.

Range

When the exposure factor under study is a risk factor
(relative risk > 1), it follows from the above defini-
tion that AR lies between 0 and 1, and is, therefore,
very often expressed as a percentage. AR increases
both with the strength of the association between

exposure and disease measured by the relative risk,
and with the prevalence of exposure in the popula-
tion. A prevalence of 1 (or 100%) yields a value of
AR equal to (RR − 1)/RR, and AR tends to 1 for an
infinitely high relative risk provided the prevalence is
greater than 0.

AR is equal to zero when either there is no
association between exposure and disease (RR = 1)

or no subject is exposed in the population.
Finally, negative values of AR are obtained for

a protective exposure (relative risk < 1). In this
case, AR varies between 0 and −∞ and AR is
not a meaningful measure. Either one must consider
reversing the coding of exposure to go back to the
situation of a positive AR or one must consider a
different parameter; namely, the prevented fraction
(see Preventable Fraction and the section “Related
Quantities” below).

Synonyms

Numerous terms have been used in the literature
instead of attributable risk. Attributable risk was the
term originally introduced by Levin [45], but it is
not a universally accepted term because (i) the word
“risk” may be misleading as AR does not represent a
risk in the usual sense and (ii) it may not allow a clear
enough distinction from the more restrictive con-
cept of attributable risk (or fraction) in the exposed
(see Attributable Fraction in Exposed and the
section “Related Quantities” below). Most common
alternative terms are population attributable risk [47]
and population attributable risk percent [15], eti-
ologic fraction and fraction of etiology [53], and
attributable fraction [33, 43, 57]. Up to 16 terms have
been used to denote attributable risk in the litera-
ture [26].

Interpretation and Usefulness

AR is used to assess the potential impact of preven-
tion programs aimed at eliminating exposure from
the population. It is often thought of as the fraction
of disease that could be eliminated if exposure could
be totally removed from the population.

However, this interpretation can be misleading
because, for it to be strictly correct, the three fol-
lowing conditions have to be met. First, estimation
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of AR has to be unbiased (see the section “Esti-
mation” below). Secondly, the exposure factor has
to be causal rather than merely associated with the
disease (see Causation). Thirdly, elimination of the
risk factor has to be without having any effect on the
distribution of other risk factors. Indeed, as it might
be difficult to alter the level of exposure to one fac-
tor independently of other risk factors, the resulting
change in disease load might be different from the
AR estimate [74]. For these reasons, various authors
elect to use weaker definitions of AR, such as the
proportion of disease that can be related or linked,
rather than attributed, to exposure [53].

Despite these limitations, AR can serve as a useful
guide in assessing and comparing various prevention
strategies. It should be noted that authors have
estimated AR in situations where causality was far
from being established, and the association between
exposure and disease still tentative and controversial.
For instance, Alavanja et al. [2] estimated the risk
of lung cancer attributable to elevated saturated fat
intake in a population of nonsmoking women in the
state of Missouri. They interpreted their estimate
as quantifying the potential impact of eliminating
elevated saturated fat exposure were it later proven
to be causally related to lung cancer. This use of
AR is somewhat controversial, the more so when
the association is not well established, and it needs,
therefore, to be presented with proper qualification.

Estimation of AR can usefully be complemented
by applying the AR estimate to the incidence rate
of the disease in the population to see not just
what proportion of disease, but how many cases per
unit of time are attributable to exposure. Moreover,
multiplying an estimate of 1 − AR times an estimate
of the incidence rate in the population yields an
estimate of the incidence rate in the unexposed
(baseline incidence rate), which can be useful in
a perspective of etiologic research. For instance,
Silverman et al. [66], estimated the risk of pancreatic
cancer attributable to alcohol in white and black
men separately in the United States. They found that
the substantial difference in incidence rates between
black and white men (16.0 vs. 12.8 per 100 000
person-years, a 25% higher rate in black men) could
be explained in part by the higher AR for alcohol
among black men, since the race difference among
the unexposed (i.e. having removed the contribution
of alcohol) was reduced by almost half (14.2 vs.
12.5 per 100 000 person-years, a 14% higher rate in

black men). The higher AR estimate among black
men was itself related to both a higher relative risk
estimate for elevated alcohol consumption and a
higher prevalence of that exposure among black men.

Finally, AR can be considered for not just one,
but several, risk factors in combination. One can
be interested in the potential effect on disease load
of removing these risk factors from the population.
Alternatively, one might interpret an AR estimate
for all known risk factors as a gauge of what is
known about the disease etiology, and its complement
to 1 as a gauge of what remains unexplained by
known risk factors. For instance, Madigan et al. [48]
estimated at 41% the AR of breast cancer for well-
established risk factors; namely, later age at first
birth, nulliparity, family history of breast cancer in a
first-degree relative and higher socioeconomic status.
They argued in favor of more etiologic research to
find new risk factors, whether genetic, hormonal,
or biological, to account for the remaining 59% of
unexplained breast cancer cases. In fact, most authors
in that field have come to similar conclusions and the
AR figure of 50% or less is a useful indicator and
reminder of the need for new research directions in
breast cancer etiology.

Properties

Two basic properties of AR need to be emphasized.
First, AR values greatly depend on the definition of
the reference level for exposure (unexposed or base-
line level). A larger proportion of subjects exposed
corresponds to a more stringent definition of the ref-
erence level and, as one keeps depleting the reference
category from subjects with higher levels of risk,
AR values and estimates keep rising. This property
has a major impact on AR estimates as was illus-
trated by Benichou [5] and Wacholder et al. [71]. For
instance, Benichou [5] found that the AR estimate of
esophageal cancer for an alcohol consumption greater
or equal to 80 g/day (reference level of 0–79 g/day)
was 38% in the Ille-et-Vilaine part of France [70],
and increased dramatically to 70% for an alcohol con-
sumption greater or equal to 40 g/day (more restric-
tive reference level of 0–39 g/day). This property
plays a role whenever studying a continuous expo-
sure with a continuous gradient of risk and when
there is no obvious choice of threshold. Therefore,
AR estimates must be reported with reference to a
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clearly defined baseline level in order to be inter-
preted validly. In the previous example, one notes
that the interpretation in preventive terms would dif-
fer for the two AR estimates. One would conclude
that 70% (respectively 38%) of all esophageal cancers
in Ille-et-Vilaine can be attributed to an alcohol con-
sumption of at least 40 g/day (respectively 80 g/day)
and could potentially be prevented by reducing alco-
hol consumption to less than 40 g/day (respectively
80 g/day).

The second main property is distributivity. If sev-
eral categories of exposure are considered instead of
just one, then the sum of the category-specific ARs
(see the section “Special Problems” below) equals the
AR calculated from combining those categories into
a single exposed category, regardless of the number
and the divisions of the categories that are formed [5,
71, 74], provided the reference category remains the
same. This property applies strictly to unadjusted AR

estimates and to adjusted AR estimates calculated
on the basis of a saturated model (see below) [5].
In other situations, it applies approximately [71]. For
instance, Wacholder et al. [71] used data on malig-
nant mesothelioma [67], and obtained an unadjusted
AR estimate equal to 82% for a nontrivial (moder-
ately low, medium, or high) likelihood of exposure
to asbestos, identical to the sum of the respective
category-specific AR estimates of 13%, 6%, and 64%
for moderately low, medium, and high likelihoods of
exposure. Thus, if an overall AR estimate for expo-
sure is the focus of interest, there is no need to break
the exposed category into several mutually exclusive
categories, even in the presence of a gradient of risk
with increasing exposure.

Estimability

AR can be estimated from the main types of epi-
demiologic studies, namely cohort, case–control,
cross-sectional, and case–cohort studies. It can
be seen immediately that all quantities in (1) are
estimable from all four types of studies except
case–control studies. For case–control studies, one
has to consider (2) and estimate P(E) from the pro-
portion exposed in the controls, making the rare-
disease assumption also involved in estimating odds
ratios rather than relative risks. Alternatively, one
can rewrite (1) using Bayes’ theorem in yet another

manner as

AR = Pr(E|D)(RR − 1)

RR
. (3)

In (3), the quantity Pr(E|D) can be directly estimated
from the diseased individuals (cases) and RR can
be estimated from the odds ratio. Therefore, AR is
estimable from case–control studies as well.

Often, cohort studies are based on groups with
a different prevalence of exposure than the general
population. This renders AR estimates obtained from
cohort studies less applicable to the general popula-
tion and might explain why AR is seldom estimated
from cohort studies.

Estimation

Since Levin [45] first introduced AR, there has
been a very active research in AR estimation and
numerous developments have appeared, particularly
in recent years. Case–control studies have been
the most explored. The outline given here applies
to cohort, case–control and cross-sectional studies,
unless stated otherwise. While AR is estimable from
case–cohort studies, no study of AR estimation meth-
ods seems to have been published, and case–cohort
studies will be considered separately (see the section
“Special Problems” below).

Unadjusted Estimation

From the three types of studies considered, it is easy
to obtain unadjusted (crude) AR estimates, either
from (2) or (3). No other factor than the exposure
of interest is considered, and the data are limited
to exposure and disease state. For instance, one
obtains the following estimate both from (2) and (3)
in case–control studies:

AR = (n1m0 − m1n0)

m0n
, (4)

where n0 and n1 respectively denote the numbers
of unexposed and exposed cases (n0 + n1 = n) and
m0 and m1 the numbers of unexposed and exposed
controls (m0 + m1 = m).

Variance estimates can be obtained from the
delta-method [60] by considering the following dis-
tributions. In case–control studies, the quantities n1

and m1 have independent binomial distributions
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with respective indexes n and m considered as fixed
(exposure is random conditional on disease status). In
cohort studies, the quantities n0 and n1 have binomial
distributions with respective fixed indexes n0 + m0

and n1 + m1 considered as fixed (disease status is
random conditional on exposure). In cross-sectional
studies, one has to consider the full (unrestricted)
multinomial model in which all four quantities n0,
n1, m0, and m1 come from a common multinomial
distribution with index n + m considered as fixed
(exposure and disease status are random).

Once a variance estimate is obtained, a stan-
dard confidence interval for AR can be constructed
based on the asymptotic normal distribution of AR.
Alternatively, Walter [73] suggested using the inter-
val based on the log transformed variable log(1 −
AR), and Leung & Kupper [44] based the interval
on the logit-transformed variable log[AR/(1 − AR)]
(see Transformations). Whittemore [77] noted that
the log-transformation yields a wider interval than
the standard interval for AR > 0. Leung & Kup-
per [44] showed that the interval based on the logit
transform is narrower than the standard interval for
values of AR strictly between 0.21 and 0.79, whereas
the reverse holds outside this range for positive val-
ues of AR. While the coverage probabilities of these
intervals have been studied in some specific situations
and partial comparisons have been made, no general
study has been performed to determine their relative
merits in terms of coverage probability.

Unadjusted estimates of AR are, in general,
biased, because they fail to take into account other
risk factors that confound the association between
exposure and disease. The problem is analogous to
estimation of relative risks or odds ratios, and has
been studied by several authors [53, 74–78]. It is one
of inconsistency rather than small-sample bias. Wal-
ter [75] showed that, if X1 and X2 are two binary
exposure factors and if one is interested in estimat-
ing an AR for X1, then the following applies. The
crude AR estimate is unbiased if and only if at least
one of the following two conditions is true:

1. X1 and X2 are independently distributed in the
population, that is:

Pr(X1 = 0, X2 = 0) Pr(X1 = 1, X2 = 1)

= Pr(X1 = 0, X2 = 1) Pr(X1 = 1, X2 = 0),

where level 0 denotes the absence of exposure
and 1 the exposed category.

2. Exposure to X2 alone does not increase disease
risk; that is:

Pr(D|X1 = 0, X2 = 1)

= Pr(D|X1 = 0, X2 = 0).

Therefore, if X2 acts as a true confounder of the asso-
ciation between exposure X1 and the disease, then
the crude estimate of AR is inconsistent, as is a
crude estimate of relative risk or odds ratio. When
neither condition 1 nor 2 is true, the direction of
the bias can be determined. If X2 alone increases
risk, then the bias is positive (AR is overestimated)
if X1 and X2 are positively correlated, and negative
if they are negatively correlated [75]. When consid-
ering several factors Xj(j = 2, . . . , J ), conditions 1
and 2 can be extended to a set of 2(J − 1) analo-
gous sufficient conditions concerning factors X1 and
Xj(j = 2, . . . , J ) as shown by Walter [75].

Adjusted Estimation – Inconsistent Approaches

Let us first note that two simple adjusted estimation
approaches discussed in the literature are inconsistent.
The first approach ever proposed to obtain adjusted
AR estimates, based on decomposing AR into expo-
sure and confounding effects [74], was shown to be
inconsistent [27] and, accordingly, bias was exhibited
in simulations for the crossover design [26, 27].
The approach based on using (2) and plugging in an
adjusted relative risk estimate (odds ratio estimate
in case–control studies), along with an estimate of
P(E), has also been advocated [15, 55], but it too
has been shown to yield inconsistent estimates [28,
32] of AR, and, accordingly, bias was exhibited in
simulations for the crossover design (i.e. under the
unrestricted multinomial model) [26, 27].

Two adjusted approaches based on stratification,
the Mantel–Haenszel approach and the weighted-
sum approach, yield valid estimates.

Adjusted Estimation – The Mantel–Haenszel
Approach

The Mantel–Haenszel (MH) approach has been dev-
eloped by Greenland [29] and Kuritz & Landis [38,
39]. It allows adjustment for one or more polychoto-
mous factors forming J joint levels or strata. It is
based on the formulation of AR as a function of the
relative risk (odds ratio in case–control studies) and
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the prevalence of exposure in diseased individuals, as
given by (3). One plugs in an estimate of Pr(E|D)

(given by the observed proportion of cases exposed)
and an estimate of the common adjusted relative risk
(odds ratio in case–control studies). The MH esti-
mate of the common odds ratio [49] can be used in
case–control studies, while MH-type estimates of the
common relative risk [36, 69] can be used in cohort
or cross-sectional studies.

Other choices than the MH estimator of odds ratio
or MH-type estimators of relative risk are possible,
and this approach could be more generally termed
the common relative risk (odds ratio in case–control
studies) approach. Other choices have been sug-
gested, such as an internally standardized mortal-
ity ratio [53] (see Standardization Methods) or the
maximum likelihood estimator from logistic regres-
sion [29]. MH-type estimators combine properties of
lack of (or very small) bias even for sparse data
(e.g. individually matched case–control data), good
efficiency except in extreme circumstances [10–12,
42], and the existence of consistent variance estima-
tors even for sparse data (“dually-consistent” variance
estimators) [29, 62].

While point estimation with the MH approach
is simple, variance estimation is more complex.
Variance estimators can be obtained either through
applications of the delta method [38, 39] or by rely-
ing on asymptotic properties of first derivatives of log
likelihood functions [29]. Finite sample properties
were studied by simulations under the assumption of
a common odds ratio or relative risk. It was found that
bias in estimating AR was negligible in case–control
studies with simple random sampling [38], strati-
fied random sampling [29] and individual match-
ing [39], as well as in cross-sectional studies [26,
27]. Variance estimates were also unbiased and cov-
erage probabilities close to nominal for those various
designs.

The crucial assumption in the MH approach is that
of a common or homogeneous relative risk or odds
ratio, which amounts to a lack of interaction between
the adjustment factor(s) and the exposure factor (no
effect modification). If interaction is present, the MH
estimator of AR is inconsistent, which was illus-
trated in simulations for the crossover design [26,
27]. Greenland [29] proposed a modification of the
MH approach, consisting in defining H levels out of
the original J levels formed by adjustment factors.
The H levels are defined so that, within each of them,

the odds ratio or relative risk can be considered as
homogeneous and is estimated separately. This con-
stitutes a possible solution although (i) the definition
of the H levels, which is critical to this modified
approach, is somewhat arbitrary in view of the low
power of tests to detect interaction, and (ii) finite
sample properties of this modified approach might not
be as favorable as the original MH approach and bias
might arise as with the weighted-sum approach (see
below). Indeed, this modified approach is a hybrid
approach, being intermediate between the MH and
weighted-sum approaches.

Adjusted Estimation – The Weighted-sum
Approach

This approach allows adjustment for one or more
polychotomous factors forming J levels or strata. AR

is written as a weighted sum of the ARs over strata,
namely [74, 77, 78]:

AR =
∑

j

wjARj , (5)

where ARj and wj are respectively the AR specific
to level j and the corresponding weight. Setting wj

as the proportion of diseased individuals (cases) in
level j yields an asymptotically unbiased estimator of
AR, which can be seen to be a maximum-likelihood
estimator [73, 77]. This choice of weights defines the
“case-load method”. An alternative choice of weights,
called “precision-weighting” is given by setting wj

as the inverse variance of the AR estimate in level j

over the sum of inverse variances over all levels [25].
It can be shown to be an inconsistent estimator of AR

except in special circumstances [27].
The weighted-sum approach does not require

the assumption of a common relative risk or odds
ratio. The odds ratios or relative risks are esti-
mated separately for each level j . No restrictions
are placed on them, which corresponds to a saturated
model (see Generalized Linear Model). Thus, the
weighted-sum approach not only accounts for con-
founding but also for interaction. It is interesting to
note that, under the assumption of a common relative
risk or odds ratio, the weighted-sum approach yields
the same expression for AR as the MH approach [5].

Point estimates are easy to obtain for the various
types of designs. Variance estimates can be obtained
from specializing the distributions described above
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(see the subsection “Unadjusted Estimation” above)
for each level j and applying the delta method [60].
They have been worked out for case–control de-
signs [77], cross-sectional designs [27] and cohort
designs [48].

Unlike the MH approach, small-sample bias is
an issue with the weighted-sum approach, at least
for case–control designs. Negative bias was found
in simulations of case–control studies for frequency
matching and simple random sampling of the con-
trols, under the assumption of a common odds ratio
and with case-load weighting [38, 77]. This bias was
substantial for sparse data and a high prevalence of
exposure in controls. Precision-weighting yielded a
positive bias of similar magnitude [38]. The strong
negative (or positive) bias renders the approach inap-
propriate for individual matching [38, 77]. A ten-
dency towards conservative variance estimates and
confidence intervals was also observed [38, 77]. For
crossover designs, however, the results were much
more favorable, as no severe small-sample bias was
found in simulations, whether or not a common rela-
tive risk was considered [26, 27].

Model-based Adjusted Estimation

The MH approach rests on the assumption of a com-
mon relative risk or odds ratio and yields biased
estimates in the case of interaction between exposure
and adjustment factors. The weighted-sum approach
does not impose any structure on the relative risk or
odds ratio and its variation with levels of adjustment
factors, but is plagued by problems of small sample
bias, particularly for case–control designs. A natural
alternative has been to develop adjustment procedures
based on regression models in order to take advan-
tage of their flexible and unified approach to efficient
parameter estimation and hypothesis testing.

Walter [74] first suggested this route, and others
have followed [22, 68]. Greenland [29] proposed a
modification of the MH approach for case–control
studies, consisting in substituting a maximum-likeli-
hood estimate of the odds ratio from conditional
logistic regression rather than the MH estimate of
odds ratio in (3), and he worked out the correspond-
ing variance estimate for AR. This modification could
be applied to other designs but retains the constraint
of a homogeneous odds ratio.

The full generality and flexibility of the regression
approach was first exploited by Bruzzi et al. [14] who

expressed AR as:

AR = 1 −
∑

j

∑

i

ρij

RRi|j
. (6)

In this formula, the first sum is taken over all J

levels formed by polychotomous adjustment factors,
and the second sum is taken over all exposure levels
(usually one unexposed level and one exposed level).
The quantity ρij represents the proportion of diseased
individuals (cases) with respective levels i and j

of exposure and adjustment factors, while RRi|j
represents the relative risk for level i of exposure
given level j of adjustment factors. An informal proof
of (6) can be found in Bruzzi et al. [14] and a more
formal one in Benichou [5].

The model-based approach based on (6) is very
general in several respects. First, while it was derived
by Bruzzi et al. [14] for case–control studies, it can
be used as well for cohort and cross-sectional stud-
ies. For all three designs, an estimate is obtained by
replacing ρij by the observed proportion among dis-
eased individuals, and by replacing RRi|j by a max-
imum likelihood estimate obtained from a regression
model. In case–control studies, an estimate of the
odds ratio from unconditional or conditional logis-
tic regression can be used; in cross-sectional studies,
an estimate of the relative risk from unconditional
logistic regression can be used; in cohort studies,
an estimate of the relative risk from unconditional
logistic regression or from Poisson regression can
be used. Models with additive forms have also been
proposed [17].

Secondly, since estimates of odds ratio and
relative risk are obtained from regression models,
this approach provides a unified framework for
testing hypotheses and selecting models. In particular,
interaction terms can be introduced in the model,
tested and retained or not, depending on the result of
the test. This approach allows control for confounding
and interaction and essentially parallels the estimation
of the relative risk or odds ratio. Parsimony can be
balanced against bias and the “best” model selected.
More elaborate models (e.g. models with interaction
terms) protect against inconsistency but can lead
to small-sample bias and larger random error,
while more parsimonious models have the reverse
properties.

Thirdly, the model-based approach is general
in that it includes the crude and other adjusted
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approaches as special cases [5]. The unadjusted
approach corresponds to models with exposure only.
The MH approach corresponds to models with expo-
sure and confounding, but no interaction terms
between exposure and confounding factors. The
weighted-sum approach corresponds to fully satu-
rated models with all interaction terms. Intermediate
models are possible; for instance, models allowing
for interaction between exposure and one confounder
only, or models in which the main effects of some
confounders are not modeled in a saturated way.

While point estimates are easy to obtain,
variance estimates are complex because they involve
covariances between quantities ρij and RRi ′ |j ′ that
are related implicitly (rather than explicitly) through
score equations. Benichou & Gail [8] worked out
a variance estimator for all types of case–control
studies (with simple random sampling, stratified
random sampling, frequency-matching and individual
matching of the controls), using an extension of
the delta method to implicitly related random
variables [7]. Basu & Landis [3] used a similar
approach for cohort and cross-sectional designs. In
case–control studies, simulations showed little or
no bias in most situations [8]. However, as the
data became sparse, negative bias was observed
with the unconditional logistic model [8]. This could
be remedied by the use of more parsimonious
models when appropriate or the use of conditional
logistic regression. Use of the latter approach,
however, remains a research issue, as variance
estimates have been derived for conditional logistic
regression only for the situation of individual
matching. Finally, variance estimates were unbiased
and coverage probabilities close to nominal for all
types of case–control studies in the aforementioned
simulations [8].

Greenland & Drescher [31] have made the point
that Bruzzi et al.’s estimator of AR is not exactly
a maximum likelihood estimator, and have proposed
a modified approach in order to obtain a maximum
likelihood estimator. The proposed modification con-
sists in using a model-based estimate of quantities ρij

rather than estimating these quantities from the corre-
sponding observed quantities. They developed point
and variance estimators for case–control designs
under the unconditional logistic model, and for cohort
designs under the unconditional logistic model and
the Poisson model. In case–control studies, their
approach can be seen as a generalization of Drescher

& Schill’s approach [24]. Variance estimators rely on
the delta method [60] rather than on the implicit delta
method [7] as for Bruzzi et al.’s estimator.

The two model-based approaches are identical
for fully saturated models, in which case they also
coincide with the weighted-sum approach. More gen-
erally, provided that the model is not misspecified,
the two approaches are practically equivalent, as
was illustrated by simulations for the case–control
design [31]. Point and variance estimators differed
only trivially between the two approaches, with mean
differences equal to less than 0.001 and correlations
in excess of 0.999. In simulations of the cohort design
for Greenland & Drescher’s modified model-based
approach, some downward bias was found, in a simi-
lar way to what had been observed for Bruzzi et al.’s
model-based approach for case–control designs [8],
and variance estimates appeared to be without sub-
stantial bias [31].

In practice, the two model-based approaches seem,
therefore, to differ very little. The maximum likeli-
hood approach might be more efficient for small
samples, although no difference was observed in
simulations of the case–control design even for
samples of 100 cases and 100 controls. The maximum
likelihood approach might be less robust to model
misspecification, however, as it relies more heavily
on the model for the relative risk or odds ratio. In
one circumstance, the distinction between the two
approaches is unequivocal. The modified approach
does not apply to the conditional logistic model, and
if that model is to be used (notably, in case–control
studies with individual matching), Bruzzi et al.’s
original approach is the only possible choice.

Special Problems

Case–Cohort Design

In the case–cohort design, information on exposure
is gathered only in a subcohort of subjects randomly
selected from the original cohort and among subjects
who develop the disease [59]. Case–cohort data con-
tain information on the prevalence of exposure and
allow estimation of the relative risk. Therefore, AR is
estimable from case–cohort data, and all estimation
methods presented above could, in principle, be used
to estimate AR. However, the details have not been
worked out in the literature and variance estimators
may prove complex to derive.
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Risk Factor with Multiple Levels of Exposure

It has been seen above that, because of the distributive
property (see the section “Properties” above), it is
sufficient to consider one overall exposed level to
estimate AR. However, several levels of exposure are
worth considering when estimates of AR at specified
levels are of interest.

The concept of partial or level-specific AR cor-
responds to the proportion of disease cases that can
be attributed to a specified level of exposure, and
may have important policy implications for screen-
ing groups at highest risk of disease, for instance [21,
53, 74]. All estimation methods described above
can be extended to produce such AR estimates. In
particular, Denman & Schlesselman [21] have devel-
oped unadjusted estimates for case–control designs.
The model-based approach lends itself naturally to
this problem, as (6) need only be slightly mod-
ified (all RR are set equal to 1 in it, except
those for the exposure level of interest). Use of
the model-based approach is illustrated in Cough-
lin et al. [16] who considered the esophageal can-
cer case–control data mentioned above (see the
section “Properties” above) and showed that the AR

for “moderate” drinkers (40–79 g/day) was higher
than that for heavy drinkers (120+ g/day) (27%
vs. 22%), suggesting that prevention policies target-
ing “moderate” drinkers might be potentially more
effective than those aimed at heavy drinkers in
that population.

Finally, AR estimates have been developed for
a continuous exposure [8], but their main interest is
not for AR estimation but, rather, for the estimation
of a related quantity; namely, the generalized impact
fraction (see below).

Multiple Risk Factors

When there are several risk factors at play, it is useful
to estimate AR for each risk factor separately as
well as an overall AR for all risk factors jointly.
Contrary to some investigators’ intuition, the sum
of AR estimates for each risk factor does not equal
the overall AR except in special circumstances.
Walter [76] showed that the equality holds for two
risk factors if and only if either no subject is exposed
to both risk factors or the effect of the two risk factors
on disease incidence is additive. This generalizes
into a set of J sufficient conditions when more

than two factors forming J levels are taken into
account [76]. Another important result is that, if the
risk factors are statistically independent and their
joint effect on disease incidence is multiplicative (i.e.
no interaction on a multiplicative scale is present),
then the complement to 1 of the overall AR is equal
to the product of the complements to 1 of the separate
ARs [14, 53, 74].

Finally, it has been recommended to consider a
single exposed level defined by exposure to at least
one risk factor, and a reference level defined by
exposure to no risk factor, in order to estimate the
overall AR for several risk factors [5, 71]. However,
this procedure, while appealingly simple, can lead to
a very small reference level and thus a very unstable
AR estimate. For this reason, some authors prefer
to use the model-based approach (6) and retain one
parameter for each exposure factor in an overall
relative risk or odds ratio model to obtain a more
stable AR estimate [20, 40].

Misclassification of Exposure

The effects of misclassification of exposure have
been studied by several authors [35, 71, 76]. AR has
a “canceling feature” [76] in that misclassification
may result in compensatory effects. For example,
if misclassification of exposure is nondifferential,
reduced specificity of exposure classification (marked
by the presence of false positive subjects in terms
of exposure) biases the odds ratio or relative risk
towards the null (see Bias Toward the Null), but
exposure prevalence increases, so that the net result is
an absence of bias. However, still for nondifferential
misclassification, reduced sensitivity (marked by the
presence of false negative subjects in terms of
exposure) biases AR estimates towards the null.
Hsieh & Walter [35] gave a formal proof of this
result and Wacholder et al. [71] a heuristic proof
based on the distributive property of AR. Moreover,
this downward bias increases with the prevalence
of exposure.

Thus, in order to minimize bias in estimating
AR, a sensitive classification scheme is an appro-
priate strategy, even when specificity is exceedingly
low. In other words, the estimate of AR is unbiased
as long as all exposed individuals are classified as
exposed, regardless of the proportion of unexposed
subjects who are misclassified nondifferentially as
exposed. This is illustrated by Wacholder et al. [71]
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with case–control data on mesothelioma and asbestos
exposure (see the section “Properties” above). As
exposure to asbestos is hard to prove, there are
categories with “moderately low” or “medium” prob-
ability of exposure in their example. They recom-
mend to consider these subjects as exposed in order
to obtain a perfectly sensitive classification. How-
ever, there is a price to pay when high sensitivity
is obtained at the expense of reduced specificity. Pre-
cision decreases (the variance of the AR estimate
increases) when the definition of exposure encom-
passes levels of exposure that have the same risk of
disease as the unexposed [71]. Therefore, there might
be a tradeoff between bias and precision.

If misclassification is differential with diseased
subjects (cases) being falsely classified as exposed
more often that nondiseased subjects (controls), then
the estimate of AR, as well as of relative risk or odds
ratio, will be biased upward [71].

Finally, it should be noted that Hsieh studied the
effect of disease status misclassification (“outcome
misclassification”) on AR estimation, and defined
conditions under which bias occurs in this less
common situation [34].

Use of AR to Determine Sample Size

Browner & Newman [13] derived formulas for sam-
ple size determination in case–control studies that
are based on AR instead of odds ratio. Upon com-
paring sample size and power estimates based on the
detection of a given AR with conventional estimates
based on the detection of a given odds ratio, they
found the following results. For a rare dichotomous
exposure, case–control studies having little power
to detect a small odds ratio may still have ade-
quate power to detect a small AR. However, even
relatively large case–control studies may have inade-
quate power to detect a small AR when the exposure
is common. Such sample size calculations may be
useful when the public health importance of an asso-
ciation is of primary interest, as further discussed by
Coughlin et al. [16] and Adams et al. [1].

Ordinal Data

Basu & Landis [4] considered the situation where the
disease classification is not dichotomous (diseased,
nondiseased) but includes more than two ordered
categories (e.g. none, mild, moderate, severe) and the

exposure factor has at least two ordinal levels (e.g.
none, low, medium, high exposure). They extended
the concept of AR to that special case in order
to quantify the potential extent of disease reduction
in the target population relative to each increasing
level of the ordinal disease classification, which could
be realized if the exposure factor were eliminated.
They developed model-based estimates based on a
cumulative logit model, assuming a proportional odds
structure for cohort, case–control and cross-sectional
designs, and obtained corresponding variance esti-
mates based on the delta method for implicitly related
random variables [7].

Recurrent Disease Events

Pichlmeier & Gefeller [58] extended the concept of
AR to diseases that may recur, such as some skin dis-
eases (e.g. urticaria, psoriasis) or chronic diseases like
asthma, epilepsy, or multiple sclerosis. They defined
the “recurrent attributable risk” as the proportion of
disease events (first occurrence plus recurrences) that
can be attributed to an exposure factor. This con-
cept is of interest for risk factors that also act as
prognostic factors of recurrences. Point estimators
were derived for cohort, case–control and cross-
sectional designs based on the unadjusted, weighted-
sum and MH approaches. Corresponding approximate
variance estimators were developed using the delta
method [60].

Conceptual Problems

The public health interpretation of AR refers to
the proportion of cases that are excess cases, i.e.
that would not have occurred if exposure had not
occurred. Greenland & Robins [33, 61] identified a
different concept. From a biologic or legal perspec-
tive, one might refer to cases for which exposure
played an etiologic role, i.e. cases for which expo-
sure was a contributory cause of the outcome. They
argued for the distinction between “excess fraction”
and “etiologic fraction” to refer to the standard and
new concept, respectively. While the “excess frac-
tion” can be estimated under the usual conditions
for validity of an epidemiologic study (e.g. lack of
biases), estimation of the etiologic fraction requires
nonidentifiable biologic assumptions about exposure
action and interactions [61]. It is true, however, that
the interpretation of the excess fraction also depends
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on considerations of causality, as discussed in the
section “Interpretation and Usefulness” above.

Related Quantities

AR in Exposed

The attributable risk in the exposed or attributable
fraction in the exposed (AFE) is defined as the
proportion of disease cases that can be attributed to an
exposure factor among the exposed subjects only [15,
45, 47, 53]. It can be formally written as:

AFE = [Pr(D|E) − Pr(D|E)]

Pr(D|E)
, (7)

where Pr(D|E) is the probability of disease in the
exposed individuals (E) and Pr(D|E) is the hypo-
thetical probability of disease in the same subjects
but with all exposure eliminated.

Excess Incidence

Excess incidence δ is defined as the difference
between the incidence rate in the exposed and the
incidence rate in the unexposed, or δ = λ1 − λ0 [9,
47, 51]. It takes into account the incidence of the
disease in the unexposed and the strength of the
association between exposure and disease, as it can
be rewritten as δ = λ0(RR − 1). It can be seen to
equal the numerator of the AR in the exposed (7)
if the latter is expressed in terms of incidence
rates rather than probabilities. Its main interest lies,
however, at the individual, rather than the popu-
lation, level. It quantifies the difference in inci-
dence that can be attributed to exposure for an
individual. Other terms have been used to denote
this quantity; namely, “excess risk” [63], “Berk-
son’s simple difference” [74], “incidence density
difference” [54], “excess prevalence” [74], or even
“attributable risk” [50, 63], which may have intro-
duced some confusion. Moreover, it should not be
confused with the concept of “excess fraction” [33,
61] (see above). Estimation of δ pertains to estimation
of incidence rates.

Prevented Fraction

When considering a protective exposure or interven-
tion, an intuitively appealing alternative to attributable

risk (AR) is the prevented fraction (PF). The pre-
vented fraction measures the impact of an association
between a protective exposure and disease at the pop-
ulation level. It is sometimes called the preventable
fraction, although this term may have a different
meaning. It is defined as the proportion of disease
cases averted by a protective exposure or interven-
tion [53]. It can be written formally as:

PF = [Pr(D|E) − Pr(D)]

Pr(D|E)
, (8)

where Pr(D) is the probability of disease in the
population, which may have some exposed (E) and
some unexposed (E) individuals, and Pr(D|E) is
the hypothetical probability of disease in the same
population but with all (protective) exposure elimi-
nated. Another formulation of PF is the proportion
of cases prevented by the (protective) factor or inter-
vention among the totality of cases that would have
developed in the absence of the factor or interven-
tion [53], which is why the denominator in (8) is the
hypothetical probability of disease in the population
in the absence of the protective factor.

Generalized Impact Fraction

The generalized impact fraction (or generalized
attributable fraction) was introduced by Walter [75]
and Morgenstern & Bursic [56] as a measure that
generalizes AR. It is defined as the fractional
reduction of disease that would result from
changing the current distribution of exposure in the
population to some modified distribution; namely,
[Pr(D) − Pr∗(D)]/ Pr(D), where Pr(D) and Pr∗(D),
respectively, denote the probability of disease
under the current distribution of exposure and
under the modified distribution of exposure. AR

corresponds to the special case in which the modified
distribution puts unit mass on the lowest risk
configuration and can be used to assess interventions
aimed at eliminating exposure. A level-specific AR

corresponds to the special case where the modified
distribution of exposure differs from the current
distribution in that subjects at the specified level of
exposure are brought to the lowest risk configuration
and can be used to assess interventions aimed at
eliminating exposure in that specified group only.
The generalized impact fraction is a general measure
that can be used to assess various interventions,
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targeting all subjects or subjects at specified levels,
and aimed at modifying the exposure distribution
(reducing exposure), but not necessarily eliminating
exposure.

It has been used, for instance, by Lubin &
Boice [46] who considered the impact on lung cancer
of a modification in the distribution of radon expo-
sure consisting in truncating the current distribution
at various thresholds. Wahrendorf [72] used this con-
cept to examine the impact of various changes in
dietary habits on colorectal and stomach cancers.

Methods to estimate the generalized impact frac-
tion are similar to methods for estimating AR.
However, unlike for AR, it might be useful to
retain the continuous nature of risk factors to define
the modification of the distribution considered (for
instance, a shift in the distribution), and extensions of
methods for estimating AR for continuous factors [8]
are useful. Drescher & Becher [23] proposed extend-
ing the model-based approaches of Bruzzi et al. [14]
and Greenland & Drescher [31] to estimate the gen-
eralized impact fraction in case–control studies and
considered categorical as well as continuous exposure
factors.

Probability of Causation – Assigned Share

Cox [18, 19] proposed a method of partitioning
the increase in disease risk among several risk
factors for subjects jointly exposed to them. The part
corresponding to each factor is called the assigned
share or probability of causation [6, 18, 19, 41,
64, 65]. It is useful in a legal context to assign
shares of responsibility to risk factors in tort liability
cases but does not have a population interpretation,
unlike AR [6]. The assigned share enjoys the additive
property that the sum of separate assigned shares for
two (or more) factors is equal to the joint assigned
share for these factors [19].

Prospects and Conclusion

Although most important issues about AR estimation
have been settled, research is still needed on specific
points, such as the use of resampling methods
(see Bootstrap Method) to estimate variance and
confidence intervals [30, 37], the development
of model-based estimates based on conditional
logistic regression for stratified or frequency-
matched, case–control studies [8], improvements of

the weighted-sum approach in case–control studies,
or the development of AR estimators for case–cohort
designs and complex survey designs (e.g. cluster
sampling). Research is also needed for issues
regarding quantities related to AR (see above),
special problems (see above), and for software
development [52] (see Software, Biostatistical).

The biggest challenge at this point, however,
might be the need to encourage the proper use
and interpretation of AR in practice and to make
investigators aware of correct estimation techniques.
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Autocorrelation Function

An autocorrelation is simply a correlation between
two random variables Xt and Xs that are both part
of the same time series (or other stochastic process,
e.g. a spatial random field). From a single realization
of the process it is possible to estimate the autocor-
relations only if the process may be assumed to be
second-order stationary, so that the autocorrelation
between Xt and Xs depends only on the difference
or lag between t and s, τ = t − s. (In a spatial pro-
cess, the autocorrelation function may also depend
on the direction of the displacement between t and s

unless the process is isotropic). For second-order sta-
tionary processes, the autocorrelation function (ACF),
denoted ρτ , is defined as the correlation between vari-
ables separated by a lag τ .

If the process has been observed at equally spaced
points, t = 1, . . . , N , then the autocorrelation func-
tion ρτ at lag τ may be estimated by

rτ = cτ

c0
,

where cτ , the sample autocovariance function, is
given by

cτ =
N−k∑

t

(xt − x)(xt+τ − x)

N
. (1)

The sampling properties of this estimator are dis-
cussed in [2, Chapter 48] where it is shown that the
bias in cτ is of the order 1/N . To reduce this bias for
small N , an alternative estimator is sometimes used in
which the denominator N in (1) is replaced by N − τ .
However, Jenkins & Watts [1] show that the alterna-
tive estimator generally has a larger mean square error
than (1). Also, the advantage of (1) is that it yields
positive semidefinite autocovariances, a useful prop-
erty for estimating the spectrum. For a purely random
process with an autocorrelation function equal to zero
for τ > 0, the mean and variance of the sample auto-
correlations are approximately given by

E(rτ ) ≈ −1

N

and
var(rτ ) ≈ −1

N
,

respectively.
A plot of the sample autocorrelation function,

called a correlogram, may be used to explore the time

Figure 1 Levels of lutenizing hormone in blood samples
taken from a healthy woman every 10 minutes (a) and the
autocorrelation function with approximate 95% confidence
limit for zero autocorrelation (b)

series. For example, a slowly decreasing correlogram
may be due to nonstationarity (i.e. a trend in the
time series) and an oscillating correlogram indicates
seasonal fluctuations. The correlogram is also helpful
in identifying the order q of a moving average process
[MA(q)], since the autocorrelations of an MA(q)

are nonzero only for lags ≤ q. Confidence limits of
−1/N ± 2/

√
N may be drawn on a correlogram to

help assess which autocorrelations differ significantly
from zero. For autoregressive processes [AR(p)], the
autocorrelation function decreases only slowly and
the partial autocorrelation function is more useful for
identifying the order of the process. An example of a
time series and its correlogram are given in Figure 1
for the lutenizing hormone levels in blood samples
from a healthy woman.
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Average Age at Death

The fallacy of using average age at death as an “alias”
to summarize life expectancy and other aspects
of mortality plays a prominent role in the history
of statistics [1, p. 23]. While its use for this pur-
pose is tempting because of its availability, it is
nonetheless incorrect [2]. Proper analysis of mortality
involves the determination of age-specific mortal-
ity rates, which requires denominator data on the
age distribution of the population [2], and failure
to account for the age distributions of the under-
lying populations is the principal determinant of
this fallacy (see Denominator Difficulties). Age-
distribution data come from the total population being
studied, including those who are still alive as well as
those who have died.

Although summarizing mortality using the aver-
age age of death may be a convenient measurement,
it (alone) is often neither a useful nor helpful mea-
sure [2, 3]. Information regarding frequency distribu-
tions and variability around the average also should
be considered. Whereas, for example, the average age
at death from a particular disease may be 55 years,
all deaths may have occurred in persons younger than
50 years and older than 60 years – information that
is not conveyed by the mean age alone.

Furthermore, average age of death can be a mis-
leading statistic for other reasons [2, 3]. For instance,
in the comparison of longevity among persons in var-
ious occupations (see Occupational Mortality), the
average age at death depends, at least in part, on the
age at entry into an occupation as well as age at exit,
if exit occurs for reasons other than death. Death cer-
tificates provide age at death data; age at job entry
and exit are less readily available. Also, average age
at death may be determined by the intensity of the
exposure to risk as well as by the duration of the
exposure.

Andersen [1, p. 13] remarked on a study compar-
ing the average length of life for male symphony
orchestra conductors and for the entire US male
population.

On average, the conductors lived about 4 years
longer. The methodological flaw was that because age

at entry was birth, those in the US male population
who died in infancy and childhood were included
in the calculation of the average life span, whereas
only men who survived to become conductors could
enter the conductor cohort. The apparent difference
in longevity disappeared after accounting for infant
and perinatal mortality in the US male population.

In comparing two groups with respect to mor-
tality experience, both Andersen [1] and Colton [2]
emphasized the importance of considering the age
distribution of the groups. Arguments about life span
based on the average age at death ignore those who
are still alive. If among those still living there are
more who are elderly in one group compared with
the other, then differential mortality experience does
not necessarily explain group differences in average
age at death. Even if the groups had identical age-
specific death rates, the group with the larger number
of elderly individuals will have the higher average
age of death.

Rather than looking at average age at death, Roth-
man [4] suggests that we should compare the risk of
death among orchestra conductors (or whatever group
is being looked at) with the risk of death among other
people who have attained the same ages as the con-
ductors. Average age at death is only a characteristic
of those who die and does not reflect the risk of death.
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Axes in Multivariate
Analysis

Visual presentation of data is valuable throughout any
statistical analysis, right from the preliminary stages
(where graphical examination of sample values can
often reveal features that are difficult to detect in a
table of numbers) through to the conclusion (where
graphs and charts often provide the most effec-
tive way of presenting the results; see Graphical
Displays). Multivariate analysis particularly bene-
fits from pictorial support, as a typical multivariate
sample contains too many numbers to be readily
assimilable in tabular form. Indeed, many multivari-
ate techniques can be regarded primarily as mecha-
nisms for systematic exploration of multidimensional
sample spaces in which sample individuals are repre-
sented as points. In this article we highlight just one
important aspect of such representations.

Suppose that p variables X1, X2, . . . , Xp have
been measured on each of n sample individuals, and
write x′

i = (xi1, xi2, . . . , xip) for the vector of p val-
ues observed on the ith individual, i = 1, 2, . . . , n.
Assume for the present that all variables are quan-
titative, i.e. on a numerical scale (see Measurement
Scale). Then the sample can be modeled geometri-
cally as a swarm of n points in p-dimensional space,
by associating each variable Xj with an orthogonal
axis in this space and assigning the observed value
xi to the point with coordinates (xi1, xi2, . . . , xip)

on these axes. Thus the original variables constitute
a fundamental system of axes in multidimensional
space. Furthermore, if the data matrix has been mean-
centered, then the origin of these axes is at the
centroid of the swarm of points.

However, this geometrical model is of little imme-
diate practical utility because we can graphically
depict only a few dimensions (usually just two), but
multivariate data sets generally involve more than
two variables. Some approximation is therefore nec-
essary, and many techniques of multivariate analysis
are concerned with identifying either single directions
in the sample space along which something “interest-
ing” happens, or (low-dimensional) subspaces into
which the points should be projected to highlight
some relevant sample features. The two objectives
are in essence the same, as any k-dimensional sub-
space can be defined simply by specifying k mutually

orthogonal directions in the original space to act as
coordinate axes for the subspace. Also, since most
multivariate analyses operate on mean-centered data,
any such subspace axes are essentially lines through
the origin of the sample space.

Now any line L through the origin can be specified
by a unit vector starting at the origin and having an
end point on the line. If the end point of this vector
has coordinates a′ = (a1, a2, . . . , ap), then unit length
implies the condition

∑
i a2

i = 1, so the ai can be
interpreted as direction cosines of the vector with
each of the original axes. The coordinates of any
point x′ = (x1, x2, . . . , xp) in the sample space can
likewise be thought of as a vector from the origin to
this point, so by elementary vector theory it follows
that the projection of the point x onto the line L
is a distance a′x = ∑

i aixi from the origin. We can
therefore view L as an axis in the original space,
and the point x has coordinate value a′x on this axis.
For convenience, the defining unit vector a is often
referred to as the line L.

We can specify any number of axes a1, a2, a3, . . .

in this way. Two such axes ai , aj are orthogonal (i.e.
at right angles to each other) if a′

iaj = 0, and if the
sample space is of dimension p, then any set of p

mutually orthogonal lines can be chosen as reference
axes for it. A particular set of p mutually orthogonal
ai constitutes a rotation of the original coordinate
axes. Taking a subset of k of these axes defines a k-
dimensional subspace of the original space into which
the data swarm can be projected.

Given the association between the measured vari-
ables X1, X2, . . . , Xp and the original axes in the
sample space, we thus see that all those multivariate
techniques that obtain linear combinations of the Xi

are in fact identifying new axes in the sample space.
Moreover, if the linear combinations are orthogonal,
then so are the corresponding axes, in which case
k such linear combinations define a k-dimensional
subspace of the sample space. Such is the case, for
example, with successive components in principal
component analysis and with the linear combina-
tions derived in various forms of projection pursuit.
In these cases, projecting the data points into several
such orthogonal dimensions enables us to obtain a
low-dimensional approximation to the full data rep-
resentation; this is the objective, for example, of
principal component score plots.

Other multivariate techniques result in linear com-
binations that are either derived implicitly from a
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statistical model, or ones that are nonorthogonal. In
the former case, for example in factor analysis, we
can still view the combinations as defining axes and
subspaces of the sample space, but direct projection
of points into these subspaces may not necessarily
correspond to derived scores. In the latter case, for
example in canonical discriminant analysis, the axes
will be oblique, so care must be taken with projection
or representation of points.

A final point worth noting about such data rep-
resentations is that it is often instructive to project
the original axes into any k-dimensional subspace
generated from orthogonal linear combinations, as
these projections show the inclination of the derived
subspace to the original axes. Such projections are
obtained as biplots in principal component analysis,
for example (see Graphical Displays).

The above ideas are based on the assumption
that all the variables are quantitative, allowing
the formulation of an underlying model of points
in space with coordinates given by variable
values. Many multivariate data sets, however,
contain categorical data, either, nominal or
ordinal variables (see Ordered Categorical Data),

which do not permit the direct formulation of
such a model. It is nevertheless possible to
construct a model by means of multidimensional
scaling. This construction requires a matrix of
dissimilarities between every pair of sample members
to be calculated (see Similarity, Dissimilarity, and
Distance Measure), whereupon the scaling technique
will find a k-dimensional configuration of points
representing sample individuals in which between-
point distances approximate between-individual
dissimilarities as closely as possible. New axes
and subspaces can be sought in this representation
in the same way as above. However, since the
multidimensional scaling method does not associate
variables with coordinate axes in the constructed
representation, there is no longer any association
between new axes and linear combinations of
variables.

(See also Battery Reduction; Matrix Algebra)
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Axioms of Probability

Probability theory, like many other branches of
mathematics such as geometry, for example, is a sub-
ject whose development arose out of an attempt to
provide a rigorous mathematical model for observ-
able real-world phenomena (see Foundations of
Probability). The real-world phenomenon in the case
of probability theory is chance or random behavior
involving a physical system or a biological process.
While some probabilistic ideas date back to India
as early as the fifth century B.C. [2, p. 1], the for-
mal study of probability is generally attributed to
have its origin in the correspondence between Fermat
and Pascal in the 1650s concerning various gambling
issues. Today, probability theory has numerous appli-
cations in diverse fields such as statistical inference,
number theory, the physics of particle movement,
economics, the social sciences, the biological sci-
ences, genetics, epidemiology, and demography.

The probability of an event is the abstract counter-
part to the real-world notion of the long-run relative
frequency of the occurrence of the event through
replicating the experiment over and over again. For
example, if a medical researcher asserts that the prob-
ability that a particular medical procedure results in
a cure for those inflicted with a certain disease is
(say) 0.85, then the researcher is asserting that in
the long run 85% of those inflicted with the disease
who receive the medical procedure will be cured. The
phrase “in the long run” suggests that the theoreti-
cal underpinnings involve the notion of limit as the
sample size n → ∞. While the long-run relative fre-
quency approach for defining the probability of an
event may seem natural and intuitive, it raises seri-
ous mathematical questions. Does the limit of the
relative frequency always exist as n → ∞ and is the
limit always the same irrespective of the experimental
outcome? It is easy to see that the answers are in the
negative. Indeed, it is within the realm of possibility
that in the example above the proportion cured fluctu-
ates repeatedly from near 0 to near 1 as n → ∞. So in
what sense can it be asserted that the limit exists and
equals 0.85? The answer to this question is provided
using the axiomatic (or measure-theoretic) approach.

The problems arising from the relative frequency
approach are eliminated by the axiomatic approach
which was developed by Kolmogorov in [1]. Kol-
mogorov’s probability model is defined in terms of a

triplet (Ω,F, P ) (called a probability space) whose
components will now be described via the following
four axioms:

Axiom 1. Ω is a nonempty reference set.
Axiom 2. F is a σ -algebra of subsets of Ω , that is,

F is a nonempty collection of subsets of
Ω satisfying
(i) A ∈ F ⇒ Ac ∈ F and

(ii) {An, n ≥ 1} ⊆ F ⇒ ⋃∞
n=1 An ∈ F.

Axiom 3. P is a measure on F, that is, P is a real
valued function defined on F satisfying
(i) P(∅) = 0,

(ii) P(A) ≥ 0 for each A ∈ F, and
(iii) if {An, n ≥ 1} is a sequence of dis-

joint sets in F, then P(
⋃∞

n=1 An) =∑∞
n=1 P(An).

Axiom 4. P(Ω) = 1.

The set Ω is the abstract counterpart of the collec-
tion of primitive outcomes of a not completely deter-
mined real-world experiment. The objects ω ∈ Ω are
called sample points and Ω is called the sample space
of the experiment. A member of F is referred to as an
event. For A ∈ F, its probability P(A) is the abstract
counterpart to the long-run or limiting relative fre-
quency of the occurrence of A when the experiment
is indefinitely repeated.

It is natural to take F to be the power set of
Ω if Ω is countable. (The power set of Ω is the
set of all subsets of Ω .) However, if Ω is uncount-
able, then profound measure-theoretic considerations
would force such a choice of F to preclude the exis-
tence of a probability measure P on F. Consequently,
F can be smaller than the power set of Ω but should
be large enough so as to contain all subsets of Ω

whose probability would be of practical or theoretical
interest.

It should be apparent that probability theory as
a subject has two sides. On one side is the math-
ematical use of measure theory, whereas the other
side concerns a random experiment arising in con-
nection with a physical system or biological process.
The measure-theoretic side gives probability theory
its mathematical rigor; the experimental side gives it
its application and often its inspiration.

Nothing in the axioms of probability (except
Axiom 4) indicates the value of P(A) for a partic-
ular event A. The axioms only stipulate that however
P is defined on F, it must satisfy Axioms 1–4. The
actual experiment under consideration determines the
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way in which probabilities should be defined. Various
paradoxes in probability theory can arise from dif-
ferent interpretations of the actual experiment, all of
which can be reasonable (see [5]). Such paradoxes
do not indicate an inconsistency in the axioms of
probability.

Moreover, it is interesting to note that there is
absolutely nothing in the probability axioms 1–4
which refers to the notion of a limiting relative fre-
quency when an experiment is indefinitely repeated.
Shafer [3] advocates actually incorporating in some
manner the notions of repetition and long-run rela-
tive frequency directly into the axiomatic framework
of probability in order to emphasize the unity of the
field. The notion of limiting relative frequency is a
nontrivial consequence of Axioms 1–4 and is made
precise by the Borel strong law of large numbers
(SLLN). The Borel SLLN asserts that if {An, n ≥ 1}
is a sequence of independent events all with the same
probability p, then

P
(

lim
n→∞ p̂n = p

)
= 1, (1)

where p̂n = ∑n
j=1 I (Aj )/n is the proportion of

{A1, . . . , An} to occur, n ≥ 1. [Here, I (Aj ) denotes
the indicator function of the event Aj .] Hence,
with probability 1, the “sample proportion”, p̂n,
approaches the “population proportion”, p, as the
“sample size” n → ∞. It is this version of the SLLN
which thus provides the theoretical justification for
the long-run relative frequency approach to probabil-
ity theory and so the SLLN lies at the very foundation
of statistical science. It should be noted, however,
that the convergence in (1) is not pointwise on Ω

but, rather, is pointwise on some subset of Ω having
probability 1. Thus, any practical interpretation of p

via (1) would require that one has a priori an intu-
itive understanding of the notion of an event having
probability 1.

The following example of Stout [4, p. 9] illus-
trates an application of (1) to the field of biostatistics.

Consider a new drug for which the proportion p of
patients who will be cured by the drug is unknown. A
medical researcher continuously estimates p by using
the proportion p̂n of the first n patients treated with
the drug who get cured. The medical researcher is
interested in knowing if there will ever be a point in
the sequence of patients such that, with high proba-
bility, p̂n will be within ε of p and stay within ε of p

(where ε > 0 is a prescribed tolerance). The answer
is affirmative since (1) is equivalent to the assertion
that, for given ε > 0 and δ > 0, there exists a positive
integer N = Nε,δ such that

P

( ∞⋂

n=N

[|p̂n − p| ≤ ε]

)
≥ 1 − δ.

That is to say, the probability is arbitrarily close to
1 that p̂n will be arbitrarily close to p simultane-
ously for all n beyond some point. Consequently, the
SLLN (1) is not only of theoretical significance, but
also is of practical significance.

References

[1] Kolmogorov, A.N. (1933). Foundations of the Theory of
Probability. Springer-Verlag, Berlin (in German). English
translation: Chelsea, New York, 1950; 2nd English Ed.
1956.

[2] Rao, M.M. (1984). Probability Theory with Applications.
Academic Press, Orlando.

[3] Shafer, G. (1990). The unity and diversity of probability,
Statistical Science 5, 435–462.

[4] Stout, W.F. (1974). Almost Sure Convergence. Academic
Press, New York.
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Back-calculation

Back-calculation – also called back-projection – esti-
mates past infection rates of an epidemic infec-
tious disease by working backward from observed
disease incidence using knowledge of the incuba-
tion period between infection and disease. Although
potentially applicable to various diseases, it was first
proposed [15, 16] to study the acquired immune defi-
ciency syndrome (AIDS) epidemic and has mainly
been applied in this area. Performance of back-
calculation requires a technical framework for defin-
ing and maximizing a likelihood to obtain esti-
mated infection rates, detailed information about key
inputs such as incubation and reporting completeness
assumptions, and a strategy for assessing uncertainty
in the key inputs and resulting uncertainty in back-
calculated estimates.

The Basic Method

Suppose that we have n nonoverlapping intervals,
(Tj−1, Tj ), j = 1, . . . , n; let Yj be the number of
persons developing disease in the j th interval, and
assume that no infections occurred before time T0. In
practice, these intervals will often be calendar months
or quarters. For example, AIDS incidence in the US
is reported as the number of new diagnoses each
month. Thus, a discrete-time formulation is realistic
for practical applications, and we will employ such
notation here, assuming a monthly time scale. Back-
calculation is based on the following convolution
equation:

E(Yj ) =
j∑

i=1

θi , Dij , j = 1, . . . , n, (1)

where θi is the expected number of new infections
in month i and Dij is the probability of developing
disease in month j given infection in month i; that
is, the probability that the incubation time is equal to
j − i given infection in month i. Back-calculation is
thus a deconvolution method. Given a set of observed
values y = (y1, . . . , yn), it uses known Dij to find a
θ likely to have produced y via (1).

Eq. (1) only specifies the first moment of the
Yj , so implementation of the strategy requires addi-
tional specifics. A simple approach is to assume that

the Yj are independent with Poisson error struc-
ture. This follows from an assumption that infections
arise according to a nonhomogeneous Poisson pro-
cess. In our discrete-time framework, this means
that the number of infections in month i is Poisson
with expectation θi and the numbers of infections in
different months are independent. This assumption
produces a log likelihood (up to a constant) of

l(y|θ) =
n∑

j=1

[
yj log

(
j∑

i=1

θiDij

)
−

j∑

i=1

θiDij

]
,

(2)

which can be maximized to obtain an estimate of θ .
To avoid ill-posedness [48], some structure must be
imposed on θ . For example, a parametric model might
specify that θi = fβ(i), where β is a (small) vector
of parameters and f is a family of functions indexed
by β. Projected values of Yk for k > n (yet to be
observed) can be obtained from (1) using estimates
θ̂j , with θ̂j obtained by extrapolation for n < j ≤ k.

Finding parameters that maximize the likelihood
(2) may be possible using general numerical approa-
ches such as the Newton–Raphson method, depend-
ing on the complexity of the structure imposed on
θ (see Optimization and Nonlinear Equations).
Using an expectation-maximization (EM) algorithm,
however, can greatly simplify the computations. Con-
sider the complete data {xij }, where xij is the number
of persons infected in month i and diagnosed in
month j . Under the assumptions leading to (2), these
counts are independent Poisson with means θiDij .
The complete-data log likelihood is therefore (up to
a constant)

n∑

i=1



xi log(θi) − θi

n∑

j=i

Dij



 , (3)

where xi = ∑n
j=i xij . This is a linear function of xi ,

so its expected value can be calculated using the
formula [30]

E(xi |y, θ) =
n∑

j=i

yj

θiDij

j∑

k=1

θkDkj

. (4)

The EM algorithm begins with an initial guess for the
parameters that determine θ , calculates the expected
value of (3) using (4) (the E-step), and finds the
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new values of the parameters that maximize (3) (the
M-step). The E- and M-steps are iterated until the
parameter estimates converge. The simple forms of
(3) and (4) make this approach computationally easy.

Inputs

Back-calculation requires a known incubation distri-
bution (the Dij ) and accurate data on incidence of
disease. In addition, a realistic model for infection
patterns must be specified.

Incubation

The estimate of the infection pattern θ depends cru-
cially on the assumed incubation distribution [6, 8,
58]. Accurate estimates, however, may be difficult
to obtain. Estimation of distributions of incubation
times from human immunodeficiency virus (HIV)
infection to AIDS diagnosis illustrates many poten-
tial problems in obtaining accurate Dij . These include
inherent limitations in available data, heterogeneity
of distributions in different populations, and changes
over time (nonstationarity) (see Stationarity).

Data Sources. Inherent limitations arise because
HIV infection is usually not immediately detected,
and observed incubation times are therefore only
available for special groups whose times of HIV
infection can be determined retrospectively. These
include persons whose HIV infection can be traced
to a particular blood transfusion and those whose
time of infection can be bracketed by antibody test-
ing of stored specimens from various times in the
past. These special groups may not be representative
of the wider population for which back-calculation
is to be performed. In addition, the data from these
sources may suffer from right-truncation [38, 39, 42]
or double-censoring [8, 27]. Such data require spe-
cialized statistical analysis and convey less infor-
mation than fully observed data. An extreme form
of double-censoring is present for prevalent cases –
those already infected at the time that they were
recruited into a cohort study and followed for devel-
opment of AIDS. Such subjects are known to have
been infected at some time between the start of the
epidemic and their time of recruitment (an interval-
censored starting time), and their time of AIDS may

be right-censored. An additional difficulty is that per-
sons who had already developed AIDS may have
been excluded from recruitment. Thus, methods for
left-truncated data must be used. Prevalent cohort par-
ticipants are much more numerous than those with
infection times that are more narrowly bracketed by
a positive HIV antibody test preceded by a negative
one, so investigators have attempted to utilize data
from prevalent subjects by imputing infection times
using laboratory markers that change with length of
infection [36, 47] and by other methods [5, 41, 59].

Heterogeneity. Back-calculation is usually applied
to entire populations defined by region of residence
and possibly by risk behaviors, but data on incubation
times come from highly selected, small groups of per-
sons with known infection times. This would not be
a problem if all populations and all the groups shared
the same incubation distribution, or if all differences
could be accurately explained and quantified in terms
of readily measured characteristics such as age. This,
however, does not appear to be the case. Direct com-
parison of data from different sources has shown
statistically significant differences between different
groups [12], including groups of gay men of simi-
lar ages who differ on other characteristics [7, 8, 60,
65]. This heterogeneity adds considerable uncertainty
about what incubation distribution to use for a partic-
ular population, especially understudied populations
such as women or intravenous drug users.

Nonstationarity. Estimation would be simplified if
the Dij all depended only on the elapsed time, j − i;
that is, if the incubation distribution were stationary.
In general, however, the chance of developing dis-
ease may be nonstationary and also depend on the
time of infection, i, or on the current time, j . For
example, diagnosis of AIDS may depend on several
factors that change over time, including availability
and effectiveness of preventive treatments, changes
in the official case definition of AIDS [21, 22, 24],
changes in care-seeking patterns, and possible evolu-
tion of the virus toward more or less virulence. Such
phenomena place even greater demands on limited
data. A widely used approach has been to assume that
no factor other than treatment has caused nonstation-
arity, and to use data on effectiveness of treatment
and usage rates of treatment over time to modify
stationary incubation estimates [13]. This results in
models in which persons infected more recently have
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longer incubation times. A more direct approach is to
examine the special groups discussed above who have
approximately known infection dates, and to use stan-
dard survival analysis methods to estimate the effect
of infection date or calendar time (a time-dependent
covariate) on development of AIDS. This estimates
the net effect of all factors that may be changing
over time. Several such studies have found that incu-
bation times remained constant or actually shortened
in the late 1980s and early 1990s compared with ear-
lier in the epidemic [12, 29, 35, 62]. This suggests
that other factors, such as more aggressive care seek-
ing or evolution of the virus, accelerated diagnosis
of AIDS more than it was slowed by beneficial treat-
ment effects. A dramatic source of nonstationarity in
the US is the expansion in 1993 of conditions offi-
cially qualifying as an AIDS diagnosis [24]. This had
such a large and sudden impact that accurate esti-
mates of the affected Dij may not be obtainable.
In addition, introduction of potent protease inhibitors
and increased use of combination antiretroviral ther-
apy starting in the mid-1990s will also influence
incubation times.

Incidence

In practice, true disease incidence is not observed
exactly because of imperfections in the surveillance
system. Incompleteness of the observed incidence
arises from reporting delays and from underreporting;
that is, cases who are never reported. This incom-
pleteness must be corrected before back-calculation
is applied. In addition, the incidence series may con-
tain short-term perturbations, such as seasonal pat-
terns, that can be adjusted out to make long-term
trends clearer and to improve the accuracy of back-
calculation.

Reporting Delay. Because there is often a lag
between diagnosis of disease and the time that it is
recorded and tabulated, recent incidence is incom-
plete. This typically causes a downturn in recent
incidence that would severely distort back-calculation
results if left uncorrected. The usual strategy is to esti-
mate for each month j a completeness factor, Rj , the
proportion of true incidence that has been reported. If
y∗

j denotes observed incidence, one can apply back-
calculation to corrected counts yj = y∗

j /Rj . (Alter-
natively, the Rj can be incorporated directly into the
back-calculation procedure [6]). A common practice

is to exclude counts that are so recent that they are
estimated to be less than 50% complete. If surveil-
lance provides both date of disease and date of report,
incompleteness due to reporting delay can be esti-
mated if one assumes a maximum possible length
of delay [25]. This requires specialized methods [14,
39, 50] because of the severe right-truncation caused
by the fact that the only cases available for analy-
sis are those with short enough delays to have been
already reported. In addition, dependence of delays
on case characteristics and changes in delay patterns
over time can be estimated. Estimates of changes over
time can be strongly influenced by irrelevant shifts
in the patterns of very short delays, so modifications
to avoid this lead to better estimates [1]. In the US,
the 1993 change in the AIDS case definition appar-
ently had a strong impact on reporting, even of cases
meeting the earlier definition [4].

Underreporting. In addition to delays in report-
ing, there also may be cases that are never reported.
Such underreporting of AIDS cases has been investi-
gated to a limited extent by cross matching reported
AIDS cases to cases identified by other means,
notably death certificates that list HIV under cause
of death [19, 31]. The proportion of cases found by
other means that are not also in the surveillance
system provides an estimate of the underreporting
rate. (More sophisticated capture–recapture meth-
ods have not been widely used.) Studies of underre-
porting require use of personal identifiers, and so are
usually carried out at a local level. They also usually
apply to a specific time period. Consequently, exten-
sive systematic data on underreporting is typically not
available for the population under consideration, and
assuming constant underreporting of between 10%
and 20% is a common practice. Such assumptions
must be combined with estimated incompleteness
due to reporting delay to obtain Rj that reflect both
sources of incompleteness.

Short-term Patterns. Season can influence the in-
cidence of some infectious diseases, notably AIDS,
and incidence of AIDS in a particular month is also
influenced by how many workdays it includes [2].
The lengths of calendar months also vary by 10%.
These short-term influences increase month-to-month
variability and can degrade back-calculation results.
Performance can be improved by estimating these
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effects and adjusting them out of the incidence series
to be used [2, 3].

Infection Model

As noted above, some structure must be imposed
on θ to allow stable estimation. Both parametric
and nonparametric approaches have been used. Para-
metric approaches include smooth families indexed
by two or three parameters [26, 58, 63], as well as
step functions with four or five steps, within which
infection rates are assumed to be constant [16, 55].
Although these step models are not plausible, they
are flexible, and have been made more so by mod-
ifications to allow adaptive selection of cutpoints
between steps [56]. Nonparametric approaches do not
directly parameterize θ but obtain smooth estimates
by either adding a smoothing step after the M-step of
the EM algorithm [11], or by using penalized maxi-
mum likelihood [6] or ridge regression [49]. Some
methods combine aspects of the parametric and non-
parametric approaches [13, 32].

Sensitivity Analyses

Asymptotic standard errors for estimated infection
rates and future incidence projections can be obtained
from the observed information matrix for θ or by
bootstrap methods, but this captures only a small
part of the real uncertainty. Possible errors in the
inputs to back-calculation cause much greater uncer-
tainty in the results. Sensitivity analyses that employ
a wide variety of inputs (consistent with available
data on incubation and incidence) can serve to more
realistically illustrate the plausible range of possi-
bilities. (Bayesian methods that incorporate priors
for the various inputs could offer a more formal
assessment of uncertainty [20, 58], but these have not
been widely used.) If the range of plausible inputs
is large, as in the case of HIV and AIDS, exhaus-
tive exploration of possible uncertainty may be dif-
ficult. Sensitivity analyses for back-calculation from
AIDS incidence have generally considered from two
to five possible incubation distributions [6, 54, 63],
and often not considered uncertainty in the incidence
series. An additional difficulty when uncertainties in
the inputs are wide is that back-calculated results
from some inputs may contradict what is known
(at least qualitatively) from other sources, such as

cross-sectional prevalence surveys or cohort studies.
Simply dropping the offending inputs from the sensi-
tivity analyses, however, is not adequate, because the
remaining set of possibilities will be too narrow, even
if the original set was adequate. This is because there
is a continuum of plausible possibilities between the
eliminated and retained possibilities, some of which
are consistent with the outside information. When
inputs that are a priori plausible produce implausible
results, formal methods to combine back-calculation
with the outside data [17] should be considered, as
should the possibility that back-calculation cannot
meaningfully improve on what is known directly
from the outside data.

Incubation

The assumed incubation distribution strongly influ-
ences estimated infection rates. This is apparent from
the forms of (1) and (2), where the incubation terms
Dij and the θi always appear multiplied together.
Different plausible AIDS incubation distributions can
lead to estimates of cumulative HIV infections in
the US that differ by factors of two or more, while
providing nearly identical fits to the observed AIDS
incidence data [6, 8]. This implies that errors in the
Dij will not be detectable in the back-calculation pro-
cess itself, because their influence will be masked by
compensating errors in the estimate of θ and no lack
of fit will be apparent. This and the sources of uncer-
tainty noted above underscore the need for careful
sensitivity analysis of incubation assumptions. Non-
stationarity in the incubation distribution can also
influence back-calculated estimates. For example, a
slowdown in incidence will be attributed to an ear-
lier decline in infections if a stationary incubation
is assumed, but could also be explained by recent
lengthening of incubation times.

Disease Incidence

Assumptions about reporting delay and underreport-
ing can strongly influence projections. Differing rea-
sonable assumptions about underreporting and late
reporting of AIDS cases diagnosed through 1991 in
the US resulted in two-year projections that differed
by 20% or more [1], and additional uncertainty about
very late reporting increases this difference to at least
30% [3, 25]. In addition, one can see from (1) that
underreporting has a direct impact on the estimate
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of θ . For example, assuming constant 80% report-
ing instead of 90% reporting would increase all of
the imputed yj by about 13% (0.9/0.8), resulting in
a corresponding proportional increase in all of the
estimated θi .

Refinements

A wide variety of technical refinements, extensions,
and modifications of back-calculation have been stud-
ied. Notable among these are methods for: incorporat-
ing results of HIV prevalence surveys [17]; allowing
for dependence in the HIV infection process [9];
estimating overdispersion in a quasi-likelihood app-
roach [17, 43]; utilizing data on HIV tests [45,
52]; using age at time of AIDS to back-calculate
age-specific HIV incidence [10, 53]; nonparametric
modeling of infection rates, including data-driven
choices of smoothness parameters [6, 32, 44]; incor-
porating knowledge of the size of the susceptible
population [61]. Because of the considerable uncer-
tainty about crucial inputs, however, these refine-
ments may not be able meaningfully to improve the
accuracy of back-calculation.

Limitations

A key limitation of back-calculation is the need for
accurate inputs, as noted above. Because uncertainty
in the results comes mainly from uncertainty about
these inputs, estimates of pure statistical uncertainty
are misleading. Two additional limitations of the
method are that it provides little information about
recent infection rates and that projections can be
overly sensitive to recent incidence.

Back-calculation is primarily useful with epidemic
infectious diseases for which there is a substantial
lag between infection and disease. If a disease is in
a steady state or if disease rapidly follows infec-
tion, then infection rates can be adequately ascer-
tained directly from disease incidence. Because of
this focus, there will be little direct information about
recent infection rates and back-calculated estimates
of θj for j close to n will be determined mainly
by implicit extrapolation, from either the parametric
model of θ or the form of the smoothness assumption.
For example, because few persons develop AIDS
within two years following HIV infection, back-
calculation from AIDS incidence provides little infor-
mation about infection rates in the last two years.

Projections from back-calculation can be overly
sensitive to counts near the end of the incidence
series. This is particularly true for AIDS if sea-
sonal patterns are not adjusted out of the incidence
series [3]. For example, anomalously high AIDS inci-
dence in the US in the first half of 1987 caused
projections from back-calculations to be too high,
which was interpreted as evidence for a treatment-
induced downturn in incidence [28]. The projections
would have been more accurate if deseasonalized
incidence had been used, and would have been much
better if a more robust projection method had been
used. Two- or three-year projections based on inci-
dence through the end of 1986 also would have been
fairly accurate [3].

Alternatives

A simple alternative for projecting future incidence is
empirical extrapolation [34, 40, 46, 64]. This can be
reasonably accurate [3], but provides no information
about infection rates and has no ability to antici-
pate changes in trajectory. Measurement of infec-
tions in cross-sectional surveys and cohorts followed
over time provides direct information on prevalence
and incidence of infections. Such studies are most
useful when performed anonymously on specimens
collected for other purposes [33, 51], because this
can eliminate the potentially serious problem of
nonresponse bias [23]. In cohort studies of inci-
dence, serious dropout bias can result from the
fact that higher-risk subjects may be more likely to
fail to return for follow-up testing (see Nonignor-
able Dropout in Longitudinal Studies). Markers of
recent infection can be used to estimate current inci-
dence without relying on follow-up and to correct
dropout bias [18], provided that the initial sample is
representative and that the average duration of the
marker is known. One can deduce the shape of the
infection density from the mix of laboratory markers,
such as CD4 counts, in one or more cross-sectional
surveys of infected individuals [57]. This requires a
representative sample of infected persons and detailed
knowledge of how the marker evolves over time
since infection, which may be more difficult to obtain
than the incubation information required by back-
calculation [37]. Mathematical epidemic modeling is
used mainly to further qualitative understanding, and
typically requires too detailed input to provide useful
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quantitative results (see Epidemic Models, Deter-
ministic; Epidemic Models, Stochastic).
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Backward and Forward
Shift Operators

The backward shift operator B is defined for time
series Xt by

BkXt = Xt−k.

Similarly, the forward shift operator F is defined by

FkXt = Xt+k.

These operators provide a convenient notation for
defining times-series models. For example, the first-
order autoregressive process can be written as

Xt = αBXt + Zt .

Treating B as if it were a constant, models may be
manipulated using simple algebra. For example, the
first-order autoregressive model can be rewritten as

Xt = Zt

1 − αB
= (1 + αB + α2B2 + · · ·)Zt .

The general ARMA model of order p, q is given by

Φ(B)Xt = Θ(B)Zt ,

where

Φ(B) = 1 − α1B − · · · − αpBp

and
Θ(B) = 1 + β1B + · · · + βqB

q.

Another useful aspect of the backward shift operator
here is that it allows the conditions for stationarity
and invertibility to be stated simply. The ARMA pro-
cess, for example, is stationary if the roots of Φ(B) =
0 lie outside the unit circle and it is invertible if the
roots of Θ(B) = 0 lie outside the unit circle.

(See also ARMA and ARIMA Models)

SOPHIA RABE-HESKITH



Bacterial Growth,
Division, and Mutation

The problems of growth and division of cells lie in
the very heart of biology [9].

Bacteria normally reproduce asexually, by binary
fission. When organisms are introduced to a new
environment, for instance by inoculation into a new
growth medium, they undergo a lag phase, dur-
ing which no growth takes place. When they have
adapted to the new medium, they enter a so-called
logarithmic phase, during which they reproduce with
an approximately constant mean generation time,
which may be as short as 20 minutes, leading to
approximately exponential growth in the population
size. In due course, the population reaches saturation
level, with the depletion of nutrients and the accumu-
lation of waste products, and there is an increasing
proportion of nondividing and dying cells.

Models of cell growth and division in bacteria
were considered more than 60 years ago (see [10]
and [12]; reviewed by Harvey [7], Cooper [5], and
Koch [16]). The evolution of models of bacterial
growth was closely followed by development of mod-
els of the cell cycle in budding and fission yeast,
cell cultures, and mammalian cells (see Cell Cycle
Models). Many important biological hypotheses con-
cerning the organization of the cell cycle and its effect
on cell population dynamics were first tested in bac-
terial models, and were modified later for description
of the eukaryotic cell-cycle. In some of these theoreti-
cal models new mechanisms have been hypothesized,
which later have been confirmed in experiments on
spontaneous and induced mutations, signal transduc-
tion pathways, cell cycle regulation, and programmed
cell death. Thus, for many years, modeling of the
bacterial cell cycle has been a “proving ground” for
refinement of theoretical models in cell biology.

The major questions addressed in bacterial growth
models have concerned:

1. stochastic and deterministic models of cell pop-
ulation dynamics (see reviews in [6] and [18]);

2. different models of the cell cycle in individual
cells, such as growth control (review in [16]),
random transition (review in [31]), and mitotic
clocks [45];

3. generational dependence models such as contin-
uum [5], supramitotic control [5, 34], multiple
transitions [4, 31], and clonal inheritance [6];

4. cell-cycle regulation models [43, 44];
5. unequal cell-division models [13];
6. spontaneous mutation models and fluctuation

tests (reviews in [24] and [25]).

Some of these models were derived by general-
ization of earlier bacterial models, though the major-
ity of the models were designed for description of
experiments with cell lineages and colony-forming
assays and did not discriminate between bacterial and
eukaryotic cells. Some of the bacterial models were
later applied to the analysis of cancer cells, on the
assumption of uncontrolled division of cancer cells
which was widely accepted at the time (see Tumor
Growth).

From the biological viewpoint such a general-
ization of bacterial models might not be justified,
since there are significant evolutionary differences
in organization of the cell cycle in prokaryotes and
eukaryotes. However, as Nurse noted [27], many
experiments suggest that cell-cycle control may be
qualitatively similar in microbial cells and eukary-
otic cells, and that a quantitative difference is due to a
difference in the rates of cell progression through the
deterministic and stochastic stages of the cell cycle.

Over five decades, bacterial models have evolved
in diverse directions. We briefly review major
directions of modeling which have provided
important progress in the understanding of biological
and mathematical aspects of cell growth, division and
mutations.

Cell-Cycle Control Models

Several classes of empirical models of cycle control
in individual cells have provided different answers
to the problem of estimation of the generational
time distributions (τ -distributions) in populations of
dividing cells.

Early observations on cultured bacterial cell pedi-
grees [10] demonstrated significant variability of
many observable parameters such as interdivisional
times of individual cells, and growth rates of individ-
ual cells and clones. However, many models of expo-
nentially growing bacterial colonies approximated
this process in deterministic fashion. These models
postulated that for large numbers of cells growing
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with stable constant supply of nutrients, the variabil-
ity of growth rates is not significant.

The growth control model (also referred to as
a size control model ) postulates that bacterial cells
divide after a permissible size is reached [17]. Thus,
the rate of cell division in this model is determined
by the rate of cell growth. Variation of interdivi-
sional times was assumed to be due to normally
distributed fluctuations of duration of actual divi-
sion. Direct implications of such postulates were that
the size of bacteria at division should be constant,
mother–daughter correlation of size and generation
time should be equal to −0.5, and the correlation of
sizes and generation times between sisters should be
positive.

Deterministic models of growth control failed
to reproduce many observations on exponentially
growing cell cultures with constant concentration of
substrate: namely, high variation of growth rates and
colony sizes, and positive mother–daughter correla-
tions. Later modifications of growth control models
incorporated stochastic components, assuming varia-
tion of cell sizes as a result of unequal division. Such
models were in better agreement with the observa-
tions [16].

Transition probability models were developed in
the 1970s and 1980s as a result of pulse-labeling
experiments in cell cultures [3, 4, 36]. Later modifi-
cations of the transition probability model included
multiple random transitions and were also applied
to bacterial and other cell cultures (see reviews by
Rigney [31] and Staudte et al. [37]).

The transition probability model, originally pro-
posed by Smith & Martin [36], postulates that the cell
cycle is composed of two stages: A state and B phase.
In the A state a cell does not progress to cell division,
and it can transit to the B phase with constant proba-
bility. In the B phase a cell requires a constant time to
complete division. The rate of division is determined
by the random time period a cell spent in the A state
and the constant time period in the B phase. The
experimental support of this model came from find-
ings of an exponential component in the distribution
of cell-cycle times for many types of cells. The model
accommodated a genetically predetermined constant
duration of cell cycle, and variation of cell-cycle time
as an effect of changes in the environment.

The mitotic oscillator model (also referred to as
internal clock or spontaneous oscillator) was intro-
duced in 1990 (reviews in [28] and [42]). It reflects

new experimental data on the interaction of newly
discovered protein complexes, MPF and cyclin [8].
Interactions between these complexes and associated
protein kinase cdc2 drive cell-cycle progression by
periodic changes of their enzymatic activity, operat-
ing as a spontaneous minimum oscillator [45]. The
mitotic oscillator model incorporated these new data
and reproduced oscillations which effectively defined
duration of the cell cycle. This model demonstrated
that experimentally identifiable molecular mecha-
nisms can provide control of division in a determinis-
tic fashion. This result was in support of the classical
growth control model.

During recent years, more members of the cyclin
protein family have been identified in yeast and
mammalian cells [29], thus providing solid biologi-
cal evidence in support of Nurse’s idea of quantitative
but not qualitative differences in cell-cycle organiza-
tion of bacteria and eukaryotes [27]. These newly
discovered cyclins are activated only during spe-
cific cell-cycle phases, and are deactivated at (or
near) restriction points previously identified in tran-
sition probability models. This new biological evi-
dence provides a solid ground for reconciliation of
two major views, deterministic and stochastic, of
the cell-division cycle in bacteria and mammalian
cells [23, 26].

Spontaneous Mutation Models and
Fluctuation Tests

Bacteria experience mutations of various types, which
occur apparently randomly, with constant probability
per cell division. For instance, a population grow-
ing from a single organism sensitive to a drug may,
on reaching a population size of, say, 108, contain
a number of resistant organisms, having descended
from one or more cells that mutated during growth.
In some instances, back-mutation may occur, from
resistant to sensitive type. Mutation is, thus, a more
random phenomenon than growth. Deterministic the-
ories of mutating populations may be useful as broad
descriptions of population dynamics, especially when
population sizes are large. Many situations, though,
are dominated by random variation, and stochastic
theories are needed.
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Deterministic Population Dynamics

Consider a mixed population of two forms of inter-
mutating organisms, with x members of the wild-type
X, and y members of the mutant type Y . Suppose the
two strains have exponential growth rates a and b,
respectively, and that the mutation rates (expressed
as the proportion of new organisms which differ in
type from the parent) are λ from X to Y , and ν from
Y to X. The differential equations are easily solved.
If the two growth rates are equal, the proportion of
mutants in the population will approach asymptoti-
cally the value λ/(λ + ν).

Experiments to study the long-term development
of a mixed population are hampered by the restric-
tions on the duration of the logarithmic phase of
growth. These restrictions are overcome by exper-
iments in continuous cultures, in which a liquid
medium is continuously changed so as to provide
the conditions for constant growth [41]. Long-term
experiments, interpreted by the deterministic theory,
provide rough estimates of the growth rate (and a
check on the near-equality of growth rates for the
two types), and of the two mutation rates [2, 35].

Stochastic Models

As noted earlier, the case for a stochastic treat-
ment arises mainly because of the effects of random
mutation, rather than to improve the description of
bacterial growth. These effects are especially impor-
tant in short-term experiments, such as fluctuation
tests in which replicate cultures are grown from small
inocula. In such an experiment, with replicate cul-
tures grown to the same final population size, n,
the proportion of mutant organisms is likely to be
relatively small, and back-mutation can be ignored.
The expected number of mutations (as distinct from
mutant organisms) will be approximately µ = λn,
and the numbers in different cultures should follow
a Poisson distribution with mean µ. These numbers
are not directly observable, because of the reproduc-
tion of mutant progeny, but what can be observed
is the proportion of cultures with no mutants (and,
hence, no mutations). This should be the zero term
of the Poisson distribution, e−µ. This provides a sim-
ple way of estimating the mutation rate λ, since the
total population size, n, can be estimated by standard
methods.

Further information is provided by the distribution,
between replicate cultures, of the number of mutant

organisms per culture. This will clearly be extremely
variable and highly skewed. A culture in which, by a
rare chance, an early mutation occurred, will accumu-
late a large number of progeny descended from the
first mutant. Most cultures will experience their first
mutation much later, and the mutant progeny will
be relatively few. Some features of the distribution
were described by Luria & Delbrück [20], who con-
ducted experiments on the resistance of Escherichia
coli, strain B, to bacteriophage. They found highly
skew distributions, of the type expected on mutation
theory, and considered that their findings strongly
supported the view that resistance was caused by
mutation, rather than by some form of Lamarckian-
like adaptation.

Luria & Delbrück assumed deterministic growth,
at the same rate a for both strains, and obtained
asymptotic expressions for the mean and variance of
the number of mutants, Y , at time t , in replicates with
initial size x0:

E(Y ) = x0λ at exp(at) = λn ln

(
n

x0

)
(1)

and

var(Y ) = x0λ
[
exp(2at) − exp(at)

]

= λn(n − x0)

x0
. (2)

The dependence of (1) and (2) on x0 is due to
its effect only on the extreme upper tail of the
distribution: the general shape of the distribution is
unaffected. The method of moments is therefore a
poor basis for inference about λ from the distribution
of Y .

Lea & Coulson [19] derived a probability gene-
rating function for Y , now regarded as a discrete
random variable:

G(µ, z) = (1 − z)µ(1−z)/z. (3)

Eq. (3) can be derived under various assumptions,
asymptotically for large n and small λ, and indepen-
dently of x0 [1].

Expansion of (3) gives the individual probabilities.
For instance, the probabilities of 0 and 1 mutant are,
respectively, p0 = e−µ (in agreement with the Pois-
son derivation), and p1 = (1/2)µe−µ. Lea & Coulson
provided tables of the distribution for selected values
of µ up to 15. They also showed that a transformed
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variable,

χ = 11.6

y/µ − ln µ + 4.5
− 2.02,

is approximately normally distributed with zero mean
and unit variance.

Various methods of estimation from Lea & Coul-
son’s distribution are described and illustrated by the
authors and Armitage [2]. The use of the distribution
is complicated by various possible deviations from
the model.

Other models of mutations and several alternative
methods of mutation rate estimation were introduced
by Armitage [1], Mandelbrot [22], and Koch [15].
These models generalized the Luria & Delbrück
model and the results of Lea & Coulson, and included
the effects of phenotypic lag (that is, delay in
detection of a mutant phenotype in clones), and
differential fitness (difference in growth rates of
mutant and wild-type cells) [1, 15].

Fluctuation analysis, as introduced by Luria &
Delbrück, has been used in biological laboratories
worldwide, and was adopted for the analysis of
experiments with bacteria, yeast, and mammalian
cells. Once again, bacterial models were applied
to experimental conditions drastically different from
the originally specified postulates of the Luria &
Delbrück model (as had happened before with models
of bacterial growth).

During the last decade a number of publications
have provided a thorough revaluation of earlier
mutation models and methods of mutational rate
estimation [11, 30, 32, 33, 38, 40]. New models of
mutation have taken into account reversible mutations
and two-stage mutations. Several new computational
methods were introduced for mutation rate estimation
in mammalian cells [14, 32, 33, 39].

Mathematically interesting discussions of the Luria
& Delbrück model have been published recently
by Pakes [30], Stewart [39], and Nadas et al. [24,
25]. Many recent publications have pointed out that
“certain mathematical artifacts had been appended
by others to the Luria–Delbrück model” [24, 25],
thus providing a source of confusion to the mea-
surement of spontaneous mutation rates. Specifi-
cally Ma et al. [21] have pointed out, as noted by
Armitage [1], that the Lea & Coulson approximation
(3) has infinite mean and variance. As a mathemati-
cally sensible alternative several models have been
proposed that avoid the infinite mean [33]. Some

of them have adopted the Galton–Watson branch-
ing process [32]. A modification of fluctuation tests
described by Nadas et al. [24, 25] allows one to esti-
mate mutation rates using sufficiently large initial cell
populations.
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Bagging and Boosting

Introduction

The past decade has witnessed an explosion of
machine learning papers and research. Given the
large number of algorithms proposed and explored
for classification and regression problems (see Tree-
structured Statistical Methods), it is not surprising
that methods that combine these algorithms have
been proposed as well. Statisticians have employed
prediction averaging in many settings. In forecast-
ing, averaging different models is a common way to
reduce the variance and the bias inherent in choosing
a single model form. In the machine learning context,
two ensemble methods called bagging and boosting
have become popular for combining models.

Bagging

Bagging is an acronym for “bootstrap aggregating”.
First introduced by Leo Breiman in 1996 [2], bagging
is simple to describe and to implement. Given a
certain model form (like a classification tree, or a
linear regression), take repeated bootstrap samples
of the original data set, refitting the model each time.
Each of these models will be slightly different, and
the predictions at each point will vary from model to
model. The “bagged” prediction for each point is an
“average” over the predictions of all the models for
that point.

More precisely, let the data set on which we
will build the model be described by {(yi , xi), i =
1, . . . , N}. This is the so-called training set. Now,
suppose we have a model, f , whose prediction for
the ith point is f (xi) = ŷi . Call the set of predictions
of all the data points {L}. Take repeated bootstrap
samples from the training set, each consisting of
N cases as well, drawn with replacement from the
original {(yi, xi)}. For each of these, refit the model
f (B) and get a new set of predictions {L(B)}. Repeat
this many times.

For a classification problem, we may want to
predict the class of xi . If there are j classes, each
prediction will be a class j ∈ {1, . . . , J }. For each
case xi , we will have many different predictions given
by the successive bootstrapped data sets. The usual
method for obtaining the “bagged” prediction is to let

these different models “vote”. Take the most frequent
modal predicted class as the bagged prediction. For a
regression problem, where the output of f is numeric,
we use the same procedure, but take an average
(or median or other averaging procedure) of the
predictions.

The most common class of models used for bag-
ging are decision trees (using classification or regres-
sion trees, depending on the form of the response).
Leo Breiman’s implementation of bagged trees are
called “Random Forests” [3].

Because of the fact that it averages predictions
across many bootstrapped samples, it seems logical
that the bagged prediction reduces the prediction vari-
ance. This fact is demonstrated by Breiman [2]. Bag-
ging works best on models that have inherently high
variance. Of course, the amount of variance reduc-
tion and the resulting improvement in error rate are
dependent on the data set and the model employed,
but empirical studies have shown that variance reduc-
tions of 10 or even 20% are not uncommon (see [1]).
Unfortunately, bagging appears to do little to reduce
the bias, which is often a problem with small decision
trees and other so-called weak learners.

Boosting

Boosting is also a method for combining an ensem-
ble of predictions, but it does so in quite a different
way from bagging. Again we start with a model
f from which we get a prediction on the training
data {(yi, xi), i = 1, . . . , N}. In boosting, however,
we reweight the data set depending on the perfor-
mance of the model. The observations that are mis-
classified are given higher weights and the model
is refit. This process is repeated many times. At the
end, we have a succession of predictions from these
various reweighted fits. The boosted prediction is a
weighted “vote” of the outputs from these models,
this time reweighted by the performance of the model.
Boosting puts successively more importance on the
misclassified data by increasing their weights, thus
making the problems harder as the number of models
increases.

Boosting has received a lot of attention, espe-
cially in the machine learning literature where it first
appeared [4, 5, 10]. In its simplest form, it is used
on classification problems, as originally described by
Freund and Shapire [5]. To make things even sim-
pler, we will describe the case of only two classes:
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−1 or +1. Here is the original “Adaboost” algorithm
from [5] as described by Friedman, Hastie, and Tib-
shirani in [8]:

1. Initialize training set using weights wi = 1/N for
all i.

2. Repeat a, b, c for m = 1, 2, . . . .M:
a. Fit the model fm(x) using weights wi . The

output for each point is either −1 or +1.
b. Compute the overall weighted error rate

em=(∑
wi(fm(xi) �= yi)

)
/
∑

wi and the
adjusted overall weighted error rate cm =
log((1 − em)/em)

c. Set wi = wi exp(cm × 1yi �=fm(xi )) and renor-
malize so that

∑
wi = 1.

3. The resulting output fb(xi) for each point is a
weighted average of the predictions of the each
fm : fb(xi) = sign

(∑
m cmfm(xi)

)
.

(The function 1{A} gives the value 1 if A is true; 0
otherwise.) The sign function is used at the final stage
because each prediction is either −1 or +1. Thus,
if the (weighted) majority of votes is positive, the
boosted prediction is +1; otherwise it is −1. Other
schemes can be used to combine the models when
the number of classes is greater than 2, or the output
is continuous. Notice that boosting used weighting
twice. The model is refit each time with cases by
whether they were correctly predicted or not, with
misclassified cases receiving higher weights. For the
final predictions, the results of all the models are
averaged, but models with lower error rates are given
higher weight.

In spite of the simplicity of the algorithm, the
reason for its success in reducing both the bias and
variance of the individual models remained mysteri-
ous for some time. A great deal of light was shed by
Friedman, Hastie, and Tibshirani [8, 9] who showed
that the Adaboost algorithm fits an additive model
using a loss function that is well suited for classifi-
cation. Armed with this insight, they suggest several
variants of boosting for both classification and regres-
sion. A version using boosted decision trees called
TreeBoost (and later Multiple Additive Regression
Trees or MART) was proposed by Friedman [6, 7].

The reason why boosting reduces both the bias
and variance of simple learning algorithms is still
not completely understood. Nor is it clear exactly
why boosting seems to avoid the problem of over-
fitting even though hundreds, or even thousands of

successive models are fit. However, the empirical
evidence is strong that in a great many data sets,
boosting can substantially lower the overall error
rate (e.g. see [1]). Like bagging, the final “model”
obtained by boosting is not interpretable, because the
predictions are obtained by averaging over many dif-
ferent models. However, in the case of boosted trees,
some progress has been made for help in interpreting
variable importance and the influence of the individ-
ual predictors [6].

Further Comments

Bagging and boosting share several properties. Both
are used to improve the prediction accuracy of a
class of models by creating a “committee” of models
that then vote to combine their predictions. Bagging
does so by resampling from the original data set
while boosting successively focuses on the part of the
data set that was not fit well. Because they combine
predictions, both are useful for reducing variance of
predictions when compared with individual model
fits. Both appear to be resistant to overfitting in spite
of the number of models that are created. Boosting
appears to be able to reduce bias as well. They also
share a disadvantage in that the final combined model
is not interpretable. While an individual tree is rule-
based and “explains” why it makes the predictions
it does, the combined model simply takes a majority
vote of a committee.
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Balanced Incomplete
Block Designs

When evaluating treatment effects, it is often
desirable to assign treatments randomly within
homogeneous blocks of experimental units, thus
eliminating the effect of differences between blocks
when evaluating the differences between treatments
(see Blocking). A randomized complete blocks
design includes all treatments of interest within each
block. In some circumstances, however, there are
more treatments of interest than units available per
block, so such a design is not possible. There are
many naturally occurring blocks that contain limited
numbers of experimental units. In some studies of
the effect of innoculation on lesions in plants, each
leaf may be a block and the two halves of each leaf
are experimental units. Studies using twin pairs in
humans as blocks are obviously limited to two units
per block (see Twin Analysis). Studies of growth
rates in animals often use litters as blocks, and there
is a limited number of animals per litter. If two
or more factors are crossed to form many blocks,
there may be inadequate resources for measuring
enough units for each block or combination of factors.
A randomized block design with less than the full
number of treatments in each block is an incomplete
block design. If all pairs of treatments occur equally
often, it is said to be a balanced incomplete block
design (bibd).

The data from a bibd can be analyzed using stan-
dard analysis of variance. In a bibd, all pairwise
treatment contrasts have equal efficiency, so this
design is ideal when all pairwise contrasts are of
equal interest. The effect of blocks, or interblock
information, can also be analyzed from a bibd,
although this is usually not of interest.

The concept of the bibd was originally proposed
by Yates [18]. If there are a total of t treatments to be
tested, then the total number of pairs of treatments is
1
2 t (t − 1). If only two units per block are available,
then a bibd would assign each pair of treatments to an
equal number of blocks; the number of blocks must
then be some multiple of 1

2 t (t − 1). If there are t − 2
units available in each block, then a complementary
bibd arrangement is to delete each pair of treatments
one at a time and assign the remaining t − 2 treat-
ments to each block; again, this would require the

number of blocks to be some multiple of 1
2 t (t − 1).

Yates provides bibd arrangements for different num-
bers of treatments, up to 10, and different numbers
of units per block. He also outlines the standard least
squares analysis and addresses issues of efficiency.

The standard notation for the parameters of a bibd
design is (t, b, r, k, λ), where t is the number of
treatments, b is the number of blocks, r is the num-
ber of replications of each pair of treatments, k is
the number of experimental units per block, and λ

is the number of replications of each pair of treat-
ments. In order for the design to be balanced, the
relationship λ = r(k − 1)/(t − 1) must hold. A bibd
is not possible, then, unless r(k − 1)/(t − 1) is an
integer. Following the initial work by Yates, there
has been much attention to constructing more bibds.
The problem is to find a set of parameters that sat-
isfy the above condition, and to specify an appropriate
arrangement of treatments within blocks given a set
of values for the parameters. In the study of combina-
torics, this problem is a special case of construction of
tactical configurations. Bose [3] originally proposed
the method of symmetric differences, which is an
application of combinatoric methods to the construc-
tion of bibds. Further work on construction of bibds
includes tables of specific arrangements or methods
of constructing arrangements for different feasible
combinations of parameter values [1, 5–11].

A nested balanced incomplete block design is a
bibd with two systems of blocks, one nested within
the other, such that ignoring either system of blocks
leaves a bibd based on the remaining system of
blocks. Nested bibds were originally proposed by
Preece [12]. Preece provides several arrangements for
such designs and gives the least squares equations
for analysis. Singh & Dey [13] introduced the bal-
anced incomplete block design with nested rows and
columns, which adds yet another dimension to the
blocking scheme, organized as rows and columns
nested within the initial blocking system. Singh &
Dey describe analysis of such designs and pro-
pose several arrangements. Further work has been
done on construction of bibds with nested rows and
columns [2, 4, 14–17].

References

[1] Abel, R.J.R. (1994). Forty-three balanced incomplete
block designs, Journal of Combinatorial Theory, Series
A 65, 252–267.



2 Balanced Incomplete Block Designs

[2] Agarwal, H.L. & Prasad, J. (1982). Some methods of
construction of balanced incomplete block designs with
nested rows and columns, Biometrika 69, 481–483.

[3] Bose, R.C. (1939). On the construction of balanced
incomplete block designs, Annals of Eugenics 9,
353–399.

[4] Cheng, C. (1986). A method of constructing balanced
incomplete-block designs with nested rows and columns,
Biometrika 73, 695–700.

[5] Cochran, W.G. & Cox, G.M. (1957). Experimental
Designs, 2nd Ed. Wiley, New York.

[6] Davies, O.L. (1956). Design and Analysis of Industrial
Experiments, 2nd Ed. Hafner, New York.

[7] Fisher, R.A. & Yates, F. (1953). Statistical Tables for
Biological, Agricultural, and Medical Research, 4th Ed.
Oliver & Boyd, Edinburgh.

[8] Hanani, H. (1975). Balanced incomplete block designs
and related designs, Discrete Mathematics 11, 255–369.

[9] Hanani, H. (1989). BIBDs with block-size seven, Dis-
crete Mathematics 77, 89–96.

[10] Mathon, R. & Rosa, A. (1989). On the (15, 5, λ)-family
of BIBDs, Discrete Mathematics 77, 205–216.

[11] Mathon, R. & Rosa, A. (1990). Tables of parameters
of BIBDs with r ≤ 41 including existence, enumeration
and resolvability results: an update, Archives of Combi-
natorics 30, 65–96.

[12] Preece, D.A. (1967). Nested balanced incomplete block
designs, Biometrika 54, 479–486.

[13] Singh, M. & Dey, A. (1979). Block designs with nested
rows and columns, Biometrika 66, 321–326.

[14] Sreenath, P.R. (1989). Construction of some balanced
incomplete block designs with nested rows and columns,
Biometrika 76, 399–402.

[15] Sreenath, P.R. (1991). Construction of balanced incom-
plete block designs with nested rows and columns
through the method of differences, Sankhya, Series B
53, 352–358.

[16] Uddin, N. & Morgan, J.P. (1990). Some constructions
for balanced incomplete block designs with nested rows
and columns, Biometrika 77, 193–202.

[17] Uddin, N. & Morgan, J.P. (1997). Further constructions
for orthogonal sets of balanced incomplete block design
with nested rows and columns, SankyaB 59, 156–163.

[18] Yates, F. (1936). Incomplete randomized blocks, Annals
of Eugenics 7, 121–140.

SALLY FREELS
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The BAN (best asymptotically normal) estimator
is optimal in large samples in a similar way that
the Minimum Variance Unbiased (MVU) estima-
tor is in small samples. The concept was origi-
nally developed by Neyman [8] for parameter esti-
mation in models involving the multinomial dis-
tribution. Suppose each of n randomly selected
individuals can be assigned to s + 1 mutually
exclusive categories C0, C1, . . . , Cs with probabili-
ties µ0, µ1, . . . , µs , where µ0 + µ1 + · · · + µs = 1.
Let µ = [µ1, µ2, . . . , µs]′ denote the s-dimensional
vector of parameters where µ0 is determined by
the constraint to sum to 1. Let n0, n1, . . . , ns

be the random variables representing the counts
of individuals in the s + 1 categories where
n0 + n1 + · · · + ns = n. Let yn = [y1, y2, . . . , ys]′ =
[(n1/n), (n2/n), . . . , (ns/n)]′ denote the s-dimen-
sional vector of sample proportions where y0 = n0/n

is determined by the constraint to sum to 1. The cru-
cial feature for asymptotic results is the following:

√
n(yn − µ) → Ns[0, �(µ)], (1)

where var(yn) = �(µ)/n. These count data can
be arranged in two-way, . . . , k-way tables and are
the subject of categorical data analysis. The
arrangement of the counts into tables suggests various
hypotheses, e.g. independence of row and column
effects in a two-way contingency table. A hypothesis
H can often be described by a set of constraint
equations

H: f(µ) = 0, (2)

where f is a vector-valued function of dimension
r < s having differential F(µ) = ∂f(µ)/∂µ satisfy-
ing certain regularity conditions.

From this point on we assume sufficient regularity
conditions for the different mathematical operations
to be defined and convergence results to hold. Except
where noted, all results, regularity conditions, and
technical details may be found in [1–3]. A standard
approach of estimating µ given H is by maximum
likelihood. Let µE = µE(yn) denote the maximum
likelihood estimator of µ given H. Then µE has
the property of being consistent asymptotically nor-
mal (CAN)
√

n(µE − µ) → Ns(0, � − �F′(F�F′)−1F�), (3)

with minimal asymptotic covariance matrix:

� − �F′(F�F′)−1F�, (4)

where � = �(µ) and F = F(µ).
A CAN estimator with minimal asymptotic covari-

ance matrix is best, and is referred to as BAN.
The notion of minimal is based on the follow-
ing order relationship among symmetric matrices:
A ≤ B if B − A is nonnegative definite. In prac-
tice, BAN estimators only exist subject to regu-
larity conditions and are denoted RBAN. There-
fore RBAN estimators are regular CAN estimators
with minimal asymptotic covariance matrix. Maxi-
mum likelihood estimators are often difficult to com-
pute and Neyman [8] showed that minimum Pear-
son χ2, Neyman χ2, and linearized Neyman χ2

estimators are also RBAN [6]. RBAN estimators
can also be obtained as the roots of certain linear
forms [5].

General Multivariate Distributions

We now drop the assumption of the multinomial
distribution. Let x1, x2, . . . , xn be a random sample
from an arbitrary s-dimensional multivariate distribu-
tion where E(xi ) = µ and var(xi ) = �(µ). Let yn =
(x1 + x2 + · · · + xn)/n be the s-dimensional aver-
age of the random sample. Then yn satisfies (1) and
any estimator µE = µE(yn) of µ given (2) is RBAN
if it satisfies (3). If µE is any estimator of µ and
f(µE) = 0, then µE is said to be admissible (this is a
term in the BAN literature not to be confused with the
decision-theoretic meaning; see Decision Theory).
An admissible RBAN estimator µP may be obtained
as the solution to the following equation:

µ = yn − �F′(F�F′)−1F(yn − µ), (5)

where � = �(µ) and F = F(µ).
Another admissible RBAN estimator that may be

easier to compute is µN, the solution to the following
equation:

µ = yn − �nF′(F�nF′)−1F(yn − µ), (6)

where �n = �(yn) and F = F(µ).
If one is willing to sacrifice admissibility, then

the following closed-form solution is RBAN (but not
guaranteed to be admissible):

µN∗ = yn − �nF′
n(Fn�nF′

n)
−1f(yn), (7)
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where �n = �(yn) and Fn = F(yn).
Eqs. (5) and (6) are in the form

µ = h(µ), (8)

which together with (7) suggest an iterative solution
for µP and µN:

µP(i+1) = h(µP(i)), (9)

with µP(0) = µN∗ , where µP(i) → µP, and

µN(i+1) = h(µN(i)), (10)

with µN(0) = µN∗ , where µN(i) → µN.
RBAN estimators usually have associated χ2

test statistics for the hypothesis H. With this in
mind, define the following Pearson and Neyman χ2

functions:

χ2
P (µ) = n(yn − µ)′�−1(yn − µ), (11)

where � = �(µ),

χ2
N(µ) = n(yn − µ)′�−1

n (yn − µ), (12)

where �n = �(yn).
If µB is any RBAN estimator, then the following

hold:
χ2

P(µB) → χ2(r) (13)

and
χ2

N(µB) → χ2(r), (14)

where r is the dimension of f.

Multivariate Exponential Family
Distributions

Let x1, x2, . . . , xn be a random sample from the
s-dimensional multivariate exponential family [4]
with probability density function (pdf) of the form:

p(x|θ) = h(x) exp[x′θ − q(θ)]. (15)

This family includes the s-variate multinomial, s-
variate negative multinomial, s-variate Poisson, and
s-variate logarithmic series among others. Let yn =
(x1 + x2 + · · · + xn)/n be the s-dimensional average
of the random sample. Then yn satisfies (1), where
E(xi ) = µ and var(xi ) = �(µ). Therefore all the

results of the previous section apply. In addition, we
have the following equivalence:

µP = maximum likelihood estimator, (16)

χ2
P(µP) = Rao’s efficient score statistic, (17)

χ2
N(µN∗) = Wald statistic (18)

(see Likelihood). The above RBAN estimation and
test criteria therefore reduce to familiar methods for
the multivariate exponential family.

Sum Symmetric Power Series (SSPS)
Distributions

A special case of the s-variate exponential family
is the SSPS family of distributions [7] for count
data which include the s-variate multinomial, s-
variate negative multinomial, and s-variate Poisson.
For this family the s-variate vector x from (15)
has the structure x = [n1, n2, . . . , ns]′, where the ni

represent count data (i.e. nonnegative integers). For
the SSPS family the functions (11) and (12) have the
familiar form of the Pearson χ2 and Neyman χ2 for
multinomial data:

χ2
P (µ) = n(yn − µ)′�−1(yn − µ)

=
∑

i

(ni − nµi)
2

(nµi)
, (19)

χ2
N(µ) = n(yn − µ)′�−1

n (yn − µ)

=
∑

i

(ni − nµi)
2

(ni)
, (20)

where
∑

i represents the summation for i =
0, 1, . . . , s, and µ0 and n0 have special defini-
tions based on constraints. The constraints for
the multinomial were µ0 + µ1 + · · · + µs = 1 and
n0 + n1 + · · · + ns = n. Constraints in the other
cases are described in [1].

Return to the Multinomial Distribution

Because the multinomial distribution is a special case
of the SSPS family, the general RBAN estimation
and test criteria that we developed reduce to familiar
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forms for the multinomial distribution:

µP = maximum likelihood estimator, (21)

µN = minimum Neyman χ2 estimator, (22)

µN∗ = linearized minimum

Neyman χ2 estimator, (23)

χ2
P (µP) = Pearson χ2 test statistic, (24)

χ2
N(µN) = Neyman χ2 test statistic, (25)

χ2
N(µN∗) = linearized Neyman χ2

test statistic. (26)

Other Directions

The results in the section on general multivariate
distributions hold if yn is composed of averages of
multiple independent random samples. They also hold
if yn is an arbitrary random vector (not necessarily
an average) that satisfies (1). Similar results hold
if the hypothesis H in (2) is expressed in other
ways. Constraint equations are the most general
form, but it may be more natural to express H in the
form of freedom equations µ = g(β), where β is of
dimension r . Another way to model H is d(µ) = e(λ)

or as a special case the general linear model d(µ) =
Xλ for design matrix X. These situations and their
RBAN estimates and test criteria are covered in [2].
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Barahona–Poon Test

The Barahona–Poon test is used to detect nonlin-
ear dynamics in time series (see Nonlinear Time
Series Analysis). Nonlinear dynamical systems may
generate deterministic signals, which can be easily
mistaken for random noise. Distinguishing nonlin-
ear deterministic dynamics, or “chaos”, from random
noise helps understand the physical process generat-
ing the data, and may improve short-term prediction
(see Forecasting). In practice, however, identify-
ing nonlinear dynamics is difficult because methods
to detect chaos are often degraded by measurement
noise, and need long data sets. The test proposed by
C. S. Poon and M. Barahona is particularly suitable to
detect chaos in short and noisy time series [1], typical
of biological studies where nonstationarities limit the
length of the observations [3]. The method compares
linear and nonlinear models fitted to the data, and
rejects the null hypothesis (i.e. that the time series is
stochastic with linear dynamics) if at least one non-
linear model is significantly more predictive than all
the linear models considered.

The technique is based on modeling the time
series y(n) (n = 1, . . . , N ) as the output of a discrete
Volterra series of nonlinear degree d and memory k.
The predicted value of the series at time n, yd,k(n),
is calculated as:

yd,k(n) = a0 + a1y(n − 1) + a2y(n − 2)

+ · · · + aky(n − k) + ak+1y(n − 1)2

+ ak+2y(n − 1)y(n − 2)

+ · · · + aM−1y(n − k)d (1)

When d = 1, y(n) is simply modeled by an autore-
gressive linear equation of order k (see ARMA and
ARIMA Models). The M = (k + d)!/(k!d!) coeffi-
cients am, corresponding to all the combinations of
y(n − i) (i = 1, . . . , k) up to degree d, can be esti-
mated from the data by a fast algorithm [2]. The
one-step prediction power of each model, ε2

d,k , is:

ε2
d,k =

N∑

n=1

(yd,k(n) − y(n))2

N∑

n=1

(y(n) − y)2

(2)

where y = ∑N
n=1 y(n)/N . Thus ε2

d,k is the variance
of the prediction errors normalized by the variance
of the time series.

First, one fixes the total dimension M . Then the
best linear model is found by setting d = 1 in (1),
and by iteratively increasing k from 1 to M . At each
step k, a cost function is defined as

C(r) = log(εd,k) + r

N
(3)

where r is the number of polynomials in the truncated
Volterra series. The best linear model is the one
minimizing C(r). To find the best nonlinear model,
C(r) is computed again for d > 1 and for increasing
values of k up to r = M . Similarly, the best nonlinear
model is the one with the lowest C(r). The presence
of “chaos” is indicated by a cost function lower for
the best nonlinear model than for the best linear one.
In this case, an objective statistical criteria is applied
to reject the null hypothesis that nonlinear models are
no better than linear models. For Gaussian prediction
errors, the F -test is used to reject, with a certain level
of confidence, the hypothesis that ε2 is the same for
the best linear and nonlinear model. Alternatively, the
nonparametric Wilcoxon–Mann–Whitney rank-sum
statistic is used.
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Barnard, George Alfred

Born: Walthamstow, UK; 23 September, 1915
Died: Brightlingsea, UK; 30 July, 2002

Barnard was born of working-class parents in sub-
urban London and from the local school gained a
scholarship to St. John’s College, Cambridge, grad-
uating in mathematics. From 1937 to 1939, he held
a postgraduate award at Princeton University, USA,
mainly studying mathematical logic. The war saw
a return to England and a post with an engineer-
ing firm, displaying in the move a versatility that
embraced theory and practice, a feature that remained
with him throughout his life. In 1942, he joined the
Ministry of Supply in a group dealing with produc-
tion problems. There his serious interest in statistics
began, to be continued at Imperial College London
from 1945 until 1966, when he moved to the Univer-
sity of Essex, retiring in 1975. His retirement years
were partly spent at other universities, especially that
at Waterloo, Canada, but he kept up a lively corre-
spondence with colleagues throughout the world. His
political activities at Princeton resulted in his being
refused a US visa for many years. He had the most
engaging personality, perhaps shown at its best in
debate where the author had the feeling that Barnard
wanted to get at the truth, not just to defend his own
position.

Barnard made major contributions to the basic
ideas of statistics. He supported the Bayesian position
in inference, restricting its use to cases where there
existed prior knowledge that could be expressed in
terms of probability, and in decision making where
losses could be quantified (see Decision Theory),
for example, in quality control. In cases where
prior knowledge of this type was not available, he
advocated methods based on likelihood; but he also
felt there were cases where even a likelihood was
not available and he would use tail-area significance
tests (see Hypothesis Testing). He was an eclectic,
but one whose reasons for using a tool were always
clear. He was a great admirer of R.A. Fisher and was
one of the very few people who could dispute with
the great man without a touch of sycophancy.

He may have been the first to introduce the con-
cept of conjugate distributions into the Bayesian
canon, referring to them as distributions closed under

sampling (see Exponential Family). In the field of
likelihood, he was a pioneer, being the first to rec-
ognize the likelihood principle, this in 1947. He
put likelihood inference onto an axiomatic basis [1]
and produced, with Jenkins and Winsten, a semi-
nal paper [2], which provided further support for the
likelihood concept, applying it to many important sta-
tistical models. Both papers are still worth reading.
As a consequence of understanding gained there, he
was an advocate of the idea that, in most circum-
stances, the stopping rule was irrelevant to inference;
an idea that has still not found general acceptance (see
Sequential Analysis). He also advocated the method
of pivots, where a function of parameter and data
can be found having a known distribution, so that
the data density can be transferred to provide one for
the parameter.

It was not just the foundations that interested him:
he was also concerned with the practical uses of
statistics, for example, the British standard for con-
doms was largely written by him. A conversation with
him could extend from the relevance of Gödel’s the-
orem in inference to the design of schemes for indus-
trial inspection, where he introduced the cumulative-
sum (or cusum) chart (see Quality Control in Labo-
ratory Medicine). He wrote on a great variety of
practical problems acting, in his own words, as a
midwife between the data and the decision. He was
awarded the Deming medal of the American Associ-
ation of Quality Control in 1991.

He was president of three societies, Operations
Research, Institute of Mathematics and its Applica-
tions, and the Royal Statistical Society. Each of the
presidential addresses is marked by the great breadth
of subject matter, coming both from his mathematical
interests and his experiences in serving on commit-
tees. He was a member of the University Grants
Committee from 1967 to 1972, concerned with gov-
ernment funds for British universities and with the
problem of allocating students to universities, taking
into account the preferences of both applicant and
faculty. He chaired the Computer Board and was, in
1970, an early advocate of extensive computer facil-
ities in universities for which he was criticized by
both academics and the press. He had the satisfaction
of living to see his ideas accepted.

Barnard had a delightful personality and was very
popular. His politics were to the left and he had a
reasoned dislike of religions, so that he was never
an establishment type of person. The book edited
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by S. Geisser et al. [3] is a collection of essays in
his honor and contains a complete bibliography of
his works up to then. Unfortunately, he never wrote
a book.
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Bartlett, Maurice
Stevenson

Born: June 18, 1910, in London, UK.
Died: January 8, 2002, in Exmouth, UK.

Maurice Bartlett was the leading figure amongst
British statisticians starting their careers in the 1930s.
He published important work at an early age and
remained active throughout his life. He made impor-
tant contributions to statistical inference and method-
ology and was a pioneer in the development of the
theory of stochastic processes. His interest in biologi-
cal and medical applications led to important work in
factor analysis, mathematical epidemiology, and the
spatial analysis of field experiments.

Maurice Stevenson Bartlett was born in Chiswick,
London. He said that his lifelong interest in proba-
bility began in school with the chapter in Hall and
Knight’s Algebra. In 1929, he was awarded a schol-
arship to Queens’ College, Cambridge where he read
mathematics. Whilst an undergraduate, he published

a paper with John Wishart on moment statistics, and
he went on to achieve first-class honors with distinc-
tion. He enrolled as a graduate student under Wishart,
publishing with him a second paper, and received the
Rayleigh Prize in 1933. As an aside from statistics, he
attended lectures on physics by Eddington and Dirac,
thus starting a lifelong interest in theoretical physics.

In 1933, he was appointed Assistant Lecturer in
statistics at University College London, under E.S.
Pearson. This was the center of academic statistics
in England at the time: also at University College
were R.A. Fisher, J.B.S. Haldane, and J. Neyman,
with all of whom Bartlett would have made con-
tact. But he stayed there only one year, for in 1934,
he was appointed to the post of statistician at an
agricultural research station of the Imperial Chem-
ical Industries (ICI). This brought him more forcibly
into the world of applied statistics, which he relished.
His publications during the next four years ranged
widely over areas of science well beyond the confines
of agriculture and chemistry: the theory of inbreed-
ing, the estimation of intelligence, factor analysis,
field and laboratory sampling errors, cotton produc-
tion, and nutrition. Methodological topics included
the effect of nonnormality on Student’s t distribu-
tion, important results on sufficiency, marginal and
partial likelihood, the eponymous Bartlett’s Test
for homogeneity of variance, multiple regression, and
interactions in contingency tables.

In 1938, Bartlett was appointed to a lectureship
at Cambridge, in the Faculty of Mathematics rather
than that of Agriculture to which statistics had hith-
erto been attached. In 1940, after the onset of war,
he was assigned to an establishment of the Min-
istry of Supply concerned with the development of
rocket batteries, and he divided his time between
London and a testing station in Wales. During this
period, he worked with other statisticians including
F.J. Anscombe, D.G. Kendall, and P.A.P. Moran, and
a later meeting with J. Moyal helped to stimulate his
growing interest (shared with Kendall) in stochas-
tic processes.

Bartlett returned to Cambridge in 1946, con-
centrating his research on time series, Brownian
motion, and diffusion processes. An important by-
product of the latter topic was a 1946 paper on the
large-sample theory of sequential tests, reproduc-
ing many of Wald’s results by a different route. He
was invited to visit the University of North Carolina
at Chapel Hill for four months, where he lectured
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on stochastic processes, producing a set of notes,
which he used for a repeat of the course on his
return to Cambridge and as the basis for his later
book. He joined D.G. Kendall and Moyal in a his-
toric three-paper symposium on stochastic processes
at the Royal Statistical Society in 1949, and in 1955,
he published his important book An Introduction to
Stochastic Processes. This was highly influential in
expounding the subject to a wider audience and in
making available operational methods for pursuing
further research in stochastic processes.

In 1947, Bartlett moved to Manchester to occupy
the Chair in Mathematical Statistics, where he
enjoyed the company of an outstanding group of
mathematicians and developed new courses in the
undergraduate and graduate statistics programmes.
He became interested in the mathematical modeling
of epidemics, especially in the study of measles
where the periodicity of measles epidemics could be
explained in part by a stochastic model, whereas the
corresponding deterministic model predicted a steady
endemic state (see Epidemic Models, Deterministic;
Epidemic Models, Stochastic). His book Stochastic
Population Models in Ecology and Epidemiology
appeared in 1960.

In 1960, Bartlett was appointed to the Chair in
Statistics at University College London in succes-
sion to Egon Pearson. He continued to publish widely
on topics including stochastic processes, time series,
multivariate analysis, spatial analysis, and statistical
physics. A book of Essays in Probability and Statis-
tics appeared in 1962.

Bartlett’s final academic move, in 1967, was to
Oxford, where a new Chair of Biomathematics, with
a Fellowship at St. Peter’s College, had been created
as a successor to posts previously held by D.J. Finney
and N.T.J. Bailey. Bartlett regarded this somewhat
surprising move as a challenge, hoping to stimulate
and contribute to the development of mathematical
and statistical modeling in biology and medicine.
Although the department was in the Biology faculty,
Bartlett found the biologists less enthusiastic about
his plans than the mathematicians. Nevertheless, he
continued his researches in population biology and
revived an interest in the spatial models for field
experiments studied by Papadakis in 1937. He pub-

lished Probability, Statistics and Time in 1975 and
The Statistical Analysis of Spatial Pattern in 1976.

During the academic year 1973–1974, and on two
occasions after retirement, he visited the Australian
National University. Retirement in no way dimin-
ished his interest and productivity in a wide range
of topics, now including new ones such as chaos
theory. The volume of selected papers [1] lists 167
papers and 12 letters to Nature published by 1989.

As Peter Whittle remarked in an obituary
in the Independent newspaper, “Bartlett was no
self-publicist; both his written and his spoken
exposition verged on the terse.” Nevertheless, the
authority with which he wrote and spoke was self-
evident, as was his generosity and goodwill. His
younger colleagues and research students received
many acts of kindness, and regarded him with
great affection.

Bartlett became a Fellow of the Royal Society in
1961 and an Honorary Member of the International
Statistical Institute in 1980. He served as President
of the Manchester Statistical Society (1959–1960),
the British Region of the International Biometric
Society (1964–1966), the Association of Statistics in
the Physical Sciences (1965–1967) and the Royal
Statistical Society (RSS) (1966–1967), and was a
Silver and Gold Guy Medallist of the RSS. He
received the Weldon Prize and Medal of the Uni-
versity of Oxford in 1971 and was elected a Foreign
Associate of the US National Academy of Sciences
in 1993.

A fuller account of Bartlett’s career and a sensi-
tive appreciation of his personality are contained in
the obituary notice by Joe Gani [2], who summarizes
as follows: “He was profoundly dedicated to research
and scholarship, achieving his life’s work with exem-
plary modesty, integrity and humanity.”

References

[1] Bartlett, M.S. (1989). Selected Papers of M.S. Bartlett.
Charles Babbage Research Centre, Winnipeg.

[2] Gani, J. (2002). Professor M.S. Bartlett FRS, 1910–2002,
Statistician 51, 399–405.

PETER ARMITAGE



Bartlett’s Test

For testing the equality of variances of k normal
populations, Bartlett’s modified likelihood ratio test
statistic is given by T/C, where

T =
k∑

i=1

(ni − 1) ln

[
s2

p

s2
i

]
,

C = 1 + 1

3(k − 1)

{[
k∑

i=1

(
1

ni − 1

)]
− 1

N − k

}
,

n1, . . . , nk are the sample sizes of the k indepen-
dent samples, N = ∑

ni, s2
1 , . . . , s2

k are the respec-
tive unbiased sample variances with denominators
ni − 1, and s2

p = (N − k)−1 ∑k
i=1(ni − 1)s2

i is the
pooled sample variance.

For normal data and even quite small sample sizes
(say, ni ≥ 5), T/C may be compared with critical
values of χ2

k−1, the chi-square distribution with
k − 1 degrees of freedom. If desired, exact critical
values for T/C are available for certain sample sizes
(e.g. [7]), or they may be obtained simply by Monte
Carlo methods. It hardly seems worth the effort,
though, since even a slight departure from the normal
data assumption will make type I error probabilities
(see Level of a Test) deviate from the nominal
level by much more than that caused by using the
asymptotic χ2

k−1 critical values in place of exact ones.
Bartlett [1] proposes T/C as a modification of

the usual asymptotic form of the normal likelihood
ratio statistic T ∗ = −2 ln L. First he replaces ni by
ni − 1 and puts the unbiased s2

i in place of the
biased form of the sample variances (which arise
naturally in normal maximum likelihood estimation).
This modification converts T ∗ to T . Equipped with
exact critical values, the resulting test based on T

for normal data is unbiased, whereas the test based
on T ∗ is biased. Bartlett then notes that, under the
null hypothesis of equal variances, E(T ) = (k − 1)C

to order O(n−3
i ) and thus that T/C converges more

rapidly to a χ2
k−1 random variable than does T by

itself. This type of correction is generally called
“Bartlett’s correction” and has been the focus of
much research.

Bartlett’s test has been extended to the multivari-
ate case (see [10, Chapter 8] and [11, Chapter 7])
and to designed experiments [12].

Unfortunately, Bartlett’s test is very sensitive to
nonnormality. This can be seen by noting that under
the null hypothesis of equal variances T/C con-
verges to (1/2)(β2 − 1) times a χ2

k−1 random vari-
able as sample sizes grow large, where β2 is the
fourth moment kurtosis coefficient which is equal
to 3 for the normal distribution. For example, in [3,
Table 1] we find that if β2 = 5 and k = 2, then
the approximate level of a nominal α = 0.05 test
is Pr(2χ2

1 > 3.84) = 0.166. If k = 5, then the level
jumps to Pr(2χ2

4 > 9.49) = 0.315 and gets worse as
k increases.

Many investigators feel that this extreme sensi-
tivity to nonnormality is unacceptable. Thus, more
robust methods have been proposed including adjust-
ment of critical values for T/C by estimating β2 [4,
8], analysis of variance (ANOVA) on absolute devi-
ations from means [9] and from medians [5], and
bootstrap estimation of critical values for T/C [2].
Monte Carlo comparisons of procedures are given in
Conover et al. [6] and Boos & Brownie [2]. In terms
of simplicity and robustness, the ANOVA on abso-
lute deviations from medians is a good alternative to
Bartlett’s test when normality is in doubt.
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Baseline Adjustment in
Longitudinal Studies

The word baselines, as used in connection with longi-
tudinal studies, may mean one of three things. First, it
can be applied to demographic characteristics of the
patient, which are either unchanging (such as sex), or
which change slowly (such as height) or at the same
rate (such as age), for all subjects during the course
of the study. Secondly, it can mean true baselines:
measurements taken at some earlier moment (perhaps
prior to treatment) of the same variable which is to
be used as a measure of outcome. Thirdly, it can
indicate baseline correlates: measurements taken at
an earlier moment than that which will be used to
judge the outcome of the study, but not on the same
variable (although correlated with it), but which may
vary strongly during the course of the study.

At first sight, these three types of baseline seem
to be quite different, but from the point of view
of many powerful approaches to analyzing data (for
example analysis of covariance), there is no essential
distinction between them, and the common tendency
to regard the second sort as being capable of a special
use for which the others are not available, i.e. to
judge the ability of treatment to effect a change,
is false [17]. Nevertheless, except where otherwise
specified, it will be implicitly assumed below that
the second sort of baseline is being referred to.

The Randomized Trial

Analysis of Covariance

Consider the case of a randomized parallel group
clinical trial in which outcome measures at the end
of the trial are available for both treatment and control
groups and baseline measurements prior to treatment
have been taken also. Suppose that measurements on
patients in the treatment group are Xti (baselines)
and Yti (outcomes), i = 1 to nt. Similarly, let the
corresponding measurements in the control group be
Xci and Yci , i = 1 to nc, and define

q =
(

1

nt
+ 1

nc

)
.

Suppose that the variance–covariance matrix in the
two groups is identical and equal to

�x,y =
[

σ 2
x ρσxσy

ρσxσy σ 2
y

]
.

Sometimes the further assumption is made that σx =
σy . Although this may frequently be approximately
true, there is no particular reason why this assumption
should be valid in general, especially since patients
are often selected for entry into clinical trials on the
basis of baseline measurements.

If the baselines are ignored altogether, then
the effect of treatment may be estimated using
raw outcomes only as τ̂raw = Y t − Y c with variance
var(τ̂raw) = qσ 2

y . A popular alternative way to
analyze such a trial is to construct so-called
change scores, Zti = Yti − Xti and Zci = Yci − Xci

and define the treatment estimator τ̂change = Zt −
Zc with var(τ̂change) = qσ 2

z = q(σ 2
y + σ 2

x − 2ρσxσy).
An alternative, but equivalent representation of the
change score estimator is as τ̂change = (Y t − Y c) −
(Xt − Xc). A more general estimator of the treatment
effect is given by τ̂β = (Y t − Y c) − β(Xt − Xc),
with variance which may be written as

var(τ̂β) = q[(βσx − ρσy)
2 + (1 − ρ2)σ 2

y ]. (1)

The covariance of this estimator with the difference
at baseline is

covτ̂ ,base = q(ρσxσy − βσ 2
x ). (2)

The raw outcomes and change-score estimator can
be regarded as special forms of the general estimator
with β equal to 0 and 1, respectively.

Thus, these three treatment estimators can be seen
merely as ways of adjusting the observed difference
at outcome using the baseline difference. The first
simply relies on the fact that in a randomized trial, in
the absence of a difference between treatments, the
expected value of the mean difference at outcome
is zero. Hence, the factor by which the observed
outcome needs correcting, in order to judge the
treatment effect, is also zero. The second corresponds
to the assumption that the difference at outcome, in
the absence of a treatment effect, is expected to be
the difference in the means of the baselines. This
naive assumption is, in fact, false [2, 6, 15, 18]. The
third allows for a more general system of predicting
what the outcome difference would have been in the
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absence of any treatment effect as a function of the
mean difference at baseline.

Analysis of covariance corresponds to choosing
a suitable value for β. There are two standard
motivations that lead to an equivalent result. The
first finds the value of β that minimizes (1) and the
second finds the value of β that sets (2) to zero. By
inspection of (1) and (2), it is obvious that the value of
β that does this is β ′ = ρσy/σx and that the resulting
variance is then

(1 − ρ2)σ 2
y . (3)

β ′ is the regression of Y on X and this adjustment is
known as analysis of covariance. It is quite general
and can be used for baseline variables of the first
and third type discussed above and not just of the
second. In practice the nuisance parameters ρ, σx ,
and σy are unknown and the regression coefficient, β ′,
has to be estimated and the (slight) nonorthogonality
observed in nearly all trials means that the expected
variance of the treatment estimate is slightly higher
than given by (3).

These considerations generalize readily to the case
where we have multiple outcomes and baselines.
A simple and attractive computational solution is
to use appropriate summary measures based on the
outcomes (see Summary Measures Analysis of
Longitudinal Data) and adjust these using either
multiple baselines or some summary of them in an
analysis of covariance. Some good practical advice
has been given in [10] and also in [8].

Red Herrings

It is important to note that since analysis of covari-
ance produces both the minimum variance estimator
and the estimator which is uncorrelated with the base-
line difference, other approaches are deficient in this
respect. For example, using the change score alone
does not, in fact, deal with the problem of chance
imbalance in the baselines, since the change score is
correlated with the baselines. Indeed, if the correla-
tion is very low, then it may even produce a higher
variance than using the raw outcomes alone.

It is also sometimes argued that clinical relevance
may decide the toss between these approaches, but
this is just nonsense. All these approaches measure
the same thing, and indeed, for a trial in which
baseline values are perfectly balanced, give exactly

the same answer. Furthermore, because it has the
smaller variance, a covariance adjusted estimator
from a given trial would actually be expected to
predict the change score estimator in a subsequent
trial better than the change score estimator itself!
Note also, as has been nicely shown by Laird,
that adjusting the change scores using analysis of
covariance gives exactly the same answer as adjusting
the raw scores [9].

Errors in variables [4] also do not affect the
validity of analysis of covariance, which can simply
be seen as a means of incorporating what is known
into the analysis [14, 15]. For example, where no
baselines have been measured, using raw outcomes
is valid because there is no baseline information
to condition on, a fact which will then properly
be reflected in the high variance of the treatment
estimate. Where baselines have been observed, these
observations can be used to decrease the variance of
the treatment estimate and to adjust for any chance
imbalance. But any chance imbalance observed is a
chance imbalance in the observations, and this is what
must be adjusted for.

A final point of some confusion is whether one
should be interested in estimating a trend or an
average. Where there is a single outcome measure,
there is essentially no distinction, because, as has
already been explained, adjusting the trend measure
Y − X for X gives exactly the same result as
adjusting the outcome measure Y for X [9]. Where
a series of outcome measures is made at different
time points, however, a different treatment estimate
is possible at each of these time points. To the extent
that such separate estimates are made, there is again
no distinction between the two approaches. However,
a series of such independent estimates may miss the
opportunity to make a powerful summary, and if it is
decided therefore to do this, inevitably the choice of a
suitable summary arises. Appropriate choice depends
on the way in which the treatment effect grows
over time. For example, regular therapy with a beta-
agonist in asthma is likely to produce a near constant
bronchodilation over time and hence a mean outcome
measure is suitable. However, hormone replacement
therapy in osteoporosis may have an effect on bone
mineral density which increases with time so that
some sort of slope estimate is appropriate. If the
choice can be made on the basis of suitable prior
information, then it avoids the difficulties to which
data-dependent choices are liable. Contrary to what
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is sometimes claimed, however, the choice does
not depend directly on the way in which outcomes
change for individual subjects, since these may be
affected by strong (but irrelevant for causal purposes)
secular trends.

Testing for Baseline Balance

A rather foolish but common use which is made of
baselines is to check that the groups in a randomized
clinical trial are “balanced” [1, 3, 13, 16]. A signif-
icant result, however, can only mean either that a
type I error has been committed or that the randomi-
zation mechanism itself is flawed. However, where a
significant result is found, trialists are generally most
reluctant to impugn the conduct of the trial itself and
instead treat the result as being the result of a ran-
domly bad allocation. However, hypothesis tests, if
they are to be used at all, should be used to test
hypotheses, not to describe samples. For these and
other reasons, whereas such tests of baseline balance
might form a legitimate part of data monitoring and
quality control, they should not form part of a general
strategy of analyzing clinical trials and, in particular,
should not be used to decide whether or not to use
analysis of covariance [16].

Adjusting for Baselines Taken After the Start of
Treatment

Adjusting for late baselines, whether by analysis
of covariance or by simple change scores, can be
extremely misleading since the treatment effect will
be adjusted by a “baseline” difference which may
itself reflect the effect of treatment, thus attenuating
the final estimate. In the context of survival analysis
this controversial topic goes by the name of time-
dependent covariates. Wherever such adjustments
are made, one should be extremely careful in inter-
preting the result.

Cut-off Designs

There has been some interest in designs that use
observed baseline measurements to allocate patients
to treatment [7, 19]. For example, the more severely
ill get the experimental treatment, whereas those
who are less ill get the standard treatment. In such
trials some form of adjustment for the baselines

is then mandatory. Quite apart from the stronger
assumptions required to analyze such trials, the strong
degree of imbalance leads to a considerable inflation
of variance compared with the randomized design.
Such trials have been described in [19] and [7] and
some criticisms are given in [17]. The fact that the
baselines used for assignment may be measured with
error is also not a problem for such trials [11].

Cohort Studies

Baseline measurements can be extremely important in
the context of epidemiological cohort studies which,
however, have several problems not shared by the
controlled clinical trial. From one point of view it
may be supposed that analysis of covariance is even
more important, since the simple comparison of mean
outcome scores between an exposure and a control
group is not likely to have an expected value equal
to the exposure effect of interest. Therefore some sort
of baseline adjustment is required. However, this can
cause problems.

First, the errors in variable problem is potentially
serious here in the sense that the assignment mech-
anism of subjects to exposure is not ignorable in
Rubin’s sense [12, 4] (see Nonignorable Dropout
in Longitudinal Studies). However, if assignment
probabilities are related to true covariate values, then
adjusting for observed covariate values will not deal
with the problem adequately. (This is not to say that
it may not be preferable to some of the alterna-
tive forms of adjustment used. However, the point
remains controversial [5, 14].) Secondly, the defini-
tion of exposure itself may be unclear in a way that
makes adjustment for baselines problematic. Consider
the case of salt and hypertension and a cohort study
that measures salt consumption (presumably with
some difficulty) and blood pressure in a cohort of
individuals from a given time point. Whether and
how we should adjust for baseline blood pressure is
at least partly bound up with what we are trying to
measure: lifetime exposure in terms of salt consump-
tion, which will already have had an effect on the
baseline measurements, or “downstream” consump-
tion. Perhaps for these reasons, but no doubt also
because computational progress has made this a much
more feasible option, there is an increasing interest
in complex modeling in this field.
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Uncontrolled Studies

Simply comparing outcome with baseline by forming
the mean difference for a single treatment group in
an uncontrolled study is an inadequate way to assess
the effect of treatment. Quite apart from the usual
trend biases to which such studies are liable, if the
subjects have been selected on the basis of extreme
baseline measurements, then the study will be subject
to regression to the mean [2, 6]. The price one then
has to pay to get a reasonable estimate of the effect
of treatment is complex statistical modeling with
attendant doubt and skepticism as to the result [18].
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Battery Reduction

Often a researcher is in the position where he has n

variables of interest under investigation, but desires
to reduce the number for analysis or later data col-
lection. Specifically, a researcher may desire to select
a subset of m variables from the original n variables
that reproduce as much as possible of the informa-
tion contained in the original n variables. In other
words, he may desire to find the subset of m vari-
ables which accounts for a large proportion of the
variance of the original n variables. For example, if
he has a long questionnaire measuring the effect of
a given treatment on the day-to-day activities of a
certain population of patients, there may be concern
about the burden such a questionnaire places upon the
patient. So there is a need to try to reduce the size
of the questionnaire (or reduce the battery of ques-
tions) without substantially reducing the information
obtained from the full questionnaire. To accomplish
this he can perform battery reduction using the data
collected from patients who completed the full battery
of questions at some time in the past.

There are a number of procedures for perform-
ing battery reduction. In the following, we illustrate
the concept using Gram–Schmidt transformations.
Cureton & D’Agostino [1, Chapter 12] contains com-
plete details of this procedure. Also, D’Agostino
et al. [2] have developed a macro in SAS (see Soft-
ware, Biostatistical) which carries out this procedure
which is available from ralph@math.bu.edu.

Assume that the n variables on which we
would like to perform battery reduction are denoted
X1, . . . , Xn. Assume also that these n variables are
standardized with mean zero and variance unity. Then
the total variance explained by X1, . . . , Xn, is n,
the number of variables. To find the subset of m

variables which will explain as much as possible the
variance of X1, . . . , Xn, we first perform a principal
components analysis and decide upon the m

components to be retained. These are the components
that account for the salient variance in the original
data set. The SAS [3] procedure PRINCOMP
can be used to perform principal components
analysis. The SAS [3] procedure FACTOR can
also be employed. Both procedures automatically
standardize the variables before employing principal
components. Note also that the above-mentioned
battery reduction macro created by D’Agostino

et al. [2] automatically standardizes the variables
and creates these components as part of its battery
reduction.

Once m is determined, let A denote the n × m

matrix in which the columns contain the correlations
of Xi, i = 1, . . . , n, to the m principal components.
Symbolically A is

A =





a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

...

an1 an2 . . . anm




.

The j th column contains the correlations of the
original variables Xi to the j th component, and the
sum of the squares of all the aij , i = 1, . . . , n, j =
1, . . . , m, of A equals the amount of the total variance
of the original n variables that is explained by the
m retained components. We refer to this as salient
variance. In principal components analysis, A is
referred to as the initial component matrix. It is also
often referred to as the initial factor matrix. The
elements of A are called the loadings. The sum of the
squares of the loadings of the ith row of A equals the
proportion of variance of Xi, i = 1, . . . , n, explained
by the m principal components. This is called the
communality of Xi , symbolized as h2

i .
Now, to find the subset of m variables which

explains, as much as possible, the salient vari-
ance of the original n variables, we can employ
the Gram–Schmidt orthogonal rotations to the
n × m initial component matrix A. The goal of the
Gram–Schmidt rotation in battery reduction is to
rotate A into a new n × m component matrix, where
the variable accounting for the largest proportion
of the salient variance (call this “variable 1”) has
a nonzero loading on the first component, but zero
loadings on the remaining m − 1 components; the
variable accounting for the largest proportion of resid-
ual variance (“variable 2”), where residual variance
is the portion of the salient variance which is not
accounted for by the variable 1, has a nonzero loading
on the first two components, but zero loadings on the
remaining m − 2 components; the variable account-
ing for the largest proportion of second-residual vari-
ance (“variable 3”) has a nonzero loading on the first
three components, but zero loadings on the remaining
m − 3 components, etc. until the variable accounting
for the largest proportion of the (m − 1)th residual
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variance (“variable m”) is found. Variables 1 through
m are then the variables which reproduce, as much
as possible, the variance retained by the m prin-
cipal components, and so also the salient variance
contained in the original n variables. In the vocab-
ulary of principal components analysis, variable 1
is the first transformed component, variable 2 is the
second, etc. To determine how much of the origi-
nal variance of all n variables is explained by the
m transformed components, we simply compute the
sum of squares of all the loadings in the final n × m

Gram–Schmidt rotated matrix (this should be close
to the sum of squares of the elements of the n × m

initial component matrix A). The following example
will illustrate the use of the Gram–Schmidt process
in battery reduction.

In the Framingham Heart Study, a 10-question
depression scale was administered (so n = 10), where
the responses were No or Yes to the following (the
corresponding name to which each question will
hereafter be referred is enclosed in parentheses):

1. I felt everything I did was an effort (EFFORT).
2. My sleep was restless (RESTLESS).
3. I felt depressed (DEPRESS).
4. I was happy (HAPPY).
5. I felt lonely (LONELY).
6. People were unfriendly (UNFRIEND).
7. I enjoyed life (ENJOYLIF).
8. I felt sad (FELTSAD).
9. I felt that people disliked me (DISLIKED).

10. I could not get going (GETGOING).

A Yes was scored as 1 and No as 0 except for
questions 4 and 7, where this scoring was reversed
so that a score of 1 would indicate depression for
all questions.

After performing a principal components analysis
on this data, there were three components with
variances greater than unity. The variances of these
three components were 3.357, 1.290, and 1.022 for
a percentage variance explained equal to 100 ×
(3.357 + 1.290 + 1.022)/10 = 56.69%. Thus, using
the Kaiser rule for selecting the number of retained
components [1], we set m equal to 3 for this example.
The 10 × 3 initial component matrix A is in Table 1.

Now, to use Gram–Schmidt transformations to
determine the three variables which explain the
largest portion of the salient variance from the
original 10 variables, we do the following:

Table 1 Initial component matrix A for Framingham
Heart Study depression questionnaire

a1 a2 a3 h2

EFFORT 0.60 0.15 0.41 0.55
RESTLESS 0.39 0.07 0.55 0.46
DEPRESS 0.77 −0.13 −0.10 0.62
HAPPY 0.70 −0.23 −0.06 0.55
LONELY 0.64 −0.23 −0.21 0.51
UNFRIEND 0.35 0.68 −0.33 0.69
ENJOYLIF 0.52 −0.27 −0.27 0.42
FELTSAD 0.71 −0.22 −0.20 0.59
DISLIKED 0.34 0.72 −0.22 0.68
GETGOING 0.58 0.20 0.47 0.60

Note: h2 = a2
1 + a2

2 + a2
3 is the communality.

1. Find, from A in Table 1, the variable which
explains the largest proportion of salient
variance from the original 10 variables. This
is the variable UNFRIEND, with a sum of
squares of loadings (communality) across the
three components equal to 0.352 + 0.682 +
(−0.33)2 = 0.69.

2. Take the loadings of UNFRIEND from Table 1
(0.35, 0.68, −0.33) and normalize them (i.e.
divide each element by the square root of
the sum of the squares of all three elements).
This yields the normalized loadings: 0.42, 0.82,
−0.40.

3. Create a 3 × 3 (m × m) matrix Y1, which, in
the Gram–Schmidt process, is given by

Y1 =




a b c

k2 −ab/k2 −ac/k2

0 c/k2 −b/k2



 ,

where a = 0.42, b = 0.82, c = −0.40 (the nor-
malized row of UNFRIEND from A), and k2 =
(1 − a2)1/2. Thus,

Y1 =




0.42 0.82 −0.40

0.91 −0.38 0.18

0 −0.44 −0.90



 .

4. Calculate AY′
1, which is shown in Table 2.

Note that, for UNFRIEND, the only nonzero
loading is on the first component (or first
column). This loading is equal to the square
root of the sum of squares of the original
loadings of UNFRIEND in matrix A (thus, no
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Table 2 B = AY′
1

b1 b2 b3 res. h2

EFFORT 0.21 0.56 −0.44 0.51
RESTLESS 0.00 0.43 −0.53 0.47
DEPRESS 0.26 0.73 0.15 0.56
HAPPY 0.13 0.71 0.15 0.52
LONELY 0.16 0.63 0.29 0.48
UNFRIEND 0.84 0.00 0.00 0.00
ENJOYLIF 0.11 0.53 0.36 0.41
FELTSAD 0.20 0.69 0.28 0.55
DISLIKED 0.82 0.00 −0.12 0.01
GETGOING 0.22 0.54 −0.51 0.55

Note: res. h2 = residual communality = b2
2 + b2

3.

“information” explained by UNFRIEND is lost
during the rotation process). For each of the
remaining variables in Table 2, we have the
following: (i) the squares of the elements in the
first column are the portions of the variances
of these variables which are accounted for by
UNFRIEND; and (ii) the sum of the squares of
the elements in the second and third columns
is the residual variance (i.e. the variance of the
variables not accounted for by UNFRIEND).

5. Find the variable which explains the largest
proportion of residual variance (i.e. has the
largest residual communality). This is the vari-
able DEPRESS, with a sum of squares of load-
ings across the last two columns of Table 2
which is equal to 0.732 + 0.152 = 0.56.

6. Take the loadings of DEPRESS from Table 2
(0.73, 0.15) and normalize them. This yields the
normalized loadings: 0.98, 0.20.

7. Create a 2 × 2 matrix Y2, which, in the
Gram–Schmidt process, is given by

Y2 =
[

b c

c −b

]
,

where b = 0.98, c = 0.20 (the normalized row
of DEPRESS from the last two columns of
Table 2). Thus,

Y2 =
[ 0.98 0.20

0.20 −0.98

]
.

8. Postmultiply the last two columns of AY′
1 by

Y′
2; the result is shown in the last two columns

of Table 3. The first column of Table 3 is
the first column of AY′

1. Together, the three

Table 3 Final rotated reduced component matrix, C

c1 c2 c3 h2

EFFORT 0.21 0.46 0.54 0.55
RESTLESS 0.00 0.31 0.61 0.46
DEPRESS 0.26 0.75 0.00 0.63
HAPPY 0.13 0.73 0.00 0.55
LONELY 0.16 0.68 −0.16 0.51
UNFRIEND 0.84 0.00 0.00 0.70
ENJOYLIF 0.11 0.59 −0.25 0.42
FELTSAD 0.20 0.73 −0.14 0.59
DISLIKED 0.82 −0.02 0.12 0.67
GETGOING 0.22 0.43 0.61 0.60

Note: h2 = c2
1 + c2

2 + c2
3 is the final communality.

columns are called the rotated reduced compo-
nent matrix (matrix C of Table 3).
Note that, for DEPRESS, the loading on the last
component (or last column) is zero. The sum of
squares of the loadings (the final communality)
of DEPRESS in Table 3 is, within rounding
error, equal to the square root of the sum of
squares of the loadings of DEPRESS in the
initial component matrix A (0.63 vs. 0.62; thus,
no “information” explained by DEPRESS is lost
during the rotation process). For the remaining
variables in the second column of Table 3, the
elements are the portions of the variances of
these variables which are accounted for by
DEPRESS.

9. The last of the three variables which explains
the largest portion of variance in the original
10 variables is GETGOING, since its loading
is largest in the last column of Table 3.

10. The sum of squares of all the loadings in
Table 3 is approximately equal, within round-
ing error, to the sum of squares of loadings
in A.

Thus the three variables UNFRIEND, DEPRESS,
and GETGOING alone retain approximately the
same variance that was retained by the first three
principal components (which involved all 10 original
variables). We have reduced the original battery of
ten questions to three.

The above is presented only as an illustration. It
is unlikely that a researcher would need to perform
a battery reduction on 10 simple items such as in the
example. However, there could be a tremendous gain
if the original n was, say, 100 and the number of
retained components m was only 10.
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Also, the above example focused on finding the
m variables that reproduce the variance retained by
the principal components. There may be variables
with low communalities (thus not related to the
other variables). The researcher may want to retain
these also. For a discussion of this and presentations
of other battery reduction methods, see Cureton &
D’Agostino [1, Chapter 12].
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Bayes Factors

The Bayes factor provides a number for quantifying
the evidence in favor of a scientific theory, and hence
provides a Bayesian approach to hypothesis testing
or ascertainment. Its terminology is apparently due
to Good [12], but the underlying philosophy and pro-
posed usage has been described by Jeffreys [13, 14].
For the comparison of two competing hypotheses, the
Bayes factor is the posterior odds in favor of one of
the hypotheses when the prior odds of the hypotheses
are equal. The Bayes factor is more precisely defined
as follows.

Definition

Let H0 and H1 denote two competing hypotheses
under which data D are thought to have arisen. The
prior probabilities for H0 and H1 are given by P(H0)

and P(H1) = 1 − P(H0), and the posterior proba-
bilities by P(H0|D) and P(H1|D) = 1 − P(H0|D),
respectively. By Bayes’s theorem, the latter proba-
bilities can be expressed as

P(Hk|D) = P(D|Hk)P (Hk)

P (D|H0)P (H0) + P(D|H1)P (H1)
,

(1)

for k = 0, 1. Using (1), the posterior odds ratio in
favor of H0 can be expressed as

P(H0|D)

P (H1|D)
= P(D|H0)

P (D|H1)
× P(H0)

P (H1)
. (2)

From (2), one can see that the prior odds get trans-
formed into the posterior odds via multiplication by
the factor

BF01 = P(D|H0)

P (D|H1)
, (3)

which is termed the Bayes factor of H0 to H1. Note
that by (2), the Bayes factor is the ratio of posterior
to prior odds, regardless of the value of prior odds,
and also the posterior odds when the prior odds of H0

and H1 are equal. Kass and Raftery [15] summarize
Jeffreys’ guidelines for interpreting the Bayes factor,
which suggest interpretation based on half-units on
the log base 10 scale [14]. On this scale, a log base 10
BF01 value greater than 2, or raw BF01 value greater
than 100, represents decisive evidence in favor of H0,

a value between 1 and 2, strong evidence, a value
between 1/2 and 1, substantial evidence, and a value
between 0 and 1/2, evidence not worth more than a
bare mention.

In the simple case, H0 and H1 entail no free
parameters to be estimated, and B01 is the likeli-
hood ratio statistic. In the more common scenario,
H0 and H1 hypothesize a model p(D|θk, Hk) for
the data D with unknown parameters θk , and prior
distributions π(θk|Hk) for θk , for k = 0, 1, respec-
tively. In this case, the densities P(D|Hk) appearing
in the numerator and denominator of BF01 are the
integrated likelihoods against the prior densities:

P(D|Hk) =
∫

θk

p(D|θk, Hk)π(θk |Hk) dθk, (4)

for k = 0, 1. As seen by (4) two challenges for
implementation of Bayes factors are the calculation
of the integrals, which may involve highly peaked
integrands over high dimensional spaces, and the
specification of prior distributions, for which the
Bayes factor may be sensitive.

Calculation

There has been considerable research in the calcula-
tion of integrals (4) of the type required by the Bayes
factor. Exact analytic evaluation of the integrals is
possible for a restricted set of scenarios, includ-
ing exponential family distributions with conjugate
priors; see for example, [6, Chapter 9]. Otherwise,
some type of numerical approximation is needed.
Many standard numerical methods, such as numerical
quadrature (see Numerical Integration), however,
can be very inefficient for these types of integrals
since the dimension may be high and/or the inte-
grand highly peaked near the maximum likelihood
estimate. Evans and Swartz [8, 9] provide a review of
numerical algorithms for integrals appearing in the
Bayes factor.

Laplace’s asymptotic method provides a surpris-
ingly accurate approximation to integrals of the form
(4) [16, 22, 23]. One version of the approximation,
termed fully exponential, is obtained by assuming
that the posterior density, which is proportional to
the integrand in (4), becomes highly peaked at the
posterior mode θ̃ as the sample size n increases.
Here the subscript k has been dropped for brevity.
Denote by �̃(θ), the log of the integrand in (4).
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Laplace’s approximation works by expanding �̃(θ)

in a Taylor series about θ̃ . Exponentiating this Tay-
lor series expansion and ignoring some of the latter
terms yields an integrand that resembles a multi-
variate normal distribution with mean θ̃ and vari-
ance–covariance matrix Σ̃ = [−D2�̃(θ̃ )]−1, where
D2�̃(θ) denotes the Hessian matrix of second deriva-
tives of �̃(θ). Integrating this integrand yields the
following approximation:

P(D̂|H) = (2π)d/2|Σ̃ |1/2P(D|θ̃ , H)π(θ̃ |H), (5)

where d is the dimension of θ . Under the Fisher regu-
larity conditions, given in Kass et al. [16], the relative
error of the approximation is O(n−1). Thus, when the
approximation is applied to both the numerator and
denominator of BF01, the relative error of the result-
ing approximation is also O(n−1). A variation of the
approximation replaces θ̃ with the maximum likeli-
hood estimator θ̂ of P(D|θ, H), and obtains relative
error of order O(n−1/2). Using the latter approxima-
tion, Schwarz [21] derived a rough approximation to
the Bayes factor, with error term on the log scale of
order O(1), as

S = log P(D|θ̂0, H0) − log P(D|θ̂1, H1)

− 1
2 (d0 − d1) log(n), (6)

where d0 and d1 are the dimensions of the parameter
spaces under H0 and H1, respectively. The expression
in (6) is a modified log likelihood ratio statistic, which
is interpretable even for nonnested models (see Sep-
arate Families of Hypotheses). Kass and Wasser-
man [17] show that for the case where H0 is nested in
H1 and with an interesting choice of unit-information
prior for the parameters tested, S is an approxima-
tion to the log of the Bayes factor to order O(n−1/2).
Minus twice the Schwarz criterion is often called the
Bayesian Information Criterion (BIC), which is sim-
ilar to Akaike’s Information Criterion (AIC) [1].
When applied to each model separately, the BIC
penalizes models of higher dimensionality more than
the AIC; the penalty factor subtracted from the max-
imized log likelihood for the AIC is proportional to
the number of parameters d, whereas for the BIC, it
is proportional to d log n.

The increased feasibility of Markov Chain Monte
Carlo (MCMC) methods [11] for simulating sam-
ples from the posterior distribution of parameters
has spawned a large variety of new simulation and

simulation/asymptotic approximation hybrid appro-
aches for calculating the Bayes factor; see, for exam-
ple, [4, 5, 7, 10, 18, 20, 24]. The choice of method
that obtains the highest accuracy depends on features
of the individual problem.

Prior Distributions

Prior distributions play a key role in the Bayes factor.
First, unlike in Bayesian estimation problems, where
as the sample size approaches infinity, the influence
of the prior distribution diminishes, the Bayes fac-
tor remains sensitive to the choice of prior, even
asymptotically. This can be inferred somewhat from
approximation (5). Therefore, careful consideration
must be given to the selection of the prior distri-
bution and sensitivity analyses to assess robustness
of conclusions to a range of plausible priors must
be performed. In the case of testing nested hypothe-
ses, say where a parameter θ0 is fixed under H0 but
unknown under H1, the Bayes factor in favor of H0

often increases as the prior variance for θ0 under H1

increases. This phenomenon, called Bartlett’s para-
dox [2], emphasizes that proper informative priors
should be used for the parameters under test.

Improper priors pose problems for Bayes factors
in that either the integrals comprising the numerator
and denominator may not converge, or that the arbi-
trary proportionality constant of improper priors leads
to arbitrariness in definition of the Bayes factor. In
the case of testing nested hypotheses, however, many
authors are not bothered by the use of improper ref-
erence priors for the nuisance parameters [14, 17].
The intrinsic Bayes factor of Berger and Pericchi [3]
and the fractional Bayes factor of O’Hagan [19] are
two proposals for modifying Bayes factors to accept
reference, possibly improper, prior distributions, by
utilizing part of the data as a training sample for the
prior.
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Bayes’ Theorem

The uncertainty, expressed through probability, that
you feel about something will depend on your knowl-
edge at the time you state that probability and could
change as additional information becomes available.
For example, the probability that a woman has breast
cancer will depend on your knowing that she is an
apparently healthy woman of 40 years of age with
three children and no family history of breast cancer.
It would change if she tested positive on a screening
test for the condition. Bayes’ theorem describes how
this change, as a result of extra information, should
be evaluated.

Let C be the uncertain event under considera-
tion – in the example, the event that the woman has
breast cancer. Let Pr(C) be the probability that C

obtains, based on your knowledge at the time the
probability is evaluated. Let + denote the additional
knowledge – in the example, the positive test result.
The revised probability is written Pr(C|+), which
reads “the probability of C given (expressed by the
vertical line) the result +”. Bayes’ theorem relates
Pr(C|+) to Pr(C). It is most easily understood if
probability is replaced by odds. The odds on C is
Pr(C)/ Pr(∼ C), written O(C), where ∼ C denotes
the complementary event – in the example, not hav-
ing breast cancer. So Pr(∼ C) is the probability that
C does not obtain, namely 1 − Pr(C). In this notation,
Bayes’ Theorem says

O(C|+) = Pr(+|C)

Pr(+| ∼ C)
× O(C).

In words, to change the odds as a result of the
extra information +, the original odds are multiplied
by Pr(+|C)/ Pr(+| ∼ C). The multiplier is called
the likelihood ratio for C, on evidence +. In the
example, Pr(+|C) is the probability that a woman
with breast cancer will test positive – a true positive;
Pr(+| ∼ C) is the similar probability for a woman
without breast cancer – a false positive.

Note the distinction between Pr(C|+) occurring
in the odds and Pr(+|C) occurring in the likelihood
ratio. The first expresses your uncertainty about the
cancer when a positive result is available; the second
concerns your uncertainty about whether a woman
with breast cancer will test positive. The reversal of
C and + is very important. Bayes’ theorem shows
how this reversal occurs. The confusion between the
two probabilities is called the “prosecutor’s fallacy”,
perhaps because of its frequent appearance in legal
cases (see Medico–Legal Cases and Statistics).

An alternative expression of the theorem is

Pr(C|+) = Pr(+|C) Pr(C)

Pr(+)
,

passing from Pr(C) to Pr(C|+). Here a new proba-
bility appears,

Pr(+) = Pr(+|C) Pr(C) + Pr(+| ∼ C) Pr(∼ C).

This is the probability of a positive result when the
breast cancer state is unknown: in the example, for
a healthy 40-year-old woman with three children and
no family history of breast cancer.

The theorem is usually ascribed to the Rev
Thomas Bayes in 1763 (see Bayes, Thomas).
A convenient, modern reprint is [1]. It plays a
fundamental role in one approach to statistical
inference called Bayesian statistics. No one disputes
the mathematics; the interpretation of Pr(C|+) is,
however, controversial.
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Bayes, Thomas

Born: 1701 (?) in Hertfordshire, UK.
Died: April 7, 1761, in Tunbridge Wells, UK.

Thomas Bayes, son of a nonconformist minister,
spent most of his adult life in a similar position
in Tunbridge Wells, England. He was educated at
Edinburgh University and was a fellow of the Royal
Society. He is today remembered for a paper that his
friend Richard Price claimed to have found amongst
his possessions after death. It appeared in the Soci-
ety’s Proceedings in 1763 and has often been repub-
lished [1].

By the middle of the eighteenth century it was well
understood that if, to use modern terminology, in each
of n independent trials the chance of success had the
same value, θ say, then the probability of exactly r

successes was given by the binomial distribution

Pr(r|θ, n) = nCrθ
r(1 − θ)n−r .

James Bernoulli had established the weak law of
large numbers and de Moivre had found the nor-
mal approximation (see Normal Distribution) to the
binomial. The passage from a known value of θ to the
empirical observation of r was therefore extensively
appreciated. Bayes studied the inverse problem: What
did the data (r, n) say about the chance θ? There
already existed partial answers in the form of signif-
icance tests (see Hypothesis Testing).

Bayes proceeded differently using the theorem that
nowadays always bears his name, though it does not
appear explicitly in the 1763 paper,

Pr(A|B) = Pr(B|A) Pr(A)

Pr(B)

for events A and B with Pr(B) �= 0 (see Bayes’
Theorem). The theorem permits the inversion of the
events in Pr(B|A) into Pr(A|B). Applied when A

refers to θ and B to the empirical r , we have

Pr(θ |r, n) ∝ Pr(r|θ, n) Pr(θ |n).

The result effects the passage from the binomial,
on the right, to a probability statement about the
chance, on the left. It therefore becomes possible
to pass from the data to a statement about what
are probable, and what are improbable, values of
the chance. This elegantly and simply solves the

problem, except for one difficulty. It requires a value
for Pr(θ |n), a probability distribution for the chance
before the result of the trials has been observed. It
is usual to describe this as the prior distribution
(prior, that is, to r) and the final result as the posterior
distribution. Thus, the theorem describes how your
views of θ change, from prior to posterior, as a result
of data r . Bayes discussed the choice of prior but his
approach is ambiguous. He is usually supposed to
have taken Pr(θ |n) uniform in (0,1) – the so-called
Bayes’ postulate – but an alternative reading suggests
he took Pr(r|n) to be uniform. Mathematically these
lead to the same result.

The theorem is of basic importance because it pro-
vides a solution to the general problem of inference
or induction. Let H be a universal hypothesis and
E empirical evidence bearing on H . Bayes’ theo-
rem says

Pr(H |E) ∝ Pr(E|H) Pr(H),

expressing a view about the hypothesis, given the
evidence, in terms of the known probability of the
evidence, given the hypothesis, and the prior view
about H . As more evidence supporting H accrues,
having large probability on H , so even the skeptic,
with low Pr(H), will become convinced, Pr(H |E)

will approach one and the hypothesis accepted. Many
people, following Jeffreys, who extensively devel-
oped these ideas into a practicable scientific tool,
hold that this provides a description of the scientific
method.

These ideas have been extensively developed into
a systematic treatment of statistics and decision mak-
ing, termed Bayesian. The ideas therein differ from
those adopted in the classical school of statistics.
All this is a long way from Bayes’ original problem
and its resolution. He would doubtless be astonished
were he to realize how his wonderful idea has been
extended and his name used (see Bayesian Meth-
ods).
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Bayesian Approaches to
Cure Rate Models

Introduction

Survival models incorporating a cure fraction, often
referred to as cure rate models, are becoming
increasingly popular in analyzing data from cancer
clinical trials (see Clinical Trials, Early Cancer
and Heart Disease). The cure rate model has been
used for modeling time-to-event data for various
types of cancers, including breast cancer, non-
Hodgkin’s lymphoma, leukemia, prostate cancer,
melanoma, and head and neck cancer, where for
these diseases, a significant proportion of patients are
“cured”. Perhaps the most popular type of cure rate
model is the mixture model discussed by Berkson and
Gage [2]. In this model, we assume a certain fraction
π of the population is “cured”, and the remaining
1 − π are not cured. The survivor function for the
entire population, denoted by S1(y), for this model is
given by

S1(y) = π + (1 − π)S∗(y), (1)

where S∗(y) denotes the survivor function for the
noncured group in the population. Common choices
for S∗(y) are the exponential and Weibull distribu-
tions. We shall refer to the model in (1) as the stan-
dard cure rate model. The standard cure rate model
has been extensively discussed in the statistical liter-
ature by several authors, including Farewell [13, 14],
Goldman [15], Greenhouse and Wolfe [17], Halpern
and Brown [18, 19], Gray and Tsiatis [16], Sposto,
Sather, and Baker [31], Laska and Meisner [25],
Kuk and Chen [24], Yamaguchi [39], Taylor [34],
Ewell and Ibrahim [12], Stangl and Greenhouse [32],
and Sy and Taylor [33]. The book by Maller and
Zhou [28] gives an extensive discussion of frequen-
tist methods of inference for the standard cure rate
model. Although the standard cure rate model is
attractive and widely used, it has some drawbacks. In
the presence of covariates, it cannot have a propor-
tional hazards structure if the covariates are modeled
through π via a binomial regression model (see Gen-
eralized Linear Model). Proportional hazards are a
desirable property in survival models when doing
covariate analyses. Also, when including covariates
through the parameter π via a standard binomial

regression model, (1) yields improper posterior dis-
tributions for many types of noninformative improper
priors, including an improper uniform prior for
the regression coefficients. (see Chen, Ibrahim &
Sinha [7]) This is a crucial drawback of (1), since
it implies that Bayesian inference with (1) essen-
tially requires a proper prior. These drawbacks can
be overcome with an alternative definition of a cure
rate model, which we discuss in the next section.

Univariate Cure Rate Models

We present a formulation of the parametric cure
rate model discussed by Yakovlev et al. [37],
Yakovlev [36], and Yakovlev and Tsodikov [38]. A
Bayesian formulation of this model is given in [7].
The alternative model can be derived as follows.
Suppose that for an individual in the population, let
N denote the number of metastasis-competent tumor
cells for that individual left active after the initial
treatment. A metastasis-competent tumor cell is a
tumor cell that has the potential of metastasizing.
Further, assume that N has a Poisson distribution
with mean θ . Let Zi denote the random time for
the ith metastasis-competent tumor cell to produce
detectable metastatic disease. That is, Zi can be
viewed as a promotion time for the ith tumor cell.
Given N , the random variables Zi , i = 1, 2, . . . , are
assumed to be independent and identically distributed
with a common distribution function F(y) = 1 −
S(y) that does not depend on N . The time to relapse
of cancer can be defined by the random variable Y =
min {Zi, 0 ≤ i ≤ N}, where P(Z0 = ∞) = 1. The
survival function for Y , and hence the survival
function for the population, is given by

Spop(y) = P(no metastatic cancer by time y)

= P(N = 0) + P(Z1 > y, . . . , ZN > y,

N ≥ 1). (2)

After some algebra, we obtain

Spop(y) = exp(−θ) +
∞∑

k=1

S(y)k
θk

k!
exp(−θ)

= exp(−θ + θS(y)) = exp(−θF (y)). (3)

Since Spop(∞) = exp(−θ) > 0, (3) is not a proper
survival function. As Yakovlev and Tsodikov [38]
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point out, (3) shows explicitly the contribution to the
failure time of two distinct characteristics of tumor
growth: the initial number of metastasis-competent
tumor cells and the rate of their progression. Thus, the
model incorporates parameters bearing clear biolog-
ical meaning. Aside from the biological motivation,
the model in (3) is suitable for ‘ any type of sur-
vival data that has a surviving fraction. Thus, survival
data which do not “fit” the biological definition given
above can still certainly be modeled by (3) as long as
the data has a surviving fraction and can be thought
of as being generated by an unknown number N of
latent competing risks (Zi’s). Thus, the model can be
useful for modeling various types of survival data,
including time to relapse, time to death, time to first
infection, and so forth.

We also see from (3) that the cure fraction (i.e.
cure rate) is given by

Spop(∞) ≡ P(N = 0) = exp(−θ). (4)

As θ → ∞, the cure fraction tends to 0, whereas as
θ → 0, the cure fraction tends to 1. The subdensity
corresponding to (3) is given by

fpop(y) = θf (y) exp(−θF (y)), (5)

where f (y) = d/ dyF(y). We note here that fpop(y)

is not a proper probability density since Spop(y) is not
a proper survival function. However, f (y) appearing
on the right side of (5) is a proper probability density
function. The hazard function is given by

hpop(y) = θf (y). (6)

Following Chen, Ibrahim, and Sinha [7], we can now
construct the likelihood function as follows. Suppose
we have n subjects, and let Ni denote the num-
ber of metastasis-competent tumor cells for the ith
subject. Further, we assume that the Ni’s are inde-
pendently and identically distributed (i.i.d.) Poisson
random variables with mean θ , i = 1, 2, . . . , n. We
emphasize here that the Ni’s are not observed, and
can be viewed as latent variables in the model for-
mulation. Further, suppose Zi1, Zi2, . . ., Zi,Ni

are the
i.i.d. promotion times for the Ni metastasis-competent
cells for the ith subject, which are unobserved, and
all have proper cumulative distribution function F(.),
i = 1, 2, . . . , n. In this subsection, we will specify
a parametric form for F(.), such as a Weibull or
gamma distribution. We denote the indexing param-
eter (possibly vector valued) by ψ , and thus write

F(.|ψ) and S(.|ψ). For example, if F(.|ψ) corre-
sponds to a Weibull distribution, then ψ = (α, λ)′,
where α is the shape parameter and λ is the scale
parameter. Let yi denote the survival time for sub-
ject i, which may be right censored, and let νi

denote the censoring indicator, which equals 1 if
yi is a failure time and 0 if it is right censored.
The observed data is Dobs = (n, y, ν), where y =
(y1, y2, . . . , yn)

′, and ν = (ν1, ν2, . . . , νn)
′. Also, let

N = (N1, N2, . . . , Nn)
′. The complete data is given

by D = (n, y, ν, N), where N is an unobserved vec-
tor of latent variables. The complete data likelihood
function of the parameters (ψ, θ) can then be written
as

L(θ, ψ |D) =
(

n∏

i=1

S(yi |ψ)Ni−νi (Nif (yi |ψ))νi

)

× exp

{
n∑

i=1

(Ni log(θ) − log(Ni!)) − nθ

}
. (7)

Throughout the remainder of this section, we will
assume a Weibull density for f (yi |ψ), so that

f (y|ψ) = αyα−1 exp {λ − yα exp(λ)} . (8)

We incorporate covariates for the parametric cure
rate model (3) through the cure rate parameter θ .
When covariates are included, we have a differ-
ent cure rate parameter, θi , for each subject, i =
1, 2, . . . , n. Let x ′

i = (xi1, . . . , xip) denote the p × 1
vector of covariates for the ith subject, and let
β = (β1, . . . , βp)′ denote the corresponding vector
of regression coefficients. We relate θ to the covari-
ates by θi ≡ θ(x ′

iβ) = exp(x ′
iβ), so that the cure

rate for subject i is exp(−θi) = exp(− exp(x ′
iβ)),

i = 1, 2, . . . , n This relationship between θi and β

is equivalent to a canonical link for θi in the setting
of generalized linear models. With this relation, we
can write the complete data likelihood of (β, ψ) as

L(β, ψ|D)

=
(

n∏

i=1

S(yi |ψ)Ni−νi (Nif (yi |ψ))νi

)

× exp

{
n∑

i=1

[
Nix

′
iβ − log(Ni!) − exp(x ′

iβ)
]
}

,

(9)
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where D = (n, y, X, ν, N), X is the n × p matrix
of covariates, f (yi |ψ) is the Weibull density given
above, and S(yi |ψ) = exp(−yα

i exp(λ)). If we as-
sume independent priors for (β, ψ), then the posterior
distributions of (β, ψ) are conditionally independent
given N . We mention that the part of the complete
data likelihood in (9) involving β looks exactly like
a Poisson generalized linear model with a canonical
link, with the Ni’s being the observables.

Various semiparametric alternatives to (9) have
been proposed. Ibrahim, Chen, and Sinha [22, 23]
specify a special type of prior process for F(y), and
Chen, Harrington, and Ibrahim [4] assume a piece-
wise exponential distribution for F(y) (see Grouped
Survival Times). Chen and Ibrahim [5] and Chen,
Ibrahim, and Lipsitz [6] consider semiparametric cure
rate models with missing covariate data, and Chen,
Ibrahim, and Sinha [8] present multivariate exten-
sions to (9), allowing for multivariate cure rate mod-
els. A recent review paper on cure rate models is
given by Tsodikov, Ibrahim and Yakovlev [35]. Joint
cure rate models for longitudinal and survival data
have been considered by Law, Taylor, and San-
dler [26], Brown and Ibrahim [3], and Chen, Ibrahim,
and Sinha [9].

Multivariate Cure Rate Models

There does not appear to be a natural multivariate
extension of the standard cure rate model in (1) (see
Multivariate Survival Analysis). Even if such an
extension were available, it appears that a multivari-
ate mixture model would be extremely cumbersome
to work with from a theoretical and computational
perspective. As an alternative to a direct multivariate
extension of (1), we examine the model discussed in
Chen, Ibrahim, and Sinha [8], called the multivariate
cure rate model. This model proves to be quite use-
ful for modeling multivariate data in which the joint
failure time random variables have a surviving frac-
tion and each marginal failure time random variable
also has a surviving fraction. The model is related to
the univariate cure rate model discussed by Yakovlev
et al. [37] and Asselain et al. [1]. To induce the cor-
relation structure between the failure times, we intro-
duce a frailty term [10, 20, 29], which is assumed to
have a positive stable distribution. A positive frailty
assumes that we have Cox’s [11] proportional haz-
ards structure conditionally (i.e. given the unobserved
frailty). Thus, the marginal and conditional hazards of

each component have a proportional hazards struc-
ture, and thus remain in the same class of univariate
cure rate models.

For clarity and ease of exposition, we will focus
our discussion on the bivariate cure rate model,
as extensions to the general multivariate case are
quite straightforward. The bivariate cure rate model
of Chen, Ibrahim, and Sinha [8] can be derived
as follows. Let Y = (Y1, Y2)

′ be a bivariate failure
time, such as Y1 = time to cancer relapse and Y2

= time to death, or Y1 = time to first infection,
and Y2 = time to second infection, and so forth.
We assume that (Y1, Y2) are not ordered and have
support on the upper orthant of the plane. For an
arbitrary patient in the population, let N = (N1, N2)

′
denote latent (unobserved) variables for (Y1, Y2),
respectively. We assume throughout that Nk has a
Poisson distribution with mean θkw, k = 1, 2, and
(N1, N2) are independent. The quantity w is a frailty
component in the model, which induces a correlation
between the latent variables (N1, N2). Here we take
w to have a positive stable distribution indexed
by the parameter α, denoted by w ∼ Sα(1, 1, 0),
where 0 < α < 1. Although several choices can be
made for the distribution of w, the positive stable
distribution is quite attractive, common, and flexible
in the multivariate survival setting.

Let Zi = (Z1i , Z2i )
′ denote the bivariate promo-

tion time for the ith metastasis-competent tumor cell.
The random vectors Zi , i = 1, 2, . . . are assumed
to be independent and identically distributed. The
cumulative distribution function of Zki is denoted by
Fk(t) = 1 − Sk(t), k = 1, 2, and Fk is independent of
(N1, N2). The observed survival time can be defined
by the random variable Yk = min {Zki, 0 ≤ i ≤ Nk},
where P(Zk0 = ∞) = 1 and Nk is independent of
the sequence Zk1, Zk2, . . ., for k = 1, 2. The survival
function for Y = (Y1, Y2)

′ given w, and hence the sur-
vival function for the population given w, is given by

Spop(y1, y2|w) =
2∏

k=1

[P(Nk = 0)

+P(Zk1 > tk, . . . , ZkNk
> tk, Nk ≥ 1)

]

=
2∏

k=1

[
exp(−wθk) +

( ∞∑

r=1

Sk(yk)
r

× (wθk)
r

r!
exp(−wθk)

)]
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=
2∏

k=1

exp {−wθk + θkwSk(yk)}

= exp
{−w

[
θ1F1(y1) + θ2F2(y2)

]}
, (10)

where P(Nk = 0) = P(Yk = ∞) = exp(−θk), k =
1, 2. We emphasize here that the primary roles of
Nk and Zi are that they only facilitate the construc-
tion of the model and need not have any physical
or biological interpretation at all for the model to
be valid. They are quite useful for the computational
implementation of the model via the Gibbs sampler
as discussed below and thus are defined primarily for
this purpose. The model in (10) is valid for any time-
to-event data with a cure rate structure as implied
by (10) and the subsequent development. Thus, the
model can be useful for modeling various types of
failure time data, including time to relapse, time to
death, time to infection, time to complication, time to
rejection, and so forth. In addition, the frailty variable
w serves a dual purpose in the model – it induces
the correlation between Y1 and Y2 and at the same
time relaxes the Poisson assumption of N1 and N2

by adding the same extra Poisson variation through
their respective means θ1w and θ2w.

Following Ibragimov and Chernin [21], the
Sα(1, 1, 0) density for w (0 < α < 1) can be
expressed in the form

fs(w|α) = aw−(a+1)

∫ 1

0
s(u)

× exp

{
− s(u)

wa

}
du, w > 0, (11)

where

a = α

1 − α
and s(u) =

(
sin(απu)

sin(πu)

)a

×
(

sin[(1 − α)πu]

sin(πu)

)
,

and the Laplace transform of w is given by
E(exp(−sw)) = exp(−sα). A useful reference on
stable distributions is Samorodnitsky & Taqqu [30].
Using the Laplace transform of w, a straightforward
derivation yields the unconditional survival function

Spop(y1, y2) = exp {−[θ1F1(y1) + θ2F2(y2)]
α} .

(12)

The joint cure fraction implied by (12) is
Spop(∞, ∞) = exp(−[θ1 + θ2]α). From (12), the
marginal survival functions are

Sk(y) = exp(−θα
k (Fk(y))α), k = 1, 2. (13)

Equation (13) indicates that the marginal survival
functions have a cure rate structure with probability
of cure exp(−θα

k ) for Yk , k = 1, 2. It is important
to note in (13) that each marginal survival function
has a proportional hazards structure as long as the
covariates, x, only enter through θk . The marginal
hazard function is given by αθα

k fk(y)(Fk(y))α−1,
with attenuated covariate effect (θk(x))α , and fk(y)

is the survival density corresponding to Fk(y). This
property is similar to the earlier observations made
by Oakes [29] for the ordinary bivariate stable frailty
survival model.

In addition, we can express the marginal survival
functions in (13) in terms of standard cure rate
models. We can write

Sk(y) = exp(−θα
k (Fk(y))α)

= exp(−θα
k ) + (1 − exp(−θα

k ))

×
(

exp(−θα
k (Fk(y))α) − exp(−θα

k )

1 − exp(−θα
k )

)

= exp(−θα
k ) + (1 − exp(−θα

k ))S∗
k (y), (14)

where

S∗
k (y) = exp(−θα

k (Fk(y))α) − exp(−θα
k )

1 − exp(−θα
k )

, k = 1, 2.

It is easily shown that S∗
k (y) defines a proper survivor

function. Thus, (14) is a standard cure rate model
with cure rate given by πk = exp(−θα

k ) and survivor
function for the noncured population given by S∗

k (y)

for k = 1, 2.
The parameter α (0 < α < 1) is a scalar parame-

ter that is a measure of association between (Y1, Y2).
Small values of α indicate high association between
(Y1, Y2). As α → 1, this implies less association
between (Y1, Y2), which can be seen from (12). Fol-
lowing Clayton [10] and Oakes [29], we can compute
a local measure of dependence, denoted by θ∗(y1, y2),
as a function of α. For the multivariate cure rate
model in (12), θ∗(y1, y2) is well defined, and is
given by

θ∗(y1, y2) = α−1(1 − α) (θ1F1(y1)

+θ2F2(y2))
−α + 1. (15)
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We see that θ∗(y1, y2) in (15) decreases in (y1, y2).
That is, the association between (Y1, Y2) is greater
when (Y1, Y2) are small and the association decreases
over time. Such a property is desirable, for example,
when Y1 denotes time to relapse and Y2 denotes time
to death. Finally, we mention that a global measure
of dependence such as Kendall’s τ (see Rank Cor-
relation) or the Pearson correlation coefficient is not
well defined for the multivariate cure rate model (12),
since no moments for cure rate models exist due to
the improper survival function.

The multivariate cure rate model presented here
is attractive in several respects. First, the model has
a proportional hazards structure for the population
hazard, conditionally as well as marginally, when
covariates are entered through the cure rate param-
eter, and thus has an appealing interpretation. Also,
the model is computationally feasible. In particu-
lar, by introducing latent variables, efficient Markov
chain Monte Carlo algorithms can be developed
that enable us to sample from the joint posterior
distribution of the parameters. Chen, Ibrahim, and
Sinha [8] discuss a modified version of the collapsed
Gibbs technique of Liu [27] for efficient Gibbs sam-
pling from the posterior distribution.

The likelihood function for this model can be
obtained as follows. Suppose we have n subjects,
and let Nki denote the number of latent risks for
the ith subject, i = 1, 2, . . . , n, k = 1, 2. Further,
we assume that the Nki’s are independent Poisson
random variables with mean wiθk , i = 1, 2, . . . , n

for k = 1, 2. We also assume the wi ∼ Sα(1, 1, 0),
and the wi’s are i.i.d. We emphasize here that
the Nki’s are not observed, and can be viewed as
latent variables in the model formulation. Further,
suppose Zki1, Zki2, . . . , Zki,Nki

are the independent
latent times for the Nki latent risks for the ith subject,
which are unobserved, and all have cumulative
distribution function Fk(.), i = 1, 2, . . . , n, k = 1, 2.
Chen, Ibrahim, and Sinha [8] specify a parametric
form for Fk(.), such as a Weibull or gamma
distribution. We denote the indexing parameter
(possibly vector valued) by ψk , and thus write
Fk(.|ψk) and Sk(.|ψk). For example, if Fk(.|ψk)

corresponds to a Weibull distribution, then ψk =
(ξk, λk)

′, where ξk is the shape parameter and
λk is the scale parameter. Let yki denote the
failure time or censoring time for subject i for
the kth component, and let indicator νki = 1, if
yki is an observed failure time and 0 if it is a

censoring time. Let yk = (yk1, yk2, . . . , ykn), νk =
(νk1, νk2, . . . , νkn), N k = (Nk1, Nk2, . . . Nkn), k =
1, 2, and w = (w1, w2, . . . , wn)

′. The complete
data is given by D = (n, y1, y2, ν1, ν2, N1, N2, w),
where N1, N2, and w are unobserved random
vectors, and the observed data is given by Dobs =
(n, y1, y2, ν1, ν2). Further, let θ = (θ1, θ2)

′ and ψ =
(ψ ′

1, ψ ′
2)

′. The likelihood function of (θ, ψ) based on
the complete data D is given by

L(θ, ψ |D) =
(

2∏

k=1

n∏

i=1

Sk(yki |ψk)
Nki−νki

×
(

Nkifk(yki |ψk)

)νki
)

× exp

{
n∑

i=1

(Nki log(wiθk) − log(Nki!) − wiθk)

}
,

(16)

where fk(yki |ψk) is the density corresponding to
Fk(yki |ψk). We assume a Weibull density for
fk(yki |ψk), so that

fk(y|ψk) = ξky
ξk−1 exp

{
λk − yξk exp(λk)

}
. (17)

To construct the likelihood function of the ob-
served data, L(θ, ψ, α|Dobs), we integrate (16) with
respect to (N, w) assuming a Sα(1, 1, 0) density for
each wi , denoted by fs(wi |α), leading to

L(θ, ψ, α|Dobs)

≡
∫

R+n

∑

(N1,N2)

L(θ , ψ|D) ×
[

n∏

i=1

fs(wi |α)

]
dw

= θ
d1
1 θ

d2
2 αd1+d2

[
2∏

k=1

n∏

i=1

fk(yki |ψk)
νki

]

×
n∏

i=1

{
[θ1F1(y1i |ψ1) + θ2F2(y2i |ψ2)]

(α−1)(ν1i+ν2i )
}

×
n∏

i=1

[
α−1(1 − α)(θ1F1(y1i |ψ1)

+ θ2F2(y2i |ψ2))
−α + 1

]ν1i ν2i

×
n∏

i=1

exp
{−(θ1F1(y1i |ψ1) + θ2F2(y2i |ψ2))

α
}
,

(18)
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where fs(wi |α) denotes the probability density func-
tion of wi defined by (11), dk = ∑n

i=1 νki for
k = 1, 2, R+n = R+ × R+ × . . . × R+, and R+ =
(0, ∞). As before, we incorporate covariates for the
cure rate model (12) through the cure rate parame-
ter θ . Let x ′

i = (xi1, xi2, . . . , xip) denote the p × 1
vector of covariates for the ith subject, and let βk =
(βk1, βk2, . . . , βkp)′ denote the corresponding vector
of regression coefficients for failure time random
variable Yk , k = 1, 2. We relate θ to the covariates
by

θki ≡ θ(x ′
iβk) = exp(x ′

iβk), (19)

so that the cure rate for subject i is

exp(−θki) = exp(− exp(x ′
iβk)), (20)

for i = 1, 2, . . . , n and k = 1, 2. Letting β =
(β ′

1, β ′
2)

′, we can write the observed data likelihood
of (β, ψ, α) as

L(β, ψ, α|Dobs)

=


αd1+d2

2∏

k=1

∏

i∈Dk

exp(x ′
iβk)





×
[

2∏

k=1

n∏

i=1

fk(yki |ψk)
νki

]

×
n∏

i=1

{
[exp(x ′

iβ1)F1(y1i |ψ1)

+ exp(x ′
iβ2)F2(y2i |ψ2)]

(α−1)(ν1i+ν2i )
}

×
n∏

i=1

{
1 − α

α
[exp(x ′

iβ1)F1(y1i |ψ1)

+ exp(x ′
iβ2)F2(y2i |ψ2)]

−α + 1

}ν1i ν2i

×
n∏

i=1

exp
{−(exp(x ′

iβ1)F1(y1i |ψ1)

+ exp(x ′
iβ2)F2(y2i |ψ2))

α
}
, (21)

where Dk consists of those patients who failed
according to Yk , k = 1, 2, Dobs = (n, y1, y2, X, ν1,
ν2), X is the n × p matrix of covariates, fk(yki |ψk)

is given by (17), and

fk(yki |ψk) = 1 − exp{−y
ξk

ki exp(λk)}. (22)

Chen, Ibrahim, and Sinha [8] consider a joint
improper prior for (β1, β2, ψ1, ψ2, α) of the form

π(β, ψ, α) = π(β1, β2, ψ1, ψ2, α)

∝ π(ψ1)π(ψ2)I (0 < α < 1)

=
2∏

k=1

π(ξk, λk)I (0 < α < 1), (23)

where I (0 < α < 1) = 1 if 0 < α < 1, and 0 oth-
erwise. Thus, (23) implies that β, ψ , and α are
independent a priori, (β1, β2) are independent a pri-
ori with an improper uniform prior, α has a proper
uniform prior over the interval (0, 1), and (ψ1, ψ2)

are independent and identically distributed as π(ψk)

a priori. They also assume that

π(ξk, λk) = π(ξk|ν0, τ0)π(λk), (24)

where

π(ξk|δ0, τ0) ∝ ξ
δ0−1
k exp{−τ0ξk}, and

π(λk) ∝ exp{−c0λ
2
k},

and δ0, τ0, and c0 are specified hyperparameters.
With these specifications, the posterior distribution
of (β, ψ, α) based on the observed data Dobs =
(n, y1, y2, X, ν1, ν2) is given by

π(β, ψ, α|Dobs) ∝ L(β, ψ, α|Dobs)

×
2∏

k=1

π(ξk|δ0, τ0)π(λk), (25)

where L(β, ψ, α|Dobs) is given by (21). Chen,
Ibrahim, and Sinha [8] show that the posterior
distribution in (25) using the noninformative
improper prior (23) is proper under some very general
conditions.
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Biométrie, ENSA Rennes, France, pp. 66–82.

[38] Yakovlev, A.Y. & Tsodikov, A.D. (1996). Stochastic
Models of Tumor Latency and Their Biostatistical Appli-
cations. World Scientific, New Jersey.



8 Bayesian Approaches to Cure Rate Models

[39] Yamaguchi, K. (1992). Accelerated failure-time regres-
sion models with a regression model of surviving
fraction: an application to the analysis of “permanent
employment” in Japan, Journal of the American Statis-
tical Association 87, 284–292.

Further Reading

Ibrahim, J.G. & Chen, M-H. (2000). Power prior distributions
for regression models, Statistical Science 15, 46–60.

(See also Bayesian Survival Analysis; Bayesian
Model Selection in Survival Analysis)

JOSEPH G. IBRAHIM, MING-HUI CHEN &
DEBAJYOTI SINHA



Bayesian Decision Models
in Health Care

In many situations, analysts are required to assess the
probability of a unique event, where there are no rele-
vant historical patterns. Sometimes, the environment
has changed so radically that the past trends for a
familiar event are no longer relevant. Still other times,
it is theoretically possible to gather historical data, but
time or money limitations prevent data collection. In
these circumstances, a “Bayesian subjective proba-
bility” model is appropriate (see Bayesian Methods).
The process for creating a Bayesian probability model
is explained elsewhere [4].

Bayesian probability models have been used to
model complex health care issues such as predicting
who will sue a hospital [2], assessing probability of
mortality from myocardial infarctions [3], and pre-
dicting which health planning project is most likely
to succeed [5]. Here, we give an example of the way
the model was applied to create an index for predict-
ing preventable hospitalization [1].

A health insurance company wished to adjust pre-
miums on the basis of the preventable and modifiable
health risks of individual members. Although many
risk factors for hospitalization had been identified
(e.g. smoking), no studies had been done that com-
bined the various risks into one aggregate scale. To
accomplish this task, leading researchers met in a
consensus panel. During this meeting a model was
constructed that summarized their opinions about the
overall risk of an individual engaged in different
lifestyles.

The goal of the exercise was to predict the proba-
bility of a major hospitalization during the next three
years. The explanatory variables of interest were
alcohol and tobacco use, weight, blood pressure, dys-
lipidemia, risk of trauma, and depression. For each
factor and its potential levels, experts were asked to
estimate two probabilities. For example, the experts
individually and then as a group answered the fol-
lowing two questions related to smoking:

1. Of 100 people who have been hospitalized, how
many smoked a pack a day in the last three years?

2. Of 100 people who have not been hospitalized,
how many smoked a pack a day in the last three
years?

The ratio of the answers to these two questions pro-
vided the likelihood ratio associated with smoking
more than two packs a day. Experts also estimated
the prior odds for different population groups, and
a predictive model was created [5]. Finally, experts
rated 64 hypothetical cases and the average of these
ratings was compared with the Bayesian model pre-
dictions. The model, which was found to agree with
the expert judgments, took only two days to construct,
which is considerably less time than would have been
required to collect and analyze a large data set. Not
only are subjective models quick to construct, but
they may also be more valid and generalizable than
models based on a specific data set that may have
significant biases.
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Bayesian Measures of
Goodness of Fit

Introduction

With the relatively recent advent of Markov Chain
Monte Carlo techniques, and their flexibility and
ease of application, we might be tempted to believe
that we can now fit almost any practical Bayesian
model, and report inference based on the MCMC’s
sampled approximation of the posterior likelihood.
However, this suggested analysis does not at any
stage involve checking that the model is indeed “sen-
sible” and, following the model construction and
criticism algorithm laid down by Carota et al. [6],
simply concluding the analysis after completion of
the MCMC computation may be unwise and poten-
tially misleading. Exactly as with classical analyses,
we should pursue some indication that the fitted
model actually fits well. That is, we should critically
assess whether the data appears to violate some or all
of the model assumptions.

In classical approaches, goodness of fit statis-
tics measure the fit, “distance”, or “discrepancy”
between the specified model and the data. Under a
Bayesian approach, this description still holds, but
the definition of the “model” now includes a prior
distribution, which to some extent complicates this
assessment.

In the summary that follows, we shall describe
Bayesian methods for assessing goodness of fit,
which use only the model (and prior) specified, and
do not refer to any particular alternative formula-
tions. From a strict Bayesian point of view, the reader
should note that we may be on thin ice here; as
for the prior, if we truly believe the model, then
we have no reason to question it, and if there are
alternative models, then these should be described
and the models compared via their posterior prob-
abilities, as one might when using Bayes Factors,
or when conducting Bayesian model averaging (see
Bayesian Methods for Model Comparison). This
is not the same as the common situation considered
here, where we have no specific alternative mod-
els, but do have some measures that (we believe)
realistically reflect how well the specified model is
performing. In summary then, this article will deal
with discrepancies between model and data of types,
which are somehow prespecified by the user, and

therefore a more rigorous title might cite “measures
of practical goodness of fit”.

In this review, we deal first with the general
ideas used and their application to relatively simple
nonhierarchical models, and then cover the more
complicated issues that hierarchical structures bring.
The field is relatively new, and builds on the classical
goodness-of-fit theory with which the reader should
compare these methods.

There are a number of related issues of which the
reader should be aware but which we will not cover
here. Overfitting occurs when the model has too many
parameters for the size of dataset considered, and
it will generally fit suspiciously well. The methods
described here are generally derived for testing the
opposite problem of poor fit, but most methods could
be adapted to look for data at the other extreme.

If we are not seeking an overall measure of fit, but
rather methods for choosing the best of a selection of
well-defined models, then this is model comparison
(see Model, Choice of). A number of authors have
considered Bayesian approaches to this issue; for a
general review and new contributions, see Bayesian
Methods for Model Comparison.

Finally, if our measure of goodness of fit is not
only part of an inferential analysis as considered here,
but forms some section of a decision-making process
with associated costs, decisions to reject any model
because of poor fit must be driven by the processes
that determine how poor fit will be ascertained (see
Decision Theory). We must specify the purpose for
which the model is unacceptable, and hence a utility
function. For a short discussion and references, see
Draper’s comment in [13].

Methods for Assessing Goodness of fit in
Nonhierarchical Bayesian Models

P values. Define T (X) to be some measure of
discrepancy between the data x, and the model, where
T is chosen by the practitioner. Evidence against the
model is indicated by large values of T , and we wish
to examine what the chances are of seeing a value of
T worse than the one we get from our observed data
xobs. The probability of observing any of these worse
values is given by the P value

p = �H (T (X) ≥ T (xobs)). (1)

To obtain P values, the practitioner therefore has to
choose both an appropriate discrepancy measure T
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and the distribution H (or density h) for X under
the assumed model, which automatically define the
distribution of T .

The “natural” [3] Bayesian choice for h is the
prior predictive distribution, so that

hprior pred =
∫

f (x|θ)π(θ) dθ. (2)

However, this cannot be used if our prior π is
improper, which precludes the use of some reference
distributions, and is therefore rather unsatisfactory. A
suggested alternative is to use the posterior predictive
distribution;

hpost pred =
∫

f (x|θ)π(θ |xobs) dθ, (3)

where π(θ |xobs) of course is proportional to
f (x|θ)π(θ) by Bayes’ Theorem.

Defined as the P value obtained using Hpost pred

from (3) in (1), ppost pred is asymptotically distributed
as U(0, 1), and so is interpretable in the same way as
a classical P value [9, 10]. However, examining (3),
we see that this approach leads to us comparing our
observed statistic T (Xobs) with a distribution derived
using xobs. This uses the data twice, and can lead to
overly conservative inferences [1].

Bayarri and Berger [2, 1], have proposed two
alternatives, using principles similar to those used
in (frequentist) conditional and partial likelihood
arguments. To define these, we denote the density of
T (X) by f (t |θ), its observed value by tobs = T (xobs),
and similarly for other functions of the data.

The conditional predictive P value, for some dis-
crepancy function T , requires the user to choose
another function U , which is preferably approxi-
mately independent of T , does not include T , and
contains as much information as possible about θ .
(The reader may be interested to compare this with
the problem of choosing statistics to condition on for
conditional inference.) A simple example, splitting
the data into T = x1, . . . , xk and U = xk+1, . . . , xn

was put forward by Evans [11]. In general, using

hcond(t |u) =
∫

f (t |u, θ)π(θ |u) dθ, (4)

where π(θ |u) ∝ f (u|θ)π(θ), we get

pcond pred(t) = �Hcond(·|uobs)(T ≥ tobs). (5)

This P value effectively conditions out almost all of
the information about θ , leaving a distribution for T ,
which reflects the fit of the model f rather than the
prior θ . Because the data is (preferably) partitioned
into U and T , we should not use any of it twice,
and improper priors can be used as long as π(θ |u)

is proper. However, the choice of U may not be
obvious, and even if some U can be found pcond pred

may be hard to compute.
An alternative to finding an appropriate U is to

adjust the posterior predictive distribution hpost pred

from (3) to remove the contribution from tobs. This
is done by conditioning on T , so we get

hpart pred(t) =
∫

f (t |θ)πpart(θ) dθ, (6)

where

πpart(θ) ∝ f (xobs|θ)π(θ)

f (tobs|θ)
(7)

Using Hpart pred in place of Hcond in (5) gives the
partial predictive P value; it is easier to compute
while, due to its derivation, we can expect it to give
similar inferences to pcond pred(t).

The work of Gelman et al. [12, 13] defines P
values similar to those derived from (1) but explic-
itly includes the idea of replication. Here we imag-
ine that we have xrep, a replicated dataset that
might be observed if the experiment were run again,
using exactly the same model M , parameters θ and,
importantly, the same ancillary statistics, written as
A(X). We move from considering f (x|θ)π(θ) to
f (x|θ)π(θ)f (xrep|θ). The classical goodness-of-fit
statistic can be written as

pclass(x, θ) = �(T (xrep) ≥ T (x)|A, M, θ), (8)

for some fixed but unknown θ . The difficulty in the
classical application of pclass lies in finding some piv-
otal T , which has a distribution at least approximately
free of θ . The Bayesian analogue [12, 13] avoids this
by averaging pclass over the posterior distribution for
θ ; hence,

pBayes(x) = �(T (xrep) ≥ T (x)|A, M)

=
∫

pclass(x, θ)f (θ |A, M, x) dθ, (9)

and given a prior for θ , we can compute pBayes for any
dataset. This approach is in turn generalizable in two
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ways: firstly, we could take a fully Bayesian approach
and allow for θ rep, parameters replicated in the same
way as for xrep. Second, we can generalize the dis-
crepancy function T to include some dependence on
θ , and consider the model as ill-fitting when

p′
Bayes = �(T (X, θ) ≥ T (xobs, θ)|xobs, A(xobs))

(10)

is small. This can in turn be generalized if we change
from the symmetric use of discrepancy function T

in (10) to the more general D(x, xrep, θ, θ rep), where
we also allow for parameter replication as mentioned
above. Then (9) becomes

p′′
Bayes(x) = �(D(x, xrep, θ, θ rep) > 0). (11)

As a special case of (11), putting D(x) = minθ

D(x, θ), we remove the dependence of pBayes on
θ , and for linear models obtain the classical tests
of goodness of fit, comparing a sum of standard-
ized residuals from the data with the best fit of the
model, a χ2 test. For many models, such a construc-
tion also gives some idea of which data points are
causing the poor fit of the data, clearly a useful tool
in many situations, for example, the exclusion of out-
liers. The analysis of residuals in this way forms the
basis of much of frequentist testing, even outside of
linear models. For a Bayesian version of these case-
influence diagnostics, see the work of Chaloner [7],
later generalized by Weiss [27–28]. This method of
constructing goodness-of-fit measures is explored fur-
ther in the section on hierarchical models.

The connection with classical residuals is attrac-
tive, but not straightforward. The classical residual
has several forms, but they are fundamentally a mea-
sure of distance between a data point and its fitted
value under the model. Summing these gives the clas-
sical overall measure of fit mentioned above. The
Bayesian approach gives a posterior distribution for
parameters, not fitted values, and so each residual
also has a distribution, as does the sum of all resid-
uals. We could of course use “plug-in” values like
the posterior mean or median, but this contradicts the
Bayesian practice of properly allowing for all sources
of uncertainty. Calibrating the size of residuals in a
meaningful way is also difficult and often sensitive
to parameterization changes, unlike the P value tech-
niques discussed here.

Bayes Factors. All the methods of the previous
section result in some form of tail probability, a value
between 0 and 1, where this scale indicates poor to
good measure of goodness of fit. Care should be taken
that this value is distributed (at least approximately)
as U(0, 1) if we want to interpret these as P values [9,
10]. This potential incoherence is noted by Conigliani
et al. [8], who suggest the alternative use of Bayes
factors. To use these, we must exactly specify all the
alternative priors, models and associated parameters,
giving a series of fi(x|θi) and πi(θi) for each model
Mi .

(To keep to our remit of discussing models where
no alternative is readily available, we shall here only
mention models where a “general alternative” can be
reasonably assumed; typically, these are models for
discrete data (see Categorical Data Analysis), for
example, binomial or Poisson, where the alternative
is that the data comes from a multinomial distri-
bution where the cell probabilities have a Dirichlet
distribution. Strictly speaking, this is model compar-
ison, but as we have no intention of accepting the
alternative hypothesis, it can be viewed as construct-
ing a diagnostic measure sensitive to deviations from
the null hypothesis, or a measure of goodness of fit.)

The Bayes factor in favor of model 1 against the
alternative model 2 is

B(x) =

∫
f1(x|θ1)π1(θ1) dθ

∫
f2(x|θ2)π2(θ2) dθ

, (12)

which can be interpreted as the ratio of posterior odds
(of model 2 to model 1) to the prior odds. A large
value of B indicates that model 1 fits better than the
alternative, and scales exist for converting numerical
Bayes factors into strengths of evidence against the
model, for example, [16]. However, similarly to the
prior predictive P value, the standard Bayes factor
cannot be defined when either π1(θ1) or π2(θ2) is
improper [21]. As discussed above, where we use a
“general alternative” for π2, this choice may well be
improper. It should at least be rather diffuse, in which
case the Bayes factor is sensitive to the degree of
flatness in π2 [8, 13].

Various solutions to these problems have been
proposed. O’Hagan [20] developed the partial Bayes
factor, where part of the data is used to update the
prior so that it is proper, and the rest used to calculate
the Bayes factor. If we split x into training sample y
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and remainder data z, this gives

B(z|y) =

∫
f1(z|θ1, y)π1(θ1|y) dθ

∫
f2(z|θ2, y)π2(θ2|y) dθ

, (13)

= B(x)

B(y)
. (14)

However, the problematic choice remains of which
training sample y to use, and therefore how much
of B(x) to use. Various options are available, among
them, a simple fixed proportion of the data, or Berger
and Pericchi’s [4] intrinsic Bayes factor, which uses
all possible training samples, averaging the results. A
further refinement is available through the fractional
Bayes factor [8, 21]. Here, if the training sample y is
assumed to be a given proportion b of the data, it is
noted that the likelihood associated with any training
sample is approximately f (x|θ)b, and so we get

Bfrac(x) = q1(b, x)

q2(b, x)
, (15)

where

qi(b, x) =

∫
fi(x|θi)πi(θi) dθ

∫
fi(x|θi)

bπi(θi) dθ

. (16)

O’Hagan [21] suggests several ways of choosing b

under different circumstances.
For continuous data, the problem of choosing a

“general alternative” to the model being checked is
more difficult, and techniques are less well advanced.
Verdinelli and Wasserman [25] use as an alternative,
a likelihood made up of a series of Gaussian pack-
ets, spread along the whole real line, choosing them
appropriately so that the Bayes factor is consistent;
that is, tends to ∞ or 0 depending on whether the
model is true or false. Robert and Rousseau [23]
restrict their attention to the interval [0, 1], postulat-
ing that if a model Fθ is not true for data X, then
Fθ(X) does not have a uniform U(0, 1) distribu-
tion, but is instead distributed as a mixture of beta
likelihoods.

Methods for Assessing Goodness of fit in
Hierarchical Bayesian Models

Assessing goodness of fit becomes more difficult
where more than one level of random behavior takes

place. For example, we might model pupil perfor-
mance within school performance within county per-
formance – postulating that each stage will contribute
its own uncertainty. We can label the pupil perfor-
mance as level I, the schools as level II, and so on.
Such a model is called hierarchical, where ultimately,
we place priors on all the parameters left unspecified
in the hierarchy. (This is very similar to a multilevel
model.) Hierarchical models have been found to have
the desirable property of robustness to the choice of
prior [14], and so we might expect that they perform
well even if the model is slightly misspecified.

The difficulty in testing goodness of fit in hier-
archical models comes because we have no direct
observations beyond the first level; any data about
school performance will contain uncertainty due to
pupils. We do not have any data that depends only
on parameters from levels II and above (known as
intermediate parameters, and labelled φ). It is there-
fore difficult to define a discrepancy statistic T , which
assesses how well the model fits at these levels.

One approach to this is motivated by a remark
in [5]; if the likelihood and prior give conflicting
information about intermediate parameters φ, this
suggests faults in the model, in other words, lack
of fit. This idea is developed by O’Hagan [22], who
suggests several ways of measuring this conflict.

Another approach that gives measures of fit for
individual data points is cross-validation, or “leave-
one-out” techniques. Here the model is re-analyzed
without a particular data point or points, and the
fitted value for some (intermediate) parameter com-
pared with the original estimate. Each data point (or
group of points) is left out in turn; if fitted values
behave erratically when some data is missing, this
indicates poor model fit. However, as these methods
will require rerunning the MCMC chain every time
we leave a point out to assess its impact, they will
almost always be too computationally burdensome to
be practical. For details on cross-validation, and more
tractable approximations to it, see the work of Stern
and Cressie (2000) [24] its development by Marshall
and Spiegelhalter (2003) [19].

A final approach used for assessing goodness of
fit in Bayesian hierarchical or classical multilevel
models involves embedding the model in some more
general framework [17, 15]. If the model can be
considered as a special, large case of, for exam-
ple, a linear model, then goodness-of-fit diagnostics
appropriate to the larger linear model can be used.
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Embedding the model in this way may require the
addition of artificial data points to reflect the hier-
archical structure or prior distributions used, which
is rather unsatisfactory, leading to accusations that
we are fitting the problem to the diagnostics, not the
diagnostics to the problem.

An early, but very useful and specifically
Bayesian embedding procedure is given by Wakefield
et al. [26], used to check the assumption of a normal
random effects distribution. Here, instead of the
normal distribution assumed to be “correct”, an
extension to the multivariate t distribution is
used, represented as a scaled mixture of normals.
If the scaling parameter corresponding to individual
random effects is too small, we have evidence of poor
fit of the model for that part of the data.
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Bayesian Methods for
Contingency Tables

Motivation for Bayesian Methods

There is an extensive literature on the classical anal-
ysis of contingency tables. Bishop, Fienberg, and
Holland [7] and Agresti [1] illustrate the use of
loglinear models to describe the association struc-
ture in a multidimensional contingency table. Chi-
square statistics are used to examine independence
and to compare nested loglinear models (see Chi-
square Tests; Chi-square Distribution); P values
are used to assess statistical significance. Estimation
and hypothesis testing procedures rest on asymp-
totic results for multinomial random variables (see
Multinomial Distribution).

Several problems with classical categorical data
analyses motivate consideration of Bayesian meth-
ods. First, there is the problem of estimating cell
probabilities and corresponding expected cell counts
from a sparse multiway contingency table with some
empty cells. It is desirable to obtain positive smoothed
estimates of the expected cell counts, reflecting the
knowledge that the cell probabilities all exceed zero.
Second, in comparing models, there is difficulty in
interpreting the evidence communicated by a test
statistic’s P value, as noted for instance by Diaconis
and Efron [11] in the simple case of a P value for
detecting association in a two-way table with large
counts. This problem motivates a Bayesian approach
to measuring evidence. Lastly, there is the potential
bias in estimating association measures from mod-
els arrived at by classical model selection strategies,
for example, for choosing the best loglinear model
(see Model, Choice of). One typically uses a fit-
ted model to estimate both an association parameter
and the variability of the estimated parameter, while
ignoring uncertainty in the process of arriving at
the model on which estimation is based. Bayesian
methods allow a user to explicitly model the uncer-
tainty among a class of possible models by means
of a prior distribution on the class of models, so
that the posterior estimates of association param-
eters explicitly account for uncertainty about the
“true” model on which estimates should ideally be
based.

Early Bayesian Analyses of Categorical
Data

Early Bayesian analyses for categorical data focused
on tractable approximations for posterior distributions
and measures of evidence for two-way tables. For a
multinomial random variable {yij } with cell probabil-
ities {θij }, Lindley [27] considered the posterior dis-
tribution of the log contrast λ = ΣΣaij log θij , where
ΣΣaij = 0. In a 2 × 2 table with cell probabilities
(θ11, θ12, θ21, θ22), one example of a log contrast is
the log odds ratio

λ = log θ11 − log θ12 − log θ21 + log θ22. (1)

If {θij } is assumed to have a Dirichlet ({αij })
distribution of the form p({θij }) ∝ ∏

θ
αij −1
ij , Lind-

ley showed that the posterior distribution for λ is
approximately normal with mean and variance given
respectively by

λ∗ =
∑

i

∑

j

aij log(αij + yij ),

v∗ =
∑

i

∑

j

aij (αij + yij )
−1. (2)

Lindley used this approximation to obtain the
posterior density of the log odds ratio and to develop
a Bayesian statistic for testing independence in a
2 × 2 table (see Independence of a Set of Variables,
Tests of).

The formal way of comparing models from a
Bayesian perspective is by the use of Bayes factors.
If y denotes the data and θ denotes a parameter, a
Bayesian model is described by a sampling density
for the data, f (y|θ), and a prior density for the
parameter, g(θ). If one has two Bayesian models M1 :
{f1(y|θ1), g1(θ1)} and M2 : {f2(y|θ2), g2(θ2)}, then
the Bayes factor in support of model 1 over model 2
is given by

BF12 = m1(y)

m2(y)
, (3)

where mi(y) is the marginal or predictive density of
the data for model Mi :

mi(y) =
∫

fi(y|θi)gi(θi) dθi . (4)

The Bayes factor may also be interpreted as the
ratio of posterior odds of model 1 to model 2, given
the data, to the corresponding prior odds.
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Jeffreys [20] was one of the first to develop
Bayes factors in testing for independence in a 2 ×
2 table. Under the independence model H , the
cell probabilities can be expressed as {αβ, α(1 −
β), (1 − α)β, (1 − α)(1 − β)}, where α and β are
marginal probabilities of the table. Under the depen-
dence hypothesis, Jeffreys expressed the probabil-
ities as {αβ + γ , α(1 − β) − γ, (1 − α)β − γ, (1 −
α)(1 − β) + γ }. By assuming independent uniform
(0, 1) prior distributions on α, β, and γ , Jeffreys
developed an approximate Bayes factor in support
of the dependence hypothesis.

Suppose one observes multinomial {y1, . . . , yt}
with cell probabilities {θ1, . . . , θt } and total count
n = ∑t

i=1 yi . Good [14] noted that simple relative
frequency estimates of the probabilities θi can be
poor when data are sparse, and studied the alternative
estimates (yi + k)/(n + kt), where n is the fixed total
count and k is a “flattening constant”. This estimate
is the mean of the posterior density assuming that the
{θi} have a symmetric Dirichlet distribution of form

p(θi) ∝
t∏

i=1

θk−1
i .

In practice, it may be difficult for a user to specify
the Dirichlet parameter k. Good then advocated use
of a prior distribution g(k) for k, resulting in a prior
for the {θi} of hierarchical form

g({θi}) =
∫ ∞

0

Γ (tk)

(Γ (k))t

t∏

i=1

θk−1
i g(k) dk. (5)

As will be seen later, Good also used this form
of a mixture of symmetric Dirichlet distributions to
develop Bayes factors for testing independence in
contingency tables.

Bayesian Smoothing of Contingency Tables

One difficulty with large contingency tables is that
observed sampling zeros in some cells may lead
to poor estimates of the underlying cell probabili-
ties. One ad hoc adjustment is to add 1/2 to each
observed count, as in Good’s [14] approach with pre-
specified flattening constant k = 1/2. Fienberg and
Holland [13] were interested in developing better
estimates for cell probabilities in these tables with
sparse counts. They first considered the conjugate

Dirichlet model g({θi} ∝ ∏
θ

Kλi−1
i as a prior for the

cell probabilities, where λi is the prior mean of θi and
K is a precision parameter. The use of this conjugate
prior results in the posterior mean estimate

θ̂i =
(

n

n + K

)
yi

n
+

(
K

K + n

)
λi. (6)

Since the hyperparameter K is unknown, Fienberg
and Holland [13] developed an empirical Bayes esti-
mator. For fixed {λi}, they showed that the risk of θ̂i ,
under squared error loss, is equal to

R(θ̂, θ) =
(

n

(n + K)

)2

(1 − ||θ ||2)

+
(

K

(n + K)

)2

n||θ − λ||2. (7)

The value of K that minimizes this risk is K̂ =
(1 − ||θ ||2)/(||θ − λ||2). If one replaces K with the
estimate K̂ in the expression for θ̂i , one obtains the
empirical Bayes estimate

θ∗
i =

(
n

n + K̂

)
yi

n
+

(
K̂

K̂ + n

)
λi. (8)

Fienberg and Holland [13] showed that the esti-
mates {θ∗

i } had good risk properties relative to the
maximum likelihood estimates {yi/n}. In practice,
one can choose the prior means {λi} to reflect one’s
prior beliefs, or choose data-dependent values for {λi}
based on the estimated expected counts from a log-
linear model. For example, one might in this way
shrink estimates towards the independence model for
two-way contingency tables, or towards conditional
independence or the no-three-way interaction model
for three-way tables (see Shrinkage Estimation).

A number of alternative fully Bayesian meth-
ods have been proposed for smoothing contingency
table counts. One approach is based on normal prior
distributions placed on components of a logit rep-
resentation of a cell probability (see Binary Data).
For a two-way table with counts {yij } and cell prob-
abilities {θij }, Leonard [24] defines the multivariate
logit

γij = logit θij = log θij + D(θ), (9)

where D(θ) is chosen to ensure that the probabilities
sum to one. The logit is decomposed as

γij = αi + βj + λij , (10)
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where the terms correspond respectively to a row
effect, a column effect, and an interaction effect in
the two-way table. To model the belief that the set of
row effects {αi} is exchangeable, Leonard [24] uses
the two-stage prior

1. α1, . . . , αI are independent N(µα, σ 2
α );

2. µα, σ 2
α independent, with µα having a vague flat

prior and νατασ−2
α distributed chi-squared with

να degrees of freedom (see Exchangeability).
The hyperparameter τα represents a prior esti-
mate at σ 2

α and να measures the sureness of this
prior guess.

Similar exchangeable prior distributions are placed
on the sets of column effects {βj } and interaction
effects {λij }. Leonard [24] used this model to find
posterior modal estimates of the probabilities. When
the interaction effects are set equal to zero, these
Bayesian estimates smooth the table towards an inde-
pendence structure. Nazaret [29] extended this mul-
tivariate logit representation to three-way tables.

Albert and Gupta [5] and Epstein and Fien-
berg [12] perform similar smoothing using mixtures
of conjugate priors. To model the belief that the cell
probabilities satisfy an independence structure, Albert
and Gupta [5] assign the {θij }, a Dirichlet distribution
with precision parameter K and prior cell means {λij }
satisfying the independence structure λij = λi+λ+j ,

with λi+, λ+j respectively the prior row and column
marginal means: λi+ = ∑

j λij , λ+j = ∑
i λij . At the

second-stage of the prior, these marginal prior means
{λi+} and {λ+j } are assigned vague uniform distri-
butions. The posterior mean of the cell probability
θij can be expressed as

(
n

n + K

)
yij

n
+

(
K

K + n

)
E(λi+λ+j ), (11)

where E(·) denotes the expectation over the pos-
terior distribution of {λi+ λ+j }. This estimate is a
compromise between the usual unconditional maxi-
mum likelihood estimate yij /n and the estimate under
an independence model. Epstein and Fienberg [12]
generalized this conjugate approach by modeling the
prior mean of θij by a logit model. Laird [23] and
Knuiman and Speed [22] perform Bayesian smooth-
ing by applying a multivariate normal prior to the
vector of logarithms of expected cell counts. (King
and Brooks [21] show that a multivariate normal
prior on the loglinear model parameters induces a

multivariate lognormal prior on the expected cell
counts of the contingency table.)

Bayesian Interaction Analysis

Leonard and Novick [26] describe the use of a
Bayesian hierarchical model to explore the interac-
tion structure of a two-way contingency table. Given
cell counts {yij } from independent Poisson distri-
butions with respective means {θij } they assume, at
the first stage, that the θij have independent Gamma
distributions with respective means ξij and precision
parameter α. The means ξij are presumed to satisfy
the independence structure log ξij = µ + λA

i + λB
j .

At the second stage of the prior, all unknown param-
eters are given vague distributions. The posterior dis-
tribution of the precision parameter α is informative
about the goodness of fit of the independence model.
In addition, Leonard and Novick [26] consider the
posterior distributions of the “parametric residuals”
{log θij − log ξij } to explore the dependence pattern
in the table. Leonard, Hsu, and Tsui [25] consider
an alternative interaction analysis based on a non-
hierarchical prior. They obtain approximations to the
joint posterior distribution of {θij }, and dependence in
the table is studied by considering the posterior dis-
tribution of the interaction parameters {θij − θi+ −
θ+j + θ++}, with θi+ = ∑

j θij , θ+j = ∑
i θij , and

θ++ = ∑
i

∑
j θij .

Bayesian Tests of Equiprobability and
Independence

I. J. Good, in a large series of papers, developed
Bayes tests for contingency tables under a variety of
sampling models. We illustrate the general approach
by considering Good’s construction of a significance
test for equiprobability of a multinomial probabil-
ity vector [15]. As usual, one observes multinomial
{y1, . . . , yt} with cell probabilities {θ1, . . . , θt } and
total count n = ∑t

i=1 yi . The hypothesis of interest
is H : θi = 1/t, i = 1, . . . , t , and the usual classical
test statistic is Pearson’s chi-square,

X2 =
t∑

i=1

(yi − E(yi))
2

E(yi)
= t

n
Σ

(
yi − n

t

)2
, (12)

which is asymptotically distributed as chi-square with
t − 1 degrees of freedom.
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To develop a Bayes factor to test H against the
alternative hypothesis H : θi �= 1/t for some i =
1, . . . , t , note that the density of the data {y1, . . . , yt}
is fully specified under the hypothesis H . Let Hk

denote the hypothesis that the {θi} have a symmetric
Dirichlet (k) distribution with density g(θ) ∝ ∏

θk−1
i .

The hyperparameter k, since it is difficult to specify,
is given a log Cauchy prior

g(k) =
(

1

πk

)



λ

λ2 +
(

log k

µ

)2



 (13)

(see Cauchy Distribution). Then the Bayes factor
BF of H against H is given by BF = E(BF(k)|λ,

µ) = ∫
BF(k)g(k) dk, where BF(k) is the Bayes

factor of Hk against equiprobability,

BF(k) =
tnΓ (tk)

t∏

i=1

Γ (yi + k)

Γ (k)tΓ (n + tk)
. (14)

To illustrate and compare Bayesian and classi-
cal measures of evidence, we consider 150 voters of
whom 61, 53, and 36 expressed preferences for candi-
dates 1, 2, and 3, respectively. The chi-square statistic
for equiprobability is X2 = 6.52 with an associated P

value of 0.0384. The following table gives values of
the Bayes factor of Hk against H for a range of values
of the Dirichlet parameter k. A Dirichlet prior with

k 0.1 0.5 1 2 10 100 1000
BF(k) 0 0.2 0.5 0.9 2.8 2.0 1.1

a large value of k, say k = 1000, concentrates virtu-
ally all of its probability very near the equiprobability
hypothesis. The marginal density under H is then the
data density averaged over models very close to H ,
and hence only slightly exceeds the density under H .
Thus, the Bayes factor only slightly exceeds one. In
contrast, Dirichlet priors with very small values of
k become increasingly vague. The marginal density
from such a vague prior gives roughly equal weights
to data densities calculated throughout the parameter
space, including parameter regions with which the
data are much less compatible than with H . For such
values of k, the marginal density under H is thus
much higher than under Hk , and the resulting Bayes
factor is low; equivalently, the odds of Hk relative

to H given the data are much reduced. In fact, the
Bayes factor is not defined by the use of an improper
prior with k = 0.

Note that for the observed data the maximum
value of BF(k) in the table is 2.8; for a wide
range of log Cauchy priors that might be used in
practice, BF will be smaller than 1. Consequently,
in contrast with the classical result, the Bayesian
measures indicate that there is little evidence against
equiprobability in these data. Generally, when testing
a point null hypothesis, a classical P value overstates
the evidence against the hypothesis compared to a
Bayes factor test statistic. [6].

Good [16], Crook and Good [8], and Good and
Crook [17] extended the above methodology in devel-
oping Bayes tests for two-way contingency tables.
Tests were constructed on the basis of mixtures of
conjugate priors for the three sampling models (multi-
nomial, product-multinomial, multivariate hypergeo-
metric) corresponding respectively to fixed overall
table total n or to fixed totals along one or both
marginal dimensions (see Hypergeometric Distri-
bution). An objective of this analysis was to assess
whether the marginal totals convey any evidence for
or against independence of rows and columns. In the
multinomial sampling situation (model 1) where only
the total count is fixed, the Bayes factor in support of
the dependence hypothesis H over the independence
hypothesis H is given by

BF1 = P({yij }|H)

P ({yij }|H)
, (15)

where P({yij }|H) and P({yij }|H) are the marginal
probabilities of the data under the hypotheses H

and H , respectively. The marginal probability under
H is computed using a prior on the vector of cell
probabilities {θij } that is a mixture of symmetric
Dirichlet distributions, and the probability under H

is computed by placing similar Dirichlet mixtures as
priors on the vectors of marginal cell probabilities
{θi} and {θj }. Good and Crook also developed Bayes
factors against independence in the situations where
either the row or column totals were fixed (model
2), and in the situation where both row and column
totals were fixed (model 3). The evidence provided
by the row and column totals alone is defined to be
the ratio FRACT = BF1/BF3 of the Bayes factors
under model 1, in which information about rows
and columns is observed, and model 3, in which
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row and column margins are arbitrarily fixed. One
conclusion from their studies was that FRACT is
usually between 0.5 and 2.5, indicating that the row
and column totals typically contain a modest amount
of evidence against independence. These Bayesian
measures have the advantage that they explicitly
allow for the sampling model and do not depend
on asymptotic theory. In addition, they can be used
as classical test statistics against independence, and
tests based upon them can be shown to possess good
power. Gunel and Dickey [19], and Albert [2] also
develop Bayes factors for two-way tables based on
conjugate priors and mixtures of conjugate priors,
respectively.

Bayes Factors for GLM’s with Application
to Loglinear Models

Raftery [32] presents a general approach for testing
within generalized linear models, with direct appli-
cations to comparisons of loglinear models for mul-
tiway contingency tables. Recall that if one observes
data D and has two possible models M1 and M2, then
the evidence in support of the model M1 is given
by the Bayes factor BF12 = (P (D|M1)/P (D|M2)),
where P(D|Mk) is the marginal probability

P(D|Mk) =
∫

P(D|θk, Mk)p(θk|Mk) dθk. (16)

Raftery presents several methods for approximat-
ing P(D|Mk). By the Laplace method for integrals,
one has the approximation

P(D|Mk) ≈ (2π)pk/2|Ψk|1/2P(D|θ̃k, Mk)p(θ̃k|Mk),

where θ̃k is the posterior mode, Ψk is the
inverse of the negative of the Hessian matrix of
log P(D|θk, Mk)p(θk|Mk) evaluated at the mode, pk

is the number of parameters of the model, and |A|
indicates the determinant of the matrix A (see Matrix
Algebra).

The following approximation was developed as
an alternative that capitalizes on quantities available
from standard generalized linear model software:

2 log BF12 ≈ χ2 + (E∗
1 − E∗

2 ),

E∗
k = − log |Ik| + 2 log P(θ̂k|Mk) + pk log(2π), (17)

where θ̂k and Ik are respectively the maximum like-
lihood estimate and observed information matrix
from fitting the model Mk , and X2 is the classical
χ2 ”drop in deviance”test statistic for comparing the
two models M1 and M2. One important issue is the
choice of prior on the regression coefficients. Raftery
[32] discusses suitable “vague” choices of hyperpa-

rameters to use in a testing situation.
To illustrate the use of Bayes factors in model

choice, Raftery [32] considers the data shown below
from a case–control study in which oral contra-
ceptive histories were compared between groups of
women having suffered myocardial infarction and
control women who had not [34]. The table shows
a cross-classification of case (Myocardial infarction)
or control status (M), Age category (A), and history
of oral Contraceptive use (C).

Suppose we wish to compare the two loglinear
models M1 and M2, where M1 denotes the no three-
way interaction model indicating that the relative
risk relating disease and oral contraceptive history
(estimated in this context by the odds ratio) is con-
stant across age groups, and the more complicated
model M2 indicating that the relative risk is constant
from ages 25 to 34 but may shift to a different con-
stant during ages 35 to 49. Using a classical loglinear
analysis, the difference in deviances is 4.7 on one
degree of freedom and the P value is 0.03, indicat-
ing different relative risks for the age groups 25 to
34 and 35 to 49. Computation of a Bayes factor, in
contrast, slightly favors the simpler model M1.

One advantage of this Bayesian approach is that
it can explicitly allow for model uncertainty in the

Age group (A)

25–29 30–34 35–39 40–44 45–49

Myocardial infarction (M)

Oral contraceptives (C) No Yes No Yes No Yes No Yes No Yes
Not used 224 2 390 12 330 33 362 65 301 93
Used 62 4 33 9 26 4 9 6 5 6
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estimation of parameters of interest. Where there are
many possible models {M1, . . . , MK}, the posterior
distribution of the parameter θ may be expressed as
the mixture of posteriors:

p(θ |D) =
K∑

i=1

p(θ |Mk, D)p(Mk|D), (18)

where p(θ |Mk, D) is the posterior of θ under model
Mk and p(Mk|D) ∝ P(Mk)P (D|Mk) is the posterior
probability of model Mk . Using the above exam-
ple, Raftery [32] illustrates this “model averaging”
approach in estimating a relative risk parameter when
there are two plausible models; see [33] for additional
applications of this method.)

Use of BIC in Sociological Applications

If one ignores terms of order O(1) or smaller, one
gets a further approximation to the log marginal
density of the data under model Mk:

log P(D|Mk) ≈ log P(D|θ̂ ) − pk

2
log n (19)

where, as above, pk is the number of parameters in
model Mk [31]. Twice the difference between values
of this approximation for a reduced versus a saturated
model is the BIC (Bayesian Information Criterion)
measure for assessing the overall fit of a model Mk:

BICk = L2
k − dfk log n, (20)

where L2
k is the usual deviance statistic and dfk is the

associated degrees of freedom of this statistic. Two
models Mj and Mk can be compared by the difference
BICk − BICj . Raftery [31] gives tables helpful for
interpreting the significance of a computed BIC value
and comparing it with traditional P values. Specifi-
cally, a BIC measure gives precise guidelines on how
one should adjust a significance level pertaining to
model comparisons as the sample size increases, in
order to avoid including trivial complexity in a final
model.

Bayesian Model Search for Loglinear
Models

Recent advances in Bayesian computing have in-
creased interest in using Bayesian models to search

for the “best” loglinear model for a multidimensional
contingency table. Madigan and Raftery [28] define
some general principles that should be expressed in
the behavior of any model selection strategy. One
principle is that models that predict the data far less
well than the best model should be discarded; that is,
models Mk such that (maxl P (Ml |D))/P (Mk |D) ≥
C should be removed from consideration. A sec-
ond principle, “Occam’s Razor”, states that if two
models predict the data equally well, the simpler
should be preferred (see Parsimony). Madigan and
Raftery [28] describe how one can search through
the space of models by use of Bayesian posterior
model probabilities. In this approach, a model is rep-
resented by a directed graph with a node for each
variable, and the dependence structure is represented
by edges connecting pairs of nodes. Hyper-Dirichlet
priors are used to represent prior opinion about the
model parameters [9].

Albert [3, 4] describes Bayesian model selection
based on priors placed directly on terms of the log-
linear model. For a three-way table with a saturated
loglinear model represented by

log mijk = u + u1(i) + u2(j) + u3(k) + u12(ij)

+ u13(ik) + u23(jk) + u123(ijk), (21)

Albert [3] places a multivariate normal prior dir-
ectly on the vector (u, u1, u2, u3, u12, u13, u23, u123)

′
formed by stringing out the sets of u-terms, and
models are defined by means of priors that constrain
sets of u-terms to zero. The Laplace method [35] is
used to compute the model probabilities.

To illustrate the use of a Bayesian model selection
strategy, we use the table below, which classifies
test rats in an experiment with respect to dose of a
possible carcinogen (D), time of death (sacrificed at
132 weeks or age, or prematurely) (T), and presence
or absence of cancer at necropsy (C) [13].

Time of death (T)

Premature At sacrifice

Dose (D)

Cancer (C) Low High Low High

Present 4 7 0 7
Absent 26 16 14 14
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A classical stepwise model search leads to the
choice of the model [T], [CD], which indicates that
cancer and dose are independent of survival to the end
of the experiment. In [3], a Bayesian model search is
performed over 24 = 16 models consisting of com-
binations of the presence or absence of each of the
four sets of interaction terms uDT , uDC, uCT , uDT C .
The table below gives the posterior model probabil-
ities for the six models with the largest values. This
Bayesian analysis is similar to that of the classical
analysis in the sense that the model with the high-
est posterior probability includes the interaction uCD

and no other interactions, but the probability of this
model is only 0.39 and the remaining models have
relatively small posterior probabilities. Bayesian esti-
mates of the association between dose and cancer in
the table will account for the uncertainty of the “best”
loglinear model.

Dellaportas and Forster [10]) propose a simu-
lation-based approach for finding the best loglinear
model. In this approach, they assume that the vector
of logarithms of the expected cell counts has a mul-
tivariate normal prior distribution. They work with a
parameterization under which all parameters are iden-
tifiable and linearly independent, and choose vague
priors for these parameters. For searching through
the model space, they propose a strategy based on
the reversible jump Markov chain Monte Carlo
(MCMC) algorithm [18]. An attractive feature of this
algorithm is that one can move between models of
different dimension. These authors apply their model
selection strategy, and those of [32] and [28], to find-
ing the best model for a three-way contingency table.
Although there are differences in the computed pos-
terior model probabilities, all of these approaches
select the same loglinear model. In the normal regres-
sion context, George and McCulloch [17] propose
an alternative Bayesian algorithm, Stochastic Search
Variable Selection (SSVS), for searching through the
space of all possible models. Ntzoufras et al. [30]
extend the SSVS approach to loglinear modeling.

Interactions Posterior
included probability
None 0.05
uCD 0.39
uCA, uCD 0.07
uCD , uACD 0.09
uCD , uAD 0.18
uCA, uCD , uAD 0.04

Much of the early Bayesian methodology for con-
tingency tables was devoted to issues regarding com-
putation due to the difficulties in computing integrals
of several variables. However, by virtue of great
advances in computing posterior distributions by sim-
ulation, it is now possible to fit sophisticated Bayesian
models for high-dimensional contingency tables. Fur-
ther, Bayesian advances may be expected, especially
with respect to criticism of single loglinear models,
and model selection among large classes of hierarchi-
cal and graphical models (see Hierarchical Models).
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Bayesian Methods for
Model Comparison

This article aims to give a brief overview of meth-
ods for comparing competing Bayesian models. This
is a large topic of ongoing research interest; for a
more thorough review see Key, Pericchi, and Smith
or Bernardo and Smith [2, Chapter 6]. Pertinent dis-
cussion can also be found in the entries on Bayes
Factors, Bayesian measures of goodness of fit,
Lindley’s paradox, and choice of model.

Bayes Factors and Problems Associated
with Them

The basic tools of Bayesian model comparison are
easily derived from a decision-theoretic viewpoint.
Suppose we have a series of models Mi , to which we
assign prior probabilities P(Mi). (For the purposes
of this article, “model” includes the distribution of the
data and all prior structures associated with param-
eters.) If we assume the simple utility function that
scores one for a correct choice of model and zero
otherwise, then for data x, it follows simply that the
optimal decision is to choose the model with highest
posterior probability p(Mi |x). When comparing two
models, it is therefore natural to consider

p(Mi |x)

p(Mj |x)
= p(x|Mi)

p(x|Mj)
× P(Mi)

P (Mj )
, (1)

and so given our choice of prior P , the Bayes factor
p(x|Mi)/p(x|Mj) gives a straightforward measure
for model comparison. See the Bayes Factor entry
for more details on how to calibrate and interpret
Bayes factors.

For a prespecified finite collection of competing
models and proper priors, Bayes factors are simple
to interpret and calculate. They also follow the Like-
lihood Principle (see e.g. Bernardo and Smith [2,
p. 454]) and are unaffected by integrating out nui-
sance levels of a hierarchical model. But they cannot
be defined if we use improper priors and are unsta-
ble when using diffuse priors; these properties are
described and various modifications proposed in the
entry on Bayesian measures of goodness of fit or
Berger and Pericchi [1]. For further discussion, and

a review of techniques used for numerical compu-
tation of Bayes factors, see Carlin and Louis [3,
pp. 206–219] and Han and Carlin [5].

Lindley’s Paradox

Lindley’s paradox is a problem related to the sta-
bility of Bayes factors for diffuse priors [9]. If the
observed data are not “close” to the alternative mod-
els, the use of Bayes factors may lead us to accept a
hypothesis/model that is rejected by classical hypoth-
esis tests. The most famous example of this comes
when we have a sample of normal data x1, x2, . . ..
We assume that all Xi are independently distributed
N(µ, σ 2

0 ) for some known σ0 and wish to compare
the models

H0: µ = µ0 vs H1: µ �= µ0, (2)

where µ0 is known explicitly. Whenever the sample
mean x is too far from µ0, the classical framework
rejects H0. Let us now compare a similar pair of
Bayesian models, using the same assumptions that
Xi ∼ N(µ, σ 2

0 ), with

M0: µ = µ0 or M1: µ ∼ N(µ1, σ 2
1 ), (3)

for some known µ1, σ1. Lindley [9] showed that if
we let σ1 become sufficiently large, so that our prior
information on µ is extremely diffuse, then use of
Bayes factors will lead us to accept M0 whatever
the value of x, even if it is far from µ0, therefore
contradicting the classical approach.

The potentially huge diffuseness in the prior is
the key to unlocking the “paradox” here. The Bayes
factor chooses between two models: one centered
around µ0, which may be a poor reflection of the data,
and the extremely diffuse alternative that may give
even less support to the data, owing to its being so
thinly spread. This is a different choice to that posed
in the classical analysis, and so different conclusions
may be expected. The effect should be taken into
account whenever sharp, point values for parameters
are compared with diffuse alternative formulations.

Avoiding the Lindley Paradox

Several authors have questioned the value of test-
ing “point” models or hypotheses, as reviewed in
Kass and Raftery [6]. However, given the vast fre-
quentist literature on this subject, there is a clear
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motivation for Bayesians to seek priors, which are
“reasonable” for the alternative model M1 above.
We want to specify a diffuse, weakly informative
prior without assuming so little information that we
run into Lindley’s paradox. A neat solution is given
by Kass and Wasserman [10], who advocate setting
σ1 = σ0 above; this gives a prior that contains the
same amount of information as we get from a sin-
gle observation. They generalize this for multivariate
parameters and show that for nested hypotheses (see
Hierarchical Models) the resulting Bayes factors are
asymptotically equivalent to the BIC (Bayesian Infor-
mation Criterion) [11] (or Schwarz Criterion), written
as

BIC = 2 log f (x|θ̂ ) − 2p log n (4)

for likelihood f , maximum likelihood parameter esti-
mate θ̂ , a total of p parameters, and sample size n.
This is similar to the work of Smith and Spiegelhal-
ter [12], who derive priors for parameters in nested
linear models that are shown to be equivalent to
the BIC and the related AIC (Akaike Information
Criterion).

The Bayes factor’s clear definition makes it desir-
able to interpret any (sensible) model comparison
method as a Bayes Factor for some particular set of
prior beliefs, akin to the decision-theoretic results that
all admissible decision rules are Bayes rules for some
prior. This attractive unifying principle is, however,
only helpful for finite numbers of competing models,
where we additionally assume that one of the models
is correct. Ordinarily, we are only looking for a “best”
model, or perhaps just an adequate one, not a strictly
“true” one, and this increases the subjectivity in defin-
ing prior probabilities for the different models under
comparison. See the M-open M-closed discussion
by Bernardo and Smith [2, pp. 384–385] for further
discussion. In reality, we might additionally expect
some models to be motivated by the data itself, fur-
ther complicating the reasonably simple Bayes factor
framework.

Model Averaging, RJMCMC, Utility
Discussion

Before exploring Bayesian model comparison tech-
niques beyond the Bayes factor, it is important to ask
whether model comparison is to be just one analytical
step toward some other ultimate goal, like parame-
ter estimation or prediction of future behavior. If

so, then perhaps the most “fully” Bayesian method
for model choice is not to choose one model “as if
true”. Then, following Key et al. [7], we modify all
the competing models, and for a decision about some
parameter with true value ω, choose the action a that
maximizes

∫
u(a, ω)

∑

i

pi(ω|x, Mi)pi(Mi |x) dω, (5)

where u(a, ω) is the utility obtained by action a

for ω. The summation term here indicates that we
are model averaging. In principle, as the amount
of data present increases, the choice a should get
arbitrarily close to the true parameter value, which is
of course equivalent to choosing the correct model.
However, this approach neatly produces the analysis
we are really interested in without having to make
a strict model choice at any stage. An extremely
similar approach is used when the choice of model is
considered a parameter value, where we subsume all
competing models into one large hierarchical model;
see the section on Reversible Jump in the Markov
Chain Monte Carlo entry.

The dependence on utility functions in the model
averaging above is clear and essential, and this carries
over to other forms of model comparison; if we are to
compare models rigorously there must be some spec-
ification of the purpose for which we are comparing
them. For further references, see Draper’s discus-
sion of Spiegelhalter et al. [13]. If a utility function
can be established, the decision-theoretic framework
simply dictates that we use the model that max-
imizes expected utility. Nonetheless, while clearly
desirable in terms of clarifying and simplifying the
analysis, deciding on a utility function is difficult and
extremely subjective, just like choosing a prior. We
therefore consider methods that do not require spe-
cific utility functions and instead are based around
some measure of comparative goodness of fit to the
data.

Some Alternatives to Bayes Factors

Deviance Information Criterion (DIC)

Classical techniques for comparing (nested) mod-
els are based around the models’ deviances and
their numbers of parameters, or degrees of free-
dom. Bayesian analogues of these quantities are com-
bined in the Deviance Information Criterion (DIC) of
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Spiegelhalter et al. [13]. DIC is defined as

DIC = 2pD + D(θ), (6)

where

pD = Ɛθ |y [−2 log{p(y|θ)}] + 2 log[p{y|θ̃ (y)}] (7)

evaluated at θ̃ (y) = Ɛ(θ |y) is a measure of the
“effective number of parameters” and D(θ) is a mea-
sure of the “Bayesian Deviance”

D(θ) = −2 log{p(y|θ)} + 2 log{f (y)}, (8)

again evaluated at the posterior mean Ɛ(θ |y). We
seek parsimonious models, which combine low
deviance with the minimum number of parameters,
and so models that minimize DIC are preferred over
alternatives.

DIC has been used in many analyses but further
innovation seems possible; negative values of pD are
possible, different parameterizations lead to differ-
ent values of DIC, and for multilevel models, it is
not clear which levels of the model should be inte-
grated out (e.g. random effects) and which left “in
focus”. Trevisani and Gelfand [14] show that inte-
grating out different sets of nuisance parameters
can lead to varying support for the same underly-
ing hierarchical model. However, this applies to other
likelihood-based criteria, like AIC or BIC, and is not
a specifically Bayesian problem.

Although in most practical applications it will be
unrealistically optimistic to assume that one of the
competing models is “true”, in this hypothetical situ-
ation, we might prefer methods that, asymptotically,
select the correct model. As with AIC, it is possible
to find situations in which DIC fails to do this.

Expected Posterior Deviance (EPD)

Another criterion-based approach is the use of Ex-
pected Posterior Deviance (EPD), developed initially
by Laud and Ibrahim [8] and developed more for-
mally by Gelfand and Ghosh [4]. Here we work with
the posterior predictive distribution for new data;

f (xnew|x) =
∫

f (xnew|θ)p(θ |x) dθ. (9)

The user must choose a discrepancy function
d(xnew, x), generally taken to be the (classical)
deviance measure, although any reasonable measure

of distance between the data sets is acceptable. Then
the model that minimizes

EPD = Ɛ(d(xnew, x)|x, Mi) (10)

is selected. The interpretation of EPD is simple and
does not require asymptotic arguments. Furthermore,
its calculation, for any particular model, is simple and
easily added on to standard MCMC calculations.

Cross-validation

Another alternative to Bayes factors in model com-
parison is the use of cross-validation as an extension
of Bayesian measures of goodness of fit. Using the
predictive likelihood as a measure of utility, Vehtari
and Lampinen [15] suggest comparing models by
their expected utility estimates; as with other cross-
validation procedures, when data points are removed
by more than “one at a time”, the computational bur-
den rises quickly and is likely to be unrealistic for
large models evaluated using MCMC.
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Bayesian Methods in
Clinical Trials

A clinical trial is an experiment carried out to gain
knowledge about the relative benefits of two or more
treatments. Typically, this is part of a gradual accrual
of knowledge: a trial to confirm benefits in a large
population may follow much careful work on smaller
scale studies, or a study may be asking essentially
the same question as several other studies. Con-
ventionally, clinical trials are analyzed formally as
an individual trial, and their contribution to accru-
ing knowledge then assessed informally. However,
increasingly the technique of meta-analysis is used
to combine the information from similar trials into a
formal summary.

More generally, researchers may wish to frame the
following questions: “What do we think about the rel-
ative benefits of the treatments before knowing the
results from this trial?” “What information can be
gained from the results of this trial?” “Considering
the results of this trial in the light of previous under-
standing, what do we now think about the relative
benefits of the treatments?”

If this seems too subjective, an alternative way of
casting this framework is to ask: “What is the previ-
ous evidence on the relative benefits of treatment?”
“What is the current evidence from this trial?” “What
is the updated evidence, once we combine the previ-
ous with the new evidence?”

The concept of updating of beliefs or evidence
is the essence of Bayesian statistics. This article
explains the essential concepts through a simple
example, and then discusses some of the issues raised,
namely the legitimate sources of previous beliefs or
evidence, including the question of subjectivity, and
implications for the design of trials and Bayesian
reporting of clinical trials. A particular area of
application is data monitoring (see Data and Safety
Monitoring).

Most of the discussion is in the context of two-
group parallel trials, partly for simplicity of exposi-
tion, but mainly because of the preeminence of this
design in practice. The framework is, however, com-
pletely general, and applies to more complex designs.
For the combination of results of several trials, pos-
sibly with other evidence, Bayesian meta-analysis
is outlined. Clinical trials are often used as part of

wider decision-making processes. Bayesian statistics
is sometimes set in the context of decision-making,
and the implications of this are discussed. Finally,
there is a note on computational issues.

An Example

Consider the following example: after a heart attack,
thrombolysis is often indicated. There is a tension
between whether this is done at home once the ambu-
lance arrives, which confers the advantage of speed,
or in hospital, which is a more optimal environment,
but necessitates a delay in treatment. The GREAT
trial was run to compare these two strategies [8].
When the trial reported, there were 13 deaths out
of 163 patients in the home group, and 23 out of
148 in the hospital group. The authors estimated a
reduction in mortality of 49%. Some commentators
were skeptical that a halving of mortality was really
possible. Pocock & Spiegelhalter [14] carried out a
Bayesian analysis. They judged, ignoring the trial
results, that home treatment probably conferred some
benefit, say a 15%–20% reduction, but that a 40%
reduction, let alone a halving of mortality, was fairly
unlikely. These beliefs are termed the prior distribu-
tion. The evidence from the trial is described through
the likelihood function . Combining these two gives
the posterior distribution of beliefs. This gives an
estimate of the reduction of mortality of about 25%,
but still says that the extremes of no effect or of a
halving of mortality are unlikely.

Differences from classical analyses include the
incorporation of prior beliefs, the absence of P val-
ues, and the absence of any idea of hypothetical
repetitions of such studies. The posterior estimate of
effect and its surrounding uncertainty via a credibil-
ity interval is analogous to a classical point estimate
and its associated confidence interval, but has a direct
interpretation in terms of belief. As many people
interpret a confidence interval as the region in which
the effect probably lies, they are essentially acting as
Bayesians.

Mathematical Formalization

We can express the preceding analysis formally as

P(θ |data) ∝ P(data|θ) × P(θ).
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P(θ) is the prior distribution expressing initial beliefs
about the parameter of interest. In the example,
this would be the difference in mortality rates,
described using the Normal distribution. P(data|θ)

is the likelihood function, expressing the statistical
model of variability for the data given the parameters.
In the example, a Normal distribution is assumed for
the difference in binomial proportions. P(θ |data) is
the posterior distribution of beliefs. Its shape depends
on the previous two distributions, but where the prior
distribution and likelihood are assumed to be Normal,
the resulting posterior distribution is Normal.

The equation is usually expressed and worked with
in its proportional form: if needed, the constant of
proportionality is obtained by integrating the right-
hand side with respect to θ , which ensures that the
posterior distribution is properly defined, integrating
to one.

Clinicians will have views on how different these
treatments need to be before it becomes unethical
to randomize patients between them. For example,
some may think that if the home thrombolysis is no
worse than hospital and no more than 20% better than
hospital treatment, that randomization is acceptable,
whereas once there is reasonable evidence that the
difference is outside this range, a decision can be
reached as to which is preferable. This range is often
termed the region of equivalence. One end is essen-
tially the same as the “clinically important difference”
used conventionally when deciding how large studies
should be, and the other end may be the point of no
difference. An alternative is to have the range sym-
metrical about the point of no difference: the range of
equivalence in the GREAT trial might be that home
is no more than 20% better or worse than hospital.
(This is often used in bio-equivalence studies.)

Sources of Prior Distributions

The Bayesian approach just outlined gives a frame-
work for updating beliefs or evidence. There are sev-
eral possible sources of prior distributions. Spiegel-
halter et al. [18] recommend that there is no need to
select just one, and outline a community of priors that
can be used for interpretation.

The reference prior represents minimal prior in-
formation. This is the least subjective, and analyses
based on this act as a useful baseline against which
to compare analyses using other priors. The clini-
cal prior formalizes the opinion of well-informed

specific individuals. The skeptical prior formalizes
the belief that large treatment differences are unlikely.
This can be set up, for example, as having a mean
of no treatment effect, and only a small probability
of the effect achieving a clinically relevant value. By
contrast, the enthusiastic prior can be specified, for
example, with a mean equivalent to a clinically rele-
vant effect, and only a small probability of no effect,
or worse.

The reference prior, skeptical prior, and enthusias-
tic prior are essentially mathematical constructs, cal-
ibrated using points such as that of no effect, and the
clinically relevant effect. By contrast, a clinical prior
is intended to represent the current state of knowl-
edge. Where possible, it should be based on good evi-
dence, such as a meta-analysis of relevant randomized
controlled trials. Where this is not possible, evidence
from nonrandomized studies may be needed. Alter-
natively, subjective clinical opinion may form the
basis of a prior distribution. Elicitation of opinion can
be carried out using techniques such as interviews,
questionnaires or interactive computer packages with
feedback [5, 13, 21]. These are not mutually exclu-
sive: for example, subjective judgment about rele-
vance or changed circumstances may be needed to
modify results from an objective meta-analysis.

For example, in a Bayesian analysis of a cancer
clinical trial comparing high-energy neutron therapy
versus the standard of photon therapy [18], priors
from two sources were used. The first was from a
survey of interested clinicians, which showed beliefs
favoring neutron therapy; the second was from a
meta-analysis of related studies of low-energy neu-
tron therapy, which showed a detrimental effect com-
pared with placebo (see Blinding or Masking). The
data from an interim analysis (see Data and Safety
Monitoring) were against neutron therapy, and, start-
ing from either prior, the posterior belief in a worth-
while benefit was small, with the weight of posterior
evidence on a harmful effect. The data monitoring
committee (see Data Monitoring Committees) had
actually stopped the trial at that stage (on classical
analyses), and the Bayesian analyses express explic-
itly the wisdom of that decision.

Region of Equivalence

The region of equivalence is the area in which
equipoise exists: a patient or his/her doctor is indif-
ferent to which of the two treatments is used. Whilst



Bayesian Methods in Clinical Trials 3

there is a reasonable probability that the treatments
are in equipoise, randomization is ethical.

There are close parallels with the specification of
the alternative hypothesis in the design of clinical
trials based on the classical statistical paradigm. For
a Bayesian analysis of a classically designed trial,
an obvious choice for a region of equivalence is to
take the points associated with the null and alternative
hypotheses. When Bayesian thinking is informing the
design, the range of equivalence is often elicited from
clinicians using similar techniques to those used for
elicitation of prior beliefs. In the neutron therapy trial
described above, clinicians had also been asked about
how good neutron therapy would need to be before it
should be routinely used. They said (on average) that
one-year survival of 50% would need to be increased
to 61.5%. The range of equivalence was then taken as
being between no improvement and an improvement
of this magnitude.

The region of equivalence provides a useful bench-
mark for the design of trials, for reporting of results
and for data-monitoring. These are discussed in more
detail below. The region of equivalence is often deter-
mined in a relatively informal fashion by clinicians.
Wider questions, about whose equipoise is really rel-
evant, and what considerations should inform this,
point towards a decision-making perspective. These
are considered at the end of the article.

Bayesian Power

Classical power calculations for clinical trials are car-
ried out by specifying a null hypothesis that two
treatments do not have different effects on the out-
come of interest, and an alternative hypothesis that
the difference in outcome is equal to some prespeci-
fied value. The risks of wrong decisions under these
two hypotheses are then fixed at chosen levels, which
then determine the necessary sample size. These cal-
culations are essentially conditional on the choice of
the alternative hypothesis. There is as yet no consen-
sus on a Bayesian approach to sample size deter-
mination for clinical trials. Some advocate focusing
on a reasonable probability of getting a posterior
interval less than a certain width, while others take
an explicit decision-making perspective, with utilities
either essentially “information”, or some trading-off
of health benefits and cost. A wide-ranging discussion
of Bayesian sample size calculation can be found in

a special issue of The Statistician [16]. See also [18]
and [20].

Data Monitoring

In many trials, results accrue fast relative to patient
recruitment. In this situation, data-monitoring com-
mittees are often set up to review the data to ensure
that equipoise still exists, and it is still ethical to enter
patients into the trial. Statistically, the challenge is to
guard against stopping a trial too early, as an over-
reaction to early dramatic results, whilst protecting
new trial patients from inappropriate randomization.
From a classical statistical perspective, this is often
formalized in terms of adjusting significance levels.

One Bayesian approach [18] formalizes it differ-
ently. At the start of the trial, a skeptical prior (see
above) is used to represent the view that there is
not too much difference between treatments. Only
when the data dominate this sufficiently would early
stopping be considered. The effect of such a prior
is to put a brake on early results. For a trial of
esophageal cancer comparing surgery with preoper-
ative chemotherapy and surgery, this approach was
used [6]. It has been shown that there is a close tie-up
between this approach and classical group sequential
designs (see Sequential Methods for Clinical Tri-
als), in that a particular design, say with five interim
analyses and a Pocock boundary, corresponds to a
Bayesian procedure with a particular choice of prior
distribution [7].

An alternative Bayesian approach to monitoring
takes a much more decision-theoretic perspective. For
a trial of influenza vaccination of Navajo children,
monitoring included explicit consideration of future
children and their risk of influenza [4].

Complex Trial Designs

The two-group parallel trial described so far is
important, but not the only trial design. For more
complex designs, the same framework of prior
distribution/likelihood/posterior distribution outlined
above still holds, although because there are
more parameters, careful specification is needed,
for example in parameterization. Bayesian methods
have been developed for other designs, including
crossover trials [9] and factorial trials [1, 15].
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Bayesian Reporting of Clinical Trials

A good report of a trial specifies the question being
addressed, describes the design and conduct of the
trial, gives results, makes formal statistical inference
from these, discusses sensitivity to assumptions, and
then interprets the trial in the context of other relevant
research. Many of these do not differ from usual
good practice, but some aspects can benefit from
formalization using Bayesian procedures [11, 19].

The results of the trial should be described clearly,
and in enough detail that another reader could carry
out alternative analyses if desired. Formal statistical
inference follows the prior/likelihood/posterior anal-
ysis outlined above. The posterior distribution then
represents a summary of beliefs/evidence about the
parameters of interest. This is most fully represented
graphically, but can be further summarized by giving
a 95% credibility interval. In addition, it is often
useful to give the probability that an effect is in a
particular region, for example the probability that the
parameter lies above the region of equipoise, or, for a
bio-equivalence study, the probability that the param-
eter lies inside it.

The results section of the report should certainly
include an analysis that starts from an uninforma-
tive prior distribution. If there are other well-specified
prior distributions, then an analysis using these can
also be presented in full. For example, if Bayesian
data-monitoring has been used, then analyses with
relevant prior distributions are appropriate. Sensitiv-
ity analyses should also be carried out. These may be
for sensitivity to the specification of the prior distribu-
tion, but also to the specification of other parameters
in the model. For example, Grieve [9] presents plots
for a bio-equivalence study looking at sensitivity to
prior beliefs on the treatment effect. Sensitivity to
other choices of the region of equipoise may be
needed.

The discussion section of the report often contains
more speculative interpretation. This can usefully be
formalized through Bayesian analysis. If other opin-
ions can be captured, for example by a skeptical
or enthusiastic prior distribution, then the appro-
priate posterior distributions can be presented here.
If there are other similar studies, then a Bayesian
meta-analysis (see below) can be used to provide a
combined estimate of the effects of interest.

In all Bayesian reporting the separate elements
of the prior distributions and likelihood should be

clearly specified and appropriately justified, so that
the posterior distribution may be clearly interpreted.
The likelihood should not be controversial, since
it comes from the data, but specification of prior
distributions is more difficult. A good rule of thumb
is that if the prior distribution is based on belief,
then the posterior distribution should be interpreted
as an updated statement of belief, but if the prior
distribution represents a summary of hard evidence,
then the posterior distribution represents an updated
summary of hard evidence.

Bayesian Meta-Analyses of Clinical Trials

Bayesian statistics is essentially about the updating
of evidence. So far in this article the focus has been
on individual trials, but where several trials address
essentially the same question, a combined analysis is
desirable. Bayesian meta-analysis extends Bayesian
ideas used for a single trial to multiple trials. Previ-
ous evidence is expressed through prior distributions
about quantities of interest: in a meta-analysis of
binary outcomes, this will include, for example, the
log odds ratio. Current data are expressed through the
likelihood, based on an appropriate model. The poste-
rior distribution for quantities of interest can then be
obtained. The Bayesian framework also allows cal-
culation of the probability that the odds ratio is at
least say 1, or at least 3, which cannot be done in the
classical framework.

After a careful search for all relevant trials, it
seems strange to combine objective trial data with
subjective opinion. In the meta-analysis context, it
may be reasonable to use noninformative priors,
which give intuitively interpretable results. This is
particularly true for the main comparison. However,
it may be useful to bring in judgment on some of the
other parameters, on which the trials are less helpful,
such as the size of the random effects. It is impor-
tant to carry out sensitivity analyses on assumptions
made. Examples of Bayesian meta-analyses include
modeling random effects in a meta-analysis of urinary
tract infections [17], incorporating external evidence
on heterogeneity in a trial of cirrhosis [10] and mod-
eling heterogeneity in relation to underlying risk [22].

Decision-Making with Clinical Trials

The focus in this article has been on the estimation
of effects of interest using the accrued evidence. The
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purpose of accruing evidence is to make decisions.
Bayesian statistics leads naturally towards explicit
decision-making.

There is some debate as to whether clinical trials
are, in themselves, decision-making contexts. Some
(Lindley and others in discussion of [18]) argue they
are, whereas Spiegelhalter et al. [19] argue that an
individual clinical trial can be put to a variety of
purposes, and so it is better not to construe the trial
as a decision in itself.

Ashby & Smith [2] argue more generally that
evidence-based medicine is about making decisions
and the Bayesian approach is a natural one to
adopt. When a decision is to be made, the fol-
lowing should be identified: the decision-maker, the
possible actions, the uncertain consequences, the pos-
sible sources of evidence, and the utility assessments
required. For example, a patient is diagnosed with
esophageal cancer. He is advised that until recently
routine treatment has been surgery, but a new sugges-
tion is to precede the surgery by a course of several
weeks of chemotherapy. The decision-maker is the
patient, who may effectively delegate to his doctor.
The possible actions are to undergo surgery, or to opt
for the combination treatment. The uncertain conse-
quences are the length of his survival, the side-effects
(such as severe nausea), and the delay in completion
of treatment. The possible sources of evidence relat-
ing to his expected survival come from routine data
such as cancer registries, and relating to the additional
benefit of combined treatments from clinical trials.
The utility assessment required is the patient’s trade-
offs between extra survival, side-effects and time
spent undergoing treatment. Within this framework,
evidence from clinical trials plays a very important
role.

Computation

Some of the simple analyses in this article can be
done analytically, using nothing more than a hand
calculator. BUGS is a general-purpose package writ-
ten to facilitate the fitting of complex Bayesian
models [21]. It is available from http://www.mrc-
bsu.cam.ac.uk/bugs/, and can handle the kinds
of analyses referred to in this article.

Bayesian Clinical Trials in Practice

For many years the principles of Bayesian statis-
tics have been well understood. Implementation in

practical areas such as clinical trials has been ham-
pered, until recently, by computational complexity.
However, with the growth in modern computing
power, the situation is changing rapidly. Analyses of
real complex studies are relatively recent, and their
use as the first or primary approach even newer. A
Bayesian analysis now offers an intuitive approach,
combined with the power to deal with complexity
when necessary. Bayesian clinical trials, and inte-
grated summaries of them using Bayesian analyses,
are finding their place in practice.

A comprehensive discussion of Bayesian clinical
trials with excellent references based on systematic
review, can be found in Spiegelhalter et al. [19] and
several case studies of Bayesian clinical trials in
Berry & Stangl [3] and Kadane [12].
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Bayesian Methods

Bayesian formulations appear in various guises in
statistics, most fundamentally for assessing and inter-
preting posterior distributions for unknown quantities,
such as population means or predictions of future
observations. Considered more broadly, posterior dis-
tributions can be used to calculate posterior expec-
tations that can be compared for decision-making
purposes. And modern frequentist decision theorists,
who are mostly anti-Bayesian in outlook, neverthe-
less value Bayesian procedures because the class
of Bayesian decision rules is typically complete in
the sense that for every non-Bayesian procedure one
can find a Bayesian procedure that is at least as
good [33]. This article stresses the original use for
computations whose inputs are data and a probability
model, and whose outputs are posterior distributions
of unknown quantities of interest, a canonical exam-
ple being uncertain assessment of a population mean
from data on a random sample.

The simplest case of sampling a dichotomy was
given a non-Bayesian treatment by Jacob Bernou-
lli [3] in a famous posthumous publication (see
Bernoulli Family). Bernoulli was interested in esti-
mating from data the chance of an individual of
known current age surviving to a specified later age,
and with this goal in mind he derived the bino-
mial sampling distribution and concluded that when
samples are large enough one can with high prior
probability be nearly certain that the sample rela-
tive frequency will be close to the population relative
frequency. Fifty years later the same estimation prob-
lem was reformulated by Bayes [1] in another famous
posthumous paper showing how to associate a poste-
rior probability distribution with the population rela-
tive frequency given the sample relative frequency.

Bayes’ method was soon taken up by Laplace [23]
as a fundamental principle of inference, and applied
both to sampling and measurement error models.
Gauss [17] claimed that he proposed the method of
least squares and applied it to tracking an asteroid,
all this in 1795 while still in his teens. Although
many years later Gauss also proposed the sam-
pling theory justification that Neyman dubbed the
Gauss–Markov theorem, Gauss’s original derivation
applied Bayesian reasoning to a model that used
the normal law of error. By 1800, Bayesian infer-
ence was well on its way to becoming the primary

technical approach for probabilistic evaluation of sta-
tistical estimates. Although not without detractors, it
remained in this position for more than a century, the
key technique being to use as a point estimate (see
Estimation) the mode of a posterior density of an
unknown quantity assuming a uniform prior density.

The underlying technical concepts of Bayes’ para-
digm are joint, conditional, and marginal probabili-
ties, where joint probability equals conditional
probability times marginal probability or, in
symbols,

Pr(A and B) = Pr(A|B) × Pr(B).

Not only did Bayes [1] explicitly define this relation,
he cleverly went on to make twofold use of it, first
as written, and then with the roles of A and B

interchanged. Thus, if A denotes the information in
an observed sample, and B the unknown properties
of the population from which the sample is randomly
drawn, and if the two factors on the right side of
the formula are assumed given, with Pr(A|B) being
what is now called the sampling model, and Pr(B)

what is now called the prior distribution of B,
then the formula yields on the left-hand side the
joint uncertainty of A and B prior to observation
of A. Interchanging A and B in the formula, and
performing minor algebraic rewriting, one obtains:

Pr(B|A) = Pr(A and B)

Pr(A)
,

which yields on the left-hand side Bayes’ proposed
posterior distribution of B given the observation A.
In these formulas, Pr(A) can be calculated from
Pr(A and B) by summing over the possible values
of B, so that the essential inputs to the computa-
tion of Pr(B|A) are the right-hand-side terms in the
first equation, namely the sampling model Pr(A|B),
which in Bayes’ example is Bernoulli’s binomial dis-
tribution, and the prior distribution Pr(B) of the target
quantity B, which Bayes chose with some trepidation
to be a uniform prior distribution for the unknown
value of the binomial parameter (see Bayes’ Theo-
rem).

From the mid-nineteenth century onward, Baye-
sian inference has had persistent critics balanced
by steadfast defenders. The criticisms are basically
twofold. The more fundamental of the pair is a stern
objectivist principle denying that probability con-
ceived as subjective degree of belief has any accept-
able place in science. The more pragmatic position
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is that the logic embodied in Bayes’ concept of con-
ditional probability makes sense, but in practice the
method is often unusable, or at least compromised,
because unlike the sampling probabilities Pr(A|B) the
prior probabilities Pr(B) are typically hard to specify
in a way grounded in scientific experience.

A pragmatic position was presented long ago in a
remarkably modern way by Edgeworth [11]. The crit-
ics who “heaped ridicule upon Bayes’ theorem and
the inverse method” were justified only under “the
pretence, here deprecated, of eliciting knowledge out
of ignorance, something out of nothing”. Edgeworth
averred that “the so-called intellectual probability is
not essentially different from the probability which is
founded upon special statistics,” and that the change
from objective to subjective probability, or in critic
Boole’s terms “material” to “intellectual” probabil-
ity, “is not from experience into dreamland, but from
a particular to a more general sort of experience”,
and if this is somewhat imprecise it is not unlike
other imprecisions routinely encountered in science.
Edgeworth refers to Cournot [9, Section 95, p. 69]
for the argument that the arbitrariness apparent in
the widespread Bayesian use of uniform priors may
have little effect a posteriori. Another passage notes
Cournot’s introduction of the term “subjective prob-
ability, as he calls it” and argues that Cournot’s
suggestion that subjective probabilities only be used
“to regulate the conditions of a bet” is too narrow, and
should be extended to allow that such probabilities
may “afford an hypothesis which may serve as a start-
ing point for further observation”.

In the twentieth century, practical statistical infer-
ence via sampling distributions has overshadowed
Bayesian methods, at least until relatively recently.
R.A. Fisher was largely responsible for initiating
the shift of statistical practice toward Bernoulli’s
direct use of sampling distributions, as contrasted
with Bayes’ inverse use through combination with a
prior distribution. Fisher [13] had evidently learned
while a student of the criticisms of Boole, Venn,
and others, and he consciously sought to construct
a theory of estimation not dependent on Bayesian
prior distributions. Fisher held a pragmatic attitude
that understood and approved Bayesian logic, but felt
it was limited to situations where a “superpopula-
tion” of parameter values was available to support
a choice of prior distribution. Jerzy Neyman also
developed a theory of estimation based on sam-
pling distributions that followed Fisher’s attempts

by about 10 years, and Neyman likewise recognized
the need to break free from the Bayesian formula-
tion [28] before beginning to develop the strongly
frequentist and behaviorist theories that went hand in
glove with Neyman’s strong rejection of subjective
probability. Fisher had a different view of probabil-
ity [15], much more in tune with the pragmatism of
Edgeworth than with Neyman’s hard line rejection of
subjective probability, and this may well have been
the underlying cause of Fisher’s aggressive and life-
long attacks on Neyman and company [27] for what
he saw as excessive preoccupation with mathematical
theories insufficiently connected with the practice of
making uncertain inferences.

By 1950, despite Fisher’s continuing efforts, most
mathematical statisticians had adopted Neyman’s
positions on the use of sampling distributions, specif-
ically, on the importance of evaluating long-run
properties of statistical procedures under hypotheti-
cal repetitions, to be used in turn for comparing and
choosing among procedures. Not only was Fisher’s
star in decline, but the earlier Bayesian tradition was
lost in the shrouds of time, and regarded as a his-
torical relic. It is interesting that when a Bayesian
revival began, especially in the US in the mid-1950s,
it remained for a considerable time in the behav-
ioral or decision-theoretic mold of the school that
Neyman founded. Perhaps the most influential mem-
ber of the neo-Bayesian resurgence of the 1950s
and 1960s was the mathematical statistician Jim-
mie Savage. Savage’s axioms [30] were directed
at the construction of formal models that simul-
taneously specified probabilities and utilities, and
even his more informal forays into applied statis-
tics [31] emphasized decision-oriented thinking more
than direct assessment of uncertainty through subjec-
tive probability. The movement also paid tribute to
unreconstructed Bayesians such as the mathematician
Bruno de Finetti [10] and the geophysical scientist
Harold Jeffreys [22] who were more interested in
inferential statistics than in decision making, as was
Dennis Lindley (e.g. [25]) who, especially through
students, was pivotal in developing the strong con-
temporary school of Bayesian applied statistics in the
UK. In the US, an early supporter was the highly
regarded biostatistician Jerome Cornfield; see Corn-
field [7, 8] and Zelen [34]. It was not until the mid-
1980s, however, under the impetus of rapidly devel-
oping computer technologies, that Bayesian applied
statistics started to exhibit capabilities of handling
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complex scientific phenomena (e.g. [5] and [20]) in
ways that older sampling theories appear ill-designed
to address. Another important feature of modern
Bayesian statistics is its straightforward adaptability
to prediction [18].

Contemporary Bayesian Analysis: The
Problem of many Parameters, and
Applications in Complex Circumstances

Inference methods based on sampling distributions
made big strides in the area of small sample theory in
the first half of this century. Many exact hypothesis
testing and confidence procedures became available
for practical application to small data sets whose
analysis was comfortably within the capability of
the limited computers of the time. It turned out,
however, that Bayesian analogs of commonplace
non-Bayesian small sample procedures were easily
derived and were dependent on the same analytically
tractable mathematical forms, as illustrated by the
conjugate Bayes theory of Raiffa & Schlaifer [29].
Furthermore, there was typically little practical differ-
ence in the interpretations associated with competing
Bayesian and sampling theory methods, albeit with
some interesting exceptions such as the Lindley [24]
paradox. The practical congruence is especially evi-
dent for sampling models with limited parameter sets
and enough data to guarantee quite accurate esti-
mates, since, as can be demonstrated by large-sample
theory, estimation errors, whether evaluated through
sampling distributions or through posterior distribu-
tions, then have variances and covariances approxi-
mately given by the inverse of the Fisher information
matrix.

The approximate similarity of Bayesian and non-
Bayesian inferences is a fortuitous mathematical
result that hides very different logical arguments,
as was already obvious in the original papers of
Bernoulli and Bayes. The logical differences are
highlighted by the differing treatments of nuisance
parameters, defined as parameters in a stochastic
model whose unknown values confound the uncer-
tainty in a primary estimate. When using sampling
theory methods, it is sometimes possible to finesse
nuisance parameters through a mathematical trick,
as illustrated by the famous device of Student’s t
distribution that permits exact small sample theory
concerning the mean of a normal population despite

the unknown population variance nuisance parameter.
Fisher and others were quick to discern mathemati-
cally straightforward extensions of studentization to
general linear models with many parameters and to
multivariate normal models. But in truth, such tricks
are mainly limited to relatively few and often unreal-
istic sampling models, and otherwise the elimination
of nuisance parameters can only be achieved approxi-
mately through the cruder device of substituting point
estimates in place of unknown nuisance parameter
values. By contrast, the Bayesian argument has a uni-
fied approach to elimination of nuisance parameters,
namely, the reduction of a joint posterior distribution
to a marginal distribution, technically describable as
integrating the full joint posterior density over the
nuisance parameters.

Associated with these different methods of
dealing with nuisance parameters are different
nonuniquenesses of inferences derived Bayesianly
and non-Bayesianly from the same parametric
sampling model. With samples of moderate size,
deviations from the congruent asymptotic theories
of efficient estimation depend in ways that are
complex and varied, involving specific choices of
estimators in the sampling theory case, and on choices
of prior distributions in the Bayesian case. Thus,
estimates depend on more than the data and sampling
model under either theory. The Bayesian argument
transparently specifies that a joint prior distribution
for all the unknowns is both logically and practically
necessary when sample sizes are small, a principle
that has no analog in Neyman-Pearson theory and is
explicitly rejected by frequentists.

Just as the task of estimating a single mean was
an important test case for the early development of
basic inference methodologies, the more complex
task of simultaneously estimating several or many
means becomes an important test case for contem-
porary methods of statistical inference. Biostatistical
examples are abundant. For example, experimental
treatment effects may vary from center to center
in a multicenter randomized clinical trial, or vary
from study to study as in a meta-analysis. The con-
cept of variation between and within groups goes
back to R.A. Fisher’s contributions to experimental
design and the analysis of variance (ANOVA) [13,
14] examples being variation among and within vari-
eties of a crop, or among blocks and among plots
within a block, arising in randomized block exper-
imentation. A currently popular term for structures
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with variation within and variation among levels of
statistical units is hierarchical models (see Multilevel
Models).

A basic question posed by hierarchical structure
is whether the mean of a group should be estimated
using only sample data from within the group, or
whether one can borrow strength from data on other
groups. One seminal idea is that of shrinking a mean
estimated from data within one group part way to a
grand mean of the estimated means of several groups,
typically by using a weighting of the individual mean
and the grand mean with weights summing to unity.
Under frequentist theory, it is typical to evaluate such
shrinking or smoothing procedures under a hypothe-
sis of random sampling within groups, while group
mean parameters are assumed fixed and nonrandom.
Under Bayesian theory the distinction between fixed
and random becomes nonoperational since parame-
ters are assigned a prior distribution, which might
be that the group mean parameters are viewed as
independently drawn at random from a superpopula-
tion, as in the models called random effects models,
or originally the Model II of Eisenhart [12], in the
ANOVA literature. The Bayes vs. non-Bayes dis-
tinction is further blurred by the use of the term
empirical Bayes for shrinking methods advocated
by the frequentist school, the rationale being that the
sources of the methods lie in corresponding Bayesian
models, so that it is Bayesian interpretation that is
rejected in favor of frequentist evaluation. The nat-
ural Bayesian position is of course that a genuine
prior distribution should be specified and combined
with the likelihood from within groups sampling, so
that the Bayesian empirical Bayes methods, as they
are confusingly called, are interpreted Bayesianly as
well as motivated Bayesianly. As is often the case,
totally Bayesian interpretations provide simpler and
more direct explanations of inferential issues.

Simultaneous estimation of many means is a con-
venient vehicle for illustrating several features of the
Bayesian paradigm. One such is the remarkable flexi-
bility of the method. Modern computers can be easily
programmed to simulate joint posterior distributions,
the marginal posterior distribution of any function of
the set of means, not only their mean, or their stan-
dard deviation, but any complex quantity, such as,
perhaps, the subset of means exceeding some thresh-
old. There are competing sampling theory methods,
such as simultaneous confidence region procedures,
but they are more limited and difficult to use and

interpret accurately. Another Bayesian advantage is
automatic differentiation among parameters such that
the data are more and less informative. For example,
if some means are accurately estimated because the
samples are large, while others are poorly estimated
because samples are small, Bayesian procedures will
automatically smooth less toward the grand mean for
the larger samples and more for the smaller sam-
ples, without the need for special and often difficult
derivations of estimators and their sampling distri-
butions. Of course, there is a price to pay in terms
of specification of believable prior distributions. A
characteristic of a fully Bayesian treatment of hier-
archical models is the necessity of parametric prior
distribution modeling of lower level parameters, the
parameters at the second level being called hyperpa-
rameters with priors called hyperpriors. In practice,
however, these may not be as abstract as they first
appear. For example, there is likely to be “more
general experience”, to repeat a quote above from
Edgeworth, about the variation of group means, not
much different from empirical knowledge of varia-
tion within groups, and sufficiently formalizable to
be usable in practice.

A case can be made that Bayesian inference meth-
ods have the greatest advantage over competing sam-
pling theoretic procedures when the phenomena are
complex. By contrast, many statisticians preach keep-
ing it simple as a fundamental principle of practice,
and point to Occam’s razor in support of the prin-
ciple (see Parsimony). Thus, for example, it is not
uncommon that a carefully designed and executed
clinical trial producing large volumes of data at high
cost comes down to a trivially computable single P-
value from a combination of multicenter two-by-two
tables. But Occam actually advocates “no complex-
ity without necessity”, and one necessity is to extract
from complex and expensive data sets information
that may exist at different levels of aggregation,
at different times, at different locations, exhibiting
dependence on many different covariates, and so
forth. A variety of statistical technologies ought to be
applied in sequence, including exploratory fitting of
empirical models, construction of stochastic models,
and Bayesian evaluations of associated uncertainties
in estimates and predictions from models. All of these
analyses contribute to constructing and refining the
complex models appropriate for a thorough assess-
ment of real experiments. The simplicity and clarity
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of Bayesian principles, together with recently devel-
oped computational means of implementing these
principles, allows use of Bayesian methods in com-
plex situations that available competing inferential
technologies are too cumbersome to deal with.

For biostatistics in particular, applications can
already be found in a wide variety of serious investi-
gations. For example, the proceedings volume [16]
of a recent conference on case studies featuring
Bayesian methods contains ten articles of which
seven involve biological or biomedical studies. The
titles of these articles include the key phrases, “organ
blood flow measurement with colored microspheres”,
“elicitation, monitoring, and analysis for an AIDS
clinical trial”, “reconstruction of medical images”,
“multiple sources in the analysis of a nonequiva-
lent control group design”, “optimal design for heart
defibrillators”, “longitudinal care patterns for disabled
elders . . . missing data”. Zelen [35] makes persua-
sive arguments for the use of Bayesian methods for
case–control studies in medical statistics. Berry &
Stangl [4] present further case studies. These analyses
support the contention that Bayesian analysis is com-
ing of age as a pillar of applied statistics. The sym-
pathetic review of Breslow [6] is also informative.

Modeling for Bayesian Analysis

A statistical or probabilistic model constructed for use
in Bayesian analysis is conventionally represented
as having the two parts denoted above by Pr(A|B)

and Pr(B), or data model and prior distribution. If
one accepts the pragmatic view illustrated above
by quotes from Edgeworth, so that objective and
subjective probability are two sides of the same coin,
the first term Pr(A|B) is indistinguishable in origin
and interpretation from stochastic models that applied
probabilists and frequentist statisticians develop when
analyzing a specific real-world situation.

There are important inputs to stochastic models
that precede any consideration of probabilistic uncer-
tainty, and also precede data analysis carried out in
support of model choice. First, it is essential to reflect
knowledge and understanding of scientific context.
Typical realistic models rest on a large system of
variables constructed so as to formally represent
placeholders for both observable and unobservable
facts and quantities, to an extent judged to be appro-
priate and necessary for the purposes at hand. The

necessities include the ability to represent factors and
variables that capture causal mechanisms operating
in the underlying science, and mechanisms of sample
selection and experimental manipulation introduced
by the statistician.

Once a framework for knowledge representation
is in place, the statistician can typically recognize
repeated instances of similar entities such as plots
within blocks, and blocks themselves. These are the
raw materials from which frequency counts can be
made, but before such counts, whether observed sam-
ple units or unobserved population units, can be taken
as estimating or representing probabilities it is neces-
sary to impose an intellectual judgment of symmetry,
usually called exchangeability in the Bayesian liter-
ature [2], meaning that uncertain expectations of any
single unit are defined by an unweighted distribution
across all units. Under pragmatism, neither symmetry
nor frequency assumptions dominate the construction
of probabilities, but instead they work in tandem.

In a specific application, a probability model
is hypothesized initially through processes that are
partly art and partly science, partly subjective and
partly objective, partly reliant on informal recol-
lection of what survived critical analysis in similar
situations in the past, and partly on being roughly in
accord with regularities and empirical models found
through data exploration of old and new studies.
Given an initial tentative model choice, including
any prior distributions required by Bayesian meth-
ods, there begins an open-ended process of model
criticism and model revision and refinement. A model
selected for purposes of implementing and reporting a
Bayesian analysis is inevitably a compromise among
competing needs to reflect background knowledge
and understanding, to render manageable the amount
of detail represented and yet to maintain fidelity to
the full implications of the data from the study under
analysis.

The statistical research literature and texts such
as [19] emphasize the use of data in the revision and
ultimate choice of models. Traditional non-Bayesian
significance tests of goodness of fit are well estab-
lished tools of statistical practice that many prag-
matic Bayesians can accept as helpful for model
assessment. The Bayesian literature also has its own
approaches to significance testing, such as model
comparison through the use of Bayes factors or rela-
tive weights of evidence. Significance tests can only
be part of the story, however, because what can
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be detected from data by these methods depends
on how adequate and informative the available data
happen to be, so that important model failures can
easily be missed by significance testing methods.
Consequently, a different strategy for model eval-
uation called sensitivity analysis is also indicated
in most applications. Sensitivity analysis means the
comparison of Bayesian inferences computed from
alternative model choices. If several analyses, each
based on models that are judged plausible, yield infer-
ences about the same unknown quantities that are
sufficiently different to have substantively significant
practical consequences, it may be wise to conclude
that the study cannot support the demands made on it.

Computation

Once a two-part probability model has been estab-
lished, Bayesian analysis of a given data set is
automatic in principle. The remaining difficulties are
largely computational. Specification of the model
needs to be in a form allowing numerical repre-
sentation of the joint probability density of both
observables and unobserved quantities of interest, this
is because repeated computation of numerical values
of the joint density are needed, where the observed
variables are held fixed at their values in the data,
while the unknowns of interest are varied across
plausible values. The basic task is to pass from the
joint posterior density of a generally lengthy vector
of unknowns to practically interpretable and useful
representations of marginal posterior distributions of
singletons or small subsets of the unknowns. These
marginal representations are precisely defined in a
mathematical sense, and may have subcomponents
that can be numerically evaluated from analytically
tractable mathematical representations. But for a core
set of parameters they are typically amenable only to
methods of numerical integration. When Bayesian
methods were attempted mainly for models with
small parameter sets, it was often possible to pro-
ceed by approximating intractable densities with ana-
lytically integrable forms, sometimes obtained from
asymptotic theory. By the mid-1980s the limitations
of these algorithms had become a roadblock pre-
venting the widespread use of Bayesian methods.
Then it was realized that Monte Carlo approaches,
such as the methods of Hastings [21], that had orig-
inally been pioneered by physicists, were adaptable

to marginalizing the high dimensional densities that
were appearing more and more in statistics [5, 20,
32] (see Markov Chain Monte Carlo).

The method of Monte Carlo integration rests on
repeated computation of possible values of a set of
unknown quantities, varying these values in a way
that mimics their posterior distribution. It follows
that restriction of these repeated simulations to sub-
set of the unknowns varies in a way that similarly
mimics the marginal posterior distribution of the sub-
set. Three technical features are characteristic of the
Monte Carlo revolution of Bayesian computation.
One is that the successive draws from the posterior
are generally done, not to be independent from step
to step, but rather each draw is dependent on the pre-
ceding draw as in a Markov chain, and hence the
label MCMC for these methods. The essential fea-
ture that makes the simulations directly interpretable
is that, despite the dependence, the marginal distribu-
tion associated with each draw properly mimics the
desired posterior distribution. The dependence does
of course complicate the task of understanding the
accuracy of the Monte Carlo integration, which is
itself a statistical inference problem (that paradoxi-
cally is being studied at present mainly by frequentist
methods). A second key idea is that of the Gibbs
sampler, being a particular way to define an MCMC
algorithm that cycles through the variables sampling
small subsets holding the remaining variables fixed,
the reason for this being that these small individ-
ual simulations are achievable by much simpler and
faster algorithms than are available for joint simu-
lation of larger sets of variables. The third feature
that goes by the name Metropolis–Hastings involves
a mathematical trick that facilitates simulation from
densities that are known only up to an unknown scale
factor, a situation that is more common than not in
Gibbs steps. Textbook expositions of MCMC meth-
ods are only recently coming on stream (e.g. [19]).

Arguments For and Against Bayesian
Methods

As noted above, hard line opponents of Bayesian
inference methods in statistics reject the method
because it depends on a concept of subjective prob-
ability that has no place in science. Defenders, such
as Edgeworth quoted above, in their turn reject this
position as extreme, noting that scientific practice
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has many soft aspects. Analysis of uncertainty is
indeed mostly treated in science using soft infor-
mal language, while mathematical models are most
prominently used for representing objective real-
world phenomena. It can be argued, however, that
mathematization can also be beneficial for formal
representation of uncertainty, not to replace soft infor-
mal descriptions but to underpin and support them,
much as formal representations of physical systems
and laws bring order and validity to informal expla-
nations of the physical world. If it is accepted that
long-run frequency cannot be logically linked to
specific uncertainties without an accompanying judg-
ment about equally likely drawing of cases, then it
appears that formal subjective probability is a sine
qua non of the mathematization of uncertainty.

Proponents of Bayesian statistics, in attempting to
overturn the establishment position of hard line objec-
tivists, have sought to legitimize the mathematics of
uncertainty through axiomatic systems that formally
represent beliefs and actions (e.g. [2]). Such propo-
nents themselves often take an extreme position that,
as Edgeworth noted, is easy to ridicule. In their enthu-
siasm for the beauty and precision of formal systems
created by axioms, they argue that the system must
always be used in full. But practical use of stan-
dard Bayesian logic requires complete specification
of both Pr(A|B) and Pr(B), which for complicated A

and B can be difficult, especially if one is required to
convince one’s fellow scientists, and through them a
skeptical public. Bayesian advocates may have dam-
aged their cause by themselves taking the extreme
position of insisting that probabilistic frameworks
be supplied, if necessary by questioning nominated
experts and forcing them to state positions that they
may be unable to support from their bases of expert
knowledge and experience. It is not the fact of expert
opinion that is in doubt, but only the forcing of it
to produce a specific form of mathematized uncer-
tainty, or uncertainty plus utility for action-based
systems.

Most statisticians understand the concept of con-
ditional probability and recognize its appealing quali-
ties as a mechanism that supports informal judgments
of uncertainty given data, and they similarly under-
stand the validity of using conditional probabili-
ties for computation of expectations that legitimately
guide actions. For such statisticians, axioms have
become superfluous, and the difficulty with Bayesian

methods is mainly one of understanding applied cir-
cumstances and doing the hard and not always suc-
cessful work of constructing a judgmentally sound
and convincing probability model for Bayesian infer-
ence and decision making. To this end, Bayesian
theorists have developed useful supporting ideas such
as those derived from de Finetti’s theory of exchange-
ability [10] and concepts for checking and rebuild-
ing models. The pragmatic view required in applied
statistics needs to avoid both extreme positions and
focus on scientific modeling. Bayesian thinking may
then reassert in the twenty-first century the promi-
nent role that it had in nineteenth century scientific
thinking, not only as an attractive ideal, but also as a
central element of practice.
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Bayesian Model Selection
in Survival Analysis

Introduction

Model comparison is a crucial part of any statis-
tical analysis (see Model, Choice of). Owing to
recent computational advances, sophisticated tech-
niques for Bayesian model comparison in survival
analysis are becoming increasingly popular. There
has been a recent surge in the statistical litera-
ture on Bayesian methods for model comparison,
including articles by George and McCulloch [19],
Madigan and Raftery [31], Ibrahim and Laud [27],
Laud and Ibrahim [30], Kass and Raftery [28],
Chib [9], Raftery, Madigan, and Volinsky [36],
George, McCulloch, and Tsay [20], Raftery, Madi-
gan, and Hoeting [35], Gelfand and Ghosh [17],
Clyde [11], Chen, Ibrahim, and Yiannoutsos [7],
Chib and Jeliazkov [10], and Spiegelhalter et al. [42].
Articles focusing on Bayesian approaches to model
comparison in the context of survival analysis include
Madigan and Raftery [31], Raftery, Madigan, and
Volinsky [36], Sahu, Dey, Aslanidou, and Sinha [37],
Ibrahim Chen [21], Aslanidou, Dey, and Sinha [2],
Chen, Harrington, and Ibrahim (2002) and [5], Sinha,
Chen, and Ghosh [39], Ibrahim, Chen, and MacEach-
ern [23], Chen and Ibrahim [6], Ibrahim, Chen, and
Sinha [24], and Ibrahim, Chen, and Sinha [25]).

The scope of Bayesian model comparison is quite
broad, and can be investigated via Bayes factors,
model diagnostics, and goodness-of-fit measures
(see Goodness of Fit in Survival Analysis; Bayesian
Measures of Goodness of Fit). In many situations,
one may want to compare several models that are
not nested. Such comparisons are common in survival
analysis, since, for example, we may want to compare
a fully parametric model versus a semiparametric
model, or a cure rate model versus a Cox model, and
so forth. In this article, we discuss several methods
for Bayesian model comparison, including Bayes fac-
tors and posterior model probabilities, the Bayesian
Information Criterion (BIC), the Conditional Predic-
tive Ordinate (CPO), and the L measure.

Posterior Model Probabilities

Perhaps the most common method of Bayesian model
assessment is the computation of posterior model

probabilities. The Bayesian approach to model selec-
tion is straightforward in principle. One quantifies the
prior uncertainties via probabilities for each model
under consideration, specifies a prior distribution
for each of the parameters in each model, and then
uses Bayes theorem to calculate posterior model
probabilities. Let m denote a specific model in the
model space M, and let θ (m) denote the parameter
vector associated with model m. Then, by Bayes theo-
rem, the posterior probability of model m is given by

p(m|D) = p(D|m)p(m)
∑

m∈M
p(D|m)p(m)

, (1)

where D denotes the data,

p(D|m) =
∫

L(θ (m)|D)π(θ (m)) dθ (m), (2)

L(θ (m)|D) is the likelihood, and p(m) denotes the
prior probability of model m.

In Bayesian model selection, specifying mean-
ingful prior distributions for the parameters in each
model is a difficult task requiring contextual interpre-
tations of a large number of parameters. A need to
look for some useful automated specifications then
arises. Reference priors can be used in many situ-
ations to address this. In some cases, however, they
lead to ambiguous posterior probabilities, and require
problem-specific modifications such as those in Smith
and Spiegelhalter [41]. Berger and Pericchi [3] have
proposed the intrinsic Bayes factor, which provides a
generic solution to the ambiguity problem. However,
reference priors exclude the use of any real prior
information one may have. Even if one overcomes
the problem of specifying priors for the parameters
in the various models, there remains the question
of choosing prior probabilities p(m) for the models
themselves. A uniform prior on the model space M
may not be desirable in situations where the inves-
tigator has prior information on each subset model.
To overcome difficulties in prior specification, power
priors [22] can be used to specify priors for θ (m) as
well as in specifying p(m) for all m ∈ M. We now
describe this in the context of Bayesian variable sub-
set selection.

Variable Selection in the Cox Model

Variable selection is one of the most frequently
encountered problems in statistical data analysis. In
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cancer or AIDS clinical trials, for example, one often
wishes to assess the importance of certain prognos-
tic factors such as treatment, age, gender, or race
in predicting survival outcome. Most of the existing
literature addresses variable selection using criterion-
based methods such as the Akaike Information
Criterion (AIC) [1] or Bayesian Information Crite-
rion (BIC) [38]. As is well known, Bayesian variable
selection is often difficult to carry out because of the
challenge in

1. specifying prior distributions for the regression
parameters for all possible models in M;

2. specifying a prior distribution on the model
space; and

3. computations.

Let p denote the number of covariates for the full
model and let M denote the model space. We enu-
merate the models in M by m = 1, 2, . . . ,K, where
K is the dimension of M and model K denotes
the full model. Also, let β(K) = (β0, β1, . . . , βp−1)

′
denote the regression coefficients for the full model
including an intercept, and let β(m) denote a pm × 1
vector of regression coefficients for model m with
an intercept, and a specific choice of pm − 1 covari-
ates. We write β(K) = (β(m) ′, β(−m)′)′, where β(−m)

is β(K) with β(m) deleted. We now consider Bayesian
variable selection for the Cox model based on a
discretized gamma process on the baseline hazard
function with independent increments (see Bayesian
Survival Analysis). Let 0 = s0 < s1 < · · · < sJ be a
finite partition of the time axis and let

δj = h0(sj ) − h0(sj−1) (3)

denote the increment in the baseline hazard in the
interval (sj−1, sj ], j = 1, 2, . . . , J , and δ = (δ1, δ2,

. . . , δJ )′. For j = 1, 2, . . . , J , let dj be the number
of failures, Dj be the set of subjects failing, cj be
the number of right censored observations, and Cj

the set of subjects that are censored. Under model m,
the likelihood can be written as

L(β(m), δ|D(m)) =
J∏

j=1




 exp{−δj (aj + bj )}

×
∏

k∈Dj

[1 − exp{−η
(m)
k Tj }]




 , (4)

where η
(m)
k = exp(x

(m)′
k β(m)), x

(m)
k is a pm × 1 vector

of covariates for the ith individual under model m,
X(m) denotes the n × pm covariate matrix of rank pm,
and D(m) = (n, y, X(m), ν) denotes the data under
model m. The rest of the terms in (4) are defined
as follows:

aj =
J∑

l=j+1

∑

k∈Dl

η
(m)
k (sl−1 − sj−1),

bj =
J∑

l=j

∑

k∈Cl

η
(m)
k (sl − sj−1), (5)

and Tj = (sj − sj−1)
∑j

l=1 δl . We have written the
model here assuming that δ does not depend on m.
This is reasonable here, since our primary goal is
variable selection, that is, to determine the dimension
of β(m). In this light, δ can be viewed as a nuisance
parameter in the variable selection problem. A more
general version of the model can be constructed by
letting δ depend on m.

To construct a class of informative priors for
β(m), one can consider the class of power priors, as
discussed in [22, 24, 26]. Following Ibrahim, Chen,
and Sinha [24], the power prior under model m can
be written as

π(β(m), δ, a0|D(m)
0 ) ∝ L(β(m), δ|D(m)

0 )a0

× π0(β
(m)|c0)π0(δ|θ0)π(a0|α0, λ0), (6)

where D
(m)

0 = (n0, y0, X
(m)

0 , ν0) is the histori-

cal data under model m, π0(δ|θ0) ∝ ∏J
j=1 δ

f0j −1
j

exp
{−δjg0j

}
, π(a0|α0, λ0) ∝ a

α0−1
0 (1 − a0)

λ0−1, and
θ0 = (f01, g01, . . . , f0J , g0J )′ and (α0, λ0) are pre-
specified hyperparameters.

An attractive feature of the power prior for β(m)

in variable selection problems is that it is semiauto-
matic in the sense that one only needs a one-time
input of (D

(m)

0 , c0, θ0, α0, λ0) to generate the prior
distributions for all m ∈ M.

Choices of prior parameters for δ can be made in
several ways. One may take vague choices of prior
parameters for the δj ’s such as f0j ∝ g0j (sj − sj−1)

and take g0j small. This choice may be suitable if
there is little prior information available on the base-
line hazard rate. More informative choices for θ0 can
be made by incorporating the historical data D

(m)

0
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into the elicitation process. A suitable choice of f0i

would be an increasing estimate of the baseline haz-
ard rate. To construct such an estimate under model
m, we can fit a Weibull model via maximum like-
lihood using D

(m)

0 = (n0, y0, X
(m)

0 , ν0) as the data.
Often, the fit will result in a strictly increasing hazard.
We denote such a hazard by h∗(s|D(m)

0 ). Thus, we can
take f0j = b0jh

∗(sj |D(m)

0 ), where b0j = sj − sj−1. In
the event that the fitted Weibull model results in a
constant or decreasing hazard, doubt is cast on the
appropriateness of the gamma process as a model for
the hazard, and we do not recommend this elicita-
tion method. There are numerous other approaches
to selecting this baseline hazard. Alternative classes
of parametric models may be fit to D

(m)

0 or a nonpara-
metric method such as that of Padgett and Wei [33]
may be used to construct an increasing hazard.

Let the initial prior for the model space be denoted
by p0(m). Given the historical data D

(m)
0 , the prior

probability of model m for the current study based
on an update of y0 via Bayes theorem is given by

p(m) ≡ p(m|D(m)
0 ) = p(D

(m)

0 |m)p0(m)
∑

m∈M
p(D

(m)

0 |m)p0(m)
, (7)

where

p(D0|m) =
∫

L(β(m), δ|D(m)

0 )π0(β
(m)| d0)

× π0(δ|κ0) dβ(m) dδ, (8)

L(δ, β(m)|D(m)
0 ) is the likelihood function of the

parameters based on D
(m)

0 , π0(β
(m)|d0) is the ini-

tial prior for β(m) given in (6) with d0 replacing c0,
and π0(δ|κ0) is the initial prior for δ with κ0 replac-
ing θ0. We take π0(β

(m)|d0) to be a Npm
(0, d0W

(m)
0 )

distribution, where W
(m)
0 is the submatrix of the diag-

onal matrix W
(K)
0 corresponding to model m. Large

values of d0 will tend to increase the prior prob-
ability for model m. Thus, the prior probability of
model m for the current study is precisely the poste-
rior probability of m given the historical data D

(m)
0 ,

that is, p(m) ≡ p(m|D(m)

0 ). This choice for p(m)

has several additional nice interpretations. First, p(m)

corresponds to the usual Bayesian update of p0(m)

using D
(m)

0 as the data. Second, as d0 → 0, p(m)

reduces to p0(m). Therefore, as d0 → 0, the histori-
cal data D

(m)

0 have a minimal impact in determining

p(m). However, as d0 → ∞, π0(β
(m)|d0) plays a

minimal role in determining p(m), and in this case,
the historical data plays a larger role in determin-
ing p(m). The parameter d0 thus serves as a tuning
parameter to control the impact of D

(m)
0 on the prior

model probability p(m). It is important to note that
we use a scalar parameter c0 in constructing the
power prior π(β(m), δ, a0|D(m)

0 ) in (6), while we use
a different scalar parameter d0 in determining p(m).
This development provides us with great flexibility
in specifying the prior distribution for β(m) as well
as the prior model probabilities p(m). Finally, we
note that when there is little information about the
relative plausibility of the models at the initial stage,
taking p0(m) = 1/K, m = 1, 2, . . . ,K, a priori is a
reasonable “neutral” choice.

To compute p(m) in (7), we follow the Monte
Carlo approach of Ibrahim and Chen [21] to esti-
mate all of the prior model probabilities using a
single Gibbs sample from the full model (see Markov
Chain Monte Carlo). In the context of Bayesian
variable selection for logistic regression, Chen,
Shao, and Ibrahim [8] use a similar idea to compute
the prior model probabilities. This method involves
computing the marginal distribution of the data via
ratios of normalizing constants and it requires poste-
rior samples only from the full model for computing
the prior probabilities for all possible models. The
method is thus very efficient for variable selection.
The technical details of this method are given in
Ibrahim, Chen, and Sinha [24], Ibrahim, Chen, and
MacEachern [23] and Chen, Shao, and Ibrahim [8].

Criterion-based Methods

Bayesian methods for model comparison usually rely
on posterior model probabilities or Bayes factors, and
it is well known that to use these methods, proper
prior distributions are needed when the number of
parameters in the two competing models are different.
In addition, posterior model probabilities are gen-
erally sensitive to the choices of prior parameters,
and thus one cannot simply select vague proper pri-
ors to get around the elicitation issue. Alternatively,
criterion-based methods can be attractive in the sense
that they do not require proper prior distributions in
general, and thus have an advantage over posterior
model probabilities in this sense. However, posterior
model probabilities are intrinsically well calibrated
since probabilities are relatively easy to interpret,
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whereas criterion-based methods are generally not
easy to calibrate or interpret. Thus, one potential
criticism of criterion-based methods for model com-
parison is that they generally do not have well-defined
calibrations.

Recently, Ibrahim, Chen, and Sinha [25] proposed
a Bayesian criterion called the L measure [27, 30],
for model assessment and model comparison, and
proposed a calibration for it. The L measure can
be used as a general model assessment tool for
comparing models and assessing goodness of fit for a
particular model, and thus in this sense, the criterion
is potentially quite versatile. A recent extension of
the L measure, called the weighted L measure, can
be found in [4].

Consider an experiment that yields the data y =
(y1, y2, . . . , yn)

′. Denote the joint sampling density of
the yi’s by f (y|θ), where θ is a vector of indexing
parameters. We allow the yi’s to be fully observed,
right censored, or interval censored. In the right-
censored case, yi may be a failure time or a censoring
time. In the interval-censored case, we only observe
the interval [ali , ari

] in which yi occurred. Let z =
(z1, z2, . . . , zn)

′ denote future values of a replicate
experiment. That is, z is a future response vector with
the same sampling density as y|θ . The idea of using a
future response vector z in developing a criterion for
assessing a model or comparing several models has
been well motivated in the literature by Geisser [14]
and the many references therein [17, 27, 30].

Let η(·) be a known function, and let y∗
i =

η(yi), z∗
i = η(zi), y∗ = (y∗

1 , y∗
2 , . . . , y∗

n)′, and z∗ =
(z∗

1, z∗
2, . . . , z∗

n)
′. For example, in survival analysis,

it is common to take the logarithms of the survival
times, and thus in this case η(yi) = log(yi) = y∗

i .
Also, η(yi) = log(yi) is a common transformation in
Poisson regression. It is also common to take η(·)
to be the identity function (i.e. η(yi) = yi), as in nor-
mal linear regression or logistic regression, so that
in this case, y∗

i = yi and z∗
i = zi .

For a given model, we first define the statistic

L1(y
∗, b) = E[(z∗ − b)′(z∗ − b)]

+ δ(y∗ − b)′(y∗ − b), (9)

where the expectation is taken with respect to
the posterior predictive distribution of z∗|y∗. The

posterior predictive density of z∗|y∗ is given by

π(z∗|y∗) =
∫

f (z∗|θ)π(θ |y∗) dθ, (10)

where θ denotes the vector of indexing parameters,
f (z∗|θ) is the sampling distribution of the future
vector z∗, and π(θ |y∗) denotes the posterior dis-
tribution of θ . The statistic in (9) takes the form
of a weighted discrepancy measure. The vector b =
(b1, b2, . . . , bn)

′ is an arbitrary location vector to be
chosen and δ is a nonnegative scalar that weights
the discrepancy based on the future values relative
to the observed data. The general criterion in (9) is
a special case of a class considered by Gelfand and
Ghosh [17], which are motivated from a Bayesian
decision theoretic viewpoint.

In scalar notation, (9) can be written as

L1(y
∗, b) =

n∑

i=1

{Var(z∗
i |y∗)

+ (µi − bi)
2 + δ(y∗

i − bi)
2}, (11)

where µi = E(z∗
i |y∗). Thus, we see that (11) has

the appealing decomposition as a sum involving the
predictive variances plus two squared “bias” terms,
(µi − bi)

2 and δ(y∗
i − bi)

2, where δ is a weight for
the second bias component.

The b that minimizes (11) is

b̂ = (1 − ν)µ + ν y∗, (12)

where µ = (µ1, µ2, . . . , µn)
′, ν = δ/(δ + 1), which

upon substitution in (11) leads to the criterion

L2(y
∗) =

n∑

i=1

Var(z∗
i |y∗

i ) + ν

n∑

i=1

(µi − y∗
i )2. (13)

Clearly, 0 ≤ ν < 1, where ν = 0 if δ = 0, and
ν → 1 as δ → ∞. The quantity ν plays a major role
in (13). It can be interpreted as a weight term in
the squared bias component of (13), and appears to
have a lot of potential impact on the ordering of the
models, as well as characterizing the properties of
the L measure and calibration distribution. Ibrahim,
Chen, and Sinha [25] theoretically show that certain
values of ν yield highly desirable properties of the L

measure and the calibration distribution compared to
other values of ν. They demonstrate that the choice
of ν has much potential influence on the properties
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of the L measure, calibration distribution, and model
choice in general. On the basis of their theoretical
exploration, ν = 1/2 is a desirable and justifiable
choice for model selection. When ν = 1, 13 reduces
to the criterion of Ibrahim and Laud [27] and Laud
and Ibrahim [30].

If y∗ is fully observed, then (13) is straightforward
to compute. However, if y∗ contains right-censored
or interval-censored observations, then (13) is com-
puted by taking the expectation of these censored
observations with respect to the posterior predic-
tive distribution of the censored observations. Let
y∗ = (y∗

obs, y∗
cens), where y∗

obs denotes the completely
observed components of y∗, and y∗

cens denotes the
censored components. Here, we assume that y∗

cens
is a random quantity and al < y∗

cens < ar , where al

and ar are known. For ease of exposition, we let
D = (n, y∗

obs, al , ar ) denote the observed data. Then
(13) is modified as

L(y∗
obs) = Ey∗

cens|D[1{al < y∗
cens < ar}L2(y

∗)],
(14)

where 1{al < y∗
cens < ar} is a generic indicator

function taking the value 1 if al < y∗
cens < ar

and 0 otherwise, and the expectation Ey∗
cens|D is

taken with respect to the posterior predictive
distribution f (y∗

cens|θ)π(θ |D). Note that al <

y∗
cens < ar means that the double inequalities hold

for each component of these vectors. If, for example,
all n observations are censored, then the above
notation means ali < y∗

cens,i < ari
, i = 1, . . . , n,

where al = (al1, . . . , aln)
′, ar = (ar1 , . . . , arn

)′, and
y∗

cens = (y∗
cens,1, . . . , y∗

cens,n)
′. Small values of the L

measure imply a good model. Specifically, we can
write (14) as

L(y∗
obs) =

∫ ∫ ar

a l

L2(y
∗)f (y∗

cens|θ)π(θ |D) dy∗
cens dθ,

(15)

where f (y∗
cens|θ) is the sampling density of y∗

cens
and π(θ |D) is the posterior density of θ given the
observed data D. If y∗ has right-censored observa-
tions, then ar = ∞, and al is a vector of censoring
times. If y∗ has interval-censored observations, then
(al , ar ) is a sequence of finite interval censoring
times. If y∗ is fully observed, that is, y∗

obs = y∗, then
(14) reduces to (13), and therefore, L(y∗

obs) ≡ L2(y
∗)

in this case.

Conditional Predictive Ordinate

The CPO statistic is a very useful model assessment
tool, which has been widely used in the statistical
literature under various contexts. For a detailed dis-
cussion of the CPO statistic and its applications to
model assessment, see [12, 14, 16, 40]. For the ith
observation, the CPO statistic is defined as

CPOi = f (yi |D(−i))

=
∫

f (yi |β, λ, xi )π(β, λ|D(−i)) dβ dλ, (16)

where yi denotes the response variable and xi is the
vector of covariates for case i, D(−i) denotes the
data with the ith case deleted, and π(β, λ|D(−i))

is the posterior density of (β, λ) based on the data
D(−i). From (16), we see that CPOi is the marginal
posterior predictive density of yi given D(−i), and can
be interpreted as the height of this marginal density
at yi . Thus, large values of CPOi imply a better fit
of the model.

For most models for survival data, a closed form of
CPOi is not available. However, a Monte Carlo esti-
mator of CPOi can be obtained using a single MCMC
sample from the posterior distribution π(β, λ|D),
where D denotes the data including all cases. The
implementational details for computing CPOi can be
found in [8, Chapter 10].

For comparing two competing models, we exam-
ine the CPOi’s under both models. The observation
with a larger CPO value under one model will sup-
port that model over the other. Therefore, a plot
of CPOi’s under both models against observation
number should reveal that the better model has the
majority of its CPOi’s above those of the poorer
fitting model. In comparing several competing mod-
els, the CPOi values under all models can be plotted
against the observation number in a single graph.

An alternative to CPO plots is the summary statis-
tic called the logarithm of the Pseudo-marginal like-
lihood (LPML) (see [15]), defined as

LPML =
n∑

i=1

log(CPOi ). (17)

In the context of survival data, the statistic LPML
has been discussed by Gelfand and Mallick [18] and
Sinha and Dey [40]. To compare LPML’s from two
different studies for a given model, we propose to use
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a modification of (17), which is the average LPML
given by

ALPML = LPML

n
, (18)

where n is the sample size. The statistic ALPML
can be interpreted as the relative pseudo-marginal
likelihood.

We see from (16) that LPML is always well
defined as long the posterior predictive density is
proper. Thus, LPML is well defined under improper
priors, and in addition, it is very computationally
stable. Therefore, LPML has a clear advantage over
the Bayes factor as a model assessment tool, since
it is well known that the Bayes factor is not well
defined with improper priors, and is generally quite
sensitive to vague proper priors. In addition, the
LPML statistic also has clear advantages over other
model selection criteria, such as the L measure. The
L measure is a Bayesian criterion requiring finite
second moments of the sampling distribution of yi ,
whereas the LPML statistic does not require existence
of any moments. Since for example, cure rate models
have improper survival functions, no moments of
the sampling distribution exist, and therefore the L

measure is not well defined for these models (see
Bayesian Approaches to Cure Rate Models).

Bayesian Model Averaging

A popular approach to model selection is Bayesian
model averaging (BMA). In this approach, one base’s
inference on an average of all possible models in
the model space M, instead of a single “best”
model. Suppose M = {M1,M2, . . . ,MK}, and let
∆ denote the quantity of interest such as a future
observation, a set of regression coefficients, or the
utility of a course of action. Then, the posterior dis-
tribution of ∆ is given by

π(∆|D) =
K∑

k=1

π(∆|D,Mk)p(Mk|D), (19)

where D denotes the data, π(∆|D,Mk) is the
posterior distribution of ∆ under model Mk , and
p(Mk|D) is the posterior model probability. Equa-
tion (19), called BMA, consists of an average of the
posterior distributions under each model weighted
by the corresponding posterior model probabilities.
The motivation behind BMA is based on the notion

that a single “best” model ignores uncertainty about
the model itself, which can result in underestimated
uncertainties about quantities of interest, whereas
BMA in (19) incorporates model uncertainty.

The implementation of BMA is difficult for two
reasons. First, p(Mk|D) can be difficult to compute.
Second, the number of terms in (19) can be enor-
mous. One solution to reduce the number of possible
models in (19) involves applying the Occam’s win-
dow algorithm of Madigan and Raftery [31]. Two
basic principles underlie this ad hoc approach. First,
if a model predicts the data far less well than the
model that provides the best predictions, then it has
effectively been discredited and should no longer be
considered. Thus, models not belonging to

A′ =
{
Mk :

maxl{p(Ml|D)}
p(Mk|D)

≤ C

}
(20)

are excluded from (19), where C is chosen by the
data analyst and maxl{p(Ml|D)} denotes the model
with the highest posterior probability. A common
choice of C is C = 20. The number of models in
Occam’s window increases as C decreases. Second,
appealing to Occam’s razor, models that receive less
support from the data than any other simpler models
are excluded. That is, models from (19) are excluded
if they belong to

B =
{
Mk: ∃Ml ∈ M,Ml ⊂ Mk,

p(Ml |D)

p(Mk|D)
>1

}
.

(21)

Thus, (19) is replaced by

π(∆|D) =

∑

Mk∈A
π(∆|D,Mk)p(D|Mk)p(Mk)

∑

Mk∈A
p(D|Mk)p(Mk)

,

(22)

where A = A′\B ∈ M, p(D|Mk) is the marginal
likelihood of the data D under model Mk , and
p(Mk) denotes the prior model probability.

This strategy greatly reduces the number of pos-
sible models in (19), and now all that is required
is a search strategy to identify the models in A.
Two further principles underlie the search strategy.
The first principle – Occam’s window – concerns
interpreting the ratio of posterior model probabilities
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p(M1|D)/p(M0|D), where M0 is a model with one
less predictor than M1. If there is evidence for M0,
then M1 is rejected, but to reject M0, stronger evi-
dence for the larger model M1 is required. These
principles fully define the strategy. Madigan and
Raftery [31] provide a detailed description of the
algorithm and mention that the number of terms in
(19) is often reduced to fewer than 25.

The second approach for reducing the number
of terms in (19) is to approximate (19) using
an MCMC approach. Madigan and York [32]
propose the MCMC model composition (MC3)
methodology, which generates a stochastic process
that moves through the model space. A Markov
chain {M(l), l = 1, 2, . . .} is constructed with state
space M and equilibrium distribution p(Mk|D). If
this Markov chain is simulated for l = 1, 2, . . . , L,
then under certain regularity conditions, for any
function g(Mk) defined on M, the average

Ĝ = 1

L

L∑

l=1

g(M(l)) (23)

converges almost surely to E(g(Mk)) as L → ∞.
To compute (19) in this fashion, set g(Mk) =
π(∆|D,Mk). To construct the Markov chain, define
a neighborhood nbd(M∗) for each M∗ ∈ M that
consists of the model M∗ itself and the set of
models with either one variable more or one variable
fewer than M∗. Define a transition matrix q by
setting q(M∗ → M′∗) = 0 for all M′∗ /∈ nbd(M∗)
and q(M∗ → M′∗) constant for all M′∗ ∈ nbd(M∗).
If the chain is currently in state M∗, then we proceed
by drawing M′∗ from q(M∗ → M′∗). It is then
accepted with probability

min

{
1,

p(M′∗|D)

p(M∗|D)

}
. (24)

Otherwise, the chain stays in state M∗.
To compute p(D|Mk), Raftery [34] suggests the

use of the Laplace approximation, leading to

log(p(D|Mk)) = log(L(θ̂ k|D,Mk))

− pk log(n) + O(1), (25)

where n is the sample size, L(θ̂k|D,Mk) is the
likelihood function, θ̂ k is the maximum likelihood
estimate (MLE) of θk under model Mk , and pk is
the number of parameters in model Mk . This is

the BIC approximation derived by Schwarz [38]. In
fact, (25) is much more accurate for many practical
purposes than its O(1) error term suggests. Kass
and Wasserman [29] show that when Mj and Mk

are nested and the amount of information in the
prior distribution is equal to that in one observation,
then the error in (25) is O(n−1/2), under certain
assumptions, rather than O(1). Raftery [34] gives
further empirical evidence for the accuracy of this
approximation.

BMA for Variable Selection in the Cox Model

Volinsky, Madigan, Raftery, and Kronmal [45] dis-
cuss how to carry out variable selection in the Cox
model using BMA. Equation (19) has three compo-
nents, each posing its own computational difficulties.
The predictive distribution π(∆|D,Mk) requires
integrating out the model parameter θk . The poste-
rior model probabilities p(Mk|D) similarly involve
the calculation of an integrated likelihood. Finally,
the models that fall into A must be located and eval-
uated efficiently.

In (19), the predictive distribution of ∆, given a
particular model Mk , is found by integrating out the
model parameter θk:

π(∆|D,Mk)=
∫

π(∆|θ k, D,Mk)π(θ k|D,Mk) dθk.

(26)

This integral does not have a closed-form solution
for the Cox model. Volinsky, Madigan, Raftery, and
Kronmal [45] use the MLE approximation:

π(∆|D,Mk) ≈ π(∆|θ̂ k, D,Mk). (27)

In the context of model uncertainty, this approxima-
tion was used by Taplin [43] and found it to give
an excellent approximation in his time series regres-
sion problem; it was subsequently used by Taplin and
Raftery [44] and Draper [13].

In regression models for survival analysis, analytic
evaluation of p(D|Mk) is not possible in general,
and an analytic or computational approximation is
needed. In regular statistical models (roughly speak-
ing, those in which the MLE is consistent and asymp-
totically normal), p(D|Mk) can be approximated by
(25) via the Laplace method [34].
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Equation (19) requires the specification of a prior
on the model space. When there is little prior infor-
mation about the relative plausibility of the models
considered, taking them all to be equally likely a
priori is a reasonable “neutral” choice. When prior
information about the importance of a variable is
available, a prior probability on model Mk can be
specified as

p(Mk) =
p∏

j=1

πj
δkj (1 − πj )

1−δkj , (28)

where πj ∈ [0, 1] is the prior probability that θ j �= 0,
and δkj is an indicator of whether or not variable j

is included in model Mk . Assigning πj = 0.5 for all
j corresponds to a uniform prior across the model
space, while πj < 0.5 for all j imposes a penalty
for large models. Using πj = 1 ensures that variable
j is included in all models. Using this framework,
elicitation of prior probabilities for models is straight-
forward and avoids the need to elicit priors for a large
number of models. For an alternative approach, when
expert information is available, see [32].

Model Selection Using BIC

Model selection criteria such as BIC are often used
to select variables in regression problems. Following
Volinsky and Raftery [46], we use BIC to determine
the best models (where models are variable subsets)
in a class of censored survival models.

When censoring is present, it is unclear whether
the penalty in BIC should use n, the number of
observations, or d, the number of events. When using
the partial likelihood, there are only as many terms
in the partial likelihood as there are events d. Kass
and Wasserman [29] indicate that the term used in the
penalty should be the rate at which the Hessian matrix
of the log-likelihood function grows, which suggests
that d is the correct quantity to use. However, if we
are to use a revised version of BIC, it is important
that the new criterion continue to have the asymptotic
properties that Kass and Wasserman derived. In fact,
the revised BIC does have these properties, with a
slightly modified outcome. Suppose that

− 1

d
D2l(θ̂ , ψ̂) − Iu(θ , ψ) = Op(n−1/2), (29)

where Iu(θ , ψ) is the expected Fisher informa-
tion for one uncensored observation (the uncensored
unit information) and D2l(θ̂ , ψ̂) denotes the second

derivative of the log-likelihood evaluated at (θ̂ , ψ̂). If
(29) holds, then the new BIC (with d in the penalty) is
an Op(n−1/2) approximation to twice the Bayes fac-
tor where the prior variance on θ is now equal to the
inverse of the uncensored unit information. By using
d in the penalty instead of n, it can be shown that
this asymptotic result holds, the only difference being
in the implicit prior on the parameter. More details
regarding BIC for the Cox model can be found in
Volinsky and Raftery [45].
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Bayesian Survival
Analysis

Introduction

Nonparametric and semiparametric Bayesian meth-
ods in survival analysis have recently become quite
popular due to recent advances in computing technol-
ogy and the development of efficient computational
algorithms for implementing these methods. Such
methods have now become quite common and well
accepted in practice, since they offer a more general
modeling strategy that contains fewer assumptions.
The literature on nonparametric Bayesian methods
has been recently surging, and all of the references
are far too enormous to list here. In this chapter,
we discuss several types of Bayesian survival mod-
els, including parametric models as well as mod-
els involving nonparametric prior processes for the
baseline hazard or cumulative hazard. Specifically,
we examine piecewise constant hazard models, the
gamma process, the beta process, correlated prior
processes, and the Dirichlet process, with much of
the focus being on the Cox model. In each case, we
give a development of the prior process, construct the
likelihood function, derive the posterior distributions,
and discuss Markov Chain Monte Carlo (MCMC)
sampling techniques for inference. We also give ref-
erences to other types of Bayesian models, includ-
ing frailty models, joint models for longitudinal
and survival data flexible classes of hierarchical
models, accelerated failure time models, multivari-
ate survival models, spatial survival models, and
Bayesian model diagnostics.

There are two fundamental approaches to semi-
parametric Bayesian survival analysis, one based
on continuous time and the other based on discrete
time prior processes. The discrete time approach is
an approximation to the continuous time approach.
The continuous time approach can be viewed as a
limiting case of the discrete time approach. In prac-
tice, the model development and implementation of
the continuous time approach is much more com-
plicated than that of discrete time models. Moreover,
there is the general perception that not much is gained
in the continuous time approach since its discrete
approximation can be made arbitrarily accurate to
approximate the continuous time version. Thus, in
practice, discrete time models are most often used

over their continuous time versions. Following the
book by Ibrahim, Chen, and Sinha [57], we primarily
focus on discrete time approaches to semiparamet-
ric Bayesian survival analysis in this chapter. Some
key references for continuous time Bayesian survival
analysis include [29, 38, 55, 60, 67, 68, 89, 90]. Ref-
erences discussing computational implementation of
continuous time models include [29, 67, 68, 90] and
the references therein.

The rest of this chapter is organized as follows. In
the section, “Fully Parametric Models”, we review
Bayesian parametric survival models. In the next
section, we discuss semiparametric Bayesian methods
for survival analysis and focus on the proportional
hazards model of Cox [27]. We examine the piece-
wise constant, gamma, beta, and Dirichlet process
models. In the final section, we give several refer-
ences to other types of models and applications in
Bayesian survival analysis.

Fully Parametric Models

Bayesian approaches to fully parametric survival
analysis has been considered by many in the litera-
ture. The statistical literature in Bayesian parametric
survival analysis and life-testing is too enormous to
list here, but some references dealing with applica-
tions to medicine or public health include [1, 2, 19,
30, 52, 62].

The most common types of parametric models
used are the exponential, Weibull, and lognormal
models.

The exponential model is the most fundamental
parametric model in survival analysis. Suppose we
have independent and identically distributed (i.i.d.)
survival times y = (y1, y2, . . . , yn)

′, each having an
exponential distribution with parameter λ, denoted
by E(λ). Denote the censoring indicators by ν =
(ν1, ν2, . . . , νn)

′, where νi = 0 if yi is right censored
and νi = 1 if yi is a failure time. Let f (yi |λ) =
λ exp(−λyi) denote the density for yi , S(yi |λ) =
exp(−λyi) denotes the survival function and D =
(n, y, ν) denotes the observed data. We can write the
likelihood function of λ as

L(λ|D) =
n∏

i=1

f (yi |λ)νi S(yi |λ)1−νi

= λd exp

(
−λ

n∑

i=1

yi

)
, (1)
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where d = ∑n
i=1 νi . The conjugate prior for λ is

the gamma prior. Let G(α0, λ0) denote the gamma
distribution with parameters (α0, λ0), with density
given by

π(λ|α0, λ0) ∝ λα0−1 exp(−λ0λ).

Then, taking a G(α0, λ0) prior for λ, the posterior
distribution of λ is given by

π(λ|D) ∝ L(λ|D)π(λ|α0, λ0)

∝
(

λ

∑n

i=1
νi exp

{
−λ

n∑

i=1

yi

})
(
λα0−1 exp(−λ0λ)

)

= λα0+d−1 exp

{
−λ

(
λ0 +

n∑

i=1

yi

)}
. (2)

Thus, we recognize the kernel of the posterior distri-
bution in (2) as a G(α0 + d, λ0 + ∑n

i=1 yi) distribu-
tion. The posterior mean and variance of λ are thus
given by

E(λ|D) = α0 + d

λ0 +
n∑

i=1

yi

and

Var(λ|D) = α0 + d
(

λ0 +
n∑

i=1

yi

)2 . (3)

The posterior predictive distribution of a future
failure time yf is given by

π(yf |D) =
∫ ∞

0
π(yf |λ)π(λ|D) dλ

∝
∫ ∞

0
λα0+d+1−1 exp

{
−λ(yf + λ0 +

n∑

i=1

yi)

}
dλ

= Γ (α0 + d + 1)

(
λ0 +

n∑

i=1

yi + yf

)−(d+α0+1)

∝
(

λ0 +
n∑

i=1

yi + yf

)−(d+α0+1)

. (4)

The normalized posterior predictive distribution is
thus given by

π(yf |D)

=






(d + α0)

(
λ0 +

n∑

i=1

yi

)(α0+d)

(
λ0 +

n∑

i=1

yi + yf

)(α0+d+1)
if yf > 0,

0 otherwise.
(5)

In the derivation of (4) above, we need to evaluate a
gamma integral, which thus led to the posterior pre-
dictive distribution in (5). The predictive distribution
in (5) is known as an inverse beta distribution and is
discussed in detail in [3].

To build a regression model, we introduce cova-
riates through λ, and write λi = ϕ(x ′

iβ), where xi is
a p × 1 vector of covariates, β is a p × 1 vector of
regression coefficients, and ϕ(.) is a known function.
A common form of ϕ is to take ϕ(x ′

iβ) = exp(x ′
iβ).

Another form of ϕ is ϕ(x ′
iβ) = (x ′

iβ)−1. Feigl and
Zelen [42] also discuss this regression model. Using
ϕ(x ′

iβ) = exp(x ′
iβ), we are led to the likelihood

function

L(β|D) =
n∏

i=1

f (yi |λi)
νi S(yi |λi)

1−νi

= exp

{
n∑

i=1

νix
′
iβ

}
exp

{
−

n∑

i=1

yi exp(x ′
iβ)

}
,

(6)

D = (n, y, X, ν) and X is the n × p matrix
of covariates with ith row x ′

i . Common prior
distributions for β include an improper uniform
prior, that is, π(β) ∝ 1, and a normal prior. In
the regression setting, closed forms for the posterior
distribution of β are generally not available, and
therefore one needs to use numerical integration
or Markov chain Monte Carlo (MCMC) methods.
Before the advent of MCMC, numerical integration
techniques were employed by Grieve [52]. However,
due to the availability of statistical packages such
as BUGS, the regression model in (6) can easily be
fitted using MCMC techniques. Suppose we specify
a p-dimensional normal prior for β, denoted by



Bayesian Survival Analysis 3

Np(µ0, Σ0), where µ0 denotes the prior mean and
Σ0 denotes the prior covariance matrix. Then the
posterior distribution of β is given by

π(β|D) ∝ L(β|D)π(β|µ0, Σ0), (7)

where π(β|µ0, Σ0) is the multivariate normal density
with mean µ0 and covariance matrix Σ0. The poste-
rior in (7) does not have a closed form in general,
and thus MCMC methods are needed to sample from
the posterior distribution of β. The statistical pack-
age BUGS can be readily used for this model to do
the Gibbs sampling (see Software, Biostatistical).

The Weibull model is perhaps the most widely
used parametric survival model. Suppose we have
independent identically distributed survival times
y = (y1, y2, . . . , yn)

′, each having a Weibull distri-
bution with shape parameter α and scale parameter
γ . It is often more convenient to write the model in
terms of the parameterization λ = log(γ ), leading to

f (y|α, λ) = αyα−1 exp(λ − exp(λ)yα). (8)

Let S(y|α, λ) = exp(− exp(λ)yα) denote the survival
function. We can write the likelihood function of
(α, λ) as

L(α, λ|D) =
n∏

i=1

f (yi |α, λ)νi S(yi |α, λ)1−νi

=αd exp

{
dλ +

n∑

i=1

(νi(α − 1) log(yi)−exp(λ)yα
i )

}
.

(9)

When α is assumed known, the conjugate prior for
exp(λ) is the gamma prior. No joint conjugate prior is
available when (α, λ) are both assumed unknown. In
this case, a typical joint prior specification is to take
α and λ to be independent, where α has a gamma
distribution and λ has a normal distribution. Letting
G(α0, κ0) denote a gamma prior for α, and N(µ0, σ 2

0 )

denote the normal prior for λ, the joint posterior
distribution of (α, λ) is given by

π(α, λ|D) ∝ L(α, λ|D)π(α|α0, κ0)π(λ|µ0, σ 2
0 )

∝
n∏

i=1

f (yi |α, λ)νi S(yi |α, λ)(1−νi )

× π(α|α0, κ0)π(λ|µ0, σ 2
0 )

= αα0+d−1 exp

{
dλ +

n∑

i=1

(νi(α − 1) log(yi)

− exp(λ)yα
i

) − κ0α − 1

2σ 2
0

(λ − µ0)
2

}
. (10)

The joint posterior distribution of (α, λ) does not have
a closed form, but it can be shown that the conditional
posterior distributions [α|λ, D] and [λ|α, D] are log-
concave, and thus Gibbs sampling is straightforward
for this model.

To build the Weibull regression model, we intro-
duce covariates through λ, and write λi = x ′

iβ. Com-
mon prior distributions for β include the uniform
improper prior, that is, π(β) ∝ 1, and a normal prior.
Assuming a Np(µ0, Σ0) prior for β and a gamma
prior for α, we are led to the joint posterior

π(β, α|D) ∝ αα0+d−1 exp

×
{

n∑

i=1

(
νix

′
iβ + νi(α − 1) log(yi) − yα

i exp(x ′
iβ)

)

− κ0α − 1

2
(β − µ0)Σ

−1
0 (β − µ0)

}
. (11)

Closed forms for the posterior distribution of β are
generally not available, and therefore one needs to
use numerical integration or MCMC methods. Owing
to the availability of statistical packages such as
BUGS, the Weibull regression model can easily be
fitted using MCMC techniques. The development
for the lognormal model, gamma models, extreme
value model, an other parametric models is similar
to that of the Weibull model. A multivariate extension
of the Weibull model (see Multivariate Weibull
Distribution) includes the Poly-Weibull model of
Berger and Sun [8].

Semiparametric Models

Piecewise Constant Hazard Model

One of the most convenient and popular discrete
time models for semiparametric survival analysis is
the piecewise constant hazard model (see Grouped
Survival Times). To construct this model, we first
construct a finite partition of the time axis, 0 < s1 <

s2 < · · · < sJ , with sJ > yi for all i = 1, 2, . . . , n.
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Thus, we have the J intervals (0, s1], (s1, s2], . . .,
(sJ−1, sJ ]. In the j th interval, we assume a constant
baseline hazard h0(y) = λj for y ∈ Ij = (sj−1, sj ].
Let D = (n, y, X, ν) denote the observed data, where
y = (y1, y2, . . . , yn)

′, ν = (ν1, ν2, . . . , νn)
′ with νi =

1 if the ith subject failed and 0 otherwise, and X is the
n × p matrix of covariates with ith row x ′

i . Letting
λ = (λ1, λ2, . . . , λJ )′, we can write the likelihood
function of (β, λ) for the n subjects as

L(β, λ|D) =
n∏

i=1

J∏

j=1

(λj exp(x ′
iβ))δij νi

× exp
{

− δij

[
λj (yi − sj−1)

+
j−1∑

g=1

λg(sg − sg−1)
]

exp(x ′
iβ)

}
, (12)

where δij = 1 if the ith subject failed or was cen-
sored in the j th interval, and 0 otherwise, x ′

i =
(xi1, xi2, . . . , xip) denotes the p × 1 vector of covari-
ates for the ith subject, and β = (β1, β2, . . . , βp)′ is
the corresponding vector of regression coefficients.
The indicator δij is needed to properly define the
likelihood over the J intervals. The semiparametric
model in (12), sometimes referred to as a piecewise
exponential model is quite general and can accommo-
date various shapes of the baseline hazard over the
intervals. Moreover, we note that if J = 1, the model
reduces to a parametric exponential model with fail-
ure rate parameter λ ≡ λ1. The piecewise exponential
model is a useful and simple model for modeling sur-
vival data. It serves as the benchmark for comparisons
with other semiparametric or fully parametric models
for survival data.

A common prior of the baseline hazard λ is the
independent gamma prior λj ∼ G(α0j , λ0j ) for j =
1, 2, . . . , J . Here α0j and λ0j are prior parameters
that can be elicited through the prior mean and
variance of λj . Another approach is to build a prior
correlation among the λj ’s [70, 81] using a correlated
prior ψ ∼ N(ψ0, Σψ), where ψj = log(λj ) for j =
1, 2, . . . , J (see Multivariate Normal Distribution).

The likelihood in (12) is based on continuous sur-
vival data. The likelihood function based on grouped
or discretized survival data is given by

L(β, λ|D) ∝
J∏

j=1

G∗
j ,

where

G∗
j = exp

{
− λj∆j

∑

k∈Rj −Dj

exp(x ′
kβ)

}

×
∏

l∈Dj

[1 − exp{−λj∆j exp(x ′
lβ)}], (13)

∆j = sj − sj−1, Rj is the set of patients at risk, and
Dj is the set of patients having failures in the j th
interval.

Models Using a Gamma Process

The gamma process is perhaps the most commonly
used nonparametric prior process for the Cox model.
The seminal paper by Kalbfleisch [60] describes the
gamma process prior for the baseline cumulative
hazard function (see also [13]). The gamma process
can be described as follows: Let G(α, λ) denote
the gamma distribution with shape parameter α > 0
and scale parameter λ > 0. Let α(t), t ≥ 0, be an
increasing left continuous function such that α(0) =
0, and let Z(t), t ≥ 0, be a stochastic process with
the properties:

(i) Z(0) = 0;
(ii) Z(t) has independent increments in disjoint

intervals; and
(iii) for t > s, Z(t) − Z(s) ∼ G(c(α(t) − α(s)), c).

Then the process {Z(t) : t ≥ 0} is called a gamma
process and is denoted by Z(t) ∼ GP(cα(t), c). We
note here that α(t) is the mean of the process and c

is a weight or confidence parameter about the mean.
The sample paths of the gamma process are almost
surely increasing functions. It is a special case of a
Levy process whose characteristic function is given
by

E[exp{iy(Z(t) − Z(s)}] = (φ(y))c(α(t)−α(s)) , (14)

where φ is the characteristic function of an infinitely
divisible distribution function with unit mean. The
gamma process is the special case φ(y) = {c/(c −
iy)}c.

Gamma Process on Cumulative Hazard

Under the Cox model, the joint probability of sur-
vival of n subjects given the covariate matrix X is
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given by

P(Y > y|β, X, H0)

= exp




−
n∑

j=1

exp(x ′
jβ)H0(yj )




 . (15)

The gamma process is often used as a prior for the
cumulative baseline hazard function H0(y). In this
case, we take

H0 ∼ GP(c0H
∗, c0), (16)

where H ∗(y) is an increasing function with H ∗(0) =
0. H ∗ is often assumed to be a known parametric
function with hyperparameter vector γ 0. For exam-
ple, if H ∗ corresponds to the exponential distribution,
then H ∗(y) = γ0y, where γ0 is a specified hyperpa-
rameter. If H ∗(y) is taken as Weibull, then H ∗(y) =
η0y

κ0 , where γ 0 = (η0, κ0)
′ is a specified vector of

hyperparameters. The marginal survival function is
given by

P(Y > y|β, X, γ 0, c0)

=
n∏

j=1

[φ(iVj )]c0(H
∗(y(j))−H ∗(y(j−1))), (17)

where Vj = ∑
l∈Rj

exp(x ′
lβ), Rj is the risk set at

time y(j) and y(1) < y(2) < · · · , < y(n) are distinct
ordered times. For continuous data, when the ordered
survival times are all distinct, the likelihood of
(β, γ0, c0) can be obtained by differentiating (17).
Note that this likelihood, used by Kalbfleisch [60],
Clayton [24], and among others, is defined only when
the observed survival times are distinct. In the next
subsection, we present the likelihood and prior asso-
ciated with grouped survival data using a gamma
process prior for the baseline hazard.

Gamma Process with Grouped-data Likelihood

Again, we construct a finite partition of the time
axis, 0 < s1 < s2 < · · · < sJ , with sJ > yi for all
i = 1, . . . , n. Thus, we have the J disjoint intervals
(0, s1], (s1, s2], . . ., (sJ−1, sJ ], and let Ij = (sj−1, sj ].
The observed data D is assumed to be available
as grouped within these intervals, such that D =
(X,Rj ,Dj : j = 1, 2, . . . , J ), where Rj is the risk
set and Dj is the failure set of the j th interval Ij . Let

hj denote the increment in the cumulative baseline
hazard in the j th interval, that is,

hj = H0(sj ) − H0(sj−1), j = 1, 2, . . . , J. (18)

The gamma process prior in (16) implies that the hj ’s
are independent and

hj ∼ G(α0j − α0,j−1, c0), (19)

where α0j = c0H
∗(sj ), and H ∗ and c0 are defined in

the previous subsection. Thus, the hyperparameters
(H ∗, c0) for hj consist of a specified parametric
cumulative hazard function H ∗(y) evaluated at the
endpoints of the time intervals, and a positive scalar
c0 quantifying the degree of prior confidence in
H ∗(y). Now writing H0 ∼ GP(c0H

∗, c0) implies that
every disjoint increment in H0 has the prior given by
(19). Thus, the grouped-data representation can be
obtained as

P(yi ∈ Ij |h) = exp

{
− exp(x ′

iβ)

j−1∑

k=1

hk

}

× [1 − exp{−hj exp(x ′
iβ)}], (20)

where h = (h1, h2, . . . , hJ )′. This leads to the
grouped-data likelihood function

L(β, h|D) ∝
J∏

j=1

Gj, (21)

where

Gj = exp
{

− hj

∑

k∈Rj −Dj

exp(x ′
kβ)

}

×
∏

l∈Dj

[1 − exp{−hj exp(x ′
lβ)}]. (22)

Note that the grouped-data likelihood expression in
(22) is very general and not limited to the case when
the hj ’s are realizations of a gamma process on
H0. Since the cumulative baseline hazard function
H0 enters the likelihood in (22) only through the
hj ’s, our parameters in the likelihood are (β, h)

and thus we only need a joint prior distribution
for (β, h). One important case is that when one
considers the piecewise constant baseline hazard of
the previous section with hj = ∆jλj and ∆j = sj −
sj−1. In this case, we observe a great similarity
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between the likelihoods (17) and (22). In the absence
of covariates, (22) reduces to

Gj = exp{−hj (rj − dj )}{1 − exp(−hj )}dj , (23)

where rj and dj are the numbers of subjects in the
sets Rj and Dj , respectively.

A typical prior for β is a Np(µ0, Σ0) distribution.
Thus, the joint posterior of (β, h) can be written as

π(β, h|D) ∝
J∏

j=1

[
Gjh

(α0j −α0,j−1)−1
j exp(−c0hj )

]

× exp

{
−1

2
(β − µ0)Σ

−1
0 (β − µ0)

}
.

Relationship to Partial Likelihood

Kalbfleisch [60] and more recently, Sinha, Ibrahim,
and Chen [86] show that the partial likelihood
defined by Cox [28] can be obtained as a limit-
ing case of the marginal posterior of β in the Cox
model under a gamma process prior for the cumu-
lative baseline hazard. Towards this goal, discretize
the time axis as (0, s1], (s1, s2], . . ., (sJ−1, sJ ], and
suppose H0 ∼ GP(c0H

∗, c0). Let y(1) < y(2) < · · · <

y(n) denote the ordered failure or censoring times.
Therefore, if hj = H0(y(j)) − H0(y(j−1)), then

hj ∼ G(c0h0j , c0), (24)

where h0j = H ∗(y(j)) − H ∗(y(j−1)). Let Aj =∑
l∈Rj

exp(x ′
lβ) and EGP denote expectation with

respect to the gamma process prior. Then, we have

P(Y > y|X, β, H0)=exp




−
n∑

j=1

exp(x ′
jβ)H0(y(j))






= exp




−
n∑

j=1

hj

∑

l∈Rj

exp(x ′
lβ)




 (25)

and

EGP
[
P(Y > y|X, β, H0)|H ∗] =

n∏

j=1

(
c0

c0 + Aj

)c0h0j

=
n∏

j=1

exp

{
c0H

∗(y(j)) log

(
1 − exp(x ′

jβ)

c0 + Aj

)}
.

(26)

Now let θ = (β ′, h0, c0)
′, where h0(y) =

(d/dy)H ∗(y). We can write the likelihood function
as

L(θ |D) =
n∏

j=1

exp
{
c0H

∗(y(j)) log
(

1 − exp(x ′
jβ)

c0 + Aj

)}

×
{

− c0
dH ∗(y(j))

dy(j)

(
log

(
1 − exp(x ′

jβ)

c0 + Aj

))}νi

=
n∏

j=1

exp
{
H ∗(y(j)) log

(
1 − exp(x ′

jβ)

c0 + Aj

)c0
}

×
{

− c0h0(y(j)) log
(

1 − exp(x ′
jβ)

c0 + Aj

)}νi

.

(27)

Let d = ∑n
i=1 νi and h∗ = ∏n

j=1[h0(y(j))]νi . Now
we have

lim
c0→0

exp

{
H ∗

0 (y(j)) log

(
1 − exp(x ′

jβ)

c0 + Aj

)c0
}

= 1

for j = 1, 2, . . . , n, and

lim
c0→0

log

(
1 − exp(x ′

jβ)

c0 + Aj

)
= log

(
1 − exp(x ′

jβ)

Aj

)

≈ −exp(x ′
jβ)

Aj

for j = 1, 2, . . . , n − 1. Thus, we have

lim
c0→0

L(θ |D)

cd
0 {− log(c0)}νnh∗ ≈

n∏

j=1

[
exp(x ′

jβ)

Aj

]νi

. (28)

We see that the right-hand side of (28) is precisely
Cox’s partial likelihood.

Now if we let c0 → ∞, we get the likelihood
function based on (β, h0). To see this, note that

lim
c0→∞

[
exp

{
H ∗(y(j)) log

(
1 − exp(x ′

jβ)

c0 + Aj

)c0
}

×
{
−c0h0(y(j)) log

(
1 − exp(x ′

jβ)

c0 + Aj

)}νj
]

= exp
{−H ∗(y(j)) exp(x ′

jβ)
} {

h0(y(j)) exp(x ′
jβ)

}νj
,

(29)
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and therefore,

lim
c0→∞ L(β, c0, h0|D)

=
n∏

j=1

(
exp

{−H ∗(y(j)) exp(x ′
jβ)

})

× {
h0(y(j)) exp(x ′

jβ)
}νj

. (30)

Thus, we see that (30) is the likelihood function of
(β, h0) based on the proportional hazards model.

Gamma Process on Baseline Hazard

An alternative specification of the semiparametric
Cox model is to specify a gamma process prior on
the hazard rate itself. Such a formulation is consid-
ered by Dykstra and Laud [38] in their development
of the extended gamma process. Here, we consider
a discrete approximation of the extended gamma
process. Specifically, we construct the likelihood by
using a piecewise constant baseline hazard model and
use only information about which interval the failure
times fall into. Let 0 = s0 < s1 < · · · < sJ be a finite
partition of the time axis and let

δj = h0(sj ) − h0(sj−1) (31)

denote the increment in the baseline hazard in the
interval (sj−1, sj ], j = 1, 2, . . . , J , and δ = (δ1, δ2,

. . . , δJ )′. We follow Ibrahim, Chen, and MacEach-
ern [56] for constructing the approximate likelihood
function of (β, δ). For an arbitrary individual in the
population, the survival function for the Cox model
at time y is given by

S(y|x) = exp

{
−η

∫ y

0
h0(u) du

}

≈ exp

{
−η

(
J∑

i=1

δi(y − si−1)
+
)}

, (32)

where h0(0) = 0, (u)+ = u if u > 0, 0 otherwise,
and η = exp(x ′β). This first approximation arises
since the specification of δ does not specify the
entire hazard rate, but only the δj . For purposes of
approximation, we take the increment in the hazard
rate, δj , to occur immediately after sj−1. Let pj

denote the probability of a failure in the interval
(sj−1, sj ], j = 1, 2, . . . , J . Using (32), we have

pj = S(sj−1) − S(sj )

≈ exp

{
−η

j−1∑

l=1

δl(sj−1 − sl−1)

}

×
[

1 − exp

{
−η(sj − sj−1)

j∑

l=1

δl

}]
. (33)

Thus, in the j th interval (sj−1, sj ], the contribution to
the likelihood function for a failure is pj , and S(sj )

for a right-censored observation. For j = 1, 2, . . . , J ,
let dj be the number of failures, Dj be the set of
subjects failing, cj be the number of right-censored
observations and Cj is the set of subjects that are
censored. Also, let D = (n, y, X, ν) denote the data.
The grouped-data likelihood function is thus given by

L(β, δ|D) =
J∏

j=1




 exp{−δj (aj + bj )}

×
∏

k∈Dj

[1 − exp{−ηkTj }]



 , (34)

where ηk = exp(x ′
kβ),

aj =
J∑

l=j+1

∑

k∈Dl

ηk(sl−1 − sj−1),

bj =
J∑

l=j

∑

k∈Cl

ηk(sl − sj−1), (35)

and

Tj = (sj − sj−1)

j∑

l=1

δl. (36)

We note that this likelihood involves a second approx-
imation. Instead of conditioning on exact event times,
we condition on the set of failures and set of right-
censored events in each interval, and thus we approxi-
mate continuous right-censored data by grouped data.
Prior elicitation and Gibbs sampling for this model
has been discussed in [57] in detail.
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Beta Process Models

We first discuss time-continuous, right-censored sur-
vival data without covariates. Kalbfleisch [60] and
Ferguson and Phadia [45] used the definition of the
cumulative hazard H(t) as

H(t) = − log(S(t)), (37)

where S(t) is the survival function. The gamma
process can be defined on H(t) when this definition
of the cumulative hazard is appropriate. A more
general way of defining the hazard function, which
is valid even when the survival time distribution is
not continuous, is to use the definition of Hjort [55].
General formulae for the cumulative hazard function
H(t) are

H(t) =
∫

[0,t]

dF(u)

S(u)
, (38)

where

F(t) = 1 − S(t) = 1 −
∏

[0,t]

{1 − dH(t)}. (39)

The cumulative hazard function H(t) defined here
is equal to (37) when the survival distribution is
absolutely continuous. Hjort [55] presents what he
calls a beta process with independent increments as
a prior for H(.). A beta process generates a proper
cdf F(t), as defined in (38), and has independent
increments of the form

dH(s) ∼ B(c(s) dH ∗(s), c(s)(1 − dH ∗(s))), (40)

where B(a, b) denotes the beta distribution with
parameters (a, b). Owing to the complicated con-
volution property of independent beta distributions,
the exact distribution of the increment H(s) is only
approximately beta over any finite interval, regard-
less of how small the length of the interval might
be. See [55] for formal definitions of the beta pro-
cess prior and for properties of the posterior with
right-censored, time-continuous data. It is possible to
deal with the beta process for the baseline cumula-
tive hazard appropriately defined under a Cox model
with time-continuous data, but survival data in prac-
tice is commonly grouped within some grid inter-
vals, where the grid size is determined by the data
and trial design. So for practical purposes, it is
more convenient and often sufficient to use a dis-
cretized version of the beta process [55, 82] along

with grouped survival data. The beta process prior
for the cumulative baseline hazard in (40) has been
discussed by many authors, including Hjort [55],
Damien, Laud, and Smith [29], Laud, Smith, and
Damien [68], Sinha [82], and Florens, Mouchart, and
Rolin [46]. Here we will focus only on the dis-
cretized beta process prior with a grouped-data like-
lihood.

Within the spirit of the definition of the cumulative
hazard function H(t) defined in (38), a discretized
version of the Cox model can be defined as

S(sj |x) = P(T > sj |x) =
j∏

k=1

(1 − hk)
exp(x ′β),

(41)

where hk is the discretized baseline hazard rate in
the interval Ik = (sk−1, sk]. The likelihood can thus
be written as

L(β, h) =
J∏

j=1

(
(1 − hj )

∑
i∈Rj −Dj

exp(x ′
i
β)
)

×
∏

l∈Dj

(1 − (1 − hj )
exp(x ′

l
β)), (42)

where h = (h1, h2, . . . , hJ )′. To complete the dis-
cretized beta process model, we specify independent
beta priors for the hk’s. Specifically, we take hk ∼
B(c0kα0k, c0k(1 − α0k)), and independent for k = 1,

2, . . . , J . Though it is reasonable to assume that
the hk’s are independent from each other a priori,
the assumption of an exact beta distribution of the
hk’s is only due to an approximation to the true
time-continuous beta process. Thus, according to the
time-continuous beta process, the distribution of the
hk’s is not exactly beta, but it can be well approxi-
mated by a beta distribution only when the width of
Ik is small.

Under the discretized beta process defined here,
the joint prior density of h is thus given by

π(h) ∝
J∏

j=1

h
c0j α0j −1
j (1 − hj )

c0j (1−α0j )−1.

A typical prior for β is a Np(µ0, Σ0) prior,
which is independent of h. Assuming an arbitrary
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prior for β, the joint posterior of (β, h) can be
written as

π(β, h|D) ∝ L(β, h|D)π(h)π(β)

=
J∏

j=1

(
(1 − hj )

∑
i∈Rj −Dj

exp(x ′
iβ)

)

×
∏

l∈Dj

(
1 − (1 − hj )

exp(x ′
l
β)
)

×
J∏

j=1

h
c0j α0j −1
j (1 − hj )

c0j (1−α0j )−1π(β). (43)

Given the prior structure of (43), with no covariates,
the posterior distribution of the hj ’s given grouped
survival data is also independent beta with

hj |D ∼ B(c0j α0j + dj , c0j (1 − α0j ) + rj − dj ),

(44)

where D = {
( dj , rj ), j = 1, 2, . . . , J

}
denotes the

complete grouped data. The joint posterior of the hj ’s
given interval-censored data is not as straightforward
as (44), and is discussed in [57].

Correlated Prior Processes

The gamma process prior of Kalbfleisch [60] assumes
independent cumulative hazard increments. This is
unrealistic in most applied settings, and does not
allow for borrowing of strength between adjacent
intervals. A correlated gamma process for the cumu-
lative hazard yields a natural smoothing of the sur-
vival curve. Although the idea of smoothing is not
new [5, 7, 9, 48, 80], its potential has not been
totally explored in the presence of covariates. Model-
ing dependence between hazard increments has been
discussed by Gamerman [48] and Arjas and Gas-
barra [5]. Gamerman [48] proposes a Markov prior
process for the {log(λk)}, by modeling

log(λk) = log(λk−1) + εk, E(εk) = 0, and

Var(εk) = σ 2
k . (45)

Arjas and Gasbarra [5] introduced a first-order autore-
gressive structure on the increment of the hazards by
taking

λk|λk−1 ∼ G
(

αk,
α

λk−1

)
(46)

for k > 1 (see ARMA and ARIMA Models). Nieto-
Barajas and Walker [74] propose dependent hazard
rates with a Markovian relation, given by

λ1 ∼ G(α1, γ1), uk|λk, vk ∼ P(vkλk),

vk|ξk ∼ E
(

1

ξk

)
, (47)

λk+1|uk, vk ∼ G(αk+1 + uk, γk+1 + vk), (48)

and
β ∼ π(β),

for k ≥ 1, where π(β) denotes the prior for β, which
can be taken to be a normal distribution, for example,
and P(vkλk) denotes the Poisson distribution with
mean vkλk .

Dirichlet Process Models

The Dirichlet process is perhaps the most cele-
brated and popular prior process in nonparametric
Bayesian inference. The introduction of the Dirich-
let process by Ferguson [43, 44] initiated modern
day Bayesian nonparametric methods, and today
this prior process is perhaps the most important and
widely used nonparametric prior. Notable articles
using the Dirichlet process in various applications
include [14, 31, 33, 39, 40, 49, 50, 63, 64, 66, 71,
73, 76, 89, 90].

The Dirichlet process provides the Bayesian data
analyst with a nonparametric prior specification over
the class of possible distribution functions F(y) for
a random variable Y , where F(y) = P(Y ≤ y). In
Bayesian nonparametric inference with the Dirich-
let process prior, the typical approach is to spec-
ify a prior distribution over the space all possible
cumulative distribution functions, F(t) = 1 − S(t).
To define the Dirichlet process formally, let the
sample space be denoted by Ω , and suppose Ω =
B1 ∪ B2 ∪ · · · ∪ Bk , where the Bj ’s are disjoint. The
Bj ’s, for example, can be disjoint intervals. Then a
stochastic process P indexed by elements of a par-
ticular partition B = {B1, B2, . . . , Bk} is said to be
a Dirichlet process on (Ω, B) with parameter vec-
tor α, if for any partition of Ω , the random vector
(P (B1), P (B2), . . . , P (Bk)) has a Dirichlet distribu-
tion with parameter (α(B1), α(B2), . . . , α(Bk)).

The parameter vector α is a probability measure,
that is, a distribution function itself so that we can
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write α = F0(·), where F0(·) is the prior hyperparam-
eter for F(·), and thus α(Bj ) = F0(b2j ) − F0(b1j ).
The hyperparameter F0(.) is often called the base
measure of the Dirichlet process prior.

Finally, we can define a weight parame-
ter c0 (c0 > 0) that gives prior weight to
F0(·), so that (F (B1), F (B2), . . . , F (Bk)) has a
Dirichlet distribution with parameters (c0F0(B1),
c0F0(B2), . . ., c0F0(Bk)). Finally, we say that F

has a Dirichlet process prior with parameter c0F0

if (F (B1), F (B2), . . . , F (Bk)) has a Dirichlet dis-
tribution with parameters (c0F0(B1), c0F0(B2), . . . ,

c0F0(Bk)) for every possible partition of the sample
space Ω = B1 ∪ B2 ∪ · · · ∪ Bk . Some of the earliest
work on Dirichlet processes in the context of sur-
vival analysis is based on the work of Ferguson and
Phadia [45] and Susarla and Van Ryzin [89]. Susarla
and Van Ryzin derive the Bayes estimator of the sur-
vival function under the Dirichlet process prior and
also derive the posterior distribution of the cumula-
tive distribution function with right-censored data. In
this section, we summarize the fundamental results
of Ferguson and Phadia [45] and Susarla and Van
Ryzin [89]. Letting S(t) denote the survival function,
Susarla and Van Ryzin [89] derive the Bayes estima-
tor of S(t) under the squared error loss

L(Ŝ, S) =
∫ ∞

0
(Ŝ(t) − S(t))2 dw(t), (49)

where w is a weight function, that is, a nonnegative
decreasing function on (0, ∞) and Ŝ(t) is an esti-
mator of S(t). Susarla and Van Ryzin [89] show that
the Bayes estimator Ŝ(u) under squared error loss is
given by

Ŝ(u) = c0(1 − F0(u)) + N+(u)

c0 + n

×
l∏

j=k+1

(
(c0(1 − F0(y(j)) + N(y(j))

c0(1 − F0(y(j)) + N(y(j)) − λj

)
(50)

in the interval y(j) ≤ u ≤ y(l+1), l = k, k + 1, . . . , m,
with y(k) = 0, y(m+1) = ∞. The Kaplan–Meier esti-
mator of S(u) [61] is a limiting case of (50) and
is obtained when F0 → 1, as shown by Susarla and
Van Ryzin [89]. Other work on the Dirichlet process
in survival data includes Kuo and Smith [66], where
they used the Dirichlet process for doubly censored
survival data. Generalizations of the Dirichlet process

have also been used in survival analysis. Mixture of
Dirichlet Process (MDP) models have been consid-
ered by [14, 39, 63, 64, 71]. The MDP model [39,
71] removes the assumption of a parametric prior at
the second stage, and replaces it with a general dis-
tribution G. The distribution G then in turn has a
Dirichlet process prior [43], leading to

Stage 1: [yi |θi] ∼ Πni
(h1(θ i )),

Stage 2: θ i |Gi.i.d.

∼ G,

Stage 3: [G|c0, ψ0] ∼ DP(c0 · G0(h2(ψ0))),
(51)

where G0 is a w-dimensional parametric distribution,
often called the base measure, and c0 is a positive
scalar. The parameters of a Dirichlet process are
G0(·), a probability measure, and c0, a positive scalar.
The parameter c0G0(·) contains a distribution, G0(·),
which approximates the true nonparametric shape of
G, and the scalar c0, which reflects our prior belief
about how similar the nonparametric distribution G

is to the base measure G0(·).
There are two special cases in which the MDP

model leads to the fully parametric case. As c0 → ∞,
G → G0(·), so that the base measure is the prior dis-
tribution for θ i . Also, if θ i ≡ θ for all i, the same is
true. For a more hierarchical modeling approach, it is
possible to place prior distributions on (c0, ψ0). The
specification in (52) results in a semiparametric speci-
fication in that a fully parametric distribution is given
in Stage 1 and a nonparametric distribution is given
in Stages 2 and 3. References [31–33], discuss the
implementation of MDP priors for F(t) = 1 − S(t)

in the presence of right-censored data using the Gibbs
sampler. A Bayesian nonparametric approach based
on mixtures of Dirichlet priors [4, 43, 44] offers a rea-
sonable compromise between purely parametric and
purely nonparametric models. The MDP prior for F

can be defined as follows. If ν is some prior distri-
bution for θ , where θ ∈ Θ , and c0 > 0 for each θ ,
then if F |θ ∼ DP(c0F0θ ), then F , unconditional on
θ is a mixture of Dirichlet’s. The weight parameter
may depend on θ , but in most applications it does
not. For the case where the data are not censored,
there is a closed-form expression for the posterior
distribution of F . From this result, it can be easily
seen that in the uncensored case, estimators based
on mixtures of Dirichlet priors continuously interpo-
late between those based on the purely parametric
and nonparametric models. For large values of c0,
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the estimators are close to the Bayes estimator based
on the parametric model. On the other hand, for small
values of c0, the estimators are essentially equal to
the nonparametric maximum likelihood estimator.
One therefore expects that the same will be true for
the case where the data are censored.

For the censored case, there is no closed-form
expression for the posterior distribution of F given
the data, and one has to use Monte Carlo methods. A
Gibbs sampling scheme described by Doss and Huf-
fer [32] and Doss and Narasimhan [33] will enable
us to estimate the posterior distributions of interest.
Other generalizations of the Cox model have been
examined by Sinha, Chen, and Ghosh [83], and prob-
lems investigating interval-censored data have been
investigated by Sinha [82]. A nice review paper on
Bayesian survival analysis is given in [84]. Further
details on Bayesian semiparametric methods can be
found in [57].

Other Topics

Fully parametric Bayesian approaches to frailty
models are examined in [82], where they consider
a frailty model with a Weibull baseline hazard.
Semiparametric approaches have also been examined.
Clayton [24] and Sinha [81, 82] consider a gamma
process prior on the cumulative baseline hazard in the
proportional hazards frailty model. Gray [51], Sahu,
Dey, Aslanidou, and Sinha [82], Sinha and Dey [84],
Aslanidou, Dey, and Sinha [80], and Sinha [80]
discuss frailty models with piecewise exponential
baseline hazards. Qiou, Ravishanker, and Dey [75]
examine a positive stable frailty distribution,
and Gustafson [53] and Sargent [78] examine
frailty models using Cox’s partial likelihood [28].
Posterior likelihood methods for frailty models
include those of Sinha [80]. Gustafson [53] discusses
Bayesian hierarchical frailty models for multivariate
survival data, in which the hierarchical model has
elements common with the work of Clayton [24],
Gray [51], Sinha [81], Stangl [87], and Stangl and
Greenhouse [88]. For detailed summaries of these
models, see [57].

Bayesian approaches to joint models for longitudi-
nal and survival data have been considered by Faucett
and Thomas [41], Wang and Taylor [93], Brown and
Ibrahim [10, 11], Law, Taylor, and Sandler [69],
Brown, Ibrahim, and DeGruttola [12], and Ibrahim,

Chen, and Sinha [58], Other topics in Bayesian meth-
ods in survival analysis include proportional haz-
ards models built from monotone functions, [50]
and accelerated failure time models [23, 59, 65, 91,
92]. Survival models using Multivariate adaptive
regression splines (MARS) have been considered by
Mallick, Denison, and Smith [72]. Changepoint mod-
els have been considered by Sinha, Ibrahim, and
Chen [85], and flexible classes of hierarchical sur-
vival models have been considered by Gustafson [54]
and Carlin and Hodges [16]. Bayesian methods for
model diagnostics in survival analysis have been
considered in [50, 77, 79], Bayesian latent residual
methods given in [7], and the prequential methods of
Arjas and Gasbarra in [6]. Bayesian spatial survival
models have been considered by Carlin and Baner-
jee [15]. Bayesian methods for missing covariate data
in survival analysis include [21, 22]. Other work
on Bayesian survival analysis with specific applica-
tions in epidemiology and related areas include [18,
35], applications in fertility include [34, 36], and
the references therein. Bayesian survival methods in
carcinogenicity studies include [37, 47]. Books dis-
cussing Bayesian survival analysis include [17, 20,
25, 26, 57].
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Behrens–Fisher Problem

Consider the problem of testing for a difference
between the means of two normal distributions
(see Hypothesis Testing). Let yj1, . . . , yjnj

denote
a random sample of size nj from a normal
distribution with mean µj and variance

∑2
j , j =

1, 2. Furthermore, let the mean and variance of
sample j be yj = ∑nj

i=1 yji/nj and s2
j = ∑nj

i=1(yji −
yj )

2/(nj − 1), respectively, j = 1, 2. Attention is
focused on the parameter of interest, δ = µ2 − µ1. If
the two population variances are assumed to be equal,
then the usual two-sample t test may be adopted
to test H0: δ = 0 vs. Ha: δ �= 0, using the standard
pooled variance estimate.

When no assumptions about the variances of the
two populations are made, this is known as the
Behrens–Fisher problem. The standard advice given
in introductory textbooks is first to carry out a
test of the hypothesis σ 2

1 = σ 2
2 based on the quan-

tity F = s2
2/(s2

1 ). Under the hypothesis of common
variances, this statistic has an F distribution with
(n2 − 1, n1 − 1) degrees of freedom. If the hypoth-
esis is not rejected, then it is often recommended
to test the equality of the means using the usual
two-sample t test (see Student’s t Distribution).
Since a failure to reject the hypothesis of equal vari-
ances does not imply that the variances are indeed
equal, the validity of this procedure has been ques-
tioned.

A well-defined procedure for testing the differ-
ence between the means of two normal distributions
can, in fact, be defined provided the variance ratio
σ 2

2 /σ 2
1 = ρ2 is specified. The relevant distributional

results are

t (δ; ρ)

= y2 − y1 − δ
{(

1

n1
+ ρ2

n2

)[
(n1−1)s2

1 +(n2−1)s2
2/ρ2

n1+n2−2

]}1/2

∼ tn1+n2−2 (1)

and

F(ρ) = s2
2

s2
1ρ2

∼ Fn2−1,n1−1. (2)

Calculation of t (0; ρ) leads to a significance level
for a test of δ = 0 as a function of ρ. Confidence

intervals for δ may be similarly derived for speci-
fied ρ [1].

When ρ is not specified most inference procedures
are based on the Behrens–Fisher statistic,

t (δ; ρ̂) = y2 − y1 − δ

(s2
1/n1 + s2

2/n2)1/2
, (3)

which may be obtained by replacing ρ2 with ρ̂2 =
s2

2/s
2
1 in (1). Behrens’s solution [2] was shown by

Fisher [5] to arise from a fiducial probability calcu-
lation. This is equivalent to obtaining the distribution
of t (δ, ρ̂) by averaging out ρ over its fiducial
distribution. The use of a fiducial distribution is
controversial and this procedure is not generally
accepted. It can also be obtained, however, by a
Bayesian calculation which involves a uniform prior
on log ρ.

Similar hypothesis testing is that for which, under
the null hypothesis, the probability of exceeding a
specified critical value is equal to the required size,
α, and does not depend on values for parameters
other than the one of interest. Welch [10] derived
an approximately similar test for the Behrens–Fisher
problem which involved the statistic t (δ, ρ̂), but
used different critical values than those advocated
by Behrens and Fisher (see Aspin–Welch Test).
Although Linnik [7] has shown that no similar tests
which use the sufficient statistics in a reasonably
smooth way exist, it has been shown numerically that
Welch’s test is very nearly similar [11].

The requirement of similarity is viewed as unnec-
essary by some and was the basis of Fisher’s criticism
of Welch’s test. In particular, in the case n1 = n2 = 7
and under the null hypothesis of common means,
the probability of the test statistic exceeding Welch’s
0.1 level critical value, conditional on ρ̂2 = 1, is
greater than or equal to 0.108 [6]. Thus, if ρ̂2 = 1,
the probability of a type I error with Welch’s test
is known to be greater than the nominal value, and
hence the test is anticonservative. Standard arguments
of conditional inference suggest that the fact that
the nominal error rate is valid on average, and upon
repeated applications, is not relevant for the interpre-
tation of a particular data set for which it is known
that ρ̂2 = 1. Robinson [8] has shown that this sit-
uation does not arise with Behrens’s test, but that
the test may be somewhat conservative. In general,
the Behrens–Fisher problem continues to provide a
focus for discussions on the foundations of statistical
inference.



2 Behrens–Fisher Problem

From a practical point of view, the debate
surrounding the Behrens–Fisher problem is most
relevant for the analysis of very small samples.
Indeed, for larger samples the approximate solution
based on normal distributions and neglecting
the errors in estimating variances should be
satisfactory [3, p. 155]. However, in some settings,
the relevance of testing for a difference in means
when variances differ dramatically warrants serious
consideration.

Another consideration from the data analytic point
of view is that t (0, ρ) can be calculated, and sig-
nificance levels determined, for a range of plausible
values of ρ. This range could be determined from
a likelihood ratio based confidence interval for ρ

through the use of (2) [9]. The alternative of using
a posterior density for ρ based on empirical Bayes
methodology is suggested in [4]. This would also
facilitate a summary inference, although if qualita-
tive conclusions vary widely as a function of ρ, a
summary significance level may not provide all of
the relevant information.

For illustration, consider the examples in [9].
Summary data from the two examples are given in
Table 1.

There is negligible evidence against the hypothesis
of equal variances in either example. In Example A,
the Behrens–Fisher significance level is 0.005 and
the value from Welch’s test is 0.0015. A 90% confi-
dence interval for ρ is (0.65, 1.91), and significance
levels based on t (0, ρ) for ρ values of 0.65, 1.00
(corresponding to the usual two-sample t test), ρ̂ =
1.16, and 1.91 are 0.009, 0.002, 0.001, and 0.002,
respectively. Thus inferences about δ are not much
influenced by the value of ρ and the choice of the
summary procedure does not appear to be critical.

Table 1

Sample 1 Sample 2

Example n1 y1 s1 n2 y2 s2

A 9 22.20 0.6498 15 21.12 0.7541
B 8 0.8081 0.1369 4 0.4940 0.1629

In Example B, the Behrens–Fisher significance
level is 0.037 and the corresponding value from
Welch’s statistic is 0.021. The 90% confidence inter-
val for ρ is considerably wider at (0.53, 3.30). The
significance levels for ρ values of 0.53, 1.00, ρ̂ =
1.19, and 3.30 are 0.006, 0.005, 0.008, and 0.145,
respectively. In this case, different plausible values
for ρ lead to different qualitative conclusions, and
this should be considered in interpreting any sum-
mary significance level.
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Benefit/Risk Assessment
in Prevention Trials

Benefit/risk assessment (B/RA) is a mathematical
procedure to estimate the probability of detrimental
outcomes, beneficial outcomes and the net-effect
anticipated from exposure to a given agent (see
Multiple Endpoints in Clinical Trials). B/RAs
of health-related outcomes are used for public
health planning, decision-making regarding health
care financing (see Cost-effectiveness in Clinical
Trials) and therapeutic decision-making in clinical
practice [12, 24]. Information obtained from B/RAs
based on findings from controlled clinical trials,
particularly those with double-masking of treatment
(see Cost-effectiveness in Clinical Trials), are most
informative for health care planning and decision-
making because such information is less likely
to be biased than is information obtained from
observational studies [20, 23, 26]. Thus, B/RAs
in prevention trials are an excellent source of
information to use as the basis for the types of
health care planning and decision-making mentioned
above. However, in a prevention trial a B/RA is
primarily performed as a supplement for planning,
monitoring and analyzing the trial. It is designed to
provide a global assessment of all potential beneficial
and harmful effects that may occur as a result of
a treatment that is being evaluated as a means to
reduce the incidence of some particular disease or
condition. The Women’s Health Initiative (WHI),
the Breast Cancer Prevention Trial (BCPT) and the
Study of Tamoxifen and Raloxifene (STAR) are
examples of large-scale, multicenter prevention trials
(see Multicenter Trials) which included B/RA as
part of the trial methodology [7, 8, 22, 28, 29].

Compared with treatment trials, the need for the
type of information provided by a B/RA may be
greater in prevention trials. This situation exists
because prevention trials usually involve healthy per-
sons among whom only a small proportion may
develop the disease of primary interest during the
course of the trial [5–7, 13, 22, 29, 30]. As such,
all participants are subjected to the risks of ther-
apy during the course of the trial, but relatively few
will receive a preventive benefit from the therapy. In
this setting, the use of B/RAs provides an additional
mechanism to ensure that all participants comprehend

the full extent of potential benefits and risks, and
that they make a well-informed decision about the
interchange of benefits and risks they are willing to
accept by participating in the trial (see Ethics of Ran-
domized Trials and Medical Ethics and Statistics).
The use of B/RA in prevention trials also provides
a method to evaluate the global effect of the therapy
as a safeguard against subjecting trial participants to
an unforeseen harmful net effect of treatment. Once
the results of the trial are known and the true lev-
els of benefits and risks of the therapy have been
established, the individualized B/RA employed in the
trial can become the basis for the development of a
B/RA methodology that could be used in the clinical
setting to facilitate the decision-making process for
individuals and their health care providers who may
be considering the use of preventive therapy. The trial
results can also be used to develop a population-based
B/RA to identify changes in patient loads for the out-
comes affected by the preventive therapy that would
be anticipated as health care professionals incorporate
the use of the preventive therapy into their clinical
practice. This information could in turn be used for
decision-making regarding the planning for and use
of health care resources.

Types of B/RAs Performed in Prevention
Trials

In a prevention trial a B/RA can take one of three
forms which can be classified according to the nature
of the population that constitutes the basis for the
assessment. These include assessments based on the
general population, those based on the trial cohort and
those based on an individual trial participant. Each
of these forms of B/RA is performed for specific
purposes, namely to support various aspects of the
conduct of the trial.

A B/RA based on the general population is often
performed pre-trial as part of the justification for initi-
ating the trial. The purpose of this form of assessment
is to demonstrate the potential net health benefit to
society that could be obtained if the therapy being
evaluated in the trial actually exhibits the efficacy
that is anticipated. This type of assessment is the
most generalized form. It is usually accomplished by
estimating effects on a national basis assuming the
therapy is administered to all susceptible individuals
or to a subset of high-risk individuals and demon-
strating that there is a significant net benefit when
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comparing the number of cases prevented with the
estimates for the number of additional cases of detri-
mental outcomes that may be caused as a side-effect
of the therapy.

A B/RA based on the trial cohort is performed
during the course of trial implementation as part of
the safety monitoring effort (see Data and Safety
Monitoring). It can be accomplished in a regimented
fashion as part of the formal plan for the interim
monitoring of the trial or as an informal tool used
by the data monitoring committee (see Data and
Safety Monitoring) to assess the overall safety of the
therapy being evaluated. This type of assessment is
not usually necessary during a trial if the anticipated
effects from the therapy involve only a few outcomes
or if the anticipated beneficial effects substantially
outweigh the anticipated detrimental effects. How-
ever, in complex situations where the anticipated
outcomes affected by the therapy involve multiple
diseases or conditions and/or the magnitude of the
anticipated net benefit may not be large, a B/RA
based on the trial cohort can be a very useful supple-
ment for trial surveillance as a method of monitoring
the global effect of all beneficial and detrimental
outcomes combined (see Multiplicity in Clinical
Trials). A notable difference between a B/RA based
on the general population and one based on the study
cohort is in the nature of the measures that are pro-
vided by these two forms of assessment. A risk
assessment based on a general population provides
a measure of the theoretical net effect of the therapy
from estimates of anticipated beneficial and detrimen-
tal outcomes. In contrast, a risk assessment based on
the trial cohort determines the observed net effect of
therapy based on outcomes actually experienced by
the cohort during the course of the trial.

A B/RA based on an individual trial participant is
similar to that of the population-based assessment in
that it is also a theoretical estimate. In this case the
assessment is not made for the general population,
but instead for a specific subpopulation of persons
who have the same risk factor profile (age, sex,
race, medical history, family history, etc.) for the
anticipated beneficial and detrimental outcomes as
that of a particular individual participating in the
trial. Information from this type of assessment is
used to facilitate the communication to each potential
trial participant of the nature of the benefits and
risks that are anticipated for them as a result of
taking therapy during trial participation. This type

of individualized B/RA is used in prevention trials
when the nature of anticipated effects is complex
and benefit/risk communication is a more difficult
task due to the interplay of multiple beneficial and
detrimental outcomes. When it is used in this manner,
it becomes an integral part of the process to obtain
informed consent for each individual’s participation
in the trial.

Alternative Structures of the Benefit/Risk
Algorithm Used in Prevention Trials

The core components of a B/RA are the measures of
the treatment effect for each of the health outcomes
(see Outcome Measures in Clinical Trials) that
may be affected by the therapy being assessed. In
this instance the treatment effect is defined as the
difference between the probability that the outcome
will occur among individuals who do not receive
the therapy being evaluated (p0) and the probability
that the outcome will occur among those who do
receive the therapy (p1). For outcomes beneficially
affected by therapy, the treatment effect (p0 − p1)
will have a positive sign, representing cases prevented
by therapy. For outcomes detrimentally affected by
therapy, the treatment effect will have a negative sign,
representing cases caused by therapy.

In its simplest structure, the benefit/risk analysis
is summarized by an index of net effect (∆) as
the summation of treatment effects for all outcomes
affected. If there are I number of outcomes affected
by therapy, then the basic algorithm for the B/RA is
defined as:

∆1 =
I∑

i=1

(p0,i − p1,i). (1)

When the sign of the index of net effect is positive,
the therapy exhibits an overall beneficial health effect.
When the sign is negative, the therapy has an overall
detrimental effect.

When dealing with a B/RA based on the trial
cohort, the probabilities of (1) are obtained directly
from the observations in the trial. When dealing
with assessments based on the general population
or the individual trial participant, the probabilities
utilized as anticipated values among those who do
not receive therapy (p0) are usually taken from some
type of national database or from prospective studies
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of large populations that included measurements of
the outcomes of interest. The probabilities used in
these latter types of assessments as anticipated values
among those who receive therapy are determined
by multiplying the anticipated probability among
those not treated by the relative risk (untreated
to treated) anticipated as the treatment effect. For
example, if we anticipate that treatment will reduce
the incidence of a particular outcome by 35% then
the anticipated relative risk would be 0.65 and the
value used for p1 would be 0.65 p0. If we anticipate
that treatment will increase the incidence of an
outcome by 30%, then the anticipated relative risk
would be 1.30 and the value used for p1 would
be 1.30 p0. Estimates of the anticipated treatment
effects for each outcome are taken from the literature
dealing with pharmacokinetics, animal studies (see
Preclinical Treatment Evaluation) and studies in
humans undertaken as preliminary investigations of
the therapy as an agent to prevent the disease, or
from human studies in which the therapy was being
used as an agent for the treatment of disease (see
Phase I Trials and Phase II Trials).

In the prevention trial setting it is often advanta-
geous to utilize structures of the benefit/risk algorithm
other than that defined in (1). Since a B/RA based on
the trial cohort is meant to be performed as part of
the effort to monitor safety during the trial, an alter-
native structure of the benefit/risk algorithm can be
used to facilitate this effort. This structure incorpo-
rates a standardization of the differences between the
probabilities among those receiving and not receiv-
ing the therapy being evaluated. In this situation the
index of net effect is defined as:

∆2 =

I∑

i=1

(p0,i − p1,i)

s.e.

[
I∑

i=1

(p0,i − p1,i)

] . (2)

In this structure, the index of net-effect (∆2) becomes
a standardized value with an N(0,1) distribution. As
such, the standardized values are Z-scores. Critical
values of this index of net effect in the form of Z

and −Z can then be used as cut-points for global
monitoring indicating that there is a significant net
effect that is beneficial or detrimental, respectively.

In addition to that for the standardized score,
there are other structures of the algorithm used in

the prevention trial setting. Instead of expressing the
differences between those treated and not treated in
terms of the probabilities of the anticipated outcomes,
an alternative structure of the algorithm is that based
on differences between treatment groups in terms of
the number of cases of the outcomes. The structure
of the algorithm based on the difference in terms of
the number of cases is defined as:

∆3 =
I∑

i=1

(n0,i − n1,i), (3)

where n0 is the number of cases occurring among
those who do not receive the therapy being evaluated
and n1 is the number of cases among those who do
receive the therapy. This structure of the algorithm is
that which is utilized to perform B/RAs based on the
general population. This type of assessment is meant
to justify the need for a trial by demonstrating the
potential health benefit to society. The net effect to
society is more effectively communicated to a greater
proportion of individuals when it is expressed as the
number of cases prevented from (3) than when it is
expressed as the probability from (1). This facilitation
of risk communication is also the reason that (3) is
preferred over (1) for B/RAs based on individual trial
participants where the specific goal of the assessment
is to enhance the individual’s comprehension of
benefits and risks that may be experienced as a result
of trial participation.

For a population-based assessment, the numbers
of cases in (3) are determined by multiplying the
anticipated probabilities p0,i and p1,i by the number
of persons in the general population, frequently
that of the total US, to obtain an estimate of the
number of cases that may be prevented or caused
by treatment for each outcome on an annual basis.
For an individual participant-based assessment, the
numbers of cases in (3) are determined by multiplying
the anticipated probabilities by a fixed sample size
(N ) of theoretical individuals who all have a risk
factor profile similar to that of the individual being
assessed. A fixed period of follow-up time (t) is
assumed to obtain the number of cases prevented or
caused by treatment in t years among N individuals.
In scenarios where the length of follow-up is long
and/or the population is of older age, the estimation
of n0,i and n1,i should incorporate the competing
risk of mortality that would be anticipated. If d is
the probability of dying and RR is the relative risk
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anticipated for the outcome of interest, the adjusted
expected number of cases among those not treated
can be calculated as:

n0,i = N

{
p0,i

(p0,i + di)

}
[1 − exp{−t (p0,i + di)}],

(4)

and the adjusted expected number of cases among
those treated can be calculated as:

n1,i = N

{
RRp0,i

(RRp0,i + di)

}

× [1 − exp{−t (RRp0,i + di)}]. (5)

In most prevention trials the outcomes that are
potentially affected by the therapy being evaluated
encompass a wide range of severity. A simple adding
together of the risks of beneficial and detrimen-
tal effects without including a consideration of the
relative severity of the outcomes may not be appro-
priate or desirable. For example, suppose a therapy
is anticipated to prevent breast cancer and hip frac-
tures, but may cause an increase in uterine cancer
and cataracts. Is it appropriate to equate one case
of breast cancer prevented to one case of cataracts
caused or equate one case of hip fracture prevented
to one case of uterine cancer caused? In situations
where it is important to include a consideration of the
relative severity of the outcomes affected by the ther-
apy, the equations described above for determining
the index of net effect can be modified to incorporate
a weighting of the outcomes. If wi is used to repre-
sent the weight for each of the I outcomes, then the
modification to (3) to incorporate weighting of the
outcomes is:

∆4 =
I∑

i=1

wi(n0,i − n1,i). (6)

Equations (1) and (2) can be modified in a similar
fashion by including wi as a multiplier of the quantity
of difference in the probabilities.

Methodological and Practical Issues with
B/RA in Prevention Trials

There are several issues to be faced when performing
a B/RA in a prevention trial. These issues concern
the variability of the index of net effect, weighting

the outcomes by severity, estimating the index of net
effect for individuals with specific profiles of risk
factors and communicating the findings of a B/RA
to individual participants. Some discussion of each
of these issues is presented below.

The estimates of p0,i and p1,i used in a B/RA
have a variability associated with them in terms of the
strength of evidence supporting the treatment effect
and in terms of the precision of the treatment effect.
If this variability is substantial, then it may be nec-
essary to incorporate consideration of the variability
into the B/RA. Freedman et al. [8, 25] have described
a Bayesian approach to incorporating a measure of
variability into the index of net effect when it is
measured in the form of weighted, standardized prob-
abilities. They assume a skeptical prior distribution
based on the strength of the preliminary evidence
used as the anticipated treatment effect for each out-
come potentially affected by therapy. Gail et al. [10]
have described a method to incorporate a measure of
variability into the estimate of the index of net effect
measured in the form of a weighted number of cases.
Their method involves bootstrapping, based on the
95% confidence intervals of the anticipated relative
risk associated with treatment for each outcome, to
determine the probability that the net number of cases
is greater than zero.

The values used for weighting the differences
between those treated and not treated can be based
on a utility function related to the severity of the
outcome, preferences in terms of levels of risk
acceptability or other considerations. However, the
best choice of a utility function is not always obvious.
A measure of mortality such as the case-fatality ratio
is one possible utility. If this type of weighting is
used, then the choice of the one-year, five-year or ten-
year case-fatality ratios would be an issue because
the relative weighting of the outcomes could likely
be very different depending on which time period for
case-fatality is used. Also, weights based on case-
fatality would eliminate the consideration of any
nonfatal outcome, which would not be preferable if
there were several nonfatal outcomes of interest or
if a nonfatal outcome has a significant impact on
morbidity. Issues also arise with the use of rankings
based on the impact on quality of life or preferences
regarding the acceptability of risk [1, 11]. The issues
with these utilities arise because the rankings are
often subjective in nature, based on the opinions
of a relatively small panel of individuals, and it



Benefit/Risk Assessment in Prevention Trials 5

is possible that the rankings of outcomes could
differ substantially depending on the population from
whom the opinions are ascertained [2, 15, 16]. In
light of these issues, attempting to identify a basis
for weighting a B/RA is a practical problem that
can be difficult to resolve. The preferred choice for
any particular trial could differ from one group of
individuals to another. As such, if a B/RA is planned
as part of trial monitoring, it is essential that the
data monitoring committee reviews and reaches a
consensus regarding the proposed weighting before
it initiates review of the outcome data.

To accomplish the individualization desired for
B/RAs based on individual trial participants, it is
necessary to provide estimates of effect specific to
the individual’s full spectrum of risk factors for
each of the outcomes expected to be affected by
the therapy of interest. A problem likely to be faced
when performing individualized assessments is the
unavailability of probability estimates specific to the
individual’s full set of risk factors. For outcomes
with several relevant risk factors to be considered
or for outcomes that have not been studied in diverse
populations, estimates of the outcome probabilities
for a specific category of risk factor profiles may not
exist. In some cases, multivariate regression models
are available that can be used to predict probabilities
of outcomes for specific risk factor profiles from
data based on the general population. Examples of
such models include those for heart disease, stroke
and for breast cancer [4, 9, 14, 17–19]. However,
the models currently available are primarily limited
to those for the more common diseases and are not
generally applicable to all race and sex populations.
Also, relatively few of these models have been well
validated. Thus, in practice it is often necessary to use
estimates of outcome probabilities for individualized
B/RAs that are taken from populations that are more
representative of the general population than of the
population specific to the risk factor profile of the
individual being assessed. When this is the case, the
limitations of the methodology need to be recognized
and used in this light. Nonetheless, a B/RA that has
been individualized to the extent possible is more
informative to a trial participant than one based on
the general population. Additional discussions of the
limitations of individualized B/RAs can be found in
presentations concerning individualized B/RAs for
the use of tamoxifen to reduce breast cancer risk [3,
4, 27].

Communicating the results of a B/RA to an
individual is a skilled task. An effort must be made
to provide information in a manner that facilitates the
individual’s comprehension [21]. Tools are needed to
facilitate this effort. These tools must be developed
before the initiation of the trial and included as
part of the protocol approved by the Institutional
Review Board. Relatively little work has been done
in the area of developing tools for communicating
the benefits and risks of participation in a prevention
trial. However, some tools have been developed that
serve as examples for future development.

Tools to enhance the communication of B/RA
information to women screened for participation were
developed for use in the BCPT [7, 22]. Since the
conclusion of this trial, the tools were refined for use
in the STAR trial [28]. Table 1 provides an exam-
ple of the type of tool used in the STAR trial to
inform potential participants regarding their individ-
ualized B/RA. This tool was developed based on
the principles put forth by the participants of the
National Cancer Institute’s workshop convened to
develop information to assist in counseling women
about the benefits and risks of tamoxifen when used
to reduce the risk of breast cancer. This workshop
and the specific methodology used for the B/RA
are described by Gail et al. [10]. There were sev-
eral key working premises that guided the develop-
ment of the STAR trial tool displayed in Table 1.
The premises were considerations of form and for-
mat to facilitate the participant’s comprehension of
their individualized B/RA. These working premises
were to: (1) avoid the use of probabilities and rela-
tive risk as these concepts are not readily understood
by the nonstatistician; (2) provide information for
each outcome anticipated to be affected by therapy;
(3) group the information presented by severity of the
outcomes; (4) provide detailed information for the
outcomes with more severe consequences and pro-
vide an estimate of effects among those not treated
so the individual can understand the context in which
to place the expected treatment effects; and (5) limit
the tool to one page of data presentation to reduce the
amount of data overload perceived by the individual.
The precise considerations involved in any preven-
tion trial may differ; however, working premises
of this nature designed to enhance comprehension
should always be employed when developing tools
to communicate B/RA information to potential trial
participants.
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Table 1 Example of data presentation tool for communicating the benefits and risks of tamoxifen therapy

The information below provides the number of certain events that would be expected during the next five years among
10 000 untreated women of your age (ageX), race (raceY ) and five-year breast cancer risk (riskZ). To help you
understand the potential benefits and risks of treatment, these numbers can be compared with the numbers of expected
cases that would be prevented or caused by five years of tamoxifen use

Severity Expected number of cases Expected effect among 10 000 women if they
of event Type of event among 10 000 untreated women all take tamoxifen for five years

Potential benefits
Life-threatening Invasive breast cancer N0,1 cases expected N1,1 of these cases may be prevented
events Hip fracture N0,2 cases expected N1,2 of these cases may be prevented

Potential risks
Endometrial cancer N0,3 cases expected N1,3 more cases may be caused
Stroke N0,4 cases expected N1,4 more cases may be caused
Pulmonary embolism N0,5 cases expected N1,5 more cases may be caused

Potential benefit
Other severe In situ breast cancer N0,6 cases expected N1,6 of these cases may be prevented
events

Potential risk
Deep vein thrombosis N0,7 cases expected N2,7 more cases may be caused

Other events Potential benefits: Tamoxifen use may reduce the risk of a certain type of wrist
fracture called Colles’ fracture by about 39%, and also reduce
the risk from fractures of the spine by about 26%.

Potential risk: Tamoxifen use may increase the occurrence of cataracts by about 14%.
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Benjamin, Bernard

Born: 8 March 1910, London.
Died: 15 May 2002, London.

Bernard Benjamin had a distinguished career as a
statistician, actuary, and demographer, achieving dis-
tinction and the highest levels of recognition and
honor in each of these fields. Among his particular
interests were the effective use of routinely col-
lected data and the application of statistical modeling
for making decisions. For example, he was one of
United Kingdom’s pioneers on applications of sta-
tistical methods to nonlife insurance (see Actuarial
Methods).

Bernard Benjamin was born in 1910, the youngest
of eight children. He went to school in SE London
and went on to study physics part-time at Sir John
Cass College (then affiliated to the University of
London), graduating in 1933. Meanwhile, he had
started work in 1928 as an actuarial assistant to
the London County Council (LCC) pension fund,
and qualified as an actuary in 1941. From 1936, he
worked as a statistician in the public health sections
of the LCC until 1943, when military service took
him to the Royal Air Force, where he continued his
work as a statistician. After the war, he returned
to the LCC and public health, and undertook his
PhD (also on a part-time basis) on the analysis of
tuberculosis mortality.

In 1952, Benjamin was appointed Chief Statisti-
cian at the General Register Office (GRO), later to
be absorbed into the Office of Population Censuses
and Surveys and then into the Office for National
Statistics, marking his move into demography, and
promotion to management and the leadership of a
major public-sector department. After 11 years at the
GRO, he was appointed Director of Statistics at the
Ministry of Health in 1963, and then in 1966, became
the first Director of the Intelligence Unit of the
Greater London Council (GLC). The unit was set up
as part of local government reorganization in Lon-
don, and its task was to make sure that the GLC had
“economic and other information at the right time
in the right way”, to quote Benjamin. In this role,
he brought together the entire planning and trans-
portation research staff into a cohesive and effective
unit. But this reorganization did not survive without

Benjamin’s leadership skills and foresight after his
retirement in 1970.

A strong theme of Benjamin’s later working life
was a series of retirements followed by new begin-
nings. Thus, in 1970, he became Director of Statis-
tical Studies at the newly established Civil Service
College. Then in 1973, he retired and joined City
University as the Foundation Professor of actuarial
science, establishing and designing the first BSc pro-
gramme in actuarial science in the country. Although
Benjamin enjoyed teaching undergraduates, he took
particular pleasure in the supervision of PhD stu-
dents and, over the next decade, he taught a steady
stream of research students who were working on
statistical methods applied to demography and actu-
arial science.

In his roles at the GRO, GLC, and Civil Service
College, Benjamin was concerned with the collection
and analysis of statistics and the presentation of
results for the solving of practical problems in public
health or demography. He was particularly adept at
conveying statistical ideas in a clear manner, without
recourse to jargon or indeed mathematical notation.

Benjamin retired in 1975 from City University
(because of his wife’s failing health), but continued
as a visiting professor. On his final departure from
City University, he was appointed emeritus professor
and awarded an honorary DSc for his contributions
to education and research in statistics and actuar-
ial science.

Benjamin’s scientific work was extensive. He pub-
lished over 100 papers in leading statistical, actuarial,
and demographic journals over almost 40 years. A
notable achievement was his 1954 report on the
growth of pension rights and their impact on the
national economy, which became the actuarial profes-
sion’s principal evidence to the ‘Phillips Committee’
on the economic and financial problems for the provi-
sion for old age. When the actuarial profession sought
to update this landmark report 30 years later (at a time
of government questioning of the role of public pen-
sion provision), it was to Benjamin that they turned
to lead the research team that produced the mono-
graph entitled Pensions: The Problems of Today and
Tomorrow, in 1987.

Benjamin was able to write concisely and inter-
estingly and his first drafts were almost of final draft
quality. This talent contributed to a series of suc-
cessful textbooks and monographs: Elements of Vital
Statistics (1959), Social and Economic Differentials
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in Fertility (1965), Social and Economic Factors
Affecting Mortality (1965), Health and Vital Statis-
tics (1968), Demographic Analysis (1968), Medical
Records (1977) and Population Statistics (1989). The
textbooks Analysis of Mortality and other Actuarial
Statistics (1970, with new editions in 1980 and 1993)
and General Insurance (1977) have become seminal
works of international standing in the actuarial field.
His last book, Mortality on the Move (1993), appeared
at a time of accelerating mortality decline in many
industrialized countries, and is now widely cited.

Among his honors and achievements, Benjamin
was the UK representative on the UN Population
Commission from 1955 to 1963, the honorary
consultant in Medical Statistics to the Army,
a member of the statistics committee of the
Social Science Research Council, and secretary-
general of the International Union for the Scientific
Study of Population from 1962 to 1963. He
was vice president (1963–1966) and president of

the Institute of Actuaries (1966–1968), honorary
secretary (1956–1963) and president of the Royal
Statistical Society (1970–1972), and was uniquely
awarded the highest honors of both bodies – the Gold
Medal (1975) and the Guy Medal in Gold (1986),
respectively.

At a personal level, Benjamin was modest and
self-effacing, yet he was a determined and clear-
sighted manager and leader who inspired respect and
loyalty. As a colleague, he was both encouraging and
supportive, qualities that made him both an excellent
PhD supervisor and a research collaborator. He had
a number of active hobbies before his sight failed,
describing himself both as an ‘amateur’ pianist and
painter. The latter activity gave him much pleasure
and his watercolors were of a higher standard than
he would admit to.

STEVEN HABERMAN



Berkson, Joseph

Born: May 15, 1899, in Brooklyn, New York.
Died: September 12, 1982, in Rochester, Min-

nesota.

Joseph Berkson, the sixth child of Russian
immigrants, Henry and Jennie (Berkman) Berkson,
was educated in the New York public schools and
Townsend Harris Hall before attending the College of
the City of New York from which he received a B.S.
degree in 1920. He obtained an M.A. degree (Physics)
from Columbia University in 1922 and two doctoral
degrees from Johns Hopkins, an M.D. in 1927 and a
Dr.Sc. in statistics in 1928.

Upon completion of these degrees, Dr Berkson
accepted positions at Johns Hopkins as an assistant
in the School of Hygiene and Public Health and as
an Associate in the Institute of Biologic Research.
He remained at Johns Hopkins for three years before
accepting a position as a Macy Foundation Fellow
in Physiology at the Mayo Clinic, which he began
in September 1931. Berkson remained at Mayo until
his retirement in 1964, first as Acting Director of
the Statistics Division and then Head of the Division
of Biometry and Medical Statistics, a position he
held from January 1, 1934, to July 1, 1964. He was
Associate Professor and later Professor (1949) of
Biometry in the Mayo Graduate School of Medicine.

Subsequent to the completion of his degrees but
prior to coming to Mayo, Berkson published ten

manuscripts [1–5, 15, 19, 20, 24, 26]. Several merit
comment because they are informative about his
lifelong interests. Eight of these first papers [2, 3,
5, 15, 19, 20, 24, 26] are reports of physiological
studies (two with the famous Louis Flexner [15,
24]) reflecting Berkson’s training and an interest
which he retained throughout his career. However,
there were harbingers of statistical interests which
would blossom in later years. His fourth paper [26]
(with the famous epidemiologist Lowell Reed), “The
Application of the Logistic Function to Experimental
Data”, provides the first evidence of his interest in the
logistic functions, an interest that would reemerge
much later in his professional life.

His fifth paper [1] involved a probability nomo-
gram (another lifelong interest of Berkson’s). It is dif-
ficult to imagine today with the plethora of computers
that calculational shortcuts, nomograms, tables, spe-
cial graph paper, etc. were all essential aids to an
applied statistician throughout much of Berkson’s
professional career. In addition to publishing sev-
eral papers including nomograms which he designed,
Berkson also designed graph paper with a variety of
different scales which was useful for many data anal-
ysis problems.

Berkson’s first purely statistical publication [4] in
the Annals of Mathematical Statistics was simply
titled “Bayes’ Theorem”. Symbolically, one of his
last papers [14] – published 47 years later in the
International Statistical Review – was entitled, “My
Encounter with Neo-Bayesianism”. He was certainly
no Neo-Bayesian.

During World War II he served as a colonel in the
office of the Air Surgeon General in Washington, DC,
and in 1946 he was awarded the Legion of Merit. The
accompanying Presidential citation reads:

Colonel Joseph Berkson, Medical Corps, as Chief of
the Statistics Division, Office of the Surgeon, Head-
quarters Army Airforces, contributed immeasurably
to the advancement of medical statistics in devel-
oping new methods of presenting and interpreting
statistical data as applied to Army Airforce matters.
His display of professional skill and high standards
of efficiency in disease control contributed to a great
extent to the success of the Army Airforce health
programs.

At the Mayo Clinic Dr Berkson was known as a mav-
erick who tolerated fools reluctantly and “marched
to the beat of his own drummer”. He was probably
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best known to the Mayo staff for three contribu-
tions, the most significant of which was the intro-
duction of the then relatively new Hollerith card and
the development of diagnostic and procedure cod-
ing systems that were used for over 40 years at
Mayo [7, 8]. Berkson rejected the existing, widely
touted, classification scheme with the quote, “There
are hundreds of diseases in that book no one can
get and an equal number of diagnoses no one can
find”. His ingenious coding system, using the new
punch card capability, combined into a single scheme
two related but not identical functions. First, cross-
indexing of medical conditions was made possible
so that specific groups of patient histories could eas-
ily be identified and retrieved for research or patient
care and, secondly, the designation of main num-
bers facilitated administrative tabulations. Thousands
of research papers by Mayo physicians, surgeons,
epidemiologists, and statisticians were made possible
because of this system.

From the perspective of his Mayo colleagues,
Berkson’s second major contribution came in the
area of survival analysis. His first manuscript on
the topic [6] was published in 1934 and involved the
appropriate construction of a life-table to describe the
survival experience of a group of patients following
an operation. Several manuscripts were subsequently
published using his methodology [18, 21, 22, 25] and
his own work culminated in two papers with Robert
Gage [16, 17], the first published in 1950 (Mayo
Clinic Proceedings) and the second in 1952 (Journal
of the American Statistical Association) on the
estimation of survival rates and the construction of
survival curves for cancer patients. Berkson insisted
that research by Mayo investigators involving patient
survival use his methods, and as late as 1980 there
was a rule in place at the editorial office of the
Mayo Clinic Proceedings that such papers had to
have the approval of a statistician. He made perhaps
an even more important contribution to the field by
introducing Jerzy Neyman to the problem and by
working with Lila R. Elveback on her dissertation.
Thus, when Elveback and William F. Taylor both
came to Mayo, a nucleus was formed which produced
fruitful research in this area and which established a
precedent continued by Mayo statisticians to this day.

Finally, everyone at Mayo knew about Berkson’s
attitude regarding the studies purporting to have
established a relationship between smoking and lung
cancer (see Smoking and Health). Interestingly,

long before this controversy, Berkson had published
a manuscript on tobacco and coronary disease [23].
Being a well trained physiologist and also a statis-
tician, Berkson found the statistical studies associ-
ating smoking and lung cancer less than persuasive
of causality (see Causation). Thus, all who were
interested, and many who were not, were aware of
Berkson’s disdain for the studies upon which the
smoking/lung cancer connection were based. Berk-
son’s plea for more direct physiological evidence of
causality and his observations that arguments associ-
ating tobacco use and lung cancer lacked specificity
because they could be applied equally to tobacco use
and other diseases may seem a little strained now,
but they were legitimate at the time. In one of his
major papers on the topic [13] in the Mayo Clinic
Proceedings, Berkson discusses some of his concerns
with the smoking/lung cancer data. Here he calls
upon his “Berkson Bias” paper (see Berkson’s Fal-
lacy) [10] published some years earlier to argue that
studies of hospitalized patients, whether retrospective
or prospective, have a likely selection bias which
may invalidate results. Then, turning to the question
of specificity, he argues in his eloquent style that
the question raised by the findings in the American
Cancer Society study of higher death rates among
cigarette smokers is not, “Does cigarette smoking
cause cancer of the lungs?” so much as “What disease
does cigarette smoking not cause?”

Finally, and also eloquently, he offers his argu-
ment for biological considerations,

A disquieting element in the array of observations
which have been assembled pointing the finger of
accusation at smoking as a cause of lung cancer is
that it is so ample, yet it is so exclusively statistical.
There are lacking observations of the pathologic
process of which the statistics are only the supposed
reflection. Actually the American Cancer Society
study does not point specifically to association of
smoking and cancer, for all specific diseases for
which the number of cases permits examination
show association, exhibiting a larger death rate
among smokers than among nonsmokers. Therefore,
if the association found is not statistically spurious
and is to be explained as a biologically causative
effect, it is not on these findings specifically a
carcinogenic effect but something which influences
broadly whatever may increase the susceptibility
of the organism to fatal disease. Now, the most
important known cause of cancer and some other
diseases, notably those of the cardiovascular system,
is age. We might say speculatively that smoking
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accelerates the rate of living and advances age
and age causes cancer. The supposed effect of
smoking, if it exists, may be to stimulate those
trophic processes, of which little is known, that
constitute the biology of aging. The idea is not
entirely implausible or without support in existing
literature. It is in keeping with Pearl’s idea that
duration of life is inversely related to the rate of
living and with Pearl’s own study of the effect of
heavy smoking on longevity.

Although his Mayo medical colleagues were unlikely
to be aware of it, Berkson made major contributions
to theoretical statistics. Nothing seems to have
held Berkson’s attention throughout his career as
much as the logistic function, providing him with
an opportunity to delve into some of the more
esoteric aspects of statistical inference. Among the
118 papers in his bibliography at least 28 contain
some, usually substantial, references to the logistic
function. In three of his first 10 manuscripts he
used and discussed at length the logistic function
as a model of the rate of a chemical reaction.
Then, in 1944, he published what he may have
assumed would be a little blip in the statistical
literature, a manuscript entitled, “Application of the
Logistic Function to Bio-assay” [9]. In the ensuing
13 years he published 14 more papers on this
and related topics and embarked on a sometimes
humorous, sometimes vitriolic, exchange of views
with Fisher, Finney, and Bliss. This exchange
may have begun over the relative merits of the
probit and logit (see Quantal Response Models)
(apparently Berkson coined this term) in bioassay
problems (see Biological Assay, Overview), but
soon escalated into a crusade on Berkson’s part to
persuade the mathematical statistical community to
pay attention to estimation principles other than the
maximum likelihood (ML) and to acknowledge the
advantage of calculational simplicity. In this first
paper Berkson pointed out that probit analysis, the
bioassay analytic method in vogue, assumed the
Gaussian distribution (see Normal Distribution) for
certain relationships of dose and susceptibility. If
true, this certainly suggests the use of the integrated
normal for such analyses. He goes on to point out,
however, that the logistic function may have a better
theoretic basis because it applies “to a wide range of
physicochemical processes”.

In applying the integrated normal approach,
parameter estimation based on the principle of ML
needed iterative and time-consuming calculations.

Berkson applied the principle of weighted least
squares to the estimation of the logistic parameters,
which by a special simplification could be
obtained directly without iteration. This simplification
involved obtaining the logit corresponding to a
given mortality rate, and he provided in the 1944
manuscript [9] a nomogram to do this for mortality
rates ranging from 0.7% to 99.3%.

It is difficult today to conceive of a world in which
such giants of the statistical profession would engage
in the rhetoric that followed this publication based
on questions of iterations and calculational simplic-
ity. Berkson concluded this first paper with the simple
statement that he believed that the work of fitting the
logit to be considerably simpler and less time con-
suming than using probits, as advocated by Bliss and
Fisher. In a later exchange [12], Fisher apparently
accused Berkson of saying that the probit calculations
took 30 times as along as the logit and indicated that
in his (Fisher’s) experience the two were about equiv-
alent. To this Berkson responded by describing an
experiment in which two sets of bioassay data were
presented to a “computer” (presumably an individ-
ual using a mechanical calculator) with instructions
to apply both methods of estimation to the data and
to record faithfully the amount of time necessary to
complete each. He reported that for one set the probit
method required 295 minutes while the logit method
required 12 minutes. Berkson admitted that this was
less than a 30-fold difference but suggested that it
was still substantial and deserving of attention.

Of course the argument between Fisher and Berk-
son did not hinge on how much time a calculation
took. Berkson’s minimum logit chi-square approach
did not yield maximum likelihood estimates (MLEs),
a point he did not deny, but he railed against the
notion that there was something sacred about MLEs
which precluded use or discussion of alternatives.
He was particularly offended by the constant defense
of the probit method as producing MLEs when it
depended on choice of starting value and number of
iterations actually carried out. In one hilarious pas-
sage [11, p. 591] he defined a hierarchy of estimators
depending on the number of iterations conducted.

The procedure of “probit analysis” as widely ad-
vanced and practiced, consisting of a single cycle of
iteration based on a provisional graphical estimate,
actually is not a maximum likelihood estimate, but
only a somewhat modified graphical solution. Since
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it is a step in the right direction toward the max-
imum likelihood estimate, perhaps it is entitled to
the designation “likelihood estimate.” If one or two
more iterations are performed, it could be called a
“very likelihood estimate”; if as many as 9 iterations
are accomplished, as in the example from Irwin and
Cheeseman, an “exceedingly likely likelihood esti-
mate”, and so forth. A really mathematical maximum
likelihood estimate in the present circumstance is
rarely attainable, but this estimate appears to be held
so noble an objective that perhaps we should be con-
tented only to aspire to achieve it. However, it must
be remembered that it is solely to the actual maxi-
mum likelihood estimate that the optimum properties
pertain, which Finney insistently claims for “probit
analysis”. These optimum properties do not refer to
a “likelihood estimate,” nor even to a “practically
good enough” maximum likelihood estimate.

On Christmas Eve 1935 Berkson was married to
Susanna G. Cacioli, a Mayo translator (Italian) from
1927 to 1948. Although they had no children, the
family of Dr Frank Falsetti – Susanna’s son by
an earlier marriage – has fond memories of times
with the Berksons and the role Joe played in their
lives.

In 1978 his colleagues and successors in statis-
tics at the Mayo Clinic honored Berkson by naming
the main departmental conference room after him.
They presented him with two bound volumes of his
published works which included solicited comments
from some of his illustrious colleagues in the statis-
tical world. These included W.G. Cochran, Jerzy
Neyman, John Tukey, and others. They all remi-
nisced with Joe about their interactions during the
previous decades of their professional lives. Ney-
man acknowledged that Berkson had introduced him
to some of the intriguing statistical problems found
in medical research, mentioning specifically work in
survival analysis and competing risks that Neyman
and Evelyn Fix worked on. Cochran said, “An impor-
tant reason for honoring Joe is that he was about the
best writer in the business. I was never in doubt as
to what Joe meant in a sentence. Moreover, he was
a delight to read, . . . Joe was continually remind-
ing professional statisticians of their responsibility
for keeping their heads clear.” Tukey recalled that,
“In the late 1940s there was a round-robin letter
group consisting of (Berkson and Tukey), George
Brown, Churchill Eisenhart, and Charlie Windsor.”
Tukey suggests that the correspondence was lively
and enjoyable and apparently often heated as Berk-
son’s wife, Susie, reported to him that Joe, upon

coming home to find letters would read them and
often shout, “They can’t do this to me”, and off he
would go to his upstairs office to begin typing his
reply.

Berkson was an active and aggressive statistician.
He was also an active member of several statistical
societies and was honored by many of them. One of
the original group who founded the Biometric Society
(see International Biometric Society (IBS)), he
held two early regional offices. He was a fellow of
the American Association for the Advancement of
Science, the American Public Health Association,
the American Statistical Association, and the Royal
Statistical Society. In the twilight of his career, he
was elected to the National Academy of Sciences
(April 1979).

Although Berkson was obviously a statistician, he
liked to play the role of the humble medical doctor
simply trying to get along in this harsh mathemat-
ical world. This image was a facade, as his work
illustrates, but it was a facade he maintained through-
out his career. There appear to be no publications
or written references, where degrees were quoted, in
which any other than his M.D. degree was mentioned.
His final paper was published in 1978 and he had
remained in active contact with his statistical col-
leagues at Mayo and throughout the world until the
last few years of his life.

At the August 1983 American Statistical Associa-
tion meeting, a session organized by Joe’s colleague,
William F. Taylor, was presented in his honor. James
Grizzle and Lucien LeCam made presentations and
Fredrick Mosteller, Churchill Eisenhart, and John
Tukey participated with the others in a panel dis-
cussion regarding interactions with their friend and
colleague Joseph Berkson. Grizzle said the following:

He (Berkson) had a serious concern about the funda-
mental properties of the statistics he was using. He
did not feel comfortable with them until he under-
stood their finite sample size properties and he was
dismayed when others advocated statistical methods
that did not, in his opinion, have a completely coher-
ent philosophical (i.e., mathematical) base. There
is no doubt that Berkson was a serious productive
scientist. He was absolutely tenacious in his investi-
gations. He persisted in martialing mathematical and
empirical evidence for his views over approximately
a 40-year period. He related his views to new devel-
opments in methodology in interesting and useful
ways to the end of his career.
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Berkson’s Fallacy

Berkson’s fallacy, also referred to as Berkson’s
bias or Berkson’s paradox, was first described
in 1946 by Joseph Berkson, a physician in the
Division of Biometry and Medical Statistics at
Mayo Clinic. Berkson demonstrated mathematically
that an association reported from a hospital-based
case–control study can be distorted if cases and
controls experience differential hospital admission
rates with respect to the suspected causal factor [1].
His hypothetical example involved the association
between two medical conditions – cholecystitis
(the suspected causal factor) and diabetes (the
outcome of interest). Assuming a hospital-based
study, he defined controls as persons with a
third condition, refractive errors, not thought to
be correlated with cholecystitis. Calculations were
based on the following assumptions: (i) the incidence
of cholecystitis does not vary between diabetics
and persons with refractive errors in the general
population (i.e. relative risk and odds ratio close

to 1.0); (ii) hospital admission rates do vary between
diabetics and persons with refractive errors (5% and
20%, respectively); (iii) persons with cholecystitis
experience a 15% probability of hospitalization;
and (iv) the probabilities of hospitalization for
the three conditions – diabetes, refractive errors,
cholecystitis – behave independently and combine
together according to the laws of probability.
Using these conditions, a hospitalized subset
was defined from Berkson’s fabricated general
population (Tables 1 and 2). Comparison of these
two populations reveals that the association between
cholecystitis and diabetes apparent in the hospitalized
data (odds ratio of 1.89 calculated from data in
Table 2) is not indicative of the “true” association
(or lack of it) in the general population (odds ratio of
0.90 calculated from data in Table 1).

Berkson’s bias remained theoretical and was large-
ly disregarded by epidemiologists [3] until 1978
when Roberts et al. provided the first empirical
support using data from household surveys of health
care utilization [2]. They examined associations
between several medical conditions and documented

Table 1 Cholecystitis and diabetes, hypothetical general populationa

Cholecystitis Not cholecystitis Total

Diabetesb 3 000 97 000 100 000
Refractive errors 29 700 960 300 990 000
(not diabetic)

Total 32 700 1 057 300 1 090 000

Cholecystitis in diabetic group 3%
Cholecystitis in control group (refractive errors) 3%
Difference 0%

aAdapted from [1].
b10 000 of the 100 000 cases of diabetes also have refractive errors (300 cases with cholecystitis and 9700 cases without
cholecystitis); the refractive errors control group contains no known cases of diabetes.

Table 2 Cholecystitis and diabetes, hypothetical hospital populationa

Cholecystitis Not cholecystitis Total

Diabetes 626 6 693 7 319
Refractive errors 9 504 192 060 201 564
(not diabetic)

Total 10 130 198 753 208 883

Cholecystitis in diabetic group 8.55%
Cholecystitis in control group (refractive errors) 4.72%
Difference +3.83%

Hospital admission rates for cholecystitis = 0.15, diabetes = 0.05, refractive error = 0.20.
aAdapted from [1].
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significant differences between community- and
hospital-based risk estimates. These biases occurred
in both directions.

Berkson’s original representation of the admis-
sion rate bias was based on a conservative assump-
tion of independence for disease-specific admission
rates [1]. In practice, however, a given medical con-
dition may exacerbate a second condition, increasing
the probability of differential hospitalization rates.
Additionally, other circumstances such as the mani-
festation and severity of symptoms, treatment reg-
imen of choice, and specialization of certain hos-
pitals (or physicians practicing within certain hos-
pitals) in treating given medical conditions, may fur-
ther increase the disparity between case and control
admission rates.

Berkson’s fallacy has been primarily described
for a certain subset of analyses in which the asso-
ciation of interest is between two medical condi-
tions. It is conceivable that a similar bias might
impact case–control studies considering a nonmed-
ical explanatory variable, if: (i) the explanatory
variable is represented disproportionately in a hos-
pital setting; and (ii) cases and controls experi-
ence differential hospital admission rates. Berkson
gives a hypothetical example of a study of occu-
pation as an explanatory variable for heart disease

in which one occupation group is more likely to
present to a hospital for heart disease treatment than
another.

Finally, Berkson’s bias may have applications
beyond the hospital setting. For example, a study of
drug use and violent crime in a prison population,
using nonviolent criminals as the control group, might
result in a different risk estimate than the same study
performed in a community-based population.

It is not possible to correct for admission rate bias
during analysis. Berkson’s bias, like other biases,
is a design issue that needs consideration prior to
initiating a case–control study drawing participants
from a select segment of the general population.

References

[1] Berkson, J. (1946). Limitation of the application of
fourfold tables to hospital data, Biometrics Bulletin 2,
47–53.

[2] Roberts, R.S., Spitzer, W.O., Delmore, T. & Sackett, D.L.
(1978). An empirical demonstration of Berkson’s bias,
Journal of Chronic Diseases 31, 119–128.

[3] Sartwell, P.E. (1974). Retrospective studies: a review for
the clinician, Annals of Internal Medicine 81, 381–386.

LAURA A. SCHIEVE



Bernard, Claude

Born: July 12, 1813, in St-Julien, France.
Died: February 10, 1878, in Paris, France.

A young man of a very modest extraction (his parents
were vineyard workers), Claude Bernard received a
pious and humanistic education, and started working
as an assistant pharmacist. At 21 he ventured to Paris
with the ambition of making a career in literature. He
was advised rather to learn a job that would enable
him to earn a living. He then turned to medicine,
which he studied conscientiously, although clinical
work did not much appeal to him. As a resident at
the Hotel-Dieu, under François Magendie, he realized
what he really wanted to do: experimental work in
physiology. For four years he assisted Magendie in
his laboratory at the Collège de France, and became
an expert at using animal vivisection to trace physio-
logic facts.

After graduating as an MD with a thesis on gastric
juice (1843), he failed to get a teaching position in
Paris and reluctantly considered settling as a coun-
try doctor in his native province of Beaujolais. In
the meantime, he spent his wife’s dowry trying to
run a private research laboratory of his own, in the
latin quarter in Paris. Finally, at the end of 1847,
he was appointed as substitute of Magendie at the
Collège de France. When in 1852 Magendie retired
he was entrusted with his teaching post and his lab-
oratory. He officially became professor of medicine
at the Collège after Magendie’s death in 1855. The

years 1843–1855 were a very creative period, fer-
tile in discoveries: on the nerve control of gastric
digestion (1843–1845); on the digestive role of bile
and on the functions of cranial nerves (1844–1845);
on the mechanism of carbon monoxide intoxication
and on the inhibitory action of the vagus nerve on
the heart (1846); on the glycogenic function of the
liver (1848); on the role of the pancreas and on the
metabolism of carbohydrates (1849); on curare poi-
soning, on vasomotor nerves (1852); and so on. His
results on the release of sugar by the liver were pre-
sented as a thesis for the doctorate in science (1853).
A chair of general physiology was then created for
him at the Faculty of Sciences of the University of
Paris (1854), and later transferred to the Museum
d’Histoire Naturelle (1868), while he went on teach-
ing experimental medicine at the Collège de France.
In the later part of his life, Bernard was elected to
the Académie des Sciences (1854), to the Académie
de Médecine (1861), and to the Académie Française
(1869). He was the first French scientist to be honored
with a state funeral.

Bernard’s teaching at the Collège (ten volumes of
Lessons were published) attracted large audiences of
physicians and physiologists from all over the world.
Although not a brilliant lecturer, he communicated a
vivid sense of laboratory work in the making: describ-
ing techniques such as the experimental section of
nerves, showing how experiments are guided by pre-
conceptions (hypotheses), and how preconceptions
are dismissed (refuted) by experimental arguments.
His teaching at the Sorbonne and at the Museum
was more theoretic. It reflects the philosophical turn
that Bernard took in his later years, especially when,
from 1860, several episodes of illness occasioned
prolonged stays for recovery in his native village.
He then attempted to conceptualize both his research
methodology and his project for the development of
the science of general physiology that he had helped
to shape.

The Introduction to the Study of Experimental
Medicine (1865) was meant as a preparatory step
toward a comprehensive treatise on the Principles
of Experimental Medicine, which was never com-
pleted (a posthumous putative reconstruction of the
Principles, based on draft chapters, was published
in 1947). The Lessons on the Properties of Living
Tissues (taught at the Sorbonne), published in 1866,
stressed that general physiology aims at identify-
ing traits which are identical in all living animals,
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thus revealing the essence of vital phenomena. The
Lessons on the Vital Phenomena Common to Ani-
mals and Plants (taught at the Museum), published
in 1878, right after Bernard’s death, are an exacting
meditation on the unity of living processes and on
the intricacy of organic construction and destruction
in such processes.

Bernard’s views on biostatistics are stated in the
Introduction (see Part II, Chapter 2, section “De
l’emploi du calcul dans l’étude des phénomènes des
êtres vivants; des moyennes et de la statistique”), and
more explicitly in the draft versions of the Principles
(especially Chapter VI and VII): “It is easier to statis-
tically count cases pro and con than to conduct proper
experimental reasoning” (Principles, VII). Bernard
wanted to take medicine from the state of “a conjec-
tural science based on statistics” to the state of “an
exact science based on experimental determinism”.
It is not sufficient, he said, to observe (for instance)
that inoculation protects against smallpox in 95% of
cases. You want to know the exact mechanism by
which inoculation is effective, and why it fails to
work in particular cases (exceptions do not occur
just by chance – they must be explained). Statisti-
cal knowledge is descriptive; it has no explanatory
power. So-called statistical “laws” are “true in general
and false in particular”. Should medicine be practiced
as an “active science” rather than as an art of guess-
ing, physicians would track physiologic processes in
the laboratory up to the point at which there is no
uncertainty left.
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Bernoulli Family

Of the many distinguished members of the Bernoulli
family of Basle, Switzerland, three in particular
made important contributions to the development
of probability, statistics, and epidemiology: James
(1654–1705) and his nephews Nicholas (1687–1759)
and Daniel (1700–1782), sons of two of his broth-
ers. The family had originally come to Basle from
Antwerp as Protestant refugees, fleeing the govern-
ment of the Duke of Alba.

James’s reputation rests on his posthumous Ars
conjectandi (The Art of Conjecture) brought out in
1713 by Nicholas. The first of the four parts is a
commentary, with text, on Christian Huygens’ book
De ratiociniis in aleae ludo (On Reckoning in Games
of Chance), which had appeared in 1657; part II, on
permutations and combinations, is a generally infe-
rior version of Pascal’s similar Traité du triangle
arithmétique (published in 1665), with which James
was unfamiliar, but it does contain the binomial dis-
tribution which Pascal had only given for the case of
equal chances (hence “Bernoulli trials”); and part III
applies the methods discussed earlier to games of
chance. Part IV is the seminal part of the work, in
which James inaugurates statistical estimation the-
ory by stating and proving the first limit theorem in
probability, the law of large numbers.

Nicholas, besides seeing his uncle’s book through
the press, became interested in 1712 in the biosta-
tistical problem of estimating the probability of a

birth being male from some data, and then comparing
the distribution of the observations with the binomial
model. To do this, he needed an approximation to
the binomial distribution, which led him to improve
James’s limit theorem, sharpening two of the inequal-
ities involved. Nicholas was also the originator, in
1713, of the St Petersburg problem, famous in proba-
bility theory as a game with an infinite mathematical
expectation – so what should be a fair stake?

To Daniel, we owe a novel derivation of the
normal distribution from the binomial (also in con-
nection with sex-ratio data), the first explicit com-
mendation of the method of maximum likelihood
for estimation (1778), and a suggested resolution of
the St Petersburg paradox (1738). For this, he applied
the Pascalian notion of utility to the value of money,
arguing that the utility of large sums fell away so that
the expected utility was not infinite, and that therefore
a finite stake was in order. This established him as one
of the founders of mathematical economics. He made
many contributions to applied mathematics, including
the “Bernoulli equation” for fluid flow (in Hydrody-
namica, 1738).

In 1760, Daniel discussed a model for the mortal-
ity from smallpox in various age groups, deriving a
differential equation relating the number of survivors
and the number of those at age x who had not yet had
smallpox. In the same year, he advocated inoculation
against smallpox as a means of increasing average
survival times (see Life Expectancy).
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Bertillon Family

A dynasty of French natural scientists and physicians
interested in vital and social statistics [1].

Louis-Adolphe Bertillon (1821–1883), a physician,
was a son-in-law of Achille Guillard (1789–1876),
the “founder” of demography. Bertillon studied the
use of means and distributions (e.g. of heights),
following Quetelet. He was familiar with the work of
William Farr, and he corrected some of Guillard’s
methods.

Jacques Bertillon (1851–1922), son of Louis-
Adolphe and also a physician, was a demographer and
crusaded for a higher French birth rate. In 1893, he
chaired a committee of the International Statistical
Institute to prepare a new classification of causes of

death, synthesizing methods used in different coun-
tries (see International Classification of Diseases
(ICD)).

Alphonse Bertillon (1853–1914), another son of
Louis-Adolphe, produced a system of identification
of criminals and other individuals (“bertillonage”),
by bodily measurements, photographs, and so on.
Fingerprints had been used earlier, and were espoused
by Galton.

Reference

[1] Lécuyer, B.-P. (1987). Probability in vital and social
statistics: Quetelet, Farr, and the Bertillons, in The Prob-
abilistic Revolution, Vol. 1, Ideas in History, L. Krüger,
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Beta Distribution

The beta distribution is a probability distribution of
a continuous random variable taking value in the
interval [0, 1]. Its probability density function is

f (x; a, b) = B(a, b)−1xa−1(1 − x)b−1, 0 ≤ x ≤ 1,

where a and b are parameters satisfying a > 0 and
b > 0, and where B(a, b) = ∫ 1

0 ta−1(1 − t)b−1 dt is
called the beta function. The rth moment of the
distribution is

E(Xr) =
r−1∏

i=0

a + i

a + b + i
.

The mean and variance are

E(X) = a

a + b
,

var(X) = ab

(a + b)2(a + b + 1)
.

The beta density function has a variety of possi-
ble shapes, including mound-shaped when a and b

exceed 1, U-shaped when they are both less than
1, strictly increasing when a > 1 and b = 1, strictly
decreasing when a = 1 and b > 1, and the uni-
form distribution over [0, 1] when a = b = 1. It is
symmetric about 1/2 when a = b, and otherwise the
direction of skewness is determined by a − b.

If X has a beta distribution with parameters a

and b, then (b/a)X/(1 − X) has an F distribution
with 2a and 2b degrees of freedom. If Y1 and Y2

are independent gamma random variables with unit
scale parameter and shape parameters a and b, then
Y1/(Y1 + Y2) has a beta distribution with parameters
a and b.

The beta distribution is often used to model pro-
portions. For instance, in Bayesian inference it is the
conjugate prior distribution when the observations
have a binomial distribution, given the proportion.
In that case, the marginal distribution of the observa-
tions is the beta-binomial. The Dirichlet distribution
is a multivariate form of the beta.

For further details about the beta distribution,
see [2]. An alternative two-parameter family over the
unit interval, called the logistic-normal [1], assumes
that the logit of the variable has a normal distribution.
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Beta-binomial
Distribution

It is often the case that an individual provides
repeated binary outcomes. For example, in ophthal-
mology, a subject almost always has information
available on the right and left eyes. In obstetrics,
one sometimes has outcomes from multiple preg-
nancies of the same woman. The primary outcome
variable is often binary (e.g. reduced visual acuity =
visual acuity 20/50 or worse in an individual eye).
Such data are referred to as clustered. Clusters may
be defined not only by replicates for a single indi-
vidual, but also by outcomes for different related
cluster members (e.g. members of a family). The use
of standard methods for analyzing categorical data
(e.g. the chi-square test for 2 × 2 tables) which are
usually based on either the binomial distribution or
the hypergeometric distribution using the cluster
member as the unit of analysis is invalid because the
assumption of independence of binary outcomes for
different cluster members is often not correct.

An attractive alternative model in this setting is
the beta-binomial model.

Definition

Under the beta-binomial model, we assume that
there are ti cluster members in the ith cluster,
i = 1, . . . , k. For the ith cluster (or unit) we
assume that any cluster member (or subunit) has
probability pi of being affected, where pi follows
a beta distribution with parameters a and b. A
beta distribution with parameters a and b (both
> 0) is a probability distribution over the interval
(0,1) with density {Γ (a + b)/[Γ (a)Γ (b)]}pa−1(1 −
p)b−1, 0 < p < 1. It has mean = a/(a + b) and
variance = ab/[(a + b)2(a + b + 1)]. Conditional on
pi , the outcomes for different cluster members are
independent. The resulting marginal distribution of
Yi = number of affected cluster members in the ith
cluster is referred to as the beta-binomial distribution,
which is given by

Pr(Yi = k) =
(

ti
k

)
akbti−k

(a + b)ti
, k = 0, 1, . . . , ti ,

(1)

where ak = the rising factorial
∏k−1

j=0(a + j) and bti−k

and (a + b)ti are defined similarly.
The expected value of Yi is tia/(a + b) and

the variance is tiab/(a + b)2 + ti (ti − 1)ab/[(a +
b)2(a + b + 1)]. Standard maximum likelihood meth-
ods can be used for parameter estimation [2, 3, 10].
Notice that the variance of the beta-binomial distribu-
tion is always greater than the corresponding variance
of a binomial distribution with the same expected
value, which is given by tiab/(a + b)2. This prop-
erty is referred to as overdispersion or extrabinomial
variation and provides a rationale for why the beta-
binomial distribution can be used more generally to
model overdispersed binary data.

Measures of Dependence Among Subunits
within a Cluster

The beta-binomial model can be used to quan-
tify dependence between outcomes for two subunits
within the same cluster. Two measures that are useful
for this purpose are the intraclass correlation and the
pairwise odds ratio. These are given by

intraclass correlation

= corr(yij1 , yij2)

= 1/(a + b + 1), (2)

pairwise odds ratio

= Pr(yij1 = 1, yij2 = 1) Pr(yij1 = 0, yij2 = 0)

Pr(yij1 = 1, yij2 = 0) Pr(yij1 = 0, yij2 = 1)

= (a + 1)(b + 1)

ab
, (3)

where yij is the outcome for the j th subunit within
the ith cluster. In words, the pairwise odds ratio
is a measure of the odds in favor of disease for
the j1th subunit if the j2th subunit is affected
divided by the odds in favor of disease for the j1th
subunit if the j2th subunit is not affected. For either
measure, as a + b decreases, the aggregation between
subunits in a cluster increases. If a + b approaches
∞, then the correlation between subunits approaches
0 and the beta-binomial distribution converges to
the binomial distribution. If a + b = 0, then there is
perfect correlation between subunits within a cluster.
Note that negative correlation is not allowed under
the beta-binomial distribution.
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The Treatment of Covariates

An important issue is how to use the beta-binomial
distribution in the presence of covariates. If there is
only a single binary covariate (e.g. a treatment indica-
tor variable in a clinical trial), then a simple approach
is to fit separate beta-binomial models for a treated
and control group and compare the parameters for
the two groups. In particular, disease prevalence can
be estimated by a/(a + b) and compared between
the two groups [11]. More generally, several authors
have considered generalizations of the beta-binomial
model for correlated binary data in the presence of
covariates. Prentice [4] has proposed the following
model for the joint distribution of t correlated binary
variables in the presence of unit-specific covariates x:

Pr(yi+|x)

=

yi+−1∏

j=0

[p(x) + λ(x)j ]
t−yi+−1∏

j=0

[1 − p(x) + λ(x)j ]

t−1∏

j=0

[1 + λ(x)j ]

,

(4)

where p(x) is a parametric model relating the margi-
nal probability of disease to x, λ(x) = δ(x)/[1 −
δ(x)], and δ(x) is the intraclass correlation for dis-
ease probabilities between cluster members as defined
above. This model has the advantage that (i) the
marginal probability is explicitly specified as a func-
tion of covariate values, and (ii) it reduces to a
beta-binomial model if no covariates are present. The
disadvantages are (i) only unit-specific covariates are
possible, and (ii) the dependence among cluster mem-
bers is parameterized by a correlation rather than an
odds ratio; in general, constraints need to be placed on
the correlations so that the probabilities in (4) are ≤1.

Rosner [6] proposed a polytomous logistic regres-
sion model (see Polytomous Data) which allows for
both unit- and subunit-specific covariates for clus-
tered binary data of the form

Pr(yi |xi)

=
asi

bti−si
exp




ti∑

j=1

yij (βx
(0)
i + γ x

(j)

i )





∑

zi

azi+bti−zi+ exp




ti∑

j=1

zij (βx
(0)
i + γ x

(j)

i )





,(5)

where x
(0)
i is an (Np × 1) vector of unit-specific

covariates, x
(j)

i is an (Ne × 1) vector of subunit-
specific covariates, si = yi+, and the summation in
the denominator is over all possible permutations
zi = (zi1, . . . , ziti ) of zeros and ones. If no covariates
are present, then this model reduces to a beta-
binomial distribution with parameters a and b. The
measure of dependence in this model is the pairwise
odds ratio as defined in (3), which can be shown
to be independent of covariate values x. The most
natural interpretation of the regression parameters is
in conditional form as follows:

ln

[
pij

(1 − pij )

]
= ln

[
(a + s−j )

(b + ti − 1 − s−j )

]

+ βx(0) + γ x(j), (6)

where s−j is the number of successes among the
ti − 1 subunits excluding subunit j . In this context,
if x(0)

p is the pth unit-specific variable, then βp = ln
(odds in favor of disease for a 1 unit increase in
x(0)

p holding all other variables constant including the
disease status of the other cluster members). Thus,
β (and likewise γ ) has a conditional rather than a
marginal interpretation. Qu et al. [5] and Connolly
& Liang [1] have considered an extension of (5) of
the form

Pr(yi |xi) = c(θ, β, γ ) exp




si−1∑

k=0

ft (k, θ)

+
ti∑

j=1

yij (βx
(0)
i + γ x

(j)

i )



 , (7)

where θ is a vector of correlation parameters and
ft (k, γ ) is an arbitrary function representing the log
odds in favor of being affected at a specific visit
conditional on there being k successes among the
remaining ti − 1 visits and all covariate values being
0. It can be shown that (5) is a special case of (7).

More Complex Patterns of Correlation

An implicit assumption of the beta-binomial model
is that subunits are exchangeable within a cluster. A
natural generalization is to allow for data structures
with multiple levels of nesting. For example, in
the ophthalmologic setting one may have data from
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several members of the same family where each
person provides data on two eyes. In this setting,
it would be expected that the correlation between
two eyes of the same person is different from the
correlation between two eyes from different family
members, although both correlations may be greater
than zero. To accommodate this data structure [7] let
p be the probability that an eye is affected for a
person from an average family across all families
in the population, let pi be the probability that
an eye is affected for an average person from the
ith family, and pij be the probability that an eye
is affected for the j th person in the ith family.
We model

f1(pi |p) ∼ beta [λ0p, λ0(1 − p)] ≡ beta(a, b),

f2(pij |pi) ∼ beta [λlpi, λl(1 − pi)]. (8)

The resulting marginal distribution of the pij is
referred to as a compound beta-binomial distribution
and is a function of p, λ0 and λ1. Under this model,
the odds ratio between eyes from two different family
members is

OR1 = (a + 1)(b + 1)

ab
,

while the odds ratio between two different eyes of
the same person is

OR2 = (λ1a + λ1 + λ0 + 1)(λ1b + λ1 + λ0 + 1)

(λ1a)(λ1b)
.

Newton–Raphson methods can be used to obtain
maximum likelihood estimates of the parameters
of this model (see Optimization and Nonlinear
Equations).

Another variant of the beta-binomial model is
obtained when one can subdivide a cluster into mul-
tiple subclasses, for example when one has both
parents and children in the same cluster. In the case of
c classes, one wants to generalize the beta-binomial
model to allow for c(c − 1)/2 interclass correlations
between outcomes for members of different classes,
and c intraclass correlation parameters between out-
comes for members of the same class. To accomplish
this goal, let

λi =
c∑

k=1

wikθk, i = 1, . . . , c, (9)

where θ1, . . . , θc are independent beta (a, b) random
variables and

∑c
k=1 wik = 1, i = 1, . . . , c. It follows

that the intraclass correlation between outcomes for
subunits in the ith class of the same cluster is
given by

ρ(yij1 , yij2) =
c∑

k=1

w2
ik

(a + b + 1)
, i = 1, . . . , c,

(10)

while the interclass correlation between outcomes for
pairs of subunits in the i1th and i2th class of the same
cluster is given by

ρ(yi1j1 , yi2j2) =
c∑

k=1

wi1kwi2k

(a + b + 1)
,

i1, i2 = 1, . . . , c, i1 �= i2. (11)

Note that if wii = 1, i = 1, . . . , c, then we have c

independent subclasses with all intraclass correla-
tions=1/(a+b+1) and all interclass correlations =
0. If wi1 = 1, i = 1, . . . , c, then the model in (9)
reduces to the ordinary beta-binomial model in (1).
Based on (9) one can obtain an explicit function
for the joint likelihood of y = (yl, . . . , yc), where
yi is a 1 × ti vector of outcomes in the ith class.
The resulting model is referred to as a beta-binomial
mixture model [8, 9].
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Bias From Diagnostic
Suspicion in Case–Control
Studies

Diagnostic suspicion bias occurs when there is
systematic error in case ascertainment. For instance,
a knowledge about the subject’s prior exposure
to a putative cause (family history, being exposed
to an epidemic, taking certain drugs, and certain
occupational exposure) may increase diagnostic
search for the disease, and as a result, exposed
subjects are more likely to have the disease diagnosed
than the nonexposed [10]. It can occur in both a case
control and a cohort study. In case–control studies,
diagnostic suspicion bias is a selection bias, whereas
in cohort studies, it is considered as a measurement
or information bias since it occurs in subjects already
included in the study [9].

Diagnostic suspicion bias can result in overesti-
mation of an exposure’s effect on the risk of dis-
ease [13]. For example, in patients with a suspected
risk factor, physicians may perform the diagnosis
more carefully. So, they are more likely to make the
correct diagnosis in patients with the disease of inter-
est and also more likely to make a false positive diag-
nosis. Conversely, in patients without the suspected
risk factors, presence of the disease is less aggres-
sively sought, and consequently, physicians are more
likely to make a false negative diagnosis. A false pos-
itive diagnosis, however, is unlikely. Figure 1 illus-
trates the described scenario. Suppose that among the
exposed, 90% of subjects who truly have the disease
and 20% of subjects who truly do not have the dis-
ease are diagnosed to have the disease, while among
the nonexposed, 70% who truly have the disease and
0% who truly do not have the disease are diagnosed
positive. The unbiased odds ratio is AD/BC, while
the putative odds ratio becomes [(0.9A + 0.2B) ×
(D + 0.3C)]/[(0.8B + 0.1A) × 0.7C] when diag-
nostic suspicion bias occurs. Clearly, this odds ratio
would in general overestimate the true odds ratio.

Diagnostic suspicion bias is more likely to occur
when objective criteria for reliable diagnosis are dif-
ficult to establish [12]. For some diseases, such as
rheumatoid arthritis, a whole host of symptoms and
signs may be present. Different clinicians may inter-
pret these symptoms, signs, and various laboratory
test results differently, which may lead to very

Figure 1 Illustration of diagnostic suspicion bias in
case–control studies

different diagnoses. Sometimes, diagnoses are clas-
sified as “definite”, “probable”, and “possible”. In
this situation, with the same borderline symptoms
and signs, subjects with the suspected risk factor
may be diagnosed “possibly” to have the disease,
whereas those without the risk factor may be diag-
nosed negative.

Diagnostic suspicion bias is closely related to
surveillance bias and detection bias. Surveillance
bias occurs when individuals under frequent or close
surveillance are more likely to have disease diag-
nosed [11]. For example, postmenopausal women
taking estrogen may be more likely to have breast
cancer diagnosed because of frequent physician visits.
Detection (unmasking) bias occurs when an expo-
sure, rather than causing disease, causes symptoms
that precipitate a search for the disease [10]. An early
report of postmenopausal estrogens and endometrial
cancer was criticized on this ground [5, 6]. It was
suggested that subclinical cancers were being diag-
nosed more frequently in exposed women because
estrogen use could cause symptomless patients to
bleed, which, in turn, led to more thorough diagnoses.
As with diagnostic suspicion bias, surveillance and
detection biases can result in a spurious increase in
the odds ratios.
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Examples of Studies on Checking
Diagnostic Suspicion Bias

In a study of oral contraceptives and deep-vein throm-
bosis and pulmonary thrombosis, Vessey & Doll [14]
investigated the possibility that a history of oral con-
traceptives use might influence doctors’ diagnoses.
They asked an independent investigator who had no
knowledge about the patients’ exposure to classify
the diagnoses as “possible”, “probable”, or “certain”.
It was hypothesized that if the diagnoses were influ-
enced by knowledge of a patient’s contraceptive his-
tory, the association would be strongest in patients
for whom the diagnosis was least certain, because
patients in this group were most likely to be diag-
nosed only because of their oral contraceptives use
history. Results indicated, however, that the propor-
tions of subjects using oral contraceptives increased
with increasing certainty of diagnosis, suggesting that
the clinical diagnoses were not biased by knowledge
about the exposure.

Fox & White [3] examined whether diagnostic
suspicion bias affected the observed increase in mor-
tality rate of bladder cancer among workers in the
rubber industry. The bias might arise from the pub-
licity that followed the initial discovery of excess
bladder cancer among these workers. Awareness of
the association between work in the rubber indus-
try and bladder cancer among doctors might increase
the chance of recording the bladder cancer as the
underlying cause on the death certificates of work-
ers in the rubber industry than on the death cer-
tificates of other people. The researchers compared
death certificates for bladder cancer cases from the
rubber industry with those from other groups identi-
fied from the National Cancer Registry. They found
that proportions of death certificates with mention
of bladder cancer as the underlying cause on the
certificates were similar between workers in the
rubber industry and patients from other occupa-
tions, indicating that doctors’ awareness did not
explain the rise of bladder cancer death among these
workers.

Foreman et al. [1] found that intrauterine device
(IUD) usage at conception significantly increased
septic second-trimester fetal loss. They considered
the possibility that, with borderline evidence of infec-
tion, patients with an IUD in place might be more
frequently diagnosed as septic than those without
an IUD in place. To check this bias, they restricted

the analyses to only blatant cases (cases with tem-
perature of 39.4°C or higher). The results remained
unchanged, indicating diagnosis suspicion bias was
not an explanation for the observed association.

Several case–control studies reported a positive
association between aspirin use and Reye’s syn-
drome [4, 7, 15]. However, diagnostic suspicion bias
may partially explain this association because the
diagnosis procedure could be affected by the exten-
sive previous publicity about a relationship between
aspirin and Reye’s syndrome. Forsyth et al. [2] car-
ried out a further case–control study in which
“diagnostic-suspicion” patients (Reye’s syndrome
was initially suspected but definitely ruled out) were
used as an alternative control group. They found
that aspirin use in this control group was very low
and equal to the rate in the control group identified
from communities, suggesting that the diagnosis of
Reye’s syndrome was not affected by the knowledge
of aspirin use and publicity about the association.

Prevention and Minimization

To prevent diagnostic suspicion bias, one must
make sure that the disease of interest is sought
with equal vigor in exposed and nonexposed sub-
jects [13]. In other words, exposed and nonex-
posed people should have the same chance to be
detected as cases. This may be implausible in cir-
cumstances where prevalence cases are selected
because diagnoses are made prior to the study. How-
ever, multiple data sources can be used to ver-
ify diagnoses and minimize misclassification [8].
For example, one may review hospital records,
death certificates, and pathology reports, in addi-
tion to the data from a disease registry, to identify
cases.

When cases are gathered prospectively (incidence
cases), one important strategy to minimize bias is
to ensure that all activities associated with case
ascertainment follow the same, standard protocol so
that diagnoses are made in the same way in the
exposed and nonexposed [8]. In randomized clinical
trials, outcome assessment is conducted in a blinded
manner with regard to treatment conditions. In case-
control studies, a blinded assessment requires that
neither clinicians nor patients be aware of the study
hypothesis. In some cases, independent investigators
may be needed to evaluate all available evidence
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without having knowledge about the exposure [14]
(see Blinding or Masking).

One way to control diagnostic suspicion bias in
data analysis is to stratify cases (see Stratification)
on the basis of certainty of diagnosis or severity
of disease [11]. The investigator can also simply
restrict the analyses to blatant cases, but this may
reduce the power of the study. As with other biases
in case-control studies, diagnostic suspicion bias
should be taken into consideration when a study is
conceived.
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Bias from Exposure
Effects on Controls

In population-based case–control studies, controls
are selected at random from the source (or “base”)
population (see Case–Control Study, Population-
based). In hospital-based case–control studies, cases
in the hospital with a disease of interest are com-
pared with controls in the hospital who have other
diseases (see Case–Control Study, Hospital-based).
In hospital-based case–control studies, the exposure
odds ratio comparing cases with controls may be
a biased estimate of the relative risk of disease in
the underlying source population if the risks of the
control diseases are themselves associated with the
exposure under study. For example, in a pioneering
hospital-based case–control study of the risk of lung
cancer from smoking, Doll & Hill [2] included sub-
jects with bronchitis among the controls. Because the

risk of bronchitis is now known to be increased by
smoking (see Smoking and Health), we can infer
that estimates of the relative risk of lung cancer from
smoking were biased downward by the inclusion of
such controls. A quantitative treatment of such bias
is given by Breslow & Day [1, pp. 153–154].
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Bias from Exposure
Suspicion in Case–Control
Studies

Exposure suspicion bias is the mirror image of diag-
nostic suspicion bias (see Bias From Diagnostic
Suspicion in Case–Control Studies). It occurs when
there is systematic error in the ascertainment of
exposure. For example, a knowledge of the subject’s
disease status may increase the intensity of a search
for exposure to the putative cause, and as a result,
exposure information is gathered more thoroughly in
cases than in controls [9]. Exposure suspicion bias
is specific to a case-control studies, in which expo-
sure is usually ascertained after the outcome event
has occurred.

As with diagnostic suspicion bias, exposure sus-
picion bias can spuriously increase the effect of the
exposure on the risk of disease. Consider a study of
the presence of a carotid bruit and the occurrence of
transient ischemic attack (TIA) [13]. In patients with
symptoms of cerebral ischemia, a physician listens
very carefully and is able to detect a bruit most of
the time if it is truly present. Meanwhile, a false pos-
itive diagnosis of a bruit is likely to occur owing
to awareness of the suspected association. On the
contrary, in patients without cerebral ischemia, the
presence of a bruit is less aggressively sought, so a
false negative diagnosis of a bruit is likely to occur.
A false positive diagnosis, however, is unlikely. The
described scenario is illustrated in Figure 1. Suppose
that among the diseased, 90% of subjects who are
truly exposed and 20% who are truly nonexposed
are detected to have the exposure; while, among the
nondiseased, 70% who are truly exposed and 0%
who are truly nonexposed are detected to have the
exposure. The unbiased odds ratio is AD/BC. The
putative odds ratio becomes [(0.9A + 0.2C) × (D +
0.3B)/(0.7B) × (0.8C + 0.1A)] when exposure sus-
picion bias occurs. This putative odds ratio would in
general overestimate the true odds ratio.

Exposure suspicion bias can arise from several
sources. One source relates to clinicians who examine
the patients, record the exposure information, and
perform histologic assessments and laboratory tests.
The second source is the interviewer who inquires
about whether or not the patients are exposed to the
suspected risk factor. For example, an interviewer

Diseased Nondiseased

A
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Exposed

Nonexposed

(a)
Diseased Nondiseased

90%

20%

70%

0%

Exposed

Nonexposed

(b)

Diseased Nondiseased

0.9A + 0.2C

0.8C + 0.1A

0.7B

D + 0.3B

Exposed

Nonexposed

(c)

Figure 1 Exposure suspicion bias in case–control studies.
(a) Unbiased ascertainment of exposure; (b) the percent-
age of each group detected to have the exposure; (c) the
relationship between exposure and disease with exposure
suspicion bias

with knowledge of the study hypothesis may tend
to probe the diseased subjects more intensely for
histories of exposure and may encourage certain
responses among either cases or controls through
language, tone, or “body language”. A third source
is the interviewed subjects or proxies who report or
recall exposure information. For example, individuals
with specific diseases may be more likely to recall
exposures if they suspect that the exposure is related
to their disease. Mothers of malformed infants may
recall certain exposure more thoroughly than mothers
of healthy infants if they believe the exposure to be
the cause of the adverse outcome [8]. Differential
recall bias often tends to overestimate the risk, but
the opposite may also occur [8].

Examples of Studies on Checking
Exposure Suspicion Bias

In Doll & Hill’s case–control study of smoking and
lung cancer [1], potential bias on reporting of smok-
ing history might arise due to interviewers’ knowl-
edge of the diagnosis (see Smoking and Health).
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The researchers checked this possibility by comparing
reported smoking habits of patients of confirmed
lung cancer with those whose diagnoses were later
not confirmed. They found that smoking habits of
patients with erroneous diagnoses resembled those
of the controls and differed significantly from those
of confirmed cases. This indicates that reporting of
smoking history was not affected by interviewer’s
knowledge about the disease status.

Forsyth et al. [4] investigated the possibility of
biased recall of medications of the child by the parent
or guardian in a case-control study of the associa-
tion between aspirin use and Reye’s syndrome. The
bias might arise from physicians’ consideration about
Reye’s syndrome, their repeated questioning about
aspirin use, and intensive publicity about the associa-
tion. It was discounted since the reported aspirin use
among those who were suspected initially of having
Reye’s syndrome, but later were confirmed not to be
cases, was found to be as low as in the control group.

MacKenzie & Lippman [7] examined the effect of
knowledge about pregnancy outcomes on the report-
ing of exposure histories by comparing reports from
early pregnancy and postdelivery. It was argued that
if exposure suspicion bias did occur, cases would add
more new information about the exposure and delete
less of the previously reported exposure. Results
showed that changes in reporting were similar among
cases (mothers of died, stillborn, and malformed
infants), controls, and mothers whose infants had less
serious problems.

Werler et al. [16] compared interview data with
exposure information documented during pregnancy
in obstetric records and found that serious recall
biases existed for many exposure variables. These
biases, however, were nondifferential in regard to
pregnancy outcomes: that is, mothers of severely
malformed infants did not recall better or worse than
mothers of less severely malformed infants.

Prevention and Minimization

To some extent, the strategies for preventing and
minimizing exposure suspicion bias mirror those for
preventing and minimizing diagnostic suspicion bias.
The key is that the exposure of interest is sought
with equal vigor in diseased and nondiseased sub-
jects [13]. In other words, cases and controls should
have the same chance to be classified as “exposed”

or “nonexposed”. This may reduce the degree of dif-
ferential exposure misclassification (see Differential
Error). But nondifferential misclassification caused
by the general inability of individuals to report accu-
rately about the histories of exposure may still exist,
which often biases the results toward a weak or null
association (see Bias Toward the Null).

In principle, exposure suspicion bias can be dimin-
ished by blinding the clinicians who perform the
physical examinations, histologic assessment, and
laboratory tests, the interviewers, and even the sub-
jects themselves to ensure comparability of measure-
ment of the exposure [6]. Blinding implies keeping
clinicians, interviewers, and patients ignorant of both
the study hypothesis and the classification of the sub-
ject as a case or a control. This can be easily achieved
for clinicians who perform histologic assessment and
laboratory tests. In most actual field operations, blind-
ing interviewers and patients, however, may not be
feasible. Nevertheless, interviewer bias and differ-
ential recall can be reduced by using standardized,
uniform data collection procedures and by training
the interviewers for unbiased probing [3, 10, 18].
Objective or independent sources of exposure history
can also be used.

To address the potential influence of knowledge
of disease status on the report of exposure, sev-
eral authors have advocated the use of “affected”,
“restricted”, or “pseudo” controls [7, 12, 16]. It is
argued that if equally sick controls are chosen, inter-
est and/or preoccupation with one’s medical state
would be similar for the two groups and, as a result,
exposure history would be examined or probed in
the same way in the two groups. However, use of
affected controls may introduce selection bias [2,
14] or a subtle confounder [5]. To circumvent these
problems, one can select controls with a variety of
admission diagnoses.

Some authors have suggested that respondents
who are aware of the etiologic hypothesis should be
excluded from the analyses to control exposure suspi-
cion bias [17]. However, others cautioned that exclu-
sion of “knowledgeable” subjects might introduce
selection bias and should not be advocated as general
practice [15]. Nevertheless, side-by-side comparison
of analyses with and without consideration of sub-
jects’ knowledge about the study hypothesis would
provide an excellent opportunity to examine whether
the knowledge does in fact influence ascertainment
of exposure.
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Use of biologic markers has received increasing
interest in epidemiologic studies [11]. Bio-markers
have been developed to assess environmental expo-
sures, nutritional factors, and genetic susceptibility.
Although survey methods will continue to play a
dominant role in most case-control studies, integra-
tion of laboratory methods would in general increase
the quality of exposure ascertainment [11].
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Bias from Historical
Controls

An historical control trial (HCT) has been defined [8]
as a trial that compares the experience of a prospec-
tively treated group with that of either a previously
published series or with previously treated patients at
the same institution (the historical controls). HCTs are
often compared with both randomized clinical trials
(RCT) and with observational studies. In an RCT,
treatment assignment is randomly assigned to all
subjects (see Randomization), and covariate infor-
mation and outcomes are collected prospectively. In
an observational study, treatment assignment is not
determined by the investigator. Because RCTs have
become the standard by which medical therapies are
judged, the focus here will be on the comparison
between an HCT and RCT in terms of feasibility,
cost, and bias.

Advantages of Historical Control Trials

There are both sample size considerations and ethical
arguments (see Ethics of Randomized Trials) in
support of HCTs. These have been described in [1,
4], and [5].

Sample size considerations center on the reduced
number of new patients needed to conduct an HCT
with the same power as an RCT. As an example,
assume that the response, x, in the control group, and,
y, in the treatment group, have the same variance
σ 2 and that there are nc subjects in the control group
and nT subjects in the treatment group. Then var(x −
y) = σ 2(1/nc + 1/nT). A typical clinical trial sets
nc = nT = n. In an HCT in which data for the nc

patients in the control group are already available,
only nT patients – one-half that in the clinical trial –
would be needed. If the response in the control group
is assumed known with certainty or if nc is much
larger than nT, only nT/2 – one-quarter that in the
clinical trial – would be needed. For rare diseases or
for expensive trials the advantage is clear. In addition,
a smaller sample size reduces the time required for
recruitment and so shortens the trial duration.

Clinical trials are most often undertaken to prove
a new treatment superior to standardized ones based
on previously accumulated data. As a consequence,

a randomized trial allocates to some patients a treat-
ment considered by the investigators to be inferior,
while the use of historical controls allows all patients
to be given the new, possibly better, treatment. The
ethical dilemma of giving a treatment thought to be
inferior is avoided. Physicians and patients might then
be more willing to participate in a trial when only a
single (better) treatment is involved. HCTs are also
easier to organize.

Disadvantages

HCTs are actually observational studies, in that the
investigator does not prospectively assign a treatment
in the control group. In HCTs, the estimated treatment
effect may be biased if controls differ systematically
from the treatment group in a way that affects prog-
nosis. Differences may occur either in the selection
of patients (see Selection Bias) or in their subsequent
evaluation and treatment. The analysis requires either
a demonstration that baseline covariates thought to
be potentially confounding are similarly distributed
in the two groups, or a model-based approach to
adjust for the baseline differences (see [6] for model-
ing in the context of survival analysis) (see Baseline
Adjustment in Longitudinal Studies).

Sacks et al. [9] note that criteria for inclusion in
the treatment group are usually more stringent than
for inclusion in the control group (see Eligibility and
Exclusion Criteria). Poor risk patients may not be
offered the new treatment, which as a consequence
may appear superior. It is also possible that patients
with a worse prognosis may be more likely to enter
a trial as “last chance” therapy, making the new
treatment appear worse. Advances in techniques for
cancer staging may also distort comparisons [3]. The
less sensitive staging techniques in earlier years make
historical controls appear to have less advanced dis-
ease, so they will appear to do worse when compared
with the treatment group. Ancillary care may also be
different for randomized controls, either because of
a difference in surveillance or because of medical
advancement in other fields.

Several authors have empirically compared HCTs
and RCTs designed to answer similar questions. Diehl
& Perry [2] matched historical control groups and
randomized control groups for six different types
of cancers. In 18 of 43 comparisons, survival or
relapse-free survival differed by more than 10 per-
centage points, being worse in the HCT group in
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17 of the 18 comparisons. Sacks et al. [9] reached
a similar conclusion in a survey of 106 papers on
therapeutic questions including cirrhosis with varices,
coronary artery disease, acute myocardial infarction,
colon cancer, melanoma, and habitual abortion. While
only 20% of RCTs found benefit, 79% of HCTs did,
despite similar outcomes for the treated patients in
the two types of study. The differences were in the
outcomes for the control groups, which tended to be
poorer in the HCTs. Miller et al. [7] analyzed the
results for 221 comparisons from 188 articles in six
surgery journals in 1983. For primary outcomes, 79%
of 19 HCTs showed the innovation to be better com-
pared with only 50% of 20 randomized controlled
trials. For secondary outcomes, 75% of eight HCTs
concluded the intervention was better compared with
only 57% of 61 randomized controlled trials.

In an RCT, randomization provides a theoretical
foundation by which a treatment effect can be esti-
mated and an hypothesis tested without the use of
covariate information (see Randomization Tests).
Randomization alone eliminates bias. Such is not the
case for HCTs, in which the burden is to remove
or reduce bias. As a consequence, HCTs may suffer
from an inability to convince colleagues who require
a RCT for confirmation. Funding for an HCT may
then be difficult.

Requirements for a Valid Historical
Control Study

Pocock [8] gives four requirements for a valid HCT:
(i) the control group has received the precisely defined
treatment in a recent previous study; (ii) the criteria
for eligibility, workup, and evaluation must be the
same (see Outcome Measures in Clinical Trials);
(iii) prognostic factors should be completely known
and be the same for both treatment groups; (iv) no
unexplained indications lead one to expect differ-
ent results. Gehan [4] adds an additional requirement:
(v) if differences in prognostic features exist between
the treatment and control groups, these should not
be sufficient to explain any observed differences in
outcome.

Summary

The potential for bias in historical control trials
often requires complex design and analysis. For some
therapies, accepted treatments have more commonly
come from HCTs than from randomized controlled
clinical trials (see Gehan [4] in the context of acute
leukemia). In practice, HCTs tend to give results
that favor the intervention. HCTs and RCTs are best
viewed as complementary techniques. A large-scale
randomized trial can be used to confirm the results of
HCTs, and HCTs can be used to support the results of
RCTs when there is difficulty in repeating trials that
have shown a benefit for one of the treatment groups.
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Bias from Loss to
Follow-up

Loss to follow-up bias results when subjects lost from
a cohort (see Cohort Study) have different health
response distributions from subjects who remain in
follow-up. For example, if sicker patients are lost
from a cohort during follow-up, the estimated sur-
vival distribution (see Survival Analysis, Overview)
will be biased upward. As another example, if a
cohort of subjects with the human immunodeficiency
virus (HIV) are being followed in a natural his-
tory study to track decreases in T-helper lymphocyte
(CD4+ lymphocyte) levels, and if the subjects with
low CD4+ lymphocyte levels are dropped from the

study in order to begin treatment, then the CD4+
lymphocyte levels in those remaining on study will be
upwardly biased. If loss to follow-up bias is greater in
an exposed cohort than in an unexposed cohort, the
estimates (see Estimation) of exposure effects will
be biased, but if the same degree of loss to follow-up
bias operates in both cohorts, nondifferential error
will result, and estimated exposure effects may be
unbiased or nearly unbiased.

(See also Bias from Nonresponse; Bias in Cohort
Studies; Bias in Observational Studies; Bias,
Overview; Missing Data in Epidemiologic Studies)
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Bias from Nonresponse

Nonresponse bias results when some members of the
intended study population fail to provide required
data (the nonresponders), and when those who res-
pond are not representative of the entire study pop-
ulation (see Nonresponse). In comparative studies,
such as studies comparing exposed and unexposed
cohorts, nonresponse bias may severely distort esti-
mates of exposure effect if the degree of nonre-
sponse bias differs in the exposed and unexposed
groups, resulting in differential nonresponse bias. If
the degree of nonresponse bias is the same in the

exposed and unexposed groups, then the nonresponse
bias is said to be nondifferential, and the bias in the
estimate of exposure effect may be minimal, or even
zero, depending on which measure of exposure effect
is used.

(See also Bias in Case–Control Studies; Bias in
Cohort Studies; Bias in Observational Studies;
Bias, Overview; Validity and Generalizability in
Epidemiologic Studies)
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Bias from Stage Migration
in Cancer Survival

When the Okies left Oklahoma and moved to Cal-
ifornia, they raised the average intelligence level
in both states (attributed to Will Rogers, American
humorist, 1879–1935).

Stage, the indicator of a tumor’s anatomic dissemi-
nation, is a key predictor of cancer survival. In its
simplest form, a tumor may be classified as “local-
ized” or “stage I” if there is no evidence of spread
of tumor beyond the organ of origin, “regional” or
“stage II” if there is evidence of tumor spread to adja-
cent tissues or lymph nodes, and “distant” or “stage
III” if there is evidence that the tumor is disseminated
to other organs [1, 7]. “Localized” or “stage I” tumors
generally have the best survival prognosis, while
tumors with distant metastases (“stage III”) have the
worst. Tumors are “staged” based on morphologic
and/or clinical evidence of the tumor’s anatomic dis-
semination. Technological advances in the latter half
of the twentieth century have increased the use of and
reliance on sophisticated diagnostic imaging proce-
dures for identifying disseminated disease (see Image
Analysis and Tomography).

Feinstein et al. [5] demonstrated that a cancer
cohort that has undergone use of sophisticated diag-
nostic imaging will have a different stage distribution
than a cohort the members of which were staged with
less use of imaging technology. The use of diagnos-
tic imaging uncovers “silent” tumor dissemination to
regional and distant sites that previously would have
escaped clinical detection. This results in a shift of
patients from less advanced to more advanced stages
of disease. The effect of this stage migration is to
improve cancer survival rates artifactually for both
the early stage and late stage patients in the cohort
subjected to imaging procedures.

Stage migration and its effect on survival rates
were demonstrated in two cohorts of lung cancer
patients, one diagnosed between 1953 and 1964 and
the other diagnosed in 1977. The latter cohort con-
tained staging data similar to that used in the first
cohort; additionally, the latter cohort contained data
from diagnostic imaging procedures not available to
the first cohort. When six-month survival rates for
the two cohorts were compared, the latter cohort had

Table 1 Six month survival rates for 1953–1964
and 1977 cohorts (data from [4])

Cohort

1953–1964, 1977,
n = 1266 n = 131

Stage I 0.75 0.92
Stage II 0.57 0.72
Stage III 0.30 0.42

Total 0.44 0.55

Table 2 Stage distributions of 1953–1964 cohort and
1977 cohort with and without diagnostic imaging data (data
from [4])

1977 with 1977 without
1953–1964, imaging data, imaging data,
n = 1266 n = 131 n = 131

Stage I 0.22 0.18 0.32
Stage II 0.14 0.14 0.19
Stage III 0.64 0.68 0.49

Total 1.00 1.00 1.00

higher survival rates for each stage and for the cohort
as a whole (Table 1). When the stage distribution of
the two cohorts was compared, the latter cohort had a
lower proportion of patients with stage I disease and
a higher proportion of patients with stage III disease
(Table 2, columns 1 and 2).

The 1977 cohort was then staged using only those
data points available on the first cohort (Table 2,
column 3). Without 1977 imaging data, 32% of the
1977 cohort were classified as stage I, compared
with 18% when imaging data were used (Table 2,
column 2). This reflects a “migration” of cases out
of stage I to more advanced stages with the use of
diagnostic imaging. While 49% of the 1977 cohort
were classified as stage III without imaging data, 68%
of the 1977 cohort were classified as stage III when
imaging data were used. The stage migration from
less to more advanced stages in this cohort with the
use of diagnostic imaging data is detailed in Table 3.

The effect of stage migration on cohort survival
rates was demonstrated by applying a standardized
clinical staging system to both cohorts. There were
no clinically or statistically significant differences in
survival rates between the two cohorts when members
were staged using standardized clinical criteria. The
authors concluded that the increase in survival rates
(shown in Table 1) between the two cohorts was a
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Table 3 Stage migration of 1977 cohort cases when diag-
nostic imaging data were applied (data from [4])

Number of cases

Number of cases with imaging data

without imaging data Stage I Stage II Stage III

Stage I 42 24 1 17
Stage II 25 0 17 8
Stage III 64 0 0 64

Total 131 24 18 89

statistical artifact, rather than a real improvement in
lung cancer survival [5].

The artifactual increase in survival rates over
time is due to the shift of previously undetectable
poor-prognosis patients (those with clinically “silent”
metastases) from stage I to more advanced stages.
When these poorer prognosis patients are removed
from the best prognosis group, the survival rate of
that group increases. Since their advanced disease
is asymptomatic (“silent”), their prognosis is some-
what better than that of the original members of the
poorest prognosis group (stage III), whose advanced
disease is symptomatic. This raises the survival rate
of the poor prognosis group, and of the cohort as
a whole, without any changes in individual survival
times. To paraphrase the quote attributed to Will
Rogers, “When the poor prognosis patients left the
best prognosis group and moved to the poorest prog-
nosis group, they raised the survival rates in both
groups”.

Although the Will Rogers Phenomenon was iden-
tified and described in the comparison of cancer
cohorts from different eras in time, it can occur at any
time when staging methods vary between the cohorts
compared. For example, the comparison of survival
rates in concurrent cohorts from different geographic
regions having diversity in access to imaging tech-
nology may be subject to this type of bias.

A slightly different form of stage migration may
occur with advances in cancer treatment. This was
demonstrated by Bosl et al. [2] in patients who
received platinum-based chemotherapy for advanced
stage germ cell tumors. As the success of this
chemotherapy regimen for treating advanced disease

became known, clinicians began using it for early
stage germ cell tumors. Previously, these localized
tumors would have been treated with surgery or
radiation alone. This shifted better-prognosis patients
into chemotherapy treatment (formerly reserved
for poorest prognosis patients), thus improving
survival rates for chemotherapy. Additionally, use
of diagnostic imaging procedures increased for germ
cell tumors, resulting in the classic stage migration
bias described above.

Stage migration resulting in artificially inflated
cancer survival rates can be avoided by ensuring
that reproducible staging methods are used for study
cohorts. Standardized clinical staging systems that
consider data available from every patient, regardless
of access to diagnostic imaging technology, have
been advanced for lung and prostate cancer [3, 4, 6].

References

[1] Beahrs, O.H., Carr, D.T. & Rubin, P. eds. (1978).
Manual for Staging Cancer, American Joint Committee
for Cancer Staging and End Results Reporting. Whiting
Press, Chicago.

[2] Bosl, G.J., Geller, N.L. & Chan, E.Y.W. (1988).. Stage
migration and the increasing proportion of complete
responders in patients with advanced germ cell tumors,
Cancer Research 48, 3524–3527.

[3] Clemens, J.D., Feinstein, A.R., Holabird, N. & Cart-
wright, C. (1986). A new clinical-anatomic tagging sys-
tem for evaluating prognosis and treatment of prostate
cancer, Journal of Chronic Diseases 39, 913–928.

[4] Feinstein, A.R. & Wells, C.K. (1990). A clinical severity
staging system for patients with lung cancer, Medicine
69, 1–33.

[5] Feinstein, A.R., Sosin, D.M. & Wells, C.K. (1985).
The Will Rogers phenomenon. Stage migration and new
diagnostic techniques as a source of misleading statistics
for survival in cancer, New England Journal of Medicine
312, 1604–1608.

[6] Pfister, D.G., Wells, C.K., Chan, C.K. & Feinstein, A.R.
(1990). Classifying clinical severity to help solve prob-
lems of stage migration in nonconcurrent comparisons of
lung cancer therapy, Cancer Research 50, 4664–4669.

[7] National Cancer Institute (1994). SEER Cancer Statistics,
Review, 1973–1991: Tables and Graphs. NIH Publication
No. 94-2789. National Cancer Institute, Bethesda.

KAREN SMITH BLESCH



Bias from Survival in
Prevalent Case–Control
Studies

In a prevalent case–control study, the exposures of
prevalent cases sampled from among living cases are
compared with the exposures of living noncases (see
Case–Control Study, Prevalent). Because an expo-
sure that causes disease may also influence the prob-
ability that an incident case will survive long enough

to be sampled from the population of prevalent cases,
exposure odds ratios from prevalent case–control
studies may yield biased estimates of the odds ratio
of etiologic interest that relates exposure to the risk
of incident disease.

(See also Bias, Overview; Biased Sampling of
Cohorts)
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Bias in Case–Control
Studies

In recent years, the concept of a study base [5, 10,
26, 28] as the source from which any analytical epi-
demiologic study is derived has gained widespread
acceptance [25]. Under this concept, case–control
and cohort studies represent alternative approaches
to sampling and information gathering from a defin-
able population/time experience, and the biases that
arise are a consequence of doing so inappropriately.
A common earlier view [11] was that case–control
studies are uniquely susceptible to bias because they
“look back” from the outcome to the exposure,
whereas cohort studies “look forward”. For that rea-
son, it has sometimes been claimed that case–control
studies are intrinsically more susceptible to bias than
cohort studies. Today, it is better recognized that
while certain biases occur more commonly when
using one or the other approach, others affect them
equally, and the problems are not fundamentally
different.

The unifying concept of a single study base might
be expected in its turn to lead to unified definitions
of bias, applicable both to case–control and cohort
studies, and attempts to create such definitions have
been made [18, 42]. But the matter is complex, and
thus far none has gained wide currency. In this
article, we use the existing terminology as applied
to case–control studies [3, 25].

Bias is present in a case–control study if there
is systematic distortion in the data that leads to an
odds ratio estimate that is different from the true
odds ratio in the study base. Because the bias is
systematic, large sample sizes do not eliminate it;
indeed, the only effect of enlarging sample sizes is to
produce biased estimates that are more precise. Bias
may arise as a consequence of systematic errors in
the selection of cases or controls, or errors in the
recording of exposure data, or because of confound-
ing. When there is nondifferential misclassification
of exposure data among cases and controls, the usual
effect is to bias odds ratio estimates towards unity
(see Bias Toward the Null); if such misclassification
is substantial, so may be the bias. Failure to adjust
for confounding may distort odds ratio estimates
towards or away from unity and, again, the bias may
be substantial. The reader interested in a discussion

of nondifferential misclassification is referred to the
articles Misclassification Error and Measurement
Error in Epidemiologic Studies. Here, we focus on
two remaining sources of distortion, selection bias
and information bias. The term information bias is
sometimes used to denote both nondifferential and
differential misclassification of exposure [36]; here,
we use it to denote only differential misclassification
(see Differential Error).

Selection Bias

Selection bias exists when cases or controls are
selected in a way that is not representative of the
respective exposure distributions in the study base.

Specification of the Study Base

A fundamental step in the avoidance of selection bias
is to ensure that the cases and controls are drawn
from the same study base. Otherwise, if the preva-
lence of exposure is different in the different bases,
bias is unavoidable. A primary study base is one in
which the population/time experience, including the
cases that occur, can be specified (e.g. new cases of
acute myeloid leukemia (AML) occurring in the pop-
ulation of Massachusetts from 1990 to 1994). In a
population-based case–control study, all cases are
identified and selected; alternatively, a representative
sample (e.g. a random sample) is selected. In either
instance, a properly specified control series consists
of noncases sampled from the same study base. When
the base is well defined, and all cases are identifiable,
it is possible in principle to sample them using meth-
ods that are unbiased. In practice, however, problems
such as nonresponse may nonetheless lead to bias,
as discussed below.

Sometimes it may not be possible to specify a
primary base, as happens when a series of cases is
selected without full insight into the population/time
experience from which they are drawn (e.g. new
cases of AML diagnosed in one hematology labo-
ratory from 1990 to 1994). The secondary study base
may then be conceived of as that population/time
experience from which any person would have been
selected as a case had he (or she) developed the dis-
ease under study. The proper selection of controls
requires that they be sampled from that hypothetical
secondary study base. Operationally, such controls
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are often sampled from the same source as the cases
(in this example, the control series could perhaps
comprise a sample of persons with normal blood
counts, recorded in the same laboratory). In other
words, certain selection characteristics of the cases
determine the secondary study base, which cannot
otherwise be specified. Since it is not possible to
identify members of a secondary base explicitly, it
is necessary to rely on judgment and experience in
order to select controls likely to be representative of
the exposure in the hypothetical base.

It is worth illustrating how incorrect specification
of a secondary study base may give rise to selection
bias. Consider a hypothetical study of radon expo-
sure and lung cancer, carried out in one hospital. The
hospital has a large thoracic surgery department and
selectively admits lung cancer cases from an entire
city, in some areas of which household radon levels
are high, while in other areas they are low. The hos-
pital admits patients with conditions other than lung
cancer only from an immediately adjacent area, in
which household radon levels are high. In this exam-
ple, the cases and controls have not been selected
from the same study base, the exposure rates in the
different bases are different, and the data are biased.
The bias could only be overcome if the case series
were to be restricted to those resident in the same
area as the controls – in which case the comparison
groups are now drawn from the same study base.

Selection Bias due to Nonresponse

Assuming the study base is correctly specified, selec-
tion bias may nevertheless arise if there is differential
sampling or identification of cases and controls. A
common way in which differential sampling may
occur is if there are substantial losses in the enroll-
ment of cases or controls originally deemed eligible
for inclusion (nonresponse). In a population-based
case–control study, all cases, or a representative sam-
ple of those that occur in the study base, are included.
Alternatively, in a study with a secondary base, the
cases should be representative of those occurring in
that base (e.g. a single hospital). In each instance,
potentially eligible controls should constitute a repre-
sentative sample of all noncases in the same base. In
practice, however, it is virtually inevitable that some
of the cases or controls initially specified as eligi-
ble will not be enrolled (e.g. because of failure to
trace subjects, refusal to participate, severe illness, or

death). If, either among the cases or the controls, the
exposure rate is systematically different among those
who are and are not enrolled, there is selection bias
due to nonresponse.

Bias due to nonresponse is negligible if close to
100% of the cases and controls scheduled for sam-
pling are successfully enrolled. Some studies come
close to meeting that objective. Other studies do
not, and the greater the proportion unenrolled, the
greater must be the concern about possible selec-
tion bias. Hospital-based case–control studies tend
to have higher response rates than population-based
studies, especially if it is necessary to collect biolog-
ical samples.

In the face of high nonresponse rates, some limited
reassurance about the absence of material selection
bias may be gained when it can be shown that distri-
butions of known characteristics (such as age, sex, or
residence) are similar among enrolled and unenrolled
subjects. That reassurance may be unjustified, how-
ever, if the compared variables are not themselves
correlates of the exposure.

Sensitivity analyses are sometimes used in an
attempt to cope with high nonresponse rates [15].
Varying assumptions are made about possible expo-
sure rates among unenrolled subjects, and their effects
upon the magnitude of any given association are then
assessed. Clearly, however, the assumptions may be
incorrect, and that possibility limits the interpretabil-
ity of the data. In general, the more the attrition, the
greater is the potential for bias. To limit this source of
bias, there is simply no substitute for high enrollment
rates.

Selection Bias in the Identification of Study
Subjects

Selection bias may also arise if cases or controls
are identified in a way that is not independent of
the exposure (see Detection Bias). To illustrate how
the biased identification of cases may occur, con-
sider a hypothetical example in which each of two
women has a tender and swollen leg due to deep
vein thrombosis (DVT); one woman takes oral con-
traceptives (OCs – a known cause [40]), the other
does not. The OC taker is aware that she is at risk of
DVT, and so consults her physician, who correctly
makes the diagnosis and admits her to a hospital;
the nonuser stays home, undiagnosed; both women
recover. Even though the diagnosis, when made, is



Bias in Case–Control Studies 3

correct, the case identification is incomplete, and
exposure-dependent: a case–control study that enrolls
cases of DVT, regardless of whether it is population-
based or derived from a secondary study base, would
overestimate the association with OC use, because
knowledge of the exposure increases the likelihood
that exposed cases would be included in the study.

This type of selection bias may take many forms,
as can be illustrated further by the following exam-
ples. In a study of breast cancer risk in relation to
female hormone use, “screening” or “detection” bias
may arise if hormone users are more commonly sub-
jected to mammography than nonusers (e.g. because
of concern about possible breast cancer risk). As
a result, users are more commonly diagnosed than
nonusers as having breast cancer that might not oth-
erwise have become clinically apparent for many
years [39].

There are instances in which the biases brought
about by screening may not be at all subtle. It has
been estimated, for example, that over 60% of men
over the age of 60 years have asymptomatic pro-
static cancer [12]. It is now possible to detect cases
that would otherwise have remained asymptomatic
for many years, and perhaps for life, by means of
a new test (the prostate-specific antigen test [41]).
Any association of prostatic cancer with a corre-
late of the likelihood of undergoing such a test (e.g.
high socioeconomic status) would likely be biased.
That bias may be reduced, or perhaps avoided, in a
study restricted to cases that must inevitably come to
diagnosis, regardless of screening, because of symp-
toms that oblige them to seek medical care, such as
hematuria or bone pain due to metastases. As a gen-
eral rule, studies that enroll cases (or controls) from
screening programs run a substantial risk of selection
bias [4, 29].

A similar bias arises when registries that selec-
tively record exposed cases are used as sources for
case enrollment (see Disease Registers). Perhaps the
best-known example of this type was the American
Registry of Blood Dyscrasias [48], which was ini-
tiated in the mid-1950s and maintained for over a
decade following reports of an association of aplas-
tic anemia with the use of the antimicrobial drug,
chloramphenicol [44]. Exposed cases were far more
likely than nonexposed cases to be reported. There is
little doubt that chloramphenicol does indeed increase
the risk of aplastic anemia, but it is now clear that
the association was overestimated [19]. This example

illustrates how important it is to ensure that all
cases within any specified study base, whether pri-
mary or secondary, should have the same chance of
being identified and included in a case–control study,
regardless of exposure status. It also illustrates the
limited interpretability of case series reported to reg-
ulatory agencies, or to medical journals, without ref-
erence to the background occurrence of nonexposed
cases – or, indeed, without reference to the exposure
prevalence among suitably selected controls.

Biased identification of cases may also occur when
a cluster of exposed cases gives rise to a hypothesis,
and then the same cluster is included in an indepen-
dent study mounted to confirm the hypothesis. Thus,
if a cluster of cases of leukemia occurs in the vicinity
of a nuclear power plant [1], it would be inappropri-
ate to include that cluster in an independent study
designed to test the hypothesis that leukemia is asso-
ciated with proximity to a nuclear power plant.

Bias due to the Selection of Nonrepresentative
Controls from a Secondary Study Base

Hospitalized patients continue to constitute the
most commonly selected controls in case–control
research [22, 25, 45–47], and the potential problems
posed by their selection serve well to illustrate the
biases that may arise when controls are selected from
a hypothetical secondary study base.

Particular attention must be paid to ensure that
hospitalized patients selected for inclusion as controls
have been admitted for diseases that are independent
of the exposure under study. An illustration of how
bias may occur if this is not done is the classical
study by Doll & Hill of smoking and lung can-
cer [7], in which the control series included patients
with chronic bronchitis, a disease not appreciated at
the time to be tobacco-related [8, 9]. The magnitude
of the association with lung cancer was somewhat
underestimated for that reason. The association was
nevertheless identified, because most of the control
diagnoses were independent of smoking status, and
because smoking was more strongly associated with
lung cancer than with chronic bronchitis (see Smok-
ing and Health).

Despite the risk of biases of this type,
hospital-based studies have remained a mainstay
of case–control research. When well conducted,
such studies have continued to document important
and valid associations (e.g. OCs and myocardial
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infarction [34]). There are several reasons. Interview
data are usually less biased among hospital controls
(see the section “Information Bias” below), and
hospital-based studies are usually easier to conduct
than studies that enroll community controls: response
rates are usually higher, and when needed, high
success rates in obtaining blood or tissue samples
can be achieved. Perhaps the most important reason,
however, is that there is today a better appreciation
of the steps that should be taken to ensure that the
selection of hospital controls is unbiased.

In formal terms, the selection of hospital con-
trols is unbiased if the control diagnoses that are
selected for inclusion are representative of the expo-
sure distribution in the hypothetical secondary base.
In practice, there is usually no reason why such con-
trols cannot be identified if only those persons are
selected whose reason for hospital admission (the pri-
mary diagnosis) is independent of the exposure under
study. Those admitted for conditions that are not inde-
pendent of the exposure should be excluded. When in
doubt, one should opt for exclusion: what matters is
that the selection of those subjects that are included
should be valid. Clearly, the valid selection of hospi-
tal controls calls for experience and judgment. If that
judgment is called into question, the interpretation of
hospital-based case–control data can sometimes be
controversial.

Hospitalized patients, whether cases or controls,
commonly have more than one diagnosis, and it is
important to note that secondary diagnoses are irrele-
vant to the selection of controls, unless the secondary
diagnoses have also influenced the selection of the
cases (which is unusual). For example, in a study of
the risk of myocardial infarction (MI) in relation to
OC use [34], cases admitted for a primary diagno-
sis of MI who had a secondary diagnosis of diabetes
mellitus (a condition that is inversely associated with
OC use) were not excluded; correspondingly, con-
trols admitted with primary diagnoses unrelated to
OC use, such as trauma, but with a secondary diag-
nosis of diabetes, were also not excluded. Instead,
potential confounding due to diabetes was controlled
in the analysis. If, however, we conceive of a hypo-
thetical study in which patients admitted for MI are
excluded if they are also diabetic, then controls admit-
ted for trauma who also happen to be diabetic should
also be excluded.

As a general rule, persons whose primary diag-
noses are acute conditions for which admission

is obligatory (e.g. trauma; appendicitis) meet the
requirement of independence, as may persons with
other conditions (e.g. elective admission for cataract
surgery). However, it is always necessary to con-
sider the particular hypothesis under study, and to use
informed judgment. For example, consider a study of
the risk of ovarian cancer in relation to OC use [35]:
among women hospitalized for trauma, the reason for
admission is likely to be independent of the exposure;
such women would be eligible as controls. However,
if the example is changed to a study of breast can-
cer risk in relation to alcohol intake [33]), trauma
would not be a suitable control diagnosis because its
occurrence may not be independent of the exposure.

Reassurance that the identification of hospital con-
trols is unbiased may be gained if the exposure rates
among major diagnostic categories (e.g. trauma, acute
infections, orthopedic conditions) are uniform: in that
circumstance, bias is only possible if the selection of
an entire control series is biased, and biased to the
same degree for each diagnostic category. However,
the confident demonstration of uniformity requires
that the categories be large enough to ensure that the
rates in each of them are reasonably precise.

As an alternative, it has been suggested [25] that
a hospital control series should include as wide a
range of diagnoses as possible. If it can be assumed
that most of them will be independent of the expo-
sure, then any bias, if present, will be diluted. This
latter option is seldom acceptable unless there are
good grounds to be reasonably sure that by far the
overwhelming majority of the individual diagnoses
that led to admission are, indeed, independent of the
exposure. This is rarely the case. For this reason, the
selection of a random sample of an entire hospital
population, without any regard for diagnostic eligi-
bility, can seldom be defended.

Despite the generally distinguished record of
hospital-based case–control studies, some epidemi-
ologists have argued that hospital controls are almost
always unrepresentative of exposure in the population
at large [43, 49]. That argument ignores the premise
that when the cases represent a secondary study base
(as is usual in hospital-based studies), the only valid
control series may be patients admitted to the same
hospitals as the cases.

One theoretical drawback to the sampling of hos-
pital controls is that the judgment that the included
conditions are independent of the exposure is an
assumption, and one that is not needed when selecting
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controls in a population-based study. In addition,
there is evidence to suggest that certain exposures
differ for in-hospital and out-of-hospital popula-
tions [25, 45–47]. That evidence, however, has been
derived from studies that did not take into account
the specific eligibility of each control diagnosis in
the context of the specific hypothesis under study –
an essential step in the proper selection of hospital
controls. Nevertheless, there may be circumstances
when the exposure under study (e.g. alcohol [33])
influences admission across such a wide range of
diagnoses that it may be difficult or impossible to
select a valid series of hospital controls.

Bias due to the Nonrepresentative Selection of
Controls from a Primary Study Base

Selection bias may arise in analogous ways when
population-based controls are chosen [45–47]. For
example, if the sampling scheme is based on incom-
plete coverage of the base population (e.g. a motor
vehicle owners’ registry, or random digit dialing),
it may underrepresent people of low socioeconomic
status (because they do not have cars or telephones).
Similarly, the selection of other controls, such as
friends of the cases, or classmates, may give rise to
other problems. For example, nonexposed friends of
an exposed case may tend selectively to participate in
a study because they would like to help. As with hos-
pital controls, it remains important to use judgment
in ensuring that population-based controls, however
selected, are representative of the study base.

In an idealized example of a population-based
case–control study with a 100% response rate among
the sampled cases and among controls, confidence in
the validity of the findings would be greater than for
an otherwise identical study in which hospital con-
trols are selected because no unverifiable assumptions
about representativeness are required. In practice,
however, that theoretical advantage is commonly not
achieved because response rates among population
controls tend to be considerably lower than among
hospital controls, and lower still when it is necessary
to obtain biological samples.

Partly in order to circumvent the problem of low
response rates in the selection of population controls,
random digit dialing [16, 25, 46] has been advocated
as one way to obtain high participation rates, at least
in societies with almost universal telephone coverage.
This method had its origins in market research and

opinion polls, and its application in epidemiologic
research enjoyed some early success. However, with
the passage of time, answering machines, voice mail,
call forwarding, and an increasingly hostile attitude
in society to what are perceived to be invasions of
privacy, have lowered response rates, and sometimes
even rendered such rates unmeasurable (because the
presence or absence in the household of a poten-
tially eligible control could not be determined) [13].
Despite these difficulties, however, adequate partici-
pation rates can sometimes be achieved if the inter-
viewers are carefully trained and care is taken with
the wording of invitations to participate (see Inter-
viewing Techniques).

Selection Bias in Nested Case–Control Studies

In recent years nested case–control studies have
come to play an increasingly important role in
case–control methodology. In a nested case–control
study, the cases are members of a cohort who develop
a given condition, and the controls are a sample of
noncases selected from the same cohort, and followed
for the same length of time. There are several advan-
tages to this approach: the cases and controls are
unambiguously representative of the same study base;
if the follow-up has been successful nonresponse
rates are low; and information bias (see below) is
avoided, since exposure status is usually determined
before the subject qualifies as a case. A further advan-
tage is that it may be easier to obtain biological
specimens from people who are already collaborating
in a study. All of these advantages were demonstrated
in a study [31] that documented an increased risk of
stomach cancer in relation to antecedent Helicobacter
pylori infection, as determined from immunological
assays of frozen serum specimens that had been col-
lected and stored an average of 14 years earlier. As
a general rule, however, a major disadvantage to the
conduct of nested case–control studies is that it may
not be possible to assemble sufficient cases, unless
the follow-up study is massive.

Information Bias

Information bias exists when cases or controls report
their exposures differently, or when the information
is solicited differently (as noted above, in this article,
bias due to nondifferential misclassification of expo-
sure is excluded from the definition). The likelihood
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that information bias will occur is greatest when the
study subject, or those responsible for collecting the
data, know the hypothesis.

Differential reporting (recall bias) may occur if
cases aware of the hypothesis tend to report their
exposures more fully than controls, with resultant
overestimation of the odds ratio. For this bias to
occur, it is not necessary to assume that cases may
report exposures that did not actually take place
(although they may overestimate duration or dosage).
Even if the controls share knowledge of the hypothe-
sis with the cases, if they are healthier they may have
less reason to probe their memories. For example, one
study of breast cancer risk in relation to OC use [24]
specifically informed participants of the hypothesis,
thus rendering recall bias all but unavoidable (this
is also an example of biased solicitation of informa-
tion – see below). Cases may also be prompted to
recall their exposures more completely if their mem-
ories (but not those of the controls) have already been
“primed” by repeated questioning from their medical
attendants about the putative cause before they are
interviewed by the study personnel.

A lack of awareness of the hypothesis reduces
the likelihood of information bias, but it does not
necessarily eliminate it. Hospitalized cases, for exam-
ple, because of the setting in which the questions
are asked, may remember their exposures better than
population controls interviewed at home. For this
reason, the interviewing of controls in a hospital set-
ting may reduce the likelihood of information bias.
Similarly, without any specific hypothesis in mind,
patients with cancer, or mothers who have given birth
to children with birth defects, may be more inclined
than controls to probe their memories for possible
“causes”, even if such “causes” have not specifically
been hypothesized.

These examples illustrate how cases might report
their exposures more fully than controls. Sometimes,
however, the reverse may occur. In a hypothetical
study of trauma in relation to alcohol intake, for
example, the cases might understate their consump-
tion relative to controls if they are embarrassed at
having contributed to their own illness.

Much the same considerations that apply to recall
bias on the part of the study subjects may also apply
when those responsible for the data collection are
aware of the hypothesis, and it is not uncommon for
such awareness to coexist both among the subjects
and the study personnel, as in the OC/breast cancer

example [24] mentioned above. Or, to give another
example, in a further study of the same question [30],
women with breast cancer were interviewed face-to-
face by a single male physician, while the controls
were subjected to telephone interviews, conducted by
two female interviewers. The biased solicitation of
exposure information may be quite subtle: the inflec-
tion of an interviewer’s voice, the “body language”,
the use of open-ended questions, or the way in which
they are worded may all influence the respondent’s
answers.

It is sometimes argued that the presence
of dose–response or duration–response effects
constitutes evidence against information bias. This
argument may have merit inasmuch as long-
duration exposures, and perhaps high doses, are
less likely to be misremembered than short-duration
exposures or low doses. The countervailing argument,
however, is that cases may tend systematically to
overreport, and controls to underreport, duration or
dosage. Thus, apparent duration or dosage gradients
cannot necessarily be taken as evidence against
information bias.

Occasionally, it is possible to avoid or mini-
mize information bias. To give some examples: in
a study of breast cancer risk in relation to use of the
antihypertensive drug reserpine [20], women were
questioned before their breast lumps were biopsied:
the cases were those with breast cancer, and the
controls were women given a diagnosis of benign
breast disease. (But it should be noted that selection
bias may have been present if reserpine increased
the risk of benign breast disease – an instance in
which the control diagnosis would not be indepen-
dent of the exposure.) In a study of spermicide use
at the time of conception in relation to Down’s syn-
drome [23], pregnant women were questioned about
exposure before they underwent an amniocentesis:
the cases were fetuses with trisomy 21, the controls
were fetuses with normal chromosome counts. And
in a study of uterine cancer in relation to conjugated
estrogen use [50], medical records were examined for
prescriptions after all information on case or con-
trol status was masked (see Blinding or Masking):
the biased recording of the exposure information was
thus avoided.

Information bias can sometimes be assessed
by the independent evaluation of exposure, using
information from other sources. For example, some
interview-based case–control studies have suggested
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that induced abortion increases the risk of breast
cancer [6]. Information bias could account for the
association if women with breast cancer more
fully report such a sensitive exposure than do
control women [32]. Evidence that this may be so
is suggested by the results of a recent Danish
cohort study [27] based on national registry data.
An increased risk was ruled out, and in that study
there was no information bias [17], since the data
on abortion status were recorded before the breast
cancer outcomes were observed. Indeed, this example
serves to illustrate how cohort studies can avoid
information bias.

Unfortunately, as illustrated by the abortion/breast
cancer example, the circumstances in which informa-
tion bias can confidently be ruled out in case–control
studies tend to be the exception rather than the rule.
Usually, even if the investigator judges information
bias to be minimal, it may not be possible to demon-
strate that this is so. It is necessary to resort to the
next best alternative, which is to design studies in
which the potential for information bias is reduced
as much as possible: for example, by concealment
of the hypothesis from the study subjects, and the
interviewers – or, if that is not possible, by avoiding
mention of the hypothesis; by the use of highly struc-
tured and unambiguous questions; memory prompts
(e.g. photographs of OCs) to maximize recall; the
administration of questionnaires as soon as possible,
before there is a substantial opportunity for memory
loss; and the rigorous training of interviewers (see
Interviewing Techniques; Questionnaire Design).

Even with optimal study design, the question of
whether information bias is, or is not, sufficient
to invalidate an association is ultimately a matter
of judgment. For example, in a study documenting
an increased risk of sinonasal cancer among work-
ers exposed to wood dust [21], we may judge that
occupational exposure is likely to be equally well
remembered by cases and controls. Alternatively, we
may judge that information bias is likely, as with the
example of breast cancer risk in relation to a history
of induced abortion [6, 32].

Conclusions

In this article, we have described two types of system-
atic bias (confounding, of course, is a third). Yet, in
the past, the view has sometimes been taken that there

are many more types of bias, each of them sufficiently
different to require separate classification, that may
affect observational studies: Sackett [37] described
more than 35 (see Bias, Overview). However, all
the specific biases that have been reported can readily
be classified as instances of selection bias and infor-
mation bias. For example, Berkson’s fallacy [2], the
proposition that the selection of hospitalized cases
may be biased if admission for the condition under
study is dependent on the coexistence of another con-
dition, is a form of selection bias.

Systematic bias due to confounding has not been
considered in this article. But it is important to men-
tion that selection bias or information bias may affect
not only the recording of exposures, but also the
recording of confounders. Indeed, both the differen-
tial and the nondifferential recording of a confounder
can lead to residual confounding, with a bias that can
act in either direction [14, 38].

Information bias is sometimes mentioned as the
Achilles’ heel of case–control methodology. One of
the major advantages of follow-up studies, relative
to case–control studies, is that exposures are usu-
ally measured before the health outcomes occur, thus
reducing or eliminating the likelihood of informa-
tion bias. However, that advantage may be offset by
biases that sometimes affect cohort studies, such as
high nonresponse rates on follow-up, with differential
losses according to exposure status. Another poten-
tial disadvantage is that changes in exposure status
over time may be missed in cohort studies, unless
the recording of the variables at issue is updated
frequently (see Bias in Cohort Studies). And to
complete the picture, certain biases (e.g. confound-
ing, selection bias due to knowledge of exposure,
or due to selective screening according to exposure
status) may affect both approaches. In short, neither
the case–control nor the cohort approach can circum-
vent all sources of bias, and they should, instead, be
thought of as complementary strategies, each with
certain strengths and certain weaknesses.

Since bias cannot be entirely eliminated in
observational studies, concern about whether its
existence is sufficient to invalidate any given
association may be reduced if, in any study,
the magnitude of the effect, relative to the
magnitude of the plausible biases that may exist,
is considerable. By contrast, the possibility of
bias limits the interpretability of small associations.
Concern about validity may also be reduced when a
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variety of well-conducted studies based on different
epidemiologic methods, and some of them based
on nonepidemiologic methods, converge on the
same large and relatively invariant association – an
obvious example being lung cancer and smoking (see
Smoking and Health), for which the validity of a
causal connection (see Causation; Hill’s Criteria
for Causality) has long been beyond dispute.

Finally, one strength of the case–control approach
can also be considered a major weakness: the ease
with which case–control studies can sometimes be
done, relative to cohort studies, means that the
method can also more easily be abused. Case–control
studies should be carried out by experienced inves-
tigators who are aware of their limitations, and they
should be designed to anticipate and cope with poten-
tial sources of bias. When this has been done, there
can be no doubt that they have made a major contri-
bution to medical knowledge and to public health.

References

[1] Beral, V. (1990). Childhood leukemia near nuclear
plants in the United Kingdom: the evolution of a
systematic approach to studying rare disease in small
geographic areas, American Journal of Epidemiology
132, Supplement, S63–S68.

[2] Berkson, J. (1976). Limitations of the application of
fourfold table analysis to hospital data, Biometrics
Bulletin 2, 47–53.

[3] Breslow, N.E. & Day, N.E. (1980). Statistical
Methods in Cancer Research, Vol. I. The Analysis
of Case–Control Studies, IARC Scientific Publication
No. 32. International Agency for Research on Cancer
(IARC), Lyon.

[4] Cole, P. & Morrison, A.S. (1980). Basic issues in
population screening for cancer, Journal of the National
Cancer Institute 64, 1263–1272.

[5] Cornfield, J. & Haenszel, W. (1960). Some aspects of
retrospective studies, Journal of Chronic Diseases 11,
523–524.

[6] Daling, J.R., Malone, K.E., Voigt, L.F., White, E. &
Weiss, N.S. (1994). Risk of breast cancer among young
women: relationship to induced abortion, Journal of the
National Cancer Institute 86, 1584–1592.

[7] Doll, R. & Hill, A.B. (1952). A study of the aetiology
of carcinoma of the lung, British Medical Journal 2,
1271–1286.

[8] Doll, R. & Hill, A.B. (1964). Mortality in relation
to smoking: ten years’ observation of British doctors,
British Medical Journal 1, 1399–1410, 1460–1467.

[9] Doll, R. & Peto, R. (1976). Mortality in relation to
smoking: 20 years’ observations on male British doctors,
British Medical Journal ii, 1525–1536.

[10] Dorn, H.F. (1959). Some problems arising in prospective
and retrospective studies of the etiology of disease, New
England Journal of Medicine 261, 571–579.

[11] Feinstein, A.R. (1975). The epidemiologic trohoc, the
ablative risk ratio, and retrospective research, Journal of
Clinical Pharmacology and Therapy 14, 291–306.

[12] Gittes, R.F. (1991). Carcinoma of the prostate, New
England Journal of Medicine 324, 236–245.

[13] Greenberg, E.R. (1990). Random digit dialing for control
selection. A review and a caution on its use in studies
of childhood cancer, American Journal of Epidemiology
131, 1–5.

[14] Greenland, S. (1980). The effect of misclassification
in the presence of covariates, American Journal of
Epidemiology 112, 564–569.

[15] Greenland, S. (1996). Basic methods for sensitivity
analysis of biases, International Journal of Epidemiology
25, 1107–1116.

[16] Hartge, E.R., Brinton, L.A., Rosenthal, J.F., Cahill, J.I.,
Hoover, R.N. & Waksberg, J. (1984). Random digit
dialing in selecting a population-based control group,
American Journal of Epidemiology 120, 825–833.

[17] Hartge, P. (1997). Abortion, breast cancer, and epidemi-
ology (Editorial), New England Journal of Medicine 336,
127–128.

[18] Kass, P.H. (1992). Converging toward a “Unified Field
Theory” of epidemiology (Editorial), Epidemiology 3,
473–474.

[19] Kaufman, D.W., Kelly, J.P., Levy, M. & Shapiro,
S. (1991). The Drug Etiology of Agranulocytosis and
Aplastic Anemia. Oxford University Press, Oxford.

[20] Kewitz, H.J., Jesdinsky, H., Schröter, P. & Lindtner,
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Bias in Cohort Studies

An epidemiologic cohort (or follow-up) study is
typically performed by: (i) identifying a group of sub-
jects who are at risk for a disease or condition of
interest; (ii) determining the exposure status of each
individual; and (iii) observing the subjects over time
for the occurrence of the health outcome(s) under
investigation. While this approach is advantageous in
that it ensures that the temporal relationship between
exposure and outcome is unambiguous, cohort stud-
ies are susceptible to the same kinds of bias (i.e.
selection, misclassification, and confounding) as are
other types of study design (see Bias in Observa-
tional Studies; Bias, Overview).

Selection bias occurs when the study population
available for analysis is not representative of the (the-
oretical) cohort of all eligible participants. This may
result from biased sampling of the eligible cohort
and/or selective losses from the study population dur-
ing follow-up (see Biased Sampling of Cohorts).
The common attribute of all sources of selection bias
is that the effect estimated from the available study
population is meaningfully different from the one
that would have been obtained had all subjects the-
oretically eligible to participate been included in the
analysis. A potential source of nonrepresentative sam-
pling is self-selection, whereby subjects who become
aware of a study volunteer themselves for participa-
tion. If such volunteers have a different probability
of developing the outcome of interest compared with
the group of all eligible subjects [1, 4], then the result
may be a biased estimate of effect. A related concept
is the “healthy worker effect,” based on the observa-
tion that people in the workforce have lower mortality
rates than members of the general population [2, 4].
Studies that utilize workers must take this situation
into account in order to avoid biased results (see
Occupational Epidemiology).

Other important potential sources of selection bias
in cohort studies include losses to follow-up and non-
response during data collection (see Cohort Study;
Missing Data in Clinical Trials; Missing Data in
Epidemiologic Studies). However, bias is created
only if data are missing disproportionately from one
or more cells of the 2 × 2 table that relates a dichoto-
mous exposure to a dichotomous outcome. Follow-up
on a given subject may be incomplete for a vari-
ety of reasons. The subject may choose to withdraw

his or her consent and no longer participate in the
study. More commonly, the investigator simply loses
contact with the subject, and thus cannot know with
confidence whether he or she experienced the out-
come of interest during the relevant follow-up period.
When the outcome of interest is time to an event (e.g.
death, diagnosis of disease, relapse, etc.), those indi-
viduals who do not experience the event during the
study period are said to be censored. An assumption
that is generally made with regard to such studies is
that subjects who are censored at a given time have
similar risks compared with those not censored at that
time, i.e. that the censoring is “noninformative”. If
this assumption is violated, then bias results. Biased
sampling may also occur if the probability that one is
selected into the study sample depends upon whether
he or she experiences the event of interest during a
prescribed time window.

A final example of selection bias is illustrated by
the “prevalent” cohort study. In such a study, subjects
who already have a disease or other health condi-
tion are enrolled and then followed over time for
events such as disease progression, relapse, or death.
The goal is to obtain information about the natural
history of the disease; however, problems of interpre-
tation arise if the time since disease diagnosis remains
unknown and is not uniform across subjects. Such
difficulties must be weighed against the effort and
costs required to assemble a cohort of newly diag-
nosed subjects, as would be done with the analogous
“incident” cohort study.

Another type of bias to which cohort studies
are susceptible is misclassification bias, a distor-
tion in effect estimation that occurs when measure-
ment errors result in incorrect classification of the
exposure and/or disease status of study participants
(see Measurement Error in Epidemiologic Stud-
ies). Such misclassification errors may be differential
or nondifferential. When errors made in classifying
subjects along one axis (i.e. exposure or disease)
are independent of the subject’s status on the other
axis, the misclassification is said to be nondiffer-
ential. If the magnitude of the error along one axis
varies according to the category of the other axis
(e.g. disease status is misclassified more frequently
among the unexposed), then differential misclassifi-
cation has occurred [4]. This distinction is of value,
since, for dichotomous exposure and disease vari-
ables, nondifferential misclassification leads consis-
tently to an underestimation of the magnitude of
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the association (bias toward the null). In contrast,
bias from differential misclassification can be in any
direction.

Classification errors arise from a variety of
sources, including imprecise measurement tools, mis-
taken or missed diagnoses, and conscious or uncon-
scious inaccuracies in self-reported disease and/or
exposure information. An inaccurate diagnostic tool
could lead to either over- or underascertainment of
cases, causing disease misclassification that may be
either differential or nondifferential with respect to
exposure status. A potential source of differential
disease misclassification is detection bias, whereby
exposed subjects are followed more closely than their
unexposed counterparts and are thus less likely to
have unrecognized subclinical disease. The behavior
of study personnel can also affect the accuracy of
the data being collected. For example, an interviewer
who is aware of both the study hypothesis and the
exposure status of study participants may be more
thorough in his or her questioning of exposed sub-
jects regarding signs and symptoms indicative of the
outcome of interest. Such interviewer bias is another
potential source of differential misclassification and
could thus lead to invalid study results.

The final category of bias which may affect
cohort studies is confounding. Confounding operates
similarly in all types of study designs, occurring when
the effect of the exposure of interest is mixed up

with that of one or more “extraneous” variables. The
result can be over- or underestimation of the true
effect of the exposure, the magnitude of the bias
depending upon the nature of the relationships among
the confounder(s), the exposure, and the disease.
Confounding can be addressed in the design stage
of a study – using randomization, restriction or
matching – or in the analysis stage by employing
stratified analysis (see Stratification) or applying a
mathematical modeling technique [3] (see Matching;
Matched Analysis).
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Bias in Observational
Studies

Bias can be defined as any systematic error (in
contrast to sampling error) that results in inaccurate
estimation of the effect of an exposure on an out-
come. Such errors may occur in the design and/or
analysis phase of an epidemiologic study and may
result in either over- or underestimation of the true
effect. Since bias is due to systematic rather than
random error, the magnitude of the bias is not
affected by sample size. Studies that produce effect
estimates free of bias are said to be internally valid.
An estimate which is internally valid may or may not
be considered externally valid as well; the contrast
between internal and external validity is discussed
below. Although many sources of bias have been
identified [14, 20, 21, 23], biases can generally be
classified into one of three categories: selection bias,
information bias, and confounding [14].

Selection Bias

Selection bias refers to a distortion in the estimate
of effect resulting from (i) the manner in which
subjects are selected for the study population and/or
(ii) selective losses from the study population prior
to data analysis. There are many sources of selection
bias, and more than one source can contribute to
bias in a given study. The common attribute of all
sources of selection bias is that the effect estimated
from the available study population is meaningfully
different from the one that would have been obtained
had all subjects theoretically eligible to participate
been included in the analysis. Selection bias can
occur under any type of study design; however, it
is of special concern in the design and conduct
of case–control studies because the outcome has
already occurred prior to selection of study subjects.

Sources of Selection Bias

In cohort (follow-up) studies, two important poten-
tial sources of selection bias include losses to follow-
up and nonresponse during data collection (see Bias
in Cohort Studies; Missing Data in Clinical Tri-
als; Missing Data in Epidemiologic Studies). Both

situations result in missing exposure and/or outcome
information at the time of analysis for some eligi-
ble subjects. This creates the potential for selection
bias, depending upon whether information is miss-
ing disproportionately from one or more cells of the
2 × 2 table that relates a dichotomous exposure to a
dichotomous outcome (Table 1). Because the degree
of bias relates to the amount of missing data in a
cell relative to each of the other cells, selection bias
may occur even with a fairly high overall response
rate and/or very little loss to follow-up. For exam-
ple, a cohort study might be conducted in which
90% of all subjects originally assembled into the
cohort remain available for analysis at the end of the
study (i.e. 10% of subjects were lost to follow-up).
If the losses to follow-up are concentrated among the
exposed subjects who ultimately developed the dis-
ease, the true relative risk could be underestimated
by a substantial amount. Conversely, there may be
no selection bias despite small response rates and/or
large follow-up losses in each exposure category. If
only 20% of all eligible subjects choose to participate
in a study, but this 20% represents a true random
sample of all potential participants, the resulting esti-
mate of relative risk will be unbiased. In fact, even
an assumption this stringent is not required. As long
as, within each exposure category, the likelihood of
being selected into the study (and available for analy-
sis) is the same for subjects who develop the disease
and subjects who do not, the risk for each exposure
group (and thus the relative risk) can be estimated
without bias.

The validity of any effect estimated from case–
control data depends in part upon the appropriate
choice of a comparison (control) group. The purpose
of the controls is to estimate the prevalence of the
exposure(s) of interest in the population from which
the cases emerged. Any control group that yields
over- or underestimates of this prevalence produces
biased study results, unless there are compensating
biases in the case sample. In terms of the 2 × 2
table (Table 1), selection bias results from an imbal-
ance in the probability of being selected into the
study (or remaining for the analysis) across the four

Table 1 2 × 2 table

Exposed Unexposed

Diseased a b

Nondiseased c d
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cells. For example, detection (also called diagnostic
or unmasking) bias [12, 21] can result from closer
follow-up or more intense scrutiny of exposed vs.
unexposed subjects. The detection of a higher pro-
portion of subclinical outcomes among the exposed
leads to an overrepresentation of exposed cases in
a case–control study. Hospital-based case–control
studies are subject to unique types of selection bias
as a result of factors associated with admission to
the hospital (see Case–Control Study, Hospital-
based). For example, Berkson’s fallacy (bias) [3]
results when an individual with two or more med-
ical conditions is more likely to be hospitalized than
someone with only one of the conditions. Thus, in
a study utilizing hospital cases, there could be an
apparent association between two conditions that
does not exist in the general population. More gen-
erally, exposed cases may have a different chance of
entering the hospital than nonexposed cases. Like-
wise, exposed and unexposed participants with con-
trol diseases may have different chances of hospital
admission. These selection effects can bias the esti-
mates of exposure effect [23]. Therefore, the choice
of an appropriate control group can be difficult in a
hospital-based case–control study. If the conditions
for which controls have been hospitalized are asso-
ciated with the exposure under study, then bias will
result (see Bias in Case–Control Studies).

Certain types of selection bias may operate in
either cohort or case–control studies. Among these
is self-selection (or volunteer) bias, whereby sub-
jects self-refer for participation in a study. Especially
if the study hypothesis has been publicized, peo-
ple who volunteer to become involved may differ in
important ways from the group of all potentially eligi-
ble participants [5, 20]. Self-selection can also occur
prior to the initiation of a study. For example, it has
been observed that active workers experience lower
mortality than the general population, presumably
because one must maintain a certain degree of health
in order to remain a part of the workforce [8, 20].
Studies utilizing workers as subjects must therefore
account for this “healthy worker effect” by choosing
an appropriate comparison group to avoid the risk of
drawing invalid conclusions (see Occupational Epi-
demiology).

A final illustration of selection bias involves the
use of prevalence data to draw conclusions about
incidence, for example in a cross-sectional study
or a case–control study employing prevalent cases

(see Case–Control Study, Prevalent). The problem,
commonly referred to as selective survival, arises
when persons with the disease of interest are unavail-
able to participate in a study because they have
died prior to the study’s initiation. If exposure sta-
tus happens to be over- or underrepresented in the
survivors, then the use of prevalence data to esti-
mate incidence-based effect estimates can lead to
biased results (see Bias from Survival in Prevalent
Case–Control Studies).

Addressing Selection Bias

Efforts to avoid or minimize selection bias should
be emphasized over attempts to correct for it in the
analysis stage. As implied above, one of the most
important ways of achieving this goal is through the
careful choice of an appropriate comparison group,
i.e. the controls should be representative of the popu-
lation from which the cases emerged. It has been rec-
ommended that researchers conducting case–control
studies use two or more control groups, as a means
of drawing some conclusions about the likelihood of
selection bias [16, 17]. If the effect estimate remains
the same regardless of which control group is uti-
lized, then this offers some degree of reassurance that
selection bias has been avoided (although the possi-
bility remains that all estimates are equally biased).
If the estimated effects differ, then one is left with
the decision of which control group is the most suit-
able. Other strategies for minimizing the potential
for selection bias include efforts to achieve high
response and follow-up rates and to assure equal
opportunity for disease detection among exposed and
unexposed subjects. Case–control studies using inci-
dent cases (including nested case–control studies)
are preferable to those using prevalent cases or to
hospital-based studies.

The degree to which selection bias can be cor-
rected after the collection of data depends on whether
reliable estimates of the underlying selection or loss
probabilities can be determined [14]. Since these
probabilities are rarely known with accuracy, a sug-
gested strategy is to consider a range of values of
these parameters to assess the magnitude and direc-
tion of the bias that may be operating in a given
study.
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Information Bias

Information bias refers to a distortion in effect esti-
mation that occurs when measurement of either the
exposure or the disease is systematically inaccu-
rate. This presentation focuses on “misclassifica-
tion bias”, the term used when such measurement
errors result in incorrect classification of the expo-
sure and/or disease status of study participants. It is
useful to distinguish two types of misclassification –
nondifferential and differential – since the distinc-
tion has implications for the direction and overall
impact of the bias. If the misclassification is non-
differential, the errors made in classifying subjects
along one axis (i.e. exposure or disease) are inde-
pendent of their status with regard to the other axis.
Differential misclassification occurs when such clas-
sification errors along one axis are not independent
of the other axis [20]. For example, if a certain
proportion of exposed subjects are mistakenly desig-
nated as unexposed, but the probability of misclas-
sifying exposure is the same among diseased and
nondiseased, then the result is nondifferential mis-
classification of exposure. If a certain proportion
of diseased subjects are mistakenly designated as
nondiseased, and the proportion misclassified varies
by exposure status, then this represents differential
misclassification of disease. In the case of the sim-
ple 2 × 2 table, nondifferential misclassification leads
consistently to an underestimation of the magnitude
of association between exposure and disease. Since
the biased estimate is in the direction of no expo-
sure–disease association, this phenomenon is termed
bias toward the null. The situation becomes more
complex when polytomous rather than dichotomous
exposure variables are employed. In this circum-
stance, it is possible for nondifferential misclassifica-
tion to result in bias away from the null [6]. Bias from
differential misclassification can be in any direction.
Therefore, depending upon the situation, differen-
tial misclassification can result in an underestimation
(bias toward the null) or an overestimation (bias away
from the null) of the magnitude of an association.
The biased and unbiased effect estimates can even
be on opposite sides of the null value (“crossover
bias”).

It should be borne in mind that misclassification
of both exposure and disease can occur in the same
study and that errors can be made simultaneously in
both directions (e.g. some truly diseased subjects are

mistakenly classified as nondiseased while some truly
nondiseased are mistakenly classified as diseased).
Misclassification probabilities are often expressed in
terms of sensitivity and specificity, terms that are
more frequently used in discussions of screening or
diagnostic test accuracy [9, 14].

Sources of Information (Misclassification) Bias

Classification errors can occur in any type of study
and may be due to imprecise measurement (of
exposure and/or disease), mistaken or missed diag-
noses, conscious or unconscious inaccuracies in self-
reported information, or any other factor that causes
a subject to be placed into the wrong cell of the 2 × 2
table (Table 1). For example, if subjects are followed
over time for the occurrence of a disease, some may
develop subclinical disease which goes unrecognized
by the investigators. Such subjects would be misclas-
sified as nondiseased. If exposed subjects are under
greater scrutiny than the unexposed, then they may
be less likely to have undiagnosed subclinical disease.
This implies that detection bias, described above as
a type of selection bias for case–control studies, can
lead to differential misclassification in a follow-up
study. With an inaccurate diagnostic tool, overascer-
tainment of cases is also possible, and could be either
differential or nondifferential with respect to exposure
status.

Another potential source of misclassification has
to do with the quality of information provided by
study subjects. It can probably be assumed that some
degree of misclassification is inevitable when sub-
jects are asked to report exposures or to provide
other aspects of their medical histories. Recall bias,
which induces differential misclassification, occurs
when the accuracy of self-reported information varies
across comparison groups [1]. For example, people
who have recently been diagnosed with an illness
may be seeking an explanation and therefore could
be more motivated to recall past exposures than
are those unaffected by the illness. This could lead
to an underestimate of exposure prevalence among
controls compared to cases, causing the odds ratio
to be artificially inflated. Recall bias is a potential
problem in any case–control study in which sub-
jects are asked to recall previous exposures. Recall
bias would be unlikely to affect cohort studies
because exposure information is usually based on
exposure status at baseline. Misclassification is also
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likely if it becomes necessary to gather data from
surrogate respondents, depending upon the nature
of the information requested and the level of detail
required. Another potential source of inaccuracy has
been termed “social desirability bias”, which results
from subjects’ natural reluctance to report exposures
and/or behaviors that are deemed socially unaccept-
able [24].

Those who are conducting the study can also have
an impact on the degree and type of misclassifica-
tion that occur during data collection. Knowledge of
the study hypothesis and the comparison group to
which a subject belongs could influence the behavior
of personnel responsible for conducting interviews.
For example, in a case–control study of the poten-
tial association between oral contraceptive use and
development of venous thrombosis, subjects known
to have experienced a venous thrombosis might be
probed more deeply than controls for a history of
oral contraceptive use. A similar situation might
arise in a cohort study if an interviewer were more
thorough in his or her questioning of exposed vs.
unexposed subjects regarding signs and symptoms
indicative of the outcome of interest. Such inter-
viewer bias is a potential source of differential mis-
classification and could thus lead to invalid study
results.

Addressing Information (Misclassification) Bias

Although there is always likely to be some degree
of inaccuracy in measuring both exposures and out-
comes, steps can be taken to minimize classification
errors and reduce the probability that such errors
will be differential (see below). Since nondifferen-
tial misclassification is more predictable in its impact
and tends to result in underestimation of effects, it
has generally been considered to be less of a threat
than differential misclassification [20]. It should be
noted that if a study finds a significant relationship
between an exposure and an outcome, it is illogical to
dismiss the study results on the grounds that nondif-
ferential misclassification is present, since the effect
estimate obtained in the absence of such misclassifi-
cation would only be stronger.

One strategy for addressing misclassification bias
is to ensure that all study participants are subject
to the same follow-up procedures and standard-
ized diagnostic criteria. To the extent possible, both

the study personnel responsible for data collection
and the study subjects should be blinded as to the
main hypothesis under investigation (see Blinding
or Masking). Interviewers must follow standardized
protocols and, if practical, should remain unaware of
the comparison group (i.e. case/control or exposed/
unexposed) to which study participants from whom
they gather information belong (see Interviewing
Techniques). Acceptance of surrogate responses may
not be appropriate for information that is subjective,
highly personal, time-specific, or otherwise difficult
to obtain from someone other than the subject him-
or herself.

After data collection, correction for misclassifica-
tion depends on the availability of information on
probabilities of misclassification (e.g. sensitivity and
specificity estimates) for variables that have been
misclassified. Several authors have offered correc-
tion procedures: Barron [2] and Copeland et al. [4]
provide correction formulae for 2 × 2 tables that
assume nondifferential misclassification. These for-
mulas were extended to allow for differential mis-
classification by Kleinbaum et al. [14] and to arbi-
trary multiway cross-classifications (see Contin-
gency Table) by Korn [15]. Greenland & Klein-
baum [10] provide correction formulae for matched
data. Espeland & Hui [7] use loglinear models and
maximum likelihood estimation to incorporate esti-
mates of nondifferential misclassification probabili-
ties gathered either by resampling the study popu-
lation, sampling a separate population, or a priori
assumption. Reade-Christopher & Kupper [19] use
logistic regression to correct for nondifferential mis-
classification of exposure with a priori assumptions
about misclassification probabilities. Also, recent
work by Satten & Kupper [22] provides odds ratio
regression methods when we have available only the
probability of exposure (POE) for each study sub-
ject, and where these POE values are assumed to be
known without error.

Correction for misclassification bias often requires
information from a validation study, which may not
be available. If such data are not available, then the
best approach to evaluating the results of a study
is to assess the probable magnitude and direction
of suspected misclassification errors and discuss the
likely impact of such errors on the estimated effect.
Formulas used for correction for misclassification are
useful for this purpose.
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Confounding

Confounding is a type of bias that occurs when the
effect of the exposure of interest is mixed up with that
of one or more “extraneous” variables. This can result
in an observed exposure–disease relationship being
attributed exclusively to the exposure of interest,
when in reality the relationship is due, either wholly
or in part, to the effect of another variable or variables
(i.e. confounders). Confounding can also create the
appearance of an exposure–disease relationship when
in fact none exists. The amount of bias introduced can
be large or small, depending upon the nature of the
relationships among the confounder(s), the exposure,
and the disease. Confounding can lead to an over- or
underestimation of the true effect and can also result
in an estimated effect that is on the opposite side of
the null from its true value.

Sources of Confounding

There is essentially only one source of confounding –
the presence of certain key relationships between an
extraneous variable and both the exposure and the
disease. The first requirement is that the extraneous
variable be a risk factor for the disease, i.e. that it
is either causally related to the disease or is a corre-
late of a causal factor [14, 20] (see Causation). More
specifically, the status of a confounder as a risk factor
for the disease must be independent of its association
with the exposure of interest; therefore, it must be
a risk factor among the unexposed. The second cri-
terion is that the confounder be associated with the
exposure of interest. Theoretically, this relationship
should hold in the source population that produces
the cases of disease [18]. Practically speaking, it is
generally assessed among all subjects in a follow-
up study and among the controls in a case–control
study. A final criterion is that the confounder should
not be an “intervening variable” in the causal path-
way between exposure and disease. In other words,
if an extraneous variable were actually a measure of
some type of biological alteration caused by the expo-
sure, which in turn went on to cause the disease, then
such a variable would not fulfill the criteria for a
confounder but would simply be a mediator between
exposure and disease.

In addition to the theoretical considerations
described above, there is also a data-based criterion
for assessing confounding. The crude measure is

considered to be confounded “in the data” if it differs
meaningfully in value from the “adjusted” estimate of
effect that removes the influence of the extraneous
variables being assessed as possible confounders.
This “data-based” criterion is also referred to as the
“collapsibility” criterion [11]. The absence of data-
based confounding implies that the strata considered
when controlling for a potential confounder can be
collapsed (or pooled) without introducing bias.

Addressing Confounding

Although applicable only to experimental rather than
observational studies, one technique for decreasing
the likelihood of confounding is randomization. If
the exposure of interest is allocated randomly to study
subjects, then the probability that the exposure will
be associated with a potential confounder is greatly
reduced (see Randomized Treatment Assignment).
Importantly, this benefit is gained for previously
unidentified (and unobserved) potential confounders
as well as for those suspected potential confounders
that are measured. Restriction is another means of
avoiding an unwanted relationship between the expo-
sure and an extraneous variable. For example, if
gender is a risk factor for the outcome of interest,
and there is concern that gender will be unequally
distributed between exposure groups, then restrict-
ing the study to either males or females will elim-
inate the possibility of confounding by this vari-
able. However, the advantage of this approach must
be weighed against the potential threat to gener-
alizability (external validity, see below) that may
result. Another strategy for addressing confounding
is the practice of matching, whereby the compari-
son group is selected to be similar to the index group
with regard to key variables that are suspected con-
founders. Although confounding can be controlled in
unmatched designs, the primary statistical advantage
of matching is that it can make control of confound-
ing more efficient (i.e. increase the precision of an
adjusted estimate) [14, 20].

In contrast to the other types of bias, viable options
also exist for addressing confounding in the anal-
ysis phase of a study. If only one potential con-
founder is identified, then the simplest approach is
to perform a stratified analysis (see Stratification),
calculating a separate effect estimate for subjects in
each category of the potential confounder (e.g. sep-
arate estimates for males and females, smokers and
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nonsmokers, etc.). If the estimates are similar across
categories (i.e. there is no interaction), then they can
be combined into a single adjusted estimate which
removes the influence of the potential confounder
(see Mantel–Haenszel Methods; Matched Analy-
sis). When several potential confounders are identi-
fied, the assessment of confounding is complicated,
requiring simultaneous control of several variables
as well as determination of which subset of poten-
tial confounders is most appropriate for simultaneous
control [14]. The “gold standard” (i.e. most valid sub-
set) to which all subsets should be compared contains
the entire set of potential confounders. The use of
stratified analysis is not a viable option when there is
even a moderate number of potential confounders,
since the number of strata becomes too large and
individual strata may contain few or no subjects.
An alternative approach uses a mathematical model-
ing procedure (e.g. logistic regression), and requires
determining whether the estimated measure of effect
changes meaningfully when potential confounders are
deleted from the model [13, 14]. The term “mean-
ingfully” implies a decision that does not involve
statistical testing, but rather the consideration of bio-
logic and/or clinical experience about the importance
of a change in the effect measure. Variables iden-
tified as nonconfounders from this approach may be
dropped from the model provided their deletion leads
to a gain in precision (i.e. narrower confidence inter-
val). In the absence of interaction, the assessment of
confounding simplifies to monitoring changes in the
estimated coefficient of the exposure variable. How-
ever, if there is interaction, then the assessment is
more subjective because the collective change in sev-
eral coefficients must be monitored. Consequently,
when interaction is present, we recommend keeping
all potential confounders in the model. Note, further-
more, that whether stratified analysis or mathematical
modeling is used, misclassification of confounders
can lead to incomplete or incorrect control of con-
founding [9]. Also, the use of regression modeling for
control of confounding may yield misleading results
if incorrect assumptions are made about the form and
characteristics of the model being fit. Important char-
acteristics to consider include the specific variables
(e.g. “risk factors”) chosen for control, the quantita-
tive form that such variables should take in the model,
the interaction effects to be evaluated, and the mea-
surement scale (e.g. additive or multiplicative) used

to assess interaction effects (see Effect Modification;
Relative Risk Modeling).

Internal vs. External Validity

The discussion to this point has centered upon the
issue of internal validity, or lack of bias. One may
also be interested in assessing the external validity
of an estimated effect (see Validity and Generaliz-
ability in Epidemiologic Studies). The distinction
between internal and external validity has to do
with the population about which inferences are to be
made [14]. An internally valid effect estimate is one
that correctly describes the association between expo-
sure and outcome in the target population, i.e. the
collection of individuals upon which the study was
designed to focus and about whom one is able to draw
direct conclusions. This is the group that has been
sampled, though not necessarily in a random fash-
ion. By contrast, external validity, or generalizability,
refers to the making of inferences to an external pop-
ulation beyond the restricted interest of the particular
study from which the effect is estimated. Assessing
external validity involves making a judgment regard-
ing whether the results of a study can be extended
to apply to individuals who are dissimilar in some
aspects (e.g. age, race, occupation) compared with
those upon whom the study was focused.
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Bias Toward the Null

Bias toward the null usually refers to an effect of non-
differential errors in exposure measurements that
reduces the apparent effect of the exposure on the
dependent variable, which might be a health outcome.
For linear regressions, bias toward the null is called
attenuation (see Measurement Error in Epidemio-
logic Studies). Attenuation (or bias toward the null)
does not change the sign of the coefficient of exposure
in the regression, but it reduces the absolute magni-
tude toward zero. Similar effects are found for esti-
mates of log relative odds in logistic regression and

for odds ratios in 2 × 2 tables (see Bias in Obser-
vational Studies; Misclassification Error). The odds
ratios are biased toward, but not beyond, unity. There
are, however, more complex situations in which non-
differential error can induce a bias away from the null
and thus exaggerate an apparent exposure effect or
induce a bias that reverses the direction of an appar-
ent exposure effect, as mentioned in the articles cited
above.

Bias toward the null can also result from other
sources of bias, such as confounding and selection
bias.

MITCHELL H. GAIL



Bias, Nondifferential

When comparing exposed with unexposed groups,
unbiased estimates of exposure effect may result if
the same (nondifferential) biases affect each exposure
group. Nondifferential bias is bias that affects each
exposure (or treatment) group in such a way that the
resulting exposure effect measure remains unbiased.
For example, suppose that 10% of the exposed group
and 5% of the unexposed group develop cancer in
a given time period, corresponding to a true rela-
tive risk of 10%/5% = 2.0. Suppose, however, that
follow-up procedures fail to detect 20% of incident
cancers in each group, resulting in apparent can-
cer risks of 8% and 4%, respectively. Despite the
fact that each of these risks is biased, the relative
risk, 8%/4% = 2.0, is unbiased. Thus, with respect
to relative risk, these biases are nondifferential. If,

instead, the chosen measure of exposure effect was
the risk difference, 10% − 5% = 5%, these same
errors would yield a biased estimate of 8% − 4% =
4%. Thus, an error process may induce nondiffer-
ential bias with respect to one effect measure but
differential bias with respect to another measure.

Nondifferential bias results from a nondifferential
error process. In the previous example, the underes-
timates, 8% and 4%, depended only on the corre-
sponding true values, 10% and 5%, respectively, and
not on the exposure group, because the error pro-
cess missed 20% of incident cancers, regardless of
exposure group. Thus, the error was nondifferential.

(See also Misclassification Error)

MITCHELL H. GAIL



Bias, Overview

Bias is defined as the “deviation of results or infer-
ences from the truth, or processes leading to such
deviation” [12]. In other words, it is the extent to
which the expected value of an estimator differs
from a population parameter. Bias refers to system-
atic errors that decrease the validity of estimates,
and does not refer to random errors that decrease
the precision of estimates. Unlike random error, bias
cannot be eliminated or reduced by an increase in
sample size.

Bias can occur as a result of flaws in the following
stages of research [17]:

1. literature review,
2. study design,
3. study execution,
4. data collection,
5. analysis,
6. interpretation of results, and
7. publication.

Literature Review Bias

Literature review bias (syn. reading-up bias) refers
to errors in reading-up on the field [17]. Examples
include:

Foreign language exclusion bias: literature re-
views and meta-analyses that ignore publications in
foreign languages [5].

Literature search bias: caused by lack of a com-
puterized literature search, incomplete search due to
poor choice of keywords and search strategies, or
failure to include unpublished reports or hard-to-
reach journals through interlibrary loans.

One-sided reference bias: investigators may
restrict their references to only those studies that
support their position [17].

Rhetoric bias: authors may use the art of writing
to convince the reader without appealing to scientific
fact or reason [17].

Design Bias

Design bias refers to errors occurring as a result of
faulty design of a study [12]. This can arise from

faulty selection of subjects, noncomparable groups
chosen for comparison, or inappropriate sample size.

Selection Bias

Selection bias is a distortion in the estimate of effect
resulting from the manner in which subjects are
selected for the study population. Bias in selection
can arise: (i) if the sampling frame is defective,
(ii) if the sampling process is nonrandom, or (iii) if
some sections of the target population are excluded
(noncoverage bias) [14].

Sampling frame bias. This type of bias arises
when the sampling frame that serves as the basis for
selection does not cover the population adequately,
completely, or accurately [14]. Examples include:

Ascertainment bias: arising from the kind of
patients (e.g. slightly ill, moderately ill, acutely ill)
that the individual observer is seeing, or from the
diagnostic process which may be determined by the
culture, customs, or individual disposition of the
health care provider [12]. (See also diagnostic access
bias.)

Berkson bias (see Berkson’s Fallacy) (syn.
admission rate bias, hospital admission bias): caused
by selective factors that lead hospital cases and
controls in a case–control study to be systematically
different from one another [1, 6].

Centripetal bias: the reputations of certain clini-
cians and institutions cause individuals with specific
disorders or exposures to gravitate toward them [17].

Diagnostic access bias: patients may not be identi-
fied because they have no access to diagnostic process
due to culture or other reasons. (See also ascertain-
ment bias, hospital access bias.)

Diagnostic purity bias: when “pure” diagnostic
groups exclude comorbidity, they may become non-
representative [17].

Hospital access bias: patients may not be iden-
tified because they are not sick enough to require
hospital care, or because they are excluded from hos-
pitals as a result of distance or cost considerations.
(See also ascertainment bias, diagnostic access bias,
referral filter bias.)

Migrator bias: migrants may differ systematically
from those who stay home [17].

Neyman bias (syn. attrition bias, prevalence–in-
cidence bias, selective survival bias; see Bias
from Survival in Prevalent Case–Control Studies):
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caused by excluding those who die before the
study starts because the exposure increases mortality
risk [4, 6].

Telephone sampling bias: if telephone sampling
is used to select a sample of individuals, then per-
sons living in households without telephones would
be systematically excluded from the study popula-
tion, although they would be included in the target
population.

Nonrandom sampling bias. This type of bias
arises if the sampling is done by a nonrandom
method, so that the selection is consciously or uncon-
sciously influenced by human choice [14]. Examples
include:

Autopsy series bias: resulting from the fact that
autopsies represent a nonrandom sample of all
deaths [12].

Detection bias (syn. selective surveillance bias,
verification bias): caused by errors in methods of
ascertainment, diagnosis, or verification of cases in an
epidemiologic investigation, for example verification
of diagnosis by laboratory tests in hospital cases, but
not in cases outside the hospital [6, 12]. (See also
diagnostic work-up bias, unmasking bias.)

Diagnostic work-up bias (syn. sequential-ordering
bias): arises if the results of a diagnostic or screening
test affect the decision to order the “gold standard”
procedure that provides the most definitive result
about the disease [16], for example those who have a
negative screening test are systematically excluded
from the gold standard procedure [3]. (See also
detection bias, unmasking bias.)

Door-to-door solicitation bias: subjects obtained
by door knocking are more likely to be the elderly,
unemployed, and less active individuals who tend to
stay at home.

Previous opinion bias: the tactics and results of a
previous diagnostic process on a patient, if known,
may affect the tactics and results of a subsequent
diagnostic process on the same patient [17]. (See also
diagnostic work-up bias.)

Referral filter bias: as a group of patients are
referred from primary to secondary to tertiary care,
the concentration of rare causes, multiple diagnoses,
and severe cases may increase [17]. (See also hospital
access bias.)

Sampling bias: caused by the use of nonproba-
bility sampling methods that do not ensure that all
members of the population have a known chance of

selection in the sample [12] (see Quota, Representa-
tive, and Other Methods of Purposive Sampling).

Self-selection bias (syn. self-referral bias): sub-
jects contact the investigators on their own initiative
in response to publicity about the investigation.

Unmasking bias (syn. signal detection bias): an
innocent exposure may become suspect if, rather
than causing a disease, it causes a sign or symptom
which leads to a search for the disease [17] (see
Bias From Diagnostic Suspicion in Case–Control
Studies). (See also detection bias, diagnostic work-
up bias.)

Noncoverage bias. This type of bias arises if some
sections of the population are impossible to find or
refuse to cooperate [14]. Examples include:

Early-comer bias (syn. latecomer bias): “early-
comers” from a specified sample may exhibit
exposures or outcomes which differ from those of
“latecomers” [6], for example early-comers in a study
tend to be healthier, and less likely to smoke [17].
(See also response bias.)

Illegal immigrant bias: when census data are used
to calculate death rates, bias is caused by illegal
immigrants who appear in the numerator (based on
death records) but not in the denominator (based on
census data).

Loss to follow-up bias: caused by differences in
characteristics between those subjects who remain in
a cohort study and those who are lost to follow-up [6]
(see Bias from Loss to Follow-up).

Response bias (syn. nonrespondent bias, volunteer
bias): caused by differences in characteristics between
those who choose or volunteer to participate in a
study and those who do not [7, 12] (see Bias from
Nonresponse). An example is the forecast of the US
presidential election in a 1936 survey of 10 million
individuals that went wrong because the response
rate was only 20%, and the respondents presumably
came from a higher social class than the general
electorate [14]. (See also early-comer bias.)

Withdrawal bias: caused by differences in the
characteristics of those subjects who choose to with-
draw and those who choose to remain [6, 12].

Noncomparability Bias

Noncomparability bias occurs if the groups cho-
sen for comparison are not comparable. Examples
include:
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Ecological bias (syn. ecologic fallacy): the associ-
ations observed between variables at the group level
on the basis of ecological data may not be the same
as the associations that exist at the individual level.

Healthy Worker Effect (HWE): an observed dec-
rease in mortality in workers when compared with
the general population [4] (see Occupational Epi-
demiology). This is a type of membership bias [6].

Lead-time bias (syn. zero time shift bias): occurs
when follow-up of two groups does not begin at
strictly comparable times, for example when one
group has been diagnosed earlier in the natural history
of the disease than the other group owing to the use of
a screening procedure [12] (see Screening Benefit,
Evaluation of).

Length bias: caused by the selection of a dispro-
portionate number of long-duration cases (cases who
survive longest) in one group and not in the other. An
example is when prevalent cases, rather than incident
cases, are included in a case–control study [12].

Membership bias: membership in a group (e.g.
workers, joggers) may imply a degree of health which
differs systematically from that of the general popu-
lation because the general population is composed of
both healthy and ill individuals [6, 17].

Mimicry bias: an innocent exposure may become
suspect if, rather than causing a disease, it causes a
benign disorder which resembles the disease [17].

Nonsimultaneous comparison bias (syn. noncon-
temporaneous control bias): secular changes in defini-
tions, exposures, diagnoses, diseases, and treatments
may render noncontemporaneous controls noncompa-
rable [17], for example use of historical controls [12]
(see Bias from Historical Controls).

Sample Size Bias

Samples that are too small may not show effects
even when they are present; samples that are too
large may show tiny effects of little or no practical
significance [17]. Another name for sample size bias
is wrong sample size bias.

Study Execution Bias

Study execution bias refers to errors in executing the
experimental maneuver (or exposure) [17]. Examples
include:

Bogus control bias: when patients who are allo-
cated to an experimental maneuver die or sicken

before or during its administration and are omitted
or reallocated to the control group, the experimental
maneuver will appear spuriously superior [17].

Contamination bias: when members of the control
group in an experiment inadvertently receive the
experimental maneuver, the differences in outcomes
between experimental and control patients may be
systematically reduced [17] (see Bias Toward the
Null).

Compliance bias: in experiments requiring patient
adherence to therapy, issues of efficacy become con-
founded with those of compliance, for example
when high-risk coronary patients quit exercise pro-
grams [17] (see Noncompliance, Adjustment for).

Data Collection Bias

Data collection bias (syn. information bias, measure-
ment error, misclassification bias, observational
bias) refers to a flaw in measuring exposure or
outcome that results in differential quality or accu-
racy of information between compared groups [12]
(see Bias, Nondifferential). Bias in data collection
can arise from (i) defective measuring instruments,
(ii) wrong data source, (iii) errors of the observer,
(iv) errors of the subjects, and (v) errors during data
handling.

Instrument Bias

Instrument bias (syn: instrument error) refers to
defects in the measuring instruments [17]. This may
be due to faulty calibration, inaccurate measuring
instruments, contaminated reagents, incorrect dilution
or mixing of reagents, etc. [12]. Examples include:

Case definition bias: definition of cases, for exam-
ple based on different versions of International Clas-
sification of Diseases (ICD) codes, or first-ever cases
vs. recurrent cases, may change over time or across
regions, resulting in inaccurate trends and geographic
comparisons [13]. (See also diagnostic vogue bias.)

Diagnostic vogue bias: the same illness may
receive different diagnostic labels at different points
in space or time, for example the British term
“bronchitis” vs. North American “emphysema”) [17].
(See also case definition bias.)

Forced choice bias: questions that provide inade-
quate choices, for example only “yes” and “no”, and
without other choices like “do not know” or “yes but
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do not know type”, may force respondents to choose
from the limited choices. (See also scale format bias.)

Framing bias: preference depends on the manner
in which the choices are presented, for example
telling a prospective candidate for surgery that an
operation has a 5% mortality, vs. 95% survival
rate.

Insensitive measure bias: when outcome mea-
sures are incapable of detecting clinically significant
changes or differences, type II errors occur [17].

Juxtaposed scale bias (syn. questionnaire for-
mat bias): juxtaposed scales, a type of self-report
response scale which asks respondents to give mul-
tiple responses to one item, may elicit different
responses than when separate scales are used [10].

Laboratory data bias: data based on laboratory
test results are subject to errors of the laboratory
test including faulty calibration of the instruments,
contaminated or incorrect amounts of reagents, etc.

Questionnaire bias: leading questions or other
flaws in the questionnaire may result in a differential
quality of information between compared groups [6]
(see Questionnaire Design).

Scale format bias: even vs. odd number of cate-
gories in the scale for the respondents to choose from
can produce different results, for example (Agree)
1–2–3 (Disagree) tends to obtain neutral answers,
i.e. 2, while (Agree) 1–2–3–4 (Disagree) tends to
force respondents to take sides. (See also forced
choice bias.)

Sensitive question bias: sensitive questions such as
personal or household incomes, sexual orientation, or
marital status, may induce inaccurate answers.

Stage bias: method for determining stage of dis-
ease of patients may vary across the groups being
compared, across geographic areas, or through time,
leading to spurious comparison of stage-adjusted sur-
vival rates (see Bias from Stage Migration in Can-
cer Survival) [9].

Unacceptability bias: measurements which hurt,
embarrass or invade privacy may be systematically
refused or evaded [17].

Underlying/contributing cause of death bias:
results of data analysis will be different depending on
whether the underlying or the contributing cause of
death as recorded on the death certificates is used (see
Cause of Death, Underlying and Multiple; Death
Certification).

Voluntary reporting bias: voluntary reporting sys-
tem vs. mandatory reporting system can generate

differences in the quality and completeness of routine
data.

Data Source Bias

Data source bias refers to wrong, inadequate, or
impossible source or type of data. Examples include:

Competing death bias: some causes of death (e.g.
cancers) are associated with older age, while others
(e.g. infectious diseases) are associated with younger
age. Therefore in places where infectious diseases
are prevalent, the cancer rates will be underestimated
owing to competing causes of death from infectious
diseases (see Competing Risks).

Family history bias: positive family history is not
an accurate indicator of familial aggregation of a
disease and the influence of genetic factors, because
it is a function of the number of relatives and the age
distribution of relatives [11].

Hospital discharge bias: hospital discharge data
do not reflect hospital admission data since they are
affected by length of hospital stay, and therefore
do not provide accurate information for disease
incidence.

Spatial bias: many environmental data used for
health applications, for example geographic informa-
tion systems (GIS), derive from point measurements
at monitoring or survey stations. Unfortunately, many
environmental monitoring networks are too sparse
spatially and biased towards high pollution sites, gen-
erating an inaccurate pollution surface [2].

Observer Bias

Observer bias is due to differences among observers
(interobserver variation) or to variations in readings
by the same observer on separate occasions (intraob-
server variation) [12] (see Observer Reliability and
Agreement). Examples include:

Diagnostic suspicion bias (syn. diagnostic bias): a
knowledge of the subject’s prior exposure to a puta-
tive cause (e.g. ethnicity, drug use, cigarette smoking)
may influence both the intensity and the outcome of
the diagnostic process [6, 17] (see Bias From Diag-
nostic Suspicion in Case–Control Studies).

Exposure suspicion bias: a knowledge of the sub-
ject’s disease status may influence both the intensity
and outcome of a search for exposure to the putative
cause [6, 17] (see Bias from Exposure Suspicion in
Case–Control Studies).
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Expectation bias: observers may systematically
err in measuring and recording observations so that
they concur with prior expectations, for example
house officers tend to report “normal” fetal heart
rates [17].

Interviewer bias: caused by interviewers’ sub-
conscious or even conscious gathering of selective
data [12], for example questions about specific expo-
sures may be asked several times of cases but only
once of controls [17]. Can result from interinter-
viewer or intrainterviewer errors [6].

Therapeutic personality bias: when treatment is
not blind, the therapist’s convictions about efficacy
may systematically influence both outcomes and their
measurement (e.g. desire for positive results) [17]
(see Blinding or Masking).

Subject Bias

Subject bias (syn. “observee” bias) refers to the inac-
curacy of the data provided by the subjects (respon-
dents, “observees”) at the time of data collection.
Examples include:

Apprehension bias: certain measures (e.g. pulse,
blood pressure) may alter systematically from their
usual levels when the subject is apprehensive (e.g.
blood pressure may change during medical inter-
views) [17].

Attention bias (syn. Hawthorne effect): study sub-
jects may systematically alter their behavior when
they know they are being observed [17].

Culture bias: subjects’ responses may differ
because of culture differences, for example some
ethnic groups, because of their cultural background,
do not want to share publicly their pain or problems
such as unemployment, marital troubles, youth crime,
and parental difficulties.

End aversion bias: subjects usually avoid end of
scales in their answers, try to be conservative, and
wish to be in the middle.

Faking bad bias (syn. hello–goodbye effect):
subjects try to appear sick in order to qualify for
support. Also, subjects try to seem sick before, and
very well after, the treatment.

Faking good bias (syn. social desirability bias):
socially undesirable answers tend to be underre-
ported. (See also unacceptable disease bias, unaccept-
able exposure bias.)

Family information bias: the family history and
other historical information may vary markedly

depending upon whether the individual in the family
providing the information is a case or a control,
for example different family histories of arthritis
may be obtained from affected and unaffected
siblings [17].

Interview setting bias: whether interviews are
conducted at home, in a hospital, the respondent’s
workplace, or the researcher’s office may affect
subjects’ responses.

Obsequiousness bias: subjects may systematically
alter questionnaire responses in the direction they
perceive desired by the investigator [17].

Positive satisfaction bias (syn. positive skew bias):
subjects tend to give positive answers, typically when
answering satisfaction questions.

Proxy respondent bias (syn. surrogate data bias):
for deceased cases or surviving cases (e.g. brain
tumors) whose ability to recall details is defective,
soliciting information from proxies (e.g. spouse or
family members) may result in differential data
accuracy.

Recall bias: caused by differences in accuracy or
completeness of recall to memory of prior events or
experiences [6], for example mothers whose children
have had leukemia are more likely than mothers of
healthy children to remember details of diagnostic
X-ray examinations to which these children were
exposed in utero [12].

Reporting bias (syn. self-report response bias):
selective suppression or revealing of information such
as past history of sexually transmitted disease [12].
(See also unacceptable disease bias, unacceptable
exposure bias, sensitive question bias.)

Response fatigue bias: questionnaires that are too
long can induce fatigue among respondents and result
in uniform and inaccurate answers.

Unacceptable disease bias: socially unacceptable
disorders (e.g. sexually transmitted diseases, suicide,
mental illness) tend to be underreported [12]. (See
also reporting bias, faking good bias.)

Unacceptable exposure bias: socially unaccept-
able exposures (e.g. smoking, drug abuse) tend to be
underreported. (See also reporting bias, faking good
bias.)

Underlying cause bias (syn. rumination bias):
cases may ruminate about possible causes for their
illness and thus exhibit different recall or prior
exposures than controls [17]. (See also recall bias.)

Yes-saying bias: some subjects tend to say “yes”
to all questions.
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Data Handling Bias

Data handling bias refers to the manner in which data
are handled. Examples include:

Data capture error : errors in the acquisition of the
data in digital form, normally by manual encoding
(coding error), digitizing (data entry error), scanning,
or electronic transfer from pre-existing data bases [2].
(See also data entry bias.)

Data entry bias: difference in data entry practices
may cause unreal observed differences in geographic
variations in incidence rates [18]. (See also data
capture error.)

Data merging error : incorrect merging of data
from different databases, for example erroneous mer-
ging and failure to merge as a result of illegible
handwriting on the routine forms, different dates of
service recorded in different databases, etc. (See also
record linkage bias.)

Digit preference bias (syn. end-digit preference
bias): in converting analog to digital data, observers
may record some terminal digits with an unusual
frequency [17], for example rounding off may be to
the nearest whole number, even number, multiple
of 5 or 10, or, when time units like a week are
involved, [8, 15], etc. [12].

Record linkage bias: computerized record linkage
is based on a probabilistic process based on identifiers
(see Matching, Probabilistic). Some identifiers, e.g.
some surnames, may have a poor record linkage
weight, causing linkage problems, and therefore tend
to exclude subjects having those identifiers.

Analysis Bias

Analysis bias results from errors in analyzing the
data. It can arise from (i) lack of adequate control
of confounding factors, (ii) inappropriate analysis
strategies, and (iii) post hoc analysis of the data set.

Confounding Bias

Confounding bias occurs when the estimate of the
effect of the exposure of interest is distorted because
it is mixed with the effect of a confounding (extra-
neous) factor. A confounding factor must be a risk
factor for the disease, be associated with the exposure
under study, and not be an intermediate step in the
causal path between the exposure and the disease [6].
Examples include:

Latency bias: failure to adjust for the latent
period in the analysis of cancer or other chronic
disease data.

Multiple exposure bias: failure to adjust for mul-
tiple exposures.

Nonrandom sampling bias: when a study sample
is selected by nonrandom (nonprobability) sampling,
failure to account for variable sampling fractions
in the analysis may introduce a bias, for example
weighting by the strata population sizes is needed
for a disproportionate stratified sample (see Stratified
Sampling).

Standard population bias: choice of standard pop-
ulation will affect estimation of standardized rates (a
weighted average of the category-specific rates) [7]
(see Standardization Methods).

Spectrum bias (syn. case mix bias): heterogeneous
groups of patients with different proportions of mild
and severe cases can lead to different estimates of
screening performance indicators [16].

Analysis Strategy Bias

Analysis strategy bias (syn. analysis method bias)
refers to problems in the analysis strategies. Examples
include:

Distribution assumption bias: wrong assumption
of sampling distribution in the analysis, for example
time variables follow lognormal distribution rather
than normal distribution, and therefore geometric
mean time rather than mean time should be used [8].

Enquiry unit bias: choice of unit of enquiry may
affect analysis results, for example with the school
as the unit of enquiry, half the high schools offered
no physics, but when the student becomes the unit
of enquiry, only 2% of all high school students
attended schools that offered no physics, since the
small schools do not teach physics (see Unit of
Analysis).

Estimator bias: the difference between the expec-
ted value of an estimator of a parameter and the true
value of this parameter [12], for example odds ratio
always overestimates relative risk).

Missing data handling bias: how missing data are
handled, for example treated as a missing case vs.
interpreted as a “no” answer, will lead to different
results.

Outlier handling bias: arising from a failure to
discard an unusual value occurring in a small sample,
or due to exclusion of unusual values that should be
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included [12]. The latter is also called tidying-up bias
(the exclusion of outliers or other untidy results which
cannot be justified on statistical grounds) [17].

Overmatching bias: matching on a nonconfound-
ing variable that is associated with the exposure but
not the disease can lead to conservative estimates in
a matched case–control study [6].

Scale degradation bias: the degradation and col-
lapsing of measurement scales tend to obscure differ-
ences between groups under comparison [17].

Post Hoc Analysis Bias

Post hoc analysis bias refers to the misleading
results caused by post hoc questions, data dredging,
and subgroup analysis (see Treatment-covariate
Interaction). Examples include:

Data dredging bias: when data are reviewed for
all possible associations without prior hypothesis,
the results are suitable for hypothesis-generating
activities only [17].

Post hoc significance bias: when decision levels
or “tails” for type I and type II errors are selected
after the data have been examined, conclusions may
be biased [17].

Repeated peeks bias: repeated peeks at accumu-
lating data in a randomized trial are not independent,
and may lead to inappropriate termination [17] (see
Sequential Analysis).

Interpretation Bias

Interpretation bias arises from inference and spec-
ulation, for example failure of the investigator to
consider every interpretation consistent with the facts
and to assess the credentials of each, and mishandling
of cases that constitute exceptions to some general
conclusion [12]. Examples include:

Assumption bias (syn. conceptual bias): arising
from faulty logic or premises or mistaken beliefs on
the part of the investigator, for example having cor-
rectly deduced the mode of transmission of cholera,
John Snow falsely concluded that yellow fever was
transmitted by similar means [12].

Cognitive dissonance bias: the belief in a given
mechanism may increase rather than decrease in the
face of contradictory evidence [17].

Correlation bias: equating correlation with cau-
sation leads to errors of both kinds [17].

Generalization bias (syn. lack of external valid-
ity): generalizing study results to people outside the
study population may produce bias, for example gen-
eralizing findings in men to women (see Validity and
Generalizability in Epidemiologic Studies).

Magnitude bias: when interpreting a finding, the
selection of a scale of measurement may markedly
affect the interpretation, for example $1 000 000 may
also be 0.0003% of the national budget [17].

Significance bias: the confusion of statistical sig-
nificance, on the one hand, with biologic or clinical
or health care significance, on the other hand, may
lead to fruitless studies and useless conclusions [17]
(see Clinical Significance Versus Statistical Signif-
icance).

Underexhaustion bias: the failure to exhaust the
hypothesis space may lead to erroneous interpreta-
tions [17].

Publication Bias

Publication bias refers to an editorial predilection for
publishing particular findings, e.g. positive results,
which can distort the general belief about what has
been demonstrated in a particular situation [12] (see
Meta-analysis of Clinical Trials). Examples include:

All’s well literature bias: scientific or professional
societies may publish reports or editorials which omit
or play down controversies or disparate results [17].

Positive results bias: authors are more likely
to submit, and editors accept, positive than null
results [17].

Hot topic bias (syn. hot stuff bias): when a topic is
hot, investigators and editors are tempted to publish
additional results, no matter how preliminary or
shaky [17].
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Bias, Protopathic

Protopathic (or reverse-causality) bias is a conse-
quence of a differential misclassification of exposure
related to its timing of occurrence. It is observed
when a change in exposure taking place in the time
period following disease occurrence is incorrectly
thought to precede disease occurrence. It can be
observed for exposures that may change with time
and for diseases for which the date of occurrence
is difficult to determine accurately because of an
insidious development of symptoms over a prolonged
period of time. The term protopathic bias was coined
by Horwitz and Feinstein [1]. Suppose that a long
delay between early (or protopathic) symptoms and
disease suspicion or diagnosis is commonly observed.
Suppose also that many patients decrease or stop their
exposure to a risk factor as a result of early disease
symptoms. This will create a protopathic downward
bias upon assessing the association between expo-
sure and disease. For instance, early symptoms of
chronic obstructive pulmonary disease (e.g., dysp-
nea) can start a long time before disease occurrence
is suspected or diagnosed. If smoking patients spon-
taneously reduce their smoking as a result of early
disease symptoms, then the magnitude of the associ-
ation between current smoking and risk of chronic
obstructive pulmonary disease will appear smaller
than it is (downward bias). Conversely, protopathic
bias can correspond to an upward bias if exposure is

started or increased during the time period ranging
from the start of symptoms to disease diagnosis. For
instance, patients may be prescribed a drug to alle-
viate early disease symptoms before the disease is
actually diagnosed. This will yield an apparent asso-
ciation between that drug and disease risk (upward
bias). Protopathic bias is a frequent concern in phar-
macoepidemiology studies (see Pharmacoepidemi-
ology, Overview; Pharmacoepidemiology, Adverse
and Beneficial Effects) because drug prescription
and consumption often vary over time and may
change in response to early disease-related symp-
toms. However, it can be observed potentially in all
fields of epidemiology. It is a more serious concern in
case-control studies than in cohort studies because
timings of exposure and actual disease start need to be
ascertained retrospectively, which increases the like-
lihood of protopathic bias.
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Bias

Bias is the expected deviation of an estimate (see
Estimation) from the true quantity to be estimated.
If an estimator θ̂ of a parameter θ has expectation
θ + b, the quantity b is called the bias. If θ̂ converges
to θ + b as the sample size increases, then θ̂ is said
to have asymptotic bias b. Some biases result from
the small sample properties of the estimator used
and vanish asymptotically. Most biases that result
from systematic error, however, such as selection

biases or biases in measuring outcomes, persist as the
sample size increases. Indeed, increasing the sample
size does not eliminate such biases but only leads to
more precise biased estimates.

(See also Bias in Case–Control Studies; Bias in
Cohort Studies; Bias in Observational Studies;
Bias, Overview)
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Biased Sampling of
Cohorts

The epidemiologic cohort study involves a sample
of individuals followed over time. Individuals are
monitored to ascertain the incidence of various end-
points such as the incidence of disease, infection, or
death. The goal is to estimate the absolute incidence
rates of the event or to identify covariates called
risk factors that modify this risk. Individuals may
also be monitored for changes in various markers of
health status such as blood pressure measurements
in prospective studies of cardiovascular disease, or
CD4+ T cell counts or viral load measurements in
natural history studies of AIDS. Usually cohort stud-
ies are prospective because subjects are monitored
following establishment of the cohort. In a histori-
cal cohort study, however, earlier records are used
to define membership in the cohort and to determine
subsequent changes in health status.

Traditional approaches to the analysis of epidemi-
ologic cohort studies include person-years analyses
for rare events [1], survival analyses for more gen-
eral time-to-event data [9], and longitudinal data
analysis for repeated marker data [14]. While clas-
sical statistical methodologies routinely address sam-
pling variation, other more systematic sources of
error and bias that can overwhelm sampling variation
are sometimes ignored. For example, selection bias
resulting from biased sampling of the cohort either at
enrollment or during the course of follow-up can seri-
ously distort incidence and relative risk estimates.
The objective of this article is to review how these
different forms of sampling bias arise and how they
can affect the results of studies. Other biases that
result from confounding and measurement errors are
discussed in other articles (see Measurement Error
in Epidemiologic Studies; Bias in Observational
Studies; Bias in Cohort Studies).

Self-Selection into the Study

Cohort studies may involve a sample of self-selected
volunteers. In some circumstances, the self-selection
into cohorts may be an important source of bias.
Individuals may be solicited to participate in a
cohort study through questionnaires and invitations,
and those who respond and choose to participate

may differ from those who do not participate with
respect to known and unknown disease risk factors.
For example, the Framingham Study, a long-term
cohort study of heart disease initiated about 1950,
issued an invitation to every town resident in the age
range 20–70 to join the study. A lower death rate
was subsequently observed among those individuals
who chose to participate compared with nonpartic-
ipants [20]. One explanation for the mortality dif-
ference was that nonparticipants may be selectively
frailer because study participation required a clinic
visit. Although one might expect the differences in
mortality rates to diminish over time, the Framing-
ham Study found higher mortality rates among non-
participants at both two and five years after study
invitation. In another example involving a cohort
study of British physicians, lower mortality rates were
observed among physicians who replied to an ini-
tial questionnaire compared with those physicians
who did not respond [1, 15]. In a population-based
cross-sectional study of cardiovascular disease (see
Cardiology and Cardiovascular Disease), less car-
diovascular disease was found among respondents
compared with nonrespondents [10]. In the above
examples, less disease was observed among the study
participants or responders. However, it is also possi-
ble to observe more disease among respondents. For
example, the Centers for Disease Control inves-
tigated leukemia incidence among individuals near
the Smoky Atomic Test in Nevada [7, 35]. Among
the 18% of subjects who were self-referred and con-
tacted the investigators, because of publicity about
the study, there were four leukemia cases. Among the
remaining 82% of subjects who were traced by inves-
tigators, there were also four leukemia cases. These
data suggest that those individuals with disease were
more likely to respond voluntarily and to participate
in the study.

Self-selection is a potentially important source of
bias particularly if the main comparison is with an
external control group. For example, if the mortality
rates of a self-selected group of smokers were com-
pared with general population mortality rates, then
the effect of smoking could be masked if the study
participants were healthier than the general popula-
tion. However, if the main comparison is with an
internal control group, then self-selection may not be
a source of bias. For example, among those who self-
selected into the study, the mortality rates of smokers
could be compared with those of nonsmokers. If the
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assumption is that the effect of self-selection was
comparable for both smokers and nonsmokers, then
the relative risk of smoking based on the self-selected
group may be unbiased. However, the absolute mor-
tality rates of the self-selected groups of smokers
and nonsmokers may be a biased estimate of the
rates in the general population. There is, however, no
guarantee that the relative risks are unbiased because
self-selection may act differentially on the exposure
groups. Both empirical and theoretical investigations
of the impact of self-selection on relative risks have
been performed [11, 21, 29].

A related bias is the healthy worker effect (see
Occupational Epidemiology). The healthy worker
effect occurs in cohort studies of occupational
risks [1, 34]. For example, a cohort study may be
conducted to evaluate the health effects associated
with working in a particular occupational setting.
The mortality rates among those individuals who
are employed in the occupation might be compared
with an external control group. However, employed
individuals may have a lower mortality rate than
the general population that is also made up
of unemployed. Indeed, individuals may leave
employment upon the onset of severe life-threatening
diseases. Internal control groups help to correct the
bias from the healthy worker effect, where an exposed
group of employees is compared with an unexposed
group of employees. For example, workers exposed
to carbon disulfide were compared with workers in
the paper industry as well as with the general Finnish
population [23, 28]. Although the exposed workers
had the highest coronary heart disease mortality rates,
the rates among both exposed and unexposed workers
in the paper industry were considerably lower than
the rates in the general population.

Follow-Up Bias

Cohort studies typically follow individuals until an
event occurs. However, there is often incomplete
follow-up; that is, an individual may have follow-
up data only up to time t and there is no information
on the status of the individual beyond t . In that case,
all that is known is that the individual did not have
an event prior to time t . Such observations are right
censored (see Censored Data). There are different
reasons for censoring. One reason may be because
the cohort study is ending and the investigators wish

to analyze the data. In this case we say the individual
is administratively censored. We say the individual is
lost to follow-up if the individual is right censored
because of all other reasons including the patient has
moved away or the individual no longer wishes to
participate in the study.

Most statistical methods for the analysis of follow-
up data from cohort studies assume that individuals
censored at some time t have similar risks as indi-
viduals not censored at t . This is noninformative
censoring [30]. Generally, the assumption of nonin-
formative censoring is plausible for administrative
censoring because the reason for the censoring was
external from the individual. If the assumption of
noninformative censoring is violated, then we say
there is follow-up bias. If the individuals lost to
follow-up are at lower risk than those who remain
under follow-up, then the event rates will be over-
estimated. For example, those individuals who are
particularly healthy may move away from the study
area. Alternatively, if the individuals lost to follow-up
are at higher risk of an event than those who remain
under follow-up, then the event rates will be under-
estimated. For example, the frailer individuals may
be too weak to attend clinic visits, and are thus the
ones lost to follow-up. Of particular concern are stud-
ies where the event of interest is a particular cause
of death, and individuals who die of other causes
are considered censored [17] (see Competing Risks).
The assumption of noninformative censoring may be
violated if there is dependence between the cause of
death of interest and another cause of death. This can
occur if an unknown risk factor is associated with
both causes of death. The dependence can be either
positive or negative. For example, positive depen-
dence arises between coronary heart disease and some
types of cancer if smoking, which is a risk factor
for both, is ignored. Alternatively, negative depen-
dence may arise if alcohol consumption is ignored
because alcohol may increase risk for some cancers
but decrease risk for coronary heart disease [36].

Unfortunately, the assumption that censoring is
noninformative cannot usually be verified from
observable data [38]. One way to evaluate the
sensitivity of the Kaplan–Meier estimate to the
assumption is to create bounds assuming perfect
positive and negative dependence between the
censoring and survival times [33]. The lower bound
of the estimated survival curve is obtained by
assuming that censored observations experience the
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event immediately after being censored. The upper
bound is obtained by assuming censored observations
never experience the event. Dependent censoring
cannot only bias survival curve estimation but can
also reverse the effect of a true risk factor and make
it appear protective [36].

One approach to control the bias introduced by
informative censoring is to attempt to identify a
variable (covariate) such that in a given level or
stratum of the variable, censoring is noninformative.
Such a variable would be associated both with the
risks of disease and the risk of loss to follow-up.
The statistical analysis must then account for this
covariate using either regression or stratified anal-
yses (see Stratification). Similar problems arise in
longitudinal data analysis where dropouts are infor-
mative as opposed to completely random [14]. Some
approaches for modeling the dropout process in lon-
gitudinal data analysis have been proposed that allow
the probability of dropout at time t to depend on the
history of measurements up to time t [13].

Truncation

Truncation is a potentially important source of bias in
cohort studies with nonstandard sampling. Generally,
truncation occurs if the probability that an individual
is sampled for follow-up depends on the individual’s
event time. There are different forms of truncation.
Left truncation arises if the individual comes under
observation only if the individual’s event (survival)
time exceeds a known time, which we call the trun-
cation time. Right truncation arises if the individual
is included in the cohort only if the individual’s event
time is less than a known (truncation) time. Left trun-
cation is discussed in more detail in this section, and
an example of right truncation is discussed in detail
in a later section of this article.

As a simple example of left truncation, consider
a study whose objective is to identify prognostic
factors for survival among patients with a par-
ticular disease. Now suppose only individuals with
the disease who are alive at calendar time C are
eligible for sampling into the study. Under this sam-
pling design only individuals with survival times
ti ≥ C − ui , where ui is the calendar time of diag-
nosis of disease have the opportunity to be included
in the cohort. Individuals with shorter survival times
are selectively excluded. Unless special adjustments

are made for the left truncated data, standard statis-
tical analyses can be seriously biased. For example,
suppose the standard nonparametric Kaplan–Meier
(product–limit) estimate is calculated based on the
data (ti , δi), where ti is the event time for uncensored
individuals or the last follow-up time for censored
individuals and δi is a right censoring indicator that
indicates if the individual had an event at time ti (in
which case, δ1 = 1) or was censored at time ti (in
which case δi = 0). The Kaplan–Meier estimate of
the survival function, S(t) (probability of surviving
beyond time t) is

Ŝ(t) =
∏

{ti≤t}

(
ni − di

ni

)
,

where ni is the number at risk at ti , i.e. the number
of individuals with survival times greater or equal to
ti who have not been previously censored, and di are
the numbers of (uncensored) events that occurred at
ti . Under usual sampling (i.e. a random sample of
individuals are chosen for the cohort), the standard
Kaplan–Meier estimate is a consistent estimate of
the survival curve [2]. However, if the data are left
truncated, then the standard Kaplan–Meier estimate
of the survival curve will overestimate the true sur-
vival curve. The intuition for this bias is as follows.
If we look at all individuals diagnosed with disease at
time ui , only those with long survival (ti ≥ C − ui)

are included in the data set, and this selection results
in an overestimation of survival probabilities.

The correct Kaplan–Meier analysis that accounts
for left truncation requires a different definition of the
risk set. The correct definition of the risk set at time
t to account for left truncation includes only those
individuals who have neither had an event nor been
censored prior to t and who are under active follow-up
at time t. That is to say we require for an individual
to be included in the risk set at time t that (i) the
individual has not had an event or been censored prior
to time t and (ii) ui + t ≥ C. The Kaplan–Meier
estimator based on this definition of risk sets has been
called the truncation product–limit estimator, and
its theoretical properties have been studied by Tsai
et al. [37]. Implicit in the truncation product–limit
estimator is the assumption that risks (hazards) of
the event depend only on follow-up time and depend
neither on calendar time of disease diagnosis nor
calendar time of study enrollment. These stationarity
assumptions are discussed in [39].
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Parametric estimation of survival curves (see
Parametric Models in Survival Analysis) from
left truncated data also requires modification of
traditional methods. The key idea is that the
contributions from each individual to the likelihood
function must be conditional on the sampling criteria.
Specifically, because individuals are required to be
alive at calendar time C, we can account for left
truncation by conditioning on the event that an
individual’s survival time is at least C − ui . Then
the likelihood function for estimating the parameters
in a survival distribution S(t) with density f (t) from
data (ti , δi, ui) for N individuals is

N∏

i=1

[
f (ti)

S(C − ui)

]δi
[

S(ti)

S(C − ui)

]1−δi

.

The usual naive likelihood function that did not
account for left truncation would not include the
denominator terms S(C − ui) in the above likelihood
function.

Special care is also needed in computing incidence
rates when the data are left truncated. The incidence
rate is usually calculated as the ratio of the number of
events divided by the total person time of follow-up.
This estimator of incidence is justified if the haz-
ard of the event is constant over time. A source of
confusion in the calculation of total person time is
the amount of person time contributed by left trun-
cated individuals. A naive analysis might allocate
person time equal to ti for all individuals, even if left
truncated. However, that would lead to an underes-
timation of event incidence rates because events that
occurred before C are not included in the calcula-
tion, but person time of the left truncated individuals
is included. The correct analysis that accounts for left
truncation has individuals contribute person time only
during the period that they are actually under obser-
vation [1, 3]. Thus, in our example, a left truncated
individual contributes person time accrued only after
enrollment at calendar time C, that is, the contribution
is ti − (C − ui).

Special care is also needed in applying the propor-
tional hazards model to left truncated data. The
model formalizes the relative risk concept for studies
of time to response and generalizes it to the regres-
sion setting. The model assumes that the time-specific
incidence (hazard) rate in an exposed population
is proportional to the incidence rate in an unex-
posed population. For a covariate with two levels the

model is

λ1(t) = θλ0(t), (1)

where λ1(t) and λ0(t) are the hazard rates at time
t among those with and without the risk factor,
respectively, and the parameter θ is the hazard ratio
(see Hazard Ratio Estimator) (or relative risk). An
important question is: What is the time scale t on
which the proportional hazards model (1) is defined?
The most appropriate time scale is the one that needs
the most careful control to obtain valid comparisons
between the treatment groups. Often the time scale
is follow-up time, i.e. t is the time the individual
has been under active follow-up. Sometimes, how-
ever, there is a more natural time scale whose origin
is defined by some initiating event [39]. For exam-
ple, in studies of chronic disease incidence, the most
appropriate time scale might be chronological age. In
a prognostic factor study for survival among patients
with a disease, the origin of the time scale might be
the time of disease diagnosis. In this last example,
if the time scale refers to time since diagnosis (as
opposed to follow-up time) special care is needed in
constructing the risk sets of the partial likelihood
analysis when the data are left truncated. A naive
proportional hazards analysis that defined risk sets in
the standard way (i.e. all individuals with event times
greater or equal to ti and not previously censored)
can yield biased estimates of the relative risk. For
example, suppose the cohort study recruits individu-
als alive with disease at calendar time C = 1995. The
covariate of interest is disease diagnosed before 1990
(X = 0) or after 1990 (X = 1). Even if there were
no differences in the hazards of death by calendar
year of diagnosis (θ = 1), the naive proportional haz-
ards analysis would give θ > 1 (aside from sampling
variation). This is because all individuals diagnosed
before 1990 (X = 0) who have survival times that
are less than five years would not have an opportunity
to be sampled and included in the cohort. However,
among all individuals diagnosed after 1990 (X = 1),
at least some of the individuals with survival times
less than five years could have an opportunity to be
sampled. The correct proportional hazards analysis
of left truncated data requires an adjusted defini-
tion of risk sets similar to the adjustments described
previously for Kaplan–Meier estimation. Basically,
individuals should be included in risk sets only if
they are under active follow-up at that time.
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Truncation in Retrospective Studies

Some studies have selected individuals for enroll-
ment based on the occurrence of the primary event
of interest, and then studied these cases retrospec-
tively to ascertain their survival time in order to
estimate survival curves. The key feature of this type
of design is that only individuals who have an event
are eligible for inclusion in the study. For example,
the first study of the incubation period of AIDS
involved only a sample of AIDS cases who developed
AIDS from a blood transfusion [32]. These patients
were identified and selected for study because they
developed AIDS. These patients were then studied
retrospectively to determine the dates of transfusion
with infected blood. Thus, the incubation period was
determined as the time between blood transfusion and
AIDS diagnosis. Another example of a retrospec-
tive study with truncation involved the selection of
pediatric AIDS patients whose only known risk was
maternal transmission; the dates of infection were
assumed to be the dates of birth. In this case the
incubation period is the time between birth and AIDS
diagnosis. These are examples of retrospective stud-
ies with right truncated data in which individuals
with long incubation periods are selectively excluded
because they may not yet have had an event at the
time of sampling (i.e. the time that individuals are
selected for inclusion in the study).

There are also examples of retrospective studies
with left truncated data. For example, a study was
conducted to estimate the interval between first expo-
sure to the human immunodeficiency virus (HIV)
and the development of detectable HIV antibodies
(seroconversion); this interval is called the preanti-
body phase [41]. This study selected only those indi-
viduals who seroconverted late in calendar time (in
the late 1980s). Sera samples from these individuals
had been stored and were tested by PCR to ascertain
the time of first exposure to HIV. However, these
individuals are a biased sample and over-represent
the longer preantibody durations because individu-
als with short preantibody duration would have been
more likely to seroconvert earlier in calendar time
and thus not be included in the study [40, 42].

The remainder of this section considers the anal-
ysis of retrospective studies with right truncated
data. The methods and issues are illustrated with
the study of incubation periods of transfusion associ-
ated AIDS described previously. Figure 1 illustrates
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Figure 1 Schematic illustration of a retrospective study
of cases (transfusion-associated AIDS) with right truncated
data. Only cases diagnosed before calendar time of sam-
pling (C) are included (i.e. wi < C): s = infection date;
w = AIDS diagnosis date; c = case ascertainment date

the sampling scheme: all (AIDS) cases diagnosed
before some calendar time C are sampled. The figure
illustrates the main problems with the analysis and
interpretation of this type of data. First, since the
data involve only individuals who have experienced
events (AIDS diagnoses), without strong parametric
assumptions, they can provide no information about
the prospective probability that an infected individual
eventually develops the disease. Secondly, the sam-
pling scheme tends to over-represent individuals with
shorter incubation periods. The data are right trun-
cated because individuals with very long incubation
periods are selectively excluded. The data consist of
the calendar dates of infection si and the calendar
dates of diagnosis wi . The time to event (incubation
period) is ui = wi − si . The criterion for inclusion
in the data set is that ui ≤ Ti , where Ti = C − si is
called the truncation time. As illustrated in Figure 1,
individuals with longer incubation periods tend to
be selectively excluded because such individuals are
less likely to have developed the endpoint (AIDS)
at the time of ascertainment. Failure to account for
such length-biased sampling will cause the incuba-
tion time to be underestimated.

Both nonparametric and parametric statistical pro-
cedures have been proposed for estimating the distri-
bution function of the times to event from such data.
Nonparametrically, the best that can be done is to esti-
mate the distribution function conditional on the time
to event being less than the maximum truncation time.
The maximum truncation time T ∗ refers to the longest
event time that could possibly be observed under this
sampling procedure. There are simple computational
approaches for calculating the nonparametric estimate
of F ∗(t), which is the cumulative probability that an
incubation period is less than t conditional on it being
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less than T ∗. This is based on expressing F ∗ as the
product of conditional probabilities as follows [26,
31]. Let t1, t2, . . . , tn be the ordered observed event
times. In the AIDS example, these are the incubation
times. The nonparametric estimate F̂ ∗(t) of F ∗(t) is

F̂ ∗(ts) =
n∏

j=s+1

(
1 − dj

mj

)
, s = 1, . . . , n − 1,

(2)

and F̂ ∗(tn) = 1.0, where dj is the number of indi-
viduals with event times exactly equal to tj , and mj

are the numbers of individuals with truncation times
greater than or equal to tj (i.e. Ti = C − si ≥ ti)
and whose event times are less than or equal to tj .
The estimate (2) is a step function with jumps at
observed incubation times; F̂ ∗ reaches the value 1.0
at the largest observed event time. The estimate F̂ ∗
accounts for the length-biased sampling that arises
from right truncation. A naive estimate that was based
simply on the proportion of event times less than t

would grossly overestimate the true distribution func-
tion F(t) and would suggest that event times are
shorter than they really are.

Parametric approaches can also be used to analyze
retrospective studies with right truncated data. While
some parametric assumptions may permit estimation
not only of the conditional distribution F ∗ but also the
unconditional distribution F , the resulting estimates
of F are extremely imprecise and depend strongly
on parametric assumptions. This is because paramet-
ric approaches do not circumvent the main weakness
in the data; it is not possible to observe event times
greater than the maximum truncation time. Several
likelihood functions have been proposed for the para-
metric analysis of retrospective data on cases with
right truncation [5, 26]. The differences in the var-
ious likelihood functions that have been proposed
arise from using different conditioning events. At
a minimum, the likelihood function must condition
on having an event prior to the case ascertainment
time C. In addition, some of the proposed likeli-
hood functions condition on the time origins (dates
of infection si).

Prevalent Cohort Studies

Prevalent cohort studies are used to study the natu-
ral history of disease [6]. The prevalent cohort study

consists of a sample of individuals who have a con-
dition or disease at the time of enrollment in the
study. These individuals are then followed over time
to monitor endpoints such as disease progression or
death. In some situations the durations of time the
individuals have been prevalent with the disease or
condition prior to enrollment are known. For exam-
ple, Cnaan & Ryan [8] considered survival analysis
of a registry of sarcoma patients seen at certain insti-
tutions that included some patients who were initially
diagnosed elsewhere. These data are left truncated
because the patients diagnosed at other institutions
must have survived long enough to be included in
the sample. The methods for left truncated data out-
lined in the previous section are required to account
adequately for the sampling scheme [8].

A more serious complexity arises in the analysis
and interpretation of prevalent cohort studies if the
durations of time the individuals have been prevalent
with the disease or condition prior to enrollment is
unknown. This section is concerned with the issues
in the analysis and interpretation of prevalent cohort
data when the prior durations are unknown.

An example of a prevalent cohort concerns a
study of HIV infected individuals with the objec-
tive to estimate rates of progression to AIDS and
to identify covariates that modify these rates. In
this example, individuals who are alive and previ-
ously infected with HIV are eligible for enrollment.
These individuals are then followed for the onset
of disease progression (AIDS). The main complex-
ity is that the previous calendar times of infection
are unknown. Figure 2 gives a schematic illustration
of the prevalent cohort study. There are three time
scales: calendar time (s), the time from infection (u),

t

u

Follow-up time

Time from infection

Y Calendar time (s)

Figure 2 Schematic illustration of the prevalent cohort
study
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and follow-up time (t). A prevalent sample of indi-
viduals who are HIV infected and alive is taken at
calendar time Y . The main advantage of the prevalent
cohort study is that it can be performed more rapidly
than can traditional cohort studies of individuals with
incident (new) HIV infection. The traditional cohort
study requires a sample of newly infected individu-
als and there could be considerable expense and effort
entailed to identify such a sample. However, a num-
ber of important problems arise in the interpretation
and analysis of a prevalent cohort that do not arise
with a series of newly infected (incident) individu-
als because the duration of time a person has been
infected prior to the beginning of follow-up is not
known.

This section outlines the biases and problems
of interpretation in prevalent cohorts. Although the
prevalent cohort is discussed using the HIV/AIDS
example described above, the conclusions, of course,
apply to many other settings: for example, a study
among prevalent carriers of hepatitis B surface anti-
gen in order to identify modifiers of risk for hepato-
cellular carcinoma. The unifying feature is that there
is an initiating event of a disease (e.g. infection) that
defines the natural biological time scale, and indi-
viduals who are prevalent with the condition are then
enrolled. This results in left truncated data but, unfor-
tunately, one cannot analyze prevalent cohorts using
methods for left truncated data because the truncation
times are unknown.

Suppose analyses are performed on the time scale
of the observed follow-up time (t) instead of the
desired, but unobservable, natural time scale (u) such
as time from infection. Specifically, how do estimates
derived from prevalent cohorts of the probability
of an event within t years of follow-up, Fp(t) =
1 − Sp(t), relate to F(t) which is the probability of
an event within t years of infection? The proportion
of persons in a prevalent cohort who develop disease
within t years of follow-up, Fp(t), does not in general
approximate F(t). Only if the hazard function on the
natural time scale λ(u) is constant (an exponential
distribution for F ) do the two coincide. This follows
from the lack of memory property of an exponen-
tial distribution, which implies that a newly infected
individual will progress to the event at the same rate
as an individual who has been alive for some time.
However, if the hazard λ(u) is monotonically increas-
ing, then individuals in the prevalent cohort will be
at greater risk of an event than are newly infected

individuals. That is to say, the cumulative proba-
bility of an event within t years of follow-up of a
prevalent cohort is larger than that based on t years
of follow-up of an incident (newly infected) cohort
[Fp(t) > F(t)]. The direction of the bias is reversed
for a decreasing hazard. No general statements can
be made about the direction of the bias for nonmono-
tonic hazard functions. Regardless of the shape of the
hazard, Fp(t) is a lower bound on the ultimate pro-
portion of individuals who will have an event, F(∞).
Brookmeyer & Gail [4] derived exact expressions for
the distribution function on the observed follow-up
time scale, Fp(t), in terms of the probability density
of infection times among cohort members and the
true distribution function F . The magnitude of the
biases depend both on the hazard function, λ(t), and
the density of calendar times of prior infection (the
initiating event) among those individuals in the preva-
lent cohort. For example, the bias would be small if
the prevalent cohort is assembled near the beginning
of the epidemic, in which case the backward recur-
rence times (or the times from infection to the onset
of follow-up) would be short (see Back-calculation).

The prevalent cohort study is a rapid and con-
venient approach to identify cofactors and markers
of disease progression. However, because the onset
date is unknown, there are biases that result from
using follow-up time instead of time from infection.
The most important bias associated with identifying
cofactors from prevalent cohorts is called onset con-
founding [4, 6]. This occurs when the unknown cal-
endar date of infection is associated both with the
risk of disease and the cofactor under study. A sub-
group may appear at higher risk of progression to
disease simply because they were infected earlier than
another subgroup. For example, individuals in one
geographic region may exhibit a higher progression
rate to disease than other individuals. This finding
could be an artifact if individuals in one city were
infected earlier in calendar time, and the hazard func-
tion λ(t) is increasing. The requirement to insure no
onset confounding is that the probability densities
of infection times among individuals infected before
calendar time Y is the same in the two subgroups.
Onset confounding can be controlled by stratification
on factors such as geographic region. Stratification on
a covariate is useful provided we are not interested in
determining whether the covariate itself is a cofactor
of disease progression.
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Unfortunately, even if a covariate has no direct
effect on the probability density of infection times
among members of the prevalent cohort so that
there is no onset confounding, relative risk estimates
obtained from prevalent cohorts may still be biased.
To see this, assume that a cofactor with two lev-
els obeys the following simple proportional hazards
model:

λ1(u) = θλ0(u),

where λ1(u) and λ0(u) are the disease incidence rates
at time u among those with and without the factor,
respectively, and θ is the ratio of the hazards. In this
model, the underlying primary time scale is the natu-
ral but unobservable scale u, time since first infection.
If this model holds, but a proportional hazards anal-
ysis is performed based on follow-up time, then tests
of the null hypothesis H0 : θ = 1 will be valid pro-
vided there is no confounding. However, estimates of
θ based on the incorrect assumption of proportional
hazards on the observed follow-up time scale will
usually be biased for θ . The term differential length
biased sampling is used to refer to this bias, which
results from differences in the distributions of prior
durations of infection (backward recurrence times)
between the two prevalent subgroups [4]. Differen-
tial length-biased sampling may bias the relative risk
from a prevalent cohort, and the direction of the bias
depends on whether the hazard function is increasing
or decreasing, as discussed below.

If the hazard function is increasing, then relative
risk estimates obtained from follow-up on a prevalent
cohort will be biased toward unity. A theoretical
proof is given in [4] but an intuitive justification is
as follows. Infected persons with a risk factor are
at higher risk of disease than infected persons with-
out the risk factor. Persons sampled for the prevalent
cohort who are in the low-risk group will tend to
have longer prior durations of infection than persons
in the high-risk group. This is because high-risk per-
sons infected many years earlier are more likely to
have developed disease and thus be excluded from
the prevalent cohort. Since low-risk persons tend
to have been infected for a longer time, their dis-
ease is further advanced [with an increasing hazard
λ0(u)] and therefore the disparity in risk of disease
between two groups is reduced, biasing the rela-
tive risk toward 1. Analogously, if the hazard func-
tion λ0(u) is decreasing, then the relative risk will
be biased away from 1. Fortunately, the magnitude

of differential length-biased sampling phenomena is
never enough to reverse the conclusion, that is to
push the relative risk to the other side of 1. Fur-
thermore, there are two situations when the effect of
differential length bias could be expected to be neg-
ligible: (i) if there is little dispersion in the infection
dates (in which case all backward recurrence times
are nearly identical) and (ii) if the hazard λ0(u) is
small so that only a small proportion of those infected
before the initiation of the prevalent cohort study
develop disease before the end of follow-up and are
selectively excluded (see [4] for a more formal state-
ment of the conditions when the bias from differential
length biased sampling is small).

Other types of biases in prevalent cohorts arise in
the analysis of the time-dependent covariate, that is
the variable whose value changes over time u. There
are two types of time-dependent covariates, “exter-
nal” and “internal” [27]. The main distinction is that
internal time-dependent covariates reflect the health
of the individual (markers) while external time-
dependent covariates are applied externally, such as a
random assignment to a treatment group. For exam-
ple, consider an external time-dependent variable
which takes effect at some point after the onset of
follow-up. An example might be a treatment given to
some members of a prevalent cohort. If the treatment
is assigned randomly (see Randomization), then
the condition for no onset confounding is satisfied.
Unfortunately, even without onset confounding, rel-
ative risk estimates of the treatment effects will still
be biased [4]. Specifically, assume that the effect of
the treatment is to multiply the hazard by θ , that is
consider a proportional hazards model with a time-
dependent covariate x(u), where x(u) is 0 before
initiation of treatment and 1 thereafter:

λ1(u) = θx(u)λ0(u). (3)

Then, the relative risk estimate of θ based on the
proportional hazards analysis with a time-dependent
covariate on the follow-up time scale t will yield an
estimate of θ that is biased toward unity, regardless
of whether the hazard function is strictly increasing
or decreasing. This bias results because the analy-
sis controls for follow-up time t when in fact the
analysis should control for the unknown time from
infection u. The result that the risk estimates are
biased toward unity is seen intuitively from the fol-
lowing argument. Suppose, without loss of generality,
that θ > 1. Then the effect of the variable x(u) is to
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accelerate disease, especially among frail individuals.
If the hazard is increasing, then the frail individuals
are those that have been infected for a longer time.
Therefore the individuals with x(u) = 1 tend to be
selectively depleted from the frail individuals, and the
net effect is to decrease the disparity in risk between
those with x(u) = 1 and those with x(u) = 0. This
bias has been called frailty selection. A similar argu-
ment holds if the hazard is decreasing. In either case,
the effect of frailty selection is to bias the relative
risk toward unity.

Internal time-dependent covariates, also known as
markers, present different issues. Markers track the
progression of disease and change value over the
course of follow-up. Markers change in response
to disease progression and may convey information
about the duration of infection. For example, per-
sons with abnormal marker levels are likely to have
been infected longer than persons with normal levels.
Suppose the proportional hazards model (3) holds. In
model (3) the parameter θ reflects the disease–marker
association controlling for duration of infection; that
is θ quantifies the prognostic information in the
marker over and above the prognostic information
in the duration of infection. Unfortunately, in preva-
lent cohort studies of markers that are performed on
the follow-up time scale, estimates of θ in model (3)
as well as hypothesis tests of θ = 1 may not be valid
and are not comparable with results obtained from an
incident cohort. Furthermore, no general statements
can be made about the direction of the biases because
both frailty selection and onset confounding are oper-
ating. For example, a high relative risk associated
with an elevated marker may reflect the fact that indi-
viduals with the elevated marker have been infected
longer.

The various biases associated with prevalent
cohorts are summarized in Table 1. Because
of these biases, prevalent cohort studies pose
serious limitations for studying the disease–marker
association of model (3). Prospective studies of
an incident cohort are required to disentangle
the role of markers and duration of infection on
disease risk. Nevertheless, prevalent cohort studies
of markers may serve other important purposes.
For example, baseline values of markers measured
at enrollment (t = 0) are useful for prognostic
purposes. Survival analyses and proportional hazards
analyses on the scale of time since enrollment
address the prognostic information in the baseline

marker over and above time since enrollment.
This is useful for counseling individuals, and for
deciding on a course of treatment. These analyses
answer the question: “What prognostic information
does the baseline marker value provide in addition
to time since enrollment?” The question “What
prognostic information does the baseline marker
value provide in addition to time since infection?”
cannot be answered from such studies and analyses.
Nonetheless, such analyses are useful, because the
dates of infection are usually unknown in clinical
practice; such analyses thus provide important
prognostic information for advising patients from
similar prevalent cohorts about risk. Such studies may
also identify important variables for stratification and
adjustment in controlled clinical trials of individuals
with prevalent infection.

Selection and Regression Towards the
Mean

Cohort studies are sometimes performed among the
individuals at highest risk of disease. For example,
a double blind trial of clofibrate in the primary pre-
vention of ischemic heart disease randomized men
who were in the upper third of the distribution of
serum cholesterol values [22]. In the Hypertension
Detection and Follow-up Program Cooperative Group
Study [24], individuals with elevated blood pressure
at initial screening were enrolled for follow-up. In
these examples, the individuals selected were sam-
pled for inclusion in the study because measurements
on a variable at initial screening were extreme. In
some instances this selection process can be a source
for bias because of regression toward the mean.

Regression towards the mean refers to the phe-
nomenon that if a variable is extreme on the first
measurement, then later measurements may tend
to be closer to the center of the distribution [12].
Regression towards the mean was first described by
Sir Francis Galton who found that offspring of tall
parents tended to be shorter than their parents while
offspring of short parents tended to be taller. Galton
called this regression toward mediocrity [18].

As a simple example, consider a study to evalu-
ate a treatment to lower blood pressure. Individuals
are screened for blood pressure and those in the
highest decile are enrolled in the cohort study and
given the treatment. Some of those extremely high
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measurements at initial screening will decline at the
follow-up measurement not because of the efficacy
of the treatment but because the initial extreme high
measurements were statistical flukes. A naive analysis
could lead one to conclude incorrectly that the decline
in mean blood pressure is evidence that the treat-
ment is effective. In this example it was especially
important to account for regression towards the mean
because the study design was a before–after com-
parison without a control group. Regression towards
the mean can lead one to conclude incorrectly that
not only are there treatment effects, but there are
also treatment–covariate interactions. For example,
several studies of serum cholesterol lowering diets,
such as the National Diet Heart Study, have reported
that individuals with initially high serum cholesterol
levels experience greater reductions than individuals
with initially low cholesterol levels [16].

The effect of regression towards the mean can
be formalized [12, 19]. Suppose the only individu-
als enrolled in a cohort study are those whose initial
screening measurement, y1, are greater than a pre-
specified value, k. A second measurement, y2, is
taken on follow-up. Suppose y1 and y2 are each nor-
mally distributed with mean µ and variance σ 2.
Then

E(y1|y1 > k) − E(y2)|y1 > k) = cσ(1 − ρ), (4)

where c is a positive constant that depends on k, µ

and σ , and ρ is the correlation coefficient between
y1 and y2. Thus, even though there is no difference
in expected measurements at baseline and follow-up
in the entire population [E(y1) = E(y2) = µ], there
is an expected decline in the two measurements in
the sampled cohort because of the selection criterion
(y1 > k). The effect of regression towards the mean
becomes greater as ρ approaches 0. There is no
regression towards the mean if ρ = 1.

One approach for accounting for regression to-
wards the mean is to have a suitable control group.
For example, if individuals are randomized to either
a treated or control group, then both groups could
be expected to have the same amount of regression
towards the mean, and any significant differences
between groups could be attributed to real treatment
effects. If a control group is not available, then
corrections can be made for the regression towards
the mean [12, 25]. The basic idea of these corrections
is based on (4) and uses either external or internal
estimates of the parameters of the equation.

Various suggestions have been made for improve-
ments in study design to minimize regression towards
the mean. For example, the initial selection crite-
ria could be based on the mean y1 of n measure-
ments rather than on only a single measurement
y1. Then, only individuals with y1 > k are sampled
for inclusion in the cohort. It can be shown that
E(y1 − y2|y1 > k) goes to 0 as n gets large [12].
Thus, the effect of regression towards the mean can
be reduced by using the average of a number of ini-
tial measurements as the basis of the selection criteria.
Another proposed approach is to use an initial mea-
surement as the basis for selecting individuals into the
study. However, then a second initial measurement is
taken on the selected sample, and it is this second
measurement that is used as the baseline measure
to calculate change from the subsequent follow-up
measurement. Under this scheme there will be no
regression towards the mean if the observations are
equicorrelated [12, 16].
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Binary Data

Data are said to be binary when the observed value
of a response variable falls into one of two possible
categories. For example, a patient in a clinical trial
to compare alternative therapies may or may not
experience relief from symptoms. Similarly, an insect
exposed to a particular concentration of an insecticide
may either be alive or dead after a certain period of
time. The two possible values of the binary response
variable for each individual are usually coded as 0
and 1. Expressed in this way, the observations are
referred to as ungrouped binary data.

In some circumstances, interest centers on a set
of individuals that have all been treated in the same
manner. The binary responses for each individual in
a set are then combined to give a proportion. Thus
a batch of insects may be exposed to an insecticide,
and the number of insects that respond is expressed
as a proportion of the number exposed. Data in this
form are referred to as grouped binary data.

Usually, grouped binary data will be obtained for
a number of sets of individuals. Thus, in the insecti-
cide example we may wish to explore how different
batches of insects respond to a range of concentra-
tions of the insecticide. The total number that are
killed in each batch is then recorded for each concen-
tration. Interest then centers on how the probability
that an insect dies is related to the concentration of the
insecticide. Data in this form are commonly encoun-
tered in bioassay (see Biological Assay, Overview).

Probability Models for Binary Data

The random variable associated with the binary
response of the ith of n individuals in a study, Yi ,
say, will take a value yi , where yi is either 0 or 1.
These two possible values of the response variable are
often referred to as failure and success, respectively.
We will write pi for the probability that the ith indi-
vidual experiences a success, so that pi = Pr(Yi = 1).
The random variable Yi then has a Bernoulli distri-
bution, and

Pr(Yi = yi) = p
yi

i (1 − pi)
1−yi ,

yi = 0, 1; i = 1, 2, . . . , n.

Now suppose that we have a set of m binary obser-
vations, y1, y2, . . . , ym, which are mutually indepen-
dent. If each binary response has the same success
probability p, then the total number of successes in
the m binary observations is y = ∑m

i=1 yi , and the
corresponding random variable Y = ∑m

i=1 Yi has a
binomial distribution with parameters m and p. We
then have that

Pr(Y = y) =
(

m

y

)
py(1 − p)m−y,

y = 0, 1, . . . , m,

and this distribution is written as B(m, p). More gen-
erally, consider the situation where we have n sets of
binary data, such that in the j th set, j = 1, 2, . . . , n,
there are yj successes amongst mj binary observa-
tions. If we write pj for the true probability of a
success for an individual in the j th set, then the
values yj are observations on B(mj , pj ) random
variables. Ungrouped binary data can be regarded
as a special case in which mj = 1 for each set,
and we would then be back to n binary observa-
tions.

Modeling Binary Data

In studies that lead to ungrouped binary data there
will usually be other variables recorded for each indi-
vidual. For example, consider a study to compare
two alternative treatments for prostatic cancer, where
the response variable concerns whether or not an
individual dies within the three-year period follow-
ing entry to the trial. The age of the patient, and
the values of variables such as tumor size, tumor
grade, and the level of serum acid phosphatase,
may all affect the prognosis of an individual. In
analyzing the data from the study we would exam-
ine how the three-year survival probability depends
on these variables, as well as on the treatment
group.

For grouped binary data the values of any explana-
tory variables will perforce be the same for each of
the binary observations in a given set. For exam-
ple, in the insecticide study, suppose that batches
of 20 insects are exposed to one of two chemicals
applied at one of four concentrations. The resulting
data will be the eight proportions of insects that die,
out of the 20 exposed, for each of the eight com-
binations of chemical and concentration. Of course,
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these grouped binary data could be ungrouped to give
the 20 × 8 = 160 binary observations, but there are
advantages in working with the grouped data.

When the structure of a data set is particularly
simple, i.e. when there are just one or two explana-
tory variables recorded for each individual, methods
of analysis based on a contingency table may be
sufficient. However, it is usually much more informa-
tive to describe the relationship between the response
probabilities and explanatory variables using a sta-
tistical model. This approach is now described and
illustrated. Full details can be found in [2], [6], [12],
and in the research monograph of McCullagh &
Nelder [9] on generalized linear models.

Example: Incidence of Sore Throat

It will be convenient to illustrate the modeling pro-
cess using a specific example, and for this we will use
data based on a study to compare two devices used
in securing the airway in patients undergoing surgery
with general anesthesia. The two devices were the
laryngeal mask airway (LMA) and the tracheal tube
(TT); in the data set the device is denoted by a vari-
able, 0 for LMA and 1 for TT. In addition, informa-
tion on each patient’s age (in years), sex (0 = female,
1 = male), duration of surgery (in minutes) and on
whether or not a lubricant was used by the anesthetist
(0 = not used, 1 = used) was recorded. The response
variable of interest is whether or not a patient expe-
rienced a sore throat on waking (0 = no sore throat,
1 = sore throat), and so is binary. Data for 35 patients
are given in Table 1.

In analyzing these data we investigate whether the
probability of a sore throat depends on the variables
age, sex, duration, and lubricant, and the extent of
any differences between the two types of airway
device.

Models for Binary Data

Methods used in fitting multiple regression models
to continuous data, based on ordinary least squares,
cannot be applied directly to binary or binomial
response data. This is because these methods do not
take proper account of the fact that the data have
a binomial distribution, and second they may well
lead to fitted probabilities outside the range (0, 1).
Instead, the probability scale is transformed from
the range (0, 1) to (−∞, ∞), and a linear model is

Table 1 Data on the incidence of sore throat following
anesthesia

Patient Age Sex Lubricant
use

Duration Type Response

1 48 1 0 45 0 0
2 48 1 0 15 0 0
3 39 0 1 40 0 1
4 59 1 0 83 1 1
5 24 1 1 90 1 1
6 55 1 1 25 1 1
7 35 0 1 35 0 1
8 23 1 1 65 0 1
9 57 0 1 95 0 1

10 34 1 1 35 0 1
11 56 0 1 75 0 1
12 35 0 0 45 1 1
13 37 0 1 50 1 0
14 30 1 1 75 1 1
15 45 1 1 30 0 0
16 60 1 0 25 0 1
17 35 1 1 20 1 0
18 41 1 0 60 1 1
19 67 0 1 70 1 1
20 25 0 0 30 0 1
21 63 0 1 60 0 1
22 26 0 1 61 0 0
23 47 0 0 65 0 1
24 27 0 0 15 1 0
25 18 0 1 20 1 0
26 64 0 0 45 0 1
27 48 0 0 15 1 0
28 28 1 0 25 0 1
29 54 1 0 15 1 0
30 58 1 1 30 0 1
31 59 1 1 40 0 1
32 67 1 0 15 1 0
33 43 1 1 135 1 1
34 63 1 0 20 1 0
35 41 0 0 40 1 0

adopted for the transformed value of the response
probability.

Of the possible transformations, the logistic trans-
form is the one most commonly used. The logistic
transform or logit of p is log{p/(1 − p)}, writ-
ten logit(p). If x1i , x2i , . . . , xki are the values of k

explanatory variables X1, X2, . . . , Xk for the ith indi-
vidual, i = 1, 2, . . . , n, then the logistic regression
model for pi , the response probability for that indi-
vidual, is given by

logit(pi)= log

{
pi

1 − pi

}
=β0 + β1x1i + · · · + βkxki.
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Other transformations of pi that might be
used are the probit and complementary log–log
transformations. The probit of a probability p is
that value of ξ for which Φ(ξ) = p, where Φ(·)
is the standard normal distribution function, so that
probit (p) = Φ−1(p). The complementary log–log
transform of p is log{− log(1 − p)}. For practical
purposes the logistic and probit transformations
will often give similar results, but the logistic
transformation is computationally more convenient
and leads directly to odds ratios, which help in the
interpretation of fitted models. Unlike the logistic and
probit transformations, the complementary log–log
transformation is not symmetric about p = 0.5, but
it does arise in particular areas of application, such as
a serial dilution assay and the analysis of interval-
censored survival data.

In what follows the transformation of p is denoted
by the function g(·), so that a general model for
binary data, or a quantal response model, can be
expressed as

g(pi) = β0 + β1x1i + · · · + βkxki, i = 1, 2, . . . , n.

(1)

This model is, in fact, a member of the class of
models known as generalized linear models, and the
function g(·) is known as the link function.

Fitting the Model

The model for a binary response probability can be
fitted using the method of maximum likelihood. The
likelihood of n binomial observations is

L(β) =
n∏

i=1

(
ni

yi

)
p

yi

i (1 − pi)
ni−yi , (2)

where the pi are related to the β coefficients through
(1). Note that for ungrouped binary data the ni in (2)
are all equal to unity.

The values of the βs that maximize this
likelihood function, denoted β̂0, β̂1, . . . , β̂k , can
only be obtained numerically, and either the
Newton–Raphson method or Fisher scoring are
generally used (see Optimization and Nonlinear
Equations). These methods lead to the information
matrix, from which the standard errors of the β̂s can
be found.

Once estimates of the βs in (1) have been obtained,
the corresponding fitted probability for the ith indi-
vidual, p̂i , is found from

g(p̂i) = β̂0+β̂1x1i + · · · + β̂kxki, i = 1, 2, . . . , n.

(3)

Fortunately, computer software for obtaining the
maximum likelihood estimates of the β coefficients
in (1) is widely available. The statistical packages
MINITAB, GLIM, Genstat, SAS, S-PLUS, SPSS,
STATA, and many others all have facilities for mod-
eling binary data (see Software, Biostatistical). Nat-
urally, there are differences in the numerical methods
used to estimate the βs, in the types of variable that
can be included in the model (some software does not
allow factors to be fitted directly), and in the format
of the resulting output.

Goodness of Fit of a Model

Suppose that a model containing certain explana-
tory variables, known as the current model, is fitted
to grouped binary data. The agreement between n

observed proportions yi/ni , i = 1, 2, . . . n, and the
corresponding fitted values under the model of inter-
est, p̂i , can be assessed using a quantity known as the
deviance. This is defined to be −2{log L̂c − log L̂f},
where L̂c is the maximized likelihood under the cur-
rent model, and L̂f is the maximized likelihood under
the full or saturated model. The latter model is one
that is a perfect fit to the data, and so the fitted prob-
abilities under the full model are simply the observed
proportions yi/ni . If the current model is satisfactory,
then the fit of this model will not be too different from
that of the full model. In this case L̂c will be similar
to L̂f, and the deviance will be close to zero. How-
ever, if the current model is a poor fit, then L̂c may
be very much smaller than L̂f, and the deviance will
be large.

We can calculate a deviance for ungrouped binary
data, where ni = 1 for each observation, but then
the deviance turns out to be uninformative about the
goodness of fit of a model. For example, in the partic-
ular case of the linear logistic model, the deviance is a
function of p̂i alone, and so can tell us nothing about
the agreement between the binary observations yi and
the corresponding fitted probabilities. Consequently,
the deviance for ungrouped binary data cannot be
used as a summary measure of goodness of fit. It is
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therefore desirable to group binary data when pos-
sible, since this leads to an overall measure of the
goodness of fit of a model.

Distribution of the Deviance

From results concerning the asymptotic distribu-
tion of the maximized likelihood ratio statistic (see,
for example, [5]), it follows that the deviance for
binomial data has an asymptotic χ2 distribution on
n − νdf, where ν is the number of unknown βs in
the current model. Thus a well fitting model should
have a deviance that is not significantly large rela-
tive to the percentage points of a χ2

n−ν distribution.
Since E(χ2

n−ν) = n − ν, a useful rule of thumb is
that the deviance should be close to its correspond-
ing number of degrees of freedom in a satisfactory
model. However, caution must be exercised in using
such general measures of model adequacy, and the
fit of a model should also be assessed critically using
the model-checking diagnostics described in a later
section.

For binary data the deviance does not have an
asymptotic χ2 distribution, and so even when an
appropriate model has been fitted, the deviance will
not necessarily be close to its number of degrees
of freedom. Nevertheless, we shall see in the next
section that this quantity is valuable in compar-
ing models fitted to either grouped or ungrouped
binary data.

Comparing Alternative Models

The main use of the deviance is in comparing alter-
native models for a binary or binomial response
variable. Suppose that one model contains terms that
are additional to those in another. The difference in
deviance between the two models then reflects the
extent to which the additional terms improve the fit
of the model. For example, suppose that the following
two nested models, labeled Model (1) and Model (2),
are to be compared:

Model (1):

g(pi) = β0 + β1x1i + · · · + βhxhi ;

Model (2):

g(pi) = β0 + β1x1i + · · · + βhxhi + βh+1xh+1,i

+ · · · + βkxki.

Denoting the deviance under each model by D1 and
D2, so that these deviances have n − h − 1 df and
n − k − 1df, respectively, D2 will be smaller that D1,
since Model (2) contains more terms than Model (1).
The difference in deviances, D1 − D2, will reflect
the additional effect of the corresponding variables
Xh+1, Xh+2, . . . , Xk , after X1, X2, . . . , Xh have been
included in the model. This difference in deviance has
an approximate χ2

k−h distribution on the hypothesis
that the additional k − h variables are not needed in
the model. In general, changes in deviance can be
compared with appropriate percentage points of a χ2

distribution to determine whether or not terms need to
be included in or excluded from a model. In fact, the
difference in deviance between two nested models
is asymptotically χ2 for both binary and binomial
data, and so procedures for comparing models apply
equally to grouped and ungrouped binary data.

Using the deviance to compare models fitted to
binary or binomial response data, the most appropri-
ate combination of variables for describing observed
variation in such data can be determined. Methods
for identifying subsets of explanatory variables are
described in texts on linear regression modeling, e.g.
Draper & Smith [7] and Montgomery & Peck [11].
See also [10] and Appendix 2 of [6].

The method for comparing models described
above is based on the asymptotic distribution of
changes in deviance. For the proper application of
this method, the data must not be too sparse, i.e.
proportions must not be based on small numbers
of individuals, or the number of binary observations
needs to be large relative to the number of parameters
being fitted. If this is not the case, then there will
be difficulties associated with the convergence of
the algorithm for fitting the models, and certain
parameter estimates may appear to have unusually
large standard errors. In such cases one cannot rely
on the asymptotic properties of test statistics. Recent
computational advances have led to the development
of exact methods for analyzing contingency tables
and for logistic regression. These techniques are
described elsewhere, and are implemented in the
software packages StatXact and LogXact.

Example: Incidence of Sore Throat

We first identify which of the variables relating to the
age of the patient (A), the sex of the patient (S), the
duration of surgery (D) and the use of a lubricant (L)
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Table 2 Deviances on fitting logistic regression models

Variables in model Deviance df

Constant only 46.18 34
A 45.88 33
S 46.18 33
L 44.08 33
D 33.65 33
T 42.58 33
D + T 30.14 32

need to be included in a logistic regression model for
the probability of a sore throat before the effect of
type of airway (T ) is considered. The deviances on
fitting certain logistic regression models to the data in
Table 1 are given in Table 2. These show that there
are no significant reductions in deviance when either
A, S, or L are added to the model that contains a
constant only. We also find that these variables do not
become relevant in the presence of others and so need
not be considered further. However, the decrease in
deviance on adding D to a model that contains a
constant term alone is 12.53 on 1 df, which is highly
significant (P < 0.001).

The main focus of the study is to compare the
two airway devices. When the variable T is added to
the model that contains D, the reduction in deviance
is 3.51 on 1 df, which is significant at the 10%
level (P = 0.061). There is therefore evidence of a
difference in the two types of airway device, after
allowing for the effect of the duration of surgery.
Once D and T are included in the model, no further
variables lead to a significant reduction in deviance.
There is also no need to include interactions between
any variables.

The equation of the fitted logistic regression model
for the probability of a sore throat is

logit(p̂i ) = −1.417 + 0.069Di − 1.659Ti,

i = 1, 2, . . . , 35, (4)

where Di and Ti are the values of D and T for the ith
individual. This analysis shows that the probability
of a sore throat is dependent upon the duration of
surgery and the type of airway device used. The
positive coefficient of D in the model shows that
the probability of a sore throat increases with the
duration of surgery, while the negative coefficient of
T indicates that there is a higher probability of a
sore throat when T = 0, i.e. when the laryngeal mask
airway is used.

Figure 1 The fitted probability of a sore throat plotted
against duration of surgery for laryngeal mask airway
(LMA) and tracheal tube (TT)

It is informative to plot the fitted response curves,
and such a graph is shown in Figure 1 where we have
plotted the observed and fitted probability of a sore
throat, p̂i , on the vertical axis. The logistic transform
of p̂i could also have been plotted, in which case the
graph would show straight-line relationships between
the transformed fitted probability and duration of
surgery. This graph shows clearly the relationship
between the probability of a sore throat and duration
of surgery, and the extent of the difference due to the
type of airway.

Model Checking

Once a model has been fitted it is essential to
check that the fitted model is appropriate (see Model
Checking). After all, inferences drawn on the basis
of an incorrect model will simply be wrong. There are
a number of ways in which a model may be unsat-
isfactory. The linear component of the model may
be incorrectly specified in that it may not include
explanatory variables that really should be in the
model, or variables that are included may need to
be transformed. An incorrect choice of link function
may have been made, or there may be observations
not well fitted by the model, termed outliers. In binary
data, outliers may correspond to cases where a failure
has been misclassified as a success. There may be val-
ues that unduly influence quantities such as parameter
estimates. The assumption of a binomial distribution
for grouped binary data may also be invalid, possibly
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because of the nonindependence of the constituent
binary observations.

Techniques for examining the adequacy of a fitted
model, known collectively as model-checking diag-
nostics, are described and illustrated in Chapter 5 of
Collett [2]. Some key papers in this area are [13, 8,
14], and [4].

Analysis of Residuals

Much information about model adequacy can be
obtained from residuals. Suppose that a model is
fitted to n binomial observations of the form yi/ni

and, as usual, let p̂i be the fitted probability for the
ith observation, i = 1, 2, . . . , n. There are a number
of possible residuals for use in binary data analysis,
including Pearson residuals, given by

ri = yi − nip̂i

[nip̂i(1 − p̂i)]1/2
,

and the deviance residuals

di = sgn(yi − nip̂i)

× (deviance component for ith observation)1/2.

The squares of these residuals sum respectively to
Pearson’s χ2 statistic and the deviance for the fitted
model. In the particular case of logistic regression,
the deviance residuals are

sgn(yi − nip̂i)

[
2yi log

(
yi

nip̂i

)

+ 2(ni − yi) log

(
ni − yi

ni − nip̂i

)]1/2

.

Both types of residuals can be standardized by
division by (1 − hi)

1/2, where hi is a quantity known
as the leverage. This is the ith diagonal element
of the matrix H = W1/2X(X′WX)−1X′W1/2, known
as the hat matrix, in which X is the matrix of
explanatory variables known as the design matrix,
and W is a diagonal matrix of weights with elements
ni/{p̂i(1 − p̂i)[g′(p̂i)]2}, where g′(·) is the derivative
of g(.) with respect to p.

The standardized deviance residuals, rDi =
di/(1 − hi)

1/2, are recommended for general use and
can be plotted against the observation number or
index to give an index plot, explanatory variables
in or out of the model, or the linear predictor,

η̂i = β̂0 + β̂1x1i + · · · + β̂kxki . Observations that are
outliers will be shown in an index plot as having
unusually large residuals. The pattern in a plot of
residuals against explanatory variables in the model
may indicate the need for a transformation of that
variable, and the pattern in a plot of residuals against
the linear predictor may also suggest that the linear
component of the model is not correct.

A half-normal plot, possibly supplemented by
simulation envelopes (Atkinson [1]), can be helpful
in revealing model inadequacy. These plots are based
on the absolute values of the residuals arranged in
ascending order, denoted |r|(j), j = 1, 2, . . . , n. The
values Φ−1{(j + n − 1

8 )/(n + 1
4 )} are then plotted

against the |r|(j). Outliers will correspond to points
in the top right-hand corner of the plot. A simulated
envelope indicates the region of the plot where the
points should lie, if the model is satisfactory. Con-
sequently, the occurrence of points outside such an
envelope indicates that the fitted model is inappro-
priate.

Most of these plots of residuals are designed for
use with grouped binary data, and corresponding plots
of residuals obtained from binary response data may
not be informative. This is because the plots can have
a pattern even when the fitted model is appropriate.
For example, plots of residuals obtained from binary
data against the linear predictor will show two hyper-
bolas, corresponding to the observations of 0 and 1.
However, index plots and half-normal plots of stan-
dardized deviance residuals can be useful in assessing
model adequacy.

Influential Observations

An observation is said to be influential if its omission
from the data set has a substantial effect on model-
based inferences. In the assessment of influence, it
turns out that the leverage, hi , is an important quan-
tity. Observations that are distant from the others in
terms of the explanatory variables alone have unusu-
ally large values of the leverage and so an index
plot of the leverage will reveal such observations.
They may be influential, but need not necessarily be.
The values of the leverage can be obtained directly
from some software packages. In situations where
a package does not provide the leverage, but gives
the variance or standard error of the linear predic-
tor, η̂i , the values of hi can be found using the
result hi = var(η̂i )wi , where wi are the weights used
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in the model-fitting process, often called the iter-
ative weights. For the linear logistic model, wi =
nip̂i(1 − p̂i).

Observations that influence the set of parameter
estimates in a model can be detected using the ana-
log of a statistic proposed by Cook [3]. This is an
approximation to the change in the maximized log
likelihood when the ith observation is omitted from
the data base, given by

Di = hir
2
P i

ν(1 − hi)
, i = 1, 2, . . . , n,

where rP i = ri/(1 − hi)
1/2 is the standardized Pear-

son residual, hi is the leverage and ν is the number
of β coefficients in the fitted model. Approxima-
tions such as this only involve quantities that can be
obtained from fitting the model to the complete data
set and so do not require that the model be actually
fitted to each reduced data set.

Unusually large values of the D statistic will
indicate observations that unduly affect the set of
parameter estimates. If such observations were omit-
ted, then the parameter estimates may change quite
markedly, and as a result so would conclusions drawn
from the fitted model.

It is often of interest to examine the impact of each
observation on a particular parameter estimate, β̂j ,
say. For this, we use an approximation to the change
in β̂j brought about by excluding each observation in
turn from the data base. This is the quantity denoted
∆iβ̂j and given by

∆iβ̂j = (X′WX)−1
j+1xi (yi − nip̂i)

(1 − hi)se(β̂j )
,

where (X′WX)−1
j+1 is the (j + 1)th row of the vari-

ance–covariance matrix of the parameter estimates
and xi is the vector of explanatory variables for the
ith observation. This statistic is widely referred to as
a delta–beta.

The Binomial Assumption

When an appropriate model is fitted to grouped binary
data the deviance is expected to be close to its
corresponding number of degrees of freedom. If we
find that this deviance is too large, and this cannot be
explained by an incorrect model, the presence of out-
liers and so on, then it may be that there is a positive

correlation between the binary responses that form
the binomial data. If so, the number of successes will
exhibit more variability than the binomial distribution
allows. This phenomenon is known as overdisper-
sion. It is important to note that the deviance can only
indicate overdispersion when the data are grouped.
In ungrouped data, the deviance does not necessarily
have a χ2 distribution and so the deviance need not
be close to the number of degrees of freedom for a
satisfactory model.

Example: Incidence of Sore Throat

On fitting the model for the probability of a sore
throat given in (4), index plots of the residuals, lever-
age, and Cook’s D statistic were obtained. These
plots are shown in Figures 2–4. The index plot of the
residuals shows that the model does not fit particu-
larly well, in that several observations have relatively

Figure 2 Index plot of the residuals

Figure 3 Index plot of leverage
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Figure 4 Index plot of the D statistic

large residuals, particularly for patient 22. Under the
model, the fitted probability of a sore throat for this
individual is 0.94, and yet this patient did not report
a sore throat on waking.

The index plot of the leverage shows that there
are no patients with an unusual combination of the
values of the explanatory variables, but the index plot
of the D statistic clearly shows that the observation
from patient 22 is influential. The next step would be
to investigate whether there have been any errors in
recording the data for this particular patient. If not,
the actual effect that the data for this patient has on
the form of the model will need to be studied.

References

[1] Atkinson, A.C. (1981). Two graphical displays for outly-
ing and influential observations in regression, Biometrika
68, 13–20.

[2] Collett, D. (2002). Modelling Binary Data 2nd Ed.
Chapman & Hall/CRC, Boca Raton.

[3] Cook, R.D. (1977). Detection of influential observations
in linear regression, Technometrics 19, 15–18.

[4] Copas, J.B. (1988). Binary regression models for con-
taminated data (with discussion), Journal of the Royal
Statistical Society, Series B 50, 225–265.

[5] Cox, D.R., & Hinkley, D.V. (1977). Theoretical Statis-
tics. Chapman & Hall, London.

[6] Cox, D.R., & Snell, E.J. (1989). Analysis of Binary Data,
2nd Ed. Chapman & Hall, London.

[7] Draper, N.R., & Smith H. (1981). Applied Regression
Analysis, 2nd Ed. Wiley, New York.

[8] Landwehr, J.M., Pregibon, D.A., & Shoemaker, A.C.
(1984). Graphical methods for assessing logistic regres-
sion models (with discussion), Journal of the American
Statistical Association 79, 61–83.

[9] McCullagh, P.J., & Nelder, J.A. (1989). Generalized
Linear Models, 2nd Ed. Chapman & Hall/CRC, London.

[10] Miller, A.J. (2002). Subset Selection in Regression 2nd
Ed. Chapman & Hall/CRC, Boca Raton.

[11] Montgomery, D.C., & Peck, E.L. (1982). Introduction
to Regression Analysis. Wiley, New York.

[12] Morgan, B.J. (1984). Analysis of Quantal Response
Data. Chapman & Hall/CRC, London.

[13] Pregibon, D. (1981). Logistic regression diagnostics,
Annals of Statistics 9, 705–724.

[14] Williams, D.A. (1987). Generalized linear model diag-
nostics using the deviance and single case deletions,
Applied Statistics 36, 181–191.

(See also Logistic Regression; Rasch Models)

D. COLLETT



Binomial Distribution

The binomial distribution is an important discrete
distribution arising in many biostatistical applica-
tions. To fix ideas, consider a binary (or Bernoulli)
response from individual subjects, denoted by “suc-
cess” and “failure”. For example, these responses
could denote smoking status (smoker vs. nonsmoker),
whether or not a patient develops complications fol-
lowing surgery, or other outcomes having two pos-
sible states. Assuming a sample of n independent
responses or trials, each with a common probabil-
ity of success, p, the total number of successes, Y ,
follows a binomial distribution with probability mass
function:

Pr(Y =k)=
(

n

k

)
pk(1 − p)n−k, k=0, 1, . . . , n,

where (
n

k

)
= n!

k!(n − k)!

and 0 < p < 1. It is often convenient to denote the
probability of failure by q = 1 − p. To express that
Y follows a binomial distribution with parameters n

and p, we write Y ∼ bin(n, p), where “∼” is read
as “is distributed as”. In practice, the assumptions of
independence and common success probability may
not be strictly accurate, but the binomial distribution
may still give a reasonable representation. Figure 1
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Figure 1 Histogram of the binomial distribution when
n = 12 and p = 0.4

provides a histogram of the binomial probabilities for
the case where n = 12 and p = 0.4.

This distribution is one of the oldest to have been
studied, dating back to James Bernoulli’s Ars Con-
jectandi of 1713 (see Bernoulli Family). However,
binomial coefficients are found in the earlier work of
Pascal. In fact, the name of the distribution arises
from fact that Pr(Y = k) is the (k + 1)st term in the
binomial expansion of (q + p)n.

Properties of the Binomial Distribution

The mean and variance are given by

E(Y ) =
n∑

k=0

k × Pr(Y = k) = np

and

var(Y ) =
n∑

k=0

(k − np)2 × Pr(Y = k) = npq.

The standard deviation is given by SD(Y ) =
(npq)1/2. Thus if Y ∼ bin(12, 0.4), then E(Y ) = 4.8
and SD(Y ) = 1.70. The distribution is symmetric if
p = 1/2, with the skewness increasing as p moves
away from 1/2 in either direction. The variance and
the standard deviation of the binomial distribution
decrease as p deviates from 1/2, with the smallest
variability near p = 0 or 1. As n increases, the
binomial distribution gets more symmetric and more
closely approximated by a normal distribution.
Numerical values for Pr(Y = k) for selected values
of n and p are available in published tables (see,
for example, Rosner [14] or the references given
by Johnson & Kotz [10]). When evaluating many
binomial probabilities for the same n and p, it is
convenient to use the recursion formula

Pr(Y = k + 1) =
[

n − k

k + 1

]
× p

q
× Pr(Y = k),

k = 0, 1, . . . , n − 1.

If Y1 ∼ bin(n1, p) is independent of Y2 ∼
bin(n2, p), then Y1 + Y2 ∼ bin(n1 + n2, p) and

Pr(Y1 = j |Y1 + Y2 = k) =

(
n1

j

)(
n2

k − j

)

(
n1 + n2

k

) (1)
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for max(0, k − n2) ≤ j ≤ min(n1, k). The condi-
tional distribution (1) is a (central) hypergeometric
distribution.

Calculation of sums of binomial probabilities can
be cumbersome, so approximations have been sought.
Several approximations to the binomial distribution
for large values of n are available. For Y ∼ bin(n, p),
application of the central limit theorem gives

Pr(Y ≤ k) ≈ Φ

[
k − np

npq

1/2]
, (2)

where Φ(·) is the standard normal cumulative distri-
bution function (cdf). However, this approximation
does not work well in practice and is not recom-
mended. Comparing the histogram of the binomial
probability mass function with the approximating
normal density having the same mean np and vari-
ance npq suggests that a continuity correction of 1/2
may be appropriate, giving

Pr(Y ≤ k) ≈ Φ

[
k + 1

2 − np

npq

1/2]
. (3)

This approximation should work well when n is large
and p is “central” (not too far from 1/2). For exam-
ple, as a “rule of thumb” Rosner [14] suggests this
approximation can be used when npq > 5. Approx-
imating Pr(Y ≤ 8) for n = 24 and p = 0.4 gives
0.252 from (2) and 0.323 from (3), compared with
the true value of 0.328. Other more accurate normal
approximations, some based on the arc sine square
root (or angular) transformation (see Delta Method),
are available [8, 10–12]. Peizer & Pratt [13] devel-
oped an extremely accurate, though more compli-
cated, normal approximation.

When n is large and p is small, the binomial
distribution can be approximated by a Poisson dis-
tribution

Pr(Y ≤ k) ≈ exp(−np)

k∑

j=0

(np)j

j !
,

since in this case the mean and variance of the bino-
mial distribution are similar to that of a Poisson distri-
bution with mean np. As a rule of thumb, Rosner [14]
suggests that this approximation may be adequate for
n ≥ 100 and p ≤ 0.01. Other more accurate approx-
imations for small p are available [11].

Point Estimation of p

In most applications, the number of trials, n, is known
but the success probability, p, is not. Then the natural
estimate of the success probability, p, is the observed
proportion of successes, y/n, which will be denoted
by p̂. This estimator is unbiased, since E(p̂) =
p, and is both the method of moments and the
maximum likelihood estimator of p. Application of
the Cramér–Rao inequality shows that p̂ is also the
uniformly minimum variance unbiased estimator
of p.

Since var(Y ) = npq and p̂ = y/n, it follows that
var(p̂) = pq/n, which can be estimated by p̂q̂/n. A
measure of the precision of p̂ is given by its standard
error, (p̂q̂/n)1/2. Thus the precision increases with
sample size.

It can be shown that p̂ is admissible under both
squared error loss and relative squared error loss
(see, for example, [2] and [15]). Thus, there can be
no uniformly better estimator than p̂ under these
loss functions, although other estimators may perform
better over wide ranges of p. Santner & Duffy [15]
review various Bayesian and related methods which
incorporate prior knowledge about the unknown p

for developing alternative estimators to p̂.
When n is unknown, the maximum likelihood and

method-of-moments estimators of n can be extremely
sensitive to minor fluctuations in the data. Consider-
ation of this problem has been given by Aitkin &
Stanisopoulos [1], Casella [5], Hall [9], and the ref-
erences therein.

Hypothesis Testing

On some occasions, it is of interest to test H0: p = p0

vs. the alternative Ha: p �= p0 (a two-sided alterna-
tive; see Hypothesis Testing). Whether or not to
reject the null hypothesis, H0, will depend on how
far the sample proportion of successes, p̂, is from p0,
as well as on the precision of p̂. Using the central
limit theorem and assuming that a normal assump-
tion is reasonable (say when np0q0 ≥ 5), under H0 it
follows that

p̂ ∼ N
(p0, p0q0

n

)
. (4)

It is more convenient to standardize p̂ by subtracting
the expected value under H0 and dividing by the
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standard error under H0, thus creating the test statistic

z = p̂ − p0
(p0q0

n

)1/2 ,

which has an approximately unit normal distribution
(mean 0, variance 1) under H0. For a two-sided α

level test, we would reject H0 when either z < zα/2 or
z > z1−α/2, where Φ(z1−α) = 1 − α. Alternatively,
the p value for this hypothesis test is given by 2Φ(z)

when p̂ < p0 or 2[1 − Φ(z)] when p̂ ≥ p0.
When n is not large or p is “extreme” (close to 0

or 1), the normal approximation (4) will not perform
well, and a more accurate normal approximation
needs to be used. Alternatively, we could base the
test on the exact binomial probabilities (see Exact
Inference for Categorical Data). In this case, the
p value is given by min (2 Pr(Y ≤ y|p = p0), 1)

when p̂ < p0 or min (2 Pr(Y ≥ y|p = p0), 1) when
p̂ ≥ p0, where y is the observed number of successes
in the sample.

These hypothesis tests can be modified to accom-
modate one-sided alternatives. Rosner [14] reviews
power and sample size estimation issues for the one-
sample binomial test.

Confidence Interval Estimation of p

In most applications it is more informative to cal-
culate a confidence interval for p than to perform
a hypothesis test. The most commonly used form of
confidence interval is based on a normal approxima-
tion. Using p̂ ∼ N(p, pq/n), it follows that

Pr

(
p − z1−α/2

(pq

n

)1/2

< p̂ < p + z1−α/2

(pq

n

)1/2
)

= 1 − α.

Approximating pq/n by p̂q̂/n and rearranging the
inequalities shows that an approximate two-sided
100(1 − α)% confidence interval for p is given by

(
p̂ − z1−α/2

(
p̂q̂

n

)1/2

, p̂ + z1−α/2

(
p̂q̂

n

)1/2
)

.

(5)

This method of interval estimation, commonly called
the Wald method, should only be used for n

large and p “central”, e.g. when np̂q̂ > 5 (see,

for example, [14]). However, Vollset [16] maintains
that this rule of thumb does not ensure adequate
accuracy. Improved confidence intervals based on
more accurate normal approximations are presented
and reviewed by Blyth & Still [4] and Vollset [16].
Vollset suggests that score test-based confidence
intervals for p, based on inversion of the test without
estimating the standard error, have much better
(closer to nominal) coverage probabilities than many
other methods, particularly the intervals (5), and are
only slightly more difficult to calculate.

When use of a normal approximation is not valid,
one can resort to the binomial distribution to construct
exact confidence intervals. Clopper & Pearson [6]
proposed an exact two-sided 100(1 − α)% confi-
dence interval for p of the form (pL, pU), where pL

and pU satisfy Pr(Y ≥ y|p = pL) = α/2 and Pr(Y ≤
y|p = pU) = α/2. These intervals, often called tail
intervals, have attractive symmetry and monotonicity
properties, but require iterative calculations. Using
the relationships between binomial, beta, and F dis-
tributions gives an alternative form for these limits,
namely

pL = y

[y + (n − y + 1) × F1−α/2(2(n − y + 1), 2y)]
,

for 1 ≤ y ≤ n

(with pL = 0 for y = 0) and

pU = y + 1{
y + 1 + (n − y)

F1−α/2[2(y + 1), 2(n − y)]

} ,

for 0 ≤ y ≤ n − 1

(with pU = 1 for y = n). These forms may be attrac-
tive if one has access to tables of the F distribution.

Although the tail intervals have intuitive appeal,
they are extremely conservative. That is, although the
intervals are guaranteed to have at least 100(1 − α)%
coverage for all values of p, the actual coverage
probabilities are often much greater than the nom-
inal level. Blyth & Still [4] review various exact
confidence intervals for p and present tables of less
conservative exact 95% and 99% confidence intervals
when n ≤ 30.

Construction of one-sided confidence intervals for
p proceeds in a similar fashion as above. Exact one-
sided confidence intervals can be derived from the tail
intervals. Blyth [3] examines approximate one-sided
confidence bounds.
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Vollset [16] provides a detailed comparison of the
operating characteristics of various two-sided confi-
dence intervals for p, including the Wald intervals,
exact intervals, and other approximate confidence
intervals. He suggests that only the exact intervals
and the score test-based confidence intervals approx-
imately achieve the desired coverage levels. In par-
ticular, Vollset recommends the continuity corrected
score test-based confidence intervals for p, as they
are less conservative and less tedious to calculate
than exact intervals, but have coverage close to the
nominal levels.

Extensions

In certain applications it is convenient to think in
terms of the odds of success, p/(1 − p), or the log
odds, rather than the probability of success, p. Thus,
an odds of 2 means that the probability of success
is twice the probability of failure, or that p = 2/3.
The odds are particularly useful when comparing two
binomial proportions via the odds ratio, or when
modeling the log odds of success as a linear function
of covariates in logistic regression.

The multinomial distribution is a generalization
of the binomial distribution which allows responses
with more than two outcomes. The negative bino-
mial distribution arises as the distribution of the
number of failures of independent Bernoulli trials
until a prespecified number of successes is obtained.
Correlated binary responses could be modeled with
parametric assumptions, e.g. using the beta-binomial
distribution, or via methods for overdispersion.

The books by Collett [7] and Rosner [14] review
basic properties of the binomial distribution. Johnson
& Kotz [10] and Santner & Duffy [15] give many
more details.
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Bioassay

This term is an abbreviation of, and is effectively syn-
onymous with, biological assay. In the classical form
of biological assay, an experiment is conducted on
biological material, to determine the relative potency
of test and standard preparations. In recent decades,
the term bioassay has been used in a more general
sense, to denote any experiment in which responses
to various doses of externally applied agents are
observed in animals or some other biological system.
The emphasis here is to measure the effects of vari-
ous agents on the response variable, and no attempt

is made to estimate a relative potency. This usage
is common, for instance, in programmes for screen-
ing substances for possible carcinogenic effects. Such
experiments may include “negative controls” (inert
materials) and “positive” controls (known carcino-
gens), but these controls are used to validate the
experimental system rather than as a basis for the
estimation of relative potency.

(See also Animal Screening Systems; Extrapola-
tion, Low Dose; Extrapolation)
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Bioavailability and
Bioequivalence

The US Code of Federal Regulations (CFR) defines
the bioavailability of a drug product as the rate and
extent to which the active drug ingredient or ther-
apeutic moiety of the drug product is absorbed and
becomes available at the site of drug action. Bioavail-
ability studies are usually conducted to assess the
pharmacological characteristics of a new drug prod-
uct during phase I clinical development and to serve
as a surrogate for the clinical evaluation of generic
drug products. A comparative bioavailability study
refers to the comparison of bioavailabilities of dif-
ferent formulations of the same drug (e.g. tablets vs.
capsules) or different drug products (e.g. a generic
drug vs. a brand-name drug). For the approval of
generic drugs, a bioequivalence assessment, as a
surrogate for the clinical evaluation of the generic
drug products, is based on the following fundamen-
tal bioequivalence assumption. That is, when two
formulations of the same drug, or different drug
products, are claimed bioequivalent it is assumed
that they are therapeutically equivalent [5]. Note that
the US Food and Drug Administration (FDA) does
not require a complete new drug application (NDA)
submission for the approval of a generic drug if
the sponsor can provide evidence of bioequivalence
in average bioavailability between the generic drug
and the brand-name drug through an abbreviated
new drug application (ANDA) from bioequivalence
studies.

The concepts of bioavailability and bioequiva-
lence did not become public issues until the late
1960s when concern was raised that a generic drug
product might not be as bioavailable as that manu-
factured by the innovator. In 1970, the FDA began to
request evidence of biological availability in applica-
tions submitted for the approval of certain new drugs.
In 1974, a Drug Bioequivalence Study Panel was
formed by the US Office of Technology Assessment
(OTA) to examine the relationship between the chem-
ical and therapeutic equivalence of drug products. On
the basis of the recommendations in the OTA report,
the FDA published a set of regulations for the sub-
mission of bioavailability data in certain new drug
applications. These regulations became effective on

July 1, 1977, and are currently codified in 21 CFR
Part 320.

In 1984, the FDA was authorized to approve
generic drug products under the Drug Price Com-
petition and Patent Term Restoration Act. In recent
years, as more generic drug products have become
available, there has been concern that generic drug
products may not be comparable in identity, strength,
quality or purity to the innovator drug product. To
address this concern, the FDA conducted a hear-
ing on Bioequivalence of Solid Oral Dosage Forms
in Washington, DC in 1986. As a consequence of
the hearing, a Bioequivalence Task Force (BTF) was
formed to evaluate the current procedures adopted
by the FDA for the assessment of bioequivalence
between immediate solid oral dosage forms. The BTP
report was issued in January 1988. Based on the rec-
ommendations of the report by the BTF, guidance on
statistical procedures for bioequivalence studies was
issued by the FDA Division of Bioequivalence Office
of Generic Drugs in 1992 [12].

Pharmacokinetic Parameters

In bioavailability studies, the rate and extent of
drug absorption are usually characterized by some
pharmacokinetic parameters, such as the area
under the blood or plasma concentration–time curve
(AUC), maximum concentration (Cmax), time to
reach maximum concentration (tmax), elimination
half-life (t1/2), and rate constant (ke). Gibaldi &
Perrier [16] provided a comprehensive overview
of these pharmacokinetic parameters. Among these
pharmacokinetic parameters, AUC is considered the
primary measure for the extent of absorption, which
provides information regarding the total amount of
the drug absorbed in the body. For comparative
bioavailability studies, bioequivalence is usually
assessed by bioequivalence measures, such as the
difference in means or the ratio of means.

Between 1977 and 1980, the FDA proposed a
number of decision rules for assessing bioequivalence
in average bioavailability [25]. These decision rules
include the 75/75 rule, the 80/20 rule, and the ±20
rule. The 75/75 rule claims bioequivalence if at least
75% of individual subject ratios (i.e. relative indi-
vidual bioavailability of the generic (test) product to
the innovator (reference) product) are within (75%,



2 Bioavailability and Bioequivalence

125%) limits. The 80/20 rule concludes bioequiva-
lence if the test average is not statistically signifi-
cantly different from the reference average and if
there is at least 80% power for detection of a 20%
difference of the reference average. The BTF does not
recommend these two decision rules because of their
undesirable statistical properties. The ±20 rule sug-
gests that two drug products are bioequivalent if the
average bioavailability of the test product is within
±20% of that of the reference product with a certain
assurance (say, 90%). Recently, the FDA guidance
recommended an 80/125 rule for log-transformed
data. The 80/125 rule claims bioequivalence if the
ratio of the averages between the test product and
the reference product falls within (80%, 125%) with
a 90% assurance.

The ±20 rule and the 80/125 rule are cur-
rently acceptable to the FDA for the assessment
of bioequivalence in average bioavailability. Current
FDA guidance suggests that the 80/125 rule be used
for pharmacokinetic parameters such as AUC and
Cmax after log-transformation. The guidance, how-
ever, does not indicate which criterion should be used
for other pharmacokinetic parameters. It should be
noted that, based on current practice of bioequiva-
lence assessment, either the ±20 rule or the 80/125
rule can be applied to all pharmacokinetic parameters
and all drug products across all therapeutic areas.

Designs of Bioavailability Studies

The Federal Register [15] indicated that a bioavaila-
bility study (single-dose or multiple-dose) should be
crossover in design. A crossover design is a mod-
ified randomized block design in which each block
(i.e. subject) receives more than one formulation of
a drug at different time periods. The most commonly
used study design for the assessment of bioequiv-
alence between reference (R) and test (T) formula-
tions is a two-sequence, two-period crossover design,
denoted by (RT, TR), which is also known as the
standard crossover design. For the standard crossover
design, each subject is randomly assigned to either
sequence 1 (R–T) or sequence 2 (T–R). In other
words, subjects within sequence R–T (T–R) receive
formulation R(T) during the first dosing period and
formulation T(R) during the second dosing period.
Usually, the dosing periods are separated by a wash-
out period of sufficient length for the drug received in

the first period to be completely metabolized and/or
excreted by the body.

In practice, when differential carry-over effects are
present, the standard crossover design may not be
useful because the formulation effect is confounded
with the carry-over effect. In addition, the standard
crossover design does not provide independent esti-
mates of intrasubject variability for each formulation,
because each subject only receives each formulation
once. To overcome these drawbacks, Chow & Liu [6]
recommend a higher-order crossover design be used.
A higher-order design is defined as a crossover
design in which either the number of periods or
the number of sequences is greater than the num-
ber of formulations to be compared. The commonly
used higher-order crossover designs include Balaam’s
design (TT, RR, RT, TR), the two-sequence dual
design (TRR, RTT), and the optimal four-sequence
design [(TRRT, RTTR) or (TTRR, RRTT, TRRT,
RTTR)]. For comparing more than two formulations,
Jones & Kenward [19] recommend that a Williams
design be used. For example, for comparing three for-
mulations (R, T1, and T2), the design (RT2T1, T1RT2,
T2T1R, T1T2R, T2RT1, RT1T2) is useful.

For bioequivalence trials, a traditional approach
for sample size determination is to conduct a power
analysis based on the 80/20 decision rule. This
approach, however, is based on point hypotheses
rather than interval hypotheses and, therefore, may
not be statistically valid [5]. Phillips [24] provides
a table of sample sizes that are based on power
calculation of Schuirmann’s two one-sided tests pro-
cedure using the bivariate noncentral t distribution.
However, no formulas are provided. An approxi-
mate formula for sample size calculations is provided
in [20].

Statistical Methods

For a standard two-sequence, two-period crossover
design, let Yijk denote the response (e.g. logarithm
of AUC) of the ith subject in the kth sequence at the
j th period, where i = 1, . . . , nk , k = 1, 2, and j = 1,
2. Under the assumption that there are no carry-
over effects, Yijk can be described by the following
statistical model:

Yijk = µ + Sik + F(j,k) + Pj + eijk,

where µ is the overall mean; Sik is the random effect
of the ith subject in the kth sequence; Pj is the fixed
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effect of the j th period; F(j,k) is the direct fixed
effect of the formulation in the kth sequence, which is
administered at the j th period; and eijk is the within-
subject random error in observing Yijk .

The commonly used approach for assessing bio-
equivalence in average bioavailability is the method
of the classical (shortest) confidence interval. Let µT

and µR be the mean of test and reference formulation,
respectively. Then, under a normality assumption,
the classical (1 − 2α) × 100% confidence interval for
µT − µR can be obtained as follows:

L = (Y T − Y R) − t (α, n1 + n2 − 2)σ̂d

×
(

1

n1
+ 1

n2

)1/2

,

U = (Y T − Y R) + t (α, n1 + n2 − 2)σ̂d

×
(

1

n1
+ 1

n2

)1/2

,

where Y T and Y R are least-squares means for the
test and reference formulations, t (α, n1 + n2 − 2) is
the upper αth critical value of a t distribution with
n1 + n2 − 2 degrees of freedom, and σ̂ 2

d is given by

σ̂ 2
d = 1

n1 + n2 − 2

2∑

k=1

nk∑

i=1

(dik − d ·k)2,

where

dik = 1
2 (Yi2k − Yi1k) and d ·k = 1

nk

nk∑

i=1

dik.

According to the 80/125 rule, if the exponentiations
of L and U are within (80%, 125%), then the two
formulations are bioequivalent.

On the basis of the interval hypotheses,
Schuirmann [27] proposed a procedure consisting
of two one-sided tests to evaluate whether the
bioavailability of the test formulation is too high
(safety) for one side and is too low (efficacy) for
the other side. Thus, we conclude that the two
formulations are bioequivalent if

TL = (Y T − Y R) − θL

σ̂d

(
1

n1
+ 1

n2

)1/2 > t(α, n1 + n2 − 2)

and

TU = (Y T − Y R) − θU

σ̂d

(
1

n1
+ 1

n2

)1/2 < −t (α, n1 + n2 − 2),

where θL = ln(0.8) = −0.2231 and θU = ln(1.25) =
0.2231 are the limits for bioequivalence. Note that
the confidence interval approach is operationally
equivalent to Schuirmann’s two one-sided tests pro-
cedure [5].

Several methods have been proposed for the
assessment of average bioequivalence. These meth-
ods include the Westlake symmetric confidence inter-
val [29], Chow & Shao’s joint confidence region
approach [9], Anderson & Hauck’s test for interval
hypotheses [1], the Bayesian approach for the highest
posterior density (HPD) interval, and nonparametric
methods [5, 10, 17]. Note that some of these meth-
ods are operationally equivalent in the sense that they
will reach the same decision on bioequivalence. More
details can be found in [5].

Drug Interchangeability

In recent years, as more generic drug products have
become available, the efficacy, safety, and quality of
generic drug products have become issues of public
concern in health care. However, for the approval of
a generic drug, regulatory agencies such as the FDA
require only that a bioequivalence trial be conducted
to provide evidence of bioequivalence in average
bioavailability. An approved generic drug can be used
as a substitute for the innovator drug product. The
regulatory agencies, however, do not require that
bioequivalence among generic drugs be provided.
Therefore, whether the brand-name drug with its
many generic copies can be used interchangeably is
an issue of great regulatory and scientific concern.

Basically, drug interchangeability can be classi-
fied as drug prescribability or drug switchability. Drug
prescribability is referred to as the physician’s choice
for a new patient, when prescribing an appropri-
ate drug product, between a brand-name drug and
a number of generic copies shown to be bioequiva-
lent. Under current regulation for average bioequiva-
lence, Chow & Liu [8] suggest that one should
perform a meta-analysis for post-approval bioequiv-
alence review to ensure drug prescribability. The
idea is to assess bioequivalence among generic drugs
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based on individual bioequivalence submissions. It
is suggested that a warning be issued if a signifi-
cant bioinequivalence is observed between any two
generic drug products. To ensure drug prescribability
prospectively, many researchers have recommended
that, in addition to bioequivalence in average bioavail-
ability, bioequivalence be established in the variability
of bioavailability between generic drug products and
the brand-name drug product [21, 23]. This concept
is known as population bioequivalence.

Drug switchability is related to the switch from a
drug product (e.g. a brand-name drug) to an alterna-
tive product (e.g. a generic copy of the brand-name
drug) within the same subject, whose concentration
of the drug has been titrated to a steady, effica-
cious and safe level. To ensure drug switchability, it
is necessary to establish bioequivalence within each
individual. This concept is known as individual bio-
equivalence [2]. In the past few years, several meth-
ods with different criteria for bioequivalence within
each subject have been proposed. These methods
and criteria can be classified as either probability-
based [1, 11] or moment-based [18, 26, 28]. These
methods, however, fail to evaluate adequately the
equivalence between distributions within the same
individual. Recently, although the use of individual
bioequivalence as an alternative regulatory require-
ment for assessment of bioequivalence has attracted
much attention [13, 14], many regulatory, scientific,
and practical issues remain unresolved [3, 7].

Other Issues

To account for the variability of bioavailability and
assess drug interchangeability, it is recommended
that a replicated crossover design be used [4,
22]. In addition, the FDA is seeking alternative
pharmacokinetic parameters, decision rules and
statistical methods for population and individual
bioequivalence. Some unresolved scientific issues
of particular interest include the impact of add-on
subjects for drop-outs, the use of female subjects
in bioequivalence trials, in vitro dissolution as a
surrogate for in vivo bioequivalence, post-approval
bioequivalence, and international harmonization for
bioequivalence requirements among the European
Community, Japan, and the US. A comprehensive
overview of these issues can be found in [5].
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Bioequivalence

Two drug formulations are bioequivalent if their
absorption characteristics are closely similar. The
most important characteristics are the extent
and rate of absorption, which together define
the bioavailability of a drug formulation. Thus,
bioequivalence is the comparable bioavailability of
drug formulations.

Kinetic Measures of Bioavailability

Measures After a Single Drug Administration

When drugs are not administered directly into the
systemic circulation, as in the case of oral intake, at
least a fraction of the dose should first be absorbed.
As a result, the concentration in blood and plasma
initially rises (Figure 1). The drug is then distributed
to various tissues and also starts being eliminated
from the body. Consequently, after reaching a peak,
the concentration declines (Figure 1).

The principal measures (metrics) characterizing
bioavailability, and therefore bioequivalence, are the
area under the curve (AUC) contrasting concentration
with time, and the maximum concentration, Cmax,
which is observed at the time of Tmax (Figure 1).
AUC is a measure of the extent of absorption. AUC
rises as the absorbed fraction of drug dose, i.e. the
amount reaching the circulation, increases.

Cmax is the most widely used index for the evalu-
ation of absorption rates, especially in comparative
studies. Cmax actually reflects several processes of
drug disposition, including the extent of absorption.
However, if, in two drug formulations, all processes
except the absorption rate have the same magnitudes
(often a good assumption, at least approximately),
then differences of Cmax values indeed indicate devia-
tions between absorption rates. A higher Cmax signals
(everything else being equal) a faster absorption rate.

Tmax is also determined by various processes of
drug disposition. Consequently, contrasts of Tmax

reflect deviations between absorption rates only if
magnitudes characterizing other processes of drug
disposition remain the same. Under this condition,
a smaller Tmax indicates a higher absorption rate.

AUC, Cmax, and Tmax are often referred to as
model-free measures of bioavailability because they

are determined independently of assumed pharma-
cokinetic models.

Measures After Repeated Drug Administrations

Following repeated administrations of a given drug
dose, D, the concentration in plasma and blood even-
tually reaches a quasi-steady state. In this condition,
after each administration of the drug, the concentra-
tion first rises, passes through a maximum, Cmax, and
then declines toward a minimum or so-called trough
value, Cmin. The time profile of concentrations is
illustrated in Figure 2.

The kinetic measures of bioavailability parallel in
the steady state the metrics noted for single admin-
istration. AUC is again an index of the extent of
absorption. However, it is evaluated after repeated
administrations by measuring the area recorded dur-
ing the time interval between two dosings (the dosing
or maintenance interval, T ). This AUC is numeri-
cally identical to the value obtained following a single
drug administration, provided that the drug exhibits
first-order kinetics (i.e. the rate of change in the con-
centration is proportional to the concentration) and
that this is identical under the two conditions.

Absorption rates are usually less important when
considering repeated drug administrations than after
a single drug administration. Nevertheless, Cmax is
still important, especially as an index of drug safety;
unusually high concentrations could indicate a danger
of toxicity.

Additional measures of bioavailability are consid-
ered later.

Assessment of Bioequivalence

Several statisticians have made distinguished con-
tributions since the early 1970s to developing the
methodology for the assessment of bioequivalence.
They notably include Carl M. Metzler and Wilfred J.
Westlake and also, among others, Sharon Anderson,
Walter W. Hauck, Jochen Mau, & Bruce E. Rodda.
Chow & Liu [5] reviewed the statistical aspects of
the evaluation of bioequivalence.

Procedures will be briefly described which are
applied most widely at present. Sauter et al. [10]
illustrated examples for detailed calculations evalu-
ating bioequivalence following single drug adminis-
trations and in the steady state.
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Figure 1 Time course of plasma concentration following
a single oral administration of a drug
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Figure 2 Time course of plasma concentration following
repeated oral administrations of a drug

Two One-Sided Tests Procedure

The two one-sided tests (see Alternative Hypoth-
esis) procedure is nowadays widely applied for the
assessment of bioequivalence. Yee [20] presented
some features of the approach and Schuirmann [14]
elaborated them. The goal is to compare the mean
kinetic responses of a reference (R) formulation
and an investigated test (T) drug product. The null
hypothesis to be tested is that of bioinequivalence.
The test is subdivided into two one-sided prob-
lems. They assume bioinequivalence if the difference
between the means is either less than or equal to a
regulatory criterion θ1 or (/and) larger than or equal
to another regulatory value θ2:

H01: µT − µR ≤ θ1; H02: µT − µR ≥ θ2. (1)

The null hypothesis could be rejected in favor of an
alternative hypothesis indicating bioequivalence:

Ha: θ1 < µT − µR < θ2. (2)

If both null hypotheses are true, their evaluation at
the α/2 significance level indicates a consumer risk
on both sides with this probability.

The two null hypotheses are in practice assessed
by the use of confidence intervals. Various approa-
ches have been proposed. The application of the
shortest interval at the α level [14, 18] has been
widely adopted. It yields, at a given significance
level (and consumer risk), the highest power, i.e. the
smallest risk for producers when the two formulations
are in fact bioequivalent [16].

Implementation of the Two One-Sided Tests
Procedure

Most kinetic quantities are considered to have
multiplicative character (their multiplication and
division – e.g. whether their magnitudes should be
raised or lowered by a factor of 2 or 10 – appear
to be relevant). Correspondingly, their errors are
also thought to be multiplicative (see Multiplicative
Model) and not additive [16, 19]. Therefore, they
are typically evaluated and compared in their
logarithmic form. Consequently, µT and µR are
estimated after the logarithmic transformation of
the investigated quantity, e.g. from log AUC or log
Cmax. The regulatory limits are usually considered
to be symmetrical. Consequently, θ2 = −θ1 in the
logarithmic scale. Times of the observations are not
regarded to have multiplicative character. Moreover,
they are recorded only at discrete sampling points.
Therefore, Tmax is generally not transformed and not
assessed with regulatory limits. α = 0.10 is widely
applied.

The bioequivalence of two drug formulations
is evaluated generally in two-period, two-sequence
crossover trials. The kinetic responses (e.g. AUC)
estimated for both formulations are contrasted in each
subject. From the difference of individual logarithmic
responses, their average and its 90% confidence
interval are calculated. Bioequivalence is declared if
the limits are in the regulatory range, between θ1 and
θ2. The values of θ1 and θ2 are considered below.

Distribution-Free Procedure

Hauschke et al. [8] described a nonparametric pro-
cedure which, in its implementation of the two-sided
hypotheses, took into account the structure of two-
period, two-sequence, crossover studies. The kinetic
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parameters recorded with the test and reference
formulations (XT and XR) are contrasted within each
individual:

Xi = XTi − XRi , i = 1, . . . , n.

Let the numbers of subjects in the two sequences of
drug administration be n1 and n2, with n1 + n2 = n.
A total of n1n2 differences in the two sequences,

Xj1 − Xj∗2, j = 1, . . . , n1, j ∗ = 1, . . . , n2,

are formed and sorted by magnitude. The median of
the pairwide differences is a Hodges–Lehmann point
estimator (see Estimation) of 2(µT − µR). Ninety
percent confidence limits are also obtained from the
ranked differences.

Rapidly Evolving Issues

Various issues remain unresolved about the evalu-
ation of bioequivalence. Two important topics are
discussed which have particular relevance in bio-
statistics. They are developing rapidly and, therefore,
their resolution in the near future is anticipated.

Individual Bioequivalence

The criteria discussed so far for the acceptance of
bioequivalence involve the comparison of average
kinetic parameters. Thus, the resulting similarity of
two drug formulations is referred to as average bio-
equivalence. It ensures that the efficacy and safety
of the new drug product is, on average, similar to
that of the reference formulation. It is recognized that
the efficacy and safety of the reference product was
thoroughly evaluated during its development.

Average bioequivalence ensures that an individual
who had not been exposed to either drug formulation,
would have generally similar responses to both
products. Thereby the prescribability of the test
formulation is demonstrated. When, as often happens,
patients are already receiving the reference product,
then its substitution by the test formulation is
contemplated. The issue is therefore the switchability
from one formulation to another [2]. Thus, the
similarity of responses and kinetic parameters within
individuals, and therefore individual bioequivalence,
becomes important.

To assess individual bioequivalence, the intrasub-
ject variances of the reference and test products
(σ 2

WR and σ 2
WT) need to be estimated. This can be

accomplished if three- or four-period crossover trials
are conducted. This design also enables the estima-
tion of the subject × formulation interaction (σ 2

SF),
which can be a major source of lack of individual
bioequivalence.

The procedures proposed by several authors for
the evaluation of individual bioequivalence can
be separated into two principal categories [1, 11].
Probability-based approaches assume that deviations
between individual kinetic parameters for the
two formulations (XR and XT) would remain
within a specified range and have a probability
Pr(|XT − XR| ≤ r), which should be sufficiently
high. Moment-based procedures consider the second
moment of XT − XR. A measure would extend that
given for average bioequivalence, (2), by including
terms for σ 2

SF, σ 2
WR, and σ 2

WT. A one-sided criterion
is generally

(µT − µR)2 + δσ 2
SF + φσ 2

WR + γ σ 2
WT < θI. (3)

The regulatory criterion θI as well as the coeffi-
cients δ, φ, and η will have to be determined. For
instance, it has been suggested that δ = φ = 1 and
γ = −1 [13]. Sheiner [15] recommended δ = γ = 1
and φ = 0. Also other values have been proposed for
the coefficients.

An unscaled measure such as that given above
can be divided by a combination of σ 2

WR and σ 2
WT.

The resulting scaled bioequivalence criterion dif-
fers intrinsically from its unscaled counterpart. It
is anticipated that scaled comparisons will be par-
ticularly useful for assessing the bioequivalence of
drugs which exhibit high intraindividual variability;
the analysis of their equivalence is very difficult and
at times even impossible by applying the methodol-
ogy of average bioequivalence.

Similar conclusions can be drawn for probability-
based measures of individual bioequivalence since
they have close relationships to the corresponding
moment-based measures [9, 12].

Kinetic Measures for the Evaluation of
Bioequivalence

There is general agreement that AUCs measure well
the extent of absorption, and that the application of
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the two one-sided tests procedure to relative AUCs
appropriately evaluates the equivalence of extents of
absorption of two drug formulations. Consequently,
two drug products are considered to be bioequivalent
by this criterion if the 90% confidence interval around
the geometric average of individual AUC ratios is
between 0.80 and 1.25 [3].

A similar consensus has not been reached about
metrics evaluating the equivalence of absorption
rates. Cmax is used most frequently. The various
regulatory agencies apply differing criteria to indi-
cate equivalence. For example, the Food and Drug
Administration in the US has requirements for Cmaxs
which parallel those for AUCs: the 90% confidence
interval around the geometric average of individual
Cmax ratios should be between 0.80 and 1.25. The
European Union recognizes that Cmax is determined
generally with larger variation than AUC. There-
fore, its condition for the equivalence of Cmaxs is
less demanding: the stated 90% confidence limits
should be between 0.70 and 1.43. Canadian regula-
tory requirements do not invoke confidence limits and
are, therefore, even less demanding: it is sufficient
for the declaration of bioequivalence if the geomet-
ric average of individual Cmax ratios is between 0.80
and 1.25.

In addition to the diversity of regulatory criteria,
questions have been raised about the usefulness of
Cmax for determining the equivalence of absorption
rates. Cmax notably reflects various kinetic quantities
and processes including the extent of absorption.
Moreover, Cmax responds to changes in absorption
rates very insensitively, particularly in the steady
state. The statistical properties of the metric are also
unfavorable. Interestingly, its variation in the steady
state can be higher or lower than that observed
after a single drug administration, depending on the
contributions of various sources of variation [21].

Therefore, reasonably, alternative measures have
been suggested for assessing the equivalence of
absorption rates after a single drug administration.
They include, following a single drug administration,
Cmax/AUC, AUC measured until the peak of the
reference formulation (partial AUC), and the intercept
obtained by linear extrapolation from the ratios of
concentrations of the two formulations measured in
the early stage of a study [4, 6, 7].

After repeated drug administrations, in the steady
state, the most frequently applied metric is, in
addition to Cmax, the peak–trough fluctuation,

PTF; PTF = (Cmax − Cmin)/Cave, where Cave and
Cmin are the average and minimum concentrations,
respectively, during a dosing interval [17]. Other
measures include the Swing [(Cmax − Cmin)/(Cmin)],
the AUC above Cave normalized by the total AUC
within a dosing interval (AUCF), and the duration
(T75) of the concentration peak at the level of 3/4 of
its adjusted height, i.e. at 0.75Cmax + 0.25Cmin (see
Figure 2).

Little is known at present about the properties of
these metrics, which are being explored extensively
by several investigators.
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Bioinformatics in
Functional Genomics

With the sequencing of the human genome (or more
accurately, a handful of human genomes), we are
now said to be in a post-genomic era (see Human
Genome Project). However, this term is confus-
ing, since it is only now, with the availability of
at least a draft outline of the genome of multiple
organisms, that we can even begin systematically to
deconstruct the relationship of the genetically pro-
grammed, physiologic behavior of an organism to the
constituent genes comprising its individual version
of the genome of its species. In this deconstruction,
several kinds of biological information are available:
DNA sequences, physical maps, genetic maps, gene
polymorphisms, protein structure, gene expression
(see Gene Expression Analysis), and protein inter-
action effects. The collection of these diverse data in
large, internationally curated databases has produced
an urgent need for systematic quantitative analysis,
which in this domain often goes by the name of bioin-
formatics. The information in Figure 1 provides per-
haps the best motivation for applying information sci-
ences to the functional genomics enterprise. Since the
invention of deoxyribonucleic acid (DNA) sequenc-
ing 25 years ago, the number of gene sequences
deposited in international repositories, such as Gen-
Bank, has grown exponentially, culminating in the
sequencing of the entire human genome in 2001. The
knowledge about these genes (as measured by the
number of papers published in biomedicine, a proxy
measurement) has also been growing exponentially
but at a much slower rate. As shown, the number
of GenBank entries has fast outstripped the growth
of MEDLINE entries. This difference serves as a
proxy for the large gap between our knowledge of
the functioning of the genome and the generation
of raw genomic data. Yet GenBank entries repre-
sent only a fraction of the various kinds of data
(listed above) generated from our investigations of
the human genome. This exponentially expanding
volume of data must somehow be sifted and linked to
the biological phenomena of interest. Accomplishing
this exhaustively, reliably, and reproducibly – credi-
bly – is possible only with the application of algorith-
mic implementations on computers. This has led to
an unprecedented demand for investigators who have
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Figure 1 Cumulative growth of molecular biology and
genetics literature (black) compared with DNA sequences
(grey). Articles in the “G5” (molecular biology and
genetics) subset of MEDLINE are plotted alongside
DNA sequence records in GenBank over the same time
period. The former data wave obtained with the help of
R.M. Woodsmall of NCBI and the latter data are available
(ftp://ncbi.nlm.nih.gov/genbank/gbrel.
txt). No attempt has been made to eliminate data redun-
dancy among either the DNA sequence records or informa-
tion contained in the literature

the required knowledge to manipulate large data sets.
These skills may come from investigators in fields
as diverse as computational physics, chemical engi-
neering, operations research, and financial modeling.
However, once these skills are applied to the domain
of functional genomics, they can be collectively
described as bioinformatic techniques. Although there
is a wide overlap between the methodologies of bioin-
formatics and those of biostatistics, both the nature
of the data and the computer-science orientation of
many early practitioners of bioinformatics color much
of the current research in and applications of bioin-
formatics. The breadth of applications of informa-
tion science to biomedical research and practice far
exceeds the scope of a brief article. Consequently,
the focus here will be on the bioinformatic efforts
that appear to be the most challenging and in the
greatest demand: the elucidation of the function of
genes – otherwise known as functional genomics.

Much of functional genomics has been and will
continue to be the hypothesis-driven biological re-
search that has been pursued for the past decades.
Addressed here is a computationally intensive branch
of functional genomics that has emerged as a result
of the practical implementation of technologies for
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assessing thousands of genes at a time.1 The incred-
ible confluence over the past five years of dis-
parate technologies, such as robotics, fluorescence
detection, photolithography, and the human genome
project, has made it possible for present-day biol-
ogists to use ribonucleic acid (RNA) expression
microarray detection technologies to greatly increase
data about cells in various states. With the com-
mercial tools currently available, a single experi-
ment using RNA expression–detection microarrays
can now provide systematic quantitative information
on the expression of up to 60 000 unique RNAs
within cells in any given physiological state (i.e.
all expressed genes can be measured in any cell
type under all conditions under which that cell will
function).

cDNA and oligonucleotide microarray technology
can be used not only to determine various cell func-
tions but also to analyze more complex systems, such
as traits with multigenic origins or those linked to the
environment [16]. Microarrays can be used in time
series to measure how a particular intervention [32,
51] may start a transcriptional program – that is,
change the expression of large numbers of genes in a
reproducible pattern determined by inherent genetic
regulatory networks – and to measure gene expres-
sion in the appropriate tissue in groups of patients
with and without a particular disease [3] or with two
different diseases [28].

The ability to measure such RNA expression
affords an opportunity to reduce our dependence on
a priori knowledge (or biases) and to allow the biol-
ogy of organisms to point us in potentially fruitful
directions in our investigations. That is, much of
the current mission of bioinformatics and functional
genomics is a hypothesis-generating effort, which, if
carefully crafted, can lead to a highly productive set
of investigations using more conventional hypothesis-
driven research.

Gene expression–detection microarrays are no-
table not because their ability to measure gene expres-
sion is unique, since many technologies have per-
mitted quantitative or semiquantitative measurement
of gene expression for well over two decades. What
distinguishes gene expression–detection microarrays
(and other genome-scale technologies) from these

1 Expression microarrays, because they have been the most
impressive recent examples of massive parallel acquisition of
genomic data, are the canonical example used here. However, this
discussion is equally applicable to other genomic technologies.

older technologies is the ability to measure tens of
thousands of genes at a time, a quantitative change of
the scale of gene measurement that has led to a quali-
tative change in our ability to understand regulatory
processes at the cellular level.

Several approaches have been developed during
the past four years to analyze basic RNA expression
data sets. The central hypothesis of these techniques
is that improved techniques in bioinformatics will
enable us to analyze larger data sets of measure-
ments from RNA expression–detection microarrays
and thereby to discover the true biological functional
pathways in gene regulation.

The related discipline of clinical informatics refers
to the application of information science to various
aspects of clinical care. Although clinical informatics
is not addressed here, many of the problems that have
dogged clinical informaticians (and, for that matter,
biostatisticians) will confront bioinformaticians as
they attempt to apply their basic science findings to
clinical problems [36].

Why Do We Need New Techniques?

A scientist trained in quantitative techniques or even
a biologically trained scientist taking a first look at a
typical genomic study might ask the following, quite
legitimate, question: Why isn’t this field amenable
to standard biostatistical techniques? After all, we
are trying to understand the relationship between
multiple variables and the mechanisms the relation-
ships reveal, and the development of biostatistical
techniques to analyze large studies that have large
numbers of cases with many variables has a long
history.

The following are the types of questions asked by
conventional epidemiologic studies: What risk fac-
tors are associated with heart disease? Does smoking
cause disease? On the surface, these questions seem
similar to many of those posed about genetic risk
factors for acute and chronic disease. Yet a review
of the bioinformatics/functional genomics literature
from the past three years reveals that most analyses
in this field have used techniques borrowed from the
computational sciences and machine-learning com-
munities in particular. There are good reasons for
this bias towards the computational sciences that have
little to do with disciplinary parochialism.

Figure 2 sketches out a fundamental difference
between a typical epidemiologic/clinical study and
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Figure 2 A major difference between classical clinical
and epidemiologic studies and microarray analyses

a typical genomic study. A comprehensive epidemi-
ologic study will often involve thousands to tens of
thousands of subjects, such as in the Nurses’ Health
Study [8] or the Framingham Heart Study [19], and
the measurement of tens or even hundreds of vari-
ables (often longitudinally). In contrast, a typical
genomic study involves only tens or, exceptionally,
hundreds of cases, each with tens of thousands of
measured variables.

Initially the low number of cases in a genomic
study may have been due to the high cost of the
microarrays (in 1999 on the order of several thou-
sand US dollars per microarray and in 2001 in the
low hundreds) but the scarcity of cases in a typical
functional genomic study will increasingly relate to
the scarcity of appropriate biologic samples. Because
these experiments involve measuring gene expres-
sion, a particular tissue (e.g. brain, muscle, fat) must
be obtained under the right conditions, in contrast
to studies using genomic DNA, for which more eas-
ily obtained blood samples will suffice. Samples of
nonblood tissues may be very difficult to obtain in
human populations. Yet although only tens of cases
are involved, each case requires the measurement of
tens of thousands of variables corresponding to the
expression of tens of thousands of genes measurable
with microarray technology. The result of the large
number of variables as compared with the number of
cases is a highly underdetermined system, i.e. these
measurements are of very high dimensionality (on
the order of tens of thousands) but with the pro-
vision of only a small number of cases to explore
this high-dimensional space. Stated differently, there
are a great many ways the variables being measured

could be interrelated mechanistically, which may be
difficult to model with the relatively small number
of observations. Many of the assumptions underlying
standard biostatistical techniques do not hold up well
in these systems because of their high dimensional-
ity and underdetermined nature. While statisticians
have done quite a lot of research on the analysis
of underdetermined systems of high dimensionality,
only relatively recently has this work found its way
into mainstream functional genomic studies.

The Functional Genomics Dogma

In the first two years of the publication of sig-
nificant articles regarding the large-scale applica-
tion of microarray technologies, numerous special-
purpose or adapted machine-learning algorithms were
described in the literature. Self-organizing maps [53],
dendrograms [3, 21, 32, 51], K-means clusters, sup-
port vector machines [12], neural networks [13, 40,
55, 58], and several other methodologies (borrowed
largely from the machine-learning community of
computer science) have been employed. Most of
these have worked reasonably well for the purposes
described in the papers.

There is a central underlying assumption, or
dogma, of all these techniques for expression
analysis. Simply put, it is assumed that genes that
appear to be expressed in similar patterns are in fact
related mechanistically. Furthermore, the corollary to
this assumption is that although genes may distantly
affect the function of other gene products, they fall
into groups of more tightly regulated mechanisms.
For instance, the genes that govern chromosome
function or meiosis may be more tightly linked to
each other than to the genes involved with another
function, such as apoptosis. This has been the basis
of our collective experience in biologic investigations
over the last century: that some groups of proteins
have closer interactions than others. Often such
groups have been organized into pathways such as
glycolysis, the Kreb’s cycle, and other metabolic
pathways in which the gene products, called enzymes,
have to work in concert. Other, more obvious
functional clusters are those of structural proteins
that have to come together in a conserved and
reproducible fashion to serve their purpose, whether
they are the components of the ribosomal unit or
the histoproteins essential for the maintenance of
chromatin structure.
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On this basis, it is possible to impute func-
tional clustering of genes whose expression patterns
approximate one another, i.e. that they have related
functions. Several important caveats are worth noting
here. First, it remains unclear just how discrete the
functional groupings of gene function is in the cel-
lular apparatus. Individual gene products may have
so many different roles under different circumstances
that several of them partake in essential roles in sig-
nificantly different functions.2 The second caveat is
that the term functionally related is not in itself well
specified. Similar patterns of expression of more than
one gene could signify the following possible rela-
tionships (the list is not exhaustive):

1. two genes having gene products that physically
interact;

2. one gene encoding a transcriptional factor for the
other gene;

3. two genes having different functions but similar
promoter sequences; or

4. two genes both with promoter sequences bound
by repressors that are knocked off when a nuclear
receptor is activated even though the two genes
have widely disparate functions.

Of course there is a level of abstraction at which
all genes are functionally related by their roles in
keeping the cell alive and producing whatever com-
ponents are needed for the rest of the organism. But
below this level of abstraction are many alternative
and, by their nature, “sloppy” definitions of cluster-
ing. We should therefore be somewhat wary of the
claim that similarity in expression corresponds to
similarity in function. Nevertheless, this is a useful
starting point for many analyses of a genome whose
function remains, by and large, unknown at this time.

The question of what constitutes a similar expres-
sion pattern is also poorly defined, or at least has mul-
tiple alternative definitions. For example, similarity
could mean that patterns of change over time are sim-
ilar, that absolute levels of expression are similar at
any given point in time, or that patterns of expression
are perfectly opposite but well choreographed. Just
which dissimilarity or similarity measure is chosen
for examining patterns of expression will influence
the kind of functional clusters that we expect.

2 One example of this is the transcriptional factor Sonic Hedge-
hog, which in some tissues at some times is involved in cell pro-
liferation and in others is involved in cell differentiation processes.

Supervised vs. Unsupervised Learning

The preceding sections have motivated the need for
computational techniques for the analysis of gene
expression that are qualitatively different from those
of traditional epidemiologic biostatistics. Because the
data sets are of high dimensionality but the number of
cases is relatively small, the number of solutions that
could explain the observed behavior is quite large.
For this reason, the machine-learning community has
recognized the potential role for techniques now used
to explore high-dimensional spaces (such as those
of voice or face recognition) for the exploration of
genomic data sets.

Two useful broad categorizations of the techniques
used by the machine-learning community are super-
vised learning techniques and unsupervised learning
techniques, also commonly known as classification
techniques and clustering techniques, respectively.
The two techniques are easily distinguished by the
presence of external labels of cases. For example, it is
necessary to label a tissue as obtained from a patient
with acute myelogenous leukemia (AML) or one
with acute lymphocytic leukemia (ALL) [28] before
applying a supervised learning technique to create a
method of learning those labels. In an unsupervised
learning technique, such as finding those genes that
are co-regulated across all the samples, this type of
organization of the data operates independently of any
external labels. The kinds of variables (also known
as features in the language of the machine-learning
community) that characterize each case in a data set
can be quite varied. Each case can include measures
of clinical outcome, gene expression, gene sequence,
drug exposure, proteomic measurements, or any other
discrete or continuous variable believed to be of rel-
evance to the case.

The two types of machine learning are gener-
ally used to answer different types of questions. In
supervised learning, the goal is typically to obtain a
set of variables (e.g. expressed genes as measured
on a microarray) that can be used reliably to make
a diagnosis, predict future outcome, predict future
response to pharmacologic intervention, or catego-
rize that patient or tissue or animal as part of a
class of interest. In unsupervised learning, the typical
application is to find either a completely novel clus-
ter of genes with putative common (but previously
unknown) function or, more commonly, to obtain a
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cluster or group of genes that appear to have pat-
terns of expression similar to those of a gene (i.e. that
fall into the same cluster) already known to have an
important function. The goal of unsupervised learning
in this context is to find more details about the mech-
anism by which the known gene works and to find
other genes involved in that same mechanism, either
to obtain a more complete view of a particular cellular
physiology or, in the case of pharmacologically ori-
ented research, to identify other possible therapeutic
targets.

Although the distinct goals of supervised ver-
sus unsupervised machine learning techniques may
appear rather obvious, it is important to be aware of
the implications of these differences for study design.
For example, an analyst may be asked to find classi-
fiers between two types of malignancy, as was done
in the investigation by Golub et al. of AML and
ALL [28]. However, the lists of genes that reliably
divide the two malignancies may have little to do
with the actual pathophysiologic causes of the two
diseases and may not represent any particular close
relationship of those genes and function. Why is this?
One possibility is that the small amounts of change
of some gene products, such as transcriptional acti-
vators and genes, e.g. p53, cause large downstream
changes in gene expression. That is, with only a sub-
tle change, an important upstream gene may cause
dramatic changes in the expression in several path-
ways that are functionally only distantly related but
are highly influenced by the same upstream gene.
When a classification algorithm is applied directly to
the gene expression levels, the algorithm will nat-
urally identify those genes that undergo the most
change between the two or more states being clas-
sified. A study design geared towards the application
of a supervised learning technique may thereby gen-
erate a useful artifact for classification, diagnosis,
or even prognosis, but will not necessarily lead to
valuable insights into the biology underlying the
classes obtained. To obtain such insights, unsuper-
vised or clustering methodologies are more likely to
be rewarding, as they reveal how genes will affect
each other’s function. More generally, let us consider
the other cases for which gene expression values are
not the only data type. A given case may include
several thousand gene-expression measurements but
also several hundred phenotypic measurements such
as blood pressure, laboratory values, or the response
to a chemotherapeutic agent. Here again a clustering

algorithm can be used to find the features that are
most tightly coupled in the observed data. In a gen-
eralization of the functional genomics dogma, these
tight associations (in space and/or time) can thereby
lead to the development of hypotheses that may be
tested by standard techniques.

The list of bioinformatic techniques is growing
rapidly. Table 1 includes only a brief subset, with
references to published biomedic works incorporat-
ing each technique and starting with the taxonomy
of unsupervised and supervised machine learning.
For the experienced biostatistician, many of these
techniques will be familiar tools called by a new label
or applying a new jargon.

The Immediate Future of Bioinformatics
and Functional Genomics

In the last five years of the genomic revolution
and the development of concomitant bioinformatic
methodologies, the principal weakness of the field has
been the poor quality and irreproducibility of many
of the measurements made [17, 54]. This is particu-
larly true of microarray-expression experiments3 that
make broad and unsubstantiated claims about gene
function on the basis of one, two, or three measure-
ments. As the science and engineering of functional
genomics develop (and become more cost-effective),
many of the tried and true techniques of biostatistics
are being applied to genomic data (often by bio-
statisticians) [39, 47]. These efforts are still in their
infancy but represent the beginnings of the integra-
tion of genomic data into the armamentarium of the
biostatistician as yet another type of data for clinical
trials and basic biologic investigation.

This brief article has only touched on one of
the main themes of bioinformatics. Because the
bioinformatic and genomic endeavor is so large,
much mundane groundwork remains to be cov-
ered, and this too is an important component of
the enterprise. This includes the development of
standardized nomenclatures for describing genes,
gene variants, and gene products [6, 37, 41, 57];
the development of standardized data models and
databases for storing and sharing genomic data
acquired in thousands of laboratories [22, 26, 50];

3 This is also true of all the massively parallel genomic measure-
ment modalities, whether using proteomic arrays, tissue arrays, or
resequencing arrays.
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Table 1 Bioinformatic techniques

Unsupervised
Analysis looking for characteristics in the data set, without a priori input on cases or genes
• Feature determination: Determine genes with interesting properties, without specifically looking for a specific pattern

to be determined
• Principal component analysis and singular value decomposition: Determine genes explaining the majority of the

mathematical variance in the data set [5, 23, 31, 46, 56]
• Cluster determination: Determine groups of genes or samples with similar patterns of gene expression
– Nearest neighbor clustering: The number of clusters is decided first, the boundaries of the clusters are calculated,

then each gene is assigned to a single cluster [9]
– Agglomerative clustering: Bottom-up method, where clusters start as empty, then genes are successively added to

the existing clusters
Dendrogram algorithm: Groups are defined as subtrees in a phylogenetic-type tree, created by comprehensively
measuring a pairwise metric, such as the correlation coefficient [56]
Two-dimensional dendrograms: Both genes and samples are clustered separately

– Divisive or partitional clustering: Top-down method, where large clusters are successively broken into smaller ones
until each subcluster contains only one gene

Matrix incision tree [35]
Two-way clustering binary tree [4]
Coupled two-way clustering [27]
Cluster affinity search technique [11]
Gene shaving [30]

• Network determination: Determine networks of gene–gene or gene–phenotype interactions
Bayesian networks [24]
Hybrid petri networks [44]
Boolean regulatory networks [1, 2, 40, 52, 59]
Relevance networks: Determines associations between features (genes, phenotypic measures, or samples) [14, 15, 17]

Supervised
Analysis to determine ways to accurately split into or predict groups of samples or disease based on external (typically

expert-provided) labels
• Single feature or sample determination: Find genes or samples that match a particular a priori pattern
– Naive Bayes classifier [10, 18]
– Naive Bayes global relevance [45]

• Multiple-feature determination: Find combinations of genes that match a particular a priori pattern
– Decision trees: Use the training set of genes or samples to construct a decision tree to help classify test samples or

test genes. Typically uses entropy as the classification measure [20]
– Support vector machines: First take the set of measured genes, then create a richer feature set with combinations

of genes, then find a hyperplane that linearly separates groups of samples in this larger multidimensional
space [12, 18, 25]

– Tree harvesting [29]
– Boosting [9]

distributed annotation efforts – allowing laborato-
ries around the world to contribute in a controlled
manner to databases documenting the function of
each gene [7, 34, 38, 48, 49]; and leverage of the
existing biomedical literature for genomic analysis
[33, 42, 43].
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Using Bayesian networks to analyze expression data,
Journal of Computational Biology 7, 601–620.

[25] Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W.,
Schummer, M. & Haussler, D. (2000). Support vector
machine classification and validation of cancer tissue
samples using microarray expression data, Bioinformat-
ics 16, 906–914.

[26] Gardiner-Garden, M. & Littlejohn, T.G. (2001). A com-
parison of microarray databases, Briefings in Bioinfor-
matics 2, 143–158.

[27] Getz, G., Levine, E. & Domany, E. (2000). Coupled
two-way clustering analysis of gene microarray data,
Proceedings of the National Academy of Sciences 97,
12079–12084.

[28] Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C.,
Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L.,
Downing, J.R., Caligiuri, M.A., Bloomfield, C.D. &
Lander, E.S. (1999). Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring, Science 286, 531–537.

[29] Hastie, T., Tibshirani, R., Botstein, D. & Brown, P.
(2001). Supervised harvesting of expression trees,
Genome Biology 2, 3.1–3.12.

[30] Hastie, T., Tibshirani, R., Eisen, M.B., Alizadeh, A.,
Levy, R., Staudt, L., Chan, W.C., Botstein, D. &
Brown, P. (2000). “Gene shaving” as a method for
identifying distinct sets of genes with similar expression
patterns, Genome Biology 1, 3.1–3.21.

[31] Hilsenbeck, S.G., Friedrichs, W.E., Schiff, R., O’Con-
nell, P., Hansen, R.K., Osborne, C.K. & Fuqua, S.A.
(1999). Statistical analysis of array expression data as
applied to the problem of tamoxifen resistance, Journal
of the National Cancer Institute 91, 453–459.

[32] Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G.,
Moore, T., Lee, J.C.F., Trent, J.M., Staudt, L.M.,
Hudson, J., Jr, Boguski, M.S., Lashkari, D., Shalon,
D., Botstein, D. & Brown, P.O. (1999). The
transcriptional program in the response of human
fibroblasts to serum, Science 283, 83–87.



8 Bioinformatics in Functional Genomics

[33] Jenssen, T.K., Laegreid, A., Komorowski, J. & Hovig, E.
(2001). A literature network of human genes for high-
throughput analysis of gene expression, Nature Genetics
28, 21–28.

[34] Karp, P.D. (2000). An ontology for biological function
based on molecular interactions, Bioinformatics 16,
269–285.

[35] Kim, J.H., Ohno-Machado, L. & Kohane, I.S. (2001). In
Pacific Symposium on Biocomputing, Vol. 6, R. Altman,
ed., World Scientific, Hawaii, pp. 30–41.

[36] Kohane, I.S. (2000). Bioinformatics and clinical infor-
matics: the imperative to collaborate (editorial), Jour-
nal of the American Medical Informatics Association 7,
512–516.

[37] Kuska, B. (1997). Scientists reach a turning point with
gene nomenclature, Journal of the National Cancer
Institute 89, 1332–1334.

[38] Lewis, S., Ashburner, M. & Reese, M.G. (2000). Anno-
tating eukaryote genomes, Current Opinion in Structural
Biology 10, 349–354.

[39] Li, C. & Wong, W.H. (2001). Model-based analysis
of oligonucleotide arrays: expression index computa-
tion and outlier detection, Proceedings of the National
Academy of Sciences 98, 31–36.

[40] Liang, S., Fuhrman, S. & Somogyi, R. (1998). Reveal,
a general reverse engineering algorithm for inference of
genetic network architectures, in Pacific Symposium on
Biocomputing, Vol. 6, R. Altman, ed., World Scientific,
Hawaii, pp. 18–29.

[41] Maltais, L.J., Blake, J.A., Eppig, J.T. & Davisson, M.T.
(1997). Rules and guidelines for mouse gene nomencla-
ture: a condensed version. International Committee on
Standardized Genetic Nomenclature for Mice, Genomics
45, 471–476.

[42] Masys, D.R. (2001). Linking microarray data to the
literature, Nature Genetics 28, 9–10.

[43] Masys, D.R., Welsh, J.B., Lynn Fink, J., Gribskov, M.,
Klacansky, I. & Corbeil, J. (2001). Use of keyword
hierarchies to interpret gene expression patterns, Bioin-
formatics 17, 319–326.

[44] Matsuno, H., Doi, A., Nagasaki, M. & Miyano, S.
(2000). Hybrid Petri net representation of gene regu-
latory network, in Pacific Symposium on Biocomputing,
Vol. 6, R. Altman, ed., World Scientific, Hawaii, pp.
341–352.

[45] Moler, E.J., Radisky, D.C. & Mian, I.S. (2000). Inte-
grating naive Bayes models and external knowledge to
examine copper and iron homeostasis in S. cerevisiae,
Physiological Genomics 4, 127–135.

[46] Raychaudhuri, S., Stuart, J.M. & Altman, R.B. (2000).
Principal components analysis to summarize microarray
experiments: application to sporulation time series, in
Pacific Symposium on Biocomputing, Vol. 6, R. Altman,
ed., World Scientific, Hawaii, pp. 455–466.

[47] Schadt, E.E., Li, C., Su, C. & Wong, W.H. (2000).
Analyzing high-density oligonucleotide gene expres-
sion array data, Journal of Cellular Biochemistry 80,
192–202.

[48] Schulze-Kremer, S. (1997). Adding semantics to genome
databases: towards an ontology for molecular biology,
Proceedings of the International Conference on Intelli-
gent Systems in Molecular Biology Vol. 5, pp. 272–275.

[49] Schulze-Kremer, S. (1998). Ontologies for molecular
biology, in Pacific Symposium Biocomputing, Vol. 6,
R. Altman, ed., World Scientific, Hawaii, pp. 695–706.

[50] Sherlock, G., Hernandez-Boussard, T., Kasarskis, A.,
Binkley, G., Matese, J.C., Dwight, S.S. et al. (2001). The
Stanford Microarray Database, Nucleic Acids Research
29, 152–155.

[51] Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R.,
Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. &
Futcher, B. (1998). Comprehensive identification of cell
cycle-regulated genes of the yeast Saccharomyces cere-
visiae by microarray hybridization, Molecular Biology
of the Cell 9, 3273–3297.

[52] Szallasi, Z. & Liang, S. (1998). Modeling the normal
and neoplastic cell cycle with “realistic Boolean genetic
networks”: their application for understanding carcino-
genesis and assessing therapeutic strategies, in Pacific
Symposium on Biocomputing, Vol. 6, R. Altman, ed.,
World Scientific, Hawaii, pp. 66–76.

[53] Toronen, P., Kolehmainen, M., Wong, G. & Castren, E.
(1999). Analysis of gene expression data using self-
organizing maps, FEBS Letters 451, 142–146.

[54] Tsien, C.L., Libermann, T.A., Gu, X. & Kohane, I.S.
(2001). In Pacific Symposium on Biocomputing, Vol. 6,
R. Altman, ed., World Scientific, Hawaii, pp. 496–507.

[55] Weinstein, J.N., Kohn, K.W., Grever, M.R., Viswanad-
han, V.N., Rubinstein, L.V., Monks, A.P. et al. (1992).
Neural computing in cancer drug development: predict-
ing mechanism of action, Science 258, 447–451.

[56] Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B.,
Smith, S., Barker, J.L. & Somogyi, R. (1998). Large-
scale temporal gene expression mapping of central ner-
vous system development, Proceedings of the National
Academy of Sciences 95, 334–339.

[57] White, J.A., McAlpine, P.J., Antonarakis, S., Cann, H.,
Eppig, J.T., Frazer, K., Frazal, J., Lancet, D., Nah-
mias, J., Pearson, P., Peters, J., Scott, A., Scott, H.,
Spurr, N., Talbot, C., Jr & Povey, S. (1997). Guidelines
for human gene nomenclature (1997). HUGO Nomen-
clature Committee, Genomics 45, 468–471.

[58] Wu, C., Whitson, G., McLarty, J., Ermongkonchai, A. &
Chang, T. (1992). Protein classification artificial neural
system, Protein Science 1, 667–677.

[59] Wuensche, A. (1998). Genomic regulation modeled
as a network with basins of attraction, in Pacific
Symposium on Biocomputing, Vol. 6, R. Altman, ed.
World Scientific, Hawaii, pp. 89–102.

(See also Gene Expression Analysis)

ISAAC S. KOHANE & ATUL BUTTE



Bioinformatics

Bioinformatics is an emerging field that was once
considered to be the part of computational biol-
ogy that explicitly dealt with the management of
the increasing number of large databases, including
methods for data retrieval and analyses, and algo-
rithms for sequence similarity searches, structural
predictions, functional predictions and comparisons,
and so forth. Very recently, the field has been rapidly
evolving, not only because of the impact of the vari-
ous genome projects (see Human Genome Project)
but also because of the development of experimental
technologies such as microarrays for gene expres-
sion analyses and mass spectrometry for detection of
protein–protein interactions. Currently, and increas-
ingly, bioinformatics is being widely viewed as a
more fundamental discipline that also encompasses
mathematics, statistics, physics, and chemistry. Fur-
ther, the field is already looking forward to what is
currently termed a “systems biology” approach and
to simulations of whole cells with incorporation of
more levels of complexity; see, for example, [2].

The stated goal for many researchers is for devel-
opments in bioinformatics to be focused at finding
the fundamental laws that govern biological systems,
as in physics. However, if such laws exist, they are a
long way from being determined for biological sys-
tems. Instead, the current aim is to find insightful
ways to model limited components of biological sys-
tems and to create tools that biologists can use to
analyze data. Examples include tools for statistical
assessment of the similarity between two or more
DNA sequences or protein sequences (see Sequence
Analysis), for finding genes in genomic DNA (see
DNA Sequences), for quantitative analysis of func-
tional genomics data (see Genetic Markers), for
estimating differences in how genes are expressed in,
say, different tissues (see Gene Expression Anal-
ysis), for analysis and comparison of genomes from
different species, for phylogenetic analysis (see DNA
Sequences), for DNA sequence alignment and assem-
bly (see Hidden Markov Models; EM Algorithm),
and so on. Such tools involve statistical modeling of
biological systems; see, for example, [1].

Much biological data arise from mechanisms that
have a substantial probabilistic component, the most
significant being the many random processes inherent
in biological evolution, and also from randomness

in the sampling process used to collect the data.
Another source of variability or randomness is intro-
duced by the biotechnological procedures and exper-
iments used to generate the data. So, the basic goal
is to distinguish the biological “signal” from the
“noise”. Today, as experimental techniques are being
developed for studying genomewide patterns, such
as expression arrays, the need to appropriately deal
with the inherent variability has multiplied astro-
nomically. For example, we have progressed from
studying one or a few genes in comparative isola-
tion to being able to evaluate thousands of genes
(or expressed sequence tags) simultaneously. Not
only must methodologies be developed that scale up
to handle the enormous data sets generated in the
postgenomic era but these also need to become more
sensitive to the underlying biological knowledge and
better understanding of the mechanisms that gener-
ate the data. For biostatisticians, research has reached
an exciting and challenging stage at the interface of
computational statistics and biology. The need for
novel approaches to handle the new genomewide data
(including that generated by microarrays) has coin-
cided with a period of dramatic change in approaches
to statistical methods and thinking. This “quantum”
change has been brought about, or even has been
driven by, the potential of ever more increasing com-
puting power. What was thought to be intractable in
the past is now feasible, and so new methodologies
need to be developed and applied.

Unfortunately, too many of the current practices
in the biological sciences rely on methods developed
when computational resources were very limiting and
are often either (a) simple extensions of methods for
working with one or a few outcome measures, and
do not work well when there can be thousands of
outcome measures, or (b) ad hoc methods (that are
commonly referred to being “statistical” or “com-
putational”) that make many assumptions for which
there are no (biological) justifications. The challenge
now is to creatively combine the power of the com-
puter with relevant biological and stochastic process
knowledge to derive novel approaches and models,
using minimal assumptions, that can be applied at
genomic wide scales. Such techniques comprise the
foundation of bioinformatic methods in the future.

Useful web resources are starting to appear. For
example, “Functional and Comparative Genomics”
has been developed by the US Department of
Energy Office of Science, Office of Biological and
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Environmental Research, Human Genome Program;
see, for example, http://www.ornl.gov/Tech
Resources/Human Genome/faq/compgen.html
and links therein.

Federated databases and bioGrids are at the cutting
edge of modern biological technology. To date, Grid
development has focused on the basic issues of stor-
age, computation, and resource management needed
to make a global life-science community’s informa-
tion and tools accessible in a high-performance envi-
ronment. In the longer term, the purpose of the Grids
is to deliver a collaborative and supportive envi-
ronment that will enable geographically distributed
scientists to achieve research goals more effectively,
while enabling their results to be used in develop-
ments elsewhere. The in silico biological experimen-
tal process will use efficient tools that allow the
e-life scientists to seamlessly link together databases
and analytical tools, extract relevant information

from free texts, and harness available computational
resources for CPU-intensive tasks. Also, there will
be an increasing overlap and seamlessness between
areas of bioinformatics and Public Health Informat-
ics. For the biostatistician, in the future, both data
analysis and simulation will be done increasingly at
high speed achieved by parallel processing and het-
erogeneous distributed processing.
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Biological Assay,
Overview

This article mainly emphasizes the classical aim of
biological assay (or bioassay), to estimate relative
potency, arising out of a need for biological stan-
dardization of drugs and other products for bio-
logical usage. There is a basic difference between
biological and chemical endpoints or responses: the
former exhibits greater (bio)variability and thereby
requires in vivo or in vitro biological assays wherein
a standard preparation (or a reference material) is
often used to have a meaningful interpretation of rel-
ative potency. However, the term bioassay, has also
been used in a wider sense, to denote an experi-
ment, with biological units, to detect possible adverse
effects such as carcinogenicity or mutagenicity (see
Software for Clinical Trials; Mutagenicity Study).
In the context of environmental impact on biosys-
tems, toxicodynamic and toxicokinetic (TDTK) mod-
els as well as physiologically based pharmacokinetic
(PBPK) models have been incorporated to expand the
domain of bioassays; structure–activity relationship
information (SARI) is often used to consolidate the
adoption of bioassays in a more general setup; the
genesis of dosimetry (or animal studies) lies in this
complex. The use of biomarkers in studying environ-
mental toxic effects on biological systems, as well
as in carcinogenicity studies, has enhanced the scope
of bioassays to a greater interdisciplinary field; we
need to appraise, as well, bioassays in this broader
sense. Further, recent advances in bioinformatics
have added new frontiers to the study of biological
systems; bioassay models are gaining more popularity
in the developing area of computational biology. Our
appraisal of bioassay would remain somewhat incom-
plete without an assessment of the role of Pharma-
cogenomics as well as Toxicogenomics in establishing
a knowledge base of the chemical effects in biologi-
cal systems. The developments in genomics during
the past eight years, have opened the doors for a
far more penetrating level of research focusing on
the gene-environment interaction in conventional
experiments with biological units, and thereby call-
ing for drastically different statistical resolutions for
bioassays. We include also a brief synopsis of these
recent developments.

Traditionally, in a bioassay, a test (new) and a
standard preparation are compared by means of reac-
tions that follow their applications to some biological
units (or subjects), such as subhuman primates (or
human) living tissues or organs; the general objec-
tive being to draw interpretable statistical conclusions
on the relative potency of the test preparation with
respect to the standard one. Usually, when a drug
or a stimulus is applied to a subject, it induces
a change in some measurable characteristic that is
designated as the response variable. In this setup,
the dose may have several chemically or therapeu-
tically different ingredients while the response may
also be multivariable. Thus the stimulus–response
or dose–response relationship for the two prepara-
tions, both subject to inherent stochastic variability,
are to be compared in a sound statistical manner (with
adherence to biological standardization) so as to cast
light on their relative performance with respect to
the set objectives. Naturally, such statistical proce-
dures may depend on the nature of the stimulus and
response, as well as on other extraneous experimental
(biological or therapeutical) considerations. As may
be the case with some competing drugs for the treat-
ment of a common disease or disorder, the two (i.e.
test and standard) preparations may not have the same
chemical or pharmacological constitution, and hence,
statistical modeling may be somewhat different than
in common laboratory experimentation. Nevertheless,
in many situations, the test preparation may behave
(in terms of the response/tolerance distribution) as
if it is a dilution or concentration of the standard
one. For this reason, often, such bioassays are des-
ignated to compare the relative performance of two
drugs under the dilution–concentration postulation,
and are thereby termed dilution assays.

Dilution assays are classified into two broad cate-
gories: Direct dilution and indirect dilution assays. In
a direct assay, for each preparation, the exact amount
of dose needed to produce a specified response is
recorded, so that the response is certain while the
dose is a nonnegative random variable that defines the
tolerance distribution. Statistical modeling of these
tolerance distributions enables us to interpret the rel-
ative potency in a statistically analyzable manner,
often in terms of the parameters associated with the
tolerance distributions. By contrast, in an indirect
assay, the dose is generally administered at some pre-
fixed (usually nonstochastic) levels, and at each level,
the response is observed for subjects included in the
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study. Thus, the dose is generally nonstochastic and
the stochastic response at each level leads to the tol-
erance distributions that may well depend on the level
of the dose as well as the preparation. If the response
is a quantitative variable, we have an indirect quanti-
tative assay, while if the response is quantal in nature
(i.e. all or nothing), we have a quantal assay (see
Binary Data). Both of these indirect assays are more
commonly addressed in statistical formulations.

Within this framework, the nature of the
dose–response regression may call for suitable trans-
formations on the dose variable (called the dosage or
dose-metameter) and/or the response variable, called
the response-metameter. The basic objective of such
transformations is to achieve a linear dosage-response
regression (see Linear Regression, Simple), which
may induce simplifications in statistical modeling and
analysis schemes. In view of the original dilution
structure, such transformations may lead to different
designs for such assays, and the two most popular
ones are (i) parallel-line assays and (ii) slope-ratio
assays. Within each class, there is also some varia-
tion depending on the (assumed) nature of tolerance
distributions, and within this setup, the probit (or
normit) and logit transformations, based on normal
and logistic distributions respectively, are quite pop-
ular in statistical modeling and analysis of bioassays.
Bliss [2] contains an excellent account of the early
developments in this area, while the various editions
of Finney [6] capture more up-to-date developments,
albeit with a predominantly parametric flavor. We
refer to these basic sources for extensive bibliography
of research articles, particularly in the early phase of
developments where biological considerations often
dominated statistical perspectives.

In this framework, it is also possible to include
bioassays that may be considered for bioavailability
and bioequivalence studies, though basically there
are some differences in the two setups: Bioassays
for assessing relative potency relate to clinical ther-
apeutic equivalence trials, while in bioequivalence
trials, usually, the relative bioavailability of differ-
ent formulations of a drug are compared. Thus, in
bioequivalence studies, the pharmacologic results of
administrating essentially a common drug in alter-
native forms, such as a capsule versus a tablet, or
a liquid dose of certain amount, capsules (tablets)
or liquid forms of larger dose versus smaller dose
with increased frequency of prescription, or even the
administration of a drug at different time of the day,

such as before breakfast or sometime after a meal,
and so on, are to be assessed in a valid statistical
manner. In this sense, the active ingredients in the
drug in such alternative forms may be essentially
the same, and differences in bioavailability reflect the
form and manner of administration. We shall see later
on that these basic differences in the two setups call
for somewhat different statistical formulations and
analysis schemes.

Direct Dilution Assays

As an illustrative example, consider two toxic prepa-
rations (say, S and T), such that a preparation is
continuously injected into the blood stream of an ani-
mal (say, cat) until its heart stops beating. Thus, the
response (death) is certain, while the exact amount
of the dose (X) required to produce the response is
stochastic. Let XS and XT stand for the dose (vari-
able) for the standard and test preparation, and let
FS(x) and FT (x), x ≥ 0, be the two tolerance dis-
tributions. The fundamental assumption of a direct
dilution assay is the following:

FT (x) = FS(ρx), for all x ≥ 0, (1)

where ρ(>0) is termed the relative potency of
the test preparation with respect to the standard
one. Standard parametric procedures for drawing
statistical conclusions on ρ are discussed fully
in the classical text of Finney [6], where other
references are also cited in detail. If FS(.) is assumed
to be a normal distribution function, then ρ is
characterized as the ratio of the two means, as well
as the ratio of the two standard deviations. Such
simultaneous constraints on means and variances
vitiate the simplicity of achieving optimality of
parametric procedures (in the sense of maximum
likelihood estimators and related likelihood ratio
tests). On the other hand, if we use the log-dose
transformation on the two sets of doses, and the
resulting dosage distributions, denoted by F ∗

S (.) and
F ∗

T (, ) respectively, are taken as normal, then they
have the same variance, while the difference of their
means define log ρ. Interestingly enough, in the first
case, the estimator of ρ is the ratio of the sample
arithmetic means, while in the other case, it turns
out as the ratio of the sample geometric means. A
different estimator emerges when one uses a power-
dosage (as is common in slope-ratio assays). Thus,
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in general, these estimators are not the same, and
they depend sensibly on the choice of a dosage.
This explains the lack of invariance property of
such parametric estimates (as well as associated test
statistics) under monotone dosage transformations.

From an operational point of view, an experi-
menter may not have the knowledge of the precise
dosage, and hence, it may not be very prudent to
assume the normality, lognormality or some other
specific form of the tolerance distribution. There-
fore, it may be reasonable to expect that an estimator
of the relative potency should not depend on the
chosen dosage as long as the latter is strictly mono-
tone. For example, if the true tolerance distribution
is logistic while we assume it to be (log)normal,
the sample estimator may not be unbiased and fully
efficient. Even when the two tolerance distributions
are taken as normal, the ratio of the sample means
is not unbiased for ρ. In this respect, such para-
metric procedures for the estimation of the relative
potency (or allied tests for the fundamental assump-
tion) are not so robust, and any particular choice
of a dosage may not remain highly efficient over
a class of such chosen tolerance distributions. Non-
parametric procedures initiated by Sen [17, 18, 19]
and followed further by Shorack [26], and Rao and
Littell [14], among others, eliminate this arbitrariness
of dosage selection and render robustness to a far
greater extent. Basically, we may note that ranks
are invariant under strictly monotone (not necessar-
ily linear) transformations on the sample observa-
tions. As such, a test for the fundamental assumption
in (1) based on appropriate rank statistic remains
invariant under such transformations. Similarly, if
an estimator of the relative potency is based on
suitable rank statistics, it remains invariant under
such strictly monotone dosage transformations. Both
the Wilcoxon–Mann–Whitney two-sample rank-
sum test and the (Brown–Mood) median test statis-
tics were incorporated by Sen [17] for deriving non-
parametric estimators of relative potency, and they
also provide distribution-free confidence intervals
for the same parameter. If there are m observa-
tions XS1, . . . , XSm for the standard preparation and
n observations XT 1, . . . , XT n, for the test preparation,
we define the differences

Yij = XSi − XTj , for i = 1, . . . , m; j = 1, . . . , n.

(2)

We arrange the N(= mn) observations Yij in ascend-
ing order of magnitude, and let ỸN be the median
of these N observations. If N is even, we take the
average of the two central order statistics. Then ỸN

is the Wilcoxon score estimator of log ρ, and it is a
robust and efficient estimator of log ρ. The estimator
is invariant under any strictly monotone transforma-
tion on the dose. Similarly, the confidence interval
for log ρ can be obtained in terms of two specified
order statistics of the Yij , and this is a distribution-free
and robust procedure. A similar procedure works out
for the median procedure; for general rank statistics,
generally, an iterative procedure is needed to solve
for such robust R-estimators (see Robust Regres-
sion). Rao and Littell [14] incorporated the two-
sample Kolmogorov–Smirnov test statistics in the
formulation of their estimator. For computational
convenience, because of the invariance property, it
is simpler to work with the log-dose dosage, and in
that way, the estimators of the log-relative potency
correspond to the classical rank estimators in the two-
sample location model.

These direct dilution assays require the measure-
ment of the exact doses needed to produce the
response; this may not be the case if there are some
latent effects. For example, the time taken by the toxic
preparation to traverse from the point of infusion to
the heart multiplied by the infusion rate may account
for such a latent effect. In general, the situation
may be much more complex. This naturally affects
the fundamental assumption in (1), and variations in
the modeling and statistical analysis to accommodate
such effects have been discussed in [6] and [17] in
the parametric and nonparametric cases respectively.

Indirect Dilution Assays

As an example, consider two drugs, A and B,
each administered at k(≥ 2) prefixed levels (doses)
d1, . . . , dk . Let XSi and YT i be the response vari-
able for the standard and test preparation respectively.
These drugs may not have the same chemical ingre-
dients, and may not have the same dose levels. It
is not necessary to have the same doses for both the
preparations, but the modifications are rather straight-
forward, and hence we assume this congruence. We
assume first that both XSi and YT i are continuous (and
possibly nonnegative) random variables. Suppose
further that there exist some dosage xi = ξ(di), i =
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1, . . . , k and response-metameter X∗ = g(X), Y ∗ =
g(Y ), for some strictly monotone g(.), such that the
two dosage–response regressions may be taken as
linear, namely, that

Y ∗
T i = αT + βT xi + eT i, X∗

Si = αS + βSxi + eSi,

(3)

for i = 1, . . . , k, where for statistical inferential pur-
poses, certain distributional assumptions are needed
for the error components eT i and eSi, i = 1, . . . , k.
Generally, in the context of log-dose transformations,
we have a parallel-line assay, while slope-ratio assays
arise typically for power transformations. Thus, in
a parallel-line assay, the two dose–response regres-
sion lines are taken to be parallel, and further that
the errors eT i and eSi have the same distribution
(often taken as normal). In this setup, we have then
βS = βT = β (unknown), while αT = αS + β log ρ,
where ρ is the relative potency of the test prepara-
tion with respect to the standard one. This leads to
the basic estimating function

log ρ = {αT − αS}
β

, (4)

so that if the natural parameters β, αS and αT are
estimated from the acquired bioassay dataset, statis-
tical inference on log ρ (and hence ρ) can be drawn
in a standard fashion. For normally distributed errors,
the whole set of observations pertains to a conven-
tional linear model with a constraint on the two
slopes βS, βT , so that the classical maximum like-
lihood estimators and allied likelihood ratio tests can
be incorporated for drawing statistical conclusions on
the relative potency or the fundamental assumption
of parallelism of the two regression lines. However,
the estimator of log ρ involves the ratio of two nor-
mally distributed statistics, and hence, it may not be
unbiased; moreover, generally, the classical Fieller’s
theorem [6] is incorporated for constructing a con-
fidence interval for log ρ (and hence, ρ), and it is
known that this may result in an inexact cover-
age probability (see Confidence Intervals and Sets).
Because of this difference in setups (with that of
the classical linear model), design aspects for such
parallel-line assays need a more careful appraisal.
For equispaced (log −)doses, a symmetric 2k-point
design has optimal information contents, and are
more popularly used in practice. We refer to [6] for a

detailed study of such bioassay designs in a conven-
tional normally distributed errors model. Two main
sources of nonrobustness of such conventional infer-
ence procedures are the following:

(i) Possible nonlinearity of the two regression lines
(they may be parallel but yet curvilinear);

(ii) Possible nonnormality of the error distributions.

On either count, the classical normal theory pro-
cedures may perform quite nonrobustly, and their
(asymptotic) optimality properties may not hold even
for minor departures from either postulation. How-
ever, if the two dose–response regressions (linear or
not) are not parallel, the fundamental assumption of
parallel-line assays is vitiated, and hence, statistical
conclusions based on the assumed model may not be
very precise.

In a slope-ratio assay, the intercepts αS and αT

are taken as the same, while the slopes βS and
βT need not be the same and their ratio provides
the specification of the relative potency ρ. In such
slope-ratio assays, generally, a power transformation:
dosage = (dose)λ, for some λ > 0 is used, and we
have

ρ =
{

βT

βS

}1/λ

, (5)

which is typically a nonlinear function of the two
slopes βT and βS , and presumes the knowledge of
λ. In such a case, the two error components may not
have the same distribution even if they are normal.
This results in a heteroscedastic linear model (unless
ρ = 1) (see Scedasticity), where the conventional
linear estimators or allied tests may no longer possess
validity and efficiency properties. Moreover, as ρλ

is a ratio of two slopes, its conventional estimator
based on usual estimators of the two slopes is of the
ratio-type. For such ratio-type estimators, again the
well-known Fieller Theorem [6] is usually adopted
to attach a confidence set to ρ or to test a suitable
null hypothesis. Such statistical procedures may not
have the exact properties for small to moderate
sample sizes. Even for large sample sizes, they are
usually highly nonrobust for departures from the
model-based assumptions (i.e. linearity of regression,
the fundamental assumption, and normality of the
errors). Again the design aspects for such slope-
ratio assays need a careful study, and [6] contains
a detailed account of this study. Because of the
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common intercept, usually a 2k + 1 point design, for
some nonnegative integer k is advocated here.

The articles on Parallel-line Assay and Slope-
ratio Assay should be consulted for further details.
The primary emphasis in these articles is on standard
parametric methods, and hence we discuss briefly
here, the complementary developments of nonpara-
metric and robust procedures for such assays. These
were initiated in [21, 22] and also systematically
reviewed in [23]. First, we consider a nonparametric
test for the validity of the fundamental assumption
in a parallel-line assay. This is essentially a test for
the equality of slopes of two regression lines, and
as in [21], we consider an aligned test based on the
Kendall τ statistic (see Rank Correlation). For each
preparation with the set of dosages as independent
variate and responses as dependent variable, one can
define the Kendall tau statistic in the usual man-
ner. We consider the aligned observations YT i − bxi

and xi , and denote the corresponding Kendall τ (in
the summation but not average form) as KT (b), and
for the standard preparation, an aligned Kendall’s τ

statistic is defined by KS(b), where we allow b to
vary over the entire real line. Let then

K∗(b) = KT (b) + KS(b), −∞ < b < ∞. (6)

Note then that KT (b), KS(b), and hence K∗(b) are
all nonincreasing in b and have finitely many step-
down discontinuities. Equating K∗(b) to 0 [20], we
obtain the pooled estimator β̂ of β. Let us then write

L = {[KT (β̂)]2 + [KS(β̂)]2}
Vn

, (7)

where Vn is the variance of the Kendall τ statistic
under the hypothesis of no regression (and is a known
quantity). This statistic has, under the hypothesis of
homogeneity of βT and βS , closely central chi-square
distribution with one degree of freedom. L is used
as a suitable test statistic for testing the validity of
the fundamental assumption of a parallel-line assay
where the normality of the error components is not
that crucial. In that sense it is a robust test. Moreover,
having obtained the pooled estimator β̂ of β, under
the hypothesis of homogeneity of the slopes, we
consider the residuals

ŶT i = YT i − β̂xi, ŶSi = YSi − β̂xi, (8)

for different i, and treating them as two indepen-
dent samples, as in the case of dilution direct assays,

we use the Wilcoxon–Mann–Whitney rank-sum test
statistic to estimate the difference of the intercepts
αT − αS in a robust manner. As in the direct dilution
assay, this estimator is the median of the differ-
ences of all possible pairs of residuals from the
test and standard preparation respectively. A robust,
consistent and asymptotically normally distributed
estimator of log ρ is then obtained by dividing this
estimator by the pooled estimator β̂.

For drawing a confidence interval for log ρ (and
hence, ρ), we can then use the Fieller Theorem by an
appeal to the asymptotic normality of the estimator,
or as in [21], consider a rectangular confidence set
for β and αT − αS by computing a coordinate-wise
confidence interval for each with coverage probability
1 − γ /2, and as in Figure 1, draw a robust confidence
set for log ρ with coverage probability 1 − γ .

Though this does not have an exact coverage
probability, it is quite robust and works out well
even for quite nonnormal error distributions. In
the above setup, instead of the Kendall τ and
the two-sample rank-sum statistics, we may use
a general linear rank statistic for regression and
a two-sample linear rank statistic for difference
of location parameters, and obtain similar robust
estimation and testing procedures. It is also possible
to use general (aligned) M-statistics for this purpose
(see Robust Regression). In general, such solutions

U2

L2

0 L1 U1

aT − aS

b

Figure 1 Graphical procedure for obtaining a nonpara-
metric confidence interval for the log potency ratio in a
parallel-line assay
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are to be obtained by iterative methods, and hence,
for simplicity and computational ease, we prescribe
the use of the Kendall tau and two-sample rank- sum
statistics for the desired statistical inference.

Next, we proceed to the case of slope-ratio assays,
and consider first a nonparametric test for the validity
of the fundamental assumption (of a common inter-
cept but possibly different slopes). We define the
Kendall tau statistics KT (b) and KS(b) as in the case
of the parallel-line assay, and equating them to 0,
we obtain the corresponding estimates of βT and βS ,
which are denoted by β̂T and β̂S respectively. Con-
sider then the residuals

ỸT i = YT i − β̂T xi, ỸSi = YSi − β̂Sxi, ∀i. (9)

We pool all these residuals into a combined set,
and use the Wilcoxon signed-rank statistic to derive
the corresponding rank estimator of the hypothe-
sized common value of the intercept; this estima-
tor, denoted by α̃, is the median of all possible
midranges of the set of residuals listed above. Let
then ŶT i = ỸT i − α̃, ŶSi = ỸSi − α̃, ∀i, and for each
preparation, based on these residuals, we consider the
Wilcoxon signed-rank statistic. These are denoted by
ŴT and ŴS respectively. As in the case of parallel-
line assays, here we consider a test statistic for testing
the validity of the fundamental assumption as

L = {Ŵ 2
T + Ŵ 2

S }
Vn

, (10)

where Vn is the variance of Wilcoxon signed-rank
statistic under the hypothesis of symmetry of the
distribution around 0 (and is a known quantity). When
the fundamental assumption holds, the distribution of
L is close to the central chi-square distribution with 1
degree of freedom, and hence a test can be carried out
using the percentile point of this chi-square law. This
test is quite robust and the underlying normality of
the errors may not be that crucial in this context. Note
that for the slope-ratio assay, granted the fundamental
assumption of a common intercept, a natural plug-in
estimator of ρ is given by

ρ̂ =
{

β̂T

β̂S

}1/λ

. (11)

We may use the Fieller Theorem under an asymp-
totic setup to construct a confidence interval for
ρ. Alternatively, as in the case of a parallel line

assay, for a given γ (0 < γ < 1), we may consider
a distribution-free confidence interval of coverage
probability 1 − γ /2 for each of the two slopes βT

and βS , and obtain a confidence interval for ρλ (and
hence ρ). The situation is quite comparable to the
Figure for the parallel-line assay, excepting that βT

and βS are taken for the two axes. Here also, instead
of the Kendall tau statistics and the Wilcoxon signed-
rank statistics, general regression rank statistics and
(aligned) signed-rank statistics (or even suitable M-
statistics) can be used to retain robustness of the
procedures without sacrificing much efficiency. How-
ever, the solutions are generally to be obtained by
iterative procedures, and hence, we prefer to use the
simpler procedures considered above.

Indirect Quantal Assays

In this type of (indirect) assays, the response is quan-
tal (i.e. all or nothing) in nature. For each preparation
(T or S) and at each level of administered dose,
among the subjects, a certain number manifest the
response while the others do not; these frequencies
are stochastic in nature and their distribution depends
on the dose level and the preparation (see Quantal
Response Models). Thus, for a given dosage x, we
denote by FT (x) and FS(x) the probability of the
response for the test and standard preparation respec-
tively. It is customary to assume that both FT (x) and
FS(x) are monotone increasing in x, and for each
α(0 < α < 1), there exits unique solutions of the fol-
lowing

FT (ξT α) = α, and FS(ξSα) = α, (12)

so that ξT α and ξSα are the α-quantile of the test
and standard preparation; they are termed the 100α%
effective dosage. In particular, for α = 1/2, they are
termed the median effective dosage. Whenever the
response relates to death (as is usually the case with
animal and toxicologic studies), the ξT α, ξSα are
also termed 100α%-lethal dosage. In many studies,
generally, low dosages are contemplated so that α

is chosen to be small. This is particularly the case
with radioimmunoassays, and we shall comment on
that later on. Estimation of the ξT α and ξSα with due
attention to their interrelations is the main task in a
quantal assay. The concept of parallel-line and slope-
ratio assays, as laid down for indirect quantitative
assays, is also adoptable in quantal assays, and a
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detailed account of the parametric theory based on
normal, lognormal, logistic, and other notable forms
of the distribution FT (x) is available with Finney [6,
Chapter 17]. In this context, the probit and logit
analyses are particularly notable, and we shall discuss
them as well.

To set the ideas, we consider a single preparation
at k(≥ 2)- specified dosage d1, . . . , dk , where d1 <

d2 < · · · < dk . Suppose that the dosage di has been
administered to ni subjects, out of which ri respond
positively while the remaining ni − ri do not, for i =
1, . . . , k. In this setup, the di, ni are nonstochastic,
while the ri are random. The probability of a positive
response at dosage di , denoted by π(di), is then
expressed as

π(di) = π(θ + βdi), i = 1, . . . , k, (13)

where θ and β are unknown (intercept and regression)
parameters, and π(x), −∞ < x < ∞, is a suitable
distribution function. In a parametric mold, the func-
tional form of π(.) is assumed to be given, while in
nonparametrics, no such specific assumption is made.
Note that the joint probability law of r1, . . . , rk is
given by

k∏

i=1

(
ni

ri

)
π(θ + βdi)

ri [1 − π(θ + βdi)]
ni−ri , (14)

so that the likelihood function involves only two
unknown parameters θ and β. The log-likelihood
function or the corresponding estimating equations
are not linear in the parameters, and this results in
methodological as well as computational complica-
tions (see Optimization and Nonlinear Equations).

If π(.) is taken as a logistic distribution, that is,
π(x) = {1 + e−x}−1, then we have from the above
discussion

log

{
π(di)

[1 − π(di)]

}
= θ + βdi, i = 1, . . . , k.

(15)

This transformation, known as the logit transforma-
tion, relates to a linear regression on the dosage, and
simplifies related statistical analysis schemes. Thus,
at least intuitively, we may consider the sample logits

Zi = log

{
ri

ni

− ri)

}
, i = 1, . . . , k, (16)

and attempt to fit a linear regression of the Zi on
di (see Logistic Regression). In passing, we may
remark that technically ri could be equal to zero or ni

(with a positive probability), so that Zi would assume
the values −∞ and +∞ with a positive probability,
albeit for large ni , this probability converges to zero
very fast. As in practice, the ni may not be all large;
to eliminate this impasse, we consider the Anscombe
correction to a binomial variable, and in (16), modify
the Zi as

Zi = log

{
(ri + 3

8 )

(ni − ri + 3
8 )

}
, i = 1, . . . , k. (17)

Though the ri have binomial distributions, the Zi

have more complex probability laws, and compu-
tation of their exact mean, variance, and so on, is
generally highly involved. For large values of the ni ,
we have the following

√
ni(Zi − θ − βdi)

D→ N(0, {π(di)[1 − π(di)]}−1), (18)

for each i = 1, . . . , k, where the unknown π(di)

can be consistently estimated by the sample propor-
tion pi = ri/ni . Thus, using the classical weighted
least squares estimation (WLSE) methodology (see
Categorical Data Analysis), we may consider the
quadratic norm

Q(θ, β) =
k∑

i=1

nipi(1 − pi){Zi − θ − βdi}2, (19)

and minimize this with respect to θ, β to obtain the
WLS estimators. Although the logit transformation
brings the relevance of generalized linear models
(GLM), the unknown nature of their variance func-
tions makes the WLSE approach more appropriate
for the suggested statistical analysis. In any case, the
asymptotic flavor should not be overlooked.

If π(x) is taken as the standard normal distribution
function Φ(x), whose density function is denoted by
φ(x), then we may consider the transformation

Zi = Φ−1

(
ri

ni

)
, i = 1, . . . , k, (20)
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known as the probit or normit transformation. Here
also, it would be better to modify Zi as

Zi = Φ−1

(
(ri + 3

8 )

(ni + 1
2 )

)
, i = 1, . . . , k. (21)

Note that by assumption, Φ−1(π(di)) = θ + βdi, i =
1, . . . , k, and this provides the intuitive appeal for a
conventional linear regression analysis. However, the
likelihood approach based on the product-binomial
law encounters computational difficulties and loses
its exactness of distribution theory to a greater extent.
Here also, we would have complications in the com-
putation of the exact mean, variance, or distribution
of the Zi , and hence, as in the logit model, we con-
sider a WLSE approach in an asymptotic setup where
the ni are large. By virtue of the asymptotic nor-
mality of the

√
ni(pi − π(di)) (where again we take

pi = (ri + 3/8)/(ni + 1/2)), we obtain that for every
i ≥ 1,

√
ni[Zi − θ − βdi]

D→ N(0,
π(di)[1 − π(di)]

φ2(Φ−1(π(di)))
), (22)

so that we consider quadratic norm in a WLSE
formulation

Q(θ, β) =
k∑

i=1

niφ
2(Φ−1(pi))

pi(1 − pi)
[Zi − θ − βdi]

2,

(23)

and minimizing this with respect to θ, β, we arrive
at the desired estimators.

For both the logit and probit models, the result-
ing estimators of θ, β are linear functions of the Zi

with coefficients depending on the ni and the pi .
Therefore, the asymptotic normality and other prop-
erties follow by standard statistical methodology (see
Bartlett’s Test). Moreover the (asymptotic) disper-
sion matrix of these estimators, in either setup, can
be consistently estimated from the observational data
sets. Thus, we have the access to incorporate standard
asymptotics to draw statistical conclusions based on
these estimators.

Let us then consider the case of quantal bioassays
involving two preparations (S and T ), and for each
preparation, we have a setup similar to the single

preparation case treated above. The related parame-
ters are denoted by θS, βS and θT , βT respectively,
and for modeling the response distributions, we may
consider either the logit or probit model, as has been
discussed earlier. If we have a parallel-line assay, as
in the case of an indirect assay, we have then

βT = βS = β unknown, and θT − θs = β log ρ,

(24)

so that based on the estimates θ̂S , β̂S, θ̂T and β̂T ,
along with their estimated dispersion matrix, we can
incorporate the WLSE to estimate the common slope
β and the intercepts θS and θT . The rest of the statis-
tical analysis is similar to the case of indirect assays.
Moreover, this WLSE methodology is asymptotically
equivalent to the classical likelihood-function–based
methodology, so it can be regarded, computationally,
as a simpler substitute for a comparatively compli-
cated one. For a slope-ratio assay, we have similarly
a common intercept while the ratio of the slopes
provide the measure of the relative potency, and
hence, the WLSE based on the individual prepara-
tion estimators can be adopted under this restriction
to carryout the statistical analysis as in the case of an
indirect assay.

Besides the logit or probit method, there are some
other quasi-nonparametric methods, of rather an ad
hoc nature, and among these, we may mention of the
following estimators of the median effective dosage:

(i) The Spearman–Kärber estimator;
(ii) The Reed–Muench estimator, and

(iii) The Dragstedt–Behrens estimator.

These procedures are discussed in [7], p. 43. If
the tolerance distribution is symmetric, the Spear-
man–Kärber estimator estimates the median effective
dosage closely; otherwise, it may estimate some other
characteristic of this distribution. Miller [13] studied
the relative (asymptotic) performance of these three
estimators, casting light on their bias terms as well.
From a practical point of view, none of these esti-
mators appears to be very suitable. Rather, if the
π(di) do not belong to the extreme tails (i.e. are
not too small or close to 1), the logit transforma-
tion provides a robust and computationally simpler
alternative, and is being used more and more in sta-
tistical applications. In passing, we may remark that
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Finney [7, Chapter 10] contains some other tech-
niques that incorporate modifications in the setup of
usual quantal assays, such as the numbers ni being
unknown and possibly random, multiple (instead of
binary) classifications, errors in the doses. In the fol-
lowing chapter, he also introduced the case of doses
in mixtures that require a somewhat extended model
and more complex statistical designs and analysis
schemes. We shall comment on these below.

Stochastic Approximation in Bioassay

In the context of a quantal assay, we have the dosage-
response model in terms of the tolerance distribution
π(d), and the median effective (lethal) dosage, LD50,
is defined by the implicit equation π(LD50) = 0.50.
In this context, for each preparation (standard or test),
corresponding to initial dosage levels d1, . . . , dk,
we have estimates p(d1), . . . , p(dk) of the unknown
π(d1), . . . , π(dk). We may set

pi = π(di) + e(di), i = 1, . . . , k, (25)

where the errors are (for large ni , the number of
subjects treated) closely normally distributed with
zero mean and variance n−1

i π(di)[1 − π(di)]. On the
basis of this initial response data, we can choose an
appropriate do for which the corresponding p(do) is
closest to 1/2. Then, we let d(1) = do + ao[p(do) −
1/2], for some ao > 0, and recursively we set

d(j+1) = d(j) + aj

[
p(d(j)) − 1

2

]
,

for some aj > 0; j ≥ 0. (26)

(see Up-and-Down Method) The aim of this
stochastic approximation procedure, due to Rob-
bins and Monro [15], is to estimate the LD50 without
making an explicit assumption on the form of the tol-
erance distribution π(d). But in this setup, the p(d(j))

as well as the d(j) are stochastic elements, and for
the convergence of this stochastic iteration procedure,
naturally, some regularity conditions are needed on
the {ai ; i ≥ 0} and π(d) around the LD50. First of
all, in order that the iteration scheme terminates with
a consistent estimator of the LD50, it is necessary that
the ai converge to zero as i increases. More precisely,

it is assumed in this context that

∑

n≥0

an diverges to + ∞, but
∑

n≥0

a2
n < +∞.

(27)

In addition, the continuity and positivity of the den-
sity function corresponding to the distribution func-
tion π(x) at the population LD50 is also a part
of the regularity assumptions. Further assumptions
are needed to provide suitable (stochastic) rates of
convergence of the estimator of the LD50 and its
asymptotic normality and related large sample distri-
butional properties. Once the LD50 values are esti-
mated for each preparation, we may proceed as in
the case of a quantal assay, and draw conclusions
about the relative potency and other related charac-
teristics. It is not necessary to confine attention specif-
ically to the LD50, and any LD100α, for α ∈ (0, 1)

can be treated in a similar fashion. In fact, Kiefer
and Wolfowitz [12] considered an extension of the
Robbins–Monro stochastic approximation procedure
that is aimed to locate the maximum (or minimum)
of a dose–response function that is not necessar-
ily (piecewise or segmented) linear but is typically
nonmonotone, admitting a unique extremum (maxi-
mum or minimum) of experimental importance. Such
dose–response regressions arise in many toxicologic
studies where a turn occurs at an unknown level.
Often this is treated in a general change-point model
framework. The main advantage of the stochastic
approximation approach over the classical quantal
assay approach is that no specific assumption is gen-
erally needed on the probability function π(d), so
that the derived statistical conclusions remain appli-
cable in a much wider setup. On the other hand, the
stochastic iteration scheme generally entails a larger
number of subjects on which to administer the study,
and often that may run contrary to the practicable
experimental setups, especially with respect to cost
considerations. In this general context, a significant
amount of methodological research work has been
carried out during the past 40 years, and an extensive
review of the literature on stochastic approximation
is made by Ruppert [16] where the relevant bibliog-
raphy has also been cited. The scope of stochastic
approximation schemes is by no means confined to
quantal assays; they are also usable for quantitative
bioassays, and even to other problems cropping up in
far more general setups.
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Radioimmunoassay

In radioimmunoassays antigens are labeled with
radioisotopes, and in immunoradiometric assays anti-
bodies are labeled. For a broad range of antigens,
such radioligand assays enable the estimation of
potency from very small quantities of materials and
usually with high precision. Radioligand assays are
based upon records of radiation counts in a fixed time
at various doses, so that potency estimation involves
the relation between counts of radioactivity and dose,
generally both at low levels [8]. In many such studies,
the regression function of the count of radioactivity
on dose has been found to be satisfactorily repre-
sented by a logistic curve; however, the lower and
upper asymptotes of such a curve are not necessarily
equal to zero and one, but are themselves unknown
parameters. This difference with the classical logis-
tic distribution is reflected in a somewhat different
form of the variance function of radiation counts.
Unlike the Poisson process, the variance function
may not be equal to the mean level of the radia-
tion counts U(d) (i.e. their expectation at a given
dose level d); in many studies, it has been exper-
imentally gathered that the variance function V (d)

behaves like [U(d)]λ, where λ(>0) typically lies
between 1 and 2. For this reason, the usual Pois-
son regression model in generalized linear models
(GLM) methodology may not be universally appli-
cable in radioimmunoassays. Moreover, such radioli-
gand assays may not be regarded as strictly bioassays,
since they may not depend upon responses measured
in living organisms or tissues. However, the advent
of the use of biologic markers in mutagenesis studies
and in molecular genetics, particularly during the past
20 years, has extended the domain of statistical per-
spectives in radioligand assays to a much wider setup
of investigations, and strengthened the structural sim-
ilarities between radioimmunoassays and the classical
bioassays. They involve statistical modeling and anal-
ysis schemes of very similar nature, and in this sense,
their relevance in a broader setup of bioassays is quite
appropriate (see Radioimmunoassay).

Dosimetry and Bioassay

As has been noted earlier, a dose–response model
exhibits the (mathematical) relationship between an
amount of exposure or treatment and the degree of

a biological or health effect, generally a measure
of an adverse outcome. Bioassay and clinical trials
are generally used in such dose–response studies.
With the recent advances in pharmacoepidemiology
(see Dose-response in Pharmacoepidemiology) as
well as in risk analysis (see Dose–Response Mod-
els in Risk Analysis), bioassays have led to another
broader domain of statistical appraisal of biologi-
cal dose–response studies, known as dosimetry (or
animal study). Pharmacoepidemiology rests on the
basic incorporation of pharmacodynamics (PD) and
pharmacokinetics (PK) in the development of the
so called structure–activity relationship information
(SARI) (see Chemometrics). Though a PD model
directly relates to a dose–response model, the PK
actions of the exposure or drug needs to be taken
into account in the dose–response modeling. This is
now done more in terms of SARI where the structure
refers to the dose factors and activity refers to the bio-
logical reactions that follow the exposure (dose) to a
specific species or organism. In a majority of cases,
the target population is human, but owing to vari-
ous ethical and other experimental constraints, human
beings may not be usable to the full extent needed
for such a dose–response modeling. As such, ani-
mal studies are often used to gather good background
information, which is intended for incorporation in
human studies in bioassay and clinical trials. Dosime-
try pertains to this objective.

Dosimetry models intend to provide a general
description of the uptake and distribution of inhaled
(or ingested or absorbed) toxics (or compounds hav-
ing adverse health effects) on the entire body system.
For judgment on human population, such dosimet-
ric models for animal studies need to be extrapo-
lated with a good understanding of the interspecies
differences (see Dose–Response Models in Risk
Analysis). SARI is a vital component in enhancing
such statistical validation of pooling the information
from various animal studies and extrapolating to the
human population. Most dose–response relationships
are studied and through well-controlled animal bioas-
says with exposure or dose levels generally much
higher than typically perceived in human risk anal-
ysis. In this respect, dosimetry is directly linked to
bioassay, though in dosimetry, the SARI is more
intensively pursued to facilitate extrapolation (see
Extrapolation, Low Dose). PDPK aspects not only
may vary considerably from subhuman primates to
human beings, but also there is much less of control in
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human exposure to such toxics. Also, metabolism in
the human being is generally quite different from that
in subhuman primates. An important element in this
context is the environmental burden of disease (EBD)
factor that exhibits considerable interspecies varia-
tion as well as geopolitical variation. Hence, ignoring
the SARI part, a conventional dose–response model
for a subhuman primate may not be of much help
in depicting a similar model for human exposure.
For the same reason, conventional statistical extrap-
olation tools may be of very limited utility in this
interspecies extrapolation problems [25]. Finally, in
many carcinogenicity studies, it has been observed
that xenobiotic effects underlie such dose–response
relations, and this is outlined in a later section (see
pharmacogenomics).

Semiparametrics in Bioassays

The GLM methodology has been incorporated in
a broad variety of statistical modeling and analysis
schemes pertaining to a wide range of applications,
and bioassays are no exceptions. Going back to the
direct dilution assays, if we had taken both the distri-
butions, FS and FT , as exponentials with respective
means µS and µT , then the two distributions would
have constant hazard rates 1/µS and 1/µT respec-
tively, so that the relative potency ρ is equal to the
ratio of the two hazard rates. Inspired by this obser-
vation, and by the evolution of the Cox [3] propor-
tional hazard model (PHM) (see Cox Regression
Model), research workers have attempted to relate
the two survival functions SS(x) = P {XS > x} and
ST (x) = P {XT > x} as

ST (x) = [SS(x)]ρ, x ≥ 0, (28)

and interpret ρ as the relative potency of the test
preparation with respect to the standard one (see
Lehmann Alternatives). Though this representation
enables one to import the PHM-based statistical
analysis tools for the estimation of the relative
potency, for distributions other than the exponential
ones, the interpretation of “dilution assays” may no
longer be tenable under such a PHM. There is an
alternative interpretation in terms of the parallelism of
the two log-hazard functions, but that may not fit well
with the fundamental assumption in dilution assays.
For some related statistical analysis of bioassays
based on GLM methodologies, we refer to [24],

where indirect bioassays have also been treated in the
same manner along with the classical parametrics.

Nonparametrics in Bioassays

The estimators of relative potency and tests for funda-
mental assumptions in dilution (direct as well as indi-
rect) assays based on rank statistics, considered ear-
lier, spark the first incorporation of nonparametrics in
biological assays. However, these may be character-
ized more in terms of semiparametrics, in the sense
that the assumed linearity of dose–response regres-
sions was essentially parametric in nature, while the
unknown form of the underlying tolerance distribu-
tion constitutes the nonparametric component. Thus,
together they form the so-called semiparametric mod-
els. It is possible to incorporate more nonparamet-
rics in bioassays mostly through the nonparamet-
ric regression approach. For direct dilution assays,
such nonparametric procedures are quite simple in
interpretation and actual formulation. We consider
the log-dose transformation, so that the dosage for
the test and standard preparations have the distribu-
tions F ∗

T (x) and F ∗
S (x), respectively, where F ∗

T (x) =
F ∗

S (x + log ρ), for all x. If we denote the p-quantile
of F ∗

T and F ∗
S by QT (p) and QS(p) respectively, then

we have

QS(p) − QT (p) = log ρ, ∀ p ∈ (0, 1), (29)

so that the well-known Q–Q plot for the two prepa-
rations results in a linear regression form, and this
provides the statistical information to test for this
fundamental assumption as well as to estimate the
relative potency. A similar conclusion can also be
drawn from a conventional P–P plot (see Graph-
ical Displays). The classical Kolmogorov–Smirnov
statistics (in the two-sample case) can be used for
drawing statistical conclusions, and we may refer to
Rao and Littell [14] for some related work. The situa-
tion is a bit more complex with indirect assays. In the
classical parametric setup, we work with the expected
response at different dosages, assuming of course a
linear regression. In a semiparametric approach, this
linearity of dosage-response regression is taken as
a part of the basic assumption, but the distribution
of the errors is allowed to be a member of a wider
class, so that robust procedures based on rank or M-
statistics are advocated instead of the classical WLSE.
In a pure nonparametric setup, the linearity of the
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dosage-response regression is not taken for granted.
Therefore the two dosage-response regression func-
tions may be of quite arbitrary nature, and yet parallel
in an interpretable manner. The statistical task is
therefore to assess this parallelism without imposing
linearity or some other parametric forms. Here also,
at a given dosage level, instead of the mean response
level, we may consider median or a p-quantile, and
based on such robust estimators, we draw statistical
conclusions allowing the quantile functions to be of
a rather arbitrary nature. Asymptotics play a domi-
nant role in this context, and often this may require
a relatively much larger sample size. On the other
hand, in terms of robustness and validity, such pure
nonparametric procedures have a greater scope than
parametric or semiparametric ones.

Bioavailability and Bioequivalence Models

As has been explained earlier bioequivalence trials
differ from conventional bioassays, as here, gener-
ally, the active substances in the drug are the same
but the differences in bioavailability reflect the form
and manner of administration. Such alternative modes
may therefore call for additional restraints in the
statistical formulation, and because of anticipated bio-
logical equivalence, there is less emphasis on relative
potency and more on general equivalence patterns.
For such reasons, regulatory requirements for estab-
lishing average bioequivalence of two preparations
(that are variations of an essentially common drug)
relate to a verification of the following:

A confidence interval for the relative potency,
having the confidence limits ρL, ρU , lies between two
specified endpoints, say ρo < 1 < ρo, with a high
coverage probability (or confidence coefficient) γ .
Generally, γ is chosen close to 1 (namely, 0.95), and
also ρ0 = (ρo)

−1 is very close to one.
These requirements in turn entail a relatively large

sample size, and therefore, (group) sequential testing
procedures (see Sequential Analysis) are sometimes
advocated [9]. For general considerations underlying
such bioequivalence trials, we refer to [1, 11, 29],
where other pertinent references are cited. Generally,
such statistical formulations are more complex than
the ones referred to earlier.

As has been mentioned earlier, the term bioassay
is used in a more general form, and this is equally
true for bioequivalence and bioavailability models.

Kinetic measures of bioavailability and pharmacoki-
netic parameters have been developed to meet the
demand for such recent usage (see Bioavailability
and Bioequivalence). We will illustrate this some-
what differently with pharmacogenomics, which is
revolutionizing the field of bioinformatics and exper-
iments with biological units, in general.

Pharmacogenomics in Modern Bioassays

Following Ewens and Grant [5], we take bioinfor-
matics to mean the emerging field of science grow-
ing from the application of mathematics, statistics,
and information technology, including computers and
the theory surrounding them, to study and analysis
of very large biological and, in particular, genetic
data sets (see Genetic Markers). Having its gen-
esis 50 years ago [28], the field has been fueled
by the immense increase in the DNA data gener-
ation (see DNA Sequences). Earlier interpretation
of bioinformatics with emphasis on computational
biology by Waterman [27] also merits serious con-
siderations, while Durbin et al. [4] had a view point
geared by computer algorithms along with some
heuristic usage of hidden Markov models.

At the current stage, gene scientists cannot scram-
ble fast enough to keep up with the genomics,
with developments emerging at a furious rate and
in astounding detail. Bioinformatics, at least at this
stage, as a discipline, does not aim to lay down some
fundamental mathematical laws (which might not
even exist in such a biological diversity). However,
its utility is perceived in the creation of innumer-
able computer graphics and algorithms that can be
used to analyze exceedingly large data sets arising in
bioinformatics. In this context, naturally data mining
and statistical learning tools (under the terminology
Knowledge Discovery and Data Mining (KDDM))
are commonly used [10], though often in a heuristic
rather than objective manner. There could be some
serious drawbacks of statistical analysis based on
such KDDM algorithms alone, and model selection
has emerged as a challenging task in bioinformatics
(see Model, Choice of).

Given the current status of bioinformatics as the
information technology (advanced computing ) based
discipline of analyzing exceedingly high dimensional
data with special emphasis on genomics, and that
genomics looks at the vast network of genes, over
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time, to determine how they interact, manipulate,
and influence biological pathways, networks, as well
as physiology, it is quite natural to heed to genetic
variation (or polymorphism) in most studies involv-
ing biological units. Moreover, because of the drug-
response relationship, basic in bioassay, it is natural
to appraise the role of pharmacogenomics in this
setup. Pharmacology is the science of drugs including
materia medica, toxicology, and therapeutics, dealing
with the properties and reactions of drugs, especially
with relation to their therapeutic values. In the same
vein, pharmacodynamics, a branch of pharmacol-
ogy, deals with reactions between drugs and living
structures; pharmacokinetics relates to the study of
the bodily absorption, distribution, metabolism, and
excretion of drugs. In bioequivalence trials, these
tools have already been recognized as fundamen-
tal. Pharmacogenetics deals with genetic variation
underlying differential response to drugs as well
as drug metabolism. The whole complex consti-
tutes the discipline: Pharmacogenomics. In the same
way, Toxicogenomics relates to the study of gene-
environmental interactions in disease and dysfunction
to cast light on how genomes respond to environmen-
tal stress or toxics.

It is conceived that there are certain genes that
are associated with disease phenotype, side effects,
and drug efficacy. Also, because of inherent (genetic)
variations and an enormously large number of genes
as well as a very large pool of diseases and disorders,
there is a genuine need of statistical methods to assess
the genetic mapping of disease genes. Pharmaco-
toxicogenomics is therefore destined to play a funda-
mental role in biological assays, in the years to come.

Complexities in Bioassay Modeling and
Analysis

There are generally other sources of variations, which
may invalidate the use of standard statistical analysis
schemes in bioassays to a certain extent. Among
these factors, special mention may be made of the
following:

(a) Censoring of various types,
(b) Differentiable / Nondifferentiable measurement

errors,
(c) Stochastic compliance of dose,
(d) Correlated multivariate responses, and
(e) Curse of dimensionality in genomics.

It is generally assumed that censoring is usually
of Type I (truncation of the experiment at a prefixed
timepoint), Type II (truncation following a certain
prefixed number or proportion of responses), and ran-
dom, where the censoring time and response time are
assumed to be stochastically independent, and more-
over, the censoring is assumed to be noninformative,
so that the censoring time distribution remains the
same for both the preparations. In actual practice,
this may not be generally true, and hence, effects of
departures from such assumptions on the validity and
efficacy of standard statistical procedures are there-
fore needed to be assessed. Measurement of the actual
dose levels in quantal assays, or the response levels in
an indirect assay may often be impaired to a certain
extent by measurement errors. In statistical analy-
sis, usually such measurement errors are assumed
to be either differentiable or nondifferentiable type,
and appropriate statistical models and related analysis
schemes depend on such assumptions. In radioim-
munoassays, dosimetric studies in pharmacokinetics,
as well as in other types, not the full amount of a
prescribed dose may go into the organ or experi-
mental unit, and the actual consumption of the dose
may be (often, highly) stochastic in nature. There-
fore, the dose–response regression relation may be
subject to nonidentifiability (see Identifiability)and
overdispersion effects. This calls for more modi-
fications of existing models and analysis schemes.
Finally, when there are multiple endpoints with pos-
sibly binary or polytomous responses, a dimension
reduction for the model-based parameters becomes
necessary from statistical modeling and inference per-
spectives. Otherwise, an enormously large sample
size may be needed to handle adequately, the full
parameter model, and this may run contrary to the
practical setup of an assay. The situation is worse
when some of the responses are quantitative while the
others are quantal or at best polychotomous. These
naturally introduce more model complexities and call
for more complicated statistical analysis tools.
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Biological Standardization

Biological products are distinguished from chemical
products by the biological nature, singly or in com-
bination, of the source materials, of the production
and purification procedures, and of the test methods
needed to characterize such products or determine
their potency. Biological products differ from chemi-
cal products in that they are not adequately character-
ized solely by their physical and chemical properties.
Two biologicals may give the same results in chemi-
cal and physical tests but may have different activities
when compared in biological tests. Measurement of
the amount or concentration of any biological prod-
uct thus requires an in vivo or in vitro biological
assay system and a standard preparation or refer-
ence material. A biological standard for a product
is a preparation such that the properties of a given
amount of it do not change over time, and with which
the properties of other samples of the product can be
compared. Standards are essential if measurements
are to be comparable from one assay to another. The
potencies of the standard are customarily defined in
arbitrary “units”.

The use of biological activity as the basis for ana-
lytical, or assay, techniques developed rapidly in the
late nineteenth and early twentieth centuries, with the
development of vaccines and the discovery of vita-
mins and hormones. It was quickly recognized that
biological test systems were variable, and the prin-
ciples of biological standardization and quantitative
approaches to biological test systems were formu-
lated [6, 7, 10]. Central to these principles were the
importance of comparison with a standard and the
need to determine the variation of the biological sys-
tem [2].

In some early uses of biological assays, attempts
were made to define units in terms of the amount
of product required to produce a specified effect.
There are instances in which this continues today
with, for example, attempts to define the amount
of an antiviral agent in terms of the amount that
will protect 50% of a population of cells, and to
calibrate botulinum toxin for therapeutic use in terms
of “mouse” units. However, it is virtually impossible
to standardize a biological system so that whenever
and wherever it is used the relation between the
amount of a product or material and its response

remains constant, and use of a standard thus leads
to improved reproducibility [2, 9].

Any biological standard must fulfill certain con-
ditions. All samples of the standard material must
be uniform, so that the amount of material required
to produce the observed effect or response is known.
International standards are thus prepared in ampoules
in such a way that the contents of any one ampoule
are as nearly as possible identical to the contents of
any other. The standard must be representative of
the substance for which it is to serve as a standard,
but does not necessarily have to be of high purity.
A representative batch of product may be selected
for the in-house standard by a manufacturer. For an
international standard, suitability is usually shown by
extensive characterization in an international collab-
orative study. The standard must be stable so that
its effects do not change over time. Because of the
nature of biological standards, direct tests for stabil-
ity – that is, tests in real time – are not possible;
predictions of stability may be based on the effects
of storage at elevated temperatures on samples of the
standard coupled with assumptions about the predic-
tive nature of these effects. The quantity of standard
available must be sufficient for the purposes for which
it is intended. The World Health Organization has
published guidelines for the preparation of standards
detailing the way in which these conditions may be
met, and setting specific requirements for interna-
tional standards [13].

Biological standards serve a variety of specific
purposes. Any laboratory routinely carrying out bio-
logical assays will include an in-house standard in
these assays, and may also include “quality con-
trol samples” that might also be considered to
be standards (see Quality Control in Laboratory
Medicine). Although such standards provide compa-
rability between assays within a laboratory, they may
differ markedly between laboratories, as has been
shown when a common sample is measured by sev-
eral laboratories in terms of their individual standards
(see, for example, [11]). Biological standards may
be used in the development and validation of assay
systems; for example, failure of an assay system to
respond in a dose-related way to the standard would
automatically invalidate the system for that mate-
rial [12]. Standards are an essential part of the various
quality assessment schemes which are operated for
some types of assay, often by national authorities.
International standards are indispensable not only for
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measurement of biological materials but also for the
controls necessary for modern medicines [8].

The World Health Organization (WHO) plays an
important role in developing consensus guidelines on
regulatory issues, and the WHO Constitution requires
that WHO establish standards to assure the safety and
efficacy of products used for the diagnosis, therapy,
and prophylaxis of disease. This is a continuation of
the development of international standards begun by
the League of Nations [3–5]. Various international
unions or federations representing individual scien-
tific disciplines have also established commissions on
issues related to measurement within their discipline,
and may produce standards or recommend standards
to WHO. Veterinary biologicals are also subject to
regulation [1].

The World Health Assembly recommends that
member states of WHO give official recognition to
the International Standards and International Units,
and publishes a list of these and their custodians [14],
which is periodically updated. The majority of Inter-
national Standards are held and distributed by the
National Institute for Biological Standards (Blanche
Lane, South Mimms, Potters Bar, Hertfordshire EN6
3QG, UK). The responsibility for the assurance of
the quality and potency of biological products lies
with the manufacturer, as regulated by the regional
or national control authority and detailed in the
national pharmacopoeias. The contribution of bio-
logical standardization to this assurance is widely
recognized, and International Biological Standards
are accepted as the primary standards for calibration
of biologicals.
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Biometrical Journal

The Biometrical Journal is an international jour-
nal for mathematical and statistical methods used in
biological sciences in the widest sense: in biology,
medicine, psychology, agriculture, forestry, ecology,
and others. It is primarily addressed to mathemati-
cians and statisticians working in these fields and
to biologists and physicians having extensive contact
with biometrical methods.

The Biometrical Journal was originally published
by the Akademie Verlag, Berlin, and is now pub-
lished by Wiley. The journal was founded in 1959
by Ottokar Heinisch and Maria Pia Geppert as the
German publication Biometrische Zeitschrift. In the
editorial to the first issue, the founding editors out-
lined the purpose of biometry as rendering objectivity
to empirical results found in the biosciences by math-
ematical and statistical methods. This characterization
of biometry as a joint methodologic concept for the
various biological branches of the natural sciences
has been well established by the development since
1959. The scope of biometry has been broadened
since that time, as is apparent from the emergence
of many new biometric methods in medicine, for
example. Also, the number of researchers working
in biometry has increased enormously, and the store
of available biometric theories and practical methods
has been extended systematically. The Biometrical
Journal has participated in this flourishing of the
biometric sciences in the past few decades. Conse-
quently, it grew from four issues with a total of 290
pages in its first year to eight issues with 1024 pages
by 1996, and a new format was introduced in 2004.

From 1967 to 1969, the journal was edited by
Maria Pia Geppert and Erna Weber, from 1970 to
1988, by Erna Weber, and from 1988 to 1995, by
Heinz Ahrens and Klaus Bellmann. In 1996, Jürgen
Läuter assumed the post of the editor-in-chief, fol-
lowed by Peter Bauer in 2000 and Edgar Brunner
and Martin Schumacher in 2004.

In 1977, the journal’s name was changed
to Biometrical Journal. This change marked the
continuous transition from German to English as the
primary publication language and much increased
the journal’s international recognition. The relation
with Germany and especially with the German
and Austro-Swiss Regions of the International

Biometric Society (IBS) remained strong without
dominating the journal, and the journal is now truly
international, as is immediately clear from a look
at recent issues. Today, almost all published papers
are in English, and contributions in the secondary
publication languages, French and German, are a rare
exception.

Original papers form the core of the Biometrical
Journal ’s contents, with the aim of trying to provide
a link between theory and practice. Papers presenting
new mathematical or statistical methods of potential
benefit to the biosciences as well as interesting and
original applications of existing theory to bioscientific
problems are welcome, as are reviews and letters to
the editors.

Special emphasis is laid on biomedical appli-
cations ranging from quantitative analysis in basic
research to clinical trials methodology including
drug regulatory aspects, and to methodological
developments for research synthesis, which is of par-
ticular importance for the transfer of research results
into practice (see Meta-analysis of Clinical Trials).
An active discussion forum has been established.

With the support of a board of internationally well-
renowned associate editors, who are chosen special-
ists in their respective areas of research, a competent
and fast evaluation of manuscripts submitted online
is guaranteed. Also, some initiatives have been intro-
duced since January 1, 2004 as a part of the editors’
intention to accelerate the submission and review pro-
cess. Thus, electronic submission and handling has
been made mandatory for authors and members of
the editorial board.

The journal has its own website in order to provide
broad accessibility to its online version for the read-
ers to enable them to gain immediate and faster reach.
An advanced subject-specific search facility is pro-
vided on the website. Authors can use this extensive,
full-text search facility on a wide range of journals
published by Wiley in order to learn about recent
developments in their areas of research and interests,
which helps them in preparing their articles.

The website, www.biometrical-journal.de
provides more details on submission procedures, con-
tact information, templates for manuscripts, and other
relevant information for authors and readers.

JÜRGEN LÄUTER, EKKEHARD GLIMM,
EDGAR BRUNNER & MARTIN SCHUMACHER



Biometrics

Biometrics, a journal of the International Biomet-
ric Society (IBS), is published quarterly. The main
objectives of the journal, which are listed at the IBS
web site http://www.tibs.org/, are to promote
and extend the use of mathematical and statistical
methods in the biological sciences by describing and
exemplifying developments in these methods and
their application in a form accessible to statistical
practitioners, experimenters, and others concerned
with the analysis of data. The journal is intended
to provide a medium for exchange of ideas by
subject-matter specialists, those involved primarily
with analysis of data and those concerned with the
development of statistical methodology. Published
papers may deal with statistical methodology applied
to specific biological contexts, topics in mathematical
biology, and statistical principles and methodology
that are generally applicable to common challenges
in the analysis of biological data.

Papers in the journal are currently organized into
two main sections. The Regular Communications
section includes statistical, authoritative, or review
articles; and papers outlining development of novel
statistical methods for the planning of experiments
or interpretation of data, including demonstrations of
utility and performance. Except for papers having
to do with experimental design, which of neces-
sity cannot refer to data that have not yet been
collected, a centerpiece of most Regular Communi-
cations articles is a motivating and important data
set exemplifying the scientific challenges on which
methods are focused. The Consultant’s Forum section
presents papers illustrating the application of existing
methods to new areas where they have not been previ-
ously used and permit new biological insights, papers
clarifying or contrasting existing methods, or papers
providing new guidance or tools for new or common
data-analytic challenges.

The journal began in 1945 as the Biometric
Bulletin of the American Statistical Association,
and the name was changed in 1947 with Volume 3
onwards being called Biometrics. The journal contin-
ued to be published by the American Statistical Asso-
ciation until Volume 6, which was published by the
Biometrics Society (now the IBS). Initially, the jour-
nal had an editor for Regular Communications and
a Queries and Notes editor. In 1960, a book review

section and dedicated editor were added. Biometrics
continued in this form until 1974, with the Queries
and Notes section becoming the Shorter Communi-
cations and Queries section, which was renamed as
Shorter Communications in 1976. The Consultant’s
Forum section was added in 1977 with a view to
include papers with novel data sets and novel use
of existing methods. Some submissions offer specific
comments regarding papers appearing in the journal
previously; these are published as Reader Reaction
articles. Authors of published articles to which these
papers react are offered an opportunity to respond,
and the reaction paper and response are published
together.

The founding editor of Biometrics was Gertrude
M. Cox (1945–1955), and the founding editor of the
Queries and Notes/Shorter Communications section
was George W. Snedecor (1945–1958). Table 1 lists
all editors of the journal through 2004.

By 1999, the volume of submissions had increased
to the point where it was no longer feasible for
a single editor to handle the Regular Communica-
tions section; moreover, the distinction between this
section and Shorter Communications had become
blurred. Accordingly, on the basis of recommenda-
tions of an IBS committee charged with review-
ing editorial structure, Shorter Communications was
merged with the Regular Communications section;
Consultant’s Forum was maintained; and the journal
adopted a three-editor system, where three “coedi-
tors” handle submissions to both Regular Commu-
nications and Consultant’s Forum. In addition, a
Central Editorial Office was established to coordi-
nate the editorial process among the three coeditors,
who may reside in geographically diverse locations.
The Office and the able journal Editorial Assistant,
Ms Ann Hanhart, are located in Dallas, Texas. The
position of “coordinating editor” was also created;
this coeditor is responsible, in addition to usual edito-
rial duties, for all administrative tasks (e.g. answering
queries, compiling statistics on times to review, mon-
itoring backlog) and serves as the point of contact
for the Editorial Assistant regarding administrative
matters. Coeditors are appointed to three-year terms
according to a staggered entry scheme in which
one completes his/her term and is replaced each
year.

In accordance with recent technological advances,
in 1999 the journal began accepting submissions elec-
tronically, and, by 2002, greater than 97% of all
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Table 1 Editors of Biometrics. From 1999 on, coeditors under the three-editor system are listed by term

Editor Shorter communications editor Book review editor

G.M. Cox (1945–1955) G.W. Snedecor (1945–1958)
J.W. Hopkins (1956–1957)
R.A. Bradley (1957–1962) D.J. Finney (1959–1961) J.G. Skellam (1960–1963)
M.R. Sampford (1962–1966) J.A. Nelder (1962–1966) W.T. Federer(1964–1972)
H.A. David (1966–1971) P. Sprent (1967–1971)
F.A. Graybill (1971–1975) C.D. Kemp (1972–1975) F.N. David (1972–1977)
F.B. Cady (1975–1979) J.S. Williams (1976–1979) R.M. Cormack (1978–1984)
P. Armitage (1979–1984) J.J. Gart (1980–1984)
D.L. Solomon (1984–1989) R. Thompson (1984–1988) C.D. & A.W. Kemp (1984–1999)
K. Hinkelmann (1989–1993) N. Keiding (1989–1992)
C.A. McGilchrist (1993–1997) B.J.T. Morgan (1992–1996)
R.J. Carroll (1997–2000) L. Ryan (1996–1999) Martin Ridout (2000–2002)
T. Pettitt (1999–2001)
M. Davidian (2000–2002)
D. Commenges (2000–2003)
B. Cullis (2002–2004)
X. Lin (2003–2005) Iris Pigeot–Kuebler (2003–)
M. Kenward (2004–2006)

submissions were electronic; virtually all are today.
Moreover, starting with the January 2003 issue, Bio-
metrics is available in electronic as well as print
form to IBS members and authorized subscribers. In
2001, all issues of Biometrics from inception to a
five-year lag from the current year were made avail-
able on the journal archival web resource JSTOR
(http://www.jstor.org).

From modest beginnings, Biometrics has become
a highly regarded international journal, whose papers
are among the most referenced in biostatistical
research. In 2001, the journal received 452
submissions, a number that continues to increase, and
published 157 papers in all sections of the journal
together with 66 book reviews and 17 brief book
reports.

In 2003, there were approximately 90 associate
editors of Biometrics drawn from all over the world,
reflecting not only the truly international character of
IBS but also the diverse range of areas of application
and methodological development of published papers.
The size and breadth of expertise represented on
the editorial board frequently allows submissions to
be handled by an associate editor whose interests
are closely aligned with those of authors, which
facilitates times to review that are among the swiftest
in the statistical profession. In 2002, the median time
to review for initial submissions was less than 10
weeks, with 98% of all first submissions receiving a
review within 6 months.

The type of paper published in Biometrics has
varied somewhat over the years while staying con-
sistent with the aims of the journal. This variation
has reflected the development of different areas of
application. In early issues, biometry in agricultural
research was the dominant theme. The journal con-
tinues to publish papers in this area related to both
traditional design and analysis as well as newer top-
ics such as the analysis of spatial data (see Geo-
graphic Epidemiology; Spatial Models for Cat-
egorical Data). The journal is also a forum for
papers in ecology and wildlife statistics. In recent
years, papers targeting applications in biomedical
research have made up a large proportion of submis-
sions and published papers. Environmental research
applications (see Environmental Epidemiology) and
research in genetics (see Genetic Epidemiology)
are also reflected. Important, emerging new areas,
such as molecular genetics (see Molecular Epidemi-
ology; Bioinformatics), and medical imaging (see
Image Analysis and Tomography), are frequently
covered in the journal. Having methods developed
in such a diversity of application areas published
in the same journal promotes cross-fertilization of
ideas. The journal properly reflects current interests
of members of the IBS and at the same time, remains
true to the emphasis on practical application as envis-
aged by its founders.

M. DAVIDIAN & C.A. McGILCHRIST
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Biometrika was founded by Karl Pearson and
W.F.R. Weldon in consultation with Francis Galton.
The first issue appeared in October 1901. From 1906
Pearson assumed entire editorial responsibility, until
he was succeeded by his son, E.S. Pearson, in 1936.
D.R. Cox took over in 1966 and acted until 1991.
Since then D.V. Hinkley (1991–1992), A.P. Dawid
(1992–1996), and D.M. Titterington (1996–) have
edited the Journal. The Publication Editor, Ms.
B.J. Sowan, has been involved with the Journal
since 1971.

The Journal’s origin was due in part to the Royal
Society’s request that, in papers submitted for pub-
lication, mathematics be kept apart from biological
applications. The early volumes contained many dia-
grams, photographs, and tables of measurements of
parts of the human body, animals, and plants. So
far as the founding editors were concerned, they
envisaged the Journal as an organ of “a spearhead
of enthusiastic workers . . . to lead a fight for the
recognition of the place of mathematics in the bio-
logical field” [1], and this objective dominated the
early decades of the Journal. There was a major
change of emphasis when E.S. Pearson succeeded
K. Pearson as Editor, reflecting the former’s strong
interest in and involvement with current theoretical
and applied interests of the time. Since then the broad
character of the Journal has gradually evolved in line
with the increasing specialization of the field. Bio-
logical applications no longer receive special empha-
sis, although inevitably a substantial proportion of

papers do involve directly or indirectly biomedi-
cal applications. Indeed, in his announcement of the
changeover in editorship from E.S. Pearson to D.R.
Cox, Tippett [2] noted that Biometrika “is now a gen-
eral statistics journal which retains, however, a bias
towards papers with a practical application and which
are thus connected with the usefulness of statistics in
some particular field, biometric or otherwise.” With
almost no change in this basic philosophy, Biometrika
has evolved into a leading international journal for
theory and methods across a wide spectrum of sta-
tistical topics, although certain specialisms are given
emphasis from time to time, according to their cur-
rent importance in statistical research. The Journal’s
centenary in 2001 was marked by the publication by
a series of special articles that reflected on the con-
tribution of Biometrika papers to the development of
statistical science during the twentieth Century. These
papers were reprinted in book form [3], together with
a selection of particularly seminal articles from past
volumes.

The number of papers published over the years is
indicated in Table 1. There were in general two issues
per year up to 1967, then three per year up to 1986
and four per year thereafter. The years of World Wars
I and II, however, led to deviations from the general
pattern.

Biometrika currently contains about 75–90 papers
per year, in a volume of about 950 pages annually.
The Journal is published by the Biometrika Trust, and
the four parts of each volume appear in March, June,
September, and December. The circulation is about
2300. Subscribers can now obtain online access and
there is further rapidly increasing electronic usage
of the journal, through institutional subscriptions.

Table 1 Variation in the size of Biometrika and the length of papers published,
1905–2003

Papers
Main paper

Year Pages Issues Main Miscellanea (ave. length)

1905 384 2 13 3 28
1920 132 1 7 0 19
1935 471 2 18 6 25
1945 85 1 8 4 9
1950 454 2 41 15 10
1965 675 2 45 30 13
1980 728 3 67 44 8
1995 892 4 55 23 14
2003 994 4 63 18 14
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From 1997 the distribution, but not the publication,
has been handled by Oxford University Press,
who also look after the Journal’s webpage, at
http://www.biomet.oupjournals.org.

In general the Journal aims to publish new sta-
tistical theory and methodology that are capable of
application in practical problems. As a comparison,
the Journal of the Royal Statistical Society, Series B
and the Theory and Methods Section of the Jour-
nal of the American Statistical Association contain
material very similar to that in Biometrika. Papers
that are essentially of mathematical interest only or
that are applications of existing theory and meth-
ods are excluded; more explicit stress on biological
applications is typically laid by and Biometrics and
Biostatistics. A few review papers have been pub-
lished, as well as a series on the history of probability
and statistics (see Biostatistics, History of). There is
a Miscellanea section for shorter articles. For some
years now the submission rate has been at the level of
close to 400 papers per year, so that the acceptance
rate is about 20%. Nowadays electronic submission
of papers, by email to the Editor, is the norm. There
are about 15 Associate Editors, who advise the Editor

over the bulk of the papers, although the Editor deals
directly with some. All correspondence is channeled
through the office of the Editor, and referees and
Associate Editors act anonymously. The Publication
Editor deals with the process of taking scientifi-
cally acceptable papers to their appearance on the
printed page.

The Editor aims to minimize the time authors
have to wait for feedback about their material, and
publication takes 5–10 months from the date of final
submission of an acceptable typescript.
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Biostatistics, History of

From the seventeenth century to the present day,
basic biologic phenomena (most notably mortality
and morbidity) have been a central concern of those
who collected and analyzed statistical data. For this
reason, John Graunt’s pioneering 1662 work Obser-
vations upon the Bills of Mortality sounds notes
that are very similar in kind to biostatistical reports
issued today – even though present-day statistical
works make use of more sophisticated mathemati-
cal methods than their predecessors in earlier cen-
turies. Consequently, the history of biostatistics can
best be understood in terms of methodologic devel-
opments within statistical thinking. For analytical
purposes, these methodologic developments can be
divided into four phases: (i) the work of nineteenth-
century statisticians who pioneered the concept that
social patterns (including incidence of disease) could
be shown to have “lawlike” characteristics [13, 15];
(ii) the mathematical work of Karl Pearson and his
biometric associates at University College London in
the early twentieth century; (iii) the interwar years
when the methods of hypothesis testing (associ-
ated initially with the agricultural research of R.A.
Fisher) were extended into the field of biomedicine;
and (iv) the postwar rise of epidemiologic studies
focusing on such celebrated discoveries as the associ-
ation between cigarette smoking and lung cancer (see
Smoking and Health) and the Framingham study
of heart disease. Each of these four phases will be
discussed in turn.

Nineteenth-Century Developments

As its name implies, statistics developed as a sci-
ence concerned with information important to the
state. With the rise of industrialization and demo-
cratic reforms in the early nineteenth century, West-
ern governments became overwhelmed with what
Hacking [7] has called an “avalanche of printed num-
bers” about their citizens, thereby leading writers
to associate the term “statistics” specifically with
information expressed in numeric form. One of the
earliest examples from a biomedic context was Bisset
Hawkins’ [8] 1829 work Elements of Medical Statis-
tics, which was concerned with “the application of
numbers to illustrate the natural history of man in
health and disease”.

Throughout the course of the nineteenth cen-
tury this numeric conception of statistics became
institutionalized through the founding of statistical
societies and the holding of international statistical
conferences. In the English-speaking world, two of
the most prominent societies were Section F of the
British Association for the Advancement of Science
(founded in 1833) and the Statistical Society of Lon-
don (founded in 1834 (see Royal Statistical Soci-
ety)). In both of these societies (and in many of the
international conferences) one of the leading figures
was the Belgian astronomer turned social statistician
Adolphe Quetelet who helped to pioneer the con-
cept that society had distinctly lawlike characteristics
which could be revealed through the amassing of sta-
tistical evidence.

Most of the members of these statistical soci-
eties were not trained in the physical sciences like
Quetelet; rather, they often came from the medi-
cal profession. As Lécuyer [10] has argued, several
factors may account for the high proportion of physi-
cians within these societies, namely the emergence
of public health as a goal through the method of
improved hygiene, the medical tradition of local
investigation to improve the conditions of the poor,
and the physicians’ obvious professional association
with the phenomena of death and sickness. All of
these concerns lent themselves naturally to the amass-
ing of numeric evidence.

In this period, two of the most prominent physi-
cians to study public health problems statistically
were the French physician, Louis René Villermé
(1782–1863), and the English physician, William
Farr (1807–1883). As William Coleman [4] has
shown, Villermé corresponded with Quetelet as a
result of their shared interest in describing society
in numeric terms. In 1828, Villermé published a
memoir positing a relationship between mortality and
economic status, thereby firmly establishing his repu-
tation as an advocate for a statistically based approach
to public health problems. Similar concerns informed
the work of William Farr who studied medicine
in Paris under P.-C.-A. Louis, the advocate of the
“numerical method”. In 1839, Farr was appointed
compiler of abstracts to the newly established General
Register Office which had been founded to record all
births and deaths within Great Britain. During Farr’s
long 41-year tenure at that institution, he made con-
siderable contributions to the field of vital statistics
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and developed multiple disease and occupational tax-
onomies to be used in the collecting of statistical
evidence (see Health Statistics, History of).

The statistical record-keeping of individuals like
Farr and his associates at the General Register Office
proved to be indispensable for one of the major
epidemiologic discoveries of the mid-nineteenth cen-
tury, namely John Snow’s [14] demonstration that
cholera was a water-borne disease. After an outbreak
of cholera near the Broad Street pump in London
in 1854, Snow used data collected by the General
Register Office to determine that there had been 83
deaths attributed to the disease during a three-day
period. On closer examination Snow determined that
in all but 10 of these cases the individuals had lived
in households that were closer to the Broad Street
pump than any other water source. Furthermore, in
five of the households that could get water elsewhere,
Snow interviewed the family members and discov-
ered that they did indeed use the water from the
Broad Street pump. Of the remaining five cases, three
were children who probably also drank water ema-
nating from this source since they attended a nearby
school; the remaining two cases were dismissed by
Snow as representing “only the amount of mortality
from cholera that was occurring before the irrup-
tion took place”. Although Snow’s idea regarding
the water-borne nature of cholera received little sup-
port during his lifetime (with the notable exception
of William Farr), his paper has subsequently attained
classic status as one of the most important epidemi-
ologic discoveries prior to the discovery of the germ
theory of disease.

The Biometrical School and the
Mathematization of Statistics

Throughout the nineteenth century, statisticians con-
ceived of their work as largely descriptive in nature
with comparatively little emphasis placed on mathe-
matical reasoning. This orientation was fundamen-
tally changed by the creation of the biometrical
school at University College London under the direc-
tion of the applied mathematician Karl Pearson
(1857–1936). Pearson developed this school with the
blessing (and financial backing) of the scientist Fran-
cis Galton, an English scientist who espoused the
view that heredity played a decisive role in individual
development. Thus, the primary raison d’être of Pear-
son’s research was to provide scientific warrant to

Galton’s views through statistical analysis. Although
Pearson clearly shared the views of his main financial
backer, he also developed a full-blown philosophy
of statistical reasoning arguing that, since all infer-
ence is based on the association of antecedents and
consequents, all scientific reasoning is at its core fun-
damentally statistical. As a result, Pearson argued for
the extension of statistical methods into potentially all
domains of scientific endeavor, actively engaged in
debates with other researchers over the proper inter-
pretation of statistical data, and trained students in
the biometric techniques that he pioneered.

In the field of biostatistics specifically, Pearson
is remembered for engaging in a dispute with Alr-
moth Wright (1861–1947) over the meaning of the
statistics Wright had collected to demonstrate that
antityphoid inoculation reduced the chance of infec-
tion for soldiers in the British Army. In critiquing
Wright’s conclusions, Pearson made use of one of
the statistical constructs for which he is remembered
today, namely the correlation coefficient, which
was designed to measure the degree of association
between two phenomena. Specifically, Pearson [12]
found that the average correlation between immu-
nity and inoculation was about 0.23, with individual
results as high as 0.445 and as low as 0.021 (a one-to-
one positive association would have generated a value
of 1 and no relationship would have generated a value
of 0). Since this was a very low correlation coefficient
relative to other common therapeutic interventions
(the protective character of vaccination at preventing
mortality from smallpox was found to have a correla-
tion coefficient of approximately 0.6), Pearson argued
against the introduction of antityphoid inoculation as
a standard practice. Although Pearson’s criticisms did
not convince the leaders of the British Army, who
continued to test and use Wright’s inoculation proce-
dure, the episode is illustrative of Pearson’s desire to
show the applicability of his biometric techniques in
the biomedical arena.

In addition to his theoretical innovations, Pear-
son was also important for training the physician
Major Greenwood (1880–1949) in biometric meth-
ods; Greenwood launched his career by criticizing
Wright’s use of the so-called “opsonic index” for
diagnostic purposes. Wright believed that there was a
substance in blood serum (opsonin) which prepared
bacteria to be ingested by the white blood corpus-
cles. Wright was able to measure the amount of
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opsonin that was present in the blood by compar-
ing the average number of microbes per leucocyte in
a blood sample from a normal individual with the
average number of microbes per leucocyte from an
individual suspected of having a bacterial infection;
subsequently, Wright computed the ratio of these two
mean values which he called the “opsonic index”. In
general, Wright believed that if the opsonic index
were higher than 1.2 or lower than 0.8, then this
would indicate bacterial infection. In his critique of
Wright, Greenwood [6] plotted the frequency distri-
bution of the number of microbes per leucocyte and
found the distribution to be markedly asymmetric or
skew. Thus, Greenwood advocated that the mode,
or most frequently occurring value, would be a bet-
ter constant with which to measure the opsonic index
than the mean. Although Greenwood did not convince
Wright, his work did succeed in impressing Charles
James Martin who was then director of the Lister
Institute of Preventive Medicine; late in 1909 Martin
offered Greenwood a position as medical statistician
at the Lister Institute thereby helping to legitimate the
use of biometric techniques in the analysis of medical
statistical results.

Greenwood was not the only individual to draw
on Pearsonian methods to study biomedical phenom-
ena; another prominent follower was John Brown-
lee. Brownlee [3] utilized Pearson’s insight that the
Gauss–Laplace or normal distribution curve was,
in fact, just a particular case of an entire family of
frequency distribution systems. By attempting to fit
Pearson’s various frequency distributions to medical
statistics of disease incidence during an epidemic,
Brownlee hoped to classify epidemics according to
the type of frequency distributions they approxi-
mated; he often found that the type of distribu-
tion produced was nearly symmetric (see Epidemic
Curve).

The Interwar Years and the Birth of
Experimental Epidemiology

On both sides of the Atlantic the interwar years
saw an attempt to forge a new and experimental
approach to epidemiology. Rather than continuing
to rely solely on vital statistics of human popula-
tions, systematic attempts were made to study the
rise and fall of epidemic diseases within populations
of laboratory animals – most notably mice. In the

UK, this work was based at the Medical Research
Council and consisted of a collaborative endeavor
between the bacteriologist W.W.C. Topley and Major
Greenwood; Greenwood had become head of the sta-
tistical research unit of the Medical Research Council
in 1927. In the US, the principal investigator was
L.T. Webster and his associates at the Rockefeller
Institute. In both countries, researchers focused on
mouse typhoid in an attempt to understand the rel-
ative importance of environment, host, and agent
factors in disease occurrence.

In addition to these experiments on populations
of laboratory animals, the interwar years also saw
important theoretic developments in the methods of
statistical inference as pioneered initially by Ronald
A. Fisher. Whereas Pearson and the early biome-
tricians had been associated primarily with classi-
fying observational data, Fisher was more directly
concerned with experimental data and hypothesis
testing. Fisher developed his statistical ideas after
being appointed to the Rothamsted Experimental Sta-
tion where he studied the differing productivity of
various types of grain in agricultural field experi-
ments. Drawing on these scientific findings, Fisher
published a series of books on statistical methodol-
ogy. In his 1935 work The Design of Experiments [5],
he outlined the key importance of randomization in
assigning different grain types to various tracts of
land in order to remove subjective experimenter bias.

Fisher’s focus on randomization proved to have
profound implications for research medicine – espe-
cially for the development of the modern clinical
trial (see Clinical Trials, History of). When faced
with a shortage of the drug streptomycin during
World War II, Austin Bradford Hill (who had
succeeded Greenwood as head of the statistical
division of the Medical Research Council) chose
to design a rigorous clinical trial of the effect
of this drug on bilateral pulmonary tuberculosis.
Bradford Hill used random numbers to determine
which patients received the experimental drug and
which patients were to be controls. Although the trial
contained a relatively small number of patients (107
overall with 55 allocated to the streptomycin group
and the remaining 52 allocated to the control group),
Hill’s attention to methodologic detail meant that the
results were decisive: 7% of the streptomycin patients
died and 27% in the control group died. As Hill and
his associates [11] observed in the 1948 report on
the trial, “The difference between the two series is
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statistically significant; the probability of it occurring
by chance is less than one in a hundred” (see
Medical Research Council Streptomycin Trial).
Hill’s streptomycin trial has often been seen as the
standard against which all subsequent clinical trials
have been judged.

The Rise of Postwar Epidemiology

Even though the study of epidemiology (or disease
within populations) has a long history, the postwar
era is significant in at least two respects: the use of
more sophisticated statistical techniques in analyzing
the etiology of disease; and the increasing shift in
focus from infectious to chronic conditions. Although
these twin facets of postwar epidemiology are dis-
tinguishable for analytical purposes, they actually
were historically interwoven. With the transition from
infectious to chronic disease as the principal reason
for mortality and morbidity, research became cen-
tered less on the search for a specific agent (or germ)
and more on the analysis of (multiple) environmental
factors. Since multiple factors presented the problem
of confounding causal relationships (see Causation),
epidemiologists increasingly turned to the statistically
trained who had dealt with similar issues in the con-
text of social surveys. Of the many epidemiologic
claims established through these methods, the two
most famous examples were the researches establish-
ing a link between cigarette smoking and lung cancer
and the study of cardiovascular disease.

As discussed in Brandt [2], epidemiologic studies
began to appear in the late 1940s and early 1950s
indicating that cigarette smokers were at a higher
risk of lung cancer than nonsmokers. Most of these
studies were retrospective in nature – meaning that
individuals who had already developed lung cancer
were interviewed about their smoking habits after
the fact; their responses were then compared with
a control group of individuals who did not smoke
(see Case–Control Study). However, two pioneer-
ing prospective studies were also launched at this
time (see Cohort Study). In 1951, Richard Doll and
Bradford Hill sent questionnaires to all British physi-
cians inquiring about their smoking habits. When
individuals who responded to their survey died, Doll
and Hill obtained data about their cause of death.
At about the same time, a similar study was being
conducted in the US by E. Cuyler Hammond with

the support of the American Cancer Society. Both
studies implied conclusions consistent with retrospec-
tive studies: cigarette smoking increased one’s risk of
contracting cancer.

In the US, the most famous postwar epidemio-
logic investigation has been the Framingham Study,
which was initiated in October 1947. As Susser [16]
has argued, the Framingham Study has often been
cited as the paradigmatic example of a prospective
or “cohort study” which follows a specific group
(or cohort) of individuals over their life courses to
see what factors influence disease development. As
its name implies, the researchers selected their study
population from the residents of the town of Framing-
ham, Massachusetts. By examining a sample of 30- to
59-year-old persons biennially, the researchers were
able to test the role of such factors as cholesterol
level, physical activity, diet, and life stress on the
development of heart disease. In addition to specific
empirical findings, the Framingham Study also gener-
ated important methodologic insights of how to deal
with the variability of repeated measurements over
time (see Longitudinal Data Analysis, Overview);
however, the researchers could not solve the problem
of when to terminate the study. As a result, more
recent findings have centered on diseases related to
aging (e.g. stroke) and follow-up studies of the off-
spring of the original participants.

Since the 1960s, several factors gave increasing
prominence to statistically based ways of studying
biomedic phenomena. After the Thalidomide scandal
raised the specter of infant deformity, the clinical trial
became a standard requirement before experimental
drugs could be administered to the general public. In
1965, the American Journal of Hygiene changed its
name to the American Journal of Epidemiology [1]
reflecting the “greatly increased importance” of the
“epidemiologic approach to disease”. Finally, the
discipline of epidemiology was put on a secure
conceptual foundation by researchers on both sides
of the Atlantic who articulated causality criteria for
epidemiologic studies; these criteria were designed
to serve as the chronic disease analog to Robert
Koch’s famous postulates for establishing causality
for infectious disease. In the US, the most famous
list of epidemiologic causality criteria was published
as part of the Surgeon-General’s 1964 [17] report
positing a link between cigarette smoking and lung
cancer; in the UK, the most famous list of causality
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criteria was published by Austin Bradford Hill [9]
early in 1965 (see Hill’s Criteria for Causality).
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Biostatistics, Overview

This article presents a personal view of the general
field of biostatistics. I describe the overall sense of the
field, a few of its roots and principal originators over
the past century and more, some of the methods used
in biostatistics and types of problems that yield to
a biostatistical approach (using as illustrations areas
where biostatistics has had noteworthy impact). I also
discuss the discipline in general as it exists today and
mention some of the more important problem areas
in biomedicine where biostatistics is now challenged
to provide new methodology. Finally, I describe the
profession of biostatistics in terms of its history, the
present composition of professionals, its societies and
journals, its entry points for new professionals and the
current areas of activity of professionals in the field.

Biostatistical Roots, Development, and
Examples of the Discipline

It is difficult to trace the roots of a field that has come,
only recently, in the early part of this century, to be
recognized as a distinct discipline. This difficulty is
especially marked if the field is of hybrid character.
Biostatistics focuses on the development and use of
statistical methods to solve problems and to answer
questions that arise in human biology and medicine.
Thus it expands statistical theory and adapts it to
bring specific methods to bear on questions of impor-
tance to the community of scientists, practitioners,
and policy makers who have interest in health and in
all health aspects of the human community. A few
examples best illustrate the roots and development of
the discipline.

There has always been interest in the general
length of human life and its numerical descrip-
tion. Consideration of human longevity (see Life
Expectancy) quickly prompts careful distinctions
between, for example, recorded lengths of usual
life (barring “early” death) and expected or average
length of life, i.e. age at death, among all persons
born in a given epoch and circumstance. Some-
times the interest can become sufficiently intense to
prompt careful numerical thought, e.g. when insur-
ance premiums are exacted on condition of further
life length, or a plague has afflicted a nation. The
biblical three score and ten and rough estimates of

variation may not be sufficiently precise or specific
to the need. Roman documents contain tables of the
expected length of life for persons of various ages, for
actuarial use in fixing prices of insurance (see Actu-
arial Methods). A millennium later, various Western
European countries began to collect information sys-
tematically on births and deaths (see Vital Statistics,
Overview). Curiosity prompted some individuals to
examine this information and to note interesting char-
acteristics of the collective information and striking
regularities in what seemed on the surface as sim-
ply random events. John Graunt’s [11] analysis of
the Bills of Mortality, lists of dates of burials, births,
and marriages, is an oft-cited landmark in the begin-
nings of such work, along with the work of Quetelet,
Huygens, Halley and others. Their work led to the
development of calculations of birth rates and death
rates for various ages and to life tables that yielded
calculation of the expected lengths of life for popula-
tions in well-defined geographic areas and subgroups
of these populations, based on increasingly reliable
and detailed counts of births and deaths. This early
work produced useful information for use in detecting
sources of unusual and preventable causes of death,
due, for example, to contamination of water supply
and sanitation systems.

These statistical methods for the collection and
analysis of birth and death data led to many other
uses of such data in government and in social
sciences, for example in forecasting population size
(see Population Growth Models) and economic
conditions of populations and population subgroups.
The mathematical and statistical methods of data
collection, description, and forecasting, with the
attendant concern for statistical precision, remain
in many fields of application a major area
for research by biostatisticians in government,
universities, insurance firms, pharmaceutical firms,
medical centers, and independent research centers.

Another root of biostatistics as a discipline
stemmed from interest in the obvious resemblance
of offspring to their parents. The work of Mendel
with his pea plants (see Mendel’s Laws), in the
mid nineteenth century, is a critical and familiar
landmark for all of us, in the beginnings of the use of
systematically collected data, scientific speculation,
and the application of numerical methods to the
description of regularities in heritability amidst
striking variation. Mendel’s work focused on plants,
but rediscovery of his work at the turn of the century
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quickly drew the attention of statisticians as well
as biologists and scientists to gain an understanding
of the variation in human heritability (see Human
Genetics, Overview). Francis Galton and Karl
Pearson were two of the major figures in this area of
science at the turn of the century. They were foremost
contributors to the development of new concepts
and statistical methods for describing and drawing
inferences from data on the resemblance of parents
to offspring. They were interested in resemblances
in physical, psychological, and behavioral features of
offspring to their parents. They developed concepts
and statistical theory still basic to understanding this
form of data. Central among these contributions were
the concepts of correlations among variables and
regression methods for predicting the characteristics
of offspring from those of their parents. These
concepts continue to be basic in the study of
such relationships among variables in general.
The concepts and methods continue to find new
application in old areas of scientific research and in
the newest areas of science, and are central in much
of the work of biostatisticians today.

A still more recent, but most important area of
biostatistical activity stems again first from agricul-
ture, where R.A. Fisher, at Rothamsted Agricultural
Station, in the 1920s, worked with agricultural sci-
entists on their experimental studies. Even the most
fastidiously controlled experiments involving animals
(or plants) manifest responses that vary widely from
one experimental animal to the next. Fisher pro-
posed the method of randomizing the animals to
the several treatments under study in the experi-
ment, using specified probabilities of assignments
(see Randomization). Of course, this would tend to
balance treatment groups in terms of the character-
istics, known or unknown, that cannot be controlled
precisely. At the same time, through the probabilities
used in the random assignments, a firm experimental
basis in probability theory is provided for measur-
ing the reliability of inferences drawn in comparing
the effects of the treatments under study. The con-
cept became firmly imbedded in experimental agri-
culture. A decade and more later, the method was
introduced into experimental science in biomedicine,
where the same problem of experimental control is
encountered in laboratories and in experiments with
patients. Where the experimental unit is the test tube,
unwanted variation from tube to tube may be small
and tolerable, though this is not always the case.

Variation from animal to animal may not. Variation
from one patient to the next, treated with the same
experimental maneuver, even with the greatest care
in patient selection and treatment, is rarely negligible
(see Experimental Design).

Randomization of treatments to patients as a
means of securing a controlled comparison of treat-
ments, with statistical evaluation of the results came
gradually into use (see Clinical Trials, Overview),
beginning in the 1930s, following a few years after
Fisher’s introduction of the idea in the 1920s for use
in studies in agricultural science. Bradford Hill [12]
was among the foremost leaders in advocating the
method for general use in clinical science. Random-
ization is now a hallmark of reliable experimental
method in evaluating new and experimental medical
treatments and in other medical maneuvers for pre-
vention, for therapy, and for study of medical policies
in general. Biostatisticians continue to work on the
development and adaptation of these ideas for spe-
cial applications in medicine, working to develop new
experimental designs for the collection and use of
clinical trial data for valid inference, and at the same
time deriving safeguards that assure validity of the
inferences and protection of the safety of the patients
in these experiments (see Ethics of Randomized
Trials). This is an area of intense development for
theory, and for use in current clinical research and in
much of medical research ranging from laboratory
experiments to community interventions of public
health maintenance. Meinert [17] and Pocock [21]
provide some interesting notes on early clinical tri-
als and broad discussion of statistical aspects of the
organization, design, implementation, and analysis of
the results of randomized clinical trials. Many books
have been published over the last several decades on
these topics.

Another area where biostatistics has been key to
the advancement of a scientific area of inquiry, bring-
ing statistical concepts, principles, and methods to
bear on a specific question, is the indirect measure-
ment of the strengths of compounds by administration
of the compound to living organisms. Vitamins and
hormones provide specific examples of the general
problem. If a vitamin can be produced, for example,
as an extract of some natural product, but the chemi-
cal composition of the ingredient(s) is unknown, then
the resulting efficacy might be ascertainable by test-
ing in animals. For example, many early vitamins
were produced in this way and the strength of the
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product was measured by the rate of growth among
animals fed the product. It then remains to develop
a systematic experimental method to measure the
strength of a given “batch” of the material, so that
uniform batches can be produced for research and
clinical use. Otherwise, doses cannot be defined and
efficacy and safety cannot be controlled. Variation
from animal to animal, even in the closest of con-
trolled experiments, makes the problem of measuring
strength in this way problematic. Here biostatisti-
cians [2, 7, 8] were able to bring statistical concepts
and methods to the problem, developing definitions
of strength and designing experiments and meth-
ods of statistical analysis to estimate the strength
of a compound with a measure of the reliability
of the estimate. The methods allowed calculation
of the sizes of studies necessary for reliable use
in the manufacture of various vitamins, hormones,
and other pharmaceuticals that would allow compar-
isons of strength of compounds across manufacturers
and time. These methods of bioassay (see Biologi-
cal Assay, Overview) are essential, and in current
use whenever the strength of the target compound
cannot easily and specifically be characterized and
measured by standard chemical or physical instru-
mentation. The methods have been adopted in many
other areas where analogous questions have arisen,
e.g. in measuring the strengths of toxic substances in
the environment (see Risk Assessment for Environ-
mental Chemicals), and in psychophysics (where,
indeed, some of the basic concepts and methods
had parallel early development). The methods have
been adapted for use in psychological and educational
testing theory (see Psychometrics, Overview) [14],
where it is important to have tests of measurable per-
formance and precision across time and across varied
populations of subjects to be tested.

Nature of the Discipline

As is clear from the above examples, biostatistics is
problem oriented. It is specifically directed to ques-
tions that arise in biomedical science. The methods of
biostatistics are the methods of statistics (see Statis-
tics, Overview) – concepts directed at variation in
observations and methods for extracting informa-
tion from observations in the face of variation from
various sources, but notably from variation in the
responses of living organisms and particularly human

beings under study. Biostatistical activity spans a
broad range of scientific inquiry, from the basic struc-
ture and functions of human beings, through the
interactions of human beings with their environment,
including problems of environmental toxicities and
sanitation, health enhancement and education, disease
prevention (see Preventive Medicine) and therapy,
the organization of health care systems (see Health
Services Organization in the US) and health care
financing.

The details, depth, and breadth of modern biomed-
ical and social science and the span of knowledge
of mathematical, statistical, and calculational theory
compel team approaches to the solution of modern
scientific problems. Biostatisticians are members of
many of these teams. The role of the biostatisti-
cian requires a special combination of tastes: a taste
for quantitative methods, an understanding of and
tolerance for variation in the data of scientific inves-
tigation, enjoyment in communication and in collab-
orative work with applied scientists, and a knowledge
of statistical theory and methods.

The concepts and principles of mathematical
statistics are the methods for describing regularity
in the presence of variation, methods for prediction
in the face of uncertainty, and methods for efficient
study and experimentation when the results for the
individual case or observation are uncertain. The
biostatistician brings the characteristics of scientific
curiosity to the specific question, a collegial bent,
pleasure in dealing with scientific problems and an
ability to communicate with the applied scientist,
along with the skills and background in statistics
necessary to invent, develop, or recognize special sta-
tistical methods that can aid in the solution and a
knack for implementation of the new method to the
problem.

As an illustration of this role of biostatistics in
biomedical science I have cited above four areas
where biostatistics has played a major, even a critical
developmental role: life tables as a tool for adapt-
ing probability theory and statistical inference to the
generation and use of birth and death data, as a
method for measuring and comparing the health sta-
tus (see Health Status Instruments, Measurement
Properties of) of populations and for identifying
health factors affecting populations and subgroups
of populations (see Analytic Epidemiology); corre-
lation and regression as measures of the strength
of heritability, tools that have now been extended
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throughout science to the study of cause and effect
(see Causation); the clinical trial as a method for
valid assessment of the efficacy of medical treatments
of patients, again a tool that now plays a pervasive
role in all of clinical science and beyond; and bioas-
say as an indirect method for precise measurement of
the strength of biologically active compounds, such
as hormones and vitamins.

There are many more areas where biostatistics
has contributed greatly to the development of an
area of scientific investigation, to the point where
the special methods developed have become a large
and essential part of the scientific armamentarium
of the investigators in a specific scientific area and
in the training of new investigators in that field.
Genetics (see Genetic Epidemiology) is a special
discipline in itself. Demography, actuarial science,
and experimental methods in clinical trials, as well
as bioassay are others.

One area of special importance is the area of
design of randomized clinical trials. Much of the
current interest in the comparison of medical ther-
apies involves large numbers of patients, randomized
to two or more treatments. These treatment groups
or cohorts are followed for extended lengths of time
to compare survival rates (or some other outcome
such as disease recurrence) (see Survival Analy-
sis, Overview). At the end of a prescribed length
of study time the data present a length of time for
each patient, the time to the event of interest, say
death, or successful survival to the end of the study.
The study data then present the statistical problem
of summarization, comparison of the survival expe-
rience for each group, and inference regarding the
meaning of the results. Such data appear much like
those gathered centuries ago in John Graunt’s Bills of
Mortality [11] and first formed into life tables by Hal-
ley and others, as described previously. These early
methods have been adapted and elaborated in detail
for the design and analysis of clinical trials within the
last half century. This body of statistical theory and
practical methodology forms the basis for much of
the statistical planning and analysis in both clinical
therapeutics and prevention (see Prevention Trials)
today.

Another area standing as a discipline in itself,
but where biostatistics continues to play a central
role, is epidemiology, the study of epidemics and
the causes of infectious diseases (see Communi-
cable Diseases), and more recently, the study of

the causes and control of chronic diseases, such as
cancers and heart disease [13]. The field of epidemi-
ology has grown rapidly and investigators now focus
and specialize on such diverse areas as injuries and
deaths as a result of accidents – due to automobiles
and traffic in general, sports, accidents in the home,
and in special occupational activities. Environmental
risk factors and their consequences is another area
of study of great importance and interest to epidemi-
ologists. We are all familiar with the public health
importance of risk factors associated with life styles
and behavior modes, e.g. in diet, exercise, sexual,
and drug behaviors. These sources of health risk, and
more, attract the epidemiologist. They present chal-
lenges to develop new methodologies that will allow
efficient and valid inferences in identifying risks, esti-
mating the magnitudes of the risks to the population,
identifying subgroups of the population who are at
extreme risk, and providing useful information to
avoid such risks. The challenges are especially sharp
and often subtle because randomized experiments are
rarely possible. Instead, innovations in study design
in the gathering of observations that will assure unbi-
ased inference within reasonable limits of cost and
time become all-important [13, 24] (see Observa-
tional Study).

Psychometrics [26] is yet another area, stem-
ming, in part, from several strong biostatistical roots,
and reaching back more than a century. One root
goes back to the German psychophysicists who
puzzled about the measurement of the relationship
between physical stimuli, such as light rays and sound
waves, and the reactions reported by human subjects.
These scientists developed methods for describing
the strength of the stimulus and the response of
the subject. Their experimental approaches and the
statistical methods they developed to describe their
results yielded some of the concepts and techniques
for bioassay as described earlier. Another root goes
back to the work of Galton in the description of “cor-
relations” (a word coined by Galton and Pearson in
reference to this work) between human behavior of
parent and child. These roots have led to much funda-
mental work in the broad field of psychology and to
the development of the subfield called psychometrics,
which concentrates on the use of statistical methods
in research in human behavior, and the use of statis-
tical techniques in areas such as educational testing.

Today there is much interest in the applica-
tions of psychology to the behavior of populations
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and techniques for changing behavior toward more
healthful life styles, e.g. with regard to drug and
eating habits, exercise, sexual practices, systematic
resort to screening for early detection of diseases
such as breast cancer and prostate cancer, vaccina-
tions (see Vaccine Studies) for disease prevention,
and early maternal care in pregnancy. The techniques
used in research in this area of behavioral medicine
derive from many areas of biostatistics, particularly
sample survey methods and clinical trial methods, as
well as related fields that are heavily biostatistical,
such as demography, vital statistics, epidemiology,
and psychometrics.

Another area of renewed scientific research and
application that draws heavily on biostatisticians and
the use and development of new biostatistical meth-
ods is environmental toxicology. The statistical meth-
ods of epidemiology originated in questions of epi-
demics of contagious diseases spread to human from
human, and from insects, rodents, and other sources
in the environment. Epidemiologic questions today
involve more subtle mechanisms of contamination
and dysfunction, the detection and effects of nox-
ious chemicals in the air and the soil, and the causes
and effects of chronic disease in populations. The
methods again are a blend of tried and of new sta-
tistical tools of epidemiology, but also new statistical
tools adapted and developed from diverse areas of
theory and scientific application for answering spe-
cific scientific questions in this area of investigation;
for example, the concomitant variations of air pollu-
tants and disease rates as air pollutants and disease
rates vary through time on daily, weekly, and sea-
sonal bases.

Yet another old but very new area of research that
has developed with help from biostatistics is health
services research. The questions concern just how
medicine handles the health needs of the population
it serves, what impact the medical system has, how
to measure the impact, what factors are important
in the effectiveness of a system for financing and
caring for a population, and how the system might
be altered for greater cost effectiveness. An excel-
lent introduction to this field is the volume prepared
under the direction of Kerr L. White, Health Ser-
vices Research: An Anthology [27]. The work on the
National Halothane Study [3] resulted in statistical
methods for measuring and comparing the outcome
of health care (for example, surgical mortality rates)
among health care institutions (e.g. hospitals). Flood

& Scott [10] described a study that exemplifies the
methods by measuring factors in the organization of
a hospital that affect outcomes of surgery and med-
ical care. Health Services Research is central now
in studying and informing health care finance and
delivery. It draws on statistical methods in fields as
diverse as medical economics, design and analysis of
clinical trials, medical informatics and the design of
medical data banks [25], the use of data banks (see
Data Archives) for measurement and comparisons
of quality of care among medical care systems, mea-
surements of the quality of life, and the measurement
of the health status of populations.

Current Focuses and Challenges in
Biostatistics

The discipline of biostatistics is broad, its borders
vague. This is necessarily so for any discipline that
links a more theoretical or basic discipline to a spec-
trum of applied sciences. This is clearly true for
other derivative disciplines, such as biochemistry and
biophysics. The greatest contributors to the develop-
ment of biostatistics have been, almost by definition,
those leaders with a strength and interest in statisti-
cal theory but also with a clear vision of the methods
and needs of scientific investigators in the pursuit
of science, either generally or in a specific area of
study. These central figures in the development of
biostatistics mastered the art of compromise, devel-
oped methods that were and are the right blend of
general theory but scientific specificity to problems
common within and across areas of medical inves-
tigation and application. They developed methods
that have the appeal of scientific and practical util-
ity, bringing simplicity to the design and description
of scientific experimentation and observation that are
easily communicated and amenable to replication and
testing.

For the reader interested in the flavor of current
biostatistics, the first chapter of the book by Cox &
Hinkley [5] gives a very nice description of how the
statistician who has an eye on scientific applications
thinks about the work. The book by Miller [18] is a
personal view of the way an applied statistician goes
about the work of bridging the gap between theory
and practice.
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What are the current research problems faced by
the biostatistician? What are the needs of the biomed-
ical investigator and applied scientist and practi-
tioner? Where are the current challenges? The most
important and lasting contributions of the future will
come from biostatisticians who combine statistical
power with scientific insight and curiosity about the
important and general problems of medical research.
Predicting new and fundamental breakthroughs in any
field is problematic indeed. Who could have pre-
dicted the seminal work of K. Pearson, Galton, and
Fisher?

Seminal contributions spring from genius, but
there is much work yet to be done also at a lower
and less innovative level, in further testing, adapting,
extending, and exploring the new methods already
proposed over the last few decades.

A further source of new biostatistical progress
lies in new technologies in other fields that
offer increments in explanatory power and insight
when incorporated into biostatistical methodology.
The most important and obvious example is
the tremendous growth in computing power (see
Computer-intensive Methods) and in medical
informatics [25].

In addition, there is the important business of
reviving methods of the past, ignored in their time
or left relatively dormant, but attracting attention as
possibly holding answers to new questions and new
needs in scientific investigation. Here, for example,
Bayes procedures (see Bayesian Methods) and deci-
sion theory assume a new luster in the eyes of the
applied medical scientist and biostatistician. There
is a growing interest and, indeed, a modestly grow-
ing use of Bayes’ method and decision theory for
quantitatively formulating knowledge, belief and cost
estimates available at the planning stage of a clinical
trial into detailed plans for the trial and the analysis
of the results of the trial. The aim is an efficient wed-
ding of what is known at the start of the trial with
the results gathered, the whole then to be summa-
rized and the detailed implications reported. Issues
in the development of these methods for modern sci-
entific experimentation, communication, and needs,
in clinical trials and other areas, are interesting and
will certainly continue [1]. It is clear, however, that
if these methods are to be incorporated into routine
and popular practice there will be a demand for more
complex and flexible computer software and compu-
tational methods.

Focusing on the explosion in computer power over
the past two decades as an example for exploitation,
one can trace the roots of resampling methods back
to the 1930s and earlier, with Fisher’s description of
the lady tasting tea [9] and the permutation tests of
Pitman [20] (see Exact Inference for Categorical
Data), the Quenouille [22] jackknife method for
correcting bias through systematic resampling of the
given data set, and the later bootstrap methods [6].

These ideas for testing, for estimation and for
measuring the statistical precision of an estimate
through resampling the data under analysis, were
limited half a century ago by the computational
work required in setting them to practical use, even
though many of the examples were drawn from
medical research settings. With the surge in computer
power in the last two decades, measurement of
the statistical precision of an estimate based on a
sample, by repeated sampling of the sample itself,
is indeed feasible for complex data sets, and in many
cases these methods finesse the need for complex
mathematical theory and approximations. It remains
to further the theoretical work needed to draw the
guidelines for the use of these methods, to set them
on firm theoretical footings, to explore and define
the areas of medical science where the methods can
be used, and to incorporate the methods in software
packages for routine use by biostatistical practitioners
and medical scientists. With regard to the latter, some
suggestions and currently available help appear in the
appendix to Efron & Tibshirani [6].

The controlled randomized clinical trial was men-
tioned above as a central contribution of statistics
to modern experimentation. It was gradually incor-
porated into the clinical sciences in medicine, and
firmly adopted in clinical research and in regulatory
affairs, setting the standards for approval of medical
drugs (see Drug Approval and Regulation), devices
and other medical accoutrements, for marketing and
for medical practice. Currently, a drug proposed for
marketing and practice may be subjected to study in
thousands of patients, comparing groups treated with
the experimental drug with groups treated with a stan-
dard drug, to reveal, if true, superiority in effect of
the new drug over the standard drug (e.g. in prevent-
ing death following a heart attack). This approach
to medical experimentation has seen much statisti-
cal work in developing designs of these experiments,
particular to the medical clinic and to the kinds of
problems in execution, analysis and decision making
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that arise. The costs of the experiments can be huge;
the future costs of erroneous decision even greater.
The problems, ethical and otherwise, of working with
human study subjects and preserving the validity of
the study and the statistical inferences based on the
results have presented, and continue to present, chal-
lenges to the biostatistician. Deep and useful further
work is needed.

The preceding discussion of the clinical trial leads
to another area of important focus for the biostatis-
tician. Clinical trials are very expensive. Yet clinical
knowledge becomes all important in these times, for
several reasons. New drugs, new methods of surgery,
the expansion of organ transplantation techniques and
practice all lead to greater demand for more expen-
sive medical care. It becomes essential that treatments
be evaluated carefully for efficacy and safety, and
that treatments be tailored to needs and to the bal-
ancing of cost with benefit. The randomized clinical
trial plays a central role in obtaining reliable answers;
but answers can also be obtained from information
gathered in medical practice. Carefully gathered data
on medical practice in both hospital and clinical set-
tings, accessible by computer, can be a valuable basis
for statistical comparisons of treatment outcomes, for
patients with various degrees of illness and other con-
comitant characteristics (e.g. age, ancillary diseases,
history of disease). The problems of statistical infer-
ence from such data banks are complex and have
to do with the definitions of the variables, the num-
ber of variables, the collection of the data, computer
storage and access, and prudent and valid statistical
analysis of the data. Byar [4] cautions that in light
of the difficulties in these complex nonrandomized
studies, inferences that are drawn can be far from
convincing. The statistical methods available to the
investigator are not adequate to deal with the ques-
tions asked and the precision required of the answers.
The classical methods of multivariate analysis are
helpful and will continue to grow in their power
and use, but new methods are needed. Biostatisti-
cians draw ideas from the past, using the ideas of
Bayes to correct hospital estimates from each of a
group of hospitals for regression to the mean for the
group, before drawing inferences about differences in
practice effects from one hospital to another. Here,
methods of more than a century past can be blended
with the power of the modern computer to resam-
ple the huge masses of data in the data banks, to
merge data from different data banks (see Record

Linkage) to obtain estimates for comparison, and
to evaluate the precision of estimates by resampling
methods such as the bootstrap approach. Biostatistical
work in this area, directed at the collection of data,
merging data bank information, and making reliable
inferences and decisions from such data is an area
that demands the biostatistician’s attention.

Chronic diseases themselves pose experimental
problems that in turn lead to statistical questions of
method. To answer a question regarding the relative
efficacy of an experimental treatment to a control
treatment, when the event of interest is mortality,
patients must be followed for extended periods of
time, years or even decades. When the measurement
of interest is blood pressure, or physical strength, or
kidney function, repeated measures on each individ-
ual must be made. The data gathered across subjects
are necessarily asynchronous, even if the intention is
to measure every patient according to a fixed sched-
ule, say at monthly or annual intervals. Patients miss
appointments or appear for extra appointments for
various reasons related or unrelated to study goals
(see Missing Data). Some are lost to follow-up, or
die of one putative cause or another. Obviously, such
data present problems for comparison of the groups
with regard to efficacy of a therapy or mode of
medical care. The consequent statistical problems in
interpreting such longitudinally gathered data have
been a concentrated focus of biostatistical research
and application over recent years (see Longitudi-
nal Data Analysis, Overview). The result has been
a number of new proposals for analysis. The work
has been extremely useful and the work will go on,
again it being a blend of new theoretical proposals,
much dependent on computer power for both method
and for the examination and comparison of meth-
ods [14–16].

One final current area of challenge to biostatis-
tics merits mention. It is an area that occupies teams
of geneticists, probabilists, biostatisticians, and com-
puter scientists. The new methods of isolating and
mapping the human genetic structure (and that of
other organisms as well), mapping the genetic struc-
tures of inheritance, and grasping the fine relation-
ships between genetic structure and human function
(see Genetic Map Functions) has opened up a huge
potential for medical study in the prevention of dis-
ease, enhancement of health, and the treatment of
disease. But, here again, the questions are new and
call for new statistical concepts. The questions start
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with the uncertainties in mapping the human genome,
a vast undertaking with basic questions of just how
to design the mapping efficiently and how to measure
the uncertainties in the measurements and the impli-
cations of error with regard to the work in progress
and to the “final” outcomes. There are questions hav-
ing to do with the choice of persons to study, the
kinds of familial structures to study, and how to
weave together the genetic information and the health
data to make a predictive model with measurable sta-
tistical precision. These results are only now being
used in the laboratory and clinic to design vaccines
to prevent disease, for example graft-vs.-host disease
in bone marrow transplantation, or the conversion of
HIV infection to frank AIDS, or to tailor a vaccine to
a specific cancer in an individual patient as an aid in
his/her fight to prevent further development of his/her
personal cancer. The questions call for modification
in the design and analysis of methods long used, but
also the use of new methods aimed at new questions
and newer cost and time-efficient approaches to the
goals. Jurg Ott gives a comprehensive and thorough
introduction to one of the large areas of very active
further methodologic research, namely the linkage of
genes in humans [19].

In summary, the times present Biostatistics with
the triple challenge of completely new areas of
science with new kinds of questions, e.g. in genetics,
tremendously improved tools for use (notably in
both theoretical statistics and computing), and new
questions arising from the escalating costs of both
medical care and medical research (demanding a
closer focus on efficient research and parsimony in
monitoring the costs and effectiveness of medical care
itself).

Organization of Biostatistics as a
Professional Discipline

It was felt by the editors that the focus and breadth of
the body of specialized statistical knowledge and the
size of the body of professionals in the field of med-
ical and biological statistics justified the organization
of an encyclopedia for this now well-established
discipline. The general field of statistics itself has
been clearly identified for nearly two centuries and
the medical and medically related applications – the
roots of biostatistics – in genetics, epidemiology, the
basic medical sciences, and applications in demogra-
phy, psychology, and government, have been present

for more than a century. The American Statistical
Association (ASA) was established in 1839, with a
regularly published Journal. In England, the Royal
Statistical Society was established in 1834 as the
Statistical Society, with the aim of publishing “facts
calculated to illustrate the condition and prospects of
society”. It publishes three series of journals, deal-
ing with theory and with statistical methods and
applications in all areas of science. The Interna-
tional Biometric Society, with world organization
and membership, was established in 1947 and now
has approximately 6200 members. The Biometrics
Section of the ASA started a special professional bul-
letin in 1945, which was adopted by the Biometric
Society in 1950 as the official journal of the Soci-
ety and called Biometrics. There are now journals in
many countries devoted at least in part to biostatistics
or special aspects of it, e.g. Statistics in Medicine,
Biometrical Journal (Germany), Controlled Clinical
Trials, Journal of Biopharmaceutical Statistics, and
Statistical Methods in Medical Research.

Academic departments offering specialized sta-
tistical courses in the methods and applications of
statistics in medicine have existed from the early
nineteenth century. In the US, these offerings were
generally in schools of public health, where the
methods and applications were focused on the areas
of sanitation, epidemiology, demography, and vital
statistics. Today, most medical schools across the
world offer formal instruction in biostatistics to the
medical degree candidate (see Teaching Statistics
to Medical Students) and to candidates for degrees
in most of the allied medical fields, e.g. dentistry,
nursing, health administration, sanitary engineering,
where such degrees are offered by the university.

Degrees in biostatistics are offered at a number
of universities. These are generally advanced degrees
and most are offered in schools of public health.
Course work for the master and doctorate degrees
is directed to theory and applications of statistics
to applications in the broad range of the medical
sciences, with an emphasis on clinical and public
health areas. Those interested in careers in biostatis-
tics and best suited for satisfying and productive
careers will be interested in the mathematical and
theoretical aspects of science, will have a curios-
ity and inclination for the sciences, and will enjoy
teamwork and scientific collaboration. Teaching is an
important part of the biostatistician’s role, whether
it is the one-to-one teaching of the consultant to
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biomedical colleagues or the more formal teaching
of the classroom, to students of biostatistics or stu-
dents of the biomedical sciences. Of course, specific
roles for the biostatistician span the range of applica-
tions from government to academia to industry, and
involve applications from the most basic of the med-
ical sciences to applications in the clinical practice
of medicine and to applications in the organization
of health care, as well as to the activities of the gov-
ernment in the planning, financing, and distribution
of health care, and the measurement of health care
status and health progress in the population.

The reader interested in the field of biostatistics as
a career that is located on the bridge between statisti-
cal theory and scientific investigation in biomedicine
might start with reading selected papers in those
professional journals that include occasional exposi-
tory articles, interviews with professionals, and pres-
idential addresses. Statistical Science, the American
Statistician and the Journal of the American Sta-
tistical Association are several. The professional
biostatistics and statistics societies also circulate pub-
lications that contain news of the societies and pro-
vide a view of activities, the accomplishments of its
members, and programs of approaching professional
meetings. It will be seen that biostatisticians can be
found throughout all biomedical research and appli-
cation – academia, research institutes, industry, and
government.
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Biostatistics, established in 2000 by Oxford Univer-
sity Press, publishes papers that advance statistical
reasoning and methods relevant to studies of human
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nals. The more rapid response to submitted papers

is made possible by a small editorial board com-
prising outstanding scholars who themselves provide
critiques of submitted papers and substantially deter-
mine what is published. In addition, accepted papers
are accessible from the journal website prior to publi-
cation in the journal. The website also provides access
to supplementary material including data, programs,
and text that support the paper publication.

Although Biostatistics is a young journal, it is
selective, publishing roughly one in four submit-
ted papers. Electronic submissions are encouraged.
The journal website http://biostatistics.oup
journals.org/ provides further details.
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Birth Cohort Studies

Birth cohort studies are those which begin at or before
the birth of their subjects, and continue to study the
same individuals at later ages, on more than one occa-
sion. They are a type of observational study in which
“there is no randomization to exposure classes nor is
there any attempt to manipulate the exposure” [10].
They vary in population size from large studies that
aim to be nationally representative [12, 24, 33], to
those that are area based and with populations of
1000 or more subjects [1, 8, 11, 14, 16, 19, 21, 26,
27, 29, 36]. Currently new, nationally representative
birth cohort studies are being started in Denmark and
Canada.

Although historical birth cohorts have been imag-
inatively used in epidemiology [3, 17] they are not
discussed here.

Study Population

Selection

Prospective and historical birth cohort studies usu-
ally select their populations using time and/or geo-
graphical sampling frames. Three British birth cohort
studies, which began at the birth of their subjects,
each used a sampling frame of all births occurring in
one week [12, 24, 33]. The oldest study followed up
a class-stratified sample of all the single and legiti-
mate births that occurred during a week, in 1946, and
the two later studies followed up all births from the
chosen week in 1958 and in 1970. The Avon longi-
tudinal study of all births occurring in one English
county used a year’s births as a sampling frame, and
recruited at antenatal clinics during that period, in
order to collect data on risk exposure during preg-
nancy [14].

Population Size

In a birth cohort study the size of population must be
selected at the outset, which may be far in time from
some intended outcome measures. Definition of the
outcome measures, their age-related incidence, and
expected sample attrition at different future times can
be used to calculate sample size. Large samples offer
the opportunity to study relatively rare occurrences,

but not without penalty. Inevitably, sample size is
associated with frequency of data collection and with
data quality. Large samples are more costly in terms
of data collection and subjects can be so costly to
contact that time intervals between data collections
become long, and undue reliance has then to be given
to subjects’ recall of events and experiences occurring
since the previous data collection.

Contact Maintenance

Contact maintenance is a constant task in a large
birth cohort study. Annual contact is the ideal, so
that changes of name and address can be kept up
to date. In return, information on the study’s work
helps to maintain the subjects’ interest. The two older
British studies achieve these ends by means of a
birthday card, which is an advantage of the time-
based sampling frame. Each also sends an annual
description of current work, and an annual request
for information on address and name changes.

The tracing of lost contacts is relatively easy
during the preschool and school years, when health
and education systems may offer assistance, but in
the subjects’ adult lives investigators have to rely on
information given by parents (rapport developed with
parents during the school years is of value in these
later years), and on agreements with others to forward
letters to subjects.

Attrition and Representativeness

None of the British national studies found attrition
and its effects on representativeness a serious prob-
lem during the preschool and school years, because of
the help received from health and education author-
ities. But, whereas during the childhood and school
years of the 1946 national birth cohort study – for
instance, data collection was achieved from between
85% (lowest) and 96% (highest) of the live study
population resident in Britain – the comparable adult
range of response was from 67% to 85% (high-
est) [33].

Loss of sample members through failure to main-
tain contact is usually higher in those with the lowest
educational attainment or interest in education, those
living in the poorest socioeconomic circumstances,
those who are single in adult life, and in the mentally
ill, but not in those with serious physical illness [35].
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Loss of sample members through death can, in
Britain, be checked with the National Health Service
register, on which study members in the two earlier
birth cohorts are “flagged” so that death certification
is notified to the study. In other countries similar
methods of checking against files of the deceased may
be possible (see Death Indexes).

Attrition in birth cohort studies through emigra-
tion, refusal, and loss of contact distort the represen-
tation of the study population. Distortion is caused
also by inward migration. The 1946 birth cohort, for
example, represented at age 43 years the native born,
legitimate population, but not those who had been
illegitimately born (4% of those born in the chosen
week), nor the 5% of the British population of the
same age as cohort members at 43 years who (in
1989) were not native born. The 1958 cohort aug-
mented the population selected at birth by including
in data collections at ages 7, 11, and 16 years all the
children born in the sampled week, even if they had
not been included in the original study of births.

Topics of Study

Unique Assets of Prospective Studies from Birth

Two groups of assets of birth cohort studies are
conferred by their design. The first is an advantage
of having information on individual developmental
time passing, and the second is associated with the
individual’s experience of historical time.

First are assets conferred by prospective data col-
lection. This method provides information on the
sequence of events, which is essential to the under-
standing of causation, and of risk and protective
factors. It also provides information which cannot
be gained on all cohort members, or even at all in
retrospect, or from records – for example, cognitive
scores, and information on attitudes, hopes and aspi-
rations, growth, and behavior. This includes informa-
tion on individuals’ physical and mental change over
time, and exposure to illness risk. Birth cohorts that
are general population samples can provide viable
denominator as well as numerator information, and
therefore the relative and absolute risks, the effects
of differential mortality, and the heterogeneity of out-
comes of the hypothesized risk can all be calculated
with some accuracy.

The second asset of birth cohort studies con-
ferred by their design is that their populations have

passed through known historical times. Thus, for
example, the earliest British birth cohort was born
at a time of high likelihood of parental smoking,
lived the first eight years of life in circumstances
of wartime food rationing and the first two years
without a national health service, experienced selec-
tive entry to secondary schools, and lived all of
the infant and childhood years before the Clean Air
Act greatly reduced atmospheric pollution. The later-
born cohorts, by contrast, lived in less austere times,
with increasing awareness of the risks of smoking,
less atmospheric pollution from coal burning, and
comprehensive education. Members of each cohort
came to the historical high period of unemployment,
which began in the 1980s, at different career stages.
Members of the 1946 cohort lived through the early
postwar polio epidemics, and mothers of the 1958
cohort were pregnant during the influenza epidemic
in the winter of 1957–1958. These differences of
experience can be used to investigate the effects of
different kinds of risk and exposure to risk. For exam-
ple, a study of schizophrenia in the 1958 cohort
confirmed that exposure to influenza in pregnancy
was associated with raised risk of schizophrenia in
offspring [6]. Comparative studies of perinatal mor-
tality in the three British cohorts have been used to
examine the effects of changes in obstetric care over
the 24 year period [5], and these studies of maternity
and childbirth were why the national cohort studies
began.

Effects of Historical Time on Topics of Study

Although birth cohort studies are necessarily science-
led, they are also inevitably products of their time.
This is seen in the population size, which has been
conditioned in the past by available information tech-
nology and in the selection of data collected, as well
as in the initial decision to begin the studies, as
already described.

In retrospect, in a long running study it is easy to
see what appear later to be omissions in data col-
lection. For example, in the 1946 birth cohort no
information was collected during the early years on
parental smoking, because the recognition of its dam-
aging effects came almost a decade after the study
began. Similarly, in the same study the data on child
health collected by school nurses followed the pat-
tern of the current school medical examinations; with
hindsight, information on biological function, such as



Birth Cohort Studies 3

blood pressure and respiratory function, would have
been invaluable.

Some kinds of information were perceived as
important in the early years of the 1946 cohort, but
there were no suitable research instruments for their
collection. The importance of postweaning nutrition
in childhood, for instance, although recognized, was
very little studied in any of the British birth cohorts.
None of the British studies has information on the
parents’ relationships with one another during the
child’s early years, because it was thought to be
impossible to assess at earlier times, and later because
available instruments were too time-consuming. In
consequence, whilst each has been able to study the
associations of parental divorce and separation with
the child’s health and well-being, it has not been
possible to compare the apparent effects of divorce
with those of living in harmonious and disharmonious
family circumstances.

Not only is the choice of variables and measure-
ment instruments a product of the time, so also is
the general direction of the studies [27]. Current sci-
entific and political expediency are vital forces that
shape long-running studies. The 1946 cohort con-
tinued to be viable in the children’s first five years
because of current questioning of the value of home
visiting undertaken by nurses involved in mater-
nal and child welfare: the study was able to show
the good effects of such a service [33]. During the
cohort’s school years, the effectiveness of the selec-
tive process for entry to secondary school (at age 11
years) was questioned. By having measures of cogni-
tive attainment taken at age 8 years, three years before
the selection process, the 1946 study was able to show
that the method of selection was, as had been feared,
biased in favor of the middle-class child. Further-
more, the study showed that the origins of this prob-
lem lay not simply with the selection process itself,
but also in child–parent–teacher relationships from
the earliest times at school, and in parent attitudes
to education [7, 33]. Similarly, the 1958 cohort was
well-placed to undertake studies of primary school
education for the contemporary government enquiry
into education in primary schools [13, 23]. In more
recent times, the 1958 study has been ideally placed
to investigate the effects of unemployment and pre-
existing circumstances on mental and physical health
and on the acquisition of social capital in early adult-
hood, since cohort members were in their early years
of work when the national rise in unemployment

began [20]. The 1946 study is now contributing to
understanding the processes of aging, and is well-
placed to do so, not only because of its lifetime
data, but also because this population represents the
beginning of the boom years in the population of the
elderly.

Previous and Later Generations

The two older British birth cohorts have some infor-
mation on the parents of study members, particularly
their educational attainment, occupation, marital sta-
tus and stability, concern for the study child’s educa-
tion, and cause of death, as well as some information
about health. This has made it possible to study social
mobility, the effects of parental ill health on the life
of the study child, and intergenerational differences
in religious and political adherence, as well as the
effect of some important aspects of family of origin,
and cohort members’ educational attainment [25, 34].

The first two British cohorts also have information
on the offspring of cohort members. The 1946 study
interviewed mothers of all first children born to
male and female cohort members between ages 19
and 25 years. Information on these second-generation
children was collected at the end of the preschool
period, at age 4 years, and again at 8 years, because
the purpose of the study was to explore further
the finding in the previous generation that parental
concern for education was strongly associated with
attainment scores [32, 33]. The 1958 study, on the
other hand, interviewed a randomly selected one in
three of the cohort members who were parents at
age 33 years about all their children (n � 4000), to
compare differences in a wide range of aspects of
childhood in two generations.

Now that the 1946 cohort members are in middle
life, questions have been included at the interview at
43 years about their relationships with, and (where
necessary) care of, their elderly parents, who were
by that time aged 71 years, on average [34].

Although these studies of the two generations
adjacent to cohort members are useful for the study of
intergenerational relationships, their populations can-
not be regarded as representative of those generations.

Forward Planning

Forward planning is difficult in a long-term prospec-
tive study because the variables selected for current
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data collection will be used for two purposes. They
will be used as outcome measures in relation to data
collected at earlier times. They will also become pre-
cursor variables used to test hypotheses about risk. It
is therefore necessary, in planning data collections, to
consider the needs of future hypothesis testing. For
example, planning midlife data collection in the 1946
cohort has had to include consideration of require-
ments for testing hypotheses about health in later life.
For instance, current hypotheses about skeletal frac-
tures and repair in old age implicate smoking, diet,
and exercise in midlife, and so information on these
health-related habits will be collected. The risk is that
by the time the cohort reaches old age, hypotheses
will change, and new ideas will develop. Although
that is an inevitable problem, in practice, for biolog-
ical questions, measures of current function and its
change over time, and the preservation of blood sam-
ples, provide a range of data possibilities for future
use. In general, once a future biological, psycholog-
ical, or social outcome has been defined, then, the
demands of current hypotheses having been taken
into account, the most detailed possible measures
available should be taken to make future accurate
assessments of change, and not to constrain future
analyses.

In retrospect, it is clear that the 1946 study has
been fortunate. Investigations of midlife cognitive
function, for example, have been able to use data on
this topic collected in childhood, adolescence, and
early adulthood for the study of educational attain-
ment. Similarly, information on birth weight and
infant growth and development, originally collected
to study social variation in physical development, has
proved to be of unanticipated value in the study of
midlife blood pressure and respiratory function, and
of schizophrenia.

Other Sources of Data

In addition to cohort members themselves, and in
childhood their parents, birth cohort studies have
found it invaluable to collect information from other
sources, for four reasons.

First, confirmatory information can usefully be
collected, with permission, for example, from hos-
pital records and educational certification bodies.
Secondly, information can be collected to provide
another view of the circumstance. For instance, in the
1946 study, teachers’ comments added considerably

to the information given by cohort members and
by parents. Thirdly, information from other sources,
including census data, can provide information on an
area basis about exposure to such things as atmo-
spheric pollution and the nature of water supplies,
as well as local rates of unemployment, educational
attainment, and socioeconomic structure. The fourth
kind of information concerns the current social and
scientific context. In a long-running prospective study
it is difficult to know in retrospect the political and
scientific pressures and social concerns of the day
that affected the direction that the study took. They
are difficult to ascertain years later, because histo-
ries of the period are usually concerned with political
pressure and events rather than social and scien-
tific histories, although there are notable exceptions.
In trying to account for earlier choice of subjects,
measures, and direction of analyses, a study log-
book is needed to supplement such other sources as
reports of funding bodies, government enquiries, and
commissions.

Analysis

Coding

The effects of historical time in a long-running study
can also be problematic in terms of how information
is coded and stored. Classifications of illnesses and
socioeconomic position change over time, and it is
often necessary to recode information already coded,
and to retain two or more sets of classifications both
to study change over time and to be comparable with
current work in other studies.

Concepts of Analysis

Now that birth cohorts, historical cohorts, and other
forms of longitudinal studies have been collecting
data for 50 years and more, the long-term nature of
these investigations has brought a life-span perspec-
tive to analysis [15, 22, 31]. This has generated new
ideas about the nature of psychological and biolog-
ical aging, and raised the question of the role and
measurement of adaptation with age [2]. So far, this
has been largely a matter of psychological study, but
questions about variation in biological vulnerability
in relation to age are now being discussed in view
of the data available from prospective and historical
studies that encompass many years of life [3].
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The most commonly used approach to analy-
sis in birth cohort and other long-term investiga-
tions is concerned with variables, and the most
commonly used method is linear regression. More
recently, structural equations models have also
been used to handle interactions between variables
that measure function or environment [9]. Alter-
natively, a person-oriented, as compared with a
variable-oriented, approach has been advocated [4,
18]. This method compares individuals’ profiles of
characteristics determined by analysis of clusters or
patterns (see Cluster Analysis of Subjects, Hier-
archical Methods; Cluster Analysis of Subjects,
Nonhierarchical Methods). Magnusson and Berg-
man [18] illustrate this approach in comparison with
variable-based analysis, which in a study of precur-
sors of crime and aggression would show how

each of a number of single aspects of individ-
ual functioning – aggressiveness, hyperactivity, low
school motivation, poor peer relations – is signif-
icantly related to various aspects of adult malad-
justment. . . .Applying the pattern approach to this
research area, the focus instead becomes: what typi-
cal patterns or configurations of adjustment problems
of this kind actually exist in childhood; how are
major adjustment problem areas in adult age inter-
connected; and what are the relationships between
typical problem patterns in childhood and typical
problem patterns in adulthood?

This account of the nature of birth cohort stud-
ies cannot describe all aspects, nor refer to every
study. Broader summaries and reviews are given by
Sontag [30], Mednick et al. [19], Schneider & Edel-
stein [28], and Young et al. [37].
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Birth Defect Registries

Birth defects registries can be used to determine the
newborn prevalence of birth defects and they can
provide cases for studies [3]. Both of these functions
are important foundations for the prevention of birth
defects.

A birth defects registry is an organized database
containing information on individuals born with spec-
ified congenital disorders, ascertained from a defined
source. Birth defects are a heterogeneous group of
conditions, present at birth, and not generally con-
sidered to include injuries suffered in and around
the birth process. In the US, the March of Dimes
Birth Defects Foundation defines a birth defect as “an
abnormality of structure, function or body metabolism
(inborn error of body chemistry) present at birth that
results in physical or mental disability, or is fatal” [9].

There are more than 4000 known types of birth
defects. These include conditions ranging from con-
genital malformations of unknown etiology, to genetic
conditions due to abnormal genes or chromosomes,
to conditions due to damage to the developing fetus
related to prenatal maternal exposure to hazardous
environmental agents. Thus, this term includes a
range of disorders such as cleft lip and palate, heart
malformations, clubfoot, Down syndrome, phenylke-
tonuria (PKU), fragile X-linked mental retardation,
fetal alcohol syndrome and the thalidomide syn-
drome. Not all of these conditions are necessarily
medically or cosmetically significant. Some “minor”
defects, such as small birthmarks or skin tags, are of
no significant consequence.

Causes of Birth Defects

Birth defects may be caused by genetic or environ-
mental factors (including drugs and chemicals, infec-
tious agents, physical agents, and maternal health or
nutritional factors) acting singly or in combination.
The causes of more than half of all birth defects are
unknown at present. Collectively, birth defects are a
major cause of disability and morbidity, and in the
US, represent the leading cause of infant mortality.

Information in Birth Defects Registries

Birth defects registries systematically collect infor-
mation such as identifiers and demographic infor-
mation, description of the defects present, family

history, history of the pregnancy (including prenatal
exposures), and other information potentially related
to risk factors. This information may be gathered
from vital records, hospital or clinic records, or other
sources of case ascertainment. Registries that rely
upon records collected for other purposes (e.g. birth
certificates) are sometimes referred to as using “pas-
sive” methods of ascertainment, while those that use
multiple sources and collect information from patient
records are said to use “active” ascertainment. Infor-
mation stored in birth defects registries is typically
stored as both paper files and in electronic systems,
often using a relational database. Considerable effort
is expended to ensure data security, as well as the
confidentiality and privacy of the individuals and
families who are participants in the registry.

Usually, information collected is restricted to a
defined age range such as the neonatal period or
the first year of life. Indeed, since many defects are
not identified before neonatal hospital discharge, the
longer the ascertainment period used, the higher the
frequency of children identified with birth defects in a
particular birth cohort. Systems actively ascertaining
cases throughout the first year of life typically find
that 3.5%–5% of infants have such conditions.

Birth defects registries generally collect cases
from a defined population, such as that in a spec-
ified geographic area. When they do, the registry
can use birth certificate data collected for govern-
mental purposes on all babies as the denominator.
Thus, it becomes possible to determine the new-
born prevalence of birth defects in this geographic
area. Such population-based registries also permit
case–control studies. Many countries have national
registries. These programs share information through
an International Clearinghouse for Birth Defects
Monitoring Programs [4]. This organization has con-
tributed to standardized terminology and methods
and has helped in the organization of international
collaborative research efforts. Non population-based
registries can provide cases for studies that do not
need a population base. Such collections of patients
have been particularly useful for studies seeking to
identify the gene responsible for a single gene cause
of a birth defect.

Uses of Birth Defects Registries

Registries that are population-based permit the rates
of birth defects to be determined. Such rates can be
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monitored to look for changes that would suggest
a newly introduced environmental/drug agent. It has
been argued that had there been registries established
prior to the thalidomide epidemic, the cause may have
been determined sooner than it was. On a more pos-
itive note, when there is the possibility to prevent
birth defects like rubella and folic-acid-preventable
spina bifida and anencephaly, monitoring the trends
can determine the effectiveness of prevention pro-
grams. There is currently great interest to determine
whether or not the folic acid fortification plan in
the US will provide full protection from folic-acid-
preventable birth defects.

Given that we do not know the causes of the
birth defects in the majority of infants born with
them, a major function of birth defects registries has
been to supply cases for studies seeking to find the
causes of birth defects. The most common kind of
epidemiologic study seeking to find causes is the
case–control study. In these studies the exposures
and family history of cases are compared with those
of controls selected from the same population from
which the case is drawn.

One notable example of such a study is the one
from France that found that cases of spina bifida were
much more likely to have been exposed to valproic
acid than controls. This study led rapidly to a health
warning in the US [6]. Another useful example is pro-
vided by the Atlanta Case–Control Study conducted
by the US Centers for Disease Control and Preven-
tion (CDC). This study provided the opportunity to
examine possible associations between many kinds
of birth defects and many drug and environmental
exposures. The protective association between reg-
ular multivitamin consumption and the reduction in
spina bifida and anencephaly shown in Atlanta and
other observational studies, provided critical data for
public health policy [8]. These studies led to a rec-
ommendation by the US Public Health Service (PHS)
that women of reproductive age consume 400 µg of
synthetic folic acid daily, rather than the 4000 µg
that was used in the randomized controlled trial [2,
7]. Because data on so many exposures were col-
lected, there remain data yet to be analyzed that may
provide insight to other etiologies of these and other
birth defects [5].

Recently, investigators have sought to improve
the search for causes of birth defects by using both
molecular markers of exposure and outcomes [10].
With the genome project soon to provide data on all

genes, investigators will have even more powerful
tools to try to understand the interplay between envi-
ronmental and genetic risk factors in the cause of
birth defects. Thus, registries are a rich resource for
clinical and family studies, for health outcomes and
services research, and for public health planning and
programming [1].

Authority for Operation of Birth Defects
Registries

Birth defects registries are generally established and
operated under the authority of public health agen-
cies. In the US, authority for such public health
surveillance programs is generally the responsibility
of the states. As a consequence, there are specific
statutes authorizing such a registry or surveillance
system, and there is considerable variation in specific
goals, methods of financing, operational policies, and
scope of disorders covered. Furthermore, other state
and federal policies (e.g. health information and pri-
vacy policies) affect the type and circumstances under
which research can proceed.
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Birthweight

The World Health Organization (WHO) defines
birthweight as the first weight of the fetus or baby
after birth. Although parents commonly include the
baby’s birthweight on the cards they send to friends
and relatives to tell them of the new arrival, there
have been times when people considered it unlucky
to weigh babies [1].

Throughout the nineteenth century, “prematurity”
was often cited as a cause of death among babies,
but attempts at definition do not appear to have been
made before the twentieth century. In 1906, George
Newman made a distinction between prematurity and
immaturity, but quoted views that prematurity should
be defined as having a birthweight under 2500 g or
perhaps 3000 g [3].

Arvo Ylppo, a Finnish doctor working in Ger-
many, suggested in 1919, in his review “On the
physiology, care and fate of newborn babies”, that
“premature birth” should be defined as having a
birthweight of 2500 g or less. He acknowledged, how-
ever that the term frühgeburt, or “premature birth”,
was inappropriate and suggested instead the term
unreifes kind, or “immature child”. Despite the fact
that he acknowledged that the cutoff point of 2500 g
was arbitrary and not necessarily related to other
indicators of immaturity, it was adopted internation-
ally as a definition of “prematurity” [6]. Countries
using imperial weights substituted the corresponding
weight of 5 1

2 lb.
By the 1970s the limitations of this definition of

“prematurity” were becoming increasingly apparent.
To distinguish between short gestation and slow fetal
growth, separate definitions of “low birthweight” and
“preterm” birth (see Gestational Age) were pub-
lished in 1977 in the ninth revision of the Inter-
national Classification of Diseases (ICD) [4] and
repeated in the tenth revision [5]. At the same time
the definition was changed from 2500 g or less to
under 2500 g. Because of “digit preference”; that is,
the tendency to choose round numbers, the change
affected the continuity of time series [2]. WHO rec-
ommends that birthweight should preferably be mea-
sured within the first hour of life and the actual
weight should be recorded to the degree of accuracy
to which it is measured [5]. The classifications are as
follows.

1. Low birthweight: less than 2500 g; that is, up to
and including 2499 g.

2. Very low birthweight: less than 1500 g; that is,
up to and including 1499 g.

3. Extremely low birthweight: less than 1000 g; that
is, up to 999 g.

The mortality of babies varies considerably
according to birthweight, with very high mortality
rates among very small babies (see Infant and
Perinatal Mortality). On average, babies from
multiple births are lighter than singletons and a higher
proportion of them have low birthweights. Average
birthweight and the proportion of low-weight births
also varies between socioeconomic groups. Among
babies born to less favored sections of populations
there is a tendency for lower mean birthweights
and higher proportions of low-weight births than
among babies born in more favored circumstances.
There are also differences between ethnic groups.
Studies using record linkage have shown successive
babies born to the same women tend to have similar
birthweights.

Research done by people concerned with evalu-
ation of maternity care tends to center on the sur-
vival rates of low and very low birthweight babies
and the health status (see Quality of Life and
Health Status) of the surviving children. Among
epidemiologists there is currently a keen inter-
est in associations between the health of adults
and their birthweight. The relative importance of
circumstances at birth and in later life is hotly
debated.
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Biserial Correlation

Biserial correlation coefficients are measures of bi-
variate association that arise when one of the obser-
ved variables is on a measurement scale and the other
variable takes on two values. There are several bi-
serial coefficients, with appropriate choices based on
the nature of the underlying bivariate population. Two
common forms are the Pearson biserial correlation
(hereafter referred to as the biserial correlation) and
the point biserial correlation.

Pearson [9] developed the biserial correlation
to estimate the product moment correlation ρYZ

between two measurements Y and Z using data where
Z is not directly observed. Instead of Z, data are
collected on a categorical variable X which takes
on the values X = 1 if Z exceeds a threshold level,
and X = 0 otherwise. In many applications, the latent
variable Z is conceptual rather than observable. The
actual values used to code X do not matter, provided
the larger value of X is obtained when Z exceeds the
threshold. The point biserial correlation is the product
moment correlation ρYX between Y and X.

We use data adapted from the study by Karelitz
et al. [7] of 38 infants to illustrate ideas. Table 1
gives a listing of the data. The categorical variable
X corresponds to whether the child’s speech devel-
opmental level at age three is high (X = 1) or low
(X = 0). The child’s IQ score at age three is Y . The
biserial correlation ρYZ is a reasonable measure of
association when X can be viewed as a surrogate
for an underlying continuum Z of speech levels. The
point biserial correlation ρYX might be considered
when the scientist is uninterested in the relationship
between IQ and the underlying Z scale, or cannot
justify the existence of such a scale.

The remainder of this article discusses methods
for estimating the point biserial and the biserial
correlation. Other forms of biserial correlation are
briefly mentioned.

The Point Biserial Correlation

Suppose that a sample (y1, x1), (y2, x2), . . . , (yn, xn)

is selected from the (Y, X) population. Let sYX be the
sample covariance between the yis and the xis, and
let s2

Y and s2
X be the sample variances of the yis and

the xis, respectively. The population correlation ρYX

is estimated consistently by the sample point biserial
correlation

rYX = sYX

sY sX

= (y1 − y0)

sY

[p̂(1 − p̂)]1/2, (1)

where y1 and y0 are the average y values from
sampled pairs having xi = 1 and xi = 0, respectively,
and p̂ is the observed proportion of pairs with xi = 1.

The sampling distribution of rYX is known only for
certain models. Tate [12] derived the distribution of
T = (n − 2)1/2rYX/(1 − r2

YX)1/2 under the assump-
tion that the conditional distributions of Y given
X = 1 and given X = 0 are normal with identical
variances. Tate [12] noted that T is equal to the usual
two-sample Student’s t statistic for comparing the
means of the y samples having xi = 1 and xi = 0.
The hypothesis ρYX = 0 is usually tested using this
standard t test. Tate’s [12] results are more complex
for testing nonzero values of ρYX. In large samples,
hypothesis tests and confidence intervals for ρYX can
be based on a normal approximation to rYX with mean
ρYX and estimated variance

v̂ar(rYX) = (1 − r2
YX)2

n

{
1 − 1.5r2

YX + r2
YX

4p̂(1 − p̂)

}
.

(2)

Das Gupta [5] generalized Tate’s [12] results to non-
normal populations.

For the IQ data, the distributions of the IQ
scores for the samples with X = 0 and X = 1 are
slightly skewed to the right and have similar spreads.
The mean IQ scores in the two samples are y1 =
2779/22 = 126.318 and y0 = 1676/16 = 104.750.
With p̂ = 22/38 = 0.579 and sY = 19.383, we obtain

Table 1 IQ data for a sample of 38 children: X = speech developmental level (0 = low; 1 = high) and Y = IQ score

X = 0 Y : 87 90 94 94 97 103 103 104 106 108 109 109
109 112 119 132

X = 1 Y : 100 103 103 106 112 113 114 114 118 119 120 120
124 133 135 135 136 141 155 157 159 162
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rYX = 0.557, ŝd(rYX) = 0.103, and T = 4.024 under
Tate’s assumptions.

A limiting feature of the point biserial correla-
tion is that the range of ρYX is smaller than the
usual reference range of −1.0 to 1.0. For example,
the magnitude of ρYX cannot exceed 0.798 when Y

is normally distributed. This restriction can lead to
misinterpreting the strength of the sample correla-
tion. Shih & Huang [10] examined this problem in
a general setting, and offer a useful method to cali-
brate point biserial correlations.

Pearson’s Biserial Correlation and
Generalizations

Suppose that X is obtained by categorizing a con-
tinuous variable Z with X = 1 if Z > ω and X = 0
otherwise, where ω is a fixed but possibly unknown
threshold. Let f (t) and F(t) be the pdf for Z and
the cdf for Z, respectively. We assume without loss
of generality that E(Z) = 0 and var(Z) = 1. The
threshold ω is the upper pth percentile of Z, i.e.
ω = F−1(1 − p), where

p = Pr(X = 1) = Pr(Z > ω) = 1 − F(ω). (3)

If the regression of Y on Z is linear, then the
biserial correlation and the point biserial correlation
are related by

ρYZ = ρYX

[p(1 − p)]1/2

λ(ω, F )
, (4)

where

λ(ω, F ) = E(XZ) =
∫ ∞

ω

tf (t) dt =
∫ ∞

ω

t dF(t).

(5)

The linear regression assumption is satisfied when
(Y, Z) has a bivariate normal distribution, a common
assumption, but holds for other elliptically symmet-
rical bivariate distributions as well.

Eq. (4) provides a way to estimate the biserial
correlation from a sample of (yi , xi)s when the cdf of
Z is known. Bedrick [2] proposed a simple method-
of-moments estimator,

r̃YZ = rYX

[p̂(1 − p̂)]1/2

λ(ω̂, F )
, (6)

where ω̂ = F−1(1 − p̂) is the estimated threshold
based on the proportion p̂ of sampled pairs with xi =
1. If Z is normally distributed, then (6) is Pearson’s
biserial estimator

rPb = rYX

φ(ω̂)
[p̂(1 − p̂)]1/2 = (y1 − y0)

sY φ(ω̂)
p̂(1 − p̂),

(7)

where φ(t) is the standard normal pdf.
Bedrick [2] showed that the asymptotic distribu-

tion of r̃YZ is normal with mean ρYZ and gave an
expression for the large sample var(r̃YZ). In earlier
work, Soper [11] gave an estimator for var(rPb) when
(Y, Z) is normal:

v̂ar(rPb) = 1

n

{
r4

Pb + r2
Pb

φ2(ω̂)
[p̂(1 − p̂)ω̂2

+ (2p̂ − 1)ω̂φ(ω̂) − 2.5φ2(ω̂)]

+ p̂(1 − p̂)

φ2(ω̂)

}
. (8)

Unlike the point biserial estimator, the magnitudes
of rPb and r̃YZ can exceed 1.0. For the IQ data,
rPb = 0.694 and ŝd(rPb) = 0.135.

Brogden [3] and Lord [8] generalized Pearson’s
estimator by relaxing the assumption that the distri-
bution of Z is known. Bedrick [1, 2] gave a detailed
study of Brogden and Lord’s estimators. Cureton [4]
and Glass [6] proposed versions of Brogden’s esti-
mator that are based on the ranks of the y sample.

As a final point, note that a maximum likelihood
estimator (MLE) of ρYZ can be computed iteratively
whenever a joint distribution for (Y, Z) can be
specified. Tate [13] proposed the MLE of ρYZ as
an alternative to Pearson’s biserial estimator with
bivariate normal populations. Although MLEs are
fully efficient, Bedrick’s [1, 2] results show that
the asymptotic variances of Lord’s estimator and
the MLE are often close in normal and nonnormal
populations.

References

[1] Bedrick, E.J. (1990). On the large sample distributions
of modified sample biserial correlation coefficients,
Psychometrika 55, 217–228.

[2] Bedrick, E.J. (1992). A comparison of modified and
generalized sample biserial correlation estimators, Psy-
chometrika 57, 183–201.



Biserial Correlation 3

[3] Brogden, H.E. (1949). A new coefficient: application
to biserial correlation and to estimation of selective
inefficiency, Psychometrika 14, 169–182.

[4] Cureton, E.E. (1956). Rank-biserial correlation, Psy-
chometrika 21, 287–290.

[5] Das Gupta, S. (1960). Point biserial correlation and its
generalization, Psychometrika 25, 393–408.

[6] Glass, G.W. (1966). Note on rank biserial correla-
tion, Educational and Psychological Measurement 26,
623–631.

[7] Karelitz, S., Fisichelli, V.R., Costa, J., Karelitz, R. &
Rosenfeld, L. (1964). Relation of crying activity in early
infancy to speech and intellectual development at age
three years, Child Development 35, 769–777.

[8] Lord, F.M. (1963). Biserial estimates of correlation,
Psychometrika 28, 81–85.

[9] Pearson, K. (1909). On a new method of determining
the correlation between a measured character A and a
character B, Biometrika 7, 96–105.

[10] Shih, W.J. & Huang, W.-H. (1992). Evaluating correla-
tion with proper bounds, Biometrics 48, 1207–1213.

[11] Soper, H.E. (1914). On the probable error for the biserial
expression for the correlation coefficient, Biometrika 10,
384–390.

[12] Tate, R.F. (1954). Correlation between a discrete and a
continuous variable. Point-biserial correlation, Annals of
Mathematical Statistics 25, 603–607.

[13] Tate, R.F. (1955). The theory of correlation between
two continuous variables when one is dichotomized,
Biometrika 42, 205–216.

(See also Association, Measures of; Pearson, Karl)

EDWARD J. BEDRICK



Bivariate Distributions

The study of the joint statistical behavior of pairs of
random variables gives rise to bivariate distribution
theory. For instance, Halperin et al. [1] examine the
effect of systolic blood pressure and the number of
cigarettes smoked per day on the probability of death.
In this case the random variables of interest are the
systolic blood pressure and the number of cigarettes
smoked per day. While the ideas involved in the
study of bivariate distributions follow along the lines
of univariate distributions, the mathematical devel-
opment of the results is more complicated. Three
distinct types of bivariate distributions that arise in
practical situations are identified and presented in this
article.

Continuous Distributions

Random variables (X1, X2) are said to have a
continuous distribution if and only if Pr{Xi lies
in the infinitesimal interval (xi , xi + dxi) for i =
1, 2} = f (x1, x2) dx1 dx2, where f (x1, x2) is called
the probability density function (pdf) of (X1, X2)

at the point (x1, x2) lying in the two-dimensional
Euclidean space. Alternatively, it is possible to
represent the probability that (X1, X2) lies in the
two-dimensional region I as

∫ ∫
f (x1, x2) dx1 dx2,

with the integration running over the region I .
The moment generating function (mgf) is defined
by M(t1, t2) = ∫ ∞

−∞
∫ ∞
−∞ t

x1
1 t

x2
2 f (x1, x2) dx1 dx2, with

its existence requiring that {−h1 < t1 < h1, −h2 <

t2 < h2} (see Hogg & Craig [2, p. 97]). As in
univariate distributions, the mgf has a one-to-one
relationship with the pdf. The marginal distributions
of X1 and X2 have the mgfs given by M(t1, 0)

and M(0, t2), respectively. A necessary and sufficient
condition for the independence of X1 and X2 is that
M(t1, t2) = M(t1, 0)M(0, t2). Under the assumption
of the existence of the mgf, the moments of
(X1, X2) can be determined as E[Xr

1X
s
2] = the(r, s)th

mixed partial derivative of the mgf evaluated with
each of the arguments set equal to zero. The
inversion of the mgf is mathematically complicated,
involving, in most instances, the use of transform
theory. However, in many practical problems it is
of a recognizable form leading to a simple way
for its inversion. The mgf can be used to find

the distributions of functions of (X1, X2). Thus,
for example, for a random sample of size n the

mgf of
(∑i=n

i=1 X1i ,
∑i=n

i=1 X2i

)
is [M(t1, t2)]n, while

that of {X1, X2} is [M(t1/n, t2/n)]n. At this point
we introduce a few special types of continuous
distributions:

1. The bivariate normal distribution. The stan-
dard form of the bivariate normal distribution
is defined by the pdf f (z1, z2) = c exp{−[z2

1 −
2ρz1z2 + z2

2]/2(1 − ρ2)]}, where the constant
c = 1/[2π(1 − ρ2)]1/2. For this form of distribu-
tion, the mean of each of the random variables
is zero, the variances are each equal to one, with
the coefficient of correlation ρ. A more general
form of the distribution arises when we replace
zi by (xi − µi)/σi , i = 1, 2, and c by c/σ1σ2.
It can shown that the means in this case are µi

and the standard deviations are σi for i = 1, 2.
The coefficient of correlation, being location and
scale-free, remains at ρ. The distribution enjoys
the regenerative property in that if (X1i , X2i)

are n independent random variables having
a standard bivariate normal distribution, then[
U = ∑n

i=1 X1i/
√

n, V = ∑n
i=1 X2i/

√
n
]

also
have the standard bivariate normal distribution.
Similar results can be established for the gen-
eral bivariate normal distribution. In each case
the marginal distributions are univariate normals.
The bivariate normal distribution finds extensive
applicability in studies involving two character-
istics. Hutchinson & Lai [3, Chapter 19] have
listed a wide variety of applications to medical
research of the bivariate normal distribution and
its modifications.

2. The exponential distribution. While a variety
of forms of this distribution have been sug-
gested in the literature, their applicability is, in
all cases, directed toward a study of the reliabil-
ity of competing systems. A widely used form
is that of Marshall & Olkin [5]. Unfortunately,
the pdf is quite complicated and as such will not
be reproduced here. The cumulative distribution
function is given by F(x1, x2) = exp[−λ1x1 −
λ2x2 − λ3 max(x1, x2)]. An interesting applica-
tion of the distribution in the medical context
is given by Rai & Van Ryzin [6]. They consider
in a quantal response context, the tolerance dis-
tribution for the occurrence of bladder and liver
tumors as a consequence of exposure to various



2 Bivariate Distributions

levels of a carcinogen (see Hutchinson & Lai [3,
Chapter 9]).

Discrete Distributions

Random variables (X1, X2) are said to have a discrete
distribution if and only if the probability of the
event {X1 = x1 and X2 = x2} is nonzero and is
equal to f (x1, x2), the probability function (pf) at
(x1, x2), where x1 and x2 each assumes values over
a finite set or a countable infinity of points in the
Euclidean space. However, usually, the pf is taken
to be positive over the non-negative integer values
of x1 and x2. In most discrete distributions the
probability generating function (pgf) is preferable
because it has a simpler form than the mgf. The pgf
is given by

∏
(t1, t2) = ∑

x2=0

∑
x1=0 t

x1
1 t

x2
2 f (x1, x2),

which can be readily seen to exist for all values of
each of t1 and t2 in the interval [−1, 1]. There is
a one-to-one relationship between the pgf and the
pf. Thus, the pf at (r, s) can be determined from
the pgf either as the ratio {[(r, s)th mixed partial
derivative of the pgf evaluated at t1 = t2 = 0]/r!s!}
or as the coefficient of t

x1
1 t

x2
2 in an expansion of the

pgf in powers of t1 and t2. In addition, it is possible
to determine, E[x(r)

1 x
(s)
2 ], the factorial moment (see

Moments) of order (r, s), from the same mixed
partial by setting t1 = t2 = 1. The marginal pgfs
are given by

∏
(t1, 1) and

∏
(1, t2), respectively. A

necessary and sufficient condition for independence
is

∏
(t1, t2) = ∏

(t1, 1)
∏

(1, t2). Two of the most
commonly occurring discrete distributions are the
bivariate Poisson and the bivariate Neyman type A
(see Accident Proneness). Reference may be made
to Kocherlakota & Kocherlakota [4] for a discussion
of the bivariate discrete distributions and their various
forms.

Mixed Distributions

Although in most situations both of the random vari-
ables have distributions that are similar in form, in
some instances one of the random variables could
have a continuous distribution while the other is of
a discrete form. The example cited at the beginning
of this article typifies this situation. In this case the
blood pressure has a continuous distribution while
the number of cigarettes smoked per day is a discrete
random variable. In situations of this type we may
be particularly concerned with the regression of the
continuous variable on the discrete variable.
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Bivariate Normal
Distribution

The bivariate normal distribution of the random vari-
ables X and Y has the joint density function

φ(x, y) = [2πσ1σ2(1 − ρ2)1/2]−1

× exp{−1/2[(x − µ1)
2/σ 2

1

− 2ρ[(x − µ1)/σ1][(y − µ2)/σ2]

+ (y − µ2)
2/σ 2

2 ]/(1 − ρ2)},

for x and y defined over the entire plane −∞ <

x < ∞ and −∞ < y < ∞. The five parameters
determining the location, dispersion, and orientation
of the bivariate normal probability surface are the
means E(X) = µ1 and E(Y ) = µ2, the variances
var(X) = σ 2

1 and var(Y ) = σ 2
2 , and the correlation

corr(X, Y ) = ρ. For the density to be defined it is
necessary that −1 < ρ < 1. Otherwise, when ρ =
±1 the distribution is singular, and the density
function does not exist. The density is unimodal,
with its peak at x = µ1 and y = µ2. The contours
of planes through the density at constant elevations
are elliptical, since each has the form

(x − µ1)
2

σ 2
1

− 2ρ(x − µ1)(y − µ2)

σ1σ2

+ (y − µ2)
2

σ 2
2

= constant.

The random variable defined by the quadratic form
has the chi-squared distribution with two degrees of
freedom. When ρ > 0 the major axes of the ellipses
have positive slopes in the (X, Y ) plane, and negative
orientation if ρ < 0. If ρ = 0 the axes of the ellipses
are parallel with the coordinate axes of X and Y .
When ρ = 0 and σ 2

1 = σ 2
2 , the concentration ellipses

are circular.
The transformations Z1 = (X − µ1)/σ1 and Z2 =

(Y − µ2)/σ2 give the standardized bivariate normal
distributions with zero means, unit variances, and the
single parameter ρ. The orthogonal transformation
of the standardized variates,

[
U1

U2

]
=

[ √
2/2

√
2/2

−√
2/2

√
2/2

] [
Z1

Z2

]
,

leads to the independent random variables U1 and U2,
regardless of the value of ρ. If ρ > 0, U1 corresponds
to the major axis of the concentration ellipse of the
density of Z1 and Z2, while U2 is the minor axis
variate.

The bivariate normal distribution arises from the
central limit theory for a sequence of indepen-
dent pairs of correlated random variables. It was
first proposed in 1808 by Adrain [1] in the “cir-
cular” case of equal variances and zero correla-
tion. Laplace [5] published a general normal density
expression in 1812, based on his earlier work on
the central limit theorem. Some 70 years later, Gal-
ton [3] noticed a pattern of concentric ellipses in
tables of bivariate data. His request of the mathe-
matician J.D.H. Dickson [2] for a distribution with
that property led to the bivariate normal density.

Properties

The random variables X and Y are independent if
and only if ρ = 0. The marginal distributions of X

and Y are univariate normal with means and vari-
ances as in the bivariate distribution. The conditional
distribution of Y for X = x is also normal, with
mean E(Y |X) = µ2 + (ρσ2/σ1)(x − µ1) and vari-
ance var(Y |x) = σ 2

2 (1 − ρ2). The conditional mean,
or regression function (see Regression), is linear in
the values x of the fixed variable. Furthermore, the
conditional variance is constant for all x. Those prop-
erties are the basis for regression analysis when both
variables are random and are jointly bivariate nor-
mally distributed.

Johnson & Kotz [4] have given an extensive
treatment of the history, properties, and inferential
aspects of the bivariate normal distribution. They
include several plots of the bivariate normal density
surface for different values of ρ.

Probability Calculations

Tables were published by the National Bureau of
Standards [7] of the probabilities

L(h, k, ρ) =
∫ ∞

h

∫ ∞

k

φ(x, y) dy dx

= Pr[(X > h) ∩ (Y > k)]
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for bivariate normal (X, Y ). Another related function
V (h, k) for computing probabilities over triangular
and polygonal regions is also tabulated. Owen [8]
published tables of a slightly different version of
V (h, k). Zelen & Severo [9, 10] expressed L(h, k, ρ)

in terms of L(h, 0, ρ), and provided charts of the
latter function. Mehta & Patel [6] have developed
statistical computer software that will calculate the
probability function L(h, k, ρ).
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Blinding or Masking

The term blinding (sometimes masking) applies pri-
marily to clinical trials but is also commonly and
increasingly used with reference to analytic epidemi-
ologic studies. Most explanations of the term are
in the context of clinical trials, and the majority of
this article is focused towards trials, although var-
ious sections also describe blinding epidemiologic
studies.

The fundamental idea in blinding is that the study
patients, the people involved with their management,
and those collecting the clinical data from stud-
ies should not be influenced by knowledge of the
assigned treatment or, in an epidemiologic study, by
knowledge of the main risk factors or outcomes. For
example, if the factor being investigated is a treat-
ment in a prospective trial, then neither patients, their
physicians, nor those assessing their medical con-
dition should know which treatment any particular
patient is or has been receiving. It is not sufficient
to argue that any individual patient cannot know the
treatment identity because they only see their own
medication and cannot compare it with medication
given to other patients. If this were the case, a study
comparing red tablets with green capsules could be
described as patient blind. It is true that a patient
given red tablets would not know that other patients
may be given green capsules but this would not be
sufficient to describe a study as blinded. As another
example, if the factor being investigated is exposure
to an environmental toxin in a case–control study,
then whether a subject is a case or a control should
be unknown to those who are collecting the data on
exposure.

Reasons for Blinding

Patient Bias

Blinding patients to which treatment they have rece-
ived in a clinical trial is particularly important when
many of the parameters are subjective both in patient
response and with more formal clinical assessment
of response. One reason for this is described as
the “placebo effect”. It is a rather broad and ill-
defined term encompassing a variety of responses that
occur when patients are being “treated” with inactive
placebo medication that, theoretically, should have

no therapeutic impact. Use of the term is so broad
that it covers psychological responses that should
be expected as well as physical ones that should
not. Various studies have described how placebos
can give both positive (therapeutic benefit) and neg-
ative (adverse events) effects. Moscucci et al. [13]
describe how, in an obesity trial of active medi-
cation (phenylpropanolamine) vs. placebo, some of
the patients randomized to placebo indicated that
they had improved control of their appetite. One
area prone to such effects is antiemetic (control of
nausea and vomiting) studies where the main out-
come can be strongly influenced by psychological
processes. Another obvious example is trials in psy-
chiatry. Even in therapeutic areas where assessments
are more objective, Schulz et al. [18] have reported
that trials that are not double-blinded are more likely
than blinded studies to show benefit (falsely) for the
active intervention group.

Physician Bias in Clinical Management

Where possible, the managing physician should be
blinded to prevent any possible bias in patient man-
agement. For example, the decision to withdraw
patients from a study could be influenced by knowl-
edge of which treatment they are receiving. If there
has been a poor response and it is known that the
patient has been assigned to placebo, then there could
be a greater tendency to withdraw the patient. If
adverse events are present and it is known that the
patient has been assigned to active therapy, then a
similar increased tendency to withdraw the patient
may exist.

Another aspect of patient management that could
be influenced by knowledge of which treatment a
patient is receiving is the decision regarding dose
adjustment. Similarly, a general problem exists in
the comparison of complementary (or “alternative”)
medicine with other complementary medicines or
with “conventional” medicine. Anthony [2] high-
lights a fundamental problem in this area of research,
that often complementary medicine, properly admin-
istered, is designed individually for each patient, so
that blinding the managing physician is impossible. In
such cases it is best to ensure that the person assessing
the response is blinded.
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Bias in Evaluation

Whenever there is subjective judgment in evaluating
clinical response, it is preferable to blind the per-
son making the evaluation. In the field of periodontal
trials, Imrey & Chilton [9] describe the need for
blinding, because blinded evaluation greatly increases
credibility and usually only marginally increases
costs.

In guidelines for trials in scleroderma, White
et al. [22] briefly but firmly state the need for blind-
ing of clinical evaluations. They state that “assess-
ments of global functioning and functional disability
cannot be assured to be unbiased”. Their terminol-
ogy (the words “cannot be assured”) is pertinent
since unblinded assessments do not necessarily lead
to biased assessments, but the lack of blinding means
that a lack of bias cannot be assumed: credibility and
reliability are both compromised.

Bias in Data Management

Even away from the patient and clinic environment,
bias is still possible and is a potentially impor-
tant source of error within the various stages of
data management. Stages include coding of adverse
events, interpretation of ambiguous handwriting, and
decisions on whether or not to query unlikely (but
possibly correct) data values. Beyond the initial
aspects of data management, bias can be introduced
in the choice of statistical methods that are used or
presented (or even in the order in which they are pre-
sented) and, indeed, in the choice of style and content
of presentation of the data, regardless of any formal
statistical methodology that may be applied. For these
reasons, some statisticians consider that every detail
of data presentation and analysis should be specified
before the database is unblinded. Others disagree and
argue that the most effective presentation and anal-
ysis requires complete knowledge and understanding
of the data. This, necessarily, includes knowledge of
the treatment groups.

Bias in Decisions Regarding Stopping a Trial

If interim analyses are planned and a data monitoring
committee (see Data and Safety Monitoring) is
to review accumulating trial results with a view
to recommending continuing or stopping a study,
Rockhold & Enas [15] suggest that the committee

be presented with results in the form of “treatment
A” and “treatment B” without revealing which is
which. If more than one set of results is presented
to the monitoring committee, some might suggest
that the labels A and B are not necessarily kept
the same across all sets of results so as to try to
prevent accumulating evidence across a variety of
efficacy and safety parameters from giving clues as
to the treatment identity. A completely opposite view
is taken by others, who argue that the welfare of
the patients is more important, and that the data
monitoring committee should be unblinded so as to
make properly informed decisions.

Whichever way the data monitoring committee is
presented with the data, it is important that other
staff (particularly investigators) are still kept blind. In
particular, the blinding should be maintained for each
patient until all patients have completed the study:
then the blind can be broken for all patients. This is
often not liked in cases in which the first patient may
finish the study several years before the last patient:
still, the first patient’s treatment allocation should
not be revealed until all patients have completed the
study. There are many reasons to justify this stance.
If the blind were broken as each patient completed
the study, then the response to treatment (the size of
the treatment effect) could begin to emerge; many
informal interim analyses might be carried out; some
investigators might decide not to continue in the
study based on their opinions of early results; some
investigators may (consciously or subconsciously)
change the type of patient they recruit to the study,
and so on.

Bias in Treatment Allocation

Blinding is important in allocating treatments to
trial subjects (see Randomized Treatment Assign-
ment) since randomization alone will not necessar-
ily ensure that different treatment groups are balanced
at baseline. Spriet & Dupin-Spriet [20] illustrate this,
showing how randomization may fail if blinding is
not in place, and give suggestions for how to over-
come the problem. Schemes such as alternate alloca-
tion have been suggested as adequate alternatives to
true randomization, but the nonblinded (and therefore
open to bias) mechanism of such a method argues
against its use. A distinction has sometimes been
drawn between concealment up to the point of allo-
cation of treatment and blinding (or masking) for
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steps taken to conceal group identity after alloca-
tion [17]. This is a helpful distinction, particularly in
single-blind studies: total concealment may be possi-
ble, even if total blinding is not.

Bias in Reviewing Studies

In reviewing studies (particularly if the objective is
to carry out a formal meta-analysis), the procedures
for abstracting data should be highly standardized
to help to eliminate bias. If the abstractor is to be
blinded to, for example, the journal of publication or
to the results when abstracting data on the methods,
the method for ensuring blinding should be agreed
beforehand and described in a written protocol. In
a different context, Jadad et al. [10] conducted a
randomized controlled study to investigate the impact
of blinding on peer-review. They found that blinded
assessments produced consistently lower (worse) and
less variable ratings than unblinded assessments (see
Statistical Review for Medical Journals).

Bias in Epidemiology

In data collection, Rose et al. [16] were concerned
about the potential for bias in assessing blood pres-
sure in case–control studies, where the assessor may
know if a patient is a “case” or a “control”. Blood
pressure has a high measurement error due to fac-
tors including systematic observer bias, terminal digit
preference and observer preference. To overcome
these, they describe a modification of the standard
sphygmomanometer that has a “random zero”. The
random zero sphygmomanometer is now standard
in epidemiologic studies involving blood pressure
measurements. Generally speaking, when exposure
assessments have some subjective element, it seems
sensible to use blinded assessment in case–control
studies (see Bias in Case–Control Studies).

Levels of Blinding

The term “double-blinding” is widely accepted and
understood to mean that both the patients and the
treating physicians are unaware of which treatment
is being used. Here we identify four levels of blind-
ing and describe each. The terminology for all but
double-blind is not standard, and in these cases, addi-
tional detail should be provided to explain what is
meant in any particular setting.

Single-Blind

Many authors describe this as meaning that the
patient is unaware of which treatment he or she
is receiving. However, we may also use the term
single-blind when the treating physician is unaware
of the treatment assignment. This can happen if the
study medications are different in appearance and it
is arranged that the patient collects the medication
from a pharmacy rather than from the treating physi-
cian. Neither interpretation of single-blind is wrong
and for clarity the term ought, generally, to be stated
as “single (patient) blind” or “single (investigator)
blind”.

Double-Blind

This is a very common term and is widely accepted
to mean that the patient and the investigator are each
blinded to the treatment allocation. The investigator is
generally assumed to be both the provider (or at least
the prescriber) of the medication and the assessor of
its effect. When this is not the case, further levels of
blinding as described below may be appropriate.

Triple-Blind

This is a less common term but its use is increasing.
It is generally accepted to mean that, in addition
to the patient and investigator each being blinded,
those handling the data are also kept blinded until
all decisions about data validity and classification
have been made. Marginal decisions regarding patient
eligibility or assessment are then made (and are seen
to be made), independently of knowing the treatment
assignment.

It is, of course, possible that the clinical aspects
of a study could be carried out single (patient or
investigator)-blind or even unblinded but that the
data management is performed blinded. Strictly
speaking, the study should then be called double-
blind or single-blind, but not in the context of the
interpretation of those terms given above. This high-
lights the importance of specifying exactly who was
blinded and at what stages in the study.

Quadruple-Blind

This is a very unusual term but Chalmers et al. [4]
use it to describe the situation where the patient, the
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treating physician, the physician (or other person)
assessing the response, and the data handlers are
all kept blinded. The additional blinding is relevant
when the person assessing the clinical outcome is
different from the one who administers the treatment.
For example, an oncologist may request a radiologist
to assess an X-ray, or a general physician may request
a swab sample to be assessed by a microbiologist.

As suggested above, the large number of different
parties who may be blinded in a study necessitates
one clearly explaining what is meant in the descrip-
tion of blinding, rather than relying on a simple
phrase such as “single-blind study”.

Methods of Blinding

Placebos

Placebos are commonly used in comparative con-
trolled clinical trials. They are chemically inert com-
pounds that closely resemble the active compound in
all physical characteristics such as taste, smell, and
appearance. The term “placebo” is also used more
broadly to include medical procedures that are still
“inert” but that also resemble the true procedure. In
such cases, the term “sham” is often used instead
of placebo (see later in this Section). One instance
where a compound is used that is not a true placebo
(that is, it does have some active ingredient) but takes
the place of a placebo is in studies of topical skin
preparations. In these studies, the term “vehicle” is
sometimes used. This vehicle is the base compound
used as a delivery mechanism. The base compound
might have therapeutic benefits such as soothing and
moisturizing or it may have adverse effects such
as stinging or irritation. By using the vehicle as a
comparator, rather than a pure placebo, the true ther-
apeutic effect of the pharmaceutic compound can be
measured over and above that of the base (delivery)
compound.

Placebos for Comparison of Active Drugs

Placebos are not usually used when comparing two
active compounds. However, it may be difficult to
manufacture two active compounds so that they
appear and taste identical. Prozac (fluoxetine hydro-
chloride) and Haldol (haloperidol) may, for exam-
ple, be compared for their relative efficacy in treating

obsessive compulsive disorder. The former is nor-
mally presented in a green and white enteric coated
capsule; the latter is a pale blue tablet. The difference
in appearance is the first and perhaps most frequent
problem faced in blinding. There are two common
approaches to solving the problem.

The first is to disguise the presentation of one
or both medications. It may be possible to fit the
Haldol tablets (either whole or dissected) into an
enteric coating so that they resemble capsules of
Prozac. An immediate problem is that the efficacy
of “disguised” Haldol may have to be compared
with that of “true” Haldol to demonstrate that no
harmful (or beneficial) effect has been introduced by
changing its presentation. Studies to confirm that the
changed presentation of a medication has not affected
its potency are known as bioequivalence studies.
These have their own special blinding problems and
are discussed later.

The second approach, often easier, is to use a
“double-dummy” method whereby each patient takes
both a tablet and a capsule. Patients assigned Haldol
tablets also receive a placebo capsule that looks and
tastes like a Prozac capsule; patients assigned Prozac
capsules also receive a placebo tablet that looks and
tastes like a Haldol tablet. Every patient, therefore,
receives both capsules and tablets but no patient
knows whether they are receiving active tablets or
active capsules.

Sham Procedures

The blinding of physical treatments is often difficult.
Deyo et al. [6] give an example of treating chronic
low back pain using transcutaneous electrical nerve
stimulation (TENS), and using “dummy” TENS units.
This appeared to have been less successful for blind-
ing the patient than for blinding the investigators. The
study evaluated 125 randomized patients. Clinicians
guessed the allocation correctly in 61% of cases (only
just better than the chance value of 50%); but patients
randomized to TENS all guessed that their units were
functioning, while most (84%) patients randomized
to dummy TENS guessed that their units were not
functioning.

Also difficult is the blinding of surgical proce-
dures, particularly the blinded comparison of surgical
vs. nonsurgical procedures. The ethics of sham oper-
ations are clearly questionable and could rarely, if
ever, be justified. It is worth noting, however, that
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sham surgery has been used as a placebo and was
reported by Cobb et al. [5]. The procedure was for
internal mammary artery ligation to treat angina pec-
toris, and patients were randomized to the full sur-
gical procedure or to a sham surgical procedure that
ended at the point immediately after making the ini-
tial incision. Patients were informed that they were
taking part in an evaluation of the surgical proce-
dure but were not informed of its double-blind nature.
Randomization was after the incision had been made
(that is, as late as possible), and both groups were
(therefore!) subjected to anesthesia (although it was
a local – not general – anesthetic). In all respects,
therefore, patients were blinded to the randomization
scheme. The study was small (only 17 patients) and
concluded no effect of ligation over that of the sham
operation in terms of exercise tolerance.

It may be less difficult to blind patients in trials of
alternative surgical procedures, and blinded assess-
ment of the patient could also be arranged. Blinding
surgeons is clearly impossible, and conflicting results
of similar trials comparing early vs. delayed surgery
for acute cholecystitis, reported by van der Linden
& Sunzel [21] and Lahtinen et al. [12], have been
attributed to the lack of blinding of the surgeons.

Blinding of Evaluators

We have already mentioned under “Levels of Blind-
ing” that, when it is not possible to blind the treating
physician, a blinded evaluator may be used to record
patients’ responses to treatment. Such procedures are
particularly applicable when the assessment has a
subjective element and when the investigator is likely
to recall the treatment given to the patient. Examples
include: comparing alternative surgical procedures,
since a surgeon often recalls which patients received
which procedure; comparing alternative counseling
procedures for patients suffering from post-traumatic
shock; and comparing alternative instructional pro-
grams for patient self-care (in dental hygiene, for
example).

Difficulties of Blinding

Drawbacks of Blinding

The advantages of blinding (generally relating to
the “fairness” or “lack of bias” of patient assess-
ments) are important, but blinding is not without

disadvantages. Drawbacks include: the practical dif-
ficulty of formulating placebos (see the example in
the section on “Placebos for Comparison of Active
Drugs”); the dangers associated with emergency situ-
ations in which someone, possibly having no con-
nection with the trial, may need to know which
treatment a patient is taking; and the ethical prob-
lems of assigning (some) patients placebo while they
remain ignorant of whether they are receiving the
experimental or the inert compound. Allen [1] argues
that “double-blinding of drug trials to prevent bias
deprives physicians of information they need in order
to comply with their duty to treat patients and do them
no harm”, and claims that a physician cannot properly
treat a patient without knowing what treatment the
patient is already receiving (see Ethics of Random-
ized Trials). However, see below the Section entitled
“Other Issues” regarding arrangements for breaking
the blinding when clinically necessary.

Ineffectiveness

Reference has already been made to some assessment
of how well blinding actually worked in specific stud-
ies. Ney [14] strongly challenges the effectiveness
of blinding. He reports that in a review of clinical
trial reports published over a 10-year period, in fewer
than 5% of studies described as double-blind was the
blinding actually checked. He states that, “In most
instances where they were checked they were found
not to be blind, and in many instances when they
were not checked, they could not have been blind”.

Other authors have also challenged the effec-
tiveness of blinding. Greenberg & Fisher [7], for
example, discuss trials of antidepressants. Many anti-
depressants induce dry mouth or constipation and
when compared to placebo, the question of which
patients are on which treatment arm may not be dif-
ficult to answer. They draw the extreme (and perhaps
debatable) conclusion that “in the main, all past stud-
ies of antidepressant effectiveness are open to ques-
tion”. Known side-effect profiles of other drugs in
other therapeutic areas may create similar problems.

The difficulty of genuinely matching treatments
in trials intended to be double-blind is described in
a study by Hill et al. [8], who used a panel of four
observers, each to assess 22 pairs of agents that had
been used in double-blind trials. In only five pairs
was the match described as “excellent”, and in seven
there were obvious differences that were detectable
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by all four observers. Color and taste were the most
frequent causes of mismatching.

Ironically, it may be most difficult to maintain
blinding in comparative trials that show the largest
clinical effects. Even if that is true, the possibility
of the blind being broken during the study does
not necessarily justify abandoning plans to blind the
study at the outset.

Other types of ineffective blinding have also been
described. Senn [19] considers comparing two trans-
dermal patches, A and B. The patches are different in
appearance so that placebo patches for each (PA for
placebo A and PB for placebo B, respectively) need
to be prepared. A three-arm double-dummy study
may be envisaged with randomization to A + PB or
B + PA or PA + PB. However, to circumvent the
practical difficulty of patients wearing two patches,
an alternative four-arm randomization could be to
A or B or PA or PB. Now, although a patient (or
observer) will not know if the patch A or PA is active
or placebo, they will know that they are not receiv-
ing medication B. Similarly, patients using patches B
or PB will know they have not been randomized to
A. Thus, this scheme will not necessarily allow an
unbiased comparison of A with B.

James et al. [11] have approached the assessment
of the effectiveness of blinding from a methodologic
point of view and arrive at an index of success of
blinding ranging from 0 (complete lack of blinding)
to 1 (complete blinding). Subjects are asked to guess
whether the treatment was active or placebo. Unlike
the common kappa statistic, their method incorpo-
rates the “don’t knows” as well as the correct and
incorrect guesses. The “don’t knows” are, of course,
the ideal response, implying complete success of the
blinding. Like the kappa statistic, their method allows
assessment of whether the knowledge of the treat-
ment in any given study is significantly greater than
chance. Even if “statistical significance” is demon-
strated, it is not always easy to interpret the meaning
of the index’s value; for example, it is unclear if a
value of 0.7, say, represents a good or a poor level
of blinding.

Other Issues

Arrangements for Breaking Blinding

It is necessary to make arrangements for breaking
the blind for any particular patient. When a patient

experiences an adverse event that may be medication-
related, or a patient requires medication for a con-
current illness where drug interaction is possible,
the blind may need to be broken. Occasionally the
situation may constitute an emergency. Trials in hos-
pitalized patients generally pose fewer problems since
the hospital’s own pharmacy is likely to be dispens-
ing all medication and would itself hold a master
copy of the randomization codes. In an outpatient set-
ting there is a greater danger that immediate access
to the randomization codes might not be possible.
In such cases, all patients participating in the trial
might carry an identifying card with them that gives
details of the trial they are in, the group organizing it
(whether that be a hospital, academic institution, or a
pharmaceutical company), and an emergency 24-hour
telephone number. An alternative arrangement is to
provide a tear-off label on the patient’s medication
that reveals details of the true identity of the medi-
cation (and further contact details). This ensures that
immediate identification of medication is possible but
also allows patients (or others) to break the code for
nonessential reasons.

Regulatory Issues

Guidelines within the regulated pharmaceutical in-
dustry clearly describe the requirement for blinding.
The US Food and Drug Administration (FDA)
requires that the specific procedures for blinding
should be included in clinical study reports, includ-
ing a description of the labeling on bottles, the
appearance, shape, smell, and taste of different med-
ications, and the circumstances in which the blind
may be broken (and by whom). They comment on
what special precautions should be taken if blind-
ing cannot be achieved and require justification from
the sponsor if blinding is deemed unnecessary. The
International Conference on Harmonization (ICH)
mirrors quite closely the comments of the FDA.
In Europe, the Committee on Proprietary Medici-
nal Products (CPMP) makes similar comments but
also addresses some different aspects of the problem.
They refer to the possible influence of the “attitudes
of patients to the treatments”. By this they mean
that, although double-blinding is the ideal approach,
if this involves double dummy methods, then the
administration scheme may be sufficiently different
from clinical practice to influence patient motiva-
tion and compliance. In such a case, double-blinding
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may not necessarily be optimal and some compro-
mise between the level of blinding and similarity of
the dosage regimen to be used in routine practice may
be preferable (see Drug Approval and Regulation).

Reporting Blinding

Bailar & Mosteller [3] suggest that a “statement that a
study was ‘blind’ or ‘double-blind’ is rarely enough”.
Details of the methods of blinding should be given
along with an assessment of the effectiveness (or
otherwise) of the blinding. Chalmers et al. [4] have
reported on how to assess the quality of clinical tri-
als and consider that blinding (“quadruple-blinding”,
as described earlier) is the most important feature.
“It is not sufficient”, they state, “to assume that a
double-blind procedure is effective.” They propose
that the effectiveness of the blinding should always
be investigated and reported.

Equivalence Trials

Blinding fails to protect against bias in trials aim-
ing to test whether two treatments are equivalent
(see Equivalence Trials). The same problem applies
to a study that fails to demonstrate a treatment dif-
ference and, retrospectively, consideration moves to
whether the treatments could be considered (reliably)
to have a similar therapeutic effect. The problem is
that blinding is intended to avoid a false conclusion
that one treatment is superior to the other when in
fact they are equivalent. However, it does not ade-
quately protect against falsely concluding that the two
treatments are equivalent when in fact one is supe-
rior. This is because such bias can be introduced by
factors such as treatment noncompliance and mea-
surement error even when they apply equally to the
two treatment groups.

Psychological Resistance

The objective of blinding is to contribute to the elim-
ination of bias that may be introduced intentionally
or unintentionally by the many individuals involved
in a research project. Some take the view that they
need not be blinded. Physicians treating a patient
may claim that their assessment of the disease is
not influenced by knowing which treatment a patient
has received; patients may feel that their reactions to

the treatment are not colored by knowledge of which
treatment they have been given. Insistence on blind-
ing may be seen as casting doubt on the integrity of
these individuals. This attitude sometimes presents
an obstacle. Blinding makes it more difficult to bias
results and helps to ensure the credibility of the
results of a study. For this reason, efforts to overcome
psychological resistance to blinding are worthwhile.
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Bliss, Chester Ittner

Born: 1899, in Springfield, Ohio.
Died: 1979.

Photograph supplied by Yale University Archives

Chester Bliss studied entomology at Ohio State
University, earning a B.A. in 1921. He continued
these studies at Columbia University where he was
awarded an M.A. in 1922 and a Ph.D. in 1926. Upon
his graduation, he took a position as an entomolo-
gist in the Department of Agriculture, which he held
until 1933 when his work was cut short by the depres-
sion. Moving to London, he attended lectures given
by R.A. Fisher and collaborated with him on research
over the next two years [6]. It was during this period
that he did much of his work on probit analysis (see
Quantal Response Models).

From London, he took a position at the Institute
of Plant Protection in Leningrad in 1936. In 1938, he
returned to the US, where he became a biometrician
at the Connecticut Agricultural Experiment Station in
New Haven, Connecticut until he retired in 1971. In
1942, Dr Bliss was appointed Lecturer at Yale Uni-
versity, where he taught and collaborated on research
projects throughout his career [6].

Dr Bliss was convinced of the value of sound
statistical methods in biology, and he devoted his
career to developing practical approaches to data

analysis, and making these methods available to sci-
entists in the field. His research focused on esti-
mating the potency of biological agents (see Bio-
logical Assay, Overview), his best known being
contributions to the development of probit analysis.
He played a major role in founding the Interna-
tional Biometric Society, and was appointed as the
principal statistical contributor to the U.S. Pharma-
copeia.

Chester Bliss’ work on the use of the proba-
bility integral transformation, or probit, was done
in collaboration with R.A. Fisher. The response at
a given dose is the proportion of observations in
which the specified outcome was observed. To lin-
earize the sigmoid curve that is often observed for
such data, the proportion was transformed using the
inverse of the standard normal distribution function.
As this transformation is undefined for 0 or 1, their
first approach was to eliminate these observations
from the analysis. This troubled Bliss a great deal,
because these were, after all, valid observations, so
one would then be ignoring some of the data. Bliss’
persistence lead Fisher to derive the full maximum
likelihood solution for probit analysis. A hallmark of
Bliss’ work was in making these methods accessible
to biologists, and, in his books, examples of these
techniques were described in painstaking detail, so
that they could be readily followed by those in the
field.

While the American Statistical Association had
formed a Biometrics Section in 1938, Dr Bliss was
appointed to a committee in 1945 to report on the
merits of a separate American Biometric Society.
However, following the committee’s report in 1946, it
was decided to postpone a decision on the formation
of a separate society. Bliss was once again galvanized
to press for a separate society devoted to statistics in
biology when the program for the fall 1947 meeting
of the International Statistical Institute in Washing-
ton, DC, appeared and was found to contain virtually
no biological applications. On short notice, organi-
zational and financial arrangements were made for
the first International Biometric Conference at the
Marine Biological Laboratory in Woods Hole, Mas-
sachusetts, on September 5–6, 1947. Dr Bliss served
from 1948 to 1955 as the first Secretary for the Bio-
metric Society, and was its Treasurer from 1951 to
1956. Together with Gertrude Cox, the editor of Bio-
metrics, the society was nurtured and grew into a vital
organization with a diverse worldwide membership.
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The editors of the U.S. Pharmacopeia recog-
nized that accurate estimates of potency for biological
agents required not only careful laboratory work, but
also sound methods for analyzing the data. For many
years, Dr Bliss provided advice on the methods of
data analysis that should be used for the various
agents, bringing his training in biology, as well as his
insights into the application of statistical methods, to
this standard reference.

During his career, he wrote over 130 articles, most
of which dealt with various aspects of bioassay.
These included work on methods for analyzing vita-
mins, analgesics, insulin, digitalis, penicillin, thi-
amin, radiation, parathyroid extract, adrenal cor-
tex extract, cardiac glucosides, insecticides, and
anthelmintics [1, 2]. In 1952 he published a book
entitled The Statistics of Bioassay, With Special Ref-
erence to the Vitamins [3], which was to be followed
by a three-volume work on Statistics in Biology [4,
5]. The first two volumes appeared in 1967 and 1970,
respectively, and he was working on the third volume
at the time of his death. His style was always metic-
ulous and clear so that it could be followed readily
by nonmathematicians.

In recognition of his contributions to biostatis-
tics, he was elected an honorary life member of the
Biometric Society, an Honorary Fellow of the Royal
Statistical Society, and a Fellow of the Institute of
Mathematical Statistics and of the American Statisti-
cal Association.
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Blocking

Blocking is a term describing strategies that are
used in the design of experiments (see Experimental
Design) and of sample surveys. It is also used to
describe certain statistical methods that are used in
the statistical analysis of data that can arise from
observational studies as well as experimental studies
(see Clinical Trials, Overview).

In the planning of experimental studies, the term
blocking refers to the strategy of taking into con-
sideration characteristics of the experimental units in
the assignment of experimental treatments to units.
The overall objectives of this strategy are to ensure
that the assignment would result in minimization of
biases caused by relationships between the outcome
or dependent variable and the properties of the exper-
imental units. For example, in a randomized trial
of three treatments for carcinoma of the breast, it
is possible that premenopausal women might dif-
fer from postmenopausal women in their response
to these therapies. To ensure that each treatment has
the same (or close to the same) proportion of pre-
menopausal and postmenopausal women, one might
perform randomization separately by menopausal

status (i.e. block by menopausal status and randomize
separately within each block). The various spe-
cific methods of blocking are discussed elsewhere
(see Balanced Incomplete Block Designs; Lattice
Designs; Randomized Complete Block Designs).

In the design of sample surveys, the blocks are
generally called strata, and the objective of blocking
in this scenario is to allocate the sample to strata
in such a way that the resulting estimates have low
standard errors under the cost constraints imposed
on the survey (see Stratified Sampling; Stratified
Sampling, Allocation in).

In analysis of data from observational studies,
blocking is an analysis strategy used to control for
confounding by variables that are measured on the
nominal or ordinal scale, or by variables grouped
on the basis of some variable (see Stratification).
Examples of techniques of stratified analysis for
quantitative dependent variables include two or
higher way analysis of variance, and for categorical
dependent variables include contingency table
methods such as the Cochran–Mantel–Haenszel
class of tests.

PAUL S. LEVY



Blood Groups

The term blood groups encompasses the products
of genes expressed as molecules on the surface of
erythrocytes in humans. Beginning in 1901 with
Landsteiner’s discovery of the ABO blood group sys-
tem, these markers have been the subject of intense
interest, primarily because of their clinical importance
in the transfusion of blood, but secondarily because
of their usefulness as genetic markers. The major
impetus for study, of course, was the need to match
for some of these groups in the transfusion of blood
products. Included in the classification of major blood
groups are the ABO, Rhesus(Rh), MNSs, P, Kell,
Duffy, Kidd, Lutheran, and Lewis groups. All blood
units transfused must be matched for the A and B
antigens of the ABO system because of naturally
occurring antibodies against them. All units are also
matched for the D antigen of the Rh system because
of the extreme immunogenicity of that antigen.

The chemical nature of these molecules has been
worked out during the last 20 years with the Rh
antigens being characterized only with the tools of
molecular biology. Since the A and B substances of
the ABO group appear in body secretions, such as
saliva in some persons, as well as on the surface of the
red cell, these antigens were among the first to be well
characterized chemically. The two genes in the sys-
tem (A and B) control the production of enzymes that
place carbohydrates on specific sites of a precursor
molecule, which itself is under genetic control (the H
gene). The O gene produces no enzyme. Inheritance
in the ABO system follows a simple co-dominant pat-
tern for A and B with O being a true recessive. The
Rh system, originally thought to be controlled by one
gene producing three factors (or alternatively by three
closely linked genes) is now known to be made up
of two distinct proteins controlled by two genes. One
gene controls the presence or absence of factor D and
the second controls a molecule that at the serological

level displays two factors C/c and E/e. The presence
of factor D produces the familiar Rh positive when
tested serologically. The problem with characterizing
the Rh molecules was the absence of any secreted
form and the intimate relationship between the Rh
molecules and the cell membrane (see [1] for more
details on systems, methods, and biochemistry).

Before the advent of molecular biology, the ease
of the techniques used to detect blood group antigens
(simple agglutination or agglutination augmented
with an antiglobulin reagent) made the red cell blood
groups the most important tools in the study of human
population genetics. Blood groups could be studied
both in families and populations and their genetics
(in most cases) followed Mendel’s laws. Population
studies involving blood groups allowed the character-
ization of both historical movements of populations
and present-day population isolates. Examples of the
former are the pattern of blood group B in popula-
tions of Eastern Europe reminiscent of the Mongol
invasions of the early post-Roman world. Examples
of the latter might be the characterization of pockets
of Rh negative populations such as the Basques of
northern Spain. (For more information see [2].)

Although their use in population genetics is being
partially supplanted by molecular techniques, blood
groups remain of paramount importance in the pro-
vision of blood products for transfusion.
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Bonferroni Inequalities
and Intervals

Let A1, A2, . . . , An be any random events. Boole’s
inequality, or the first-order Bonferroni inequality,
states that the probability that at least one of these
events occurs is less than or equal to the sum of the
probabilities of the individual events:

Pr

(
n⋃

i=1

Ai

)
≤

n∑

i=1

Pr(Ai). (1)

The majority of statistical applications of (1),
commonly referred to as Bonferroni’s inequality,
deal with testing of multiple hypotheses (see
Hypothesis Testing) and related simultaneous
confidence intervals (see Multiple Comparisons;
Simultaneous Inference). Suppose that n hypotheses
are tested and that all of the hypothesis are true:
the complete null hypothesis. If the ith hypothesis
is tested at the αi level of significance (see Level of
a Test), where

α1 + α2 + · · · + αn = α, (2)

then it follows from (1) that the probability of falsely
rejecting at least one of the null hypotheses is at most
α. The most common choice of αi are α/n.

Similarly, the Bonferroni technique yields simul-
taneous confidence intervals for a set of n parameters
by adding and subtracting the required estimated stan-
dard error multiplied by the αi/2 percentile point of
an appropriate distribution from the point estimates
of interest, where (2) holds. In a related encyclopedia
article, Alt [2] presents formulas for the most com-
monly used Bonferroni confidence intervals.

In addition to always yielding simultaneous con-
fidence intervals, it is also particularly easy to obtain
adjusted simultaneous P values when we apply the
easily understood Bonferroni technique [76].

In the multiple comparison setting where the
analysis of variance (ANOVA) is used, methods
superior to the Bonferroni method are often avail-
able. For example, Tukey’s multiple comparison
procedure is superior to the Bonferroni procedure
for comparing all pairwise means in a one way
ANOVA [40, 47]. The Bonferroni method of mul-
tiple comparisons is often the method of choice
when a small subset of all possible comparisons is

of interest [20], in settings where covariate adjust-
ments are employed [20, 49], in situations in which
distributions other than the multivariate normal or
multivariate t are employed [59], or in discrete data
settings such as obtaining simultaneous confidence
intervals for multinomial proportions [4].

The major advantage of the Bonferroni proce-
dure is its generality and flexibility. In the multiple
endpoint setting it can be employed when some out-
comes are quantitative and others are qualitative,
unlike most multivariate techniques. In the mul-
tiple comparison with multiple endpoints setting,
the Bonferroni technique can be applied to control
for the multiple endpoints in conjunction with any
technique to control for the multiple comparisons
for each endpoint [49]. Consequently, corrections are
made for the multiplicity of endpoints without mak-
ing assumptions about the joint distributions of the
outcomes.

The Bonferroni technique is also employed in
a variety of research areas, such as spatial corre-
lations [28], nonparametric regression [19], simul-
taneous confidence intervals for survival probabili-
ties [1] (see Survival Analysis, Overview), obtain-
ing optimal cutpoints [29], and detecting outliers in
growth curve modeling [9] (see Nonlinear Growth
Curve).

Textbooks by Neter et al. [49] and Fleiss [20]
present an overview of the uses of Bonferroni’s
inequality in basic statistical applications. More
detailed applications in multiple comparison settings
are provided in texts by Hochberg & Tamhane [32],
Hsu [40], and Miller [47]. The first two references
are good sources for stepwise multiple testing
procedures based on Bonferroni’s inequality. Books
by Morrison [48] and Srivastava & Carter [66]
present applications of Bonferroni’s inequality in
multivariate analysis.

Multiple Comparisons for a Single
Outcome

A competitor to the Bonferroni technique in the
general linear model is the F projection method of
Scheffé, the S-method. The S-method, which can
be used to control the family-wise error rate for
all possible contrasts, is useful in a hypothesis gen-
erating framework. Alt [2] presents more detail of
the S-method. Both the Bonferroni and S-method
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are applicable regardless of the correlation struc-
ture present. Applications in which both methods
are applicable, in which more powerful methods
do not exist, and in which it is valid to calcu-
late both and use the least conservative include
the analysis of covariance (ANCOVA) [20, 49],
inverse prediction [49] (see Calibration), simultane-
ous prediction intervals [15, 47, 49], and simulta-
neous tolerance intervals [43, 47]. The S-method
should be employed if some comparisons are not
specified in advance. The Bonferroni method is gen-
erally less conservative than the S-method, unless a
large number of comparisons is made [3, 16, 21].
However, when the error degrees of freedom is very
low, the S-method is superior to the Bonferroni
method [46].

Whenever the product inequality

Pr

(
n⋂

i=1

Ac
i

)
≥

n∏

i=1

Pr(Ac
i ) (3)

is valid, then it follows from De Morgan’s law that

Pr

(
n⋃

i=1

Ai

)
≤ 1 −

n∏

i=1

Pr(Ac
i ). (4)

Whenever (4) is satisfied it yields a less conserva-
tive correction for multiple testing problems than (1),
although the improvement is slight for small values
of α [16]. Sidak [63] showed that this is the case for
two-sided significance tests based on the multivari-
ate normal and multivariate t distribution, including
ANOVA applications. Sidak [64] showed that the
Studentized maximum modulus yields a slightly less
conservative procedure than the product inequality
which controls the experiment-wise error rate for
two-sided testing problems in the ANOVA setting.
This procedure, known as the GT2 method, is avail-
able in SAS.

Additional applications in which the Bonferroni
technique of simultaneous inference is the method
of choice include three-decision problems [11] and
randomization tests [51].

Sverdrup [68, 69] and Hjort [30] show how the
S-method and the Bonferroni method are applicable
in simultaneous inference settings whenever gener-
alized maximum likelihood estimators, which are
asymptotically normally distributed with a covari-
ance matrix which can be consistently estimated, are
employed. They show that the Bonferroni method is

usually superior to the S-method in such applications,
which include categorical data.

The Bonferroni bound is accurate when the num-
ber of comparisons is not large, when the Pr(Ai)

are less than 0.1, and when the positive dependence
among the Ai is not large. The technique also works
better for continuous data than for discrete data.
Tarone [71] shows how the Bonferroni inequality can
be modified to obtain less conservative corrections for
multiple testing of categorical data.

Multiple Outcomes for Two Groups

A sequentially rejective procedure of Holm [34]
controls the experiment-wise error rate and is less
conservative than the classical Bonferroni procedure.
With the Holm procedure, one first tests the outcome
with the largest observed difference at the α/n

significance level, the usual Bonferroni adjustment.
If one fails to reject the largest observed difference
at the α/n significance level, then one fails to
reject each of the null hypotheses. Otherwise, the
endpoint with the second largest observed difference
is tested at the α/(n − 1) significance level. Testing
progresses from the strongest to the weakest observed
difference and stops with failure to reject the
remaining hypotheses as soon as one fails to reject
a null hypothesis. At each stage the significance
level is increased, with the ith significance test being
performed at the α/(n − i + 1) significance level. For
example, if five outcomes are tested, then significance
levels of α/5, α/4, α/3, α/2, and α are employed.
Wright [76] and Troendle [72] argue for more
widespread use of sequentially rejective procedures
instead of the classical Bonferroni correction. An
extensive literature is available on modifications
of Holm’s sequentially rejective procedure and
applications of the procedure in new situations [6,
7, 14, 17, 18, 31, 33, 35, 56–58, 65].

When many hypotheses are tested, even sequen-
tially rejective procedures are overly conservative. In
such applications one may wish to control the false
discovery rate [8], the expected proportion of falsely
rejected hypotheses, rather than the experiment-wise
error rate.

A competitor to Bonferroni adjustments, which
takes advantage of the correlation between outcomes
and accommodates distributional characteristics of
the individual outcomes, is based on resampling and
Monte Carlo simulation [74].
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A single global test statistic based on all of
the individual outcomes may also be employed [50,
53, 70] in place of the Bonferroni procedure (see
Multiple Endpoints, Multivariate Global Tests).

Higher Order Bonferroni Inequalities and
Extensions

We define the first- and second-order Bonferroni
sums as

S1 =
n∑

i=1

Pr(Ai) and S2 =
i−1∑

j=1

n∑

i=2

Pr(Ai ∩ Aj).

The second- (first-)order Bonferroni bound is a lower
(upper) bound to the probability of a union:

b2 = S1 − S2 ≤ Pr

(
n⋃

i=1

Ai

)
≤ S1 = b1. (5)

Higher-order Bonferroni bounds are obtained by
alternately adding odd order Bonferroni sums and
subtracting even order Bonferroni sums from lower
order bounds. Even (odd) order Bonferroni bounds
are lower (upper) bounds to the probability of a
union. A related class of bounds, sometimes known as
Galambos bounds [22], are obtained by taking linear
combinations of Bonferroni sums. Unlike Bonferroni
bounds, odd (even) order Galambos bounds are lower
(upper) bounds.

Second or lower order bounds are often preferred
in applications due to computational considerations.
A useful second order lower bound [22], referred to
as an extended Bonferroni-type bound by Galambos
(23), is

Pr

(
n⋃

i=1

Ai

)
≥ 2S1

k
− 2S2

[k(k − 1)]
= bG, (6)

where k = 2 + [2S2/S1] and [y] indicates the largest
integer less than y. When k = 2, bG = b2, the second-
order Bonferroni bound, and otherwise bG > b2.

The most widely used second-order upper bound
among a class of bounds based on Hunter’s inequal-
ity [41] is

Pr

(
n⋃

i=1

Ai

)
≤ S1 −

n∑

i=2

Pr(Ai ∩ Ai−1). (7)

Stoline [67] advocates the use of Hunter’s inequality
in ANOVA applications where there is a strong
positive dependence structure. In most situations
in which ANOVA is applied, the improvement of
(7) over (1) is moderate [32, 40]. However, Bauer
& Hackl [5] and Worsley [75] show that (7) is a
substantial improvement over (1), which is very
accurate, in many other situations with a strong
degree of positive dependence.

When both upper and lower bounds of order 2
or less are required, then one should use (6) and (7)
rather than (5), as in Bjornstad & Butler [10].

The bound given in (7) has been extended
to higher-order bounds by Bolviken [12], Schwa-
ger [61], and Hoover [36]. This class of bounds
exhibit nesting: the accuracy of the bounds increases
as the order increases. Higher-order Bonferroni
bounds are not nested [61]. When high-dimension
multivariate probabilities need to be accurately esti-
mated, these higher-order bounds are required. One
such application involves scan statistics [24, 25, 42,
73]. If precision is required and computational con-
siderations are not limiting, then higher order bounds
produce substantially narrower simultaneous confi-
dence intervals and simultaneous prediction inter-
vals [26, 27, 55].

The bound in (6) has been extended to higher order
bounds [2, 13, 22, 23, 54].

Improvements to higher-order bounds have been
developed [37, 39, 44, 45, 62].

Bonferroni-type bounds are also available for the
probability of exactly r or at least r of n events
occurring [2, 13, 23, 38, 52, 60].

A comprehensive treatment of Bonferroni inequal-
ities is presented in the book by Galambos [23].
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Bonferroni, Carlo Emilio

Born: January 28, 1892, in Bergamo, Italy.
Died: August 18, 1960, in Firenze, Italy.

Carlo Emilio Bonferroni studied for the degree of
laurea in Torino (Turin) under Peano and Segre,
became incaricato (assistant professor) at the Turin
Polytechnic, and then in 1923 took up the chair of
financial mathematics at the Economics Institute in
Bari. In 1933, he transferred to Firenze (Florence)
where he held his chair until his death.

The obituary of him by Pagni [5] lists his works
under three main headings: actuarial mathematics
(16 articles, 1 book); probability and statistical math-
ematics (30, 1); and analysis, geometry, and rational
mechanics (13, 0). His name is known in the sta-
tistical world for the contents of just two of these
papers.

The two articles cover similar ground, but the
1935 article [3] is directed to a specific application,
that is, life assurance, whereas the 1936 article [4]
is more abstract. In the latter he developed formulas
for the probability that of n events, exactly r , at least
r , at least 1, at most r occur. He finally arrived at
the sets of inequalities [his formulas (27) and (28)]
which bear his name (see Bonferroni Inequalities
and Intervals). As he noted, his formula (28) is a
generalization of the inequality of Boole.

Apart from these, he also had interests in the foun-
dations of probability. Two relevant articles are an
inaugural lecture [2] and a more formal article pub-
lished earlier, but written about the same time [1]. He
developed a strongly frequentist view of probability

(see Inference), denying that subjectivist views can
even be the subject of mathematical probability. A
quote from the lecture perhaps gives the flavor.

A weight is determined directly by a balance. And
a probability, how is that determined? What is, so
to say, the probability balance? It is the study of
frequencies which gives rise to a specific probability
[2, p. 32].

After this point his statistical work moved on to work
on relationship. He does not seem to have returned
to probability again.
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Bootstrap Method

Bootstrap methods are procedures for the empirical
estimation or approximation of sampling distribu-
tions and their characteristics. Their primary use
lies in the estimation of accuracy measures, such
as bias and variance, for parameter estimators, and
in construction of confidence sets or hypothesis
tests for population parameters. They are applied
in circumstances in which the form of the popula-
tion from which the observed data have been drawn
is unknown. They prove particularly useful where
very limited sample data are available and tradi-
tional parametric modeling and analysis are difficult
or unreliable.

Bootstrap methods are closely related to other
data resampling methods of error assessment, such
as the jackknife, but are more widely applicable and
can provide more accurate inference, although they
generally require more computation. An introduction
to bootstrap methodology which stresses applications
is given by Efron & Tibshirani [6], while detailed
accounts of theory are given by Hall [9] and Shao
& Tu [11]. A critical evaluation of the importance of
bootstrap methods in different contexts is given by
Young [13]. A concise summary of the methods is
given by Efron & Tibshirani [5], while the revolution
that they offer for statistical practice is discussed in
very accessible terms by Diaconis & Efron [3].

The bootstrap principle was formalized by
Efron [4]. It may be summarized for a general situa-
tion as follows. We have data Y = (Y1, . . . , Yn) (not
necessarily independent and identically distributed)
and a statistical model P under which the data are
obtained. Usually, P can be described by the joint
distribution of Y , or by some quantities that uniquely
determine this joint distribution. Suppose that we
wish to estimate the distribution of a random vari-
able or “pivot” Rn(Y ; P), or some characteristic of
that distribution. Then the data Y are used to esti-
mate P by P̂ . Letting Y ∗ be a bootstrap data set
generated from P̂ , then the bootstrap estimator of the
distribution of Rn(Y ; P) is the conditional distribu-
tion of Rn(Y

∗; P̂ ), given Y . Where this conditional
distribution is not expressible as an explicit function
of Y , simulation by Monte Carlo Methods can be
used to construct an approximation to the bootstrap
estimator. The bootstrap can therefore be applied to
any situation in which an underlying model P can be

postulated and estimated and where one can sample
from the estimated model P̂ .

Bootstrap methods are most fully developed for
the case in which Y1, . . . , Yn are an independent
and identically distributed (iid) sample. Extensions
to independent, but not iid, data problems, such
as regression problems, are often straightforward.
Extensions to the dependent data setting are less
well developed. In that context, care must be taken
to account for the dependence structure in the data:
some remarks are made below. We concentrate here
mainly on the case of an iid sample.

The bootstrap may be applied parametrically or
nonparametrically. With the former, we assume some
parametric form for P , estimate any unknown param-
eters in its specification, typically by maximum like-
lihood, and so obtain P̂ . With the latter, we assume
nothing about the form of P , and P̂ is taken as the
“empirical distribution function”, usually denoted by
Fn, of the given sample data. This distribution puts
an equal point mass n−1 on each observed data point
Yi, i = 1, . . . , n. Then a “bootstrap sample” Y ∗ =
(Y ∗

1 , . . . , Y ∗
n ) is generated by independently sam-

pling, with replacement, from the given data points
(see Sampling With and Without Replacement).

We illustrate the bootstrap for the problem of
variance estimation, adopting the notation of Shao
& Tu [11]. Let Y1, . . . , Yn be iid from an (unknown)
distribution F and let Tn ≡ Tn(Y1, . . . , Yn) be a given
statistic, such as a parameter estimator. Then the
variance of Tn is varF (Tn) = β(F ), say, a function
of the unknown F .

If Tn is simple, then we can obtain an explicit
expression for β(F ) as a function of unknown quan-
tities, such as population moments, and then estimate
varF (Tn) by substituting estimates, constructed from
the sample, for these unknowns. But, usually, this
standard approach to variance estimation is too com-
plicated to be useful. Bootstrap methods enable β(F )

to be estimated quite generally.
The bootstrap estimator of varF (Tn) is

vBOOT = var∗[Tn(Y
∗
1 , . . . , Y ∗

n )|Y1, . . . , Yn],

where {Y ∗
1 , . . . , Y ∗

n } is an iid sample from F̂ , an
estimator of F , and var∗(·|Y1, . . . , Yn) denotes the
conditional variance, given Y1, . . . , Yn. An appeal-
ingly simple choice is to take F̂ = Fn.

In circumstances in which β(F ) is available
explicitly, as a known function of F , the bootstrap
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estimator vBOOT is just a substitution estimator β(F̂ ),
and may be computed exactly and analytically.
Usually β(F ) is not known explicitly, so we cannot
evaluate vBOOT exactly. However, in this case, Monte
Carlo simulation can be used to approximate vBOOT

numerically. We repeatedly draw data samples from
F̂ and then use the sample variance of the values
of Tn computed from these bootstrap samples as an
approximation to vBOOT.

We draw {Y ∗
1b, . . . , Y ∗

nb}, b = 1, . . . , B, for suit-
able B, independently from F̂ , conditional on
Y1, . . . , Yn; compute T ∗

n,b = Tn(Y
∗
1b, . . . , Y ∗

nb) and
approximate vBOOT by the Monte Carlo approxima-
tion

v
(B)

BOOT = 1

B

B∑

b=1

(
T ∗

n,b − 1

B

B∑

l=1

T ∗
n,l

)2

. (1)

Then vBOOT = limB→∞ v
(B)
BOOT.

The traditional approach to variance estimation
when β(F ) is unavailable explicitly is to first obtain
an explicit asymptotic approximation to β(F ) and
then estimate the unknown quantities in this asymp-
totic formula. Bootstrap methods therefore (i) avoid
the need for analytic calculation and approximation,
and (ii) avoid the errors associated with asymptotic
approximation. This may lead to greater accuracy
than is obtained from classical approaches to error
assessment.

The standard error of Tn is [varF (Tn)]1/2. Its
bootstrap estimator is

√
vBOOT, approximated by√

v
(B)

BOOT in circumstances in which Monte Carlo
approximation is necessary.

Example 1

Efron & Tibshirani [6] present the following small
data set, representing the survival times in days
of seven mice receiving a new medical treatment
after a test surgery: 94, 197, 16, 38, 99, 141, 23.
Denote the observations by Y1, . . . , Yn, where n =
7, so that Y1 = 94, Y2 = 197, and so on. Let the
ordered observations be Y(1) < · · · < Y(n), so that
Y(1) = 16, Y(2) = 23, and so on. We consider use
of the bootstrap to estimate the standard error of
three statistics: T (1) = n−1 ∑n

i=1 Yi , the mean sur-
vival time, the value of which is 86.9 for these data;
T (2) = Y(4), the median survival time, here equal to
94; and T (3) = (n − 2)−1 ∑n−1

i=2 Y(i), a trimmed mean

(see Trimming and Winsorization), which takes the
value 79.0. For the statistics T (1) and T (2) no Monte
Carlo simulation is necessary, as the bootstrap vari-
ance estimator vBOOT has an explicit expression in
terms of Y1, . . . , Yn. In the case of the mean T (1), for
example, vBOOT = ∑n

i=1(Yi − Y n)
2/n2, where Yn =

n−1 ∑n
i=1 Yi ≡ T (1). The bootstrap variance estima-

tor for T (2) is given by a more complicated formula:
see Efron & Tibshirani [6, Chapter 2]. The boot-
strap standard error estimates are 23.36 and 37.83
for T (1) and T (2) respectively. In the case of T (3)

the Monte Carlo approach must be used to obtain
an approximation to vBOOT. A series of B boot-
strap samples are drawn from the given data and
an approximation v

(B)
BOOT to vBOOT computed from

(1). A bootstrap sample is drawn by randomly sam-
pling, with replacement, from the original datapoints
Y1, . . . , Yn. A typical bootstrap sample might be,
for instance, Y ∗ = (38, 99, 16, 99, 99, 16, 94).
A bootstrap estimate of the standard error of T (3)

computed from B = 200 randomly drawn bootstrap
samples was 31.45. The statistic T (3) is therefore esti-
mated to be more variable than the mean, but less
variable than the median, for this situation.

Our description of the bootstrap variance and stan-
dard error estimators is easily generalized to other
more complicated problems. Of particular impor-
tance is bootstrap distribution estimation. Often, an
accuracy measure of a particular statistic Tn is a char-
acteristic of the sampling distribution of Tn. If the
bootstrap is used to estimate this sampling distribu-
tion, an estimator of the accuracy measure is provided
by the corresponding characteristic of the estimated
sampling distribution. Viewed in these terms, the
bootstrap variance estimator vBOOT, for example, is
just the variance of a bootstrap estimator of the sam-
pling distribution of Tn.

Consider the problem of estimating the sampling
distribution of a pivot Rn(Y1, . . . , Yn; F):

HF (x) = Pr[Rn(Y1, . . . , Yn; F) ≤ x], (2)

where Y1, . . . , Yn are iid from F .
The bootstrap estimator is

HBOOT(x)

≡ HF̂ (x)

= Pr∗ [Rn(Y
∗
1 , . . . , Y ∗

n ; F̂ ) ≤ x|Y1, . . . , Yn],
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where Y ∗
1 , . . . , Y ∗

n are iid from F̂ and Pr∗(·|Y1, . . . ,

Yn) denotes the probability under F̂ , conditional on
Y1, . . . , Yn. If HBOOT(x) is not available explicitly as
a function of Y1, . . . , Yn, we may use a Monte Carlo
approximation to HBOOT(x):

H
(B)
BOOT(x) = 1

B

B∑

b=1

I [Rn(Y
∗
1b, . . . , Y ∗

nb; F̂ ) ≤ x],

where {Y ∗
1b, . . . , Y ∗

nb}, b = 1, . . . , B, are independent
bootstrap samples from F̂ , and I is the indicator
function.

For estimating the sampling distribution of Tn, we
simply set Rn(Y1, . . . , Yn; F) = Tn. When Tn is used
to construct a confidence set for a parameter θ related
to F , we might use

√
n(Tn − θ) or the studentized

pivot (Tn − θ)/Sn, where Sn is an estimator of
the standard deviation of Tn. The confidence set
may be derived from the sampling distribution of
Rn(Y1, . . . , Yn; F) = √

n(Tn − θ) or (Tn − θ)/Sn, as
indicated below.

The classical approach to distribution estimation
obtains a simple theoretical formula for HF (x),
exact or approximate, and substitutes estimators for
unknown quantities in the theoretical formula. When
Rn(Y1, . . . , Yn; F) = √

n(Tn − θ), usually HF (x) can
be approximated by Φ(x/σ), where Φ is the
distribution function of N(0,1) and σ is an unknown
parameter related to F . If σ̂ is an estimator of
σ , then we estimate HF (x) by Φ(x/σ̂ ). When
Rn(Y1, . . . , Yn; F) = (Tn − θ)/Sn, HF (x) can often
be approximated by Φ(x). But use of the bootstrap
can provide a better (more accurate) approximation
to HF (x) simply, without analytic calculation.

Example 2

As an example, consider the case in which
Rn(Y1, . . . , Yn; F) = Yn − µ, where Y n = n−1 ∑n

i=1

Yi and µ = E(Y1). Then, with F̂ = Fn, the empirical
distribution function of Y1, . . . , Yn,

HBOOT(x) = Pr∗ (Y
∗
n − Y n ≤ x|Y1, . . . , Yn),

where Y
∗
n = n−1 ∑n

i=1 Y ∗
i denotes the mean of an

independent sample of size n drawn from Fn.
As an illustration, consider the case in which n =

10 and the given data Y1, Y2, . . . , Y10 are a random
sample from the normal distribution N(0, 1). The
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Figure 1 Bootstrap simulations, mean example

objective is to use the bootstrap to estimate the
sampling distribution of Rn(Y1, . . . , Yn; F) = Yn −
µ, without assuming anything about the population
from which the sample has been drawn. The true
sampling distribution is actually N(0, 0.1), so we may
check how the bootstrap performs. We consider the
data set in which the Yis are: −2.03, −0.58, 0.60,
0.45, 1.22, −0.69, 0.33, −1.69, 0.57, and −0.62. The
bootstrap estimate of the sampling distribution was
constructed from B = 1000 bootstrap samples, and
is shown in Figure 1. Superimposing the (true) N(0,
0.1) normal curve on the bootstrap histogram shows
that the bootstrap provides a very accurate estimate
of the sampling distribution of Y n − µ.

We now sketch other applications of the bootstrap.
Further details are given by Shao & Tu [11, Chap-
ter 1].

Bias Estimation

The bias of Tn as an estimator of θ is

biasF (Tn) =
∫

x dHF (x) − θ,

with HF (x) given by (2), with Rn = Tn (see Unbi-
asedness). The bootstrap bias estimator is obtained
by substituting F̂ and Tn for the unknown F and θ ,
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and is

bBOOT =
∫

x dHBOOT(x) − Tn.

In situations in which the estimator bBOOT has no
explicit analytic form, it is approximated, using the
Monte Carlo technique, by

b
(B)

BOOT =
∫

x dH
(B)

BOOT(x) − Tn

= 1

B

B∑

b=1

Tn(Y
∗
1b, . . . , Y ∗

nb) − Tn.

Confidence Sets

Bootstrap confidence sets for an unknown parameter
θ can be obtained using the percentiles of HBOOT (or
H

(B)

BOOT).
As an illustration, let HF be as given by

(2), with Rn(Y1, . . . , Yn; F) = θ̂n − θ , where θ̂n ≡
θ̂n(Y1, . . . , Yn) is an estimator of θ . An exact 1 − 2α

confidence interval for θ is

[θ̂n − H−1
F (1 − α), θ̂n − H−1

F (α)].

Under repeated sampling of Y1, . . . , Yn from F , this
interval contains the true value of θ with probability
1 − 2α. Approximating HF by HBOOT gives the
bootstrap confidence interval for θ

[θ̂n − H−1
BOOT(1 − α), θ̂n − H−1

BOOT(α)],

of approximate coverage 1 − 2α, under repeated
sampling of Y1, . . . , Yn from F . This confidence
interval is often called a “hybrid bootstrap” confi-
dence interval [8]. A commonly used alternative is
the “percentile bootstrap” confidence interval

[K−1
BOOT(α), K−1

BOOT(1 − α)],

where KBOOT(x) is the bootstrap estimator of the
sampling distribution of the estimator θ̂n.

Various alternative techniques for constructing
bootstrap confidence sets, and their asymptotic prop-
erties, are described by Shao & Tu [11, Chapter 4].

Theoretical results on the performance of boot-
strap methods are summarized by Shao & Tu [11]. In
particular, it is known that for the iid case and boot-
strap sampling from Fn, bootstrap estimators of the

distributions of many commonly used regular statis-
tics (such as means, functions of means, U -statistics,
and sample quantiles) are consistent for the true
sampling distributions and therefore give estimates
that approach the correct values as the sample size
n increases. Consistency of the bootstrap distribu-
tion estimator requires, roughly speaking, smoothness
conditions that are almost the same as those required
for asymptotic normality of the statistic, and certain
further moment conditions. How good the bootstrap
approximation is depends on the statistic to which it
is applied. For nonstudentized statistics, the conver-
gence rate of bootstrap estimators is the same as that
for normal approximations. For a studentized statis-
tic (see Studentization), the bootstrap estimator is
better than a normal approximation. For the nonpara-
metric bootstrap, consistency of bootstrap variance
estimators requires stronger moment conditions than
required for consistency of the bootstrap distribution
estimator. Inconsistency of the bootstrap estimator in
nonregular cases can often be rectified by the device
of drawing bootstrap samples not of size n, but of
size m(n), which diverges to infinity more slowly
than n. See [11, Chapter 3] for more detail of these
asymptotic properties.

For confidence sets, of crucial importance is
coverage accuracy. The coverage is the probability,
under repeated sampling of Y from the underlying
population, that the set contains the true value of
the parameter of interest, and the confidence set is
accurate if the actual coverage is close to the nominal
desired coverage. Compared with confidence sets
obtained by using the classical normal approximation,
some sophisticated bootstrap confidence sets have
greater theoretic accuracy, while simpler bootstrap
confidence sets, such as the percentile and hybrid
procedures, have the same accuracy, but are observed
to work well in practice, and have the advantage of
simplicity. See [8] and [11, Chapter 4].

The choice of the number of bootstrap samples
B to be drawn in the Monte Carlo approach to
the construction of bootstrap estimators is a delicate
one. Shao & Tu [11, Section 5.4.1] consider the
question in detail. As a rule of thumb, for moment
estimators B should be between 50 and 200, while
B should be considerable larger, of the order of at
least 1000, for bootstrap distribution estimation and
construction of confidence intervals. Other simulation
approaches which reduce the computational costs
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in bootstrap estimation are summarized by Shao &
Tu [11, Chapter 5]: see also [9, Appendix I].

Procedures for bootstrap hypothesis testing are
less well-developed than those for estimation and
confidence set construction. The main point to be
considered in the use of bootstrap procedures in
this context is determination of the distribution
from which bootstrap samples are drawn. The key
principle is that bootstrap data should be gener-
ated from a distribution that satisfies the restric-
tions specified by the null hypothesis under test.
Some of the methods used for determining this
distribution are summarized by Shao & Tu [11,
Section 4.5].

While our discussion so far has focused on the use
of bootstrap methods with iid data, their implemen-
tation with non-iid data problems is often easy.

A key example concerns the simple linear regres-
sion model. Suppose that the data Y1, . . . , Yn are
independent, of the form Yi = (Zi, xi), with the
Zi and xi scalar. There are two representations of
the model, and corresponding bootstrap procedures,
depending on whether the xi are considered random
or fixed.

If the xi are random, then the Yi are iid from an
unknown bivariate distribution P , and E(Zi |xi) =
βxi , say. In this case P is estimated by the empiri-
cal distribution function of the Yi . Bootstrap samples,
used, for example, to estimate the sampling distribu-
tion of the least squares estimator β̂, are drawn from
this empirical distribution.

If the xi are considered fixed, the model is
that in which Zi = βxi + εi , with the εi iid from
an unknown distribution Fε with mean zero. Then
Fε can be estimated by the empirical distribution
F̂ε of the centered residuals ε̃i = ε̂i − n−1 ∑n

j=1 ε̂j ,

where ε̂j = Zj − β̂xj . Bootstrap data Z∗
1 , . . . Z∗

n are
generated from iid data ε∗

1 , . . . , ε∗
n with distribution

F̂ε by setting Z∗
i = β̂xi + ε∗

i .
Shao & Tu [11, Chapters 7 and 8] consider appli-

cation of bootstrap methods to linear models, includ-
ing generalized linear models, nonlinear regres-
sion, and Cox regression models. The same authors
detail use of bootstrap methods in estimation prob-
lems arising in nonparametric and multivariate mod-
els, such as nonparametric regression models. A
further important application of bootstrap methods
lies in the analysis of sample surveys; see [11,
Chapter 6].

To illustrate some of the key points relevant to
bootstrapping dependent data, consider again Exam-
ple 2 above, but now suppose the simplest depen-
dence structure in statistical applications, that the
Yi are m-dependent; see [11, Section 9.1] for a
formal definition. In these circumstances

√
n(Y n −

µ) converges in distribution to N(0, σ 2∞), where
σ 2∞ �= var(Y1) in general. This asymptotic distribution
may be used to construct confidence intervals for
µ, but only provided that a consistent estimate of
σ 2∞ is available. This may be far from straightfor-
ward to obtain: bootstrap methods are an attractive
alternative.

While the bootstrap can bypass difficult prob-
lems associated with use of asymptotics (see Large-
sample Theory), use of a bootstrap resampling
scheme appropriate to independent data will fail to
provide consistent approximation even in the case
of weakly dependent processes. In our example, for
instance, the simple bootstrap estimator of the vari-
ance of

√
nY n converges in probability to var(Y1) and

is therefore inconsistent for σ 2∞, in general. Identifica-
tion of a valid resampling scheme requires knowledge
of the dependence structure of the observations.

As in the independent setting, the bootstrap can
be applied parametrically to structured dependent
data models, often with improvement over standard
asymptotic procedures. Most developments to depen-
dent data problems have considered such structured
models; see, for example, [11, Chapter 9].

Considerable interest, however, lies in nonpara-
metric resampling schemes. Künsch [10] proposed a
“moving blocks” resampling scheme for stationary
time series data. The basic idea here is to break the
observed data series Y up into a collection of overlap-
ping blocks of observations. Bootstrapped data series
are obtained by independent sampling, with replace-
ment, from among these blocks.

We illustrate this procedure in the context of the
example above. Let b be a given block size. Define
ξi = (Yi, . . . , Yi+b−1) to be the block of b consecutive
observations starting from Yi , i = 1, . . . , n − b +
1. The moving blocks bootstrap is based on
sampling with replacement from the collection
{ξ1, . . . , ξn−b+1}. Suppose that k is an integer such
that kb is approximately n, and let ξ ∗

1 , . . . , ξ ∗
k

be sampled independently and with replacement
from {ξ1, . . . , ξn−b+1}. Let the l = kb elements of
ξ ∗

1 , . . . , ξ ∗
k be concatenated into a single vector

(Z1, . . . , Zl) ≡ (ξ ∗
1 , . . . , ξ ∗

k ). Then (Z1, . . . , Zl) is
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the bootstrap sample under the moving blocks
bootstrap scheme and, for example, a bootstrap
estimate of Pr[

√
n(Y n − µ) ≤ z] is Pr[

√
l(Zl −

Y n) ≤ z], where the probability is computed under
the moving blocks resampling scheme, and where
Zl = l−1 ∑l

i=1 Zi . Consistency under the model of
m-dependence is now achieved if b is allowed to
grow to infinity with n.

The rate of approximation by the moving blocks
method may be worse than the rate of normal
approximation: the normal approximation yields bet-
ter estimates of the sampling distribution of interest
in this context. However, with suitable modifica-
tion in the definition of the bootstrapped statistic,
an improved approximation may be obtained. In the
above example, such modification amounts to esti-
mating Pr[

√
n(Y n − µ) ≤ z] by Pr[

√
l(Zl − E∗Zl) ≤

z], where E∗Zl denotes the expectation of Zl under
the moving blocks resampling scheme.

We conclude by reiterating the major considera-
tions in use of bootstrap methods and with a data
example.

1. Crucial to the practical effectiveness of bootstrap
methods is how the model P is defined and
estimated. Incorrect assumptions in postulating
the model P , such as assuming independence for
data which are actually correlated, may lead to
incorrect conclusions.

2. Even if the model P is postulated correctly, the
performance of the bootstrap relies on how well
we can estimate it. In the iid case for example, it
may be more effective to use a smoothed version
of the empirical distribution function Fn in con-
structing the bootstrap estimator, rather than Fn

itself; see [12] and [2]. The bootstrap itself may
be applied to choose between different bootstrap
estimators that with the smallest (bootstrap esti-
mated) error. This iterated bootstrap, while in
general demanding great computational expense,
can also be used for the fine tuning of basic
bootstrap procedures, by quantitative adjustment
of the bootstrap estimator to account for esti-
mated error; see [9, Chapter 1]. An important
application of this method is in the refinement
of bootstrap confidence sets, by bootstrap esti-
mation of coverage error, and adjustment of the
nominal coverage of the confidence set; see [7]
and [1].

3. In cases in which parametric assumptions are
justified, the bootstrap will do no better in
general than the correct parametric technique.
Bootstrap methods are also crucially conditioned
by the available sample data. They are therefore
only as good as the data with which they are
provided. If the data set has outliers or influential
points (see Diagnostics), and if the statistic being
bootstrapped is nonrobust (see Robustness),
bootstrap procedures can produce bad results, in
the same way as classical approaches.

Example 3 (Bootstrap Bioequivalence)

The following application of the bootstrap is
described by Efron & Tibshirani [6]. A drug
company has applied each of three hormone
supplement medicinal patches to eight patients
suffering from a hormone deficiency. One of the three
is “Approved”, having received approval from the
US Food and Drug Administration (FDA). Another
is a “Placebo” containing no hormone. The third is
“New”, being manufactured at a new facility, but
otherwise intended to be identical to “Approved”. The
three wearings occur in random order for each patient
and the blood level of the hormone is measured after
each patch wearing: results are given in Table 1.
The FDA requires proof of bioequivalence before
approving sale of the product manufactured at the
new facility.

Technically, let x be the difference between
Approved and Placebo measurements on the same
patient and let y be the difference between New and
Approved:

x = Approved − Placebo, y = New − Approved.

Let µ and ν be the expectations of x and y and let

ρ = ν

µ
.

Table 1 Bioequivalence data

Placebo Approved New x y

9 243 17 649 16 449 8 406 −1200
9 671 12 013 14 614 2 342 2601

11 792 19 979 17 274 8 187 −2705
13 357 21 816 23 798 8 459 1982

9 055 13 850 12 560 4 795 −1290
6 290 9 806 10 157 3 516 351

12 412 17 208 16 570 4 796 −638
18 806 29 044 26 325 10 238 −2719
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The FDA criterion for bioequivalence is that the new
facility matches the old facility within 20% of the
amount of hormone that the old drug adds to the
placebo blood levels, |ρ| ≤ 0.2.

For the given data

(x, y) = (6342, −452) = (µ̂, ν̂),

giving an estimate of the ratio ρ as

ρ̂ = ν̂

µ̂
= −0.071.

In formal terms, the FDA bioequivalence requirement
is that a 90% central confidence interval for ρ lies
within the range (−0.2, 0.2). We use the percentile
method to construct a nominal 90% confidence inter-
val for ρ.

Let F̂ be the distribution putting point mass 1/8
on each original data point (xi, yi), i = 1, . . . , 8. Let
{(x∗

1 , y∗
1 ), . . . , (x∗

8 , y∗
8 )} be a sample drawn from F̂ .

Such a sample gives a bootstrap replication of ρ̂:

ρ̂∗ =
(

8∑

i=1

y∗
i /8

)/ (
8∑

i=1

x∗
i /8

)
.

A nominal 90% confidence interval for ρ is (ρ̂∗[0.05],
ρ̂∗[0.95]), in terms of the lower 0.05 limit and upper
0.95 limit of ρ̂∗ under the drawing of such bootstrap
samples. An interval based on the drawing of 5000
random bootstrap samples (nearly exhaustive over all
possible bootstrap samples) is (−0.209, 0.123); see
the bootstrap histogram in Figure 2, where the limits
of the interval are shown by the broken lines.

The bioequivalence criterion is (just) violated. But
is this interval to be trusted? The accuracy, under
repeated sampling from the underlying population,
of the chosen confidence interval procedure is an
important part of the way the FDA decision making
operates, and we must therefore be concerned at
the accuracy of our percentile method interval. The
iterated bootstrap can be used to refine the interval,
by estimating the coverage error of the percentile
method. In effect, we adjust the nominal level of the
confidence interval, through the bootstrap, to deliver
an interval that we believe will have coverage nearer
to the required level 90%.

In Figure 3 is shown the graph of a bootstrap esti-
mate of the coverage of the percentile method con-
fidence interval, as a function of nominal coverage,
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Figure 3 Calibration, hormone data

constructed from a Monte Carlo simulation. This sim-
ulation generated B = 5000 bootstrap samples from
the given data. From each, the percentile method
confidence interval of any given nominal coverage
may be constructed, by drawing C = 5000 (second
level) bootstrap samples. The proportion containing
the observed value ρ̂ estimates the coverage of the
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percentile method interval, for that nominal cover-
age. This calibration curve shows that the percentile
method confidence interval of nominal coverage 0.9
has estimated coverage 0.833: the percentile interval
of nominal coverage 0.970 has estimated coverage
equal to the required coverage 0.9. The iterated boot-
strap confidence interval is therefore the percentile
method interval of nominal coverage 97%. This inter-
val, shown by the solid lines in Figure 2, is wider:
the interval for ρ is now (−0.237, 0.177). There is
rather good evidence that the bioequivalence criterion
is violated.
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[10] Künsch, H.R. (1989). The jackknife and the bootstrap
for general stationary observations, Annals of Statistics
17, 1217–1241.

[11] Shao, J. & Tu, D. (1995). The Jackknife and Bootstrap.
Springer-Verlag, New York.

[12] Silverman, B.W. & Young, G.A. (1987). The bootstrap:
to smooth or not to smooth?, Biometrika 74, 469–479.

[13] Young, G.A. (1994). Bootstrap: more than a stab in the
dark?, Statistical Science 9, 382–415.

(See also Bootstrapping in Survival Analysis)

D. DE ANGELIS & G.A. YOUNG



Bootstrapping in Survival
Analysis

Right Random Censoring

Let Y1, . . . , Yn be independent and identically dis-
tributed (i.i.d.) random variables (r.v.), called life-
times. Such data in survival analysis have the
typical feature that some of the Yi are not fully
observable due to various types of censoring and/or
truncation. We restrict here to the model of ran-
dom right censorship, which is described by con-
sidering another sequence C1, . . . , Cn of i.i.d. r.v.,
called censoring times. The observations are the pairs
(T1, δ1), . . . , (Tn, δn), where for i = 1, . . . , n, Ti =
min(Yi, Ci) and δi = I (Yi ≤ Ci). As is mostly the
case in survival analysis, we will assume that the Y ’s
and C’s are nonnegative, although this is not essen-
tial. The distribution functions of Y and C are denoted
by F and G respectively. The model of random right
censorship assumes that Yi and Ci are independent for
each i. This assumption entails that the Ti are i.i.d.
with distribution function H = 1 − (1 − F)(1 − G)

and the δi are Bernoulli distributed with γ = E(δ1) =
P(δ1 = 1) = ∫ ∞

0 (1 − G(s−)) dF(s). The nonpara-
metric maximum likelihood estimator for the life-
time distribution F is the Kaplan–Meier [29] esti-
mator Fn(t) defined by

1 − Fn(t) =
∏

Ti≤t

(
1 − mi

Mi

)δi

(1)

where mi = ∑n
j=1 I (Tj = Ti) is the number of fail-

ures observed at Ti , and Mi = ∑n
j=1 I (Tj ≥ Ti) is

the number at risk at Ti . If all Ti are different, then
each mi = 1 and Mi = n − rank(Ti) + 1, and in this
case

1 − Fn(t) =
∏

T(i)≤t

(
n − i

n − i + 1

)δ(i)

(2)

where T(1) ≤ T(2) ≤ · · · ≤ T(n) are the order statis-
tics of T1, . . . , Tn and δ(1), . . . , δ(n) are the corre-
sponding δ’s.

It is easy to see that Fn reduces to the usual
empirical distribution function (see Goodness of Fit)
if there is no censoring (all δi = 1).

Efron’s Bootstrap in the Right Random
Censorship Model

It was Efron [17] who first proposed bootstrap pro-
cedures for right randomly censored observations. His
first proposal is to take independent resamples from
the Kaplan–Meier estimators of the lifetimes and the
censoring times, and to combine them by taking min-
ima and indicators.

Efron’s bootstrap procedure I:

(1) Resample independently

Y ∗
1 , . . . , Y ∗

n

i.i.d.∼ Fn (Kaplan–Meier estimator

for F )

C∗
1 , . . . , C∗

n

i.i.d.∼ Gn (Kaplan–Meier estimator

for G)

(2) Form (T ∗
1 , δ∗

1), . . . , (T ∗
n , δ∗

n), where T ∗
i =

min(Y ∗
i , C∗

i ) and δ∗
i = I (Y ∗

i ≤ C∗
i ).

(the definition of Gn(t) is obtained from that of
Fn(t) by replacing δi by 1 − δi).

Efron’s second proposal is to resample from the
empirical distribution function of the observed min-
ima and indicators.

Efron’s bootstrap procedure II:
Resample (T ∗

1 , δ∗
1), . . . , (T ∗

n , δ∗
n) as a random sam-

ple with replacement from the pairs {(T1, δ1), . . . ,

(Tn, δn)}.
The first procedure could be called “model-based”

since it uses the specific structure of random right
censorship. The second procedure is more naive and
could be called “model-free”. An interesting result is
that both procedures are identical if we assume that
there are no ties between censored and uncensored
values in the original sample. This means that both
procedures give the same bootstrap values with the
same probabilities. This equivalence no longer holds
for left-truncated and right-censored data (see [6,
20,40]).

The Kaplan–Meier estimator based on the boot-
strapped observations (T ∗

1 , δ∗
1), . . ., (T ∗

n , δ∗
n) is then

given by

1 − F ∗
n (t) =

∏

T ∗
i
≤t

(
1 − m∗

i

M∗
i

)δ∗
i

(3)
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where m∗
i = ∑n

j=1 I (T ∗
j = T ∗

i ) and M∗
i = ∑n

j=1 I

(T ∗
j ≥ T ∗

i ).
Throughout, we will use the notations P ∗, E∗,

V ar∗, . . . for probability, expectation, variance, . . .

under the proposed resampling procedure (i.e. condi-
tional on the original observations).

Weak Convergence of the Bootstrapped
Kaplan–Meier Process

We consider the Kaplan–Meier process n1/2(Fn(t) −
F(t)), 0 ≤ t ≤ T0, where T0 < TH = min(TF , TG).

(Throughout, we use the following notation: for
any distribution function L, we write TL = inf{t :
L(t) = 1} for the right endpoint of support). Let
D[0, T0] denote the space of right continuous func-
tions with left hand limits. The strong consistency of
Efron’s bootstrap for n1/2(Fn − F) has been estab-
lished by different techniques ([33, 1]). The method
in [1] uses point processes and martingale theory
(see Counting Process Methods in Survival Ana-
lysis) to show the weak convergence result: if T0 <

TH , then almost surely (a.s.) as n → ∞,

n1/2(F ∗
n (·) − Fn(·)) ⇒ W(·) in D[0, T0] (4)

where W(·) is the same Gaussian process as
for the original Kaplan–Meier process (obtained
in [7]) (see Large-sample Theory). In [1] also,
bootstrap versions of the confidence bands in [22]
are obtained. The basic idea is the following:
from the weak convergence result n1/2(Fn(·) −
F(·)) ⇒ W(·), we have that sup0≤t≤T0

n1/2|Fn(t) −
F(t)| d→ sup0≤t≤T0

|W(t)|. Hence, an approximate
100(1 − α)% confidence band can be obtained as
Fn(t) ± cαn−1/2 (0 ≤ t ≤ T0), where cα is such
that P(sup0≤t≤T0

|W(t)| ≤ cα) = 1 − α. By the above
result, cα can be approximated by the 1 − α quantile
of the bootstrap distribution of sup0≤t≤T0

n1/2|F ∗
n (t) −

Fn(t)|. For related results, we also refer to the
paper [24] on strong approximations and to [41] on
the bootstrap for multivariate survival data.

Other Resampling Plans

There exist other resampling methods for censored
data, different from the one of Efron [17] used above.
Reid [35] proposed (in a context of estimation of

the median) to take an i.i.d. resample from the
Kaplan–Meier estimator of F and to work with the
corresponding empirical distribution function.

Reid’s bootstrap procedure

Resample T̃1, . . . , T̃n

i.i.d.∼ Fn.
It is clear that such a resample always consists

entirely of originally uncensored Ti . If F̃n is the
empirical distribution function of T̃1, . . . , T̃n, then it
is shown in [1] that for T0 < TH , a.s. as n → ∞,

n1/2(F̃n(·) − Fn(·)) ⇒ W̃ (·) in D[0, T0] (5)

but the Gaussian process W̃ does not agree with
the limiting process W of the original Kaplan–Meier
estimator. It follows that Reid’s bootstrap cannot be
used to approximate the quantile that is needed in the
construction of the confidence band for F .

Hjort [23] (in the context of Cox’s regression
model) proposed a resampling method as in Efron’s
Procedure I but with different construction of the
censoring variables: if δi = 0, then we observe the
exact value of Ci and take C∗

i = Ti ; if δi = 1, then
we know only that Ci > Ti and we generate C∗

i from
the Kaplan–Meier estimator of G, conditional on
Ci > Ti .

Hjort’s bootstrap procedure:

(1) Resample Y ∗
1 , . . . , Y ∗

n

i.i.d∼ Fn.
(2) Independently, resample C∗

1 , . . . C∗
n as follows

- if δi = 0, let C∗
i = Ti

- if δi = 1, generate C∗
i from GTi

, where

GTi
(t) = Gn(t) − Gn(Ti)

1 − Gn(Ti)
(t ≥ Ti) (6)

(3) Form (T ∗
1 , δ∗

1), . . . , (T ∗
n , δ∗

n), where T ∗
i =

min(Y ∗
i , C∗

i ) and δ∗
i = I (Y ∗

i ≤ C∗
i ).

If F ∗
n is the Kaplan–Meier estimator formed with

the above (T ∗
i , δ∗

i ), then in [30] (see also [16]) it is
shown that for T0 < TH , a.s. as n → ∞,

n1/2(F ∗
n (·) − Fn(·)) ⇒ W(·) in D[0, T0] (7)

where W is the same Gaussian process as for the
original Kaplan–Meier process. Also, Bayesian boot-
strapping and weighted bootstrapping have been sug-
gested and studied; see, for example, [32] and [26].
It should also be mentioned that bootstrap methods
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for arbitrary counting process models are discussed
in [2].

Bootstrapping Kaplan–Meier Quantiles

For 0 < p < 1, we denote the pth quantile of the life-
time distribution F by ξp = F−1(p) = inf{t : F(t) ≥
p}. A simple estimator for ξp is the p-th quantile
of the Kaplan–Meier estimator Fn : ξpn = F−1

n (p) =
inf{t : Fn(t) ≥ p}. Many large sample properties for
quantile estimators can be derived from the asymp-
totic representations (Bahadur representations). They
represent ξpn as follows:

ξpn = ξp + p − Fn(ξp)

f (ξp)
+ Rn(p) (8)

where f = F ′ and Rn(p) is a remainder term.
Weak convergence of the quantile process

n1/2(ξpn − ξp) (0 < p ≤ p0), where 0 < p0 <

min(1, TG(F −1)) can be obtained. The limiting process
is given by −W(ξp)/f (ξp) (0 < p ≤ p0), where W

is the limiting Gaussian process of the Kaplan–Meier
process.

Efron’s bootstrap for Kaplan–Meier quantiles
was studied in [33]. Let F ∗

n be the Kaplan–Meier
estimator based on the bootstrapped observations
(T ∗

1 , δ∗
1), . . . , (T ∗

n , δ∗
n) and let ξ ∗

pn = F ∗−1
n (p) =

inf{t : F ∗
n (t) ≥ p}. Their key result is a bootstrap

version of the above representation theorem, from
which weak convergence of n1/2(ξ ∗

pn − ξp) follows.
This, and the application to confidence bands for the
quantile function is also discussed in [16].

A Practical Example

As a simple illustration of the use of the bootstrap
in survival analysis, we consider the calculation
of a confidence interval for the median survival
time. We perform this on the Channing House data
(see [25]) using the R software. Figure 1 shows the
Kaplan–Meier survival estimator 1 − Fn(t) for the
97 men who lived in this retirement center. Of the 97
lifetimes, 46 were observed completely (δ = 1) and
51 were censored (δ = 0).

It follows that the median survival time is
1044 months. From each of 2000 resamples from
the data {(z1, δ1), . . . , (z97, δ97)}, we calculated the
Kaplan–Meier median. For the percentiles of these
2000 replicas of the median, we obtained

2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

1025 1029 1031 1036 1044 1055 1060 1080 1080

These values can be used be obtain simple con-
fidence intervals for the median survival time. For
example, a 90% confidence interval is given by
[1029, 1080]. This method is called the percentile
method. This and other results can also be found
in [17].

Accuracy of the Bootstrap with Censored
Data

Second-order asymptotics for the bootstrap have
been studied to find the rate at which the boot-
strap error tends to zero a.s. For uncensored data,
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Figure 1 Kaplan–Meier survival curve 1 − Fn(t) for the Channing House data (time in months)
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it is well known that for several classes of statis-
tics, the bootstrap approximation is more accurate
than the normal approximation. While the error of
the normal approximation is typically o(n−1/2) (by
a Berry–Esseen theorem), the rate of convergence
of the bootstrap estimator can, in some situations, be
shown to be o(n−1/2) a.s. (which is typically that of a
one-term Edgeworth expansion). Edgeworth expan-
sions for the Studentized Kaplan–Meier estimator
n1/2(Fn(t) − F(t))/σ̂G(t) and for the bootstrapped
version n1/2(F ∗

n (t) − Fn(t))/σ̂
∗
G(t) have been derived

in [10]. Here, σ̂ 2
G(t) is the Greenwood estimator of

the variance given by

σ̂ 2
G(t) = (1 − Fn(t))

2n
∑

Ti≤t

δi

Mi(Mi − mi)
(9)

and σ̂ ∗2
G is the bootstrapped version (see Kaplan–

Meier Estimator).
An important corollary is that (under the con-

ditions: F and G continuous, G(t) > 0, and 1 −
H(t) > 0), we have a.s. as n → ∞,

sup
x

∣∣∣∣P
∗
(

n1/2(F ∗
n (t) − Fn(t))

σ̂ ∗
G(t)

≤ x

)

−P

(
n1/2(Fn(t) − F(t))

σ̂g(t)
≤ x

)∣∣∣∣ = o(n−1/2).

(10)

This shows that bootstrapping the Studentized
Kaplan–Meier estimator offers a better alternative
than the normal approximation.(Compare with the
o(n−1/2) rate of the Berry–Esseen theorem in [9]
and [28]).

In [27], it has been shown that modified boot-
strapping (i.e. choosing a resample size m, which is
possibly different from n) may lead to improved con-
sistency rates for Kaplan–Meier quantiles. Modified
bootstrapping for doubly censored data has also been
considered in [5].

Bootstrapping in the Proportional Hazards
Regression Model of Cox

Very often it happens that together with the obser-
vation of the ith individuals lifetime Yi or censoring
time Ci , one has also information on other character-
istics Zi (covariates, explanatory variables, design

variables). Regression models study the effect of
these covariates on the conditional distribution func-
tion of the true lifetimes Fz(t) = P(Y ≤ t | Z = z).

In the proportional hazards model of Cox [11],
the relation between a, possibly right censored, life-
time Y and the covariate Z is modeled via the hazard
rate function

λz(t) = lim
h →

>

0

1

h
P (Y ≤ t + h | Y > t ; Z = z). (11)

(For simplicity, we assume here that the covariate Z

is one-dimensional, but generalizations are possible).
Cox’s proportional hazards model specifies that λz(t)

is given by
λz(t) = λ0(t)eβz (12)

where λ0(t) is an unspecified baseline hazard function
(the hazard for an individual with z = 0) and β is an
unknown regression parameter.

Suppose that there are n individuals in the
study and that the observations are given as
(Z1, T1, δ1), . . . , (Zn, Tn, δn), where for individual i,
Zi denotes the covariate and where, as before, Ti =
min(Yi, Ci) and δi = I (Yi ≤ Ci).

Cox’s maximum partial likelihood estimator for
β ([12]) is the value for β maximizing the partial
likelihood function

Ln(β) =
n∏

i=1





eβZi

n∑

j=1

eβZj I (Tj ≥ Ti)





δi

(13)

(or the log partial likelihood function log Ln(β)).
The large-sample properties of Cox’s maximum

partial likelihood estimator were established in [36]
(see also [3] for a counting process approach). The
paper [36] shows strong consistency of the estimator
β̂n, and also asymptotic normality

n1/2(β̂n − β)
d→ N(0; σ 2(β))

where σ 2(β) = 1
I (β)

with

I (β) =
∫ [

α2(t, β)

α0(t, β)
−

(
α1(t, β)

α0(t, β)

)2
]

× α0(t)λ0(t) dt
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αk(t, β) =
∫

zkeβzP (T ≥ t |Z = z)f (z) dz

k = 0, 1, 2 (14)

and f is the density of the covariate Z.
The asymptotic variance σ 2(β) = 1/I (β) can be

consistently estimated by n/In(β̂n), where In(β) =
−∂/∂βUn(β) is the information function. Hence, the
Studentized estimator is (In(β̂n))

1/2(β̂n − β).
As suggested by Efron and Tibshirani [18], an

obvious bootstrap procedure for Cox’s proportional
hazards regression model is to resample from the
triples, then calculate the partial likelihood and then
maximize it.

Efron and Tibshirani’s bootstrap procedure

(1) Resample (X∗
1 , T ∗

1 , δ∗
1), . . . , (X∗

n, T ∗
n , δ∗

n) i.i.d.
from the empirical distribution function of
(X1, T1, δ1), . . . , (Xn, Tn, δn).

(2) Calculate β̂∗
n : the value of β such that L∗

n(β) is
maximized.

A one-term Edgeworth expansion for n1/2(β̂n − β)

and related quantities is established in [21]. It is also
shown that the bootstrap approximation is second-
order correct: a.s. as n → ∞,

sup
x∈IR

∣∣∣∣P
∗
(√

I ∗
n (β̂∗

n)(β̂∗
n − β̂n) ≤ x

)

−P

(√
In(β̂n)(β̂n − β) ≤ x

)∣∣∣∣ = o(n−1/2).

(15)

Bootstrap confidence intervals for the regression
parameter β, the distribution function Fx(t), and the
quantile function F−1

x (t) were studied by Burr [8].
The author performs a Monte Carlo study to com-
pare different types of confidence intervals.

Bootstrapping in Nonparametric
Regression Models

The relation between the distribution of the lifetime
Y and the value of the covariate Z has also been
analyzed in a completely nonparametric way, that
is, without assuming any condition on the regression
function. Beran [4] extended the definition of the
Kaplan–Meier estimator to the regression context
by proposing an entirely nonparametric estimator

for Fz(t) = P(Y ≤ t | Z = z) based on a random
sample of observations (Z1, T1, δ1), . . . , (Zn, Tn, δn).
It is assumed that the r.v. Yi and Ci are conditionally
independent, given Zi . This ensures identifiability of
Fz(t).

This estimator has been studied by several people.
Uniform consistency has been shown in [4]. Weak
convergence results and quantile functions were stud-
ied in [13, 14] and [15]. The paper [34] provides
the counting process treatment and an extension of
the regression model. Almost sure asymptotic rep-
resentations in the fixed design case (i.e. nonran-
dom covariates Zi) were obtained in [19] and [39].
In [37, 38] and [39], a further study was made of this
Beran extension of the Kaplan–Meier estimator, the
corresponding quantile estimator and the bootstrap
versions.

The Beran estimator Fzh(t) for Fz(t) is given by

1 − Fzh(t) =
∏

T(i)≤t




1 − wn(i)(z; hn)

1 −
i−1∑

j=1

wn(j)(z; hn)





δ(i)

.

(16)

where {wni(z; hn)} is a sequence of smoothing
weights depending on a kernel density and a posi-
tive bandwidth sequence {hn}. We use the notation
wn(i)(z; hn) for the weight corresponding to T(i). The
bootstrap procedure suggested in [39] consists of
drawing the pairs (T ∗

1 , δ∗
1), . . . , (T ∗

n , δ∗
n) with replace-

ment from (T1, δ1), . . . , (Tn, δn), giving probability
wnj (zi ; gn) to (Tj , δj ) for j = 1, . . . , n. The band-
width sequence {gn} is typically such that gn/hn →
∞ as n → ∞ (“oversmoothing”). In [38], strong
consistency of this bootstrap is shown; see also [31]
for a martingale approach.
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Bortkiewicz, Ladislaus
von

Born: August 7, 1868, in St Petersburg, Russia.
Died: July 15, 1931, in Berlin, Germany.

Bortkiewicz studied initially in Russia, then in Gottin-
gen under Wilhelm Lexis (1837–1914). From 1901,
he was a professor at the University of Berlin, teach-
ing statistics and economics. He contributed widely
in theoretic, social, and economic statistics, devel-
oping especially the ideas of Lexis on dispersion in
heterogeneous binary data.

He is best known in biostatistics for his presen-
tation [1] of data on deaths from horse-kicks in 14
corps of the Prussian Army over a 20-year period.
The variation in number of deaths is closely repre-
sented by a Poisson distribution (Table 1).

Table 1

Deaths 0 1 2 3 4 5- Total

Frequency – – – – – – –

Observed 144 91 32 11 2 0 280

Expected 139.0 97.3 34.1 8.0 1.4 0.2 280.0

The “Law of Small Numbers” [1] implied that
for low expectations in binomial or Poisson data,
considerable heterogeneity in the expectation could
remain undetected from the marginal distribution.
In this example, heterogeneity must exist, if only
because the corps differed greatly in size. Further
analysis of a reduced set of two-way data categorized
by year and by corps [2, 4] reveals clear evidence
of variation in expectation between both years and
corps.

See [3] for further biographical details. The spell-
ing of his name is variable.
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Bradford Hill Lectures

Sir Austin Bradford Hill has been described as “the
greatest medical statistician in the twentieth cen-
tury” [1]. He pioneered the randomized controlled
trial as the method of evaluating new treatments (see
Clinical Trials, Overview) [3, 4], established criteria
for evaluating evidence of causation in epidemiol-
ogy [5], and collaborated on many key medical and
public health research studies, both experimental and
observational. Notably, the cohort study of British
doctors [2] led by Sir Austin and Sir Richard Doll
provided the first definitive evidence linking cigarette
smoking with risks of lung cancer and coronary heart
disease, and the British Medical Research Council
Streptomycin trial in tuberculosis [6] is generally
considered to be the first well-executed randomized
clinical trial.

Sir Austin’s genius lay in creating a collaborative
spirit whereby statistical skills became truly appreci-
ated by medical researchers. His key text “Principles
of Medical Statistics”, first published in 1937 as a
series of Lancet articles, is still today considered
essential reading; its enlarged 12th edition [7] with
his son David Hill as joint author appeared shortly
after Sir Austin’s death in 1991.

Much of Sir Austin’s career was at the London
School of Hygiene and Tropical Medicine, where
he was Professor of Medical Statistics from 1946
to 1961 and Dean of the School from 1955 to
1957. His legacy has led to the School being one
of the world’s leading academic centers for medi-
cal statistics and epidemiology both in research and
teaching. To honor his memory, the School estab-
lished the Bradford Hill Memorial Lecture series,
which each year provides an opportunity for a leader
in the field to give a perspective on our disci-
pline and its relevance to key public health issues.
The Bradford Hill Memorial lecturers have been as
follows:

1992 Richard Doll
Sir Austin Bradford Hill and the progress of

medical science

1993 Peter Armitage
Before and after Bradford Hill: Some trends in

Medical Statistics

1994 David Cox
Causality

1995 Richard Peto
Clinical trials: where Bradford Hill went wrong

1996 Nick Day
Quantification and causality in epidemiology:

beyond Bradford Hill

1997 Iain Chalmers
The Cochrane Collaboration: Problems,

achievements and prospects

1998 Sheila Gore
Drugs, illegal addiction; High time for Bradford

Hill’s scientific method

1999 Richard Horton
Common sense and figures: the rhetoric of

validity in medicine

2000 David Clayton
Biostatistics, Epidemiology and the

post-Genomic Challenge

2001 David Strachan
The environment and disease: association &

causation across three centuries

2002 David Spiegelhalter
Monitoring and comparing clinical

performance – do we need ‘clever’ statistical
methods?

2003 Valerie Beral
The causes of breast cancer

2004 Janet Darbyshire
Challenging Trials
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Bradley, Ralph A.

Born: November 28, 1923 in Smith Falls, Ontario,
Canada.

Died: October 30, 2001, in Athens, Georgia, USA.

Photo provided by Marion Bradley

Ralph Bradley’s contributions to the world of
statistics fall under two headings: his statistical
research (especially the Bradley–Terry test used
extensively in taste-testing experiments) and his
professional leadership role in statistical science, as
evidenced by his development of statistical programs,
by his presidency (1981) of the American Statistical
Association (ASA) and by his editorial efforts. The
conversation in Statistical Science [5] provides more
details of his views and life.

Ralph Bradley grew up in Wellington, Ontario,
and received his B.A. degree with honors in
mathematics and physics from Queens University,
Canada, in 1944. After serving in the Canadian army
(1944–1945), he completed an M.A. in mathematics
and statistics in 1946, also at Queens University.
He completed his Ph.D. degree in statistics in 1949
at the University of North Carolina at Chapel Hill
under the direction of Harold Hotelling as his major
professor. After a year at McGill University in
Montreal, Canada, Ralph returned to the United
States and joined the new department of statistics
at Virginia Polytechnic Institute (VPI) under Dr
Boyd Harshbarger. Ralph stayed in the department
for 10 years (1950–1959), became Boyd’s right-hand
man and with him laid the foundations and developed

the department. Building upon this experience, Ralph
traveled further south from his beloved Canada
to Tallahassee, Florida, to become the head of a
new statistics department at Florida State University
(FSU). In the ensuing 19 years (1959–1978) as head,
he developed the department and made it first-rate.
He stayed another four years at Florida State before
moving to the University of Georgia in 1982, where
he remained until his death, first as a research
professor (1982–1992) and then as research professor
emeritus after his retirement.

While at VPI, Ralph Bradley collaborated with
Milton Terry on a statistical test for paired compar-
isons, which became known as the Bradley–Terry
test. The test involves ranking a series of two (of a
total of t) treatments in incomplete blocks of size
two. The test was motivated by a problem encoun-
tered when judges were asked to assess the relative
merits of t treatments, making the comparisons two
treatments at a time and expressing a preference for
one treatment in each pair of two treatments (e.g. taste
testing). Bradley and Terry [4] developed a model
and the related hypothesis testing procedures, includ-
ing developing rating estimates, and also conquered
the not inconsiderable computational difficulties (in
the days long before modern computing capabili-
ties were freely available). This work was widely
cited and led to several awards, including the 1957
J. Shelton Horsley Research Award. An elegant expo-
sition of the universality of the application of the test
was given in [6], which is an excellent illustration of
Bradley’s commitment to the importance of both the-
oretical and applied statistics in the advancement of
statistical science. This balancing of theory and appli-
cation permeated his research throughout his career,
culminating with his work in meteorology in the late
1970s to the early 1980s [2] and his work on trend-
free block designs and blocking criteria in later years
(see, e.g. [3, 7]). Ralph Bradley had broad interests
in statistics throughout his research career, includ-
ing nonparametric statistics, sequential analysis,
computational methods, design of experiments (see
Experimental Design), and multivariate methods.

Though Ralph made important contributions to
statistical research, his leadership in the development
of statistics departments distinguished him from his
peers. He played a key role in the growth of the
department at VPI; he was the driving force of the
department of statistics at FSU, as the founding head;
and he provided senior leadership at the University
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of Georgia. He wrote extensively on how to achieve
and develop viable degree programs (see, e.g. [1]).
His career was also distinguished by his editorial
efforts, highlighted by his 6-year term (1957–1962)
as an editor of Biometrics and his 44-year term
(1954–1998) as a consulting editor of the Wiley
Series in probability and statistics. He contributed
mightily to these high-quality statistical publications.

Bradley’s leadership capabilities were recognized
by his election as President (1981) of the American
Statistical Association (ASA), a singular honor rec-
ognizing his leadership skills and insights in guiding
the future development of the profession. A major
contribution was his leadership role in ASA’s pur-
chasing and moving to its own building in Alexan-
dria, Virginia. Earlier, Bradley served the ASA in
a variety of roles, including as vice president, as a
member of the board of directors, and as a mem-
ber of the publication committee. His overall con-
tributions were recognized in 1992 with a Founders
Award. Bradley’s other contribution to the profession
included being president (1965) of the Eastern North
American Region of the International Biometric
Society (IBS), with three terms (over three decades)
on the IBS council, and a term as chair and mem-
ber (1982–1988) of the National Research Council’s
Committee on Applied and Theoretical Statistics.

A mark of a true leader includes a willingness to
seek advice and learn from the experiences of other
leaders, and Ralph Bradley was such a leader. He
often looked to Gertrude Cox, Boyd Harshbarger,
Harold Hotelling, and Frank Wilcoxon, among oth-
ers, for inspiration and advice. He understood and
practiced the art of collaboration, especially as it per-
tained to professional leadership. The marks of his
leadership are visible in the establishments of depart-
ments and degree programs not only where he held
rank but also where he played related advisory roles.
Further, he sought to instill in others the same ide-
als of cross-communication between colleagues and
aided the development of leadership abilities when
the potential excited him. His insistence on excel-
lence from himself and those around him was a thread
throughout his work that enhanced his contributions
and defined his accomplishments.

Ralph’s dedication to perfectionism enabled him
to be a craftsman par excellence. He built a swivel
chair from discarded parts of broken chairs, and he
also built a roll-top desk. This involved the crafts-
manship and patience that was typical of Ralph. He
loved to fish; he loved to play bridge, even main-
taining a noon-time game (maximum playing time
70 minutes!) with departmental faculty at FSU; and
he loved sports, especially tennis, never allowing
age to deter his enthusiasm for playing as hard as
he could. His family supported him fully; his wife
Marion was tireless, serving, for example, as his edi-
torial assistant during his Biometrics editorship. He
has two children Allan and Linda and four grandchil-
dren. Ralph Bradley was an all-around man! He has
left behind a rich and enduring legacy to the statisti-
cal profession, a legacy to be embraced and enjoyed
by those who follow him.
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Bradley–Terry Model

The Bradley–Terry model is an elegant unidimen-
sional scaling method for summarizing purely ordinal
data on paired “objects” (see Paired Comparisons).
Such data are ubiquitous in the match-by-match
records of individual and team sports involving paired
competition. In biometry they are intrinsic to analy-
ses of dominance behaviors in some animal species,
and occur more generally in the study of subjective or
objective phenomena that are not directly measurable,
therefore requiring that objects be scaled by compar-
ative ranking. Paired comparisons are used when it is
psychologically impracticable or burdensome to rank
triads or larger groups, or when operational difficul-
ties may compromise validity or reliability of such
rankings.

The Basic Model

Consider a set of objects O = {Oi, i = 1, . . . , I },
from among which certain pairs (Oj , Ok) are ordered,
either by nature or by one or more observers
(“judges”), as either (Oj > Ok) or (Oj < Ok). The
judgments are presumed to be guided by the same
criterion, which may be frankly subjective (e.g.
judge’s personal preference) or invoke a clearly
objective quality. Pairs may be judged more than
once, with the same or different outcomes. The
Bradley–Terry model associates with each Oi a
parameter λi > 0. Any single comparison between
Oj and Ok is modeled as a Bernoulli trial with
probabilities of the two outcomes (Oj > Ok) and
(Oj < Ok) proportional to λj and λk (see Binary
Data). Thus, the odds of Oj being “preferred” to Ok

are λj/λk , and

πjk = Pr{Oj > Ok} = λj

(λj + λk)
. (1)

For identifiability the λi are conventionally scaled to
sum to 1, so that they satisfy the most basic formal
properties of probabilities. However, only their ratios
are consequential and interpretation as probabilities
is generally inappropriate.

The model was proposed by Zermelo [41] with
a view to resolving incomplete round-robin tour-
naments, and independently developed by Bradley

& Terry in the early 1950s while studying sen-
sory difference testing methods for evaluating food
quality [12, 39]. It has since been widely applied
to biometric and psychometric problems. Ford [27],
who also rediscovered the model, clarified aspects of
the asymptotic theory and convergence properties of
algorithms for maximum likelihood estimation (see
Large-sample Theory).

Guided by the principle of “independence of irrel-
evant alternatives”, Luce [33] proposed a general
model for choices among groups of objects that
reduces to the Bradley–Terry model when the objects
are judged only in pairs. Luce’s model posits that the
probabilities of ranking Oj or Ok first have a constant
ratio λj/λk , whether Oj and Ok are being compared
as a pair, or are included in any larger subset of O.
Since O itself is such a subset, in the Luce model
λi actually is the probability that Oi is ranked first
amongst the I objects. Thus, although it is applicable
to complex data structures beyond paired compar-
isons, the Luce model incorporates very restrictive
assumptions about the choice process.

Table 1 relates the Bradley–Terry model to ante-
cedents in (i) the tradition of psychometric paired-
comparison (or paired-choice) research dating back to
psychophysical studies of Fechner [36], and (ii) the
quantal response bioassay literature of the 1930s
and 1940s that proved seminal to modern categorical
data modeling [26].

To see the relationships, consider the general
linear paired-comparison model [15, pp. 7–9]. This
represents the πjk as differences between intrinsic
“true merits” Mj and Mk of Oj and Ok on an
underlying continuum, transformed by a continuous
and symmetric cumulative distribution function (cdf)
F centered at zero. Thus,

πjk = F(Mj − Mk). (2)

The merits constitute a latent unidimensional interval
scaling of the objects, and form the structural por-
tion of the linear model. The stochastic component

Table 1 Relationship of the Bradley–Terry model to anal-
ogous paired comparison and quantal bioassay methods

Latent distribution

Gaussian Logistic

Paired comparison Thurstone–Mosteller Bradley–Terry
Quantal bioassay Probit analysis Logit analysis
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F follows from assuming that a paired-comparison
judge observes Mj and Mk only after perturbation by
additive random errors εj and εk . These errors vary
across judges, observation times, or both, as appro-
priate to the situation, following a single continuous
bivariate distribution for all pairs. If judges order
pairs using the resulting observed merits Mj + εj and
Mk + εk , then the linear model follows by taking F

as the marginal distribution of εj − εk .
The Gaussian (normal) and logistic distribu-

tions are natural candidates for F , the former yield-
ing the classical Thurstone–Mosteller psychometric
model [38], and the latter the Bradley–Terry model
(for which one may take Mi = ln λi). These are
related, respectively, to probit and logit models for
quantal bioassay, wherein the minimal drug dose
required to produce a well-defined response in a
test animal, when measured on an appropriate scale,
is presumed to follow a normal (probit model) or
logistic (logit model) distribution within the animal
population. Both conceptually and formally, the dif-
ference in true merits in a Bradley–Terry model plays
the same role as does the log dose in logit modeling of
a quantal bioassay (see Quantal Response Models).

The Thurstone–Mosteller model arises simply
from a bivariate normal distribution of merit per-
turbations, and so is a comfortable choice if a
linear paired-comparison model is to be selected
on the basis of first principles. In contrast, the
Bradley–Terry model has the unappealing property
that independent merit perturbations within pairs
are type I extreme value (double-exponential) vari-
ates. Thompson & Singh [37] generate this distri-
bution from an underlying psychophysical model in
which perturbations are maxima rather than means
of many independent identically distributed compo-
nents. Despite this apparently substantial difference,
however, the Gaussian and logistic distributions of
perturbation differences are virtually indistinguish-
able in practice. Hence, the choice between them is
rarely consequential for substantive inference.

In another respect, the Bradley–Terry model is
most appealing. It is common in a tournament or
other paired-comparison setting to rank the objects
by their total “victory” counts, υi . In a balanced
round-robin tournament, E(vi) = rπi. = ∑

j �=i πij ,
where r is the number of replications. In any linear
paired-comparison model, H0: equality of these πi·
implies H′

0: equality of the Mi . Hence, indifference
may be tested using the υi . But when some Mi are

unequal, formal modeling may not support the naive
ordering that the υi suggest, especially when data
arise from incomplete tournaments. Nevertheless,
inference about the Mi is considerably simplified
if one confines attention to these marginal scores.
Among all linear paired-comparison models, only
the Bradley–Terry model allows this. The υi are
sufficient for the Mi under this model, so one
can always find the maximum likelihood ordering
from the υi , even when they do not themselves
display it. Daniels [14] shows that the Bradley–Terry
model also arises directly from some intuitively
appealing approaches to “fair” scoring of round-robin
tournaments.

Inference

Independent Choices

Inference is greatly simplified when all choices are
viewed as statistically independent. This occurs (i) in
the rare situation of randomly chosen judges who
each separately view a single pair, or (ii) when
no comparisons are influenced by common random
effects, or by the results of any other compar-
isons. It is sometimes reasonable to assume indepen-
dence under other circumstances, at least to a first
approximation.

In this situation, data may be summarized without
loss of information using either of two contingency
table formats. We illustrate these using data from
Davidson & Bradley [20] on overall quality of three
chocolate puddings. In the “population-response”
format (Table 2), each comparison is counted in the
cell of the row labeled by the pair and the column
labeled by the winner.

In the “repeated measures” format (Table 3), each
comparison is counted in the cell of the winner’s

Table 2 Population–response representation of paired-
comparison results on overall quality of chocolate puddings
A, C, and D

Better

Pair A C D Total

AC 10 10 20
AD 7 15 22
CD 14 9 23

Total 17 24 24 65
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Table 3 Repeated-measures representation of paired-
comparison results on overall quality of chocolate puddings
A, C, and D

Worse

A C D Total

A 10 7 17
Better C 10 14 24

D 15 9 24

Total 25 19 21 65

row and the loser’s column. Tables 2 and 3 are
both “incomplete” contingency tables, inasmuch as
a diagonal of each must be empty, by nature of the
paired-comparison design. The Bradley–Terry model
is equivalent to both the quasi-independence model
for the nonzero cell counts of Table 2 and the quasi-
symmetry model for the nonzero cell counts of
Table 3 [25, 30]. These are loglinear models, equi-
valently expressible as logistic regression models or,
in a broader context, as generalized linear models
(GLMs) with a logit link function.

Under either the quasi-independence or the quasi-
symmetry model, the row and column marginal totals
of Table 1 (equivalently, the njk + nkj and the row
sums from Table 2) form a complete set of suf-
ficient statistics for the λi . If the design is con-
nected, in that there is no proper subset of O whose
members are compared only to each other, then
maximum likelihood estimates of the λi, Mi, πjk ,
and all contrasts among them may be obtained by
algorithms employing iterative proportional fitting
(IPF), the Newton–Raphson method, or Fisher’s
method of scoring (see Optimization and Nonlin-
ear Equations). Essentially any software for log-
linear contingency table analysis, multiple logis-
tic regression, or generalized linear models may
be used.

When the fitted cell counts for a counterpart of
Table 2 and Table 3 are sufficiently large to validate
asymptotic inference, the usual maximum likelihood
machinery may be applied to obtain confidence
intervals for linear contrasts among the πjk, λi , or
Mi , and for associated hypothesis testing. Other
best asymptotically normal (BAN) estimators and
asymptotically efficient test statistics (e.g. score and
Wald statistics; see Likelihood) may also be used,
and a locally asymptotically most stringent test
of equivalence is available [4]. For example, the

maximum likelihood estimates of λA, λC and λD

from the chocolate pudding data in Tables 2 and
3, with estimated asymptotic standard errors, are
λ̂A = 0.253 ± 0.060, λ̂C = 0.387 ± 0.073, and λ̂D =
0.360 ± 0.070.

When the likelihood approach is taken and
the number of choices between each pair in the
design is not small, the deviance chi-square statis-
tic (see Generalized Linear Model) based on the
fitted counts may be used to test the fit of the
Bradley–Terry model. The deviance for the pudding
data is 2.50 with one df (P = 0.11), consistent with
adequate fit. Parameters or parameter sets may be
compared across groups of judges by incorporating
appropriate nested or interaction terms into the cor-
responding logistic regression model.

Bradley & Terry [39] suggest that 15 judgments
per pair are needed in a balanced design before
the large-sample χ2 approximation is satisfactory
for the distribution of the likelihood ratio statistic
for testing equivalence, H0 : λi = I−1, i = 1, . . . , I .
With smaller samples the approximation is unac-
ceptably liberal, yielding higher than nominal type
I error (see Level of a Test). While the small-sample
distributions of this and related test statistics are gen-
erally analytically intractable and tedious to compute,
tables have been prepared for common hypotheses
and balanced designs [8, 12]. Regardless of balance,
fast computational algorithms for exact small-sample
logistic regression analysis may now also be applied
to the multiple logistic regression formulation of a
Bradley–Terry model, provided that the number of
objects is not so large as to exceed available com-
putational resources [29] (see Exact Inference for
Categorical Data).

Correlated Choices

Inference is more challenging in the context of
correlated choices, which generally occur due to
heterogeneity of judges or of conditions under
which comparisons occur. Evidence for such cor-
relation may appear in the form of overdisper-
sion, as reflected by an estimated scale parame-
ter substantially greater than unity in a GLM fit.
Such overdispersion produces liberality in hypothe-
sis tests, spuriously narrowing confidence intervals
and exaggerating the lack of fit. Corrections for
overdispersion based on the scaled deviance do not
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account for the underlying correlation structure. Sev-
eral of the available approaches when correlations
arise only from random judge effects are described
briefly below.

For the case when each judge rates all pairs, the
judges may be classified by their response patterns
into an I I (I−1)/2 sparse incomplete contingency table.
Iterative algorithms for constrained optimization
under Poisson sampling may then be used to obtain
maximum likelihood estimates for a Bradley–Terry
model of the marginal distributions of this table [3].
Happily, there is no need to model the nuisance
correlation structure induced by the judge effects.
Or, suppose each judge ranks a subset of all possible
pairs, with the number of such subsets in the design
small relative to the number of judges. Then the
response pattern of each judge may be similarly
classified into a contingency table whose margins
are the pairs ranked by that judge. We may thus
use joint weighted least-squares analysis of the sets
of correlated marginal logits from these tables [30].
Covariances of choices are estimated by unrestricted
maximum likelihood.

Generalized estimating equation (GEE) meth-
ods may be employed conveniently when all judges
rank the same set of pairs. This approach can
accommodate covariates associated with the judges
and objects. Simple GEE (GEE1) with an inde-
pendence “working” covariance structure may be
used, with inference from a robust covariance esti-
mator to account for the true association struc-
ture. Extended GEE (GEE2), which seeks increased
efficiency in estimators of the Mi by modeling
the association structure, may also be employed.
Caution is indicated, however, as resulting estima-
tors M̂i may be biased if the association model
is misspecified.

Prior distributions may also be introduced to
model heterogeneity. The most natural approach,
though computationally burdensome, is through the
generalized linear mixed model (GLMM) [13], which
introduces additive MN(0, �(θ)) random effects
on the Mi . Just as the random perturbations in
the linear paired comparison model, these random
effects produce multipliers of the choice odds λj/λk ,
yielding in essence a variance components model
for the perturbations on the latent merit scale. The
above use of multivariate Gaussian random effects
on the Mi is traceable to the full Bayesian treatment
of Leonard [32].

Design

Several workers, beginning with Abelson & Bra-
dley [1], have considered experimental design as-
pects of paired comparison studies. The merits are
usually presumed linear in the explanatory vari-
ables. Where the Oi embody factorial combinations
of classification variables, factorial modeling is obvi-
ously desirable (see Factorial Experiments). More
generally, response surface fitting and associated
efficient designs are of interest when the objects are
distinguished by interval-scaled variables (see Mea-
surement Scale). El-Helbawy [24] reviews much of
this body of work. Dillon et al. [23] consider the
simultaneous estimation of Bradley–Terry parame-
ters and classification of judges into latent groups,
in the presence of covariates. David & Andrews [16]
and Bhandari et al. [6] give sequential procedures for
selecting the best treatment under a Bradley–Terry
model. Advances in estimation for correlated choices
and mixed models, mentioned in passing above,
will likely stimulate more extensive work on effi-
cient design.

Extensions

Ties and Preference Strengths

The Bradley–Terry model has been generalized to
allow for a third “tied” outcome category, to extend
further to multicategory ordinal judgments, to incor-
porate effects of the order in which objects are
presented, and to include correlated judgments on
multiple criteria.

Following the work of Glenn & David [28] on
the Thurstone–Mosteller model, Rao & Kupper [35]
extended the Bradley–Terry model by introducing a
threshold of perception below which objects appear
indistinguishable, and must be declared ties. Suppose
objects differing in perceived merits by no more than
τ are judged indistinguishable. Writing θ = exp(τ )

and πj=k for the probability of a tie between Oj and
Ok yields

πjk = F(Mj − Mk − τ) (3)

for the general linear paired-comparison model, and

πjk = λj

(λj + θλk)
(4)
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for the Bradley–Terry model, with πj=k = 1 − πjk −
πkj in each case.

In this model the ratio πjk/πkj no longer equals
λj/λk , and depends on the discrimination threshold
τ . Davidson [17] gives an alternate single-parameter
model for ties that preserves the straightforward
connection of πjk/πkj to the merits, at the price of
assuming that πj=k is proportional to the geometric
mean of πjk and πkj . The threshold parameter, τ , is
replaced by a proportionality constant, ν, which must
also be estimated.

The Bradley–Terry model assumes that Oj is
preferred to Ok when the perceived difference in
merits exceeds a “cut-point” of zero. Agresti [3] gen-
eralizes the Bradley–Terry and Rao–Kupper models
to an arbitrary number of ordered response cate-
gories (e.g. much worse, worse, equal, better, much
better) by assuming multiple cut-points for the per-
ceived difference, producing an indifference zone and
increasing degrees of preference (see Ordered Cate-
gorical Data). This leads in essence to simultaneous
Bradley–Terry models for odds-ratios (i) comparing
the perception that Oj is much better than Ok with
the perception that Ok is much better than Oj , (ii)
comparing the perception that Oj is at least better
than Ok with the perception that Ok is at least better
than Oj , and so on. These are proportional cumu-
lative odds models in the spirit of McCullagh [34]
and Walker & Duncan [40] (see Polytomous Data).
The same structural models may be applied to “local”
odds ratios formed after conditioning on a pair of
adjacent response categories, e.g. the odds of consid-
ering Oj better vs. equal to Ok , relative to the odds of
considering Ok better vs. equal to Oj . Maximum like-
lihood analysis of such models is straightforward [2].

Presentation Order

Models involving both additive and multiplicative
adjustments have been proposed to incorporate a pre-
sentation order effect into the Bradley–Terry model.
The additive approach assumes that a fixed propor-
tion of choices, specific to each pair, is swayed by
the order of presentation. If π∗

jk is the probability of
choosing j over k given a specific order of presenta-
tion, then under this model

π∗
jk = πjk ± δjk, δjk ≤ min(πjk, πkj ), (5)

depending on whether Oj is presented respectively
first or second [5]. Thus, the range of admissible δjk

depends on λj and λk .
The multiplicative model [18] applies the same

concept to the log(odds) rather than the choice
probabilities. In this case,

ln

(
πjk

πkj

)
= ln λj − ln λk ± γjk, γjk > 0, (6)

depending, respectively, on whether Oj is presented
second or first. In contrast to the additive model,
simplifications such as γjk = γ , or intermediate
modeling, are straightforward. In a particularly
interesting earlier paper, Kousgaard [31] discusses
models incorporating both ties and order effects,
where the discrimination threshold and order effect
may vary across judges. Conditional maximum
likelihood inference is proposed (see Logistic
Regression, Conditional).

Multiple Criteria

The Bradley–Terry model may be applied separately
to choices using c different criteria, or under differ-
ent conditions. This requires accounting for the cor-
relation structure among multiple binary responses,
for which direct modeling is difficult. Davidson &
Bradley [19] propose a direct model in which the
probability of a response pattern under independent
Bradley–Terry selections is perturbed by a func-
tion of the underlying marginal preference parame-
ters and c(c − 1)/2 correlation parameters general-
izing Pearson’s φ coefficient for two-by-two con-
tingency tables (see Association, Measures of).
However, since the association structure is gener-
ally a nuisance rather than an object of inference
itself, much success has been gained by large-
sample approaches such as weighted least squares
that adjust for the covariance structure without mod-
eling it [30], or that incorporate covariance modeling
into robust estimation of marginal parameters, such
as GEE. In general, the large-sample techniques dis-
cussed above for handling correlated responses in
univariate paired-comparison studies may be simi-
larly applied to handle multivariate responses, sample
size permitting.

The literature on Bradley–Terry models is large,
as suggested by the comprehensive bibliographies
of Davidson & Farquhar [21] and David [15]. The
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reader is referred to the reviews by Bradley [9–11]
and the classic monographs of David [15] and Bock
& Jones [7]. Diggle et al.’s [22] discussion of recent
work on correlated binary regression, though writ-
ten in the context of longitudinal data analysis
rather than paired comparisons, is useful for the
reader interested in modeling correlated and/or mul-
tivariate choices.

References

[1] Abelson, R.M. & Bradley, R.A. (1954). A 2 (2 factorial
with paired comparisons, Biometrics 10, 487–502.

[2] Agresti, A. (1990). Categorical Data Analysis. Wiley,
New York, pp. 261–305.

[3] Agresti, A. (1992). Analysis of ordinal paired compari-
son data, Applied Statistics 41, 287–297.

[4] Beaver, R.J. (1974). Locally asymptotically most strin-
gent tests for paired comparison experiments, Journal of
the American Statistical Association 69, 423–427.

[5] Beaver, R.J. & Gokhale, D.V. (1975). A model to incor-
porate within-pair order effects in paired comparisons,
Communications in Statistics 4, 923–939.

[6] Bhandari, S.K., Hande, S.N. & Ali, M.M. (1993).
An optimal sequential procedure for ranking pairwise
compared treatments, Calcutta Statistical Association
Bulletin 27, 191–197.

[7] Bock, R.D. & Jones, L.V. (1968). The Measurement and
Prediction of Judgment and Choice. Holden-Day, San
Francisco.

[8] Bradley, R.A. (1954). The rank analysis of incomplete
block designs. II. Additional tables for the method of
paired comparisons, Biometrika 41, 502–537.

[9] Bradley, R.A. (1976). Science, statistics, and paired
comparisons (with discussion), Biometrics 32, 213–232.

[10] Bradley, R.A. (1984). Paired comparisons: some basic
procedures and examples, in Handbook of Statistics, Vol.
4, P.R. Krishnaiah & P.K. Sen, eds. North-Holland,
Amsterdam, pp. 299–326.

[11] Bradley, R.A. (1985). Paired comparisons, in Encylope-
dia of Statistical Sciences, Vol. 6, S. Kotz, N.L. Johnson
& C. Read, eds. Wiley, New York, pp. 555–560.

[12] Bradley, R.A. & Terry, M.B. (1952). The rank analysis
of incomplete block designs. I. The method of paired
comparisons, Biometrika 39, 324–345.

[13] Breslow, N. & Clayton, D.G. (1993). Approximate
inference in generalized linear models, Journal of the
American Statistical Association 88, 9–25.

[14] Daniels, H.E. (1969). Round-robin tournament scores,
Biometrika 56, 295–299.

[15] David, H.A. (1988). The Method of Paired Comparisons,
2nd Ed. Wiley, New York.

[16] David, H.A. & Andrews, D.M. (1987). Closed adap-
tive sequential paired-comparison selection procedures,
Journal of Statistical Computation and Simulation 27,
127–141.

[17] Davidson, R.R. (1970). On extending the Bradley-Terry
model to accommodate ties in paired comparison exper-
iments, Journal of the American Statistical Association
65, 317–328.

[18] Davidson, R.R. & Beaver, R.J. (1977). On extending
the Bradley-Terry model to incorporate within-pair order
effects, Biometrics 33, 693–702.

[19] Davidson, R.R. & Bradley, R.A. (1969). Multivari-
ate paired comparisons: the extension of a univariate
model and associated estimation and test procedures,
Biometrika 56, 81–95.

[20] Davidson, R.R. & Bradley, R.A. (1971). A regres-
sion relationship for multivariate paired comparisons,
Biometrika 58, 555–560.

[21] Davidson, R.R. & Farquhar, P.H. (1976). A bibliography
on the method of paired comparisons, Biometrics 32,
233–240.

[22] Diggle, P.J., Liang, K.-Y. & Zeger, S.L. (1994). Analysis
of Longitudinal Data. Clarendon, Oxford, pp. 146–189.

[23] Dillon, W.R., Kumar, A. & de Borrero, M.S. (1993).
Capturing individual differences in paired comparisons.:
an extended BTL model incorporating descriptor vari-
ables, Journal of Marketing Research 30, 42–51.

[24] El-Helbawy, A.T. (1992). Optimal paired comparison
designs, in Order Statistics and Nonparametrics: Theory
and Applications, P.K. Sen & I.A. Salama, eds. North-
Holland, Amsterdam, pp. 349–361.

[25] Fienberg, S.E. & Larntz, K. (1976). Log linear repre-
sentation for paired and multiple comparisons models,
Biometrika 63, 245–254.

[26] Finney, D.J. (1978). Statistical Method in Biological
Assay, 3rd Ed. Griffin, London, pp. 349–403.

[27] Ford, L.R., Jr (1957). Solution of a ranking prob-
lem from binary comparisons, American Mathematical
Monthly 64, 28–33.

[28] Glenn, W.A. & David, H.A. (1960). Ties in paired-
comparison experiments using a modified Thurstone-
Mosteller model, Biometrics 16, 86–109.

[29] Hirji, K.F., Mehta, C.R. & Patel, N.R. (1987). Comput-
ing distributions for exact logistic regression, Journal of
the American Statistical Association 82, 1110–1117.

[30] Imrey, P.B., Johnson, W.D. & Koch, G.G. (1976).
An incomplete contingency table approach to paired-
comparison experiments, Journal of the American Sta-
tistical Association 71, 614–623.

[31] Kousgaard, N. (1976). Models for paired compar-
isons with ties, Scandinavian Journal of Statistics 3,
1–14.

[32] Leonard, T. (1977). An alternative Bayesian approach
to the Bradley-Terry model for paired comparisons,
Biometrics 33, 121–132.

[33] Luce, R.D. (1959). Individual Choice Behavior. Wiley,
New York, pp. 1–37.

[34] McCullagh, P. (1980). Regression models for ordinal
data (with discussion), Journal of the Royal Statistical
Society, Series B 42, 109–142.



Bradley–Terry Model 7

[35] Rao, P.V. & Kupper, L.L. (1967). Ties in paired-
comparison experiments: a generalization of the Brad-
ley-Terry model, Journal of the American Statistical
Association 62, 194–204.

[36] Stigler, S.S. (1986). The History of Statistics: The Mea-
surement of Uncertainty Before 1900. Harvard Univer-
sity Press, Cambridge, Mass, pp. 239–254.

[37] Thompson, W.A., Jr & Singh, J. (1967). The use of
limit theorems in paired comparison model building,
Psychometrika 32, 255–264.

[38] Thurstone, L.L. (1927). Psychophysical analysis, Amer-
ican Journal of Psychology 38, 368–389.

[39] Virginia Agricultural Experiment Station (1951). Sta-
tistical Methods for Sensory Difference Tests of Food

Quality: Bi-Annual Report No. 2. Virginia Agricultural
Experiment Station, Blacksburg.

[40] Walker, S.H. & Duncan, D.B. (1967). Estimation of
the probability of an event as a function of several
independent variables, Biometrika 54, 167–179.

[41] Zermelo, E. (1929). Die Berechnung der Turnier-
Ergebnisse als ein Maximumproblem der Wahrschein-
lichkeitsrechnung, Mathematische Zeitschrift 29,
436–460.

PETER B. IMREY



Branching Processes

A branching process is a description of the evolu-
tion of populations of individuals, which reproduce
independently. In the most general cases, individuals
inherit a type from some type space at birth; this type
determines a probability measure on a set of possi-
ble life careers, which in their turn determine a point
process giving the ages of bearing and the types of
the children.

There is a whole array of different branching
processes:

1. In classical (Bienaymé-) Galton–Watson, or
simple, processes, there is only one type of
individual and all individuals live for one
time unit (season), giving birth to independent,
identically distributed (iid) numbers of children
living through the next season.

2. In Bellman–Harris, or age-dependent, processes,
this pattern is generalized so that individuals
can have iid lifespans according to an arbitrary
distribution. At death they split into iid numbers
of offspring, and so forth.

3. A special case of these are the Markov branching
processes, obtained by choosing the lifespan
distributions to be exponential.

4. Sevastyanov processes generalize Bellman–Har-
ris processes by allowing dependence between
lifespan and offspring numbers.

5. In general processes, births need no longer occur
only at the end of a lifetime, but could be spread
out randomly according to any point process.

6. All of these populations exist in single and multi-
type versions. In much literature the latter term
indicates that there is a finite number of differ-
ent types of individuals, but generally this need
not be the case. In particular, much mathemati-
cally oriented literature deals with populations in
which “type” is position in space. Biologically,
“type” could be genotype; but it could also be a
property such as mass or DNA content at birth.

Historically, branching processes originate from
biologically or demographically motivated prob-
lems. There are, however, many other natural phe-
nomena exhibiting a branching character, such as
cascades of splitting particles, or polymerization
processes. Lately, branching processes have been
used in the study of algorithm performance. They

occur in the formation of random fractal sets (see
Chaos Theory). Limits of branching processes form
so-called superprocesses, measure-valued random
processes that are used to interpret nonlinear differ-
ential equations. The area thus also contains many
aspects of pure mathematics, both analytic and more
probabilistic.

The first problem of branching processes proper
was that of determining extinction probabilities. In
the single-type Galton–Watson case, this can be for-
mulated and solved as follows.

If q denotes the probability that a population that
started from one ancestor dies out, then, by indepen-
dence (and since all individuals are the same type),
the probability that a population with k ancestors dies
out must be qk . Hence if pk is the probability of
begetting k children, then

q =
∑

k

p
k
qk.

In the interval [0, 1] this equation has exactly one
solution, namely q = 1, if m := ∑

k kpk < 1, or m =
1 and p1 < 1, the subcritical and critical cases. It
has one more solution if m > 1, and this is the real
extinction probability in that supercritical case. The
extinction problem of more general branching pro-
cesses can be reduced to the Galton–Watson case
through counting the numbers of individuals in suc-
cessive generations.

In the subcritical and critical cases, it is of interest
to study the conditional distribution of the population
size, given that the population has not yet died out.
For both of these cases limit theorems, as time passes,
exist. In the subcritical case, it is the population size
itself that has a limiting distribution; in the critical
case, it behaves like the time since the population
started multiplied by an exponentially distributed
random variable.

In the cases in which extinction is not necessary,
one can prove that nonextinction implies growth
beyond all limits, at the exponential rate already
argued by Malthus. The exponent in this exponential
growth is called the Malthusian parameter, and it is
determined by the reproduction laws of individuals
of the various types. In branching processes it is
usually denoted by α, and in deterministic population
dynamics by r .

To see how the parameter is determined, consider
one-type general processes and let µ(t) denote the
expected number of children obtained by a t-aged
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mother. Then the Malthusian parameter is defined by
the equation

∫ ∞

0
exp(−αt)µ( dt) = 1,

which usually has one (and only one) solution. The
sub- and supercritical cases correspond to α < 0
and α > 0, and the critical to α = 0. In multitype
populations it is a more complicated object that
should equal one, the so-called Perron root of the
kernel, describing the expected numbers of children
of various types from mothers of various types.

If zt denotes population size at time t in a super-
critical process, Malthus’ law of growth then reads

zt ∼ cw exp(αt), t → ∞,

where c is a constant determined by the way in
which population size is measured and w is a ran-
dom variable which is not identically zero, if the
individual offspring distributions have a finite first
and logarithmic moment; that is, a condition of the
form E[X log+ X] < ∞ holds, X being basically the
number of children per individual.

During the exponential growth the age distribu-
tion will stabilize to a distribution also determined
by the individual reproduction distributions (a fact
already known to Euler). Similarly, other aspects
of population composition will stabilize, so that the
properties of a typical individual (i.e. one sampled at
random) converge, while time passes and the popu-
lation grows. A particular aspect of this is the emer-
gence of a typical history of individuals; for example,
a typical mutation history. Such results can be used to
infer properties of individuals from the composition
of the whole population.

The applications of branching processes to biol-
ogy predominantly concern either systems of rather

simple organisms such as cells (see Cell Cycle Mod-
els) or bacteria (see Bacterial Growth, Division, and
Mutation), reproducing at a rapid rate so that the
asymptotic assertions of theory become relevant, or
they concern conceptual matters, say in evolution.
Branching processes can also be applied to approxi-
mate genetic and epidemic processes (see Epidemic
Models, Stochastic).
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Breslow–Day Test

The case–control method is a popular way to study
the association between exposure and disease in
epidemiology. Under the presence of nuisance fac-
tors, one could stratify the data into a series of
2 × 2 tables to control confounding. For example,
one might study the relationship between lung cancer
and smokers, controlling for age. If the association
between exposure and disease is constant from stra-
tum to stratum, then the Mantel–Haenszel (MH)
summary odds ratio estimator is usually used to esti-
mate the relative risk. Breslow & Day [2] provided a
test for assessing the homogeneity of the odds ratios
across tables.

Table 1 shows the data in the kth of a series of 2 ×
2 tables, where k = 1, . . . , K . The MH estimator is
defined by ψ̂ = ∑

k Rk/
∑

k Sk , where Rk = akdk/Nk

and Sk = bkck/Nk . Breslow & Day [2, p. 142] pro-
posed a statistic for testing the null hypothesis of
homogeneity of the K true odds ratios. It sums up
the squared deviations of observed and fitted values,
each standardized by its variance:

K∑

k=1

(ak − Ak(ψ̂))2

var(ak; ψ̂)
, (1)

where Ak(ψ̂) and var(ak; ψ̂), denote the expected
number and the asymptotic variance of exposed cases
based on the MH fitted odds ratio ψ̂ , respectively.

Tarone [4] noted that by replacing the MH esti-
mator ψ̂ by the conditional maximum likelihood
estimator, the Breslow–Day test statistic (1) becomes
the conditional likelihood score test. Since the MH
estimator is inefficient, Tarone [4] and Breslow [1]

Table 1 Notation for the kth of a series of 2 × 2 tables

Observed frequencies

Exposure Case Control Total

Exposed ak bk tk
Unexposed ck dk Nk − tk

Total N1k N0k Nk

noted that the test statistic (1) is stochastically larger
than a χ2 random variable (see Chi-square Distribu-
tion) under the homogeneity hypothesis. The correct
form for the test was derived by Tarone as

K∑

k=1

[ak − Ak(ψ̂)]2

var(ak; ψ̂)
− [Σkak − ΣkAk(ψ̂)]2

Σkvar(ak; ψ̂)
, (2)

where Ak(ψ̂) is obtained from the quadratic equation

Ak(ψ̂)[N0k − tk + Ak(ψ̂)]

[N1k − Ak(ψ̂)][tk − Ak(ψ̂)]
= ψ̂, (3)

and the asymptotic variance is given by

var(ak; ψ̂) =
[

1

Ak(ψ̂)
+ 1

N1k − Ak(ψ̂)
+ 1

tk − Ak(ψ̂)

+ 1

N0k − tk + Ak(ψ̂)

]−1

. (4)

When the number of strata is small and each table has
large frequencies, Tarone’s test statistic (2) follows
an approximate χ2 distribution on K − 1 degrees of
freedom, under the homogeneity hypothesis.

The computer package StatXact [3] provides the
Breslow–Day test, as does SAS (PROC FREQ) (see
Software, Biostatistical). Unfortunately, they are
both currently based on the incorrect test statistic (1).
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Broadband Smoothing

Broadband smoothing is a procedure to reduce the
estimation variance of fast Fourier transform (FFT)
power spectra (see Spectral Analysis), which results
in estimation variance and frequency resolution not
constant over the frequency axis, as in conventionally
smoothed spectra.

Because of their stochastic nature, spectra of most
biological processes are affected by large estimation
variance. Smoothing decreases this variance. Typi-
cally, a smoothed spectrum is estimated by splitting
a time series of length T into L shorter data seg-
ments of length TL < T , by computing a spectrum
over each segment, and by averaging the L spectra
thus obtained. If Pi(fk) is the FFT spectrum in the
ith segment, where fk = k/TL is the frequency of the

kth spectral line, the smoothed spectrum P S(fk) is

P S(fk) = 1

L

L∑

i=1

Pi(fk). (1)

If the number of independent spectra to be averaged
increases, then the reduction of estimation variance
is greater. On the other hand, if L increases, TL

decreases with a loss of frequency resolution. Thus,
a compromise should be found between estimation
variance and frequency resolution. When the spec-
trum is estimated over a broad band of frequencies,
however, it is difficult to find a satisfactory compro-
mise because the optimum trade-off in a frequency
band might be unacceptable at other frequencies. In
this case, broadband smoothing may considerably
improve spectral analysis because resolution and esti-
mation variance actually change with the frequency.
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Figure 1 Comparison of traditional and broadband smoothing: data are the RR intervals from a 24 h Holter recording.
Upper panels : P1(f ) and P2(f ) smoothed as in (1) with L = 3, TL = 8 h (left) and L = 378, TL = 228.5 s (mid ); P3(f )

smoothed by broadband smoothing of P1(f ) (right). Lower panels : features of the broadband smoothing used for P3(f )

plotted as functions of f : M is the number of averaged spectral lines; Be is the equivalent bandwidth; EVF is the estimation
variance factor; straight lines also show Be and EVF for P1(f ) (dashed) and P2(f ) (dotted)
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Broadband smoothing consists of a moving average
of the raw spectrum P(fk):

P S(fk) =
N(fk)∑

i=−N(fk)

wi(fk)P (fk+i ), (2)

where the number of averaged spectral lines M(f ) =
2N(f ) + 1 increases with f to get the highest resolu-
tion at the lower frequencies and the more consistent
variance reduction at the higher frequencies. A typical
choice for M(f ) is

M(f ) =
{

m1 for f < f 1

int (af b) for f 1 ≤ f ≤ f 2

m2 for f > f 2
(3)

with m1 � m2, b = log(m1/m2)/ log(f 1/f 2) and
a = m1/(f

1)b.
The weights wi are usually selected as:

wi(f ) = N(f ) + 1 − |i|
(N(f ) + 1)2

for − N(f ) ≤ i ≤ N(f ).

(4)

An approximation of the variance of the smoothed
estimate is [1, 3]

Var[P S(f )] ∼= Var[P(f )]
N(f )∑

i=−N(f )

w2
i . (5)

The Estimation Variance Factor, EVF =∑N(fk)

i=−N(fk)
w2

i , quantifies the reduction in estimation
variance. The frequency resolution can be measured
by the equivalent bandwidth, Be [2]. With the choices
(3) and (4), EVF is lower than 1 and decreases with
f , while Be increases with f and is equal to (N(f ) +
1)∆f , with ∆f the resolution of the raw spectrum.
Figure 1 illustrates the performances of broadband
smoothing by comparing three RR-interval spectra
from the same 24-hour Holter recording. The first
two spectra are estimated by applying traditional
smoothing schemes, one preserving high frequency
resolution, the other providing consistent variance
reduction, while the third spectrum is obtained by
broadband smoothing.
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Brownian Motion and
Diffusion Processes

Brownian motion, or Brownian movement, was
named after the English botanist Robert Brown who,
in 1827, reported an experiment with pollen of a
certain herb in an aqueous suspension. The particles
contained in the pollen performed a continuous,
haphazard zigzag movement. This movement, Brown
pointed out, could not be attributed to life in the
particles. During the remainder of the nineteenth
century, various experiments showed that the
movement depends on the size and mass of the
particles. The smaller and lighter the particles, the
faster the movement. The movement also depends
on the medium. The movement of the particles in
gases is faster than the movement in liquids, and
the movement in smoke is faster still. The velocity
of the movement increases as the temperature
increases. (These points formed the basis of the
Ornstein–Uhlenbeck processes described later in
this article.)

Another aspect of the Brownian movement is dif-
fusion. In physical science, diffusion is the random
molecular movement by which matter is transported.
Diffusion occurs in all forms of matter. The dif-
fusion process is slower in liquids than in gases.
It takes place also in solids. Generally, there are
two parties to every diffusion process. When smoke
bursts into the air, diffusion follows; smoke and
air are the two parties to the diffusion process. If
two bodies of liquids of different colors are placed
in two adjacent compartments of a tank, separated
by a center divider, then diffusion occurs as soon
as the center divider is removed. The two bodies
of liquids are the two parties to the diffusion pro-
cess. If two disks of lead and gold are placed in
such a position that their edges meet, the migra-
tion of lead into gold and of gold into lead will
eventually take place. These are good examples of
diffusion processes. A diffusion process will end,
but the Brownian movement will continue. In reality,
the diffusion processes are a form of the Brownian
movement when two or more distinguishable groups
of particles are involved. If there were no Brow-
nian movement, then there would be no diffusion
processes.

While the various physical characteristics of
Brownian motion were discovered in the late nine-
teenth century, basic questions about Brownian
motion remained unanswered until much later. What
makes the minute particles engage in a perpetual
movement was not determined for the next three-
quarters of a century.

It was not until 1905 that Einstein [6] showed
that the Brownian motion could be explained by
assuming that the particles are subject to contin-
ual bombardment of the molecules in the surround-
ing medium. His pioneering work was generalized,
extended, and experimentally verified by various
physicists [13]. Brownian motion has since become
a popular research topic in theoretical physics.
It is now well explained by statistical mechan-
ics and kinetic theory. Wiener [18] also developed
the theoretical foundation of Brownian motion and
explored its applications. For a history of the the-
ory of Brownian motion, the reader is referred
to Einstein [6] and the collected papers edited by
Wax [17].

In the theory of stochastic processes, Feller [7]
was among the first to study Brownian motion, and he
extensively discussed diffusion processes as a major
topic in the field. Feller also considered Brownian
motion as a limiting case of a random walk as
presented in the following section (see also [3]).
One may find discussions on Brownian motion and
diffusion processes in [1, 2, 4, 5, 9–14]. It should
be noted, however, that in stochastic processes we
often consider the movement of only one particle,
in one dimension, and the net displacement in one
time period. This is hardly a fair description of
the Brownian movement, much less of diffusion
processes. But such a simplification is necessary to
make the basic concept clearer and the mathematics
simpler. A good understanding of a simple case often
makes it easier to understand the complicated real
picture.

The purpose of this article is to give a brief
review of the one-dimensional Brownian motion and
diffusion processes. In the following sections we
describe the processes in terms of net displacement
from three different perspectives.

1. As a limiting case of a random walk.
2. As a mathematical model.
3. As a stochastic process.
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Limiting Case of a Random Walk

Consider a random walk on the real line during the
time interval (0, t]. At the initial time, t = 0, the
particle is at the origin. A move of length ∆x occurs
with every time element ∆t .

Let δ be the corresponding random variable with
Pr{δ = +∆x} = p and Pr{δ = −∆x} = q, where
q = 1 − p. The expectation and the variance of δ

are, respectively,

E(δ) = (p − q)∆x and var(δ) = 4pq(∆x)2.

There are t/∆t moves during the interval (0, t) and
t/∆t independent and identically distributed random
variables δi . The sum

∑
i δi = Zt is the total net

displacement on the real line during the interval (0, t],
or the position of the particle at time t . According
to the central limit theorem, when t/∆t becomes
infinitely large, Zt has a normal distribution with
expectation and variance:

E(Zt ) = (p − q)t∆x

∆t

and

var(Zt ) = 4pqt(∆x)2

∆t
.

In Brownian motion, we have ∆x → 0 and ∆t → 0,
and both p and q close to 1/2. For Zt to have a
finite expectation and a bounded variance, we have
∆x → 0, ∆t → 0, and p → 1/2 in such a way that

(p − q)∆x

∆t
= c and

(∆x)2

∆t
= D, (1)

where both c and D are positive constants. It follows
that

(p − q)

∆x
= c

D
, p = 1

2
+ c

∆x

2D
,

q = 1

2
− c∆x

2D
,

and

E(Zt ) = ct and var(Zt ) = Dt + o(∆x).

Consequently, the limiting probability density func-
tion of Zt is

f
Zt

(x) = 1

(2πDt)1/2
exp

[
− (x − ct)2

2Dt

]
. (2)

Mathematical Model

For the total net displacement Zt , we now write the
probability

Pr(Zt = x) = v(x, t),

which is a function of both the value x and the length
of time t . The purpose is to derive a formula for
v(x, t).

Consider v(x, t + ∆t), the probability of the parti-
cle being in position x at time t + ∆t . For the particle
to be in position x at t + ∆t , it must be either at
x − ∆x at time t followed by a shift of ∆x to the
right in (t, t + ∆t), or at x + ∆x at time t followed
by a shift of ∆x to the left in (t, t + ∆t). As a result,

v(x, t + ∆t) = pv(x − ∆x, t) + qv(x + ∆x, t).

(3)

Using Taylor’s expansion for v(x, t + ∆t), v(x −
∆x, t), and v(x + ∆x, t) at (x, t), defining c and D

from (1), and letting ∆t → 0 and ∆x → 0, we obtain
the following partial differential equation:

∂

∂t
v(x, t) = −c

∂

∂x
v(x, t) +

(
1

2

)
D

∂2

∂x2
v(x, t).

(4)

This is a partial differential equation of second order;
see [1] and [2] for its solution. It is easy to check
that the following normal density function satisfies
the partial differential equation (4):

v(x, t) = 1

(2πDt)1/2
exp

[
− (x − ct)2

2Dt

]
. (5)

Therefore the normal density (5) is the solution of the
differential equation (4). We recognize, in passing,
that (5) is the same as (2).

The differential equation (4) is the Fokker–Planck
diffusion equation, well known in physics. The con-
stant c is the drift coefficient and D is the diffusion
coefficient.

Stochastic Process

In Markov processes the random variable X(t)

assumes discrete values. For s < t , the transition
(conditional) probability is Pij (s, t) = Pr[X(t) =
j |X(s) = i], where X(s) = i is the condition. In



Brownian Motion and Diffusion Processes 3

Brownian motion and diffusion processes, both the
time t and the random variable X(t) are continuous.
Instead of transition probabilities, we speak of
transition density functions. Given X(s) = x, the
transition density function of X(t) at X(t) = y is
denoted by f (x, s; y, t).

A process is time-homogeneous if the transition
density, f (x, s; y, t), depends only the difference,
t − s, and not on s and t separately. A process is
additive if f (x, s; y, t) is a function of y − x and
not of x and y separately. Generally (t − s) > 0,
but the difference, y − x, is not always positive.
The Brownian motion diffusion processes discussed
here are assumed to be both time-homogeneous
and additive. For nonoverlapping time intervals, the
corresponding transitions are assumed independent.
For simplicity, we let the process start from the
origin, with X(0) = 0, and write f (0, 0; x, t) for the
transition density function of X(t) at X(t) = x.

Following the general practice in Markov pro-
cesses, we derive the formula for f (0, 0; x, t) in three
steps:

1. establish a Chapman–Kolmogorov equation;
2. derive Kolmogorov differential equations; and
3. solve the differential equations for the transition

density function f (0, 0; x, t).

Chapman–Kolmogorov Equation

Consider three points on the time axis: 0 < s < t , and
the two adjacent intervals (0, s) and (s, t). In addi-
tion to the transition density function f (0, 0; y, t),
there are two additional transition density functions:
f (0, 0; x, s) and f (x, s; y, t). According to the con-
ditions underlying Brownian motion, the transition
during the time interval (s, t) is independent of the
transition in the interval (0, s). This essentially is
the Markovian property. It follows that the prod-
uct f (0, 0; x, s)f (x, s; y, t) is the transition density
of X(t) at X(t) = y given X(0) = 0, by way of
X(s) = x at time s. Since the random variable X(s)

must assume some value at s,

f (0, 0; y, t) =
∫ ∞

−∞
f (0, 0; x, s)f (x, s; y, t) dx,

(6)

which is the Chapman–Kolmogorov equation for the
continuous process X(t).

The Differential Equation

For a detailed account, see [1] and [2].
Consider the time interval (0, t + ∆t) and two

adjacent intervals (0, t) and (t, t + ∆t). Write two
equations,

f (0, 0; x, t + ∆t)

=
∫ ∞

∞
f (0, 0; z, t)f (z, t ; x, t + ∆t) dz

and

f (0, 0; x, t) = f (0, 0; x, t)

∫ ∞

∞
f (z, t ; x, t + ∆t) dz,

and hence,

f (0, 0; x, t + ∆t) − f (0, 0; x, t)

=
∫ ∞

∞
f (z, t ; x, t + ∆t)[f (0, 0; z, t)

− f (0, 0; x, t)] dz.

Using Taylor’s expansion for the difference,
f (0, 0; z, t)−f (0, 0; x, t), we write

c = lim
∆t→0

1

∆t

∫ ∞

∞
(x − z)f (z, t ; x, t + ∆t) dz

and

D = lim
∆t→0

1

∆t

∫ ∞

∞
(x − z)2f (z, t ; x, t + ∆t) dz,

where c and D are the infinitesimal mean and
variance of X(t), respectively. In the present case,
the process is homogeneous and additive: c and D

are constants.
Letting ∆t → 0, we obtain the partial differential

equation:

∂

∂t
f (0, 0; x, t) = −c

∂

∂x
f (0, 0; x, t)

+ 1

2
D

∂2

∂x2
f (0, 0; x, t). (7)

Formula (7) is the (forward) Kolmogorov differential
equation for the diffusion process.

Solution for the Transition Density

The final step is to solve the differential equation (7)
to find the formula for the transition density function
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f (0, 0; x, t). Once again we refer to [2] for details of
the solution of the differential equation (7).

Eq. (7) is identical to formula (4) in the preceding
section when f (0, 0; x, t) is identified with v(x, t).
Therefore, the solution of the partial differential
equation is

f (0, 0; x, t) = 1

(2πDt)1/2
exp

[
− (x − ct)2

2Dt

]
. (8)

Identical formulas, in (2), (5) and (8), have thus been
found by three different approaches.

Wiener–Levy Process

If the instantaneous distribution of X(t) is “standard-
ized” so that the mean c = 0 and the variance D = 1,
then the differential equation (7) reduces to

∂f (0, 0; x, t)

∂t
= 1

2

∂2f (0, 0; x, t)

∂x2
,

and the solution is

f (0, 0; x, t) = 1

(2πt)1/2
exp

(
−x2

2t

)
,

which is the Wiener–Levy process [2].

Ornstein–Uhlenbeck Process

The Ornstein–Uhlenbeck process describes another
aspect of Brownian motion, namely the velocity of
the movement of a particle. As we noted in the intro-
duction, there are many factors affecting the veloc-
ity of the movement, namely the particle’s physical
characteristics and the surrounding environment. The
process is much more complicated than the simple
displacement on the real line discussed above. Specif-
ically, in the Ornstein–Uhlenbeck process we wish
to determine the velocity of the movement between
x and x + dx after time t , when at t = 0 the veloc-
ity was x = x0. Let X(t) denote the velocity of the
particle at time t and let

f (x0; x, t) = Pr[X(t) = x|X(0) = x0].

Uhlenbeck & Ornstein [15] established a partial dif-
ferential equation for f (x0; x, t) and provided the

solution:

f (x0; x, t) =
{

m

2kT [1 − exp(−2βt)]

}1/2

× exp

{
− m

2kT

[x − x0 exp(−βt)]2

1 − exp(−2βt)

}
,

where β = f m−1. Here, m is the mass of the particle,
f is the coefficient of friction, k is the coefficient of
viscosity, and T is the absolute temperature.

In addition to the original publication [15], there
was a second later publication [16]. A convenient
reference for this process is [2].

A Final Remark

The above description covers a small but funda-
mental part of the Brownian motion and diffusion
processes. A more extensive study of the processes
requires advanced mathematics. However, even at
this level of description, the Brownian motion and
diffusion processes have many practical applications.
For example, they have been used in studies of pop-
ulation growth [2] and in population genetics [8].
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Brownlee, John

Born: 1868.
Died: March 20, 1927.

Brownlee was qualified in both mathematics and
medicine. He became Director of the Statistical
Department of the (British) Medical Research Coun-
cil in 1914, housed in the National Institute for
Medical Research in London. He wrote several papers
on vital statistics, including an important publi-
cation in 1916 [1], in which he demonstrated the

value of displaying age-specific death rates from
tuberculosis by the cohort or generation method (see
Age–Period–Cohort Analysis). He wrote also on
mathematical epidemiology, especially in relation to
the periodicity of epidemics.
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BSE and vCJD

The transmissible spongiform encephalopathies con-
stitute a group of uniformly fatal neurological
degenerative diseases with the abnormal isoform
of the cellular prion protein present. They include
Creutzfeldt–Jakob Disease (CJD) and kuru, among
others, and now also a new variant CJD (vCJD, for-
merly nvCJD) in humans, scrapie in sheep, and “mad
cow disease” or bovine spongiform encephalopathy
(BSE) in cattle. A 10-year history introduces salient
biostatistical issues in BSE and vCJD.

The first confirmed diagnosis of BSE [54] was
made in the UK on November 26, 1986. BSE
became a notifiable disease on June 21, 1988 (see
Surveillance of Diseases; Disease Registers). The
ruminant feed ban [56] came into force on July 18,
1988, and the Bovine Offal (Prohibition) Regulations
in November 1989 (in England and Wales) and
January 1990 (in Scotland and Northern Ireland).

The first case of BSE after the ruminant feed
ban in the offspring of a BSE-infected dam was
announced on March 27, 1991. A BSE maternal
cohort study of over 300 calf pairs with birth dates
from August 1987 to November 1989 had been under
way on three study farms since July 1989 [59]. All
calves of BSE-affected dams in this study were born
within 13 months of clinical onset in their dam. Other
investigations of risk factors for BSE [12, 37, 55]
included case–control studies. Despite concentration
on BSE cases born after the introduction of the feed
ban, there was confounding because exposure to
contaminated feed had continued well beyond July
1988; reported confidence intervals for the odds
ratios on dam-to-calf BSE transmission overlapped
1 and had upper bounds which excluded high overall
rates.

Meanwhile, as a precaution in respect of human
health, prospective UK surveillance of CJD was
reactivated in May 1990. The remit of the CJD
Surveillance Unit was to alert to any changes in the
presentation, age-specific incidence, occupational dis-
tribution, or dietary correlates of CJD cases that might
suggest that humans were affected by exposure to
BSE. By November 1995, Gore considered that cases
of CJD in five UK farmers and three young adults
since May 1990 were more than happenstance: they
signalled an epidemiological alert (see Case Series,
Case Reports) [25].

On March 20, 1996, 10 UK cases of a
new variant of Creutzfeldt–Jakob disease (vCJD,
formerly known as nvCJD) [59] with distinctive
neuropathology, methionine homozygosity at codon
129, comparative youth, longer survival from clinical
onset, and psychiatric presentation were announced
in a statement by the Spongiform Encephalopathy
Advisory Committee (SEAC). In a British Medical
Journal editorial on March 30, 1996, actions
necessary to safeguard the public health and properly
to acquire data to quantify risks were suggested, and
interim analysis of the BSE maternal cohort study
called for [26], calls which were initially spurned [2].

On July 29, 1996, SEAC announced that an
interim analysis of 273 calf pairs in the BSE maternal
cohort study had revealed a significantly enhanced
risk of BSE among the offspring of BSE-affected
dams compared with matched (see Matching) con-
trols (controls were born in the same herd and calving
season to dams which had reached at least six years
of age without developing clinical signs of BSE). The
risk difference was 10% (95% confidence interval 5
to 14%) when the cohort study ended [19, 57], and
relative risk 3.2 (95% confidence interval 1.8 to 5.9).
In August 1996, UK donors with a family history of
CJD were asked to abstain from blood and tissue
donation.

By the end of August 1996, a comprehensive
account of the transmission dynamics and epidemi-
ology of BSE in British cattle had been published
by Anderson et al. [1]; they estimated that approxi-
mately 1 million cattle had been infected in the UK,
over 160 000 having survived to develop clinical
signs of BSE. Underreporting of BSE was substantial
before July 1988 (that is, before BSE became notifi-
able and was compensated for) with an estimated two
cases of BSE not reported for every reported case.
The epidemiological parameters which Anderson
et al. took into account were: age-dependent expo-
sure/susceptibility; five-year mean incubation period;
age-specific survivorship of cattle in Great Britain;
decline in total herd size from over 13 million in
1974 to under 10 million in 1995; maternal and hor-
izontal transmission [37] with several – but not all –
scenarios chosen to reflect that, for BSE in cat-
tle, high infectivity may be restricted to the late or
symptomatic stage of the incubation period. Back-
calculation from BSE cases [1] – without knowledge
of (dam–offspring) relatedness and having made
allowance for substantial underreporting of BSE
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cases before July 1988 – could not distinguish com-
pellingly between no maternal transmission, 10%
maternal transmission in the six months before BSE
onset in dam, and 10% maternal transmission in the
year before dam’s onset; goodness-of-fit chi-square
differed by 10 on 219 degrees of freedom across the
foregoing three scenarios but the fit became very
substantially worse if the period over which mater-
nal transmission took place was assumed to be three
years (change of 240 in goodness of fit).

Meanwhile, medical scientists were giving priority
to diagnostic tests for CJD: in September 1996, Hsich
et al. [39] reported that, in patients with dementia, a
positive immunoassay for the 14-3-3 brain protein
in cerebrospinal fluid strongly supported a diagno-
sis of CJD. October 1996 heralded an even more
important breakthrough. Collinge et al. [6] published
a molecular analysis of prion strain variation: vCJD
has a specific pattern of protease-resistant prion pro-
tein (PrP) on Western blot analysis which is dis-
tinct from other types of CJD and which resembles
those of BSE transmitted to mice, domestic cats, and
macaques [43]. These results were consistent with
BSE being the source of vCJD, see also [5, 6, 31].

Collinge’s molecular analysis has since been used
by Deslys et al. [16] to confirm that the first vCJD
patient in France had an indistinguishable elec-
trophoretic pattern to UK cases (type 4) while another
French patient, a possible case of vCJD – a 52-
year-old methionine homozygous female with florid
plaques in a brain specimen but dura-mater graft
11 years previously – had a type 2 pattern similar
to that described by Collinge in an iatrogenic dura-
mater linked CJD case. Molecular analysis of brain
tissue from now-six farmer CJD cases in the UK did
not find type 4; all from whom tissue was analyzed
had classical CJD neuropathologically [37]. Impor-
tantly, Hill et al. [33] showed that it was possible
to make the specific diagnosis of vCJD by West-
ern blot analysis from frozen tonsillar tissue, see
also [34, 35, 41, 47, 49]. These scientific develop-
ments, together with Europe’s highly assessed geo-
graphical BSE risks [50], heralded both Swiss [17]
and the European Union’s rapid TSE testing in adult
cattle and sheep [3, 46, 51]. Postmortem BSE test-
ing, since 2001, of apparently healthy cattle aged
over 30 months and risk stock aged over 24 months
throughout Europe has transformed our understand-
ing of BSE epidemiology. Active surveillance in
cattle showed that clinical BSE cases account for

one-third only of all BSE-test positives and that BSE
positivity is 10 to 15 times higher in risk stock.
Assuming differential mortality in late-stage BSE led
to Great Britain’s having had nearer 4 millions than
1 million BSE-infected cattle [20]. Higher scrapie
positivity was also confirmed in fallen sheep [3]
and apparent positives discovered in ARR/ARR
sheep previously considered as scrapie-resistant: their
somewhat unusual TSE test profile is being further
investigated.

Not only has active BSE surveillance led to
a three-fold increase in previous estimates for the
extent of Great Britain’s BSE epidemic in cattle [20]
but, in man too, retrospective [34] and unlinked,
anonymous, and ungenotyped testing of stored opera-
tive tissue (appendix or tonsil from 1995 to 2000) has
discovered an unusual positivity pattern for abnor-
mal prion, PrPSC [36]. Because, to date, all vCJD
phenotyped patients have been methionine homozy-
gotes at codon 129, we do not know whether humans’
abnormal PrPSC profile in tonsil or appendix tissue
is altered by phenotype. There is about a three-fold
discordance in prevalence between back-calculation
from vCJD cases [22, 23] and testing of tissues for
abnormal PrPSC, if all positives detected are assumed
methionine homozygous and exposed dietarily.

Degree of belief in the proposition “BSE causes
vCJD”, as elicited from audiences of scientists,
legislators and public health specialists in June to
August 1996, was highly variable [27]: modal score
was 8 out of 10, median 6, but the mean score was
5.4 with standard deviation of 2.8. And this despite
headlines in the UK press in the week of March 20,
1996, which ranged from the Daily Mirror’s scoop
on March 20 (“Official: Mad Cow Can Kill You.
Govt to admit it today”) to the Evening Standard ’s
on March 21 (“French Ban British Beef. Germany
calls for Europe boycott as Dorrell warns 11m cattle
may have to die”) and the Independent’s on March
23, 1996 (“Beefgate”).

Information on dietary exposure to BSE is critical,
but difficult to obtain. CJD patients being too unwell,
a relative is asked to recall the patient’s diet over a
lifetime and since 1985; the CJD Surveillance Unit
itself places little confidence in the data so generated.
Four indirect sources of information on dietary expo-
sure to BSE may therefore be important: UK nutri-
tion surveys conducted in the 1980s and 1990s (for
evidence on strongly age-related dietary consump-
tion, of beefburgers, for example [30]); unannounced



BSE and vCJD 3

inspections at abattoirs by the State Veterinary Ser-
vice (for evidence on the frequency and nature of
breaches of regulations concerning specified bovine
materials [28, 45]); an audit commissioned in the
spring of 1996 by the Ministry of Agriculture, Fish-
eries and Food (for information by quinquennia on
which bovine and ovine tissues went into which foods
when); and back-calculation from BSE cases to infer
the BSE infection curve [1] and annual numbers of
BSE-infected bovines which were within one year
of clinical onset (say) when slaughtered for human
consumption. Cooper and Bird’s synthesis [7–9] of
the foregoing data sources predated upward revi-
sion by Ferguson et al. [20] of annual numbers of
BSE-infected bovines, which were within one year
of clinical onset when slaughtered for human con-
sumption. Changes in the estimated preclinical BSE
incidence pattern (not just level) could have impli-
cations for Cooper and Bird’s predicted incidence
of vCJD from the United Kingdom dietary expo-
sure to BSE for the 1940–1969 and post-1969 birth
cohorts [10]. Their projections suggested: that about
three-fifth of predicted dietary vCJD onsets would be
in males, see also [11]; and, over and above dietary
exposure, that an age-dependent susceptibility func-
tion – as first conjectured by Valleron et al. [53] – or
other exposure was required to match the age dis-
tribution of vCJD patients in the 1940–1969 birth
cohort. Although the risk of infection with prion dis-
eases increases with repeated challenges, Gravenor
et al. [24] have found that it does so to a lesser extent
than is expected if challenges combined indepen-
dently or in a cumulative manner. This finding could
also be a part explanation for implied age-dependent
susceptibility.

Cousens et al. [14] hazarded [42] projections of
vCJD by assuming simply that, until 1989, the num-
ber of people newly infected with the BSE agent was
proportional to the number of BSE cases with onset
in that year, as may be reasonable if bovine material
is infectious to humans for only a short period before
cattle develop clinical BSE. These very preliminary
projections do not explain the apparently age- and
genetics-related susceptibility to vCJD. Dates of onset
of vCJD (seven in 1994, six in 1995), referral to
the CJD Surveillance Unit, death and confirmation
of diagnosis were plotted by Cousens et al. for the
first 14 cases of vCJD in the UK: given the typically
long delay between onset and confirmation, the final
number with onset in 1994 or 1995 could be about

23 [14]. Regular updating – at least annually – of
these crucial date data is epidemiologically essential,
and by a variety of methods as reflected, or refer-
enced, in a special TSE issue (Volume 12, Number 3)
of Statistical Methods in Medical Research in 2003.

Unlike in AIDS [15, 26, 48], an independent
group of statisticians and subject-matter specialists
was not convened prior to 1996 to work on, and pub-
lish, BSE projections, but this investigative format
did apply for UK’s review in 2002–2003 of its Over
Thirty Month Rule, whereby from April 1996, no
part of UK’s cattle slaughtered at 30+ months of age
could enter human food or any feed chain [20]. A
reinforced feed ban came into force from August 1,
1996 in the United Kingdom (and from January 1,
2001 elsewhere in European Union), after which it
was hoped that maternal transmission would be the
only route of cattle’s BSE exposure. Events proved
otherwise with maternal transmission being effec-
tively ruled out for about a third of BSE cases born
after the reinforced feed ban (BARBs) [52] so that in
2004, the United Kingdom was designing a BARB-
controls study to investigate a low-level, third wave
of BSE exposure (prior to original ruminant feed was
first, between initial and reinforced feed bans was the
second).

Three statistical teams had been invited to under-
take further analyses [29] of the BSE maternal cohort
study to determine whether the elevated risk of BSE
among offspring of BSE-affected dams was due to a
genetically enhanced risk of food-borne infection, to
vertical transmission of the etiologic agent from dam
to calf, or some combination of the two. Evidence
of an enhanced BSE risk in calves born closer to
disease onset in their dams would provide support
for vertical transmission; and corroboration of the
“infectious interval” could be sought from the BSE
database in respect of calves born well after the feed
ban to dams which ultimately developed BSE [18,
29]. Analysis of the BSE database was complicated
by misidentification of dam–calf pairs and by the
lack of survival data, which pointed up the need
for improved cattle-tracing systems, such as Northern
Ireland had and have subsequently come into force in
Great Britain. To date, separate analyses of the BSE
maternal cohort study and BSE database have been
undertaken. A Bayesian formulation would allow
for full propagation of uncertainty [21] with consid-
eration also of lateral transmission and of regional
exposure to contaminated feed in 1989 or later: the
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BSE maternal cohort study is seen as external data
and sensitivity analysis of assumptions about calf
survivorship according to BSE status of dam would
be crucial.

Statistical plans [28] for unannounced inspections
at abattoirs by the State Veterinary Service were an
outstanding issue in the aftermath of vCJD. Con-
trary to reporting standards in 1995 [45], they would
allow defendable estimates of the extent of com-
pliance with BSE and other regulations intended to
safeguard public or animal health. Statistical plan-
ning in determining which brain and other tissue
to preserve or test from cows in the over-30-month
slaughter program and selective cull was only fully
addressed under the auspices of the European Union’s
Scientific Steering Committee [3, 51]. Such tissue,
particularly from UK cows born either between feed
bans or after July 31, 1996, could be extremely valu-
able in studying age-specific pathogenesis and in
determining the performance of diagnostic tests in
asymptomatic animals.

Three main statistical issues in vCJD are acqui-
sition of key data to underpin projections; evolu-
tion of a risk score for highly suspect vCJD; and
follow-up of children born to parents with vCJD, of
healthcare workers who attended the delivery of a
mother with vCJD, and of healthcare or other work-
ers who have had percutaneous exposure to vCJD
or to BSE. Probable blood-borne vCJD transmis-
sion [4, 44], announced to both Houses of Parlia-
ment in December 2003, has underlined rights and
responsibilities for limiting human-to-human trans-
mission of vCJD and for surveillance. Blood-borne
vCJD transmission had been anticipated by BSE (and
scrapie) transmission risks of 10 to 20% in sheep [38,
40] via blood transfusion: of 24 sheep-recipients of
BSE-infected transfusions, two were confirmed BSE
cases (8%) and two others suspect; and of 21 sheep-
recipients of scrapie-infected transfusions, at least
four had succumbed (21%) [40].

From 5 April 2004, the United Kingdom excluded
recipients of blood or tissue from donation. Prevent-
ing operative transmission of vCJD and quantifying
human-to-human vCJD transmission risks need addi-
tional measures. Quantification of human-to-human
vCJD transmission risks requires identification of
index patients (incubating vCJD, positive for abnor-
mal prion protein PrPSC or otherwise at risk) and
their recipients (of vCJD-implicated blood or tis-
sue or surgical instruments), a recipients’ database,

which records exposure risk classification and donor,
together with flagging of recipients for mortality and
recipients’ agreement in life that they be tested post-
mortem for abnormal PrPSC and phenotyped at codon
129 since all vCJD cases to date have been methion-
ine homozygous at codon 129, but only 40% of UK
population is.

Surveillance options include attributable tonsil
biopsy for abnormal PrPSC at all autopsies [4] under
50 years of age (with positives phenotyped at codon
129), which would facilitate identification, follow-up,
and risk quantification for recipients of “at-PrPSC-
risk” blood or tissue or implicated in a surgical web
spun out from deceased positives.

Key data to underpin projections have been mar-
shaled, such as: those from patients with kuru
or iatrogenic CJD or from repeated challenge experi-
ments in rodents to estimate the incubation period,
its age dependence (if any), and possible dose-
responsiveness [24]; age-specific and temporal
changes in the consumption of foods, which may
have contained the BSE agent [7–11, 20] to esti-
mate dietary BSE exposure; those, including costs,
from feasibility study on estimating the prevalence
of abnormal prion in 10–50 year olds by molecular
analysis of stored tonsillar or appendix tissue as fore-
runner of a national tonsil archive to facilitate testing
or postmortem testing in the course of autopsies rou-
tinely performed for other reasons ranging from road
traffic accidents to drugs overdose.

A second issue was to evolve, and update, a risk
score for highly suspect vCJD, including for deter-
mining a suitable, if not optimal, sequence of inves-
tigations that is likely to reach a correct, definitive
diagnosis quickly and with minimal trauma for the
patient. Tonsil biopsy, now accepted in differential
diagnosis of vCJD, has resolved this issue to such an
extent that the postmortem rate has fallen consider-
ably in vCJD-diagnosed patients. Careful documen-
tation of the sequence of neurological signs was con-
sidered important [58]. The setting-up of a patient-
preference protocol under Medical Research Council
auspices at least affords all patients the option of
standardized follow-up whether they elect for ran-
domization or not. (see under “other studies” on
http://www.ctu.mrc.ac.uk/browse.asp for
initial options such as: “choice = to receive
quinacrine now”, “choice = to reject quinacrine now”
and “choice = randomization to receive/not receive
quinacrine now”).
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Finally, to quantify the risk (if any) of mother-to-
child or of percutaneous transmission of vCJD [26]
we need outstandingly to register exposed individuals
so that the relevant denominators are knowable.
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Burden of Disease

“Burden of disease” is the name given to a concept
dealing with a range of medical statistics. It aims
to give a comprehensive picture of how different
diseases impact on society. Some analysts use this
concept to allocate health care and research resources.
Because it covers a range of impacts of disease on
society, the burden is often referred to in the plural,
a practice followed in this article.

“Burdens of disease” aims to give an account
of the dimensions of damage inflicted by ill health
on society. The main burdens covered are mortality,
morbidity, and resources costs of care and treatment.
Applications were developed first in the US, but
examples here are based on experience in the UK.
The main interest is in how the burdens of different
diseases compare. It aims to answer questions like:
Is heart disease a bigger killer than cancer? Which
diseases afflict women especially? Which diseases
impose greatest cost on healthcare services? Table 1
is taken from the latest UK table of burdens of dis-
ease [4] and summarizes the main results. Answering
such questions raises a host of problems. Some of
them arise from one of the burdens and some arise
from attempts to bring them all together.

Mortality

What do we mean when we say that one disease
is a bigger killer than another? Looking simply at
unadjusted death rates will not capture the flavor of
the question. Since all must die, the simple causing
of death does not impose a burden on society. It is
premature death that is the burden. One commonly
adopted solution is to look at deaths below a certain
age. Choosing the age is not simple. If it is set very
low, then it will focus attention on a very narrow
range of causes of death such as sudden infant death
syndrome (SIDS), accidents, etc. Set too high and
it loses any focus on policy issues. Over the age
of, say, one hundred, the precise cause of death is
of less interest than the survival thus far. Recent
presentations have looked not at simple death rates,
but weighted them by the years below a certain age.
Thus SIDS deaths are given a high weight because
they are seen as destroying almost a whole lifespan.
While the usual presentation focuses on life-years

lost, there is no reason in principle why both crude
and weighted death rates should not be used. They
reflect different concerns. Even though inevitable,
the event of death is always painful to survivors
and fearful to the dying. The curtailing of life is
an additional loss. A further difficulty is whether
the life-years lost calculation should use different
age standards for men and women, to reflect their
different life expectancy.

Compared with other burdens, the data difficulties
of mortality statistics are relatively few. In many
developed countries the measurement has become
simpler with the recording of several causes of death
on death certificates. There remain problems with
causes like AIDS and suicides, where there will be
a bias against recording such conditions on death
certificates.

Morbidity

Data on morbidity tend to come from three main
sources: administrative records associated with wel-
fare benefits, surveys of physicians, and household
surveys (see Surveys, Health and Morbidity). In
the UK these are represented by sickness benefit
records, the morbidity survey of general practition-
ers, and surveys like the Disability Survey and the
Health Survey. The first dataset records total days
of certificated sickness absence. The second source
records the patient consulting rate for a given con-
dition. Household surveys will, in principle, obtain
a direct measure of the number of people suffering
from a given condition at a particular point in time,
and so come closest to a measure of the extent to
which the population at a given moment is suffering
from ill health. While certificated sickness measures
the same thing in principle, it suffers, besides the
problems associated with administrative sources like
policy change, from the problem that only those oth-
erwise in work will be recorded. It therefore omits
most of the population who are ill, the old, and many
of the chronically sick. The number of people con-
sulting primary physicians gives a useful indication
of something between incidence and prevalence of
disease, but requires additional weighting to give a
useful picture of the burden of morbidity. Chronic
conditions clearly impose a greater burden than short-
lived conditions, so this measure of prevalence has to
be adjusted by some estimates of average duration.
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Another weighting that is required is an adjust-
ment for severity. A frequently used measure is the
QALY or quality-adjusted life-year (see Quality of
Life and Health Status). The implied days of sick-
ness are weighted by the degree of suffering caused.
A variety of scales have been developed such as the
Euroqol [5], and estimates of discomfort and disabil-
ity impact have been attached to different conditions.

While statistics on certificated sickness days may
be of limited value in obtaining an overall picture
of such suffering, they provide valuable subsidiary
information on the burden imposed on the economy
from not having workers available, on those who
depend on the income they might otherwise have
earned, and on the agencies that pay benefit.

Resource Costs

Societies devote considerable resources both to cur-
ing disease and to remedying some of its con-
sequences. In most industrial countries much of
this burden falls on the state, while in some there
is considerable private finance of health insurance.
However financed, these represent a use of resources
which could otherwise perform some other useful
function. Simplest to measure in most health services
are the number of beds devoted to different condi-
tions, and the average cost of bed occupancy. Slightly
more difficult is out-patient (ambulatory) care, where
records of conditions seem to be less systematically
maintained. Where morbidity data are based on sur-
veys of primary carers, these sources can also be used
to estimate the cost burden of primary care. Here, of
course, it is the consultation rate rather than the num-
ber of patients consulting which is relevant. Separate
estimates are often required for dental care.

The disease classification of pharmaceuticals
requires a certain amount of judgment to align
with conditions. Classification becomes progressively
more difficult with care which requires support
against disability rather than curative interventions
where the recording of causes of such conditions may
be limited.

As well as pecuniary burdens borne both by the
public and private sectors, there are nonpecuniary
burdens – particularly in terms of caring. While
such burdens are less often recorded in official
compilations of burdens of disease, there are sources
of such information in general and in dedicated
household surveys.

There is conceptual difficulty with measuring
the resource burden. It reflects what is considered
appropriate by current medical practice. There is an
implied but incorrect assumption that the scale of
resources devoted to different conditions is such as
to bring every sufferer back to a similar kind of
condition. This is clearly far from the case. One of
the conditions that imposes the heaviest burden on in-
patient care is stroke, although it is unclear that the
scale of those resources reflect the effectiveness of
the interventions, compared, with, say, interventions
in heart disease. The cost burdens therefore reflect a
combination of prevalence and medical practice. If
it were decided that more care should be devoted to
mental illness, say, then there would be a perceived
rise in burden, which might be accompanied by an
unrecorded abatement in the severity of morbidity.

Uses and Abuses

In a 1996 publication the UK Department of Health
presents burdens in a range of different categories [4].
There is no attempt to combine these into one
overall indicator of burden. This was not the practice
adopted in the first attempt by Black & Pole [1]. They
combined all burdens together using implicit weights
reflecting both the severity of disease relative to full
health and death, and an implied pecuniary value
of death. While it is always open to users to make
such combinations using their own assumptions, the
attribution of a money value to life is seen as
too controversial to form the basis of a statistical
publication.

Black & Pole, and many of those who have fol-
lowed them, have seen burdens of disease as of poten-
tial value in decisions on where to direct preventive or
curative resources and research which might develop
them. While the epidemiologic mapping contained in
burdens of disease provides an essential component
of any system for making such allocations, it must
be combined with indicators of the effectiveness of
interventions. There is no point in throwing a large
amount of resources at a disease, however burden-
some, if it makes no difference to that burden.

Indicators of cost effectiveness are now available
for a range – albeit still a fairly limited range of
conditions [4]. The technique for effective resource
allocation depends on a combination of burdens of
disease statistics and cost-effectiveness information.
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In practice nearly all interventions vary in their
effectiveness depending both on the condition of the
sufferer, the general circumstances, and the quality
of the medical practitioner. An effective allocation of
interventions will depend on the scale of the condition
and the extent to which further intervention is likely
to be effective in reducing the burden. It turns out that
making such an allocation is relatively complicated.
One scheme for doing so is described in Neuburger
& Fraser [2].

Another potential use of burdens is to indicate
the burden of a particular risk factor. Thus it would
be possible to show the burden of smoking or car
exhaust fumes by weighting together appropriate
fractions of the burden of those disease associated
with such risk factors. In terms of policy these could
then be compared with interventions which might be
taken to abate them.

Conclusion

Burdens of disease provides a valuable framework
for compiling a range of data on different diseases.

Used with care it can provide an invaluable tool for
the development of health policy.
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Byar, David P.

Born: February 23, 1938, in Lockland, Ohio.
Died: August 8, 1991, in Washington, DC.

David Byar was a leading clinical trials method-
ologist and proponent of structured experiments for
making treatment inferences. He played an important
role in teaching and advocating the strengths of clini-
cal trials through his positions at the National Cancer
Institute. He also made substantial contributions to
epidemiology and studies of disease prevention.

David Byar was born in Lockland, Ohio, and
attended high school in Maryville, Tennessee, where
he graduated as valedictorian. He received an AB
degree from Emory University in 1960 and went
on to graduate from Harvard Medical School in
1964. After a surgical internship in Denver, Col-
orado, Dr Byar worked for three years at the Armed
Forces Institute of Pathology. It was at this time that
he became interested in genitourinary tumors and
learned the fundamentals of laboratory experimenta-
tion. He became increasingly interested in the sources
of variation in laboratory experiments and the statisti-
cal methods for coping with them. He began studying
statistics and, in 1968, he joined the National Can-
cer Institute at the invitation of his teacher, Dr John
Bailar. Dr Byar assumed the responsibility as statis-
tician for several clinical trials being conducted by
the Veterans Administration Cooperative Urological
Group. These trials were to be influential in both the

clinical treatment of prostate cancer and the method-
ology of human experiments.

These studies indicated that diethylstilbestrol
(DES) was an effective treatment for patients
with advanced prostate cancer. The drug was
associated with increased mortality from heart
disease, so that the treatment was not appropriate
for patients with early stage prostate cancer. These
data illustrated to biostatisticians the necessity
for studying treatment–covariate interactions in
clinical trials.

In 1972, Dave Byar was appointed Head of
the newly formed Clinical and Diagnostic Trials
Section at the National Cancer Institute. He would
remain in that position for 13 years. The section
combined methodologic work in biostatistics and
clinical trials with consultation on specific real-
world biostatistical problems. Dr Byar built a strong
program in methodology and recruited excellent
colleagues to this Section. In keeping with one
of Dr Byar’s favorite quotes by Voltaire, “The
price of freedom is eternal vigilance”, he was
repeatedly called upon to defend the merits of
randomized (see Randomization) clinical trials at
a time when emerging computer and database
technology suggested that treatment inferences from
such sources (see Administrative Databases) might
replace designed experiments.

In 1981, Dr Byar was elected a fellow of the
American Statistical Association. He was cited “for
rare capacity, reflecting an unusual combination of
medical and statistical expertise, to bring scientific
rigor to clinical testing; for work in statistical the-
ory; and for effectiveness as a communicator between
statisticians and medical researchers”. In 1984, the
Clinical and Diagnostics Trial Section in the Biome-
try Branch moved to the National Cancer Institute’s
Division of Cancer Prevention and Control. Dave
was subsequently named Branch Chief. During this
time, he was very influential in the development of
important cancer prevention trials, including dietary
modification, screening, and smoking cessation stud-
ies (see Smoking and Health). He also became
active in modifying clinical trial designs for the treat-
ments of AIDS.

Dr Byar was elected to the International Statis-
tical Institute in 1984. In 1991, he was named an
Honorary Fellow of the Royal Statistical Society “in
recognition of services to statistics”.
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Dr Byar’s academic achievements were widely
known and respected. However, he was equally
well known as a teacher, friend, and person who
enjoyed many aspects of life. He was a particularly
accomplished pianist, and once considered a career
in music. He loved good food, reading, theater, and
engaging friends in stimulating conversation. Dr Byar
traveled extensively internationally and had many
friends all over the world.

David Byar died on August 8, 1991, following a
long illness. He will be remembered always for his
scientific contributions and as a source of inspiration

to those who learned from and worked with him.
On November 7–8, 1991, a scientific symposium
titled “David Byar: An Accidental Career” was held
at the National Institute of Health. David Byar’s
distinguished career and engaging personality were
remembered by his colleagues and friends. The
proceedings of this symposium were published in
Controlled Clinical Trials (Vol. 16(4), 1995).

STEVEN PIANTADOSI



Calibration

Introduction

Statistical calibration, sometimes called inverse
regression, is often used in biomedicine to estimate
the value of one measurement (x) by some
other measurement(s) (y) using a regression
model. The need for calibration arises when
the quantity to be calibrated is harder, or
more expensive, to measure, or when the value
was not recorded and cannot be retrieved. For
example, instead of direct analysis through the “wet
chemistry” methods, the radioimmunoassay (RIA),
immunoradiometric assay (IRMA), or enzyme-linked
immunosorbent assay (ELISA) can be used to
estimate the minute concentration of hormones,
enzymes, plasma tissue proteins, and monoclonal
antibodies from the measurement of a radioactive
count (RIA experiments) or an optical density
(ELISA experiments) [29, 32, 77]. Near-infrared
(NIR) spectroscopy is commonly used to assay
the molecular contents of a sample through the
absorbance spectra in a range of wavelengths [47,
57]. For example, in NIR spectroscopy, the spectral
readings (x) are very precise but more expensive,
while the chemical measurements (y) are less
expensive to obtain but not as precise. Oman &
Wax [61] describe how multivariate calibration can
be applied to estimate fetal age by measuring the
femur length and biparietal diameter of the fetus
using ultrasound.

A calibration experiment is typically conducted
in two stages, namely, the calibration stage and the
inverse prediction stage. In the calibration stage, n

pairs of training samples (x1, y1), . . . , (xn, yn) with
known measurements are acquired to estimate the
regression function y = f (x), where x corresponds
to the compositional variable to be calibrated (e.g.
concentration) and y corresponds to the instrumen-
tal variable (e.g. absorbance of a certain wavelength
in the NIR spectroscopy). In the inverse prediction
stage, the objective is to estimate the unknown x0 in
a new sample by taking one or more measurements of
y0 from the same sample. The classical estimator of
x0 can be computed by taking x̂0 = f −1(y0). Depend-
ing on the nature of the variables to be studied,
calibration can be classified as the “absolute calibra-
tion”, in which x is assumed to be measured without

error, and the “relative or comparative calibration”,
in which both x and y are subject to measurement
error (see Errors in Variables). Calibration experi-
ments can also be characterized as the “controlled or
designed calibration”, where x1, . . . , xn in the train-
ing sample are prespecified to cover the range of all
possible x0 or the “nature or random calibration”,
where a sample of (x1, y1), . . . , (xn, yn) pairs is con-
veniently obtained.

A large collection of literature relating to the cal-
ibration problem addresses many areas, such as clas-
sical versus inverse estimators, point and confidence
interval estimation, linear and nonlinear calibration,
parametric and nonparametric methods, frequentist
and Bayesian modeling, univariate and multivariate
calibration, and many other issues such as measure-
ment error, heteroscedasticity, and optimal design.
Selected topics are discussed below, followed by a
brief description of instrumental calibration and sur-
vey sampling. A comprehensive literature review of
calibration can be found in [5, 62].

Classical Versus Inverse Estimators

Assume a simple linear regression model holds for
the training sample: yi = β0 + β1xi + εi , where εi

are independent identically distributed (i.i.d.) N(0,
σ 2), i = 1, . . . , n. The least square estimates of β0

and β1 are β̂1 = Sxy/Sxx and β̂0 = y − β̂1x, where x

and y are sample means and

Sxx =
n∑

i=1

(xi − x)2

n
,

Sxy =
n∑

i=1

(xi − x)(yi − y)

n
. (1)

The classical estimator of the unknown x0 is

xC = y0 − β̂0

β̂1

= x + (y0 − y)
Sxx

Sxy

. (2)

Alternatively, Krutchkoff [40, 41] proposes estimat-
ing x0 by regressing x on y: x = γ̂0 + γ̂1y, where

γ̂1 = Sxy

Syy

, γ̂0 = x − γ̂1y, and

Syy =
n∑

i=1

(yi − y)2

n
. (3)
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The resulting inverse regression estimator of x0 is

xI = x + (y0 − y)
Sxy

Syy

. (4)

It can be shown that except when y0 = y, x̂I is
always closer to x than x̂C and can be considered as
a shrinkage estimator shrinking toward x. By tak-
ing a compound estimation approach, Lwin & Maritz
[45] show that the classical and the inverse estima-
tors can be derived with and without the asymptotic
unbiasedness constraint, respectively. Therefore, the
classical estimator is a consistent estimator but the
inverse estimator is not. However, the inverse esti-
mator has a smaller mean square error (MSE)
than the classical estimator when the unknown x0

is in the neighborhood of x, defined as (x0 − x)2 <

Sxx[2 + (σ/β1)
2/Sxx] [48]. The classical estimator is

the maximum likelihood estimator under the appro-
priate model, while the inverse estimator corresponds
to the Bayesian solution under a particular informa-
tive prior distribution [34]. Perng [64] shows that
the inverse estimator can also be derived by cross-
validation without any distributional assumptions.
The difference between the classical and inverse esti-
mators is quantified in [14]. Naszódi [58] proposes
another estimator to correct the bias of the inverse
estimator and claims that it is more efficient than the
classical estimator. Srivastava [71] considers com-
parison of the inverse and classical estimators in
the controlled linear calibration with a multivariate
response and univariate explanatory variable when
the covariance matrix is unknown. Later, Oman &
Srivastava [60] derive exact expression for the MSE
of the inverse estimator and compare with the ones
previously derived for the MSE of the classical esti-
mator in multi-univariate linear calibration.

Interval Estimation

The standard method of constructing a confidence
interval for x0 is to apply Fieller’s theorem [26,
27] for estimating the ratio of two normally dis-
tributed random variables. The procedure leads to
solving a quadratic inequality, and the resulting con-
fidence interval can be a finite interval, a union of
two semi-infinite intervals, or the whole real line.
Intervals with infinite length occur when the slope
of the calibration line is close to zero, where the
validity of calibration is questionable. Graybill [31]

advocates a two-stage conditional approach: Step 1:
test the null hypothesis of zero slope at α level, H0:
β1 = 0; and Step 2: if the test is not rejected, do not
construct the confidence interval because x0 cannot
be estimated well when β1 is close to zero. If the test
is rejected, a (1 − α) × 100% interval can be con-
structed in the usual way and the resulting interval
will have finite width. The coverage rate of the con-
ditional confidence intervals is studied independently
in [42, 72]. Approximate conditional inference with
the angular transformation is discussed in [20] (see
Delta Method). In multivariate calibration problem
using a multivariate linear model, Mathew & Zha
[52] construct some conservative confidence regions,
which are nonempty and invariant under nonsingular
transformations. Theoretic treatment of the interval
estimation can be found in [69].

Cox [15] discusses the direct likelihood estima-
tion of ratio parameters and gives the asymptotic
variances of the maximum likelihood estimates. For
confidence interval estimation, direct likelihood esti-
mation offers a useful alternative to the standard
method in linear models with large samples and can
also be used for nonlinear models. Rosen & Cohen
[67] propose a bootstrap confidence interval that is
applicable to both parametric and nonparametric cali-
bration curves. Müller & El-Shaarawi [55] investigate
M-estimation (see Robustness) and bootstrapping
techniques in the simple linear controlled calibra-
tion model and provide different types of confidence
intervals for the calibration estimator. Simultaneous
calibration intervals are described in [54, 69]. Meth-
ods for obtaining confidence bands for polynomial
regression and nonparametric regression are given
in [38]. Mathew & Sharma [51] consider the univari-
ate calibration problem of constructing confidence
regions for the unknown values of the explanatory
variable. An exact confidence region for the mul-
tivariate calibration problem is proposed in [49].
Mathew & Zha [53] consider the calibration problem,
that is, the calibration data will be used repeatedly in
order to construct a sequence of confidence regions
for a sequence of unknown values of the explana-
tory variables. Recently, Schechtman & Spiegelman
[68] show that a nonlinear approach to single-use
calibration curves gives confidence intervals centered
at MLE. The nonlinear approach produces intervals
even when the classical approach fails to do so.
Mathew & Sharma [50] construct joint confidence
regions for several unknown values of explanatory
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variable in a normal multivariate linear model (see
Multiple Linear Regression), when the variance
covariance matrix is a scalar multiple of the iden-
tity matrix or a completely unknown positive definite
matrix (see Matrix Algebra).

Multivariate Calibration

The advance in analytical methods and the wide use
of computers have allowed investigators to collect
enormous amounts of data easily and quickly; for
example, in chromatography, infrared spectroscopy,
or flow cytometry. Suppose a set of q instrument
responses Y = (Y1, . . . , Yq) are determined from
a set of known p-dimensional compositions X =
(X1, . . . , Xp). The multivariate calibration is to esti-
mate a single unknown X0 from the observed Y0.
Brown [4] discusses the multivariate calibration in
the context of random calibration, controlled calibra-
tion, forward and inverse regression, and Bayesian
methods. Martens & Naes [47] give a comprehensive
treatment on the subject in their book. Two introduc-
tory papers [3, 76] also provide useful overviews.
Sundberg [74] reviews multivariate calibration in
two approaches: the estimation approach (indirect
regression – controlled calibration) and the predic-
tion approach (direct regression – natural calibration).
Bilinear and other less standard models are also
briefly reviewed.

The central idea in multivariate calibration
involves dimension reduction. Because the instrument
responses Y are often measured in high dimension
and are highly correlated, the standard multiple
regression can result in unestimable or unstable
models. Two approaches have been used to
resolve the problem. One approach is through
the principal component regression (PCR) (see
Reduced Rank Regression), which performs the
principal component analysis first on Y followed
by regressing X on the principal component scores
for calibration. The other approach is the partial
least square regression (PLSR), which simultaneously
estimates the underlying components in both X and
Y and then performs the regression. Stone & Brooks
[73] show that PCR and PLSR belong to a general
class of “continuum regressions”.

A generalization of the classical estimator in mul-
tivariate calibration can be found in [43]. When
q = 1, the classical estimator has an infinite mean and

mean square error. However, the classical estimator
has a finite mean when q > 2 and a finite MSE when
q > 4. The profile likelihood approach for multivari-
ate calibration can be found in [6, 7]. Generalized
least squares and covariance adjustment approaches
are proposed by Naes [56]. Methods applying a
stationary autoregressive process (see ARMA and
ARIMA Models) to model serial dependence (see
Serial Correlation), regression splines, and mini-
mum length least squares are discussed in [18].

Nonlinear Calibration, Nonparametric
Calibration, Robust Calibration,
Measurement Errors, and
Heteroscedasticity in Calibration

In immunoassay or bioassay applications, the
dose–response curves are often nonlinear (see
Quantal Response Models). For example, a fairly
standard approach is to apply the four-para-
meter logistic model: f (x) = β1 + (β2 − β1)/{1 +
exp[β4(log x − β3)]} [28]. Giltinan & Davidian
[29] construct a general framework for nonlinear
calibration by the nonlinear mixed effects model,
which can account for the intra-assay variability.
They also study the Bayesian approach and find that
the empirical Bayes methods can gain considerable
efficiency in a simulation. Schwenke & Milliken [70]
compare interval estimation methods in nonlinear
calibration derived from the distribution of x̂0 or the
distribution of β̂. They indicate that, although both
methods attain the desired confidence coefficient, the
method based on the distribution of β̂ is more general
because it does not depend on a closed-form solution
of the inverse function.

Knafl et al. [39] apply the nonparametric regres-
sion technique to calibration when the functional
form of f (x) is not specified. Chambers et al. [12]
study extensively the robustness and efficiency of
various nonparametric estimators derived from the
sample empirical distribution, kernel smoothing, and
bias-calibrated predictors. They conclude that the
nonparametric predictors are more robust and less
biased against the model misspecification, but the loss
of efficiency is unavoidable. Gruet [32] proposes a
new approach leading to a direct statistical inference
on the parameter of interest to solve calibration prob-
lems in a nonparametric setting. The method com-
bines kernel and robust estimation techniques. Tiede
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& Pagano [77] derive an algorithm for obtaining the
M-estimates of nonlinear calibration curves occurring
in radioimmunoassay. They recommend fitting the
calibration curve by such a robust nonlinear regres-
sion procedure, especially when an outlier is present
in the data. Kitsos & Müller [37] introduce estimators
of robust linear calibration based on robust one-step
M-estimators, which have a bounded asymptotic bias.
Cheng & Van Ness [13] propose robust methods for
the random calibration problem. Several approaches
based on the standard regression model, the inverse
regression model, and the measurement-error model
are investigated to robustify calibration. When some
assumptions for ordinary least squares are violated,
regression techniques including nonparametric and
robust approaches to regression analysis are reviewed
in [2].

To account for the errors in working stan-
dards, Lwin & Spiegelman [46] develop an accurate
calibration curve procedure as an extension of cal-
ibration intervals. Methods for correcting measure-
ment errors can be found in [9, 10], while Thomas
[75] derives a consistent maximum likelihood estima-
tor of x0 in multivariate calibration with measurement
errors. For assays exhibiting variance heterogene-
ity, Davidian et al. [16] discuss the generalized least
square approach of estimating the heteroscedastic-
ity parameter and the calibration parameters. Liski
& Nummi [44] consider the problem of prediction
and inverse estimation in repeated measures models
(see Longitudinal Data Analysis, Overview).

Bayesian Calibration

A Bayesian approach to calibration is discussed in
Dunsmore [23]. He shows that the classical estimator
is a special case of Bayesian estimators in which the
error due to under- or overestimation is equally pun-
ishable in the loss function. He also points out that
the width of the interval estimator is unaffected by y0

in the Bayes’ methods, while it increases as |y0 − y|
increases in the classical method. Hoadley [34] shows
that in the simple linear calibration with standardized
xi’s and one observed y0, the inverse estimator is a
Bayesian solution when the prior distribution of x0 is
a t distribution with n − 3 degrees of freedom, mean
0, and scale parameter [(n + 1)/(n − 3)]1/2 (see Stu-
dent’s t Distribution). A thorough discussion of
Bayesian methods can also be found in [35] and [17].

Eno & Ye [24] derive a reference prior and corre-
sponding posterior inferences in calibration problem
for polynomial regression models. Later, probabil-
ity matching priors and a reference prior for the
linear calibration problem are presented with the con-
stant variance assumption relaxed in [25]. A Bayesian
solution to nonlinear calibration is given in [66]. Mul-
tivariate Bayesian calibration, including the use of the
Gibbs sampler approach to computing the posterior
distribution in complex settings, is studied in [21, 22]
(see Computer-intensive Methods; Markov Chain
Monte Carlo).

Optimal Design and Residual Analysis

The optimal design for calibration is discussed in [63]
to minimize the expected MSE E(x̂0 − x)2. Buonac-
corsi [8] gives the optimal design to minimize the
asymptotic variance of x̂0. Barlow [1] describes the
computation of the optimal design under the Bayesian
framework. Oman [59] derives a statistic similar to
the Cook’s distance in the usual regression setup to
measure the influence of a particular observation in
calibration (see Diagnostics). They illustrate the use
of residual analysis to assist the data analysis and
improve the study design. Kitsos [36] considers the
simple linear calibration problem through an optimal
design theory to evaluate the approximate variance of
the calibrating value and provide approximate confi-
dence intervals.

Instrumental Calibration and Survey
Sampling

The above sections describe statistical calibration for
situations in which the calibration model is obtained
to estimate inversely the compositional variable x0

from the observed instrumental variable y0. Another
type of calibration, instrumental calibration, is also
commonly applied in laboratories and industry to cal-
ibrate the accuracy and precision between instruments
and to establish standards (see Quality Control in
Laboratory Medicine). Cembroski et al. [11] outline
approaches to assure optimal proficiency testing in
hematology laboratory. Graves [30] gives procedures
and criteria to standardize immunoassays for the
prostate-specific antigen. Plummer et al. [65] discuss
the application of calibration in multicenter cohort
studies for correcting the bias at the cohort level and
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the subject level. Sample size tables are provided to
facilitate the design of multicenter cohort studies.

The application of instrumental calibration with
categorical variables in survey sampling (see Sample
Surveys in the Health Sciences) is studied in [33],
where a measurement-error model for the data in reg-
isters is introduced (see Disease Registers). Deville
& Särndal [19] discuss the use of the generalized rak-
ing (or iterative proportional fitting) in multiway
tables and derive the general regression estimators to
estimate the finite population totals in survey sam-
pling on the basis of auxiliary information.
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[69] Scheffé, H. (1973). A statistical theory of calibration,
Annals of Statistics 1, 1–37.

[70] Schwenke, J.R. & Milliken, G.A. (1991). On the calibra-
tion problem extended to nonlinear models, Biometrics
47, 563–574.

[71] Srivastava, M.S. (1995). Comparison of the inverse and
classical estimators in multi-univariate linear calibration,
Communications in Statistics–Theory and Methods 24,
2753–2767.



Calibration 7

[72] Steffens, F.E. (1971). On confidence sets for the ratio of
two normal means, South African Statistical Journal 5,
105–113.

[73] Stone, M. & Brooks, R.J. (1990). Continuum regres-
sion; cross-validated sequentially contrasted prediction
embracing ordinary least squares, partial least squares,
and principal components regression, Journal of the
Royal Statistical Society, Series B 52, 237–269.

[74] Sundberg, R. (1999). Multivariate calibration–direct and
indirect regression methodology, Scandinavian
Journal of Statistics 26, 161–191.

[75] Thomas, E.V. (1991). Errors-in-variables estimation in
multivariate calibration, Technometrics 33, 405–413.

[76] Thomas, E.V. (1994). A primer on multivariate calibra-
tion, Analytical Chemistry 66, 795–804.

[77] Tiede, J.J. & Pagano, M. (1979). The application of
robust calibration to radioimmunoassay, Biometrics 35,
567–574.

J. JACK LEE & HOJIN MOON



Call-backs and
Mail-backs in Sample
Surveys

Call-backs in face-to-face and telephone surveys,
and mail-backs in surveys conducted by mail (see
Surveys, Health and Morbidity), are indispensable
for achieving high response rates and lowering non-
response error. Regardless of survey method, making
only one attempt to contact a sampled household or
individual will result in unacceptably low response
rates and a very high likelihood that respondents will
differ from nonrespondents [1, 7]. However, the role
of additional contacts in reducing survey error differs
somewhat by method.

For interview surveys the first contact is likely to
result in substantial numbers of not-at-homes, an out-
come that is related to multiple characteristics of the
prospective respondent. Younger people, households
with more occupants in the labor force, individu-
als who hold multiple jobs, and those whose life
activities keep them away from home during the typ-
ical interviewing hours of late afternoon and early
evening or for days at a time, are likely to be under-
represented when only one contact is made. For this
reason protocols for well-designed telephone inter-
views often specify that 20 call-back attempts, or
even more, be made before declaring that a sample
unit is unavailable. In recent years the widespread
use of answering machines and telephone number
recognition devices that result in telephones not being
answered even when people are at home, leaves addi-
tional call-backs, which may come at a time when
calls are not being screened, as one of the few means
with potential for reaching respondents. Furthermore,
calls to a multiple-person household may reach a
person who is not the desired respondent so that addi-
tional calls must be made to obtain that person (see
Telephone Sampling).

Face-to-face household interview protocols are
less likely to specify 20 or more call-backs because
of the high costs associated with returning to a house-
hold that many times. In addition, face-to-face call-
backs are more effective than telephone call-backs
[8]. The appearance of a face-to-face interviewer at
the door is more compelling than a telephone call.
And, when no one is at home, clues from neighbors

or household indicators (e.g. toys in the yard, news-
papers not picked up) may help the interviewer plan
the next attempted contact so that it will be more
effective.

For mail surveys the situation is somewhat differ-
ent. If addresses are correct, all sampled households
or individuals will, in theory, receive the first con-
tact. However, single mailings inevitably produce
response rates that are unacceptably low. In addition,
there is no feedback or clues, as is often the case for
face-to-face interviews, as to why a questionnaire has
not been returned.

Attempting to recontact sample units is only one
of the factors that influence attempts to improve
response rates and thereby reduce nonresponse error.
For all types of surveys, attributes of the survey
design, characteristics of the sampled individual,
characteristics of the interviewer or mail-out mater-
ials, and the interaction between interviewer (or
researcher) and prospective respondent are important
[9]. For interviews it has been shown that longer
questionnaires, survey topics that are uninteresting
or threatening to respondents, and the interviewer’s
lack of experience can all reduce response rates. In
addition some types of people, e.g. young adult males
and people with poor heath status, are less likely
to be interviewed successfully regardless of number
of contacts [7] (see Response Effects in Sample
Surveys).

The essential role of a survey design that empha-
sizes multiple contacts has been articulated by Groves
et al. [9]. Their theory of survey participation posits
that interviewers can increase response by tailoring
their strategies to different individuals and main-
taining interaction with them. This strategy sug-
gests seeking another time to recontact the person
rather than pressing the interviewee into a deci-
sion to be interviewed or not interviewed, thus
using additional contacts as a means of avoiding
refusals.

For mail surveys it has been shown that structural
characteristics such as greater salience of the survey
topic, sponsorship of the survey by government or
university as opposed to market research company,
and type of population (school or employee vs.
general public) are likely to improve response
rates [10]. Characteristics of the multiple contacts
that have been shown to improve response rates
include: prepaid token financial incentives [11],
special postage (e.g. special delivery or certified),
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stamped (vs. business reply) return envelopes, and
personalization of correspondence [2], as well as
respondent-friendly questionnaire layout [4] (see
Questionnaire Design). Nonetheless, by far the most
powerful influence of mail survey response rates is
the number of attempts to contact respondents.

Research has also shown that contacts by a dif-
ferent survey mode can improve response rates to
both interview and mail surveys. For example, send-
ing a prior letter to prospective telephone respondents
explaining the survey can improve response rates sig-
nificantly [3, 7]. Similarly, a follow-up telephone call
to mail nonrespondents can improve response rates
by increasing the number of returned questionnaires
and identifying ineligible sample units [2]. In addi-
tion, a strategy frequently used to increase response
rates is to switch from one survey mode to another;
for example, starting with the less expensive mail
method and contacting nonrespondents in person to
obtain the needed information as used for the US
Decennial Census. However, it has been shown in
the case of the Census that offering respondents
the alternative of responding by mail or telephone
to a mail contact will not improve response [5].
Rather, it is the fact that additional contacts are made
by another mode that results in improved response
rates.

The indispensable nature of call-backs and mail-
backs across survey modes has been convincingly
summarized by Goyder [6]. In a meta-analysis of
nearly 500 different surveys, mostly conducted from
the 1940s to the 1970s, he found on average that
the mail surveys obtained response rates 7.5% lower
than was the case for face-to-face interviews. He also
found that the greater number of contacts used for
face-to-face surveys partly accounted for this small
difference. He models the determinants of response
across methods, and shows that responses to differ-
ent modes are influenced by similar factors, ranging

from salience of topic to sponsorship. In this model,
the number of call-backs or mail-backs is not only
revealed to be an important determinant of response
for all methods, but a unifying one that underlies
the ability of each method to achieve high response
rates.
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Cancer Registries

History of Cancer Surveillance

Early forms of cancer surveillance involved regis-
tering cancers diagnosed in a population of interest
for the purpose of providing accurate statistics on the
morbidity and prevalence of cancer. The first attempts
to do this were in the early 1700s in London, in Ham-
burg in 1900, and subsequently in the Netherlands,
Spain, Portugal, Hungary, Sweden, Denmark, and
Iceland during the period 1902–1908. These efforts
were unsuccessful because doctors often refused to
fill out the questionnaires needed to document each
diagnosed cancer [27].

The first successful attempt at cancer registration
took place in Mecklenberg in 1937. The data recorded
on each cancer included the name of the patient,
which facilitated the elimination of multiple records
on the same case. Also, registration cards were sent to
all medical practitioners, hospitals, and pathological
institutes and there was telephone follow-up for the
purpose of obtaining complete ascertainment as well
as complete data on each case. Subsequently, similar
surveys were conducted in Saxony-Anhalt, Saarland,
and Vienna in 1939, but were soon discontinued
because of political developments [27].

In the US, the first attempt to register cancers
was initiated by the American College of Surgeons
(ACOS) in 1921, and involved only malignancies of
the bone [2]. Registration was expanded in the next
decade to include other malignancies. The first can-
cer morbidity survey was conducted in 1937–38 in
10 metropolitan areas by the National Cancer Insti-
tute (NCI), and subsequent surveys were conducted
in 1947–48 and 1969–71. In principle, all cancers
diagnosed in residents of these areas during a one-
year period were registered during each of the three
time periods. A problem with surveys of this type
was that the fate of cancer patients was not known.
The lack of information on the survival of cancer
patients indicated the need for alternative approaches
to cancer registration.

In 1971, the National Cancer Act, announced as
the “War on Cancer”, called for the NCI to “collect,
analyze, and disseminate all data useful in the pre-
vention, diagnosis, and treatment of cancer. . .”. This
legislation led to the creation of the Surveillance,

Epidemiology, and End Results (SEER) Program
which was based at the NCI.

Case ascertainment for the SEER Program began
on January 1, 1973, in several geographic areas of
the US and its territories. Those areas that have
participated in the program since 1975 include the
states of Connecticut, Iowa, New Mexico, Utah, and
Hawaii, and the metropolitan areas of Detroit, San
Francisco/Oakland, Seattle, and Atlanta. Subsequent
additions to the program included 10 predominantly
black rural counties in Georgia in 1978, and Ameri-
can Indians residing in Arizona in 1980. In 1992, the
program was further expanded to increase coverage
of minority populations, especially Hispanics. The
two new areas added were Los Angeles County, and
four counties in the San Jose/Monterey area south of
San Francisco. Alaskan natives in Alaska have been
added to those populations covered by SEER. The
SEER Program currently includes population-based
data from about 14% of the US population and is
reasonably representative of subsets of the different
racial/ethnic groups residing in the US. Figure 1 pro-
vides a map of the SEER areas and Figure 2 gives the
percentages and sizes of various populations included
in geographic areas covered by SEER [13].

The SEER database contains records on more than
two million cancers and is growing at the rate of more
than 160 000 records per year. Other data resources
used by the SEER Program include cancer mortality
data by county for the total US, obtained from the
National Center for Health Statistics (NCHS). To
provide for the calculation of incidence and mortality
rates, population estimates are obtained through an
interagency agreement with the Census Bureau.

Other organizations are also involved in cancer
surveillance activities in the US. The North American
Association of Central Cancer Registries (NAACCR)
was organized in 1987 as an umbrella organization for
cancer registries, governmental agencies, professional
organizations, and private groups in North Amer-
ica interested in enhancing the quality and use of
cancer registry data. Most population-based cancer
registries in the US and Canada are members. The
mission of NAACCR is to support and coordinate the
development, enhancement, and application of cancer
registration techniques in population-based groups, so
that data of high quality and completeness may be
used for epidemiologic research, public health pro-
grams, and patient care to reduce the burden of cancer
in North America.
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The American College of Surgeons Commission
on Cancer and the American Cancer Society jointly
founded the National Cancer Data Base (NCDB),
which is a nationwide oncology outcomes database
that includes data from over 1500 hospitals in 50
states, and is in its tenth year of operation. This
database can be used to study patterns of care and
factors associated with patient outcome, and patient
care evaluation studies are periodically carried out
in participating cancer registries [25]. Uses of this
database focus on clinical surveillance of people with
cancer, and cannot be used to calculate incidence
rates.

Current Cancer Registration Practices

Cancer registration is the process of collecting data
about patients with malignant diseases. The data col-
lected identify the demographics of the patient with
the disease, the type of cancer, how it is treated and
the outcome of the patient. The data collected reside
in a cancer registry, a term which can mean simply
the database or data system that manages and ana-
lyzes the information or the data system and all of the
associated systems and personnel who perform can-
cer surveillance and cancer control. Cancer registries
serve several purposes.

A hospital-based cancer registry is a cancer data
base maintained in a health care facility to collect
pertinent information on all cancer patients who use
the services of that facility for diagnosis, staging,
and treatment. The service area for a hospital-based
registry varies from facility to facility, depending on
the types of specialty treatment it offers, the types of
third-party payors it attracts, and a number of other
factors. As a result, the number of potential patients in
the facility’s customer base can only be estimated. A
hospital-based cancer registry can calculate frequency
of cases and measure outcomes for the patients it
monitors. A hospital-based cancer registry cannot
calculate incidence rates because the denominator
population is not known.

A population-based cancer registry is a central-
ized cancer database covering a known population,
usually residents of a defined geographic area, such
as a county or state. Because the population denom-
inator can be counted or estimated by a census,
a population-based registry can calculate incidence
rates. Population-based registries are the principal
source of cancer surveillance data.

Population-based registries must gather informa-
tion on cancer patients from a variety of sources,
including registries in hospital and other healthcare
facilities, physician offices, pathology laboratories,
and facilities outside the defined geographic area
to which residents travel for cancer diagnosis and
treatment. Population-based registries can be of two
types: (1) those that report incidence only (the first
report of a new cancer) or (2) multipurpose reg-
istries that collect data on incidence and subsequent
outcomes.

A population-based registry is one type of central
registry. A central registry collects data from a variety
of sources but it may not be population-based. For
example, a provider of cancer registry software may
maintain a pooled database of all the cancer cases
submitted by its customers, or a hospital corporation
may pool the cases from all facilities it owns. In
each of these cases, it is not possible to determine an
appropriate denominator, so these central registries
are not population-based.

Registry Operations

The four main aspects of registry operations are:
case ascertainment, abstracting and coding, follow-
up or mortality follow-back, and quality control. Data
collection procedures will also be reviewed.

Case Ascertainment

Case ascertainment, also called casefinding, is the
process of identifying patients with malignant disease
who meet the criteria for inclusion in the registry.
Because cancer surveillance requires monitoring of
cancer incidence and mortality, case ascertainment
must identify all cases of the disease in a defined
population, regardless of where the cancer patient
encounters the healthcare system; including hospi-
tals, independent treatment centers, clinics, pathology
laboratories, physician offices, and nursing homes.
For practical purposes, the principal source of can-
cer information is the hospital health information or
medical record, which includes all contacts with the
hospital inpatient, outpatient and clinic. The medical
record contains reports of diagnostic and staging pro-
cedures, physical examination, operations and other
treatments. In addition, consultation reports from
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outside pathology departments and physicians are
usually retained as part of the medical record. Medi-
cal records are maintained as legal documents in most
facilities where patients are treated; the exception is
the pathology laboratory.

Most cancer patients come to a hospital at some
point in their disease process, usually for a biopsy
or treatment; thus, hospital medical records are an
important source of casefinding. In hospitals, med-
ical records are coded and indexed by disease and
procedure so that patient records can be retrieved for
analysis. The database containing these codes is one
of the principal sources of case ascertainment in a
healthcare facility. Specific codes for cancer diagno-
sis and treatment permit retrieval of records pertain-
ing to reportable neoplasms that must be included in
the registry.

A neoplasm is a “new growth” or tumor that
develops somewhere in the body. The term neoplasm
refers to either benign or malignant (having the poten-
tial to spread from the site of origin and ultimately
kill the patient) tumors. A reportable neoplasm is a
tumor that meets the inclusion criteria for a registry.
Reportable neoplasms are well defined in the Inter-
national Classification of Diseases for Oncology, a
coded nomenclature published by the World Health
Organization (WHO). This coding system defines
each type of tumor and its behavior: benign, uncertain
malignant potential, in situ, invasive, or metastatic.
The reportable neoplasms collected by all general-
purpose cancer registries are those that are malignant
(in situ or invasive). Metastatic tumors (malignancy
growing in a site at a distance from the organ in
which it started) are not reported individually; rather,
metastases are reported as progression of the tumor
at the site of origin. Occasionally a central registry
will require that another type of tumor be reported,
such as benign brain tumors, which cannot spread
but do have the potential to be lethal, and tumors of
uncertain malignant potential, such as carcinoids of
the appendix. On the other hand, a few cancers are
very common and are associated with such a good
prognosis that it is generally not necessary to moni-
tor their outcomes, such as basal cell and squamous
cell carcinomas of the skin and carcinoma in situ of
the cervix.

All the inclusion and exclusion guidelines for case
ascertainment are compiled into a reportable list,
which the data collector uses to identify cases to be
abstracted for the registry.

Abstracting and Coding

Abstracting is the process of deriving and record-
ing pertinent data about each reportable case. The
resulting document, the abstract, is an abridgment or
summary of what happened to the patient, and may be
in paper or electronic form. Data items include demo-
graphics of the patient, a description of the disease
(site of origin, type of malignancy), stage at diagno-
sis (documentation of how far the cancer had spread
when it was diagnosed), treatment, and the course
of the disease from the time it was diagnosed. Parts
of the abstract are encoded, such as site and type of
cancer, stage, and treatment. In addition to the stan-
dard data items, some registries collect information
on items of special interest, such as smoking history,
family history of cancer, or co-morbid conditions.

The abstracting process is exacting and highly
technical, requiring great attention to detail. The aim
of abstracting is to collect the data about each can-
cer case as accurately as possible (high correlation
between source document and abstract) and as consis-
tently as possible for similar cases (all cases follow-
ing the same rules). Abstracting rules and guidelines
have been developed to cover nearly every situa-
tion, but human interpretation of both the facts of
the case and the rules of abstracting can sometimes
cause problems, and there is always the danger of
incorrect data entry. As a result, a series of edits have
been developed and included in most cancer registry
database systems.

There are several types of edits, including range
checks and logic checks. The simplest edits are range
checks or allowable codes. Logic checks are a type
of inter-item edit where the program looks at two
or more data fields to ensure that they make sense
together. For example, an error message should be
generated when “sex” is male and “primary site” is
cervix. Inter-item edits can be quite complex, such as
looking at a morphologic diagnosis code as noninva-
sive, the corresponding stage at diagnosis coded as
in situ, the method of diagnostic confirmation coded
as histologic, and the sites of distant metastasis fields
that should be left blank. Computer edits such as these
are the first line of defense against inaccurate data.
Other editing mechanisms and preventive measures
such as training and standardization of procedures are
described in the following sections on data collection
and quality control.

An additional function of population-based central
registries is case consolidation or case matching.
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Because the registry receives reports from many
sources, it is necessary to identify multiple reports
on the same patient so that the case is not counted
more than once. Case consolidation involves not only
various computer algorithms but human review as
well. For example, Hospital A might send in a report
on Ric Smith with a birth date of 11-19-35 and a
diagnosis of sigmoid colon cancer, and Hospital B
might send in a report on Frederic Smith with a
birthdate of 11-18-35 or 11-19-36 and a diagnosis of
rectal cancer. The registry must decide whether these
reports are about the same patient, and, furthermore,
whether they are about the same cancer. Without
a case consolidation operation in the registry, the
numerator (newly diagnosed cases) of the incidence
rate may be inflated.

Data Collection Procedures

When data collection for the SEER Program began
in 1973, it was imperative that data be collected uni-
formly and systematically in all participating areas.
As a result, the SEER Program published a series
of manuals providing specific rules for case inclu-
sion and staging. The most recent of these is the
SEER Program Code Manual, 3rd Ed. [20]. Since
its inception, the SEER Program has been a leader
in documentation of data collection rules, training of
data collectors, and quality assurance of the data col-
lected. Many central registries in the US follow SEER
rules even though they are not funded by the National
Cancer Institute.

In addition to these coding guidelines developed
in the US, an international body established defi-
nitions of what was considered to be cancer. The
WHO has been publishing revisions of the Interna-
tional Classification of Diseases (ICD) on a decennial
basis since 1893. Originally developed to code mor-
tality, ICD has been modified to code all types of
diseases and conditions, and the current edition, ICD-
9-CM (Ninth Revision, Clinical Modification) is the
coding standard for health care facilities and reim-
bursement through federal Medicare programs [26].
The next edition, ICD-10, is in use in vital statis-
tics offices to code death certificates [30]. As the
WHO began development of the ninth revision in
the early 1970s, clinicians expressed a desire for a
more complete coding system for neoplasms, one
that would describe both where the tumor started
(topography) and what the tumor was (morphology).

ICD contained a coded list of anatomic sites for the
topography, and another coding system, the System-
atized Nomenclature of Pathology (SNOP), published
by the College of American Pathologists, contained
the codes for cell types or morphology [4]. SNOP
was a functional descendant of the Manual of Tumor
Nomenclature and Coding (MOTNAC), published in
1951 and revised in 1968 by the American Cancer
Society. The WHO used the topography code struc-
ture from ICD-9 and selected the code structure from
SNOP for the morphology codes. The first edition of
the International Classification of Diseases for Oncol-
ogy (ICD-O) was published in 1976 by the WHO
[28]. A second edition using the alphanumeric topog-
raphy codes from ICD-10 was published in 1990
and implemented in the US in 1992 [29]. A third
edition of ICD-O is scheduled for publication in
2000. The College of American Pathologists main-
tains the descendant of SNOP, called the Systematized
Nomenclature of Medicine (SNOMED) [5,6], now in
its fourth generation as SNOMED RT (Reference
Terminology) [24]. By international treaty, the neo-
plasm sections of SNOMED and ICD-O are identical,
although the topography codes differ between the two
coding systems.

US cancer organizations collected data for speci-
fic purposes; the American College of Surgeons for
quality management of patient care, and the SEER
Program for incidence, survival, and mortality statis-
tics. For many years there was no effort on the part
of these organizations to collaborate on the devel-
opment of data-collection rules. An example of the
resulting problems relates to the collection of data
pertaining to stage of disease at diagnosis. There are
currently four major staging systems in use in the US:
Tumor–Node–Metastasis (TNM), a product of the
International Union Against Cancer and the American
Joint Committee on Cancer [1]; SEER Extent of Dis-
ease (EOD) [19]; Summary Staging [16] and SEER
Historic Stage (local–regional–distant) [18]. These
staging systems are not comparable for a number of
cancers.

The American College of Surgeons Commission
on Cancer (COC) uses TNM as the standard for
coding stage of disease for hospitals participating in
its approvals program. The SEER Program uses EOD
as its data-collection standard and some versions
of TNM can be derived from it [19], and SEER
historic stage as its reporting standard which can
be derived from EOD [18]. The National Program
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of Cancer Registries (NPCR) uses Summary Stage
as its standard [16]. As a consequence, a registry
approved by the American College of Surgeons COC
in a state receiving NPCR funds and an area where
SEER data is collected must stage each case using
three different systems, each having their own codes,
timing rules, and inclusion/exclusion criteria. Efforts
are in progress to define a single data set for staging
and a single set of rules [10], but these efforts are
far from fruition, much less implementation, data
collection and analysis.

In the early 1980s, the SEER Program and the
American College of Surgeons COC began meeting
to resolve differences in data fields, such as field
lengths, definitions, and code structures. The 1988
publications of the COC’s Data Acquisition Manual
[7] and The SEER Program Code Manual, 2nd Ed.
[17] were in substantial agreement.

In 1987, the population-based central registries
in the US and Canada formed an “organization of
organizations” to share information on coding prac-
tices, registry operations, standards and other factors
that affect the accuracy and reliability of published
cancer information. One of the first activities of the
NAACCR was to establish the Uniform Data Stan-
dards Committee (UDSC). The UDSC formalized the
standardization efforts begun by SEER and the COC.
This committee, consisting of representatives from all
the standard-setting organizations, central registries,
data collectors, registry software vendors, and other
users of registry data, serves as a forum for iden-
tifying and resolving problems in data collection.
The committee compiled all the rules regarding data
collection and identified areas of discrepancy, pub-
lishing four volumes of standards in 1994: I. Data
Exchange Standards and Record Description; II. Data
Standards and Data Dictionary; III. Standards for
Completeness, Quality, Analysis and Management of
Data; and IV. Standard Data Edits.

Adherence to coding rules established by the
UDSC and the NAACCR in general is voluntary.
However, in the current practice of cancer registration
in the US and Canada, all revisions to existing data
fields, coding guidelines and data-collection rules, as
well as proposed new data fields, data record layouts,
and other enhancements, are discussed and voted
upon by the members of the UDSC. An implemen-
tation date for approved changes is widely published
so that software vendors can make changes in suffi-
cient time to meet the needs of cases diagnosed after

the implementation date, and the standard setters can
publish necessary revisions to their data-collection
manuals.

Outcome Measurements and Quality Control

As noted previously, a population-based cancer reg-
istry can be either incidence-only or multipurpose. If
the registry is incidence-only, then the registry does
no outcomes assessments. Outcomes measurement is
the current vernacular for describing the results of
treatment and the disease process in terms of sur-
vival rates and mortality. Outcomes processes include
follow-up and mortality follow-back, two specific
additional operations performed by multipurpose cen-
tral registries. Follow-up is long-term surveillance of
cancer patients. Once a patient is treated and rehabil-
itated, he or she resumes a relatively normal life, but
monitoring for disease recurrence or sequelae of treat-
ment must continue for the patient’s lifetime. Follow-
up is the process of contacting someone – either the
patient directly or the patient’s physician – to obtain
current information on the status of the cancer. Ideal
follow-up information includes a recent date of last
contact, vital status (alive or dead), and disease sta-
tus (free of disease, recurrent disease, a subsequent
primary cancer, additional treatment, etc.). Most reg-
istries prefer to contact the patient’s physician for
this information as it will be more accurate, technical,
and specific than that received from the patient. How-
ever, response rates are generally good when patients
are contacted directly. Either type of direct contact is
called active follow-up.

If a registry chooses not to contact the patient,
follow-up information less complete than the ideal
can be obtained by linking the cancer registry data-
base with other governmental databases, such as voter
registration, local tax rolls, and Department of Motor
Vehicles (DMV) drivers’ license renewal files. Little
can be determined from these linkages other than the
patient’s vital status, and that might only be at the last
point of contact with the agency. For example, DMV
would only have a record of the last time the patient
renewed his driver’s license (possibly several years
previously) or reported a change of address. This
indirect method of obtaining the vital status of the
patient is called passive follow-up. Another method
of obtaining follow-up is linkage to Social Security
Administration death lists and to the National Death
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Index; this linkage will update only deceased patients,
however.

Tracing a patient who no longer regularly visits
a physician for his disease is both an art and a
science. Confidentiality guidelines must be observed
when information is requested about any patient, but
the higher the percentage of complete follow-up, the
more reliable are estimates of survival rates. The
SEER standard for complete follow-up is to have
current information (within the past 15 months) on
at least 95% of all cases.

Occasionally a patient with cancer will be missed
in the case ascertainment process and not be
abstracted into the registry database. Missing a
case lowers the incidence rate for that particular
cancer; thus high standards of case completeness are
important for accurate and reliable cancer data. If a
previously unreported cancer patient dies, a cancer
diagnosis on the death certificate may be the first
and only report of the cancer case. It is good policy
for a registry to follow-back a Death Certificate
Only (DCO) case to see where it was missed in
the casefinding process. Follow-back is the process
of contacting physicians and facilities noted on the
death certificate to review their medical records
to determine any earlier diagnosis or treatment of
the cancer. In many instances the case was simply
missed, so the abstract is processed as a late report
and reporting-source procedures are investigated. In
other instances the death certificate diagnosis is the
only identification of the case. These cases are tagged
as DCO in the database, and usually very little
information is known about them. A registry monitors
its percentage of DCOs as part of its quality control
processes.

Quality control encompasses all registry activities
that monitor and resolve data problems. Quality con-
trol usually deals with facts and data items. On the
other hand, quality improvement or quality manage-
ment usually deals with procedures and processes.
Quality control is performed on all aspects of reg-
istry operations. Standards have been established for
case completeness, database completeness, accuracy
and reliability of data, and timely reporting of cases
to the registry. The purpose of quality control is to
determine whether these standards are being met.

Quality has been defined as “fitness for use”. Anal-
ysis of data which are not fit for use can result in
incorrect conclusions and inappropriate cancer con-
trol and cancer surveillance activities. The principal

components of data quality are accuracy, complete-
ness and timeliness [9].

Completeness has at least two aspects: complete-
ness of the database and completeness of the data in
each record. Completeness of the database means that
all cases in the population under investigation have
been included for the specified time period. With-
out a complete database, incidence rates and relative
frequencies may be inaccurate. Completeness of the
database is a function of thorough case ascertain-
ment, described above. Completeness is assessed by
several techniques, including re-casefinding studies,
projections of the number of cases reported in previ-
ous years, and the ratio of incidence to mortality for
all cancers combined and for selected cancers. The
SEER Program’s target rate for database complete-
ness is 98% complete reporting for a diagnosis year
at the time the data are first submitted (14 months
after the end of the diagnosis year).

Completeness of the data is a function of abstract-
ing. This means that all data have been reported and
there are no omissions, unnecessary blanks, or fields
coded as unknown that should have been completed.
It is possible to have a data field considered complete
because there are no blanks, but unusable because the
data are coded as unreportable or unknown. How-
ever, a data collector must find a balance between
tracking down every last data item for 100% com-
pleteness, and coding unknown if the data are not
easily obtained.

Timeliness is a corollary to completeness. It is
presumed that every case may eventually be found,
but the issue is how long to wait before using the
data. There is a tradeoff between having potentially
incomplete data available for use quickly, and having
complete data available after so long a wait that the
data are no longer current or useful. To meet the
needs of most (if not all) data users, it is necessary
to set a cut-off date and assess completeness at that
time. Thus, timeliness is determined by setting a final
date for data submission, and ensuring that all records
have been submitted by that date.

Accuracy is the quality measure that establishes
the reputation for a registry. Accuracy is necessary
in all parts of registry operations. Accurate incidence
rates neither overcount nor undercount the number of
cases in the population. Accurate abstracting ensures
that results are appropriate for research. Accurate
follow-up permits survival rates and other outcomes
to be measured correctly.
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The SEER Program performs quality control stud-
ies annually that are designed to provide quantitative
assessments of accuracy and completeness of the data
collected by the various participating registries. Some
findings from these studies have been published [31].
In the near future, findings from all quality control
studies designed to provide estimates of complete-
ness and accuracy both at the registry level and for all
registries combined will be available on the Internet
at http://www-seer.ims.nci.nih.gov/

Current Cancer Surveillance Activities

The discussion here will focus on the activities of
the NCI, since it has been in the forefront of can-
cer surveillance activities for more than 60 years.
As previously mentioned, other organizations are
involved in cancer surveillance; however, an attempt
will not be made to associate specific activities
with specific organizations. At this time it is not
clear how cancer surveillance responsibilities in the
US will ultimately be divided, as that is currently
being negotiated by the parties involved. However,
it is reasonable to assume that the NCI will con-
tinue to play a major role in all aspects of cancer
surveillance.

The fundamental tool of cancer surveillance is the
population-based cancer registry. The establishment
of the SEER Program in 1972 was the beginning
of a new era in cancer surveillance in the US.
Beginning in 1973, the continuous registration of all
cancers diagnosed in residents of geographic areas
initially covered by SEER allowed the calculation of
incidence rates for calendar years beginning in 1973.
Follow-up to determine vital status for all cancer
patients in SEER areas, including the coding of cause
of death, allowed the calculation of survival rates as
the SEER database matured.

A question frequently raised is: How representa-
tive are the SEER areas of the total US population? To
address this question, it is necessary to define “repre-
sentativeness” in this context. It is certainly desirable
to be able to derive cancer rates from SEER areas that
approximate those for the total US by age, sex, and
racial/ethnic group. But it is probably more important
to be able to establish that the trends in cancer rates
in SEER areas approximate those for the total US.
SEER rates have been assumed to be reasonably rep-
resentative of those from the total US. However, in

the future, cancer rates in SEER areas will be mod-
eled using ecologic data available from the census in
order to refine national estimates.

Cancer mortality data for the total US have been
used to examine the representativeness of trends in
SEER areas versus those for the total US. This was
done by systemically comparing trends in cancer
mortality for selected cancer sites in SEER areas
with those for the total US. It was concluded that,
with few exceptions, mortality trends for selected
cancers in SEER areas were representative of those
for the total US [11]. Therefore, it seems reason-
able to assume that trends in SEER incidence rates
approximate those for the total US. Further informa-
tion on the representativeness of SEER areas is given
in Figure 3, which compares selected ecologic data
from the 1990 census in SEER areas with that for
the total US.

A variety of reports are available on cancer rates
in SEER areas, the most recent of which includes data
for the time period 1973–1996 [21]. There are also
reports on cancer incidence rates published by the
NAACCR which include data from SEER registries
plus other US and Canadian registries that have
been found to have data of high quality. The most
recent NAACCR publication is for the time period
1992–1996 [3].

The scope of cancer surveillance has broad-
ened considerably since the early attempts at can-
cer registration. Current cancer surveillance activities
include: developing and reporting estimates of cancer
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incidence, prevalence, and mortality on a periodic
basis for the total US; monitoring annual cancer inci-
dence trends to identify unusual changes in specific
forms of cancer occurring in population subgroups
defined by geographic, demographic, and social char-
acteristics and providing insight into their etiology;
and providing continuing information on changes
over time in the extent of disease at diagnosis, trends
in therapy, and associated changes in patient survival.
Of particular importance is the inclusion of sufficient
numbers of various racial/ethnic populations, and
other populations defined by a variety of measures
including access to medical care, urban versus rural,
and measures of poverty and socioeconomic status.
Such research can benefit cancer prevention and con-
trol activities, and identify areas where improvements
in treatment may be needed. Other uses of inci-
dence, prevalence and survival data include identify-
ing cancer sites showing unusual rates of increase or
decrease that would warrant special etiologic investi-
gation (e.g. non-Hodgkin’s lymphoma increases asso-
ciated with the acquired immune deficiency syndrome
(AIDS) epidemic); helping health policy-makers set
priorities for spending on research and for allocat-
ing resources among etiologic, prevention, diagnosis,
treatment and control areas; and informing the gen-
eral public and Congress on the extent and trends in
the cancer burden. These data also have direct clin-
ical relevance for advising individual patients. For
example, age- and race-specific SEER data were used
(together with other data on specific risk factors) to
help develop a model for projecting the chance that
a woman with particular risk factors would develop
breast cancer in a given time period [8].

Other important research components to can-
cer surveillance include promoting studies designed
to identify cancer risk factors amenable to can-
cer control interventions. These studies may per-
tain to the environment, occupation, socioeconomic
status, tobacco, diet, screening practices, patterns
of care, and determinants of the length and qual-
ity of patient survival. Other areas of investiga-
tion include planning, conducting, and supporting
research related to evaluating patterns and trends
in cancer rates and cancer-related risk factors. Also
studied are health behaviors, cost of care, patient
outcomes, health services as part of an attempt
to determine the influence of such factors at the
individual, societal, and systems level on patterns

and trends in the various measures of cancer bur-
den. Also included in this activity are identifying,
improving and developing databases and methods
for cancer-related surveillance research; maintain-
ing, updating, and disseminating these databases and
methods; and promoting and facilitating their use
among investigators within the extramural research
community and federal agencies. No attempt will
be made to document all of these activities; how-
ever, information about them can be obtained
from the following Internet sites: http://www-
dccps.ims.nci.nih.gov/arp/ and http://
www-dccps.ims.nci.nih.gov/srab/
surveillance/survdesc.html

The SEER contracts are primarily with cancer
research organizations affiliated with universities.
Thus, they provide an infrastructure for conducting
analytic epidemiologic studies on a variety of emerg-
ing issues in cancer prevention and control which can
be used by the NCI. The ability to do special studies
was established in the early 1990s. The workscopes
of SEER contracts were modified to include the
capabilities of interviewing patients, conducting sur-
veys of the covered populations, obtaining biological
materials from patients and survey respondents, con-
ducting methodologic research which utilizes cancer
registry data, and establishing tissue banks. Standard
competitive procurement procedures within the SEER
framework have been used to plan and fund stud-
ies on a wide range of topics that have included
identification of risk factors, quality of life, statis-
tical modeling, etiology of trends in cancer rates,
and operational issues pertaining to data collection
and reporting. No attempt will be made to document
the findings from these studies here, but they have
resulted in a large number of peer-reviewed publi-
cations in scientific journals on a variety of issues
pertaining to etiology, cancer control, quality of life,
and registry operations [13].

There have also been significant efforts to involve
the general research community in cancer surveil-
lance activities. This has been done by distributing
to cancer researchers public use files that include
SEER data. The files are made available on CD-
ROM and include more than two million individual
records of cancers registered in SEER areas from
1973 to the most recent year for which complete
data are available, population data, and documenta-
tion of all files. Also included is SEER∗Stat which
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is a free Windows-based computer program devel-
oped by the SEER Program to calculate incidence
rates, frequencies, trends, and survival rates. Another
program, called SEER∗Prep, allows registries out-
side of the SEER Program to put their data into
SEER∗Stat, greatly facilitating analysis of their data.
Currently, about 1500 SEER public use files are
distributed annually, and a number of non-SEER
registries are using the SEER∗Stat software via
SEER∗Prep. More information about this software
can be obtained on the Internet at: http://www-
seer.ims.nci.nih.gov/scientific
systems/SEERStat/

Recent developments in statistical methodology
pertaining to the analysis of trends in age-adjusted
rates deserve mention, since the analysis of trends is a

fundamental activity of cancer surveillance. The first
is the use of join point regression using log linear
or linear models to describe trends in age-adjusted
rates [14]. Models of this type assess the statistical
significance of recent changes in trends as well as
describe the trends over the period for which they
are fit. Figure 4 presents a fit of a log linear join
point regression model to the age-adjusted (1970 US
Standard) mortality rates for all cancers combined
for the total US for the total population and by sex.
Annual percent changes and join points are given to
describe the trends.

A second methodology of interest partitions a
trend based on fitting linear regression models [12].
For example, it is possible to derive the relative
contributions of various individual cancers or groups
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Total
Decreasing trend: −1.22/100000/year

Breast (females) 21.0%

Lung/Bronchus 18.9%

Prostate 13.2%
Oral cavity 5.4%

Other 17.2%

Cervix 2.2%

Colon/Rectum 22.1%
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Figure 5 Partition of the cancer mortality trend from 1991 to 1996 based on fits of a linear regression model to the
age-adjusted rates (1970 US Standard) for the total US population and by sex

of cancers to an increasing or decreasing trend
in the age-adjusted rate for all cancers combined.
This type of analysis provides useful information
about the impact of targeted interventions on the
overall trend in age-adjusted rates for a group of
diseases of interest. Figure 5 presents a partition of
the most recent cancer mortality decrease for the total
population and by sex based on rates adjusted to the
1970 US Standard. The contributions of cancers for
which interventions have been introduced into the
general population are given. Thus, it is possible to
quantify the contributions of cancers of the lung, oral
cavity, colon and rectum, female breast, cervix, and
prostate to the decreasing trend.

The Future of Cancer Surveillance

Medical practices have led to a new role for cancer
surveillance. In theory, prevention, screening, and
treatment interventions are tested for efficacy by ran-
domized controlled trials. If such trials demonstrate

that an intervention is efficacious, then it is intro-
duced into the general population. An important role
for cancer surveillance is to make an assessment
of the impact of the intervention in the population
by analyzing trends in incidence, survival, or mor-
tality rates as appropriate. This paradigm has been
violated in some cases in the past, particularly in
the development of new screening tests where new
tests have been introduced into the general population
before establishing their efficacy in regard to reducing
mortality. A prime example is the Prostate Specific
Antigen (PSA) test for detecting prostate cancer [15].
The use of Spiral CT for diagnosing lung cancer may
be a second example [23]. This practice has resulted
in the use of surveillance data to not only establish
some measure of the impact of the introduction of
such a new test on population cancer rates, but to
also make some assessment of its efficacy. If such
practices continue, it will likely result in the estab-
lishment of more sophisticated surveillance systems
directed toward accommodating this expanded role.
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Cancer surveillance activities at the NCI have been
reviewed by a committee of researchers from within
and outside the Institute [22]. Recommendations for
future directions have been made in a number of
areas. The first priority is to expand the scope of
surveillance research through additional data collec-
tion and methods development. Specific activities
will include collection of data on patterns of care,
health status, and quality of life, as well as cohort
studies of newly diagnosed cancer patients for the
purpose of documenting levels and trends in these
parameters; collection of risk factor and screening
data in defined populations, particularly those cov-
ered by high quality cancer registration; development
of research methods to measure the dimensions of
the cancer burden and factors affecting the burden,
as well as methods to explain patterns and trends
in cancer rates; and exploration of the feasibility
and utility of employing geographic information sys-
tems for geocoding surveillance data and reporting
geographic relationships among screening measures,
risk factors (including environmental exposures), and
improved cancer outcomes.

A second area of focus is to expand the scope
of surveillance to improve the representativeness
of cancer burden estimates. Specific activities will
include expanding SEER population coverage to
improve representation of ethnic minority and under-
served populations including rural African Ameri-
cans, Hispanics from Caribbean countries, American
Indians, residents of Appalachia and other rural areas,
especially those of lower socioeconomic classes;
developing methods for improving national estimates
of the cancer burden; and working with other orga-
nizations involved in cancer surveillance to develop
a national cancer surveillance plan.

A third area to be addressed is the production
and dissemination of a national report card on the
cancer burden. Specific activities will include the
collection, analysis, and dissemination of data on
important cancer outcomes and trends in risk factors,
screening, and treatment to be incorporated into a
national cancer report card; and the development of
improved methods for disseminating information via
the report card and other NCI communications.

The fourth area to be addressed is the support of
molecular and genetics research for surveillance. Spe-
cific activities will include the development of valid
tools to assess family history of cancer, which will
provide for the collection of data on the population

prevalence of familial cancers; and the investigation
of the feasibility of expanding population-based
molecular and genetic biomarker studies within the
Cancer Surveillance Research Program.

The final area to receive attention is the develop-
ment of a training strategy for individuals interested
in cancer surveillance research. Specifically, training
pertaining to the needs of surveillance sciences will
be developed along with a plan to incorporate surveil-
lance training as a priority in mechanisms for training
cancer prevention and control scientists. Much more
detail is provided in the Cancer Surveillance Research
Implementation Plan [22] which can be obtained at
http://camp.nci.nih.gov/dccps/

Thus, in addition to their basic goals of supplying
timely information on trends in site-specific cancer
incidence, prevalence, and survival, cancer surveil-
lance programs are evolving to provide improved
quantitative benchmarks to document the impact of
research advances in cancer prevention, detection,
and treatment, and to identify problems that can
be addressed through cancer prevention and control
efforts.
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Candidate Gene

A candidate gene is a gene that is guessed to under-
lie a disease on the basis of a metabolic pathway
thought to be involved in the pathogenesis of the dis-
ease. Each protein in such a pathway must have one
or more genes involved in its synthesis, and these
are thus candidates for the gene(s) underlying the
disease. Thus the “candidate gene approach” to find-
ing a disease gene presupposes that we have prior
information that the disease under study is proba-
bly caused by a particular gene, which we try to
confirm by studying allelic variation at a genetic
marker locus. If the marker locus is in fact the
disease locus, then a disease–marker association

can be sought to determine the particular allele(s)
involved. Similarly, there may be a disease–marker
association if the candidate marker locus is close
to the disease locus and the two sets of alleles are
in linkage disequilibrium. However, it is possible
for the polymorphisms of the candidate locus stud-
ied to be in gametic equilibrium with the disease
locus, even if the two loci are in almost the same
position, and in this case linkage analysis is neces-
sary to detect the (intrafamilial) association between
the two loci. Finding an association or tight link-
age between a disease and a candidate marker locus
supports, but does not prove, the belief that the can-
didate gene does in fact cause the disease being
studied.

ROBERT C. ELSTON



Canonical Correlation

Multivariate observations are characterized by var-
ious characteristics of their marginal distributions
(such as their location, dispersion, and functional
forms), as well as by their stochastic interrelations.
These associations can be assessed only from their
joint distributions, often in terms of suitable param-
eters associated with them. In the same way that
the location or scale measures of marginal distribu-
tions may not necessarily correspond to some alge-
braic constants appearing in their functional forms,
measures of association also may not correspond to
a finite dimensional vector of algebraic constants
appearing in the joint distribution. The situation with
the multivariate normal distribution is, of course,
entirely different because here all the measures of
location, dispersion, skewness, kurtosis, and (total,
partial, multiple or subset) association of all the
coordinate variables can be formulated explicitly in
terms of the mean vector and dispersion matrix
(see Covariance Matrix), which are the only natural
parameters appearing in the functional forms of the
distributions. To appreciate this picture thoroughly,
consider a (finite) mixture of several multivariate nor-
mal distributions with possibly different mean vectors
and/or dispersion matrices, where the nonnegative
mixing coefficients add up to one (yielding a con-
vex combination). The mixed–normal distribution in
this setup is characterized by means of the mixing
coefficients as well as the component mean vectors
and dispersion matrices. Therefore the measures of
location, dispersion, as well as association are all
functions of a finite set of parameters, though some
of the basic linearity properties of the conditional
or joint distributions may no longer be tenable. A
more complex situation arises with general nonnor-
mal distributions even if we confine ourselves to the
so-called elliptically symmetric distributions (such as
the multivariate t distribution). Thus, it seems quite
natural to introduce such measures in the most sim-
ple and classical cases of multinormal distributions,
interpret them properly, and then proceed to more
complex situations and examine how such interpreta-
tions are affected by these underlying complexities.
This picture is more complex in the case of associa-
tion measures than in location or scale measures.

The (Karl) Pearsonian total or product-moment
correlation coefficient in the bivariate case provides

the genesis of canonical correlations in the multivari-
ate case, as well as its generalizations for more com-
plex models. If (X1, X2)

′ is a bivariate random vector
(rv) with a bivariate cumulative distribution function
(cdf) F(x, y), (x, y) ∈ �2, such that F admits finite
moments of order one and two, then we may write
the correlation coefficient ρ as

ρ = cov(X1, X2)

[var(X1)var(X2)]1/2
,

and this definition does not entail any particular
form of the cdf F . In this setup, X1 and X2 are
uncorrelated when ρ = 0, and they are positively or
negatively correlated/associated when ρ is positive
or negative, respectively. Note, furthermore, that in a
general setup, uncorrelation may not imply indepen-
dence, although the converse is always true. In the
case of a normal F , however, uncorrelation and inde-
pendence are equivalent. Furthermore, by the use of
the classical Cauchy–Schwartz moment inequality,
it follows that −1 ≤ ρ ≤ 1, where the upper bound
is attained only when X1 and X2 are strictly lin-
early related with a positive slope (except perhaps
on a set of null probability measures), and a simi-
lar case with a negative slope leads to the attainment
of the lower bound. The regression function of X2

on X1 is m2(x) = E[X2|X1 = x], x ∈ �, and X2 is
said to have a linear regression on X1 if m2(x) is
a linear function of x for all x (except on a set of
null measures). Similar notations and definitions hold
for m1(x) = E[X1|X2 = x]. If both these regression
functions are linear with respective slopes β12 and
β21, then it is easy to verify that

ρ2 = β12 × β21.

It is also easy to verify that E(X2 − EX2)
2 = E[X2 −

m2(X1)]2 + E[m2(X1) − EX2]2, so that for the linear
regression case, we have

ρ2 = E[m2(X1) − EX2]2

E(X2 − EX2)2
.

Thus, ρ2 is interpreted as the component of variation
of X2, which can be ascribed due to the regression
on X1. This component is null only when ρ = 0. If
the underlying distribution is bivariate normal, then
the conditional distribution of X2, given X1, is also
normal with the mean linearly dependent on X1 and
(conditional) variance equal to [var(X2)](1 − ρ2),
which is independent of X1. A similar property holds
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for the conditional distribution of X1, given X2.
These are referred to as the linearity of regression
and homoscedasticity (see Scedasticity) properties of
bivariate normal distributions, and a similar charac-
terization holds in the general multivariate normal
case as well. In this homoscedastic case, we have

1 − ρ2 = E[X2 − m2(X1)]2

E(X2 − EX2)2
,

although such a conditional variance component
interpretation may not generally hold in the absence
of the homoscedasticity condition.

Let us now proceed to the case of two sub-
sets of variates, one containing a single element X1,
and the other one having p(≥ 1) elements X2 =
(X21, . . . , X2p)′. Suppose that we want a single mea-
sure for the association between X1 and X2. To moti-
vate this measure, suppose that X

′ = (X1, X
′
2) has

a multivariate normal distribution. Then, the condi-
tional distribution of X1, given X2, is also univariate
normal with the mean linear in X2 and a constant
(conditional) variance γ 2 (independent of X2). If we
denote the variance of the marginal distribution of X1

by σ11, then we can write

γ 2 = σ11(1 − R2),

where R2 is nonnegative and is bounded from above
by 1. It is equal to zero only when X1 and X2 are
stochastically independent, while it attains the upper
bound 1 when γ = 0, i.e. X1 is perfectly linearly
dependent on X2 (except possibly on a set of null
measures). We can partition σ11 into two orthogonal
components R2σ11 and γ 2, representing respectively
the variation due to the regression of X1 on X2, and
the residual unexplained by this regression. This R2

is a natural extension of ρ2 to the pseudo-multivariate
situation, and is known as the squared multiple cor-
relation coefficient of X1 on X2. There is another
interpretation of this multiple correlation coefficient
that is particularly appealing to the development of
our study of canonical correlations. Consider an arbi-
trary linear combination of the second set, namely,
a

′
X2, where a ∈ �p . Let σ1 denote the covariance

vector between X1 and X2, and �22 be the disper-
sion matrix of X2; then the Pearsonian correlation
coefficient of X1 and a

′
X2 is given by

ρ(a) = a
′
σ1

[σ11(a
′
�22a)]1/2

.

Consider the problem of choosing a in such a way
that ρ(a) is a maximum. We may normalize a by
setting a

′
�22a = 1. Thus, we need to maximize a

′
σ1

with respect to a, subject to the above normalizing
constraint. The desired solution is given by

a0 ∝ �−1
22 σ1,

and as a result we obtain

ρ2(a0) = σ ′
1�

−1
22 σ1

σ11
,

which can be shown to be equal to the R2 introduced
earlier. In this setup, a0

′X2 is the best fit to X1, in the
sense that the mean square of the residuals from this
fit is a minimum among all possible choices of linear
combinations of X2. The variance component due to
regression for this fit yields the multiple correlation
between X1 and X2. Although in the above discus-
sion we were primarily motivated by the linearity of
regression and homoscedasticity characterizations of
multinormal distributions, the latter interpretation of
the multiple correlation does not crucially depend on
the multinormality assumption. The canonical corre-
lations, introduced by Hotelling [30, 31], relate to the
case of two or more subsets of variates, each having
possibly more than one variate, and hence contain the
total and multiple correlation measures as particular
cases.

Foundation of Canonical Correlations

Hotelling’s original idea was to extend the Pearsonian
product–moment correlation for studying stochas-
tic dependence or association between two groups
of variables. In multivariate analysis, often we may
have two (or more) sets each containing multiple
variates. Their dependence picture, even when com-
pletely determined by second-order moments, rests
on a complex of high dimensional covariance matri-
ces. In many studies, particularly exploratory, there
may be too many variates within each subset, and this
may smudge the overall picture to a greater extent. To
reduce the dimensionality of the data set by eliminat-
ing redundant or less important variates, Hotelling
[29], led by Pearson’s [46] idea of fitting planes
by orthogonal least squares, introduced two basic
concepts in multivariate analysis for analyzing cor-
relation structures: (i) principal component analysis
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and (ii) canonical correlation analysis (CCA). Though
the principal component analysis relates to an internal
analysis, i.e. within-group orthogonal decomposition
for the study of dispersion, and the canonical cor-
relations to an external analysis, i.e. between-group
interrelations or correlations, conceptually they are
interrelated, and hence we motivate the canonical
correlation analysis through the concepts of principal
component analysis as well.

Suppose that X is a stochastic p(≥ 1) vector hav-
ing mean vector θ and dispersion matrix �. Note
that in this setup there are p unknown elements
in the mean vector and p(p + 1)/2 unknown ele-
ments in the dispersion matrix, so that there are in all
p(p + 3)/2 unknown parameters in the model (even
if multinormality is imposed on the distribution of X).
If the underlying distribution is not multinormal, then
we may have an even larger parameter space. The
emphasis in both the cases of principal component
and canonical correlation analysis is on linear com-
binations of the variables that capture essentially the
entire statistical information and at the same time pre-
serve some interpretable properties. The justification
for such linear transformations of course stems from
multivariate normal distributions which characteris-
tically possess some equivariance properties under
such transformations. Nevertheless, the results to fol-
low may still be interpreted without the underlying
multinormality assumption. The principal component
analysis aims to reduce the dimension of a given dis-
tribution by linear orthogonal transformations which
may summarize the dispersion picture without losing
any significant information. Let b be a p-vector of
unit length in L2 norm (i.e. b

′
b = 1), and consider the

linear compound b
′
X which has mean b

′
µ and vari-

ance b
′
�b. We choose the particular vector b0 which

leads to the largest possible variance. For this, we
maximize ψ(b) = b

′
�b − λ(b

′
b − 1) with respect to

b, where λ is a Lagrangian multiplier. This leads to
the following estimating equation:

(� − λI)b = 0, (1)

so that λ satisfies the equation |� − λI| = 0 (see
Eigenvalue). If we denote the solutions (in λ) of
(1) by λ1 ≥ λ2 ≥ . . . ≥ λp(≥ 0) and identify them as
the ordered characteristic roots of �, then we may
simultaneously introduce the characteristic vectors
bj , j = 1, . . . , p, by setting

�bj = λj bj , j = 1, . . . , p

(see Eigenvector). Then b
′
1X is termed the first

principal component and its variance is equal to λ1.
In general, for j = 1, . . . , p, b

′
j X is the j th principal

component with variance λj , which is the highest
possible subject to the constraint(s) that the j th com-
ponent is uncorrelated with all the previous j − 1
components. If � is singular, of rank q < p, then
λj = 0, for all j > q, so that q orthogonal com-
ponents describe the structure completely. In many
anthropometric, biometric and psychometric prob-
lems, there may be a large number of variables either
having multi-collinearity or almost degeneracy. In
such a case the prominent principal components con-
vey a clear picture of the relevant compounds, obtain-
able by orthogonal transformations, that capture the
essential statistical information. Of particular statisti-
cal importance are the so-called biplots which relate
only to the first two principal components and sacri-
fice the others (see Graphical Displays). In that way
a high-dimensional model is reduced virtually to a
two-dimensional one, so that a statistical analysis can
be performed with greater clarity.

Let us look into the canonical correlation problem
in the same vein. We partition the p-vector X into
two subvectors X(1) and X(2) of dimension p1 and
p2(p = p1 + p2) reflecting two sets of variables.
Adopt a similar partition for µ, and the dispersion
matrix � is then partitioned into p1 and p2 rows
and columns, i.e. � = ((�ij )){i,j=1,2}. Although it is
not necessary, for simplicity, we assume that both
�11 and �22 are nonsingular, while the rank of
�12 = m[≤ min(p1, p2)]. If m = 0 (i.e. �12 is a null
matrix), then the canonical correlations to be derived
will be all equal to 0, and hence we assume that
m ≥ 1. Whenever m is small compared with p1 and
p2, we shall see that the canonical correlations lead
to substantial data reduction with respect to such
between-group dependence studies. If p1 and p2 are
both equal to 1, then their product moment correlation
explains their interrelations. If either p1 or p2 is equal
to 1, while the other is larger, then we can appeal
to the multiple correlation measure to study their
interdependence. If both p1 and p2 are greater than 1,
then it may be more practical to consider only a few
linear combinations from each set, chosen in such a
way that they contain as much dependence structure
as possible. This would then amount to a reduction
in the dataset (dimension) for the study of between-
group dependence structures with only insignificant
loss of information. With this motivation, within each
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subset we consider linear compounds chosen in such
a way that they have unit variance, and then we desire
to maximize their correlation. Thus, let a and b be
two (p1 and p2) vectors such that

a
′
�11a = 1 and b

′
�22b = 1.

Subject to these constraints, a
′
�12b is a maximum.

Using Lagrangian multipliers λ and ν, we consider
the function

ψ(a, b) = a
′
�12b −

(
λ

2

)
(a

′
�11a − 1)

−
(ν

2

)
(b

′
�22b − 1).

Taking the gradients with respect to a and b, and
equating them to zero, we arrive at the solution that
λ = ν with

−λ�11a + �12b = 0,

�21a − λ�22b = 0,

so that the solution λ2
1 is the largest characteristic root

of either of the matrices

�−1
11 �12�

−1
22 �21, �−1

22 �21�
−1
11 �12 (2)

or their other cyclic permutations. If we choose the
characteristic vectors a1 and b1 corresponding to
the largest characteristic root λ1, then we obtain
that the Pearsonian product–moment correlation of
U1 = a

′
1X(1) and V1 = b

′
1X(2) is equal to λ1, which

is the largest possible correlation between a linear
compound of X(1) and another one of X(2). That
is why it is termed the first canonical correlation
between X(1) and X(2). We can consider then a second
linear combination of X(1) and a second one of
X(2), say U2 and V2, such that among all linear
combinations uncorrelated with U1 and V1, λ2, the
correlation between U2 and V2, is the maximum.
A little algebra shows that λ2

2 is the second largest
characteristic root of the same matrix in (2) for
which λ2

1 is the largest root, and the corresponding
characteristic vectors are the coefficient vectors for
U2 and V2. This process can continue until we have
m of the characteristic roots λ2

1 ≥ λ2
2 ≥ . . . ≥ λ2

m > 0,
and the corresponding sets of canonical variates Uj

and Vj , j = 1, . . . , m. Note that as the rank of �12 =
m, λ2

j = 0 for every j > m. Also note that like the
product–moment, partial and multiple correlations,

the canonical correlations are all scale-invariant with
respect to each of the p coordinate variates.

At this stage we set, without loss of generality,
m ≤ p1 ≤ p2, and denote by � the diagonal
matrix of order p1 × p1 with the leading elements
λ1, . . . , λm, 0, . . . , 0. Then the process of finding
the canonical correlations leads to two sets of
canonical combinations U = (U1, . . . , Up1)

′ and V =
(V1, . . . , Vp2)

′, such that the dispersion matrix of
the p-vector with the two components U and V is
given by 


I � 0

� I 0

0 0 I



 , (3)

where the last pivotal I is of order (p2 − p1) × (p2 −
p1), and hence is a null matrix when p2 = p1, and �

has (p1 − m) null diagonal elements when p1 ≥ m.
This provides a clearly interpretable picture of CCA.

This latter representation of the canonical variates
and their (canonical) correlations can also be inter-
preted in the light of affine equivalence studied in
detail in [21, Chapter 10]. Recall that an affine trans-
formation on a vector rv X is defined by Y = AX + a,
where A is nonsingular and a is some vector. The
Hotelling T 2 and other likelihood-based multivari-
ate analysis of variance tests are affine invariant in
the sense that affine transformations on the observable
random vectors leave the statistic invariant. Eaton
interpreted that if Y = AX + a with probability one,
where A is nonsingular, then Y and X are affinely
equivalent. Consider now measures of affine depen-
dence between the two subvectors X(1) and X(2)

which are functions of the covariance matrix � and
are invariant with respect to affine transformations
on X. For example, if Y(j) is affinely equivalent to
X(j), for j = 1, 2, then the measure of affine depen-
dence between Y(1) and Y(2) should be the same
as between X(1) and X(2). Since the elements of
the covariance matrix � are translation invariant,
one may as well take the shift vector a = 0. Then,
following Eaton [21], we may verify that the charac-
teristic roots of (2) constitute the maximal invariant
function under the compound group of affine trans-
formations on the individual subset vectors. Since the
canonical correlations are the squares of these char-
acteristic roots, it follows that any invariant measure
of affine dependence has to be a function of these
canonical correlations. The canonical vectors U and
V defined before (3) are affinely equivalent to X(1)
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and X(2), respectively, and (3) reveals their affine
dependence through the diagonal matrix �. Follow-
ing Dempster [16] and Eaton [21], we note that the
canonical correlations also have a natural geometri-
cal interpretation as cosines of the angles between
appropriate vector spaces. With biostatistical per-
spective in mind, we refrain from such abstractions.
However, we refer to the two texts by Morrison [42]
and Mardia et al. [39] for nice applications-oriented
illustrations of canonical correlations and related top-
ics. Below we consider some extension of canonical
correlations to the case of more than two subsets of
variates, as well as to some restricted type of depen-
dence patterns.

Relationships with Other Multivariate
Measures

One of the reasons for the broad appeal of canoni-
cal correlation analysis in practical applications is its
ability to subsume many other multivariate measures,
concepts, and methods. We have already commented
on the relevance of the principal component analy-
sis. Besides this, CCA brings together techniques like
multiple correlation and regression analysis, canoni-
cal discriminant analysis, correspondence analysis,
analysis of contingency tables, and multivariate
analysis of variance and covariance. Some of these
items are covered in greater detail in other articles,
and hence we omit their definitions here. Linear
discriminant analysis has also been covered as a
special case under canonical correlation analysis by
Takeuchi et al. [59]. In this particular case the canon-
ical variables of one of the sets turn out to be the
discriminators, while those of the other set provide
the optimal scores to be assigned to the different pop-
ulations. Factor analysis, another important area in
multivariate analysis with special emphasis on psy-
chometry and mental testing, also has affinity to
canonical correlation analysis. To illustrate this rela-
tionship we consider the following problem, which
uses canonical correlation analysis in a spirit some-
what similar to that in factor analysis. Suppose that
X(1) and X(2) are linearly dependent on a number
m, of common, uncorrelated, unobservable factors
F = (F1, . . . , Fm)′ in the following way:

X(j) = Aj F + Gj , j = 1, 2,

where G1 and G2 are the specific factors, and we
assume that F, G1, and G2 are all uncorrelated
(orthogonal). The goal is to determine the minimum
m, the effective number of common factors for which
such a representation is possible. It is known [49] that
m is equal to the rank of �12, and hence canonical
correlation analysis can be adapted to appraise this
situation. As we consider the sample counterparts of
the canonical correlations, we will observe that there
are certain difficulties in attaching any reliability to
the rank of the sample counterpart of �12, and the
canonical correlation analysis has some advantages
in this respect.

Let us examine the role of CCA in a related pre-
diction problem, which is essentially allied to the
multivariate multiple regression problem. We have
the same partitioning, X(1) and X(2), as before, and
in the same way we find the partitioning µ(1) and
µ(2) and the �ij , i, j = 1, 2, of the mean vector and
covariance matrix, respectively. In a multivariate nor-
mal model the regression of X(1) on X(2) is given by

E[X(1)|X(2)] = µ(1) + �12�
−1
22 [X(2) − µ(2)],

and the dispersion matrix of the residual vector X(1) −
E[X(1)|X(2)] is given by

�11.2 = �11 − �12�
−1
22 �21.

It is easy to verify that the characteristic roots of
�−1

11 �11.2 are nothing but the complements of the
squared canonical correlations, namely 1 − λ2

j , j =
1, . . . , p1. Without this multinormality condition, one
may still fit a linear regression of X(1) on a linear
compound a + BX(2), and verify that the best fit, in
the sense of having the minimum characteristic roots
of the standardized dispersion matrix of the residual
vector, corresponds to a = µ(1) − �12�

−1
22 µ(2) and

B = �12�
−1
22 . Therefore, either way the canonical

correlations tell us about the dispersion of the pre-
dicting vector, as well as the errors due to deviation
from the predictor. Thus, we may use the canonical
variates for the set X(2) and come up with predictions
under dimension reduction. We refer to Brillinger [8]
for some allied studies. Note that in this setup the
roles of the two sets are not the same, although in
CCA we have a symmetric formulation.

The above development also leads us to two
important concepts in multivariate analysis, namely
the canonical loadings and redundancy coefficient.
Canonical loadings can be introduced through the
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canonical weights, which in optimum canonical cor-
relations express the importance of a variable from
one set with regard to the other set in obtaining
a maximum correlation between the two sets. In
a sense these canonical weights are related to the
canonical variables introduced earlier [see (2) and the
discussion following it]; we denoted these canonical
variates for the two sets by U and V, respectively. We
write U = A1X(1) and V = A2X(2). To interpret CCA
appropriately, one needs to look into these canoni-
cal coefficients along with the canonical loadings as
defined below. A canonical loading, or structure, is
the product–moment correlation between an original
variable and its respective canonical variable, so that
it reflects the degree to which a variable is represented
by its canonical variable. Thus, if we denote the ith
intragroup correlation matrix by Rii , i = 1, 2, then
for the pi canonical variables in the ith group, the
canonical loadings are given by the rows of RiiAi ,
i = 1, 2. At this stage we treat the first set of vari-
ables as the predicting set, and the second one as
the criterion set. While the proportion of variance in
the criterion set explained by its canonical variates
can be expressed in terms of the canonical loadings,
we may like to study the proportion of variance in
the criterion set which is explained by the predictor
set. Here canonical correlations and canonical vari-
ables do not capture the full information, and we
need redundancy analysis. The redundancy coeffi-
cient, proposed by Stewart & Love [57], represents
the amount of variance in the criterion set that is
redundant to the amount of variance in the predictor
set. They showed that the redundancy coefficient is
equivalent to regressing each variable in the criterion
set in turn on all the variables in the predictor set,
and then averaging the p2 squared multiple correla-
tion coefficients.

Canonical weights or patterns are used to assess
the relationship between the original variables and
the canonical variables so that they indicate the con-
tribution of each variable to the respective within-set
canonical variables. However, these weights do not
necessarily accurately reflect the relative importance
of the different variables. This may happen mainly
due to the presence of multicollinearity, where some
variable may obtain a small, even negative, weight
because of the presence of some other variables yield-
ing the degeneracy of the dispersion matrix. Also,
because of multicollinearity, these coefficients may
become very unstable. That is why some researchers

have advocated the use of canonical loadings (struc-
ture) instead of canonical weights (pattern). But these
measures can also suffer from similar drawbacks. The
main difficulties surrounding CCA in such nonregu-
lar cases have not been well assessed, and hence one
should exercise caution in interpreting canonical cor-
relations in any particular setting. In passing, we may
also remark that the canonical variables, for either
set, are not observable, and hence may not always
attach interpretable physical meanings. This draw-
back of CCA is of some concern in applied fields,
particularly in biostatistics, because derived statisti-
cal results should be capable of being understood and
interpreted by researchers from other fields who seek
to make use of them. It is to be noted though that the
canonical variables are of interest in their own right;
they help to deepen the understanding of the original
variables and in some cases may even suggest new
measures. Kshirsagar [37] remarked that if canonical
analysis had no other practical use, it could at least be
used as a descriptive and exploratory tool. It summa-
rizes the complex relationship and provides a useful
method of reduction in the dimensionality problem.

Sample Canonical Correlation(s) and their
Sampling Distributions

Suppose that X
′
i = (X(1)

′

i , X(2)
′

i ), i = 1, . . . , n are n

independent identically distributed (iid) random vari-
ables having the same partition of the mean vector
µ and dispersion matrix � as before. We define the
sample mean vector Xn and sample covariance matrix
Sn as

Xn = n−1
n∑

i=1

Xi ,

Sn = (n − 1)−1
n∑

i=1

(Xi − Xn)(Xi − Xn)
′.

Then Sn is translation-invariant and affine equivari-
ant, and is unbiased for � whenever the latter exists.
If we sample from a multivariate normal population,
then the Xis have finite moments of all orders, and
Xn and Sn are jointly sufficient for (µ, �). Hence
the estimators of canonical correlations (which are
functions of these natural parameters) can be based
solely on such sufficient statistics. Such a motiva-
tion may not be rational if the underlying pdf is not
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multinormal; these statistics then may not lead to the
maximum likelihood estimators of the canonical cor-
relations, although from the point of view of affine
equivariance and unbiasedness, Xn and Sn may still
be considered appropriate for such data reduction.

With this motivation, and recalling the affine
equivariance property of the sample covariance
matrix, we partition Sn into Sij,n, i, j = 1, 2, in the
same way as was done for �, and consider the derived
matrix

S∗
n = S12,nS−1

22,nS21,nS−1
11,n;

we also could have taken the permutation version
of order p2 × p2. Here also we take p1 ≤ p2, and
hence prefer to use the above definition of S∗

n. It is
easy to see that S∗

n satisfies the affinely equivalence
property, and is translation invariant. Consider the
characteristic roots l2

1,n ≥ l2
2,n ≥ . . . ≥ l2

p1,n(≥ 0) of
S∗

n, and define the sample canonical correlations as
their nonnegative roots:

lj,n = j th sample canonical correlation,

for j = 1, . . . , p1.

Note that the sample canonical correlations are all
(ordered) stochastic (nonnegative) variables, and even
if the population canonical correlations are zero for
some j (≥ 1) and onwards, the corresponding sample
canonical correlations may not be identically equal
to zero with probability one. Therefore for drawing
statistical conclusions on the canonical correlations
based on their sample counterparts, it is necessary to
incorporate the sampling distribution of the latter in
the statistical decision procedures.

For finite sample size n, the marginal (and cert-
ainly joint) distributions of the sample canonical
correlations are, in general, extremely complicated,
even if we confine ourselves to sampling from a
multivariate normal distribution. However (in the
case of a multinormal distribution), when the pop-
ulation canonical correlations are all null (so that the
two subsets X(1) and X(2) are independent, imply-
ing �12 = 0), the sampling distribution is much more
manageable; an elegant derivation of this can be
found in Kshirsagar [37]. This special case relates
to the independence of the two subsets, and the clas-
sical likelihood ratio test statistic, �n, can be easily
shown to be given by

�n = n[ln |Sn,11| + ln |Sn,22| − ln |Sn|]

= n ln |I − S∗
n| = n

p1∑

j=1

ln(1 − l2
j,n).

The null hypothesis distribution of this test statistic
can be quite well approximated by the central chi-
square distribution with p1p2 degrees of freedom
(df), and this approximation can be improved fur-
ther, particularly for moderate values of n, by using
the conventional Bartlett correction. For details we
refer the reader to any standard multivariate stat-
istical analysis text; Anderson [2] is an excellent
source. A similar likelihood ratio test for the null
hypothesis that all but the first k(≤ p1) character-
istic roots are equal to 0, can be worked out in
the same manner. The latter test of the hypothe-
sis problem is of significant interest in deciding on
the number of canonical correlations to be used in
a given situation, or to estimate the rank of �12.
The asymptotic distribution is again chi-square, this
time with df (p1 − k)(p2 − k); appropriate Bartlett
correction works out along the same line. Constan-
tine [10] derived the density of the sample canonical
correlations in the general (multivariate normal) case
when the population of canonical correlations are
not necessarily null, and involves a hypergeomet-
ric function of two matrix arguments (and thereby
is very difficult to implement in actual applications).
From statistical considerations, therefore, there was
a pressing need for suitable approximations to sam-
pling distributions of sample canonical correlations,
and, led by the pioneering work of T.W. Anderson
in the late 1940s and early 1950s, a considerable
amount of research work has been accomplished
in this area. The first phase relates to the large-
sample case and yet retaining the underlying multi-
normality assumption, and demonstrates the asymp-
totic normality of the

√
n(lj,n − λj ), for different

j , treating separately the cases of distinct popu-
lation canonical correlations and their multiplicity.
The parameters appearing in these asymptotic nor-
mal distributions themselves may depend in a rather
complex manner on the unknown λj . Therefore in
setting suitable confidence sets or testing compos-
ite null hypotheses on the canonical correlations, it
may be necessary to estimate these functional param-
eters reliably from the sample data, and this may
make it necessary to have an enormously large sam-
ple size – a postulation that is not always met in
practice.
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The second phase of development started with
the observation that CCA is a meaningful tool for
the study of between-group dependence, even when
the underlying multinormality assumption may not
be tenable. However, without the multinormality
assumption the canonical correlations relate to mea-
sures of correlation vs. noncorrelation, but not nec-
essarily independence. In such a general nonnor-
mal case the asymptotic distribution of the sample
canonical correlations has been studied by Muirhead
& Waternaux [44] under the assumption that the
population pdf admits finite fourth-order moments
and that its canonical correlations are all distinct,
i.e. the sample canonical correlations have a jointly
asymptotically multinormal distribution. While the
finiteness of the fourth-moment condition is not that
stringent (needed even for the total correlation in
a bivariate nonnormal distribution), without the dis-
tinctness of the population canonical correlations, the
asymptotic distribution may not be normal without
the latter condition. When the asymptotic normality
holds, Muirhead & Waternaux were able to ver-
ify that the asymptotic variance of

√
n(lj,n − λj ) is

equal to

γ 2
j = {4λ2

j (1 − λ2
j )

2 + λ4
j (κj :4 + κj+p1:4)

+ 2λ2
j (2 + λ2

j )κj,p1+j :2,2

− 4λ3
j (κj,p1+j :3,1 + κj,p1+j :1,3)},

where the κj are different fourth-order cumulants of
the population (see Characteristic Function). The
formulas for the asymptotic covariances are even
more cumbersome (see [44]). In practice, for set-
ting confidence intervals or hypothesis testing, even
for the canonical correlations in isolation, one would
require a good estimator of the γ 2

j , and therefore the
presence of the unknown cumulants signals further
complications in the practical use of this asymp-
totic approximation. One possible way to eliminate
this shortcoming is to estimate the unknown cumu-
lants from the sample by the method of moments,
and substitute these estimators in the above expres-
sion. Alternately, resampling methods, such as the
jackknife or the bootstrap, can be used to estimate
the γj nonparametrically with considerable compu-
tational ease. Das & Sen [14] have studied such
resampling plans. Since characteristic roots typically
relate to certain (implicit) equations involving poly-
nomial functions, it is easy to verify that the canonical

correlations, the λj , are all smooth functions of the
population covariance matrix �, and likewise, the
sample canonical correlations are smooth functions
of the sample covariance matrix Sn. Furthermore,
the elements of Sn are all U -statistics, and hence
are asymptotically jointly multinormal whenever the
fourth moments are all finite. This provides an easy
way to verify the asymptotic normality of the sam-
ple canonical correlations as well as to incorporate
resampling plans to estimate their asymptotic disper-
sion matrix in a nonparametric manner.

It may also be remarked that the canonical correla-
tions are invariant under multiplication of the original
variables with nonsingular matrices. Hence, in most
sampling theory works it is assumed without loss of
generality that the population covariance matrix � is
of the canonical form given in (3).

Generalizations and Excursions

Generalizations of the notion of canonical correla-
tions to three or more subsets of variates were pro-
posed by Roy [51]; he also developed the notion of
partial canonical correlations between two subsets of
variates when the others are held fixed, and proposed
a test for the same. Anderson [2] incorporated the
minimization of the Wilks generalized variance or
determinant criterion to define the canonical correla-
tions in the case of two or three subsets of variates.
However, a more systematic approach to multigroup
canonical correlation analysis was initiated by Horst
[28] with further feedback from Kettenring [34, 35]
and Sengupta [54]. Most of these methods call for
the selection of canonical variables, one from each
subset, such that some function of their correlation
matrix is maximized. The different methods typically
considered are

1. Maximization of the sum of the correlation
coefficient (SUMCOR).

2. Maximization of the sum of squares of the
elements of the correlation matrix (SSQCOR).

3. Maximization of the largest characteristic root of
the correlation matrix (MAXVAR).

4. Minimization of the smallest characteristic root
of the correlation matrix (MINVAR).

5. Minimization of the generalized variance of the
correlation matrix (GENVAR).
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Several computational algorithms that work sat-
isfactorily in practice are available for these methods
(see [54] and the references therein), although there
is some need to justify their convergence properties
theoretically.

The developments on CCA reported above all
relate to the case where the dispersion matrix � is
positive definite, and singular covariance matrices
resulting from multicollinearity and/or redundancy
are thereby excluded from this setup. Intuitively, at
least, this study should not depend on the positive def-
initeness of the subset dispersion matrix, and incor-
poration of suitable generalized inverses (see Matrix
Algebra) indeed validates the canonical correlation
analysis in the case of a possibly singular dispersion
matrix, without essentially any additional regularity
assumptions over the conventional positive definite
case. To illustrate this point, consider a 2p-vector X
partitioned into two p-vectors X(1) and X(2), where
the dispersion matrix of each subset is singular, say
of rank q(< p). Then we first write X(j) = Bj Y(j),
j = 1, 2, where the Yj are q-vectors having nonsin-
gular dispersion matrices �j , j = 1, 2, while the Bj

are p × q matrices of rank q. This way we have

�jk = B
′
j�jkBk, j, k = 1, 2,

and the canonical correlation analysis can be per-
formed on the Y(j) which satisfy the nonsingularity
condition on their dispersion matrix. Note that in this
way the number of nonzero canonical correlations
will be less than or equal to q, although p1 = p2 =
p > q. Khatri [36], Rao [50], Jewell & Bloomfield
[33], Sengupta [55], and Baksalary et al. [5] have all
incorporated different generalized inverses for such
singular cases in various frameworks. In a nutshell,
they have shown that no changes are needed from
the traditional approach. However, in the canonical
reduction of the dispersion matrix in (3) the three
block-diagonal matrices I are replaced by I of lower
order and a null complementary part.

In the same way as the product–moment correla-
tion has been extended to part, partial and bipartial
correlations, canonical correlations also have been
extended to such part, partial, and bipartial forms. For
example, with (the usual extension of notations and)
three groups of variates X(1), X(2), and X(3), the par-
tial canonical correlations between X(1) and X(2) after
the linear effect of X(3) is removed can be obtained
from the conditional covariance matrix between X(1)

and X(2). Given X(3), in the same way the usual
canonical correlations are obtained from the uncon-
ditional covariance matrix. Thus, in essence, �ij gets
replaced by �ij.3 = �ij − �i3�

−1
33 �3j for i, j = 1, 2.

Similarly, an example of part canonical correlations
would be when the effect of X(3) is removed from
X(2), but not from X(1). This would require working
with (

�11 �12.3

�21.3 �22.3

)
.

Bipartial canonical correlations are relevant when
there are four groups of variates and the effects of
X(3) and X(4) are removed respectively from X(1) and
X(2) (but not from both). See Rao [48] and Timm &
Carlson [61] for more details on these topics.

In many problems, some structural symmetry
is reflected in the correlation matrix R, and this
can simplify the computational algorithm for the
canonical correlations. For example, if R, a 2p × 2p

matrix, is partitioned into four matrices Rij , i, j =
1, 2, where

Rii = (1 − ρ1)I + ρiJ, i = 1, 2;

R12 = ρ3J; J = 11′,

and the ρi , i = 1, 2, 3, are real numbers assuming
values on (−1, 1), then R12 is of rank 1, and
hence only the first canonical correlation is nonzero.
This computation can be carried out much more
conveniently than in the general case of an arbitrary
correlation matrix. Das & Sen [14] give additional
illustrations of this type.

It is important to study how significant the changes
in canonical correlations are when the entries of
the covariance matrix shift by a small amount. An
account of such perturbation analysis in this context
can be found in Golub & Zha [25]. Styan [58] and
Bérubé et al. [6] have studied the CCA in three-way
layouts exploring orthogonality and connectedness.

Among other excursions in the field of canonical
correlation analysis, constrained and restricted vari-
ations deserve special mention. As discussed earlier,
one of the most common reservations held against the
traditional analysis is the lack of interpretability of
the canonical coefficients. In the context of categor-
ical data models, DeSarbo et al. [17] introduced the
idea of constrained canonical correlations to address
this problem. They proposed allowing the coefficients
for each cell (in the linear compound/canonical vari-
able) to be either of the three entries {−1, 0, 1}. Thus,
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for p1 and p2 categorical variables in the two sub-
sets, there are in all (3p1 − 1)(3p2 − 1) choices of
the two (nonnull) coefficient vectors, and optimiza-
tion is to be achieved within this finite set. They also
discussed relevant computational aspects, comparing
the complete enumeration with two algorithms that
reduce the computation further. This simple alterna-
tive may have been more appealing because of the
discrete nature of the data set they studied. Yanai &
Takane [66] discussed the algebra of restricted canon-
ical correlations with additional linear constraints (on
the coefficient vectors a and b for the two subsets)
in the form

Aa = 0 and Bb = 0,

where A and B are r1 × p1 and r2 × p2 given matri-
ces with r1 ≤ p1 and r2 ≤ p2. In view of the linear
nature of these subspaces, they considered the pro-
jection technique to solve the optimization problem
in this setup. A more general restricted canonical
correlation analysis arises in many psychometric and
biological problems, wherein the coefficients appear-
ing in the linear compounds are restricted by certain
inequalities, such as that these are all nonnegative or
ordered within each subset (see Isotonic Inference).
The most common restriction of this type relates
to the case where all the coefficients a and b are
set to be nonnegative, so that the derived canoni-
cal variables are convex combinations of the original
variables. In this context, suitable interpretations, per-
haps being better representatives of their respective
group of variates, can be made of these canonical
variables. Das & Sen [13] formulated the algebraic
derivations of such restricted canonical correlations.
It was shown how some general restricted models
(including cases where only some of the coefficients
are constrained by inequality-type restrictions) can
be reduced to such convex combination models by
simple transformations. It follows from their dis-
cussion that the largest squared restricted canonical
correlation between X(1) and X(2) is equal to one
of the squared canonical correlations between aX(1)

and bX(2), for some a ∈ Wp1 and b ∈ Wp2 , with
Wp = {a : ∅ 	= a ⊆ {1, . . . , p}} and aX stands for the
|a|-component vector consisting of those components
of X whose indices belong to a. This result also holds
for the case of sample canonical correlations in the
restricted case, and is of pivotal importance in the
study of the sampling properties of such statistics.
This was handled in a follow-up study, Das & Sen

[15], along with the effectiveness of resampling plans
in such restricted canonical correlation schemes. In
a recent book, Hastie et al. [23] dealt with nonlinear
canonical variables in neural network and flexible dis-
criminant analysis. Friman et al. [27] used the above
constrained analysis technique in adaptively filtering
the functional MRI data.

Issues Related to Applications in
Biostatistics

At present, biostatistics covers a broad domain of
basic as well as applied sciences, wherein biolog-
ical, medical and clinical, pharmacologic, environ-
mental, epidemiologic, neural, and socioeconomic
aspects have all mingled with statistical concepts and
perspectives in a harmonious way. The advent of
modern computers has opened up a wide avenue of
computer-intensive, application-oriented research in
this fertile field (see, for example, Sen [53]). Typi-
cally, in view of the high dimensionality and high vol-
ume of acquired data sets in such studies, it is often
necessary to implement effective dimension reduction
techniques, such as projection pursuits, etc. In many
such studies it may be possible to identify multiple
subsets of variates on suitable experimental grounds,
and interrelations of (two or more) subsets of vari-
ates constitute the prime objective of the study. For
example, in a therapeutic study, certain body char-
acteristic variables (such as blood sugar, cholesterol
and other lipids) are to be recorded before and imme-
diately after a therapeutic course is complete, and
sometimes to judge its long-term efficacy, also after
a certain lapse of time. Provided the measurements
at each stage conform to a set of biologically or
medically contiguous variables, the concept of CCA,
or its various ramifications considered above, can be
incorporated to draw meaningful statistical conclu-
sions. In this respect, often restricted analysis appears
to be more appropriate from an interpretational point
of view. If the measurements have a nonnegativ-
ity dependence (association) structure (within each
set), then it is quite natural to work with convex
CCA through nonnegativity conditions on the coeffi-
cients in the canonical variables. In neural networks
such a phenomenon occurs quite often, and Das &
Sen [14] have pointed out the relevance of restricted
CCA along with the related sampling theory (in an
asymptotic setup with due emphasis on applicable
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resampling plans). Although such formulations are
more appropriate for (nearly) multinormal distribu-
tions, they remain asymptotically quite viable for a
large class of continuous distributions (having finite
moments up to the fourth order at least). To cope
with plausible departures from multinormality, both
nonlinear and semilinear (where only powers of the
linear combinations are allowed), versions of canoni-
cal correlation analysis have also been studied in the
literature; see, for example, Gambus et al. [24], and
Tielemans et al. [60].

In the period from 1985 to 1995 alone, there
have been more than 200 published works that
use canonical correlations in various branches of
biostatistics. Clearly, any summary of all of them is
beyond the scope of the current study. Instead, in
what follows we address several key issues related to
using CCA in biostatistics applications in general.

1. Typically with measurements related to nonneg-
ative variates, even the marginal distributions
are (mostly, positively) skewed, and hence suit-
able transformations on the coordinate variables
(which are usually highly nonlinear) are advo-
cated to induce more symmetry (if not normality)
in the distributions of the transformed variables.
This does not, however, guarantee that the joint
distribution of the transformed variables would
be closely multinormal. Thus the conventional
multinormality assumption based canonical cor-
relation analysis may not always be appropriate
in such applications. The picture with nonnormal
canonical correlations is comparatively better.

2. The motivation behind the use of CCA rests
heavily on the linearity structure, and transfor-
mations mentioned before may distort such rela-
tionships even if the original variables had such
structural properties. However, the very rational-
ity of choosing the canonical variables as lin-
ear compounds of within-subset variates may be
questionable, and without this linearity the foun-
dation of CCA may not be firm enough. Even if
such a linearity structure is tenable, but a linear
combination of (within-set) variates is not that
physically interpretable, motivations for CCA
would be diffused to a certain extent. Therefore,
in practice, before a CCA is adopted, the suitabil-
ity of linear compoundability of (transformed)
variable has to be examined carefully.

3. In classical CCA, underlying the normality and
linearity structure there is the basic assump-
tion that all the variables are quantitative in
nature, and are continuous. For discrete vari-
ables, generally the linearity of regression and/or
normality approximations may not always be
feasible. This calls for alternate canonical mea-
sures of such association patterns. We illustrate
this point with two important examples from
biostatistics. First, consider the case of a multi-
variate Poisson distribution, which we introduce
as follows. Consider a stochastic t (≥ p) vector
Z = (Z1, . . . , Zt )

′ of independent Poisson vari-
ates with positive parameters µ = (µ1, . . . , µt )

′,
not necessarily all equal. We then express the
observable stochastic vector X as

X = BZ,

where B is a suitable p × t matrix of real con-
stants. In order that X has a multivariate Poisson
distribution, all the marginal ones need to be uni-
variate Poisson, so that the elements of B are
all nonnegative. Moreover, for the increments
of the marginal distributions to be concentrated
to the set of all nonnegative integers, we need
to assume that the elements of B are binary
(i.e. 0 or 1). Finally, in order that the distri-
bution of each Xj is nondegenerate, we need
that each row of Z is nonnull. All these con-
ditions imply that the elements of X can only be
associated nonnegatively, and that even in a pair-
wise case, these association parameters may not
always be in the entire interval (−1, 1). Clearly,
if we need to incorporate CCA in this context,
we need to consider the restricted version, where
the restrictions facilitate the verification of the
regularity conditions needed for B. In this case,
the restricted CCA makes more sense than its
classical counterpart based on the usual matrix
S∗

n. Even so, the adequacy of normality approxi-
mation remains to be checked thoroughly. In the
univariate case, usually the square root trans-
formation is used for Poisson-type variables to
stabilize the asymptotic variance and acceler-
ate the normality approximations, although the
rationality of linear compoundability of these
transformed variables may not always be clear
in practice (see Power Transformations). As a
second illustration, consider multivariate count-
ing processes that arise in survival analysis,



12 Canonical Correlation

neural networks, and also reliability networks.
In this context, too, there are certain structural
constraints that may block the direct adaptation
of CCA.

4. Clinical and educational psychometry, mental
testing, and psychiatry have all been identi-
fied as vital domains requiring (bio)statistical
methodology to a considerable extent. Multivari-
ate analysis is a vital discipline for modeling
and analyzing of experiments or studies in this
broad domain. Interestingly, some of the classical
illustrations in canonical correlations, principal
components, and factor analysis have a distinctly
psychometric or educational testing flavor, and
hence it is worthwhile to examine the relevance
of CCA in this domain. Typically, we conceive
of some underlying traits, and convert the count
data set on a dichotomous or polytomous classi-
fication to suitable scores, such as the Z scores or
normal scores in psychometry, and use standard
CCA (or multivariate analysis, in general) on
such score data. Even if we have an adequately
large sample size, such a conversion may not usu-
ally validate the use of conventional canonical
correlations. For example, in a multidimensional
contingency table, say a two-by-two table, these
normal scores leading to the tetrachoric corre-
lations (see Association, Measures of) do not
capture the linearity of the regression, and hence
the linear compoundability of the scores from
different characteristics or tests remains open to
question – the nonlinear/semilinear ramifications
of canonical correlations may be adopted in these
cases. The picture is quite different for exter-
nal analyses, such as the multivariate analysis
of variance and covariance models. In this setup,
more basic categorical data models with latent
continuous variates could provide an alternate
and valid approach to (restricted) CCA.

5. In psychometric research, as well as in other
areas of biostatistics, it is not uncommon to
encounter a purely ranked data set in one or more
dimensions. Rank correlations and measures of
association have all received due attention in
the literature, and CCA remains pertinent to this
domain as well. Puri & Sen [47, Chapter 8] con-
tains a broad coverage of such rank measures
of association along with their statistical proper-
ties and sampling distributions. The emphasis has

been mainly on the testing of statistical hypothe-
ses, although the matrix of rank-based correla-
tions amends readily to such complex measures
of between-group association. One of the basic
drawbacks of rank methods is their possible lack
of affine invariance, and hence the linear com-
poundability of the original variables again may
not be suitable. Nevertheless, the asymptotic joint
multinormality of these sample rank correlations
can at least intuitively justify the adoption of
CCA when the sample size is large.

6. Mixed models relating to partly quantitative
(continuous) responses and partly qualitative
(categorical) ones are often encountered in bio-
statistical analysis. The classical biserial cor-
relation is the precursor of such measures of
association in the bivariate case. Their gener-
alizations to canonical correlations need a con-
siderable amount of care in formulation so that
mathematical manipulations may not preclude
statistical interpretations.

At the present time, some of the applications
made in pharmacokinetics, biopharmaceutics, ecol-
ogy, epidemiology, and environmetrics deserve crit-
ical appraisal for their validity; nevertheless, these
represent commendable attempts to gain insight into
the phenomena under study (see [1, 3, 4, 7, 9, 11, 12,
18, 20, 22, 24, 26, 28, 38, 40, 41, 43, 45, 52, 56, 60,
62–66].
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Capture–Recapture

In a typical capture–recapture experiment in biolog-
ical and ecologic sciences, we place traps or nets
in the study area and sample the population several
times. At the first trapping sample a number of ani-
mals are captured; the animals are uniquely tagged
or marked and released into the population. Then
at each subsequent trapping sample we record and
attach a unique tag to every unmarked animal, record
the capture of any animal that has been previously
tagged, and return all animals to the population. At
the end of the experiment the complete capture his-
tory for each animal is known. Such experiments are
also called mark-recapture, tag-recapture, and multi-
ple record systems in the literature. The simplest type
only includes two samples; one is the capture sample
and the other the recapture sample. This special two-
sample case is often referred to as a “dual system”
or a “dual-record system” in the context of census
undercount estimation.

The capture–recapture technique has been used
to estimate population sizes and related parameters
such as survival rates, birth rates, and migration rates.
Biologists and ecologists have long recognized that it
would be unnecessary and almost impossible to count
every animal in order to obtain an accurate estimate
of population size. The recapture information (or
the proportion of repeated captures) by marking or
tagging plays an important role because it can be used
to estimate the number missing in the samples under
proper assumptions. Intuitively, when recaptures in
subsequent samples are few, we know that the size
is much higher than the number of distinct captures.
However, if the recapture rate is quite high, then we
are likely to have caught most of the animals.

According to Seber [15], the first use of the
capture–recapture technique can be traced back to
Laplace, who used it to estimate the population size of
France in 1786. The earliest applications to ecology
include Petersen’s and Dahl’s work on fish popula-
tions in 1896 and 1917, respectively, and Lincoln’s
use of band returns to estimate waterfowl in 1930.
More sophisticated statistical theory and inference
procedures have been proposed since the paper by
Darroch [5], who founded the mathematical frame-
work of this topic. See [15]–[17] and references
therein for the historical developments, methodolo-
gies, and applications.

The models are generally classified as either
closed or open. In a closed model the size of a pop-
ulation, which is the main interest, is assumed to be
constant over the trapping times. The closure assump-
tion is usually valid for data collected in a relatively
short time during a nonbreeding season. In an open
model, recruitment (birth or immigration) and losses
(death or emigration) are allowed. It is usually used
to model the data from long-term investigations of
animals or migrating birds. In addition to the popu-
lation size at each sampling time, the parameters of
interest also include the survival rates and number
of births between sampling times. Here we concen-
trate on closed models because of their applications
to epidemiology and health science.

Applications to Epidemiology

The capture–recapture model originally developed
for animal populations has been applied to human
populations under the term “multiple-record sys-
tems”. A pioneering paper is that of Sekar & Deming
[18], who used two samples to estimate the birth and
death rates in India. Wittes & Sidel [19] were the first
to use three-sample records to estimate the number
of hospital patients. Related subsequent applications
were given in an earlier overview by El-Khorazaty
et al. [7].

Epidemiologists recently have shown renewed and
growing interest in the use of the capture–recapture
technique. As LaPorte et al. [13] indicated, the tradi-
tional public-health approaches to counting the num-
ber of occurrences of diseases are too inaccurate
(surveillance), too costly (population-based registries;
see Disease Registers), or too late (death certifi-
cates) for broad monitoring. They felt that it was
time to start counting the incidences of diseases in
the same way as biologists count animals. Two recent
review articles [11, 12] by the International Society
for Disease Monitoring and Forecasting proposed that
the capture–recapture method would provide a tech-
nique for enhancing our ability to monitor disease.
Reference [12] also reviewed its applications to the
following categories: birth defects, cancers, drug use,
infectious diseases, injuries, and diabetes as well as
other areas of epidemiology.

The purpose of most applications to epidemiology
is to estimate the size of a certain target popula-
tion by merging several existing but incomplete lists
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of names of the target population. If each list is
regarded as a trapping sample and identification num-
bers and/or names are used as “tags”, then it is simi-
lar to a closed capture–recapture setup for wildlife
estimation. Now the “capture in a sample” corre-
sponds to “being recorded or identified in a list”, and
“capture probability” becomes “ascertainment proba-
bility”. Two major differences between wildlife and
human applications are (i) there are more trapping
samples in wildlife studies, whereas in human stud-
ies only two to four lists are available; and (ii) in
animal studies there is a natural temporal or sequen-
tial time order in the trapping samples, whereas for
epidemiologic data such order does not exist in the
lists, or the order may be different for some individ-
uals. Researchers in wildlife and human applications
have respectively developed models and methodolo-
gies along separate lines. Three of these approaches
are discussed after the data structure and assumptions
are explained.

Data Structure and Assumptions

Ascertainment data for all identified individuals are
usually aggregated into a categorical data form. We
give in Table 1 a three-list hepatitis A virus exam-
ple for illustration. The purpose of this study was to
estimate the number of people who were infected by
hepatitis in an outbreak that occurred in and around
a college in northern Taiwan from April to July
1995. Our data are restricted to those records from
students of that college. A total of 271 cases were
reported from the following three sources: (i) P-list
(135 cases): records based on a serum test con-
ducted by the Institute of Preventive Medicine of Tai-
wan. (ii) Q-list (122 cases): records reported by the
National Quarantine Service based on cases reported
by the doctors of local hospitals. (iii) E-list (126
cases): records based on questionnaires collected by
epidemiologists.

In Table 1, for simplicity, the presence or absence
in any list is denoted by 1 and 0, respectively.
There are seven observed cells Z100, Z010, Z001,
Z110, Z011, Z101, and Z111. Here Z111 = 28 means
that there were 28 people recorded on all three lists;
Z100 = 69 means that 69 people were recorded on
list P only. A similar interpretation pertains to other
records. Let n1, n2, and n3 be the number of cases in
P, Q and E, respectively. Then n1 = Z111 + Z110 +

Table 1 Data on hepatitis A virus

Hepatitis A virus list

P Q E Data

1 1 1 Z111 = 28
1 1 0 Z110 = 21
1 0 1 Z101 = 17
1 0 0 Z100 = 69
0 1 1 Z011 = 18
0 1 0 Z010 = 55
0 0 1 Z001 = 63
0 0 0 Z000 = ??

Z101 + Z100 = 135. Similar expressions hold for n2

and n3. There is one missing cell, Z000, the number
of uncounted. The purpose is to predict Z000 or to
estimate the total population size.

A crucial assumption in the traditional approach
is that the samples are independent. Since indi-
viduals can be cross classified according to their
presence or absence in each list, the independence
for two samples is usually interpreted from a 2 ×
2 categorical data analysis in human applications.
This assumption in animal studies is expressed in
terms of the “equal-catchability assumption”: all
animals have the same probability of capture in
each sample. However, this assumption is rarely
valid in most applications. Lack of independence
among samples leads to a bias for the usual esti-
mators derived under the independence assumption.
The bias may be caused by the following two
sources:

1. List dependence within each individual (or sub-
stratum): that is, inclusion in one sample has a
direct causal effect on any individual’s inclusion
in other samples. For example, an individual with
a positive for the serum test of hepatitis is more
likely to go to the hospital for treatment and
thus the probability of being identified in local
hospital records is larger than that of the same
individual given as negative by the serum test.
Therefore, the “capture” of the serum test and the
“capture” of hospital records become positively
dependent. This type of dependence is usually
referred to as “list dependence” in the literature.

2. Heterogeneity between individuals (or substrata):
even if the two lists are independent within indi-
viduals, the ascertainment of the two lists may
become dependent if the capture probabilities
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are heterogeneous among individuals. This phe-
nomenon is similar to Simpson’s paradox in
categorical data analysis. That is to say, aggregat-
ing two independent 2 × 2 tables might result in
a dependent table. Hook & Regal [10] provided
an example.

The above two types of dependences are usually
confounded and cannot be easily disentangled in a
data analysis without further assumptions. We discuss
three approaches (the ecologic model, the loglinear
model, and the sample coverage approach) that allow
for the above two types of dependences.

Ecologic Models

Pollock, in his 1974 Ph.D. thesis and subsequent
papers (e.g. Pollock [14]), proposed a sequence of
models mainly for wildlife studies to relax the equal-
catchability assumption. This approach aims to model
the dependences by specifying various forms of “cap-
ture” probability. The basic models include (i) model
Mt, which allows capture probabilities to vary with
time; (ii) model Mb, which allows the capture of
behavioral responses; and (iii) model Mh, which
allows heterogeneous animal capture probabilities.
Various combinations of these three types of unequal
capture probabilities (i.e. models Mtb, Mth, Mbh, and
Mtbh) are also proposed.

Only for model Mt are the samples independent.
List dependence is present for models Mb and Mtb;
heterogeneity arises for model Mh; and both types
of dependences exist for models Mbh and Mtbh. For
any model involving behavioral response, the capture
probability of any animal depends on its “previous”
capture history. However, there is usually no sequen-
tial order in the lists, so those models have limited
use in epidemiology. Models Mh and Mth might be
useful for epidemiological studies. Various estima-
tion procedures have been proposed. See [15]–[17]
for reviews.

Loglinear Models

The loglinear model approach is a commonly used
technique for epidemiological data. Loglinear models
that incorporate list dependence were first proposed
by Fienberg [8] for dealing with human populations.

Cormack [4] proposed the use of this technique for
several ecologic models.

In this approach the data are regarded as a form
of an incomplete 2t contingency table (t is the num-
ber of lists) for which the cell corresponding to those
individuals uncounted by all lists is missing. A basic
assumption is that there is no t-sample interaction.
This assumption implies an extrapolation formula for
the number of uncounted. For three lists, the most
general model is a model with main effects and
three two-sample interaction terms. Various loglin-
ear models are fitted to the observed cells and a
proper model is selected using deviance statistics
and the Akaike information criterion. The cho-
sen model is then projected onto the unobserved
cell.

List dependences correspond to some specific
interaction terms in the model. As for heterogeneity,
quasi-symmetric and partial quasi-symmetric mod-
els of loglinear models can be used to model some
types of heterogeneity, i.e. Rasch models and their
generalizations; see [1] and [6]. Since the quasi-
symmetric or partial quasi-symmetric models are
equivalent to assuming that some two-factor interac-
tion terms are identical, the heterogeneity corresponds
to some common interaction effects in loglinear mod-
els. Details of the theory and development are fully
discussed in [11] and [12].

Sample Coverage Approach

The idea of sample coverage, originally from
I.J. Good and A.M. Turing (Good [9]), has been used
in species and animal population size estimation; see
Chao & Lee [2]. The same approach was also applied
to epidemiologic data in [3].

This approach aims to model dependences by
some parameters, which are called “coefficients of
variation”, defined for two or more samples. The
magnitude of the parameters measures the degree of
dependence of samples. The two types of depen-
dences are confounded in these measures. In the
independent case, all dependence measures are zero.
This general model encompasses the Rasch model
and the ecologic models as special cases.

A common definition for the sample coverage of a
given sample is the probability-weighted fraction of
the population that is discovered in that sample. For
multiple-sample type of data the sample coverage is
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modified to be the probability-weighted fraction of
the population that is jointly covered by the avail-
able samples. See [3] for a formal definition. The
basic motivation here is that sample coverage can be
well estimated even in the presence of two sources
of dependences. Thus an estimate of population size
can be obtained via the relation between the popula-
tion size and sample coverage. Chao et al. [3] have
shown that an estimator of C is Ĉ = 1 − (Z100/n1 +
Z010/n2 + Z001/n3)/3, which is one minus the aver-
age of the proportion of individuals listed in only
one sample (i.e. singletons). Let D be the average
of the distinct cases for three pairs of samples. In
this approach, when all three samples are indepen-
dent, a valid estimator is N̂0 = D/Ĉ. If any type of
dependence arises, then Chao et al. [3] attempt to
account for the dependences by adjusting D/Ĉ based
on a function of the estimates of the coefficients of
variation. In the same reference, estimators of pop-
ulation size are proposed separately for high sample
coverages (e.g. if Ĉ is over 55%) and low sample
coverages.

Analysis of the Hepatitis Example (Low
Sample Coverage)

Several loglinear models were fitted to the hepatitis
data given in Table 1. Except for the saturated model,
the loglinear models that do not take heterogeneity
into account (e.g. models with one or two interaction
terms) do not fit the data well, whereas all other
models that take heterogeneity into account (quasi-
symmetric and partial quasi-symmetric models) fit
well. All those adequate models yielded very similar
estimates – 1300 with an approximate estimated
standard error of 520.

The coverage estimate is Ĉ = 51.27%, which is
considered to be low. The average of the distinct
cases for three pairs of samples is D = 208.667.
If the incorrect independence is assumed, then an
estimate would be N̂0 = D/Ĉ = 407. (The loglin-
ear independent model yields a similar estimate of
388.) It follows from Chao et al. [3] that the esti-
mates for dependence measures are relatively large,
which indicates that the three samples are pairwise
positively dependent and N̂0 would generally under-
estimate. However, one cannot distinguish which type
of dependence is the main cause of the bias. Incorpo-
rating the bias due to dependences along the sample

coverage approach results in an estimate of 508.
An estimated standard error of 40 is calculated by
using a bootstrap method based on 1000 replica-
tions. The resulting 95% confidence interval is (407,
591) based on the same bootstrap replications.

This example shows that the loglinear and sample
coverage approaches may give widely different
estimates. Moreover, the example in [11] further
shows that several loglinear models that fit the data
equally well might also result in quite different
estimates. Simulation comparisons of the two
approaches and other examples with high sample
coverages are provided in Chao et al. [3].
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Cardiology and
Cardiovascular Disease

Cardiology is the study of the heart and its dis-
eases. Medical treatises give long lists of potential
causes of heart diseases. However, as the function-
ing of the heart hinges on a constant and adequate
blood supply, many heart diseases can be traced
back to diseases of the vessels bringing blood to
the heart. Thus, in biomedical textbooks and in
epidemiology, heart diseases and vascular diseases
are usually treated under the common heading of
cardiovascular diseases (CVDs). Cardiovascular dis-
eases comprise all diseases classified according to the
International Classification of Diseases, 9th Revi-
sion.

Cardiovascular diseases are one of the major
causes of morbidity and mortality worldwide with
a death count of around 14 million per year. As
reported by the World Health Organization [41],
in spite of a very marked decline over the last few
decades (for instance, male mortality from CVD
dropped by 60% in Japan, and by 50% in Australia,
Canada, France, and the US), CVDs are responsi-
ble for 20% of all deaths worldwide: 50% of all
deaths in industrialized countries and 16% of all
deaths in developing countries. Absolute estimates for
1990 are as follows: 10.9 million deaths occurred in
developed countries, and 45 million deaths in devel-
oping countries; of these, the deaths attributed to
CVDs were 5.3 million for developed countries and
9 million for developing countries. However, mortal-
ity is not sufficient to describe the impact of CVDs. It
is also estimated that 25%–30% of the CVD burden
arises from their disabling sequelae other than death.
The American Heart Association translated these
mortality and morbidity considerations into health
economics and predicted that the cost of CVDs in
the US for the year 1996 would be US$151.3 bil-
lion [1].

The most common serious heart disease is indeed a
disease of the vessels: coronary heart disease (CHD),
defined as cardiac ischemia (insufficient blood sup-
ply) due to atherosclerosis of the coronary arteries.
The American Heart Association, in its 1996 statis-
tical supplement, reports that in 1993 CHD caused
489 970 deaths in the US, or 1 of every 4.6 deaths.
Angina (chronic chest pains due to cardiac ischemia)

is often the first symptom of CHD. Angina may
evolve as a distinct disease, or a heart attack may
follow its onset. On the other hand, a heart attack
may strike asymptomatic subjects: indeed, there are
no previous signs of CHD in 48% of men and in 63%
of women who die of a heart attack. The end stage
of CHD may be Congestive Heart Failure (CHF),
which manifests as a failure of the heart to pump
blood as needed. CHF is also seen as the last stage of
other heart diseases such as valvular diseases and car-
diomyopathies (diseases of the heart muscle). Besides
contributing to an estimated 250 000 deaths a year,
CHF is also listed as a direct cause of death (36 387
US deaths in 1992).

Arrhythmia (irregularities of the heart rhythm,
40 843 US deaths in 1992) may appear as a con-
sequence of CHD or may have a distinct cause.
The most serious arrhythmia is ventricular fibrillation
(quivering of the heart, replacing its regular pumping
function, 1461 US deaths in 1992). Although it rep-
resents a relatively modest burden as an official cause
of death, it is thought to cause the overwhelming pro-
portion of sudden deaths, estimated at about 250 000
per year in the US.

Not all heart diseases are vascular diseases, for
example: rheumatic heart disease, valvular diseases,
infectious cardiomyopathies and idiopathic cardiomy-
opathies. Similarly, not all vascular diseases directly
affect the heart. Stroke (brain attack) is the second
most important CVD: it caused 149 740 deaths in
1993 in the US, or 1 in 15 deaths. Hypertension,
an underlying condition of many CVDs and indeed
a contributing factor to atherosclerosis, is also con-
sidered a disease in its own right: as such, it killed
37 520 in 1993 in the US.

CVDs, in particular CHD, are in principle
both treatable and preventable. The problem with
treatment is that often patients die before getting
the needed intervention. Hence, the emphasis is
on developing diagnostic tools for cardiovascular
diseases with the aim of preventing sudden episodes
like heart attacks and, more generally, of slowing
down the aggravation of subclinical pathological
processes. The evolution of cardiac diagnostic
devices has proceeded at great speed. Starting in
the nineteenth century with Laënnec’s invention of
the stethoscope (1816) and with the introduction by
Riva & Rocci (1896) of the modern blood pressure
measuring device (sphygmomanometer), techniques
have become increasingly sophisticated in the
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twentieth century. Electrocardiography, developed by
Einthoven in 1903, introduced a relatively simple
measure of the heart’s rhythm from which the
functioning of the heart could be studied, while
radiography and angiocardiography (radiography
of arteries by means of appropriate contrasting
substances) allowed visualization of the heart (1919).
Cardiac catheterization (1931) allowed direct access
to diseased areas of the heart, and the combination
of catheterization with angiography is the basis of
contemporary invasive, but very accurate, diagnostic
devices, such as selective angiography, coronary
arteriography, and digital subtraction angiography.
Concern for reducing the invasive character of these
procedures without sacrificing accuracy has spurred
the most recent developments: echocardiography or
noninvasive ultrasonography in the mid 1960s and
magnetic resonance imaging in the early 1980s are
good examples. For other historical milestones in
cardiology, see Table 1.

In parallel with diagnostic advances, surgical or
invasive treatment of CHD has also made impres-
sive progress in the twentieth century. The 1950s saw
the introduction of artificial aortic valves, open heart
surgery, and regulation of arrhythmias by implanta-
tion of pacemakers. Progress continued in the follow-
ing three decades with the 1967 first heart transplant
by Barnard, the 1977 development of angioplasty
(opening of blocked arteries using balloon catheter)
by Gruentzig, and the first implant of an artificial
heart in 1982 by DeVries. At the same time, pharma-
cologic approaches aimed at impeding the progress
of CHD and at controlling arrhythmias have become
increasingly sophisticated and effective. Control of
hypertension, one of the leading causes of CHD
progress, may now be achieved by several classes
of medications, involving very different modes of
action (e.g. thiazide diuretics, alpha, beta, calcium
channel blockers, ACE inhibitors). Several classes
of medications have also been developed to control
hyperlipidemias (e.g. nicotinic acid, resins, statins,
Gemfibrozil, probucol). To treat arrhythmias there are
also several classes of drugs available, with vary-
ing modes of action. As another example, aspirin
has been proved effective in prevention of a sec-
ond heart attack, stroke, and mortality in patients
who had survived a first heart attack. The great vari-
ety of potentially successful therapeutic approaches
has prompted, since the mid 1960s, the develop-
ment of large-scale, multicenter trials in cardiology

to test the efficacy of these drugs. As for other
areas of medicine, the randomized clinical trial,
double-blinded whenever possible (see Blinding or
Masking), is now considered the norm for moni-
toring progress and comparing alternative strategies.
Table 2A summarizes some of the most important
clinical trials in cardiology.

The successes sketched above are considered at
least partially responsible for the decline in CHD
mortality, which has been reduced by 49% since
1970. This reduction is attributable mostly to sec-
ondary prevention, i.e. prevention in patients with
clinical manifestations of CHD. However, costs, both
human and monetary, remain enormous: for instance,
Haltky et al. [15], estimated the 5-year total medi-
cal cost of bypass surgery at US$58 498 and that of
angioplasty at US$56 225. Clearly, these costs could
be greatly reduced if the development of CHD could
be prevented altogether (primary prevention).

The need for a major effort in the area of pri-
mary prevention, i.e. prevention of the development
of CHD in healthy subjects, has become increasingly
apparent since the first decades of the twentieth cen-
tury, with the first description by Herrick (1912, see
Table 1) of the relationship between atherosclerosis
and CHD, and with the work of Muller (1930, see
Table 1), who reports on the relationship between
CVD and elevated cholesterol serum level. This
awareness has culminated in the historic Framing-
ham Heart Study [17]. Framingham is a small
community of about 65 000 people, situated 21 miles
from Boston. Over 5000 subjects from this commu-
nity, aged between 30 and 62, were followed for
30 years, starting in 1948, with the aim of address-
ing a complete picture of the epidemiologic aspects
of CHD, its major risk factors, and its evolution. The
Framingham study helped identify the risk factors
that are now common knowledge, such as hered-
ity, sex, age, cigarette smoking, high cholesterol
blood levels, hypertension, sedentary life-style, obe-
sity, diabetes [1]. The Framingham study has served
as a model for several similar large-scale endeavors,
increasingly including active interventions to modify
risk factors or to enhance prevention: a brief summary
is given in Table 2B.

As a result of these major studies, our knowledge
of CHD has progressed to a point where effective pre-
vention is possible. For example, the National Heart,
Lung and Blood Institute (US) estimated in 1994 that
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Table 1 Historical events in cardiology

Event Attributed to Year

First description of blood circulation William Harvey 1628
First intravenous injection in a human Major 1667
First description of the heart structure Raymond de Vieussens 1706
First known cardiac catheterization Stephen Hales 1711
First blood pressure measurement Stephen Hales 1733
Stethoscope René T.H. Laënnec 1816
First human to human blood transfusion published James Blundell 1818
Electric current accompanies each heart beat Carlo Matteucci 1842
Describes an “action potential” accompanying each muscular contraction Emil Dubois-Reymond 1843
Publication of work on action potential of the heart Eudolph Albert Von Kolliker 1855
Record the heart’s electrical current and shows it consists of two phases J.B. Sanderson & F. Page 1878
Description of myocardial infarction Karl Weigert 1880
Description of angina pectoris Frederick Winsor 1880
Discovery of X-rays Wilhelm C. Röntgen 1895
Sphygmomanometer Riva, Rocci 1896
First successful closure of a stab wound of the heart (birth of cardiac

surgery)
Ludwig Rehn 1897

Discovery of the first three human blood groups: A, B, and O Karl Landsteinera 1900
Anastomosis of small blood vessels Alexis Carrel 1902
Discovery of the fourth blood group, AB A. Decastello & A. Sturli 1902
Invention of the electrocardiograph Williem Einthovenb 1903
Discovery of the sino atrial node (the origin of heartbeat) Keith & Flack 1907
Publication of “The mechanism of the heart beat” Thomas Lewis 1911
First description of heart disease resulting from hardening of the arteries James B. Herrick 1912
First angiogram in a living person using potassium iodide Heuser 1919
First soundly established surgical technique for severe mitral stenosis Souttar 1925
First use of radioactive tracers in human Blumgart 1926
Relation between CVD and elevated cholesterol serum level was first

described
Muller 1930

First blood bank established in London 1930
First human right heart catheterization Frostmannc 1931
First heart surgery Robert E. Gross 1938
Discovery of angiotensin Irvine H. Page 1938
Identification of the Rh factor Karl Landsteiner et al. 1939
Invention of the ambulatory ECG John Holter 1940
Isolation of albumine Edwin Cohn 1940
Demonstration of the changing oxygen saturation in blood Cournand & Richardsc 1945
Invention of a plastic valve to repair aortic valve Charles Hufnagel 1951
First successful open heart surgery F. John Lewis 1952
First report of transthoracic pacing Paul Zoll 1952
First use of a mechanical heart and blood purifier ECC (Extra Corporal

Circulation)
John H. Gibbon 1953

First entirely implantable rechargeable pacemaker Senning & Elmqvist 1958
First attempt to use fibrinolytic therapy (streptokinase) of MI intravenously Fletchet 1958
Development of selective coronary angiography Sones 1959
First real-time instrument for two-dimensional echocardiography Hertz 1960
First external cardiac massage to restart a heart J.R. Jude 1961
First Percutaneous Transluminal Coronary Angioplasty (PTCA) Dotter & Judkins 1964
First radionuclide technique for measuring human myocardial blood flow Ross 1964
First heart transplant Christiaan Barnard 1967
First experimental PTCA balloon Andreas Gruentzig 1974
First human coronary angioplasty Andreas Gruentzig 1977

(continued overleaf )
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Table 1 (continued )

Event Attributed to Year

Introduction of new immunosuppressant: cyclosporine 1978
First cardiac image using magnetic resonance imaging Lauterbur 1978
First implant of a cardioverter defibrillator Watkins, Reid, Mirowski et al. 1980
First successful heart lung transplant Norman Shumway 1981
Invention of the artificial heart Robert Jarvik 1982
First artificial heart (Jarvik-7) recipient, Barney Clark Williem De Vries 1982
First real-time two-dimensional color-flow Doppler Bommer et al. 1982
First use of coronary stent in humans Sigwart et al. 1987

aWon the 1930 Nobel Prize for physiology and medicine for this discovery.
bWon the 1924 Nobel Prize for physiology and medicine for this invention.
cWith Prossmann won the 1956 Nobel Prize for physiology and medicine for their contribution to the advancement of catheterization.
References for these events can be found in: Brandenburg, R.O., Fuster, V., Giuliani, E.R. & McGoon, D.C. (1987). Cardiology
Fundamentals and Practice. Year Book Medical Publisher, Chicago; Braunwald, E. (1996). Heart Disease: A Textbook of
Cardiovascular Medicine. W.B. Saunders, Toronto; Colman, R.W., Hirsh, J., Marder, V.J., Salzman, E.W. (1994). Hemostasis
and Thrombosis: Basic Principles and Clinical Practice, 3rd Ed. J.B. Lippincott Company, Philadelphia; Fye, W.B. (1994). A
history of the origin, evolution, and impact of electrocardiography, American Journal of Cardiology 73, 937–949; Grossman, W.
(1986). Cardiac Catheterization and Angiography. Lea & Febiger, Philadelphia; Harbert, J. & Da Rocha, A.F.G. (1984). Textbook
of Nuclear Medicine. Vol. II: Clinical Applications. Lea & Febiger, Philadelphia; Mollison, P.L. (1972). Blood Transfusion in
Clinical Medicine, 5th Ed. Blackwell Scientific Publications, Oxford; Schapira, J.N. & Harold, J.G. eds. (1982). Two Dimensional
Echocardiography and Cardiac Doppler, 2nd Ed. William & Wilkins, Baltimore; Marcus, M.L., Schelbert, H.R., Skorton, D.J.
& Wolf, G.L. (1991). Cardiac Imaging: A Companion to Braunwald’s Heart Disease. W.B. Saunders, Toronto; Schlant, R.C. &
Alexander, R.W. (1994). Hurst’s: the Heart, 8th Ed. McGraw-Hill, New York.

by modifying the major known risk factors for CVD,
it would be possible to increase the rate of the decline
in CVD mortality to around 6% per year for an over-
all reduction of 50% in 10 years [25]. However, at
the present state of knowledge, the cost of controlling
risk factors such as hypertension and hyperlipidemias
is formidable, since effective control would require
lifelong medical treatments for very large subpopu-
lations with these risk factors. For other risk factors
such as life-style changes, control implies behavior
modification. This is notoriously difficult and, for
certain target groups, ineffective. As research con-
tinues towards the development of more powerful
and less costly preventive approaches, further study
concerning established and new potential risk factors
is necessary. A deeper knowledge in this area could
lead to the identification of smaller subpopulations at
very high risk, in which it would be cost–effective
to concentrate preventive efforts.

Statistics and Cardiovascular Diseases

The level of statistical sophistication present in the
cardiology literature has radically improved since the

1980 paper by Glantz [12], owing, at least in part,
to its impact on the editorial policies of two of the
most prestigious journals in the field, Circulation
and Circulation Research. In practical terms, this has
meant that all papers are now scrutinized for correct-
ness of their data analytic sections by a statistician,
and that tests and procedures beyond the elemen-
tary t- (see Student’s t Statistics) and chi-square
tests have become prevalent. In a rapid survey of
the present status of statistical methodology in cardi-
ology, we have randomly selected 150 articles from
volume 91 of Circulation (1995); the results are sum-
marized in Table 3.

The figures in Table 3, compared with what is
considered state-of-the-art in clinical biostatistics,
show that there is an important time lag between
development of new statistical methodologies and
their current use in cardiology, as is indeed the case
in many other highly specialized areas. For example,
we find limited use of techniques for the analysis
of survival times (18/150) (see Survival Analysis,
Overview) and repeated measurements (26/150) (see
Longitudinal Data Analysis, Overview). This is
rather surprising, in view of the fact that improv-
ing survival is a major aim of clinical studies in
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Table 2 Some of the most important CVD studies

A Clinical trials Landmark publicationsa

ACME (Angioplasty Compared to MEdicine) New England Journal of Medicine 326 (1992) 10–16
AMIS (Aspirin Myocardial Infarction Study) Journal of the American Medical Association 243 (1980)

661–667
ART (Anturane Reinfarction Trial) New England Journal of Medicine 302 (1980) 250–256
BHAT (Beta Blocker Heart Attack Trial) Journal of the American Medical Association 247 (1982)

1701–1714
CAMLAT (Canadian Amiodarone Myocardial Infarction

Arrhythmia Trial)
American Journal of Cardiology 72 (1993) 87F–94F

CASS (Coronary Artery Surgery Study) Circulation (Suppl. 1) 63 (1981) 1–81
CAST (Cardiac Arrhythmia Suppression Trial) New England Journal of Medicine 321 (1989) 406–412
CAVEAT (Coronary Angioplasty vs. Excisional Atherectomy Trial) New England Journal of Medicine 329 (1993) 221–227
CDP (Coronary Drug Project) New England Journal of Medicine 303 (1980) 1038–1041
GISSI (Gruppo Italiano per lo Studio Della Stepptochinasi

Nell’Infarto Miocardico)
Lancet i (1986) 397–401

GUSTO I (Global Utilization of Streptokinase and TPA for
Occluded Arteries)

New England Journal of Medicine 329 (1993) 673–682

PARIS (Persantine Aspirin Re-Infarction Study) Circulation 62 (1980) 449–461
SOLVD (Study of Left Ventricular Dysfunction) New England Journal of Medicine 325 (1991) 293–302
TIMI (Thrombolysis In Myocardial Infarction) Circulation 76 (1987) 142–154

B Community trials

ARIC (The Atherosclerosis Risk In Communities) American Journal of Epidemiology 129 (1989) 687–702
British Male Doctors Trial British Medical Journal 296 (1988) 313–316
CABG Patch (Coronary Artery Bypass Graft surgery with/without

simultaneous epicardial Patch for automatic implantable
cardioverter defibrillator)

Circulation 94 (Suppl II) (1996) II-248–II-253

Framingham Heart Study Annals of Internal Medicine 74 (1971) 1–12
HAPPHY (Heart Attack Primary Prevention in Hypertension) Journal of Hypertension 5 (1987) 561–572
HDFP (Hypertension Detection and Follow-up Program

Cooperative Group)
Journal of the American Medical Association 242 (1979)

2562–2571
Helsinki Heart Study New England Journal of Medicine 317 (1987) 1237–1245
ISIS-2 (Second International Study of Infarct Survival) Lancet 2 (1982) 349–360
LRC-CPPT (Lipid Research Clinics Coronary Primary Prevention

Trial)
Journal of the American Medical Association 251 (1984)

351–374
MRFIT study (Multiple Risk Factor Intervention Trial) Journal of the American Medical Association 248 (1982)

1465–1477
National Cooperative Pooling Project Journal of Chronic Diseases 31 (1978) 201–306
SHEP (Systolic Hypertension in the Elderly Program) Journal of the American Medical Association 265 (1991)

3255–3264
Stanford Five-City Project American Journal of Epidemiology 132 (1991) 235–249
The Rochester Coronary Heart Disease Project Mayo Clinic Proceedings 64 (1989) 1471–1480
US Physicians’ Health Study Aspirin component New England Journal of Medicine 321 (1989) 129–135
US Nurses’ Health Study New England Journal of Medicine 313 (1985) 1044–1049
VA Cooperative Study Group on antihypertensive agents Journal of the American Medical Association 202 (1967)

1028–1034
VA Cooperative Study Group on coronary artery surgery American Journal of Cardiology 59 (1987) 1017–1023
WHI (The Women’s Health Initiative) Scheduled to end in 2007
WHO Cooperative Trial on Primary Prevention of Ischaemic Heart

Disease
Lancet 379–385 (1980)

WHO MONICA Project (MONItoring and CArdiovascular) Scheduled to end in 2000

aThis is far from being an exhaustive review of the major studies and their publications. One very good source of studies is the
Cochrane Controlled Trials Register (CCTR), which is part of the Cochrane Library (available on CD-ROM), containing more
than 70 000 controlled trials in every medical field.
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Table 3 Review of the “statistical analysis” sections of 150 randomly selected articles from
Circulation in 1995
Statistical analysis section (number of lines)a: mean = 13.27; standard deviation = 11.8;
median = 9; 25th percentile = 6; 75th percentile = 18

Percentage
Type of analysisb Frequency (n) (n/150)(%)

Mann–Whitney U tests 25 16.7
Kruskal–Wallis or Friedman nonparametric ANOVA 2 1.3
Fisher’s exact tests 12 8
Linear regression 32 21.3
Pearson coefficient of correlation 13 8.6
Spearman correlation 2 1.3
One-c and multiple-way ANOVA 54 36
Repeated measure ANOVA 26 17.3
ANCOVA 6 4
Logistic regression 16 10.6
Conditional logistic regression 1 0.6
Probit regression 1 0.6
ROC curve 2 1.3
Kaplan–Meier and log rank or Gehan tests 18 12
Cox proportional hazard 10 6.7
Time-dependent Cox proportional hazard 1 0.6
Mixed and random effect models 2 1.3
Kappa, Kendall Tau b statistic and intraclass correlation 4 2.7
McNemar and Mantel–Haenszel tests 5 3.3
Others (Kolmogorov test, Holm’s adjustment . . .) 3 2

aFor those without a “statistical analysis” section we looked at the end of the “methods” section.
bOther than t tests and chi-square tests.
cOne-way ANOVA with more than two groups.

cardiology and that most studies entail repeated
assessment of cardiac function and/or quality of life.
Moreover, several general techniques of data analy-
sis, considered important in biostatistics, are absent
from Table 3. Among these are: Generalized Esti-
mating Equations (GEE), for the analyses of con-
tinuous and/or discrete longitudinal outcomes; point
processes, for the analysis of multiple failures; sig-
nal analyses, to study, for example, cardiac rhythms
in a clinical context; and trees or neural networks,
for the development of powerful predictors or deci-
sion rules. At an even more general level, the total
absence of Bayesian methods of analysis should also
be noted.

By contrast, even a cursory look at the histori-
cal development of biostatistics in the last 50 years
shows that some important methodological advances
have originated from the need to treat CVD data.
The Framingham study [17] greatly contributed to
the development of multivariate methods for binary
longitudinal data; an example is the seminal paper

by Truett et al. [38], where logistic regression was
introduced and its relationship to discriminant anal-
ysis discussed. The association of Cornfield with
Framingham also contributed to the development of
methods for the analysis of cross-classified data (see
Contingency Table) [19].

The introduction of heart transplantation as a cur-
rent surgical procedure generated the need to account
properly for waiting time as a predictor of survival
for patients receiving a new heart. The need was
met by several papers culminating in the work by
Crowley & Hu [9], who modeled heart transplant as
a time-dependent covariate and modified the pro-
portional hazards model for survival data so that
time-dependent covariates could be properly treated.
Other advances in survival analysis have also been
stimulated by CVD data: Beck [2] looked at sur-
vival models with competing risks to analyze heart
transplant data: Senthilselvan [33] used penalized
likelihood to obtain a nonparametric, spline-based
estimator of the hazard function for heart transplant
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data, and Wassell & Moeschberger [40] and Pick-
les & Crouchley [27] studied frailty models for the
analysis of bivariate survival data.

More recently, an important application to
cardiology was at the origin of the development
of Classification and Regression Trees (CART)
(see Tree-structured Statistical Methods). Two
cardiovascular related examples were examined.
In the first, a prognostic tree was developed to
identify patients at high risk of short-term mortality
following a heart attack (less than 30 days), using 19
noninvasive, initial 24-hour variables. In the second
example, a diagnostic tree was constructed from 40
noninvasive variables to classify patients as suffering
from ischemic heart disease or not.

The advances in signal and image analysis in
cardiology have been providing new challenges to
statisticians since the 1970s. Cornfield’s name is
also associated with early work on the statistical
analysis of electrocardiograms (ECG) (see [8] and
[18] for reviews). The introduction of 24-hour blood
pressure monitoring has provided yet another poten-
tially important “signal” to analyze [21]: several
approaches have been proposed; see Turney et al.
[39] (weighted least square analysis of covariance),
Selwyn & Difranco [32] (Gaussian mixed model),
Gaffney et al. [11] (harmonic analysis),
Somes et al. [35] (Fourier analysis). As for image
analysis in cardiology, Bozzini et al. [3] studied the
problem of heart potential mapping and Puterman
et al. [28] studied the prognostic value of echocar-
diography; see also [37].

Bayesian methods, despite their appeal, are not
the most popular approach in biostatistics, due, in
part, to lack of software. This is reflected in the
area of CVDs, in spite of the central role of Corn-
field, who was a Bayesian [5]. However, some recent
works should be cited: Christensen & Johnson [4]
analyzed heart transplant survival data by a fully
Bayesian method; Sharples [34] used the Gibbs sam-
pler (see Markov Chain Monte Carlo) to estimate
the marginal posterior distribution of the transition
rates between grades of coronary heart disease and
from each grade to death; L’Italien et al. [20] devel-
oped and validated a Bayesian model for periopera-
tive cardiac risk assessment; and Spiegelhalter et al.
[36] discussed a Bayesian methodology for evaluat-
ing prior beliefs about frequencies, with application to
a case study in congenital heart diseases. Finally, Pal-
mas et al. [26] developed a Bayesian approach to the

enhancement of scintigraphic images by integration
of diagnostic information.

Beside influencing major developments in data
analysis, the problems arising from CVD studies
have also stimulated much of the methodological
advances in the design and the conduct of clinical
trials. Cornfield’s name appears again in a central
role: see [6] for a review or early contributions.
More recently, Halperin et al. [14] reviewed the
field again, identifying four areas: (i) organizational
structure for multicenter studies; (ii) design consid-
erations related to patient risk, noncompliance, lag
in treatment effect, and changing risks (the “inten-
tion to treat principle” seems to have originated
from these considerations); (iii) periodic reviews of
accumulating data (this stimulated developments of
sequential analysis methods); (iv) design and anal-
ysis of longitudinal studies. In each of these areas,
current research continues to be very active. Exam-
ples of recent contributions to (ii) are Efron & Feld-
man [10] on compliance, McMahon et al. [23] on
sample size calculations for count outcomes, and
Yateman & Skene [43] on computational inten-
sive sample size calculations in complex situations.
For some recent papers in area (iii), see Hallstrom
et al. [13] on sequential monitoring (see Data and
Safety Monitoring). For area (iv), see Hathaway &
D’Agostino [16].

The design of epidemiologic studies to assess
risk factors and community intervention effectiveness
has also spurred important methodological advances.
A primary example is another influential work by
Cornfield [7] on group randomization. More recent
examples are: Rehm et al. [30] on omitted variable
bias, Marshall & Jackson [22] on the case–crossover
design, and Schouten et al. [31] on risk and rate ratios
estimation in the case–cohort design.

Meta-analysis (the analysis of the results of sev-
eral studies for the purpose of integrating them) was
only recently introduced in the health field, and one
of the earliest applications was in the area of CVDs
(see, for example, [44]). In spite of its limitations,
including the important one linked to publication bias,
meta-analysis must be credited for having acceler-
ated the creation of national and international reg-
istries of clinical trials and epidemiologic studies,
published or not, such as those of the Cochrane
Controlled Trials Register (see Cochrane Collabo-
ration).
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Future Perspectives

The increasing computerization of biomedical and
health-related data is introducing new and unforeseen
developments in the study of CVDs, as it is in other
areas of human activity. Availability of data has gen-
erally driven innovation in data analytic methodol-
ogy. Since CVDs constitute the most important health
burden in countries where computerization is most
advanced, they can be expected to provide the most
important single source of problems around which
new methodology will be developed. The type of
data that are being collected in the course of clini-
cal trials, epidemiologic studies and, indeed, in daily
medical practice and health care delivery, will most
likely determine the future directions of progress in
biostatistics.

What are the general characteristics of CVD data?
Perhaps the first is the abundance of subjects. We
are increasingly faced with situations in which sam-
ple size is not an issue. Instead, the problem is to
extract reliable information from large quantities of
data, with only vague and unstructured questions as
a guide. Whether studying the prognosis for patients
with a first major cardiovascular episode, or trying
to understand the role of multiple risk factors in
determining the development of CVD, the analyst
is faced with the problem of constructing from data
a predictor that is not only accurate, but also inter-
pretable in the light of biomedical concepts. Tradi-
tional statistical techniques, which excel in obtaining
reasonable answers to extremely pointed questions,
are not adequate for the task. More promising are
recent techniques such as the already mentioned
CART, generalized additive modeling, and MARS
(multivariate adaptive regression splines) which go
under the general term of adaptive model building.
These techniques aim at constructing prediction mod-
els directly from the data by means of flexible, data-
dependent strategies. They are similar to methods like
induction trees and neural networks, independently
developed by researchers in machine learning and
other areas of artificial intelligence (AI). Indeed, the
exchanges between statisticians and AI researchers
seem to be very fruitful, as witnessed, for example,
by Michie et al. [24].

A second characteristic of CVD data is the multi-
plicity of sources. It is increasingly common to pool
data from several large studies or private practices to

find common features or in an attempt to resolve con-
troversies arising from discordant findings. To meet
this challenge, the establishment of a Bayesian per-
spective in cardiology would be of great utility. For
instance, meta-analysis would benefit from such a
perspective, which would offer a general framework
within which various approaches could be compared.

A third characteristic of CVD data is their increas-
ing complexity. For example, as prognosis improves,
both outcome and predictor variables will have a
richer longitudinal structure, since they are collected
from subjects on repeated occasions, e.g. in the course
of clinical trials or prevention studies. Further devel-
opment in the area of longitudinal modeling will
be necessary to analyze repeated measurements of
continuous and discrete variables. Similarly, the anal-
ysis of event history data will require increasingly
sophisticated application of the theory of point pro-
cesses. Also, as the instrumentation for monitoring
heart rhythms and blood pressure over time becomes
accessible at relatively low cost, data of the future
will include more and more signals, i.e. continuous
functions of time, one or more for each of a large
number of subjects. To treat such data without over-
simplification will require major developments in the
new research area known as functional data analy-
sis. Even more complex data are those that take the
form of functions on two- or three-dimensional space,
such as images resulting from echocardiography or
magnetic resonance. The theory of random fields
has been recently applied to the analysis of medi-
cal images [42]. This could be the opening of an
extremely fruitful new direction for research in bio-
statistics with important applications in CVDs.

Clearly, in the future, we can expect to see an
increasing cooperation between clinical and statisti-
cal sciences toward the solution of major problems
in the area of CVDs. It is not unreasonable to hope
that the result of this cooperation will be a substan-
tial alleviation of one of the major health burdens
afflicting human populations.
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Case Fatality

The concept of case fatality refers to patients with
a common defined index disease or other medical
problem, not to healthy people. Case fatality indicates
how serious a disease condition is in causing death
to the patients, usually within a defined period of
time. It is common to hear about case fatality without
reference to the time period of follow-up of the
patients, but this should be avoided for reasons of
ambiguity. There can, nevertheless, be applications in
which the follow-up time may be virtually zero as, for
example, with heart attacks or automobile accidents.

Technically, case fatality is expressed as the pro-
portion of the number of patients dying in the follow-
up interval out of all patients under observation. This
concept is useful only under a fairly complete follow-
up, where the proportion of persons lost to follow-up
or otherwise withdrawn alive is small. Moreover,
competing risks of death can, in addition to the
index disease, cause deaths among the patients. If
the follow-up period is short, deaths due to com-
peting risks unrelated to the index disease may be

uncommon, and the case fatality indeed reflects the
seriousness of the disease in an adequate way.

Conceptually, case fatality may be seen as a com-
plement to survival. Thus, the methods of survival
analysis can be employed in assessing case fatality.
For example, the proportion of survivors after a one-
year follow-up among patients diagnosed in Finland
in 1967–1974 with cancer of the tongue was 64%.
The case fatality within the first year was thus 36%.

The models in survival analysis generally are
based on assumptions concerning the risk of dying
for the patients. Thus, it would also be natural to
express case fatality in terms of fatality or lethality
rate of the disease by defining any death or death
due to index disease as the main outcome event in
survival analysis. This rate is the incidence of death
or death due to disease and as a rate is calculated as
the number of outcome events in the follow-up period
divided by the appropriate person-time denominator
(see Person-years at Risk). Although this may sound
theoretically appealing, a conversion to a proportion-
type measure produces a quantity with an easier
numerical interpretation for clinical medicine.
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Case Mix

Case mix refers to the characteristics of the patients
and/or the medical problems treated by a provider,
a term we will use generically to refer to any of
the following: an individual clinician, a health care
delivery “team” (such as a hospital or clinic or
group of hospitals or clinics), or an entire health
care delivery system (such as an HMO or a statewide
program of subsidized care).

Utilization rates reflect case mix. For example,
hernias do not require the same resources as heart
attacks, and even among heart attack patients, need
may substantially depend upon patient age, other
medical problems (comorbidities) present, and the
severity of the heart attack itself (disease-specific
severity).

An informal sense of case mix is conveyed via
distributions of patient characteristics or summary
statistics (such as percentage of cases with diabetes,
mean and standard deviation of patient age).

Some case-mix classification systems assign each
case (e.g. an individual hospital admission, or a

person enrolled in a health care delivery system)
to one and only one category, which is relatively
homogeneous with respect to the expected level of
health care need. To facilitate comparisons of case
mix across groups of cases (e.g. admissions occurring
at distinct hospitals, or the patient panels of different
providers), each category may be assigned a “weight”
indicating the expected utilization of these cases in
comparison with an average case. Thus, the weight
1.00 is used for average cases, while a weight of
1.10 indicates 10% higher expected utilization. Such
a classification of hospital admissions into diagno-
sis related groups (DRGs) is used to calculate the
payment for an individual Medicare hospital admis-
sion, proportional to its DRG weight. (see Health
Care Financing) Some authors equate a hospital’s
case mix with its average DRG weight.

Differences in case-mix can be large and are
addressed using risk adjustment.

ARLENE S. ASH



Case Series, Case Reports

Case reports are used by clinicians to describe
responses to treatment, among other things. Epidemi-
ologists may rely on case reports to find clues to
disease etiology. Case reports can be very informa-
tive for rare diseases. Such reports identified chim-
ney sweeping as a risk factor for scrotal cancer [1]
in 1775, and many modes of transmission of the
human immunodeficiency virus were identified in
the early 1980s from case reports of the Acquired

Immune Deficiency Syndrome (AIDS). For more reli-
able inferences, however, it is usually necessary to
compare rates of exposure in cases with rates of
exposure in disease-free controls to develop etiologic
evidence (see Case–Control Study).
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Case–Cohort Study

The case–cohort design is a method of sampling from
an assembled epidemiologic cohort study or clini-
cal trial in which a random sample of the cohort,
called the subcohort, is used as a comparison group
for all cases that occur in the cohort. This design is
generally used when such a cohort can be followed
for disease outcomes but it is too expensive to col-
lect and process covariate information on all study
subjects. Though it may be used in other settings,
it is especially advantageous for studies in which
covariate information collected at entry to the study
is “banked” for the entire cohort but is expensive to
retrieve or process (see examples below) and mul-
tiple disease stages or outcomes are of interest. In
such circumstances, the work of covariate processing
for subcohort members can proceed at the beginning
of the study. As time passes and cases of disease
occur, information for these cases can be processed
in batches. Since the subcohort data are prepared
early on and are not dependent on the occurrence of
cases, statistical analyses can proceed at regular inter-
vals after the processing of the cases. Furthermore,
staffing needs are quite predictable. Motivated by the
case–base sampling method for simple binary out-
come data [15, 23], Prentice described the design and
a pseudo-likelihood method of analysis (see below)
for the case–cohort design.

Design

The basic components of a case–cohort study are
the subcohort, a sample of subjects in the cohort,
and nonsubcohort cases, subjects that have had an
event and are not included in the subcohort. The
subcohort provides information on the person-time
experience of a random sample of subjects from the
cohort or random samples from within strata (see
Stratification) of a confounding factor. In the lat-
ter situation, differing sampling fractions could be
used to align better the person-time distribution of the
subcohort with that of the cases. Methods for sam-
pling the subcohort include sampling a fixed number
without replacement [26] (see Sampling With and
Without Replacement) and sampling based on inde-
pendent Bernoulli “coin flips” [34] (see Binomial
Distribution). The latter may be advantageous when

subjects are entered into the study prospectively; the
subcohort may then be formed concurrently rather
than waiting until accrual into the cohort has ended
[30, 34]. Simple case–cohort studies are the same as
case–base studies for simple binary outcome data.
But, in general, portions of a subject’s time on study
might be sampled. For example, the subcohort might
be “refreshed” by sampling from those remaining on
study after a period of time [26, 36]. These subjects
would contribute person-time only from that time for-
ward. While the subcohort may be selected based on
covariates, a key feature of the case–cohort design
is that the subcohort is chosen without regard to fail-
ure status; methods that rely on failure status in the
sampling of the comparison group are case–control
studies.

Examples

Study of Lung Cancer Mortality in Aluminum
Production Workers in Quebec, Canada. Arm-
strong et al. [1] describe the results of a case–cohort
study selected from among 16 297 men who had
worked at least one year in manual jobs at a large alu-
minum production plant between 1950 and 1988. This
study greatly expands on an earlier cohort mortality
study of the plant, which found a suggestion of
increased rates of lung cancer in jobs with high expo-
sures to coal tar pitch [12]. Through a variety of
methods, 338 lung cancer deaths were identified. To
avoid the expense associated with tracing subjects
and abstraction of work records for the entire cohort,
a case–cohort study was undertaken. To improve
study efficiency a subcohort of 1138 subjects was ran-
domly sampled from within year-of-birth strata with
sampling fractions varying to yield a similar distribu-
tion to that of cases. This was accommodated in the
analysis by stratification by these year-of-birth cate-
gories. The random sampling of subcohort members
resulted in the inclusion of 205 cases in the subcohort.
Work and smoking histories were abstracted for the
subcohort and the additional 133 nonsubcohort cases.
Cumulative exposure to coal tar pitch volatiles was
estimated by linking worker job histories to measure-
ments of chemical levels made in the plant using a
“job-exposure matrix”. The analyses confirmed the
lung cancer–coal pitch association observed in the
earlier study and effectively ruled out confounding
by smoking.
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Women’s Health Trial. To assess the potential
health benefits of a low fat diet, a randomized trial of
women assigned to low fat intervention and control
groups has been undertaken. Of particular interest is
the effect of this intervention on the risk of breast
cancer. The study, as described in Self et al. [30],
includes a cohort of 32 000 women between ages
45 and 69 whose percent calories from fat is greater
than the median and who have at least one of a list
of known risk factors for breast cancer. The study
will involve 20 clinics across the US for a period
of 10 years of follow-up. At two-year intervals,
each participant will fill out four-day food records
and food frequency questionnaires and blood will
be drawn and stored. While evaluation of the inter-
vention will be based on the full cohort, questions
that require abstraction and coding of the question-
naires and blood lipid analyses are being addressed
in a case–cohort study with a 10% sample serving as
the subcohort. It was calculated that, relative to the
entire cohort, this sample avoids about 80% of the
cost of the analyses requiring these data with only
a modest reduction of efficiency. The subcohort can
also be used for making other comparisons between
intervention and control groups. For example, the
case–cohort sample could be used to investigate the
joint relationship of blood hormone and nutrient lev-
els and dietary intakes to breast cancer risk. Also,
questions relating to other outcomes, such as cardio-
vascular disease, could be explored using the same
subcohort as the comparison group, although addi-
tional data processing would be required for cases
that occur outside the subcohort.

Statistical Analysis

Several methods have been developed to analyze
case–cohort samples. Essentially, each of the meth-
ods available for the analysis of complete cohort data
has an analog for the case–cohort sample. For point
estimation of rate ratio parameters, the likelihood for
full cohort data applied to the case–cohort data yields
a valid estimator. However, estimation of the vari-
ance of point estimates, or tests of hypotheses (see
Hypothesis Testing), requires adjustment to the stan-
dard full cohort variance estimators, as these will be
too small. For likelihood-based methods, case–cohort
sampling induces a covariance between score terms
so that the variance of the score is given by Σ + ∆,

where Σ is the full cohort score variance and ∆ is
the sum of the covariances between the score terms.
Since the subgroup used to compute the score terms
has less variability than the full cohort, this covari-
ance is positive. This leads to a larger variance for the
parameter estimates, taking into account the subco-
hort sampling variability [19, 26, 29, 36]. Estimation
of absolute rates or risk requires incorporation of
the subcohort sampling fraction (or fractions) into the
estimator.

Pseudo-likelihoods for Proportional Hazards
Models

Assume the underlying model for disease rates has a
multiplicative form:

λ[t, z(t); β0] = λ0(t)r[z(t); β0],

where r[z(t); β0] is the rate ratio of disease for an
individual with covariates z(t) at time t and r(0; β) =
1, so λ0(t) is the rate of disease in subjects with z =
0. The pseudo-likelihood approach described by Pren-
tice [26] parallels the partial likelihood approach to
the analysis of full cohort data. We start with the
full cohort situation and then return to the analy-
sis of the case–cohort sample. The partial likelihood
approach is illustrated in Figure 1 for a small hypo-
thetical cohort study of 15 subjects. Each horizontal
line represents one subject. A subject enters the study
at some entry time, is at risk, denoted by the horizon-
tal line, over some time period, and exits the study at
some exit time. A subject may contract or die from
the disease of interest, and thus be a failure (rep-
resented by “•” in Figure 1 or be censored, i.e. be
alive at the end of the study, died never having had
the disease of interest, or be lost to follow-up. At
each failure time a risk set is formed that includes
the case; namely, the failure at that failure time, and
all controls, namely, any other cohort members who
are at risk at the failure time (these are denoted by a
“|” in Figure 1). The partial likelihood for full cohort
data is based on the conditional probabilities that
the case failed given that one of the subjects in the
risk set failed at that time. With rk the rate ratio and
Yk the “at risk” indicator for subject k at the failure
time, and rcase the rate ratio associated with the case,
the full cohort partial likelihood is

∏

failure times

rcase∑

case and all controls

Ykrk

.
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Failure

At risk

Subcohort member

Time

Figure 1 Prentice pseudo-likelihood approach to the anal-
ysis of case–cohort data. Pseudo-likelihood contributions
are conditional probabilities based on the case and the sub-
cohort members at risk at the failure time

Now in a case–cohort sample, covariate information
is obtained for the subcohort and all nonsubcohort
failures and only these subjects can contribute to
the analysis. Prentice’s pseudo-likelihood approach is
illustrated in Figure 1 in which subcohort members
are denoted by a thick horizontal line. For each
failure, a sampled risk set is formed by the case
and the controls who are in the subcohort (those
with thick lines and a “|” at the failure time). As
the figure indicates, subcohort members contribute
to the analysis over their entire time on study, but
the nonsubcohort failures contribute only at their
failure times. Analogous to the full cohort partial
likelihood, a pseudo-likelihood contribution is based
on the conditional probability that the case fails given
that someone fails among those in the sampled risk
set. The pseudo-likelihood is then the product of such
conditional probabilities over failure times:

∏

failure times

rcase∑

case and subcohort controls

Ykrk

, (1)

where the sum in the denominator is over the sub-
cohort members when the case is in the subcohort

and over the subcohort and nonsubcohort case when
the case is not in the subcohort. This “likelihood”
has the property that the expected value of the score
is zero at β0 but, as discussed above, the inverse
information does not estimate the variance of the
maximum pseudo-likelihood estimator. Prentice pro-
vided an estimator of the covariance ∆ from the
covariance between each pair of score terms, condi-
tional on whether or not the failure occurring later in
time was in the subcohort [17]. This is a rather com-
plicated expression and only one software package
has implemented it (Epicure, Hirosoft International
Corp., Seattle, WA). Development of other methods
of variance estimation has been an area of much
research. These include “large sample” [29], boot-
strap [37], “empirical” [9, 28], and influence function
based [2, 21] methods. Simpler alternatives are the
“asymptotic” [29] and the “robust” estimators [2, 21,
22]. Either may be computed by the simple manip-
ulation of delta beta diagnostic statistics, which are
an output option in many software packages [31].
The asymptotic estimator requires the sampling frac-
tions, while the robust version estimates these from
the data. Other methods of variance estimation have
been proposed [9, 28, 37].

Absolute Risk Estimation

Estimation of the cumulative baseline hazard and
related quantities parallel the nonparametric estima-
tors based on the Nelson–Aalen estimator for full
cohort data. Since the subcohort is a random sam-
ple from the full cohort, a natural estimator of the
cumulative baseline hazard

∫ t

0 λ0(u) du is given by
summing contributions for failure times up to t of
the form:

1

1/f
∑

subcohort

rk(β̂)
,

where f is the proportion of the cohort in the sub-
cohort [26, 29]. Again, adjustment of the cohort
variance estimator is required. Cause-specific base-
line hazard estimates for multiple outcomes have also
been developed [25].

Other estimation methods and further
developments

Alternative pseudo-likelihoods for the estimation of
rate ratios of a similar form to (1) have been pro-
posed. These involve differential weightings of the
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rk terms on the basis of the sampling fractions of
those associated with subject k [2, 13, 29]. Itera-
tive mean score methods have been proposed, which
may yield more efficient estimators than (1) [8].
A method for analysis of generalized case–cohort
sampling imputes rate ratio values for each cohort
member using a “local averaging”. Theoretically, this
method is shown to have a superior efficiency to
other methods, with methods for making the estima-
tor optimal. Further research is needed to ascertain
whether the increases are of practical importance.
Methods for estimating standardized mortality ratios
(see Standardization Methods) with a case–cohort
sample have been described [35]. These involve
“boosting up” the subcohort person-time in each age-
year-exposure group “cell” by the inverse sampling
fraction. Methods of variance adjustment are also
discussed. When disease is rare and there is little cen-
soring, methods of analyses for case-base studies with
simple binary outcome data [23] will approximate the
failure time analyses (e.g. [11, 17, 27, 33]). When
exposure (or treatment) information is available on
cohort members and additional information is to be
collected for the case–cohort sample, an exposure-
stratified subcohort may offer substantial efficiency
advantages over random sampling. The analysis of
this design uses a weighted variation of the pseudo-
likelihood (1) and a generalization of the asymptotic
variance estimator has been described [4].

Asymptotic Properties and Efficiency

Self & Prentice [29] give conditions for the con-
sistency and asymptotic normality of the Prentice
pseudo-likelihood for simple (stratified) case–cohort
sampling. They show that the asymptotic variance
of the maximum pseudo-likelihood estimator of rela-
tive risk parameters has the form Σ−1 + Σ−1∆Σ−1,
where Σ is the full cohort variance of the score, and
they provide a formula for the asymptotic sampling-
induced covariance ∆. This covariance depends on
the censoring distribution even when β0 = 0, so
that efficiencies relative to the full cohort analysis
must take the censoring distribution into account.
Assuming a cohort with complete follow-up over a
fixed observation period, an exponential relative risk
model for a single binary covariate, a subcohort that
is a simple 100α% random sample of the cohort, and
probability of failure during the observation period

of d, they calculate the asymptotic relative effi-
ciency as

{
1 + 2

1 − α

α

[
1 + 1 − d

d
log(1 − d)

]}−1

.

A number of papers have derived the asymptotic vari-
ance and semiparametric efficiency bounds for the
case–cohort design [7, 8, 37, 38]. These indicate
that, although the pseudo-likelihood (1) is not gen-
erally semiparametric efficient, the potential loss of
efficiency appears to be small, unless disease is com-
mon or the size of the subcohort is much smaller than
the number of cases.

Comparison with Nested Case–Control
Sampling

Nested case–control and case–cohort methods are
the two main approaches to sampling from assembled
cohort studies. The former takes a retrospective point
of view by sampling time-matched controls after the
outcome (failure) occurs. In contrast, case–cohort
sampling is prospective and unmatched in the sense
that the comparison group, the subcohort, is picked
without regard to failure status. Considerations for
choosing between the designs have been the subject
of some interest [10, 18, 20, 24, 26, 32, 34]. We
summarize some of these considerations below.

Prospective Studies

If the study is retrospective and has been assem-
bled, the major consideration in choosing between
sampling designs is the statistical efficiency for the
proposed analyses and the information to be collected
on the sample, as this will translate quite directly
into cost. If the study is prospective in that the study
group will be assembled as time passes and out-
comes occur in the future, the decision about which
design to choose will depend on whether it is advan-
tageous to have a comparison group early on in the
study or whether it is better to wait until near the
end. If the sample is to be chosen at the beginning,
or concurrent with accrual into a prospective study,
the case–cohort study has a number of advantages.
First, as discussed above, processing of covariate
information for the subcohort may proceed early on
in the study during the accrual period. During the
follow-up period, data for cases arising outside the
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subcohort could be processed in batches at various
times. A nested case–control study requires wait-
ing until cases occur and controls are selected for
them, delaying the processing of covariate informa-
tion until later in the study than would be required in
the case–cohort design. Thus, the case–cohort study
can potentially be completed sooner than the nested
case–control study. Secondly, although subcohort
members should not be treated differently from cases
occurring outside the subcohort, the subcohort can
serve as a sample for assessing compliance, or qual-
ity control, as the study proceeds. However, a nested
case–control sample may be advantageous if it is
important that processing of information be “blinded”
(see Blinding or Masking) to case-comparison group
status. Since case–control covariate information can
be processed simultaneously, potential information
bias can be avoided. This is not always possible with
a case–cohort sample when subcohort data are pro-
cessed early in the study.

Statistical Efficiency

Comparison of statistical efficiency for studying a
single outcome has been a topic of much research.
It has been conjectured that the case–cohort design
should be more efficient than the nested case–control
design. This belief has been based on a compari-
son of the contribution of a failure to the pseudo-
likelihood (1) with that of the corresponding nested
case–control contribution. The former uses all sub-
cohort members at risk at the failure time, whereas
the latter uses only the controls selected for that case,
usually resulting in the case–cohort having many
more “controls per case”. In fact, analytic and empir-
ical efficiency comparisons indicate that in most sit-
uations encountered in practice, nested case–control
sampling will be more efficient than the case–cohort,
although often not by a large amount [18, 19, 34,
36]. The reason for the lower-than-anticipated relative
efficiency is that the large number of controls per case
in the case–cohort sample, which by itself increases
efficiency, is offset by the sampling-induced positive
correlation in score terms (see above), which lowers
efficiency. The nested case–control design has rela-
tively few controls per case, but there is no sampling-
induced correlation between score terms [19].

Multiple Disease Outcomes

Since the subcohort is chosen without regard to fail-
ure status, it may serve as the comparison group
for multiple disease outcomes. This would seem to
be a great advantage over the nested case–control
design, since controls are selected for specific cases.
In fact, there are few published studies that exploit
this feature of the design. Nevertheless, the most
cost-effective use of the case–cohort design would
seem to be to study a single set of explanatory fac-
tors and multiple outcomes. Thus, it seems likely
that the case–cohort design may have application in
clinical investigations in which researchers are often
interested in multiple-event outcomes such as relapse,
local and distant recurrence, and death as a function
of a single set of treatment and prognostic factors. If,
for instance, the prognostic factors involve expensive
laboratory work, a case–cohort sample would be a
natural way to reduce costs associated with the labo-
ratory work, but still allow a full analysis of multiple
endpoints. Using the same comparison group will
result in correlation between estimates of the same
parameter for different endpoints. Appropriate meth-
ods for the variance adjustment and hypothesis testing
with multiple outcomes have been developed [25].

Matching

Often, it is desirable to match (see Matching) com-
parison subjects closely on certain factors, either to
control for confounding or so that information of
comparable quality may be obtained. For instance, it
is common to compare a case with controls close in
year of birth to adjust for secular trends in behav-
ior. Fine matching, and matching based on time-
dependent factors is accommodated in a natural way
in a nested case–control sample. Matching may only
be done crudely for case–cohort sampling and must
be based on factors available at the time the subcohort
is sampled.

Analysis Flexibility

The nested case–control design is inherently associ-
ated with methods for analysis of cohort data based
on semiparametric proportional hazards models.
Estimation of rate ratio parameters is based on par-
tial likelihood methods and estimation of absolute-
risk-related quantities is based on the Nelson–Aalen
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estimator of the cumulative hazard. (One interest-
ing exception to the restriction to proportional haz-
ards models is estimation of excess risks using the
Aalen linear model [3].) The case–cohort design is
not associated with any particular model or method
of analysis. Thus, in theory, “Poisson likelihood”
or “grouped time” case–base analysis approaches,
as well as the risk-set-based pseudo-likelihood (1),
may be used for parameter estimation. Examples
of estimation of parameters in nonproportional haz-
ards models from case–cohort data include the addi-
tive hazards, proportional odds, and transformation
regression models [5, 6, 14]. For a subcohort that
is a simple random sample, changing time scales
and analysis stratification variables poses no difficul-
ties in the analysis. Since the nested case–control
sample is bound to the risk set defined by the time
scale and stratification variables used in matching
controls to failures, these must be fixed in the anal-
ysis. However, inference from case–cohort samples
is complicated by the need to adjust standard errors
and test statistics for the sampling-induced covari-
ance. Further, for testing, adjusted Wald and score
tests are adapted in a natural way using the variance
estimator [31], but a “pseudo-likelihood ratio test” is
not available.

Computation

Standard conditional logistic regression software, for
the analysis of matched case–control data, may be
used to analyze rate ratio parameters from nested
case–control studies (see Software, Biostatistical).
Furthermore, if the numbers of subjects in the risk
sets are known, absolute risk estimators and standard
errors are relatively simple to compute [16]. Since the
latter are based on standard nonparametric cumulative
hazard and survival estimators, standard software for
the analysis of full cohort data may be “tricked”
into computing the nested case–control estimators.
For case–cohort samples, standard Cox regression
software may be used to estimate parameters but,
as discussed above, special software is needed to
estimate corresponding variances.
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Case–Control Study,
Hospital-based

A hospital-based case–control study is a case–con-
trol study in which cases with a given disease
are selected from persons with that disease in a
given hospital or group of hospitals, and controls
are patients with other diseases from those hospitals.
Hospital-based case–control studies are relatively
convenient to conduct and offer some advantages,
compared with population-based case–control stud-
ies. First, a higher proportion of persons invited to
join a hospital-based case–control study may agree
to participate, especially when biologic samples such
as blood specimens are required. This reduces the
chance for one type of selection bias known as non-
response bias. Secondly, cases and controls with
other diseases may provide a similar quality of infor-
mation when asked about previous exposures, thus

reducing the chance of recall bias compared with
population-based studies in which most controls are
healthy.

There are two serious sources of bias that may
affect hospital-based case–control studies and that
are not present in population-based case–control
studies. First, the pattern of referral of cases to a
hospital may differ from the pattern of referral for
persons with control diseases, resulting in selection
bias because the controls are not representative of
the source population from which the cases arise.
Secondly, the exposure under study may affect the
risk of the control conditions, causing a distortion of
the relative risk.

(See also Bias in Case–Control Studies; Bias in
Observational Studies; Bias, Overview)

MITCHELL H. GAIL



Case–Control Study,
Nested

A nested case–control study is comprised of subjects
sampled from an assembled epidemiological cohort
study in which the sampling depends on disease sta-
tus. Nested case–control studies are generally used
when disease is rare and, at the minimum, disease
outcome has been obtained for all cohort subjects, but
it is too expensive to collect and/or process informa-
tion on covariates of interest for the entire cohort. By
sampling a small proportion of the nondiseased sub-
jects, there is high cost efficiency for assessing asso-
ciations between exposures and disease. “Standard”
case–control studies, the most common study design
in epidemiologic research, may often be viewed as
nested case–control studies in which a portion of
underlying cohort (usually among the nondiseased)
has not been identified [15]. The distinction between
standard and nested case–control studies is often
ambiguous and, in fact, analysis methods appro-
priate to standard case–control studies are directly
applicable to nested case–control studies. However,
depending on the amount of information available in
the assembled cohort, there may be a much wider
range of design and analysis options for nested
case–control studies than for a standard case–control
study. So, confounder information available in the
cohort data is often used to select controls that closely
match cases. Also, unlike standard case–control stud-
ies, absolute risk may often be reliably estimated.
Further, it is often possible to compare characteris-
tics of participants to nonparticipants to assess the
potential magnitude of selection or information bias
(see Bias in Case–Control Studies). The advan-
tages of nesting a case–control study in a cohort
include convenience, cost-efficiency, high validity,
and analytic flexibility, for example, [15, 16, 21,
30, 32, 35, 42, 59]. Methodologically, the paradigm
of nested case–control sampling is prospective, with
disease outcome random with probability dependent
on covariates. In contrast, the paradigm for standard
case–control studies is retrospective, with covariates
random with distribution depending on disease status.
To the extent that standard case–control studies can
be viewed as having been sampled from a (perhaps
poorly defined) cohort, nested case–control design

and analysis developments apply to case–control
studies generally.

Data Model for Nested Case–Control
Studies Based on Risk Sets

Cohort data arises by observing a population for
disease occurrence over some period of time. So, it
is natural to represent nested case–control studies in
relation to cohort generation. Figure 1 represents the
basic features of a small hypothetical cohort study of
14 subjects. Each subject enters the study at some
entry time, is at risk, denoted by the horizontal line,
over some time period, and exits the study at some
exit time. A subject may contract or die from the
disease of interest, and thus be a failure (represented
by “•” in Figure 1) or be censored, that is be alive
at the end of the study, died never having had the
disease of interest, or be lost to follow-up.

The link to nested case–control studies is in the
organization of the cohort data into risk sets [19].
At any time, the risk set is defined to be all subjects
under observation. Risk sets may be defined at single
points in time, continuous time risk sets as in Figure 2
or in time intervals, grouped time risk sets as in
Figure 3. Risk set members are identified by the “|”
at the given time (or time interval). Continuous and
grouped risk sets have the structure of individually
matched (see Matching) or unmatched case–control
sets, respectively. Cases in the risk set are failures at
the failure time or time interval, while controls are
the nonfailures. The nested case–control sample is
drawn by sampling from the controls (and possibly
from the cases) in the risk sets. Individually matched
nested case–control studies arise by sampling from
continuous time risk sets at the failure times, while
unmatched nested case–control studies arise from
sampling from the grouped time risk sets. These are
illustrated in Figures 2 and 3, in which Ž represent
sampled controls.

Examples

Occupational Cohort Study of TCDD Exposure and
STS and NHL. The International Agency for the
Research of Cancer (IARC) maintains an interna-
tional register of 21 183 workers exposed to phe-
noxy herbicides, chlorophenols, and dioxins [52]. In
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28 32 36 41 46 Age

Figure 1 Cohort of 14 subjects. Each line represents the
time on study for one subject. Subjects can either fail
(represented by the •) or be censored (no •)

28 32 36 41 46 Age

Figure 2 Continuous time risk sets at each failure time
are represented by the “|” marks. The failure is the case
in the risk set and the nonfailures are the controls. Single
controls, sampled for each case are represented by the Ž

a cohort mortality study analysis, standardized mor-
tality ratios (SMRs) (see, Standardization Methods)
of 1.96 and 1.29 were found for soft-tissue sarcomas
(STS) and non-Hodgkin’s lymphoma (NHL), respec-
tively, comparing exposed to unexposed workers. In

25 40 55 Age

Figure 3 In this example, grouped time risk sets for 25
to 39 and 40 to 55 age groups are defined as subjects that
are on study for any portion of the age interval and are
indicated by the “|” marks. Nested case–control sampling
in grouped time yields an unmatched case–control study
structure with multiple cases per set (the •s) and sampled
controls (indicated by Žs). Illustrated here, the number of
sampled controls sampled to the number of cases

order to explore the effect of exposure to various
agents more fully, a nested case–control study was
undertaken in which for each of the 11 STS and 32
NHL cases, five controls were sampled from those
from the same country, of the same gender, and
same year of birth as the case [27]. For each subject
in the nested case–control study, industrial hygien-
ists assessed the degree of exposure to 21 chemicals
or mixtures based on company records. Increasing
trends of risk of STS and NHL were observed for a
number of phenoxy herbicides including 2,4D, and
TCDD. This study illustrates a number of poten-
tial advantages of nested case–control studies. First,
having already assembled the workers cohort, the
nested case–control study was a natural follow-up
design in order to obtain more detailed exposure
information. Second, the workers cohort has much
higher prevalence of TCDD exposure than general
population. Thus, the case–control study selected
from this cohort will have much higher statistical
power to investigate TCDD (and other chemical)
associations with STS and NHL than a study of
similar size from the general population. Third, on
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the basis of the (m − 1)/m relative efficiency rule
[16, 58], this nested case–control study of 258 sub-
jects provides 5/6 = 83% efficiency relative to an
analysis of entire cohort of 21 183 for testing associ-
ations between single exposures and disease. Finally,
because exposure assessment did not require contact
with study subjects, recall and selection bias (see
Bias in Case–Control Studies), common problems
in standard case–control studies, were avoided.

Nested Case–control Study of Hypertensive Drugs
and the Risk of Myocardio-infarction (MI) within a
HMO Cohort. In this study, the cohort is defined
to be patients within the Group Health Cooperative
of Puget Sound who were prescribed hypertensive
medication for some time during July 1989 through
December 1993 [48]. Failures in the cohort were 623
MI cases. Grouped time risk sets were formed on
the basis of calendar year and controls were ran-
domly sampled (about 3 times the number of cases)
within matching strata based on 10 year age group
and gender. For each case–control study member,
the types of antihypertensive drugs used were ascer-
tained through computerized records, chart review,
and interview. It was found that risk of MI was 60%
higher among calcium channel blocker users com-
pared to that among users of either diuretics alone
or β-blockers, a finding that has resulted in a change
in treatment strategy. Nesting this case–control study
within the HMO cohort had similar advantages to the
IARC study. First, the HMO computerized database
allowed the identification of cohort members and MI
outcome information in a fairly efficient way. There
was a high participation rate and, since the type and
period of use of drugs could be assessed using the
pharmacy database, this information is not subject to
information bias.

Residential Magnetic Field Exposure and Breast Can-
cer. The Multiethnic Cohort is a large population-
based cohort from Los Angeles and Hawaii of men
and women aged 45 to 74 at enrollment between
1993 and 1996. There were 52 112 female Los Ange-
les County residents who enrolled in the cohort
and completed a self-administered questionnaire that
included questions about menstrual and reproduc-
tive history, use of oral contraceptives and hormone
replacement therapy, diet, and physical activity. For
the nested case–control study, 751 breast cancer
cases diagnosed by 1999 were ascertained through

the National Cancer Institute’s Surveillance and End
Results (SEER) registry in Los Angeles (see Cancer
Registries). Because the study duration was rela-
tively short, the entire study period was considered
as a single grouped time risk set. Controls were
approximately frequency matched, according to the
expected number of breast cancer cases, within self-
reported ethnicity. Information on traditional breast
cancer risk factors was obtained from the cohort base-
line questionnaire (100% participation), and each case
or control was invited to have an in-home interview
about magnetic field exposures (75% participation).
Using the baseline residence for questionnaire par-
ticipants, wire code was obtained for 99% of all
case–control subjects, but because permission was
required, magnetic field measurements were obtained
in homes of only 44% of subjects. No association
between magnetic field measures or wire-code and
breast cancer were found [36]. Although covariate
information obtained through the interview would be
subject to the same information biases as a stan-
dard case–control study, there was no selection or
information bias for the baseline questionnaire and
wire-code data. Further, potential bias, in particular,
with regard to the missing patterns for magnetic field
measurements, could be assessed using the other vari-
ables in the baseline questionnaire.

Nested Case–control Study of the Colorado Plateau
Uranium Miners. The Colorado Plateau uranium
miners cohort data were collected to assess the effect
of occupational radon exposure on the mortality rates
(e.g. [25, 39, 41]) (see Radiation Epidemiology).
The cohort consists of 3347 Caucasian male miners
who worked underground at least one month in the
uranium mines of the four-state Colorado Plateau area
and were examined at least once by Public Health
Service physicians between 1950 and 1960. These
miners were traced for mortality outcomes through
December 31, 1982, by which time 258 lung cancer
deaths had occurred. Miner radon exposure histo-
ries were estimated using job histories and mine
radon levels. Although radon and smoking infor-
mation are available on all cohort members, nested
case–control samples with as many as 40 controls
per case have been used to reduce the computational
burden required to fit complex models exploring the
timing of exposures and lung cancer mortality rates
[24, 34, 57]. Each of the risk sets was formed by all
those who were alive and had entered the study by the
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age of death of the case and had attained that age in
the same five-year calendar period as the case’s date
of death (matching by calendar time). The analyses
based on the nested case–control data closely approx-
imates the corresponding Cox regression, but fitting
the models required a fraction of computing time; in
the case of the latency models, this meant a reduc-
tion from a few days to less than an hour. Further,
in the nested case–control data, radon and smoking
summaries need only be computed at a fixed (fail-
ure) time rather than dynamically in a Cox regression.
This makes it much easier to identify data errors and
check exposure calculation routines. Absolute risk of
lung cancer death, given radon and smoking histories,
were estimated from nested case–control data from
this cohort [29].

Statistical Analysis Based on the
Proportional Hazards and Odds Models
for Sampled Risk Set Data

Any of the analysis methods available for “stan-
dard” case–control studies, including conditional
and unconditional logistic regression and Mantel–
Haenszel methods may be used to estimate rate or
odds ratios from a nested case–control study when
the sampling is “simple”. Here, we describe methods
that are based on the risk set sampling data model
that accommodates quite general sampling.

Proportional Hazards and Odds Models

The standard methods for analysis of nested case–
control data correspond to and are generalizations
of estimation methods for cohort data based on risk
sets. Data analysis methods are derived from semi-
parametric models for disease occurrence, the pro-
portional hazards or proportional odds models
being appropriate to continuous or grouped time data,
respectively [19]. Each is assumed to have multi-
plicative form

λ(t ; z(t)) = λ0(t)r(z(t); β0) (1)

where r(z(t); β) is the rate (odds) ratio of disease
for an individual with covariates z(t) at time t and
r(0; β) = 1, so λ0(t) is the rate (odds) of disease in
subjects with z = 0. In continuous time, t refers to
any time, while in grouped time the t is discrete and

indexes the time intervals. The proportional hazards
model may be obtained as the limit to the proportional
odds model as the time interval lengths go to zero.
As a consequence, the rate ratio parameter and odds
ratio parameter in grouped time structure will be close
when the probability of failure (rare disease) in each
time interval is small.

Estimation of Rate Ratio Parameters from
Continuous Time Data

The partial likelihood method for cohort data is
based on the probability that a subject is a case
given the risk set [19, 20]. Similarly, the partial
likelihood for nested case–control data is based on
the probability that a subject is a case given the
case–control set [6, 35, 43, 55]. This will depend
on the sampling method and leads to a likelihood of
the form ∏

failure times

rcase(β)πcase∑
k∈R̃ rk(β)πk

(2)

where R̃ is the case–control set, the rk are computed
at the failure time, and πk is the probability of picking
the particular case–control set if k was the case.
These will generally be replaced by a convenient
weights wk that are proportional to the πk .

For instance, for simple random sampling of
m − 1 controls from the n − 1 in the risk set, πk =(

n−1
m−1

)−1
. In this case, the πk are the same for all

case–control set members so we may take wk = 1,
which yields the “unweighted” conditional likeli-
hood for standard matched case–control data (see
Matched Analysis). Standard conditional logistic
regression software may be used to estimate the rate
ratio (β0) parameters (see Software, Biostatistical).

Estimation of Odds Ratio Parameters from
Grouped Time Data

Parallel to the continuous time situation, a partial
likelihood is based on the probability that a set of
subjects D are the cases given that the case–control
set is R̃ and is given by

∏

grouped times

λ|D| rD(β)πD∑
s⊂R̃ λ|s|rs(β)πs

, (3)

where rs(β) = ∏
j∈s r(Zj ; β), |s| is the number of

elements in s, and πs is the probability of pick-
ing the case–control set given that s is the set of
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cases. For analysis, the πs can be replaced by con-
venient weights ws that are proportional to πs [31].
For instance, in 1 : m − 1 frequency matching, the
number of controls randomly sampled is m − 1 times

the number of cases. Then, the πs = (
n−|D|
m−|D|

)−1
for

all subsets s of the case–control set R̃ that are of
the same size as the case set. Cancellation of the
common π from numerator and denominator leads to
the standard (unweighted) conditional logistic likeli-
hood for unmatched case–control data. On the other
hand, case–based sampling (for example, [28]) in
which a random sample of m|D| subjects (without
regard to failure status) is drawn from the cohort and
additional failures are included is “weighted” with
ws = ( |s|

m|D|−(|R̃|−|s|)
)

[31].

Conditional Logistic Likelihood. A likelihood esti-
mator that is closely related to the partial likelihood
conditions on the number of cases so that the condi-
tional logistic likelihood is given by

∏

grouped times

rD(β)πD∑
s⊂R̃:|s|=|D| rs(β) πs

. (4)

Unlike the partial likelihood (3) from which the base-
line odds may often be estimated, the baseline odds
parameter is conditioned out of (4). Also, unlike
the partial likelihood, for each of the standard (sim-
ple) control selection methods, including frequency
matching, Bernoulli trials (see Binary Data) and
case-base, the conditional likelihood is the same,
“unweighted” version [3]. The conditional likelihood
is often used when the number of cases and/or con-
trols in all or some case–control sets is small or when
there are tied failure times in continuous time analy-
ses (see Tied Survival Times).

Unconditional Logistic Regression. This is the most
commonly used alternative for analysis of grouped
time nested case–control studies with random sam-
pling and is based on the product of “marginal”
case/control probabilities within the case–control set

∏

grouped times

∏

j∈R̃

[λ wj rj (β)]Dj

1 + λ wj rj (β)
, (5)

where Dj is a case–control status indicator, wj is
a marginal “inverse control sampling probability”.
The wj depend both on β0 and j , but for common

situations, this dependence is small for “large sam-
ples”. Further, because the probabilities are only
marginal, the variance cannot generally be estimated
as the “inverse information” (e.g., [11, 31]). The
unconditional logistic likelihood also arises from two-
phase studies, closely related to nested case–control
studies, in which the cohort is taken as a fixed set of
cases and controls from which a second stage sample
is drawn from the first, for example, [11, 13, 53, 62,
67] (see Case–Control Study, Two-phase). In the
case of simple random sampling (with m − 1 con-
trols per case), the wj are approximately all equal to
(n − |D|)/(m|D| − |D|) and a nuisance parameter
θ0 can be used in place of λ0 wj in the likelihood. In
this special case, the variance of the odds ratio param-
eter may be estimated using the standard inverse
information estimator [3].

Absolute Risk Estimation

Unlike a standard case–control study in which the
cohort cannot be identified from a nested case–
control study, it is possible to estimate the baseline
hazard rate and, more generally, absolute risk quan-
tities that are functions of the hazard.

Estimation of Risk from Continuous Time Data. If
the number at risk n and the control selection prob-
abilities πk are known at each failure time, then
cumulative hazard functions and survival functions
may be estimated using a generalization of the Bres-
low estimator of the baseline hazard [1, 19, 29] (see
Hazard Ratio Estimator). Let z0(t) be a covariate
history and r0(t) = r(z0(t); β0) be the rate ratio (as a
function of time) associated with z0 according to the
model. The basic components for estimators of risk
are the jumps in the hazard at the failure times. With
n the number at risk and r̂k = r(zk, β̂), the relative
risk for individual k predicted using β̂, the hazard
jump from a case–control set is estimated by

r̂0

/
n

∑

j

πj∑
k πk

r̂j , (6)

where the sums are over case–control set members
[29]. Note that setting m = n and z0(t) ≡ 0 yields
the Breslow estimator of the baseline hazard for
the full cohort [19]. For simple random sampling
of m − 1 controls, πj/

∑
k πk = m so the denom-

inator is given by n/m
∑

r̂k . Cumulative hazard
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and Kaplan–Meier-type estimators of risk and an
Aalen–Johansen-type estimator of risk in the pres-
ence of competing causes of failure, as well as cor-
responding variance estimators have been described
with application to the Colorado Plateau uranium
miners study [9, 29].

Estimation of Risk from Grouped Time Data. Esti-
mation of absolute risk from grouped time nested
case–control data with general sampling is a topic
of continuing research. When the overall risk of dis-
ease is known in the cohort, one approach uses the
distribution of covariates in controls as representative
of the cohort rates to infer risk within exposure sub-
groups [4]. When the wj can be specified, then the
baseline odds (and hence the risk) can evidently be
estimated using the grouped time partial (3) or the
unconditional (5) likelihoods.

Asymptotic Properties and Efficiency

The “likelihoods” for both continuous and grouped
time are “partial” in the same sense as the Cox
partial likelihood for full cohort data [19] in that
the same subject may appear in multiple sets. In an
extension to the counting process and martingale
theory approach for full cohort data [2], nested
case–control data is represented by a counting
process Ni,r(t) for occurrences of both subject i

becoming diseased and r the case–control set. Within
this framework, the case–control set variability is
constant, with sample size and the asymptotics
driven by the increasing number of case–control
sets. Conditions for the consistency and asymptotic
normality of the partial likelihood rate ratio and
baseline hazard estimators have been described
for a wide range of sampling methods [6, 23].
Also provided are expressions for the asymptotic
variance from which efficiency, statistical power,
and sample size calculations can be made. For
simple sampling, these are refinements of those for
standard individually matched case–control studies
that take into account the underlying failure time
structure [23]. Performance of the partial likelihood
under model misspecification under simple sampling
has also been studied [63, 64]. For grouped time
case–control data, the framework can be similarly
defined with Nd,r(t) now indicating the set d
of diseased subjects and r the case–control set.
However, the asymptotic theory will depend on if

and how the time intervals “shrink” as a function
of sample size. For fixed time intervals, the number
of case–control sets is fixed and the asymptotics are
driven by increasing sample size within case–control
sets and thus, the asymptotic theory is very different
than in the continuous time situation. The theory
for the “unweighted” conditional logistic (4) and
unconditional logistic (5) likelihoods based on
rejective sampling has been described [3]. However,
a general theory has not been derived in the grouped
time setting.

Other Approaches to Estimation and Other
Models

Proportional Hazards Models. Mantel–Haenszel
estimators for nested case–control studies with sim-
ple random sampling have been described and shown
to be consistent [65, 66]. Methods for estimation of
relative mortality have been described on the basis
of an extension of the proportional hazards model [7,
14, 54].

Another class of estimators seeks to use case
and control information at times other than when
they were sampled, all with the goal of capturing
more information from the case–control sample than
the partial likelihood. There have been a number of
methods that enlarge or restrict the controls used in
the unweighted version of (2) in order to increase
efficiency [33, 45, 49, 60]. Interestingly, even though
these methods made “better” use of the sample, it was
found that efficiency gains were modest at best, and
often were worse in situations of practical importance
[33]. Another method incorporates external rates and
estimation is based on joint cohort Poisson and nested
case–control partial likelihoods [56]. Methods have
been proposed using an “inverse weighting” method
[18, 51] as well as an estimator based on “local
averaging”. The latter was shown to be more efficient
than earlier extensions and is more efficient than the
partial likelihood in a range of situations [17]. All
these methods show some improvement when disease
is common and/or the rate ratio is large. Further work
is necessary to establish the practical guidelines for
when these methods offer significant benefits over the
standard methods.

Nonproportional Hazards Models and Extensions.
Methods for modeling excess risk and estimation of
absolute risk based on the Aalen linear regression
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model, from nested case–control studies have also
been developed [8]. Nested case–control studies with
appropriately sampled controls can be used to esti-
mate transition rate ratio parameters for recurrences
or multiple outcomes [37, 38] and for Markov tran-
sition probabilities [5]. A useful method for estima-
tion of parameters in parametric models has been
described [51].

Control Sampling Methods

General Guidelines. The likelihood methods are all
valid (and most useful) if the risk sets are sampled
independently over time so that subjects may serve
as controls in multiple case–control sets and failures
may be controls in “earlier” risk sets. Restricting
controls to be used only once or using “pure”
controls, those that never become cases, will, in
theory, result in biased estimation [40] unless special
analysis methods are used [45]. However, if disease
is rare, this bias is generally negligible. Very general
sampling methods can be accommodated by the risk
set sampling likelihoods but a general guideline for
useful designs is that the structure of the case–control
set should not reveal the identity of the case [30].

Matching and Random Sampling. The most com-
monly used methods for selecting controls is to ran-
domly sample from risk set members who “match”
on a set of factors. For continuous time case–control
studies, this means that the sampled controls will be
similar to the individual case on these factors. For
grouped time studies, the risk set will be partitioned
into matching strata and controls (and cases) are sam-
pled from within these strata. Although the choice
of matching criteria will depend on the needs of
the study, common matching factors include gender,
race/ethnicity, calendar year, and/or year of birth. The
latter is often desirable because, as in the hyperten-
sive drug-MI example, a natural timescale is age but
matching on year of birth aligns the cases and con-
trols with respect to calendar time and thus assures
comparable data quality and control for “secular
trends” in diagnostic treatment practices [12].

Fine Matching. When a continuous matching factor
is available on all cohort members, nearest neighbor
and caliper matching are possible as continuous time
control selection options [26]. For instance, in a

study of occupational exposure to chemical agents
and pancreatic cancer, for each case, the four controls
in the risk set who most closely matched on date of
birth were enrolled into the nested case–control study
[22]. In this study, there was no random sampling
at all and the nearest neighbor matching completely
determined the control selection. The unweighted
partial likelihood is not strictly correct under this
sampling, but conditions have been described when
it is asymptotically valid, as well as other analysis
options when the matching factor is included as a
covariate in the proportional hazard model [26].

Exposure Stratified Sampling Methods. Until re-
cently, it was thought that control selection could
not depend on exposure related variables [50].
In fact, unbiased estimation is possible if the
appropriate control selection probabilities (weights)
are specified in the likelihood. Such designs include
counter-matching, variants of quota sampling, two-
stage sampling, and exposure stratified case-base
(case–cohort) sampling [6, 10, 11, 30, 31, 61].

Issues Related to Grouped Time Studies

Continuous Time as a Limiting Case of the Grouped
Time Model. Parallel to the approach of Cox for
cohort data organized into risk sets, individually
matched case–control study designs and methods can
be obtained from unmatched studies by “shrinking
the time interval” to zero. Thus, the proportional
odds model converges to the proportional hazards,
1 : m − 1 frequency matching becomes 1 : m − 1
individual matching and the grouped time partial (or
conditional) likelihood converges to the continuous
time partial likelihood.

Grouped Time as an Approximation to Reality. Be-
cause time is in reality “continuous”, the grouped
time approach necessarily involves a number of
approximations, which may be critical when the
grouped time intervals are large. One issue is the
ambiguity in the definition of who is in the risk set,
in particular, among those who are censored during
a grouped time interval. The problems that can arise
correspond to those associated with ignoring censor-
ing in failure time data (but on the scale of the time
interval). In Figure 3, we have defined subjects as
being at risk in the interval if they are at risk dur-
ing any part of the interval. Another problem with
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grouping time is that there is not a single unambigu-
ous “reference time” from which to compute time-
dependent covariates. Various strategies have been to
use the average time for the cases, as was done in
the residential magnetic fields breast cancer example
[36] or to randomly assign times to the controls based
on the case failure time distribution within the inter-
val. Unless there are large changes in at-risk status
and/or covariate values over time intervals, strategies
that reasonably approximate the continuous time risk
sets will yield estimates that are close to the corre-
sponding continuous time estimator.

Failure Time Analysis of Grouped Time Case–control
Studies. A number of methods have been devel-
oped to estimate rate ratio parameters when the
case–control study is sampled from grouped time risk
sets. Most notable of these is the case–cohort method
[44]. To see that this is a grouped time sampling,
note that the sampling is the “case-base” method
[28] in which a random sample of subjects (with-
out regard to failure status) is drawn from the cohort
and additional failures are included. The grouped time
analysis methods based on estimation of odds ratios
for exposures apply with the time interval taken as
the entire study period; this analysis is subject to
the pitfalls associated with grouping time described
above. The case–cohort analysis method allows esti-
mation of the rate ratios appropriately accounting for
censoring and time-dependent covariates from the
case-based sampled data. This idea was generalized
to estimators of rate ratios from “simple” unmatched
case–control data from the cohort [17]. A comparison
of nested case–control and case–cohort approaches
is given in the article Case–Cohort Study.

Nested and Standard Case–control Studies

Relevance of Nested Case–control Studies. Stan-
dard case–control studies may often be viewed as
a nested case–control study within a nonassembled
(and perhaps poorly defined) cohort. Thus, methods
developed for nested case–control studies that do
not require further knowledge of cohort information
will apply to standard case–control designs. So, a
number of study designs, including quota sampling,
modified randomized recruitment, and individually
matched two-stage studies have been proposed on
the basis of the nested case–control study paradigm
that do not require an assembled cohort [6, 30, 31].

Another example is a robust (see Robustness) vari-
ance estimator derived for continuous time 1 : m − 1
nested case–control studies that may be used in stan-
dard individually matched case–control study analy-
sis [64].

Difference in Methodological Approach for Nested
and Standard Case–control Studies. Methodologi-
cally, perhaps the biggest difference between nested
and “nonnested” case–control studies is the data
model used to develop methods. Traditionally,
case–control data is viewed as generated “retrospec-
tively”, with individual exposure independent random
quantities, with distribution conditional on disease
status (e.g. [46]). A key result is that, even under
the retrospective model, odds ratio parameters are
estimable using the unconditional logistic likelihood
(5), (e.g. [47]). For simple sampling, either approach
leads to similar methods and inference about odds
ratio parameters in grouped time data [3]. However,
methods developed under the risk set sampling model
provide a connection to failure time cohort data and
associated methods and, further, provide a natural
framework for the development of methods for indi-
vidually matched case–control data.
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Case–Control Study,
Population-based

A population-based case–control study is based on a
well-defined source population from which all cases
that arise in a given time period can be enumer-
ated. Controls consist of random samples of persons
without the disease of interest from the source popu-
lation. Cases consist of all cases or a random sample
of those cases. Because the total number of cases is
known and the size of the source population can usu-
ally be estimated from census data or other sources, a
population-based case–control study yields informa-
tion not only on relative risk, but also, by combining
information on relative risk with information on over-
all disease risk, on exposure-specific absolute risk.

Compared with hospital-based case–control
studies, population-based case–control studies can,
in principle, avoid selection biases that produce non-
representative samples of cases and controls. More-
over, there is no ambiguity about what constitutes
an appropriate control. In practice, however, selec-
tion biases can arise if all cases are not identified or
if persons selected for inclusion in the study refuse
to participate. In addition, recall bias can distort the
results of such a study if persons with disease provide
a different quality of information on exposure from
healthy controls selected from the general population.

(See also Bias in Case–Control Studies; Bias in
Observational Studies; Bias, Overview)

MITCHELL H. GAIL



Case–Control Study,
Prevalent

Incident cases represent the change from a non-
diseased to a diseased state. For research purposes, a
population at risk is defined as one whose members
are, as of some arbitrary time point, disease free. Over
time, incident cases emerge from that population. In
a study with incident cases, the underlying assump-
tion is that either all of the cases produced by the
population are available for study, or that the study
includes what may be taken as a random sample of
all of the cases [18]. In this way the experience of the
cases and the population at risk can, in principle, be
used to investigate the etiology of the disease, condi-
tional on adjustment for potential confounding [16,
18, 24]. When, for efficiency, a case–control study
is done, the measure of effect estimated by the expo-
sure odds ratio will be either the incidence density
ratio, the cumulative incidence ratio, or the disease
odds ratio, depending upon the sampling scheme that
was used to select the controls [17, 20, 23]. How-
ever, whatever the estimated parameter, the potential
for etiologic inference remains, conditional on adjust-
ment for potential confounding.

The situation is more complex when prevalent
cases are included and the intent of the research
remains etiologic. Prevalent cases have made the
transition from a nondiseased to a diseased state.
However, they also survived to the time the study
sample was obtained [6, 16, 29]. All prevalent cases
were once incident cases; but not all incident cases
survive long enough to become prevalent cases.

When a study includes prevalent cases, the ques-
tion arises as to whether the prevalent case series can
reasonably be taken to represent a random sample
of all incident cases with respect to the distribu-
tion of etiologically relevant factors (and potential
confounders). For the answer to be “yes”, incident
cases that did not survive long enough to become
prevalent cases must be assumed to have been etio-
logically similar to the incident cases that survived
and became prevalent cases [3]. Survival would thus
be unrelated to any etiologically important factor
[16, 17, 24]. For this special situation, the prevalent
case–control study is interchangeable with the inci-
dent case–control study with respect to the validity

of the relative measure of effect, though it may differ
with respect to power [2].

In the more likely situation, the prevalent case
series cannot reasonably be taken to represent a
random sample of all incident cases [2, 16, 29]. In
particular, cases with short survival times will be
under represented; longer surviving cases will be over
represented; and most significantly, the duration of
survival may well be related to etiologically relevant
factors. Risk factors for the disease therefore will be
simultaneously related to etiology and prognosis [6,
17, 29]. The exposure odds ratio will not directly
estimate the incidence ratios that are the target for
etiologic research. Table 1 illustrates how estimates
of relative effects from a case–control study with
prevalent cases will or will not validly duplicate the
estimate from a case–control study with incident
cases.

Linking Prevalence- and Incidence-Based
Studies

Freeman & Hutchison [7, 8] have demonstrated the
interrelations between incidence and prevalence (see
Incidence–Prevalence Relationships)–in particular,
that

prevalence, incidence, and duration of a condition
or illness . . . are interrelated in such a way that
two of these quantities may be used to obtain the
third. Data may be collected in the most expedient
manner and the results expressed as both incidence
and prevalence [7, p. 707].

At the core of these interrelationships is the assump-
tion that the population is “steady” or “stationary”
[1, 2, 7, 8, 16, 17, 21, 24]. For a population in a
steady state, the immigration rate into the candidate
pool equals the emigration rate from the candidate
pool, so that the size of the candidate pool is con-
stant over time. Similarly, the immigration rate into
the prevalence pool equals the emigration rate from
the prevalence pool, so that the size of the prevalence
pool is constant over time. A corollary of these con-
ditions is that the distribution of survival of incident
cases remains constant. A practical consequence is
that if the population is in a steady state, then esti-
mates of disease incidence are not dependent upon
the time period of the study. In a steady-state popula-
tion, the prevalence odds (PO) equals the product of
incidence density (ID) and the average duration (D)
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Table 1 Estimation of relative effects in incident and prevalent case–control
studies

Frame A: Hypothetical data from an incident case–control study:

Exposed Unexposed

Cases 50 50
Controls 100 900 OR = 9.0

Frame B: Hypothetical data from a prevalent case–control study, where 50%
of all cases do not survive long enough to be included in the study.
Survival, however, is unrelated to exposure status:

Exposed Unexposed

Cases 25 25
Controls 100 900 OR = 9.0

Frame C: Hypothetical data from a prevalent case–control study, where 50%
of exposed cases do not survive long enough to be included in the
study. Survival is therefore related to exposure status:

Exposed Unexposed

Cases 25 50
Controls 100 900 OR = 4.5

Frame D: Hypothetical data from a prevalent case–control study, where 50%
of unexposed cases do not survive long enough to be included in
the study. Survival is therefore related to exposure status:

Exposed Unexposed

Cases 50 25
Controls 100 900 OR = 18.0

of the illness or condition (see Appendix A). If this
relation is calculated for the exposed and unexposed
segments of the population (with a subscript 1 indi-
cating exposure and a subscript zero indicating non-
exposure), then the prevalence odds ratio (POR) is

POR = PO1

PO0
= ID1 × D1

ID0 × D0

= IDR × D1

D0
. (1)

In a case–control study with prevalent cases, the
prevalence odds ratio (POR) estimates the inci-
dence density ratio (IDR) if the population is in a
steady state, and if the duration of disease among
the exposed equals the duration of disease among the
unexposed, that is, if survival is not related to an eti-
ologically important factor (as in Table 1, Frame B).

Example 1: Nosocomial Infections

Freeman and his coauthors have used data from a
“bed-to-bed” prevalence survey at a municipal hos-
pital to illustrate the relations between prevalence and
incidence [7, 8] and to study predictors of nosocomial
infection [9–11]. They argue that it is reasonable to
expect a hospital population to be in a steady state.
Moreover, since admission, discharge, and occupancy
data are collected daily, the conditions underlying a
steady state can be empirically checked.

Data from their report on risk factors for noso-
comial infection [9] are reproduced in Table 2,
Frame A. Suppose the data represent a complete
cross-sectional survey, and, for illustrative pur-
poses, that the relation between use of an endo-
tracheal tube and nosocomial infection is uncon-
founded. We can compute the prevalence ratio
(PR) and the prevalence odds ratio (POR).
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Table 2 Prevalence data on the relation between the need for an endotracheal
tube and nosocomial infection

Frame A: Prevalence survey data:a

Need for an endotracheal tube

Present Absent

Nosocomial
infection

Present 7 90
Absent 4 544

POR = 10.6

Frame B: Prevalent case–control data, with 50% sampling of controls:

Need for an endotracheal tube
Present Absent

Nosocomial
infection

present 7 90
absent 2 272

POR = 10.6

aThe data are from [9, Table 1, p 814].

The PR = [7/11]/[90/634] = 4.5; the POR =
[7/4]/[90/544] = 10.6. While both point estimates
are large, the POR is not a good estimate of the PR

because the overall prevalence is not low (15%) and
the exposure rate in the noncases is less than half the
exposure rate in the total population surveyed (0.7%
and 1.7%, respectively).

Table 2, Frame B shows data from a potential
case–control study drawn from this prevalence sur-
vey. Suppose, for example, that determination of the
exposure status of the 645 subjects was expensive.
For efficiency, the exposure status could be deter-
mined for all cases and for a 50% sample of controls
(again assuming no confounding). Since the parame-
ter of interest is the POR (because of its relation to the
IDR), the controls are drawn from the noncases. The
POR of 10.6 will be a valid estimate of the incidence
density ratio if:

1. the hospital population is in a steady state, i.e.
if “the rate at which patients were admitted
equaled the rate at which they were discharged,
and the rate at which patients acquired active
nosocomial infections and entered the prevalence
pool equaled the rate at which they left the
prevalence pool through recovery, death, or dis-
charge . . . [and] the rates at which new patients

entered the hospital and new infections were
acquired were . . . constant . . . [and the] distribu-
tions of durations of hospitalization and durations
of infections were also . . . constant” [11, p. 734]

and
2. the duration of nosocomial infection is equal for

those who acquire an infection and have had
an endotracheal tube and those who acquire an
infection and have not had an endotracheal tube,
i.e. that the exposure is not associated with the
duration of the disease.

Freeman & McGowan [9, p. 815] report that
the duration of nosocomial infection in the incident
cases did not differ by the need for an endotracheal
tube. The duration of infection was estimated from
durations-to-date in the prevalent cases (the time
from the onset of the infection to the time of the
prevalence survey). Suppose, however, for illustrative
purposes, that the durations of infection differed.
The distribution of observed durations-to-date in the
prevalent series can be converted into the distribution
of durations of infection from disease incidence in the
same steady-state population, as shown by Freeman
& Hutchison [7]. In particular:

pi(D) = [Di × pp(D)]

D
, (2)
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where

pi(D) = the proportion from the incidence series
(designated by i)
with duration D;

Di = the average duration of the disease or
condition from a
series of incident cases;

pp(D) = the proportion from the prevalence series
(designated by p)
with duration D; and

D = a specific duration of the disease or condi-
tion from onset to
termination of the disease or condition, or
to removal
from observation.

Suppose infections associated with a poor underlying
condition have a longer duration than infections
associated with a less serious underlying condition,
and that the need for an endotracheal tube is a
marker for a poor underlying condition. Table 3
(Frame A) shows hypothetical data from a prevalent
case–control study, along with information on the
distribution of durations-to-date for the prevalent
cases, by exposure categories.

From (2) we obtain the distribution of durations
from disease incidence in exposed and unexposed
cases (Table 3, Frame B) up to a constant multiplier
Di. For example, pi(5) = Di × 0.057/[Di × 0.057 +
Di × 0.071] = 0.45 for exposed cases. Using these
distributions, we calculate Di = 7.8 days for the
group needing endotracheal tubes and 5.9 days for
the group not needing endotracheal tubes (Table 3,
Frame B).

A comparison of the observed distribution of
durations-to-date from the prevalent series and the
calculated distribution of the durations of disease
in the incident series illustrates the length-biased
sampling (see Screening Benefit, Evaluation of) that
can occur when prevalent rather than incident cases
are studied [16, 25, 29]. In particular, cases of long
duration represent 71% of the prevalent series of
exposed cases, but would constitute only 55% of the
incident series. For the unexposed group, the cases of
long duration represent 30% of the prevalent series,
but would constitute only 18% of the incident series.

By using (1) and solving for the incidence density
ratio, the prevalence odds ratio can be adjusted by the
inverse average duration ratio to provide an estimate

of the incidence density ratio. In particular:

IDR = POR × D0

D1
. (3)

For the example in Table 3, the prevalence odds ratio
of 10.6 can be adjusted by a factor of 0.76 to provide
an estimate of the incidence density ratio of 8.0
(Table 3, Frame C).

Example 2: Neural Tube Defects

Length-biased sampling can be especially problem-
atic in the study of risk factors for congenital mal-
formations [12–15, 22, 28]. In principle, the goal

Table 3 Use of duration-to-date data to estimate duration
of disease

Frame A: Hypothetical duration-to-date data:

Need for an
endotracheal tube

Present Absent

Nosocomial
infection

present 7 90
absent 4 544

Duration
10 days 5 27
5 days 2 63

Frame B: Calculation of distribution of duration of disease:

pi(D) = [Di × pp(D)]/D

For exposed cases:
pi(5) = [Di × (2/7)]/5 = Di × 0.057
pi(10) = [Di × (5/7)]/10 = Di × 0.071

For unexposed cases:
pi(5) = [Di × (63/90)]/5 = Di × 0.14
pi(10) = [Di × (27/90)]/10 = Di × 0.03

Distribution of duration for incidence series:
exposed cases: 5 days for 45%;

10 days for 55%
unexposed cases: 5 days for 82%;

10 days for 18%

Average duration of disease for incidence series:
exposed cases: Di1 = 7.8 days
unexposed cases: Di0 = 5.9 days

Frame C: Calculation of IDR:

IDR = POR × D0/D1

IDR = 10.6 × 5.9/7.8 = 8.0
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would be to enroll women from the time of preg-
nancy and follow all of them through the termination
of the pregnancy. All incident cases of malforma-
tions could be captured, and etiologic factors could
be investigated. In practice, however, the situation is
quite different. Women are often enrolled at the time
of delivery of live or stillborn infants, so that only
prevalent cases of malformations are available for
study. Malformations at birth represent the survivors
of early pregnancy, a time during which spontaneous
and induced abortions occur, both of which are more
likely in the presence of fetal malformations [13, 14,
22, 27, 31, 33]. If the duration of survival (early
pregnancy loss versus survival to birth) is associated
with an etiologically relevant factor, then the esti-
mate of effect using only birth data will be biased
because of either a toxic or a protective effect of the
exposure on the fetus during the early prenatal period
[13, 14, 22].

Consider the example of neural tube defects
(NTDs), which include anencephaly, spina bifida,
craniorrhachischisis, and iniencephaly. Leaving aside
the issue of early spontaneous abortions [34], over the
last two decades prenatal screening for these mal-
formations has increased, and as a result, induced
abortions post screening have also increased [30, 33].
Prevalent cases of NTDs at birth may thus be sys-
tematically different from incident cases with respect
to any etiologic factor that is associated with obtain-
ing prenatal screening and acting on the results of the
screen. Velie & Shaw [32] demonstrate the magnitude
of this bias by comparing the estimates of effect for
a number of variables from a typical birth prevalence
case–control study and from a case–control study
that is more “incident-like” in that cases from induced
abortions are included along with cases ascertained at
birth. For illustrative purposes, we consider estimates
of the effect of folic acid use on the occurrence of
NTDs. Table 4 presents data adapted from Velie &
Shaw [32].

Data from the prevalence case–control study
show a strong protective effect of folic acid on the
prevalence of NTDs, POR = 0.37. When the study
is broadened to include early fetal deaths due to
induced abortions following screening for NTDs that
have been excluded from the birth prevalence study,
the protective effect of folic acid remains, but it is
considerably attenuated, POR = 0.61. The reason
for this attenuation is that folic acid use is strongly
and negatively associated with the odds of surviving

early pregnancy and thereby being available for
inclusion in the prevalence at birth study (OR =
0.24). Folic acid use may be associated with early
prenatal care, which itself is associated with prenatal
screening; and prenatal screening is associated with
termination of affected fetuses.

The availability of data from “incident-like” and
prevalence studies from the same population, in
which the duration of survival is associated with a
number of potential etiologic factors, allows for a
demonstration of the way length-biased sampling can
bias the estimate of effect. In particular:

1. From Eq. (1), POR = IDR × D1/D0, the dura-
tion ratio can be estimated to be 0.61.

2. Alternatively, (4) below (from Freeman & Hutc-
hison [8]) can be used to estimate the duration
ratio:

Di1

Di0
= [πp(1)/πi(1)]

[πp(0)/πi(0)]
, (4)

where

Di1 = the average duration of the disease or con-
dition from a
series of incident cases from the exposed
group;

Di0 = the average duration of the disease or con-
dition from a
series of incident cases from the unexposed
group;

πp(1) = the proportion of exposed cases in a preva-
lence series;

πp(0) = the proportion of unexposed cases in a
prevalence series;

πi(1) = the proportion of exposed cases in an inci-
dence series; and

πi(0) = the proportion of unexposed cases in an
incidence series.

Again, the duration ratio would be estimated to be
0.61. From this calculation, the POR of 0.37 can
be adjusted by the inverse duration ratio of 1.65 to
obtain an estimate of the IDR of 0.61.

For this last sequence of calculations, information
about the exposure frequency of the prevalent cases
might be obtained from data on hand. A series of
potential exposure frequencies of the unobserved
incident cases could be postulated, based on the best
available extra-study information. These frequencies
could then be used to estimate a range of plausible
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Table 4 Prevalence and “incidence-type” data on the relation between folic acid and
neural tube defects (NTDs)a

Frame A: Prevalent case–control data (cases from still and livebirths only):

Folic acid use

Yes No

Cases 151 164
Controls 374 149

POR = 0.37

Frame B: “Incidence-type” case–control data (cases from electively aborted fetuses
as well as still and livebirths):

Folic acid use

Yes No

Cases 319 207
Controls 374 149

POR = 0.61

Frame C: The association of survival and exposure:

Folic acid use

Yes No

Survival
to birth

Yes 151 164
No 168 43

OR = 0.24

aData are adapted from [32, Tables 2 and 3, pp. 476–477].

duration ratios. These ratios could then be used
to produce a band of plausible incidence density
ratios. The main purpose of this exercise would be
to show the sensitivity of the observed POR to
length-biased sampling when the potential etiologic
factor under investigation could plausibly be related
to survival.

Separating Prevalence- and
Incidence-Based Studies

We have illustrated some of the relations between
estimates based on prevalence data and those based
on incidence data when the steady-state assumption
holds [7, 8]. Provided exposures are not strongly
related to survival, the calculations suggest that
qualitative conclusions from prevalence studies will
often agree with those from incidence-based data.

Experience confirms this expectation. Yet, in “strict
logic, . . . there is no reason why [incidence based
and prevalence based studies] should yield even
qualitatively similar results” [5, p. 524].

Neyman illustrates this point with hypothetical
data which he describes as “somewhat implausible”
[19, p. 404]. Using only prevalent cases to study
the relation between smoking and lung cancer, it is
possible that a positive association in the prevalent
series could mask a protective effect in the population
as a whole, if the majority of cases in nonsmokers
were highly lethal and therefore did not survive
long enough to be included in the prevalence study.
However implausible the substance of this example,
the point is that in such situations the duration of
survival will be strongly associated with the exposure
and thereby bias the POR as an estimate of the IDR.
In principle, the bias may be so large as to reverse
the direction of the effect.
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The plausibility of “balancing” or “off-setting”
effects of a potential risk factor among a segment of
the population that does not survive long enough to
be eligible for prevalence studies has been examined
in detail in the study of risk factors for congenital
malformations [13, 14, 22]. Evidence for potential
teratogens typically comes from studies of livebirths,
which involve prevalent cases. However, the object
of these studies is to discover the potential terato-
genic effects on all the products of conception, in
principle, through incident cases. The results from
studies of livebirths may not agree even qualitatively
with results applicable to all conceptuses. For exam-
ple, regarding the relation between maternal cigarette
smoking and the occurrence of Downs syndrome,
Hook & Regal [14] have shown that an apparent
protective relative effect as low as 0.3 among live-
births could be consistent with a null effect among all
conceptuses if smoking increased the risk of embry-
onic and fetal deaths by a factor of only 1.1. Regal
& Hook [22] provide general formulas for estimat-
ing the magnitude of effect on embryonic and fetal
deaths that could account for the observed effect in
livebirths. Hook & Regal [13] also describe the fol-
lowing variant of the “Yule–Simpson” paradox (see
Simpson’s Paradox). The relative exposure effects
can be protective among embryonic and fetal deaths
and protective among livebirths, yet among all con-
ceptuses the effect is null. Alternately, the exposure
can increase the risk both among embryos and fetuses
who died and among livebirths, yet among all con-
ceptuses the exposure effect is null. (This situation
is statistically similar to confounding, but it is sub-
stantively distinct since the “confounding” variable is
duration of survival.) Appendix B contains an exam-
ple of data embodying the “Yule–Simpson” paradox.
Hook & Regal [14] develop the concept of a “bound-
ary value”, namely a value such that if the observed
risk from a suspected teratogen derived from a preva-
lent series of livebirths exceeds this value, then the
explanation of the finding is unlikely to be due solely
to selection factors related to the exclusion of cases
that did not survive long enough to be included
in the prevalence study. The boundary value is a
function of the following: the proportion of unex-
posed subjects that do not survive to be included
in the prevalence study; the proportion of unex-
posed cases that do not survive to be included in
the prevalence study; and the proportion of exposed
subjects that do not survive to be included in the

prevalence study. Where estimates of these quanti-
ties are available, a boundary value can be calculated.
Tables of boundary values are given for a range of
determinants.

Conducting and Interpreting
Prevalence-Based Studies

Bias from the inclusion of prevalent cases is a con-
cern when the goal of the study is to discover
potential etiologic factors. In this case, if the expo-
sure is related to the duration of survival, then a
series of prevalent cases will not mirror the targeted
series of incident cases. However, there are situa-
tions where etiologic research is not the goal [18].
At times one may be mainly interested in factors that
influence disease prevalence. The question, for exam-
ple, may not be, “What factors cause infection in
neonatal intensive care units (NICUs)?” but rather,
“What factors predict the number of NICU beds
needed to treat the infections that occur?” Concern
with length-biased sampling is central to the etio-
logic question, but irrelevant for estimating factors
that influence prevalence. For determining required
medical services, the prevalent series is the direct
research target; it is not intended to duplicate the
incidence series.

The assumption of steady-state conditions is imp-
port ant for both descriptive and etiologic research
with prevalent cases. If a population is in a steady
state, then the size of the prevalence pool is con-
stant. In this case a prevalence-based study of service
needs at time t will be applicable to T > t , pro-
vided the population remains in a steady state. For
etiologic research, the steady-state assumption under-
lies the conversion formulas presented by Freeman
& Hutchison [7, 8]. While the assumption of steady-
state conditions may well be “unrealistic in a literal
sense, it [may well] be approximately true in many
applications” [2, p. 194]. For example, in a steady-
state population, there should be “a stable pattern in
terms of how disease gets diagnosed,” [6, p. 1110],
and treatment should be reasonably stable. Medical
advances that change the way a disease is diag-
nosed or treated will perturb, at least temporarily,
the steady state of the population. Studies done with
prevalent cases during the early introduction of AZT
for the treatment of AIDS, or with livebirths fol-
lowing the introduction of prenatal screening, can
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be misleading. For more detailed arguments regard-
ing the difficulties of studying the risk factors for
AIDS in a setting of changing criteria for diagno-
sis and methods of treatment, see Brookmeyer &
Gail [4]. Hook & Regal [12–14, 22] offer cau-
tions concerning the effects of changing prenatal
practices on the study of risk factors for congenital
malformations.

When the assumption of a steady-state population
is plausible, the formulae from Freeman & Hutchi-
son [7, 8] can be used to convert information obtained
from prevalence studies to estimates that would result
from incidence studies from the same population. The
formulas are applicable where exposure–outcome
relations are either unconfounded or can be conve-
niently stratified on confounders. Begg & Gray [2]
have developed multivariate methods and proposed
quasi-likelihood estimates for bias correction that
can be obtained using GLIM with a log link function
and a gamma error distribution. (When the exposure
is dichotomous, and there is no confounding, the cor-
rection factor proposed by Begg & Gray reduces to
the inverse duration ratio as described by Freeman &
Hutchison [7, 8].)

When a population is in a steady state (or sta-
tionary), the size of the candidate pool and the
prevalence pool are constant, and the age distribu-
tion of the population is stable [1, 2, 7, 8, 16, 17,
21, 24]. The population, or segment of the popula-
tion considered, is not growing. Alho [1] considered
the basic relation examined by Freeman & Hutchi-
son [7, 8] and Begg & Gray [2] in the more general
situation where the size of the population is either
increasing or decreasing, that is, a situation where
the population is “stable” but is not “stationary” or
in a “steady state”. Under this situation, when, for
example, incidence is increasing with age and dura-
tion of disease is declining with age, the standard
relation of the prevalence odds as the product of inci-
dence density and average duration of disease will
be an overestimate. Instead, the prevalence odds will
equal “a weighted average of the age specific prod-
ucts of incidence and (discounted) expected dura-
tion” [1, p. 587] (see Incidence–Prevalence Rela-
tionships).

Suppose that a population (or a segment of a pop-
ulation) can be assumed to approximate a steady
state, such that the relations described by Freeman
& Hutchison [7, 8] and Begg & Gray [2] hold.
In this case inferences about incidence densities

can be made from either incidence- or prevalence-
based studies. Begg & Gray [2] have compared
the relative efficiency of prevalence studies to inci-
dence studies, where the determinants of efficiency
included the proportion of cases in the sample,
the exposure frequency among controls, the true
relative effect, and the duration of disease ratio.
There was substantial variation in the relative effi-
ciency of the prevalence-based study compared with
the incidence-based study over a wide range of
these determinant values. However, the authors con-
clude that

for less extreme configurations [of the determinants
of efficiency], the relative efficiency ranges from
about 50% to 90%, so that an approximate rule of
thumb is that on average, to achieve comparable
precision, a prevalence study will require about three
subjects for every two in an incidence study [2,
p. 194].

While a prevalence-based study should be larger
than the corresponding incidence-based study, it
may be easier and less costly to enroll prevalent
cases. However, the concerns about the precision
of the study should always be subordinated to con-
cerns about the validity of the study. Moreover,
the validity of the study based on prevalent cases
and aimed at etiologic investigation will depend on
two factors: (i) the feasibility of obtaining accurate
duration-to-date information on the duration from the
onset of disease to the enrollment in the prevalence
study, and (ii) the plausibility that the population (or
population segment) approximates the steady-state
requirements.

Conclusion

Examples from research on plausible teratogens high-
light the importance of considering the possibility
that prevalent studies can yield misleading estimates
of exposure effects on incident disease. A com-
ment from Sartwell & Merrell [26, p. 583] broadens
this concern beyond studies that are traditionally
described as “prevalence based”:

While the foregoing illustrations have dealt with
limitations of prevalence and mortality rate, the
interpretation of observed incidence rates also offers
a challenge. What is actually obtained may more
properly be termed a discovery rate, which may be
quite different from the true incidence rate. Of the
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cases with onset in any time period, some will be
discovered early, others late, perhaps at death, and
still others will escape recognition entirely. Thus, the
discovery rate of any period will include cases with
onsets covering a long time span, and moreover will
be influenced by the clinical level at which cases are
recognized.

Sartwell & Merrell [26] remind us that even a typical
incidence series may well contain a trace of preva-
lence. To the extent that any survival (or persistence)
criterion is required to allow the diagnosis of a dis-
ease, estimates of exposure effect may be distorted,
as in the prevalent case–control study.

Appendix A: Derivation of PO = ID × D

Prevalence (P ), incidence density (ID), and average
duration (D) are readily linked when the population
is in a “steady state” [1, 2, 7, 8, 16, 17, 21, 24].
In a steady state the number of people entering the
prevalence pool from the population at risk is equal
to the number of people exiting the prevalence pool,
through recovery or death.

At any time, the total population (N ) can be
divided into those individuals who have the disease
(P ) and those who are at risk for the disease (N − P ).
Entry into the prevalence pool is governed by the size
of the population at risk (N − P ), the rate of disease
(ID), and the time period (δt) such that

inflow = ID × δt × (N − P).

Exit from the prevalence pool is governed by the size
of the prevalence pool (P ), the exit rate (IDexit), and
the time period (δt) such that

outflow = IDexit × δt × P.

In a steady state, any rate is equal to the reciprocal
of the average time to the event. Therefore, IDexit =
1/D, where D is the average duration of disease. In
a steady state, inflow (to the prevalence pool) equals
outflow (from the prevalence pool). Therefore

ID × δt × (N − P) = 1

D × δt × P
.

By algebraic manipulation:

ID × D = P

(N − P)
= PO.

Appendix B: Hypothetical Data Embodying the
“Yule–Simpson” Paradox

The data in this appendix are from [13, Table 2,
p. 56].

Stratum 1: Embryonic and fetal deaths

Exposed Unexposed Total

Downs syndrome 732 1251 1983
Unaffected 58 359 89 658 148 017

All 59 091 90 909 150 000

Relative risk of Downs syndrome = 0.9

Stratum 2: Livebirths

Exposed Unexposed Total

Downs syndrome 213 637 850
Unaffected 274 029 575 121 848 150

All 274 242 575 758 850 000

Relative risk of Downs syndrome = 0.7

Total population: All (recognized conceptuses)

Exposed Unexposed Total

Downs syndrome 945 1888 2833
Unaffected 332 388 663 834 997 167

All 333 333 666 667 1 000 000

Relative risk of Downs syndrome = 1.0
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Case–Control Study,
Sequential

Many case–control studies are based on previously
identified cases and controls, together with their
information on exposure and confounders. Some
studies, however, require that data on newly inci-
dent cases and controls be collected and accumulated
prospectively, not unlike the data collection for a
controlled clinical trial. For example, when a new
drug or exposure is introduced into a population,
there may be no medical database (see Adminis-
trative Databases) or method to link records (see
Record Linkage) to determine exposure and case
status. When a concern exists about risk associated
with these exposures and a case–control design is
capable of addressing the issue, the conduct of a
case–control study to evaluate and test the hypoth-
esis requires the accumulation of new records and
exposure information.

In these situations an investigator may wish
to test the hypothesis (see Hypothesis Testing)
repeatedly as the data accumulate in order to reduce
the average sample size required by the study
and obtain results sooner. Sequential case–control
designs (see Sequential Analysis) are proposed first,
to take account more efficiently of the accumulating
collection of exposure data on cases and controls
and, thus, decide when sufficient data are in hand
to address the question and, secondly, to preserve the
integrity of the inferences drawn from case–control
studies when these studies are repeatedly analyzed as
data accumulate.

The statistical methods developed for monitoring
randomized clinical studies (see Data and Safety
Monitoring) can be applied to the analysis of accu-
mulating data in matched or unmatched case–control
designs, and to the repeated analyses of measures
of association, such as the odds ratio or relative
risk. In a clinical trial, ethical concerns usually drive
the need to terminate a study early in order to mini-
mize exposure of study subjects to harmful treatments
(see Ethics of Randomized Trials). The ethical con-
cerns are different for case–control studies, but there
may be ethical motivations for trying to terminate
a case–control early. For example, a case–control
study may be used to identify or confirm an important

risk that requires expeditious public health policy
decisions.

Sequential methods can also be used to continue
accumulating data until the odds ratio has been esti-
mated with acceptable precision. In this article, we
concentrate on hypotheses testing, though we discuss
applications to sequential estimation.

Implementing the Sequential Approach

The following discussion is based upon O’Neill &
Anello [13]. Assume that an investigator is inter-
ested in studying whether or not there is an increased
risk of an adverse outcome (cases) associated with
exposure to a specified factor. Assume that there
is a mechanism for uniformly identifying and col-
lecting cases with the adverse outcome from a
defined population and then, according to predeter-
mined criteria, matching each case with respect to
a matching variate to a control (person without the
adverse outcome) at the time the case becomes avail-
able. Furthermore, assume that there is a mechanism
for identifying in an unbiased manner the expo-
sure to a risk factor for both case and matched
controls. Thus, case and control matches become
available over time, and at any point in time T

a cumulative set of NT cases and their matched
controls is available. While it is not necessary that
all cases be matched to the same number of con-
trols, the example we provide assumes a constant
matching ratio for ease of exposition. We will also
assume that the relative risk is constant and indepen-
dent of the matching variables and/or other covari-
ables.

For one-to-one matching, the information is in the
case–control pairs that are discordant with respect to
the presence or absence of the risk factor. For multi-
ple matching on confounding variables, the situation
is somewhat more complex (e.g. [6]).

We illustrate two sequential designs with one-to-
one matching. The first design monitors outcomes
after each case–control pair is ascertained and uses
the Wald [21] sequential probability ratio test (SPRT).
The second design analyzes the data after succes-
sive groups of matched pairs have been accrued
and is based on the theory of repeated significance
testing for group sequential data. The group sequen-
tial approach can also be used for multiple-matched
and unmatched case–control designs, as discussed in
Pasternack & Shore [14, 15].
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The Wald SPRT for a One-to-One
Matched Design

For the ith case–control pair, let Y11 denote the expo-
sure value (1 if exposed, 0 otherwise) assumed by the
case and Y21 denote the value assumed by the con-
trol. For the ith case–control pair, let P1i = Pr(case
is exposed to the factor under study) and P2i =
Pr(control is exposed to the factor under study). The
data from N matched case–control pairs may be
summarized as in Table 1, where Z11 denotes the
number of pairs in which both case and control are
exposed, Z10 the number of pairs where only the case
is exposed, and so forth.

In an individually matched retrospective case–
control study, the maximum likelihood estimate of
relative risk ρ is based upon the pairs with discordant
exposure and is given by ρ = Z10/Z01. Thus, the
effective sample size for interval estimation of ρ is
Z10 + Z01 = n. In testing whether this estimate of the
relative risk differs significantly from one, attention
is restricted to the discordant pairs. In the ith such
pair, the probability that the case is exposed and the
control is not exposed is

πi = P1i (1 − P2i )

P1i (1 − P2i) + (1 − P1i)P2i

. (1)

The relative risk is ρ = π/(1 − π) and is assumed
constant for all pairs. The test of whether ρ differs
significantly from one is equivalent to testing whether
the conditionally binomial variate Z10, based on
n observations, has probability π = 1

2 against an
alternative that π �= 1

2 .
To carry out the SPRT, it is essential that one spec-

ifies two simple hypotheses before the data are col-
lected. That is, one specifies that the null hypothesis
is ρ0 = 1 and chooses a value of ρ for the alterna-
tive hypothesis H1, call it ρ1, which is of interest to
detect. Furthermore, one must specify the type I and
type II errors, α and β, respectively. Since we choose

Table 1 Summary of data from N matched case–control
pairs

Control (Y2)

1 0 Total
1 Z11 Z10 Z1

Case (Y1) 0 Z01 Z00 N − Z1

Total Z2 N − Z2 N

to examine the one-sided test in which the alterna-
tive of the form ρ > 1 is of interest (see Alternative
Hypothesis), the SPRT tests the null hypothesis that
H0 : ρ = 1 vs. H1 : ρ = ρ1, which is equivalent to
H0 : π = 1

2 vs. H1 : π1 = ρ1/(1 + ρ1).
The SPRT is carried out as each case–control pair

becomes available over time. The cumulative number
of cases exposed to the factor, Z10, among the sub-
set of n exposure-discordant pairs is then compared
with two parallel boundaries (see [13, Appendix A]).
Crossing one boundary causes rejection of H0 and
crossing the other causes rejection of H1.

The Group Sequential Design for a
One-to-One Matched Design

Rather than analyze the data after each matched pair
accrues, one can perform only K analyses after suc-
cessive groups of M discordant pairs have accrued,
giving rise to a maximum total sample size of
KM = N discordant pairs. Pasternack & Shore [16]
described this group sequential approach for repeated
tests of a hypothesis. The approach is based on
the sequential use of the signed square root of the
McNemar test statistic χ for accumulating discor-
dant case–control pairs, namely

χ2
k = (|Z10 − Z01| − 1)2

Z10 + Z01
. (2)

While we emphasize this application, one could also
use the estimate of the log odds ratio from the
conditional logistic model (see Logistic Regression,
Conditional) divided by its standard error.

Letting χk denote the signed square root of (2)
after k groups, the decision rule for the kth (1 ≤ k ≤
K) group sequential test of ρ = 1 vs. ρ �= 1 is

1. If χk > Zα reject the null hypothesis that ρ = 1 in
favor of the alternative, ρ �= 1; then no additional
accumulation of data is required.

2. (i) If χk < Zα and k < K , accumulate additional
discordant pairs and then apply the (k + 1)th
group sequential test.

(ii) If χk < Zα and k = K , end the study and do
not reject the null hypothesis that ρ = 1.

Note that Zα is a constant in this “repeated testing
design”. To control the overall type I error at α, Zα

at each interim analysis will need to be adjusted.
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For example, for planned three-group sequential
analyses controlled at α = 0.05, Zα = 2.289, corre-
sponding to a nominal α′ = 0.022 for each analysis
(see Pocock [17, Table 2]). Other group sequential
designs, referred to in the discussion section, allow
for varying the boundary with k.

A Comparison of Sample Sizes for Fixed
and Sequential Designs

One of the main benefits of a sequential design is that
fewer observations are needed on average than for a
fixed sample size plan to reject the null hypothesis
when the alternative hypothesis is true, thereby being
a more efficient design by offering the chance of
yielding a conclusion before the final fixed sample
size is needed. The difference in sample size needed
for the fixed and sequential designs for the one-to-one
individually matched design method was described
by O’Neill & Anello [13] for the SPRT, and by
Pasternack & Shore [16] for the group sequential
designs using repeated significance-testing methods.

For the SPRT, formulas exist [13, Appendix A] to
calculate the average number of exposure discordant
pairs needed to arrive at a decision when the null
and alternative hypotheses are assumed true and for
a value of ρ; namely, ρ, midway between ρ0 and
ρ1. These sample sizes can be compared with those
needed in a fixed sample design. Table 2, adapted
from O’Neill & Anello [13], presents the average
number of exposure discordant pairs required in a
SPRT and fixed sampling design for selected protocol
parameters. The SPRT offers a substantial advantage
in average required sample size, although there is no
upper limit on the sample size.

For the group sequential designs based upon
repeated significance testing, one can calculate the
maximum sample size N needed and the average
sample size N needed for a prespecified number, K ,

Table 2 Average number of exposure discordant pairs for
SPRT and fixed sample designs, for selected relative risk
ρ : α = 0.05, β = 0.10 (one-sided)a

ρ = 2 ρ = 3

Fixed plan 73 30

SPRT H0 H1 H−
ρ H0 H1 H−

ρ

34 42 56 14 18 23

aExtracted from O’Neill & Anello [13]

Table 3 Comparison of the number of discordant pairs
needed for the group sequential design relative to a fixed
sample plan for a two-sided hypothesis test: α = 0.05,
β = 0.10 (two-sided). N = Maximum number of discor-
dant pairs per group; N = Average number of discordant
pairs per groupa

ρ = 2 ρ = 3
Number of interim analyses (groups)

K N N N N

1 91 91 38 38
2 100 71 42 30
3 105 66 45 28
4 108 64 44 27

aExtracted from Pasternack & Shore [16].

of interim analyses of accruing case–control expo-
sure discordant pairs. This calculation depends on the
number of interim analyses, K , or independent groups
of exposure discordant pairs, planned in advance, and
on the per-test significance level α′ and its corre-
sponding standard normal deviate Z for use in nor-
mal group sequential testing ([16, Table 2]). Table 3,
extracted from Pasternack & Shore [16], who provide
further discussion of the calculations, presents a com-
parison of the number of discordant pairs needed for
the group sequential design relative to a fixed sample
plan for a two-sided hypothesis test. For example,
for ρ = 2, the fixed sample plan (K = 1) requires
N = 91 pairs, compared with an average of only 64
pairs with K = 4. Note, however, with K = 4, the
maximum trial size, 108, exceeds the fixed sample
size, 91.

In Tables 2 and 3, the sample sizes presented for
the average number of discordant pairs using the
SPRT, the group sequential design, and the fixed
sample design need to be adjusted to arrive at the
expected total number of pairs required. To make
the adjustment, one needs to divide the sample sizes
in Tables 2 and 3 by the probability of obtaining a
discordant pair, which is

Y = P1(1 − P2) + P2(1 − P1). (3)

values for which are provided in [13, Table 3].

Discussion

To date, there are few examples of sequentially
designed and analyzed case–control studies, though
there are many examples of prospective collection
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of exposure information on cases and controls that
could easily adapt the sequential strategy. Several
variants of the group sequential approach can be
used for monitoring case–control studies. Rather than
using the same boundary (i.e. the same nominal Type
1 error) at each interim analysis as proposed by
Armitage et al. [3] and Pocock [17], we can use dif-
ferent critical levels for each k. For example, O’Brien
& Fleming [11] proposed a monotonically decreas-
ing set of nominal α levels, and Lan & DeMets [10]
introduced a flexible method for allocating the Type
1 error over the number of testing times used. Rather
than applying group sequential statistic methods to
simple statistics such as the McNemar statistic, one
can also use score statistics derived from logistic
models in sequential tests, as described by White-
head [22].

Despite the attractiveness of the group sequential
design for reducing required sample sizes when per-
forming hypothesis testing in case–control studies,
we are unaware of completed case–control studies
that formally use this methodology.

Only in unusual circumstances will there be a
pressing need to terminate an observational study
early, unlike a clinical trial. It may be important
to obtain a large number of cases and controls to
pursue analyses of the effects of confounding. Issues
of data quality and case ascertainment may play a role
also. For example, it may be necessary to validate
exposure assessments and histopathologic diagnoses
of disease. Such quality control activities may be
logistically difficult to accomplish during the conduct
of the sequential acquisition of cases and controls.
These factors may make it more attractive to design
and conduct a large fixed sample size study rather
than to attempt a sequential design. However, one
should be aware that if one initiates a fixed sample
design but terminates the study early on the basis of
interim analyses, one risks increasing the chance of
type I error.

More often, an epidemiologist may be interested in
obtaining a precise estimate of a risk parameter rather
than in rejecting a null hypothesis expeditiously. To
the extent that precise and valid estimation of expo-
sure effects is the dominant goal of the observational
study, sequential strategies may play a greater role
in the future by requiring that data continue to be
accrued until precise estimates of exposure risks are
obtained.

Generally, sample sizes to test a hypothesis will
be inadequate to provide a confidence interval for
the odds ratio whose width is sufficiently narrow for
precise estimation [12]. Many authors have consid-
ered sequential estimation procedures in a univariate
and multivariate context, which may be relevant for
the medical and public health applications for which
case–control studies have found utility [1, 2, 4, 5,
7–9, 18–20].
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Case–Control Study,
Two-phase

Double sampling, also known as two-phase sam-
pling, is a standard technique for stratification [23].
The investigator first draws a random sample from
the population to measure the covariates needed for
stratification. At phase two, random subsamples of
varying size are drawn from within each stratum
and the collection of data is completed for subjects
selected at both phases. By using larger sampling
ratios for the most informative strata, the efficiency
of estimates of population parameters is enhanced.

The case–control study embodies a stratified sam-
pling design where the strata depend on the outcome
[5]. Case–control studies in epidemiology typically
sample a large fraction of the incident cases of dis-
ease and a much smaller fraction of disease-free
controls to evaluate the association between disease
outcome and risk factors. This design is much more
efficient than alternative cohort or cross-sectional
designs for the study of a rare disease.

More complex double-sampling techniques offer
the potential to enhance efficiency further and to
reduce cost. White [37] proposed studying the asso-
ciation between a rare exposure and a rare disease
by sampling at phase two on the basis of both dis-
ease and exposure status. She noted that the initial
sample might itself be stratified by outcome, as in a
case–control study, or not, as in a cohort or cross-
sectional study. Another example of double sampling
arises from studies of gene-environment interaction
[1]. Efficiency is enhanced by limiting expensive
genotyping to a sample stratified both by disease and
by family history or a rare environmental exposure.
A third example is the validation study. Here sub-
samples of cases and controls are drawn to make
error-free measurements, so that parameter estimates
may be adjusted for the attenuation caused by mea-
surement error [9]. In all three examples, subjects
not sampled for phase two have a portion of their
data missing by design. There is a strong connection
with the literature on missing data [21, 28].

This article reviews double sampling techniques
for the study of binary outcomes, with particular
emphasis on methods of fitting logistic regression
models that appropriately utilize the data from both
phases of sampling.

Stratified Sampling

Under the usual superpopulation model, the pop-
ulation from which subjects are sampled at phase
one is regarded as infinite. Let S denote a random
variable defined on this population whose values
S = j indicate the stratum and set πj = Pr(S = j),
j = 1, . . . , J . Suppose for the moment that the object
is to estimate the mean value, µ, of another random
variable, U , and note that µ = ∑

j πjµj , where µj =
E(U |S = j). Assuming that the πj are known, appro-
priately stratified sampling yields a more informa-
tive estimate than does a simple random sample of
like size [14].

Double Sampling for Stratification

Often the information needed for classification of
population units into strata is not known in advance.
Neyman [23] developed the theory of double sam-
pling to handle this problem. At the first phase of
sampling one draws a simple random sample of size
N for stratum ascertainment and observes Nj , the
number of sampled subjects, with S = j . At the sec-
ond phase, subsamples of specified size nj are drawn
at random and without replacement from among the
Nj in stratum j , for a total sample size of n = ∑

j nj .
Denote by Ujk the value of U for the kth subject in
stratum j , k = 1, . . . , nj ; by fj = nj/Nj the known
sampling fraction; and by Uj = n−1

j

∑
k Ujk the stra-

tum specific sample mean. With π̂j = Nj/N and
µ̂j = Uj , an obvious estimate of µ is

µ̂ =
J∑

j=1

π̂j µ̂j = N−1
J∑

j=1

f −1
j

nj∑

k=1

Ujk. (1)

The Horvitz–Thompson Estimator

When regarded as an estimator of the (unknown)
finite population mean of the N values of U for
subjects sampled at phase one, µ̂ weights each of
the n phase two observations by the inverse of its
selection probability. This is the defining property of
the famous Horvitz–Thompson [17] estimator. The
variance as given in standard texts [11] is

var(µ̂) = 1

N

J∑

j=1

πj (µj − µ)2 +
J∑

j=1

π2
j σ 2

j

nj
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+ 1

N

J∑

j=1

πj (1 − πj )σ
2
j

nj

, (2)

where σ 2
j = var(U |S = j). The first two terms dom-

inate under an asymptotic scheme where each of the
nj increases proportionately with N . For fixed n, effi-
ciency is enhanced by oversampling large strata or
those with large σ 2

j since this will reduce the value
of the middle term in (2).

Weighted Likelihood and the Horvitz–Thompson
Estimator

In case–control studies the parameters of interest are
not the mean values of random variables but rather
the regression coefficients in probability models for
the association between a binary outcome variable Y

and a vector X of explanatory variables. Suppose that

Pr(Y = 1|X = x, S = j) = Pr(Y = 1|X = x)

= F(x′β), (3)

where F denotes a known cumulative distribution
function. Typical choices for F are the logistic dis-
tribution for logistic regression and the unit normal
distribution for probit regression. The assumption of
conditional independence between Y and S given X
means simply that any dependence of the outcome
probability on stratum is modeled in X.

Under standard regularity conditions, likelihood
theory tells us that β satisfies the expected score
equation

µ(β) = E[U(β)] = E

[
∂ log Pr(Y |X; β)

∂β

]
= 0, (4)

where U(β) is defined as the term in brackets. Even
if (3) does not hold, the solution to (4) defines a
parameter of interest since it identifies that member
of a set of hypothesized models that best describes
the population association. If observations on (Yt , Xt )

were available for all N subjects sampled at phase
one, then β would be estimated by solving the
score equations U(β) = ∑N

t=1 Ut (β) = 0. In a two-
phase study, the unknown U is estimated using
(1). Thus, following Whittemore [38], we define the
Horvitz–Thompson estimator, β̂, as the solution to
the Horvitz–Thompson estimating equations

Û(β) =
J∑

j=1

f −1
j

nj∑

k=1

Ujk(β) = 0, (5)

where Ujk(β) denotes the score for the kth subject
sampled from stratum j . The consistency and asymp-
totic normality of β̂ follow from Huber’s [19] theory
of M-estimation. The asymptotic variance is given by
the “information sandwich”

varA(β̂) =
[

∂Û(β)

∂β

]−1

× varA[Û(β)]

{[
∂Û(β)

∂β

]′}−1 ∣∣∣∣∣
β=β̂

, (6)

where the middle expression is obtained by extending
(2) to vector-valued random variables.

The Horvitz–Thompson estimator and its analog
have a long history. In econometrics it is known as
the weighted exogenous sampling maximum like-
lihood estimator [22]. A finite population version
was studied by Binder [4] and Chambless & Boyle
[12]. Others have referred to the weighted likelihood
method as pseudo-likelihood [15, 20], and mean
score [25].

Two-phase Case–Control Studies

The distinguishing feature of a case–control study is
that the variables used for stratification and sample
selection include the outcome (case–control) sta-
tus. Were this not the case, and the sample was
stratified using explanatory variables alone, stan-
dard methods of binary regression analysis could
be used to estimate the regression coefficients in
the model (3). Such methods generally yield biased
estimates, however, when applied to case–control
data. Horvitz–Thompson estimation solves the bias
problem.

Population-based Case–Control Samples

Suppose the population from which the cases and
controls are sampled has been completely enumerated
and that disease status Y and stratum S are known
for everyone. This (finite) population may itself then
be regarded as the preliminary random sample in the
two phase design. Since the sampling fractions are
known for both cases and controls, no restrictions
need be placed on F and both absolute and relative
risk parameters may be estimated [3].
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To apply the Horvitz–Thompson estimator to
population-based case–control studies, we extend
the notation to allow the phase one strata to depend
on both Y and S. Thus, denote by N1j the number
of cases (Y = 1) and by N0j the number of con-
trols (Y = 0) with S = j at phase one, and let nij

denote the numbers in the corresponding subsample
at phase two. The Horvitz–Thompson estimator is
the solution to

Û(β) =
1∑

i=0

J∑

j=1

f −1
ij

nij∑

k=1

Uijk(β) = 0, (7)

where now fij = nij /Nij and Uijk(β) denotes the
likelihood score for the kth subject in stratum (i, j ).

Separate Preliminary Samples of Cases and
Controls

More typically, a complete enumeration of the pop-
ulation at risk is not available, and one simply
samples controls from the same communities or hos-
pital service areas in which the cases arose. Then
the appropriate model treats the phase one subjects
as separate random samples of N1 cases and N0

controls. Since the case and control sampling frac-
tions are not known, the only quantities that may
be estimated consistently are odds ratio (relative
risk) parameters in “multiplicative intercept” mod-
els [18]. Attention is confined here to the logistic
model F(x) = 1/(1 + e−x). Provided that the lin-
ear predictor x ′β includes a constant term β0, the
remaining βs represent log relative risks that are in
principle estimable from the case–control sample.
The logistic scores appearing in (7) are given by
Uijk(β) = {Yijk − 1/[1 + exp(−X′

ijkβ)}Xijk .
Assume momentarily that the marginal outcome

probabilities are known and set α = log[Pr(Y = 1)/

Pr(Y = 0)]. If the constant term log(N1/N0) − α is
added to β0, then the Horvitz–Thompson estimating
equations (7) are unbiased for all parameters, includ-
ing the intercept, and the corresponding estimator is
consistent [15]. The equations are easily solved using
standard programs for logistic regression by treating
the inverse sampling fractions f −1

ij as prior weights
(see Software, Biostatistical). The asymptotic vari-
ance is again given by (6), except that now the middle

term is estimated by

1∑

i=0

J∑

j=1

f −2
ij






nij∑

k=1

U⊗2
ijk − 1 − fij

nij

(
nij∑

k=1

Uijk

)⊗2





−
1∑

i=0

1

Ni




J∑

j=1

f −1
ij

nij∑

k=1

Uijk




⊗2

,

where u⊗2 for any vector u denotes the matrix uu′.
The last expression involving the Ni , which only
affects the variance of β̂0, reflects the extra informa-
tion obtained by assuming α to be known and has no
counterpart in (2). In practice, α is not known. Since
its value only affects the free parameter β0, however,
this does not matter. One simply ignores β̂0 and its
standard error.

Maximum likelihood estimation

Scott and Wild [31, 32] derived the nonparametric
maximum likelihood estimator of regression coeffi-
cients for the population based study. Breslow and
Holubkov [8, 9] derived the nonparametric max-
imum likelihood estimator for logistic regression
coefficients for the study with separate samples of
cases and controls at phase one. The two estima-
tors are identical, and semiparametric efficient, when
the binary response model (3) is specified as logis-
tic [28]. Although they can be substantially more
efficient than Horvitz–Thompson under certain con-
ditions, in many practical settings, the loss of infor-
mation is slight [7, 28, 29]. Many researchers prefer
the Horvitz–Thompson approach because, at least for
the population-based study, it provides a consistent
estimator of a meaningful population parameter even
if the model (3) does not hold.

Pseudo-likelihood and pseudo-score estimators

Other methods of estimation of logistic regression
coefficients have been developed that are typically
of intermediate efficiency. Breslow & Cain [6] and
Schill and colleagues [29, 30] developed closely
related pseudo-likelihood estimators, deriving unbi-
ased estimating equations by maximization of a
product of conditional probabilities. For the Bres-
low–Cain version one fits the logistic regression
model (3) to the phase two data, using as offsets in the
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linear predictor the terms log(n1jN0j ) − log(n0jN1j )

for observations in stratum j to adjust for the biased
sampling. A matrix formula is available that corrects
the usual asymptotic variance matrix to account for
the additional information coming from the phase one
data. The Schill version involves fitting a logistic
regression model jointly to the phase one and phase
two data and also requires offsets. Whenever the lin-
ear predictor contains a separate term for the main
effect of each stratum, the two pseudo-likelihood esti-
mators and the maximum likelihood estimator are
identical.

Chatterjee and colleagues [13] developed an esti-
mator they termed pseudo-score. This uses the regres-
sion model to estimate the scores for subjects not
sampled at phase two more efficiently than they are
estimated by the mean score method [25], which as
already noted is equivalent to Horvitz–Thompson
estimation in the present setting. The pseudo-score
estimator has the important practical feature that it
may be implemented in situations where the phase
two sample consists entirely of cases or entirely of
controls. This may be particularly valuable when the
covariates ascertained at phase two involve an inva-
sive medial procedure. However, because of the near
impossibility of checking model assumptions from
the collected data, this feature should be exploited
only if absolutely necessary and then with consider-
able caution.

Fixed vs. Random Phase Two Sample Sizes

So far we have assumed that the sample sizes, nij ,
at the second phase of sampling are fixed by the
investigator after considering results of the phase one
data collection. An alternative sampling strategy uses
a random device to decide independently for each
phase one subject, using selection probabilities pij

that depend on (Y, S), whether to include the subject
at phase two. This is known by econometricians
as Manski–Lerman [22] sampling. In the context
of case–control studies, Weinberg & Sandler [35]
called it the randomized recruitment method and
suggested it as an alternative to frequency matching.
Others have referred to it as Bernoulli sampling.
The associated sampling theory is simplified by the
fact that the phase two observations are rendered
statistically independent.

Both Horvitz–Thompson and pseudo-likelihood
estimation procedures may be applied to data col-
lected in randomized recruitment designs. Instead

of dividing the log likelihood contributions by the
observed sampling ratios, fij , one divides by the
expected ones, pij . Use of the observed ratios is also
justified; just condition on the nij and use the previ-
ous theory. Both empirical [36] and theoretical [28]
studies show that use of the known selection proba-
bilities results in less efficient estimates, however, so
it is best to treat the phase two sample sizes as fixed
even when they are not.

An Example

Table 1 shows sample sizes at phases one and two
for a study of the association of operative mortality
and gender in patients undergoing coronary bypass
surgery. Two different designs were used at phase
two: a “case–control” design in which the subsam-
ples of 100 cases (deceased) and 100 controls (alive)
were drawn without consideration of the stratum
variable gender; and a “balanced” design in which
equal numbers (nij = 50) were drawn from within
each of the four cells defined by both outcome and
gender. More generally a balanced design involving n

phase two subjects would set nij = min(n/2J, Nij ).
Since the “case–control” design involves sampling
only with regard to outcome, fitting ordinary logis-
tic regression models yields valid estimates of rela-
tive risk parameters [24]. Fitting of ordinary logistic
regression models to data from the “balanced” design,
however, results in biased estimates of the gender
effect since the association between outcome and
gender at phase two is completely distorted by the
nonproportional sampling ratios.

Table 1 Sample sizes for a study relating operative mor-
tality to gender for patients undergoing coronary artery
bypass surgery

Male (S = 1) Female (S = 2)

First phase sample (Nij )
Alive (Y = 0) 6,666 1,228
Deceased (Y = 1) 144 58

Second phase sample: case–control (nij )
Alive 81 19
Deceased 67 33

Second phase sample: balanced (nij )
Alive 50 50
Deceased 50 50

Source: Cain & Breslow [10], reproduced by permission of the
publisher.
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Table 2 reports results of estimating logistic reg-
ression coefficients for gender and other covari-
ates by two methods: ordinary logistic regression
and “adjusted” logistic regression. Since gender is
included in the model, simple adjustments may be
applied directly to the results from ordinary logis-
tic regression programs to calculate the maximum
likelihood estimates and their standard errors [10].
Furthermore, adjusted and unadjusted results for the
covariates other than gender are identical [6]. Note
the severe distortion of the gender coefficient for
the unadjusted analysis of the balanced data, and
the substantial reduction in its standard error, when
adjustment is made for the information available at
phase one. Results of fitting the same model to the
entire phase one data set, for which all the covariate
values were in fact known, are shown for comparison.

Efficiency Gains from Stratification

The standard errors shown in Table 2 suggest there
was little benefit with these data from use of the
balanced design at phase two. In other situations
one should expect the balanced design to yield more
efficient estimates of coefficients that model stratum
effects and their interactions, at the possible cost
of some mild loss of efficiency for estimates of the
other covariate effects. This conclusion is based on
the asymptotic efficiencies shown in Table 3 for mod-
els with a binary stratum coefficient, β1, and a binary
covariate, β2, with and without an interaction term,
β3. The table shows results for a study where all
cases identified at phase one are also used at phase
two. Here the principal efficiency gain is for the inter-
action effect. When subsamples of both cases and

controls are taken at phase two, stratum and interac-
tion effects are both estimated more efficiently using
the balanced design.

While the balanced design seems reasonable on
general grounds and has good efficiency proper-
ties over a large region of the parameter space,
other designs offer greater efficiency in particu-
lar circumstances [10, 16]. For the measurement
error problem with Horvitz–Thompson estimation,
Reilly & Pepe [25] derived expressions for the
optimal sampling fractions, fij , needed for esti-
mation of a particular regression coefficient. They
presented numerical results for a logistic regres-
sion model with a single explanatory variable, X,
assumed to have a standard normal distribution.

Table 3 Large-sample efficiencies of the balanced
design relative to the case–control design when the
second phase sample contains all the cases but only
a fraction of the controls from the first phase sample

Relative efficiency

eβ2 θ a β1 β2 β3

0.2 0.2 1.02 0.83 1.43
0.2 1.0 1.18 0.88 1.45
0.2 5.0 1.34 0.93 1.65
1.0 0.2 0.99 0.74 2.30
1.0 1.0 1.00 0.81 2.09
1.0 5.0 0.98 0.82 2.06
5.0 0.2 1.14 0.76 2.94
5.0 1.0 1.22 0.81 2.12
5.0 5.0 1.00 0.76 1.74

Source: Cain & Breslow [10], reproduced by permission
of the publisher.
aθ = odds ratio measure of association between S and
X among controls.

Table 2 Logistic regression coefficients (and standard errors) for the data in Table 1

Second phase sample: case–control Second phase sample: balanced

Model term First phase sample Unadjusted Adjusted Unadjusted Adjusted

Constant −3.271 (0.285) −0.167 (0.615) −3.812 (0.594) 0.990 (0.637) −2.845 (0.606)

Female sex 0.634 (0.171) 0.650 (0.348) 0.690 (0.190) −0.061 (0.301) 0.722 (0.189)

Diameter of arteries −0.065 (0.016) −0.030 (0.034) −0.080 (0.033)

CHF score 0.445 (0.072) 0.395 (0.160) 0.348 (0.165)

Priority of surgerya

Urgent 0.706 (0.181) 0.631 (0.365) 0.412 (0.350)

Emergency 2.004 (0.232) 2.605 (1.072) 1.853 (0.800)

Source: Cain & Breslow [8], reproduced by permission of the publisher.
aRelative to elective surgery.
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Stratification was based on a binary, S, indicating
whether or not X, when measured with normally
distributed error, is positive. Although intended for
cohort sampling at phase one, their results apply also
to the two-phase case–control study provided that
the intercept parameter, β0, is interpreted as apply-
ing to the case–control sample rather than the source
population.

Table 4 shows the optimal sampling fractions
for a study involving N = 500 phase one sub-
jects, 25% of whom are to be selected for the
validation sample at phase two. Note that the bal-
anced design here is optimal only when β0 = β1 =
0. As with all design problems, the optimal sam-
pling fractions depend on the values of unknown
parameters, so that prior information or a good
guess is needed to achieve near optimality. Hol-
croft and Spiegelman [16] used numerical meth-
ods to determine optimal sampling fractions when
regression parameters are estimated by maximum
likelihood.

In addition to varying the sampling fractions used
for the selection of the phase two sample, efficiency
may be further increased by posthoc stratification in
the analysis of the data [7]. The stratum factor S
is constructed to represent combinations of levels of
any covariate factors available at phase one, not just
those used to stratify the sampling. The main limita-
tion is the necessity for each stratum to contain both
cases and controls at phase two, which means that
continuous valued covariates available for all sub-
jects cannot be utilized fully. Since the phase one
data enter the Horvitz–Thompson estimation proce-
dure only through the sampling ratios fij , post hoc
stratification increases the amount of phase one infor-
mation that is actually used in the analysis. This
information is of particular value when stratification
is based on surrogate explanatory variables that are

Table 4 Optimal sampling fractions fij when σ = 0.25a

(β0, β1): (0,0) (0,1) (0,2) (1,0) (1,1) (2,2)

f01 0.25 0.46 0.12 0.28 0.11 0.21
f02 0.25 0.47 0.52 0.61 0.75 0.80
f11 0.25 0.17 0.54 0.43 0.72 0.56
f12 0.25 0.17 0.12 0.04 0.11 0.06

Source: Reilly & Pepe [21], reproduced by permission of the
publisher.
aσ = standard deviation of measurement error distribution.

highly correlated with those used in the regression
model.

Other Complex Sampling Designs

Whittemore [38] studied Horvitz–Thompson estima-
tion for designs with three or more sampling phases
based on nested partitions of the sample space into
increasingly fine strata. Noting that the selection
probabilities for observations with complete covariate
data were given by products of the inverse sam-
pling fractions at each phase, she derived an explicit
expression for the variance of the scores used in the
information sandwich formula (6). Results were given
for both fixed sample size and random recruitment at
the second and each succeeding phase.

Whittemore & Halpern [39] gave an example of a
three-phase study of the association between prostatic
cancer and lifestyle factors. The first phase involved
a case–control sample of men with and without a
history of prostate cancer. Each was asked if he had a
brother with the disease, and subsamples were drawn
at phase two according to whether or not there was a
positive reply. A complete family history was taken
for those so selected. In a third phase of sampling all
the subjects whose families had three or more cases
of prostate cancer were asked to provide blood or
tissue specimens for DNA analysis. Data of interest
for statistical modeling included the complete family
histories and the DNA results. Variance formulas
were used to determine optimal sampling fractions
at phases two and three for estimation of parameters
in genetic models. Stratification of the phase two
sample, using the reply to the simple question posed
at phase one, remarkably improved efficiency.

Benichou et al. [2] provided another example of
three-phase sampling involving women participating
in a large-scale breast cancer demonstration project.
Data on age, treatment center, and date of entry into
the study were available initially for 280 000 women.
The second phase involved selection of approxi-
mately 3000 breast cancer cases and 3000 controls
with data on family history and clinical and reproduc-
tive risk factors. At the third phase, subsamples were
selected on the basis of the availability of mammo-
graphic information. This example is best character-
ized as a problem with a complex pattern of missing
data, because at phases two and three only those
cases and controls with complete data on the relevant
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covariates were retained. The authors developed their
own pseudo-likelihood analysis, using the parametric
bootstrap for calculation of standard errors.

The essential feature of the multiphase sam-
pling design [38] that makes it amenable to simple
Horvitz–Thompson estimation is the fact that the
resulting data are subject to a monotone pattern of
missingness [21]. The covariates may be ordered so
that the groups of subjects missing each one of them
are nested within each other. For other complex sam-
pling designs the data analysis is inherently more dif-
ficult and may require additional parametric assump-
tions. Wacholder et al. [34], for example, proposed
the partial questionnaire design for case–control
studies as a means of reducing the length of the
questionnaire administered to most subjects. Different
subgroups of subjects are given distinct question-
naires that are missing different blocks of questions,
so that the missingness pattern is nonmonotone. They
developed a pseudo-likelihood estimation procedure
that requires explicit estimation of the joint covariate
distribution in the sample. Consequently, the tech-
nique is currently restricted to studies with a small
number of discrete covariates.

Conclusions

Epidemiologists, especially those working in genetic
epidemiology, have begun to recognize the value of
two- and three-phase stratified sampling designs for
case–control studies [1]. By incorporating available
data into the design and analysis to the fullest pos-
sible extent, great savings in cost can be achieved
with little or no sacrifice in statistical precision.
Computational tools are now available that facili-
tate such designs and analyses. Horvitz–Thompson
estimation of logistic regression coefficients has been
implemented for data collected in complex sample
surveys [33]. Macros for Horvitz–Thompson estima-
tion in two-phase studies, and for the determination of
optimal sampling fractions from pilot data, are now
available for the popular package STATA [26, 27].
S-Plus functions are available for implementation of
the more efficient pseudo-likelihood and maximum
likelihood estimators [7].

This article has described two-phase stratified
sampling designs and analyses for estimation of
logistic regression parameters from binary outcome
data. Similar methods have been developed for

estimation of relative risk parameters in the
Cox proportional hazards model for failure time
data. Horvitz–Thompson estimation procedures are
available, for example, for covariate stratified
versions of the nested case–control study and of
the case–cohort study. Further work is needed to
implement more efficient estimation methods for
these and other complex sampling designs.
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Case–Control Study

The case–control design provides a framework for
studying the relationship between possible risk fac-
tors and a disease by collecting information about
exposure from those with disease but only from
a fraction of the individuals under study who do
not develop disease. When the disease is rare, this
approach offers a major gain in efficiency relative
to the full cohort study, in which an investigator
seeks information on exposure for everyone. The
savings compensate handsomely for the loss in the
precision of estimates of parameters describing the
relationship between exposure and disease that could
have been obtained from studying everyone. In fact,
the reduction in precision often is marginal. By col-
lecting data on exposure about cases, the subjects
who have developed disease, and controls, specially
selected subjects without disease, the case–control
design also compresses the time needed to complete
the study. In a classic case–control study, Doll &
Hill [10] recruited 649 male lung cancer cases and
649 male controls during an 18-month period in Lon-
don. They were able to show a clear increase in risk
with increasing daily cigarette consumption in this
case–control study (see Smoking and Health). By
contrast, in a cohort study of an equal number of
men at the very highest risk – that is, very heavy
smokers above age 70 – one would expect to find
only a handful of lung cancer cases within 1.5 years,
not nearly enough to draw convincing conclusions
about the relationship between smoking and lung
cancer.

A hypothetic example illustrates the extent of
the savings. In Table 1 are displayed the results
of a cohort study of 1 000 000 individuals who are
followed for disease for one year; 10% of them are
exposed.

The expected results from a case–control study in
which all 56 of the cases from this cohort are studied

are displayed in Table 2. Expected cell counts are also
shown in Table 2. For example, the expected number
exposed among the 56 studied controls is calculated
as 56 × (99 984/999 944) = 5.6.

The estimate of the odds ratio for disease,
(16/40)/(99 984/899 960) in Table 1, equals the
estimate of the exposure odds ratio in Table 2,
(16/40)/(5.6/50.4). Both odds ratios equal 3.6004,
and approximate the risk ratio (see Relative
Risk) (16/100 000)/(40/900 000) = 3.60 to four
significant digits. Thus, the study of 112 individuals
would give the same estimate as the study of
1 000 000, apart from random variation. While the
95% confidence interval (CI) for the odds ratio from
the case–control study, (1.3–10.3), is substantially
wider than the CI (2.0–6.4) from the full cohort
study, using 5 × 56 = 280 controls instead of only
56 would narrow the CI for the case–control study
to (1.8–7.2), which is notably closer to that of the full
cohort study. This minor loss of precision is a small
price to pay for the savings in exposure assessment
costs and in time that may make feasible a study that
would otherwise be too expensive.

In principle, although not always in practice, all
case–control studies yield an unbiased estimate of
the odds ratio and other functions of the odds. Most
are designed so that the odds ratio directly esti-
mates the relative risk or the incidence-rate ratio.
However, only population-based case–control stud-
ies that yield estimates of overall disease risk or

Table 2 Expected values from case–control study in same
setting as Table 1

Diseased Nondiseased Relative
(cases) (controls) odds

Exposed 16 5.6 3.60
Unexposed 40 50.4 1.00

Total 56 56

Table 1 Hypothetical full cohort study

Relative Relative
Diseased Nondiseased Total riska oddsb

Exposed 16 99 984 100 000 3.60 3.60
Unexposed 40 899 960 900 000 1.00 1.00

aRelative risk = (16/100 000)/(40/900 000).
bRelative odds = (16/99 984)/(40/899 960).
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rate in the population permit estimation of exposure-
specific incidence rates and thus of all parameters
that could be estimated from studying the entire
cohort.

Along with these considerable design strengths,
the case–control study has several weaknesses.
Incomplete or inaccurate ascertainment of outcome
and improper selection of controls can cause
selection bias. Retrospective assessment of exposure
history can lead to nondifferential and differential
measurement error and biased estimates of exposure
effects. As in any nonexperimental or observational
study, confounding can distort the estimates of
effect from a case–control study (see Bias in
Case–Control Studies; Bias in Observational
Studies; Bias, Overview; Measurement Error in
Epidemiologic Studies; Misclassification Error).

The Range of Case–Control Studies

A MEDLINE search for papers published since
1992 found over 1500 entries per year mention-
ing case–control or one of its cognates, usually
case–referent. The case–control study is a funda-
mental tool of epidemiology with broad application
in areas as diverse as the etiology of cancer and
birth defects, the effectiveness of vaccination and
screening for disease, and the causes of automobile
accidents.

Case–control studies vary greatly in scope, sour-
ces of data, and complexity. At one extreme are
investigations of an outbreak, which may include
fewer than ten cases (see Communicable Diseases).
These studies often encompass a wide-ranging, open-
ended examination of many exposures and host char-
acteristics of the cases. Often, the selection of con-
trols can precisely correspond to the source of cases
because there is a roster of the source population (for
example, in a hospital outbreak) or a convenient col-
lection of willing participants. At the other extreme
are multicenter, multiyear, highly focused studies of
tens of thousands of cases and controls. These are not
common, because of their high cost. More typical are
studies of a few hundred cases and an equal num-
ber of controls selected without a roster, but with an
algorithm intended to represent the population from
which the cases arose. These intermediate-sized stud-
ies provide a practical approach when the relative risk
is expected to be around 2 or greater and the exposure
is reasonably common (10% or more).

Weaknesses of the Case–Control Approach

Case–control studies, like cross-sectional and obser-
vational cohort studies, suffer from the common
drawbacks of all nonexperimental, or observational,
research, stemming from the investigator’s lack of
control in assigning exposure. Foremost is the abse-
nce of randomization as a tool for reducing con-
founding. An observational study will not be as
reliable as a clinical trial for investigating questions
such as the effectiveness of a new treatment or screen-
ing program.

Even though a case–control study has no intrin-
sic shortcomings compared exposuto a nonexperi-
mental full cohort study that collects information
on everyone in the same setting, the case–control
design has often been disparaged as fundamentally
weaker than the full cohort study. Several concep-
tual, statistical, and practical reasons explain this
negative attitude. Many early observers saw the
case–control study as a “backward cohort study”,
with inference made from effect to cause. It was
not obvious how to translate a difference in expo-
sure between cases and controls into a parameter
describing prospective risk until Cornfield in 1951
[7] showed theoretically that the exposure odds ratio
from a case–control study approximates the disease
risk ratio from a case–control study when the out-
come is rare. Selection bias can arise from poor study
design or poor implementation in choosing cases and
controls. Retrospective ascertainment of information
about exposure and confounders may yield inaccu-
rate data leading to bias. These issues are discussed
in detail later in this article.

Another apparent weakness of the case–control
approach is that ordinarily it yields relative but not
absolute measures of the effect of exposure on dis-
ease. It is possible, however, to estimate exposure-
specific absolute risk and risk differences when the
crude risk of disease is known in the study population
[1, 7, 10, 30].

Case–Control Study as a Missing-Data
Problem

A population-based case–control study can be regar-
ded as a cohort study with many nondiseased subjects
missing at random [30]. This view of the case–con-
trol study helps to resolve many conceptual issues.
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It reveals when and how a broader class of parame-
ters, including absolute risk and risk difference, can
be estimated. It clarifies the requirements for proper
control selection (see Missing Data in Epidemio-
logic Studies; Missing Data).

Consider a population-based case–control study
to examine the effect of an exposure on the risk of
developing disease. In the ideal study, the investi-
gator is able to identify all cohort members newly
diagnosed with disease during a specified follow-
up period. These people with disease, or a random
subset, become the cases in the study. Controls are
a random sample of the noncases. The investiga-
tors obtain information on exposure that preceded
the time of onset of disease from these cases and
controls. Exposure information for those noncases
who never develop disease during the study period
will be missing at random if the investigator deter-
mines whose exposure will be collected, based only
on disease status, which is known for individuals dur-
ing the specified time. Thus, the case–control study
is a missing-data problem, albeit with two unusual
features: the “missingness” is a planned maneuver
rather than an uncontrollable accident, and the ratio
of missing to observed data can be extraordinar-
ily high.

Under these assumptions, the cases and con-
trols will have the same exposure distribution as
the diseased and nondiseased, respectively, in the
cohort, and the investigator can estimate from the
case–control data all of the parameters estimable
from the full cohort study. Indeed, under these
assumptions, there are no intrinsic weaknesses to
the case–control design. This outlook recognizes
the prospective nature of the study, allows esti-
mation of all parameters available from the full
cohort, including absolute risk and risk difference,
and demonstrates why the controls selected should
have the same exposure distribution as other nondis-
eased individuals in the study population [30]. The
inference from the missing data approach is identi-
cal to standard case–control inference in this set-
ting [30].

Case–Control Studies to Estimate a
Hazard Ratio

In the idealization described above, risk is described
as the probability of developing disease during a

fixed interval. If the study aims to estimate functions
of hazard rates of disease, or numbers of new
events per unit of person–time (see Person-years at
Risk), the time element must be incorporated more
precisely. For instance, in the standard proportional
hazards analysis of the full cohort study designed
to estimate the hazard ratio, the partial likelihood
compares the exposure of a case to that of the
members of the risk set; namely, all other members
of the cohort who are at risk at the time of the event
that defines when the cohort member became a case.

In the nested case–control study that would be
undertaken in the same cohort, as first described by
Thomas [27], exposure from only a few randomly
selected members of each risk set is collected and
used in a time-matched case–control analysis, an
analog to partial likelihood. Again, except for the
use of fewer individuals, there is no intrinsic differ-
ence between the full cohort and nested case–control
analyses. All noncases in the risk set should be eli-
gible and equally likely to be sampled as controls,
even those who were previously selected as con-
trols or who later develop disease [15]. Sampling at
event times should be mutually independent in the
nested study.

The case–cohort design, first described by Pren-
tice [21], is a useful alternative with several practical
advantages. The controls are selected as a single sam-
ple or subcohort from the entire cohort, including
cases. While the sampling is not time-matched, in
the analysis the likelihood at each event time uses
the exposures of the case and of the subcohort mem-
bers who are in the risk set at the event time. The fact
that the subcohort is a random sample of the cohort
leads to more flexibility in the analysis and allows
the same controls to be used for analyses of several
endpoints.

Design

There are three interlocking steps in planning the
design of a case–control study:

1. Investigators must decide whether a cohort or
case–control study is appropriate.

2. Investigators must determine who will be cases
and controls in the study and how to assess
exposure.

3. Investigators must decide on all the specific
details to be included in the study protocol.
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Full Cohort vs. Case–Control?

The first decision required in planning a case–control
study is to determine whether the case–control design
is more appropriate than a full cohort design [29].
The reasons for preferring a case–control study to the
full cohort study are almost always practical, revolv-
ing around feasibility, economy, speed, and the need
to study multiple exposures or their joint effects. On
the other hand, a prospective cohort study sometimes
affords an opportunity to collect more reliable expo-
sure information, and can be used to study multiple
health outcomes simultaneously. It can offer slightly
more statistical precision. Finally, justifiably or not,
the cohort study has more credibility.

Lower Cost vs. Higher Statistical Efficiency.
Studying fewer subjects reduces the cost but also
lowers the precision of the estimate of effect. When
the disease is rare, the impact will be very modest,
as the above example demonstrates. The variance
estimate of the log-odds ratio estimate from two-by-
two tables of the form in Table 1 or Table 2 is the
sum of the reciprocals of the cell entries, so the size
of the smallest cell in the two-by-two table is the
factor limiting precision. When exposure is rare, this
smallest cell almost always will be the number of
exposed cases. This quantity is the same in the full
cohort or in the case–control study performed in the
same setting. Thus, the relative efficiency of the case-
control study with k controls per case is k/(k + 1)

compared to the full cohort [28]. The choice of design
often boils down to whether to look for cases among
the exposed (as in a cohort study) or exposed among
cases (as in the case–control approach).

The clearest advantage for the case–control study
occurs when the outcome of interest is rare and
the exposure of interest is common. As the percent-
age of individuals experiencing the outcome during
the follow-up period increases, the efficiency advan-
tage of the case–control design diminishes. As the
exposure of interest becomes rare, the ability of the
case–control study to estimate an effect diminishes
and a cohort design that ensures that individuals with
the rare exposure will be followed for disease may
become more advantageous.

Data Quality. Exposure assessment is the Achilles
heel of the case–control study. If information col-
lected retrospectively about exposure is of lower

quality than concurrent data, more nondifferential
misclassification or error, and consequently, atten-
uation of estimates of effect, almost inevitably ensue.
Worse still, exposure information that is self-reported
is susceptible to differential error or misclassification,
namely different error patterns in cases and controls.

The resulting bias can work to exaggerate, atten-
uate, or reverse the direction of an effect. While
differential error from interviews has been difficult
to establish conclusively in particular situations, it
seems realistic to assume that the accuracy and
thoroughness of reports from cases, who are touched
by the research question and whose lifestyle may be
affected by the disease, will be greater than for con-
trols. The effect of differential error is often called
report or recall bias. Some nutritional epidemiolo-
gists are extremely skeptical of dietary data collected
from cases and controls retrospectively, for fear of
differential misclassification (see Nutritional Expo-
sure Measures). By contrast, when previously writ-
ten records are the source of exposure information,
the errors are no different from those in a full cohort
study. So a retrospective or even a prospective full
cohort study would not automatically have higher
data quality. Correspondingly, collection of reliable
information on outcomes in all members of a cohort
or a case–control study is also a challenge, especially
for softer endpoints, such as infertility.

Other Scientific Issues. Apart from considerations
of efficiency, reflecting the rarity of disease and
exposure, other considerations come into play. When
confounding poses a major problem for a study, accu-
rate confounder assessment may dictate one design
or the other. The need to study multiple exposures
magnifies the advantage of the case–control design,
while a cohort study allows additional outcomes to be
included in the study with little increase in cost. Some
well-established cohorts [37] have demonstrated that
results on the relationships between multiple expo-
sures and multiple exposures from a full cohort study
can justify its substantially greater cost relative to a
single case–control study.

Credibility. While most researchers and journals
now appreciate the case–control design, some still
consider case–control studies automatically sus-
pect [11]. While this attitude is becoming less wide-
spread, it may affect how one’s work is accepted.
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Choice of Setting

The specific setting for the study must be chosen
within constraints imposed by logistics, convenience,
and cost. Investigators must also consider the key
factors that determine the quality of a case–control
study in a particular location. How complete and
accurate will the case ascertainment be? How rapidly
will investigators receive reports of cases, thereby
reducing the influence of the postdiagnosis period,
such as effects of treatment, and the number of
fatal or debilitated cases who might be excluded or
whose exposure information may need to be collected
from a proxy, such as a spouse or child? Is there
a roster or sampling frame, possibly from electoral
lists or a health insurance plan (see Administrative
Databases), from which to select suitable controls?
Are written records available to evaluate exposure,
thereby reducing the possibility of differential mis-
classification? Are participants likely to give reliable
information on exposure or confounders, including
perhaps family medical history, prescription drug use,
or highly personal questions about sexual history or
a previous abortion? Are participation rates likely
to be high? (see Nonresponse). Will participants be
amenable to a procedure needed for the study, such
as blood drawing for assessing a biomarker? What
is the rate of occurrence of events and how will it
affect the amount of time needed in the field? Is
there enough heterogeneity of exposure to reduce the
cost of a study and the number of subjects needed to
achieve a specified precision?

Case–control studies can be oriented toward mea-
suring the effect of exposure on disease preva-
lence, cumulative hazard, or incidence rate. Thus,
the temporal perspective must be considered. Ought
the study be limited to future cases, or can pre-
viously diagnosed individuals be used? Using only
those cases that are newly diagnosed (incident cases)
generally works to improve case ascertainment and
participation, reduce reliance on proxy respondents
for deceased or disabled cases and simplify control
selection, but is slower and more costly. One subtly
different definition of cases produces an estimate of
cumulative risk rather than incidence density ratio;
namely, when cases are all subjects who developed
disease throughout the duration of follow-up of a pop-
ulation. Finally, diseases with poorly defined onset
and long duration call for prevalence studies, with
the definition of cases correspondingly changed to

subjects who have the disease at the specified point
in time, regardless of when they first developed it
(see Case–Control Study, Prevalent).

Case and Control Selection

Case and control selection must be defined together
because they are intrinsically linked. Miettinen’s [20]
concept of the study base helps to clarify this connec-
tion. The study base at a given time consists of those
individuals who would become cases in the study if
they developed disease at that time. When the study
base is well-defined, the study is called a primary-
base study or a population-based case–control study;
cases are simply those members of the study base
who experience the outcome and controls can be a
random sample from the base. In this situation, it
is possible to determine whether any individual is
in or out of the study base at a given time and
whether that individual is eligible to be a case or
control in the study. The problem is making sure
that all cases in the base come to the attention of
the study investigators. The alternative starts with a
set of cases, perhaps chosen for convenience, as in
a hospital-based case–control study of lung cancer
diagnosed at a single hospital during a single year. In
these secondary-base studies, the study base is poorly
defined because it is not always clear whether an indi-
vidual who did not develop disease would have been
a case in the hypothetic circumstance of development
of disease. With no way to know whether a potential
control would have come to the study hospital upon
development of disease, random sampling for control
selection is impossible. Thus, these secondary-base
controls must be assumed to be an approximation to
a hypothetic random sample that could characterize
the study base. So in the primary base study, the dif-
ficulty is finding the cases, while, in the secondary
base study, the difficulty is ensuring an appropriate
set of controls.

Case Selection. In the idealized case–control study,
all subjects with disease in the study base (or a ran-
dom sample of them) become cases. In reality, some
cases do not come to the attention of the investiga-
tors, some individuals are falsely called cases when
in fact they do not meet the diagnostic criteria, and
some eligible cases refuse to participate. In a study
of male infertility, factors that lead to someone to
regard lack of children as a problem might appear as



6 Case–Control Study

risk factors because of differential case ascertainment
[31]. Inaccurate and incomplete case ascertainment
can create selection bias as well as reduce precision.
When there is ambiguity as to whether someone truly
developed disease, as in the absence of a definitive
pathology report, the standard practice of excluding
the case is not harmless, if those lacking information
have different exposure distributions than those with
the information, perhaps because they are seen at a
hospital in a poorer area [29].

Principles of Control Selection. There are three
principles that underlie control selection: study-base,
comparable-accuracy, and deconfounding [31]. The
essence of the study-base principle is that controls can
be used to characterize the distribution of exposure
in the study base from which the cases arise. The
comparable-accuracy principle calls for equal relia-
bility in the information obtained from cases and con-
trols so that there is no differential misclassification.
Thus, a study of drug use during pregnancy as a risk
factor for a specific type of birth defect might call for
a control group of children who experienced a com-
parably serious outcome at birth so that the mothers
of cases and controls would be equally likely to recall
exposure during pregnancy accurately. The decon-
founding principle allows elimination of confounding
through control selection, such as through matching
or stratified sampling, to be a consideration in con-
trol selection. These principles may conflict with one
another and may have strong negative impacts on
efficiency. They should not be regarded as absolute,
but rather as points to consider in choosing a con-
trol group.

Controls for Studies with a Roster. In fortuitous
situations, the investigator can use a roster listing all
individuals and the period when they are in the study
base. Investigators can then sample at random from
the roster to satisfy the study-base criterion.

Controls for Primary-base Studies without a Ros-
ter. When a roster is not available and cannot be
created from electoral or town residence lists, it is
impossible to generate a random sample directly. A
commonly used approach when there is no roster is
random digit dialing (RDD) [34], an efficient way
to generate a near-random sample often used in pub-
lic opinion polling. RDD relies on dialing telephone

numbers according to a strategy that yields repre-
sentative samples. RDD suffers from several poten-
tial biases. RDD will not select individuals without
phones, although it can compensate for households
with multiple telephone lines. Furthermore, many
people refuse to respond to telephone surveys, espe-
cially since the advent of answering machines (see
Telephone Sampling). Empirically, controls chosen
by RDD seem to be of higher socioeconomic class
than a truly random sample would be. This viola-
tion of the study-base principle may be alleviated by
adjustment for income or socioeconomic status.

Requirements for individual controls vary. In
incidence-density sampling [14, 19, 22], used most
commonly in primary-base studies, controls must
be disease free at the time of diagnosis of the
case to which they are matched. As in the nested
case–control study, this design allows estimation of
an incidence rate-ratio (and relative hazard) and
eliminates the need for the rare-disease assumption
[14, 19]. For cumulative-incidence sampling, con-
trols are selected from among those who survive the
study period without developing disease. Cumulative-
incidence sampling of controls allows estimation of
the risk ratio (relative risk), which approximates the
relative hazard only when the rate of disease is low.

Secondary-Base Studies. Some diseases, includ-
ing those not consistently detected in the general
population, dictate an alternative to primary-base
studies. For example, when case identification is
incomplete, population controls may not be appro-
priate when completeness of case identification is
differential by exposure and the selection bias cannot
be corrected by adjustment for another variable. The
most common secondary-base study is the hospital-
based case–control study. Controls are patients seen
at the same hospital as the cases, but for a differ-
ent condition. This approach works well when two
requirements are met. First, both cases and controls
must be people who would have presented at the
same hospital if they had either the case-defining
illness or the control-defining condition. Secondly,
the conditions used to select controls cannot be asso-
ciated with the exposure. If these requirements are
met, the distribution of the exposure in the controls
reflects the distribution in the study base. The inves-
tigator seldom knows with certainty that both criteria
are met, so compliance with the study-base criterion
remains hard to verify convincingly.
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A possible advantage of the hospital-based con-
trol group is more confidence that the equal accuracy
criterion will be met. With equally serious illnesses,
cases and controls ought to provide similarly com-
plete and accurate reporting of past exposures. Thus,
for the study of a specific birth defect, controls could
be chosen from babies born with another birth defect
of similar severity but known not to be related to the
exposure of interest. Using controls with cancer at
other sites for a study of a form of cancer may help
with the equal-accuracy principle, but care must be
taken so that cancer at the control site is not related
to exposure.

Other Kinds of Control Groups. While popula-
tion and hospital controls are the most commonly
used kinds of control groups, investigators have used
other options [32]. Use of patients from the same
primary care provider as the case helps to insure
that a control who developed the disease of inter-
est would have become a case in the study. Use
of friends of the cases can lead to bias in stud-
ies of factors related to sociability. Use of relatives,
often siblings, as controls may reduce confounding by
genetic factors. Each of these control groups requires
a careful selection procedure to make sure that indi-
viduals are not being picked to be controls in a way
that is related, directly or indirectly, to the factors
under study.

Design Options. Matching on well-established
confounders is a common practice in case–control
studies. In case–control studies, matching serves to
increase the precision of the estimated effect of expo-
sure by making the distribution of the confounder
identical in the cases and controls. Usually, the effi-
ciency advantage from matching is small, and may
not compensate for the extra cost and complexity,
the exclusion of cases for whom no match is found,
and the reduced flexibility of the analysis [33]. Other
justifications of matching include control for non-
quantitative variables such as neighborhood and the
ability to control for confounding without making
assumptions about the effect of the confounder in the
risk model [33].

Only strong confounders should be considered
as matching variables. Two-phase designs, discussed
below, are more appropriate if one wants to esti-
mate the effect of a variable considered for matching.
Demographic variables such as race and sex and

temporal variables such as age and calendar year
(or decade) of first employment are the most suit-
able matching variables. Matching is always inap-
propriate on a factor that is a consequence of expo-
sure.

Two-Phase Designs. These techniques [2, 36] (see
Case–Control Study, Two-phase) are a more flexi-
ble generalization of matching, also used to increase
efficiency or to reduce the cost of exposure assess-
ment. In two-phase designs, detailed information on
exposures and confounders is not ascertained for
everyone, but only for subsets of cases and con-
trols, with the selection probability depending on case
status and on the value of another variable that is
available for everyone. Instead of requiring, as in
matching, that the distribution of the variable be the
same in the control as in the cases, essentially arbi-
trary distributions in each group are specified. These
two-stage designs allow the estimation of both main
effects and interactions. For example, in a study
designed to investigate the joint effects of domestic
radon exposure, requiring expensive measurements,
and smoking, which is easier to ascertain, on the
risk of lung cancer, taking all cases and a ran-
dom sample of controls would lead to a study with
a preponderance of smoking cases and nonsmok-
ing controls; matching controls to cases on smoking
status would lead to small numbers of control non-
smokers as well. The assessment of interaction is
much more efficient in the two-phase design where
nonsmoking cases and smoking controls are oversam-
pled [35].

Sample Size. There is an extensive literature on
sample size determination for case–control studies
[4, 24, 25]. As in the full cohort study, needed sample
size is dependent on the variation in exposure in the
study base. A key point is that increasing the ratio
of controls to the harder-to-find cases increases the
precision of the odds ratio estimate in an increasingly
marginal way, especially for small effects. Ratios of
controls to cases beyond four or five are usually not
advisable because the successive gains in efficiency
diminish. Indeed, the asymptotic relative efficiency
for a study involving k controls per case is k/(k + 1),
which takes on values of 0.5, 0.67, 0.75, 0.8, and 0.83
for k from 1 through 5 [28].
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Fieldwork

The best-designed study will not be convincing unless
the fieldwork is sound. In the field, case–control
studies face the usual challenges of observational
research: identifying all members of the study popu-
lation, achieving an adequate response rate, collecting
accurate data, and measuring potential confounders.

Most case–control studies include a questionnaire,
because seldom have all of the exposure variables
of interest been recorded in documents easily avail-
able to the investigator. Sometimes the study subject,
or his surrogate, completes the questionnaire (“self-
administered”); alternatively, an interviewer can pose
the questions. A questionnaire can be computerized
or on paper; an interview can be in person or by
telephone (see Interviewing Techniques; Question-
naire Design). Depending on the hypotheses, investi-
gators may also collect biologic specimens, samples
of the study subject’s present or past environment,
and permission to contact agencies that have docu-
mented data about the exposures.

The case–control design poses some specific prob-
lems, as well. Since the cases have already developed
the disease, it will not be possible to estimate the
effects of exposure measures that are distorted by
the disease, including weight and body biochemistry,
unless the investigator has access to stored measures
that were collected before disease onset. If it is not
clear whether a measure is likely to be valid once the
disease is clinically manifest, the investigator may
conduct a specific methodologic pilot study. Some-
times, it is possible to examine the effects specific
for stage of disease, in the expectation that post-
onset distortions will be more pronounced with more
advanced disease. In a similar fashion, the investiga-
tor will consider whether therapy influences the level
of the exposure variable. If so, then cases need to be
studied before therapy begins, or well after any of its
influence has waned.

Just as diagnosis and treatment of a serious disease
can cause biological changes in exposure variables,
they also can cause changes in a patient’s recollection
or willingness to report various exposures. The
resulting recall bias does not always go in a
particular direction; the specific exposure needs to
be considered, preferably with data on reporting
bias from ancillary sources. Some exposures lend
themselves to internal validation by studying a
higher-quality exposure variable on a subset of

subjects or by collection of validation data from other
sources, such as medical records (see Validation
Study). In that circumstance, some or all of the
subjects reporting an illness or hospitalization will
be asked to give permission for review of records;
ideally, some of the reports of no hospitalization
ought to be selected for review, too, although
this is seldom practical. To minimize recall bias,
the investigator also attends to the exact phrasing
of questions, trying to leave very little room for
interpretation or rumination. Sometimes investigators
attempt to blind the interviewer to the case–control
status of subject, but often the status of the
subject becomes apparent anyway (see Blinding or
Masking).

With access to prospectively collected data stored
in records, the investigator can avoid the problem
of differential misclassification stemming from the
fact of diagnosis. Even with stored records, however,
one source of differential misclassification could be
present: minor abnormalities noted because of greater
medical surveillance of the exposed may not have
been detected in the unexposed (see Bias From
Diagnostic Suspicion in Case–Control Studies;
Bias from Exposure Suspicion in Case–Control
Studies).

Analysis

The goal of the analysis of case–control studies is
almost always to identify risk factors that are related
to disease and to determine whether in fact the risk
factors are causes of the disease (see Causation). As
in other nonrandomized situations, the analysis must
address the possibility of confounding and effect-
modification by measured covariates.

The primary difficulty that is inherent to analysis
of case–control studies is that the sampling is based
on disease status while the parameters of interest
relate to risk or rate of disease. Thus, it is not the
difference in exposure frequency or means between
cases and controls that is of direct interest, but esti-
mates of the effect of determinants of disease on the
rate of disease or on the probability of developing
disease.

The analysis of case–control data can be
exquisitely simple or tremendously complex. When
the exposure and disease are each dichotomous (see
Binary Data) and there are no other factors to
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consider, the analysis reduces to a two-by-two table
of exposure by disease status. Originally, Cornfield
[7] proposed that the odds ratio, or cross product
ratio in the two-by-two table could be used as an
estimate of the risk ratio (or relative risk) when
the disease was rare. Mantel & Haenszel [16]
developed an estimator and a test statistic that
could be used when combining tables over several
strata, thereby controlling for confounding. Exact
conditional approaches, not relying on asymptotic
theory, are also available for obtaining inference on
the common odds ratio, adjusted for confounders by
stratification [3, 13, 18].

While discriminant analysis seems a natural tool
to distinguish cases and controls, logistic regression,
in which the dependent variable is the logarithm of
the odds of disease, has two distinct advantages.
It allows for exposures, confounders and effect-
modifiers that are discrete or continuous, regardless of
distribution [9] and yields valid estimates of relative-
odds parameters from case–control data. Prentice &
Pyke [23] proved that prospective logistic model-
ing – that is, of disease as a function of exposure –
estimated relative risk parameters correctly and with
full efficiency. If the sampling fractions of cases
and controls are known, as in some population-based
case–control studies, the intercept estimate from the
case–control analysis can be combined with the ratio
of the sampling fractions to yield a valid estimate
of absolute risk. Logistic regression is now the most
commonly used approach to analyze case–control
data. Carroll et al. [6] extended the Prentice–Pyke
result to show that many variations of case–control
designs could be analyzed by logistic regression and
given a prospective interpretation. Extensions to the
logistic framework allow the handling of more com-
plex sampling schemes, such as two-phase designs,
of nonlinear regression effects of covariates, and
of alternative models of joint effects of two risk
factors, such as additive rather than multiplicative
effects.

Control for a small number of categorical con-
founders can be achieved by the Mantel–Haenszel
estimator of the odds ratio and corresponding hypoth-
esis test. These simple procedures have excellent
statistical properties. Nonetheless, logistic modeling
is used routinely, because of its greater flexibility,
for instance, in handling continuous variables [3]. In
most modern studies, there will be more than two

levels of exposure or one or more confounders and
effect-modifiers to consider.

The analysis of matched pairs with a single
dichotomous exposure variable uses only discor-
dant pairs. It takes the ratio of pairs with the case
exposed to those with the control exposed as the
odds ratio estimate. The corresponding test of the
null hypothesis that the odds ratio is one is equiva-
lent to the hypothesis that the number of pairs with
exposed cases among the discordant ones is bino-
mial with probability 0.5 (see Matched Analysis;
McNemar Test). While several extensions to more
complex exposure variables and matching schemes
were developed, the breakthrough in the analysis of
matched data was the introduction by Breslow et al.
[5] of conditional logistic regression, which allows
general matching schemes, arbitrary exposures, con-
tinuous or discrete confounders (other than those used
in the matching), and effect-modifiers.

An important variation of the analysis of case–
control data allows for estimation of a hazard ratio
rather than an odds ratio or risk ratio, as in nested
case–control and case–cohort studies [21, 26, 27].
These designs are particularly useful when exposures
vary with time, as does, for example, lifetime expo-
sure to an environmental or occupational chemical.
A conditional likelihood approach can be used here
as well as where the matching is on time. In the con-
tribution to the conditional likelihood at each event
time, the exposure is accumulated only until the event
time, exactly as if the analysis were prospective and
no future data were available [21]. Furthermore, the
same structure of the conditional likelihood as in the
matched case–control study is used. As long as the
controls are selected randomly from those at risk –
that is, including future cases and independently of
past use as a control or time of follow-up – the esti-
mates of hazard ratio are valid, again reflecting the
close relationship to the full cohort design. When the
same controls are used for each case diagnosed dur-
ing the control’s follow-up, as in the case–cohort
design, the estimates of the hazard ratio are also
valid, but the variance estimate is more complex
because the scores at each event time are not inde-
pendent.

In most reports of case–control studies, no esti-
mate of absolute risk or absolute rate is given. Meth-
ods are available for population-based case–control
studies when the crude risk of disease is known [1,
7], and generally for nested case–control and case–
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cohort studies [17, 37]. Furthermore, risk or rate dif-
ference and other nonlogistic models can be fit [30].
Methods for estimating the attributable risk and its
variance in a general setting are also available [8].

Summary

The case–control study remains the most popular
approach in analytic epidemiology because of its
relatively low cost and high speed. Ascertainment
of disease, selection of controls and measurement
of exposure present substantial difficulties in almost
every case–control study, but a large body of epi-
demiologic theory and experience provides guidance
to meet these challenges.
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Case-only Gene Mapping

Genetic mapping of human disease genes refers to
the identification of markers that are linked to the
loci affecting disease status. When pedigree data
are available, linkage studies are used to estimate
the recombination fractions between marker and dis-
ease genes (Linkage Analysis, Model-based). This
approach has proven to be very successful, although
the relatively limited size of pedigrees does not allow
very small recombination fractions to be estimated
because of the lack of recombinants. Fine-scale map-
ping rests on the indirect approach of estimating
population genetic parameters whose size depends on
the recombination fraction, and these parameters are
referred to collectively as “association parameters”.

When individuals can be characterized as being
affected or unaffected by a disease, marker–trait
association can be addressed by comparing marker
frequencies between these two categories (Disease-
marker Association). The case–control approach
compares frequencies between people with the
disease and those chosen to be their matched controls.
Alternatively, a comparison of the frequencies with
which alternative marker alleles are transmitted to
affected offspring forms the basis for the transmission
disequilibrium class of tests.

It is also possible to infer linkage or association
on the basis of marker data from affected individuals
only. The extent to which individuals of a specified
relationship share marker alleles can be predicted
from classic population genetics, and linkage is
inferred when there is more sharing than expected
among affected relatives. This article describes pro-
cedures based on association among marker alleles
within the affected population, and shows how these
marker associations allow inferences to be drawn
for marker–disease associations. Some of these ideas
have been presented previously [1, 2].

Population Genetic Model

A disease is supposed to be affected by a locus
A, with alleles Ar , in the sense that the probability
of an individual of genotype ArAs being affected
is φrs = φsr . If the population proportion of ArAs

genotypes is Prs , then the disease prevalence φ

is
∑

r,s Prsφrs . When multiple loci contribute to

disease susceptibility, the quantities Prs and φrs

would need to be extended. For a random-mating
population, genotype proportions can be expressed
as products of allele proportions, pr for Ar , so that
φ = ∑

r,s prpsφrs . Unless a candidate gene is being
considered, the disease genotypes and genotype-
specific susceptibilities are unknown. This means that
the number of alleles at the disease locus is also
unknown.

Data can be collected on marker loci M with
alleles Mi . If the proportion of individuals in the pop-
ulation formed from the union of ArMi and AsMj

gametes is written as P ri
sj , then the proportion of

MiMj marker genotypes among affected or unaf-
fected individuals is

Pr(MiMj |Aff.) =
∑

r,s

P ri
sj

φrs

φ
,

Pr(MiMj |Unaff.) =
∑

r,s

P ri
sj

1 − φrs

1 − φ
. (1)

Under the null hypothesis of no marker–disease
gene association, P ri

sj = PrsPij and both these pro-
portions reduce to the marker genotype proportion
Pij . The case–control test based on marker geno-
types, therefore, is actually a test of the hypothesis
P ri

sj = PrsPij . In the special case of a random union
of gametes, one-locus genotype proportions are prod-
ucts of allele proportions and two-locus genotype pro-
portions are products of gamete proportions: P ri

sj =
pripsj . Writing gamete frequencies in terms of allele
frequencies and linkage disequilibrium coefficients,
pri = prqi + Dri , leads to

Pr(MiMj |Aff.) = qiqj + 1

φ
(qiδj + qj δi + δij ),

Pr(MiMj |Unaff.) = qiqj − 1

1 − φ
(qiδj + qj δi + δij ),

(2)

where the marker allelic and genotypic association
parameters are defined as

δi =
∑

r,s

psDriφrs ,

δij =
∑

r,s

DriDsjφrs . (3)
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The marker-genotype case–control test is therefore a
test of no marker–disease allele and genotype asso-
ciation, δi = δij = 0. The random mating assump-
tion has allowed three- and four-allele disequilibrium
coefficients to be ignored. Only in the special case of
two alleles at the disease locus can the test said to be
one for linkage disequilibrium.

Adding more marker genotypes to recover marker
allele frequencies provides, in the random-mating
case,

Pr(Mi |Aff.) = qi + δi

φ
,

Pr(Mi |Unaff.) = qi − δi

1 − φ
, (4)

showing that the case–control test on marker allele
frequencies is actually a test for no marker–allelic
association, δi = 0.

Case-only Tests

From the results in the previous section it is possi-
ble to express marker-genotype proportions in terms
of marker allele proportions among affected or unaf-
fected people. For the random-mating case,

Pr(MiMi |Aff.) = Pr(Mi |Aff.)2 + φδii − δ2
i

φ2
,

Pr(MiMj |Aff.) = 2Pr(Mi |Aff.)Pr(Mj |Aff.)

+ 2(φδij − δiδj )φ
2, (5)

showing that a test for Hardy–Weinberg proportions
among marker genotypes in the affected population is
actually a test about marker allele and genotype asso-
ciations with the disease locus. The test is not strictly
a test that these associations are zero, as the marker
locus will have Hardy–Weinberg proportions among
affected people even if it is associated with the dis-
ease locus when the susceptibilities are multiplicative,
φrs = αrαs , for then φδij = δiδj .

The absence of a linkage disequilibrium between
marker and disease loci results in Hardy–Weinberg
equilibrium for the marker in the affected population.

The converse does not hold unless there are only two
alleles at the disease locus. Parallel results apply to
the unaffected population, so that either population
could be used. For rare diseases, however, φ <

(1 − φ), and the departures from Hardy–Weinberg
at the marker locus are expected to be greater among
affected than unaffected people.

If the disequilibrium coefficients involving marker
and disease alleles are all zero, whether these are
for one or two alleles at each locus, then the
amount of Hardy–Weinberg disequilibrium at the
marker locus is the same for affected people, unaf-
fected people, and the whole population. Rejecting
Hardy–Weinberg at the marker locus in the affected
population, therefore, may simply reflect nonrandom
mating in the whole population. Preliminary tests for
marker Hardy–Weinberg for a random sample taken
without regard to disease status should therefore be
conducted. If this test gives a significant result, then it
is necessary to go back to case–control tests although
even for those tests the power will be affected by
nonrandom mating.

The analysis of marker-only associations can be
extended to multiple marker loci. Tests of linkage dis-
equilibrium for pairs of marker loci among affected
people, for example, are actually tests for associa-
tion of marker haplotypes with the disease locus in
the whole population. These associations are func-
tions of the linkage disequilibrium coefficients for
each marker allele and each disease allele, and of
the three-locus linkage disequilibrium coefficient for
alleles from each of the three loci.
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Categorical Data Analysis

Introduction

Categorical variables separate observations into
groups, within which members share a common
trait. This may be a nominal attribute, level of
an ordinal scale, or numerical value or range
derived from an interval or ratio scale (see
Measurement Scale). In practice, the number of
groups (categories) per variable is usually small
to moderate, no more than 20. However, finer
classifications are often defined by combinations of
several variables. Procedures such as Student’s t-
tests, analyses of variance (ANOVAs), and their
nonparametric analogues employ categorizations as
independent or explanatory variables to study how
continuous random variables vary between groups.
Categorical data analysis, in contrast, involves
categorical response variables and draws inferences
to probability distributions of random category
counts, or functions of them.

For instance, Table 1 reports the pretreatment per-
cent labelling index (LI , continuous) and posttreat-
ment remission status (RS , dichotomous) of acute
myeloblastic leukemia patients. LI , which reflects
the proportion of cells undergoing DNA synthe-
sis, might be expected to predict RS . The relevant
null hypothesis of independence implies mathemati-
cally that the conditional densities of LI , in the two
groups differentiated by subsequent remission status
(RS = 1 or RS = 0), are identical. However, test-
ing for a difference in LI densities between these
two ex post facto-differentiated populations with the
usual Student’s t or Wilcoxon rank sum test is not
categorical data analysis, because these tests do not
treat variation across the categories stochastically.
It is biologically more natural, though, to view the
RS outcomes for different patients as resulting from
independent Bernoulli trials (see Binary Data) with
fixed but unknown conditional probabilities πLI =
Pr{RS = 1|LI }. One might then examine the regres-
sion of πLI on LI . This latter approach incorporates
the randomness of the RS dichotomy into analysis,
and hence, falls within our scope.

When all variables are categorical, the cumber-
some “list” or “case-record” format of Table 1 may
be condensed by combining observations with iden-
tical values, that is, “levels”, of all variables. Each

observed pattern is listed once, with an added column
for the count of such observations. When analysis is
focused on one dependent variable, patterns identical
for all independent variables share the same row, with
added columns for counts in each dependent category
(Table 2). A contingency table is a multiway cross-
tabulation of counts for nonoverlapping groups. The
dimensions correspond to categorical variables, the
levels of which combine to define the groups. Such
tables are usually more interpretable than condensed
list formats, when most possible patterns of levels
have been observed at least once. Table 3 shows the
simplest example, a two-by-two table defined by
combinations of levels of variables A and B. Rows
and columns are labelled at tabular edges, or “mar-
gins”, by levels of the corresponding variables. The
physical intersection of a row and column is the “cell”
corresponding to the combination of corresponding
levels of each variable, and contains the count nij

of observations with this pattern. Row and column
sums are often placed at the right or bottom mar-
gins, respectively. Throughout, we replace a subscript
with “+” to denote a sum of all terms with different
values of the subscript. For certain study designs, spe-
cific combinations of levels may be unobservable or
logically impossible. Corresponding cells are marked
with a dash or other placeholder, or left empty, and
the tables containing them are called “incomplete”.

These concepts extend directly to tables of three
or more variables. For convenience, counts from a
contingency table of any dimension may be viewed
in a two-dimensional rectangular array by nesting
categories of some variables within those of oth-
ers to form the rows (e.g. Table 2), columns, or
both. Analogies between contingency tables and their
counterpart tables of means in ANOVAs for fac-
torial experiments have contributed greatly to the
development of categorical data models.

Several features combine to give categorical data
analysis a distinct flavor. Probability modeling is
primarily confined to the Poisson distribution, for
which the variance equals the mean, and its con-
ditional descendants for which variability remains
analytically inseparable from location. Hence, effi-
cient analyses require weighting of observations. The
dimension of the data space is tied to the num-
ber of observable category combinations rather than
the number of categorical variables. Consequently,
models are frequently of high dimension, requiring
reliance on asymptotic inference (see Large-sample



2 Categorical Data Analysis

Table 1 Pretreatment percent labelling index and
posttreatment remission status (1 = in remission,
0 = relapsed) of acute myeloblastic leukemia patients;
excerpted from [3]

Percent labelling
Patient Remission status index

1 1 1.9
2 1 1.4
3 0 0.8
4 0 0.7

· · · · · · · · ·
27 0 0.7

Table 2 Count list format for one dependent categorical
variable: artificial data

Variable C
Variable Variable
A level B level Level 1 Level 2 Level 3

1 1 5 7 4
1 2 6 3 2
1 3 11 2 14
2 1 1 12 9

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

17 2 8 13 1

Table 3 A 2 × 2 contingency table: cell and marginal
counts

Variable B

Variable A Level one Level two Marginal totals

Level one n11 n12 n1+
Level two n21 n22 n2+
Marginal totals n+1 n+2 n++

Theory) and/or complex computations. Most models
for expected counts are inherently nonlinear, so max-
imum likelihood estimates (MLEs) for parameters
are implicit nonlinear functions, rather than explicit
linear functions, of observed marginal distributions
or other summary statistics. This introduces subtle
issues of model interpretation, and brings computa-
tional complexity into even low-dimensional settings.
Lastly, complex structures of counts are modeled
and smoothed by imposing symmetry constraints,
analogous to those of factorial ANOVA or polyno-
mial regression, on sets of either probabilities or
model parameters. However, the inherent plausibility
of constraints such as linearity in classical regression

extends only infrequently to the categorical data
setting, where a thoroughgoing empiricism flourishes
by necessity.

Nevertheless, the same scientific questions about
relationships among variables prompt continuous and
categorical data analyses, which have been concep-
tually unified to a remarkable degree. For inference
about a single proportion, see Proportions, Infer-
ences, and Comparisons. Below, we treat the 2 × 2
table at length, since the most important concepts
appear in simplest form at this level. Parallels with
continuous data analysis are noted in discussions of
general two- and three-dimensional tables. We then
broadly survey categorical data modeling via unify-
ing paradigms: generalized linear models (GLMs),
weighted least-squares (WLS) functional model-
ing, generalized estimating equations (GEE), and
generalized linear mixed models (GLMMs). Some
attention is also given to exact inference, conditional
logistic regression (see Logistic Regression, Condi-
tional), and Bayesian methods. The need for brevity
requires neglect of history. For sake of readability
given the voluminous literature, we also omit detailed
citation, providing instead a selected bibliography
of texts, monographs, and a few papers, primarily
reviews. For historical discussion and further refer-
ences, see [2] and specific entries cross-referenced
below. For additional remarks on comparison of two
proportions, see Proportions, Inferences, and Com-
parisons. We confine our discussion to data that have
been fully and accurately observed. Categorical data
may also be missing or misclassified. (See Miss-
ing Data; Misclassification Error; Misclassification
Models.)

The discussion of 2 × 2 tables is more detailed
and in some portions more mathematical than the
sections that follow. The reader desiring to learn the
flavor of the subject with a bit less intensity may
prefer to skim the sections entitled “Exact Inference
for 2 × 2 Tables” and “Likelihood Ratio, Score and
Wald Statistics,” in favor of easier sledding beyond,
and perhaps also refer to the entry on Proportions,
Inferences and Comparisons.

Probability Models for 2 × 2 Contingency
Tables

Four basic sampling models, the product-Poisson,
multinomial, product-binomial, and noncentral hyper-
geometric, are commonly used to describe how data



Categorical Data Analysis 3

in 2 × 2 tables such as Table 3 originate. We write
mij for E(nij ) under such a model. The general
product-Poisson model, employed in spatial distribu-
tion and incidence density studies, assumes that four
independent Poisson streams of events or individuals
are counted over possibly different regions of space
and/or time. Then

Pr({nij }) =
2∏

i=1

2∏

j=1

Pr(nij )

=
2∏

i=1

2∏

j=1

(Nijλij )
nij e−Nij λij

nij !
, (1)

the product-Poisson distribution with rate parameters
{λij } and known space-time “exposures” {Nij }. For
such data, mij = Nijλij . Typically, one is interested
in how the λij depend upon the levels of A and B,
and particularly in how the ratios λi1/λi2 change with
i, or how the ratios λ1j /λ2j change with j . If these
ratios do not change, then ψ = λ11λ22/λ12λ21 = 1,
and the ln λij satisfy the additive model

ln λij = µ + γi∗ + γ∗j (2)

for some µ, γi∗, and γ∗j . Such linear models for
logarithms are also called loglinear models.

A simpler model results when the observational
region is the same for all streams, with individuals or
events classified jointly by variables A and B as they
are observed. Then all Nij = N can be absorbed into
the scale of the λij and dropped from consideration.
After rescaling, mij = λij . Unless stated otherwise,
“product-Poisson” below will refer to this simplified
version.

The product-Poisson model for Table 3 generates
other models through conditioning on marginal totals
when these are fixed by design. For studies such
as cross-sectional surveys that collect precisely n++
observations,

Pr({nij }) = n++
2∏

i=1

2∏

j=1

π
nij

ij

nij !
, (3)

a four-category multinomial distribution with
the unconditional probabilities πij = Pr(A = i, B =
j) = λij /(

∑2
i=1

∑2
j=1 λij ). Here, mij = n++πij .

Central to such studies is whether the row and column
categorizations A and B are informative about one
another or independent. The answer lies with the ratio

of the conditional odds π11/π12 that B = 1 given
A = 1 to the conditional odds π21/π22 that B = 1
given A = 2,

ψ = π11π22

π12π21
= m11m22

m12m21
= λ11λ22

λ12λ21
. (4)

Since ψ is invariant when the roles of A and B

are reversed, it is known simply as the odds ratio;
ψ = 1 under independence and is higher or lower
respectively when A and B have the same levels more
or less often than independence would imply.

Two-group comparative designs, such as case–
control or cumulative incidence cohort studies, have
predetermined sums along one margin (e.g. n1+, n2+).
Conditioning on these yields

Pr({nij }|{ni+}) =
2∏

i=1

(
ni+
ni1

)
π

ni1
i (1 − πi)

ni2 , (5)

the product of binomial distributions with sample
sizes ni+ and conditional probabilities πi = Pr(B =
1|A = i) = πi1/(

∑2
j=1 πij ) = λi1/(

∑2
j=1 λij ). Under

(5), mi1 = ni+πi and mi2 = ni+ − mi1. The object of
these designs is comparison of π1 and π2 through
inference about the difference ∆ = π1 − π2, the ratio
RR = π1/π2, or the ratio OR = Ω1/Ω2 of the cor-
responding conditional odds Ωi = πi/(1 − πi). The
first two measures of disparity are known to epi-
demiologists as the “risk difference” (see Absolute
Risk) and “risk ratio” (see Relative Risk), respec-
tively, while the latter is known as the risk odds
ratio (ROR) for cohort designs, and as the exposure
odds ratio (EOR) for case–control designs. Simple
algebra shows that OR = Ω1/Ω2 is ψ , equal to
unity under the homogeneity null hypothesis H0 :
∆ = π1 − π2 = 0, and higher or lower depending on
the sign of ∆. A fourth probability model is used
when either “exact” or randomization analysis (see
Randomization Tests) is desirable, as with small
samples or some randomized clinical trials. In such
a trial, one may hypothesize that a dichotomous out-
come such as survival or death is preordained in the
patient sample studied, in the sense of being unaf-
fected by therapy. Once patients are selected, results
then depend only on the outcome of randomiza-
tion. Under this null assumption of no therapeutic
impact, conditioning on both the designed treatment
group sizes and the predetermined outcome counts
for the selected patient group yields a null hyper-
geometric distribution. More generally, when the
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row and column variables are dependent, the same
conditioning gives the noncentral hypergeometric dis-
tribution

Pr({nij }|{ni+}, {n+j }, ψ) =
(

n1+
n11

) (
n2+

n+1 − n11

)
ψn11

∑

u

(
n1+
u

)(
n2+

n+1 − u

)
ψu

, (6)

where max(0, n1+ +n+1 −n++) ≤ u ≤ min(n1+, n+1),
and ψ is again the odds ratio π11π22/π12π21 =
λ11λ22/λ12λ21. Since ψ is the only unknown quan-
tity, inferences based on (6) are free of nuisance
parameters. When ψ = 1, (6) is the hypergeometric
distribution, for which mij = ni+n+j /n++.

Inference for 2 × 2 Tables

The odds ratio ψ is central to all probability mod-
els for 2 × 2 tables. Under a product-Poisson law, ψ

reflects nonadditivity of the effects of A and B on the
ln λij . The multinomial, product-binomial, and non-
central hypergeometric admit equivalent formulations
of ψ as a measure of association between A and B. In
each case, writing ln ψ = ln m11 − ln m12 − ln m21 +
ln m22 expresses ln ψ as the usual interaction con-
trast for a two-way layout in the general linear model,
applied here to the ln mij rather than to cell means of
Gaussian variates. Thus, ψ is the interaction param-
eter of a loglinear model for variation among the
ln mij that is structurally identical to the 2 × 2 fac-
torial ANOVA model for expected cell means in the
two-way layout. Conveniently, the MLE of ψ under
Poisson, multinomial, and product-binomial laws is
just the sample odds ratio ψ̂ = n11n22/n12n21. It is
thus attractive to characterize association in a 2 × 2
table by ψ , although the risk difference ∆ or the risk
ratio RR at times represent the association on a more
practically relevant scale. We now describe methods
of estimation and testing for these parameters, using
likelihood inference or related asymptotically equiv-
alent methods.

Exact Inference for 2 × 2 Tables

Under (6), Pr({nij }) is known for any specified value
of ψ , the only unknown parameter. This allows

exact probability calculations, and hence exact infer-
ence, either when both margins have been fixed by
design so that (6) applies directly, or after condi-
tioning on random margin(s) under (1), (3), or (5).
The MLE under (6), ψ̂c(�= ψ̂), is known as the
“conditional MLE” of ψ , and may be found itera-
tively as a root of the polynomial equation n11 =
E(n11|{ni+}, {n+j }, ψ). The hypothesis H0 : ψ = ψ0

may be tested against Ha : ψ �= ψ0, using as P value
the summed probabilities of the observed {nij } and all
tables {n∗

ij } with identical margins {ni+} and {n+j } for
which Pr({n∗

ij }) ≤ Pr({nij }) under H0 (see Hypothe-
sis Testing). For ψ0 = 1, this is Fisher’s exact test.
For a one-tailed test, only tables in the direction
of the alternative (n∗

11 ≤ or ≥ n11, as applies) con-
tribute to the P value. Lower and upper 100(1 − α)%
confidence limits ψL and ψU for ψ may be found
by inverting the two-tailed test. This requires itera-
tively solving α/2 = ∑

u′≥n11
Pr(u′|{ni+}, {n+j }, ψL)

and α/2 = ∑
u′≤n11

Pr(u′|{ni+}, {n+j }, ψU), where
Pr(u′|{ni+}, {n+j }, ψ) is given by (6) with n11 = u′.

The above method may be extended to a broader
class of procedures, and from 2 × 2 to r × c tables
through the multivariate hypergeometric generaliza-
tion of (6), as follows: (i) Order all possible tables
with the observed {ni+} and {n+j } by a measure of
discrepancy from H0; (ii) test H0 against Ha , using as
P value the summed probabilities of all tables at least
as compatible with Ha , under the selected ordering,
as the observed table; (iii) form a 100(1 − α)% two-
sided confidence interval for the relevant unknown
parameter θ (ψ in this instance), by including in the
interval all θ0 retained by such a two-sided α-level
test of H0 : θ = θ0. Analogous methods can be used
whenever a distribution giving exact probabilities
under a simple hypothesis for all observable tables,
and a reasonable method of ordering tables, are both
available. For Fisher’s exact test, the ordering crite-
rion is the probability of the table under H0 and (6).
Other ordering criteria of interest include the asymp-
totic test statistics discussed in the following section
and measures of row by column association. Compu-
tational barriers to such tests are falling rapidly.

Owing to the discreteness of (6), hypothesis tests
that reject H0 when an exact P value is ≤α are con-
servative, in the sense that the actual type I error prob-
ability is typically below α, sometimes considerably
so. For instance, for the famous tea tasting experiment
Fisher used in presenting his exact test, the true type
I error probability of the nominal α = 5% level test
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is 1.4%. Several approaches are available for gain-
ing statistical power by more closely approaching the
nominal level. One is to randomize Fisher’s exact
test. Under this approach, rejection or retention of
H0 for an outcome yielding the lowest nonsignificant
P value under the exact test is determined randomly,
with rejection probability set just sufficient to increase
type I error to the desired level. This is rarely done in
practice, however, because it allows researchers with
identical data to reach discordant results based on a
random process containing no information relevant to
the scientific question.

A second approach, for data collected under (1),
(3), or (5), is to enlarge the probability space, and
thus, the set of possible P values, by testing under
(5) rather than under (6). Such an “unconditional
exact test” is accomplished by (i) exact testing
under (5), conditional on each member of an inter-
val πε[πL, πU ] of presumed common probabilities
π1 = π2 = π , and (ii) using the supremum of the con-
ditional P values across the collection to determine
the P value for inference. The fully unconditional
approach takes πL = 0, πU = 1 and the supremum
itself, supπ0ε[0,1](PH0:π=π0), as the unconditional P

value, while the formulation reduces to Fisher’s exact
test for the degenerate interval πL = πU = n1+/n++.
Increased power over either of these extreme choices
may often be obtained by maximizing only over a
confidence interval for π , and adding the error prob-
ability of the interval to the supremum to obtain the
unconditional P value; see Proportions, Inferences,
and Comparisons for more detail.

A third approach bases inference on the “mid-
P value”, obtained through reducing the exact P

value by half the probability of the observed table.
Mid-P values mimic the null behavior of P val-
ues based on continuous sampling distributions more
closely than do exact P values. A mid-P value has
expectation 0.5 under H0; mid-P values for one-
sided tests in opposing directions sum to 1.0; and
Pr(mid-P value ≤ α) is frequently much closer to α

than Pr(exact P value ≤ α). However, type I error
control for tests based on a mid-P value is less strin-
gent than for conditional or unconditional exact tests,
randomized tests, or for any hypothesis test properly
constructed from a valid continuous sampling distri-
bution, in the sense that Pr(mid-P ≤ α) can exceed
α for some sample sizes. Similarly, the coverage
probability of a confidence interval constructed by
inverting mid-P -based hypothesis testing may fall

short of its nominal confidence coefficient for some
combinations of true probabilities and sample sizes.
The mid-P value appears to be a satisfactory approx-
imate remedy for the conservatism of Fisher’s exact
test in that the type I error from its repeated use
in different situations can be expected to approxi-
mate the nominal level better than the error rate of
Fisher’s exact test. But the looser form of type I error
control may compromise the suitability of mid-P val-
ues for use in settings where precise type I error
control is essential to the integrity of a regulatory
standard. See Continuity Correction; Proportions,
Inferences, and Comparisons.

While inference should clearly be based on (6)
when both margins of a 2 × 2 table are fixed by
experimental design, there is no clear consensus
on the best level of conditioning, and hence dis-
tributional model, to employ for inference from
data generated by (1), (3), or (5). However, large-
sample methods have been developed, based primar-
ily though not exclusively on these less-conditional
distributions, that are computationally simpler than
exact methods, and more easily generalized to higher-
dimensional contingency tables and statistical mod-
eling of association structures involving several vari-
ables. Such large-sample methods dominate statistical
practice. For moderate to large samples, these meth-
ods tend to give results close to those based on (6)
and its multivariate extensions. They may not be reli-
able for use with sparse samples or in the context of
highly eccentric distributions, but in such situations,
often still provide a framework for exact analyses.

Approximate Large-sample Inference for 2 × 2
Tables

A hypergeometric-based large-sample test depends
on the asymptotically Gaussian (normal) distribution
of n11 as n++ ↑ ∞ with n1+/n++ → π1+ and
n+1/n++ → π+1. Then, by randomization central
limit theory, the Mantel–Haenszel chi-square
statistic

X2
MH = (n++ − 1)(n++n11 − n1+n+1)

2

n1+n2+n+1n+2

= [n11 − (n1+n+1/n++)]2

VarH0(n11)
= (n11 − m11)

2

VarH0(n11)

(7)
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has a limiting χ2
1 distribution (chi-square distribu-

tion with one degree of freedom). Several other
test statistics have the same null limiting distribu-
tion under product-Poisson, multinomial, or product-
binomial models. Under these models, the MLE of
mij remains m̂ij = ni+n+j /n++ under H0 : ψ = 1,
and is nij under the general alternative Ha : ψ �= 1.
The chi-square likelihood ratio test statistic for test-
ing H0 against Ha reduces in each case to G2 =
−2 ln Λ = 2

∑2
i=1

∑2
j=1 nij ln(nij /m̂ij ). G2 is some-

times abbreviated as 2
∑∑

O ln(O/E), where O

and E respectively represent an observed cell count
and its estimated expected value under H0. However,
the Pearson chi-square statistic X2

P = ∑2
i=1

∑2
j=1

(nij − m̂ij )
2/m̂ij = ∑∑

(O − E)2/E, like X2
MH a

normalized, squared-error comparison of the nij with
the m̂ij , is more commonly used than either G2 or
X2

MH. Since X2
MH = [(n++ − 1)/n++]X2

P , the distinc-
tion between these tests is minimal except when
large-sample approximation is difficult to justify. It
becomes important, however, in extensions to three-
way tables (see Cochran–Mantel–Haenszel Tests
below, and Chi-square Distribution). X2

P and X2
MH

are sometimes modified to “continuity corrected” ver-
sions X2

Pc
and X2

MHc
by reducing each |O − E| in X2

P ,
and equivalently |n11 − m11| in X2

MH, by 1/2 to better
approximate the behavior of Fisher’s exact test (see
Yates’s Continuity Correction).

An alternate algebraic form of Pearson’s statis-
tic under product-binomial sampling is X2

P =
z2
P = (p1 − p2)

2/(n−1
1+ + n−1

2+)p(1 − p), where pi =
ni1/ni+ and p = n+1/n++. Here p1 − p2 is the MLE
∆̂ of ∆, the denominator is the MLE V̂ar0(∆̂) of
Var(∆̂) under H0 : ∆ = 0, and zP is a conventional
large-sample “standard normal deviate” z-statistic.
Since V̂ar0(∆̂) is not consistent for Var(∆̂) when
∆ �= 0, zP does not yield closed-form bounds of an
asymptotic confidence interval for ∆. Instead, one
must numerically invert the more general version of
the Pearson criterion,

X2
P ;∆0

= ((p1 − p2) − ∆0)
2

2∑

i=1

(π̃i(1 − π̃i)/ni+)

, (8)

where the π̃i are MLEs of the πi under the constraint
π̃1 − π̃2 = ∆0, and the confidence interval is bounded
by the lowest and highest values of ∆0 retained by
the hypothesis test.

A more convenient alternative to this computation
is to instead estimate Var(∆̂) by either its unrestricted
MLE V̂ar(∆̂) = ∑2

i=1 pi(1 − pi)/ni+ or unbiased
estimator Ṽar(∆̂) = ∑2

i=1 pi(1 − pi)/(ni+ − 1), to
form respective large-sample Gaussian confidence
intervals ∆̂ ± z1−α/2

√
(V̂ar(∆̂)) or ∆̂ ± z1−α/2√

(Ṽar(∆̂)). Indeed, ∆̂ ± z1−α/2
√

(V̂ar(∆̂)) is the
“standard” interval in statistical pedagogy. Unfortu-
nately, this interval is now known to be overly liberal,
with slow convergence to its asymptotic coverage,
below-nominal coverage in small to moderate sam-
ples, and performance notably inferior to that of the
interval based on (8) and other alternatives. How-
ever, a practical and pedagogically useful replace-
ment for this errant standard results from smoothing
the 2 × 2 table slightly toward uniformity by adding
one to each cell prior to calculating the interval.
This correction is equivalent to basing the Gaus-
sian interval not on the pi , but rather on Bayesian
point estimates of π1 and π2, chosen as posterior
modes using independent, uniform prior distribu-
tions for the πi . The resulting interval has the nom-
inal behavior of its predecessor in large samples,
and dramatically improved coverage in small sam-
ples, particularly when π1 or π2 approaches zero or
one. As with any approximate interval, and inter-
vals based on heuristic improvements to exact inter-
vals such as mid-P , coverage can still be below
nominal for specific combinations of n1+, π1, n2+,
and π2.

Confidence intervals for ψ and RR may be
obtained by an extension of the basic approach for
∆. The MLEs ψ̂ and R̂R and their logarithms are
smooth functions of the nij , and thus are asymptot-
ically Gaussian. Convergence is faster on the sym-
metric logarithmic scale, where intervals including
negative (hence inadmissible) values are also rou-
tinely avoided. From the delta method, the MLEs
of the asymptotic standard errors (se’s) of ln ψ̂

and of ln R̂R = ln[(n11/n1+)/(n21/n2+)] are respec-
tively

√
(
∑ ∑

n−1
ij ) and

√
(n−1

11 − n−1
1+ + n−1

21 − n−1
2+).

Confidence intervals, generally symmetric, are deter-
mined on the ln scale using Gaussian critical values,
and exponentiated to yield (asymmetric) intervals
for ψ and RR. Although still approximate, these
intervals behave more satisfactorily than does the
Gaussian interval for ∆. Performance of the inter-
val for ψ is improved by (i) extension of the
interval to ±∞ respectively when min(n12, n21) =
0, min(n11, n22) = 0, and (ii) determining finite
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boundaries as above after smoothing slightly toward
independence, by distributing across the cells of the
table a total of two additional observations in frac-
tions proportionate to the m̂ij . This is an empirical
Bayes procedure in which the table is smoothed
by applying a Dirichlet prior to the cell probabili-
ties, with Dirichlet parameters summing to two and
proportional to the estimated expected values under
independence.

The confidence intervals for ψ , ∆, and RR,
based on their respective MLEs and consistent
asymptotic variance estimators, may each be used to
generate alternative tests of ψ = 1. The statistic for
∆, X2

N = ∆̂2/V̂ar(∆̂), is of particular interest. X2
N ,

known as Neyman’s “minimum modified chi-square”
statistic (see Ban Estimates), may be rewritten
as X2

N = ∑2
i=1

∑2
j=1(nij − m̃ij )

2/nij = ∑ ∑
(O −

E)2/O, where m̃i1 = ni+p̃, m̃i2 = ni+ − m̃i1, and p̃

is the inverse-variance weighted average of the pi .
X2

N differs from X2
P in estimating expected counts

slightly differently, and by weighting each squared
deviation inversely to the corresponding observed
rather than expected count. Though undefined when
any cells are empty, X2

N converges in large samples
to the same limiting distribution under H0 : ∆ = 0 as
do X2

P and G2, as Neyman showed in conjunction
with his development of best asymptotically normal
(BAN) estimation.

Indeed, this limiting distribution is shared by a
much broader class of test statistics, the “power-
divergence (PD)” family of form

DIV ϕ =
(

2

ϕ(ϕ + 1)

) 2∑

i=1

2∑

j=1

nij

[(
nij

mij

)ϕ

− 1

]
,

(9)

where the mij are known or estimated expected
counts under a null hypothesis. This is X2

P for ϕ = 1
and X2

N for ϕ = −2. The likelihood ratio G2 is the
limiting case as ϕ → 0, and ϕ → −1 yields a Kull-
back–Liebler information statistic. The minimum
power-divergence estimator (mpe) {m̂ϕ

ij } minimizes
DIVϕ under a null hypothesis H0 for the mij . Thus,
m̂ij and m̃ij are respectively the MLE (ϕ = 0), and
the “minimum Neyman chi-square” (ϕ = −2) estima-
tors of mij under H0 : ∆ = 0. Quite generally, mpes
and PD statistics based on any mpe of mij share,
respectively, common limiting null Gaussian and χ2

distributions as n++ ↑ ∞. (See Power Divergence

Methods; Proportions, Inferences, and Compar-
isons; Chi-square Tests).

Likelihood Ratio, Score and Wald Statistics

Further progress requires more powerful and general
tools. We therefore briefly sketch, heuristically, some
likelihood results in quite general form. Consider
a data vector y (e.g. y = (n11, n12, n21, n22)

′) and
associated loglikelihood function l(θ ;y), where θ =
(θ ′

1,θ ′
2)

′ is a parameter vector. One might wish to
test H0: θ2 = 0. For instance, consider the saturated
loglinear model for the 2 × 2 table,

ln mij = µ + γi∗ + γ∗j + γij (10)

under product-Poisson, multinomial, or product-bino-
mial sampling. We assume that identifiability con-
straints are placed on the γi∗, γ∗j , and γij , so that
µ, γ1∗, γ∗1, and γ11 = ln ψ determine the remaining
parameters. Then θ1 = (µ, γ1∗, γ∗1)

′ and θ2 = (γ11)

places testing of ψ = 1 or ∆ = 0 in this context.
When l(θ ;y) is smooth in a neighborhood of θ ,

the MLE θ̂ = (θ̂
′
1, θ̂

′
2)

′ is a solution of the likelihood
equations ∂l(θ ; y)/∂θ = 0 and converges in proba-
bility to θ . Let θ

° = (θ ′
1, 0′)′ and θ̂ ° = (θ̂ °′

1 , 0′)′ be,
respectively, θ and its MLE under H0. Under H0, θ̂2

from a large sample will likely be close to 0, a predic-
tion that may be checked to evaluate the plausibility
of H0. Moreover, both θ̂ and θ̂ ° will likely be close to
θ , placing them both in the neighborhood of θ , where
l(θ ;y) is smooth. Thus, chances are that l(θ̂ °;y) will
be close to l(θ̂ ;y), a second verifiable prediction of
H0. Finally, under H0, the log-likelihood slope in any
θ2 direction has expectation 0 when evaluated either
at θ

° or θ̂ °, and should not often depart greatly from
that. This may also be checked, evaluating at θ

° if
θ1 is known and at θ̂ ° otherwise. We may thus test
compatibility of the data with H0 by checking these
stochastically usual consequences for the parameter
estimates, log-likelihood, and score.

The deviation of l(θ̂ °;y) from l(θ̂ ;y) is evalu-
ated through the large-sample null χ2

ν distribution
of −2 ln Λ, where ν = rank θ2. The MLE and log-
likelihood slope are evaluated in terms of their
limiting multivariate normal distributions. The
large-sample multivariate Gaussian distribution of θ̂

has mean θ and covA(θ̂) = I(θ)−1, where I(θ) =
−E([∂2l(θ ; y)/∂θ∂θ ′]) is Fisher’s information mat-
rix. Consequently, the large-sample null marginal
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distribution of the component θ̂2 has mean 0 and
covA(θ̂2) = V̂

θ2
(θ), the lower right block of I(θ)−1.

Since this may be estimated consistently by V̂
θ2

(θ̂ ),

the quadratic form QW = θ̂
′
2 [V̂

θ2
(θ̂)]−1θ̂2 has the

same null asymptotic χ2
ν distribution as −2 ln Λ.

Statistics of form QW are “Wald statistics”, and cor-
responding chi-square tests are “Wald tests” (see
Likelihood).

More generally, for estimation of a parameter vec-
tor θ , or a subvector θ2 from a categorical data model,
a “best asymptotically normal (BAN)” estimator F

is a consistent, asymptotically efficient multivariate
Gaussian estimator that has continuous partial deriva-
tives with respect to the observed counts. BAN esti-
mators share the same asymptotic null distribution,
and mpes are BAN. Any quadratic form F ′V̂ −1

F F ,
where V̂ F is a consistent estimate of the asymptotic
covariance matrix covA(F ) of F , is an extended
Wald statistic sharing the same asymptotic proper-
ties as QW under the null. Different extended Wald
statistics for the same hypothesis share the same
null asymptotic χ2 distribution, though their non-null
asymptotic cdfs may differ.

The log-likelihood slope S2, defined as ∂l(θ ;y)/
∂θ2 evaluated at θ2 = 0, is called the “likelihood
score” or “Rao’s efficient score” for θ2. The large-
sample null multivariate Gaussian distribution of S2

has covA(S2) = I22(θ
°), the lower right block of

I(θ °). If θ1 is known, then so is I22(θ
°
) under

H0. The “score statistic” for testing H0 is then the
quadratic form QS(θ

°
) = S ′

2(θ
°
)[I22(θ

°
)]−1S2(θ

°
)

reflecting the magnitude of the score relative to
its variability, which the “score test” evaluates
using the χ2

ν distribution as above. When θ1 is
unknown and the score is thus evaluated at θ̂ ° =
(θ̂ °′

1 , 0′)′, the use of the MLE θ̂ °
1 constrains S1 =

∂l(θ ;y)/∂θ1 to 0, and the observed score must be
assessed against the conditional distribution under
that restriction. The conditional covariance matrix is
covA[S2|(S1 = 0)] = Iθ2|θ1 = I22 − I21I−1

11 I12, and
the corresponding score statistic is QS(θ̂

°) =
S ′

2(θ̂
°)[Iθ2|θ1(θ̂

°)]−1S2(θ̂
°), also χ2

ν under H0.
Equivalently, in terms of the overall score vector
S ′ = (S ′

1, S ′
2)

′, this is S ′(θ̂ °)I(θ̂ °)−1S(θ̂ °).
Some score statistics are extended Wald statis-

tics. For instance, in the Poisson regression, logistic
regression, and loglinear models discussed below,
a score statistic is a quadratic form in linear func-
tions of residuals from the likelihood fit of H0, with

kernel the null-based MLE of their inverse asymptotic
covariance matrix.

Most asymptotic test statistics in common use for
categorical data take the form of either −2 ln Λ, QS ,
or QW , for appropriate distributions and parametric
models. Wald and score tests are often substituted for
likelihood ratio tests, because they are less computa-
tionally demanding when working with multivariable
models. Maximum likelihood estimation frequently
requires iterative numerical approximation. Each like-
lihood ratio test requires two MLEs, θ̂ and θ̂ °

1 . In
exploratory analyses, one may wish to examine the
statistical significance of many individual parameters
within a single model, using the results for model
reduction. The MLE θ̂ for the baseline model is
needed for every test, but θ̂ °

1 changes with each
parameter or parameter set to be tested. In contrast,
Wald tests depend only on θ̂ . For instance, for testing
10 parameters individually, likelihood ratio testing
requires 11 numerical optimizations as compared to
1 for the Wald test.

Similarly, when many candidate predictor vari-
ables are available for initiating a model or aug-
menting a baseline model, the score test is more
convenient than the likelihood ratio test. Defining θ1

and θ2, respectively, as the parameter vectors of vari-
ables already in the model and of candidates for entry,
only θ̂ °

1 from the baseline model is needed to con-
struct a score statistic for testing candidate variables,
individually or in groups, for incremental explana-
tory power. Although such computational economies
have gradually become less important for individual
models with the extraordinary increase in available
computational power, computer software has tended
to retain these practices to facilitate exploration of
larger and more complex models.

The previous results for 2 × 2 tables can be better
understood, and extended, after reinterpretation in the
context of this section. Under product-binomial sam-
pling, the hypothesis H0 : ∆ = 0 in terms of prob-
abilities is equivalent to H0 : δi = 0, i = 1, 2 in the
model for expected cell counts mi1 = ni+(µ + δi),
with a suitable identifiability constraint. In contrast
to (10), this model may be reexpressed as linear
constraints on the mij , since the ni+ are fixed in
product-binomial sampling. Neyman chi-squares for
such linear hypotheses are Wald statistics. Further, if
nonlinear constraints on the mij in any hypothesis are
replaced by their linear Taylor series approximations
at mij = nij , then X2

N for the “linearized” hypothesis
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is a Wald statistic for its nonlinear parent. This gives
a particularly simple recipe for asymptotically (first
order) optimal inference, since minimum X2

N estima-
tors and the associated X2

N may be obtained from
one-step WLS computations.

Specifically, in the 2 × 2 context Neyman’s X2
N ,

obtained by inverting the large-sample Gaussian con-
fidence interval for ∆, is the Wald test for ∆ = 0.
Similarly, the delta method-based intervals for ψ

and RR are inversions of Wald tests, which in this
case are also linearized Neyman chi-square tests, for
ψ = ψ0 and RR = RR0. G2, and X2

P = X2
P ;0 in (8),

are respectively the likelihood ratio and score statis-
tics for ∆ = 0, or H0 : γ11 = 0, in (10).

More generally, Pearson’s X2
P ;∆0

(8) is the score
statistic QS;∆0 for testing ∆ = ∆0. Analogous score
tests of RR = RR0 and ψ = ψ0 are obtained respec-
tively from

QS;RR0 = n1(p1 − π̃1)
2

π̃1(1 − π̃1)
+ n2(p2 − π̃2)

2

π̃2(1 − π̃2)
, (11)

where π̃i is the MLE of πi under the constraint that
RR = RR0, and

QS;ψ0 = Cn1(p1 − ˜̃π)

[
1

n1˜̃π1(1 − ˜̃π1)

+ 1

n2˜̃π2(1 − ˜̃π2)

]
, (12)

where ˜̃πi is the MLE of πi under the constraint that
ψ = ψ0 and C is a normalizing constant.

Comparative studies of score and Wald tests, and
their associated confidence intervals, indicate that the
score-based procedures generally approach nominal
behavior more rapidly, and therefore, perform more
acceptably in small to moderate samples, than the cor-
responding Wald procedures. As the associated com-
putations have become less intimidating in the light of
expanded computing power, the advantages of confi-
dence intervals obtained by inverting two-sided tests
based on the above score criteria have increasingly
been recognized. Among asymptotically based inter-
vals, these appear to maintain near-nominal coverage
for a wide range of sample size and probability con-
figurations.

For situations in which near is not enough, because
nominal coverage in all conditions must be guaran-
teed, exact intervals are required. For this purpose as
well, confidence intervals based on score statistics are

increasingly used. In these situations, a score statistic
is employed, as described earlier, as the criterion for
ordering possible outcomes in computing an exact
P value. Note that the standardization by estimated
variance in the score statistics (8), (11), and (12) pro-
duces a finer partition of the sample space than the
corresponding unstandardized measure of association,
thus rendering exact analysis less discrete, and poten-
tially reducing the conservatism of exact intervals.
The difference between the true and nominal cover-
age of an exact interval can be further reduced, and
the interval narrowed correspondingly, by uncondi-
tional rather than conditional exact testing, and by
further restricting the range of unconditional analy-
sis to values of the nuisance parameter that are not
grossly implausible in light of the observed data.

Matched Pairs

The above discussion of 2 × 2 tables has omitted the
simplest categorical analog to paired continuous data,
2 × 2 tables in which A and B represent a single
dichotomy observed under different circumstances,
or on members of n++ matched pairs. In such
tables, association between the two dimensions is
usually taken for granted, and ψ becomes a nuisance
parameter. Interest shifts to discrepancies between the
marginal probabilities π1+ and π+1, expressed as the
marginal risk difference ∆M = π1+ − π+1, marginal
risk ratio RRM = π1+/π+1, or matched odds ratio
ψM = π12/π21. Approaches introduced above may be
used for inference about ∆M, RRM , and ψM . For ∆M ,
see Marginal Homogeneity in Square Tables below
(see Square Contingency Table). Matched categor-
ical data are more easily treated generally, however,
by viewing matched sets of observations as observa-
tional strata, with observations cross-classified in a
three-way table with dimensions defined respectively
by the strata, the condition of observation or other
within-stratum factor, and the response variable. (See
Cochran–Mantel–Haenszel tests below, and McNe-
mar Test; Matched Pairs With Categorical Data;
Mantel–Haenszel Methods).

Inference for r × c Tables

An r × c table may be viewed as a collection of
2 × 2 subtables, the challenge being to knit the sub-
tables together in a reasonable structure for inference
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that allows adequate error control. Ways of coping
with the overparameterization in larger tables depend
heavily on whether the variables A, B, or both are
ordinal. Ordinality presents special opportunities for
combining parameters across cells or incorporating
scaling into a model for the mij (see Ordered Cate-
gorical Data).

The probability distributions defined above apply
with r × c rather than 2 × 2 = 4 categories, or gen-
eralize directly: the noncentral hypergeometric to
the multivariate noncentral hypergeometric, and the
product-binomial to the product-multinomial. As with
2 × 2 tables, there are two distinct spheres of anal-
ysis. In the study of association between row and
column variables, equivalently expressible as het-
erogeneity across rows of the conditional column
distributions Pr(B = j |A = i) = mij /mi+, the null
hypothesis is independence or conditional homo-
geneity, and the marginal distributions Pr(A = i) =
mi+/m++ and Pr(B = j) = m+j /m++ are either
known or of only secondary interest. Numerous
indices have been developed to summarize, for par-
ticular purposes, the overall level of association in
an r × c table. See Association, Measures of for
enumeration and discussion of these. In contrast,
in the study of repeated measurements or other
matched data in square tables, the focus is on differ-
ences between these marginal distributions; the null
hypothesis is marginal homogeneity and row by col-
umn association is of only secondary interest (see
Marginal Models).

Marginal Homogeneity in Square Tables

We consider the simpler repeated measures case
first. If the salient variable A is nominal, then H0 :
mi+ − m+i = 0, i = 1, . . . , r is linear in the mij .
In this case, X2

N = QW is a quadratic form in an
arbitrary r − 1 of the (ni+ − n+i ), with covariance
matrix estimated at mij = nij , and is asymptotically
χ2

r−1 under H0. If A is ordinal with scores si , then
comparison of the mean row score µr = E(sr) =
E(n−1++

∑r
i=1 ni+si) with the mean column score µc =

E(sc) = E(n−1++
∑r

i=1 n+i si) may be of primary inter-
est. The corresponding Wald/Neyman χ2

N for H0 :
µr − µc = 0 has null large-sample χ2

1 distribution
and is a contingency table counterpart of the paired
t-statistic. Routine generation of covariance kernels
for such tests is straightforward (see Weighted Least-
Squares Analysis below). The tests may be inverted

to obtain, in the former case, a confidence region
for the vector of the mi+ − m+i , and in the latter, a
confidence interval for the scalar µr − µc.

When levels have no associated natural scores, it
is often reasonable to apply the above methods with
equally-spaced scores, especially for questionnaire
data, with responses such as much improved,
improved, the same, worse, and much worse. When
linear scaling is unreasonable, data-derived scores
may be used with appropriate conditioning. For
this purpose, the nij , i �= j , may be extracted and
reformulated as an (r − 1) × 2 table in which,
for k = 1, . . . , r − 1, n

†
k1 = ∑∑

i−j=k nij and n
†
k2 =∑∑

j−i=k nij . Row k of this table contains all
elements of the parent table whose row and column
categorizations differ by k levels. Rank scores
may then be derived from the row sums n

†
k+ =∑2

l=1 n
†
kl = ∑ ∑

|i−j |=k nij of the reformulated table.

Conditioning on the n
†
k+, the (r − 1) × 2 table may

usually be treated as product-binomial with fixed row
scores (see r > c = 2 below), yielding for example,
categorical counterparts of the signed-rank test.

An alternative likelihood ratio approach for nom-
inal data is based on the relationship of marginal
homogeneity to two forms of interior symmetry.
The model mij = mji represents symmetric reflec-
tion off the main diagonal, or “total symmetry”. The
weaker quasi-symmetry model specifies that γij =
γji in (10). Total symmetry is the special case of
quasi-symmetry with homogeneous margins. If quasi-
symmetry can be justified, either a priori or by a non-
significant goodness-of-fit test with adequate power,
then the likelihood ratio statistic comparing total sym-
metry with quasi-symmetry is a valid test of marginal
homogeneity. The df of the limiting χ2

r−1 distri-
bution is the difference between the (r2 − r)/2 =
r(r − 1)/2 linearly independent constraints of total
symmetry on the mij and the [(r − 1)2 − (r − 1)]/2
constraints of quasi-symmetry on the (r − 1)2 lin-
early independent γij (see Matched Pairs With Cat-
egorical Data; Square Contingency Table).

r > c = 2

G2, X2
P , X2

N , and exact hypergeometric methods
extend directly from the 2 × 2 case, but neglect
any ordering of A. Consequently, power functions
of the resulting hypothesis tests fail to differenti-
ate important and contextually plausible distributional
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shifts or monotonic trend alternatives from irregular
alternatives of equal magnitude but negligible plau-
sibility. The appropriate method for incorporating
ordinality depends on which margins are fixed by
study design or conditioned upon in analysis. When
scores si are available for the rows with the ni+
random and the n+j fixed, it is natural to com-
pare the column mean scores s1 = n−1

+1

∑r
i=1 mi1si

and s2 = n−1
+2

∑r
i=1 mi2si . This is readily done using

QW = X2
N for the single linear contrast s1 − s2 = 0,

yielding contingency table counterparts of Student’s
t-test and its associated confidence interval. When
the ni+ and n+j are fixed, an equivalent test may
be obtained by substituting the null hypergeometric
variance of this contrast for the estimated variance
in QW .

When the n+j are random and the ni+ are fixed,
models relating the conditional probability πi = πi1/∑2

j=1 πij to si are natural analogs of univariate con-
tinuous regression analyses. The Cochran–Armitage
trend test (see Trend Test for Counts and Propor-
tions) is based on an unweighted least-squares fit of
the simple linear regression of the pi on the si . This
amounts to a partitioning of the Pearson X2

P , with df
= r-1, into a multiple of the squared fitted regression
coefficient and a weighted combination of squared
deviations of observed from model-predicted propor-
tions, respectively analogous to the regression and
residual sums of squares for a continuous response.
Under H0 : πi = π , both components have large-
sample χ2 distributions, with respectively 1 and r − 2
df. The first component is also valid as another t-test
counterpart for detecting a difference in mean row
scores between columns. Under the same model, the
corresponding Wald/Neyman χ2

N uses a WLS-based
slope estimate, while G2 iterates the same WLS com-
putation until convergence. These latter approaches
are readily extended to polynomial regression mod-
els for the πi , and can provide confidence intervals
for estimated regression parameters. The residual X2

N

and G2 statistics retain their null χ2
r−2 distribution

under simple linear regression alternatives to H0, and
hence may be interpreted as lack-of-fit statistics.

The related partition of chi-square technique (see
Chi-square, Partition of) is useful for isolating
heterogeneity in tables of nominal variables where
association between rows and columns has been
established. If a nested sequence of hypotheses can
be developed whose intersection implies indepen-
dence, or homogeneity of rows or columns, then

Table 4 Infant malformations, by mother’s average num-
ber of alcoholic drinks/day in first trimester of pregnancy;
adapted from [1]

Infant malformations

Drinks/Day Absent Present Total deliveries

0 17 066 48 17 114
1–2 14 464 38 14 502
3+ 952 7 959

test statistics for corresponding collapsed versions
of the original table are approximately additive, and
have asymptotically independent null χ2 distribu-
tions. This is best shown by example. Table 4 relates
infant malformations to mother’s alcohol consump-
tion. For these data, X2

P = 6.9494 with df = 2, P =
0.031, indicating statistically significant variation in
the incidence of malformation with alcohol intake
during the first trimester of pregnancy. However, the
effect is exclusively associated with consumption of
at least three drinks daily, as shown by the com-
ponents of X2

P comparing the first two categories
of alcohol consumption (X2

P = 0.0984 with df = 1,
P = 0.754), and comparing the last category of alco-
hol consumption with these two categories pooled
(X2

P = 6.8557 with df = 1, P = 0.009). These com-
ponents are nested because all categories contrasted
by the first test are pooled together in the contrast
examined by the second test. Although the test statis-
tics for the component single degree of freedom (df)
tests do not precisely sum to that for the overall
two df test (6.8557 + 0.0984 = 6.9541 �= 6.9494),
this does not compromise the validity of the tests indi-
vidually; exact partitioning may be obtained by anal-
ogous use of G2 or X2

N . Partitioning requires caution,
however, under product-binomial sampling with dis-
proportionately sampled population subgroups. Pool-
ing of such sample subgroups may produce biased
estimates of proportions in the pooled population cat-
egories, and invalid tests based upon them.

When the n+j are fixed, the ni+ are random,
and natural scores are not at hand, equally-spaced
(linear) scores may be used a priori where that
seems reasonable, or rank scores may be derived
from the marginal distribution {ni+}. Binary (zero or
one) scores differentiating groups of low and high
categories, Wilcoxon rank scores, and scores that
transform Wilcoxon scores to expected order statistics
(see Normal Scores) or to the inverse of a continu-
ous cdf, are commonly used. For fixed si , likelihood
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ratio, score or Wald statistics may be obtained for the
structural model H0 : s1 − s2 = ∑r

i=1 si(mi1/n+1 −
mi2/n+2) = 0. When the si are rank scores, either
the multivariate hypergeometric distribution should
be employed or the scores should be treated as ran-
dom and their variation incorporated into the test
statistic. With the former approach, a quadratic form
with covariance matrix from the multivariate (cen-
tral) hypergeometric distribution may be used as test
statistic. Under the latter approach, the Wald test,
obtained by approximating the nonlinear s1 − s2 by
a linear function of the nij , may be used. These
statistics have limiting χ2

1 distributions, and yield
categorical data counterparts of the Wilcoxon rank
sum and other rank tests for continuous data (see
Wilcoxon–Mann–Whitney Test).

The tests above differ in their handling of nuisance
parameters. Some, for example, the two-population
likelihood ratio comparison of means of predeter-
mined scores, employ test statistics whose asymptotic
distributions are fully specified under the nominal
null hypothesis. This is accomplished by collapsing
over nuisance parameters, conditioning them out, or
optimizing over their possible values. For others, for
example, the Cochran–Armitage trend test and the
hypergeometric-based comparison of means of data-
derived scores, nuisance parameters still influence the
distribution of the test statistic when the nominal null
hypothesis is true, and are only removed by testing a
more restrictive hypothesis. Such procedures are best
understood as tests of the more restricted rather than
the nominal null hypotheses, but with power con-
centrated against alternatives to the latter. They may
not be unbiased tests of the nominal null, but this
deficiency has minimal practical consequences.

Ordinality may also be handled by incorporating
category distances, as determined by scores, directly
into the structure of the mij . This allows parsimo-
nious summarization and targeted testing of ordinal
association. Roughly speaking, a set of statistics S
is sufficient for a set of parameters if the likelihood
equations for estimating the parameters involve the
data only through the members of S. Loglinear mod-
els may be constructed with parameters for which
simple observed functions of scores, such as means
and covariances, are sufficient statistics. In the r ×
2 table, writing γ i

loc = ln mi1 − ln mi2 − ln mi+1,1 +
ln mi+1,2 = ln ψi , where γ i

loc is also γij as in (10), the
model γ i

loc = (si − si+1)β is a simple linear regres-
sion model for the logit(πi) = ln[πi/(1 − πi)] as a

function of the si , with β the regression parameter.
The mean score n−1

+1

∑r
i=1 ni1si is sufficient for β in

this model. When the model fits, the r − 1 parame-
ters γ i

loc, i = 1, . . . , r − 1, reduce to a single β that,
in conjunction with parameters for the marginal distri-
butions, completely specifies the mij . An estimate β̂

can then be used to summarize the strength and direc-
tion of the change in conditional probability between
rows, or the change in mean score between columns,
in an observed table.

In biostatistics, this “logit model” was developed
for the analysis of quantal bioassay data, where a
test animal was presumed to respond or not respond
to a drug or toxic agent depending on whether or
not the animal’s individual tolerance threshold was
exceeded by the dose. The logistic distribution was
used to model the distribution of tolerance thresh-
olds across animals because of its similarity to the
Gaussian distribution, coupled with its exceptional
mathematical convenience. Animals were generally
dosed in groups, with si = ln(dosei ). This analytic
advance was seminal for loglinear, logistic regres-
sion, weighted least-squares, and generalized linear
modeling (see Quantal Response Models; Psycho-
metrics, Overview).

The odds ratio structure of the logit model may
be applied outside the framework (10) of a loglinear
model for cell probabilities. Suppose row margins are
random. Rather than modeling the logarithms of the
“local” odds ratios γ i

loc, that is, the ln odds ratios of
expected cell counts from adjacent rows in the r × 2
table, one may model the logarithms of the corre-
sponding cumulative odds ratios of the (r-1) 2 × 2
tables obtained by collapsing rows 1 through i and
rows (i + 1) through r, for i = 1, . . . , r − 1. The ith
of these overlapping, cumulative tables has expected
entries mi

1j = ∑i
l=1 mlj , mi

2j = n+j − mi
1j . Then the

model γ i
cum = ln(mi

11m
i
22/mi

12m
i
21) = (si − si+1)β is

a “cumulative” (or “global”) odds ratio model. Mul-
tifactor linear models for logarithms of global rather
than local odds are often called proportional odds
models. Similarly, the ith of an alternative set of
(r − 1) 2 × 2 derived tables may be constructed using
the mij as first and the mi

2j as second rows. The
(r − 1) “continuation-ratio” odds ratios γ i

cr from these
tables are used primarily in analyses of grouped sur-
vival data, where mij /

∑r
l=i+1 mlj is the conditional

odds and mij /
∑r

l=i mlj is the conditional probabil-
ity of an event such as death in the ith observa-
tion period, given survival through the preceding
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periods without experiencing the event. Ratios of
these probabilities and odds represent discrete data
counterparts of hazard ratios for continuous survival
data, and become essentially equivalent when rows
correspond to sufficiently short time intervals. Thus,
linear models for the corresponding ln γ i

cr and ln RRi
cr

are discrete counterparts of proportional hazards
models for continuous survival data (see Survival
Analysis, Overview).

Many of the above ordinal models may be further
extended by treating the scores as unknown parame-
ters to be estimated rather than as fixed. (See Ordered
Categorical Data).

c > 2

General r × c tables allow the possibilities of poly-
tomous nominal and/or ordinal variables on either or
both dimensions. The methods above extend read-
ily. For instance, Student’s t-statistic counterparts
with large-sample χ2

1 distributions extend directly
to counterparts of analysis of variance F tests with
asymptotic χ2

(c−1) distributions. Conditional or uncon-
ditional exact tests, based either on ordering tables by
their multivariate hypergeometric probabilities under
independence (thereby generalizing Fisher’s exact
test), or on orderings according to pivot functions
such as X2

P , are available for tables with cell expec-
tations too low to support inference based on large-
sample chi-square approximations.

For tables with nominal columns and ordinal
rows with associated fixed scores {si}, we may
directly extend the linear logit model for the r ×
2 table by applying such models simultaneously
within each pair of columns. The model for the
full table parameterizes the local odds ratios ψij =
πijπi+1,j+1/πi,j+1πi+1,j as ln ψij = (si − si+1)(ξj −
ξj+1), where the {ξj } are unknown column parame-
ters. Within each pair of columns, odds ratios between
rows are a multiple of the differences between the
fixed row scores. The multiple, however, varies
across column pairs according to differences among
the ξj . Hence, βj ′j ′′ = ξj ′ − ξj ′′ plays the role of β in
the linear logit model of the r × 2 table, for columns
j ′ and j ′′, by representing the extent to which the row
distribution in the column j ′ is stochastically higher
or lower than the row distribution in the column j ′′.

When both rows and columns are ordinal with
respective fixed scores {s(r)

i } and {s(c)
j }, association

may be examined through the correlation of row and

column scores. If the true covariance or correlation
is the primary function of the mij of interest, either a
loglinear model may be constructed with an overall
association parameter for which the sample covari-
ance is a sufficient statistic, or inference may focus
directly on the sample covariance and its distribution.

The model in the first case parameterizes the local
odds ratios as ln ψi = (s

(r)
i − s

(r)

(i+1))(s
(c)
j − s

(c)

(j+1))β.
The sample covariance is sufficient for β. Within a
given pair of rows, the log odds ratios between pairs
of columns vary linearly with the difference in col-
umn scores, while within a given pair of columns,
the log odds ratios between pairs of rows vary lin-
early with the difference in row scores. Hence, this
“linear by linear association model” simultaneously
applies the linear logit model for an r × 2 table
within all such tables formed by pairs of columns
or pairs of transposed rows, and all these models
share the same slope β. When both the {s(r)

i } and
{s(c)

j } are equally spaced, the local log odds ratios
for all 2 × 2 subtables formed from adjacent rows
and columns throughout the r × c table are the same
multiple of β, hence identical. In this “uniform asso-
ciation model”, the single odds ratio eβ replaces the
(r − 1)(c − 1) parameters necessary to describe the
association structure of an arbitrary r × c table. This
representation approaches the simplicity and elegance
of the correlation coefficient in the bivariate normal
Gaussian distribution for continuous data. A priori
justification for a uniform association model is rare,
however, and this model is more useful for approxi-
mating a monotonic trend, or as a smoothing device
for generating tests with power directed at linear cor-
relation alternatives, than as a full representation of
many data sets.

An alternative approach is direct inference from
ĉov(s(r), s(c)). The random portion of ĉov(s(r), s(c))

is nonlinear in the nij under product-Poisson, multi-
nomial, or product-multinomial sampling but linear,
through

∑∑
s
(r)
i s

(c)
j nij , when conditioning on both

row and column margins. Under such dual condition-
ing, the quadratic form statistic from ĉov(s(r), s(c))

and its variance under the multivariate (central)
hypergeometric distribution may be used as a test
of independence with power function directed at lin-
ear correlation. Use of this test, which generalizes
X2

MH in the 2 × 2 table, is analogous to testing ρ = 0
to detect association between continuous variables,
when monotonic but not necessarily linear associa-
tion is anticipated. Null covariance does not imply
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independence for any of the relevant distributions, so
optimizing the likelihood under H0 : cov(s(r), s(c)) =
0 is difficult. Thus, likelihood ratio and score statistics
are often obtained after imposing additional structure
on the mij . However, the Wald statistic is straightfor-
ward to determine and, as it uses a consistent estimate
of the variance of ĉov(s(r), s(c)) unrestricted by the
null hypothesis, its null χ2

1 distribution is valid with-
out additional assumptions (see Ordered Categorical
Data).

Three-dimensional Tables

Extensions of many methods for two-way tables are
straightforward. Indeed, three-dimensional tables can
be reduced to two-dimensional tables whenever two
variables, say B and C, are conditionally indepen-
dent within each level of the third variable A. In
that case, the two-way marginal A × B and A × C

tables are sufficient statistics for the cell parameters
of the three-way table, and hence, contain all the
information in the data about the joint distribution
of A, B, and C. Moreover, extending (10), condi-
tional association structures can be represented by
loglinear models whose parameters correspond to the
usual deviation contrasts of balanced three-way facto-
rial ANOVA, applied to the ln mij . Each hierarchical
model (for which every interaction is accompanied
by all lower order interactions and main effects of its
members) represents a different association structure.
All variables are independent under the main effects
model. When a single pairwise interaction is present,
the interacting variables are jointly independent of the
third. When two pairwise interactions are present, the
unpaired variables are conditionally independent of
each other, given the third. When all pairwise interac-
tions are present without three-way interaction, each
conditional odds ratio relating two variables is con-
stant over levels of the third variable.

Confounding and Effect Modification

However, the loglinear models corresponding to satu-
rated and “no three-way interaction” ANOVA models
introduce fundamental issues that occur only in con-
tingency tables of three or more dimensions. These
are most easily explained through a 23 table of
expected counts. Thus, the layers of Table 5 repre-
sent two strata of a population, such as men and

Table 5 A 23 Contingency table relating exposure to
health outcome in two strata

Variable A: Stratum, Stratum 1

Variable C: Outcome

Variable B: Exposure Present Absent Total

Exposed n111 n112 n11+
Not exposed n121 n122 n12+
Total n1+1 n1+2 n1++
Variable A: Stratum, Stratum 2

Variable C: Outcome

Variable B: Exposure Present Absent Total

Exposed n211 n212 n21+
Not exposed n221 n222 n22+
Total n2+1 n2+2 n2++

women (variable A), in which an exposure such as an
environmental risk factor or a new clinical treatment
regimen (variable B) has been related by observa-
tional study to a health outcome such as new disease
or death (variable C). The subscript hij refers to the
cell in stratum (layer) h, row i, and column j .

The saturated model allows the possibility, as may
occur in any observed table, that the odds ratios
ψ(h) = mh11mh22/mh12mh21 relating exposure to out-
come in each stratum may vary. For example, the
effect of a treatment on recovery from disease might
be different for men than for women. In the presence
of such three-way interaction, which epidemiologists
term effect modification, stratum-specific odds ratios
are required to properly summarize the exposure-
disease relationship. Neither the marginal odds ratio
nor any average of the ψ(h) adequately represents the
data when the ψ(h) differ to a scientifically mean-
ingful degree. The stratification variable is called an
“effect modifier”.

In the “no three-way interaction” model, which
includes all two-way interactions, the stratum-specific
odds ratios relating exposure to outcome are iden-
tical. Nevertheless, as in the saturated model, the
relationship may not be reliably represented by the
collapsed table formed from pooling the strata. This
is garden-variety statistical confounding in a cate-
gorical data context, where the stratification variable
is the “confounder”. Owing to the separate relation-
ships of B and C to the stratification variable A, the
set of marginal odds ratios {ψM

BC} relating pairs of
categories of B to pairs of categories of C in the
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collapsed table ignoring A may differ substantially
from the set of common within-stratum odds ratios
{ψBC|A} relating the same pairs of categories in the
three-way table. An extreme case, Simpson’s Para-
dox, occurs when, for instance, in a general h × 2 × 2
table, the sign of ln ψM

BC differs from the common
sign of the stratum specific ln ψBC|A=h, h = 1, . . . , q.
Marginal and conditional odds ratios thereby indicate
relationships in opposing directions. In an observa-
tional study, one might thus infer benefit to a harmful
medical therapy by neglecting to control for such con-
founding.

When the no three-way interaction loglinear model
holds, that is, when confounding occurs without effect
modification, ψBC|A properly adjusts for confounding
by A, and its associated MLE may be used to summa-
rize the exposure-disease relationship. When ordinal
models apply within strata, a similar interpretation
applies to within-stratum association parameters of
the ordinal model.

Cochran-Mantel-Haenszel Tests

Cochran–Mantel–Haenszel (CMH) testing is an app-
roach to demonstrate association between two vari-
ables after controlling for one or more confounders
by stratification. The approach is useful in situations
without effect modification such as just described, as
well as in others where effect modification is present
but within-stratum log odds ratios are predominantly
of the same sign. From one perspective, CMH tests
are simply score tests of the {ψBC|A}, or other indices
of association, from conditional likelihood analyses
of various loglinear models without three-way inter-
action. However, they are also simply derived as
structurally model-free, multivariate hypergeometric-
based tests for association in the presence of con-
founding. This latter perspective is more helpful in
clarifying their broad utility.

We string out a q × r × c table as the single vec-
tor n= (n′

1, . . . , n′
q)

′ with nh = (nh11, . . . , nh1c, . . . ,

nhr1, . . . , nhrc)
′. CMH test statistics take the quadratic

form

QCMH =
(

q∑

h=1

Ah(nh − m
°
h)

)′( q∑

h=1

Ahcov(nh)A
′
h

)−1

×
(

q∑

h=1

Ah(nh − m
°
h)

)
, (13)

where m°
h = E(nh) and cov(nh) are the mean and

covariance matrix of nh under a null multivariate
hypergeometric distribution within-stratum h, and the
Ah are typically of full-rank u. Under either (i) inde-
pendent stratified randomization to the row or column
dimension, or (ii) stratified random sampling in the
absence of within-stratum row by column association,
the distribution of n is product-multivariate hypergeo-
metric and the kernel of QCMH is the exact covariance
matrix of

∑q

h=1 Ah(nh − m°
h). QCMH is then asymp-

totically χ2
u , by randomization central limit theory.

CMH tests address conformity with null expecta-
tions of across-strata linear combinations of within-
stratum pivot functions. The noncentrality parameter
of the asymptotic chi-square distribution, under an
alternative with Enh = mh, is an across-strata lin-
ear combination of the mh − m°

h, proportional to a
weighted average of functions of within-stratum asso-
ciation measures. Thus, CMH tests have substantial
power only against alternatives in which the within-
stratum associations are predominantly in the same
direction, and for this reason are often called “aver-
age partial association tests”. In addition to a general
test against all forms of average partial association,
the CMH approach yields more focused extensions
of χ2

CMH to (i) a stratum-adjusted ANOVA F-statistic
analog for testing differences among mean column
scores between nominal rows; (ii) analogs of partial
correlation tests based on a priori scores; and (iii)
a variety of rank tests using scores based on overall
or stratum-specific row and column margins. Since
the null distribution is conditional on both margins
of each stratum, such derived rank scores may be
treated as fixed.

The null large-sample chi-square distribution of
a CMH statistic is valid for increasingly large sam-
ples within a fixed set of strata, or under a “sparse
asymptotic” situation in which the number of strata
increases, while the sample sizes within them remain
small. A prominent example of the latter is when
each stratum consists of a matched case-control pair.
This situation prompted development of the original
Mantel–Haenszel statistic for q 2 × 2 tables, each
with a single observation per row. The reformulation
of a 2 × 2 table, in which a matched case–control
pair is the observational unit and each pair is classi-
fied as [+, +], [+, −], [−, +], or [−, −] with respect
to an exposure, into a q × 2 × 2 table in which
the individual is the observational unit and clas-
sification is by a (i) pair identifier, (ii) exposure,
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and (iii) disease, is a productive representation for
inference about the matched-data analogues of ∆,
RR, and ψ from independent samples. For instance,
the Mantel–Haenszel summary odds ratio ψ̂MH =
(
∑q

h=1 nh11nh22/nh++)/(
∑q

h=1 nh12nh21/nh++), ari-
ses naturally from treating matched sets as
strata. For matched pairs, using the notation
n[+,+], n[+−], n[−,+], n[−,−] for the respective counts
in the 2 × 2 table classifying the matched pairs,
ψ̂MH = (

∑q

h=1 nh11nh22/2)/(
∑q

h=1 nh12nh21/2) =
n[+,−]/n[−,+] and, from (13), QCMH = (n[+,−] −
n[−,+])2/(n[+,−] + n[−,+]), the McNemar test. Strati-
fied versions of relative risk and other epidemiologic
measures of association are also used in conjunction
with CMH statistics (see Mantel–Haenszel Meth-
ods).

Generalized Linear Models

We briefly review unifying paradigms for general-
ization and extension of methods above to data (i)
of arbitrary dimension, and/or (ii) with continuous
covariates, or other features incompatible with the
assumption mij ↑ ∞.

Generalized linear models (GLMs) provide a sin-
gle framework for modeling expectations of Gaussian
and other continuous data, Bernoulli indicator vari-
ables, Poisson, binomial, and (through a conditional
Poisson argument) multinomial counts. This frame-
work exploits the common structure of univariate
exponential families of distributions, whose pdfs or
pmfs may be written as KeL, where K and L each
may be written as the product of a term depending
exclusively on data and another depending exclu-
sively on unknown parameters.

GLMs postulate independent observations Y1, . . . ,

Yn from a univariate exponential family

fY (yi ; θi, φ) = exp

{[
yiθi − b(θi)

ai(φ)

]
+ c(yi, φ)

}
,

(14)

for known functions ai(·), b(·), and c(·, ·) and fixed
scale parameter φ. Let b′(·) and b′′(·) be the first
and second derivatives of b(·). In this case, E(Yi) =
µi = µi(θi) = b′(θi) and var(Yi) = vi = vi(θi, φ) =
b′′(θi)ai(φ). Let µ = (µ1, . . . , µn)

′ be the vector
of expectations. A GLM g(µ) = η = Xβ restricts

g(µ) = (g(µ1), g(µ2), . . . , g(µn))
′ to a u < n-di-

mensional linear subspace of 
n spanned by columns
of an n × u full-rank model matrix X = [xik]. In the
Gaussian case, X is the “design” or “model” matrix
in a general linear model, and otherwise is totally
analogous. Notationally suppressing the dependence
of µi = µi(θi) on θi and of vi = vi(θi , φ) on θi and
φ, the likelihood equations for any GLM are

n∑

i=1

(yi − µi)xik

vi

(
∂µi

∂ηi

)
= 0, k = 1, . . . , u.

(15)

Note that the left-hand side of (15) is an inverse-
variance weighted linear combination of the residuals
yi − µi , and that these are the standard normal equa-
tions for a general linear model with rescaling for the
transformation g(·) and inverse-variance weighting,
as with weighted least-squares, to account for non-
constant variance. For fixed φ, (15) may be solved
for β, by iterated (equivalently, generalized) weighted
least-squares (IWLS). When φ is known by the form
of the distribution, this completes model estimation.
When φ is an unknown scale parameter, as with
Gaussian distributions for which φ = σ 2, then φ may
be estimated from the residuals to obtain a com-
plete solution. The MLE of the covariance matrix
cov(β̂), ĉov(β̂), is a by-product of IWLS estimation.
Likelihood ratio, Pearson chi-square, score and Wald
statistics are often used to evaluate fit and assess sig-
nificance of model parameters.

The “canonical link function” g(·) = b′−1
(·) pro-

duces a linear model θ = Xβ for the “natural param-
eter” θ = (θ1, . . . , θn)

′ of the exponential family (14).
The u linear combinations

∑n
i=1(xik/ai(φ))yi are

then jointly sufficient for β, and the likelihood equa-
tions set these sufficient statistics to their expecta-
tions. In the absence of differential weighting through
the ai , the sufficient statistics are simply inner prod-
ucts of the response vector with columns of X. With
convenient parameterizations, these may be means or
mean scores, cross-product sums, marginal totals, or
analogous functions of the observed data, which the
MLEs are then constrained to reproduce.

This formulation is even more powerful than
suggested by its exponential family underpinning.
The first-order asymptotics of MLEs and likelihood
ratios that justify most statistical applications depend
upon the likelihood only through the moment-based



Categorical Data Analysis 17

properties

E

(
yi − µi

vi

)
= 0,

var

(
yi − µi

vi

)
= − E

[(
∂

∂µ

)(
yi − µi

vi

)]

= v−1
i . (16)

Consequently, provided the first and second moments
E(Yi) = µi(θi) and var(Yi) = vi(θi, φ) are specified
correctly, solutions to (15) largely behave like MLEs
even if the data do not otherwise follow the distri-
bution from which these moments were obtained.
Thus, first-order optimal estimators may also be
obtained from these estimating equations (15), when
the moment functions are known and sufficiently
regular, even in the absence of knowledge about
the generating distribution. In such cases, the quasi-
likelihood function

QL(µ|y) =
∫ µ

y

y − t

v(θφ)
dt (17)

behaves like a likelihood and “quasi-likelihood analy-
sis” therefore proceeds as if (17) is the true likelihood.
Among their other uses, such quasi-likelihood anal-
yses provide a convenient method for adjusting for
observed overdispersion relative to what would ordi-
narily be expected from, for instance, binomial or
Poisson variation. Quasi-likelihood thus provides a
conceptual bridge between likelihood and weighted
least-squares estimation (see Weighted Least-Squares
(WLS) Functional Models below).

When f is Gaussian with ai(φ) = aiφ for known
ai , the canonical link is the identity function, max-
imum likelihood reduces to weighted least-squares,
and the IWLS algorithm terminates in one step. Cat-
egorical data GLMs include Poisson regression, mul-
tiple logistic regression, and general loglinear models.

Poisson Regression

For Poisson counts, the canonical link function is
ln(·). If exposure is uniform, the ith natural param-
eter is ln µi = ln λi , and the corresponding GLM is
a loglinear model for the Poisson intensity param-
eters. In epidemiologic studies, the λi usually are
incidence densities, and an individual βk often rep-
resents the ln RR associated either with comparison

of the kth level of a categorical independent variable
to a baseline level, or with a one unit difference of
a continuous independent variable, other variables in
the model held constant. The WLS iteration step is
a regression on X of the residuals from the previous
step, weighted inversely to the previous fitted values,
which by the Poisson law are the current variance
estimates.

In the more usual case of varying exposure mea-
sures Ni , the ith natural parameter is ln µi = ln Niλi ,
where the Ni are known. The linear predictor Xβ

for ln µ is offset from the predictor for ln λ by ln
N , where N is the vector of known exposures. This
is easily accommodated by estimating µ and then
rescaling to λ̂ = DN

−1µ̂, ĉov(̂λ) = DN
−1(ĉov(µ̂))DN

−1,
where Dz is the diagonal matrix with main diago-
nal z.

Multiple Logistic Regression

For binomial counts, the canonical link is the logit
function, and the GLM generalizes the logit regres-
sion model previously described for r × 2 contin-
gency tables. As X may be an arbitrary full-rank
design matrix, the model may include a combination
of categorical and continuous predictors. Letting ni+
be the sample size and πi be the “success” probabil-
ity associated with the ith (i = 1, . . . , r) pattern of
predictor variables xi , the likelihood equations are
simply

∑r
i=1 ni1xi = ∑r

i=1 ni+π̂ixi . The sufficient
statistics are means of the predictor variables in the
respective outcome groups, and the MLE β̂ generates
predicted probabilities π̂i that reproduce these. The

iteration step is β̂
(t+1) = β̂

(t) + [
∑r

i=1 ni+π̂
(t)
i (1 −

π̂
(t)
i )xix

′
i]

−1[
∑r

i=1(ni1 − ni+π̂
(t)
i )xi]. The asymptotic

covariance matrix for β̂, cov(β̂) = [
∑r

i=1 ni+πi(1 −
πi)xix

′
i]

−1, may then be estimated by substitution.
The βk are interpreted here similarly as in Pois-

son regression, but with odds ratios replacing rate
ratios. Specifically, an individual βk often represents
the ln OR associated either with comparison of the
kth level of a categorical independent variable to a
baseline level, or with a one unit difference of a con-
tinuous independent variable, other variables in the
model held constant. In an epidemiologic cumula-
tive incidence cohort study or a clinical trial, πi is
usually the probability, in individuals with a known
pattern of risk factors, of a disease outcome during
a fixed observation period. In an epidemiologic inci-
dent case–control study, πi is the probability of past
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exposure to a risk factor in individuals with known
current disease status and other sociodemographic
factors and/or past exposures. Provided that cumu-
lative incidence during the cohort study is low, in
a stable population the odds ratios from these two
types of studies should be similar and closely approx-
imate the incidence density ratio, say λE/λU, between
Exposed and Unexposed populations. For this rea-
son, multiple logistic regression has become the most
common tool for multivariable investigation in epi-
demiologic data analysis, particularly for control of
confounding and effect modification. In randomized
clinical medical trials, logistic regression is often used
conventionally as both a primary analysis and, as
a routine check for confounding, to simultaneously
adjust for all other known predictors of a categor-
ical outcome. This latter use is questionable since
these adjusted models often contain dozens of vari-
ables, most of which are equitably randomized across
treatment groups and unlikely to confound, and little
attention is paid to the shapes of the corresponding
simultaneous adjustments.

Related multinomial logit and loglinear models
have also been developed, to apply the multiple
logistic regression structure simultaneously either to
dichotomies formed from category pairs from poly-
tomous responses, or (through proportional odds) to
cumulative probabilities obtained by dichotomizing
ordered polytomies at multiple cut-points.

Loglinear Models

Loglinear models are a symmetric version of poly-
tomous multiple logistic regression models, much
as correlation analysis is a symmetric representation
of multiple regression analyses for continuous data.
When there is no clear “dependent variable” in a
categorical data array, loglinear models simultane-
ously show how local odds relating pairs of levels of
each single variable depend upon the levels or values
of other variables. Loglinear models provide a basic
paradigm for smoothing contingency tables, and for
exploring causality through association structures in
a spirit similar to that of path analyses of continuous
data.

Let π ′ = (π ′
1, . . . , π ′

r )
′, with π i = (πi1, . . . ,

πici
)′, be the single strung-out vector of probabilities

for a product-multinomial distribution with r com-
ponents, of which the ith has ci categories. Also,
let K and J be block diagonal with respective ith

blocks (1ci
1′

ci
) and 1ci

. A loglinear model is defined
by π = D−1

ω exp(Xβ), where ω = K exp(Xβ) and X

is a full-rank model matrix with columns linearly
independent of the columns of J . The latter require-
ment is an identifiability condition, since the model
equation implies 1′

ci
π i = 1 for all i.

The multinomial populations represented by i, the
response categories represented by j , or both may
themselves be defined by combinations of levels of
nominal and/or ordinal variables, the latter possibly
with fixed scores. Such underlying structure can be
represented in the model matrix X. Though without
columns for intercepts for the respective populations,
X may otherwise be identical to model matrices for
structures of cell means from continuous data. When
all variables are nominal, common choices for X are
matrices for a hierarchical factorial ANOVA model
with interactions up to a given order.

Although the multinomial distribution does not
directly fit the univariate exponential family formu-
lation (14), the GLM machinery may nevertheless
be used. For, letting n and m be respectively the
strung-out vectors of observed counts nij and their
expectations mij = ni+πij ordered as in π , the like-
lihood equations [J , X]′n = [J , X]′m̂ for the loglin-
ear model X are identical to those of the Poisson
regression model [J ,X]. The MLEs reproduce the
sufficient statistics X′n while conforming to the pop-
ulation totals J ′n. For instance, the sufficient statis-
tics for the no three factor interaction hierarchical
model of any nominal table are thus seen to be the
observed two-way margins of the table, while the
sufficient statistics for the linear by linear associa-
tion model are the row and column marginal counts
and the sum of products of row and column scores.
This model thus reproduces the Pearson correlation
coefficient between row and column scores.

Writing Xi for the submatrix of X corresponding

to π i , the asymptotic covariance matrix of the MLE β̂

is covA(β̂) = [∑r
i=1 ni+X′

i (Dπ i
− π iπ

′
i )Xi

]−1
. Its

maximum likelihood estimate, ĉovA(β̂), is obtained
by substitution of π̂ for π and emerges as a by-
product from the standard GLM Newton–Raphson
(IWLS) fitting algorithm (see Optimization and
Nonlinear Equations). For large hierarchical models,
where repeated matrix inversion is problematic, the
model may be fit by using iterative scaling to deter-
mine π̂ directly (see Iterative Proportional Fitting).
After substitution of π̂ for π , the model equations
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may then be solved for β̂, and ĉovA(β̂) obtained by
direct substitution of π̂ for π above. (See Loglinear
Model).

Conditional and Exact Logistic Regression

GLM analyses are valid only under large-sample
conditions in which MLEs are consistent (see
Large-sample Theory). Classical likelihood theory
demonstrates such consistency under asymptotics
with indefinitely increasing information per model
parameter. However, in certain situations involving
matched data, the dimensionality of the parameter
space increases with sample size, so that the
information per parameter is bounded. These include
cross-over experiments with parameters for each
subject, pair-matched case–control studies with
parameters for each matched pair, and clinical trials
of rare diseases by large multicenter networks, with
parameters for each center and few patients per
center. In each of these cases, increasing sample
size is accompanied by commensurate increase
in parameters. Classical results on normality of
the sufficient statistics for the model do not
apply, and the MLE based on the full likelihood
behaves poorly. Similarly, in small samples, the
MLE may be substantially biased. The effects of
nuisance parameters on estimation must somehow be
controlled.

Conditional logistic regression applies standard
likelihood theory after conditioning on the occur-
rence of precisely the patterns of predictor variables
seen in the data from each matched set (see Logis-
tic Regression, Conditional). The contribution to the
conditional likelihood from each matched set is thus
the ratio of the product-binomial probability of the
observed data, expressed as a function of the lin-
ear predictor x ′

iβ, to the sum of such probabilities,
over all permutations of the predictor variable pat-
terns among individuals in that matched set. The full
conditional likelihood is the product of these con-
tributions across the matched sets. For 1:1 matched
studies, the GLM computational algorithm may be
formally applied by regressing a constant dummy
outcome on the case–control differences of the pre-
dictors, highlighting the close relationship of this
analysis, for a single dichotomous predictor, to the
matched-pairs t-test. More generally, if each matched
set in the logistic regression setting is identified with

the risk set at an observed failure time in the survival
data context, the conditional likelihood takes the same
form as Cox’s partial likelihood for semiparamet-
ric proportional hazards models for right-censored
survival data (see Cox Regression Model). The lin-
ear predictor of the conditional likelihood lacks an
intercept term, so that the model does not predict
absolute risk. However, the likelihood is free of nui-
sance parameters, allowing consistent estimation of
β as the number of matched sets increases, even
if each matched set remains small. With the excep-
tion of examinations of residuals, most aspects of
conditional logistic regression analysis are essentially
identical to unconditional logistic regression via the
GLM.

For quite small samples, however, the large-
sample properties of even such conditional MLEs are
of no help. Extensions are required of Fisher’s exact
test and other multivariate hypergeometric-based pro-
cedures for two-way tables. Estimators and hypothe-
sis tests may be based on distributions that condi-
tion out not just nuisance parameters representing
matched sets (as in conditional logistic regression),
but all parameters not being estimated or restricted
by the null hypothesis. These permutation distribu-
tions are obtained by conditioning on the observed
values of sufficient statistics for unconstrained param-
eters. This computationally intensive method is now
feasible and widely applied, although computations
remain prohibitive for some problems. In a few
cases at the other end of the spectrum, minimal
computation is required because the conditional dis-
tribution employed is highly discrete, and can be so
discrete as to provide little information about the
parameters of interest. The technique is not a general
cure for the “few subjects, many predictors” problem
(see Exact Inference for Categorical Data; Ran-
domization Tests).

Weighted Least-squares (WLS) Functional
Models

Because they focus on modeling conditional expecta-
tions of individual observations on a single variable,
as in logistic regression, or on cell counts determined
by patterns of explanatory variables, as in loglin-
ear models, GLMs provide an excellent framework
for study of conditional probabilities and association
structures. However, they are awkward for analy-
ses of integrated data summaries such as marginal
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distributions, survival rates, reliability measures, and
association measures other than odds ratios, where
the individual cell expectations are nuisance param-
eters for estimating the specific parametric functions
of interest. WLS provides a convenient and power-
ful alternative approach to such analyses, through use
of one-step WLS to obtain Neyman’s minimum χ2

N

estimates and Wald QW statistics.
The WLS algorithm is based on the functional

model F (m) = Xβ, with F (m) = (F1(m), . . . ,

Fu(m))′. The Fk(·) are second-order differentiable
in the πij and X is a full-rank model matrix.
The computation is performed on F̂ = F (n), an
unrestricted consistent estimator of F (m), weight-
ing using a consistent estimate of its asymptotic

covariance matrix. The estimate is obtained as V̂
F̂

=
ĉovA(F (n)) = H (n)[ĉovA(n)]H ′(n), with H (n) =
[∂Fk/∂ml]|m=n, by the delta method for “propaga-
tion of variances” introduced earlier in connection
with confidence intervals for association measures in
2 × 2 tables. Here, ĉovA(n) is the unrestricted MLE
of the covariance matrix appropriate to the assumed
distribution (e.g. Dn for product-Poisson, and block
diagonal with diagonal blocks (Dni

− (1′ni )
−1nin

′
i )

for product-multinomial data.
The estimator β̃ = (X′V̂ −1

F̂
X)−1X′V̂ −1

F̂
n minimi-

zes the quadratic form (F̂ − Xβ)′V̂ −1
F̂

(F̂ − Xβ),
and is asymptotically multivariate Gaussian. Letting
V

F̂
= H (m)[covA(n)]H ′(m), the covariance matrix

of the estimator is covA(β̃) = (X′V −1
F̂

X)−1. Its esti-

mate, ĉovA(β̃) = (X′V̂ −1
F̂

X)−1, may be used to form
confidence regions and Wald test statistics for β.
When the Fk are explicit algebraic functions, F and
H (n) can be expressed as compositions of matrix
premultiplications and elementwise logarithmic and
exponential transformations on n, simplifying the
development of general software.

Validity of a WLS analysis depends on sample
sizes large enough to ensure that F (n) is approx-
imately multivariate Gaussian, so requirements vary
with F . WLS may be suitable for analysis of marginal
mean scores of an ordinal variable in a panel sur-
vey from a high-dimensional and sparsely populated
contingency table, but unsuitable for analysis of prob-
abilities or log odds from a small table with few cells
and larger sample size, if any cells are not observed or
have very low expected values under a model. Slower
convergence in distribution of Wald/Neyman chi-
squares relative to score and likelihood ratio statistics

has now been noted in a variety of categorical data
situations through study of exact distributions and
simulations. Consequently, greater caution is indi-
cated than was once appreciated when using this
method in moderate sample sizes, especially as the
computational simplicity of closed-form parameter
estimation becomes progressively less of an advan-
tage over other methods.

However, for analysis of grouped data from suffi-
ciently large samples, the flexibility of WLS allows
simple handling of some problems that are quite
awkward to address from other perspectives. WLS
has been particularly important in the analysis of
repeated measures contingency table data, in model-
ing of arbitrary measures of association from grouped
data, and in modeling estimates from sample sur-
veys, each of which may be a complex but explicit
algebraic function of counts observed at the final
level of a multistage sampling design. As WLS is
a purely second-moment based approach, like quasi-
likelihood, specification of the underlying probability
model for counts is not required provided a consis-
tent estimate of covA(F̂ ) is available. For survey data,
such an estimate is sometimes obtained by some form
of pseudoreplication rather than by the delta method.

Generalized Estimating Equations (GEE)

WLS methodology requires approximately Gaussian
functions of counts prior to modeling, and so cannot
accommodate covariates observed at the level of the
individual observation. GLMs and quasi-likelihood
analyses, which naturally accommodate individual
level covariates, are overparameterized for many
purposes, particularly when marginal rather than
conditional distributions are of most interest. Both
approaches attain asymptotic efficiency through con-
sistent estimation of the optimal weight matrix at
each stage of a WLS iteration. Suboptimal weighting
in WLS or IWLS, nevertheless, yields a consistent
estimator of β. Generalized estimating equation
analysis is an IWLS approach that extends the quasi-
likelihood estimating equations, seeking to combine
advantages of GLM and WLS by accepting subopti-
mal weighting and some loss of asymptotic efficiency
in order to gain flexibility and robustness. More
specifically, if some efficiency loss can be tolerated,
the information matrix may be modeled only approx-
imately, without fully accounting for nuisance asso-
ciation parameters from the underlying probability
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distribution. This is particularly advantageous for
the analysis of correlated categorical responses, such
as occur in repeated measures experiments or in
repeated observations over time, in those instances
when the association structure itself is largely a nui-
sance in relation to the objectives of data analysis
(see Correlated Binary Data).

For ai(φ) = φ, the GLM estimating equations may
be written as

n∑

i=1

(
∂µi

∂βk

)(
yi − µi

var(Yi)

)
= 0, k = 1, . . . , u,

(18)

and interpreted as quasi-likelihood equations when
the distribution is unknown but var(Yi) can be writ-
ten as V (µi). Let Y i by the random vector and yi

be the corresponding vector of observations for the
ith individual or other observational unit. The gen-
eralized estimating equations are a straightforward
multivariate extension of (18),

n∑

i=1

D ′
i V

−1
i Si =

n∑

i=1

(
∂µi

∂β

)
V −1

i (µi , α)(yi − µi (β))

= 0. (19)

In this extension, Di is the matrix of derivatives of
means of the elements of Y i relative to those of β

and Si is the deviation vector yi − µi , directly gen-
eralizing ∂µi/∂βk and (yi − µi). However, the true
Var(Yi) in the univariate case is replaced in the mul-
tivariate generalized estimating equations by a work-
ing model V i (µi , α) = Ai (µi )

1/2Ri (α)Ai (µi )
1/2 for

cov(Y i ) with Ri (α) a correlation matrix dependent
on a vector α of association parameters, and Ai (µi )

a diagonal matrix of variances. If the dimension of
α is low, a parsimonious model thus replaces the
more complex covariance structure of the underly-
ing product-multinomial or other distribution. In the
simplest implementation, known as “GEE1,” (19) is
solved by repeated cycles of IWLS estimation of
β given α from the previous step, and moment-
based estimation of α using the Pearson residuals
(yij − µij )/

√
([V i (µi , α)]jj ) based on current values

of the parameters. The resulting β is asymptotically
multivariate Gaussian with mean β, whatever the
working covariance structure employed. The asymp-
totic covariance matrix covA(β) does depend on

the working covariance structure, but a consistent
“sandwich estimator” is

(
n∑

i=1

D ′
i V

−1
i Di

)−1 (
n∑

i=1

D ′
i V

−1
i cov(Y i )V

−1
i Di

)

×
(

n∑

i=1

D ′
i V

−1
i Di

)−1

(20)

evaluated at β, α, and φ.
The general covariance estimator (20) is employed

in two ways, with the appropriate choice depending
on sample size and presumed adequacy of the covari-
ance model. When the working covariance structure
is based on a highly plausible underlying distribu-
tional model and/or reflects well the empirical covari-
ance structure, then it is reasonable to substitute V i

for cov(Y i ) in (20). This yields the model-based
covariance estimator

(
n∑

i=1

D′
iV

−1
i Di

)−1

. (21)

When the working covariance structure is correct,
this estimator, evaluated at the fitted parameters β, α,
and φ, is consistent for the true covariance and
gains efficiency from the information in the assumed
covariance pattern. However, this covariance estima-
tor is inconsistent if the working covariance struc-
ture is substantially incorrect, and invalid inferences
can result. An alternative choice is to substitute the
empirical estimator SiS

′
i for cov(Y i ). This yields the

“robust” sandwich covariance estimator

(
n∑

i=1

D′
iV

−1
i Di

)−1 (
n∑

i=1

D′
iV

−1
i (S iS

′
i )V

−1
i Di

)

×
(

n∑

i=1

D′
iV

−1
i Di

)−1

, (22)

also evaluated at the estimated parameters. “Robust”
is used in this instance specifically to refer to consis-
tency of this estimator for covA(β) when the working
covariance structure is misspecified, rather than in
any more general sense of resistance to contami-
nation. Large-sample confidence intervals and test
statistics may be formed in the usual ways from
(21) or (22). The robust sandwich estimator provides
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great flexibility to the GEE method by providing
reliable inferences in large samples with complex
nuisance covariance structures. However, its conver-
gence is not rapid even in standard Gaussian situa-
tions. Like other methods based on empirical vari-
ability estimates, such as Wald-based inference for
some models, performance in small samples can be
unacceptable in the sense that actual test levels can be
noticeably higher, and confidence interval coverages
noticeably lower, than their nominal specifications.

An alternative GEE implementation augments the
estimating equations for the marginal mean structure
with additional estimating equations for the second-
moment structure. The estimates of β and α are thus
obtained from a simultaneous fit of the multivari-
ate GLM and the residual variances and covariances
or odds ratios. Alternative estimation methods for
both GEE1 and this “GEE2” modification apply a
Gauss–Newton algorithm to somewhat different ver-
sions of the estimating equations.

GEE methods have been successfully used for
marginal modeling of longitudinal categorical data
with covariates. In such analyses, net shifts in cat-
egory distributions over time are of primary interest
rather than the transition trajectories of individuals. If
a dichotomous variable is studied at five time points,
26 association parameters may be needed to represent
the association structure of the 25 table of response
counts. A GEE analysis might crudely approximate
this association structure using a patterned covariance
matrix with α of only one to three elements, say from
a simple time series model. Accumulating evidence
suggests that reasonable but simplified covariance
models often sacrifice little efficiency. Modifications
of GEE in the presence of random effects, and for
generalized additive models, have also been devel-
oped (see Marginal Models; Generalized Linear
Models for Longitudinal Data).

Generalized Linear Mixed Models
(GLMMs)

Generalized linear mixed models (GLMMs) are
GLMs in which the linear predictor Xβ is offset by
additive contributions of random effects. The GLM
g(µ) = η = Xβ is thus generalized to g(µ(C)) =
η(C) = Xβ(C) + Zζ with µ(C) = E(Y |ζ ), X and Z

known model matrices, β(C) fixed and unknown, and
ζ random with a specified, usually Gaussian, cdf. The

subscript “(C)” is used to indicate that GLMM fixed
effect parameters represent conditional effects given
particular values of the random effects.

The random effects produce mixture distributions
that account for extra-Poisson or extra-binomial/
multinomial variability due to sample heterogeneity
(see Overdispersion). They also allow description of
associations among multiple categorical observations
more parsimoniously than by a full multinomial rep-
resentation or a loglinear model. With Gaussian ran-
dom effects, association is modeled by the variances
of underlying random effects distributions, that is,
the usual variance components in the mixed model
for Gaussian dependent variables. The variance com-
ponents in a GLMM thus serve, in part, the same
purpose as α in GEE analyses. Beyond this, how-
ever, the random effects in ζ can be estimated and the
estimates used to characterize a correlated cluster of
observations, such as sequential measurements on an
individual over time, and to predict additional obser-
vations from the observational unit underlying the
cluster. Two important special cases are the classical
linear mixed model and the mixed logistic regression
model, that is, the binomial GLM with canonical logit
link and Gaussian random effects.

We emphasize that unless the GLMM link is
the identity, which is rarely the case in categorical
data analysis, the addition of random effects to the
GLM changes the meaning of the fixed effects β.
While in the GLMM, as noted above, these are
parameters β(C) of the conditional distribution of the
Yi for given ζ , in the GLM they are parameters
β = β(U) of the unconditional distribution of the Yi ,
that is, of the joint distribution of random Y and
random ζ integrated over ζ . Since this unconditional
distribution is a marginal of the joint distribution,
obtained by integrating out a mixing distribution that
differentiates collections of correlated observations,
the terms “marginal” and “population-averaged” are
often substituted for unconditional in the GLMM
literature; similarly, “subject-specific” is sometimes
used in place of conditional.

The relationship of β(U) to β(C) can sometimes
be approximated. For the mixed logistic regres-
sion model, the population-averaged parameters β(U)

are invariably attenuated in relation to the subject-
specific parameters β(C). An example of a prac-
tical interpretation of the attenuation is that odds
ratios from analytic epidemiologic studies of smok-
ing and lung cancer understate the biological impact
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of an individual’s decision to smoke or refrain from
smoking.

Under a GLMM, estimation of either β(C) or
β(U) is preferably performed by maximum likeli-
hood, quasi-likelihood, or restricted maximum like-
lihood (REML) estimation from the marginal like-
lihood. This task is straightforward in principle but
exceptionally challenging in practice. In addition to
the nontrivial optimization problems posed by lin-
ear mixed models, for which the marginal likelihood
is available analytically, estimation for the GLMM
requires that the marginal likelihood be obtained
numerically before it can be optimized. Methods
currently available for doing this, by numerically inte-
grating ζ out of the likelihood or quasi-likelihood
function using Gaussian quadrature or otherwise, or
by generating observations from the marginal distri-
bution using Markov Chain Monte Carlo (MCMC),
have not been consistently successful for models with
more than a few random effects or nested variance
components. At the time of this writing, most analysis
is performed using methods that maximize an approx-
imate likelihood or that solve approximate quasi-
likelihood or generalized estimating equations. Vari-
ous approximations using Taylor series and Laplace
expansions with differing simplifying assumptions
have been implemented, sometimes using profile
likelihoods. The approximate methods appear to
work well in many circumstances, but not with small
numbers of observations per random effect. Active
research continues on the properties of each method
and possible further improvements (see Generalized
Linear Models for Longitudinal Data).

Bayes and Empirical Bayes (EB) Methods

GLMMs introduce additive random effects into the
linear predictor of a GLM. This can be formally iden-
tical, for example, in a “random intercepts” model, to
sampling subject-specific GLM fixed effects from a
prior distribution. A substantial Bayes and EB litera-
ture employs prior distributions for contingency table
probabilities, logits, or loglinear model parameters.
Such methods can model heterogeneity, and smooth
naive estimates from small samples or sparse tables
towards more substantively reasonable values by
“shrinking” them towards parsimonious model struc-
tures (see Shrinkage). Applications include removal
of zero probability estimates from tables with random

empty cells (see Structural and Sampling Zeros);
the Agresti–Coull confidence interval for a single
proportion π centered around a Bayesian point esti-
mate using a Beta(2, 2) prior for π ; adjustment of
local standardized mortality rates by smoothing local
geographical variation (see Geographic Patterns of
Disease); and identification of suspect adverse drug
effects from a large cross-classification, by drug and
type of event, of spontaneous reports to the US Food
and Drug Administration (see Pharmacoepidemiol-
ogy, Overview).

The Beta distributions are the conjugate family
for binomials, and the Dirichlet generalizations of
Beta distributions form the conjugate family to multi-
nomials. Both noninformative and Dirichlet priors
have been applied directly to expected counts and
cell probabilities. The Dirichlet priors may embody
simple underlying structure, for example, a low-order
loglinear model, as in the correction to the Wald con-
fidence interval for a difference in two proportions
that was mentioned above (see Loglinear Model).

A Bayesian precursor to the logit-Gaussian
GLMM uses a Gaussian N(µ, σ 2) prior for logits
from an r × 2 table, a noninformative prior for µ,
and a χ2

ν prior for νλ/σ 2. Such independent prior
formulations have also been used for row, column,
and interaction effects in the saturated loglinear
model for an r × c table. An EB approach to such
tables uses flat priors for main effects and a Gaussian
prior with estimated variance for interactions. Other
EB applications employ Beta and lognormal priors
for ratios of cell probabilities to expectations under
independence, gamma and lognormal priors for
relative risks in geographic epidemiology, and log-
logistic priors for mortality proportions.

A particularly interesting area of Bayesian appli-
cation, and a subject of intense current research, is
the study of geographic variation and temporal-spatial
modeling of counts, for instance, of animal popula-
tions and incident disease cases. Beyond recognition
of its broad importance for ecological and epidemio-
logical research, this field has received stimulus from
the urgency associated with recent concerns pertain-
ing to emerging infectious diseases and to bioterror-
ism. Poisson regression models may be employed in
GLMMs with various spatial correlation structures,
including local association implied by the reciprocal
conditional distributions of a Markov random field.
Empirical Bayes and full Bayes treatments of vari-
ous models with priors on parameters of the random
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effect distributions are under investigation (See Geo-
graphic Epidemiology).

Recent advances in computational algorithms for
Bayesian inference are greatly assisting development
and application of Bayesian methods, and of other
methods when Bayes, frequentist, and likelihood
approaches have common computational problems.
For instance, a practical estimation algorithm for the
probit-Gaussian GLMM embeds a Gibbs sampling
step into the EM algorithm (see Bayesian Methods
for Contingency Tables).

Software

We close with remarks on software, which abounds
in widely available commercial packages and is avail-
able for newer methods in less polished shareware.
Comments that follow reflect the authors’ experi-
ence, are not product endorsements, are by no means
exhaustive, and will inevitably be somewhat outdated
when this is read. For the more advanced proce-
dures that are implemented in multiple packages, the
specifics of each implementation often vary substan-
tially in computational approach, default approaches,
and in the extent of analytic, algorithmic, and report-
ing customization available to the user.

Basic chi-square statistics, measures of association
for contingency tables, and generalized linear models
are available in virtually all major statistical pack-
ages, for example, SAS (Version 9), S − P lus

(Version 6) and R (Version 1.8.1), ST AT A (Version
8), and SPSS (Version 12). General ordinal associ-
ation models for r × c and higher-dimensional tables
are not commonly preprogrammed, although specific
models are often available depending upon the cus-
tomer base of a particular product. However, cumu-
lative logit (proportional odds) analysis is widely
available, and ordinal loglinear models may readily
be implemented using packages that allow arbitrary
model matrices X, which include all of the above and
the GLM package GLIM (Version 4). (Note that cau-
tion is indicated in reading software brochures. Some
use GLM to designate only the Gaussian generalized
linear model with identity link function, that is, the
“general” rather than “generalized” linear model.)

The most general prepackaged implementations
of CMH and WLS methods are in SAS  PROC
FREQ and PROC CATMOD, respectively, but these
analyses involve simple quadratic forms and are

easily incorporated into packages that allow matrix
manipulation and user programming. Any uncondi-
tional logistic regression software may be used to
perform conditional logistic regression analyses of
paired data, while software for proportional hazards
survival regression models may be used for such anal-
yses of general matched data.

In two areas, (i) exact analyses and (ii) WLS or
GEE-based methods for modelling data from sam-
ple surveys and other clustered research designs,
there is increasing overlap between specialty soft-
ware and general purpose statistical packages such
as those above. StatXact (Version 6) implements
rapid algorithms for many exact analyses of two-
and three-way contingency tables (see StatXact).
LogXact (Version 5) performs exact logistic regres-
sion analyses. Each of these packages has incorpo-
rated broader capabilities with recent releases. How-
ever, exact logistic regression is now available as an
option of SAS  PROC LOGISTIC, a core of the most
common analyses pioneered in StatXact are simi-
larly available as options in SAS  PROC FREQ, and
the full StatXact package with SAS  connectivity
is available as a SAS  add-on. The SPSS  add-on
SPSS  Exact Tests has similar capabilities.

Similarly, the SUDAAN  package has pioneered
powerful adjustment capabilities for correlated data
from stratified multistage cluster designs, with partic-
ular attention to the analyses of complex national sur-
veys, but initially was restricted to descriptive analy-
ses and a limited set of models. SUDAAN  8.0, the
release as of this writing, now implements an array of
continuous, univariate and multinomial logistic, log-
linear, and discrete and continuous semiparametric
proportional hazards models, using GEE. The survey
analysis package WESVAR employs jackknife or
balanced repeated replication variance estimation to
fit a less extensive class of models, including logistic
and multinomial logistic models. However, STATA

and SAS  now include core survey modeling capa-
bilities that, particularly for STATA, accommodate
a substantial proportion – though by no means all –
of data analyses for which SUDAAN , WESVAR,
or similar specialty software would previously have
been required. An SPSS  add-on, SPSS  Complex
Samples, offers similar capabilities for descriptive
analyses and basic hypothesis tests. There is hope
that the wider availability of convenient methods
for proper variance estimation from clustered sur-
vey designs will overcome the reluctance of many
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researchers to account for clustering in their analyses
(see Software for Sample Survey Data, Misuse of
Standard Packages).

GEE implementations are routinely available in
SAS  (GENMOD AND NLMIXED procedures),
STATA (xtgee and other xt. . . commands), and
S − Plus (gee function in correlated data research
library, and other functions in private libraries). SAS 

(NLMIXED, %GLIMMIX macro) and S − Plus

(glme and xglm functions in correlated data research
library) provide both approximate and exact approa-
ches to fitting GLMMs. STATA (xt. . . procedures)
fits them using quadrature to obtain the true likeli-
hood. BUGS (Bayesian analysis Using Gibbs Sam-
pling, with Windows implementation WinBugs), a
general platform for hierarchical Bayesian modeling,
allows GLMM fitting based on the true likelihood
through MCMC.

EPIINFO and EGRET  are packages partic-
ularly oriented to epidemiologists, the first rela-
tively basic and the second more comprehensive and
advanced but less user-friendly. EGRET  includes
some capabilities of StatXact for two-dimensional
contingency tables, and for stratification-based adjust-
ment of such tables for confounding, (see Software,
Epidemiological).
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Categorizing Continuous
Variables

It is common, especially in medical research, for
continuous variables to be converted into categorical
variables by grouping values into two or more cat-
egories (see Grouped Data). Some reasons for this
preference are statistical, notably the avoidance of
certain assumptions about the nature of the data, but
there are other less well-defined reasons. There seems
to be a general preference in many clinical areas to
categorize individuals, and this seems to carry over
to the analysis and interpretation of continuous data.
While there may be clinical value in such classifica-
tions, there is no statistical reason why all continuous
variables should be treated this way. Furthermore,
while creating categories may avoid certain statistical
problems, it leads to new ones.

The use of grouping for descriptive purposes may
allow a simpler presentation and is not especially
problematic. When the approach is carried forward
to data analysis, however, more serious problems
may arise. Grouping may be seen as introducing
an extreme form of measurement error, with an
inevitable loss of power. It is questionable whether
trading power for simplicity is a wise bargain. Nev-
ertheless, there may be good reasons to categorize,
so it is valuable to consider how this might be done.
We consider the issues in relation to categorization
of explanatory variables in regression models, but
similar considerations apply more widely.

Effect of Categorizing

Converting a continuous variable into a categorical
one will result in some loss of information; but it can
be, and often is, argued that with three or more cat-
egories the loss is small and is offset by a gain in
simplicity and the avoidance of assumptions. Connor
[3] quantified the loss of information when categoriz-
ing a normally distributed variable which is linearly
related to the outcome variable (also normally dis-
tributed) using the relative efficiency, which is based
on the ratio of the expected variances of the esti-
mated regression coefficients under the two models.
For 2, 3, 4, or 5 groups, the efficiency relative to
an ungrouped analysis is 65%, 81%, 88%, and 92%

respectively (and is almost identical for an exponen-
tially distributed variable).

Given the decision to categorize, it is not at all
obvious how many groups to create. In practice the
sample size should be one factor that influences the
decision, as it is undesirable to have sparsely popu-
lated groups. The placing of the cutpoints may also
not be obvious. Using optimally placed intervals, as
derived by Connor [3] following Cox [5], is little
different, in terms of efficiency, from using equally
spaced intervals when the variable is normally dis-
tributed, but when the variable has an exponential
distribution there is reduced efficiency with equi-
probable intervals [9]. This result is important, as it
is common to categorize in such situations, and equi-
probable intervals are the norm. Morgan & Elashoff
[11] examined the effect of categorizing a continuous
covariate when comparing survival times. Here too,
unequal groupings give increased efficiency.

Two Groups

Forcing all individuals into two groups simplifies the
statistical analysis and may lead to easier interpreta-
tion of results. A binary split leads to a comparison of
groups of individuals with high or low values of the
measurement, or a comparison of proportions and a
simple estimate of the difference between the groups
(with its confidence interval). However, this simplic-
ity is gained at the expense of throwing away a lot
of information, as noted above. Cohen [4] observed
that dichotomizing is equivalent to throwing a third
of the data away. It thus leads to a loss of power
to detect real relationships [15]. Patients are divided
into just two categories, so that considerable variabil-
ity may be subsumed. Using such binary variables in
regression models may lead to biased estimates [15].

The choice of cutpoint to create the two groups
may not be straightforward, and several approaches
are possible. It is highly desirable for the choice of
cutpoint not to be influenced by the actual data values.
For a few variables there are recognized cutpoints
which can be used (e.g. for body mass index). For
some variables, such as age, it is usual to take a
“round number” – an elusive concept, which in this
context usually means a multiple of ten. Another
possibility sometimes used is to use the upper limit
of a normal range (reference interval). In the absence
of any prior idea of a suitable cutoff, the most
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common approach is to take the sample median.
This gives two equal groups and is probably the
best approach. However, using the median means that
different studies will take different cutpoints, so that
their results cannot easily be compared or combined.
(Note that moving the cutpoint to a higher value leads
to higher mean values in both groups.)

The arbitrariness of the choice of cutpoint may
lead to the idea of trying more than one value and
choosing that which, in some sense, gives the most
satisfactory result. The temptation to perform mul-
tiple analyses should be strongly resisted. Taken to
extremes, this approach leads to trying every possi-
ble cutpoint and choosing the value which minimizes
the P value. Because of the multiple testing the over-
all false positive rate will be very high, being around
40% rather than the nominal 5% [2]. Also, the cut-
point chosen will have a wide confidence interval
and will not be clinically meaningful and, crucially,
the difference between the two groups will be over-
estimated. Although it is possible to correct the P

value for multiple testing [2], the bias cannot cur-
rently be corrected for. Regrettably, this unacceptable
strategy has become common in the cancer literature,
especially in breast cancer [1, 2]. A similar proposal
has appeared in the epidemiologic literature [17].

If the dependent variable is also a dichotomized
continuous variable, the above effects are exagger-
ated. There is greater information loss [4], and there
are two cutpoints to choose. The simple analysis of
a two-by-two table can be via a chi-square test or
an odds ratio. However, this is a drastic reduction
of information. Maxwell & Delaney [10] studied the
effect of dichotomizing two explanatory variables.

Several Groups

The simple approach of dichotomizing the explana-
tory variable may hide important complexities. The
advantage of having several groups is that one can
get a feel for the shape of a relation between the out-
come variable and the explanatory variable without
the need to specify the shape of that relation. Use
of three or four categories is common, especially in
epidemiology. It is rare for more than five groups
to be used. With fewer groups there is an increased
risk of pooling data for individuals with different
risks. Occasionally, there may be a U-shaped relation
between a variable and outcome. For example, Sather

[13] showed such a relation between age and survival
in children with acute lymphoblastic leukemia. With
several groups such an effect can be seen clearly.
With only two groups not only would this infor-
mation be missed, but there could be a failure to
detect any relation at all. When the true risk increases
(or decreases) monotonically with the level of the
variable of interest, the apparent spread of risk will
increase with the number of groups used. It is thus
possible to manipulate the message from the data, by
choice of the number of groups.

It is most usual to divide the data into equal
groups, for example using tertiles, quartiles or quin-
tiles (see Quantiles) to divide the data values into
three, four, or five groups respectively. Optimal
groupings, as described above, are very rarely used.
The only other reasonable approach is to split at
round numbers, usually leading to groups of equal
width rather than equal size, but not necessarily. The
use of round numbers is esthetically pleasing, and will
increase the likelihood of providing data comparable
with those in other studies. It would be valuable to
have standard groups for common variables, such as
serum cholesterol or blood pressure. Data could still
be analyzed in the authors’ favored manner, but with
results also presented using standard groups. This
practice would considerably aid those carrying out
meta-analyses.

After creation of groups, there are several options
for the method of analysis. Because the groups are
ordered it is desirable to use a method that specifically
looks for a trend across the groups (see Ordered Cat-
egorical Data). An exception would be in the fairly
rare case in which one had an a priori hypothesis of
a “U-shaped” relation.

With k categories it is common to create k − 1
binary indicator variables (or dummy variables).
These are entered into the multiple regression model.
In order to test the effect of the explanatory variable
X, all k − 1 dummy variables can be assessed at once
using a single test with k − 1 degrees of freedom.
This approach is lacking in power against a mono-
tonic relation between the response variable Y and X.
An alternative is to use k − 1 tests to examine each
indicator variable separately, which may be done as
part of a stepwise procedure. Without allowance for
multiple comparisons, however, this method will lead
to a increased risk of a false positive result. This
method can lead to models which are hard to inter-
pret. Walter et al. [16] recommend a different way
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of creating dummy variables, where each represents
whether or not an individual is in a particular group
or a higher one. Here stepwise selection cannot lead
to a nonsensical model, as each dummy variable rep-
resents a meaningful comparison. This approach is
more sensible, but it does not seem to be much used.
The problem of multiple testing remains, however.

A different strategy is to give each of the k groups
a score (or rank) from 1 to k, and then to treat
these scores as a continuous variable, say S. The
regression coefficient for S then estimates the change
in Y between adjacent groups. A closely similar
approach involves using the mean of X within each
category in place of group scores. This is a good
general method, but it does impose some assumptions
regarding the nature of the relation between the
explanatory variable and outcome.

Creating Risk Groups

Rather than group according to the distribution of
observed values of a variable, a preferable general
approach is to base any grouping on outcome. This
can be done either when there is a single variable
of interest, or when several variables are considered
simultaneously in a multiple regression model. The
fitted values from the chosen model are obtained
as a weighted sum of the variables in the model,
where the regression coefficients are the weights. The
weighted sum is often called a prognostic index (PI)
(see Prognosis). If there are no continuous variables
the PI will have as many possible values as there
are distinct covariate patterns. The PI will be a
continuous score if the model includes at least one
continuous variable. Creating meaningful groups is
often desirable for clinical reasons. As an example,
the Nottingham breast cancer index [7], based on
three variables, yields three risk groups. Such an
approach is quite common in cancer. The advantage
of keeping any grouping to the end of the analysis
is that, while some categorization may be applied to
some variables at an early stage, it is not required.

For grouping the PI, similar considerations apply
as have been discussed. There are no easy answers,
though. When creating two risk groups, the situation
closely resembles the problem of finding an appropri-
ate cutpoint for a continuous measurement or score
for diagnostic purposes. Here too, a data-derived cut-
point can be obtained with a minimum P value – and

again the P value but not the estimate can be adjusted
for multiple comparisons [14].

Discussion

Categorization of continuous data is not necessary,
and indeed is not a natural way of analyzing con-
tinuous data for most statisticians. Grouping is often
used because of concern about the risks associated
with mismodeling the relationship. Several strategies
can be applied to assess whether the relation may in
fact be curved and to model such relationships [6].
A second possibility is to use results obtained after
categorization to guide the choice of an appropriate
model [18] (see Model, Choice of). It is important
to note that the use of categories does not remove
assumptions about the nature of the relationship, as
the above comments on analysis indicate.

Given the widespread practice of categorizing con-
tinuous variables, it is remarkable how little attention
has been given to the way in which this should best
be done. Several textbooks on statistics and epidemi-
ology make no apparent mention of the topic, even
though they present data that have been categorized.
Among those that do mention the issue there is dis-
agreement. Kramer [8, p. 179] says, with respect to
creating categories, that “It is essential that these
boundaries be decided a priori . . . so that the inves-
tigator is not at liberty to pick a cutoff point that
optimizes his chances for demonstrating statistical
significance”. (He considered only the case of a sin-
gle cutpoint.) By contrast, Rothman [12] states that
“it is often preferable to define the final categories
after reviewing the data, notwithstanding the common
advice that it is somehow more ‘objective’ to do so in
ignorance of the distribution of observations in hand”.
These remarks indicate that, despite wide familiarity,
this area of application would benefit from further
research into desirable strategies.

References

[1] Altman, D.G. (1991). Categorizing continuous variables,
British Journal of Cancer 64, 975.

[2] Altman, D.G., Lausen, B., Sauerbrei, W. & Schu-
macher, S. (1994). Dangers of using “optimal” cutpoints
in the evaluation of prognostic factors, Journal of the
National Cancer Institute 86, 829–835.

[3] Cohen, J. (1983). The cost of dichotomization, Applied
Psychological Measurement 7, 249–253.



4 Categorizing Continuous Variables

[4] Connor, R.J. (1972). Grouping for testing trends in
categorical data, Journal of the American Statistical
Association 67, 601–604.

[5] Cox, D.R. (1957). Note on grouping, Journal of the
American Statistical Association 52, 543–547.

[6] Greenland, S. (1995). Dose–response and trend analysis
in epidemiology: alternatives to categorical analysis,
Epidemiology 6, 356–365.

[7] Haybittle, J.L., Blamey, R.W., Elston, C.W., Johnson, J.,
Doyle, P.J., Campbell, F.C., Nicholson, R.I. &
Griffiths, K. (1982). A prognostic index in primary breast
cancer. British Journal of Cancer 45, 361–366.

[8] Kramer, M.S. (1988). Clinical Epidemiology and Bio-
statistics. Springer-Verlag, Berlin.

[9] Lagakos, S.W. (1988). Effects of mismodelling and
mismeasuring explanatory variables on tests of their
association with a response variable, Statistics in
Medicine 7, 257–274.

[10] Maxwell, S.E. & Delaney, H.D. (1993). Bivariate
median splits and spurious statistical significance,
Psychological Bulletin 113, 181–190.

[11] Morgan, T.M. & Elashoff, R.M. (1986). Effect of
categorizing a continuous covariate on the comparison
of survival time, Journal of the American Statistical
Association 81, 917–921.

[12] Rothman, K.J. (1986). Modern Epidemiology. Little,
Brown, & Company, Boston, pp. 135–136.

[13] Sather, H.N. (1986). The use of prognostic factors in
clinical trials, Cancer 58, 461–467.

[14] Schulgen, G., Lausen, B., Olsen, J.H. & Schumacher, M.
(1994). Outcome-oriented cutpoints in analysis of quan-
titative exposures, American Journal of Epidemiology
140, 172–184.

[15] Selvin, S. (1987). Two issues concerning the analysis
of grouped data, European Journal of Epidemiology 3,
284–287.

[16] Walter, S.D., Feinstein, A.R. & Wells, C.K. (1987).
Coding ordinal independent variables in multiple regres-
sion analyses, American Journal of Epidemiology 125,
319–323.

[17] Wartenberg, D. & Northridge, M. (1991). Defining
exposure in case-control studies: a new approach,
American Journal of Epidemiology 133, 1058–1071.

[18] Zhao, L.P. & Kolonel, L.N. (1992). Efficiency loss
from categorizing quantitative exposures into qualitative
exposures in case–control studies, American Journal of
Epidemiology 136, 464–474.

DOUGLAS G. ALTMAN



Cauchy Distribution

S.D. Poisson discovered the Cauchy distribution in
1824, long before its first mention by A.L. Cauchy
[12]. Early interest in the distribution focused on
its value as a counter-example which demonstrated
the need for regularity conditions in order to prove
important limit theorems [12] (see Large-sample
Theory). The Cauchy distribution arises naturally as
the ratio of two independent standard normal ran-
dom variables (i.e. Student’s t distribution with one
degree of freedom is a Cauchy distribution). Also,
if θ is uniformly distributed on (−π/2, π/2), then
tan θ has a Cauchy distribution. The Cauchy dis-
tribution also arises as a mixture of normals: if Y

follows the chi-square distribution with one degree
of freedom, and, given Y = y, X is normal with
mean 0 and variance y−1, then X has a Cauchy dis-
tribution. This derivation of the Cauchy distribution
as a mixture motivates its use for robust regres-
sion analysis of data sets in which the errors have
longer than normal tails [9]. Another application of
the Cauchy distribution is as a useful alternative to
a normal prior distribution in the situation where
a thicker tail than the normal distribution is reason-
able [4].

The Cauchy distribution has density

f (x) = β

{π[β2 + (x − α)2]} , where β > 0,

and cumulative distribution function

F(x) =

{
arctan

[
(x − α)

β

]
+ π

2

}

π
.

The distribution is symmetric about its median α,
and has first and third quartiles α − β and α + β,
respectively (see Quantiles). The standard Cauchy
distribution has α = 0 and β = 1.

The characteristic function of the Cauchy distri-
bution is

φ(t) = exp(itα − β|t |).
From this it follows that the distribution does not
have finite moments of any order. Linear com-
binations of independent Cauchy random variables
also follow the Cauchy distribution. In particular, if
X1 and X2 have independent Cauchy distributions
with medians α1 and α2 and scale parameters β1

and β2, respectively, then a1X1 + a2X2 also has a
Cauchy distribution with parameters a1α1 + a2α2 and
|a1|β1 + |a2|β2, respectively.

The mean of n independent and identically dis-
tributed Cauchy random variables with median α and
scale β also has a Cauchy distribution with median
α and scale β. Hence, the sample mean is not a con-
sistent estimator of the median α and, in fact, it
offers no increase in accuracy compared with any
single value [8]. Convenient estimators of α and β

are available using the order statistics [3, 7, 11].
For example, the median is an unbiased estimator of
α with 81% asymptotic relative efficiency [2]. For
maximum likelihood estimates, care must be taken
because the likelihood equations can have multiple
roots. Haas et al. [5] have provided tables of critical
values necessary to construct confidence intervals for
estimates of α and β.

While the ratio of two independent normal random
variables follows the Cauchy distribution, Cauchy
distributions can also arise as the ratio of other, pos-
sibly dependent, random variables [1]. For additional
characterizations and applications of the Cauchy dis-
tribution, see [6] and [10].
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Causal Direction,
Determination

Causality analysis studies the cause–effect relation-
ships among several variables (see Causation). There
are several definitions of causality. Here we restate
one that is in terms of probability [2]: C is a can-
didate cause of E if Pr(E|C) > Pr(E|C). But the
role of a potential confounder; B say, should be
taken into account. It is possible that C leads to
B and then B leads to E. Formally, C is a spu-
rious cause if Pr(E|C ∩ B) = Pr(E|C ∩ B) which
means that the real cause of E is B rather than C.
Therefore, conditional on B, E is not affected by C.
However, there may be a large number of poten-
tial confounders and some of them are unobserved,
so that testing for Pr(E|C ∩ B) = Pr(E|C ∩ B) may
be difficult. Causal relationship can be represented
by a path diagram (see Path Analysis), on which
the relationships between variables can be shown
by arrows. For example C → E means that C is
the cause of E; that is, B is the direct cause of
E. Determining causal direction includes determin-
ing paths and their directions. A traditional causal
analysis method is the structural equation model,
in which the causes appear in the model as inde-
pendent explanatory variables and the effects as
dependent response variables. Bentler & Newcomb
[1] proposed the following approach: (i) Form a path
diagram. (ii) Form a multivariate multiple regres-
sion model with one equation for each effect, and all
of its causes as regressors of this effect. The correla-
tions between independent variables are represented
by correlation matrices. (iii) Parameters are estimated
and tested by model fitting. Special programs for this
purpose are available (e.g. EQS) [4]. For an introduc-
tion to graphic models for several kinds of outcomes,
see [3]. Although the above approaches are straight-
forward, the asymmetry between causes and effects
may not be determined by the model and available
data alone. Additional information such as tempo-
ral ordering or subjective knowledge may have to
be used. Recently, acyclic graphic models have been
used in causal analysis [6]. However, several assump-
tions are made which may not be realistic in practice
and large sample sizes are needed to determine the
causal relationship.

In longitudinal studies, repeated measurements
are available. However, the structural equation
models do not take the time order into account.
An extension of these models for longitudinal data
is the dynamic regression model which imposes
cause–effect relationships on a multivariate time
series [5] (see Multiple Time Series). For time series
models, Granger’s causality [8] is defined in terms
of predictability according to a law. For example,
suppose that Xt and Yt , t = 1, 2, . . . , T , are two time
series. If adding the history of Yt (Y1, . . . , Yt−1) leads
to a better prediction of Xt than using the history of
Xt alone, then Y causes X.

A general form for time series causality models
is [5]

xt =
p∑

s=1

Esxt−s +
q∑

s=1

Fsyt−s + u1t , (1)

yt =
r∑

s=1

Gsyt−s +
v∑

s=1

Hsxt−s + u2t , (2)

where var(ult ) = �1 and var(u2t ) = �2. Causal
direction can be determined by testing Fs = 0, s =
1, . . . , q, and Hs = 0, s = 1, . . . , v. The computer
package EQS [4] can also be used for the analysis
of longitudinal data, particularly to determine causal
directions. Recently, combined graphic and linear
dynamic models [7] have been proposed for use in
the analysis of time series models with complicated
structures.
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Causation

The concepts of cause and effect are central to
most areas of scientific research, so it is not sur-
prising that the literature on them could fill a small
library. What may be surprising, given their impor-
tance, is that consensus about basic definitions and
methods for causal inference is (at best) limited,
despite some three centuries of debate. A brief review
cannot do justice to the history and details of this
debate, nor to all the schools of thought on cau-
sation. This article will, therefore, focus on a few
major themes that have affected modern biostatistical
practice. Of necessity, some aspects of the discus-
sion are simplified relative to the literature, and the
references should be consulted for more thorough
descriptions. Entries on related topics are given in
the final section.

Counterfactual Causation

At least as far back as the early eighteenth century,
philosophers noted serious deficiencies in ordinary
definitions of causation (e.g. see Hume [8]). For
example, Webster’s New Twentieth Century Diction-
ary [12] offers “that which produces an effect or
result” as a definition of “cause”. The circularity of
this definition becomes apparent when one discovers
“to cause” among the definitions of “produces”. In
early scientific treatises, an event (or set of events)
A was said to cause a later event B if there was
“constant conjunction” or “regularity” of the events,
in that A (the cause) was inevitably followed by B
(“the effect”). Mill [13] pointed out that such “con-
stant conjunction” could always be the effect of a
third event C preceding A and B; in other words,
the regularity of B following A might only be due
to confounding[4]. Informal definitions of “effect”
suffer from the same problems, because “effect”
as a verb is merely a synonym for “cause”, while
“effect” as a noun is defined as a “result”, which
is, in turn, defined as an “effect” in causal con-
texts.

Hume [7], however, offered in passing another
view of causation that pointed a way out of circularity
or confounding in the definition (even if confounding
might be inevitable in the observation). In the present
terminology, Hume proposed that A caused B if

failure of A to occur would have been sufficient for
failure of B to occur (see Lewis [10]). That is, by
focusing on specific instances of causation, we could
say that a specific event A caused a specific event
B if occurrence of A was necessary for B under the
observed background circumstances. Essentially, the
same concept of causation can be found in [2] and
[13] (both quoted in [22]).

Of course, the preceding definition falls short of
the formalism necessary for rigorous logical analysis.
Such analysis first appeared in the statistics literature
in [14]. The basic idea is as follows: Suppose N units
indexed by i = 1, . . . , N are to be observed in an
experiment that will assign each unit to one of K

treatments x1, . . . , xK . For each unit, the outcome of
interest is the value of a response variable Yi . It is
assumed that Yi will equal yik if unit i is assigned
treatment xk . Suppose that one treatment level, say x1,
is designated the reference treatment against which
other treatments are to be evaluated (typically, x1

is “no treatment”, placebo, or standard treatment).
We may then define the causal effect of xk(k > 1)

on Yi relative to x1 (the reference) to be yik − yi1.
Alternatively, if the response is restricted to positive
values (such as blood pressure), we may define the
causal effect as yik/yi1 or log yik − log yi1.

This definition of effect leads naturally to a precise
usage for the word “cause”. Prior to treatment, we
say yk would cause a change of yik − yi1 in Yi ; if
yik − yi1 = 0, we say xk would cause no change in Yi .
After the experiment, if unit i had received treatment
k, then we say that xk caused a change of yik − yi1

in Yi ; otherwise, we say that xk would have caused a
change of yik − yi1 in Yi .

There are four crucial restrictions that the preced-
ing formalism places on the notion of effect (and,
hence, cause). First, effects are defined only within
comparisons of treatment levels. To say that “drink-
ing two glasses of wine a day lengthened Smith’s life
by four years” is meaningless by itself. A reference
level must be at least implicit to make sense of the
statement. Smith might have lived even longer had
she consumed one rather than two glasses per day.
As given, the statement could refer to no wine or
four glasses per day or any other possibility.

Secondly, more subtly and profoundly, the for-
malism assumes that yik , the response of unit i under
treatment k, remains well defined even if unit i is
not given treatment k. In the philosophy literature,
this assumption and the problems attendant with it
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are recognized as problems of counterfactual analysis
[10, 11, 24] (see also the discussion of Holland [6]).
The statement “if xk had been administered, then the
response Yi of unit i would have been yik” is called
a counterfactual conditional : it asserts that Yi would
equal yik if, contrary to fact, xk had been admin-
istered to unit i. Consider again Smith’s drinking.
Suppose she would contract cancer at age 70 if she
drank two glasses of wine a day, but would instead
die of a stroke at age 68 if she drank no wine. If
Yi is her time to cancer and she drank two glasses
per day, how could we define her counterfactual time
to cancer given no wine? Without this definition, the
effect of two glasses of wine vs. none would be unde-
fined.

The preceding problem is common in survival
analysis when competing risks are present. The
problem is not solved by attempting to condition
on “absence of competing risks”: such hypothetical
absence is itself not a well-defined counterfactual
state, even though standard probability calculations
(as used in product-limit estimates) make it appear
otherwise (see Kalbfleisch & Prentice [9, p. 166],
and Prentice & Kalbfleisch [18], for further discus-
sion). Rather, the definition of the response must be
amended to include the competing risks if the coun-
terfactual definition is to be applied. For example, Yi

could become the pair comprising time of cancer or
competing risk and an indicator marking the event at
that time.

Thirdly, the effects captured by the counterfac-
tual definition are net effects, in that they include
all indirect effects and interactions not specifically
excluded by the treatment definition. For example,
Smith’s consumption of two glasses of wine per day
rather than none may have given her four extra years
of life solely because one night at a formal dinner it
made her feel unsteady and she had a friend drive her
home; had she not drunk, she would have driven her-
self and been hit and killed by a drunk driver. This
sort of indirect effect is not one we would wish to
capture when studying biological effects of wine use.
It is, nonetheless, included in our measure of effect
(as well as any estimate) unless we amend our treat-
ment definition to include holding constant all “risky”
activities that take place during Smith’s life. Such
amendment is sometimes (simplistically) subsumed
under the clause of “all other things being equal
(apart from treatment)”, but can be a serious source

of ambiguity when the intervention that enforces the
amendment is not well defined.

A fourth restriction, which may be considered an
aspect of the third, is that the formalism assumes
that treatments not applied to a unit could have been
applied. Suppose Smith would not, and could not,
stop daily wine consumption unless forced physically
to do so. The effect of her actual two-glass-a-day
consumption vs. the counterfactual “no wine” would
now be undefined without amending the treatment
definition to include forcing Smith to drink no wine,
e.g. by forcibly injecting Smith with antabuse each
day of her life. Such amendment would be of little
interest, not just because of its wild impracticality,
but because of the side effects it would introduce.

The preceding restriction is sometimes accounted
for by requiring that the counterfactual definition of
“effect” applies only to “treatment variables”. The
latter are defined informally as variables subject to
manipulation of their levels; an additional restriction
is made that each possible level (treatment) for the
treatment variable has nonzero probability of occur-
rence (e.g. see Holland [6]). One may sense here
an echo of the circularity in ordinary definitions of
cause, for this notion of manipulation embodies hav-
ing an effect on treatment levels. Nonetheless, it has
been argued that one strength of the counterfactual
approach is its explication of the ambiguities inherent
in defining cause and effect [10, 22].

One model of causation that has enjoyed some
popularity in epidemiology is the sufficient-compo-
nent cause (SCC) model introduced by Rothman [20,
21, Ch. 2]. This model presents causal mechanisms
via schematic “pie charts” composed of slices repre-
senting necessary causal components of mechanisms.
It can be shown that this model can be mapped
into the general counterfactual framework, although
it involves certain nonidentifiable elaborations [21,
Ch. 18].

Probabilistic Causation

A number of authors have attempted to formalize
causation through axioms governing the evolution
of probabilities over time (e.g. see Suppes [25] and
Eells [1]). Such systems have attracted little atten-
tion in biostatistics. Other approaches include prob-
abilistic extensions of the counterfactual approach.
One is based on the distribution of fixed potential
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responses; that is, the joint distribution F(y1, . . . , yK)

of yi1, . . . , yiK in a population of units. We may also
consider conditional distributions in subpopulations
defined by covariates such as age, sex, and received
treatment. Population effects can be defined as aver-
ages of individual effects over populations; statistical
procedures for inferences about these effects fol-
low from assumptions about sampling and treatment
assignment mechanisms. The basic ideas were present
in Fisher [4] and Neyman [14], and have been elab-
orated more generally since [23].

Another extension considers potential responses
that are distributional parameters specific to units.
For example, we could consider the probability that
a given atom emits a photon in the second follow-
ing absorption of a photon (“treatment 2”) minus the
probability of emission in the same second if no pho-
ton had been absorbed (“treatment 1”). This probabil-
ity difference is the effect of photon absorption on the
atom relative to no absorption. In quantum mechan-
ics, this difference (effect) is well defined whether
or not a photon is actually emitted. In fact, under
the standard quantum model, the emission indicator
(Yi = 1 if the atom emits a photon in the second, 0 if
not) is not well defined under counterfactual alterna-
tives to the actual history of the atom. Fortunately, the
latter ambiguity appears to have no practical implica-
tions for the gross phenomena studied in biostatistics.
It does, however, illustrate the possibility of consider-
ing probabilities and expectations (rather than events)
as responses in the counterfactual definition, even for
macrophenomena.

Causal Inference

Of causal inference there may be even more
written and less agreed than for the basic
definitions of cause and effect. A discussion
of this literature is beyond the scope of the
present article. Issues of bias, validity, and
generalizability in causal inference are discussed
elsewhere (see Bias in Case–Control Studies; Bias
in Observational Studies; Confounding; Validity
and Generalizability in Epidemiologic Studies). A
discussion of criteria for causal inference [5] may be
found in Hill’s Criteria for Causality and in chapter
2 of Rothman and Greenland [21]; most of these
criteria are informal, and there are many objections
to their use [21, Ch. 2].

Formalisms for causal inference in biostatistics
have thus far been restricted to counterfactual-based
procedures, as in [1, 14, 23], and to methods based
on path diagrams or directed graphs. Starting with
Wright [26], path diagrams (see Path Analysis)
(more recently called causal diagrams) have been
used to display assumptions about the absence of par-
ticular effects and to provide a basis for algorithms
useful in determining whether effects are identifiable
from a given observational process (e.g. Robins [19],
Pearl [16], and Pearl & Robins [17]; see Identifia-
bility). Most of these approaches take the notion of
cause as a primitive; a few define effects in a manner
formally equivalent to the counterfactual definition
extended to probabilistic domains [15]. The coun-
terfactual approaches emphasize the importance of
randomization in assuring identifiability of causal
effects [3, 4, 19, 23].
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Cause of Death,
Automatic Coding

Accurate selection and coding of the underlying cause
of death based on death certificates using the Inter-
national Classification of Diseases (ICD) is a labor-
intensive task requiring special training and knowl-
edge. Persons without a medical background must
learn basic anatomy and physiology as a prerequisite
to cause of death coding training, but even trained
nurses and physicians must learn the detailed proce-
dures and rules embodied in the ICD. Vital statistics
offices have had a continuing burden to maintain a
well-trained and experienced mortality coding staff.
However, it was not until there was a heightened
interest in coding not only the underlying cause of
death but the other causes on the death certificate
as well, that efforts to utilize computer technology to
code death certificates began in earnest (see Cause of
Death, Underlying and Multiple). The dual coding
burden of the different procedures required to pro-
duce the two kinds of mortality data was prohibitive
for most, if not all, countries interested in producing
enhanced mortality statistics.

There were several independent approaches to
automation of the international selection and modifi-
cation rules, most notably in England and Wales and
in the United States (US). Responsible government
authorities in these two countries kept in close touch
with each other’s progress, but resource constraints in
the former left the US National Center for Health
Statistics as the single remaining major investor in
research and development of an automated mortality
coding system.

Originally designed for a large mainframe com-
puter, the US system consisted of two subsystems,
MICAR (Medical Information, Classification, and
Retrieval) and ACME (Automated Classification of
Medical Entities). MICAR required an ICD code or
a standardized diagnostic abbreviation to be assigned
by a coder to each condition reported, along with
a location code indicating where the condition was
written in relation to the other conditions entered
on the death certificate (see Death Certification).
This information was entered into the computer. The
MICAR software searched its internal dictionary until
the condition was found and then it assigned a dic-
tionary reference number to each such term. The

reference numbers and their death certificate loca-
tion codes (i.e. MICAR output) formed the input to
the ACME module which then, through a series of
logical decision tables, applied the international selec-
tion and modification rules to arrive at the underlying
cause of death. The MICAR output data could then
also be used to produce multiple cause of death tab-
ulations by applying additional computer procedures
designed for that purpose.

The original versions of both MICAR and ACME
have undergone many iterations since their early
development in the late 1960s. The current ver-
sions are designed to run on a personal computer
and are based on the latest revision of the ICD.
The MICAR module, now known as SuperMICAR,
accepts English language diagnostic text as well as
standard disease abbreviations as input while ear-
lier versions required a coder to assign code num-
bers to each diagnostic term. This allows the data
to be entered by persons who can operate a key-
board but who have no need for familiarity with
the ICD.

The main features of the MICAR/ACME approach
are as follows:

1. The coding of death certificates can be done by
coders with less training and knowledge than is
required of underlying cause of death coders,
although the total number of individual codes to
be assigned is greater.

2. The ACME decision tables residing in the com-
puter are logical reflections of the steps an under-
lying cause of death coder is trained to follow in
the application of the international selection and
modification rules and therefore result in under-
lying cause codes with a very high degree of
agreement with those resulting from the work of
highly experienced human coders.

3. The same original coding of death certificates
can be used to produce both underlying cause
of death statistics and multiple cause of death
statistics.

4. There is a higher degree of consistency in the
results, since variation due to differences in inter-
pretation of the rules by coders is eliminated.

5. Changes in the ICD, its rules, or their inter-
pretation can be implemented at any time by
modifying the appropriate decision table(s) and
reprocessing the records that have been processed
prior to the change.
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A number of countries plan to implement this
automated system when they begin using the Tenth
Revision of the ICD. Because of this widespread
interest, there will be increased international involve-
ment with the content and possible future modifi-
cation of the decision tables and in the way mul-
tiple cause of death data are manipulated and pre-
sented. Countries planning to use this automated
system have participated in planning meetings with
the system designers and, in the case of the UK,
have assisted in some of the research for the latest

version. In addition, a few other automated sys-
tems in languages other than English have been
developed using, in part, the ACME decision table
logic. This broader involvement of many coun-
tries in the same or highly similar automated pro-
grams is expected to contribute to greater unifor-
mity and comparability of international mortality
data.

ROBERT A. ISRAEL



Cause of Death,
Underlying and Multiple

The underlying cause of death is defined by the
World Health Organization (WHO) as “(a) the dis-
ease or injury which initiated the train of morbid
events leading directly to death, or (b) the circum-
stances of the accident or violence which produced
the fatal injury” [5]. This definition recognizes the
importance of the public health principle of pre-
vention. By having information on the sequence of
conditions leading to death, from the initial disease or
condition, through diseases arising as consequences
of the initial disease, on to the final or terminal con-
dition, it is believed that interventions can be found
to break the train of events and reduce mortality from
selected causes of death.

The concept of attributing to each death a single
cause for statistical tabulation and analytic purposes
is rooted in the early development of disease classi-
fications. From the outset and through the first part
of the twentieth century, disease classifications were
focused primarily on the causes of mortality, and it
was the principal cause of death – not symptoms,
other concurrent conditions, nor modes of dying –
that was of primary interest. At the First Interna-
tional Revision Conference for the International
Classification of Diseases (ICD), convened in 1900,
Bertillon proposed a set of rules for selecting the sin-
gle cause of death to be used for statistical purposes
when more than one condition was reported [4]. In
subsequent years, however, there was little unifor-
mity in practice among countries for the selection of
a single cause of death and it was not until 1938, at
the Fifth Decennial Revision Conference, that formal
recognition at the international level was given to the
statistical problem of selecting a single cause of death
where more than one cause was given on the death
certificate (joint causes of death). This question had
been under study in the United States (US), and the
Conference requested the US government to continue
its investigations in this regard. Accordingly, the US
government established the US Committee on Joint
Causes of Death, comprised of members from the
US, Canada, the UK, and representatives in an advi-
sory capacity from the Interim Commission of the
WHO [2]. In recognition of the work of this com-
mittee and the recommendations of the WHO Expert

Committee for the Preparation of the Sixth Revision
of the International Lists of Diseases and Causes of
Death, the Sixth Decennial Revision Conference, at
its meeting in 1948, not only adopted the Sixth Revi-
sion of the International Lists but also an International
Form of Medical Certificate of Cause of Death, a
formal definition of underlying cause of death, and
a standardized set of selection rules for arriving at
an underlying cause of death when more than one
condition is reported (see Death Certification). The
recommendations of the Conference were accepted
by the World Health Assembly in 1948 and incor-
porated into Regulations No. 1 under Article 21(b)
of the WHO Constitution. The regulations serve as
guidelines to Member States for the compilation of
morbidity and mortality statistics in accordance with
the ICD [3]. This acceptance of a standard form for
certifying causes of death, the definition of the under-
lying cause, and the rules for selecting it from more
than one reported cause was a major step in the quest
for international comparability of mortality data.

While the underlying cause of death continues to
form the basis for mortality data for countries with
medically certified deaths, some have observed that
there is a loss of potentially useful information when
several diseases or conditions are reported on a death
certificate but only one is used for statistical reporting
and analysis. With the decline in importance, espe-
cially in developed countries, of infectious diseases
and a concomitant rise in life expectancy, the num-
ber of death certificates listing several conditions,
particularly chronic illnesses, has risen noticeably.
In those cases in which more than one disease is
reported, all of the diagnostic entries on the death cer-
tificate are known collectively as “multiple causes of
death”. From the group of multiple causes on a death
certificate, an underlying cause is chosen in accor-
dance with the standard definition and procedures,
but unless additional steps are taken, the remainder
of the entries on the medical certification of cause of
death contribute nothing to the statistical collection
of mortality data. Recognizing this, several countries,
particularly England and Wales, France, Sweden, and
the US, began experimenting in the 1960s and sub-
sequent years with ways to capture the additional
information and analyze and present the findings [1].
At the international level, the WHO convened several
meetings of interested countries, the first in London
in 1969, to review multiple cause of death coding
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procedures and to compare findings. At those inter-
national meetings it was generally agreed that there
was not enough similarity of approach, nor a clearly
superior methodology, to recommend a single inter-
national procedure. However, the growing number
of interested countries were encouraged to continue
to develop and use their own methodologies and
to continue to keep each other informed of results.
Furthermore, it was emphasized that some form of
multiple cause of death analysis and data presentation
was an important adjunct to the traditional underly-
ing cause approach. Late in the 1990s, with a growing
number of countries beginning to rely on a common
automated computer coding scheme (see Cause of
Death, Automatic Coding), there appeared to be
more likelihood that several countries would mutu-
ally agree to a uniform procedure for multiple cause
of death coding and analysis. This, when realized,
would form an important step toward international
comparability of multiple cause data to enhance the
traditional underlying cause of death statistics.
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Cell Cycle Models

The proliferation of cells is fundamental to the study
of the growth of tissues and organs in development,
as well as the growth of colonies of bacteria (see
Bacterial Growth, Division, and Mutation), yeast,
and tumors. Specifically, the cell cycle refers to the
identifiable stages in the division cycle of a cell based
on its DNA content which is duplicated (except in
meiosis) before cells can divide to produce progeny.
There are four basic phases of the cell cycle: G1

(gap one), S (DNA synthesis), G2 (gap two), and M
(mitosis). The time spent in these four phases, from
birth to the division of a cell is called the cell-cycle
time.

Numerous mathematical models have been pro-
posed for the study of the variation in the cell-cycle
time and phase durations during the last few decades.
Cell-cycle modeling encompasses three major areas.
The oldest of these areas is the study of cell popu-
lation growth. These studies focus on predicting the
time-dependent dynamics of a cell population or the
time-independent distribution of cells within various
cell-cycle phases. Both deterministic and stochas-
tic models based on age-dependent progression have
been used to estimate the transit times of different
cell-cycle phases. The second area, cell-cycle anal-
ysis, is related to cytometric studies, and is based
on characterizing cells on the basis of their DNA
content or other proliferative markers, indicating the
position in the cell cycle. The third and most recent
area is based on detailed kinetics of growth regulation
within an individual cell. The models in this area are
deterministic and use nonlinear multivariable ordi-
nary differential equations. The models in the first
two areas, considered as macroscopic models, have
quantitative experimental results for validation. How-
ever, the models in the third area, the microscopic
models, still can be compared only with observed
qualitative behavior of the relevant variables. These
three types of cell cycle models are discussed below.

Macroscopic Models

Cell Population Models

The experimental observations that cells could be
labeled in the S-phase with radioactive thymidine,

and that the labeled cells could be identified in mito-
sis by autoradiography, gave rise to cell-cycle mod-
els based on the fraction of labeled mitosis (FLM)
curves. These models considered the variation in
phase and cycle duration by introducing multivariable
and/or time delay equations to express the temporal
distribution of the population with the uncertainties
expressed by stochastic terms. Regression analysis
was used to estimate the coefficients of those models.
Birth rate, death rate, cell-cycle time, and population
doubling time are a few of the widely used parameters
in these models. Typically, the assumptions such as
(i) the variability of these parameters from one cell
to another, (ii) the correlations of these parameters
from one generation to another, or (iii) correlation
of a cellular property such as the cell size to these
variables, have been tested. Although many of these
models could predict the population density for a
short period of time (related to experiments) none can
predict adequately the long-term behavior. This diffi-
culty is due to the environmental changes, cell-to-cell
communications, and intracellular signals of the cell
population. Hence, the control of cell proliferation
gives rise to differences in the parameters of these
models. Since the number of contributions discussing
such cell-cycle models is extremely large, we suggest
to interested researchers the review papers by Swan
[15], Rubinow [13], Eisen [6], White [24], Cooper
[5] and Arino [1], and strictly for deterministic mod-
els the work by Webb [23], Tucker & Zimmerman
[19], and Arino & Kimmel [2]. These mathematical
models for cell population studies overlap with other
types of mathematical modeling such as branching
models, compartmental models, Markov processes,
discrete models, and fluid flow models. Although they
fall under different subcategories, they all incorporate
the same basic physical principle: mass balancing.
Related models are used in other biological studies,
such as tumor growth, cell population analysis of
tissues (e.g. regeneration of epithelial cells after irra-
diation), and hematopoiesis.

Cell-Cycle Analysis (Measurement of DNA
Content)

While the original cell-cycle models owe their gene-
sis to the FLM experiment, a second class of models
has been developed based on the recognition that
DNA content can be used to identify the position of
cells within the cell cycle ranging from diploid DNA
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content in G1, increasing throughout the S-phase, and
being at twice diploid in G2 + M preparatory to divi-
sion. The development of appropriate DNA stains
and equipment such as flow cytometers has made it
possible to characterize populations of cells rapidly
on the basis of differing subpopulations and to infer
changes in the total population on the basis of the
changes in the fractions of cells within each cell-
cycle phase. While it is possible to define different
DNA amounts and, hence, differing amounts of pro-
gression within the S-phase, in both G1 and G2 + M,
cells appear indistinguishable on the basis of DNA
content, so that finer structures of cell-cycle progres-
sion are obscured. Because a histogram of the DNA
distribution of a population of cells typically appears
with all G1 cells appearing in a single region and
G2 + M cells appearing in a second region with cells
in the S-phase at all points in between, a wide variety
of procedures have arisen for deconvolving the total
distribution into separate parts to obtain estimates of
the fractions of cells in each phase. A discussion of
these procedures may be found in flow cytometry
textbooks such as Shapiro [14] and Watson [22].

More recently it has become possible to measure
other markers of cell proliferation such as Ki67,
PCNA, various cyclins and markers of cell death
within populations of cells, and to refine the location
of a subpopulation within the division cycle. These
methods generally use multi-parameter measurements
leading to large data sets (e.g. 50 000 cells with six
parameters on each) and are currently under study.

While these macroscopic models are still studied,
especially for understanding bacterial growth or cell
growth in vitro, modern research has revealed con-
siderable details about the intracellular kinetics of
the biochemical events that drive a cell through the
cell cycle. This information, which is accumulating
rapidly, has opened a new aspect of cell-cycle mod-
eling: the development of microscopic models.

Microscopic Models

Macroscopic studies of cell populations have
demonstrated the need for further studies to elucidate
the cause of the variability in the cell-cycle time
of two daughter cells. Technological advances in
biochemistry have enabled scientists to identify the
biochemical changes within a cell, which permits
the simulation of mechanistic models. This section

gives a more detailed account of the mathematical
modeling of the microscopic view of the cell cycle.

A large body of experimental work focuses on
understanding the regulation of the cell cycle in
eukaryotes. Studies of cell-cycle progression have
led to the elucidation of a variety of proteins which
are required for appropriate entry and exit from the
S-phase (DNA synthesizing), entry and exit from
the M-phase (mitosis and cell division), cell death,
cell rest (quiescence), and permanent cell arrest (dif-
ferentiation). These proteins include cyclins, and
their associated kinases, which together form com-
plexes required for progression through the cell cycle.
The activation and deactivation of these kinases are
controlled by other proteins called activators and
inhibitors, respectively. Biochemically, phosphoryla-
tion, dephosphorylation, and proteolysis are the main
mechanisms of control of these kinases at specific
phases of the cell cycle. Mathematically, the kinet-
ics of these proteins are represented by a nonlin-
ear multivariable, first-order dynamic system. It is
assumed that the oscillatory solutions of this sys-
tem will mimic continuous cell proliferation. While
very early contributions by Hyver & Le Guyader
[8], Norel & Agur [9], and Goldbeter [7] modeled
the M-phase regulation by two to three variable
systems, Tyson [20] proposed a model for the reg-
ulation of the same phase by a six-variable system.
All these authors established necessary criteria for
obtaining stable oscillatory solutions and discussed
the bifurcational properties of reduced systems. The
papers by Thron [16], Obeyesekere et al. [11], and
Busenberg & Tang [4] discussed further mathemati-
cal aspects of these models. A very detailed model
for the same phase kinetics, which introduces a ten-
variable system, was published by Tyson & Novak
[21]. Experimental work continued to elucidate pro-
teins that regulate other phases, namely the S- and
G1-phases; models for these phases have been pro-
posed by Obeyesekere et al. [10, 12]. The kinetics
or the mechanisms necessary for a cell to enter the
S-phase (i.e. pass a restriction point) has been an
important biological question. Some of Thron’s math-
ematical models address this issue [17, 18]. While
many authors have contributed towards cell cycle
regulation, some have validated their models with
qualitative experimental results. For example, see [3]
for such a contribution.

Presently, the search for proteins affecting the cell
cycle is ongoing. Our understanding of the number
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and types of proteins that control cell-cycle regulation
is growing rapidly; however, knowledge of their
interactions and the rate constants is still sketchy.
Thus, the results of these models have been restricted
to qualitative analysis. Future cell-cycle modeling
should integrate experimental results with the models
developed to date, or, in other words, incorporate the
microscopic models into the macroscopic models via
the parameters of the latter. Our ability to do this will
result in significantly more realistic cell-cycle models.
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Censored Data

In classical statistics, the observations are frequently
assumed to include independent random variables
X1, . . . , Xn, with Xi having the density function

f θ
i (x) = αθ

i (x)Sθ
i (x),

where αθ
i (x) is the hazard function, Sθ

i (x) is the
survival function, and θ is a vector of unknown
parameters (see Survival Distributions and Their
Characteristics). Then inference on θ may be based
on the likelihood function,

L(θ) =
∏

i

f θ
i (Xi),

in the usual way. In survival analysis, however,
one can rarely avoid various kinds of incomplete
observation. The most common form of this is right-
censoring where the observations are

(X̃i , Di), i = 1, . . . , n, (1)

where Di is the indicator I {X̃i = Xi}, and X̃i =
Xi , the true survival time, if the observation of the
lifetime of i is uncensored and X̃i = Ui , the time
of right-censoring, otherwise. Thus, Di = 1 indicates
an uncensored observation, Di = 0 corresponds to a
right-censored observation. Other kinds of incomplete
observation will be discussed below.

Survival analysis, then, deals with ways in which
inference on θ may be performed based on the cen-
sored sample (1). We would like to use the function

Lc(θ) =
∏

i

αθ
i (X̃i )

Di Sθ
i (X̃i )

=
∏

i

f θ
i (X̃i)

Di Sθ
i (X̃i)

1−Di (2)

for inference, but there are two basic problems:

1. The presence of censoring may alter the hazard
function of the lifetime Xi , i.e. the conditional
distribution of Xi , given that i is alive at t (Xi ≥
t) and uncensored at t (Ui ≥ t), may be different
from what it was in the uncensored case, i.e. just
given Xi ≥ t (dependent censoring).

2. The observed right-censoring times, Ui , may
contain information on θ (informative censoring).

An example of a dependent censoring scheme
would be if, in a clinical trial with survival times
as the outcome variables, one removed patients from
the study while still alive and when they appeared
to be particularly ill (or particularly well), so that
patients remaining at risk are not representative of
the group that would have been observed in the
absence of censoring. In other words, dependent
censoring represents a dynamic version of what in
an epidemiologic context would be termed a selec-
tion bias. An example is provided below (Example
1). Mathematical formulations of independent cen-
soring (conditions on the joint distribution of Xi

and Ui) may be given, and it may be shown that
several frequently used models for the generation
of the times of right-censoring satisfy these con-
ditions. The difficulty in a given practical context
lies in the fact that the conditions may be impos-
sible to verify, since they refer to quite hypothetical
situations.

The second concept mentioned, noninformative
censoring, is simpler and relates to the fact that
if censoring is informative, then a more efficient
inference on θ may be obtained than the one based
on (2); see below.

Independent Censoring

The general definition of independent censoring given
by Andersen et al. [2], Section III.2.2 for multivariate
counting processes has the following interpretation
for the special case of survival analysis with time-
fixed covariates. The basic (uncensored) model is
that conditional on covariates Z = (Z1, . . . , Zn) the
lifetimes X1, . . . , Xn are independent, Xi having the
hazard function

αθ
i (t |Zi ) ≈ P θφ(Xi ∈ I dt |Xi ≥ t, Z)/ dt. (3)

Here, I dt is the interval [t, t + dt) and P θφ is the
joint distribution of X1, . . . , Xn, Z and the censoring
times. Note that the hazard function only depends
on θ , i.e. φ is a nuisance parameter. Because of the
conditional independence of Xi it follows that

P θφ(Xi ∈ I dt |Ft−) ≈ αθ
i (t |Zi )I {Xi ≥ t} dt,

where the history Ft− contains Z and all information
on X1, . . . , Xn from the interval [0, t), i.e. values of
Xi for i with Xi < t and the information that Xj ≥ t
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for j with Xj ≥ t . Let there now be given right-
censoring times U1, . . . , Un and define the enlarged
history Gt as the one containing Ft and all infor-
mation on U1, . . . , Un from the interval [0, t], i.e.
values of Ui ≤ t and the information that Uj ≥ t for
those j where Uj ≥ t . The condition for independent
censoring is then that

P θφ(Xi ∈ I dt |Ft−) = P θφ(Xi ∈ I dt |Gt−). (4)

It follows that simple type I censoring, where all
Ui are equal to a fixed time, u0, and simple type II
censoring, where all Ui are equal to the kth smallest
lifetime X(k) for some k between 1 and n, are both
independent, since the right-censoring times in these
cases give rise to no extra randomness in the model;
that is, Ft = Gt .

In some models, U1, . . . , Un are assumed to be
independent given Z and Z1, . . . , Zn are independent
identically distributed (iid). Then the assumption (4)
reduces to

αθ
i (t |Zi ) ≈ P θφ(Xi ∈ I dt |Xi ≥ t, Ui ≥ t, Z)/ dt

(5)

and it is fulfilled, e.g. if Ui and Xi are independent
given Zi . This is, for instance, the case in the simple
random censorship model where U1, . . . , Un are iid

and independent of X1, . . . , Xn.
Some authors take the condition (5) (which is less

restrictive than (4)) as the definition of independent
censoring; see, for example, [6], p. 128. However,
(4) may be generalized to other models based on
counting processes and both (4) and (5) cover the
most frequently used mathematical models for the
right-censoring mechanisms. These include both the
models already mentioned, i.e. simple type I, type II
and random censorship and various generalizations
of these (e.g. progressive type I censorship (cf.
Example 2, below), general random censorship,
and randomized progressive type II censorship; see,
[2, Section III.2.2]). Earlier contributions to the
definition and discussion of independent censoring
are the monographs by Kalbfleisch & Prentice [13],
p. 120 and Gill [7], Theorem 3.1.1 and the papers
by Cox [5], Williams & Lagakos [16], Kalbfleisch
& MacKay [12] and Arjas & Haara [3], all of
whom give definitions that are close or equivalent
to (5). Another condition for independent censoring,
stronger than (5) but different from (4), is discussed
by Jacobsen [11].

From (4) and (5) it is seen that censoring is
allowed to depend on covariates as long as these
are included in the model for the hazard function
of the lifetime distribution in (3). Thus, an example
of a dependent censoring scheme is one where the
distribution of Ui depends on some covariates that are
not included there. This is illustrated in the following
example.

Example 1: Censoring Depending on Covariates

Suppose that iid binary covariates, Z1, . . . , Zn, have

P θφ(Zi = 1) = 1 − P θφ(Zi = 0) = φ,

and that X1, . . . , Xn are iid with survival function
S(t). The Kaplan–Meier estimator Ŝ(t) based on
the Xi then provides a consistent estimate of θ =
S(·), the marginal distribution of Xi . This may be
written as

S(t) = φS1(t) + (1 − φ)S0(t),

where Sj (t), for j = 0, 1, is the conditional distribu-
tion given Zi = j . Note that these may be different,
e.g. S1(t) < S0(t) if individuals with Zi = 1 are at
higher risk than those with Zi = 0. Define now the
right-censoring times Ui by

Ui = u0, if Zi = 1, Ui = +∞, if Zi = 0.

Then, for t < u0 the Kaplan–Meier estimator will
still consistently estimate S(t), while for t > u0,
Ŝ(t)/Ŝ(u0) will estimate S0(t)/S0(u0). If, however,
the covariate is included in the model for the distri-
bution of Xi , i.e. θ = [S0(·), S1(·)], then Ŝj (t), the
Kaplan–Meier estimator based on individuals with
Zi = j, j = 0, 1, will consistently estimate the cor-
responding Sj (t), also based on the right-censored
sample (though, of course, no information will be
provided about S1(t) for t > u0).

It is seen that censoring is allowed to depend on
the past and on external (in the sense of conditionally
independent) random variation. This means that if,
in a lifetime study, sex and age are included as
covariates, then a right-censoring scheme, where, say,
every year, one out of the two oldest women still alive
and uncensored is randomly (e.g. by flipping a coin)
chosen to be censored, is independent. However,
a right-censoring scheme depending on the future
is dependent. This is illustrated in the following
example.
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Example 2: Censoring Depending on the Future

Suppose that, in a clinical trial, patients are accrued
at calendar times T1, . . . , Tn and that they have iid
lifetimes X1, . . . , Xn (since entry) independent of the
entry times. The study is terminated at calendar time
t0 and the entry times are included in the observed
history, i.e. Zi = Ti in the above notation. If, at t0, all
patients are traced and those still alive are censored
(at times Ui = t0 − Ti) and, for those who have died,
their respective lifetimes, Xi , are recorded, then this
right-censoring is independent (being deterministic,
given the entry times, so-called progressive type I
censoring).

Consider now, instead, the situation where patients
are only seen, for instance, every year, i.e. at times
Ti + 1, . . . , Ti + ki ≤ t0 and suppose that if a patient
does not show up at a scheduled follow-up time,
then this is because he or she has died since last
follow-up and the survival time is obtained. Suppose,
further, that for the patients who are alive at the
time, Ti + ki , of their last scheduled follow-up, and
who die before time t0, there is a certain probability,
φ, of obtaining information on the failure, whereas
for those who survive past t0 nothing new is learnt.
If these extra survival times are included in the
analysis and if everyone else is censored at ki ,
then the right-censoring scheme is dependent. This
is because the fact that patient i is censored at ki

tells the investigator that this patient is likely not
to die before t0 and the right-censoring, therefore,
depends on the future. To be precise, if the average
probability of surviving past t0, given survival until
the last scheduled follow-up time is 1 − π , then the
probability of surviving past t0, given censoring at
the time of the last scheduled follow-up, is (1 −
π)/[π(1 − φ) + 1 − π], which is 1 if φ = 1, 1 − π

if φ = 0, and between 1 − π and 1, otherwise.
If, alternatively, everyone still alive at time Ti +

ki were censored at ki , then the censoring would
be independent (again being deterministic given the
entry times).

Another censoring scheme that may depend on the
future relative to “time on study”, but not relative to
calendar time, occurs in connection with testing with
replacement, see, for example, [8].

Let us finally in this section discuss the relation
between independent right-censoring and competing
risks. A competing risks model with two causes
of failure, d and c, is an inhomogeneous Markov

process W(·) with a transient state 0 (“alive”), two
absorbing states d and c and two cause-specific
hazard functions α0d(t) and α0c(t), e.g. Andersen
et al. [1]. This generates two random variables:

X = inf[t : W(t) = d]

and
U = inf[t : W(t) = c],

which are incompletely observed since the observa-
tions consist of the transition time X̃ = X ∧ U and
the state W(X̃) = d or c reached at that time. The
elusive concept of “independent competing risks”
(e.g. [13, Section 7.2]) now states that in a popu-
lation where the risk c is not operating, the hazard
function for d is still given by α0d(t). This con-
dition is seen to be equivalent to censoring by U

being independent. However, since the population
where a given cause of failure is eliminated is usu-
ally completely hypothetical in a biological context,
this formal equivalence between the two concepts is
of little help in a practical situation and, as is well
known from the competing risks literature (e.g. [4,
15], and [13, Chapter 7]), statistical independence of
the random variables X and U cannot be tested from
the incomplete observations [X̃, W(X̃)]. What can be
said about the inference on the parameter θ = α0d(·)
based on these data is that consistent estimation of
θ may be obtained by formally treating failures from
cause c as right-censorings, but that this parameter
has no interpretation as the d failure rate one would
have had in the hypothetical situation where the cause
c did not operate.

For the concept of independent censoring to make
sense, the “uncensored experiment” described in
the beginning of this section should, therefore, be
meaningful.

Likelihoods: Noninformative Censoring

The right-censored data will usually consist of

(X̃i, Di, Zi ; i = 1, . . . , n)

and, under independent censoring, the likelihood can
then be written using product-integral notation

L(θ,φ)=P θφ(Z)
∏

i

∏

t>0

αθ
i (t)

Di(dt)[1−αθ
i (t)dt]1−Di(dt)

× γ
θφ

i (t)Ci ( dt)[1 − γ
θφ

i (t) dt]1−Ci( dt). (6)
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Here, Di( dt) = I {Xi ∈ I dt }, Ci( dt) = I {Ui ∈ I dt },
and αθ

i (t) and γ
θφ

i (t) are the conditional hazards of
failure and censoring, respectively, given the past up
until t- (including covariates). The likelihood (6) may
be written as

L(θ, φ) = Lc(θ)L∗(θ, φ),

with Lc(θ) given by (2) and where the contribu-
tions from censoring and covariates are collected in
L∗(θ, φ). Thus, the function (2), which is usually
taken as the standard censored data likelihood, is,
under independent censoring, a partial likelihood
on which a valid inference on θ may be based. It
is only the full likelihood for θ if L∗(θ, φ) does
not depend on θ , which is the case if censoring
(and covariates) are noninformative. Thus, noninfor-
mative censoring is a statistical concept (while the
concept of independent censoring is probabilistic)
and means that the conditional hazard of censoring
γ

θφ

i (t) does, in fact, not depend on θ , the parameter
of interest.

An example of an informative right-censoring
scheme could be in a study with two competing
causes of failure and where only one of the two
cause-specific failure rates is of interest; if the two
cause-specific failure rates are proportional (as in the
so-called Koziol–Green model for random censoring,
[14]), then the failures from the second cause (the
censorings) will carry information on the shape of
the hazard function for the failure type of interest.
It is, however, important to notice that even if the
censoring is informative, then inference based on (2)
will still be valid (though not fully efficient) and as it
is usually preferable to make as few assumptions as
possible about the distribution of the right-censoring
times, the (partial) likelihood (2) is often the proper
function to use for inference.

Other Kinds of Incomplete Observation

When observation of a survival time, X, is right-
censored, then the value of X is only known to belong
to an interval of the form [U, +∞). This is by far the
most important kind of censoring for survival data,
but not the only one. Thus, the observation of X is
interval-censored if the value of X is only known
to belong to an interval [U, V ) and it is said to be
left-censored if U = 0.

It was seen above that under independent right-
censoring a right-censored observation, Ui , con-
tributed to the partial likelihood function with a factor
Sθ(Ui), which was also the contribution to the full
likelihood under noninformative censoring. Similarly,
concepts of independent and noninformative interval-
censoring may be defined as leading to a contribution
of Sθ(Ui)–Sθ(Vi) to, respectively, the partial and the
full likelihood. These concepts have received rela-
tively little attention in the literature; however, this
way of viewing censoring is closely related to the
concept of coarsening at random.

Formally, grouped data, where for each individ-
ual the lifetime is known only to belong to one of a
fixed set of intervals [uk−1, uk) with 0 = u0 < u1 <

· · · < um = +∞, are also interval-censored. How-
ever, the fact that the intervals are the same for
everyone simplifies the likelihood to a binomial-
type likelihood with parameters pθ

k = Sθ(uk−1) −
Sθ(uk), k = 1, . . . , m.

Let us finally remark that while, following Hald
[9; 10, p. 144], censoring occurs when we are able to
sample a complete population but individual values of
observations above (or below) a given value are not
specified, truncation corresponds to sampling from
an incomplete population, i.e. from a conditional
distribution (see Truncated Survival Times). Left-
truncated samples, where an individual is included
only if his or her lifetime exceeds some given
lower limit, also occur frequently in the analysis
of survival data, especially in epidemiologic studies
where hazard rates are often modeled as a function
of age and where individuals are followed only from
age at diagnosis of a given disease or from age at
employment in a given factory.
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Censuses

According to a United Nations Population and Hous-
ing Census manual, “The fundamental purpose of
the population census is to provide the facts essen-
tial to governmental policy-making, planning and
administration” [3]. The manual goes on to state that
“Population census results are also used in policy
development and in management of national evalu-
ation for programmes in such fields as . . . maternal
and child health, . . . and welfare.” Thus, the content
of population censuses is designed primarily to serve
official administrative functions of government, such
as taxation, political representation, conscription, and
revenue and resource allocation. While censuses may
also provide invaluable information for planning and
evaluation of social, health, and welfare programs,
and description and monitoring of population com-
position and trends, crucial both to practical problem
solving and for pure research, these applications are
of secondary priority in determining census content.

To meet its basic objectives, national population
censuses contain a “minimum data set” of demo-
graphic variables, which invariably includes age, sex,
marital status, and geographic residence. While spe-
cific content varies widely from country to coun-
try, most national population censuses also include
data on socioeconomic status, education, occupation,
industry, economic activity, housing conditions, and,
less frequently, health and/or disability status. Cen-
suses in some countries may also include “cultural
status” measures – for example, race, ethnicity, reli-
gion, language, or national origin.

The principal use of population censuses in epi-
demiologic research is in the construction of mea-
sures of risk. Risk is one of the most basic concepts
in the study of epidemiology and is central to the
study of the distribution, incidence, prevalence (see
Descriptive Epidemiology), or transmission of dis-
ease, adverse health conditions, or outcomes. The
risks of becoming ill, being injured, disabled, or of
dying are typical examples. Formally, risk is defined
as the probability that an event will occur within
a specified period of time, as measured either by
the calendar or by biological age [2]. Mathemati-
cally, risk is calculated as the number of events,
or outcomes, occurring in the specified time period
divided by the number of persons at risk at the begin-
ning of that period. A widely used proxy measure

of risk relates the same events to the number of
person-years at risk among the risk group during
the specified time interval. A typical example is the
age-specific mortality rate, defined as the ratio of
deaths to a specified age group in a specified time
period, to the midyear population of that age. In
turn, a midyear population of the time interval in
question has been shown to be a rather accurate esti-
mate of the person-years lived in the interval (see
Vital Statistics, Overview). Various models have
been developed by statisticians and demographers to
link directly the true probability rate (risk) to the mor-
tality rate. The approach is also applied to other health
outcomes or status changes.

Not all members of a population are equally
exposed to or are susceptible to disease, accident,
death, or other changes in health status. To understand
the epidemiology of adverse health conditions, or out-
comes, or to design effective and efficient public
health intervention programs, it is useful to iden-
tify and focus on those subsets of the population at
elevated risk. For example, to study maternal mor-
tality, the risk group (denominator) would not be the
population at large, but would be narrowed to females
of child-bearing age. Similarly, the study of prostate
cancer mortality or morbidity would use males at
middle and old age, perhaps separated into five-year
age groups as the denominator in calculating risk.
Studies of morbidity and mortality risk due to natu-
ral disasters – earthquakes, hurricanes, etc. – would
limit the risk group to geographic localities in which
such events are most likely to occur.

Data for risk numerators, i.e. the events,
health outcomes, or health status changes, may
be obtained from vital statistics (birth and death
records), from special disease registers (cancer
and congenital malformation registries), surveillance
reports (notifications of “reportable diseases”), or
from special surveys (national health surveys) (see
Surveys, Health and Morbidity). In epidemiologic
studies of national populations (as opposed to clinical
studies), population censuses are most often the
source of data for risk denominators.

As valuable as these variables from population
censuses may be in differentiating risk categories
in the population, decennial censuses by themselves
are of limited value due to the relatively long
intercensal periods. That is, any one census provides
risk denominator data only every 10 years (or five
years, as the case may be). Typically, censuses are
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conducted every 10 years in years ending in “0”,
although nations of the British Commonwealth and
some former colonies conduct their censuses in years
ending in “1”. Also, a small number of countries
conduct their censuses every five years. Four methods
have been developed to provide data between two
adjacent censuses (already completed) or from the
last census and until the next census results become
available.

The first approach, to provide information between
two completed censuses, involves some form of
interpolation. In its simplest form the size of var-
ious population aggregates in intercensal years are
assumed to change linearly between censuses, and
annual estimates are calculated accordingly. More
sophisticated patterns of change (logarithmic, for
example) may be used in lieu of the linear assump-
tion. However sophisticated the assumption of the
pattern of intercensal change in the population risk
groups, a serious limitation of this approach is that
it cannot replicate irregular patterns, such as those
occasioned by abrupt changes in natality or mortal-
ity patterns, in migration, or results of some sudden
economic changes. Another limitation of interpola-
tion methods is that estimates of the subpopulations
generally do not add up to the totals in the overall
population.

A second approach utilizing vital statistics, which
are events recorded on an ongoing basis, may be
used to refine intercensal interpolations and post-
censal extrapolations, at least as far as irregular pat-
terns of natality, mortality, or marriage and divorce
are concerned. While vital statistics are useful in
refining the denominator information, they cannot
account for irregular population shifts due to chang-
ing migration patterns, or to social and economic
conditions affecting the characteristics of the popu-
lation.

Because of these limitations in the interpola-
tion and extrapolation methods, some countries have
instituted annual “mini” censuses – annual probabil-
ity sample surveys of the total population. These
surveys typically include basic demographic variables
and a limited collection of socioeconomic variables.
The “Current Population Survey” in the US is one
such example [4].

An alternative to the intercensal sample popu-
lation surveys is to use information from national
population registers, such as those in use in Scan-
dinavia, Japan, and elsewhere. These registers are, in

fact, dynamic censuses in which changes in vitality,
marital status, residence, and socioeconomic condi-
tion are recorded as they occur to each individ-
ual in the population. In practice, however, there
are relatively few such systems of sufficient qual-
ity to warrant widespread use for epidemiologic
research.

Population censuses provide an extremely impor-
tant source of information identifying risk groups
in a general population. While they may con-
tain limited, or even no, specific health informa-
tion, the basic demographic variables they do con-
tain can be used very effectively to differentiate
levels of risk. Age, sex, marital status, socioeco-
nomic level, and place of residence are obvious
examples generally strongly associated with risk
levels. Census population data cross-classified by
these variables provide direct estimates of the risk
denominators, either the person-years lived or the
bases for reconstructing the population initially at
risk.

Other applications of censuses for epidemiologic
research include censuses of housing and the prepa-
ration of special linkage studies. In many countries,
a census of housing is conducted in conjunction with
the census of population. This provides the oppor-
tunity to use housing, residential neighborhood, and
related information to focus more precisely on popu-
lations at elevated health risks due to their living con-
ditions and/or locations. The other approach is to link
vital events, or other health-related events obtained
from registers or special surveys, directly to indi-
viduals or households enumerated in the population
census. While this approach may provide a particu-
larly rich source of data for detailed epidemiologic
study, it is expensive to carry out, technically diffi-
cult to accomplish in a rigorous and accurate manner,
and may conflict with laws concerning privacy and
confidentiality of personal information. Perhaps the
classic example of this technique is the British link-
age study utilizing the 1961 census [1] (see Record
Linkage).

Thus, the population census is an invaluable tool
for epidemiologists and biostatisticians. In spite of
limitations in the coverage of variables, periodic-
ity, and other problems cited above, census data are
almost universally available and are easily adapted
to identify a large number of highly differentiated
population subgroups at elevated exposure and sus-
ceptibility to disease, injury, or death.
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Centers for Disease
Control and Prevention
(CDC)

The Centers for Disease Control and Prevention
(CDC) celebrated its 50th anniversary on July 1,
1996. The CDC evolved from a small mosquito-
eradication effort in World War II to being the USA’s
primary agency in the promotion of health and the
prevention of disease. This agency, the Malaria Con-
trol in War Areas (MCWA), was established in 1942
and was a national effort to keep military bases and
essential war industry-related establishments in the
southern US free from malaria. In 1946, MCWA
became the Communicable Disease Center and was
the agency of the US Public Health Service that
directed efforts to prevent diseases such as malaria,
polio, smallpox, toxic shock syndrome, Legionnaires’
disease, and more recently, AIDS, Ebola virus, Han-
tavirus, monkeypox, and SARS. In the early days
most efforts focused on prevention and control of
unnecessary morbidity and mortality from infec-
tious diseases of public health importance. Over the
years these responsibilities have expanded to include
contemporary threats to health, such as lead-paint
poisoning, environmental and occupational hazards
(e.g. pesticides, chemical warfare agents or hazards
in the workplace), (see Environmental Epidemiol-
ogy; Occupational Epidemiology); behavioral risks
(smoking); the prevention of chronic diseases and
injuries; and the promotion of healthy behavior, pre-
natal care, immunizations, and upgrading state and
local public health agencies’ readiness to infectious
disease outbreaks and bioterrorism threats [41, 43].
As it expanded its responsibilities it has also changed
its name. In 1967 it became the National Communi-
cable Disease Center; in 1970, the Center for Disease
Control; in 1980, the Centers of Disease Control; and
in 1993, the Centers for Disease Control and Pre-
vention. In 2003, CDC’s sister agency, The Agency
for Toxic Substances and Disease Registry (ATSDR)
and CDC’s National Center for Environmental Health
merged and CDC’s environmental health activities
include ATSDR [41].

Today the CDC’s mission is to promote health and
quality of life by preventing and controlling disease,
injury, and disability [40, 41, 43]. To accomplish this
mission the CDC works with others throughout the

US and world to monitor health; detect and inves-
tigate health problems; conduct research to enhance
disease prevention; develop and advocate sound pub-
lic health policies; implement prevention strategies;
promote healthy behaviors; foster safe and healthy
environments; and provide leadership and training.
The CDC works in partnership with other agencies
within the Department of Health and Human Ser-
vices and other agencies in the US government, with
state and local health departments, academic institu-
tions, professional, voluntary, and community orga-
nizations, philanthropic foundations, school systems,
churches, and other local institutions, industry, and
labor [8, 40, 41]. In 2003, it had an annual budget
of seven billion dollars and 9400 employees in 170
occupations and more that 5000 contractors in many
locations, including field stations, states, and coun-
tries [41]. While the line between the responsibilities
of the CDC and the National Institutes of Health
(NIH) is not clearly defined, it was initially agreed
that the NIH would focus more on basic research and
the CDC would help the states recognize and control
communicable diseases.

Statisticians have played an important role at
the CDC. In the 1950s there were two groups of
statisticians at the CDC, one in the Epidemiology
Branch and the other in the Venereal Disease Branch.
Later, in 1960, a third group in the Tuberculosis
Branch located in Washington, D.C, moved to Atlanta
[30]. Robert Serfling and Ida Sherman developed
and used morbidity and mortality systems to mon-
itor disease trends and to estimate excess mortality
in influenza epidemics [30, 38]. These systems, and
many other surveillance systems, have been devel-
oped and are being used to monitor diseases, behav-
ioral risk factors, and traumatic occupational fatalities
(see Surveillance of Diseases). Serfling and oth-
ers modified and used quota sampling methods to
study the distributions of polio cases [36, 37]. These
studies showed that the highest proportion of para-
lytic cases were concentrated among young children
living in depressed conditions. In some cities the cen-
tral sections of cities with large, overcrowded black
populations had the most cases. In some cases the
populations were mostly white but the paralytic cases
were concentrated among very poor young children.
Based on these results of the surveys it was clear that
the low levels of vaccination were a problem, provid-
ing the necessary justification and stimulus to pursue
a much needed and vigorous vaccination program.
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In the area of Venereal Diseases, Lida Usilton
established a mechanical system for surveillance of
venereal disease cases, their treatment progress, and
follow-up and treatment of contacts [41]. Life table
methodology was used to evaluate rapid antisyphilitic
therapy and work was done to evaluate the effective-
ness of syphilis contact investigations [19]. By the
1970s, mathematical modeling (see Model, Choice
of), vaccine (see Vaccine Studies) and other clinical
trials, program evaluations, cost–effectiveness and
cost–benefit analyses (see Health Economics) and
time series models were carried out in the Divisions
of Sexually Transmitted Diseases and Tuberculosis
[15, 22, 27, 29, 31–33]. Evaluations were done to
compare the effectiveness of different gonorrhea con-
trol strategies. In the area of hospital-acquired infec-
tions, statisticians played a major role. The Study
on the Efficacy of Nosocomial Infection Control
(SENIC), a nationwide study of the effectiveness of
programs to control hospital-acquired infections, was
a large and sophisticated medical survey [14–17,
27, 28, 44]. Agent Orange and injury control were
other areas where statisticians have worked to iden-
tify high-risk groups [3–7, 9, 23, 25]. Statisticians
have played a major role in AIDS and sexually trans-
mitted diseases (STDs) research [12, 13, 18, 20, 23,
24, 34]. In surveillance of diseases and in trend anal-
ysis, statisticians have made continuing contributions
[2, 21, 26, 35, 39, 45]. In the Agency for Toxic
Substances and Disease Registry, a National Expo-
sure Registry (a listing of persons with documented
environmental exposures) has been established [1, 10,
11] (see Disease Registers). The rate of reporting of
adverse health outcomes in this registry is compared
with national norms to assess impact of exposure.

The CDC now has statistics branches (or statisti-
cians) in most areas of disease control and prevention
working in the areas of environmental exposure and
health, occupational safety and health, cancer, heart
disease, sexually transmitted diseases, AIDS, tuber-
culosis, diabetes, hospital infections, birth defects,
reproductive health, infectious diseases, bacterial and
mycotic diseases, hospital infections, environmental
exposures and hazards, immunizations, injury, genet-
ics, prevention research, and so on. The statistical
techniques used to analyze such data are varied, for
example, multivariate analysis, sequential analysis,
categorical data analysis, stochastic processes, sur-
vival analysis, time series analysis, generalized lin-
ear models, decision analysis, sample surveys, and

estimation of sensitivity and specificity of screening
and diagnostic tests.

Perhaps the biggest stimulus to increased use of
data in monitoring morbidity, mortality, risk factors,
costs of health care, quality of life, and other sta-
tistical information to guide policies to improve the
health of the American people was when the National
Center for Health Statistics (NCHS) became a part
of the CDC in 1987. The NCHS is the principal health
statistics agency of the US.

The CDC has developed and recommended many
prevention and intervention strategies. Evaluation of
the efficacy of these public health programs is essen-
tial before implementing prevention or intervention
strategies on a broad basis. It is almost always more
difficult to assess the long-term health effects of envi-
ronmental and occupational hazards, or to determine
the long-term effects of smoking (see Smoking and
Health), lack of exercise, stress, or workplace haz-
ards (often requiring years of study), than to design
and implement programs testing drug or vaccine
effectiveness. The demonstration of the efficacy of
these prevention or intervention strategies is complex
and often confounded by many uncontrollable, exter-
nal factors, but this demonstration is essential before
implementing them on a broad basis.

There are usually two levels of evaluation which
require different study designs and analyses. The first
level addresses control or prevention of disease in
individuals, while the second concerns prevention or
control in the general population. At the first level we
may need a clinical trial to determine the efficacy of
a drug, vaccine, or other intervention at the individual
level. The second level is to show that we can control
or prevent disease, alcohol and other drug misuse, or
other risk behavior in a community.

This second stage of evaluation is both more
complex and costly. It requires:

1. attention to sampling methodology and the possi-
ble biases introduced by the method of sampling,
e.g. telephone sampling;

2. attention to the evaluation of diagnostic pro-
cedures and tests, i.e. that the tests are both
sensitive and specific and that the evaluations
are properly evaluated in different subgroups of
the population;

3. that the intervention does not affect the surveil-
lance system artifactually;
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4. assurance that the surveillance system is impar-
tial and unbiased in reaching different subgroups
of the population;

5. knowledge of those intervention or prevention
strategies appropriate for different subgroups at
risk;

6. surveillance measures culturally appropriate to
the subgroups of the population at risk;

7. that the community that receives the intervention
must trust those who deliver the intervention; and

8. that the community must be involved in all
phases of the intervention/prevention effort.

These phases include needs assessments of the
community, setting objectives, developing, planning
and implementing the intervention, including decid-
ing what and how questions are asked (see Ques-
tionnaire Design) collecting and managing data (see
Data Management and Coordination), and analysis
and interpretation of results.

Thus, the different areas of disease control and
prevention have provided statisticians with many
opportunities for innovative statistical application and
development to many different public health pro-
grams at CDC. For more information about CDC,
visit the Web site [43].
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Central Limit Theory

Central limit theory asserts that the sum of a large
number of none too large independent random vari-
ables is approximately normally distributed (see
Large-sample Theory). Results such as these are
important to statistical theory, because they provide
general conditions under which the distribution of
a mean is well approximated by the normal dis-
tribution. Central limit theory allows us to use the
normal distribution in creating confidence intervals,
hypothesis testing, and in many other statistical
procedures.

The most basic central limit theorem (CLT) is
for sums of independent, identically distributed (iid)
random variables. See [2] and [5] for a general
introduction to central limit theory.

IID CLT

Suppose X1, . . . , Xn are iid random variables with
finite mean µ and finite, nonzero variance σ 2. Then
for Sn = X1 + · · · + Xn, the rescaled and centered
sum,

Sn − nµ

n1/2σ
, (1)

converges in distribution to the normal law as n

increases. That is, for all t ,

Pr

[
Sn − nµ

n1/2σ ≤ t

]
→ Φ(t), (2)

where Φ is the cumulative distribution function for
the standard normal.

There are many statistical applications that build
on this CLT, but which are not themselves sums of
iid random variables. These include rank statistics,
U-statistics, and M-estimators (see Robustness). We
present three examples here.

The Sample Median

Suppose X1, . . . , Xn form an independent sample
from a distribution with median 0 and positive density
γ at 0. The sample median, Mn, is approximately
normally distributed for large n. That is, the series
n1/22γMn converges in distribution to the standard

normal. The sample median does not appear to be a
sum of random variables, but notice that, for odd n,

Pr(n1/2Mn ≤ t) = Pr[at least (n + 1)/2 observations

are ≤ t/n1/2], (3)

and the problem reduces to one involving conver-
gence in distribution of a sequence of binomials,
which are sums of iid random variables.

The Sample Variance

In this example, let X1, . . . , Xn be iid with mean µ,
finite variance σ 2 and finite fourth central moment
µ4. The sample variance,

s2
n = (n − 1)−1

∑
(Xi − X)2, (4)

is a U -statistic with kernel of degree 2. This can be
more easily seen by rewriting s2

n as follows:

1

n(n − 1)

∑

1≤i �=j≤n

1
2 (Xi − Xj)

2. (5)

Using the Hoeffding decomposition, s2
n can be written

as n−1 ∑
(Xi − µ)2 plus negligible terms, and it can

be shown that n1/2(s2
n − σ 2) is normally distributed,

in the limit, with mean 0 and variance µ4 − σ 4.

Maximum Likelihood Estimator

Again we take X1, . . . , Xn to be iid. Now we assume
that the distribution of the Xs has density f (x, θ0),
where f (x, θ0) belongs to a k-parameter exponential
family, i.e. for θ ∈ � ⊂ Rk ,

f (x, θ) = exp[θ ′T(x) − B(θ)]. (6)

The maximum likelihood estimator θ̂n of θ0 is that
θ which maximizes the log likelihood,

1

n

∑
θ ′T(Xi) − B(θ). (7)

A multivariate CLT for the iid sum of the T(Xi) leads
us to a central limit theorem for θ̂n. Under suitable
conditions [4], n1/2(θ̂n − θ0) converges in distribution
to a multivariate normal with variance–covariance
matrix {var[T(X)]}−1.

Multivariate central limit theory for sums of iid
random vectors follows from the CLT for iid random
variables. Convergence in distribution of a sequence
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of random variables is equivalent to pointwise con-
vergence of the corresponding characteristic func-
tions, providing the limit is continuous at the origin
[2]. Characteristic functions are especially useful in
establishing CLTs for sums of independent random
variables because of their multiplicative properties.
From this approach, we can show that convergence
in the distribution of random vectors is equivalent to
convergence in the distribution of all linear functions
of the random vectors.

Multivariate CLT

If X1, . . . , Xn are iid random vectors in Rk with mean
0 and variance–covariance matrix V, then n−1/2/Sn

converges in distribution to the multivariate normal
with mean 0 and variance–covariance matrix V.

History

A. De Moivre proved the first central limit theorem
in 1733 [10]. It covers the classic example of
counting the number of successes in a large number
of independent Bernoulli trials (see Binary Data),
each with probability p. Basically it says that, as
the number of trials increases, the distribution of the
number of successes, when properly standardized,
approximately follows the normal distribution. P.S.
Laplace established similar results in 1812 [18].
More formally, the De Moivre–Laplace central limit
theorem is for a sequence of n independent Bernoulli
trials that are 1 with probability p and 0 with
probability q = 1 − p. The sum of the trials, Sn,
follows the binomial distribution with parameters n

and p. As n grows, the distribution of the sum
approaches the normal distribution. By this we mean
that, for large n, the chance that Sn is at most k is
well approximated by the normal probability,

Φ[(npq)−1/2(k + 1
2 − np)]. (8)

De Moivre–Laplace CLT

For βn and αn such that (βn − np)3/n2 → 0 and
(αn − np)3/n2 → 0, as n → ∞,

Pr(αn ≤ Sn ≤ βn) ∼ Φ[(npq)−1/2(βn + 1
2 − np)]

− Φ[(npq)−1/2(αn + 1
2 − np)], (9)

where ∼ denotes asymptotic equivalence.

See [7] for a proof of this central limit theorem.
In the second half of the nineteenth century,

P.L. Chebyshev developed limit theorems for sums
of arbitrarily distributed random variables. His
results are based on the method of moments.
Liapounoff, in 1900 and 1901, derived more general
central limit theorems using characteristic functions.
The most classical central limit theorem is due
to J.W. Lindeberg in 1922. Lindeberg’s result
holds for independent random variables that are
not necessarily identically distributed. We consider
the triangular array of random variables, where
for each n, Xn1, . . . , Xnk(n) is a sequence of k(n)

independent random variables with mean 0 and
variances σ 2

n1, . . . , σ 2
nk(n). If we let

b2
n =

k(n)∑

j=1

σ 2
nj , (10)

then the Lindeberg condition is

1

b2
n

k(n)∑

j=1

EX2
nj I(|Xnj | ≥ εbn) → 0,

for every ε > 0, (11)

where I(·) denotes an indicator function (see Dummy
Variables).

Provided the Lindeberg condition is met, Sn/bn

converges in distribution to the normal law. The
Lindeberg condition is almost both necessary and
sufficient. Feller showed in 1935 that if each of
the random variables in the sum is small, then the
Lindeberg condition is both necessary and sufficient.
This result is called the Lindeberg–Feller central
limit theorem.

Lindeberg–Feller CLT

The rescaled sum Sn/bn converges in distribution to
the normal law and maxj σnj /bn → 0 if and only if
the Lindeberg condition holds.

Notice that the iid central limit theorem is a special
case of the Lindeberg–Feller result. There, k(n) =
n, Xnj = (Xj − µ)/n1/2σ, bn = 1, and the Lindeberg
condition holds by dominated convergence.

There are many generalizations of the Linde-
berg–Feller result. They include bounds on the rates
of convergence, convergence in the distribution of
random functions, and convergence of sums of depen-
dent random variables. In addition, limit laws can be
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obtained for sums of random variables with infinite
variance, and limit laws other than the normal have
been studied. We briefly discuss these generalizations
here.

Rates of Convergence

One well-known result on the rate of convergence to
normality in the CLT was arrived at independently
by Berry & Esseen.

Berry–Esseen

Suppose X1, . . . , Xn are iid random variables with
mean 0, variance σ 2, and E|Xi |3 = ρ < ∞. Let Sn =
X1 + · · · + Xn. Then, for all n and t ,

| Pr(Sn < tn1/2σ) − Φ(t)| ≤ 3ρσ−3

√
n

. (12)

For other rate results see Petrov [15].

Functional CLT

One of the simplest examples of a random function
arises from an iid sample X1, . . . , Xn from the uni-
form distribution on (0,1). The standardized empir-
ical cumulative distribution function,

Un(t) = n−1/2
∑

[I(Xi ≤ t) − t], for 0 ≤ t ≤ 1,

(13)

is a random function in the space D[0, 1] of all real-
valued functions that are right continuous at each
point of [0,1) with left limits existing at each point
of (0,1].

For each fixed t, Un(t) converges in distribution
to the normal law with mean 0 and variance t (1 − t).
The multivariate CLT says that, for each k-vector
(t1, . . . , tk)

′, the random vector [Un(t1), . . . , Un(tk)]′
converges in distribution to a multivariate normal
with cov[Un(ti), Un(tj )] = min(ti , tj ) − ti tj . A func-
tional CLT says that Un converges in distribution to
the Brownian Bridge. Of particular interest is the
limiting distribution of functionals of Un such as the
Kolmogorov–Smirnov statistic supt |Un(t)| and the
Cramér–Von Mises statistic

∫ 1
0 Un(t)

2dt (see Kol-
mogorov–Smirnov and Cramer–Von Mises Tests
in Survival Analysis). See [1] for functional CLTs

for these and related stochastic processes. See [8],
[12], and [16] for functional CLTs for empirical pro-
cesses on spaces of functions.

Dependence

There are many CLTs for sums of random variables
that are not independent. One example is the CLT for
martingale difference arrays [11].

Martingale CLT

Suppose Xn1, . . . , Xnn form a martingale dif-
ference array with respect to the sigma-fields
Fn0,Fn1, . . . ,Fnn. Then, provided

n∑

j=1

E(X2
nj |Fn,j−1) → σ 2 (14)

in probability, with σ 2 a positive constant, and

n∑

j=1

E[Xnj I(|Xnj | > ε)|Fn,j−1] → 0 (15)

in probability for every ε, then the sum σ−1Sn

converges in distribution to the standard normal law.
Other CLTs for martingales can be found in

[14] and [17]. CLTs for sums of dependent random
variables where the dependence satisfies a mixing
condition can be found in [6].

More General CLTs

Central limit theorems can hold under very general
conditions. The random variables need not have finite
variance. For example, take X1, . . . , Xn to be iid from
a symmetric distribution where Pr(|X1| > x) = x−2,
for x ≥ 1. Then, despite the fact that the Xis have
infinite variance, (n log n)−1/2Sn converges in distri-
bution to the standard normal. This is established by a
truncation argument, where new random variables Ynj

are created such that Ynj = Xj provided |Xnj | ≤ √
n

log log n, and Ynj = 0 otherwise. These truncated
variables have finite variances that are roughly of size
log n, and their sum differs very little from the sum
of the original random variables.

This result for random variables with infinite vari-
ance leads to the question of what conditions are
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needed for a sum of iid random variables to have
a normal limit (see Limit Theorems).

IID CLT

Suppose X1, . . . , Xn are iid random variables. In
order that there exist constants an and bn > 0 such
that (Sn − an)/bn converges in distribution to the
normal law, it is necessary and sufficient that, as
x → ∞,

x2 Pr(|X1| > x)

E
[|X1|2I(|X1| ≤ x)

] → 0. (16)

Sums of independent random variables can have
limit laws other than the normal. For example, the
sum of iid Cauchy random variables, when properly
normalized, has a limiting Cauchy distribution. The
set of possible limit laws for sums of iid random
variables are the stable laws. See [3] and [9] for these
and other results.

Sums based on triangular arrays of random vari-
ables can also have limit laws other than the normal.
(The iid sequence is a special case of the triangular
array, as noted above.) For example, suppose the Xnj

are independent Bernoulli random variables with pro-
bability pnj , j = 1, . . . , n. If pn1 + · · · + pnn → λ

and max pnj → 0, then Sn converges in distribution
to a Poisson law with parameter λ.

In general, we consider the triangular array of
independent random variables Xn1, . . . , Xnk(n) for
k(n) → ∞. The summands are said to be uniformly
asymptotically negligible (uan) if the Xnj converge
uniformly to 0 in probability. For uan independent
summands, the family of limit laws of the sequence∑

Xnj coincides with the family of infinitely divis-
ible distributions, which includes the stable laws.
Examples of infinitely divisible distributions are the
normal, Poisson, gamma, and geometric. See [2]
and [13] for a more detailed treatment of this
material.
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Centroid Method

The centroid method is a factoring procedure in fac-
tor analysis. Before the advent of high-speed com-
puters, this was a very popular factoring method. The
initial work on the centroid method was presented by
Burt [1] in 1917 and it was fully developed by Thur-
stone [3] in 1931. The centroid method relies on the
idea that if the original variables are represented as a
set of vectors, then the common factor can be inter-
preted as a vector which passes through the centroid
of the terminal points for this set of vectors.

To compute the m centroid factors for a set of
p variables (m < p), we first calculate the correla-
tion matrix for the p variables. We denote this p × p

matrix as R and the element at the ith row and j th
column of R as rij . Next we sum the columns of
the correlation matrix, including the diagonal element
or communality estimate. If there are negative col-
umn sums, then we should reflect the negative sums
by changing their signs. We then add all the column
sums to yield a grand total. The first centroid factor
loadings are now obtained by dividing each column
sum by the square root of the grand total. In sym-
bols, the first centroid factor loading a = (a1, a2, . . . ,

ap) = (
∑

ri1/
∑ ∑

rij ,
∑

ri2/
∑∑

rij , . . . ,
∑

rip/∑∑
rij ). These factor loadings are not final until we

undo the earlier reflections that are applied to some
of the negative column sums. There are two ways we
can undo the change. One is to reverse the names of
the variables that had the signs of their sums changed
earlier and keep the loadings as they are. The alter-
native is to reflect the loadings of these variables and
retain the original names of the variables. For the
first factor loadings, we usually take the approach of
reversing the names of the variables, because keep-
ing all the loadings of this first factor positive will
facilitate the rotation step that follows and also will
simplify the subsequent interpretation of the rotated
factor.

To determine the loadings on the second factor,
we form the first residual correlation matrix. The
elements of this residual matrix are denoted by
{rij ·a} which are equal to rij − aiaj . To obtain the
second factor, b, we factor this residual matrix
using the same computational procedure as was
applied to the original correlation matrix, R. To
compute the third factor, c, we apply the same
factoring procedure on the second residual matrix
obtained from subtracting the second factor from
the first residual correlation matrix. We obtain the
elements of this second residual matrix {rij ·b} as
rij ·a − bibj . Successive application of this procedure
to the corresponding residual correlation matrix will
give the complete centroid factor matrix.

The centroid method was originally derived as
a mathematical approximation to the more difficult
principal-axes procedure when computers were not
generally available. Even though the centroid solution
yields the same complexity of variables and factors,
and also has the same variance contributions of the
factors as the principal-axes procedure, it does not
share the other important mathematical properties of
the principal-axes solution, which include uniqueness
and orthogonality. A treatment of the centroid method
in factor analysis is given in Cureton & D’Agostino
[2, Chapter 2].
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Chain Binomial Model

Let time be discrete and indexed t = 0, 1, . . .. Let St

be the number of individuals at risk for the event
of interest (e.g. infection or death) at the beginning
of time interval t , and let It be the number that
experienced the event of interest at the beginning of
time interval t . The event has a duration of at least
one time interval. We let pt = 1 − qt = f (t, θ, It ) be
the probability that an at-risk individual has a new
event at the beginning of time interval time t + 1,
with parameter θ . As shown, this probability can be
a function, f (·), of t and It . We usually start with
a closed population of n = S0 + I0 individuals. Then
It+1 is a binomial random variable that follows the
conditional probability mass function

Pr(It+1 = it+1|St = st , pt )

=
(

st

it+1

)
p

it+1
t q

st −it+1
t , st ≥ it+1. (1)

In many cases, St is updated via the relationship

St+1 = St − It+1, (2)

although other relationships are possible (see below).
The conditional expectation and variance of It+1,
respectively, are

E(It+1|st , pt ) = stpt , (3)

var(It+1|st , pt ) = stptqt . (4)

Eqs (1) and (2) form the classical chain binomial
model. Formal mathematical treatment of the model
involves formulation of the discrete, two-dimensional
Markov chain {St , It }t=0,1,.... It is the (binomial)
random variable of interest, and St is updated
using (2). The probability of a particular chain,
{i0, i1, i2, . . . , ir}, is given by the product of
conditional binomial probabilities from (1) as

Pr(I1 = i1|S0 = s0, p0) Pr(I2 = i2|S1 = s1, p1)

× · · · Pr(Ir = ir |Sr−1 = sr−1, pr−1) (5)

=
r−1∏

t=0

(
st

it+1

)
p

it+1
t q

st −it+1
t .

The conditional expected value of It+1 from (3) sug-
gests the deterministic system of first-order difference
equations

it+1 = stpt , st+1 = st − it+1, (6)

which can be analyzed as an approximation to the
mean of the sample paths of the stochastic process
{St , It }t=0,1,.... This system reduces to

st = st−1qt−1 = s0

t−1∏

l=0

q
l
, (7)

which is analyzed using methods from discrete math-
ematics (see, for example, [7] and [11]).

The Reed–Frost Model

History

The probabilistic form of the Reed–Frost epidemic
model was introduced by the biostatistician Lowell
J. Reed and the epidemiologist Wade Hampton Frost
around 1930, as a teaching tool at Johns Hopkins Uni-
versity. It was developed as a mechanical model con-
sisting of colored balls and wooden shoots. Although
Reed and Frost never published their results, the work
is described in articles and books by others (see [1,
Chapters 14 and 18] and [2, Chapters 2 and 3]). An
excellent description of the early Reed–Frost model
is given by Fine [6]. The deterministic version of the
Reed–Frost model has been traced back to the Rus-
sian epidemiologist P.D. En’ko, who used the model
to analyze epidemic data in the 1880s (see [5]). The
Reed–Frost version of the chain binomial and its
extensions is used to study the dynamics of epidemics
in small populations, such as families or day care cen-
ters, and to estimate transmission probabilities from
epidemic data.

Formulation

In this case, St is the number of susceptible persons at
the beginning of time interval t , and It is the number
of persons who were newly infected at the beginning
of time interval t . An infected person is infectious
for exactly one time interval and then is removed;
that is, becomes immune. Thus, a person infected at
the beginning of time interval t will be infectious
to others until the beginning of time interval t + 1.
We let Rt be the number of removed persons at the
beginning of time interval t , and then, by definition,

Rt+1 = Rt + It = R0 +
t∑

r=0

Ir . (8)
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Since the population is closed, we have St + It +
Rt = n for all t . We let p = 1 − q be the probability
that any two specified people make sufficient contact
in order to transmit the infection, if one is susceptible
and the other infected, during one time interval. We
note that p is a form of the secondary attack rate.
We assume random mixing. Then, if during time
interval t there are It infectives, the probability that
a susceptible will escape being infected over the
time interval is qIt , and the probability that they will
become a new case at the beginning of time interval
t + 1 is 1 − qIt . Thus qt = qIt , and substituting into
(1) yields

Pr(It+1 = it+1|St = st , It = it )

=
(

st

it+1

)
(1 − qit )it+1qit (st−it+1), st ≥ it+1. (9)

The epidemic process starts with I0 > 0, and termi-
nates at stopping time T , where

T = inf
t≥0

{t : StIt = 0}. (10)

The possible chains for a population of size 4 with
one initial infective – that is, S0 = 3, I0 = 1 – are
shown in Table 1.

The probability of no epidemic is defined as the
probability that there will be no further cases beyond
the initial cases. This probability is

Pr(I1 = 0|S0 = s0, p0) = qi0s0 . (11)

For example, if S0 = 10, I0 = 1, and p = 0.05,
then the probability of no further cases beyond
the initial case is 0.599. From (3), the conditional
expected number of new cases in time interval t

is E(It+1|st , pt ) = st (1 − qit ). On the average, the
epidemic process will not progress very far if the

Table 1 Possible individual chains when S0 = 3, I0 = 1

Chain Probability Final size

{i0, i1, i2, . . . , iT } RT

{1} q3 1
{1, 1} 3pq4 2
{1, 1, 1} 6p2q4 3
{1, 2} 3p2q3 3
{1, 1, 1, 1} 6p3q3 4
{1, 1, 2} 3p3q2 4
{1, 2, 1} 3p3q(1 + q) 4
{1, 3} p3 4

expected number of cases in the first generation is
less than or equal to one; that is, E(I1|s0, p0) =
s0(1 − qi0) ≤ 1. In many cases, i0 = 1, so that there
will be few secondary cases if s0p ≤ 1. Then, for
example, if S0 = 10, I0 = 1, there will be few sec-
ondary cases if p ≤ 0.1.

From (7), the deterministic counterpart of the
Reed–Frost model is

st = s0q

∑t−1

l=0
il , (12)

which has been thoroughly analyzed (see, for exam-
ple [7] and [11]).

In some cases, the distribution of the total number
of cases, RT , is the random variable of interest. We let
J be the random variable for the total number of cases
in addition to the initial cases, so that RT = J + I0.
If we let S0 = k and I0 = i, then the probability of
interest is

Pr(J = j |S0 = k, I0 = i) = mijk, (13)

where
∑k

j=0 mijk = 1. Then, based on probability
arguments (see, for example, [1]), we have the recur-
sive expression

mijk =
(

k

j

)
mijj q

(i+j)(k−j), j < k, (14)

and

mikk = 1 −
k−1∑

j=0

mijk. (15)

The Reed–Frost model has several extensions and
special cases. If it is hypothesized that the probability
that a susceptible becomes infected does not depend
on the number of infectives that he or she is exposed
to, then

pt =
{

p, if It > 0,

0, if It = 0.
(16)

This model is known as the Greenwood model [8].
Longini & Koopman [12] modified the Reed–

Frost model for the common case in which there
is a constant source of infection from outside the
population that does not depend on the number of
infected persons in the population. We let at = 1 − bt

be the probability that a susceptible person is infected
during interval t due to contacts with infected persons
outside the population, where

at > 0, if t ≤ T ,

at = 0, if t > T ,
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and T is a stopping time. Then pt = 1 − btq
It . If

we let B = ∏T
t=0 bt , then B is the probability that

a person escapes infection from sources outside of
the population over the entire period [0, T ]. We then
define CPI = 1 − B as the community probability of
infection. Longini & Koopman derive the probability
mass function

mijk =
(

k

j

)
mijjB

(k−j)q(i+j)(k−j), j < k. (17)

Usually, i = 0 for this model. This model reduces
to (14) when B = 1.

Another extension of the Reed–Frost model is
for infectious diseases that do not confer immunity
following infection. In this case, there is no removed
state, so that St + It = n. Then, since St+1 = n −
It+1, the model is a discrete, one-dimensional Markov
chain {It }t=0,1,.... The transition probabilities for this
process are

Pr(It+1 = it+1|It = it )

=
(

n − it
it+1

)
(1 − qit )it+1qit (n−it−it+1),

it + it+1 ≤ n. (18)

In this case, the disease in question can become
“endemic”. An interesting analytic question involves
the study of the mean stopping time for the endemic
process. From (6), the deterministic counterpart of
this model is

it+1 = (n − it )(1 − qit ), (19)

which is a form of the discrete logistic function.
The stochastic behavior of (18) has been analyzed
by Longini [10], and the dynamics of (19) have been
analyzed by Cooke et al. [4].

There are many other extensions of the
Reed–Frost model depending on the particular
infectious disease being analyzed, but a further
key extension is to allow the infectious period to
extend over several time intervals. In this case
pt = f (t, θ, I0, I1, . . . , It ), and {St , It }t=0,1,... is not
a Markov chain. Special methods are used to analyze
this model [14].

Inference

Data are usually in the form of observed chains,
{i0, i1, . . . , ir}, for one or more populations, or final

sizes, RT , for more than one population. With respect
to the former data form, suppose that we have N

populations and let {ik0, ik1, . . . , ikr} be the observed
chain for the kth population. Then, from (5), the
likelihood function for estimating p = 1 − q is

L(p) =
N∏

k=1

r−1∏

t=0

(
skt

ikt+1

)
(1 − qikt )ikt+1qikt (skt−ikt+1).

(20)

For final value data, let aijk be the observed fre-
quencies of the mijk , from (17); i = 1, . . . , I , k =
1, . . . , K , and j = 1, . . . , k. Then the likelihood
function for estimating p and B is

L(p, B) =
I∏

i=1

K∏

k=1

k∏

j=0

m
aijk

ijk . (21)

The logarithms of (20) and (21) are maximized using
standard scoring routines (see, for example, Bailey
[1], Becker [2], and Longini et al. [12, 13]) (see
Optimization and Nonlinear Equations) or the cor-
responding generalized linear model (see Becker
[2] and Haber et al. [9]). Extensions involve mak-
ing both p and the CPI functions of covariates, such
as age, level of susceptibility, or vaccination sta-
tus (see Vaccine Studies). Bailey [1, Section 14.3]
gives an example in which (20) is used to estimate
p̂ = 0.789 ± 0.015 (estimate ±1 standard error) for
the household spread of measles among children. In
the case of the household spread of influenza, Longini
et al. [13] use (21) to estimate p̂ = 0.260 ± 0.030
for persons with no prior immunity and p̂ = 0.021 ±
0.026 for persons with some prior immunity. In
addition, they estimate ĈP I = 0.164 ± 0.015 and
ĈP I = 0.092 ± 0.013 for persons with no and some
prior immunity, respectively.

Life Tables

The chain binomial model forms the statistical under-
pinnings of the life table (see Chiang [3, Chap-
ter 10]). In this case, pt simply depends on the time
interval. Then St is the random variable of interest,
which is formulated in terms of the interval survival
probabilities qt = 1 − pt . Many important life table
indices are functions of qt . For example, the prob-
ability that an individual who starts in the cohort
at time zero, is still alive at the end of time inter-
val r , denoted q0r , is q0r = ∏r

t=0 qt . The expected
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number alive at the beginning of time interval r + 1
is E(Sr+1) = s0q0r . This model is a discrete, one-
dimensional Markov chain {St }t=0,1,.... From (1) we
see that the chain binomial model for St is simply

Pr(St+1 = st+1|St = st )

=
(

st

st+1

)
q

st+1
t p

st−st+1
t , st ≥ st+1. (22)

From (5), the probability of a particular chain
{s0, s1, s2, . . . , sr} is

Pr(S1 = s1|S0 = s0) Pr(S2 = s2|S1 = s1)

× · · · Pr(Sr = sr |Sr−1 = sr−1)

=
r−1∏

t=0

(
st

st+1

)
q

st+1
t p

st−st+1
t . (23)

For an observed chain {s0, s1, s2, . . . , sr}, (23) is the
likelihood function for estimating {q0, q1, . . . , qr}.
The maximum likelihood estimators are

q̂t = st+1/st , (24)

while the approximate variances, for large S0, are

var(q̂t ) ≈ ptqt/E(St ). (25)

In addition, the q̂t are unique, unbiased estimates
of the qt , and cov(q̂t , q̂l) = 0, t �= l. Estimators of
most of the life table functions are based on the
estimators q̂t .
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Chalmers, Thomas Clark

Born: December 17, 1917, in Forest Hills, New
York.

Died: December 27, 1995, in Hanover, New Hamp-
shire.

Thomas C. Chalmers, M.D., a leader in the design,
conduct, and evaluation of clinical trials, was born in
Forest Hills, New York, where his father was a physi-
cian in private practice. Following a tradition set by
his father and grandfather, he graduated in 1943 from
Columbia University College of Physicians and Sur-
geons. After additional training in medical research
in New York and at the Thorndike Memorial Labo-
ratories of Boston City Hospital, he entered private
practice in Cambridge, Massachusetts, in 1947. He
soon became concerned over the lack of knowledge
on the efficacy of accepted medical therapies. Having
learned about randomization from Sir Austin Brad-
ford Hill, he applied this principle to a study of the
treatment of infectious hepatitis among American sol-
diers in Japan during the Korean War. This study, a
2 × 2 randomized factorial study of diet and bed rest
(see Factorial Designs in Clinical Trials), designed
in 1951, included estimates of the required number
of patients and an evaluation of ineligible patients,
withdrawals, and compliance.

Deciding to devote his career to research and
education, he was Chief of Medical Services at the
Lemuel Shattuck Hospital in Boston (1955–1968),
Assistant Director for Research and Education
for the Veterans’ Administration in Washington
(1968–1970), Director of the Clinical Center at
the National Institutes of Health in Bethesda
(1970–1973), and President and Dean of the Mount
Sinai Medical Center and School of Medicine in New
York City (1973–1983).

Dr Chalmers returned to Boston in 1983. Over the
next 10 years he was on the faculty of the Harvard
School of Public Health and Tufts University School
of Medicine, was appointed a Distinguished Professor
at the Boston Veterans’ Administration Medical Cen-
ter, and was a member and Chairman of the Board of
Trustees of the Dartmouth Hitchcock Medical Center.
In 1992, at age 75, he cofounded Meta-Works, Inc.,
a meta-analysis consulting company and moved to
Lebanon, New Hampshire. He continued to teach in
both Boston and New York and was actively involved
in numerous meta-analytic studies.

Throughout his career he was a fervent advocate of
randomized controlled trials in all areas of medicine
and the education of students and physicians in the
skills needed to evaluate these trials. His belief in
the ethical need for randomization [6] (see Ethics
of Randomized Trials) led to his recommendation
to “begin randomization with the first patient” [1].
A corollary was the belief that developing trends
should not be known by investigators during the
conduct of the trial, but should be monitored by an
independent policy advisory committee (see Data
Monitoring Committees). In subsequent years he
was a member (and frequently chairman) of Policy
or Data Safety and Monitoring Boards for numerous
multicenter clinical trials.

Dr Chalmers moved to Mount Sinai in 1973
because he wanted to influence the education of med-
ical students, and to make both students and faculty
aware of the need for properly conducted clinical tri-
als. He became concerned that clinical trials were
being conducted with insufficient sample sizes and in
a review published in the New England Journal of
Medicine [3] he sought to educate physicians con-
cerning the importance of both type II errors (see
Hypothesis Testing) and sample size calculations in
the planning and evaluation of clinical trials (see
Sample Size Determination for Clinical Trials). His
method for assessing the quality of randomized con-
trolled trials became a standard for the evaluation of
published reports of clinical trials [2]. He was one of
12 founding members of the Society for Clinical Tri-
als and established a student scholarship to encourage
the involvement of students in clinical research.

Upon returning to Boston in 1983, Dr Chalmers
continued to be interested in the combination of
data from multiple clinical trials and introduced the
readers of the New England Journal of Medicine
to the meta-analysis of randomized controlled trials
[5]. He educated numerous students in this method
of analysis and continued to work with them on
manuscripts up to within weeks of his death in
1995 from prostate cancer. An obituary and tributes
to Chalmers have been given in a recent issue of
Controlled Clinical Trials [4].

References

[1] Chalmers, T.C. (1972). Randomization and coronary
artery surgery, Annals of Thoracic Surgery 14, 323–327.

[2] Chalmers, T.C., Smith, H. Jr, Blackburn, B., Silverman,
B., Schroeder, B., Reitman, D. & Ambroz, A. (1981). A



2 Chalmers, Thomas Clark

method for assessing the quality of a randomized control
trial, Controlled Clinical Trials 2, 31–49.

[3] Freiman, J.A., Chalmers, T.C., Smith, H. & Kuebler, R.R.
(1978). The importance of beta, the type II error and
sample size in the design and interpretation of the
randomized control trial: survey of 71 “negative” trials,
New England Journal of Medicine 299, 690–694.

[4] Knatterud, G.L. & Greenhouse, S.W. (1996). Tributes to
Thomas C. Chalmers, MD, Controlled Clinical Trials 17,
471–475.

[5] Sacks, H.S., Berrier, J., Reitman, D., Ancona-Berk, V.A.
& Chalmers, T.C. (1987). Meta-analyses of randomized
controlled trials, New England Journal of Medicine 316,
450–455.

[6] Shaw, L.W. & Chalmers, T.C. (1970). Ethics in cooper-
ative clinical trials, Annals of the New York Academy of
Sciences 169, 487–495.

E. WRIGHT



Change-point Problem

The general form of the change-point problem is
to determine the unknown location τ , based on an
ordered sequence of observations x1, . . . , xn, such
that the two groups of observations x1, . . . , xτ and
xτ+1, . . . , xn follow distinct models. The index of
ordering frequently refers to time, but in general it can
be associated with any variable. The simplest exam-
ple is a level-change model, where x1, . . . , xτ are i.i.d
N(µ1, σ 2) and xτ+1, . . . , xn are iid N(µ2, σ 2) with
µ1 �= µ2. Another example is a two-phase regres-
sion or a linear regression switching model [6, 10],
where x1, . . . , xτ follow a model β01 + β11t , for some
predictor variable t , and xτ+1, . . . , xn follow another
model β02 + β12t .

Figure 1 shows the breast cancer incidence rate in
Sweden in 1990 for women between the age of 40 and
50. There is a dramatic change in slope around the age
of 46, presumably because of hormonal changes that
come with the onset of menopause. It is of interest
to know the age when the change occurs.

The observed number of breast cancers are given
in the following. Each age group is one-tenth of a
year, and the age varies from 40.2 to 50, giving a
total of 99 age groups.

6 1 4 6 2 2 4 3 6 5 1 3 2 5 5 4 6 5 4 5 2 5 2 6 5
9 8 7 6 7 6 3 5 10 11 4 4 4 10 6 4 7 7 7 6 10 11 8 10 8

11 3 12 8 13 9 5 7 11 10 12 8 11 11 6 11 13 7 9 12 12 7 11 10 8
10 8 8 10 10 8 7 14 6 8 11 6 5 7 14 6 8 5 9 7 10 11 8 4

The associated number of person-years are the fol-
lowing. Rate is computed as the incidence divided
by the person-years.

6389 6371 6352 6334 6315 6297 6278 6260 6241 6223 6204 6186 6167 6149 6130
6112 6093 6075 6056 6038 6019 6001 5982 5964 5945 5927 5908 5890 5871 5853
5834 5816 5797 5779 5760 5742 5723 5705 5686 5668 5649 5631 5612 5594 5575
5557 5538 5520 5501 5483 5465 5446 5428 5409 5391 5372 5354 5335 5317 5298
5280 5261 5243 5224 5206 5187 5169 5150 5132 5113 5095 5076 5058 5039 5021
5002 4984 4965 4947 4928 4910 4891 4873 4854 4836 4817 4799 4780 4762 4743
4725 4706 4688 4669 4651 4632 4614 4595 4577

Page [16, 17] seems to be the earliest reference
for this problem. Many authors, for example, [2, 5,

7, 11, 14], have considered extensions in various
different directions and settings including time series
data, multivariate observations, discrete observations,
Poisson process, hazard or failure rate regressions
(see Survival Analysis, Overview), quality con-
trol or surveillance problems, sequential applications
and multiple change-point problems. The general
techniques used are nonlinear least-squares, max-
imum likelihood [9, 19, 21], nonparametric/rank-
based [3] and Bayesian methods [1]. Techniques
may also be categorized as sequential or nonsequen-
tial. In sequential applications, the data xi’s are typ-
ically available one (or several) at a time and the
objective is a quick detection of a change as soon as
it occurs; the cumulative sum technique is the main
tool in this area (see Quality Control in Labora-
tory Medicine). See [18] for a bibliography up to
1980 and a more recent review is given in [13].

A change-point problem may be viewed simply as
a nonlinear regression problem, but from a theoret-
ical point of view, the problem is rather nonstandard
or nonregular. For example, even in the simplest
example of a level-change model above, the likeli-
hood function is not differentiable with respect to the
parameter τ , so the standard theory does not apply.
Strong simplifying assumptions are generally needed,
for example, the existence of at most one change

point, to derive theoretical results of the following
types: consistency and asymptotic normality of the
change-point estimate [4, 10, 13], and the asymp-

totic distribution of a maximum statistic [9, 19, 21]
to decide if there is a change and, if so, where the
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Figure 1 Breast cancer incidence for women between the
age of 40 to 50 in Sweden in 1990

change is. Recent results are, for example, on the
consistent estimation of the number and location of
jumps [13].

From an application point of view, the nonlinear
least-squares technique is the most straightforward
for generating the estimate and this can be imple-
mented easily using any statistical package that has a
nonlinear least-squares routine. However, there does
not seem to be a simple general result for the distri-
bution theory of the change-point estimate; see [13].
Users may have to resort to computer-intensive
techniques such as the bootstrap method to obtain
a confidence interval [12].

We will review the nonlinear least-squares tech-
nique and express it in the language of quasi-
likelihood so it naturally covers the generalized lin-
ear model setting [15]. It is common to start with
the assumption of one change point and proceed by
sequential splitting in the case of multiple change
points [20]. Thus, let xi , for i = 1, . . . , n, be inde-
pendent outcomes with mean and variance functions
given by

Exi = µ(ti), (1)

Var xi = φvi(µ(ti)), (2)

where φ is a scale parameter; for example, for nor-
mal (Gaussian) outcomes, we might use φ = σ 2

and vi(µ) = 1, and for Poisson outcomes φ = 1 and
vi(µ) = µ. The mean function µ(t) is piecewise con-
tinuous function of the index variable t , which is
not necessarily a time variable, with unknown regres-
sion parameters β = (β1, β2) and the change-point τ

according to

µ(t) =
{

µ1(t, β1) for t < τ

µ2(t, β2) for t ≥ τ.
(3)

Note that other covariates may also enter the regres-
sion function and the formulation would allow mul-
tivariate outcomes, but the change point is generally
limited to one index variable. Denote by β̂ and τ̂

the maximum quasi-likelihood estimates. Various
quasi-likelihood models are now available for dif-
ferent types of outcome variables [15]. The standard
estimation procedure alternates between τ and β in
the following way. First, fix τ and estimate β using
the standard (iterative-reweighted) least-squares [15]
algorithm, which solves the estimating equation

∑

i

∂µ(ti )

∂β
v−1

i (µ(ti )){xi − µ(ti)} = 0. (4)

In cases where there is a jump discontinuity between
the two functions µ1 and µ2, we can simply fit two
separate regressions for t < τ and t ≥ τ , and estimate
the scale parameter φ jointly. Denote by β̂(τ ) the
estimate we obtain at this step.

To estimate τ , we compute the profile (quasi-
)likelihood for τ by substituting β̂(τ ) in the quasi-
likelihood function. Or, as a general approximation,
we can use the Pearson’s χ2 statistic (see Chi-square
Tests) as the objective function

Q(τ) =
∑

i

v−1
i (µ̂(ti)){xi − µ̂(ti )}2, (5)

where µ̂(t) is evaluated at β̂(τ ). Thus, τ̂ ≡
argminτQ(τ), which is a simple one-dimensional
minimization problem, and β̂ ≡ β̂(τ̂ ).

Several inferential issues are unresolved in gen-
eral. One is the distribution of Q(τ̂ ), which is neces-
sary to decide if the change at τ̂ is real. Theoretically,
this is available under normal or binomial assump-
tions for a simple level-change model [9, 11, 13, 19,
21]. Secondly, there is no simple distribution the-
ory for τ̂ . Standard large-sample theory does not
apply since the parameter is not regular. For both
of these problems, we might use the permutation
test (see Randomization Tests) or the bootstrap.
Gibbs sampling has also been used for the Bayesian
approach [1] (see Markov Chain Monte Carlo).
With regards to the inference on β̂, it is common
to make it conditional on the observed value of τ̂ ,
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Figure 2 (a) Profile log-likelihood of the change parameter τ ; (b) The observed and fitted values of breast cancer incidence

though it ignores the extra variability in the estima-
tion of the change point.

In our example, we will assume that the observed
number of breast cancer at each age group y(t) is
Poisson with mean µ(t) = N(t)λ(t), where N(t) is
the number of person-years at age t , and the rate
parameter is given by

log λ(t) =
{

β01 + β11(t − 40) for t < τ

β02 + β12(t − τ) for t ≥ τ.
(6)

Because we want λ(t) to be continuous, we must have

β02 = β01 + β11(τ − 40). (7)

Figure 2(a) shows the profile log-likelihood of τ ,
with a minimum at τ̂ = 46.3 (the nominal likelihood-
based 95% confidence interval is 44.7 < τ < 47.6.)
The estimated parameters are

β̂01 = −7.60(se = 0.12)

β̂11 = 0.22(se = 0.025) (8)

β̂12 = −0.05(se = 0.039).

The estimated dispersion parameter is

φ̂ = 1

99 − 4

∑

t

(y(t) − µ̂(t))2

µ̂(t)
= 0.76, (9)

showing some underdispersion.
As a concluding remark, we note that there is a

strong similarity between the most general change-
point problems, involving, say, a continuous change
and piecewise continuous functions, and general
nonparametric regression problems for nonsmooth

functions [8]. Recent advances in the latter, using, for
example, the wavelet techniques, will produce natural
competitors against the current nonsequential change-
point analysis.
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Chaos Theory

Chaos derives from the Greek word χαoς , from
which one also obtains the English word “gas”.
Various probabilistic models have been proposed for
the motion of gas molecules, such as the Ehrenfest
Markov chain model for the diffusion of gas through
a membrane [10]. However, in idealized situations –
and even some practical ones – to which such models
are applied, all motion is strictly deterministic.
Hence, if one knew complete information about
the momentum, energy, fields, etc. of the system
in question, then, in principle, one could predict
perfectly the state of the system at any future instant.
However, in practice, this cannot be achieved. Now
the motion of gas particles is not necessarily chaotic,
in the strict sense of the word, but it provides a
useful analogy. In loose terms, a system is chaotic
if it is governed by a set of deterministic equations,
but displays erratic, apparently random, behavior.
Whilst one can attempt to provide a stochastic model
for a chaotic system, one invariably obtains more
substantive detail by considering the deterministic
component and its contribution to the erratic nature
of the observations.

Historically, the theory of chaos has been devel-
oped in the deterministic scenario, with Poincaré
accredited with much of the foundation work [19],
although recent statistical applications have endeav-
ored to merge stochastic variation, or noise, into this
setting. Consider first strictly deterministic chaos.

The phenomenon of chaos is produced by a func-
tion, possibly multivariable, either in discrete time,
where the function comprises one or more linked
difference equations, or in continuous time, where
it comprises linked differential equations. Chaos is
the erratic nature of the trajectories produced in the
former case by iteration of the function, and in the
latter by evolution of the differential equations. Chaos
in continuous time must comprise at least three state
variables, for otherwise trajectories would intersect
and would thus not provide a unique solution at the
point of intersection; however, discrete time chaos
can exist in any Euclidean dimension.

There is not absolute agreement on a strict math-
ematical definition of chaos, although the following,
reported fairly loosely, encapsulates most ideas. It
follows the exposition given by Falconer [11]. Con-
sider a function f defined on a domain D with

an m-fold iterate (composition) denoted f (m). With
this notation one can identify special kinds of points
x ∈ D; for example, if f (x) = x, then x is a fixed
point of f , and if f (m)(x) = x for the least m > 1,
then x is a periodic point of order m. An attrac-
tor for f is the minimal compact set A ⊆ D such
that, for each x ∈ D, the set of all f (m)(x) which
come arbitrarily close to A is nonnull. The chaotic
nature, or otherwise, of f is characterized in terms
of its attractor. In particular, the attractor must be
such that (i) some point in the attractor produces
a trajectory under f which is dense (“filling”) in
the attractor; (ii) the periodic points of the attractor
are dense; and (iii) given any point on the attrac-
tor, one can find another arbitrarily close point on
the attractor such that the two associated trajecto-
ries diverge sufficiently fast [22]. Respectively, these
properties are (i) that the attractor is nondecompos-
able; (ii) that the attractor has some semblance of
regularity; and (iii) that there is sensitive dependence
upon initial conditions. In practical terms it is usu-
ally only possible to check condition (iii). Sensitive
dependence upon initial conditions can be identified
in many areas, from weather forecasting to tossing a
coin: in the latter, the greater the angular spin and
upward thrust on the coin the more difficult it is
to predict the face it will show. Sensitive depen-
dence upon initial conditions can be quantified in
terms of an invariant of a dynamic system known as
the Lyapunov exponent(s). Under an eigendecompo-
sition, there is one such exponent for each Euclidean
direction in which the map evolves, and, by invok-
ing Taylor expansions, one can demonstrate that the
Lyapunov exponent is the exponential rate of separa-
tion of initially nearby trajectories in the short term.
(Since a chaotic map evolves in a bounded space,
the separation of trajectories cannot continue indefi-
nitely.)

If a map is chaotic, then often its attractor will be
fractal-like: its fine, complex structure is not always
“filling” in each Euclidean direction, and hence its
dimension is not always an integer. Estimates of
fractional dimension are obtained using box counting
methods, amongst others. The analysis of fractal
surfaces and the estimation of fractional dimension
comprise research and applications which are closely
allied with the study of chaos; see, for instance,
Davies & Hall [9]. These topics are beyond the scope
of this article.



2 Chaos Theory

Deterministic chaos possesses features that
have stochastic interpretations. One can define a
probability measure, ν, on the set D upon which the
chaotic map f is defined by denoting the measure of
a subset C ⊆ D as the limiting proportion of time
spent by an arbitrary trajectory in C (continuous
time) or the proportion of its iterates therein (discrete
time); that is, ν(C) = limm→∞ m−1#{f (j)(X0) ∈
C; 1 ≤ j ≤ m}, where “#” denotes the cardinality of a
set. Here X0 is an arbitrarily chosen initial condition.
For a wide class of dynamical systems (called
“Axiom A” systems), ν does not depend on the choice
of X0; that is to say, the invariant measure is a
“generic” feature of a dynamic system (which is the
analog for the phrase “almost sure” in a probabilistic
setting). The existence of an absolutely continuous
invariant measure is known only for certain classes
of maps (essentially, those that are one-dimensional
and whose piecewise derivatives exceed unity in
absolute value). If the dynamics of the system do not
change as time evolves, then one has the equivalent
of a strictly stationary time series. If one regarded
the output of a chaotic dynamical system as a
stochastic time series, then one could obtain its
autocorrelation function, amongst other features.
Whilst the deterministic interpretation of the variables
would lead one to think that the variables are highly
correlated, via the relationship induced by the map f ,
sensitive dependence upon initial conditions actually
produces autocorrelation functions which can be zero
at virtually all nonzero lags (within the stochastic
interpretation of the series). Hence a chaotic series,
produced by a strong deterministic relationship, can
behave like an apparently purely random time series.
It is for this reason, among other more technical
ones, that random number generators in computers
are based on chaotic maps (see Pseudo-random
Number Generator).

One could point to papers in 1990, such as by
Bartlett [3] and Wolff [27], which were among the
first formal statistical treatments of chaos in the
statistical literature, and to papers in 1992, e.g. [26],
and [5], and [7], which were the first fruits of the
initial activity. Of course, the scientific community
more widely has known about chaos for much longer,
and even statisticians, such as Tong & Lim [25], made
observations of it before the 1990s. Such observations
were in the context of nonlinear time series models,
which progressively came to the fore from the
1970s [16], and which identified the relationship

between modes of behavior of various models for
different parameter values, charting the steady state,
monotonic, periodic, limit cycle or chaotic behavior
of realizations of the model; again see, for example,
Tong & Lim [25]. Tong [24] draws together the
theory of nonlinear time series and statistical aspects
of dynamic systems, which also appears in an as yet
unpublished book by K.S. Chan & H. Tong.

It is at this juncture that one is able to pose a more
realistic setting for chaos by incorporating stochastic
noise into the map (see Noise and White Noise).
Just as time domain models for time series usually
comprise a deterministic component and a stochastic
component, one can formulate nonlinear autoregres-
sions, for instance where the deterministic component
is a chaotic map and noise is added into the system.
X → f (X) + ε, where ε represents an independent
and identically distributed sequence of random vari-
ables. Many other formulations with noise are possi-
ble. Under this representation, the generic properties
of the deterministic map f are unlikely to be related
to the corresponding ones of the noisy chaotic map
(for example, computations of Lyapunov exponents,
fractal dimensions, and invariant measures). More-
over, interpretation of those quantities in the noisy
case is difficult; for in the deterministic case there
exists a geometric interpretation for them which does
not make sense when noise infects the deterministic
dynamics.

Parametric modeling of chaotic systems is almost
impossible. Since a chaotic map cannot be linear,
the family of possible maps for chaos is vast and
unchartable. Unless one has considerable substan-
tive information about the map, such as intimate
knowledge of the physics governing the system, then
parametric modeling usually is out of the question.
However, in such cases where it is possible there
has been some progress. Geweke [12] considers a
realization of a deterministic chaotic map in which
the series is “blurred” with an independent noise
sequence. A method of parameter estimation using
maximum likelihood in the presence of an extremely
irregular likelihood function is demonstrated. The
more realistic case of system noise is considered
by Berliner [4], as described in the previous para-
graph, who sets out a Bayesian approach to para-
metric model fitting. Assuming parametric knowledge
of the map, one may adapt nonparametric kernel
density estimation techniques to obtain the density
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of the invariant measure of a given map, assum-
ing that it exists and is absolutely continuous, as
investigated by Hall & Wolff [15]. That technique
further validates the block bootstrap for chaotic time
series.

In fact, nonparametric modeling is where the best
progress has been made. Yao & Tong [30, 31] adapt
the idea of Lyapunov exponents to the stochastic set-
ting by replacing it with a probability that trajectories
will diverge exponentially fast. They call estimates
of that probability a sensitivity measure. In an earlier
paper they draw on the Taylor expansion formulation
of the Lyapunov exponent to produce forecasts of a
dynamic system and to bound those forecasts in terms
of the Lyapunov exponent. Further in the endeavor of
forecasting, they adapt a Kullback–Leibler statistic
to identify local regions from which accurate k-step-
ahead forecasts can be made and regions from which
sufficient accuracy of forecasts does not exist. This
is related to an adaptation of Lyapunov exponents to
find local regions of relatively large or small expo-
nential divergence of trajectories [28], which has also
been studied in a local-time sense [18].

Estimates of dimension for noisy chaos [21] and
interpretations of fractal properties for general time
series models [8] have also been presented.

Adaptations have been made of devices used in the
study of dynamic systems, such as the application of
the correlation integral, used for estimating fractional
dimension and, more generally, for determining the
presence of chaos, as established by Grassberger
& Procaccia [13], and also as a test statistic for
independence in a time series, such as in Brock et al.
[6] and Wolff [29]. Thus the epiphany of chaos in
statistical realms has done much to complement the
Box–Jenkins methodology.

Direct applications in human biology are few,
although consideration of dynamic aspects have led to
novel approaches in modeling. Three particular appli-
cations have received prominence in recent years.
Of course, the classical discussion of chaos in bio-
logical systems per se is that of May [17], where
simple one-dimensional maps governing biological
populations were found mathematically and in real-
ity to exhibit chaos. For various plain biological and
social reasons, human population series would not be
expected to display such behavior.

Earlier works on measles epidemics, such as those
of Bartlett [3] and Schaffer [20], were scrutinized

by Grenfell [14] and others of his co-workers sub-
sequently in regard to chaotic dynamics in measles
epidemics. Sugihara & May [23] exhibited a cross-
validation device to distinguish between chaotic be-
havior (claimed to exist in measles epidemics and
thought to be governed by a six-dimensional map)
and purely stochastic behavior (claimed to exist in
mumps and chicken-pox epidemics). It is initially
plausible that childhood diseases might be chaotic.
Consider a pendulum with a metallic weight: given
a small displacement it will follow regular simple
harmonic motion, but if it is placed near an object
of the same magnetic polarity it can trace out a
chaotic trajectory. This kind of forced oscillation,
causing chaos, is present in childhood diseases, in
that school terms and holidays “force” large num-
bers of potentially infectious children together and
apart, respectively, and that forcing is superimposed
on the natural oscillation of the epidemic. Subsequent
scrutiny of epidemiologic time series raised issues
about large amounts of noise present in the series,
and the greater likelihood of limit cycles rather than
chaotic behavior lying at the center of the dynam-
ics (see Epidemic Models, Deterministic; Epidemic
Models, Stochastic; Infectious Disease Models).

Babloyantz [1, 2], among many others, has exam-
ined physiologic dynamics and found evidence of
chaos. Along the lines of the above discussion, the
forced oscillations of the heart were studied, and it
was found that a healthy heart is chaotic! In its usual
beating mode the differenced series of times between
corresponding parts of the heart cycle shows evidence
of low-dimensional chaos. What is more, at the onset
of myocardial infarction (heart attack), chaos gives
way to limit cycle patterns. There is a large research
industry into this topic, as well as in infant respira-
tion and analysis of electroencephalograms, to name
but two others in the realm of physiological dynam-
ics (see Mathematical Biology, Overview; Clinical
Signals).
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Characteristic Function

The characteristic function has several important
theoretical applications. It is used to derive distri-
butions for sums and other linear combinations of
independent random variables. It is also used to
determine limiting distributions of statistics as sam-
ple sizes become infinitely large (see Large-sample
Theory). The resulting asymptotic distributions often
provide useful approximations for making inferences
from finite samples when the exact finite sample
distributions are too complicated to be conveniently
evaluated. The characteristic function can also be
used to derive moments of distributions.

The characteristic function of a (real-valued) ran-
dom variable X with distribution function F(x) is a
complex-valued function defined as

φ(t) = E[exp(itX)] =
∫ ∞

−∞
exp(itx) dF(x), (1)

where i ≡ √−1 and t is any real number. For a
continuous distribution with density function f (x),

φ(t) =
∫ ∞

−∞
exp(itx)f (x) dx,

and for a discrete distribution on the nonnegative
integers,

φ(t) =
∞∑

k=0

exp(ikt) Pr(x = k).

Introductory textbooks on statistical theory often
use the moment generating function instead of the
characteristic function to avoid the introduction of
complex arithmetic. They have many of the same
uses, but the characteristic function provides more
general results because it exists for any distribution. It
is absolutely continuous on the real line and satisfies
(i) φ(0) = 1, (ii) |φ(t)| ≤ 1, and (iii) φ(−t) is the
complex conjugate of φ(t).

We may obtain the rth moment of X about zero
from φ(r)(0), the rth derivative of φ(t) evaluated at
t = 0. In particular, if X has finite moments up to
some order n, then φ(t) has continuous derivatives
up to order n and

µr = E(Xr) = irφ(r)(0), r = 1, . . . , n. (2)

Equivalently, µr is the coefficient of the rth term in
the expansion

φ(t) = 1 +
∞∑

r=1

µr

(it)r

r!
. (3)

The rth cumulant of X, denoted by κr , is the coef-
ficient of the rth term in the corresponding expansion
of the natural logarithm of the characteristic func-
tion, i.e.

ln[φ(t)] =
∞∑

r=1

κr

(it)r

r!
. (4)

Moments of X about zero are obtained from cumu-
lants as

µ1 = κ1,

µ2 = κ2 + κ2
1 ,

µ3 = κ3 + 3κ2κ1 + κ3
1 ,

µ4 = κ4 + 3κ2
2 + 4κ1κ3 + 6κ2

1κ2 + κ4
1 .

Cumulants are also called semi-invariants because
adding a constant to X does not affect the value
of κr for r ≥ 2. The term “cumulant” is motivated
by the property that the rth cumulant of the sum of
independent random variables is equal to the sum of
the corresponding cumulants of the individual ran-
dom variables for any r ≥ 1 for which the cumulants
exist. Stuart & Ord [7] provide more information on
the computation and uses of cumulants and addi-
tional formulas relating cumulants to various types
of moments.

Inversion formulas allow us to recover density
functions and discrete probability distributions from
characteristic functions. If φ(t) is absolutely inte-
grable, i.e.

∫ ∞
−∞ |φ(t)| dt is finite, then φ(t) uniquely

determines an absolutely continuous distribution with
a bounded and uniformly continuous density function
given by the formula

f (x) = 1

2π

∫ ∞

−∞
exp(−itx)φ(t) dt. (5)

For discrete distributions on the nonnegative integers,
we have

Pr(X = k) = 1

2π

∫ ∞

−∞
exp(−itk)φ(t) dt. (6)



2 Characteristic Function

Characteristic functions have important applica-
tions in the determination of distributions for lin-
ear combinations of independent random variables.
For example, if X1, X2, . . . , Xn are independent ran-
dom variables with respective characteristic functions
φ1(t), φ2(t), . . . , φn(t), then the characteristic func-
tion of X1 + X2 + · · · + Xn is the product

φ(t) = φ1(t)φ2(t) . . . φn(t). (7)

We complete the task by applying an inversion for-
mula to φ(t) or simply recognizing the distribution
function uniquely determined by φ(t). The character-
istic function for X1 − X2 is

φ(t) = φ1(t)φ2(−t). (8)

Characteristic functions were originally introduced
as a mechanism for deriving limiting distributions of
sequences of random variables (see Convergence in
Distribution and in Probability). Important applica-
tions include the derivation of central limit theorems
for establishing the limiting normal (Gaussian) dis-
tributions of sample means or estimators of model
parameters as sample sizes are increased, and the
derivation of chi-square distributions for sums of
squares and goodness-of-fit tests. The basic result is
that if {Xn} is a sequence of random variables such
that Xn has distribution function Fn(x) and character-
istic function φn(t), then the pointwise convergence
of φn(t) to a function φ(t) that is continuous at t = 0
implies that Fn(x) converges to F(x), the unique
distribution function determined by φ(t), at all con-
tinuity points of F(x). The converse of this result is
also true, i.e. the convergence of the sequence {Fn(x)}
to a continuous distribution function F(x) implies
uniform convergence of {φn(t)} to φ(t) in any finite
interval of t values as n → ∞.

As an illustration, consider the limiting behavior
of a sequence of Bernoulli random variables. Let
Xn denote the number of successful outcomes in a
series of n independent and identical trials where
each trial has probability p of producing a successful
outcome. Then, Xn has a binomial distribution with
probability function

Pr(X = k) =
(

n

k

)
pr(1 − p)n−r ,

for k = 0, 1, . . . , n.

The characteristic function for the binomial distribu-
tion is

φ(t) =
n∑

k=0

exp(itk)

(
n

k

)
pk(1 − p)n−k

= [1 − p + p exp(it)]n

= {1 + p[exp(it) − 1]}n.
Now consider a sequence of binomial random

variables {Xn, n = 1, 2, . . .}, where Xn is the number
of successful outcomes in n independent trials with
probability of success p = λ/n on any single trial.
In this scenario the probability of success on a single
trial becomes smaller as the number of trials increases
in such a way that the expected number of successes,

E(Xn) = np = λ,

remains constant. Then, the characteristic function for
Xn is

φn(t) =
[

1 + λ[exp(it) − 1]

n

]n

,

and using the result that (1 + a/n)n → ea as n → ∞,
it is easily seen that as n → ∞,

φn(t) → exp{λ[exp(it) − 1]}
which is the characteristic function of a Poisson ran-
dom variable with expectation λ. This shows that as
the number of trials becomes large and the proba-
bility of success on any single trial becomes small,
the binomial distribution for the number of successful
outcomes approaches a Poisson distribution with the
same mean.

When p remains constant as the number of trials
is increased, Xn increases without bound and has no
limiting distribution, but a central limit theorem can
be used to show that the standardized count,

Zn = Xn − np

[np(1 − p)]1/2
,

has a limiting standard normal (Gaussian) distribu-
tion. The characteristic function for the standard nor-
mal distribution is

φ(t) =
∫ ∞

−∞
exp(itx)

1

(2π)1/2
exp[−(1/2)x2] dx

= exp[−(1/2)t2]. (9)
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Consequently, the characteristic function for Zn,

φn(t) = exp{−itnp/[np(1 − p)]1/2}
× [1 − p + p exp{it/[np(1 − p)]1/2}]n,

must converge to (9) for all t in any finite interval.
Note that the effect on φn(t) of transforming Xn to
(Xn − µ)/σ is to replace t by t/σ and multiply the
result by exp(−itµ/σ).

Stuart & Ord [7] provide a good introduction to
the derivation and uses of characteristic functions.
Additional properties of characteristic functions are
reviewed by Laha [1]. For proofs and more pre-
cise mathematical statements of these results and
additional developments, see Lukács [3, 4], Laha
& Rohatgi [2], and Ramachandran [6]. Applications
are discussed by Lukács & Laha [5] and Laha &
Rohatgi [2].
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Chemometrics

Chemometrics is usually defined as the application of
mathematical and statistical methods to problems in
chemistry. Although most such applications involve
simple statistical techniques, it is the use of multi-
variate statistical methods that is popularly associated
with the term chemometrics (see Multivariate Anal-
ysis, Overview). These multivariate methods include
some that will be familiar to many biostatisticians,
such as principal components analysis and discrim-
inant analysis, as well as some others that will not.
The text by Massart et al. [5] gives a good coverage
of chemometrics in its wider sense. Here we concen-
trate on the multivariate aspects.

One important area of application is to multivari-
ate calibration problems [1, 4]. Here we wish to
calibrate a rapid, usually indirect, measurement of
some quantity against measurement by a reference
method y. The basic measurement x produced by the
indirect method is multivariate, possibly highly so.
For example, the rapid method may be spectroscopic,
in which case it is not untypical to have as x a
spectrum measured at 100 or even 1000 wavelengths.
Typically, one is faced with estimating a calibration
equation y = f (x) from around 50 training samples
on which both x and y are measured, with multiple
regression ruled out by the dimensionality of x and
great care needed to avoid overfitting the limited data.
Spectroscopic examples in clinical and pharmaceuti-
cal chemistry are common. A 1995 conference [2]
included a dozen papers in this area, with the rapid
spectroscopic measurement of blood parameters as
one popular theme.

Methods that construct a prediction equation by
linear regression of y on the scores of the training
samples on a number of factors derived from the
original predictor variables are widely used in such
problems (see Reduced Rank Regression). In princi-
pal component regression we carry out a preliminary
principal components analysis of the original pre-
dictor variables, retaining only a small number of
components that explain most of the variance in x.
The second step is to regress y on the principal com-
ponent scores for these components, which are linear
combinations of the original measurements. In partial
least squares regression (PLSR, or just PLS) we also
construct new predictor variables as linear combina-
tions of the original ones, but now we choose the

combinations to maximize the covariance between
the constructed variables and y. Cross-validation
is commonly used with both of these methods to
select the appropriate number of factors to include
in the equation. Frank & Friedman [3] discuss these
techniques and compare them with other shrinkage
methods such as ridge regression.

Another application with importance in the
field of medicine is the study of quantitative
structure–activity relationships, universally referred
to by its acronym QSAR. The idea of QSAR is
to try to relate quantitative physical and chemical
descriptions of molecules to their biological activity.
Examples of descriptors range from simple ones such
as the solubility of the molecule in water, to complex
and high-dimensional ones from computational
chemistry, based for example on the molecule’s
electrostatic potential calculated on a lattice of points
surrounding it. Given a database of molecules in
which some desired biological activity – such as
being an effective drug or pesticide – is present
to a greater or lesser extent, the general problem
is to relate this activity to descriptors of the
molecules. Such a relationship would guide the
drug designer in synthesizing new molecules or
deciding, on the basis of relatively easily measured
descriptors, which existing molecules to subject to
expensive biological testing. When high-dimensional
descriptors are used the statistical problems are
similar to those in the multivariate calibration
problem, and many of the same chemometric
tools used in multivariate calibration have also
been applied to QSAR. Stone & Jonathan [6, 7]
review statistical aspects of QSAR and provide a
thoughtful commentary on the use of these tools in
general.
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Chi-square Distribution;
Properties

This article complements the introductory article on
the chi-square distribution by presenting proofs of
its derivation as the distribution of the sum of squares
of standard normal deviates. Various properties of
the distribution are derived. The second section of
the article deals with the noncentral chi-square dis-
tribution, which arises when the component normal
deviates, whose squares are summed, have nonzero
means. This is an important result as it defines the
power of standard chi-square tests.

The Central Chi-Square Distribution

Theorem 1. Let X1, X2, . . . , Xn be independent
with the standard normal N(0, 1) density

fXk
(xk) = e−x2

k
/2

√
2π

, −∞ < xk < ∞,

k = 1, 2, . . . , n.

Then

Un =
n∑

k=1

X2
k

has the central chi-square distribution χ2
n (0) with

density

fUn
(s) = s(n/2)−1e−s/2

Γ (n/2)2n/2
.

for 0 < s < ∞, and 0 elsewhere.

Proof. For α > 0, Γ (α + 1) = αΓ (α), Γ (1/2) =√
(π), and Γ (m + 1) = m! for integer m ≥ 0.

We use complete induction on n and write
Un = U(n−1) + U1, where U1 = X2

1 and U(n−1) =∑n
k=2 X2

k . Then forming the convolution using inde-
pendence of U1 and U(n−1)

fUn
(s) =

∫ s

0
fU(n−1)

(s − y)fU1(y) dy

=
∫ s

0

(s − y)(n−1)/2−1e−(s−y)/2

Γ ((n − 1)/2)2(n−1)/2

× y1/2−1e−y/2

Γ (1/2)21/2
dy

= sn/2−1e−s/2

Γ (n/2)2n/2

×
∫ s

0

Γ (n/2)(s − y)(n−1)/2−1y1/2−1

Γ ((n − 1)/2)Γ (1/2)sn/2−1
dy

Substituting v = y/s, we get

sn/2−1e−s/2

Γ (n/2)2n/2

∫ 1

0

Γ (n/2)v(n−1)/2−1(1 − v)1/2−1

Γ ((n − 1)/2)Γ (1/2)
dv =

sn/2−1e−s/2

Γ (n/2)2n/2
× 1

using the beta((n − 1)/2, 1/2) density integrates to
1. The parameter n of the χ2

n (0) density is called the
degrees of freedom parameter.

A proof using moment generating functions is as
follows:

mX2
k
(t) = E(etX2

k ) =
∫ ∞

−∞
etx2 e−x2/2

√
2π

dx

= (1 − 2t)−1/2.

mUn
(t) =

n∏

k=1

mXk
(t) = (1 − 2t)−n/2

=
∫ ∞

0
ets s(n/2)−1e−s/2

Γ (n/2)2n/2
ds = E(etUn )

and we use the uniqueness of the moment generating
function. The proof is similar using the uniqueness
of the complex characteristic function,

φX2
k
(t) = E(eitX2

k ) =
∫ ∞

−∞
eitx2 e−x2/2

√
2π

dx

= (1 − 2it)−1/2.

φUn
(t) =

n∏

k=1

φX2
k
(t) = (1 − 2it)−n/2

=
∫ ∞

0
eits s(n/2)−1e−s/2

Γ (n/2)2n/2
ds = E(eitUn),

where i = √
(−1).

The chi-square distribution is a special case (α =
n/2, β = 2) of the gamma (α, β) distribution, which
has density

f (x) = xα−1e−x/β

Γ (α)βα
for 0 < x < ∞,

and 0 elsewhere.
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The incomplete gamma distribution function can be
calculated from

G(x, a) =
∫ ∞

0

ua−1e−u

Γ (a)
du

=






xae−x

Γ (a)

∞∑

k=0

xk

(a + k)k+1
for small x

1 − xae−x

Γ (a)
c(x) for large x

with (a + k)k+1 = ∏k
j=0(a + j) and the continued

fraction

c(x) = 1/(x + a0/(1 + a1/(x + a2/(1 + a3/(x

+ · · · /(x + a2k/(1 + a2k+1/(x + · · · ,
where a2k = k + 1 − a, a2k+1 = k + 1 for k = 0, 1,
2 . . . (see for example Abramowitz and Stegun [1,
p. 263, 6.5.29, 6.5.31]). The gamma function Γ (a)

can be calculated accurately using Stirling’s formula
with the Binet function error term evaluated using the
continued fraction of Jones and Thron [2, p. 350].

The cumulative distribution function (cdf) for the
central χ2

n (0) distribution is then

FUn
(x) = P(Un ≤ x) = G

(x

2
,
n

2

)
.

The cdf for the Poisson(λ) distribution can be deter-
mined from that of the chi-square cdf

x∑

k=0

λke−λ

k!
= 1 − FUm

(2λ),

where m = 2(x + 1) for x = 0, 1, . . ..

The Noncentral Chi-square Distribution

Theorem 2. Let Xk be independent normal N(µk,

1) for k = 1, 2, . . . , n with densities

fXk
(xk) = e−(xk−µk)

2/2

√
2π

, −∞ < xk < ∞.

The distribution of

Un =
n∑

k=1

X2
k

is the noncentral chi-square distribution χ2
n (δ2

n),
where δ2

n = ∑n
k=1 µ2

k , with density

fUn
(u) =

∞∑

j=0

e−δ2
n/2 (δ2

n/2)j

j !

u(2j+n)/2−1e−u/2

Γ ((2j + n)/2)2(2j+n)/2

for 0 < u < ∞, and 0 elsewhere.

Proof. Make the transformation

Z =





Z1

Z2

Z3...
Zn





=





µ1

δn

µ2

δn

µ3

δn

· · · µn

δn

µ2µ1

δ2δ1

−δ2
1

δ2δ1
0 · · · 0

µ3µ1

δ3δ2

µ3µ2

δ3δ2

−δ2
2

δ3δ2
· · · 0

...
...

...
. . .

...
µnµ1

δnδ(n−1)

µnµ2

δnδ(n−1)

µnµ3

δnδ(n−1)

· · · −δ2
(n−1)

δnδ(n−1)





×





X1

X2

X3...
Xn



 .

In matrix notation Z = AX, where A is the
orthogonal n × n matrix above that satisfies
AAT = ATA = In, where In is the n × n iden-
tity matrix. It follows from the multivariate nor-
mal distribution for X : Nn(µ, In), where µ =
(µ1, µ2, . . . , µn)

T that Z : Nn(η, In) with η = Aµ =
(δn, 0, 0, . . . , 0)T . Thus, Z1 : N(δn, 1), Zk : N(0, 1)

for k = 2, 3, . . . , n and they are independent.
Also,

n∑

i=1

Z2
i = ZTZ = XTATAX = XTX =

n∑

i=1

X2
i = Un.



Chi-square Distribution; Properties 3

The density

fZ2
1
(u1) = fZ1(

√
u1)

∣∣∣∣
d
√

u1

du1

∣∣∣∣

+ fZ1(−
√

u1)

∣∣∣∣
d(−√

u1)

du1

∣∣∣∣

=
1
2u

−1/2
1 e(

√
u1−δn)

2/2

√
2π

+
1
2u

−1/2
1 e(−√

u1−δn)
2/2

√
2π

= u
1/2−1
1 e−u1/2

Γ (1/2)21/2
e−δ2

n/2

(
eδn

√
u1 + e−δn

√
u1

2

)

=
∞∑

j=0

e−δ2
n/2 (δ2

n/2)j

j !

u
(2j+1)/2−1
1 e−u1/2

Γ ((2j + 1)/2)2(2j+1)/2
.

Forming the convolution Z2
1 + ∑n

k=2 Z2
k term by term

and using the convolution of χ2
(2j+1)(0) and χ2

(n−1)(0)

is χ2
(n+2j)(0) gives

fUn
(u) =

∞∑

j=0

e− δ2
n

2

(
δ2
n

2

)j

j !

u(n+2j)/2−1e−u/2

Γ ((n + 2j)/2)2(n+2j)/2
.

Thus, the noncentral χ2
n (δ2

n) density is a Pois-
son(δ2

n/2) probability mixture of central χ2
(n+2j)(0)

densities for j = 0, 1, 2 . . . , ∞. If δn = 0, then the
distribution has the central chi-square χ2

n (0) density.

For an alternate proof using moment generating
functions, consider

mX2
k
(t) = E(etX2

k ) =
∫ ∞

−∞
etx2

k
e−(xk−µk)

2/2

√
2π

dxk

= e−µ2
k
/2 eµ2

k
/(2(1−2t))

√
1 − 2t

.

Then

mUn
(t) =

n∏

k=1

mX2
k
(t) = e−δ2

n/2 eδ2
n/(2(1−2t))

(1 − 2t)n/2

=
∞∑

j=0

e−δ2
n/2(δ2

n/2)j

j !
(1 − 2t)−(n+2j)/2

=
∞∑

j=0

e−δ2
n/2(δ2

n/2)j

j !
mχ2

(n+2j)
(0)(t).

The parameter δ2
n is called the noncentrality parame-

ter and n is the degrees of freedom parameter.
The characteristic function is

φUn
(t) = e−δ2

n/2 eδ2
n/(2(1−2it))

(1 − 2it)n/2
,

where again i = √
(−1).

The cdf can be calculated from the incomplete
gamma function as

FUn
(x) = P(Un ≤ x) =

∞∑

j=0

e−δ2
n/2(δ2

n/2)j

j !

× G

(
x

2
,
n + 2j

2

)
.

We can calculate the moments of the noncentral
chi-square random variable recursively. Let Un be
distributed as χ2

n (δ2). Then for integer r ≥ 0, we
have

E(Ur
n) =

∞∑

j=0

(δ2/2)j e−δ2/2

j !

×
∫ ∞

0
sr s(n+2j)/2−1e−s/2

Γ ((n + 2j)/2)2(n+2j)/2
ds

=
∞∑

j=0

(δ2/2)j e−δ2/2

j !

r−1∏

k=0

(n + 2j + 2k)

=
∞∑

j=0

(δ2/2)j e−δ2/2

j !
(n + 2j)

r−2∏

k=0

(n + 2 + 2j + 2k)

= nE(Ur−1
n+2 ) + δ2E(Ur−1

n+4),

where Um for m = (n + 2), (n + 4) have noncentral
chi-square χ2

m(δ2) distributions with the same param-
eter δ2.

From this it follows by induction on integer r =
1, 2, . . . that

E(Ur
n) =

r∑

k=0

(
r

k

)
δ2k2r−k Γ ((n + 2r)/2)

Γ ((n + 2k)/2)
.
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In particular, E(Un) = n + δ2, Var(Un) = 2n + 4δ2

and

E(U 2
n ) = n(n + 2) + 2δ2(n + 2) + δ4

E(U 3
n ) = n(n + 2)(n + 4) + 3δ2(n + 2)(n + 4)

+ 3δ4(n + 4) + δ6

E(U 4
n ) = n(n + 2)(n + 4)(n + 6) + 4δ2(n + 2)

× (n + 4)(n + 6) + 6δ4(n + 4)(n + 6)

+ 4δ6(n + 6) + δ8.

For the central chi-square case with δ2 = 0, we have
E(Un) = n, Var(Un) = 2n and for integer r ≥ 0,

E(Un)
r = 2r Γ (r + (n/2))

Γ (n/2)

=
{

1 for r = 0∏r−1
k=0(n + 2k) for r = 1, 2, . . .

.

If the m × 1 random vector X has a multivariate
normal distribution Nm(µ, �) for

µ =




µ1

µ2...
µm



 ,

and � =





σ11 σ12 · · · σ1m

σ21 σ22 · · · σ2m

...
...

. . .
...

σm1 σm2 · · · σmm





with � symmetric, positive semidefinite (� = �T

and vT�v ≥ 0 for all v), then the quadratic form

XT�−X : χ2
r (δ2) (1)

has the noncentral chi-square distribution where δ2 =
µT�−µ, the matrix �− is a generalized inverse
of � that satisfies ��−� = �, and r is the rank
of �. If � is positive definite (vT�v > 0 for all
v �= (0, 0, . . . , 0)T), then �− = �−1 is the inverse
and we have full rank r = m.

The chi-square distribution lends its name to the
chi-square statistic of Karl Pearson [4] (see Chi-
square Tests). Let X1, X2, . . . , XK have a multi-
nomial joint distribution M(n, (p1, p2, . . . , pK))

given by

P(X1 = x1, X2 = x2, . . . , XK = xK)

= n!

x1!x2! · · · xK !
p

x1
1 p

x2
2 · · · pxK

K ,

where
∑K

k=1 pk = 1,
∑K

k=1 xk = n, and xk ∈ {0, 1,

. . . , n}. Then for testing the hypothesis

H : p = (p1, p2, . . . , pK) = (p10, p20, . . . , pK0)

= p0,

where p0 is known, against the alternative A: p �=
p0, we can reject for large values of the chi-square
statistic

Vn =
K∑

k=1

(Xk − npk0)
2

npk0
.

(see Hypothesis Testing). For near by alternatives
pk = pk0 + ηk/

√
(n), where

∑K
k=1 ηk = 0, it has a

limiting noncentral chi-square distribution

Vn

d−−−→ V : χ2
K−1(δ

2)

as n → ∞, where

δ2 = lim
n

K∑

k=1

n(pk − pk0)
2

pk0
=

K∑

k=1

η2
k

pk0
.

This result uses the multivariate central limit theo-
rem that the normalized random variables converge
to a multivariate normal as n → ∞:

ZT
n =

(
X1 − np10√

n
,
X2 − np20√

n
, . . . ,

XK − npK0√
n

)

d−−−→ ZT : NK((η1, η2, . . . , ηK), �0),

where the variance–covariance matrix of rank r =
K − 1 is

�0 =





p10 0 . . . 0
0 p20 . . . 0
...

...
. . .

...
0 0 . . . pK0



 −





p10

p20...
pK0





× (p10, p20, . . . , pK0).
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Using the above quadratic form result (1) with m =
K and the generalized inverse

�−
0 =





1/p10 0 . . . 0
0 1/p20 . . . 0
...

...
. . .

...
0 0 . . . 1/pK0



 ,

�0�
−
0 �0 = �0,

we have

Vn = ZT
n�−

0 Zn

d−−−→ V = ZT�−
0 Z : χ2

K−1(δ
2),

where

δ2 = (η1, η2, . . . , ηK)�−
0





η1

η2...
ηK



 =
K∑

k=1

η2
k

pk0
.

Setting ηk = 0 for the hypothesis, we have a limiting
central χ2

K−1(0) null distribution for Vn as n → ∞.
Similar chi-square approximations hold for chi-

square statistics in more complicated problems as
well as for the generalized likelihood ratio statistic
−2 loge(λ) of Wilks [6, 7].

More detailed references are [3, 5].
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Chi-square Distribution
If a random variable Z has a standard normal
distribution [written Z ∼ N(0, 1)], then W = Z2 is
said to have a χ2 distribution with one degree of
freedom (W ∼ χ2(1)). If Z1, Z2, . . . , Zk are inde-
pendent N (0, 1) random variables, then Wk = Z2

1 +
Z2

2 + · · · + Z2
k is said to have a χ2 distribution with

k degrees of freedom (Wk ∼ χ2(k)). This represen-
tation of a χ2 random variable gives it an additive
property important in applications: if U and V are
independent random variables, and U ∼ χ2(r) and
V ∼ χ2(s), then U + V ∼ χ2(r + s). This enables
independent testing procedures of the same hypothe-
sis to be combined.

The importance of the χ2 distribution in statistical
hypothesis testing initially derives from the follow-
ing observation. If a large number n of binomial
trials is performed with probability of success p in
each trial, and X is the random variable recording
the number of successes observed, then the normal
approximation to the binomial distribution of the
random variable X implies that if we write

W = (X − np)2

npq
≡ (X − np)2

np
+ (Y − nq)2

nq
, (1)

then W ∼ χ2(1) approximately, where q = 1 − p is
the failure probability, and Y = n − X is the number
of failures. This generalizes to considering a situation
in which on each trial k kinds of outcome can occur
(rather than just success or failure), to read:

∑ (observed − expected)2

expected

has approximately a χ2(k − 1) distribution if n is
large, with summation

∑
over the k classes. This

generalization was introduced by Karl Pearson in
1900. It can be applied to test the hypothesis that
the probabilities of outcomes corresponding to each
of the k classes each have specified values. This is
the celebrated goodness-of-fit test of Karl Pearson.
It extends to testing hypotheses where the probabil-
ities are assumed to have a general structure, as in
testing for independence of attributes in a two-way
contingency table.

Such tests are instances of a general theory of
hypothesis tests based on the likelihood ratio, which
uses chi-square as the large-sample distribution of a
test statistic under a null hypothesis (see Likelihood
Ratio Tests).

The probability distribution of a chi-square ran-
dom variable is described by a gamma density, as
was already shown in 1852 by the French statistician
Irenée-Jules Bienaymé (1796–1878).

Historical detail and an extensive exposition of the
theory and applications may be found in [1].
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Chi-square Tests

Karl Pearson [34] originated the chi-square test as
a goodness of fit test to determine if observed data
are consistent with a proposed probability model. To
use this test, we must partition the set of possible
outcomes into a set of r mutually exclusive categories
and count the number of observations falling into
each category. The Pearson statistic

X2 =
r∑

i=1

(Ni − mi)
2

mi

(1)

is an index of discrepancy between a set of observed
counts N1, N2, . . . , Nr in the r categories and the
corresponding set of expected counts m1, m2, . . . , mr

for the hypothesized probability model. Pearson
showed that, as the expected counts increase, the
distribution of X2 approaches a central chi-square
distribution with r − 1 degrees of freedom when
the null hypothesis is true. Hence, the hypothesized
model is rejected when the observed value of
X2 exceeds χ2

r−1,α , the upper α percentile of the
central chi-square distribution with r − 1 degrees of
freedom, for some specified significance level α.

In many situations the expected counts m1, m2,

. . . , mr are functions of unknown parameters that
must be estimated from the data. This would occur,
for example, in testing the fit of the normal distribu-
tion with unspecified mean and variance, testing the
fit of the Poisson distribution with an unspecified
mean, or testing the independence hypothesis in a
two-way contingency table. To achieve an asymp-
totic chi-square distribution for X2, the unknown
parameters must be estimated in an efficient manner
from the observed category counts N1, N2, . . . , Nr ,
and the degrees of freedom of the limiting chi-square
distribution must be adjusted for the effective num-
ber of estimated parameters. This was pointed out by
Fisher [10], who made adjustments to the degrees of
freedom in applications to contingency tables. Later,
Fisher [11] provided the first proof of the asymp-
totic chi-square distribution of X2 in the general case
where parameters are estimated from the data. We
refer the reader to [6, 23], and [35] for more infor-
mation on the early development of chi-square tests.

Tests with asymptotic chi-square distributions may
also be derived from likelihood ratio tests. For
testing a composite null hypothesis against a general

alternative with data consisting of Poisson, binomial,
or multinomial counts, the natural logarithm of the
likelihood ratio multiplied by −2 has the form

G2 = 2
r∑

i=1

Ni ln

(
Ni

m̂i

)
, (2)

where m̂1, m̂2, . . . , m̂r are maximum likelihood esti-
mates of the expected counts for the model corre-
sponding to the null hypothesis. This statistic is often
referred to as the deviance. The Pearson statistic for
a composite null hypothesis has the formula

X2 =
r∑

i=1

(ni − m̂i)
2

m̂i

. (3)

Both tests are members of the larger family of power
divergence statistics identified by Cressie & Read
[7]. Each member of this family of test statistics has
the same asymptotic chi-square distribution when the
null hypothesis is true, but different members have
somewhat different power for detecting different
types of departures from the null hypothesis in finite
samples.

Applications to the analysis of contingency tables
include chi-square tests of homogeneity for two
or more binomial distributions (see Two-by-Two
Table), or tests of homogeneity of two or more multi-
nomial distributions, which are used, for example, to
ascertain if different treatments are equally success-
ful for treating a certain health problem. In higher-
dimensional contingency tables chi-square tests are
used to test hypotheses about various types of condi-
tional independence and to assess the relative fit of
members of nested sets of models.

Accurate use of the asymptotic chi-square distri-
butions for these tests requires large values for the
expected counts. This is an issue of practical con-
cern as it limits the number of factor levels as well
as the number of factors that can be used to cross-
classify data in a contingency table. It also limits the
number of categories that can be used to test the fit
of a continuous distribution. Decisions must be made
about both the number of intervals and either interval
boundaries or the interval probabilities (see Catego-
rizing Continuous Variables; Grouped Data). The
power of the tests to detect deviations from the null
hypothesis is also affected by these choices.

Standard formulas for chi-square tests such as (2)
and (3) are derived from the assumption that the
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observed counts are distributed as either independent
Poisson counts, a single multinomial distribution, or
a set of two or more independent multinomial or
binomial distributions. The use of multinomial or
binomial distributions for counts can often be justified
through the use of simple random sampling. Large
international, national, or multicenter health stud-
ies, however, often employ more complex sampling
schemes which violate these standard assumptions
and invalidate the use of some tests (see Surveys,
Health and Morbidity). After reviewing standard
applications of chi-square tests, we briefly consider
some approaches to developing reliable chi-square
tests for complex survey data.

Simple Goodness-of-Fit Tests

We first consider the use of a chi-square test as
a goodness-of-fit test for a hypothesized distribu-
tion containing no unknown parameters. This is
called a test of a simple null hypothesis. To test
the simple null hypothesis that a set of observations
X1, X2, . . . , Xn is a random sample from a popu-
lation with continuous distribution function F(x) =
Pr(X ≤ x), we partition the set of possible values
that could be observed into r nonoverlapping inter-
vals, say (a0, a1], (a1, a2], . . . , (ar−1, ar ]. When the
null hypothesis is true, the probability that any single
observation Xj falls into the ith interval is

πi = Pr(Xj falls in (ai−1, ai]) =
∫ ai

ai−1

dF(x), (4)

and the expected count for the ith interval is mi =
nπi . The null hypothesis is rejected if

X2 =
r∑

i=1

(Ni − mi)
2

mi

≥ χ2
r−1,α.

The limiting chi-square distribution has r − 1 degrees
of freedom because the r counts must satisfy a single
constraint,

n =
r∑

i=1

Ni.

The interval probabilities and expected counts satisfy
corresponding constraints,

1 =
r∑

i=1

πi and n =
r∑

i=1

mi.

We illustrate this application of the Pearson statistic
with an analysis of the distribution of survival times
for male residents of a total care facility.

Example 1

We want to test the null hypothesis that the number of
months that male residents of a total care facility sur-
vive beyond age 65 has an exponential distribution
with mean 180 months. Survival times beyond age
65 were recorded for a sample of 48 male residents,
and the sorted times are shown in Table 1.

First, we partition the positive part of the real line
into four adjacent intervals with probabilities π1 =
π2 = π3 = π4 = 0.25. The boundaries of the inter-
vals are a0 = 0, a1 = −180 ln(0.75) = 51.8, a2 =
−180 ln(0.5) = 125.8, a3 = −180 ln(0.25) = 249.5,
and a4 = ∞. The observed counts in these four inter-
vals are (5, 8, 21, 14), the expected counts are m1 =
m2 = m3 = m4 = 12, and the value of the Pearson
statistic is

X2 = (5 − 12)2

12
+ (8 − 12)2

12
+ (21 − 12)2

12

+ (14 − 12)2

12
= 12.5.

The null hypothesis is rejected at the α = 0.01
level of significance because 12.5 > 11.34 = χ2

3,0.01.
Consequently, the observed data are deemed to be
inconsistent with a random sample of 48 survival
times from an exponential distribution with mean
180 months.

Other Tests with Limiting Chi-Square
Distributions

As previously noted, tests with limiting chi-square
distributions are also obtained from likelihood ratio
tests. The result that the natural logarithm of a

Table 1 Ordered survival times for male residents
(months)

1 89 118 165 203 232 256 295
3 92 127 168 209 233 263 300

15 96 129 177 213 242 264 305
31 107 147 186 214 249 273 314
34 113 148 189 218 251 279 348
52 114 152 191 229 255 280 359
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ratio of likelihoods multiplied by −2 has a limiting
central chi-square distribution as the sample size
becomes large, when the null hypothesis is true, was
established under fairly general conditions by Wilks
[54] and Wald [53]. For the simple goodness-of-fit
test described in the previous section, the test statistic
has the form

G2 = 2
r∑

i=1

Ni ln

(
Ni

mi

)
. (5)

Two other statistics that have received some attention
are the Freeman–Tukey [12] statistic

FT2 = 4
r∑

i=1

(√
Ni − √

mi

)2
(6)

and the Neyman [33] modified chi-square statistic

X2
m =

r∑

i=1

(Ni − mi)
2

Ni

. (7)

These statistics are all members of the larger class
of power divergence statistics identified by Cressie &
Read [7]. Using

p = (p1, p2, . . . , pr)
′ =

(
Ni

n
,
N2

n
, . . . ,

Nr

n

)′

to denote the vector of observed proportions, and

π = (π1, π2, . . . , πr)
′

to denote the corresponding vector of true probabil-
ities for the hypothesized distribution, the directed
divergence of order λ of p from π is

Iλ(p, π) = 1

λ(λ + 1)

r∑

i=1

pi

[(
pi

πi

)λ

− 1

]
.

Although this quantity is a metric only for λ = −1/2,
it provides a useful generalized information measure
of the “distance” between p and π for any real
number λ. For a test of a simple hypothesis, the
divergence statistic

−2nIλ(p, π) = 1

λ(λ + 1)

r∑

i=1

Ni

[(
Ni

mi

)λ

− 1

]

(8)

has an asymptotic chi-square distribution with r − 1
degrees of freedom as n → ∞. The Pearson statistic

is obtained from (8) when λ = 1, the deviance is
the limit as λ → 0, the Freeman–Tukey statistic
corresponds to λ = −1/2, and the Neyman statistic
is the limit as λ → −1.

For large samples, all members of the power
divergence family have distributions that approach
the same limiting chi-square distribution when the
null hypothesis is correct, but different members
may have different power for detecting different
kinds of alternatives to the null hypothesis in small
and moderate samples. No single member of this
family dominates the other members with respect
to power against all alternatives. Read & Cressie
[43] suggest that values of λ between 1

3 and 4
5

provide a good compromise between relatively good
power against most alternatives and the ability of the
limiting chi-square distribution to approximate the
distribution of the test statistic in small samples when
the null hypothesis is true. This includes the Pearson
statistic but excludes the deviance, Freeman–Tukey,
and Neyman statistics. Read & Cressie recommend
the power divergence test with λ = 2

3 , but we prefer
the Pearson statistic because it exhibits very similar
properties, it is well known and widely used, and it is
commonly available in statistical software packages.

Wald Tests

To provide a broader view of the construction
and uses of chi-square tests we consider a
general approach for constructing chi-square tests
from quadratic forms called Wald statistics (see
Likelihood). The Pearson statistic can be derived as
a Wald statistic, but this approach can be used to
construct chi-square tests in many situations where
the Pearson statistic does not have a limiting chi-
square distribution.

To construct a Wald statistic, we must first
select an r-dimensional random vector Yn =
(Y1n, Y2n, . . . , Yrn)

′ that summarizes how results from
a set of n observations deviate from what is expected
to occur when the null hypothesis is true. A Wald
statistic is a quadratic form,

Y′
nCYn =

r∑

i=1

r∑

j=1

cij YinYjn, (9)

where C is an appropriate r × r symmetric matrix,
and cij is the value in the ith row and j th column
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of C. To obtain a test statistic with a limiting central
chi-square distribution, we must select Yn so that it
has a limiting multivariate normal distribution with
mean vector 0 = (0, 0, . . . , 0)′ as n → ∞ when the
null hypothesis is true. Finally, the matrix C must
satisfy the condition

�C� = �, (10)

where � is the covariance matrix for the limiting
distribution of Yn. The number of degrees of freedom
for the limiting chi-square distribution of (9) is the
trace of the matrix C�.

If �−1 exists, then C = �−1 is the unique solution
to the condition of Eq. (10). It follows that the
quadratic form

Y′
n�

−1Yn (11)

provides a large sample chi-square test with r degrees
of freedom as n → ∞. On the other hand, if � does
not have an inverse, then there will be an infinite
number of choices for C that satisfy (10). Each of
these choices will yield exactly the same value for
(9), however, so it does not matter which one is used.
In such cases, the degrees of freedom for the chi-
square test, given by the trace of C�, will be less
than r . The inverse of � will not exist when the
components of Yn exactly satisfy one or more lin-
ear constraints. Then, individual components of Yn

have perfect correlation with linear combinations of
other elements of Yn, so some components of Yn are
redundant. Another way to deal with this situation is
to reduce the dimension of Yn by deleting the mini-
mum number of components required to break all of
the linear constraints. There are many choices for the
subset of components that can be deleted. Each choice
corresponds to choosing a different C to satisfy (10)
and results in the same value for the test statistic.
Subtracting the number of deleted components from
r gives the degrees of freedom for the chi-square test.

We will illustrate this recipe for constructing
chi-square tests by using it to construct a simple
goodness-of-fit test. In this application the set of
possible outcomes is partitioned into a set of r

nonoverlapping intervals. We use πi to denote the
probability that a random observation falls into the ith
interval when the hypothesized distribution is correct.
These probabilities are collected into the vector

π = (π1, π2, . . . , πr )
′.

For a simple random sample of n observations,
X1, X2, . . . , Xn, the vector of observed counts for the
r intervals, N = (N1, N2, . . . , Nr)

′, has a multinomial
distribution with sample size n and probability vector
π when the hypothesized distribution is correct.
Using

p = (p1, p2, . . . , pr)
′ =

(
N1

n
,
N2

n
, . . . ,

Nr

n

)′

to denote the vector of observed proportions, we
consider the vector of scaled differences

Yn = n1/2(p − π).

When the null hypothesis is true, Yn has a limiting
normal distribution where the means are all zero and
the covariance matrix is � = (�π − ππ ′). Here �π

denotes a diagonal matrix with the elements of π on
the main diagonal. It is easy to verify that C = �−1

π

satisfies the condition of (10). Consequently, a large
sample chi-square test is given by the quadratic form

Y′
n�

−1
π Yn = n(p − π)′�−1

π (p − π)

= (N − m)′�−1
m (N − m),

which is a matrix expression for the Pearson statistic
in (1). Here, m = nπ .

In this case, the Wald statistic is equivalent to
the Pearson statistic, but this is not always true.
For a simple goodness-of-fit test, appropriate use of
the Pearson statistic as a chi-square test depends on
�, the covariance matrix for the limiting normal
distribution of Yn = n1/2(p − π). If �π does not
satisfy the condition of (10) for the given �, then the
Pearson statistic is not equivalent to a Wald test and
neither the Pearson statistic nor any other member
of the family of power divergence statistics has a
limiting chi-square distribution.

There are many other uses for Wald tests. For
example, Yn could be the difference between a vector
of parameter estimates and a vector of hypothesized
values for those parameters. Then the Wald test is
used to simultaneously test that all the hypothesized
parameter values are correct. Wald tests also provide
a convenient way to obtain large sample chi-square
tests for complex survey data.

Theoretical results for asymptotic chi-square
distributions of quadratic forms are presented by
Serfling [48, pp. 128–130] and Moore & Spruill
[31]. Moore [29] provides straight forward extensions
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to situations where � depends on the values of
parameters that must be estimated from the data.

Goodness-of-Fit Tests for Composite
Hypotheses

Suppose we want to test the composite null
hypothesis that observations X1, X2, . . . , Xn were
randomly sampled from a population distribution
function in some family of distribution functions
denoted by F(x; θ), where members of the family
are distinguished by a vector of parameters θ =
(θ1, θ2, . . . , θk)

′. For example, we may wish to test
the hypothesis that the observed data were randomly
sampled from a normal distribution with unknown
mean and variance. The construction of a chi-
square test for a composite null hypothesis requires
estimation of θ as well as the selection of a partition
of the real line into nonoverlapping intervals.

The formula for the test statistic and the related
degrees of freedom will depend on the manner in
which parameters are estimated and boundaries of
the intervals are determined. There are two basic
approaches. In the first approach the interval bound-
aries −∞ = a0 < a1 < · · · < ar = ∞ are selected
before the data are observed. Then, the expected
counts are functions of unknown parameters that must
be estimated from the observed data. The form of
the chi-square test and the resulting degrees of free-
dom will vary depending on whether the original
observations, X1, X2, . . . , Xn, or the interval counts,
N1, N2, . . . , Nr , are used to estimate θ . In the second
approach, interval probabilities π = (π1, π2, . . . , πr )

′
are specified. This fixes the values of the expected
counts, but the interval boundaries depend on θ and
must be estimated from the observed data before the
interval counts can be computed. The first approach
is said to use fixed intervals and the second approach
is said to use random intervals.

Chi-Square Tests with Fixed Intervals

Without considering the observed data, specify
boundaries −∞ = a0 < a2 < · · · < ar = ∞ for r

nonoverlapping intervals. Let N = (N1, N2, . . . , Nr)
′

denote the corresponding vector of observed
counts obtained by classifying the observations,
X1, X2, . . . , Xn, into the r intervals. The expected

count for the j th interval is mj(θ) = nπj (θ), where

πj (θ) = Pr(aj−1 < Xi ≤ aj ) =
∫ aj

aj−1

dF(x; θ).

(12)

The null hypothesis is tested by comparing the
observed counts to the estimates of the expected
counts obtained by substituting an appropriate esti-
mate of θ into (12).

The Pearson statistic, or any other member of
the power divergence family, provides a test with
an asymptotic central chi-square distribution if θ is
estimated from the observed counts (N1, N2, . . . , Nr)

instead of the original observations X1, X2, . . . , Xn.
Typically, the maximum likelihood estimator (mle) of
θ for the multinomial distribution of (N1, N2, . . . , Nr)

is used, but any other asymptotically equivalent esti-
mator could also be used.

Example 2

As an illustration, we use the Pearson statistic to test
the composite null hypothesis that the data in Table 1
were randomly sampled from an exponential distribu-
tion with unknown mean θ . The distribution function
is F(x; θ) = 1 − exp(−x/θ) and the density function
is f (x; θ) = θ−1 exp(−x/θ) for x > 0 and θ > 0.
Using the r = 4 intervals, (0, 51.8], (51.8, 125.8],
(125.8, 249.5], (249.5, ∞], considered in Exam-
ple 1, the observed counts are (N1, N2, N3, N4) =
(5, 8, 21, 14).

From (12) the probability that a randomly selected
observation from the hypothesized distribution falls
into the j th interval is

πj (θ) =
∫ aj

aj−1

θ−1 exp

(−x

θ

)
dx

= exp

(−aj−1

θ

)
− exp

(−aj

θ

)
(13)

and the expected counts are mj(θ) = nπj (θ), for j =
1, 2, 3, 4. An estimate of θ is obtained by maximizing
the log likelihood function

l(θ ; N1, N2, . . . , Nr) = ln(n!) −
r∑

j=1

ln(Nj !)

+
r∑

j=1

Nj ln

[
exp

(−aj−1

θ

)
− exp

(−aj

θ

)]
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for the multinomial distribution of the observed
counts. The first derivative of the log likelihood
function with respect to θ is

SN(θ) =
r∑

j=1

Nj∂πj (θ)

πj (θ)∂θ
(14)

= 1

θ2

r∑

j=1

Nj

πj (θ)

[
aj−1 exp

(−aj−1

θ

)
− aj

× exp

(−aj

θ

)]
. (15)

This is called the score function. The mle for θ is
obtained by setting the score function equal to zero
and solving the resulting equation for θ . In this case
the solution cannot be expressed as a simple function
of the observed counts, but a numerical solution can
be obtained. The resulting mle is θ̂N = 239.48. This
estimator is given the subscript N to indicate that it
is the mle for θ computed from the interval counts.

Substituting θ̂N for θ in (13), we obtain estimates
of expected counts

m1(θ̂N) = 9.34, m2(θ̂N) = 10.28,

m3(θ̂N) = 11.45, n4(θ̂N) = 16.93,

and the value of the Pearson statistic is

X2 =
r∑

j=1

[Nj − mj(θ̂N)]2

mj(θ̂N)
= 10.99. (16)

This test has r − k − 1 = 4 − 1 − 1 = 2 degrees of
freedom. Since X2 = 10.99 exceeds χ2

2,0.01 = 9.21,
the hypothesis that the data were sampled from an
exponential distribution is rejected at the 0.01 level.

Alternatively, the original observations, X1, X2,

. . . , Xn, could be used to estimate unknown parame-
ters in the hypothesized family of distributions. This
avoids loss of information encountered in using inter-
val counts. When an mle θ̂X is computed from the
original observations; however, neither the Pearson
statistic, nor any other member of the power diver-
gence family of tests, has a limiting chi-square distri-
bution when the null hypothesis is correct. Chernoff
& Lehmann [5] showed that the Pearson statistic has
a limiting distribution, corresponding to a linear com-
bination of independent chi-square random variables
in this case.

Greenwood & Nikulin [14] show that a Wald
statistic with a limiting chi-square distribution can be

written as the sum of a Pearson statistic and a cor-
rection term. In this version of the Pearson statistic,
estimates of the expected counts are evaluated using
θ̂X instead of θ̂N. The formula for the test statistic is

X2
NR =

r∑

j=1

[Nj − mj(θ̂X)]2

mj(θ̂X)
+ SN(θ̂X)′[JX(θ̂X)

− JN(θ̂X)]−1SN(θ̂X), (17)

where the k × 1 vector SN(θ̂X) is the score func-
tion of the multinomial likelihood for the interval
counts (N1, N2, . . . , Nr) evaluated at θ̂X, JN(θ̂X) is
the Fisher information matrix for the multinomial
likelihood function of the interval counts evaluated
at θ̂X, and JX(θ̂X) is the Fisher information matrix
for the likelihood function of the original observa-
tions evaluated at θ̂X. The large sample chi-square
distribution for X2

NR has r − 1 degrees of freedom
when r intervals are used.

Example 3

As in Example 2, we test the composite null hypoth-
esis that the data in Example 1 were randomly sam-
pled from an exponential distribution with unknown
mean θ . We use the same class intervals, but the
mle for the hypothesized exponential distribution of
X1, X2, . . . , Xn will be used to estimate θ in the eval-
uation of the expected counts.

The log likelihood function for the hypothesized
exponential distribution is

l(θ ; X) = −n ln(θ) − θ−1
n∑

i=1

Xi.

Setting ∂l(θ ; X)/∂θ equal to zero and solving the
resulting equation yields the sample mean,

θ̂X = n−1
n∑

i=1

Xi = 186,

as the mle for θ . Substituting θ̂X for θ in (13) yields
estimates of expected counts

m1(θ̂X) = 11.67, m2(θ̂X) = 12.93,

m3(θ̂X) = 11.86, m4(θ̂X) = 12.55,

and the resulting value of the Pearson statistic is

X2 =
r∑

j=1

[Nj − mj(θ̂X)]2

mj(θ̂X)
= 12.32.
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To obtain the correction term, we evaluate the
multinomial score function given by (15) at θ̂X = 186
to obtain SN(θ̂X) = 0.0514814. Since there is only
one parameter, the Fisher information matrix for
the multinomial distribution of the interval counts
contains a single element

JN(θ) = E

(
−δ2l(θ ; N)

δθ2

)
= n

θ4

r∑

j=1

1

πj (θ)

×
[
aj−1 exp

(−aj−1

θ

)
− aj exp

(−aj

θ

)]2

.

(18)

The Fisher information matrix for the hypothe-
sized exponential distribution of the original obser-
vations is

JX(θ) = n

θ2
. (19)

Evaluating (18) and (19) at θ̂X = 186 yields JN(θ̂X) =
0.0010056, JX(θ̂X) = 0.0013874 and a correction of
6.94 to the Pearson statistic. Then, the value of the
test statistic is

X2
NR = 12.32 + 6.94 = 19.26.

This exceeds χ2
3,0.001 = 11.34, and the null hypothesis

is rejected at the 0.001 level.

Chi-Square Tests with Random Intervals

In this approach the interval probabilities π1, π2, . . . ,

πk are specified and the interval boundaries must
be estimated before the counts can be evaluated.
For a hypothesized distribution function F(x; θ), the
interval boundaries are defined as

aj (θ) = F−1(π1 + π2 + · · · + πj ; θ), (20)

for j = 1, 2, . . . , k, where F−1(c; θ) ≡ inf[x: F(x; θ)

≥ c]. The boundaries are estimated by replacing
θ in (20) with θ̂X, the maximum likelihood esti-
mator (mle) computed from the original observa-
tions X1, X2, . . . , Xn. The count for the j th interval,
denoted by N∗

j , is the number of observations falling
in the random interval (aj−1(θ̂X), aj (θ̂X)].

A Wald test with a limiting chi-square distribution
when F(x; θ) is the correct distribution function was
developed by Rao & Robson [37]. This test statistic

can also be written as a Pearson statistic plus a
correction term,

X2
RR =

r∑

j=1

(N∗
j − nπj )

2

nπj

+ D(θ̂x)
′[Jx(θ̂x)

− nW(θ̂x)�
−1
π W(θ̂x)]

−1D(θ̂x), (21)

where �π is a diagonal matrix with the elements of
(π1, π2, . . . , πk) on the main diagonal, W(θ̂X) is a
k × r matrix with (i, j ) element

wij = f [aj−1(θ); θ]
∂aj−1(θ)

∂θi

− f [aj (θ); θ]
∂aj (θ)

∂θi

,

and D(θ̂X) is a k × 1 vector where the ith element is

di =
r∑

j=1

wij

N∗
j

πj

.

Here f (x; θ) is the density function for the hypothe-
sized distribution.

Example 4

We test the composite null hypothesis that the data
in Table 1 are a random sample from an exponential
distribution with unknown mean θ . From Example
3, θ̂X = 186, and taking π1 = π2 = π3 = π4 = 0.25,
the interval boundaries are estimated as

aj (θ̂X) = −θ̂X ln

(
1 − j

r

)
.

Consequently, the intervals are (0, 53.51], (53.51,
128.93], (128.93, 257.85], (257.85, ∞], the observed
counts are (N∗

1 , N∗
2 , N∗

3 , N∗
4 ) = (6,8,23,11), and

X2 =
r∑

j=1

(N∗
j − n/r)2

n/r
= 14.5.

The correction term is evaluated with

∂aj (θ)

∂θi

= − ln

(
1 − j

r

)

and

wij = θ̂−1
X

{
ln

(
1 − j

r

)
exp

[
−aj

θ̂X

θ̂X

]

− ln

[
1 − j − 1

r

]
exp

[
−aj−1

θ̂X

θ̂X

]}
.
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Then,

W(θ̂X) = [−0.001160, −0.000703, 0, 0.001863],

D(θ̂X) = 0.031639, and

X2
RR = 14.5 + 2.72 = 17.22,

with r − 1 = 3 degrees of freedom. This test also
rejects the null hypothesis that the observations were
sampled from an exponential distribution at the 0.001
level.

Greenwood & Nikulin [14] provide a thorough
review of chi-square tests with fixed and random
intervals that includes proofs of the asymptotic chi-
square distributions. Special formulas are presented
for testing the fit of the normal distribution, location-
scale families of continuous distributions, and both
discrete and continuous members of the exponential
family of distributions. They also review the litera-
ture on selection of intervals and the small sample
behavior of these tests.

Selection of the number of intervals and either
the interval boundaries or the interval probabilities
affects both the power of a test to detect deviations
from the hypothesized distribution and the accuracy
of the chi-square distribution as an approximation
of its finite sample distribution when the hypothe-
sized distribution is correct. Generally, r equiprob-
able intervals are recommended when nothing is
assumed about likely alternatives to the hypothesized
distribution. Since accurate use of the asymptotic chi-
square approximation requires large expected counts,
r should not be taken to be too large. Choosing a
value for r that is either too large or too small may
reduce the power of the test against many alterna-
tives. For a sequence of tests with r = 2, 3, 4, . . .

equiprobable intervals, power against most alterna-
tives initially increases, reaches a maximum at some
value of r , and then declines as more intervals
are used. Based on a large-sample approximation
derived by Mann & Wald [26] and later refined by
Schorr [47], Moore [30] recommends using roughly
r = 2n2/5 equiprobable intervals for a sample of n

observations. Simulation results reported by Koehler
& Gan [21] suggest that using fewer intervals, say
r = n2/5, provides better power against many alter-
natives. Greenwood & Nikulin [14] recommend r ≤
min[α−1, ln(n)], where α is the significance level of
the test.

Simulation result reported by Kallenberg [18] indi-
cate that appreciable gains in power can sometimes be
achieved by using nonequiprobable intervals. Power
for detecting heavy tailed alternatives, for exam-
ple, may be improved by using more intervals with
smaller probabilities in the tails of the distribution. A
greater gain in power against a specific class of alter-
natives can often be achieved, however, by using a
test that more directly focuses on the specific class
of alternatives than the omnibus chi-square tests con-
sidered in (16), (17), and (21).

In testing the fit of a continuous distribu-
tion, the conversion of the original observations
X1, X2, . . . , Xn into interval counts generally results
in some loss of information. When the values
of X1, X2, . . . , Xn are available, more powerful
goodness-of-fit tests can be obtained from methods
based on empirical distribution functions or proba-
bility plots. A variety of such tests are reviewed by
Stephens [49, 50]. Unlike the chi-square tests consid-
ered in (16), (17), and (21), these tests typically do not
have convenient asymptotic distributions. Limiting
distributions generally depend on the hypothesized
distribution and they are often intractable. Tables of
finite sample percentiles (see Quantiles) exist for
testing the fit of a few distributions, but use of these
tests may require Monte Carlo simulation of finite
sample critical values.

Finally, tests with asymptotic chi-square distribu-
tions that use the original observations and do not
require the classification of observations into inter-
vals can be derived from the asymptotic normality
of the score function for the hypothesized distribu-
tion. Such tests are called score tests. Further power
can be gained by restricting attention to classes of
alternative distributions with density functions that
deviate in a smooth manner from the density for the
hypothesized distribution. These are called smooth
tests of goodness of fit. Derivations and applica-
tions of score tests and smooth tests are reviewed
by Rayner & Best [41], who recommend the use of
smooth tests for testing the fit of continuous distribu-
tions and the use of the Pearson statistic for discrete
distributions.

Applications to Categorical Data

Chi-square tests provide the primary method for mak-
ing inferences from categorical response data. This
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Table 2 A two-way contingency table

Column factor

Row factor j = 1 j = 2 . . . j = J Row totals

i = 1 N11 N12 . . . N15 N1+
i = 2 N21 N22 . . . N25 N2+...

...
...

...
i = I NI1 NI2 . . . NIJ NI+

Column totals N+1 N+2 . . . N+J N++

includes tests of independence and homogeneity in
contingency tables and tests of significance about
parameters in logistic regression models and other
generalized linear models. We restrict out attention
to tests of independence or homogeneity in two-way
contingency tables. Additional applications can be
found in any book on logistic regression analysis,
generalized linear models, or categorical data anal-
ysis. These include the pioneering work on loglinear
models by Bishop et al. [3] and the more recent
overview of categorical data analysis by Agresti [2].
Fienberg [9] provides a good introduction to both the
asymptotic theory for chi-square tests and their use
in categorical data analysis.

In the construction of a two-way contingency
table, each observed response is classified with
respect to a finite set of exhaustive and nonoverlap-
ping categories for each of two factors. The form of
the table is shown in Table 2, where Nij is the num-
ber of responses achieving both the ith level of the
row factor and the j th level of the column factor.
The Pearson statistic for testing the null hypothesis
of independence (or no association) between the row
and column factors is

X2 =
I∑

i=1

J∑

j=1

(Nij − m̂ij )
2

m̂ij

, (22)

where m̂ij is the maximum likelihood estimate of the
expected count given by the formula

m̂ij = (row total) × (column total)

(total for entire table)
= Ni+N+j

N++
.

(23)

The deviance, or likelihood ratio test statistic, is

G2 = 2
I∑

i=1

J∑

j=1

Nij ln

(
Nij

m̂ij

)
. (24)

When the independence hypothesis is true, both
X2 and G2, as well as any other member of the
power divergence family, have asymptotic chi-square
distributions with (I − 1)(J − 1) degrees of freedom
if the counts are independent Poisson counts, or the
entire table of counts has a multinomial distribution,
or the rows of the table correspond to independent
multinomial or binomial distributions, or the columns
of the table correspond to independent multinomial or
binomial distributions.

Example 5

As part of a survey of attitudes toward primary health
care education and practice, independent random
samples of first-year medical students, fourth-year
medical students and postgraduate residents were
taken from national databases of the American Med-
ical Association and the Association of American
Medical Colleges [4]. Table 3 summarizes the spe-
cialty orientation of the respondents. Each column in
this table corresponds to an independent multinomial
distribution with four response categories.

In this case, the test of the hypothesis of inde-
pendence of intended specialty and academic status
is a test of homogeneity of the distributions across
intended specialties for the three groups. Table 4
shows the estimates of the expected counts obtained
from (23). The values of the Pearson statistic and
the deviance are X2 = 14.50 and G2 = 14.64, respec-
tively, both with (4 − 1)(3 − 1) = 6 degrees of free-
dom. The independence hypothesis is rejected at the
0.025 level of significance. Further inspection of data
reveals a slightly lower percentage of first-year stu-
dents orientated toward specialist careers, a lower
percentage of fourth-year students interested in inter-
nal medicine, and a slightly lower percentage of
residents orientated toward mixed and primary care
practice.

Table 3 Specialty orientation of respondents

Academic status

Specialty Year 1 Year 4 Residents Totals

Specialists 127 174 366 667
Internal medicine 29 19 72 120
Mixed 24 19 32 75
Primary care 71 95 175 341

Totals 251 307 645 1203
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Table 4 Expected counts for Table 3

Academic status

Specialty Year 1 Year 4 Residents Totals

Specialists 139.17 170.21 357.62 667
Internal medicine 25.04 30.62 64.34 120
Mixed 15.65 19.14 40.21 75
Primary care 71.15 87.02 182.83 341

Totals 251 307 645 1203

This example illustrates the most basic application
of a chi-square test to the analysis of a contingency
table. For details on applications to more complex
hypotheses, see Categorical Data Analysis, Contin-
gency Table, and Loglinear Model.

It is important to realize that the X2 and G2 tests
used in the previous example are not appropriate
for all tables of counts. When entries in a contin-
gency table do not correspond to either independent
Poisson counts, or a single multinomial distribution,
or several independent multinomial (binomial) dis-
tributions, then neither the Pearson statistic, nor the
deviance, nor other members of the power divergence
family will have limiting chi-square distributions.
Such tables of counts arise from the use of com-
plex sampling schemes involving various levels of
stratification and cluster sampling. They can also
arise in the analysis of longitudinal studies and
repeated measures studies, where several responses
are obtained from each respondent. Some care must
be exercised in constructing the table of counts and
selecting the test statistic.

As a simple illustration of a repeated measures
study, we consider the much analyzed vision data for
7477 women, aged 30–39, employed in Royal Ord-
nance factories in Britain. These data were analyzed
by Stuart [51], Grizzle et al. [15], and Bishop et al.
[3], among others. Each woman received two classi-
fications: one for quality of vision in the left eye and
the other for quality of vision in the right eye. To test
if the distributions across the four vision categories
are the same for right and left eyes, one might con-
sider computing the Pearson statistic for the counts in
Table 5. The large sample chi-square approximation
to the distribution of the Pearson statistic is inappro-
priate in this situation because it incorrectly treats
the rows of Table 5 as two independent multinomial
distributions. The rows of Table 5 are not indepen-
dent multinomial distributions because vision quality

in the right eye has a positive correlation with vision
quality in the left eye of individual women.

Example 6

To obtain a Wald statistic with a limiting chi-square
distribution, we must create a table of counts showing
both the left and right eye results for each woman in
the study. This is done in Table 6, where each woman
appears in exactly one cell of the table. A multinomial
distribution with 16 categories is appropriate for the
counts in this table. We want to test the hypothesis
that the distribution of the row totals is the same as
the distribution of the column totals. This is called a
test of marginal homogeneity.

To derive a Wald statistic, we use NL =
(1907, 2222, 2507)′ to denote the column vector of
counts in the three highest categories for left eye
quality. Similarly, we use NR = (1976, 2256, 2456)′
to denote a column vector of counts in the
three highest categories for right eye quality.
Corresponding vectors of proportions are PL = NL/n

and PR = NR/n, and we can express the marginal
homogeneity hypothesis as E(PL − PR) = 0. The
proportions for the fourth vision category are not
needed because proportions are constrained to sum
to one across the four categories for both the right
and left eyes.

Table 5 Vision quality for women employed in Royal
Ordnance factories

Vision category

Eye Highest Second Third Lowest Totals

Left 1907 2222 2507 841 7477
Right 1976 2256 2456 789 7477

Totals 3883 4478 4963 1630 14 954

Table 6 Vision quality for women employed in Royal
Ordnance factories

Left eye vision category
Right eye
category Highest Second Third Lowest Totals

Highest 1520 266 124 66 1976
Second 234 1512 432 78 2256
Third 117 362 1772 205 2456
Lowest 36 82 179 492 789

Totals 1907 2222 2507 841 7477
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Then, an appropriate Wald statistic is

X2
MH = n(PL − PR)′V−1(PL − PR), (25)

where V is a consistent estimate of the covariance
matrix for

√
n(PL − PR). A formula for V is derived

from the multinomial distribution for the counts in
Table 6 by noting that PL − PR = AP, where P =
n−1(N11N12N13N14N21 . . . N44)

′ denotes the sample
proportions from Table 6 arranged as a 16 × 1 col-
umn vector and

A =
[ 0 1 1 1 −1 0 0 0 −1 0 0 0 −1 0 0 0

0 −1 0 0 1 0 1 1 0 −1 0 0 0 −1 0 0

0 0 −1 0 0 0 −1 0 1 1 0 1 0 0 −1 0

]

Since P is a consistent estimate of the probability
vector for 16 joint vision categories, it follows that

V = A(�P − PP′)A

is a consistent estimator for the covariance matrix of√
n(PL − PR).
Evaluating V , PL, and PR from the data in Table 6,

X2
MH = 11.96 with three degrees of freedom and the

P value = 0.0075. The quality of vision is not the
same for both eyes, and further inspection of the data
reveals that quality of vision tends to be higher in the
right eye for this population of women.

For additional details and illustrations, see Square
Contingency Table and Matched Pairs With Cate-
gorical Data.

Randomization and Conditional Tests

The large-sample chi-square distribution for the Pear-
son statistic is also justified through randomly assign-
ing subjects to treatment groups. When the treatments
are equally effective, the randomization distribution
of the possible values of X2 corresponding to the
possible random allocations of subjects to treatment
groups will approximately have a chi-square distri-
bution (see Randomization Tests). The chi-square
approximation becomes more accurate as the number
of subjects increases.

We could compute an exact P value for a ran-
domization test searching through all possible tables
of counts with the same row and column totals as the
observed table of counts to determine the number of
tables with larger X2 values than the X2 value for

the observed table (see Fisher’s Exact Test). Devel-
opment of high-speed computers and efficient algo-
rithms, like the Mehta & Patel [28] algorithm, which
is able to avoid searching large blocks of tables with
small X2 values, have made it possible to apply this
approach to moderately large tables. When the row
and column totals are sufficiently large or the num-
ber of cells in the table is sufficiently large, even the
most efficient search can overwhelm any computer.
One alternative to searching through all the possi-
ble random allocations is to approximate the exact P

value from the results of a sample from the possible
random allocations. Agresti [1] provides an extensive
review of randomization tests for contingency tables
that includes a discussion of the controversy over
the use of tests that condition on observed marginal
counts.

Small Samples and Sparse Tables

The central chi-square distribution is a limiting dis-
tribution for X2, G2, and other members of the
power divergence family as expected counts become
infinitely large. It may not provide an accurate
approximation to the distribution of these statistics if
too many of the expected counts are too small. The
point at which the chi-square approximation begins
seriously to deteriorate depends on many factors,
including the number of cells in the table, the total
sample size, the relative sizes of the expected counts,
and the formula for the test statistic.

A commonly used rule of thumb is that no
expected count should be smaller than 1 and at
least 80% of the expected counts should be no
less than 5. This was part of the recommendations
made in Cochran’s extremely influential paper [6]
on chi-square tests. While this rule of thumb guar-
antees accurate use of the chi-square distribution in
computing P values for the Pearson statistic, simu-
lation studies by Roscoe & Byars [45], Radlow &
Alf [36], Larntz [24], Koehler & Larntz [22], and
Read [42], among others, have shown that it can
be relaxed for some members of the power diver-
gence family. Larntz [24] found that the chi-square
approximation for X2 was reasonably accurate when
expected counts were all larger than 1. Koehler &
Larntz [22] found that the chi-square approximation
for G2 deteriorates sooner, leading to inflated type I
error levels when many expected counts are between
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1 and 5 and to deflated type I error levels and substan-
tial loss of power when many expected counts were
smaller than 1. Read [42] found that in sparse tables
the chi-square distribution provided the most accurate
approximation to exact P values for members of the
power divergence family with λ in the interval [1/3,
3/2]. This includes X2, but excludes G2 and the Free-
man–Tukey tests. This conclusion is supported by
results reported by Kallenberg et al. [19], Rudas [46],
Margolin & Light [27], and Hosmane [17]. Read &
Cressie [43] recommend the power divergence statis-
tic with λ = 2/3, but the Pearson statistic exhibits
nearly the same behavior.

All members of the power divergence family of
test statistics have discrete distributions, and finding
a continuous distribution that provides a good general
approximation for sparse tables is difficult. When
a few, say k, of the r cells in a table of counts
have very small expected counts, X2 essentially
behaves as if the table only had the r − k cells
with the large expected counts, with the exception of
small probabilities at extreme values in the right tail
of the distribution. The C(m) distribution proposed
by Cochran [6] and further studied by Yarnold
[55] and Lawal & Upton [25] provides a good
approximation to the distribution of X2 in such
situations. The C(m) distribution is the distribution
of a chi-square random variable with reduced degrees
of freedom added to a weighted sum of squares
involving independent Poisson random variables with
small means. Although this approximation is useful
for understanding the behavior of X2 in the presence
of small expected counts, it has limited practical value
because percentiles of the C(m) distribution depend
on the number and values of the small expected
counts in the table.

Given the current availability of high-speed com-
puters, attractive alternatives to approximating the
distribution of X2, or some other member of the
power divergence family, for sparse tables involve
simulating the exact distribution of the statistic or
computing P values from an exact conditional dis-
tribution of the test statistic. The randomization test
of independence in a two-way contingency table
discussed earlier is an example of an exact condi-
tional test.

We have focused this discussion on tests of a
null hypothesis against a completely general or unre-
stricted set of alternatives. Chi-square approximations

for the distributions of X2 and G2 can provide reli-
able inferences in sparse tables of counts if the null
hypothesis is tested against a suitably restricted alter-
native. For example, Haberman [16] showed that
chi-square tests can be used to compare the fit of
two nested loglinear models to sparse contingency
tables (see Hierarchical Models). The basic criteria
are that the number of parameters in the larger model
and the difference in the number of parameters in the
two models both must be small relative to the total
sample size and number of cells in the table.

Correlated Responses and Complex
Surveys

When a table of counts is obtained by adding
across clusters and strata in a complex survey,
neither the Pearson statistic nor other members of the
power divergence family have asymptotic chi-square
distributions when the null hypothesis is true. Rao
& Scott [38] give a detailed account of the impact
of survey design on the distribution of X2 and G2.
Unless some adjustment is made to the standard chi-
square approximation, positive correlations among
responses within clusters lead to inflated type I error
levels for both X2 or G2. Computing cell counts
in a contingency table by combining results from
different strata can have the opposite effect. If data
from individual respondents are available, a Wald
statistic with an asymptotic chi-square distribution
can be constructed as described by Koch et al. [20].
Simulated comparisons of type I error levels and
power for sparse tables, reported by Thomas & Rao
[52], show that Wald tests can become unstable for
cluster sampling when there are few clusters relative
to the number of cells in the table, often resulting
in inflated type I error levels. A jackknife method
proposed by Fay [8] was shown to have better
properties over a wide range of conditions.

Sometimes complete data for the individual
respondents are not readily available and results
from complex surveys are summarized as a table of
counts with accompanying information of the survey
design effects. In these situations there is not enough
information to either evaluate a Wald statistic or use
Fay’s jackknife method. Rao & Scott [39] showed
how to create approximate chi-square tests by using
the information in the survey design effects to make
simple adjustments to X2 and G2. The Thomas &
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Rao [52] study also showed that these adjusted tests
provide relatively accurate P values.

Roberts et al. [44] and Rao et al. [40] use similar
adjustments for survey design effect to make infer-
ences about parameters in logistic regression models
fit to data from complex surveys. Morel [32] devel-
oped Wald tests for logistic regression. Gleser &
Moore [13] review the literature regarding the appli-
cation of goodness-of-fit tests to counts obtained from
serially dependent observations and show that posi-
tive serial correlation also inflates type I error levels
of chi-square tests.
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If ν is a positive integer, then the χ2 random variable
χ2(ν) with ν df is the sum of ν squared mutually
independent standard normal random variables (see
Chi-square Distribution). Thus the χ2 variable has
the additive property that, for positive integers ν

and νj , 1 ≤ j ≤ k, k ≥ 2, a χ2 variable with ν df
decomposes into a sum of k mutually independent χ2

variables, χ2(νj ), with respective νj df, 1 ≤ j ≤ k,
if ν = Σk

j=1νj .
In the case of quadratic functions of normal vari-

ables, the Fisher–Cochran theorem (Cochran [1], Rao
[30, p. 185]) provides a necessary and sufficient con-
dition for a sum of squares to be decomposed into
independent components with χ2 distributions. Let
Yi , 1 ≤ i ≤ ν, be ν independent standard normal vari-
ables, and let Y be the n-dimensional column vector
with coordinates Yi for 1 ≤ i ≤ n. For 1 ≤ j ≤ k, let
Aj be a symmetric n × n matrix with rank νj . Let

Y′Y =
k∑

j=1

Y′Aj Y.

Then the Y′Aj Y, 1 ≤ j ≤ k, are independent χ2(νj )

variables if and only if ν = ∑k
j=1 νj .

Such additive properties can be used in statisti-
cal inferential procedures. A χ2 statistic suitable for
testing a primary hypothesis of interest can be parti-
tioned into components such that each component is
a test statistic for a corresponding secondary hypoth-
esis. Under certain conditions, such partitioning can
lead to an insightful analysis of the problem under
study.

Chi-Square Partitioning into Chi-Square
Components

One of the earliest uses of a partition of a χ2 statis-
tic is found in Fisher [4, Chapter 9], who applies a
χ2 decomposition to study linkage in self-fertilized
heterozygote corn plants. A general description of
this approach is found in Cochran [2]. An addi-
tional early application appears in Haldane [20]. This
approach is analogous to decompositions of treatment
sums of squares in one-way analysis of variance.
Let ni, 1 ≤ i ≤ I , be frequencies with a multinomial

distribution with sample size N and with respec-
tive probabilities pi . Consider the simple hypothesis
that pi = qi, 1 ≤ i ≤ I , where the probabilities qi are
positive and have sum 1. Let mi = Nqi be the expec-
tation of ni under the null hypothesis. The classical
Pearson χ2 statistic is then

X2 =
I∑

i=1

(ni − mi)
2/mi

(see Chi-square Tests). As is well known, under the
null hypothesis, X2 has an asymptotic χ2(I − 1)

distribution. Fisher suggests use of fixed scores
xij , 1 ≤ i ≤ I, 1 ≤ j ≤ I − 1, such that

I∑

i=1

qixij = 0, 1 ≤ j ≤ I − 1,

I∑

i=1

qixij xik = 0, 1 ≤ j < k ≤ I − 1,

and

dj =
I∑

i=1

qix
2
ij > 0, 1 ≤ j ≤ I − 1.

If

Yj =
[

k∑

i=1

xij ni

]2 /
(nd2

j ), 1 ≤ j ≤ I − 1,

then

X2 =
I−1∑

j=1

Yj .

Under the null hypothesis the Yj , 1 ≤ j ≤ I − 1, are
asymptotically mutually independent random vari-
ables with χ2 (1) distributions. This decomposition
is particularly useful if the linear combinations∑I

i=1 pixij , 1 ≤ j ≤ I − 1, are meaningful in the
problem under study.

Chi-square partitions have been considered for the
χ2 test of independence of two polytomous variables.
Consider an I × J contingency table with frequen-
cies nij , 1 ≤ i ≤ I, 1 ≤ j ≤ J . Let the frequencies
have a multinomial distribution with sample size N

and respective positive probabilities pij . Let

ni· =
J∑

j=1

nij
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and

n·j =
I∑

i=1

nij .

Let m̂ij = ni·n·j /N . The customary Pearson χ2 test
statistic,

X2 =
I∑

i=1

J∑

j=1

(nij − m̂ij )
2/m̂ij ,

and the customary likelihood ratio test statistic,

L2 = 2
I∑

i=1

J∑

j=1

nij log(nij /m̂ij ),

both have asymptotic χ2
(I−1)(J−1) distributions under

the null hypothesis of independence of row and col-
umn variables. An early suggestion of a partition
appears in Pearson [28], who suggests the decom-
position

X2 =
I∑

i=1

X2
i ,

where

X2
i =

J∑

j=1

(nij − m̂ij )
2/m̂ij .

This decomposition is exact, but the components do
not have asymptotic χ2 distributions. As in Lancaster
[26] and Williams [31], an exact partition of X2 may
be based on the approach of Fisher [4]. Conditional
on the observed marginal totals ni· and n·j , select
scores xii ′ , 1 ≤ i ≤ I, 1 ≤ i ′ ≤ I − 1 and yjj ′ , 1 ≤
j ≤ J, 1 ≤ j ′ ≤ J − 1, so that

I∑

i=1

ni·xii ′ = 0, 1 ≤ i ′ ≤ I − 1,

I∑

i=1

ni·xii ′xii ′′ = 0, 1 ≤ i ′ < i ′′ ≤ I − 1,

ci =
I∑

i=1

ni·x2
ii ′ > 0, 1 ≤ i ′ ≤ I − 1,

J∑

j=1

n·j yjj ′ = 0, 1 ≤ j ′ ≤ J − 1,

J∑

j=1

n·j yjj ′yjj ′′ = 0, 1 ≤ j ′ < j ′′ ≤ J − 1,

dj =
J∑

j=1

n·j yjj ′ > 0, 1 ≤ j ′ ≤ J − 1.

Let

X2
i ′j ′ =

N
(∑I

i=1

∑J
j=1 nij xii ′yjj ′

)2

ci ′dj ′
,

1 ≤ i ′ ≤ I, 1 ≤ j ′ ≤ J.

Then

X2 =
I−1∑

i ′=1

J−1∑

j ′=1

X2
i ′j ′ . (1)

Under the null hypothesis, the X2
i ′j ′ are asymptot-

ically mutually independent χ2
(1) random variables.

Cochran [3] provides a number of analyses which
exploit this decomposition technique for applications
such as testing for a linear trend in binomial pro-
portions across levels of a quantitative covariate (see
Trend Test for Counts and Proportions) and testing
conditional independence between two binary vari-
ables while controlling for a third variable.

Lancaster [26] uses a special case of (1) to
suggest an approximate partition of X2 based on
conventional χ2 tests of independence for two-by-
two contingency tables formed from the original
table. This approximate partition is considered in
Cochran [2], Kimball [24], and Kastenbaum [23],
among others.

Kullback [25, pp. 173–174] and Gabriel [5] use
L2 to obtain decompositions based on tests of inde-
pendence of subtables and tests of independence of
collapsed tables. Let U be a partition of the integers
1 to I into p nonempty disjoint sets, and let V be a
partition of the integers 1 to J in q nonempty disjoint
sets. For a nonempty subset A of the integers 1 to I

and a nonempty subset B of the integers 1 to J , let

nAB =
∑

i∈A

∑

j∈B

nij , nA· =
∑

i∈A

ni·,

n·B =
∑

j∈B

n·j , nAj =
∑

i∈A

nij , 1 ≤ j ≤ J,

and
niB =

∑

j∈B

nij , 1 ≤ i ≤ I.
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Let

L2
·· = 2

∑

A∈U

∑

B∈V

nAB log

(
NnAB

nA·n·B

)

be the generalized likelihood ratio χ2 statistic for
testing the hypothesis H·· of independence for the
collapsed p × q table with elements nAB for A in U

and B in V , let

L2
A· = 2

∑

i∈A

∑

B∈V

niB log

(
niBnA·
ni·n·B

)
, A ∈ U,

be the likelihood ratio χ2 statistic for testing the
hypothesis HA· of independence for the column-
collapsed subtable with elements niB for i in A and
B in V , let

L2
·B = 2

∑

A∈U

∑

j∈B

nAj log

(
nAjn·B
nA·n·j

)
, B ∈ V,

be the likelihood ratio χ2 statistic for testing the
hypothesis H·B of independence for the row-collapsed
subtable with elements nAj for A in U and j in B,
and let

L2
AB = 2

∑

i∈A

∑

B∈V

niB log

(
niBnA·
ni·n·B

)
, A ∈ U, B ∈ V,

be the likelihood ratio χ2 statistic for testing the
hypothesis HAB of independence for the subtable with
elements nij for i in A and j in B.

Independence of the row and column variables of
the original table holds if and only if H·· holds, HA·
holds for all A in U , H·B holds for all B in V , and
HAB holds for all A in U and B in V . Thus

L2 = L2
·· +

∑

A∈U

L2
A· +

∑

B∈V

L2
·B +

∑

A∈U

∑

B∈V

L2
AB.

This decomposition may help to explain the depen-
dence in the original table in terms of dependence in
selected subtables and collapsed tables.

Let f (A) denote the number of elements in a set
A. Let

ν·· = (p − 1)(q − 1), νA· = [f (A) − 1](q − 1),

ν·B = (p − 1)[f (B) − 1],

and

νAB = [f (A) − 1][f (B) − 1],

so that

(I − 1)(J − 1) = ν·· +
∑

A∈U

νA· +
∑

B∈V

ν·B

+
∑

A∈U

∑

B∈V

νAB.

Adopt the convention that a χ2 variable with zero
degrees of freedom is a random variable which is
always zero. The components in this decomposition
are asymptotically independent under the null hypoth-
esis and have asymptotic χ2 distributions. Under the
null hypothesis, the following asymptotic approxima-
tions apply:

L2
·· ∼χ2(ν··), L2

A· ∼χ2(νA·), L2
·B ∼χ2(ν·B),

and
L2

AB ∼ χ2(νAB).

Iverson [22] provides examples of repeated appli-
cation of this decomposition. Replacement of like-
lihood ratio χ2 statistics with Pearson χ2 statistics
leads to an approximate partition of χ2 that includes
Lancaster’s decomposition as a special case. Gilula &
Krieger [9, 10] derive a different yet analogous way
of partitioning χ2 which is exact for both L2 and X2.

Decompositions of the Pearson χ2 have been
much less successful in the case of multiway contin-
gency tables, with the notable exception of Cochran’s
[3] decomposition of the Pearson χ2 for conditional
independence. An early attempt by Lancaster [27]
was shown by Plackett [29] to be unsatisfactory. Use-
ful χ2 decompositions for multiway tables appear in
Kullback [25, pp. 159–171], Goodman [11–14] and
Haberman [18, Chapter 4]. These decompositions are
based on likelihood ratio tests.

The likelihood ratio χ2 provides a very general
source of partitions of χ2. In a typical example, a
d-dimensional parameter θ with coordinates θj , 1 ≤
j ≤ d, is used to specify the distribution of some
n-dimensional random vector Y. The parameter θ is
in the interior of a d-dimensional parameter space
Θ . Associated with the observation Y is a likelihood
function L on Θ . Let γ be a member of the interior
of Θ , and let γi be the ith coordinate of γ . For
each integer q from 0 to d, consider the hypothesis
Hq that θi = γi, q < i ≤ d. Let Mq be the maximum
value of the likelihood L(θ̂q) under the condition
that θ̂q is in Θ and has ith coordinate equal to γi
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for i > q. Let q(j), 1 ≤ j ≤ k, k > 1, be integers
such that 0 ≤ q(1), q(k) ≤ d, and q(j) < q(j + 1)

for 1 ≤ j < k. Let

L2(q, r) = 2 log(Mr/Mq)

be the likelihood ratio χ2 for the null hypothesis
that Hq and the alternative hypothesis Hr for 0 ≤
q < r ≤ d. Integers q and r are given such that r <

q < d. For any q(j), 1 ≤ j ≤ k, k ≥ 2, such that 0 ≤
q(1), q(k) ≤ d, and q(j) < q(j + 1), 1 ≤ j < k, one
obtains the decomposition

L2[q(1), q(k)] =
k−1∑

j=1

L2[q(j), q(j + 1)].

Under common regularity conditions, L2[q(1), q(k)]
and L2[q(j), q(j + 1)] have asymptotic χ2 distri-
butions under Hq(1), and the L2[q(j), q(j + 1)] are
asymptotically independent.

Of particular interest is the decomposition of χ2

in Goodman [12] for a three-way contingency table.
Let nijk be an I × J × K contingency table which
represents a cross classification of the polytomous
variables A, B, and C, respectively, so that nijk is
the number of observations with A = i, B = j , and
C = k. In the proposed decomposition, H1 is the
hypothesis that A, B, and C are mutually indepen-
dent, H2 is the hypothesis that A and B are jointly
independent of C, H3 is the hypothesis that A and
C are conditionally independent given B, H4 is the
hypothesis that A, B, and C are related by a model
of no three-factor interaction, and H5 is the satu-
rated model that makes no assumptions about the
relationships among A, B, and C. One obtains the
decomposition

L2(1, 5)=L2(1, 2) + L2(2, 3) + L2(3, 4) + L2(4, 5).

In this decomposition, L2(1, 2) is the conventional
likelihood ratio χ2 for a test of marginal indepen-
dence of A and B, L2(2, 3) is the conventional like-
lihood ratio χ2 for a test of independence of B and
C, L2(3, 4) is the test of interaction of A and C given
validity of the model of no three-factor interaction,
and L2(4, 5) is the test of validity of the model of
no three-factor interaction. The statistic L2(1, 5) is a
test of validity for the model of mutual independence
of A, B, and C. For generalizations to more complex
tables, see [13] and [14].

Partitioning of χ2 can also be used in contexts
different from contingency tables and categorical data
(e.g. [6]).

Chi-Square Partitioning into
Non-Chi-Square Components

Hirschfeld [21] provides an alternative decomposition
of the Pearson χ2 based on canonical correlations.
This decomposition forms the basis of correspon-
dence analysis [17]. Consider the two-way table
with frequencies nij , 1 ≤ i ≤ I, 1 ≤ j ≤ J , sample
size N , and cell probabilities pij . Let

pi· =
J∑

j=1

pij , 1 ≤ i ≤ I,

and

p.j =
I∑

i=1

pij , 1 ≤ j ≤ J,

denote the row and column marginal probabilities,
respectively. Let K = min(I − 1, J − 1). Then the
canonical decomposition of pij is

pij = pi·p·j

(
1 +

K∑

k=1

ρktikujk

)
, (2)

where ρk is nonincreasing in k,

I∑

i=1

pi·tik =
J∑

j=1

p.jujk = 0, 1 ≤ k ≤ K,

and

I∑

i=1

pi·tiktik′ =
J∑

j=1

p·jujkujk′ =
{

1, k = k′,
0, k �= k′.

The canonical decomposition of nij is

nij = m̂ij

(
1 +

K∑

k=1

rk t̂ikûjk

)
, (3)

where |rk| is nonincreasing in k,

I∑

i=1

ni· t̂ik =
J∑

j=1

n·j ûjk = 0, 1 ≤ k ≤ K,
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and

I∑

i=1

ni· t̂ik t̂ik′ =
J∑

j=1

n·j ûjkûjk′ =
{

N, k = k′,
0, k �= k′.

With this decomposition, the Pearson χ2 statistic X2

for testing independence of row and column variables
satisfies

X2 = N

K∑

k=1

r2
k =

K∑

k=1

W 2
k ,

where

W 2
k = N−1




I∑

i=1

J∑

j=1

nij t̂ikûjk




2

.

Unless K = 1, this decomposition does not lead
to components with χ2 distributions, as shown in
Haberman [19]. Nonetheless, the size of the W 2

k does
provide an indication as to which ρk may be zero.
Goodman [15, 16] and Gilula & Haberman [7, 8],
among others, consider models in which, for some
integer q from 0 to K , it is assumed that ρk = 0 for
k > q.
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Choi–Williams
Distribution

The Choi–Williams distribution is a transform that
represents the spectral content of nonstationary sig-
nal with a bidimensional time–frequency map. How
well a time-frequency distribution represents a non-
stationary signal depends on how fast the changes in
the frequency content of the signal are. When they
are relatively slow, the standard method of repre-
sentation is the spectrogram, that is, the calculation
of the Fourier (see Fast Fourier Transform (FFT))

spectrum over a short-time running window. When
the spectral characteristics change more rapidly, a
higher resolution in time and frequency is needed,
and methods like the Wigner–Ville Distribution are
preferred. A large class of time–frequency distribu-
tions of a signal s(t) can be defined as

P(t, ω) = 1

4π2

∫∫∫
s∗

(
t − 1

2
τ

)
s

(
t + 1

2
τ

)

× e−jθt−jωτ+jθuφ(θ, τ ) du× dτ × dθ (1)

where s∗(t) is the complex conjugate of s(t), ω

is the angular frequency 2πf , and φ(θ, τ) is a
kernel that defines the type of distribution. For
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Figure 1 Comparison of time–frequency distributions for a multicomponent signal s(t) = s1(t) + s2(t), where s1(t) is
a 0.1-Hz sinusoid defined between 10 and 90 s and s2(t) is a 0.4-Hz sinusoid defined between 30 and 70 s. One expects
an “ideal” distribution to show just two components, one at 0.1 Hz and one at 0.4 Hz, within the time periods 10–90 s
and 30–70 s respectively. The spectrogram is a low-resolution approximation of the ideal distribution; the Wigner–Ville
distribution shows a better resolution but also significant interferences; the Choi–Williams distribution provides a large
suppression of interference terms with only a little loss in resolution
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instance, (1) defines the Wigner–Ville distribution
when φ(θ, τ) = 1 and a spectrogram with running
window h(t) when φ(θ, τ) = ∫

h∗(u − 1
2τ)h(u +

1
2τ)e−jθu du [4].

Choi and Williams started from (1) to address one
of the main problems of the Wigner–Ville distribu-
tion: the presence of interference terms. These are
spurious values indicating powers in regions of the
time–frequency plane where one would expect zero
values, and they are particularly prevalent in multi-
component signals. Their approach was to find the
kernel φ(θ, τ) that minimizes the interference terms
while still retaining the desirable properties of the
Wigner–Ville distribution. They proposed the kernel

φ(θ, τ ) = e−θ2τ 2/σ (2)

where σ is a parameter controlling the attenua-
tion of interference terms [3]; the smaller σ is, the
more the interferences are suppressed. Unfortunately,
increased attenuation also leads to a loss of resolu-
tion in the time–frequency plane. By properly tuning
σ , one can minimize the interferences and retain a
sufficient time–frequency resolution.

Figure 1 compares the Choi–Williams distribution
of a multicomponent signal with the spectrogram and

the Wigner–Ville distribution. The Choi–Williams
representation of the signal can largely suppress inter-
ference terms while still preserving a high resolution.

Choi–Williams distributions were used to describe
the changes in the frequency content of several bio-
logical signals (see Clinical Signals), like the sounds
produced by muscles [1] or the structure of heart-rate
signals during changes in the autonomic tone [2].
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Chronic Disease Models

Modeling chronic disease in human populations
requires different substantive and technical principles
than in modeling acute infectious and epidemic
disease (e.g. [5, 54]). One is that the natural history
of a chronic disease is a significant portion of
the life span, e.g. atherosclerosis may start by
ages 10–15 – autopsy studies of accident victims
showed well developed atheromas in males aged
20–25 [74]. Lung tumors may initiate 10–50 years
before clinical expression [55] (see Latent Period).
Evidence is mounting that infectious agents can
increase chronic disease risks. Helicobacter pylori
(discovered in 1983) is a causative factor, not
only in gastritis, but also in gastric ulcers [35],
cancer [28, 73], lymphoma, and liver cancer [69].
Antibodies to Chlamydia pneumoniae, a pathogen
causing pneumonia, bronchitis, pharyngitis, and
sinusitis, have been isolated from atheromas [31].
Some models of long-term changes in circulatory
disease risk (and certain cancers) implicate livestock
viral infections as well as chronic infection with
CMV or Epstein–Barr virus (e.g. [64]).

Because of the long natural history of chronic dis-
ease, there is more potential to interact with other
diseases (e.g. diabetes and atherosclerosis), risk fac-
tor exposures (e.g. cigarette smoking; obesity), and
age-related declines in physiology (e.g. senescent
amyloid changes in the myocardium [38, 43], and
temporally accumulated ischemic damage [46]). At
late ages (e.g. 95+ years), distinguishing between
chronic diseases and age-related losses of phys-
iological function is difficult without biologically
informed dynamic models (see Mathematical Biol-
ogy, Overview) (e.g. [38, 47]), because multiple age-
dependent interactions exist between chronic diseases
processes – interactions perturbed by exogenous fac-
tors. Thus, it is necessary to model disease behav-
ior as a multidimensional stochastic system evolving
according to internally programmed age dynamics
[91] and influenced by environmentally induced dam-
age [98].

Chronic disease model applications encounter sta-
tistical problems such as (i) estimating parameters
for high dimensional processes from partial, cross-
temporal data measured with error, and (ii) the inter-
dependence of mortality and state dynamic processes.
Longitudinal studies of human chronic diseases do

not provide sufficiently fine grained and lengthy time
series data on physiological changes to construct
models without extensive theory or ancillary data
[79]. This is because the measurement burden on
subjects in practice limits the number of time points
sampled on chronic disease processes (e.g. every 1, 2,
or 5 years) compared with the usual density of sam-
ples of processes in time series analyses (e.g. [2]).
Additionally, missing data [71] problems arise as a
result of left and right censoring.

Consequently, it is necessary to combine tempo-
rally sparse observations made of a disease with other
empirical and theoretical information in a global like-
lihood function (e.g. [53]). This allows data sets
with different observational strengths and measure-
ment characteristics to be combined in a model of
a complex system subject to chronic functional loss
on multiple dimensions, and multiple functionally
dependent modes of failure. Combined correctly, the
complementary strengths of data sets can improve
parameter estimates (e.g. [51]). Model-based data
combining is different than in meta-analysis of clini-
cal trials (e.g. [19, 20, 34]) in that instead of increas-
ing statistical power about a hypothesis (e.g. the
effects of chemotherapy on breast cancer survival)
by “pooling” cases from observationally equivalent
studies, the precision of the parameters in a highly
structured process model are improved using data
sets covering heterogeneous age/time and substantive
domains. This is akin to the use of stochastic com-
partment models in pharmacokinetics (e.g. [39]),
and complex biological systems (e.g. [61]), to make
estimates of transitions through intermediate, unob-
served states from the correlation of the temporal
scheduling of multiple system inputs and outputs.
In such models the focus is on “temporal” homo-
geneity, i.e. observations of individuals in different
stages of a process but following similar trajecto-
ries. Thus, all individuals do not have identically the
same parameter values, or exist in the same stage
of the process; rather, processes are assumed to be
described by the same systems of partial differential
equations.

Because of these, and other, statistical issues mod-
eling chronic disease requires specialized analytic and
data-collection procedures. In what follows we dis-
cuss several data sets and the chronic disease features
they describe. We then discuss data use in chronic
disease modeling.



2 Chronic Disease Models

Observation Plans for Chronic Disease
Processes

We review the properties of four observational plans.

Longitudinal Cohort Studies

The classic longitudinal cohort study of chronic
disease and risk factors is the Framingham Heart
Study, begun in 1949–1950 [16], of a cohort of
2336 males and 2873 females initially aged 29–62
years, where multiple risk factors (e.g. blood glucose,
blood pressure, cholesterol, cigarette smoking, hema-
tocrit, vital capacity, BMI) were assessed biennially.
In addition, the times to health events (some clinically
determined, e.g. by EKG) or death are recorded. The
exams now constitute a long time series, covering a
large portion of the adult life span, on changes of
multiple risk factors. Biennial assessments allowed
frequent updating of risk factor–disease relation-
ships (e.g. [41]). Biennial data have also been used
to update risk factor–disease relationships by using
concurrent values at each wave and, assuming condi-
tional (on measured risk factor values) independence
of events in subsequent biennial periods, treating each
interval as an observation on the process [96]. Though
improving logistic regression estimates, this does not
use data on risk factor changes – and their cross-
temporal covariances – to estimate the age trajecto-
ries of measured risk factors, or latent state variables
[14]. Feskens et al. [25, 26] showed how longitudi-
nal data could be used to infer the parameters of the
individual’s physiological dynamics.

Over time, the Framingham study changed. Risk
factors were added (e.g. assessments of choles-
terol components such as high and low density
lipoproteins) and some dropped (e.g. uric acid about
wave 4). Ancillary samples (e.g. Framingham off-
spring) were generated. Other risk factors [e.g. Lp(a)
[15, 83] and homocysteinemia [7]; fibrinogen and
hyperhomocysteinemia interactions [90]] were less
completely assessed so that hazard estimates may be
affected by unobserved or incompletely observed risk
factors.

Other longitudinal studies were started in the
1960s, often with similar risk factors (e.g. blood pres-
sure, smoking, cholesterol, weight and height), but
with longer intervals between measurements. Follow-
up periods of five to 10 years were used in the Seven
Country [45] and Charleston Heart Studies [44].

Longer intervals make models describing risk fac-
tor and disease dynamics for incompletely observed
processes more important.

Additionally, focus shifted from examining circu-
latory disease risks in middle-aged (generally male)
populations, to studying a range of diseases, and total
mortality, in elderly male and female populations.
This was because early goals were reached (i.e. sig-
nificant associations of risk factors with circulatory
diseases, such as cholesterol with CHD, were demon-
strated) and because many studies were initiated dur-
ing a period (1954–1968) when US male mortality
increased 0.2% per year – and shortly after the 1930s
and 1940s when male CHD risk increased in the
US and the UK [42]. Indeed, US life expectancy
was thought as possibly having reached biological
limits in the 1960s [67]. Limits were built into the
1974 Social Security Trust Fund projections [66].
Social epidemiologists theorized that chronic disease
risks were intrinsic to industrial societies (e.g. [18]
and [70]).

In fact, female mortality declined 0.8% per annum
from 1954 to 1968. Adult male CHD mortality began
declining after 1968. From 1950 to 1991, age stan-
dardized US heart disease mortality declined 53%;
stroke mortality 70% [68]. However, the causes of
such declines could not be identified with existing
data [88]. Early CVD risk factor interventions often
did not reduce total mortality [65], sometimes due to
adverse effects on other chronic diseases (e.g. diuret-
ics initially used to lower blood pressure adversely
affected mortality in diabetics, [92]), making it nec-
essary to jointly examine multiple causes of death and
multiple health outcomes (e.g., JAMA estrogen and
program study, July 17, 2002). As life expectancy
above age 65 (and 85) increased in the US and
other developed countries (e.g. Japan, France, Swe-
den [60]), the need to extend existing cohort studies
to describe risk factor–disease relationships to late
ages became evident (see Gerontology and Geri-
atric Medicine). Rapid physiological change, the
multiplicity of interacting chronic disease and dis-
ability processes, and the high levels of mortality at
ages 80+ emphasized the need for biologically moti-
vated, gender-specific models [56].

Sequential and Parallel Cross-Sectional Studies

If the nature of chronic disease–risk factor relation-
ships were established in cohort studies, other studies
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were needed to assess risk factor variation across
populations. The WHO “MONICA” (Monitoring of
trends and determinants in cardiovascular disease)
studies assessed age and gender-specific trends in
CVD risk factors in developing and developed coun-
tries (see Surveillance of Diseases). These studies,
started 1985–1987, monitored mortality and risk fac-
tor changes in men and women aged 25–64 for 10
years. Forty-one centers in 27 countries used stan-
dardized protocols to monitor 118 populations con-
taining 15 million persons aged 25–64. Two null
hypotheses were examined. First that there was no
relationship between 10-year trends in cholesterol,
blood pressure, and smoking and CVD. Some cen-
ters examined HDL and LDL cholesterol and physical
activity. The second was that there was no relation-
ship between 10-year trends in 28 day case fatality
rates and acute coronary care.

To evaluate the first hypothesis risk factor sur-
veys were to be done at the beginning and end of the
study period by drawing independent gender-specific
random samples of at least 200 cases for each 10
years of age category from 25 to 64 from target pop-
ulations. Survey data collection was standardized for
demographic variables, smoking status, hypertension
(and medications), blood pressure, cholesterol, serum
thiocyanate, height, and weight. Ten-year risk fac-
tor trends were evaluated from distributional (means
and variances) changes between the two independent
samples.

Evaluation of the second hypothesis required suf-
ficient events to have an 80% power for detecting
a 2% per annum change in CVD incidence over 10
years, significant at a 5% level using a two-tailed
test (see Sample Size Determination). Thus, each
study had to generate a minimum of 240 morbid
events per year for ages 25–64. Depending on local
CVD rates this required populations of about 300 000.
Standardized procedures were used to monitor dis-
ease events, and acute coronary care [89]. Morbid
events were monitored using death certificates and
by identifying heart attack and other CVD events
from hospital records with either “hot” (i.e. screen-
ing admissions) or “cold” (i.e. abstracting discharge
records) pursuit. Results on myocardial infarctions
and coronary deaths reported for 38 populations in 21
countries refute the suggestion that high CHD rates
are associated with high case fatality rates [89]. This
study design has the problem that independent sam-
pling of the continuous risk factor distribution at 0

and 10 years provides little power to distinguish risk
factor changes due to period vs. cohort effects (see
Age–Period–Cohort Analysis).

Measurement and Modeling. If models of risk
factor and mortality processes are not used to analyze
disease–risk dynamics, then additional measurement
issues arise. Law et al. [49] examined the relationship
between cholesterol and IHD mortality in 21 535
men followed from 1975 to 1982. Cholesterol was
measured twice over three years on 5696 men with
LDL cholesterol assessed in the second examination.
Although cholesterol is “stable” (in contrast, say,
to systolic blood pressure) it exhibited significant
regression to the mean, i.e. the cholesterol–IHD
relationship was underestimated by 41% (equivalent
to the ratio of total, to between person, variance
of cholesterol). Surrogate dilution bias arose by
measuring total cholesterol instead of LDL (see
Measurement Error in Epidemiologic Studies).
Total cholesterol represents the net effect of trends
in HDL (“good”) and LDL (“bad”) cholesterol.
Surrogate dilution bias reduced the estimated effect
of cholesterol on mortality by 14%. Bias was found
at all ages examined. In a stochastic process model,
regression to the mean would be represented as the
balance of autoregressive (see ARMA and ARIMA
Models) and diffusive forces and surrogate dilution
bias by influential unmeasured variables [1]. The
short study period suggests mortality selection bias
would be small.

Law et al. [48] examined lags between choles-
terol and IHD risk, reductions using incidence and
cholesterol data from 10 prospective (cohort) studies,
three international studies in multiple communities,
and 28 randomized controlled trials. Estimates of
regression to the mean, and surrogate dilution, bias
were used to adjust observational study results. In
cohort studies a 10% decrease in cholesterol was
associated with a 27% decline in IHD (adjusted for
blood pressure and smoking). This relationship held
to at least age 80 (where the IHD reduction was
19%). In randomized trials, after five years, IHD
risk reduction was 25%, or 92.6% of the total effect
in cohort studies. Thus, not only was atherosclero-
sis reversible (e.g. [8] and [72]), but reversal could
occur rapidly – even before the structural regression
of atheromas [3, 6]. This suggests that the rate of
progression of the physiological dynamics of IHD
can be changed sufficiently in five years to prevent
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pathological processes from passing a clinical thresh-
old. Also, it suggested that atherosclerotic disease
affected acute (e.g. within four months) physiolog-
ical changes (e.g. vasodilation and vasoconstriction
due to neuroendocrine factors [6]) interacting with
chronic processes.

National Longitudinal Surveys

Risk factor–chronic disease relationships can be stat-
ically modeled using nationally representative sur-
veys (see Surveys, Health and Morbidity). The
US National Health and Nutrition Examination Sur-
veys were done four times 1960–1962 to 1990–1994.
The first, the National Health Examination Survey
(NHESI; N = 7710 adults age 18–79; response rate
86.5%) measured chronic disease prevalence and
risk factors including blood pressure and choles-
terol. A nutrition component was added to create the
1971–1974 National Health and Nutrition Examina-
tion Survey (NHANESI; N = 28 048 noninstitution-
alized persons age 1–74; the response rate was 96%;
78% were examined). NHANES-II was conducted
from 1976 to 1980 for a sample of 27 801 nonin-
stitutionalized persons aged 6 months to 74 years,
73.1% of whom were examined. NHANES-III was
done over six years, 1988–1994, in two phases. In
Phase I, 20 277 persons were sampled; 77% were
examined. Results from Phase I show that certain
year 2000 goals of the 1988 National Cholesterol
Education Program were achieved by 1991 [40, 84].
Comparisons of cholesterol, hypertension, and smok-
ing across the four surveys show that they declined
from 1960 to 1990 for persons aged 65–74 [68].
Phase II of NHANES-III (1991–1994) involved sam-
pling another 20 000 persons. Risk factors were fol-
lowed with new emphasis on studying the natural
history of chronic diseases. In addition, longitudi-
nal follow-ups of health outcomes for 10+ years
were done for the second and third surveys (e.g.,
National Health and Examination Follow-Up Survey
1971–1984; NHEFS-I [24]).

Combined Select Population and Registry Data

A fourth observation plan combines “select” and
“registered” population data (e.g. [22]). Studies were
done of mesothelioma and cancer risks in asbestos
exposed occupational groups (see Occupational Epi-
demiology) as well as disease risks in populations

with healthy life styles (e.g. Seventh Day Adven-
tists [50] and Mormon High Priests in California
[21]). NCI’s Surveillance of Epidemiology and End
Results (SEER) program of population-based tumor
registries does data base of occupational studies
of ionizing radiation [11] (see Disease Registers),
and geographic monitoring of cancer mortality rates
using vital statistics (see Geographic Epidemiol-
ogy), put select population results into a national
context.

For example, the absolute risk of lung cancer
mortality among former smokers was examined in the
American Cancer Society, Cancer Prevention Study
II (CPS-II), a prospective cohort study of 1.2 million
voluntary participants, begun in 1982, and analyzed
after six years of follow-up. Roughly 900 000 persons
were analyzed after excluding persons below age 40,
above 80, or with smoking cessation before age 30,
or after 75.

A “person-time” logistic regression model, where
each subject had a separate entry for each year in
the study, was used. A quadratic function of age
provided a good fit to the risk of lung cancer death
with gender, education, and smoking as covariates.
Spline terms were added for each five years of
age cohorts of former smokers. To fit risks for
quit smokers, quadratic and cubic functions of time
elapsed after cessation were used. Goodness of
fit was tested using a statistic due to Hosmer &
Lemeshow [36].

The study showed that smoking cessation pro-
duced benefits at all ages, e.g. the risk of smokers
quitting in their early 60s was 45% of continuing
smokers. The analyses did not explicitly use a multi-
stage model of carcinogenesis [33] so the polynom-
inals used to describe the health effects of quitting
smoking are difficult to interpret biologically.

Innovations in Measurements of Chronic Disease
Processes

Measurement of Disease Risk at the Cellular
Level. Refinements in measurement were made
possible by new assays [e.g. polymerase chain
replication (PCR) and enzyme-linked immunosorbent
assay (ELISA)] of nuclear and mitochrondrial DNA.
This stimulated the development of molecular
epidemiology where biomarkers of risk factor
exposures are examined [76]. Biomarkers may be
genetic damage caused by carcinogens forming



Chronic Disease Models 5

nuclear DNA adducts, or changes in oncogene or
tumor suppressor gene (e.g. P-53) expression that can
trigger, or block, tumor initiation. Other biomarkers
are acquired traits affecting carcinogen metabolism
(e.g. metabolizing enzyme production stimulated by
exposure), or DNA damage and repair (e.g. DNA
repair methyltransferase [82]). Assays of cellular
DNA have also proved useful in determining the
effects of viruses on cancer and other chronic diseases
(e.g. the role of viruses, or immunological response
to viruses, in CVD [64]).

In molecular epidemiology, biomarkers are used
in cross-sectional, retrospective, prospective, or
case–control studies. By analyzing biomarkers,
disease processes can be identified early, thereby
increasing the likelihood of developing preventative
strategies and reducing the time necessary to identify
the emergence of disease in exposed organisms.

In a study of 40 persons having smoked at least
one pack per day for one year, blood samples were
drawn while smoking, and at 2.5, 8 and 14 months
after cessation. Smoking abstinence was monitored
by measuring plasma cotinine. PAH–(polycyclic aro-
matic hydrocarbons, e.g. benzo [α] pyrene [32]) DNA
adducts in white blood cells was twofold higher
while smoking than after eight months of abstinence.
A regression model of log transformed biomarkers,
adjusted for background, suggested a half-life of 23.4
weeks for PAH–DNA adducts. The coefficient of
variation for PAH–DNA adducts was 106%, sug-
gesting a high degree of intraindividual variability in
response to exposure. These and other data suggest
a higher degree of female physiological lung cancer
susceptibility to smoking products [63, 78, 100].

In a second study, lung tissue was taken
from persons undergoing surgery for lung cancer
(n = 54) or noncancer pulmonary disease (n =
20). Phase-I cytochrome P-450 enzymes responsible
for metabolizing smoking chemical constituents
into carcinogens were increased by the stimulus
of smoking varying from 11-fold to 440-fold
between individuals. Certain Phase-II cytochrome P-
450 enzymes responsible for detoxifying activated
carcinogens [e.g. glutathione S-transferase (GST)]
were decreased and varied 17-fold over individuals.
Thus, smoking increased cancer risks by differentially
affecting Phase I and II enzymes in the cytochrome P-
450 system [30] with large interindividual variation in
activity [77]. Another study suggested that vitamins C
and E significantly reduced PAH–DNA adducts only

in persons with a null GSTM1 (a genotype which
may be 50% prevalent [32]). Thus, the antitumor
effects of micronutrients may strongly interact with
the genotype.

These studies directly examine the biochemistry of
physiological processes leading to disease initiation.
This detects pathological changes early, and perhaps
better identifies genetic risk. It has the difficulty that,
by isolating specific disease components, producing
a model of the natural history of the disease in
an individual, or of a disease’s effect on a popula-
tion (especially given high variability in individual
enzyme levels), is made difficult and makes greater
demands on theory, e.g. using a parametric Weibull
hazard for the multistage model of carginogesis [99].

Modeling Shared and Correlated Frailty. To
study chronic disease risk in related individuals,
one needs to control (i) the correlation of
phenotypic traits, (ii) differences in phenotypic
correlations between biologically related individuals
(see Familial Correlations), (iii) censoring, (iv) the
effects of observed covariates, and (v) gene–envi-
ronment interactions. These problems can be
examined with “shared” and “correlated” frailty
models [99].

For frailty “shared” between related individuals
(e.g. twins), the hazard, where ui are covariate values
(with effect parameters β) for the ith member of
a group with shared genetic traits (e.g. for twins;
i = 1, 2), xi is the individual’s age (the same for
twins) and Zi , a latent shared frailty variable, is,

µ(xi, Zi, ui) = Ziλ0(xi) exp(βui) (1)

The univariate form of (1) is identifiable for shared
frailty variables with a finite mean (e.g. the gamma
distribution). Parameters of univariate and bivariate
shared frailty models are consistent only if the
correlation of Zi for related individuals is 1.0.

In correlated frailty models it is assumed that,
conditional on Zi the life span Ti is independent,
with the risk µi for each related individual modeled
as a proportional hazard, i.e. µ(Zi, xi) = Ziµ(xi).
The marginal survival distribution, when the Zi are
gamma distributed (with, for two related individuals
i = 1, 2, the variances and correlation ρz1z2 ), is

S(x1, x2) = [
S1(x1)

1−(σ1/σ2)ρz1z2

× S2(x2)
1−(σ2/σ1)ρz1z2

] [
S1(x1)

−σ 2
1
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+ S2(x2)
−σ 2

2 − 1
]−ρz1z2 /σ1σ2

, (2)

where Si(xi) are univariate survival functions, with
the correlation of Zi in the range,

0 ≤ ρz1z2 ≤ min

(
σ1

σ2
,
σ2

σ1

)
. (3)

For same-sex monozygotic (MZ) and dyzygotic (DZ)
twins it is assumed that σ 2

1 = σ 2
2 = σ 2 and that

S1(x) = S2(x). If covariate data, ui , are available for
a correlated frailty model, then assessing the indi-
vidual hazard in (1) requires the following bivariate
survival function:

S(x1, x2|u1, u2) = S1(x1|u1)
1−(σ2/σ1)ρz1z2

× S2(x2|u2)
1−(σ1/σ2)ρz1z2

(
S1(x1|u1)

−σ 2
1

+ S2(x2|u2)
−σ 2

2 − 1
)−ρz1z2 /σ1σ2

, (4)

where Si is related to the integrated hazard, H :

Si(x|ui) = [1 + σ 2
1 exp(βu1)H(x)]−1/σ 2

i . (5)

Estimation of the model with covariates is compli-
cated because Zi are no longer gamma distributed
conditional on ui . The EM algorithm may be mod-
ified for this case [37].

Longitudinal Surveys Linked to Administrative
Record Systems. A third innovation is longitudinal
surveys of the health of elderly populations
linked to administrative records (see Administrative
Databases). The 1982, 1984, 1989, 1994 and 1999
National Long Term Care Surveys (NLTCS [52])
used computerized Medicare data in two ways.
First, the NLTCS samples were drawn from those
records. Thus, 100% of the sample can be tracked
to the end of the study, or time of death. Secondly,
although NLTCS response rates were near 95%,
nonrespondents were, in part, more seriously ill [58]
(see Bias from Nonresponse). Health information in
the Medicare files can be used to (i) adjust for health
biases in nonresponse, and (ii) reduce right censoring
by providing continuous time information on health
changes up to the time of death.

In molecular epidemiologic studies diseases were
decomposed into select physiological processes for
small, intensively evaluated populations. The NLTCS
examines the integrated effects of those processes

on the dynamics of multiple dimensions of function
in elderly persons in large, nationally representative,
longitudinally followed samples. Studies show that
functional changes reflect both the effects of chronic
diseases (e.g. the effects of Alzheimer’s disease
on function) and those of risk states in elderly
persons for subsequent chronic disease and decline
(e.g. physical activity and stroke [85]). Thus, by
following multiple functional measures over time,
latent state variables for individuals, and their change
with age/time, can be modeled as a multivariate
stochastic process (e.g. [59]).

The NLTCS design is outlined in Figure 1. The
US population is assessed five times (1982, 1984,
1989, 1994, 1999). Interviews at each date were con-
ducted over four months, during which age-related
functional loss is assumed in equilibrium with age
and functional status-specific mortality.

Linked to interviews are Medicare records for per-
sons age 65+ for 1982–2000 containing (i) continu-
ous histories of health service use, and (ii) birth and
death dates. For each NLTCS, a sample of 5000 per-
sons passing age 65 between interviews is drawn
to keep the sample representative of the US elderly
population and to maintain a size of roughly 20 000
persons. Over five waves, 42 000 individuals were
followed with 22 000 deaths observed from 1982 to
2000. Since functional loss is low below age 65, left-
censoring bias is small. Over time, persons are right
censored by mortality, though health service data are
available to the time of death.

To model this multidimensional, cross-temporally
sparse data set requires assumptions about the
trajectory of functional changes for persons between
surveys (e.g. A and B), persons dying between sur-
veys (e.g. C) or persons newly entering the sample
(E). Given the multiple functions assessed, multivari-
ate procedures are used to identify the underlying
state variables. Assumptions made about functional
dynamics [e.g. does a person’s state “jump” when
assessed (trajectory A1 → A2) or change linearly
(trajectory B1 → B2) between assessments?] and
their interaction with the observational plan (i.e. the
overlay of survey assessment intervals on illustrative
trajectories A, B, C or E), can affect estimates of pro-
cess stochasticity (e.g. the different propagation of
uncertainty; dashed and continuous lines), and trajec-
tories of the average level of function and mortality,
at late ages.
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Hazard and Stochastic Process Models of
Chronic Disease

In chronic disease models there are several types
of time-related variation which can be exploited in
different ways using ancillary data and theory.

Parametric Hazard Models Estimated from
Failure Times

If only a few risk factors (e.g. age, sex, birth
cohort/date, race, occupation, smoking) are measured,
then a parametric function of age must be chosen to
adjust for age increases in the physiological risk of
disease (e.g. cancer) due to unobserved processes (see
Aging Models).

Gompertz Hazard. A commonly used hazard is the
Gompertz [29]:

µ(ait) = α exp(θait ), (6)

where θ represents the percent age increase in mor-
tality risk µ, per unit time and ait is person’s i age
at time t . This model describes the age dependence
of mortality in many human [94] and animal [27]
adult populations. Thus, θ has been interpreted as
the intrinsic rate of aging (e.g. [80]). Risk factors
may be represented by stratifying (6) into J discrete
risk “groups” with scale parameters αj . A stratified
Gompertz, with the population in each strata known,
describes the population age trajectory of disease risk
as a weighted mixture of J Gompertz functions.

If membership in risk factor strata is not known,
but the risk factor can be assumed continuously dis-
tributed according to a parametric (e.g. a gamma or
inverse Gaussian) form with special properties relat-
ing to parameter changes under systematic mortality
selection, a continuously mixed Gompertz hazard can
be estimated by inferring the parameters of the mix-
ing distribution from the deviation of observed and
Gompertz predicted mortality rates (see below; Man-
ton et al. [57]). The advantages of (6) are that the
doubling time of risk is constant over age, and that it
is an extreme value distribution, i.e. the progression
of individual failure processes generates failure times
with the same distribution in the population.

Weibull Hazard. The Weibull hazard [93] is used
to analyze cancer risk [4],

µ(ait ) = β(ait )
m−1, (7)

where m is the number of genetic changes in a cell
before a tumor initiates. In cancer, the changes are
mutations in nuclear DNA that allow growth control
to be lost. This function is consistent with observa-
tions of the age dependence of cancer mortality rates
in populations (e.g. stomach cancer in England and
Wales [87]). As carcinogenesis is studied using the
techniques of molecular epidemiology, the biological
validity of (7) as a model of cancer has been con-
firmed. For example, mutations in the p53 and p21
genes regulating cell growth and division – and pos-
sibly apoptosis in cells with DNA mutations – cause
many cancers. Fearon & Vogelstein [23] found five
mutations necessary for colon cancer initiation.

The Weibull is also an extreme value failure dis-
tribution where the doubling time for risk is not con-
stant over age, but the probability of each mutation
is. Thus, the mechanism of failure in the individual
involves cells in a given tissue gradually accumulat-
ing DNA errors until the mth error occurs and a tumor
initiates. This “multistage” model of carcinogenesis
[4] requires that mutations be described by probabili-
ties, i.e. each is sufficiently rare that the proportion of
cells experiencing a mutation does not affect the risk
of subsequent mutations. The time to the occurrence
of the first cell, of N cells in a tissue, achieving m

errors has the same distribution as the time to tumor
initiation in a population.

Mixed Hazards. The Weibull does not fit increases
in cancer risks after, say, age 75 [12]. This may
be due to specific mutations occurring too rapidly
to be modeled as a probability [62]. Modeling each
by a hazard rate produces an overall hazard function
(based on a series expansion) with additional terms
slowing the age increase in risk as late events in the
failure process become constrained by high transition
rates for events earlier in the process. Such models
produce estimates of m too large (e.g. 20–25) to be
biologically plausible.

An alternative explanation for the slowing of the
age increase of the Weibull is that the hazard applies
to individuals. Unobserved risk factors are assumed
to affect the probability of mutations, so individ-
uals have different cancer risks. Thus, unobserved
exogenous factors do not affect the number, m, of
mutations needed for tumor initiation – only the m

probabilities – whose effect is summarized by the
individual’s scale parameter, βi . The effects of unob-
served variables are represented by assuming that βi
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is distributed over individuals, according to a mixing
distribution whose parameters have special properties
under mortality selection. Mixed hazard functions can
be examined using [17].

µ(a, βi, γ, m) = βam−1

(
1 + nγ

∫ a

0
βum−1 du

)1/n
, (8)

where γ = var(βi)/E2(βi) is the squared coefficient
of variation (CV) of the βi, β is the mean of the
distribution of βi , and n determines the mixing
distribution. For general n, the cumulative Weibull
hazard is

H(n)(a) =
∫ a

0

βum−1

(
1 + (nγ βum)/2

)1/n
du. (9)

For n = 1 (the gamma distribution) this is

H(1)(a) = 1

γ
ln

(
1 + γβam

m

)
(10)

and, for n = 2 (the inverse Gaussian distribution):

H(2)(a) = 1

γ

[
(1 + 2γβam)1/2 − 1

]
. (11)

The gamma distribution implies a constant CV for
βi ; the inverse Gaussian a decreasing CV. This model
can be generalized to allow mixing across K observed
risk factor strata, even if only the marginal risk
factor distribution is observed [53]. The Gompertz
is similarly generalized.

Semi-Parametric Hazard Models

For multiple risk factors measured over time, a more
general model (see Cox Regression Model) is [13]

µ(xi ; t) = λ(t) · exp(xT
i β), (12)

where λ(t), the baseline hazard, is an unknown
function of time, xi is a J -element vector of risk
factors, and β is a vector of coefficients. To make
(12) depend on age it can be included in xi , and
assuming λ(t) is constant, λ0, producing

µ(xit ; ait ) = λ0 exp(θait + xT
itβ), (13)

where ait is current age. Eq. (13) implicitly repre-
sents multiplicative interactions between risk factors

because effects are additive in the logs of risk fac-
tors. Specifically, the second-order partial derivatives
of (13) are [75]

∂µ(xit , ait )

∂xijt ∂xikt

= λ0βjβk exp(θait ) exp(xT
itβ). (14)

The rate of change of µ(xit , ait ) in (14), relative to
values of xijt and xikt , is a function of a proportion-
ality factor, λ0βjβk , age, exp(θait ), and risk factors,
exp(xT

itβ). Thus, age and risk factor values interact
so that comparisons of risk factor effects across pop-
ulations, where different risk factors are measured,
or moments of the risk factor distribution differ, is
difficult. A decomposition of (12) by cause has the
problem that summing such functions produces a dif-
ferent distribution for total mortality (i.e. the sum of
exponentials).

Combining Risk Factor Dynamics and Mortality

If the vector, xit represents the physiological state of
person i at t , then a model is needed to describe the
joint evolution of xit , and disease risk. Generating
a model requires assumptions about the temporal
information in xit . Longitudinal studies provide only
partial information on the individual’s state, i.e. xit

is incomplete. For a model using incomplete data to
have external and internal validity it needs to be:

1. consistent with biological theory,
2. decomposable by modes of failure, and
3. logically consistent in portraying risk factor

dynamics and their interaction with mortality.

Many models do not have one or more of these
properties. The exponential form of the Cox model
has effects that depend on risk factor levels and is
not decomposable by failure modes. Models appro-
priate to describe such data developed from modeling
human aging as a multidimensional, stochastic pro-
cess (e.g. [81] and [88]). Early models did not rep-
resent heterogeneity in individual risks. A model due
to Woodbury & Manton [95] has the properties asso-
ciated with conditional Gaussian distributions used
to describe stochastic processes [97]. It describes
chronic disease by two processes. One describes
changes in xit as J stochastic functions of their past
values,

xit = u0 + uaijt−1 + Rxij t−1 + eit , (15)
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where xi are functions, possibly time dependent
[i.e. R may be R(t)], of the prior state of the
individual (xit−1), age (aijt−1), and stochastic errors
eit−1, generated by “diffusion”. If the eit−1 values
are independent of the xit , then the diffusion process
might be Gaussian (see Brownian Motion and
Diffusion Processes). If the magnitude of eit−1

depends on values in xit , then the diffusion process
is more complicated. Which coefficients can be
estimated for (15) depends on the heterogeneity
represented in the data.

The second process describes mortality as a
quadratic function of risk factor values, i.e.

µ(xit ; ait ) = (
µ0 + xT

itb + 1
2 xT

itBxit

)
exp(θait ),

(16)

where µ0 is the constant force of mortality, b are lin-
ear coefficients adjusting for changes in the location
of the hazard in the state space, B is a matrix of coef-
ficients representing the quadratic and second-order
interactions of the xit , and exp(θait ) represents the
average effects of age related unobserved variables.
Each coefficient in (16) can be made a function of
age by multiplying it by exp(θait ). To relate (16) to
(12) we add quadratic terms to (13) to produce, using
a Taylor series expansion,

µ(xit ; ait ) = λ0
[
1 + xT

itβ + 1
2 xT

it (ββT)xit

+ O
(
x3

it

)]
exp(θait ), (17a)

which can be expressed as

µ(xit ; ait ) = [
µ0 + xT

itb + 1
2 xT

itBxit + O
(
x3

it

)]

× exp(θait ). (17b)

The difference between (17b) and (16) is the higher
order interaction terms O(x3

it ). If these terms are
negligible, then (17b) reduces to (16). The function
in (16) has simpler second-order partial derivatives
[75]:

∂2µ(xit ; ait )

∂xijt ∂xikt

= λ0βjβk exp(θait ), (18)

which can be written

= βjk exp(θait ).

Thus, quadratic hazard age and risk factor effects
do not change over risk factor levels. The hazard

in (16) has a number of useful properties. First, for
L causes of death with the same θ (i.e. the same
unobserved, age-related variables affect each cause)
the quadratic forms are additive. Thus, total mortality
can be consistently decomposed. Secondly, the failure
mechanism represented by (16) is natural for multi-
dimensional, biological systems where homeostatic
forces keep trajectories of xit close to a “central”
region of the state space where mortality is a mini-
mum. This is often empirically justifiable for chronic
diseases (e.g. blood pressure at late ages). It may
also be justified from assumptions about the dynamic
response of complex biological systems to stress.
Specifically, the principle of “hormesis” suggests
that homeostatic (or homeorhetic) feedback mecha-
nisms cause complex organisms to “over-control” in
response to low-level environmental stress because
there are time delays in responding to environ-
mental insults due to the need for communication
(e.g. by hormonal responses) between organ sys-
tems [86]. Thus, given a lag in responding, adjust-
ments to environmental stress must be in “quanta”
which, on average, overcompensate in responding
to stress because an absolutely continuously graded
response exactly matching the stress is not possible
given the system’s latency. Thus, low-level stresses
“strengthen” the organism, i.e. the minimum mortal-
ity level occurs for a small but nonzero exposure.
“Quanta” responses are common in humans. Without
low-level exposure to pathogens, the immune system
will not develop humoral responses. Alternately, the
cytochrome P-450 enzyme system, although genet-
ically programmed, may not produce a detoxifying
enzyme except when stimulated by chemical stress.
Thus, the quadratic hazard is the inverse of a bio-
logically complex organism’s fitness “response” to
environmental stress.

Not only is the hormetic “dose–response” func-
tion reflective of a peak in an organism’s “fitness”
at a nonzero stress level [10], but the variability
of responses is increased by structural heterogene-
ity in populations of responding organisms. This
may be why “aged” organisms express “chronic”
diseases. Models of genetic selection suggest that
organisms evolve to use energy to maximize survival
only to the end of the reproductive life span. This
does not explain why organisms, like humans, sur-
vive long past the end of the reproductive life span
and suffer chronic, degenerative diseases. Hormesis
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suggests that this is a necessary response to environ-
mental stresses, i.e. chronic diseases may be “over”
responses to environmental insults. Neoplasia are
tissue healing responses out of genetic (p53) con-
trol; similar arguments might be made for atheromas.
Neurological diseases may be due to oxidative pro-
cesses that have a function in meeting environmental
stresses (e.g. the “glutamic” cascade of cell death in
stroke) or in producing immunological responses.

Finally, the chronic diseases now recognized may
not represent the physiological mechanisms that gen-
erate a particular pathology. Angiogenesis (i.e. the
creation of new vasculature) may allow cancers
to metastasize but may also permit the develop-
ment of collateral circulation in a heart damaged by
atherosclerosis. Many tumors develop because of the
failure of the p53 gene to induce apoptosis due to
mutation. Thus, is the “cancer” associated with the
dysfunction of a specific organ the chronic disease,
or mutations in the p53 gene that occur in many tis-
sue types? Not only are there (i) intrinsic features of
dynamic feedback systems in human organisms that
dictate that the hazard is a U- or J-shaped function
of exposure to environmental stress, but also (ii) a
crucial problem in modeling chronic diseases is to
redefine chronic disease as the understanding of dis-
ease dynamics on a molecular level improves.

Age changes in quadratic hazards with differ-
ent θs are illustrated in Figure 2. Linear terms (b)
describe the location of the minimum, x0

j t , of the
hazard relative to risk factors – a minimum that may
be a function of age [i.e. b(t) = b exp(θait )]. The
matrix of quadratic coefficients, B, represents the age-
dependent B(t) = B exp(θait ) curvature of the hazard
relative to risk factor levels.

The likelihood for estimating the parameters of
the two processes from a longitudinal study, where
individual risk factor values are assessed at fixed time
intervals, and the time of occurrence of specific lethal
(or morbid) events are observed, can be written as
[55] (i) the initial distribution, xi0, (ii) the regression
(15) of xit on past values in persons surviving
a study interval, and (iii) the quadratic mortality
function (16).

With estimates of (15) and (16) one can model
the trajectory of mortality and risk factors in a cohort
by using those parameters in systems of differential
equations (e.g. [56]). Those differential equations
describe not only the probability of survival to age a

Curves A and A′ for age 50
Curves B and B ′ for age 95

Curve A

Curve A′

Curve B ′Curve B

0.0
m0

m
(x

ij)
.e

xp
(θ

.A
ge

t)

xij (t ) → x0
j (t )

Figure 2 Changes in shape of the age-specific quadratic
hazard functions at ages 50 and 95 due to the effects
of unobserved variables represented by two values of the
parameter θ describing the rate of aging (7.70 and 3.85%)

(conditional on changes in risk factors to a) but also
the distribution of the xit among survivors to age a.

A crucial model feature is how diffusion and
risk factor heterogeneity interact with mortality over
time. If the difference in the form of the par-
tial differential equations is assumed to be updated
(i) monthly or (ii) annually, then one obtains differ-
ent survival patterns, or risk factor trajectories, at late
age (Table 1).

In Table 1 three conditions are presented. The first
assumes that, between assessments, the xit are con-
stant (i.e. person A in Figure 1). This produces, at age
95, a life expectancy of 5 years with an average of
46.2% of physical function preserved. Secondly, the
xit are assumed to change linearly between assess-
ments (i.e. person B in Figure 1). Life expectancy
at 95 increases to 5.4 years. The proportion of
function maintained increases to 52.3%. Thirdly,
state variables can be assumed to change linearly
between assessments, but with mortality interacting
with state variable changes every 12 months (instead
of monthly). Life expectancy at age 95 is only 4.4
years and the proportion of function maintained is
only 33.2%. Thus, conditions 1 and 2 represent differ-
ent assumptions about xit trajectories between assess-
ments. Conditions 2 and 3 contrast the effect of the
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frequency at which mortality and dynamic processes
interact in a model. In all three conditions the pro-
portion of function maintained increases at late ages
because, for elderly, impaired persons mortality rates
eventually surpass the age rate of functional loss.
Thus, the interactions of heterogeneity and mortal-
ity, and the dynamic balance of autoregression and
diffusion, control the age trajectory of mortality and
chronic disease processes at late ages. Thus, the
model produced complex, nonlinear risk factor and
mortality population trajectories at late ages. Mul-
tivariate stochastic process models are required to
examine nonlinearities in risk factor dynamics and
mortality at late ages.

Discussion

We have examined models of chronic disease.
Techniques appropriate to modeling chronic disease
change as information increases. At the least
informed level we search for patterns of association
between risk factors and disease risk. As information
increases, measures of association may not fully
exploit the available information. Thus, different
models are needed for the different amounts of
information generated by different observational
plans.

One strategy uses improved measurement tech-
niques to focus on increasingly detailed features
of the chronic disease processes. Instead of model-
ing the relationship between cholesterol and CHD
risk, one has to recognize that there are (i) different
lipoproteins, some beneficial (e.g. HDL) and some
not (LDL), and (ii) that there are multiple stages in
atherogenesis, such as plaque initiation, plaque elab-
oration (involving lipid levels, oxidation of LDL,
recruitment of macrophages having ingested oxi-
dized LDL into plaques as “foam” cells; stimulation
of arterial endothelial growth due to inflammatory
responses and stimulation of local growth factor pro-
duction [9]), plaque disruption, and thrombus forma-
tion. Each stage involves different risk factors and
risk factor interactions. As measurement of the pro-
cess improves, static models may describe process
components operating over short time scales.

However, as longitudinal information accumu-
lates, models that integrate stages of the disease
process are needed to represent (i) the evolution of
a multistage stochastic process, and (ii) the effects

of those processes on the population distribution of
outcomes. In these models the temporal organization
of the stages of the chronic disease process is cru-
cial, especially in developing interventions. Thus, the
selection of models to analyze chronic disease has
to be based on assessments of both the information
generated by observational plans and the nature of
the processes modeled.

Acknowledgment

This research was supported by grants from the National
Institute on Aging.

References

[1] Akushevich, I., Akushevich, L., Manton, K., Yashin, A.
(2002). Stochastic process model of mortality and
aging: application to longitudinal data. Working paper,
Center for Demographic Studies.

[2] Anderson, T.W. (1958). An Introduction to Multivariate
Statistical Analysis. Wiley, New York.

[3] Anderson, T.J., Meredith, I.T., Yeung, A.C., Frei, B.,
Selwyn, A.P. & Ganz, P. (1995). The effect of choles-
terol-lowering and antioxidant therapy on endothelium-
dependent coronary vasomotion, New England Journal
of Medicine 332, 488–493.

[4] Armitage, P. & Doll, R. (1961). Stochastic models for
carcinogenesis, in Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability,
J. Neyman, ed. University of California Press, Berke-
ley, pp. 19–38.

[5] Bailey, N.T. (1975). The Mathematical Theory of Infec-
tious Diseases. Hafner, New York.

[6] Benzuly, K.H., Padgett, R.C., Kaul, S., Piegors, D.J.,
Armstrong, M.L. & Heistad, D.D. (1994). Func-
tional improvement precedes structural regression of
atherosclerosis, Circulation 89, 1810–1818.

[7] Brattstrom, L., Israelsson, B., Norring, B., Berg-
quist, V., Thorne, J., Hultberg, B. & Hamfelt, A.
(1990). Impaired homocysteine metabolism in early
onset cerebral and peripheral occlusive arterial disease,
Atherosclerosis 81, 51–60.

[8] Brown, B.G., Zhao, X.Q., Sacco, D.E. & Albers, J.J.
(1993). Lipid lowering and plaque disruption and
clinical events in coronary disease, Circulation 87,
1781–1791.

[9] Buja, L.M. & Willerson, J.T. (1994). Role of inflam-
mation in coronary plaque disruption, Circulation 89,
503–505.

[10] Calow, P. (1982). Homeostasis and fitness, American
Naturalist 120, 416–419.

[11] CEDR. (2002). Comprehensive Epidemiologic Data
Resource. http://cedr.lbl.gov.



14 Chronic Disease Models

[12] Cook, N.R., Fellingham, S.A. & Doll, R. (1969). A
mathematical model for the age distribution of cancer
in man, International Journal of Cancer 4, 93–112.

[13] Cox, D.R. (1972). Regression models and life tables,
Journal of the Royal Statistical Society, Series B 34,
187–202.

[14] Cupples, L.A., D’Agostino, R.B., Anderson, K. & Kan-
nel, W.B. (1988). Comparison of baseline and repeated
measure covariate techniques in the Framingham Heart
Study, Statistics in Medicine 7, 205–218.

[15] Dahlen, G.H., Guyton, J.R., Attar, M., Farmer, J.A.,
Kautz, J.A. & Gotto, A.M. (1986). Association of
levels of lipoprotein Lp(a), plasma liquids, and other
lipoproteins with coronary artery disease documented
by angiography, Circulation 74, 758–765.

[16] Dawber, T.R. (1980). The Framingham Study: The
Epidemiology of Arterosclerotic Disease. Harvard Uni-
versity Press, Cambridge, Mass.

[17] Dubey, S.D. (1967). Some percentile estimators of
Weibull parameters, Technometrics 9, 119–129.

[18] Dubos, R. (1965). Man Adapting. Yale University
Press, New Haven and London.

[19] Early Breast Cancer Trialists Collaborative Group
(1992). Systemic treatment of early breast cancer by
hormonal, cytotoxic, or immune therapy – Part I,
Lancet 339, 1–15.

[20] Early Breast Cancer Trialists Collaborative Group
(1992). Systemic treatment of early breast cancer by
hormonal, cytotoxic, or immune therapy – Part II,
Lancet 339, 71–85.

[21] Enstrom, J.E. (1989). Health practices and cancer
mortality among active California Mormons, Journal
of the National Cancer Institute 81, 1807–1814.

[22] Enstrom, J.E. & Kanim, L.E. (1983). Populations at low
risk, in G.R. Nowell, ed. Cancer Prevention in Clinical
Medicine. Ravin, New York, pp. 49–78.

[23] Fearon, E.R. & Vogelstein, B. (1990). A genetic model
for colo-rectal tumorigenesis, Cell 61, 759–767.

[24] Feldman, J.J., Makuc, D.M., Kleinman, J.C. & Hunt-
ley, J.C. (1989). National trends in educational differ-
entials in mortality, American Journal of Epidemiology
129, 919–933.

[25] Feskens, E., Bowles, C. & Kromhout, D. (1991).
Journal of Clinical Epidemiology 44, 947–953.

[26] Feskens, E., Bowles, C. & Kromhout, D. (1992). Intra-
and interindividual variability of glucose tolerance in
an elderly population, Journal of Clinical Epidemiology
45, 293–300.

[27] Finch, C.E. & Pike, M.C. (1996). Maximum life
span predictions from the Gompertz mortality model,
Journal of Gerontology 51, B183–B194.

[28] Forman, D. (1991). Helicobacter pylori infection: a
novel risk factor in the etiology of gastric cancer, Jour-
nal of the National Cancer Institute 83, 1702–1703.

[29] Gompertz, B. (1825). On the nature of the function
expressive of the law of human mortality, Philosoph-
ical Transactions of the Royal Society of London 114,
513.

[30] Gonzalez, F.J. & Nebert, D.W. (1990). Evolution of
the P450 gene superfamily: animal - plant “welfare”
molecular drive, and human genetic differences in drug
oxidation, Trends in Genetics 6, 182–186.

[31] Grayston, J.T. (1993). Chlamydia in atherosclerosis,
Circulation 87, 1408–1409.

[32] Grinberg-Funes, R.A., Singh, V.N., Perera, F.P.,
Bell, D.A., Young, T.L., Dickey, C., Wang, L.W. &
Santella, R.M. (1994). Polycyclic aromatic hydrocar-
bon – DNA adducts in smokers and their relationship to
micronutrient levels and the glutathione-S-transferase
M1 genotype, Carcinogenesis 15, 2449–2454.

[33] Halpern, M.T., Gillespie, B.W. & Warner, K.E. (1993).
Patterns of absolute risk of lung cancer mortality
in former smokers, Journal of the National Cancer
Institute 85, 457–464.

[34] Hedges, L. & Olkin, I. (1985). Statistical Methods for
Meta-Analysis. Academic Press, New York.

[35] Hosking, S.W., Ling, T.K.W., Chung, S.C.S., Yu-
ng, M.Y., Cheng, A.F.B., Sung, J.J.Y. & Li, A.K.C.
(1994). Duodenal ulcer healing by eradication
of helicobacter pylori without anti-acid treatment:
randomised controlled trial, Lancet 343, 508–510.

[36] Hosmer, D.W. & Lemeshow, S. (1989). Applied Logis-
tic Regression. Wiley, New York.

[37] Iachine, I.A. (1995). Parameter estimation in the bivari-
ate correlated frailty model with observed covariates
via EM-algorithm. Research Report of Population Stud-
ies of Aging, No. 16. Odense University, Denmark, pp.
1–21.

[38] Jacobson, D.R., Pastore, R.D., Yaghoubian, R., Ka-
ne, I., Gallo, G., Buck, F.S. & Buxbaum, J.N. (1997).
Variant-sequence transthyretin (isoleucine 122) in late-
onset cardiac amyloidosis in black Americans, New
England Journal of Medicine 336, 466–473.

[39] Jacquez, J.A. (1972). Compartmental Analysis in Biol-
ogy and Medicine. Elsevier, Amsterdam.

[40] Johnson, C.L., Rifkind, B.M., Sempos, C.T., Car-
roll, M.D., Bachorik, P.S., Briefel, R.R., Gordon, D.J.,
Burt, V.L., Brown, C.D., Lippel, K. & Cleeman, J.I.
(1993). Declining serum total cholesterol levels among
US adults: the National Health and Nutrition Examina-
tion Surveys, Journal of the American Medical Associ-
ation 269, 3002–3008.

[41] Kannel, W.B., Castelli, W.P., Gordon, T. & McNa-
mara, P.M. (1971). Serum cholesterol, lipoproteins, and
the risk of coronary heart disease. The Framingham
study, Annals of Internal Medicine 74, 1–12.

[42] Kaplan, G. & Keil, J. (1993). Socioeconomic factors
and cardiovascular disease: a review of the literature,
Circulation 88, 1973–1998.

[43] Kasch, F.W., Boyer, J.L., Van Camp, S.P., Verity, L.S.
& Wallace, J.P. (1993). Effect of exercise on cardio-
vascular ageing, Age and Ageing 22, 5–10.

[44] Keil, J., Sutherland, S., Knapp, R., Lackland, D., Ga-
zes, P. & Tyroler, H. (1993). Mortality rates and risk
factors for coronary disease in black as compared



Chronic Disease Models 15

with white men and women, New England Journal of
Medicine 329, 73–78.

[45] Keys, A. (1980). Wine, garlic, and CHD in seven
countries, Lancet 1, 145–146.

[46] Kitzman, D.W. & Edwards, W.D. (1990). Minireview:
age-related changes in the anatomy of the normal
human heart, Journal of Gerontology: Medical Sciences
45, M33–M39.

[47] Lakatta, E.G. (1985). Health, disease, and cardiovas-
cular aging, in America’s Aging: Health in an Older
Society. National Academy Press, Washington, pp.
73–104.

[48] Law, M.R., Wald, N.J. & Thompson, S.G. (1994). By
how much and how quickly does reduction in serum
cholesterol concentration lower risk of ischaemic heart
disease?, British Medical Journal 308, 367–373.

[49] Law, M.R., Wald, N.J., Wu, T., Hackshaw, A. &
Bailey, A. (1994). Systematic underestimation of asso-
ciation between serum cholesterol concentration and
ischaemic heart disease in observational studies: data
from the BUPA study, British Medical Journal 308,
363–366.

[50] Lindsted, K.D., Tonstad, S. & Kuzma, J.W. (1991).
Self-report of physical activity and patterns of mortality
in Seventh-Day Adventist men, Journal of Clinical
Epidemiology 44, 355–364.

[51] Little, R.T.J. & Schluchter, M.D. (1985). Maximum
likelihood estimation for mixed continuous and cat-
egorical data with missing values, Biometrika 72,
497–512.

[52] Manton, K.G., Corder, L. & Stallard, E. (1997).
Chronic disability trends in the U.S. elderly population
1982 to 1994, Proceedings of the National Academy of
Sciences 94, 2593–2598.

[53] Manton, K.G., Lowrimore, G. & Yashin, A.I. (1993).
Methods for combining ancillary data in stochastic
compartment models of cancer mortality; generaliza-
tion of heterogeneity models, Mathematical Population
Studies 4, 133–147.

[54] Manton, K.G. & Stallard, E. (1988). Chronic Disease
Modeling: Measurement and Evaluation of the Risks of
Chronic Disease Processes. Griffin, London.

[55] Manton, K.G. & Stallard, E. (1992). Compartment
model of the temporal variation of population lung
cancer risks, in Biomedical Modeling and Simulation,
J. Eisenfled, D.S. Levine & M. Witten, eds. Elsevier/
North-Holland, Amsterdam, pp. 75–81.

[56] Manton, K.G., Stallard, E. & Singer, B.H. (1994).
Methods for projecting the future size and health
status of the U.S. elderly population, in Studies of
the Economics of Aging, D. Wise, ed. University of
Chicago Press, Chicago, pp. 41–77.

[57] Manton, K.G., Stallard, E. & Vaupel, J.W. (1986).
Alternative models for the heterogeneity of mortality
risks among the aged, Journal of the American Statis-
tical Association 81, 635–644.

[58] Manton, K.G., Stallard, E. & Woodbury, M.A. (1991).
A multivariate event history model based upon fuzzy

states: estimation from longitudinal surveys with
informative nonresponse, Journal of Official Statistics
7, 261–293.

[59] Manton, K.G., Stallard, E., Woodbury, M.A. & Do-
wd, J.E. (1994). Time-varying covariates in models
of human mortality and aging: multidimensional gen-
eralization of the Gompertz, Journal of Gerontology:
Biological Sciences 49, B169–B190.

[60] Manton, K.G. & Vaupel, J.W. (1995). Survival after
the age of 80 in the United States, Sweden, France,
England, and Japan, New England Journal of Medicine
333, 1232–1235.

[61] Matis, J.H. & Wehrly, T.E. (1979). Stochastic models
of compartmental systems, Biometrics 35, 199–220.

[62] Moolgavkar, S.H. (1978). The multi-stage theory of
carcinogenesis and the age distribution of cancer in
man, Journal of the National Cancer Institute 61,
49–52.

[63] Mooney, L.A., Santella, R.M., Covey, L., Jef-
fery, A.M., Bigbee, W. & Randall, M.C. (1995).
Decline in DNA damage and other biomarkers in
peripheral blood following smoking cessation, Cancer
Epidemiology Biomarkers Preventions 4, 627–634.

[64] Mozar, H.N., Bal, D.G. & Farag, S.A. (1990). The nat-
ural history of atherosclerosis: an ecologic perspective,
Atherosclerosis 82, 157–164.

[65] Multiple Risk Factor Intervention Trial Research Group
(MRFIT) (1990). Mortality rates after 10.5 years for
participants in the multiple risk factor intervention
trial, Journal of the American Medical Association 263,
1795–1801.

[66] Myers, G.C. (1981). Future age projections and society,
in Aging: A Challenge to Science and Society, Vol. 2,
Part II, W.M. Beattie, Jr, J. Piotrowski & M. Marois,
eds. Oxford University Press, Oxford, pp. 248–260.

[67] National Center for Health Statistics (1964). The
Change in Mortality Trends in the United States, Series
3, No. 1. Public Health Service, Washington.

[68] National Center for Health Statistics (1995). Health,
United States, 1994. Public Health Service, Hyattsville.

[69] Nightingale, T.E. & Gruber, J. (1994). Helicobacter and
human cancer, Journal of the National Cancer Institute
86, 1505–1509.

[70] Omran, A.R. (1971). The epidemiologic transition:
a theory of the epidemiology of population change,
Milbank Memorial Quarterly 49, 509–538.

[71] Orchard, G. & Woodbury, M.A. (1971). A missing
information principle: theory and application, Sixth
Berkeley Symposium on Mathematical Statistics and
Probability. University of California Press, Berkeley,
pp. 697–715.

[72] Ornish, D., Brown, S.E., Scherwitz, L.W., Billings,
J.H., Armstrong, W.T., Ports, T.A., McLanahan, S.M.,
Kirkeeide, R.L., Brand, R.J. & Gould, K.L. (1990). Can
lifestyle changes reverse coronary heart disease? The
Lifestyle Heart Trial, Lancet 336, 129–133.



16 Chronic Disease Models

[73] Parsonnet, J. (1996). Helicobacter pylori in the
stomach – a paradox unmasked, New England Journal
of Medicine 335, 278–280.

[74] Pathobiological Determinants of Atherosclerosis in
Youth (PDAY) Research Group (1990). Relationship
of atherosclerosis in young men to serum lipoprotein
cholesterol concentrations and smoking, Journal of the
American Medical Association 264, 3018–3024.

[75] Pekkanen, J., Manton., K.G., Stallard, E., Nissinen, A.
& Karvonen, M.J. (1992). Risk factor dynamics, mor-
tality and life expectancy differences between Eastern
and Western Finland: the Finnish cohorts of the Seven
Countries Studies, International Journal of Epidemiol-
ogy 21, 406–419.

[76] Perera, F. (1996). Insights into cancer susceptibility,
risk assessment, and prevention, Journal of the National
Cancer Institute 88, 496–509.

[77] Petruzzelli, S., Camus, A.M., Carrozzi, L., Ghelar-
ducci, L., Rindi, M. & Menconi, G. (1988). Long-
lasting effects of tobacco smoking on pulmonary drug-
metabolizing enzymes: a case - control study on lung
cancer patients, Cancer Research 48, 4695–4700.

[78] Risch, H.A., Howe, G.R., Jain, M., Burch, J.D., Holo-
waty, E.J. & Miller, A.B. (1993). Are female smokers
at higher risk for lung cancer than male smokers? A
case - control analysis by histologic type, American
Journal of Epidemiology 138, 281–293.

[79] Rudemo, M. (1973). State estimation for partially
observed Markov chains, Journal of Mathematical
Analysis and Applications 44, 581–611.

[80] Sacher, G.A. (1977). Life Table Modification and Life
Prolongation, J. Birren & C. Finch, eds. Van Nostrand
Reinhold, New York.

[81] Sacher, G.A. & Trucco, E. (1962). The stochastic
theory of mortality, Annals of the New York Academy
of Sciences 96, 985.

[82] Sekiguchi, M., Nakabeppu, Y., Sakumi, K. &
Tuzuki, T. (1996). DNA-repair methyltransferase as a
molecular device for preventing mutation and cancer,
Journal of Cancer Research and Clinical Oncology 122,
199–200.

[83] Selby, J.V., Austin, M.A., Sandholzer, C., Quesen-
berry, C.P., Zhang, D., Mayer, E. & Utermann, G.
(1994). Environmental and behavioral influences on
plasma lipoprotein(a) concentration in women twins,
Preventive Medicine 23, 345–353.

[84] Sempos, C.T., Cleeman, J.I., Carroll, M.D., John-
son, C.L., Bachorik, P.S., Gordon, D.J., Burt, V.L.,
Briefel, R.R., Brown, C.D., Lippel, K. & Rifkind, B.M.
(1993). Prevalence of high blood cholesterol among US
adults: an update based on guidelines from the second
report of the national cholesterol education program
adult treatment panel, Journal of the American Medical
Association 269, 3009–3014.

[85] Shinton, R. & Sagar, G. (1993). Lifelong exercise and
stroke, British Medical Journal 307, 231–234.

[86] Stebbing, A.R.D. (1987). Growth hormesis: a by-
product of control, Health Physics 52, 543–547.

[87] Stocks, P. (1953). A study of the age curve for cancer
of the stomach in connection with a theory of the
cancer producing mechanism, British Journal of Cancer
4, 407–517.

[88] Strehler, B.L. & Mildvan, A.S. (1960). General theory
of mortality and aging, Science 132, 14–21.

[89] Tunstall-Pedoe, H., Kuulasmaa, K., Amouyel, P., Ar-
veiler, D., Rajakangas, A. & Pajak, A. (1994). Myocar-
dial infarction and coronary deaths in the World Health
Organization MONICA Project. Registration proce-
dures, event rates, and case-fatality in 38 populations
from 21 countries in four continents, Circulation 90,
583–612.

[90] von Eckardstein, A., Malinow, R., Upson, B., Hein-
rich, J., Schulte, H., Schonfeld, R., Kohler, E. &
Assmann, G. (1994). Effects of age, lipoproteins,
and hemostatic parameters on the role of homo-
cyst(e)inemia as a cardiovascular risk factor in men,
Arteriosclerosis and Thrombosis 14, 460–464.

[91] Warner, H.R., Fernandes, G. & Wang, E. (1995). A
unifying hypothesis to explain the retardation of aging
and tumorigenesis by caloric restriction, Journal of
Gerontology Biological Science 50, B107–B109.

[92] Warram, J., Laffel, L., Valsania, P., Christlieb, A.
& Krolewski, A. (1991). Excess mortality associated
with diuretic therapy in diabetes mellitus, Archives of
Internal Medicine 151, 1350–1356.

[93] Weibull, W. (1939). A statistical theory of the strength
of materials, Ingeniors Vetenskaps Akademien Handlin-
gar 151, 1–45.

[94] Wetterstrand, W.H. (1981). Parametric models for
life insurance mortality data: Gompertz’s law over
time, Transactions of the Society of Actuaries 33,
159–175.

[95] Woodbury, M.A. & Manton, K.G. (1977). A random
walk model of human mortality and aging, Theoretical
Population Biology 11, 37–48.

[96] Wu, M. & Ware, J. (1979). On the use of repeated
measurements of regression analysis with dichotomous
responses, Biometrics 35, 513–521.

[97] Yashin, A.I. (1985). Statistic and Control of Stochastic
Processes. Springer-Verlag, New York.

[98] Yashin, A.I. & Manton, K.G. (1997). Effects of unob-
served and partially observed covariate processes on
system failure: a review of models and estimation
strategies, Statistical Science 12, 20–34.

[99] Yashin, A.I., Manton, K.G. & Iachine, I.A. (1996).
Genetic and environmental factors in the etiology
of chronic diseases: multivariate frailty models and
estimation strategies, Journal of Epidemiology and
Biostatistics 1, 115–120.

[100] Zang, E.A. & Wynder, E.L. (1996). Differences in lung
cancer risk between men and women: examination of
evidence, Journal of the National Cancer Institute 88,
183–192.



Chronic Disease Models 17

Further Reading

Writing Group for the Women’s Health Initiative Investigators.
(2002). Risks and benefits of estrogen plus progestin in

healthy postmenopausal women, Journal of the American
medical Association 288(3), 321–333.

KENNETH G. MANTON



Chronomedicine

Definitions and Aims

Chronobiology (from chronos, time; bios, life; and
logos, science) investigates the mechanisms under-
lying variability in the otherwise unassessed physi-
ological range, including rhythms found in us, res-
onating with cycles around us. Broad time structures
(chronomes) consisting of deterministic chaos and
trends organized by rhythms are found in organ-
isms and in their environments. They are mapped
by chronomics as the reference values for both an
applied chronomedicine and a basic chronobiology.
Chronomics quantify health, identifying new dis-
ease risks, diagnosing predisease and overt illness,
enabling timely and timed treatment (Rx), and vali-
dating the short- and long-term efficacy of a given
Rx on an inferential statistical individualized (as
well as population) basis. Chronomics-based mapping
includes the cartography of rhythms in us and around
us and of their associations, with hypothesis testing
and parameter estimation yielding P-values and 95%
confidence intervals for the everyday preventive as
well as curative self- or professional care of a given
patient, rather than only for research on groups.

Introduction

About-daily circadian and about-yearly (circannual)
rhythms, popularly biological clocks and calen-
dars are part of broader biological time structures,
chronomes. So are many more features of intermod-
ulating rhythms with widely differing frequencies
including those of the action potentials in the human
brain and heart at the high-frequency end. Also in
the circulation, notably of neonates and the elderly,
are oscillations with periods of about a week, month,
half-year, and year, including cisyears and transyears
with periods shorter or longer than one year. Near
the other end of the rhythm spectrum are about 11-
year and multidecadal cycles, not only outside us,
but also within us, influencing other components
such as circadians. Rhythms, chaos, and (e.g. age-
related) trends are chronome components interact-
ing as feed-sidewards, multifrequency time-specified
intermodulations requiring inferential statistical quan-
tification, replacing time-unqualified feedbacks and
feedforwards.

Historical Development

Confusing variability in blood eosinophil cells was
resolved by averaging and stacking data over the
24-hour day. Time plots (chronograms) revealed to
the naked eye large amplitude rhythms dependent
upon the adrenal cortex as a cyclic mechanism
preparatory for daily activity. The temporal place-
ment of this and other rhythms could be manipulated
by shifts, among others, of lighting or feeding reg-
imens and was altered by magnetic storms. Exper-
iments in continuous light or darkness at constant
temperature and humidity or studies of humans in
isolation from society documented endogenous fea-
tures of “circa” rhythms that persisted with a period
slightly but statistically significantly different from
their exact societal daily, weekly, yearly, or decadal
counterpart. These studies led to the coinage of “cir-
cadian” and other “circa” rhythms. A circadian sys-
tem was extended to hormones influencing these cells
and other endocrines, to the nervous and other sys-
tems, and eventually to nucleic acid formation, as
well as to the effects of drugs, magnetic storms,
and other physical agents such as noise or radia-
tion. A genetic basis of biological circadian rhythms
is now documented, inter alia, by studies on human
twins reared apart (see Twin Analysis) and by chem-
ical mutagenesis (see Mutagenicity Study) and gene
transfer in fruit flies. The prefix “circa” (about) con-
veys the desynchronized feature and the fact that
rhythm characteristics can only be defined with some
statistical uncertainty.

In isolation from society, nearly identical frequen-
cies were found for cardiovascular and geomagnetic
rhythms, the latter gauged by the planetary distur-
bance index, Kp. What is more conclusive, “sub-
traction” to the point of disappearance and ream-
plification of environmental cycles’ amplitudes was
associated with dampened and amplified biological
rhythms with corresponding frequency, respectively.
Without causal implications, such findings provide
strong hints of associations, rendering it essential to
examine and compare the frequencies and phases of
biological and environmental rhythms. A desynchro-
nization as a free-run of biological rhythms must be
documented not only from societal and other artifi-
cial, for example, lighting schedules but also from
magnetic or other terrestrial, atmospheric, solar and
galactic, for example, cosmic ray and/or other near-
matching environmental cycles. The latter may pull
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and amplify a biological rhythm without necessarily
synchronizing it.

Different Types of Study

For longitudinal nearly “womb-to-tomb” monitoring
in the laboratory, sensors are available for the teleme-
try of many vital functions. Transverse or cross-
sectional studies are often linked systematically into
a hybrid (linked cross-sectional) design with repeated
measures for spans of days, weeks, years, or decades
on different variables of human subjects or groups
being compared (see Longitudinal Data Analysis,
Overview).

Landmark Studies

Nonrandom patterns of morbidity and mortality from
different causes stem largely from the times (e.g.

hours) of changing resistance. Ubiquitous rhythms
account for the difference between life and death, as
a function only of timing, when in the experimental
laboratory the same stimulus – noise, X-irradiation,
an endotoxin, or a drug – is applied with the same
dose or intensity under the same conditions to sim-
ilar groups of inbred animals at different rhythm
stages (e.g. 4 hours apart covering 24 hours). Fun-
damental life processes, RNA and DNA synthesis,
exhibit reproducible rhythms underlying a circadian
cell cycle, with important applications in cancer
chronotherapy with chemicals or radiation. When
anticancer drugs act at a specific stage of the cell
cycle, it is important to time their administration
in such a way as to optimize tumor cell kill. The
concurrent aim is to minimize the damage to target
organs, when pertinent rhythms are in near antiphase.
Alternatively, when the time of greatest effectiveness
does not coincide with that of least toxicity, one can
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      Halberg E and Halberg F: Chronobiologia 7:95-120,1980.

Figure 1(a) The administration pattern of an immunomodulating drug accounts for the difference between the inhibition
and stimulation of a subsequently implanted malignant growth. The conventional fixed daily dose pattern shortens survival
time rather than lengthening it, as does a sinusoidally varying pattern adjusted to the body’s rhythms, the raison d’être of
chronotherapy. What remains to be proved in humans is that by resolving a time structure in both circadian and circaseptan
aspects, clinical chronotherapy benefits from multifrequency timing, as it does from the use of circadian rhythmicity. See
Figure 1b. Reproduced from Chronobiologia by permission of Franz Halberg
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try to obtain this situation by manipulating before
treatment the timing of host and cancer rhythms
as much as possible, for example, by manipulating
mealtimes. Findings on the critical importance of the
circadian system have led to the fields of chronophar-
macology and chronotherapy. Rhythms with other-
than-circadian frequencies also matter: pretreatment
with a sinusoidally patterned daily (and hourly)
administration of the same total weekly dose of the
immunomodulator lentinan can inhibit a subsequently
implanted immunocytoma growth, when pretreatment
with conventional equal daily doses enhances the
same malignant growth in rats (Figure 1(a)). The use
of tumor temperature as a marker rhythm to guide
perioral cancer radiotherapy, as compared to the usual
time-unspecified treatment, has doubled the two-year
disease-free survival rate (Figure 1(b)). Further opti-
mization involves about-yearly, about-weekly and
circadian considerations, the latter two in keeping
with Figure 1(a).

Other Clinical Uses of Chronomics

Chronome mapping leads to: (i) a positive definition
of health in the light of reference standards for new

endpoints (see Figure 2); (ii) a better understanding
of mechanisms underlying changes of chronomes
in healthy development (Figure 3) and against this
reference standard, an earlier recognition of any
disease process; (iii) the detection of chronome
alterations before changes outside the physiological
range occur, detecting predisease longitudinally in the
stroke-prone, spontaneously hypertensive rat and in
humans; and (iv) the opportunity to act preventively
and rationally rather than after the fact of overt dis-
ease (Figure 4). A chronomic interpretation of serial
data yields a location index (the MESOR (midline
estimating statistic of rhythm)) usually more accu-
rate and more precise than the arithmetic mean (being
associated with a smaller bias owing to the tempo-
ral placement of measurements and with a smaller
standard error once other deterministic variation is
accounted for) (Figure 5). This improved average,
of great merit in itself, is only a dividend from the
major merit of chronomics, namely, the provision of
intuitively meaningful endpoints of dynamic changes
(such as amplitudes, phases, waveforms and funda-
mental frequencies of rhythms), which convey useful
information in their own right (Figure 2).

The rhythm characteristics (some shown in
Figures 2 and 5) are confounded when dealing with
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Figure 1(b) Doubling of two-year disease-free survival by radiotherapy administered at the circadian peak of tumor
temperature. Reproduced from Chronobiologia by permission of Franz Halberg
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Figure 2 Illustration of circadian rhythm characteristics of systolic blood pressure of a clinically healthy woman estimated
by linear–nonlinear least squares. Although the data (dots; (a)) were collected during a 9-day span and were analyzed as a
longitudinal time series, the results are displayed after the data have been stacked over an idealized cycle with a period that
was estimated before stacking to be 24.03 hours (d). The 95% confidence interval for the period estimate is much less than
1 hour, as can be seen from the rectangle at the tip of the arrow (d). Point-and-interval estimates are also shown for the
MESOR, a rhythm-adjusted mean (a), for the amplitude, a measure of half the extent of predictable change within a cycle (b),
and for the acrophase, a measure of the timing of overall high values recurring in each cycle (c). (see also abstract Figure 5.)
The results also serve to indicate the large variability in systolic blood pressure, which is predictable to a large extent.
These and other results, e.g., in Figure 4, also question the reliability, validity, and pertinence of single measurements used
today for screening, diagnosis, and treatment of blood pressure disorders. Reproduced from Chronobiologia by permission
of Franz Halberg

day–night ratios, for instance to classify patients
as “dippers”, “non-dippers”, “reverse dippers”, or
“extreme dippers”. A quantification of each parameter
is then not available and consideration for the
waveform is lost, as is all information on any

extra-circadian components (there are many of them,
and they can be important). Parameter estimation
complemented by a nonparametric assessment of
data stacked over an idealized day for comparison
with time-specified reference values offers a readily
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* in a healthy boy, born 19.10.1992, whose heart rate was measured at mostly 30-minute intervals from
20.10 for the ensuing 40 days, and analyzed as a moving spectrum in separate weekly intervals,
displaced in 12-hour increments through the data set. An initially greater prominence of infradians (see
~1-week-component (c), left), shown by height and shading, corresponding to a larger amplitude, contrasts
with the prominence of circadians and circasemidians in later weeks of life, while any ultradians with still
higher frequencies and any trends and chaos, two other chronome elements, are unassessed in this
gliding spectral window.

0−1.09 1.09−2.18 2.18−3.27 3.27−4.36 4.36−5.45 5.45−6.54 6.54−7.63 7.63−8.72 8.72−9.81

Changing amplitude
of some components in a partial spectral element

of the postnatal human heart rate chronome*

Figure 3 Early infradian over circadian prominence of human heart rate after birth. The oblique age scale ascends from
the bottom middle to the right, giving the midpoints of 7-day intervals analyzed; trial periods are shown along a scale
that ascends from the bottom middle to the left. Along the vertical scale of amplitudes initially no circadian peak, only an
infradian (about-weekly) component is seen. The circadian and circasemidian components become noticeable by peaking
several weeks later. Reproduced from Chronobiologia by permission of Franz Halberg
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Additive morbidity
from vascular disease risk syndromes*

DBP-CHAT:
DHRV:
Morbidity (%)

DHRV:
Morbidity:

No
No
7.9

Yes
No
35.0

No
Yes
42.1

Yes
Yes

82.0

Key: Morbidity:

* DBP-CHAT: Diastolic circadian hyper-amplitude-tension.
Deficient heart rate variability.
Cerebral ischemia, myocardial infarction, nephropathy and/or
retinopathy during 6 years, without (a), with single (b, c) or both (d) disease risks.

No Yes

(a) (b) (c) (d)

233 13 11 1

8 4720

7-day / 24-hour monitoring can detect in the neglected normal range abnormality in variabilities of blood pressure and heart rate that make the
difference between <8 and 80% morbidity.

Figure 4 Pie charts compare the incidence of morbid vascular events among four groups of patients: (a) Those
with an acceptable circadian blood pressure and heart rate variability; patients diagnosed with either (b). an excessive
(above-threshold) circadian amplitude of diastolic blood pressure (DBP-CHAT), or (c) a decreased (below-threshold)
circadian heart rate variability (DHRV), alone, and (d) patients diagnosed with both conditions. Results from a 6-year
prospective study on 297 (121 MESOR-normotensive and 176 treated MESOR-hypertensive) patients, who each contributed
a 48-hour record of blood pressure and heart rate measurements at 15-minute intervals at the start of study. The incidence
of morbid events was checked at 6-month intervals for 6 years. Each patient’s circadian characteristics of blood pressure
and heart rate was interpreted in the light of reference standards obtained from independent studies of presumably clinically
healthy subjects, matched by gender and age. CHAT (circadian hyper-amplitude-tension) was defined as a circadian
amplitude of blood pressure above the upper (95% prediction) limit of acceptability and DHRV as a 48-hour standard
deviation of heart rate below the lower limit of acceptability. Findings of Kuniaki Otsuka, in keeping with earlier studies
of the spontaneously hypertensive stroke-prone Okamoto rat, and in keeping with human studies in Minnesota, Taiwan,
Japan, Italy, and Germany, where outcomes are available with a 28-year perspective. Reproduced from Chronobiologia by
permission of Franz Halberg

understood diagnosis, summarized on a form called
a “sphygmochron” shown in Figure 6. Biostatistics
should be made as simple as possible but not simpler,
to paraphrase Einstein.

Examples of diagnoses are the disease risks:
chronome alterations of heart rate variability,
CAHRV, such as a decreased (under-threshold) heart
rate variability (DHRV), and an excessive (over-
threshold) variability of blood pressure (circadian
hyper-amplitude-tension, CHAT). CHAT describes a
blood pressure profile with a circadian amplitude
above the upper 95% prediction limit of healthy
peers matched by gender and age. CHAT can be
a response during only a few days to stimuli

such as conflict or grief (transient CHAT). CHAT
beyond a week-long monitoring should prompt
further monitoring and the initiation of non-drug
treatment, e.g., by relaxation procedures. Patients
with diastolic CHAT, whether MESOR-normotensive
or MESOR-hypertensive, have a 720% increase in
the risk of cerebral ischemic events. The diagnosis
of CHAT requires both that data be collected
around the clock and that the circadian amplitude
be estimated and compared with available reference
values. DHRV (decreased heart rate variability) is
a deficient heart rate jitter (defined as a 24-hour
standard deviation of heart rate below the lower 5%
prediction limit of healthy peers), which carries a
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Accounting for rhythms* estimates mean
value more accurately and more precisely

Advantages of the MESOR over the arithmetic
mean in estimating location

Higher accuracy (smaller bias)
in the presence of unequidistant data

Datum

Arithmetic
mean

Equality
of areas

MESOR (More accurate)

Rhythmic
function

The arithmetic mean does not represent a true average for a rhythm
(defined, e.g. by cosine curve) when sampling is unequispaced
and/or does not cover integer number of cycles.
Higher precision (smaller error)
in the presence of equidistant data

SE
SE

Mean MESOR (More precise)

38.5% Reduction in standard error

The SE of the mean depends on the total variability; a large portion
of this variability can be ascribed to the rhythmic time structure;
fitting an approximating cosine curve can reduce the residual variance,
which determines how small the SEs of the MESOR and other
parameters are. The better the cosine model fits the data, the
greater the reduction in SE.

* Whereas illustration is for single component model, cosinor applies to multiple cosine fits as
  well, when needed to approximate nonsinusoidal waveform.

Figure 5 In the presence of periodicities, the use of statistics to resolve the time structure (chronome) usually yields
a more accurate (top) and more precise (bottom) estimate of location (the MESOR, a rhythm-adjusted mean) than the
arithmetic average. Reproduced from Chronobiologia by permission of Franz Halberg

550% increase in the risk of coronary artery disease
and can be determined along with a check for
CHAT by ambulatory monitoring without electrodes.
When both CHAT and DHRV coexist, there is a
doubling of the risk of vascular diseases (Figure 4).
An above-threshold circadian pulse pressure (around-
the-clock average difference between systolic and
diastolic pressure, when the heart contracts and
relaxes) further increases vascular disease risk,
as may do an odd circadian timing, circadian
ecphasia.

Statistical Concepts, Problems, and
Solutions

Periodograms, Power Spectra, and Single
(Usually Multiple-component) Linear-nonlinear
Cosinors

In the precomputer era, periodograms (see Spec-
tral Analysis) used at first necessitated equidis-
tant data over several integer cycles of the com-
ponents characterizing the data. The computations
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SPHYGMOCHRONTM -S (short form)
Monitoring Profile Over Time;

Computer Comparison
with Peer Group Limits

Blood Pressure (BP) and Related Cardiovascular Summary
(Circadian Sphygmochron; from sphygmo-, of or relating to the circulation, notably blood pressure, as well as pulse and chronos, time)

Name

Age Sex

Patient #
No. of
Profile:

M Monitoring FromF To , 20

Time of: Awakening (A) ( ) Falling Asleep (S) ( )
Day of profile Day of profile(Habitually) (Habitually)

Rx: Comments1,2

Chronobiologic Characteristics

Systolic BP (mmHg) Heart Rate (bpm)Diastolic BP (mmHg)

Adjusted 24-h Mean
(MESOR)

Patient
Value

Peer Group
Reference Limits

Patient
Value

Peer Group
Reference Limits

Patient
Value

Peer Group
Reference Limits

Range

Range

Range

Range

Range

Range

Range

Range Range

Predictable Change
(Double Amplitude)

Timing of Overall
High Values
(Acrophase) (hr:min)

Percent Time
of Elevation

Timing of
Excess

Extent of Excess
During 24 Hours

10-Year Cumulative
Excess

STD (Min; Max) STD (Min; Max) STD (Min; Max)

(hr:min) (hr:min) (hr:min)

(mmHg × hour)

(mmHg × hour) (In 1,000’s units) (mmHg × hour) (In 1,000’s units) (bpm × hour) (In 1,000’s units)

(mmHg × hour) (bpm × hour)

Individualized bounded indices: (STD = Standard) (Min = Minimum) (Max = Maximum) (HBI = Hyperbaric index)

Intervention Needed

Annually
As soon as possible

No
Yes Drug Non-Drug

More Monitoring Needed

Other specify

Prepared By Date / /

1) Unusually long standing or lying-down during waking: unusual activity, such as exercise, emotional loads, or schedule changes,
e.g., shiftwork, etc.: 2) Salt, calories, kind and amount, other, etc. Please enter this information into a separate diary along with daily
times of getting up and retiring for sleep.

© Halberg Chronobiology Center, University of Minnesota, MMC 8609, 420 Delaware Street SE, Minneapolis, MN 55455. For questions,
call F. Halberg or G. Cornélissen at 612-624-6976. CC 5/91

Figure 6 Sphygmochron, a computer-generated form used to summarize results from the combined parametric and
nonparametric assessment of a blood pressure and heart rate profile. Results from both approaches are compared with
reference values specified by gender and age, given in boxes next to the given subject’s estimates of his/her rhythm
characteristics. Reproduced by permission of Franz Halberg



Chronomedicine 9

were time-consuming and data could not always be
obtained at regular intervals. Self-measurements of
blood pressure or heart rate, for example, are not pos-
sible while sleeping. An alarm clock used to prompt
a self-measurement leads to disturbance, which may
affect the measurements and hence may prevent the
rigorous assessment of spontaneous variation. Undue
caution at the beginning of the computer era led to
very conservative power spectra, with a great deal of
smoothing. As the ubiquity of circadians was docu-
mented, least-squares procedures offered themselves
for the test of anticipated rhythms in unequidistant
data such as those collected in isolation from society
in caves, or rooms without a clock. Thus, the single
cosinor was developed. Here single refers to the anal-
ysis of a single series by the fit of one or, usually, of
several components when the density and length of
the data allow it. The addition of harmonic terms in
the model quantifies the waveform when it is nonsi-
nusoidal. The results are displayed along both rect-
angular and polar coordinates as point estimates and
95% confidence intervals. For time series spanning
more than one or a few cycles, a chronobiologic serial
section can be used, wherein the single cosinor is
applied to successive consecutive or partly overlap-
ping intervals to examine how the characteristics of a
rhythm with a given frequency vary as a function of
time. For long series involving components of several
frequencies, chronobiologic serial sections of several
orders can be applied to the original data or to the
parameters obtained in a previous pass.

Least-squares procedures are well suited to the sit-
uation where anticipated rhythmic components have
known approximate periods (τi). The least-squares fit
of a model such as

Y (t) =
q∑

j=0

aj t
j +

p∑

i=1

Aicos

(
2πt

τi

+ φi

)
+ ε(t)

detects a rhythm with period τi by the zero-amplitude
test (H0 : Ai = 0). Confidence and/or prediction lim-
its are derived for the parameters of all rhythmic
components, whether they represent several physio-
logically different (multifrequency) rhythms and/or
harmonics quantifying a nonsinusoidal waveform.
In addition, any superimposed trend is detected by
nonzero polynomial coefficients (aj ). Least-squares
techniques to assess rhythms in short and sparse
series led to several important developments.

1. Parameter comparisons: these can check for
changes occurring on an individual basis, for
example, to determine whether a given antihy-
pertensive drug has lowered the circadian blood
pressure amplitude of a patient with CHAT, or
whether it is preferable to administer such a treat-
ment at one versus another circadian stage.

2. Gliding spectral windows in combination with
cumulative sums (CUSUM, Figure 7) (see Qual-
ity Control in Laboratory Medicine) ascer-
tain that an effect of treatment occurs and per-
sists with statistical significance in the given
patient, when his/her blood pressure, in response
to antihypertensive treatment, leaves the deci-
sion interval.

3. Phase zero trials: the parsimonious single cosi-
nor method relying on prior information (such
as the critical importance of circadian stage in
relation to treatment efficacy) accounts for pow-
erful chronobiologic pilots that are always useful
but are named “phase zero trials” since usu-
ally they should precede the customary Phase
I–III clinical trials, which then could be carried
out at the “right time” determined in the phase
zero trial.

For different signal-to-noise ratios and a rela-
tively small number of subjects (≤ 20), in a hardly
ever random (but rather somewhat periodic) world,
the power of the single cosinor method exceeds
that of a one-way analysis of variance (see Exper-
imental Design), assuming that the (usually consid-
ered six) test times are equidistributed within one
(e.g. circadian) cycle. The dangers of relying on a
two-timepoint approach need to be stressed when-
ever the precise phase information is lacking and/or
the individual’s rhythm may be desynchronized in
phase or period. This comment applies equally to
the selection of only two time-spans, as discussed
above in relation to blood pressure regarding the
preference of assessing circadian characteristics over
merely computing a day–night ratio. The merit of
a six-timepoint design at the outset is its amenabil-
ity to cost-effectively determine the optimal time
and the likely gain to be derived from timing. For
instance, in a six-subject, six-timepoint pilot study,
the particular tested anticlotting properties of treat-
ment with daily low doses of aspirin were optimal
when the drug was administered shortly after awak-
ening (Figure 8).
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Individualized assessment of a patient’s response
to lisinopril (Rx) by cusum (FH, M, 74y)

Figure 7 Control charts of daily mean values of blood pressure and heart rate data collected at 15-minute intervals around
the clock. While the series of daily means is proceeding “in control” (i.e. at the pretreatment mean value), the CUSUM
comprises two line graphs, signaling an increase or decrease in mean, respectively, that generally stay within the shaded
“decision interval”, plotted here as the horizontal lines at 4.4 and -4.4 standard deviations (SD). When the dashed curve
breaks out downward of the decision interval boundary, it provides the validation of a decrease in daily blood pressure
mean. The time at which the mean changed is estimated by tracking the line segment leading to the breakout back to the
last occasion on which it lay on the horizontal axis. Thus, in the case of systolic blood pressure, the breakout occurs on
day 30 (16 days after the start of treatment with the drug lisinopril) and the shift in pressure is estimated to have occurred
on day 22 (8 days after lisinopril treatment started). An upward breakout for heart rate shows the desirability of continued
monitoring to see whether a breakout is transient or sustained. In the case of blood pressure, a return into the decision
interval can occur after several months of successful intervention, when an event led to the treatment’s failure latter on
(not shown). Reproduced from Chronobiologia by permission of Franz Halberg

Indications for Linear–Nonlinear Least-squares
Cosinors, Spectra, and Cross-spectra

The time structure of a variable is usually syn-
chronized by the environment. Transient changes
are associated with the expression of partly endoge-
nous variations when an organism is studied under

conditions rendered as constant as possible in terms
of illumination, temperature, humidity, access to food
and water, and so on. Persisting rhythms assume
periods, which usually remain close to their environ-
mental match, yet differ with statistical significance,
albeit slightly, from the period of the environmental
cycle with which they had been synchronized earlier.
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N-of-6 Study suggests circadian-stage dependence
of low dose aspirin effect upon lipoperoxides (LP)

in platelet-rich plasma

Figure 8 Power of “phase zero” chronobiologic pilots: by randomly assigning similar subjects to six different circadian
stages, each to receive 100 mg/day of aspirin for one week, a large amplitude response rhythm can be assessed indicating
that the lowering of lipoperoxides (LP) in platelet-rich plasma (a desired effect to prevent myocardial infarction) is maximal
when aspirin is taken shortly after awakening and that aspirin does not have this effect when it is given 12 hours later.
Reproduced from Chronobiologia by permission of Franz Halberg
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Nonlinear least-squares techniques (see Nonlin-
ear Regression) generally serve to estimate the
period(s) with other rhythm characteristics. The com-
bination of linear and nonlinear least squares relies
on guess estimates from the former to assess by
the latter the persisting circadian or other rhythms,
for instance in the absence of time clues. Evidence
accumulates for the desynchronization from societal
schedules of about-weekly (circaseptan) rhythms in
vitro and in vivo, and for their frequency multiplica-
tion to about-3.5-day (circasemiseptan) rhythms after
enucleation and/or mutation in unicells.

Asynchronization from the calendar year is obser-
ved further for the case of an about 1.05-year compo-
nent in the daily excretion of breakdown products of
steroidal hormones recorded (with gaps) for 15 years.
Figure 9 shows gliding (middle) and global (right)
spectral windows of these data, complementing an

earlier periodogram (left) obtained without an esti-
mate of the period’s uncertainty. Percentage rhythm
(R2) values and/or ordering P values (from the zero-
amplitude test) can also be displayed along with
amplitudes, each in separate gliding spectra, for bio-
logical and/or physical variables for the mapping of
chronomes in and around us.

Methodological Challenge in Finding Out
that Stormy Weather in Space Is a Health
Hazard

The combined use on existing extensive databases
of spectral coherence, superposed epochs, and other
remove-and-replace approaches, as in endocrinology
(allowing nature to ablate and replace certain fre-
quencies, e.g. of the velocity changes in the solar

Gliding spectral
window – 2004
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these values nor one another. Cisyears are oscillations with periods between 1 and 0.5 year with CIs overlapping neither 1-year
nor 0.5-year, as seen for a period of about (but not equal to) 0.8 y. * about 15-year record, daily data (with gaps) from a
clinically healthy man (CH, 43 – 58 y), N = 3719. Gliding interval = 8 years (y), increment = 1 month, longest trial t = 2.265 y,
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In 1965 (left): Apparently desynchronized biologic year¥

In 2004: Several transyears# (1-year asynchronized components)
characterize human 17-ketosteroid (17-KS) excretion∗

Figure 9 Combination of gliding (middle) and global (right) spectral windows identifies several transyears, with periods
of about 1.6, 1.3, and 1.05 years, and a cisyear with a period of about 0.8 year in a 15-year record of urinary excretion of
17-ketosteroids by a healthy man. All these components are validated nonlinearly with 95% confidence intervals of their
periods non-overlapping precisely 1 year. The absence of an exact calendar year by cosinor (right) had been published in
1965. Reproduced from Chronobiologia by permission of Franz Halberg
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wind), has suggested that magnetic storms are con-
sistently associated with a decreased heart rate vari-
ability. This could constitute a physiological basis
for an increased localized incidence of myocardial
infarctions and strokes also observed in associa-
tion with magnetic storms. Notably in the Arctic,
around-the-clock electrocardiograms covering seven
days allowed the comparison of data from days with
high versus low geomagnetic activity. The long-term,
eventually life-long concomitant systematic monitor-
ing of physiological variables for alignment with
ongoing physical monitoring is the aim of an inter-
national chronome initiative seeking information in
different geographic/geomagnetic locations as refer-
ence values for chronomedicine, while also examin-
ing questions about mechanisms of external–internal
chronome interactions.

The reciprocity of cycles in us and around us led
to the recent discovery of components with peri-
ods slightly longer or shorter than one year that
may coexist with the circannual variation. These
are the far-transyear with a period of about 1.3
years characterizing the solar wind speed, the near-
transyear and cisyear with periods of about 1.05
and about 0.95 year(s), respectively, some of which
can also be found in some helio- and/or geomag-
netic indices. Because such components can beat
with the circannual variation, circannual studies are
best conducted over long enough spans to avoid
obtaining controversial results corresponding to spans
when the two cycles are in or out of phase. Chro-
nomics, the mapping of broad time structures, includ-
ing these newly found cycles, can serve as useful
reference for designing studies with appropriate sam-
pling recommendations.

Population-mean Cosinor

This method, based on multivariate statistics, was
developed for drawing inferences to be generalized
by checking the extent of similarity of single-cosinor
estimates among individuals selected at random from
a homogeneous population.

Time-specified Reference Standards:
Chronodesms

This chronobiologic alternative for usual value ranges
collects serial data from clinically healthy subjects

to derive reference limits (such as 90% prediction
intervals) that account for multifrequency rhythms,
age trends (from womb to tomb), and differences as
a function of gender and ethnicity, considering both
changes in mean value and variance. These limits
are for the interpretation of single values and for that
of rhythm parameters (parameterdesms) and noise
characteristics. This approach to the monitoring of
blood pressure and heart rate identifies patients with
CHAT or DHRV, among others.

Measures of Excess and Deficit and
Beyond with Signal Averaging

The recognition of chronomes provides more reliable
answers to the question whether and when a time
series is too high or too low and detects alterations in
time structure in the absence of changes in operating
overall average. Chronomics in addition to comparing
endpoints of anticipated periodic components with a
pertinent chronodesm to determine the extent, timing,
and duration of any excess (or deficit) also numeri-
cally integrates the area (under and/or over the curve)
delineated by the data when they are outside time-
specified limits and the limits themselves. The time
when most of the excess (deficit) occurs serves for
diagnosis and for timing any intervention.

Control Charts

To assess an individual’s trends in mean or in
other chronome characteristics, cosinor methods are
applied in intervals that are progressively displaced
throughout the accumulating time series. This
chronobiologic serial section can be combined with
a self-starting cumulative sum (CUSUM) to detect
chronome alterations or to assess the response to a
given intervention (see Quality Control in Labo-
ratory Medicine). Such an individualized approach,
first used in chronomedicine for the monitoring of
epileptic seizures and for adjusting treatment, is par-
ticularly indicated in assessing blood pressure and
heart rate. Hawkins’ self-starting CUSUM detects a
shift in mean (MESOR, circadian amplitude, and/or
any other pertinent chronome endpoint or chrone)
and indicates when the change may have occurred
(Figure 7). Moreover, the boundaries of the decision
interval can be determined even from relatively few
data prior to a given intervention. Gliding spectral
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windows (Figures 3 and 9) provide a view, from
above or from the side, of the change in both ampli-
tude and period.

Anticipated Developments

Some nondrug treatments or an antihypertensive drug
can lower an excessive circadian blood pressure
amplitude when given at the right time (rhythm stage)
or raise it when given at the wrong time. For instance,
an α-adrenoceptor antagonist given for benign pro-
static hypertrophy in the evening raises the circadian
blood pressure amplitude, but does not have this
effect when given in the morning, when the circadian
blood pressure amplitude is restored within accept-
able limits. Further clinical trials will have to examine
the degree of generality of the finding already made,
that the actual incidence of adverse vascular events
can be reduced by antihypertensive agents capable
of lowering an excessive circadian blood pressure
amplitude when given at the right time(s).

Deterministic chaos theory of heart rate vari-
ability has associated complexity, if not irregular-
ity, with health, while regularity (periodicity) has
been regarded as an index of disease, with the
focus primarily on spectral components with peri-
ods of seconds or a few minutes. Results along
the 24-hour scale reveal that the circadian varia-
tion is better defined in health than in the presence
of heart disease. Concomitant assessment of vari-
ous chronome elements reveals rhythms in endpoints
of “chaos”. Trends in both rhythmic and chaotic
endpoints are found as a function of age and in
disease versus health. For example, the correlation
dimension of fractal scaling separates healthy sub-
jects from patients with coronary artery disease at 2
A.M., but not at 10 A.M. or 2 P.M. Sampling around
the clock not only reveals a circadian rhythm in the
correlation dimension of cardiac interbeat intervals
in health, but also a variance transposition of an end-
point of chaos from the 24-hour to the 12-hour region
of the rhythm spectrum, as a new feature of CAHRV
in patients with heart disease.

Chronome-specified Interactions

Chronome-specified interactions among two or more
different variables have been called feed-sidewards.
Those among three rhythmic entities such as the

pineal–pituitary–adrenocortical interactions have
been modeled in vitro. A rhythmic sequence of stim-
ulation, no-effect, and inhibition by a third entity,
a modulator, such as the pineal, upon the interac-
tion of two other entities, the actor and reactor, such
as the pituitary and the adrenal, is gauged by the
in vitro production of corticosterone (see Figure 10).
Another feed-sideward applies to DNA labeling in
bone. An ACTH analog leads to a circadian sequence
of stimulation, no-effect, and inhibition. Studies of
feed-sidewards will have to be extended to multiple
interactions at several (e.g. circadian and about 7-day
rhythmic) chronome components, since the results
can be critically important (Figure 1), as different as
the stimulation versus the inhibition of a malignant
growth.

Automatic Closing of the Loop Between a
Chronodiagnosis and Chronotherapy

Longitudinal monitoring of vital signs for surveil-
lance has been advocated, at least for at-risk
individuals. Rather than loosing all original data
except those collected just prior to an event, as done
in the black box of an airplane, the data steadily accu-
mulating over years or decades can be analyzed in
relatively short spans to extract the pertinent spectral,
chaotic, and trend (chronome) characteristics. End-
points extracted from such windows are stored, thus
compacting the available information as a summary
for each day and then for each week or for a longer
span. The information is thus progressively updated
as the window is displaced and enlarged in repeated
passes as-one-goes, while components with progres-
sively lower frequencies are thus gradually resolved.
This continuous examining, compacting, and recy-
cling of information based on progressively broader
windows can detect the earliest chronome alterations
at one or the other frequency, which may indicate an
increased disease risk and can prompt the institution
of countermeasures.

Automatic monitoring devices, miniaturized for
long-term ambulatory use, some implanted under
the skin or in the heart, are already available for
research. The windowing, compacting, and recycling
of telemetered data could provide a continuous med-
ical examination, eventually available to everybody,
thus contributing a thorough objective history of vital
signs, preferably retrieved in response to the push of



Chronomedicine 15

+100

+50

−50

−100

0

02 06 10 14 18 22

Attenuation

Amplification

Adrenal harvest time (hours after light onset)

D
iff

er
en

ce
 in

 c
or

tic
os

te
ro

ne
 p

ro
du

ct
io

n
w

ith
 A

P
H

 +
 S

y 
ve

rs
us

 S
y 

al
on

e
(n

g/
m

l/h
 o

f i
nc

ub
at

io
n)

Lack of effect, attenuation or amplification by Aqueous Pineal Homogenate (APH) of
corticosterone production by bisected adrenals in response to Sy; mean of 5 isophasic
studies

Feedsidewards – circadian rhythmic pineal
interaction with ACTH 1–17 (Sy) effect upon

the bisected adrenal

Figure 10 Much controversy can be resolved by studying the effect of the interaction by more than two entities at
different rhythm stages: a third entity may modulate, in a predictable insofar as rhythmic fashion, the effect of a first
entity upon a second. Predictable sequences of attenuation, no-effect and amplification can then be found. A case in
point is corticosterone production by bisected adrenals stimulated by ACTH 1–17 (Sy) in the presence versus absence of
pineal homogenate (APH). Such chronomodulations are part of (time-specified) feed-sidewards, for example, of rhythmic
sequences of attenuation, no-effect and amplification by a modulator upon the interaction of an actor and a reactor. The
figure summarizes five studies by Salvador Sanchez de la Peña with us. Reproduced from Chronobiologia by permission
of Franz Halberg

a button. Eventually, the loop may be closed for auto-
matic chronome-adjusted treatment with drug pumps
and/or electrical treatment devices. Another merit of
the chronome approach versus the airplane’s black
box may be the much more complete history of long-
term antecedents to avoid the “crash” of catastrophic
disease by timely and timed treatment.
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Circadian Variation

Most living organisms on earth experience an annual
seasonal cycle caused by the earth’s revolution around
the sun, and a circadian (Latin circa dies: approxi-
mately one day) day/night cycle, caused by the earth’s
rotation around its own axis. Other rhythms, defined
by cycle length, are as shown in Table 1.

Circadian variations may arise directly from the
effects of the varying levels of electromagnetic radi-
ation from the sun at different times of the day.
In addition, many living organisms have evolved
internally generated rhythms that do not depend
entirely on external stimuli. The endogenous cir-
cadian rhythms in physiological functions such as
body temperature, blood pressure, and mental alert-
ness are responsible for the normal sleep/wake cycle
and for jetlag. The eventual adaptation to local
time by travelers indicates that the “body clock” is
sensitive by external cues known as synchronizers,
entrainers or Zeitgeber. The brain centre responsible
for the generation and synchronization of circadian
rhythms is believed to be the suprachiasmatic nuclei
in the anterior hypothalamus, which receives input
from retinal neurones, and which regulates the pro-
duction of the hormone melatonin by the pineal
gland. The endogenous periodic oscillations of the
suprachiasmatic nuclei may be due to certain “clock
genes” which exhibit rhythmic transcription by neg-
ative feedback control [3]. Understanding the “body
clock” has important implications for air travel, shift
work, as well as mental disorders such as mania and
depression in which sleep disturbance is an important
feature.

The rhythm of a variable is characterized by its
period (time units per cycle) or frequency (the num-
ber of cycles per unit time), acrophase and nadir
(the times at the maximum and minimum values of
the variable, respectively), amplitude (half the dif-
ference between the maximum and the minimum
values of the variable), and the mesor (the mean
value of the variable over the cycle). The aim of
statistical analysis in circadian rhythm research is
usually to estimate these parameters in a popula-
tion for the variables of interest, or to test for dif-
ferences between these parameters in two or more
populations. The data usually consist of measure-
ments of subjects several times a day over one or
more days.

Table 1 Rhythms

Rhythm Length of period

Ultradian Less than 20 h
Circadian Between 20 and 28 h
Infradian More than 28 h
Circaseptan About seven days
Circatrigintan About one month
Circaannual About one year

In the simplest design, a group of subjects is
randomized into two or more subgroups, and each
subgroup is measured at a different time of the
same day. For normally distributed variables, an
analysis of variance (ANOVA) can be performed
with “time of day” as a main effect, with or without
other main effects (e.g. sex, disease, medication) or
covariates (e.g. age), or interactions (e.g. time of day
by medication). For discrete variables, chi-square
tests or the loglinear model may be used. The
advantage of this design is that it avoids practice
effects, which may artifactually inflate the value of
the variable at the second time point.

Another design that also avoids this problem is
the rolling Latin square (see Latin Square Designs),
which aims to subject the different time points to the
same practice effect. An example of this design, for
three time points, is shown in Table 2, where T rep-
resents a testing session.

The resulting data can be analyzed using simple
ANOVA, with time of day and order (first, second
or third) as main effects. This, however, ignores
individual effects, and it is desirable to analyze
such data with more sophisticated methods such as
mixed effects models for longitudinal data, multilevel
models, or repeated measures models. If the data
are complicated by missing data or irregular time
intervals, then the use of repeated measures models
is even more desirable.

Table 2 Rolling Latin square design

Day 1 Day 2

0600 0800 2200 0600 0800 2200

Group 1 T T T
Group 2 T T T
Group 3 T T T
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Circadian Variation 3

In some studies a single subject is measured over
several days and the resulting data constitute a single
time series. Standard methods of time series analy-
sis, such as the correlogram and the spectrogram,
can then be applied. In addition, circadian rhythm
researchers often use simple displays such as Aschoff
bars and Buys-Ballot Tables [2].

A sinusoid with a period of 24 h is often fitted
to data in order to estimate the amplitude and phase
of the rhythm. As in linear regression (see Linear
Regression, Simple), the significance of the fit can
be tested by F statistics, and the goodness of fit
between the sinusoid and the data measured by R2,
the proportion of variance explained. One popular
extension of this approach is the Minnesota cosinor
technique [1], which combines time series data from a
number of subjects to give an overall summary of the
circadian variation. The method involves estimating
the phase (φ) and amplitude (α) of each subject,
transforming these estimates to a Cartesian system
(x = α cos φ, y = α sin φ), averaging x and y across
subjects, and then back-transforming the averages to
give estimates for φ and α of the sample. The circular
confidence region for x and y gives rise to an elliptic
confidence region for φ and α. A circadian rhythm is
significant if the confidence region for φ and α does
not include the origin (i.e. α = 0). The result of such

an analysis is usually presented in a cosinor display,
which is a plot of φ and α and their confidence region
in polar coordinates with time (i.e. phase) represented
clockwise from 00 : 00 (north) through 06 : 00 (east),
12 : 00 (south), 18 : 00 (west) and back to 00 : 00. An
illustrative example of a cosinor display is shown in
Figure 1.
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Circular Data Models

Circular data are data measured in the form of angles
or two-dimensional orientations, and so can be repre-
sented as points on the circumference of a unit circle,
or as (endpoints of) diameters of a unit circle.

Statistical models for circular data have found a
particularly felicitous area of application in biology,
not so much because of the range of models required
(indeed, the converse is true) but because of the
wealth of fascinating experiments the analysis of
which requires the models and methods.

Typical of the problems of interest to biological
scientists are those of bird navigation and of gen-
eral orientations selected by particular creatures in
response to experimental variation of their natural
habitat (or of parts of themselves).

For the specific areas of medicine and the health
sciences, there has been rather less use of circular
models. (One of the more common applications has
been to the study of circadian variation.) Neverthe-
less, there remains scope for their application. Sub-
sequent sections of this article will review material
which should be of most immediate value: model-
ing a single sample of circular data; association and
regression involving a circular random variable; and
time series models for circular data. The reader is
referred to [4] for use of these models in statistical
analysis.

Statistical Models for a Circular
Population

In this section we introduce the most useful proba-
bility models for samples of circular data. However,
some important points need to be made before this is
done:

1. Probability distribution and density functions for
circular data are defined differently from those
for real (i.e. linear) data, with corresponding
differences for the types of moments used. This
issue is elaborated in the next subsection.

2. Circular data arise commonly in one of two
forms:
(i) Vectorial data, or data with a sense of direc-

tion, which can be represented as unit vec-
tors, or as points on the circumference of
a circle of unit radius; for example, arrival

times (on a 24-hour clock) at out-patient
clinics at a hospital.

(ii) Axial data, or undirected data, which can be
represented as oriented lines of unit length,
or as (the two endpoints of) diameters of a
unit circle; for example, the orientation of
the principal axis of a blood cell on a plate
being viewed under a microscope. If Θ is
an axial random variable, then the values
Θ and Θ + π are indistinguishable. The
transformed variate Θ ′ = 2Θ[mod 2π] is
generally used for the purposes of modeling
and analysis. Exceptionally, p-axial data
are encountered; that is, data for which the
values

Θ,Θ + 2π

p
,Θ + 2

2π

p
,...,Θ + (p − 1)

2π

p

are indistinguishable. In this case the working
variate becomes Θ ′ =pΘ[mod 2π]. Thus, spe-
cial probability models are not required for these
cases.

3. This discussion treats only univariate models: no
tractable models for multivariate circular data
have been developed, even for a case as simple
as bivariate circular data. This is partly because,
with the exception of the von Mises distribution,
the most useful models for univariate unimodal
circular data are not members of the exponen-
tial family, and in the case of the von Mises
distribution, Mardia [7] has shown that the only
bivariate distribution of exponential form with
von Mises marginals is just the product of the
marginal distributions.

Circular Probability Density Functions,
Distribution Functions, and Trigonometric
Moments

The probability density function (pdf) f (θ) of a con-
tinuous circular random variable Θ is a nonnegative
continuous periodic function such that, for all θ ,

f (θ) = f (θ + 2π)

and ∫ θ+2π

θ

f (φ) dφ = 1.

The distribution function F(θ) corresponding to f (θ)

can be defined over any interval (θ1, θ2) by

F(θ2) − F(θ1) =
∫ θ2

θ1

f (θ) dθ.
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Corresponding to ordinary moments on the real
line are trigonometric moments for Θ . The pth
trigonometric moment is given by

µ′
p ≡ ρp exp(iµ′

p)

≡ α′
p + iβ ′

p,

where α′
p and β ′

p are the pth cosine and sine
moments, respectively. When p = 1, we simply write
ρ for ρ1, µ for µ1; that is,

µ′
1 = ρ exp(iµ),

where µ is the mean direction and ρ the mean
resultant length, 0 ≤ ρ ≤ 1. If ρ = 1, the distribution
is concentrated in a single direction (µ). However,
ρ = 0 does not imply that the distribution is uniform:
for example, a distribution with pdf such that f (θ) =
f (θ + π) will have ρ = 0.

The central trigonometric moments of Θ are
obtained computed relative to the population mean
direction:

µp ≡ ρp exp(iµp)

=
∫ 2π

0
exp[ip(θ − µ)]f (θ) dθ

≡ αp + iβp.

When p = 1, we obtain α1 = ρ and β1 = 0.
Some functions of the first and second trigonomet-

ric moments are also of value. The circular variance
of Θ is defined by

ν = 1 − ρ, 0 ≤ ν ≤ 1.

The circular standard deviation is defined not as
√

ν

but as

σ = {−2 log(1 − ν)}1/2 ≡ {−2 log ρ}1/2.

For ν small (i.e. ρ near 1),

σ � (2ν)1/2 or {2(1 − ρ)}1/2,

the error in the approximation being less than 5%
for ν < 0.18: equivalently, ρ > 0.82. An associated
measure of spread is the circular dispersion

δ = (1 − ρ2)

2ρ2
,

the sample counterpart of which plays an important
role in large-sample statistical inference for the mean
direction.

Definitions of other quantities, such as measures of
skewness and kurtosis, median and modal directions,
and other measures of spread, are also available [4,
Section 3.3].

Probability Distributions on the Circle: the
Uniform Distribution

The uniform distribution plays a rather more
important role in the analysis of circular data than
for linear, as it provides the null model against which
alternatives – unimodal or multimodal – are assessed.
The pdf, df, and moments for this distribution and
the other distributions described in this section are
provided in Table 1.

Probability Distributions on the Circle: Unimodal
Distributions

Here, we provide definitions and basic properties
of the most useful probability models. The reader
is referred to [6], [8], and [4] for more detailed
discussion, methods of data analysis, and references
to related work.

Wrapped Models

Let X be a random variable on the real line, with pdf
g(x) and df G(x), and define Θ ≡ X[mod 2π]. Then
Θ has a wrapped distribution on the circle, with pdf
and df given, respectively, by

f (θ) =
∞∑

k=−∞
g(θ + 2kπ)

and

F(θ) =
∞∑

k=−∞
[G(θ + 2kπ) − G(2kπ)].

Details about the properties of wrapped distribu-
tions can be found in [6, Section 3.4.8].

Two particular unimodal distributions obtained in
this way, the wrapped Cauchy and the wrapped
normal distributions, have found useful application in
circular statistics. These are two-parameter symmetric
unimodal distributions; their density and distribution
functions and moments are shown in Table 1. Both
have the uniform distribution as one limiting form, as
the mean resultant length goes to zero. The wrapped
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4 Circular Data Models

normal distribution behaves effectively as a normal
distribution as ρ approaches unity (so that the effect
of wrapping is negligible).

The wrapped Cauchy has found indirect use in
algorithms for simulating data from von Mises distri-
butions. The numerous desirable properties enjoyed
by the normal distribution on the line are, on the
circle, shared by the wrapped normal and von Mises
distributions. For suitably chosen values of their dis-
persion parameters, all three distributions can be
made very close to each other, so that samples
from each are indistinguishable in practice, except
with large data sets. As a consequence, one uses
whatever is most convenient to the problem in
hand.

The von Mises Distribution

Notwithstanding the preceding remarks about the
closeness of the wrapped normal, wrapped Cauchy,
and von Mises distributions, it is the von Mises
distribution that enjoys many of the useful inferential
properties possessed by the normal distribution on
the line. As such, it is the most common model
for a sample of unimodal circular data. As κ →
0, the distribution tends to the uniform. The size
of the concentration parameter κ is crucial for
application of many parametric procedures. For κ <

2, corresponding to relatively dispersed distributions,
there is significant density at the antimode (i.e. f (µ +
π) >> 0), and many of these procedures require
(data-dependent) adjustment to work satisfactorily.
As κ → ∞, the von Mises distribution tends to the
normal with variance 1/κ .

Other Probability Models for Circular Data

Few other models for univariate circular data have
found practical application. Batschelet [2] and Mardia
[6] have described asymmetric models and models for
discrete data, and some application has been found
for mixture models, mainly mixtures of von Mises
distributions.

Similarly, little is available by way of multivariate
distributions involving circular random variables.
Fisher [4] provides references to bivariate models in
the literature.

Association and Regression Involving a
Circular Random Variable

Whereas, with linear data, the topics of association
and regression are sometimes presented indepen-
dently of each other, this is not possible with circular
data. At least for relationships involving both linear
and circular variates, we need first to look one step
ahead: Is the purpose of the proposed analysis to be
able to predict the mean direction of Θ for a given
value x of a linear variate X, or to predict the mean of
X given that Θ = θ? Without answering this question
it is not possible to assess the association or correla-
tion between Θ and X. More details relating to this
area can be found in [4, Chapter 6].

Some work has been done on the analysis of
experiments with a circular response: see [1] for a
survey of the literature.

Association Between Two Circular Random
Variables

The joint distribution of two circular random vari-
ables Θ and Φ is concentrated on the surface of a
torus. A simple analogue of complete linear asso-
ciation between real variates X and Y is so-called
T-linear association:

Θ = Φ + θ0[mod 2π] (positive association)

or

Θ = −Φ + θ0[mod 2π] (negative association).

The extent to which Θ and Φ are so correlated can be
measured by a simple analog of the linear correlation
coefficient, namely

ρT = E[sin(Θ1 − Θ2) sin(Φ1 − Φ2)]

{E[sin2(Θ1 − Θ2) sin2(Φ1 − Φ2)]}1/2

for variate pairs (Θ1, Φ1) and (Θ2, Φ2) distributed
independently as (Θ1, Φ1): compare with the alter-
native representation of Pearson’s product moment
correlation coefficient as

E[(X1 − X2)(Y1 − Y2)]

E[(X1 − X2)2(Y1 − Y2)2]1/2

(see Correlation).
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Analogously to a monotone relation between X

and Y , we can define a concept of complete T-
association as one in which, when Θ moves clock-
wise (counterclockwise) so does Φ, with the opposite
happening for negative association. Whereas, for lin-
ear variates, Kendall’s τ provides a simple measure of
monotone association based on two independent pairs
(X1, Y1) and (X2, Y2) (see Rank Correlation), three
independent pairs are required to define an analogous
measure for circular variates.

Association between a Circular rv and a Linear rv

Let Θ and X be circular and linear random variables
respectively, the association of which we seek to
assess.

Linear–Circular Association. The simplest form
of model for the conditional mean of X given Θ is
provided by the periodic relationship

E(X|Θ = θ) = α0 + β0 cos(θ − θ0)

≡ α0 + α1 sin θ + α2 cos θ.

It is termed C-linear association. In this form, it
is clear that an appropriate measure of association
between X and Θ is a measure of multiple correlation
between X and (sin Θ , cos Θ).

By analogy with a monotone relationship between
two linear random variables, C-linear association can
be generalized to C-association:

E(X|Θ = θ) = α0 + β0f [cos(θ − θ0)],

where f (·) is a monotone function of its argument.
The extent of C-association can then be gauged by
an analogue of Kendall’s τ .

Circular–Linear Association. In the same way
that modeling linear–circular association leads, at
least for prediction purposes, to models relating
linear variates, so the modeling of circular–linear
association leads to models relating circular variates.
The circular–linear association between Θ and X

can be computed as the circular–circular association
between Θ and Φ = 2 tan−1(X).

Model for Linear–Circular Regression. From the
previous discussion, it can be seen that this reduces
to a standard multiple regression model.

Model for Regression with Circular Response.
To model Θ as a function of a vector x of linear
explanatory variables, suppose that the mean direc-
tion µ of Θ is related to x by the equation

µ = µ0 + g(β ′x),

where β is a vector of regression coefficients and
g(·) is a (monotone) link function, which maps the
real line into the circle. An example of such a
link function would be g(u) = 2 tan−1(u). The model
can be fitted quite generally, using the directional
analog of least squares; however, if Θ is modeled
as a von Mises variate, likelihood methods become
applicable.

For suggested approaches to modeling the mean
direction of Θ conditional on a circular explanatory
variable φ, see the discussion and references in [4,
Section 6.4.5].

Time Series Models for Circular Data

As noted in the discussion of probability mod-
els, there are no satisfactory models for correlated
circular data, as a consequence of which model-
ing time series of circular data poses rather more
problems than modeling time series of linear data.
It is helpful to distinguish series with moderate
noise from very noisy series, so two approaches are
described.

Each approach utilizes link functions (cf. the pre-
ceding discussion of angular regression). Let g(x) :
(−∞, ∞) → (−π, π) be an increasing function of x

such that g(0) = 0 and g(−x) = −g(x). (One such
example is the arc tan link function suggested for
regression.)

For such link functions, if X is a linear random
variable, then Θ = g(X) is a circular random vari-
able; and conversely, g−1(·) transforms a circular
variate to a linear one. Now define {θt } to be a linked
ARMA(p,q) process (see ARMA and ARIMA Mod-
els), or a LARMA(p,q) process, if its linked linear
process {g−1(θt )} is an ARMA(p,q) process.

We need to differentiate dispersed from con-
centrated situations. Broadly speaking, a unimodal
circular variate is dispersed if its density assigns non-
negligible mass to all parts of the interval (−π , π):
for a von Mises variate, this corresponds to a dis-
tribution with κ < 2. A distribution concentrated on
a subset of (−π , π) provides the opportunity to use
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approximate methods based on linear-variate theory.
For concentrated time series, complete LARMA(p,q)
processes can be fitted. For noisier series, the only
methods available at present relate to fitting autore-
gressive models.

For more detailed discussion of these and other
methods, see [3]–[5].

References

[1] Anderson, C.M. & Wu, C.F.J. (1995). Measuring loca-
tion effects from factorial experiments with a directional
response, International Statistical Review 63,
345–363.

[2] Batschelet, E. (1981). Circular Statistics in Biology. Aca-
demic Press, London.

[3] Breckling, J. (1989). The Analysis of Directional
Time Series: Application to Wind Speed and Direction.
Springer-Verlag, Berlin.

[4] Fisher, N.I. (1995). Statistical Analysis of Circular Data,
1st Paperback Ed. Cambridge University Press, Cam-
bridge.

[5] Fisher, N.I. & Lee, A.J. (1994). Time series analysis
of circular data, Journal of the Royal Statistical Society,
Series B 56, 327–339.

[6] Mardia, K.V. (1972). Statistics of Directional Data. Aca-
demic Press, London.

[7] Mardia, K.V. (1975). Statistics of directional data,
Journal of the Royal Statistical Society, Series B 37,
349–393.

[8] Watson, G.S. (1983). Statistics on Spheres. Wiley, New
York.

N.I. FISHER



Cladistic Analysis

In association studies, when a set of linked mark-
ers is available an analysis based on haplotypes is
more powerful than one using only a single marker.
Haplotype analysis does not require the discovery
of every disease variant, but does assume that link-
age disequilibrium exists between the markers and
the disease variants. Moreover, the number of haplo-
types can be very large when many markers are typed,
thereby reducing the power to test for association.
The critical challenge is to maintain precision with-
out losing power by combining the information from
different haplotypes. Templeton et al. [14–18] intro-
duced cladistic analysis which incorporates infor-
mation on the inferred evolutionary relationships of
the sample haplotypes to identify disease variants.
The central assumption behind this approach is that
an unknown mutation causing a phenotypic effect
occurred at some point in the evolutionary history
of the population and became embedded within the
historic structure represented by the cladogram. In
other words, certain portions of the cladogram would
display phenotypic effects different from the other
portions, depending on the mutations that are shared.

Thus, the cladogram defines a nested analysis that is
efficient for detecting associations between measured
genotypic variation and phenotypic variation at the
population level. Cladistic analysis consists of two
steps: constructing a cladogram of the haplotypes that
reflects the evolutionary relationships; and conduct-
ing a nested analysis.

Constructing a Cladogram

Assuming we know the individual haplotypes, an
evolutionary tree can be constructed by the method of
maximum parsimony used for phylogeny reconstruc-
tion, as implemented in the computer program PAUP
[11] or PHYLIP (software by J. Felsenstein, Ver-
sion 3.57). The parsimony algorithm determines the
unrooted tree that connects the observed haplotypes
using the minimum number of mutations. The method
of parsimony is robust and effective for reconstruct-
ing evolutionary relationships, although it does not
use the frequencies of the haplotypes in the sample
[12]. For example, Figure 1 shows a cladogram of 25
haplotypes found in the 13-kb alcohol dehydrogenase
(ADH) (see Gene) locus in the fruit fly Drosophila
melanogaster constructed using PHYLIP [15]. Each
branch represents a single mutational change between
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Figure 1 The cladogram defined by the nesting algorithm. The haplotypes enclosed by solid lines indicate the 1-step
clades and are represented by Roman numerals. The dashed lines enclose the 2-step clades that are designated by Greek
letters. A thick, solid line indicates the partitioning of the cladogram into two 3-step clades, designated by Roman letters.
From Templeton et al. [1], reproduced with permission of the Genetics Society of America
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haplotypes. Zeros refer to the inferred intermediate
haplotypes that are not found in the sample but are
necessary to connect the existing haplotypes. To sum-
marize the evolutionary information Templeton et al.
[15] developed a nesting algorithm to classify the
haplotypes within clades. The nesting algorithm is as
follows:

1. All the haplotypes in the cladogram are consid-
ered as 0-step clades.

2. Assume the n-step clades have been formed.
Define the n-step clades with only one arrow
pointing at them in the cladogram as “termi-
nal” n-step clades, otherwise, as “internal” n-step
clades.

3. Define the n + 1 step clades as sets of all n-step
clades that can be joined together by moving
back one mutational step from the terminal n-
step clades. After this operation, any remaining
internal n-step clades that have not been incor-
porated into an n + 1 step clade require further
attention to be correctly classified. First, iden-
tify those remaining n-steps that are adjacent
to (i.e. separated by one mutational step away
from) an n + 1-step clade that was defined in
the initial operation. These n-step clades are
then regarded as “terminal”, and the operation
is repeated. This procedure is iterated as needed
until all n-step clades are members of an n + 1-
step clade.

4. Repeat step 3 until the entire cladogram can be
united into a single category.

For example, haplotypes 4, 5, 7, 9, 10, 11, 12, 14, 16,
18, 19, 21, 23 and 25 in Figure 1 represent terminal
0-step clades and the remaining haplotypes are inter-
nal 0-step clades. Using the nesting algorithm, 1-step
clades can be created as in Figure 1, represented by
Roman numerals. To construct the 1-step clade II,
for instance, the terminal 0-step clade haplotype 4

is found to be distinguished from haplotype 3 by
one mutation. Similarly, haplotype 5 has one muta-
tional difference with haplotype 3. Hence, haplotypes
3, 4 and 5 are joined into a 1-step clade. Repeating
this procedure for all the terminal haplotypes leads to
internal haplotypes 1 and 2 not being placed within
a 1-step clade (haplotype 2 is one mutational step
from the 1-step clade II; haplotype 1 is one step from
the 1-step clade VII). Hence, according to step 3,
both haplotypes 1 and 2 are now regarded as “ter-
minal” and can be joined together because they are
one mutational step from each other. Similarly, the
2-step clades can be defined from the 1-step clades
as indicated by Greek letters, and the same procedure
is applied to generate the 3-step clades, indicated as
A and B in Figure 1. On the basis of these sequential
operations, the algorithm thus gives a nested design.

Cladistic analysis has been recently applied in
humans to study the association of angiotensin-1
converting enzyme (ACE) level with variation in
the ACE gene [7, 20]. In the study of 159 ran-
domly sampled Afro-Caribbeans by Zhu et al. [20],
seven polymorphisms were genotyped within the
ACE gene and 28 haplotypes were inferred using
Clark’s algorithm [1]. The positions of the seven
polymorphisms are given in Figure 2. Eight common
haplotypes, accounting for 83% of the total variabil-
ity, were used for cladistic analysis, the remaining
haplotypes being combined as R [20]. An unrooted
evolutionary tree, shown in Figure 3, was first con-
structed from the eight haplotypes by the principle
of maximum parsimony incorporated using PHYLIP.
The nesting algorithm was then used to group the
haplotypes. In Figure 3, haplotype 4 (note that num-
bers appear below the haplotypes) was grouped in
clade C and haplotype 3 was grouped in clade B.
Strictly, clades B and C should be considered as
2-step clades according to the above algorithm of
Templeton et al. [15].

ALU
I/D

22982
A/G

24599
C/T

1 kb

10979
C/T

15214
G/A

20833
C/T

23945
(CT)2/3

Figure 2 Polymorphic markers genotyped in ACE. From Zhu et al. [10], reproduced with permission of the University
of Chicago Press
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Figure 3 The eight most frequent haplotypes were used to infer a maximum parsimony tree. Haplotypes were then
grouped with neighboring haplotypes into clades A, B and C. The maximum parsimony mutational connections among
the haplotypes are indicated by solid lines, with the 0s representing all intermediate haplotypes that are missing from
the sample. The number below the haplotypes corresponds to the haplotype, and the number below or beside the solid
lines is the mutation site. The phenotypic effects attributed to these groups were tested under different model assumptions
against plasma ACE activity using a measured haplotype analysis. From Zhu et al. [10], reproduced with permission of the
University of Chicago Press

Nested Analysis

After defining a cladogram, there is the problem
of how to carry out a nested analysis to estimate
the phenotypic effects of specific haplotypes, real-
izing that we are dealing with the transmission of a
phenotypic value from parent to offspring, and that
parents pass on haplotypes, not genotypes, to their
offspring. When homozygous genotypes are segre-
gating in the population (i.e. each individual has
two identical haplotypes), a NANOVA is an efficient
method to detect and localize phenotypically impor-
tant mutations for quantitative phenotypes. For exam-
ple, Templeton et al. [15] performed a NANOVA of
ADH level for the cladogram presented in Figure 1.
The results of this NANOVA are given in Table 1.
The most significant effect is associated with the
transitional step between the 3-step clades A and
B (Figure 1). There are also significant phenotypic
effects found at the 1-step and 0-step levels. Since
there are many 1-step and 0-step clades, further

decomposition of variance is needed to localize the
effects at these levels [15].

NANOVA will not work for populations whose
members carry two different haplotypes, as in human
populations. Consequently, assigning phenotypic
effects to each haplotype is the core of the analysis.
Fisher [5] developed two methods to measure the

Table 1 Nested analysis of variance of ADH activities in
D. melanogaster. Reproduced from Templeton et al. [1] by
permission of the Genetics Societies of America

Sum of Degrees of Mean
Source squares freedom square F -statistic

3-Step clades 138.33 1 138.33 366.50∗∗
2-Step clades 0.88 3 0.29 0.78
1-Step clades 12.93 6 2.16 5.71∗
0-Step clades 19.14 14 1.37 3.62∗
Error 6.04 16 0.38

∗Significant at the 1% level.
∗∗Significant at the 0.1% level.
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phenotypic effect of a haplotype: (a) the average
excess of a haplotype, defined as the average
phenotypic value of the haplotype minus the overall
population mean; and (b) the average effect, defined
as the least-squares regression coefficient from the
linear relationship between the phenotype and the
number of copies of each haplotype (0, 1 or 2)
an individual possesses. Under the assumption of
Hardy–Weinberg equilibrium, the average excess is
equivalent to the average effect [13]. Templeton et al.
[18] proposed a random permutation procedure using
average excess to test the phenotypic associations
for populations containing both heterozygous and
homozygous genotypes. When this procedure was
used to investigate the association between the ADH
locus and ADH activity in Drosophila melanogaster,
Templeton et al. found that the result of the random
permutation procedure was consistent with that from
NANOVA for this homozygous population. Zhu
et al. [20] modeled the relationship between ACE
plasma level, sex, age, and haplotype using a linear
regression model for the cladogram in Figure 3.
Thus, the least-squares estimates of the haplotype
effects are their adjusted average effects. To localize
the important mutation affecting ACE level variance,
a series of model comparisons can be performed. On
the basis of the cladogram in Figure 3, the hypothesis
was first tested that the average effect on ACE level
is the same for haplotypes within each clade. This
comparison can be tested by the goodness-of-fit test
between model [A, B, C, R] and the full model [1, 2,
3, 4, 5, 6, 7, 8, R], which assumes that each haplotype
has a different average effect on the ACE level.
Table 2 shows that this comparison is not statistically
significant, indicating that the average effects are
similar within each of the three clades A, B and
C. Next the average effects on the ACE level of
clades A, B and C were compared. Because of the

evolutionary relationships revealed in Figure 3, only
two such comparisons were necessary, namely the
average ACE level between A and B and that between
A and C. As shown in Table 2, no significantly
different average effects were found between clades
A and B, but a significant difference was found
between clades A and C, after adjusting for multiple
comparisons. One can see from the cladogram that
there are two mutational differences between clades
A and C, occurring at the connected positions 20 833
and 22 982, and three mutational differences between
clades A and B. However, differences of this sort
can also result from an ancestral recombination
that occurred between sites 15 214 and 20 833. By
calculating the linkage disequilibrium between each
pair of polymorphisms and testing for recombination
[2], Zhu et al. found that an ancestral recombination
between 15 214 and 20 833 was in fact more likely
than multiple mutations. Therefore the functional
variant causing ACE variation is unlikely to be
located in the segment between 10 979 and 15 214.
Similar arguments also exclude the segment between
23 945 and 24 599 as the location of an ACE
functional variant. The 9-kb interval between 15 214
and 23 945 therefore most likely bears the functional
ACE variant.

Conclusion

Cladistic analysis is a potentially powerful method
for analyzing association between a set of tightly
linked markers and phenotypic variation, especially
for candidate gene studies. Since cladistic analysis
uses the historical relationships between haplotypes,
the necessary multiple comparisons can be conducted
objectively guided by the cladogram. Consequently,
the number of multiple comparisons can be reduced
and the power to detect association thus improved.

Table 2 Model comparisons

P -value obtained against model
[1, 2, 3, 4, 5, 6, 7, 8, R]

Model Overall Male Female Overall by EM

A, D, C, R (2 = 6 = 4, 5 = 8, 1 = 7 = 3, R) 0.3809 0.1028 0.1028 0.2878
A = B, C, R 0.4344 0.1508 0.9770 0.3617
A = C, B, R 0.016 0.016 0.6244a 0.015

aP value is 0.0636 in the test against model [A, B, C, R]. From Zhu et al. [10], reproduced with permission of the University of
Chicago Press.
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The method has been successfully used to localize
the deoxyribonucleic acid (DNA) region affecting
the ACE level in different populations [7, 20]. In
an analysis of simulated data at the Genetic Anal-
ysis Workshop 12, Zhu et al. [19] also localized the
Q1 functional mutation to the correct region using
cladistic analysis. Although cladistic analysis was
developed for quantitative phenotypes, it can also
be extended to case–control studies of qualitative
traits. Templeton [14] studied the association between
haplotypes and Alzheimer’s disease by performing a
series of nested 2 (case and control) × n(i) contin-
gency table analyses, where n(i) is the number of
clades in the nested category i. If the sample is small,
then a permutation chi-square test can be performed
using the algorithm of Roff & Bentzen [8]. Logistic
regression and a series of goodness-of-fit tests based
on the likelihood ratio statistic can also be adapted
for nested model comparisons when we are analyzing
qualitative traits.

As with all statistical methods, cladistic analy-
sis has its limitations. The power of the method is
dependent on the fidelity with which the estimated
cladogram reflects the true evolutionary relationships.
Several factors, such as recombination and gene con-
version, can affect the accuracy of this estimate. To
keep these sources of error to a minimum, recombi-
nation and gene conversion should be relatively rare,
and this is a reasonable assumption in a candidate
gene association study. If this assumption is not valid,
then analyses on subdivisions of the region may be
necessary [17].

Cladistic analysis requires that each individual’s
haplotypes be known. When samples are random,
the haplotypes can be inferred with a high degree
of accuracy using Clark’s [1] subtracting algorithm.
For family data, SIMWALK2 developed by Sobel
& Lange [9], which uses simulated annealing based
on a Markov process, can be used. However,
uncertainty of haplotype assignment has an impact
on cladistic analysis. For random samples and
quantitative phenotypes, Zhu et al. [21] proposed
using a two-step approach to model the relationship
between the phenotype and genetic markers: (a)
estimate the haplotype frequencies using the EM
algorithm – well-developed methods are available
for this purpose [3,4,6,11]; and (b) use a mixture
model approach to model the association between the
trait and the haplotypes. Zhu et al. [21] applied this
two-step approach to the Jamaican data set described

above and obtained results consistent with that using
Clark’s algorithm (EM results are presented in the
last column of Table 2).

In summary, cladistic analysis has emerged as
an important tool for detecting associations between
measured genetic and phenotypic variation at the
population level, although some limitations must
be anticipated when the assumptions are not met.
Only further practical experience will define the full
contribution this analytic method can make to genetic
epidemiology.
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Classification, Overview

This article gives a general review of classifica-
tion problems that occur in biometrics (see Cluster
Analysis of Subjects, Hierarchical Methods; Clus-
ter Analysis of Subjects, Nonhierarchical Meth-
ods; Discriminant Analysis, Linear). Confusingly,
the term classification has two complementary mean-
ings in the statistical literature. Firstly, it is concerned
with assigning a sample to one of a set of previ-
ously recognized classes, and secondly, it is con-
cerned with the construction and description of the
classes themselves.

In classical statistical writings, classification is
concerned with assigning a name to a given sam-
ple based on the values it is observed to have on
some set of variables; that is, it is concerned with
identification. This usage is better described as dis-
crimination; the theory of discriminant analysis is an
important part of statistics [1, 8, 15, 22, 23, 27, 30].
Basically, discrimination is concerned with labeling
the sample with some name: in botany, based on the
observed features of a plant, the kind of flower is
identified; in medicine, based on a set of symptoms
and/or biochemical tests, the disease from which a
patient is suffering is identified; in banking, based on
a prospective customer’s financial record, the bank
needs to decide whether to issue a credit card. In
these examples, the assignment classes are the species
of plants, the diseases to which humans are suscep-
tible, and the populations of credit-card holders and
nonholders. In the latter case there are only two possi-
bilities (to issue or not to issue a card), and commonly
assignment is to one of two classes. In the medical
example, except perhaps for general expert systems
for medical diagnosis, physicians would normally
already have narrowed things down to a very few pos-
sibilities – perhaps merely healthy and infected with
some specific disease. With plants, we may already
have decided on plant genus and merely wish to
decide between the relatively few species within the
genus; on the other hand, we may be totally at sea
and first wish to decide between the genera. Thus,
when discriminating, it is fundamental first to have
recognized the set of classes of interest. The val-
ues of variables may or may not overlap the classes.
An example of a variable which overlaps classes is
given by blood pressure, which varies in the popu-
lation and with two groups of patients – one healthy

and one not. It is to be expected that some healthy
patients will have as high blood pressures as some
with heart disease. Nonoverlapping variables are usu-
ally categorical, such as color, which completely
separates dandelions, which are yellow, from daisies,
which are white. Broadly speaking, when classes are
close, with overlap, probabilistic methods have to be
used, but when classes are distinct, assignment can be
satisfactorily accomplished by using nonprobabilistic
methods. When probabilistic assignment is appropri-
ate, then it is implied that there is some probability
of getting things wrong, and this encourages the
development of methodology that is concerned with
minimizing the probability of incorrect classification.
From the probabilistic point of view, nonprobabilistic
assignment is trivial, for with no overlap there is no
possibility of being wrong. Nevertheless, as shown
below, interesting problems arise.

All the above is concerned with assignment to
classes where, as we have seen, it is assumed that rel-
evant classes are recognized at the outset. Often, these
known classes will have been described from substan-
tive research in the field of application. Thus, medical
researchers describe diseases, botanists describe plant
species, and bankers know that some customers are
good risks and others are bad risks. In contrast to
defining classes on the basis of substantive knowl-
edge, classes may be formed by using statistical
methods. This is the second kind of problem, referred
to above, where one is given an unstructured col-
lection of what we shall provisionally term objects,
which are not differentiated in any way. The question
arises as to whether these objects might with advan-
tage be allocated to two or more classes. This is the
problem of constructing classifications, and it occurs
very widely. It has several variants, depending on
(i) whether or not the variables used to describe the
objects are random variables, and on (ii) whether
the objects represent individual samples, as is usual
in the statistical literature, or whether they them-
selves represent previously recognized classes which
one wishes to group into fewer classes at a higher
level. In the most simple cases, an object may rep-
resent a class with many identical members; this is
typical of classes which represent well-separated bio-
logical populations; all buttercups are yellow and all
cats have claws, so in these respects, describing one
buttercup or cat describes them all. Alternatively,
an object may represent an entire statistical pop-
ulation with well-defined distributional form, very
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likely a formalization of a distinct biological popula-
tion, in which case replication within the population
is formally possible and replicate within-population
individual samples may be available. In both these
cases, we shall say that the objects are structured, that
is to say that every given object has been assigned to
one of K , say, population classes. In the first case
each population is represented by a single object,
it being assumed that there is no variation within
any population with respect to the variables with
which we are concerned, or at least that variation
is unimportant. With this assumption we are nearly
always concerned with qualitative/categorical vari-
ables because it is inconceivable that quantitative
variables do not vary in populations. In the second
case, there are several, nk , sample replicates within
the kth population, and we shall be concerned mainly
with quantitative variables.

In another variant of the second kind of problem,
that of constructing classifications, rather than dif-
ferentiated objects we may have N undifferentiated
objects. This would be the case if we had a random
sample of size N drawn from a single population.
However, in the context of classification, it is com-
mon to have what looks like a random sample of size
N , but we may have a strong suspicion that these N

cases might be classified with advantage into a few
classes. That is, we are not given any form of clas-
sification at the outset, so assignment is not relevant,
but nevertheless we may wish to construct a classi-
fication. We may hypothesize that the samples come
from a mixture of K populations with some specified
parametric forms, and wish to decide on the num-
ber of components in the mixture and to estimate the
unknown parameters. Additionally, we may indeed
assign each sample to one of the newly identified
component populations.

Using the terminology developed above, Table 1
lists the kinds of classification problem discussed in
the remainder of this article.

Discrimination – Assignment to Classes

We first discuss the problem of assigning samples,
cases, and objects to preassigned classes. As Table 1
shows, all assignment problems are concerned with
structured objects. These problems may be considered
either in a probabilistic framework or not. We first
consider nonprobabilistic assignment.

Nonprobabilistic Assignment

The most simple method of identification, that is of
assigning a name to a specimen, is to compare the
properties of the specimen with the entries in a table
listing the properties of every named class of rele-
vance. Such a table is called a diagnostic table. It
is not necessary to list all properties – only some
minimal subset that is sufficient for identification
purposes. Perhaps more than one diagnostic table may
be needed, each listing different subsets of properties.
An example would be with the identification of plants
where one table might be applicable to plants in their
flowering state, another to their seeds and yet another
to cover the vegetative state. Diagnostic tables are
practicable only when deciding among a few putative
classes, and more efficient methods, such as diagnos-
tic keys, have to be sought for larger problems.

Diagnostic keys have been in use for several
centuries to help identify plant specimens. Nearly
every flora contains a key which helps botanists
name a specimen plant. More recently, the idea of
a diagnostic key has found wider applications either
directly, as in diagnoses based on biochemical tests,

Table 1 The main types of classification problem discussed in this article

Objects Assignment Construction

Structured Matching Maximal predictive classes
Nonprobabilistic Diagnostic keys and tables Cluster analysis: k groups

hierarchical
others

Unstructured (Nothing to assign to) Mixture problems
Probabilistic

Structured Discriminant analysis Not developed
(but could be)
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or conceptually, as in CART (see Tree-structured
Statistical Methods), the more simple expert systems
(see Artificial Intelligence), or as neural networks.
The simple botanical key operates by requiring the
botanist to decide whether the specimen they wish to
identify has or does not have some feature. Table 2
shows the beginnings of a key to the genera of North
American orchids.

This key shows several features of interest. First,
we see that the key has a hierarchical structure,
with the nodes numbered on the left-hand side. In
its entirety, this particular key has 55 nodes but
only the first four are shown; further nodes must
be added to distinguish between the various species
within each genus, thus allowing the specimen to
be named. On the right-hand side, the response to
each question shown leads either to another node,
and another question, or to an identification given in
italics with a page reference where further informa-
tion may be found [31]. The tree is binary with two
possible outcomes at each node. Nodes need not be
binary; indeed, node 26 of this key has three out-
comes:

26: Lip directed upward; spur absent 27
Lip directed downward; spur absent 29
Lip directed downward; spur present 30

Clearly, this node could be rearranged as two
binary nodes: “Lip directed upward?” and “spur
absent?”. Most methodologic work on keys is con-
cerned with binary keys. A “don’t know” response
can be accommodated by allowing the user to use
both branches, and this possibility may be allowed
for when constructing the key.

We have associated the term questions with nodes,
but it is more usual to refer to tests rather than ques-
tions. Algorithms for key construction are heuristic
and are aimed at minimizing (i) the number of nodes,
or (ii) the number of different tests used, or (iii) the

average number of steps to identification, or, when
tests have a significant cost, (iv) the average cost
of identification. In the latter two cases, the relative
probabilities, or frequencies, of the various outcomes
may become relevant. The cost of tests may be asso-
ciated with the time it takes to do them. Clearly, in
some applications, waiting for the outcome of one
test before deciding what test to do next can be very
inefficient. This is typical of biochemical applications
where tests arise from laboratory work, often auto-
mated. Then, it may be desirable to do batches of
tests in parallel, requiring methods for deciding which
tests should be batched together. Other refinements
allow for recovery from errors that have led one down
the wrong branch, reticulation that takes one across
branches (so the key no longer has the form of a sim-
ple tree), and check keys which allow one to verify
the correctness of an identification by including fur-
ther otherwise redundant tests. Payne & Preece [25]
review the methodologic literature on keys.

In all of the above it is assumed that the out-
comes of tests are error-free, so that probabilistic
methods are not appropriate. This is often a reason-
able assumption for taxonomic keys, particularly at
the genus level where, for example, all Hexalectris
have “Lateral sepals free at base”. Uncertainty has not
been neglected entirely because we have mentioned
the possibility of accommodating “don’t knows”, of
recovery from an error that has led one down an
incorrect branch, and of verifying the correctness of
an identification. Also the probabilities of possible
outcomes may be taken into account in minimizing
costs and average numbers of steps to identification.

Probabilistic Assignment

While distinct groups may be separated by nonproba-
bilistic methods such as the diagnostic keys discussed

Table 2 The beginnings of a key to the genera of North American orchids [31]

1. Orchids terrestrial in habit 2
Orchids epiphytic in habit 40

2. Orchids saprophytic, lacking chlorophyll or green leaves 3
Orchids not saprophytic, with green leaves or green bractlike scales on a green stem 5

3. Flowers, stem, and bracts white, leaves absent Cephalanthera (p. 54)
Flowers, stem, and bracts brownish, purple, or yellowish; leaves absent 4

4. Lateral sepals free at base Hexalectris (pp. 110–112)
Lateral sepals united at base, forming a mentum Corallorhiza (pp. 112–114)

5. . . .
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above, finer distinctions will often require probabilis-
tic methods of the kind described below. This occurs
when tests or characteristics overlap classes. Blood
pressure varies widely in the human population and
what may be a high blood pressure for one person,
indicating heart disease, may be normal in another
person. Thus, blood pressure by itself cannot distin-
guish between the class of healthy people and the
class of diseased people; the values of blood pressure
overlap in the two classes, or groups. Methods for
assigning samples to one or more groups each charac-
terized by its own probability distribution are among
the oldest multivariate problems studied by statisti-
cians, and under the name discriminant analysis have
a large statistical literature (see, for example, the
books by Hand [15], Lachenbruch [22], and McLach-
lan [23]). To many statisticians classification and
discrimination are synonymous.

Barnard [1], who was advised by Fisher, and
Fisher [8] introduced discriminant analysis. Fisher
was concerned with discriminating between three
species of iris and Barnard with discriminating bet-
ween skulls from four Egyptian dynastic periods.
Thus, the classes are the three irises and the four
dynasties; both studies had many samples from each
class. Fisher’s approach was to use linear regres-
sion, defining a dummy variable as the independent
variable (or explanatory variable) for each class.
Barnard, somewhat arbitrarily, used −3, −1, 1, and
3 to characterize the four dynastics. Fisher took the
irises two classes at a time characterized by a dummy
variable with values −1, 1; with two classes it is
immaterial what values are given to the dummy vari-
ables. There were four measurements on the four iris
species – sepal length and width, and petal length and
width – so a linear regression of the dummy vari-
able on the four dependent variables was performed
and used for discrimination, assigning a sample to
one group when the discriminant function is positive
and to the other group when it is negative. It worked
very well, with few misclassifications. The calcula-
tions are easy to do and the discriminant function,
being linear, is easy to use. In addition, it turns out to
be quite robust to a range of distributional assump-
tions about the dependent variables. Consequently,
the method remains popular and is much used in
biometric applications, including the discrimination
between diseased and healthy groups. Regression
methods are well-known to carry with them certain
problems; they predict much better for the sample

used to fit them than for subsequent samples, and this
is especially true when an optimal subset is selected
from all the variables available. Naturally, these prob-
lems transfer to linear discriminators. When there is
sufficient data, they are often divided into two sets:
one, the training set, is used to compute the discrim-
inant function, and the other is used to validate it.
The error rates of the validation set give a much truer
assessment of performance.

A version of two-group discrimination that owes
much to Fisher’s linear discriminant arises as follows.
Suppose p is the probability that a sample belongs
to the first group and q = 1 − p is the probability
that it belongs to the second group. Then we may
assume that log(p/q) is a linear function of the
dependent variables (see Logistic Regression). This
is logistic discrimination; the generalization is similar
to that of discriminating between loglinear models
and linear models (see Generalized Linear Model).
Logistic discrimination requires the estimation only
of the regression coefficients, which usually have far
fewer parameters than are required for other methods,
described briefly below. Also it has certain optimal
properties for a range of distributional assumptions
for the two populations (see [27] for a more detailed
discussion and further references).

The discrimination methods so far described only
have heuristic or intuitive appeal. Since Welch [30],
there has been a continuous development of theo-
retical underpinning. This is based on assuming that
the ith group has a known density function fi(x),
and then examining the probabilities of misclassifi-
cation error arising from various assignment rules
R, say. There are two probabilities of misclassifica-
tion p(1|2) and p(2|1), respectively: the probability
of a sample from group 2 being classified as from
group 1 and the probability of a sample from group
1 being classified as from group 2. An obvious opti-
mal classification rule is to choose R to minimize
p(1|2) + p(2|1). Figure 1 illustrates the geometry of
errors of misclassification. The locus f1(x) = f2(x)

defines a rule that minimizes p(1|2) + p(2|1), and
any other locus will give a greater total error of
misclassification. Thus, we are led to a discrimi-
nant rule to assign to groups 1 and 2 according to
whether f1(x) < f2(x) or f1(x) > f2(x). If, as is very
unlikely, f1(x) = f2(x), then it is arbitrary which
group is chosen, and we may toss a coin to decide.
This leads to discrimination on the basis of whether or
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R

Group 1

Group 2

p(2  1)

p(1  2)

Figure 1 Illustration of the errors of misclassification for
two groups. Although the elliptical shapes suggest normal
distributions, they need not be so. The curve R separates
space into two regions. Samples to the left of R are assigned
to Group 1 and those to the right are assigned to group 2. R
is supposed to show the locus of points with equal density
and so passes through the intersections as shown

not the likelihood ratio criterion f1(x)/f2(x) exceeds
unity.

The likelihood ratio criterion is a good basis for
discrimination and may be used whenever the func-
tional forms f1(x) and f2(x) are known. When both
populations are characterized by multivariate nor-
mal distributions, with the same dispersion matrix
�, then the likelihood ratio criterion determines R
to be linear, thus justifying Fisher’s linear discrimi-
nant. However, when the dispersions differ, the best
discriminator turns out to be quadratic. Although
quadratic discriminators are optimal, under these
assumption they are not robust to departures from
normality, especially when the distributions show
skewness. Errors of misclassification are not every-
thing, and one may wish to take into account dif-
fering costs c(1|2), c(2|1) for the different types of
error, and also the prior probabilities q1, q2 of the
groups. This replaces the likelihood ratio criterion by
the Bayes procedure (see Bayesian Methods) with
assignment based on

q1f1(x)

c(1|2)
≷ q2f2(x)

c(2|1)
.

Another criterion is the minimax rule, which mini-
mizes the maximum error of misclassification.

The above has been concerned with discrimination
among two groups, but the ideas are easily extended

to k groups. The sample space is then divided into
k regions, each corresponding to assignment to a
different group. Assignment then is merely a matter
of deciding in which region lies the sample to be
identified. By far the most popular discrimination
method of this kind is canonical variate analysis (see
Discriminant Analysis, Linear), which applies to
k groups each with a multinormal distribution with
the same dispersion matrix �. It is a generalization
of linear discriminant analysis applied to k groups.
The distance between the groups i and j is given
by the Mahalanobis distance Dij A sample may be
assigned to the group with which it has the small-
est Mahalanobis distance. In the multidimensional
scaling version of canonical variate analysis, the dis-
tances may be approximated in a few dimensions
and two-dimensional approximations may be viewed
visually. With an appropriate scaling, the means of
each group may be surrounded by circular confidence
regions. When a sample falls within one of these cir-
cles, it may be assigned to the group to which it
pertains. Samples not falling within any circle do not
get assigned because they may be aberrant or they
may more properly belong to a previously unrecog-
nized group. For similar reasons, the possibility of
not assigning a sample should be considered in all
discrimination methods.

Errors of misclassification may be calculated from
a knowledge of the distributions concerned. In all the
above it is assumed that the parameters of all the
distributions are known. In practice they have to be
estimated from data, and these estimated values plug
into the exact formulas. This introduces additional
uncertainties into the accuracy of quoted errors of
misclassification whose analysis is a highly technical
matter [23].

Appropriate multivariate distributions underlying
discrimination are not necessarily known, so non-
parametric methods are valuable. This is one reason
why the Fisher linear discriminant, in its regres-
sion interpretation, and logistic discrimination are so
valuable. Another approach is to use kernel den-
sity estimators based on the data to form empirical
density functions (see [27] for a review). Recently,
neural networks have been used for discrimination.
These work like diagnostic keys but, at each node of
the tree, branching is decided on a single variable x

according to whether x ≤ c or x > c, where c is a
threshold to be determined [16].
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Classification: the Construction of Classes

The above has been concerned with assigning to
classes. Now we turn to constructing classes. As
for assignment, class-construction may be considered
either in a probabilistic framework or not. As Table 1
shows, sometimes we classify structured objects and
sometimes unstructured objects, so the distinction
between the two becomes important in the following.

Nonprobabilistic Classification

To a computer, n unstructured objects cannot be
distinguished from n structured objects, so every-
thing which is computable for the one is also com-
putable for the other. Sometimes this makes sense
(see the discussion of mixture problems which fol-
lows closely the K-group classification discussed
next), but, for example, the hierarchical classification
of unstructured objects makes little sense. Initially we
shall be concerned with the classification of n struc-
tured objects, each representing a separate class as
described above.

k-group classification classifies n structured objec-
ts into a specified number, k, of groups, some-
time, termed a partitioning problem. Each object is
described by p variables. The basis of the classifica-
tion into k groups is the optimization of one of several
possible criteria, C, which is discussed below. To
optimize C we start with some initial classification.
One strategy is to examine the effect of transferring
an object from group i to group j , say. If this trans-
fer improves C, then we let it stand, otherwise we
replace the object in group i. Transfers are exam-
ined systematically until no further improvement is
possible. Then we have attained a local optimum
of C which gives a putative classification into k

groups. Another strategy is to examine interchanges
of objects between groups i and j , or a mixture of the
two strategies may be used. A different starting con-
figuration may give a better optimum, so usually it
is recommended to try several starts; several meth-
ods have been suggested for finding a “good” start.
It is rare for k to be known in advance, so the group-
ings given by different values of k may be found
and the optimal values Ck examined to suggest an
acceptable value of k. If the value of Ch+1 is not
much better than for Ch, then this indicates that we
should choose k = h. This type of heuristic algorithm
is much used and its efficiency is greatly increased

if we can update C, following a transfer or inter-
change, rather than evaluate C ab initio every time.
Fortunately, updating is straightforward for the three
main choices of C, brief descriptions of which fol-
low. For quantitative variables and a given grouping
into k classes, we consider the between/within mul-
tivariate analysis of variance (MANOVA), which
partitions the total sum of squares into a between-
groups matrix B and a within-groups matrix W. Then
we may define C as follows: (i) k-means grouping (or
minimum within-group sums-of-squares, trace W);
(ii) minimum det W; and (iii) maximal predictive
classification. Because the total sum of squares B +
W is constant for all possible groupings, the group-
ing which minimizes trace W also maximizes trace
B. The latter may be interpreted as maximizing the
sum of the squared distances between the group cen-
troids (or means) weighted by the group sizes. If we
ignore the group sizes, then we have the k-means
algorithm which maximizes the sum of the squared
distances between the group means or, equivalently,
the sum of the squared distances between the means
and the overall mean. If we operate on det W, then
we have the same thing in terms of Mahalanobis D2

and the canonical variate means (see Mahalanobis
Distance); as with the k-means algorithm, we may
operate in weighted or unweighted mode. We shall
return to the minimization of det W when discussing
mixture problems, below.

Many classification problems of the type dis-
cussed above may be subsumed into a single algo-
rithm which minimizes trace (X − GZ)W−1(X −
GZ)′ over G and Z, where G is an n × k indicator
matrix of zeros and units giving class membership
and Z is a k × p matrix giving the coordinates of
cluster centers. A least squares algorithm achieves
the minimization by alternating between estimating
Z for fixed G and estimating G for fixed Z. For the
problems discussed above, every row of G will have
unit sum, indicating that each object lies in one and
only one class. By taking W = I we arrive at the k-
means problem and by taking W to be the pooled
within-group sums-of-squares matrix we minimize
the squared Mahalanobis distances between groups.
By removing the unit sum constraint, overlapping
clusters may be formed.

Maximal predictive classification operates on bi-
nary rather than quantitative data. Thus, each variable
can take only values 1 and 0, which may represent
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presence/absence or two equal-status categorical lev-
els such as male/female. For each group we may
predict the level that occurs most frequently for each
variable and then count the number of correct pre-
dictions in the group; this will give more correct
predictions than for any other choice of predictor.
The choice of the criterion is now to choose the par-
tition into k groups that maximizes over all groups
the number, Cw, of correct predictions. Alternatively,
we could choose Cb to minimize the number of cor-
rect predictions averaged over the k = 1 predictors
for the wrong groups, Cw measures the homogene-
ity of groups, which we want to be good (i.e. big),
while Cb gives a measure of the separation between
groups, which we also want to be good (i.e. small).
Unlike the situation in MANOVA, where W + B is
constant for all k, Cw + Cb varies with k. The differ-
ence Cw − Ch, which balances homogeneity within
classes with separation between classes, may be used
to suggest suitable values of k [14].

If now we denote by Ck the optimal value given by
the k-group criterion for k classes, and the groupings
of samples for Ck+1 happen to be nested within the
groupings given by Ck for k = 1, 2, . . . , n, then we
have a natural hierarchical classification. Natural hier-
archical classifications are very rare but when absent
a best hierarchical classifications may be desired.
We could define the best hierarchical classification as
that which optimizes

∑K
k=1 Ck , where the groupings

which generate the Cks are constrained to be nested.
This gives a very general way of defining hierarchi-
cal classification with respect to any C-criterion, but
it has not been studied and almost certainly leads
to formidable combinatoric computational problems.
The heuristic algorithms, outlined above, for opti-
mizing k-groups, partitioning, and hierarchic interio,
usually deliver a local optimum but, until recently,
were the only ones practicable. Recent advances in
dynamic programming (see Hubert, Arabie and Meu-
luran, [18]) are beginning to offer the feasibility of
finding the global optimum-atleast for n < 30, say.

The desire for seeking hierarchical classifications
of structured objects seems to stem partly from tax-
onomy, where evolutionary considerations naturally
lead to hierarchical relationships between living (and
fossil) organisms, but also from the importance of
hierarchical systems for the organization of many
things, ranging from library books to government or
management of any large organization (see Numeri-
cal Taxonomy). There is an enormous literature (e.g.

reviews by Cormack [4] and Gordon [10, 11, 13] on
hierarchical classification and related methods. Many
of the original methods for determining hierarchical
classifications are heuristic algorithms that operate
on matrices giving the (dis)similarities between all
pairs of the n objects (see Similarity, Dissimilar-
ity, and Distance Measure). A typical algorithm is
that for single-linkage cluster analysis, which at the
ith step has i groups and joins the two groups which
share the smallest dissimilarity between two objects –
one chosen from each group. The algorithm starts
with each object in a separate group and ends up with
all objects in a single group; such algorithms are said
to be agglomerative. Divisive algorithms work in the
opposite way, starting with the n objects in a single
group and subdividing existing groups at each stage
until each object is in a separate group. It turns out
that both agglomerative and divisive algorithms can
be found for single linkage clusters, but this is not
so for most other methods. The successive divisions
of the groups in a hierarchical classification can be
shown as in Figure 2.

This is an artificial example which shows that
objects A and B join at a level of dissimilarity of 0.1
and are joined by object C at a level of dissimilarity
of 0.2; objects D and E join at level 0.3 and combine
with the other three objects at level 0.4. Such a
diagram, with an associated scale of dissimilarities, is
known as a dendrogram. A set of fitted dissimilarities
may be calculated from any dendrogram and the fitted
values for the dendrogram of Figure 2 are shown
alongside. The fitted dissimilarity for objects i and j

is obtained by finding the dissimilarity at which i and
j first join. Such dissimilarities satisfy the ultrametric
inequality dij ≤ max(dik, djk), which is a stronger
form of the usual metric inequality satisfied by the

A B C D E

0.4

Fitted dissimilarities

A

B  0.1

C  0.2  0.2

D  0.4  0.4  0.3

E  0.4  0.4  0.4  0.4

       A     B    C    D    E

0.3

0.2

0.1

Figure 2 A dendrogram representation of a hierarchical
classification with fitted ultrametric dissimilarities
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sides of a triangle dij ≤ (dik + djk). Not only does
every dendrogram define dissimilarities that satisfy
the ultrametric inequality, but also the converse is
true [17, 19, 21]. It follows that the best hierarchical
tree may be defined as the tree which minimizes

n∑

i=1

(dij − δij )
2, (1)

where (dij ) is the matrix of observed dissimilarities
and (δij ) is the matrix of fitted ultrametrics. Unfortu-
nately, such criteria are hard to minimize numerically,
and existing algorithms are not very efficient. There-
fore, heuristic algorithms remain popular (see, for
example, [28]). Many of these algorithms can be
unified by choosing different parameters in formu-
las that give the dissimilarity between any group and
two merged groups as a linear combination of quan-
tities that characterize the dissimilarities between the
three groups concerned and their heights in the den-
drogram. The most simple general-purpose formula
giving the dissimilarity between group k and the
amalgamation of groups i and j is

dk(i,j) = αidki + αjdkj + βdij + γ |dki − dkj |,
where the Greek letters are adjustable parameters
which may be chosen to give different agglomer-
ative algorithms. Unifications of these kinds, and
there are several of them, facilitate programming
general-purpose software for hierarchical classifica-
tion encompassing many methods, but writing tailor-
made programs for some of the special cases can be
more efficient.

As well as characterizing trees by ultrametric
distances, they may also be characterized by additive
distances. Figure 3 illustrates the concepts concerned.

Now, rather than an accompanying scale of dis-
similarities as in a dendrogram, the length of each
branch is given. The resulting trees are termed addi-
tive trees because the fitted values are determined by
the length of the shortest path between two endpoints,
which is obtained by adding up the component parts
of the path, as is shown in the table alongside the
tree of Figure 3. Thus, the distance from A to C is
0.2 + 0.1 + 0.2 = 0.5. For all quadruples
i, j, k, l these fitted dissimilarities satisfy the four-
point metric,

δij + δkl ≤ δil + δjk = δik + δjl,

A

B
C E

D

0.1

0.2

0.1

0.2
0.1

0.1

0.2

0.3

Fitted dissimilarities

A

B  0.3

C  0.5  0.4

D  0.7  0.6  0.6

E  0.9  0.8  0.8  0.4

       A     B    C     D     E 

Figure 3 An additive tree representation of a hierarchical
classification with fitted four-point metric dissimilarities

i

j

k

l

Figure 4

where the two longest sums are equal. This is often
drawn as in Figure 4.

By setting k = l, so that δkl = 0, it follows that the
four-point inequality also satisfies the metric inequal-
ity for all triplets. Now (1) may be fitted by con-
straining the δij to satisfy the four-point inequality,
but efficient algorithms are available only for small
problems. Instead, efficient heuristics are used which
ensure iteratively that the four-point property is sat-
isfied locally, e.g. by finding the best least-squares
approximation to every set of four points (see [9] for
an algorithm of this kind and a summary of related
work). An alternative approach depends on a property
of additive trees that they may be expressed as a sum
of an ultrametric tree and a star tree, i.e. an additive
tree with just one node. This may be written as

aij = uij + aj + ai, i, j = 1, 2, . . . , n,

where aij denotes the additive distance between
classes i and j, ai are additive constants, and uij

denotes corresponding ultrametric distances. Thus, in
the example of Figure 3, we may set a1 = 0.2, a2 =
0.1, a3 = 0.1, a4 = 0.1, and a5 = 0.1, and verify that
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the elements uij = aij − aj − ai satisfy the ultramet-
ric inequalities. The reader may check that the quan-
tities ai differ only by a constant, chosen to ensure
that the uij are nonnegative, from the lengths of the
branches of Figure 3 from the root node. Provided
one has an algorithm for fitting ultrametric trees, this
result allows one to construct a least squares algo-
rithm for fitting additive trees by alternating between
fitting the ultrametrics and the additive constants.

The previous result may be considered as part of
the family of so-called hybrid models:

dij = uij + cij , dij = uij + ai + aj + cij ,

dij =
R∑

r=1

uijr + eij , dij = uij + fij + eij ,

which place hierarchical classification problems in
the wider context of statistical modeling and takes
us rather far from the topic of classification under
discussion.

The same objects may be given several differ-
ent hierarchical classifications, either because they
are based on different sets of variables or because
they are based on different algorithms. The ques-
tion therefore arises of deciding to what extent the
classifications agree with one another. A first step is
to determine an average or consensus classification.
There are many ways to do this, the most simple of
which is to fit a tree to the average (root mean square
is better) of the ultrametric or additive distance matri-
ces arising from each classification. A more popular
approach is to devise combinatoric algorithms that
search for objects that group together in all, or at
least in many, of the separate classifications [5].

Sometimes, hierarchical classifications need to be
constrained in some way. When classifying geo-
graphic, ecological and image data it is natural to
constrain classes to be spatially contiguous so that
the resulting clusters have spatial integrity. To impose
constraints greatly complicates clustering algorithms,
but considerable progress has been made [12].

As well as ultrametrics and additive metrics, other
structures have been fitted to dissimilarity matri-
ces. Critchley defines ziggurats, which are a special
class of tree where the objects split off from the
main tree one at a time. Diday defines pyramids
which are not tree structures but are highly inter-
linked systematic rooted graphs. Indeed, the possi-
bility of fitting interlinked, or overlapping, trees has

been recognized for many years (see, for example,
[20]). My impression is that these structures are cur-
rently mainly of research interest and have rarely
been used in applications; perhaps they are more
concerned with data description rather than with clas-
sification.

Probabilistic Classification

The main probabilistic method for forming classes
from unstructured objects is known as the multivari-
ate mixture problem. It has a long history in statistics
and in its univariate form was first studied by Karl
Pearson [26]. Pearson was concerned with data on
several hundred shin bones from an archeological
investigation. He knew that some were female and
some were male, and wished to assign the bones
to the two classes, after identifying and eliminating
immature skeletal material. In this case, he knew that
there were only two classes, but in problems where
the objects are a mixture of samples from several
populations, the number of classes is not necessarily
known in advance. Thus, the mixture problem is to
assign each of n given samples, on each of which
the same p variables have been measured, to one
of k classes and to determine the best value of k.
Each class is assumed to be identified by a probabil-
ity distribution function fi(x, θi), i = 1, 2, . . . , k, and
a supplementary interest is to estimate the values of
the parameters θi of these distributions. Being set up
in a formal statistical context, a maximum likelihood
approach can be taken. The likelihood is

L =
∏

x∈C1

f1(x, θ1)
∏

x∈C2

f2(x, θ2) . . .
∏

x∈Ck

fk(x, θk).

(2)

Thus, L is maximized for some permutation of the
samples assigning them to the k classes, no class
being empty, and the parameters θi, i = 1, 2, . . . , k,
being estimated from those samples assigned to Ci .
Of course, there are an enormous number of pos-
sible permutations, so the computational problem is
formidable and approximate heuristic algorithms are
used. Transfer and interchange algorithms like those
described above for nonprobabilistic classification are
applicable, but whenever a sample is transferred from
Ci to Cj the parameters θi and θj have to be rees-
timated which, unless a simple updating procedure
is available, adds to the computational burden. An
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important special case is when all the distributions
have multinormal form with the same dispersion
matrix. Then, the updating of the class-means and
within-class dispersion matrix W is simple and it
turns out that the permutation of the samples which
maximizes the likelihood is when det W is mini-
mized, thus leading back to one of the variants of
the k-means problem and algorithm.

Mixture distributions may also be modeled as the
distribution function

k∑

i=1

pifi(x, θi),

where pi gives the frequency of the ith population.
The parameters, including the frequencies, may again
be fitted by maximum likelihood. In the previous
approach the frequencies may be estimated from the
relative sizes of the classes Ci .

In both approaches it seems difficult to determine
an optimal value of k, and I am not aware that
anything better has been suggested than plotting the
maximized likelihood against k and hoping to find
a “dogleg” pattern in which the likelihood increases
with k until a level is found where increasing k has
little effect. The point where this occurs, if it does,
gives a natural choice for a suitable value of k. A
device which has some popularity is to add a penalty
function to the likelihood (see Penalized Maximum
Likelihood), so discouraging large values of k. Mix-
ture problems have a large statistical literature, e.g.
[6, 24].

Jardine & Sibson [20] suggest that classes be
formed on the basis of what they term information
gain. They use Renyi’s measure of information to
define the information in a classification and calculate
the information gained from regarding the samples as
belonging to a mixture of k classes rather than that
all the samples belong to a single class. Similarly,
information gain can be calculated when proceed-
ing from any classification to one where the number
of classes is decreased. Apart from using informa-
tion gain rather than likelihood, the concepts and
the computational problems are similar for the two
approaches.

There is a hierarchical version of the mixture prob-
lem which seeks to classify n unstructured objects
into k nested classes. Thus we seek a tree with k end
points, each corresponding to a mixture component.

It is rare for those who construct hierarchical clas-
sifications, even of structured objects, to be really
interested in trees with n end points. Very often they
will truncate the tree at some convenient level in the
dendrogram. For example, in Figure 2 we might trun-
cate at 2.5 leading to three nested classes (A, B, C),
(D), and (E). Such ad hoc rules are frequently used,
but I know of no direct modeling for this type of
problem.

A problem that could be studied, but seems not to
have been, is concerned with the classification of n

objects structured into k groups. These objects may
be parameterized as for discriminant analysis, and
so may be represented by either n fully parameter-
ized distribution functions or by samples from the
n objects from which the parameters of the distribu-
tions may be determined. Some objects may be closer
together than others, as measured, for example, by the
Mahalanobis D2, and it seems reasonable that these
be classified together. In general we might wish to
group the n objects into fewer homogeneous classes.
In an extreme case, the objects may be characterized
by point distributions so that there is no overlap and
errors of misclassification are irrelevant. This sug-
gests that some other basis for classification must be
used to replace, or add to, probabilistic measures of
distance between populations and between grouped
populations.

Links Between Construction and
Assignment to Classes

In this article I have stressed the distinction between
constructing classes and assignment to classes. Yet
the distinction is often blurred because one legiti-
mate reason for constructing classes is so that future
assignments to the classes should be optimal in some
sense. We have seen that diagnostic keys are con-
structed so that identification is optimized either in
terms of the number of tests that have to be done
or in terms of costs. Of course, the classification is
given at the outset, but if we were allowed to redefine
our classes, perhaps we could reduce the number of
tests required or the costs. Then we could say that
the best classification is the one that minimizes these
quantities. Unfortunately, there is a trivial solution
with only one class, and then every specimen could
immediately be assigned to that class without cost.
The anomaly arises because we are not allowed to
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redefine the basic classes. However, if we reallocated
the species among the genera, then the key to the
genera might be shorter or cheaper to use. In this
way we could define a classification with optimal
properties for assignment. Maximal predictive clas-
sification has such a property, as it can be shown
that any object shares more properties with the class
predictor for its own class than with the class pre-
dictors for all the other classes. Thus, an object may
be assigned to its proper class merely by counting
how many properties it shares with each class pre-
dictor. Mixtures estimated by maximum likelihood
have a similar property, as can be seen from the
following result, which derives from (2). Suppose
(2) has been maximized and we move an object x
from Ci to Cj . Then the likelihood becomes L∗ =
Lfj (x, θj )/fi(x, θi) < L. Thus, fj (x, θij ) ≤ fi(x, θi),
showing that the boundary between objects assigned
to classes Ci and Cj is precisely that given by the
likelihood ratio criterion for discrimination regions.
Thus, the classes obtained from the mixture model
are optimal for discrimination.

Of special interest in the biometric context are
problems of constructing classifications based on evo-
lutionary concepts. Diagnostic keys and the hierarchi-
cal classifications discussed earlier are unashamedly
utilitarian and, despite their hierarchical structure,
make no evolutionary claims. There has been much
controversy and confusion between utilitarian hierar-
chical classifications and classifications supposed to
reflect evolutionary relationships (see, for example,
[2]). This is a little surprising, because the Linnaean
binomial classification of the natural world long pre-
dates Darwin and, in its original form, cannot be
claimed to be based on evolutionary principles. For
more than 100 years taxonomists have been extend-
ing and modifying Linnaean classifications and, for
the most part, have attempted to mirror supposed evo-
lutionary development. Similarity between organisms
is likely to bear some relationship to shared genetic
material but evolutionary convergence between, for
example, some of the superficial features of fishes and
whales shows that evolutionary classifications must
be approached with care and that, although pheno-
typic similarity may be a satisfactory basis for con-
structing utilitarian classifications, it may not be for
evolutionary classifications. Nevertheless, phenotypic
classifications are likely to contain a substantial ele-
ment of evolutionary classification, even though that

is not their prime objective. Two approaches to evo-
lutionary classification have been developed – one
probabilistic and one not. The probabilistic approach
is useful for constructing evolutionary trees for genet-
ically close classes, such as different human popu-
lations, and is based on modeling genetic drift and
mutation. Being a probabilistic model, in principle
its parameters and the topology of the optimal tree
may be estimated by maximum likelihood. The com-
putational problems are formidable but some progress
has been made (see, for example, [7]) that allow
the method to be used for small problems. The
nonprobabilistic approach, often termed cladistics, is
based on the concept of minimal evolution, which
is appropriate for categorical variables or characters.
Minimal evolution requires the fitted tree to mini-
mize the number of character changes as one moves
from node to an adjacent node. There are difficul-
ties, because with multistate characters the states
have to be ordered from their presumed primitive
forms to their most developed evolutionary forms.
Further, the fossil record has considerable gaps and
so one must allow for hypothetical missing organisms
and a suitable root for the tree must be identified.
When the length of a branch of a tree is defined as
the number of character changes between its nodes,
then the minimal evolution tree is the same as the
minimal-length additive tree, in this context known
as a Wagner tree. For further discussion, see [3,
29, 31].
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Classifications of Medical
and Surgical Procedures

Many of the principles governing the construction
of classifications of procedures parallel those relat-
ing to the International Classification of Diseases
(ICD). Like the ICD, classifications of procedures
are designed to facilitate statistical analysis, with
the structure and composition of categories reflecting
their frequency of occurrence and surgical impor-
tance. Classifications of procedures are not intended
to be surgical nomenclatures, although in common
with other similar classifications they are designed
to be accessed from the clinical terminology used to
describe surgical and other operations.

An important additional consideration which often
affects the construction of a procedure classification
is an explicit definition of its scope. Although the ear-
liest examples of such classifications were confined
to those surgical operations normally carried out in
operating theaters, gradually the scope of “surgery”
has extended to procedures carried out in other envi-
ronments. More recently there is increasing pressure
for procedure classifications to include other forms
of less invasive intervention, particularly those which
entail the use of expensive resources.

The World Health Organization (WHO) con-
siders that a Classification of Procedures should be
a component of the “family” of disease and health-
related classifications and indeed, for trial purposes
in 1978, WHO published an International Classifica-
tion of Procedures in Medicine (ICPM) [11], which
was adopted by a few countries, and used as a basis
for a national classification of surgical operations by
a number of others. For example, a procedure classi-
fication developed in this way is an integral part of
the United States International Classification of Dis-
eases, 9th Revision Clinical Modification (ICD-9CM)
[10].

Nevertheless, many countries have independently
developed their own procedure classifications. Well-
known examples include those from Canada [7] and
the recently published Nordic Classification of Sur-
gical Procedures [6]. This latter classification has
been structured so that the listed codes form a tiny
proportion (less than 0.5%) of the available space.
This graphically illustrates a further particular fea-
ture of the structure of a procedure classification,

in that it needs to be able to respond appropri-
ately to the ever increasing developments in surgi-
cal techniques. The relatively poor acceptance of an
international version to some extent reflects the fact
that surgery is practiced differently in each coun-
try. More importantly, a procedure classification is
frequently used as an important part of the billing
process, or for other similar revenue purposes. In
these respects, individual countries have widely dis-
parate needs, and thus there is no uniform require-
ment or specification. A classification designed to
meet the needs for groupings which easily aggre-
gate on the basis of iso-resource operating theater
costs would be constructed quite differently from
one designed for epidemiologic purposes in order
to add a proxy dimension of severity when com-
bined with a suitable diagnostic classification such
as the ICD.

In the UK, a classification of surgical operations
has been available for use since 1944, when one
which identified 443 categories of operation was
published by the Medical Research Council [4]. The
then General Register Office prepared and issued an
updated version in 1950 [1], and revisions to this
were subsequently issued in 1956 (first revision) [2],
1969 (second revision) [3] and 1975 (third revision)
[8]. The current fourth revision (normally referred
to as OPCS-4) was published by the then Office of
Population Censuses and Surveys in 1990 [9].

Since 1990, the content of the tabular list cate-
gories in OPCS-4 has remained constant but the index
has been regularly updated to give additional entries
to these categories. Responsibility for maintenance of
the classification now lies with the National Health
Service Centre for Coding and Classification, but con-
stant expansion of the frontiers of surgery presents its
own particular problems. These are typified by the
difficulties of fitting the recent growth in techniques
of minimal access surgery within a basic classification
structure not designed to accommodate them.

OPCS-4 has a wide range of national uses within
the UK, including the presentation of statistics of hos-
pital use, and as a central element in the construction
of Health Care Resource Groups (HRGs) as defined
by the National Casemix Office [5]. It has similar
local uses, which also include a major role in the
setting and monitoring of contracts. In some places
it is also used in operating theater applications such
as scheduling, although it was not designed for this
latter purpose.
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Clinical Epidemiology

Clinical epidemiology involves the application of
methods derived from epidemiology and other fields
to the study of clinical phenomena, particularly
diagnosis, treatment decisions, and outcomes. Clin-
ical epidemiology has been characterized, somewhat
immodestly but fairly accurately, as the basic science
of clinical medicine. Clinical epidemiology is not a
clearly delimited field. In its concern with the accu-
racy of diagnosis, the elements of treatment decisions,
and the measurement of outcomes, clinical epidemi-
ology overlaps substantially with clinical medicine.
In its focus on physician and patient choices and the
interactions between patients and physicians in clin-
ical processes, it overlaps substantially with health
services research. In its use of various quantitative
methodologies to address questions of clinical rel-
evance, clinical epidemiology overlaps substantially
with epidemiology, economics, and other disciplines.

To facilitate an understanding of this broad field,
it is helpful, if somewhat arbitrary, to consider clin-
ical epidemiology in terms of its major areas. These
include clinical measurement, diagnosis and screen-
ing, clinical decision making, measurement of treat-
ment effects, clinical economics, and clinical study
design.

Clinical Measurement

Clinical measurement, or clinimetrics, as it is some-
times called, is the foundation for all of clinical epi-
demiology. Sound measurements are the raw material
for the various methodologies of the clinical epidemi-
ologist. If this raw material is flawed, then it is very
likely that the results and conclusions derived from
it will also be flawed.

Clinical measurement involves some issues that
are common to all forms of measurement and others
that are almost uniquely applicable to measurement
as a clinical process. The common issues for any
measure include its reliability, validity, responsive-
ness, and generalizability. A measure is reliable if it
provides consistent results when used to measure an
unchanged phenomenon at different times or in dif-
ferent settings. A measure is valid if it truly measures
the construct it is assumed to measure. A measure is
responsive if it is sensitive to clinically meaningful

change. A measure is generalizable if it can be use-
fully applied to subjects who differ by age, gender,
race, diagnosis, or some other major characteristic
(see Validity and Generalizability in Epidemio-
logic Studies).

Other issues in clinimetrics arise from the fact that
clinical measurement typically involves an examiner,
an examinee, and an examination technique, all of
which are subject to measurement error. The clin-
ical examiner may be inadequately trained or may
be prone to biased measurement. The clinical exam-
inee is subject to physiological variation and is prone
to reporting bias. The examination methodology may
be affected by a variety of factors, including calibra-
tion errors and changes in technique. The effects of
the sources of measurement error can be cumulative,
making clinical measurement a particularly challeng-
ing proposition.

Diagnosis and Screening

Diagnosis is a critical step in the clinical process,
and the analysis of the diagnostic process is a major
focus for clinical epidemiology. Diagnosis refers to
the categorization of individuals who have come
to a clinician with symptoms. Screening refers to
the categorization of asymptomatic individuals in a
clinical setting or in the general population.

The analysis of diagnosis in clinical epidemiology
focuses on the performance of diagnostic tests. The
key properties of a diagnostic test are its sensitivity
and specificity. Sensitivity refers to the frequency
with which a test is positive when it is applied to
a group of individuals known to have a particular
disease. Specificity refers to the frequency with which
a test is negative when it is applied to a group of
individuals known to be without a particular disease.

In the clinical setting, the sensitivity and
specificity of a test, combined with the estimated
prevalence of the expected diagnosis (sometimes
referred to as the pretest probability of disease)
determine the predictive value of a test. A positive
predictive value estimates the probability that an
individual with a positive diagnostic test result
will actually have a particular disease. A negative
predictive value estimates the probability that an
individual with a negative test will actually be free
of disease. Since pretest probability is substantially
lower for screening than it is for diagnosis,
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the predictive value of diagnostic tests may be
substantially lower when they are used for screening.

Diagnosis in medicine is seldom based on the
positive or negative result of a single test. In most
diagnostic situations several diagnostic tests are avail-
able, with each providing a range of results rather
than a simple positive or negative. Methods have
been adopted to compare the diagnostic efficiency
of different clinical tests across their range (receiver
operating characteristic (ROC) curves) and to
determine the probability of a diagnosis given the
level of a diagnostic test result (likelihood ratios).

In many diagnostic or screening situations several
tests are used in combination. In circumstances in
which a diagnosis should not be missed, such as
a highly treatable infectious disease, one or more
diagnostic tests may be applied in parallel with any
positive result leading to a diagnosis. This approach
enhances the sensitivity of a diagnostic or screening
strategy. In other settings, serial testing, in which a
second test is done only if a first one is positive,
minimizes the use of costly or dangerous second-
stage tests. Serial testing lowers the sensitivity of
the diagnostic or screening strategy, but it maximizes
specificity and minimizes false positive rates.

Clinical epidemiologists also concern themselves
with issues of intra- and interobserver agreement
(see Observer Reliability and Agreement). In the
realm of diagnosis, intraobserver agreement estimates
the extent to which a clinician reproducibly catego-
rizes subjects into diagnostic categories. Interobserver
agreement estimates the extent to which two or more
clinicians agree on the diagnostic categorization of
subjects. Since agreement in either situation may
occur by chance, kappa and other statistics are used
as measures of agreement that adjust for chance. Clin-
ical epidemiologists have repeatedly demonstrated
that the adjusted diagnostic agreement between two
trained clinicians may be surprisingly low.

Clinical Decision Making

The key methodology for the study of clinical deci-
sion making is formal decision analysis. Decision
analysis involves the construction of detailed trees
in which each decision point in a clinical treatment
cascade is specified, probabilities are assigned to an
exhaustive group of potential outcomes, and values
are assigned to each outcome. To guide clinical prac-
tice, formal decision analysis can be quite helpful in

clearly specifying the issues and potential outcomes
in a given clinical decision (see Decision Theory).
At the level of clinical epidemiology, formal decision
analysis forms the basis for explicit cost and bene-
fit estimates that serve to inform the choice between
treatment alternatives (see Health Economics).

Measurement of Treatment Effects

A central topic in clinical epidemiology is the estima-
tion of benefits and side-effect rates that result from
clinical therapies. The estimation of benefits involves
the specification and measurement of the major com-
ponents of treatment outcome. Until recently, treat-
ment outcome was usually estimated in terms of
reduced mortality or improvements in the physiolog-
ical manifestations of a particular disease, such as
blood pressure reduction in hypertension treatment
and blood sugar control in diabetes treatment.

In recent years, clinical epidemiologists, in con-
cert with health services researchers, have expanded
the measurement of treatment benefits to include
the four major components of health status: physi-
cal function, psychological function, social function,
and symptoms. These elements of health status are
measured using a variety of methods, with an empha-
sis on recently developed questionnaire approaches.
These questionnaires have proven to be as reliable,
valid, responsive, and generalizable as more tradi-
tional clinical measures of benefit. In addition, these
newer measures have more relevance for patients
because they assess treatment benefits, such as func-
tional capacity and symptom reduction, that are of
particular concern to patients.

Treatment benefits may be measured using general
methods that apply across diagnostic categories. The
SF-36 health status questionnaire is the most widely
used example of this approach. Other questionnaires
are designed to measure the major elements of health
status in particular categories of disease, such as
arthritis or respiratory disease-specific measures (see
Questionnaire Design).

Treatment benefits may also be estimated in terms
of patient utilities. In this approach, such methods
as time tradeoff and standard gamble are used
to estimate patient-specific preferences for potential
benefits. Although utility estimation may be method-
ologically difficult, it is conceptually appealing, and
it provides a basis for comparing treatment benefits
across different disease categories and patient groups.
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There is no such thing as a treatment without
costs. So in their efforts to develop an accurate and
balanced assessment of medical treatments, clinical
epidemiologists must measure the rate of adverse
events and their severity as well as benefits. Drug
toxicities, or adverse effects, may result from an
overshoot in the intended effect (e.g. low blood sugar
caused by a diabetes treatment), from undesirable but
related physiological effects (e.g. stomach ulcers from
arthritis drugs), and from apparently idiosyncratic
effects (e.g. headache or skin rash from various
drugs).

The study of the frequency and severity of adverse
events falls into the realm of pharmacoepidemiol-
ogy. For common treatment side-effects, follow-up
of patients on medication or even data from clinical
trials can be utilized to characterize the frequency
and severity of side-effects. The rate of common side-
effects can be characterized with the highest level of
validity because these rates are often derived from
close observations by practitioners who are actively
monitoring clinical subjects for drug side-effects. For
rarer adverse events, computerized clinical databases
or claims databases (see Administrative Databases)
are increasingly being used, for they are the best
source of information on large numbers of people
under treatment. Both approaches typically utilize
the prescription as their measure of treatment expo-
sure. Any side-effect of treatment that occurs outside
the medical record or claims file may be difficult to
capture and count. There is also an inherent prob-
lem in large-scale observational studies of drug use
in that certain drugs may be given only to per-
sons at high risk of certain side-effects, so that an
association with those side-effects is to be expected.
This confounding by indication has made it nearly
impossible to perform pharmacoepidemiologic stud-
ies of drugs that are supposed to protect against
other drug side-effects. Notwithstanding these dif-
ficulties, large-scale, computer-based pharmacoepi-
demiology studies offer promise in terms of iden-
tifying and quantifying the serious adverse effects of
drugs.

Clinical Economics

Dollars are the other major cost of treatment, so
clinical epidemiology must concern itself with the
estimation of dollar costs. The first issue in doing

any clinical cost study is to define the perspective
from which costs are estimated. For example, a vac-
cination program will have different costs depending
on whether costs are analyzed from the perspective
of the State Health Department, the clinic provid-
ing the vaccinations, or the family whose child is
vaccinated.

There are three major types of clinical cost study.
The first is a descriptive study in which the costs
of a treatment are measured in terms of direct
medical costs (e.g. the cost of a clinic visit and the
prescription), direct nonmedical costs (e.g. the cost
of losing time from work to receive treatment), and
indirect costs (e.g. the cost of reduced productivity
caused by disease-related disability or death). Cost
estimates may then be used in a cost-effectiveness
study in which the costs of treatment are compared
to benefits measured in terms of clinical or health
status improvements. The third type of cost study
is a cost–benefit study in which both the costs and
benefits of treatment are measured in dollar terms.
Although it is the most difficult form of cost study to
carry out, the cost–benefit study has the advantage
of allowing comparisons of very different treatments,
such as a vaccination program for children vs. a
hip replacement program for the elderly, because the
benefits of each approach are measured using a single
metric: dollars.

Clinical Study Design

The distinguishing characteristic of clinical studies
is that they begin with subjects who have a particu-
lar diagnosis. Clinical study designs include natural
history studies, randomized clinical trials, and N of
1 studies (see Crossover Designs). The natural his-
tory study focuses on analyzing prognosis in subjects
who have a particular disease. Using the natural his-
tory design, one can evaluate the effects of treatments
including important and common adverse events. One
can also identify persons at high risk of experiencing
a poor disease course who might be appropriate sub-
jects for more aggressive treatment and other subjects
who experience a benign disease outcome in whom
aggressive treatment may not be indicated. In addi-
tion, data on prognosis can be utilized to develop
“predictive models” identifying which patients might
benefit from extensive, costly clinical evaluation (see
Predictive Modeling of Prognosis). Thus natural
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history studies of people with a particular disease pro-
vide valuable diagnostic and therapeutic information
that can guide clinical decisions.

Clinical epidemiologists have identified several
critical methodologic concerns in performing a natu-
ral history study. These concerns are similar to those
of epidemiologic cohort studies, the main differ-
ences being that in natural history studies subjects
already have disease. The controls in a natural his-
tory study are internal controls, and comparisons are
made between different subsets of people with dis-
ease. Natural history studies are most accurate in
so-called inception cohorts, in which patients are
entered into the study just after diagnosis. If patients
are entered long after diagnosis, patients who die
or go into remission soon after diagnosis may be
missed, thus biasing the study. Right censoring, or
loss to follow-up of patients enrolled in the natural
history study, must be avoided to give an accurate
picture of the prognosis of disease. If dropouts tend
to have poor prognosis, then the study would arrive
at an inaccurately optimistic prediction of disease
prognosis.

Prognostic information can be used to build pre-
diction rules that will estimate patient prognosis
based on the presence or absence of key clinical
characteristics. To develop prediction rules, investiga-
tors generally study two different groups of subjects
with disease. Using the first group, they develop the
rule identifying those factors which affect prognosis.
Using the second group, they test this prediction rule,
attempting to confirm that the factors identified in the
first sample generalize to the second. Such repeata-
bility of a prediction role in two independent samples
augurs well for the general applicability of this rule
to yet other patient samples.

Summary

Clinical epidemiology is a heterogeneous and dy-
namic field in which methodologies drawn from
epidemiology, economics, and psychometrics are
applied to issues related to clinical measurement
and clinical decision making. This applied science
will undoubtedly continue to grow and become even
more important as clinical scientists apply additional
methodologies to the analysis of clinical problems.

Several general references on clinical epidemiol-
ogy are listed in the Bibliography.
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Clinical Signals

Clinical signals are obtained when human subjects are
monitored, usually by measuring electrical activity
in a particular part of the body. Typical signals are
the electrical activity measured from the brain (EEG)
and from the heart (ECG or EKG). Other signals are
muscle activity (EMG), stomach (EGG), and blood
pressure from an indwelling cannula. Signals not
measured electronically include lung function (see
Pulmonary Medicine), levels of electrolytes in the
blood, and clinical symptoms measured at regular
intervals such as hourly or daily.

Time series methods are applied routinely to ana-
lyze clinical signals in hospitals and they can often
provide life-saving information. Many measurements
vary considerably over short periods of time and it
is in fact this variation that is indicative of health
or sickness, and not the absolute level of the mea-
surement. As examples, it is the variation in Peak
Expiratory Flow Rate (a measure of lung function)
which is diagnostic of asthma, not the absolute level
and Heart Rate Variability (HRV) is used to diagnose
fetal distress during labor.

The literature on the analysis of time-varying
clinical signals has been dominated by engineers, who
have developed their own methodology and literature
in parallel with the statistical version, and sometimes
the engineering methods lack an underlying statistical
model, which can make dialog between the two
disciplines difficult. A discussion of the different
approaches taken by statisticians and engineers has
been given recently [3].

Spectral Analysis

Perhaps the most common feature of the analysis
of clinical signals is to look for regularly occurring
features or rhythms. For humans to maintain stable
bodily functions, clinical signals must be constrained
to lie within certain limits and this tends to make
patterns within signals recur regularly. A discus-
sion of the role of rhythms in homeostasis has been
given by Hyndman [15]. Rhythms often result from
nonlinear feedback loops. A simple example will
illustrate the point. To remain healthy, humans must
maintain blood pressure to within certain narrow
limits. Blood pressure is mediated through the barore-
ceptors, located in the wall of the aortic arch and

in the wall of the carotid sinus. If blood pressure is
too high, then signals from the baroreceptors result
in vasodilation which drops the blood pressure. If
pressure is too low, then vasoconstriction occurs to
increase the blood pressure. The feedback mechanism
is thought to be nonlinear, and incorporates a delay,
and for these reasons, at rest these rhythms can occur
spontaneously [16].

Spectral analysis involves decomposing a sig-
nal into individual frequency components where the
amplitude of these components is proportional to
the “energy” of the signal at that frequency [26].
It is a convenient method for summarizing a long
time series and is a natural procedure if we believe
there are rhythms in the data. Spectral analysis is the
method of choice for the analysis of clinical signals.

Sampling

Some signals are essentially continuous, whereas oth-
ers are discrete. For example, the heart rate is mea-
sured from surface electrodes on the chest from the
ECG. Although the ECG is continuous, the heart rate
is usually derived from the “R” wave in the ECG,
which is a sudden spike just preceding the ventricular
contraction. Thus, the heart beat signal is essentially
a point process. Some authors have analyzed the
interbeat intervals, thus arriving at a spectrum which
estimates frequencies per beat, rather than per unit
time. Others sample the heart rate (or RR interval)
signal at regular intervals or filter the point process
to produce a continuous signal which can be sam-
pled [2, 12].

Spectral Analysis and Time-Dependent
Spectra

The problem with spectral analysis is that it assumes
that the signal is stationary. However, medical
signals are not stationary in the usual sense. They
contain rhythms that may come and go in the time
interval, the frequencies may vary, or amplitudes of
cycles at certain frequencies increase or decrease.
Spectral analysis considers the entire time interval
and so cycles that only occur in part of the interval
will have their spectral peaks attenuated by the low
power in other parts of the interval. One common
solution is to assume that over a short interval the
signal is stationary and so to split the time period
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into nonoverlapping intervals and calculate the spec-
trum for each interval. These spectra can be displayed
in a pseudo three-dimensional plot, with the time axis
running into the page [30]. The difficulty here is that
it is not realistic to think of a signal being stationary
in sections. A better intuitive model is one in which
the signal “evolves” slowly so that the nonstationary
component is slow in comparison with the signal in
which we are interested.

Priestley [25, 26] pointed out that a sine wave
in which the amplitude changes over time will have
Fourier components at all frequencies. However, it
would seem sensible to consider it as having a sin-
gle frequency, with a time-varying amplitude. This
concept led him to define “semi-stationary” signals,
which have an oscillatory form, and a method of esti-
mating their time-dependent spectrum known as the
“evolutionary spectrum”. This method has not fea-
tured in applications, possibly because it is not widely
known.

Many applications devise a joint function of time
and frequency and obtain a distribution that will
describe the intensity of a signal simultaneously in
time and frequency. A method that originated in
physics is the Wigner or Wigner–Ville distribution.
Let y(t) be a continuous signal dependent on time
t . The Wigner estimate of the spectrum at frequency
ω is

fw(ω) =
∫ ∞

−∞
y(t − 0.5τ)y(t + 0.5τ) exp(−iωτ) dτ.

This distribution has been used extensively [7, 22].
However, in the raw form it has some undesir-
able properties. It lacks any physical interpretation
in terms of energy and may take negative values
for certain processes. If a signal contains two har-
monic components, then the Wigner distribution will
contain interference at frequencies between the two.
Smoothing the distribution improves its properties
and computationally it resembles Priestley’s evolu-
tionary spectrum, a relationship discussed by Ham-
mond et al. [14].

A popular method of estimating time-dependent
spectra is via a fitted autoregressive model (see
ARMA and ARIMA Models). If we can assume
that the data are generated by a finite autoregressive
process of order p, then

y(t) + α1y(t − 1) + · · · + αpy(t − p) = z(t),

where α1, α2, . . . , αp are constants and z(t) is random
noise with mean zero and variance σ 2.

Then the spectrum at frequency ω is given by

fAR(ω)

= σ 2

∣∣1 + α1 exp(−iω) + · · · + αp exp(−iωp)
∣∣2 .

Thus, a method of estimating the spectrum of a series
would be to fit an AR(p) model to a section of data
and insert the estimated parameters into the above
equation. Contiguous sections will give successive
spectra. In contrast to the usual window method of
estimating the spectrum, which can be thought of as a
“local smoothing” method, the AR method is a form
of “global smoothing” over all frequencies [26].

One feature of sinusoidal functions is that they
best model signals in which a cycle persists through-
out the interval. Some clinical signals are charac-
terized better by bursts of energy, and these can
be modeled by the newly emerging technique of
wavelets. A link between wavelets and evolutionary
spectral analysis has been given recently by Priestley
[27]. Another form of spectrum, based on regularly
occurring zeros and ones rather than a sinusoidal
function, is known as the Walsh spectrum. It has
certain computational advantages over the conven-
tional spectrum, but is difficult to interpret. It has
been used as a complementary tool to conventional
spectral analysis [29].

Heart Rate and Blood Pressure Variability

Three major components are to be found in a typ-
ical heart rate spectrum [2, 13, 28] and these are
also present in the blood pressure spectrum. A
region of activity occurs at around 0.25 Hz, which is
attributable to respiration (respiratory sinus arrhyth-
mia) and this is thought to be a marker of vagal
(parasympathetic) activity. A second component at
around 0.1 Hz arises from spontaneous vasomotor
activity within the blood pressure control system and
is mediated by vagal and sympathetic activity [13].
A third, low-frequency component at around 0.04 Hz
is thought to arise from thermoregulatory activity.

Other cycles that have been detected in the heart
rate include one with a wavelength of about 90 min-
utes [23], corresponding to rapid eye movement in
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sleep, and one supposedly relating to a “perception”
cycle with a wavelength of about 10 minutes [9].

Spectral analysis has a number of clinical applica-
tions. It has been suggested that heart rate variability
at particular frequencies relates to mental workload
[11]. It has been shown that the heart rate may
become “entrained”, i.e. fluctuate in phase with reg-
ularly occurring tasks and used to measure their
difficulty [4].

In diabetic neuropathy, vagal denervation causes
a loss of spontaneous heart rate variability. This also
may cause a reduction in the frequency at which vaso-
motor oscillations occur, possibly due to a decrease in
conduction velocity [18]. Thus spectral analysis may
be used to measure the severity of denervation. For
example, Bianchi et al. [1] showed that spectral anal-
ysis could discriminate 21 diabetics with neuropathy
from 19 without neuropathy.

The Electroencephalogram (EEG)

The EEG is electrical activity of the brain measured
by electrodes at the surface of the skull. There is
an immense amount of literature devoted to the
spectral analysis of EEGs. In particular, six spectral
peaks can be identified [19, 29]. These peaks, with a
typical range of frequencies are: delta 1 (0.5–2.0 Hz),
delta 2 (2.0–4.0 Hz), theta (4.0–8.0 Hz), alpha
(8.0–12.0 Hz), sigma (12.0–14.0 Hz), and beta
(14.0–20.0 Hz). The peaks can be used, for example
to classify different levels of sleep. Jervis et al. [17]
used Walsh and Fourier transforms to show that
the EEG can discriminate between subjects with
Huntingdon’s Chorea and normal subjects. Recently
there has been interest in describing neural processes
in the context of nonlinear dynamics, and in particular
deterministic chaos. For example, Palus [24] has
suggested that the EEG has true randomness and is
not chaotic (see Chaos Theory). This is a new and
fast-emerging field.

Other Surface Electrical Signals

Electrodes can be used to measure surface potentials
at a number of sites, and rhythms can be detected.
The electrogastrogram (EGG) refers to the surface
measurement of electrical activity of the stomach.
Two sorts of activity can be detected: slow waves
with a frequency of about three cycles per minute

and spikes with a frequency of between 0.5 Hz and
1 Hz [5, 6].

For monitoring pregnancy and parturition, the
uterine electromyogram (EMG) has been proven to
be an efficient tool and Duchêne et al. [10] discussed
the use of an autoregressive method and a smoothed
Wigner distribution for estimating the spectrum.

Hormone Levels

Hormone of various kinds, including luteinizing hor-
mone and growth hormone, are known to be released
in a pusatile fashion, and it is the pulsating levels
of the hormone that cause its action rather than the
absolute level [20]. Using samples of blood taken
every five minutes, luteinizing hormone has been
shown to have a cyclic component with a frequency
of about one cycle per hour. Murdoch et al. [21]
showed peaks in five out of six women ranging from
51 minutes cycle length to 120 minutes and more
rapid oscillations at 20 minutes and 13.3 minutes
cycle length. These were also seen, but less strongly,
in four other women. This methodology has recently
been extended to enable the analysis of replicated
series, so that a more global analysis can be carried
out [8].

Conclusion

There are a wide variety of methods in use to carry
out the analysis of biomedical signals. To some extent
this is inevitable; different signals have different
characteristics and the methods have to adapt to these.
In applications there appears little unaminity as to
optimum methods, many authors deriving their own
spectral smoothing windows or updating algorithms
ab initio.
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Clinical Significance
Versus Statistical
Significance

Study design, interpretation, and reporting often ig-
nore the distinction between clinical significance and
statistical significance. Statistical significance refers
to whether or not the value of a statistical test exceeds
some prespecified level. Clinical significance refers
to the medical importance of a finding. The two
often agree, but not always. The clearest example
involves a study (either an observational study or an
interventional study (see Clinical Trials, Overview))
that has a large number of participants. Statistical
significance may be observed for small associations
between exposures and disease or condition (in the
case of observational studies) or differences between
interventions (in the case of intervention studies).
Whether or not these associations or differences are
clinically significant or meaningful depends on the
seriousness of the condition being studied, the preva-
lence of the condition, and the other benefits and
risks of the intervention. An intervention effect shown
in a clinical trial to be statistically significant and
in the beneficial direction, but of small magnitude,
may be clinically significant if the intervention is
relatively nontoxic, easily administered, and useful
for a condition that is of public health importance.
Conversely, an intervention effect shown to be sta-
tistically significantly superior to control may not be
clinically significant if the intervention has unaccept-
able adverse effects.

Sometimes, a combination of clinical events is
used as the primary outcome of a study (see
Multiplicity in Clinical Trials). The result may
be statistically significant. Unless the combined
outcome makes scientific or clinical sense, however,
it will not be clinically relevant or significant.
Clinical relevance may be achieved either because
the outcome combines events that presumably reflect
a common mechanism of action of an intervention
or a risk factor or enables a clinician to summarize
readily the effect of the intervention or risk factor.

In addition to the selection of the outcome (see
Outcome Measures in Clinical Trials), clinical
significance enters into the design of a trial when
the expected size of the effect of the intervention
and the choices of type I and type II error rates

(see Hypothesis Testing) are determined. A study
should be large enough to detect a clinically important
difference (see Sample Size Determination for
Clinical Trials). If the difference turns out not
to be statistically significant, confidence intervals
should be calculated to determine whether a clinically
important difference has been excluded.

It should also be noted that the criterion for
statistical significance is commonly, by convention,
P < 0.05, though it need not be (see P Value).
Clinical significance has no such convention; after
the study is completed the interpretation is often
individual, and will be viewed differently by different
investigators, physicians, or other practitioners, and
patients.

The concepts of relative risk, absolute risk, and
population attributable risk are relevant to clinical
significance. A clinical trial that yields a relative risk
reduction of 30% may mean a change from a 60%
event rate to 40%, or from 6% to 4%. Depending
upon the size of the sample, either may be statistically
significant. But also depending upon the severity of
the disease and the nature and cost of the intervention,
including frequency of adverse effects, the absolute
reduction of 2%, from 6% to 4%, may not be
clinically significant. If the condition is common and
the intervention is simple, however, this 2% may be
an important reduction in population attributable risk,
resulting in the prevention of many clinically serious
events.

The example of blood pressure reduction by non-
pharmacologic means is instructive. Relatively small
(3–4 mm Hg for systolic; less for diastolic), yet
statistically significant, reductions in blood pres-
sure have been obtained by means of weight or
dietary sodium reductions. Although some patients
will achieve greater reductions, this average reduc-
tion observed in clinical trials is frequently not seen
as clinically meaningful for an individual hyperten-
sive patient or the treating physician. However, from
a public health standpoint, it is exceedingly impor-
tant, as it is brought about without the need for drug
treatment and translates into many thousands fewer
strokes and myocardial infarctions per year in a pop-
ulation as large as that of the US.

Studies that are designed with appropriate power
to detect clinically important differences in binary
outcomes commonly also evaluate other outcomes
that may be continuous variables. Examples are lab-
oratory or physiologic measures, or quality of life
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assessments. If these continuous variables are mea-
sured in all subjects, small, perhaps clinically mean-
ingless, differences may be statistically significant.
An example is a trial of a few thousand participants
assessing occurrence of a clinical event as the pri-
mary outcome. Instruments measuring quality of life
may be incorporated into this trial. Because quality
of life is assessed in all participants, a difference of
a few points on a scale that has a 40 or more point
range will be statistically significant but probably not
clinically significant.

Can there be clinical significance in the absence
of statistical significance? Clinicians are always mak-
ing judgments in the absence of optimal information.
Many treatments are used, although a clinical trial
may not be definitive, or may not even have been con-
ducted, because a physician believes that the interven-
tion is likely to be more beneficial than harmful. In
addition, no clinical trial stands by itself. The results
are always interpreted in light of other research (both
basic and applied) findings, including other trials
and observational studies. Sometimes, the totality of
the information may be sufficiently persuasive, even
though an individual trial may not show statistical
significance, and perhaps even a meta-analysis may
fail to do so. The judgment is made that the evidence
for use is adequate, given relatively low toxicity of
the intervention or the existence of a serious condition
or disease. For example, the association of elevated
serum cholesterol and ischemic heart disease has been
well known for many years. Despite the fact that until
recently there had not been evidence from clinical
trials that cholesterol lowering was unambiguously
beneficial, many clinicians acted as if that were the
case. They may have prescribed lipid-lowering drugs
only for patients at the highest risk, but recommended
dietary changes for many more. This example points
out that, when such judgments are made, clinicians
are more comfortable employing interventions per-
ceived to have low risk, relative to the condition
being treated. Thus, dietary changes could be safely
recommended even though trials of dietary interven-
tion have not been conclusive, whereas drug therapy

would await stronger evidence. Similarly, if the con-
dition is life-threatening and there is no good standard
therapy, as with some cancers, physicians often deter-
mine that a treatment merits consideration, even in
the absence of statistically significant evidence.

A related issue concerns decisions based on treat-
ment–covariate interactions, or subgroup findings.
Overall, in a clinical trial, there may be a statistically
significant beneficial finding, but even without clear
evidence of interactions, clinicians may decide that
the intervention should be reserved for those patients
at the greatest risk. Alternatively, there may be
a statistically nonsignificant trend overall in favor
of an intervention, but an apparently large benefit
in one or more subgroups of patients. If these
results are consistent with other studies, they may
be seen as evidence to use the intervention clinically
in those subgroups. The reasonableness of such a
course depends on the persuasiveness of the ancillary
research data.

For a somewhat different view of statistical and
clinical significance, see Feinstein.
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Clinical Trials Audit and
Quality Control

A multicenter randomized clinical trial is a complex
undertaking, requiring cooperation among a diverse
group of participants to achieve a successful result.
Patients who agree to participate in a trial must be
properly registered and randomized to one of the
available treatments (see Randomized Treatment
Assignment), and data on baseline patient character-
istics, eligibility and exclusion requirements, adher-
ence to treatment (see Compliance Assessment in
Clinical Trials), adverse events, laboratory or other
measurements, and clinical outcome measures must
be collected and analyzed. Throughout this process,
there is the possibility of errors arising in the data,
ranging from honest mistakes to sloppiness or, rarely,
from deliberate fraud (i.e. fabrication or falsifica-
tion of data). Because of this complexity, one of the
important hallmarks of a successful trial is a well-
developed system for data quality control (QC) and
auditing [3, 5, 6, 14].

The purpose of a data QC system is to provide
reasonable assurance to the organizers of the trial as
well as to the “consumers” of the results that the
data on which the conclusions are based are reliable.
It is unreasonable to attempt to detect and eliminate
all errors in the data. A small percentage of errors
will not materially affect the scientific conclusions
of a well-designed and well-conducted clinical trial.
Also, the data QC system itself can be a major
cost component of the trial, and there is a law
of diminishing returns in the attempt to lower the
error rate toward zero. On the other hand, it is
also unreasonable to be unconcerned with data QC.
Even if the effect of a small amount of data errors
on scientific conclusions is minimal, the effect of
discovered errors in the data on public perception and
external acceptance of the results can be profound.

Why do we do data QC at all? There are at least
four reasons.

1. Scientific validity. It is theoretically possible that
systematic or random data errors may be of
a sufficient magnitude to threaten the primary
scientific conclusions of the trial. Thus, a primary
function of data QC procedures is to ensure that
the nature and magnitude of data errors are within
acceptable limits.

2. Prevention of future errors. Data QC procedures,
applied early in a trial, can serve as an educa-
tional tool to prevent future errors in the trial.
Indeed, the feedback from early detection of
errors can be an extremely important aspect in
ensuring high-quality data.

3. Public confidence. The ability of a clinical trial to
affect clinical practice depends on many factors,
a key one of which is public confidence in the
integrity of the trial process. Unfortunately, well-
publicized cases of data problems can have a
major negative impact on public confidence, far
beyond that justified from a purely scientific
viewpoint.

4. Product licensing. There are expectations and
requirements with respect to data quality from
regulatory agencies (e.g. the Food and Drug
Administration in the US) in those trials sup-
porting product or device licensing applications.
For such trials, the need for data QC procedures
is obvious [15].

In the following sections, the clinical trials data
flow process is described, the primary targets for
a QC program are identified, general clinical trials
QC procedures are described, useful statistical QC
procedures are discussed, site monitoring and audits
are described, and the costs of QC procedures are
assessed.

The Clinical Trials Data Flow Process

A simplified conceptual framework for considering
the data flow process in a clinical trial is given in
Figure 1, where there are three steps leading from
the patients to the analysis of the trial. In the first

Patients Source data Trial database Analysis
Step 1 Step 2 Step 3

Figure 1 Data flow in a clinical trial
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step, physical measurements on patients, laboratory
tests, demographic data, and other patient data result
in some “source data records” such as those in the
official medical records or in some clinical or research
laboratory database. In the second step, some subset
of the source data is sent via a case report form
(CRF) or in an electronic format to a centralized
trial database. In some cases (e.g. questionnaire data),
these two steps are combined and the data flow is
directly from the patient to the trial database, and
there are effectively no “source data” against which
the trial database can be checked in an audit (see
Data Management and Coordination). The third
step in this process is the analysis step, in which
various statistical procedures are applied to the trial
database.

Data errors can arise at each step of the process.
Thus, at step one, the source data may not reflect the
“truth” of patient status or response (e.g. the birth
date in the source data may not be correct if there
was an error in recording it or, even, because of
misrepresentation by the patient). At step two, the
trial data may not be the same as the source data
(in the birth date example this could be caused by an
error in data entry from the CRF). At step three, there
could be a programming error so that the analysis
does not properly reflect the trial database. Each of
these potential sources of error requires attention, but
the types of QC procedures are quite different at each
step. In the remainder of this article, attention will be
focused primarily on step two, on data QC procedures
aimed at ensuring that the trial database is an accurate
reflection of the source data.

Primary Areas Targeted for QC

There are several areas that should receive special
attention in any clinical trials QC plan. These are:

1. Registration and randomization. The process of
registration and randomization of patients is of
fundamental importance and must be tightly
controlled.

2. Eligibility and exclusion criteria. The data
required for assessing patient eligibility must be
carefully collected and validated. For scientific
reasons and for easing complexity, it is desir-
able to make the eligibility criteria as simple and
broad as possible [7].

3. Baseline patient characteristics. Data available
on patients at registration are often used as prog-
nostic factors, as stratification factors, or for
other reasons.

4. Treatment delivery and compliance. Despite the
widely accepted principle of intention-to-treat
in the statistical analysis of randomized trials,
some idea of the extent of treatment delivery and
compliance is desirable in interpreting the results.

5. Response and toxicity. Knowledge of the effect
of treatments on clinical response and on the
toxicity or other adverse events is essential. The
clinical response is often a primary outcome
measure in the trial.

6. Laboratory values. Laboratory data, from both
clinical and research laboratories, are important
in the analysis of many clinical trials [4, 18].

7. Follow-up. Long-term outcomes and survival are
important in the analysis of most clinical trials.
Indeed, in most serious chronic diseases (e.g.
cancer), long-term follow-up data are the primary
focus of the trial.

General QC Principles

One of the more important principles of any data
QC plan is that the trial policies and procedures
should be written down beforehand in a Standard
Operating Procedures (SOP) document or equivalent,
which should be sufficiently detailed to enable an
external reader to be able to assess the data QC plan.
The SOP document is also important in QC training
and documentation of QC procedures at all levels.
A well-trained staff following clearly articulated QC
procedures provides strong protection against serious
data problems. The prevention or early detection of
data problems in a clinical trial is an effective way to
avoid later, and very expensive, corrective measures.
Indeed, some data errors cannot be corrected later.

The independence of the statistical center from the
trial organizers and participants will help to ensure
that QC procedures are above reproach. For exam-
ple, the registration and randomization process is so
important to the integrity of the trial that it must be
carried out in an exemplary fashion, preferably by an
independent statistical center or its equivalent.

Case report forms should be as simple as possible.
There is often a temptation to include data that are
not essential to the primary objectives of the trial.
This temptation should be strongly resisted, since
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it inevitably adds to the expenses of the trial and
dilutes the QC procedures aimed at the key data. The
data entry or data acquisition procedures need careful
attention. For data entered into the trial database by
data entry staff, one standard procedure to minimize
data entry errors is independent double data entry
[2]. This procedure reduces the number of data entry
errors but only at increased cost. For automated data
acquisition, procedures for validating the data prior
to loading into the trial database are important.

Automated data editing procedures, including ran-
ge and validity checks, as well as cross-field con-
sistency checks, are an important part of any data
QC program [8]. These procedures are usually deter-
ministic checks on the data. Statistical procedures are
discussed in the next Section. Range checks are of the
form a < x < b, where a and b are prespecified con-
stants, and x is the variable value. If x is outside the
indicated interval, then a flag is raised indicating that
the value x must be checked. A validity check is a test
to ensure that a variable has a valid value. For exam-
ple, a discrete variable must take one of a specified
finite set of values. Cross-field consistency checks are
checks of required relationships among two or more
variables. These can be of the form x < y for numer-
ical or date variables or can simply reflect impossible
configurations (e.g. females with prostate cancer).

A program of on-site monitoring and on-site
auditing is important for ensuring that data in the
trial database accurately reflect the source data [11].
Unfortunately, this aspect of the data QC plan is usu-
ally extremely costly, so careful thought is needed in
designing this part of the plan. A separate Section
below deals with monitoring and auditing in more
detail.

Statistical QC Procedures

There are many traditional statistical procedures that
are useful in a data QC plan [10, 12]. These are
also relatively inexpensive to implement, especially
compared to on-site visits to participating centers or
other labor-intensive procedures, and thus should be
employed extensively. Standard univariate and mul-
tivariate outlier detection techniques are useful (see
Multivariate Outliers). The identified outliers can
then be verified. Of course, unless some documented
error is detected, no outlier should be deleted.

Another type of analysis that is important in mul-
ticenter studies is an analysis by center. This analysis

can be as simple as an analysis of primary outcome
to look for unusual discrepancies among centers. It
is also important to look at bivariate plots of impor-
tant data by center to spot unusual patterns. Such an
analysis led to the detection of one case of scientific
misconduct [1]. A more common result of this type
of analysis would be to identify and correct some
systematic, but unintentional, data problem at one or
more centers.

Statistical random sampling schemes (see Proba-
bility Sampling) are an important part of industrial
QC procedures, and these schemes can be applied
profitably to data QC in clinical trials. For example,
a periodic random resampling of a small percentage
of records in the trial database and a check of selected
fields in these records against the CRFs can ensure
that the overall process is working well. Random
sampling is also a key part of the auditing process
described below.

On-Site Monitoring and On-Site Audits

In any multicenter clinical trial, the overall quality of
the data is fundamentally dependent on the quality of
data from the individual centers [9, 16]. Thus, there
must be education and training of the key personnel
at each center (physicians, nurses, data managers,
clinical research associates, and others) and some
procedure to compare the trial database with the
source data from these centers. In principle, all of
these activities could be conducted without visits to
the individual centers, but on-site visits for these
purposes are clearly preferable, although extremely
expensive [17, 19]. In large simple trials, it may be
impossible to visit the individual centers, whereas
in some product licensing trials, extensive on-site
monitoring and on-site auditing procedures at every
center may be employed. Most trials fall between
these extremes.

Cost–Benefit Analyses

It is a common complaint among clinical trialists that
costs of data QC procedures are excessive relative to
other costs of the trial and to the expected benefits.
Surprisingly little has been written on this important
topic [13]. As in other areas of economic analysis,
there is clearly a law of diminishing returns in effect
as additional QC procedures are added to reduce the
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data error rate. The problem lies in deciding where
to draw the line.

It seems clear from the earlier considerations that
automated data editing procedures and statistical QC
procedures are likely to have a large benefit for a
relatively low cost. However, these procedures are
largely ineffective in assuring that the trial database
matches the source data. On-site monitoring and
on-site auditing is almost certain to be the most
expensive part of the QC procedures, but is a primary
method for checking the source data.

Summary

Data quality control procedures are an important
part of any well-designed and well-conducted clinical
trial. Automated data editing and statistical QC pro-
cedures offer major benefits for relatively low costs.
More expensive procedures such as on-site monitor-
ing and on-site auditing may be essential to identify
certain types of data errors, but their benefits relative
to their costs have not been well studied.
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Clinical Trials of
Antibacterial Agents

This article focuses on comparative clinical trials of
antibacterial agents in the treatment of acute infec-
tions caused by bacteria. Many of the issues also
relate to trials of antifungal and antiviral agents, and
to prophylactic trials (see Prevention Trials; Vac-
cine Studies). Specific issues of antibacterial agents
in neutropenic patients are not addressed.

Clinical trials of antibacterials differ from other
clinical trials in several ways. There exists a three-
way interaction between the antibacterial agent, the
patient, and the organism causing infection, and
these interactions affect the approach to the design,
analysis, and interpretation of results. In addition,
antibacterial studies often include patients with poten-
tially life-threatening conditions, where treatment
must commence immediately. This leads to practi-
cal problems such as entry of ineligible patients and
inappropriate treatment (see Eligibility and Exclu-
sion Criteria).

Terminology

An organism causing an infection is termed a patho-
gen. Infections may be caused by more than one
pathogen (a polymicrobial infection). The pathogen
causes signs and symptoms of infection in the patient,
e.g. raised temperature, and the aim of treatment is to
eliminate both these clinical signs and symptoms as
well as to eradicate the pathogen(s). Susceptibility of
pathogens to treatments is an important consideration
in clinical trials and is an indication of whether the
pathogen is likely to be eradicated by the antibacte-
rial drug. Susceptibility is usually measured by either
minimum inhibitory concentrations (MICs) or zone
sizes, and pathogens are classified as either sensitive
or resistant to the antibacterial agent. It may not be
possible to identify a bacterial cause for the infection
before treatment commences, and patients are some-
times found to have a viral or fungal infection after
entry, or even no infection at all; such patients are
referred to as misdiagnoses.

The clinical response is the investigator’s assess-
ment of the patient’s clinical outcome (see Outcome
Measures in Clinical Trials) for the infection for
which the patient entered the trial. Categories of cure

and failure are used; sometimes also others, such as
improvement, but categories are usually combined
at the analysis stage to give a binary outcome of
satisfactory or unsatisfactory. A response of indeter-
minate is used when a patient cannot be assessed, e.g.
they are lost to follow-up. Responses are described
in detail in various Guidelines [1–3].

To identify the pathogen causing infection, an
appropriate sample must be taken from the patient,
e.g. sputum in the case of bronchitis, cerebrospinal
fluid (CSF) in the case of meningitis. Other data
which should be recorded are: date of collection,
source of sample, quantitative evaluation of pathogens
for certain infections, e.g. urinary tract infections, and
susceptibility to trial treatments. A microbiological
response should be given for each pathogen isolated
pretreatment. This will be eradicated if the pathogen
is no longer present at the time of assessment; per-
sisted if it is still present. If it is not possible to take
a sample, e.g. for ethical reasons as in meningitis tri-
als where it may not be desirable to obtain a further
CSF sample, the response may be presumed eradi-
cated or presumed persisted, on the basis of whether
the patient is clinically satisfactory or not. A new
organism appearing during the trial which requires
treatment is called a superinfection. These responses
are detailed in the Guidelines.

Sometimes a “by patient” microbiological res-
ponse is given, which gives a summary of the
response for pathogens within a patient; this is par-
ticularly useful in polymicrobial infections. It is
derived from the pathogen microbiological response,
as shown in Table 1.

Assigning responses is not always straightforward,
and clear guidance must be given in the protocol of
how each of the categories for each of the responses
should be used.

Assessments of all three responses are made at
the end of treatment and also after a suitable follow-
up period to detect relapses, which are important
because they may indicate that the infection was only
suppressed.

Historical Development

The first set of Guidelines for the conduct of clinical
trials with antibacterial agents was published by the
Food and Drug Administration (FDA) in 1977 [5].
The British Society of Antimicrobial Chemotherapy
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Table 1 “By patient” microbiological response

Pathogen response “By patient” response Response in analysis

All eradicated Success Satisfactory
All presumed eradicated Presumed success Satisfactory
One or more persisted Failure Unsatisfactory
One or more presumed persisted Presumed failure Unsatisfactory
Superinfection and all pretreatment Superinfection Unsatisfactory
Pathogens eradicated

(BSAC) published guidelines in 1989 [3]. The Infec-
tious Diseases Society of America, under a contract
with the FDA, and a European Working Party pro-
duced general and disease-specific guidelines in 1992
and 1993 respectively [1, 2].

Typical Study Design

Phase III clinical studies (see Clinical Trials,
Overview) of antibacterials are typically parallel
group, randomized, multicenter, active-controlled.
Placebo-controlled trials are rarely ethical because
effective treatment is already available. A double-
blind (see Blinding or Masking) design can be
difficult for studies of intravenous or intramuscular
formulations, for example some drugs effervesce.
At a minimum, studies should always be assessor-
blinded. Studies are relatively short; treatment rarely
lasts for more than 10 days, with a 2–4 week
follow-up.

The majority of studies aim to demonstrate overall
equivalence because for most infections effective
treatment is already available and it would not be
ethical to conduct a trial where the expectation of
success was less for one drug than for another (see
Ethics of Randomized Trials). Patients who are
anticipated to be at different risks of failure with the
study treatments should be excluded from these trials.
Hence, generally the aim is to show equivalence by
proving that the new treatment is at least as good as
the control treatment. The principles of equivalence
trials are addressed by Jones et al. [6].

Statistical Analysis of Endpoints

No new statistical techniques have been specifically
developed to analyze data from antibacterial trials.
For analysis purposes, assessments are combined to

give a binary response of satisfactory or unsatisfac-
tory. Standard techniques for analyzing binary data
are then used e.g. odds ratio or difference in propor-
tions. Strata (e.g. centers) (see Randomized Treat-
ment Assignment) and risk factors defined at the
design stage may need to be explored.

Analyses are generally performed on the clini-
cal response and on the “by patient” microbiological
response. Analysis of the microbiological response
for pathogens must be undertaken with care. If
patients have more than one pathogen, then an anal-
ysis of all pathogens violates the assumption of inde-
pendence. An analysis of each individual pathogen
may be uninformative owing to the small numbers of
each pathogen which are likely to be obtained, and
the difficulty in predicting which types of pathogens
will occur in a given study. Usually these data are
only summarized and are not subjected to statistical
analysis. The “by patient” microbiological response
is a more useful endpoint for analysis, and can be
more easily interpreted.

The analyses should be performed at the end of
therapy at a minimum. At follow-up, there are often
a large number of patients without a response as
they are lost to follow-up, and in such situations, a
statistical analysis will not be informative. A “last-
value carried forward” approach, i.e. carrying forward
the response at end of treatment to follow-up, can be
very misleading particularly if many patients are lost
to follow-up.

Response rates of zero or 100% within centers
may cause complications with some methods of
analysis, although exact methods are sometimes used
in such situations.

Equivalence is usually defined in terms of a lower
limit for the confidence interval for the difference
between response rates, typically −10%, i.e. equiva-
lence is demonstrated if the lower limit of the con-
fidence interval is above −10%. This infers that for
equivalence trials, the analysis should be performed
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in terms of differences in proportions. This can create
a dilemma for the statistician since, if other methods
of analysis are used, e.g. odds ratio, this definition
of equivalence cannot be applied. Often the approach
taken to this problem is to present the analysis by
difference in proportions, but other methods are used
to check the robustness of this analysis.

Patient Groups for Analysis

All patients exposed to either trial drug should
be included in the assessment of safety (see Data
and Safety Monitoring). In the assessment of effi-
cacy, the aim should be to analyze the compara-
tive efficacy of the treatments whilst minimizing the
potential for bias. The conventional method is to con-
sider intention-to-treat (ITT) and per protocol (PP)
groups. These represent all patients entering the study
and all patients who meet the study criteria, respec-
tively, although the interpretation of these can differ,
as discussed below.

Efficacy analyses are usually performed on the
patient groups shown in Table 2. The patients inclu-
ded in the bacteriological PP group will be a subset
of the bacteriological ITT group, which will be a
subset of the clinical ITT group. The clinical PP
group will be identical to the bacteriological PP
group if the clinical PP group requires patients to
have microbiologically documented evidence of an
infection.

In studies of antibacterial agents, some problems
arise more frequently than in other types of studies;

patients can be inadvertently misrandomized, they
can also be randomized but not treated, and there
can be misdiagnoses. There is no standard method
for handling these patients in either the ITT or PP
analyses, and the proposed methods should be defined
in the protocol for each study. However, such patients
are unlikely to affect the outcome or interpretation
of an analysis unless there are significant numbers
of them or the number is unbalanced between the
treatment groups. In such cases the reasons should be
fully explored and the interpretation of the analysis
carefully considered.

Patients with an indeterminate response will be
excluded from all analysis populations except ITT,
where they should be classified as unsatisfactory.
If there are a significant number of patients added
to the ITT analysis as failures, or the number is
unbalanced between the treatment groups, then the
interpretation of the analysis again needs to be care-
fully considered.

The purest view for the PP group is to exclude all
patients who do not meet the entry criteria of the trial.
A more pragmatic approach is to agree which criteria
are unlikely to affect the outcome of treatment and to
retain such patients in the PP analysis. For patients
who deviate during the trial, rules should be agreed
on what constitutes a deviation serious enough to
warrant exclusion. Two common problems that arise
in these studies are patients given concomitant ther-
apy to treat an infection and patients who are found
to have resistant pathogens. In either case it is not
always ethical to withdraw the patient from the trial if
he/she appears to be responding to the trial treatment.

Table 2 Efficacy analysis groups

Name of
analysis group Response Patient group

Clinical ITT Clinical All patients

Clinical PP Clinical All patients who meet the trial criteria.
This may or may not require patients to
have documented evidence of a bacterial
infection

Modified ITT “By patient”
microbiological

All patients who have documented
evidence of a bacterial infection

Bacteriological PP “By patient”
microbiological

All patients who meet the trial criteria and
have documented evidence of a bacterial
infection

ITT = intention to treat.
PP = per protocol.
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Patients taking concomitant therapy are sometimes
classed as clinical failures or as indeterminate; some-
times all such patients are excluded from the analyses
and sometimes a more judgmental approach is taken
on the basis of whether the therapy taken is expected
to affect the pathogen causing the infection. Patients
found to have resistant pathogens are often omitted
from analyses and sometimes this is applied if the
pathogen is resistant to either study treatment or only
resistant to the study drug received.

There is still confusion over whether the ITT or
the PP analysis should be primary. The Committee
for Proprietary Medicinal Products guidelines [4]
state that in studies designed to show superiority of
one drug over another, the ITT analysis is usually
more conservative than the PP, since the noncompli-
ers (see Compliance Assessment in Clinical Trials)
included in an ITT analysis dilute the overall treat-
ment effect. Hence, since antibacterial studies are
usually designed as equivalence studies the PP should
be the primary analysis because the ITT is less con-
servative in showing equivalence. However, when-
ever possible equivalence should be demonstrated in
both the ITT and PP analyses. If results differ, then
this must be explained [6].

Choice of Sample Size

It is usual to base patient numbers (see Sample Size
Determination for Clinical Trials) on the clinical
response, although this depends on the aims of the
trial and the particular infection under study. There
are many methods available for calculating patient
numbers using binary data, several of which are based
on the normal approximation of binomial probability.
Since the primary analysis is usually the PP analy-
sis, patient numbers will need to be inflated based on
the estimate of the proportion of patients who will
contribute to the PP analysis. This will be based on
previous experience in this area, or published data,
and usually ranges between 65% and 95%. In stud-
ies for US registration, samples sizes may need to be
sufficient to ensure sufficient numbers of particular
pathogens.

Unresolved Problems

There are still a significant number of issues that
remain unresolved in this area. There is no standard
and accepted way to analyze the data. There is also
no agreement on whether the ITT analysis or the
PP analysis is primary, or whether 90% or 95%
confidence limits should be used, although this partly
stems from a historical lack of understanding of the
principles of equivalence trials. There is no standard
approach to handling patients in the PP and ITT
analyses, particularly with respect to such deviations
as patients taking concomitant antibacterial therapy.

Publications of antibacterial trials are generally
good in their statistical content, although issues in
equivalence trials are not sufficiently understood yet.
Papers often lack sufficient detail in defining which
patients have been included in which analyses. The
approaches to handling deviations can differ widely
between trials and also within trials.
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Clinical Trials Protocols

A clinical trial protocol serves several purposes.
First and foremost the protocol serves as a guide-
line for the conduct of the trial. It describes in
a clear and detailed manner how the trial is per-
formed so that all investigators know the proce-
dures. This is particularly important in multicenter
trials where it can be difficult to ensure that all
centers and investigators conduct the study prop-
erly.

A second purpose of the protocol is to procure
funding for the trial. Any funding source, such as
government, a pharmaceutical company, or a private
foundation, will generally require a protocol on which
it can judge the merit of the proposal. Since fund-
ing institutions have different protocol formats, it is
essential that the investigator obtains and follows the
required format.

In addition to review committees of funding insti-
tutions, committees at the local institution, such as
research committees or institutional review boards,
need to review the trial to ensure that the trial par-
ticipants’ rights and safety are adequately protected,
that the trial is in compliance with all of the local
institution’s regulations, and that the trial is feasible
at the institution. The protocol serves as the basis for
the review by these committees.

A fourth purpose is to provide guidelines to the
groups responsible for monitoring the trial. At the
local institution this may be the research committee
or an institutional review board. For large studies or
multicenter studies, formal data monitoring and safety
committees (see Data Monitoring Committees) are
also usually established. For all of these committees,
the protocol provides the background information
against which they determine whether the trial is
progressing satisfactorily and that the investigators
are complying with the intended procedures.

Finally, the protocol serves as a historical doc-
ument for the trial to which trial investigators or
outside investigators can refer should questions arise
after its completion.

The clinical trial protocol provides broad detail
about the trial and does not include the fine details
of the day-to-day operations. These fine details, such
as the steps to be taken at each visit, how to com-
plete study forms, and how data will actually be

processed, are usually described in a separate doc-
ument, a Manual of Operations. If the trial is testing
a particular technique, such as a specific surgical
or a behavioral modification technique, or is using
a complicated rating scale as a study variable, the
fine details of the technique or administering the
scale are not usually included in the protocol, but are
provided in a separate document called a Training
Manual.

Although each funding institution may specify its
own format for a protocol, there are a number of items
nearly always included. These include an abstract,
the clinical background, the purpose of the trial, the
methods, ethics and safety issues, organization, the
budget, and copies of the proposed study forms. Some
general texts discussing protocol issues are [4, 5, 7]
and [8].

Abstract

A protocol usually begins with a short abstract that
states the purpose and significance of the study and
provides the most pertinent details, including the
patient population to be studied, the treatments to
be tested, the study design, the primary outcome
measure(s), the number of patients, and the duration
of treatment and follow-up.

Background

An in-depth summary with relevant references to
published work on the study topic is included to
justify the need for the trial. Any unpublished work
that the investigators have done on the subject is
also described. If drugs are involved, then pertinent
pharmacological and toxicity data are included. In
addition, if any new or nonstandard methods, such
as the use of specific surrogate endpoints, are used
in the study, then information about the method is
provided.

Purpose

The purpose of the trial and its current importance are
described in clear and concise terms. For purposes
of funding review, this section is used to sell the
importance of the trial, but it should not promise
more than can actually be obtained. Reasons for
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the trial might include (i) to test a new treatment
regimen, (ii) to test an established treatment for a
new indication, (iii) to determine the best of a number
of standard treatments, and (iv) to provide additional
data on the safety or efficacy of a treatment regimen
for approval by a regulatory agency.

Methods

The following items are usually addressed in the
methods section as appropriate for the type of trial
proposed.

Hypotheses

The hypotheses that the trial is designed to test are
clearly specified. Although on occasion one needs to
specify more than one primary hypothesis, the num-
ber should be few so that the main aims of the trial
can be kept in focus. Any secondary hypotheses that
the investigators want to test are also specified. List-
ing the secondary hypotheses in a protocol prior to
the conduct of the trial lends more credence to the
results of testing such hypotheses as it shows that the
results are not the product of a “fishing expedition”,
in which large numbers of unlikely hypotheses are
tested and only those that meet some usually inappro-
priate criteria for statistical significance are reported
(see Multiplicity in Clinical Trials). Careful con-
sideration of secondary hypotheses in the protocol
also ensures the collection of the data necessary to
answer them.

Patient Population

The population of patients entered into the trial is
described in detail. This is usually done by specifying
criteria for inclusion and/or exclusion. Inclusion crite-
ria are those characteristics that the patient must have
to be considered for inclusion in the trial. For exam-
ple, if the trial compares drug treatments in elderly
male, alcoholic patients, the inclusion criteria might
specify that patients be (i) men, (ii) ≥65 years of age,
with (iii) a diagnosis of alcoholism. Exclusion criteria
are the characteristics of a patient that prevent entry
into a trial even though all inclusion criteria are met.
For example, if the primary endpoint for the study
is measured two years after entry in the trial, then
patients with a life expectancy of less than two years

might be excluded from participation. When defin-
ing a patient population, it should be kept in mind
that, although having a large number of inclusion
and exclusion criteria may ensure a more homoge-
neous trial population, it may also lead to results that
are less generalizable and can make patient recruit-
ment more difficult (see Eligibility and Exclusion
Criteria).

Treatment Regimens

The treatments under study are described in broad
detail. For drug studies, the dose administered, the
dosing regimen, and the duration of dosing are given.
For surgical studies, broad details about the surgi-
cal procedures are usually given; the fine details are
provided in a separate training manual if needed. In
trials of medical devices, the use and maintenance
of the device are described. Noninvasive interven-
tions, such as psychotherapies, require broad infor-
mation such as references to the technique, how it
is administered, who administers it, how the inter-
ventionist is trained, how often and how long the
intervention is given, and how the intervention is
monitored. Specific details on the intervention should
usually be described in an appendix or separate train-
ing manual.

Trial Design

Trial design items may include the following.

1. Randomization. Will the treatment assignment be
randomized? If so, details of the randomization
method are included. Any strata identified (e.g.
gender), to ensure that treatment assignments are
equally distributed over important prognostic fac-
tors, are described (see Randomized Treatment
Assignment).

2. Control groups. If a control group is used, then
the protocol should define the control and justify
its use. If a placebo is used rather than a standard
treatment, then safety considerations for partici-
pants assigned to the placebo must be addressed.

3. Masking (blinding). Knowledge of the treatment
assignment can lead to bias in reporting of some
outcome measures. The protocol should describe
who knows the patient’s treatment assignment
and who is masked. Measures to maintain the
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masking are also specified (see Blinding or
Masking).

4. Experimental design. The protocol indicates the
experimental design used. While most studies are
two-group parallel designs in which a patient
is assigned to one of two treatment groups for
the entire study, other designs such as crossover
designs and factorial designs are sometimes used
(see Factorial Designs in Clinical Trials).

Pre-Study Procedures

This portion of the protocol describes the process
for the recruitment and selection of trial patients
as well as the pre-study evaluations and procedures
that patients have before entering the trial. The data
collected pre-study are described.

Treatment Phase

The clinical management of the patient over the
period of treatment is described in this section. It
includes items such as how often and by whom the
patient is seen for treatment or monitoring, what tests
or procedures are performed at each visit, and what
data are collected at each visit.

Follow-Up Phase

In trials where the patient continues to be observed
after treatment is completed, the follow-up proce-
dures are described including the frequency and dura-
tion of the follow-up visits and the data collected at
each visit.

Termination

Procedures for ending patients’ participation in the
trial, whether because they completed the planned
schedule or because they need or wish to leave
early, are described. Anticipated reasons for early
termination are specified and methods for minimizing
early terminations are described.

Study Flow Diagram

It is often desirable to include a flowchart describ-
ing how patients progress through the trial. The chart
starts with patients’ initial screening for recruitment

and ends with their completion of the planned sched-
ule giving pertinent highlights such as randomization,
treatment assignment, treatment and follow-up visits,
and possible early termination. For complicated stud-
ies, such a flowchart is useful, both to reviewers and
trial investigators, as a concise reference for imple-
menting the protocol.

Outcome Measures

The primary outcome measure(s) are those required
to answer the trial’s primary hypotheses. They are
described in detail, including how they are col-
lected, their validity, accuracy and reliability, the
methods used to ensure that they are measured in
a uniform and unbiased manner, and the methods
used to minimize loss of these data in the trial.
The secondary outcome measures for answering any
secondary hypotheses are also listed (see Outcome
Measures in Clinical Trials).

Statistical Issues

Three types of statistical issues may need to be
addressed in the protocol.

1. Sample size. The number of patients required for
the trial is determined and justified. A trial that
is too small will have little chance to answer
clearly the study hypotheses, while too large a
trial will waste money and may subject patients
needlessly to an inferior treatment. The trial sam-
ple size should be large enough to answer all
of the primary hypotheses. Methods to calculate
sample sizes are available for most trial designs
[1, 3, 6]. The crucial issues that must be resolved
usually involve estimating the expected results
in the control group and determining the treat-
ment difference to be detected (see Sample Size
Determination for Clinical Trials).

2. Statistical analysis. The planned statistical anal-
yses to analyze the trial data are outlined. These
planned analyses are specific for each of the
study hypotheses, especially for the primary
hypotheses.

3. Interim monitoring. For trials over extended peri-
ods, the data are usually analyzed at regular
intervals to determine whether a conclusion can
be reached early or if there are any safety issues
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that need addressing (see Data and Safety Mon-
itoring). For such interim monitoring there are
a number of statistical techniques [2] that have
been developed that allow analysis of the accu-
mulating data multiple times without affecting
statistical inference at the end of the study.
This section describes such interim monitoring
plans.

Laboratories

If special, nonroutine laboratory tests are used in the
trial, then they are described in the protocol. For
multicenter studies that include central laboratories,
procedures for obtaining and shipping specimens to
the central laboratory are described.

Compliance

For many studies, such as those that require the
administration of medication over long periods of
time or that deal with difficult populations such as
drug abusers, compliance with treatment regimens
and with protocol procedures is a major concern. For
such trials, the protocol describes how compliance
is monitored (e.g. pill counts, blood serum levels,
and/or missed visits) and methods used to improve
compliance in noncompliant patients (see Compli-
ance Assessment in Clinical Trials).

Ethics and Safety

One of the most important concerns of any clinical
trial is the protection of the trial patients’ rights and
safety. These concerns are addressed in the protocol.
The protocol discusses how the patient is approached
for entry into the trial, how informed consent is
obtained, and what safeguards are in place to ensure
that the patient’s participation in the trial is voluntary
and confidential. Copies of the informed consent
form to be used in the trial are included in an
appendix. Procedures to monitor patient safety are
also described, including the adverse events to be
monitored, how and to whom the adverse events
are reported, and a plan of action should a serious
adverse event be detected during the trial (see Ethics
of Randomized Trials).

Organization

The conduct of a clinical trial can be complex, par-
ticularly in multicenter trials. To ensure that the
trial is conducted correctly, the protocol describes
its organizational structure. This includes naming
each investigator and describing his/her role, includ-
ing his/her supervisory responsibilities, describing the
roles and responsibilities of all trial support staff, and
providing the composition and rules of any special
committees, such as steering, endpoint adjudication,
and data and safety monitoring committees, includ-
ing their relationship to other components of the trial.
Data management and coordination plans may also
be described here.

Budget

The budget section lists the projected costs for the
study by year of trial as well as the total budget,
and provides a breakdown of costs including per-
sonnel, equipment, supplies, laboratory costs, and
travel. Justification for most items in the budget is
provided.

Study Forms

Many funding institutions require that the study forms
be included in an appendix. This helps reviewers to
determine whether the investigators are collecting the
appropriate data.

Summary

Since a clinical trial protocol has many purposes
and is used by so many people, it is important that
it be written clearly, concisely, unambiguously, and
in sufficient detail that it meets the requirements of
all of its users. The protocol should provide enough
detail that readers will know how the study is being
conducted, but not so much detail as to overwhelm
the reader. Although it is important that investigators
adhere to the protocol, mechanisms should be in place
for making changes if the need arises. If changes are
made, then they must be well documented. In this
manner, the different versions of the protocol provide
a description of the evolution of the trial. In summary,
the protocol acts as the main document describing the
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design and conduct of a clinical trial and, as such,
plays a central role in the trial.
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Clinical Trials, Early
Cancer and Heart Disease

Early developments in controlled clinical trials at
the National Institutes of Health (NIH) took place
mainly at the National Cancer Institute (NCI) and
what was then the National Heart Institute (NHI)
[subsequently the National Heart, Lung, and Blood
Institute (NHLBI)] beginning in the 1950s. This arti-
cle reviews the developments from the early 1950s
to the late 1960s at both institutes, summarizing the
early efforts in clinical trials, the organizations set
up to conduct and monitor the clinical trials, and
the developments in statistical methodology that have
formed the basis for conducting many of the present
day randomized controlled trials. The early history of
clinical trials at these institutes has been reviewed in
more detail at NCI by Gehan & Schneiderman and at
NHLBI by Halperin et al. [28, 32].

Developments in Clinical Trials at the
National Cancer Institute (NCI)

A major advance in the development of chemical
agents for the treatment of cancer came from obser-
vations of the treatment of children with acute lym-
phocytic leukemia, which was a rapidly fatal disease
until 1948 when Sidney Farber, in a nonrandomized
study of methotrexate, observed complete remissions
and longer survival among some pediatric patients
[21]. However, results did not meet with uniform
acceptance and questions were raised about diagnosis,
selection of patients, and reporting. There was a need
for a more organized approach to treatment experi-
mentation that would lead to unbiased evaluations
of treatments. At about the same time, animal models
of the major forms of cancer – sarcomas, carcinomas,
and leukemias – were developed that could be used to
screen candidate materials and, if the materials were
effective and not overly toxic, ultimately lead to clin-
ical trials in humans. By 1960, there was an annual
screening of approximately 25 000–30 000 materi-
als sponsored by NCI with only about 10 – 20 new
agents having sufficient effectiveness in animal sys-
tems to merit consideration for testing in humans.
Peter Armitage, of the London School of Hygiene
and Tropical Medicine, was a visiting scientist at

NCI in the late 1950s. His background in sequen-
tial statistical procedures (see Sequential Analysis)
quickly found direct application in the development
of two- and three-stage screening procedures for ani-
mal tumor systems that permitted rejection of an
agent at any stage but acceptance only at the final
stage [3, 43]. The object was to determine quickly
which new compounds should be considered for fur-
ther study in man. In the late 1950s, optimism was
high that this screening program would lead to a new
chemotherapeutic treatment that would make large
clinical trials unnecessary. Also, there was a belief
that different forms of cancer were sufficiently simi-
lar so that an agent active in one form of the disease
would also be active in another.

Early Efforts in Clinical Trials

Dr C. Gordon Zubrod came to NCI in 1954 at about
the time that Dr James Holland departed for Roswell
Park Memorial Institute in Buffalo, NY. Drs Emil
Frei and E.J. Freireich arrived at NCI in 1955.
Under the leadership of Zubrod, this formed the key
group of clinicians who initiated the clinical trials
program at NCI. When Zubrod was at Johns Hop-
kins University in the early 1950s, he indicated that
there “were two streams of influence (relating to
developments in clinical trials) – infectious disease
chemotherapy and comparative studies of analgesics
and hypnotic drugs” [52]. Among those playing an
important role in the conduct of clinical trials at Johns
Hopkins were Dr James Shannon (later Director of
the National Institutes of Health), the pharmacolo-
gist E.K. Marshall, Jr and W.G. Cochran. About
this time, the studies of streptomycin in pulmonary
tuberculosis by the Medical Research Council were
published and had a profound influence on the Johns
Hopkins group [41] (see Medical Research Council
Streptomycin Trial). The first effort at a randomized
trial was a comparison of the efficacy of tetracycline
and penicillin in the treatment of lobar pneumonia
[5]. At the same time, the Veterans Administration
began its first randomized controlled trials in tuber-
culosis [50].

The Organization of Trials

In 1954, the US Congress created the Cancer Chemo-
therapy National Service Center (CCNSC) to stimu-
late research in the chemotherapy of cancer. A clin-
ical panel was formed, headed by Dr I. Ravdin, and
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included among others Drs Zubrod and Holland. At
an early meeting, the clinical panel reviewed a paper
by Louis Lasagna, which enunciated five principles of
the controlled clinical trial, including randomization
and the statistical treatment of data [38]. Over the
next several years, the clinical panel of the CCNSC
oversaw the organization of cooperative clinical tri-
als groups for the conduct of clinical trials in cancer
(see Cooperative Cancer Trials). By 1960, there
were 11 cooperative clinical study groups (Table 1),
each comprised of a number of universities and/or
V.A. Hospitals and Medical Centers and a Statisti-
cal Coordinating Center [48]. The cooperative groups
were funded by the NCI through the Chairman and
a Statistical Center. Zubrod recruited the chairman
of each group and Marvin Schneiderman recruited
the biostatisticians and statistical centers. One of the
statisticians, W.J. Dixon, had two graduate students
who were writing general statistical programs for the
analysis of biomedical data. NCI awarded a con-
tract to carry out this work that subsequently became
the Biomedical Data Processing Program (BMDP)
package of statistical programs (see Software, Bio-
statistical).

In the establishment of a clinical cooperative
group, CCNSC agreed that there should be adher-
ence to the following principles: combination of data
from all institutions to accumulate rapidly the neces-
sary number of patients; standard criteria of diagno-
sis, treatment, and measurement of effect; statistical
design of the study, with a randomized assignment of
patients to the groups to be compared; and statistical
analysis and collaborative reporting of the results.

The clinical trials effort involved more types of
clinical studies than randomized trials. There was a

sequence of trials with differing objectives: Phase I –
to determine the maximum tolerated dose of a regi-
men that can be used in looking for therapeutic effect;
Phase II – to determine whether a particular dosage
schedule of an agent is active enough to warrant
further study; and Phase III – a comparative trial,
usually randomized, to decide whether a new ther-
apy is superior to a standard therapy. The primary
objective of the clinical trials program was to pro-
vide a means of testing in humans new agents that
had previously demonstrated effectiveness in animal
tumor systems.

Some Early Trials

Following some preliminary discussions between
Dr Zubrod and Jerome Cornfield, a leading statis-
tician at NIH, there was agreement that childhood
leukemia was an ideal disease for testing some of the
new agents objectively. The first randomized coop-
erative clinical trial in acute leukemia was planned
in 1954, begun in 1955, and reported by Frei et al.
in 1958 [23]. The trial involved two regimens of
combination chemotherapy – 6-mercaptopurine and
either intermittent or continuous methotrexate in 65
patients. The study had the following features: a
uniform protocol at the four participating institu-
tions (see Clinical Trials Protocols); uniform criteria
of response (see Outcome Measures in Clinical
Trials); adherence to the principles of the con-
trolled clinical trial, especially the randomization
of patients to therapies (see Randomized Treat-
ment Assignment); and stratification of patients by
age, type of leukemia, and history of prior ther-
apy. Statistical methods used were a comparison of

Table 1 Cooperative clinical study groups in 1960

Group Chairman Statistician

Acute leukemia, Group A M. Lois Murphy I. Bross
Acute leukemia, Group B E. Frei M. Schneiderman
Eastern Solid Tumor Group C.G. Zubrod M. Schneiderman
Southeastern Group R.W. Rundles B.G. Greenberg
Western Group F. Willett
Southwestern Group H.G. Taylor E. MacDonald
Prostate Group H. Brendler D. Mainland
Breast Group A A. Segaloff M. Schneiderman
Breast Group B G. Gordon M. Schneiderman
V.A. Groups – various malignancies J. Wolf et al. M. Patno
University Groups – lung, breast,

stomach, ovary, colon A. Curreri et al. R. Stiver, G. Beebe, W. Dixon
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median survival times and median duration of remis-
sions between therapies, confidence intervals, and
Fisher’s exact test.

The first randomized clinical trial in solid tumors
was conducted by members of the Eastern Solid
Tumor Group and reported by Zubrod et al. in 1960
[53]. The trial involved a randomized comparison of
two alkylating agents (thiotepa vs. nitrogen mustard)
in patients with solid tumors. One objective was to
“study the feasibility and usefulness of collaborative
clinical research in cancer chemotherapy”. The
trial involved 258 randomized patients, and notable
features were: blind evaluation of response by vote
of clinical investigators (see Blinding or Masking);
objective procedures for measurement of tumors
and determination of when a response began and
ended; the importance of accounting for type I and
type II statistical errors (see Hypothesis Testing);
appropriate sample size for detection of differences
between treatments (see Sample Size Determination
for Clinical Trials); and statistical analysis in the
reporting of results.

A subsequent trial demonstrated the value of
combination chemotherapy in acute leukemia and
the independent action of drugs to increase the
probability that a patient achieves complete remis-
sion [24]. Freireich et al. [25] reported a prospec-
tive, randomized, double-blind, placebo-controlled,
sequential study of 6-mp vs. placebo in the main-
tenance of remissions in pediatric acute leukemia.
This study established that 6-mp maintenance treat-
ment leads to substantially longer remissions than
placebo and was a forerunner to many adjuvant
studies in other forms of cancer, such as breast
cancer, in which treatments are administered when
the patients are in a disease-free state [25]. This
study also was a motivation for the development
of an extension of the Wilcoxon test for compar-
ing survival distributions subject to censoring [27]
(see Wilcoxon–Mann–Whitney Test) and was used
as an example by Cox in his, now classic, paper on
regression models (see Cox Regression Model) and
life tables [16].

Developments in Methodology

In the clinical trials program at NCI prior to 1970,
there were several developments in methodology that
have influenced the conduct of subsequent clinical tri-
als. Before 1960, the clinical testing of new agents

often involved as few as five patients, with the agent
discarded if no positive response was obtained in at
least one patient. In 1961, Gehan proposed a plan for
Phase II trials that determined the minimum number
of consecutive patients to study when all patients are
nonresponders, before one could reject a new agent
for further study, at given levels of rejection error
[26]. This plan, or now more commonly Simon’s
modification, continues in use today in Phase II stud-
ies [46].

Several philosophical issues arose from the drug
development program. The practice of human exper-
imentation could be questioned by “Doesn’t a physi-
cian have an implied duty to give his patient the
best treatment? If that is the case, how can one
justify having the toss of coin (i.e. randomization)
decide which treatment a patient should receive?”
The reply was (and is), “If the physician really
knows what is the best treatment for the patient, the
patient must receive that treatment and not be ran-
domized into a trial.” The question then becomes,
“How and when does a physician know what is the
best treatment for a specific patient?” The major eth-
ical issue then becomes one of learning quickly (i.e.
with a minimum number of patients) what is the
best treatment (see Ethics of Randomized Trials).
There have been several proposals for establishing
what one “knows” while minimizing the number of
patients who will receive the less effective treatment.
Armitage proposed closed sequential procedures with
paired patients on each treatment, and with the trial
terminated as soon as one could establish the supe-
riority of one of the treatments over the other [2]
(see Data and Safety Monitoring). A feature of the
plans was an upper limit on the number of patients
one could enter. Schneiderman & Armitage later
described a family of sequential procedures, called
wedge plans because of the shape of the acceptance
boundary, which provided a bridge between the open
plans derived from Wald’s theory and the restricted
procedures of Armitage [44, 45].

In the 6-mp vs. placebo study for maintaining
remissions in pediatric leukemia, patients were paired
according to remission status (complete or partial),
one patient receiving 6-mp and the other placebo by a
random allocation, and a preference was recorded for
6-mp or placebo depending upon the therapy which
resulted in the longer remission. The trial was con-
ducted sequentially according to one of the Armitage
plans [2] and a sequential boundary favoring 6-mp
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was reached after 18 preferences had occurred – 15
for 6-mp and 3 for placebo. There were 12 patients
still in remission at the time the study was termi-
nated, although one could record a preference for
one or the other treatment because the pair-mate
had relapsed at an earlier time. It was clear that a
more efficient analysis could be obtained by using
the actual lengths of remission. Gehan, while work-
ing on an NCI fellowship with D.R. Cox at Birkbeck
College in London, developed a generalization of the
Wilcoxon test for the fixed sample size problem with
each sample subject to arbitrary right censoring [27].
Halperin had previously developed a generalization
of the Wilcoxon test, when all times to censoring
were equal to the longest observation time [30]. Man-
tel noticed that one could utilize the chi-square test
for comparison of survival data between two or more
groups, assuming that one constructs a contingency
table of deaths and survivors at each distinct failure
time in the groups of patients under study. This chi-
square test was appropriate when the risk of failure
in one group was a constant multiple of that in the
other; this test was an extension of the earlier test
developed by Mantel and Haenszel which measured
the statistical significance of an observed associa-
tion between a disease and a factor under study in
terms of an increased relative risk of disease [39,
40]. This test subsequently became known variously
as the Mantel–Haenszel test, the logrank test or the
Cox–Mantel test, and has been studied by Cox and
Peto, among others [16, 42].

Another development in the 1960s was the expo-
nential regression model proposed by Feigl &
Zelen [22]. Dr Robert Levin of NCI was interested
in studying the relationship of the survival time of
leukemia patients to the concomitant variate of white
blood count, separately according to the presence or
absence of auer rods and/or significant granulature of
leukemia cells in the bone marrow at diagnosis. Feigl
& Zelen proposed a model in which an exponential
survival distribution is postulated for each patient
and the expected value of the survival time is linearly
related to the patient’s white blood count. A more
general loglinear model was subsequently given by
Glasser [29], and there have been numerous subse-
quent developments in parametric regression models
with censored survival data (see Parametric Mod-
els in Survival Analysis) [17, Chapters 5 and 6,
pp. 62–90].

Developments in Clinical Trials at the
National Heart, Lung, and Blood Institute
(NHLBI)

Prior to 1960, the National Heart Institute (NHI), sub-
sequently to become NHLBI, had little involvement
in multicenter clinical trials. In a trial designed in
1951, there was a comparison of ACTH, cortisone,
and aspirin in the treatment of rheumatic fever and the
prevention of rheumatic heart disease. A total of 497
children were enrolled in 12 centers in the UK, the
US, and Canada. Felix Moore, then Chief of the Bio-
metrics Section of NHI, was a statistical consultant.
There were no differences in treatment effectiveness
in the study, and no statistical or methodologic prob-
lems mentioned in the final report [8].

Subsequently, there was a multicenter observa-
tional study of lipoproteins in atherosclerosis that had
substantial impact on the methodology for coordi-
nating studies performed at several sites [47]. The
Statistical Center was led by Felix Moore and Tavia
Gordon at NHI. Careful quality control procedures
and standardization of methods across centers were
emphasized.

Early Efforts in Clinical Trials

Jerome Cornfield joined the NHI in 1960 and strongly
influenced the conduct of clinical trials at NHI and
statistical research on methodologic issues arising in
clinical trials. In the early 1960s, intensive plan-
ning for two clinical trials was begun at NHI to
reduce risk factors for coronary heart disease – The
Diet Heart Feasibility Study (DHFS) and the Coro-
nary Drug Project (CDP) [14, 20]. These studies
reflected the strong interest in both dietary and drug
approaches to the prevention of coronary heart dis-
ease and the recurrence of myocardial infarction. For
the DHFS, the NHI Biometrics Branch served as the
statistical coordinating center, first under the super-
vision of Joseph Schachter and later of Fred Ederer.
Max Halperin rejoined the NHI in 1966 and, upon
Cornfield’s retirement in 1968, became Chief of the
Biometrics Research Branch until his retirement in
1977. Four areas of clinical trials and methodology
can be traced to these early studies and the individuals
responsible for them. These areas are: organizational
structure for clinical trials at NIH; methodology for
the interim analysis of accumulating data (see Data
and Safety Monitoring), including the Bayesian
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approach, group sequential and stochastic curtailment
methods; design and analysis of clinical trials, includ-
ing the effects of patient noncompliance on power
and the intention to treat principle; and methods for
analysis of data from longitudinal clinical trials (see
Longitudinal Data Analysis, Overview).

The Organization of NHLBI Trials

The “NHLBI Model” for cooperative clinical trials
evolved from discussion during the planning stage of
the CDP among outside medical experts and NHI
medical and statistical staff. In 1967, a report by
a committee appointed by the National Advisory
Heart Council and chaired by Bernard Greenberg
described this structure [35]. The report, subsequently
known as the “Greenberg Report”, became the basis
for a structure of nearly all subsequent NHLBI trials
as well as for many other trials sponsored at NIH.

The major components of the organizational struc-
ture include a Steering Committee, a Policy Advi-
sory Board, a Data Monitoring Committee (see Data
Monitoring Committees), and a Statistical or Data
Coordinating Center, as well as individual clin-
ics, central laboratories, and various other commit-
tees which served the needs of the trial. These
might include committees to develop eligibility cri-
teria, to assign cause of death, to define method-
ology and standards, or to oversee the preparation
of manuscripts (for more details of organizational
structure).

From the biostatistical viewpoint, the Data Moni-
toring Committee has the responsibility of monitoring

accumulating data on a periodic basis and analyzing
results for evidence of early benefit or harm. Primary
and secondary outcomes measures are reviewed,
along with safety data, compliance to the protocol,
and subgroup analyses which may identify particu-
lar risk groups (see Treatment-covariate Interac-
tion). The Statistical Coordinating Center and the
Data Monitoring Committee work closely together in
performing the appropriate data analyses needed for
fulfilling the Committee’s responsibilities.

The Statistical and Data Coordinating Centers for
early trials at the NHLBI are given in Table 2. Per-
sonnel at these coordinating centers have played an
important role in the development of clinical tri-
als and made numerous contributions to statistical
methodology.

Developments in Methodology

These are considered under three headings: data mon-
itoring, design and analysis, and longitudinal studies.

Data Monitoring. Jerome Cornfield was involved
in the planning and conduct of two clinical trials –
the DHFS and the CDP. Both Cornfield and Halperin
served on the Data and Safety Monitoring Committee
of the CDP. At least partly motivated by his involve-
ment in these trials, Cornfield published papers in
1966 on sequential trials, sequential analysis, and
the likelihood principle, from a Bayesian perspec-
tive [9, 10].

In 1966, Max Halperin worked jointly with Corn-
field and Samuel Greenhouse (then at the National

Table 2 Early NHLBI coordinating centers

University of Maryland/Maryland Research Institute
Coronary Drug Project

University of Texas School of Public Health
Hypertension Detection and Follow-up Program

University of North Carolina – Chapel Hill, School of Public Health
Lipid Research Clinical Program

University of Minnesota School of Public Health, Biometry Division
Multiple Risk Factor Intervention Trial

University of Washington School of Public Health, Biostatistics Department
Coronary Artery Surgery Study

George Washington University Biostatistics Center
Intermittent Positive Pressure Breathing Trial

NHLBI Biometrics Research Branch
National Diet Heart Feasibility Study
Urokinase Pulmonary Embolism Trial
Urokinase Streptokinase Pulmonary Embolism Trial
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Institute of Mental Health) to develop an adaptive
allocation procedure that would assign an increasing
proportion of patients to the better of two treat-
ments as evidence accumulated [13] (see Adaptive
and Dynamic Methods of Treatment Assignment).
Their approach to the problem was Bayesian and gen-
eralized the earlier work of Anscombe and Colton [1,
7]. At around the same time, Cornfield published a
general paper on the Bayesian approach that involved
the use of a prior probability distribution with a
mass of probability P at the null hypothesis, with
a continuous density of total mass 1 − P over a
set of alternative hypotheses [11]. A key feature
of Cornfield’s proposal was the rejection of the null
hypothesis when the posterior odds (the relative bet-
ting odds or RBO) became small for H0. The RBO
was used in the CDP in the monitoring of mortality
differences between the control and each of the drug
treatment groups. Subsequently, Canner, of the CDP
Coordinating Center, considered the determination of
critical values for decision making at multiple time
points during the conduct of the clinical trial from the
Neyman–Pearson perspective [6]. Later, curtailment
and stochastic curtailment methods were developed
and applied to trials of the NHLBI in the 1970s and
early 1980s [19, 31, 34, 37].

Statisticians working with the CDP were aware
that, as the data accumulated, repeated testing for
treatment differences using conventional statistical
significance levels would increase the type I error
(see Level of a Test) over the nominal alpha level
associated with that critical value. Armitage et al.
evaluated the impact of repeated testing on the type I
error and demonstrated that multiple tests could
increase the type I error substantially [4]. Interim
analyses of clinical data are necessary for scientific
and ethical reasons, but large type I errors are not
acceptable. Canner developed a method for the CDP
for determining the critical value at each interim
analysis so that the overall type I error is close
to the desired level [6]. Statisticians involved with
NHLBI trials developed group sequential methods
and applied them to trials starting with the CDP.

Design and Analysis. In the DHFS, it was pro-
jected that a reduction in cardiovascular risk would
result from a reduction in cholesterol level. The orig-
inal sample size projection was for the entry of 8000
patients into several treatment arms. Although a spe-
cial review committee suggested that this sample size

might be too large, Cornfield argued that there were
too many inconclusive small studies already in the
literature. Several aspects of the trial required consid-
eration, including noncompliance with the treatment
regimen. It was presumed that the maximum effect on
risk would occur only after some period of time on
treatment and that failure to adhere to the treatment
regimen could mean a return to higher risk levels.
Halperin et al. [33] incorporated these considerations
into the design of clinical trials by proposing meth-
ods for adjusting sample size for noncompliance in
the treatment group. Studies were considered with a
fixed period of observation and a comparison of pro-
portions as the main analysis. Implicit in this paper is
the “intention to treat” principle, i.e. analysis of all
randomized patients in their assigned treatment group
regardless of compliance. Ultimately, the report of
the CDP recognized this point [15]. Most primary
and secondary prevention trials conducted by the
NHLBI since 1970 have made use of sample size
adjustments for noncompliance.

The Framingham Heart Study was begun in
1948 and has had an important influence on method-
ologic research at the NHLBI and the design of
prevention trials. Over 5000 adult residents of Fram-
ingham, Massachusetts, were entered into a longitudi-
nal study with the objective of evaluating the effects
of various risk factors on the development of subse-
quent cardiovascular disease. The study has clarified
the roles of high blood pressure, elevated total serum
cholesterol, and cigarette smoking on the risk of car-
diovascular disease [18, 36]. Occurrence or not of a
cardiovascular event in a 2-year follow-up period is
a binary outcome. Cornfield considered a regression
approach to deal with the binary outcome variables.
The problem was closely related to the discrimina-
tion problem between two samples from multivariate
normal distributions. For a specific prior probability
of belonging or not to a disease group, the posterior
probability could be represented as a logistic regres-
sion function that was closely related to what could
be obtained from a conventional discriminant func-
tion analysis [49]. Cornfield & Mitchell argued that
one could use the logistic model to predict the impact
on risk of specified changes in risk factors [12]. Sub-
sequently, this logistic model approach was used in
the design of several NHLBI prevention trials.

Longitudinal Studies. A methodology for analysis
of longitudinal data was needed for the Framingham
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Study which could be considered both a cohort and
a longitudinal study. Cohorts of individuals were fol-
lowed to observe patterns of morbidity and mortality,
and biennial measurements of cardiovascular risk fac-
tors provided an opportunity to study patterns relating
to aging. Early reports of the Framingham study used
simple graphical and descriptive methods to describe
patterns of aging. During the 1980s, there was much
work on methodology for longitudinal studies (see
Longitudinal Data Analysis, Overview) that ulti-
mately led to NHLBI sponsorship of a workshop on
methods for analysis of longitudinal and follow-up
studies, whose proceedings have appeared as a spe-
cial issue in Statistics in Medicine [51].
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Clinical Trials, History of

Aspects of the history of clinical trials have been
reviewed by, among others, Bull [10], Lilienfeld
[49], Armitage [4], Meinert [59], and Gail [31].
In this article we survey the historical progression
toward the modern clinical trial, as this method of
research is practiced at the end of the twentieth
century, by tracing the development of five of its
requisite elements: controls (a comparison group),
randomization, blinding or masking, ethics, and
interim statistical analysis (see Data and Safety
Monitoring).

Controls

The essence of the clinical trial is the control group,
which provides the basis for comparing the outcomes
of two or more treatments. The comparative concept
of assessing therapeutic efficacy has been known
from ancient times. Lilienfeld [49] cites a description
of a nutritional experiment involving a control group
in the Book of Daniel from the Old Testament:

1. In the third year of the reign of Jehoiakim
king of Judah came Nebuchadnezzar king of
Babylon unto Jerusalem, and besieged it. . .

2. And the king spoke unto Ashpenaz his chief
officer, that he should bring in certain of the
children of Israel, and of the seed royal, and
of the nobles. . .

5. And the king appointed for them a daily por-
tion of the king’s food and of the wine which
he drank that they should be nourished for
three years. . .

8. But Daniel purposed in his heart that he would
not defile himself with the king’s food, nor
with the wine which he drank; therefore he
requested of the chief of the officers that he
might not defile himself. . .

10. And, the chief of officers said unto Daniel: “I
fear my lord the king who hath appointed your
food and your drink; for why should he see
your faces sad in comparison with the youths
of your own age?”. . .

11. Then said Daniel to the steward. . .

12. Try thy servants, I beseech thee, ten days; and
let them give us pulse (leguminous plants) to
eat and water to drink. . .

13. Then let our countenances be looked upon
before thee, and the countenances of the youths
that eat of the king’s food. . .

14. So, he hearkened unto them and tried them in
this matter, and tried them ten days. . .

15. And at the end of ten days their countenances
appeared fairer, and they were fatter in the
flesh, than all the youths that did eat of the
king’s food [72].

In this early example of a clinical trial, we note
the presence not merely of a control group, but
of a concurrent control group. These fundamental
elements of clinical research did not begin to be
widely practiced until the latter half of the twentieth
century.

There appear to be no other recorded examples
of thinking in comparative terms about the outcome
of medical treatment in ancient or medieval times.
Lilienfeld [49] provides an example from the four-
teenth century, a letter from Petrarch to Boccaccio:

I solemnly affirm and believe, if a hundred or a
thousand of men of the same age, same temperament
and habits, together with the same surroundings,
were attacked at the same time by the same disease,
that if one followed the prescriptions of the doctors
of the variety of those practicing at the present day,
and that the other half took no medicine but relied
on Nature’s instincts, I have no doubt as to which
half would escape [78].

The Renaissance provides an example of an un-
planned experiment in the treatment of battlefield
wounds. The surgeon Ambroise Paré was using the
standard treatment of pouring boiled oil over the
wound during the battle to capture the castle of
Villaine in 1537. When he ran out of oil, he resorted
to the alternative of a digestive made of egg yolks, oil
of roses, and turpentine. The superiority of the new
treatment became evident the next day.

I raised myself very early to visit them, when beyond
my hope I found those to whom I applied the
digestive medicament feeling but little pain, their
wounds neither swollen nor inflamed, and having
slept through the night. The others to whom I had
applied the boiling oil were feverish with much pain
and swelling about their wounds. Then I determined
never again to burn thus so cruelly by arquebusses
[63] (as cited in [10]).

An oft-cited eighteenth-century example of a planned
controlled clinical trial is the ship-board experiment
in which Lind found oranges and lemons to be the
most effective of six dietary treatments for scurvy.
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On the 20th of May, 1747, I took twelve patients
in the scurvy, on board the Salisbury at sea. Their
cases were as similar as I could have them. They all
in general had putrid gums, the spots and lassitude,
with weakness of their knees. They lay together in
one place, being a proper apartment for the sick in
the fore-hold; and had one diet common to all, viz.
water-gruel sweetened with sugar in the morning;
fresh mutton-broth often times for dinner; at other
times puddings, boiled biscuit with sugar etc. And
for supper, barley and raisins, rice and currants,
sago and wine, or the like. Two of these were
ordered each a quart of cyder a day. Two others
took twenty-five gutts of elixir vitriol three times a
day, upon an empty stomach; using a gargle strongly
acidulated with it for their mouths. Two others took
two spoonfuls of vinegar three times a day, upon an
empty stomach; having their gruels and their other
food well acidulated with it, as also the gargle for
their mouths. Two of the worst patients, with the
tendons in the ham rigid (a symptom none of the rest
had) were put under a course of sea-water. Of this
they drank half a pint every day, and sometimes more
or less as it operated, by way of gentle physic. Two
others had each two oranges and one lemon given
them every day. These they eat with greediness,
at different times, upon an empty stomach. They
continued but six days under this course, having
consumed the quantity that could be spared. The
two remaining patients, took the bigness of a nutmeg
three times a day of an electuary recommended by
a hospital-surgeon, made of garlic, mustard-feed,
rad. raphan, balsam of Peru, and gum myrrh; using
for common drink barley-water well acidulated with
tamarinds; by a decoction of which, with the addition
of cremor tartar, they were greatly purged three or
four times during the course.

The consequence was, that the most sudden and
visible good effects were perceived from the use of
the oranges and lemons; one of those who had taken
them, being at the end of six days fit for duty. The
spots were not indeed at that time quite off his body,
nor his gums sound; but without any other medicine,
than a gargle of elixir vitriol, he became quite healthy
before we came into Plymouth, which was on the
16th June. The other was the best recovered of any
in his condition; and being now deemed pretty well,
was appointed nurse, to the rest of the sick [50] (as
cited in [10, 37, 49], and [59]).

Pierre-Charles-Alexandre Louis, a nineteenth-
century clinician and pathologist, introduced the
“numerical method” for comparing treatments. His
idea was to compare the results of treatments on
groups of patients with similar degrees of disease,
i.e. to compare “like with like”:

I come now to therapeutics, and suppose that you
have some doubt as to the efficacy of a particular
remedy: How are you to proceed?. . . You would take
as many cases as possible, of as similar a description
as you could find, and would count how many
recovered under one mode of treatment, and how
many under another; in how short a time they did
so; and if the cases were in all respects alike, except
in the treatment, you would have some confidence in
your conclusions; and if you were fortunate enough
to have a sufficient number of facts from which
to deduce any general law, it would lead to your
employment in practice of the method which you
had seen oftenest successful [51] (as cited in [10,
49, 3], and [59]).

It remained for Bradford Hill more than a century
later to use a formal method for creating groups of
cases that were “in all respects alike, except in the
treatment”.

Randomization

The use of randomization as a scientific tool was
a brilliant contribution by the famous statistician
Ronald A. Fisher [22, 23]. Fisher’s early appli-
cations of randomization were in agriculture. To
determine which fertilizers effected the greatest crop
yields, Fisher divided agricultural areas into plots,
and randomly assigned the plots to experimental fer-
tilizers. A goal of Fisher’s was to obtain, through
independent replications, a valid test of statistical
significance (see Randomization Tests). In previous
systematic designs, the fertilities of adjoining plots,
to which different treatments had been applied, were
not independent.

In clinical trials there were early schemes to use
“group randomization”: after dividing the patients
into two groups, the treatment for each group was ran-
domly selected. This method does not involve repli-
cation, and therefore precludes estimation of error.
Armitage [3] cites a challenge based on the notion of
random assignment, though not of individuals, issued
as early as 1662 by the Belgian medicinal chemist van
Helmont:

Let us take out of the hospitals, out of the Camps, or
from elsewhere, 200, or 500 poor People that have
Fevers, Pleurisies, &c, Let us divide them into halfes,
let us cast lots, that one half of them may fall to
my share, and the others to yours,. . . we shall see
how many funerals both of us shall have: But let the
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reward of the contention or wager, be 300 florens,
deposited on both sides [75].

Group randomization was used by Amberson et al.
in a trial of sanocrysin in the treatment of pulmonary
tuberculosis published in 1931 [1].

A great step forward was the use of systematic
assignment by Fibiger [21], who alternately assigned
diphtheria patients to serum treatment or an untreated
control group. As noted by Armitage [3], alter-
nate assignment “would be deprecated today on the
grounds that foreknowledge of the future treatment
allocations may selectively bias the admission of
patients into the treatment groups”. Diehl et al. [18]
reported in 1938 a common cold vaccine study with
University of Minnesota students as subjects:

At the beginning of each year. . . students were
assigned at random. . . to a control group or an exper-
imental group. The students in the control groups. . .
received placebos. . . All students thought they were
receiving vaccines. . . Even the physicians who saw
the students. . . had no information as to which group
they represented.

Gail [31] points out that, although on its face this
appears to be the first published report of a modern
randomized clinical trial, a typewritten manuscript
by Diehl clarifies that this is another instance of
systematic assignment:

At the beginning of the study, students who volun-
teered to take these treatments were assigned alter-
nately and without selection to control groups and
experimental groups.

Hill, in the study of streptomycin in pulmonary
tuberculosis [53], used random sampling numbers in
assigning treatments to subjects in clinical trials, so
that the subject was the unit of randomization (see
Medical Research Council Streptomycin Trial).
This study is now generally acknowledged to be the
“first properly randomized clinical trial” [3]. It is of
interest to note, as did Meier [58], that what Fisher
saw important in randomization was that it made
possible a valid test of significance (see Hypothe-
sis Testing), whereas what Hill found important was
the creation of comparable groups.

After the streptomycin-pulmonary tuberculosis tri-
al, Bradford Hill and the British Medical Research
Council continued with further randomized trials:
chemotherapy of pulmonary tuberculosis in young
adults [55], antihistaminic drugs in the prevention

and treatment of the common cold [54], cortisone and
aspirin in the treatment of early cases of rheumatoid
arthritis [56, 57], and long-term anticoagulant therapy
in cerebrovascular disease [39].

In the US, the National Institutes of Health
followed the lead of the British Medical Research
Council, starting in 1951 its first randomized trial
[34], a National Heart Institute study of ACTH,
cortisone, and aspirin in the treatment of rheumatic
heart disease [68] (see Clinical Trials, Early Cancer
and Heart Disease). This was followed in 1954
by a randomized trial of retrolental fibroplasia (now
known as retinopathy of prematurity), sponsored by
the National Institute of Neurological Diseases and
Blindness [44]. In that same year, members of the
US Congress asked officials of the National Cancer
Institute to organize a comprehensive program for
research in cancer chemotherapy, which led the next
year to the development of a rapidly growing program
of clinical trials under the Cancer Chemotherapy
National Service Center [32]. By fiscal year 1986, the
annual cost of randomized clinical trials sponsored by
10 categorical institutes of the National Institutes of
Health amounted to 300 million dollars; the National
Cancer Institute bore 58% of that cost [35]. During
the four decades following the pioneering trials of
the 1940s and 1950s, there was a large growth in
the number of randomized trials not only in Britain
and the US, but also in Canada and on the European
continent. This growth gave impetus to the formation
in the 1970s of two societies, the International
Society of Clinical Biostatistics and the Society
for Clinical Trials, and the publication of two new
journals, Controlled Clinical Trials and Statistics
in Medicine.

Masking

The purpose of masking, or blinding, in experi-
ments is to prevent personal bias from influenc-
ing study observations. An awareness that personal
bias can affect observation and judgment has existed
for at least 400 years. Francis Bacon (1561–1626)
noted “for what a man would like to be true, he
more readily believes” [5]. Investigator bias caused
a remarkable scientific delusion in the early years
of the twentieth century: n-rays [76]. N-rays were
“discovered” in 1902 by the eminent French physi-
cist Blondlot, who in Comptes rendus, the lead-
ing French scientific journal, reported properties of
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these rays that far transcended those of X-rays.
According to Blondlot, n-rays were given off spon-
taneously by many metals, such as copper, zinc,
lead, and aluminum, and when the rays fell upon the
eye, they increased the eye’s ability to see objects
in a nearly dark room. The existence of n-rays
was soon confirmed in laboratories in various parts
of France, and a number of noted French scien-
tists soon applied n-rays to research in chemistry,
botany, physiology, and neurology. In 1904, Sci-
ence Abstracts listed 77 n-ray papers. The French
Academy awarded Blondlot the Lalande prize of
20 000 francs and its gold medal “for the discovery
of n-rays”. That same year, however, the American
Physicist R.W. Wood visited Blondlot in his labora-
tory to test the experiments:

He [Blondlot] first showed me a card on which some
circles had been painted in luminous paint. He turned
down the gas light and called my attention to their
increased luminosity when the n-ray was turned on.
I said that I saw no change. He said that was because
my eyes were not sensitive enough, so that proved
nothing. I asked him if I could move an opaque
lead screen in and out of the path of the rays while
he called out the fluctuations of the screen. He was
almost 100 percent wrong and called out fluctuations
when I made no movement at all, and that proved a
lot, but I held my tongue. He then showed me the
dimly lighted clock, and tried to convince me that I
could see the hands when he held a large flat file just
above his eyes. I asked if I could hold the file, for
I had noticed a flat wooden ruler on his desk, and
remembered that wood was one of the substances
that never emitted n-rays. He agreed to this, and I
felt around for the ruler and held it in front of his
face. Oh, yes, he could see the hands perfectly. This
also proved something [70, 76].

After Wood published his account, n-ray publications
diminished in number. Science Abstracts listed only
eight n-ray papers in 1905, and none in 1909. The
French Academy changed its announced reason for
the award to Blondlot “for his life work taken as
a whole”. According to Seabrook [70], the expo-
sure of the blunder led to Blondlot’s madness and
death.

A masked experiment by the Austrian physicist
Pozdena contributed to the disproof of the existence
of n-rays. At haphazard intervals Pozdena’s assistant
soundlessly operated a shutter which in its closed
position blocked the transmission of the hypothetical
n-rays. During a pretest, the assistant wrote “o” for

offen (open) and “g” for geschlossen (closed) while
Pozdena indicated when he could detect increased
luminosity. Whereas the shutter’s movements were
silent, the assistant’s pencil scratches were not. Poz-
dena was able to hear the difference between an “o”
and a “g”. In the definitive experiment the assis-
tant switched to a coded notation, and in 150 tri-
als Pozdena reported increased luminosity about as
often when the shutter was open as when it was
closed [67].

The common cold vaccine study published by
Diehl et al. [18] in 1938 cited earlier, in which
University of Minnesota students were alternately
assigned to vaccine or placebo, was a masked clinical
trial.

The students in the control groups . . . received place-
bos . . . All students thought they were receiving
vaccines . . . Even the physicians who saw the stu-
dents . . . had no information as to which group they
represented.

Masking was used in the early Medical Research
Council trials in which Bradford Hill was involved.
Thus, in the first of those trials, the study of strepto-
mycin in tuberculosis, the X-ray films were

viewed by two radiologists and a clinician, each
reading the films independently and not knowing if
the films were of C [bed-rest alone] or S [strepto-
mycin and bed-rest] cases [53].

Hill’s lesson from the experience:

If it [the clinical assessment of the patient’s progress
and of the severity of the illness] is to be used
effectively, without fear and without reproach, the
judgments must be made without any possibility of
bias, without any overcompensation for any possible
bias, and without any possible accusation of bias
[37].

In the second trial, the antihistamine–common cold
study [54], placebos (“dummies indistinguishable”
from the drug under test) were used. Hill’s lesson:

. . .in [this] trial. . ., feelings may well run high in
the bosom (or should I say the mucosa?) either of
the recipient of the drug or the clinical observer, or
indeed of both. If either were allowed to know the
treatment that had been given, I believe that few of
us would without qualms accept that the drug was
of value – if such a result came out of the trial [37].

The terms “blind” and “double-blind” have been
used commonly in clinical trials, the latter indicating
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that neither the doctor nor the patient knows what
treatment the patient is getting. When these terms
were recognized as being awkward in trials of eye
disease, the terms “masking” and “double-masking”
were introduced [19].

Ethics

Medical Research Abuses

Experimentation in medicine is as old as medicine
itself, and since antiquity some experiments on hum-
ans have been conducted without concern for the
welfare of the subjects, who were often prisoners or
disadvantaged people [52]. Thus, in the flourishing
days of intellectual and scientific achievement in
ancient Alexandria, anatomists used criminals for
dissection alive [6]. Katz [42] provides examples of
19th century studies in Russia and Ireland of the
consequences of infecting persons with syphilis and
gonorrhea. During the same time, in the US,

physicians put slaves into pit ovens to study heat
stroke, and poured scalding water over them as an
experimental cure for typhoid fever. One slave had
two fingers amputated in a “controlled trial”, one
finger with anesthesia and one finger without, to test
the effectiveness of anesthesia [52].

Unethical experiments on human beings have con-
tinued into the twentieth century [7, 24, 52]. In
1932 the US Public Health Service began a study
in Tuskegee, Alabama, of the natural progression of
untreated syphilis in 400 black men. The study con-
tinued until 1972, when a newspaper reported that
the subjects were uninformed or misinformed about
the purpose of the study. Participants were told that
painful lumbar punctures were given as treatment,
when in fact treatment for syphilis was withheld even
after penicillin became available [24].

During the Nazi regime, 1933–1945, German doc-
tors conducted sadistic medical experiments, mainly
on Jews, but also on Gypsies, mentally disabled
persons, Russian prisoners of war, and Polish con-
centration camp inmates:

The “experiments” were quite varied. Prisoners were
placed in pressure chambers and subjected to high-
altitude tests until they stopped breathing. They were
injected with lethal doses of typhus and jaundice.
They were subjected to “freezing” experiments in
icy water or exposed naked in the snow outdoors

until they froze to death. Poison bullets were tried
out on them as was mustard gas. . . [71].

Codes of Ethics, Informed Consent

The fact that in 1931, two years before the Nazis
acceded to power, Germany had enacted “Richtlin-
ien” (regulations) to control human experiments adds
irony to the German doctors’ cruel abuse and exploit-
ation of human subjects.

Issued by the Reich’s Health Department, these reg-
ulations remained binding law throughout the period
of the Third Reich. Consent requirements formed
two of fourteen major provisions in the guidelines,
one dealing with “New Therapy” and the other with
“Human Experimentation”. It was demanded that in
both cases consent (first party or proxy consent, as
appropriate) must always be given “in a clear and
undebatable manner” [20].

The Nazi doctors were tried for their atrocities by the
Allied Forces in 1946–1947 at Nuremberg. Three US
judges at the trial promulgated the Nuremberg Code
[47], the first international effort to codify ethical
principles of clinical research. Principle 1 of the
Nuremberg Code states:

The voluntary consent of the human subject is abso-
lutely essential. This means that the person involved
should have legal capacity to give consent; should
be so situated as to be able to exercise free power
of choice, without the intervention of any element of
force, fraud, deceit, duress, over-reaching, or other
ulterior form of constraint or coercion; and should
have sufficient knowledge and comprehension of the
elements of the subject matter involved as to enable
him to make an understanding and enlightened deci-
sion [74] (cited in [47, Appendix 3]).

Other principles of the Code are that the experi-
ment should yield results for the good of society, that
unnecessary suffering and injury should be avoided,
and that the subject should be free to end the exper-
iment.

Informed consent (see Ethics of Randomized
Trials) was used by Walter Reed in his studies of
yellow fever at the turn of the twentieth century [6,
69]. Mosquitoes were known to be involved in the
transmission of the disease, but their precise role
was not clear. To clarify the mode of transmission,
members of Reed’s research team had themselves
been bitten by mosquitoes. After a fellow worker
died of yellow fever from a purposeful bite, Reed
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recruited American servicemen and Spanish workers
for the experiments, and drew up a contract with the
Spanish workers:

The undersigned understands perfectly well that in
the case of the development of yellow fever in him,
that he endangers his life to a certain extent but
it being entirely impossible to avoid the infection
during his stay on this island he prefers to take the
chance of contracting it intentionally in the belief
that he will receive. . . the greatest care and most
skillful medical service [6, 69].

The contract specified that volunteers would each
receive $100 in gold, and a $100 bonus if they
contracted yellow fever. In the event 25 volunteers
became ill, but none died.

In addition to Reed, other early advocates of
informed consent were Charles Francis Withington
and William Osler. Withington, noting in 1886 the
“possible conflict between the interests of medical
science and those of the individual patient”, sided
with “the latter’s indefensible rights” [77]. Osler in
1907 insisted on informed consent in medical exper-
iments: “For man absolute safety and full consent
are the conditions which make such tests allowable”
[62]. Despite this early advocacy, and despite the
promulgation of the 1931 German doctors’ code and
the 1946–1947 Nuremberg Code, the application of
informed consent to medical experiments did not take
foothold during the first six decades of the twentieth
century. Bradford Hill [38], based on his experience
in a number of early randomized clinical trials spon-
sored by the Medical Research Council, believed that
it was not feasible to draw up a detailed code of ethics
for clinical trials that would cover the variety of eth-
ical issues that came up in these studies, and that
the patient’s consent was not warranted in all clinical
trials. Although the judges at Nuremberg evidently
intended the Code to apply not only to the case before
them, but “for the practice of human experimentation
wherever it is conducted” [43], European and Amer-
ican clinical investigators were slow to adopt it [7].
Gradually the medical community came to recognize
the need to protect the reputation and integrity of
medical research. In 1955 a human experimentation
code was adopted by the Public Health Council in
the Netherlands [60], cited in [15], and in 1964 the
World Medical Association issued the Declaration of
Helsinki [47], essentially adopting the ethical princi-
ples of the Nuremberg Code, with consent “a central
requirement of ethical research” [20].

Justification to Begin

The view of Bradford Hill [38] was that in starting
a randomized clinical trial the doctor accepts that
“he really has no knowledge that one treatment [in
the trial] will be better or worse [than the other
treatments]”. This state of uncertainty, which has
come to be known as “equipoise” [28], has remained
the ethical standard for starting a randomized clinical
trial. For completeness, Levine [47] has added the
proviso that there must not be a treatment, other than
those to be studied in the trial, that is known to be
superior to the study treatments.

Peer Review

One can trace back to 1803 the notion that therapeutic
innovation must be preceded by peer review:

And no such trials [of new remedies and new meth-
ods of chirurgical treatment] should be instituted,
without a previous consultation of the physicians or
surgeons . . . [64] (cited in [47]).

According to Levine [47], “not much more was said
about peer review for about 150 years”.

Research ethics committees, the US history of
which is traced by McNeill [52] and Levine [48],
came into being in the US in the 1950s. The
1946–1947 Nuremberg Code and the 1964 Declara-
tion of Helsinki do not mention committee review.
A requirement for such review was imposed in
1953 at the newly established Clinical Center at the
National Institutes of Health, and peer review of clin-
ical research was also practiced at some US medical
schools in the 1950s. By the early 1960s, one-third of
US university medical schools responding to a survey
had established research ethics committees. Public
outrage at highly publicized research abuses, such as
those published by Beecher [7], or those committed
in the Tuskegee syphilis study, gave impetus to the
adoption of requirements for informed consent and
peer review in research on human beings in the US
[52]. In 1966 the US Public Health Service issued a
policy requiring recipients of Public Health Service
research grants to provide for prior committee review
of studies involving human subjects to ensure that the
study plans conform to ethical standards. Because the
Public Health Service was then (and still is) spon-
soring a large majority of medical research in the
US, research ethics committees were established at
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medical schools throughout the US soon after 1966.
National recommendations, guidelines, or regulations
for the establishment of research ethics committees in
other countries soon followed: Canada in 1966, the
UK in 1967, Australia in 1973, New Zealand in 1975,
and Ireland in 1987 [52].

Data Monitoring by Peers

In the modern randomized clinical trial, the accumu-
lating data are usually monitored for safety and effi-
cacy by an independent data monitoring committee –
also called data and safety monitoring committee, or
data and safety monitoring board. In 1968 the first
such committee was established, serving the Coro-
nary Drug Project, a large multicenter trial sponsored
in the United States by the National Heart Institute of
the National Institutes of Health [11, 29]. The organi-
zation of the Coronary Drug Project included a policy
board – a senior advisory group made up of five sci-
entists who were not otherwise participating in the
study. In 1967, after a presentation of interim out-
come data by the study leadership to all participating
investigators of the Coronary Drug Project, Thomas
Chalmers addressed a letter to the policy board chair-
man expressing concern:

that knowledge by the investigators of early nonsta-
tistically significant trends in mortality, morbidity, or
incidence of side effects might result in some inves-
tigators – desirous of treating their patients in the
best possible manner, that is, with the drug that is
ahead – pulling out of the study or unblinding the
treatment groups prematurely [11].

In 1968 a data and safety monitoring committee was
established for the Coronary Drug Project (appar-
ently by the policy board) consisting of scientists who
were not contributing data to the study, and there-
after the practice of sharing accumulating outcome
data with the study’s investigators was discontinued.
The data safety and monitoring committee assumed
responsibility for deciding when the accumulating
data warranted changing the study treatment proto-
col or terminating the study (see Data and Safety
Monitoring).

In 1971, for the first randomized clinical trial
it sponsored, the recently established National Eye
Institute of the US National Institutes of Health
adopted the model of the Coronary Drug Project by
including in its organization a policy board and data

monitoring committee; the trial was the multicen-
ter Diabetic Retinopathy Study [17]. In this study,
as in the Coronary Drug Project, the accumulating
outcome data were not shared with data-contributing
investigators.

In subsequent trials sponsored by the National
Heart Institute (later named National Heart, Lung,
and Blood Institute) and the National Eye Institute
the functions of the policy board and data and safety
monitoring committee were combined in a single data
monitoring committee. The example set by the Coro-
nary Drug Project and the Diabetic Retinopathy Study
established a pattern for monitoring interim clinical
trials data by an independent committee that was
gradually adopted by many trials in North America
and Europe.

Interim Analysis

In the conduct of the modern randomized clinical
trial, the ethical requirement for interim analysis of
study outcomes is widely recognized, and the respon-
sibility for such analysis is commonly delegated to
an independent data monitoring committee. Bradford
Hill does not mention interim analysis in his exten-
sive writings about the clinical trials he worked on
during the late 1940s and 1950s [37].

The first formal recognition of the need for interim
analyses, and that such analyses affect the proba-
bility of the type I error (see Hypothesis Testing),
came with the publication in the 1950s of papers on
sequential clinical trials by Bross [9] and Armitage
[2] (see Sequential Analysis). In sequential trials of
two treatments, patients are enrolled in pairs, with
members of each pair randomly assigned to one
or the other treatment. The data are analyzed each
time that both members of a pair reach an endpoint
(e.g. treatment failure). The overall probability of the
type I error is controlled at a predetermined level.
The principal advantage of a sequential trial over
a fixed-sample-size trial, apart from that of correct-
ing the significance level for repeated data analyses,
is that when the length of time needed to reach an
endpoint is short, e.g. weeks or months, the sample
size required to detect a substantial benefit from one
of the treatments is less. Applications of sequential
trials have been limited because when follow-up is
long-term, as is required by most trials, the sequential
design is less effective.
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In the 1960s Cornfield argued that data analy-
sis in clinical trials, because it is often marked by
unforeseen developments, does not lend itself well
to predetermined stopping rules [13, 16]. For the
dilemma of repeated interim analyses of the accumu-
lating data, and to address the issue of multiplicity in
clinical trials in general, he proposed use of the like-
lihood ratio. In particular, he proposed a Bayesian
solution in the form of “relative betting odds” [12] –
a method that was applied alongside conventional fre-
quentist methods in two trials [14, 73].

In the 1970s and 1980s frequentist solutions to
interim analysis came about in the form of “group
sequential trials” and “stochastic curtailment” [4, 30,
66]. In the group sequential trial, an analogue of
the classical sequential trial [2, 9], the frequency
of interim analysis is usually limited to a small
number, say, between 3 and 6, while the overall
type I error probability is controlled at a prede-
termined level. Pocock’s boundaries use constant
nominal significance levels for the individual tests;
the Haybittle–Peto boundary [36, 65] uses strin-
gent significance levels, except for the final test; in
the O’Brien–Fleming boundary, stringency gradu-
ally decreases [61]; in the model by Lan & DeMets
[45], the total type I error probability is gradually
spent in a manner that does not require the timing of
analyses be prespecified; there have also been pro-
posals for methods of repeated confidence intervals
[40]. Whereas group sequential designs are used to
determine whether a trial should be stopped early
because a treatment is efficacious, stochastic curtail-
ment, which involves prediction of future events, is
invoked when it appears that a treatment is unlikely
to be shown to be efficacious even if the trial is con-
tinued to its planned conclusion [46]. Both group
sequential methods and stochastic curtailment have
been frequently applied to trials in the 1980s and
1990s.

Despite a renewed interest in Bayesian clinical tri-
als since the 1980s [8, 25, 26, 33, 41], there have been
few applications. Freedman et al. [27] provide an
overview of Bayesian approaches to interim analysis,
including a Bayesian analogue to stochastic curtail-
ment.
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Clinical Trials, Overview

Trial is from the Anglo–French trier, meaning to try.
Broadly, it refers to the action or process of putting
something to a test or proof. Clinical is from clinic,
from the French cliniqué and from the Greek klinike,
and refers to the practice of caring for the sick at the
bedside. Hence, narrowly, a clinical trial is the action
or process of putting something to a test or proof at
the bedside of the sick. However, broadly it refers
to any testing done on human beings for the sake of
determining the value of a treatment for the sick or
for preventing disease or sickness.

The broad definition of clinical trial includes def-
initions allowing for use of the term in references to
studies involving a single treatment (e.g. as in most
phase I trials and some phase II drug trials) and
for studies involving use of an external control (e.g.
studies involving historical controls) [66]. However,
use herein will be in the stricter sense of usage; that
is, to refer to trials involving two or more treatment
groups comprised of persons enrolled, treated, and
followed over the exact same time frame.

The treatment can be anything considered to hold
promise in caring for the sick, in the prevention of
disease, or in the maintenance of health. The term,
in the context of a trial, refers to the experimental
variable – the variable manipulated by the trialist.
The variable may have just two states (e.g. as in
a trial involving a single test treatment and single
control treatment) or three or more states (e.g. as
in a trial involving several different test treatments
and one or more control treatments). The variable,
in the case of drug trials, may serve to designate
different drugs, different doses of the same drug,
or different forms or routes of administration of the
same drug. In other contexts, it may variously refer
to different kinds or forms of surgery, different kinds
or forms of care or management regimens, different
kinds or forms of diagnostic tests, different kinds or
forms of medical devices, different kinds or forms of
counseling regimens to achieve some desired end, or
combinations of the above.

The clinical trial, in its simplest form, involves the
application of the experimental variable – treatment
to a person or group of persons – and observation
during or following application of the treatment to
measure its effect. That measure (outcome measure)
may be death, occurrence or recurrence of some

morbid condition, or a difference indicative of change
(e.g. difference in blood pressure measured for each
person just prior to the start of treatment and again
at some point during or after treatment).

There is no way to “test” a treatment or to “prove”
its effectiveness in the absence of some absolute or
relative measure of success. Trials are said to be con-
trolled if the effect of a treatment is measured against
a comparison treatment administered over the same
time period and under similar conditions. That com-
parison treatment may be another test treatment or,
depending on circumstances, a control treatment con-
sisting of an accepted standard form of therapy, a
placebo (see Blinding or Masking) or sham treat-
ment, or observation only (no treatment).

A trial is said to be uncontrolled if it does not have
a comparison treatment or if the enrollment to and
administration of the test and comparison treatments
is not concurrent (e.g. as with use of historical
controls for evaluation of a treatment). The Book of
Daniel (Chapter 1, verses 12–15) provides an account
of what amounts to an uncontrolled trial involving a
diet of pulse – edible seeds of certain pod-bearing
plants, such as peas and beans (see Clinical Trials,
History of).

Prove thy servants, I beseech thee, ten days; and let
them give us pulse to eat, and water to drink. Then
let our countenances be looked upon before thee,
and the countenance of the children that eat of the
portion of the King’s meat: and as thou seest, deal
with thy servants. So he consented to them in this
matter, and proved them ten days. And at the end
of ten days their countenances appeared fairer and
fatter in flesh than all the children which did eat the
portion of the King’s meat [1].

Fortuitous events can produce conditions reminiscent
of the features of a trial. One such account is that
given by Ambroise Paré (surgeon, 1510–1590) dur-
ing the battle in 1537 for the castle of Villaine. The
treatment for gunshot wounds in Paré’s time was
boiling oil poured over the wound. Because of the
intensity of the battle, Paré ran out of oil and resorted
to using an ointment made of egg yolks, oil of roses,
and turpentine. The result of his “trial” is summarized
by his observation the morning after the battle:

I raised myself very early to visit them, when beyond
my hope I found those to whom I had applied the
digestive medicament, feeling but little pain, their
wounds neither swollen nor inflamed, and having
slept through the night. The others to whom I had
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applied the boiling oil were feverish with much pain
and swelling about their wounds. Then I determined
never again to burn thus so cruelly the poor wounded
by arquebuses [72].

Many of the essential elements of the modern day
controlled trial are contained in Lind’s account of a
trial performed aboard the Salisbury at sea in 1747:

On the 20th of May 1747, I took twelve patients
in the scurvy, on board the Salisbury at sea. Their
cases were as similar as I could have them. They
all in general had putrid gums, the spots and lassi-
tude, with weakness of their knees. They lay together
in one place, being a proper apartment for the sick
in the fore-hold; and had one diet common to all,
viz., watergruel sweetened with sugar in the morn-
ing; fresh mutton-broth often times for dinner; at
other times puddings, boiled biscuit with sugar, etc;
and for supper, barley and raisins, rice and current,
sago and wine, or the like. Two of these were ordered
each a quart of cyder a day. Two others took twenty-
five gutts of elixir vitriol three times a day, upon an
empty stomach; using a gargle strongly acidulated
with it for their mouths. Two others took two spoon-
fuls of vinegar three times a day, upon an empty
stomach; having their gruels and their other food
well acidulated with it, as also the gargle for their
mouth. Two of the worst patients, with the tendons
in the ham rigid, (a symptom none of the rest had),
were put under a course of seawater. Of this they
drank half a pint every day, and sometimes more or
less as it operated, by way of gentle physic. Two oth-
ers had each two oranges and one lemon given them
every day. These they eat with greediness, at differ-
ent times, upon an empty stomach. They continued
but six days under this course, having consumed the
quantity that could be spared. The two remaining
patients, took the bigness of a nutmeg three times
a-day, of an electuary recommended by an hospital
surgeon, made of garlic, mustard-seed, rad raphan,
balsam of Peru, and gum myrrh; using for common
drink, barley-water well acidulated with tamarinds;
by a decoction of which, with the addition of cremor
tartar, they were gently purged three or four times
during the course. . . . the most sudden and visible
good effects were perceived from the use of oranges
and lemons, one of those who had taken them being
at the end of six days fit for duty [62].

The Treatment Protocol

The treatment protocol (the general term, study proto-
col or trial protocol (see Clinical Trials Protocols)
has broader meaning and refers to the constellation

of activities involved in conducting a trial) of the trial
specifies the treatments being studied, the manner
and method of usage and administration, and con-
ditions under which other treatments are called for
when needed for the well-being of those enrolled.
The treatment may be administrated in one applica-
tion or multiple applications. The period of treatment
may be short (e.g. as in trials involving a single appli-
cation of treatment such as surgery) or extended (e.g.
as in trials involving the treatment of a chronic con-
dition with drugs) over a period of weeks, months,
or years. The treatment, in the case of drug trials,
may involve a fixed dose administered according to
some schedule or dose titration in which each person
ultimately receives the amount needed to achieve a
desired effect (e.g. the amount of a hypoglycemic
agent needed to bring blood glucose levels to within
the normal range).

Protocols for all research involving human beings
are subject to review and approval by institutional
review boards (IRBs) or ethics review boards (ERBs)
before implementation and at periodic intervals there-
after until the research is finished (see Ethics of
Randomized Trials). Therefore, investigators under-
taking trials have the obligation and responsibility
to obtain IRB or ERB review and approval prior
to initiation of a trial, and to seek its review and
approval prior to implementing amendments to the
protocol of the trial. They also have a responsibility
to inform IRBs and ERBs of record of any untoward
events in the conduct of the trial and to report to such
boards any conditions or events believed to change
the risk–benefit ratio for persons enrolled into the
trial or still to be enrolled.

Only patients judged eligible (as determined by
specified eligibility criteria) may be enrolled, and
among those, only those who consent to participate
in the trial. Persons are under no obligation to enroll
or to continue once enrolled, and must be so informed
prior to being enrolled. A person must be informed,
as well, of what is entailed by enrollment, of the risks
and benefits that may accrue by enrollment, and of
such matters and details that might cause a reasonable
person to decline enrollment when so informed (e.g.
that treatments are randomly assigned and that they
will be administered in masked fashion).

All trials involve data collection at various time
points over the course of enrollment and follow-up
of persons. The amount collected per person depends
on the nature of the disease or condition being treated
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and on the nature of the treatment process implied by
the study treatments being used. The requirement for
repeated observation of a person, as a rule (except
for trials done in hospital or other settings involving
resident populations or in which enrollment, follow-
up, and treatment is directed or managed by telephone
or mail), obligates a person to a series of visits to the
study site. Usually, the purpose of the first visit or
series of visits will be to determine eligibility, collect
necessary baseline data, obtain consent, and initiate
treatment. Visits thereafter will be to fine-tune or
continue treatment and to collect necessary follow-
up data. The schedule of follow-up visits will be
timed from the point of randomization or initiation
of treatment and, as a rule, will be on a defined time
schedule (e.g. once every week) with provisions for
interim (unscheduled) visits when necessary for the
care of those enrolled.

Comparison of the different treatments tested for
effect is done in different ways depending on the out-
come measures used to assess effect. The comparison,
in the case of an event, such as death or occurrence of
a morbid event, will be based on the event rate (or the
raw percentage of persons experiencing the event) as
seen for the different treatment groups. In the case of
a continuous variable, such as weight or blood pres-
sure, the change from entry to some defined point
after enrollment will be determined for each person
studied and then summarized in some fashion (e.g.
by calculating a mean or median). The treatment
effect will be estimated by the difference obtained by
subtracting the summary measure for the comparison
treatment from the indicated test treatment.

Judging the safety or efficacy of a treatment is
problematic in trials not involving a designed com-
parison group – often the case in Phase I, II, and I/II
trials (see below for definitions). The problem is com-
pounded by the typically short duration and small
size of these trials. The problem is most acute in the
testing of drugs in people having a life-threatening
disease when the drugs themselves carry their own
morbidity and increased risk of death. Are the mor-
bid events observed the result of the disease or the
drug? Even deaths become difficult to interpret in the
presence of a high background death rate from the
disease. Was a death the natural outcome of the dis-
ease, or was it induced by the treatment? The issue
is rarely clear until sufficient information has accu-
mulated to cause one to discount natural causes as
the likely explanation, or to allow one to recognize

an unusual clustering of deaths and morbid events,
as with the case of a trial of fialuridine (FIAU) [63].

Classes of Trials

Most clinical trials involve parallel treatment designs,
i.e. designs where an assignment unit (usually a per-
son) is assigned to receive only one of the treatments
under study. The word parallel indicates that two
or more groups of assignment units are proceeding
through the trial side by side, with the only osten-
sible difference (other than baseline differences in
the composition of the groups) being the treatment
administered. The goal in trials with parallel treat-
ment designs is for each person enrolled to receive
the assigned treatment and to have no exposure to
any of the other treatments under study in the trial
(except where the requirements for proper care are
overriding and make such exposure necessary).

The assignment unit (randomization unit in ran-
domized trials), in the case of parallel treatment
designs, is usually a person but can be an aggre-
gate of persons (e.g. members of the same household)
(see Group-randomization Designs) or a subpart of
a person (e.g. an eye, as in the Glaucoma Laser Trial
[34] (see Unit of Analysis).

The treatment design in crossover trials is differ-
ent. In this class of designs a person or treatment unit
receives two or more study treatments in a specified
order. Crossover trials are classified by the number of
treatments to be administered to a person or treatment
unit and by whether a given person or treatment unit
receives all (complete or full crossover) or just some
(partial or incomplete crossover) of the study treat-
ments. For example, a two-period crossover design is
one in which each person or treatment unit receives
two study treatments in some order, usually random.
An n-way crossover design is one in which a per-
son or treatment unit receives n of the treatments
represented in the design.

The utility of crossover designs is limited to set-
tings in which it is feasible to administer different
treatments to the same person or treatment unit, each
for a short period of time, and in which it is possible
to measure the effect at the end of each treatment
period. They are not useful in settings in which the
outcome of interest is a clinical event that can occur
at any time after enrollment.

In a trial with a parallel treatment design, assign-
ment determines the treatment to be administered
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(except to the extent that other treatments are needed
for proper care) whereas, in a crossover trial, assign-
ment determines the order of treatments to be used.
Typically, each treatment is administered for a des-
ignated period of time (e.g. 4 weeks). Often the last
administration of one treatment and the first adminis-
tration of the next treatment are separated in time (e.g.
1 week) to allow the effect of the preceding treatment
to “wear off” (“washout period”) before administer-
ing the next treatment.

Imagine a trial involving three study treatments
(A, B, and C) with the same (uniform) assignment
probabilities and 54 people. In a trial with a paral-
lel treatment design, 18 people would be assigned
to receive treatment A, 18 would be assigned to
receive treatment B, and 18 would be assigned to
receive treatment C. In a trial involving a complete
(full) crossover of treatments, each of the 54 peo-
ple would receive treatments A,B, and C. Assuming
treatments are arranged in all possible orderings, there
would be six different orderings of the treatments
(ABC, ACB, BAC, BCA, CAB, and CBA), and nine
patients would be randomly assigned to receive a
given ordering.

While the goal of the two designs is the same,
to find the most effective treatment, the methodology
differs. With the parallel treatment design, the treat-
ment is evaluated in comparable groups of treatment
units (usually persons), and with the crossover treat-
ment design, the treatment effect is evaluated within
the same treatment unit (usually a person).

Trials involving parallel treatment designs are of
two general types with regard to sample size design –
fixed or sequential. The majority are of the fixed
type. That is, the sample size is specified at the
outset, as determined by pragmatic considerations
(e.g. by the amount of money available for the trial)
or by a formal sample size calculation. Trials are
considered to have a fixed sample size even if they
do not proceed to the desired sample size, e.g. are
stopped early because of a treatment difference. The
sample size is fixed in the sense that the intent is to
enroll and follow the specified number of assignment
units unless indicated otherwise by events transpiring
during the course of the trial.

In sequential trials (also of two types – open and
closed), enrollment and observation continue until
a stopping boundary, constructed for the outcome
of primary interest (usually a binary “success” or
“failure” type event), is crossed. Open sequential

designs involve two boundaries, one indicative of
superiority and the other indicative of inferiority of
a test treatment relative to a comparison treatment.
Enrollment continues until the observation function
for the outcome measure of interest crosses one of
the two boundaries. The design has the advantage of
providing a test of the null treatment hypothesis
for given type I and II error levels (see Hypothesis
Testing) that, on average, requires a smaller sample
size than that for a fixed sample size design.

However, the actual sample size required for a
boundary crossing can be larger (in theory, some-
times much larger) than that for a fixed sample size
design. The possibility of the final sample size being
much larger is ruled out with the closed sequential
design. That design, in addition to the two boundaries
mentioned above, involves a third boundary serv-
ing to place an upper bound on enrollment. If that
boundary is crossed, because neither of the other two
boundaries is crossed (signifying a difference in favor
of one of the treatments), then the treatments being
compared are considered to be of equivalent value as
measured by the outcome observation function (see
Sequential Analysis).

Sequential designs have limited utility in the con-
text of clinical trials, partly because they require
rigid adherence to a stopping rule. Use is limited
to instances where the “success” or “failure” of a
treatment can be determined shortly after administra-
tion. They are not useful in settings involving long-
term treatment and with outcome measures requiring
weeks, months, or years of observation. In general,
more flexible methods of monitoring trials are more
appropriate (see Data and Safety Monitoring).

Drug Trials

Compounds, no matter how promising or impas-
sioned the pleas for use, have to go through a series of
tests in animals before they can be tested in humans.
Those considered to lack promise after animal testing
do not come to testing in humans.

Typically, the testing in humans is done in a time-
ordered sequence, as suggested by the phase label
affixed to trials as defined below. However, in truth,
adjoining phases overlap in purpose. Hence, the label,
at best, serves only as a rough indicator of the stage
of testing, especially when, as is often the case, drug
sponsors, at any given point in time, may have several
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trials under way carrying different phase labels. The
definitions of the different phase labels follow:

Phase I: Usually the first stage of testing per-
formed in anticipation of an Investiga-
tional New Drug Application (INDA
or NDA); done to generate preliminary
information on the chemical action and
safety of the indicated drug and to find
a safe dose; usually not randomized.

Phase II: Usually the second stage of testing;
generally carried out on persons hav-
ing the disease or condition of interest;
done to provide preliminary informa-
tion on efficacy of the drug and addi-
tional information on safety; may be
designed to include a control treatment
and random assignment of patients to
treatment.

Phase I/II: A trial having some of the features of
Phase I and II trials; designed to pro-
vide preliminary information on safety
and efficacy.

Phase III: Usually the third and final stage in test-
ing, prior to submission of an NDA;
concerned with assessment of dosage
effects, efficacy, and safety; usually
designed to include a control treatment
and random assignment to treatment.
When the test is completed (or nearly
completed), the drug manufacturer or
sponsor may request permission to
market the drug for the indication cov-
ered in the testing by submission of
an NDA.

Phase II/III: A trial having some of the features
of phase II and III trials; designed
to provide information on safety and
efficacy.

Phase IV: A fourth stage of testing, sometimes
carried out. Usually controlled and per-
formed after approval of the NDA.
Typically done under circumstances
approximating real-world conditions;
usually has a clinical event as a basis
for sample-size calculation and pro-
vides for extended treatment (where
appropriate) and long-term follow-up,
with efficacy and safety of the drug

being measured against a control
treatment.

Drugs, after marketing approval, remain under
surveillance for serious adverse effects. The surveil-
lance – broadly referred to as postmarketing surveil-
lance – involves the collection of reports of adverse
events via systematic reporting schemes and via sam-
ple surveys and observational studies.

Sample size tends to increase with the phase of the
trial. Phase I and II trials are likely to have sample
sizes in the 10s or low 100s compared to 100s or
1000s for Phase III and IV trials.

The focus shifts with phase. The aim in the early
phases of testing is to determine whether the drug
is safe enough to justify further testing in human
beings. The emphasis is on determining the toxi-
city profile of the drug and on finding a proper,
therapeutically effective dose for use in subsequent
testing. The first trials, as a rule, are uncontrolled
(i.e. do not involve a concurrently observed, random-
ized, control-treated group), of short duration (i.e.
the period of treatment and follow-up is short), and
conducted to find a suitable dose (usually via some
traditional or Bayesian dose escalation design) for
use in subsequent phases of testing. Trials in the
later phases of testing, for the most part, involve tra-
ditional parallel treatment designs, randomization of
patients to study treatments, a period of treatment
typical for the condition being treated, and a period
of follow-up extending over the period of treatment
and beyond.

Most drug trials are done under an investigational
new drug application (INDA or IND) held by the
sponsor of the drug. The “sponsor” in the vernacular
of the Food and Drug Administration (FDA) is typ-
ically a drug company, but can be a person or agency
without “sponsorship” interests in the drug. Regula-
tions require investigators to report adverse events to
the FDA. The general guidelines regarding consent
are similar, but not identical, to those promulgated
by the Office for the Protection from Research Risks
(OPRR) for IRBs.

The Randomized Trial

A randomized trial is a trial having a parallel treat-
ment design in which treatment assignment for per-
sons (treatment units) enrolled is determined by a
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randomization process similar to coin flips or toss-
ings of a die (see Randomized Treatment Assign-
ment). The trialist’s purpose in randomization is to
avoid selection bias in the formation of the treatment
groups. The bias is avoided because the treatment
to which a person is assigned is determined by a
process not subject to control or influence of the
person being enrolled or those responsible for recruit-
ing and enrolling the person. The comparison of one
group to another for treatment effect will be biased if,
for whatever the reason, one group is “healthier” or
“sicker” on entry than the other. Schemes in which
one knows or can predict treatment assignments in
advance of issue are open to such bias. Clearly, that
is the case with assignment schemes posted in a clinic
and open for all to see prior to issue. The bias is
likely as well with systematic schemes, such as those
in which every other person is assigned to the test
treatment or in which persons seen on odd-numbered
days receive the test treatment and those seen on
even-numbered days receive the control treatment.

The goal is to create groups that provide a valid
basis for comparison. To achieve that end one has
to ensure that the groups are similar (within the
range of chance) and to avoid bias in the assignment
process. The usual method for achieving both ends is
randomization.

Randomization does not guarantee comparability
of the treatment groups with regard to the various
entry characteristics of interest. Indeed, one can, by
chance, have differences among the treatment groups.
A large difference (one yielding a small P value) can
arise by chance and, hence, cannot be taken as prima
facie evidence of a “breakdown” (e.g. “peeking” or
other purposeful acts aimed at determining assign-
ment before issue) of the randomization process,
unless supported by other evidence of a “breakdown”.

The hallmarks of a sound system of randomization
are: reproducible order of assignment; documenta-
tion of methods for generation and administration
of assignments; release of assignments only after
essential conditions satisfied (e.g. only after a per-
son has been judged eligible and has consented to
enrollment); masking of assignments to all concerned
until needed; inability to predict future assignments
from past assignments; clear audit trail for assign-
ments; and the ability to detect departures from estab-
lished procedures [67] (see Clinical Trials Audit and
Quality Control).

The randomization may be simple (complete) or
restricted. The purpose of restriction is to force the
assignments to satisfy the specified assignment ratio
at intervals during enrollment. Those restrictions are
typically referred to as blocking. For example, sup-
pose a trial involves two treatments, A and B, and
the desired assignment ratio is one-to-one. A simple
(unrestricted) randomization scheme would involve
the equivalent of repeated flips of an unbiased coin
with a head leading to assignment to treatment A
and a tail to treatment B. The design would, on aver-
age, yield the desired assignment ratio, but allows for
wide departures from the desired mix, depending on
the “luck” of the flips.

If such departures are of concern, then the ran-
domization scheme can be restricted by blocking so
as to ensure the desired mix after a specified num-
ber of assignments. For example, imposition of a
blocking requirement after every eighth assignment
would have the effect of “forcing” the randomization
to yield the desired mix of one-to-one after every
eighth assignment. The purpose of the blocking is to
ensure a near desired assignment ratio so as to pro-
tect treatment comparisons against secular trends in
the mix of patients as the trial proceeds.

The randomization also may be stratified. The pur-
pose of stratification is to provide treatment groups
comprised of persons or treatment units having identi-
cal (within the limits of the stratification) distributions
of the stratification variable. It is useful only in so
far as the variable used for stratification serves to
influence or moderate the outcome of interest. The
stratification has the effect of “controlling” the influ-
ence of the stratification variable on outcome by
ensuring the same distribution of the variable across
the different treatment groups. For example, suppose
one wishes to stratify on gender in the trial described
above (because, perhaps, of a belief that the treat-
ment effect will be different in women than in men).
The stratification would be achieved by creating two
randomizations schedules, each with a one-to-one
assignment ratio and with blocking to satisfy the
assignment ratio after enrollment of the 8th, 16th,
24th, etc. person in each stratum. The effect of the
stratification would be to ensure the same gender mix
(within the limits of the blocking) for the two treat-
ment groups, regardless of the underlying gender mix
of the population to be studied. For example, suppose
96 patients are to be enrolled from a population with
a 1:2 mix of males to females. In that case, one would
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expect to enroll 32 males and 64 females, and to have
16 males and 32 females in each treatment group. If
the underlying mix is one-to-one, then there would be
24 males and 24 females in each of the two treatment
groups.

Clearly, the number of variables that can be con-
trolled by stratification is limited. The more variables,
the more subgroups for randomization and the less
useful the process is as a reliable means of variance
control [35]. In addition, there are logistic difficulties
associated with use of variables whose values have to
be determined by performing laboratory tests or other
diagnostic procedures during the enrollment process.
Even if one stratifies on a few selected variables,
other variables may well be considered to be impor-
tant determinants of outcome. Hence, the experienced
trialist strives to “remove” the effect of such differ-
ences via analysis procedures, e.g. by assessing the
treatment effect within defined subgroups (subgroup
analysis, see Treatment-covariate Interaction); or
by providing estimates of treatment effect that are
adjusted for differences in the distribution of impor-
tant demographic or baseline variables via regression
procedures [90].

Masking

Masking is the purposeful concealment of some fact
or condition and is done to keep knowledge of
that fact or condition from influencing the behavior,
observation, or reporting of persons so masked.
Masking, in the context of trials, is imposed to
reduce the likelihood of a treatment-related bias due
to knowledge of treatment assignment (see Blinding
or Masking).

That bias, after a person is enrolled, occurs when-
ever knowledge of that person’s treatment assignment
serves to color the way he or she is treated, fol-
lowed, or observed. One way of reducing it is by
masked treatment administration. In one form of such
administration (single-masked), only one member of
the subject–treater pair is masked to treatment, usu-
ally the subject. Another form of masking is one
in which both members of the pair are masked –
double-masked treatment administration. As a rule,
double-masked treatment administration means that
all persons in a clinic are masked and, therefore, that
those responsible for data collection and generation
are masked to treatment as well.

Generally, it is not possible or prudent to mask
treatment administration in trials involving treatments
requiring different routes or modes of administration
(e.g. as in a trial involving a medical vs. a surgical
form of treatment), where knowledge of treatment
assignment is part of the effect being tested (e.g. as
in trials aimed at modification of one’s eating habits
via different modes of dietary consulting), or where
the masking carries risks for those enrolled. There-
fore, the opportunities for double-masked treatment
administration are limited largely to trials of drugs
considered safe and that are reasonably free of side-
effects and that can be administered at fixed dose
levels. It is usually not wise or practical to admin-
ister treatments in a double-masked fashion when
treatment doses are to be titrated to achieve desired
effects.

Masked treatment administration has been used as
a mark of “quality” for trials. There is, therefore, a
tendency to view results from masked trials as more
reliable than those from unmasked trials. In truth,
however, masked treatment administration is rarely
100% effective. All forms of treatment, and especially
those involving drugs, produce side-effects and tell-
tale signs that may serve to unmask treatment. Hence,
the protection provided by masking can be illusory.
As a result, it is better to make assessments of
“quality” in terms of the risk of treatment-related bias
and the likely effect of such bias, if present, on the
results reported. The risk of treatment-related bias is
low for “hard” outcome measures and with explicitly
defined treatment protocols, even in the absence of
masked treatment administration.

The second line of defense, in the absence of
double-masked treatment administration, is to mask
as many groups of persons involved in the trial
as is possible within the limits of practicality and
safety. Hence, even if it is not possible to mask
patients or those who treat them, it may be possi-
ble to mask those responsible for data collection or
data generation (e.g. as with an arrangement as in the
Glaucoma Laser Trial [34], where intraocular pres-
sure was measured by masked readers, or as with
laboratory personnel or readers of X-rays, ECGs, or
fundus photographs masked to treatment assignment).

With or without treatment masking, trialists strive
for objectively defined treatment and data collection
procedures and for outcome measures as free from
observer or respondent bias as is humanly possible.
In addition, they are inclined toward continuing effort
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over the course of a trial aimed at maintaining the
training and certification of study personnel in regard
to required study procedures, and toward establishing
and maintaining standards of performance via ongo-
ing monitoring and quality control surveillance (see
Clinical Trials Audit and Quality Control).

Analysis

The protection provided against treatment-related
bias by the assignment process is futile if the anal-
ysis is biased. Treatment comparisons, to be valid,
must be based on analyses that are consistent with
the design used to generate them. In the case of the
randomized trial, this means that the primary analyses
of the outcomes of interest must be by assigned treat-
ment (also known as analysis by intention-to-treat).
It means, for example, that observations relating to a
morbid event are counted to a patient’s assigned treat-
ment regardless of whether or not the patient was still
on the assigned treatment when the event occurred.

Analyses involving arrangements of data related to
treatment administered may be performed, but only as
supplements to the primary analyses. They should not
and cannot serve as replacements for those analyses.

Analyses by treatment assignment, as a rule, serve
to underestimate the treatment effect. Usually, anal-
yses in which the requirement is relaxed will yield a
larger estimate of the treatment difference than seen
when evaluated under the intention-to-treat mode of
analysis (e.g. as in the case of the University Group
Diabetes Program (UGDP) trial) [90].

Designs allowing for termination of data collection
when a person can no longer receive or be maintained
on the assigned treatment are open to treatment-
related bias. The goals of the primary analyses cannot
be met when data collection for a person ceases
when that person experiences a nonfatal “endpoint”
or when the person’s treatment is stopped or changed.
The analysis requirement implies continued follow-
up of all persons enrolled into a trial to the scheduled
close of follow-up regardless of their treatment or
outcome status.

Monitoring Treatment Effects

The randomized trial depends on a state of equi-
poise – a state of legitimate doubt regarding the test
treatment relative to the control treatment(s) [4, 30,

61]. It cannot be undertaken without a proper ethical
climate characterized by such a state of doubt (see
Ethics of Randomized Trials). It does not matter
whether that state has been dispelled by observa-
tion and data, by declaration, or in other ways. For
example, it would not be possible to assess the value
of coronary care units for persons appearing to be
having a myocardial infarction (MI), even if their
value has not been demonstrated by controlled tri-
als. They are considered to be required for good care
and, hence, the window of opportunity for testing via
designed randomized trials has closed. Once closed,
it may remain closed, or may open again years later
if people start questioning the merits of the treatment.
When the oral hypoglycemic agents appeared on the
scene in the early 1950s, they were widely regarded
as safe and effective and, hence, became a part of the
armamentarium for care of the adult-onset diabetic.
However, doubts raised in the late 1950s as to their
value led to a climate of doubt suitable for initiation
of the UGDP trial [89].

Trials are done because of the prospect of benefit
associated with a new treatment, or to test the efficacy
of an existing treatment. They are not undertaken to
prove a treatment to be useless or harmful. Indeed, a
trialist is obligated to stop a trial prior to its scheduled
completion if the accumulated data indicate that the
treatment of interest is inferior to the control or
comparison treatment. In fact, some argue that there
is an obligation to stop if it becomes clear that the test
treatment is no better than the comparison treatment,
even if one is uncertain whether it is harmful. Hence,
for example, investigators in the UGDP opted to
stop use of tolbutamide in that trial once they were
certain it was no better than the control treatment –
the usual antidiabetic dietary recommendations and
placebo medication.

The need for ongoing monitoring exists for any
trial in which the treatments carry risk of harm, and
in which it is possible to reduce that risk by timely
monitoring (see Data and Safety Monitoring). That
need makes it necessary for the trialist to aim for
an orderly and timely flow of data from the site of
generation or collection to the processing and analysis
site. Clearly, the best systems in this regard are
those having real-time or near-real-time flows (e.g. as
with systems requiring transmission of data related
to a patient visit on completion of the visit or on
occurrence of an outcome of interest).
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Typically, treatment effects monitoring is entrusted
to a group of people that together have the necessary
skills and expertise to monitor effectively (see Data
Monitoring Committees) [38, 67, 70, 94]. The group
is usually comprised of 5–12 people with expertise in
the disease under treatment, in the design, conduct,
and analysis of clinical trials, or in other specialty
areas. When the group comprises a mix of people
from within the trial (e.g. the officers of the trial,
such as the chair and vice chair, the director of the
coordinating center, etc.) and outside the trial, the
votes concerning recommendations for change, gen-
erally, are vested in those outside the study. The
restriction is imposed, typically, because of concerns
that persons associated with the trial may have con-
flicts of interest that could serve to influence their
votes [17].

Monitoring proceeds under different constructs,
depending on the philosophy of those doing the mon-
itoring. Some constructs require stopping rules and
restrictions on the type of data that may be monitored
and the number of interim “looks” that can be made
in relation to the monitoring. Other groups consider
such restrictions unnecessary and rely instead on the
collective judgment of the monitoring group [28].

The Office for Protection from Research Risks
(OPRR) (an office within the National Institutes of
Health responsible for the promulgation and admin-
istration of regulations regarding institutional review
boards) and the set of rules relating to research on
human beings obligates IRBs to be satisfied that risk
to subjects is minimized. As part of this assurance in
regard to clinical trials, investigators must have “ade-
quate provision for monitoring the data collected to
ensure the safety of subjects” (Section 46.111) [71]
and must provide participants with information on
. . . “significant new findings developed during the
course of the research which may relate to the sub-
ject’s willingness to continue participation will be
provided to the subject” (Section 46.116) [71]. This
requirement makes it necessary to inform patients of
results during the trial that bear on their willingness
to continue. This requirement pertains to information
from inside or outside the study, if the information is
likely to cause patients to reconsider their decision to
be enrolled in the trial. Formal reconsent procedures
may be required if the treatment effects monitoring
committee recommends changes to the treatment pro-
tocol (e.g. as discussed in [67]).

Representativeness, Validity, and
Generalizability

Representativeness, in the context of a trial, refers to
the degree or extent to which those enrolled can be
considered representative of the general population
of persons to whom the treatment may be applied,
if shown to be useful. Validity, in the context of a
treatment difference, refers to the extent to which that
difference can be reasonably attributed to treatment
assignment. Generalizability refers to the degree to
which the findings of the trial can be extended to the
general population of eligible persons.

The concepts of validity and generalizability are
different. Validity derives from the design of the trial
and from the way it is carried out, whereas general-
izability is largely a matter of judgment. A treatment
comparison is valid if it is based on comparable
groups of persons treated and observed in such a way
so as to make treatment assignment the most likely
explanation of the result observed. “Representative-
ness” is deduced by comparison of the demographic
and other host characteristics of the study population
to that of the general population of eligible per-
sons (or by comparison with all persons screened for
enrollment).

The desire for representativeness arises from the
belief that conclusions from a trial will be strength-
ened by having a broadly “representative” study pop-
ulation. The drive for demographic representativeness
has been propelled in recent years by the belief that
women and persons of ethnic minorities have been
“underrepresented” or “understudied” relative to men
and the prevailing ethnic majority in trials and other
areas of clinical research. Those concerns have been
sufficient to cause the US Congress, in the NIH Revi-
talization Act of 1993, to impose requirements on
trials aimed at ensuring adequate numbers of women
and ethnic minorities to determine whether the treat-
ments being studied in a trial work differently in men
than in women or in an ethnic minority than in the
ethnic majority [88].

There is no way to ensure “representativeness”
in the absence of a sampling frame for the eligi-
ble study population and a related sampling scheme
aimed at providing a representative sample of that
population. However, even if one were able to
develop a sampling frame (usually impossible be-
cause to do so one would have to screen the general
population to identify persons eligible for study), the
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population ultimately enrolled, even if selected by
sampling, would, at best, be representative only of
those able and willing to be enrolled, because of the
requirements of consent.

Hence, trials, by nature of their design, involve
select, nonrepresentative populations. Even if a treat-
ment is found effective in a trial, one has no direct
way of knowing if it would be effective for those
patients not agreeing to be studied. If the issues of
consent and lack of a sampling frame were overcome,
then one would still be left with the fact that most
clinics, for practical and ethical reasons, have to rely
on those who come to them. They do not have the
ability or moral authority to go and seek out suitable
patients for study, especially if doing so means that
those who routinely come to them would be turned
away. Such a “selective” approach would be viewed
as violating the principle of justice as set forth in the
Belmont Report [69].

That one needs to generalize is obvious. The need
arises in regard to the route of treatment, amount
of treatment, type of treatment, and type of patients.
For example, if a trial involved a single fixed dose
of a drug and failed to find a difference (e.g. as
in the UGDP trial, regarding tolbutamide) [90] does
one conclude that use of the same drug, under a
different, more flexible dosing scheme would produce
a more favorable result? Similarly, if one compound
produces a benefit, does one conclude that other
sister compounds will show the same effect? Or
conversely, if one member of a drug family has a
bad effect (e.g. fialuridine) or fails to show a benefit
(e.g. tolbutamide), does one shy away from other
related compounds? Also, if a trial involves mildly
diseased people and shows a beneficial effect for
the test treatment, does one conclude that the test
treatment will have a similar effect in sicker people?

Last, if the drug tested works for the disease or
condition being treated, is it not likely that it would
be useful as well for a related condition or disease?
So-called “off label” use (from the fact that drugs
are approved for designated indications) accounts for
a large number of treatment prescriptions [12, 36,
91, 93].

Whenever one generalizes, whatever the nature or
direction, one is in effect answering one or more of
the above questions. If as a treater, one chooses to use
a sister compound of a drug shown to be ineffective in
a trial, then one is in effect saying that the result from
the trial, for whatever reason, is not generalizable.

Generalizations depend on judgments regarding the
trials and on prior beliefs regarding the treatment in
question.

A trial can provide a valid basis for comparing one
treatment to another if the differences in outcomes
for the treatment groups being compared can be
attributed reasonably to treatment. The general “laws
of science” and “principles of parsimony” require
that one defaults to the simplest explanation – usually
the one requiring the fewest assumptions. Hence, in
the case of the trial in which treatments are selected
by the patient or physician, one is as a rule more
inclined to attribute the difference to selection factors
than to the test treatment. By the same principle,
one should be more inclined to attribute a treatment
difference to bias on the part of the observer rather
than to the treatment when the opportunity for such
bias exists. The degree of “reasonableness” of such an
explanation will depend on the nature of the outcomes
and whether one can reasonably ascribe it to biased
observation. It becomes progressively more difficult
to do so, even if the observer is not masked, the
“harder” the outcome measure. For example, it is not
reasonable to expect that one’s opinion regarding the
merits of a treatment will influence one’s ability to
report reliably whether a person is alive or dead,
but such opinion may influence how one sees or
reports on a person’s quality of life. There is a
responsibility on the part of trialists to rule out other
lesser explanations of results before ascribing them
to treatment.

Contrary to lay perceptions, trials and compar-
isons of treatments within the trial are made robust
to selection bias and the consequences of “nonrepre-
sentative” study populations by randomization. The
assessment of treatment effect is achieved by having
comparable groups of patients in the different treat-
ment groups and by having procedures for observing
and following patients that are independent of treat-
ment assignment. The comparison is valid regardless
of the study population and provides information on
the relative value of one treatment to another. Hence,
from the perspective of the trialist, it is far more
important to have comparable treatment groups than
to have “representative” treatment groups.

The drive for “representativeness”, while perhaps
of some social value, does little to make generaliza-
tions less risky or to increase the validity of trials.
There are sound practical reasons to design trials
with as few exclusions to enrollment as possible.
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Table 1 References on methods and procedures of clinical trials

Topic References

Specialty journals

Applied Clinical Trials [2]

Controlled Clinical Trials [37]

Statistical Methods in Medical Research [85]

Statistics in Medicine [19, 20]

Textbooks

Clinical trials [15, 33, 44, 47, 67, 75, 82]

Data analysis [40, 41]

Ethics [51, 60]

History [87

Dictionaries/Encyclopedias

Clinical trials [66]

Epidemiology [58]

Statistics [53]

Journal articles

Analysis [18, 24, 25, 50, 74, 83]

Bayesian methods [6, 21, 31, 84]

Cost and efficiency [95]

Design [18]

Equipoise [4], 30, 61, 76]

Ethics [3, 4, 69]

Forms design and data management [39, 81, 96, 97, 98]

History [13, 62]

Meta-analysis and overviews [5, 9, 14, 40, 48, 59, 86, 99]

Philosophy [78, 79]

Randomization and stratification [11, 35, 49, 56, 64, 73, 80, 92]

Sample size [7, 8, 10, 27, 54, 55, 57, 77]

Subgroup analyses [6, 23, 100]

Treatment effects monitoring [3, 16, 26, 28, 29, 38, 43, 52, 59, 76]

The above list is due the efforts of Susan Tonascia, ScM, Johns Hopkins School of Public
Health, Department of Epidemiology.
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The fewer the restrictions the easier and faster it is
to recruit. Any effort to make them more “represen-
tative” by selective recruitment and enrollment will
make them more costly and will increase the time
required to enroll them. The imposition of recruit-
ment quotas to achieve a desired sample size for
gender, age, and ethnic origin groups poses a far more
complicated and costly recruitment effort than one
involving the enrollment of all comers regardless of
gender, age, or ethnic origin.

The goal of the trialist should be to strive for
demographic neutrality in enrollment. That is to
say, the trialist should not exclude potential par-
ticipants on the basis of gender, ethnic origin, or
age unless justified on scientific grounds. Scientific
grounds include the knowledge or expectation of a
qualitative treatment by demographic interaction (i.e.
where treatment is believed to be beneficial for one
demographic group and harmful for another) (see
Treatment-covariate Interaction).

Another reason for exclusion is contraindication of
treatment in a particular demographic group. If any
one treatment is contraindicated in a trial involving
multiple treatments, then the restriction has to apply
to all treatments. For example, this requirement was
one of the reasons why the Coronary Drug Project
(CDP) involved only men. Two of the five test treat-
ments in the trial could not have been administered to
premenopausal women; thus this demographic group
could not be included without making the trial much
more complex [22].

As a rule, an anticipated low number in a spec-
ified demographic group is not a reason to exclude.
Disease and extent of disease are much more likely
to affect the response to treatment than are “demo-
graphic” characteristics. Analyses of treatment effects
across the various demographic subgroups repre-
sented in a trial can help determine whether there
are treatment by demographic interactions. In general,
interactions, when noted in the context of treatment
trials, are more likely to relate to disease characteris-
tics than to demographics [32, 42, 45, 46, 65].

The mind-set regarding selection is different in
prevention trials, where the goal is to determine
whether a proposed prevention strategy works. One
has to find a population suitable for testing the pro-
posed strategy. Hence, unlike the treatment trial, risk
factors predisposing to a disease and risk of an event
are important. In this setting, one has to pay attention
to both factors in trying to design a cost-effective

trial (see Health Economics). Considerations of this
sort led, for example, the designers of MRFIT [68]
to exclude females from enrollment. The risk fac-
tors targeted (high blood pressure, high cholesterol,
and smoking) occur less frequently in women than
in men. Consequently, the effort required to find
women for study would have been much greater than
that required to find men. Further, for the age range
studied, women have a markedly lower myocardial
infarction rate (the outcome of primary interest) than
do men. This lower event rate would have meant that
the planned sample size with women included would
have to have been considerably larger to detect the
same relative difference at the power level specified
for the trial. As it was, the trial required a sample size
of 12 866 men (see Validity and Generalizability in
Epidemiologic Studies).

Readings

The literature on the design, conduct, and analysis
of clinical trials is ever-expanding. Students of trials
need to monitor the literature of reported trials as
they appear in medical journals and to read specialty
journals, such as Biometrics, Statistics in Medicine,
Controlled Clinical Trials, Applied Clinical Trials,
and Statistical Methods in Medical Research. The
list of citations given in Table 1 is but a snapshot
of selected references dealing with the methods and
procedures of trials.
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Clinical Trials

Clinical Trials: Journal of the Society for Clini-
cal Trials, initiated publication in 2004, succeed-
ing Controlled Clinical Trials (CCT) as the official
journal of the Society for Clinical Trials (SCT,
www.sctweb.org). The SCT provided editors for
CCT since its initiation by Elsevier in 1980, the
first editor being Curt Meinert (1980–1993), fol-
lowed by Janet Wittes (1994–1998) and Jim Neaton
(1999–2003). In 2004, the SCT founded a new jour-
nal, Clinical Trials, under the editorship of Steven
Goodman. The SCT owns the copyright of its new
journal, which is published by Hodder–Arnold of the
United Kingdom.

The aims and scope of Clinical Trials mirror
the makeup and interests of the sponsoring
society, and are listed on the journal website,
www.sctjournal.com. It is an interdisciplinary
journal with coverage of virtually any method or
issue related to or impacted by clinical trials.
These include statistical methods, methods for
design, conduct, monitoring (see Data and Safety
Monitoring), or synthesis (see Meta-analysis of
Clinical Trials) of clinical trials; research ethics (see
Ethics of Randomized Trials); law, policy, and
regulation (see Drug Approval and Regulation);
history of clinical trials; impact of trials; and
education and training. The journal also seeks to
feature discussions of timely and important issues
related to clinical trials. This will be facilitated by the
SCTs initiation in 2004 of a process for producing
society position papers on important methodologic
or regulatory issues. In addition to articles that
cover technical methods, the journal also publishes
perspectives, profiles of prominent trialists, historical
pieces, book reviews, and editorials. Full-length
articles can be up to 7000 words, brief reports
are limited to 1500 words, and research letters
are 500 words or less. Clinical Trials publishes
design articles, which describe the design and
organization of particular clinical trials, focusing on
how particularly interesting or challenging design
issues were addressed. It will also be adding a feature
popular in the first decade of CCT, a column that
provides an overview of clinical trial–related articles,
methodologies, and developments appearing in the
wider scholarly and policy arena.

In addition to the Editor-in-Chief, the journal has
a Deputy Editor, a 10-person Advisory Board, and
40 Associate Editors. The Associate Editors come
from a broad array of disciplines and venues and
have wide-ranging expertise: statistics, ethics, his-
tory, informatics, medicine, industry, and clinical
trials. The editorial model is partially centralized,
with Associate Editors making preliminary judgments
about suitability of submitted manuscripts for peer
review, identifying reviewers, and often handling
revisions, but with their opinion being advisory to the
editor. The journal is published bimonthly, although
there will be supplements devoted to meeting pro-
ceedings or special topics. The journal accepts only
electronic submissions (to clinicaltrials@jhmi.edu),
and will be implementing the Manuscript Central
online manuscript management and peer-review sys-
tem in 2004. It aims to make all editorial decisions on
articles not sent out for review within four weeks, and
for those sent out for review within 10 weeks. Arti-
cles of particular timeliness can be fast-tracked for
rapid review and publication. Articles can be made
available in electronic form before the print version
appears. The journal receives about 200 to 300 origi-
nal manuscripts annually, of which it accepts roughly
20 to 25%.

The journal is published in both print and elec-
tronic form, with the electronic version on Ingenta
(www.ingenta.com). Society members receive the
journal as part of their membership fee; others can
receive it either by joining the society, obtaining a
nonmember individual subscription, or accessing it
through an institutional subscription. Individual arti-
cles can also be downloaded by nonsubscribers for
a fee.

The field of clinical trials is extremely challenging
and exciting, as a field in which the unit of infor-
mation is human lives or suffering, and how that
information is both produced and analyzed has pro-
found importance to medicine, patients, and society
at large. Clinical Trials aims to be a forum where the
science of statistics is advanced, as applied to this
form of human research, and where the full impli-
cations and applications of these methodologies can
be explored and understood by the broader scientific
community with interests in this vital area.

STEVEN N. GOODMAN



Cluster Analysis of
Subjects, Hierarchical
Methods

Cluster analysis is concerned with investigating a set
of data to discover whether or not it consists of rel-
atively distinct groups of observations. The groups
are unknown a priori so that cluster analysis is dis-
tinguished from the activity of allocating individuals
to one of a set of existing groups, an activity usu-
ally referred to as assignment or discrimination (see
Discriminant Analysis, Linear).

Uncovering the group structure (if any) of a set of
data is clearly of considerable importance in under-
standing the data and using them to answer sub-
stantive subject-matter questions. In medicine, for
example, separating diseases that require different
treatments will often be the primary goal of any clas-
sification exercise.

A very broad division of cluster analysis tech-
niques is into those that produce hierarchical clas-
sifications and those that produce nonhierarchical
classification (see Cluster Analysis of Subjects,
Nonhierarchical Methods). This article is concerned
with the former and owes much to the two excellent
review papers by Gordon [17, 18].

Data

The raw data to be analyzed by cluster analysis
methods usually consist of a set of p variables for
each of the n individuals to be clustered. Such data
are commonly represented by an n × p matrix, X,
given by

X =




x11 x12 . . . x1p

x21 x22 . . . x2p...
...

...
...

xn1 xn2 . . . xnp



 . (1)

Many clustering methods first require the raw data
matrix to be transformed into an n × n matrix of
pairwise similarities, dissimilarities, or distances, D.
An example of a measure frequently used in practice
is the Euclidean distance, where the elements of D,

dij , are defined as follows:

dij =
[

p∑

k=1

(xik − xjk)
2

]1/2

. (2)

Many other dissimilarity and distance measures can
be used, however, and details are given in another
entry in this Encyclopedia (see Similarity, Dissimi-
larity, and Distance Measure). An important prob-
lem, not considered here, is if and how the raw
data should be standardized before they are converted
to dissimilarity or distance measures. Details of the
issues involved are discussed in Everitt [13].

(Occasionally, particularly in psychology, the
matrix D may arise directly from, for example,
asking subjects to judge the pairwise dissimilarities
of stimuli of interest.)

Hierarchical Classifications and
Dendrograms

In a hierarchical classification the data are not
partitioned into a particular number of groups or
clusters at a single step. Instead, the result consists
of a series of partitions of the data, Pn, Pn−1, . . . , P1.
The first, Pn, consists of n single-member “clusters”,
the last, P1, consists of a single group containing
all n individuals. Often an investigator will not be
interested in the complete hierarchy but only in a
single partition of the data into a particular number
of groups, say g. Deciding on an appropriate value
of g from a hierarchy is a problem which will be
discussed briefly later in the article.

Hierarchic classifications may be represented by a
diagram known as a dendrogram, which can, some-
what unhelpfully, formally be defined as a rooted
terminally-labeled weighted tree in which all terminal
nodes are equally distant from the root [29]. For the
purpose of the article, however, dendrograms can be
characterized less formally in terms of their topology
or shape, a set of labels identifying the n individuals
being classified and a set of “weights” or “heights”
associated with the n − 1 internal nodes (i.e. clusters)
of the dendrogram. An example of such a diagram is
given in Figure 1; others will be given later in
the article. The structure of Figure 1 resembles an
evolutionary tree (see Figure 2) and it is in biolog-
ical applications that hierarchical classifications are
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Figure 2 An evolutionary tree

perhaps most relevant. Rohlf [39], for example, sug-
gests that a biologist, “all things being equal”, aims
for a system of nested clusters.

Hierarchical Clustering Methods

Many different ways have been proposed of trans-
forming a dissimilarity or distance matrix into a
dendrogram. Several of the methods, for example
single linkage (see below), may be implemented
by a variety of algorithms, and it is important
to distinguish between algorithms and method (see
[24]). Because different clustering strategies can pro-
duce different classifications of the same data set,

careful appraisal of results is generally necessary, a
point to which we shall return later in the article.

The two major types of algorithms that have
been used to produce hierarchical classifications are
agglomerative and divisive, with the former being far
more commonly used in practice.

Agglomerative Algorithms

The basic operation of all such methods is similar,
and is outlined in Figure 3. At each particular stage
the methods fuse individuals or groups of individuals
which are closest (or most similar). Differences
between methods arise because of the variety of
ways in which distance (or similarity) can be defined
between two groups. In single linkage clustering,
for example, intergroup distance is defined as the
minimum of the interindividual values amongst pairs
consisting of one individual from one group and one
from the other. In complete linkage, the maximum
value of the appropriate interindividual values is used.
A method that uses more than a single interindividual
distance value to define distance between groups is
group average clustering, which uses the average
of the appropriate distance values as illustrated in
Figure 4. The dendrograms resulting from applying
each of single linkage, complete linkage, and group
average to the following small distance matrix are
shown in Figure 5:

D =





1 2 3 4 5

1 0.0
2 2.0 0.0
3 6.0 5.0 0.0
4 10.0 9.0 4.0 0.0
5 9.0 8.0 5.0 3.0 0.0




. (3)

START: Clusters C1, C2, . . . , Cn each containing a
single individual.
1. Find nearest pair of distinct clusters, say Ci and Cj,
merge Ci and Cj,

delete Cj and decrement number of clusters by one.
If number of clusters equal one then stop, else return
to 1.

Figure 3 Basic operation of hierarchical clustering
procedures
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(Details of the steps in the progression from D
to the appropriate dendrogram are given in [13].)
The level at which two individuals join the same
group, hij , depends on the cluster method used, but
in general is different from their dissimilarity, dij .
In fact, for single linkage clustering, hij ≤ dij . The
heights, hij , are always symmetric and satisfy the

following ultrametric inequality:

hij ≤ max[hik, hjk]. (4)

The dendrograms in Figure 5 are constructed from
the bottom up, but the natural way to use them is
from the top down so that, for example, in the single
linkage dendrogram the data are divided into two
groups by “cutting” above the height value 4.

Many commonly used agglomerative algorithms
are described by a general formula given originally
by Lance & Williams [27, 28] and later extended
by Jambu [23], in which the dissimilarity between
a group (ij ) formed by joining groups i and j , and
some other group k is found from

d(ij)k = αidik + αjdjk + βdij + γ |dik − djk|
+ δihi + δjhj + εhk. (5)
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In this equation, hi is the height in the dendrogram
of group i and αi, αj , β, γ, δi, δj , and ε are param-
eters with particular values for particular clustering
methods, as detailed in Table 1.

Methods C5 and C6 implicitly assume that the
individuals are represented by points in some Eucli-
dean space, and that the measure of pairwise dis-
similarity is proportional to the squared Euclidean
distance. The quantity dij has the following defini-
tions: in the sum of squares method (C5) it is the
within-group sum of squared distances of the group
ij ; in Ward’s method (C6) it is the increase in the
sum of squares that would be brought about by the
amalgamation of groups i and j ; in the centroid
method (C7) it is the squared distance between the
centroids of i and j ; in the median method (C8) it
is the squared distance between weighted centroids
obtained by assigning each class the same number of
individuals in evaluating the “centroid” of their union.

Direct use of the Lance–Williams–Jambu general
agglomerative algorithm has O(n3) time complex-
ity and O(n2) space complexity [47], and several
authors have considered procedures for improving
the efficiency of the approach. Day & Edelsbrun-
ner [9] for example, show that by associating with

each group a priority queue that orders the other
groups by their distance to it, the time complexity
can be reduced to O(n2 log n). Further suggestions
for improving efficiency are described in Bruynooghe
[2] and Murtagh [38].

Divisive Algorithms

Divisive algorithms begin with a “group” containing
all n individuals and at each succeeding stage divide
an existing group into two. Algorithms that find the
globally optimal divisions [12, 41] are computation-
ally very demanding and practicable alternatives have
been suggested by Macnaughton-Smith et al. [31],
Vichi [44], and Hubert [22]. The only divisive algo-
rithm that has been routinely used, however, is one
applicable when the variables describing each indi-
vidual are binary, and division of the data is now on
the basis of the possession or otherwise of a single
specified attribute, this being chosen to maximize the
difference between the resulting two groups accord-
ing to some particular criterion. Such procedures are
known as monothetic divisive algorithms [7, 48]. The
division criteria used are generally based on some
chi-square type statistic – see Everitt [13] for details.

Table 1 Clustering strategies obtainable from the general agglomerative algorithm

Name References αi β γ δi ε

C1 Single link (Florek et al. [14];
Sneath [42]) 0.5 0 −0.5 0 0

C2 Complete link (McQuitty [32]) 0.5 0 0.5 0 0

C3 Group average link
(Sokal & Michener [43];
McQuitty [34])

ni

ni + nj

0 0 0 0

C4 Weighted average link
(McQuitty [33, 34]) 0.5 0 0 0 0

C5 Sum of squares (Jambu [23])
ni + nk

n+
ni + nj

n+
0

−ni

n+
−nk

n+
C6 Incremental sum of squares

(Ward [45]; Wishart [50])
ni + nk

n+
−nk

n+
0 0 0

C7 Centroid (Sokal & Michener [43];
Gower [19])

ni

ni + nj

−ninj

(ni + nj )2
0 0 0

C8 Median (Lance & Williams [27];
Gower [19]) 0.5 −0.25 0 0 0

C9 Flexible
(Lance & Williams [27]) 0.5(1 − β) β(< 1) 0 0 0

Note: ni is the number of individuals in class Ci ; n+ = ni + nj + nk
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Properties and Problems of Hierarchical
Clustering Techniques

Several hierarchical clustering techniques, for exam-
ple single linkage and the median method, have a
tendency to cluster together, at a relatively low level,
individuals linked by a series of isolated interme-
diates. This property, known generally as chaining,
may cause the method to fail to resolve relatively
distinct clusters when there are a small number of
such individuals between them. Methods based on
single linkage which attempt to avoid the chaining
problem are described in Wong [51] and Wong &
Lane [52].

A notable advantage of both single and complete
linkage clustering emphasized by Johnson [25] is
their invariance under monotonic transformations
of the original dissimilarity matrix. Consequently,
only the ordinal properties of the dissimilarities are
of concern, and the difficulties generally involved
in scaling and combining different variables into
a measure of dissimilarity are lessened. (Complete
linkage is not satisfactory when the dissimilarity
matrix contains ties.)

Jardine & Sibson [24] object to many hierar-
chical clustering methods on mathematical grounds.
Briefly, what these authors show is that a clus-
ter method that transforms a dissimilarity matrix
into a hierarchic dendrogram may be regarded as
a procedure that imposes the ultrametric inequal-
ity which is satisfied by the heights of the den-
drogram, i.e. hij ≤ max[hik, hkj ], on a dissimilarity
coefficient which originally may have satisfied only
the weaker metric inequality. Jardine & Sibson then
specify certain simple conditions, for example conti-
nuity, minimum distortion, etc. that any such trans-
formation should satisfy and demonstrate that only
single linkage satisfies the specified requirements.
Consequently, Jardine & Sibson recommend single
linkage as the method with greatest mathematical
appeal. Such a recommendation has been criticized
by many authors, for example Williams et al. [49]
and Gower [20], and certainly in practice, single link-
age has often been found to be the least successful
method.

The centroid and median methods have the unsat-
isfactory property that they can produce reversals in
the dendrogram, in the sense that a group i may
be contained in a group j , i.e. i ∈ j , but hi > hj .

Reversals can be prevented by adding the require-
ment that dij be no less than max[hi, hj ]. Necessary
and sufficient conditions for an absence of reversals
in the dendrogram produced by the algorithm defined
in (4) are

γ ≥ − min(αi, αj ),

αi + αj ≥ 0, (6)

αi + αj + β ≥ 1.

A number of empirical investigations of hierarchi-
cal clustering techniques have been performed to
investigate the extent to which standard clustering
algorithms recover known types of structure in data.
Cunningham & Ogilvie [8], for example, compare
seven hierarchical techniques and find that group
average clustering performs most satisfactorily over-
all for the data sets considered; in addition, however,
they find a large interaction in the results between
types of input data and the particular clustering
method used. Kuiper & Fisher [26] investigate six
hierarchical techniques and find that for equal-sized
groups, Ward’s method classifies almost as well as
Fisher’s linear discriminant function (see Discrimi-
nant Analysis, Linear) when the groups are specified
a priori; with unequal sized groups, however, cen-
troid, group average, and complete linkage clustering
are more successful. A study by Hands & Everitt
[21] using binary data found similar results; Ward’s
method performed very well when the data contained
approximately equally sized clusters, but poorly when
the clusters were of different sizes. A review of
Monte Carlo studies in this area is given in Mil-
ligan [35]. The only overall conclusion that can be
reached is that no particular method can be claimed
to be superior for all types of data.

Cheng & Milligan [4] investigate the influence of
individual coordinate locations in a multivariate space
and demonstrate that differences between clustering
methods help to explain some of the results in
previous validation research of these methods.

Validation

The clustering algorithms described in previous
sections always produce a hierarchical classification
and it is important to validate the results, in
particular to investigate whether a hierarchical
structure is appropriate and whether the derived
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solution misrepresents the pattern in the data in any
way. (Here we are referring to the entire dendrogram
rather than to a solution corresponding to a particular
number of groups.) Some authors have argued that
the only relevant criteria for assessing a classification
are its utility and interpretability. But as pointed out
by Gordon [17], there are dangers in this approach;
“human ingenuity is quite capable of providing a post
hoc justification of dubious classifications”.

According to Gordon [17], “there is no uniquely
obvious way of specifying the absence (or presence)
of class structure in data”, which probably accounts
for the lack of suitable, practical tests for the absence
of structure hypothesis. Those tests that have been
suggested by Fillenbaum & Rapoport [15], Ling
[30], and Baker & Hubert [1], among others, have
low power against some alternative hypotheses, and
can be markedly influenced by a small number of
outliers [16].

The suitability of a hierarchical classification for
a data set can be assessed by comparing the orig-
inal dissimilarities with the heights in the derived
dendrogram. A data set can only be accurately repre-
sented by a hierarchical classification if little distor-
tion is imposed in transforming from the dissimilarity
matrix, dij , to the ultrametric matrix, hij . One com-
mon procedure for assessing the match between the
dendrogram and the dissimilarity matrix is the cophe-
netic correlation coefficient. This is simply the prod-
uct–moment correlation between the n(n − 1)/2
entries in the lower half of the observed dissimilarity
matrix and the corresponding terms in the so-called
cophenetic matrix, C, containing the heights in the
derived dendrogram at which individuals i and j

first occur in the same cluster. Since the latter satisfy
the ultrametric inequality, the match between dendro-
gram and data cannot be perfect unless the entries in
the dissimilarity matrix are also ultrametric, a situa-
tion which seldom occurs in practice. For the example
involving the application of three agglomerative algo-
rithms given previously, the corresponding values of
the cophenetic correlation coefficient are as follows:

single linkage = 0.82,

complete linkage = 0.85,

average linkage = 0.85.

Rohlf & Fisher [40] studied the distribution of the
cophenetic correlation coefficient under the hypothe-
sis that the individuals are randomly chosen from a

single multivariate normal distribution (i.e. have
no cluster structure). They found that the average
value of the coefficient tends to decrease with n

and to be almost independent of the number of vari-
ables. They also suggest that values of the cophenetic
correlation above 0.8 indicate a nonartifactual hierar-
chical structure, although in a later paper, Rohlf [39]
indicates that even values close to 0.9 are not nec-
essarily a guarantee that the dendrogram serves as
a sufficiently accurate summary of the relationships
between the individuals.

Several other measure of the distortion produced
by transforming a dissimilarity matrix into a dendro-
gram are described in Gordon [17].

The amount of support for hierarchical structure in
a data set has also been assessed by stability studies,
in which the original classification is compared with
a classification of a modified version of the data
obtained, for example by adding an error term to
the dissimilarity matrix, or by deleting a small
number of individuals. Large differences between
the resulting two classifications would shed some
doubt on the suitability of clustering for the data. A
related approach is to divide the individuals randomly
into two and compare the results of separate cluster
analyses applied to each half.

Partitions from a Hierarchy – the Number
of Groups Problem

As remarked earlier in the article, when the hierar-
chical clustering technique are used in practice the
investigator is not usually interested in the complete
hierarchy but only in one or two partitions found by
“cutting” the dendrogram at a hopefully appropriate
point. Deciding on the “best” fitting partition for a
particular data set, i.e. choosing the correct number
of clusters, is not straightforward, although a consid-
erable number of methods have been suggested. One
very informal procedure which is often used is sim-
ply to examine the dendrogram looking for “large”
changes in level. The dendrogram shown in Figure 6,
for example, suggests a two-group solution.

More formal approaches to the number of groups
problem have been suggested by Duda & Hart [10],
Calinski & Harabasz [3], and Mojena [37]. All such
methods are considered in a detailed investigation
reported by Milligan & Copper [36]; none appears
completely satisfactory.
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Figure 6 Dendrogram indicating two groups

Some Examples

Corbet et al. [5] describe a study to compare British
populations of water voles with others from Europe.
The original data consisted of recordings of the
presence or absence of 13 characteristics on about
300 water vole skulls divided into samples from 14
populations; these data were converted into the matrix
of population dissimilarities shown in Table 2 by a
procedure involving the percentage incidence of each
characteristic in each population (see the original
paper for full details). The British populations are
those numbered 1–6, and arise from the following
areas:

1. Surrey
2. Shropshire
3. Yorkshire
4. Perthshire
5. Aberdeen
6. Eileen Gambia

The non-British populations are from two species,
Arvicola terrestris (7–11) and Arvicola sapidus
(12–14). The corresponding areas are:

7. Alps
8. Yugoslavia
9. Germany

10. Norway

11. Pyrenees I
12. Pyrenees II
13. North Spain
14. South Spain.

The dendrograms from applying single linkage,
complete linkage, and average linkage to the dissim-
ilarities are shown in Figures 7, 8, and 9. The two-
group solutions given by single linkage and average
linkage are identical and correspond to the following
division of the 14 populations:
Group 1: 12, 13, 14
Group 2: 1–11

The two-group solution for complete linkage,
however, is
Group 1: 1, 2, 3, 4, 5, 6, 9, 10
Group 2: 7, 8, 11, 12, 13, 14

Even on a small data set such as this, different
hierarchical clustering methods may give different
solutions.
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Figure 7 Single linkage dendrogram for water vole data
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Wastell & Gray [46] describe the use of hierarchi-
cal clustering for the development of a classification
of pain distribution in patients with temporomandibu-
lar joint pain dysfunction syndrome (TMJPDS). This
refers to a complex symptom group involving facial
pain, limitation and deviation of mandibular move-
ments, joint noises, and muscle tenderness. Symp-
toms vary with the stage of the disease; etiology is
equally complex and both physical and psychogenic
factors have been implicated. Pain is the most com-
monly recorded symptom, but its facial distribution
does not conform to a single pattern.

Wastell & Gray’s main aim was to use clustering
techniques to develop an objective typology for clas-
sifying facial pain in terms of its spatial distribution.
Clinically the hope was that the derived classifica-
tion would be useful in identifying different stages of
the disease, which would be of help in defining more
directed treatment plans.
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Figure 8 Complete linkage dendrogram for water vole
data
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Figure 9 Average linkage dendrogram for water vole data

Data were collected from 127 patients attending
the temporomandibular joint clinic of a university
hospital complaining of classic TMJPDS. Patients
were asked to trace the boundary of their pain-
affected area with the tip of their index finger. The
examiner recorded this outline on a diagram of the
lateral profile of the face (see Figure 10) and this was
adjusted until patients were satisfied that the outline
matched their own pain area.

The squares of the grid shown in Figure 10 falling
within the perimeter of a pain area were scored
1; those without, 0. In this way any patient’s pain
distribution may be described by a string of binary
variables. In practice all distributions lay within
a central rectangle with horizontal extension, J–T,
and vertical extension, 11–28, giving 11 × 18 =
198 binary variables for analysis. The similarity
between each pair of patients was calculated using
Jaccard’s coefficient, which is simply the proportion
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of one-to-one matches for the two patients after
ignoring the zero-to-zero matches. (See Everitt [13]
for an explicit definition of this coefficient.)

Ward’s method of clustering was used in this
application and the resulting dendrogram is shown in
Figure 11. The structure of the dendrogram appears
to indicate three major classes, with a further possi-
ble subdivision of each of these into two. A com-
posite pain distribution matrix for each class was
constructed by simple matrix addition of the pain
matrices of its constituent members. The authors’
description of the pain classes was as follows:

Pain Class A:. The pain distribution of Class A
was concentrated over the temporomandibular joint
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Figure 10 TMJPDS data collection method

A B
C

Figure 11 Ward’s method dendrogram for TMJPDS data

A

B1 B2

C1 C2

Figure 12 Pain distribution of cluster solution on
TMJPDS data

(see Figure 12). The two subclasses were much alike,
apart for a small vertical difference in their centroids.

Pain Class B:. The pain distribution of Class A
differed from that of Class B in involving the
vertical portion of the mandible (the ramus). The two
subclasses of B were quite different: Class B2 showed
a distribution to the lower point of the ramus and
Class B1 showed a much wider distribution, covering
all the ramus and the interior part of the temple (see
Figure 12).

Pain Class C:. The pain distribution of Class C
differed from the other two classes in involving an
anterior projection over the zygomatic arch. The two
subclasses were again distinct: Class C1 showed a
distribution confined to the temporomandibular joint
and the zygomatic arch; Class C2 showed a much
wider distribution spreading over the temple as well
as covering the ramus (see Figure 12).
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The final conclusion, after careful validation, was
that the groups could be interpreted in terms of a
chronological model of the development of TMJPDS.
Other interesting applications of hierarchical classifi-
cation methods are described in Murtagh [38], Duflou
et al. [11], and Coste et al. [6].

Summary

The concept of the hierarchical representation of a
data set applies most satisfactorily in biology and
related disciplines. Although any cluster analysis
exercise with biological data need not necessarily
replicate the structure implicit in the traditional struc-
ture of Linnaean Taxonomy, i.e. species, genera,
etc., there nevertheless remains a strong inclination
amongst biologists for hierarchical classifications.
When used in other areas, however, the justification
for a hierarchical rather than a nonhierarchical struc-
ture may be less clear, and there is then the danger
of imposing rather than discovering structure. Careful
validation of solutions is a clear requirement in any
clustering exercise. No particular hierarchical clus-
tering technique can be recommended as likely to
be “best” in most situations, although Everitt [13]
gives some suggestions as to which methods might
be more generally useful, on the basis of the results
of a number of Monte Carlo studies.
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Cluster Analysis of
Subjects, Nonhierarchical
Methods

Cluster analysis is concerned with investigating a set
of data to discover whether or not it consists of rel-
atively distinct groups of observations. The groups
are unknown a priori so that cluster analysis is dis-
tinguished from the activity of allocating individuals
to one of a set of existing groups, an activity usu-
ally referred to as assignment or discrimination (see
Discriminant Analysis, Linear).

Uncovering the group structure (if any) of a set of
data is clearly of considerable importance in under-
standing the data and in using them to answer sub-
stantive subject matter questions. In medicine, for
example, separating diseases that require different
treatments will often be the primary goal of any clas-
sification exercise.

A very broad division of cluster analysis tech-
niques is into those that produce hierarchical clas-
sifications (see Cluster Analysis of Subjects, Hier-
archical Methods) and those where the groupings are
not necessarily constrained in this way, the so-called
nonhierarchical methods. This article is concerned
with the latter.

Data

The raw data to be analyzed by cluster analysis
methods usually consists of a set of p variable values
for each of the n individuals to be clustered. Such
data are commonly represented by an n × p matrix,
X, given by

X =




x11 x12 . . . x1p

x21 x22 . . . x2p...
...

...
...

xn1 xn2 . . . xnp



 . (1)

When p = 2 simply plotting the data may provide,
via the excellence of the eye–brain pattern recog-
nition system, a simple method of “clustering”. The
three “clusters” in Figure 1, for example, are immedi-
ately apparent without the application of any formal
method, or indeed, without making the meaning of
the term “cluster” explicit.
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Figure 1 Data containing three distinct clusters

When p > 3 such a direct approach is not possi-
ble, but plots of the data in the space of the first two
or three principal components may then be helpful
(see Principal Components Analysis; Multivariate
Graphics).

Optimization Methods

The cluster analysis methods described in this entry
produce a partition of the individuals into a particu-
lar number of groups, by optimizing some numerical
criterion. The basic idea behind these techniques is
that associated with each partition of the n individu-
als into the required number of groups, g, is an index,
f (n, g), the value of which reflects how success-
ful the partition is in describing the data. For some
indices, partitions corresponding to high values are
good and so the “best” partition is found by maxi-
mizing the index. For other indices, low values are
sought and the search is for the partition with mini-
mum value. Associating a numerical value with each
partition allows competing partitions to be compared.
Differences between the methods in this class arise
both because of the different clustering indices that
can be used, and the alternate algorithms which can
be employed to optimize the selected index. In the
next section a number of possible clustering indices
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are described and in the following section the opti-
mization problem is discussed. It will be assumed that
the variables describing each individual are continu-
ous, and that the spatial distribution of the individu-
als, represented as points in a p-dimensional space,
can be meaningfully summarized by the location of
the center of gravity of each cluster and by the sample
scatter matrix of each cluster. (Clustering criteria suit-
able for binary and ordinal variables (see Ordered
Categorical Data) are described in [23].)

A problem common to all the procedures to be
described is that of selecting the most appropriate
number of groups for a data set; some discussion and
suggestions will be given later.

Clustering Indices

Many numerical indices for clustering have been
suggested, but those most commonly used arise from
consideration of three matrices, T, B, and W, which
can be calculated from a partition of the data into g

groups as follows:

T = 1

n

g∑

i=1

ni∑

j=1

(xij − x)(xij − x)′,

W = 1

ng

g∑

i=1

ni∑

j=1

(xij − xij )(xij − xj )
′, (1)

B =
g∑

i=1

ni(xi − x)(xi − x)′,

where xij represents the j th, p-dimensional observa-
tion in group i, xi is the mean vector of group i, x is
the mean vector of all the observations, and ni is the
number of observations in group i.

The p × p matrices defined above represent, res-
pectively, total dispersion T, within-group dispersion
W, and between-group dispersion B; they are related
as follows:

T = W + B. (2)

For p = 1 this equation represents a relationship
between scalars, namely the division of the total sum
of squares for a variable into the within- and between-
group sum of squares familiar from one-way analysis
of variance. Here a natural candidate for a clustering
index is the within-group sum of squares, with a
partition having minimum value being sought. Fisher

[7] describes a procedure to find a partition into g

groups for which the within-group sum of squares
is minimized. For p > 1 the derivation of clustering
criteria from (2) is not quite so clear-cut, and several
possibilities have been suggested.

1. trace(W).
An obvious extension of the within-group sum of

squares criterion when p > 1 is the sum of the sep-
arate within-group sum of squares for each variable,
i.e. a partition minimizing trace(W) is looked for.
[Minimizing trace(W) is equivalent to maximizing
trace(B).] This criterion was suggested explicitly by
Singleton & Kautz [22] and is also implicit in the
clustering procedures described by Forgey [9], Jancey
[13], MacQueen [16], and Ball & Hall [1].

Despite its popularity, the minimization of
trace(W) approach to clustering suffers from a
number of serious problems. One is that it is scale
dependent so that different solutions may be obtained
from the raw data than from the data standardized
in some particular way. Since the question of the
appropriate standardization in cluster analysis is a
difficult one (see, for example, [8]), this lack of
invariance can cause severe problems in practice.

A further problem with the use of this criterion is
that it has a strong tendency to produce spherically
shaped clusters, even when the natural clusters in the
data are of other shapes – see [5] for an example.
Consequently, its use may impose an artifactual
structure on the data rather than uncover their true
structure.

2. det(W).
In multivariate analysis of variance one of the

tests for differences in population mean vectors is
based on the ratio of the determinants of the within
and total dispersion matrices (see [14]). Large values
of det(T)/det(W) indicate a difference between the
mean vectors. In a clustering context this implies that
seeking a partition that maximizes the ratio of the
two determinants would lead to clusters with widely
separated mean vectors relative to their within-cluster
dispersion. The maximization of det(T)/det(W) as a
method of cluster analysis was first suggested by
Friedman & Rubin [10].

Since, for all partitions of the n individuals into
g groups, T remains the same, maximization of
det(T)/det(W) is equivalent to minimizing det(W),
the generalized variance of a set of multivariate data.
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This particular criterion has been studied in some
detail by Marriott [17, 18].

A major advantage of the det(W) criterion over
the trace(W) criterion discussed earlier is that it is
invariant under nonsingular linear transformations of
the original data matrix. Consequently, problems with
standardization do not arise. A further advantage
of the det(W) criterion is that it does not restrict
clusters to being “hyperfootballs”, although it does
assume that all the clusters have the same shape and
orientation; Everitt [5] gives an example where the
criterion can lead to the “wrong” clusters when this
assumption does not hold.

3. trace(BW−1).
A further criterion suggested by Friedman & Rubin

[10] is the maximization of the matrix obtained from
the product of the between-groups dispersion matrix
and the inverse of the within-groups matrix. This
function also appears in the context of multivariate
analysis of variance (see [14]), and is equivalent
to what Rao [20] calls the generalization of the
Mahalanobis distance to more than two groups.

Both trace(BW−1) and det(T)/det(W) may be
expressed in terms of the eigenvalues, λi , of BW−1

as follows:

trace(BW−1) =
p∑

i=1

λi, (3)

det(T)

det(W)
=

p∏

i=1

(1 + λi). (4)

For g = 2 partitions given by maximizing
trace(BW−1) and minimizing det(W) will be the
same. In other cases the former procedure has a ten-
dency to produce long thin clusters strung out along
a single direction (see [10]).

Scott & Symons [21] and Banfield & Raftery
[2] demonstrate how the clustering criteria described
above arise from considering a likelihood approach to
the clustering problem, an approach which also leads
to a number of other possible indices for clustering.
The probability model assumed is that the population
of interest consists of g different subpopulations,
and that the density of a p-dimensional observation
x from the kth subpopulation is fk(x; θ) for some
unknown vector of parameters θ . Given observations
x1, x2, . . . , xn and defining identifying labels γ =
(γ1, . . . , γn)

′, where γi = k if xi comes from the kth

subpopulation, the required likelihood function can
be written as

L(θ ; γ ) =
n∏

i=1

fγi
(xi ; θ). (5)

In the so-called classification maximum likelihood
procedure, θ and γ are chosen so as to maximize
this likelihood.

When fk(x; θ) is a multivariate normal density
with mean vector, µk , and covariance matrix, �k ,
then the likelihood in (5) becomes

L(θ, γ ) = const
g∏

k=1

∏

i∈Ek

|�k|−1/2

×exp
[− 1

2 (xi −µk)
′�−1

k (xi −µk)
]
, (6)

where Ek = {i; γi = k} defines a particular partition
of the data. Scott & Symons [21] and Banfield &
Raftery [2] demonstrate the following:

1. If �k = σ 2I, k = 1, . . . , g then the likelihood is
maximized by choosing γ to minimize trace(W).
Consequently, this particular clustering criterion
is essentially only suitable when the clusters in
the data are spherical in shape and of approx-
imately equal sizes (equal number of observa-
tions).

2. If �k = �, k = 1, . . . , g, then the likelihood is
maximized by choosing γ to minimize det(W).
Consequently, this clustering criterion is suitable
only when the clusters have the same orientation
and shape, although this is not constrained to
being spherical.

3. When the �k are not constrained in any way,
the likelihood is maximized by choosing γ to
minimize

∑g

k=1 nk log[det(Wk/nk)], where Wk

is the sample cross-product matrix for the kth
cluster. This particular criterion does not appear
to have been used as a basis for cluster analysis,
which Banfield & Raftery [2] suggest is due to
its very generality and lack of parsimony.

Banfield & Raftery [2] use the classification like-
lihood formulation of the clustering problem as the
basis for suggesting a number of other clustering cri-
teria that allow some features of cluster distributions
(orientation, size, and shape) to vary between clus-
ters, while constraining others to be the same. The
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key to this is a reparameterization of the covariance
matrix �k in terms of its eigenvalue decomposition

�k = Dk�kD′
k, (7)

where Dk is the matrix of eigenvectors and �k is
a diagonal matrix with the eigenvalues of �k on the
diagonal. The orientation of the principal components
of �k is determined by Dk , while �k specifies the size
and shape of the density contours.

One example of Banfield & Raftery’s approach
leads to a generalization of the sum of squares crite-
rion described previously, in which clusters, though
still assumed spherical, are allowed to be of different
sizes. The resulting criterion to be minimized is

g∑

k=1

log

[
trace

(
Wk

nk

)]
. (8)

Other criteria allow cluster orientations to vary while
keeping size and shape constant. All the suggested
criteria can be implemented in the S-PLUS software
available for applying this form of cluster analysis.

Banfield & Raftery [2] also consider the situation
when the fk are not multivariate normal and when
there are “noise” points in the data that do not follow
the general mixed distribution pattern.

Optimizing a Clustering Criterion

Once a suitable numerical clustering criterion has
been selected, consideration needs to be given to how
to choose the g group partition of the data which
leads to its optimization. In theory, of course, the
problem is simple, at least to “Dr. Idnozo Hcahscror-
Tenib”, that “super galactician hypermetrician” who
featured in Thorndike’s 1953 presidential address
to the Psychometrika Society [24]: “Is easy. Finite
number of combinations. Only 563 billion billion
billion. Try all keep best.”

Unfortunately, in practice the problem is not so
straightforward since the number of partitions is enor-
mously large and even with the fastest computers
available, complete enumeration of every possible
partition of n individuals into g groups is simply
not possible. A general expression for the number
of partitions, N , is given by Liu [15]:

N = 1

g!

g∑

i=0

(−1)g−i

(
g

i

)
in. (9)

Table 1

n g N

15 3 2375101
20 4 45232115901
25 8 690223721118368580

100 5 1068

Some specific examples are given in Table 1.
The impracticability of examining every possible

partition has led to the development of algorithms
designed to search for the optimum value of a clus-
tering criterion by a nonexhaustive search procedure
usually involving the rearrangement of an existing
partition and keeping the new one only if it provides
an improvement in the criterion value. Many such
algorithms have been proposed, all differing in some
more or less subtle ways; the common steps in the
majority of these algorithms, however, are as follows:

1. Find some initial partition of the individuals into
the required number of groups. Possible sources
of such initial partitions are the solutions from a
hierarchical clustering.

2. Calculate the change in the clustering criterion
produced by moving each individual from its
own to another cluster.

3. Make the change which leads to the greatest
improvement in the value of the clustering crite-
rion.

4. Repeat steps 2 and 3 until no move of a sin-
gle individual causes the clustering criterion to
improve.

Different initial partitions can lead to different
local optima of the clustering criterion, although
with well-structured data it is probably reasonable
to expect convergence to the same, hopefully global,
optimum from most starting configurations. Marriott
[18] suggests that slow convergence and widely dif-
ferent partitions arising from different starting points
may indicate that g has been wrongly chosen, in par-
ticular that there is no evidence of clustering.

Deciding on the “Best” Value for g

A variety of methods have been suggested for select-
ing the most appropriate number of clusters for a data
set. The most commonly used procedure is simply to
plot the value of the clustering criterion against the
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number of groups and look for “large” changes of
level, such changes perhaps being indicative of a par-
ticular number of groups. Clearly, such an approach
may be very subjective.

More formal methods have been proposed by
Beale [3], Calinski & Harabasz [4], Marriott [17],

and Banfield & Raftery [2]. Marriott, for example,
suggests taking the value of g for which g2 det(W)
is a minimum. For unimodel distributions, Marriott
shows that this is likely to lead to accepting that
g = 1, and for strongly grouped data it will indicate
the appropriate value of g.
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Banfield & Raftery [2] suggest an approximate
Bayesian procedure for choosing the number of clus-
ters and give a relatively crude estimate of P(g|X).
The maximum value of this estimate for different
values of g could be used to estimate the number
of clusters, although Banfield & Raftery recommend
considering several values for g guided by the esti-
mated posterior probabilities.

Some Applications of Nonhierarchical
Cluster Analysis

Tibetan Skulls

Morant [19] describes data collected by Colonel
L.A. Waddell on 32 skulls found in the south-western
and eastern districts of Tibet (see Anthropometry).
According to Morant the data can be divided into two
groups. The first (type 1) comprises 17 skulls found
in graves in Sikkim and neighboring areas of Tibet.
The remaining 15 skulls (type 2) were picked up on a
battlefield in the Lhasa district and were believed to
be those of native soldiers from the eastern province
of Khams. These skulls were of particular interest
because it was thought at the time that Tibetans from
Khams might be survivors of a particular fundamental
human type, unrelated to the Mongolian and Indian
types which surrounded them. On each skull the fol-
lowing five measurements (all in millimetres) were
obtained:

x1 : greatest length of skull
x2 : greatest horizontal breadth of skull
x3 : height of skull
x4 : upper face height
x5 : face breadth, between outermost points of cheek
bones.

The data are reproduced in Hand et al. [11]. Here
the a priori group structure will be ignored apart from
comparing it with the two cluster solutions found
from a number of optimization techniques described
previously.

The clustering criteria used in this application
were as follows:

1. minimization of trace(W)
2. minimization of

∑g

k=1, nk log[trace(Wk/nk)]
3. minimization of det(W)
4. minimization of

∑g

k=1 nk log[det(Wk/nk)].

The resulting two group solutions found by each
method are displayed graphically in Figure 2 by
plotting them in the space of the first two princi-
pal components of the correlation matrix of the data.
(These two components are the only ones with eigen-
values greater than one, and together they account for
60% of the variation in the data.) For comparison,
the two groups as defined by Morant are shown, also
in the space of the first two principal components,
in Figure 3. Clearly, the four clustering solutions are
considerably different from one another and each dif-
fers from the a priori grouping.

MRI Brain Scan

Banfield & Raftery [2] describe a fascinating appli-
cation of optimization clustering methods to data
collected from MRI scans of human brains. A ran-
domly chosen set of 522 voxels (three-dimensional
volume elements) were subjected to optimization
clustering using a particular criterion (see origi-
nal paper for details) and a seven-cluster solution
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was suggested by the Bayesian criterion mentioned
earlier. The clusters were found to correspond to dis-
tinct anatomical structures. Simpler clustering tech-
niques such as complete linkage and Ward’s method
(see [5]) tended to group together dissimilar anatom-
ical voxels.

Other biostatistical applications of optimization
clustering can be found in Everitt et al. [6] and
Heinrich et al. [12].

Conclusions

Optimization clustering techniques produce a parti-
tion of a set of multivariate data into a particular
number of groups by maximizing or minimizing some
numerical index of clustering. Several such indices
have been suggested, these differing in the implicit
assumptions made about the shape of any clusters
present. Many of the suggested criteria arise from
considering a likelihood approach to the clustering
problem.
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Cluster Analysis,
Variables

Cluster analysis is a process of clustering objects into
groups where the groups (or clusters) are unknown a
priori. Clusters are formed in such a way that objects
in the same cluster are similar to each other, while
members of different clusters are considerably dif-
ferent from each other. Similarity or dissimilarity of
objects are often measured by some indices of asso-
ciation. These indices can be correlations, cosines,
coefficients of agreement, covariances, Euclidean dis-
tances between standardized measures, Mahalanobis
generalized distances, and other problem-oriented
indices (see Similarity, Dissimilarity, and Distance
Measure). The objects of clustering can be subjects
or variables, but clustering subjects is probably more
common than is clustering variables. For discussions
on the cluster analysis of subjects, see Cluster Anal-
ysis of Subjects, Hierarchical Methods and Cluster
Analysis of Subjects, Nonhierarchical Methods. In
this article we consider techniques of performing
cluster analysis of variables. The variables can be
measurements, ranks, or dichotomies (see Binary
Data).

Cluster analysis of variables can be applied to a
wide range of problems in different fields. Popular
applications relate to the construction of scorable sub-
sets (see Principal Components Analysis; Cluster
Score) and battery reduction. Most of the proce-
dures and algorithms discussed in the cluster analysis
of subjects can be applied to the cluster analysis of
variables with the appropriate index of association,
where the objects for clustering are now variables
rather than subjects. Here we discuss only the type of
methods that cluster variables on the basis of the cor-
relation structure of the variables or on the factorial
structures of the variables. Factorial structure means
a structure obtained from a factor analysis or princi-
pal component analysis. Examples will be provided
to demonstrate how to perform some of the tech-
niques. The reader should note that cluster analysis of
variables can differ from factor analysis even though
they both examine the common factor structure of the
variables. In factor analysis we are concerned with the
underlying dimension of the data and in identifying
latent factors that measure the dimension. In cluster
analysis we desire to group variables together, often

to produce sets from which cluster scores can be pro-
duced. These subsets may contain only part of the set
of variables associated with a factor.

An Intuitive Approach

A simple intuitive approach to cluster analysis
uses the results of a factor analysis or a principal
component analysis by forming clusters of variables
that have high loadings on the same factor. Factor
loadings are the elements of the final factor matrix
and they represent the correlations between the
variables and the factors. We can use these loadings
as indices of association for measuring the similarity
or dissimilarity of the variables in question (see
Principal Components Analysis; Factor Analysis,
Overview, for procedures to obtain the final factor
matrix).

Example

To illustrate this intuitive approach, we selected
seven variables from the Framingham offspring
data. These variables are the systolic blood pressure
(SPF), diastolic blood pressure (DPF), height (HGT),
total volume capacity (TVC), triglycerides (TG),
total cholesterol (SCL), and high density lipopro-
tein cholesterol (HDL). These variables are selected
solely for the purpose of illustration and not for
substantive interpretation. There is a total of 2370
nondiabetic males included in the analysis. A factor
analysis with varimax rotation was performed on
this data. Three factors were retained. The initial fac-
tor matrix as well as the final rotated factor matrix
are presented in Table 1. In this example we use the
factor matrix from a factor analysis. In practice, we
could also perform a principal components analysis
and also we could use other types of rotation. Com-
parisons between a factor analysis and a principal
components analysis can be found in the articles on
Principal Components Analysis and Factor Anal-
ysis, Overview.

Using the rule of thumb of Cureton & D’Agostino
[1] we use 0.3 as the minimum threshold for
considering a loading “significant” and so also for
putting a variable into a cluster. With a 0.3 threshold,
three disjoint clusters are formed: (i) SPF and DPF
(with their first factor loadings equal to 0.867 and
0.866); (ii) HGT and TVC (with their second factor
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Table 1 Initial and rotated factor matrices

Initial factor matrix

Variable a b c

SPF 0.815 0.236 −0.194
DPF 0.833 0.242 −0.125
HGT −0.126 0.626 0.194
TVC −0.309 0.599 0.123
TG 0.396 −0.146 0.497
SCL 0.391 −0.187 0.251
HDL 0.069 0.002 0.421

Rotated factor matrixa

Variable a b c

SPF 0.867 −0.047 0.067
DPF 0.866 −0.028 0.136
HGT 0.043 0.665 0.030
TVC −0.111 0.669 −0.095
TG 0.168 −0.107 0.621
SCL 0.218 −0.209 0.399
HDL −0.055 0.096 0.412

aVarimax rotation.

loadings equal to 0.665 and 0.669); and (iii) TG,
SCL, and HDL (with their third factor loadings
equal to 0.621, 0.399, and 0.412). We do not
always obtain disjoint clusters as presented in this
example although this is usually considered ideal.
It is possible to obtain clusters with overlapping
variables.

One available software package in SAS, PROC
VARCLUS, always produces clusters with nonover-
lapping elements [8]. This is an oblique component
analysis related to multiple group factor analysis.
Standardized scoring coefficients are provided for the
computations of cluster scores.

Graphical Cluster Analysis of Variables

Tryon [9] proposed finding clusters of variables on
the basis of the profiles of the correlations of the
variables. He suggested plotting each row of the
correlation matrix, having the variable number on the
abscissa and the numerical value of the correlation
coefficient on the ordinate. We denote the correlation
coefficient by rij , where i, j = 1, . . . , p and p is
the number of the original variables. Each row of
points (i.e. ri1, ri2, . . . , rip) is connected by a jagged
line, leaving a gap at rii . A cluster is then identified
by the subset of approximately parallel proportional
profiles. An example of a correlation profile plot is
given in Figure 1. These are the correlations for the
seven variables of the Framingham offspring data.
The correlation matrix is displayed in Table 2.

From Figure 1, SPF and DPF can be seen to
have high correlations with each other and their
profiles are very close throughout. Thus, they form
a cluster. HGT and TVC are moderately correlated
with each other and they exhibit approximately
parallel proportional profiles across the plot. It seems
reasonable to group them in one cluster. TG and SCL
have some correlations with each other and they have
very similar correlation patterns with other variables
except with HDL. Based on the general profiles, we
can put them in a cluster. The profile of HDL does
not show any resemblance to the profiles of any
other variables, therefore it forms a cluster by itself.
We sometimes call a variable in such a cluster an
outlier. On the basis of this plot, we may conclude
that there are four clusters: (i) SPF-DPF, (ii) HGT-
TVC, (iii) TG-SCL, and (iv) HDL. In practice, it is
not easy to identify the subsets of profiles because
these profiles often exhibit similar shape but different
height, and the gaps at the riis make the profiles quite
difficult to follow.

Table 2 Correlation matrix

Variable SPF DPF HGT TVC TG SCL HDL

SPF 1.000 0.829 0.011 −0.146 0.197 0.205 −0.026
DPF 0.829 1.000 0.036 −0.141 0.228 0.250 0.018
HGT 0.011 0.036 1.000 0.558 −0.042 −0.097 0.084
TVC −0.146 −0.141 0.558 1.000 −0.154 −0.196 0.006
TG 0.197 0.228 −0.042 −0.154 1.000 0.404 0.335
SCL 0.205 0.250 −0.097 −0.196 0.404 1.000 0.013
HDL −0.026 0.018 0.084 0.006 0.335 0.013 1.000

Note: The matrix is computed from Framingham offspring data.
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Figure 1 Graphical cluster analysis (correlation profiles), Framingham offspring data (nondiabetic men)

Cureton & D’Agostino [1] present another graph-
ical method based on the profiles of the factorial
structures of the variables which usually avoids some
of the difficulties in Tryon’s procedure. Using their
approach, we first compute a row-normalized varimax
factor matrix (see [5] and [1]) or a weighted-varimax
factor matrix (see [2]). If these varimax factor matri-
ces are not available, then a Landahl transformation
to the row-normalized initial factor matrix can be
used instead (see [6]). Then we plot each row of this
transformed matrix, having the factor number (i.e.
1 to m) on the abscissa and the numerical value of
the factor loadings on the ordinate. An example is
given in Table 3 to illustrate the step-by-step com-
putations of this Landahl transformed initial factor
matrix. The advantages of using the profiles from a
transformed row-normalized initial factor matrix over
the profiles from a correlation matrix are twofold:
(i) this transformed initial factor matrix provides the
same information contained in the correlation matrix
but there are only m points to plot for each variable
instead of p − 1 and no gaps are left in the profiles,

and (ii) in this factor matrix plot, the profiles belong-
ing to the same cluster exhibit about the same average
shape and height, so it is easier to visualize subsets of
variables that belong to the same cluster. Sometimes,
we may add the profiles of the primary axes (see
Primary Factors). We should try to avoid breaking
up the variables that have profiles close to those of
the primary axes. If we are not sure about some of
the subsets, then we can always quantify the asso-
ciation of the profiles by computing the cosines of
angle between each pair of the row-normalized initial
factor matrix vectors (see Cosine of Angle Between
Two Vectors; Matrix Algebra). The complete cosine
matrix, denoted by K, is of dimension p × p. It
is obtained by postmultiplying the row-normalized
initial factor matrix by its transpose. Two variables
presumed to lie in the same cluster should have a high
cosine value. These cosines are derived as an index
of association for the profiles of variables. They can
be used to determine numerically the compactness of
a cluster. We can also set an acceptance level to con-
trol the level of compactness we wish for a cluster. A
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Table 3 Transformation of the row-normalized initial factor matrix

Principal axesa (F) Normalization factors (f)

Variable a b c (a2 + b2 + c2)−1/2

SPF 0.815 0.236 −0.194 1.14896
DPF 0.833 0.242 −0.125 1.14050
HGT −0.126 0.626 0.194 1.49861
TVC −0.309 0.599 0.123 1.46058
TG 0.396 −0.146 0.497 1.53342
SCL 0.391 −0.187 0.251 1.99721
HDL 0.069 0.002 0.421 2.34542

Normalized initial factor matrix with primary axes (Fn)

Variable a b c

SPF 0.936 0.271 −0.223
DPF 0.951 0.276 −0.142
HGT −0.188 0.938 0.290
TVC −0.451 0.874 0.179






diag (f) ∗ F
TG 0.608 −0.224 0.762
SCL 0.781 −0.374 0.501
HDL 0.163 0.005 0.987
A 0.899 0.336 −0.280 transpose of orthogonal
B −0.263 0.927 0.268

}
transformation matrix

C 0.350 −0.167 0.922 (obtained from SAS output)

Landahl transformation matrixb (Lt ) Normalized Landahl factor matrix (Ln = Fn ∗ Lt )

A B C Variable a b c

a 0.5774 0.5774 0.5774 SPF 0.762 0.272 0.587
b 0.8165 −0.4083 −0.4083 DPF 0.774 0.335 0.537
c 0.0000 0.7071 −0.7071 HGT 0.657 −0.287 −0.697

TVC 0.454 −0.491 −0.744
TG 0.168 0.981 −0.096
SCL 0.146 0.957 0.249
HDL 0.098 0.790 −0.606
A 0.793 0.184 0.580
B 0.605 −0.341 −0.719
C 0.065 0.922 −0.382

Note: The matrices are based on the Framingham offspring data.
aThe principal axes matrix is obtained from the SAS output.
bThe Landahl transformation matrix is obtained from [6].

variable is accepted as a member of a cluster only if
its cosine with the existing members of the cluster is
higher than the acceptance level. When an acceptance
level is used in the analysis, one should be aware
that the choice for this threshold is often arbitrary,
but the level we choose may affect the composition
of the clusters. An acceptance level that is too high
may create many outliers and also result in too many

small clusters. But when the acceptance level is too
low, the analysis tends to form large clusters with
heterogeneous elements in them. Therefore, in prac-
tice we should try different acceptance levels to see
which result gives the most sensible interpretation.

For illustration we use again the seven variables
from the Framingham offspring data. We first per-
form a factor analysis, and decide to retain three



Cluster Analysis, Variables 5

factors. Table 3 presents the computations of the
transformation. A SAS macro [4] is available to
perform all these calculations and plot the profile,
as shown in Figure 2. In this example a varimax
rotation is applied to the primary axes. In practice,
we can also employ other types of orthogonal rota-
tion or oblique rotation (see Rotation of Axes). A
different rotation may produce a different set of pri-
mary axes.

In Figure 2, SPF and DPF are close together on
each of the three factors so they form a cluster of
two variables. HGT and TVC are close together on
the scale for factor 3 but moderately apart on the
scales for factors 1 and 2. We tentatively put them
into the same cluster. TG, SCL, and HDL are close
together for factor 1. HDL begins to drift slightly
downwards from TG and SCL for factor 2 and then
all three variables drift farther apart from each other
for factor 3. So, we tentatively call them a cluster.
The next step is to check the primary axes. The
profile of the primary axis, A, is fairly close to
the SPF–DPF cluster and the profile of the primary
axis, B, is wholly contained within the HGT–TVC
cluster. The profile of the primary axis, C, is close to
the TG–SCL–HDL cluster for factor 1 but it moves

away from HDL for factor 2. For factor 3, all these
variables and the primary axis, C, are lying apart
from each other. To verify the tentative clusters, we
compute the cosines of angles between each pair
of the normalized initial factor matrix vectors. An
example of the cosine matrix is provided in Table 4,
which is computed from the row-normalized initial
factor matrix given in Table 3.

SPF and DPF are a compact cluster with a cosine
of 0.997. HGT and TVC are reasonably compact
with a cosine of 0.957. As reflected in Figure 2,
TG, SCL, and HDL are not quite compact. TG and
SCL have a cosine of 0.940, TG and HDL have
a cosine of 0.849, while SCL and HDL have a
cosine of 0.620. From this graphic cluster analysis
we may conclude that SPF–DPF, HGT–TVC, and
TG–SCL–HDL are three distinct clusters if no
acceptance level is used. But if we use, for example,
0.9 as the acceptance level, then we need to break
the last cluster into two smaller clusters and HDL
will become an outlier and form a cluster by itself.
We obtain the same clustering results for using
acceptance levels 0.7 and 0.8. We can see that this
clustering is consistent with the result given in the
correlation profile.
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Table 4 Cosine matrix (K = Fn ∗ Fn
′)

Variable SPF DPF HGT TVC TG SCL HDL

SPF 1.000 0.997 0.014 −0.225 0.339 0.518 −0.066
DPF 0.997 1.000 0.039 −0.213 0.408 0.568 0.015
HGT 0.014 0.039 1.000 0.957 −0.104 −0.352 0.260
TVC −0.225 −0.213 0.957 1.000 −0.334 −0.589 0.108
TG 0.339 0.408 −0.104 −0.334 1.000 0.940 0.849
SCL 0.518 0.568 −0.352 −0.589 0.940 1.000 0.620
HDL −0.066 0.015 0.260 0.108 0.849 0.620 1.000

Note: The matrix is computed from Framingham offspring data.

Elementary Linkage Analysis

The elementary linkage analysis is a crude but simple
numerical method that can be applied in the cluster
analysis of variables. This method was first described
in McQuitty [7] and later modified by Cureton
& D’Agostino [1]. Elementary linkage analysis is
equivalent to performing a single linkage analysis
(see Cluster Analysis of Subjects, Hierarchical
Methods) using the cosine of angle between two
vectors as the index of association. We start by
underlining the highest cosine in each column of
K, the complete cosine matrix. The general rule is
that a variable, V1, belongs in the same cluster with
another variable, V2, if V1 has the highest cosine with
V2. If V1 and V2 have the same highest cosine with
each other, then they are called a reciprocal pair. The
cluster that is formed by the reciprocal pair is called
a nuclear cluster, which we should avoid breaking.
After finding the nuclear clusters, we look along the
row of each member of the nuclear cluster to see if
there is other underlined cosine on the row. If there is,
then the member of the pair is said to bring in a new
member. We continue to check the other members of
the cluster and locate any “bring-in” members. If no
further underlined cosines are found in all the current
members of the cluster, then the cluster is complete.
When all the clusters are complete, the standard
elementary linkage analysis is done. Again, we can
form compact clusters in this analysis by specifying
an acceptance level. Using an acceptance level in this
analysis, a variable can become an intrinsic outlier.
It is a variable which has the highest cosine in a
column of the cosine matrix but the value is below
the acceptance level. A variable can also become a
forced outlier if its cosine with one of the existing
members of the cluster is below the acceptance level.
There is no specified rule on how to handle these

outliers in the analysis. It relies on the judgment of
the investigator.

Recall the cosine matrix given in Table 4 and
underline the highest cosine in each column. Accord-
ing to the definition, SPF–DPF, HGT–TVC, and
TG–SCL are the reciprocal pairs and they form three
distinct nuclear clusters. These clusters can be repre-
sented as follows:

SPF 0.997

←−→ DPF HGT 0.957

←−→ TVC TG 0.997

←−→ SCL

The next step is to locate other potential members
for each nuclear cluster by checking other underlined
cosines along the rows. We can see that TG brings in
HDL to the TG–SCL cluster and the relationship is
graphically presented as follows:

TG 0.941

←−→ SCL
�0.867

HDL

There are no other underlined cosines, so all the
clusters are complete and so is the analysis. Of
course, if we want to form compact clusters with
an acceptance level, say 0.9, then HDL will become
a forced outlier and form a cluster by itself. These
results are consistent with the results found in the
graphical cluster analyses.

Cycle Hunt Analysis

Cureton et al. [3] proposed a more complex system of
clustering called a cycle hunt analysis. This analysis
consists of two stages: cycle hunt and cycle change.
Before we start the cycle hunt stage, we need to set
an acceptance level. If the objective of the study is
to form clusters from subsets of variables, then we
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will also need an exclusion level. An exclusion level
is the lowest acceptable communality for a variable
to be included in a cluster. The communalities are
computed from the initial factor matrix before its
rows are normalized. We then compute the complete
cosine matrix, K, as previously defined and delete
from K the row and column corresponding to each
variable whose cosine is below the acceptance level,
and also whose communality is below the exclusion
level. Then this reduced K matrix is used in the rest
of the analysis.

The cycle hunt stage forms clusters by performing
either one of the three operations: (i) combining two
variables, neither of which belongs to any existing
cluster; (ii) adding to an existing cluster a variable
not previously in any cluster; and (iii) combining
two clusters to form a larger cluster. At each step
we perform the operation that will leave the lowest
within-cluster cosine highest and make sure the
cosines between pairs of variables in the clusters
are above the acceptance level. At this stage, once
a variable is assigned to a cluster, it stays with that
cluster for the whole cycle. The cycle hunt terminates
when no further operations of type (i) or (ii) can
be done without the lowest cosine going beyond the
acceptance level.

The cycle change stage starts after the cycle hunt
is completed. This second stage is divided into two
subcycles. In subcycle 1, we start arbitrarily with a
variable, say V . For each cluster, including the one V

is in, we find the variable with which V has the lowest
cosine. Among all these lowest cosines we find the
particular variable, say W , whose lowest cosine with
V is the highest. Then, V will join the cluster of W .
If V is a forced outlier itself, then we need to make
sure that the lowest cosine is above the acceptance
level. After the reassignment of V , we proceed to
the next variable and repeat the same procedure.
When all the variables are considered, we return to
the first variable, V , and repeat the entire procedure.
Subcycle 1 terminates when there are no changes
made throughout the entire procedure. In subcycle
2 we compute the lowest within-cluster cosine that
results from combining each pair of clusters. We
make sure that the cosine is above the acceptance
level, and combine the one pair whose lowest cosine
is the highest. We then repeat subcycles 1 and 2
in sequence until, at subcycle 2, no two clusters
can be combined without producing a within-cluster
cosine below the acceptance level. At this point the

cycle change terminates and the cycle hunt analysis is
complete. Cureton & D’Agostino [1] suggested that,
in practice, we should repeat the cycle hunt analysis
using several different acceptance levels but the same
exclusion level, if any. We then choose as the final
result the one with the highest acceptance level that
gives a “sensible” result.

A SAS macro [4] is available to perform this com-
plex algorithm of clustering. Despite its complexity,
the cycle hunt system does offer some advantages
over the graphical cluster analysis and the elemen-
tary linkage analysis. It can handle large numbers of
variables. Unlike the elementary linkage analysis the
cycle hunt analysis considers not only the indices of
association for variables that belong to the same clus-
ter, but also the indices of association for variables
that are in different clusters. The associations of the
outliers with other variables also get examined.

We now revisit the example based on the Framing-
ham offspring data. We apply the cycle hunt macro
in [4] to perform a cluster analysis on the seven vari-
ables. Taking advice from Cureton & D’Agostino [1],
we repeat the analysis using 0.9, 0.8, 0.7, 0.6, and
0.5 as the acceptance levels. No exclusion level is
used in this example. All the analyses except the one
using 0.5 as the acceptance level lead to the same
clustering: SPF and DPF belong to one cluster; HGT
and TVC form another cluster; TG and SCL form
the third; and HDL is not included in any cluster.
This result is consistent with the results obtained from
both the graphical cluster analysis and the elementary
linkage analysis using an acceptance level.

Conclusions

The factor matrix, correlation matrix, and cosine
matrix are the major indices of association used in
the above clustering methods. When the method is
based on a factor matrix obtained from a factor
analysis, the contributions of the common factors
are emphasized in clustering the variables. But there
are other alternatives on which we can base the
cluster analysis. If we are interested in including the
contributions of the unique factors, then we can form
the cosine matrix from a component matrix. If we
wish to include the specific factors as well as the
common factors, but not the error factors, then we
can start a cluster analysis from a correlation matrix
with reliability coefficients on the diagonal (see the
discussions on reliability coefficients in [1, p. 365]).
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To summarize, it is clear that each method
described above has its own advantages and
disadvantages. For the intuitive approach, all we
need is a final rotated factor matrix, which is easily
obtained from most of the statistical packages. No
extra computations are required. However, in practice
it is not easy to interpret the final matrix and form
clusters that make sense. The VARCLUS procedure
produces logical groupings on the basis of various
maximization criteria. It is a numerical procedure
that does not need subjective input to obtain the
clusters. However, to achieve its goal of producing
disjoint clusters from a set of variables, the procedure
sometimes forces variables to join exactly one cluster,
even though the variables may not belong to one
cluster exclusively. The graphical method provides
an effective means of presenting the somewhat
complicated concept of the factorial structure of the
variables. Many find it easier to understand a pictorial
representation than a display of numbers. However,
when there are a large number of unreliable variables
involved in the plot, the display of the structure can
become confusing. The elementary linkage method
is a simple numerical procedure. Reciprocal pairs
are used as its basic building block for clusters.
The cluster-forming process is rather crude. Some
important associations among variables other than
reciprocal pairs are not vigorously explored. The
cycle hunt analysis remedies some of the weaknesses
of the simpler methods. It is able to handle large
numbers of variables and it is a more formal
technique for finding the subsets of variables. But
this system involves a complex algorithm and it is
very computer-intensive. Also, the analysis requires
the use of an acceptable level while there is no formal

rule to decide what level should be used. In a nutshell,
there is obviously no one best clustering method. In
practice, we recommend applying different methods
to the same data and interpreting the clusters carefully
to obtain a “sensible” solution. We also recommend
repeating the analyses with different acceptance
levels, especially when there are large numbers of
unreliable variables.
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Cluster Randomization

A cluster randomization trial is one in which intact
social units, or clusters of individuals, rather than
individuals themselves, are randomized to differ-
ent intervention groups. Trials randomizing clusters,
sometimes called group randomization trials, have
become particularly widespread in the evaluation of
nontherapeutic interventions, including lifestyle mod-
ification, educational programs and innovations in
the provision of health care. The units of random-
ization in such studies are diverse, ranging from
relatively small clusters, such as households or fami-
lies, to entire neighborhoods or communities, but also
including worksites, hospital wards, classrooms and
medical practices. There are also reports of trials that
have randomized more unusual units, including ath-
letic teams [76], tribes [34], religious institutions [48]
and sex establishments [28].

Proper accounting for the clustering of subjects’
responses within the units of randomization is a key
challenge faced by investigators adopting this design.
We begin by describing how such clustering arises
and how it reduces the efficiency of cluster random-
ization relative to individually randomized trials. A
brief historical discussion of cluster randomization is
then provided, followed by a discussion of ethical
issues. More technical material that deals with the
impact of cluster randomization on trial methodol-
ogy, including the selection of a study design, sample
size estimation and data analysis, is presented in the
next few sections. We conclude by providing some
guidelines for trial reporting. The reader interested in
a more detailed discussion might wish to consult [20]
from which this article was abstracted.

The Impact of Clustering

The degree of similarity among responses within a
cluster is typically measured by a parameter known
as the intracluster (intraclass) correlation coefficient.
Denoted by the Greek letter ρ, this parameter may be
interpreted as the standard Pearson correlation coeffi-
cient between any two responses in the same cluster.
Stating that ρ is positive is equivalent to assuming
that the variation between observations in different
clusters exceeds the variation within clusters. Under
these conditions, we may say that the design is char-
acterized by “between-cluster variation”.

The underlying reasons for variation between clus-
ters will differ from trial to trial, but in practice may
include the following.

1. Subject selection, where individuals are in a posi-
tion to choose the cluster to which they belong.
For example, in a trial randomizing medical prac-
tices, the characteristics of patients belonging to
a practice could be related to age or sex dif-
ferences among physicians. To the extent that
these characteristics are also related to patient
response, a clustering effect will be induced
within practices.

2. The influence of covariates at the cluster level,
where all individuals in a cluster are affected in a
similar manner as a result of sharing exposure to
a common environment. For example, infection
rates in nurseries may vary owing to differences
in temperature or other environmental conditions,
while differences in bylaws between commu-
nities could influence the success of smoking
cessation programs. Furthermore, when intact
families or households are randomized, the com-
bined effect of both environmental and genetic
factors will contribute to the observed between-
cluster variation.

3. The tendency of infectious diseases to spread
more rapidly within than among families or com-
munities. The possibility of outbreaks or epi-
demics in some clusters, the method by which the
infectious agent is spread and its virulence will
also affect the degree of between-cluster varia-
tion in rates of disease.

4. The effect of personal interactions among clus-
ter members who receive the same intervention.
For example, educational strategies provided in a
group setting could lead to a sharing of informa-
tion that create a clustering effect. More gener-
ally, as noted by Koepsell [45], just as infectious
agents can be spread from person to person, the
transmission of attitudes, norms and behaviors
among people who are in regular contact can
result in similar responses.

Without extensive empirical data, it is usually
impossible to distinguish among the potential reasons
for between-cluster variation. Regardless of the spe-
cific cause, however, such variation invariably leads
to a reduction in precision in estimating the effect of
intervention, where the size of the reduction increases



2 Cluster Randomization

with both the magnitude of ρ and the average cluster
size.

These effects of clustering may be expressed quan-
titatively in a fairly simple fashion. Consider an
experimental trial in which k clusters of m individu-
als are randomly assigned to each of an experimental
group and a control group. We suppose that the pri-
mary aim of the trial is to compare the groups with
respect to their mean values on a normally distributed
response variable Y having a common but unknown
variance σ 2. Estimates of the population means µ1

and µ2 are given by the usual sample means Y 1 and
Y 2 for the experimental and control groups, respec-
tively. From a well-known result in cluster sampling
(e.g. Kish [43, Chapter 5]), the variance of each of
these means is given by

var(Y i) = σ 2

km
[1 + (m − 1)ρ], i = 1, 2, (1)

where ρ is the intracluster correlation coefficient. If
σ 2 is replaced by P(1 − P), where P denotes the
probability of a success, then (1) also provides an
expression for the variance of a sample proportion
under clustering.

The intracluster correlation coefficient ρ may be
interpreted as the proportion of overall variation in
response that can be accounted for by the between-
cluster variation. With this interpretation, we may
write

ρ = σ 2
A

σ 2
A + σ 2

W

(2)

where σ 2
A is the between-cluster component of

variance, σ 2
W the within-cluster component, and σ 2 =

σ 2
A + σ 2

W . A sample estimate of ρ may be obtained
using a standard one-way analysis of variance among
and within clusters (e.g. Armitage & Berry [2,
Section 8.7]).

For sample size determination, (1) implies that
the usual estimate of the required number of indi-
viduals in each group should be multiplied by the
variance inflation factor IF = 1 + (m − 1)ρ to pro-
vide the same statistical power as would be obtained
by randomizing km individuals to each group when
there is no clustering effect. This expression is also
well known in the sample survey literature, in which
it is referred to as a “design effect” [43, p. 162].
The special case ρ = 0 corresponds to that of sta-
tistical independence among members of a cluster.
The case ρ = 1, on the other hand, corresponds to

total dependence. In this case all responses in a clus-
ter are identical, so that the total information supplied
by the cluster is no more than that supplied by a sin-
gle member, i.e. the “effective cluster size” is one.
In general, the effective cluster size is given by the
simple formula m/[1 + (m − 1)ρ].

Given this loss of efficiency relative to individ-
ual randomization, the reasons for adopting cluster
randomization must clearly rest on other considera-
tions. Basic feasibility considerations were cited by
Bass et al. [4] in their choice of a cluster random-
ized design for evaluating a program to enhance the
effectiveness of hypertension screening and manage-
ment in general practice. It was recognized that such
a program would not function effectively if some
patients in a practice but not others were entered into
it. Randomization at the practice level also enhanced
physician compliance by avoiding the potential ethi-
cal challenges that could arise when not all patients in
a practice are offered a new intervention. Finally, ran-
domization at this level also avoids the contamination
that could occur when knowledge of the experimen-
tal intervention influences the responses of subjects
in the control group.

Investigator concerns regarding the possibility of
contamination may be particularly acute in trials of
infectious diseases where the aim of the study is
to reduce the transmission of infection. Individual
randomization might prove impractical in such trials
because the dynamics of transmission might lead
subjects who do not receive the intervention to
nevertheless receive protection as a consequence of
herd immunity [14, 38].

In some studies randomization by cluster is the
only natural choice or a clear necessity, with no spe-
cial justification required. This was arguably the case
in the HIV prevention trial described by Grosskurth
et al. [36]. As the authors note, randomization was
necessary at the community level since the interven-
tion involved the provision of improved services at
designated health facilities, with these services avail-
able to the entire population served by each facility.

Historical Development of Cluster
Randomization

The British Medical Research Council’s 1946 study
of streptomycin for the treatment of tuberculosis
is generally considered to be the first publication
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of a clinical trial with a properly randomized con-
trol group [54, 60, pp. 17–18]. The success of the
streptomycin trial in instilling the virtues of ran-
dom assignment among clinical researchers was at
first quite modest. For example, none of the 29 tri-
als reported in the New England Journal of Medicine
in 1953 used randomized controls [11]. In spite of
a fairly steady and dramatic increase, only 50% of
clinical trials published in the late 1970s could claim
to have employed randomization. There are also
very few examples of properly designed and analyzed
cluster randomization trials conducted by health care
researchers prior to 1978.

However, there were several notable cluster
randomization trials conducted by epidemiologists
interested in evaluating methods for preventing tuber-
culosis (e.g. [26]). These investigators randomized
433 groups of hospital wards in double-blind fashion
(see Blinding or Masking) to either an experimen-
tal or placebo control group. The test of interven-
tion effect was adjusted for clustering by adapting a
method described by Cochran [12] for the analysis of
sample survey data.

The statistical features of cluster randomization
were first brought to wide attention in the health
research community by Cornfield [15]. His paper
made it clear that such allocation schemes are less
efficient, in a statistical sense, than designs that
randomize individuals to intervention groups. This
general result, however, was recognized much earlier
in the statistical literature (see [75]).

The 1980s saw a dramatic increase in the devel-
opment of methods for analyzing correlated outcome
data in general (e.g. [3] and [77]) and methods for
the design and analysis of cluster randomized tri-
als in particular (e.g. [21] and [32]). As might be
expected, publication of this work did not immedi-
ately translate into any marked improvement in the
methodological quality of cluster randomized trials.
The difficulties investigators continued to experience
with the design and analysis of cluster randomization
trials were demonstrated in several methodological
reviews (e.g. [22], [70] and [71]). Similar results were
reported in each of these reviews, with less than 25%
of the studies considered accounting for between-
cluster variation when determining trial power. The
situation was somewhat improved with respect to
data analysis, where the effects of clustering were
seen to be accounted for by at least 50% of the tri-
als considered in each review. It is reasonable to

expect further improvements in the methodological
quality of cluster randomization trials as appropri-
ate methods of analysis and reporting are gradually
being incorporated into standard checklists for report-
ing randomized controlled trials (e.g. [5]).

The Role of Informed Consent

Every randomized trial requires assurance that the
proposed study meets commonly accepted ethical
standards. This task is particularly complex for cluster
randomization trials since almost all ethical guide-
lines have been written from the sole perspective of
trials that randomize individuals. Only recently has
attention been given to the unique ethical challenges
posed by cluster randomization (e.g. [24] and [33])
(see Medical Ethics and Statistics).

For instance, according to the World Medical
Association Declaration of Helsinki (World Medi-
cal Association [79]) consent must be obtained from
each patient prior to random assignment. The situ-
ation is more complicated for cluster randomization
trials particularly when randomizing larger units (e.g.
schools, communities, worksites). Then school princi-
pals, community leaders or other key decision-makers
will usually provide permission for both random
assignment and implementation of the intervention.
Individual study subjects must still be free to with-
hold their participation, although they may not even
then be able to avoid completely the inherent risks
of an intervention that is applied on a cluster-wide
level.

The identification of individuals mandated to pro-
vide agreement for random assignment may not be a
simple task. Typically it is elected or appointed offi-
cials who make such decisions. However, as Strasser
et al. [73] point out, it is by no means certain when
or even if securing the agreement of these officials is
sufficient.

The practical difficulties of securing informed con-
sent prior to random assignment do not necessarily
arise when smaller clusters such as households or
families are the unit of randomization. For instance,
Payment et al. [59] evaluated the risk of gastroin-
testinal disease in households randomly assigned
to receive domestic water filters as compared with
households using tap water. One of the eligibility cri-
teria was “willingness to participate in a longitudinal
trial in which a random half of the households would
have a filter installed”.
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The relative absence of ethical guidelines for
cluster randomized trials appears to have created a
research environment in which the choice of random-
ization unit may determine whether or not informed
consent is deemed necessary prior to random assign-
ment. This phenomenon can be seen, for example,
in the several published trials of vitamin A supple-
mentation on childhood mortality. Informed consent
was obtained from mothers prior to assigning chil-
dren to either vitamin A or placebo in the household
randomization trial reported by Herrera et al. [39].
This was not the case in the community intervention
trial of vitamin A reported by the Ghana VAST Study
Team [31], where consent to participate was obtained
only after random assignment. It seems questionable,
on both an ethical and methodological level, whether
the unit of randomization should play such a critical
role in deciding whether or not informed consent is
required.

Selecting an Experimental Design

There are three designs that are most frequently
adopted in cluster randomization trials:

1. completely randomized, involving no pre-stratifi-
cation or matching of clusters according to base-
line characteristics;

2. matched-pair, in which one of two clusters in a
stratum are randomly assigned to each interven-
tion;

3. stratified, involving the assignment of two or
more clusters to at least some combinations of
stratum and intervention.

An interesting example of the completely random-
ized design is given by the ACEH study, as reported
by Abdeljaber et al. [1]. This trial was designed to
evaluate the effectiveness of vitamin A supplemen-
tation on the one-year prevalence of cough, fever
and diarrhea among Indonesian children. The com-
pletely randomized design was very appropriate for
the ACEH trial since there were over 200 villages
assigned to each of the experimental and control
groups.

Matching or stratification is often considered for
community intervention trials in which the numbers
of clusters that can be enrolled may be limited by eco-
nomic or practical considerations. The main advan-
tage of this design is its potential to provide very

tight and explicit balancing of important prognostic
factors, thereby improving the power for detecting
the effect of intervention. An illustrative example
is the COMMIT trial which was designed to pro-
mote smoking cessation using a variety of community
resources [13]. This trial involved 11 pairs of com-
munities matched on the basis of community size,
population density, demographic profile, community
structure and geographic proximity.

In spite of its obvious potential for creating com-
parable groups of subjects, there are some important
analytic limitations associated with the matched-pair
design. These limitations arise because of the inher-
ent feature of this design that there is exactly one
cluster assigned to each combination of interven-
tion and stratum. As a result, the natural variation in
response between clusters in a matched pair is totally
confounded with the effect of intervention. Thus it
is impossible to obtain a valid estimate of ρ with-
out making special assumptions (e.g. the intervention
has no effect). This difficulty, which complicates
both sample size determination and data analysis, is
explored further by Klar & Donner [44].

The stratified design is an extension of the
matched-pair design in which several clusters, rather
than just one, are randomly assigned within strata
to each of the intervention and control groups. An
example of this design is provided by CATCH [52].
In this study the unit of randomization was the
elementary school, while the strata consisted of four
cities in the US with 24 schools randomly assigned
to the experimental or control group within each city.

The stratified design has been used much less
frequently than either the matched-pair or completely
randomized design. However, for many studies it
would seem to represent a sensible compromise
between these two designs in that it provides at least
some baseline control on factors thought to be related
to outcome, while easing the practical difficulties
of finding appropriate pair-matches and avoiding the
special analytic challenges raised by the matched-pair
design.

Sample Size Estimation

A quantitatively justified sample size calculation is
almost universally regarded as a fundamental design
feature of a properly controlled clinical trial. Yet, as
noted above, methodologic reviews of cluster ran-
domization trials have consistently shown that only
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a small proportion of these studies have adopted a
predetermined sample size based on formal consid-
erations of statistical power. Moreover, some inves-
tigators have designed community intervention trials
in which exactly one cluster has been assigned to the
experimental group and one to the control group (e.g.
[6] and [56]). Such trials invariably result in interpre-
tational difficulties caused by the total confounding of
two sources of variation: (i) the variation in response
due to the effect of intervention and (ii) the natural
variation that exists between communities.

There are several possible explanations for the
difficulties investigators have faced in designing
adequately powered studies. One obvious reason is
that the required sample size formulas still tend
to be relatively inaccessible, not being available,
for example, in most standard texts or software
packages. A second reason is that the proper use of
these formulas requires some prior assessment of the
intracluster correlation coefficient ρ, either directly
or through comparable information on the value of
σ 2

A, the between-cluster component of variation. Such
information is not always easily available.

Difficulties in obtaining accurate estimates of
intracluster correlation are slowly being addressed
as more investigators begin publishing these values
in the reporting of trial results (e.g. [68]). Summary
tables listing intracluster correlation coefficients and
variance inflation factors from a wide range of cluster
randomization trials and complex surveys are also
starting to appear (e.g. [20, Chapter 5]). In practice,
estimates of ρ are almost always positive and tend to
be larger in smaller clusters [37].

The calculation of sample size also requires the
specification of the cluster size m. However, the
actual size of the clusters randomized is frequently
determined by the selected interventions. For exam-
ple, households were the natural unit of randomiza-
tion in the study reported by Payment et al. [59],
which, as noted above, considered the effect of
domestic water filters on subjects’ risk of gastroin-
testinal disease. Consequently the average cluster size
at entry in this trial was approximately four. When,
on the other hand, relatively large clusters are ran-
domized, subsamples of individual cluster members
may be selected to reduce costs. For example, the
end point for the community intervention trial COM-
MIT was the quit rate of approximately 550 heavy
smokers selected from each cluster [13].

Equation (1) may be applied directly to determine
the required sample size for a completely randomized
design. Let Zα/2 denote the two-sided critical value
of the standard normal distribution corresponding
to the error rate α, and Zβ denote the critical
value corresponding to β. Then, if Y 1 − Y 2 can
be regarded as approximately normally distributed,
then the number of subjects required per intervention
group is given [21] by

n = (Zα/2 + Zβ)2(2σ 2)[1 + (m − 1)ρ]

(µ1 − µ2)2
, (3)

and µ1 − µ2 denotes the magnitude of the difference
to be detected. Equivalently the number of clusters
required per group is given by k = n/m. With this
allocation, the “effective sample size” for each group
would be given by n/[1 + (m − 1)ρ]. Thus at ρ = 0,
(3) reduces to the usual sample size specification
(e.g. [2, Section 6.6]).

The degree of variance inflation due to clustering
can be profound even for very small values of ρ.
For example, as part of a pilot study for a planned
worksite intervention trial, the estimated intracluster
correlation coefficient is given by ρ̂ = 0.04 [41].
Since approximately 70 subjects were eligible per
worksite the required sample size is about four
times that required for a comparable individually
randomized trial.

In the case of unequal cluster sizes, we may
replace m in (3) with the average cluster size m. This
approximation will tend to underestimate slightly the
actual required sample size, but the underestimation
will be negligible provided the variation in cluster
size is not substantial. Further inaccuracy may result
due to the inherent imprecision in the estimate of
ρ. For example, the pilot study reported by Hsieh
[41] included only four clusters, so that the estimated
value of ρ computed from this study would be quite
imprecise. It is therefore usually advisable to perform
sensitivity analyses that explore the effect of different
values of ρ on the estimated sample size.

Sensitivity analyses can also be useful for com-
munity intervention trials when assessing the effect
of the number of clusters per intervention group and
the subsample size on statistical efficiency. Such anal-
yses will tend to reveal that greater gains in power
will be obtained by increasing the number of clus-
ters rather than the subsample size (see, for example,
[41]), an easily demonstrated consequence of (1).
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A similar approach may be used to determine
sample size for completely randomized or stratified
designs when the primary study endpoint (see Out-
come Measures in Clinical Trials) is binary (see,
for example, [18]). That is, the number of subjects
required per intervention group may be calculated
using standard sample size formulas applicable to
individually randomized trials after multiplication by
the inflation factor IF = 1 + (m − 1)ρ.

Unfortunately, the absence of appropriate mea-
sures of intracluster correlation for time to event and
incidence rate data (see [66]) complicates sample
size determination even for completely randomized
designs. Alternative procedures for these outcomes
have been described by Hayes & Bennett [38].

Difficulties in obtaining measures of intracluster
correlation also complicate sample size determination
for matched-pair designs. One simple alternative is
to determine the sample size by assuming that the
trial is completely randomized. Ignoring differences
in degrees of freedom between the two designs,
this approach will tend to be conservative [53].
Greater precision may be obtained when the effect
of matching can be accurately estimated in advance,
using, for example, the within-stratum component
of variation σ 2

AM = σ 2
A(1 − ρM), where ρM measures

the effectiveness of the matching. Unfortunately,
except for a few notable exceptions (e.g. [29]) it
can be quite difficult to match successfully. Donner
& Klar [20, Chapter 3] cite examples of trials in
which matching may even have resulted in a loss
of efficiency.

Unit of Inference and Unit of Analysis

Many of the challenges of cluster randomization arise
because inferences are frequently intended to apply
at the individual level while randomization is at the
cluster level. If inferences were intended to apply
at the cluster level, implying that an analysis at
the cluster level would be most appropriate, then
the study could be regarded, at least with respect
to sample size estimation and data analysis, as
a standard clinical trial. For example, one of the
secondary aims of the Child and Adolescent Trial
for Cardiovascular Health (CATCH) was to assess
the effect of training food service personnel on
how to improve the dietary content of lunch menus.
The resulting analyses of dietary content were then
naturally conducted at the cluster (school) level.

Analyses are inevitably more complicated when
data are available from individual study subjects
where the investigator must account for the lack of
statistical independence among observations within a
cluster. An obvious method of simplifying the prob-
lem is to collapse the data in each cluster, followed
by the construction of a meaningful summary mea-
sure, such as an average, which then serves as the
unit of analysis. Standard statistical methods can then
be directly applied to the collapsed measures. This
removes the problem of nonindependence since the
subsequent significance tests and confidence inter-
vals would be based on the variation among clus-
ter summary values rather than on variation among
individuals.

An important special case arises in trials having
a quantitative outcome variable when each cluster
has a fixed number of subjects. In this case the test
statistic obtained using the analysis of variance is
algebraically identical to the test statistic obtained
using a cluster-level analysis [40, 46]. Thus, the
suggestion that is sometimes made that a cluster-level
analysis intrinsically assumes ρ = 1 is misleading,
since such an analysis can be efficiently conducted
regardless of the value of ρ. It is important to note,
however, that this equivalence between cluster-level
and individual-level analyses, which holds exactly for
quantitative outcome variables under balance, holds
only approximately for other outcome variables (e.g.
binary, time to event, count). A second implication of
this algebraic identity is that concerns for the ecologic
fallacy (e.g. [47]) cannot arise in the case of cluster-
level intention to treat analyses since the assigned
intervention is shared by all cluster members.

In practice, the number of subjects per cluster
will tend to exhibit considerable variability, either by
design or by subject attrition. Cluster-level analyses,
which give equal weight to all clusters, may prove
to be imprecise. However, the precision of appro-
priately weighted cluster-level analyses is asymptoti-
cally equivalent to individual-level analyses. If there
is only a small number of clusters per intervention
group, then the resulting imprecision in the estimation
of these weights might even result in a loss of power
(e.g. [67]). Moreover, the validity of approximate
individual-level analyses may then become question-
able. In this case it might be preferable to consider
exact statistical inferences constructed at the clus-
ter level based on the randomization distribution for



Cluster Randomization 7

the selected experimental design (e.g. completely ran-
domized, matched-pair, stratified).

We now present methods for the analysis of
common study outcomes (e.g. binary, quantitative,
count, time to event) typical of cluster randomization
trials. The order and detail provided for each study
outcome reflect the relative frequency with which
these different types of outcome data are encountered
in cluster randomization trials.

Analysis of Binary Outcomes

Methods for analyzing binary (dichotomous) outcome
data in cluster randomization trials are not as well
established as methods for analyzing quantitative out-
comes. The analytic issues involved are complicated
by the absence of a unique multivariate extension of
the binomial distribution analogous to the multivari-
ate normal distribution, and by the fact that there is
no single approach that has uniformly superior pro-
perties.

It follows that there are several procedures that
may be used to test H0 : P1 = P2, where Pi is the true
event rate for the ith intervention group, i = 1, 2. To
make ideas concrete, the discussion will take place
in the context of a completely randomized, school-
based smoking prevention trial [55]. In this study, 12
schools were randomly assigned to each of four con-
ditions including three experimental conditions and
a control condition (existing curriculum). For pur-
poses of illustration we are interested in comparing
the effect of the Smoke Free Generation interven-
tion with the existing curriculum on the proportion
of children who report using smokeless tobacco after
two years of follow-up.

The overall observed rates of tobacco use in the
experimental and control groups are 0.043 (58/1341)

and 0.062 (91/1479), respectively. Investigators fre-
quently use inappropriate methods, such as the Pear-
son chi-square statistic, to test the effect of interven-
tion in cluster randomization trials [70]. Application
of this statistic to comparing the overall event rates
in the two groups yields χ2

P = 4.69 (P = 0.03). This
result might be taken to imply that the use of smoke-
less tobacco among experimental group individuals is
significantly reduced as compared with control group
individuals. However, a fundamental assumption of
this procedure is that the sample observations are
statistically independent. This assumption is almost

certainly violated here, since it is more reasonable
to assume that responses taken on subjects within
a school are more similar than responses taken on
subjects in different schools, i.e. to assume that the
intracluster correlation coefficient ρ is positive. This
would imply that the computed P value of 0.03 is
likely to be biased downward.

Donner & Donald [19] proposed an adjustment for
Pearson’s chi-square statistic that depends on com-
puting correction factors for the effect of clustering.
For clusters of fixed size m, the adjusted Pearson chi-
square test statistic reduces to χ2

P /[1 + (m − 1)ρ̂],
where ρ̂ is the sample estimate of ρ.

For the data from the smoking prevention trial
we have ρ̂ = 0.01, with group-specific correction
factors C1 = 2.54 and C2 = 2.60. The adjusted chi-
square statistic χ2

A = 1.83 (P = 0.18), which is not
statistically significant at any conventional level.

Similar conclusions can be reached using other
simple modifications of the Pearson chi-square statis-
tic, as in, for example, the ratio estimator approach
described by Rao & Scott [61]. Cluster-level anal-
yses based on the two-sample t-test comparing the
mean event rates, or nonparametric alternatives (e.g.
Fisher’s two-sample permutation test, the Wilcoxon
rank sum test) also provide essentially the same
results for this example.

It is possible that the absence of a statistically sig-
nificant effect of intervention in this example is due,
at least in part, to chance imbalance on prognostically
important baseline covariates (see Covariate Imbal-
ance, Adjustment for). Such imbalance, of course,
may arise in any randomized trial. However, for a
given total number of individuals, the probability
of a substantive imbalance will be higher in a trial
randomizing clusters, owing to the smaller effective
sample size. Provided the number of clusters is suffi-
ciently large, multiple regression models may be used
to account for such an imbalance, as well as to help
increase the precision with which the intervention
effect is estimated.

The effect of covariate adjustment on the esti-
mated effect of intervention for a binary outcome
variable may be explored using extensions of logis-
tic regression adjusted for clustering. Two possible
choices are the logistic–normal model and the gen-
eralized estimating equations (GEE) extension of
logistic regression [50, 57]. An advantage of these
extensions is that they may be used to account
for an imbalance on individual-level (e.g. sex) as
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well as cluster-level (percent male, cluster size)
characteristics.

The logistic–normal model assumes that the logit
transform of the probability of using smokeless
tobacco follows a normal distribution across clusters.
Likelihood ratio tests will have maximum power
to detect the effects of intervention as statistically
significant when such parametric model assumptions
are satisfied.

In practice it may be difficult to ensure that the
assumptions underlying the use of parametric models
hold. We therefore limit attention here to the GEE
approach, which has the advantage of not requiring
specification of a fully parametric distribution. Two
distinct strategies are available to adjust for the effect
of clustering using the GEE approach. The first can
be said to be model-based, since it requires the speci-
fication of a working correlation matrix that describes
the pattern of correlation between responses of cluster
members. For cluster randomization trials the sim-
plest assumption to make is that the responses of
cluster members are equally correlated, i.e. exchange-
able. The second strategy to adjust for the effect
of clustering employs “robust variance estimators”
that are constructed using between-cluster informa-
tion. These estimators consistently estimate the true
variance even if the working correlation matrix is
misspecified. Moreover, provided there are a large
number of clusters, inferences obtained using robust
variance estimators will become equivalent to those
obtained using the model-based strategy when the
working correlation matrix is correctly specified.

The sample odds ratio comparing the use of
smokeless tobacco in the experimental vs. the control
group may be obtained by fitting a GEE extension
of logistic regression with a working exchangeable
correlation matrix. The resulting odds ratio is given
by 0.67 with a 95% robust confidence interval given
by (0.41, 1.09). The corresponding one-degree-of-
freedom chi-square test statistic is given by χ2

LZR =
2.62 (P = 0.11). Adjustment for subject age and sex
results in a stronger observed effect of intervention,
giving an adjusted odds ratio estimate of 0.65. As
in earlier analyses, however, the association is not
statistically significant.

The data from a matched-pair cluster randomiza-
tion trial with a binary outcome variable and k strata
may be summarized in a series of k 2 × 2 contin-
gency tables. Methods used to evaluate the effect
of intervention in matched-pair designs must rely

on estimates of variance obtained using between-
stratum information. Methods of analysis which may
be used to test for an effect of intervention include
a version of the one-sample permutation test as pro-
posed by Liang [49] and a paired t-test as applied
to the stratum-specific difference in event rates. Note
that a naive application of the Mantel–Haenszel test
statistic, χ2

MH , is invalid since dependencies among
responses of cluster members induce extra variabil-
ity not accounted for in the test statistic. Thus, the
true level of significance associated with χ2

MH may
be substantially greater than the nominal significance
level if the clustering effect is ignored. These methods
have been compared in the context of a hypertension
screening and management trial by Donner [17].

Naive application of the Mantel–Haenszel test
statistic is similarly inappropriate for analyses of
data from stratified cluster randomization trials. The
required generalization of the Mantel–Haenszel pro-
cedure is given by Donner [18].

Statistical analyses for the stratified design may
also be conducted using GEE or other extensions
of logistic regression. Unlike the adjusted Man-
tel–Haenszel procedure, the use of GEE in this con-
text allows adjustment for individual-level as well as
cluster-level covariates. However, these extensions of
logistic regression are not directly applicable to the
analyses of data from matched-pair designs unless
the variance term is computed from between-stratum
information and under the added assumption that
there is no intervention by stratum interaction. A fur-
ther limitation is that paired designs inevitably have
fewer degrees of freedom for the estimation of error
than either the completely randomized or stratified
designs.

It is important to note, notwithstanding these diffi-
culties, that if the aim of the analysis is limited to the
adjustment or control of individual-level covariates in
assessing the effect of intervention, then appropriate
methods are readily available. These methods take the
form of two-stage procedures based on standardizing
the data with respect to individual-level covariates in
advance of the primary analysis (e.g. [30]).

Analysis of Quantitative Outcomes

Analysis of quantitative outcome data from cluster
randomization trials can often be accomplished using
mixed-effects linear models [51, 74]. These models
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can be most directly used with completely random-
ized or stratified designs to estimate the effect of
intervention, to test if the observed effect is due to
chance, and to adjust for imbalance on baseline prog-
nostic factors.

For balanced designs having a fixed number of
subjects per cluster, standard analysis of variance
(ANOVA) may be used to test for the effect of
intervention. As noted above, statistical inferences
are then exact and identical to those obtained from
cluster-level analyses (e.g. [46]). Of course, in prac-
tice the number of subjects per cluster may be highly
variable. In this case iterative approaches, such as
generalized least squares, are usually the method
of choice for fitting mixed effects linear regres-
sion models, since the associated procedures pro-
vide maximum likelihood estimates of the effect of
intervention [64, Section 6.8]. However, the resulting
inferences will now be approximate rather than
exact [23, Chapter 6], with no unique method for cal-
culating the degrees of freedom [51, Chapter 2].

An interesting application of robust variance esti-
mation is provided by Brook et al. [8] in their analy-
ses of the Rand Health Insurance experiment [58]. In
this study approximately 2000 families from the US
were randomly assigned to one of 14 health insurance
plans to evaluate the extent to which the provision of
free care improves health. The analytic approach was
based on a strategy suggested by Huber [42], a special
case of the more general GEE procedure described by
Liang & Zeger [50]. Further discussion is provided
by Diggle et al. [16, p. 69].

An alternative to classical ANOVA or mixed
effects linear regression is to apply a methodology
often referred to in the behavioral and educational
literature as multilevel modeling [35] or as hierarchi-
cal linear modeling [10]. Results obtained using any
of these approaches are likely to be similar owing to
their very close algebraic relationship (e.g. see [27]).
Note that, in general, the relationship among the
various extensions of logistic regression is more com-
plicated, consistent with the greater challenge posed
by analyses of binary outcome variables (e.g. [57]).

As noted above, the presence of only two clusters
per stratum in the matched-pair design implies that
estimates of between-cluster variability are totally
confounded with the effect of intervention. Tests of
the effect of intervention must therefore be calculated
using between-stratum information on variability.
One simple option is to apply the standard paired

t-statistic to the stratum-specific mean differences. In
the presence of obvious non-normality, reasonable
alternatives are the Wilcoxon signed rank test or
Fisher’s one-sample permutation test.

These methods of analysis are illustrated by Don-
ner & Klar [20, Chapter 7] using data from the British
Family Heart Study [25]. The purpose of this trial
was to examine the effect of a one-year, nurse-led
lifestyle intervention on cardiovascular disease risk
factors, with participating patients recruited from gen-
eral practices.

Analysis of Count and Time to Event
Outcomes

The primary outcome variable in most cluster ran-
domization trials is either binary or continuous.
However, this is not always the case. For exam-
ple, Payment et al. [59], in a study involving count
data, examined the effect of a domestic water fil-
ter on reducing the annual number of gastrointestinal
episodes for each subject. Standard methods for the
analysis of count data (e.g. [7]) were correctly rec-
ognized as being inappropriate, since each episode
would then be counted as an independent event.
Methods that allowed for correlation in the number
of episodes per household were adopted instead.

Individual-level analyses for completely random-
ized designs for count data may be conducted using
relatively simple procedures based on the ratio esti-
mator approach [62]. More computer-intensive pro-
cedures based on extensions of Poisson regression
models which adjust for clustering have also been
described (e.g. see [69]).

Subjects in randomized trials are not always fol-
lowed for the same length of time. Thus, variable
follow-up times may occur because some subjects
have the event of interest early in the trial while oth-
ers survive to the end of the trial (i.e. are censored).
This was the case in the community intervention trial
reported by Sommer et al. [72], which examined the
effect of vitamin A supplementation on childhood
mortality. In such trials count data are often reported
as the number of events that occur relative to the
total follow-up time, yielding an incidence rate that
accounts for the variable follow-up. Extensions of
Poisson regression, which account for clustering, may
again be used to assess the effect of intervention.

An alternative analytic approach is to view the
primary outcome as a failure time random variable.
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The effects of clustering may then be accounted
for using, for example, extensions of exponential or
Weibull failure time models [65]. A semi-parametric
approach based on GEE extensions of the Cox model
might also be considered [20, Chapter 8]. These
regression models may be applied to the analysis of
data from either completely randomized or stratified
designs, provided a reasonably large number of
clusters has been assigned to each intervention group.

Comparison of mortality experience across inter-
vention groups can be graphically displayed using
standard Kaplan–Meier (product–limit) survival
curves. However, standard methods for obtain-
ing corresponding variance estimators need to be
adjusted for the impact of clustering, since other-
wise the resulting statistical inferences will be biased
(e.g. [78]).

As an example of a matched-pair design with
time-to-event outcomes Ray et al. [63] reported on a
randomized trial of a consultation service developed
to help prevent falls and associated injuries in high-
risk nursing home residents. Seven pairs of nursing
homes were enrolled, matched by geographic proxim-
ity and the number of available beds. Time on study
began when the program assessments were initiated
in the nursing homes assigned to the intervention
group, thus further matching the homes for calendar
time. Study subjects were followed for up to one year
after the index date, with observations censored for
various reasons including death or discharge. One of
the primary endpoints was the 12 month incidence
rate of injurious falls (i.e. falls requiring medical
attention) calculated separately for each of the 14
nursing homes. While the mean rate of injurious
falls was lower for intervention facilities (13.7 falls
per 100 person-years) than for control facilities (19.9
falls per 100 person-years) the difference was not
statistically significant (P = 0.22) using a paired t-
test. Similar conclusions were reached by Donner &
Klar [20, Chapter 8] using exact permutation tests, as
suggested by the results of simulation studies reported
by Brookmeyer & Chen [9]. These authors also pro-
posed a two-stage regression approach which may be
used to adjust for imbalance on baseline covariates
not accounted for by random assignment.

Reporting of Cluster Randomization Trials

Reporting standards for randomized clinical trials
have now been widely disseminated (e.g. [5]). Many

of the principles that apply to trials randomizing
individuals also apply to trials randomizing intact
clusters. These include a carefully posed justifica-
tion for the trial, a clear statement of the study
objectives, a detailed description of the planned inter-
vention and the method of randomization and an
accurate accounting of all subjects randomized to the
trial. Unambiguous inclusion–exclusion criteria (see
Eligibility and Exclusion Criteria) must also be for-
mulated, although perhaps separately for cluster-level
and individual-level characteristics. There are, how-
ever, some unique aspects of cluster randomization
trials that require special attention at the reporting
stage. We focus here on some of the most important
of these. A more complete account is provided by
Donner & Klar [20, Chapter 9].

The decreased statistical efficiency of cluster ran-
domization relative to individual randomization can
be substantial, depending on the sizes of the clusters
randomized and the degree of intracluster correla-
tion. Thus, unless there is obviously no alternative,
the reasons for randomizing clusters rather than indi-
viduals should be clearly stated. This information,
accompanied by a clear description of the units ran-
domized, can help a reader decide if the loss of
precision due to cluster randomization is in fact jus-
tified.

Having decided to randomize clusters, investi-
gators may still have considerable latitude in their
choice of unit. Since different levels of statistical
efficiency are associated with different cluster sizes,
it would seem important to select the unit of ran-
domization on a carefully considered basis. However,
it is apparent from published reports that this has
not always been the case. For example, the review
of cluster randomization studies reported by Don-
ner et al. [22] found that only one-quarter of the
trials considered provided reasons for their choice
of randomization unit. An unambiguous definition
of the unit of randomization is also required. For
example, a statement that “neighborhoods” were ran-
domized is clearly incomplete without a detailed
description of this term in the context of the planned
trial.

As noted previously, the consensus that exists
in most clinical trial settings regarding the role of
informed consent has not tended to apply to cluster
randomization trials. By reporting the methods used
(if any) to obtain informed consent in their own trials,
it may gradually become possible for the research
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community to develop reasonably uniform standards
regarding this important issue.

The clusters that participate in a trial, simply
owing to their consent to be randomized, may not
be representative of the target population of clusters.
Some indication of this lack of representativeness
may be obtained by listing the number of clusters
that met the eligibility criteria for the trial, but which
declined to participate, along with a description of
their characteristics.

A continuing difficulty with reports of cluster
randomization trials is that justification for the
sample size is all too often omitted. Investigators
should clearly describe how the sample size for
their trial was determined, with particular attention
given to how clustering effects were adjusted
for. This description should be in the context of
the experimental design selected (e.g. completely
randomized, matched-pair, stratified).

It would also be beneficial to the research com-
munity if empirical estimates of ρ were routinely
published (with an indication of whether or not the
reported values have been adjusted for the effect of
baseline covariates).

It should be further specified what provisions, if
any, were made in the sample size calculations to
account for potential loss to follow-up. Since the
factors leading to the loss to follow-up of indi-
vidual members of a cluster may be very differ-
ent from those leading to the loss of an entire
cluster, both sets of factors must be considered
here.

A large variety of methods, based on very dif-
ferent sets of assumptions, have been used to ana-
lyze data arising from cluster randomization trials.
For example, possible choices for the analysis of
binary outcomes include adjusted chi-square statis-
tics, the GEE method and logistic–normal regres-
sion models. These methods are not as familiar
as the standard procedures commonly used to ana-
lyze clinical trial data. This is partly because the
methodology for analyzing cluster randomization tri-
als is in a state of rapid development, with virtu-
ally no standardization and a proliferation of asso-
ciated software. Therefore it is incumbent upon
authors to provide a clear statement of the statis-
tical methods used, and accompanied, where it is
not obvious, by an explanation of how the analy-
sis adjusts for the effect of clustering. The software

used to implement these analyses should also be
reported.
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Cluster Sampling,
Optimal Allocation

Optimal allocation refers to the use of a survey
sampling project’s resources in a manner that either
minimizes sampling variance for a fixed cost or min-
imizes cost to obtain a fixed variance. When a survey
has several objectives or population parameters to
be estimated, the sampling statistician needs to con-
sider the designs that are optimal for each objective.
He or she should then present the alternatives to the
client and provide statistical guidance in making an
informed choice.

Sampling units may be allocated optimally either
across strata (see Stratified Sampling, Allocation in)
or by varying the cluster structure of the population.
This article discusses the optimal number of sample
clusters and sample units (or elements) within clusters
[2, 3].

The simplest case is for a one-stage cluster sample
(see Cluster Sampling), where each cluster contains
the same number of elements, where we select a
simple random sample of the clusters; and where
we select and measure each unit within each of the
sample clusters. An example of this scenario is in
area sampling, where we are trying to determine the
optimum number of units to group together to form
a chunk or segment. The chunks or segments are
the clusters and the number of clusters in a given
arrangement of the population is denoted Ma . The
number of units in the ith cluster, i = 1, . . . , Ma ,
is Nai (= Na for all i since the number of units or
elements within clusters is assumed to be the same
for all clusters). The total number of units in the
population is N = ∑Ma

i=1 Nai = MaNa . The sample
consists of ma clusters selected at random, which
yields a total of na = ∑ma

i=1 Na = maNa sample ele-
ments. Suppose we wish to estimate (see Estimation)
the mean over all elements of a characteristic, X,
which takes on the values xij for the j th unit in the ith
cluster, j = 1, . . . Na and i = 1, . . . , Ma . An unbi-
ased estimate is xa = ∑ma

i=1

∑Na

j=1 xij

/
maNa , which

has variance

var(xa) = S2
a1

ma

(
Ma − ma

Ma

)2

,

where Sa1 is the standard deviation of the
distribution of cluster means. That is,

Sa1 =





Na

Ma∑

i=1

(Xai − X)2

Ma − 1





1/2

,

Xai =

Na∑

j=1

Xij

Na

,

and

X =

Ma∑

i=1

Na∑

j=1

Xij

N
.

The precision of the estimate depends on the relation-
ship between Sa1 and ma . For estimating the mean
per unit of a characteristic, the optimum arrangement
of the population into clusters can be determined [1,
p. 234] from the fact that both the relative cost for a
fixed variance, var(x), and the relative variance for
a fixed cost, C, are proportional to S2

a1Ca , where Ca

is the relative cost of measuring a cluster in the ath
allocation scheme.

The usual procedure for determining Na is to
examine several allocation schemes and select the
one that minimizes variance for a fixed cost. For
example, suppose the cost to drive to a cluster of any
size averages about $10. Once at the cluster, it may
take 5 minutes to measure a unit. If the measurement
costs $15 per hour, then we can measure 12 units
in an hour at a cost of $1.25 per unit. We may
want to decide between a plan with 60 units per
cluster and one with 30 units per cluster. Suppose
that previous surveys have shown the large clusters
to have a standard deviation of 10 across clusters
and the smaller clusters have a standard deviation
of 15. This is the standard deviation of the mean
unit characteristic across clusters S60B and S30B,
respectively. The two costs are:

C30 = $10 + 30($1.25) = $47.5 per cluster,

and

C60 = $10 + 60($1.25) = $85 per cluster.
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The relative variances for a fixed cost are:

var30 ∝ 47.5 × 152 = 10 687.5

and

var60 ∝ 85 × 102 = 8500.

For this characteristic, the larger cluster would be
preferred. The process is then repeated for each
survey objective and the client then needs to exercise
judgment as to which allocation best fits the project’s
overall goals.

The next level of complication is to consider clus-
ters of unequal size, Nai . Let Na = ∑Ma

i=1 Nai

/
Ma be

the average cluster size. An estimator of the mean per
unit is xa = ∑ma

i=1

∑Nai

j=1 xij

/
maNa . One approach is

to treat the units as if they have approximately equal
size by replacing Nai by Na and proceeding as if the
cluster sizes were equal. In some circumstances the
clusters may be stratified to increase the homogeneity
of size.

Another complication occurs when we observe
that units within clusters have similar values for
the characteristic of interest. This homogeneity of
units within clusters implies that measuring all the
units within a cluster is very unlikely to provide as
much information as obtaining measurements from a
few units selected from several clusters. This leads
to a two-step or two-stage sampling design (see
Multistage Sampling).

For a two-stage design, ma clusters are selected at
random. Within each selected cluster a sample of nai

units, i = 1, . . . , ma , are measured. As with simple
one-stage cluster sampling there are Ma clusters
each containing Na units. The subscript a indexes
the particular allocation scheme. A complete sample
contains na = ∑ma

i=1 nai units. It is reasonable to fix
nai = na since the clusters are of equal size. The
estimator of the population mean per unit is

xa =

ma∑

i=1

na∑

j=1

xij

mana

.

This estimator is unbiased [1, Theorem 10.1, p. 277]
and has standard error:

se(xa)

=
[(

Ma − ma

Ma

)
S2

a1

ma

+
(

Na − na

Na

)
S2

a2

mana

]1/2

,

where

S2
a1 =

Ma∑

i=1

(
Xai − X

)2

Ma − 1

and

S2
a2 =

Ma∑

i=1

Na∑

j=1

(Xij − Xai)
2

Na − 1
.

These two variances have the following practical
interpretation:

1. Sa1 is the between-cluster standard deviation of
the cluster means; thus, as clusters become larger
this should become smaller.

2. Sa2 is the within-cluster standard deviation; thus,
as the clusters become larger this should become
larger.

Optimal allocation means altering the cluster size so
as to balance these two sources of variation. The
balance is affected by the cost of preparing a cluster
for subsampling and the cost of measuring units
within the cluster.

Many different cost functions have been exam-
ined, but that proposed earlier provides an appropriate
model for many situations. Let the total cost depend
only on the cost of preparing a cluster, c1, and the
cost of measuring a unit, c2. The relative survey
cost for a particular allocation scheme is then ca =
c1ma + c2mana . Following Cochran [1, p. 280], to
find the choice of sample cluster size, na , that opti-
mizes the survey, we write the variance as

var(xa) = 1

ma

(
S2

a1 − S2
a2

Na

)
+ S2

a2

mana

− S2
a1

Ma

.

It follows that the problem reduces to minimizing the
following product:

C

(
var(xa) + S2

a1

Ma

)
=

(
S2

a1 − S2
a2

Na

+ S2
a2

na

)
(c1 + c2na).

Using Lagrange multipliers and differentiating we
obtain:

na,opt = Sa2

Sau

(
c1

c2

)1/2

,

where S2
au = S2

a1 − (S2
a2/Na) and we assume S2

au > 0.
Thus the within-cluster sample should be increased



Cluster Sampling, Optimal Allocation 3

as the within-cluster standard deviation increases and
as the cost of preparing a cluster increases. Sau is
the between-cluster standard deviation reduced by
the relative within-cluster standard deviation. The
optimum varies inversely with this term.

Suppose, in our earlier example, we learn that the
size 30 segments yield S30,2 = 1 and S60,2 = 4. Then

S30,u =
(

152 − 12

30

)1/2

≈ 15

and

S60,u =
(

102 − 42

60

)1/2

≈ 10.

The optimum within cluster sizes are

n30,opt = 1

15

(
10

1.25

)1/2

= 0.189

(or one unit per cluster) and

n60,opt = 4

10

(
15

1.25

)1/2

= 1.39

or two units per cluster. Solving the cost model for
ma allows us to evaluate the alternative sample sizes:

m30 = C

(10 + 1.25 × 1)
= C × 0.0889

and

m60 = C

(10 + 1.25 × 2)
= C × 0.08.

The greatest reduction in variance for fixed cost
occurs by maximizing ma , so we would select a
design with 30 units per cluster and select one unit
per cluster at random.

The most complex situation for two-stage sam-
pling is when the first-stage units (clusters) are of
widely varying size. As a first step, the population
of clusters can be stratified by size so as to create
more homogeneous clusters (see Stratified Sam-
pling). These are then sampled as above. Beyond
this the allocation problem becomes quite complex.
For additional discussion, the relevant material in
Cochran [1] is quite complete.
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Cluster Sampling

The term cluster sampling has been used to catego-
rize sampling designs in which the sampling units are
groups (or clusters) of enumeration units and there
is only one stage of sampling [2, 3]. In other words,
cluster sampling involves taking a sample of clusters
according to some sampling plan and then selecting
every enumeration unit within each cluster that was
sampled. In contrast, designs that sample clusters of
enumeration units but involve more than one stage
of sampling are generally referred to as multistage
sampling. The term cluster sampling, as used here,
is synonymous with terms such as single-stage clus-
ter sampling or one-stage cluster sampling that have
been used widely in the past and may still be seen
occasionally in the literature.

The use of cluster sampling is motivated primarily
by reasons that involve feasibility and economy. In
sampling of human populations, for example, where
estimates are desired on a per-person basis, it is not
usually possible to construct a sampling frame that
lists all individuals or even all households in the
population. There may, however, be a list of city
blocks or other geographical entities that could serve
for sampling purposes as the cluster, and individ-
ual households (and ultimately individual persons)
within each sample cluster can then be enumer-
ated or “listed” and information obtained from them.
Even when a frame can be constructed that con-
sists of lists of individual households, it is often
more economical to use these larger geographical
entities as the sampling unit, especially when the tar-
get population is dispersed over a wide geographical
area.

Our major objective here is to acquaint the reader
with the basic concepts and formulation of cluster
sampling. Our emphasis will be on the various types
of estimation procedures and on issues related to the
cost–effectiveness of cluster sampling. In the ensuing
discussion, we will assume for the sake of simplicity
that the enumeration units are also the elementary
units.

Terminology

Let us suppose that a population contains N elemen-
tary units grouped into M clusters, and that each clus-
ter contains Ni enumeration units (

∑M
i=1 Ni = N);

that we are interested in estimating the level of some
characteristic χ in this population; and that Xij is the
value of χ for enumeration unit j in the ith clus-
ter. Some population parameters are given below for
characteristic χ .

Population total for cluster i:

Xi =
Ni∑

j=1

Xij .

Overall population total:

X =
M∑

i=1

Xi.

Population mean for cluster i:

Xi = Xi

Ni

.

Overall population mean per cluster:

X = X

M
.

Overall population mean per enumeration unit:

X = X

N
.

Average number of elements per cluster:

N = N

M
.

Variance of distribution of cluster totals, Xi

over all clusters:

σ 2
1x =

M∑

i=1

(Xi − X)2

M
.

Let us also suppose that we are taking a sam-
ple of m clusters according to some sample design
and, since this is cluster sampling, selecting all enu-
meration units within each sample cluster. Also, to
simplify notation, let us assume that the clusters
labeled 1, 2, . . . , m are the sample clusters. The total
number, n, of sample enumeration units is equal to
n = ∑m

i=1 Ni , and the analogous sample statistics for
characteristic χ are shown below.

Sample total for cluster i:

xi =
Ni∑

j=1

xij .
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Overall sample total:

x =
m∑

i=1

xi.

Sample mean per cluster:

x =

m∑

i=1

xi

m
.

Sample variance of distribution of xi over all
sample clusters:

s2
1x =

m∑

i=1

(xi − x)2

m − 1
.

One of the characteristics of cluster sampling is
that the formulas for estimates and their standard
errors have a very similar appearance as the esti-
mates for sample designs in which the enumeration
units are sampled directly. The major difference is
that the cluster totals, xi , replace the individual val-
ues, xij . We illustrate this below for the scenario in
which the clusters are sampled by simple random
sampling.

Estimation Under Simple Random
Sampling of Clusters

In cluster sampling, if simple random sampling is
used to select clusters, the design is called simple
cluster sampling or simple one-stage cluster sam-
pling. Under simple cluster sampling, linear estima-
tors such as means and totals are unbiased estimators
of the corresponding population parameters as shown
below. These estimators are shown below.

Estimated population mean per cluster:

xclu =

m∑

i=1

xi

m
. (1)

Estimated standard error of xclu:

ŜE(xclu) =
(

1√
m

)
s1x

(
M − m

M

)1/2

. (2)

Estimated population mean per enumeration unit:

xclu =

m∑

i=1

xi

mN
. (3)

Estimated standard error of xclu:

ŜE(xclu) =
(

1√
mN

)
s1x

(
M − m

M

)1/2

. (4)

Estimated total:

x ′
clu = M

m
x. (5)

Estimated standard error of estimated total:

ŜE(x ′
clu) = M√

m
s1x

(
M − m

M

)1/2

. (6)

One can see that the above equations have the
same form as those appropriate for simple random
sampling of enumeration units with the cluster totals,
xi replacing the enumeration unit totals, xij , and the
number, M , of clusters replacing the number, N , of
enumeration units.

Illustrative Example

Suppose that a health insurance company conducts
an audit of the claims reimbursed to a provider
of medical care services over a calendar year. The
provider was reimbursed for 14 claims submitted on
behalf of 49 patients. Since the audit involves detailed
examination of patient medical files, economy dic-
tates that a simple cluster sample of patients be taken
(implying that all claims reimbursed on behalf of
each sampled patient be audited). The audit involved
taking a cluster sample of m = 7 patients from the
population of M = 49 patients on behalf of whom
reimbursements were made. Table 1 shows the data
obtained from this audit.

From the data on overpayment shown in the last
column of Table 1, we obtain the following summary
statistics:

x =
7∑

i=1

xi = $321.50,

s1x = ($3739.04)1/2 = $61.15,

x ′
clu = 49

7
($321.50) = $2250.50,
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Table 1 Findings of audit on claims made on behalf of seven patients

Claim Total Overpayment Total overpayment
Patient ($) reimbursed ($) ($) per patient (xi ) ($)

1 1 25.00 15.00 15.00
2 1 37.50 18.00

2 75.00 26.00
3 235.00 95.00 139.00

3 1 87.00 28.00 28.00
4 1 24.00 0.00

2 87.00 10.00 10.00
5 1 145.00 49.00

2 123.00 40.50
3 89.00 40.00 129.50

6 1 37.00 0.00 0.00
7 1 167.00 0.00

2 193.00 0.00
3 12.00 0.00 0.00

ŜE(x ′
clu) = 49√

7
($61.15)

(
49 − 7

49

)1/2

= $1048.46.

It should be noted that it is not necessary to know
the total number, N , of enumeration units in order to
perform a simple cluster sample. All that is required
is identification of the clusters. Once the sample
clusters are chosen, the enumeration units, if not
already identified, can be identified as part of the
field work, but this need only be done for the clusters
actually sampled. Although the formulas (3) and
(4), which estimate the mean per enumeration unit
and its standard error, require knowledge of the
total, N , of enumeration units in the population, an
alternative estimator is available that does not require
knowledge of N [3]. This alternative estimator is
a ratio estimator in which the denominator is an
estimate obtained from the sample of the total number
of enumeration units in the population.

Precision of Estimates from Cluster
Sampling

In practice, estimates obtained from cluster sampling
often have higher standard errors than those that
would have been obtained from a simple random
sample of the same number, n, of enumeration units.
This is because the variability among units within
clusters with respect to a characteristic of interest
in the survey may be considerably less than that
among units in the population as a whole. For exam-
ple, in a sample survey of a large city with the city

blocks serving as clusters, there might be consider-
able homogeneity among residents of the same block
with respect to characteristics such as income level,
education level, ethnicity, etc., even though the city,
when considered as a whole, has considerable diver-
sity with respect to such characteristics. Since the
process of cluster sampling involves sampling every
enumeration unit within each sample cluster, there
can be considerable “redundancy” of information.
Another scenario might arrive in a manufacturing
environment in which products are manufactured in
“batches” with each batch containing N individual
products. If the process is such that either all indi-
viduals in a particular batch are defective or none is
defective, then a cluster sample of batches would be
inefficient because it would entail sampling (unnec-
essarily) every product within each sample batch.

The ratio of the variance of an estimator under any
sample design to that at comparable n under simple
random sampling is known as its design effect and
this index is generally used as an indicator of its
precision (or lack thereof).

For cluster sampling, the design effect, DEFFclu

(x ′
clu), of an estimated total is given by

DEFFclu(x
′
clu) =

(
1

N

)(
σ 2

1x

σ 2
x

)(
N − 1

N − N

)
. (7)

This implies that if the variance, σ 2
1x , among cluster

totals is large compared with the overall variability,
σ 2

x , among enumeration units in the population, then
estimated totals from cluster sampling will have high
variances relative to those at the same n from simple
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random sampling. For the example shown above,
we have σ̂ 2

1x = 3662.73, σ̂ 2
x = 715.11, N̂ = 98, and

M = 49, which from relation (7) gives a design effect
equal to 2.587. This implies that an estimated total
from a simple cluster sample will have a variance
that is approximately 2.6 times as high as one that
would be obtained from a simple random sample of
the same number n of enumeration units.

Survey Costs

Although the variance of an estimate from cluster
sampling will invariably be higher at the same sam-
ple size, n, than one obtained from simple random
sampling, the cost of taking a cluster sample that
would yield n(= mn) enumeration units might be
considerably lower than that of taking a simple ran-
dom sample of n enumeration units. Thus, it is not
particularly useful to compare cluster sampling with
simple random sampling at the same sample size, n.
A more appropriate basis for comparing cluster sam-
pling with simple random sampling (or for that matter
with any alternative design) would be at equivalent
cost. One can do this by determining the number, m,
of clusters that can be sampled at some fixed cost, C,
and then determining the number, n, of enumeration
units that can be sampled at this same cost, C. The
design effect (at fixed cost rather than fixed sample
size) would be the ratio of the variance of the estimate
from a cluster sample of these m clusters to that of
the estimate obtained from a simple random sample
of the n enumeration units. Note that in this instance
the n described above for the simple random sample
is not equal to the entity mN that would be the total
number of enumeration units obtained in the cluster
sample.

Illustrative Example

Let us consider the example discussed earlier involv-
ing an audit of claims reimbursed to a provider of
medical care services over a calendar year. The field
costs involved in the survey involve: (i) construction
of the sampling frame; (ii) abstraction of the required
data; and (iii) processing of the data.

Let us suppose that the insurance company has
made payments for N = 98 services that the provider
made to M = 49 patients that calendar year, and that
the names of these patients are in the insurance com-
pany’s database. Let us suppose further that the list of

individual claims is not computerized and that some
clerical work is need to identify the individual claims,
review the medical record, and abstract the data. We
list the following cost components associated with
these operations:

1. Identify and list the individual claim. Let us sup-
pose that it takes 0.50 person hours to identify
and list each individual claim.

2. Abstract and process data from the patient medi-
cal record pertaining to each claim. Let us sup-
pose that it takes on the average 1.25 person
hours to review, abstract, and process the rele-
vant data.

From the above assumptions, we can now list the
field costs associated with simple random sampling
and with cluster sampling.

For simple random sampling, all 98 claims must
be listed no matter what the size of the sample will be,
and this will take 49.0 person hours. The abstraction
and processing costs will be 1.25 × n, where n is
the size of the sample to be taken. Thus, the total
field costs, C, for a simple random sample of n

enumeration units is given by the following:

C = 0.50 × N + 1.25 × n = 49 + 1.25 × n. (8)

For cluster sampling, all claims need to be listed
for the m patients selected in the sample, but no
listing has to be done for the M − m patients not
selected in the sampling. If m clusters are sampled,
then the total field costs would be equal to

C = 0.50 × mN + 1.25 × mN = 3.50m (9)

(since N = 2). At a cost of 64 person-hours, a simple
random sample of 12 claims can be taken based on
the cost function for simple random sampling shown
in relation (8). At the same cost, we can take a cluster
sample of 18 patients (relation 9) which would give
us an expected sample of 36 claims. From (6), using
the estimated value of σ1x computed earlier, we see
that the estimated total overpaid based on a simple
cluster sample of m = 18 patients would have an
estimated standard error equal to $555.96, whereas
that based on a simple random sample of 12 claims
would have an estimated standard error of $708.67.
Thus, in this example, at equivalent cost of 64 person-
hours, cluster sampling would yield a more reliable
estimate than simple random sampling.
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The major reason that cluster sampling often pro-
duces more reliable estimates at equivalent cost than
simple random sampling is that the enumeration units
need to be listed only for the clusters that were
selected in the sample, whereas in simple random
sampling, all enumeration units in the population
need to be listed before sampling can take place. If
listing costs are high, this can put simple random sam-
pling at a great disadvantage over cluster sampling.

For the purposes of illustration, the above discus-
sion oversimplifies the costs associated with simple
cluster sampling and simple random sampling. The
specification of relevant cost components is a com-
plex undertaking and requires considerable experi-
ence with the operations involved in the conduct of
surveys. Groves [1] treats this topic at great length
and identifies a number of important references.

Usefulness of Cluster Sampling

Cluster sampling is most useful when the homo-
geneity among enumeration units within clusters with
respect to the levels of the variables being measured
in the sample survey is no greater than the homo-
geneity among listing units in the population as a
whole. In such instances, cluster sampling can result
in considerable reductions in frame construction and
travel costs without resulting in increased sampling
errors. This, however, rarely occurs in practice since
enumeration units within clusters generally show con-
siderably more homogeneity than is reflected in the
population as a whole. Thus, sampling every enumer-
ation unit within a sample cluster (as is prescribed in
cluster sampling) results in a considerable amount
of redundancy. In practice, this is avoided by using
multistage sampling instead of cluster sampling. In
multistage designs, within each sample cluster, a sub-
sample of enumeration units is taken rather than every
enumeration, and this reduces the redundancy of the
sampling. Thus, multistage sampling is a much more
widely used procedure than cluster sampling.

Sometimes, however, it is not feasible to subsam-
ple within clusters. Levy et al. [4] describes such a
situation that occurred in the planning of a sample
survey in Shanghai, China, in 1986. The target popu-
lation was persons 55 years of age and older residing

in a District within Shanghai, and the clusters were
administrative entities called neighborhood groups
consisting of contiguous households that are orga-
nized for political and social purposes. For each
neighborhood group, a listing of households with the
names and ages of the members is available from the
government.

Because the neighborhood groups consist of con-
tiguous households, it was felt that there would
be considerable homogeneity within neighborhood
groups with respect to information gathered from
each subject of the sample survey. Thus, in the
initial planning, a multistage design was proposed
with a sample taken of individuals within each sam-
ple neighborhood group. The Chinese collaborators,
however, felt that within each neighborhood group
sampled, any attempt to subsample individuals would
seriously compromise the response rate and the over-
all cooperation of the residents. The major reason that
this should be so is that Shanghai residents within the
target age group would have difficulty understanding
why the study would single out one person for inter-
view but not a neighbor in the same age group. Also,
the experience of this population, based on over 40
years of political campaigns under the socialist and
earlier regimes, has led to considerable apprehensions
among the elderly of their being “singled out” for
any kind of interview. Thus, it was felt that a cluster
sampling design that specified interviewing all indi-
viduals 55 years of age and older within each sample
cluster would be the most feasible design.

References

[1] Groves, R. (1989). Survey Methods and Survey Costs.
Wiley, New York.

[2] Kish, L. (1965). Survey Sampling. Wiley, New York.
[3] Levy, P.S. & Lemeshow, S. (1991). Sampling of Popula-

tions: Methods and Applications. Wiley, New York.
[4] Levy, P.S., Yu, E., Liu, W.T., Wong, S., Zhang, M.,

Wang, Z. & Katzman, R. (1989). Single-stage cluster
sampling with a telescopic respondent rule: a variation
motivated by a survey of dementia in elderly residents of
Shanghai, Statistics in Medicine 8, 1537–1544.

PAUL S. LEVY



Cluster Score

In cluster analysis of variables we often obtain
subsets or clusters of variables for the purpose of
producing scores or cluster scores quantifying the
subsets. A cluster score may be simply the sum of
the original measurements on the variables in the
cluster. Often, however, the variables have unequal
standard deviations. In this case the variables are
usually first standardized. Cluster scores can then be
the sum of these standardized measurements. If the
variables of the cluster are equally reliable, then this
is a good strategy. For the case where the variables
of the cluster are not equally reliable and are not
too numerous, we can resort to two other methods
of forming cluster scores. These involve forming a
weighted sum of the original measurements or the
standardized measurements on the variables in each
cluster.

The first method starts by computing the loadings
of the first principal component or the first cen-
troid component separately for each cluster. A cluster
score is then formed as a weighted sum of the stan-
dardized measurements of the variables in the cluster.
The loadings of the first principal component or the
first centroid component are used as the weights. In
symbols, the cluster score for a cluster consisting of
k variables is given by

C = a1X
∗
1 + a2X

∗
2 + · · · + akX

∗
k ,

where a1, . . . , ak are the first component loadings of
the variables in the cluster, and X∗

1, . . . , X∗
k are the

standardized measurements of the k variables.
Kelley [3] proposed another cluster score, which

is a weighted sum of the original variables in the
cluster. The cluster score for a cluster with k variables
is given as follows:

X = w1X1 + w2X2 + · · · + wkXk,

where Xi is the original measurement of the ith
variable and wi = √

rii/[σi(1 − rii)]. rii is the reli-
ability of the ith variable and σi is its standard
deviation. This score is useful when the variables
are educational and psychological tests, and relia-
bility coefficients consistent with the intercorrela-
tions are available. The reliability coefficients may
be obtained by Kuder–Richardson’s KR-20 [4], the
split-half method, the Spearman–Brown formula, and
a reliability approximation given by Cureton et al.
[2]. Kelley’s method maximizes the reliability of the
cluster scores, so it is the preferred method whenever
reliability coefficients are available.

Cureton & D’Agostino [1] suggest that cluster
scores are more useful than component scores (see
Principal Components Analysis) and the factor
scores. This is because the cluster scores are mea-
sured with little error and the interpretation of a
cluster is generally clearer than a factor or compo-
nent (i.e. the interpretation of a cluster is simply the
feature that is common to all the variables in the clus-
ter). They are also more reproducible in other data
sets from similar populations than are component or
factor scores.
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Clustering, Complete
Linkage

Complete linkage clustering is one of several agglom-
erative algorithms used in hierarchical cluster analy-
sis to partition a set of n observations into g groups or
clusters based on the data collected on the n obser-
vations. (See Cluster Analysis of Subjects, Hier-
archical Methods, in particular for determining an
appropriate value of g.)

Specifically, suppose p variables are collected on
the n observations. Let the n × p matrix X contain
these data as follows:

X =



x11 x12 . . . x1p

x21 x22 . . . x2p...
...

...
xn1 xn2 . . . xnp



 .

Prior to performing complete linkage clustering, the
matrix X must first be transformed into an n ×
n matrix D containing pairwise distances between
observations. For example, one common choice for
dij , the elements of D, are the Euclidean
distances

dij =
[

p∑

k=1

(xik − xjk)
2

]1/2

(see Similarity, Dissimilarity, and Distance Mea-
sure). The following steps are taken when per-
forming hierarchical cluster analysis using complete
linkage:

1. Initially, consider each of the n variables as n

clusters. In other words, at the onset we have n

clusters,

C
(1)
1 = S1, C

(1)
2 = S2, . . . , C(1)

n = Sn,

where C
(1)
i is the ith cluster, Si is the ith obser-

vation, i = 1, 2, . . . , n, and where the super-
script indicates that this is the first level of
clustering.

2. Reduce the n observations (clusters) to n − 1
clusters by combining the two observations which
have the smallest “distance” (dij ) between them

into one cluster. Assume, without loss of gen-
erality, that observations S1 and S2 are the two
observations combined, and call the cluster into
which they are combined C

(2)

1 . We then have the
n − 1 clusters

C
(2)
1 = (S1, S2), C

(2)
2 = S3,

C
(2)

3 = S4, . . . , C
(2)

n−1 = Sn (1)

or

C
(2)
1 = (C

(1)
1 , C

(1)
2 ), C

(2)
2 = C

(1)
3 ,

C
(2)

3 = C
(1)

4 , . . . , C
(2)

n−1 = C(1)
n . (2)

3. Determine the distance between each of the
clusters in (2) above. In complete linkage clus-
tering, the “distance” between cluster C

(2)
k and

cluster C
(2)
l , k, l = 1, 2, . . . , n − 1, is defined as

the maximum of all pairwise distances between
observations in cluster C

(2)
k and observations in

cluster C
(2)
l . This distance is denoted as D

(2)
kl .

For example, D
(2)

13 for the clusters from (1)
above is the maximum of (d13, d23), where dij

is the distance between observations i and j .
Note, at this step, D

(2)
kl = dkl for k not equal

to 1.
4. Reduce the n − 1 clusters to n − 2 clusters by

combining the two clusters in (2) with the small-
est value of D

(2)
kl .

5. At subsequent steps, reduce the n − j clusters
to n − j − 1 clusters, j = 2, 3, . . . , n − 2, until
only one cluster (consisting of the entire sample)
is obtained. Then choose an appropriate value of
g, the final number of clusters into which the data
are partitioned.

Note that a general complete linkage formula for
determining the distance between a cluster C

(h)
k and

a cluster C
(h)
l , where C

(h)
k was created by combining

clusters C
(h−1)
i and C

(h−1)
j is

D
(h)
kl = 0.5 × (D

(h−1)
il + D

(h−1)
j l )

+ 0.5 ×
∣∣∣D(h−1)

il + D
(h−1)
j l

∣∣∣ .

Further details can be found in Everitt [1] and Mc-
Quitty [2].
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Clustering, Single Linkage

Single linkage clustering is one of several agglom-
erative algorithms used in hierarchical cluster anal-
ysis (see Cluster Analysis of Subjects, Hierarchi-
cal Methods) to partition a set n observations into
g groups or clusters based on the data collected
on the n observations (determining an appropriate
value of g is covered elsewhere in this Encyclope-
dia).

Specifically, suppose that p variables are collected
on the n observations. Let the n × p matrix X contain
this data as follows:

X =




x11 x12 . . . x1p

x21 x22 . . . x2p...
...

...
xn1 xn2 . . . xnp



 .

Prior to performing single linkage clustering, the
matrix X must first be transformed into an n ×
n matrix D containing pairwise distances between
observations. For example, one common choice for
dij , the elements of D, are the Euclidean distances

dij =
[

p∑

k=1

(xik − xjk)
2

]1/2

.

The following steps are taken when performing hier-
archical cluster analysis using single linkage:

1. Initially, consider each of the n variables as n

clusters. In other words, at the onset we have n

clusters

C
(1)

1 = S1, C
(1)

2 = S2, . . . , C(1)
n = Sn,

where C
(1)
i is the ith cluster, Si is the ith obser-

vation, i = 1, 2, . . . , n, and where the superscript
indicates that this is the first level of clustering.

2. Reduce the n observations (clusters) to n −
1 clusters by combining the two observations
which have the smallest “distance” (dij ) between
them into one cluster. Assume, without loss of
generality, that observations S1 and S2 are the
two observations combined, and call the cluster
into which they are combined C

(2)
1 . We then have

the n − 1 clusters

C
(2)
1 = (S1, S2), C

(2)
2 = S3,

C
(2)

3 = S4, . . . , C
(2)

n−1 = Sn (1)

or
C

(2)
1 = [C(1)

1 , C
(1)
2 ], C

(2)
2 = C

(1)
3 ,

C
(2)

3 = C
(1)

4 , . . . , C
(2)

n−1 = C(1)
n . (2)

3. Determine the distance between each of the
clusters in (2) above. In single linkage clus-
tering, the “distance” between cluster C

(2)
k and

cluster C
(2)
l , k, l = 1, 2, . . . , n − 1, is defined as

the minimum of all pairwise distances between
observations in cluster C

(2)
k and observations in

cluster C
(2)
l . This distance is denoted as D

(2)
kl . For

example, D
(2)
13 for the clusters from (1) above is

the minimum of (d13, d23), where dij is the dis-
tance between observations i and j . Note, at this
step, D

(2)
kl = dkl for k not equal to 1.

4. Reduce the n − 1 clusters to n − 2 clusters by
combining the two clusters in (2) with the small-
est value of D

(2)
kl .

5. At subsequent steps, reduce the n − j clusters
to n − j − 1 clusters (j = 2, 3, . . . , n − 2) until
only one cluster (consisting of the entire sample)
is obtained. Then choose an appropriate value of
g, the final number of clusters into which the data
is partitioned.

Note that a general single linkage formula for
determining the distance between a cluster C

(h)
k and

a cluster C
(h)
l , where C

(h)
k was created by combining

clusters C
(h−1)
i and C

(h−1)
j , is

D
(h)
kl = 0.5 ∗ (D

(h−1)
ik + D

(h−1)
jk )

− 0.5 ∗ |D(h−1)
il + D

(h−1)
j l |.

Further details can be found in Everitt [1], Florek
et al. [2], and Sneath [3], and in the articles Clas-
sification, Overview, and Similarity, Dissimilarity,
and Distance Measure.
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Clustering

Clustering tests are of two basic types – cell count
tests where the number of events in predefined
regions are examined, and distance tests where the
distance between nearest neighbors is examined. Use
of matched control sets is a newer development. More
work is needed on the definition and estimation of
parameters for clustering.

Clustering can be defined as the “irregular” group-
ing of events from a stochastic process in either
space or time or simultaneously in both space and
time. More generally, it can be studied in any metric
space that possesses a uniform or baseline “nonclus-
tered” probability measure for the location of events
(point process) under the null hypothesis of no clus-
tering.

A major issue in this area, which is particularly
acute in the medical context, is the differentiation
between clustering as a general phenomenon, and the
usually post hoc attempt to establish “significance” or
“likelihood” of a real causal agent for a previously
observed “cluster”. The former question is amenable
to reasonably standard statistical analysis. Usually,
data are available from a large area or time period
and a null hypothesis of “no clustering” can be
formed. The description of a realistic alternative
“clustered” hypothesis or family of hypotheses is
usually more difficult, but a number of model cluster
processes exist, and various ad hoc tests have been
developed that will consistently detect a wide range
of departures from the nonclustered null hypothesis.
In many cases, these ad hoc tests have much to
offer, since most clustering models are too inflexible
to encompass the full range of possibilities seen in
practice, and likelihood ratio tests based on them are
usually complicated and may not have good power
against other alternatives.

Unfortunately, it is far more common to encounter
the latter situation, where some measure of “reality”
is demanded for a “cluster” that has been identified
before any statistical analysis has taken place. In
this case, the temporal and/or spatial aspects of the
cluster have been well circumscribed in advance and
formal hypothesis testing is not valid. The problem is
aptly illustrated by the Texas sharpshooter who fires
his shots first and then positions the target to best
advantage afterwards. Attempts to allow for this by
adjusting for multiple potential comparisons are not

very helpful, because the adjustment factor depends
on the domain used for this, and by taking a large
enough spatial or temporal domain, any cluster can be
reduced to nonsignificance. In the end, the “reality” of
any cluster ultimately depends on finding a cause and
establishing that it also causes the disease in question
in other circumstances. However, this is a costly and
time-consuming process, and the “art of statistics” has
an important role to play in helping to focus attention
on “clusters” that still appear “highly unusual” after
a range of statistical tests have been employed.

Such investigations usually start with readily avai-
lable information, and clusters that are still interesting
are then subjected to more stringent tests that may
require the gathering of more data. A guideline for
approaching this has been developed by the Centers
for Disease Control, Atlanta, Georgia, USA [7, 49].
They propose a four-stage process of increasing com-
plexity and cost, in which the investigation can be
terminated after any stage if alternative explanations
can be found or the evidence for clustering is no
longer very compelling. In outline form, the stages
are as follows:
Stage 1: Initial contact. The purpose at this stage is
to collect information from the person(s) or group(s)
first reporting a perceived cluster (hereafter referred
to as the caller). The caller must be referred quickly
to the responsible health agency unit, and the problem
should never be dismissed summarily. The majority
of potential cluster reports can be brought to success-
ful closure at the time of initial contact, and the first
encounter is often one of the best opportunities for
communication with the caller about the nature of
clusters.
Stage 2: Assessment. Once the decision has been
made at Stage 1 to proceed further with an assess-
ment, it is important to separate two concurrent
issues: whether an excess number of cases has actu-
ally occurred, and whether the excess can be tied
etiologically to some exposure. The first usually has
precedence, and may or may not lead to the sec-
ond. This stage initiates a mechanism for evaluating
whether an excess has occurred. Three separate ele-
ments are identified:

1. a preliminary evaluation (Stage 2(a)) to assess
quickly from the available data whether an excess
may have occurred;

2. confirmation of cases (Stage 2(b)) to assure that
there is a biological basis for further work; and
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3. an occurrence investigation (Stage 2(c)) whose
purpose is a more detailed description of the
cluster through case-finding, interaction with the
community, and descriptive epidemiology.

If an excess is confirmed, and the epidemiologic
and biologic plausibility is compelling, proceed to
Stage 3.
Stage 3: Major feasibility study. The major feasi-
bility study examines the potential for relating the
cluster to some exposure. It should consider all
the options for geographic and temporal analysis,
including the use of cases that are from a differ-
ent geographic locale or time period and not part of
the original cluster. In some instances the feasibil-
ity study itself may provide answers to the question
under study.

If the feasibility study suggests that there is merit
in pursuing an etiologic investigation, then the health
agency should proceed to Stage 4. This may entail
extensive resource commitment, however, and the
decision to conduct a study will be tied to the process
of resource allocation.
State 4: Etiologic investigation. Perform an etio-
logic investigation of a potential disease–exposure
relationship. Using the major feasibility study as a
guide, a specific protocol for the study should be
developed and the study implemented.
Reporting of results. At whatever stage an inves-
tigation terminates, administrative closure is critical.
Health authorities must remain aware that even inter-
nal reports are, in many circumstances, public doc-
uments, and can become part of legal proceedings.
Even a brief memorandum to the record or a hand-
written note summarizing a telephone call are subject
to use in court and should be handled accordingly.

Issues of Statistics in Medicine (April–May 1996,
Vol. 15) and the American Journal of Epidemiology
(July 1990, Vol. 132) have been devoted exclusively
to theoretical and practical issues related to clustering.
These publications and the book edited by Elliot et al.
[16] provide fuller details of points raised below.

Statistical Tests for Clustering

Tests for clustering, either spatially or temporally, fall
into four main classes:

1. Methods based on cell occupancy counts for a
partition of the region of interest.

2. Methods based on overlapping cells or adjacen-
cies of cells with “high counts”.

3. Distance methods.
4. Space–time clustering methods.

Methods can also be distinguished by the form
of the null hypothesis. In nonmedical settings, often
a uniform process is appropriate in which events
occur according to a homogeneous Poisson process
on the time axis (for temporal clustering) or the
plane (for spatial clustering). For medical applications
often some degree of inhomogeneity is appropriate
for the nonclustered process. For time series, sea-
sonal effects may need to be accounted for, and in
studying spatial clustering, the nonuniform nature of
the population density needs to be considered. In
these circumstances, some form of control series is
needed to allow for variations not related to short-
range clustering.

Cell Occupancy Methods

These methods are equally appropriate to both tem-
poral and spatial clustering as they take no account
of the geometric structure of the region once it has
been partitioned into nonoverlapping cells.

Dispersion Test. The simplest test for clustering is
a heterogeneity or dispersion test [10]. When there
are n cells, this is a simple chi-square test for an
n × 1 table. If Ei denotes the expected number of
events in cell i, and Ni is the observed number, then
the test is given by

TD =
n∑

i=1

(Ni − Ei )
2

Ei

.

When all the Ei are large (≥ 5), the test has
an approximately χ2 distribution on n degrees of
freedom. However, this is usually not the case. Nev-
ertheless, T tends to a normal distribution as n →
∞, in general. The mean and variance depend on
whether one conditions on the total number of events
N = ∑

Ni . Usually, this is the case so that the Ni

have a multinomial distribution with cell probabil-
ities pi = Ei/E, where E = ∑

Ei , and total number
of observations N . In that case [24, 38],

E(TD) = n − 1,

var(TD) = 2(n − 1) +
∑

E−1
i − 1

N
(n2 − 2n + 2),
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and [TD − E(TD)]/var1/2(TD) is approximately a
standard normal deviate.

Potthoff & Whittinghill’s Test. Pothoff & Whit-
tinghill [46, 47] considered a cell occupancy model
in which the cell counts were Poisson with mean
Ei under the null hypothesis. Under the alternative,
the Ei were assumed to be multiplied by indepen-
dent gamma-distributed variables with mean one,
so that the observed counts had a negative binomial
distribution (i.e. a compound Poisson-gamma distri-
bution). They computed the score test as the variance
of the gamma distribution tended to zero while keep-
ing the means fixed, and arrived at a test of the form:

TPW =
n∑

i=1

Ni(Ni − 1)

Ei

.

Again, the Ni are multinomial and if maxi pi → 0 as
n → ∞,

E(TPW) = N − 1,

var(TPW) ∼= 2(N − 1)2

N
,

and
[TPW − E(TPW)]

var1/2(TPW)
−−−→ N(0, 1).

Note that cells contribute nothing to TPW unless
there are at least two events in the cell. Also, when
all the Ei are the same, this test is equivalent to the
dispersion test given above. In general, TPW gives
less weight to cells with larger expected values than
does TD.

Dispersion Tests with Controls. In some circum-
stances, it is appropriate to consider whether the vari-
ability in a time series of events is greater than that in
a control series. The control series may account for
seasonal disease patterns or changing referral patterns
and is used as a surrogate for the cell probabilities pi

defined above. An approach based on a chi-square
test for independence in a 2 × n table has been pro-
posed by Fleiss & Cuzick [18] in which the case and
control series comprise the two rows. The asymptotic
distribution is not χ2 on (n − 1) degrees of freedom
(df) unless all cell counts are large, but as n → ∞

the test does tend to be a normal with mean (n − 1)
and variance [25, 38]

var(TD) ∼= 2(n − 1 − N∗) + (p∗ − 2)

(
N∗ − n2

N

)

+ 2
( n

N

)
(1 − p∗)

−
( n

N

)2
(5 − p∗) + O

(
1

n

)
,

where

p∗ = p−1 + (1 − p)−1,

N∗ =
n∑

i=1

N−1
i ,

p is the proportion of all events that are in the case
series, and Ni is the total number of events in period
i for cases and controls combined.

Tests Based on the Maximum Cell Count. When
looking for a single cluster, tests based on the max-
imum cell count are an obvious choice. When done
in a post hoc fashion, that is, when the cluster has
already been identified, the significance is completely
dependent on the number of cells included in the
sample. A more attractive option is to examine the
maximum cell count in a number of short subsets
of the data. This approach has an intuitive appeal,
and will detect multiple clusters. A weakness is that
the cells are chosen in advance and clusters that are
split over two cells will not be fully scored. Also, the
method assumes equal expected numbers in the dif-
ferent cells. The method was first proposed by Ederer
et al. [15]. For their test, the cells are first partitioned
into a number of nonoverlapping time series. For
example, if the data consisted of quarterly event rates
over a 20-year period in a number of localities, the
individual time series might be chosen to be the event
rates over a five-year period for each locality. These
individual series are then self-normalized by condi-
tioning on the total number of events in that subseries.
Thus, if Nij denotes the number of events in cell i

of series j, i = 1, . . . , I, j = 1, . . . , J , one computes
Mj = max1≤i≤I Nij conditional on Nj = ∑I

i=1 Nij .
The overall test statistic is then

TEMM =
J∑

j=1

Mj,



4 Clustering

and is normalized by the conditional means:

E(TEMM) =
∑

E(Mj |Nj),

and conditional variances

var(TEMM) =
∑

var(Mj |Nj)

to form an approximately standard normal deviate in
the usual way.

Thus, this test only looks for evidence of clustering
within the subseries and by appropriate choice of the
space and time groups can be viewed as a space–time
clustering method as well. However, by including
only one geographic entity and allowing the subseries
to be rather long, it takes on more the character of a
purely temporal statistic. An underlying assumption
is that all cells in the same subseries have the
same expected event rate under the null hypothesis.
Thus, some adjustment for seasonal variation can
be made by creating subseries based on the same
months in successive years, and temporal trends can
be accounted for by using short time periods, but it
is not possible to adjust for both simultaneously.

Ederer et al. rely on the asymptotic normality of
their test and thus it is only necessary to compute
E(Mi |Ni) and var(Mi |Ni), for which Mantel et al.
[35] have given tables for small values of Ni and I .
Grimson [22] has obtained the exact distribution of
the maximum, based on factorial moments and the
inclusion–exclusion formula. Specifically, he shows
that when Ni = r and I = c:

Pr(Mi ≥ m) = ir
∑

k=1

(−1)k+1

(
c

k

)

×
r∑

j1,...,jk=m

(c − k)r−j1−···−jk

×
(

r

j1, . . . , jk

)
.

Levin [31] has given a large sample approximation
based on Edgeworth expansions.

Overlapping or Adjacent Cells Methods

One of the problems with cell occupancy methods
is that clusters may span more than one cell. To be
valid, the partitioning of space for these methods must
be independent of the location of events so that it is

likely that any clusters will not match up with the
partitioning. Attempts to address this problem have
led to tests based on overlapping or neighboring cells.

Scan Tests. For temporal clustering, where events
are distributed on a line and cells are often based on
equal length intervals (e.g. months), an obvious solu-
tion exists. Instead of looking only at the number of
events in prespecified intervals (e.g. six months), it
is also possible to look at overlapping intervals (e.g.
six-monthly intervals beginning every quarter). The
most thorough method is to look at all intervals of a
fixed size (e.g. six-monthly intervals beginning every
day), and consider the maximum number of events
in any such interval. However, the fact that over-
lapping intervals are now being considered greatly
complicates the problem of determining the distri-
bution of the scan test. To simplify matters, one
usually assumes that the time axis is broken into suf-
ficiently small intervals (e.g. one day) so that one
can safely assume that the scan is continuous. Under
the null hypothesis, the problem is then transformed
into determining the distribution of n(t, N), the max-
imum number of events in an interval of length t

when N events are uniformly distributed on the unit
interval. Computations for this probability go back at
least as far as the 1940s [2, 33], but Naus [39, 41,
42] was the first to develop this as a test for temporal
clustering. Exact calculations require detailed com-
binational expressions and are very computationally
time-consuming in the important case when t is small.
Various approximations have been proposed [3, 13,
19, 21, 30, 42, 51] (see Scan Statistics for Disease
Surveillance).

The primary quantity of interest is p(n, t, N) =
Pr(n(t, N) ≥ n), and approximations are given in
terms of the binomial probabilities b(j, n, p) =(
n

j

)
pj (1 − p)n−j . Wallenstein & Neff [51] give the

simple approximation:

p(n, t, N) ∼=
(n

t
− N + 1

)
b(n, N, t)

+ 2
N∑

j=n+1

b(j, N, t),

which is accurate when p(n, t, N) is small and, in
fact, exact when n > N/2 and t < 1

2 . Berman &
Eagleson [3] give an upper bound of similar com-
plexity based on a second-order inclusion–exclusion
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(Bonferroni) approximation:

P(n, t, N) ≤ (N − n + 1)

N∑

j=n−1

b(j, N, t)

−
N∑

j=n−1

(−1)j+n−1b(j, N, t),

which is also a good approximation in some cases.
Glaz [20, 21] has developed more complicated
expressions on the basis of higher-order Bonfer-
roni inequalities and a product-type inequality, all of
which have greater accuracy. Two series of expres-
sions are given that increase in complexity (and
hopefully accuracy) as L increases.

The first is an upper bound: for 1 ≤ L ≤ n ≤ N/2:

P(n, t, N) ≤
L−1∑

j=1

Q∗
j + (N − n + 2 − L)Q∗

L,

where

Q∗
1 =

N∑

J=n−1

b(j, N, t),

Q∗
2 = Q∗

1 −
N∑

j=n−1

(−1)j+n−1b(j, N, t),

and for j ≥ 3

Q∗
j = b(n − 1, N, t) − b(n, N, t)

+
N−n+1∑

k=j

(−1)k
j−2∏

i=1

[
1 − k(k − 1)

i(i + 1)

]

× b(n + k − 1, N, t).

A more accurate approximation is given by

P(n, t, N)

∼= 1 −


1 −
L∑

j=1

Q∗
j





×






1 −
L∑

j=1

Q∗
j




/

1 −
L−1∑

j=1

Q∗
j








N−n+1−L

,

which is said to be most accurate when L = n. Neff
& Naus [43] have tabulated P(n, t, N) for t < 1

2 , 3 ≤
n < N ≤ 25.

Approximations for P(n, t, N) under various clus-
tering alternatives are described in Wallenstein et al.
[52], which are important for power calculations.

Glaz [21] gives references for approximations of
the moments of n(t, N) and various related quantities.
He also discusses scan statistics based on the use of
a range of different window widths, ti . Nagarwalla
[37] also discusses a scan test with variable window
width. Simulation is required to approximate its null
distribution.

Extensions of the scan statistic to the plane or
higher dimensions have not been very fully devel-
oped. There are problems in the choice of metric (e.g.
circles or squares) and the structure of overlapping
cells is much more complicated in the plane. Naus
[40] has some theoretical results for the plane, and
Openshaw et al. [44] give an example of an applica-
tion that uses circles of different radii. This approach
is very descriptive, however.

Runs Test. The runs test is a well-established
method for evaluating clustering in sequences of
binary data. For temporal data, such sequences can
be created by looking at intervals of fixed length
and recording whether one or more events occur in
each interval, or, when events are more common,
intervals in which an excessive number of events
have occurred. The elements of the sequence are
then treated as independent Bernoulli trials with fixed
success probabilities. As the success probability is
usually unknown, one usually is interested in the
probability of a run of length at least m in n trials
in which there are known to be s successes overall.
Denoting this as PR(m, s, n), the exact distribution is
(cf. [5, p. 257])

PR(m, s, n) =
[s/m]∑

i=1

(−1)i+1

×
(

n − s + 1
i

)(
n − im

n − s

)/ (
n

s

)
.

Burr & Cane [6] have developed and surveyed
various approximations and Naus [42], on the basis
of ideas used for the scan test, suggested

PR(m, s, n) ∼= 1 − Q∗∗
2

(
Q∗∗

3

Q∗∗
2

)(n/m)−2

,
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where

Q∗∗
2 =

[
m

(
n − m − 1

s − m

)
+

(
n − m

s − m

)]/(
n

s

)
,

Q∗∗
3 =

[
2m

(
n − m − 1

s − m

)
+

(
n − m

s − m

)

−
(

m

2

)(
n − 2m − 2

s − 2m

)

− m

(
n − 2m − 1

s − 2m

)]/(
n

s

)
.

A simple, but less accurate, approximation is given
by Feller [17]:

PR(m, s, n) ∼= 1 − exp(−nqpm),

where p = 1 − q = s/n. Tests have also been based
on the number of runs greater than a certain size or
the total number of runs (change from zero to one or
vice versa) in a series [27].

Join–Count Statistics. This approach was first
developed by Moran [36], and the test is some-
times called the Geary–Moran statistic. It has been
developed for two-dimensional maps, but the ideas
are quite general and suitable for other dimensions
as well. It can be seen as a hybrid between a cell
occupancy method and a distance method. The basic
approach is as follows: one starts with a map in which
a partition into cells is given. Cells with “large” num-
bers of events are determined by some scheme chosen
separately by the investigator. Common approaches
are to choose cells in which the observed number
of events exceeds the expected number by a given
percentage (standardized incidence ratio) (see Stan-
dardization Methods) or is significantly different
at a predetermined level (say 5%). The number of
pairs of “such” extreme cells that are adjacent, that
is, that share a common boundary (denoted TJC), is
then determined and compared against expected num-
bers. The problem can be reduced to the analysis of
a graph in which the cells are vertices and adjacent
cells are connected by edges. The null hypothesis is
that the “extreme cells” are chosen at random (per-
mutational distribution). Under this hypothesis, the
expected number of adjacent cells is

E(TJC) = Np1,

where N is the total number of joins (adjacent cells)
and for j = 0, 1, 2, . . .,

pj =
j∏

i=0

n0 − l

n − l
,

n=number of points, and n0 =number of “extreme”
points, and the variance is

var(TJC) = N(p2
1 − p3) − N2(p2

1 − p3)

+ p2

n∑

i=1

Mi(Mi − 1) − p3

n∑

j=1

Kj ,

where Mi is the number of joins emanating from
point i, and Kj is the number of points to which
the points at the ends of join j are both joined.

Asymptotic normality of [TJD − E(TJC)]/var1/2

(TJC) can be established. Besag [4] has noted that
even in the absence of clustering, the null hypothe-
sis may not hold when extreme cells are determined
by observed to expected ratios. When the populations
in different cells are not the same, and low popula-
tion cells are next to each other (e.g. rural areas),
those cells are more likely to be extreme because of
greater random fluctuations, and artefactual aggrega-
tion could arise. Contrariwise, if there is general, but
unaccounted for, extra Poisson variation, and signif-
icance levels based on the Poisson distribution are
used to determine extreme cells, then cells with large
underlying populations could be over-represented. In
these circumstances, more complicated expressions
for the mean and variance of TJC are needed, or sim-
ulation must be used to assess the significance level.

Distance Methods

Nearest Neighbor Tests for Uniform Populations.
Under the assumption of a uniform (or homogeneous
Poisson) distribution, tests for clustering have been
based on the distance to the kth nearest neighbor of
any particular case [9, 32]. If dk denotes the distance
to the kth nearest point from any arbitrary point in
the plane, then when the number of points is large
(so edge effects can be discounted), dk has a gamma
(µ, k) distribution:

P(dk > t) =

k−1∑

j=0

µj e−µ

j !
,



Clustering 7

where µ = 2πλd2
k and λ is the event rate of the

underlying Poisson process. Tests have been based on
the mean of dk , often with k = 1, that is, the average
distance from an arbitrary point to its nearest neigh-
bor. Other approaches based on more complicated
sampling plans are surveyed in [48, Chapter 7].

Covariance Function. An alternative approach is
to use the k function associated with homogeneous
point processes [13]. Specifically, for a homoge-
neous point process with event rate λ per unit area,
define k(t) = λ−1E (number of events within distance
t of an arbitrary event). For a Poisson process with
unit intensity, k(t) = 1

2πt2. Empirical estimates k̂ can
be formed in an obvious way and compared with k(t)

to see if more or fewer events are occurring near to
an arbitrary event.

Nearest Neighbor Tests for Nonuniform Popula-
tions. Work with homogeneous populations arose
from questions in ecology and geography and is gen-
erally not applicable to questions of disease associa-
tion in populations because of the nonhomogeneous
distribution of the population. In this case, some esti-
mate of the local population density is also required.
Cuzick & Edwards [11, 12] have developed a variety
of tests in this setting. When the population density is
known precisely, this test consists of creating circles
of different radius but constant expected number of
events around each case and counting the number of
observed events in all such circles. If the expected
number is taken to be λ and Oi is the observed num-
ber of events in the circle around event i, then this
takes the form

T1s =
∑

i

(Oi − λ),

with

E(T1S) = 0,

var(T1S) = nλ + 2n−1NS + n−1Nt − nλ2,

where n is the number of points, NS is the number
of pairs of points in each other’s neighborhood, and
Nt = ∑

Mi(Mi − 1), where Mi is the number of
points for which point i falls in its neighborhood. In
many circumstances, precise information about the
geographic location of the population is unavailable
and information about this must be replaced by a

control series selected in an appropriate way. Cuzick
& Edwards [11] developed a test on the basis of the
number of cases in the k nearest neighbors (k − NN)

to each case; see also Schilling [50] and Henze
[26]. Specifically, cases and controls are labeled from
1, . . . , N and

Tk =
N∑

i=1

N∑

j=1

aij δiδj ,

where δi is the indicator for the ith event to be a case
and aij is the indicator for event j to be among the
k − NNs of event i. This test can also be viewed as
formally similar to a join–count test, except that the
aij is not in general symmetric (although it is easily
converted by replacing aij with 1

2 (aij + aji)). The
permutational distribution of Tk can be computed as
before (assuming cases are selected at random from
the set of cases and controls) and yields

E(Tk) = p1kn,

where p1 is as in the section on join–count statistics,
where no denotes the number of cases and n the total
number of points, and

var(Tk) = (kn + Ns)p1(1 − p1)

+ [(3k2 − k)n + Nt − 2Ns](p2 − p1)
2

− [k2(n2 − 3n) + Ns − Nt ](p2
1 − p3),

where Ns is the number of pairs of points for which
the k − NN relation is symmetric, that is, pairs that
are k − NNs of each other and Nt = ∑n

i=1 Mi(Mi −
1), and where Mi is the number of points for which
point i is a k − NN .

Diggle [14] has suggested an alternative based on
comparing the k function of the cases with that of the
controls. His approach essentially uses circles of the
same geographic size, whereas the Cuzick–Edwards
approach uses circles of approximately equal popula-
tion. The choice of approach depends on the type of
alternative envisaged. Cuzick & Edwards [11] have
also considered tests based on the number of cases
encountered before k controls. When k = 1, this is
similar to the runs test sometimes used to look for
clustering in one dimension.

Space–Time Clustering Methods

When events are thought to be closely related to
exposures both in time and distance, such as in
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epidemics of disease associated with contagious
infectious agents, then tests based on space–time
clustering are most appropriate. Such tests are self-
normalizing in the sense that any overall nonhomo-
geneity in the time course of the events or their
spatial distribution is automatically accounted for.
This has great advantages in terms of automatically
cancelling out seasonal effects of nonhomogeneous
population distributions, but, of course, limits the
ability of the test to detect alternatives that vary
both in time and space. Thus, a point source of
events or a change that affected the entire geographic
region under consideration would not be detected.
Thus, these tests are appropriate for infectious dis-
eases with short incubation times, but Chen et al. [8]
have shown they have low power for the type of
clustering expected in adult cancer or other chronic
diseases where the latent period between exposure
and disease is long.

The simplest space–time tests partition space
and time separately and then perform a chi-square
test for independence on the associated two-way
contingency table in which spatial cells are rows
and temporal cells are columns. However, more
interest has been generated by the work of Knox
[28, 29], in which distances and times are computed
between all pairs of points and tests are developed
to determine whether events that are close spatially
are also close in time. By partitioning distances
and time intervals, these data can be summarized
in a two-way table, but the induced correlations
arising from considering pairs of points means that
the chi-square distribution is invalid for assessing
independence. Knox only considered a two by two
table formally by dichotomizing time and spatial
pairs as close or distant in each variable. One problem
with Knox’s approach is the arbitrary dichotomy on
the close and distant pairs. Related tests have been
proposed by Pinkel & Nefzger [45], Barton & David
[1] and Mantel [34]. Mantel [34] considered a more
general approach giving weights to distances that
decrease as the distance increases. Knox’s tests is
then a special case in which the weight changes
from one to zero, once the cut-off is exceeded.
Mantel’s test can be written in the very general
form:

TM =
∑ ∑

i �=j

XijYij ,

where Xij = a(i, j) is a score for the pair of spa-
tial variables and Yij = b(i, j) is a score for the pair

of temporal variables. Under the assumption that the
spatial variables are unrelated to the temporal vari-
ables, the permutational distribution of TM can be
simulated or approximated. For large samples, the
permutational mean and variance can be computed
and asymptotic normality assumed, although condi-
tions for this are not clearly known [23]. Even the
computation of the permutational variance can be
quite involved [34].
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Coarsening at Random

Incomplete Data

Incomplete data often occur in biostatistical con-
texts. Typical examples include censoring in survival
analysis, dropout in longitudinal studies (see Non-
ignorable Dropout in Longitudinal Studies), and
missing values in multivariate data sets (see Missing
Data). Generally, this can be modeled by replacing
the incomplete observation by the subset of the sam-
ple space that is known to contain the observation
one had wished to make. For instance, right cen-
soring gives rise to half-lines from the censoring
time to infinity. Observations where incompleteness
is represented by subsets of the sample space in this
way are called coarsened. Typically, the subsets are
stochastic – for instance, determined by a stochastic
censoring time – and the criteria for ignoring this ran-
domness have been useful, particularly in the context
of missing data and right censoring. In the general
model, these criteria go under the name of coarsening
at random.

Coarsening at random was introduced as a gen-
eralization of missing at random by Heitjan and
Rubin [3]. Heitjan [2] gives several biostatistical ex-
amples and an application to data from the Stanford
Heart Transplantation Program. Nielsen [6] dis-
cusses how to analyze survival data with coarsely
observed covariates.

The Coarsening Model

Let X be a random variable we intend to observe
but only observe incompletely. Instead we observe
a subset, Y , of the sample space, X; Y represents
what is observed about X – in particular, X ∈ Y – but
may depend on further randomness. This is modeled
by an auxiliary random variable, G, such that Y

is a (nonrandom) function of (X, G), that is, Y =
Y (X, G), say. Often, G is incompletely observed as
well – for instance, a censoring time is not observed
unless the survival time is censored – and this is
modeled by a subset, H , of the sample space, Z, of G.
Thus, the incomplete observation of X is represented
by a subset T = Y × H of the product, X × Z, of the
sample spaces. This subset should represent all that
is known about the intended observation, X, and the

coarsening variable, G. Therefore, T contains exactly
those elements, (x, g) of X × Z that are mapped to
T ; that is, {(x, g) ∈ X × Z : T (x, g) = T }. Typically,
there is a natural choice of the coarsening variable,
G; otherwise G is just the observed subset, Y .

A slightly more general model is discussed by
Nielsen [5] and Gill et al. [1].

Example

(1) Let X be a survival time and G, a censoring
time. We observe the smaller of these two,
T ∗ = X ∧ G and which one is the smallest.
Such data are called right censored. Here,

T (X, G) =
{ {X} × [X; ∞] if T ∗ = X

]G; ∞[×{G} if T ∗ = G
.

(1)

(2) Let X denote age, which is reported rounded
either to the nearest month (G = 0) or the near-
est year (G = 1). Such data are called heaped.
Let T ∗ be the age reported, that is,

T ∗(X, G) =





�12X + 6�
12

if G = 0
⌊
X + 1

2

⌋
if G = 1

, (2)

where �x� is the largest integer not greater than x.
Then

T (X, G)

=
{

[T ∗ − 1
24 ; T ∗ + 1

24 [×{0} if G = 0

[T ∗ − 1
2 ; T ∗ + 1

2 [ × {1} if G = 1
.

(3)

Let fθ be the density of the distribution of X

and let the conditional distribution of G given X =
x have density hγ (g|x). All densities – probability
density functions or probability mass functions – here
and in what follows are densities with respect to
probability measures. A density with respect to a
probability measure is obtained from an ordinary
density by dividing it with a fixed density. The
reference measure is then the probability measure
given by the fixed density; see [4] for a discussion.

The conditional density of T given X = x is then
kγ (t |x) = Ex[hγ (G|x)|T (x, ·) = t]; here, the expec-
tation is with respect to the reference measure of the
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distribution of G given X = x; this may depend on
x. The unconditional density of T is given by

ϕθ,γ (t) = E[fθ(X)hγ (G|X)|T = t]

= E[fθ(X)kγ (T |X)|T = t], (4)

where the expectation is with respect to the reference
measure of the joint distribution of (X, G).

Let Pθ,γ be the distribution of (X, G) defined
above. A statistical model is obtained when (θ, γ )

varies in a space, Θ × Υ .

Coarsening at Random

Three different concepts of coarsening at random
have been developed.

• A probability, Pθ,γ , is absolutely coarsened at
random or CAR(ABS) if for each pair (x, x ′)
Pθ,γ {T ∈ D|X = x} = Pθ,γ {T ∈ D|X = x ′} for

all sets D ⊆ {t = y × h : x, x ′ ∈ y}.
• A statistical model (Pθ,γ )(θ,γ )∈Θ×Υ is relatively

coarsened at random or CAR(REL) if for all
γ ∈ Υ and all t = y × h, the conditional density
kγ (t |x) is constant for x ∈ y.

• An observation t is a random coarsening of x if
for all γ ∈ Υ kγ (t |x) only depends on x through
y, that is, is constant for x ∈ y.

Example

(1) Suppose the reference measure, ν, of the distri-
bution of G given X = x in the right-censoring
example does not depend on x. Then

kγ (t |x) =





Pγ ([x; ∞])

ν([x; ∞])
if t = {x} × [x; ∞[

hγ (g|x) if t =]g; ∞[×{g}
.

(5)

The model is CAR(REL) if this expression is
the same for all x ∈ y, that is, if hγ (g|x) does
not depend on x ∈]g; ∞[.

(2) In the heaping example, kγ (t |x) = hγ (g|x),
and the model is CAR(REL) if hγ (g|x) only
depends on x through what is observed about
x. Thus, hγ (1|x) may only depend on the
age rounded to the closest year, �x + 1/2�,
whereas hγ (0|x) may depend on the month
as well (subject to the total mass restriction,

hγ (1|x)qx + hγ (0|x)(1 − qx) = 1, where qx is
the mass assigned by the reference measure to
the set {G = 1} given X = x).
The probabilities are CAR(ABS) if Pγ {G =
1|X = x} = hγ (1|x)qx only depends on the age
rounded to the nearest year. Owing to the total
mass restriction also, the probability Pγ {G =
0|X = x} = hγ (0|x)(1 − qx) can only depend
on age rounded to the nearest year.

If all the probabilities Pθ,γ in a model are
CAR(ABS), then the statistical model is CAR(REL);
the converse is not generally true. However, if the
reference measure is a product measure, then the
probability Pθ,γ is CAR(ABS) if the statistical model
is CAR(REL).

If CAR(REL) holds, then the likelihood factors

Lt(θ, γ ) = ϕθ,γ (t) = E[fθ(X)|T = t]kγ (t |x) (6)

and the profile likelihood of θ is just

Lt(θ) = E[fθ(X)|T = t]. (7)

If furthermore the probabilities are CAR(ABS), then
the profile likelihood simplifies to

Lt(θ) =





fθ (x) if t = {x} × h∫

y

fθ (x)dµ(x) if µ(y) > 0
, (8)

where µ is the reference measure of the distribution
of X. Notice that (8) does not cover all possible
observations t ; generally, we have to rely on (7).

Example

(1) In the right-censoring example, the profile like-
lihood becomes

Lt(θ) =
{

fθ (x) if t = {x} × [x; ∞[
Pθ {X > g} if t =]g; ∞[×{g}

(9)

if the probabilities are CAR(ABS).
(2) In the heaping example, the likelihood becomes

Lt(θ)

=






∫

[t∗− 1
24 ;t∗+ 1

24 [
fθ(x)(1 − qx)dµ(x) if g=0

∫

[t∗− 1
2 ;t∗+ 1

2 [
fθ(x)qx dµ(x) if g=1

(10)



Coarsening at Random 3

where t∗ is the observed value of T ∗, that is,
the observed rounded age, if CAR(REL) holds.
If also CAR(ABS) holds, then the qx and 1 − qx

terms disappear.

Ignorability

The concept of coarsening at random is useful
because it allows one to discuss when and to
what extent incompleteness of observations may be
ignored when doing likelihood-based inference. In
this section, we will discuss three different kinds of
ignorability.

If a statistical model is CAR(REL), the nuisance
parameter, γ , may be ignored for likelihood-
based inference, because of the factorization of the
likelihood. Maximum likelihood estimation of θ is
performed as if the coarsening mechanism, that is, γ ,
is known.

Example In the heaping example, we see that the
profile likelihood of θ is a weighted integral of
the density over the observed set y if the model
is CAR(REL). Thus, apart from the known weights
(qx and 1 − qx), we may ignore the coarsening mech-
anism when calculating the likelihood.

If the probabilities are CAR(ABS), then the coars-
ening mechanism can be ignored. The θ-part of the
likelihood can be calculated from the marginal model
of X treating the mapping Y (X, G) as a function of
X alone.

Example In the right-censoring example, if
CAR(ABS) holds, the profile likelihood is just the
same as if the censoring had been fixed.

It is clear that the second kind of ignorability is
stronger than the first. CAR(ABS) implies that we
may treat the data as if the coarsening is fixed rather
than stochastic. When the model is CAR(REL), we
can treat the coarsening as known (but stochastic).

CAR(ABS) will in many applications be a ques-
tionable assumption as discussed by Heitjan [2] (for
instance, in the case of age heaping). Here the weaker
assumption, CAR(REL), may be more reasonable.

For ignorability in a Bayesian sense, it suffices
that the given observation is coarsened at random

and that the parameters θ and γ are a priori indepen-
dent; this implies that the parameters are a posteriori
independent. In particular, the posterior distribution
of θ can be calculated without having to calculate
the posterior distribution of γ or specifying a prior
distribution of γ .

Example In the right-censoring example, suppose
X is exponentially distributed with intensity θ . If
the prior distribution of θ is exponential with intensity
a, then the posterior distribution given y is

π(θ, γ |y) ∝ Lt(θ, γ ) · π(θ, γ )

∝ (t∗ + a) exp(−θ(t∗ + a))

· kγ (t |x)π(γ ) (11)

where t∗ is the observed value of X ∧ G, if θ and
γ are a priori independent. Thus, the posterior dis-
tribution of θ is exponential with intensity t∗ + a.
It should be noted that this result uses that the ref-
erence measure is a product measure; without this
structure the posterior distribution would involve
E[fθ(X)|T = t] instead of exp(−θt∗).
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Cochran, William
Gemmell

Born: July 15, 1909, in Rutherglen, Scotland.
Died: March 29, 1980, in Orleans, Massachusetts.

William G. Cochran. Reproduced by permission of the
Royal Statistical Society

William Cochran was a leading contributor to the
British–American school of applied statistics dur-
ing a period of rapid development of the field
across the middle decades of the twentieth cen-
tury. Coming from a modest family background,
he early in life showed academic talents that car-
ried him first to Glasgow University and then to
Cambridge University, where he studied mathemat-
ics, applied mathematics and statistics. His formal
education ended with an M.A. degree from Cam-
bridge because Frank Yates made an offer, unusual
in the depression year of 1934, for him to join the
staff at the Rothamsted Experimental Station, where
he carried out major analyses of long-term agricul-
tural experiments, gained much practical experience,
and became well known in the field. Responding
to an invitation from George Snedecor of Iowa

State College (now University) at Ames, Cochran
emigrated to the US in 1939, carrying with him
deep involvement with the extensive improvements
in applied statistics then taking place in Britain. The
US at the time had relatively little exposure to newer
methods and theories, especially those deriving from
R.A. Fisher. In 1943 and 1944, he worked with the
Statistical Research Group at Princeton University,
specifically on military problems of naval warfare
and bomb efficiency. After the war, he was recruited
by Gertrude Cox to the newly formed Institute of
Statistics in North Carolina, where he organized and
headed the graduate program in experimental statis-
tics at North Carolina State College in Raleigh. In
1949, he became chairman of the Department of Bio-
statistics in the School of Hygiene and Public Health
at the Johns Hopkins University, where a shift of
his focus from agricultural to medical and biologi-
cal applications took place. In 1957, Cochran moved
to Massachusetts to join the Department of Statistics
that Frederick Mosteller had just started at Harvard
University, where he remained until his retirement in
1976.

Alongside the teaching and research that were
the formal responsibilities of his academic positions,
Cochran contributed to many panels, committees, and
seminars. He was a leading statistician for nationally
and internationally prominent reports on the effects
of radiation in Hiroshima, the Kinsey Report of
human sexual behavior, the Salk polio vaccine tri-
als, the pivotal Surgeon General’s 1964 Report on
Smoking and Health, and equality of educational
opportunity. He published more than 100 research
papers, and important books that became widely
used text and reference books through numerous
editions, most notably: Experimental Designs (with
Gertrude Cox) in 1950 (1957, 1992); Sampling Tech-
niques in 1953 (1963, 1977), and a substantially
revised version of George Snedecor’s influential Sta-
tistical Methods in 1967 (1980, 1989). A posthumous
text Planning and Analysis of Observational Studies
was edited in 1983 by Lincoln Moses and Freder-
ick Mosteller. Cochran’s publisher, John Wiley &
Sons, put out a thick volume of collected papers in
1982.

Bill Cochran was modest in demeanor, but pen-
etrating and quick in his perceptions and analyses
of statistical problems. He was a gifted and much
respected teacher and speaker at scientific meetings
who could always illustrate theory from a wealth of
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applications often drawn from personal experience.
Well-known leaders in many areas of statistics are
among his 40 or so doctoral students. Above all,
he was a distinguished scientist, and was fittingly
recognized as such by election to the US National

Academy of Sciences in 1974, an honor all too rare
among biometricians.

A.P. DEMPSTER



Cochrane Collaboration

For all but the last 100 years, decisions on how to
treat patients were almost always based on personal
experience, anecdotal case histories, and compar-
isons between a group of patients who received one
treatment with an entirely separate group of patients
who did not receive that treatment. These processes,
although subject to many biases, are still in use
today but ways to minimize these biases are now
available, accepted, and more easily adopted. Among
these is the use of the randomized trial (see Clinical
Trials, Overview) as a means of providing more reli-
able estimates of the relative effects of interventions,
since the only difference between the patients in the
groups being compared in a randomized trial will be
that of most interest: namely, the interventions under
investigation.

However, in part because of chance variations
in the types of patients allocated to the different
interventions in the randomized trial, the results of
a single trial will rarely be sufficient. Most trials are
too small and their results are not sufficiently robust
against the effects of chance. In addition, small trials
might be too focused on a particular type of patient
to provide a result that can be either easily or reliably
generalized to future patients. Added to this, the
amount of information about health care, including
that coming from individual randomized trials, is
now overwhelming. Vast amounts of information are
now readily available in journals, books, magazines,
the media and, especially in recent years, on the
Internet. However, people making decisions about
health care – including patients, their carers, health
care professionals, policy makers, and managers –
need high quality information and, unfortunately,
much of what is available is of poor quality.

To help identify which forms of health care work,
which do not, and which are even harmful, results
from similar randomized trials need to be brought
together. Trials need to be assessed and those that are
good enough can be combined to produce both a more
statistically reliable result and one that can be more
easily applied in other settings. This combination of
trials needs to be done in as reliable a way as possible.
It needs to be systematic. A systematic review uses a
predefined, explicit methodology. The methods used
include steps to minimize bias in all parts of the
process: identifying relevant studies, selecting them

for inclusion, and collecting and combining their data.
Studies should be sought regardless of their results.

A systematic review does not need to contain a
statistical synthesis of the results from the included
studies. This might be impossible if the designs of
the studies are too different for an averaging of their
results to be meaningful or if the outcomes measured
are not sufficiently similar. If the results of the indi-
vidual studies are combined to produce an overall
statistic, this is usually called a meta-analysis (see
Meta-analysis of Clinical Trials). A meta-analysis
can also be done without a systematic review, simply
by combining the results from more than one trial.
However, although such a meta-analysis will have
greater mathematical precision than an analysis of
any one of the component trials, it will be subject
to any biases that arise from the study selection pro-
cess, and may produce a mathematically precise, but
clinically misleading, result.

The Cochrane Collaboration

The Cochrane Collaboration is the largest organi-
zation in the world engaged in the production and
maintenance of systematic reviews. It has received
worldwide support in its efforts to do something about
the problems outlined above, by making system-
atic reviews accessible to people making decisions
about health care (www.cochrane.org). The Col-
laboration aims to help people make well-informed
decisions by preparing, maintaining, and promoting
the accessibility of systematic reviews of the effects
of interventions in all areas of health care. These
reviews bring together the relevant research findings
on a particular topic, synthesize this evidence, and
then present them in a standard, structured way. One
of their most important attributes is that they are peri-
odically updated to take account of new studies and
other new information, to help people be confident
that the systematic reviews are sufficiently current to
be useful in making decisions about health care.

The Cochrane Collaboration was established in
1993, founded on ideas and ideals that stem from
earlier times. In October 1992, Iain Chalmers, Kay
Dickersin, and Thomas Chalmers wrote an editorial
in the British Medical Journal [1] that began with
the following quote from the British epidemiologist,
Archie Cochrane, published in 1972:
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It is surely a great criticism of our profession that we
have not organised a critical summary, by specialty
or subspecialty, updated periodically, of all relevant
randomised controlled trials. [3]

This editorial was published at the time of the
opening of the first Cochrane Centre in Oxford,
United Kingdom. This Centre, was funded by the
National Health Service Research and Development
Programme in the United Kingdom “to facilitate and
co-ordinate the preparation and maintenance of sys-
tematic reviews of randomized controlled trials of
healthcare”. However, there was a clear need for the
work to extend beyond this Centre, the United King-
dom and in some circumstances randomized trials.

A year after the UK Cochrane Centre opened, 77
people from 19 countries gathered at what was to
become the first Cochrane Collaboration and estab-
lished The Cochrane Collaboration as an interna-
tional organization. There have been annual Cochrane
Colloquia since then, with the most recent being in
Barcelona, Spain, in October 2003, attended by more
than 1000 people from 45 countries.

The Cochrane Collaboration is supported by hun-
dreds of organizations from around the world, includ-
ing health service providers, research funding agen-
cies, departments of health, international organiza-
tions, industries, and universities. There are currently
more than 10 000 people contributing to the work of
The Cochrane Collaboration from over 80 countries,
and this involvement continues to grow. The num-
ber of people involved has increased by about 20%
year on year for each of the five years to 2004. The
importance of involving people from low and mid-
dle income countries in the work of The Cochrane
Collaboration is well recognized. This is reflected
by the efforts of the centers based in these coun-
tries and the steady increase in the number of people
actively involved in the preparation and maintenance
of Cochrane reviews, from about 300 in the year 2000
to more than 700 in 2003.

The Cochrane Collaboration has 10 guiding prin-
ciples:

• Collaboration, by internally and externally foster-
ing good communications, open decision-making
and teamwork.

• Building on the enthusiasm of individuals, by
involving and supporting people of different skills
and backgrounds.

• Avoiding duplication, by good management and
coordination to maximize economy of effort.

• Minimizing bias, through a variety of approaches
such as scientific rigor, ensuring broad participa-
tion, and avoiding conflicts of interest.

• Keeping up-to-date, by a commitment to
ensure that Cochrane Reviews are maintained
through identification and incorporation of new
evidence.

• Striving for relevance, by promoting the assess-
ment of health care interventions using outcomes
that matter to people making choices in health
care.

• Promoting access, by wide dissemination of the
outputs of The Cochrane Collaboration, taking
advantage of strategic alliances, and by promoting
appropriate prices, content, and media to meet the
needs of users worldwide.

• Ensuring quality, by being open and responsive
to criticism, applying advances in methodology,
and developing systems for quality improvement.

• Continuity, by ensuring that responsibility for
reviews, editorial processes, and key functions is
maintained and renewed.

• Enabling wide participation in the work of The
Cochrane Collaboration by reducing barriers to
contributing and by encouraging diversity.

The work of preparing and maintaining Cochrane
reviews is done by the reviewers, of whom there
are more than 4000 in 2004. Very few of these
are paid to work on their reviews and the main
motivation is a desire to answer reliably a question
about the relative effects of interventions for people
with particular conditions. The reviewers are sup-
ported by 50 Cochrane Collaborative Review Groups,
who are responsible for reviews within particular
areas of health and collectively providing a home for
reviews in all aspects of health care. These Groups
organize the refereeing of the drafts for Cochrane
reviews, and the protocols that precede them, and
the editorial teams in these Groups decide whether
or not a Cochrane review should be published. As
far as possible, they work with the reviewers to
ensure that this happens, and the decision that a
Cochrane review will be published depends on its
quality not its findings. This is unlike the publica-
tion process elsewhere in the health care literature
where journals rarely help authors with their reports
and where the decision about whether or not a paper
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will be published will often be dependent on the
importance given to the paper, in the light of its
findings.

The Collaborative Reviews Groups are based
around the world and some have editorial bases in
more than one country. There are also Cochrane
Methods Groups, with expertise in relevant areas of
methodology; Fields or Networks, with broad areas
of interest and expertise spanning the scope of many
Review Groups; and a Consumer Network helping
to promote the interests of users of health care. The
work of these Cochrane entities, and their members,
is supported by 12 regional Cochrane Centres: Aus-
tralasian, Brazilian, Canadian, Chinese, Dutch, Ger-
man, IberoAmerican, Italian, Nordic, South African,
UK and USA. The Cochrane Collaboration Steer-
ing Group, containing elected members from the
different types of entity, is responsible for setting
Collaboration-wide policy and, by working with the
entities, the implementation of the Collaboration’s
strategic plan.

One of the important ways in which activity within
The Cochrane Collaboration is supported is the Col-
laboration’s Information Management System (IMS).
This was developed initially by Update Software,
the original publishing partner of The Cochrane Col-
laboration, before responsibility was transferred to
the Nordic Cochrane Centre in Copenhagen, Den-
mark where much further development has taken
place over the last few years. The IMS comprises the
set of software tools used to prepare and maintain
Cochrane reviews and to submit these for publica-
tion, and also to describe the work of each entity and
to manage contact details of their members. For the
Collaboration’s first decade, the IMS worked mainly
as standard software running on local computers,
with reviewers sharing their files by disk or email
attachment. As the Collaboration grew and the num-
ber of reviews and the vital task of keeping these
up-to-date got bigger, a better way to share these
documents and information was needed. In 2001,
a software needs assessment survey was conducted.
Nearly, all Cochrane entities and almost 500 individu-
als responded. The results were influential in planning
the new IMS, which is being introduced from 2004
to 2006 and which increases the ability of people
in The Cochrane Collaboration to work together by
providing a central computer approach to the storage
of documents such as the draft versions of Cochrane
reviews.

The Collaboration has grown quickly through its
first decade. Although there is a great deal of work
that remains to be done, much has been accomplished
already. Cochrane reviews are published in The
Cochrane Database of Systematic Reviews (CDSR).
As of mid-2004, this contains the full text of more
than 2000 complete Cochrane reviews, each of which
will be kept up-to-date as new evidence and infor-
mation accumulates. There are a further 1500 pub-
lished protocols for reviews in progress. These set
out how the reviews will be done and provide an
explicit description of the methods to be followed.
The growth in Cochrane reviews is well illustrated by
the following milestones. The first issue of CDSR, at
the beginning of 1995, included 36 Cochrane reviews;
there were 500 in 1999, 1000 in 2001, and 2000 in
April 2004. Hundreds of newly completed reviews
and protocols are added each year and a few hun-
dred existing reviews are updated so substantively
that they can be considered to be the equivalent of
new reviews, and there are currently several hundred
Cochrane reviews at earlier stages than the pub-
lished protocol.

The Cochrane Database of Systematic Reviews is
available on the Internet and on CD-ROM as part
of The Cochrane Library. This is published by John
Wiley and Sons Ltd and is available on a subscription
basis. The establishment of national contracts means
that The Cochrane Library is currently free at the
point of use to everyone in Australia, Denmark,
England, Finland, Ireland, Northern Ireland, Norway,
and Wales. More countries are being added to this
list each year.

The output of The Cochrane Collaboration
also includes the Cochrane Central Register
of Controlled Trials (CENTRAL), the Cochrane
Database of Methodology Reviews and the Cochrane
Methodology Register. All of these are unique
resources. In 1993, when the Collaboration was
established, less than 20 000 reports of randomized
trials could be found easily in MEDLINE, and one
of the main tasks facing the Collaboration was the
need to identify and make accessible information
on reports of trials that might be suitable for
inclusion in Cochrane reviews. It has done this
through extensive programs of the hand searching
of journals (in which a journal is checked from
cover to cover to look for relevant reports) and of
electronic searching of bibliographic databases such
as MEDLINE and EMBASE. Suitable records are
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then added to CENTRAL, with coordination by the
US Cochrane Centre in Rhode Island, USA [4, 5].
By 2004, CENTRAL contained records for more
than 400 000 reports of randomized (or possibly
randomized) trials, many of which are not included in
any other electronic database. The Cochrane Database
of Methodology Reviews contains the full text for
Cochrane methodology reviews, which are systematic
reviews of issues relevant to the conduct of reviews
of health care interventions or evaluations of health
care more generally. Currently (mid-2004), there are
10 full Cochrane methodology reviews and published
protocols for 8 more. The Cochrane Methodology
Register, to a large extent, provides the raw material
for the Cochrane methodology reviews, containing
more than 5000 records, for example, records for
reports of research, and also for ongoing, unpublished
research, into the control of bias in health care
evaluation.

Over the next few years, The Cochrane Collabora-
tion will strive to ensure that its work is sustainable.
Even with more than 4000 Cochrane reviews already
underway, and results available from 2000 of these,
there is still a large amount of work to be done.
A recent estimate is that approximately 10 000 sys-
tematic reviews are needed to cover all health care
interventions that have already been investigated in
controlled trials, and such reviews would need to be
assessed and, if necessary, updated at the rate of 5000
per year. If the growth in The Cochrane Collaboration
continues at the pace of the last few years, this target
will be reached within the coming 10 years. However,
this will require continuing and evolving partnership
and collaboration. The Cochrane Collaboration will

need to continue to attract and support the wide vari-
ety of people who contribute to its work. It will
also need to work together with funders and with
providers of health care to ensure that the resources
needed for the work grow and the output of the work
is accessible to people making decisions about health
care [2].
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Cochrane Lectures

The legacy of Archie Cochrane in epidemiology,
clinical trials, social medicine, and health services
research is marked by at least two series of annual
lectures in the United Kingdom.

The first of these – “The Cochrane Lecture” – was
initiated two years after Cochrane’s death, by the
Society for Social Medicine at its annual meeting
in September, a gathering that Cochrane attended
regularly. The Cochrane lecturers between 1990 and
2004 have been as follows:

1990 Peter Elwood “Archie Cochrane”
1991 Donald Acheson “Health, cities and the

future”
1992 Iain Chalmers “Getting to grips with

Archie Cochrane’s
agenda”

1993 Klim McPherson “The best and the enemy
of the good: assessing
the role of patient
choice in medical
decision making”

1994 Stuart Kilpatrick “Tuberculosis – yesterday
and today”

1995 Kay Dickersin “Consumer involvement
in research”

1996 Alan Williams “All cost-effective
treatments should be
free!”

1997 Julian Tudor Hart “What sorts of evidence
do we need for
evidence-based
medicine”

1998 Ann Oakley “Social science and the
experimenting society”

1999 Richard Lilford “What use are qualitative
data when decisions
have to be made?”

2000 Nick Black “Evidence, policy, and
evidence-based policy”

2001 Richard Peto “Halving premature death”
2002 Catherine Peckham “Science to policy: HIV

and other fetal and
childhood infections”

2003 Mildred Blaxter “Fish in water: social
capital and the
qualitative researcher”

2004 George Davey
Smith

“Randomised by (your)
god: robust evidence
from an observational
study design”

A second annual lecture series – “The Cochrane
‘Effectiveness and Efficiency’ Anniversary Lec-
ture” – was established to mark the anniversary of
Cochrane’s seminal Rock Carling lecture, “Effective-
ness and Efficiency: random reflections on health
services”, which he delivered in Edinburgh on March
20, 1972. The Nuffield Provincial Hospitals Trust
(which published Cochrane’s lecture) provided ini-
tial funding support for the lecture series, which
was established by Iain Chalmers, under the offi-
cial aegis of Green College, Oxford, a beneficiary of
Cochrane’s estate. Cochrane lecturers between 1993
and 2004 have been:

1993 Walter Holland “Epidemiology, research,
and how it can con-
tribute to the develop-
ment of health policy”

1994 William Silverman “Effectiveness and
efficiency. . . and
subjective choice”

1995 David Sackett “On the need for
evidence-based health
care”

1996 Richard Doll “Cochrane and the
benefits of wine”

1997 Peter Elwood “Cochrane and the
benefits of aspirin”

1998 Iain Chalmers “Lord Rayleigh’s
injunction”

1999 Chris Silagy “The challenge of the
post-Cochrane agenda:
consumers and
evidence”

2000 Richard Peto “Getting large-scale
randomized evidence”

2001 Valerie Beral “The causes of breast
cancer”

2002 Rory Collins “LDL cholesterol: from
observational to
randomized evidence”

2003 Sarah Lewington “Doubling the importance
of blood pressure: the
Prospective Studies
Collaboration”



2 Cochrane Lectures

2004 Peter Rothwell “Effectiveness and
efficiency in the
prevention of the
stroke”

(See also Cochrane Collaboration)
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Cochrane, Archibald
(‘Archie’) Leman

Born: January 12, 1909, in Galashiels, UK.
Died: June 18, 1988, in Dorset, UK.

Archibald Leman Cochrane (1909–1988) was
Director of the Medical Research Council (MRC)
Epidemiology Unit in Cardiff from 1969 to 1974.
Prior to this, from 1960 he had been honorary director
of the unit and had also held the David Davies
chair of tuberculosis and chest diseases in the Welsh
National School of Medicine, later the University
of Wales College of Medicine. Amongst the many
honors he received and significant posts he occupied,
the founding Presidency of the Faculty of Community
Medicine from 1971 to 1973 ranks high.

Following the study of natural sciences in Cam-
bridge and psychoanalysis in Vienna, he completed
his medical studies in University College London and
qualified M.B. in 1938. After service in the Royal
Army Medical Corps he studied Public Health in the
London School of Hygiene and Tropical Medicine.

Archie’s career really began to develop when he
spent eighteen months studying the epidemiology of
tuberculosis at the Henry Phipps Institute in Philadel-
phia on a Rockefeller Fellowship. Following this,
he worked on coal workers’ pneumoconiosis and
tuberculosis in the MRC Pneumoconiosis Research
Unit in South Wales from 1947 to 1960. There he
developed field epidemiology methods and the study
of total defined communities (see Population-based
Study), rather than just samples of working men. He
became almost obsessional about practical aspects of
field epidemiology: the representativeness of popula-
tion samples; the response rate of subjects selected
for study; the completeness of the follow-up in a
cohort study; and the reproducibility of the mea-
surements made. He became especially concerned
about reproducibility in the reading of chest X-rays
and he introduced the use of “standard films” to
reduce observer error in the grading of pneumoco-
niosis and other chest lesions (see Observer Reli-
ability and Agreement). In short, he was acutely
concerned with every aspect of research methodology
and he himself repeatedly demonstrated the potential
of epidemiology as a highly accurate quantitative sci-
ence. He argued that in its relevance to medical and
social problems, epidemiology is second to no other

research strategy, and he extended his own work to
the study of a wide range of conditions, in addition
to pneumoconiosis and tuberculosis, including iron
deficiency anemia, arthritis, glaucoma, hypertension,
bronchitis, and cardiovascular disease.

Archie’s greatest love, however, was for the
randomized controlled trial (see Clinical Trials,
Overview). Teaching by Sir Austin Bradford Hill
led him to comment later that “this innovation . . .

offered clinical medicine an experimental approach
to the validation of its practices and treatments” [4].
Although Archie himself conducted very few trials,
his encouragement was seminal in many randomized
controlled trials in a wide range of medical situations.
One trial of his, however, on the treatment of famine
edema in men in a prisoner of war camp in Salonica,
will certainly go down in history. This was eventually
published under the title “Sickness in Salonica: my
first, worst and most successful clinical trial” [3].

Archie saw an especially valuable role for the ran-
domized controlled trial in the evaluation of clinical
procedures, and the trials he stimulated on the best
place of treatment and the optimum length of stay in
hospital led to him being invited to give the Rock
Carling lecture in 1970. This was later published as
a monograph under the title: Effectiveness and Effi-
ciency – Random Reflections on Health Services [1].
The provocative and challenging ideas he developed
in this had a widespread international effect in stimu-
lating critical evaluation of all aspects of the National
Health Service in the UK, and health services in
many other countries (see Health Services Research,
Overview).

Perhaps the contribution of Archie to medical
research that has had the widest effect, and is likely
to have the most far, and long reaching effects,
originated from a challenge he made in 1979:

It is surely a great criticism of our profession that we
have not organised a critical summary, by specialty
or subspecialty, adapted periodically, of all relevant
randomised controlled trials [2].

Iain Chalmers, with others, took this challenge by
Cochrane and turned it into the world-wide on-
going Cochrane Collaboration. By early 1997 there
were 13 Cochrane Centers across the world which
organize the searching of all the medical literature,
the identification of randomized controlled trials, the
preparation of databases (see Database Systems),
and the preparation, publication and maintenance
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of systematic reviews of the effects of health care
interventions (see Meta-analysis of Clinical Trials).

These centers are a most fitting memorial to
Cochrane. His inspired vision, together with the
enthusiasm and sweat of Chalmers, has almost limit-
less potential benefit. A further development that has
arisen from this initiative – the definition and pro-
motion of evidence based medicine – is likely to
have a profound and widespread effect on all clinical
practice.
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Cohabitation

Cohabitation has increasingly come to be the term
used to describe the marital status of couples who
are unmarried sexual partners and share the same
household. With the rise in cohabitation, shorthand
for “unmarried cohabitation”, that has occurred in
developed countries, the full extent of coresidential
heterosexual partnerships are no longer captured by
marriage data. Moreover, the rise in extramarital
fertility that has also occurred across developed
societies in recent decades is related to developments
in cohabitation.

Men and women living together outside marriage
is not a new phenomenon. Prior to the 1970s it was
largely statistically invisible and probably socially
invisible outside the local community or milieu. In
some countries there were subgroups that were prob-
ably more prone to cohabitation than others: the very
poor; those whose marriages had broken up but were
unable to obtain a divorce, as there was no such leg-
islation, or it was more stringent than nowadays or
it was very expensive to obtain a divorce; certain
groups of rural dwellers; and groups ideologically
opposed to marriage. The form of cohabitation that
came to the fore during the 1960s in Sweden and
Denmark, and the 1970s in other Northern and West-
ern European countries, North America, and Australia
is new, and could be aptly termed “nubile cohabita-
tion”, whereby young people predominantly in their

20s and early 30s live together either as a prelude to,
or as an alternative to, marriage. Additionally, with
the growth in divorce, “postmarital cohabitation” is
also likely to have become more prevalent, with the
divorced cohabiting either in preference to, or as a
prelude to, remarriage. In many data sources it is
difficult to distinguish between “nubile” and “post-
marital” cohabitation. The increased prevalence of
cohabiting unions lies behind much of the decline in
first marriage and remarriage rates that have occurred
in recent decades.

To date, data on cohabitation tend to be scarce and
generally emanate from surveys which can make any
comparative analyses problematic, as sample sizes,
coverage, and definitions may vary. Notwithstanding,
in developed countries with a time series of data it is
clear that there have been increases in the proportions
of women cohabiting, particularly in their 20s. The
peak ages for cohabitation tend to be the early 20s,
and cohabitation at older ages, particularly in the 30s,
is less common. There is some evidence that cohab-
iting unions tend to be more fragile and less fertile
than marriages. What emerges from existing surveys
is that cohabitation is a relatively youthful practice
and marriage has not been rejected permanently on a
wide scale, as even in Sweden and Denmark, where
the practice is more long-standing, the majority of
unions amongst women in their 30s are legal marital
unions.

KATHLEEN KIERNAN



Coherence Between Time
Series

Coherence is a measure of the strength of asso-
ciation between time series; it is a time series
analog of the standard correlation coefficient. Asso-
ciation between time series is a more complex con-
cept than that between scalar characteristics, since
the time series data structure is much richer; for
example, the association may include a leading or
lagging relationship. Two examples are shown in
Figure 1. Figure 1(a) shows daily mortality and SO2

time series in London during the winter months of
1958, with an obvious question whether the pollution
was in any way affecting mortality. The strong
peaks toward the end of both series are sugges-
tive of a strong association; see [8] for the data set
and a detailed analysis, and [9] for a related work.
Figure 1(b) shows traces of a person’s respiration and
heart-rate variability. Since a normal heart responds
to the respiration cycles, while an abnormal heart
does not, the correlation analysis of the two time
series carries a high diagnostic value as to the state
of health of the person’s heart; see, for example, [1].

We first define some notations and terminology
theoretically, then comment on how the quantities
are estimated given some finite-length time series
data. Given two stationary time series Xt and Yt ,
for t = 0, ±1, . . ., the autocovariance functions are
given by

Cx(m) = cov(Xt , Xt+m), (1)

Cy(m) = cov(Yt , Yt+m), m = 0, ±1, . . . . (2)

The association between the two time series may be
expressed by the cross-covariance function

Cxy(m) = cov(Xt , Yt+m), m = 0, ±1, . . . . (3)

The cross-correlation function is defined similarly, so
the measure of dependencies between Xt and Yt is no
longer a single number, but a function of lag m, which
means that potentially it can carry a lot of information
about the dependency between Xt and Yt .

The spectra and cross-spectra of Xt and Yt (see
Spectral Analysis) are the Fourier transforms of the
above quantities, i.e.

fx(ω) =
∞∑

m=−∞
Cx(m) exp(−2πiωm), (4)

fy(ω) =
∞∑

m=−∞
Cy(m) exp(−2πiωm), (5)

fxy(ω) =
∞∑

m=−∞
Cxy(m) exp(−2πiωm). (6)

The functions fx(ω) and fy(ω) are called the spectral
density functions of Xt and Yt , and fxy(ω) the cross-
spectrum between Xt and Yt (see Multiple Time
Series). Since Cx and Cy are symmetric, fx(ω) and
fy(ω) are real functions, but fxy(ω) is, in general, a
complex function. These frequency-domain objects
are, in a mathematical sense, equivalent to their
time-domain analogs; however, they carry different

Figure 1 Examples of bivariate time series. (a) Pollution and respiratory mortality in London during winter 1958. (b)
Respiration time series in terms of thoracic volume and the heart-rate time series
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physical interpretations. To aid this interpretation,
define the (squared) coherence as

ρ2(ω) = |fxy(ω)|2
fx(ω)fy(ω)

, (7)

and the phase spectrum

φ(ω) = tan−1

{
Im[fxy(ω)]

Re[fxy(ω)]

}
,

where Re [·] and Im [·] are the real and imaginary
parts of a complex quantity.

Now the interpretations. It is sometimes natural to
think of a time series Xt as a waveform, composed of
different frequencies. The spectrum fx(ω) is the vari-
ance or the power of the component of time series Xt

at frequency ω. The coherence ρ2(ω) is the propor-
tion of variability of the Yt component at frequency
ω explained by the corresponding Xt component and
the φ(ω) is the phase shift in the Xt component. The
interpretation of ρ2(ω) is especially appealing as it
corresponds to the usual R2 interpretation in regres-
sion analysis. Let us consider some simple theoretical
examples.

Example 1

Let Yt = −Xt ; then intuitively ρ2(ω) = 1, which
means that every frequency component of Yt is totally
determined by Xt or there is no noise. (Note the
analogy for scalar random variables: if Y = −X,
then the squared correlation is ρ2 = 1.) It may be
shown that φ(ω) = 1/2, which means that the Yt

components are out of phase by half a cycle from
the corresponding Xt components. For a theoretical
treatment of this example, see [3, p. 213].

Example 2

Let Yt = Xt−1 + Zt , where Xt and Zt are indepen-
dent, i.e. Yt is a delayed version of Xt plus some
noise. Let fz(ω) be the spectrum of Zt . Then the
coherence between Xt and Yt is

ρ2(ω) = fx(ω)

fx(ω) + fz(ω)
. (8)

(Note the analogy for scalar random variables: if
Y = X + Z, then the squared correlation is ρ2 =
σ 2

x /(σ 2
x + σ 2

z ).) The interpretation is immediate and

useful in general: in frequencies where the noise level
is low, i.e. fz(ω) is small, the correlation between Xt

and Yt is high, and vice versa. It may be shown that
the phase shift is φ(ω) = ω. This means that the low-
frequency components of Xt and Yt (for example, the
trend or large swings in the series) move in phase, but
the faster components are out of phase.

Before we discuss a real data example, we remark
that there is a large literature on the spectral esti-
mation based on finite-length time series. Priestley
[7] and Brillinger [2] are two main references in the
area. An older reference, Jenkins & Watts [4, Chapter
9], gives the techniques and some detailed examples
of coherence analysis. The concept of smoothing is
central in the nonparametric estimation of the spectra
and cross-spectra, where the amount of smoothing is
traditionally left subjectively for the user. An objec-
tive and automatic smoothing of the spectrum was
proposed, for example, in [11] and [6]. Pawitan [5]
describes a fully automatic estimation of the cross-
spectrum.

Standard statistical packages such as SAS and
BMDP have procedures (PROC SPECTRA and BMDP
1T, respectively) for the traditional estimation of the
spectra and cross-spectra, as well as the coherence
and phase spectrum (see Software, Biostatistical).
Venables & Ripley [10] show in Chapter 14 some
examples of coherence analysis using the S-PLUS
statistical language.

Example 3

This example shows the power of coherence analysis
using real data on heart-rate variability. The estimates
shown in Figure 2 are fully automatic estimates based
on the time series in Figure 1(b); see [5] for a detailed
description of the estimation technique. The coher-
ence between respiration and heart rate shows that
the heart responds to the natural respiration cycle
between 0.25–0.5 cycles per second or between 2–4
seconds per cycle. This is expected from a healthy
heart and has been shown to be mediated by the
parasympathetic nervous system [1]. The phase spec-
trum indicates that the cardiac response is in phase
with respiration if the respiration is slow enough at
around 0.25 cycles per second, but is increasingly
out of phase with faster respiration due to delay in
the cardiac response. We note that none of these phe-
nomena is apparent from the spectral analysis of the
individual time series.
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Figure 2 Coherence analysis of heart-rate variability. (a) Heart responds to the respiration cycle at frequencies 0.25–0.5
cycles per second. (b) Cardiac response to slow respiration at around 0.25 cycles per second is almost immediate
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Cohort Study, Historical

In cohort study design, participants are enrolled,
often with selection based on one or more exposures
of interest, and observed over time for disease
incidence or mortality. Cohort studies are further
classified by the timing of the enrollment and
follow-up in relation to actual calendar time. Cohort
studies involving identification of participants and
follow-up into the future are termed “prospective
cohort studies”, while those involving follow-up and
events in the past are referred to as “historical
cohort studies”. Other designations used for historical
cohort design include “retrospective cohort study”
and “nonconcurrent cohort study”. A study may
be initiated as an historical cohort study, but
subsequently follow-up could be maintained into
the future. The study of bladder cancer in British
chemical industry workers, conducted by Case
et al. [1], represents one of the first comprehensive
applications of historical cohort design. Beginning
the study in the 1950s, Case et al. traced a group
of chemical industry workers employed subsequent
to 1920 and showed a clear excess of deaths from
bladder cancer, which was attributed to exposures
to anilines. The researchers compared the data with
expected mortality, on the basis of the experience of
males in the general population, over the same time
interval. Frost [3] and others had previously applied
a similar method in studying infectious diseases.

Historical cohort design can be applied if records
are available for the retrospective identification of
study participants, the classification of the expo-
sure(s) of interest, and the follow-up of the par-
ticipants for the relevant outcomes. For example,
historical cohort design has been widely applied
in investigating the effects of specific occupations
and industries (see Occupational Epidemiology),
because of the availability of records appropriate to
these purposes. Employment records can be used
to identify cohort members and, in some instances,
to estimate exposures; follow-up for mortality can
be accomplished using pension records and national
death registries. In the absence of an internal refer-
ence population, comparison has been made in many
studies to mortality in the general population. For
example, Samet et al. [6] conducted an historical
cohort study of lung cancer mortality in underground
uranium miners who had worked in the state of

New Mexico, USA, using industry and health clinic
records to define the cohort. The investigation began
in 1978; the records were used to identify men who
had worked for at least 12 months in an under-
ground uranium mine in New Mexico by December
31, 1976. Follow-up for mortality was accomplished
by using listings of deaths in the state and by match-
ing the study roster against two national databases,
the files of the Social Security Administration and
the National Death Index. The initial report of study
findings involved follow-up through 1985; follow-up
has continued.

A variety of approaches may be used to esti-
mate exposures in historical cohort studies of occu-
pational groups, depending on the nature of the
exposure(s) and the extent and quality of data avail-
able on exposures [2]. The occupation or industry
may serve as a surrogate for associated exposures,
and job information may be used in a job–exposure
matrix to link occupation and industry pairs to spe-
cific exposures. General systems have been created
for this purpose and the same approach has been
tailored to specific occupational groups. If data are
available on concentrations of workplace contami-
nants, it may be possible to calculate estimates of
exposure for specific study participants by combin-
ing the concentration data with the time spent in
jobs involving the exposure. For example, in the
study of New Mexico uranium miners, informa-
tion on concentrations of radon progeny in specific
mines was used in combination with data on time
spent in the mines to estimate exposures to radon
progeny [6].

Historical cohort design has the advantage of
rapidity of execution. While the task of conducting an
historical cohort study may be formidable, the inves-
tigator does not need to wait for follow-up time to
accumulate, as in a prospective cohort study. Costs
tend to be modest as a result, and many histori-
cal cohort studies can be completed in only a few
years, depending on the status and complexity of the
involved databases.

Historical cohort studies, similar to prospective
cohort studies, are subject to limitation by infor-
mation bias, selection bias (see Selection Bias;
Bias in Cohort Studies) and confounding (see Bias
in Observational Studies). The limitations of the
design primarily reflect the availability of the rele-
vant historical data to ascertain the cohort participants
and to estimate exposures of interest and potential
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confounding and modifying factors. Information bias
is a particular concern. There is a strong potential
for exposure misclassification (see Misclassification
Error) and for bias from uncontrolled confounding.
Because databases used to estimate exposures and
covariates may be most complete in the more recent
years, there is a potential for complex time-dependent
exposure misclassification. The design may be further
compromised by losses to follow-up and misclassifi-
cation of the health outcome(s), because of reliance
on historical records and death certificate assignment
of cause of death. Historical cohort studies of work-
ers involving mortality as the outcome measure are
subject to a bias that has been widely termed “the
healthy worker effect” [4]. Employed persons tend
to be healthier than unemployed persons and con-
sequently fewer deaths than expected are typically
observed. The healthy worker effect has been char-
acterized as a form of selection bias [2], although
it can also be viewed as a reflection of confound-
ing from uncontrolled differences between employed
and unemployed persons. Selection bias could also
be introduced in defining a cohort on the basis of
incomplete records; for example, the findings of an
historical cohort study could be affected by selec-
tion bias if records used to define the cohort were
more complete in the most recent years of expo-
sure and exposures had declined over the period of
eligibility. Furthermore, investigating disease inci-
dence may not be possible using historical cohort
design, unless special mechanisms have been put
in place to track outcomes of interest, or unless it
is possible to match records against an incidence
registry for the disease(s) of interest, e.g. a cancer
registry.

Historical cohort design may be strengthened by
the addition of complementary, nested studies that
involve additional collection of data on exposures,
confounders, or modifiers from samples of the cohort
members. Using case-based sampling methods (see
Case–Cohort Study), more detailed data may be
obtained for participants who have developed the
outcome of interest and for an appropriate sample of

controls. For example, in the study of New Mexico
uranium miners, the effect of silicosis (a chronic
respiratory disease arising from silica dust exposure)
on lung cancer risk was assessed using a nested case-
control design [5]. Chest radiographs were interpreted
for lung cancer cases (N = 65) and for controls
(N = 216) sampled from a total cohort of 3400
miners.

Historical cohort design has proven to be useful
for studying the effects of occupational and other
exposures. We may see increasing application of
this design as implementation of disease registries
expands and large administrative databases developed
by health care organizations are used for research on
health care outcomes and effectiveness (see Admin-
istrative Databases).
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Cohort Study

Cohort studies constitute a central epidemiologic
approach to the study of relationships between per-
sonal characteristics or exposures and the occur-
rence of health-related events, and hence to the
identification of disease prevention hypotheses and
strategies.

Consider a conceptually infinite population of
individuals moving forward in time. A cohort study
involves sampling a subset of such individuals,
and observing the occurrence of events of interest,
generically referred to as disease events, over some
follow-up period. Such a study may be conducted to
estimate the rates of occurrence of the diseases to be
ascertained, but most often estimation of relationships
between such rates and individual characteristics
or exposures is the more fundamental study goal.
If cohort study identification precedes the follow-
up period, then the study is termed prospective,
while a retrospective or historical cohort study
involves cohort identification after a conceptual
follow-up period (see Cohort Study, Historical).
The subsequent presentation assumes a prospective
design.

Other research strategies for studying expo-
sure–disease associations, and for identifying disease
prevention strategies, include case–control studies
and randomized controlled disease prevention trials.
Compared with case–control studies, cohort stud-
ies have the advantages that a wide range of health
events can be studied in relation to exposures or char-
acteristics of interest, and that prospectively ascer-
tained exposure data are often of better quality than
the retrospectively obtained data that characterize
case–control studies. However, a cohort study of a
particular association would typically require much
greater cost and longer duration than would a cor-
responding case–control study, particularly if the
study disease is rare. Compared with randomized con-
trolled trials, cohort studies have the advantage of
allowing the study of a broad range of exposures or
characteristics in relation to health outcomes of inter-
est, and typically of much simplified study logistics
and reduced cost. Randomized intervention trials can
also examine a broad range of exposures and dis-
ease associations in an observational manner, but the
randomized assessments are necessarily restricted to

examining the health consequences of a small num-
ber of treatments or interventions. However, disease
prevention trials have the major advantage that these
comparisons are not confounded (see Confounding)
by pre-randomization disease risk factors, whether or
not these are even recognized. The choice among
these and other research strategies may depend on
the distribution of the exposures in the study popu-
lation and especially on the ability to measure such
exposures reliably, on the knowledge and measure-
ment of confounding factors, on the reliability of
outcome ascertainment, and on study costs in relation
to the public health potential of study results. These
issues will be returned to in the final section of this
article.

There are many examples of associations that
have been identified or confirmed using cohort study
techniques, including that between cigarette smoking
and lung cancer (see Smoking and Health); between
blood pressure, blood cholesterol, cigarette smoking,
and coronary heart disease; between current use of
the original combined oral contraceptives and the
risk of various vascular diseases; and between atomic
bomb radiation exposure and the risk of leukemia or
of various solid tumors, to name a few. In recent
years there have also been many examples of the use
of cohort study designs to examine the association
between exposures that are difficult to measure,
or that may have limited within-cohort exposure
variability, and the occurrence of disease. Such
examples may involve, for example, physical activity,
dietary, environmental, or occupational exposures. In
these settings cohort studies seem often to yield weak
or equivocal results, and multiple cohort studies of
the same general association may yield contradictory
results. It is important to be able to anticipate
the reliability and power of cohort studies, to be
aware of strategies for enhancing study power and
reliability, and to consider carefully optimal research
strategies for assessing specific exposure–disease
hypotheses.

This article relies substantially on a recent
review of cohort study design issues by the
author [66]. The reader is also referred to a
number of books and review articles focusing on
cohort study methodology, including Kleinbaum
et al. [41], Miettinen [52], Kelsey et al. [40],
Rothman [80], Breslow & Day [7], Kahn & Sempos
[38], Checkoway et al. [16], Willett [101], and
Morganstern & Thomas [57].
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Basic Cohort Study Elements

Exposure Histories and Disease Rates

A general regression notation can be used to represent
the exposures (and characteristics) to be ascertained
in a cohort study. Let z1(u)T = [z11(u), z12(u), . . .]
denote a set of numerically coded variables that
describe an individual’s characteristics at “time” u,
where, to be specific, u can be defined as time
from selection into the cohort, and “T” denotes
vector transpose. Let Z1(t) = [z1(u), u < t] denote
the history of such characteristics at times less than
t . Note that the “baseline” exposure data, Z1(0), may
include information that pertains to time periods prior
to selection into the cohort. Denote by λ[t ; Z1(t)] the
population incidence rate at time t for a disease of
interest, as a function of an individual’s preceding
“covariate” history. A typical cohort study goal is
the elucidation of the relationship between aspects of
Z1(t) and the corresponding disease rate λ[t ; Z1(t)].
As mentioned above, a single cohort study may
be used to examine many such covariate–disease
associations.

The interpretation of the relationship between
λ[t ; Z1(t)] and Z1(t) may well depend on other fac-
tors. Let Z2(t) denote the history up to time t of a
set of additional characteristics. If the variates Z1(t)

and Z2(t) are related among population members at
risk for disease at time t , and if the disease rate
λ[t ; Z1(t), Z2(t)] depends on Z2(t), then an observed
relationship between λ[t ; Z1(t)] and Z1(t) may be
attributable, in whole or in part, to Z2(t). Hence,
toward an interpretation of causality (see Causation)
one can focus instead on the relationship between
Z1(t) and the disease rate function λ[t ; Z1(t), Z2(t)],
thereby controlling for the “confounding” influences
of Z2. In principle, a cohort study needs to control
for all pertinent confounding factors in order to inter-
pret a relationship between Z1 and disease risk as
causal. It follows that a good deal must be known
about the disease process and disease risk factors
before an argument of causality can be made reliably.
This feature places a special emphasis on the repli-
cation of results in various populations, with the idea
that unrecognized or unmeasured confounding factors
may differ among populations. As noted above, the
principal advantage of a randomized disease preven-
tion trial, as compared with a purely observational
study, is that the randomization indicator variable

Z1 = Z1(0), where here t = 0 denotes the time of
randomization, is unrelated to the histories Z2(0) of
all confounding factors, whether or not such are rec-
ognized or measured. See, for example, Rubin [82],
Robins [74, 76], and Greenland [27], for a fuller dis-
cussion of causal inference criteria and strategies.

The choice as to which factors to include in Z2(t),
for values of t in the cohort follow-up period, can be
far from straightforward. For example, factors on a
causal pathway between Z1(t) and disease risk may
give rise to “overadjustment” if included in Z2(t),
since one of the mechanisms whereby the history
Z1(t) alters disease risk has been conditioned upon.
However, omission of such factors may leave a con-
founded association, since the relationship between
Z2 and disease risk may not be wholly attributable to
the effects of Z1 on Z2. See Robins [76] for a detailed
discussion of the assumptions and procedures needed
to argue causality in such circumstances.

Cohort Selection and Follow-Up

Upon identifying the study diseases of interest and
the “covariate” histories Z(t) = [Z1(t), Z2(t)] to be
ascertained and studied in relation to disease risk,
one can turn to the estimation of λ[t ; Z(t)] based
on a cohort of individuals selected from the study
population. The basic cohort selection and follow-up
requirement for valid estimation of λ[t ; Z(t)] is that
at any [t, Z(t)] a sample that is representative of the
population in terms of disease rate be available and
under active follow-up for disease occurrence. Hence,
conceptually, cohort selection and censoring rates
(see Censored Data) (e.g. loss to follow-up rates)
could depend arbitrarily on [t, Z(t)], but selection
and follow-up procedures cannot be affected in any
manner by knowledge about, or perception of, disease
risk at specified [t, Z(t)].

Cohort selection rates typically depend on a vari-
ety of pre-enrollment characteristics. Potential study
subjects may be excluded if they fail to meet certain
conditions, perhaps related to prior health events or to
their likelihood of completing all study requirements.
Similarly, potential study subjects may choose not
to participate in a cohort study for a myriad reasons
that may be impossible to quantify. How do such
selection factors affect the validity or interpretation
of estimates of λ[t ; Z(t)]?

In the presence of selection factors the estimation
of λ[t ; Z(t)] applies not to the original conceptual
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population, but to a reduced population satisfying
cohort exclusionary and “willingness” criteria. The
magnitude of disease rates may well differ between
these two populations, particularly if certain health
criteria must be met for inclusion, or if study subjects
tend to be more or less healthy than the broader
population from which they arise. The magnitude of
associations between λ[t ; Z(t)] and elements of Z(t)

may be affected by cohort selection, thereby limiting
the ability to “generalize” the estimated association to
the larger population. In general, issues of bias and
effect modification can be addressed satisfactorily
only if the selection factors are accurately measured
and properly incorporated into the disease rate model.
The ability to generalize to the larger population
additionally requires knowledge about, or estimates
of, cohort selection rates as a function of selection
factor values (see Validity and Generalizability in
Epidemiologic Studies).

As noted previously, censoring rates at a typical
follow-up time t may depend on aspects of Z(t)

without biasing the estimation of λ[t ; Z(t)]. Note,
however, that elements of Z(t) that relate to censor-
ing then typically need to be included in the disease
rate model and analysis in order to avoid bias. For
this reason, as well as reasons of overall study power,
it is important to strive to minimize losses to follow-
up in cohort study conduct. Certainly, a dependence
of selection or censoring rates on characteristics that
may be affected by the exposures of interest can much
complicate the interpretation of corresponding esti-
mated relationships with disease risk.

The reader is referred to Miettinen [52] and the
texts previously listed, as well as to Greenland [24],
Miettinen [53, 54], and Poole [63], for discussion
of the definition of the study population, and of the
“study base” subset thereof from which a cohort is
selected, and to these same sources and Greenland
[25], Kalbfleisch & Prentice [39, Chapter 5], and
Robins [75] for further discussion of cohort study
follow-up bias (see Bias in Cohort Studies).

Covariate History Ascertainment

In general, valid estimation of λ[t ; Z(t)] within the
subpopulation defined by the selection and follow-up
procedures requires the accurate and timely ascer-
tainment of the histories Z(t) during the cohort study
follow-up period. As before, let t = 0 denote the time

of enrollment into the cohort. Then one seeks accu-
rate ascertainment of Z(t) for values of t ≥ 0 in the
follow-up period for each cohort member. Character-
istics or exposures prior to cohort enrollment (t < 0)
may be of considerable interest, but there may be
a limited ability to obtain such information retro-
spectively. Hence, it may sometimes be necessary to
restrict the covariate history Z(0) to time-independent
factors, or to the current or recent values of time-
varying factors (see Time-dependent Covariate).
Reliable measurement tools may not be available,
even for current values of exposures of interest, or
for corresponding confounding factor histories. Simi-
larly, during cohort follow-up (t > 0) reliable means
of updating covariate histories may or may not be
available, and such updates would typically be prac-
ticable only at a few selected time points. Also, some
of the measurements of interest to be included in Z(t)

may be too expensive to obtain on all cohort mem-
bers. For example, such measurements may involve
biochemical or molecular analysis of blood compo-
nents, or hand extraction of occupational exposure
histories from employer records. Hence, a covariate
subsampling plan may be an important element of a
cohort study concept and design.

Disease Event Ascertainment

A cohort study will often involve a system for reg-
ularly updating disease event information. This may
involve asking study subjects to self-report a given
set of diagnoses, or to self-report all hospitalizations.
Hospital discharge summaries may then be examined
for diagnoses of interest with confirmation by other
medical and laboratory records. Sometimes disease
events of interest will be actively ascertained by tak-
ing periodic measurements on all cohort members.
For example, electrocardiographic tracings toward
coronary heart disease diagnosis or screening breast
mammograms toward breast cancer diagnosis may
be a part of a basic study protocol. Diagnoses that
require considerable judgment may be examined by
a committee of experts toward enhancing the stan-
dardization and accuracy of disease event diagnoses.
In spite of the application of the best practical out-
come ascertainment procedures, there will usually be
some misclassification (see Misclassification Error)
of whether or not certain disease events have occurred
with resulting bias in the estimation of λ[t ; Z(t)]. A
dependence of ascertainment rates on factors other



4 Cohort Study

than those included in Z(t) may be able to be
accommodated by including such factors as control
variables in Z2(t).

Unbiased ascertainment of the timing of disease
events relative to Z(t) is also important for valid
inference. For example, if disease screening activities
vary with aspects of Z(t), leading to earlier reporting
at some covariate values than at others, then biased
associations will typically arise. Similarly, differential
lags in the reporting of disease events may cause bias
unless specifically accommodated in data analysis.

Data Analysis

Suppose now that covariate disease associations of
interest have been identified, and that procedures for
selecting a cohort and for accurately ascertaining per-
tinent covariate histories and disease event times have
been established. What then can be said about the
ability to detect an association between a particu-
lar characteristic or exposure and a corresponding
disease risk? Typically, a test of association would
be formulated in the context of a descriptive statis-
tical model, though in some settings a mechanistic
or biologically based model may be available (e.g.
Armitage & Doll [2], Whittemore & Keller [99], and
Moolgavkar & Knudson [56] (see Multistage Car-
cinogenesis Models).

A very useful and flexible descriptive modeling
approach formulates the association in terms of
relative risk. Specifically, one supposes [18] that

λ{t ; Z(t)} = λ0(t) exp{z(t)Tβ}, (1)

where z(t)T = {z1(t), . . . , zp(t)} is a modeled regres-
sion vector formed from Z(t), βT = (β1, . . . , βp) is
a corresponding relative risk parameter to be esti-
mated, and λ0(·) is an unrestricted baseline disease
rate (hazard) function corresponding to a modeled
regression vector z(t) ≡ 0. A test of the null hypoth-
esis of no association between, say, z1(t) and disease
risk then corresponds to β1 = 0. Estimation and test-
ing can be conducted by applying standard likelihood
procedures to the partial likelihood function

L(β) =
k∏

i=1




exp[zi(ti)
Tβ]

/ ∑

l∈R(ti )

exp[zl(ti)
Tβ]




 ,

(2)

where t1, . . . , tk denotes the disease incidence times
in the cohort, zi(ti) is the modeled covariate at
time ti for the cohort member diagnosed at ti , and
R(ti) denotes the set of cohort members being fol-
lowed for disease occurrence at time ti . Consideration
of the distribution of the score statistics U1(0) =
∂ log L(β̂0)/∂β̂T

0 , where β̂0 maximizes L(β) subject
to β1 = 0, makes it clear that the power of the test
for β1 = 0 depends primarily on the magnitude, β1,
of the regression coefficient, the expected number of
disease events, k, during cohort follow-up, and the
“spread” of the primary regression variable distri-
bution [z1l (t); l ∈ R(t)] across the cohort follow-up
times. The power will also depend somewhat on the
distributions of the other (control) variables included
in z(t) and on the sampling variation in β̂0. A useful
generalization of (1) allows the baseline disease rate
function λ0(·) to differ arbitrarily among strata that
may be time dependent, typically defined by catego-
rizing the histories Z2(t). Estimation and testing can
then be based on a likelihood function that is simply
the product of terms (2) over strata.

Conditions for the avoidance of confounding and
other biases in the estimation, of a relative risk
parameter β1 are naturally less restrictive than are
those for accurate estimation of the entire disease rate
process λ[t ; Z(t)]. For example, selection, follow-up,
and disease ascertainment rates can depend on fac-
tors not included in Z(t) provided such factors are
unrelated to Z1(t), conditional on [t, Z2(t)], without
implying bias in the estimation of β1, assuming that a
relative risk model of the form (1) holds conditional
on such factors. There is a considerable epidemio-
logic literature exploring such issues. In addition to
the texts previously cited see, for example, Miet-
tinen & Cook [55], Boivin & Wacholder [5], and
Greenland & Robins [29]. Though the use of rel-
ative risk, and of closely associated odds ratios is
ubiquitous in epidemiology, other measures of asso-
ciation, including disease rate difference measures,
also have utility and their own criteria for valid esti-
mation. See, for example, the texts previously cited
and Greenland [25]. The evolution of the covariate
histories Z(t), over time, may also be of substantive
interest. For example, the extent to which disease risk
factors track over time may have clinical implica-
tions, or the extent to which an intermediate outcome
in Z2(t) can explain an exposure disease association
may provide insights into disease mechanisms. Joint
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analyses of an exposure in relation to two or more dis-
ease processes may also be of considerable practical
interest.

Subsequent sections expand upon these basic
cohort study features.

Study Design

Cohort Study Power

A number of authors have provided a methodology
for cohort study sample size and power determination
(e.g. Gail [22], Casagrande et al. [15], Fleiss et al.
[20], Whittemore [97], Brown & Green [11],
Greenland [23], and Self et al. [85]. Breslow & Day
[7, Chapter 7] provide a detailed account of this topic,
including consideration of the impact of varying the
exposure distribution, of confounding factor control,
of matching, and of nested case–control sampling
(see Case–Control Study, Nested), on study power.
See also Whittemore & McMillan [100].

As suggested above, a comprehensive approach to
the issue of study power for a particular association
would require a range of design assumptions, includ-
ing assumptions about the exposure distribution and
its variation across time, about the magnitude of the
regression parameter β1, and concerning the baseline
disease incidence rates. Though such a comprehen-
sive approach may be useful, and flexible power
calculation procedures permitting the use of com-
plex assumptions are available (e.g. Self et al. [85]),
power calculations for the simple odds ratio special
case can provide valuable guidance concerning cohort
study power and related design choices. Suppose that
a baseline characteristic or exposure of interest is
dichotomized into an “exposed” group (Z1 = 1) com-
prised of the fraction, γ , of the population having a
high value of an exposure, and an “unexposed” group
(Z1 = 0) comprised of the fraction, 1 − γ , of the
population having a comparatively low value. Let p1

denote the probability that an exposed subject expe-
riences a study disease of interest during a prescribed
cohort follow-up period and let p2 be the corre-
sponding probability for an unexposed subject. Note
that p1 and p2 can be thought of as average prob-
abilities over the respective distributions of cohort
follow-up times and over the exposure distributions
within the exposed and unexposed categories. A sim-
ple sample size formula, based on the well-known
approximate normality of logarithm of the simple

odds ratio estimator, indicates that the cohort sample
size must be at least

n = [p2(1 − p2)]
−1(log λ)−2Q, (3)

where λ = p1(1 − p2)[p2(1 − p1)]−1 is the exposed
vs. unexposed odds ratio, and Q = [γ (1 − γ )]−1

{Wα/2− W1−η[γ + λ−1(1 − p2 + λp2)
2(1 − γ )]1/2}2,

to ensure that a two-sided α-level test (e.g. α =
0.05) of the null hypothesis of no exposure effect
(λ = 1) will be rejected with probability (power) η,
where Wα/2 and W1−η denote the upper α/2 and
1 − η percentiles of the standard normal distribution,
respectively.

Note that Q in Eq. (3) is a rather slowly varying
function of λ and p2 at specified α and η, so that the
sample size necessary to achieve a specified power is
approximately inversely proportional to p2(1 − p2),
where p2 is again the unexposed disease probabil-
ity, and inversely proportional to (log λ)2, the square
of the exposed vs. unexposed log-odds ratio. Hence
there is considerable sample size sensitivity to the
magnitude of the odds ratio, with an odds ratio of
1.5 requiring about three times the cohort size of an
odds ratio of 2.0, and an odds ratio of 1.25 requir-
ing about ten times the sample size of that for an
odds ratio of 2.0. The magnitude of the basic dis-
ease incidence rates (i.e. p2) are also of considerable
importance in the choice of a cohort size and average
follow-up duration. Prentice [66] displayed selected
power, η, calculations, developed in planning the
cohort study component of the Women’s Health Ini-
tiative [79, 103] which is currently enrolling 100 000
post-menopausal American women in the age range
50–79, based on (3) for selected cohort sizes, n, odds
ratios, λ, and exposure fractions, γ . The power calcu-
lations are shown as a function of unexposed average
incidence rates and average cohort follow-up dura-
tion, the product of which is the unexposed incidence
rate p2.

Measurement error in the modeled regression
variable in (1) can involve a substantial loss of
power and, except in idealized situations, can
invalidate the null hypothesis test. The impact of
covariate measurement error on the study design,
conduct, and interpretation is one of the least
developed, and potentially most important, aspects of
cohort study methodology. For example, consider a
binary exposure variable subject to misclassification.
Suppose also that the misclassification rates do
not vary within the exposed and unexposed
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groups, according to quantitative exposure levels
or other study subject characteristics, and that
all necessary confounding variables are included
in the analysis and are measured without error.
Under this circumstance, misclassification in the
binary exposure variable effectively reduces the odds
ratio λ in the sample size–power relationship (3).
To cite a specific example, suppose that Z1 = 1
denotes values above the median for a specific
exposure while Z1 = 0 denotes values below
the median, so that γ = 0.5, λ = 2.0, and p2 =
0.02. Suppose that rather than Z1 one can only
measure a variable X1 which, when dichotomized
at its median, gives p(X1 = 1|Z1 = 1) = p(X1 =
0|Z1 = 0) = 1 − ∆ and p(X1 = 1|Z1 = 0) = p(X1

= 0|Z1 = 0) = ∆. Suppose that this common
misclassification probability takes the value ∆ = 0.2.
The odds ratio based on the measured dichotomous
variate X can then be calculated to be 1.50, so
that a 20% exposure misclassification leads in these
circumstances to a substantially attenuated odds
ratio and requires an increase in cohort sample
size by a factor of about 3 to preserve power
for the null hypothesis test. See, for example,
Walter & Irwig [93] and Holford & Stack [33] for
additional discussion of exposure measurement error
effects on study design and power. In general, the
effects of covariate measurement error may be much
more profound than simply relative risk attenuation
and loss of power, as will be discussed further
below (see Misclassification Error; Measurement
Error in Survival Analysis; Measurement Error
in Epidemiologic Studies).

Study Population

Typically a cohort study will be conceived with a
set of motivating hypotheses in mind. The study
population may then be selected as one in which
such hypotheses and related associations may be able
to be efficiently and reliably tested. For example,
a range of studies of the health risks following
from human exposure to ionizing radiation have
been carried out in cohorts of atomic bomb exposed
populations in Hiroshima and Nagasaki. A principal
“Life Span Study” cohort consists of over 100 000
persons with residence in either city as of 1 October
1950 [4]. Decisions needed to be made concerning the
inclusion of such residents who were some distance
from the epicenter at the time of bombing or who

were “not-in-city” at the time of bombing. The latter
group has been variably included in reports from
this study. The generalizability of the Life Span
Study results is somewhat impacted by selection
factors related to survival of the acute exposure and
factors related to continuing residence in either of
the two cities during the time period 1945–1950,
but otherwise appears to be representative of a
hypothetical population “like that of Hiroshima and
Nagasaki residents” at the time of radiation exposure.

There are several ongoing cohort studies that
are motivated in part by hypotheses related to
diet and cancer. Recent examples include studies
of US nurses (e.g. Willett et al. [102]), studies of
women participating in a randomized trial of breast
screening to prevent breast cancer mortality (e.g.
Howe et al. [34]), studies of Iowa women (e.g.
Kushi et al. [43]), and studies of men of Japanese
heritage living in Hawaii (e.g. Stemmerman et al.
[89]). Such studies appear to be limited (e.g. Prentice
et al. [69]) by modest within-population variability
in nutrient exposures of interest, substantial exposure
measurement error in dietary assessment, and many
highly correlated dietary exposure variables. These
factors may combine to cast doubt on study
reliability. Recent diet and cancer cohort study
developments attempt to address such concerns
by studying populations having a broader than
usual range in dietary habits, by enhancing dietary
assessment methodology, and by employing multiple
dietary assessment tools in subsets of the cohort.
Specifically, recently initiated diet and cancer cohort
studies include a study among members of the
American Association of Retired Persons with an
overrepresentation of persons having estimated fat
intake within certain extreme percentiles of the
overall fat intake distribution; a multiethnic cohort
study taking place in Los Angeles and Hawaii; and
a multipopulation cohort study in Europe entitled the
European Prospective Investigation into Cancer and
Nutrition (e.g. Riboli [73]).

Much valuable information on cardiovascular dis-
ease risk factors has arisen in the context of ran-
domized prevention trials, including, for example,
cohort studies of persons enrolled in the Multiple
Risk Factor Intervention Trial (MRFIT) [58], the
Lipid Research Clinic Primary Prevention Trial [49],
and the Hypertension Detection and Follow-up Pro-
gram Trial [35]. Persons screened for possible enroll-
ment in such trials include another potential source
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of cohort study enrollees. For example, the approxi-
mately 300 000 men screened for possible enrollment
in MRFIT, a trial involving about 12 000 randomized
men, yielded precise information on the relationship
between blood cholesterol and mortality from various
diseases (e.g. Jacobs et al. [37]).

In each of the cohort studies mentioned above
consideration of inclusion and exclusion criteria is
required in interpreting study results, particularly
concerning the degree of generalizability of results
to a broader source population.

Sample Size and Study Duration

One approach to establishing the size of the cohort is
to list motivating hypotheses along with correspond-
ing design assumptions, and to select a cohort size
that will yield acceptable power (e.g. >80%) for all,
or most, key hypotheses within a practical follow-
up period. In fact, cohort studies are often initiated
with the hope that active follow-up will continue for
some decades, but for scientific and logistic reasons
study planning exercises may need to be based on an
average follow-up period of, say, 5–10 years. These
reasons include funding cycle logistics, the desire of
investigators to produce new information in a practi-
cable time period, and a possible reduced relevance
of baseline covariate data to disease risk determina-
tion beyond a few years of follow-up. Exercises to
determine a cohort size should make provisions for
the power-influencing factors mentioned previously,
particularly exposure measurement error influences.

A more empirical approach to cohort size deter-
mination can be based on the consideration of pre-
vious cohort study sizes and of the corresponding
range of associations tested. Specifically, cohort stud-
ies that have yielded much useful information on
cardiovascular disease risk factors have often been
in the range of 5000 to 20 000 persons, including,
for example, the Framingham Study, observational
studies within the MRFIT study and other coronary
heart disease prevention trials, the Adult Health Study
of atomic bomb survivors, and the Cardiovascular
Health Study. Cohort sizes in the vicinity of 5000
may be adequate for cardiovascular disease studies
among older persons, as in the Cardiovascular Health
Study [21] that is restricted to persons of age 65 or
older, whereas considerably larger cohort sizes may
be indicated for studies among younger persons, as in
the Royal College of General Practitioners’ study of

the health effects of oral contraceptive use [81] that
enrolled 46 000 younger women.

Most cohort studies of diet and cancer to
date have involved sample sizes in the vicinity
of 50 000–100 000, including, for example, the
Nurses Health Study, the Canadian National Breast
Screening study, and the Iowa Women’s study.
Consideration of range of nutrient intake and likely
magnitude of random measurement error in dietary
assessment, however, suggests that some pertinent
odds ratios following measurement error influences
can be hypothesized to be in the range 1.1–1.2
(e.g. Prentice et al. [69], Prentice & Sheppard [70],
Prentice [67]). These types of considerations support
the recently initiated cohort studies involving larger
sample sizes (e.g. 100 000–400 000) in populations
having an unusual degree of diversity of dietary
habits.

Study Conduct and Analysis

Protocol and Procedures

A cohort study requires a clear, concise protocol that
describes study objectives, design choices, perfor-
mance goals and monitoring and analysis procedures.
A detailed manual of procedures, which describes
how the goals will be achieved, is necessary to ensure
that the protocol is applied in a standardized fashion.
Carefully developed data collection and management
tools and procedures, with as much automation as
practicable, can also enhance study quality. Central-
ized training of key personnel may be required to
ensure that the protocol is understood, and to enhance
study subject recruitment and comparability of out-
come ascertainment as a function of exposures and
confounding factors.

Analysis and reporting procedures should acknow-
ledge the large number of exposure–disease
associations that may be examined in a given
cohort study, as well as the multiple time points
at which hypotheses concerning each such exposure
may be tested. In fact, even though such multiple
testing considerations are routinely acknowledged in
randomized clinical trials, their inclusion in cohort
study reporting seems to be uncommon.

Covariate Data Ascertainment and Reliability

The above framework assumes that pertinent covari-
ate histories Z(t) are available for all cohort members
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at all times t during the cohort follow-up period.
Conceptually, the availability of such data would
require baseline covariate data collection to ascer-
tain all pertinent exposures and characteristics prior
to enrollment in the cohort study followed by the
continuous updating of evolving covariates of interest
during cohort follow-up. In practice, however, there
may be a limited ability to ascertain retrospectively
such covariate information at baseline, unless rele-
vant specimens and materials had fortuitously been
collected and stored for other reasons. Furthermore,
there will be a limit to the frequency and extent of
covariate data updating that can be carried out dur-
ing covariate follow-up. Such evolving covariate data
may be a key to adequate confounding control [76],
and may be fundamental to such issues as the estima-
tion of time lags between exposure and disease risk,
and estimation of the relationship between covariate
change and disease risk more generally.

The fact that the desired covariates may be poorly
measured, or completely missing, can be a substan-
tial impediment to the analysis and interpretation of
study results. The effects of mismeasured or missing
exposure or confounding factor data on relative risk
parameter estimation may be much more profound
than simple attenuation. In fact, if the measure-
ment error variances are at all large (e.g. more than
10%–20%) relative to the variance of the true regres-
sion variables, then it will often be important to
undertake additional data collection in the form of
validation or calibration substudies, toward accom-
modating such measurement errors in data analysis.
These substudies can also aid in the accommodation
of missing covariate data, as it is otherwise necessary
to make a missing at random assumption; that is, to
assume that missingness rates are independent of the
true covariate value, given the accumulated data at
earlier time points (see Missing Data in Epidemio-
logic Studies).

Validation and Calibration Substudies

In some circumstances it may be possible to design
a cohort study to include a validation subsample in
which covariate measurements that are essentially
without measurement error are taken in a random
subset of the cohort. Such measurements may be too
expensive or too demanding on study subjects to be
practicable for more than a small subset of the cohort.
See Greenland [26], Marshall [50], and Spiegelman

& Gray [88] for discussion of the role and design of
validation substudies (see Validation Study).

Consistent estimation of the relative risk parameter
β is possible by making use of a validation substudy
(e.g. Pepe & Fleming [59], Carroll & Wand [14], Lee
& Sepanski [46]), though the loss of efficiency arising
from substantial measurement errors presumably may
be large. The validation sample permits nonparamet-
ric estimation of the expectation of exp[z(t)Tβ] given
the measured covariate and study subject “at risk” sta-
tus at t , obviating the need for specific measurement
error assumptions, and giving rise to estimated likeli-
hood or estimated score procedures for the estimation
of β. An alternate data analysis strategy, in the pres-
ence of a validation subsample, simply replaces the
mismeasured covariate by its estimated conditional
expectation, given the accumulated data on the study
subject at preceding times. This so-called regression
calibration approach is quite convenient, and it per-
forms well in a variety of circumstances even though
typically technically inconsistent under (1) and other
nonlinear models (e.g. Prentice [64], Rosner et al.
[77, 78], Carroll et al. [12], and Wang et al. [94]). If a
validation study is possible for some or all important
covariates, then the inclusion of a validation sam-
ple of appropriate size may be a critically important
aspect of cohort study design and conduct.

The regression calibration procedure just men-
tioned extends fairly readily even if the subsam-
ple measure is not the true covariate value but is
contaminated by measurement error that is indepen-
dent of both the routinely available measurement and
the true covariate values. See, for example, Greenland
& Kleinbaum [28], Kupper [42], Whittemore [98],
Rosner et al. [78, 79], Pierce et al. [61], Carroll et al.
[13], Armstrong [3], Clayton [17], Thomas et al. [90],
and Sepanski et al. [86] for various approaches to
cohort data analyses in the presence of calibration
subsamples.

Unfortunately, the situation changes dramatically
if the subsample measurement error does not satisfy
such independence properties. For example, Pren-
tice [67] considers a measurement model for two
self-report measures of dietary fat in an attempt to
interpret a combined cohort study analysis of dietary
fat in relation to breast cancer. One self-report mea-
sure, based on food frequency assessment, was avail-
able in all cohort study members, while a more
detailed measure, based on multiple days of food
recording, was available on a small subset of the
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cohorts in question. By using food frequency and
food record data from the Women’s Health Trial
feasibility study [36] and allowing the dietary fat
measurement errors for the two instruments to be
correlated and to depend on an individual’s body
mass index, Prentice [67] showed that even the
strong relative risk relationship between fat and post-
menopausal breast cancer suggested by international
correlation studies (e.g. Prentice & Sheppard [70]
could be projected to be essentially undetectable in
a cohort study using a food frequency instrument,
regardless of its size. Specifically, relative risks of
1, 1.5, 2.0, 2.7, and 4.0 across fat intake quintiles
if measurement errors were absent are reduced to
projected values of 1, 1.0, 1.0, 1.1, and 1.1 upon
allowing for both random and systematic aspects of
dietary fat measurement error. This illustration sug-
gests that covariate measurement errors may be at
the root of many controversial associations in epi-
demiology, and motivates the importance of objective
measures of exposure. Biomarker exposure measures
may be quite valuable in such contexts even if such
measures include considerable noise. For example,
in the dietary area, total energy expenditure can
be objectively measured over short periods of time
using doubly labelled water techniques while pro-
tein expenditure can be measured by urinary nitrogen
(e.g. Lichtman et al. [47], Heitmann & Lessner [32],
Martin et al. [51], Sawaya et al. [84]). Plummer &
Clayton [62] use urinary nitrogen data to demonstrate
correlated measurement errors among dietary protein
self-report measures.

Additional Sampling Strategies

It will often be efficient when conducting a cohort
study to assemble the raw materials for covariate his-
tory assembly on the entire cohort, but to restrict the
processing and analysis of such materials to appro-
priate subsamples. For example, a random sample,
or stratified random sample, of the cohort may be
selected, along with all persons experiencing dis-
ease events of interest, for covariate data process-
ing. Such a case–cohort approach allows relative
risk estimation (e.g. Prentice [65]) based on (2) with
R(ti) consisting of the person developing a disease
at ti (the case) along with all “at risk” members
of the selected sample (the subcohort), though (2)
no longer has a likelihood function interpretation
and specialized variance estimators are required (see

Case–Cohort Study). Alternatively, a case of a spe-
cific disease at time ti may be matched to one
or more controls randomly selected from the risk
set at ti , with ordinary likelihood methods applied
to (2) except that R(ti) is replaced by the case and
time-matched controls (e.g. Liddell et al. [48], Pren-
tice & Breslow [68]) (see Case–Control Study,
Nested). Recently Samuelson [83] has proposed an
alternate analysis of such nested case–control sam-
ples that appears to yield meaningful efficiency
improvements relative to the standard procedure just
described.

The nested case–control sampling approach allows
cases and controls to be matched on various study
subject characteristics, including time from enroll-
ment into the cohort, as may be important if some
covariate measurements (e.g. blood concentrations of
selected nutrients) degrade with storage time. Such
issues may be accommodated under case–cohort
sampling by stratifying the subcohort selection on
cohort enrollment data and by analyzing all case and
subcohort specimens and materials at a common point
in time. In fact, it may be useful to delay subco-
hort selection to the time of data analysis in order to
match subcohort sizes in each stratum to the corre-
sponding numbers of disease events. See Langholz &
Thomas [44, 45] and Wacholder [91] for further dis-
cussion and comparison of nested case–-control and
case–cohort sampling.

A related topic includes a two-stage process in
establishing a cohort. A first stage would involve
collecting information on the exposures of primary
interest, or perhaps collecting fairly crude estimates
of such exposures. The second stage would then
involve selecting a subset of the stage 1 study sub-
jects that give a desirable exposure distribution for
more detailed data collection. The diet and can-
cer cohort study among members of the American
Association of Retired Persons provides an exam-
ple in which subjects are oversampled for the second
stage if their food frequency estimated fat intakes
are in certain extreme percentiles. A two-stage sam-
pling approach is also natural for the study of rare
exposures. A considerable literature exists on the
design and analysis of two-stage sampling schemes,
mostly in the context of case–control studies (e.g.
White [96], Walker [92], Breslow & Cain [8], Bres-
low & Zhao [9], Flanders & Greenland [19] (see
Case–Control Study, Two-phase).
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Additional Data Analysis Topics

The above discussion assumes that the basic time
variable is time from selection into the cohort. This
choice is attractive in that relative risk estimation
[i.e. each factor in (2)] is then based on comparisons
among individuals at the same length of time since
cohort entry. Other important time variables, such
as study subject age and chronologic time, can be
accommodated by regression modeling, or stratifica-
tion with (2) replaced by a product of like terms over
strata. Alternatively, if cohort eligibility criteria or
recruitment strategies changed markedly over time,
or if covariate data or outcome data ascertainment
procedures changed markedly over time, one may
prefer to define t to be chronologic time so that
relative risk estimates are based on comparisons of
measurement taken under common procedures, with
age and time since study enrollment controlled by
stratification or modeling. In this case a study subject
begins contributing to (2) at the time (date) of study
enrollment.

If the study is conducted to estimate disease rates,
or cumulative disease rates and absolute risks, then it
may be natural for interpretation to define t to be age,
or time from some significant event (e.g. infection
with human immunodeficiency virus). Depending
on the means of study subject identification such
significant event data may only be known to be
earlier than a specified time, giving rise to interval
censored event time data and a range of interesting
statistical estimation issues (e.g. Brookmeyer & Gail
[10, Chapter 5]) (see Biased Sampling of Cohorts).

The fact that multiple outcomes are typically
ascertained in a cohort study allows for the possibility
of relating an exposure jointly to two or more event
rates and, of course, there may be multiple events
of a given type during the cohort study follow-up of
an individual. The literature includes generalization
of (1) to repeat failure times on an individual study
subject (e.g. Prentice et al. [72], Andersen et al. [1]),
while for single occurrences of multiple types of
events one can consider the use of (2) for each
failure type in conjunction with a modified variance
estimation procedure for the joint estimation of
relative risks for several diseases (e.g. Wei et al.
[95]). This latter procedure will have acceptable
efficiency under most situations of practical interest.

The above presentation assumes that failure times
among distinct cohort study members are indepen-
dent. This assumption may be violated if study sub-
jects share environmental or genetic factors. In fact,
in genetic epidemiology one may use the relation-
ships among the failure time data of family mem-
bers in a pedigree cohort study in an attempt to
identify the existence (aggregation analysis), inher-
itance pattern (segregation analysis) and physical
location (linkage analysis) of genes that play a role
in determining disease risk. Such studies or, more
practically, case–control subsamples of population-
based family studies, may also be used to study
gene–environment interaction.

Cohort Study Role

Cohort studies properly play a central role in epi-
demiologic research. Disease associations that are
relatively strong can often be reliably studied using
cohort study techniques, especially if there is suffi-
cient knowledge of disease risk factors and exposure
correlates to permit comprehensive efforts to control
confounding. Relative risk analyses are unlikely to
be misleading under these circumstances since resid-
ual confounding will tend to be small compared with
the relative risk trend under study. If the exposures
and other covariates of interest can be reliably ascer-
tained retrospectively, then a case–control design
may introduce considerable economies relative to a
cohort study; in fact, the case–control design is very
commonly employed, particularly if the study dis-
eases are rare and good disease registries are available
for case ascertainment.

If the relative risk trends to be studied are more
modest, then the reliability of the cohort study may
be less clear, as uncontrolled confounding, or other
biases, may have a salient impact on the estimated
associations. If, in addition, the exposures of interest
or strong confounding factors or disease outcomes
involve measurement errors that are substantial, but
of unknown properties, then the cohort study relia-
bility may be poor.

In these circumstances one can turn to an experi-
mental approach, as has been done to study the role
of diet in disease in various studies of micronutri-
ent supplementation, and of a low fat eating pat-
tern. Such clinical trials permit a valid test of the
intervention applied in relation to a range of dis-
eases without concern about “baseline” confounding,
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and without the need for precise dietary assessment.
Dietary assessment, in such contexts, enters in a
secondary fashion to document that a sufficiently
powerful hypothesis test has been conducted, and in
attempts to isolate intervention activities responsible
for any observed disease risk difference. However,
primary disease prevention clinical trials are logisti-
cally difficult and expensive, so that only a few can be
conducted at any time point, preferably those that are
motivated by hypotheses having great public health
potential.

The recent movement mentioned above, toward
multipopulation cohort studies (e.g. the EPIC study)
to enhance exposure heterogeneity seems attractive
in the type of circumstances alluded to above. Such a
multipopulation cohort can be expected to involve
a broadened exposure range, perhaps in a manner
that does not increase covariate measurement errors,
thereby enhancing both reliability and power. The
relative risk information in such a multipopulation
study can be partitioned into between-population and
within-population components under standard ran-
dom effects modeling assumptions (e.g. Sheppard &
Prentice [87]). In fact, it may often happen that much
of the retrievable information arises from between-
population sources. Also, between-population, but not
within-population, relative risk estimates tend to be
highly robust to independent mean zero measure-
ment errors in covariates, essentially because such
estimates are based on covariate function averages
over large numbers of study subjects that are little
affected by such errors. Furthermore, the between-
population relative risk information may be able to be
extracted efficiently by relating covariate history data
on modest numbers of persons in each population
(e.g. 100–200) to corresponding population disease
rates, as may be available from disease registers in
each population [71]. These points suggest that stud-
ies of relatively modest relative risk trends associated
with exposures that are measured with considerable
noise may sometimes be efficiently studied using
an aggregate data (ecologic) approach that involves
covariate surveys in disease populations covered by
good quality disease registers. Note, however, that
confounding control across heterogeneous popula-
tions may pose particular challenges, and that careful
data analysis will be required to avoid aggregation
and other biases in such a study. See Piantadosi et al.
[60], Greenland & Morganstern [30], Brenner et al.

[6], and Greenland & Robins [31] for further dis-
cussion of these bias issues (see Ecologic Study;
Ecologic Fallacy).

Statistical thinking and methodology have come
to play an important role in the design, conduct, and
analysis of cohort studies. Cox regression and closely
related logistic regression methods play a central
role in data analysis and reporting, and in related
study planning efforts. Cohort sampling techniques
are widely used and have enhanced cohort study
efficiency. A topic of continuing importance relates to
the methodology for measurement error assessment,
and to analytic methods to reduce the sensitivity of
results to measurement error influences.
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Collapsibility

Consider the I × J × K contingency table repre-
senting the joint distribution of three discrete vari-
ables, X, Y , and Z, the I × J marginal table rep-
resenting the joint distribution of X and Y , and the
set of conditional I × J subtables (strata) represent-
ing the joint distributions of X and Y within levels
of Z. A measure of association of X and Y is said
to be strictly collapsible across Z if it is constant
across the conditional subtables and this constant
value equals the value obtained from the marginal
table. Noncollapsibility (violation of collapsibility) is
sometimes referred to as Simpson’s paradox after
a celebrated article by Simpson [12], but the same
phenomenon had been discussed by earlier authors,
including Yule [15]; see also Cohen & Nagel [3]. The
term collapsibility, however, seems to have arisen
later in the work of Bishop and colleagues; see
Bishop et al. [1].

Table 1 provides some simple examples. The
difference of probabilities that Y = 1 (the risk
difference) is strictly collapsible. Nonetheless, the
ratio of probabilities that Y = 1 (the risk ratio) is not
strictly collapsible because the risk ratio (see Relative
Risk) varies across the Z strata, and the odds ratio
is not collapsible because its marginal value does
not equal the constant conditional (stratum-specific)
value. Thus, collapsibility depends on the chosen
measure of association.

Now suppose that a measure is not constant across
the strata, but that a particular summary of the con-
ditional measures does equal the marginal measure.
This summary is then said to be collapsible across Z.
As an example, in Table 1 the risk ratio standardized
to the marginal distribution of Z is

Pr(Z = 1) Pr(Y = 1|X = 1, Z = 1)
+ Pr(Z = 0) Pr(Y = 1|X = 1, Z = 0)

Pr(Z = 1) Pr(Y = 1|X = 0, Z = 1)
+ Pr(Z = 0) Pr(Y = 1|X = 0, Z = 0)

= 0.50(0.80) + 0.50(0.40)

0.50(0.60) + 0.50(0.20)
= 1.50,

equal to marginal (crude) risk ratio. Thus, this mea-
sure is collapsible in Table 1. Various tests of col-
lapsibility and strict collapsibility have been devel-
oped [4, 7, 14].

The definition of collapsibility also extends to
regression contexts. Consider a generalized linear
model for the regression of Y on three regressor
vectors W, X, and Z:

g[E(Y |W = w, X = x, Z = z)]

= α + wβ + xγ + zδ.

The regression is said to be collapsible for β over Z
if β = β∗ in the regression omitting Z [2],

g[E(Y |W = w, X = x)] = α∗ + wβ∗ + xγ ∗.

Thus, if the regression is collapsible for β over Z
and β is the parameter of interest, then Z need not be
measured to estimate β. If Z is measured, however,
tests of β = β∗ can be constructed [2, 9].

The preceding definition generalizes the origi-
nal contingency-table definition to arbitrary variables.
However, there is a technical problem with the regres-
sion definition: if the first (full) model is correct,
then it is unlikely that the second (reduced) regres-
sion will follow the given form. If, for example, Y

is Bernoulli and g is the logit link function, so that
the full regression is first-order logistic, the reduced
regression will not follow a first-order logistic model
except in special cases. One way around this dilemma

Table 1 Examples of collapsibility and noncollapsibility in a three-way distribution

Z = 1 Z = 0 Marginal

X = 1 X = 0 X = 1 X = 0 X = 1 X = 0

Y = 1 0.20 0.15 0.10 0.05 0.30 0.20
Y = 0 0.05 0.10 0.15 0.20 0.20 0.30

Risksa 0.80 0.60 0.40 0.20 0.60 0.40
Risk differences 0.20 0.20 0.20
Risk ratios 1.33 2.00 1.50
Odds ratios 2.67 2.67 2.25

aProbabilities of Y = 1.
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(and the fact that neither of the models is likely to be
exactly correct) is to define the model parameters as
the asymptotic means of the maximum likelihood
estimators. These means are well defined and inter-
pretable even if the models are not correct [13].

It may be obvious that, if the full model is correct,
δ = 0 implies collapsibility for β and γ over Z.
Suppose, however, that neither β nor δ is zero. In that
case, independence of the regressors does not ensure
collapsibility for β over Z except when g is the
identity or log link [5, 6]; conversely, collapsibility
can occur even if the regressors are dependent [14].
Thus, it is not correct to equate collapsibility over Z
with simple independence conditions.

Consider a situation in which the full regression
is intended to represent the causal effects of the
regressors on Y . One point, overlooked in much of
the literature, is that noncollapsibility over Z (that
is, β �= β∗) does not correspond to confounding of
effects by Z unless g is the identity or log link. That
is, it is possible for β to represent unbiasedly the
effect of manipulating W within levels of X and Z,
and, at the same time, for β∗ to represent unbiasedly
the effect of manipulating W within levels of X, even
though β∗ �= β. Such a divergence is easily shown for
logistic models, and points out that noncollapsibility
does not always signal a bias. In the literature on
random effects logistic models, the divergence cor-
responds to the distinction between cluster-specific
and population-averaged effects [10]. The cluster-
specific model corresponds to the full model in which
Z is an unobserved cluster-specific random variable
independent of W and X, with mean zero and unit
variance; δ2 is then the vector of random-effects vari-
ances. For further discussion and an example in which
confounding and noncollapsibility diverge, (see Con-
founding).
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Collinearity

Collinearity (or “multicollinearity”) refers to a high
level of correlation within a set of explanatory
variables. In a regression modeling situation, if
explanatory variables are highly correlated, then
regression coefficient estimates may become unstable
and not provide accurate measures of the individual
effects of the variables. The estimate of the preci-
sion of these coefficient estimates is also affected and
therefore confidence intervals and hypothesis tests
are, likewise, affected.

For the estimation of regression coefficients, the
columns of the design matrix (see General Linear
Model) must be linearly independent. At an extreme,
if two explanatory variables are perfectly linearly
associated (i.e. their correlation is equal to 1), then
such collinearity is an example of linearly dependent
columns in the design matrix, X. While two parame-
ters require estimation (i.e. the regression coefficients
for the two explanatory variables), information is not
available in the design matrix to estimate both coef-
ficients uniquely. The two individual effects cannot
be distinguished as a result of this collinearity. While
collinearity typically does not involve completely lin-
early related explanatory variables, high levels of
correlation can still lead to difficulties in coefficient
estimation.

It should be noted that this issue pertains to the
relationship among explanatory variables which, ulti-
mately, affects the ability to investigate simultane-
ously the relationship between the response variable
and the explanatory variables. Therefore, the identi-
fication of potential collinearity problems is usually
addressed by examination of the relationships among
explanatory variables.

One simple technique for the identification of
collinearity is presented in Kleinbaum et al. [1]. The
computation of the variance inflation factor (VIF)
is suggested. If there are p explanatory variables,
each explanatory variable is, in turn, regarded as
an outcome variable in a regression equation that
includes the remaining p − 1 explanatory variables.
Then, R2

j represents the squared residual correlation
obtained using explanatory variable j, j = 1, . . . , p,
as the response. The VIF is then defined for each
such regression as:

VIFj = 1

1 − R2
j

.

If there is a strong relationship between the
explanatory variable j and the remaining p − 1
explanatory variables, then R2

j is close to 1 and VIFj

is large. It is suggested, in [1], that values of VIF
greater than 10 indicate serious collinearity that will
affect coefficient and precision estimation.

Collinearity may also be indicated if coefficient
estimates from fitting simple regression models of
the response with each explanatory variable are
substantially different from coefficient estimates from
fitting a multiple regression model including all
explanatory variables. Similarly, if the order in
which certain terms are included in the model
seriously affects the coefficient estimates for these
terms, then collinearity is indicated. Of course, one
of the primary purposes of multivariate regression
models is to examine the role of explanatory
variables having “adjusted” for other variables in
the model so that such behavior is not necessarily
a problem. However, serious collinearity problems
may prohibit a multivariate model from being fitted
at all.

If two or more explanatory variables are highly
correlated because they represent measurements of
the same general phenomenon (e.g. highest attained
level of education and current salary are both aspects
of socioeconomic status), then collinearity can be
addressed by choosing one variable thought to be
the most relevant. This variable would then be
included in any models and the remaining, so-
called redundant, variables would be excluded. The
identification of such redundant variables may be
difficult, so, alternately, a new variable that com-
bines information on the correlated variables can be
derived. This aggregate variable would be included
in models instead of all of the component vari-
ables.

It is sometimes helpful, particularly when collinea-
rity is created as a result of including polynomial
terms (e.g. X and X2 are included in a model
together) but also in general, to center the original
explanatory variables. This is accomplished by com-
puting new explanatory variables that are the original
measurements with the means subtracted. Suppose
there are n individuals and p explanatory variables
measured on each individual, Xji, i = 1, . . . , n, j =
1, . . . , p. Then the new explanatory variables are
Zji = Xji − Xj . If a quadratic model is of inter-
est, then one would include the terms Zji and Z2

ji

in the model. In [1], an example of the effectiveness
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of such an approach for correcting collinearity is pre-
sented.

When polynomial regression is being under-
taken, then the further step of orthogonalization
(see Orthogonality) of the explanatory variables
is also possible and frequently used in some set-
tings. Orthogonalization of more general sets of
explanatory variables is possible but not as widely
used.
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Combining P Values

Empirical investigations typically involve many
hypotheses. In clinical trials, one may test that the
medical treatment is efficacious for each of a variety
of medical endpoints such as survival, blood pressure,
progression of disease, and so on; in epidemiological
studies, one may test that an environmental toxin
is associated with cancer at each of a number of
different geographical locations and/or demographic
groups.

Combinations of P values may be considered
when the hypotheses are all related to a common
question, such as “Does the drug work?” or “Does the
environmental toxin cause cancer?”; such methods
are called “meta-analysis” [4].

Suppose the null hypotheses are stated as H0i :
{no difference for test i}; and suppose the test statis-
tic is Zi (see Hypothesis Testing). The P value is
obtained using the distribution of the test statistic Zi

under H0i ; assuming a standard normal distribu-
tion with cumulative probability distribution function
Φ(.), the lower-tailed, upper-tailed, and two-tailed
P values are pi = Φ(zi), pi = 1 − Φ(zi), and pi =
2(1 − Φ(|zi |), respectively.

Example: A Clinical Trial

A clinical study of a drug might result in five distinct
measurements of pain. Upper-tailed (favoring effi-
cacy of drug) P values are p1 = 0.078, p2 = 0.091,
p3 = 0.213, p4 = 0.121, and p5 = 0.061, suggesting
a clear pattern of beneficial effects, as a P value
of 0.50 corresponds to no difference between drug
and placebo. However, none meet the standard 0.05
threshold (see Level of a Test), and the study might
therefore be considered nonefficacious. The conclu-
sion that there is no significant efficacy is troublesome
from the “common-sense” standpoint, as it seems
extremely unlikely that such a consistent pattern of
P values could be observed if the drug truly had no
effect.

This article addresses the following questions:

1. Can one combine the P values from the vari-
ous sources to arrive at stronger evidence than
is obtained when considering each P value indi-
vidually?

2. What are the various methods of combining P

values?

3. How do the power functions of the different
methods compare, that is, which combination
function should one use?

4. How does one accommodate correlations
between test statistics and failed distributional
assumptions?

Combining P Values to Get More Power

Combination of tests is most relevant when the
hypotheses are related. For example, if a drug ben-
eficially affects the progression of disease, then one
might argue that it should also beneficially affect sur-
vival; thus, the hypotheses are related. Similarly, in
an epidemiological study, if there were a carcinogenic
effect of an environmental toxin in one geographic
site, then one would expect that there would be an
effect in other sites as well.

Continuing with the epidemiology example, sup-
pose there are two Z-values, each independent, dis-
tributed as N (0,1) when there is no effect of envi-
ronmental toxin on cancer at site i, where i = 1, 2.
Under the alternatives, the distributions are N(δi, 1),
where δi is the noncentrality parameter. The 0.05-
level test of H0i : δi = 0 in favor of H0i : δi > 0 rejects
when zi > 1.645; the power of the 0.05-level test of
H0i : δi = 0, for a fixed alternative δi > 0, is given by
1 − Φ(1.645 − δi).

One might rather combine the evidence from both
regions into a single test using the sum of the Z’s;
in this case, the hypothesis is H0: {no effect of envi-
ronmental toxin at either site}. The test rejects H0

when (z1 + z2) > 1.645 × 21/2, and the power func-
tion is 1 − Φ{1.645 − (δ1 + δ2)/21/2}. The combined
test has more power than either component test when
0.41δ1 < δ2 < 2.41δ1. In the case where the hypothe-
ses are related and the study designs comparable, the
noncentrality parameters should also be comparable
(δ1 ≈ δ2), and thus the combined test should be more
powerful.

Z-values are simple transformations of the P val-
ues, so the test given above is an example of a P

value combination statistic C = ΣΦ−1(1-pi). This is
called the “Liptak” P value combination test; the Lip-
tak test and others are given in the following section.

P Value Combination Tests

One typically assumes that the P values pi are
independent and uniformly distributed under their
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respective null hypotheses H0i ; these assumptions
are made throughout this section. P values often are
uniformly distributed when the correct distributional
forms are used to model the data; for example, when
normality, independence, and homoscedasticity (see
Scedasticity) hold. Independence follows when the
P values are computed from data values that can be
assumed independent.

Under these assumptions, one can provide criti-
cal values for the various tests under the combined
hypothesis H0: {H01 true and H02 true and . . . and
H0k true}, that is, under H0 = ∩H0i . Combination
tests include:

Fisher Combination Test

This test is due to Fisher [3]. The combined test
statistic is

CF = −2Σ ln(pi). (1)

CF is distributed as Chi-Square with 2k degrees
of freedom under H0; therefore, the α-level test of
H0 rejects when CF ≥ χ2

1−α,2k , and the P value of
the combined test is P(χ2

2k ≥ CF ).
In the example with P values 0.078, 0.091, 0.213,

0.121, and 0.061, CF = 22.8065 and χ2
.95,10 =

18.307; thus, we can reject the combined null at the
α = 0.05 level, despite the insignificance of every
component P value at the 0.05 level. The P value
for the combined test is 0.0115.

However, we should note that the assumption of
independence is clearly violated in this example,
as the multiple pain measurements are correlated,
implying that the P values are also correlated. This
Fisher combination procedure is therefore not valid;
this example is used for illustrative purposes only.
The section “Accommodating Nonuniform and/or
Dependent P Values” shows how to accommodate
correlation.

Liptak Combination Test

This test was originated by Liptak [6].
For this procedure, the P values should be one-

sided. As shown in the previous section, one may
define

CL = ΣΦ−1(1 − pi), for upper-tailed P values,
or

CL = ΣΦ−1(pi), for lower-tailed P values.

CL is distributed as N(0, k) under H0; there-
fore, the α-level test of H0 rejects when CL ≥
k1/2Φ−1(1 − α) for upper-tail tests, and when CL ≤
k1/2Φ−1(α) for lower-tail tests. The P value is
either 1 − Φ(CL/k1/2) or Φ(CL/k1/2) for upper- and
lower-tail tests, respectively.

In the example with P values 0.078, 0.091, 0.213,
0.121, and 0.061, CL = 6.266 and 51/2Φ−1(1 −
.05) = 3.678; thus, we reject the combined null at
the α = 0.05 level. The P value for the combined
test is 0.0025.

Again, as in the case of the Fisher combination
test, this procedure is not valid because these P val-
ues are realizations of correlated quantities. Thus, the
example given here is for illustrative purposes only.
The section “Accommodating Nonuniform and/or
Dependent P Values” gives remedies for correlated
P values.

Tippett Combination Test

Named after Tippett [13], this test is also known as
the “MinP” test, and is the basis for the Bonferroni
procedure for multiple comparisons.

The test statistic is

CT = k min(pi). (2)

While the distribution of CT can be obtained easily
under the assumptions of uniformity and indepen-
dence, this test is most commonly used with the
Bonferroni inequality; thus, the α-level test of H0

rejects when CT ≤ α. The test is slightly conservative
under independence. The P value for the composite
test is exactly CT .

In the example, we have CT = 5(0.061) = 0.305.
This is also the P value for the combined test, and it
is not statistically significant.

Despite insignificance, this test is valid in the
presence of correlation, because of the Bonferroni
inequality.

Sidak Combination Test

This test may be attributed to Sidak [11]. The test
is very similar to the Tippett test, but is exact, and
not conservative, under the assumptions of uniformity
and independence.

The test statistic is

CI = 1 − {1 − min(pi)}k. (3)
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The null distribution of CI is the uniform (0,1)
distribution; thus, as with CT , the α-level test of H0

rejects when CI ≤ α. The P value for the composite
test is exactly CI .

In our example, we have CI = 1 − (1 − 0.061)5 =
0.2700, which is also the P value of the combined
test. This P value is smaller than the Tippett P value,
but still insignificant.

This test is also valid in the presence of positive
correlation by the Sidak [11] inequality.

Simes’ Combination Test

The Sidak and Liptak tests are clearly inferior in
that they exclude information in all but one of the
P values. The Simes combination test is similar to
the Tippett test, but uses information in all of the P

values.
Let the ordered P values be p(1) ≤ p(2) ≤ · · · ≤

p(k). The test statistic is

CS = mini

{
kp(i)

i

}
. (4)

Since CT = kp(1), we have CS ≤ CT , and the
Simes test is thus uniformly more powerful than
the Tippett test. Simes [12] showed that, under
independence and uniformity, the distribution of CS

is uniform on (0,1); thus, the α-level test of H0 rejects
when CS ≤ α and the P value for the composite test
is exactly CS .

In the example, CS = min{5(0.061)/1, 5(0.078)/
2, 5(0.091)/3, 5(0.121)/4, 5(0.213)/5} = 0.1513. This
is also the P value for the test, and, while smaller
than CT and CI , remains insignificant.

This test is valid in the presence of positive
correlation by Sarkar’s [10] inequality.

Weighted Combinations and other Generalizations

Some hypotheses might be more important than
others, in which case weights w1, . . . , wk can be
preassigned to the P values. A weighted Fisher
combination test statistic can be given by CwF =
−2 Σwi ln(pi), a weighted Liptak test statistic by
CwL = ΣwiΦ

−1(1 − pi), and a weighted Tippett test
statistic by CwT = min(pi/wi). Weighted versions of
the Tippett test are discussed by Westfall and Krishen
[14], and weighted versions of Simes’ test are dis-
cussed by Benjamini and Hochberg [1]. Another type

of combined P value test is the “cutoff” test, which
utilizes the ordered P values and may be considered
a generalized Simes test [5]. The “truncated product”
method has also been proposed recently as a modifi-
cation of Fisher’s combination test, which cures some
of its deficiencies [17].

Critical values for generalized combination tests
are obtained simply under the assumptions of inde-
pendence and uniformity; in more complex cases,
refer to the section “Accommodating Nonuniform
and/or Dependent P Values” below.

Power Comparisons

Assume that the data are, for i = 1, 2, Zi ∼ N(δi, 1),
independent, with upper-tailed α = 0.05 tests. Power
for all procedures is then a function of (δ1, δ2).

We can dismiss the Tippett test since it is always
less powerful than the Sidak and Simes tests. Further,
the Simes test has a very similar power function
as the Sidak test; but the Simes test is slightly
more powerful than the Sidak test for all cases
except (δ1, δ2) ∈ {very large, ∼ 0+} and (δ1, δ2) ∈
{∼ 0+, very large}; we thus exclude the Sidak test
as well.

Figure 1 shows regions in the positive orthant
where each of the methods Fisher, Liptak, and Simes
dominate.

Larger Numbers of Tests and Many null effects

Figure 1 shows that the Liptak and Fisher tests
are better when the evidence from the two tests is
“reinforcing”, while the Simes test is better when
one effect is large and the other small. While this
type of power behavior might suggest that Fisher
and Liptak are generally superior in situations where
combinations are desired, caution is urged. When
the number of tests is larger, with many hypotheses
nearly null, or even worse, with one-sided P values in
the unanticipated direction, the power of the Liptak
and Fisher tests can be much less than that of the
Simes, Tippett, and Sidak tests.

Accommodating Nonuniform and/or
Dependent P Values

In practice, the assumptions of uniformity and inde-
pendence are not likely to hold. If the P values
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are uniformly distributed but dependent, some of the
combination tests remain valid. The Tippett combi-
nation test is valid, in the sense that the type I error
is less than the nominal α in these cases; this follows
from the Bonferroni inequality. The Simes combina-
tion test has been shown to be conservative as well,
under conditions of positive correlation of the P val-
ues [10]. However, whereas the Tippett test becomes
extremely conservative in cases of highly correlated
P values, the Simes test becomes less conservative,
and is in fact exact in the case of perfect depen-
dence. The Liptak test can be modified to account for
dependence structure; in this case, it is often easier to
work directly with the Z statistics rather than the P

values; the resulting tests are often called “O’Brien
tests” [7].

If the P values are nonuniformly distributed, as
typically happens when the distributional assump-
tions about the data are wrong, it is harder to specify
the effects on the combined tests. An exception is
the case of discrete (hence nonuniform) exact tests,
in which case combination tests are often conserva-
tive [9, 15].

One can use resampling techniques to obtain
more robust, accurate, and in some cases, exact
P values for combination tests that fail to satisfy
uniformity, dependence, or both. In particular, if the
tests come from multivariate data from two groups,
and if the global hypothesis refers to equality of
the two multivariate distributions, one may test
the global hypothesis by permutation sampling (see
Randomization Tests) as follows:

(a) Denote the value of the original combination
test statistic by C (assume that larger C favor
the alternative).

(b) Permute the group labels of the observation
vectors, and recompute the combination test
statistic from the resulting multivariate data set
with permuted group labels. Call the recomputed
test statistic C∗.

(c) Repeat (a) to (b) B times, noting whether C∗ ≥
C for each permuted sample.

The permutation-based P value for the combi-
nation tests is then {number of samples for which
C∗ ≥ C}/B. This P value accommodates nonnormal-
ity via resampling (nonnormal characteristics of the
data are reflected in the sample) and it also accom-
modates correlations, since the observation vectors
remain intact in all permutation samples.

When B = ∞, or when the permutations can be
enumerated completely, the resulting P value is the
exact permutation P value, and the test is called
an “exact” test, in the sense of the permutation
methods supplied by the software “StatXact” [2].
Of course, we cannot take B = ∞ in practice, and
often the permutations are too numerous to enumerate
completely. In these cases, the use of a large B

provides good accuracy: If the true P value (as
obtained through complete enumeration) is denoted
pC , then the Monte Carlo standard error associated
with B replications is simply binomial, {pC(1 −
pC)/B}1/2. When reporting this standard error, one
can substitute the sample-based estimate for pC .

An entire book is devoted to this subject; see [8]
for further discussion and for algorithms.

In some cases the permutation approach is not sim-
ple, as there may be covariates, survival functions,
and the like, and it may not be clear what should be
permuted to represent the combined null hypothesis
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H0. In such cases, bootstrapping, either parametric
or semiparametric, can help. One needs to model the
(usually multivariate) distribution of the data that pro-
duced the P values under H0, and then estimate that
distribution under either parametric or semiparamet-
ric assumptions. Then one simulates data from the
estimated distribution, and computes the resampling-
based P value as shown above. Westfall and Young
[16, p. 122–3; 214–6] provide examples and further
discussion.
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Commingling Analysis

A mixture distribution with c components (c ≥ 2),
each with probability density function (pdf) fi(x),
has the pdf fM given by

fM(x) = π1f1(x) + π2f2(x) + · · · + πcfc(x).

The parameters πi, i = 1, . . . , c, are called the mix-
ing proportions, and they satisfy the constraints πi ≥
0 and π1 + π2 + · · · + πc = 1. In this article we pri-
marily discuss normal mixtures with two components.
That is, fM(x) is given by

fM(x) = π1ϕ(x; µ1, σ 2) + π2ϕ(x; µ2, σ 2),

where

ϕ(x; µ, σ) = 1

(2π)1/2
exp

[−(x − µ)2

2σ 2

]
.

Everitt & Hand [2] and Titterington et al. [11] have
published books on the mixture distribution with
extensive examples.

Although the distribution is easy to describe and
arises from a simple model, it presents formidable
mathematical, computational, and statistical difficul-
ties. Karl Pearson [9] was the first to study normal
mixtures. He used the method of moments to esti-
mate the parameters of each of the components. He
pointed out that mixtures of normal distributions
are hard to distinguish from skewed distributions.
For normal components with equal variances, the
EM algorithm [1] is effective for finding the maxi-
mum likelihood estimates of the parameters. Often,
a specific sample has a number of solutions to its
maximum likelihood equations, and researchers must
take care that they have found the global maximum
rather than a local maximum. Finch et al. [4] pro-
posed a random search strategy that has an associated
measure of the probability of finding an additional
solution.

The most basic problem is to distinguish between
a sample from a mixture of two normals and a sam-
ple from a single normal. That is, the null hypothesis
is that a random sample was drawn from a normal
distribution. The alternative hypothesis is that a ran-
dom sample was drawn from a mixture of two normal
distribution with equal variances. The asymptotic dis-
tribution of the likelihood ratio test is not known

because the regularity condition that allows the distri-
bution of the likelihood ratio statistic to be expanded
in a series about its parameters does not hold [5].
Otherwise, the asymptotic distribution of the likeli-
hood ratio test would be chi-square with two degrees
of freedom. Thode et al. [10] used simulation tech-
niques and found that the convergence rate of the
distribution of the likelihood ratio statistic was very
slow, if it converged at all. They could not exclude
the chi-square distribution with two degrees of free-
dom as the asymptotic distribution. They reported an
approximation to the percentiles of the distribution of
the likelihood ratio statistic for finite samples. Very
large sample sizes are required to detect a normal
mixture with high probability [8]. In a study compar-
ing the likelihood ratio test to other tests of normality,
Mendell et al. [7] reported that Fisher’s skewness test
and other tests of symmetry are also powerful tests
for detecting mixtures with proportions that are not
50–50 splits.

Maclean et al. [6] suggested the use of a (mod-
ified) Box–Cox transformation for this problem to
reduce the sensitivity of the test to data from skewed
distributions (see Power Transformations). Their
alternative hypothesis is that the random sample was
drawn from a mixture of two normals after applying
a Box–Cox transformation, and their null hypothesis
is that the random sample was drawn from a single
normal after applying a possibly different Box–Cox
transformation. This procedure reduces, but does not
eliminate, the sensitivity of tests for mixtures to data
from single skewed distributions.

The normal mixture distribution has great interest
in exploratory genetic studies. Researchers interpret
evidence of a mixture distribution in the measure-
ment of a biological variable as supportive of the
hypothesis that the variable is determined genetically.
Commingled distributions have been proposed as a
logical extension to the genetic model for metric
traits that are either polygenic (determined by the
additive effect of several genes) or multifactorial
(polygenic traits determined by many environmen-
tal factors as well). For a polygenic trait (i.e. one
determined by a large number of loci, each with
small, equal, and additive effects), the distribution
of the trait is approximately normal by the cen-
tral limit theorem. Falconer [3] illustrates this in
his chapter on continuous variation by deriving the
distribution of the genotype values for a trait deter-
mined by dominant alleles (with gene frequency of
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0.5) at each of 24 loci. If a trait is determined
by codominant alleles, then the distribution would
approximate a normal distribution with even fewer
loci involved.

The model for continuous variation resulting
from a major gene is a mixture of two or three
normal distributions. The expected value for each
component is the genotype value. That is, if the
trait is determined by a major gene, then there are
three major genotypes, A1A1, A1A2, and A2A2. Corr-
espondingly, each genotype has, respectively, the
expected values E(A1A1), E(A1A2), and E(A2A2),
where E(A1A1) < E(A2A2). Then, if the allele for
high values of the trait is dominant to the allele
for low values of the trait, E(A1A2) = E(A2A2).
Similarly, if the allele for high values for the trait
is recessive to the allele for a low value for the
trait, then E(A1A1) = E(A1A2). The variation of trait
values of individuals who are identical in genotype
is due to either minor genes or environmental
factors. Thus, if a major gene is involved in the
determination of a continuous trait, then there are
necessarily two or three components. If there is
complete dominance (of either A1 to A2 or A2 to A1),
then there are two components in the distribution.
If there is additivity (i.e. E(A1A2) = [E(A1A1) +
E(A2A2)]/2), incomplete dominance (i.e. E(A1A1) <

E(A1A2) < E(A2A2) with E(A1A2) �= [E(A1A1) +
E(A2A2)]/2), or overdominance (i.e. E(A1A2) <

E(A1A1) or E(A1A2) > E(A2A2) at this major locus),
then there are necessarily three components. The
mixing proportions will correspond to the relative
frequencies of the genotypes. Thus, the power
to detect a mixture distribution will depend on
the relative frequencies of the A1 and A2 alleles
and the differences between the genotype means
relative to the variability within groups sharing the
same genotype (standardized difference between the
genotype means).
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Committee of Presidents
of Statistical Societies
(COPSS)

The Committee of Presidents of Statistical Societies
(COPSS) was established in 1963 to address common
interests and concerns of North American Statistical
Societies. The member societies are the American
Statistical Association (ASA), the Eastern North
American Region (ENAR) of the International Bio-
metric Society (IBS), and the Institute of Mathemati-
cal Statistics (IMS), the Statistical Society of Canada
(SSC), and the Western North American Region
(WNAR) of the IBS. COPSS consists of the pres-
idents, past presidents, and presidents-elect of each
member society plus a chair and a secretary/treasurer
appointed by the committee. The COPSS commit-
tee provides a forum for member societies to discuss
issues important to statistics.

Historically, COPSS worked on shared problems
of the member societies and improved intersoci-
ety communication. Many of the initial activities of
COPSS were seed activities that later blossomed into
programs at member societies. For example, COPSS
initiated production of statistical directories. COPSS
prepared information for students about statistics and
profiles of career statisticians, material that later
became the “ASA Careers in Statistics” brochure.
COPSS sponsored a lecture series and coordinated
the calendar of statistical meetings. COPSS helped
to found institutions such as the National Institute
of Statistical Sciences (NISS). However, the activ-
ity that COPSS is most famous for is that of the
COPSS awards.

COPSS began by sponsoring one lectureship and
now presents four additional awards. COPSS estab-
lished the R. A. Fisher Lectureship in 1963, to honor
the contributions of Sir Ronald Aylmer Fisher and the
work of a present-day statistician. The Fisher Lecture-
ship recognizes the importance of statistical methods

for scientific investigations, and the list of past Fisher
lecturers well reflects the prestige that COPSS and its
member societies place on this award. The lecture is
to be broadly based and is to emphasize aspects of
statistics and probability that are closely related to
scientific collection and interpretation of data, which
are areas in which Fisher made outstanding contribu-
tions. The lecture is generally published in one of the
COPSS society journals. In 1982, COPSS has added
a cash prize and a certificate to the lectureship.

COPSS established the George W. Snedecor
Award in 1976. This award honors an individual
who is instrumental in the development of statistical
theory in biometry. Dr. Snedecor was a pioneer
in improving the quality of scientific methods
concerning the use of statistical methodology. The
Snedecor award is for a noteworthy publication in
biometry within three years of the date of the award.
It is awarded biannually. The presidents’ Award, also
established in 1976, is presented annually to a young
member of the statistical community in recognition
of outstanding contributions to the profession of
statistics. COPSS defined “young” to mean as not
yet having reached his or her 41st birthday during
the calendar year of the award. The Elizabeth L. Scott
Award, established in 1992, recognizes an individual
who exemplifies the contributions of Elizabeth L.
Scott’s lifelong efforts to further the careers of
women in academia. Most recently, COPSS, jointly
with the Caucus for Women in Statistics, established
the Florence Nightingale David Award in 2001. This
award recognizes an individual who exemplifies the
contributions of F. N. David. Both the Scott and
David awards are presented biannually. All awards
have a separate COPSS selection committee. All of
the awards have a plaque, certificate, and cash prize.
Further information on COPSS can be found at the
COPSS website at www.niss.org/copss/
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Communality

Communality is the proportion of a variable’s total
variance that is accounted for by the common factors.
In factor analysis, a mathematical model is used to
explain the interrelationships of a set of p manifest
variables by a smaller number of m underlying latent
factors that cannot be observed or measured directly.
In common factor analysis, the model relating the
measurements on p correlated variables to the m

postulated uncorrelated common factors (m < p) and
p unique factors is

X1 = a1A + b1B + · · · + m1M + u1U1,

X2 = a2A + b2B + · · · + m2M + u2U2,
...

...

Xp = apA + bpB + · · · + mpM + upUp,

where X1, X2, . . . , Xp represent the standard-
ized measurement of the p manifest variables,
A, B, . . . , M represent the standardized scores in
the uncorrelated common factors, ai, bi, . . . , mi, i =
1, . . . , p, are the common factor loadings, U1, U2,

. . . , Up represent the standardized scores on the p

unique factors, and u1, u2, . . . , up are the unique fac-
tor loadings. In the above model the m latent factors
and the p unique factors are uncorrelated.

Given that the Xi are standardized and that the
latent variables are uncorrelated the variance of Xi is

var(Xi) = 1 = a2
i + b2

i + · · · + m2
i + u2

i .

The communality h2
i is defined as the variance

“shared” by the common factors. That is,

h2
i = a2

i + b2
i + · · · + m2

i ,

where i = 1, 2, . . . , p. The uniqueness of a variable
is u2

i . It represents the proportion of a variable’s
variance that does not relate to the common factors.

Communalities can be used in a factor analysis to
delineate the dimensions that account for the com-
mon variance space. In common factor analysis [1]
this is achieved by replacing the unities on the diago-
nal of the correlation matrix with the communalities.
There are various quantities that can be used to esti-
mate the communalities. They include the highest
correlation of a variable with the rest of the vari-
ables in the set, the average correlation of a variable,

the squared multiple correlation of a variable with
the others, or the communality of a variable obtained
from an initial factor analysis with unities in the diag-
onal. Among these estimates, the squared multiple
correlation is the most commonly used estimate for
the communality. This squared multiple correlation is
the square of the multiple correlation of the regres-
sion of Xi on all the other variables. It is the square
of the Pearson product moment correlation of a vari-
able, Xi , with X̂i , where X̂i is the linear multiple
regression estimate of Xi on the other p − 1 vari-
ables. Guttman [2] showed that the squared multiple
correlation is a lower bound to its communality and
it approaches the true communality as the number of
variables increases. However, in the situation where
there are a number of highly unreliable variables in
the analysis, there may be weak relationships among
two or three variables, generating small common fac-
tors with no considerable significant loadings. These
small “real” common factors and the error factors
may jointly account for a substantial proportion of
the total variance. Since the squared multiple corre-
lation is based on all the variance which a variable
has in common with the others, the effective commu-
nalities, which are based only on the salient factors,
may be less than the squared multiple correlations.
In this case the effective communalities will be the
communalities of interest. A detailed discussion on
how to estimate and use these effective communal-
ities in factor analysis can be found in Cureton &
D’Agostino [1, Chapter 5].

Because the estimation of communalities intro-
duces a source of error, some factor analyses pro-
cedures avoid estimating them and deal solely with
the off-diagonal estimates of a correlation to estimate
the number of factors (m) and the loadings [3].
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Communicable Diseases

The epidemiology of communicable diseases typi-
cally involves an interplay between the natural his-
tory of infective organisms, evolving largely within
infected individuals, and their transmission dynam-
ics, governed by direct or indirect contacts between
individuals. While most fields of epidemiology com-
prise a social dimension, for infectious diseases this
element enters at the level of mechanism, and is there-
fore central to our understanding of these diseases.
The application of statistics to infectious diseases
thus requires both a biological and a sociological (see
Social Sciences) perspective. This dialectic is strik-
ingly illustrated by the epidemiology of the human
immunodeficiency virus (HIV) (see AIDS and HIV),
the study of which motivated a large-scale investiga-
tion of sexual attitudes and lifestyles [70].

The Scope of Statistics in Infectious
Disease Epidemiology

In spite of the distinct characteristics of infectious
disease epidemiology, many of the statistical meth-
ods most commonly used are entirely standard. Thus,
for instance, observational studies based on surveil-
lance data, and epidemiological investigations using
case–control or cohort designs, employ broadly the
same statistical methodology whether the disease
involved is measles or cancer. Nevertheless, statis-
tical science has made distinct contributions to many
areas of infectious disease epidemiology. The most
prominent include catalytic and transmission models
(see Infectious Disease Models), the study of the
natural history of infectious disease, the detection of
infectiousness, and the statistics of vaccination (see
Vaccine Studies). These are the major topics around
which this article is organized. In addition, statistics
has played a key role in promoting our understand-
ing of specific infectious diseases, as witnessed by the
large statistical literature on the acquired immunodefi-
ciency syndrome (AIDS) [21]. Historically, many sta-
tistical techniques which are today widely employed
were originally developed in the context of infectious
disease epidemiology. Thus John Snow’s famous
study [110] of cholera and his investigation of an
outbreak of cases around the Broad Street pump is
an early demonstration of space–time clustering. A

more recent example is provided by Bradford Hill’s
pioneering influence on field trials of pertussis vac-
cines [88], of streptomycin against pulmonary tuber-
culosis [86], and antihistamines against the common
cold [87], which did much to establish the random-
ized controlled trial (see Clinical Trials, Overview)
as a basic tool in medical research. More broadly,
many of the principles governing the transmission of
infectious diseases are of a more general nature, as
originally alluded to by Ross in his “theory of hap-
penings” [103], and similar models have been applied
to such diverse topics as the spread of drug addiction
and of scientific ideas [32].

Historical Background

The application of formal mathematical methods to
infectious diseases dates back to Daniel Bernoulli’s
1760 publication [18] (see Bernoulli Family) of
a mathematical model to evaluate the impact of
smallpox on life expectancy [31]. Later, William
Farr [36] sought to describe the course of epidemics
by fitting curves to smallpox data, and used this
technique to predict the course of an epidemic of
rinderpest among cattle [37]. Brownlee [22] also
pursued this approach, fitting Pearson distribution
curves to outbreak data on numerous diseases
in support of his theory, later disproved, that
pathogens decline in infectiousness during the
course of an epidemic [50] (see Epidemic Models,
Deterministic).

This early phase of largely empirical investiga-
tions was followed by the more analytical work of
Hamer [66] and Ross [103], who sought to under-
stand the mechanisms governing disease transmis-
sion. Hamer first formulated what was later to be
known as the mass action principle, according to
which the number of cases in generation t + 1 is
proportional to the numbers of susceptibles and infec-
tives in generation t . Ross developed transmission
models for malaria, and formulated the first thresh-
old theorem, on the critical density of mosquitoes
required for malaria to remain endemic [49]. The
ideas of Hamer and Ross were later elaborated by
Kermack & McKendrick [74]. Chain binomial mod-
els of disease spread may be traced back to En’ko
[35], who, as argued by Dietz [29], anticipated the
Reed–Frost model (1928) (published as Frost [57]).
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The fully stochastic treatment (see Stochastic Pro-
cesses) of the chain binomial model is primarily due
to Greenwood [59].

The pioneering approach of Bernoulli was
extended by Muench [91, 92], who investigated
the age distribution of susceptibles in a popu-
lation using survival analytic methods (see Sur-
vival Analysis, Overview). Drawing upon an anal-
ogy from chemistry, Muench described his mod-
els as catalytic. Dietz [28] clarified the connec-
tions between transmission models and catalytic
models, and demonstrated how key transmission
parameters can be estimated from epidemiological
data.

Catalytic Models

The great variety in the ecology and natural history
of different infections generally requires different
models for different diseases. However, some of
the key features of all infectious disease models
are captured by the simple case of person-to-person
transmission of an infection conferring permanent
immunity to those infected. The emphasis here is
on endemic diseases that have reached a state of
dynamic equilibrium. In this state, the long-term
average incidence of infection is broadly constant.

The Basic Relationships

Let the random variable X denote the age at which
individuals acquire infection. Let S(x) denote the sur-
vivor function (see Survival Analysis, Overview):

S(x) = Pr{X > x}
and λ(x) the age-specific hazard rate of infection. In
the context of infectious disease epidemiology, this
is often called the force of infection, and depends
on a variety of factors, including the rate at which
individuals come into contact with one another, and
the ease with which the organism is transmitted, given
a suitable contact.

Assume, for simplicity, that all individuals in the
population die at a fixed age, L, the life expectancy,
and that the disease concerned is not fatal. In addition,
we allow for the possibility that individuals are pro-
tected by maternally acquired immunity from birth to
some age, M . These assumptions are broadly applica-
ble to common childhood diseases such as measles,

mumps, rubella, and whooping cough in developed
countries. For these diseases, λ(x) is typically a non-
negative unimodal function, formally set to zero for
x ≤ M , and

S(x) = exp

(
−

∫ x

0
λ(u) du

)
.

The survivor function equals 1 for x ≤ M , and hence
differs from the probability that an individual of age
x is susceptible, which is 0 for x ≤ M and S(x) for
x > M . Let A denote the expectation of X, or average
age at infection. The average force of infection acting
on susceptibles, λ, is related to A by

λ =

∫ L

M

λ(x)S(x) dx

∫ L

M

S(x) dx

= 1 − S(L)

A − M
.

For endemic infections, the proportion of the popula-
tion escaping infection is negligible, and hence S(L)

is effectively zero. Thus,

λ
.= 1

(A − M)
.

It follows that if the average force of infection is
reduced, for instance by vaccination, then the aver-
age age at infection will rise. Assuming a uniform age
distribution, the proportion of the population remain-
ing susceptible is

π =
∫ L

M

S(x)

L − M
dx = A − M

L − M
. (1)

Since the duration of protection by maternal anti-
bodies is usually much less than A, the following
approximations hold:

π
.= A

L

.= 1

λL
.

So far, the methods described are essentially those of
survival analysis, and apply to any event occurring
with hazard λ(x). We now make the connection with
infectious diseases.

An important summary measure of the infectious-
ness of a disease in a given population is the basic
reproduction number, R0. This is the mean number
of secondary cases generated by a single infective
in a totally susceptible population. It is a parame-
ter of fundamental importance in infectious disease
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epidemiology. The higher the value of R0, the more
infectious the disease. However, if the basic repro-
duction number is equal to or below 1, transmission
of the infection cannot be sustained and will eventu-
ally die out with probability 1.

R0 depends on the effective contact rate, β. The
term “contact” is taken to mean one of such a
nature as to enable transmission of infection to occur.
This of course depends on the mode of transmission
of each organism. The effective contact rate, β, is
defined as follows. Let η denote the rate at which
contacts occur in the population, that is, the aver-
age number of contact that an individual makes per
unit time, and let θ denote the conditional probabil-
ity of infection, given a contact between an infec-
tive and a susceptible. Then the effective contact
rate is

β = ηθ.

It follows from this definition that

R0 = βD,

where D is the mean duration of the infectious
period.

In general, the contact rate, η, and hence β and
R0, vary with age. For simplicity, we assume that
the population mixes in a homogeneous fashion, so
that η is independent of age. Then β, R0, and the
force of infection are also independent of age. For
long-established endemic diseases in dynamic equi-
librium, the proportion susceptible fluctuates around
the constant value π given by (1). Thus the average
number of secondary cases produced by one infective
is πR0. But since the disease is in equilibrium, this
must on average equal 1, since otherwise the aver-
age proportion susceptible will not remain constant.
It follows that

πR0 = 1,

and hence

R0 = 1

π

.= L

A

.= λL,

β = 1

πD

.= L

AD

.= λL

D
. (2)

Thus, in a homogeneously mixing population, the
basic reproduction number and the effective contact
rate may be estimated from the average age at infec-
tion, the life expectancy, and the duration of the
infectious period.

These fundamental relationships also have impor-
tant consequences for the control of infectious dis-
eases. If the proportion of susceptible individuals in
the population is reduced by vaccination below the
equilibrium level π , then the number of secondary
cases produced by each infective will be reduced
below 1. Thus the infection will no longer be self-
sustaining, and will eventually die out. Assuming that
vaccination confers complete protection, and letting
V denote the minimum proportion that must be vac-
cinated for eradication of the infection, we therefore
have

V = 1 − π
.= 1 − A

L

.= 1 − (λL)−1.

In particular, note that it is not necessary to vaccinate
the entire population to eradicate infection. This is the
phenomenon of herd immunity: the effect of vaccina-
tion is not simply to protect vaccinated individuals,
but also to impart indirect protection to unvaccinated
susceptibles by impeding the circulation of the infec-
tion in the population.

This discussion shows how key epidemiologic
parameters, such as the basic reproduction number
and the proportion to vaccinate for eradication of
infection, may be estimated from observable quan-
tities such as the hazard of infection. Clearly, the
assumption of homogeneous mixing is untenable for
many populations. More complex versions of the
results described above may be derived for age-
dependent mixing patterns [3] and [44]. Similarly,
the concepts introduced above in the case of person-
to-person transmission have direct counterparts for
other types of infection. For instance, in the case
of helminth infections, the force of infection is the
rate at which uninfected individuals acquire parasites,
and R0 is the average number of offspring produced
throughout the reproductive life span of a mature
parasite that themselves survive to maturity, in the
absence of density-dependent constraints on popula-
tion growth [3].

Estimation of the Force of Infection

As shown above, knowledge of the age-specific force
of infection, or infection hazard λ(x), is central to
control strategies for infectious diseases. In the case
of endemic infections conferring long-lasting immu-
nity, with no differential mortality, in unvaccinated
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populations, it is most readily estimated from sero-
logical surveys, in which a cross-sectional sample of
the population is tested for the presence or absence
of relevant antibodies. Suppose that nx individuals
of age x are tested, with x > M , the duration of
protection from maternal antibodies. The number rx

who display no evidence of past infection may be
regarded as binomial [nx, S(x)], where S(x) is the
survivor function. Given a parametric form for the
hazard function, the likelihood is proportional to

L∏

x=1

S(x; β)rx [1 − S(x; β)]nx−rx , (3)

where

S(x; β) = exp

(
−

∫ x

0
λ(u; β) du

)
.

Individuals below age M are excluded from this anal-
ysis because they may be protected by maternally
acquired antibodies. The decline of maternal protec-
tion after birth is of course of interest in its own
right, and may be modeled provided sufficient data
are available on infants. Note also that in the presence
of vaccination, the hazard function can no longer be
interpreted as the hazard of infection, but is the com-
bined effect of natural infection and immunization.

For diseases with short incubation periods, the
force of infection may also be estimated from case
reports or routine notification data, provided it is
reasonable to assume that these are not subject to
age-specific bias in diagnosis or reporting. It is also
commonly assumed that the age distribution of the
population from which the cases are drawn is uni-
form, at least up to some age xk above which few
infections occur. Let n = (n1, . . . , nk) denote the
numbers of cases in the different age groups, where
the subscript i indexes the age range [xi−1, xi), i =
1, . . . , k. Thus n is multinomial and the likelihood
is proportional to

k∏

i=1

[
S(xi−1|β) − S(xi |β)

1 − S(xk|β)

]ni

.

Parametric models for the force of infection are
discussed by Griffiths [62], Grenfell & Anderson
[61], and Farrington [38]. Keiding [73] discusses
nonparametric estimation, with an application to
hepatitis A data (see Hepatology). Alternately, the
hazard may be assumed piecewise constant, taking

the value λj in age group [xj−1, xj ), j = 1 . . . k. This
enables regression models to be fitted using standard
modeling software. Given fixed covariates z and
letting tj (x) denote the time spent by an individual
of age x in the j th interval, we have

ln[S(x|β, λ)] = βTz +
k∑

j=1

λj tj (x),

and hence the likelihood (3) may be maximized by
generalized linear modeling with logarithmic link
function.

The force of infection is important in its own right,
but also in estimating age-dependent contact rates and
the basic reproduction number R0. Statistical methods
for estimating the R0 from serological and other data
are described in [19, 30, 44].

The methods described above apply to infections
having reached a dynamic equilibrium, in which
the age-specific incidence fluctuates around a con-
stant value according to stable epidemic cycles. For
emerging infections, such as HIV, the age-specific
incidence will initially increase over time. For oth-
ers, such as hepatitis A, it may decline as contact
rates change. The methods described above may be
extended to model secular changes in the hazard of
infection, using data from sequential seroprevalence
surveys in the same population. In this context the
hazard λ(x, t) depends on both age and time, and the
survivor function is

S(x, t) = exp

(
−

∫ x

0
λ(u, t − x + u) du

)
.

Ades & Nokes [2] discuss an application to the
incidence of toxoplasma infection. In some circum-
stances data may be available on repeat tests for the
same individuals. One example is repeat tests for
HIV on attenders at genito-urinary medicine clinics.
This sampling scheme gives rise to interval-censored
data, in which the time of infection is bracketed
between the times of the last negative and the first
positive tests. Denoting these, respectively, by U and
V , where U may be zero (denoting a left-censored
observation) and V may be infinite (denoting a right-
censored observation), the likelihood is

n∏

i=1

[S(Ui) − S(Vi)].
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The estimation method based on case reports can
similarly be extended to incorporate secular changes
in incidence, provided the incubation period of the
disease is short. For diseases with long incubation
periods, for example AIDS and the chronic sequelae
of hepatitis C infection, symptoms may appear many
years after infection, and hence case reports alone
provide little information on the date or age of infec-
tion. Data on case reports must be combined with
information about the incubation period to estimate
the incidence function. This is the back calculation
approach, developed by Brookmeyer & Gail [20] to
model the incidence of HIV infection.

For simplicity we ignore age effects. Let µ(t)

denote the rate at which case reports arise, and F(t)

denote the distribution function for the incubation
period. These are related to the force of infection by
the convolution equation

µ(t) =
∫ t

−∞
λ(s)S(s)F (t − s) ds.

The product λ(s)S(s) is sometimes combined into a
single term, α(s), denoting the incidence of infection
in the population. For uncommon or emerging infec-
tions, virtually the entire population is susceptible,
hence α(s) and λ(s) are practically identical.

Many methods have been proposed to estimate
λ(t) from this basic equation, given observed case
reports and knowledge of the incubation period distri-
bution. A comprehensive account is given in Brook-
meyer & Gail [21]. For instance, given a parametric
form α(s; β) for the incidence curve and assuming
that infections arise in a Poisson process, then the
number of cases, Yi , arising in time period [ti−1, ti)

is also Poisson with mean

µi =
∫ ti

ti−1

α(s; β)[F(ti − s) − F(ti−1 − s)] ds,

and hence the parameters β may be estimated by
maximizing the Poisson log likelihood:

n∑

i=1

[ni ln(µi) − µi − ln(ni!)].

Transmission Models

Catalytic models describe the age distribution of sus-
ceptibles for an endemic infection in dynamic equi-
librium. However, they only capture the steady-state

characteristics of the infection process, averaged over
a long period of time. In particular, they fail to
account for epidemic cycles. These constitute one of
the most striking features of endemic diseases with
short incubation periods, at least those conferring life-
long immunity and not involving a carrier state. In
addition, catalytic models cannot be used for infec-
tions that have not reached a dynamic equilibrium,
such as emerging diseases. By contrast, transmission
models, whether deterministic or stochastic, attempt
to incorporate the mechanism by which infection is
spread in a population.

Dynamic Models for Large Populations

As seen above, the mechanism of disease spread is
governed by the effective contact rate, β. This may
be expressed more generally as a function β(u, v)

representing the number of effective contacts per unit
time between an individual of age v and individuals
of age u. The relationship between the contact rate
and the force of infection at age x and at time t

depends on the number of infectives in the population
at time t . An intuitively appealing, though by no
means unique, functional relationship is

λ(x, t) =
∫ τ

0
β(u, x)Y (u, t) du,

where Y (x, t) is the proportion of infectives of age x

in the population at time t .
The basic ideas behind dynamic models may be

illustrated using the simple example of a homoge-
neously mixing population, that is, one in which the
contact rate is a constant β. It follows that the force
of infection is also independent of age.

The population, of constant size, is divided into
proportions X(t) susceptible, Y (t) infective, and Z(t)

recovered, who are immune from further infection.
Individuals are born into the susceptible class with
constant rate µ, and die at the same rate. There is
no disease-associated mortality. The model is driven
by the mass action principle, according to which the
number of new infectives in a small time interval
[t, t + δt) is proportional to the number of infectives
and to the number of susceptibles at time t . The
dynamics of this three-stage model, often called a SIR
(for susceptible–infectious–recovered) model, may
be represented by the following system of differential
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equations:

Ẋ(t) = −βX(t)Y (t) + µ − µX(t),

Ẏ (t) = βX(t)Y (t) − γ Y (t) − µY(t),
(4)

in which the dots represent derivatives with respect
to t and γ is the reciprocal of the duration of the
infectious period, D. Setting the derivatives to zero
and solving for X(t) gives the nontrivial equilibrium
proportion susceptible:

π = γ + µ

β

.= 1

βD
,

where the approximation is valid provided the dura-
tion of infectiousness is much smaller than life
expectancy. Note that expression (2) is retrieved only
approximately, owing to the different assumptions
about the death rate.

Using standard methods for the analysis of small
departures from equilibrium, it can be shown that
these result in oscillations in the numbers of infec-
tives. When the duration of the infectious period is
small compared with the average age at infection,
these have period

T = 2π(AD)1/2. (5)

This simple model thus exhibits the well-known phe-
nomenon of epidemic cycles, typical of endemic
immunizing infections with short infectious periods
and no carrier state.

The second equation in (4) also illustrates the fact
that the number of cases only grows if βX(t) − γ −
µ > 0, and hence in an initially susceptible popula-
tion an epidemic can only occur if

R0 = β

γ + µ
> 1.

Clearly, more sophisticated models can be developed
to incorporate a latent period, protection by mater-
nal antibodies, age-dependence, etc. In particular, if
an infection has latent period E, D in expression (5)
should be replaced by D + E. Anderson et al. [4]
apply spectral analysis to the time series of some
common childhood infections and show that the epi-
demic periods broadly correspond to those predicted
by the model. More complex modeling techniques,
combining time series methods with epidemic mod-
eling, have been described by Finkenstädt & Gren-
fell [54].

The transmission of infection in a population
clearly involves a stochastic component, which is
not captured by deterministic models. In small pop-
ulations, stochastic effects become dominant, and
deterministic models are of little use. In particular,
they cannot readily account for the phenomenon of
extinction, in which the transmission of infection is
interrupted.

The stochastic version of (4) may be developed in
terms of transition probabilities. Thus, letting X′(t)
and Y ′(t) denote, respectively, the number (rather
than the proportions) of susceptibles and infectives
at time t in a population of fixed size N , the cor-
responding transition probabilities in a short interval
(t, t + δt) are

Pr[X′(t + δt) = X′(t) − 1; Y ′(t + δt) = Y ′(t) + 1]

= N−1βX′(t)Y ′(t)δt,

Pr[X′(t + δt) = X′(t); Y ′(t + δt) = Y ′(t) − 1]

= (γ + µ)Y ′(t)δt,

Pr[X′(t + δt) = X′(t) + 1; Y ′(t + δt) = Y ′(t)]

= Nµδt,

Pr[X′(t + δt) = X′(t) − 1; Y ′(t + δt) = Y ′(t)]

= µX′(t)δt.

Unfortunately the solution of such systems is far from
straightforward. There is a substantial literature on the
properties of general stochastic models, much of it of
a highly mathematical nature [5–10, 26] and [112].
In practice, in large populations analytic solutions for
the stochastic model become unmanageable. Using
Monte Carlo methods, Bartlett [9, 10] showed that a
minimum population size is required for an infection
to remain endemic.

The main purpose of the deterministic and stochas-
tic dynamic models discussed above is to exhibit the
qualitative aspects of the spread of infectious disease
and to explore threshold phenomena. One important
application is in predicting the impact of vaccina-
tion strategies. However, for the statistical purposes
of hypothesis testing and parameter estimation, dif-
ferent types of stochastic models are used.

Branching Processes

In some cases it is possible to ignore the depletion
of susceptibles, for instance during the initial stages
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of an epidemic. In these circumstances the spread of
infection may be modeled by means of a branching
process in discrete time [14, 15]. This approach is
useful when the emphasis is on parameter estimation,
rather than prediction. In such a model the epidemic
begins with the introduction of an initial number of
infectives, Y0, at generation 0. These infect Y1 indi-
viduals, who comprise the next generation of cases. In
turn, these infect Y2 individuals in the next generation
of cases, and so on. Suppose that the number of infec-
tions directly caused by one individual is a random
variable Z with probability distribution g(z), the off-
spring distribution, and that the numbers of infections
caused by two cases from the same generation are
independent. Thus, for each i, Yi = Z1 + · · · + ZYi−1 ,
where the Zj are independent variables with den-
sity g(z).

Let µ and σ 2 denote the mean and variance,
respectively, of the offspring distribution. Thus µ

is the expected number of infections caused by one
case, and plays the same role as R0 above. General
results on branching processes show that if µ ≤ 1,
then the process will become extinct with probability
one [67]. Inference for branching processes is usually
conditional on extinction or nonextinction.

For endemic diseases we proceed conditionally
on nonextinction. Generation sizes Y0, . . . , Yk are
observed for some value of k. In practice k is
usually small, because generations soon become
indistinguishable. Also the stock of susceptibles
may be depleted, thus rendering the branching
process model invalid. Harris [67] proposed the
following nonparametric maximum likelihood
estimator for µ:

µ̂ =

k∑

i=1

Yi

k∑

i=1

Yi−1

.

The properties of this estimator are discussed by
Keiding [72]. Heyde [68] and Dion [33] discuss
nonparametric interval estimation (see Estimation,
Interval). Alternatively, a parametric assumption
may be made about the offspring distribution g(z).
Becker [14] suggests the alternative estimator:

µ̂ =
{

(yk/y0)
1/k, if Ik > 0,

1, if yk = 0.

For outbreaks of diseases for which µ ≤ 1, it can
be shown that if the offspring distribution has a power
series distribution, then the total size of the outbreak
also has a power series distribution [12], and the
total outbreak size is a sufficient statistic for µ. The
maximum likelihood estimate of µ is

µ̂ = 1 − Y0

Y+
,

where Y+ is the outbreak size. In particular for
Poisson offspring distributions, the total number
of cases follows the Borel–Tanner distribution and
the asymptotic variance of the maximum likelihood
estimator of µ is µ(1 − µ)/Y+.

Heyde [69] discusses a Bayesian approach which
allows the cases µ > 1 and µ ≤ 1 to be treated with-
out distinction. Becker [12, 13, 15] discusses several
applications of branching processes to smallpox epi-
demics. Branching process models have also been
proposed for the surveillance of vaccination prog-
rams [45].

Chain Binomial Models and Extensions

The branching process offers a simple framework in
which to investigate the early stages of epidemics,
and outbreaks of nonendemic infections. However,
its applicability is limited to situations in which
it is reasonable to assume an unlimited pool of
susceptibles. In particular, branching processes are
unsuitable for the analysis of disease spread within
households and small communities. In this context,
a more appropriate framework is provided by chain
binomial models.

Consider a household with n individuals. At
generation k there are Xk susceptibles exposed to Yk

infectives. The distribution of the number of cases in
the next generation, Yk+1, conditional on Xk and Yk ,
is binomial:

Pr(Yk+1 = z|Xk = x, Yk = y)

= x!

z!(x − z)!
pz

k(1 − pk)
x−z,

where pk is the probability that a susceptible of
generation k will acquire infection from one of the
yk infectives. To parameterize pk , some assumptions
are required. A common assumption due to Reed &
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Frost (1928), published as [57], is that contacts with
infectives occur independently, so that

pk = 1 − (1 − π)yk ,

where π is the probability of an effective contact
between two individuals. In continuous time, the
mass action principle as incorporated in (4) coincides
with the Reed–Frost model, in which π is replaced
by β · δt , where β is the contact rate. An alternate
assumption, due to Greenwood [59], is

pk =
{

π, if yk ≥ 1,

0, otherwise.

The Greenwood model may be valid for diseases such
as measles, in which infectious material is spread
by aerosol. In these circumstances the number of
infectives present will have little bearing on the
number of susceptibles infected.

In some cases, data may be available on the
actual chains of infection within the household, thus
enabling the full likelihood to be written down. Thus,
for one household with x0 initial susceptibles the
likelihood is

L =
m∏

i=1

Pr(yi |x0, y0, . . . , yi−1),

where m is the total number of generations of cases
in the household. For instance, in a household of size
three, with one initial infective and two initial suscep-
tibles, the possible chains of infection are {1}, {1, 1},
{1, 1, 1}, {1, 2}. The corresponding probabilities are,
respectively, (1 − π)2, 2π(1 − π)2, 2π2(1 − π), π2.
In this case the probabilities are the same under the
Reed–Frost and Greenwood assumptions, although
this is not generally the case. Bailey [5] contains
tables of probabilities for households of up to five.

The parameter π may be estimated by directly
maximizing the likelihood L. Alternately it may be
maximized using generalized linear modeling tech-
niques, since yk+1 is conditionally binomial(xk, pk).
This enables household characteristics to be mod-
eled in a straightforward manner. In the case of
the Reed–Frost model, the appropriate link function
is the complementary log–log, used with the offset
ln(yk). Thus, if

ln[− ln(1 − π)] = α + βTx

for covariates x, then

ln[− ln(1 − pk)] = ln(yk) + α + βTx. (6)

The Reed–Frost assumption may also be tested
formally, since omission of the offset term ln(yk) in
(6) corresponds to the Greenwood assumption.

In practice it is exceedingly rare to have such
detailed data. In some situations, however, data may
be available on the size of outbreaks in households.
Assuming that information is also available on the
numbers of introductory cases and initial susceptibles,
the likelihood of an outbreak of any given size may be
obtained by summing the probabilities of all chains
with that number of cases. Thus, for instance, in a
household of size three with one initial infective and
two initial susceptibles, the probability of an outbreak
of total size three is 2π2(1 − π) + π2 = π2(3 − 2π).

Bailey [5] discusses some of the problems
involved in collecting data on household outbreaks.
Bailey [5] and Becker [15] describe model checking
for the chain binomial model, and extensions to
random infectiousness, in which the parameter π may
vary between households, for instance according to
a beta distribution. Becker [15] gives a detailed
application of chain binomial methods to the common
cold.

The chain binomial models so far considered
only seek to model the course of disease within
households, and ignore the transmission of infection
between households. This latter problem has been
discussed by Longini et al. [81] and Longini & Koop-
man [80]. Suppose that an outbreak in a defined
community of households is observed. Infections may
be acquired within the household, or from the com-
munity, that is, from an individual from a different
household. Let πc and πh denote, respectively, the
probabilities that a susceptible is infected from the
community and from the household during the out-
break. Let pis denote the probability that i of the
s initial susceptibles within a given household are
infected during the outbreak. Expressions for the pis

in terms of πc and πh are obtained recursively using
the formula

pis = s!

i!(s − i)!
pii(1 − πc)

s−i (1 − πh)
i(s−i).

Given a random sample of households from the
community, the likelihood is the product of the
pis over the households in the sample and may be
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maximized to estimate the probabilities πc and πh.
Becker [15], Longini & Koopman [80], and Longini
et al. [81] give several applications of this method to
data on various respiratory diseases. More complex
stochastic models have also been proposed to take
account of several levels of mixing, for example,
within and between households [7].

Data Augmentation, Martingale and Markov
Chain Monte Carlo Methods

Likelihood-based methods for data on infectious
disease data can become notoriously cumbersome
for even medium-size problems. This is because the
infection and disease process is generally only partly
observed. For example, in outbreaks of infectious
diseases, infection times are rarely observed: only
disease onsets are reported.

To remedy this problem, Martingale [15] and
data augmentation techniques have been proposed
[15–17]. Bayesian estimation methods implemented
by Markov chain Monte Carlo are particularly
suitable for use with missing data. The methods
have been applied to infectious disease data, both to
simplify existing likelihood techniques, and to extend
them by weakening the assumptions [94–96].

The Natural History of Infectious Diseases

An important area of application of infectious disease
statistics is in estimating key parameters describing
the natural history of infection. This section describes
methods for estimating the incubation, latent, and
infectious periods, and the risk and severity of clinical
disease following infection.

Estimation of the Incubation Period

The incubation period is defined as the interval
between acquisition of infection and the appearance
of symptoms. A related concept is that of generation
time, also called the serial interval, which is the time
between acquisition and transmission of infection.
For many infections, such as measles, mumps, or
chickenpox, the two are almost identical. Knowledge
of the incubation period and generation time are
important for several reasons. First, it enables cases
in an epidemic to be classified into generations, thus
allowing more detailed investigation of the spread of

disease. Secondly, in the investigation of point source
outbreaks, for instance involving food contaminated
with Salmonella, knowledge of the incubation period
is essential to define the time period over which food
histories and other risk factor information should be
collected. Thirdly, for evolving diseases with long
incubation periods, the true incidence of infection can
only be determined if the incubation period is known.

For diseases with short incubation periods, the
incubation period distribution may be estimated
directly using information on the time of exposure.
In this way Sartwell [104] found that the incubation
periods of many common diseases follow lognor-
mal distributions. However, for diseases with long
incubation periods, account must be taken of right-
truncation: infected individuals who have not yet
developed symptoms are not observed (see Trun-
cated Survival Times). If the incidence of infection
varies over time, then ignoring the truncation of the
data would produce biased estimates.

Several methods have been proposed for esti-
mating the incubation period in this context. One
simple method applicable to grouped data is by lin-
ear modeling. Let rij denote the number of observed
cases infected in time period i with incubation period
j , where i = 1, . . . , k and j = 0, . . . , k − 1 range
over discrete time intervals with i + j ≤ k, where
k denotes the most recent time interval on which
data are available. The incubation period distribution
is estimated conditionally on the maximum observed
interval, k − 1. Taking rij as Poisson with mean µij ,
define the loglinear model

log(µij ) = h(i) + g(j)

for some parametric or nonparametric incidence func-
tion exp[h(i)] and incubation period distribution
exp[g(j)] satisfying

∑
exp[g(j)] = 1. This method

is described in Zeger et al. [120] and provides a sim-
ple way of jointly estimating the incidence function
and the (conditional) incubation period distribution.

When data on individuals are available, an alter-
nate method is as follows. Suppose that onsets are
observed up to time t0, resulting in n observations
(ti , si), where ti is the date of onset of symptoms and
si is the interval between infection and onset of symp-
toms, that is, the observed incubation period. Letting
α(t) denote the incidence of infection at time t and
f (s) the density function of the incubation period,
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the log likelihood may be written

n∑

i=1

ln[α(ti)] +
n∑

i=1

ln[f (si)]

−
∫ t0

−∞
α(u)F (t0 − u) du, (7)

where F(s) is the distribution function of the incu-
bation period. Suitable parameterizations of α(t) and
f (s) may be inserted into (7) and estimates obtained
by maximum likelihood. A slightly more general ver-
sion of this approach was used by Medley et al. [89]
to estimate the incubation period of AIDS.

A nonparametric approach has been suggested
by Lagakos et al. [78]. In this approach the analy-
sis is undertaken in “reverse time”. Right-truncated
observations in forward time become left-truncated
in reverse time, and can be handled using nonpara-
metric methods developed for left-truncated data.
Suppose that n observations (ti , si) are made over the
time interval [0, t0], where ti and si denote the same
quantities as above. The distribution of the incubation
period is estimated conditionally on the maximum
observable interval, t0. Thus, the distribution esti-
mated is

F ∗(s|t0) = F(s)

F (t0)
, s ≤ t0.

Let v1, . . . , vk denote the distinct values of the si and
define

nj =
n∑

i=1

1(si = vj ),

Nj =
n∑

i=1

1(si ≤ vj ≤ t0 − ti ),

where 1(·) is the indicator function. Then in reverse
time measured from t0 to 0, nj is the number of
events occurring at reverse time t0 − sj , and Nj is
the number at risk. The nonparametric maximum
likelihood estimate of F ∗(s|t0) is then

F̂ ∗(s) =
∏

vj ≥s

(
1 − nj

Nj

)

for 0 ≤ s ≤ vk , and 1 for vk < s ≤ t0.
All three methods may be used in other contexts,

such as estimating the distribution of delays between
the onset of disease and reporting or ascertainment.

Estimation of the Latent and Infectious Periods

For some diseases it is possible to identify the end of
the infectious period. Thus, for instance, for measles
infectiousness is minimal 2 days after the appearance
of the rash. For such diseases it is possible to estimate
the latency and incubation period from home contact
studies, provided the chains of infection within the
household are known. The method is described for
households of two susceptibles.

For simplicity, assume that the infectious period is
of fixed length, µ, and let Z denote the latency period,
with probability density function (pdf) g(z). For each
case the end of the infectious period is observed, and
occurs at time Y . The beginning of the infectious
period for each individual is thus Y − µ. Assume
also that infectiousness is constant over the infectious
period, so that infectious contacts occur in a Poisson
process with constant rate β.

The contribution to the likelihood from a house-
hold with two co-primary cases infected at the same
time with Y1 = y1, Y2 = y2, and y1 < y2, is

∫ ∞

0
g(z)g(z + y2 − y1) dz.

In the same notation, the contribution to the likeli-
hood of a household in which the primary case infects
the remaining susceptible is

β

∫ µ

0
g(y2 − y1 − z) exp(−βz) dz,

while the contribution of a household with a single
case with Y1 = y1 is

exp(−βµ).

Letting n1, n11, and n2 denote the numbers of house-
holds of size two with chains {1}, {1, 1}, and {2},
respectively, the log likelihood is then

− n1βµ + n11 log(β)

+ n11 log

[∫ µ

0
g(y2 − y1 − z) exp(−βz) dz

]

+ n2 log

[∫ ∞

0
g(z)g(z + y2 − y1) dz

]
.

Specification of a suitable parametric form g(·|γ )

then enables the log likelihood to be maximized with
respect to β, µ, and γ . This approach can be extended
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to households with more than two susceptibles. The
assumption of a constant infective period can also
be relaxed. These and other extensions are discussed
in Bailey [5] and Becker [15]. Becker [15] gives
a detailed application of this method to measles
data. Likelihood-based methods often rely on strong
assumptions. Such assumptions can sometimes be
weakened by making use of MCMC methods. O’Neill
et al. [94] estimate the latent and infectious periods
of measles using such methods.

Severity and Complications of Infectious Diseases

Infection and disease are not synonymous. Some
infections are asymptomatic, and most produce a
range of symptoms which can vary in severity. The
clinical severity of disease may be directly quanti-
fied using clinical information. One important such
measure is the case fatality rate, which is the pro-
portion dying as a result of infection. Alternately,
severity may be measured by proxy variables, such
as the proportion of cases admitted to hospital, or
socioeconomic variables, such as days off work. In
most cases disease severity is age-dependent: for
instance, for mumps and hepatitis A, severity of
disease increases with age. Since the introduction
of vaccination increases the average age at infec-
tion, vaccination programs can perversely produce
an increase in the morbidity attributable to infec-
tion [3, 76].

The statistical methods commonly used to
investigate risk factors for clinical disease typically
involve survival analysis and regression. One
perhaps distinctive application is to the estimation of
the mortality attributable to influenza. For example,
Serfling [105] applied regression techniques to model
the seasonal (see Seasonal Time Series) and secular
trends (see Time Series) in mortality in selected cities
in the US. In influenza epidemic years, large positive
residuals are observed, from which an estimate of
the excess mortality attributable to influenza may be
derived.

Some infections, which are otherwise relatively
benign, can have devastating consequences on the
unborn child. For instance, rubella, toxoplasma, and
cytomegalovirus infection in pregnancy can result in
congenital abnormalities. The estimation of the num-
ber of infections in pregnancy is therefore of critical
importance in assessing the value of screening and
other prevention policies (see Preventive Medicine).

Letting λ(x) denote the force of infection at age
x, η(x) the number of births to women of age x, and
τ the duration of pregnancy, the expected number of
women infected in pregnancy is
∫ ∞

0
η(z)

∫ z

z−τ

[
λ(x) exp

(
−

∫ x

0
λ(u) du

)
dx

]
dz.

The force of infection may be estimated using the
methods described above, while information on η(z)

may be derived from vital statistics. This and other
methods are discussed by Ades [1].

Some complications have long induction peri-
ods. When the incidence of the originating infections
varies over time, the estimation of the risk of com-
plications following infection must take account of
truncation effects. Similarly, transient effects due to
changing incidence of infection may distort the induc-
tion period distribution. To see this let α(t) denote the
incidence of originating infections, and f (s) denote
the pdf of the induction period distribution. Then the
observed induction period distribution at time t is

f ∗
t (s) = α(t − s)f (s)∫ ∞

0
α(t − u)f (u) du

.

Thus, if the incidence is declining over time, the
observed distribution of induction times is biased
towards longer intervals. These effects are analyzed
by Cox & Medley [25] in the context of AIDS.
Farrington [39] discusses an application to subacute
sclerosing panencephalitis (SSPE) after infection by
wild measles virus.

Clustering of Infectious Diseases

One of the distinguishing features of many infectious
diseases is their tendency to arise in clusters in space
and time (see Clustering). While cluster analysis is
a preoccupation common to most areas of epidemiol-
ogy, in the case of infectious diseases it stems directly
from the transmissibility of disease, rather than the
influence of shared risk factors. The clearest exam-
ple of this is the epidemicity of endemic infections,
discussed above. Spatial effects can also be impor-
tant in disease transmission, and may be estimated
using suitable statistical methods [79]. This section
describes two further areas in which statistical meth-
ods have been developed specifically for detecting
clusters of infectious diseases.
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Detection of an Infectious Etiology

For some diseases, such as leukemia (see Leukemia
Clusters), Hodgkin’s disease, and multiple sclerosis,
an infectious etiology has been suggested, but still
remains unproven. Much effort has been devoted
to detecting clustering of cases which might sup-
port such a hypothesis. From a statistical point of
view, this requires the formulation of a suitable
null hypothesis reflecting the distribution of cases
expected if there was no infectious agent involved,
and testing for departures from this hypothesis in a
direction suggestive of infection.

There is a large literature on clustering of health
events, much of which can be applied to the detection
of infectiousness; see, for instance, Mantel [83].
This discussion is limited to some of the methods
developed specifically for this purpose.

An early procedure was described by Mathen &
Chakraborty [84], who considered the distribution of
disease within a community of households. Regard-
ing the total number of cases as fixed, they used
as test statistic the total number of households con-
taining at least one case. This idea was developed
further by Walter [117] to take account of the actual
numbers of cases within each household. Consider
a population of n individuals in s households. The
ith household comprises ni individuals, of whom ri

become infected. Conditioning on the total r = ∑
ri

cases, the null distribution of ri is hypergeometric.
This corresponds to a null hypothesis of no clustering
within households. The test statistic, T , is the num-
ber of distinct pairs of individuals, both of whom
are infected, and both of whom are from the same
household:

T = 1

2

s∑

i=1

ri(ri − 1).

Walter [117] gives exact expressions for the null
expectation and variance of T . Asymptotically, as
n → ∞ and r/n → p, the proportion of the pop-
ulation infected, the null mean and variance of T

tend to

E(T ) → np2(ν2 − 1)/2,

var(T ) → np2(1 − p)[2pν3 + (ν2 − 1)(1 − p)

− 2pν2
2 ]/2.

where ν2 = sE(m2
i )/n and ν3 = sE(m3

i )/n. The
method may also be extended to the situation where

only data on households with one or more infected
individuals are collected. Various modifications have
been proposed to this test statistic, by Smith & Pike
[108] and Fraser [56].

Methods based on the distribution of cases within
households are likely to lack power when applied to
rare diseases. In addition, they do not use information
on the times at which cases arise. These shortcomings
are addressed by methods to detect space–time
interactions. Many methods for detecting space–time
clustering have been developed, the first being that
of Knox [75]. Suppose that n cases of disease are
identified, together with their locations and times of
onset. Knox’s test statistic is the number of distinct
pairs of cases which lived within a distance d and
had onsets within a time period t of each other,
for fixed values of d and t . Barton & David [11]
expressed Knox’s statistic in graph-theoretic terms,
proximity in space and time being represented by
adjacency matrices, and derived the null expectation
and variance of Knox’s statistic.

Several enhancements of Knox’s statistic have
been proposed. In its original form it is applicable
only to infections with short latent periods. To extend
it to diseases with long latent periods, Pike &
Smith [99] included information on the infectious
and susceptible periods of each case. Evidence of
contagion is given by any case being in the “right”
place at the “right” time to have caught the disease
from some other case. The test statistic measures the
total effective contact between distinct pairs of cases,
larger values providing evidence of infectiousness.

Pike & Smith [100] extend this approach further
by including a control group, and apply the method
to Hodgkin’s disease. Given n cases of disease, let
yij denote the presence (yij = 1) or absence (yij = 0)
of an effective contact from case i to case j , that is,
which may have resulted in case i transmitting the
disease to case j , for i, j = 1, . . . , n and i �= j . The
test statistic is defined as the total contact between
the n cases:

T =
∑

i

∑

j �=i

yij .

For each case a matched control is selected. The null
distribution of T is obtained by calculating the total
contact for each of the 2n random selections of one
individual from each of the n case–control pairs. This
is most readily derived by Monte Carlo simulation.
Pike & Smith [100] derive the exact null values of
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E(T ) and var(T ), and propose a variety of related
test statistics for the total numbers of linked patients.

The Detection of Outbreaks

A characteristic shared by many infectious diseases,
at least those with short incubation periods, is the
rapidity with which they evolve. It follows that if
effective control measures are to be introduced, then
outbreaks of infectious diseases must be detected in
a timely fashion. In this context the emphasis is
on the prospective detection of temporal clustering
of disease, that is, as data accumulates, rather than
the more usual retrospective identification of tempo-
ral clusters for epidemiologic analysis. Prospective
outbreak detection is therefore necessarily based on
incomplete data which are usually subject to delays in
reporting, and is further complicated by fluctuations
in the historical data series due to seasonal cycles,
secular trends, and past outbreaks (see Surveillance
of Diseases).

Several statistical approaches to prospective out-
break detection have been suggested. Cumulative
sum statistics have been used to detect the onset
of influenza epidemics [115]. Time series methods
have been suggested for the detection of outbreaks
of Salmonella [119]. Nobre & Stroup [93] describe
a different approach using exponential smoothing of
the time series (see Nonparametric Regression) to
identify the points at which the first derivative of the
series departs significantly from zero.

The methods described above involve organism-
specific modeling and hence are best suited to moni-
toring small numbers of data series. For the purposes
of routine monitoring of large databases of infec-
tious disease reports, however, robust methods are
required applicable to a wide variety of organisms.
Stroup et al. [114] describe a simple method for rou-
tinely detecting aberrations in reports of notifiable
diseases in the US. Their method is to compare the
current month’s reports with the average of those
received in comparable baseline periods over pre-
vious years. The current month’s report is declared
aberrant if it lies outside the limits µ̂ ± 2σ̂ , where µ̂

and σ̂ are the estimated mean and standard deviation,
respectively, of the baseline values.

This approach corrects for seasonal variation,
though not for past outbreaks. Also, the method
is applicable only for organisms with substantial
monthly counts. An algorithm based on Poisson

regression modeling, applicable to rare as well as
frequent organisms, and incorporating an adjustment
for past outbreaks, has been described by Farrington
et al. [46]. A two-thirds power transformation is
applied to preserve a roughly constant false positive
probability for different organism frequencies.

Increasing the availability of good data on geo-
graphical locations of the incident cases also make it
possible to envisage incorporating a spatial element
to the detection process [77, 102].

Vaccination

One of the distinguishing features of infectious dis-
ease epidemiology is the ability to prevent disease
by vaccination. Vaccination programs are gener-
ally acknowledged as among the most effective and
cheapest public health measures available. It follows
that the statistical issues raised by vaccination are
central to the statistics of communicable diseases.

Vaccine Trials

The clinical trial is the method of choice for the
evaluation of vaccines. (see Vaccine Studies) Since
the 1940s, when the method was first applied sys-
tematically to the evaluation of vaccines, a vast body
of experience and methodology has developed. This
section briefly reviews some of those aspects specific
to vaccine trials. More detailed discussions may be
found in Smith & Morrow [107] and Farrington &
Miller [47].

Vaccine trials broadly fit within the Phase I, Phase
II, and Phase III sequence of trial methodology. Most
Phase I and II trials may be regarded as preliminary
investigations, laying the groundwork for Phase III
protective efficacy trials. However, in some cases
Phase II trials take on a different purpose in that
they are used to underpin major decisions about
vaccination policy. This is the case, for instance,
when a vaccine has already undergone a successful
evaluation in a Phase III trial, possibly in another
country. Additional data are required to support the
introduction of the vaccine in a different population,
possibly under a different immunization schedule
from that used in the Phase III trial. Such Phase II
trials may thus be described as confirmatory rather
than exploratory.

The primary purpose of a Phase III trial is to assess
the protective efficacy of the vaccine in the target
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population. Phase III trials may be large, especially
when the disease concerned is rare. The 1954 field
trial of Salk vaccine for polio involved 1.8 million
children in the US, over 400 000 of whom were ran-
domly assigned to vaccine or placebo and a much
larger number enrolled in an open study [55]. Trials
on such a gigantic scale are rare, but many never-
theless require sample sizes running into thousands.
Vaccine efficacy trials are thus considerable logistic
undertakings, and require clear procedures for han-
dling vaccines, including their labeling, storage and
transport, and monitoring their condition, for instance
using temperature-sensitive devices.

The first stage in designing an efficacy trial is to
define the outcome of primary interest (see Outcome
Measures in Clinical Trials). Many vaccines, such
as those against pertussis [52] or rotavirus [116], alter
the clinical course of the disease. Thus, a vaccine that
is effective in preventing clinical disease may have a
considerably lower efficacy against milder or asymp-
tomatic infection. Clarity about the purpose of the
trial and the intended use of the vaccine is, there-
fore, essential from the start if confusion resulting
from contradictory interpretations of the trial results
is to be avoided. In the special circumstances of
measles vaccines in developing countries, it has been
argued that it is more appropriate to use total mortal-
ity from any cause as the primary outcome, rather
than measles morbidity, since the effect of vacci-
nation may have nonspecific immunological conse-
quences [64].

These considerations will guide the choice of pri-
mary case definitions, which should be chosen with
due regard to potential biases. Clinical case defini-
tions may lack specificity, unless corroborated by
laboratory evidence, and hence will bias efficacy
towards zero (see Bias Toward the Null), since the
vaccine cannot be expected to protect against infec-
tions other than that for which it was developed.
However, the use of laboratory methods for confir-
mation should be validated, since the sensitivity of
the method may vary between vaccinated and unvac-
cinated cases. For example, there is some evidence
that bacterial isolation rates of B. pertussis are lower
in vaccinated than unvaccinated cases [113] which
would result in an artificially high estimate of vac-
cine efficacy. As in other studies of vaccine efficacy,
special care must be taken to ensure that individu-
als allocated to the different vaccine groups have the
same probability of exposure to infection, for instance

by using block randomization within suitably defined
units of space and time (see Randomized Treatment
Assignment).

Estimation of Vaccine Efficacy

Vaccine efficacy is defined as the percentage reduc-
tion in the attack rate attributable to the vaccine. This
may be written:

V E =
(

pu − pv

pu

)
× 100, (8)

where pu and pv denote, respectively, the risk of
infection in unvaccinated and vaccinated individu-
als over a specified observation period [0, t] (see
Attributable Risk). For notational simplicity, we
omit the percentage multiplier and write

V E = 1 − ρ,

where ρ is the relative risk of infection, pv/pu.
Alternately, one can define vaccine efficacy in terms
of the relative hazard of infection:

V E = 1 − λv

λu
, (9)

where

pu = 1 − exp(−λut), pv = 1 − exp(−λvt).

The two measures do not differ appreciably when λut

is small.
These measures are used both to quantify vac-

cine efficacy in clinical trials and to evaluate vaccine
effectiveness in the field. The term “effectiveness”,
rather than “efficacy”, is often used to underline
the distinction between estimates obtained in con-
trolled experiments and those achieved under field
conditions. The latter may be influenced by vaccine
storage, variability of vaccination schedules, herd
immunity, and other factors not directly attributable
to the vaccine’s direct biological effect. Henceforth,
for reasons of economy, we use the term “efficacy” to
cover both biological efficacy and field effectiveness
(see Pharmacoepidemiology, Adverse and Benefi-
cial Effects).

Vaccine efficacy may be estimated directly in a
cohort study involving vaccinated and unvaccinated
individuals. This was the original approach of Green-
wood & Yule [60]. Let nv and nu denote, respectively,
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the numbers of vaccinated and unvaccinated individ-
uals. Suppose that rv vaccinated and ru unvaccinated
cases arise during a specified observation period. The
vaccine efficacy may then be estimated as

V̂ E = 1 − rv/nv

ru/nu
.

Confidence limits may be derived from those for the
estimated relative risk ρ̂ = (ru/nu)/(rv/nv).

Covariate effects may be estimated by modeling
the number of cases as binomial, using a gener-
alized linear model with logarithmic link. Thus,
for instance, if each group is stratified according
to covariates xi , i = 1, . . . , k, then the main effects
model for vaccine and covariate effects has the
structure:

ln(pui ) = α + βTXi,

ln(pvi ) = α − γ + βTXi,

and the corrected estimate of vaccine efficacy, allow-
ing for covariate effects, is V̂ E = 1 − e−γ̂ . The effect
of the covariates on vaccine efficacy may also be
investigated by fitting the relevant interaction terms.

A second method for estimating vaccine efficacy
is by means of a case–control study [106]. A sample
of cases is identified along with suitable controls,
typically from the same age group and locality.
Vaccination histories are obtained for both cases and
controls. The odds ratio of vaccination in cases
and controls is equal to the odds ratio of disease
in vaccinated and unvaccinated children. Provided
attack rates are low, this approximates the relative
risk, so that

V E
.= 1 − pv/(1 − pv)

pu/(1 − pu)
.

The analysis uses standard case control methodology,
regression models being fitted with conditional or
unconditional logistic regression techniques.

A third method for estimating vaccine efficacy,
called the screening method, is commonly used for
routine monitoring purposes, or in circumstances in
which only data on cases are available. Suppose
that all or a random sample of cases of disease
arising over a given period in a defined population
are available. Let θ denote the proportion of cases
vaccinated, and suppose that the proportion of the

population vaccinated, π , is known. The vaccine
efficacy is then

V E = 1 −
(

θ

1 − θ

)(
1 − π

π

)
. (10)

In the screening method, the vaccination coverage,
π , is fixed, while θ is estimated.

Stratified analyses (see Stratification) using the
screening method are possible provided suitably strat-
ified vaccine coverage statistics are available. Sup-
pose that cases are observed and classified into m

strata, with ni cases in stratum i, i = 1, . . . , m. Sup-
pose that of the ni cases in stratum i, ri , are vacci-
nated. For each stratum i = 1, . . . , m, let θi denote
the probability that a case is vaccinated, πi the pop-
ulation vaccine coverage, and ρi the relative risk of
disease. Suppose also that k covariates on each stra-
tum are also available, the value of the j th covariate
in the ith stratum being denoted by xij , j = 1, . . . , k.
Then, given a linear model for the relative risk,

ln(ρi) = α +
k∑

j=1

βjXij ,

(10) may be re-expressed for each stratum as

logit(θi) = logit(πi) + α +
k∑

j=1

βjXij . (11)

Assuming that cases of disease arise in a Poisson
process, ri is binomial (ni, θi). Thus, the model
specified by (11) may be fitted as a generalized
linear model with binomial error and logistic link,
with offsets logit(πi). Clearly, this method depends
for its validity on the availability of accurate data
on vaccine coverage. Given such data, the method
allows vaccine efficacies to be calculated very simply
from case reports or notifications. Applications of the
method to measles and pertussis vaccine efficacy are
given in [42].

Alternatively, if the population vaccine coverage
is not known, then it may be estimated from a sample.
This approach leads to case–cohort designs [90].

In all the methods described above, care must
be taken to adjust for potential confounders. For
instance, both vaccine coverage and incidence of
infection may vary with age and location, which
may therefore confound vaccine efficacy. In field
investigations it is essential to document vaccination
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histories, and to ascertain cases independently of
vaccination status. These and other methodological
issues are discussed in detail in Clarkson & Fine [23],
Fine & Clarkson [52], and Orenstein et al. [97].

In estimating vaccine efficacy it is also important
to ensure that vaccinated and unvaccinated individ-
uals have the same probability of exposure. In an
attempt to control for exposure, vaccine efficacy is
sometimes estimated from attack rates in household
contacts of infected cases. Some of the methodolog-
ical issues surrounding such studies are discussed in
Fine et al. [53]. Concern about this issue has led to a
further measure of vaccine efficacy being proposed,
which controls for exposure:

V E = 1 − θv

θu
, (12)

where θu and θv are, respectively, the transmission
probabilities of infection to unvaccinated and vacci-
nated individuals given contact with a single infec-
tive [63].

The various definitions of efficacy given above
all represent direct efficacy, that is, they measure
the individual benefit gained from vaccination, in a
vaccinated population. In addition, the vaccine may
confer an indirect benefit through herd immunity,
by reducing the circulation of the infection, and
hence indirectly protecting unvaccinated individuals.
Direct and indirect measures of vaccine efficacy are
discussed in [65].

In addition to reducing the susceptibility of those
vaccinated, vaccines may also reduce the infectious-
ness of individuals infected. The estimation of the
effect of vaccination on infectiousness is not straight-
forward, but can be undertaken in the context of
household situations [82], or in several populations
with different levels of vaccine coverage [27].

Vaccine Models

Two contrasting models of vaccine mechanisms have
been suggested [109]. In the first, the so-called “all-
or-nothing” model, the vaccine imparts total, long-
lasting protection to a proportion of vaccinees, and
gives no protection to the remainder. The proportion
protected may be estimated unbiasedly as one minus
the relative risk of disease, that is, using (8) above.
It has been suggested that this model of vaccine
protection may apply to live viral vaccines such as
measles vaccine. In the second model, sometimes

called the “leaky” vaccine model, vaccination does
not impart complete protection on any individual, but
reduces the hazard of infection by a constant factor.
This relative hazard corresponds to 1 − V E, where
the vaccine efficacy is estimated using (9) above.
This mechanism might be appropriate for bacterial
vaccines, such as whole cell pertussis vaccine. In
a randomly mixing population, the vaccine efficacy
measure, (12), based on transmission probabilities,
has been shown to equal that based on attack rates,
(8), for all-or-nothing vaccines, and (9) for leaky
vaccines [63].

In practice it is extremely difficult to distinguish
between the two vaccine mechanisms, since changes
in one or other measure of vaccine efficacy over time
can be attributed either to the vaccine mechanism
or to waning vaccine efficacy. This confounding of
vaccine mechanism and changes in efficacy over
time poses particular problems for the evaluation of
age-specific efficacy of the vaccine, since a decline
in age-specific efficacy may be attributed to the
vaccine mechanism, to bias in identifying susceptible
individuals, or to waning efficacy of the vaccine.
The problem of estimating and interpreting age-
specific vaccine efficacy measures is discussed in [41]
and [71].

Vaccine Safety Evaluation

Vaccine safety is clearly a critical issue, often gen-
erating considerable public interest, particularly in
the case of vaccines administered to children on a
large scale for preventive purposes. Clinical trials are
usually too small to demonstrate the safety of vac-
cines with respect to rare, but potentially serious,
adverse events. Instead, vaccine safety is monitored
by surveillance and epidemiologic investigations after
the vaccine is in widespread use. Such studies present
considerable statistical challenges. For instance, for
vaccines administered as part of a routine immuniza-
tion program, unvaccinated individuals are a selected
group which cannot be assumed representative of
the population as a whole, and hence should not
be included in the control group once high vac-
cine coverage is achieved [27]. Instead, for acute
adverse reactions, such as febrile convulsions follow-
ing measles or pertussis vaccine, or aseptic meningitis
following mumps vaccine, the focus is to detect a
clustering of events in the period following vacci-
nation. This is achieved by estimating the relative
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rate at which events occur in a specified period fol-
lowing vaccination, compared with the background
rate in control time periods, correcting for age effects
which may confound the relationship between vacci-
nation and adverse events. Commonly used methods
include cohort and case–control studies. In the cohort
approach, the analysis is conditional on vaccination
times, the time of observation for each individual
being divided into “at risk” and “control” periods.
In the case–control approach, cases are matched to
controls by date of birth and other relevant variables.
The date of the reaction in the case is taken as the
index date, and exposure in both case and control is
defined as vaccination in a specified period prior to
the index date. The methodologic issues associated
with such studies are discussed in Ray et al. [101]
and Fine & Chen [51].

A third method specifically designed for the analy-
sis of acute, transient vaccine reactions combines the
economy of the case–control method and the power
of the cohort method. This is the case–series method
[43]. The method is derived from a cohort model,
by conditioning on the total number of events expe-
rienced by each individual. Individuals who do not
experience any reactions thus make no contribution
to the likelihood, and hence only data on cases are
required. Thus, suppose that n cases are observed
over a defined observation period. For the ith individ-
ual, let eijk denote the time spent in age group j and
risk group k. The risk groups are defined in relation
to vaccination: for instance, for febrile convulsions
after pertussis vaccine, one might use the intervals
0–3 days, 4–7 days, 8–14 days after vaccination as
distinct risk groups, all other times being included in
the reference control group. The number of adverse
events experienced by individual i in age group j

and risk group k, rijk , is assumed Poisson with mean
µijk . A simple cohort model may be written

ln(µijk) = ln(eijk) + αTxi + βj + γk,

where xi are fixed covariates. Conditioning on the
total number of events observed for individual i

results in the product multinomial likelihood:

L =
∏

i

∏

j,k




eijk exp(βj + γk)∑

r,s

eirs exp(βr + γs)





rijk

,

to which individuals with ri.. = 0 contribute 1, and
hence may be ignored. This greatly simplifies the
study of adverse events, since only a sample of
individuals experiencing an event over a given period
is required. This model assumes that events are
potentially recurrent. However, for rare nonrecurrent
events, such as sudden infant death syndrome (SIDS)
or encephalopathy, the method can be applied with
little bias. Note that with this approach the effect of
fixed covariates on the incidence of adverse events
cannot be estimated. However, their effect on the
relative incidence of adverse events after vaccine
can be estimated by including suitable interaction
terms in the model. This method has been shown
to be as powerful as the cohort method when vaccine
coverage is high [48].

Other Methods

The collection of infectious disease data frequently
relies on complex laboratory techniques, such as sero-
logical and other assays, electron microscopy, elec-
trophoresis, typing, and other identification methods.
Many of these involve statistical techniques, such as
statistical taxonomy. A thorough discussion of labo-
ratory methods is beyond the scope of this article.
However, the laboratory methods used often also
have a direct bearing on the analysis and interpre-
tation of epidemiologic data. This section aims to
illustrate this point using two examples.

Prevalence Estimation by Group Testing

In some situations it is necessary, for instance for
reasons of economy, to pool samples of material for
analysis, and test the combined pool rather than the
individual samples. The statistical properties of this
approach were originally investigated by Dorfman
[34] to reduce the number of tests required to identify
cases of syphilis. Today, group testing is often used to
test for HIV in large population surveys [21]. In some
cases it is possible, and indeed, for diagnostic tests,
necessary, to retest the individual components of a
positive pool. However, the approach may also be
used directly to estimate population prevalence [111].
In this setting the retesting of individual samples is
not necessary, and in some cases not possible, as
for instance in the study of vertical transmission of
yellow fever virus by mosquitoes discussed by Walter
et al. [118].
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Suppose that n pools have been formed, the ith
pool including mi samples from individuals with a
common covariate vector xi , i = 1, . . . , n. Let ri = 1
if the ith pool is positive, 0 if it is negative. Let
πi be the probability that the ith pool tests positive,
and θi be the probability that an individual in the
ith pool is positive. Thus θi is the prevalence in the
subpopulation with characteristics xi . Provided that
the individuals within each pool are independent, the
pool and population prevalences are related by

πi = 1 − (1 − θi)
mi .

Thus, if the population prevalences satisfy the linear
model

log(− log(1 − θi)) = βTxi,

with regression parameters β, then the pool preva-
lences satisfy

log(πi) = log(mi) + βTxi.

Thus, the population prevalences and the regression
parameters may be estimated by fitting a general-
ized model with dependent variable ri , binomial error,
complementary log–log link function, and fixed off-
set log(mi). This method is further discussed in [40],
with an application to estimating the prevalence of
Salmonella contamination in eggs.

The concept of group testing may also be applied
to estimating the most probable number (MPN) (see
Serial Dilution Assay) of coliform organisms in
water samples, using the multiple fermentation tube
method of McCrady [85]. A sample of water from a
given source is taken and subdivided, with or without
dilution, into subvolumes. These are then incubated
in separate tubes, which are examined for evidence
of growth, indicating that at least one organism was
present in the subvolume. Let ni denote the number
of tubes containing a volume vi of the original water
sample, and ri the number of positive tubes among
these ni . If coliforms are homogeneously distributed
with density λ per unit volume, then ri is binomial
(ni, πi), where

log(− log(1 − πi)) = log(vi) + log(λ).

Hence the density, λ, and the MPN, λV , where V

denotes the original volume of water, may be esti-
mated using a binomial model with a complementary
log–log link function and offset log(vi).

Mixture Models for Quantitative Assay Data

Laboratory assays are widely used for diagnostic
purposes on samples from individual patients. They
may also be used in serological surveys to determine
immunity levels in a population, and hence to monitor
or design vaccination programs. Many commonly
used assays, such as enzyme-linked immunosorbent
assays (ELISA), give quantitative results. When used
for diagnostic purposes, it is necessary to define one
or more cutoff values to classify the test results
as negative, positive, or equivocal. These cutoff
values also determine the diagnostic sensitivity and
specificity of the assay. In serological surveys, on the
other hand, the aim is not to classify individual test
results, but to estimate the age-specific prevalence in
the population.

The determination of cutoff values is problematic
when there is no objective criterion by which to
classify samples as “true” positives or negatives. For
common infections, however, this may be achieved
by fitting mixture models to data obtained from
population-based serological surveys. Furthermore,
when used for determining population prevalence,
cutoff values are not required using these methods.

Each age group i is assumed to be a mixture of
positives (immunes) and negatives (nonimmunes) in
the proportions πi and 1 − πi , respectively, where πi

is the proportion positive, which may be constrained
to increase with age. Assay results in age group i are
distributed with density:

f (x|πi, αi, βi) = (1 − πi)g(x|αi) + πih(x|βi),

where g(x|αi) and h(x|βi) are the densities of
assay results from negative and positive individuals,
respectively. For instance, for an ELISA assay, the
random variable X may be taken to be the logarithm
of the optical density reading, and g(·) and h(·) may
be normal with age-dependent means and constant
variance. Let x0 = −∞ < x1 < · · · < xk = ∞ sub-
divide the range of X and suppose that there are nij

values from age group i in interval [xj−1, xj ). The
parameters πi, αi , and βi may be estimated by max-
imizing the product multinomial log likelihood:

∑

i

∑

j

nij log

(∫ xj

xj−1

f (x|πi, αi, βi) dx

)
.

Note that the parameters πi are estimated without
the need to specify cutoff values. Appropriate cutoff
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values may be derived by examining the receiver
operating characteristic (ROC) curve using the
estimated specificities and sensitivities corresponding
to different cutoff values c:

speci (c) =
∫ c

−∞
g(x|α̂i ) dx,

sensi (c) =
∫ ∞

c

h(x|β̂i ) dx.

The mixture modeling approach to the determination
of cutoff values is discussed in [98] and applied to
estimating prevalences in serological surveys by Gay
[58], both in relation to parvovirus B19 infection.

Future Challenges

The substantial statistical literature on applications to
AIDS and HIV demonstrates the vitality of infec-
tious disease statistics. By the beginning of the
twenty-first century, smallpox remained the only
infectious disease to have been eradicated. The
continued toll of infectious disease throughout the
world–particularly the increasing impact of AIDS in
many countries–along with the emergence of new
communicable diseases such as vCJD, and of resis-
tant forms of diseases like tuberculosis, combine
with new concerns over bioterrorism to unfortunately
guarantee the continued relevance of infectious dis-
ease statistics.

It is perhaps surprising that our understanding
of the mechanism of transmission of infectious dis-
eases has not changed fundamentally since the work
of the pioneers at the start of the twentieth cen-
tury. Further work is required on understanding the
epidemicity and seasonality of infectious diseases.
Work is also needed on the geographic spread of
infectious diseases. Though much mathematical mod-
eling and some statistical work has been done in this
area (see, for instance, Cliff & Haggett [24]), little
data have so far been available. The development of
combination vaccines will also bring new challenges,
requiring the assessment of new vaccines against old
in equivalence trials with multiple comparisons and
surrogate endpoints. The potential risks of vaccines
are likely to come under ever closer scrutiny, rais-
ing the difficult statistical issue of evaluating vaccine
safety with respect to adverse events with long induc-
tion periods, in highly vaccinated populations.
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Community Medicine

Community medicine is a broad medical specialty
developed during the twentieth century to cover
various aspects of medicine and care in relation
to populations (communities) rather than individu-
als. It embraced the organization and provision of
health care throughout a community (or region),
including the identification of health problems and
needs, and how they were dealt with and met; it

involved extensive use of epidemiology, preven-
tive medicine, public health, and health services
research, and more recently, audit and health eco-
nomics. Although still used as a title for some Clin-
ical or Medical School Departments, frequently in
conjunction with Family Medicine, Social Medicine,
Public Health, or Health Case, sole usage declined
towards the end of the twentieth century; it has
been replaced by other terms including those noted
above.
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Co-morbidity

The term “co-morbidity” of two disorders, R and
S [1, 3], in its most general sense, indicates only
the potential co-occurrence of those disorders in the
same unit (e.g. patient, family). Except in those rare
cases where the diagnosis of one disorder, say R,
explicitly rules out the possibility of the other, S, most
disorders are in this sense potentially “co-morbid”.
There is, however, growing interest in co-morbidity,
defined in a more technical sense. In this sense, the
co-morbidity of R and S has come to mean some
type of nonrandom association between R and S in
a population of subjects. There are at least three
distinct types of nonrandom such co-morbidity [2],
of wide interest in medical research and important to
biostatistical issues in research design and analysis.

Clinical Co-morbidity

R and S are said to have “clinical co-morbidity” if
the etiology, time course, prognosis, or response to
treatment of R is different depending on whether S is
or is not present. For example, Feinstein [1, p. 154]
points out that a patient’s response to treatment of
acute pneumococcal pneumonia may be influenced
by whether or not the patient has poorly controlled
diabetes mellitus or underlying chronic bronchitis at
the same time.

This type of co-morbidity is of biostatistical con-
cern in studies of the epidemiology of R, in clinical
trials assessing the efficacy or effectiveness of treat-
ment of R, and in health services research regarding
costs related to course, treatment, or prognosis of R.
Whether the population of concern in a study in any
of these areas should include or exclude subjects with
co-morbid S, and if they are included, whether the
sample should or should not be stratified on pres-
ence or absence of co-morbid S (see Stratification),
makes a major difference to the power of statistical
hypothesis testing, precision of estimating parame-
ters (see Estimation), and, above all, the clarity of
the conclusions.

Epidemiologic Co-morbidity

R and S are said to have “epidemiologic co-
morbidity” in a population if the probability of S

in a unit with R from that population is different
from the probability of S in a unit without R, i.e. the
occurrence of R and S in a unit are not independent
events. For example, those in a population with
depression may be more likely to be alcoholics
than those without depression, i.e. there is some
correlation between depression and alcoholism.

The most common sources of epidemiologic co-
morbidity are shared risk factors. For example, many
disorders are more (or less) likely to affect men than
women, to affect older subjects than younger, or to
affect socially disadvantaged subjects than advan-
taged ones. Any pair of such disorders is likely to
have epidemiologic co-morbidity in a population het-
erogeneous on those factors, even if, in a subpopula-
tion matched on age, gender, and social class, the two
disorders are completely independent. In such a case,
the correlation between R and S in the heterogeneous
population has often been called “pseudocorrelation”,
since it is a correlation completely explained by a
third factor (see Confounding).

Thus one is likely to find epidemiologic co-
morbidity between tobacco and alcohol dependency
in the general adult population, a portion of which
may arise simply because both tobacco and alco-
hol abuse is more common among men than among
women, and more common in lower socioeconomic
status groups than in higher. Within an age–gender
matched subpopulation, it may be that tobacco and
alcohol use may be independent, that is, not epi-
demiologically co-morbid. Consequently, the study
of epidemiologic co-morbidities can help distinguish
those risk factors that might be causal for a disorder
from those that are merely markers.

However, epidemiologic co-morbidities may also
arise because of “fuzzy” diagnostic boundaries. For
example, it is difficult to identify measures of depres-
sion and anxiety that are not very highly correlated.
When such measures play some role in diagnos-
ing depression and anxiety disorders, one may find
epidemiologic co-morbidity between these disorders
because the boundaries are so indistinct. What one
diagnostician might see as depression, another might
classify as anxiety disorder, and vice versa. Con-
sequently, study of epidemiologic co-morbidity also
plays a role in the study of diagnostic reliability and
validity.

Finally, epidemiologic co-morbidity may arise
simply because S is a risk factor for R or vice versa.
It may be, for example, that the well-recognized



2 Co-morbidity

epidemiologic co-morbidity between depression and
alcoholism arises because those suffering depression
attempt to self-medicate with alcohol, or because
alcoholism induces depression. This is yet another
reason why epidemiologic co-morbidity is an impor-
tant issue in assessing risk factors and identifying
possible causal factors in epidemiologic studies.

Familial Co-morbidity

Both clinical and epidemiologic co-morbidity typ-
ically tend to refer to co-occurrences of the two
disorders in the same person. In contrast, R and S are
said to have “familial co-morbidity” if the prevalence
of R in the relatives of probands matched on R (either
all have R or all do not have R) differs depending
on whether the proband does or does not have S. For
example, in families of probands, none of whom is an
alcoholic, the prevalence of alcoholism among rela-
tives of those probands with major depression may be
higher that among relatives of those probands without
major depression. In this case, the occurrences of R
in the relatives of the probands, not in the probands
themselves, is at issue. Indeed, it is possible that R
and S cannot, by definition, occur in the same person
at the same time, but R and S may still have familial
co-morbidity. Such familial co-morbidity has become
of interest with the growing interest in the identi-
fication of genetic linkages between disorders (see
Familial Correlations).

Two disorders, R and S, may have clinical co-
morbidity or epidemiologic co-morbidity, or familial
co-morbidity, any two or these, or all three. For exam-
ple, not only is there epidemiologic co-morbidity
among tobacco and alcohol dependency, but evidence
is growing that it is more difficult to induce smok-
ing cessation among those who are alcohol-dependent
than among those not, which would be clinical co-
morbidity. There is no reason why two disorders
R and S that have epidemiologic co-morbidity must
necessarily have clinical co-morbidity, and presence
of either of these types of co-morbidity gives no
indication of whether familial co-morbidity pertains
as well.

Methods of assessing these types of co-morbidity
differ completely. To establish clinical co-morbidity,
one samples the population having one or both disor-
ders and assesses some parameter related to etiology,
course, prognosis, or response to treatment. Those
with neither R nor S are irrelevant to the issue. To

establish epidemiologic co-morbidity, one samples
the general population, including those with neither
R nor S, and assesses incidence or prevalence of
both. To establish familial co-morbidity, one iden-
tifies probands matched on R, some of whom have
and others of whom do not have S, and assesses inci-
dence or prevalence of R among their relatives. One
either excludes probands with R (if it is decided to
match by sampling probands without R) or excludes
probands without R (if it is decided to match by sam-
pling probands with R).

The statistical testing and estimation methods to
be used in such assessments comprise fundamentally
two-group comparisons of all types. For example, to
establish clinical co-morbidity, one might compare
survival curves to age of onset of S between those
with and without R. To establish epidemiologic co-
morbidity, one might estimate or test the odds ratio
between the occurrences of R and S in the population.
To establish familial co-morbidity, one might sample
m first-degree relatives for each proband without
R and count the number of relatives with R, then
compare the distribution of these counts between
those probands with or without S.

Co-morbidity has been characterized as “the single
most important concept for psychiatric research and
practice” [3], and its importance has been stressed in
other fields of medical research as well. However, it is
a relatively new construct. The majority of references
to “co-morbidity” in the medical research literature
continue to mean co-occurrence of disorders, whether
random or not. Studies specifically related to these
types of nonrandom co-morbidity remain relatively
rare [4].
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Comparative Genomic
Hybridization

Comparative genomic hybridization (CGH) is a me-
thod for directly identifying regions of gains and
losses of genomic material in chromosomes. It is
accomplished by extracting deoxyribonucleic acid
(DNA) from both test and reference cells, each
labeled with a different colored fluorescent dye (e.g.
red and green). A pool of test and reference DNA
is hybridized to a set of normal chromosomes. The
result is measured as a series of test-to-reference
signals from the fluorescent dyes along each chro-
mosome. An excess of test signal in a chromosomal
region indicates gain of genomic material in test rel-
ative to reference in that region, while an excess of
reference signal indicates loss of genomic material in
test relative to reference [3, 4].

Since CGH is applied to the entire genome (i.e.
all the chromosomes), the data consist of test-to-
reference ratios for a large number of distinct chro-
mosomal regions, called loci (see Gene). These loci
can be ordered from the tip of the short arm of chro-
mosome 1 (called 1pter) to the tip of the long arm of
chromosome 22 (called 22qter) in humans. Thus, the
human genome is characterized by CGH as a series
of such ratios, called a profile. These ratios are first
standardized by dividing each ratio by the mean (or
median) of all the ratios so that the standardized ratios
will have mean (or median) equal to 1.0.

Statistical methods are used to identify chromo-
somal regions where CGH ratios differ significantly
from 1.0. Ideally, there will be replicate samples of
the same test material that can be used to estimate
a standard deviation for each locus along the CGH
profile. Naive methods define CGH loss at a locus if
the (standardized) mean of the replicate ratios is more
than 2 standard deviations (sd) below 1.0 and a gain
if the mean is more than 2 sd above 1.0 [2]. Unfortu-
nately, observations from several data sets suggest
that ratios vary systematically from 1.0 along the
CGH profile so that the naive method is prone to
error. When CGH is applied to whole (intact) chro-
mosomes, the recommended procedure is to obtain
replicate samples of reference vs. reference as well
as replicate samples of test vs. reference so that a t-
test can be used to determine at which loci DNA is
gained or lost [5, 9].

CGH is now being applied to microarrays, where
genomic DNA is represented by thousands of small
segments [1, 6, 7]. Experiments have shown that
when used to define abnormality (i.e. gain or loss)
in tumors based on replicate sets of reference vs.
reference CGH means and sd, this method does
not work because of hybridization-to-hybridization
variability, especially variability between tumor and
normal samples. Statistical methods for dealing with
these large arrays of CGH ratios are currently under
development. One method circumvents the problem
of defining gains or losses by using two-sample t-tests
applied to the (standardized) CGH ratios themselves
to find loci where CGH ratios differ between chromo-
somes in two groups of tumors (for example, invasive
vs. in situ) or between tumor and normal chromo-
somes. Because of the large numbers of t-tests applied
(one for each of the thousands of loci) and lack of
independence among the different loci, permutation
methods are used to define the expected distribution
of the t-statistics [8].
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Compartment Models

Compartmental modeling is a well-established para-
digm for describing system kinetics in the natural and
biomedical sciences. One early use of such modeling
began with attempts to analyze data on the distribu-
tion and metabolism of tracer-labeled compounds in
the 1920s [5]. The field gained great impetus with the
widespread availability of radioactive tracers in the
late 1940s and early 1950s. Sheppard [13] is credited
with the first use of the term “compartment” in 1948
to describe a kinetic entity. He conceptualized physi-
ological systems as “well-stirred” hydrology models,
noting that “real compartments may exist whose con-
tents are homogeneous and are separated from one
another by real boundaries”. Berman and Schoen-
feld [2] and others in the 1960s established the basic
mathematical properties of the underlying linear com-
partmental model with constant coefficients. This
early and the subsequent development of compart-
mental modeling is contained in the classic books by
Jacquez [6], which also describe many diverse appli-
cations of the methodology (see also [4]). A parallel
but virtually independent development of compart-
mental modeling occurred in pharmacokinetics, as
outlined in [3], (see Pharmacokinetics and Phar-
macodynamics).

Standard Deterministic Model

The basic structure of a compartmental model in a
physiological context is illustrated in the schematic
in Figure 1. The following notation is standard for
an n-compartment model. Let

1. Xi(t) be the amount of substance in compartment
i at time t ,

2. X(t) = [X1(t), . . . , Xn(t)]′ be the column-vector
of amounts at time t ,

3. kij , for i = 0, 1, . . . , n; j = 1, . . . , n; i �= j ; de-
note the fractional flow rate to i from j , where
0 represents the system exterior,

4. kjj = −∑
i �=j kij , denote the total outflow rate

from j ,
5. K = (kij ), for i, j > 0; be the n × n matrix of

kij coefficients,
6. λ1, . . . , λn be the eigenvalues of K, with � as

the diagonal matrix of λi , and

7. T1, . . . , Tn be the corresponding eigenvectors
of K with n × n eigenvector matrix T =
(T1, . . . , Tn).

A (linear) compartment model assumes that each
derivative, Ẋi(t), is a linear function of the Xi(t). For
example, the most general two-compartment model
assumes the following:

Ẋ1(t) = − (k01 + k21)X1(t) + k12X2(t),

and Ẋ2(t) = k21X1(t) − (k02 + k12)X2(t). (1)

Compartment models may be expressed in matrix
form as follows:

Ẋ(t) = KX(t). (2)

The above vector of differential equations has the
following solution:

X(t) = exp(Kt)X(0) (3)

with the matrix exponential defined as exp(Kt) =
I + ∑∞

i=1 Ki t i/i!.
Two corollaries are helpful in practical applica-

tions. In most natural applications, the system is
“open” and at least “weakly connected”, so that no
compartment is a “sink”. Assuming these conditions,
and that K admits a spectral decomposition (see
Matrix Algebra), a sufficient condition for which is
distinct λi , one can show

(a) the λi have negative real parts, and
(b) X(t) = T exp(�t)T−1X(0),

where exp(�t) is a diagonal matrix with elements
exp(λi t).

Assuming also that the λi are real, as they are
for all two-compartment and most three-compartment

k02k01

k21

k12

Figure 1 Schematic of general two-compartment model
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models, it follows that

Xi(t) =
n∑

j=1

Aij exp(λj t), for i = 1, . . . , n. (4)

In such “sum of exponentials” models, the Aij and λj

are often called the “macroparameters”, and they are
usually involved functions of the kij microparame-
ters. The equivalent solutions based on the kij param-
eters are given explicitly for the common two- and
three-compartment models in many books, including
[4] and [6]. The pharmacokinetic applications share
the sum of exponential formulation; however, one
notable difference is its reversed order of subscripts
in the kij flow rates.

In practice, often data are concentrations, Ci(t) =
Xi(t)/Vi , where the Vi are compartment “volumes”.
In many applications, there are “inputs”, leading to a
more general matrix model

Ẋ(t) = KX(t) + U,

Y(t) = DX(t), (5)

where U, Y(t) and X(t) are vectors of inputs to,
outputs from, and amounts in the compartments,
respectively, and K and D are conformable matrices.
These extensions preserve the “sum of exponentials”
model. More general formulations, including time-
varying K(t), U(t), and D(t) matrices, are considered
in general linear systems theory [8].

These models may be fitted to data, using either
weighted or unweighted nonlinear least squares, to
estimate the macro- or microparameters. The under-
lying theory is described in [1]. Many computer
packages are available, including WinSAAM [14]
(see Software for Clinical Trials).

As an illustration, a standard model for calcium
kinetics in humans illustrated in Figure 2 has three

k01

k12

k21

k31

k13

Tissue Plasma Bone

Figure 2 Schematic of standard three-compartment model
of calcium clearance

compartments, namely, plasma (1), soft tissue (2),
and bone (3). Weiss et al. [15] describe an experiment
in which labeled calcium was introduced as a bolus
injection into the plasma compartment of an adult
woman, after which the concentration of labeled
calcium was observed usually every 8 hours for
almost 24 days, as illustrated in Figure 3(a). The
fitted concentration-time curve,

C1(t) = 351.39e−5.835t + 197.20e−0.3754t

+ 145.31e−0.0144t , (6)

fits the data well, and gives estimated rates for
k01, k21, k12, k31, and k13, respectively, of 0.0652,
2.611, 2.998, 0.389, and 0.162/h, with estimated
approximate standard errors of less than 10% for each
rate coefficient.
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Figure 3 Observed calcium clearance data with fitted
curve
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An Analogous Stochastic Model

Jacquez [6, p. 235] argues that “In deterministic the-
ory, . . . the material in a compartment is treated as a
continuum. But matter . . . comes in discrete units . . .

Consequently it is important to develop the theory . . .

in terms of the probabilities of transfers of unit(s).” A
compelling example is modeling the passage of hay
particles in ruminants [11]. An analogous stochastic
development (see Migration Processes) requires the
following additional notation. Let

8. Pij (t) be the probability that a particle starting
in j at time 0, will be in i at time t ,

9. P(t) = [Pij (t)] be an n × n matrix of probabil-
ities.

Also, let

10. Rij be the retention time during a single visit in
j of a particle whose next transfer will be to i,

11. Sij be the total residence time that a particle
originating in j will accumulate in i during all
of its visits,

12. E[S] denote the n × n matrix of mean residence
times, with the elements E[Sij ].

The key assumptions in the stochastic model are

(a) the conditional probability that, for small ∆t , a
random particle in j at time t will transfer to i

by time t + ∆t is

kij∆t,

(b) all particles are independent.

The former assumption with the constant condi-
tional flow probability (i.e. hazard rate) is equivalent
to assuming exponentially distributed Rij retention
times for all i and j . Under these assumptions, one
can show that

P(t) = exp(Kt), (7)

which, under the same regularity conditions as in the
deterministic model, implies that each “occupancy”
probability function is a sum of exponentials model,
that is,

Pij (t) =
∑

�

Aijl exp(λlt) for i, j = 1, . . . , n.

(8)

Thus, this stochastic formulation gives the same
sum of exponentials regression model for data.

However, the stochastic model gives additional
insight into particle kinetics. The underlying process
is Markovian, whereupon the matrix of mean resi-
dence times (MRT) is

E(S) = −K−1, (9)

with corresponding results available for higher-order
moments of the Sij variables, as well as for the
number of particle cyclings. As an illustration, the
estimated K matrix for the previous calcium data is

K =
[−3.0652 2.999 0.162

2.611 −2.999 0
0.389 0 −0.162

]
. (10)

The first column of −K−1 gives the MRT in
the plasma, soft tissue, and bone compartments of
a calcium particle introduced into the plasma. The
results are 15.34, 13.36, and 36.86 h, respectively, for
a total expected residence time in the body of 50.22 h.

Deterministic Model with Time Lags

A generalization of the deterministic model recog-
nizes that transfer of material between compartments
may not be instantaneous. Time lags could be intro-
duced, either of fixed size, say τij , or more commonly
in modeling, of random size with a density function,
hij (τ ). In the latter case, the two-component deter-
ministic model would be

Ẋ1(t) = k11X1(t) + k12

∫ t

−∞
X2(τ )h12(t − τ)dτ

Ẋ2(t) = k21

∫ t

−∞
X1(τ )h21(t − τ)dτ + k22X2(t).

(11)

In practice, tractable hij (τ ) functions are obtained
using the “hidden variables” approach, which intro-
duces subsystems of compartments to generate the
desired lag distributions. In so doing, “compartmental
systems with lags are equivalent to larger compart-
mental systems without lags” [7], and all of the basic
mathematical properties of linear systems are pre-
served. The procedure is also illustrated in [7].
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Analogous Non-Markovian Stochastic
Model

The compartment paradigm provides an immediate
and tractable stochastic analog of time lags. Neuts
[12] shows that any nondegenerate distribution of
a positive variable may be represented as a phase-
type (PH) distribution. A PH distribution is generated
by definition as the time to absorption in a con-
tinuous time Markov chain, which in turn implies
that PH distributions may be generated by stochas-
tic compartmental submodels. Hence, the assumption
of an exponentially distributed retention time in a
given compartment may be generalized by utilizing
an (expanded) compartmental subsystem to gener-
ate the desired nonexponential variable. As a simple
illustration, setting k01 = k12 = 0 and k21 = k02 in
Figure 1 yields the special case of an Erlang (2) PH
distribution of particle retention times.

In practice, any assumed nonexponential vari-
able in the model is approximated to the desired
accuracy by utilizing appropriate compartmental sub-
models, and the resulting larger compartmental sys-
tems are fitted to data using standard software. As

Pseudo 5* Pseudo 6*

Pseudo 3* Pseudo 4*

Plasma Tissue

k31

kx

k01

k12

k31 k31

k13
kx

k21

Figure 4 Schematic of non-Markovian model, with four
pseudo compartments generating a PH retention time dis-
tribution. (Note kx = k13 + k31)

an illustration, suppose that the previous exponen-
tial retention time in the bone compartment, comp
3, is replaced with a PH distribution with four
(pseudo)compartments, namely, 3∗, 4∗, 5∗, and 6∗, as
illustrated in Figure 4. The new flow rates in the sub-
model are created from the previous two rates, k31

and k13, as follows: k3∗1 = k4∗3∗ = k31 + k13, k5∗4∗ =
k6∗5∗ = k4∗6∗ = k31 and k14∗ = k13. Instead of the pre-
viously assumed homogeneous (well-stirred) bone
compartment, this expanded model creates a physi-
ologically more realistic short cycle of particles in
“soft bone” with possible additional cycles for “hard
bone”. This yields a natural long-tailed PH distribu-
tion without increasing the number of parameters in
the model. The estimated parameters k01, k21, k12, k31,
and k13, for the expanded six-compartment model
are 0.0607, 3.131, 3.735, 0.030, and 0.414 [10].
Some of the eigenvalues of this expanded system
with cycling are complex, as expected. The fit-
ted curve,

C1(t) = 356.16e−7.105t + 68.50e−0.0075t

+ e−0.566t [44.98 sin b1t + 187.85 cos b1t]

+ e−0.038t [32.85 sin b2t + 110.26 cos b2t]
(12)

with b1 = 0.2852 and b2 = 0.0162, fits the data better
as illustrated in Figure 3(b), with an 80% reduction
in mean squared error (MSE), due to its longer
tail. The MRT for the expanded model may be
obtained from the negative inverse of the correspond-
ing 6 × 6 K matrix. After summing MRT for the
bone submodel, the estimated MRT in the plasma,
soft tissue, and bone compartments of a calcium par-
ticle introduced into the plasma are 16.47, 13.81, and
69.47 hours, respectively. The latter represents a sub-
stantial increase in the MRT from the simple linear
model without lags, or correspondingly from the sim-
ple Markovian model.

The compartment model construct has also been
generalized to include birth and nonlinear rate fea-
tures, thus broadening its application to broad areas
of population biology and other biomedical prob-
lems [9]. It is expected that its clear linkage between
the mathematical formalism and the underlying bio-
logical system, and its ease of application will sus-
tain the widespread use of compartment modeling in
practice.
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Competing Risks

“Competing risks” refers to the study of mortality
patterns in a population of individuals, all subject
to the same k ≥ 2 competing risks or causes of
death. Specifically, the objective is to isolate the
effect of a given risk, or a subset of risks, acting
on a population. The use of competing risks dates
back to 1760 and evolved out of a controversy over
smallpox inoculation.

According to Karn [22] and Todhunter [30], small-
pox inoculation in the 1700s was administered by
applying leeches to the body, a practice that could
lead to acute illness and death. Physicians argued
whether the benefits of inoculation outweighed the
initial risk of death. Daniel Bernoulli [9], in a 1760
memoir entitled “Essai d’une nouvelle analyse de la
mortalité causée par le petite vérole; et des advan-
tages de l’inoculation pour le prévenir”, tried to
estimate the expected increase in lifespan (see Life
Expectancy) if smallpox were eliminated. This cal-
culation could then be used to weigh the pros and
cons of smallpox inoculation.

Similarly, in the modern treatment of competing
risks we are interested in isolating the effect of indi-
vidual risks. For example, suppose we wish to assess
a new treatment for heart disease. In a long-term
study of this treatment on a sample of individuals,
some will die of causes other than heart disease. The
appropriate analysis of this problem must account for
the competing effects of death from other causes.

Various methods have been proposed to study the
problem of competing risks. For example, Makeham
[24] formulated the law of composition of decremen-
tal forces and applied it to competing risks theory.
A multiple decrement model is a time-continuous
Markov model with one transient state and k absorb-
ing states. An excellent account of the use of multiple
decrement theory to explain competing risks may be
found in Chiang [12].

Another approach to modeling competing risks is
through the use of latent failure times. This method
was first advocated by Sampford [28] who proposed
an “accidental death model”. In this approach each
individual has latent failure times T1 and T2, where
T1 corresponds to time of natural death and T2 to
time to accidental death. Sampford assumed that T1

and T2 are independent and normally distributed
and death occurred at time X equal to the minimum

of T1 and T2. Berkson & Elveback [8] considered
a similar model to study the effect of smoking on
lung cancer assuming that the latent failure times
were independent exponentially distributed random
variables. Moeschberger & David [25] generalized
these ideas to k causes of death with general survival
distributions. Excellent reviews of the theory of
competing risks are given by Gail [18, 19], David
& Moeschberger [15], and Birnbaum [10].

In this article, latent failure times are used to
describe competing risks models. We assume that all
individuals in a population are subject to k competing
causes of death, D1, . . . , Dk. For each possible cause
of death, Di , there corresponds a latent failure time,
Ti , a positive random variable representing the age at
death in the hypothetical situation in which Di is the
only possible cause of death. The joint distribution of
the latent failure times is given by the multivariate
survival distribution

HC(t1, . . . , tk) = P(T1 > t1, . . . , Tk > tk), (1)

defined for all nonnegative values t1, . . . , tk . We use
a superscript C to highlight that this is the joint dis-
tribution of the complete set of risks acting on the
population. The latent failure times are mostly unob-
servable and serve only as a theoretical construct. In
contrast, the observable random variables for each
member of a population of individuals are the actual
times to death, denoted by the positive random vari-
able X, and the cause of death, ∆, which may take
one of the integer values 1, . . . , k. The observed time
of death, X, is taken to be the minimum of T1, . . . , Tk ,
and ∆ indexes this cause of death, i.e. ∆ = i if
X = Ti . For simplicity we assume the joint distri-
bution is absolutely continuous so that ∆ is uniquely
defined.

The study of competing risks considers the inter-
relationship of three types of probabilities of death
from specific causes. These are:

1. The crude probability : the probability of death
from a specific cause in the presence of all
other risks acting on the population. This is also
referred to as absolute risk. An example of a
crude probability is the answer to the question:
What is the chance that a woman will die of
breast cancer between ages 40 and 60?

2. The net probability : the probability of death if a
specific risk is the only risk acting on a popula-
tion, or conversely, the probability of death if a
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specific cause is eliminated from the population.
For example, what is the chance of surviving to
age 60 if cancer were the only cause of death?

3. The partial crude probability : the probability of
death from a specific cause when some risks
are eliminated from the population. For example,
what is the chance that a woman would die from
breast cancer between ages 40 and 60 if smallpox
were eliminated?

In the next section we define notation and give
some fundamental relationships between the three
different types of probabilities. Then we consider
the issue of identifiability of these probabilities
and discuss some philosophical issues regarding the
study of competing risks in light of nonidentifiability.
Finally, we address statistical issues of estimation
and hypotheses testing based on a sample of observ-
able data.

Notation and Relationships

Crude Probability

Crude probability is a way of describing the prob-
ability distribution for a specific cause of death in
the presence of all causes. Crude probability refers
to quantities derived from the probability distribu-
tion of the observable random variables, X and ∆,
where X is time to death, and ∆ = 1, . . . , k is cause
of death. Two approaches have been used to describe
the distribution of X and ∆. The first is through sub-
distribution functions:

FC
i (x) = Pr(X ≤ x, ∆ = i), i = 1, . . . , k.

The function FC
i (x) denotes the proportion of all

individuals who are observed to die from cause Di at
or before time x in the presence of all causes of death.
We use the superscript C to denote all causes of death,
i.e. C = {1, . . . , k}. For example, if D1 represents
death from breast cancer, then the chance that a
woman dies from breast cancer between ages 40 and
60 would be equal to [FC

1 (60) − FC
1 (40)]. Note that

FC
i (∞) is the proportion of individuals who will be

observed to die from cause Di , and
∑k

i=1 FC
i (x) =

FC(x) defines the distribution function for death from
any cause, i.e. FC(x) = Pr(X ≤ x). We denote the
overall survival distribution as SC(x) = 1 − FC(x).

Another way to define the distribution of X and
∆ is through the use of k cause specific hazard rate
functions given by

λC
i (x) = lim

h→0

[
Pr(x ≤ X < x + h, ∆ = i|X ≥ x)

h

]
,

i = 1 . . . , k.

The ith cause-specific hazard is the rate of death
at time x from cause i among individuals who are
still alive at time x. Calculus yields the following
relationships:

λC
i (x) = dFC

i (x)

dx

/
SC(x),

λC(x) =
k∑

i=1

λC
i (x) = dFC(x)

dx

/
SC(x), (2)

SC(x) = exp[−ΛC(x)]; ΛC(x) =
∫ x

0
λC(u) du,

FC
i (x) =

∫ x

0
exp[−ΛC(u)]λC

i (u) du.

Note that ΛC(x) is defined as the cumulative hazard
function of death from any cause and is the sum of
the individual cause-specific integrated hazards. The
relationship given in (2) illustrates that there is a one-
to-one relationship between subdistribution functions
and cause-specific hazard functions.

The crude probability distributions may be derived
from the joint distribution of the latent failure times
as follows. Because X = min(T1, . . . , Tk), it follows
that SC(x) = HC(x, . . . , x); hence, it is straightfor-
ward to show that

dFC
i (x)

dx
= −∂HC(t1, . . . , tk)

∂ti

∣∣∣∣
t1=···=tk=x

.

Using (2), the cause-specific hazard function is
given by

λC
i (x) =

−∂HC(t1, . . . , tk)

∂ti

∣∣∣∣
t1=···=tk=x

HC(x, . . . , x)
. (3)

This relationship was derived by Gail [18] and Tsiatis
[31].

Cause-specific hazard functions and cause-specific
subdistribution functions may also be defined for a
subset of risks. We use italicized capital letters to
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index a subset of the risks 1, . . . , k; for example, J

may be used to denote such a subset of risks. The
complement of J is equal to C − J and is denoted
by J . The subdistribution function for failing from
any of the causes in J is given by

FC
J (x) = Pr(X ≤ x, ∆ ∈ J ) =

∑

i∈J

FC
i (x),

and the cause-specific hazard of failing from any of
the causes in J is

λC
J (x) = lim

h→0

[
Pr(x ≤ X < x + h, ∆ ∈ J |X ≥ x)

h

]

=
∑

i∈J

λC
i (x).

The Net Probability

The net probability is the probability distribution of
time to death if only one cause of death acted on a
population. If we are interested in the net probability
distribution from cause Di , then this would be the
marginal probability distribution of the latent failure
time, Ti , given by

Si
i (x) = Pr(Ti > x) = HC(t1, . . . , tk)|ti = x,

tj = 0, j �= i.

We use superscript i to highlight the fact that we
consider only the case where Di is acting on a
population. For example, if D1 denotes death from
cancer, then the chance of surviving to age 60 if
cancer were the only cause of death would be given
by S1

1 (60).
The net distribution may be defined through the

net or marginal hazard function for Ti , that is,

λi
i(x) = lim

h→0

[
Pr(x ≤ Ti < x + h|Ti ≥ x)

h

]
.

The net hazard function and net survival distribution
are related to each other as follows:

λi
i(x) = − dSi

i (x)

dx

/
Si

i (x),

Si
i (x) = exp[−Λi

i(x)],

(4)

where Λi
i(x) = ∫ x

0 λi
i(u) du.

One of the key results in competing risks theory is
for the case where the latent failure times are assumed

to be statistically independent, i.e.

HC(t1, . . . , tk) =
k∏

i=1

Si
i (ti ).

From (1) it is a simple exercise to show that the ith
cause-specific hazard function, λC

i (x), is equal to the
ith net-specific hazard function, λi

i(x). This important
fact allows one to use the crude probability distribu-
tion of the observables to obtain net probabilities.
Specifically, formulas (1) and (2) may be used to
show that the net survival distribution is related to
the crude subdistribution functions by

Hi
i (x) = exp

[
−

∫ x

0

dFC
i (u)

SC(u)

]
. (5)

Because FC
i (u) and SC(u) may be estimated from a

sample of observable data, (5) suggests obvious meth-
ods for estimating net survival probabilities when
the latent failure times are assumed independent,
which are described in detail later. Although the
crude cause-specific hazard is equal to the net-specific
hazard when the latent failure times are indepen-
dent, the converse is not true. Examples where non-
independent latent failure times have cause-specific
hazards equal to the net-specific hazards, although
mathematically possible, are generally artificial con-
structs and not important from an applied perspective.

For many applications it may not be reasonable
to assume that the latent failure times are indepen-
dent. In such cases the relationship between net and
crude probabilities becomes more complicated. With-
out additional assumptions, there is a problem of
nonidentifiability discussed in greater detail later.

Partial Crude Probability

We now show how to characterize the distribution of
probability of death from a subset of causes acting
on a population in the hypothetical situation where
all other causes of death are eliminated. Similar to
crude probabilities, partial crude probabilities may be
expressed through partial crude subdistribution func-
tions or partial crude cause-specific hazard functions.
Define XJ and ∆J respectively as the time of death
and cause of death in the hypothetical case where
individuals are only subject to the causes of death in
J , i.e. the causes J are eliminated. In terms of latent
failure times, XJ = min(Ti, i ∈ J ) and ∆J = i, if
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XJ = Ti , i ∈ J . The partial crude subdistribution
function is given by

FJ
i (x) = Pr(XJ≤ x, ∆J = i), i ∈ J,

and the partial crude cause-specific hazard is given by

λJ
i (x)

= lim
h→0

(
Pr(x ≤ XJ< x + h, ∆J = i|XJ ≥ x)

h

)
,

i ∈ J.

These definitions may be extended in a natural way
to subsets K of J , i.e.

FJ
K(x) =

∑

i∈K

FJ
i (x)

and
λJ

K(x) =
∑

i∈K

λJ
i (x).

If J = C, then partial crude probabilities are the same
as crude probabilities, and if J = i, so that there is
only one cause of death, then partial crude probability
is the same as net probability.

Using the same logic as for crude probabilities,
we can derive the partial crude cause-specific hazard
function from the joint distribution of the latent
failure times in a manner similar to that for (3). The
partial crude cause-specific hazard is given by

λJ
i (x) =

−∂HC(t1, . . . , tk)

∂ti

∣∣∣∣
tj =x,j∈J ;tj=0,j∈J

HC(t1, . . . , tk)|tj =x,j∈J ;tj=0,j∈J

, (6)

and the partial crude subdistribution function may be
expressed as

FJ
i (x) =

∫ x

0
exp[−ΛJ

J (u)]λJ
i (u) du, i ∈ J, (7)

where ΛJ
J (u) = ∫ u

0 λJ
J (v) dv.

Of particular interest is the case when the latent
failure times in the set J are independent of the
latent failure times in J . Comparing (6) with (3) we
see that the ith partial crude cause-specific hazard
function, λJ

i (x), is equal to the overall crude cause-
specific hazard function, λC

i (x), i ∈ J . This allows us
to express the unobservable partial crude probabilities
in terms of the observable crude probabilities. So,
for example, the partial crude subdistribution function

may be expressed in terms of the observable crude
subdistribution functions as follows:

FJ
i (x) =

∫ x

0
exp[−ΛC

J (u)]λC
i (u) du, i ∈ J, (8)

where

λC
i (u) = dFC

i (u)

du

/
SC(u).

The above relationships hold whenever the latent
failure times in J and J are independent. It is not
necessary that the failure times within J or J be
independent.

Issues Regarding the Use and
Interpretation of Competing Risks

A major aim in many competing risks studies is the
estimation of net survival probabilities. The ability to
isolate the effect of one risk acting on a population is
intuitively attractive, especially if the focus of a study
is to evaluate the effect of an intervention that is tar-
geted at reducing mortality from that specific cause.
Of course, net survival probabilities are hypothetical
quantities and not directly observable in a population;
therefore they must be computed from the available
information on the distribution of observables, or
what we refer to as crude probabilities. Previously,
we derived the net survival distribution for a spe-
cific risk Di as a function of the observable crude
probabilities under the assumption that the different
latent failure times were independent of each other.
The independence assumption is critical, because in
this case the crude cause-specific hazard function is
equal to the net hazard function, which leads to the
important relationship given by (5).

In some situations such an assumption of inde-
pendence may be reasonable. For example, when
studying cause of death from a specific disease, it may
be reasonable to assume that death from accidental
causes is independent of those causes associated with
the disease. Of course, there are other scenarios for
which the independence assumption is not plausible.
It is therefore important to consider the relationship
of net probabilities to crude probabilities in the case
where the latent failure times are not independent.

As we showed in (3), given any joint distribution
of latent failure times, there exists a corresponding set
of crude cause-specific hazard functions, or equiv-
alently a set of crude cause-specific subdistribution
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functions. Unfortunately, the converse is not true, as
there exist many joint distributions, HC(t1, . . . , tk),
that would result in the same set of crude subdistri-
bution functions, FC

i (x), i = 1, . . . k. These different
joint distributions of latent failure times, each result-
ing in the same set of subdistribution functions, would
lead to different net survival probabilities. Conse-
quently we cannot identify net survival probabili-
ties from corresponding crude probabilities. Because
crude survival distributions define the observable ran-
dom variables, we cannot estimate the net survival
probabilities from observable data without making
additional assumptions that cannot be verified from
the observable data. Independence of the latent fail-
ure times is one assumption that would resolve the
problem of identifiability and permit estimation of
net probabilities; however, this assumption can never
be verified. This problem of nonidentifiability was
pointed out by Cox [13] and Tsiatis [31].

To get a sense of the extent of the nonidentifiabil-
ity problem, Peterson [26] computed sharp bounds for
net survival probabilities as a function of crude sub-
distribution functions. Specifically, he showed that

SC(x) ≤ Si
i (x) ≤ 1 − FC

i (x).

Heuristically, these inequalities may be explained as
follows. First, consider the hypothetical case that
the causes of death are so highly correlated that an
individual dying at time x from any cause other
than Di would have died from cause Di immedi-
ately thereafter. For such a scenario the net survival
probability at time x, Si

i (x), would be equal to the
probability of surviving until time x from any cause,
SC(x) = Pr(X > x). At the other extreme, consider
the hypothetical case where an individual who would
die from any cause other than Di would never die
from cause Di . Here, Pr(Ti ≤ x) = 1 − Si

i (x) would
be equal to FC

i (x) = Pr(X ≤ x, ∆ = i). The upper
and lower bounds for net survival probabilities may
be quite substantial, as shown by Tsiatis [32].

This creates a philosophical dilemma in competing
risks theory. Knowledge of the distribution of observ-
able causes of death does not suffice to determine net
survival probabilities. Only if additional assumptions
are made on the joint distribution of the latent failure
times are we able to identify uniquely the net survival
probabilities. Two points of view have been taken in
the literature. One is to restrict attention to certain
dependency structures on the latent failure times that

allow for identification or, at least, restrict to a class
of joint distributions where the bounds for the net
survival probability are much tighter than the Peter-
son bounds. This has been the focus of research by
Slud & Rubinstein [29], Klein & Moeschberger [23],
and Zheng & Klein [33].

Another perspective is as follows. Because non-
identifiability problems can only be handled by mak-
ing additional assumptions that cannot be verified
from the data, perhaps we should only consider mak-
ing inference on the distribution of the observable
random variables. That is, the focus should be on
estimating cause-specific hazard and subdistribution
functions and the comparison of such quantities under
a variety of conditions that have practical importance.
For example, comparisons may be made among dif-
ferent treatments or varying environmental condi-
tions. This pragmatic point of view suggests that there
is no reason to consider hypothetical quantities, such
as net survival probabilities, because in fact we will
never be in a position to evaluate one cause of death
acting in isolation on a population. This point of view
was eloquently presented by Prentice et al. [27].

This idea may be modified slightly in the case
where a subset of the causes of death that are not of
primary interest, denoted by J , are thought a priori to
be independent of the other causes of death, J , that
are of interest. For example, certain accidental causes
of death may fall into this category when studying
treatment of disease. For these problems, inference
using partial crude probabilities may be appropriate.
We showed before how partial crude probabilities
can be defined in terms of the distribution of the
observable crude probabilities when causes J are
independent of J .

The Statistical Analysis of Competing
Risk Data

Often, the data available for the analysis of competing
risks are incomplete or right censored. This may be
due to the termination of the study before all individ-
uals fail, or to individuals who drop out of the study
and subsequently are lost to follow-up. To accom-
modate this situation we extend the definition of
competing risks to include censoring, i.e. we include
an additional random variable, T0, that denotes the
latent time to censoring. With this extended definition
of competing risks, the observable data are defined by
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X∗ and ∆∗, where X∗ = min(T0, . . . , Tk) and ∆∗ = i

if X∗ = Ti , i = 0, . . . , k. We note that ∆∗ = 0 means
that the failure time was censored at time X∗.

In a typical competing risks study we observe a
sample of data (X∗

j , ∆∗
j , Zj ), j = 1, . . . , n, where for

the j th individual, X∗
j denotes the time to failure or

censoring, ∆∗
j corresponds to cause of death or cen-

soring, and Zj corresponds to covariate(s) which we
may use for modeling the distribution of competing
risks. Using this extended notation, the observable
data include censoring as a competing risk. We use
an asterisk to denote the competing risks model that
includes censoring. Therefore, the complete set of
observable risks will be denoted by C∗ = 0, . . . , k,
in contrast to the risks of interest, C = 1, . . . , k, or
perhaps some subset, J . In the previous section we
denoted the complement of the subset J by J =
C − J ; in the extended definition of competing risks
we denote the complement of J by J

∗ = C∗ − J . In
what follows it will be assumed that censoring, or
risk 0, is independent of the other risks C. Without
this assumption, nonidentifiability problems would
not allow for estimation of the competing risk prob-
abilities of interest regarding causes C.

One Sample Problems

Here we consider the problem of estimating relevant
competing risk probabilities from a single sample of
data (X∗

j , ∆∗
j ), j = 1, . . . , n.

Estimating Cause-Specific Hazard Functions

We showed before that the partial crude cause-
specific hazard function is equal to the observable
crude cause-specific hazard function whenever the
risks in J are independent of the risks in J

∗
, i.e.

λJ
i (x) = λC∗

i (x). (9)

Because censoring, or risk 0, is always assumed
independent of the other risks, (9) will follow as long
as the risks in J are independent of J . It is important
to note that the crude cause-specific hazard functions
discussed in the previous section, λC

i (x), are actually
partial crude cause-specific hazard functions when
we include censoring as a competing risk. However,
because of (9) applied to J = C, λC

i (x) is equal to the
observable λC∗

i (x). In the case when cause of death

Di is independent of the other risks, the net-specific
hazard function, λi

i(x), is equal to λC∗
i (x).

For certain independence assumptions, the cause-
specific hazard functions are related to the observable
crude cause-specific hazard functions, which by (2)
is equal to

λC∗
i (x) = dFC∗

i (x)

dx

/
SC∗

(x),

where
FC∗

i (x) = Pr(X∗ ≤ x, ∆∗ = i)

and
SC∗

(x) = Pr(X∗ > x).

The natural estimate for the crude subdistribution
function is the empirical subdistribution function, i.e.

F̂ C∗
i (x) = n−1

n∑

j=1

I (X∗
j ≤ x, ∆∗

j = i),

where I (·) denotes the indicator function. This esti-
mate puts mass 1/n at each observed event time from
cause i. Similarly,

ŜC∗
(x) = n−1

n∑

j=1

I (X∗
j > x)

puts mass 1/n at each event time.
Because crude cause-specific hazards are func-

tions of the crude subdistribution probabilities, the
obvious estimates are obtained by substituting the
corresponding functions of the empirical subdistri-
bution probabilities. For example, the estimate of the
cumulative cause-specific hazard function is

Λ̂C∗
i (x) =

∫ x

0

dF̂ C∗
i (u)

ŜC∗
(u)

=
n∑

j=1

I (X∗
j ≤ x, ∆∗

j = i)

Y (X∗
j )

,

where Y (u) = ∑n
j=1 I (X∗

j > u) denotes the number
of individuals in the sample who are at risk at
time u, i.e. neither died nor were censored. This
estimator is the so-called Nelson–Aalen estimator;
see Aalen [1]. Aalen [2, 3] derived the theoretical
large-sample properties, including consistency and
asymptotic normality, using the theory of counting
processes.

This estimator of the ith crude cause-specific
cumulative hazard is the appropriate estimator for the
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partial crude cause-specific cumulative hazard when-
ever the causes in J are independent of the causes in
J

∗
, i.e.

Λ̂J ∗
i (x) = Λ̂C∗

i (x), i ∈ J.

In the special case where cause i is assumed indepen-
dent of all other causes, the ith net-specific cumula-
tive hazard function, Λi

i(x), is estimated by Λ̂C∗
i (x).

The ith net survival distribution, Si
i (x), is equal to

exp[−Λi
i(x)]. Therefore, a natural estimator is the

exponentiated negative of the Nelson–Aalen estima-
tor. This estimator is

Ŝi
i (x) = exp −




n∑

j=1

I (X∗
j ≤ x, ∆∗

j = i)

Y (X∗
j )



 .

Noting that this is equal to

n∏

j=1

exp

[−I (X∗
j ≤ x, ∆∗

j = i)

Y (X∗
j )

]

and that

exp

[ −1

Y (u)

]
≈

[
1 − 1

Y (u)

]
,

yields the approximation

Ŝi
i (x) ≈

n∏

j=1

[
1 − 1

Y (X∗
j )

]I (X∗
j
≤x,∆∗

j
=i)

.

This is the well known Kaplan–Meier [21], or
product-limit, estimator. The asymptotic equivalence
of the exponentiated Nelson–Aalen estimator and the
Kaplan–Meier estimator, and the large-sample prop-
erties of these estimators, are given by Breslow &
Crowley [11].

It is important to note that the Kaplan–Meier
estimator, by construction, is a consistent estimator
of the exponentiated cumulative crude cause-specific
hazard function. That this corresponds to an estimator
of the net survival distribution follows only when
the net hazard function is equal to the crude cause-
specific hazard, i.e. when cause i is independent of
all the other causes, including censoring. Without this
assumption, the Kaplan–Meier estimator of the ith
net-specific survival distribution does not estimate
any interesting or relevant probability.

If we consider death from any cause, i.e. ∆ ∈
C, then the estimate of the corresponding survival
distribution, SC(x), from a sample of potentially

censored data (X∗
j , ∆∗

j ), j = 1, . . . , n, follows from
applying the same logic:

ŜC(x) =
n∏

j=1

[
1 − 1

Y (X∗
j )

]I (X∗
j
≤x,∆∗

j
∈C)

.

This estimator for the survival distribution from
any cause of death in the presence of censoring is the
Kaplan–Meier estimator as originally presented in
the seminal paper [21] in 1958. Failure is considered a
death from any cause, and an incomplete observation
is a censored observation. The estimator of the ith net
survival function given above is also referred to as a
Kaplan–Meier estimator, since it may be derived via
the same formula, letting failure be death from cause
i and an incomplete observation be death from any
cause other than i or censoring.

Estimating Subdistribution Functions

We may use the above results to derive nonparamet-
ric estimators for crude and partial crude subdistribu-
tion functions. Using (2), the ith crude subdistribution
function may be expressed as

FC
i (x) =

∫ x

0
SC(u)λC

i (u) du.

Because censoring is independent of the other causes
of death, λC

i (u) = λC∗
i (u). Therefore a natural esti-

mator for the ith subdistribution function is given by

F̂ C
i (x) =

∫ x

0
ŜC(u)

dF̂ C∗
i (u)

ŜC∗
(u)

,

where ŜC(u) is the Kaplan–Meier estimator for the
survival distribution of time to death from any cause.

The large-sample statistical properties of this esti-
mator may be derived using the theory of count-
ing processes. Details may be found in Aalen [2,
3], Fleming [16, 17], Benichou & Gail [6], and
Andersen et al. [5] when using cohort data, and in
Benichou & Gail [7] when using population-based
case–control data.

The Relationship of Competing Risks to
Covariates

Often, we are interested in studying the relationship
of time to death from one or many causes to other
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covariates. For example, we may be interested in the
effect of different treatments on reducing the risk of
death from specific causes, or we may wish to model
the relationship of competing risk probabilities to
other prognostic factors. These problems are gener-
ally posed in terms of hypothesis testing or estimation
of regression parameters. There is a wide literature
on inferential techniques for hypothesis testing and
regression modeling for survival problems with cen-
sored data. Because of the close relationship between
censoring and competing risks, many of the methods
developed for analyzing censored survival data may
also be applied to competing risks data (see Survival
Analysis, Overview).

Hypothesis Testing

The most widely used methods for testing the null
hypothesis of no treatment effect among K treat-
ments with censored survival data are the logrank
or weighted logrank tests. These tests were designed
to test the equality of the hazard functions for death
among K treatments when the censoring time is inde-
pendent of time to death within each treatment group.
If we study these tests carefully, then we realize
that they actually compare the observable cause-
specific hazard functions among the different treat-
ment groups. Therefore, we can immediately apply
these methods for testing equality of cause-specific
hazard functions among different treatments. To be
more precise, we denote by λC∗

il (x), l = 1, . . . , K ,
the ith cause-specific hazard function within treat-
ment group l. The weighted logrank tests may then
be used to test the null hypothesis that

λC∗
i1 (x) = · · · = λC∗

iK(x), x > 0.

The theoretical development for these tests is given
by Andersen et al. [4]. This is carried out by letting
failure correspond to death from cause i and an
incomplete observation to correspond to death from
any cause other than i or censoring (∆∗ = 0).

We reiterate the interpretation of this null hypothe-
sis and the results of the logrank test. If we are willing
to assume that time to death from cause i is indepen-
dent of the times to death from other causes as well
as time to censoring, within each treatment group
l = 1, . . . , K , then the cause-specific hazard func-
tion, λC∗

il (x), is equal to the net-specific, or marginal,
hazard function, λi

il(x). Equality of net-specific haz-
ard functions implies equality of net-specific survival

probabilities. Therefore, with the assumption of inde-
pendence, the logrank test is a test of the null hypoth-
esis that the K net-specific survival distributions are
equal. This is often the hypothesis of interest.

To illustrate, consider a clinical trial of several
treatments to reduce breast cancer mortality. Because
breast cancer clinical trials generally occur over many
years, some patients may die from causes other than
breast cancer. Because the treatments were targeted
to reduce breast cancer mortality, the investigators
are not interested in the effect that treatment may
have on other causes of death; rather, they are mainly
interested in the effect of the treatments on breast
cancer mortality in the absence of causes of death
other than breast cancer. This is the classic competing
risks problem of comparing net survival distributions.
When the logrank test is used, patients not dying from
breast cancer are treated as censored observations.
As previously discussed, this is an appropriate test
for the equality of net survival probabilities when
the time to death from other causes is independent
of time to death from breast cancer within each
treatment group. This assumption may not be true,
and in fact cannot be verified with the data because
of nonidentifiability problems alluded to above. If
this independence assumption is not true, then it
is not clear what we are testing when we use the
logrank test.

One way around this philosophical dilemma is to
consider only tests of observable population param-
eters. An important observable population param-
eter is the crude cause-specific hazard function,
λC

i (x). We again emphasize that the population cause-
specific hazard function, λC

i (x), is observable only
if there is no additional censoring introduced. With
the introduction of censoring, the observable parame-
ter is λC∗

i (x). However, by assumption, the censoring
(∆∗ = 0) is independent of the other causes of death,
in which case λC

i (x) = λC∗
i (x).

As we pointed out, the logrank test tests the equal-
ity of the cause-specific hazard functions, λC∗

il (x),
and, with independent censoring, the equality of
λC

il (x). Therefore, the logrank test would be a valid
test of the equality of the breast cancer specific haz-
ard functions among the K treatments. Although this
cause-specific hazard function may not be directly
related to net-specific breast cancer mortality, if inde-
pendence does not hold, then it still may be an
important comparison. This point of view is given
by Prentice et al. [27].
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Another observable quantity is the subdistribution
function FC

il (x) for cause i within treatment group
l. Very little work has been done on deriving tests
for the equality of these K-sample subdistribution
functions. One exception is a class of tests derived
by Gray [20] to test the null hypothesis that

FC
il (x) = · · · = FC

iK(x).

Regression Modeling

The most popular framework for modeling the associ-
ation of censored survival data to prognostic variables
is with the proportional hazards model of Cox [14]
(see Cox Regression Model). In this model the haz-
ard for death is related to a vector of covariates by

λ(t |z) = λ0(t) exp(βTz),

where z represents a vector of covariates, and λ(t |z)
is the hazard rate of death at time t given covariates z.
In this model, censoring is assumed to be independent
of the failure time, conditional on the covariates. A
careful study of the inferential procedure for estimat-
ing parameters in the Cox model reveals that this is
actually the observable cause-specific hazard of death
in the presence of censoring. That this corresponds
to the actual net hazard function of death holds only
when we add the assumption of independence of cen-
soring time and failure time.

Consequently, this model may also be applied to
competing risks data; that is, we may use the same
inferential procedures to estimate the parameter β

when considering the model

λC∗
i (t |z) = λC∗

i0 (t) exp(βTz).

To apply software for the Cox model (see Survival
Analysis, Software), we must define a failure as
death from cause i, and an incomplete observation as
either death from a cause other than i or censoring.
The interpretation of this model and the parameters
is the same as discussed above. That is, if we are
willing to assume that time to death from cause i is
independent of the times to death from other causes
and time to censoring, then the observable cause-
specific hazard, λC∗

i (t |z), is equal to the net-specific
hazard, λi

i(t |z).
Even if we are unwilling to make this nonidenti-

fiable assumption, the relationship of the observable
cause-specific hazard to covariates may be of interest.

By assumption, censoring is independent of all other
causes of death. This implies that λC

i (t |z) = λC∗
i (t |z).

Therefore, the results of the Cox regression analysis
may be used to estimate the parameters in the model
of the cause-specific hazard function, given by

λC
i (t |z) = λC

i0(t) exp(βTz).

Using cause-specific hazards thus allows useful inter-
pretation of relevant observable quantities without an
additional assumption of independence of the differ-
ent causes of death.
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Complex Diseases

The principal distinction between “simple” mono-
genic diseases and “complex” genetic diseases is
that the latter do not exhibit classic Mendelian pat-
terns of inheritance (see Mendel’s Laws) and char-
acteristically involve multiple genes that interact
in complex ways with multiple environmental fac-
tors [5] (see Gene-environment Interaction). For
instance, asthma and many of the traits associated
with asthma exhibit non-Mendelian patterns of inheri-
tance and substantial heterogeneity [6]. The intricacy
of the disparate pathogenic mechanisms associated
with asthma suggests multiple environmental and
genetic determinants, and has led to the definition
of asthma as a “complex” phenotype [4].

Other examples of complex human diseases
include type 1 and type 2 diabetes, Alzheimer’s
disease, rheumatoid arthritis, and many cancers and
psychiatric disorders. Such diseases tend to be
common relative to single-gene disorders, to be
chronic conditions that are responsible for significant
morbidity and mortality, and to be associated with
very substantial economic costs. For example, asthma
is the most common chronic childhood disease in
developed nations [1], and carries a very substantial
direct and indirect economic cost worldwide [8]. As
a result of these factors, such diseases have become
a major focus of bioscience research in both industry
and academia.

Complex diseases tend to involve many diffi-
culties in phenotypic definition and are not gener-
ally amenable to investigation using techniques that
assume monogenic inheritance. Relative to mono-
genic disorders, the study of genetically complex
diseases presents many additional challenges for
genetic epidemiology. For instance, classic segrega-
tion analysis was designed for studies of monogenic
diseases and assumes etiologic homogeneity – an
assumption unlikely to be met in analyses of com-
plex phenotypes, which are likely to be under the
control of multiple environmental and genetic factors.
Different genes may segregate in different families,
which may in turn be exposed to different environ-
mental factors. The mapping of human susceptibility
loci for complex disease is further made difficult
by a high population frequency, incomplete pen-
etrance, phenocopies (environmentally determined,
nongenetic variation in a phenotype that resembles

genetically determined variation), genetic hetero-
geneity, and pleiotropy. The substantial genetic het-
erogeneity that characterizes such diseases is likely
to involve both different susceptibility loci and dif-
ferent susceptibility alleles within a locus. Strategies
to minimize the effects of genetic heterogeneity in
studies of complex diseases have included the use
of large pedigrees, genetically isolated populations
likely to exhibit founder effects (see Inbreeding),
and phenotypically homogeneous subgroups such as
early-onset forms of disease [7].

A further characteristic of many complex human
diseases is that they are closely associated with one or
more “intermediate” phenotypes, e.g. hyperlipidemia
in type 2 diabetes [13] and measures of lung function
in asthma [16]. Intermediate phenotypes are often
quantitative, pathophysiological traits assumed – on
the basis of prior clinical, epidemiologic, or labora-
tory evidence – to be on an etiologic pathway leading
to disease. Due to difficulties in phenotype definition
and related low statistical power, and the complex-
ity of the interrelationships between clinical disease,
intermediate phenotypes and epidemiologic covari-
ates, dichotomous disease affection as an outcome has
proven difficult to dissect genetically in many com-
plex diseases. Disease-associated intermediate phe-
notypes are often themselves highly heritable, and
power calculations have suggested that testing for
linkage is significantly enhanced by the use of quan-
titative traits in preference to a categoric affection
phenotype [2, 15]. The use of quantitative intermedi-
ate phenotypes also permits selection of subjects in
the extremes of the distribution, with increased power
to detect linkage [17]. For these reasons, objectively-
measured intermediate phenotypes have increasingly
become the focus of genetic studies of complex
human diseases.

In an attempt to simplify etiologic heterogene-
ity, many researchers investigating the genetics of
complex human disease have turned to inbred ani-
mal models [10, 18]. Animals have the advantages
of permitting control of both breeding and environ-
mental conditions. Assuming a valid model, these
advantages potentially allow complex genetic traits
to be more easily dissected using animal models
than using human study populations. The extent to
which results obtained from experimental animals
can be generalized to humans may be problematic,
however.
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As part of the intense research effort to improve
our ability to discover the genetic determinants
of complex human disease over the last decade,
technologic advances in the laboratory related to
sequencing and single nucleotide polymorphism
(SNP) genotyping have proceeded at a very rapid rate
(see Bioinformatics; Genetic Markers). Catalyzed
in part by the vast amounts of data generated by
the Human Genome Project and the SNP genotyp-
ing efforts in complex human disease, it has become
clear that concomitant statistical advances in the map-
ping of complex traits will also be required [11,
22, 25] (see Disease-marker Association; Linkage
Analysis, Model-based; Linkage Disequilibrium).
The Human Genome Project and SNP genotyping
efforts have caused a broad reexamination of mapping
methodologies and study designs in complex human
disease [7, 17, 20, 23]. The testing of large num-
bers of genotypes for association with one or more
traits raises important statistical issues regarding the
appropriate false positive rate of the tests and the
level of statistical significance to be adopted given
the multiple testing involved [17, 20]. The required
methodologic development in genetic statistics is
nontrivial given the complexity of most common
human diseases. Some current areas of methodologic
development include haplotype analysis [9, 22, 25],
distance-based mapping measures [3, 19], combined
linkage and association analyses [12], techniques for
modeling linkage disequilibrium and population his-
tory [26] (see Population Genetics) and Markov
Chain Monte Carlo based approaches [14].

Genetic approaches to complex diseases offer
great potential to improve our understanding of their
etiology, but they also offer significant challenges.
Despite much progress in defining the genetic basis
of diseases such as asthma in the last decade, accom-
panied by rapid technical progress in sequencing and
SNP genotyping technologies (see Sequence Analy-
sis), further research is required. In particular, genetic
localization of most susceptibility loci is still insuf-
ficiently precise for the positional cloning of new
genes influencing such diseases. Furthermore, there
are technical, statistical, ethical, and psychosocial
issues that remain unresolved in the investigation
of the genetics of complex human diseases. How-
ever, a large number of groups are currently active in
addressing methodologic problems in genetic statis-
tics, and methodologic progress, together with tech-
nologic advances in positional cloning and candidate

loci linkage-disequilibrium mapping techniques will
likely accelerate our ability to investigate the genetic
basis of complex diseases.
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Compliance and Survival
Analysis

Compliance: Cause and Effect

Today, new treatments must prove their worth in
comparative (double blind) randomized clinical tri-
als, the gold standard design for causal inference (see
Clinical Trials, Overview). With noninformatively
right-censored survival outcomes, a typical robust
intention-to-treat analysis compares groups as ran-
domized using the popular (weighted) logrank test.
Accompanying Kaplan–Meier, curves describe non-
parametrically how survival chances differ between
arms. A one-parameter summary of the contrast fol-
lows from a semiparametric Cox proportional haz-
ards (PH) model (see Cox Regression Model) or
Accelerated Failure-Time Model [6].

In general, and especially with long-term treat-
ments, patients tend to deviate from their prescribed
treatment regime. Varying patterns of observed expo-
sure relative to the assigned are called “compliance
(levels)” and recognized as a likely source of varia-
tion in treatment effect (see Compliance Assessment
in Clinical Trials). Because deviations from pre-
scribed regimes occur naturally in clinical practice,
it is wise to learn about them within the trial con-
text rather than restrict the study population to perfect
compliers, an atypical and sometimes small and unob-
tainable subset of the future patient horizon [12].

Treatments that are stopped or switched or are
less dramatic lapses in dosing happen in response
to a given assignment. Different exposure patterns
between treatment arms therefore point to (perceived)
differences following alternative assignments. Study-
ing compliance patterns as an outcome can yield
valuable insights [15].

Of course, actual treatment regimes may also
influence primary outcomes. From the intent-to-treat
perspective, underdosing causes reduced power and
a requirement for larger samples. Fortunately, the
strong null hypothesis, where treatment and its
assignment have no impact on outcome, is con-
sistently tested irrespective of compliance levels.
Under the alternative, we expect, however, differ-
ent (smaller) intent-to-treat effects than the prescribed
regime would create when it materializes. This hap-
pens as the treatment group becomes a mix of varying
(lower) degrees of exposure [2, 8].

Estimation of the causal effect of actual dose
timing becomes challenging, when observed exposure
patterns are no longer randomized. (Un)measured
patient characteristics and earlier experience may
determine exposure levels that become confounded
with the natural treatment-free hazard of the patient.
The association between compliance which induces
treatment exposure levels, and treatment-free hazards
is often called a selection effect in line with missing
data terminology. An “as-treated” analysis, such as
a PH analysis, with the currently received treatment
as a time-dependent covariate, compares hazards
between differently treated groups at a given time and
thus estimates a mix of selection and causal effects
[11]. An “on-treatment” analysis censors patients as
soon as they go off the assigned treatment and thus
generates informative censoring for the same reason.
Structural accelerated failure time (SAFT) models
and structural PH models have been designed to
avoid these biases. We explain their key features and
potential through a simple example first.

All-or-nothing Compliance

In randomized studies that evaluate a one-shot treat-
ment, such as surgery [7], vaccination [4], or an
invitation to undergo screening [1], all-or-nothing
compliance with experimental assignment arises nat-
urally. Let Ri = 1(0) indicate whether individual i,
with baseline covariates Xi , gets randomized to the
experimental (control) arm. When experimental treat-
ment is not available outside the treatment arm the
control arm remains uncontaminated by experimen-
tal exposure and its outcomes can serve as reference
outcomes for causal inference. Let T0i denote such
a potential survival time for individual i following a
control trajectory free of experimental exposure. Let
T1i and Ci respectively be survival time and compli-
ance following a possible treatment assignment.

Ri operates independently of the vector (T0i ,
T1i , Ci , Xi) but determines, which components are
observed. Observed survival time and exposure are
simply denoted Ti , Ei for all. With an uncontami-
nated control arm, Ei = CiRi . One goal of causal
inference is to estimate how the contrast between
potential survival times T1i and T0i varies over the
subpopulations determined by different Ci-levels and
their induced level of experimental exposure on the
treatment arm, Ei .
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The sharp null hypothesis assumes it makes no
difference what arm one is assigned to and hence:

T0i
d|Xi= T1i , (1)

where d|Xi= indicates equality in distribution condi-
tional on Xi .

The most obvious violation of (1) occurs when
(some) patients on the experimental arm become
exposed and exposure alters survival chances. This is
called a direct causal effect of exposure [10]. When
an assignment influences survival through mecha-
nisms of action operating independently from expo-
sure levels, we have an indirect effect. Below, we
consider a cancer clinical trial [7], where the experi-
mental intervention consists of implanting an arterial
device during surgical resection of metastases. A
planned implant could lead to an operation scheduled
earlier in the day and timing may create its own set of
prognostic circumstances. In addition, the news that a
planned implant did not happen could be depressing
to the patient and diminish survival chances beyond
what would have happened on the control arm. Both
mechanisms can lead to an indirect (clinical) effect
of exposure assignment. Double blind studies are
carefully designed to avoid indirect effects, so they
satisfy: T0i

{d|Ci = 0, Xi }= T1i and hence, P(T1i > t |Ci =
0, Ri = 1, Xi ) = P(T0i > t |Ci = 0, Ri = 0, Xi ), for
all t . The contrast between P(T1i > t |Ci = e, Ri =
1, Xi) and P(T0i > t |Ci = e, Ri = 0, Xi) then repre-
sents the causal effect of exposure level e. In general,
however, this combines direct and indirect effects of
assignment in the population with compliance level e.

In what follows, we ignore Xi for simplicity, but
stronger inference can be drawn when assumptions
condition on Xi . To estimate P(T0i > t |Ci = 1, Ri =
1), one can solve P(T0i > t |Ci = 1|Ri = 1)P (Ci =
1, Ri = 1) + P(T0i > t |Ci = 0, Ri = 1)P (Ci = 0|
Ri = 1) = (P (T0i > t |Ri = 1) =)P (T0i > t |Ri = 0)

after substituting empirical means or (Kaplan–Meier)
estimates for the other unknown terms. Isotonic
regression can turn the pointwise estimates in a
monotone survival curve. To evaluate the treatment
effect among the exposed, one compares P̂ (T1i >

t |Ci = 1, Ri = 1) with P̂ (T0i > t |Ci = 1, Ri = 1).
The selective nature of exposure is seen by con-
trasting treatment-free survival probabilities for the
exposed and nonexposed subpopulations: P̂ (T0i >

t |Ci = 1, Ri = 1) and P̂ (T0i > t |Ci = 0, Ri = 1).

More General Exposure Patterns

A structural model parameterizes the shift in distri-
bution from observed survival time Ti to a reference
time, Tei following a specific exposure regime e, in
terms of observed (possibly time-dependent) expo-
sures Ei and covariates Xi . One can thus perform
parameter-specific (Ei , Xi)-dependent back transfor-
mations of observed survival times (or distributions).
The parameter value that solves estimating equations
demanding equality of estimated Tei distributions
(conditional on baseline covariates) between arms is
our point estimate.

The procedure is illustrated in Figure 1 for the
SAFT model Ti exp{−β0Ei} d|Ri= T0i in our trial, where
Ei indicates an actual implant of the arterial device.
For time-dependent implants Ei(t), we could have
used the SAFT model

∫ Ti

0 exp(−β0Ei(u)) du
d|Ri= T0i .

For technical points concerning the specific treat-
ment of censored data, we refer the reader to [5,
12]. The left-hand panel shows ITT Kaplan–Meier
curves in the standard and intervention arm. In the
right-hand panel, the survival curve for the stan-
dard arm is compared with KM-curves following
the transformations Ti exp{−βEi} with β = −1.5 and
β = −0.36 on the intervention arm. Reducing treated
failure times by the factor exp(−1.5) overcompen-
sates for the observed harmful treatment effect as
survival chances on the intervention arm are now
higher than on the standard arm. This is confirmed
by the logrank chi-squared value of 9.326, plotted
in the middle panel. The survival curve correspond-
ing to the point estimate β̂ = −0.36 (exp(β̂) = 70%)

is convincingly close to the observed survival in the
standard arm. The middle panel reveals chi-squared
values for a range of hypothesized structural param-
eter values. Those that do not lead to significantly
different curves at the 5% level form the 95% confi-
dence interval [−1.07, 0.39] for β0.

Other Structural Modeling Options

One can propose many different maps of the observed
into the treatment-specific survival distributions. This
may happen on a PH scale [7] or involve time-
dependent measures of effect in the SAFT setting
[12]. Estimation methods, which rely on the instru-
ment of randomization, protect the α–level (see
Hypothesis Testing) just like the intent-to-treat test,
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Figure 1 Estimation of structural parameters

but shift the point estimate away from a diluted
average. To achieve this, they rely on the postulated
structural model, which can sometimes be rejected
by the data, but generally not confirmed owing to
a lack of observed degrees of freedom. Special care
is thus required when interpreting these models and
their results. Some diagnostic procedures have been
proposed (see Diagnostics) and forms of sensitivity
analyses [13, 14].

To explicitly account for measured time-dependent
confounders, structural nested failure-time models
can be used as an alternative, or marginal structural
models for Tei as in [3]. The estimation process then
relies on the assumption of “no residual confound-
ing”, ignores the instrument Ri , and loses its robust
protection of the α–level.

Structural modeling of failure time distributions
has opened a world of practical and theoretical devel-
opments for the analysis of compliance and survival
time. The field of research is very much alive today.
Recent work [9], for instance, proposes to estimate

optimal treatment regimes from compliance data. Our
brief account can give but a flavor of this wealth.
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Compliance Assessment in
Clinical Trials

If the results of an intention-to-treat analysis in a
randomized clinical trial are not statistically signif-
icant, then there are several possible explanations.
In addition to the obvious explanations of lack of
treatment effect and low statistical power due to
inadequate sample size, treatment differences may be
underestimated, and thus statistical power reduced,
by poor compliance (sometimes called adherence) to
the intervention on the part of the trial participants.

As a simple example, consider a randomized
clinical trial in which participants are assigned
by randomization to receive active treatment (A)
or control (C). We assume that the response to
treatment is a binary variable with expected value
pC in the control group and pA in the active
group. The treatment difference is δ = pC − pA.
If a proportion, π , of the participants assigned to
active treatment do not comply with the therapy
and we assume that noncompliers respond as control
participants, then the observed treatment difference
has expected value δ∗ = pC − (1 − π)pA − πpC =
(1 − π)δ. Thus to maintain power, the sample size
should be increased by a factor of 1/(1 − π)2 (see
Sample Size Determination for Clinical Trials).

Because poor participant compliance can adversely
affect the outcome of a trial, it is important to use
methods both to improve and monitor the level of
compliance. The methods for improving compliance
are largely applications of behavioral methods [4].
However, one widely used method for improving
compliance is the use of a placebo run-in (see, for
example, [12]). In a placebo run-in, potential par-
ticipants in a trial are asked to take placebo pills
(single masked) (see Blinding or Masking) for a
short period of time. If the participant takes the pills
as instructed, then he or she is entered into the trial.
However, if the participant does not comply with the
instructions on pill taking, then he or she is excluded
from the trial. The assumption underlying the placebo
run-in is that participants who do not comply in short
term run-ins are more likely not to comply to long-
term therapy. Two reports [2, 13] have challenged
this assumption using either an empirical test or meta-
analytic methods.

The most frequently used measure of compliance
is the pill count. Participants in a clinical trial are
given a specific number of doses of treatment and
asked to return unused pills at the time of their next
visit to the clinic. A simple calculation determines
the proportion of medication unused and, by infer-
ence, the amount of medication taken. This measure
has obvious problems related to the assumption that
the pills not returned have been consumed. For exam-
ple, a participant may have discarded some pills in
anticipation of the clinic visit or pills may have been
lost. Thus it is likely that pill counts overestimate
compliance [8].

An alternative measure of compliance can be
obtained by measuring the level of the agent in body
fluids, such as blood or urine. For example, serum
and urine measures of zidovudine levels are used in
studies of zidovudine in HIV infected patients [10].
In this study, the association between pill count and
zidovudine levels was good. This direct measure is
superior to pill counts, but the cost of assays may be
prohibitive in many settings.

In some lifestyle interventions, such as dietary
change, such measures may be the most objective
measure available for measuring compliance. Never-
theless, the correlation between the body fluid mea-
sure and compliance to the intervention may be low
at the individual level, and the measure may be use-
ful only at the group level. An example is the use of
serum cholesterol levels to measure compliance with
a low-fat dietary intervention.

An alternative to measuring actual blood levels is
to add riboflavin to the compound. Urine samples are
then collected from participants and the presence of
riboflavin in the urine is measured by fluorescence.
A major drawback to this method is the possible
interaction of the riboflavin with the pharmacological
action of the medication. Tests for the possibility of
this interaction are too complex and expensive in
most cases, rendering the method of little practical
utility.

In recent years microprocessors have been used to
monitor compliance. The microprocessor is installed
in the bottle cap and programmed to record the dates
and times of opening of the bottle [3, 5, 7–9]. A
similar timing device has been applied in a study
using an inhaler for delivery of the drug [1]. The
basic assumption for the use of these devices is
that the medication is taken at the time the bottle
is opened. It is difficult to verify this assumption
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in practice, but the method does appear to be more
valid than the pill count. These devices have an added
advantage over pill counts in that they provide data
on compliance with the timing of the medication.
Comparison of the electronic measure with pill counts
indicates that compliance is estimated to be greater
with the pill count than with the electronic devices
[3, 11]. The electronic devices have also shown that
noncompliance with the timing of doses is a sizable
problem [1, 5, 6]. The major drawback to the use of
the electronic compliance measures in a large clinical
trial is cost.
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Composite Estimators

A composite estimator is a weighted combination of
two (or more) component estimators. It is important
in sample surveys because, when appropriate weights
are used, its mean square error is smaller than that
of either component estimator. This decrease in mean
square error can be considerable when the two com-
ponent estimators are independent and their mean
square errors are of similar size.

Studies on the use of composite estimators in
specific applications often explore different compo-
nent estimators and different approaches to weight-
ing them in constructing the composite estimator. In
a given application, the sample design and avail-
able auxiliary data restrict the choice of compo-
nent estimators and, although, there are a number of
approaches to the selection of the composite estimator
weight, the mean square error of the resulting com-
posite estimator is often robust to modest deviations
from the optimum weight.

Early applications of composite estimators appear
in the survey sampling literature in conjunction with
rotational designs in which some units provide data
for more than one time period (see, for example, [18]
and [19]). In such situations, two unbiased compo-
nent estimators are available: a standard estimator
using data only from the time period of interest, and
an estimator that adjusts the estimate for the previ-
ous time period forward to the current time using
data from units surveyed in both time periods. In
these applications, the sample is often designed with
a composite estimator in mind.

The majority of the literature on composite esti-
mators addresses a second type of application. When
data from a sample survey become available, invari-
ably there is demand for estimates from domains
whose sample sizes were not controlled in the design.
Generally, these sample sizes are too small to make
reliable estimates using standard direct estimators,
and indirect estimators are considered. Indirect esti-
mators “borrow strength” through models that link
the domain and/or time period of interest to others so
that the small sample size in the domain of interest
is supplemented by sample observations from other
domains and/or times. Although domains defined by
geographic boundaries have received, by far, the most
attention, these methods are applicable to any arbi-
trary domain. For example, a synthetic estimator was

used to produce selected health statistics for states
in an early application of indirect estimators at the
US National Center for Health Statistics [9, 11].
Its use is justified under a model relating units across
domains within poststrata (see Poststratification in
Survey Sampling) that are defined on variables cor-
related with the one of interest.

A composite estimator was considered in this early
application but not implemented because of difficul-
ties in defining a weighting scheme. Further research
helped specify weights [15], after which a compos-
ite estimator combining the unbiased, high-variance
direct estimator with the biased, low-variance indirect
estimator was implemented [12]. In this composite
estimator, the first component estimator was a stan-
dard direct estimator that incorporated observations
on the variable of interest only from the state for
which the estimate was being made. The second was a
synthetic estimator that used observations on the vari-
able of interest from the region comprising the state
within poststrata defined by age, race, sex, and other
related variables. The weights for the two-component
estimators were chosen to minimize the mean square
error of the composite estimator and were approxi-
mated empirically.

In another early application, the US Bureau of
the Census used a composite estimator, composed of
a direct sample estimator and an indirect regression
estimator (see Ratio and Regression Estimates), to
produce state estimates of median income for four-
person families [4]. In yet another application, the US
Department of Agriculture used a composite estima-
tor to produce county estimates of livestock invento-
ries, crop production, and acreage planted in selected
crops [8]. In addition, a number of other government
statistical agencies have considered composite esti-
mators for the production of subnational estimates
(see, for example, [1], [3], [10], and [16]).

Theoretical considerations have guided the appli-
cations of composite estimators; but, not surprisingly,
different theoretical approaches lead to different com-
ponent estimators and weighting schemes. In the
health statistics application described above, the com-
ponent estimators were treated as given and the prob-
lem was approached as a simple one of determining
weights to minimize the mean square error of the
composite estimator [14].

There are a number of model-based theoretical
approaches to the domain estimation problem, in gen-
eral, and to the derivation of composite estimators,
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specifically. One such approach is provided by Roy-
all [13] within the framework of prediction theory, a
model-based approach to finite population sampling.
Regression models relating the variable of interest to
auxiliary variables lead to best linear unbiased pre-
dictors (see Minimum Variance Unbiased (MVU)
Estimator) of the specified finite population quan-
tity. Models with domain-specific parameters produce
direct estimators, whereas models with parameters
common across domains produce indirect estima-
tors. In certain models, composite estimators result
when a correlation among units within poststrata
is introduced, with both component estimators and
the associated weights specified by the theoretical
development.

Whereas the prediction approach uses models at
the unit level within domains, nested error linear
models (see Multilevel Models) [5], Bayes [17],
empirical Bayes [2], and hierarchical Bayes [6]
methods all incorporate models that are specified
at the domain level. These approaches address the
problem of estimating, for example, a population
mean for each of a number of domains and provide
estimators that, under the model, minimize the
average squared error over all domains. In fact, such
approaches predominate in theoretical investigations
of small domain estimation problems (see [7] for a
review with discussion).
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Computer Algebra

Conventional scientific computer languages deal
primarily with the manipulation of fixed-length
integers and fixed-precision floating-point numbers.
Computer Algebra packages permit one to program
using mathematical expressions as well, so that it is
straightforward to perform such tasks (see Numerical
Analysis) as:

• arbitrary-precision arithmetic,
• polynomial factorization,
• differentiation of complicated functions,
• integration of wide classes of functions.

This article begins by presenting basic common
features, and by listing and giving references for cur-
rent commercial computer algebra packages. There
follow two simple introductory examples of the use
of computer algebra in statistical contexts, and then a
discussion of some typical constraints and features of
computer algebra systems: it is important to be aware
of these, since in this area, unrealistic expectations
lead all too rapidly to frustration and disappoint-
ment. Finally, we list a few representative examples
of research uses of computer algebra in statistical
science, and conclude with suggestions for further
reading.

Basic Common Features of Computer
Algebra Systems

What might a computer algebra system have to offer
to statistical users? A typical feature list includes:

• a user-interface allowing input and manipulation
of mathematical formula, so that one’s activity
on the computer connects very directly to the
underlying mathematics;

• multiple-precision arithmetic (invaluable when
one has to check whether a very small value is
actually positive or negative!);

• the ability to program the computer algebra sys-
tem to perform routine tedious formula-mani-
pulation tasks (e.g. computation of the matrix
of second partial derivatives of a log-likelihood
function);

• (for most computer algebra packages) integrated
graphical and numerical facilities, thus mixing the

benefits of computer algebra and more conven-
tional computing (that is to say, based on floating
point, rather than symbolic, calculations);

• almost all computer algebra systems are interac-
tive, allowing one to experiment and to explore.
This is particularly powerful when combined with
numerical and graphical facilities.

Thus, a typical computer algebra system can sup-
port all kinds of mathematical calculation, particu-
larly including exact formula-based calculations. This
versatility makes computer algebra a most useful
resource.

Currently Available Computer Algebra
Systems

At the time of writing, commonly used commercial
computer algebra systems included Maple, Mathe-
maticaand REDUCE. There is little to choose between
them in terms of their basic computer algebra capa-
bilities, though more advanced users will discover
pronounced differences in underlying design philoso-
phies. Mathematica and Maple both possess hypertext
help facilities and have sophisticated “notebook” or
“worksheet” front ends, which allow presentation
of symbolic, graphical, and numerical results mixed
with formatted text in cells in a scrollable display and
permit online recalculation and modification of the
results. In this as in other features, REDUCE takes
a minimalist approach (reflecting a design philoso-
phy which emphasizes ease of portability to many
platforms).

The first edition of this article also mentioned
AXIOM and MACSYMA. Sadly the innovative AXIOM
[11] is no longer supported commercially (though
readers may care to visit the website

http://www.aldor.org/
for the associated compiler Aldor). MACSYMA [10]
is one of the very earliest computer algebra systems,
and is still available in a variety of implementations
both commercial and noncommercial.

There also exist largely nonprogrammable com-
puter algebra systems such as Derive (though this
particular system is being continuously enhanced and
now offers programming capability), and free com-
puter algebra software such as CoCoA (a system for
calculations in algebra). However, we limit ourselves
here mainly to discussion relating to the commercial
systems mentioned above. Table 1 gives references
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Table 1 Computer algebra systems: some World Wide Web and literature references

The World Wide Web is a volatile entity: links may change from those given here!

SYSTEM WWW reference References

Maple http://www.maplesoft.com [9]
See also http://www.mapleapps.com/List.asp?CategoryID=36&Category=Statistics

Mathematica http://www.wolfram.com [14], [21]
See also http://www.wolfram.com/solutions/statistics/books.html

REDUCE http://www.uni-koeln.de/REDUCE/ [15], [18]
Derive http://www.derive.com
CoCoA http://cocoa.dima.unige.it

(World Wide Web and literature) for some of these
packages (see Internet).

Introductory Examples

Here are two simple introductory examples, illustrat-
ing the use of computer algebra in a broadly statistical
context. A different computer algebra package is used
for each example, and the meaning of each of the var-
ious code fragments is briefly discussed. It should be
emphasized that at this level computer algebra pack-
ages are largely interchangeable: one could as well
use one as the other on such basic problems as these.

The first example is an application to probability
generating functions (pgf). Since pgf’s are used
to translate basic operations on random variables
into algebraic operations, they are natural candidates
for computer algebra. We use Mathematica for this
example.

Consider a (hypothetical) animal that hosts N

parasites, where Pr[N = n] = λn(1 − λ) for n =
0, 1, . . . , (and 0 < λ < 1) so N is geometric.
Independently each parasite gives birth to M daughter
parasites, where P[M = m] = µme−µ/m! for m = 0,
1, . . . , (and µ > 0) so M is Poisson. We know
N has pgf f (s) = (1 − λ)/(1 − λs), while M has
pgf g(s) = exp(−µ(1 − s)). Then pgf theory tells us
the total number T of descendants has pgf h(s) =
f (g(s)) (see Contagious Distributions).

We may compute the mean by E[T ] = h′(1), and
the probabilities P[T = t] = (1/t!)[dth(s)/dst ]s=0.
These operations can be algebraically tedious, but are
carried out without much labor if computer algebra
is used. Define the functions f , g, h by

f[s ] := (1-lambda)/(1-lambda s)
g[s ] := Exp[-mu (1-s)]
h[s ] := f[g[s]]

(employing the usefully succinct Mathematica nota-
tion f[s ] := ... for defining a function of s),
and can then compute the mean by

D[h[s],s] /. s->1 lambda mu
----------
1 - lambda

Here D carries out the differentiation, and /.s->1
performs the substitution s = 1.

The probabilities can be computed similarly. First
define the probability of there being a total of i
parasites:

prob[i ] := Module[{s}, Simplify
[D[h[s],{s,i}]/(i!) /. s->0] ]

This uses Mathematica’s Module command (because,
purely for reasons of programming style, we want s
to be a local variable here) and Simplify, because
the output is lengthy enough even when simplified!
Note also the iterated derivative form of D used here.

For output, we use an iterative Do loop and also
Mathematica’s TeXForm facility for producing TEX
output:

Do[ Print["p ",i," = ",TeXForm
[prob[i]]], {i, 0, 4}]

We present only the last line of output:

p4 =
eµ (−1 + λ) λ

× (
e3 µ + 11 e2 µ λ + 11 eµ λ2 + λ3) µ4

24 (−eµ + λ)5 . (1)

(Notice that there is still cosmetic work to be done
in beautifying this expression; for example, (−1 +
λ) → (λ − 1).)

This last command is easily altered to produce as
many probabilities as might be required, and indeed
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one can also alter the definitions of f (s), g(s) without
difficulty. This demonstrates the flexibility of com-
puter algebra for simple problems involving large
quantities of calculation.

The second example is an application of com-
puter algebra to the differential equations underlying
deterministic SIR epidemics (see Epidemic Models,
Deterministic). We use Maple for this example.

The underlying differential equations are given by

dx

dt
= −αxy

dy

dt
= αxy − y

dz

dt
= y

(2)

This is a nonlinear system, so we do not expect to
be able to solve it explicitly. However notice that the
differential equations for dx/dz and dy/dz are linear,
so we may hope to obtain a partial solution using the
linear ODE solver dsolve of Maple. First define the
differential equations:

SIR := diff( x(z), z ) + alpha *
x(z),

diff( y(z), z ) - alpha *
x(z) + 1;

We then employ the solver, adding in initial-value
conditions and the variables for the differential equa-
tion:

XYsoln := dsolve( {SIR, x(0) = 1,
y(0) = n-1}, { x(z),
y(z) }, ’laplace’);

where ‘‘laplace’’ signifies that the solver dso-
lve is to use the method of Laplace transforms. The
result is

XYsoln := {y(z) = n - z - exp(-
alpha z), x(z) = exp(- alpha z)}

We can now substitute this back into the equation for
dz/dt :

Zequation := diff(z(t),t) =
subs(XYsoln, z = z(t), y(z));

d
Zequation := ---- z(t) = n - z(t)

dt

- exp(-alpha z(t))

The resulting ODE cannot be solved for z, but we can
obtain a series solution by altering the ‘‘laplace’’
directive to ‘‘series’’:

Zseries := dsolve( {z(0)=0,
Zequation }, z(t), ’series’);

z(t) = (- 1 + n) t + (- 1/2 alpha +
1/2 alpha n + 1/2 - 1/2 n) t2 + O(t3)

Here we have truncated the series to O(t3) simply
to fit the output on the page. Without much further
work, one can produce a higher-order series expan-
sion, and use it to further expand the previous solution
to x and y. (It is also possible to solve the differential
equations numerically within Maple, but this leads us
too far from our remit.)

Basic Considerations for the Use of
Computer Algebra

When choosing which computer algebra system to
learn and to use, the dominant consideration should
be to find out what system is used by the near-
est friendly expert. Readily available expert help
is enormously important in getting the most from
sophisticated mathematical software. There are dif-
ferences between systems (further insight on this can
be gained by reading some of the critiques and com-
parisons referenced below), but these are usually of
less practical significance than the immediate avail-
ability of helpful advice. Note that these systems can
all be augmented by writing programs in computer
languages specific to the respective systems, and are
being actively and vigorously extended by enthusias-
tic user communities, so that comparison of feature
lists is not as relevant as might at first appear.

However, even the casual user, of whatever sys-
tem, needs to be aware of typical features and con-
straints of computer algebra computation. Some of
these arise out of the very nature of the tasks being
performed. For example, the basic unit of computa-
tion in a computer algebra system is the representa-
tion of a mathematical expression as a list of sym-
bols (for example, 1 + 2x + x2 as {+,1,{*,2,x},{
∧,x,2} }) (for this reason, a common synonym for
the term “computer algebra” is symbolic computa-
tion). These lists can grow to extraordinary lengths
in the course of a calculation! (Consider the result
of dividing 1 − xn by 1 − x when n is some large
integer.) This contrasts with conventional scientific
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computation, in which the basic unit of computa-
tion is a fixed-length bit-sequence representing an
integer or floating-point number represented up to
machine accuracy. In general computer algebra can
be very memory-hungry, and it is strikingly easy
to attempt manipulations which in their intermedi-
ate stages require huge amounts of memory even
if the final result is concise (“intermediate expres-
sion swell”). In practice such problems can often be
evaded by breaking the task down into more manage-
able subtasks: success in computer algebra therefore
requires persistence and flexibility.

A related problem is that ill-considered com-
puter algebra computation can produce a vast mass
of uninformative output, for example, in statistical
asymptotics. Of course this is a problem in more
conventional computing too, but Hamming’s remark
“The purpose of computing is insight not numbers”
applies with particular force to the practice of com-
puter algebra.

There are other issues: square roots have to be
handled with care (since the sign of the root is
ambiguous); numerical stability when using numeri-
cal interfaces; possible software bugs (computer alge-
bra systems are as prone to bugs as any other large
computer program!); some tasks (such as definite
integration) do not admit algorithmic solutions and so
cannot be implemented in a completely satisfactory
way.

Most of the above issues are magnified versions of
problems that have to be confronted by anyone under-
taking a large calculation: and if they cause more
trouble for computer algebra then it is largely because
the calculations tend to be larger in scale. In partic-
ular, the question of error-free computation is just as
pressing for humans as for computer programs! Nei-
ther computer algebra nor any other technique can be
a replacement for careful thought about a problem.

Examples of Computer Algebra in
Statistical Science

To make the case for computer algebra as a useful
tool, here is a list of some recent applications drawn
from the statistical research literature.

Currie [4] describes the solution of several statisti-
cal maximum likelihood estimation problems using
Mathematica in a conceptually simple way (com-
pute the likelihood, then maximize it etc.). As the

author points out, this is limited in scope because it
makes no use of any special structure which might
be present. Nevertheless, two of the statistical prob-
lems presented are themselves taken from the recent
statistical literature.

This sort of application might equally be car-
ried out using numerical software such as MAT-
LAB, except that computer algebra allows one to use
the computer to manipulate expressions algebraically
(and thus exactly) before committing to floating-point
computation. In fact, there are now several examples
of symbiotic relationships between computer alge-
bra packages and general purpose numerical analysis
software: for example, MATLAB can be interfaced to
Maple.

A more extensive example of conceptually simple
computer algebra (although possessing formidable
technical content) is described by Mannion [16],
who uses REDUCE to solve a problem in geometric
probability posed by Klee, namely, the expected
value of the volume of a tetrahedron whose vertices
are chosen independently and uniformly at random
from within a parent tetrahedron of unit volume.

Use of more sophisticated computer algebra algo-
rithms is discussed in the monograph of Pistone,
Riccomagno, and Wynn [17], who consider the use
of computational algebra in, for example, issues of
confounding for statistical models arising in exper-
imental design. Let M be a family of polynomial
regression models y = p(x) + ε parameterized by
p(x), which is the corresponding (multivariate) poly-
nomial in x = (x1, . . . , xn). Statistical identifiability
of M corresponds to the question of whether p(x)

and q(x) from M agree on all design points x, and
this is related in turn to questions of computational
algebraic geometry, namely, the theory of Gröbner
basis algorithms. Pistone and Wynn discuss the use
of the Gröbner basis algorithms in Maple and CoCoA
in this and other statistical contexts.

Expansions in statistical asymptotics are notori-
ous for leading to lengthy and laborious calculations.
Andrews and Stafford [2, 3] describe a cooperat-
ing family of Mathematica procedures serving as
tools to perform such expansions. Collectively the
tools provided by Andrews and Stafford provide an
environment which the researcher can use to speak
statistical asymptotics to the computer.

An example of computer algebra in applied proba-
bility is its application to Itô calculus. Recall that Itô
calculus allows one to do calculus with Brownian
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motion instead of smooth functions, thus providing
a flexible means of representing diffusions and other
continuous random processes. The price to be paid for
this flexibility is that the usual fundamental theorem
of calculus, namely,

d

dt
f (t) = f ′(t)

has to be replaced by the celebrated Itô formula,
which takes the following form for Brownian
motion B:

d f (B) = f ′(B) dB + 1

2
f ′′

This leads to complicated formulae, which has moti-
vated a number of workers to program the resulting
structure into a variety of computer algebra packages.
The earliest example is to be found in [12], which
used a REDUCE implementation to solve problems
in the statistical theory of shape. This implemen-
tation can be understood as a formal translation of
the underlying algebra of stochastic differentials into
the computer algebra package. It has been translated
into Mathematica [13] and applied to mathematical
finance problems, as well as to a number of other
research problems.

Further Reading

We have already referred in Table 1 to some books
introducing various computer algebra packages. Other
valuable literature resources for computer algebra
users include a number of critiques and comparisons
of computer algebra systems. These are useful not so
much at the stage of choosing which computer alge-
bra system to use (as indicated above, this is more
likely to be controlled by local availability) but rather
after a certain amount of computer algebra experi-
ence has been gained. It can then be very helpful to
get some insight into the effects of varying design
philosophies, which helps one better understand the
features and strengths of one’s chosen computer alge-
bra system.

Good general introductions to computer algebra
are (naturally enough) specific to particular computer
algebra systems: [9, 10, 18] and the first parts of
[11, 21] all provide very good guidance for beginners
using the respective systems.

Fateman has written an excellent critique of MAC-
SYMA [6], and also of Mathematica [7], which should

be required reading for all serious users of computer
algebra. Comparisons of various systems are to be
found in [8 , 19, 20, 22]. In all these cases, readers
should be aware that, for obvious reasons, the com-
puter algebra systems reviewed are usually not the
versions currently on market.

Finally, discussion of the basic algorithms
employed by computer algebra systems can be found
in [1, 5]. This will be useful particularly for workers
needing to use advanced features such as Gröbner
basis algorithms.
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Computer Architecture
and Organization

Introduction

Computer technology has made amazing progress
since the first general-purpose electronic computer
was created half way through the last century. Today
less than a thousand US dollars will purchase a com-
puter that has more performance, more memory, and
more communication capabilities than a computer
bought in 1980 at a cost of one million US dollars.
This improvement is driven both by advances in the
technology used to build computers and increasingly
by innovations in computer designs harnessing the
tremendous capabilities of integrated circuits.

A computer architecture refers to those parts of
a computer system that are visible to a program-
mer, whereas a computer organization refers to those
operational units and the interconnects, not visible to
the programmer, that realize the architectural speci-
fications. As a simple example, it is an architectural
design issue as to whether or not a computer will
have a multiply instruction. It is an organizational
issue whether that instruction will be implemented by
a special multiply unit or by a mechanism that makes
repeated use of the add unit of the system. The dis-
tinction is important as one can have machines with
the same architecture but different organization. Such
machines will typically have different price and per-
formance characteristics but will be able to run the
same programs – in which case they are said to be
compatible.

The aim here is two-fold: One is to give an
overview of modern computer architectures and their
organization. The second is to outline programming
practices that will lead to efficient use of commonly
available computer systems.

Building Blocks of a Typical Computer

A computer is a complex system containing mil-
lions of electronic components that can interact in
billions of configurations. The key to understanding
and describing such a system is to recognize that most
complex systems, including the computer, possess a
hierarchical structure [11]. With a hierarchical sys-
tem, we need only deal with one particular level at a

time. The behavior at each level depends only on a
simplified, abstracted characterization of the system
at the next lower level. This model is applicable to
both hardware and software design.

At the highest level, we can view the computer as
a system consisting of four components: The central
processing unit (CPU), main memory, input/output
(I/O), and control.

• Central processing unit (CPU): This is the
“brain” of the computer. Its function is to exe-
cute programs by fetching their instructions,
examining them, and then executing them. Exe-
cution of one instruction typically involves load-
ing of data into main memory or adding two
numbers. Distinct components of a CPU are
the arithmetic and logical unit (ALU), which
performs the computer’s data processing func-
tions on integers, floating point unit (FPU),
which takes care of computations on real num-
bers, registers, which provide very fast storage
within the CPU, control unit, and CPU internal
communication.

• Memory: The function of memory units is to
store programs and data for retrieval by the
CPU. Memory can be classified as primary stor-
age and secondary storage. Primary storage,
also known as Random Access Memory (RAM),
is electronic memory that operates at a rela-
tively high speed but requires a power supply to
retain data. Secondary storage, typically mag-
netic disks, tapes, and optical disks (CDs and
DVDs), is mechanical and therefore generally
slower. However, it is significantly cheaper and
also persistent in the sense that data is retained
more or less indefinitely.

• Input/Output: Moves data between the com-
puter and its external environment, for example,
keyboard, mouse, monitor, printer, networks, or
other computers.

• Control: Provides for control and communica-
tion among CPU, memory, and I/O.

Each of these components constitute complex hier-
archies of their own and there may be one or more
of each of them in one computer.

Performance

The components described above each have their
own set of performance characteristics and achieving
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a balanced system in which all components make
comparable contributions to the overall performance
is a complex and delicate task. An overview of the
most important performance issues is given in the
following.

CPU Speed and Moore’s Law

The speed with which a CPU performs its tasks is
normally given as clock frequency, these days mea-
sured in GHz (gigahertz). The clock defines regu-
lar time intervals, clock cycles, used to synchronize
the various subsystems of the CPU. To execute an
instruction, the CPU divides the action to be per-
formed into a series of basic steps such that each
step can be completed in one clock cycle. A clock
frequency of 1 GHz, therefore, means that the proces-
sor can complete one step every nanosecond (10−9 s).
Be aware, though, that the clock frequency is a mea-
sure of the speed of which the processor is capable;
the maximal performance will only be realized if the
data to be processed are available when needed. For
more information on this topic, see below and, for
example, [5, p. 16, 329ff] or [13, pp. 39–56].

Gordon Moore [8] observed as early as 1965
that the number of transistors that could be placed
onto a single chip was doubling every year – a
phenomenon now known as Moore’s law. To the
surprise of many, including Moore, this exponential
pace continued year after year into the subsequent
decades (after 1970, the number of transistors roughly
doubled every 18 months). The consequences of
Moore’s law are that CPU speeds increase due to the
shorter distances between transistors, devices shrink
in size, power and cooling requirements are reduced,
reliability increases with fewer interchip connections,
but the cost of making a single chip remains nearly
constant, which, overall, leads to dramatic reductions
in the costs of computer circuitry. [12, pp. 31–32].

Caching

Clock rates have roughly doubled every 18 months
over the past three decades according to Moore’s law.
However, while processor power has raced ahead
at breakneck speed, other critical components (e.g.
memory, disks, communication speeds) of the com-
puter have not kept up. Consequently, there is a

constant need for performance balance, an adjust-
ment of the computer organization to compensate for
the mismatch among the capabilities of the various
components. Nowhere is the problem created by such
mismatches greater than in the interface between the
processor and main memory (RAM).

While the size of computer memory has increased
according to Moore’s law, the typical storage and
retrieval speed of memory has only increased by
about 10% per year [9, p. 243], leading to an increas-
ing gap between the speed with which the CPU can
process data, and the speed with which the mem-
ory can feed the “monster”. Figure 1 illustrates that
while clock frequencies have increased from kHz to
GHz ranges over the last 30 years, memory access
times have only increased from their speeds in 1970
by a factor of approximately 7% per year to a cou-
ple of hundred MHz. If memory access fails to keep
pace with the processor’s demands, the processor will
stall in a wait state and valuable computational time
is lost. For more details, please consult [5, p. 304] or
[6, pp. 391, 454–460, 501].

It is technologically possible to make memory
that is sufficiently fast to match current clock rates
but such memory is very expensive and must be
located inside (or very close) to the CPU. This puts
a limit on the size of such fast memory. The primary
strategy for dealing with this dilemma is to combine
a small amount of fast memory (called a cache and
pronounced “cash”) with the relatively slow but large
RAM memory.

The basic observation is that memory references
made in any short time interval typically use only a
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small fraction of the total memory. This leads to the
locality principle that is fundamental to all caching
systems. When a piece of data is referenced, the data
and some of its neighbors are brought from slow
memory into the quicker cache so that next time
some, or (even better) all, of them are used, they
can be accessed quickly.

Design issues such as ensuring that cached data
agrees with data in memory, determining optimal
cache size, associativity (where in the cache memory
blocks can go), whether or not to cache instructions
and data separately, are beyond the scope of this
treatise. The message for the programmer is that
good performance requires respect for the locality
principle. It is better to reference elements in an array
consecutively rather than in strides greater than one
or, even worse, randomly. In addition, one should
process a large amount of data block-wise rather than
trying to load all of it and then, naively, work from
one end to the other. The goal of both strategies is to
maximize access to data loaded into the cache before
that data gets replaced.

Most operating systems are designed so that data
in memory, which is not currently in use, may be
temporarily moved to disk in order to free up space.
This process, called swapping, is necessary for the
normal operation of a computer. However, exces-
sive swapping will eventually lead to a phenomenon
called thrashing, which is an undesirable situation in
which the computer spends a large fraction of its time
needlessly moving data around. Although thrashing
rhymes with “caching”, it is extremely detrimental to
performance. A good blocking strategy will not only
make good use of the memory hierarchy but also help
avoid thrashing.

Modern compilers generally scrutinize source code
at compile time to ensure that the executable code
makes good use of the memory hierarchy. However,
it is often necessary to help the compiler in this aspect
by observing the locality principle; see for example
[6, Chapter 5], [12, p. 41], or [13, p. 65] for thorough
discussions of caching.

Memory Hierarchies

No matter how big the main memory is, it is always
too small.

Andrew S Tanenbaum

The caching idea is usually applied at many levels:
External cache memory itself is cached in even faster
memory inside the CPU, which in turn is cached in
registers. Parts of the main memory often serve as
disk cache and the disk, in turn, may cache data from
a web site or external media such as magnetic tapes.
This entire set is known as the memory hierarchy.
At the top, we have the CPU registers, which can
be accessed at full speed. Next comes the cache
memories, internal as well as external to the CPU,
which are currently of the order 32 kB to a few
megabytes. These cache memories are often referred
to as level 1 and level 2 cache, respectively. Main
memory is next with sizes ranging from 64 MB to
tens of gigabytes. This is followed by magnetic disks
and then slower devices such as tapes, CDs, DVDs,
floppy disks, and even the whole internet. Figure 2
illustrates a conceptualized memory hierarchy.

Achieving Performance

Even though today’s computers are capable of per-
forming tasks at unprecedented speeds, there is no
guarantee that this will hold true for any individ-
ual program. In fact, very few programs utilize the
CPU fully and most computers spend their life mov-
ing data around rather than processing it. There are
a few basic rules and pitfalls that, if observed prop-
erly, can increase the performance of a given program
dramatically.

• Make the common case fast: This is perhaps
the most important principle in both hardware
and software design. By favoring the frequent
event over the infrequent event, overall perfor-
mance can be greatly improved. An example
would be to replace a general solver of linear
equations by a faster banded solver in (frequent)
cases where equations have a banded structure;
see, for example, [6, p. 39] for details.

• Observe the locality principle: Work with the
cache memory by accessing data consecutively
and process large amounts of data block-wise
rather than from one end to the other; see for
example [6, pp. 432–433] for examples of both
strategies.
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Figure 2 A typical memory hierarchy. Memory media at the top are fast but expensive. Media at the bottom are slow
and cheap

Parallel Architectures and Distributed
Computing

Increasing clock speeds and making CPUs smarter is
one way of achieving greater performance. However,
at any given point in time, there is a limit to the
performance current technology can achieve for one
processor.

An important improvement is to look for concur-
rency or parallelism where more than one functional
unit is employed in order to exceed the performance
of one unit. Parallelism comes in two general forms:
Instruction-level parallelism and Processor-level par-
allelism. In the former, parallelism is exploited within
individual instructions to yield more instructions per
second out of the machine. In the latter, multiple
CPUs work together on the same problem.

Instruction-level Parallelism

To execute a typical instruction, the CPU goes
through a number of stages:

1. Fetch the instruction
2. Decode the instruction

3. Fetch the operand
4. Execute the instruction
5. Store the result.

Assuming that each stage can be completed in one
clock cycle, the total execution time will take five
clock cycles to complete.

Pipelining is a technique whereby multiple instruc-
tions are overlapped as in an assembly line. Each
stage is carried out by a separate specialized unit
operating in parallel with other units, although on
a different instruction. As an example consider five
instructions: During clock cycle 1, Unit A is fetch-
ing instruction 1, during cycle 2 Unit A is fetching
instruction 2 while Unit B is decoding instruction 1
and so forth. Once the pipeline is full, that is, when
the first instruction has been completed, this scheme
will complete one instruction for every clock cycle
instead of one for every five cycles. Pipelining is
a key method for increasing CPU performance [6,
p. A-2].

A higher degree of concurrency can be achieved
by using multiple pipelines (possibly designed for
specific operations such as floating point instruc-
tions) to fetch and execute several instructions in
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parallel. This is known as superscalar execution and
can provide execution of more than one instruction
per clock cycle. The Pentium family, for example,
employs multiple pipelines [13, p. 52]. Of course,
the execution must preserve the logical correctness of
programs, so extra control hardware and sophisticated
compilers are needed.

Vector processors are specialized to operate on
long arrays of numbers using pipelining [12,
pp. 655–656], [13, pp. 54, 556]. Prominent examples
of vector computers are members of the Cray fam-
ily and the Fujitsu VPP family. Here, the programmer
needs to pay special attention to the time taken to “fill
up” the pipeline (latency) because it can be signifi-
cant in the scheme of things. Fortunately, practices
similar to those for utilizing caching apply: Operate
on long consecutive vectors whenever possible.

Processor-level Parallelism

When multiple CPUs or even multiple computers are
combined to solve a task, we talk about processor-
level parallelism. Each individual processor may (and
typically will) still utilize elements of instruction-
level parallelism as described above.

One way of classifying these architectures is
according to whether the processors have access to
the same memory address space or, alternatively,
each CPU has its own memory but communicates
with others through a (typically high speed) network.
In the former case, we talk about shared memory
machines or multiprocessors while in the latter we
talk about distributed memory machines or multicom-
puters. Examples of shared memory multiprocessors
are the SUN Enterprise, which typically has up to
12 processors sharing a common memory or Pen-
tium PCs with more than one processor. Examples
of distributed memory multicomputers are IBM SP2,
Compaq Alpha, and all configurations of the Beowulf
type. The latter comprises a number of off-the-shelf
PCs connected with a fast network to form a rela-
tively inexpensive parallel computer; see for exam-
ple http://www.beowulf.org for further details.
With shared memory architectures, processors com-
municate by reading and writing to the same memory,
whereas distributed memory architectures rely on
explicit communication (often implemented as mes-
sage passing) for interprocessor communication.

Programming shared memory machines is often
considered easier than programming distributed mem-
ory machines, the reason being that one does not have
to worry about where data is located. However, this is
somewhat deceptive as parallel performance depends
strongly on the spatial location of data. The locality
principle applies here as well – and in the case of
parallel computers, it has to be observed for every
processor. Hamacher et al. [5, pp. 648–653] has a
worked example of a parallel program written for
both paradigms.

Fortunately, the same general guidelines apply to
both parallel architectures and the goal is the same,
namely, to be able to complete a certain task faster
and/or be able to deal with larger problems.

Achieving Parallel Performance

One measure of parallel performance is the speedup
defined as SP = T1/TP , where TP is the time required
to execute a specific task on P processors. The ulti-
mate aim is to be P times faster with P processors,
that is SP = P . However, observed speedup is usu-
ally less than this ideal and any speedup above 0.75P

is considered to be good. One must address three crit-
ical issues to achieve good speedup:

• Interprocessor communication: The amount
and the frequency of communications should be
kept as low as possible in order to minimize the
time processors spend waiting for data. This is
the same theme as that of slow memory access
preventing full utilization of processors, only
much worse in this case due to network speeds
being slower than memory speeds. Each com-
munication has a fixed startup time (latency),
which is independent of the amount of data to
be transferred. Frequent transfers of a number
of small blocks will, therefore, take longer than
transferring all blocks in one bundle. Ensure
that interprocessor communications are as infre-
quent as possible and that processors are busy
between transfers; see, for example, [3, p. 23]
or [6, p. 546] for details.

• Data distribution and load-balancing: The
total execution time of a parallel program is
determined by that of the slowest processor.
If some processors finish much sooner than
others, we say that the program is poorly load-
balanced. Each processor should get its fair
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share of the work load; see, for example, [3,
p. 26] for details.

• Sequential parts of a program: If half of
a program, say, is inherently sequential, the
speedup can never exceed 2 no matter how
well the remaining half is parallelized. This is
a special case of what is known as Amdahl’s
law. Ensure that all the cost intensive parts are
parallelized; see, for example, [3, p. 24], [5,
p. 654] or [6, pp. 40, 537] for details.

Consult [10] for a representative example of how to
analyze parallel performance.

Examples of Parallel Applications

Of particular interest to the readers are the following
examples of the use of parallelism in biostatistics.

• Parallel Inference Machine (PIM) is a mas-
sively parallel controller designed to exe-
cute thousands of control programs concur-
rently and in real time. Several bioinformat-
ics algorithms including Basic Local Align-
ment Search Tool (BLAST) have been imple-
mented on this specialized architecture; see
http://www.paracel.com/faq/faq
algorithm primer.html.

• Apple’s version of BLAST is developed in
collaboration with Genentech and the Stanford
University Genetics Department. It takes advan-
tage of algorithmic improvements, advanced
memory management and the ability of Apple’s
Power PC G4 processor to perform multiple
operations per clock cycle. This is an exam-
ple of how performance can be increased by
writing and tuning software specifically for a
particular computer architecture. However, this
often comes at the expense of portability since
such software rarely performs well (if at all) on
other architectures; see http://developer.
apple.com/hardware/ve/acgresearch.
html.

• Turbogenomic’s Turboblast delivers BLAST
jobs across Beowulf Clusters and other dis-
tributed architectures in parallel; see http://
www.turbogenomics.com/products/
turboblast index.html.

Future Directions

It is difficult to make predictions, especially about
the future.

Robert Storm Petersen

For as long as people have attempted to predict the
future of computer architectures, the view has been
common, that growth of uniprocessor performance
must soon end. Yet as various physical limits were
reached, a new technology or approach would emerge
yielding continued performance growth according to
Moore’s law. However, we may at last be approach-
ing a fundamental limitation of silicon and many
believe that improvements will slow down over the
next 10 to 15 years [6, pp. 528, 648]. In any case, it
is almost certain that parallel architectures will play
an increasing role in the future, both in the form
of tightly knit clusters (such as traditional parallel
computers) and in the form of widely distributed
networks. One important factor is that the avail-
able bandwidth, due to advances of fiber optics, is
now growing even faster than Moore’s law. This
suggests a paradigm shift from a “CPU-centric”
view to one where the network itself is central and
processors are regarded as peripherals; see [4] or
http://www.gildertech.com.

A new initiative dubbed The Grid promises to fun-
damentally change the way we think about and use
computing. This infrastructure would connect multi-
ple regional and national computing grids creating a
universal source of ubiquitous and dependable com-
puting power similar to the electricity and telephone
utilities that have existed for almost a century; see
[2], http://www.gridcomputing.com, or (for a
bioinformatics example) http://www.ncbiogrid.
org.

Other related trends are the emergence of wire-
less interconnects such as Bluetooth (http://www.
bluetooth.com) and the use of small dedicated
(as opposed to general purpose) computers, such as
personal organizers, palmtops, fitness/diving/cycling
computers, global positioning systems, and so on.
Together with grid projects such as Globus, Net-
Solve, Condor, CUMULVS, WebFlow, they promise
to make computing in the future less dependent on
local resources and more universally available. For
more recent thoughts about the future of computer
architectures, see [1], [6, pp. 528, 644–645], or [7].
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Computer Languages and
Programs

Introduction

Computer languages are artificial languages that
enable humans to give instructions to computer
systems. Texts written in these languages are called
computer programs or code. To run a program,
a compiler or interpreter (themselves computer
programs) must translate the program into machine
code, which the hardware is able to execute directly.
It is possible, but nowadays uncommon, to write
programs directly in machine code, or rather in its
mnemonic equivalent, assembly language.

The history of programming languages has seen
the development of languages ever further removed
from the machine code level. Not only is assembly
language difficult to program but also every variety of
computer central processing unit (CPU) has a differ-
ent code. By contrast, modern high-level languages
such as Java [2], Python [16], Matlab [10], and S (see
S-PLUS and S; R) [21], are easier to understand;
each command represents many lines of code in a
lower level language and the code is not dependent
on the CPU.

Classifications of Languages

Languages are classified in several different ways,
such as by their historical development or compu-
tational level, by the sorts of applications for which
they are commonly used, by the style of programming
that they support, and by how they are translated to
the computer’s machine code.

Historical and Computational Level Classification

At one time, it was common to speak of “genera-
tions” of language development, with machine and
assembly language being the first two. At the next
level up, the older style of “high-level” languages,
such as Fortran and C, were third generation or
3GL languages. In subsequent development beyond
such “3GL” languages, any attempt at classifica-
tion according to language generations breaks down;
further development has gone in several different
directions. The advances brought by new language

developments add to human usability, both by com-
pacting major functions from an earlier generation to
a single command in the newer generation and by the
use of more powerful conceptualizations. For com-
plex tasks, the reduction in programming time and
effort can be spectacular, leading at the same time
to programs that are simpler and easier to maintain.
Advances may, additionally, be in complexity of data
structure, in orientation towards specific applications,
in the generation of code from graphical interfaces, in
scripting languages, in systems that allow the integra-
tion of components that may be written in different
languages, in natural language recognition, and in so-
called expert systems.

Classification According to Type of Application

C was attractive to programmers because it allowed
much of the fine control that is available from assem-
bly language. C++ is an extension of C that incor-
porates more modern language design features (see
[2, 8]). C/C++ have found extensive use in writ-
ing compilers for other languages and in writing
operating systems. Java, developed from C++, has
quickly gained a key role in internet applications.
It has well-developed mechanisms for handling com-
puting tasks, including graphics and animation, which
involve multiple networked computers (see Com-
puter Architecture and Organization). For exam-
ple, the S language [3, 21] that is implemented in S-
PLUS and R had in mind, data analysis, graphics (see
Graphical Displays), and related scientific applica-
tions (see Software for Clinical Trials; Software,
Epidemiological). Mathematica [24] was designed as
a language and an environment for handling mathe-
matical tasks, including symbol manipulation. Perl
[15] was designed, initially, for use in system admin-
istration. It has found wide use in text searching and
manipulation.

Programming Style Classification

Perhaps the most insightful classification of lan-
guages is by the style of programming that they
support. A common distinction is between structured,
logical, functional, and object-oriented programming,
with modern languages often incorporating elements
of all these approaches.

In structured programming, a problem is broken
down into a sequence of steps that manipulate the
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input data to produce the desired output. The program
expresses these as commands to the computer, so
that this is an imperative approach. The computer
then runs this set of commands sequentially from
beginning to end. Within this sequence of steps,
discrete subtasks are usually identified and written
into procedures. Hence, this approach is sometimes
called procedural. Fortran and Algol pioneered this
approach in the mid-1950s, and it continues to be in
major use today. Languages that are in this tradition
include Java, Delphi, Python, C, C++, and Fortran;
see [2, 8]. Usually, programs can share procedures
that are located separately from the main program in
a library.

Functional programming takes a different concep-
tual approach, where instead of executing commands,
the program evaluates expressions or functions. Such
languages have found wide use in the writing of
systems for the text processing that is required for
compilers and for the processing of natural languages.
Languages that support this style of programming
include Lisp and Scheme, which is a dialect of Lisp;
see [8] for further details and background. The Emacs
editor, which is popular as an interface to statistical
systems such as S-PLUS and R, is embedded in a
Lisp implementation. Lisp is a mnemonic for “list
processing”; all operations are performed by modify-
ing lists.

Prolog implements logical programming. Like
functional programming, this is declarative rather
than imperative, with a program closely resembling a
logical proof. Both predicate and propositional logic
are included in the language. While mainly used
in artificial intelligence research, applications have
included chemical structure databases (see Chemo-
metrics) [11].

Object-oriented programming has recently come
into prominence. In this approach, models for data
are central. A data object encapsulates knowledge,
both of data attributes and of procedures (methods)
that may be applied to the object. For example, a
“distribution” object may have attributes such as the
number of data points, and the value of each, and
methods to print histograms, estimate density curves,
calculate standard deviations, and so on. The Java and
C++ languages are the best known implementations,
while many others, including S, have incorporated
object-oriented features.

Excel has its own built-in language that allows
its use for quite complex programming tasks. The

key idea here is that of a spreadsheet whose entries
are progressively modified as calculations proceed.
The spreadsheet model is suitable for many simple
accounting and data manipulation tasks, but is easily
pressed beyond its proper limits for use in tasks for
which Python or R or Mathematica would be more
appropriate.

Quite different from any of the languages just
noted are markup languages, of which HTML, XML,
and TeX/LaTeX are well-known examples. These are
texts that are designed to be “read” by a computer
program, which then transforms them in some useful
manner. For example, a web browser is a program
that, among other functions, translates a file of HTML
text into a display showing some portions of the
text, while using other portions as instructions for
layout, fonts, colors, and so on. The interchange
of texts between these different systems can be a
challenge [4].

Computer Translation Classification

The method of translating the language from its
human readable form to a machine-usable form also
varies between languages. There was once a simple
choice between interpreted and compiled languages,
with programs in interpreted languages referred to
as scripts. The general wisdom was that interpreted
languages were useful for small quick jobs, and could
be quick to develop, but that a compiled language
would be best for speed and stability.

When a language is compiled, a program called a
compiler scans the human readable source code, and
translates it into an object file, which the machine
can execute. A pure interpreter, by contrast, does not
preprocess, but scans the script line-by-line, trans-
lating into machine code on the fly. This removes
many of the possibilities of optimization that a com-
piler can use, as well as many opportunities for error
checking. Pure interpreters still exist in UNIX shell
scripting. Compilers, and to some extent, interpreters,
are specific to the particular type of machine or CPU.
Language features may also be specific to particular
types of machines, or to the operating system.

While compiled languages remain more efficient,
the increased speed of computers, and access to seg-
ments of compiled code for computationally inten-
sive tasks, has made this efficiency less important
than earlier. Scripting languages such as Perl and
Python [16] are now used for major applications, and
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especially for web-based applications. Such scripts
can, if necessary, be compiled.

More recently, languages have become hybrids,
with both compiled and interpreted implementations
or with multipass interpretation where code is trans-
lated into an intermediate state. The intermediate state
may be virtual machine code – an approach that was
pioneered in Smalltalk [8] and best known in Java.
In this case, the same code can be used on any
system that has its own virtual machine. A closely
related approach is used in other languages includ-
ing Perl and Python, where the intermediate state is
a parse tree – a representation of the structure of the
whole program in a form that is then executed by an
interpreter. This is sometimes called “compiling”, as
parsing is usually a function of compilers. However,
because no machine code is generated, this usage
is disputed.

Abstract Representations of Problems

A modern view of computer languages is that they
support abstract representations of problems in a form
adapted to computer implementation. Thus, for the
production of a simple form of rhyming dictionary,
we may replace “riming” by “gnimir”, “timing” by
“gnimit”, “liver” by “revil”, and so on. After sort-
ing, we restore the order in which the letters initially
appeared within strings. The use of an abstract rep-
resentation of an array of words is just as crucial
as the procedural abstractions that reverse the order
within words and sort words in a lexicographic order.
All languages support some level of data abstraction,
control abstraction, and procedural abstraction. They
may allow entities that combine two or more of these
basic forms of abstraction. Further detailed discus-
sion of computer languages from this perspective is
beyond the scope of this article.

Nonverbal Communication

Human communication makes extensive use of visual
and tactile signals that supplement spoken language.
Similarly, the point and click mechanisms of window-
ing systems supplement rather than replace keyboard
or spoken language, and will develop into forms of
communication that are richer and more versatile as
yet. Visual programming approaches, where a sym-
bolic visual representation describes the computation,

can reduce the risk of logical errors in the written
code.

Program Design and Implementation

Computer languages are used to construct com-
puter programs. The range of applications is wide –
examples are accounting, inventory management,
maintenance of patient records, medical and other
instrumentation, electronic mailing systems, statisti-
cal analysis, and so on. In these and other applica-
tions, computer programs may be expected to respond
correctly to a huge range of possible inputs.

For simple problems, the writing of a program may
be a straightforward use of computer language skills.
For large and complex computer programs, program
development must be carefully designed and man-
aged. The article on algorithms discusses issues
that are important for the design of individual com-
ponents – functions or subroutines – of a computer
program. The remainder of this section will com-
ment briefly on software engineering issues that are
important for the design and execution of large com-
puter programs.

Steps in a large software engineering project will
include: determination of requirements, construction
of a specification, design of a computer program, and
the writing of code that will implement the design.
There should be careful testing at each step. When
programs demand the combined efforts of a number
of programmers, there must be an effective overall
human management.

There have been spectacular failures that empha-
size the considerable challenge to software designers
and programmers (see Software Reliability, and [9,
13]). Checks in both hardware and software must
ensure that inevitable occasional failure, whether
from human error, from an operator error, or from an
unanticipated interaction between operator and soft-
ware, will not have catastrophic consequences.

Program Design Concepts

Key ways to manage complexity, additional to those
that we have already described, include the use of
encapsulation to hide the information not needed out-
side of the program module or object, the use of
modularity to break programs into separate identifi-
able components, and the use of hierarchy to impose
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a readily intelligible structure on the abstractions
used for describing and implementing the program.
Additionally, reuse of program modules assists doc-
umentation and maintenance, and reduces the burden
of testing. Reuse strategies seem to be a particular
strength of object-oriented programming.

Until the program is complete, no final check is
possible. A prototype, typically an executable pro-
gram shell from which many individual modules are
incomplete or missing, may allow limited early test-
ing. A prototype may be invaluable for helping clarify
user requirements and design issues, in checking
major aspects of program structure, and as an evo-
lutionary step towards the development of the final
product. Efficiency may not be an important consid-
eration at the prototype stage.

Computer Language Use in Statistics

Statisticians have taken an interest in computer
language development since its beginnings in the
1950s [5]. Efforts to bring together a code for
frequently repeated tasks led to the development of
libraries of subroutines or programs. The demand
for coherence and uniformity led to the full-fledged
package in which a master program handled major
aspects of input and output and gave a common
interface to the separate routines. Some packages
quickly developed abilities for looping, branching,
and conditional execution, which match those in, for
example, Fortran. They may have added new features
as occasion demanded, often without adequate regard
to good overall design.

An alternative approach is to begin by develop-
ing a statistical language, then using the language to
implement statistical analysis abilities. Lisp-Stat [20],
which embedded statistical analysis abilities within
the Xlisp dialect of Lisp, was an early example of this
approach. The language S [3, 21], available commer-
cially as S-PLUS (see S-PLUS and S) was designed
and developed as a language for interactive data anal-
ysis and graphics, into which statistical abilities were
then embedded. The R system [6, 17], which is a free
(General Public Licence) implementation of a dialect
of the S language, has become a popular environment
for developing and testing new statistical methods.

Other languages that have been used by
statisticians, and that are now mainly of historical
importance, at least for statistical computing,

include BASIC and APL [1]. BASIC was adapted
to provide an interactive operating, editing, and
programming environment on the first generation
of microcomputers, beginning in 1975. APL (1962)
was characterized by a heavy use of vector and
matrix operators, and severe notational complexity.
APL and BASIC went some way to providing,
in their different ways, demands for an interactive
programming environment in which it was easy
to move between code development and execution.
Much improved responses to these demands are
now available.

Data Analysis as Experimental
Programming

Statistical analysis problems frequently demand sub-
stantial adaptation of the analytical abilities that are
immediately available in statistical software systems.
Additionally, what emerges from earlier stages of an
analysis will typically affect what is done at later
stages. Oldford and Peters [14] describe the interac-
tive programming needed for such tasks as exper-
imental programming, a style of programming that
S-PLUS and R are specifically designed to support.
Depending on what each new computational step
reveals and on what follows on from it, it may or
may not become part of the final analysis.

The best environments for experimental program-
ming link analysis closely with graphical presenta-
tion. Additionally, they automate much of the data
and diagnostic testing that humans find tedious. They
offer powerful and unified ways of conceptualizing
and describing calculations that free the user from
the need to worry about the details of implemen-
tation. Thus, Nelder and Wedderburn’s generalized
linear models [12] brought a large variety of mod-
els together into a common conceptual framework.
The GLIM statistical package combined this concep-
tual framework with the Wilkinson and Rogers syntax
[23] for regression and analysis of variance. The S-
PLUS and R systems provide effective and natural
object-oriented implementations.

Concepts from object-oriented programming can
be important, as in the S language, in simplifying and
unifying the description of the computing tasks. Thus,
the same print and plot and other commands may be
used, with widely differing effects, for a wide variety
of objects – analysis of variance objects, linear model
objects, and so on.
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Experimental programming requires good strate-
gies that will minimize the risk of undetected pro-
gramming errors, allow retracing of steps, and facil-
itate documentation of what has been achieved.

Further Reading

Appleby and Vandekopple [2] give an overview of
computer languages and computer language concepts.
Levenez [8] has links to pages that give a large
amount of information on computer languages. For
program design and software engineering concepts,
see [18]. Wexelblatt [22] is a useful reference for
the history of computer languages; see also [8]. The
article by Lang [7] (see also [19]) is both a critique
of the existing environments for statistical computing
and a proposal for the creation of a new generation
of tools.
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Computer-aided Diagnosis

In the past, a clinician made a diagnosis by sup-
plementing accumulated knowledge with information
from written notes, printouts of diagnostic test results,
and information from the literature, often obtained
by reading medical textbooks and scanning printed
versions of Index Medicus. Though all the neces-
sary information was contained in this paper trail,
a key piece of data could be easily missed. Given the
growth in medical knowledge and the large amount of
clinical data available, clinicians using paper records
find it even more difficult to consider all diagnostic
possibilities, particularly with unusual diseases and
patient presentations.

Changing technology has created new opportuni-
ties for helping the clinician make an accurate diag-
nosis. Most hospitals and many outpatient practices
now use computers for the systematic processing and
storage of clinical data, making information retrieval
more efficient and accurate. Many medical texts are
now available in electronic form, allowing expedient
and robust searches of large quantities of material.
Also, the availability of MEDLINE, the computer-
ized database from which Index Medicus is derived,
allows clinicians to cross-reference medical topics
from 1966 to the present.

Although these electronic systems allow more effi-
cient retrieval of data, processing the information
once it is retrieved usually is still left to the clini-
cian. A clinician traditionally approaches the diagnos-
tic task by compiling available data and developing
a list of one or more diagnostic possibilities in a
list called a differential diagnosis. Elements of this
list are sequentially ruled out on the basis of their
appropriateness to the overall clinical scenario. Diag-
nostic possibilities on this revised list are then tested
and ranked to determine appropriate management for
a patient.

Over the years, computer aids have evolved to
assist with information processing and thus improve
the diagnostic process further. The origin of comp-
uter-aided diagnostic systems often is credited to
Ledley and Lusted [13]. Their 1959 paper described
symbolic logic and probability theory that led to
diagnoses similar to those produced by clinicians’
complex reasoning, though probably without repro-
ducing that reasoning exactly. Since then, there have
been many refinements of the scope, methods, and

capabilities of computer-aided diagnostic systems. In
this chapter, we describe these systems and focus on
their advantages and limitations and present an over-
all evaluation of the role of computer-aided diagnosis
in clinical practice. The systems are

1. Algorithms,
2. Bayesian analysis,
3. Belief networks,
4. Prediction rules,
5. Rule-based systems,
6. Decision trees,
7. Artificial intelligence/Causal reasoning,
8. Neural networks.

In addition to these established methods of com-
puter-aided diagnosis, two emerging technologies
are being developed and analyzed for their role in
computer-aided diagnosis:

9. Microarray technology,
10. Syndromic surveillance.

Algorithms

Algorithmic methods [18] are suitable when a flow
chart can be constructed that represents the logic used
by a clinician to make a diagnosis. To implement the
algorithm, the computer asks the user for information,
processes the information, compares the result to the
criteria at a branch point in the flow chart, selects a
branch, and then moves to the next branch point. This
process continues until a terminal branch is reached
and a decision can be made. For example, an algorith-
mic method has been useful for the diagnosis of acid-
base disorders [3]. In this situation, the user enters
laboratory values, and then answers a series of ques-
tions generated by the computer about the patient’s
clinical condition. When enough information is avail-
able, the computer responds with a diagnosis.

Figure 1 shows a simple algorithm to determine
the nature of a primary acidosis based solely on lab-
oratory parameters. In this example, the computer
would ask the user for the value of the blood pH and
the pCO2. The computer then could make diagnos-
tic suggestions, based on the numerical relationship
between the pCO2 and the HCO3.

In comparison with other decision aids, algorith-
mic methods have the advantage of being under-
stood easily by the user. Because the stepwise design
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pH < 7.4 pCO2 > 40
HCO3 >

3(pCO2 - 40)/10 + 28

HCO3 =
3(pCO2 - 40)/10 + 28

Respiratory acidosis
with metabolic alkalosis

Yes Yes Yes

No No

No

HCO3 < 22 pCO2 >
1.5 HCO3 + 10

pCO2 =
1.5 HCO3 + 8 +/−2

To primary
alkalosis algorithm

Consider
laboratory error

Metabolic acidosis with
respiratory alkalosis

Pure metabolic
acidosis

Combined
respiratory/metabolic

acidosis

Pure respiratory
acidosis

No

Yes Yes

Yes

No

Yes

No

No

Figure 1 An algorithm for diagnosing classifications of acid disorders. On the basis of the results of laboratory parameters,
the algorithm is traversed until an end point is reached. This end point may be a diagnosis, a suggestion to recheck results,
or a recommendation to continue traversing a different algorithm

directly follows the clinician’s logic, the program’s
conclusions can be explained so that the clinician can
understand easily. Algorithmic methods, however, are
not suitable for complex problems. Additionally, clin-
ical diagnoses often involve ambiguous and missing
data, which cannot be processed by the algorith-
mic method.

Bayesian Analysis

Bayesian analysis can partially overcome the prob-
lems created by missing data and uncertain asso-
ciations. Instead of requiring a complete data set
to provide a definitive conclusion, the Bayesian
approach starts with the probability of disease in sim-
ilar patients, and then uses the conditional probability
of a symptom or a test result given the presence of
disease to calculate the probability of disease with a
symptom or a test result. In this approach, the pres-
ence or absence of a clinical finding will not necessar-
ily eliminate a diagnostic possibility from contention,
but may change its probability. The mathematical

relationship can be expressed as follows:

Pr(D|F) = Pr(F |D) × Pr(D)

Pr(F |D) × Pr(D) + Pr(F |not D)
× Pr(not D)

(1)

where Pr(D|F ) is the probability of having disease
D given the presence of a set of findings F ; Pr(D) is
the prior probability of disease D in the population;
Pr(F |D) is the probability of observing a set of
findings F , given the presence of disease D; and
Pr(F |not D) is the probability of observing a set of
findings, F , in a population without disease D (see
Bayes’ Theorem).

The calculation is trivial when dealing with a
disease having only one finding. If a disease D is
associated with many clinically independent findings,

P(F |D) = P(f 1|D) × P(f 2|D) × · · · × P(Fn|D)

(2)

where f 1, f 2, . . . , f n are individual findings of set
F , P(f i|D) is the probability of having finding f i

given that a patient is known to have disease D.
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There are many successful examples of the
Bayesian approach. One involved the diagnosis of
patients presenting with acute abdominal pain in
which the computer accurately diagnosed 279 out of
304 patients, including 84 out of 85 with appendicitis
[9]. The surgeons involved in the study made only
242 correct diagnoses.

There are many limits to the Bayesian approach,
however. Most important is the assumption that all
signs and symptoms are independent – a feature not
typically seen in patient presentations. For instance,
both the presence of fever and elevated white blood
cell count may be predictors for a bacterial infec-
tion. However, the findings of fever and elevated
white blood cell count are often associated despite
the presence of bacterial infection. These two find-
ings, therefore, are not clinically independent and the
Bayesian calculation will be inaccurate. Mathemati-
cally, given the assumption of nonindependence of
findings f 1 and f 2,

P(D|F) �= P(D|f 1) × P(D|f 2) (3)

Secondly, the approach assumes that outcomes are
mutually exclusive, when in fact, patients can present
with multiple disorders. For instance, if the probabil-
ity of bacterial infection is increased by the presence
of an increased white blood cell count, then this prob-
ability would be falsely increased by the presence of
noninfectious causes of an increased white blood cell
count such as leukemia. Thirdly, often the exact con-
ditional probabilities are unknown and subjective
estimations may decrease accuracy.

Belief Networks

Belief networks [6] were devised to address the
Bayesian limitation of conditional nonindependence.
The belief network is a lattice in which nodes are
used to represent symptoms or diseases, and links
among the nodes are structured as a directed graph
in which there is a defined association or causal
relationship between connected nodes. In this lattice
structure, a node representing a disease can “point”
to two independent clinical findings caused directly
by the disease, which in turn can point to one or
more other findings related directly to the first finding
and indirectly related to the original disease entity.
Conditional probabilities in the direction of the graph,
such as the probability of observing a clinical finding

given the presence of disease, are presumed known.
Bayesian-like logic is then used to create a differential
diagnosis by calculating the conditional probabilities
of a set of diseases given a set of symptoms or
clinical findings. The limitation of belief networks
is that they are computationally complex, requiring
exponential growth in the number of calculations
for each additional node. This limitation, however,
is partially mitigated by the use of heuristics and
algorithms that can simplify the calculations of some
structured networks.

To highlight the difference between a Bayesian
approach and a belief network, consider the mathe-
matical relationship between a diagnosis of metastatic
cancer and several known findings such as increased
total serum calcium, brain tumor, coma, and papille-
dema. If each of these findings was considered inde-
pendent of any other finding, the relationship could
be diagrammed as in Figure 2.

The probability of having Disease A in the set-
ting of positive findings B through E would be
based upon the Bayesian formula with Pr(F |A) =
Pr(B|A) × Pr(C|A) × Pr(D|A) × Pr(E|A), where F

is the set of findings such that B = T , C = T , D =
T , E = T .

However, medical experience has shown that the
presence of coma and papilledema may be related
to the presence of a brain tumor, which in turn is
related directly to the presence of metastatic cancer;
so these findings are not conditionally independent.
As a result, coma and papilledema must fall to sec-
ondary positions, related directly to brain tumors and
indirectly to metastatic cancer. Medical experience
also shows that the presence of coma is often related
to increased total serum calcium. The belief network
structure illustrated in Figure 3 reflects these hierar-
chical relationships. With this structure, it is possible
to calculate the probability of having Disease A with

Metastatic cancer
A

B C D E
Increases total
serum calcium

Brain
tumor

Coma Papilledema

Figure 2 A Bayesian approach to determining the likeli-
hood of metastatic cancer given the presence of associated
findings. The structure presumes independence of findings
B through E
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A

D

B C

E

Metastatic cancer

Brain
tumor

Increased total
serum calcium

Coma Papilledema

Pr(A) = 0.001

Pr(B = T   A = T ) = 0.3

Pr(C = T   A = T ) = 0.2

Pr(E = T   C = T ) = 0.4
Pr(E = T   C = F ) = 0.002

Pr(D = T   B = T, C = T ) = 0.1
Pr(D = T   B = T, C = F ) = 0.01
Pr(D = T   B = F, C = T ) = 0.05
Pr(D = T   B = F, C = F ) = 0.00001

Pr(C = T   A = F ) = 0.00005

Pr(B = T   A = F ) = 0.001

Figure 3 A belief network of metastatic cancer with associated clinical findings. In this structure, the disease, metastatic
cancer, is related directly to the finding of brain tumor, which, in turn, influences the presence of coma and papilledema.
Increased total serum calcium is also related directly to metastatic cancer, and, along with brain tumor, may influence the
finding of coma

any combination of associated findings. The calcula-
tion is too complex to be illustrated here [6].

Prediction Rules

Despite the mathematical rigor of Bayesian analysis
and belief networks, studies have shown that medical
experts do not apply this logic. Instead, they often
apply prediction rules, which are simple declarative
statements of the form “if antecedent then conse-
quent”, where the antecedents are one or more patient
characteristics and the consequent is the potential
diagnosis. Patient characteristics can include demo-
graphic characteristics, symptoms, physical examina-
tion findings, or laboratory findings. For example,
the following prediction rule derives from experi-
ence and often is invoked in medicine clinics: “If
the patient has a sore throat associated with fever;
painful, swollen lymph nodes; tonsillar exudates; and
a lack of cough, the diagnosis is more likely strepto-
coccal than viral.” Clinicians do not necessarily know
how predictive this rule may be, but it is often applied
on the basis of the empirical observation that the rule
is frequently true.

With the availability of large clinical databases
and the diffusion of advanced statistical methods
into clinical research, prediction rules are increas-
ingly being created using more sophisticated, math-
ematically based methods. In these approaches, the
statistical analysis identifies which clinical variables

are related to the outcome, and then calculates the
strength of that relationship. Once this information is
known, a rule can be created that contains an added
degree of certainty. For example, several analyses
of patients with sore throats have been done. These
analyses attempted to find a relationship between the
empirically observed findings involving patients with
sore throats. In one such analysis, logistic regres-
sion demonstrated that the strength of the relationship
between each finding and streptococcal sore throat
was about the same [5]. Therefore, the prediction rule
specifies counting how many findings are present and
then comparing the result with the measured proba-
bility of a streptococcal sore throat. If none of the
findings is present, the probability of a streptococcal
sore throat is 2.5%. The probability of streptococcal
sore throat increases when more findings are present:
6.5% with one, 14.8 % with two, 32.0% with three,
and 55.7% with all four.

Although this prediction rule was developed with
logistic regression, a similar rule for determining the
likelihood for a strep throat was developed with dis-
criminant analysis [25]. Using this rule, varying
point scores are given for the presence and degree
of a finding and probabilities are assigned on the
basis of the total score. In fact, many other statis-
tical methods that measure the association between
variables can be used to develop prediction rules,
including such simple methods as contingency tables
and branching algorithms. Because the relationships
among variables are often complex, however, more
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complex methods often are appropriate. The more
common methods used in clinical medicine are ordi-
nary least-squares regression, logistic regression, and
discriminant analysis, although recursive partitioning
methods (see Tree-structured Statistical Methods)
are becoming increasingly popular, and event-history
methods like Cox regression are being applied to
problems that involve predicting the time to an event,
such as death.

Rule-based Systems

Individual prediction rules, both empirically and
mathematically derived, have been grouped together
in rule-based systems to solve diagnostic dilemmas in
a variety of clinical settings [8, 26]. In this approach,
the system stores many rules, sometimes several hun-
dred or more, which are processed by a rule inter-
preter. This interpreter can be designed to work in
a top-down fashion in which a disease of interest
is tested, by attempting to establish the presence of
clinical characteristics known to be linked to the dis-
ease by rules in the knowledge base. The top-down
approach can be useful if a diagnosis needs to be
“ruled-out”. For instance, if the computer were con-
sidering the diagnosis of streptococcal pharyngitis in
a patient with a sore throat, the computer would ask
the user if the clinical characteristics associated with
streptococcal disease were present. If not, the com-
puter would move on to ask other questions looking
for different causes for a sore throat. The advantage
to this method is that it may prompt the clinician to
find additional information necessary to make a diag-
nosis. The disadvantage is that it only considers one
diagnosis at a time, and a possibly correct diagnosis
may be overlooked if the heuristics for identifying
that diagnosis are incomplete.

Alternatively, the rule interpreter can work in a
bottom-up fashion by accumulating all known patient
characteristics and then applying the rules to deter-
mine which diseases can be inferred. The bottom-up
method is useful because it provides a breadth of
diagnostic possibilities, though its main disadvan-
tage is that an incomplete or inaccurate input list of
symptoms or patient characteristics may lead to an
inaccurate differential diagnosis.

Rule-based systems have several advantages. The
rules are modular, declarative statements of medi-
cal knowledge that can be used to explain to a user

the logic involved in reaching a conclusion. This
capability helps the clinician to trust the answer more.
However, medical knowledge is not organized into
discrete rules, and rule-based systems do not neces-
sarily organize medical knowledge into formats that
are intuitive to clinicians. Additionally, the correct
application of a rule depends on the clinical con-
text, and specifying all the possible contexts requires
an exponential growth in the number of rules. Suc-
cessful rule-based systems, therefore, encompass lim-
ited clinical domains. One such example is MYCIN,
which was designed to provide consultative advice on
the diagnosis and therapy of infectious disease [8].

Decision Trees

Decision trees constitute still another approach to
computer-aided diagnosis. Though decision trees do
not provide lists of differential diagnoses, they are
used to choose among diagnostic strategies logically
and consistently.

Decision trees are structures that rigorously define
and link choices and possible outcomes [18]. The tree
consists of a linked series of nodes. At the origin is
a decision node that reflects the diagnostic choices.
Each choice may have one or more intermediate out-
comes, which are represented as chance nodes. These
nodes may connect to deeper elements of the tree that
represent secondary events or further decisions. The
branches of the tree end in terminal nodes that repre-
sent terminal outcomes and are assigned values, usu-
ally based on the clinical importance of the outcome,
the cost of the outcome, or the patient’s preference
for the outcome. Simple calculations based on the
probability of each outcome combined with its value
determine the expected value of making any given
choice. The choice with the highest expected value is
preferred over other choices. Sensitivity analyses can
be performed to determine whether the relationship
among expected values changes when inputs are var-
ied over reasonable ranges. In the decision tree shown
in Figure 4, the label above each branch describes the
action represented by the branch and the label below
the branch describes the probability that the action
will occur.

A common criticism of decision trees is that many
probabilities and values in the trees are not known
with certainty. Often, however, the relative ranking of
expected values for alternative choices can be shown
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Choose

Treat everyone
without testing

Treat those with disease

Treat normals

(Prevalence)

(1 – Prevalence)

(1 – Prevalence)

(1 – Prevalence)

Test, treat only those
with positive results

Do not treat anyone

Patients with disease

(Prevalence)

Patients without disease

Do not treat those with disease

(Prevalence)

Do not treat normals

Outcome 1

Outcome 2

Outcome 3

Outcome 4

Outcome 5

Outcome 6

True positive

(Sensitivity)

(1 – Specificity)

False negative

(1 – Sensitivity)

False positive

(Specificity)

True negative

Outcome 7

Outcome 8

Figure 4 A generalized decision tree for deciding whether to perform a diagnostic test or to give or withhold treatment
without testing. The label above each branch describes the action represented by the branch and the label below the branch
describes the probability that the action will occur

not to change over a wide range of probabilities
and outcome values. Additionally, the construction
of a decision tree and its calculation can be time
consuming. However, the design process may raise
possibilities not considered in a more superficial
approach to the diagnostic process and as a result,
change a diagnostic approach even without a formal
calculation of the decision tree.

Artificial Intelligence/Causal Reasoning

Artificial intelligence (AI) adds a layer of sophis-
tication to computer-assisted diagnosis. These sys-
tems not only contain structured sets of rules and
mathematical relationships, but they are also pro-
grammed with the causal reasoning underlying these
associations and many contain mechanisms for self-
expansion of the system’s knowledge base.

Causal reasoning mimics the thought process of
a clinician and is central to the concept of artificial
intelligence. Although the algorithmic and prediction-
rule approaches depend on quantitative measures,
causal reasoning in medicine is mainly qualitative
[15, 17]. When deciding blood pressure management,
a clinician knows, based on physiological principles,
that increases in cardiac contractility cause the blood

pressure to increase and that relaxation of blood
vessels causes the blood pressure to decrease. The
clinician cannot necessarily predict the precise quan-
tities of these values, but can still manage the patient
appropriately. However, qualitative reasoning makes
it difficult to determine the overall effect of con-
flicting forces. For example, if cardiac contractility
increases and blood vessels relax, the effect on blood
pressure will be uncertain.

Causal reasoning can approach a problem from
different levels of detail [15, 21]. On a superficial
level, interactions can be viewed solely as clinical
observations: “The patient has a fever because he
has an infection.” This explanation may be satisfac-
tory, though other levels of detail are possible if the
problem is viewed as a pathophysiological process.
For example, “The presence of infection causes white
blood cells to release interleukins that stimulate the
hypothalamus to raise body temperature.” The value
of this deeper level of understanding is that it affords
a more refined explanation when requested, and it
allows use of the rule for other relationships that have
a common pathway, for example, other processes
that stimulate release of interleukins and result in
fever. Though the deep level of understanding allows
a more rigorous analysis, separation of the levels
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enables the computer to deal with a more manageable
set of facts and more closely mimic the manner in
which a clinician approaches a problem. For example,
though the relationship between insulin and glucose
balance can be explained through pathophysiological
mechanisms, a clinician can manage diabetes know-
ing only that administering insulin will lower blood
sugar and prevent undesirable complications.

Though artificial intelligence may incorporate rec-
ognized statistical methods, the methods in which
the formulas are applied require modification to
more closely mimic human reasoning. For instance,
a strictly Bayesian approach to causal modeling for
computer-aided diagnoses can be criticized for its
equal weighting of all presenting signs and symp-
toms. In biologic systems, clinical phenomena such
as symptoms and laboratory test results are variably
associated with disease. Additionally, our ability to
measure these phenomena are inexact. A clinician
intuitively considers this variability and uncertainty
when making medical decisions. To more closely
mimic human reasoning, Bayesian models need to
be combined with multivariate analysis to take into
account the intensity, distribution, and validity of a
relationship [4]. Intensity is defined as the expected
change in the effect given the cause. For instance,
how does the likelihood of a diagnosis change as
a laboratory value varies out of the normal range?
Distribution refers to the variability of the inten-
sity across patients. Validity is an assigned value
reflecting the certainty of relationship. Defining these
variables and incorporating them into statistical mod-
els is the challenge of artificial intelligence.

The statistical association between a clinical find-
ing and disease entity is only one part of the hierarchy
within a causal relationship [16]. The relationship
must also have a temporal association. The presence
of a historical finding may be significant only if it
occurs within the correct interval in relation to the
disease. For instance, streptococcal pharyngitis can be
a cause of rheumatic fever, but only if the infection
occurred a few weeks before the onset of rheumatic
fever. Similarly, there must be a functional associ-
ation. For example, diarrhea may be the functional
cause of hypokalemia, but the degree of diarrhea
should match the degree of hypokalemia, or else other
causes need to be considered.

Incorporation of these mathematical methods into
artificial intelligence requires collaboration among
diverse disciplines such as psychology, linguistics,

and the computer and decision sciences. A true arti-
ficial intelligence system would incorporate elements
of human reasoning with an automated ability to
acquire knowledge and exchange information with its
human counterparts naturally. Working examples of
artificial intelligence in the medical field have tested
each of these features individually, with varying suc-
cess, but a complete artificial intelligence system has
yet to be developed.

Neural Networks

Neural networks are computer programs with features
similar to biologic nervous systems. Proponents of
neural networks [1, 7, 14] believe other approaches
to medical diagnosis can never reflect the complexity
of the relationships among symptoms and diseases.
Neural networks utilize complex, nonlinear statistical
methods to form mathematical relationships between
the presence or the absence of clinical findings and
the presence or the absence of disease. Paths in the
computer representation of a neural network are acti-
vated when multiple inputs to nodes reach a certain
threshold, causing the node to “fire”, analogous to a
neuron generating an action potential when a suffi-
cient stimulus is provided. The firing node then stim-
ulates other nodes in the network with a “weight” that
is set through a learning process. The neural network
“learns” by examining a set of patients with known
symptoms and diagnoses. The generated “weights”
are not constant and do not apply to a single clinical
finding. The mathematical structure formed from this
learning set can be applied to a test set of patients
whose diagnoses are unknown.

Technically, neural networks are not true arti-
ficial intelligence because they lack an underlying
causal structure with a deep layer of pathophysio-
logical detail. As a result, a neural network typically
cannot explain to clinicians the reasoning that under-
lies the conclusions the system generates. However,
recent developments have enabled extraction of rules
from neural networks that can address this limita-
tion within a medical domain [11]. Statisticians have
expressed criticism of the mathematical methods that
underlie neural networks [19]. For example, there
is no equivalent of a power calculation to deter-
mine how many patients should be included in the
learning set. Though intuition would suggest that a
larger sample is better, sometimes too large a learn-
ing set, with too little variety, imparts an inability to
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generalize. However, despite these limitations, neu-
ral networks are more accurate than clinicians and
other computer diagnostic aids in their prediction
of some disease states including myocardial infarc-
tion, pulmonary embolism, appendicitis, radiographic
analysis, and the analysis of electrocardiograms.

Microarray Technology

While a significant degree of human disease likely
has a genetic origin, until recently, techniques to
find genetic markers of disease generally have been
limited to diseases caused by point mutations of
single genes. However, the genetic causes of com-
mon diseases such as hypertension, or cancer with
its varied clinical presentation and aggressiveness
is likely related to the interplay of hundreds or
even thousands of genes. Microarray technology is
a recent development within molecular biology that
has enabled simultaneous analysis of thousands of
genes. A microarray is a rectangular grid of small
drops (nanoliters) of genetic material that are bound
to a solid surface, typically glass. Each spot of genetic
material represents a different gene fragment. Since
these drops are less than 250 µm in diameter, literally
thousands of drops can be present on a glass slide
only a few centimeters square. The small scale of
these drops, and the mechanism by which the genetic
material is “printed” on the slide is analogous to the
development of computer microchips in which digital
electronic components have been made progressively
smaller and now etched into a silicon wafer as a
microchip. As a result, these microarray slides are
also known as gene chips [22].

In a microarray experiment, genetic material from
patients (either DNA, mRNA, or cDNA) is labeled
with a fluorescent dye and exposed to the genetic
material on the microarray. On spots where the
patient’s genetic material is complementary to the
genetic material on the slide, the patient’s genetic
material binds to the spot through a process called
hybridization. The fluorescent label of the attached
genetic material imparts a color change to the spot.
Since each spot is so small, and there are thousands of
spots to review, computer controlled lasers are used
to determine the color change of each spot of the
microarray. Genetic material from a patient with a
disease and without a disease can be labeled with
different colored dyes and exposed to a microarray.

Given the genetic similarities of all people, genetic
material from both patients will hybridize to many
of the same spots on the microarray. However, some
spots will only bind the genetic material from the dis-
eased patient, while other spots will bind the material
from the unaffected patient. As a result, the presence
of a genetic disease can be assessed by observing pat-
terns of colored spots on a microarray slide when the
slide is exposed to a patient’s genetic material. It is
not necessary a priori to fully understand the function
of the genetic material in each spot of the microarray.
Rather, a determination that the pattern of colored
spots is similar to that of a diseased individual sug-
gests that a genetic disease is present. When areas of
differential coloring are discovered between affected
and unaffected individuals, the genetic material asso-
ciated with those spots can be examined in more
detail, thereby helping to focus attention on an area
of the genome likely to be associated with disease.

Each microarray experiment generates a large data
set with thousands of numbers that represent the
degree to which each spot of genetic fragments
is complementary to the patient’s genetic material.
Cluster analysis is a common technique used to dis-
cover the pattern of coloring that is associated with
disease [22]. The computer is provided a training
set of data, and it attempts to find patterns of num-
bers that are differentially associated with disease and
nondisease states.

When samples are compared, the distinguishing
characteristic does not necessarily have to be the pres-
ence or the absence of disease. Microarray analysis
can compare genetic samples from patients with the
same disease but different levels of aggressiveness
or response to treatment. These comparisons might
provide a more accurate prognosis or suggest an indi-
vidualized treatment that is based on the individual’s
genetic characteristics.

Syndromic Surveillance

For years, technical and administrative systems have
been in place, which detect outbreaks of common
diseases such as the flu or chicken pox (see Surveil-
lance of Diseases). In general, these systems have
been used to direct resources to areas of need as
soon as possible after an outbreak occurs. For exam-
ple, a growing flu epidemic in a region may help to
focus resources on ensuring immunological protec-
tion of as-yet-unaffected individuals. These systems
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depend on the voluntary reporting of occurrences
of symptoms that are consistent with a disease and
the submission of patient specimens for more for-
mal analysis. With the acts of bioterrorism of late
2001, it has become increasingly apparent that sim-
ilar systems need to be implemented that can detect
smaller outbreaks of more lethal diseases at an earlier
stage when the condition may be more treatable and
fewer people have been affected [23]. The difficulty
with a practical implementation of such a system is
that the early stages of a bioterrorism agent exposure
may masquerade as a serious form of a more benign
condition such as a “bad” flu or rash. On any given
day, a large number of patients present to primary
care offices and emergency departments with these
symptoms, so it can be difficult to detect the signal
of a few patients presenting with symptoms caused
by a bioterrorism agent. Syndromic surveillance is
the term used to describe the automated data collec-
tion and analysis necessary to detect disease caused
by bioterrorism agents and changes in the rates of
other diseases.

This automated process is currently infeasible in
most parts of the country where clinical findings
are recorded on paper. However, where electronic
medical records exist in ambulatory medical clin-
ics and emergency departments, clinical information
systems can transmit instantaneously and automati-
cally a presenting patient’s chief complaint, assigned
diagnosis, and laboratory information to central pro-
cessing computers. These central computers integrate
data both regionally and nationally. Analysis of this
data using spatial cluster detection methods, recur-
sive least squares(RLS) and probabilistic inference
techniques may reveal otherwise unrecognized pat-
terns of disease occurrence that could alert public
health officials about exposure to a bioterrorism agent
[12]. One example of a syndromic surveillance sys-
tem is the real-time outbreak and disease surveillance
(RODS) system that was developed at the University
of Pittsburgh and implemented at the 10 emergency
departments and 20 acute care facilities compris-
ing the University of Utah Health Sciences Center
and Intermountain Health Care during the Winter
Olympics in 2002 [10, 24].

Evaluation of Computer Diagnostic Aids

Evaluation of computer-assisted diagnostic systems
has been inconsistent. While current studies of neural

networks show levels of accuracy in the 90% range,
many older studies showed bias in case selection and
counted the computer’s differential diagnosis as cor-
rect even if the true diagnosis was assigned a low
probability [20]. A more recent study [2] compared
the performance of four differential diagnosis pro-
grams chosen for their relatively common use and
the breadth of information they covered. In this study,
105 cases were chosen from actual clinic experiences
because they were diagnostically challenging and the
diagnoses were known with certainty. The clinical
findings were entered into the diagnostic programs
and the resulting differential diagnoses were analyzed
on several objective and subjective scales. Objec-
tive measures of success included the presence of
the actual diagnosis anywhere on the list of differen-
tial diagnoses, the presence of the diagnosis within
the top 10 diagnoses, and the mere presence of the
diagnosis within the program’s knowledge base. Sub-
jective measures of success included the relevance of
the top 20 diagnoses, which were defined as diag-
noses that were on a clinician’s differential diagnosis,
but were nonetheless incorrect, and additional diag-
noses that were considered relevant, but not included
on the clinicians’ original differential. The correct
diagnosis score, representing the presence of the cor-
rect diagnosis anywhere on the list, ranged from 52 to
71%. Only 37 to 44% of correct diagnosis appeared
within the top 10 most likely diagnoses. The num-
ber of additional diagnoses found by the programs
that seemed relevant, but were not, on the clinician’s
original differential ranged from 1.8 to 2.3.

To make correct and relevant diagnoses, the com-
puter diagnostic aid requires a clinician to be certain
of the clinical findings that are entered. These findings
may range from answers to simple historical ques-
tions to results of invasive and expensive tests. Ide-
ally, all results can be known and the values are accu-
rate. In reality, this is not true. For instance, the differ-
ential diagnosis of abdominal pain is quite broad, and
a specific diagnosis, such as appendicitis, depends on
correctly identifying the presence or absence of pre-
senting signs and symptoms. Signs and symptoms are
inherently subjective. Is the patient’s pain severe, or
does he have a low pain tolerance? Does the patient
have a firm abdominal wall, or is there localized ten-
derness? Are bowel sounds hypoactive, or is this a
normal finding for this patient? Even laboratory stud-
ies are not definitive. Is the patient’s white blood cell
count “normal” for the patient despite it being outside
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the usual range? The computer diagnostic aid cannot
make these distinctions.

Whatever the analytical technique used by a com-
puter diagnostic aid, if a clinician enters the presence
of irrelevant signs or symptoms into a diagnostic pro-
gram, the program cannot rank elements of the exten-
sive differential diagnosis effectively. If important
findings are inappropriately omitted, then important
diagnoses will be missed.

Lastly, the knowledge base of the system must
be considered. Most successful systems encompass
a narrow domain of medicine. A complete medical
knowledge base must have not only the presenting
signs, symptoms, and special study results associated
with disease, but also be aware of the complex inter-
relationships among diseases. The breadth and depth
of medicine make this a difficult task even for a
seasoned clinician. As with clinicians, the computer-
aided diagnostic program can only be as knowledge-
able as its knowledge base allows.

These limitations of computer diagnostic decision
aids suggest that current technology does not allow
them to substitute for expert clinical judgment. There-
fore, there is ongoing work to establish appropriate
contexts in which these tools can be used. In a gen-
eral medicine setting, the true diagnosis was not
always at the top of the differential diagnosis list,
but computer aids identified an average of two rele-
vant diagnoses missed by an expert clinician [2]. This
result suggests that sometimes the computer would
have motivated a clinician to alter a diagnostic work
up strategy, and possibly improve patient outcomes.
The value of these diagnostic aids would be differ-
ent in a subspecialty or general surgery clinic. There
is the possibility that they might be most useful in
situations where the clinician has less training or
experience. For instance, a decision aid could be used
by a school nurse when deciding whether a child has
a benign condition and can be kept at school or has a
more serious condition and should be sent to a doc-
tor’s office or an emergency room.

Though there has been much attention directed
at comprehensive diagnostic aids, many successful
diagnostic aids are used in an appropriately nar-
row domain. Computers have demonstrated accuracy
in EKG interpretation, rheumatologic diagnosis, and
the classification of patients with chest pain. Out-
comes are presumed to be improved with the use
of these tools, though this has not been demonstrated
rigorously.

Because they formalize the logic used by clini-
cians, diagnostic aids can help standardize the prac-
tice of medicine. For example, computer-assisted
diagnostic aids are being used to develop clinical
guidelines and critical care pathways. Also, a clin-
ician using the diagnostic aid may benefit because
the aid may suggest an unfamiliar diagnosis and thus
redirect the clinician’s line of questioning or lead to
a special study. The value of this potential benefit is
difficult to quantify or evaluate.

The realization of these possibilities and limita-
tions has changed the roles for computer-aided diag-
nostic systems. The fabled model based on the Greek
Oracle in which a computer substituted for the clini-
cal judgment of a clinician has been discarded. Many
analysts now believe that a diagnostic system should
be supportive, not authoritative. In the future, the
appropriate clinical contexts for these systems will be
identified. Improvements in technology should enable
clinicians to engage these systems more naturally and
enable knowledge bases to grow at the same rate as
medical knowledge. In this manner, clinicians will
retain their central role in the diagnosis and care
of patients with the computer diagnostic aid as a
resource for difficult diagnostic dilemmas.
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Computer-assisted
Interviewing

Computer-assisted Interviewing (CAI) is a term that
describes the use of a computer to aid the interview
process in a survey data collection. The computer
generally presents the question text on the screen,
along with the allowable response categories, and
the interviewer or respondent records the answers
directly into the computer. The computer can also be
used to undertake various forms of processing at the
time of the interview, and it can facilitate electronic
data transfer.

CAI is an alternative methodology to traditional
paper and pencil interviewing (PAPI), and it has many
advantages to offer the researcher over the paper-
based approach. The advantages and disadvantages
of CAI relative to PAPI are discussed briefly below,
with the emphasis on the most commonly occurring
situation where interviews are conducted between an
interviewer and respondents.

Variations

There are several variations in the way CAI can
be administered. The most commonly known form
is computer-assisted telephone interviewing (CATI)
where the interview is conducted over the telephone.
CATI is good for shorter, simpler surveys, as it can be
more difficult to maintain rapport with the respondent
over the telephone and respondent fatigue can occur
more quickly [6]. CATI is most commonly conducted
in a centralized environment, but there are also signif-
icant decentralized applications [2]. Centralized CATI
offers certain benefits not available in a decentralized
environment, such as automated call scheduling and
more timely monitoring capabilities.

Computer-assisted personal interviewing (CAPI)
is another variation of CAI. This involves the conduct
of face-to-face interviews between the interviewer
and respondents. CAPI is good for longer or more
complex topics where it is more difficult to maintain
respondent cooperation. A distinct advantage of CAPI
is that visual aids can be used (e.g. prompt cards), and
respondents can complete any associated paperwork
(e.g. consent forms). CAPI, by its nature, is usually
conducted as a decentralized operation.

A further variation is computer-assisted self-
interviewing (CASI) where the respondent completes
the survey instrument for him/herself. CASI has
numerous applications. One example is in health
research where a respondent can sit down at a com-
puter and complete a simple diagnostic questionnaire.
Another is in surveys of businesses where the instru-
ment can be emailed or sent on floppy disk for com-
pletion. Other less common types of CASI include
the use of telephone touchtone or voice recognition
software [10]. If CASI is used, it is essential that
the instrument provide adequate guides to respon-
dents and that respondents have some basic com-
puter skills.

Advantages

CAI provides greater scope for surveys to deal with
issues in depth and to target specific subgroups in
the population. This is because the complexity of
determining the next relevant question sequence or
identifying subgroups can be managed quickly and
reliably by the computer program. This is not only
an advantage for data quality through such things as
lower item nonresponse, more consistent response,
and so on, but it is also a cost-saving measure, as
fewer interviewer errors will need to be corrected in
the office. In a large-scale survey operations environ-
ment, several CAI surveys can be loaded onto the
computer at one time for accurate and efficient enu-
meration in the field.

CAI enables the researcher to tailor the wording
of questions based on information collected earlier
in the instrument (e.g. inserting names into relevant
questions about family members, using the name of a
medication in questions about treatment for a health
condition, etc.). This helps make the survey more spe-
cific and personalized, and this in turn aids respondent
comprehension and rapport [10]. In addition, other
information already known about the respondent can
be used to assist with the interview (this practice is
known as dependent interviewing). This is particu-
larly useful in longitudinal surveys where information
gathered in earlier interviews or from other sources
(e.g. long-term health conditions, episodes in hos-
pital, etc.) can be used in subsequent interviews.
Another example is for monitoring change over time
and responding appropriately when change occurs.

Processing time and costs can be reduced signifi-
cantly with CAI because the data is in an electronic
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format as soon as the survey is completed. Data in
that format can be transmitted and loaded into the
processing system within hours, compared to days
or weeks for paper systems, where the forms have
to be mailed and the data entered using data entry
facilities. CAI also offers the facility of programming
simple edits and consistency checks into the instru-
ment, yielding further savings in processing time
because some of the checking work is done while
the interview is being carried out in the field. Field
edits also provide for increased data quality, as any
data conflicts can be reconciled immediately with the
respondent.

Another distinct advantage offered by CAI is
the ability to assist the interviewer to code com-
plex responses directly into the computer, rather than
recording the answers verbatim and coding them
later. A number of alternative coding methods are
available, ranging from a simple pick list (shown on
the screen) to more sophisticated coding tools that
guide the selection of an appropriate code according
to prespecified rules and which require only a few
letters to be typed. This not only reduces the costs of
office coding, it also allows for greater data quality
[4, 6]. A good example of this is an item like coun-
try of birth, where numerous responses are possible.
With a coding tool, the interviewer can code the item
in the field while still having access to the respondent,
if there is a problem coding a particular response.

CAI also provides some secondary benefits, as
the computer can be used for purposes other than
just interviewing. For example, the interviewers can
be given access to email or news from the office,
training, and documentation can be provided electron-
ically, and the computer can be used for other survey
tasks such as coding of previously entered data. Sam-
ple management and cost monitoring tasks can also
be timelier and less onerous in a CAI environment.

Disadvantages

The most obvious disadvantage of CAI relative to
PAPI is the initial cost of setting up. There is a large
capital investment involved whether you invest in
personal computers linked on a network, or individ-
ual laptop, or handheld computers (for decentralized
interviewing). Indeed, the equipment costs can be so
large that despite the many efficiencies of CAI out-
lined above, CAI can be more expensive than PAPI

overall. CAI is most suitable for an environment
where the cost of the equipment can be amortized
over a number of surveys.

CAI generally requires more time and effort to
develop and test the survey instrument and associ-
ated field systems prior to the start of fieldwork.
Indeed, the total time taken from the start of the sur-
vey to the analysis stage is not necessarily any shorter
for CAI, especially for one-off surveys. For instance,
CAI requires more rigorous validation processes to
check the instrument [1, 8], as it is most important for
the CAI instrument to be error-free (as far as possi-
ble) in the field because of the relative inflexibility of
CAI for dealing with problems or unusual situations.
A good example to illustrate the validation issue
is questions with multiple response categories. In a
PAPI questionnaire, it is easy to see at a glance that
all the response categories are sequenced appropri-
ately. However, in a CAI instrument, it is necessary
to check the detailed computer code (a method that
can be error prone), or to physically select each pos-
sible response category when testing the instrument
to ensure that all sequencing is correct. Training for
CAI is more complex than for PAPI, as interview-
ers require basic computer skills in addition to an
understanding of the survey instrument. Training may
consequently take longer and be more expensive [7].
As an aid to testing interviewer instructions, as well
as the effectiveness of CAI instrument layout and
design, and the associated field systems, usability
testing has gained prominence in recent years. Usabil-
ity testing focuses on the interviewer’s interaction
with the survey instrument and CAI systems, and
generally involves people being observed in a con-
trolled “laboratory” setting as they use the computer
systems. Usability testing is effective in identifying
serious and recurring usability problems [5]. As a
related training issue, there is also a need to support
the CAI technology, both hardware and software, in
the field.

Decentralized CAI has the added difficulty of
transferring survey instruments to interviewers in the
field and the collected responses back to the office.
There are several methods available to transfer sur-
vey instruments and collected records. One is to make
the transfer completely electronic using a fax/modem.
With this approach, it is wise to set up an elec-
tronic despatch and receipt system to ensure that
the collection operations can be suitably managed.
Another method is to send floppy disks through the
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post. Both these methods (electronic transmission and
mailing floppy disks) have security implications for
the confidentiality of the survey results. There are
good software solutions that make use of passwords
and encryption to deal with these security problems,
both on the computers and during transmission, but
they can add further complexity and costs to a survey.
An alternative is to have the interviewers bring the
computers to an office to have the information loaded
and downloaded, but this method is only really fea-
sible if the interviewers are relatively close to the
central location.

The use of computers also introduces occupational
health and safety issues for the management of an
interviewer work force. With centralized CAI, there
are issues of time spent keying, and for field inter-
viewers, there are issues of the size, weight, visibility,
and positioning of equipment, which need to be dealt
with [10]. Such issues may increase costs and/or
restrict the kind of equipment that can be used. These
issues may even have an impact on nonresponse (e.g.
interviews standing at the doorstep are considerably
more difficult to conduct with CAI).

CAI is generally best conducted with software
specifically developed for that purpose. There are
clearly costs associated with the purchase of the soft-
ware that must be considered, but software can also
have limitations that may restrict the flexibility of the
questionnaire design. When interviewers first see the
computer screen, they should be drawn immediately
to the key features needed for successful delivery of
questions and accurate recording of responses [3]. To
do so requires consistent design, visual discrimination
among the different elements (e.g. questions, inter-
viewer’s instructions, response categories, navigation
tools, etc.), adherence to normal reading behavior (i.e.
starting in the upper left-hand corner) and removal
of unnecessary information or display features that
distract from the task (i.e. clean screen designs with
more “white” space). Software should also cater for
emerging CAI “best practice” relating to font size and
color, line length and spacing, word emphasis, and so
on. [3, 9]. The software chosen to write the survey
instrument should also ideally be compatible with the
survey processing system in order to realize the full
benefits of reduced processing costs [6].

An additional disadvantage of CAI software is that
it is often unable to produce a suitable paper version
of the instrument that includes all the functionality
that can be programmed in the software. This can be

a particular problem when dealing with people who
want to understand the question sequencing and data
item derivations.

Related Topics

There are other computer-assisted methodologies
used in processing surveys. One is computer-assisted
coding (CAC). CAC is similar to an autocoder in
a CAI instrument, but it is generally used for more
complex coding operations by specialist coders after
the main enumeration. Applications for this could
include such things as coding of a respondent’s
medical conditions, medications taken, or possibly
their dietary intake.

Another computer-assisted methodology for pro-
cessing surveys is computer-assisted data input
(CADI). CADI is a sophisticated form of data entry
whereby on-line edits (e.g. logical and range edits)
are applied to the instrument as the data is keyed in.
Once the instrument is keyed, the data is internally
consistent, thus obviating the need for batch edits
checking the internal consistency of forms. Batch
edits are only required for checking across forms.
Another advantage to CADI is that a CAC can be
embedded, thus reducing the costs involved in office
coding.
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Computer-intensive
Methods

One sense of “computer-intensive” statistics is just
statistical methodology that makes use of a large
amount of computer time. (Examples include the
bootstrap, jackknife, smoothing, image analysis,
and many uses of the EM algorithm.) However, the
term is usually used for methods which go beyond the
minimum of calculations needed for an illuminating
analysis, for example by replacing analytic approxi-
mations by computational ones, or requiring numeric
optimization or integration over high-dimensional
spaces. We introduce the subject by a very simple
yet useful example, and then consider some of the
areas in which computer-intensive methods are used,
to give a flavor of current research.

A Simple Example

Let us examine the idea of a Monte Carlo test
(see, for example, [60]). Suppose that we have a
test statistic T , large values of which indicate a
departure from a simple null hypothesis. The tra-
ditional analysis is to report either the P value
p = Pr(T > Tobs) or whether p falls into one of
the conventional ranges. However, to compute p we
do need to know the distribution of T under the
null hypothesis. Traditionally, either T was chosen
because its exact distribution was tractable, or some
large-sample approximation was used, perhaps a nor-
mal distribution.

The Monte Carlo test depends on our being able
to simulate under the null hypothesis; for each of
m replications we generate some artificial data from
the null hypothesis and compute the value Ti of
the test statistic. One idea is to use the empirical
distribution of the Ti as an approximation to the
null-hypothesis distribution of T ; that is, to com-
pute p̂ = #{i : Ti > Tobs}/m. However, Monte Carlo
tests use a clever variation. If the null hypothesis is
true, we have not m but m + 1 samples from the
null hypothesis, the T1, . . . , Tm that we generated
plus T itself. A simple counting argument shows
that

Pr(T is amongst the r largest) = r

(m + 1)
.

Thus, we can obtain an exact 5% test by taking r = 1,
m = 19 or r = 5, m = 99 or r = 25, m = 499, . . ..

When Monte Carlo tests were first proposed by
Barnard [4] in 1963, they would have been rather
slow to compute, and needed extensive programming.
When the idea was rediscovered in 1975 for some
problems in spatial statistics (see [59]), increased
computing power had made Monte Carlo tests much
more attractive, although the choice of m was still
severely limited by computing resources. Eventually
good analytic approximations were found for those
test statistics under the simpler null hypotheses, but
they are hardly ever used, as it has become easy to
use the exact Monte Carlo test.

This example has many of the key features of
computer-intensive methods: it makes use of a simple
calculation repeated many times, it relaxes the dis-
tributional assumptions needed for analytical results,
and it is in principle exact given an infinite amount of
computation. Rather than considering large amounts
of data, we consider large amounts of computation,
as the ratio of cost of computation to data collection
is continually falling.

It is also important that it allows us to avoid
asymptotics. Large-sample results are only useful
in practice by providing an approximate distribu-
tion theory (see Large-sample Theory). In the
spatial-statistics context there are “several ways to
infinity” [61]–that is, several possible asymptotic
regimes–and it is only possible to find good enough
approximations by combining leading terms from
all of them. When we consider neural networks
below, we will see that it is common to increase the
complexity of the model with the amount of data
to hand, so large-sample results are never appro-
priate (and in the real world models are always
false).

Graphics

A considerable amount of computer power is used
to plot or print graphs, and even more is needed
for dynamic graphics; for example, to rotate views
of data, interactively change the bin size of a his-
togram, or highlight or identify points (see Graphical
Displays). We now take this for granted (although
systems to do this are described later, in the section
on Programming Environments). As computer power
grows, researchers are exploring ways in which to
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compute large numbers of views and let the soft-
ware arrange the “interesting” ones to show to
the user.

The Trellis system (see Becker et al. [7]; this
is now part of S-PLUS [45]) is based on present-
ing graphical summaries of many “slices” of the
data in a systematic way. Asimov’s grand tour [3,
18] shows the user a continually rotating series of
views (projections) of multidimensional data of real-
valued variates, but with four or more variables
it is almost impossible for the user to screen the
series for interesting views. (See the discussion in
[38].) Projection pursuit [17, 18, 25, 26, 38, 39,
42, 43] replaces human inspection by optimizing
(locally) the “interestingness” of a view. Sometimes
the results can be frustrating, but at other times very
interesting structures are revealed (see, for example,
[64]).

Simulation-Based Approaches

A reductio ad absurdum view of statistical methods
is that they reduce to either the optimization or the
integration of some function, with Bayesian meth-
ods majoring on integration. For reasonably realistic
models the integration is often (extremely) computer-
intensive. (Evans & Swartz [23] review analytical as
well as Monte Carlo methods to approximate inte-
grals in statistics.)

Simulation provides a very simple way to perform
an integration such as φ = Ef (X). Just generate m

examples, X1, . . . , Xm, from the distribution of X and
report the average of f (Xi). It is not usually a good
way to find an accurate estimate of φ, for the cen-
tral limit theorem (if applicable) suggests that the
average error decreases at a rate 1/

√
m. For smooth

functions in a small number of dimensions, numerical
quadrature can do better, and in a moderate number
of dimensions it may be better to use nonindependent
samples Xi , the so-called quasi-Monte Carlo method
[24, 50, 60, 66, 67].

In many statistical applications we do not need
to know the integral φ at all accurately; in the
Monte Carlo test a significance level of 5% is some-
where between, perhaps, 1% and 10%. Thus, in
many cases, simulation is a good choice for approxi-
mate integration. Remember that a simulation exper-
iment is an experiment, and there are a number
of techniques [60, 23] to design and analyze it to

obtain maximum precision for the computer time
spent.

Markov Chain Monte Carlo

The simulation-based methods are of course only
easy if we have a simple way to simulate from the
assumed model. In highly structured situations we
can find that everything depends on everything else.
This was first encountered in statistical physics [46]
and spatial statistics [30, 59]. Those authors devised
iterative algorithms that only used the conditional dis-
tributions of small groups of random variables given
the rest. As successive samples are not independent
but form a Markov chain (on a very large state
space), these methods are known as MCMC, short
for Markov Chain Monte Carlo.

The same ideas were taken up for hierarchical
Bayesian models by Gelfand & Smith [28, 29] some
years later, under the name of Gibbs sampling (pre-
cisely the algorithm published in 1977 [59] and 1984
[30], and in the Bayesian context by Pearl [51] in
1987), and the earlier work and many of its lessons
have been overlooked. In particular, although the
algorithms are guaranteed to converge under mild
conditions, that convergence can be far too slow to
be useful without clever design, and possibly even
then; see [65].

Recent reviews of MCMC from several view-
points are given in [9], [33], [35], and [75].

Simulated Annealing

Simulation can also be used to do optimization! Most
optimization methods can only find a local optimum
of a function f on a domain X, and can have great
difficulty in combinatorial optimization problems (in
which some of the components of X are categories
rather than numbers).

Suppose that we want to minimize f , and we
know f ≥ 0. Consider drawing samples Xi from
a distribution over X with density proportional to
exp[−f (x)/T ] for T > 0. As we increase T , the dis-
tribution becomes more and more concentrated on
the region in which f (x) is near its global mini-
mum. Suppose that we run an MCMC simulation and
decrease T ; we might hope that the sample at time
N converges to a global minimum. This idea was
suggested by Pincus [55, 56], but was rediscovered
and used by Kirkpatrick et al. [41] under the name of
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simulated annealing. The idea that the sample might
converge proved to be too optimistic in practice (con-
vergence occurs at rate 1/ log N ). Aarts & Korst [1]
discuss the theory, and Cantoni [15] provides some
useful results on how to vary T if a bounded amount
of computing is to be used.

Despite the lack of a convincing theory, simulated
annealing has been widely used in large-scale opti-
mization problems. Perhaps the most familiar appli-
cation in statistics is to the segmentation of noisy
images [8, 30, 61].

There are a number of other ways in which to use
simulation to approximate maximum likelihood esti-
mates using MCMC; for example, in spatial statistics
by Pentinnen [53] and Ripley [61] and in genetics by
Geyer [33, 34]).

Relaxing Linearity

One major use of computer-intensive methods has
taken place largely outside statistics, in a drive to
relax linearity and use much more complex models.
In 1993, Ripley [62] wrote about neural networks that

Their pervasiveness means that they can not be
ignored. In one way their success is a warning to
statisticians who have worked in a simply-structured
linear world for too long.

The extent of nonlinearity which is not just being
contemplated, but is being built into consumer hard-
ware, goes far beyond nonlinear regression in the
sense of, for example, [5].

The most influential developments have been in
decision trees (see Computer-aided Diagnosis) [13,
57, 64], Bayesian networks [2, 27, 36, 37, 49, 52, 64,
68], and neural networks [10, 62–64]. The emphasis
in the first and last is on good prediction, and the
complexity of the models which are built is normally
limited only by the amount of data to hand, even
when this is 104 or more samples.

Selecting and Combining Models

Another way in which a large amount of computer
power has been harnessed is to consider a very large
number of models. We should distinguish two uses of
statistical models, for explanation and for prediction.
Although statistical training has usually emphasized

explanation, that the purpose of the analysis is to dis-
cover structure in the data set to hand, in many other
fields the emphasis is entirely on prediction. Even in a
field such as medical diagnosis (see Decision Analy-
sis in Diagnosis and Treatment Choice), in which it
is helpful to be able to explain the basis of the diagno-
sis (and this is the aim of work in Bayesian networks),
it would be useful to have an accurate diagnosis sys-
tem without explanation. And for a voice recognition
system, to read vehicle license plates, for biometric
security checking, and so on, all that is required is
accuracy and perhaps speed.

This suggests that for prediction we should either
choose a model on the basis of its predictions, or
even choose to combine the predictions from sev-
eral models. The traditional way to proceed was to
divide the data into training, validation, and test sets.
The training set is used to optimize the parameters
in each of the candidate models, the validation set
to choose the best one (or combination), and the test
set to estimate the performance of the selected pre-
diction method (necessary as the performance on the
validation set will be an optimistic measure of future
performance)

Rarely will we have enough data to afford separate
training, validation, and test sets, and in many prob-
lems increasing the size of the training set will result
in a significant gain in performance. Enter K-fold
cross-validation, in which the data set is divided into
K sections of roughly equal size, and each section
in turn is used as the validation set for the candi-
date models trained on the rest of the data. When
all K fits are done, we have used the whole data set
as a validation set, and can choose the best model
(or combination). To assess the future performance
we also have to take into account the variability of
the selection procedure, so we nest the K-fold cross-
validation inside a V -fold split into training set and
training/validation set. Typically, K and V will be
chosen of the order of ten, so each model is fitted of
the order of 100 times, and it is not uncommon to
entertain 25 models. The procedure rapidly becomes
computer-intensive, but only by repeating a simple
building block (fit a model on one data set, predict
on another) many times. Such procedures can easily
be done in parallel, or on separate machines.

The idea of using a weighted average Σiwifi(x)

of the predictions for all the candidate models goes
back at least to Stone [71], and arises from Bayesian
theory if we believe that one of the models is true,
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but do not know which one. In the Bayesian con-
text the weights are the posterior probabilities of the
models, the computation of which usually involves a
very high-dimensional integration over the parame-
ters (see, for example [54], and [58]). Alternatively,
we can use K-fold cross-validation to choose the
weights wi from the performance on the validation
sets. Some examples of the use of model averaging in
the statistical literature are [21, 31, 32, 44, 48], and
[70], but there are many in other fields.

There is no reason why the weights we give to
the various models should not vary (slowly) with x,
which leads to the idea of regarding the predictions
of the candidate models together with x as inputs to
some nonlinear function g, so the prediction system
becomes

g(x, fi(x), . . . , fM(x); θ)

and choosing θ by simultaneous fitting or cross-
validation. (In the neural networks literature, variants
are known as stacked generalization [77] and hierar-
chical mixtures of experts [40].)

Many of the nonlinear procedures such as decision
tree induction are rather sensitive to the training
set used, and many methods have multiple optima
and so are sensitive to the starting values. We can
apply the ideas of combining models to combining
the predictions of the same model fitted on different
training sets. Breiman [11, 12] called one procedure
bagging, which averages the predictions of a model
fitted to bootstrapped training sets. We can go further
and design subsets of the training data to produce
rather different fits to average, a process known as
boosting [22].

This is a very active area of research, and some of
the results of combining simple models have shown
very appreciable gains in performance.

Programming Environments

A major attraction of computer-intensive methods
is their conceptual simplicity, but most biostatisti-
cians are no keener on computer programming than
on deriving asymptotic approximations. The S lan-
guage (see Becker et al. [6] and Chambers & Hastie
[16]) is the preferred working environment of many
of the researchers in the field. S is currently mar-
keted exclusively as part of the commercial S-PLUS
system [45]. Despite a steep initial learning curve,

sophisticated analyses can be performed in S-PLUS
very easily [76], and many researchers donate their
S software to public archives, notably statlib [47].
The free XLispStat system (see Tierney [74] and
also Cook & Weisberg [19], available from statlib
[47]) is also popular and has a substantial archive of
user-contributed software at UCLA [20]. The pack-
age XGobi [14, 17, 18, 72, 73] implements dynamic
graphics and projection pursuit, and BUGS [69] is a
(currently free) system for using Gibbs sampling for
a class of Bayesian methods (see Software, Biosta-
tistical).
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Computerized
Therapeutic Decision
Support

Introduction

A recent report by the Institute of Medicine examined
some of the problems in the United States’ health care
system and concluded that 44 000 to 98 000 Ameri-
cans die each year as a result of medical errors [5].
Although some analysts have questioned the accu-
racy of these numbers, most would agree that more
needs to be done to reduce the number of errors. The
report’s recommendations specifically recognized the
potential for error reduction when decision support
systems are incorporated into medication-prescribing
software and provider order-entry systems. Although
this report brought greater attention to the importance
of medical errors, we have known for some time that
medical errors are a serious problem, and the notion
that computer systems can improve the delivery of
care and thus reduce errors is not new [9]. Because
errors are such a serious problem and decision sup-
port systems are so important to their prevention, this
chapter focuses on the nature of medical errors and
the role of computerized therapeutic decision support
in promoting patient safety.

Errors can be defined in two broad categories:
errors of execution and errors of planning. Errors of
planning occur when an inappropriate plan is selected
for a patient. Errors of execution occur when an
appropriate plan is carried out incorrectly. Errors of
execution can be divided into errors of omission, in
which a needed action is not performed, and errors
of commission, in which the action performed is the
error, either because the wrong action is performed
or the correct action is performed incorrectly.

Decision Support

In the broadest sense, “computerized decision sup-
port” refers to any assistance that a computer provides
when clinicians make decisions about patient care.
Thus, any system that presents data in an advan-
tageous way is a form of computerized decision
support. For example, a hospital information system
can be set up to display a patient’s laboratory values
at the same time that physicians use the computer

to order the patient’s medications. This setup might
decrease the likelihood that physicians would pre-
scribe a drug that could become toxic in the setting
of renal insufficiency because of the prominent dis-
play of lab indicators of renal function. Designs
that provide this type of assistance to clinicians are
valuable, and should be an important part of any clin-
ical system. This chapter, however, focuses on more
sophisticated designs. In these designs, the computer
system uses more patient information, analyzes the
information in complex and sometimes novel ways,
and often renders advice specific to the patient and
the situation.

These sophisticated decision support systems can
be understood best by examining four of their char-
acteristics [2]:

1. Support goal refers to the overall goal of the
advice being given.

2. Type of intervention describes how the clinician
accesses the advice.

3. Type of knowledge refers to the information
being evaluated when the advice is rendered.

4. Method of reasoning refers to the logic used
by the system to interpret that knowledge and
render advice.

Support Goal

One way to think of the goals of a therapeutic deci-
sion support system is to think of the system as either
a state-based system or an action-oriented system.

State-based decision support systems attempt to
answer the question, “What is true about this
patient?” These systems synthesize multiple pieces
of information in an attempt to determine diagnosis,
prognosis, or specific condition along the continuum
of care.

Action-oriented systems attempt to answer the
question, “What should be done?” by suggesting a
strategy or course of action. For example, a system
may take two pieces of data, apply simple logic, and
render advice, as follows:

IF an angiotensin-converting enzyme
(ACE) inhibitor is prescribed

AND patient is pregnant
THEN display

‘‘ACE inhibitor is contraindicated in
pregnant patient.

Consider discontinuing medication.’’



2 Computerized Therapeutic Decision Support

Action-oriented systems can be extremely useful,
especially when they have access to a wide variety
of clinical information. They should be a primary
focus for dealing with errors of execution when the
decision support system operates in conjunction with
an electronic medical record or another computer
information system.

In practice, the best therapeutic decision support
systems combine both of these strategies. These sys-
tems first synthesize data from multiple sources to
determine the state of the patient and then use their
knowledge bases to recommend an action.

Type of Intervention

The type of intervention refers to how much the user
is required to do to get a recommendation. In passive
systems, the user has to activate the system to get
a recommendation. Passive systems often require the
user to sit at a computer terminal and respond to ques-
tions so that the system can complete its knowledge
base before providing a recommendation. These sys-
tems are more helpful when clinical management is
complicated and requires a small number of difficult
decisions, for example, for the selection of an antibi-
otic in patients with infection [11] and the selection
of a chemotherapeutic agent in patients with cancer
[4]. Passive systems are more difficult to use and
require more clinician time than active forms of deci-
sion support.

Semi-active systems provide recommendations
without requiring the user to activate the system,
and some systems facilitate the action being
recommended. For example, a semi-active system
might display a reminder message advising against
the renewal of an angiotensin converting enzyme
ACE inhibitor for a pregnant patient and also provide
a convenient way for the physician to discontinue the
drug. A semi-active system, however, would never
discontinue the medication without the consent of
the physician.

Semi-active systems can be divided into reminder
systems and alert systems. Alerts can be defined as
messages that arise in response to an action. They
can be extremely useful in altering errors of com-
mission that might occur while a clinician is using
a health care information system. Reminders can be
defined as messages that arise spontaneously from
an information system or other source. They can be

useful for errors of omission where a clinician for-
gets to perform a needed action. Alerts and reminders
can take many forms, in some cases, they would
print from an information system at a predetermined
time, and in other cases, they would appear on screen
while the clinician was interacting with the informa-
tion system.

Active systems perform actions without any need
for direct participation by a clinician. For example,
an active system might control a ventilator or a pace-
maker. Also, active systems might operate when one
action logically follows another. For example, an
active system might order a serum drug level auto-
matically when a clinician orders a drug that requires
lab monitoring. Active systems promise to reduce
errors for activities that require constant monitor-
ing and adjustment, especially when the underlying
mechanisms are understood and the need for adjust-
ments are based on well-known parameters. Because
medical decision-making (see Decision Analysis in
Diagnosis and Treatment Choice) is so complex and
poorly understood, however, active systems are lit-
tle used.

Some decision support systems combine active,
semi-active, and passive elements. Such systems
might automatically ask for more information when
a clinician orders a test or a patient’s status changes
and then provide a recommendation. The majority
of therapeutic decision support systems, however,
are semi-active systems that are used with an elec-
tronic medical record or some other type of informa-
tion system.

Types of Knowledge

Decision support systems require several types of
information, or “knowledge”, to provide recommen-
dations. One way of categorizing types of knowledge
divides them into dynamic facts, static facts, and
judgmental knowledge [14]. Dynamic facts change
over time. For example, heart rate and blood pres-
sure change rapidly in an intensive care unit and
a patient’s weight, drug doses, and medication list
change more slowly in the outpatient setting. Other
dynamic facts reflect changes in patient populations.
For example, a decision support system could per-
form frequent statistical analyses of microbiology
data to determine drug resistance patterns and then
store the results as a dynamic fact.
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Static facts include basic truths about medical care.
“E. Coli is a gram-negative rod” is an example of a
static fact.

Judgmental knowledge is a combination of for-
mal knowledge about medicine, like the knowledge in
textbooks, and experiential knowledge, such as know-
ing how to perform a procedure. Rules that would be
contained in a decision support system typically com-
prise this type of knowledge. Figure 1 shows how
the various types of knowledge might interact in a
decision support system. In this case, the electronic
medical record stores dynamic facts in the “factual
database”. The “knowledge base” contains static facts
and judgmental knowledge in the form of rules. The
“inference engine” determines how the knowledge
base and the factual database combine to produce a
recommendation.

For example, as the clinician orders new drugs
for a patient, the decision support system stores these
changes in the factual database as dynamic facts. The
inference engine constantly checks dynamic facts to
see whether there are related rules in the knowledge
base. If the drug “coumadin” is entered into the
factual database, the inference engine might identify
three related rules.

1. Coumadin is warfarin (anticoagulant) (static fact)
2. IF warfarin AND amiodarone are present on the

medication list, THEN display “Amiodarone may
increase prothrombin time in patients also receiv-
ing warfarin. (priority 5)” (judgmental knowl-
edge)

3. IF warfarin is on the medication list AND
the international normalized ratio (INR) of the
patient’s prothrombin time is greater than 3.5,

Knowledge Base
(contains static facts

and judgmental
knowledge)

Factual Database
(Contains Dynamic

Facts)

Inference Engine
(Provides the system's
method of reasoning)

Electronic Record
(Interface with user)

Figure 1 The relationships among components of a typi-
cal decision support system

THEN display “INR is elevated, consider chang-
ing the dose of warfarin. (priority 7)” (judgmen-
tal knowledge).

The inference engine runs the rules in sequence
and identifies that rule 1 is true but does not require
action, rule 2 requires an action with a priority of 5
and rule 3 requires an action with a priority of 7. The
inference engine sends a message to the electronic
record to display an alert with the text for rule number
3 and a reminder with the text for rule number 2.
Since rule 3 has higher priority, it is displayed first
in a larger font and rule 2 is displayed second in a
smaller font.

Methods of Reasoning

Therapeutic decision support systems can use sev-
eral methods to process the information contained in
their knowledge bases. Although the goal in a thera-
peutic system is always to recommend an action, the
system may first determine the state of the patient
in sophisticated ways prior to rendering that advice.
For example, Bayesian analysis and belief networks
can be used to determine a patient’s state before
the support system makes a recommendation. Most
therapeutic decision support systems, however, use
rule-based systems (see Computer-aided Diagno-
sis). The rules contain the judgmental knowledge that
facilitates error reduction and most often take the fol-
lowing form: “IF antecedent THEN consequent.” The
rules in a therapeutic decision support system are typ-
ically run sequentially. The inference engine begins at
the top of the list of rules and processes the list until
it identifies a relevant rule. Then actions are taken as
dictated by the rule. A rule might lead to the evalu-
ation of a new set of rules, or it might initiate some
action directed at the clinician, such as a reminder.
This rule-based approach is especially useful for pre-
venting errors of execution, because the rules require
only a few of the thousands of loosely related bits
of knowledge to give advice. For example, the pres-
ence of one drug that interacts with another drug
is important by itself and does not depend on the
other information in the factual database. Because
rules work so well, better support systems are dis-
tinguished not so much by their rules but by how
many rules activate alerts and reminders, which rules
are prioritized over others, and whether the factual
database is adequate for rule activation.
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Evaluation of Therapeutic Decision
Support Systems

Increasing use of more comprehensive health care
information systems, such as an electronic medical
record, has greatly facilitated the use of therapeutic
decision support systems. Comprehensive health care
information systems tightly integrate computerized
advice with the clinician’s workflow. Most analysts
believe that this integration is critical to having the
advice followed.

Drug Dosing and Therapy

Much of the focus for errors in medicine has been on
errors in drug dosing and administration. The greatest
promise of computer systems may be in decreasing
and preventing these types of errors. Several studies
have shown that drugs with severe side effects can be
more accurately dosed using Bayesian estimates of
the drug level following initiation or dose change [3,
13]. Early trials looking at the use of reminders with
an electronic order-entry system showed a great deal
of promise. In one study, the likelihood of changing
the dose of potassium when indicated by abnormal
renal function or an elevated potassium level went
from 0 to 53%. The health care information sys-
tems used in these early studies, however, did not
always provide advice at the ideal time and relied
instead on paper printouts that were produced and
distributed after the clinician had decided about drug
dose. Several studies using more sophisticated health-
care information systems have shown that reminder
and alert systems improve care by providing recom-
mendations at the point of care. Dosage guidance,
alternative medication selection, and prompts for
order suggestion have all been shown to be facilitated
by reminder systems used with an order-entry sys-
tem [12]. One study, using a health care information
system, compared therapeutic reminders to a “team”
approach, which more heavily involved pharmacists
and other providers in the drug dosing and admin-
istration process [1]. The computerized order-entry
system checked for drug allergies, serious drug–drug
interactions, and some drug-laboratory interactions.
It prevented more than half of the serious med-
ication errors that would otherwise have occurred
if there were no intervention at all. Some of this
effect was due to decision support and some due to

improved legibility and process changes introduced
by the order-entry system. No effect over the base-
line error rate was seen for the team intervention in
this study.

Preventive Care

When a reminder system that focused on preven-
tive care (see Preventive Medicine) in the inpatient
setting was coupled with an order-entry system, no
significant differences were found between control
physicians and test physicians [10]. When clinicians
received reminders, for preventive care in outpatients,
that were printed on patient encounter forms, some,
but not all, activities increased in frequency [6]. For
example, increases were found in fecal occult blood
testing (49 to 61%, p = 0.0007) and mammography
(47 to 54%, p = 0.036) but not in pap testing (18 to
21%, p = 0.2). The most common reason physicians
gave for not performing the study was that it was
“not applicable” (22.6%) to the patient because the
test had been performed elsewhere (69%) [7], which
emphasizes that when preventing errors of omission,
the decision support system must have access to all
information about a patient to be most effective.

Care Guidelines

Decision support systems for chronic diseases are
similar to those for preventive care. One study that
examined the use of reminders for performing rec-
ommended maintenance studies for patients with dia-
betes found improvements in foot exams (30 to 55%),
urine protein determinations (3.9 to 73.3%), oph-
thalmologic exams (3 to 19%), and pneumococcal
vaccinations (0 to 19.8%) [8].

Conclusion

Computerized therapeutic decision support systems
offer tremendous promise in solving the problem of
errors in medicine. They seem to function best when
they are used in concert with a healthcare information
system designed to store patient data in a machine-
readable format. In these cases, relatively simple
semi-active systems that use a rule-based approach
to decrease the likelihood of errors in execution seem
to be particularly effective. However, the culture of
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medicine is slow to change and these information
systems have not been adopted by the vast majority
of clinicians and organizations. It will take alignment
of financial incentives and a great deal more effort
before patients can begin to reap the benefits of this
new, decision-making process.
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Conception, Models for

The study of human fertility is of enduring interest to
demographers who wish to forecast and characterize
the dynamics of population change, to reproductive
epidemiologists who wish to identify factors that
adversely affect human reproduction, and to biolo-
gists who wish to improve our understanding of the
fundamental processes that underlie human repro-
duction. The statistical models required necessarily
depend on the level of detail available in the data
and the scientific purpose of the modeling.

The crudest and most widely available data are on
time from marriage to first birth, and time between
successive births. Mathematical models for the dis-
tribution of such intervals in a population are plen-
tiful in the demography literature [8, 19]. Such
models account for the heterogeneity across couples
in their fertility, sometimes by assuming that the
monthly probability of conceiving a clinically rec-
ognized pregnancy is a property of the couple that
varies across couples according to a beta distribution
(see Beta-binomial Distribution).

In an industrialized society in which contracep-
tion and abortion are widely available, fertility is
primarily under volitional control and, consequently,
the study of such intervals carries little information
about the biological capacity to reproduce. Trends,
such as increases in the age at a woman’s first birth
and (consequent) increases in the use of infertility ser-
vices, largely reflect social forces, and are of greater
interest to the demographer than to the reproductive
biologist.

A biologically more informative level of detail is
provided by studies of the time required to achieve
pregnancy in couples not using contraception. The
earliest such studies recruited sexually active couples
at the time at which they discontinued contraception
in order to conceive [10] and followed them up to
pregnancy or some maximum follow-up time.

The time-to-event data from such couples can
be regarded as discrete failure-time data (see Sur-
vival Analysis, Overview), where “failure” is here
a misnomer referring to the occurrence of a rec-
ognized pregnancy. While sometimes approximated
as smooth for modeling [2, 3], time is discrete in
this context, because each menstrual cycle provides a
single opportunity to conceive. Consequently, time-
to-pregnancy is best measured in integer units based

on the number of menstrual cycles from discon-
tinuation of contraception to the achievement of a
recognized pregnancy. If reported in units of calen-
dar time, these intervals can be converted to numbers
of menstrual cycles, by dividing by the woman’s
usual cycle length. If all couples had the same con-
stant probability of conceiving per menstrual cycle
(“fecundability”), then the distribution of times to
pregnancy would be geometric.

In practice, however, these intervals are overdis-
persed compared to the geometric, reflecting under-
lying heterogeneity in fecundability across couples
in the population. In the first menstrual cycle at risk,
about a third of couples conceive; in the second cycle,
about a fourth, and so on. The cycle-specific concep-
tion rate continues to decline over time. This is not
an effect of time per se, but reflects sorting within a
heterogeneous population of couples, where the cou-
ples with the highest fecundability conceive early and
are not present in subsequent risk sets. The pattern is
not simply due to the presence of a sterile subpopu-
lation, but is evident even among those couples who
ultimately do conceive. Following the modeling tradi-
tions established in demography, Weinberg & Gladen
[11] modeled time-to-pregnancy data according to a
beta-geometric, by assuming that each couple has a
characteristic fecundability parameter, drawn from a
beta distribution.

Parameter estimation is straightforward, because
the resulting beta-geometric distribution can be ex-
pressed as generalized linear model. If pj denotes
the conception rate at cycle j , among couples still at
risk, then one can show that

1

pj

= c + d(j − 1),

and hence the maximum likelihood estimates for the
beta parameters can be developed using standard
software. The parameter, c, is interpretable as the
inverse of the mean fecundability across couples,
while d depends on the beta variance. One can
also allow for a subpopulation of completely sterile
couples by means of the EM algorithm [4], where
the underlying beta distribution for fecundability is
now contaminated by a degenerate distribution with
mass at fecundability 0 [11]. Thus, relative to this
parametric model, one can estimate the prevalence of
sterility in a population.

One could also model the underlying heterogene-
ity distribution nonparametrically, since in general
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the cycle-specific conception rates depend in a sim-
ple way on the moments of the underlying distri-
bution, as described by Weinberg & Gladen [11].
With a prospective study of cycles up to at most K ,
the cycle-specific conception rates can be shown to
depend on the first K moments of the fecundabil-
ity distribution. Because the number of parameters
(moments) to be estimated can be quite large, and
the alternative approach is based on a rich family of
density functions, the beta-geometric will often be
preferred to the nonparametric approach in practice.
Also, the natural linear extension of the above gen-
eralized linear model allows effects of covariates to
be incorporated in the beta-geometric approach.

Because the beta-geometric model does not yield
any summary measure of the effect of an exposure
that has much intuitive appeal, investigators have
turned to other modeling approaches. One can apply
the model that Cox suggested for discrete survival
time data [5], where each cycle’s binary outcome is
modeled as logit-linear and a cycle-specific baseline
serves as the discrete-time analog of the baseline
hazard function for continuous failure-time data.

A model that is loglinear in covariates can also
be fitted [14, 16]. With this model, the effect of a
dichotomous exposure is assumed to be multiplica-
tive on each cycle-specific conception probability.
The exponentiated coefficient is interpretable as a
“fecundability ratio,” analogous to a hazard ratio,
except that it is a ratio of the probability of con-
ception in a cycle for those exposed divided by
the probability for those unexposed. Adjustments for
confounding factors are easily included. Because the
outcome here is not rare, the fecundability odds ratio
estimated in the discrete-time Cox model cannot be
seen as an approximation to the fecundability ratio
estimated in the loglinear model. The loglinear model
can be fitted using standard generalized linear model
software, provided that the model incorporates a base-
line conception-rate parameter for each cycle number.
One complication with using the loglinear model
is that the predictive linear function can sometimes
exceed zero, implying a probability above 1.0. The
logistic formulation is less intuitive to the scientist
but avoids this annoying pitfall.

Time to pregnancy can be ascertained either pros-
pectively or retrospectively. In a prospective study,
couples are entered either at the time at which they
discontinue contraception, or at some point in the
middle of their attempt. In the latter case, the left

truncation must be taken into account by ascertain-
ing the number of months at risk prior to study entry,
and delay-entering the couple into the appropriate risk
set (cycle number). Thus a couple who have been try-
ing to conceive for six months prior to recruitment
into the study would not be credited for their first six
failures, but would be entered into their first risk set
at cycle seven. Assuming that late entry is not related
to fecundability, allowing such couples into the study
should produce no bias.

In the retrospective approach, couples are asked
about time to pregnancy, based on reconstructing
their history of contraceptive use. If every attempt
at pregnancy ended in conception, the retrospective
design would yield data equivalent to that from a
prospective design. In practice, populations include
couples with very low or zero fecundability. Such
couples contribute to prospective studies but are
under-represented in retrospective studies based on
achieved conceptions.

Retrospective studies based on a current preg-
nancy or the most recent pregnancy are also prone to
bias in estimating effects of exposures, if the preva-
lence of those exposures has changed systematically
over calendar time (see Bias in Observational Stud-
ies). This is because the couples who required a long
time to conceive are reporting exposures that took
place long ago, when the opportunity for exposure
might have been very different from what it was more
recently. Weinberg et al. [13] describe an instance
of such bias, where the use of latex gloves by den-
tal assistants was shown (spuriously, we presume)
to enhance their fertility. This arose because den-
tal workers wore gloves more often after the AIDS
epidemic began, and women who conceived quickly
were more likely to have begun their attempt recently,
after glove use had become widespread.

A less bias-prone and more detailed approach
to studying fertility is provided by a cohort study
where not only menstrual cycles and pregnancies are
recorded, but some marker for the day of ovulation
is available for each cycle, together with daily data
indicating whether there was unprotected intercourse.
Markers for ovulation can be based on hormonal
assays of excreted hormones, or on daily records
of basal body temperatures. When both intercourse
data and a benchmark for ovulation are available, one
can ask some interesting questions about reproductive
biology. What is the relationship between the timing
of intercourse vis-à-vis ovulation and the probability
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of conception? For how many days in a month is
a woman fertile? Do the Y-bearing (boy-producing)
sperm and the X-bearing (girl-producing) sperm have
similar survival and potency, or is there a relationship
between the timing of intercourse and the sex of the
baby?

The first extensive data of this sort were described
by Barrett & Marshall [1], who studied couples using
natural family planning (the rhythm method). Basing
the identification of day of ovulation on the rise in
basal body temperature that accompanies ovulation,
Barrett & Marshall applied a model asserting that
the cohorts of sperm introduced to the woman’s
reproductive tract on different days pose independent
competing risks (of fertilization) to the ovum. Under
this simple independence model, the probability of
conception can be written as

Pr[conception in cycle j |intercourse pattern]

= 1 −
∏

k

(1 − pk)
Xj,k ,

where Xj,k is an indicator that has a unit value
if there was intercourse on day k in cycle j . The
indexing specified by k is relative to the day of ovu-
lation, which is usually taken to be day “zero”. The
parameters pk are interpretable as the probability that
conception would result had there been intercourse
only on day k.

Schwartz et al. [7] modified this model in a way
that allows for the fact that timing is not everything:
a broad constellation of factors must be favorable
for conception even to be possible in a given cycle.
The ovum must mature properly and be viable, and
must be transported through the oviduct; the uterine
endometrium must be adequately prepared under hor-
monal stimulation; the immune system must function
properly and not reject the embryonic foreign tissue,
and so on. The constellation of such factors is some-
times referred to [15] as “cycle viability,” and under
the Schwartz et al. model specification, each cycle
is either viable or not. Without cycle viability, con-
ception will not occur, regardless of the timing of
intercourse. If we denote the probability that the cycle
is viable by A, then the model becomes

Pr[conception in cycle j |intercourse pattern]

= A

{
1 −

∏

k

(1 − pk)
Xj,k

}
.

When this model was fitted to data from a cohort
study carried out in North Carolina [18], the pk

parameters exceeded zero only over a six-day inter-
val, ending on the estimated day of ovulation [17]
and the A parameter was estimated to be 0.37, sug-
gesting that more than half of apparently ovulatory
menstrual cycles in healthy women of reproductive
age are nonviable.

In fact, as was recognized by Schwartz et al., the A

parameter requires a broader interpretation than sug-
gested by “cycle viability”. Fertility studies do not
detect all conceptions, only those that survive to the
point at which the methods applied are capable of rec-
ognizing that pregnancy has begun. Studies in which
only clinically recognized pregnancies are found in
effect include as part of A an additional factor cor-
responding to the probability that the pregnancy sur-
vives up to clinical detectability. Even studies that
make use of a very sensitive assay for the preg-
nancy hormone, hCG, are only detecting conceptions
that survived long enough to successfully implant
and establish communication with the maternal cir-
culation. While the survival probability is embedded
within A and is not statistically identifiable under this
model, it is important to recognize that A can incorpo-
rate effects of male factors. For example, if husbands
are exposed to a mutagen and produce some sperm
that are capable of fertilizing a viable ovum but do
not produce a viable embryo, then the A parameter
would be reduced accordingly.

This means that the models to be discussed that
allow the parameters A and pk to depend on covari-
ates should allow for the possibility that male expo-
sures can affect both A and the pk . Similarly, female
exposures could theoretically affect both A and the
pk . The woman provides the environment in which
the sperm must temporarily live before encountering
the ovum, so an exposure that renders the female
reproductive tract hostile to sperm survival could
reduce the pk , especially for days prior to ovulation.
It is also possible that the pattern of intercourse itself
could affect A, if certain patterns are associated with
aging of the gametes and consequent effects on via-
bility of the conceptus.

Schwartz et al. [7], and later Royston [6], who
reanalyzed the same data, allowed for the possibility
that A could decline with advancing maternal age.
Weinberg et al. [15] developed methods for fitting
more complex models, by using the EM algorithm [4]
to model cycle viability as an unobservable Bernoulli
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outcome, whose probability can depend on covari-
ates through a generalized linear model.

Parametric models that explicitly estimate param-
eters related to survival of the sperm and ova have
also been proposed [6, 12]. The model developed
by Weinberg & Wilcox specifies that the instanta-
neous probability (hazard) for fertilization at time t

(where t = 0 at the moment of ovulation), given that
the ovum is still viable at t , is proportional to the
number of sperm that are still viable at time t . The
competing risks for fertilization due to batches of
sperm that were introduced on different days are still
treated as independent, so that the surviving sperm
from the various batches simply commingle. The
viable lifetime of individual sperm is assumed to be
exponential, while ovum survival is taken as fixed.
Applying this model to data from the North Carolina
study, the mean viable lifetime for sperm was esti-
mated to be 1.4 days, while the ovum appears to
survive for less than a day. While it fits the available
data very well, this model oversimplifies the under-
lying biology, because it does not take into account
female factors, most notably changes in the cervical
mucus that can, depending on the day of the cycle,
alternately impede or facilitate the entry of sperm into
the upper female reproductive tract.

These variations on the model proposed by Sch-
wartz et al. all have certain doubtful assumptions in
common. They assume that sperm introduced on dif-
ferent days present independent risks of fertilization
to the ovum. They assume that the time between
successive acts of intercourse has no effect on the
potency of the second batch of sperm. They assume
that the pattern of intercourse has no bearing on the
survival-to-detection probability for the embryo, so
that embryos formed from relatively aged gametes
are not of reduced inherent viability. Finally, they
assume that the outcomes for successive menstrual
cycles within a couple are independent. Of these, the
latter assumption is the most easily demonstrated to
be false [22].

Subsequent work has allowed the dependency
among successive outcomes from a single couple to
be handled by a generalized estimating equation
(GEE) approach. The estimating equations are taken
to be the likelihood equations, so the estimated effects
are not modified, but the standard errors are adjusted,
usually upward, to properly reflect the dependencies
in the data. The extended model now also allows for

exposures that may vary from day to day and directly
influence the day-specific pk [20].

The capacity to handle day-specific exposures
means that the model can now be used to assess
certain direct effects on fertility. One example is in
assessment of contraceptive efficacy, where one now
would not need to exclude menstrual cycles in which
the method being assessed, for example the female
condom, was not used for every act of intercourse.
Another example is in trying to assess the effect of
day-specific characteristics of the cervical mucus on
the likelihood of conception.

The heterogeneity among couples is treated as a
nuisance by the GEE approach, whereas this vari-
ability may be of interest in itself. Accordingly,
a subject-specific approach was also developed, in
which the cycle viability probability is now taken to
be a couple-specific parameter and these are assumed
to have been sampled from a beta distribution [22].
The existence of significant heterogeneity in cycle
viability among couples demonstrates that the hetero-
geneity in fecundability long known to demographers
is not simply secondary to variation in the frequency
and patterns of intercourse, but reflects determinants
that are more biologically innate.

The contexts discussed so far have included three
levels of detail available in studies of human fertility:
that provided by the intervals between marriage and
first birth, or between successive births; that provided
by studying the number of menstrual cycles from
discontinuance of contraception to the onset of a
detectable pregnancy; and that provided by daily
hormonal assays and intercourse records, allowing
the investigator to match up the pattern of intercourse
to the time of ovulation itself. An even more refined
level of detail is provided by certain clinical protocols
used to treat infertile couples.

In in vitro fertilization (IVF), the woman’s ovaries
are hyperstimulated by exogenous hormones to pro-
duce many ova at once. When mature, these ova
are withdrawn surgically from her ovaries and then
fertilized in vitro, usually by her husband’s sperm.
A selection of the resulting embryos is then trans-
ferred to her uterus in hopes that pregnancy will
ensue. A model closely related to that proposed by
Schwartz et al. can be applied to assess the effect
of exposures and clinical markers on the likelihood
of conception in IVF. The occurrence of concep-
tion depends on a susceptibility factor, the recep-
tivity of the uterus to implantation, together with
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an aggregation of Bernoulli trials: at least one of
the transferred embryos must be viable. The result-
ing model, an analog of the Schwartz et al. model
described above, was proposed by Speirs et al. [9],
and more recently reconsidered by Zhou & Wein-
berg [21].
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Conception

Any attempt to count the numbers of pregnancies
conceived in a population and then use these figures
to derive conception rates is bound to be incomplete.
Clearly, the pregnancies that end very early before
the woman realizes she is pregnant will be missing.
Those that end before help is sought from a midwife
or doctor are also likely to be left out. Once maternity
care has started, documents confirming pregnancy
are produced for various official purposes, such as
to prove entitlement for maternity benefit payments,
but these documents do not usually end up in vital
statistics systems.

Nevertheless, the idea of trying to count pregnan-
cies directly through a notification system is not a
new one. For example in Huddersfield, England, in
1916 a system was introduced by which the doctor
or midwife booked by the woman for delivery noti-
fied the pregnancy to the Public Health department.
By 1934, the proportion of pregnancies notified had
reached 77% [1].

The other approach is to estimate the numbers of
conceptions indirectly through data collection sys-
tems designed to count the outcomes of pregnancy
in terms of miscarriage, legal abortion, and registra-
ble birth.

In most countries, the biggest gap is in statistics
about miscarriage. Miscarriages once a pregnancy
is well established are likely to lead to hospital
admission and thus be counted in hospital inpa-
tient statistics. Earlier miscarriages may lead to care
outside hospital by general or family practitioners
whose work is less likely to appear in national sys-
tems. If these miscarriages are reported, then there
may be double counting in cases where the woman
is subsequently referred to hospital. Most countries
have routine data about birth and legal abortion,
from which estimates of conceptions can be derived,
however. This can be difficult if the records do
not include the gestational age at which the events
occurred.

In England and Wales, estimates are made of the
numbers of conceptions leading to either a legal
abortion under the 1967 Act or a maternity with

one or more registrable live or still births [3]. These
estimates are then used to derive age-specific rates per
thousand women. Because of the lack of adequate
data, pregnancies leading to miscarriages or other
outcomes are not included. In Scotland, data about
miscarriages in hospital are combined with those
about birth and legal abortion to derive estimated
teenage conception rates [1].

Gestational age is stated on notifications of abor-
tion, and from 1974–80, the date of the last menstrual
period was also included. In deriving the estimated
date of conception, it is assumed that the gestational
age is determined from the date of the last men-
strual period and that, on average, conception takes
place 14 days after this. Gestational age is stated
on registrations of fetal deaths (see Vital Statis-
tics, Overview) as stillbirths, and the stated gesta-
tional age is used to derive the estimated date of
conception.

Gestational age is not recorded on registrations of
live births in England and Wales. The date of concep-
tion is estimated to have been 38 weeks before the
date of birth, on the assumption that the average time
between the first day of the last menstrual period and
the date of birth is 40 weeks. This can lead to bias
when tabulating conceptions according to age and
other characteristics of the mother, as it assumes that
women having preterm births are broadly similar to
childbearing women as a whole. This is not the case.

References

[1] ISD Online. Sexual and reproductive health. Teenage
pregnancy. ISP, Edinburgh. http://www.show.
scot.nhs.uk/isd/sexual health/Teenpregs/
Teenpregs homepage.htm. Accessed 29/10/02.

[2] Ministry of Health (1937). Report on an Investigation Into
Maternal Mortality , Cmd 5422. HMSO, London.

[3] Office for National Statistics (2001). Birth Statistics ,
Review of the Registrar General on births and patterns
of family building in England and Wales, 2000, Series
FM1, No. 29, office for National Statistics, London.

ALISON MACFARLANE



Conditional Probability

Conditional probability has been one of the least
understood and most controversial concepts in the
history of science. It was introduced by Thomas
Bayes in 1764, who defined, motivated, and applied
this concept much as is done today in post-calculus,
but not measure-theoretic, courses in probability the-
ory. For a finite space of possible outcomes, the
conditional probability Pr(E|F) is defined as

Pr(E|F) = Pr(E ∧ F)

Pr(F )
,

provided that Pr(F ) > 0. (Here “∧” means “and”.)
This definition is not arbitrary, but is requisite in
both the Bayesian and classical frequentist theories
of probability, in order that such theories do not lead
to absurd results.

First consider the classical frequentist approach
that stemmed from the work of Jakob Bernoulli (see
Bernoulli Family). In repeated trials, such as arise
in games of chance, by the law of large numbers it
follows that amongst the cases in which the event F

occurs, there will be a limiting proportion Pr(E|F) of
cases in which also E occurs, provided that Pr(F ) >

0. For a specified event A and sequence of trials
on each of which A may or may not occur, define
fN(A) to be the number of times that A occurs in
the first N trials. Now suppose that E and E ∧ F are
such events, and consider a sequence of independent
trials concerning these events, always with the same
fixed probability distribution. Then the proportion of
times in which the event F occurs amongst the first N

trials converges almost surely to its probability Pr(F ),
which we assume to be positive (see Convergence
in Distribution and in Probability). The relative
frequency of cases in which both E and F occur,
amongst those cases in which F occurs, in the first
N trials, is

fN(E ∧ F)

fN(F )
=

[
fN(E ∧ F)

N

]

[
fN(F )

N

] ,

with fN(F ) > 0 for sufficiently large N . Hence in the
frequentist theory, as N → ∞ this relative frequency
converges almost certainly to Pr(E ∧ F)/ Pr(F ).

Next, to justify his definition of conditional prob-
ability, Bayes had already presented a version of the
fundamental coherency argument in terms of a called-
off gamble on the event E given F , which was later
to be developed in great detail by de Finetti. A
coherency theorem of de Finetti (Theorem 1 below)
proves that unless the value of a called-off gamble is
assessed in accord with the conventional Pr(E|F), a
person who bets on all such gambles according to the
probability assessments he has asserted can be made
a sure loser.

De Finetti’s theory of coherence was developed
as a consequence of the basic notion that probabil-
ities, if acted upon, should not give rise to certain
loss. Any contract concerning an unknown event or
variable is called a gamble, so that the taking out of
insurance, and indeed investments of any sort, will
here be referred to as gambles, without the usual neg-
ative connotation for highly speculative activities. A
gamble that gives rise to certain loss, no matter what
actually occurs, is traditionally called a Dutch book.
(More recently, such gambles are discussed in terms
of “arbitrage”.) To be precise, by a “Dutch book” is
here meant a finite collection of gambles and condi-
tional gambles such that no matter how the individual
events turn out, whether true or false, one is logically
certain to lose a positive amount greater than some
ε > 0. The primary result in the theory of coherence
is de Finetti’s theorem giving necessary and sufficient
conditions to avoid a Dutch book. The context for de
Finetti’s theorem concerns a set of simple gambles
and simple conditional gambles. By a simple gamble
G we mean the following. There exists an event E,
which will be verified to be either true (1) or false (0),
and the gamble consists in a contract under which if
E occurs (or is true) one receives a specified mone-
tary stake S, while if E does not occur (or is false)
one receives nothing. We define Pr(E) to be the price
at which a particular person evaluates the worth of
this gamble, in the sense that the person would either
buy or sell the gamble at the price Pr(E) × S. If S is
positive, and if one is to avoid sure loss, then plainly
the gamble has some nonnegative value between 0
and S. It is customary to choose small monetary val-
ues for S to aid in the evaluation of Pr(E), so that
one is not overly influenced by considerations that
arise when dealing with large sums of money, and
which can be dealt with by the theory of utility, as
for example by F.P. Ramsey [16] and by L.J. Sav-
age [19].
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Next, a simple conditional gamble concerning the
event E given the event F , which is written as (E|F),
is a gamble under which one receives the stake S

if both E and F occur, one receives nothing if F

but not E occurs, and the gamble is called off if F

does not occur. If S is positive then such a gamble
has again some nonnegative value, say p × S, which
is the price at which one evaluates the worth of the
conditional gamble, again in the sense that one would
either buy or sell the conditional gamble at this price.
It is understood that if F does not occur, then this
price is returned. The following theorem, due to de
Finetti [4, p. 109], shows that the p obtained in this
way for the conditional gamble must be precisely
p = Pr(E ∧ F)/ Pr(F ), if sure loss is to be avoided.

Theorem 1. For simple gambles on events E ∧ F

and on F , and a simple conditional gamble (E|F),
to avoid a Dutch book it is necessary and suffi-
cient that Pr(E ∧ F) = p × Pr(F ), with 0 ≤ Pr(E ∧
F) ≤ Pr(F ) ≤ 1. In this case 0 ≤ p ≤ 1 whenever
Pr(F ) > 0.

The proof of this theorem is obtained by consid-
ering the payoff for simultaneous bets on each of
E ∧ F , F , and the conditional gamble (E|F). The
avoidance of a Dutch book is equivalent to the sin-
gularity of the matrix that represents the payoff on
these three bets as a function of the separate stakes on
each bet. It is worth noting that when Pr(F ) = 0 the
matrix is necessarily singular, and so a conditional
probability given an event of probability 0 can be
evaluated arbitrarily, without giving rise to sure loss.
Thus, in both the de Finetti coherency theory and the
classical frequentist theory, standard arguments for
the conventional definition of a conditional probabil-
ity do not apply when the event F has probability
0. When there are only a finite number of possible
outcomes, of course, no one takes seriously the pos-
sibility that an event of probability 0 might occur. On
the other hand, when there are a nonfinite number of
possible outcomes, some delicate issues arise for all
approaches, which will be discussed below.

Theorem 2 combines related results of de Fin-
etti [4; 5, p. 111] into a single theorem.

Theorem 2. Let W be a finite space of points wi ,
for i = 1, . . . , N . Suppose that a nonnegative func-
tion Pr(E|F) is defined for some pairs of subsets of
W with F �= ∅. Suppose further that this function
is used to determine prices for conditional gambles,

with Pr(E|F) the price for the conditional gam-
ble (E|F) with stake unity; and that when F = W,
we define Pr(E) ≡ Pr(E|W) to be the price for the
unconditional gamble on E. Then in order that there
be no Dutch book possible on the collection of con-
ditional and unconditional gambles for which prices
have already been specified, it is necessary and suf-
ficient that the already specified Pr(E|F) can be
extended to a probability distribution π on W, such
that for all E and H with π(H) �= 0 we have

Pr(E|H) = π(E ∧ H)

π(H)
.

Now let W be any finite space of outcomes or
points. Suppose that one specifies prices for some
simple gambles and conditional gambles involving
the events of W. Then it follows from the theorem
that either one is already subject to a Dutch book
based upon these gambles, or else one can extend the
original specification to a probability distribution π

on all of W. In the latter case, if one uses Bayes’
theorem to obtain posterior probabilities in any such
extension, then the theorem guarantees coherency
(the impossibility of a Dutch book) within this frame-
work; conversely, if the original specifications violate
Bayes’s theorem, in the sense that they are not con-
sistent with any Bayesian analysis, one can always
be made subject to a Dutch book no matter what the
actual outcomes.

In this century, a new understanding of conditional
probability arose from the Borel – von Neumann –
Wald theory of games and statistical decision func-
tions (see Decision Theory), which we will refer to
as BNW theory. In this context one considers map-
pings of the data into a space of terminal actions. As
will be seen, both the coherency theory of Bayes and
de Finetti, as well as the classical frequentist theory of
conditional probability, can be expressed in decision-
theoretic terms. Since even in logic the interpretation
of a conditional statement (such as a counterfactual)
is controversial, it is important to provide an opera-
tional meaning for conditional probability statements
that makes it clear what is gained or lost by various
methods for specifying such conditional probabilities.
Otherwise, the theory would be largely arbitrary and
all assessments would be subject to controversy and
doubt. Fortunately, this can be done both simply and
forcefully, within the BNW framework, both for con-
ventional decision problems concerning an unknown
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parameter, and for prediction problems. In this frame-
work it becomes clear that only decision procedures
that are based upon conditional probability cannot be
ruled out as objectively defective.

Conditional Probability and Decision
Theory

Beginning with the Neyman–Pearson lemma, it has
been argued that a procedure that has a risk function
that can be decreased in some or all components of
risk, without increasing other components of risk, is
undesirable. For example, in choosing to minimize
the type two error probability β of a simple versus
simple hypothesis test, for a specified type one error
probability α, one is implicitly replacing a particular
risk function by one that is generally regarded as
better in an objective sense. Based upon the theory of
games and statistical decision functions, it is shown
below that any real-world decision procedure that is
not based upon conditional probability is objectively
defective in its performance in precisely the same
sense as for such type one and two errors.

In decision theory, it is conventional to introduce
a space of terminal actions A, a parameter θ , and
a loss function L(θ, a) ≥ 0, which specifies the loss
when action a is taken and θ is the true value of
the unknown. A probability model for the data X

is specified, which depends only upon the value of
θ . If X is the space of possible data observations,
then a pure decision rule d is a mapping from X into
A. A randomized decision rule is a finite mixture
of the pure decision rules; for example, δ(X) =∑J

i=1[αj ]dj (X) is the randomized decision rule that
takes the decision specified by pure decision rule dj

with probability αj . Pure decision rules are identified
with such degenerate probability distributions. The
space of randomized decision rules consists of all
such finite mixtures of the pure decision rules. The
performance of a particular randomized decision rule
δ is measured by its risk function

Rδ(θ) = EL[θ, δ(X)],

which is the expected loss for δ when θ is the value
of the parameter or unknown. The value of Rδ(θ) at
a particular θ is known as a component of risk for δ.

A procedure is said to be admissible if there is no
other available procedure with risk at least as small
for all θ and strictly smaller somewhere. A procedure

is said to be extended admissible if there is no
other decision procedure available that has uniformly
smaller risk by some ε > 0. The collection Γ of
risk functions for all available randomized decision
procedures is known as the risk set, and consists of
all mixtures

∑J
j=1 αjRdj

(θ) of the risk functions of
the pure decision rules dj . This set is the convex hull
of the risk functions for pure decision rules.

A decision procedure δ is said to be Bayes with
respect to a prior distribution π for θ if its risk
function Rδ(θ) is such that

∫
Rδ(θ) π( dθ) ≤

∫
Rδ1(θ) π( dθ)

for all other available decision rules δ1. In other
words, a procedure δ is Bayes if for some a priori
probability distribution π for θ , no other procedure
has smaller expected risk when θ has distribution π .
The Bayes risk of a decision procedure δ when π is
the a priori distribution is by definition

B(π, δ) =
∫

Rδ(θ) π( dθ).

The Bayes boundary of the risk set consists of all
those risk functions for which no uniform improve-
ment is possible; that is, no improvement by some
ε > 0 uniformly in the parameter space.

Next, if a procedure is to be appropriate for
real-world applications, in the sense of being imple-
mentable on a computer with finite memory, it is
necessary that both the data space X and the action
space A be finite. Even if the original data space
were of infinite cardinality, it would be necessary to
finitize it in order to put all possible observations
into such a computer. Such finitization procedures
are of course quite customary, even with integer data,
such as time to death as measured to the nearest year,
where one puts in an upper bound, for example so that
all deaths beyond 200 years are lumped into a single
category. Similarly, if time of death is measured in
terms of fractions of years, it is customary to round
these also, both because no one is seriously interested
in measuring such times to death too finely (such
as 67.3487532137 years), and also because even if
it were possible to do so in a meaningful sense, it
would be impossible either to measure or record in a
computer too many such decimal points.

In real-world decision problems, the action space
must also be finite. No decision maker seriously
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contemplates taking more than a finite number of
actions. For example, if the problem is to forecast
an interest rate a year from now, then real-world
forecasts are not given to more than a few decimal
points. With regard to the cardinality of the parameter
space, in typical real-world problems the parameter
too is rounded, and typically loses its meaning beyond
a certain known finite number of decimal points. For
example, the weight of a whale changes nontrivially
whenever the whale spouts, and the height of a person
changes during the course of a day. Hence, it is
meaningless to define such parameters to too great
precision. Only in certain (typically exotic) problems
arising in the physical sciences can parameters be
taken seriously to many decimal places, and even
here the uncertainty principle of quantum mechanics
suggests limitations on the ability to measure such
parameters.

In the case of a finite data space and a finite
parameter space, the conditional probabilities for θ

given X = x are well defined, and it is easy to
show that the Bayes procedures are those that are
equivalent to first updating the initial distribution
π to a posterior distribution π∗ by using Bayes’s
theorem, and then choosing a terminal action that
minimizes the expected loss with respect to this
posterior distribution: see Savage [19, Chapter 3] or
DeGroot [7, p. 138]. In the finite case there always
exists a pure decision rule δπ that is a Bayes decision
rule for π .

When the parameter space is not finite, there are
some technical issues to mention. First, in the orig-
inal Kolmogorov theory, it is conventional to allow
only countably additive probability distributions for
θ . Such countably additive distributions are necessar-
ily finitely additive, in the sense that the probability
of a finite union of disjoint events is the sum of
probabilities. However, in recent years it has become
understood that the collection of finitely additive dis-
tributions, which is a much larger collection, is also
of importance. (Indeed, improper prior distributions,
such as are widely used by Bayesian statisticians after
the fashion of H. Jeffreys [12], and implicitly used
by some non-Bayesians, can be rigorously interpreted
as finitely additive distributions.) By a finitely addi-
tive distribution, we mean one in which additivity of
probabilities is required to hold for all finite unions
of disjoint events, but not necessarily for nonfinite
unions. If the parameter has only a finite number of
values, then finite additivity and countable additivity

are equivalent. To say that a procedure is Bayes with
respect to a finitely additive probability distribution π

means the same as previously, in terms of minimiza-
tion of expected risk with respect to that distribution,
except that now the distributions may be only finitely
additive. It is easy to show that the space of all pos-
sible finitely additive distributions is equivalent to
the space of all nonnegative linear functionals π(f )

defined on the collection of bounded functions f of
the parameter θ . The probability of a subset A of the
parameter space is simply the value of the functional
π at the indicator of the set A. See Kolmogorov &
Fomin [15] for an elegant presentation of the theory
of such linear functionals.

The next theorem proves that any procedure that is
not based upon conditional probability is objectively
defective. This is meant in precisely the same sense as
in the Neyman–Pearson lemma, where it is foolish
not to minimize the type two error probability for
a specified type one error probability. This theorem
is a slight strengthening of Theorem 1 of Hill [9]
to allow for a possibly infinite parameter space, and
the proof is essentially the same. When the parameter
space is finite the theorem holds for any loss function
whatsoever.

Theorem 3. Suppose that the space of terminal
actions A and the data space X are finite, with
the parameter space arbitrary, and the loss func-
tion nonnegative and bounded. Let D be the class
of randomized decision rules of the form δ(X) =∑J

i=1[αj ]dj (X). If a decision rule δ0 ∈ D is not
Bayes with respect to some finitely additive a priori
distribution, then it can be improved upon, uniformly
in the parameter, by an admissible and computable
Bayes procedure in D.

The proof of this theorem is obtained by using the
fact that under our assumptions any non-Bayes pro-
cedure δ0 can be uniformly improved upon by some
other available procedure, say δ1, not necessarily a
Bayes procedure. Now consider the restricted deci-
sion problem, in which only decision rules at least as
good in risk as δ1 are considered, and find a Bayes
procedure δπ in this restricted problem for some prior
distribution π . Any such Bayes procedure has a risk
function less than or equal to that of δ1 for all θ ,
and so is uniformly better than δ0. It is straightfor-
ward to show that π can always be chosen so that δπ

is admissible both in the restricted and the original
decision problem.
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This theorem shows that any real-world non-Bayes
procedure can always be improved upon uniformly in
the parameter by some positive amount. This is not
merely a theoretic possibility, but Theorem 3 suggests
a concrete algorithm for obtaining such improve-
ments. Indeed, they can be routinely provided by
means of existing computational methods for solv-
ing linear programming problems. The equivalence
of the above minimization problem with those aris-
ing in linear programming follows from the fact that
both problems can be formulated mathematically in
terms of the minimization of an inner product of
a fixed vector π with a variable vector γ that lies
in a known closed convex set. In our problem the
vector π is the a priori distribution, while in linear
programming problems it is known as the objective
function. It should be noted that when the non-Bayes
procedure δ0 is close to the Bayes boundary, then
the improvement although uniform is small. On the
other hand, many non-Bayes procedures in common
use are very remote from the Bayes boundary, and
substantial improvement is possible.

The theorem also suggests a new way to resolve
issues about subjectivity of Bayes procedures. One
can simply take any standard non-Bayes procedure
δ0 and use linear programming to replace it by a
uniformly better Bayes procedure. In this way, by
restricting the choice to be amongst only those Bayes
procedures that are uniformly better than the stan-
dard procedure, one can avoid the more subtle and
controversial issues concerning comparisons within
the full class of Bayes procedures. Of course, the
fact that any non-Bayes procedure can be uniformly
improved upon by a Bayes procedure makes it clear
that one can restrict attention to the class of Bayes
procedures, without any loss in so doing. When there
is some compelling case for the standard procedure
δ0, then this provides a motivation for giving particu-
lar attention to those Bayes procedures that uniformly
dominate it, and therefore greatly simplifies the deci-
sion problem. Typically there will be several pure
Bayes procedures that are uniformly better than δ0. To
choose amongst them, one can either use subjective
judgment to select an appropriate a priori distribution
π ; or alternately use some more objective method to
choose amongst the Bayes procedures that are uni-
formly better than δ0. For example, one could use a
minimax procedure in the restricted problem.

It is important to note that many conventional sta-
tistical procedures map the data into estimates or tests

or predictions, without interpreting such a mapping
as being in any sense a conditional procedure, or
even as being conditional upon the data. Examples
include the product-limit estimator in survival anal-
ysis (see Kaplan–Meier Estimator), proportional
hazards models, the various bootstraps, and many
other such well-known statistical procedures that are
routinely used in the analysis of data. Theorem 3
shows that all such mappings can be assessed with
respect to their unconditional performance, and only
those procedures which possess the internal consis-
tency properties of procedures derivable from con-
ditional probability distributions are not objectively
defective. The theorem even applies to the so-called
group decision problem, in which a group must arrive
at some decision procedure. No matter how arrived
at, if that procedure is not a Bayes procedure based
upon conditional probability, then it can be uniformly
improved upon by a Bayes decision rule.

Theorem 3 relies upon the existence of a probabil-
ity model for the data, given the parameter, and also
of a loss function. When there is no accepted such
probability model, then of course everything becomes
subjective, and there is essentially no serious role
for theory at all. With regard to the loss function,
there exist both statistical problems with a generally
accepted loss function, and others in which the loss
function does not exist or is unknown or is contro-
versial. If there is no loss function at all, then there is
really no problem, since anything can be done what-
soever without any punishment for even the most
absurd procedures. When a loss function exists but
is not entirely known, or alternately when losses or
utilities are difficult to assess, it is possible to make
use of robustness properties of decision procedures.
For example, one can obtain an optimal procedure
for several different loss functions under considera-
tion, and if these are nearly in agreement then for
practical purposes the decision problem is solved.

The Evaluation Game

While it is clear that a decision procedure that can
always be uniformly improved upon in risk is not
particularly desirable, it is important to point out
precisely how the latter leads in practice to poor
decisions.

Let θ be a conventional parameter that deter-
mines the distribution of a random variable, X, and
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let δi(X), i = 0, 1, be two decision functions. Sup-
pose that there is a referee who generates couples
(θj , Xj ), on a computer, for j = 1, . . . , M , generat-
ing the θj in any way whatsoever (not necessarily
probabilistically), and then using the specified con-
ditional distribution to generate Xj , given θj , with
the Xj conditionally independent. Let the referee
generate M couples in this way. Assume that the con-
ditional distribution for Xj , given θj , is known to all
concerned. Consider a statistician or decision-maker
who must choose between δ1(Xj ) and δ0(Xj ) to esti-
mate θj using the same decision rule on each of the
M occasions. Let L(θj , δi(Xj )) be the loss if θj is
the true value of the parameter and δi(Xj ) is used on
the j th occasion, 1 ≤ j ≤ M . We shall assume that
all decision functions are to be mechanically imple-
mented on a computer, without any data analysis or
learning from one occasion to another.

Suppose, as in Theorem 3, that δ1 is uniformly bet-
ter than δ0 with Rδ1(θ) ≤ Rδ0(θ) − ε for all θ with
ε > 0. Summing over the M occasions, the actual
increment in loss if δ0 were used on each occa-
sion instead of δ1, would be

∑M
j=1[L(θj , δ0(Xj )) −

L(θj , δ1(Xj ))]. The conditional expectation of this
incremental loss due to use of δ0, from the perspec-
tive of the referee who knows the θj , is then, for any
θj whatsoever,

K(θ1, . . . , θM) =
M∑

j=1

EXj |θj
{L[θj , δ0(Xj )]

− L[θj , δ1(Xj )]}

=
M∑

j=1

[Rδ0(θj ) − Rδ1(θj )] ≥ Mε.

This proves that in repeated usage of δ0 instead of
δ1 with M large, one typically anticipates enormous
extra loss. If, in addition, the referee uses some
probability distribution π to generate the θj , then

EK(θ1, . . . , θM) = M[B(π, δ0) − B(π, δ1)],

which is M times the difference in Bayes risks for
the two procedures. Of course, the best possible
decision procedure would be a procedure that is
Bayes with respect to the π used by the referee,
but even if this is unknown (or does not exist) it is
still the case that one can enormously improve upon
any specified non-Bayes procedure δ0 by means of

Theorem 3. This is the operational sense in which
usage of non-Bayes procedures, that is, those not
based upon conditional probability assessments, are
objectively defective in performance. This argument
also reveals the intimate connection between the
fundamental frequentist argument that procedures are
to be assessed in terms of long-run performance,
and the Bayesian algorithm for obtaining optimal
decisions by optimizing conditionally upon the data.

Next, suppose that instead of estimation of an
unknown parameter θ , one is using the data X to
predict another random variable Y . In other words,
on the j th occasion one is given Xj and must now
predict Yj . Then the above argument goes through in
exactly the same way, with now the usual estimative
risk function replaced by the predictive risk function,
which is a function of the unknown value of Y . The
theory of predictive risk functions is presented in Hill
[10]. If the decision function used to predict Y is δ(X)

then the predictive risk function is

Rδ(y) = EL(y, δ(X)).

In other words, the parameter θ is replaced by the
true value of Y to be observed. It is assumed that
a joint probability distribution has been specified for
(X, Y ), and Rδ(y) is the expectation of L(Y, δ(X)),
conditional upon Y = y.

A particularly important and challenging exam-
ple, to which Theorem 3 applies, concerns data in a
large sparse contingency table, such as is common in
medical diagnosis. Suppose that one must put forth a
conditional probability that a new patient with symp-
toms given by X = x has disease y, based upon the
data in the table. This is precisely the type of predic-
tion problem just discussed. Many ad hoc methods
exist for estimating such probabilities. Only those,
however, for which there exists a joint distribution
for (X, Y ) such that the probabilities put forth are
truly conditional probabilities based upon that joint
distribution, cannot be improved upon uniformly by
the algorithm of Theorem 3 (see Decision Analysis
in Diagnosis and Treatment Choice).

The Infinite Case

Kolmogorov [13] put forth a theory of probability
in which conditional probabilities were defined as
Radon–Nikodym derivates of one bounded signed
measure with respect to another. Briefly, let Y be a
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random variable with respect to the probability space
(Ω,A, P ) for which the expectation E(Y ) exists, and
let B be a σ -algebra of subsets of Ω such that B ⊂ A.
Then the signed measure µ(B) = ∫

B
Y dP defined for

B ∈ B is absolutely continuous with respect to P .
According to the Radon–Nikodým theorem, there
exists a B-measurable function f (ω), often written
as f (ω) = ( dµ/ dP)(ω), such that

∫

B

Y (ω) dP(ω) =
∫

B

f (ω) dP(ω),

for all B ∈ B. Any two such functions fi(ω) can
differ only on a set in B of P measure 0, and the
conditional expectation of Y given B is defined to
be E(Y |B)(ω) = f (ω) for any such function. Kol-
mogorov thus attempted to extend the classical con-
cept of conditional probability to the nonfinite case,
by requiring that the generalized law of total proba-
bility EY = E E[Y |X] remain true. For Y the indicator
of an event, this provides a definition of conditional
probability given B. An alternate method to obtain
conditional probabilities in the sense of Kolmogorov,
more directly related to standard mathematics and
expectation, is to use the theory of projections in
Hilbert space developed by von Neumann, as for
example presented in Rényi [17, p. 262].

The theory of Kolmogorov has proved fruitful in
allowing many elegant theorems concerning martin-
gales (see Counting Process Methods in Survival
Analysis) and Markov processes to be proved rigor-
ously, in accord with the usual mathematical con-
ventions. On the other hand, this theory is based
on a number of idealizations, and in particular rests
strongly upon the Axiom of Continuity (or Countable
Additivity). Kolmogorov [13, p. 15] states:

For infinite fields, on the other hand, the Axiom of
Continuity, VI, proved to be independent of Axioms
I–V. Since the new axiom is essential for infinite
fields of probability only, it is almost impossible to
elucidate its empirical meaning, as has been done, for
example, in the case of Axioms I–V in 2 of the first
chapter. For, in describing any observable random
process, we can obtain only finite fields of prob-
ability. Infinite fields of probability occur only as
idealized models of real random processes. We limit
ourselves, arbitrarily, to only those models which
satisfy Axiom VI. [Author’s italics.] This limitation
has been found expedient in researches of the most
diverse sort.

Conditional probability in the sense of Kolmogorov
is an extension of the classical concept of Bayes

in the sense that the two are in agreement when-
ever B is purely atomic, as for countable spaces of
outcomes. For it is a standard result that whenever
B is purely atomic with atoms Bi having positive
probability, then ( dµ/ dP)(ω) = E(Y |Bi) for ω ∈ Bi .
See Rényi [17, p. 261]. However, the theory of Kol-
mogorov also applies to cases in which the underlying
space Ω is a finite-dimensional Euclidean space,
a Hilbert space, a pseudo-metric space, and even
to appropriately defined Borel sets in an abstract
space of points. Alternately, this theory can be based
upon the Daniell integral, as in Riesz–Sz.-Nagy [18,
p. 132], and is then closely related to the theory
of nonnegative linear functionals. However, it is
not necessarily harmless to generalize the concrete
and clear concept of conditional probability in finite
spaces to such idealized spaces. Kolmogorov [13,
p. 17] puts it well in discussing the Borel field BF:

Even if the sets (events) A of F can be interpreted as
actual and (perhaps only approximately) observable
events, it does not, of course, follow from this that
the sets of the extended field BF reasonably admit
of such an interpretation.

Thus there is the possibility that while a field
of probability (F, P ) may be regarded as the image
(idealized, however) of actual random events, the
extended field of probability (B, P ) will still remain
merely a mathematical structure.

If one allows the possibility of the realization of
an irrational number as the actual outcome of an
experiment, with this number obtained by direct mea-
surement, then conditional probability in the sense of
Kolmogorov can disagree with the classical concept
of both Bayes and the frequentist theory. Of course,
no such outcome has ever been observed, or could
ever be observed, in finite time, and even such irra-
tional numbers as π and e are at any given time
known only up to a finite number of decimal points.
Furthermore, the use of transformations such as

√
x

that can lead to irrational numbers does not alter
things, since when used operationally by a computer
these must be replaced by some finite approximation.
If the data space X consisted of all points in even one
of the most simple idealized spaces, the real line, then
no real-world observation could ever consist of the
exact value of the observation, since it would require
infinite time to determine all the decimal points for
even a single such measurement. Hence the actual
observations upon which one conditions, as in Bayes’
theorem, are necessarily very special subsets of X,
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such as for example that the observation lies between
two rational numbers. Borel, who initiated modern
measure theory, was particularly concerned about the
misuse of mathematics in connection with real-world
data, as for example in Borel [2, Chapters 5–8], and
emphasized the importance of approximations in the
evaluation of real-world probabilities. The theory of
Kolmogorov, in the case of even such simple sample
spaces as the real line, has no direct relevance for the
question of updating of opinions, as in the Bayesian
theory, or for decision theory, since the datum x upon
which the decision is to be based will always be fini-
tized. Rather, it includes an assumption (countable
additivity) which, although useful in proving limit
theorems, according to Kolmogorov cannot be jus-
tified other than by pragmatic reasons even for this
purpose, much less for real-world decision problems.

De Finetti also attempted to extend the classical
concept of conditional probability, and proposed a
third axiom in de Finetti [6, p. 338] to allow for con-
ditional probability given an event of probability 0.
His third axiom states that probability evaluations are
to be in accord with the axioms of finitely additive
probability theory, even conditional upon an event of
probability 0. To obtain conditional probabilities in
the general finitely additive setting, Dubins & Sav-
age [8] developed the concept of a finitely additive
strategy, under which probability distributions are
attached to each history of a process. These specify
the probability for the future, given the past of the
process, and allow arbitrary observational data, such
as irrational numbers or a point in Hilbert space. At
this level of generality, it is not necessarily possible
to reverse the order of integration, so that a strategy
may presume a definite ordering of the observations.

For infinite spaces, the finitely additive theory con-
tains paradoxes of nonconglomerability, a concept
due to de Finetti. Nonconglomerability means that
for some event A and partition Bt it is the case
that P(A) > suptP (A|Bt). In denumerable spaces it
is known that countable additivity is equivalent to
conglomerability. See Hill & Lane [11] for an ele-
mentary proof. Thus the countably additive theory
builds in assumptions regarding conditional proba-
bility. Kolmogorov, in assuming countable additiv-
ity, was implicitly ruling out nonconglomerability, at
least in the discrete case. At the present time there
is no theory, free of paradoxes, that can seriously
deal with the nondenumerable case, as when irrational
numbers are taken literally. Borel [3, p. 60, p. 175]

gives illuminating discussions of ways in which some
mathematicians, unaware of the questions already
raised by himself and Poincaré, and later by Kol-
mogorov; and with limited knowledge of science,
have often confused the basic issues when dealing
with the nonfinite case. Borel [7, Chapters 2, 3, &
5] discusses the subtle issues that arise in attempt-
ing to apply the theory of probability to real-world
problems, such as arise in the analysis of mortality
tables.

In serious mathematics, an irrational number is
viewed as the idealized limit obtained by means of
a certain procedure, such as for example the limit of
a sequence of partial sums. This point of view can
also be taken regarding procedures involving random-
ness, such as draws from an urn. Prior to the work
of Cantor, the realized infinite was regarded as non-
sense by most major mathematicians; for example,
Gauss and Kronecker. Related viewpoints continued
into this century, as represented by Borel. Poincaré,
Brouwer, Weyl, and others. Kolmogorov, also a major
mathematician who made serious contributions to
logic as well as to probability, was concerned with
such issues, and his opinions evolved over time.
For example, in his book with Fomin, a measure is
so defined as not necessarily to be countable addi-
tive, and some standard finitely additive measures
are studied. The theory of Kolmogorov was elegantly
extended by Rényi [17, p. 38] to conditional prob-
ability spaces. This extension allows one to deal
rigorously with σ -finite measures such as counting
measure on a denumerable space, and is a major step
toward the finitely additive theory, although Rényi
did not choose to make the final extension. There is,
however, a clear recognition both by Kolmogorov &
Fomin [15, p. 206] and by Rényi [17, p. 60] that gen-
eralized functions such as the Dirac delta function are
important and legitimate objects for mathematics (and
probability) to study. The finitely additive theory can
be regarded as the extension of that of Kolmogorov
to include such objects.

Kolmogorov [14, p. 1] asserted his continuing
belief that

The frequency concept based on the notion of lim-
iting frequency [author’s italics] as the number of
trials increases to infinity, does not contribute any-
thing to substantiate the applicability of the results of
probability theory to real practical problems where
we have always to deal with a finite number of trials.
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He then proposed a theory of complexity and infor-
mation based upon admissible algorithms for select-
ing a subset of a random table, as a possible justi-
fication. With a return to the finite case, however,
as the critical case for real-world use of probability,
the axioms of finitely additive probability (Kolmoro-
gov’s axioms I–V) can be strongly motivated, as by
himself, or by the coherency theory of de Finetti,
or by the BNW theory of statistical decision func-
tions. Consequently, one is led back to the use of
conditional probability and Bayes procedures for real-
world decision-making. To the extent that nonfinite
spaces arise at all in real-world problems, as sug-
gested by Kolmogorov [13, p. 18; 14], it is in giving
insight as to approximations that arise when the data
space is large but finite, and in providing answers
to finite problems by means of methods of analysis
available in the infinite case.
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Conditionality Principle

The conditionality principle of statistical inference is
usually interpreted to mean that inference about θ in
the model f (y ; θ) should be conditional on any ancil-
lary statistic for θ . This principle has caused a great
deal of discussion in the literature on the foundations
of statistics: for an introduction see [1]. As part of this
discussion, examples have been constructed for which
there are nonunique ancillary statistics, for which no
ancillary statistics exist, and for which there exist
ancillary statistics but no maximal ancillary statistic.

From a foundational point of view the condi-
tionality principle entails quite a few difficulties.
One of these is Birnbaum’s theorem [3], which
shows that sufficiency and the conditionality princi-
ple imply the so-called likelihood principle, which
states that inference should be based only on the
likelihood function, and not, for example, on the
sampling properties of the likelihood function under
the model, which would be the usual frequentist
approach to likelihood-based inference (see Foun-
dations of Probability). In fact, the conditionality
principle alone entails the likelihood principle, as
shown in [5].

Berger & Wolpert [2] is the most comprehen-
sive book treatment of the conditionality principle.
It is argued there that the most satisfactory imple-
mentation of the likelihood principle is a Bayesian

approach to inference. Discussion of other founda-
tional issues arising in conditioning appears in [4].
Recently, McCullagh [6] has considered in detail
an unusual (although possibly artificial) class of
examples which has more than one ancillary statis-
tic, and in which the conditional inference is quite
dependent on the choice of ancillary on which to
condition.
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Confidence Intervals,
Binomial, when no events
are observed

The appeal of the rule of three to clinicians is in
its simplicity and usefulness in safety evaluation of
adverse events. Specifically, consider a scenario in
which the probability, p, of an event (generally an
adverse reaction to a drug or clinical procedure) is
known, a priori, to be small, and in a study con-
ducted on n patients, no events have occurred. The
problem is to find an upper bound for the unknown
probability, p. The rule of three states that the 95%
upper confidence bound for p is approximately 3/n

(see Confidence Intervals and Sets).
In the context of safety evaluation in clinical

research, in which a clinician has to demonstrate
the safety of a new procedure (i.e. show that the
probability of an adverse event is lower than some
small acceptable probability), the lower bound for p

is not of practical interest; one is mainly concerned
with the upper bound on p, since it represents the
“worst case scenario”, or the largest probability for
placing a patient at risk. Thus, the lower bound for
p may a priori be taken to equal zero.

Derivation of the Rule of Three

Let the random variable X have a binomial dis-
tribution with parameters n and p. If X = x is the
observed number of events in n trials, then the Clop-
per–Pearson (max-P ) upper 100(1 − α)% bound for
p may be obtained as a solution to

x∑

t=0

(
n

t

)
pt(1 − p)n−t = α.

When x = 0, the expression reduces to (1 − p)n =
α. Then P(X = 0|n, p) = (1 − p)n, and one can
obtain the 100(1 − α)% upper bound for p by solving
(1 − p)n ≤ α for p. This yields p ≥ 1 − α1/n, and by
taking pu = 1 − α1/n for the least upper bound for p,
the interval (0, pu) provides 100(1 − α)% coverage
for p. Now, 3/n appears for the following reason.
From the Taylor expansion α1/n = 1 + ln(α)/n +
[ln(α)]2/2n2 + · · ·, one obtains, by retaining only the

linear portion,

1 − α1/n = − ln(α)

n
.

For α = 0.05, − ln(α) = 2.996, and thus pu is numer-
ically close to 3/n.

A similar argument using a Poisson random vari-
able, with parameter λ = np, yields P(X = 0|np) =
exp(−np) ≤ α, which, after taking the natural log
of both sides, produces the least upper bound pu =
− ln(α)/n which yields 3/n as in the binomial case.

The rule of three may be derived using the
Bayesian approach as well. Assume a Beta(1, b)
prior on p, i.e. π(p) = (1 − p)b−1/B(1, b). Figure 1
presents a sequence of kernels (see Density Estima-
tion) of Beta(1, b) priors for various values of b.
With a Beta(1, b) prior, simple integration yields a
posterior credibility interval for p:

P(0 < p < pu|X = 0, b, n)

= 1 − (1 − pu)
(n+b) ≥ (1 − α),

which simplifies to

pu ≥ 1 − α1/(n+b),

and the right-hand side can be approximated via
Taylor expansion by

− ln(α)

(n + b)
.
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Figure 1 Beta(1, b) prior kernels for various values of b



2 Confidence Intervals, Binomial, when no events are observed

Table 1 Upper bounds on p when x = 0: Poisson (2); exact binomial (3); Rule of Three (4); Bayesian
upper bound for uniform (Beta(1, b), b = 1); prior (5); improved Rule of Three (6); and Bayesian Rule
of Three for b = 20 (7)

(1) (2) (3) (4) (5) (6) (7)

n − ln(α)/n 1 − α1/n 3/n 1 − α1/(n−1) 3/(n + 1) 3/(n + 20)

3 0.99858 0.63160 1.00000 0.52713 0.75000 0.13043
4 0.74893 0.52713 0.75000 0.45072 0.60000 0.12500
5 0.59915 0.45072 0.60000 0.39304 0.50000 0.12000
6 0.49929 0.39304 0.50000 0.34816 0.42857 0.11538
7 0.42796 0.34816 0.42857 0.31234 0.37500 0.11111
8 0.37477 0.31234 0.37500 0.28313 0.33333 0.10714
9 0.33286 0.28313 0.33333 0.25877 0.30000 0.10345

10 0.29957 0.25877 0.30000 0.23840 0.27273 0.10000
20 0.14979 0.13911 0.15000 0.13295 0.14286 0.07500
50 0.05991 0.05816 0.06000 0.05705 0.05882 0.04285

100 0.02996 0.02951 0.03000 0.02923 0.02970 0.02500

This gives us a Bayesian Rule of Three as 3/(n +
b), with b ≥ 1. Obviously, for b = 1, 3/(n + 1) is
the largest such upper bound, corresponding to the
uniform prior (see Table 1).

If no events occur in k studies of sizes n1,
n2, . . . , nk , then one has a more general rule of three
as 3/(n1 + n2 + · · · + nk + 1), which may be derived
using a Bayesian approach.
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Confidence Intervals and
Sets

A confidence interval for a fixed parameter θ , or
a confidence set for a multidimensional parameter
θ , represents a plausible range of values for the
parameter(s) that is consistent with the observed data.
Specifically, for a single parameter θ , the interval
(L, U) is a 100(1 − α)% confidence interval for θ

if Pr(L ≤ θ ≤ U) = 1 − α. The quantity 1 − α is
called the confidence coefficient or confidence level,
and is equal to the probability that the random interval
(L, U), contains the fixed parameter θ . The con-
fidence limits L and U are constructed from the
observed data in such a way that in infinite replica-
tions of the study, the proportion of such intervals that
contain the parameter θ , or the coverage probability,
is 1 − α. For an r-dimensional parameter vector θ ,
the confidence set I is defined as the r-dimensional
space I = [θ : Lj ≤ θj ≤ Uj, j = 1, . . . , r] such that
Pr(θ ∈ I) = 1 − α.

Confidence intervals need not be symmetric, but
could reflect upper or lower bounds for a parameter
in a one-sided confidence interval, as opposed to the
two-sided interval described above. A 100(1 − α)%
upper one-sided confidence limit or bound U ′ for θ

has the property that Pr(U ′ ≥ θ) = 1 − α. The inter-
val (−∞, U ′) is sometimes called a lower one-sided
confidence interval. The corresponding lower one-
sided bound L′ is such that Pr(L′ ≤ θ) = 1 − α. The
definitions of coverage probabilities and confidence
coefficients are equally applicable to one-sided limits.

Confidence intervals are often centered around an
estimate of the parameter of interest θ , and give
an indication of the precision of the estimate. They
incorporate the random variation inherent in the data
into the estimation procedure. Various methods of

constructing confidence intervals are used, depend-
ing on the distribution of the data, and the particular
parameter of interest (see Estimation, Interval). The
length of the confidence interval, a reflection of the
precision of the estimate, is influenced by the sample
size, the variability in the data, and the confidence
coefficient. The higher the level of confidence, the
greater the variability in the data, or the smaller the
sample size, the wider is the interval. The tighter the
interval, the more certain is the parameter estimation.

The confidence interval is based on frequentist
statistical theory in which the parameter θ is con-
sidered fixed but unknown, and was developed by
Neyman [2, 3]. The alternative Bayesian theory
considers the parameter θ to be a realization of a
random variable Θ , and instead defines a proba-
bility distribution for Θ [1]. Probability statements
about Θ , conditional on the observed data, are based
on the posterior distribution. Upper and lower per-
centage points of the posterior distribution would
correspond to the frequentist confidence interval.
For multidimensional parameters, a region of high
posterior density would correspond to the confi-
dence set.
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Confidentiality and
Computers

Introduction

This updates an article with the same title that
appeared in the first edition of EOB.

Confidentiality is defined as “the characteristic of
data and information being disclosed only to autho-
rized persons, entities and processes at authorized
times and in the authorized manner” [24]. Essentially,
confidentiality relates to control over information.
Who should have access to information, and under
what circumstances?

While confidentiality concerns apply also to paper-
based or manual records, the widespread utilization of
information technology, and especially the network-
ing of computers (see Computer Architecture and
Organization), has led to new and difficult chal-
lenges for maintaining confidentiality and privacy.
Confidentiality issues arise both for personal infor-
mation and for information that is important for the
functioning of business and other organizations. Per-
sonal information may include facts and figures about
ourselves, our lives, our personal work and financial
situations, and our medical history. Most people do
not however regard information on telephone number
or street address as confidential, and are happy for it
to be printed in a phone directory, that is, it is placed
“in the public domain”.

When information is provided to people in trusted
positions – doctors, lawyers, researchers, and govern-
ment officials – there is an expectation that it will
be kept secure, used only for the purpose for which
it has been collected. Any breach of this trust may
compromise future data collection [4].

Social and cultural value systems strongly influ-
ence attitudes to privacy and confidentiality. Different
societies have different views on where the balance
should lie between individual rights and public good.

Privacy and Confidentiality

The confidentiality of personal information is closely
aligned with the broader issue of privacy. Gostin
et al. [12] suggest that privacy is “the right of an
individual to limit access by others to some aspect
of the person”, while confidentiality is “a form

of informational privacy characterized by a special
relationship, such as the physician-patient relation-
ship”. Privacy protection is about individuals being
informed why their information is being collected,
having access to their information and having as
much say as possible about how their information
is used and to whom it may be disclosed [22].

Laws, Standards, Principles, and
Practicalities

Rights to privacy and confidentiality, and principles
that guide the handling of private information, may be
enshrined in law. Public and other bodies who hold
data may have their own standards, which interpret
and/or supplement legal requirements. Such laws and
standards provide a framework for deciding when and
under what conditions data can be made available to
third parties.

A major impetus to the passing of laws on the
privacy of data, in a number of countries, was the
1995 Privacy Directive of the European Union [11],
which applies both to private and to public data. This
obliges the EU’s member states to ensure that their
national legislation is in accordance with the direc-
tive, and prevents the exchange of data with nations
that do not have “adequate” privacy protections.

A basic principle of most privacy legislation is the
protection of the “need to know”, or the limiting of
access to the minimum required to perform a task.
Implicit in this is the need to exclude access for
those who have no genuine requirement to access
the data. Thus for many (but not all) research uses of
medical data, it will be enough to make data available
without identifying information, usually with some
form of coding or record linkage that is unique
to the individual. This is not as straightforward as
might appear at first glance; thus mechanisms will be
required that allow a check on apparent anomalies or
suspected errors.

Confidentiality and Computer Systems

Privacy and confidentially measures can work only
when the data holder has the will, technical capacity,
and moral or legal authority to keep such information
secure [8]. To be effective, such measures require the
informed cooperation of users. Education thus has an
important role.
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Stand-alone systems are in principle relatively
easy to secure. Broadly, access can be limited to
trusted individuals for authorized purposes, and all
use can be monitored and logged. It will be possible
to attribute any security lapse to one of a small
number of known individuals. With smaller systems
the same person may have more than one role, that is,
general user and system manager. Such a user may be
given separate accounts for the separate roles, and be
required to access the system with the account that is
relevant for the role or task that they are performing
at the time.

Networked systems, systems that use wireless con-
nections and (even more) systems that are connected
to the internet, pose new and difficult security prob-
lems. Data collected by the CERTC Coordination
Center of Internet security expertise, shows a sharp
increase in intrusion incidents between 1999 and
2001 [15]. There may be denials of service, files may
be destroyed, damaged, or altered, and the security of
data may be compromised.

Current systems may be testing to breaking point
current design approaches for networked systems,
perhaps inevitable in the rush to create a networked
world. The issues are so important that a recently
established journal (January 2003), IEEE Security
and Privacy, is devoted to them. System design is
important, but gives only a first line of defence.
System design, however careful and informed, is
likely to lag behind technical innovation, for which
the crucial test is day to day use.

Planning should therefore include measures that
may detect unauthorized intrusion or use of data,
should preventative measures fail, and have in place
strategies that will respond rapidly and effectively
[6, 16, 19, 25]. It should aim to mitigate the poten-
tial damage from unauthorized access. An “outsider”
who gains access to data, whether by intrusion, from
a mix-up, or from an incompletely erased hard drive
that has been sent for disposal, will, in general, be
unable to do much damage with data that lacks identi-
fication information. This emphasizes the importance
of the trust that is placed in “insiders”, who may be
well placed to reconstruct the missing connections.

Security systems that place undue obstacles in
the way of legitimate users can be self-defeating.
They place obstacles in the way of legitimate use
of the data. For medical data, they may compromise
the obtaining of information that has strong public
health implications. They may make it difficult or

impossible to check on apparently anomalous data
(see Outliers). At the same time, unduly onerous
systems invite practices that render them partially
ineffective. For example, access codes for a suppos-
edly secure system may be made widely available,
avoiding the time and complication associated with
creating any new access codes.

Preventing and Responding to Incursion

Steps that may reduce the risk of unauthorized access,
or to reduce its impact when it does occur, are:

• The use of “secure” software systems, that is,
systems that are relatively invulnerable to unau-
thorized intrusion or to misuse.

• The use of “secure” forms of user identification,
and of data transfer (see Sample Surveys in the
Health Sciences).

• The use of a system of permissions that operates
on a per file or per directory basis, with access
restricted on a “need to access” basis.

• Avoiding or preventing storage of sensitive data
on inherently insecure hardware, such as remov-
able devices and laptops.

• Monitoring and logging of access to sensitive
data.

• Education of managers and users.
• Regular auditing, checking that physical and sys-

tem security measures are effective, that users
have the correct level of access for their roles,
that the rules defined by data providers are being
met, and that managers and users understand their
roles and responsibilities.

• The use, for sensitive data, of suitable forms of
encryption, for data storage as well as for data
transmission.

• Use of a system of record linkage that limits the
need for access to identification information.

• Storage of identification information separately
from the data to which it relates.

It is essential to get expert advice for the setting
up of highly secure systems. A threat model, which
balances security against the costs and user inconve-
nience of harsher security implementations, can be
helpful [3, 19]. Security breaches such as are doc-
umented in Neumann [18, 20] provide data against
which any such model can be validated.
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Confidentiality, Computers, and Statistical
Analysis

In most official statistical agencies, the protection
from disclosure of individually identifiable records
is guaranteed by legislation. The situation in Aus-
tralia provides a good example of the issues that this
raises. The Census and Statistics Act requires that
the Australian Bureau of Statistics does not release
statistics “in a manner that is likely to enable the
identification of a particular person or organization”.
This has particular relevance to the release of com-
puter files containing unidentifiable unit records, or
microdata. The Australian Statistician [17] has dis-
cretionary powers to release unidentifiable individual
statistical records, provided a recipient gives a legally
binding undertaking that no attempt will be made to
identify particular persons or organizations; that the
information will be used for statistical purposes only;
and that the information will not be disclosed to any
other person or organizations. Other conditions may
also be imposed.

The Australian Statistician is advised by a panel
that assesses all proposals, to ensure that the data are
unlikely to enable unit identification. The panel takes
into account the level of detail in each record and
the extent of disclosure avoidance techniques (e.g.
releasing values not as collected but as classes, and
randomly perturbing values by some small number).
In this way, confidentiality provisions are satisfied
while permitting legitimate demands for secondary
data analysis, although users sometimes express con-
cern that such techniques significantly reduce the
value of the data that are released.

At times, statistical tables can also threaten con-
fidentiality. For example, when a large enterprise
dominates an industry, publishing information about
that industry could be commercially sensitive. Simi-
larly, detailed or multidimensional tables could con-
tain information about individuals living in small
communities. Possible ways to modify tables so that
confidentiality is protected include:

a. Perturbing the table, to change the values of the
data, for example, randomly rounding the values.

b. Grouping categories together (aggregating).
Adding columns or rows together where there
are small or confidential numbers, reduces the
risk that it will be possible to infer confidential
information.

c. Deleting values, or cell suppression. The value
in a cell from the table may be suppressed. In
order to avoid the value being calculated from
subtotals/marginal totals, it is necessary to take
other steps as well, usually deleting another set
of cell values. Deleting these other cells is known
as secondary or complementary cell suppression.

There is an extensive literature that discusses these
issues [9, 26, 27, 28].

Confidentiality, Computers, and
Epidemiological Research

The quantity and type of health information collected,
transmitted, and stored electronically has increased
dramatically in recent years. This reflects the wide-
spread use of computers to store health related infor-
mation systems (see Health Care Utilization Data),
to satisfy accountability requirements and assist qual-
ity and continuity of care. Also, the number of pro-
cedures and treatments performed has increased and
information on lifestyle, risk factors, family medical
history (see Family History Validation), health and
functional status (see Health Status Instruments,
Measurement Properties of), and genetic data (see
Genetic Epidemiology) are increasingly likely to be
recorded. In addition, most countries now maintain
registries of vital statistics, and registries for partic-
ular diseases (see Disease Registers), for example,
cancer registries.

In some types of epidemiological research, iden-
tification of individuals to the researcher may be
unavoidable (see Confidentiality in Epidemiology).
In such cases, the benefits to society must be care-
fully weighed and justified against privacy principles
and against guidelines on the use of identifying infor-
mation for research purposes. Such guidelines may
address the issues of informed consent of subjects
(see Medical Ethics and Statistics), steps to preserve
confidentiality, the use of the information obtained
only for the purpose for which it was collected,
and approval from an institutional ethics commit-
tee. Past Australian examples where the public good
has outweighed personal privacy principles include
epidemiological research into the effects of cigarette
smoking, use of medical record linkage in research
into the side-effects of the oral contraceptive pill, and
research into the long-term consequences of chemical
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exposures (see Risk Assessment for Environmental
Chemicals) and of war service.

Medical research with human subjects relies heav-
ily both on the trust of patients and on public support
for research funding. That trust can be helped by
making those whose data are collected aware of their
rights, of the intended use of the data, and of poten-
tial benefits for medical research. Their attention may
be drawn to web sites where they can follow the
progress of research. Measures that keep subjects
informed may be more important, for the maintenance
of public trust, than unduly stringent and onerous pri-
vacy guarantees that may impede the use of data for
research purposes.

Links on the web site [2] give access to a wide
range of information on privacy, confidentiality, and
data security, in the United States and internationally.
For summary information on selected legal norms
that relate to the protection of personal information in
health research, with extensive references, see [5]. As
examples of requirements, see [5, 7, 13, 14, 21, 22,
23]. See [1] for a set of standards that are intended, in
the first place, for medical clinicians. The article [10]
has practical advice that is relevant to anyone whose
work involves the processing and analysis of data.

Conclusion

Confidentiality has social, cultural, ethical, and legal
dimensions. While it is not specific to the use of
information on computers, the ability of information
systems to store, process, and transmit large amounts
of data makes attention to confidentiality in computer
systems an issue of major importance. The linking of
computer systems via the Internet raises has raised
new technical difficulties for the maintaining of secu-
rity and confidentiality.
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Confidentiality in
Epidemiology

Respecting confidentiality is an important prereq-
uisite in clinical and epidemiologic research. The
term confidentiality is closely related to informational
“privacy” and states the principle of the individual
wish and right to decide about the disclosure of per-
sonal health data [1, 8]. Based on the Declarations
of Helsinki (1964 and 1975) from the World Medi-
cal Association, it is a basic right of the patient to be
assured that all his medical and personal data are con-
fidential. The health professional who has obtained
such data has a primary obligation to respect the con-
fidentiality of the data and to safeguard them against
any disclosure. Only in the case of a few well-defined
exceptions is disclosure allowed, e.g. prevention of
serious risk to public health, order by a court of
law in a crime case, and, under certain safeguards,
health research (including epidemiologic inquiry) [1,
10] (see Epidemiology as Legal Evidence).

According to Thompson, the concept of confi-
dentiality refers to three principal values, namely
“privacy”, “confidence”, and “secrecy” [8]. Privacy –
and in epidemiology we mean in most cases “infor-
mational” privacy – deals with the right of individuals
to control their own lives, while confidence is an
essential requirement of the doctor–patient relation-
ship. Abuse of the trust of confidence the patient
places in his doctor would make the practice of
medicine impossible. “Secrecy” can be seen as a com-
plementary factor to individual privacy, but from the
perspective of the professional dealing with the ques-
tion of what the patient is allowed to know about his
own records.

Ethical principles may affect research and the way
we deal with confidentiality in many ways [2, 10,
11]. First, there is the question of the decision to
do or not to do a study. Then the legal framework,
including guidelines on how to conduct a study, is
important. There is a considerable range of types of
legislation to protect individual confidentiality in time
and among countries. This perspective deals also with
the data management and disclosure approaches in
balancing the interests of science while respecting
confidentiality rules and guidelines [6] (see Ethics
of Randomized Trials).

Ethical Principles

Respect for confidentiality of persons involved in
clinical and epidemiologic research has its origins
in the fulfillment of relevant ethical principles. In
general, four ethical principles can be distinguished
[2, 6].

1. Beneficence. People in general, and the same is
true for epidemiologists, have a moral obligation
to do “right”, i.e. to benefit individuals and soci-
ety. The results of a research project should add
to the existing knowledge base of medicine in
order to make patients better, to prevent health
hazards, or to decrease mortality.

2. Nonmaleficence. This principle reflects a moral
obligation not to do harm to the persons involved
in a scientific study. Harm can, under certain
circumstances, be justified when the population
benefits outweigh the individual harm: e.g. a
Phase I trial in oncology almost never benefits
the patients in the study, but may benefit other
patients in the future.

3. Autonomy. The principle of autonomy states the
moral obligation to respect the right to self-
determination. Autonomy is the key principle for
respecting confidentiality [1]. The demand for
informed consent given by the persons involved
in a study reflects the fulfillment of the principle
of autonomy.

4. Justice. Justice can be considered as the princi-
ple of a fair distribution of burdens and benefits
between individuals, and between groups in soci-
ety. This principle may mean equal access to
study participation and subsequent benefit (e.g.
in AIDS trials), as well as equal exposure when
certain outcomes are still uncertain (e.g. post-
marketing studies with new drugs).

A useful approach in applying such principles is the
assessment of each ethical principle in the context
(or scope) of a specific study. Nilstun & Westrin
have proposed to apply these principles from the
perspective of each of the parties involved and then to
assess the ethical “benefits” and “costs” in the event
the study is or is not conducted [6]. This process can
be illustrated by an example, in deciding whether to
do or not a pharmacoepidemiologic study on the risk
of hip fracture in patients using benzodiazepines [3].
In this example we may identify two relevant parties,
i.e. the persons included in the study and society at
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Table 1 The most important possible “benefits” and
“costs” when the study is done [3]

Bene- Nonmale- Auto-
ficence ficence nomy Justice

Persons in the study Costs
Society at large Benefit Benefit

large. In Table 1 a possible outcome of an analysis
of the most relevant “benefits” and “costs” is listed
concerning the two dimensions of ethical principles
and parties involved in the event that the study
is conducted. “Benefits” and “costs” are essentially
exchanged if the study is not conducted (see Health
Economics).

If the study is done, there are possible “benefits”
for society at large because the study strengthened a
hypothesis based on earlier findings and its results can
guide prescribers in rationing the use of these drugs.
There could be potential costs with respect for auton-
omy by violating the privacy of the patients in the
study. Data on prescription drug use had to be linked
to cases of hospitalizations for hip fracture without
knowing the patient’s identity. All this was done with
existing data and applying a probabilistic approach
in relating different datafiles to the same individual
using dates of birth, gender, and physician practice
[3]. For society at large, potential “benefits” to the
principle of justice can be stated. Justice means a fair
contribution to the gain of relevant medical knowl-
edge, obviously within the boundaries of economics
and other structural conditions. By “participating” in
such a study the population involved took its share
in the solidarity of bringing together relevant pieces
of clinical and epidemiologic insight.

Legal Framework and Guidelines

There is great international variety in legislation
and practice guidelines on protecting violation
of confidentiality. Several international professional
organizations have developed ethical guidelines
and recommendations for epidemiologic studies,
including those produced by the World Health
Organization (WHO), the Industrial Epidemiology
Forum (IEF), the International Epidemiological
Association (IEA), and the Council of International
Organizations of Medical Sciences (CIOMS), and

the guidelines of the International Society for
Pharmacoepidemiology (ISPE).

Recently, the greatest attention has been paid to
the directives of the European Union [4]. There has
been ample expression of public and professional
concern against these directives, principally because
“privacy” is deemed to be violated even in epidemio-
logic studies where confidentiality is assured, unless
the particular purpose is approved by all individuals
[5, 7, 9]. The intent of the European directives is to
protect individuals from improper administrative use
of personal data, including medical data, although no
specific details in this direction were given. The def-
inition of “personal data” is crucial here, because it
relates to the question of how much effort is needed to
identify an individual person within the format of the
data. Apart from many other criteria for and condi-
tions about data confidentiality, “express and written
informed consent” and “personal data” are the two
basic features of European directives that are most
critical.

Record linkage is a key methodology in epi-
demiology and various techniques (e.g. Probabilis-
tic matching and encryption techniques) have been
developed to cope with the confidentiality issue [3, 5].
Some privacy advocates, however, continue to argue
that written informed consent from all patients would
be required to do such linkage studies, even if all
the data are processed in a fully anonymous fashion.
The creation of unbiased personal histories (includ-
ing both data on various exposure and outcomes) is
a crucial requirement in epidemiology. Record link-
age, as was done in the case study on hip fractures,
would be virtually impossible if a requirement of full
written informed consent were imposed.

Discussion

Protecting confidentiality in the context of scientific
inquiry is one of today’s paradoxes. The paradox
confuses us because it requires us to live simultane-
ously with opposites. The paradox here is the growing
ability and need to apply advanced data systems to
investigate health hazards related to various expo-
sures (see Administrative Databases), and on the
other hand the increase of legal control over data
collection and procedures to use these data for epi-
demiologic research. Major progress is being made
in automated databases and information technology
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to establish effective strategies in the use of data for
epidemiologic research. Linking existing data can be
an effective and efficient way to study various expo-
sures and population outcomes. However, society is
increasingly concerned about violating the privacy of
individuals. Ethical controversies on confidentiality
may affect and obstruct epidemiologic research in a
significant way [4, 9]. On the other hand, ethical prin-
ciples may be important to support the conduct of
research and to guide decision making in this respect.

Westrin & Nilstun have compared the aims and
tasks of both epidemiologists and journalists in terms
of their responsibility towards the protection of con-
fidentiality [11]. Society seems willing to accept that,
in the interests of wider public good, journalism may
sometimes invade individuals’ privacy and do them
harm, but it is not prepared to offer epidemiology
an equal measure of tolerance. Confusion still sur-
rounds the question of whether confidentiality can be
fundamentally violated by data drawn from personal
records. Ethical conflicts between moral principles
and methodologic standards affecting epidemiologic
research will remain. The future lies in thoughtful
weighing of the various “costs” and “benefits” in such
conflicts.
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Confidentiality

Confidentiality in the context of health and biosta-
tistical research concerns the avoidance of disclosure
of sensitive and identifiable information about indi-
vidual patients to a third party. Confidentiality pro-
cedures have been subject to change during recent
decades. Patient treatment has increased in complex-
ity, frequently involving both primary health care
workers and specialists, often in several hospitals,
and more persons thus have a need for access to data
on an individual patient, but they may also obtain
access to data which are irrelevant for the medical
service to be provided. Patient data that were once
used almost exclusively by the treating physician are
thus often shared with others, including nonmedical
persons, to a far greater extent than in the past,
particularly for research purposes. This research is
generally intended for the benefit of the whole pop-
ulation in identifying causes of disease, evaluating
the outcome of treatment, assessing equity in health
and in access to treatment services (see Health Ser-
vices Research, Overview), etc. The availability and
widespread use of computer systems to store, ana-
lyze, and transmit large volumes of data, sometimes
over public data networks, have radically altered
the climate in which patient confidentiality must be
maintained (see Administrative Databases). These
changes in the use of confidential data have coincided
with heated debate on the ethics of randomized tri-
als. Randomized clinical trials are essential research
tools for identifying optimal future treatments, but
they are not always readily understood by the gen-
eral public. Prospective research such as randomized
trials, involving direct recruitment of living patients,
requires the informed consent of the patient in many
countries today. This consent will usually also set the
terms for use of the data.

The ethical issue of confidentiality is more com-
plex where the data subject is not contacted, and may
no longer be alive, even if the results of the research
do not enable the individual to be identified. This
situation arises when data that are collected, for pur-
poses such as routine surveillance of disease or vital
statistics, often under the aegis of government, or for
hospital administration or occupational health, are
collated from available sources and the records for
a given individual linked for analysis (see Record
Linkage). The results of such research may provide

powerful new insights into trends in the health of
the population without any need for individuals to be
identified. The possibilities for computerized linkage
of data for individuals, even for very large volumes
of data, have increased public fears of misuse and of
error, and they have stimulated a continuing public
debate on ethics and confidentiality in health research
(see Confidentiality in Epidemiology).

What Should be Kept Confidential?

Data given in confidence must clearly be treated as
confidential. Health data obtained during the doctor’s
management of a patient should be regarded as con-
fidential, but may, in the interests of the patient, be
transmitted to other physicians involved in the treat-
ment of that patient, and physicians will be expected
to observe professional confidentiality. Responses
given to an interviewer or written on a form as part of
a health survey (see Surveys, Health and Morbid-
ity) should also be treated as confidential information.
Often, a promise of confidentiality is explicitly given
to survey respondents to improve the quality and
completeness of the information being collected.

The interests of society may override the indi-
vidual’s perceived right to absolute confidentiality
when, for instance, the health effects of environmen-
tal pollution (see Environmental Epidemiology), or
occupational exposure (see Occupational Epidemi-
ology) need to be assessed and controlled. Publication
and interpretation of the results of such research do
not require identification of individuals, whereas it
is crucial to the underlying analysis. In such cases,
the confidentiality of data about individuals must be
observed to the fullest extent possible, and preferably
regulated by an independent body. Almost any infor-
mation may be considered confidential by an indi-
vidual – such as memberships of unions, income, tax,
childbirth, etc. Some obviously identifiable data in the
public domain are not considered confidential (e.g.
names, addresses, and telephone numbers). Often,
however, when joining a union or becoming a mem-
ber of an organization, the individual may allow use
of the data for purposes relevant to their membership.

Who is Entitled to Confidentiality and
How is it Preserved?

We are all entitled to confidentiality, to have a space
of our own. The problem arises when this space is
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of interest to others, in particular to the society in
which we have chosen to be members, for example
when dealing with public health issues. Confidential-
ity not only concerns relations with the patient – the
data subject – but also the data providers, and it must
be preserved in all aspects of data collection, stor-
age, research use, and transmission. Consequently,
all persons who have access to personal data must be
expected to obey the same constraints with regard to
confidentiality (see Data Management and Coordi-
nation). In health, medical confidentiality is part of
the professional ethic embodied in the Hippocratic
oath, and is set out in most publications on good
medical practice. Physicians may lose their license to
practice, as may lawyers, if they breach patient–client
confidentiality. Other persons such as epidemiologists
with access to confidential data should also be sub-
ject to such rules. This is not always the case at
present [3].

Existing Guidelines on Confidentiality and
Security in Manual and Automated
Systems

Preservation of confidentiality has been a long-
standing tradition in epidemiologic research, in par-
ticular in cancer registration (see Disease Registers),
dating back to the 1940s. Automated cancer registra-
tion based on electronically available data presents a
new challenge, and this also needs to be addressed
from the point of view of confidentiality and data
security. In principle, security and confidentiality for
electronic data collections should follow exactly the
same rules and standards as for traditional (manual)
registry systems.

Guidelines exist from the International Associ-
ation of Cancer Registries [2]. These complement
international legislation such as the European Union
directive “On the Protection of Individuals with
Regard to the Processing of Personal Data and the
Free Movement of Such Data” [5], recommendations
from the Council of Europe, national legislation in
the form of data protection acts, and international
recommendations on ethics [6, 7].

In manual systems, security depends on dispersion
of the data, and the relative difficulty of getting access
to data and in linking these with other data. This does
not safeguard individual data, which may be disclosed
to third parties if the physical security of premises

and files is not carefully observed. Coleman et al. [2]
list a number of situations where precautions must be
taken to avoid accidental breaches of confidentiality
by staff, such as use of the telephone and telefax for
communicating confidential information, improper
disposal of paper records, and insecure transport of
data by mail in addition to access control, and so on.

In electronic systems, large volumes of data are
gathered in a structured manner, and if confidentiality
is not observed, disclosure may concern a much larger
number of individuals. It is possible to safeguard
electronic systems much better than manual systems,
however, not only against unauthorized access, but
also by monitoring both authorized access and data
in transit between provider and registry (see Confi-
dentiality and Computers).

It is obvious that if researchers lose the ability to
link data on individuals unequivocally, both main-
tenance of registries such as those on cancer and a
great deal of epidemiologic and public health research
will be impossible to perform. It is thus incumbent
on registries and researchers to preserve the confi-
dentiality of identifiable data in the interest of their
own professional activities, irrespective of any offi-
cial requirements. If confidentiality is breached, years
of planning and work on specific research projects
may be lost.

The Threat of Breach of Confidentiality

It should also be clear that improper disclosure of
data depends on two things – the value of the data,
and the number of people who have access to them.
Those who see a value in identifiable data are also
likely to be those through whom a breach in confi-
dentiality may occur. Registries and researchers may
be pressurized to disclose information to parties who
believe they have a legal interest in knowing the
details – one example being to check if persons with
a disease possibly related to occupational asbestos
exposure have been reported by the physicians to all
relevant bodies [4, 9]. Here, the confidentiality of the
data provider and the patient is at stake, competing
with the demands of society to ensure that rules and
regulations are followed. Another situation is a wish
for access from insurance companies, which may pro-
vide no benefit to either the individual or society, but
rather to the company.

If trust in registries or researchers is lost, there will
be an erosion of data quality, inasmuch as sensitive



Confidentiality 3

facts may be suppressed. The value of the registry
and the data will drop, and the use for which it
was intended may become impossible. It is thus
important to have written rules that apply to health
researchers using identifiable data, and these must
regulate access, specify duties, and impose penalties
for any breach, unless this is covered by national
legislation.

Practical Means of Preserving
Confidentiality

In systems with automated (computerized) data col-
lection from a variety of sources, the number of per-
sons involved with some access to the electronic data
increases significantly. It is therefore necessary to
control access; to impose passwords and restrictions
for various user types; to take further precautions
when transmitting, collecting, and analyzing data;
and to consider failures in both software and hard-
ware that might corrupt data. Table 1 summarizes the
actions that can be taken to preserve confidentiality
and data security.

Monitoring Use and Access

Control and monitoring (logging) of access and noti-
fication of data subjects and regulatory bodies on
access is one basic measure in preserving confiden-
tiality. Even if this does not prevent criminal actions,
the fact that access is monitored and that relevant
authorities will be notified of any breach of rules
should decrease the likelihood of misuse due to care-
lessness. If misuse occurs, adequate action must be
taken. Access to data can also be made user-specific,
a mechanism by which only persons with a spe-
cific need for knowing the identity of individuals can
obtain access to such information – and only for the
time period for which this access is needed – whereas
access to statistical, tabular, or anonymous person
records can be more liberal. In other words, there
can be different levels of access and of access control.
Users should learn that all access will be monitored
and logged.

Anonymous Data File Separation

Various methods have been proposed to safeguard
confidentiality. It is relatively easy to make data

Table 1 Actions for preserving confidentiality and data security

Area of concern Actions

Access control Passwords
Limited access (certain data or certain periods)
Access logs – notification (regulatory bodies/data subject)

ID safeguards (data subject and data provider) Clear rules for authorizing access to identifiable information
Making data anonymous – use of keys and file separation
Encryption of identifiers
Statistical data base (no identifiers) for “public” use

Data use Monitoring of users and usage

Data security Transmission – encryption/decryption
Stand-alone registry computer system
Restricted access from outside – “fire-wall”
Dialback methods (combined with encryption)
Confidential destruction of used equipment – tapes, hard disks, etc.
Test system without real data for development, etc.

Consent From the data subjects
From data subject group representatives (unions, etc.)
From institutions (employer, etc.)
From ethical committees
From data inspection agencies

Legal actions “Hippocratic oath” or equivalent for all professions
Loss of license to practice if violation of confidentiality rules is proven
Statutory penalties
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anonymous by separating identity information from
the data file, and keeping a code detached from the
computer system by which the identity of an individ-
ual can be linked back to the medical information.
This is advisable for research data sets and for PCs in
hospitals and clinics where theft of equipment (data
on hard disks) poses a major risk for unwarranted
breach in confidentiality. Another way of doing this
is by means of encryption of the identifying informa-
tion, with the possibility of subsequent decryption by
the researcher holding a secret key or algorithm.

Encryption

Encryption of data is a valuable tool for preserving
confidentiality in the communication of data from
one place to another. Today, encryption systems exist
that allow users to have separate keys for encryp-
tion and decryption [1]; the first can be published
while the second can be kept secret. Decryption can
thus be performed where the necessary precautions
for data security are in place, and linkage proce-
dures and quality control can be performed on data
with no question about the identity and correctness
of linkages.

A cancer registry system based on a complicated
system of data encryption has been proposed in Ger-
many [8]. All linkages would be done on encrypted
data on the basis of identifying information associated
with name and date of birth. Although false posi-
tive matches were uncommon (<1%), false nega-
tive matches (duplicates) were higher. Whereas these
errors may have little impact on rates and descrip-
tive epidemiology, the inability to link cases with
absolute reliability for follow-up studies (where more
linkages are often involved) is much more serious,
since the observed numbers of events may be wrong,
and the expected number may also be biased by fail-
ure to censor individuals at death, since no link is
obtained between data stored at entry and the date
of exit (death). It may not be meaningful to conduct
registry-based studies in such a setting. It will be of
both practical and ethical concern that the researcher
cannot control the quality of data, and confidence in
the results will be low.

Isolation

Another approach to security is to use technical
solutions that make unauthorized access impossi-
ble or very difficult. The ultimate solution is the

“stand-alone” registry computer system. This may
be designed in such a way that the registry still has
access to the outside world, whereas external contact
with the registry is prohibited by a so-called “fire-
wall” that only allows one-way traffic. Another mea-
sure is dialback, where only certain telephone num-
bers and users (access codes) are allowed a line to the
registry, and the request is processed by the registry
computer, which dials back the authorized person
who requested information or access. Data transmis-
sion in such cases can be safeguarded by encryption
and decryption, using a common key at both ends.

Confidentiality and data security go hand in hand.
Measures need to be taken when implementing new
software and hardware, where all testing must be
performed on test data, not real data. Any electronic
media – hard disks, floppy disks, and tapes – must be
suitably erased or destroyed if taken out of use. Data
discipline is also needed, in the sense that old data are
not deleted but changes are appended with dates and
a record of who carried out the addition. Precautions
must be taken to avoid corruption of data.

Conclusion

Confidentiality must continue to be taken seriously.
It should not become prohibitive for research, how-
ever, since the results will benefit future generations.
We must answer the question “Who are we protect-
ing, and why?” If, in our desire for absolute privacy,
we allow unjustifiable concerns for confidentiality to
prevent ethical research, we risk protecting the “crim-
inal” rather than our society. Thus we may protect the
employer who is exposing employees to carcinogenic
substances, or health services that perform poorly, or
industries that pollute our environment. We may thus
be unable to demonstrate the effect of powerful car-
cinogens such as tobacco smoking in the future (see
Smoking and Health). We must also balance individ-
ual rights with the rights of the society in which we
have chosen to live. This balance between the individ-
ual’s right to privacy and rights of society to uncover
hazards is not easy to strike, but if we accept regu-
lation and surveillance by independent bodies, such
as democratically elected ethical committees and data
protection agencies, we may avoid reintroduction of
the Middle Ages in health research. It is often said
that those who demand complete confidentiality and
privacy are also those who demand control of every
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conceivable environmental or occupational hazard
to health. Adequate control without prior study is
impossible, and such contradictory demands are thus
equally impossible to meet. So far, we have not expe-
rienced any major breach in confidentiality of identifi-
able data entrusted to the health research community.
Ironically, breaches of confidentiality for criminal
records and credit ratings have been widely reported,
as have breaches of highly sensitive defense comput-
ers. The good record on confidentiality in the domain
of health research is due in part to the wide respect
for professional ethics, but also to the fact that health
researchers are well aware that such a breach could
spell the end of much population-based research.
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Confounder Summary
Score

Consider an observational study of the effect of an
“exposure” variable X on an outcome variable Y

in which multiple confounders must be controlled
(see Confounding). Simultaneous stratification on
all observed confounder combinations may lead to
many uninformative strata (i.e. strata in which there
is either no variation in the exposure or no variation
in the outcome). The usual method of coping with
this problem is to estimate exposure effects from
coefficients in a regression model for the dependence
of the outcome on the exposure and confounders.
Confounder summary scores are alternatives that use
fitted models to define strata.

Parametric modeling raises concerns about the
dependence of the resulting effect estimates on the
model specification (see Model, Choice of). In one
analysis of the National Halothane Study (NHS), the
outcome was regressed on confounders, and the data
were then stratified on the fitted values from the
regression model [2]. In this manner, the problem
of multiple confounders was reduced to stratification
on just one variable, the fitted outcome Ŷ . It was later
noted that this scoring procedure produces biased
effect estimates unless the resulting fitted values are
modified by removing the estimated exposure effect
[3, 4]. To illustrate these ideas, let X denote the
treatment or exposure of interest and let Z denote the
row vector of confounders. The National Halothane
procedure involved fitting a model such as

g[E(Y |Z = z)] = α∗ + zγ ∗,

and then stratifying subjects on their fitted values:

Ŷ = g−1(α̂∗ + zγ̂ ∗).

Miettinen instead fit

g[E(Y |X = x, Z = z, )] = α + xβ + zγ.

He then stratified subjects on the modified score
g−1(α̂ + zγ̂ ) (or, equivalently, on α̂ + zγ̂ ), the fitted
value obtained by deleting the estimated exposure
effect xβ̂. The exposure effect xβ̂ is left out of the
scoring to ensure that the strata are not defined in
part by exposure. The inclusion of exposure when
fitting the model also serves this purpose: note that

the confounder coefficient, γ ∗, in the model without
exposure may carry some of the exposure effects
unless X and Z are independent.

These modified fitted values or linear predictors
are an example of confounder scores, and the scoring
process is called confounder summarization. Assum-
ing the fitted model is correct, it has been shown that
adjustments using these modified scores could lead to
effect estimates unconfounded by Z, but could also
overstate significance (i.e. yield downwardly biased
P values) for testing the null hypothesis of no expo-
sure effect (β = 0), whereas the unmodified score
used in the original National Halothane approach
would generally yield biased estimates of β, but could
yield valid significance levels for testing the null [4].

An alternative approach is to control confounding
by stratifying on the fitted exposure values obtained
by regressing exposure X on the confounders Z. For
binary X, Rosenbaum & Rubin [6] termed the result-
ing fitted values (X̂) propensity scores and showed
that these scores have a number of desirable proper-
ties. In particular, Rosenbaum & Rubin showed that,
by stratifying on propensity scores, one could obtain
valid effect estimates and significance levels from the
same model. Scores based on outcome regression are
sometimes referred to as risk scores or prognostic
scores, while scores based on exposure regression are
sometimes called exposure scores. Propensity scores
are sometimes referred to as balancing scores, reflect-
ing their use in creating strata such that covariate
distributions are “balanced” across exposure groups.

Apart from propensity scores, confounder sum-
marization methods have seen relatively little use
since their initial development. This disuse may be
attributable to a number of factors. One problem is
that confounder summarization methods are not as
insensitive to model misspecification as was hoped
[1]. As an extreme but transparent example, suppose
there is but one confounder, Z, that X given Z has a
standard normal distribution, that Z has a standard
normal marginal distribution, and that the regression
of X on Z is

E(X|Z = z) = z2.

If the model fitted for exposure scoring is

E(X|Z = z) = α + βz,

then the ordinary least squares estimate β will
have zero expectation and the resulting exposure
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scores will stratify subjects randomly, with little con-
founder control achieved by the stratification. Sim-
ilarly discouraging examples can be constructed for
risk scores.

Of course, careful modeling should detect mis-
specification as gross as just illustrated. Nonetheless,
the example points out that confounder summariza-
tion may require as much modeling effort as ordinary
analysis. Even more effort may be needed if multi-
ple exposures are studied, for then separate exposure
scores must be constructed for each exposure. Thus,
in observational studies, there may be no conve-
nience and little robustness advantage of confounder
summarization over direct model-based estimation.
Any robustness advantage may be further dimin-
ished when nonparametric regression methods can
be used to estimate exposure effects.

The interpretation of strata and estimates con-
structed from confounder scores can also be difficult.
While the confounder distributions may be balanced
within strata, the strata will usually contain subjects
with a heterogeneous mix of confounder profiles, the
comparability of which may not be immediately obvi-
ous to a clinical reader. When the exposure effect
varies across strata, it may be necessary to return
to standard methods to identify the source of the
variation.

Exposure regression can be used directly as part
of a system of models for control of confounding in

effect estimation [5]. This use, however, is distinct
from its use in confounder summarization.

References

[1] Drake, C. (1993). Effects of misspecification of the
propensity score on estimators of treatment effect, Bio-
metrics 49, 1231–1236.

[2] Halpern, J., Moses, L.E. & Bishop, Y.M.M. (1969). Anal-
ysis by regression methods, in The National Halothane
Study, J.P. Bunker, W.H. Forrest & F. Mosteller, eds.
National Institute of General Medical Sciences, Bethesda,
Chapter IV-5.

[3] Miettinen, O.S. (1976). Stratification by a multivariate
confounder score, American Journal of Epidemiology 104,
609–620.

[4] Pike, M.C., Anderson, J. & Day, N.E. (1979). Some
insights into Miettinen’s multivariate confounder score
approach to case–control study analysis, Journal of Epi-
demiology and Community Health 33, 104–106.

[5] Robins, J.M. & Greenland, S. (1994). Adjusting for
differential rates of prophylaxis therapy for PCP in
high-versus low-dose AZT treatment arms in an AIDS
randomized trial, Journal of the American Statistical
Association 89, 737–749.

[6] Rosenbaum, P.R. & Rubin, D.B. (1983). The central role
of the propensity score in observational studies for causal
effects, Biometrika 70, 41–55.

SANDER GREENLAND



Confounder

As used in epidemiology, a confounder is a factor
that is associated with the risk of disease in sub-
jects unexposed to the exposure of interest, that is not
affected by exposure or disease, and that is associated
with exposure in the source population from which
cases arise. For example, the risk of cancer increases
with age. To study an exposure that is associated with
age, such as cumulative coffee consumption, as a risk
factor for cancer, one needs to control for the con-
founding effects of age. Because the confounder is
associated both with disease risk and with exposure
status, failure to account for the confounder either
by appropriate choice of study design, such as a
restricted design or a stratified design (see Stratifica-
tion), or by analytical adjustments (see Standardiza-
tion Methods) can lead to misleading estimates of the
relationship between the exposure of interest and the
risk of disease (see Confounding; Matched Analy-
sis; Matching). However, applying such adjustment
methods to a factor that is affected by exposure or
disease, such as an intermediate effect of exposure
on the pathway leading from exposure to disease (see
Causation) can misleadingly reduce estimates of the
strength of association between exposure and disease
(see Odds Ratio; Relative Risk).

Confounding can be described more fundamen-
tally as a distortion in estimates of exposure effect
that results when responses from an unexposed con-
trol population are used to estimate the hypothet-
ical responses that would have been observed in
the exposed population had that population been
unexposed. In this context, confounders are factors
that account for differences between observed con-
trol responses and the hypothetical responses in the
exposed group that would have been observed had
that group been unexposed. A disadvantage of this
formulation is that one cannot verify directly that con-
founding is present, because one does not observe the
hypothetical responses of the exposed population had
it been unexposed. The criteria for confounding in the
previous paragraph, although less fundamental than
the definition just given, are at least useful indicators
of confounding, although they can be misleading in
some situations [1, 2].
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Confounding

The word confounding has been used to refer to
at least three distinct concepts. In the oldest usage,
confounding is a bias in estimating causal effects
(see Causation). This bias is sometimes informally
described as a mixing of effects of extraneous fac-
tors (called confounders) with the effect of inter-
est. This usage predominates in nonexperimental
research, especially in epidemiology and sociology.
In a second and more recent usage, confounding is
a synonym for noncollapsibility (see Collapsibility),
although this usage is often limited to situations in
which the parameter of interest is a causal effect.
In a third usage, originating in the experimental-
design literature, confounding refers to inseparability
of main effects and interactions under a particular
design. The term aliasing is also sometimes used to
refer to the latter concept; this usage is common in
the analysis of variance literature.

The three concepts are closely related and are not
always distinguished from one another. In particu-
lar, the concepts of confounding as a bias in effect
estimation and as noncollapsibility are often treated
as identical, although there are many examples in
which the two concepts diverge [8, 9, 14]; one is
given below.

Confounding as a Bias in Effect Estimation

Confounding

A classic discussion of confounding in which explicit
reference is made to “confounded effects” is Mill [15,
Chapter X] (although in Chapter III Mill lays out the
primary issues and acknowledges Francis Bacon as
a forerunner in dealing with them). There, he lists a
requirement for an experiment intended to determine
causal relations:

. . . none of the circumstances [of the experiment]
that we do know shall have effects susceptible of
being confounded with those of the agents whose
properties we wish to study (emphasis added).

It should be noted that, in Mill’s time, the word
“experiment” referred to an observation in which
some circumstances were under the control of the
observer, as it still is used in ordinary English, rather
than to the notion of a comparative trial. Nonetheless,

Mill’s requirement suggests that a comparison is to be
made between the outcome of his experiment (which
is, essentially, an uncontrolled trial) and what we
would expect the outcome to be if the agents we wish
to study had been absent. If the outcomes is not as one
would expect in the absence of the study agents, then
his requirement ensures that the unexpected outcome
was not brought about by extraneous circumstances.
If, however, those circumstances do bring about the
unexpected outcome, and that outcome is mistakenly
attributed to effects of the study agents, then the
mistake is one of confounding (or confusion) of the
extraneous effects with the agent effects.

Much of the modern literature follows the same
informal conceptualization given by Mill. Terminol-
ogy is now more specific, with “treatment” used to
refer to an agent administered by the investigator
and “exposure” often used to denote an unmanipu-
lated agent. The chief development beyond Mill is
that the expectation for the outcome in the absence
of the study exposure is now almost always explic-
itly derived from observation of a control group that
is untreated or unexposed. For example, Clayton &
Hills [2] state of observational studies,

. . . there is always the possibility that an important
influence on the outcome . . . differs systematically
between the comparison [exposed and unexposed]
groups. It is then possible [that] part of the apparent
effect of exposure is due to these differences, [in
which case] the comparison of the exposure groups
is said to be confounded (emphasis in the original).

In fact, confounding is also possible in randomized
experiments (see Clinical Trials, Overview), owing
to systematic improprieties in treatment allocation,
administration, and compliance. A further and some-
what controversial point is that confounding (as per
Mill’s original definition) can also occur in perfect
randomized trials due to random differences between
comparison groups [6, 8].

Various mathematical formalizations of confound-
ing have been proposed. Perhaps the one closest to
Mill’s concept is based on a formal counterfactual
model for causal effects. Suppose our objective is to
determine the effect of applying a treatment or expo-
sure x1 on a parameter µ of population A, relative
to applying treatment or exposure x0. For example,
A could be a cohort of breast-cancer patients, treat-
ment x1 could be a new hormone therapy, x0 could
be a placebo therapy, and the parameter µ could
be the 5-year survival probability. The population A
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is sometimes called the target population or index
population; the treatment x1 is sometimes called the
index treatment; and the treatment x0 is sometimes
called the control or reference treatment (which is
often a standard or placebo treatment).

The counterfactual model assumes that µ will
equal µA1 if x1 is applied, µA0 if x0 is applied; the
causal effect of x1 relative to x0 is defined as the
change from µA0 to µA1, which might be measured as
µA1 − µA0 or µA1/µA0. If A is observed under treat-
ment x1, then µ will equal µA1, which is observable
or estimable, but µA0 will be unobservable. Suppose,
however, we expect µA0 to equal µB0, where µB0 is
the value of the outcome µ observed or estimated for
a population B that was administered treatment x0.
The latter population is sometimes called the control
or reference population. Confounding is said to be
present if in fact µA0 �= µB0, for then there must be
some difference between populations A and B (other
than treatment) that is affecting µ.

If confounding is present, a naive (crude) associ-
ation measure obtained by substituting µB0 for µA0

in an effect measure will not equal the effect measure,
and the association measure is said to be confounded.
For example, if µB0 �= µA0, then µA1 − µB0, which
measures the association of treatments with outcomes
across the populations, is confounded for µA1 −
µA0, which measures the effect of treatment x1 on
population A. Thus, saying a measure of association
such as µA1 − µB0 is confounded for a measure of
effect such as µA1 − µA0 is synonymous with saying
the two measures are not equal.

The preceding formalization of confounding grad-
ually emerged through attempts to separate effect
measures into a component due to the effect of inter-
est and a component due to extraneous effects [1, 4,
10, 12, 13]. These decompositions will be discussed
below.

One noteworthy aspect of the above formaliza-
tion is that confounding depends on the outcome
parameter. For example, suppose populations A and
B have a different 5-year survival probability µ under
placebo treatment x0; that is, suppose µB0 �= µA0, so
that µA1 − µB0 is confounded for the actual effect
µA1 − µA0 of treatment on 5-year survival. It is
then still possible that 10-year survival, ν, under
the placebo would be identical in both populations;
that is, νA0 could still equal νB0, so that νA1 − νB0

is not confounded for the actual effect of treatment
on 10-year survival. (We should generally expect no

confounding for 200-year survival, since no treatment
is likely to raise the 200-year survival probability of
human patients above zero.)

A second noteworthy point is that confounding
depends on the target population of inference. The
preceding example, with A as the target, had dif-
ferent 5-year survivals µA0 and µB0 for A and B
under placebo therapy, and hence µA1 − µB0 was
confounded for the effect µA1 − µA0 of treatment on
population A. A lawyer or ethicist may also be inter-
ested in what effect the treatment x1 would have had
on population B. Writing µB1 for the (unobserved)
outcome of B under treatment x1, this effect on B may
be measured by µB1 − µB0. Substituting µA1 for the
unobserved µB1 yields µA1 − µB0. This measure of
association is confounded for µB1 − µB0 (the effect
of treatment x1 on 5-year survival in population B)
if and only if µA1 �= µB1. Thus, the same measure
of association, µA1 − µB0, may be confounded for
the effect of treatment on neither, one, or both of
populations A and B.

Confounders

A third noteworthy aspect of the counterfactual for-
malization of confounding is that it invokes no
explicit differences (imbalances) between populations
A and B with respect to circumstances or covari-
ates that might influence µ [8]. Clearly, if µA0 and
µB0 differ, then A and B must differ with respect
to factors that influence µ. This observation has led
some authors to define confounding as the presence
of such covariate differences between the compared
populations. Nonetheless, confounding is only a con-
sequence of these covariate differences. In fact, A
and B may differ profoundly with respect to covari-
ates that influence µ, and yet confounding may be
absent. In other words, a covariate difference between
A and B is a necessary but not sufficient condition
for confounding. This point will be illustrated below.

Suppose now that populations A and B differ
with respect to certain covariates, and that these
differences have led to confounding of an associa-
tion measure for the effect measure of interest. The
responsible covariates are then termed confounders
of the association measure. In the above example,
with µA1 − µB0 confounded for the effect µA1 − µA0,
the factors responsible for the confounding (i.e. the
factors that led to µA0 �= µB0) are the confounders.
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It can be deduced that a variable cannot be a con-
founder unless it can affect the outcome parameter
µ within treatment groups and it is distributed dif-
ferently among the compared populations (e.g. see
Yule [23], who however uses terms such as “fictitious
association” rather than confounding). These two nec-
essary conditions are sometimes offered together as
a definition of a confounder. Nonetheless, counter-
examples show that the two conditions are not suffi-
cient for a variable with more than two levels to be
a confounder as defined above; one such counterex-
ample is given in the next section.

Prevention of Confounding

Perhaps the most obvious way to avoid confound-
ing in estimating µA1 − µA0 is to obtain a reference
population B for which µB0 is known to equal µA0.
Among epidemiologists, such a population is some-
times said to be comparable to or exchangeable with
A with respect to the outcome under the reference
treatment. In practice, such a population may be dif-
ficult or impossible to find. Thus, an investigator may
attempt to construct such a population, or to construct
exchangeable index and reference populations. These
constructions may be viewed as design-based meth-
ods for the control of confounding.

Perhaps no approach is more effective for prevent-
ing confounding by a known factor than restriction.
For example, gender imbalances cannot confound a
study restricted to women. However, there are several
drawbacks: restriction on enough factors can reduce
the number of available subjects to unacceptably low
levels, and may greatly reduce the generalizability of
results as well. Matching the treatment populations
on confounders overcomes these drawbacks and, if
successful, can be as effective as restriction. For
example, gender imbalances cannot confound a study
in which the compared groups have identical propor-
tions of women. Unfortunately, differential losses to
observation may undo the initial covariate balances
produced by matching.

Neither restriction nor matching prevents (altho-
ugh it may diminish) imbalances on unrestricted,
unmatched, or unmeasured covariates. In contrast,
randomization offers a means of dealing with con-
founding by covariates not accounted for by the
design. It must be emphasized, however, that this
solution is only probabilistic and subject to severe
constraints in practice. Randomization is not always

feasible, and (as mentioned earlier) many practical
problems, such as differential loss and noncompli-
ance, can lead to confounding in comparisons of
the groups actually receiving treatments x1 and x0.
One somewhat controversial solution to noncompli-
ance problems is intention-to-treat analysis, which
defines the comparison groups A and B by treatment
assigned rather than treatment received. Confounding
may, however, affect even intention-to-treat analyses.
For example, the assignments may not always be ran-
dom, as when blinding is insufficient to prevent the
treatment providers from protocol violations. And,
purely by bad luck, randomization may itself produce
allocations with severe covariate imbalances between
the groups (and consequent confounding), especially
if the study size is small [6, 8, 19]. Block randomiza-
tion (see Randomized Treatment Assignment) can
help ensure that random imbalances on the block-
ing factors will not occur, but it does not guarantee
balance of unblocked factors.

Adjustment for Confounding

Design-based methods are often infeasible or insuffi-
cient to prevent confounding. Thus there has been an
enormous amount of work devoted to analytic adjust-
ments for confounding. With a few exceptions, these
methods are based on observed covariate distribu-
tions in the compared populations. Such methods can
successfully control confounding only to the extent
that enough confounders are adequately measured.
Then, too, many methods employ parametric mod-
els at some stage, and their success may thus depend
on the faithfulness of the model to reality. These
issues cannot be covered in depth here, but a few
basic points are worth noting.

The simplest and most widely trusted methods of
adjustment begin with stratification on confounders.
A covariate cannot be responsible for confounding
within internally homogeneous strata of the covari-
ate. For example, gender imbalances cannot confound
observations within a stratum composed solely of
women. More generally, comparisons within strata
cannot be confounded by a covariate that is constant
(homogeneous) within strata. This is so regardless
of whether the covariate was used to define the
strata. Generalizing this observation to a regression
context, we find that any covariate with a residual
variance of zero conditional on the regressors can-
not confound regression estimates of effect (assuming
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that the regression model is correct). A broader and
more useful observation is that any covariate that
is unassociated with treatment conditional on the
regressors cannot confound the effect estimates; this
insight leads directly to adjustments using a propen-
sity score.

Some controversy has existed about adjustment
for covariates in randomized trials. Although Fisher
asserted that randomized comparisons were unbiased,
he also pointed out that they could be confounded
in the sense used here (e.g. see Fisher [6, p. 49]).
Fisher’s use of the word “unbiased” was uncondi-
tional on allocation, and therefore of little guidance
for analysis of a given trial. The ancillarity of the allo-
cation naturally leads to conditioning on the observed
distribution of any pretreatment covariate that can
influence the outcome parameter. Conditional on this
distribution, the unadjusted treatment–effect estimate
will be biased if the covariate is associated with
treatment; this conditional bias can be removed by
adjustment for the confounders [8, 18]. Note that the
adjusted estimate is also unconditionally unbiased,
and thus is a reasonable alternative to the unadjusted
estimate even without conditioning.

Measures of Confounding

The parameter estimated by a direct unadjusted com-
parison of cohorts A and B is µA1 − µA0. A number
of authors have measured the bias (confounding) of
the unadjusted comparison by [10, 12]

(µA1 − µB0) − (µA1 − µA0) = µA0 − µB0.

When the outcome parameters, µ, are risks (prob-
abilities), epidemiologists use instead the analogous
ratio

µA1/µB0

µA1/µA0
= µA0

µB0

as a measure of bias [1, 4, 14]; µA0/µB0 is some-
times called the confounding risk ratio. The latter
term is somewhat confusing because it is sometimes
misunderstood to refer to the effect of a particular
confounder on risk. This is not so, although the ratio
does reflect the net effect of the differences in the
confounder distributions of A and B.

Residual Confounding

Suppose now that adjustment for confounding is done
by subdividing the total study population (A + B)

into K strata indexed by k. Let µA1k be the parameter
of interest in stratum k of populations A and B under
treatment x0. The effect of treatment x1 relative to
x0 in stratum k may be defined as µA1k − µA0k or
µA1k/µA0k . The confounding that remains in stratum
K is called the residual confounding in the stratum,
and is measured by µA0k − µB0k or µA1k/µB0k .

Like effects, stratum-specific residual confounding
may be summarized across the strata in a number of
ways, for example by standardization methods or
by other weighted-averaging methods. As an illus-
tration, suppose we are given a standard distribution
p1, . . . , pK for the stratum index k. In ratio terms,
the standardized effect of x1 vs. x0 on A under this
distribution is

RAA =

∑

k

pkµA1k

∑

k

pkµA0k

,

whereas the standardized ratio comparing A with B is

RAB =

∑

k

pkµA1k

∑

k

pkµB0k

.

The overall residual confounding in RAB is thus

RAB

RAA
=

∑

k

pkµA0k

∑

k

pkµB0k

,

which may be recognized as the standardized ratio
comparing A and B when both are given treatment
x0, using p1, . . . , pK as the standard distribution.

Regression Formulations

For simplicity, the above presentation has focused on
comparing two populations and two treatments. The
basic concepts extend immediately to the consider-
ation of multiple populations and treatments. Paired
comparisons may be represented using the above for-
malization without modification. Parametric models
for these comparisons then provide a connection to
more familiar regression models.
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As an illustration, suppose population differences
and treatment effects follow the model

µk(x) = αk + xβ,

where the treatment level x may range over a contin-
uum, and k indexes populations. Suppose population
k is given treatment xk , even though it could have
been given some other treatment. The absolute effect
of x1 vs. x2 on µ in population 1 is

µ1(x1) − µ1(x2) = (x1 − x2)β.

Substitution of µ2(x2), the value of µ in population
2 under treatment x2, for µ1(x2) yields

µ1(x1) − µ2(x2) = α1 − α2 + (x1 − x2)β,

which is biased by the amount

µ1(x2) − µ2(x2) = α1 − α2.

Thus, under this model no confounding will occur if
the intercepts αk equal a constant α across popula-
tions, so that µk(x) = α + βx.

When constant intercepts cannot be assumed and
nothing else is known about the intercept magnitudes,
it may be possible to represent our uncertainty about
αk via the following mixed-effects model:

µk(x) = α + xβ + εk.

Here, αk has been decomposed into α + εk , where
εk has mean zero, and the confounding in µ1(x1) −
µ2(x2) has become an unobserved random variable,
ε1 − ε2. Correlation of population membership k

with xk leads to a correlation of εk with xk , which in
turn leads to bias in estimating β. This bias may be
attributed to or interpreted as confounding for β in the
regression analysis. Confounders are now covariates
that causally “explain” the correlation between εk

and xk . In particular, confounders normally reduce
the correlation of xk and εk when entered in the
model. The converse is false, however: a variable that
reduces the correlation of xk and εk when entered
need not be a confounder; it may, for example, be
a variable affected by both the treatment and the
exposure.

Confounding and Noncollapsibility

Much of the statistics literature does not distinguish
between the concept of confounding as described

above and the concept of noncollapsibility. Nonethe-
less, the two concepts are distinct: for certain out-
come parameters, confounding may occur with or
without noncollapsibility and noncollapsibility may
occur with or without confounding [8, 9, 14, 17,
20, 22]. Mathematically identical conclusions have
been reached by other authors, albeit with different
terminology in which noncollapsibility corresponds
to “bias” and confounding corresponds to covariate
imbalance [7, 11].

As an example of no collapsibility with no con-
founding, consider the response distributions under
treatments x1 and x0 given in Table 1 for a hypothet-
ical index population A, and the response distribution
under treatment x0 given in Table 2 for a hypothet-
ical reference population B. If we take the odds of
response as the outcome parameter µ, we get

µA1 = 1460

540
= 2.70

and

µA0 = µB0 = 1000

1000
= 1.00.

There is thus no confounding of the odds ratio:
µA1/µA0 = µA1/µB0 = 2.70/1.00 = 2.70. Nonethe-
less, the covariate Z is associated with response and
is distributed differently in A and B. Furthermore,

Table 1 Distribution of responses for population A, with-
in strata of Z and ignoring Z, under treatments x1 and
x0

Number of
responses under

Subpopulation
Subpopulation x1 x0 size

Z = 1 200 100 400
Z = 2 900 600 1200
Z = 3 360 300 400

Totals 1460 1000 2000

Table 2 Distribution of responses for population B, within
strata of Z and ignoring Z, under treatment x0

Number of responses Subpopulation
Subpopulation under x0 size

Z = 1 200 800
Z = 2 200 400
Z = 3 600 800

Totals 1000 2000
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the odds ratio is not collapsible: within levels of Z,
the odds ratios comparing A under treatment x1 with
either A or B under x0 are (200/200)/(200/600) =
(900/300)/(200/200) = (360/40)/(600/200) =
3.00, a bit higher than the odds ratio of 2.70 obtained
when Z is ignored.

The preceding example illustrates a peculiar prop-
erty of the odds ratio as an effect measure: treatment
x1 (relative to x0) elevates the odds of response by
170% in population A, yet within each stratum of Z it
raises the odds by 200%. When Z is associated with
response conditional on treatment but uncondition-
ally unassociated with treatment, the stratum-specific
effects on odds ratios will be further from the null
than the overall effect if the latter is not null [7].
This phenomenon is often interpreted as a “bias” in
the overall odds ratio, but in fact there is no bias if
one does not interpret the overall effect as an estimate
of the stratum-specific effects.

The example also shows that, when µ is the odds,
the “confounding odds ratio” (µA1/µB0)/(µA1/µA0)

= µA0/µB0 may be 1 even when the odds ratio is
not collapsible over the confounders. Conversely, we
may have µA0/µB0 �= 1 even when the odds ratio is
collapsible. More generally, the ratio of crude and
stratum-specific odds ratios does not equal µA0/µB0

except in some special cases. When the odds are low,
however, the odds will be close to the corresponding
risks, and so the two ratios will approximate one
another.

The phenomenon illustrated in the example corre-
sponds to the differences between cluster-specific and
population-averaged (marginal) effects in nonlinear
mixed-effects regression [16]. Specifically, the clus-
ters of correlated outcomes correspond to the strata,
the cluster effects correspond to covariate effects, the
cluster-specific treatment effects correspond to the
stratum-specific log odds ratios, and the population-
averaged treatment effect corresponds to the crude
log odds ratio.

Results of Gail [7] imply that if the effect mea-
sure is the difference or ratio of response propor-
tions, then the above phenomenon – noncollapsibil-
ity over Z without confounding by Z – cannot
occur, nor can confounding by Z occur without
noncollapsibility over Z. More generally, when the
effect measure is an expectation over population
units, confounding by Z and noncollapsibility over
Z are algebraically equivalent. This equivalence may

explain why the two concepts are often not distin-
guished.

Confounding in Experimental Design

Like the bias definition, the third usage of con-
founding stems from the notion of mixing of effects.
However, the effects that are mixed are main (block)
effects and interactions (or different interactions) in a
linear model, rather than effects in the nonparamet-
ric sense of a counterfactual model. This definition of
confounding differs even more markedly from other
definitions in that it refers to an intentional design
feature of certain experimental studies, rather than
a bias.

The topic of confounded designs is extensive;
some classic references are Fisher [6], Cochran &
Cox [3], Cox [5], and Scheffé [21]. Confounding
can serve to improve efficiency in estimation of
certain contrasts and can reduce the number of
treatment groups that must be considered. The price
paid for these benefits is a loss of identifiability of
certain parameters, as reflected by aliasing of those
parameters.

As a simple example, consider a situation in
which we wish to estimate three effects in a single
experiment: that of treatments x1 vs. x0, y1 vs. y0, and
z1 vs. z0. For example, in a smoking cessation trial
these treatments may represent active and placebo
versions of the nicotine patch, nicotine gum, and
buspirone. With no restrictions on number or size of
groups, a fully crossed design would be reasonable.
By allocating subjects to each of the 23 = 8 possible
treatment combinations, one could estimate all three
main effects, all three two-way interactions, and the
three-way interaction of the treatments.

Suppose, however, that we were restricted to use
of only four treatment groups (e.g. because of cost or
complexity considerations). A naive approach would
be to use groups of equal size, assigning one group
to placebos only (x0, y0, z0) and the remaining three
groups to one active treatment each: (x1, y0, z0),
(x0, y1, z0), and (x0, y0, z1). Unfortunately, with a
fixed number N of subjects available, this design
would provide only N/4 subjects under each active
treatment.

As an alternative, consider the design with four
groups of equal size with treatments (x0, y0, z0),
(x1, y1, z0), (x1, y0, z1), and (x0, y1, z1). This frac-
tional factorial design would provide N/2 subjects



Confounding 7

under each active treatment, at the cost of confound-
ing main effects and interactions. For example, no
linear combination of group means containing the
main effect of x1 vs. x0 would be free of interac-
tions. If one could assume that all interactions were
negligible, however, this design could provide con-
siderably more precise estimates of the main effects
than the naive four-group design.

To see these points, consider the following linear
model:

µXYZ = α + β1X + β2Y + β3Z + γ1XY

+ γ2XZ + γ3YZ + δXYZ,

where X, Y , and Z equal 1 for x1, y1, and z1, and 0
for x0, y0, and z0, respectively. The group means, in
the fractional factorial design are then

µ000 = α,

µ110 = α + β1 + β2 + γ1,

µ101 = α + β1 + β3 + γ2,

µ011 = α + β2 + β3 + γ3.

Treating the means as observed and the coefficients
as unknown, the above system is underidentified.
In particular, there is no solution for any main
effect βj in terms of the means µijk . Nonetheless,
assuming all γj = 0 yields immediate solutions for
all the βj . Additionally assuming a variance of
σ 2 for each estimated group mean yields that the
main-effect estimates under this design would have
variances of σ 2, as opposed to 2σ 2 for the main-
effect estimates from the naive four-group design
of the same size. For example, under the con-
founded fractional factorial design (assuming no
interactions)

β̂1 = µ̂110 + µ̂101 − µ̂000 − µ̂011

2
,

so var(β̂1) = 4σ 2/4 = σ 2, whereas under the naive
design, β̂ = µ̂100 − µ̂000 so var(β̂1) = 2σ 2. Of
course, the precision advantage of the confounded
design is purchased by the assumption of no
interaction, which is not needed by the naive design.
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Consistent Estimator

Scientists in the fields of medicine and the health
sciences frequently collect experimental or obser-
vational data to address questions considered to be
relevant to the advancement of human health. Exam-
ples include clinical trials to examine the efficacy
of new treatments and epidemiologic studies to bet-
ter understand the etiology of diseases (see Analytic
Epidemiology). Given that the instruments used for
data collection – or the data themselves – are less
than perfect, uncertainty is acknowledged in the data
analysis stage of scientific inquiry by assuming that
the observed data of size n, Y = (Y1, . . . , Yn)

′, are
generated from a probability (density) function of the
form f (y; θ). Here, θ is a vector of p-dimension,
representing parameters characterizing the random
mechanism which generated the data. Presumably the
parameters θ , or some functions thereof, describe the
scientific objectives in a meaningful way. For exam-
ple, in a clinical trial θ might characterize the treat-
ment effect for the targeted population (i.e. patients
diagnosed with a specific disease). Meanwhile, in an
epidemiologic study of the etiology of a disease, θ

might represent the strength of association between
a potential risk factor and risk for the disease, often
quantified in terms of the odds ratio. One goal of
data analysis is to learn about the magnitude of θ

from the observed data Y; that is, to estimate θ using
Y. Estimation is one of several important aspects of
statistical inference.

An immediate question is how to select a (p × 1)

statistic δ(Y) to use as an estimator of the unknown
value θ . While many criteria for selecting an estima-
tor have been proposed and investigated, one of the
most popular is that of unbiasedness. Specifically,
δ(Y) is an unbiased estimator of θ if

E(δ(Y)) = θ, (1)

where the expectation is taken with respect to the
true mechanism f (·; θ). A popular interpretation of
(1) in nontechnical terms is that if one could repeat
the study under the same conditions many times, then
δ(Y), on average, would be equal to the true but
unknown θ value. A further consequence of (1) is
that in many cases as the sample size grows, the
value of δ(Y) will grow closer and closer to the true
parameter value, θ . This property is due to the law
of large numbers.

The following two problems, however, hamper the
wide utility of unbiasedness as a criterion for select-
ing estimators of θ . First, unbiasedness is not an
invariant property in that, while δ(Y) is unbiased for
θ , it is not true in general that a function g(δ(Y))

be unbiased for g(θ). Secondly, except in the special
case of probability models from the exponential fam-
ily, there is very little guidance as to how to obtain
unbiased estimators. Indeed, unbiased estimators for
θ may not exist for general probability models.

The binomial distribution for independent
binary observations, which are commonly seen
in biomedical research, serves as an excellent
example. Suppose for i = 1, . . . , n, that the Yis are
independent and binomially distributed with size one
and probability θ . While Y = (Y1 + · · · + Yn)/n is
known to be unbiased for θ, log[Y/(1 − Y )] is not
unbiased for log[θ/(1 − θ)], the log odds of Yi .
Indeed, the expectation of log(Y /(1 − Y )] does not
exist, and no unbiased estimator of log[θ/(1 − θ)],
which forms the basis for logistic regression models,
is known to exist.

Thus, the utility of unbiasedness as a criterion for
choosing estimators is limited by the lack of available
unbiased estimators. Faced with this situation, statis-
ticians appeal to large-sample theory and relax the
unbiasedness criterion, while maintaining the require-
ment that, as the sample size becomes large, the
estimator will grow closer and closer to the true θ .
Formally, we say that δ(Y) converges in probability
to θ if for any ε > 0,

Pr{[δ(Y) − θ]′[δ(Y) − θ] > ε} → 0 as n → ∞,

(see Convergence in Distribution and in Probabil-
ity). We define δ(Y) to be a consistent estimator if
δ(Y) → θ in probability as n → ∞. Consistent esti-
mators are desirable for several reasons. First, they
are “approximately unbiased” in that, when the sam-
ple size is sufficiently large, δ(Y) will, on average, be
close to θ from the viewpoint of repeated sampling.
More importantly, the variability of δ(Y) around the
true θ will vanish as n → ∞. Thirdly, as a result of
Slutsky’s theorem, consistent estimators are invari-
ant; that is, if δ(Y) is a consistent estimator of θ ,
then g[δ(Y)] is consistent for g(θ) as well. Finally,
consistency is usually the first step in establishing the
asymptotic distribution of an estimator (see Large-
sample Theory). Consistency is further attractive as
a criterion because consistent estimators are available
in a wide variety of problems.
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Returning to the binomial example, the law of
large numbers and Slutsky’s theorem immediately
imply that both Y/n and log[Y/(n − Y )] are consis-
tent estimators of θ and log[θ/(1 − θ)], respectively.
Continuing with the binomial example, approximate
variances of Y and log[Y/(n − Y )] are, respectively,
θ(1 − θ)/n and 1/(nθ) + 1/[n(1 − θ)], decreasing at
the rate of n−1. As this example demonstrates, if we
accept consistency as a criterion, a variety of estima-
tors are available to the user of statistical methods.

The remaining question is, then: How does one
derive consistent estimators for θ? While many esti-
mation methods have been developed in the past
century, most of them can be classified into one of
the following two types. In the first type, estima-
tors are derived by minimizing with respect to θ

a prespecified objective function of the data y and
parameters θ . Type I methods include as special cases
the maximum likelihood method, the M-estimation
method pioneered by Huber [12] (see Robustness),
and the weighted least squares method. The sec-
ond type of estimators are obtained by simultane-
ously solving (for θ) p equations containing y and
θ . Examples include the method of moments, the
quasi-likelihood method, and the estimating func-
tions method advocated by Godambe [9] and Durbin
[6]. One advantage of the first approach is that no
differentiability assumption on θ is required. This is
particularly useful when the sampling space depends
on θ [e.g. the uniform distribution on (0, θ)] or
when the parameter space is discrete. On the other
hand, the second approach offers a useful alterna-
tive when the probability mechanism generating the
data is unclear, and yet the scientific focus is well
described by θ . Furthermore, this approach naturally
leads to the derivation of the asymptotic distribution
of the estimator, an issue addressed elsewhere.

We now discuss briefly how to establish consis-
tency for either type of estimator. The focus is on
the basic ideas that are crucial to establishing consis-
tency, and we provide key references for the detailed
technical derivations.

Consistency: Type I

This approach aims to find an estimator of θ by
minimizing, with respect to θ , a prespecified objec-
tive function Qn(y, θ) of data y = (y1, . . . , yn)

′ and
parameter θ . Some familiar examples are given as
follows.

Example 1 (Maximum Likelihood Method)

By choosing

Qn(y, θ) = − ln f (y; θ), (2)

one has the conventional maximum likelihood esti-
mator (MLE) originated by Fisher [8].

Example 2 (Pseudo Maximum Likelihood Method)

Let h(·; θ) be a probability (density) function that is
specified by the investigator. The idea is to minimize

Qn(y, θ) = − ln h(y; θ), (3)

while recognizing that h may not correctly specify
the probability mechanism for Y ; that is, h(y; θ) �=
f (y; θ) for some y. This approach was first con-
sidered by Huber [13]. The term “pseudo maximum
likelihood” was coined in the econometric literature
by Gourieroux et al. [10] to emphasize that, due to
the complexity of economic phenomena, there is lit-
tle guarantee that probability models obtained from
economic theory are necessarily correct [3]. This con-
cern is a legitimate one in the health sciences as well
due to the complexity of bio-psychosocial factors in
the human disease process.

Example 3 (M-Estimation)

The MLE for the location parameter under the nor-
mality assumption is known to be sensitive to the
presence of a small number of outliers (extreme val-
ues) [24]. For example, suppose that interest were on
θ , the mean of y. Instead of minimizing

∑
i (yi −

θ)2/2, which gives rise to y as the MLE of θ , Huber
[12] proposes to address the problem of such outliers
by minimizing

Qn(y, θ) =
n∑

i=1

ρ(yi ; θ),

where

ρ(yi, θ) =
{

(yi − θ)2/2, if |yi − θ | ≤ k,

k|yi − θ | − k2/2, if |yi − θ | > k,

and k is a constant pre-specified by the investigator.
Many other choices of the function ρ are avail-
able and discussed in detail in, for example, Huber
[14] and Serfling [23]. Approaches of this kind have
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been termed M-estimation and studied extensively,
especially in the context of robust regression tech-
niques [14].

Example 4 (Weighted Least Squares Method)

The least squares method was invented almost two
centuries ago by Legendre [16]. Its purpose is to
estimate the regression coefficients θ for the mean
of the Yis conditional on the xis by minimizing

Qn(y, θ) =
n∑

i=1

(yi − x′
iθ)2, (4)

where xi is a p × 1 vector of covariates thought to
be related to the response variable, Yi, i = 1, . . . , n.
Implicit behind this procedure is the assumption that
the xis and the “error term”, ei = Yi − x ′

iθ , are uncor-
related with each other for the true θ value. In the
situation in which the variance varies with x′

iθ , the
mean value of Yi given xi , one might modify (4) by
minimizing

Qn(y, θ) =
n∑

i=1

(yi − x′
iθ)2

Vi(θ)
, (5)

where Vi(θ) = V (x′
iθ) = var(ei). Consistency of the

resulting estimator is very sensitive to this last
assumption, since the θ in Vi(θ) now figures in the
objective function.

To demonstrate consistency, let θ̂n ≡ θ̂n(y) be
a statistic which minimizes Qn(y, θ) over Θ , the
parameter space for θ , and let θ0 be the true but
unknown value of θ . The question is: Can we claim
that θ̂n is a consistent estimator of θ ; that is, that
θ̂n → θ0 in probability? Suppose that Qn/n con-
verges in probability to Q0(θ) as n → ∞, where
Q0(θ) is a function determined by the chosen objec-
tive function, Qn, and the true probability model,
f (·; θ0). Assuming that Q0(θ) is uniquely minimized
by θ∗, intuition (which needs to be made rigorous
by additional assumptions and mathematical proofs,
of course) suggests that θ̂n ought to converge to θ∗
in probability. The claim of consistency is then war-
ranted if θ∗ = θ0. Can one be sure that θ∗ is indeed
equal to θ0? While there is no simple answer to this
question, many sufficient conditions exist to ensure
the consistency of θ̂n as we will briefly discuss in a
few of our example cases.

Example 1 (continued)

In the special case that the Yis are independent and
identically distributed (iid),

Qn(θ) = −
n∑

i=1

ln f1(yi ; θ),

where f1(·; θ) is the probability (density) function
for a single observation. Then the law of large
numbers implies that Qn/n converges in probabil-
ity to Q0(θ) = −E0[ln f1(Y1; θ)] at each θ , where E0

denotes expectation taken with respect to f1(·; θ0).
However, for each θ ∈ Θ ,

Q0(θ) − Q0(θ0) = −E

[
ln

(
f1(Y1; θ)

f1(Y1; θ0)

)
; θ0

]

≥ − ln E

(
f1(Y1; θ)

f1(Y1; θ0)
; θ0

)
= 0,

known as Kullback’s inequality. This inequality is
strict if θ �= θ0 and if f (·; θ) is identifiable. Therefore,
if f (·; θ) is identifiable, then θ∗ = θ0 and hence θ̂n is
a consistent estimator of θ . For detailed proof of the
consistency of MLE, see, for example, [25, 17], and
[5, pp. 256–257].

Example 2 (continued)

In the iid. case, Qn/n converges to Q0(θ) = −E0

(ln h1(Y1; θ)). Whether θ0 minimizes Q0(θ) depends
on the probability model specified and its interaction
with the true probability model. In the situation in
which θ = E(Y1), Gourieroux et al. [10] provide a
necessary and sufficient condition for θ0 to minimize
Q0(θ), namely that h1(·; θ) take the form of

h1(y1; θ) = exp[a(θ)y1 + b(θ) + c(y1)],

known as a linear exponential family. In this case

Q0(θ) = −a(θ)θ0 − b(θ) − E0[c(Y1)]

is minimized at θ ≡ θ0, a simple consequence of
Kullback’s inequality and the fact that h1(·; θ) is a
probability (density) function.

Example 4 (continued)

Assuming that the xis are iid, Qn/n in (5) con-
verges to

Q0(θ) = EX1

{
[X′

1(θ0 − θ)]2

V (X′
1θ)

}
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+ EX1

[
V (X′

1θ0)

V (X′
1θ)

]
.

If var(Yi |xi) = V (x′
iθ) is independent of θ as in (4),

then it is obvious that θ0 minimizes Q0(θ) and hence
the consistency of θ̂n which minimizes the weighted
least squares in (4) is established. This is not true,
in general, if V (·) does depend on θ . Consider a
special case that xi is dichotomous (1 or 0) with
λ = Pr(Xi = 1), so that

E(Yi |xi) = θ1 + θ2xi.

Furthermore, let var(Yi |xi) = E2(Yi |xi). It is easy to
see that

Q0(θ) = λ
(θ01 + θ02)

2 + (θ01 − θ1 + θ02 − θ2)
2

(θ1 + θ2)2

+ (1 − λ)
θ2

01 + (θ01 − θ1)
2

θ2
1

,

and that Q0(θ) is minimized at

(θ∗
1 , θ∗

2 ) = (2θ01, 2θ02).

Consistency: Type II

An alternative way of obtaining estimators is by
solving an equation

gn(y; θ) =
n∑

i=1

g(yi ; θ) = 0, (6)

where gn, a (p × 1) vector-valued function, is called
an estimating function for θ . The MLE may be
viewed as a special case if f (y; θ) is first-order dif-
ferentiable, in which case gn(y; θ) = ∂ ln f (y; θ)/∂θ ,
known as the score function for θ (see Likelihood).
The utility of the estimating function approach, how-
ever, is that it provides a sensible alternative to the
MLE when the available substantive knowledge is
insufficient to formulate a model f (y; θ) for the prob-
ability mechanism or, to a lesser extent, when the
model f (y; θ) is too complicated to compute.

Example 5

The quasi-likelihood method proposed by Wedder-
burn [26] offers an excellent example. Here, θ char-
acterizes the relationship between yi and covariates
xi through

µi(θ) = E(Yi |xi ) = h−1(x′
iθ),

where the one-to-one continuous function h(·) is
known as the “link” function (see Generalized Lin-
ear Model). The contribution to gn in (6) from the
ith observation is

g(yi , xi ; θ) =
(

∂µi

∂θ

)′

V −1
i (θ)(yi − µi(θ)), (7)

which depends only on the first two conditional
moments of yi , namely E(Yi |xi ) = µi(θ) and
var(Yi |xi ) = Vi(θ), where Vi(θ) = V (µi(θ)).

Note that the expectation of g in (7) is zero
so long as the true probability model f (·; θ) has
µi(θ) as the mean for Yi , and this is true even if
Vi(θ) is misspecified. Note also that the score func-
tion, ∂ ln f (y; θ)/∂θ , has zero expectation. This zero
expectation property for gn is a natural one for the
following reason: if the purpose is to find a solution
θ̂n such that gn(y, θ̂n) = 0, then it is intuitively desir-
able that the gs be close to zero, at least in average,
at the true θ value. Similarly to the type I consistent
estimators, in the simple case in which the Yis are
iid, the law of large numbers shows that gn = gn/n

converges in probability to g0(θ) = E0[g1(Y1; θ)] as
n → ∞. Following this argument, intuition suggests
that θ̂n may converge to some θ∗, a solution of
g0(θ) = 0 and, consequently, θ̂n is a consistent esti-
mator of θ if θ∗ ≡ θ0. There will generally exist a
consistent estimator θ̂n if the gs are unbiased (i.e. if
g0(θ0) = 0) and the following conditions hold:

1. The true parameter θ0 is an isolated root of
g0(θ) in the sense that there exists an open
neighborhood N ⊂ Θ containing θ0 such that
g0(θ) �= 0 for all θ ∈ N except θ = θ0.

2. gn(y, θ) is continuous on Θ for all n.
3. g0(θ) is either continuous or monotone (nonin-

creasing) on Θ .

In the case where θ is one-dimensional, condi-
tion 1 is generally satisfied if n−1E0(−∂gn/∂θ) and
n−1var0(gn) converge to positive constants at θ = θ0.
Condition 3 holds if gn is continuous in θ and
bounded or if gn is a nonincreasing function of θ ,
but other sufficient conditions may be available in
specific problems or cases in which g0(θ) can be
computed directly. Under the further condition that
gn is monotone in θ , all solution sequences θ̂n will
converge to θ0. Rigorous proofs of the consistency
of θ̂n based on condition 1 are given in, for example,
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[23] and [13]. An alternative approach when gn is the
score function is given by Cramer [4, pp. 501–503].

Example 5 (continued)

The “quasi-score function” defined in (7) generally
satisfies the above three conditions if the uncondi-
tional (with respect to X1) information matrix

EX1

[
∂µ1

∂θ
V −1

1 (θ)
∂µ1

∂θ

]

is positive definite for all θ . See detailed derivations
for this important special case in [20] and [7].

Example 6 (Mantel–Haenszel Estimator)

Let yi = (ai, bi, ci, di) be the entries from the ith
two-by-two table stratified according to some arbi-
trary confounding variable, xi . For example, this
sort of data structure could arise in a retrospective
case–control study, where i indexes a stratifying
variable for which we want to control. Interest is
on the odds ratio describing the association between
some exposure of interest and risk for disease, adjust-
ing for varying risk by stratum. In particular, we want
to estimate the conditional (on xi) odds ratio

θ = Pr(Ai = ai |xi) Pr(Di = di |xi)

Pr(Bi = bi |xi) Pr(Ci = ci |xi)
,

which measures the strength of association between
two dichotomous variables. The Mantel–Haenszel
estimator [19] is seen as the solution of

gn(y; θ) =
n∑

i=1

1

Ni

(aidi − θbici) = 0,

where Ni = ai + bi + ci + di is the number of pat-
ients in the ith clinic. Assuming that the Xis are iid
and the Nis are constant, one has immediately

E0[g1(Y1, X1; θ)] = 1

N1
EX1{[E0(A1D1|X1)

− θE0(B1C1|X1)]},

which is linear in θ with negative slope Ex1,0(B1C1)/

N1.

Some Final Remarks

First, in discussing the consistency of type II esti-
mators, we dealt principally with one-dimensional θ .
In models with multidimensional parameter, satisfy-
ing condition 1 requires more care. In particular, this
condition is generally satisfied if n−1in(θ) → i(θ) as
n → ∞, where i(θ) is a positive definite matrix and
continuous in θ , and in(θ) is the information in gn

given by

in(θ0) =
[

E

(
−∂gn

∂θ

)
var−1(gn)E

(
−∂gn

∂θ

)′]

θ=θ0

.

Secondly, we have dealt principally with the case
in which the Yis are iid and incorporated regres-
sion into our framework by considering the data
(Yi, Xi) to be iid random vectors, implicitly assum-
ing that the distribution of the Xis exists, but is left
unspecified. Extension to the independent but not
identically distributed case, which may be a more
natural approach to regression, is established by set-
ting x = (x1, . . . , xn)

′ and assuming that the normed
conditional information

n−1in(θ0) = n−1

[
E

(
−∂gn

∂θ
|x

)
var−1(gn|x)

× E

(
−∂gn

∂θ
|x

)′]

θ=θ0

.

converges to a positive definite matrix.
Thirdly, it is not required that the Yis be indepen-

dent, and models with dependent Yis are common
in biomedical research. In many cases, we still have
consistency of θ̂n. Again, the main requirement is that
n−1in(θ) → i(θ) as n → ∞, where i(θ) is a positive
definite matrix.

Fourthly, we have assumed throughout that the
elements of θ are the sole parameters necessary
to specify the probability model for the data. Very
often in practice, one needs additional parameters, φ

say, to completely specify the model, that is f (y) =
f (y; θ , φ), where φ is a q × 1 vector of additional
parameters. For example, the variance of Yi in (7) is
likely to depend on parameters other than θ which
characterizes the first moment of Yi . Or, in the retro-
spective study example (Example 6), the parameter
of interest characterizes the within-stratum ratio of
disease risk between the exposed and unexposed per-
sons, so that we must control for confounding factors



6 Consistent Estimator

relating to the stratum. The “stratum effect” is rep-
resented by the parameter φ = (φ1, . . . , φn)

′. Param-
eters of this kind are called nuisance parameters.
Although in the particular case of Example 6, due to
the elegance of the Mantel–Haenszel estimator, it is
possible to formulate the problem independently of
φ, in more general problems, the objective function
Qn to be minimized or the estimating function gn

to be solved, will depend on φ. We distinguish two
cases.

In the first, assuming that one can find a well-
behaved estimator of φ, φ̂ say, in that

√
n(φ̂n − φ0) = Op(1), (8)

no additional complication is introduced, so far as
the consistency of θ̂n is concerned, by either mini-
mizing Qn(θ, φ̂n) or solving gn(y; θ , φ̂n) = 0. In the
second case, however, φ̂n exists but does not meet
the requirement given in (8). This often occurs when
the number of nuisance parameters increases with
n and the number of observations that is informa-
tive for each nuisance parameter is small even as n

increases. In the retrospective study example, each
yi is a two-by-two table, and q = n. This is known
as the Neyman & Scott [21] problem, and in such
cases the maximum likelihood estimator might not be
consistent (see Estimating Functions). Kalbfleisch
& Sprott [15] and Basu [2] discuss a variety of
likelihood methods to construct consistent estima-
tors in the presence of many nuisance parameters.
Andersen [1] provides proof of the consistency of
conditional maximum likelihood estimators under the
exponential family. Lindsay [18] extends Andersen’s
work to a broader class of probability models by
further developing the concept of a conditional score
function, which provides a zero-unbiased estimating
function for θ even if φ is poorly estimated.

Fifthly, another assumption often made to show
consistency is that the true parameter value θ0 is an
interior point of Θ . There are situations in which the
parameter values of interest, θ0, are on the bound-
ary of the parameter space. A typical example is the
application of variance component models to pedi-
gree data in which the contribution from a particular
genetic component is expressed in terms of its vari-
ance, which is necessarily nonnegative. Here a value
of zero variance corresponds to the lack of contri-
bution from this hypothesized component. In many

cases, consistency turns out to hold even for θ0 on
the boundary [22].

Sixthly, one concern for the second (estimating
function) approach is the issue of multiple roots when
solving gn = 0. This is a potential problem in all but
the simplest probability models (e.g. an exponential
family with canonical link function). The question as
to which root corresponds to a consistent estimator
can be addressed in a variety of ways. For exam-
ple, if a known consistent estimator is available, the
root closest to that estimator will also be consistent
[17, p. 421]. The flexibility of the estimating func-
tion approach often permits construction of a function
with a unique root, which would provide such an esti-
mator. This problem is further addressed by Hanfelt
& Liang [11], who integrate estimating functions with
respect to θ to obtain an objective function, which is
then minimized to select one θ̂n among several solu-
tions to gn = 0.

Finally, the task of parameter estimation allows
scientists to learn about the magnitude of the quan-
tities that reflect scientific objectives. The notion of
consistency provides a means to evaluate the qual-
ity of proposed estimators. However, one should not
lose sight of the fact that point estimation is only
an intermediate part of statistical analysis. Equally
important is to assess the precision of the esti-
mator θ̂n, an issue not addressed here. The preci-
sion, along with the magnitude of θ̂n, allows one
to construct hypothesis tests on θ or to provide
a range of plausible values for θ , given the data
Y = y.
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CONSORT

A report of a randomized controlled trial (RCT)
should convey to the reader, in a transparent manner,
why the study was undertaken, and how it was
conducted and analyzed. To assess the strengths and
limitations of an RCT, the reader needs and deserves
to know the quality of its methodology. Despite
several decades of educational efforts, RCTs still are
not being reported adequately [2, 5, 10].

The Consolidated Standards of Reporting Trials
(CONSORT) statement, published in the Journal
of the American Medical Association in 1996
[1], was developed to try to help rectify this
problem. The CONSORT statement was developed
by an international group of clinical trialists,

statisticians, epidemiologists and biomedical editors.
The CONSORT statement is one result of previous
efforts made by two independent groups, the
Standards of Reporting Trials (SORT) group [9] and
the Asilomar Working Group on Recommendations
for Reporting of Clinical Trials in the Biomedical
Literature [11]. The CONSORT statement consists
of two components, a 21-item checklist (Table 1)
and a flow diagram (Figure 1). The checklist has six
major headings that pertain to the contents of the
report of a trial, namely Title, Abstract, Introduction,
Methods, Results and Discussion. Within these major
headings there are subheadings that pertain to specific
items that should be included in any clinical trial
manuscript.

These items constitute the key pieces of informa-
tion necessary for authors to address when reporting

Registered or Eligible Patients (n =...)

Not Randomized (n =...)
Reasons (n =...)

Randomization

Received Standard
Intervention as Allocated
(n =...)

Did not Receive
Standard Intervention
as Allocated (n =...)

Followed UP (n =...)

Withdrawn (n =...)
Intervention ineffective
(n =...)

Timing of Primary and
Secondary Outcomes

Lost to Follow-up (n =...)
Other (n =...)

Completed Trial (n =...)

Received Standard
Intervention as Allocated
(n =...)

Did not Receive
Standard Intervention
as Allocated (n =...)

Followed UP (n =...)

Timing of Primary and
Secondary Outcomes

Withdrawn (n =...)
Intervention ineffective
(n =...)

Lost to Follow-up (n =...)
Other (n =...)

Completed Trial (n =...)

Figure 1 CONSORT flowchart. Reproduced with permission from the Journal of the American Medical Association, 1996,
Volume 276, 637–665. Copyrighted (1996), American Medical Association
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Table 1 CONSORT checklist

Heading Subheading Descriptor Was it reported? Page no.?

Title Identify the study as a randomized trial.
Abstract Use a structured format.
Introduction Identify the study as a randomized trial.

Use a structured format.
State prospectively defined hypothesis, clinical objectives, and

planned subgroup or covariate analyses

Methods Protocol Describe
1. Planned study population, together with

inclusion/exclusion criteria.
2. Planned interventions and their timing.
3. Primary and secondary outcome measure(s) and the

minimum important difference(s), and indicate how the
target sample size was projected.

4. Rationale and methods for statistical analyses, detailing
main comparative analyses and whether they were
completed on an intention-to-treat basis.

5. Prospectively defined stopping rules (if warranted)

Assignment Describe

1. Unit of randomization (e.g. individual, cluster, geographic).
2. Method used to generate the allocation schedule.
3. Method of allocation concealment and timing of

assignment.
4. Method to separate the generator from the executor of

assignment.

Masking
(Blinding)

Describe mechanism (e.g. capsules, tablets); similarity of
treatment characteristics (e.g. appearance, taste); allocation
schedule control (location of code during trial and when
broken); and evidence for successful blinding among
participants, person doing intervention, outcome assessors,
and data analysts.

Results Participant
Flow and
Follow-up

Provide a trial profile (Figure 1) summarizing participant flow,
numbers and timing of randomization assignment,
interventions, and measurements for each randomized group.

Analysis State estimated effect of intervention on primary and secondary
outcome measures, including a point estimate and measure
of precision (confidence interval).

State results in absolute numbers when feasible (e.g. 10/20, not
50%). Present summary data and appropriate descriptive and
inferential statistics in sufficient detail to permit alternative
analyses and replication.

Describe prognostic variables by treatment group and any
attempt to adjust for them.

Describe protocol deviations from the study as planned,
together with the reasons.

Comment State specific interpretation of study findings, including sources
of bias and imprecision (internal validity) and discussion of
external validity, including appropriate quantitative measures
when possible.

State general interpretation of the data in light of the totality of
the available evidence.
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the results of an RCT. Their inclusion is based on
evidence, whenever possible. For example, authors
are asked to report on the methods they used to
achieve allocation concealment, possible in every
randomized trial. There is growing evidence that
inadequately concealed trials, compared with ade-
quately concealed ones, exaggerate the estimates of
intervention benefit by 30%–40%, on average [7, 8].
Additional benefits of the checklist (and flow dia-
gram) include facilitating editors, peer reviewers and
journal readers to evaluate the internal and external
validity of a clinical trial report.

The flow diagram pertains to the process of
winnowing down the number of participants from
those eligible or screened for a trial to those
who ultimately completed the trial and were
included in the analysis. The flow diagram per-
tains particularly to a two-group, parallel design,
as stated in the CONSORT statement. Other
checklists and flow diagrams have been devel-
oped for reporting cluster randomized trials [4]
and other designs (see http://www.consort-
statement.org). The flow diagram, in partic-
ular, requests relevant information regarding par-
ticipants in each of the intervention and con-
trol groups who did not receive the regimen for
the group to which they were randomized, those
who during the course of the trial were discon-
tinued, withdrew, became lost to follow-up, and
those who have incomplete information for some
other reason.

There is emerging evidence to suggest that the
quality of reporting of RCTs, based on the use of the
CONSORT statement, compared with not using it, is
higher on several dimensions, such as reduced report-
ing of unclear allocation concealment [6]. Similarly,
use of the flow diagram was associated with better
overall reporting of RCTs [3].

The CONSORT statement (checklist and flow
diagram) is available on the CONSORT web-
site (www.consort-statement.org). This site
includes information on the growing number
of health care journals and biomedical editorial
groups, such as the International Council of Med-
ical Journal Editors (ICMJE), who support the
use of the CONSORT statement for reporting
RCTs.

At this writing the CONSORT statement is under-
going revision. Present plans call for the revised
Statement to appear in Spring 2001 along with an

extensive explanatory and elaboration document to
overcome some of the shortcomings of the original
statement, both of which will be available on the
above website.
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Contagious Distributions

The term “contagion” entered the statistical liter-
ature in a paper by Pólya [14] that reexpounded
certain ideas previously put forward by Eggenberger
& Pólya [3] (see Polya’s Urn Model). During the
spread of an infection each new case was consid-
ered to release more germs into the atmosphere;
the probability of catching the disease was there-
fore thought to depend on the existing number of
cases. Eggenberger & Pólya modeled this via an urn
initially containing R red balls (cases) and S black
balls (others), where R + S = N ; balls are drawn
one at a time at random from the urn and each
drawn ball is immediately replaced together with
∆ new balls of the same color. They showed that
the probability that, after n draws, r red balls (rep-
resenting cases of infection) and n − r = s black
balls (individuals without the infection) have been
drawn is

Pr = n!

r!s!

ρ(ρ + δ) · · · [ρ + (r − 1)δ]

1(1 + δ) · · · [1 + (r − 1)δ]

× σ(σ + δ) · · · [σ + (s − 1)δ]

(1 + rδ)[1 + (r + 1)δ] · · · [1 + (n − 1)δ
,

(1)

where ρ = R/N, σ = S/N , and δ = ∆/N . In [3]
they set nρ = h, nδ = d, and let n → ∞, with h and
d remaining finite, giving the limiting form

Pr = h(h + d)(h + 2d) · · · [h + (r − 1)d]

r!(1 + d)(h/d)+r
, (2)

i.e. a negative binomial distribution. They fitted
this and a Poisson distribution to Swiss monthly
mortality figures for smallpox over the period 1877
to 1900, as shown in Table 1. The negative binomial
distribution fits the data very much better than a
Poisson distribution (which is the model for deaths
occurring completely at random), supporting their
hypothesis of contagion.

The same type of contagion concept, concern-
ing the changing probability of an event during a
sequence of events, had arisen previously in a paper
by Greenwood & Yule [6]. These authors put for-
ward the “burnt-fingers” hypothesis that after an
individual has suffered one accident he/she will have
a lower probability of suffering future accidents of the
same type (see Accident Proneness). They obtained
a good fit when they applied their model to data
on accidents in the manufacture of high-explosive
shells.

Neyman [12] had a different concept of conta-
gion. He sought an explanation for the failure of
the Poisson distribution to model the distribution of
insect larvae in an agricultural field or the distri-
bution of cells in a haemocytometer and observed
that such data generally have a long tail and an
unexpectedly high variance. He said that such data
have a “contagious distribution”. The NTA (Ney-
man’s type A) distribution that he fitted can be
regarded as arising from a Poisson distribution of
clumps (with mean λ), with the number of cells
for each clump having independent and identical
Poisson distributions (with mean φ). It gives a bet-
ter fit than the Poisson distribution, as shown in
Table 2.

Table 1

Number of deaths 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ≥15 Total

Observed number
of months 100 39 28 26 13 6 11 5 5 6 1 6 2 2 3 35 288

Negative binomial fit 100.4 36.3 23.5 17.5 13.8 11.3 9.5 8.1 7.0 6.1 5.3 4.7 4.2 3.7 3.3 33.3 288.0
Poisson fit 1.2 6.5 17.8 32.6 44.9 49.4 45.2 35.5 24.5 15.0 8.2 4.1 1.9 0.8 0.3 0.1 288.0

Table 2

Number of cells/square 0 1 2 3 4 ≥5 Total

Observed number of squares 213 128 37 18 3 1 400
NTA fit 214.8 121.3 45.7 13.7 3.6 0.9 400.0
Poisson fit 202.2 138.0 47.1 10.7 1.8 0.2 400.0
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The expressions for the NTA probabilities are very
complicated. The distribution is easier to understand
via its probability generating function (pgf) (see Gen-
erating Functions)

GNTA(z) = G[g(z)], (3)

where G(z) = exp[λ(z − 1)], which is the Poisson
pgf for the number of clumps per sample, and g(z) =
exp[φ(z − 1)], the Poisson pgf for the number of
larvae per clump.

Many other contagious distributions have been
constructed in a similar manner. For example, the
Lagrangian Poisson distribution [1] has the pgf

GLP(z) = exp{λ[t (z) − 1]}, (4)

where t (z) is the pgf that is the solution of the
equation t (z) = z exp{ψ[t (z) − 1]}; Consul and his
coworkers have fitted this successfully to many types
of data including lesions in rabbit lymphoblasts and
chromosome aberrations in cultures of human leuco-
cytes. For further examples of such distributions, see
Douglas [2] and Johnson et al. [7].

The heterogeneity model considered by Green-
wood & Yule [6] in the accident proneness context
has also been called “contagious”. Instead of all
individuals in a population having identical Poisson
distributions of accidents, the Poisson parameter θ is
assumed to vary among individuals. This is a mixture
model and θ is the mixing variable. In terms of pgfs
we have

Gmixed(z) =
∫

g(z|θ)f (θ) dθ, (5)

where g(z|θ) is a Poisson distribution with parameter
θ , f (θ) is the pdf of the distribution of θ , and
integration is over all values of θ . Greenwood & Yule
showed that if θ has a gamma distribution, then
the resultant mixed Poisson distribution is a negative
binomial distribution.

The discrete analog of (5) is

Gdmixed(z) =
∞∑

x=0

gx(z)ωx, (6)

were x takes integer values, gx(z) is a pgf, ωx ≥ 0,
and

∑∞
x=0 ωx = 1.

The pgf (3) has the form

Gdmixed(z) = ω0 + ω1g(z) + ω2[g(z)]2 + · · ·
= G[g(z)], (7)

where G(z) = ω0 + ω1z + ω2z
2 + · · · and gx(z) =

[g(z)]x . It can therefore be regarded as arising from a
special kind of mixture of distributions, since [g(z)]x

is itself a pgf when x is an integer (Neyman used
this method of expansion when obtaining the NTA
probabilities).

Feller [4] referred to the Pólya [14] model as “true
contagion” and to the mixture models as “apparent
contagion” (in his book, [5, pp. 121–123], he also
used the term “spurious contagion”). The “true” and
“apparent” terminology is still used. His opinion was
that statisticians “speak of contagion (or contagious
probability distributions) in a vague and misleading
manner”.

A major reason for this vagueness is the variety
of models that may give rise to a single distribution.
Lüders [10] showed that a negative binomial distribu-
tion results if G(z) is the pgf of a Poisson distribution
and g(z) is the pgf of a logarithmic distribution in (7).
The negative binomial distribution therefore arises
from all three models discussed above (it is also the
outcome of several models unrelated to contagion).

A second instance of a distribution arising from
several models is the Hermite distribution. This was
first derived by McKendrick [11] via the sum of
two correlated Poisson random variables. He fitted
it to data on the number of bacteria ingested by
phagocytes. Table 3 shows the fit. Kemp & Kemp
[9] stated the pgf in the form

GH(z) = exp{λ[2pq(z − 1) + p2(z2 − 1)]}, (8)

and hence showed that the data could also have arisen
from a Poisson distribution of phagocytes with each
phagocyte containing 0, 1, or 2 bacteria according
to a binomial distribution with n = 2 (a clustering

Table 3

Number of bacteria/phagocyte 0 1 2 3 ≥4 Total

Observed number of phagocytes 269 4 26 0 1 300
Hermite fit (by mle) 269.6 3.7 25.2 0.3 1.2 300.0
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model). Alternatively, (8) can be restated as

GH(z) = e−λ + e−λλ(q + pz)2 + e−λλ2(q + pz)4/2!

+ e−λλ3(q + pz)6/3! + · · · , (9)

i.e. as a mixture of binomial distributions with
exponent parameters taking the values 0, 2, 4, 6, . . ..

Another example is the Gegenbauer distribution.
Plunkett & Jain [13] obtained this as a gamma mix-
ture of Hermite distributions, giving an “apparent
contagion” model. They fitted it to the haemocytome-
ter data quoted above (Table 2) and obtained expected
frequencies very similar to those obtained using the
NTA distribution. Johnson et al. [7] give a number of
other models for the Gegenbauer distribution, includ-
ing McKendrick’s [11] nonhomogeneous birth and
death process (see Stochastic Processes) and Kemp’s
[8] field observation model involving a Rao damage
process.

The multitude of models that may exist for a
particular distribution means that it is very much
more informative to use the term “contagion model”,
specifying the model and its form of contagion
precisely, than it is to call a particular distribution
a “contagious distribution”.
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Contingency Table

We start by defining a two-way contingency table.
Suppose that each of a sample of n individuals is
classified according to each of two separate criteria,
and each of these criteria can take only a finite
number of distinct values. Let us take as an example
a study to assess factors associated with women’s
attitudes toward mammography [6, p. 220]. Each of
309 women has been classified according to:

1. Her “Mammography Experience”, which has as
its possible values “Never”, “Over one year ago”,
and “Within the past year”.

2. Her response to the question “How likely is it that
a mammogram could find a new case of breast
cancer?”, which has as its possible values “Not
likely”, “Somewhat likely”, and “Very likely”.

Let the Mammography Experience correspond to
the Rows of the table and the response to the question
about the detection of breast cancer to the Columns.
Although it happens in this particular example that
each of the Rows and Columns has a natural ordering,
this is not necessary to the definition of a contingency
table. Then the resulting 3 × 3 table of frequencies
or counts is, say, (nij ), where:

1. nij is the number of individuals in Row i and
Column j for i = 1, . . . , I and j = 1, . . . , J .

2. I and J are, respectively, the total numbers of
Rows and Columns of the table, here 3, 3. Let
n be the total sample size, so that n is the
sum of entries of the table; we can then write
n = ∑∑

nij .

Note that in our construction of this cross tab-
ulation or contingency table, we assume that each
individual of the sample of size n is classified into
exactly one of the IJ categories of the table, these
categories being mutually exclusive and exhaustive.
Written less formally, this means that the IJ cate-
gories do not overlap in any way, and together they
cover all possibilities.

Of course, exactly how the sample is collected for
a particular study is of great importance in the sub-
sequent statistical analysis. In classical contingency
table analysis, it is assumed that the n individu-
als form a random sample from a population: this

means that we assume that each individual is clas-
sified independently of the others, and each has the
same probability, say pij , of being classified into row
i and column j . Thus

∑∑
pij = 1. Our assump-

tion that we have a random sample has the conse-
quence that the probability distribution of the variable
(nij ) is multinomial; that is, the frequency function
p[(nij )|p] is

n!
∏

i

∏

j

(
p

nij

ij

nij !

)
,

provided that nij ≥ 0 and
∑∑

nij = n.
In this case we say that (nij ) is multinomial, with

parameters n and (pij ).
To continue with the above example of the atti-

tudes toward mammography data, the results of our
survey are shown in Table 1.

These data show a dramatic and self-evident asso-
ciation between rows and columns: in other words,
the women’s responses to the question about the
detection of breast cancer depend strongly on their
mammography experience. This can be seen even
more clearly by presenting the data from this sample
in terms of the row percentages. Rounded to the near-
est whole number for clarity, these are shown in
Table 2.

Presenting the data in this way shows more clearly
how the response to the question depends on the
mammography experience. Another illuminating way
to show this effect would be by using three bar charts,

Table 1 Mammography: the counts

Detection of breast cancer

Mammography Not Somewhat Very
experience likely likely likely

Never 13 77 144
Over one year ago 4 16 54
Within the past year 1 12 91

Table 2 Mammography: the row percentages

Detection of breast cancer

Mammography Not Somewhat Very
experience likely likely likely Total

Never 6 33 61 100
Over one year ago 5 22 73 100
Within the past year 1 11 87 100
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overlaid on the same graph, with each correspond-
ing to a different row of the table (see Graphical
Displays).

There are several possible analyses we can carry
out on this particular table, such as a simple sum-
mary in terms of percentages, a graphical summary,
or a statistical test of independence which we describe
below. None of these analyses can establish whether
the association between rows and columns is a causal
one. This is an inherent limitation of the purely sta-
tistical approach. In the current example, the Column
variable might be thought of as a response to the
Row variable, which is an explanatory variable or
covariate. But the simple two-way contingency table
cannot directly tell us the mechanism by which the
explanatory variable affects the response variable. In
any case, in the current example, there could be a
mixture of several complex mechanisms which act
simultaneously.

The Hypothesis of Independence, H0, and
the Chi-square Test

With the notation introduced above, that

pij = Pr(Row = i, Column = j) (1)

for i = 1, . . . , I , j = 1, . . . , J , we see that the hypo-
thesis of independence of rows and columns may be
written as

H0 : pij = pi+p+j (2)

for all i, j , where pi+ = Σjpij is the probability that
Row = i, and p+j = Σipij is the probability that
Column = j .

Observe that an equivalent way of writing H0 is

H0 :
pij

pi+
= p+j (3)

for all i, j . Now pij /pi+ is the probability that
the Column is j , conditional on the Row being i:
we write this as P(Column = j |Row = i). Thus the
hypothesis of independence of rows and columns is
equivalent to the statement that the distribution of
the variable Column, conditional on the value of the
variable Row being i, is the same for all values of i:
in this case we say that these conditional distributions
are homogeneous.

To test the null hypothesis of independence H0,
we compute Pearson’s chi-square statistic X2, which
is defined as

X2 =
∑∑ (nij − eij )

2

eij

(4)

where eij are conventionally called the “expected
values”, and are defined by

eij = (ni+n+j )

n
for all i, j, (5)

and ni+ and n+j are the row and column totals,
respectively, defined by ni+ = Σjnij for all i and
n+j = Σinij for all j . (A pedantic but more accurate
description of (eij ) is “the maximum likelihood
estimates of the expected values of (nij ) under H0”.)
We know that, under the null hypothesis H0, the
distribution of X2 is, for large n, approximately χ2

f ,
where f , the degrees of freedom, are (I − 1)(J − 1).
Hence for a significance test of H0 with approximate
significance level α, we reject H0 if

X2 ≥ χ2
f (α), (6)

the right-hand side being the upper α point of the χ2
f

distribution, which we can find from statistical tables:
typically we would take α as 0.01 or 0.05. Thus we
have approximately arranged that, for large n, our test
gives

Pr(reject H0|H0 true) ≤ α. (7)

This is what we mean by saying that the test is of
approximate size α.

Chi-square tests are described in depth in another
article. The value of the X2 statistic for the numerical
example given above is 24.15, which lies well above
18.47, the 0.001 point of the χ2

4 distribution. Thus
for these data, the null hypothesis of independence
of the women’s response to the question about the
detection of breast cancer and their “Mammography
Experiences” is rejected, as our preliminary look at
the table suggested would be the case.

From the point of view of scientific enquiry, a
statistical significance test is a crude and blunt instru-
ment. If we found that the value of X2 was significant,
we would usually want to investigate in some detail
why the null hypothesis of independence fails to fit.
It is good statistical practice to compare the adjusted
residuals

(nij − eij )

[eij (1 − p̂i+)(1 − p̂+j )]1/2
, (8)
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where p̂i+ =(ni+/n), p̂+j =(n+j /n), with the stan-
dard normal distribution. Thus any residual greater
than about 1.5 in absolute value is “interesting”, and
the corresponding cell (i, j ) of the table is special in
some way and deserves investigation.

Under the null hypothesis H0, the sufficient statis-
tics for the unknown parameters ((pi+), (p+j )) are
((ni+), (n+j )). One consequence of this is that the
observed values of these statistics must agree exactly
with the corresponding expected values: thus

ni+ = ei+ for each i, and n+j = e+j for each j.

(9)

This is a special case of a general result for exponen-
tial families, and we shall see examples of the same
result when we consider multiway tables in the final
section.

A test statistic which is equivalent to X2 for large
sample size is the deviance, conventionally denoted
by G2. It is derived from the ratio of maximized
likelihoods (see Likelihood Ratio Tests). For the
example of testing H0, G2 is defined by

G2 = 2
∑∑

nij log

(
nij

eij

)
(10)

and for the numerical example given above G2 has
the value 26.80; recall that the value of X2 was 24.15.

Both X2 and G2 are appropriate test statistics for
sampling setups other than the straightforward single
multinomial one introduced above. For example, sup-
pose the contingency table (nij ) were collected with
the row totals

(ni+) fixed, and

(nij |ni+) independently and multinomially

distributed, with

(nij ) multinomial parameters ni+, (θij ),

where
∑

j

θij = 1 for each i.

Then the statistics X2 and G2 are the appropriate
test statistics for testing H: θij = φj for all i, j , for
some (unknown) φj such that

∑
φj = 1; in other

words, the null hypothesis of homogeneity of row
distributions.

Yet another way of writing H0 is

H0 : log(pij ) = αi + βj for all i, j. (11)

for some α, β such that Σpij = 1. One reason for
writing H0 in this form is that it enables us to see
that it is a loglinear hypothesis; that is, the log of
the probabilities can be written as a function which
is linear in the unknown parameters, which in this
case are (αi), (βj ) (see Loglinear Model).

Computational Aspects

Contingency table analysis, both by chi-square tests
and by small-sample “exact” methods, is easily
achieved in many statistical software packages. Usu-
ally we can ask for direct computation of the appro-
priate chi-square statistic, with associated residuals
and significance tests. More sophisticated software
will allow us to test complex hypotheses of inde-
pendence by fitting models using one or both of
iterative proportional fitting (IPF) or generalized
linear modeling (GLM). IPF may be computation-
ally more efficient than the GLM approach, since in
using GLM for contingency table analysis we are
ignoring the particular structure of the parameters.
For example, in using GLM to test for independence
in a two-way contingency table, we use an iterative
technique (effectively the Newton–Raphson) to solve
the maximum likelihood equations when in fact five
minutes with a pencil and paper would show us that
iteration is unnecessary: there is a closed form solu-
tion. But an advantage of the GLM approach is that
it is more suited to the problem of choosing the sim-
plest possible model consistent with a given data set.
Most statisticians are familiar with the use of GLM in
any case, and so this advantage outweighs the pos-
sible gain in computational efficiency of IPF. The
GLM approach may be rather more forbidding for the
less mathematical user, but has definite advantages
when we come to consider cross tabulations which
are more complex than just the two-way ones. We dis-
cuss multi-way contingency tables in the last section
of this article. Although there are several possible
probability distributions available for GLMs, there
is no multinomial distribution. This is not a prob-
lem, provided that we are fitting a loglinear model,
such as H0 as written in its final form above. Thus
for testing independence in a two-way contingency
table we can use the Poisson distribution as a “sur-
rogate” for the multinomial, so that we can compute
the appropriate deviance for testing independence for
the multinomial model by pretending that (nij ) are
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observations on independent Poisson variables. This
is a special case of a general result, relating Poisson
and multinomial loglinear models.

Quasi-Independence

For some two-way contingency tables with a special
structure, it may be obvious that the null hypothesis
of independence H0 cannot possibly be expected to
fit, because it is far too “severe”. However, a weaker
hypothesis which is chosen to represent a version of
independence, or quasi-independence, may be help-
ful in the interpretation of the data. For example,
Altham [3] discusses the data on initial and final rat-
ings of 121 stroke patients in Table 3, taken from [5].

The rows of the 5 × 5 table correspond to the
patient’s state on admission to hospital, and the
columns to his state when discharged. These states
have possible values A, B, C, D, and E, ranging
from A as the least severe to E as the most severe.
The resulting contingency table is triangular, because
the patient’s state on being discharged is never worse
than his initial state. Because of this constraint, the
hypothesis of independence of rows and columns can-
not possibly hold. But if we assume that the frequen-
cies (nij ) for 1 ≤ j ≤ i ≤ 5 come from a multinomial
distribution with corresponding parameters (pij ), then
it may still be helpful to fit a hypothesis of quasi-
independence Hqi , say:

Hqi : pij = αiβj , for all j ≤ i, (12)

for some (αi), (βj ). This is another loglinear hypoth-
esis, and so may be tested by treating the (nij ) as
independent Poisson variables. For the data given
here, the deviance for testing Hqi has value 9.60,
df = 6, indicating a reasonable fit. Similar models
may be appropriate for the type of “triangular” data
arising from capture–recapture studies in ecology,
where, for example, a bird first ringed in 1975 may

Table 3 Stroke patients. Reproduced from
[5] by permission of the Biometrics Society

A B C D E

A 5 – – – – 5
B 4 5 – – – 9
C 6 4 4 – – 14
D 9 10 4 1 – 24
E 11 23 12 15 8 69

35 42 20 16 8 121

be observed in any one of the 10 successive years,
but of course a bird first ringed in 1977 could not
have appeared in the 1975 count.

Quasi-independence models for square contin-
gency tables (omitting the diagonal entries) are
known as “mover–stayer” models in the sociologi-
cal context. This hypothesis of quasi-independence
is one of several models especially suitable for a
square contingency table; others in this class are
models of symmetry, marginal homogeneity, and
quasi-symmetry.

Exact Tests of Independence

For tables with small frequencies, the large-sample
approximation of the distribution of X2, or equiva-
lently of the distribution of G2, to the χ2 distribution
may be doubtful. Most software will give appropri-
ate “warning messages” if the “expected counts” eij

are too small, less than five being a conservative
interpretation of “too small” here. In this case the
statistician will need to use an exact method (see
Exact Inference for Categorical Data). For a 2 × 2
table, Fisher’s exact test, which is based on the
hypergeometric distribution, is appropriate, and it
has been generalized, say, to I × J tables by using
the multivariate hypergeometric distribution: this is
the result of conditioning the multinomial distribu-
tion on both the row and column frequency totals,
under the null hypothesis of independence of rows
and columns.

For example, consider the 2 × 2 contingency table
in Table 4.

In carrying out a χ2 test on this table, we are
essentially asking whether the proportion 8/16 is
different from the proportion 20/23. The X2 statistic
is 4.67, with corresponding P value = 0.0307. But
the software warns that the expected counts may
be too low for the large-sample approximation to
be valid, and it is easy to see that e11, which is
16 × 11/39, is 4.5. For the sake of comparison,
we do a two-sided Fisher exact test, and find that
the corresponding P value is 0.0272. So either

Table 4 Example for
Fisher’s exact test

8 8
3 20
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method would lead us to reject the null hypothesis
of independence of rows and columns.

Multiway Contingency Tables

An example of a four-way contingency table is given
in Table 5. These data have been slightly adapted for
pedagogic purposes from a data set on adolescents
supplied by Professor I.J. Goodyer of Cambridge
University Developmental Psychiatry. For further
discussion of the original data, see [4].

One purpose in collecting such a data set is to find
a model which explains how the four variables “Gen-
der”, “Depression status”, “Behavior”, and “Anxiety”
are interrelated.

For example, we can see from the two-way
marginal Table 6 that the prevalence of depression
among girls is 17%, compared with only 8% as the
corresponding figure for boys. (The X2 statistic for
this 2 × 2 table is 4.82, which is significant when
referred to χ2

1 .) Similarly, the two-way marginal
Table 7, for which the corresponding X2 statistic is
7.42, suggests that there is a strong positive associa-
tion between anxiety and behavioral symptoms.

Table 5 24 table from psychiatry

Behavioral symptoms: No Yes

Anxiety symptoms: No Yes No Yes

Girls Depression = no 85 14 10 2
Girls Depression = yes 8 4 7 4
Boys Depression = no 107 13 8 3
Boys Depression = yes 2 3 3 4

Table 6 A pairwise sum-
mary from Table 5

Depression

No Yes

Girls 111 23
Boys 131 12

Table 7 Another pairwise summary from Table 5

Anxiety symptoms

No Yes

Behavioral symptoms No 202 34
Behavioral symptoms Yes 28 13

However, we can see that this piecemeal and ad
hoc approach to the data analysis is rather unsatis-
factory. Looking at the pairwise marginal tables can
raise some interesting suggestions, but it may also
be misleading because it possibly conceals important
features of the data, as we shall see later. Further-
more, even for a four-way contingency table there are
six possible pairwise marginal tables to be examined,
so that it is clear that for large tables, for example
seven-dimensional, we need a more focused model-
ing strategy.

We return to the above practical example when we
have discussed types of independence for multiway
contingency in a formal way.

Suppose that the rows, columns, layers, etc. of the
multiway table are labeled A, B, C, etc. There are
many different sorts of independence between these
variables that are possible. This makes analysis of
multiway contingency tables interesting and complex.
Fortunately, the relationship between the variety of
types of independence and loglinear models fits natu-
rally within the GLM framework. We will once again
make use of the relationship between the Poisson and
the multinomial in the context of loglinear models.

An example with only three variables, say A, B,
and C, serves to illustrate the methods used in tables
of dimension higher than two. Suppose that A, B, and
C correspond, respectively, to the rows, columns, and
layers of the three-way table. Let

pijk = Pr(A = i, B = j, C = k) for i = 1, . . . , I,

j = 1, . . . , J, k = 1, . . . , K, (13)

so that
∑

pijk = 1, and let (nijk) be the correspond-
ing observed frequencies, assumed to be observations
from a multinomial distribution, parameters n, (pijk).

There are eight different hypotheses corresponding
to types of independence between A, B, and C that
we now consider. Assume in all of these that the
parameters given are such that

∑
pijk = 1.

H0 : pijk = pi++p+j+p++k for all i, j, k, (14)

thus H0 corresponds to A, B, and C independent.

H1 : pijk = pi++p+jk for all i, j, k, (15)

thus H1 corresponds to A independent of (B, C).
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(Likewise, we could consider the hypothesis B

independent of (A, C), and the hypothesis C inde-
pendent of (A, B).)

H2 :
pijk

pi++
=

(
pij+
pi++

) (
pi+k

pi++

)

for all i, j, k. (16)

Thus H2 is equivalent to

Pr(B = j, C = k|A = i) = Pr(B = j |A = i)

× Pr(C = k|A = i) for all i, j, k, (17)

and so H2 corresponds to the hypothesis that, for each
i, conditional on A = i, the variables B and C are
independent. In this case we say that B and C are
independent, conditional on A. (Likewise, we can
define two similar hypotheses by interchanging A,
B, and C.)

Independence and conditional independence bet-
ween variables can be more clearly understood by
showing suitable association graphs (see Interaction
Model). In this graphical representation of the
hypotheses, we represent the variables A, B, and
C by the vertices of the graph, with links between
these vertices representing dependence, and absence
of links representing independence. Thus

H0 corresponds to no links between any of

A, B, and C.

H1 corresponds to a link between B and C only,

and A as an isolated point.

H2 corresponds to a link between A and B,

and a link between A and C: thus B and C are

linked only through A; see the diagram below.

The theory of association graphs is a useful
and elegant one, particularly suitable for displaying
and understanding the structure of high-dimensional
tables.

Finally, we consider

H3 : pijk = αjkβikγjk for all i, j, k,

for some α, β, γ. (18)

This hypothesis, which is symmetric in A, B, and
C, cannot be given an interpretation in terms of
conditional probability (see Figure 1). It corresponds
to saying that the interaction between any two of the

Figure 1 B and C conditionally independent, given A

three factors, say A and B, given the level of the third
factor, say C, is independent of the level of C. We
say that H3 corresponds to “no three-way interaction”
between A, B, and C.

One way of writing this formally is to say that for
each i, j the odds ratio describing the dependence
between A and B

(pijkpIJk)

(piJkpIjk)
(19)

is the same for all k.
The eight hypotheses are related to one another as

follows: for any given probabilities (pijk),

H0 implies H1, which in turn implies H3, and

H0 implies H2, which in turn implies H3, and

H1and H2 are together equivalent to H0.

Thus H0 is the strongest hypothesis and H3 is the
weakest.

All of the eight hypotheses above may be written
as loglinear hypotheses and hence tested within the
GLM framework with the Poisson distribution and
log link function. Since the log is the canonical link
function for the Poisson distribution, it is the default
link function for the Poisson in GLM terms.

For example, we may rewrite H2 as

H2 : log(pijk) = φij + ψik for all i, j, k, (20)

for some φ, ψ . In the GLM notation for interactions
between factors, this corresponds to the model

A ∗ B + A ∗ C or, equivalently, A ∗ (B + C).

We pause to explain briefly the GLM notation for
interactions between factors. For example, consider
the model

A ∗ B + A ∗ C.
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In the context of loglinear models, this means that
we can write log(pijk) as

log(pijk) = µ + αi + βj + γk + (αβ)ij + (αγ )ik

(21)

for all i, j , k. Here the set of parameters [(αβ)ij ]
is termed A.B, the AB interaction, the set [(αγ )ik]
the AC interaction, and the sets (αi), (βj ), (γk) are,
respectively, the main effects of A, B, and C denoted
by A, B, C.

For parameter identifiability in our computations
we will need to impose constraints on (αi), etc. We
assume in the numerical examples that follow that
the corner-point constraints are imposed; thus

α1 = 0, β1 = 0, γ1 = 0, (αβ)1j = 0, (22)

and so on, so that any parameter with a subscript
1 anywhere is set to zero. Different software may
impose a different set of constraints: this is always a
confusing point for a beginner.

In the same GLM notation, H0, H1, and H3

correspond, respectively, to A + B + C, A + B ∗ C,
and (B ∗ C + A ∗ B + A ∗ C).

For completeness, we will also define the satu-
rated model Hs say, which makes no independence
statement about A, B, and C:

Hs : log(pijk) = ρijk for all i, j, k, (23)

for some ρ: in GLM notation this is simply

A ∗ B ∗ C.

In terms of our association graph, this corresponds
to all three links being present between the vertices
A, B, and C.

Example

Consider the 2 × 2 × 2 table shown in Table 8.
For example, A might correspond to “agree with

a controversial statement” (such as “Women are not

Table 8 A 23 table

C = 1 C = 2

A = 1 A = 2 A = 1 A = 2

B = 1 17 23 36 50
B = 2 29 14 59 24

inherently better than men at looking after children”,
B might be the educational level (below or above
average), and C might be the gender (men/women).

As our baseline model, we first fit the saturated
model

A ∗ B ∗ C.

This is bound to give a perfect fit, with deviance
and df both zero. So this first step in the model
fitting might not appear to be a useful exercise.
However, inspection of the resulting parameter esti-
mates together with their standard errors suggests
that the three-factor interaction term, A.B.C can
be dropped from the model, since the estimate of
A.B.C is −0.197 with se = 0.561. So our next step
is to fit (A + B + C) ∗ (A + B + C) which gives a
deviance of 0.12, with 1 df. Comparison with χ2

1
shows that this model, which is H3, is a good fit.
Thus there is no three-way interaction between A,
B, and C, and so, for example, we can say that the
way in which the response to the question A depends
on educational level is the same for both men and
women.

Again, we compare the parameter estimates with
their standard errors, and find that the pairwise
interaction A.C is −0.068, with se = 0.28. This
suggests that A.C should now be dropped from the
model, and indeed the resulting model (A + C) ∗
B has deviance 0.18 (2 df). So this model is a
good fit. It states that conditional on the educational
level, the response to A is independent of the
gender.

This model can be rewritten as A ∗ B + B ∗ C,
and this has the consequence that the observed and
fitted frequencies for the two-way marginal table
A ∗ B must agree exactly, and similarly for the B ∗ C

marginal table.
Inspection of the parameter estimates and their

standard errors for this model shows that B.C can
also be dropped from the model, leading to the
model A ∗ B + C, which has deviance 0.34 (3 df).
But this final step would not make sense if the
data were collected with fixed totals in the B.C

marginal table, since under the model A ∗ B + C

we would not necessarily have exact agreement
between the observed and fitted frequencies of the
B.C table.
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The Relationship between Binomial
Logistic Regression and Loglinear Models
in a Multiway Contingency Table

In a multiway contingency table, it may not be
appropriate to treat the variables, say A, B, C, etc.
symmetrically. For example, it may be more natural
to treat A as a response variable, and B, C, etc. as
explanatory variables.

In particular, if the number of levels of A is two,
for example, corresponding to “yes, no”, then it may
make the analysis easier to interpret if we carry out
a binomial logistic regression of A on the factors B,
C, etc.

Such an analysis is not essentially different
from a loglinear analysis. We can see from the
following considerations that there must be certain
exact correspondences between the two approaches.
To be specific, take the case in which (Yijk) is
multinomial, parameters n, (pijk) and suppose i =
1, 2. Write y+jk as y1jk + y2jk . Then Y1jk|y+jk are
independent binomial variables, parameters y+jk , θjk ,
where

θjk = p1jk

p+jk

. (24)

So, for example, the model A ∗ B + B ∗ C + C ∗ A

for (pijk) can be shown to be equivalent to the model
for logit θjk = log[θjk/(1 − θjk)],

logit θjk = βj + γk. (25)

For example, we could use the data from Table 8
above, with A as the response variable, so that we
use the binomial proportions 17/40, 29/43, 36/86,
and 59/83 as the responses corresponding to the
factors (B,C) as (1,1), (2,1), (1,2), and (2,2). In
this case it may be seen that the deviance and
the fitted frequencies for the logit model B + C

are exactly the same as those for loglinear model
A ∗ B + B ∗ C + C ∗ A with data for the 2 × 2 × 2
and the multinomial model, as above.

We now return to the 24 contingency table,
Table 5. The simplest model consistent with these
data is (gender + anxiety symptoms + behavioral
symptoms) ∗ depression. This model has deviance
4.91, with 8 df. For a relatively complex table, a
good way to find the simplest reasonable model is
to start by fitting the saturated model, and then “step
down”, discarding the unnecessary parameters, using

Figure 2 A graphic model for psychiatry data

the Akaike information criterion (AIC) as the guide
to when to stop the stepping down process.

The final model here shows the key role of
depression in explaining the dependence in the four-
way table: conditional on the depression status, the
two variables anxiety and behavior are independent
of each other and are also independent of gender.
Its graphical representation is a graph in which the
three vertices “gender”, “anxiety symptoms”, and
“behavioral symptoms” are linked to depression, and
no other links are present (see Figure 2).

This final model also shows that summarizing the
data by certain 2 × 2 tables, for example by collaps-
ing over the variable gender and depression, may
be a misleading way to investigate the association
between variables. To put this more technically, for
the current example with the final model, the two-
way marginal table anxiety symptoms × behavioral
symptoms is not among the sufficient statistics for
the unknown parameters.

The danger in obtaining misleading results by col-
lapsing a contingency table is known as Simpson’s
paradox (also known as Yule’s paradox ).

This brief article has introduced the topic of
contingency tables, with particular discussion of types
of independence for multiway tables. The reader
will have realized that in none of the methods
described above is any attention paid to the order
of the categories of a variable: for example, if A

takes as possible values 1, 2, 3, and 4, the above
analyses would all remain the same if these levels
were renamed as apples, pears, oranges, bananas.
In this sense our treatment of the variables so far
has been entirely nominal (see Nominal Data). This
approach may not always be the most sensible one to
follow. For example, both of the rows and columns
of Table 1 are ordered. We might prefer our analysis
to recognize this fact (see Ordered Categorical
Data).

This article represents a brief introduction to the
topic of contingency tables, and is not an exhaustive
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coverage of the available methods. For more com-
prehensive coverage, the reader is referred to the two
textbooks by Agresti [1, 2].
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Continuity Correction

The term “continuity correction” has traditionally
referred to an adjustment made when using a con-
tinuous probability distribution to approximate a dis-
crete distribution [34]. Statisticians realized early that
large-sample approximations to the exact distribu-
tions often arising in discrete data settings are poor
in small samples and proposed simple adjustments to
existing summary statistics in order to provide more
reliable inferences. Although the earliest proposals
involved corrections of normal approximations for
making probability statements about binomial, Pois-
son, or negative binomial random variables [36],
continuity corrections have been most prominent in
the analysis of contingency tables. Recently, mod-
ern computing and the availability of exact methods
in several software packages [42] have lessened the
need for these specific procedures [3] (see Exact
Inference for Categorical Data). However, the term
“continuity correction” is also used more generally to
refer to any method designed to address the effects on
inferential procedures of the discreteness of a small-
sample exact distribution (e.g. [21], with reference
to the mid-P value). Development of continuity cor-
rections in this broader sense is an active area of
statistical research. In this entry, we briefly outline the
historical development of the traditional continuity
correction in contingency tables and review the per-
formance of continuity corrections in the broader con-
text of small-sample strategies for categorical data.

Hypothesis Testing

The simplest continuity correction involves the nor-
mal approximation to a discrete distribution, such as
the binomial probability mass function. Consider a
binomial random variate X for sample size n and
success probability π . The normal approximation to
P(X = x) is P(x − 0.5 ≤ Z ≤ x + 0.5), where Z is
normally distributed with mean and variance match-
ing those from the true Bin(n, π) distribution. The
presence of 0.5 in the probability statement consti-
tutes a continuity correction in that it accounts for
the fact that we use the continuous normal approxi-
mation, and not the discrete binomial distribution, to
make probability statements about X.

Now consider a 2 × 2 table with cell frequencies
{nij } formed by cross-classifying binary variables X

and Y . Denote the marginal row and column totals
as {ni+} and {nj+}, respectively, and let n be the
total sample size. The well-known chi-squared test
of independence uses the Pearson statistic

X2 =
∑

i

∑

j

(
nij − mij

)2

mij

, (1)

where mij = ni+n+j /n are the fitted values under
independence (see Chi-square Tests). Under the null
hypothesis, X2 has a large-sample chi-squared dis-
tribution with 1 df. For small samples, Yates [48]
proposed the correction

X2
c =

∑

i

∑

j

(∣∣nij − mij

∣∣ − 0.5
)2

mij

(2)

and used the statistic X2
c to test the independence

of X and Y by comparing it to the same refer-
ence chi-squared distribution (see Yates’s Continuity
Correction). The continuity correction 0.5 adjusts for
using the continuous χ2 distribution to approximate
the exact discrete distribution of X2 and produces P

values that approximate those obtained from Fisher’s
exact test.

Mantel and Haenszel [35] proposed the same cor-
rection for testing conditional independence in strati-
fied 2 × 2 tables (see Stratification). Let nijk be the
cell counts in stratum k, k = 1, . . . , K , formed by
stratifying the relationship of X and Y by a control
variable Z, and as above, let subscripted “+” denote
marginal summation. These authors considered the
exact null product hypergeometric distribution of
{n11k} obtained by treating the observations in dif-
ferent strata as independent and the row and column
totals in each stratum as fixed. Specifically, the Man-
tel–Haenszel statistic is

M2 =

(∣∣∣∣∣

K∑

k=1

n11k −
K∑

k=1

m11k

∣∣∣∣∣ − 0.5

)2

K∑

k=1

V (n11k)

= (|n11+ − m11+| − 0.5)2

K∑

k=1

V (n11k)

, (3)
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where

m11k = E(n11k) = n1+kn+1k

n++k

and V (n11k) = n1+kn2+kn+1kn+2k

n2
++k(n++k − 1)

are the mean and variance of {n11k} based on this
exact product hypergeometric distribution under the
null hypothesis of conditional independence of X

and Y given Z (see Mantel–Haenszel Methods).
Under this null hypothesis, M2 has approximately
a chi-squared distribution with 1 df. Cochran [15]
had earlier proposed a closely related statistic but
conditioning only on the row totals and without
continuity correction. As a result, others (e.g. Landis
et al. [32] and Agresti [3]) have labeled (3) the
Cochran–Mantel–Haenszel (C-M-H) statistic.

Like the Yates continuity-corrected statistic (2),
the C-M-H statistic yields inferences that closely
approximate those obtained from the corresponding
exact conditional test, which also bases inference
on the statistic n11+. As above, assume fixed ni+k .
Let πik , i = 1, 2, k = 1, . . . , K , be the probability
of a success at level i of X and stratum k of Z.
A logistic regression model for πik that specifies a
homogeneous log odds ratio β across strata is

logit(πik) = αk + β(I [i = 2]), (4)

where I [ ] is the indicator function. Under this model,
the null hypothesis of conditional independence cor-
responds to H0: β = 0, and the sufficient statistic
for β is n11+. The exact approach bases inference
on the distribution of this statistic that is free from
the nuisance parameters {αk} by conditioning on
their sufficient statistics {n+1k}. The resulting exact
joint distribution for the {n11k} is the product of the
K hypergeometric distributions considered by Man-
tel and Haenszel, from which one can compute the
exact distribution of n11+.

One can now conduct both the C-M-H test and
the exact test, as well as compute the corresponding
confidence intervals for a common odds ratio, using
the statistical package StatXact [21]. Because exact
results are now routinely available in StatXact, there
is less of a need for the approximation (3) to the exact
result. As a result, StatXact does not report results
based on this continuity-corrected version but instead
makes a clear distinction between asymptotic and

exact tests in this setting by reporting the uncorrected
version of (3).

There has been a long running controversy [19,
25, 26] as to the appropriateness of the continuity
corrections in (2) and (3). Much of the criticism
of these corrections arises from the fact that they
lead to tests that approximate exact results, which
for small or highly unbalanced samples can yield
conservative inferences due to the discreteness of the
exact distribution [3, 4]. As a result, the continuity-
corrected approximations of the exact tests are also
typically conservative. For instance, D’Agostino [22]
noted that it is not uncommon for the actual level of a
hypothesis test with nominal 5% level based on the
continuity-corrected Pearson statistic to actually be
1%. Thus, less conservative alternative strategies may
be preferable when the exact distribution is highly
discrete. For instance, rather than rejecting a null
hypothesis based on a preset significance level, Yates
[49] and the discussants of his article recommended
either (a) simply reporting the P value associated
with an exact test or (b) selecting as the type I error
rate one of the values having positive probability
mass in the discrete P value distribution. For a single
2 × 2 table, D’Agostino, Chase, and Belanger [23]
recommended using either the two-sample t-test or
the uncorrected X2 (see Student’s t Statistics). In
principle, one can avoid this conservatism by using
supplementary randomization on the boundary of
the critical region to construct a uniformly most
powerful unbiased (UMPU) α-level test [13, Chapter
8] (see Power). However, this strategy is unattractive
in practice, as two investigators observing the same
results can arrive at different conclusions.

Another approach uses the mid-P value [31] to
adjust for discreteness. Consider a test statistic T with
observed value to and an alternative hypothesis such
that large values of T reject H0. The mid-P value is

mid-P = P0(T > to) + 1
2P0(T = to)

= exact P − 1
2P0(T = to), (5)

where P0 denotes probabilities computed under the
null hypothesis. Because this adjustment subtracts
one-half of the null probability of an observed
response from the ordinary exact P value, mid-P is
always less than the ordinary exact P value, lead-
ing to a less conservative test. Agresti [3] noted that
mid-P behaves more like the P value for a test statis-
tic having a continuous distribution, with the null
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distribution of mid-P being more like a uniform
distribution. For instance, E(mid-P) = 0.5, which
is not the case for the ordinary P value based on
a discrete distribution. It is in this sense that some
consider mid-P a type of continuity correction [21].
Although tests based on mid-P sacrifice precise error
control in the sense that the type I error rate is not the-
oretically guaranteed to be below the nominal level,
empirical investigations have shown that in some sit-
uations mid-P actually does preserve this nominal
level. For instance, Mehta and Walsh [38] reported
that mid-P often preserves nominal levels when test-
ing a common odds ratio in stratified 2 × 2 tables.
Overall, for small samples, tests based on mid-P
result in actual levels that are on average closer to the
nominal levels than those of the corresponding fully
exact tests. In addition, this strategy may be applied
to any discrete problem for which the exact dis-
tribution is obtainable – single binomial proportion,
two-sample binomials, paired binomials [27], strati-
fied tables, or more generally small-sample logistic
regression [28, 37]. Hwang and Yang [29] have pre-
sented additional theoretical arguments for the use of
mid-P , and Agresti [2, 3] has recommended the use
of the mid-P value as a useful, general strategy for
inference in discrete problems.

Several authors have proposed other modifications
of the ordinary exact P value that result in less con-
servative inference. Cohen and Sackrowitz [18] pro-
posed a P value that, like mid-P , adds only a portion
of the probability mass P0(T = to) to P0(T > to). In
particular, these authors proposed refining the sam-
ple space satisfying T = t0 by calculating the null
probability of each sample in this set and adding to
P0(T > to) only those sample probabilities that are
less than or equal to the probability of the observed
sample. Similar to the mid-P approach, this alterna-
tive strategy results in a test with a smaller P value,
and hence greater power, than its exact counterpart.
This advantage increases when the distribution of T

is highly discrete. Also like mid-P , in theory, this
strategy can be applied in a large number of discrete
settings. For example, Corcoran, Mehta, and Sen-
chaudhuri [16] used this modified P to test for trend in
a 2 × c table with ordered columns (see Trend Test
for Counts and Proportions). The actual level of the
test based on this modified P cannot exceed the nom-
inal level for any value of the unknown parameter,
by the same reasoning that proves this property of the
test based on the ordinary exact P value. Thus, unlike

a test based on mid-P , the test based on this modified
P retains the strong error control of the exact test.

Interval Estimation

Recently, a large research effort has focused on esti-
mation strategies when the exact distribution of inter-
est is highly discrete. Just as an exact test (without
supplementary randomization on the boundary of the
critical region) is conservative, confidence intervals
based on exact probabilities are conservative in that,
for any fixed parameter value, the actual coverage
probability can be much larger than the nominal con-
fidence level. This high coverage comes at the price
of a loss of precision, in the form of wider than neces-
sary confidence intervals. Several authors have shown
that, if one is willing to relax the requirement that
the actual confidence level of the interval always be
no less than the nominal level, one may construct
intervals that, when compared to the exact interval,
have coverage probabilities much closer to the nom-
inal confidence level for most parameter values.

For instance, for a single binomial proportion,
Agresti and Coull [6] argued that the Clopper–Pear-
son (1934) “exact” confidence interval for the success
probability, based on inverting equal-tailed binomial
tests of H0: π = π0, is not necessarily optimal in
small samples because of this conservatism. Several
authors (e.g. [6, 10, 39, 46]) have recommended
the score interval as an alternative (see Likelihood).
Let X denote a binomial variate for sample size
n, and let π̂ denote the sample proportion. This
score confidence interval, apparently first discussed
by Edwin B. Wilson [47], takes the form

(
π̂ + z2

α/2

2n
± zα/2

√
[π̂(1 − π̂ ) + z2

α/2/4n]/n

)

(1 + z2
α/2/n)

,

(6)

where zc denotes the 1-c quantile of the standard nor-
mal distribution. Expression (3) results from inverting
the approximately normal test that uses the null stan-
dard error, that is, its endpoints are the π0 solutions
to the equations (π̂ − π0)/

√
π0(1 − π0)/n = ±zα/2.

For a 95% confidence interval, Agresti and Coull [6]
also proposed a simple approximation to the score
interval that is simple to compute. This approximation
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constructs the Wald interval (see Likelihood)

π̃ ± zα/2

√
π̃(1 − π̃)

ñ
(7)

using a new sample proportion π̃ and sample size
ñ formed after adding two successes and two fail-
ures to the data. Both of these alternative intervals
yield actual confidence levels that are typically much
closer to nominal levels than those of the exact
Clopper–Pearson interval.

Others have proposed additional strategies for esti-
mation of a binomial proportion. Vollset [46] showed
that the interval obtained by inverting the test based
on mid-P is less conservative than the exact interval
but slightly more conservative than the score interval.
This interval may be preferable in situations where
the score interval is slightly liberal, namely, when
π is near 0 or 1. Brown, Cai, and Das Gupta [10]
recommended an interval based on Jeffrey’s prior
in a Bayesian setting. Interestingly, this interval
approximates the mid-P –corrected Clopper–Pearson
interval. Still another effective strategy for reducing
conservatism in this setting is inversion of a single
two-sided rather than two one-sided tests [4, 7]. That
is, let f (X; π) be the probability mass function of X

given π , and let x be the observed value of X. Sterne
[45] showed that the 100 × (1 − α) confidence inter-
val for π obtained by inverting a single two-sided
test consists of those values of π that satisfy

Pπ

[
f (X; π) ≤ f (x; π)

]
> α. (8)

That is, the confidence interval consists of inverting
a test that uses as a P value the sum of null prob-
abilities less than or equal to that for the observed
response. The resulting interval is exact, yet uni-
formly shorter than the Clopper–Pearson interval.
Blyth and Still [9] and Casella [11] refined this
approach to satisfy several optimality properties, and
Blaker [8] proposed a related exact interval. The
Blyth–Still–Casella intervals are available in the lat-
est version of the StatXact software [21].

It is worth noting that Vollset considered
continuity-corrected versions of both the score
interval (6) and the normal-theory Wald interval [i.e.
equation (7) using the original sample proportion π̂

and sample size n]. Both of these corrected intervals
use the normal continuity correction to the binomial
observation x mentioned earlier. Vollset noted that

the correction does not significantly improve the
well-known horrible performance [10] of the Wald
interval. However, the continuity-corrected score
interval approximates the exact interval, leading
to conservative inference. Casella [12] expressed a
preference for this corrected score interval in the
classroom. Brown, Cai, and Das Gupta [10] explicitly
showed the effect of this correction on the score
interval by plotting the coverage probabilities and
expected lengths of the score intervals with and
without the correction. For other general reviews of
inference for a single binomial proportion, see Agresti
[2, 4], Agresti and Min [7], and Newcombe [39].

Similar patterns hold in other discrete settings. For
a review, see Agresti [2, 4, 7]. For the difference
between two independent binomial proportions, Nur-
minen [41] proposed inverting the large-sample score
test. Let δ = π1 − π2 denote the difference between
two independent proportions. This test for H0: δ = δ0

treats the test statistic

T = π̂1 − π̂2 − δ0√
π̃1(1 − π̃1)/n1 + π̃2(1 − π̃2)/n2

, (9)

where π̃1 and π̃2 denote the ML estimates of π1

and π2 subject to π1 − π2 = δ0, as a standard nor-
mal random variable. Agresti [4] noted that the score
approach yields reasonable coverage probabilities in
this context as well. Chan and Zhang [14] proposed
an exact test formed by inverting two one-sided tests
based on the null probability ordering of (9). Because
either π1 or π2 is a nuisance parameter, the exact
intervals in this setting are unconditional. That is,
because the difference δ = π1 − π2 does not corre-
spond to a canonical parameter in an exponential
family model, it is not possible to obtain a like-
lihood free of π1 by conditioning on its sufficient
statistic. Instead, the exact approach inverts the test
for H0: δ = δ0 based on the unconditional P value,
supπ1

(
Pδ=δ0,π1(T ≥ to)

)
. Agresti and Min [7] showed

that inverting the analogous two-sided score test can
lead to shorter intervals, and Agresti and Caffo [5]
showed that a simple adjustment that constructs the
normal-theory Wald interval after adding a success
and a failure to each sample is also effective. New-
combe [40] considered approaches that form intervals
by inverting two test statistics, one for each propor-
tion, both with and without continuity corrections.
As is the case for a single proportion, these investi-
gations showed that continuity-corrected Wald-type
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intervals are too liberal, whereas the continuity-
corrected score intervals are quite conservative. Sant-
ner and Snell [43] proposed an unconditional exact
interval for δ based on the unstandardized statis-
tic π̂1 − π̂2, although recent results have shown this
statistic to be extremely conservative [14, 21]. For
related approaches, see [17, 44]. Recent software now
reflects the increased number of choices for infer-
ence in this setting. For example, StatXact-5 gives
the user a choice of constructing the Agresti-Min,
the Chan–Zhang, or the Santner–Snell interval for δ,
although Cytel notes [21] that the latter conservative
interval is included largely for historical reasons.

These general trends also hold when interest
focuses on the odds ratio in 2 × 2 tables. For a single
table, Cornfield [20] proposed the exact conditional
interval for the odds ratio θ in a single 2 × 2
table. One obtains this interval by conditioning on
the row and column totals of the table and by
inverting two one-sided α/2 tests for θ based on the
resulting exact hypergeometric distribution. Several
authors (e.g. [1, 33]) have shown this interval to be
highly conservative for small or highly unbalanced
samples. Cornfield [20] and Fisher [24] proposed
a continuity-corrected approximation to Cornfield’s
exact interval. This interval, formed by inverting
the distribution of the continuity-corrected Pearson
chi-squared statistic (2) after conditioning on the
observed row and column totals, is the continuity-
corrected score interval in this case. As expected,
this strategy is also conservative, as it once again
approximates the exact interval [1, 33]. Agresti
[1] noted that the interval obtained by inverting
the uncorrected score interval yields much shorter
intervals, while producing coverage probabilities at
or near nominal levels. Less work exists for the
stratified 2 × 2 setting, although Kim and Agresti [30]
proposed an exact confidence interval for a common
odds ratio formed by inverting a test based on the
modified P value discussed above.

In summary, the traditional continuity correc-
tions of score statistics typically yield results that
closely approximate those from the corresponding
exact method. As a result, tests and intervals based
on these continuity-corrected statistics yield reliably
conservative inferences but with actual confidence
levels often far above nominal levels. In applica-
tions in which maintaining either the type I error rate
or nominal confidence level is absolutely necessary,
exact methods are preferred to other approaches, and

recent advances in computational algorithms make
such methods accessible in commercial software.
Thus, the continuity-corrected score methods are per-
haps useful when one is interested in exact inference
but does not have access to software with exact
capabilities. In this sense, one can obtain a good
approximation to an exact result using simple for-
mulas. In situations in which maintaining nominal
levels is not as crucial, one can use an alternative
method, such as an approach based on the uncorrected
score statistic or the mid-P value, that will yield an
actual level close to, but not always bounded by, the
nominal level.
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Contrasts

The objectives of most studies include comparisons
among population characteristics (e.g. means). Most
such comparisons are contrasts. Consider a clinical
trial involving a control and two test treatments, with
parameters µ1, µ2, and µ3 the control and test treat-
ment (population) means, respectively. The pairwise
contrast (see Paired Comparisons) Ψ1 = µ2 − µ3

compares the means of the two test treatments, while
the contrast Ψ2 = (µ2 + µ3)/2 − µ1 compares the
average of the means of the two test treatments with
the mean of the control. More generally, collections
of contrasts may be formulated to represent research
comparisons of interest. For example, certain special-
ized classes of contrasts determine the main effect and
interaction sums of squares reported in analysis of
variance (ANOVA) tables (see below).

Contrasts are formally defined and discussed here
using the matrix representation of a linear model
(see General Linear Model), although the concept
of a contrast is not limited to experiments analyzed
with such models. Let Y(n×1) denote the vector of n

observed responses, X(n×p) the (n × p) regression or
design matrix of rank r ≤ p, where xij is the value of
the j th independent variable for the ith observation,
i = 1, . . . , n, j = 1, . . . , p, and β(p×1) the parameter
vector. The linear model representation is: Y = Xβ +
ε, where ε(n×1) is the vector of unbiased (mean
zero) random errors. A contrast in the parameters
β1, . . . , βp is a linear combination

Ψ = c′β = c1β1 + · · · + cpβp subject to

c1 + · · · + cp = 0. (1)

For the clinical study example above, with β =
(µ1, µ2, µ3)

′, Ψ1 = c′
1β where c1 = (0, 1, −1)′ and

Ψ2 = c′
2β where c2 = (−1, 0.5, 0.5)′.

Estimability of Contrasts

A contrast Ψ = c′β is estimable if there exists an
(n × 1) vector of constants, b, such that b′Y is
an unbiased estimator of Ψ . Equivalently, Ψ is
estimable if there exists a constant vector a such that
c′ = a′X. An estimable Ψ has a unique least squares
estimate Ψ̂ = c′β̂, where β̂ is any solution to the nor-
mal equations X′Xβ = X′Y [4]. Furthermore, Ψ̂ is

the Best Linear Unbiased Estimate (BLUE) of Ψ [4]
(see Minimum Variance Unbiased (MVU) Estima-
tor). Note that the preceding estimability results hold
whether the variance–covariance matrix of ε has
the standard “uncorrelated, constant variance” form,
σ 2In, or the more general form σ 2V, where V is a
known (n × n) positive definite matrix, except that
in the latter case β̂ is any solution of X′V−1Xβ =
X′V−1Y. For the remainder of this discussion, the
standard case will be assumed.

Variance of Contrasts

If Ψ1 = c′
1β, . . . , Ψq = c′

qβ are q estimable con-
trasts, then the (q × q) variance–covariance matrix
of (Ψ1, . . . , Ψq) is given by

σ 2C′(X′X)−C, (2)

where the ith column of C is ci , i = 1, . . . , q, and
(X′X)− is the same generalized inverse of the infor-
mation matrix X′X used to produce an estimated
parameter vector, β̂ = (X′X)−X′Y, that solves the
normal equations. An estimate of the error variance,
σ 2, is usually provided by the mean square for
error.

Example: Clinical Study

For the clinical study example introduced above, the
means model is: Yij = µi + εij , j = 1, . . . , ni, i =
1, 2, 3. With this parameterization, every linear com-
bination of the three means is estimable, including
all contrasts. With β̂ = (µ̂1, µ̂2, µ̂3)

′, where µ̂i =∑
j Yij /ni , the unique least squares estimator of a

contrast Ψ = c′β defined by (1) is Ψ̂ =∑
ciµ̂i . Since

X′X has inverse (X′X)−1 =diag(n−1
1 , n−1

2 , n−1
3 ), using

(2), the variance of Ψ̂ is var(Ψ̂ ) = σ 2 ∑
c2
i /ni .

In the equivalent effects model parameterization,
Yij = µ + τi + εij , the individual components of β =
(µ, τ1, τ2, τ3)

′ are not estimable and X′X does not
have an inverse. However, a contrast in the means,
Ψ = ∑

ciµi , is (i) estimable and (ii) equal to the
same contrast in the treatment effects, Ψ = ∑

ciτi .
The unique least squares estimator of Ψ is Ψ̂ =∑

ci τ̂i , irrespective of the choice of generalized
inverse used to find a solution β̂ = (µ̂, τ̂1, τ̂2, τ̂3)

′ of
the normal equations [4]. The variance of Ψ̂ is given
by (2) and is the same in both the means and effect
model parameterizations. See the SAS/STAT User’s
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Guide [2] entry for procedure GLM for solutions cor-
responding to the generalized inverse of X′X obtained
with the set-to-zero side conditions (see Software,
Biostatistical). In particular, the only estimable lin-
ear combinations of the effects parameters [i.e. the
coefficient of µ in (1) is zero] are contrasts [3]. Fur-
thermore, if Ψ is a contrast in the effects parameters,
then the coefficient of µ must be zero.

Main Effect and Interaction Contrasts

The results in the preceding example hold for
any one-way treatment structure, β = (µ1, . . . , µp)′.
Contrasts that represent main effect and interaction
comparisons are discussed here in the context of
the two-way factorial treatment structure, where
factor A has levels i = 1, . . . , I and factor B has
levels j = 1, . . . , J . There are nij > 0 observations
on each treatment combination (i.e. no missing
cells). Extensions to three or more factors follow
accordingly but with increased technical and
notational complexity.

The population mean for the (i, j )th treatment
combination is µij , and is modeled by µij = µ +
αi + βj + γij in the corresponding full effects model.
The linear model is Yijk = µij + εijk , k = 1, . . . , nij .
Any contrast Ψ = ∑

i

∑
j cijµij ,

∑
i

∑
j cij = 0, in

the means

(µ11, . . . , µ1J , µ21, . . . , µ2J , . . . , µI1, . . . , µIJ )′,
(3)

is estimable and has the same estimate (and variance)
whether the means or full effects model parameteri-
zation is used.

Following Milliken et al. [1], a contrast Ψ =∑
i

∑
j cijµij is an A main effects contrast if cij =

ci , for each j = 1, . . . , J , in which case
∑

ci = 0,
as usual. In this context, Ψ may be expressed as
Ψ = ∑

ciµi ., where µi. = ∑
j µij /J is the popula-

tion marginal mean (also referred to as the “least
squares mean”, LSMEAN, in the SAS [2] proce-
dure GLM) for level i of factor A. Similarly, a B
main effects contrast requires that cij = cj , for each
i = 1, . . . , I . Finally, a contrast Ψ is an interaction
contrast if (i)

∑
i cij = 0 for each j = 1, . . . , J and

(ii)
∑

j cij = 0 for each i = 1, . . . , I .

A contrast Ψ in the IJ means (3) is equivalently
written as a contrast in the full effects parameters

Ψ =
∑

i

ci·αi +
∑

j

c·jβj +
∑

i

∑

j

cij γij , (4)

where ci· = ∑
j cij and c·j = ∑

i cij . Consequently,
if Ψ is an A main effects contrast, c·j = 0 and
ci· = Jci , in which case Ψ in (4) may be written Ψ =
J

∑
i ciαi + ∑

i ciγi·, where γi· = ∑
j γij . Similarly,

if Ψ is a B main effects contrast, ci· = 0 and c·j =
Icj , whence Ψ = I

∑
j cjβj + ∑

j cjγ·j . Finally, an
interaction contrast in the means (3) has exactly the
same form in the interaction parameters {γij }, that is,
Ψ = ∑

i

∑
j cijµij = ∑

i

∑
j cij γij provided Ψ is an

interaction contrast.

Orthogonal Contrasts

Suppose that Ψk = c′
kβ, k = 1, . . . , q(2 ≤ q ≤ p −

1) are q linearly independent contrasts in the param-
eters, β. Then these q contrasts are mutually orthog-
onal if they are uncorrelated with each other (see
Orthogonality). Thus, if C is the (p × q) matrix
whose kth column is ck , then these q contrasts are
mutually orthogonal if, by (2), C′(X′X)−C is a diago-
nal matrix. Orthogonality of contrasts is useful when
the errors, εi , are normally distributed, in which
case the contrast estimators are statistically indepen-
dent, as are the sums of squares for each contrast (see
below), which may simplify practical interpretation
of results. For example, in an experiment with a fac-
tor at four quantitative and equally spaced levels, and
equal replication at each factor level, linear, quadratic
and cubic orthogonal polynomial contrasts defined by
c1 = (−3, −1, 1, 3)′, c2 = (1, −1, −1, 1)′, and c3 =
(−1, 3, −3, 1)′ may be used to test for the degree of
a polynomial describing the mean response. See Mil-
liken et al. [1] for a data analysis using orthogonal
polynomial contrasts.

For the clinical study example above, q = 2 con-
trasts are orthogonal if

∑
i ci1ci2/ni = 0. If the exper-

iment is balanced, i.e. if ni = n, i = 1, 2, 3, then
orthogonality is equivalent to c′

1c2 = ∑
i ci1ci2 = 0,

which states that the contrast coefficient vectors c1

and c2 are at right angles. This is true for the contrasts
Ψ1 and Ψ2 in this example. However, if n2 �= n3, then
Ψ1 and Ψ2 are not orthogonal in this example. If Ψ2

is defined by c2 = (n2 + n3, −n2, −n3)
′ instead, then

Ψ1 and Ψ2 are orthogonal, although it is unlikely that
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Ψ2 is a meaningful comparison in this experiment.
Typically, sets of orthogonal contrasts are of more
theoretical than practical convenience.

For the two-way treatment structure (3), two
contrasts Ψ1 and Ψ2 are orthogonal if

∑

i

∑

j

cij1cij2

nij

= 0. (5)

This simplifies to
∑

i

∑
j cij1cij2 = 0 in the equally

replicated case, that is, nij = n for all i = 1, . . . , I

and j = 1, . . . , J . For example, in this latter case
of equal replication, two A main effect contrasts
are orthogonal if

∑
i ci1ci2 = 0, where ci1 = cij1 and

ci2 = cij2. A similar statement holds for orthogo-
nality of two B main effects contrasts. Two inter-
action contrasts are orthogonal if their coefficients
satisfy (5).

Sums of Squares from Contrasts

If Ψk = c′
kβ, k = 1, . . . , q(1 ≤ q ≤ p − 1) are q lin-

early independent estimable contrasts, then the sum of
squares for testing the null hypothesis H0 : C′β = d,
where the kth column of the (p × q) matrix C is
ck and d is a (q × 1) vector of constants (usually
d = 0) is [1]

SSH0 = (C′β̂ − d)′[C′(X′X)−C]−1(C′β̂ − d). (6)

This sum of squares has q df. If the errors εi are
iid N(0, σ 2), then SSH0 has a χ2(q) distribution
(central under H0) (see Chi-square Distribution)
and is independent of the error mean square [4].

For example, in the one-way ANOVA model
for a single treatment factor with p levels, the
contrasts Ψi = µi − µp = τi − τp (i = 1, . . . , p −
1) are linearly independent and estimable. Their sum
of squares given by (6), with d = 0, reproduces
the treatment/model sum of squares reported in
an ANOVA table. See the contrast option to the
repeated statement in the SAS [2] procedure GLM
for the polynomial, Helmert, mean, and profile
sets of linearly independent, estimable contrasts that
achieve the same result. Alternatively, a set of p − 1
orthogonal contrasts may be chosen instead, with
the added benefit that the sum of squares for each
individual contrast will be uncorrelated with the
others and the p − 1 individual sums of squares will
add to the treatment/model sum of squares.

Generating ANOVA table sums of squares for
main effects and interactions in multiway treatment
structures is more complicated and depends on the
replication of each treatment combination. SAS [2]
procedure GLM defines and computes the sum of
squares for four types of contrasts, types I–IV, for
each class of effects (main effects, two-factor inter-
actions, etc.). Type IV contrasts/sums of squares are
relevant only when one or more treatment combina-
tions is not observed [1] and will not be discussed
further here. Types I–II contrasts have coefficients
that depend on the replication numbers nij and are, in
general, not meaningful in unbalanced experiments.
For example, the A main effect type I contrasts (for
the usual order of A, B, and AB effects classes) are

1

ni·

∑

j

nijµij − 1

nI ·

∑

j

nIjµIj = 0,

i = 1, . . . , I − 1.

Note that these contrasts do not satisfy the more
restrictive definition for main effects contrasts given
above; also note that they have coefficients that are
functions of the amount of data collected (for details,
see Milliken et al. [1]).

Type III contrasts and their sums of squares are
appropriate for most experiments, whether the experi-
ment is balanced or not. The type III contrasts for
each class of effects result from equal averaging over
the levels of all factors that are not part of the class
of effects of interest. For treatment structure (3),
type III A main effects contrasts are µi· − µI · = 0,
(i = 1, . . . , I − 1), or any contrast formed from a lin-
ear combination of these I − 1 contrasts. Similarly,
type III B main effect contrasts are any linear com-
binations of µ·j − µ·J = 0 (j = 1, . . . , J − 1). The
AB interaction contrasts are µij − µij ′ − µi ′j + µi ′j ′ ,
(i �= i ′, j �= j ′). These type III contrasts in the pop-
ulation marginal means extend to higher-factor inter-
actions in an analogous manner.

If each treatment combination is equally repli-
cated, so nij = n, then type I–IV contrasts and sums
of squares are the same for each class of effects.
Under normality, the sums of squares for each class
of effects have a χ2 distribution and they are mutually
independent [4].
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Extensions

Contrasts may represent meaningful comparisons of
interest in experiments analyzed by models other
than the linear model discussed here. For example,
generalized linear models (GLMs), which include
the normal-theory linear models used above with
the identity link between mean response and the
linear predictors, are appropriate for a wide variety
of non-Gaussian error distributions. If a GLM model
contains treatment factors, then contrasts among the
levels of these factors may be estimated and tested.
For example, with a dichotomous response, a logistic
regression (logit analysis) may be used. If a factor
has two levels (e.g. gender), then a contrast in the
parameters between the two levels of this factor
would represent the log-odds ratio between the two
genders.

Contrasts among fixed factor parameters may be
estimated in mixed models that have two or more
random effects (e.g. split plot designs, repeated

measures). In mixed models, unbiased estimators of
contrasts are typically available. However, estimates
of the variances of such contrasts usually require
iterative computation, may be at best approximate
(and biased, especially in unbalanced experiments),
and may have nonstandard distributions even when
all errors are Gaussian. Milliken et al. [1] provide
examples for mixed ANOVA models.
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Controlled Clinical Trials

The need for the Journal developed from the emer-
gence of the controlled trial as the ultimate test of a
treatment touted for use in human beings (see Clin-
ical Trials, Overview). The work of Sir Ronald A.
Fisher [9], in the 1930s and 1940s, and the teachings
and writings of Bradford Hill [11] in the 1940s and
1950s, along with the Medical Research Council
(MRC) of the UK, calling in 1931 for trials of new
remedies [17], created the basis for modern-day trials.
That basis was strengthened, following World War II,
by unprecedented expansion of Federal funding for
medical research in the US, starting in the 1950s and
continuing into the 1980s. The US Congress, con-
cerned with the safety and efficacy of drugs approved
for use on human beings, acted to strengthen the Food
and Drug Administration and to set approval stan-
dards based on evidence of efficacy as provided by
“adequate and well-controlled trials” [36]. As a result,
the clinical trial came to be seen as the “indispensable
ordeal” for evaluating new and old treatments, even
if protracting the “moment of truth to excruciating
limits” [10].

The resources and resolve of the 1960s led to
the emergence of National Institutes of Health
sponsored long-term, multicenter trials designed
to investigate treatments for chronic diseases (see
Clinical Trials, Early Cancer and Heart Disease;
Cooperative Cancer Trials; Cooperative Heart
Disease Trials). In order to enroll and treat the
numbers of patients necessary to evaluate therapies
for treatment or prevention of these diseases, the
trials sometimes involved thousands of patients and
a decade or more to complete. One of the first trials
in this class was the University Group Diabetes
Program (UGDP), started in 1960 and aimed at
answering the question of whether drug control of
blood glucose levels in persons with adult-onset
diabetes is useful [34, 35]. It was followed in the
mid-1960s by the Coronary Drug Project (CDP) [8];
and thereafter by a series of primary and secondary
prevention heart disease trials [2, 3, 6, 7, 12, 13, 15,
16, 24, 25]. Although there was record growth in the
numbers of these multicenter trials, there was little
or no interchange among the different centers funded
to coordinate the trials and to receive, process, and
analyze the data generated by them.

Efforts to improve communication and to encour-
age the exchange of information on methods and
procedures for designing and conducting large-scale
multicenter trials commenced with a meeting of rep-
resentatives from several coordinating centers held
in Columbia, Maryland, in 1973. That meeting was
followed by a second one in 1975 and thereafter by
annual meetings through 1981 [4, 5]. The format of
the meetings changed from “show and tell” descrip-
tions of processes or procedures, to one reminiscent
of meetings of professional societies.

The interchanges helped to underscore the fact that
there is both an art and a science to coordination
and data processing and to the realization that there
was no obvious “home” for papers having to do
with the methods and science of the design and
conduct of trials. That realization gave rise to the
urge to create the means for receiving and publishing
such papers. The call for a journal issued from a
workshop entitled “National Conference on Clinical
Trials Methodology”, held at the NIH on October
3–4, 1977 [14, 23].

Following the workshop, representatives from
Elsevier [1, 18] approached Robert Gordon, then
Director of the NIH Clinical Trials Committee, for
advice as to persons they might approach to head
such a journal. They were directed to one of us
(C.L.M.). The conversations regarding assumption of
the editorship took place in the summer of 1979.
The first issue was published in May of 1980,
followed by three other issues in that year and by four
issues thereafter through 1989. The Journal has been
published six times yearly since then [19–22, 26].

The meetings of coordinating centers that started
in 1973 and the NIH workshop in 1977 gave rise,
as well, to the Society for Clinical Trials. It emerged
from a working group created following the 1977
NIH workshop [14, 23, 29] and was chartered on
October 5, 1978, in the State of Maryland. The
last two meetings of coordinating centers (Annual
Symposium on Coordinating Clinical Trials) were, in
fact, held in conjunction with the first two meetings
of the Society for Clinical Trials. The first such
joint meeting coincided with the Seventh Annual
Symposium on Coordinating Clinical Trials and the
first meeting of the Society for Clinical Trials in
Philadelphia in 1980 [27, 28, 30–33]. The Society
adopted the Journal as its official organ by virtue of a
contract, dated July 19, 1979, between the Publisher,
the Society, and, the Editor-in-Chief of the Journal.
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The Journal, as reflected in its aims and scope,
is intended to attract and publish papers having
to do with issues related to the design, conduct,
organization or analysis of trials. It is not a traditional
results journal, as such. It has, over the years,
published papers dealing with the basic design and
operating features of trials and in some cases has
provided detailed descriptive information as to the
baseline characteristics of study population of trials.
It has published several monographs with papers
related to a particular trial and on topics such
as data processing or recruitment. Some of the
pages of the Journal are devoted to commentary,
letters to the editor, book reviews, and software
reviews. The Society for Clinical Trials provided
editors for CCT from its inception in 1980: Curtis
Meinert (1980–1993), Janet Wittes (1994–1998),
and Jim Neaton (1999–2003). The SCT terminated
its relationship with the journal in 2004, founding a
new journal, Clinical Trials. The current editor of
CCT is Kathleen B. Drennan.
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Controls

Controls are subjects against whom a comparison is
made in experimental or observational studies. In
randomized clinical trials, the control group may
receive no treatment, a placebo treatment, or the
best currently accepted active treatment. This group
is used as a basis of comparison against the group
that receives the new experimental treatment. Some-
times the study subjects are stratified into risk groups
and are allocated into experimental or control groups
in such as way as to assure roughly equal num-
bers of subjects in the experimental and control
groups within each stratum (see Randomized Treat-
ment Assignment). In observational cohort studies,
a comparison may be drawn with unexposed or less
exposed members of the cohort (“internal” controls).

If all members of a cohort are exposed, however, as in
some studies of occupational risk (see Occupational
Epidemiology), then an external unexposed or only
slightly exposed control population, such as the gen-
eral population of the US, may be taken as a basis of
comparison (see Standardization Methods).

Controls chosen for comparison with cases
in case–control studies may be selected from
the general population (see Case–Control Study,
Population-based; Case–Control Study, Prevalent)
or from a selected source, as in hospital-based
case–control studies. Controls may also be matched
to cases on characteristics that may confound the
association between exposure and disease status (see
Matching).
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Convergence in
Distribution and in
Probability

To motivate convergence in distribution and in proba-
bility, suppose that Y1, Y2, . . . , Yn is a random sample
of size n taken from a population with unknown
mean µ and variance σ 2. The sample mean Y n =
(Y1 + · · · + Yn)/n is typically used to estimate µ. As
the sample size n grows to infinity, does Yn converge
to µ (if so, in what sense) and what can one say about
the deviations of Y n from µ? It turns out that Y n

converges to µ in probability (in fact, even “almost
surely”) and

√
n(Y n − µ)/σ converges in distribu-

tion to a Gaussian random variable with mean 0 and
variance 1. We shall now define these two modes of
convergence.

Let Xn, n = 1, 2, . . . be a sequence of random
variables (for example, the sample means Yn con-
sidered earlier). The cumulative distribution function
FXn

(x) = Pr[Xn ≤ x], −∞ < x < ∞, n = 1, 2, . . . describes
the probability law of Xn. Let Z be another ran-
dom variable with cumulative distribution function
FZ(x) = Pr[Z ≤ x], −∞ < x < ∞.

Definition. The random variables Xn converge to Z

in distribution as n tends to infinity, if the functions
FXn

(x) converge to FZ(x) for all −∞ < x < ∞ that
are points of continuity of FZ .

To understand why we do not require that FXn
(x)

converge to FZ(x) for all x, suppose that Xn equals
1/n and hence is not random. As n tends to infinity,
1/n tends to 0 and hence we expect the distribution
of Xn to converge to that of Z, where Z is also
not random and equals 0. Note that FXn

(x) = 0
if x < 1/n and FXn

(x) = 1 if x ≥ 1/n. Similarly,
FZ(x) = 0 if x < 0 and FZ(x) = 1 if x ≥ 0. It is easy
to see that FXn

(x) → FZ(x) for all x �= 0 but not at
x = 0, because FXn

(0) = 0, whereas FZ(0) = 1. It is
therefore not natural to require that FXn

converge to
FZ at points of discontinuity of FZ .

Let us now turn to convergence in probability.

Definition. The random variables Xn converge to
Z in probability as n tends to infinity if, for all
ε > 0, limn→∞ Pr[|Xn − Z| > ε] = 0.

In other words, Xn converges to Z in probability
if the probability that Xn differs from Z by any given
small quantity tends to zero as n tends to infinity.

Convergence in probability always implies con-
vergence in distribution, and if Z is nonrandom, then
the two modes of convergence are equivalent.

Technically, since convergence in probability in-
volves a joint probability statement about Xn and Z,
the random variables Xn and Z have to be defined in
the same probability space. This is not necessary if
Xn merely converges to Z in distribution.

In practice, to verify convergence in probability,
one uses Chebychev’s inequality:

Pr[|Xn − Z| > ε] ≤ var(Xn − Z)

ε2
.

Thus Xn converges to Z in probability if Xn and Z

have the same mean and limn→∞ var(Xn − Z) = 0.
Returning to the example given at the beginning

of the article, to verify that the sample mean Yn

converges to the population mean µ in probability, it
is sufficient to check that limn→∞ var(Y n − µ) = 0.
This relation holds because

var(Y n − µ) = varY n = 1

n2
var

(
n∑

i=1

Yi

)

= 1

n2
nσ 2 → 0 as n → ∞.

The convergence in distribution of
√

n(Y n − µ)/σ to
a Gaussian random variable is a consequence of the
central limit theory. While Y n − µ → 0 (in prob-
ability), multiplying

√
n/σ by (Y n − µ) yields an

∞ × 0 situation. The result (not a priori obvious)
is that the limit is a well-defined random variable
the range of which is (−∞, ∞) and the density
function has the Gaussian bell-shaped curve cen-
tered at zero; that is, has the normal distribution
N(0, 1).

Large-sample properties of estimators typically
involve convergence in distribution (see Large-
sample Theory). Hence, referring again to the
example given at the beginning of this article,
for large n, the distribution of

√
n(Y n − µ)/σ is

approximately N(0,1) and that of
√

n(Y n − µ)/s,
where s2 = ∑n

i=1(Yi − Yn)
2/(n − 1) is the sample

variance, is approximately a Student’s t distribution
with n − 1 degrees of freedom. Similarly, the
distribution of (n − 1)s2/σ 2 is approximately χ2

(chi-square distribution) with n − 1 degrees of
freedom. These limiting distributions are used to
compute approximate confidence intervals for µ and
σ 2, respectively.
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Convergence in probability, on the other hand,
is often used to show that the sample moment
converges to the population moment. Thus, as n

tends to infinity, Y n → µ and s2 → σ 2, both in
probability; that is, the sample mean converges to the
population mean and the sample variance converges
to the population variance.

Here are some additional facts that are useful to
establish convergence results:

1. If Xn → Z in distribution and Xn − Wn → 0 in
probability, then Wn → Z in distribution.

2. Xn → Z in distribution if its character-
istic function φXn

(t) = E[exp (itXn)], where

i = √−1, tends, for all −∞ < t < ∞, to
the characteristic function φZ(t) = E[exp (itZ)]
of Z.

3. If Xn and Z are random vectors, then Xn → Z

in distribution if all linear combinations of the
components of Xn tend in distribution to the cor-
responding linear combination of the components
of Z.

(See also Limit Theorems)
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Cooperative Cancer Trials

The last four decades have witnessed a remark-
able symbiotic relationship between clinical oncology
and biostatistics. Research oncologists have become
increasingly sophisticated with regard to statistical
concepts and tools, and many are now quite famil-
iar with terms such as Mantel–Haenszel logrank
test, Gehan–Wilcoxon statistic, O’Brien and Flem-
ing boundaries, and Simon optimal Phase II design,
all of which relate to statistical techniques developed
by biostatisticians working in cancer research. The
magnitude of the cancer challenge is enormous. One-
third of Americans will develop cancer of at least
one of the 65 specific types; 1.4 million new cases
and 550 000 deaths occurred in 1996. However, after
observing persistent rises in age-adjusted mortality
ever since statistics began to be maintained in the
1930s, there has been a drop of 2%–4% over the last
5 years [20]. Biostatisticians have played a crucial
role in defining, refining, and applying the methodol-
ogy of cancer clinical trials. In this article we empha-
size the development, status, and achievements of the
US clinical trials cooperative group program over the
last decade (approximately 1986–1996), and we will
briefly review some of the important methodologi-
cal advances that have been made in biostatistics, in
the same time period, in response to the challenges
posed by these trials [42]. (See Clinical Trials, Early
Cancer and Heart Disease for developments from
approximately 1955 to 1965.)

The clinical trials cooperative group program grew
out of the Cancer Chemotherapy National Service
Center, established in 1955 [18] (see Multicenter
Trials). By 1960, there were 11 cooperative oncol-
ogy groups, with 10–20 new agents taken to clinical
trial per year, of the 25 000–30 000 agents screened
per year in the laboratory, in tissue culture and in
animals. This pattern has persisted, with approxi-
mately 20 000 agents per year screened currently in
the National Cancer Institute (NCI) in vitro human
tumor cell line assay, and with 20–25 per year taken
to clinical trial. Also by 1960, the current clinical
developmental pathway had been defined: Phase I
trials (of approximately 20 patients) to determine
the appropriate dose of an agent, followed by Phase
II trials (of 30–50 patients) to provide an initial
test of its ability to shrink tumors, followed by ran-
domized Phase III trials to test its efficacy, usually

defined in terms of ability, alone or in combination,
to prolong survival, compared with a control ther-
apy. As they do now, the cooperative groups in 1960
collaboratively accrued to standardized clinical tri-
als protocols, with standardized criteria of diagnosis,
treatment, and measurement of effect, with random-
ization (that eventually became centralized), and with
a prospective statistical design and collaborative anal-
ysis and reporting. The early development of the
statistical centers was led by NCI statistician Marvin
Schneiderman [18].

In the mid 1960s the focus of cooperative group
cancer trials was expanded from new agent testing to
encompass the development of new disease-oriented
combination chemotherapy regimens. In 1972, the
trials program formally entered a period of further
expansion with the establishment by Congress of
the National Cancer Program. In particular, patients
with early stage disease were included in larger num-
bers (up to 1974, at least 85% of trial patients had
advanced disease). By 1979, the configuration of the
cooperative groups approximated the current one. Of
the 31 groups that had been established since 1955,
14 remained under NCI sponsorship. A prolifera-
tion of small regional and single-disease groups had
given way to primarily national multidisease groups
[6], with correspondingly larger statistical centers,
made up of statisticians and data managers under
the supervision of a “group statistician” (Table 1 lists
the extant cooperative groups). Statisticians played an
increasingly prominent part in the groups. In addi-
tion to their lead role in the monitoring, analysis and
reporting of group studies, the statisticians played a
crucial role in their design.

Table 1 US cooperative cancer groups

Group Acronym

Cancer and Leukemia Group B CALGB
Children’s Cancer Group CCG
Eastern Cooperative Oncology Group ECOG
Gynecologic Oncology Group GOG
Intergroup Rhabdomyosarcoma IRSG

Study Group
National Surgical Adjuvant Breast and NSABP

Bowel Project
National Wilms’ Tumor Study Group NWTSG
North Central Cancer Treatment Group NCCTG
Pediatric Oncology Group POG
Radiation Therapy Oncology Group RTOG
Southwest Oncology Group SWOG
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By the mid 1970s, NCI Biometric Research
Branch (BRB) statisticians, then and now under
the leadership of Richard Simon, had taken
over statistical oversight of NCI-sponsored cancer
treatment trials. The design, monitoring, and analysis
of the trials was conducted at the statistical
centers, with the exception of some of the prostate,
central nervous system, and lung cancer trials, with
statisticians in the NCI Clinical Trials Section under
the leadership of David Byar. Between 1979 and
1982 the cooperative groups’ grants and contracts
were replaced by “cooperative agreements”, which
involved an expanded role for the NCI staff, in
particular, for the BRB. By the early 1980s, as
now, BRB statisticians were prospectively reviewing
the design and conduct of all treatment studies
and were acting as liaisons to the group statistical
centers. In addition, they were deeply involved in the
conception of drug development and disease-oriented
strategies and in the design of many particular
phase III studies. NCI and cooperative group
statistical center statisticians have been extensively
involved in the development of new statistical
methodology concerning the design, conduct, and
analysis of clinical studies; these contributions are
discussed below.

The number of cooperative groups increased to
18 by 1985 and then decreased, from 1985 to 1988,
to the 11 groups currently in existence. In the same
period, total accrual and total number of trials for
the cooperative group program increased by 15%, as
emphasis was placed on increasing accrual through
enhanced involvement of community hospitals and
increased enrollment of minority patients [16, 17].

At this time, there was also substantial emphasis
on studies to correlate potentially prognostic labo-
ratory measures with clinical results and on transla-
tion of the rapidly emerging basic science findings
to clinical advances (at present approximately 50%
of treatment trials have explicit correlative science
objectives). At the heart of this were the cancer cen-
ters, primarily large academic medical centers where
advanced multidisciplinary basic, clinical, and trans-
lational research could be conducted. The cancer
centers program developed in the early 1960s, with 12
institutions and a combined budget of 6 million dol-
lars. The program was formally established through
the National Cancer Act of 1971, and in 1996
there were 55 centers with a combined budget of
150 million dollars. The cancer centers participate in

cooperative clinical trials through membership in the
cooperative groups (and also conduct studies inde-
pendently).

As a result of the community outreach efforts of
the mid 1980s and later, 80% of cooperative group
patients are currently treated outside of university
and cancer center hospitals, through the Cooperative
Group Outreach Program (CGOP) and the Commu-
nity Clinical Oncology Program (CCOP). Approxi-
mately 50% of patients are accrued through CGOP,
which was started in 1976 and involves small hospi-
tals and practices that enter patients through cooper-
ative group member institutions [7]. Approximately
30% of patients are accrued through CCOP, which
was started in 1983 and involves larger hospitals that
may independently affiliate with more than one coop-
erative group [7]. Studies have shown little or no
differences in numbers of ineligible patients or pro-
tocol violations between academic and community
hospitals [16].

The magnitude, structure, and cost of the US
clinical trials cooperative group program have been
relatively stable over the last decade. Of the 38
groups that have been established since 1955,
the present 11 groups (Table 1) are those that
constituted the program in 1988. These include
seven adult patient groups – three multidisease
national groups (CALGB, ECOG, SWOG), one
regional group (NCCTG), one radiotherapy group
(RTOG), one surgical adjuvant group (NSABP),
and one gynecological cancer group (GOG) – and
four pediatric patient groups – two multidisease
national groups (CCG, POG) and two single-
disease intergroup mechanisms (IRSG, NWTSG).
In 1995, they comprised 6600 investigators at
1500 institutions, entering 16 000 patients on 340
open treatment studies, with a collective budget
of 100 million dollars. (Over the past decade, the
cooperative groups have accrued an average of
20 000 patients per year.) Also in 1995, they placed
approximately 10 000 of these patients on 90 open
nontherapeutic studies (ancillary quality of life and
laboratory studies, associated with the therapeutic
studies). To handle this work load, the statistical
center of a typical large multidisease group employs
approximately 12 statisticians and 20 data managers
[6]. Typically, group statistical centers are associated
with major university biostatistics departments, such
as at Duke (CALGB), Harvard (ECOG), and the
University of Washington (SWOG). In addition, the
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NCI provides partial support to the data center
of the European Organization for Research and
Treatment of Cancer (EORTC), under the statistical
leadership of Richard Sylvester since 1975, which
represents 350 institutions in 31 countries and
places approximately 6000 patients per year on
studies [46]. Finally, the National Cancer Institute
of Canada, under the statistical leadership of Benny
Zee since 1987, representing 50 institutions and
placing 1500 patients per year on studies, has been
very active in collaborating with the NCI-sponsored
cooperative groups, as well as in conducting studies
independently.

Over the past decade, the efforts of the cooperative
groups have been divided roughly as follows with
respect to treatment studies [17]. Phase I efforts have
varied among the groups, but overall Phase I trials
(dose–finding studies) made up only 10% of the
total and accounted for only 2%–3% of the patients.
Phase I trials have been primarily the domain of
the cancer centers, working independently. Phase II
trials (initial nonrandomized assessments of clinical
benefit) made up 50%–60% of the total, and they
accounted for 20%–25% of the patients. Phase III
trials (randomized comparisons, usually against a
control treatment) made up 35%–40% of the total,
but because of their much larger size accounted for
70%–80% of the patients. Definitive Phase III trials
are the “jewel in the crown” of the US cooperative
group program; in Table 2 we give 15 of the most
significant completed in the past decade. Accrual of
the major histologic subgroups was approximately
as follows [17]: breast cancer patients accounted for
4000 of the total annual accrual, colorectal cancer
patients accounted for 2000, and lung cancer, ovarian
cancer, central nervous system cancer, and prostate
cancer patients accounted for 1000 each.

Pediatric cancer patients have accounted for
approximately 5000 of the total annual accrual to
treatment studies over the past decade, and this
subgroup is remarkable in two respects. First, 95%
of pediatric cancer patients in the US are seen at
institutions belonging either to CCG or POG [36],
with 80% of potentially eligible patients actually
placed on a cooperative group protocol [7]. Secondly,
there have been striking clinical advances in pediatric
cancer, in particular since the advent of the National
Cancer Program; for example, 4-year survival in
pediatric leukemia on CCG protocols rose from 20%
in the late 1960s to 80% in the mid 1980s [2],

and dramatic survival increases in this disease and
in other pediatric cancers have been seen on POG
protocols [38].

Although the magnitude and structure of the clin-
ical trials cooperative group program has been sta-
ble over the last decade, there have been two dra-
matic developments in the way in which Phase III
trials are conducted. The first development involves
the remarkable increase in the number of “inter-
group” (involving more than one cooperative group)
Phase III studies, particularly among the adult disease
groups, where currently 80%–90% of phase III stud-
ies are intergroup efforts (accounting for 80%–90%
of Phase III patients). Precise guidelines for the man-
agement of these trials were formulated in the early
1990s under the leadership of Eleanor McFadden,
at Harvard. The second development involves the
formalization of interim monitoring schemes and
the establishment of data and safety monitoring
boards. Up to the late 1970s it was common prac-
tice to report annual or semiannual interim outcome
analyses of randomized studies to the entire coop-
erative group. By the mid 1980s the statistical dan-
gers in such a practice were widely recognized, and
interim outcome reporting was limited to a trial
steering committee. Precise predefined interim moni-
toring schemes were used, which were developed by
O’Brien et al. [15] to allow early termination in the
case of dramatic treatment differences (see Data and
Safety Monitoring) and then extended by Wieand
& Therneau [49] to also allow early termination in
the case of convincing evidence of lack of treatment
differences. In the 1990s, under the leadership of
NCI staff, in particular BRB statisticians, data safety
monitoring committees were established. From the
beginning these provided interim monitoring inde-
pendent of individual trial leadership, and they now
include a majority of members from outside the coop-
erative group itself.

Another dramatic recent development has been
the increase in cancer prevention and control tri-
als (see Prevention Trials), which have been con-
ducted through the clinical trials cooperative groups
and the CCOP. Over the last decade 30–40 such
NCI-sponsored trials have been active at a given
time. These trials tend to be much larger than the
treatment trials, and they have their own particu-
lar statistical problems arising from low event rates
and potentially high noncompliance rates [4] (see
Noncompliance, Adjustment for). The two most
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Table 2 Noteworthy US randomized trials of the last decade

Protocol no.
Accretion dates

Participants Protocol name Protocol significance

NSABP-B06
1976–84

A randomized clinical trial
comparing total
mastectomy vs.
lumpectomy with or
without irradiation in the
treatment of breast cancer
[12]

This study provided important data
supporting the use of lumpectomy in
patients with stage I or II breast
cancer, and demonstrated that
irradiation reduces the probability of
local recurrence of tumor in patients
treated with lumpectomy.

CALGB-8251
1982–87

Treatment of advanced
Hodgkin’s disease:
randomized Phase III trial
comparing MOPP vs.
ABVD vs. MOPP
alternating with ABVD [5]

While MOPP had been the standard
chemotherapy regimen for advanced
stage Hodgkin’s disease, this study
demonstrated that both ABVD and
MOPP/ABVD were superior to
MOPP. Additional advantages of
ABVD compared to MOPP include
lower risk of secondary leukemia and
decreased incidence of sterility.

INT-0035
1985–87
ECOG
NCCTG
SWOG

Intergroup Phase III surgical
adjuvant trial for stage B2
and C colon cancer [35]

The early results (the 1990 report)
served as the basis for the National
Institutes of Health Consensus Panel
recommendation of 5-FU/levamisole
as standard treatment in the US.

NWTS-3
1979–87
CCG POG

National Wilms’ tumor study
3 [9]

This study demonstrated that less
intensive therapy does not appear to
worsen results for low-risk patients,

and subsequent National
Wilms’ Tumor Study
Group trials have utilized
the less intensive (yet
efficacious) therapies
identified in this study.

POG-8314
1983–87

Localized non-Hodgkin’s
lymphoma: chemotherapy
+/− radiotherapy [31]

This study demonstrated that
radiotherapy can be safely omitted
from the therapy of most children
with localized non-Hodgkin’s lym-
phoma without substantially jeopar-
dizing their excellent chance of cure.

NSABP-B13
1981–88

A clinical trial to assess
sequential MTX, 5-FU in
patients with axillary node-
and estrogen receptor +
primary breast cancer [14]

This was one of the trials that resulted
in the National Cancer Institute
issuing a clinical alert in 1989 about
the positive role of chemotherapy for
selected subsets of women with
node-negative breast cancer.

CALGB-8525
1985–90

Phase III comparison of
post-remission intensive
ara-C in patients with acute
myelogenous leukemia in
first remission [32]

This study demonstrated the importance
of post-remission dose intensity of
cytarabine for patients younger than
60 years of age, establishing
high-dose cytarabine as standard
consolidation therapy for this patient
population.
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Table 2 (continued )

Protocol no.
Accretion dates

Participants Protocol name Protocol significance

GOG-97
1986–90

Phase III randomized study of
cyclophosphamide and
cisplatin in patients with
suboptimal stage III, IV
ovarian carcinoma
comparing intensive and
nonintensive schedules [33]

Although preclinical and clinical data
based on historical comparisons
suggested that increased
dose-intensity might improve
outcome for women with ovarian
cancer, this study demonstrated that a
doubling of the dose-intensity in the
treatment of bulky ovarian epithelial
cancers led to no discernible
improvement in patient outcome and
was associated with more severe
toxicity.

CALGB-8541
1985–91

Adjuvant CAF for pathologic
stage II, node+ breast
cancer: randomization
among intensive CAF for 4
mo. vs. low-dose CAF for
4 mo. vs. standard-dose
CAF for 6 mo. [50]

This study demonstrated a
dose–response effect for adjuvant
chemotherapy within the standard
dose range. An important
translational science finding that
resulted from the clinical trial was the
demonstration that the dose–response
effect was limited to patients whose
tumors overexpressed c-erbB-2.

INT-0032
1984–91
CCG IRSG
POG

Intergroup
rhabdomyosarcoma study
III [8]

Intensification of therapy for most
patients in this study, using a
risk-based study design, significantly
improved treatment outcome overall.

Additionally, a subset of
patients with favorable
prognosis was identified for
whom relatively non-toxic
two-drug therapy resulted
in very good outcome.

INT-0067
1986–91
ECOG
SWOG

Phase III comparison of
CHOP vs. M-BACOD vs.
ProMACE-CytaBOM vs.
MACOP-B in patients with
intermediate or high grade
non-Hodgkin’s lymphoma
[13]

Although single-institution,
uncontrolled studies had suggested an
advantage for third-generation
regimens, this study demonstrated
that CHOP remains the best available
treatment for patients with
advanced-stage intermediate-grade or
high-grade non-Hodgkin’s
lymphoma, with decreased toxicity
and expense compared to the
third-generation regimens.

INT-R8501
1986–91
NCCTG
RTOG
SWOG

Phase III prospective trial for
localized cancer of the
esophagus comparing
radiation as a single
modality with radiation
therapy plus chemotherapy
[26]

This trial demonstrated an unequivocal
survival advantage for combined
modality therapy, specifically the
addition of chemotherapy to
radiation-based (nonsurgical) app-
roaches in this rarely curable cancer.
Studies to optimize combined moda-
lity therapy have followed this lead.

(continued overleaf )
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Table 2 (continued )

Protocol no.
Accretion dates

Participants Protocol name Protocol significance

GOG-111
1990–92

A Phase III randomized study
of cyclophosphamide and
cisplatin vs. paclitaxel and
cisplatin in patients with
suboptimal stage III and IV
epithelial ovarian cancer
[34]

This study was the first phase III trial of
paclitaxel in the primary treatment of
patients with cancer. It demonstrated
that incorporating paclitaxel into
first-line therapy improves both the
duration of progression-free survival
and overall survival in women with
incompletely resected stage III and
IV ovarian cancer.

RTOG-8808
1989–92
ECOG
SWOG

Phase III study of radiation
therapy alone or in
combination with
chemotherapy for patients
with non-small cell lung
cancer [40]

Patients with regionally advanced,
surgically unresectable non-small cell
lung cancer have a poor prognosis,
and the standard therapy had been
external beam irradiation to the
primary tumor and regional
lymphatics. The results from this trial
confirmed the survival benefits and
acceptable toxicity seen in a smaller
randomized trial, and the standard of
care for this patient population now
includes a combination of
radiotherapy and chemotherapy.

CCG-2891
1989–95

Treatment of children <21
with newly diagnosed acute
myeloid leukemia and
myelodysplastic syndrome
[51]

This study is important for
demonstrating that although early
intensive therapy is more toxic than
standard timing therapy, eventual
outcome is improved by use of the
timing intensive strategy.

noteworthy studies are the Breast Cancer Preven-
tion Trial, conducted by NSABP and accruing 13 000
women from 1992 to 1997, which tests the ability
of tamoxifen to prevent breast cancer in a high-risk
population, and the Prostate Cancer Prevention Trial,
conducted by SWOG and accruing 18 000 elderly
men from 1993 to 1996, which tests the ability of
dihydrotestosterone to prevent or delay prostate can-
cer [21].

Finally, we summarize some of the important
developments in clinical trials methodology sup-
ported by the NCI in the last decade. Simon [42]
has provided an excellent review of advances in clin-
ical trials methodology in the 1980s, in which many
of the NCI and cooperative group statisticians appear
prominently, and we try to minimize overlap with
this review. We organize the contributions into nine
areas:

1. New Phase I trial designs: traditionally, phase I
trial designs have used cohorts of three to six
patients, treated at escalating doses of a new
chemotherapeutic agent, to identify a maximum
tolerated dose (MTD). New designs, with their
associated methods for estimating the MTD, have
been proposed by Storer [45], O’Quigley et al.
[37], and Goodman et al. [22], and have had their
statistical properties reviewed by Korn et al. [28].

2. New Phase II trial designs: Simon [41] pro-
posed and studied two-stage Phase II designs
that are optimal in the sense of minimizing the
expected number of patients exposed to ineffec-
tive therapy.

3. Flexible interim monitoring rules: Lan & DeMets
[29] further developed the “spending function”
approach, which allows flexibility in the timing
of formal interim analyses.
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4. Stopping early for “negative” results: Thall et al.
[47] and Wieand et al. [48] developed simple
rules to allow early stopping if, with high prob-
ability, the treatment difference would not be
statistically significant were the trial to continue
to its originally planned end.

5. Bayesian methods in randomized trials: Bres-
low [3], Dixon & Simon [10], Spiegelhalter et al.
[43], and Gray [24] used Bayesian methods to
address some of the difficulties standard frequen-
tist methods have with combining information
from diverse sources for use in sample size cal-
culations, inference after early stopping of trials,
and multiple comparison problems.

6. Surrogate endpoints: Prentice [39] elucidated
the statistical conditions necessary for an inter-
mediate outcome to be a valid surrogate, thereby
saving trial time or avoiding confounding
because of treatment cross-over prior to the final
outcome.

7. Innovative methods for identifying prognostic
factors: Durrleman & Simon [11], LeBlanc &
Crowley [30], and Gray [25] developed new
methods to identify variables that may predict
survival, including spline smoothing of variables,
quantile regression and tree-structured statis-
tical methods.

8. Quality-of-life endpoints: Gelber et al. [19] and
Korn [27] proposed and studied new methods
for analyzing quality-of-life endpoints, which
have assumed increasing importance in clinical
trials.

9. Cure models: Gray & Tsiatis [23] and Sposto
et al. [44] developed and applied models for
the case where treatment is anticipated to cure
disease in addition to increasing survival for
those not cured.
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Cooperative Heart
Disease Trials

The National Heart, Lung, and Blood Institute
(NHLBI) of the National Institutes of Health,
initially the National Heart Institute (NHI) and
then the National Heart and Lung Institute (NHLI),
has undertaken cooperative (multicenter) clinical
trials in heart disease since the early 1960s (see
Cardiology and Cardiovascular Disease). This
article describes the evolution of trial structure, and
draws on several of the best known trials as examples
of how these large, cooperative trials were organized
and carried out. A summary of early methodological
developments for clinical trials at the National Heart,
Lung, and Blood Institute, with greater emphasis on
methodology, was given by Halperin et al. [43] (see
Clinical Trials, Early Cancer and Heart Disease).

Prior to 1960, the National Heart Institute sup-
ported one multicenter clinical trial, a cooperative
study of the relative merits of adrenocorticotropic
hormone (ACTH), cortisone, and aspirin in the treat-
ment of rheumatic fever and the prevention of rheu-
matic heart disease. This trial enrolled 497 children,
a small number by present standards, at centers in
Great Britain, Canada, and the United States. After
six weeks of treatment and another three weeks of
observation, it was concluded there was no evidence
that any of the three agents cured the disease. At
five years, there was no difference in the amount
and severity of rheumatic heart disease, but it was
observed that the status of the heart at the time treat-
ment was begun was the major factor in determining
prognosis. The final report (Rheumatic Fever Work-
ing Party of the Medical Research Council of Great
Britain and the Subcommittee of Principal Investi-
gators of the American Council on Rheumatic Fever
and Congenital Heart Disease, American Heart Asso-
ciation [67]) contained extensive data tabulations by
various subgroups, but virtually no statistical analy-
sis. This trial gave little indication of the number of
methodological developments that were to come out
of trials sponsored by the NHI and its successors.

The Greenberg Report

In the mid-1960s, the National Advisory Heart Coun-
cil appointed a Heart Special Project Committee

chaired by Dr. Bernard Greenberg of the University
of North Carolina School of Public Health, to set
down guidelines for the organization, review, and
administration of cooperative studies. The resulting
“Greenberg Report”, completed in 1967, was pub-
lished in 1988 [64] and laid down a structure for
NHLBI-sponsored clinical studies. The foresight of
this committee is remarkable, as the procedures they
laid down have been followed ever since, with only
minor modifications.

The report defined a cooperative study as “an
identified activity in which two or more investigators
in separate institutions contribute toward a common
research goal. . ., follow a common protocol and work
within a clearly defined structure for the project as a
whole.” The pooled resources would minimize the
length of time it would take to accrue subjects in
order to obtain a significant answer to a clinical or
epidemiologic problem.

There were four criteria for good studies:

“1. The problem to be studied is an important one
that must be resolved (a) from a purely scientific
point of view, or (b) for the benefit of mankind
through improved methods of prevention, diag-
nosis, and/or therapy;

2. An answer must be obtained in a relatively
short time, and a multiinstitutional collaborative
effort is the best way to reach a solution in the
briefest period;

3. The study is feasible within the potential coop-
erating institutions, and likely to lead to an
answer; and

4. There is assurance of adequate leadership and
control of performance for the duration of the
study.”

Ideally, the question to be answered would be clearly
defined and simple. Competent biometric advice
would be sought early for assistance in protocol
design (see Clinical Trials Protocols). This set the
stage for the active participation of the Biometrics
Branch (later the Biostatistics Research Branch and
now the Office of Biostatistics Research of NHLBI)
as collaborators involved in the planning, design,
implementation, and analysis of cooperative studies.
The protocol itself should be clear in order to main-
tain a high scientific level in the project. Continuing
strong leadership with a well-defined administrative
structure and control of performance at all levels
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would assure that the project was carried out to
completion (see Clinical Trials Audit and Quality
Control).

The basic units that were essential to achieve the
aims of a cooperative study are the local units, which
see the participants and collect the data. The Coor-
dinating Center would receive the data, assure their
quality, and undertake appropriate, and timely anal-
yses. The Director of the Coordinating Center would
monitor performance of the local units and have the
authority to carry out policing activities (see Data
Management and Coordination). An Executive or
Steering Committee, comprised of a limited number
of strong investigators, should supervise the Coordi-
nating Center. It should be led by a study chair, the
most important position in a cooperative project. An
independent Policy Board or Advisory Committee of
experts in the field of the study, but not contributing
to the study should review study plans and offer sub-
stantial advice. Last, the Institute staff would interact
with both the Steering Committee and the Policy
Board, as well as with other advisors to the Insti-
tute (such as the National Advisory Heart Council as
it was then called).

The role of the Institute in cooperative studies was
also described. The staff should play an active role

during the early planning phases, drawing on past
experience, and acting as a liaison between review
committees, the National Advisory Heart Council,
and investigators. Continuing communication with
investigators was also advocated, as was exertion of
a considerable degree of control over the study itself.
The suggestion was made that one staff member serve
as the Project Officer for each study and that an
appropriate means of funding such studies would be
a phased contract mechanism.

Major Clinical Trials Sponsored by
NHLBI

The major multicenter heart disease clinical trials
sponsored by the NHLBI and initiated before 1980
are listed in Table 1. Several of the trials are dis-
cussed in detail below and references to the others
are given for the interested reader [4–6, 12–14].

The Coronary Drug Project (CDP)

Preceding the Greenberg Report in design, but not
completion, the Coronary Drug Project (CDP) was
the first large, multicenter clinical trial sponsored by

Table 1 Multicenter clinical trials in heart disease sponsored by NHLBI with at least 500 patients initiated prior to 1980

Trial No. centers Treatments (sample size) Dates

Coronary Drug Project (CDP) 53 Clofibrate (1103) 1966–1969
Niacin (1119)
Dextrothyroxine (1110)
Estrogen - low dose (1101)
Estrogen - high dose (1119)
Placebo (2789)

Hypertension Detection and Follow-up Program (HDFP) 14 Stepped care (5485) 1971–1975
Referred care (5455)

Multiple Risk Factor Intervention Trial for the Prevention of 22 Special intervention (6428) 1972–1983
Coronary Heart Disease (MRFIT) Usual care (6438)

Lipid Research Clinics Coronary Primary Prevention Trial 12 Cholestyramine (1906) 1973–1983
(LRC) Placebo (1900)

Coronary Artery Surgery Study (CASS) 15 Surgery (390) 1973–1983
Medical (390)

Program on Surgical Control of Hyperlipidemias (POSCH) 4 Surgery (421) 1973–1990
Control (417)

Aspirin Myocardial Infarction Study (AMIS) 30 Aspirin (2267) 1974–1979
Placebo (2257)

β-Blocker Heart Attack Trial (BHAT) 31 Propranolol (1916) 1977–1981
Placebo (1921)

Multicenter Investigation of Limitation of Infarct Size (MILIS) 5 Propranolol (134) 1978–1988
Hyaluronidase (420)
Placebo (431)
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NHI and was designed to assess the efficacy of sev-
eral lipid modifying drugs in men between 30 and
64 years of age who had previously had a myocardial
infarction (MI). The initiation of such a trial was rec-
ommended by the National Heart Advisory Council
in 1960 and planning began in the Institute in early
1961 [78].

Several years of budgetary and political nego-
tiations followed. Finally, with a Policy Board, a
Coordinating Center, and five clinics in place, the first
participant was enrolled in 1966, and with 48 addi-
tional clinics, enrollment of 8341 participants was
completed in 2.5 years. All participants were followed
for a minimum of 54 months, with 96% followed up
for at least five years [17].

Randomization was performed by the Coordinat-
ing Center, stratified on clinic and risk (whether the
participant had one prior MI with no complications
or was of higher risk) (see Randomized Treatment
Assignment). Double-blinded (neither participant nor
treating physician knew which treatment a participant
received) and placebo controlled (see Blinding or
Masking), the study treatments included two doses
of equine estrogens, clofibrate, dextrothyroxine, nico-
tinic acid, and a lactose placebo. Two and a half
times as many subjects were assigned to placebo
as to any other treatment, which is optimal alloca-
tion when five treatments are being compared with
a single control. The sample size was set to detect
a 30% mortality in the control group and 22.5% (a
25% reduction in mortality) in any treatment group
when the mortality percentage in any treatment group
was compared to that of the control group at the 1%
significance level (one-sided test using an arc sine
transformation with 95% power (see Sample Size
Determination for Clinical Trials). Further sample
size adjustments were made for the possibility of
dropouts and treatment withdrawals as well as the
time necessary to achieve maximum benefit of treat-
ment [31, 45].

The CDP investigators had the foresight to con-
sider many important aspects of trial design: optimal
allocation when multiple treatments are compared to
a single control; that there would be dropouts, which
would cause loss of power and so the sample size
should be increased to compensate; that treatment
benefit was not likely to be attained instantaneously;
and that there should be an adjustment of the signif-
icance level at which tests were conducted because
there would be multiple comparisons [31]. Although

methodology for sample size calculations has greatly
advanced, new methods consider these same princi-
ples. The final results paper of the CDP, reported
results based on an intention to treat analysis: all
patients randomized were included, no matter how
well or poorly they adhered to the treatment plan
[35]. The final analysis reported on both the planned
analysis (the proportion of events at the end of the
trial, which was used for trial design), and the Cox
proportional hazards model [33]. At the time of the
design of the CDP, no methods for calculating sample
size for time-to-event data were known (see Sample
Size Determination in Survival Analysis).

The Steering Committee of the CDP consisted
of the study chair, the director of the Coordinating
Center, several study principal investigators (some
permanent and others rotating), the NHI Medical
Liaison Officer, directors of the ECG reading center
and the central laboratory, and biostatistical represen-
tation from the Biometrics Research Branch. It met
twice a year throughout the study. The CDP technical
group represented all operational units participating
in the CDP. Initially, unblinded data reports by study
treatment were presented to the CDP technical group
but, recognizing the potential for compromising the
trial, in 1968, a data and safety monitoring com-
mittee (DSMC) (see Data Monitoring Committees)
was appointed to review the accumulating data by
treatment group. The Policy Board advised on policy
matters and consisted of five voting members, all of
whom were independent of the study investigators. In
addition, nonvoting members from the Coordinating
Center, Steering Committee, and Institute attended
meetings. The Policy Board acted on the recommen-
dation of the DSMC regarding continuation of the
study or discontinuation of one or more treatment
groups. Aside from these structural committees, there
were trial committees, such as the Editorial Review
Committee that reviewed and approved all plans for
papers and composition of writing committees and all
oral presentations [17].

As for the results of the CDP, adverse effects of
the two estrogen treatments and of dextrothyroxine
led to successive halting of these treatments [29, 30,
32] and continuation of the others. Several monitoring
procedures were used as the data accumulated [16,
28, 46] (see Data and Safety Monitoring). A good
summary is given by Canner [18]. Of participants
who had received the treatments that were stopped
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early, 1529 were randomized into a double-blind trial
of aspirin versus placebo [34].

At the end of the CDP, no evidence of efficacy was
found for clofibrate, and some was found for nicotinic
acid with respect to definite, nonfatal MI, but not
for total mortality [33]. Subsequent 15-year follow-
up of the study participants showed a statistically
significant reduction in total mortality from nicotinic
acid [19].

Hypertension Detection and Follow-up Program
(HDFP)

While the CDP developed or implemented many of
the designs and biostatistical features that are cur-
rently used in multicenter clinical trials, modifications
and new concepts were incorporated into subsequent
trials. The Hypertension Detection and Follow-up
Program (HDFP) began in the early 1970s [47–50].
This trial of the effects of antihypertensive treatment
on mortality in 10 940 high blood pressure partic-
ipants was novel in several respects. First, it had
broad eligibility criteria: anyone aged between 30
and 69, with diastolic blood pressure 90 mm Hg or
over was eligible. As a result, some of the partic-
ipants had preexisting diseases (stroke, myocardial
infarction, and renal disease), although most did not.
Secondly, all but one of the collaborating centers
enrolled participants in residential areas, thus mak-
ing it a community-based study. Thirdly, almost half
(about 45%) of the participants were women and
about the same number were black. Fourthly, the
HDFP used a stepped care approach to interven-
tion, with medication being prescribed in a standard
sequence in order to achieve the blood pressure goal.
The control group received “referred care”, that is,
usual medical care, and the study was not blinded; in
other words both participants and investigators were
aware of the treatment arm to which each partici-
pant was assigned. To assure no bias was introduced
as a result of treatment being known to participants
(see Bias, Overview), the primary outcome was
five-year all-cause mortality, and secondary outcomes
were objective measures of heart disease and stroke,
which were assessed at regular intervals. It might be
noted that, like the CDP, the HDFP had two moni-
toring groups. One, called the Toxicity and Endpoints
Evaluation Committee, reviewed data, endpoints, and
toxicity reports at specified intervals. Membership
on this committee included the chair of the Policy

Advisory Board, the head of the Coordinating Cen-
ter, several clinical investigators (some of whom were
involved in the study, but did not see study patients),
and Institute staff. The other monitoring group, the
Policy Advisory Board, was entirely external to the
study, and monitored the trial and advised the Insti-
tute on its progress.

The conclusion of HDFP was that stepped care
was superior to referred care both with respect to
control of diastolic blood pressure and with respect
to overall mortality at five years. Five-year mortality
from all causes was 17% lower in the stepped care
group compared to the referred care group. The trial
led to a recommendation for systematic, effective
management of hypertension for its great potential to
reduce mortality from hypertension, including those
with “mild” hypertension (diastolic blood pressure
90–104 mm Hg) [48]. Because it was recognized that
power was limited to detect differences in various
subgroups of interest, substantial care was taken in
reporting results in race, sex, and age subgroups
(see Treatment-covariate Interaction); no P -values
were reported [49, 50].

Multiple Risk Factor Intervention Trial (MRFIT)

A third major multicenter clinical trial was the Mul-
tiple Risk Factor Intervention Trial (MRFIT) [61],
which was started in 1972. This primary prevention
trial selected participants at high risk of developing
heart disease, based on a logistic regression equation
developed by J. Cornfield, and others of prognostic
factors based on the Framingham Heart Study [71].
A combination of serum cholesterol and blood pres-
sure levels as well as number of cigarettes smoked
per day determined eligibility. The intervention con-
sisted of efforts to reduce those risk factors (diet for
cholesterol, drug for blood pressure, and behavioral
intervention for smoking). The power to detect ben-
efit from any one of the interventions was quite low,
and therefore, the study was designed to compare
the intervention to the control group. As with the
HDFP, the control group received only usual medi-
cal care, the study was not blinded, and the outcomes
were measured only annually, so the more frequent
evaluations of the intervention group would not bias
the endpoint assessment. This trial began with a dual
external data monitoring/oversight organization, but
evolved to a single oversight committee because of
greatly overlapping responsibilities [41]. Despite the
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use of the best available data for outcome incidence
during the design phase, the event rates at the end
of the trial were lower than expected and no differ-
ence was found in the primary endpoint, coronary
heart disease deaths, at six years [62]. It is likely
that a combination of self-selection factors for volun-
teer studies (see Selection Bias) and secular trends,
due to enhanced appreciation in the community of
the need to treat risk factors, were largely responsi-
ble. Efforts have been made in subsequent studies to
account for such possibilities. Long-term assessment
of mortality in MRFIT was continued, and a trend in
favor of the special intervention group was seen after
10.5 years [63].

Lipid Research Clinics Cholesterol Primary
Prevention Trial (LRC-CPPT)

While HDFP had broad eligibility criteria, the Lipid
Research Clinics Cholesterol Primary Prevention
Trial (LRC-CPPT) [54], started two years later,
had much narrower eligibility criteria. It was
entirely a primary prevention study in the sense
that all participants were to be free of existing
heart disease. Also, it used a combination primary
outcome, definite coronary heart disease death and/or
a definite nonfatal myocardial infarction. The bile
acid sequestrant, cholestyramine, was compared with
placebo after 7.4 years of double-blinded treatment
of 3806 asymptomatic 35 to 59 year old men with
hypercholesterolemia.

Of note, according to the original analysis plan,
a one-sided significance level of 5% was used to
declare statistical significance (see Hypothesis Test-
ing). The one-sided logrank test (stratified on eight
baseline risk factors and adjusted for multiple looks at
the data: see Multiplicity in Clinical Trials) yielded
a P -value just under 5% in favor of the active treat-
ment [55, 56]. Because the results would not have
been statistically significant, had a two-sided signif-
icance level of 5% been used, they generated some
controversy [51]. Many in the cardiovascular clinical
trials community prefer two-sided hypothesis testing
to one-sided testing and believe that if a one-sided test
is done, the significance level should be 2.5% rather
than 5%. Had the LRC-CPPT been designed with a
two-sided significance level of 5% (or a one-sided
significance level of 2.5%), the sample size would
have had to be larger. Despite the controversy, it was
clear that cholestyramine decreased primary outcome

events compared with placebo, and the results of this
trial were instrumental in public campaigns to reduce
serum cholesterol levels.

Other Secondary Prevention Trials of the 1970s
and 1980s

Several secondary prevention trials that began in
the mid- to late 1970s, and the 1980s made fur-
ther design and biostatistical advances. New stopping
guidelines for data monitoring were incorporated. In
the Multicenter Investigation of Limitation of Infarct
Size (MILIS), patients who had had a myocardial
infarction in the previous 18 hours were randomized
to propranolol or placebo, or in patients in whom
propranolol was contraindicated, to hyaluronidase or
placebo [60]. Conditional power was used to declare
propranolol ineffective before the scheduled end of
the trial [68]. Conditional power assesses the prob-
ability that a difference will be found at the end
of a trial considering the results up to the time of
the calculation, and making a variety of assumptions
about the future, including continuation of the cur-
rent trend (leading to “stochastic curtailment”; see
Data and Safety Monitoring). The final results, that
hyaluronidase was no better than placebo, were later
reported [59].

The β-Blocker Heart Attack Trial (BHAT) ran-
domized 3837 patients recovering from myocardial
infarction to propranolol or placebo administered in a
double-blind manner to assess overall mortality dur-
ing a two- to four-year period [8–10]. The sample
size was set by a new method to allow for noncom-
pliance [8, 15, 37, 76]. Both conditional power and
group sequential boundaries (see Sequential Meth-
ods for Clinical Trials) were used to stop the study
nine months early because of significant benefit of
propranolol [9, 10, 37, 44, 52, 53]. Also, assuming
the current trends, the gain in precision in estimat-
ing survival distributions had BHAT continued to its
planned termination was examined [37].

The Coronary Artery Surgery Study (CASS) com-
pared coronary artery bypass surgery to medical ther-
apy in participants with either angina or previous
myocardial infarction [24]. No significant difference
was found between the two treatments with respect
to survival or to nonfatal myocardial infarction,
although the bypass group had a lower event rate than
did the medical group. The results were explained by
the event rate in the medical group being lower than
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others had reported. This was perhaps due to entry
of participants with better prognostic factors or due
to the method used to confirm nonfatal myocardial
infarction [25, 26].

One of the concerns about clinical trials is that
the study population is not representative of the
general population of those with the condition (see
Clinical Trials, Overview). To address this criticism,
CASS used a registry of participants not enrolled in
the randomized trial to assess generalizability of the
trial results. It found that results from the trial were
comparable with findings from the registry [27], and
were certainly reassuring.

The Cardiac Arrhythmia Suppression Trial
(CAST) was designed in 1986 to assess the effec-
tiveness of antiarrhythmic therapy in postmyocardial
infarction patients with ventricular arrhythmias. In
preparation, a pilot study, the Cardiac Arrhythmia
Pilot Study (CAPS) was conducted to assess fea-
sibility, and answer certain other design questions
essential to the optimal design of the full-scale trial
[20, 21]. This pilot study was separate from the full-
scale trial. Other studies have since employed an
internal pilot [7]; that is, the study is designed so that
the pilot data can be included in the final trial’s analy-
sis. The sample size for the whole study can be based
on certain pilot information (such as variability and
estimation of control group event rates) and if there
are no changes in the eligibility or interventions, there
is little impact on the trial’s significance level. Some
have argued that an internal pilot approach increases
study efficiency [72].

One of the results of CAPS was that it was
recognized that some patients with arrhythmias could
have them suppressed by at least 80% by some,
but not all, of the drugs under study. In CAST,
during a run-in period, patients received one of the
three active treatments. If that first drug suppressed
their arrhythmia, they were randomized between it
and placebo. If the first drug did not suppress their
arrhythmia (either at the initial dose or at a higher
dose), they received another active drug. After this
run-in, if their arrhythmias were not suppressed, they
were not randomized. Thus, CAST did not compare
three active treatments and placebo, but tested the
hypothesis that suppressing arrhythmias with any of
the three drugs would reduce the risk of arrhythmic
death or cardiac arrest when compared to placebo.
This design was an attempt to mimic treatment in
clinical practice.

In CAST, the formal test of significance was
one-sided (for benefit) with a 2.5% significance
level, but there were advisory stopping guidelines
for harm. The CAST Data and Safety Monitoring
Board decided initially to remain blinded to which
group was intervention and which was control. In the
first part of CAST, the advisory stopping boundary
for harm was symmetrical to the guideline for ben-
efit [65]. A strong trend for difference in mortality
was noted early, but the Data and Safety Monitor-
ing Board decided that regardless of the direction,
the study should continue. Because of an increasing
difference, the Board was unblinded, and learned that
it was in a direction harmful for the treatment group,
with the advisory boundary for harm being crossed
[11, 42]. As a result, encainide and flecainide, two of
the three drugs being used in the treatment arm, were
discontinued [22].

In CAST II, randomization between the third
antiarrhythmic drug, moricizine, and placebo contin-
ued. The advisory stopping boundary for harm was
less extreme than the boundary for benefit, reflecting
the view that less evidence would then be required
to stop if the trend were going in an unfavorable
direction. Another difference in the second part of
CAST was that assessment of the proper dose of
antiarrhythmic drug, which had been done in an
open fashion in the first part of CAST, was done
blinded, with a placebo control. CAST II was also
stopped ahead of schedule. Conditional power cal-
culations showed that the remaining antiarrhythmic
drug was extremely unlikely to be proven beneficial.
In addition, during the dose-ranging incorporated in
the study, there was strong evidence of harm from
the active agent [23].

As has been noted [42], CAST provided several
data monitoring lessons. First, if a one-sided test of
hypothesis is used, a plan to monitor the data should
be in place, even for trends in the unanticipated direc-
tion. Second, adverse events can accumulate quickly,
and the monitoring guidelines need to be in place
from the beginning of the trial. Third, in placebo-
controlled trials, monitoring adverse events is not a
symmetric process, suggesting that it is not wise for
a data monitoring committee to be blinded to treat-
ment assignment. Fourth, a variety of factors, both
statistical and nonstatistical, are considered in mon-
itoring. Statistical monitoring guidelines can assist,
but cannot replace, judgment about when to stop,
continue, or modify a study protocol.
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Designs of Other Multicenter Trials

Multicenter clinical trials since the late 1980s evolved
in other directions, with more studies including clus-
ter randomization designs, large simple designs, and
factorial designs.

Cluster (group) randomization has been under-
taken in several trials in which special health-pro-
moting interventions in schools or communities are
compared with usual procedures. The Child and Ado-
lescent Trial of Cardiovascular Health (CATCH) ran-
domized schools and intervened in the third through
fifth grades with respect to lower fat content school
lunches, enhanced physical education, and enhanced
classroom health curricula [57, 77]. The Rapid Early
Action for Coronary Treatment (REACT) trial ran-
domized 10 matched pairs of cities to evaluate
a community-based intervention aimed at reducing
delay time from onset of heart attack symptoms to
hospital arrival [58]. In such trials, the cluster is the
unit of randomization and it is imperative to con-
sider that in both the design and analysis (see Unit
of Analysis).

The large, simple trial design has been adopted,
when appropriate, as in the Digitalis Investigation
Group (DIG) trial, a trial of digitalis in patients with
heart failure [38, 39]. Although earlier studies had
collected limited data and had many clinics, they had
short-term interventions and follow-up. DIG was one
of the first to use that approach in a trial requiring
long-term drug administration and follow-up. Other
trials, such as the Studies of Left Ventricular Dysfunc-
tion (SOLVD), a trial of an angiotensin-converting
enzyme inhibitor in patients with poor left ventric-
ular ejection fraction, combined a relatively simple
protocol with numerous substudies aimed at assess-
ing detailed physiologic, biochemical, or behavioral
mechanisms [69, 70].

Factorial designs have become more commonly
used. Sometimes this design has been used in the
traditional manner, as in the Post-Coronary Artery
Bypass Graft Trial (Post-CABG), a two-by-two fac-
torial trial of intensive versus moderate lipid-lowering
and low-dose anticoagulation versus placebo in pati-
ents who had had coronary bypass surgery [66]. Other
trials have had a “partial factorial” design. These have
consisted of separate trials of interventions believed
to be independent (as in a factorial design), with
some, but not all of the subjects enrolled in more
than one of the trials. These partial factorial designs

are often analyzed as independent trials as they would
be in a factorial design.

The Antihypertensive and Lipid-Lowering Treat-
ment to Prevent Heart Attack Trial (ALLHAT) con-
sisted of two large, simple trials with a partial fac-
torial design. One of the trials compared a diuretic
to three newer antihypertensive agents (amlodipine, a
calcium agonist, lisinopril, an ACE inhibitor and dox-
azosin, an α-adrenergic blocker) in high-risk hyper-
tensive people to see if there were differences in the
occurrence of fatal coronary heart disease or nonfa-
tal myocardial infarction. This trial was designed to
enroll 40 000 eligible participants with hypertension,
and intervene and follow them for a mean dura-
tion of six years. The second ALLHAT trial offered
those who were moderately hypercholesterolemic the
opportunity to be randomly assigned to open-label
pravastatin, a lipid-lowering drug, or usual care, with
total mortality as the primary outcome. Not only
was this trial a partial factorial design, intended to
be conducted with limited data collection, it was
designed to be carried out in clinical practice settings.
Over 600 practices took part in the antihypertensive
component and over 500 in the lipid-lowering com-
ponent [36].

The α-adrenergic blocker arm of ALLHAT was
stopped early because of an excess of combined
cardiovascular events, in particular, heart failure. The
other three hypertensive treatment arms continued,
with the result that each of the newer agents was no
better than the diuretic [1, 2]. The results of the lipid-
lowering component were that pravastatin did not
reduce either all-cause mortality or CHD significantly
when compared with usual care, perhaps due to
the modest differential in total cholesterol between
pravastatin and usual care groups [3]. This study
demonstrated that given important clinical questions
and a sufficiently simple protocol, many physicians
and nurses not traditionally associated with clinical
research could effectively participate.

A large study that is far from simple is the
Women’s Health Initiative (WHI) (see Women’s
Health Initiative: Statistical Aspects and Selected
Early Results). This study in postmenopausal women
was started in 1992, and includes four clinical trials
with a partial factorial design. Two trials, in women
with and without a uterus, randomized participants
to hormone replacement therapy (combined estrogen
and progesterone in women with a uterus and estro-
gen alone in women without a uterus) or placebo
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to test whether coronary heart disease and other
cardiovascular diseases and hip and other fractures
could be reduced. A third trial of a low-fat eating
pattern versus usual dietary advice was designed to
see if breast cancer, colorectal cancer, and coronary
heart disease could be reduced. Subjects could enter
both a hormone replacement trial and the diet trial.
The fourth trial of the WHI randomized women to
calcium and vitamin D supplementation or placebo
to see if hip and other fractures and colorectal cancer
could be reduced. To enter the calcium and vitamin
D supplementation trial, a subject had to be enrolled
in either one of the hormone replacement therapy tri-
als or the diet trial. In addition, a large observational
study component was conducted along with the clin-
ical trial [74].

The WHI is notable for several reasons. First, it is
a very large undertaking, with approximately 68 000
women in one or another of the trials. Second, a par-
tial factorial design was employed and the trials are
treated as independent trials. Third, the observational
component has over 93 000 women, providing con-
siderable information along with the trial. Fourth, a
trial of such complexity and societal import requires
careful monitoring of the many endpoints of inter-
est. The statistical stopping rules for the hormone
replacement trial not only monitored the primary
and secondary endpoints, but also considered adverse
events. An overall measure of risk and benefit was
also assessed [40].

The first results from the WHI were published in
2002. The hormone replacement trial in women with
an intact uterus was stopped early due to an early
increase in breast cancer, the primary adverse event.
Somewhat surprisingly, the combination of estrogen
and progestin not only led to an expected increase
in breast cancer and reduction in bone fractures, it
caused an increase in cardiovascular disease [75].
This last finding was contrary to expectation based
on many epidemiology studies, showing the hazards
of relying only on observational studies. In 2004,
the WHI trial of estrogen-alone, in women who had
had a hysterectomy, was also stopped ahead of sched-
ule. This was a more difficult decision. The study
showed the expected reduction in bone fractures, and
there was an unexpected non-significant trend in the
direction of fewer cases of breast cancer. Impor-
tantly, however, estrogen increased the risk of stroke
and did not reduce the risk of coronary heart dis-
ease [73].

Summary

This review of NHLBI-sponsored multicenter trials
in heart disease illustrates some design and biosta-
tistical advances that selected trials have developed
or used effectively to answer important public health
questions. Many of the design, organizational charac-
teristics, and methods for monitoring modern clinical
trials were implemented as a result of the Greenberg
Report and were first used in the CDP. While more
recent studies employed more efficient organizations,
newer designs, and newer monitoring guidelines, the
genesis of multicenter clinical trial practice in heart
disease was outlined in the 1960s and that early struc-
ture has endured the test of time.
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The Department of Veterans Affairs (VA) is in a
unique position in the US, and perhaps the world,
in conducting multicenter clinical trials. This is
due to several factors: (1) its network of 172 med-
ical centers geographically dispersed throughout the
country, under one administrative system; (2) a ded-
icated group of talented physicians and other health
professionals serving at these medical centers; (3) a
loyal and compliant patient population of nearly four
million veterans; (4) a system of experienced coordi-
nating centers that provide biostatistical, data process-
ing, pharmacy and administrative support; and (5) a
research service that recognizes the uniqueness and
importance of the program and strongly supports its
mission. The VA has conducted multicenter clinical
trials for more than half a century, beginning with its
first trial, which was organized in 1945 to evaluate
the safety and efficacy of chemotherapeutic agents for
tuberculosis. This article describes the history of the
program, its organization and operating procedures,
some of its noteworthy trials, and current challenges
and opportunities.

History of the Cooperative Studies
Program (CSP)

The first cooperative clinical trial conducted by the
VA was a joint study with the US Armed Forces to
evaluate the safety and efficacy of chemotherapeu-
tic agents for tuberculosis. Drs John B. Barnwell and
Arthur M. Walker initiated a clinical trial to eval-
uate various drugs in the treatment of tuberculosis,
including the antibiotic streptomycin [3, 48]. The
challenge of caring for 10 000 veterans suffering from
the disease following World War II was the impetus
for the study. Not only did the results revolution-
ize the treatment of tuberculosis, they also led to the
development of an innovative method for testing the
effectiveness of new therapies – the cooperative clin-
ical trial.

A VA Program for conducting cooperative studies
in psychiatry was started in 1955 and supported
by a newly developed Central Neuropsychiatric

Research Laboratory at the Perry Point, Maryland VA
Medical Center (VAMC). This Program emphasized
the design and conduct of randomized trials for
the treatment of chronic schizophrenia. Trials were
completed evaluating the efficacy of prefrontal
lobotomy [2], chlorpromazine and promazine [8],
phenothiazine derivatives [10], other psychotropic
drugs [9, 31], the reduction or discontinuation
of medication [6], the combination of medication
and group psychotherapy [20], brief hospitalization
and aftercare [7], the need for long-term use
of antiparkinsonian drugs [30], and intermittent
pharmacotherapy [43].

Noteworthy VA cooperative clinical trials in other
disease areas were started in the late 1950s and
1960s. A VA cooperative study group on hyperten-
sion was started in the 1950s (and still exists today).
This group was the first to show that antihyper-
tensive drug therapy reduces the long-term morbid-
ity and mortality in patients with severe [54] and
moderate [55] elevations of blood pressure. Other
areas researched by the early VA cooperative stud-
ies included: use of long-term anticoagulants after
myocardial infarction; lipid lowering drugs to pre-
vent myocardial and cerebral infarction; treatment
of gastric ulcer disease; efficacy of gamma globu-
lin in posttransfusion hepatitis; analgesics to reduce
postoperative pain; surgical treatment of coronary
artery disease; the effect of portal caval shunt in
esophageal varices; and the effects of radical prosta-
tectomy, estrogens, and orchiectomy in the treatment
of prostate cancer.

In 1962, the VA developed a concept, novel in
Federal Government medical research programs at
that time, of providing its investigators access to tech-
niques and specialized help and information essen-
tial to their research. Four regional research sup-
port centers were established: the Eastern Research
Support Center at the West Haven, CT VAMC;
the Midwest Research Support Center at the Hines,
IL VAMC; the Southern Research Support Cen-
ter at the Little Rock, AR VAMC; and the West-
ern Research Support Center at the Sepulveda, CA
VAMC (see Data Management and Coordina-
tion). Individual investigators were assisted in such
areas as research design, statistical methods, data
management, computer programming, and biomed-
ical engineering. The early VA cooperative stud-
ies were coordinated by VA Central Office staff in
Washington, DC, by these regional research support
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centers, and by contracts with university coordinat-
ing centers. The program was led by Mr Lawrence
Shaw.

Beginning in 1972, a special emphasis was placed
on the CSP in the VA’s Medical Research Ser-
vice and its budget was quadrupled over the next
decade. Under the leadership of James Hagans, MD,
PhD, the program’s current organization and struc-
ture were developed and codified in the Coopera-
tive Studies Program Guidelines [1]. This included
the establishment of four statistical/data process-
ing/management coordinating centers and a research
pharmacy coordinating center solely dedicated to
conducting cooperative studies; central human rights
committees attached to each of the statistical coordi-
nating centers; a standing central evaluation commit-
tee for the review of all new proposals for VA coop-
erative studies and all ongoing studies every three
years; and clearly defined procedures for the plan-
ning, implementation, conduct, and closeout of all
VA cooperative studies. The Central Neuropsychiatric
Research Laboratory at the Perry Point, MD VAMC;
the Eastern Research Support Center at the West
Haven, CT VAMC; the Midwest Research Support
Center at the Hines, IL VAMC; and a new center
at the Palo Alto, CA VAMC were established as the
four new VA Cooperative Studies Program Coordi-
nating Center (CSPCCs). The Cooperative Studies
Program Clinical Research Pharmacy Coordinating
Center (CSPCRPCC) was established at the Wash-
ington, DC VAMC, but later relocated to the Albu-
querque, NM VAMC in 1977.

Daniel Deykin, MD was the first person to head
simultaneously the VA research programs both in
Health Services Research and Development and the
CSP, from 1985 to 1996. He took advantage of this
opportunity to promote the development of a series
of multicenter clinical trials in the organization and
delivery of health services. These trials represented
unique challenges in design and conduct. Some of
these trials have recently been completed and are in
the process of being published [25, 44, 57].

In 1996, John Feussner, MD, MPH was appointed
as the VA’s Chief Research & Development Officer,
and simultaneously assumed leadership of the CSP.
Up until the time Dr Feussner was appointed, the
VA Research Service was composed of three major
research programs – Medical Research (of which the
CSP was a part), Rehabilitation Research & Develop-
ment, and Health Services Research & Development.

Dr Feussner moved the CSP out of the VA Medi-
cal Research Service and elevated the Program to an
equal level with the three other major VA research
programs. New emphases brought to the Program by
Dr Feussner include: initiation of a strategic plan-
ning process; more integration and interdependence
of the coordinating centers; institution of good clin-
ical practices and standard operating procedures at
the coordinating centers; pharmaceutical manufac-
turing; experimentation to improve the process of
informed consent [32]; educational programs in clin-
ical research for VA investigators; partnering with
industry, National Institutes of Health (NIH), and
international clinical trials groups; the development
of three new Epidemiology Research and Information
Centers at the VAMCs in Seattle, WA, Boston, MA,
and Durham, NC [5]; and Intranet and Internet com-
munications. The strategic planning process initiated
in 1997 defined the vision, mission, and specific goals
for the Program (Table 1).

Organization and Functioning of the CSP

This section describes how a VA cooperative study
evolves and the support provided by the VACSP.

Table 1 Vision/mission/goals of the VACSP

Vision
• The CSP is a premier research program

conducting multicenter studies with world-wide
impact on health care

Mission
• To advance the health and care of veterans

through education, training, and collaborative
research studies that produce innovative and
effective solutions to national healthcare problems

Goals
• To enhance the proficiency of CSP staff and CSP

partners (chairpersons, participating investigators)
in the conduct of multicenter trials

• To enhance the consistency of management
support for the CSP

• To increase the flow of new research ideas for
cooperative studies

• To increase the application of research products
into clinical practice

• To enhance the interdependence of the CSP
coordinating centers

• To improve the capabilities of dissemination of
research findings
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Figure 1 Development of a VA cooperative study

These aspects of the Program have been reported
previously [24, 27, 28].

Planning Request

Initiation of a planning request through the evaluation
phase is outlined in Figure 1. The VA Research Pro-
gram, including the CSP, involves strictly intramural
research. To receive VA research funding, the inves-
tigator must be at least five-eighths time VA. One
of the strengths of the CSP is that most of its stud-
ies are investigator-initiated. The research questions
come from investigators throughout the VA health
care system who are on the front lines in providing
health care for veterans.

To start the process, the investigator submits to VA
Headquarters a 5–10 page planning request outlining
the background of the problem, the hypothesis, a brief
overview of the design, and anticipated size of the
study. The planning request is given a CSP number
to aid in tracking the study through its evolutionary
phases. The planning request is sent to four or five
independent experts in the field who initially judge
the importance and feasibility of the study. If this
review is sufficiently positive, the study is put into
planning and assigned to one of the CSPCCs (and
the CSPCRPCC if it involves drugs or devices) for
development of the full proposal.

This process has evolved to satisfy two important
needs. First, the CSP recognizes that the ability to



4 Cooperative Studies Program, US Department of Veterans Affairs

come up with a good idea needing rigorous test does
not necessarily carry with it the ability to pull together
all the expertise necessary to plan a clinical trial. This
was especially true in the early days, when “trialists”
were few and far between, and clinical researchers
seldom had training in modern statistical trials design.
So it is important to provide access to this expertise
early in the planning process. However, such aid is
expensive and scarce, so it is important not to waste it
on ideas that do not show promise. Thus, the second
need is for an initial concept review. This has proved
to be a very efficient allocation method; about 70%
of all initial proposals are not approved to go on to
planning, and of the surviving 30%, about two-thirds
complete the planning process. Of those that are suc-
cessfully planned, about three-quarters are approved
and funded. Thus, the method helps to avoid the
problem of insufficiently developed protocols, while
conserving the scarce resources of planning.

Planning Phase

Once the study is approved for planning, the resources
of the CSPCCs are applied to the development of
the full proposal. Within the coordinating centers,
the study is assigned to a specific biostatistician and
clinical research pharmacist. These individuals work
with the principal proponent in nominating a plan-
ning committee which is reviewed and approved by
the CSPCC and CSP Directors. The planning com-
mittee generally consists of the principal proponent,
study biostatistician, study clinical research pharma-
cist, CSPCC Director, two or three potential partici-
pating site investigators, and outside consultants, as
needed. The planning committee is funded for two
planning meetings. At the first meeting, the basic
design features of the study are agreed upon (hypoth-
esis, patient population, treatment groups, primary
and secondary endpoints, pharmacologic and drug
handling issues, baseline and follow-up data collec-
tion and frequency, treatment effect size, sample size,
number of sites, duration of study, publication plan,
and budget). The full proposal is then written, and at
the second planning meeting a draft of the protocol is
fine-tuned. Development of a full proposal generally
requires six to nine months.

Evaluation Phase

The completed proposal is first reviewed by the
Human Rights Committee (HRC) attached to the

CSPCC. This committee is comprised of scientists
and laypeople from the community who review pro-
posals for all new VA cooperative studies and all
ongoing studies annually. The committee serves as
a central Institutional Review Board (IRB) for stud-
ies assigned to the CSPCC and considers such aspects
of the proposal as risks versus benefits to the patients,
patient management, burdens placed on the patients
from participation in the study, community equipoise
with regard to the treatments being compared, and
the informed consent procedures. This committee
has absolute authority over approval or disapproval
of the study. Only the HRC has the authority to
change its own decisions. The composition of the
committee follows VA regulations and is consistent
with Food and Drug Administration (FDA) guide-
lines. Minimum membership of the HRC includes
a VA chairperson, a practicing physician from the
community, a nonphysician scientist, a veteran repre-
sentative, a member of a recognized minority group,
a clergyman or ethicist, and an attorney.

If the HRC approves the study, then the proposal
is submitted to VA Headquarters for scientific review
and a funding decision. The proposal is sent to four
or five experts in the field and a biostatistician for
written reviews. All cooperative study proposals are
reviewed by a standing scientific review committee,
called the Cooperative Studies Evaluation Commit-
tee (CSEC). This committee is composed of senior
physician scientists and biostatisticians who have had
extensive experience in cooperative studies and clin-
ical trials. The CSEC meets in the spring and fall
of each year. The principal proponent and study bio-
statistician present the study to the CSEC in person
(reverse site visit), defend their proposal and answer
questions from the CSEC members. The CSEC then
goes into executive session, and decides to recom-
mend approval or disapproval of the study and, for
approvals, gives a scientific priority score, ranging
from 10 to 50 with 10 being the best score. The final
funding decision is made by the CSP Director. The
advantages of this review process are that the study
investigators have the opportunity to interact person-
ally with the review body to answer their criticisms
and concerns, and the final decision is known imme-
diately following the review and executive session.

Implementation of the Trial

Implementation and conduct of a VA cooperative
trial are outlined in Figure 2. Once the CSP Director
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Figure 2 Conduct of a VA cooperative study

approves funding, the implementation phase of the
cooperative study begins. All activities in this process
are closely coordinated by the CSPCC, CSPCRPCC
and the Study Chairperson’s Office.

The necessity for carefully controlled medical
treatment and data collection procedures for the suc-
cessful conduct of multicenter clinical trials is well
recognized. Because of its administrative structure,
the VA provides an environment that is uniquely
suited to this type of research. Each participating

facility is funded by one control point for the entire
period of the study, and the VAMC system pro-
vides a structure in which a relatively high degree of
medical, scientific, and administrative control can be
exercised. This same degree of control is often more
difficult to obtain in studies that involve participating
sites from different administrative systems [27].

The CSPCC recommends funding levels and mon-
itors the performance of the individual medical cen-
ters. This information is reviewed regularly by the
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study biostatistician, center director, the Executive
Committee, and at least annually by the Data and
Safety Monitoring Board. This integrated moni-
toring of scientific, biostatistical, and administrative
aspects by the CSPCC provides a comprehensive
approach to the management of multicenter clinical
trials, in contrast to other clinical trials biostatistics
groups that are responsible only for the analytical and
data processing aspects and exercise no administra-
tive control [27].

The Research and Development Committee and
the IRB of each participating medical center must
review and approve a cooperative study before it can
be implemented at that facility. They are able to make
modifications to the prototype consent form approved
by the CSPCC HRC, but all local modifications must
be reviewed and approved by the CSPCC.

Included in the implementation component of a
cooperative study is the establishment of the Exec-
utive Committee and Data and Safety Monitoring
Board (DSMB) who share responsibility for the con-
duct and monitoring of the cooperative study in the
ongoing phase. The Executive Committee, which
often includes several members of the original Plan-
ning Committee, consists of the study chairperson
who heads the committee, the study biostatistician,
the clinical research pharmacist, two or three par-
ticipating investigators, and one or two consultants.
This committee is responsible for the detailed opera-
tional aspects of the study during its ongoing phase
and ensures adherence to the study protocol, includ-
ing aspects relating to patient recruitment, treatment,
laboratories, data collection and submission, biosta-
tistical analysis, data processing, subprotocols and
reporting. The Executive Committee sometimes rec-
ommends probation or termination of sites whose
performance is poor.

The DSMB consists of five to eight individuals
who have not been involved in the planning and
development of the proposal, and includes one or
two biostatisticians and two or more subject-matter
experts in the field(s) of the cooperative study. This
committee is charged with the responsibility of mon-
itoring and determining the course of the ongoing
study and considers such aspects as patient accrual;
performance of the participating sites, CSPCC, and
chairperson’s office; and safety and efficacy data.
Perhaps a unique feature of the CSP is that the
CSPCC HRC also reviews each ongoing study annu-
ally and receives the same data reports as presented

to the DSMB. The study chairperson, participating
site investigators, and other members of the Executive
Committee are masked to the outcome data during the
course of the study. Only the DSMB, HRC, CSPCC
and CSPCRPCC see the outcome data during the con-
duct of the study.

The fourth body involved in the conduct of
the cooperative study is the Study Group, which
consists of all participating investigators, the study
chairperson (co-chairpersons), biostatistician, clinical
research pharmacist, and consultants. This body
meets once annually to consider the progress of the
study and to resolve problems that may arise at the
participating centers.

Within the CSPCC, the biostatistician heads a
team of administrative, programming and data man-
agement personnel that provides regular monitoring
of the study. This team develops an operations man-
ual (see Clinical Trials Protocols), in conjunction
with the chairperson’s office, to train study per-
sonnel in the day-to-day conduct of the trial. They
also develop a computer data management system to
edit, clean, and manage the study data. Automated
query reports are generated by the computer system
and sent to the participating sites for data checking
and cleaning. Statistical progress reports are pub-
lished by the CSPCC and distributed to the Study
Group, Executive Committee, and DSMB at sched-
uled meetings.

An initial kickoff meeting is held before the
study starts to train site personnel in the conduct
of the study. Annual meetings are held thereafter
to refresh training and discuss issues in the conduct
of the study. Frequent conference calls of the study
committees are also used to facilitate communication
and training.

Another unique aspect of the CSP is the CRPCC,
which operationalizes the pharmaceutical aspects of
the clinical trials (Table 2). In the planning stages of
the study the clinical research pharmacist designs the
drug or device treatment and handling protocol and
works with the study chairperson and pharmaceutical
and device industries to purchase or obtain donations
of clinical supplies for the study. The CRPCC coor-
dinates the development of appropriate drug dosage
formulations and the manufacture of study drugs or
devices. In the event that drug donations are not pos-
sible, the CRPCC has the expertise and capability to
provide the in-house manufacture of active drugs and
matching placebo. Drugs for all cooperative studies
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Table 2 Unique functions and roles of the CSP phar-
macy coordinating center

• Design of a drug or device handling protocol for
each study involving drugs or devices

• Preparation and submission of INDAs or IDEs
• Obtaining donations or purchase of clinical

supplies for study
• Coordination of appropriate drug dosage

formulations and manufacture of study drugs or
devices

• Quality control testing of drugs
• Development of blinding methods
• Storage, packaging and shipment of clinical

supplies to pharmacies at the participating sites
• Computerized drug inventory and information

system to track and replenish supplies at site
pharmacies

• Monitoring adverse medical events and reporting
to appropriate authorities

• Monitoring, auditing and education services to
ensure sites are in compliance with GCP

• Preparation of final drug/device accountability
reports

must pass the testing of the CRPCC’s quality control
testing laboratory. The CRPCC also assesses study
product blinding methods.

At the CRPCC, study medications are stored in
an electronically controlled and secured environment.
The CRPCC customizes labels and packages all study
medications, which are centrally distributed to the
pharmacies at the participating sites. In doing so, the
CRPCC provides a computerized drug inventory and
information system for complete accountability of
clinical supplies. This includes automated study sup-
ply tracking and replenishment systems for maintain-
ing adequate study supplies at participating sites as
well as automated telephone randomization and drug
assignment systems. The clinical research pharmacist
is then able to direct and monitor the study prescrib-
ing and dispensing activities as well as to monitor the
compliance with the study protocol treatments at the
participating sites. At the end of the study the CRPCC
directs the retrieval and disposition of unused clinical
supplies and prepares a final drug/device accountabil-
ity report.

The clinical research pharmacist also works
closely with the study chairperson and the
manufacturers to prepare, submit, and maintain
Investigational New Drug Application (INDAs) or
Investigational Device Exemption (IDEs), which

includes preparing and submitting annual and special
reports to the FDA. Along with this responsibility,
the clinical research pharmacist coordinates the
monitoring and reporting of all adverse medical
events to study management, FDA and associated
manufacturers. Recently the CRPCC established a
central Good Clinical Practices (GCP) Assurance
Program. The Program provides monitoring, auditing,
and educational services for all VA cooperative
studies to ensure that the participating sites are in
GCP compliance. If needed, the Program is capable
of providing full GCP monitoring for studies under
regulatory (FDA) scrutiny.

Final Analysis and Publication Phase

Upon completion of patient intake and follow-up,
the study enters the final analysis and publication
phase. If the Executive Committee, the CSPCC, and
the study biostatistician have performed their tasks
well, this phase should be quite straightforward.
It requires an updating of all study files and the
processing and analysis of the complete data set.
The interim statistical analyses that were run during
the ongoing phase of the study are now executed
on the complete data. In addition, some analyses
may point to additional questions that would be of
interest; however, it is anticipated that the majority of
final analyses and interpretation of results will occur
within 6 to 12 months after study termination. All
publications emanating from the cooperative study
must be approved by the Executive Committee.
Although the responsibility of the DSMB terminates
at the end of data collection, the Board is at times
requested to review manuscripts and give advice prior
to submission for publication [27].

Usually each trial generates a number of
manuscripts. The Executive Committee establishes
priorities for statistical analyses and manuscript
development and appoints writing committees
composed of members of the Executive Committee
and Study Group for each paper. Authorship
of the main paper(s) usually consists of the
chairperson, study biostatistician, study clinical
research pharmacist, members of the Executive
Committee, and, in some cases, the participating site
investigators. Secondary papers are often written by
other members of the Executive Committee and site
investigators.
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The CSPCC serves as the final data repository for
the study. The study database, protocol, operations
manuals, forms, study correspondence and interim
and final statistical progress reports are archived at
the CSPCC.

Role of the Biostatistician and Pharmacist
in the CSP

One of the unique features of the CSP is that the
biostatistician at the CSPCC plays a major organiza-
tional, fiscal, and administrative role, in addition to
the usual technical role. In recent times, as the admin-
istration of studies has become more complex, the
biostatistician may be assisted by a study coordinator
but, as in the past, the greater part of the burden of
management falls on the biostatistician. In contrast
to the pharmaceutical industry and to many Contract
Research Organization (CROs), the biostatistician is
responsible for monitoring site adherence to proto-
col, recruitment, and many other aspects of the study
conduct. In addition, the study pharmacist plays a key
role in monitoring adverse effects, maintaining sup-
plies of the study drug, regulatory reporting, and the
like. In a sense, the study team is deployed to support
the investigators, but has independent authority and
responsibility as well.

One of the strengths of this approach to study
management is that it is possible to guarantee some
degree of uniformity in the conduct of the studies,
independent of the varying managerial skills and
style of the study chairs. The biostatistician and
pharmacist, together with the coordinating centers of
which they are a part, provide institutional memory
and continuity. Their central position on the study
teams reinforces the key idea that the studies mounted
by the VACSP are the joint responsibility of the
program and the investigators. Such an intramural
program can only succeed on a limited budget if
issues of cost and complexity are kept to the forefront
during the planning process. A consequence that is
easily observed is that the typical CSP trial is a lean,
focused attack on a single important clinical question,
rather than a broad-based research project with many
interwoven strands of investigation.

In contrast to the much larger NIH clinical tri-
als efforts, which are organized along disease lines,
the CSP biostatisticians and CSPCCs are general-
ists, doing studies in all areas of medicine with

relevance to the VA. Along the way, some centers
have developed some special experience in certain
areas, but there has never been a “heart” center
or a “cancer” center. Because the CSP has such a
broad medical purview, but a relatively low vol-
ume of studies, it has not made economic sense
to specialize. The scarce resource of statistical and
data management expertise has needed to be allo-
cated efficiently to support the proposals that were
emerging from the field. Since VA resources have
followed the strength of the proposals rather than dis-
ease areas, the CSPCCs have not specialized to any
large degree.

While there are undoubted advantages to special-
ization, as shown by the contributions made by the
National Cancer Institute (NCI) (see Cooperative
Cancer Trials) and the National Heart, Lung, and
Blood Institute (NHLBI) (see Cooperative Heart
Disease Trials) statisticians to the statistical science
of their disease areas, there are some advantages
to generalizing. In particular, it has been possi-
ble to transplant methods and lessons learned from
well-studied areas such as cancer and heart dis-
ease, to other areas such as psychopharmacology,
device research, health services research, and trials
of surgical procedures. The absence of disease-area
“stovepiping” has facilitated a high general level of
sophistication in the conduct of trials, with techniques
travelling readily across borders.

This cross-pollination has also been facilitated by
the structure of the VACSP scientific peer review. The
standing committee that reviews and recommends
studies for funding mixes disciplines with com-
mon expertise in multisite studies. Ad hoc reviewers
provide the crucial discipline-specific input to the
committee, but the same committee may review a
heart failure trial in the morning and a psychophar-
macology trial in the afternoon. The result is a high
degree of uniformity in the standards for the research
across disease areas, and this has been an enduring
strength of the program.

Ongoing and Completed Cooperative
Studies (1972–2000)

One hundred and fifty-one VA cooperative studies
were completed or are currently ongoing in the period
1972–2000. Table 3 presents the health care areas
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Table 3 Health care areas of ongoing and completed VA
cooperative studies (1972–2000)

Number of Percent of
Health care area studies studies

Cardiology/cardiac surgery 24 15.9
Hypertension 15 10.0
Gastrointestinal 14 9.3
Substance abuse 11 7.3
Mental health 10 6.6
Infectious diseases 9 6.0
Cancer 8 5.3
Dental 6 4.0
General surgery/anesthesia 6 4.0
Cerebrovascular 5 3.3
Peripheral vascular 5 3.3
Military service effects 4 2.6
Ambulatory care 4 2.6
Epilepsy 4 2.6
Genitourinary 4 2.6
Diabetes 3 2.0
Renal 3 2.0
Sleep 3 2.0
Pulmonary 2 1.3
Hematology 2 1.3
Hearing 2 1.3
One each in seven areasa 7 4.7
Total 151 100.0

aAnalgesics, arthritis, geriatrics, hospital-based home care,
laboratory quality control, computerized neuropsychological
testing, ophthalmology

of these studies. These areas are generally reflec-
tive of the major health problems of the US vet-
eran population, consisting mainly of middle-aged
and senior adult males. Studies in cardiology and
cardiac surgery represent 15.9% of the 151 stud-
ies, followed by hypertension (10.0%), gastrointesti-
nal diseases (9.3%), substance abuse (7.3%), mental
health (6.6%), infectious diseases (6.0%), and can-
cer (5.3%).

There are a few notable disease areas that are
prevalent in the VA population and yet might
be considered underrepresented in the CSP. These
include diabetes (2.0%), renal diseases (2.0%), pul-
monary diseases (1.3%), hearing diseases (1.3%),
arthritis (0.7%), and ophthalmologic diseases (0.7%).
Because the CSP mainly relies on investigator-
initiated studies, the conclusion might be drawn that
these subspecialties have underutilized the Program.
Although studies on effects of military service rep-
resent only 2.6% of the 151 studies, studies listed
in other categories have investigated treatments for

service-connected illnesses (e.g. posttraumatic stress
disorder studies are categorized under mental health,
and the substance abuse studies could be considered
consequences of military service).

Table 4 briefly summarizes some of the notewor-
thy VA cooperative clinical trials that were completed
in the 1980s and 1990s. Many of these trials resulted
in advances in clinical medicine that could immedi-
ately be applied to improve the health care of US
veterans and the US population in general.

Current Challenges and Opportunities

Although the VACSP has had numerous past suc-
cesses, it faces many challenges and opportunities
in the future. These include: (1) changes in the VA
health care system and their effects on research;
(2) nationwide concerns about violations of patients’
rights in research; (3) increasing the efficiency and
interdependence among the coordinating centers and
standardizing procedures; (4) ensuring the adequacy
of flow of research ideas and training of investiga-
tors; and (5) partnering with industry, other federal
agencies, nonprofit organizations, and international
clinical trial groups to enhance the capacity of the
Program.

Changes in the VA Health Care System

The VA health care system has been undergoing sub-
stantial changes that could adversely affect research.
In 1996, the VA reorganized into 22 geographi-
cally defined Veterans Integrated Service Networks
(VISNs). Much of the central authority, decision-
making, and budgeting once performed in VA Head-
quarters in Washington, DC, has been delegated to
the 22 VISN offices. Within the VISNs, administra-
tive and health care services and in some cases entire
VAMCs are being consolidated. The largest compo-
nent of the VA patient population, the World War II
veterans, is rapidly declining. Health care personnel
in some VISNs are experiencing reductions in force,
with the result that the remaining personnel have
limited time to devote to research. These factors may
already be adversely affecting the Program’s ability
to meet recruitment goals in ongoing trials [23].

Concerns About Patients’ Rights in Research

The nature of the veteran population treated at VA
hospitals raises some special issues in human rights
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Table 4 Noteworthy VA cooperative studies

• 80% of strokes in patients with atrial fibrillation can be prevented with low-dose warfarin [15]
• Carotid endarterectomy is effective in preventing strokes in symptomatic and transient

ischemic attacks in asymptomatic patients [26, 39]
• Aggressive treatment of moderate hypertension works well in elderly patients [19, 37]
• Age and racial groupings can be used to optimize selection of first line drugs in hypertension

[38]
• Coronary artery bypass surgery prevents mortality in patients with left main disease and in

high-risk patients without left main disease [42, 49]
• Low dose aspirin reduces heart attacks and death in 50% of patients with unstable angina [34]
• Vasodilators and angiotensin converting enzyme inhibitors prevent deaths in patients with

congestive heart failure [12, 13]
• Low dose aspirin started 6 hours after coronary artery bypass surgery and continued for one

year prevents the occlusion of the bypass grafts [17, 18]
• Mechanical artificial aortic heart valves prolong survival more than bioprosthetic aortic heart

valves [22]
• A conservative, ischemia-guided strategy is safe and effective for management of patients

with non-Q-wave myocardial infarction [4]
• Digoxin does not reduce mortality but does reduce hospitalizations in patients with congestive

heart failure [50]
• The rate of coronary events (myocardial infarction or death) in men with coronary heart

disease can be reduced by 22% with Gemfibrozil therapy, which increases high density
lipoprotein cholesterol and lowers triglyceride levels [45]

• Progression of human immunodeficiency virus (HIV) infection to full blown acquired
immune deficiency syndrome (AIDS) can be delayed with the drug zidovudine [21]

• Steroid therapy does not improve survival of patients with septic shock [52]
• Patients with advanced laryngeal cancer can be treated with larynx-sparing chemotherapy and

radiation compared with standard surgical removal of the larynx and have equivalent
long-term survival [14]

• The drug Terazosin is more effective than Finasteride in relieving the symptoms of benign
prostatic hyperplasia [33]. Transurethral resection of the prostate is an effective operation, but
Watchful Waiting can be effective in many patients [56]

• An implantable insulin pump is more effective than multiple daily insulin injections in
reducing hypoglycemic side-effects, and enhancing quality of life in adult-onset Type II
diabetes mellitus [46]

• Multi-channel are superior to single-channel cochlear implants in restoring hearing to patients
with profound hearing loss [11]

• Sclerotherapy is an effective treatment for esophageal varices in patients who have had prior
bleeds but not in patients without prior bleeds [51]

• Antireflux surgery is more effective than medical therapy in patients with complicated
gastroesophageal reflux disease [47]

• Severely malnourished patients benefit from pre-operative total parenteral nutrition but mildly
malnourished patients do not [53]

• Clozapine is a cost-effective treatment for patients with refractory schizophrenia who have
high hospital use [44]

• Erythropoietin administered subcutaneously compared with intravenously can significantly
reduce the costs of hemodialysis [29]

• Use of intrapleural tetracycline reduces recurrence rate by 39% in patients with spontaneous
pneumothorax [35]

• Rapid access to high quality primary care for patients with severe chronic illnesses greatly
improves patient satisfaction with care but may lead to an increase in hospital readmissions
[57]

• Levomethadyl acetate (LAAM) is a safe and efficacious drug to use for heroin addiction.
Studies were used to gain FDA approval for LAAM as treatment for heroin addiction [16, 36]

• Systemic corticosteroids improve clinical outcomes up to three months in patients with
chronic obstructive pulmonary disease [40]
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protections (see Medical Ethics and Statistics). The
VA treats about four million veterans, who tend to be
less well off than the average veteran (or the average
citizen). They are often more severely ill than non-VA
patients with the same age and diagnosis, and often
have multiple co-morbidities. They are on average
more dependent on the VA for their health care than
the typical non-VA patient is on his or her usual health
care provider. Against this background we note the
extraordinary willingness of the veteran patient to
engage in research, trusting the clinical researcher
to an astonishing degree. Such trust demands an
extraordinary level of protection in response.

The CSP has instituted a unique framework of
human subjects’ protections, going beyond the usual
procedures that other federal sponsors and drug
companies require. This begins in the planning stage,
when each proposal must undergo a rigorous review
by the HRC attached to the coordinating center.
It typically meets for several hours over a sin-
gle protocol, reviewing it in fine detail. The pro-
tocol cannot go forward without their independent
approval.

The CSP also requires the usual individual site
IRB approval, and other reviews that are mandated
at the local site, before a study can start at a site.
The ongoing IRB reviews at the local sites (annually,
or more often, as stipulated in the initial review)
are monitored by the CSP staff. As has become
standard in multisite trials, each CSP study has its
own independent DSMB that meets at least annually
to review the progress of the study.

The unique CSP innovation to this process is the
joint review by the HRC and DSMB. Thus, after
every DSMB meeting, the two groups meet to review
and recommend, with the same basis of information
on study progress. The CSP has found that the HRC
is able to hear the recommendation of the DSMB,
which is typically heavily weighted with subject-
matter expertise, and interpret it in the light of the
other perspectives they bring. The CSP believes that
this has been a successful experiment in resolving
the knotty issue of how to obtain full and informed
ongoing review of studies where investigators are
kept blind, and site-level information must be far
less informative than the big picture presented to
the DSMB. We believe that such joint reviews add
considerably to the level of protection of human
subjects.

In addition, members of the central HRCs con-
duct three site visits per year during which patients
are interviewed about their participation in the trials.
Thus, the Program as a whole conducts 12 such visits
per year. The Albuquerque auditing group periodi-
cally site visits VAMCs participating in cooperative
studies and performs audits to ensure that the sites are
complying with GCP guidelines. The CSPCCs also
receive copies of consent forms from all patients in
all of the trials as further evidence of proper consent
procedures.

The VA recently established its own office to
oversee the protection of patients’ rights in VA
research, performing functions similar to those of the
Office of Protection from Research Risks (OPRR) of
the Department of Health and Human Services. IRBs
at VAMCs currently are required to be accredited by
an external, non-VA entity.

In addition to these standard procedures, followed
in all studies, the CSP has recognized two other
areas of human subjects’ protection in which it can
make a contribution. The Enhancing the Quality of
Informed Consent (EQUIC) program [32] is designed
to institutionalize the process of testing innovations
in methods for obtaining informed consent. It piggy-
backs tests of new methods on ongoing CSP studies,
and provides a centralized assessment of the quality
of informed consent encounters (by remote telephone
interview of patients). In the spirit of EQUIC, a
substudy is being conducted in one ongoing VA coop-
erative study to evaluate the utility of an informed
consent document developed by a focus group of sub-
jects eligible for the trial [41].

The second topic that the CSP has engaged
are the ethical, legal, and social implications of
genetics research, specifically of deoxyribonucleic
acid (DNA) banking with linked clinical (phenotype)
data. The CSP has begun a project to provide
uniform methods for obtaining and banking such
samples.

Steps to ensure human subjects’ protection in VA
cooperative studies are listed in Table 5.

Efficiency and Interdependence of the CSPCCs

The VACSP recently contracted with an outside
vendor to help develop standard operating procedure
(SOPs) for the CSPCCs. Twenty-two SOPs were
developed in the areas of administration, planning
and implementing clinical trials, data management,
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Table 5 Steps to ensure human subjects’ protection in
the VACSP

• Investigator’s integrity
• Development of proposal through collaboration

between investigators and CSPCCs
• HRC review of proposal initially
• Site Monitoring and Review Team (SMART)

audit of consent form contents
• CSEC review of proposal
• Initial review of proposal by participating site

R&D and IRB
• Annual central reviews of trial by DSMB and

HRC
• Annual reviews of study by local R&D committee

and IRB
• SMART audit of participating sites
• HRC site visits and interviews of study patients
• Receipt of copies of patient consent forms by

CSPCC, local research offices, and local
pharmacies

• Implementation of SOPs and good clinical
practices

• Compliance with all FDA and VA regulations
• Innovative studies on improving informed consent

study closeout, and study oversight (Table 6). By
standardizing among and within the coordinating
centers certain procedures that are performed in every
study, we will achieve an even higher level of support
to all studies more efficiently than previously done.
The SOPs will also enable the CSPCCs to be in better
compliance with GCP principles and International
Conference on Harmonization (ICH) guidelines.

Since 1996, the Directors of the Program and cen-
ters have been meeting as a group semiannually to
identify current and future challenges and oppor-
tunities, and to develop annual strategic plans to
respond to these challenges and opportunities. This
has enhanced the development of mutual projects
which the centers can work on together to further
the goals of the organization as a whole, such as the
development of a Clinical Research Methods Course,
a one-year sabbatical program for clinical investiga-
tors to enhance their training and skills, and SOPs for
the central HRCs.

Ensuring the Adequacy of Flow of Ideas and
Training of Investigators

In recent years, the CSP has developed several edu-
cational opportunities to help train VA investigators

Table 6 Recently adopted SOPs for the VACSP

Administration

• Preparing, issuing and updating SOPs
• Training and training documentation

Planning and implementation of clinical trials

• Developing, approving and amending protocols
• Study/training meetings
• Preparing and approving operations manuals
• Study initiation
• Developing and approving case report forms
• Creating and validating data entry screens and

programs
• Preparing, documenting and validating data

checking programs
• Preparing, documenting and validating statistical

programs
• Developing and conducting statistical analyses

Handling data from clinical trials

• Randomization, blinding and unblinding
• Central monitoring
• Case report form flow and tracking
• Data entry and verification
• Data cleaning
• Reporting adverse events

Study closeout

• Archiving study documentation
• Study closeout

Study oversight

• Assuring site R&D and IRB approvals
• DSMB
• HRC

in clinical research and to encourage utilization of
the Program to answer important clinical questions.
These include a five-day course in clinical trials and
sabbatical and career development programs focused
on clinical research methodology.

The five-day course is taught once each year and
involves 10 faculty members (two from each of the
five coordinating centers) and 60 VA investigators
selected from applications from throughout the coun-
try. The course consists of 15 lecture/discussion ses-
sions on various aspects of designing a clinical trial,
interspersed with breakout sessions during which the
students are divided into five planning committees to
design a clinical trial. On the last day of the course,
the student groups take turns in presenting their clin-
ical trials and receiving critiques from the audience.
The course has been taught twice and has received
excellent feedback from the students.
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The CSP Career Development Program provides
protected time to clinician–investigators for a period
of concentrated clinical research activity. The objec-
tive is to build capacity in a wide geographic distribu-
tion for the Department of Veterans Affairs to conduct
clinical research in acute-care hospitals, long-term
care facilities, or outpatient settings. The Program
is designed to foster the research careers of clini-
cian–scientists who are not yet fully independent but
who seek to become independent clinical researchers.
The award provides three years of salary and some
supplemental research support, and the awardees are
expected to work at least part of the time at one of
the five CSPCCs or three Epidemiology Research and
Information Center (ERICs).

In 1999 CSP announced a sabbatical program for
established clinician–scientists to train at one of the
CSPCCs or ERICs for up to one year. The purpose of
the program is to support clinician–investigators who
wish to secure training time to learn about the conduct
of cooperative studies and epidemiologic research.

Partnering with Outside Organizations

The VACSP has partnered with NIH and industry for
many years in conducting multicenter clinical trials.
In recent years, a special emphasis has been placed
on partnering with outside agencies to enhance the
effect of the limited VA research funding, and these
efforts have been fruitful.

Recent examples of this partnering include: the
Digitalis in Heart Failure Trial, sponsored by the VA,
NHLBI, and Burroughs–Wellcome Company and
conducted in 302 VA and non-VA sites in the US and
Canada; a series of trials sponsored by the VA and the
National Institute of Drug Abuse (NIDA) to evaluate
new treatments for drug abuse; the Prostate Can-
cer Intervention Versus Observation Trial (PIVOT),
sponsored by the VA, Agency for Healthcare Qual-
ity and Research (AHQR) and NCI; the Beta-Blocker
Evaluation of Survival Trial (BEST), funded by the
VA, NHLBI, and industry; the Clinical Outcomes Uti-
lizing Revascularization and Aggressive Drug Eval-
uation (COURAGE) trial, supported by the VA and
10 pharmaceutical companies; the VA/National Insti-
tute of Deafness and Other Communication Disorders
(NIDCD) Hearing Aid Clinical Trial; and the Shin-
gles Prevention Study sponsored by the VA, NIH, and
a pharmaceutical company.

The VACSP has been working with the Ameri-
can College of Surgeons to promote clinical trials
evaluating new surgical operations and technologies.
This collaboration has resulted in a VA trial compar-
ing the outcomes of laparoscopic vs. open tension-
free inguinal hernia repair, a trial comparing open
tension-free hernia repair vs. watchful waiting funded
by AHQR, and a trial comparing pallidotomy vs. deep
brain stimulation in Parkinson’s Disease.

The VACSP has also issued a program announce-
ment for the development of multinational clinical
trials between the VA and the Medical Research
Councils of Canada and the UK. As the field of clini-
cal trials matures, it is likely that achievable treatment
effect sizes will decrease, necessitating larger and
larger trials, or “mega” trials. These types of collab-
orations will be important in the future, as the larger
trials will exceed the capacity of any single clinical
trials program.

Concluding Remarks

In summary, we believe that there are considerable
strengths to conducting multicenter clinical trials in

Table 7 Strengths of the VACSP

Related to VA health care system

• Large veteran population willing to participate in
research, well-represented by minority groups

• Largest integrated healthcare system in US with
172 medical centers under single administrative
system

• High-quality physician–investigators
• National administrative databases that allow for

tracking of patients
• Supportive management in VA Headquarters
• System of local research offices and IRBs at

participating sites that facilitate multicenter
research

Related to the CSP

• Quality and experience of the coordinating centers
• Well-established mechanisms for conducting

multi-site trials
• Planning process usually produces tightly focused,

cost-effective protocols
• Rigorous review process by HRC and CSEC
• Guidelines and SOPs for conducting trials
• Multiple levels of protection of research subjects
• Ability to conduct trials with high power and

generalizability, so the impact on changing health
care practices is maximized compared with other
research programs
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Table 8 Limitations of the VACSP

Related to VA health care system

• Primarily male population, limiting
generalizability of results

• Large studies in female and childhood diseases
are not possible

• Changes in the health care system, including
aging and declining of veteran population,
decentralization and consolidation of facilities

• Reduction in dedicated research time for
physician–investigators

Related to the CSP

• Long duration from submission of planning
request to publication of main results raises the
risk of study becoming outdated

• Limitation of funding
• Limited capacity to conduct mega trials within VA

system

the VA health care system, as enumerated in Table 7.
There are also some acknowledged limitations of the
Program, some of which can be addressed in the
future (Table 8).

This article has described the history, organization
and productivity of a clinical trials program designed
as an integral part of a large health care system.
The biostatistical and pharmacy positions in the
Program are ideal from the standpoint that these
people are integrally involved in the research from
beginning to end and play a major role in the conduct
of the trials. The Program is an example of how
clinician–investigators and methodologists can work
together successfully to design and conduct large-
scale clinical research.
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Copula

The term copula was introduced by Sklar [18] to
denote a bivariate distribution function with uniform
marginals. If X and Y are random variables with joint
distribution function H(x, y) and marginals F(x) =
H(x, ∞), G(y) = H(∞, y), then there exists a
copula C(u, v), uniquely determined on (Range F) ×
(Range G), such that

H(x, y) = C[F(x), G(y)] : (1)

see [18], [15], and [16]. If X and Y are independent,
C(u, v) = uv. The copula of a continuous bivari-
ate distribution is invariant under separate continuous
monotone transformations of each marginal distribu-
tion, and is maximal in the sense that any measure
of association that is invariant under all such trans-
formations, such as Kendall’s τ , or Spearman’s ρ,
depends on H only through C. If C(u, v) is a cop-
ula, then so also is C(u, v) = C(1 − u, 1 − v) + u +
v − 1: it corresponds to the distribution of (−X, −Y )
and represents the joint survivor function H(x, y) =
1 − F(x) − G(y) + H(x, y) of (X, Y ) in terms of the
marginal survivor functions F(x) = 1 − F(x) of X

and G(y) = 1 − G(y) of Y (see Survival Distribu-
tions and Their Characteristics).

In statistical work, parameterization of the joint
distribution H via distinct parameters α, β, and γ

for the marginals F and G and the copula C allows
specification of the marginals of the distributions to
be separated from specification of the dependence
structure, which is often desirable for interpretation.
However, inferences about the three parameters are
not generally orthogonal unless X and Y are actually
independent.

Frank [6] described an important subclass, called
“archimedean copulas”. These arise mathematically
as the class of associative copulas; that is those that
satisfy C[u1, C(u2, u3)] = C[C(u1, u2), u3] and have
the general form C(u, v) = φ−1[φ(u) + φ(v)], where
φ decreases monotonically with u, φ(0) = 1, and has
an increasing first derivative. Genest & MacKay [7]
discussed applications of this class in statistics. See
also [14] for applications in survival analysis, and
[10] and [1] for applications in extreme value theory.
Oakes [14] showed how many members of this class,
or more precisely of the complementary class

C(u, v) = φ−1[φ(u) + φ(v)], (2)

can arise from frailty models. Specifically, suppose
that X and Y are conditionally independent given the
value of a third, unobserved, variable W , called a
frailty, and that each follows a (continuous) propor-
tional hazards model in W , so that Pr(X > x|W =
w) = A(x)w, Pr(Y > y|W = w) = B(y)w, for some
baseline survivor functions A(x) and B(y). Then the
joint survivor function of (X, Y ) is

Pr(X > x, Y > y) = E
[
Pr(X > x, Y > y|W)

]

= E
[
A(x)W B(y)W

]

= p{− ln[A(x)] − ln[B(y)]},
(3)

where p(s) = E[exp(−sW)] denotes the Laplace
transform of the distribution of W . This is an
archimedean copula model for C with φ−1 =
p, F(x) = p{−ln[A(x)]} and G(y) = p{−ln[B(y)]}.
Important examples include the gamma frailty model
of Clayton [4] and Oakes [13], with p(u) = (1 +
u)−κ , and the positive stable model of Hougaard [11],
with p(u) = exp(−uα) (0 < α < 1).

Models of the form given in (3) are natural in
survival analysis, because of the close analogy with
Cox’s [5] proportional hazards regression model.
Clayton [4] fitted the gamma frailty model to ages
of occurrence of heart attacks in fathers and sons.
He pointed out an appealing interpretation in terms
of bivariate hazard functions. For the gamma frailty
model the ratio of the hazards at y of the conditional
distribution of Y given X = x and of Y given X > x

is the same for all points (x, y). Oakes [14] extended
this result to the general archimedean copula model,
showing that the ratio of hazards in (3) depends on
(x, y) only through H(x, y), and that this ratio of
hazards characterizes the joint distribution. Genest
& Rivest [8] explored a different characterization of
archimedean copula models using Kendall’s τ .

Bickel et al. [3, Chapter 4] discussed the challeng-
ing problems of semiparametric inference in (2) or
(3). Genest et al. [9] and Shih & Louis [17] discussed
a pseudo-likelihood approach to estimation of asso-
ciation in special cases of the model given in (2) from
censored data.

There has been little work to date on the inclusion
of observed explanatory variables (covariates) in
copula models. For frailty models such as that given
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in (2), covariate effects can be modeled either condi-
tionally on the unobserved frailty, or unconditionally;
that is, on the marginal distributions.

Extensions to higher dimensions have been con-
sidered in [2]. For a book-length treatment of copulas,
see [12].
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Jerome Cornfield was arguably the most influential
statistician in the biomedical sciences in the US from
the 1950s until his death. He was the consummate
statistical scientist. His understanding of the nature
of the subject-matter of statistics and of its essential
role in the inductive process of integrating data into
a body of empirical knowledge, particularly in the
biomedical sciences, was outstanding. This thorough
view of statistics and scientific research enabled him
to identify essential statistical problems. He exercised
considerable influence as an advisor and consultant,
and for over two decades was a major advocate for
statistical reasoning in clinical research.

After attending elementary and high schools in the
Bronx, New York, he entered New York University,
graduating in 1933 with a major in history. Cornfield
did not receive any advanced degrees. He did, how-
ever, take some formal graduate courses in history at
Columbia University. After moving to Washington,
DC, in 1935, Cornfield took a number of courses in
statistics at the US Department of Agriculture Grad-
uate School during the period 1936–1938, including
courses with M.A. Girshick in general statistics and

multivariate analysis. He also had a course in sam-
pling which, together with what he learned on the
job from Duane Evans, enabled him to advance the
cause of getting probability sampling accepted by
several Federal Agencies. Although his formal train-
ing was minimal, most of what he had to learn about
statistical theory, reasoning, and methodology was
self-taught from a continually expanding literature.
This enabled him to be discriminatingly selective
both as to subject-matter and to the time at which
he felt it necessary to learn about a subject. In later
years, biomedical associates and statistical colleagues
were surprised to discover that he had no docto-
rate.

A brief review of the major positions he held
begins with the Bureau of Labor Statistics, where
he was a statistician from 1935 to 1947. In 1947
he joined Harold Dorn’s methods unit in the Pub-
lic Health Service. This unit was shortly transferred
to the National Cancer Institute on the campus of
the National Institutes of Health (NIH). Cornfield
remained in the Cancer Institute until 1955 or 1956
when both he and Dorn moved over to a new Division
of Research Services. Here, he consulted with inves-
tigators in various Institutes of the NIH. In 1958 he
was invited to succeed William Cochran as Chair-
man of the Department of Biostatistics in the School
of Hygiene and Public Health of the Johns Hop-
kins University. He was also appointed Professor
of Biomathematics in the School of Medicine. He
returned to the NIH in 1960 as Assistant Chief of the
Biometrics Research Branch of the National Heart
Institute, became Branch Chief in 1963, and served
in that position until his retirement from the NIH
in 1967. In 1968 he joined the Graduate School of
Public Health of the University of Pittsburgh as a
Research Professor of Biostatistics. At the same time
he founded a biostatistics research group with offices
in the Washington, DC, area. In 1972 he joined the
Department of Statistics at the George Washington
University as Professor of Statistics and brought his
research group into the Department as the Biostatis-
tics Center. He served as Chairman of the Department
from 1973 to 1976 and continued as Professor of
Statistics and Director of the Center until his terminal
illness.

Over a span of three decades, from 1947 to 1979,
Professor Cornfield was one of the leading statis-
ticians working in the biomedical area. He made
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many original contributions to biostatistics, epidemi-
ology, clinical trials, and to quantitative methods in
the design and analysis of experiments (see Experi-
mental Design) conducted in clinical and laboratory
research. In addition, he wrote a number of papers
on Bayesian inference and on the application of
Bayesian methods in the biomedical sciences. Before
presenting the highlights of the work in this period, it
is important to comment on his contributions to eco-
nomic statistics and sampling while at the Bureau of
Labor Statistics (BLS).

From the very beginning of his career, Cornfield
was a creative and original thinker, motivated by
important real-world problems. He made a number of
important contributions to economics and economic
statistics during his work at the BLS. He played a
major role in the revision of the Consumer Price
Index, 1938–1940, introducing several new proce-
dures. He developed a keen interest in sampling,
which led to the development of a survey using prob-
ability sampling for a study of Family Spending and
Saving in wartime. This complex design, according
to Duncan & Shelton [26, pp. 46–49] “represented a
significant advance in a number of respects. Indeed, it
was the precursor of several ideas which were worked
out more fully and justified mathematically a year
later by Hansen and Hurwitz”. In 1941 Cornfield
consulted with the Bureau of Home Economics on
a nutrition-related problem which was known as the
“diet” problem. The mathematical problem requires
the minimization of linear functions subject to a set
of given inequality constraints, the problem of lin-
ear programming. Zelen [31, p. 12] refers to a 1958
book on linear programming by Dorfman et al. as
crediting Cornfield “as being the first person to for-
mulate the linear programming problem and find an
approximate solution”. His work appeared in 1941 in
an unpublished BLS memorandum. It was also at the
BLS that Cornfield made his first contribution to sta-
tistical theory. He developed a method using indicator
variables for easily obtaining the first few moments
of the sample mean when sampling from finite popu-
lations. He thus obtained an unbiased estimate of the
sample variance and of the variance of the sample
mean [2].

From 1948 to his death 31 years later, Corn-
field devoted the major portion of his career to
the development and application of statistical the-
ory and methods to the biomedical sciences. His
contributions were diverse both in the nature of his

statistical interests and in the areas of biostatisti-
cal applications. He was involved in and touched
upon every major public health issue that arose in
that period – the polio vaccines [23], smoking and
lung cancer (see Smoking and Health) [22, 29],
risk factors for cardiovascular disease [5, 30], and the
difficult statistical issues of estimating the low-dose
carcinogenic effects in humans (see Extrapolation,
Low Dose) of a food additive that becomes suspect
because it produces cancer in animals at much higher
doses [14, 20].

In the broad area of biomedical research, Corn-
field was involved in a wide variety of problems, in
each of which he made significant and lasting con-
tributions. These studies and problems include the
following: an imaginative method for estimating the
volume–surface ratio of individual cells as observed
under the microscope [15], the statistics of bioas-
say (see Biological Assay, Overview) [3, 6, 19],
photosynthesis [1], the analysis of the toxicity of
mixtures of the essential amino acids [28], chemi-
cal kinetic experiments using radioactive compounds
(see Pharmacokinetics and Pharmacodynamics)
[25], the physiological and biological effects of irradi-
ated animals (see Radiation) [17], and the computer
diagnosis of electrocardiograms [12] (see Clinical
Signals).

In the amino acid problem, the question was:
Which mixtures of the 10 essential amino acids were
toxic? The investigators called on Cornfield for help
when they were confronted with the impractical task
of conducting 1013 experiments with two or more
mixtures. Cornfield considered the issue of measuring
the joint effects of two or more drugs administered
in combination. The method usually employed was
to assume the joint effects were additive in their
individual responses. Cornfield saw that this simple
method could give strange results. Instead, he chose a
measure of additivity introduced by Gaddum, namely
additivity of doses conditioned on a given response, a
concept which Cornfield called dose-wise additivity.
After some persuasion, the biochemists proceeded to
conduct experiments implied by dose-wise additivity.
These turned out to be highly successful, leading to
the previously unknown result that L-arginine was
essential for the combination of the 10 amino acids
to be nontoxic in the human [28].

The animal radiation study is noteworthy for
the development of a methodology that would later
become a fundamental tool in epidemiologic research,
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i.e. multiple logistic regression. The issue in the ani-
mal data was the effect on survival of irradiated mice
as a function of certain observed blood characteris-
tics, such as lymphocytes and granulocytes. This is
clearly a regression problem with a straightforward
solution if the traits could be controlled at a set of
fixed values. Since survival is a 0, 1 variable, the
solution would be a multiple logistic function. (Of
course, since that period much work has been done on
regression with variables subject to error.) Since the
observed blood properties were uncontrolled, Corn-
field chose to adopt the method of analysis as that
of discrimination between two multivariate popula-
tions for surviving and nonsurviving animals. With
the additional assumption of multivariate normality
and equal covariance matrices, he derived the mul-
tiple logistic risk function whose coefficients were
the same as those found by R.A. Fisher in the linear
discrimination problem (see Discriminant Analysis,
Linear) [5, 21]. This solution is obtained directly,
requiring only the inversion of a matrix but no iter-
ations. Cornfield would later say that the simplicity
of the solution appealed to him and he believed that
if the assumptions were reasonable, then the solution
would be close to that of the regression approach.
Cornfield later applied the same reasoning to use the
multiple risk function to identify cardiovascular risk
factors on the basis of data obtained from the famous
Framingham Study [5, 30].

Cornfield made another very important contribu-
tion to epidemiology. When epidemiologists began
turning their attention to the study of chronic dis-
eases, prospective cohort designs for finding causes
of, or risk factors for, chronic diseases were in
many instances impractical. They therefore turned to
case–control or retrospective types of strategies. A
problem with these designs, assuming they are well
planned, is that they do not yield traditional esti-
mates of absolute risk or relative risk. Cornfield,
in 1955 at the Third Berkeley Symposium in Math-
ematical Statistics and Probability [4, 18], presented
a derivation which demonstrated that under a rather
strong assumption (but rather reasonable in the case
of chronic diseases) the odds ratio or cross product
ratio (in a 2 × 2 table) is a fairly good approxima-
tion of the relative risk. The assumption was that
the incidence of the disease under study should be
small. This result strengthened and increased the
use of the case–control design, since it set this

research strategy on a much more solid inferential
foundation.

In an important paper [22], responding to critics
of the purported causal relationship between smoking
and lung cancer, Cornfield argued for the preference
of measures of association based on relative risk as
opposed to differences of absolute risk, at least for
scientific purposes. However, the significant matter
here is not the issue of risks but the example he
used to justify his position. The illustration bears
on the question of the effect of latent, unobserv-
able variables. Sir Ronald Fisher, in arguing against
the smoking–lung cancer relationship, had offered
an hypothesis that postulated the existence of some
constitutional factor (latent and unobservable), e.g.
genetic, that caused cancer and that was also asso-
ciated with the need to smoke. Without giving the
details of his argument here, Cornfield demonstrated
that if cigarette smokers are shown to have nine times
the risk of nonsmokers of getting lung cancer, but that
this elevated risk is due, not to cigarettes, but to some
latent factor X, then the proportion of smokers hav-
ing X must be larger than nine times the proportion
of nonsmokers having X. Cornfield’s conclusion was
that if X was a causative agent of this magnitude, then
the relationship between the latent factor X and the
observed agent would probably have been detected
much before that of the agent and the disease. No
such factor has been found.

In addition to epidemiologic methods, Cornfield
devoted a substantial portion of his career to the
theory and practice of randomized, controlled clin-
ical trials (RCTs). His influence was far-reaching.
He wrote papers on aspects of design of RCTs both
for therapeutic and prevention trials [10, 13, 17,
24], on statistical problems in the interpretation of
results [13], and on a Bayesian test of hypotheses
arising in RCTs [7]. But the totality of his pub-
lications constituted only a small part of his vast
influence as an advisor and consultant. He was per-
sonally involved in the Coronary Drug Project, one
of the earliest multicenter trials sponsored by the
NHLBI. It was in this trial that Cornfield introduced
the Bayesian concept of relative betting odds (a mea-
sure related to the Bayes Factor) as a measure to
assess the efficacy of a therapy instead of the clas-
sical P value. He was personally involved in many
major multicenter trials, serving in various capaci-
ties as a member of planning committees, steering
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committees, policy advisory boards, and data moni-
toring and safety committees. These RCTs include the
National-Diet Study, a trial of urokinase in the treat-
ment of myocardial infarction, the Coronary Drug
Project (CDP), the University Group Diabetes Pro-
gram (UGDP), the Urokinase Pulmonary Embolism
Trial (UPET), the Diabetic Retinopathy Study (DRS),
the Multiple Risk Factor Intervention Trial (MRFIT),
the Program for the Surgical Control of the Hyper-
lipidemias (POSCH), and the Persantin Aspirin Rein-
farction Study (PARIS).

Throughout his career in statistics Cornfield was
interested in, and contributed to, the foundations of
statistics, first as a frequentist and then as a Bayesian.
The first manifestation of his interest in Bayesian
inference was his joint work with Geisser on deriving
the posterior distribution for the multivariate normal
parameters [27]. He then followed with a number of
papers on the theory of Bayesian inference and on
its practice and application to clinical trials [8, 11],
to estimation in higher order cross-classifications [9],
and to the analysis of life tables [16].

Cornfield was also actively engaged as a consul-
tant in areas other than clinical trials and epidemi-
ology. He was a member of the Three Mile Island
Advisory Committee, on the NHLBI Policy Advi-
sory Board on Coronary Bypass Surgery, Chairman
of the Committee on Biometry and Epidemiology for
the Food and Drug Administration, on the Scien-
tific Advisory Board for the Sloan–Kettering Insti-
tute for Cancer Research, etc. He also served in a
number of editorial roles, the principal ones being
Associate Editor for the Journal of the American
Statistical Association and Consulting Editor for the
Journal of Chronic Diseases. Cornfield was President
of the American Statistical Association, the Ameri-
can Epidemiological Society, Vice-President of the
American Heart Association, and President of the
Eastern North American Region of the International
Biometric Society.

For a more detailed review of Cornfield’s contri-
butions to the theory of statistics, laboratory research,
clinical trials, and epidemiology, the reader is referred
to the March 1982 supplement to Biometrics vol. 38.
Furthermore, Cornfield’s American Statistical Asso-
ciation Presidential Address is a wonderful account
in his own words of his contributions to statistics
and science, and his personal perspective on being a
statistician.

Cornfield married Ruth Bittler and they have two
daughters, Ann and Ellen.

References

[1] Burk, D., Cornfield, J. & Schwarz, M. (1951). The
efficient transformation of light into chemical energy in
photosynthesis, Scientific Monthly 73, 213–233.

[2] Cornfield, J. (1944). On samples from finite popula-
tions, Journal of the American Statistical Association 39,
236–239.

[3] Cornfield, J. (1955). Review: the statistics of bioas-
say, Journal of the American Statistical Association 50,
1368–1371.

[4] Cornfield, J. (1956). A statistical problem arising from
retrospective studies, in Proceedings of the Third Berke-
ley Symposium, Vol. 4, J. Neyman, ed. University of
California Press, Berkeley, pp. 135–148.

[5] Cornfield, J. (1962). Joint dependence of risk of coronary
heart disease on serum cholesterol and systolic blood
pressure, Federation Proceedings 21, Supplement 11,
Part 2, 58–61.

[6] Cornfield, J. (1964). Comparative bioassays and the role
of parallelism, Journal of Pharmacology and Experimen-
tal Therapeutics 144, 143–149.

[7] Cornfield, J. (1966). A Bayesian test of some classical
hypotheses, Journal of the American Statistical Associa-
tion 61, 577–594.

[8] Cornfield, J. (1969). The Bayesian outlook and its
applications, Biometrics 25, 617–657.

[9] Cornfield, J. (1970). Bayesian estimation of higher order
cross-classifications, Milbank Memorial Fund Quarterly
48, 57–70.

[10] Cornfield, J. (1970). Design of primary and secondary
prevention trials, in Atherosclerosis: Proceedings of
the Second International Symposium, R.J. Jones, ed.
Springer-Verlag, New York, pp. 566–571.

[11] Cornfield, J. (1970). The frequency theory of proba-
bility, Bayes’ theorem, and sequential clinical trials, in
Bayesian Statistics, D.L. Myers & R.O. Collier, Jr, eds.
Peacock, Ithaca, pp. 1–28.

[12] Cornfield, J. (1972). Statistical classification methods,
in Computer Diagnosis and Diagnostic Methods,
J.A. Jacquez, ed. Charles C. Thomas, Springfield, pp.
108–130.

[13] Cornfield, J. (1976). Recent methodological contribu-
tions to clinical trials, American Journal of Epidemiology
104, 408–421.

[14] Cornfield, J. (1977). Carcinogenic risk assessment,
Science 198, 693–699.

[15] Cornfield, J. & Chalkley, H.W. (1951). A problem
in geometric probability, Journal of the Washington
Academy of Sciences 41, 226–229.

[16] Cornfield, J. & Detre, K. (1977). Bayesian life table
analysis, Journal of the Royal Statistical Society, Series
B 39, 86–94.



Cornfield, Jerome 5

[17] Cornfield, J. & Greenhouse, S.W. (1967). On certain
aspects of sequential clinical trials, in The Fifth Berkeley
Symposium on Mathematical Statistics and Probability,
Vol. 4, J. Neyman & L.M. Le Cam, eds. University of
California Press, Berkeley, pp. 813–829.

[18] Cornfield, J. & Haenszel, W. (1960). Some aspects of
retrospective studies, Journal of Chronic Diseases 11,
523–534.

[19] Cornfield, J. & Mantel, N. (1950). Some new aspects of
the application of maximum likelihood to the calculation
of the dosage response curve, Journal of the American
Statistical Association 45, 181–210.

[20] Cornfield, J. & Mantel, N. (1977). “Safe doses” in
carcinogenic experiments, Biometrics 33, 21–30.

[21] Cornfield, J., Gordon, T. & Smith, W.W. (1961). Quantal
response curves for experimentally uncontrolled vari-
ables, Bulletin of the International Statistical Institute
37(3), 97–115.

[22] Cornfield, J., Haenszel, W., Hammond, E.C., Lilien-
feld, A.M., Shimkin, M.B. & Wynder, E.L. (1959).
Smoking and lung cancer, Journal of the National Can-
cer Institute 22, 173–203.

[23] Cornfield, J., Halperin, M. & Moore, F. (1956). Some
statistical aspects of safety: testing the Salk poliomyelitis
vaccine, Public Health Reports 71, 1045–1056.

[24] Cornfield, J., Halperin, M. & Greenhouse, S.W. (1969).
An adaptive procedure for sequential clinical trials, Jour-
nal of the American Statistical Association 64, 759–770.

[25] Cornfield, J., Steinfeld, J. & Greenhouse, S.W. (1960).
Models for the interpretation of experiments using tracer
compounds, Biometrics 16, 212–234.

[26] Duncan, J.W. & Shelton, W.C. (1978). Revolution in
United States Government Statistics 1926–1976. US
Government Printing Office, Washington.

[27] Geisser, S. & Cornfield, J. (1963). Posterior distribu-
tions for multivariate parameters, Journal of the Royal
Statistical Society, Series B 25, 368–376.

[28] Gullino, P., Winitz, M., Birnbaum, S.M., Cornfield, J.,
Otey, M.C. & Greenstein, J.P. (1956). Studies on the
metabolism of amino acids and related compounds
in vivo, Archives of Biochemistry and Biophysics 64,
319–332.

[29] Sadowsky, D.A., Gilliam, A.G. & Cornfield, J. (1953).
Statistical association between smoking and carcinoma
of the lung, Journal of the National Cancer Institute 13,
1237–1258.

[30] Truett, J., Cornfield, J. & Kannel, W. (1967). A multi-
variate analysis of the risk of coronary heart disease in
Framingham, Journal of Chronic Diseases 20, 511–524.

[31] Zelen, M. (1962). Contributions of Jerome Cornfield
to the theory of statistics, Biometrics Supplement 38,
11–15.

SAMUEL W. GREENHOUSE &
JOEL B. GREENHOUSE



Cornfield’s Inequality

In response to claims that the relationship between
smoking and lung cancer could be explained by a
genetic or other omitted variable (OV), Cornfield
et al. [6] developed an inequality linking the observed
risk ratio (see Relative Risk) to the prevalence of the
omitted variable in smoking and nonsmoking groups.
They wrote:

If an agent, A, with no causal effect upon the risk
of a disease, nevertheless, because of a positive
correlation with some other causal agent, B, shows
an apparent risk, r , for those exposed to A relative
to those not so exposed, then the prevalence of B,
among those exposed to A, relative to the prevalence
among those not so exposed, must be greater than r .

Thus, if cigarette smokers have 9 times the risk
of nonsmokers for developing lung cancer, and this
is not because cigarette smoke is a causal agent, but
only because cigarette smokers produce hormone X,
then the proportion of hormone X-producers among
cigarette smokers must be at least 9 times greater
than among nonsmokers. If the relative prevalence
of hormone X-producers is considerably less than
ninefold, then hormone X cannot account for the
magnitude of the apparent effect.

See [13, p. 40] for a discussion of the origins of the
inequality.

Formally, the analysis involves three binary
variables: (i) Z = 1 for treatment (smoker) and Z =
0 for control (nonsmoker), (ii) D = 1 for positive
response (lung cancer) and D = 0 for negative
response, (iii) U = 1 for presence of the unobserved
omitted variable and U = 0 for its absence. We
observe the joint distribution of Z and D, specifically
π = Pr(Z = 1), p1 = Pr(D = 1|Z = 1) and p0 =
Pr(D = 1|Z = 0), from which we calculate the
observed risk ratio RO = p1/p0. Could the observed
risk ratio RO deviate from one solely because of the
unobserved variable, U? If this were the case, then
D would be independent of Z given U . Hence,

p ≡ Pr(D = 1|Z = 1, U = 0)

= Pr(D = 1|Z = 0, U = 0)

= Pr(D = 1|U = 0)

and

PRU = Pr(D = 1|Z = 1, U = 1)

= Pr(D = 1|Z = 0, U = 1)

= Pr(D = 1|U = 1),

where

RU = Pr(D = 1|U = 1)

Pr(D = 1|U = 0)
.

Here, RU is the unobserved risk ratio linking the
response, D, with the unobserved variable, U . We
may assume that the two categories of the variable
U , U = 1, and U = 0, have been labeled so that
RU ≥ 1. Writing f1 = Pr(U = 1|Z = 1) and f0 =
Pr(U = 1|Z = 0) gives

RO = p1

p0
= p(1 − f1) + pRUf1

p(1 − f0) + pRUf0

= f1RU + 1 − f1

f0RU + 1 − f0
. (1)

For a fixed RU ≥ 1, expression (1) is maximized
when f1 = 1 and f0 = 0, leading to the inequality

RO ≤ RU. (2)

Similarly, for fixed values of f0 and f1, expression
(1) is maximized by letting RU → ∞, yielding the
inequality

RO ≤ f1

f0
= θ, say. (3)

Eqs. (2) and (3) say that the unobserved risk ratio,
RU , must exceed both the observed risk ratio, RO,
and the unobserved prevalence ratio, θ , if U is
to explain away the association between treatment
Z and response D. Expressions (2) and (3) are
the inequalities of Cornfield et al. [6], and (3) is
described in the quotation above.

Gastwirth [9] gave a sharper version of (3) by
solving (1) for θ to obtain

θ = RO + RO − 1

RU − 1

1

f0
, (4)

or, equivalently,

f1 = ROf0 + RO − 1

RU − 1
. (5)

We illustrate the result on data from the cohort
study [29] of lung cancer in asbestos workers, as
described in [9, p. 807]. Over the entire period
of the study, the relative risk of exposed work-
ers dying from lung cancer was 6.8 times their
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expected number, assuming workers had the rate
of lung cancer in the general male population. As
smoking is another risk factor for lung cancer, we
apply Cornfield’s inequality to see whether smok-
ing could explain the asbestos–lung cancer associ-
ation. It is known that blue-collar workers have a
greater prevalence of smoking than in the general
male population. At the time of the study, 60% of
all males smoked, in contrast to about 80% of males
in asbestos-related occupations. The prevalence ratio,
θ = 0.8/0.6 = 1.33, is much less than RO = 6.8, so
Cornfield’s inequality implies that smoking cannot
explain the entire association between asbestos and
lung cancer.

When information about RU is available, (4) can
provide a substantially stronger statement. Suppose
that a large study of workers exposed to chemical
A found a relative risk of three for lung cancer.
While smoking was controlled for in this imagined
study, prior substantial exposure to asbestos, U , was
not, although the literature indicates that RU is, at
most, 10. The original inequality (3) implies that the
prevalence of asbestos exposure (U) in the exposed
workers needs to be at least three times its prevalence
among workers not exposed to chemical A. From the
job histories of the workers one might estimate that
the prevalence, f0, of U among the unexposed group
was 0.05, say. Then (5) implies that the prevalence of
U among workers exposed to chemical A would need
to reach 0.374 in order for the observed association
between lung cancer and chemical A to be explained
by prior substantial exposure to asbestos. This is
much larger than 3 × 0.05 = 0.15 implied by the
original inequality. Indeed, inequality (3) is obtained
from (4) by letting RU become arbitrarily large.

While Cornfield et al. [6] preferred the relative
risk measure for assessing causality, the difference
in proportions, or the absolute risk difference, is
useful in public health. Write ∆U = Pr(D = 1|U =
1) − Pr(D = 1|U = 0) for the difference in mortality
rates associated with the unobserved variable,
and write ∆Z = Pr(D = 1|Z = 1) − Pr(D = 1|Z =
0) for the difference in mortality associated with the
exposure. The corresponding inequality is given in
the following lemma.

Lemma. If U is to explain entirely the observed
difference ∆Z , then one must have (f1 − f0)∆U ≥
∆Z , and, in particular, one must have both ∆U ≥ ∆Z

and f1 − f0 ≥ ∆Z .

Inequalities closely related to Cornfield’s inequal-
ity have been proposed by Bross [3, 4] and Sch-
lesselmann [28]. Related equalities are discussed by
Miettinen [19], Breslow & Day [2, p. 96], and Gail
et al. [7], and the equalities might be used to calcu-
late adjusted risk ratios. Gastwirth [10] suggests that
the inequalities (2) and (3) be used in conjunction
with Koopman’s [15] one-sided confidence interval
for the risk ratio Pr(D = 1|Z = 1)/Pr(D = 1|Z = 0)

to account for sampling error. Gastwirth [11] uses
the reasoning underlying the inequality of Cornfield
et al. [6] to examine the potential effect of nonre-
sponse or missing data. Gail et al. [8] discuss the
effect of failing to adjust for a covariate in a clinical
trial.

Cornfield’s inequality was the first formal method
of sensitivity analysis in observational studies
or nonrandomized experiments. The inequality
may be viewed as asking how the conclusions
of an observational study might be altered
by departures of various magnitudes from the
random assignment of treatments (see Randomized
Treatment Assignment), where the departure is
measured by the prevalence ratio, θ . Viewed in
this way, sensitivity analysis based on Cornfield’s
inequality is identical in purpose, similar in spirit,
though different in technical detail, to the method
of permutational sensitivity analysis proposed later
by Rosenbaum [21–25] and Rosenbaum & Krieger,
[26]. The latter approach applies not only to binary
responses, but also to continuous responses, discrete
scores, censored survival times (see Censored Data)
and multivariate outcomes. It permits sensitivity
analysis for quantiles, Wilcoxon’s [30] rank sum test
(see Wilcoxon–Mann–Whitney Test) and signed
rank test, the logrank test and Gehan test [12]
for survival times, the Hodges–Lehmann [14] point
estimates of an additive effect, McNemar test [18],
the Mantel–Haenszel method [17], and Mantel’s
extension for discrete scores [16], among others.
In one very special case, Cornfield’s inequality
and Rosenbaum’s sensitivity analysis give identical
results. Specifically, with a binary response in a
case–control study that approximates the relative
risk by the odds ratio, the lower endpoint of the
1 − α confidence interval for the relative risk in
Cornfield’s inequality occurs at the value of the
sensitivity parameter yielding an upper bound of α for
the significance level for testing no treatment effect;
see Rosenbaum [22] for specifics. Other methods
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of sensitivity analysis are discussed in [1, 5, 20],
and [27].
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Correlated Binary Data

In many studies, the primary measure of interest can
take on one of two possible values, and is known
as a binary response measure (see Binary Data). An
example might be disease status (i.e. diseased/not dis-
eased), in which the two categories are the only ones
possible. In other situations, we might form the two
categories by dichotomizing a continuous response,
for example, whether or not systolic blood pressure
is greater than 140 (see Categorizing Continuous
Variables). The term correlated binary response data
refers to two or more such binary outcome mea-
sures, which we assume are correlated. This situation
could arise in a longitudinal study, where disease
state (diseased/not diseased) is measured over time
on the same person. Spatial proximity can also induce
correlation, with measurements taken closer together
assumed more highly correlated than those further
apart. The similarity of sampling units can induce
the correlation, such as when litter-mates or siblings
are sampled, or when a matching process is used to
build sets of similar sampling units. A fourth set-
ting of correlated responses arises when the outcome
variable is measured on subunits of a single, primary
sampling unit, such as measuring the disease status
of a person’s right and left eyes separately.

The term cluster is often used in the literature
to describe a set of correlated measurements (see
Cluster Sampling). A measurement on each of two
eyes on the same person would constitute a cluster of
size two. Measurements on the same person taken at
6, 12, 18, and 24 months would constitute a cluster of
size four. In some settings, there are multiple levels
of clustering, otherwise described as a hierarchy of
clusters. For example, measurements over time (level
1) on each of the two eyes (level 2) of a person
(level 3) would constitute a cluster of two eyes of
one person and a subcluster of multiple measurements
over time on each of those two eyes. The individual
measurements within the cluster are called subunits
(or sub-subunits) of the cluster. Positive correlation
among subunits is manifested by more homogeneous
subunits and more variable cluster totals than would
be expected with no correlation (i.e. simple Bernoulli
sampling or binomial data). This effect is called
extrabinomial variation or overdispersion. Ignoring
this positive correlation in the analysis will result in

statistical tests that overstate the significance of the
differences seen among subunit responses.

This discussion is restricted primarily to settings
in which there is a single random sample of clusters,
such as a sample of different people in the ophthal-
mologic and longitudinal data settings, with some
discussion of hierarchical clustering as well.

In some settings, the investigator may have other
explanatory variables (or covariates, which can
be used to model the probability of a binary out-
come. When the covariate value must stay the same
for all subunits of a cluster, it is called a between-
cluster or subunit-independent covariate. When it can
change from one member of the cluster to another,
it is called a within-cluster or subunit-dependent
covariate. In the context of longitudinal studies,
the terms time-independent (for between-cluster) and
time-dependent (for within-cluster) covariates have
often been used. In hierarchical clustering, covari-
ates could change or be constant at any level of
the hierarchy.

We start by laying the groundwork in the con-
text of a very simple setting with no covariates. The
rest of the discussion is focused on regression-type
methods that can accommodate covariates, separated
into the major categories of response feature models,
conditionally specified models, transitional models,
marginal models, and cluster-specific models, and
how hierarchical models can be accommodated in
the different categories. Emphasis is placed on sim-
ilarities and differences among them in terms of the
questions that can be addressed, methods for fit-
ting the model, interpretations of parameters, making
inferences, and, to a lessor degree, computational
aspects. Examples of many of these methods can be
found in books by Diggle et al. [15] Goldstein, [20],
Verbeke, and Molenberghs [60, 61] and Davis [14].
Our intent is to give the reader an overview of the
work in this area and to point to key references in
which more detail can be found.

Simple Setting with No Covariates

In the simplest setting, the cluster is of size two
and there are no explanatory variables (see Matched
Pairs With Categorical Data). The data could be
laid out in a two-by-two contingency table, such as
that given in Figure 1 for binary measurements taken
at two time points.
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Yes No

Yes
Time 1

Time 2

No

p11

n1+

n2+

p2+ = 1 − p1+

p11

n11

p21

n21

p12

n12

p22

n22

n+1 n+2

p+1 p+2 = 1 − p+1 1.0 = p1+ + p2+ = p+1 + p+2

n++ = n1+ + n2+ = n+1 + n+2

Figure 1 Notation for paired binary responses in contingency table format

Here, π11 represents the underlying joint proba-
bility of responding Yes at both time points, π12 and
π21, the probabilities of a Yes at one time point and
a No at the other, and π22 the probability of respond-
ing No at both time points. The π1+ and π+1 are
marginal probabilities – that is, π1+ is the probabil-
ity of responding Yes at the first time point, regardless
of whether a Yes or No was the response at the second
time point.

The corresponding sample proportions, pi,j =
ni,j /n++ and p1+ = (n11 + n12)/n++, can be used
to address research questions. Different questions
require different frameworks for modeling the data.
If the goal is to assess the strength of the relationship
between responses at the two time points, measures,
such as an odds ratio, a relative risk, a tetrachoric
correlation, or one of many other measures of
association would be useful. If one were interested
in determining if the proportion who answered Yes
changed from time 1 to time 2, a confidence
interval could be constructed on the difference in
marginal proportions, π1+ − π+1, or one could use
the McNemar test of the null hypothesis π1+ = π+1.

Cox [11] suggested a logistic regression approach
to this problem of comparing marginal proportions,
which only uses the clusters where a difference in
responses was observed. Let (yi,1, yi,2) represent the
pair of binary responses for the ith pair and let y

take on the value 1 for Yes or success and 0 for No
or failure. The model has the form

log

[
P(yi,1 = 1)

P (yi,1 = 0)

]
= αi (1)

for the first member of the ith pair, and

log

[
P(yi,2 = 1)

P (yi,2 = 0)

]
= αi + β (2)

for the second. The αi parameters in both mod-
els simply measure variation from cluster to clus-
ter. They are usually not of interest and are called
nuisance parameters. The β parameter quantifies
the difference between the two time points. The
value exp (β) is called an odds ratio, meaning that
the odds of a Yes (1) response (versus a No (0)
response) are exp (β) times higher at time 2 than
at time 1. The probability of a Yes response for the
ith cluster at time 1 is exp(αi)/(1 + exp(αi)) and
exp(αi + β)/[1 + exp(αi + β)] at time 2. Because
this model has as many αi parameters as there are
independent clusters of data, we could not estimate
each of them. However, by conditioning on the num-
ber of Yes responses in the cluster, we find that
the conditional joint distribution of responses only
depends on those clusters with exactly one positive
response and has the form of a binomial distri-
bution, with mean parameter exp(β)/(1 + exp(β))

and sample size parameter equaling the number of
clusters, where yi,1 + yi,2 = 1 (see Conditionality
Principle). Estimation and inference follow the usual
theory for binomial data. We note that testing the
mean parameter equal to 1/2 is equivalent to testing
β equal to 0, a hypothesis of no difference between
the responses at time 1 and time 2. This is an example
of a random-effects model in which conditioning is
used to enable estimation. Extensions of this type of
model are further discussed in the section “Cluster-
specific Models”.

When π1+ = π+1, it follows that π2+ = π+2. This
equality of all the marginal probabilities is known
as marginal homogeneity (see Marginal Models).
In a 2 × 2 table, marginal homogeneity also implies
π12 = π21. For the square contingency table in
general, the condition πij = πji for all i �= j is
called symmetry of probabilities across the main
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diagonal. The symmetry condition implies marginal
homogeneity, but the reverse is not true for tables
larger than 2 × 2.

In the case of binary responses at more than two
time points, Cochran’s Q test or, more generally,
the Cochran–Mantel–Haenszel test, can be used to
test for marginal homogeneity (see Mantel–Haenszel
Methods).

Models with Covariates

In many settings, the researcher will be interested in
learning not only if the response probabilities change
over time (or among cluster subunits), but whether
those changes are related to changes in covariates.
For example, in clinical trial and epidemiologic
settings, the goal may be to assess whether the prob-
ability of obtaining a disease differs across various
randomized treatment regimens or is associated with
observed risk factors. In other studies, however, the
primary goal might be to investigate the structure of
the within-cluster correlation or association. Models
for these parameters could be set up to determine if
the correlation/association within clusters is affected
by between-cluster covariates. This type of analysis
could, for example, have an application in determin-
ing the efficacy of a drug in preventing the spread of
a contagious disease to other members of the cluster.

The types of models that can be fit in such
situations depend upon the measurement scale of
the covariates (nominal, ordinal, or continuous), the
type and cluster level of covariates (between-cluster,
within-cluster, or both), the types of assumptions
the researcher is willing to make on the underlying
joint distribution of the correlated responses, and the
research questions to be answered. We focus primar-
ily on regression-type methods that can accommodate
both continuous and categorical covariates. Linear
logistic regression models and probit models, which
fall within a broad class of models known as gener-
alized linear models (GLMs), play a central role in
many analytic approaches to correlated binary data.
Characterizing the underlying joint distribution of the
responses within a cluster requires measures of the
strength of the correlation or association within the
cluster. Either first- and higher-order product-moment
correlations or conditional odds ratios have typically
been used to capture those intracluster relationships.

Modeling Strategies

Most modeling strategies for correlated binary data
fall into at least one of five categories:

1. Response feature models. Collapse response infor-
mation into one measure per cluster, and model using
methods appropriate for independent univariate mea-
sures, such as logistic regression.

2. Conditionally specified models. The probability of
a positive response for one member of the cluster is
modeled conditionally on all other outcomes in the
same cluster.

3. Transitional models. Model the probability of
a positive response for one cluster member as a
function of previous outcomes and covariates. This
approach is applicable if the cluster members have
a natural ordering, such as in longitudinal studies or
studies concerning birth order.

4. Marginal models. Model the marginal proba-
bilities in terms of covariates, often treating the
correlation among cluster members as nuisance
parameters, while focusing primarily on marginal
mean parameters.

5. Cluster-specific models. Allow the model for each
cluster to differ by including cluster-specific param-
eters, which can describe the correlation structure
within the cluster. Since the number of such param-
eters grows along with the number of clusters, a
popular approach is to consider these cluster-specific
parameters as a random sample from some underly-
ing distribution.

Once a modeling strategy has been chosen, there
is also the issue of which method or methods can
be used to fit the model. Because of the complex-
ity of specifying a complete joint distribution for
the set of correlated responses and the associated
computational burdens, maximum likelihood esti-
mation within a classical statistical approach is not
always feasible. However, weighted least squares,
conditional likelihood, quasi-likelihood, and differ-
ent types of approximations to the desired likelihoods
have been used. Bayesian approaches to specifica-
tion and estimation in such models have gained a
lot of attention recently, due to improved computa-
tional approaches to implementing the analyses and
some attractive properties. However, they too provide
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some challenges, such as the difficulty in specifying
hyperparameters and the potential for badly behaved
posterior distributions.

Naı̈ve Approaches and Response Feature
Models

Naı̈ve approaches refer to the analysis of clustered
binary data, which ignore the correlation between
subunits. The advantage of such a method is that
standard tools and familiar models can be used
for the analysis. When all data are used but the
association among subunits is ignored, the regression
estimators will still be consistent for the parameters
of a marginal model.

In some situations, the multivariate response from
each cluster might be reduced to a univariate response
without major loss, thus simplifying the situation con-
siderably. Once the data have been reduced to a
univariate response per cluster, the usual techniques
applicable to independent univariate observations are
appropriate. For example, an ophthalmologist may
only be interested in analyzing binary outcomes from
the “worst eye” or “best eye”, which would allow the
use of standard logistic regression techniques. In the
case of longitudinal data, one might be interested in
the peak response across a series of repeated mea-
surements or the time until the first positive response
(see Summary Measures Analysis of Longitudinal
Data). It is important that this feature of the data
be well-defined before the data were collected, rather
than suggested by a particular sample.

There are a number of disadvantages of naı̈ve
approaches. Ignoring some of the data, such as choos-
ing only one member of the cluster, is not fully
efficient and standard error estimates will be incor-
rect. By summarizing the responses, we can lose
valuable information and the chance to capitalize on
the relationships among cluster members. Another
difficulty is how to properly use within-cluster covari-
ates. With response feature transformations that only
take the data from one subunit, such as analyzing the
“worst eye” of a patient with measurements on two
eyes, using the covariate corresponding to the worst
eye might have the undesirable effect of selecting
the covariate on the basis of the response. However,
with the idea of creating a “better” person-specific
covariate value, sometimes functions of the subunit-
dependent covariates are used, such as taking the sum
or difference.

Conditional Specification of Models

Conditioning plays an important role in statistical
methodology when independence assumptions are not
applicable. We say that a model is conditionally
specified if the joint distribution of the data is built
up from a set of conditional distributions. In some
settings, it is conceptually easier and more natural
to specify such conditional distributions, viewing
the joint distribution as merely a consequence of
their synthesis. A key implication is that the model
parameters are interpreted in terms of conditional
probabilities, rather than in terms of joint or marginal
probabilities.

Conditioning enters only on the cluster level, so
it is reasonable to simplify the discussion and to
consider models for one representative cluster of size
ni , that is, yi = (yi,1, . . . , yi,ni

), where yi,j is the
binary response of the j th member of the ith cluster.

General Loglinear Model

The joint distribution of yi in a general loglinear
model [17, 66], is

log(Pr (yi )) = γ ′
i yi + δ′

iwi − A(γi, δi). (3)

Here, wi is a vector of length (2ni − ni − 1) that con-
tains all cross-products of yi , that is, all pairwise
products (yi,j yi,k, j �= k), three-way cross-products
(yi,jyi,kyi,l, j �= k �= l), up to the ni-way cross-
product (yi,1yi,2... ,yi,ni

). γi and δi are vectors of
parameters, and A(γi , δi) is a normalizing constant.

The components of γi = (γi,1, . . . , γi,ni
) have an

interpretation in terms of the conditional proba-
bility:

γi,j = logit[Pr(yi,j = 1|yi,k = 0, k �= j)]. (4)

Rather than using correlation parameters to character-
ize within-cluster relationships, this parameterization
uses conditional odds ratios. The components of δi =
(δi,12, δi,13, . . . , δi,12...ni

) can be interpreted in terms
of contrasts of log conditional odds ratios, which
determine the second-order and higher-order associ-
ations between the subunits within a cluster.

The general regression strategy is to model (γi , δi)

as a function of covariates xi,j and unknown parame-
ters θ . Depending on the setting and the questions to
be addressed, modeling either the conditional proba-
bilities or the marginal probabilities could be the more
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natural approach. If the marginal model approach is
preferred, the γi could be transformed to marginal
probabilities, Pr(yi,j = 1), and the log-conditional
odds ratios to pairwise and higher-order correlations
or other marginal measures of association. We note
that such correlations will have a range of possible
values constrained by the marginal probabilities and
other correlation parameters. Because the number of
association or correlation parameters in a fully spec-
ified joint distribution becomes large quickly as the
cluster size increases, another issue in our modeling
strategy is the question of which higher-order asso-
ciations we can set to zero to simplify matters. For
example, if we set all the associations to be equal
to zero, that is δi = 0 for all i, then all the sub-
units within clusters are assumed independent. If we
then model γi,m = x′

i,mβ, we obtain the independent
logistic regression model. For correlated data, a rea-
sonable choice might be to select a set of higher-order
association parameters to be zero. One computational
problem that affects models based on (3) is that the
normalizing constant A(γi , δi ) often needs to be cal-
culated explicitly.

These two modeling choices generate four differ-
ent strategies for conditional modeling:

1. Model the conditional probabilities and not
assume any of the associations are zero. Exam-
ples of this sort of model include saturated log-
linear models.

2. Model the conditional probabilities directly, and
fix the three- and higher-way moments to zero.
Examples of these models are autologistic and
response conditional models.

3. Model the marginal probabilities that are trans-
formations of the conditional probabilities, and
not assume that any of the associations are zero.
Examples of this sort of model include mixed
parameter models.

4. Model the marginal probabilities and assume the
three- and higher-way moments are zero. Models
that could accommodate this assumption include
quadratic exponential models.

A particular research question may require specifi-
cation of a model for the joint distribution, while a
second research question might be better addressed
by a model for the marginal distributions, or possibly
marginal means and first-order associations. What
method is used to fit a model depends not only

on the assumptions the investigator is willing to
make and the questions to be answered, but also
(to some extent) on the availability of computational
algorithms.

Marginal models for categorical data have been
commonly fitted using weighted least squares meth-
ods, but this method has difficulty with sparse data.
Traditionally, maximum likelihood methods for fit-
ting categorical data marginal models have not been
widely used, due to their perceived complexity. How-
ever, this is changing with more recent work. In the
more general setting of modeling marginal means
using any generalized linear model, the generalized
estimating equation approach (discussed further in
the Marginal Models section) has become common.

Autologistic Model

Consider a conditionally specified model where third-
and higher-order associations are set to zero. In
developing methods for spatial statistics, Besag [7]
introduced the autologistic model having precisely
this form:

logit[Pr(yi,j = 1|yi,1, yi,2, . . . , yi,j−1,

yi,j+1, . . . , yi,ni
)] = αj +

∑

k �=j

βj,kyi,k. (5)

Although this proposal did not include covariates, it
was perhaps the first extension of the linear logistic
regression model to dependent binary data. Like-
lihood equations can be obtained from the joint
distribution of the data and solved iteratively (see
Optimization and Nonlinear Equations). However,
as mentioned above, the requirement that the nor-
malizing constant be evaluated during each iter-
ation often causes difficulties. As an alternative
estimation strategy, Besag [7] suggested the use
of a pseudo-likelihood formed from the full con-
ditional distributions. Logistic regression software
can be used to compute the pseudo-likelihood esti-
mates. Simply, the responses yi,k, which are assumed
to have a nonzero association with yi,j , are used
as covariate values for that case. Thus, while the
model may properly account for dependence, the
pseudo-likelihood estimation differs from likelihood
estimation in that it ignores certain aspects of
this dependence.

Given recent computational advances, exact like-
lihood evaluation is often possible, at least with rela-
tively small clusters. In special cases, the normalizer
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A collapses, or can be absorbed into a computable
quantity [1]. Geyer & Thompson [19] present a
Markov chain Monte Carlo method that enables
likelihood inference.

Response Conditional Models

A flexible extension to the autologistic model in (5)
allows covariates and a nonlinear contribution from
associated responses.

Rosner [50] presents a model where dependence
on the other responses in the ith cluster comes
through their sum si,j = Σk �=j yi,k . The full condi-
tional specification is

logit[Pr(yi,j = 1|yi,k, k �= j)]

= F(si,j , ni, θ1, θ2) + x′
i,jβ, (6)

where xi,j is a covariate vector for the j th cluster
member, β is a regression parameter, ni is the size
of the ith cluster, and

F(s, n, θ1, θ2) = log

{
(θ1 + sθ2)

[1 − θ1 + (n − 1 − s)θ2]

}
.

(7)

When the term x′
i,jβ equals 0 for all subunits of the

cluster, Rosner’s model reduces to the beta-binomial
distribution, a model commonly used to account
for overdispersion in binary data measured without
covariates.

Several authors have proposed more general forms
for F in this model, allowing negative intraclass
correlation and extensions to multivariate time series
[10, 37, 49], (see Multiple Time Series).

Transitional Models

The previous section details general strategies and
models via the conditional distribution, where the
underlying probabilities of interest are conditioned on
all other responses in the cluster: Pr(yij |yik, k �= j).
An important special case occurs when the subunit
responses within a cluster have an inherent ordering.
The obvious classical example involves ordering over
time, such as longitudinal data collected repeatedly
and with familial data with an ordering over genera-
tions or birth order. In these cases, the analyst would
not be interested in comparing or modeling the full

conditional probabilities, since each would be con-
ditional on events occurring both in the past and in
the future. Instead, models that retain the inherent
ordering and logical consistency of conditioning on
only past responses are of interest. These models are
generally termed transitional models.

The cornerstone of transitional models lies with
Markov chains and Markov processes, which
model the conditional probability given q prior out-
comes. With binary responses, the collection of con-
ditional probabilities can be combined into a tran-
sition matrix. To model the conditional probabili-
ties as a function of covariates, regression models
that explicitly use the past responses as additional
covariates have been used. In particular, these build
on the model by Cox [11], who is recognized as
among the first to describe a transitional model for
binary data. Specifically, given a first-order Markov
structure, the log likelihood could be written as
the sum of marginal and conditional likelihoods:
l(y1) + l(y2|y1) + · · · + l(yn|yn−1). Ignoring the ini-
tial term, each log-likelihood component could be
easily seen to be the same as sampling from a multi-
nomial distribution, with the matrix of transition
counts sufficient for the unknown transitional proba-
bilities. Models for the probabilities could be formed
by considering logistic equations of the form

logit[Pr(yi,t = 1|yi,(t−1))]

= α + β1yi(t−1), + other terms. (8)

Higher-order Markov models could be fitted,
enhancing β1yi,(t−1) with other functions of yi,(t−2),
yi,(t−3), . . .. This model can be fitted using standard
logistic regression software, and the interpretation
of covariate regression coefficients is as a log odds
ratio of outcome, given two people with identical
past responses in addition to holding other covari-
ates constant. Interaction terms of prior outcomes
and covariates can be incorporated to see if the effect
of a covariate is dependent on past responses.

Subsequent work by others has extended this
idea in conjunction with random-effects models and
generalized estimating equation approaches. When
transitions between states do not occur at equally
spaced (time) intervals, continuous time analogs of
Markov chains can be used. Kalbfleisch & Lawless
[33] provide a comprehensive discussion of exten-
sion of these models with covariates and efficient
computation of parameter estimates. Heagerty [29]
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takes a different approach by using a generalized lin-
ear model to relate the marginal means (i.e. Pr(yi,j =
1|x′

i,j )) to the covariates for that time point, assum-
ing that the responses in the past do not influence
covariate values of future observations. A separate
pth order dependence model (e.g. Markov model) is
used to capture the serial dependence, and together
they fully specify the parametric model, which he
describes as a marginalized transition model of order
p (MTM(p)). Maximum likelihood estimation is pos-
sible, and the method allows for data both missing
completely at random (MCAR) and missing at ran-
dom (MAR) [39] (see Missing Data).

Marginal Models

In the previous section, the natural parameteri-
zation of the joint distribution was in terms of
conditional probabilities. Often, the research ques-
tion of interest is more appropriately described in
terms of marginal parameters for modeling the rela-
tionship between the response and covariates. The
parameters of such models have a “population-
averaged” interpretation in the sense that the effect
of the covariates is averaged across clusters or sub-
sets with different values of cluster-level covariates
which form the population, rather than conditional
on parameter(s) identifying one particular cluster.
Bahadur [6] specified the joint distribution of corre-
lated binary data (yi,1, . . . yi,ni

) in terms of marginal
means, πi,j = E(yi,j ) standardized residuals, ei,j =
(yi,j − πi,j )/[πi,j (1 − πi,j )]1/2, and correlation-type
association parameters, ρi,12...q = E(ei,1 . . . ei,q), q =
2, 3, . . . , ni . A regression-type model could be used
to model πi,j as a function of the covariates, and the
usual maximum likelihood methods could be applied.
Unfortunately, these association parameters are func-
tions of the marginal probabilities πi,j and other
association parameters, which constrains their val-
ues. The complexity of these interrelationships has
deterred efforts to model all these parameters in terms
of the covariates, particularly when only the marginal
means, not the association parameters, are of scien-
tific interest. To overcome this problem, models and
methods have been formulated, which separate the
marginal mean model from the specification of the
dependency structure, often dealing specifically with
only the (first-order) mean and second-order corre-
lation components, operating under the assumption

that the higher-order association parameters are not
of critical importance.

Quadratic Exponential Models

The model introduced by Gourieroux et al. [22] is
based on the loglinear model in (3), where the con-
ditional probabilities γi are transformed to marginal
probabilities, the second-order log conditional odds
ratios in δi are transformed to correlation parameters,
and the three- and higher-way associations of δi are
set to zero. These authors show that maximum likeli-
hood estimation yields consistent and asymptotically
normal estimates.

Unfortunately, this estimation method requires
calculation of third and fourth moments, which
requires estimation of a normalizing constant. Zhao
& Prentice [66] proposed solving a set of related
estimating equations in lieu of the score equations.
Further discussion of this and related models can be
found in the section “Modifications and Extensions
of the GEE method”.

Generalized Estimating Equation (GEE) Approach

An estimation approach that places the emphasis on
estimating marginal mean parameters, while treating
the association parameters as nuisance parameters,
is called the generalized estimating equation (GEE)
approach [36], for which software is readily available
[9, 51, 54, 58], The marginal means are modeled via
any generalized linear model (GLM), which includes
the familiar linear regression and logistic regression
models. For binary data, the logit (i.e. logistic regres-
sion), probit, or complementary log–log links are
commonly used to relate the marginal mean to the
linear combination of the covariates (i.e. the linear
predictor x′

i,j β).
If the analyst incorrectly assumed that all obser-

vations, both within and between clusters, were inde-
pendent, maximum likelihood estimation of the β

regression coefficients using standard software for
generalized linear models would result in estimates
that were consistent, but not efficient. To obtain bet-
ter efficiency, the association within clusters must be
built into the estimation method. The GEE method
provides a way to do this.

The introduction of GLMs expanded the classi-
cal regression model by allowing the expected value
of the response to be a nonlinear function of the
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linear predictor and the variance of the responses
to depend on the expected value. The relationship
between the variance and the expected value, how-
ever, is restricted to those found in exponential
family distributions. The data distribution in GLMs
is completely specified, and thus, maximum likeli-
hood estimation is possible. This estimating strategy
is optimal in the sense that the solution to the score
equations has minimum asymptotic variance among
all estimates that are obtained from unbiased esti-
mating equations.

If the constraint that the marginal distributions
have exponential family form is relaxed so that
the variance can be an arbitrary function of the
mean, then we obtain quasi-likelihood models [62].
For these models, which still make between- and
within-cluster independence assumptions, a quasi-
score equation is derived via a quasi-likelihood func-
tion. The estimators obtained by solving the quasi-
score function (estimating equation) are “optimal” in
the sense that they have smallest variance among a
class of linear unbiased estimators.

The GEE approach extends quasi-likelihood mod-
els by including a within-cluster “working” corre-
lation matrix in the quasi-score (estimating) equa-
tions. The analyst can specify a form of this within-
cluster correlation matrix or allow it to be completely
unspecified. For example, one could specify a com-
mon correlation for every pair of cluster members
(which would be assumed the same in every clus-
ter), called an “exchangeable” correlation structure,
or an autoregressive structure, where cluster members
closer in time or space would be assumed to be more
highly correlated than those further apart (see ARMA
and ARIMA Models). This method allows unequal
cluster sizes, but any missing data are assumed miss-
ing completely at random (MCAR) in the sense of
Little & Rubin [39] (see Nonignorable Dropout in
Longitudinal Studies).

The GEE method will produce consistent and
asymptotically normal estimates of the β parameters
(assuming some weak regularity conditions and the
correct specification of the mean), even if the working
correlation structure is specified incorrectly. The
stronger the within-cluster correlation and the closer
the working correlation is to the true underlying
correlation, the higher the gain in efficiency. The
resulting estimates of correlation parameters gener-
ally will not have good statistical properties. If they
are considered nuisance parameters of no scientific

interest, this lack of useful estimates is of little con-
cern. Wald tests are used to assess the magnitude of
the β parameters (see Chi-square Tests).

Modifications and Extensions of the GEE Method

The association parameters in the original GEE
method were parameterized by pairwise moment cor-
relations, which are constrained by the marginal prob-
abilities, and other higher-order correlation parame-
ters in the binary data setting. Because of this con-
straint and their treatment as nuisance parameters,
other measures of association have been suggested
and explored. Pairwise odds ratios, relative risks,
and tetrachoric correlation have been considered. In
practice, little difference has been found among the
estimates of regression coefficients obtained using
different measures of within-cluster dependencies.

As mentioned previously, an alternative approach
to modeling marginal parameters of a multivariate
binary distribution is to start with a characteriza-
tion of the joint distribution in terms of conditional
parameters and then transform to marginal param-
eters. An estimate of the normalizing constant is
required to calculate third and fourth moments and
the computation burden increases as the cluster size
increases. As an alternative, an extension of the
GEE method was proposed, which includes esti-
mating equations for association parameters, treating
them as scientific parameters of interest and allow-
ing them to change as a function of the covariates. It
uses a “working” structure that replaces the actual
third and fourth moments with working estimates
[48]. If the correlation (or other measure of associa-
tion) between subunits changes for different covariate
values, the parameters and their variance estimates
should be closer to the truth using this approach and
therefore more efficient. This extension of the GEE
method, in which the estimation of the modeled mean
and second-order association/covariance parameters
are done simultaneously, is often referred to as the
GEE2 method.

An advantage of the GEE2 over the GEE method
is that the association parameters can now be treated
as parameters of interest, with the same asymptotic
normality and consistency properties of the GEE
method. Like GEE, efficiency is improved if the
working third- and fourth-order moments are approx-
imately correct. Both GEE and GEE2 assume that the
model for the mean is correctly specified. The GEE2
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also assumes that the model for the dependency
parameters is correct. If not, the consistency property
of the mean regression parameters is lost – a trade
off towards improved efficiency if both are correct.

Marginalized and Mixed Parameter Models

Several authors have taken a likelihood-based
approach rather than a GEE estimation approach to
the estimation of marginal means as a function of
covariates (e.g. [17, 24, 26, 29, 43]). Likelihood-
based methods have the advantages of a well-
established framework for inference, goodness-of-
fit measures, and the ability to accommodate data
both MCAR and MAR [39]. This is in contrast
with GEE estimation, which can only handle data
MCAR. The basic approach is to characterize the
relationship between the marginal mean and the
covariates via a generalized linear regression model
and complete the specification of the full multivariate
distribution via canonical or marginal higher-order
correlation parameters. In contrast to quasi-likelihood
and GEE estimation approaches, the complete
specification of the multivariate distribution allows
the use of maximum likelihood estimation (when
computationally feasible). For example, the mixed
parameter model of Fitzmaurice & Laird [16] was
built on the same family of distributions as described
in (3), but uses a different parameterization. Instead
of transforming from the canonical parameters (γi ,
δi) to the marginal moments (µi , �i), as was
done by Zhao & Prentice [66], they use a one-to-
one transformation to (µi , δi), forming a “mix” of
marginal mean and canonical association parameters.
The marginal mean is modeled as a function of
the covariates via a link function. The canonical
association parameters can also be modeled as a
function of the linear predictor z′

iα, where α is a
parameter vector and zi is a set of covariates, as
in the GEE2 method. The elements of zi could,
for example, be indicator variables setting some
higher-order associations to zero or a subset of the
between-cluster covariates for the mean. Similarly,
Azzalini [5] reparameterized Markov models to allow
regression modeling of the induced marginal means.
In this sense, both Fitzmaurice & Laird [16] and
Azzalini [5] “marginalized” the response conditional
model of (3).

Heagerty [26], generalized by Heagerty & Zeger
[27], builds on this approach, “marginalizing” the

latent variable model (generalized linear mixed
model) described in the “Cluster-specific Models”
section. These marginally specified mixed models use
a general linear model to characterize the relationship
between the marginal means and covariates, for
example, logit(Pr(yi,j = 1|x′

i,j )) = x′
i,jβ, and a

general linear mixed model for the dependency
parameters, captured by modeling the conditional
mean µb

i,j = Pr(yi,j = 1|x ′
i,j , bi,j ), conditioned on

unobserved subcluster specific latent variables bi,j :

logit(Pr(yi,j = 1|x′
i,j , bi,j )) = ∆(x′

i,j ) + bi,j . (9)

Here, the bi,j represent cluster subunit-specific ran-
dom effects with joint distribution fα(bi |Xi ) char-
acterized by the parameter α, and ∆(x′

i,j ) is a
parameter implicitly defined by both the marginal
linear predictor x′

i,jβ and the random-effects dis-
tribution fα(bi,j ). The bi,j can be modeled further,
such as bi,j = bi,0 (a cluster-level random inter-
cept) inducing variability from cluster to cluster or
bi,j = bi,0 + b∗

i,1x
∗
i (different variability depending

on value of cluster-level covariate x∗
i – for example,

bi,j = bi,0 for control clusters (x∗
i = 0) and bi,j =

bi,0 + b∗
i,1 for treatment clusters (x∗

i = 1)). In lon-
gitudinal data settings, one might assume that the
bi,j have an autoregressive covariance structure, to
model decreasing correlation for measurements fur-
ther apart. Such approaches assume that the obser-
vations (yi,1, yi,2, . . . , yi,n) are conditionally indepen-
dent, given the bi . Using the fact that the marginal
mean can be expressed as the expected value of the
cluster-specific conditional mean

Pr(yi,j = 1|x ′
i,j ) = Efα

(µb
i,j )

= Efα
[Pr(yi,j = 1|x ′

i,j , bi,j )], (10)

∆(x′
i,j ) can be estimated via the convolution equation

Pr(yi,j = 1|x ′
i,j ) =

∫
(µb

i,j )fα(bi,j |x ′
i,j ) dbi,j .

(11)

Letting h(x) = g−1(x) as the inverse link function
(inverse logit function here), this convolution equa-
tion can be written

h(x ′
i,j β) =

∫
h(∆(x ′

i,j ) + bi,j )fα(bi,j |x ′
i,j ) dbi,j ,

(12)
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thus more explicitly showing the relationship between
the parameter ∆(x′

i,j ), the linear predictor x ′
i,jβ, and

the distribution of the random effects fα(bi,j |x ′
i,j ).

A key feature of the marginal model approach of
Fitzmaurice & Laird [16] is that the joint likelihood
for (β, α) separates into distinct likelihoods for β and
α, due to the orthogonality of the parameters’ spaces.
This implies that the information about the within-
cluster covariance structure will not asymptotically
help estimate β or be detrimental if misspecified, as
would be the case with GEE2. The inverse of the
Fisher information matrix can be used to approxi-
mate cov(β, α). If the marginal model for the mean is
specified correctly, but the model for the dependency
structure is not, the inverse of the Fisher information
matrix can give inconsistent estimates of cov(β).

Because of the conditional interpretation of the
canonical parameters in δi in the mixed model of
Fitzmaurice & Laird, they are most applicable when
the cluster sizes are the same. Varying cluster sizes
require the estimation of a set of canonical parameters
for each cluster size, and the canonical parameter-
ization is not reproducible – meaning that the dis-
tribution of a subset of yi cannot be written in the
same form as that of the complete yi by using a
subset of the canonical parameters. The parameteri-
zation of cov(Yi ) and higher-order moments in the
marginalized mixed model of Heagerty and Zeger
[27], however, does not depend on the dimension
of Yi and thus presents no interpretation difficulties
when the number of responses varies across clusters.
Since the focus of these models is often the relation-
ship between the marginal means and covariates, one
might argue that the association/dependency parame-
ters could simply be viewed as nuisance parameters,
whose interpretation is of little interest. What might
be of more concern, however, is the appropriateness
of setting some higher-order association terms equal
to zero to simplify the analysis, because the effect
of such assumptions on the marginal mean param-
eters has not been fully explored. Several authors
have investigated the effect of misspecifying the
distribution of the random effects fα(bi,j |x ′

i,j ) or
failing to recognize its dependence on covariates in
the marginally specified mixed model approach, and
found it can cause substantial bias in the β param-
eters. However, the impact is less in the marginally
specified mixed model than that observed in the con-
ditional mixed model, which is discussed in the next
section ([28, 42]).

Cluster-specific Models

Cluster-specific models are differentiated from pop-
ulation average or marginal models by the inclusion
of parameters that are specific to cluster. The Cox
model for a 2 × 2 contingency table described at the
beginning of this article is a simple example. A some-
what more complex cluster-specific model includes a
covariate that is linearly related to the log odds of
the marginal probability of a positive response. We
might also expect the intercept and slope of the rela-
tionship to vary from cluster to cluster. A model for
this situation would take the following form:

logit[Pr(yi,j = 1|xi,j )] = βi,1 + βi,2xi,j , (13)

where βi,1 and βi,2 are the intercept and slope
parameters for cluster i. Inference under this model is
complicated by the fact that the number of parameters
grows with the number of clusters.

Random-effects Models

A popular approach to reducing the number of param-
eters in a cluster-specific model is to assume that the
clusters are a random sample from some underlying
population of clusters and that the parameter values
for the clusters follow a distribution. A typical choice
is the multivariate normal (Gaussian) distribution:

[
βi,1

βi,2

]
∼ N

([
α1

α2

]
, D

)
, (14)

where α1 and α2 are the mean intercept and slope
values for the population of clusters, and D is a
2 × 2 covariance matrix. This assumed distribution
on the parameters makes this cluster-specific model
a random-effects model. Models of this type are also
commonly called mixed-effects, hierarchical, two-
stage, and empirical Bayes models (see Multilevel
Models).

If we define

bi,1 = βi,1 − α1 and bi,2 = βi,2 − α2, (15)

then bi,1 and bi,2 are the deviations from the mean
intercept and slope term for the ith cluster, sometimes
described as latent variables, capturing an unmea-
sured, underlying variable. We can rewrite the model
for the ith cluster’s response in terms of the mean
intercept and slope α1 and α2 (fixed effects) and the
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(unobserved) individual deviations bi,1 and bi,2 (ran-
dom effects) as:

logit[Pr(yi,j = 1|bi,1, bi,2, xi,j )]

= (α1 + bi,1) + (α2 + bi,2)xi,j ,

[
bi, 1

bi, 2

]
∼ N(0, D).

(16)

In this formulation, the fixed effects are interpreted as
the typical parameter values for the population, while
the random effects modify the average parameters to
be specific to that cluster. Unless the link is linear,
predicted values from the fixed effects only will not
produce a prediction of the mean response.

Conditional independence within the cluster is
commonly assumed in random-effects models. That
is, yi,j (given bi,1, bi,2, xi,j ) and yi,j ′ (given
bi,1, bi,2, xi,j ′) are assumed independent for all j �=
j ′, where j indexes the member within the cluster.
Follmann & Wu [18] have proposed a random-effects
model that accounts for informative missing data.

Inference in random-effects models is always
based on a marginal or conditional distribution of the
data, which does not include the random effects bi,1

and bi,2. This solves the problem of the number of
parameters depending on the number of clusters.

Marginal Inference

If a parametric distribution G is assumed for the
cluster-specific parameters, then the usual way to pro-
ceed is to obtain the marginal distribution of yi by
integrating out the random effects. This resulting dis-
tribution will depend on G but not on the random
effects themselves. While G must be specified and
estimated, inference about the regression coefficients
tends not to be sensitive to misspecification of G if
the marginal distribution of yi is rich enough [44].
This should also hold for sensitivity to the assump-
tion of conditional independence within the cluster.
However, some recent work has shown greater sensi-
tivity to unrecognized dependence of the distribution
G on covariate values. [28]. In most cases, there is no
closed-form expression for the marginal distribution,
and direct maximum likelihood estimation requires
either numerical integration or Monte Carlo inte-
gration. Alternatively, estimation can be accom-
plished using a maximum likelihood or restricted
maximum likelihood approach based on closed-form
approximations to the relevant distributions. These

include implementations of the EM algorithm and
generalized estimating equations [56, 65]. At this
time, publicly available software for marginal esti-
mation in cluster-specific models is becoming more
readily available (MIXOR [30], PROC NLMIXED
[52], GLMMIX Macro [53], EGRET [55].) When
there are sufficient observations per cluster, a sim-
ple two-stage estimation procedure can be used as
an approximation to maximum likelihood estimation
[35]. First, individual logistic regressions are fit to
each cluster. Secondly, weighted averages of these
estimates are used to estimate the fixed effects.

Conditional Inference

Conditional estimation avoids the need to estimate
the parameters in the random-effects distribution (see
Conditionality Principle). This is accomplished by
deriving the distribution of yi conditional on suf-
ficient statistics for the cluster-specific parameters.
When the canonical link is used in a generalized
linear model (such as the logit link with binomial
errors), a sufficient statistic can be found. In general,
however, such a sufficient statistic may not exist.

One simple model for which conditional estima-
tion is tractable is a model with only one random
effect corresponding to a cluster:

logit[Pr(yi,j = 1|xi,j )] = αi + β1xi,j,1

+ β2xi,j,2 + · · · + βqxi,j,1. (17)

Conditioning on the total number of responses in
the ith cluster removes the αi from the likelihood.
The resulting conditional likelihood derives from a
permutation argument [8]. Small-sample inferences
for this model, which are similar to the well-known
Fisher’s exact test for 2 × 2 tables are also avail-
able and have been implemented in the LogXact and
Proc-LogXact packages [12] (see Exact Inference
for Categorical Data; Logistic Regression, Condi-
tional; StatXact).

Interpretation of Regression Parameters

Since the models discussed above will often lead
to different interpretations of the β parameters, an
understanding of their differences is crucial. The
choice of an appropriate model will be guided by how
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well the interpretations address the research question
of interest.

In the response conditional models, the interpre-
tation of the β requires both the responses and the
covariate values of the other cluster members to be
held fixed. Also, the parameter interpretations change
with cluster size, so it is more appropriate for data
with common cluster sizes. For example, in a study
of twins (cluster size of two) (see Twin Analysis),
the regression coefficient for the kth covariate, βk ,
represents the increase in log odds of the response
related to a one-unit increase in the kth covariate for
a particular twin, when holding all other covariates
fixed as well as the response of the other twin. This
dependence of the interpretation on the outcome of
the sibling makes it different from the usual interpre-
tation of a regression coefficient in logistic regression,
underscoring the distinction between conditional and
unconditional models. If the intent is to predict the
outcome of one sibling (say, the one born second),
conditioning on the information provided by the first-
born may be highly desirable. However, if the intent
is to study the association between outcome and a
covariate, such conditioning would not be desirable.

The issue of how to interpret and compare the
kth regression parameter, βk , from a response condi-
tional model relative to its counterpart in a marginal
or cluster-specific model has been investigated by
several authors [29, 45, 47]. Key factors are the
magnitude and direction of the within-cluster depen-
dencies both of the response measure and of the
covariates.

Comparing the interpretations of βk in the marginal
model and as a fixed-effects parameter in a cluster-
specific model has also received a great deal of
attention. The difference between these two mod-
els may be difficult to internalize, partly because
intuition carried over from classical linear regression
models (correlated Gaussian data with the identity
link) breaks down when considering non-Gaussian
data (e.g. binary) and nonidentity links (e.g. logit
link). We illustrate this with an example presented by
Zeger et al. [65]. In a study of respiratory infections
in children aged 7 to 11, the presence or absence
of a respiratory infection in the previous year was
recorded each year for 5 years. Thus, the child con-
stitutes a cluster and the five observations over time
per child are the subunits of the cluster. The mother’s
smoking status (Yes or No) was recorded at the
beginning of the study, but not updated at follow-up

visits. Thus the mother’s smoking status would be
a between-cluster covariate, assumed not to change
over the five years.

Consider first a marginal model with an intercept,
mother’s smoking status, and age of the child at the
time of measurement. If there were independence
among responses across time, the interpretation of
the regression coefficient would be precisely that of
a simple logistic regression model. That is, every
response would form its own cluster of size one. In
the marginal model, the dependence is recognized in
the estimation methodology, but not in the model for
the marginal mean. The parameter βk for smoking
status represents the difference in the log odds ratio
for respiratory infection between children with a
smoking mother at baseline and those whose mother
did not smoke at baseline. Mathematically, this is the
difference in the log odds of the mean risk between
these two groups, where the mean is taken over all
children (clusters) and all observations (subunits),
weighted by the working dependency structure used
in the estimation method.

In a cluster-specific random-effects model with
fixed effects for the same covariates as listed above,
plus a random effect for child (i.e. a random clus-
ter effect), the interpretation is conditional on that
random effect for the child. Within this child, the
coefficient represents the magnitude of change in the
log odds one would expect with his mother smoking
at baseline versus his mother not smoking at base-
line. (Of course, this effect is unobservable because
we cannot go back in time and change the mother’s
baseline smoking status.) Since the model specifies
that this coefficient is the same for all children, it is
estimated by combining information from different
children, such as averaging over all children accord-
ing to the distribution of that random effect for the
child. Because the effect we are trying to measure is
not observable, its estimation is heavily model-based.

If the mother’s smoking status was recorded at
each visit, thus considering smoking a within-cluster
covariate, some mothers might change smoking sta-
tus during the course of the study; hence, informa-
tion on the effect of that change would be avail-
able. The cluster-specific model would capitalize on
this observable change and allow estimation of the
average effect (in terms of log odds ratios) of the
change in smoking status on respiratory disease sta-
tus, assuming there were clusters in which such
changes took place. Mathematically, the collapse
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of information across different children occurs after
taking the difference in log odds at time points where
the mother did and did not smoke, as opposed to first
averaging across children and time points to obtain
mean risks and then computing the log odds. The beta
coefficient then represents the assumed common log
odds ratio for respiratory disease of mother’s smok-
ing status across children, rather than the log odds
ratio of the mean risk of respiratory disease.

The marginal model in this setting, on the other
hand, would ignore the fact that the effect of change
in smoking status was directly observable in some
children, and persist in estimating only the odds ratio
between smoking and nonsmoking mothers. Mothers
who had changed smoking status would appear in
both groups. Information obtained when individuals
serve as their own controls when a change is observed
is not used. In a marginally specified mixed model,
the effect of a smoking mother versus a nonsmoking
mother also involves averaging over the unobserved
latent variables (random effects) in each group.

Extensions for Correlated Ordinal
Responses

The focus of this article has been to review modeling
strategies for correlated binary data by building upon
the standard logistic regression model with a bino-
mial sampling distribution. Models have also been
introduced that extend regression models for ordinal
responses with a multinomial sampling distribution.
A brief review of two classes of extensions, marginal
and random-effects, is discussed below. Agresti &
Natarajan [3] provide a more complete review of
these models.

The correlation structure of repeated ordinal data
may be of interest but can be difficult to model.
Dependence between ordinal responses has been
described by Dale [13], and Heagerty & Zeger [25]
discuss an approach extending the correlogram to
categorical responses using log odds ratios.

Marginal Models

Stram et al. [57] introduced a marginal model for
repeated ordinal measurements (see Ordered Cat-
egorical Data). Assuming that all patients are mea-
sured at common time points, they compute time-
specific parameters for the proportional odds model

proposed by McCullagh [40] and then combine these
parameters using linear combinations weighted by
the variance. However, as with the model of Wei &
Stram [63], their model falls short in not allowing
for parsimonious working correlation structures to
be used. This has lead to the extensions of the gen-
eralized estimating equations methods for correlated
ordinal measurements using cumulative logit models
of McCullagh [40] ([24, 38, 41]). The current ver-
sions of SAS PROC GENMOD [51] and Stata [54]
allow estimation of ordinal GEE models.

Because the GEE models are only valid with
datasets that may have data missing completely
at random (MCAR), there has been some concern
about using these methods when data are missing
at random (MAR). Kenward et al. [34] demonstrate
potential problems as compared to likelihood-based
approaches, such as those proposed by Molenberghs
and Lesaffre [43].

Random-effects Models

Random-effects models for ordinal data were first
proposed by Harville & Mee [23], whose purpose was
best linear unbiased predictors (BLUP) of parameters
of an underlying (latent) distribution. A more general
approach was discussed by Hedeker & Gibbons [31],
which uses a faster Fisher-scoring algorithm for esti-
mating parameters of a model with multiple random
effects. This model has been implemented in pub-
licly available software [32]. An alternative method,
which has not been specifically implemented, might
be to use the Gibbs sampling methods of Zeger &
Karim [64] to avoid direct numerical integration.

As mentioned above, another method for
overcoming the increasing number of parameters in
cluster-specific models is to treat the cluster-specific
parameters as nuisance parameters, condition on their
sufficient statistics, then maximize this conditional
likelihood. Agresti & Lang [2] investigate this
method for categorical, cluster-specific covariates.

Summary

Our focus has been on different estimation and
modeling approaches for the general problem of
clusters of correlated binary responses in the presence
of both within- and between-cluster covariates. We
have also generally restricted attention to methods
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that can handle continuous covariates, rather than
open the door to the large and dynamic literature
on this topic presented within the general framework
of categorical data models. We do not claim to
have thoroughly covered or even mentioned all the
relevant literature on this topic. For example, more
could be said on goodness-of-fit testing and model
diagnostics, Markov Chain models, estimation in the
presence of missing data, design issues, Bayesian
methods, small sample properties, adaptations to
make these models more robust, and computational
issues. Interested readers are referred to several books
and survey articles that place emphasis on these and
related models [4, 14, 15, 20, 21, 44, 46, 59].
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Correlation

In a rather loose sense, two characteristics or variables
are said to be correlated if changes in one variable
tend to be accompanied by changes in the other,
in either the same or the opposite direction. Thus,
the incidence of ischemic heart disease is positively
correlated with the softness of drinking water, since
many epidemiologic studies have shown that the inci-
dence tends to be higher in areas with softer water;
and, conversely, the incidence is negatively correlated
with water hardness.

In view of the more specific definitions to be
discussed below, it would perhaps be preferable to
use the term association for this informal usage.
Correlation implies a linear relationship with super-
imposed random variation; association often loosely
implies a monotone relationship, but the term may
also be applied to nominal data where rank order is
undefined.

For an account of the early history of the term
correlation, see [10], especially pp. 297–299. The
term was current during the middle of the nineteenth
century, but its statistical usage is rightly attributed to
Francis Galton, who initially used the spelling “co-
relation”. Galton was concerned with the correlation
between characteristics of related individuals; for
example, between an individual’s height and the
mean height of the two parents. The correlation
coefficient emerged from Galton’s work, after further
elucidation by F.Y. Edgeworth and Karl Pearson, to
become a central tool in the study of relationships
between variables, especially (in Pearson’s work)
between physiological and behavioral measurements
on human beings.

The Product–Moment Correlation
Coefficient

The product–moment correlation coefficient (nor-
mally abbreviated to correlation coefficient) is a mea-
sure of the closeness of the association to a straight
line. If the variables X and Y are random variables
with a joint probability distribution, then the correla-
tion coefficient is defined as

ρ = σXY

σXσY

, (1)

where σXY , σX, and σY are, respectively, the covari-
ance of X and Y and the standard deviations of X and
Y . The value of ρ is bounded between −1 and +1,
taking these extreme values only when there is a lin-
ear functional relation between X and Y . Thus, if Y =
α + βX exactly (as, for instance, with temperatures
recorded in Fahrenheit for Y and centigrade for X),
then ρ = 1 if β > 0 (as in this example), and ρ = −1
if β < 0.

Biologic variables are not normally connected
by linear functional relations, and the correlation
coefficient usually lies between the two extremes.
There is a close connection between the concept of
correlation and that of linear regression. Let βY.X be
the slope of the linear regression of Y on X, and βX.Y

that of the regression of X on Y . Then

βY.X = σXY

σ 2
X

, βX.Y = σXY

σ 2
Y

and, from (1), βY.XβX.Y = ρ2. Since ρ2 ≤ 1, |βY.X| ≤
|1/βX.Y | (the latter expression being the slope of the
regression of X on Y in a diagram with Y as the
ordinate), equality being achieved only for perfect
correlation. Thus, the two regression lines are in
general inclined at an angle. When the correlation
coefficient ρ = 0, both βY.X and βX.Y are zero, and
the two regression lines are at right angles.

For a particular value of X, define Y0 to be the
value predicted by the linear regression of Y on X.
Then the variance of the residuals about regression,
E[(Y − Y0)

2] is equal to σ 2
Y (1 − ρ2). One interpre-

tation of the correlation coefficient is, therefore, the
fact that its square is the proportion of the variance of
one variable that is “explained” by linear regression
on the other. The relationship is symmetric, being
equally true for the other regression.

The Sample Correlation

The correlation coefficient may also be defined,
in similar manner, for a finite set of n paired
quantitative observations (x1, y1), . . . , (xn, yn). The
correlation coefficient, denoted now by r , may be
calculated as

r =
∑

(xi − x)(yi − y)

[∑
(xi − x)2

∑
(yi − y)2

]1/2 . (2)
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Here, x and y are the mean values of the xi and yi ,
respectively, and the summations run from 1 to n.

The basic properties of the sample correlation
coefficient are essentially those outlined above for
random variables. The relationship with regression
now applies to the slopes of the least squares regres-
sion lines, by.x and bx.y . The squared correlation
coefficient, r2, is the proportion of the total sum of
squares Σ(yi − y)2 “explained” by the regression of
y on x.

Some scatter diagrams representing simple sit-
uations are shown schematically in Figure 1. In
Figures 1(a) and (e) the points lie on a straight line,
and r = +1 and −1, respectively. In Figure 1(c) the
variation in one variable is approximately indepen-
dent of the value of the other variable, and r = 0. In
Figures 1(b) and (d) there is an intermediate degree
of correlation, the variance of one variable being

y

x x

y

(a) (b)

x on y

y on x

y

x
(c)

x on y

y on x

y

x
(d)

y

x
(e)

y on x
x on y

Figure 1 A schematic representation of scatter diagrams
with regression lines, illustrating different values of the
correlation coefficient. Reproduced from [1] by permission
of Blackwell Science, Oxford

reduced when the value of the other variable is fixed,
so 0 < r < 1 for (b) and −1 < r < 0 for (d).

The sample correlation coefficient given in
(2) is sometimes referred to as the Pearson
product–moment correlation coefficient, the reference
here being to Karl Pearson [7]. It provides the method
of calculation for any finite set of paired values, and
invites consideration of its sampling error.

Sampling Error

Suppose that the n pairs of observations are drawn
at random from a bivariate distribution of random
variables X and Y . The sampling distribution of
r will depend on the characteristics of the parent
distribution, in particular on the population correla-
tion coefficient ρ. In general, r is a consistent but
biased estimator of ρ (see Unbiasedness), but the
bias is of order 1/n and likely to be small except
for very small values of n (see Estimation). More
specific results are available if stronger assumptions
are made about the nature of the parent distribution,
and the traditional assumption is that of a bivari-
ate normal distribution. This model was widely
used in the early work of Galton and Karl Pearson;
appropriately enough, since it provides a reasonable
description of many of the biometric variables studied
by them.

Under the bivariate normal assumption, the distri-
bution of r depends only on ρ and n. The density was
first derived in 1915 by Fisher [4] and subsequently
tabulated by David [3]. If ρ = 0, then the statistic

(n − 2)1/2r

(1 − r2)1/2
(3)

follows a Student’s t distribution with n − 2 degrees
of freedom, and can be used to test the null hypothesis
that ρ = 0 (see Hypothesis Testing). In fact, this test
is valid more generally, for the standard model for
linear regression (see Linear Regression, Simple),
in which the values x of X are chosen arbitrarily
but Y is distributed normally with constant variance
around a linear function of x.

Returning to the bivariate normal model, Fisher
derived a variance-stabilizing transformation of r ,

z = tanh−1 r = 1

2
log

(
1 + r

1 − r

)
,
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the distribution of which approaches normality more
rapidly than that of r , as the sample size, n, increases.
Asymptotically, E(z) = tanh−1 ρ, and, approximate-
ly, var(z) = 1/(n − 3). An alternative transformation
[9] provides a generalization of (3): for ρ �= 0, the
statistic

(n − 2)1/2(r − ρ)

[(1 − r2)(1 − ρ2)]1/2

follows approximately a t distribution with n − 2
degrees of freedom. For further details about the
distribution of r , see [6, Chapter 10].

Intraclass Correlation

Suppose that observations on a single variable y are
arranged in n groups, each containing m observations,
and that there is reason to expect possible differences
in the mean level of y between groups. If such
differences exist, observations in the same group will
tend to be positively correlated. This phenomenon is
called intraclass correlation.

Fisher [5] illustrates this for the case m = 2 by
referring to measurements on pairs of brothers. He
distinguishes between situations in which the brothers
fall into labeled categories such as “elder” and
“younger”, and those in which no such categorization
is required. In the first case, there are two variables –
measurements for elder and younger brothers – and
the standard product–moment correlation coefficient
may be calculated. This is called the interclass
correlation. In the second case, each pair would enter
into the calculation twice, since they are not naturally
ordered, and the denominator of the correlation
coefficient may be based on a single sum of squares
about the mean for all the 2n observations. This is
the intraclass correlation. It is interesting to note
that Fisher used the term “class” to denote the
possible labeling categories (“elder” and “younger”
here), whereas many modern writers use it to denote
the groups into which the observations are clustered
(“sibships” here).

The intraclass correlation coefficient, rI , may be
calculated as a modified variant of (2) for all the
nm(m − 1) pairs of observations in the same group,
each pair being counted twice. In the cross product
in the numerator in (2), all deviations are taken
from the mean, y, of all mn observations. Since
each observation appears m − 1 times in the cross
product, the denominator of (2) is m − 1 times the

sum of squares of deviations of all mn observations
about y.

An equivalent formula for rI clarifies the relation
between intraclass correlation and variation between
the group means. Denote by yi the mean for the ith
group, and by v the variance of the mn observations
with divisor mn rather than mn − 1. Then

rI =
m

∑
(yi − y)2 − nv

(m − 1)nv
,

the summation running from 1 to n. It follows that

− 1

(m − 1)
≤ rI ≤ 1,

the lower limit of −1/(m − 1) being achieved when
all the yi , are equal, and the upper limit of 1
when there is no variation within the groups so that
Σ(yi − y)2 = nv.

Data of the type considered here would nor-
mally be analyzed by a one-way analysis of vari-
ance, and, as Fisher [5] showed, there is a close
connection between the two approaches. If, in the
analysis of variance, the mean squares between and
within groups are denoted by s2

b and s2
w, respec-

tively, then

rI =
s2

b −
[

n

(n − 1)

]
s2

w

s2
b + (m − 1)

[
n

(n − 1)

]
s2

w

,

so, for large n,

rI ∼ s2
b − s2

w

s2
b + (m − 1)s2

w

.

Equivalently, rI ∼ (F − 1)/(F + m − 1), where F is
the usual variance ratio statistic, s2

b/s2
w.

Two approaches may be followed in discussion
of the sampling error of the intraclass correlation
coefficient, using either finite population theory as
is usual for multistage sampling, or the random
effects model more usual in biologic applications.

The first approach assumes that the n groups are
randomly selected from a larger set of N , and that
each set of m observations within a group is ran-
domly selected from M . If the intraclass correlation
coefficient for the finite population of MN observa-
tions is denoted by ρI , the sample value rI may be
regarded as an estimator of ρI .
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The random effects model effectively assumes
infinite values for M and N . The group means are
assumed to be distributed with a variance com-
ponent σ 2

b , and the within-group deviations with a
component σ 2

w. Then

ρI = σ 2
b

σ 2
b + σ 2

w

.

Inferences about ρI may be made using standard
results for the F distributions in the one-way analy-
sis of variance.

Some examples of the use of intraclass correlation
as a descriptive tool are as follows:

1. In sample survey theory (see Cluster Sam-
pling; Multistage Sampling; Cluster Sampling,
Optimal Allocation), to indicate the correlation
between observations in the same cluster due to
systematic between-cluster variation.

2. In statistical genetics, to indicate the correla-
tions in genetic traits between members of the
same family: see the articles on familial cor-
relations (which deals in detail with the situ-
ation in which the family groups vary in size)
and genetic correlations and covariances. The
numerical values of intraclass correlation coeffi-
cients are more meaningful in genetics than in
most other applications, because of the predic-
tions of Mendelian theory (see Mendel’s Laws),
although the predicted values for familial cor-
relations, for example between siblings, may be
distorted by the additional effects of environmen-
tal correlation.

3. In studies of the reliability of repeated measure-
ments, or the agreement between observers in
measuring characteristics of the same subject (see
Kappa; Observer Reliability and Agreement).
Note that when the same observers are used for
each subject, there may be systematic differences
in the level of recording for different observers,
and the one-way analysis of variance analogue is
no longer valid [2].

Some Generalizations

The concepts underlying the product–moment corre-
lation coefficient may be generalized or modified in
various ways. The (x, y) pairs may not be closely
linearly related, but may nevertheless be perfectly

associated through a nonlinear relation. If this rela-
tion is monotone, the observations will be ranked in
the same order by both x and y. Two commonly used
coefficients of rank correlation are Spearman’s ρ

(essentially the product–moment correlation of the
ranks), and Kendall’s τ (based on the number of dis-
crepancies in the ranking of paired observations by
the two variables). Both coefficients are bounded by
the values −1 and +1 for perfect negative and posi-
tive agreement between the rankings.

When there are more than two quantitative vari-
ables, the correlations between pairs play an impor-
tant part in various methods of multivariate analysis
(see Multivariate Analysis, Overview). In multiple
linear regression, two generalizations of r are com-
monly used. The multiple correlation coefficient, R,
generalizes a property of r , in that the proportion
of the variance of the dependent variable y that is
“explained” by the multiple regression on x1, . . . , xk

is R2. (Since the squared form carries the essen-
tial information, R is never given a negative sign.)
The partial correlation coefficient measures the prod-
uct–moment correlation between y and one of the
predictor variables, xi say, when all the other pre-
dictors are kept constant. It is therefore useful in
assessing the separate effects of different predictors,
especially if they are themselves closely correlated.

In the early work of the Galton–Pearson school,
much effort was put into the estimation of correlation
coefficients when the observed values were nominal –
perhaps even binary – but were supposed to represent
divisions of some underlying, unobserved, continu-
ous variables. The correlation between the presumed
continuous variables had to be estimated from the
discrete observations. It was usually assumed that
the underlying distribution was bivariate normal. For
two binary classifications, the measure is called tetra-
choric correlation. When one variable is binary and
the other is quantitative, the measure is called bis-
erial correlation. These methods are less frequently
used now, as alternate models for categorical data
seem more appropriate (see Association, Measures
of; Categorical Data Analysis).

Interpretation

The high profile assumed by the concept of corre-
lation during the early part of the twentieth cen-
tury has now largely vanished. This is partly due
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to the emergence of more penetrating methods of
statistical analysis. In particular, the emphasis has
gradually moved away from an index measuring a
degree of association, to an attempt to describe more
explicitly the nature of that association. In a word,
the emphasis has moved from correlation toward
regression.

Apart from this general shift in viewpoint, there
are some specific problems in the interpretation
of correlation coefficients, which need to be taken
into account in any data analysis in which they
are used:

1. Correlation does not imply causation. Two vari-
ables may be highly correlated because they are
both causally related to a third variable or a group
of such variables, and yet have no causative rela-
tion to each other. Relations of this type are often
called nonsense or spurious correlations. Often,
the intervening variable is time. That is, two vari-
ables x and y may both be steadily increasing
with time, over a certain time period, or one
may be increasing while the other decreases. The
two variables are then likely to be highly cor-
related. For instance, during the first two-thirds
of the twentieth century, imports of tobacco into
the UK increased steadily, as did the number of
divorces granted. The two variables, measured
in successive decades, are highly correlated. It
would certainly not be correct to assume that
either variable caused the other. Nonsense cor-
relations are among the most prevalent causes of
injudicious inferences from statistical data by the
general public and the media.

2. Correlation measures closeness to a linear rela-
tionship. Two variables may be very closely asso-
ciated by a nonlinear relation, and yet have a low
correlation coefficient. As an extreme example,
in Figure 2 (reproduced from [8]) is shown a
scatter diagram between randomly drawn stan-
dard normal deviates and their squares. The
population correlation coefficient is exactly zero,
but it would have been entirely wrong to assume
a lack of dependence. Independent random vari-
ables have zero correlation; but zero correlation
does not imply independence.

3. The correlation between two biologic variables
may be affected by selection of particular val-
ues of one variable. For instance, if X and Y

have a distribution approximating to a bivariate
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Figure 2 A scatter plot of Y = X2 for 100 standard
normally distributed random numbers and their squares.
Reproduced from [8] by permission of Wiley, New York

normal distribution, with correlation coefficient
ρ, restriction of the range of X by removal of
extreme values in both directions will tend to
decrease the correlation coefficient below the
original value ρ. Thus, the correlation between
height and age of children is higher for the age
range 5–12 years than for the range 7–8 years.
Conversely, omission of central values of X with
retention of extreme values will tend to increase
the correlation coefficient. This phenomenon may
make it difficult to compare correlation coeffi-
cients in different populations differing in the
degree and type of selection.

4. The effect of sampling variation is often under-
estimated, so that undue importance is given to
moderately high correlations based on few obser-
vations. The upper 5 percentile of the distribution
of |r| when the population value ρ = 0, from
(3), is 0.878 for n = 5, and 0.632 for n = 10.
In this sense, moderately large correlations from
small numbers of observations are inherently
unreliable.
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Correlational Study

A correlational study is an ecologic study in which
rates of disease in populations are correlated with
average exposures or other features of such popula-
tions. The populations may be defined by geographic
regions of residence, for example. Such correlations

are useful for generating etiologic hypotheses, but
because individual-level information is not available
on exposure, disease outcome, and potential con-
founders, such correlations are subject to the eco-
logic fallacy and may be misleading.

MITCHELL H. GAIL



Correspondence Analysis
of Longitudinal Data

Correspondence analysis is an exploratory tool for
the analysis of association(s) between categorical
variables. Usually, the results are displayed in a
graphical way.

There are many interpretations of correspondence
analysis. Here we make use of two of them. A
first interpretation is that the observed categorical
data are collected in a matrix, and correspondence
analysis approximates this matrix by a matrix of
lower rank [12]. This lower rank approximation of,
say, rank M + 1 is then displayed graphically in a
M-dimensional representation in which each row and
each column of the matrix is displayed as a point. The
difference in rank between the rank M + 1 matrix and
the rank M representation is matrix of rank 1, and this
matrix is the product of the marginal counts of the
matrix, that is most often considered uninteresting.
This brings us to the second interpretation, that is,
that when the two-way matrix is a contingency table,
correspondence analysis decomposes the departure
from a matrix where the row and column variables are
independent [8, 9]. Thus, correspondence analysis is
a tool for residual analysis. This interpretation holds
because for a contingency table estimates under the
independence model are obtained from a product of
the margins of the table (divided by the total sample
size).

Longitudinal data are data where observations
(e.g. individuals) are measured at least twice using
the same variables. We consider here only categorical
(i.e. nominal or ordinal) variables, as only this kind
of variables is analyzed in standard applications of
correspondence analysis [7].

Two Time Points

When there is one categorical variable measured at
two time points, a so-called transition matrix can be
constructed [1]. In this transition matrix, the row vari-
able is the categorical variable measured at time 1,
and the column variable is the categorical variable at
time 2. The aim of a correspondence analysis of a
transition matrix is to get an insight into the transi-
tions from time 1 to time 2. Different questions about

these transitions exist, and these lead to different form
of correspondence analysis.

We index the levels of the row variable (time 1)
with i, (i = 1, . . . , I ) and the levels of the column
variable (time 2) with j, (j = 1, . . . , J ). We denote
relative frequencies by pij , probabilities by πij , and
estimates of probabilities by π̂ij . Marginal elements
are found by replacing the index by “+”, for example,
row marginal elements of the matrix with relative
frequencies are pi+ and column marginal elements
are p+j .

A first analysis would be a standard correspon-
dence analysis of the contingency table with elements
pij . The interpretation discussed above shows that
the resulting graphic display can be interpreted as
showing a decomposition of the residuals from the
independence model, that is, π̂ij = pi+p+j [7–9].

A problem with this standard analysis is that
often interest goes out to the off-diagonal elements
(i.e. the cells for which i �= j ) in the contingency
table, as these represent the individuals that change.
In a standard correspondence analysis, the view on
these cells might be blurred by the diagonal cells,
especially, when pij � pi+p+j (which is the case
when many individuals remain in the same level
of the categorical variable from time point 1 to
2). A solution to this problem is not to study the
residuals from the independence model, but from the
so-called quasi-independence model, defined here as
πii = pii for i = j and πii = αiβj for i �= j [1]. It
is possible to adjust correspondence analysis so that
residuals from quasi-independence are decomposed.
This can be done in two ways: by adjusting the
computer program or by changing the input data.
The last option seems most simple, and the way to
do it is as follows: the diagonal elements pii have
to be replaced by elements for which independence
holds. This can be accomplished by filling in elements
pi+p+i for the diagonal. By doing this, the margins
of the new table have changed so that the elements
on the diagonal are not independent, and therefore,
using the new margins, again elements pi+p+i have
to be filled in. After a few iterations, these elements
have stabilized, and a correspondence analysis of the
resulting table can be interpreted as a decomposition
of quasi-independence [7, 8, 11].

This approach can be extended further by adjust-
ing correspondence analysis so that it can decom-
pose residuals from the symmetry model or from the
quasi-symmetry model [7, 8]. Another development
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is to use statistical models instead of the exploratory
approach described here. There are also close con-
nections between correspondence analysis and latent
class analysis [12].

We give a small example to illustrate an analysis
of the departure from independence. Space limita-
tions withhold us from a detailed interpretation, and
for interpretation principles, we refer to correspon-
dence analysis. The data are 5 import car types out
of 16 car types published in [8]: subcompacts (subi),
small specialties (smai), compacts (comi), midsize
(midi), and luxury (luxi). In the rows of Table 1, we
find the cars disposed of, and in the columns the new
cars. Notice the dominant observed frequencies on the
diagonal. These values dominate the first dimensions
of a correspondence analysis (see Figure 1), espe-
cially, the diagonal luxi-cell compared with the rest.
In a second analysis, we decompose the residuals
from quasi-independence. Such an analysis can be

Table 1 1979 car changing data

subi smai comi midi luxi Total

subi 25 986 5400 2257 1307 288 35 238
smai 3622 5249 738 1070 459 11 138
comi 6981 1023 1536 1005 127 10 672
midi 2844 772 565 3059 595 7835
luxi 997 341 176 589 3124 5227
Total 40 430 12 785 5272 7030 4593 70 110

Rows denote cars disposed, columns denote new cars.
Abbreviations are in the text.

accomplished by filling in “independent” values for
the diagonal. These values are 12 790, 1381, 1033,
503 and 71. The interpretation of this correspondence
analysis uses the same principles as for standard cor-
respondence analysis of the table with the adjusted
margins. For the margins, the residuals are zero, and
therefore, the graph only shows car type changes. The
car order for cars disposed off is luxi, midi, comi,
subi, and smai, but for new cars it is luxi, midi, smai,
comi, and subi (see Figure 2). Notice, for example,
the different position of smai. It is due to asymmetries
in the data that become visible now that the domi-
nance of the diagonal elements has been suppressed.
For example, when people dispose of a smai, they
buy a luxi very often (relative to the margins of the
adjusted table, i.e. observed 459 but predicted by mar-
gins 239) but the reverse does not hold (observed 341
but predicted by margins 413).

More than Two Time Points

When there is one categorical variable measured
at more than two time points, it is usual to code
the response profiles into a so-called superindica-
tor matrix (see Correspondence Analysis). Corre-
spondence analysis of a superindicator matrix is
also known as multiple correspondence analysis. A
superindicator matrix has N individuals in the rows
and the categories for each of the time points in the
columns. This correspondence analysis has the aim to
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Figure 1 Ordinary CA of car changing data
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Figure 2 Generalized CA decomposing residuals from quasi-symmetry
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get insight into the transitions between all time points
simultaneously. The analysis also yields quantifica-
tions for the individuals, and the quantifications for
an individual can be considered as summaries of the
response profile of this individual that can be used,
but it can also be used to obtain a classification of
the response profiles of the individuals [2–7, 10].

As an example, we give a superindicator matrix
of one dichotomous variable measured at three time
points for N = 101 individuals (see Table 2). (In
many computer programmes, the column vector with
frequencies cannot be specified, but instead a matrix
with 101 rows will serve as the data input file.) The
matrix can be made larger in a straightforward way
when the number of categories is larger than two,
when there are more time points, or when there are
more individuals. A correspondence analysis of this
matrix will yield a three-dimensional display with
101 points, one for each individual, and a graphical
display with 8 points, one for each category at each
time point. Without going into technical details (see
[5, 10]), individuals with similar profiles will be close
together, categories that are often used by the same
individuals will be close together, and, when we
overlay the two graphs, individuals will be close to
the categories that they use. It is also important to
notice that, since correspondence analysis displays
the departure from the row and from the column
margin of a table, it follows that correspondence
analysis will not show the trend in “a” and “b”
over the three time points. This trend can be studied
from the counts in the 3 × 2 table of time points by
categories [7, 10].

Another way to interpret this analysis is when
we realize that a correspondence analysis of the

Table 2 A small example of a categorical data matrix
(panel A) and its superindicator matrix (panel B)

Panel A
Panel B

t t1 t2 t3
1 2 3 Freq a b a b a b

a a a 40 1 0 1 0 1 0
a a b 16 1 0 1 0 0 1
a b a 4 1 0 0 1 1 0
a b b 12 1 0 0 1 0 1
b a a 8 0 1 1 0 1 0
b a b 3 0 1 1 0 0 1
b b a 6 0 1 0 1 1 0
b b b 12 0 1 0 1 0 1

Table 3 The Burt matrix for the example in Table 2

t1 t2 t3

a b a b a b

t1 a 72 0 56 16 44 28
b 0 29 11 18 14 15

t2 a 56 11 67 0 48 19
b 16 18 0 34 10 24

t3 a 44 14 48 10 58 0
b 28 15 19 24 0 43

superindicator matrix, say G , is mathematically
related to a correspondence analysis of the so-called
Burt matrix G ′G (see Correspondence Analysis).
The Burt matrix for this example is shown in
Table 3. This matrix is a concatenation of a two-
way contingency table for each pair of time points,
and diagonal matrices with marginal frequencies.
This shows that the solution of correspondence
analysis only uses two-way interactions, and ignores
higher-way interactions. Thus, a Burt matrix contains
sufficient information for a nonstationary Markov
chain (the table of time points 1 and 3 is the matrix
product of the tables of time points 1 and 2, and 2
and 3) [7, 10].

Examples of such analyses can be found in [2–4,
7, 10]. If the number of individuals is not very large,
the estimates for the category points will be unstable.
More stability is obtained by constraining category
points of adjacent time points to be the same. Such a
solution can be obtained by adding up the indicator
matrices of the adjacent time points [6]. This is also
the way to go when the data to be analyzed are event
history data, where the observations are in continu-
ous time, or career data. Examples of unconstrained
and constrained analyses are in [3–7, 10].
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Correspondence Analysis

Correspondence analysis facilitates the exploration
and display of interrelations among two or more
sets of variables. Historically, it has been identified
by a variety of labels including canonical analysis
and dual or optimal scaling [9]. A core operation in
correspondence analysis and other metric scaling pro-
cedures is the decomposition of a matrix of data to
find the underlying characteristic vectors and roots
[3, 6, 8, 9, 14] (see Eigenvector; Eigenvalue). This
mathematical procedure is equivalent to the method
of reciprocal averages, analysis of variance, princi-
pal components analysis, and generalized canonical
analysis [11]. Transformations of the data before
and of the component vectors after decomposition,
however, allows for the scaling of both row and
column variables in the same spatial configuration.
This latter feature, the joint scaling of both row and
column variables in the same space, differentiates
correspondence analysis from multivariate analyses
which focus on either a row or a column variable rep-
resentation. Thus, correspondence analysis provides
information on the interrelationships among variables
within a set (among the column or among the row
variables, as does principal components analysis) and
on the interrelationship between the row and column
variables. Furthermore, correspondence analysis can
be used on either qualitative (categorical) or quanti-
tative (continuous) multivariate data. A data matrix,
X, may contain test scores for individuals (where the
entry xij indicates subject i’s score on test j , as is
appropriate for a principal components analysis); it
may be a cross-classification of cities by types of
crimes (where entry xij indicates city i’s frequency
count for crime j , as is appropriate for a contingency
table analysis with a chi-square test); or the matrix
may contain proximity data (where the entry xij indi-
cates the distance or similarity between items i and j ,
as is appropriate for multidimensional scaling (see
Similarity, Dissimilarity, and Distance Measure)).
Correspondence analysis can be used descriptively
with a wide variety of data types, but the use of
inference requires random sampling and frequency
count data.

Because correspondence analysis is appropriate
for contingency table data, it may be used to visualize
and help interpret complex interactions as detected in
a loglinear analysis [12]. By removing the effects

of unequal marginal totals from the data, corre-
spondence analysis is able to provide a detailed
description of the interaction or association among
variables or categories. Spatial plots of variables on
the interactive factors aid in the interpretation of com-
plex data. They can be used to answer questions about
the nature of the association: whether the associa-
tion is constant across categories and if categories are
ordered and equally spaced [7] (see Ordered Cate-
gorical Data). Correspondence analysis also can be
used to determine which categories should be com-
bined [4, 5].

Predecomposition Transformation of Data

Correspondence analysis consists of three steps: an
initial transformation of the raw data, a singular value
decomposition of the transformed data, and a rescal-
ing of the resultant eigenvectors. While metric scaling
methods share a core decomposition procedure, they
vary in terms of predecomposition transformations of
the data and postdecomposition transformation of the
eigenvectors. For example, a principal components
analysis on a correlation matrix of column variables
parallels a singular-value decomposition of a column-
standardized matrix [14]. In correspondence analysis,
the data are first transformed by dividing each xij

entry by the square root of the product of the cor-
responding row and column marginal totals (xi. and
x.j , respectively):

hij = xij


∑

j

xij

∑

i

xij




1/2 = xij

(xi.x.j )1/2
, (1)

where the matrix H contains the transformed data. In
matrix notation, H = S−1/2XC−1/2, where S−1/2 and
C−1/2 are diagonal matrices containing the reciprocal
of the square root of the row and column marginal
totals. This transformation removes the “magnitude”
effects due to differences in marginal totals, so that
the pattern of “interaction” may be examined in
detail. In the analysis of cross-classified data this
is equivalent to removing the Pearson chi-square
expected values for the independence model. In fact,
an alternative transformation parallels the calculation
of each cell’s contribution to the total chi-square
[(oij − eij )

2/eij ], and is each cell’s contribution to
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the overall association:

tij =
[

(oij − eij )

(eij )1/2

] [
1

n1/2

]
, (2)

where T contains the transformed data, oij indicates
the observed frequencies (xij ), and eij indicates the
chi-square expected values (xi.x.j /x..). Either (1) or
(2) may be used to transform the data without affect-
ing the results, except as noted below.

Decomposition to Basic Structure

In the second step, a singular-value decomposition is
used to find the underlying or characteristic vectors
in the data. A matrix X with n rows and m columns,
where n ≥ m, may be represented as the product of
three matrices:

X(n×m) = U(n×m)d(m×m)VT
(m×m). (3)

Each of the three new matrices contains information
regarding the data in X. The U matrix summarizes
the rows, e.g. the row variables, of X: the rows in
U correspond to the rows in X and the columns in
U are the underlying or characteristic vectors of the
row variables. The V matrix similarly summarizes
the information in the columns of X: each row in V
corresponds to a column in X, and the columns of
V are the characteristic vectors of those variables.
The columns of U and V are all of unit length,
so that (

∑
i u2

ik)
1/2 = (

∑
j v2

jk)
1/2 = 1.0. Also, when

the X matrix is square and symmetric, the U and V
matrices are equal. In this special case, X = UdVT =
UdUT = VdVT. The d matrix is a square diagonal
matrix with entries along the main diagonal and zeros
elsewhere. The main diagonal cell entries are the
singular values or roots corresponding to the columns
of U and V, so that the entry djj corresponds to
the j th column of U and the j th column of V. The
singular values are ordered from largest to smallest,
and so the dimensions in U and V are ordered in
terms of their relative importance in accounting for
the variance or shape of the configuration of data
points.

Spatially, the initial configuration of data points
is stretched and/or shrunk and rotated onto new,
Euclidean, coordinate axes without any loss of infor-
mation. The new axes (the columns of U and V)
are orthonormal (see Orthogonality); that is, they

are orthogonal or perpendicular to one another and
are normalized to unit length. The U and V matri-
ces represent the data in normalized space, with
each dimension weighted equally. The normalization
changes a (Rugby) football-shaped cluster of points
into a round spherical shape. The d matrix entries
indicate the relative importance of each dimension
and may be used to stretch or shrink dimensions of
the configuration to return it to its original shape.

If the data do not contain redundant information,
the number of columns in U and V will equal the
minimum dimension m of X. If the data contain math-
ematically redundant information, the dimensionality
of the solution will be less than m. The dimension-
ality of the subspace spanned by the configuration of
points is equal to the number of nonzero elements
in d (the rank of the matrix). Models of reduced
dimensionality may be used to represent the data by
using fewer dimensions of the U, d, and V matrices.
For example, a k-dimensional estimate of the data
can be obtained by multiplying together the first k

dimensions of the U and V matrices and the first k

weights in d. Note that in correspondence analysis the
matrix H of (1) is factored and not the observed data,
X. Because of this, the maximum dimension of the
solution is m − 1 and multiplication of the U, d, and
V matrices results in the matrix H. Correspondence
analysis contains procedures for retrieving models of
the original, observed data (X).

One effect of the transformation in (1) is that the
first column in the U and V matrices, correspond-
ing to the independence model, contains a constant
equal to 1.0. This factor is ignored and is sometimes
referred to as the “trivial” factor. The first singular
value, d11, is also equal to 1.0 and is ignored for most
purposes. Subsequent singular values in d are called
canonical correlations. When (2) is used to trans-
form the data, the trivial factor and the first singular
value are not evident in the solution.

The U, V, and d matrices may be found
directly with a singular-value decomposition of X or
indirectly by performing eigenanalyses on the cross-
product matrices of X. Pre- or postmultiplication
of a matrix by its transpose results in a square,
symmetric matrix, so that the characteristic vectors
of a rectangular (nonsquare, nonsymmetric) matrix
may be found by performing eigenanalyses on
XXT and XTX, where XXT = UDUT = Ud2UT and
XTX = VDVT = Vd2VT. The singular values are
equal to the square root of the eigenvalues, so that
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X = UD1/2VT = UdVT. Decomposition of X, XXT,
or XTX results in solutions of the same rank.
While the characteristic vectors and singular values
can be derived from either an eigenanalysis or
a singular-value decomposition, the singular-value
decomposition algorithm offers greater numerical
stability, especially with ill-conditioned matrices. The
solution is a least squares solution with results
typically providing a close approximation to the
maximum likelihood solution [5, 13].

Transformation of Component Vectors to
Obtain Optimal Scores

In the last step, the columns of the U and V matrices
are rescaled. The rescaled characteristic vectors are
referred to as optimal scores, canonical scores, or
canonical variates. Rescaling is performed as follows:

uik
∗ = uik

(
x..

xi.

)1/2

(4)

and

vjk
∗ = vjk

(
x..

x.j

)1/2

, (5)

where k indexes the component vectors (ignoring
the first trivial vector if (1) was used) and matri-
ces U∗ and V∗ contain the optimal scores for U
and V, respectively. The optimal scores are normal-
ized, Euclidean spatial coordinates. Multiplication of
the scores by the canonical correlations stretches or
shrinks the configuration so that the relative impor-
tance of the factors is evident. For comparing scores
between rows and columns and between dimen-
sions, the scores must be weighted relative to the
singular values. A common practice is to multiply
the scores by the square root of the corresponding
singular value, although other methods are avail-
able [2].

Modeling Observed Data

The number of interactive factors (≤ m − 1) needed
to represent the data can be determined by sequen-
tially creating models of increased dimensionality and
testing the goodness of fit of each model to the
observed data. With cross-classified data, this should
be preceded by a chi-square test for independence. A

significant chi-square indicates that the observed data
are significantly different from the model of indepen-
dence and that an analysis of the interaction may then
be pursued. Models of successively higher dimen-
sionality are constructed with the interactive factors
until a model is obtained that is not significantly dif-
ferent from the observed data. Chi-square tests are
used to test the goodness of fit between the models
and observed data. The expected values (eij ) for a
k-dimensional model are calculated as

eij =
∑

k

[(
xi.x.j

x..

)
dkkuik

∗vjk
∗
]

, (6)

where k is the number of dimensions (beyond the
trivial factor) to be used in reconstructing the data,
U∗ and V∗ are the optimal scores, and d contains
the singular values or canonical correlations. Thus,
data are reconstructed from the sum of successive
models: the chi-square independence model (the
trivial factor and the first singular value) and then
the first nontrivial interactive factor and its canonical
correlation, and so on. There may be as many factors
as the minimum dimension of the matrix X minus
one (≤m − 1 pairs of factors).

With cross-classified data, goodness of fit is tested
directly with the Pearson chi-square. With other
types of data, goodness of fit can be expressed
descriptively as a function of the singular values.
Ratios of squared canonical correlations may be
used in a correspondence analysis to describe the
“proportion of explained variance” in the same way
that eigenvalues are used in a principal components
analysis. The ratio of the sum of the first k squared
canonical correlations to the sum of all squared
canonical correlations provides a descriptive index of
explained variance. In correspondence analysis this is
the proportion of the total association captured by a
k-factor representation and in some applications is
called “inertia” [1, 8]. In fact, the sum of the squared
canonical correlations is equal to the total degree of
association in the data (the Pearson chi-square score
divided by the sample size). Since applications of
correspondence analysis to nonfrequency data cannot
use a Pearson chi-square to test how much data
deviate from marginal totals, the ratio of the first
(trivial) singular value to the sum of all squared
singular values (including the trivial one) may be
used to estimate the proportion of total variance
in the original data that is explained by magnitude
differences in marginal totals [14].
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Alternative Data Formats: Indicator
Variables

Qualitative data also may be analyzed as indi-
cator variables (see Dummy Variables). If data
are expressed as dichotomous variables (1 =
characteristic present and 0 = absent), with a dichoto-
mous indicator variable for each category of each
variable, and if the cases with identical profiles are
summed together, then results are parallel to those
obtained from the cross-classification table of the
same data [10, 14]. Analysis of indicator variables
has the interesting advantage of scaling not only the
categories of each variable but also the types of cases.
The unique case profiles become an additional set of
variables in the analysis, and thus the relationship
between the type of case and the categories of each
variable may be seen.

Ordination, Seriation, and Guttman
Scaling

Correspondence analysis can also be used to find
the optimal ordering of variables for a given set of
characteristics. This problem has different names in
different fields of study: ordination, seriation, and
Guttman scaling. Because items that occur closer in
time (or space) have more similar profiles than items
further apart, rearrangement of the data by similarity
in profiles helps to establish their optimal ordering.
Guttman scaling is a specific type of ordering,
wherein the order is cumulative and transitive: if
someone has an object on the list, then they tend to
have the objects that precede it; and if they lack an
item on the list, then they tend not to have subsequent
items. Correspondence analysis provides a weighted
least squares solution to this problem. Analysis of
a matrix of cross-classified data (location by type
of archeological specimen) or of indicator variables
(households by the presence or absence of specific
consumer goods) provides optimal scores for row
and column variables that establish the optimal order
of variables. The scores may be used to reorder
the original data matrix to see the pattern or they
may be plotted spatially. The plot of the scores will
often yield a curvilinear rather than a strictly linear
result.

Multiple Correspondence Analysis

Multiple correspondence analysis involves three or
more variables or sets of variables. The analysis is
performed on indicator matrices or stacked contin-
gency tables. Continuous variables can be recoded
into categories for the analysis with a variable for
each category. Indicator matrices, where the matrix
rows represent cases (or unique case profiles) and the
columns represent all categories of all variables, can
be used. Guttman scaling is an example of a multiple
correspondence analysis on indicator variables. Simi-
larly, a cross-product or Burt [8] matrix (XTX) of the
indicator variables can be analyzed to obtain the solu-
tion. In a stacked table analysis, a k-way contingency
table is arrayed as a series of two-way contingency
tables. The tables are analyzed as a single two-way
table with the tables stacked side by side vertically
or horizontally. In an analysis of age, gender, and
methods of suicide the different ways of arraying the
two-way tables emphasizes different aspects of the
data: gender and age patterns for suicide methods; or
gender differences in choice of a suicide method for
different age groups [12].
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Cosine of Angle Between
Two Vectors

Two vectors in 2-space are shown in Figure 1, with
(x1, x2) being a point on one vector and (y1, y2) on
the other. Let Ax and Ay be the angles the vectors
make with the horizontal axis, and define B as the
angle between the vectors. Thus

B = Ax − Ay,

cos B = cos(Ax − Ay)

= cos Ax cos Ay + sin Ax sin Ay.

On dropping perpendiculars from the points to the
horizontal axis, it is then easily seen from right-angle
triangle geometry that

cos B = x1

(x2
1 + x2

2 )1/2

y1

(y2
1 + y2

2)
1/2

+ x2

(x2
1 + x2

2)
1/2

y2

(y2
1 + y2

2)
1/2

(1)

= x1y1 + x2y2

dxdy

(2)

for
d2

x = x2
1 + x2

2 and d2
y = y2

1 + y2
2 . (3)

Thus (2) is the formula for the cosine of the angle
between two vectors in 2-space.

Another derivation of (2) with dx and dy being
the distances from the origin to the points (x1, x2)

and (y1, y2), respectively, is to apply the cosine rule

x1, x2

x2

y1, y2

y2

B

Ax

Ay

Figure 1 Two vectors in 2-space

to the angle B in the triangle formed by the origin
and the points (x1, x2) and (y1, y2). This gives

cos B

= d2
x + d2

y − [the distance from (x1, x2) to (y1, y2)]2

2dxdy

= d2
x + d2

y − [(x1 − x2)
2 + (y1 − y2)]2

2dxdy

,

which with (3) reduces to (2).

Three-Space

For two vectors in 3-space a diagram analogous to
Figure 1 can be drawn (see Searle [3]). Applying to
that 3-space diagram some triangle geometry more
complicated than that used for deriving (1) yields the
result

cos B = x1y1 + x2y2 + x3y3

dxdy

, (4)

with

d2
x = x2

1 + x2
2 + x2

3 and d2
y = y2

1 + y2
2 + y2

3 , (5)

where (x1, x2, x3) is a point on one vector and
(y1, y2, y3) is on the other. Details are in Searle [3].

n-Space

Let x′=[x1 x2 . . . xi . . . xn] and y′=[y1 y2 . . . yi . . . yn]
be two points in n-space, one on one vector and one
on another. Then results (2), (3) and (4), extend very
directly for n-space to

cos B =
n∑

i=1

xiyi

dxdy

(6)

for

d2
x =

n∑

i=1

x2
i and d2

y =
n∑

i=1

y2
i (7)

so that, in terms of the vectors x′ and y′,

cos B = x′y
(x′x)1/2(y′y)1/2

. (8)

Viewed from the geometry of two and three dimen-
sions, (6) may not seem very satisfying. Moreover,
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its derivation demands arguments in the geometry of
n-space. These arguments are more theoretical than
those for deriving (2) and (4) of 2-space and 3-space,
respectively. Thus it is easier to simply take (6) as
an algebraic definition of B as the angle between two
vectors in n-space. Indeed, some books on multivari-
ate analysis do just that, e.g. [2, p. 16] and [1, p. 99].

Invariance

The prime property of a vector is its direction, not its
length. Yet each of (2), (4) and (6) seems to depend
upon the actual values of the xs and the ys, i.e.
their lengths. Fortunately this is not so. For example,
with (2), if on the vector through (x1, x2) some other
point (x∗

1 , x∗
2 ) is taken, it will be found from the

geometry of congruent triangles that if x∗
1 = λxx1,

then x∗
2 = λxx2. Therefore cos B of (2), with the x∗s

and y∗s replacing the xs and ys, becomes

cos B = x∗
1y∗

1 + x∗
2y∗

2

(x∗2
1 + x∗2

2 )1/2(y∗2
1 + y∗2

2 )1/2

= λxλy(x1y1 + x2y2)

λx(x
2
1 + x2

2)
1/2λy(y

2
1 + y2

2 )1/2

= x1y1 + x2y2

dxdy

as before; i.e. cos B of (2) is unchanged. Similar
geometry also leaves (4) unchanged. And arguing
in n-space that changing x1 to x∗

1 = λxx1 leads to
x∗

i = λxxi for all i, then (6) will be unchanged also.
A second form of invariance is when rotation

of axes is considered. Although coordinates of a
point will change under rotation, the angle between
two vectors will not; and the cosine of that angle
is unchanged and is the same function of the new
coordinates as the old. Suppose for 2-space that the
axes are rotated counterclockwise through an angle
θ . It can then be shown (as in Searle [3]) that the
coordinates x1 and x2 of Figure 1 become

x ′
1 = x1 cos θ + x2 sin θ and

x ′
2 = x2 cos θ − x1 sin θ. (9)

From these it is easily seen that d ′
x = x ′2

1 + x ′2
2 =

x2
1 + x2

2 = dx (as one would expect). Furthermore,
with y ′

1 and y ′
2 being the same function of y1 and y2

as the x ′s are of the xs in (9), it is straightforward to

show that x ′
1y

′
1 + x ′

2y
′
2 = x1y1 + x2y2. Hence, com-

parable with (2),

cos B = x1y1 + x2y2

dxdy

= x ′
1y

′
1 + x ′

2y
′
2

dx ′dy ′
.

Thus, rotating the axes gives the cosine of the angle
between two vectors being the same expression of
the new coordinates as it does of the old ones.

Correlation

When the entries in x and y are data (e.g. height and
weight of each member of a rowing club), define x

and y as the observed averages:

x =
n∑

i=1

xi

n
and y =

n∑

i=1

yi

n
.

In x and y replace each element xi by xi0 = xi − x

and yi by yi0 = yi − y. Define x0 and y0 as the
vectors of elements xi0 and yi0. Then cos B for x0

and y0 is

cos B = x′
0y0

(x′
0x0)

1/2(y′
0y0)

1/2

=

n∑

i=1

(xi − x)(yi − y)

[
n∑

i=1

(xi − x)2
n∑

i=1

(yi − y)2

]1/2

is the product–moment correlation between the two
variables.
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Cost–Benefit Analysis,
Willingness to Pay

An important distinguishing feature between different
methods of health care economic evaluation (see
Health Economics) is the way in which health-
related outcomes are defined, measured, and valued
[10]. Cost–benefit analysis (CBA) is a technique
where health benefits are valued in monetary units for
comparison against program costs [16]. CBA holds
appeal for at least three reasons: (i) it has a theor-
etical foundation in welfare economics [22]; (ii) by
enabling direct comparison of program costs and
benefits it permits the calculation of a program’s net
benefit and thereby avoids much of the ambiguity
associated with cost-effectiveness “league tables” [4,
5, 21]; and (iii) the same principle of net benefit
can be applied to other sectors such as transport
and environment so that intersectoral comparisons of
resource use can be considered.

CBA might become the method of choice for
more researchers in health care if there was one
unambiguous and generally agreed-upon method for
estimating money values for health outcomes. Debate
over CBA in health care and other areas of project
appraisal requiring monetary valuation of health out-
comes has a controversial history. In the 1960s and
1970s the prevalent notion of CBA was restricted
simply to comparing health care costs with and
without the program being evaluated. Studies such
as those by Koplan [18] on pertussis vaccination,
although labeled as CBA, are essentially cost compar-
isons because they make no attempt to place dollar
values on health benefits. Following Becker [2], it
became popular to quantify health benefits in monet-
ary units, characterized as a return on human capital
investment, using discounted future earnings streams
(for an example in rubella vaccination, see Schoen-
baum [28]).

In a seminal contribution, Mishan [23] argued
that the human capital approach in CBA studies was
flawed for two general reasons: (i) it builds upon
the questionable assumption that society’s main goal
is the maximization of national income, and this
has some worrisome implications for valuing pro-
grams that improve the health of persons with low
or zero future earnings; and (ii) the method is incon-
sistent with the foundation of CBA from welfare

economic theory. Mishan argued that the monetary
valuation of programs that reduced risks to “life and
limb”, as with other goods, should be based upon
the concept of consumer surplus; that is, the rel-
evant economic notion of value for a program is
the most that consumers are willing to give up to
receive it – i.e. their maximum willingness to pay.
Such measurement is based on the decision rule for
CBA, where the goal is to determine whether the
value of the program to those who gain is sufficiently
large that they could, in principle, compensate in full
all those who lose and still remain better off them-
selves (the so-called Potential Pareto improvement
criterion).

Subsequent empirical work has taken two main
directions. First, there are revealed-preference studies
which document observed trade-offs between health
risks and money. The principle here is that the analyst
can only assess a person’s preferences for trade-
offs between money and health by actually observing
market behavior. For example, this might be in the
form of a person’s willingness to pay for extra safety
features on a new car. A major focus of revealed pref-
erence studies has been labor market studies, relating
wage premiums to health risks for particular occupa-
tions [20, 31]. Secondly, there are stated preference
surveys of hypothetical dollar – health risk choices
such as road transport safety and consumer decisions
[17]. This second approach is not based on observing
actual market behavior and money – health trade-
offs, but operates by offering hypothetical choices to
respondents in a survey. This survey-based approach
has been termed contingent valuation, because the
respondent is being asked to consider the contingency
of a market existing for the thing being valued, even
though an actual market may not exist.

Much of the conceptual and empirical devel-
opment of contingent valuation methods has been
done in the areas of transport economics with a
predominant focus on the value of life [17], and
lately in environmental economics with application
to the valuation of environmental and health goods
such as improved air quality [24] (see Environmen-
tal Epidemiology). Contingent valuation studies are
becoming more widespread in health care and have
been undertaken in areas such as arthritis manage-
ment [30], ultrasonography [3], care of the elderly
[9], management of hypertension [15], blood transfu-
sion [11], the use of ionic vs. nonionic contrast media
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[1], and in vitro fertilization [25] (see Clinical Epi-
demiology; Health Services Research, Overview).

We review some of the statistical issues that have
arisen for researchers who seek to measure willing-
ness to pay (WTP). We will argue that choosing
among the various measurement techniques presents
the analyst with a variety of practical trade offs
between bias and precision.

Measurement Objectives

There are numerous approaches to assessing WTP in
health care, and in this limited discussion of selected
statistical issues we cannot review all possible
approaches. A conceptual framework and tutorial on
WTP in health care has recently been published [26];
it gives a deeper understanding of linkages between
the theory and practice of WTP.

To explore statistical issues we will focus on
a hypothetical example of a program evaluation
where WTP in the context of CBA is to be
determined. An insurance-based WTP problem is
described in Figure 1. Using this example, there
are advantages and disadvantages to a number of
measurement techniques that are available.

WTP Estimation Techniques

Open-Ended Questions

The measurement task is to find out the maximum that
an individual (or group) would be willing to pay for
the new program. The open-ended question format
is the most direct format for determining this value
from an individual. But simply asking the maximum

a person would pay poses a difficult cognitive task
for a respondent who may be unfamiliar with the
program being valued and not accustomed to buying
similar things in a market without price tags. Conse-
quently, the open-ended format tends to produce large
numbers of nonresponses or protest zero responses to
WTP questions: this is true for both environmental
valuation (e.g. [8]) and health (e.g. [15] and [30]).
Such experience led researchers to try to simplify the
choices presented to the respondents by making the
market scenario more realistic.

Bidding Games

Mitchell & Carson [24] report that the oldest and
most widely used elicitation method in contingent
valuation surveys until recently has been the bidding
game. Similar to an auction, an initial starting money
value is bid up or down by the respondent. Some
market realism is instilled because each bid level
requires only a Yes/No response. It has been argued
that the advantage of the bidding game is that the
process of iteration and search enables the respondent
to consider more fully the value of the program
[14]. A major disadvantage is the potential for bias
because the starting bid (chosen by the researcher)
tends to imply a value for the good. In a health care
contingent valuation study, O’Brien & Viramontes
[27] tested the hypotheses of starting point bias using
random assignment to different starting bias (see
Randomization) in a bidding game. Although not
statistically significant, these data suggest that higher
starting bids were associated with higher final WTP.
More recently, Stalhammer [29] has found evidence
to support the hypothesis of starting point bias.

Figure 1 Hypothetical willingness-to-pay problem
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Payment Cards

The payment card method was developed by Mitchell
& Carson [24] as an alternative to the bidding game.
The payment card is a visual aid which contains a
large array of potential WTP amounts ranging from
$0 to some large amount. According to Mitchell
& Carson, this method “. . . circumvents the need
to provide a single starting point, yet offers the
respondent more of a context for her bid than the
direct question method provides” [24]. A related
technique is the checklist method, where respondents
indicate which of a list of payment ranges includes
their WTP amount. Neumann & Johannesson [25]
used a form of payment card in their study of in vitro
fertilization; they found evidence that the range of
values listed influenced the final WTP.

Dichotomous Choice (Take it or Leave it)

Open-ended questions, bidding games, and payment
cards are all approaches that have been used as
methods for finding maximum WTP for each sam-
pled individual. In contrast to this within-person
search strategy, many researchers in environmental
economics have moved to a strategy of a between-
person search to find maximum WTP for a sample of
respondents.

Using this approach, Bishop & Heberlein [6]
developed another elicitation method known as the
“take-it-or-leave-it” approach. This method uses a
large number of predetermined prices and each res-
pondent is asked if she is willing to pay a single
one of these prices (Yes or No) for the program,
with no further iteration. The prices are randomly
assigned to respondents so that one can use statistical
techniques such as probit analysis (see Quantal
Response Models) to model bid acceptance as a
function of respondent characteristics and determine
median WTP [7]. The main problem is that, relative
to other elicitation methods, the take-it-or-leave-it
method is inefficient, requiring a much larger sample
size for the same level of statistical precision as other
methods. However, the method has been used with
some success in health care [15].

To illustrate the basic approach of the dichotomous
choice method, consider the bid curve in Figure 2.
The goal of sampling is to be able to plot the bid
curve which models the probability of accepting a
bid (price) at different levels of bid. From the derived

100
Proportion of
respondents
willing to pay (%)

50(Median WTP)

$x bid $

Figure 2 The population of respondents willing to pay
as a function of the bid in a WTP study. Note that median
WTP is $x and mean WTP is the area below the curve. The
method is analogous to survival analysis and the calculation
of life expectancy in biostatistics. For simplicity we have
drawn the bid curve as a straight line, but in practice
this observed “survival curve” will not be a linear, nor
necessarily smooth, relationship

bid curve one can determine either the median WTP
(i.e. bid at which 50% of the sample would pay)
or the mean WTP, this being the area under the
bid curve. Given the variation among respondents
in demographic characteristics, the analyst would
typically use logistic (or probit) regression to model
the accept/reject probability as a function of bid level
and demographics. Using this function it is possible
to project the total WTP for a population if one knows
its demographic characteristics.

The main disadvantage of the simple dichotomous
choice approach is that each individual is asked one
question, i.e. “would you pay an additional insur-
ance premium of $2 to have this program covered?”
Hence, to derive the bid curve one may need quite
large sample sizes. Also note that if the upper end
of the bid range is not sufficiently high, then the bid
curve will not reach zero, making it problematic to
estimate the area under the curve for the expected
value.

Double-Bounded Dichotomous Choice

An extension to the previous method, to improve its
statistical efficiency, is that of take it or leave it with
follow-up. Here a follow-up bid question is asked of
the respondent, higher or lower, conditional upon the
response to the first bid; the higher or lower bid is
randomly selected from a range. The increased statis-
tical efficiency of this method using probit analysis
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Figure 3 Double-bounded dichotomous choice WTP model

has been shown by Hanemann [13]. As indicated
by the algebraic exposition in Figure 3, the goal of
this method is to select ranges so as to “bound” as
many respondents as possible between the extremes
of their “Yes–Yes” and “No–No” responses. To mini-
mize framing biases one can randomly select both the
starting bid and the second conditional bid.

Future Trends: Conjoint Analysis

The most recent approach under evaluation for WTP
in environment and health is conjoint analysis. Used
widely in consumer economics to establish consumer
preferences over attributes of commodities (e.g. a
car’s safety, fuel consumption, performance, and
price), conjoint analysis is very similar in origin to
multiattribute utility theory [12]. The method works
by first defining a number of attributes of the prod-
uct or program and then asking the respondent to
choose between hypothetical pairs (e.g. program A
vs. program B) that vary in their attribute compo-
sition and where one of the attributes is how much
the individual would have to pay. As reviewed by
Green & Krieger [12], there are various adaptive
search algorithms that determine the modification
of attributes conditional upon individuals’ responses.

Conjoint analysis has been used successfully in the
evaluation of consumer products where health out-
comes are attributes [19].

Concluding Remarks

In summary, there are a number of elicitation meth-
ods for WTP, and each approach has strengths and
weaknesses. There are no obvious conceptual rea-
sons, from economic theory, to predict that these
measurement approaches will yield different valua-
tions; each is an approach to revealing an underlying
monetary valuation. In practice, for some of the
reasons outlined above, estimates do vary when dif-
ferent methods are used in the same respondents (see
[15]) on open-ended vs. take-it-or-leave-it methods
in hypertension). Each estimation technique varies
in terms of measurement properties of precision and
bias. A further practical consideration is that for-
mats such as bidding games necessitate in-person
interviewing, perhaps even with computer-based bid-
ding algorithms with random starting points. Other
formats such as open-ended questions can be done
by mail survey but suffer from low completion rates
and greater variance due to the cognitive burden for
respondents.
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Currently there is considerable conceptual and sta-
tistical variation in the assessment of WTP, both in
environmental health and health care program evalu-
ations. Guidelines for WTP studies in environment
were issued in 1993 in the US by the National
Oceanic and Atmospheric Administration, who pro-
pose that WTP studies should use a dichotomous
choice format and that values should be elicited by
in-person interviews. Whether such guidance can be
generalized to health care WTP studies is unclear.
The nature of the health care commodity for WTP
studies is very different from many environmental
program benefits, and methods appropriate for the
former may not be suited to the latter. Ongoing exper-
iments using computer-based interviewing with the
approach of conjoint analysis hold great promise for
the future of WTP in health care.

Acknowledgments

Dr Bernie O’Brien is supported by a Senior Investigator
award from the Canadian Institute for Health Research. He
is grateful to Stephen Walter for helpful comments on an
earlier draft.

References

[1] Appel, L.J., Steinberg, E.P., Powe, N.R., Anderson, G.F.,
Dwyer, S.A. & Faden, R.R. (1990). Risk reduction from
low osmolality contrast media. What do patients think it
is worth?, Medical Care 28, 324–334.

[2] Becker, G.S. (1964). Human Capital. Columbia Univer-
sity, New York.

[3] Berwick, D.M. & Weinstein, M.C. (1985). What do
patients value? Willingness-to-pay for ultrasound in
normal pregnancy, Medical Care 23, 881–893.

[4] Birch, S. & Gafni, A. (1992). Cost effectiveness/utility
analysis: do current decision rules lead us to where we
want to be?, Journal of Health Economics 11, 279–286.

[5] Birch, S. & Gafni, A. (1994). Cost effectiveness ratios
in a league of their own, Health Policy 28, 133–141.

[6] Bishop, R.C. & Heberlein, T.A. (1979). Measuring
values of extra-market goods: are indirect measures
biased?, American Journal of Agricultural Economics
61, 926–930.

[7] Cameron, T.A. & James, M.D. (1987). Efficient esti-
mation methods for “closed-ended” contingent valua-
tion surveys, Review of Economics and Statistics 69,
269–276.

[8] Desvousges, W.H., Smith, V.K. & McGivney, M.P.
(1983). A Comparison of Alternative Approaches for
Estimating Recreation and Related Benefits of Water
Quality Improvements . EPA-230-05-83-001. Office of

Policy Analysis, US Environmental Protection Agency,
Washington.

[9] Donaldson, C. (1990). Willingness to pay for publicly-
provided goods: a possible measure of benefit, Journal
of Health Economics 9, 103–118.

[10] Drummond, M.F., Stoddard, G.L. & Torrance, G.W.
(1987). Methods for the Economic Evaluation of Health
Care Programs. Oxford University Press, Oxford.

[11] Estaugh, S.R. (1991). Valuation of the benefits of risk-
free blood. Willingness to pay for hemoglobin solu-
tions, International Journal of Technology Assessment in
Health Care 7, 51–57.

[12] Green, P.E. & Krieger, A.M. (1996). Individualized
hybrid models for conjoint analysis, Management Sci-
ence 42, 850–867.

[13] Hanemann, M., Loomis, J. & Kanninen, B. (1991).
Statistical efficiency of double-bounded dichotomous
choice contingent valuation, American Agricultural Eco-
nomics Association 73, 1255–1263.

[14] Hoehn, J.P. & Randall, A. (1987). A satisfactory ben-
efit cost indicator from contingent valuation, Jour-
nal of Environmental Economics and Management 14,
226–247.

[15] Johannesson, M. & Jonsson, B. (1991). Willingness to
pay for antihypertensive therapy: results of a Swedish
pilot study, Journal of Health Economics 10, 461–474.

[16] Johannesson, M. & Jonsson, B. (1991). Economic eval-
uation in health care: is there a role for cost–benefit
analysis?, Health Policy 17, 1–23.

[17] Jones-Lee, M.W. (1976). The Value of a Life: An Eco-
nomic Analysis. University of Chicago Press, Chicago.

[18] Koplan, J.P., Schoenbaum, S.C., Weinstein, M.C. &
Fraser, D.W. (1979). Pertussis vaccine – an analysis
of benefits, risk and costs, New England Journal of
Medicine 301, 906–911.

[19] Magat, W.A., Viscusi, W.K. & Huber, J. (1996). Paired
comparison and contingent valuation approaches to mor-
bidity risk valuation, Journal of Environmental Eco-
nomics and Management 15, 395–411.

[20] Marin, A. & Psacharopoulos, G. (1982). The reward
for risk in the labor market: evidence from the United
Kingdom and a reconciliation with other studies, Journal
of Political Economy 90, 827–853.

[21] Mason, J., Drummond, M.F. & Torrance, G.W. (1993).
Some guidelines on the use of cost–effectiveness league
tables, British Medical Journal 306, 570–572.

[22] Mishan, E.J. (1971). Evaluation of life and limb: a
theoretical approach, Journal of Political Economy 79,
687–705.

[23] Mishan, E.J. (1971). Cost–Benefit Analysis. Allen &
Unwin, London.

[24] Mitchell, R.C. & Carson, R.T. (1989). In Using Sur-
veys to Value Public Goods: The Contingent Valuation
Method . Resources for the Future, Washington.

[25] Neumann, P.J. & Johannesson, M. (1994). The willing-
ness to pay for in vitro fertilization: a pilot study using
contingent valuation, Medical Care 32, 686–699.



6 Cost–Benefit Analysis, Willingness to Pay

[26] O’Brien, B.J. & Gafni, A. (1996). When do the “dollars”
make sense? Toward a conceptual framework for contin-
gent valuation studies in health care, Medical Decision
Making 16, 288–299.

[27] O’Brien, B. & Viramontes, J.L. (1994). Willingness
to pay: a valid and reliable measure of health state
preference?, Medical Decision Making 14, 289–297.

[28] Schoenbaum, S.C., Hyde, J.N., Bartoshesky, L. &
Crampton, K. (1967). Benefit–cost analysis of rubella
vaccination policy, New England Journal of Medicine
294, 306–310.

[29] Stalhammer, N.O. (1996). An empirical note on will-
ingness to pay and starting-point bias, Medical Decision
Making 16, 242–247.

[30] Thompson, M.S. (1986). Willingness-to-pay and accepts
risks to cure chronic disease, American Journal of Public
Health 76, 392–396.

[31] Viscusi, W.K. (1978). Labor market valuations of life
and limb: empirical estimates and policy implications,
Public Policy 26, 359–389.

(See also Standard Gamble Technique; Time
Trade-off Technique; Utility in Health Studies)

BERNIE O’BRIEN



Cost-effectiveness in
Clinical Trials

Cost-effectiveness analysis (CEA) is a method used to
evaluate the outcomes and costs of a project or inter-
vention. It is a tool aimed at assisting decision-makers
in judging the efficiency consequences of various
courses of action. In the health care arena CEA is
used to assess the costs of alternative approaches
to achieving certain health outcomes [11]. Usually
the results of a CEA are summarized in a series
of cost-effectiveness ratios that show the difference
in costs divided by the difference in outcomes of
one treatment relative to another. This ratio of dif-
ferences is called the incremental cost-effectiveness
ratio (ICER). When cost-effectiveness studies use the
same outcome measures (such as quality-adjusted
life years), researchers can compare ICERs across dif-
ferent types of interventions and populations. In an
idealized world, if a health plan wanted to maximize
the health of its enrolled population generated by a
given budget, then it would order interventions so
that those with the lowest ICERs would be adopted
first. It would distribute funds across diseases and
service categories so that the ICERs in each category
would be equal. This would ensure that each dollar of
expenditures worked equally hard in producing health
effects.

In the context of evidence-based medicine, CEA
can be viewed as a tool for quantifying and interpret-
ing data on costs and outcomes. The modern era of
managed care in the US and constrained budgets in
publicly funded systems has led to clinical decisions
being more influenced by budgetary considerations
than was commonly the case in the 1960s and 1970s.
If the design of clinical programs, clinical pathways
and other decision-making support systems are to be
founded on evidence, then it is important to use all
types of evidence in designing them. It is therefore
logical to recommend including evidence on cost-
effectiveness in the evidence base used in supporting
therapeutic choices. Such information can be (and is)
used by national health systems and health plans in
deciding which interventions to introduce and pay for
as well as how to structure the treatment process.

There are a number of different approaches to
obtaining the necessary data for conducting CEAs [7,
11]. Since good outcome measures are a fundamental

component of all CEAs, and because clinical trials are
considered the gold standard for evaluating outcomes
stemming from clinical interventions, there is interest
in incorporating cost-effectiveness studies into clin-
ical trials [7, 9, 19, 21] This interest includes both
adding a cost-effectiveness component to a clinical
trial that is being planned to test the efficacy of a
specific intervention, as well as conducting clinical
trials for the purpose of determining whether a given
intervention is cost-effective. (The former is some-
times described as adding an economic component to
a clinical trial while the latter are sometimes called
pragmatic trials.)

In this article we focus on how the design and
measurement strategies of clinical trials need to be
adapted to successfully add a cost-effectiveness com-
ponent. Key considerations include the appropriate-
ness of adding a cost-effectiveness component to the
type of clinical trial that is being planned, sample
size considerations, and the nature of the additional
data that would need to be collected [4, 6]. Although
these are identified as separate issues, they are obvi-
ously interrelated. Detailed discussions of various
approaches to conducting cost-effectiveness analyses
per se can be found elsewhere [7, 11, 13].

Definition of Terms

Before examining these issues, it is useful to set out
some definitions. The term treatment is construed
to include a range of clinical interventions (such
as drugs and surgical procedures), settings (inpa-
tient, outpatient), providers (such as physicians and
nurse practitioners) and management strategies. The
term efficacy generally describes the benefits gener-
ated by a treatment administered under ideal con-
ditions, such as those found in clinical trials where
patients are carefully selected according to speci-
fied criteria and then randomized to treatment and
control groups to eliminate the confounding impacts
of patient self-selection into treatment and clinical
outcomes. Effectiveness describes the benefits of effi-
cacious treatments that are realized under clinical
conditions that reflect the usual circumstances under
which medical care is delivered. Using a different ter-
minology, efficacy studies are generally designed to
have a high degree of internal validity, while effec-
tiveness studies must have a high degree of external
validity. Although there is some overlap, the end-
points of clinical trials and effectiveness studies tend
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to differ. Traditionally clinical trials have focused on
end-points such as mortality and clinical symptoms
(blood pressure and cholesterol levels). Effectiveness
studies often include these end-points. However, in
recent years there has been a movement towards
including outcome measures that are more meaning-
ful to patients, such as quality of life. Wells [37]
provides a good overview of the major differences
between efficacy and effectiveness research.

A cost-effectiveness study examines both the use
of resources (the costs) and the resulting changes
in patients’ health status (the outcomes) associated
with the two or more treatments that are being com-
pared. It is worth pointing out that the terms cost-
effectiveness and cost-saving are distinct. A new
treatment that produces outcomes identical to usual
care but at lower cost would be both cost-saving and
cost-effective (more health gain per dollar spent rela-
tive to usual care). However, a new intervention that
both increased costs and improved health outcomes
would be cost-effective if the ICER is similar to that
of treatments that are part of usual care. Although
cost-effectiveness studies can be narrowly focused
(e.g. the determination of the incremental cost of
lowering systolic blood pressure by one unit), the
greatest interest lies in estimating cost-effectiveness
ratios in terms of the cost per quality-adjusted life
year (QALY) gained from an intervention [10]. As
a measure of health outcome, a QALY assigns a
weight to each health state in each time period.
These weights range from 0 to 1, where a weight
of 1 corresponds to optimal health and a weight of
0 corresponds to death. The weights reflect patient
preferences for a particular health state. Because
the states of health are weighted by the prefer-
ences or utility associated with a health state, a
QALY is also called a utility-based quality of life
indicator.

Cost-effectiveness studies can be conducted from
a number of perspectives. The perspective taken
determines which outcomes and costs are taken into
consideration and how they are measured. The three
most common perspectives are those of the individ-
ual, the health plan or society at large. When a CEA is
conducted from a social perspective, the analyst con-
siders all the effects of the interventions, and counts
all health outcomes and costs associated with the
intervention regardless of who benefits and who bears
the costs. In what follows we focus on CEAs from a
social perspective.

Considerations for Adding a
Cost-effectiveness Component to a
Clinical Trial

General

Clinical trials are undertaken to study a wide range
of issues from testing new drugs to evaluating new
treatment methods for breast cancer. Some trials
are very large and involve thousands of patients
and multiple sites (see Multicenter Trials), while
others are more limited in terms of their size and
patient population. An investigator would add a cost-
effectiveness component to a clinical trial in pursuit
of answers to two questions:

1. What is the ICER of the intervention?
2. Does the estimated ICER indicate that the treat-

ment is cost effective; that is, is the ICER equal
to or less than some benchmark? (For example,
a Canadian research team [18] assigned grades
to different ICERs. It assigned a “B” to tech-
nologies that were more effective than existing
ones and cost about $20 000 per QALY gained.
It recommended that Grade B technologies be
adopted.)

In deciding whether it makes sense to add a
cost-effectiveness component to a clinical trial four
questions should be posed [5, 11, 20]:

1. Does the trial address an issue that is likely to
be of economic importance? Will the information
generated by adding a cost-effectiveness compo-
nent be of sufficient value to decision-makers to
justify the cost of adding the component?

2. Is the trial testing something that is relevant to
community practice? For example, a trial that
compares an innovative treatment to usual care
is more informative than one that compares a
new drug to a placebo (unless of course there
are no existing treatments for the condition under
study).

3. Are the results likely to be of interest to decision-
makers? Decision-makers include patients, phy-
sicians, large-scale provider organizations (hos-
pitals, integrated delivery systems), health plans
and government agencies.

4. Will the results of the trial have external validity?
The more highly selected the patient population
to be studied and the more closely monitored
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the treatment protocol, the less likely it is that
the outcomes would be representative of those
observed in the community under conditions of
community care.

Sample Size Considerations

It is likely that adding a cost-effectiveness component
will raise issues with respect to sample size. There
are two main problems that have to be addressed:
(i) the fact that cost data typically display different
properties than common clinical indices and (ii) the
challenge of calculating confidence intervals for a
ratio such as an ICER.

The ICER is a ratio that is composed of param-
eters that measure costs and outcomes. As such, the
variance around an ICER encompasses the variance
in costs and the variance in outcomes. Typically, a
clinical trial is designed so that the sample size is
based on the minimum number of subjects required
to detect a given (predetermined) clinically important
difference in outcomes with a given power (e.g. 0.90)
at a conventional level of significance (e.g. P < 0.05)
(see Sample Size Determination). The designers of
clinical trials often impose strict exclusion and inclu-
sion criteria (see Eligibility and Exclusion Criteria)
to reduce the variation in outcomes in order to reduce
the necessary sample size. In addition, many clinical
measures have been designed to display particular
statistical properties such as a Normal distribution.

Data on health care costs have different proper-
ties than do clinical data such as symptom counts
and blood pressure measurements. Cost data typically
do not follow a standard Normal distribution. They
tend to exhibit density masses at minimum levels of
expenditure and are highly skewed to the right. (For
instance, hospitalizations related to side-effects asso-
ciated with treatment may be very rare. However, the
costs associated with the few hospitalized episodes
are very high.) The implication of this is that the vari-
ance in costs will tend to be considerably greater than
the variance in clinical outcome measures. Thus, it is
likely that the sample size requirements for testing
the significance of an estimated ICER will be larger
than those for testing the significance of a clinical
outcome.

There are other issues related to determining the
variance of the ICER, and thus the confidence inter-
vals. For instance, cost and outcome estimates in an
ICER and their variances may not be independent.

On the one hand, if the correlation between costs
and outcomes is negative (higher costs associated
with worse outcomes), then the variance of the ICER
will increase. On the other hand, if the correlation
between costs and outcomes is positive, then the vari-
ance will be reduced. Furthermore, the ICER is a
ratio. Since the difference in outcome measure enters
in the denominator of the ICER, small differences in
outcomes between interventions can create very large
differences in the ICER.

Several empirical strategies have been advanced
for estimating confidence regions for ICERs [24, 34].
These methods involve different levels of computa-
tional burden and assumptions about the underlying
relations between treatments and effects. Briggs &
Gray [2], for example, use this literature to explore
techniques for deriving a sample size formula for a
CEA based on simple combinations of the confidence
limits on costs and outcomes.

Effectiveness Data

In most cases the outcome measures collected under
the trial will have to be expanded to include infor-
mation on the quality of life experienced by subjects
in all treatment arms. These measures should include
generic measures of quality of life so that ICERs can
be compared across disease types and interventions.

Ideally, utility-based quality of life information
should be obtained [10]. There is a variety of meth-
ods for collecting this utility-based quality of life
information. One method is to administer a general
preference rated instrument for assessing quality of
life. These instruments, which measure a number
of concepts (health perceptions, social functioning,
psychological functioning, physical functioning and
impairment), are administered to the subjects peri-
odically during the trial. Preference scores that have
been obtained through earlier research projects are
then used to weight the responses. Examples of such
instruments are the EuroQol instrument [3, 8, 17],
Quality of Well Being [15, 16] and the health util-
ities index [31, 33]. A second method is to map
clinical indicators (such as the Hamilton rating scale,
an instrument used to measure depressive symptoms
[12]), into QALYs by using published information on
the quality of life associated with that condition [20].
A third method is to obtain the utility estimates from
the people who are actually enrolled in the trial. There
are three standard ways of obtaining these. These are
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asking subjects to: (i) respond to standard gamble
questions (where subjects are asked to compare life
in a given health state that is a sure thing to a gamble
with a probability P that perfect health is the out-
come and 1 − P that death is the outcome) [33]; (ii)
respond to time–trade off questions (where subjects
are asked to trade off life years in a state of less-
than-perfect health for a shorter life span in a state of
perfect health) [32]; or (iii) complete a visual analog
(a direct rating scale where they are asked to place a
mark at some point between two anchor points that
indicates their rating of a give health state) [22].

The second approach to obtaining information
on quality of life is to administer a nonpreference
weighted quality of life instrument. There are several
such instruments available. These instruments gen-
erally assess the same domains as the utility-based
quality of life instruments, but the scores are not util-
ity weighted. Examples of such instruments are the
Medical Outcomes Scale (MOS) or SF-36 [29, 35],
the Nottingham Health Profile [14] and the Sickness
Impact Profile [1].

The third approach is to use a disease-specific
instrument such as the Hamilton Rating Scale for
Depression [12] and the McGill Pain Questionnaire
[23]. As indicated above, it is not possible to compare
the ICERs found in these studies with those of other
studies that examine other disease conditions.

It should be noted that the field of health assess-
ment is still developing and there is no general
agreement on which is the best instrument. A gen-
eral overview of rating scales and questionnaires can
be found in Hunt et al. [14], McDowell & Newell
[22] and Patrick & Erickson [26].

A quite different approach to measuring the
“value” of outcomes on a common scale is to use
what economists refer to as the “willingness-to-
pay” approach. This involves estimating individuals’
willingness-to-pay for new medical interventions that
may improve health [28, 30]. Under this approach, the
researcher still has to assess the outcomes of the trial;
that is, the effect of the intervention relative to the
status quo in terms of change in physical functioning,
mental functioning and pain would still have to be
assessed. However, the weights to be applied to these
effects would come from studies that estimate the
willingness-to-pay for these effects. The theoretical
advantage of the willingness-to-pay measure is that
it allows for a comprehensive consideration of what
individuals value about medical treatments, including

intangible benefits such as pain and discomfort which
are not easily captured by most outcome measures.
Some economists have suggested that the additional
premiums that people are willing to pay in order
to have a new intervention added to a health plan’s
set of reimbursable procedures summarizes the value
of benefits from new interventions [27]. However,
many are offended by valuing the gain in health
in monetary terms. Furthermore, willingness-to-pay
measures typically favor the health of the wealthy
over the poor.

Adding additional outcome measures to the set of
outcomes measures to be gathered during a clinical
trial will both increase the cost of the trial and
increase patient burden. Therefore, the designers of
the cost-effective component will have to assess the
impact of adding these outcome variables and to
select the outcome variables carefully.

Cost Data

It is necessary to collect information on the costs
incurred by subjects in all treatment arms. However,
there is some discretion in determining the exact
cost data to be collected. The range of the data
to be collected will depend on the nature of the
intervention and the health condition being treated.
For instance, if the treatment is narrowly focused,
and if it is unlikely that there is any relationship
between the health condition that is being targeted
and other health conditions, then it may be sufficient
to focus only on the costs associated with the tar-
geted condition. For example, in examining a trial
that compared hospital with outpatient treatment for
pelvic inflammatory disease, the researchers focused
on health care costs associated with conditions related
to fertility and gynecological problems [25]. How-
ever, treating some conditions may have broad health
consequences. In this case it is necessary to measure
the costs associated with treating not only the tar-
geted condition but also other conditions that may be
affected. For example, in looking at alternative treat-
ments for depression, the researchers captured both
mental and physical health costs [20] because there
were strong arguments in the literature that the costs
of good treatment for mental disorders would be off-
set by a decrease in the costs of treating physical
health problems. Finally, it is possible that treating
specific conditions may have effects on sectors of
the economy other than the health care sector. For
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example, in a study that compared intensive outpa-
tient therapy with usual inpatient care for people with
severe mental illness, Weisbrod [36] collected infor-
mation on the costs associated with treating mental
health conditions, the criminal justice system, family
burden and care-taking costs.

In most cases costs are estimated by obtain-
ing information on the quantity of services used
and then by applying cost weights to those data.
There are a number of ways to gather the utilization
data. These include: obtaining information from the
records maintained by the clinical trial, using admin-
istrative records maintained by the health care centers
in which the subjects receive their medical care ser-
vices, using the administrative records maintained by
health plans or government agencies that pay for care,
and from direct patient interview. The nature of the
administrative records will vary by provider setting,
agencies and across countries. Some records (such as
medical records and hospital discharge records) will
include only utilization information. Other adminis-
trative records systems (such as the hospital billing
records in the US and the information maintained by
insurance plans) will include information on the use
of specific services, the charges (prices) associated
with those services and the payments made.

The use of services must be assigned a monetary
value. Ideally the researcher should estimate the
social cost of resources used, or equivalently the
marginal cost of those resources. Economic theory
indicates that in efficient markets, prices are equal
to marginal cost. However, health care markets are
not competitive in the theoretical sense and thus the
prices do not typically reflect costs. (This is true
both in national health systems as well as in more
market-based systems such as the US.) Thus, other
methods must be used to assign cost weights to the
service used and other resources. In some cases the
analysts may conduct specific cost-finding studies.
However, in most cases they use information from
other sources – the hospital cost accounting systems
and external fee schedules – to assign cost weights.
For example, in the US researchers often use the
fees from the Medicare fee schedule to assign cost
weights to the different types of physician services.
They use prices published in standard references such
as the Red Book to assign prices to pharmaceuticals.
They may use the information from the hospital bill
to estimate the cost of a hospital stay; however, they
will usually adjust the charges by the hospital cost

to charge ratio in order to obtain a measure that is
a continuing proxy for costs. In other countries costs
are estimated by valuing the inputs into the treatment
process by using salaries and input purchase prices
(drugs).

In general, researchers need to collect informa-
tion not only on the medical care costs but also on
the time and transportation costs incurred in access-
ing and receiving care. If volunteers are used in any
portion of their treatment interventions, then their
time must be measured and costs impacted. The costs
associated with actually conducting the trial itself
(the design costs, data-collection costs, administra-
tive/managerial costs and analyses costs) should not
be included since they are not part of delivering care.

Gathering the cost data necessary to conduct
a cost-effectiveness study will increase the cost
of conducting the study and may increase patient
burden. Therefore, it is necessary to select cost
measures carefully.

Extending the Analysis to the Posttrial
Period

If there are significant differences in the outcomes
between the people who are enrolled in the clinical
trial, it may be necessary to model the differences that
would expected to be observed after the completion
of the trial. The short timeframe of many clinical
trials makes this an important consideration. For
example, suppose that a trial is conducted to test the
efficacy of a new antidepressant medication. Suppose
that it is a six-month trial and that at the end of
the sixth month a higher proportion of subjects who
have been randomized to the experimental arm have
recovered. The cost-effectiveness of that drug will
differ depending on whether that different recovery
rate can be expected to be maintained or whether a
comparable number of subjects in each treatment arm
will have recovered at the end of eight months or a
year. Thus, an ICER ratio based only on the trial data
will not be a good indicator of the true ICER of one
treatment versus another. In this case, simulation and
modeling methods must be used to extend the data
beyond the trial period [7].

Sensitivity Analyses

It is clear that a number of judgments have to be
made in conducting a CEA. Researchers must make
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more judgments in estimating the ICERs than they do
in analyzing the clinical findings of the trial. These
judgments are related to the selection of the approach
used to measure quality of life, the cost weights,
the range of costs to include in the analyses and
so forth. Judgments also have to be made about the
reliability of the outcome treatment effect. Since the
researchers often monitor the treatment being applied
to the experiment group very closely, it is likely that
the outcomes observed during the trial may be better
than those that will be observed in practice. Thus, the
researchers have to make some assumptions either
about the costs that a practice would have to incur
if care were to be monitored or about the decreases
in effects that will be observed in practice without
the monitoring that took place during the trial. As a
result, researchers who conduct CEAs often estimate
a number of ICERs in which they make different
assumptions about several of the values. They then
determine how sensitive their conclusions are to these
assumptions.

Interpretation of CEAs

CEAs conducted in the context of clinical trials offer
important information about the potential efficiency
of a new clinical intervention or technology. CEAs in
clinical trials are conducted under a particular set of
allocation rules. That is, particular patient populations
are selected to participate in the trials; and partici-
pants are randomly assigned to treatment independent
of clinician or patient preferences. In the commu-
nity setting, clinical technologies are put into practice
under very different allocation rules and therefore
realized effectiveness may differ markedly from those
found in a clinical trial even if the technologies are
appropriately delivered. An example may illustrate
the point. Proton Pump Inhibitors have been shown to
be cost-effective interventions for severe esophagitis
relative to older H-2 Blockers. However, in practice
a substantial portion of Proton Pump Inhibitors are
used for the treatment of milder forms of esophagitis
and in those cases offer few clinical benefits over the
H-2 Blockers at a considerably higher cost. Thus, in
practice the ICER of Proton Pump Inhibitors is likely
to be considerably higher than that found in the clin-
ical trials. For this reason, a CEA based on clinical
trials offers important yet incomplete information on
the efficiency of adopting a new clinical intervention
into practice.

Conclusions

CEAs can offer important insights into the “value”
of a new medical intervention or even into old inter-
ventions. Increasingly payers, health plans and reg-
ulators are interested in understanding the budgetary
demands associated with new clinical technologies
that promise enhanced health outcomes. CEAs linked
to clinical trials can sometimes offer a rigorous
method of informing such questions.

It is clear that adding cost-effectiveness compo-
nents to clinical trials will increase the costs of
conducting the trial. Not only is it likely that the
sample size will have to be increased, but also addi-
tional data will have to be collected. There will be
additional patient burden. Thus, adding CEAs to all
clinical studies would not itself be a cost-effective
use of society’s resources. Clinical trials that are good
candidates for CEA augmentation include those that
are testing new treatments that may be significant
from an economic standpoint in that they offer sig-
nificant improvements in outcomes at a significant
increase in cost or that they offer significant cost sav-
ings for similar levels of outcomes when compared
with existing interventions.
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Counter-matching

Counter-matching is nested case–control study
design (see Case–Control Study, Nested) in which
a covariate is known on all cohort members, and
controls are sampled to yield covariate-stratified
case–control sets. The design is advantageous
when a major analysis variable, or a correlate,
is available on all cohort members and additional
information is to be collected on a sample.
Unbiased estimation requires the numbers of risk
set members in each counter-matched sampling
stratum.

The Design

Counter-matching was originally proposed as an
exposure-stratified, individually matched nested
case–control study method in the context of
continuous failure-time (cohort) data [13, 15].
Counter-matched sets are characterized by the
number of subjects ml from each of the L sampling
strata defined by the counter-matching variable. It is
required that the counter-matching variable is known
for all risk set members and, in addition to the case,
controls are randomly sampled without replacement
(see Sampling With and Without Replacement)
from each of the sampling strata in the risk set
to yield the required ml subjects. As illustrated in
Table 1, when the case is from sampling stratum
2, ml controls are sampled from the nl in risk set
sampling stratum l except for stratum 2, from which
m2 − 1 controls are sampled. In the special case
of two sampling strata, with one subject from each
stratum (the 1 : 1 design), the control is sampled
from the opposite sampling stratum of the case;
the opposite of matching and thus motivating the
name.

For grouped failure-time or simple binary data
(multiple cases in the case–control set) counter-
matching, the ml would generally depend on total
number of cases |D| in the study base [17]. (i.e. the
design is characterized by m1(|D|), . . . , mL(|D|.) The
actual number of cases that fall into counter-matched
stratum l, |Dl|, is random and determines the number
of controls to be sampled from stratum l, ml − |Dl |.
This is illustrated in Table 2.

Statistical Analysis

Estimation of Rate (Odds) Ratio Parameters. The
analysis of the counter-matched data must take into
account the stratification of sampled sets. For indi-
vidual matching (continuous time risk sets), the par-
tial likelihood is based on the probability that a
subject is the case given the counter-matched set and
requires the control sampling probabilities. In par-
ticular, with lj indexing the sampling stratum for
subject j , the probability of drawing the counter-
matched sample if j were the case is given by

πj = nlj /mlj

[∏L
l=1

(
nl

ml

)]−1
. This leads to the like-

lihood

∏

sets

rcase(β)
nlcase

mlcase

∑
j∈set rj (β)

nlj

mlj

, (1)

where rj (β) = r(Zj ; β) is the rate ratio associ-
ated with Zj and β is the rate ratio parameter
from a proportional hazards model. This likeli-
hood can be fitted using standard conditional logis-
tic regression software that allows for fixing a
regression parameter. For instance, for the stan-
dard loglinear model (nlj /mlj )rj (β) = exp(Zjβ +
log wj) where wj = nlj /mlj . So, the log weight can
be included in the model with fixed parameter equal
to one (an offset in the model). Aside from this off-
set, analysis proceeds as in any standard conditional
logistic regression analysis for individually matched
case–control studies. The likelihood (1) has the usual
likelihood properties so that the standard likelihood
inference techniques apply, with no additional model-
ing assumptions other than appropriate specification
of the sampling weights [9, 15]. The full asymptotic
theory has been derived [4, 13] and the performance,

Table 1 Individually matched counter-matched study (one
case per counter-matched set). In this example, the case is
in sampling stratum 2 so ml controls are sampled from
each stratum except stratum 2 for which m2 − 1 controls
are sampled.

Sampling stratum
1 2 · · · L Total

Cases 0 1 · · · 0 1

Controls m1 m2 − 1 · · · mL

∑
ml − 1

Total in sample m1 m2 · · · mL

∑
ml

Total in risk set n1 n2 · · · nL

∑
nl
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Table 2 Unmatched counter-matched study (multiple cases per counter-matched set). The ml

are counter-matching design parameters representing the total number from stratum l. With |Dl |
number of cases in stratum l, ml − |Dl | controls are randomly sampled from stratum l to make a
total of ml subjects.

Sampling stratum
1 2 · · · L Total

Cases |D1| |D2| · · · |DL| |D| = ∑ |Dl |
Controls m1 − |D1| m2 − |D2| · · · mL − |DL| ∑

ms − |D|
Total in sample m1 m2 · · · mL

∑
ml

Total in risk set n1 n2 · · · nL

∑
nl

compared with other designs, has been evaluated in
a number of situations [1, 7, 10, 11, 16].

For counter-matching with multiple cases per set,
the likelihood requires the (control selection) proba-
bility of picking a particular counter-matched set if
a set of subjects s (of the same size as the actual
set of cases D) were the set of cases. With sl the
set of subjects from s in sampling stratum l, and |sl |
the number of subjects in sl , the counter-matching
control selection probability is given by

πs =



L∏

l=1

nl(nl − 1) · · ·
(nl − |sl| + 1)

ml(ml − 1) · · ·
(ml − |sl | + 1)





[
L∏

l=1

(
nl

ml

)]−1

. (2)

This leads to the likelihood [17]:

∏

sets

rD(β)




∏L

l=1

nl(nl − 1) · · ·
(nl − |Dl | + 1)

ml(ml − 1) · · ·
(ml − |Dl | + 1)





∑
s⊂R̃:|s|=|D| rs(β)




∏L

l=1

nl(nl − 1) · · ·
(nl − |sl | + 1)

ml(ml − 1) · · ·
(ml − |sl | + 1)





,

where rs(β) = ∏
j∈s r(Zj ; β) is the product of odds

ratios associated with the Zj in a proportional
odds (logistic) model (see Logistic Regression).
Although, in general, standard software does not
accommodate this likelihood, conditional logistic
software can be “tricked” to estimate the odds
ratio parameters when the odds model is log-linear
[17]. Because of the inherently correlated structure,
derivation of the asymptotic properties of likelihood
(2) poses some theoretical challenges that have not
yet been addressed [2]. However, limited derivation
and simulation studies indicate that the efficiency

performance of (2) for the grouped data counter-
matched is similar to that of (1) for individually
matched data [17].

Estimation of Other Parameters. Methods for
estimation of the cumulative baseline hazard and
absolute risk from counter-matched data have been
described [14] as well as methods for the estimation
of regression parameters in the Aalen linear model
[5]. A weighted unconditional logistic regression can
be used to estimate baseline odds parameters from
grouped data [17].

Examples

Crystalline Silica Exposure and Silicosis in Gold Min-
ers. In a comparison of nested case–control study
design options in an occupational cohort study of
3000 gold miners, counter-matching was compared
with random sampling of controls [20]. A major cost
component in this study was in obtaining silica expo-
sure data from dust samples taken from the mines; a
nested case–control study could have avoided much
of this expense. Investigators compared random sam-
pling and years-of-employment counter-matching of
controls. The correlation between years of employ-
ment and cumulative silica dust exposure is about
0.7, and it was found that three counter-matched
controls yielded the same statistical efficiency as 15
randomly sampled controls at the same cost. The
situation considered in this example is typical of
many cohort studies in which a “broad” measure
(e.g. years of employment) is associated with dis-
ease and the nested case–control study is undertaken
to identify better the possible causative agents (e.g.
cumulative silica dust exposure). Counter-matching
incorporates the cohort “broad measure” into the
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sampling in order to obtain a sample that is more
informative about the specific exposure, compared to
random sampling.

Radiation, Hormones, and Breast Cancer in a Cohort
of Japanese Atomic Bomb Survivors. A strong asso-
ciation of premenopausal breast cancer risk and radi-
ation dose has been observed in the Radiation Effects
Research Foundation’s Life Span Study (LSS) of
atomic bomb survivors [21] (see Radiation Epidemi-
ology). For the Adult Health Study (AHS) cohort,
a subgroup of LSS volunteers who participated in
biennial clinical examinations, stored blood serum
was available for 5724 women, from which estra-
diol levels could be measured, at some expense. The
radiation-dose counter-matched study was undertaken
to investigate associations with estradiol (and other
hormonal and antioxidant factor) levels and radia-
tion dose jointly on breast cancer risk. For each of
the 80 premenopausal breast cancer cases, two con-
trols were sampled with the counter-matching strata
defined by radiation dose with a zero dose category
and two exposure groups defined by the median of the
distribution of the combined cases; that is, a control
was randomly sampled from each of the (noncase)
sampling strata [11, 19]. Given the actual radiation
doses and a likely distribution of estradiol levels, the
counter-matching design was compared with random
sampling and radiation dose matching of controls.
It was found that counter-matching was much more
efficient than random sampling and of about equal
efficiency to matching for a range of positive multi-
plicative radiation-estradiol interactions. But, unlike
matching, counter-matching still allows for estima-
tion of the radiation main effects so that a wider
range of questions about the variation of breast can-
cer risk with radiation dose and estradiol levels can
be addressed; in particular, about potential confound-
ing [11]. In this study, the counter-matching variable
was based on the actual exposure and the goal of
the study is to investigate effect modification of the
exposure-disease risk relationship.

Gene Susceptibility to Radiation Exposure for Second
Breast Cancer Risk: The WECARE Study. The main
goal of this study is to determine whether the
risk of breast cancer after exposure to radiation
is higher in women possessing polymorphisms of
genes involved in double-strand break repair. The
cohort consists of 31 243 women diagnosed with

breast cancer identified by five cancer registries.
There were 801 women with asynchronous bilateral
breast cancer who were the cases in this study. A
cohort of women with breast cancer is advantageous
for addressing the study questions for two main
reasons. First, women who have had a breast cancer
are likely to have a higher prevalence of genotypes
that cause the disease. Second, a large percentage
of the women (about 40%) underwent radiation
therapy for their first breast cancer. The “scatter”
from the therapeutic radiation can result in significant
exposure to the contralateral breast that is often
well documented in treatment records. A nested
case–control study with two controls per case was
dictated by cost considerations. Now, although it may
be imperfect, all the cancer registries record whether
radiation therapy was part of the treatment regimen
(RRT+) or not (RRT−). This was used in an RRT
counter-matched design in which two controls were
sampled so that the case–control set would possess
two RRT+ subjects and one RRT− subject. From
each enrolled subject, a blood sample was obtained
for the genotyping; medical treatment records were
obtained (for all participants) to determine if they
had had radiation treatment and, if so, the dose to the
contralateral breast was determined; and the women
filled out a mailed questionnaire that asked about
other treatments and breast cancer risk factors. In this
study, the counter-matching variable is correlated to
the exposure of interest. Intuitively, there is “more
variability” in radiation dose among RRT+ than
RRT− subjects suggesting that 2 RRT+, 1 RRT−
allocation would be more efficient for assessing
radiation dose response and radiation-gene interaction
than random sampling two controls. This intuition
was confirmed in a simulation study comparison
[3]. In this study, the counter-matching variable was
based on the a dichotomous correlate of exposure and
the goals of the study include characterization of the
dose response for exposure and to investigate effect
modification of the exposure-disease risk relationship.

Early Asthma Risk Factors Study (EARS) of In Utero
and Early Life Exposures and Asthma. In a cohort
study of determinants of respiratory health, over 5000
children from 12 communities and three grade levels
were surveyed for “baseline” data [18]. Informa-
tion collected at enrollment to the study included
whether the student had ever been diagnosed with
asthma, exposed to tobacco smoke in utero and during
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childhood, and other factors that are potentially
related to respiratory health. Using these baseline
data, it was found that an asthma diagnosis at age
five or younger was associated with maternal smok-
ing during pregnancy (in utero smoke exposure) but
not with environmental tobacco smoke exposure in
early childhood [12]. The EARS follows up on this
finding, first, to augment the smoking during preg-
nancy information (this was just a yes/no question in
the baseline questionnaire) to assess dose–response
and within-pregnancy timing of exposure and, sec-
ond, to ascertain the child’s GST-T1 and GST-M1
genotypes and to assess gene susceptibility. For the
purpose of this study, the cohort (or study base) con-
sists of subjects enrolled into the longitudinal study,
followed from birth to age five. Since in utero expo-
sure (yes/no) information is available for the cohort
members, children diagnosed with asthma at age less
than five years, the cases, were counter-matched on
in utero smoke exposure, with the number sampled
from exposed and unexposed approximately equal to
the number of cases within matching strata defined
by community, grade, and gender. The additional
maternal smoking exposure and other information
was obtained in a short interview and genotype sta-
tus was assessed using standard PCR methods from
buccal cells collected from subjects by swabbing the
inside of the mouth. In this study, “yes/no” in utero
smoke exposure information was available on all
cohort members, and it is of interest both to obtain
more precise maternal smoking information to assess
timing and dose-response, as well as joint effects with
genetic factors. Because the counter-matching factor
is fairly correlated with the number of packs smoked
and other smoking information, the study has much
more statistical information for inference about such
factors than would a comparably sized study with
randomly sampled controls [17]. In contrast with the
studies described above that are individually matched,
this study implements the grouped data version of
counter-matching.

Design Considerations

General Considerations. Relative to random sam-
pling, counter-matching enhances statistical effi-
ciency for analyses involving the counter-matching
variable or correlates. However, statistical efficiency
is reduced for analyses of factors that are not

correlated to the counter-matched variable. Thus,
counter-matching is appropriate when the study is
focused on questions related to the counter-matching
(generally exposure-related) factor. Situations for
which there is a large efficiency gain for the counter-
matching variable appear to be the situations for
which there is a large efficiency loss for factors uncor-
related to the counter-matching variable. In particular,
the degree of this gain/loss depends on the rarity of
exposure, so that counter-matching on a rare expo-
sure can be very advantageous for exposure-related
analyses, to the great detriment of analyses of (main
effects) of other factors. Whether this trade off is
worthwhile depends on the specific goals of the study.

Counter-matching on an Exposure Correlate. Incre-
ased variability of exposure from the exposure-
correlate stratified sampling provides some intuition
for why counter-matching on an exposure correlate
can increase efficiency relative to random sampling,
as well as suggest a favorable allocation of subjects
across the sampling strata. However, this increase in
variability is tempered by the need for a weighted
analysis that, in the absence of adequate correlation,
works against increased efficiency [9]. Some insight
into the relative efficiency of counter-matching to
simple random sampling is provided in the dichoto-
mous exposure/correlate situation with 1 : 1 counter-
matching on the correlate. Under the “null” situation
of no association between exposure and disease, and
denoting the sensitivity and specificity of the cor-
relate for exposure by η and γ , respectively, the
asymptotic efficiency of 1 : 1 counter-matching rel-
ative to 1 : 1 random sampling is 2[ηγ + (1 − η)(1 −
γ )]. Counter-matching on the correlate is more effi-
cient when the correlate is both more (or both less)
than 50% sensitive and specific. Further, if the “corre-
late” and exposure are independent, then the counter-
matching efficiency is always less than or equal to
1; always worse than random sampling [15, 16].
This illustrates a general principle that the counter-
matching factor must be “somewhat correlated” to the
exposure in order to realize an efficiency gain.

Allocation of Subjects in Sampling Strata. Although
analyses based on (1) or (2) with the appropriate
weights are valid for any allocation of subjects
in sampling strata, efficiency depends on how the
sampling strata are formed and the ml . As a general
guideline, when there are more counter-matched
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subjects than strata, an allocation that will yield
the greatest exposure variability appears to be most
desirable [3]. When the exposure or correlate has
more categories than subjects to be sampled, then
it is advantageous to create sampling strata that
approximately results in equal numbers of cases in
each stratum [11, 13, 16, 20]. Determination of the
“best” counter-matched design for a given study can
be addressed using asymptotic variance calculations
and computer simulation.

Counter-matching and Studies of Effect Modification.
Although the relative performance of case–control
designs for assessing effect modification depends on
the distributions of the factors involved and the rela-
tionships between these factors and disease risk in
a complex way, the increased variability in one or
both of the factors in a counter-matched design gen-
erally results in enhanced efficiency. An efficiency
comparison of random sampling and matching or
counter-matching on one of the exposure variables
indicated that counter-matching was similar or supe-
rior to matched or random sampling over a wide
range of situations [10]. A study of feasibility of
nested case–control studies for investigation of gene-
susceptibility studies compared designs using three
controls per case including counter-matched designs
with sampling strata defined by exposure only, family
history only, and both exposure and family history,
and found the latter to be the most efficient in a wide
range of circumstances [1]. Other efficiency compar-
isons have been done in the context of the WECARE
and the Radiation, Hormone, and Breast Cancer stud-
ies described in the section “Examples” [3, 19].

Other Issues

Marginal Information of the Counter-matching Vari-
able. If the only analysis variable is a function of
the counter-matching stratum variable, then counter-
matching likelihood is proportional to that of the
full cohort. To see this, let Z(l) be a function of
the counter-matching stratum l. Then, because there
are ml subjects from stratum l, contributions to (1)
become

rcase(β)
nlcase

mlcase

∑L
l=1 mlr(Z(l); β)

nl

ml

∝ rcase(β)
∑L

l=1 nlr(Z(l); β)
,

which is the full cohort contribution. This can be
similarly shown for grouped time likelihood (2).

Counter-matching and Matching. Counter-match-
ing is essentially the opposite of matching. Matching
is a technique to create case–control sets that are
similar in the matching factor. Counter-matching
is a technique to create case–control sets that are
diverse in the counter-matching factor. The analytic
consequences of the two methods are also opposite.
In particular, exact matching results in no statistical
information for inference about the main effect of the
matching factor, while counter-matching brings the
full cohort “marginal” information for the counter-
matching factor main effect into the sample. In
the context of a nested case–control study, the
application of the two techniques have a natural
orthogonality. Matching is a natural method to
incorporate information related to confounding, while
counter-matching is a natural method to incorporate
information related to exposure. Both methods can be
used in a study by counter-matching within matching
strata.

Related Designs. Two-phase exposure-stratified
sampling (see Case–Control Study, Two-phase) dif-
fers from counter-matching in that case–control/ex-
posure strata are sampled independently [8]. The
design is appropriate for “large strata”, that is, for
grouped data with sufficient numbers of cases. A
comparison of the two-phase approach and counter-
matching is given in [17]. An exposure-stratified
case–cohort study has been described [6].
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Counting Process
Methods in Survival
Analysis

Event history analysis or generalized survival anal-
ysis finds applications in actuarial science, demo-
graphy, epidemiology, medical research, and many
other fields. This theory studies a collection of indi-
viduals, each moving between a finite (usually small)
number of states. The exact transition times in con-
tinuous time form the modeling basis of the phe-
nomena, although often these times are only incom-
pletely observed. This article describes how counting
processes provide a useful mathematical framework
when studying event history data.

In survival analysis, often a model is needed when
studying the occurrence of a recurrent phenomenon or
events of different types. Such models can be stud-
ied within the framework of counting processes. A
counting process N(t) can be thought of as counting
observed events up to time t .

The simplest and most important model for event
history data is the following model of survival data.
More complicated event history data include, among
others, data on competing risks, the so-called multi-
state survival data, and the data that may be modeled
by illness–death process or disability–death pro-
cesses (see Stochastic Processes).

Suppose that a group of n patients is followed at
some hospital from the time of diagnosis of a certain
disease to the time of death or to the date last known
in follow-up. We note that these are often patients
who are alive at the time of data analysis. For the ith
patient, we observe a disease duration T i , which is
either his true survival time Ti , that is, the length of
time from diagnosis to death, or a censoring time, that
is, the length of time from diagnosis to the date last
known in follow-up (see Censored Data). Let Di =
1 if T i is a true survival time and Di = 0 otherwise.
We assume that the pairs (Ti, Di) are independent
for i = 1, . . . , n.

Let
Ni(t) = I (T i ≤ t, Di = 1), (1)

where I (·) is the indicator function. Thus, Ni is 0
before T i and jumps to 1 at T i if and only if T i is
a true survival time. At any time t , we know that
the ith patient either has been observed to die, or

has been censored because of incomplete follow-up,
or is still alive and at risk. For the first two cases,
the conditional probability of observing Ni to jump
in a small interval near t is 0. For the latter, this
conditional probability is near αi(t)dt , where αi(·) is
the hazard function of Ti (see Survival Distributions
and Their Characteristics). Let

Yi(t) = I (T i ≥ t), (2)

which indicates whether the individual is still alive
just before time t . The previous remarks indicate that

Pr[dNi(t) = 1 | Ft−] = αi(t)Yi(t) dt. (3)

Here dNi(t) is the increment of Ni in a small interval
near t , and Ft−(Ft ) represents all the information
available on the course of the disease just before (up
to) time t . Ft is called a filtration.

We note that both the deterministic function αi

and the random process Yi are predictable processes
in the sense that their values at any time t are known
just before t . If we define stochastic processes Mi

by having increments

dMi(t) = dNi(t) − αi(t)Yi(t) dt, (4)

then (3) says

E[dMi(t) | Ft−] = 0, (5)

which means

Mi(t) = Ni(t) −
∫ t

0
αi(s)Yi(s) ds (6)

is a martingale (see, for example, [1, 4, 26]). In par-
ticular, EMi(t) = 0 for all t . Here λi(t) ≡ αi(t)Yi(t)

is called the intensity process of Ni . More generally,
under some regularity conditions, a counting process
N has a predictable process λ such that

M(t) ≡ N(t) −
∫ t

0
λ(s) ds (7)

is a martingale. λ is called the intensity process for
N , and

Λ(t) =
∫ t

0
λ(s) ds (8)

the cumulative intensity process because of λ(t+) =
lim�t→0(1/�t)P {N(t + �t) − N(t) = 1 | Ft }.

An important example arises when the n sub-
jects in (1) are independent and identically distributed
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(i.i.d.). In this case, let N . =
∑n

i=1 Ni , which is a
univariate counting process that counts the number
of observed deaths. Its intensity process is λ.(t) =
α(t)Y.(t), with α(t) being the hazard function of Ti ,
and Y.(t) = ∑n

i=1 Yi(t) being the number of individ-
uals observed to be at risk just before time t . We
note that Y.(t) increases as the number of subjects
increases.

The relation (7) is the key to the counting process
approach to event history analysis. We will see below
that many important estimators and test statistics in
survival analysis can be expressed as, or approx-
imated by, stochastic integrals with respect to the
martingales (7). This, together with martingale the-
ory, forms the basis to the analysis of these statistics.
Properties of these statistics such as unbiasedness
and estimators of variability are obtained by applying
results on stochastic integration with respect to the
basic martingales like (7). Asymptotic statistical the-
ory follows from martingale central limit theorems.
Another important ingredient of the counting process
methods in survival analysis is the fact that likeli-
hoods are product-integrals of conditional terms for
infinitesimal time intervals (see, for example, [6]).

We now formalize the above discussion by pre-
senting some relevant martingale theory. A multivari-
ate counting process N = {[N1(t), . . . , Nk(t)], t ∈
[0, 1]} is a k-dimensional stochastic process with
components Nh whose sample functions are nonde-
creasing, right-continuous step functions, Nh(0) = 0,
and with jumps of unit size. Moreover, it is assumed
that, with probability 1, no two components jump
simultaneously, and that each Nh(1) is almost surely
finite.

A stochastic process M adapted to a filtration Ft ,
satisfying M(0) = 0, E|M|(t) < ∞ for t ∈ [0,1], and
having sample functions, which are right continu-
ous with left-hand limits, is called a martingale if
E[M(t) | Fs] = M(s) a.s. for s ≤ t [cf. (4)]. A mar-
tingale is square-integrable if supt∈[0,1] EM2(t) < ∞.
A stochastic process M(t) is called a local martin-
gale if M(t ∧ Tn) is a martingale for some sequence
of stopping times Tn tending to infinity.

Note that if a process is adapted and has left-
continuous sample paths, then it is predictable and
locally bounded. Moreover, any Borel measurable
deterministic function is predictable.

A process X has a compensator Λ if X − Λ is
a local martingale, and Λ is predictable and has
paths of locally bounded variation. According to

the Doob–Meyer decomposition, each component
Nh of a multivariate counting process has a unique
compensator Λh. Hence

Mh(t) = Nh(t) − Λh(t) (9)

is a local martingale.
Let Hh be a predictable and locally bounded

process and Mh a local martingale. We define a new
process M̃h by the stochastic integral

M̃h(t) =
∫ t

0
Hh(s) dMh(s). (10)

Then M̃h is a local martingale itself, because the
increment dM̃h(t) = Hh(t)dMh(t) has zero condi-
tional expectation:

E[Hh(t) dMh(t) | Ft−] = Hh(t)E[dMh(t) | Ft−] = 0

(11)

Here the first equality is due to the predictability of
Hh. The variance of M̃h(t) equals E

∫ t

0 H 2
h (s) dΛh(s).

Counting Process Models

Statistical models based on counting processes are
specified according to their intensity processes. Here
are some important models for which the previous
mathematical framework is the most useful. From
the point of view of statistical modeling, there are
in the realm of multistate models. Important recent
reviews of multistate models include [8, 31] (see
Event History Analysis).

Multiplicative Intensity Models

If the intensity λh(t) in (8) can be written as

λh(t) = αh(t, θ)Yh(t) (12)

with an unknown nonnegative deterministic function
αh(·, θ), where θ is a parameter, and a nonnegative
observable predictable process Yh, then we say the
multivariate counting process N is a multiplicative
intensity model [2]. We note that θ may be infinitely
dimensional.

Equation (3) shows that censored survival data is
a multiplicative intensity model.
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Markov Process Models

Another important example of a multiplicative inten-
sity model is provided by the Markov processes with
finite state space. Let {X(t) | t ∈ (0, 1]} be a Markov
process with finite state space and right-continuous
sample paths. Let Nhj (t) be the number of direct tran-
sitions for X from state h to state j , h 	= j , in [0, t].
Then the counting process N = [Nhj (·) | h 	= j ] and
X(0) are equivalent to X in the sense that observation
of X(u) for 0 ≤ u ≤ t gives the same data as observ-
ing X(0) and N on [0, t]. Assuming that locally
integrable transition intensities αhj (t, θ) from state h

to state j , h 	= j , exist, then the intensity process for
N with respect to the filtration Ft ≡ σ [X(0), N(s) |
s ≤ t] is

αhj (t, θ)Yh(t),

where Yh(t) = 1(X(t−)=h) is the indicator for X being
in the state h just before time t (cf. [6, pp. 92–94,
126]).

A special case of the Markov process example is
the competing risks model, obtained by consider-
ing one transient state 0 (alive) and absorbing states
h = 1, . . . , k. State h corresponds to “dead by cause
h”. Equivalently, let Xi = (Xi1, . . . , Xik) consist of
k independent random variables with respective haz-
ard functions α01(t, θ), . . . , α0k(t, θ), the multivariate
counting process N(t) = (N1(t), . . . , Nk(t) ) with
Nh(t) = ∑n

i=1 I (minlXil = Xih ≤ t) is of main inter-
est in the competing risks model. Here X1, . . . , Xn

are assumed independent and thus, Nh(t) has inten-
sity process α0h(t, θ)

∑n
i=1 I[minlXil≥t] (cf. [6, p. 127]).

Illness–death Model

A more detailed event history analysis may be per-
formed when individuals switch between the states
“healthy” and “diseased” before the absorbing state
“death”. The model is known as the illness–death
model; the illness may be recurrent or not.

For the case where there is no recovery, let
states 0, 1, and 2 denote healthy, diseased, and
dead, respectively, and define the counting pro-
cesses of transitions between these states by N(t) =
[N01(t), N02(t), N12(t)]. N0h(t), h = 1, 2, has inten-
sity process α0h(t)Y0(t) with Y0(t) = 1 − N01(t−) −
N02(t−), which indicates that the individual is in state
0 at time t−, whereas N12(t) has intensity process
α12(t, d)Y1(t) with Y1(t) = N01(t−) − N12(t−), indi-
cating that the individual is in state 1 at time t−.

If the intensity of dying while diseased, denoted
by α12(t, d), only depends on time t , the process
corresponds to a Markov illness–death process; when
α12(t, d) only depends on d, the duration in the
disease states, one has a special case of a semi-
Markov process (see Event History Analysis).

Regression Models

Let (Xi, Zi), i = 1, . . . , n , be random variables with
nonnegative Xi denoting the survival time of the ith
subject and Zi ≡ (Zi1, . . . , Zip)′ be p-dimensional
random vectors denoting the covariates. We assume
that X1, . . . , Xn are conditionally independent given
Z = (Z1, . . . , Zn).

In the Cox regression model for survival data
[22], the conditional hazard of Xi given the covariates
Z = z = (z1, . . . , zn) has the form

αi(t, θ) = α0(t, γ ) exp(β ′zi), (13)

where θ = (γ, β), and α0(·, γ ) is a nonnegative
deterministic function depending on a parameter γ ,
which can be infinite dimensional or finite dimen-
sional. β ∈ Rp is called the relative risk coefficient
and β ′ is its transpose.

Let X̃1, . . . , X̃n be the observed right censored
survival times corresponding to X1, . . . , Xn. Let
Di = I (Xi = X̃i), Ni(t) = I (X̃i ≤ t, Di = 1), Yi(t)

= I (X̃i ≥ t) be defined as in the introductory exam-
ple of censored survival times. Let Ft be the filtration
generated by Z and [(N1, . . . , Nn)(s), s ≤ t]. Then
the counting process N = (N1, . . . , Nn ) has the
intensity λ = (λ1, . . . , λn) with λi(t) = αi(t, θ)Yi(t)

relative to Ft .
Extensions of the Cox regression model using

counting process formulation, initially studied by
Andersen and Gill [7], are discussed in (44).

In Aalen’s additive regression model [3] the
conditional hazard of Xi given Z = z = (z1, . . . , zn)

has the form

β0(t) + β(t)′zi . (14)

Here β0(·) is an R-valued function and β(·) =
(β1(·), . . . , βp(·))′ is an Rp-valued function and β(t)′
is its transpose. This model is a special case of the
matrix version of the multiplicative intensity model
studied in (56).
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Right censoring, Left truncation, and Filtering

Right censoring, left truncation, and filtering are
important patterns of incomplete observation that can
be handled quite satisfactorily with the counting pro-
cess methods. This discussion indicates situations in
which the multiplicative intensity model is retained
under these patterns of incomplete observation. A
similar discussion can be made with the regression
models mentioned above. A quite thorough discus-
sion of these concepts in specifying statistical models
can be found in [6, Chapter III]. Important works in
this regard include [35–37].

Assume we have a multiplicative intensity model
(12). Let 0 ≤ Vh ≤ Uh be random variables indepen-
dent of Nh. Then

∫ t

0
1(Vh,Uh](s) dNh(s) (15)

has the compensator
∫ t

0
1(Vh, Uh](s)λh(s) ds

=
∫ t

0
αh(s, θ)Yh(s)1(Vh,Uh](s) ds. (16)

Thus, if (12) holds and both (15) and Yh(·)1(Vh,Uh](·)
are observable, then we again have a multiplicative
intensity model. When Uh = ∞, we say (15) is the
left-truncated process of Nh. When Vh = 0, we say
(15) is the right-censored process of Nh. The inde-
pendent filtering process 1(Vh,Uh](·) is called an Aalen
filter.

Nonparametric Estimation

Let N = (N1, . . . , Nk) be a multivariate counting
process with the intensity process λ = (λ1, . . . , λk)

satisfying the multiplicative intensity model λh(t) =
αh(t)Yh(t), where αh(·) is a nonnegative deterministic
function, and Yh(t) is a predictable and observable
process. Often αh is a force of transition, whereas Yh

counts the number at risk.

Nelson–Aalen Estimator

An important statistical problem is to estimate the
cumulative intensity

Ah(t) =
∫ t

0
αh(s) ds (17)

based on the data [Nh(t), Yh(t) | 0 ≤ t ≤ 1, h = 1,

. . . , k]. To derive estimators for (17), we use (6)
to write symbolically “dNh(t) = αh(t)Yh(t) + noise”.
With this in mind, we let Jh(t) = I [Yh(t) > 0], and
define the estimator

Âh(t) =
∫ t

0

[
Jh(s)

Yh(s)

]
dNh(s), (18)

where Jh(t)/Yh(t) is interpreted as 0 whenever
Yh(t) = 0. Equation (18) is called the Nelson–Aalen
estimator [1, 2, 45]; (see Event History Analysis).

Let Th1 < Th2 < · · · be the successive jump times
for Nh. Then

Âh(t) =
∑

(j : Thj ≤t)

[Yh(Thj )]
−1. (19)

Thus, Âh is an increasing, right-continuous step func-
tion with increment 1/Yh(Thj ) at the observed jump
time Thj of Nh.

Suitably normalized, Âh(t) is asymptotically nor-
mally distributed with mean Ah(t) and a variance
which may be estimated by

∫ t

0 Jh(s)[Yh(s)]−2 dNh(s).
Properties of the Kaplan–Meier estimator Ŝh(t) can
be obtained from that of Âh(t). Note that Ŝh(t) =∏

0<s<t [1 − dÂh(s)], which is the product integral
of the Nelson–Aalen estimator Âh.

Kernel Function Smoothing

Another important problem is to estimate the intensity
αh(t). Ramlau–Hansen [53] proposed the following
kernel smoothing estimator:

α̂h(t) = 1

b

∫ 1

0
K

(
t − s

b

)
dÂh(s), (20)

as estimators for αh(t), for h = 1, . . . , k. Here Âh(·)
is defined in (18). The kernel function K is a bounded
nonnegative function that is 0 outside [−1, 1] and has
integral 1. The window (bandwidth) b is a positive
number. The kernel function and the window have to
be chosen in concrete applications and may depend
on h. We note that (20) is equal to

α̂h(t) = 1

b

∑

Thj

K

(
t − Thj

b

)
1

Yh(Thj )
. (21)

Note that only values of Thj satisfying t − b ≤ Thj ≤
t + b contribute to this sum.
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If Yh increase uniformly in a neighborhood of
t , and at the same time the window b tends to 0,
then, subject to some regularity conditions, α̂h(t) is
asymptotically normally distributed with mean αh(t)

and a variance that may be estimated by

1

b2

∫ 1

0
K2

(
t − s

b

)
Jh(s)

Y 2
h (s)

dNh(s).

To apply the kernel smoothing estimator (20), one
has to decide upon a choice of the kernel function K

and the window b. Some guidelines to the choice of
K are given in [54], and the choice of the window b

was discussed in [6, Chapter IV 2.2] (see Smoothing
Hazard Rates).

Nonparametric Hypothesis Testing

One-sample Tests

Consider a univariate counting process N(t), with
intensity process α(t)Y (t), where α(·) is a nonneg-
ative deterministic function and Y (·) a nonnegative
predictable and observable process. The null hypoth-
esis α = α0 is to be tested, where α0 is a known
intensity function. For example, in a mortality study
for a certain population, one may like to know if it
equals the general population mortality.

The idea behind the test statistic to be proposed
comes from the properties of the Nelson–Aalen esti-
mator. The key is to compare the increments of the
Nelson–Aalen estimator dÂ(t) with α0(t)dt using the
weight process K(t) (cf. [5]). Formally, let

Â(t) =
∫ t

0

[
J (s)

Y (s)

]
dN(s), (22)

A∗
0(t) =

∫ t

0
α0(s)J (s) ds, (23)

where J (s) = I (Y (s) > 0).
Then, under the null hypothesis, Â − A∗

0 is a
local square-integrable martingale. Its expected vari-
ation is E(Â(t) − A∗

0(t))
2 = E

∫ t

0 J (s)α0(s)/Y (s) ds.
Our general test statistic is based on the following
stochastic process:

Z(t) =
∫ t

0
K(s) d[Â(s) − A∗

0(s)], (24)

where K is a locally bounded predictable non-
negative stochastic process. It is assumed through-
out that K(s) = 0 whenever Y (s) = 0. It follows

immediately from the definition that, under the
null hypothesis, Z is a local square-integrable mar-
tingale with E(Z(t))2 = E

∫ t

0 K2(s)α0(s)/Y (s) ds =
E

∫ t

0 K2(s)Y−2(s) dN(s). The hypothesis α = α0 may
now be tested using the standardized test statistic
based on Z(t), which can be shown to have an
approximate standard normal distribution. Usually, t

is chosen as some “large” time. By choosing a differ-
ent weight process K , one can obtain a number of test
statistics of one-sample tests. For example, the choice
K = Y corresponds to the one-sample logrank test
[16] (see Linear Rank Tests in Survival Analysis).

k-Sample Tests

One of the most commonly encountered problems
in clinical trails is the comparison of treatments on
survivals. This is a special case of the following k-
sample problem.

Consider a k-variate counting process N satisfying
the multiplicative intensity model (12). We want to
derive a test for the hypothesis

H0: α1 = α2 = · · · = αk. (25)

The common value of the αhs will be denoted by α.
The idea is to construct a test statistic by com-

paring the Nelson–Aalen estimators Âh(t) [cf. (18)]
with an estimator of the hypothesized common value

A(t) =
∫ t

0
α(s) ds. (26)

This latter quantity can be estimated by

Â(t) =
∫ t

0

J (s)

Y.(s)
dN.(s), (27)

where

N. =
k∑

h=1

Nh, Y. =
k∑

h=1

Yh, (28)

and
J (t) = I [Y.(t) > 0]. (29)

Under the hypothesis, we know that N.(t) is a (uni-
variate) counting process with the intensity process
α(t)Y.(t). Let

Ah(t) =
∫ t

0
Jh(s) dÂ(s) =

∫ t

0

Jh(s)

Y.(s)
dN.(s),
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and note that, when (25) holds true, we have

Âh(t) − Ah(t) =
∫ t

0

Jh(s)

Yh(s)
dMh(s)

−
∫ t

0

Jh(s)

Y.(s)
dM.(s), (30)

where

M. =
k∑

h=1

Mh.

Thus, except for random variations, Âh and Ah are
equal under the hypothesis. Let Kh be a nonnegative
locally bounded predictable weight process, and

Zh(t) =
∫ t

0
Kh(s) d(Âh − Ah)(s). (31)

When (25) holds true, (30) shows that the Zhs are
linear combinations of stochastic integrals and hence
EZh(t) = 0 for all h and t ∈ [0, 1].

It turns out that the special choice of weight
processes,

Kh(t) = Yh(t)L(t), (32)

where L is a locally bounded predictable process
that only depends on (N., Y.), covers most relevant
examples. Under (32), we have

Zh(t) =
∫ t

0
L(s) dNh(s) −

∫ t

0
L(s)

Yh(s)

Y.(s)
dN.(s).

(33)

We note that
k∑

h=1

Zh = 0. (34)

It follows from the martingale central limit theorem
that, under the hypothesis H0, the Zhs, properly
normalized, converge weakly to a k-variate Gaussian
martingale, as the Yhs increase. In particular, Z(1) =
{Z1(1), . . . , Zk(1)}′ is asymptotically multinormally
distributed (see Multivariate Normal Distribution)
with mean 0 and a (singular) covariance matrix that
can be estimated by V(1) = {Vhj (1)}, where

Vhj (1) =
∫ 1

0
L2(s)

Yh(s)

Y.(s)

(
δhj − Yj (s)

Y.(s)

)
dN.(s),

(35)

and δhj is the Kronecker delta [5, Theorem 3.1].

Thus, under the hypothesis (25), the statistic

χ2 = Z(1)′V(1)−Z(1), (36)

is asymptotically chi-square distributed with k − 1
degrees of freedom, where V(1)− is a generalized
inverse [5, Section 9.1] (see Matrix Algebra). Note
that we may denote by Z0(1) and V0(1), respectively,
the vector and matrix obtained from Z(1) and V(1)

by deleting the last component of Z(1) and the
last row and column of V(1), and then using the
relation Z(1)

′
V(1)−Z(1) = Z0(1)

′
V0(1)−1Z0(1) for

(36).
Equation (36) covers not only many classical

nonparametric tests but their generalizations to cen-
sored data as well. For example, the choice L(t) =
I [Y.(t) > 0] corresponds to the logrank (or Savage)
test [48], while L(t) = Y.(t) gives a generalization
of the Kruskal–Wallis test [15]. Also the tests sug-
gested by Tarone and Ware [61], Prentice [49], and
Harrington and Fleming [30] are special cases of
(36). More specifically, Harrington and Fleming [30]
introduced a class of test statistics for censored sur-
vival data by letting L(t) = [Ŝ(t−)]ρI [Y (t) > 0],
where

Ŝ(t) =
∏

s≤t

(
1 − ∆N.(s)

Y.(s)

)
(37)

is the Kaplan–Meier estimator based on the com-
bined sample and 0 ≤ ρ ≤ 1. It is seen that ρ =
0 gives the logrank test, whereas ρ = 1 gives a
test similar to Peto and Peto’s and Prentice’s gen-
eralization of the Wilcoxon–Mann–Whitney and
Kruskal–Wallis tests.

Parametric Models

Let N = (N1, . . . , Nk) be a multivariate counting
process satisfying the multiplicative intensity model
(12) with parametric αhs, that is, the intensity process
is given by

λh(t) = αh(t ; θ0)Yh(t), (38)

where θ0 = (θ10, . . . , θq0)
′ is a q-dimensional param-

eter belonging to some open subset Θ of Rq ,
and αh are known functions. Under some regular-
ity conditions, the log-likelihood function now takes
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the form

l(θ) =
k∑

h=1

∫ 1

0
log{αh(s; θ)} dNh(s)

−
k∑

h=1

∫ 1

0
αh(s; θ)Yh(s) ds, (39)

and the maximum likelihood estimator θ̂ is defined
as a solution to the set of equations

k∑

h=1

∫ 1

0

(∂/∂θj )αh(s; θ)

αh(s; θ)
dNh(s)

−
k∑

h=1

∫ 1

0

∂

∂θj

αh(s; θ)Yh(s) ds = 0, (40)

where j = 1, . . . , q. Under certain regularity condi-
tions of the αhs, the likelihood equations (40) have,
with probability tending to 1, exactly one consistent
solution θ̂ as the Yhs increase. Moreover, θ̂ is asymp-
totically multinormally distributed with mean θ0 and a
covariance matrix that may be estimated by −I (θ̂ )−1,
where I (θ) = ∂2l(θ)/∂θ2 [14, Theorems 1 and 2].
Thus, the usual results for maximum likelihood esti-
mation in the classical i.i.d. case continue to hold
under the more general model (38).

With (6) and (38), we know that the left-hand
side of (40), evaluated at the true parameter value
θ0, equals the stochastic integral:

k∑

h=1

∫ 1

0

(∂/∂θj )αh(s; θ0)

αh(s; θ0)
dMh(s). (41)

This makes it possible to use properties of mar-
tingales to derive the above-mentioned asymptotic
results.

As in the i.i.d. case in which minus twice the
logarithm of the likelihood ratio test statistic is
asymptotically chi-square distributed, this is true also
for the more general model (38). Other closely related
test statistics, like Wald’s test and the score test (see
Likelihood), also have the desired properties as their
counterparts in the i.i.d. case [14] (see Parametric
Models in Survival Analysis).

Regression Models

Regression models are useful when it is desired to
assess the effect of risk factors (prognostic factors)
on survival. We discuss here some commonly used

regression models in survival analysis where counting
process and martingale techniques have played a
central role. Readers are referred to [42] for general
nonparametric models, to [67] for marginal models,
and to [38, 55], and [63] for other semiparametric
regression models.

The Cox Regression Model

Consider the multivariate counting process [Nhi(t),
h = 1, . . . , k; i = 1, . . . , n], t ∈ [0, 1], where Nhi(t)

counts the number of type h events in [0, t] for
individual i.

We assume that Nhi(t) has an intensity process of
the form

λhi(t) = α0h(t) exp[β
′
0Zhi(t)]Yhi(t). (42)

Here αoh is an unspecified type-specific baseline
whose integral

A0h(t) =
∫ t

0
α0h(s) ds (43)

satisfies A0h(1) < ∞. Furthermore, β0 = (β01, . . . ,

β0p)′ is a vector of unknown regression coefficients,
Yhi(t) is a predictable indicator process and Zhi(t) =
[Zhi1(t), . . . , Zhip(t)]′ a vector of predictable and
locally bounded (type-specific) observable time-de-
pendent covariate processes.

The relative risk function exp[β
′
0Zhi(t)] can be

replaced by a general form of function (cf. [51]).
Also, the baseline function α0h(t) can be replaced
by various forms of random processes [19, 52].

The basic assumption in the extended Cox model
(42) is that each covariate Zhij (t) has a multiplicative
effect on the intensity [7, 23]; in particular, for
time-independent covariates, we have a model with
proportional intensities.

The estimator β̂ of β0 is defined to be the solution
to the equations U(β, 1) = 0, which is called the
Cox’s partial score and defined below (cf. [7]). The
key to the derivation of the statistical properties of
β̂ is to notice that the Cox’s partial score U(β0, ·),
evaluated at the true value β0, is a local square
integrable martingale.

Let

S
(0)
h (β, t) = 1

n

n∑

i=1

Yhi(t) exp[β ′Zhi(t)],

S
(1)
hj (β, t) = 1

n

n∑

i=1

Yhi(t)Zhij (t) exp[β ′Zhi(t)], (44)
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S
(2)
hjl(β, t) = 1

n

n∑

i=1

Yhi(t)Zhij (t)Zhil(t) exp[β ′Zhi(t)],

and

Ehj (β, t) = S
(1)
hj (β, t)

S
(0)
h (β, t)

,

where h = 1, . . . , k and j, l = 1, . . . , p. Then the j th
component of U(β, t) is given as

Uj(β, t) =
k∑

h=1

[∫ t

0

n∑

i=1

Zhij (s) dNhi(s)

−
∫ t

0
Ehj (β, s) dNh(s)

]
, (45)

and using (6) and (42) we see that

Uj(β0, t) =
k∑

h=1

n∑

i=1

∫ t

0
[Zhij (s) − Ehj (β0, s)] dMhi(s)

(46)

are linear combinations of stochastic integrals. Here
Nh = ∑n

i=1 Nhi . Thus, with some regularity condi-
tions, the martingale central limit theorem can be
applied to prove that the process n−l/2U(β0, ·), as
n tends to ∞, is asymptotically distributed as a mean
zero Gaussian martingale.

By a Taylor expansion technique, this result can
be transformed into a theorem concerning the asymp-
totic distribution of β̂, much in the same way as
for standard maximum likelihood estimation. Under
certain regularity conditions, it can be shown that
nl/2(β̂ − β0) is asymptotically multinormally dis-
tributed Np(0, Σ−1), where Σ = {σjl} is positive
definite, and σjl can be estimated consistently by
−Ijl(β̂)/n. Here Ijl(β) is the partial derivative of
U(β, 1) with respect to βj , that is,

Ijl(β) = −
k∑

h=1

∫ 1

0

[
S

(2)
hjl(β, s)

S
(0)
h (β, s)

− Ehl(β, s)Ehj (β, s)

]

× dNh(s). (47)

On the basis of the above results, one can draw
inference on the regression parameter β even with
the presence of the nuisance functions α0h(t) in the
semiparametric model (42).

In some cases, the underlying intensities are also
of interest. Under the same set of regularity con-
ditions, the estimates for the cumulative intensities
A0h(t):

Â0h(t) =
∫ t

0
Jh(u)[nS

(0)
h (β̂, s)]−1 dNh(s) (48)

with Jh(u) = I [Yh(u) > 0], is distributed asymptoti-
cally as a Gaussian process.

Notice that for a homogeneous group of individ-
uals, that is, when all Zhi ≡ 0, the estimator Â0h

reduces to the Nelson–Aalen estimator.

Parametric Regression

As in (42), we now assume that Nhi has the intensity
process of the form

λhi(t) = α0h(t ; θ0) exp[β ′
0Zhi(t)]Yhi(t), (49)

with unknown parameter θ0 belonging to an open sub-
set of Rq , and α0h being some known functions [14].

In the case of survival data, (49) covers the
exponential regression where α0h(t, θ) = θh, the
Weibull regression where α0h(t, θ) = θht

ρh, and the
piecewise exponential where α0h(t, θ) is piecewise
constant. References in which parametric models
of the form (49) have been studied for survival
data can be found in Kalbfleisch and Prentice [33],
for example, (see Parametric Models in Survival
Analysis).

Inferences from parametric regression models will
be based on the log-likelihood function

l(θ, β) ≡ log L(θ, β)

=
k∑

h=1

n∑

i=1

{∫ 1

0
[logα0h(s; θ) + β ′Zhi(s)] dNhi(s)

−
∫ 1

0
α0h(s, θ) exp[β ′Zhi(s)]Yhi(s) ds

}
,

(50)

and the maximum likelihood estimators θ̂ and β̂ are
defined as solutions to the set of equations

∂

∂θj

l(θ, β) =
k∑

h=1

n∑

i=1

{∫ 1

0

(∂/∂θj )α0h(s, θ)

α0h(s, θ)
dNhi(s)

−
∫ 1

0

∂

∂θj

α0h(s, θ) exp[β ′Zhi(s)]Yhi(s) ds

}
= 0,
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and

∂

∂βl

l(θ, β)

=
k∑

h=1

n∑

i=1

{∫ 1

0
Zhil(s) dNhi(s)

−
∫ 1

0
α0h(s, θ)Zhil(s) exp[β ′Zhi(s)]Yhi(s) ds

}

= 0, (51)

for j = 1, . . . , q and l = 1, . . . , p. Since the left-
hand sides of the likelihood equations (51), evaluated
at the true parameter values θ0 and β0, are linear
combinations of stochastic integrals, the asymptotic
properties of θ̂ and β̂ can be obtained by the martin-
gale central limit theorem.

Nonparametric Additive Hazard Models

Let N(t) = [Ni(t); i = 1, . . . , n] be a multivariate
counting process. Assume that the individual process
Ni has an Ft -intensity process

λi(t) = αi[t ; Zi(t)]Yi(t), (52)

with

αi[t ; Zi(t)] = β0(t) + β1(t)Zi1(t)

+ · · · + βp(t)Zip(t). (53)

Here αi(·, ·) is nonnegative, whereas the regression
functions βj (t) are completely unspecified. A major
problem for the additive hazard model of Aalen [3]
is to estimate the integrated regression functions

Bj (t) =
∫ t

0
βj (u) du, (54)

for j = 0, 1, . . . , p. Let β(t) = [β0(t), β1(t), . . . ,

βp(t)]′, Y(t) be the n × (p + 1) matrix with the
ith row, i = 1, . . . , n, given by Yi(t)[1, Zil(t), . . . ,

Zip(t)] and B(t) = [B0(t), B1(t), . . . , Bp(t)]′. The
model given by (52) and (55) can be written in matrix
form as

N(t) =
∫ t

0
Y(u)β(u) du + M(t) (55)

and is sometimes called the matrix multiplicative
intensity model, where M = (M1, . . . , Mn) is an
n-vector of local square-integrable martingales. Then

B̂(t) =
∫ t

0
J (u)Y−(u) dN(u) (56)

can be viewed as a generalized Nelson–Aalen estima-
tor for B(t). Here Y−(t) is the predictable generalized
inverse of Y(t), that is, a (p + 1) × n matrix satis-
fying Y−(t)Y(t) = I , the (p + 1) × (p + 1) identity
matrix, and J (t) = I [rank Y(t) = p + 1] is the pre-
dictable indicator of Y(t) having full rank (assuming
p + 1 ≤ n).

To achieve some kind of optimality, we need
to choose the generalized inverse Y−(t) properly
[32, 41].

Frailty Models

Let Nik(t) denote the number of certain events expe-
rienced up to time t by the kth member of the ith
family in an experiment. Suppose that the hazard rate
λik(t) of Nik(t) has the proportional form

λik(t) = Λi(t)Yik(t) exp[βZik(t)] (57)

for k = 1, 2, . . . , K . Here Yik(·) is an observable non-
negative predictable process, Zik(·) is a predictable
process representing an observable covariate, β is the
relative risk coefficient to be estimated, and Λi(·) is
the unknown baseline hazard rate for the ith family,
termed random frailty and shared by the K members
in the ith family.

We note that, when Λi(t) is a deterministic func-
tion not varying from family to family, (57) is a
special case of (42).

Nielsen et al. [46] assumed that

Λi(t) = αiλ0(t), (58)

where λ0(·) is an unknown nonnegative determinis-
tic function (parametric or nonparametric) and the
αis are independent unobservable nonnegative ran-
dom variables with a gamma distribution. In certain
medical examples, the frailty variable αi is thought
of as a way to describe susceptibility to accident of
members of the ith family, who share a common
genetic background.

Assume now that K > 1 and Λ1(·), Λ2(·), . . . is
a sequence of i.i.d. random elements valued in the
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space of nonnegative measurable functions on [0, ∞),
not necessarily of the form (58). In some medical
contexts, this means, for example, that genetic back-
ground specifies completely the baseline hazard rate
function of members of a family at any age point, not
just a multiplicative factor of it.

The true parameter β0 in (57) can be estimated by
β̂n, which is the root of

Gn(β, t) =
n∑

i=1

K∑

k=1

×
∫ t

0






Zik(s) −

K∑

l=1

Yil(s) exp[βZil(s)]Zil(s)

K∑

l=1

Yil(s) exp[βZil(s)]






× dNik(s). (59)

Following the approach for (42), asymptotic nor-
mality for Gn and β̂n can be obtained [20].

S-I-R Epidemic Model

A major parameter in the study of an infectious dis-
ease is the so-called basic reproduction number.
Various models have been proposed to calculate this
number. Here we give a very brief account of the
counting process approach (see SIR Epidemic Mod-
els).

An individual experiences a sequence of events
in case of an infectious disease. First there is the
infection time tA that one gets infected, then the time
tB that one enters the infectious period, the time tC
that one shows symptoms, the time tE that marks
the end of the infectious period. It is known that
tA ≤ tB ≤ tE , and tA ≤ tC ≤ tE . Usually, only tC and
tE are observable.

At time t , an individual is called a susceptible if
t < tA, an infective if tB < t < tE , and removed if
t > tA. A susceptible becomes an infective through
contact with an infective.

Suppose we have a closed community in the sense
that there is no immigrant nor emigrant. Suppose at
time 0, there are s susceptibles and i infectives in this
community.

Let S(t), I (t), and R(t) denote respectively the
number of susceptibles, infectives, and removed ones
at time t . Let N(t) denote the number of individuals

infected during (0, t]. It is clear that these are count-
ing processes with different jump times. In view
of the law of mass action, one assumes N(t) has
intensity

βS(t−)I (t−),

where S(t) = S(t)/S(0). Another convenient ass-
umption is that R(t) has intensity

γ I (t−).

β is called the infection rate and γ the removal
rate. The basic reproduction number θ = β/γ gives
the expected number of susceptibles infected by one
infective. Depending on the data available, several
estimation procedures have been proposed. Here we
present one of them (cf. [10], Chapter 7). Suppose
n = S(t) + I (t) + R(t). We consider inference based
on the data {S(0), I (0), R(0), R(τ)}, where τ is the
time that the epidemic ends with I (τ) = 0. This is
the situation that only the final state of the epidemic
is observed.

Then estimation can be based on the following
zero-mean martingale

M(t) =
∫ t

0

1

S(u−)
[dN1(u) − βS(u−)I (u−) du]

− β

γ

[
R(t) − R(0) −

∫ t

0
γ I (u−) du

]

= n

S(0)
+ n

S(0) − 1
+ · · · + n

S(t) + 1

− β

γ
[R(t) − R(0)]. (60)

Thus

θ̂ =

{
n

S(0)
+ n

S(0) − 1
+ · · · + n

S(τ) + 1

}

{R(τ) − R(0)} , (61)

and the standard derivation is estimated by

se(θ̂) =
[

1

S(0)2
+ 1

(S(0) − 1)2
+ · · ·

+ 1

(S(τ) + 1)2
+ θ̂ 2

n
{R(τ)/n

− R(0)/n}
] 1

2 /
{R(τ)/n − R(0)/n}. (62)
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Becker and Hasofer [12] showed that if the removal
process R(t) is observed continuously, then both β

and γ can also be estimated.
The previous discussion assumes a population

of homogeneous individuals who mix uniformly.
Extensions to more general models with different
observables, including populations with heterogene-
ity between individuals, are important in health-case
studies, and are discussed in [11, 17], and so on.

Some other Counting Process Models

Some Alternative Approaches

The statistical models discussed so far are models for
which counting process methods are the most suc-
cessful in formulating the problem, proposing statis-
tical procedures, analyzing their distributional prop-
erties, and studying their efficiency. We now mention
some examples in which counting processes provide
useful modeling tools but extra work or even entirely
different method is needed for the analysis of the
models. More examples can be found in Kalbfleisch
and Prentice [33]. In fact, some goodness-of-fit tests
for certain counting process models were analyzed
with techniques other than martingale central limit
theorems (see, for example, [42] and [40]). In gen-
eral, asymptotic theories, including efficiency, are
often established using empirical process theory. (cf.
[64, 65])

Correlated Gamma-Frailty Models and Cox-gene
Models

To solve the problem of estimating the relative risk
coefficient β0 when K = 1 in (57) and (58), Nielsen
et al. [46] suggested an estimator using the EM algo-
rithm based on parametric and nonparametric maxi-
mum likelihood in the case where the αis are gamma
random variables. Murphy [43, 44] established the
consistency and asymptotic normality of the esti-
mator in a one-sample frailty model. Parner [47]
extended theory to correlated gamma-frailty model
with covariates. Compared with (57) and (58), this
means

λik(t) = (αi0 + αik)λ0(t)Yik(t) exp[βZik(t)], (63)

with αi0, αi1, . . . , and αik being independent,
unobservable, gamma-distributed random variables

with parameters of the form (γ, η), (γ ∗, η), . . . ,

and (γ ∗, η). Both Murphy [43, 44] and Parner [47]
employed the empirical process approach.

Following the notation in (63), the so-called Cox-
gene model means

λik(t) = λ0(t)Yik(t) exp[βZik(t) + µSik]. (64)

Here for kth member in the ith human family,
Nik(t) = I (T ik ≤ t, Dik = 1) with T ik being the ob-
served disease duration, and Dik = 1 if T ik is the true
survival time and Dik = 0 otherwise; Sik denotes the
unobservable genotype at certain locus. In a sense,
(64) is a discrete version of (58). Monte Carlo meth-
ods were studied by Li, Thompson and Wijsman [39]
and Siegmund and McKnight [58]; and asymptotic
theory was established by Chang, Hsiung, Wang, and
Wen [21], using empirical process theory.

Multivariate Survival Functions

Nonparametric estimation of a multivariate distribu-
tion function under censoring has important applica-
tions in many areas. The aim is to estimate the multi-
variate survival function on the basis of multivariate
censored data without assuming any special structure
among the different time coordinates. A major dif-
ference with the one-dimension case is that in higher
dimensions there are actually many nonequivalent
representations of the survival function in terms of
hazard, leading to many different estimators (see, for
example, [24, 25, 27, 28, 50, 62]); (see Multivariate
Survival Analysis.)

Semi-Markov Models

For Semi-Markov models, or Markov renewal pro-
cesses, the intensity for a transition between two
states depends on the time elapsed since the entry into
the current state (cf. [34]). Thus, “time” starts anew
at zero after each transition into a new state. Voelkel
and Crowley [66] showed how, via a random time
change, one may apply the counting process methods
for some semi-Markov processes.

We note that for semi-Markov models the “count-
ing process approach” cannot be used directly to
study the large-sample properties of nonparametric
estimators of the transition intensities. The reason for
this is that there exists no filtration relative to “dura-
tion time”.
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For parameter models, Arjas’ “real time” app-
roach [9] can work. For semiparametric generalized
proportional hazards models for counting processes,
Chang and Hsiung [19] identify a useful filtration so
that martingale theory is still useful in the derivation
of large-sample properties of the efficient estimators.

Sequential Analysis of Censored Survival Data
with Staggered Entry

In most clinical trials, the patients enter trial sequen-
tially in calendar time (see Sequential Analysis),
whereas the most relevant time dimension is the dura-
tion time on trial.

In most of the above discussion, we have assumed
that in the statistical analysis, these duration variables
have been all realigned to start at time (duration) zero,
and that the counting process martingales were then
defined in the duration time scale after alignment.
This device is not completely satisfactory when cal-
endar time monitoring is desired.

For sequential analysis with staggered entry, one
wants to stop the trial according to calendar time
filtration, instead of stopping the trial according to
duration time filtration. If the duration time is mod-
eled parametrically, this problem can be studied by
martingale method completely [18]. If it is not para-
metric, one has to consider two time scales, which
makes the theoretical problems complicated. For Cox
method with staggered entry, Bilias, Gu, and Ying
[13] provided a general asymptotic theory for both
test and estimation, generalizing the theory of Sellke
and Siegmund [56], Slud [59], and Gu and Lai [29].
The approach of Bilias, Gu, and Ying [13] employs
empirical process theory and considers the Cox score
process in two time scales.

One may specify in advance a finite number
of time points t1, . . . , tn at which tests are to be
performed, so that periodic reviews of the trial
may be performed while controlling the total sig-
nificance level (see Interim Analysis of Censored
Data). For specific procedures, see [59, 60] and [57,
Section V.6].

Conclusion

Detailed life history data may be given a thorough
analysis using the methods based on counting pro-
cesses. However, there are situations in which martin-
gale theory is not sufficient and alternative techniques

are necessary. Some such techniques can also be
based on counting process ideas, but not in the simple
form.
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Covariance Matrix

Suppose that p variables have been measured on
each of n sample individuals and the results have
been displayed in an n × p data matrix. Write x′

i =
(xi1, xi2, . . . , xip) for the vector of p values observed
on the ith individual, so that x′

i constitutes the ith
row of the data matrix (i = 1, . . . , n). In order to
provide a framework for parametric inference, the xi

are generally viewed as independent realizations of
a random vector X′ = (X1, X2, . . . , Xp), the distri-
bution of which specifies the population from which
the sample has been taken. Geometrically, the pop-
ulation can be represented as a swarm of points in
p-dimensional space by associating each variable Xj

with an orthogonal axis in this space and assign-
ing the observed value xi to the point with coor-
dinates (xi1, xi2, . . . , xip) on these axes (see Axes
in Multivariate Analysis). The main characteris-
tics of this swarm are its location in space and
its dispersion. The former is specified by the mean
vector

µ = E(X) = [E(X1), E(X2), . . . , E(Xp)]′,

and the latter by the matrix

� = E(X − µ)(X − µ)′,

which contains variances of the variables down its
principal diagonal and covariances between every
pair of variables in its off-diagonal positions.

Whether any more parameters are required fully
to specify the population depends on the specific
assumptions made about the distributional form of X.
In the vast majority of practical applications, how-
ever, multivariate central limit arguments suggest
that multivariate normality is a suitable assump-
tion. In this case, the probability density function only
depends on µ and �, so interest has focused very
heavily on these two parameters within multivariate
inference. In this article we concern ourselves with
questions about �.

First, we consider its estimation. Maximum like-
lihood is the most commonly adopted method of
obtaining estimates of parameters in a frequentist
approach to inference. Assuming normality, the likeli-
hood of the sample is

L = 1

(2π)np/2|�|n/2

× exp

[
− 1

2

n∑

i=1

(xi − µ)′�−1(xi − µ)

]

and a little algebra (see, for example, [1, pp. 60–65])
establishes that the maximum likelihood estimators of
µ and � are

µ̂ = x = (x1, x2, . . . , xp)′,

i.e. the sample mean vector (where xj = 1/n∑n
i=1 xij ), and

�̂ = 1

n

n∑

i=1

(xi − x)(xi − x)′.

If we write

A =
n∑

i=1

(xi − x)(xi − x)′,

then the diagonal elements of A are the corrected
sums of squares

∑n
i=1(xij − xj )

2 of each variable,
the off-diagonal elements are the corrected sums
of products

∑n
i=1(xij − xj )(xik − xk) between every

pair of variables, and

�̂ = 1

n
A.

The sampling distribution of A was derived first
by Wishart [17] (see Wishart Distribution), whose
results show that E(A) = (n − 1)�. Hence the max-
imum likelihood estimator of � is biased. When
corrected for bias we obtain the estimator

S = 1

n − 1
A,

which has the usual sample variances of each variable
down the main diagonal and sample covariances
between every pair of variables in the off-diagonal
positions. This is the sample covariance matrix; it is
the estimator of � preferred by many practitioners.

Adopting approaches to inference other than the
frequentist produces different estimators of �. The
two main approaches are decision theoretic and
Bayesian, and we now briefly summarize the com-
petitor estimates under each of these philosophies.

In decision theory we are required to supply
a loss function l(�, T) that quantifies the “loss”
incurred when � is estimated by T. The expecta-
tion of this loss over the distribution of the data
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defines the risk function R(�, T) associated with that
loss, and this risk function is used to compare dif-
ferent estimators Ti . An estimator T1 beats another
estimator T2 if R(�, T1) ≤ R(�, T2) for all � and
R(�, T1) < R(�, T2) for at least one �, and an esti-
mator is admissible, i.e. “best”, if no other estimator
beats it. The unbiased estimator S turns out to be
the best estimator of the form αA under the loss
function

l(�, T) = tr(�−1T) − log det(�−1T) − p,

but other (more complicated) estimators are best if we
either look outside the class of estimators of the form
αA or consider other loss functions. Muirhead [11,
pp. 128–136] summarizes the main results.

Turning to the Bayesian approach, it is first nec-
essary to specify a joint prior distribution for all
the unknown parameters. This is combined with the
likelihood of the data to yield a joint posterior distri-
bution of the parameters. Any parameters not of direct
interest are then integrated out to give a marginal
distribution of the parameters to be estimated, and a
suitable summary measure of this marginal distribu-
tion (typically the mode) provides the estimator of the
parameters. Assuming again that sampling is from a
normal distribution, Press [14, p. 168] suggests using
the “natural conjugate” prior

π(µ, �) ∝ |�|−(m+1)/2 exp{− 1
2 [tr �−1G

+ (µ − φ)′�−1(µ − φ)]},
where φ, G, and m > 2p − 1 are parameters the
values of which quantify the prior knowledge about
�. Following through the above steps, Press then
shows that the Bayes estimator of � is

[
nA + G + n(x − φ)(x − φ)′

1 + n

]

(n + m − 2p − 2)
.

If there is no prior knowledge about �, then a suitable
choice of prior distribution is

π(µ, �) ∝ |�|−(p+1)/2,

which yields the Bayes estimator [1/(n − p − 2)]A
on working through the same steps as before. Further
results concerning Bayes estimation of � are given
by Dickey et al. [3] and Leonard & Hsu [9].

All of the above results are appropriate when
sampling from a multivariate normal distribution. In

recent years there has been some interest in theory
associated with elliptic distributions. These distri-
butions share many of the features of the normal
distribution (which is itself a member of this class of
distributions), but they encompass distributions such
as the multivariate t , the multivariate Cauchy, and
the multivariate logistic, all of which have heavier
tails than the multivariate normal. Elliptic distribu-
tions thus provide good models for data involving
either outliers or other contaminants. An elliptic dis-
tribution with mean µ and dispersion matrix � has a
density function of the form

f (x) = |�|−1/2ψ[(x − µ)′�−1(x − µ)]

for some function ψ(·). Fang & Zhang [4] show
that if x1, x2, . . . , xn form a random sample from
this distribution, then the maximum likelihood esti-
mator of � is λ0A, where λ0 is the maximum
of the function φ(λ) = λ−np/2ψ(p/λ). It is easy
to check that in the case of a normal distribution,
ψ(z) = (2π)−p/2 exp(−z/2), so that λ0 = 1/n and
we recover the maximum likelihood estimator �̂.

Despite all of the above results, in the overwhelm-
ing number of practical applications � is routinely
estimated in frequentist fashion either by the max-
imum likelihood estimator �̂ = (1/n)A or by the
unbiased matrix S = [1/(n − 1)]A, so we restrict our
attention to these estimators for the rest of the present
section.

The asymptotic distribution of S provides a mech-
anism for obtaining large-sample inferences about
� without making any assumptions of normality
for the data. We simply require x1, . . . , xn to be
independent realizations of the random vector X =
(X1, X2, . . . , Xp)′, the distribution of which has
mean vector µ and dispersion matrix � = (σij ).
There are 1

2p(p + 1) distinct elements of S and these
elements can be written as a vector s. [One common
way of doing this is by stacking successive columns
of the lower-triangular portion of S on top of each
other in a column vector; such a vector is denoted
vech(S)]. The corresponding vector representation of
� can be denoted σ = vech(�). Layard [8] has stud-
ied the joint distribution of elements of s. He uses
the multivariate central limit theorem to show that,
asymptotically for n → ∞, s has a multivariate nor-
mal distribution in which the mean vector is σ , the
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variance of any element sjk is

1

n
[E(Z2

j Z
2
k ) − E(Z2

j )E(Z2
k )],

and the covariance between any two elements sjk and
sms is

1

n
[E(ZjZkZmZs) − E(ZjZk)E(ZmZs)],

where Zi = Xi − µi for i = 1, . . . , p. Convergence
to normality can be speeded up by transforming the
elements of s, taking logarithms of the variances
sjj and using tanh−1[sjk/(sjj skk)

1/2] in place of the
covariances sjk . However, this improvement in speed
of convergence comes at the expense of complicating
the terms in the asymptotic dispersion matrix. Details
are given by Seber [16, pp. 99–101]. Asymptotically,
of course, �̂ has the same distribution as S.

This asymptotic distribution enables large-sample
(approximate) confidence regions and hypothesis
tests to be constructed for elements of �, irrespective
of the distribution from which the sample has been
drawn (see Large-sample Theory). However, for
small sample exact tests or for tests of specified
structure of � we need to assume normality of
data. Moreover, even then it is virtually impossible
to employ optimal theory of hypothesis testing as
uniformly most powerful tests are derivable only
in rather artificial circumstances. In most practical
circumstances, therefore, recourse must be made to
some general principle that can be relied on to
produce a “good” test. The principle of invariance
will often focus attention on a particular class
of test statistics within which to search, but may
not necessarily pinpoint one specific test. To do
this, the most common approaches are to use
either the likelihood ratio or the union–intersection
principles of test construction.

Suppose that the null hypothesis H0 imposes a set
of d constraints on the parameters, say θ = θ0, where
θ has d elements, and the alternative hypothesis
Ha is the general “not H0”. Usually, also, there
will be other (nuisance) parameters ψ . Write l(θ̂ , ψ̂)

for the log likelihood of the sample when θ̂ and
ψ̂ are unconstrained maximum likelihood estimates
of all the parameters, and l(θ0, ψ̂0) for the log
likelihood when θ = θ0 and ψ̂0 is the maximum
likelihood estimate of ψ conditional on θ = θ0. Then,
under regularity conditions, the likelihood ratio test

statistic is

ω = 2l(θ̂, ψ̂) − 2l(θ0, ψ̂0)

(or some monotonic function of ω).
On the other hand, any null hypothesis involv-

ing d > 1 constraints can be regarded as the union
of an infinite set of simpler hypotheses. For exam-
ple, θ = θ0 implies a′θ = a′θ0 for any vector a.
This is a univariate hypothesis, and univariate the-
ory will generally supply some test statistic, V

say, for this hypothesis. Finding the value of a
(up to a multiplying factor) that maximizes V ,
choosing this hypothesis and then testing it (mak-
ing due allowance for the maximization) is the
basis of the union-intersection principle of test con-
struction.

A full account of these principles of test construc-
tion can be found in most multivariate textbooks;
see, for example, Mardia et al. [10]. Here we simply
summarize the test statistics and their null distribu-
tions for the most common tests about �. In all of
these tests we assume normality of data, unknown
population mean vector µ, and the general alterna-
tive Ha: not H0. Thus, for deriving the likelihood
ratio test statistic, θ and ψ above are � and µ

respectively, while unconstrained maximum likeli-
hood estimators are given by �̂ = (1/n)A and µ̂ = x
as above.

1. H0 : � = �0, a specified matrix. The likeli-
hood ratio test statistic is ω = n tr(�−1

0 �̂) −
n log |�−1

0 �̂| − np = np(a − log g − 1), where
a and g are the arithmetic and geometric means
of the eigenvalues of �−1

0 �̂. For the exact null
distribution of this statistic, see Anderson [1]
and Korin [6]. However, this distribution is not
easy to use, so recourse has to be made to
the general result that asymptotically, ω has a
χ2

(1/2)p(p+1) distribution (chi-square distribution
with 1

2p(p + 1) degrees of freedom) under H0.
The union–intersection statistic, on the other
hand, is a function of just the extreme eigen-
values of �−1

0 �̂. This test rejects H0 if either
λp < c1 or λ1 > c2, where λi is the ith largest
eigenvalue of �−1

0 �̂ and c1 and c2 are chosen
to make the size of test α (see Level of a Test).
Tables for carrying out this test are given in Pear-
son & Hartley [13].
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2. H0 : � = k�0, for unknown k. The maximum
likelihood estimate of k is given by k̂ =
tr(�−1

0 �̂)/p and the likelihood ratio statistic
is ω = np log(a0/g0), where a0 and g0 are
the arithmetic and geometric means of the
eigenvalues of �−1

0 �̂. Asymptotically this
statistic has a χ2

(1/2)(p−1)(p+2) distribution under
H0. The special case of �0 = I leads to
the sphericity test, for which we have a0 =
(1/p) tr�̂ and g0 = |�̂|1/p . No straightforward
union–intersection tests exist in these situations,
but Olkin & Tomsky [12] give some modified
versions. The test of sphericity plays an
important role in analysis of variance. In
general, the data vector should have a covariance
matrix consonant with the sphericity hypothesis
for the F tests on means in this analysis to be
valid. Also, more particular model structures can
be reduced to this hypothesis and tested. The
most important of these is the usual covariance
structure assumed for repeated measures data
(see Longitudinal Data Analysis, Overview), in
which all variances (diagonal elements of k�0)
are assumed to be equal to σ 2 and all covariances
(off-diagonal elements of k�0) are assumed to be
equal to ρσ 2. It can be shown that any p-element
random vector X = (X1, . . . , Xp)′ satisfies this
covariance structure if and only if the (p − 1)-
element vector Y = CX satisfies the sphericity
hypothesis, where C is any (p − 1) × p matrix
the rows of which are orthogonal to each other
and to the vector 1 = (1, 1, . . . , 1)′.

3. H0 : � is diagonal. This is the hypothesis that
all the variables are uncorrelated with each
other. Under H0, the mean and variance of
each variable are estimated separately, whence
�̂−1

0 �̂ = R, the sample correlation matrix. This
has trace p, so ω = −n log |R|. Under H0, ω has
an asymptotic χ2

(1/2)p(p−1) distribution; Box [2]
showed that the χ2 approximation is improved if
n is replaced by n′ = n − 1

2 (2p + 11). There is
no straightforward union-intersection test in this
case either.

Of course, the maximum likelihood estimate �̂ is
equal to [(n − 1)/n]S, so each of the above test
statistics can be expressed in terms of S if so
desired.

Properties such as the unbiasedness and invariance
of these statistics are discussed by Giri [5, Chapter

8] and Muirhead [11, Chapter 8 and 11]. Muirhead
also details modifications to the statistics in order
to insure unbiased tests, and establishes asymptotic
null and nonnull distributional results for samples
from elliptic as well as from normal distributions.
A general review of all the tests, along with some
significance levels, is provided by Krishnaiah &
Lee [7].

One other problem of common interest is the
testing of equality of dispersion matrices in sev-
eral multivariate populations, since the assumption
of equal dispersion matrices is made in multivari-
ate techniques such as canonical variate analysis (see
Canonical Correlation) and multivariate analysis
of variance. The likelihood ratio test is a generaliza-
tion of Bartlett’s test of homogeneity of variance in
univariate populations. We assume that random sam-
ples of sizes n1, n2, . . . , ng are available from each of
g populations, and we write N = ∑g

i=1 ni . Suppose
that Ai is the sums of squares and products matrix for
the sample from population i, so that �̂i = (1/ni)Ai

is the maximum likelihood estimator of the dispersion
matrix for this population and Si = [1/(ni − 1)]Ai

is the unbiased version. Under the null hypothesis
that all dispersion matrices are equal to �, we have
�̂ = (1/N)

∑g

i=1 Ai and the corresponding unbiased
version S = [1/(N − g)]

∑g

i=1 Ai . (The latter matrix
is known as the pooled within-sample covariance
matrix.) Then the likelihood ratio test statistic for
testing the null hypothesis against the general alter-
native that at least one dispersion matrix differs
from the rest is N log |�̂| − ∑g

i=1 ni log |�̂i |, and
under the null hypothesis this statistic is asymptoti-
cally distributed as χ2

(1/2)p(p+1)(g−1). Box [2] proposed
the alternate statistic (N − g) log |S| − ∑g

i=1(ni −
1) log |Si |, which has the same asymptotic chi-square
distribution under the null hypothesis. He also gave
an F approximation to the null distribution, and
tables based on this latter approximation are given
by Seber [16].

The union-intersection approach is viable in the
special case g = 2, and produces a test based on the
largest and smallest eigenvalues of S1S−1

2 , with tables
given by Schurrmann et al. [15]. However, this test
does not generalize easily to the case g > 2.

This section has been concerned with inferential
aspects of the sample covariance matrix. This matrix
is at the heart of many multivariate techniques; see
especially principal components analysis and factor
analysis.
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Patients in a clinical trial tend to vary considerably
with respect to clinical and demographic character-
istics, some of which may affect their prognosis.
It is clearly desirable that the characteristics of the
patients in each group are as similar as possible,
especially with respect to those characteristics which
are prognostic. The enormous strength of random-
ized controlled trials for drawing inferences about
treatments is very largely a direct consequence of
the use of randomization to decide which patients
receive each treatment (see Randomized Treatment
Assignment). While randomization eliminates bias,
it does not guarantee comparable baseline character-
istics of the patients in the different treatment groups
in a particular trial. Simple randomization is quite
likely to yield some differences, especially in small
trials. The use of stratified randomization or mini-
mization (see Adaptive and Dynamic Methods of
Treatment Assignment) will reduce such imbalances
for selected variables.

Baseline balance is not a requirement. Because
of the use of randomization, standard methods of
analysis (estimation and hypothesis testing) will
yield valid results regardless of the distribution of
baseline variables. Nonetheless, it is often wise to
try to avoid imbalance, using the simple design
modifications indicated above, and to allow for imbal-
ance if it arises.

Comparison of Baseline Characteristics

An important part of reporting the results of a clinical
trial is to describe the patient characteristics for the
different treatment groups. As well as characterizing
the whole study sample, these data indicate how sim-
ilar were the groups produced by randomization. In
some sense the information is used to determine if
the randomization has “worked”. Here many investi-
gators behave illogically, by using statistical tests to
compare the groups. The aim is probably to attempt to
establish that the groups really are comparable, thus
strengthening the credibility of the trial. However,
the null hypothesis for such tests is in essence that
the data come from groups which are random sam-
ples from the same population. Because the treatment

groups were indeed random samples, any differences
observed between them are necessarily due to chance,
and so the use of hypothesis tests is absurd [1]. Yet
it is quite common to see groups described as having
the “same” characteristics simply because no sig-
nificant differences were observed, even when, say,
there was a notable difference in mean age or the
prevalence of smoking. A nonsignificant imbalance
between groups can be quite important if that covari-
ate is highly prognostic. Note that such imbalance
can work in either direction, masking or overstat-
ing the true treatment difference. Significance testing
for baseline differences does have one potential use,
which is to see if the patients were indeed random-
ized. However, there is minimal power to test this
hypothesis. As Senn [17] has noted, a significant
imbalance ought really to lead to the conclusion that
the trial was not properly randomized – not a con-
clusion that researchers are likely to draw about their
own study. This test can be useful, however, in a
multicenter trial. Trial coordinators may be able to
detect a center which has not adhered to the protocol
[8] (see Clinical Trials Protocols).

Over recent years many authors have examined the
practice of testing baseline differences, with unani-
mous criticism of the practice [1, 3–5, 17]. These
papers were mostly published in statistical journals,
however, and hypothesis testing of baseline character-
istics remains common in reports of trials in medical
journals. Baseline testing was found in about 60%
of trial reports in recent reviews of general and spe-
cialist journals [14]. Such tests are probably quite a
recent development – testing was not mentioned in
an early paper on baseline imbalance [12]. They are
not a requirement of the regulatory bodies [17] (see
Drug Approval and Regulation).

It might be thought that such testing is largely
harmless, as it rarely has much impact on how the
trial is analyzed and interpreted. However, carry-
ing out one form of analysis conditional on the
results of another can distort the results obtained,
as described below. (A similar issue arises in other
areas of statistics, such as in the analysis of crossover
designs.) Baseline testing can have other adverse
consequences. For example, it has been found that
authors selectively report these tests: only 2% of
about 1000 tests reported in 206 trial reports in obstet-
ric journals gave results significant at the 5% level
[14]. Some of this effect might be due to undisclosed
stratification, but it appears that there is a tendency
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to suppress the results of these tests if the imbalance
is significant.

Effect of Imbalance

Imbalance in a patient characteristic will matter only
if that characteristic is related to patient outcome,
i.e. it is prognostic. In most situations gender will
not be prognostic, but age often will be, especially
in chronic diseases. Prognostic covariates are most
often clinical or biochemical variables, some of which
can have major importance. The effect of imbalance
for a variable will depend both upon the size of the
imbalance (e.g. difference in means or proportions)
and the strength of the relation between that variable
and the outcome.

When randomization leads to baseline imbalance
in a prognostic variable, one group will have a poorer
prognosis than the other before treatment starts. Thus
chance imbalance will lead to a biased estimate of
the treatment effect, in either direction according to
the direction of the imbalance, when using a sim-
ple, unadjusted analysis. Also, a test of significance
may yield a significant result when there is no true
treatment difference or a nonsignificant result when
there is. To take a specific example, Christensen et al.
[7] carried out a randomized trial of azathioprine
vs. placebo in patients with primary biliary cirrho-
sis. The unadjusted analysis gave P = 0.2 for the
treatment comparison. There was some imbalance in
serum bilirubin, which is a very strong prognostic
variable in such patients. The azathioprine group had
higher levels on average and hence a worse prog-
nosis. An adjusted analysis gave P = 0.02 for the
treatment effect. In practice some imbalance is likely
in several prognostic variables, but the overall effect
will be much the same as just outlined, especially
when, as in this example, one variable is of primary
prognostic importance.

Some authors [1, 10, 11] have suggested that
imbalance is not so much of a problem for large
trials, while others state the opposite [5, 15]. The
apparent disagreement arises from the fact that there
are several aspects that might be considered – the size
of the test of treatment effect, the power of the test,
the bias in estimating the treatment effect, and the
precision of the estimated treatment effect. Some of
these features diminish with increasing sample size,
while others apply even to large trials. We certainly

cannot rely on large sample size to overcome all of
the problems associated with imbalance.

Rationale for Adjusting for Baseline
Covariates

There are several reasons why investigators might
wish to adjust for baseline characteristics when ana-
lyzing the data from a randomized trial, some of
which have been mentioned already.

First, as already discussed, the aim of a random-
ized trial is to compare groups of patients who differ
only in that they received different therapies. Imbal-
ance in baseline variables may reduce the credibility
of the results, both in the correctness of the random-
ization procedure and, more importantly, in the valid-
ity of the results. Even though such worries may not
be well founded, this possibility should be regarded
as reasonable grounds for concern. However, the nec-
essary leap in complexity of the methodology (as
described below) when adjusting for covariates may
be disconcerting to medical readers [9] even though
to statisticians it will not cause concern. To some
extent transparency is replaced by opaqueness.

Given that chance imbalance in a prognostic vari-
able will lead to some bias in the estimated treatment
effect, one of the best reasons for adjusting is to
remove this bias. We surely wish to obtain the most
reliable estimate of treatment effect. Adjustment will
also increase the power to detect a real treatment
effect.

Another reason often given for adjusting is to
increase the precision with which the treatment effect
is estimated. However, while this is the case for nor-
mal regression models, it will not improve precision
in logistic [13] or Cox regression models [6]. How-
ever, in these models, failure to adjust for prognostic
variables will lead to underestimation of the treat-
ment effect and hence a reduction in power [6, 13].
The bias associated with not adjusting in non-normal
models applies even when there is perfect balance in
a prognostic variable.

Methods of Adjusting for Baseline
Covariates

The idea behind adjustment for baseline differences is
to estimate what the treatment effect would have been
if the groups had identical baseline variables, i.e. with
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identical means for continuous variables and identical
frequencies in each group for categorical variables.
The generally recommended approach to adjustment
is to use regression modeling, with treatment (as a
binary variable) and prognostic variables included
as the explanatory variables. I will follow convention
in this context and refer to this approach as analysis
of covariance, even though these analyses are not all
encompassed within the usual idea of that analysis.
Analysis of covariance can be used for all types of
outcome measure – continuous, binary, and survival
times. Its particular strength is that it gives a result
that is unbiased regardless of the baseline distribu-
tion of prognostic variables – i.e. it is conditionally
unbiased [16]. In addition, by comparison with an
unadjusted analysis, analysis of covariance provides
increased precision for the treatment effect (for nor-
mal models), an increase in the power of the trial,
and a constant conditional size of the test comparing
the treatment groups [15].

An alternative is to use a stratified analysis. This
approach is more common in epidemiology, where
outcomes are usually binary. Pocock [11] gives an
example of the use of the Mantel–Haenszel test to
perform a stratified analysis of a clinical trial. This
method is appropriate for categorical covariates, but
may not adjust fully for imbalance in continuous
covariates [1]. This method may be seen as a special
form of analysis of covariance.

There is rather greater difficulty associated with
deciding for which covariates to adjust. I consider
several possibilities.

Selection Based on Observed Imbalance

The first approach is to focus on the imbalance: two-
sample tests, as discussed above, can be used in turn
for each prognostic variable to compare the groups
at baseline, with no regard to patient outcome. Those
which are statistically significant can be used to adjust
the treatment effect in a multiple regression analy-
sis. While this strategy is very common, its use is
unwise. Those variables with significant imbalance
may or may not be prognostic, and by including
variables conditionally on simple tests, the adjusted
analysis is likely to lead to a biased estimate of the
treatment effect. Also, as noted above, nonsignificant
imbalance may be quite important, even in a nor-
mal model.

Selection Based on Relation to Patient Outcome

A second approach is to focus on patient outcome.
A multiple regression model can be derived using
stepwise selection to see which variables are signifi-
cant predictors of the outcome, taking no account of
baseline balance. While this analysis could be done
ignoring treatment or separately within each treat-
ment group, it is most sensible to include all patients
and to include in the model an indicator for treatment.
This analysis thus yields both the choice of important
prognostic variables and the adjusted treatment effect.
While far preferable to adjustment based on observed
imbalance, this method is not fully satisfactory. Apart
from the known overoptimism of regression mod-
els based on stepwise selection, adjustment is made
for a data-dependent selection of prognostic variables
using an arbitrary inclusion rule. We might instead
choose those variables which have the largest effect
on the estimated treatment effect, either as assessed
by the change in the test statistic, as proposed by
Canner [5], or the change in the magnitude of the
estimated treatment effect (e.g. by 15%). While more
reasonable than using P values, it is unclear here what
the criterion should be for deciding which variables
have a large enough effect to need adjustment.

An approach proposed by Tukey [19] can be out-
lined only briefly here. The idea is to minimize the
number of regression coefficients without reducing
the number of covariates. The outcome variable is
regressed on each covariate in turn, with the patients
in each group pooled. From each analysis a score
is derived from the P value – he suggested scores
of 1 to 4 corresponding to P < 0.05, P < 0.01, P <

0.001, and P < 0.0002, the scores being signed
according to the direction of the effect. The method is
easiest to explain with binary covariates each coded
as “high” or “low”. For a set of covariates, a “com-
posite” is constructed for each patient as a weighted
sum of the scores, where the weight is 0 if the variable
is low and 1 if high. This composite is then treated as
a single covariate to adjust the treatment effect. The
weaknesses of this method include the use of the P

value as a measure of the strength of the effect, the
treatment of all covariates as providing independent
information, and the lack of transparency.

Prespecified List of Variables

There are problems associated with all data-derived
decisions about which variables to include in an
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analysis. In particular, the use of significance tests
to determine which variables to adjust for is not re-
commended. It seems far preferable to choose which
variables to adjust for without regard to the actual
data set to hand.

What criteria should be used to select such vari-
ables? Primarily one would wish to consider known
important prognostic variables that have not been
controlled by the design. It is advisable also to include
any variables used for stratification. In addition, in
multicenter trials it may be desirable to include cen-
ters. The prespecified strategy has the advantage of
focusing attention on prognostic factors at the design
stage, rather than leaving this issue to be dealt with
in an ad hoc manner in the analysis. It means that
for some trials the analysis will make adjustment for
covariates which are in fact balanced. This will not
matter greatly in the case of a normally distributed
outcome, and is desirable, as noted above, for non-
normal outcomes.

Baseline Measurements of the Outcome
Variable

In many clinical trials where the object of treatment
is to change the value of a continuous measurement
(such as blood pressure), it is possible to measure
the variable of interest at the start of the trial. The
undesirability of baseline imbalance in the variable
of primary interest is especially clear. One approach
to the analysis of such trials is to analyze change
from baseline. This would seem to solve the baseline
imbalance problem, but it does not. The change from
baseline within each group will usually be highly
correlated with the baseline values (see Regres-
sion to the Mean), so the difference between the
groups in change from baseline will be negatively
correlated with the imbalance at the baseline [18]. In
other words, while analyzing change from baseline
seems to remove the problem associated with base-
line imbalance, in fact the chance imbalance will still
affect the difference in outcome, but in the opposite
direction. In the case where we are seeking to increase
lung function, say, and if by chance patients receiving
treatment A have higher baseline values than those
receiving treatment B, then the analysis of change
from baseline will be biased in favor of group B, and
vice versa if the imbalance goes the other way. Thus
it can be seen that analysis of change from baseline

does not deal adequately with baseline imbalance. It
is often argued that in such trials change from the
baseline is a clinically more relevant outcome mea-
sure. Senn [16] has argued strongly against this view.
In any case, one can use analysis of covariance to
adjust change from baseline for baseline values, with
exactly equivalent answers, so the debate is irrele-
vant if analysis of covariance is used [16, 18] (see
Baseline Adjustment in Longitudinal Studies).

Such trials may cause a further error. It is quite
common to see authors report separate tests to assess
whether each group has changed from the baseline.
The resulting P values are compared and a difference
claimed when one P value is significant and the other
is not. This is not a valid form of statistical inference,
and is likely to mislead [2, 15].

Comments

The main issues here are the proper analysis of
randomized trials, and the distinction between sub-
stantive and exploratory analyses. A clear recom-
mendation may be made for the analysis of trials.
Ideally, a prespecified strategy should be developed
as part of the protocol in which either no adjustment
will be made for baseline variables or adjustment will
be made for nominated variables using analysis of
covariance.

Good statistical practice requires investigators to
prespecify in the study protocol their intentions with
regard to sample size (see Sample Size Deter-
mination), primary (and subsidiary) endpoints (see
Outcome Measures in Clinical Trials), subgroup
analyses (see Treatment-covariate Interaction), and
so on. It is no different to suggest that the analy-
sis strategy should also be prespecified, in particular
intentions regarding adjusted analyses. It is usually
known in advance which are the variables that are
most prognostic of patient outcome. Whether or not
these are used as stratifying variables, the trial proto-
col should specify which ones will be adjusted for
in the analysis, and that this adjustment will not
be conditional on the distribution of those variables
across the treatment groups [4, 5, 15]. It would not be
acceptable to specify in the protocol that adjustment
would be made for any variables showing statistically
significant imbalance; this would not circumvent the
problems described above.

The protocol should also specify which will be the
primary analysis. My view is that this should usually
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be the adjusted analysis, otherwise there is little point
in performing it. Sometimes, however, the adjusted
analysis may be performed in order to strengthen
belief in the results of the unadjusted analysis. Here
it becomes unclear how similar the results need to
be for the unadjusted analysis to be confirmed. It is
not desirable for the choice of primary analysis to be
conditional on the results.

It may not be as simple as just suggested to iden-
tify the “most prognostic variables”. Clinicians may
argue that all information being collected is poten-
tially prognostic, which is why it is being collected.
It may prove difficult to persuade them to identify
in advance which variables will and which will not
be adjusted for in the analysis, and harder still to get
them to comply with this strategy when imbalance is
seen within the latter group. Despite the wide recom-
mendation of this general strategy, it is not common
to see published studies reporting this as the basis
for their chosen analysis. Partly, though, this may
be because balance has been achieved through the
design.

In practice, imbalance may arise when the possible
need for adjustment has not been anticipated. What
should the researchers do? They might choose to
ignore the imbalance; as noted, this would be entirely
proper. The difficulty then is one of credibility.
Readers of their paper (including reviewers and
editors) may question whether the observed finding
has been influenced by the unequal distribution of one
or more baseline covariates. It is still possible, and
arguably advisable, to carry out an adjusted analysis,
but now with the explicit acknowledgment that this
is an exploratory rather than definitive analysis, and
that the unadjusted analysis should be taken as the
primary one. Obviously, if the simple and adjusted
analyses yield substantially the same result, then there
is no difficulty of interpretation. This will usually be
the case. However, if the results of the two analy-
ses differ, then there is a real problem. The existence
of such a discrepancy must cast some doubt on the
veracity of the overall (unadjusted) result. The sit-
uation is similar to the difficulties of interpretation
that arise with unplanned subgroup comparisons. One
suggestion in such circumstances is to try to mimic
what would have been done if the problem had been
anticipated, namely to adjust not for variables that are
observed to be unbalanced, but for all variables that
would have been identified in advance as prognostic.
An independent source could be used to identify such

variables. Alternatively, the trial data could be used to
determine which variables are prognostic. This strat-
egy too could be prespecified in the study protocol.
Because this analysis would be performed condition-
ally on the observed imbalance, it does not remove
bias and thus cannot be considered fully satisfactory.

Finally, I have assumed implicitly that the treat-
ment effect is the same on average regardless of
the values of the covariates. It may be desirable to
examine whether there are any treatment–covariate
interactions; here, too, prespecification of intentions
is strongly advisable.
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Covariate

Quantification of the relationship between a response
variable and a group of explanatory variables is
the goal of fitting regression models. Some explana-
tory variables may be the main focus of a study,
such as treatment variables in experimental studies
or risk factors in epidemiologic studies. Other vari-
ables may be measurements that must be controlled
for in the analysis but are not of specific interest,
such as confounders. These latter variables are often
termed covariates. Other terms for these variables are
covariables or concomitant variables.

For illustration, consider that often in epidemio-
logic studies it is known that age is associated with
the outcome of interest and that age is also associated
with the exposure under investigation. The primary
hypothesis focuses on the relationship between the
outcome and the exposure with age included in the
model because of the possible confounding effect of
age. Thus, age is a covariate since the relationship
between the outcome and age is not a focus of the
study but, nonetheless, age is included in the statisti-
cal model.

In the context of experimental design, the analysis
of covariance is used so that one or more covariates
are taken into consideration along with the treat-
ment variables of primary interest. The inclusion of
the covariate information is viewed as necessary to
assess appropriately the relationship between the out-
come measure and the treatments. An example is an
investigation of the effect of dietary components on
weight in experimental animals. The initial weight
of the animals is a covariate, or covariable, and the
quantification of the effect of the dietary components
is more accurately assessed after controlling for initial
weight.

As with other explanatory variables, a covari-
ate can be quantitative or qualitative. Likewise, in
the case of survival analysis, covariates, and other
explanatory variables, can be time-independent (e.g.
sex) or time-dependent (e.g. marital status).

It should be noted that, while the term covari-
ate does have a specific meaning, it is often used
interchangeably with the terms explanatory variable,
predictor variable, or independent variable.

G.A. DARLINGTON



Cox Regression Model

The Cox or proportional hazards regression model
[21] is used to analyze survival or failure time
data. It is now perhaps the most widely used sta-
tistical model in medical research. Whenever the
outcome of a clinical trial is the time to an event,
the Cox model is the first method considered by
most researchers. The model has also inspired an
enormous statistical literature, ranging from the math-
ematical study of estimating the model parame-
ters, to applied techniques for validating the model
assumptions.

This article is divided into sections touching on
some of the vast literature that has developed around
the model:

1. model definition
2. history
3. using the Cox model–the basics
4. estimators and algorithms
5. asymptotic properties (see Large-sample The-

ory)
6. time-dependent explanatory variables
7. model checking
8. alternatives and extensions.

Several books have now been published on sur-
vival analysis that devote major sections to the Cox
model. The first of these appeared in the early 1980s
[23, 50]. Of the more recent books some are math-
ematically rigorous [6, 29], while others are more
applied [20, 53, 60]. The book by Andersen et al. [6]
is the most comprehensive.

Model Definition

Cox’s essential novelty was to model the hazard
function (see Hazard Rate) rather than the mean
or some other measure of location. Let X denote a
random failure time and Z a vector of explanatory
variables. The conditional hazard of X given Z = z
at time t is defined as

λ(t |z) = lim
∆t↓0

Pr(X ≤ t + ∆t |X > t, z)
∆t

. (1)

The hazard function is sometimes called the intensity
function or the force of mortality. Roughly, the haz-
ard function is the probability that someone who is

alive now will die in the next small unit of time. Cox
proposed that the conditional hazard be modeled as
the product of an arbitrary baseline hazard λ0(t) and
an exponential form that is linear in z:

λ(t |z) = λ0(t) exp(β ′z). (2)

Here β is a vector of regression parameters and
the infinite-dimensional parameter λ0(·) is the hazard
function for an individual with Z = 0. The model in
(2) forces the hazard ratio between two individuals
to be constant over time:

λ(t |z2)

λ(t |z1)
= exp[β ′(z2 − z1)].

The exponential form of the relative risk function
has become standard and is the most stable compu-
tationally, but it is not the only possibility. The more
general model,

λ(t |z) = λ0(t)r(β
′z),

for some known function r has also been considered
[67, 82].

History

A distinguishing feature of survival data is that it
is subject to censoring. Very often one does not
observe the survival time for all individuals in a
study. One may only know that a certain individual
was still alive at some time T ∗. If T ∗

i is the last
time at which individual i is known to be alive, it
is called a censoring time – the individual’s follow-
up was censored at T ∗

i . In 1958, Kaplan & Meier
[51] studied the product-limit estimator of a survival
function based on censored data (see Kaplan–Meier
Estimator). The key concept of viewing the data as
a process that reveals itself over time can be seen
in their paper. Test statistics for censored data were
considered a few years later [31, 59], and some may
view the Cox model as the natural generalization to a
regression setting of ideas present in Mantel’s writing
[59]. At about the same time, Feigl & Zelen [28]
considered various exponential regression models.
One of their models is equivalent to the Cox model
with the baseline hazard constrained to be constant
for all time, so that λ(t |z) is a function of z but
not t . However, unlike Cox [21], they formulate the
model in terms of a parameterization of the mean
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survival time, even though they use the exponential
assumption to predict the entire survival distribution.

Cox’s 1972 paper [21] was instantly acclaimed
as a breakthrough in the analysis of right censored
data, as can been seen from the enthusiastic discus-
sion published together with the article. The model
was rapidly adopted by applied statisticians, partic-
ularly in clinical trials. Its use became widespread
once user-friendly software became readily available.
Today, one can hardly open a leading medical or sta-
tistical journal without finding at least one reference
to Cox (1972)! It is one of the most widely cited
papers in scientific literature.

The original paper introduced a model that was to
revolutionize the field, and provided the estimator that
is today programmed into many statistical software
packages. There were, however, several issues that
were to challenge the statistical community. Some
of these, such as how to deal with ties (two or more
individuals with the same failure time) [63] (see Tied
Survival Times), and the basis for the proposed esti-
mator, were addressed at the Royal Statistical Society
meeting. Cox provided justification for the estimator
himself by introducing the concept of a partial likeli-
hood [22]. But it was not until later that the estimators
were shown to be efficient [11, 27]. Formal proofs
of consistency and asymptotic normality took nearly
a decade [5, 83]. Another topic of considerable inter-
est to statisticians is the effect of misspecification
on the estimates [80], and model interpretation. Var-
ious types of misspecification have been considered:
explanatory variables measured with error [65] (see
Errors in Variables); omission of important explana-
tory variables [16, 54, 78]; and rare but gross data
contamination [9, 72] (see Outliers).

Parallel with the theoretical progress was work
on model building and model checking. The results
were less satisfactory than the elegant theory that
developed around counting processes and martin-
gales, but a variety of tools are now available. These
included goodness of fit tests, as well as residuals
and other diagnostics. Andersen [4] and others have
discussed the quality of presentation of Cox regres-
sion analyses in the medical literature. Despite their
constructive suggestions, the “Methods” sections of
many papers are still no more informative than “we
used the Cox model”.

The basic model, (2), has been generalized in var-
ious directions. Even the original paper [21] consid-
ered time-dependent covariates, but these still cause

a variety of difficulties [3]. A simple generalization is
to permit different baseline hazard functions in each
of a number of strata (see Stratification). The strat-
ified Cox model assumes that, within each stratum,
the proportional hazards assumption is justified and
that the effect of the variable Z is the same in all
strata:

λj (t |z) := λ(t |z, stratum j) = λ0j (t) exp(β ′z). (3)

By incorporating constructed variables, that are con-
stant in some strata, the stratified model, (3), can be
used to model interactions between explanatory vari-
ables and strata. Suppose, for example, that one is
stratifying by sex and including age as an explana-
tory variable. Let z1 = (age − 50) for men, = 0 for
women; and let z2 = (age − 50) for women, = 0 for
men. Then a model stratified on sex that includes
z1, z2, and a treatment indicator z3 permits inter-
actions between age and sex, but assumes that the
treatment acts proportionately on the hazards for any
age–sex combination.

Many models used for analysis of multivariate
survival data are generalizations of the Cox model,
but they are not discussed here.

Using the Cox Model – the Basics

Before using the Cox model, or even attempting to
interpret a published analysis, one must have some
understanding of the assumptions that underlie the
analysis. This section discusses those assumptions
and explains a typical output from fitting the model
in a statistical package.

There are three components to the data on each
individual: the possibly censored failure time T ; an
indicator δ (see Dummy Variables) equal to 1 if
T is a true failure time, 0 if it is censored; and
Z, the vector of explanatory variables. The model is
flexible enough to incorporate explanatory variables
that change value over the course of the study, but in
this section we assume that Z is fixed and measured
at time t = 0. The key censoring assumption is that
the observation (T = t, δ = 0) tells us nothing more
than that the true failure time X is greater than t .

In a clinical trial, the time origin for each individ-
ual will usually be his or her time of entry into the
trial. If the trial ends at a particular calendar time,
censoring all individuals who are not yet dead, then
the censoring times are the times from entry until
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the end of the trial and will vary from one indi-
vidual to another. This is called administrative (or
progressive type I) censoring. In such situations, it
is necessary for survival to be independent of entry
time for the above condition to be satisfied. To some
extent this can be examined by including entry time
as a covariate or by stratifying on the date of entry.
Other forms of censoring are more problematic. If,
for instance, a patient emigrates, one needs to con-
sider whether this implies that the patient had in fact
recovered. Conversely, a patient who fails to attend
a follow-up clinic might be too sick to get out of
bed. In such cases, the fact that the patient was cen-
sored at t tells us rather more than that she was
alive at t .

The Cox model itself makes three assumptions:
first, that the ratio of the hazards of two individ-
uals is the same at all times; secondly, that the
explanatory variables act multiplicatively on the haz-
ard; and thirdly, that, conditionally on Zi and Zj ,
the failure times of individuals i and j are inde-
pendent. As with all regression models, one also
assumes that the explanatory variables have been
transformed so that they may be entered without fur-
ther transformation and that all interactions have been
included explicitly. We will see in the section on
asymptotics that the independence assumption can be
relaxed.

Table 1 presents the results of fitting a Cox model
to data from 216 patients with primary biliary cirrho-
sis in a clinical trial of azathioprine vs. placebo [18].
The six variables were selected from an initial set of
25 partly using forward stepwise selection. An addi-
tional 32 patients were excluded because they had
missing values of one or more of the six variables.
Recruitment was over 6 years and follow-up a fur-
ther 6 years. Of the 216 patients, 113 had censored
survival times. The regression coefficients may be

combined with their standard errors to obtain confi-
dence intervals that rely on the asymptotic normality
of the estimates.

The positive coefficient associated with treatment
implies that patients on the placebo (Z = 1) had
poorer prognosis than those on azathioprine (Z =
0): the hazard of those on placebo is about 1.7
times greater than that of those on active treatment.
Similarly, older patients had poorer prognosis. The
hazard ratio associated with two patients aged 50
and 30 is exp[0.0069(exp 3 − exp 1)] = 1.13. Notice,
however, that the effect on survival is not fully
described by the information in Table 1 because,
without estimating the baseline hazard, one cannot
translate the regression coefficients into effects on 5-
years survival nor on median survival.

Most statistical software for Cox regression will
also estimate the cumulative baseline hazard function

Λ0(t) =
∫ t

0
λ0(u) du (4)

(See Survival Distributions and Their Characte-
ristics), and from this one can calculate the estimated
survival function for a given z:

Pr(X > t |z) =
∏

{i:Ti≤t}
[1 − dΛ̂0(Ti) exp(β ′z)].

Plots of the estimated survival function can be
made for various zs, and these can be viewed like
Kaplan–Meier graphs. Alternatively, the estimated
survival function can be used to estimate 5-year sur-
vival, say, as a function of the prognostic index β ′z
(see Prognosis).

Estimators and Algorithms

The regression coefficients β are estimated by maxi-
mizing the so-called partial likelihood L(β) [22]. An

Table 1 Cox model fitted to data from a clinical trial comparing the effects of azathioprine and placebo on the survival
of 216 patients with primary biliary cirrhosis [18]. The six variables shown were selected, partly by a forward stepwise
procedure, from 25 candidate variables

Variable Coding Coeff. β̂ se(β̂) exp(β̂)

Serum bilirubin log10 (value in µmol/l) 2.51 0.316 12.3
Age exp[(age in years − 20)/10] 0.0069 0.0016 1.0
Cirrhosis 0 = No; 1 = Yes 0.88 0.216 2.4
Serum albumin value in g/l −0.0504 0.018 0.95
Central cholestasis 0 = No; 1 = Yes 0.68 0.275 2.0
Therapy 0 = azathioprine; 1 = placebo 0.52 0.201 1.7
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individual is said to be at risk at t if he has not yet
failed nor been censored. This concept can be gener-
alized to allow for individuals who do not enter the
study at time 0. Such delayed entry, or left trunca-
tion, as it is called, often arises when t is the age of
a patient or the time from infection, so that patients
enter the study at some time T 0

i > 0. Consider Li(β),
the conditional probability that individual i fails at
time Ti given that exactly one individual fails at Ti

and knowing the values of Z for all individuals at
risk at Ti :

Li(β) = λ(Ti |Zi )∑

j∈Ri

λ(Ti |Zj )
= exp(β ′Zi)∑

j∈Ri

exp(β ′Zj )
, (5)

where Ri = {j : T 0
j < Ti ≤ Tj } is the risk set just

prior to Ti . The partial likelihood is the product of
these conditional probabilities over all failure times:
L(β) = ∏

i Li(β). Notice that the partial likelihood
is a function of β only – it does not depend on the
baseline hazard λ0(·). With certain types of censor-
ing (or no censoring) the partial likelihood is just the
marginal likelihood of the ranks of the failure times.
If there are ties in the data (two or more individu-
als failing at the same time), then both the partial
likelihood and the marginal likelihood become diffi-
cult computationally [50, pp. 74–78]. Instead, most
packages use an approximation [13, 63]:

Li(β) = exp(β ′Si )



∑

j∈Ri

exp(β ′Zj )




di

, (6)

where di is the number of individuals failing at Ti

and Si is the sum of the Zj for these di individuals.
The approximation is reasonable provided the number
of ties at any failure time is small compared to
the number in the risk set. Note that i indexes the
N distinct failure times, whereas j indexes the n

individuals (n ≥ N ).
It is standard practice to maximize the partial

likelihood using Newton–Raphson to find a β at
which the derivative of its logarithm is zero (see
Optimization and Nonlinear Equations). Indeed,
Jacobsen [47] has shown that, when the relative
risk function r(β ′z) = exp(β ′z), l(β) = log L(β) is
concave. (It is strictly concave provided there is no
exact collinearity among the explanatory variables

and that no linear combination of the variables is a
perfect predictor of failure. The latter would imply
an infinite observed hazard ratio.)

We use the following notation: let

S(k)(β, Ti) =
∑

j∈Ri

Z⊗k exp(β ′Zj ),

where Z⊗0 = 1, Z⊗1 = Z, and Z⊗2 = ZZ′. Let U(β)

denote the score

U(β) =
∑

i

d log Li(β)

dβ

=
∑

i

[
Si − di

S(1)(β, Ti)

S(0)(β, Ti)

]
, (7)

and I(β) minus the Hessian:

I(β) = − dU (β)

dβ
=

∑

i

di

×
{

S(2)(β, Ti)

S(0)(β, Ti)
−

[
S(1)(β, Ti)

S(0)(β, Ti)

]⊗2
}

. (8)

Given an estimate β(m), one step of the algorithm
gives

β(m+1) = β(m) + I(β(m))−1U (β(m)).

The algorithm is generally started from β(0) = 0
and convergence is determined by the magnitude of
|β(m+1) − β(m)|.

When there are S strata, one considers those at risk
in each stratum separately. Let Rsi denote the set of
indices of individuals in stratum s at risk at time Ti ,
and let Lsi(β) be the partial likelihood contribution
from stratum s and time Ti . Note that Ssi is the sum
of the Zj of the dsi individuals in stratum s who fail
at time Ti . The partial likelihood is then simply the
product of the stratum specific partial likelihoods:

L(β) =
S∏

s=1

∏

i

Lsi(β).

Although the partial likelihood is not in general a
likelihood, it is usually treated as such. It is standard
practice to report the value of the logarithm of the
partial likelihood and to compare the partial likeli-
hood ratio statistic to a chi-square distribution for
testing between nested regression models (see Like-
lihood Ratio Tests). Similarly, the covariance of β̂
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is estimated by I(β̂)−1 and score tests (see Likeli-
hood) are based on U(0)′I(0)−1U(0). Indeed, in the
absence of ties (dsi = 1 for all s and i), the score test
from the Cox model with K − 1 dummy variables
corresponding to a factor with K levels is identical
to the K-sample log rank test. Further, the stratified
log rank test is identical to the score test from the
stratified Cox model.

Having computed β̂, the estimated regression
coefficients, one can calculate the Breslow estimate
of the cumulative baseline hazard [13] explicitly. The
estimator for stratum s is

Λ̂s0(t) =
∑

i:Ti≤t

dsi∑

j∈Rsi

exp(β̂ ′Zj )
. (9)

Estimation of the hazard function itself can be done
by taking a smooth derivative of the cumulative haz-
ard. This is usually achieved by the kernel method
[68] (see Density Estimation). The jumps in the
Breslow estimate should not be used without smooth-
ing. The jump at Ti crudely approximates λ0(Ti)(Ti −
Ti−1) not λ0(Ti). Breslow [13] also showed that the
maximum partial likelihood estimate of β and the
estimated cumulative baseline hazard, (5), can also be
obtained by maximizing the full likelihood for β and
Λ0 simultaneously, assuming that Λ0 is piecewise lin-
ear spline, i.e. the hazard λ0(t) is constant between
each pair of ordered failure times. This heuristic argu-
ment was made precise by Johansen [48]. He showed
that, in certain circumstances, the partial likelihood is
formally the profile likelihood for β. He permitted Λ0

to be a step function and assumed that at the jumps
dΛ(t |z) = exp(β ′z) dΛ0(t).

During the 1970s anyone wishing to fit a Cox
model had to use a stand-alone computer program
such as the FORTRAN code provided in the book
by Kalbfleisch & Prentice [50]. Today, however,
the situation is very different and there are many
commercially available general statistical packages
that will fit a Cox model to large data sets (see
Software, Biostatistical).

Asymptotic Properties

The large sample properties of the maximum partial
likelihood estimator of β and of the Breslow estima-
tor of Λ0 are unsurprising, but proofs of these results
took some time. When the Cox model holds with

parameters β0 (and Λ0), the distribution of β̂ can be
approximated by multivariate normal with mean β0

and a covariance matrix that can be estimated by
I−1(β̂).

Two quite different approaches were successful.
The first due to Tsiatis [83] was to consider indepen-
dent and identically distributed triples (Xi, Zi , Ci),
where Xi is the failure time and Ci is the censor-
ing time. It is assumed that the Xi are generated
from a Cox model with covariates Zi and that Xi

are conditionally independent of Ci given Zi . The
observed data are (Ti, Zi , Di), i = 1, . . . , n, where
Ti = min(Xi, Ci) and Di = 1 if Ti = Xi (the event
is observed), and Di = 0 otherwise (the event is cen-
sored). The estimators are functionals of the observed
data, and classical large sample theory is applied.
Under this model it can be shown that

S(1)(β̂, t)

S(0)(β̂, t)
→ E(Z|T = t, D = 1)

and that I(β̂)/n → E[Dvar(Z|T , D)] [70]. By view-
ing the estimators as functionals of the empirical dis-
tribution of the unobserved triples and using results
from the theory of empirical processes, it is possi-
ble to study the large sample properties of the Cox
estimators even when the data come from some other
model [72].

The other approach to large sample theory using
a martingale central limit theory requires reformu-
lating the model. This approach adds much insight
to the model and will be outlined here. The counting
process view of survival analysis is due to Aalen [1].
Andersen & Gill [5] redefined the Cox model and
provided elegant proofs of its large-sample properties
under mild regularity conditions.

Counting Process Formulation

A multivariate counting process

N = {Ni(t) : 0 ≤ t < ∞; i = 1, . . . , n}
is a nondecreasing integer-valued stochastic process
with n components. It is assumed that Ni(0) = 0 for
all i and that the jumps are all of size +1. The process
may count the number of events that have occurred
in each of n individuals by time t . If the event is the
death of a person, then Ni(t) ∈ {0, 1} since people
only die once! For technical reasons, Ni is taken to be
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right continuous (so that Ni(t) represents the number
of events in [0, t]) and no two components of N jump
at the same time.

Associated with such a counting process is a
cumulative intensity process A with components
defined by

Ai(t + dt) − Ai(t)

= Pr{Ni(t + dt) − Ni(t) = 1|Ft−},
where Ft− represents everything that has happened
until just before t . The history Ft− will certainly
include the paths of Nj(·) on [0, t), j = 1, . . . , n, and
may include other information such as censoring or
explanatory variables from [0, t). M = N − A is a
multivariate martingale with respect to the history
(filtration) {Ft : t ≥ 0}. The Andersen & Gill [7]
generalization of the Cox model is that

Ai(t + dt) − Ai(t) = αi(t) dt = Yi(t)λ0(t)

× exp[β ′
0Zi (t)] dt,

where Yi(t) is equal to 1 if individual i is under
observation just before time t , and is equal to 0
otherwise. Yi(·) is called the ith “at-risk” indica-
tor process. Here we are assuming that the pro-
cess A is absolutely continuous with derivative α.
Note that we have written the explanatory variables
as processes depending on t , and that the defini-
tion of the intensity process requires {Zi (u) : 0 ≤
u ≤ t, i = 1, . . . , n} to be in the history Ft−. This
means that the value of Z(t) should be known just
before t .

The classical Cox model corresponds to a very
simple counting process, each component of which
jumps at most once. We have

Ni(t) = I {Ti ≤ t, Ti ≤ Ci}
and

Yi(t) = I {Xi ≥ t, Ci ≥ t} = I {Ti ≥ t}.
Ni starts at 0 and jumps to one when individual
i is observed to die. If individual i is censored,
Ni remains 0 for ever. Recall that αi(t) dt is the
probability of Ni jumping in the interval [t, t + dt].
If individual i has died or been censored before time
t , then there is no chance of observing a death in the
interval [t, t + dt], so αi(t) = 0. Otherwise αi(t) =

λ(t |Zi ) by the definition of the hazard function.
Hence in general αi(t) = Yi(t)λ(t |Zi).

Using the new notation, we define the log partial
likelihood using information up to time u as

l(β, u) =
∫ u

0

n∑

i=1

(
β ′Zi (t) dNi(t)

− log






n∑

j=1

Yj (t) exp[β ′Zj (t)]




 dNi(t)

)
.

Note that dNi(t) is equal to either 0 or 1, because Ni

is a counting process. Thus integration with respect
to dNi(t) is simple: in the classical Cox model∫

f (t) dNi(t) = Dif (Ti). Differentiate l with respect
to β to get the score process

U(β, u) =
∫ u

0

n∑

i=1

[Zi (t) − E(β, t)] dNi(t),

where

E(β, t) =

n∑

j=1

Yj (t)Zj (t) exp[β ′Zj (t)]

n∑

j=1

Yj (t) exp[β ′Zj (t)]

. (10)

It is easy to show that at the true β, integration with
respect to the intensity process is identically zero
(for all u). Hence, at β0, one may replace dNi(t)

by dMi(t):

U(β0, t) =
∫ u

0

n∑

i=1

[Zi (t) − E(β0, t)] dMi(t).

It follows from the theory of martingale transforms
that U(β0, ·) is a martingale since the integrand
[Zi (t) − E(β0, t)] is predictable (i.e. its value is
known just prior to t). Under mild regularity con-
ditions [5] one can apply a martingale central limit
theorem to show that n−1/2U(β0, ·) converges in dis-
tribution to a Gaussian process.

Extending the counting process notation in the
obvious way to permit strata, so that, for instance,
Ysi(u) indicates whether individual i is at risk in
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stratum s at time u, the Breslow estimator is

Λ̂s0(t) =
∫ t

0

n∑

i=1

dNsi(u)

n∑

i=1

Ysi(u) exp[β̂ ′Zi (u)]

=
∫ t

0

n∑

i=1

dNsi(u)/S(0)
s (β̂, u)

Let Js(t) = I {∑n
i=1 Ysi(t)} > 0. Then

∫ t

0
Js(u) d[Λ̂s0(u) − Λs0(u)] =

∫ t

0

Js(u)

S
(0)
s (β̂, u)

×
n∑

i=1

{ dNsi(u) − Ysi(u) exp[β ′
0Zi (u)] dΛs0(u)}

=
∫ t

0

Js(u)

S
(0)
s (β̂, u)

n∑

i=1

dMsi(u).

Thus, once again, the asymptotics can be proved
using a martingale central limit theorem.

Time-Dependent Explanatory Variables

The possibility of including explanatory variables that
change with time was realized by Cox in his original
article [21]. There it is suggested that the inclusion
of a user-defined variable Z2(t) = tZ1 might be used
as a test of the proportional hazards assumption.
Other authors have included explanatory variables
that change value at possibly random times. The clas-
sical example of this sort of covariate is one that
indicates whether a patient has received a heart trans-
plant before time t [25]. The uses and interpretations
of these two types of time-dependent variables are
quite different. In this section they will be discussed
relying heavily on the ideas presented by Kalbfleisch
& Prentice [50].

External or Ancillary Variables

An external variable is one that is not affected by
the failure process. The simplest sort of external
variable is a fixed or time-independent one. A sec-
ond type is a defined variable such as Z2(t) = tZ1.
Although Z2 is not fixed, its entire path is known

from the outset. A more general example of an
external variable is a measure of air pollution as
a predictor of severe asthma attacks. Although the
level of air pollution is not known in advance, it is
“external” to the individuals in the study. Further-
more, the marginal distribution of the variable does
not involve the parameters of the failure time model.
The whole history of an external variable can be
included in F0 and the hazard or intensity process
can be related to the survival function Pr(T ≥ t |F0)

in the usual way.

Internal Variables

An internal explanatory variable is the output of a
stochastic process that is generated by the individual
under study and so is observed only so long as
the individual survives and is uncensored [50]. An
example might be the level of β-2 microglobulin in a
patient’s sera. In practice, the actual level at any given
time will be unknown. Instead one uses the level as
measured in the most recent blood sample. Typically
blood will be taken at most a dozen times during a
trial. In such circumstances, the term “updated” may
be preferred to “time-dependent”.

The key point is that although one may include
the history of an internal process up to time t in
the filtration Ft and so define the hazard or inten-
sity function, the intensity function is itself a random
process and is not simply a function of the survival
function. In general survival from u to t depends on
{Z(s) : u ≤ s ≤ t} and this is unknown at u. Further-
more, if Z is only observed when an individual is
alive, then Pr(T ≥ t |Z(t) is not missing) = 1. Thus
it is not possible to make predictions of survival from
models that include internal explanatory variables. To
do that one must jointly model the survival process
and the explanatory variable trajectory.

In a clinical trial with primary focus on a treatment
which is fixed by randomization at time 0, internal
variables may change in response to treatment. If the
effect of treatment is predominantly reflected in the
changing value of the explanatory variable, a Cox
model of survival that includes both treatment and
the updated measurements of the explanatory variable
will show little or no treatment differences. Clearly,
then, one must be very careful when interpreting
the output of a Cox model that includes an inter-
nal explanatory variable. Treatment differences in a
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model that includes the values of explanatory vari-
ables only at time 0 may be inferred to be causative
(because of randomization). When a large treat-
ment difference is attenuated by inclusion of updated
measurements of an internal variable, one may gain
useful insights into the mechanism through which the
treatment is effective. In such circumstances, it is sen-
sible to also explore the effect of treatment on the
internal variable directly.

As with censoring, the value of a variable may
depend on the history of the trial so far, without
depending on the history of a given individual. Thus,
for instance, one might decide to change the environ-
ment of a controlled experiment after every 15 deaths.
Such a variable is neither internal nor external, but
for the purpose of making inference it is closer to an
external process.

Computing with Time-Dependent Variables

There are many practical issues in fitting models
using time-varying regressors, such as how to deal
with missing values, that are not discussed here [3].

The Cox model does not distinguish between a
single individual who enters a trial at time 0 and
dies at time Ti with fixed regressors Zi , from two
individuals both with regressors Zi one of whom
enters at time 0 and is censored at time u and one
of whom enters at u and dies at Ti . This may sound
surprising, but it is true; the likelihood contributions
from [0, u] and (u, Ti] are Pr(X > u|Zi ), and

Pr(Ti ≤ X < Ti + dt |X > u, Zi)

dt

= Pr(Ti ≤ X < Ti + dt |Zi)/ dt

Pr(X > u|Zi )
,

respectively. Furthermore, in the partial likelihood,
all that matters is the Z values of the members of
the risk set at each failure time, not whether a given
individual happens to appear in several different risk
sets. Thus, if Z(t) is only updated at a few times
per person, it is simplest to treat each person as
several “individuals” each with a time fixed covariate.
Let the vector (T0, T , D, Z) denote the entry and
exit times, the censoring indicator, and the value of
Z(t) for t ∈ (T0, T ], respectively. Then an individual
who enters a trial at time 0 with Z(t) = −2 for
0 ≤ t ≤ 1, Z(t) = −3 for 1 < t ≤ 2, Z(t) = 2.5 for
2 < t ≤ 3, and Z(t) = 2 for 3 < t ≤ 3.6 and dies at

T = 3.6 is represented by the four data points (0, 1,
0, −2), (1, 2, 0, −3), (2, 3, 0, 2.5), and (3, 3.6, 1, 2).

When computing the likelihood with fixed regres-
sors, it makes sense to use an updating formula. As
one moves from one time point to the next, the risk
set changes slightly due to the entry or the exit (due to
death or censoring) of “individuals”. The values for
those “individuals” who remain in the risk set do not
change and need not be recalculated. In this way the
calculation is kept to order n (albeit 4n if each indi-
vidual is treated as four because of changing covariate
values).

By contrast, when using continuously varying
regressors, one has no choice but to recalculate the
partial likelihood contribution from each time point
from scratch. This makes the calculation order n2.

Many software packages that will handle updated
regressors will not (easily) handle continuously vary-
ing regressors. It is difficult to fit models with user-
defined variables such as Z2(t) = tZ1 using such
packages. One might wish to compare the models
with hazards λ0(t) exp(β1Z1) and λ0(t) exp(β1Z1 +
β2tZ1). Of course, for the purpose of testing β2 = 0,
it is not necessary to fit the latter model. Instead, one
may calculate the score statistic for β2 = 0 evaluated
at the maximum partial likelihood estimate of β1 from
the model with the single (fixed) regressor.

Model Checking

An important aspect of modeling any set of data is
assessing the adequacy of the fit and checking to see
that the resulting inference is not unduly influenced
by a few observations. In general the iterative process
of model building and checking may be considered
an art rather than a science. Here we review some of
the tools available to the statistical artisan analyzing
survival data by means of a Cox model.

The simplest form of graphical check comes from
dividing the data into groups based on some explana-
tory variable and fitting a stratified Cox model. If the
explanatory variable “Z = s” is well modeled by the
Cox model, one has Λs0 = Λ0 exp(γ s), say. Thus,
plotting the logarithm of the cumulative hazard esti-
mate from each strata should reveal parallel curves.
That is, the vertical distance between the two curves
log Λr0(t) and log Λs0(t) should be the same for all
t . The common distance should be γ (r − s). In prac-
tice, such graphics, while intuitively appealing, are
not particularly useful.
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A closely related, but rather more useful, graph
for two strata is obtained by plotting one cumula-
tive hazard Λr0(t) against the other Λs0(t) for all
or some selected values of t . Under proportional
hazards, such an H–H plot should approximate a
straight line through the origin with slope exp(γ s)

[6, Section VII.3.1]. The method is easily extended
to multiple strata. The disadvantages of the H–H
plot are that they do not record the actual time t ,
and that, if the proportional hazards assumption is
seen to be violated, it is difficult to know how to
modify the proportional hazards model other than
by using a stratified model. Hess [42] reviews a
number of variants on these two simple graphical
checks of proportional hazards and compares eight
graphical methods on each of three data sets. He
recommends smoothed plots of scaled Schoenfeld
residuals. These are described in the subsection on
residuals.

Goodness-of-Fit Tests

Several authors have developed formal goodness-of-
fit tests. These can be divided into those designed to
be able to detect global alternatives and those with
greater power at detecting some specified alternative.
Virtually all the tests are asymptotically equivalent
to tests based on a defined time-dependent explana-
tory variable. We saw earlier that the first such tests
were proposed by Cox himself [21]. One may add
an additional regressor Z∗(t) = Zg(t) for some func-
tion g(t). Common choices for g included the iden-
tity function g(t) = t and its logarithmic transform
g(t) = log t . Other authors use step functions that
may jump at either a fixed or a random (but pre-
dictable) time. If the partial likelihood is maximized
with Z(t), then the partial likelihood ratio test is the
statistic of choice. But for testing the goodness of
fit, the score test is simpler to compute because it
does not require fitting a model with a time-dependent
regressor.

Gill & Schumacher [34] proposed a family of tests
of the proportional hazards assumption between two
samples, A and B. Their tests are motivated by com-
paring two different estimates of the relative hazard
between the two samples. Under proportional haz-
ards the two estimates will be similar, but they need
not be in general. The estimates of relative hazard
used are derived from linear rank tests, which are

themselves equivalent to score tests from the Cox par-
tial likelihood with specially defined time-dependent
regressors [33]. The family of tests proposed by Gill
& Schumacher [34] are thus similar in spirit to those
proposed by Breslow et al. [14]. The latter consider
the score test for β2 = 0 in the model

λB(t) = λA(t) exp[β1 + β2g(t)],

corresponding to covariates Z1 = I (B) and Z2(t) =
I (B)g(t). A popular choice is g(t) = Ŝ(t), the
Kaplan–Meier estimate of survival in the combined
sample at t . O’Quigley & Pessione [62] suggest
using a step function for g(t). For a one degree of
freedom test, one must choose both the cut points and
the values of the step function. For a more general
alternative hypothesis, one could partition the time
axis into J intervals. The null hypothesis is that the
relative hazards exp βj in all j = 1, . . . , J intervals
are the same, and this can be tested with J − 1
degrees of freedom. Wei [85] proposes an omnibus
goodness-of-fit test for the two-sample problem based
on the supremum of the score statistic supt |U(β̂, t)|.

Schoenfeld [75] was interested in a more general
goodness-of-fit test for the Cox model. He suggested
embedding a Cox model with regressor Z in a much
larger model with regressors Z and Z∗(t), where the
Z∗(t) are a set of indicator variables that partition
the regressor–time space. Thus, for instance, one
might divide the time axis into three parts and the
covariate space into four, and form the Cartesian
product with 12 cells. In addition to the score test
for the coefficients of Z∗ being all zero, one can
examine the “residuals”, i.e. the difference between
the observed and expected (under the basic model
with covariate Z) number of events in each of the 12
cells. Lin et al. [58] avoid the need for an arbitrary
partition of the space by deriving a supremum test
based on the cumulative sum

W(t, z) =
∑

Zi≤z

[Oi(t) − Ei(t)],

where Oi(t) = Ni(t) and Ei(t) = ∫ t

0 Yi(u) dΛ̂i(t)

are, respectively, the observed and expected number
of events in individual i, by time t .

Residuals

There have been numerous attempts to define residu-
als and to propose diagnostic plots for the Cox model
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(see Diagnostics). The situation is complicated by
both the semiparametric model and the presence
of censoring. Some of the proposed techniques are
decidedly less useful than one might have hoped. In
particular, attempts to define residuals that (under
the Cox model) look like a random sample from
a specified distribution, so that Q–Q plots can be
drawn (see Normal Scores), have failed. Graphical
assessment of the functional form of a covariate and
of the constancy of the regression parameters over
time have been more successful.

An early definition of residual for the Cox model
was the estimated cumulative intensity for each
individual:

Âi(∞) =
∫ ∞

0
Yi(u) dΛ̂i(u)

=
∫ ∞

0
Yi(u) exp[β̂ ′zi (u)] dΛ̂0(u) (11)

[if Yi(u) = I (Ti ≥ u) and zi (u) = zi , then Âi(∞) =
Λ̂i(Ti) = exp(β̂ ′zi )Λ̂0(Ti)] [24, 52]. Later authors
made an adjustment to the residual depending on
whether the individual was censored or not. The
resulting residual ri = Di − Âi(∞) is called the
martingale residual and is a special case of the general
family of residual processes defined by

∫ t

0
Hi(u) dM̂i(t), (12)

where M̂i(t) = Ni(t) − ∫ t

0 Yi(u) dΛ̂i(u) and Hi is
a predictable process [8, 81]. Thus ri is the esti-
mated martingale transform, (12), with Hi = 1 and
t = ∞. The martingale residual may be thought
of as the difference between the observed and the
expected number of events for the ith individual.
The distribution of martingale residuals in a sur-
vival setting is very skewed since they have mean
zero (under the true model) but range from 1 (for
someone who fails at time 0) to minus a very
large number (for someone who survives much
longer than “expected”). Summing over individuals
with similar covariate values {i : zi ∈ Z}, say, one
obtains the residual number of events for individuals
with z ∈ Z. Thus, smoothing the martingale resid-
uals against a regressor (or a potential regressor)
gives an indication as to how well the model fits
the data. Systematic departures from zero indicate
that there is an excess (or deficit) in the modeled

hazard for that group of individuals. Heuristically
one has

E{Ni(∞)|z,z∗} = A(∞|z, z∗) ≈ Â(∞|z)
+ smooth(ri |z∗).

More recently, Grambsch et al. [36] have considered
the model

λ(t |z,z∗) = λ0(t) exp[β ′z + f (z∗)]. (13)

They propose fitting the Cox model with prognostic
index β ′z + γ z∗ and plotting log{smooth[Ni(∞)]} −
log{smooth [Âi(∞)]} + γ̂ z∗ vs. z∗. The smooth curve
will approximate f (z∗) to first order. In practice, the
approximation seems to work well even when Z∗ is
correlated with the other regressors Z.

The martingale residuals were defined by integrat-
ing the martingale difference array dM̂i(t) over the
time axis to give a single residual per individual. To
examine the proportional hazards assumption, one
is more interested in obtaining a separate residual
for each failure time. This can be done by sum-
ming the martingale differences, at a given time, over
all individuals. Now Σi dM̂i(t) = 0 for all t by the
definition of the Breslow estimator Λ̂0. Neverthe-
less, one can use the martingale transform, (12), with
Hi = Zi . Then at each failure time one is comparing
the observed value of Z in the individual that fails
with its expected value. Such a residual,

r∗(Tj ) =
∑

i

Zi (Tj )[ dNi(Tj ) − Yi(Tj ) dΛ̂i(Tj )]

= Sj − dj

S(1)(β̂, Tj )

S(0)(β̂, Tj )
,

was first proposed by Schoenfeld [76]. It is seen that
the sum of the Schoenfeld residuals evaluated at β

is equal to the score U(β). It is not difficult to show
that, even under the model

λ(t |z) = λ0(t) exp[β(t)′z], (14)

S(1) [β(t), t]/S (0) [β(t), t] → E(Z|T = t, D = 1).
Thus, using a one-step Taylor series expansion about
β(t) = β̂, one has

β(t) ≈ β̂ + V̂(t)−1r∗(t),
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where

V̂(t) = S(2)(β̂, t)

S(0)(β̂, t)
−

(
S(1)(β̂, t)

S(0)(β̂, t)

)⊗2

.

Hence, Grambsch & Therneau [35] have proposed
plotting a smooth of β̂ + V̂(t)−1r∗(t) against t

in order to get a feel of β(t). Often V(t) =
limn→∞ V̂(t) does not vary much as a function of
t , so for exploratory purposes it may be enough to
use I(β̂)/ΣNi(∞) in place of V̂(t). This has the
advantage of not having to store and invert a different
covariance matrix at each failure time. In practice,
V(t) will vary most when a variable Z has a skewed
distribution and those in the tail are at greatest risk. In
all cases it will be difficult to estimate V̂(t) if the risk
set is small at time t , and it is also for large values
of t that the V (t) is most likely to be substantially
different from its average value.

Influence Diagnostics

Various measures of influential observations have
been suggested for the Cox model. The influence
diagnostic is intended to approximate the amount
by which the regression estimate β̂ would change
if the ith individual were removed from the data
set [69]. One such approximation is the infinitesimal
jackknife, first proposed by Cain & Lange [17].
Their residuals are equal to the components of the
scaled efficient score statistic. This can be written as
a martingale transform residual with Hi (t) = Zi −
E(β̂, t). The scaling is done by I(β̂)−1. One has

r̃i = I (β̂)−1
∫ ∞

0
[zi − E(β̂, t)] dM̂i(t).

An alternative estimate of the influence of an indi-
vidual is given by Storer & Crowley [79].

Alternatives and Extensions

We have already discussed many extensions of the
basic Cox model. We have permitted nonpropor-
tional hazards through the stratified Cox model and
through user-defined time-dependent variables. We
have considered diagnostics to detect data that appear
to come from more nonparametric models, such as the
additive Cox model λ(t |z) = λ0(t) exp[

∑
k fk(zk)], in

which some of the functions fk may be assumed
to be linear while others are left unspecified [32,
37, 39, 70], and the multiplicative hazards model
λ(t |z) = λ0(t) exp[β(t)′z] [30, 40, 41, 86, 84].

We have also seen how the model that was orig-
inally perceived for survival data can be generalized
quite naturally to event data in which a single indi-
vidual may have multiple events. The events need
not even all be of the same type. They may represent
competing risks or more generally the various states
in a multistate model. In the classic heart transplant
situation, for example, one might use Cox regression
to model the transition from identification as a poten-
tial recipient (state 0) to transplant (state 1); from
state 0 to death (state 2); and from state 1 to death
[26]. Three state models in which transitions from
state 1 (diseased) back to state 0 (healthy) are pos-
sible are also common (see, for example, Andersen
et al. [6, Example VII.2.10]). The study of (i) acute
graft-vs.-host disease, (ii) chronic graft-vs.-host dis-
ease, (iii) leukemia relapse, and (iv) death following
bone marrow transplantation (state 0) is also consid-
ered by Andersen et al. [6, Example VII.2.18].

We briefly mention a few alternatives to the
semiparametric Cox model for regression analysis
of censored survival data. Naturally one can try to
adapt estimation in any parametric regression model
to cope with right censored data. Loglinear models
with Weibull or Gamma errors [50, Section 3.6]
tend to be more popular in reliability (engineering)
than in biostatistics. Particularly in epidemiology, one
sometimes has a known population mortality rate that
one wants to use in place of the baseline hazard
function. The hazard for individual i is given by

λi(t) = µi(t) exp[β ′Zi (t)],

where µi is the population mortality corresponding
to individual i [7, 15]. Fully parametric models have
been studied using counting process techniques by
Borgan [12]. Another Cox-like model that uses a
known rate is the proportional excess hazards model
[73] (see Excess Risk),

λi(t) = µi(t) + λ0(t) exp[β ′Zi (t)],

in which the excess mortality is modeled by a Cox
model.

A general family, known as the accelerated
failure-time model, is a linear regression model for
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the logarithm of the survival time,

log X = β ′Z + ε,

where the error ε may be either from a specified
distribution or from an unknown distribution. Gaus-
sian errors and no censoring simply correspond to
linear regression of log X. If the errors are Weibull,
then the model is also a proportional hazards model.
Theoretical attention has focused on the semiparamet-
ric model with unknown error distribution. Another
family of models that include the Cox model as a
special case are the transformation models in which
an unknown monotone transformation of the survival
time is assumed to have a linear regression:

ψ(X) = β ′Z + ε.

If the error distribution is extreme value (exp ε dis-
tributed exponential with mean 1), then the trans-
formation model is a Cox model with cumulative
baseline hazard given by exp[ψ(t)] and regression
parameter s − β.

The Cox model is a multiplicative hazards model.
Aalen [2] introduced an additive hazards model (see
Aalen’s Additive Regression Model). A semipara-
metric version of the model [61] is given by

λ(t |Z1, Z2) = θ1(t)
′Z1(t) + θ ′

2Z2(t).

If the variables Z1 include a constant, then we may
pull out a baseline hazard and write the first term on
the right of the equation as λ0(t) + α11(t)Z11(t) +
· · · + α1p(t)Z1p(t). The cumulative components of
hazard A1j (t) = ∫ t

0 α1j (u) du can be estimated at
parametric rates, and these must be smoothed to
estimate the α1j (u). The model extends naturally to
the more general counting process formulation.

Several authors have considered “special” Cox
models. These include models for matched pairs
[38, 44] (see Matching), and for interval censored
survival data [46], a model for periodic data [64] (see
Seasonal Time Series), and a model for case–cohort
data [66, 77]. Bayesian analysis of the Cox model
was first considered by Kalbfleisch [49; [50], Section
8.4] and later by Hjort [43].

There has been relatively little written about robust
estimation in the Cox model (see Robustness). Esti-
mators that maximize a weighted partial likelihood
have been proposed independently at least three times
[56, 71, 72, 74]. The weights may be random and

may depend on the regressors Z, but they should be
predictable (or at least asymptotically equivalent to
predictable weights). A slightly different estimator
which essentially corresponds to the efficient score
function from a weighted full likelihood has also been
studied [10].

Consideration of the Cox estimator for β̂ when the
data do not come from a Cox model leads naturally
to adoption of the sandwich estimator of the variance
of β̂ [57, 69]. This is the usual infinitesimal jackknife
estimator that can be obtained from the influence
residuals

˜var(β̂) =
∑

i

r̃i r̃
′
i .

The estimator is perhaps most useful when the data
are clustered (see Clustering). Suppose that r̃ki is
the influence residual from individual i in cluster k.
Then define r̃k = Σi r̃ki and estimate the variance of
β̂ by Σk r̃⊗2

k [55]. This may be a simple technique
for adjusting inference when using the Cox model
with multivariate survival data. For instance, if each
person could have several events, then one might
wish to treat the person as a cluster. In another
example, the clusters might be formed from survival
data on individuals within families.

Another approach adapting the Cox model to mul-
tivariate data is through latent variables or frailties.
The idea is that, conditionally on an unobserved vari-
able or frailty, the survival times follow a Cox model.
The value of the frailty Wi is assumed to be the
same for all survival times within a cluster. Two
frailty distributions have received the most attention:
Clayton & Cuzick [19] considered the hazard model
λ0(t) exp(β ′Z + W) in which exp W has a gamma
distribution; Hougaard [45] favors using the posi-
tive stable distribution, as this is the only choice that
yields proportional hazards both marginally (integrat-
ing over the unobserved variable) and conditionally.
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Cox, Gertrude Mary

Born: January 13, 1900, in Dayton, Iowa.
Died: October 17, 1978, in Durham, North

Carolina.

Gertrude Mary Cox was one of the twentieth cen-
tury’s pioneers in statistics. She wrote the following
notes on her early years:

I was raised on a farm where I had several years for
roaming in the woods by the river and over the hills.
I learnt from my mother the value and joy of doing
for other people. She nursed the sick and raised us
to be active church workers. There were four of us,
two boys and two girls. We had responsibilities at
home. I liked best making the homemade bread for
our family because I was allowed to sell one pan
of biscuits. My main ambition was to help others so
after high school, I took a two-year special social
service course of study and worked two years as
housemother for 16 little orphan boys in Montana.

The Cox family moved to Perry, Iowa, where Ger-
trude graduated from high school; her major inter-
ests were in arithmetic and mathematics. The social
service and orphanage work were in preparation
to become a deaconess in the Methodist Episcopal
church; however, she finally decided that academic
training was more to her liking. She enrolled at Iowa
State College (ISC) where she majored in mathe-
matics, but elected courses in psychology, sociology,
and craft work and did computing to help pay school
expenses, receiving a B.S. degree in 1929.

Gertrude secured a master’s degree in statistics
from ISC in 1931 (supervised by George Snedecor),
which was the first in statistics at that institution. She
then began work on a Ph.D. in psychological statistics
at the University of California at Berkeley; she gave
up the latter in 1933 to return to Iowa State to
direct the Computing Laboratory of the newly created
Statistical Laboratory under Professor Snedecor. She
became interested in the design of experiments, in
which she developed and taught graduate courses.
Her courses were built around a collection of real-
life examples in a variety of experimental areas. She
taught from mimeographed materials, which formed
part of the famous Experimental Designs by W.G.
Cochran and her [4]. She had three major principles
in setting up an experiment: (i) the experimenter
should clearly set forth his or her objectives before
proceeding; (ii) the experiment should be described

in detail; and (iii) an outline of the analysis should
be drawn up before the experiment is started. She
emphasized the role of randomization and stressed
the need to ascertain if the size of the experiment was
sufficient to demonstrate treatment differences if they
existed (see Sample Size Determination).

In 1940, Snedecor responded to a request for
suggestions on possible candidates to head the new
Department of Experimental Statistics in the School
of Agriculture at North Carolina State College (in
Raleigh); upon seeing his list of all males, Miss Cox
asked why he had not included her name. He then
inserted a footnote which stated that if a woman
could be considered, he recommended her. This foot-
note has become a statistical landmark, because Miss
Cox was selected. She started staffing her department
with statisticians who had majors or strong minors
in applied fields. In 1944 the President of the Con-
solidated University of North Carolina established
an all-University Institute of Statistics with Gertrude
Cox as head, and in 1945 she obtained funds from the
General Education board to establish graduate pro-
grams at North Carolina State and in 1946 a new
Mathematical Statistics Department at Chapel Hill.

In 1949, Gertrude Cox gave up the Headship at
North Carolina State to devote full time to the Insti-
tute, including the development of strong statistics
programs throughout the South. This latter develop-
ment was augmented by an arrangement with the
Southern Regional Education Board to establish a
Committee on Statistics. From 1954 to 1973 the
Committee sponsored a continuing series of six-week
summer sessions and is now co-sponsoring (with
the American Statistical Association) a Summer
Research Conference.

Of special interest to biostatistics was the founding
in 1949 of the Department of Biostatistics in the
School of Public Health at UNC, Chapel Hill, chaired
by B.G. Greenberg. In 1953, the Statistics Section
of the American Public Health Association and
the Biostatistics Department sponsored a Biostatistics
Conference on procedures to provide field training for
health statisticians.

One of Gertrude Cox’s strongest points was her
ability to obtain outside financial support. The Rock-
efeller Foundation supported a strong program in
statistical genetics (see Genetic Epidemiology) at
North Carolina State and the Ford Foundation sup-
ported one in dynamic economics. She was a strong
advocate of the development of powerful computer
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programs; North Carolina State was a leader in the
use of high-speed computers, especially the IBM650
and the initial SAS programs (see Software, Biosta-
tistical).

Iowa State bestowed on her an honorary Doctorate
of Science in 1958 as a

stimulating leader in experimental statistics. . . out-
standing teacher, researcher, leader, and administra-
tor. . . Her influence is worldwide, contributing to the
development of national and international organiza-
tions, publications, and councils of her field.

Starting in 1958, Dr Cox and other members of
the North Carolina State statistics faculty developed
procedures to establish a Statistical Division in the
not-for-profit Research Triangle Institute (RTI) in
the Research Triangle Park (RTP) between Raleigh,
Chapel Hill, and Durham; Gertrude Cox retired from
the University in 1960 to direct this division. She
retired from RTI in 1965, but continued to teach at
North Carolina State and consult on research projects.
RTP has developed into a world-recognized research
park.

Dr Gertrude Cox was a consultant before and
after retirement to many organizations, including the
World Health Organization, the US. Public Health
Service, and the government of Thailand, and on
a number of US Government committees for the
Bureau of the Budget, National Institutes of Health,
National Science Foundation, Census Bureau, and
Agricultural Department. She was a founding mem-
ber of the International Biometric Society in 1947
for which she served as President in 1968–69, Coun-
cil three times, and first editor of its journal, Biomet-
rics. She was an active member of the International
Statistical Institute and was President of the Amer-
ican Statistical Association in 1956. Her Presidential
address in 1957, “Statistical frontiers”, was an affir-
mation of her ethical concepts of moral uprightness
and hard work [5]. She emphasized that

The fact that you, as an individual, are classified
as a statistician does not free you from obligations
and responsibilities toward other human beings. You
have an obligation to clarify the foundations of your
techniques and methods for your clients. I want you
young statisticians not to become men of success but
rather become men of value.

In 1970, North Carolina State University designated
the building in which statistics was housed as Cox
Hall, and in 1977 a Gertrude M. Cox Fellowship Fund
was established for outstanding graduate students in
statistics. Her election to the National Academy of
Sciences in 1975 was a treasured recognition of her
many contributions.

In 1976 Gertrude learned that she had leukemia
but remained sure that she would conquer it up to
the end. She even continued construction of a new
house, unfortunately not completed until a week after
her death. While under treatment at Duke University
Hospital she kept detailed records of her progress, and
her doctor often referred to them. With characteristic
testy humor she called herself “the experimental
unit”, and died as she had lived, fighting to the end.
To those who were fortunate to be with her through
so many years, Raleigh will never be the same.

There are published obituaries and biographies of
Gertrude Cox [1–3].
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Cox’s Test of Randomness

There are occasions when it is necessary to deter-
mine whether a series of events has occurred at
random. Barnard [1] provides a simple test using the
result that if the series is random, then the instants
of occurrence of events in a finite interval consti-
tute a random sample from a rectangular distribution.
Cox [3] gives a test of randomness against the alter-
native that the series has some trend in the rate of
occurrence of the events. Let n events occur at times
t1, . . . , tn in the interval (0, T ) and assume that Pr[an
event occurs in (t, t + δt)] = λ(t) + o(δt), where δt

is a small interval of time. Cox demonstrated that,
if λ(t) = α exp(βt), then an appropriate statistic to
test H0 : β = 0 against the alternative H1 : β �= 0 is
β̂ = ∑n

i=1 ti/nT . The probability distribution of this
statistic under H0 is the Irwin–Hall distribution with
mean 1

2 and variance 1/12n. Bartholomew [2] shows
that for n ≥ 20 the distribution of β̂ tends rapidly
to normality, and calculates the power function of
the test for n = 5. Mansfield [4] gives further power
function values for n = 20(10)80, 100, 200, for both

one- and two-tailed tests. Details of test statistics that
can be used to detect other types of nonrandomness
are given in [3]. For example, a statistic is given for
the case where successive intervals between events
are assumed to be correlated.
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Cramér–Rao Inequality

The Cramér–Rao inequality provides a lower bound
for the variance of any unbiased estimator of a one-
dimensional parameter θ in the probability density
function (pdf) of the observed random variable or,
more generally, of a given parametric function g(θ).
The following regularity assumptions are made:

Assumption 1

The relation
∫

p(x, θ) dx = 1 for the pdf p(·, θ) of
random variable X can be differentiated twice with
respect to θ under the integral sign.

Assumption 2

The relation
∫

t (x)p(x, θ) dx = g(θ) for any unbi-
ased estimator T = t (X) of g(θ) can be differentiated
with respect to θ under the integral sign.

Assumption 1 requires that the support of the
distribution (i.e. the range of the random variable
X) does not depend on θ . If the random vari-
able X above happens to be multi-dimensional, say
(X1, X2, . . . , Xn), of continuous components, then
the integral in Assumptions 1 and 2 has to be inter-
preted as an n-dimensional integral. However if X,
or its components Xi , are discrete random variables,
then the integral in Assumptions 1 and 2 is to be
replaced by the summation symbol.

For the unbiased estimator T = t (X) of g(θ) the
basic form of the Cramér–Rao inequality is

varθ (T ) ≥ [g′(θ)]2

I (θ)
, (1)

due to Cramér [4] and Rao [7]; the lower bound
on the right-hand side of the inequality is usually
referred to as the Cramér–Rao lower bound (CRLB)
for the variance of the unbiased estimator of g(θ). In
(1), g′(θ) is the first derivative of g, and I (θ) is the
Fisher information in (the pdf of) X, defined by

I (θ) = Eθ

[
∂ log p(X, θ)

∂θ

]2

. (2)

In the special case X = (X1, . . . , Xn), when we have
independent and identically distributed components

Xi in the random sample X, each with pdf f (·, θ),
I (θ) = ni(θ), where

i(θ) = Eθ

[
∂ log f (X1, θ)

∂θ

]2

, (3)

the Cramér–Rao inequality (1) reduces to the form

varθ (T ) ≥ [g′(θ)]2

ni(θ)
. (4)

The Cramér–Rao inequality (1), and its special
form (4), sometimes have been referred to as the
information inequality, and the CRLB as the infor-
mation bound. For the particular case g(θ) = θ , the
numerator on the right-hand sides of both (1) and (4)
reduces to 1.

The Cramér–Rao inequality has been generalized
in a number of directions. Of special interest is the
generalization for the case of d-dimensional parame-
ter θ with components θj , j = 1, . . . , d for d ≥ 1.
The regularity assumptions (Assumptions 1 and 2
above) are now needed with respect to elements θj

of θ for unbiased estimators Ti = ti (X) of the para-
metric function gi(θ), i = 1, 2, . . . , r .

Let I(θ) be the (d × d) Fisher information matrix
with elements

Ijk(θ) = Eθ

[
∂ log p(X, θ)

∂θj

∂ log p(X, θ)

∂θk

]
,

for j, k = 1, . . . , d, and G(θ) the r × d matrix of
partial derivatives

Gij (θ) = ∂gi(θ)

∂θj

, i = 1, . . . , r; j = 1, . . . , d.

In addition to generalized versions of the regular-
ity assumptions (Assumptions 1 and 2) we now need
also the following:

Assumption 3

The information matrix I(θ) is positive-definite.
The generalized form of the Cramér–Rao inequal-

ity (1) is (see, for example, [8])

covθ [T] ≥ G(θ)I−1(θ)G′(θ). (5)

Here T is the vector of unbiased estimators Ti of
gi(θ), i = 1, . . . , r , and the notation A ≥ B for any
two nonnegative-definite matrices means that the
matrix A − B is nonnegative-definite.
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For the special case r = d with g(θ) = θ , the
matrix inequality (5) reduces to the simpler form

covθ (T) ≥ I−1(θ), (6)

for the covariance matrix T of unbiased estimators
of θ .

When equality is attained for the two sides of
inequality (1) for some unbiased estimator T of
g(θ), it then follows that T is indeed the uniformly
minimum variance unbiased estimator (UMVUE)
of g(θ). Furthermore, under the regularity conditions
(Assumptions 1 and 2), and some further technical
conditions, it can be shown that the pdf of X has to
belong to the one-parameter exponential family of
the form

p(x, θ) = exp[a(θ)T (x) + b(θ) + c(x)], (7)

for some real-valued functions a(·), b(·) of θ , and
c(·) of x.

It should be noted that, when the form (7) holds
for the pdf p(·, θ), the equality is attained for the
two sides in (1) only for the statistic T in (7) or
its linear transforms T ∗(x) = c1T (x) + c2, for some
constants c1 and c2. Thus, the CRLB is attained only
for unbiased estimation of parametric functions of the
form g(θ) = c1Eθ [T (X)] + c2, when X has pdf (7).

It has to be emphasized, however, that UMVUE
estimates T = T (X) can exist for unbiased estima-
tion of g(θ) without attaining the CRLB; thus, the
two sides of (1) might not be equal even when the
pdf p(·, θ) satisfies the form (7).

An analog of the Cramér–Rao inequality, when
the regularity assumptions (Assumptions 1 and 2) are
not necessarily met, is given by Chapman & Robbins
[3], while Wolfowitz [9] has given the extension to
sequential sampling situations. Bhattacharya [2] has
given a more stringent inequality, using higher-order
derivatives along with the first-order derivative of log
p(·, θ) used in the basic inequality (1). Similarly,

for estimation of functions of parameters of interest
θ1, of d1 dimensions, in the presence of unknown
nuisance parameters θ2, of d2 dimensions, Bhapkar &
Srinivasan [1] have given a more stringent inequality
than (5) for the general case d1 ≥ 1, r ≤ d1 with
d2 ≥ 1; the special case r = d1 = 1 follows from
the generalized information function developed by
Godambe [6]. Gart [5] has given an extension of
the inequality when the parameters θ are themselves
random variables.

References

[1] Bhapkar, V.P. & Srinivasan, C. (1994). On Fisher infor-
mation inequalities in the presence of nuisance parame-
ters, Annals of the Institute of Statistical Mathematics 46,
593–604.

[2] Bhattacharya, A. (1946). On some analogues of the
amount of information and their uses in statistical esti-
mation, Sankhya 8, 1–14.

[3] Chapman, D.G. & Robbins, H. (1951). Minimum vari-
ance estimation without regularity assumptions, Annals
of Mathematical Statistics 22, 581–586.

[4] Cramér, H. (1946). Mathematical Methods of Statistics.
Princeton University Press, Princeton.

[5] Gart, J.J. (1959). An extension of the Cramér–
Rao inequality, Annals of Mathematical Statistics 30,
367–380.

[6] Godambe, V.P. (1984). On ancillarity and Fisher infor-
mation in the presence of nuisance parameter, Biometrika
71, 626–629.

[7] Rao, C.R. (1945). Information and accuracy attainable
in estimation of statistical parameters, Bulletin of the
Calcutta Mathematical Society 37, 81–91.

[8] Rao, C.R. (1973). Linear Statistical Inference and its
Applications, 2nd Ed. Wiley, New York.

[9] Wolfowitz, J. (1947). The efficiency of sequential esti-
mates, and Wald’s equation for sequential processes,
Annals of Mathematical Statistics 18, 215–230.

(See also Efficiency and Efficient Estimators; Esti-
mation)

V.P. BHAPKAR



Critical Care

Over the last three decades, critical care has emerged
as one of the most important and expensive aspects
of medicine. There are over 6000 intensive care
units (ICUs) in the United States today, caring for
55 000 patients per day [15]. The cost of this care
is approximately 180 billion dollars, or almost 1%
of the United States gross domestic product. The
randomized controlled trial (RCT) has become the
“gold” standard for clinical research (see Clinical
Trials, Overview). This is also true for research in
critical care; however, the complex nature of crit-
ical illness has made the design and conduct of
RCTs difficult. Historically this has led to clinical
decision based on observational studies or poorly
controlled clinical trials. A recent review of RCTs
published in a prominent critical care journal in the
two decades up to 2000 found that only 25% of
173 trials could be considered adequate [9]. Over the
last several years, several large well-designed RCTs
have been published, which have resulted in major
therapeutic advances in the treatment of the criti-
cally ill.

Research in critically ill patients presents unique
challenges [7]. The disease processes are often not
well defined but are described as a constellation of
clinical findings, or syndrome. As such, definitions
are often imprecise and variable. There are also mul-
tiple therapeutic interventions being administered and
the disease processes themselves often have a vari-
able clinical course. Finally, outcome selection is a
challenge, mortality (short or long) versus nonmor-
tality outcomes. These latter decisions have a major
impact on ultimate determination of efficacy or effec-
tiveness (see Pharmacoepidemiology, Adverse and
Beneficial Effects).

Adding to the difficulty in conducting studies in
the critically ill is the identification and enrollment of
patients. To answer many of the clinical questions in
critical care, large numbers of patients are required.
While a particular clinical syndrome may be common
in critically ill patients in general, often no single
institution has enough patients to achieve a study of
adequate size. Therefore, it is uncommon for any sin-
gle center to be able to recruit patients in sufficient
numbers within a reasonable time frame. This has led
to a trend to large multicenter studies. In addition to
improving the ability to recruit patients, multicenter

trials potentially have greater generalizability as they
account for practice difference across ICUs. A final
issue is the difficulty in obtaining informed consent
(see Ethics of Randomized Trials). This issue con-
tributes to increasing difficulty in conducting research
in a critically ill patient population [4, 11]. Regu-
lations governing who can serve as a surrogate to
provide consent for participation in a research study
in those circumstances when patients are unable to
give consent for themselves are becoming stricter.
This is a particularly important issue for research in
the ICU where patients often are not able to provide
consent for themselves.

The last few years have seen the publication of the
results of five RCTs that have had a major impact on
the practice of critical care. These trials are notable
in that they have all demonstrated mortality bene-
fit for large populations of critically ill and in four
of the five trials, the intervention involved simple
changes in clinical practice rather than novel ther-
apeutic agents.

Blood Transfusion

Critically ill patients are often anemic and as a result
receive a large number of red blood cell (RBC) trans-
fusions [5, 17]. However, over recent years, questions
have arisen over both the safety and efficacy of RBC
transfusion. Hebert and colleagues [8] compared two
transfusion strategies: a restrictive strategy, maintain-
ing a hemoglobin level between 7 and 9 g dL−1 with a
transfusion threshold of 7 g dL−1; and a liberal strat-
egy, maintaining a hemoglobin level between 10 and
12 g dL−1 with a transfusion threshold of 10 g dL−1.
Because the entry criteria for the study specified
a hemoglobin ≤9 g dL−1, all patients in the latter
group received an RBC transfusion. Patients in the
restrictive group received 50% less RBC transfu-
sions. All results favored the restrictive group, and
in those patients who were younger (≤55 years of
age) and less sick (APACHE score <20), a liberal
strategy resulted in a significant increase in mortality.
The conclusion from this study was that a restric-
tive transfusion strategy was at least equivalent and
in some patients superior to a more liberal transfu-
sion strategy. This study has challenged long-standing
beliefs regarding transfusion thresholds and transfu-
sion practice.
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Goal-directed Resuscitation

There is a long history of attempting to target resus-
citation to physiologic endpoints in the critically ill
patient with sepsis. The rationale for this is that
there is an imbalance at the tissue level between
oxygen delivery and demand and that by “optimiz-
ing” delivery, end organ damage could be prevented
and survival thereby improved [2]. Unfortunately,
these efforts have met with little success. Rivers
and colleagues [14] in an RCT evaluated the effi-
cacy of early goal-directed therapy initiated in the
emergency room, prior to their ICU admission. As
compared to “standard” therapy, early goal-directed
therapy resulted in a significant reduction in mortality
and organ failure (30.5% versus 46.5%, p < 0.009).
The results from this study have major implications
for the practice of critical care. The study highlights
the importance of early identification of critically ill
patients and early initiation of appropriate therapy,
including initiation of therapy prior to arrival into
the ICU.

Insulin Therapy

Hyperglycemia is common in critically ill patients,
whether or not patients have a history of diabetes.
Although it has been suggested that hyperglycemia
may be associated with an increase in complica-
tions, there is little data on the impact of glu-
cose control on clinical outcomes in the critically
ill [12]. Van den Berghe et al. [16] in an RCT
of patients receiving mechanical ventilation com-
pared intensive insulin therapy (to maintain blood
glucose between 80 and 110 mg dL−1) with stan-
dard therapy (insulin infusion for blood glucose
>215 mg dL−1 with maintenance between 180 and
200 mg dL−1). Intensive insulin therapy was associ-
ated with reduced mortality versus standard therapy
(4.6% versus 8.0%, p < 0.04). This was a result
of the mortality benefit in patients who remained
in the ICU for more than five days (10.6% ver-
sus 20.2%, p < 0.005). This study demonstrates that
normalization of blood glucose with insulin therapy
resulted in a dramatic improvement in morbidity and
mortality.

Acute Respiratory Distress Syndrome

Mortality for patients with acute respiratory distress
syndrome (ARDS) is 40 to 50% [6]. The tradi-
tional approach to mechanical ventilation in these
patients has involved the use of tidal volumes of
10 to 15 ml kg−1. However, it has been suggested
that mechanical ventilation with tidal volumes in
this range may in fact exacerbate lung injury. The
ARDS Network conducted an RCT in patients with
ARDS comparing a low tidal volume strategy with
traditional mechanical ventilation [1]. This trial was
terminated early because of mortality reduction in
the lower tidal volume group (31% versus 39.8%,
p < 0.007). In addition, patients in the low tidal vol-
ume group increased the number of days without
ventilator use.

Sepsis

In the United States, 750 000 cases of sepsis occur
each year of which 225 000 are fatal [10]. Over
the last two decades, over 20 clinical trials have
been conducted on therapeutic agents for sepsis [13].
These trials have failed to demonstrate any clini-
cal benefit. Bernard et al. [3] performed an RCT
evaluating the efficacy of activated protein C in
severe sepsis. Activated protein C has antithrombotic,
anti-inflammatory, and profibrinolytic properties. The
mortality rate in the placebo group was 30.8% as
compared to 24.7% with activated protein C. This
was the first trial to demonstrate a benefit to thera-
peutic interventions directed towards interrupting the
pathologic cascade initiated by sepsis.
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Critical Region

To test a statistical hypothesis, one must define a
rule for determining when to “accept” or “reject” the
specified hypothesis (see Hypothesis Testing). This
rule is usually, but not always, based upon observed
data. The set of observations that corresponds to the
rejection of the specified hypothesis is said to be
the critical region of the test. The steps for per-
forming a test for a given statistical hypothesis are
straightforward. First, one observes a random sample
of data. Next, one determines whether this observed
random sample is contained in a predefined critical
region. This is usually done by calculating a statis-
tic (e.g. the sample mean) based on the observed
data and determining whether the statistic is con-
tained within the critical region. If the sample (i.e.
statistic) is in the critical region, then one rejects the
hypothesis. The size of the critical region is also
referred to as the size of the test (which is often
denoted by α; see Level of a Test). The size of the
test is the probability that the observed data would
have fallen into the critical region if the hypoth-
esis were true. It is important to note that there
may be several possible critical regions for a fixed
size of a test. For instance, for the normal distri-
bution, if one chooses the size of the test equal
to 0.05, then the following critical regions are all
possible:

1. values of the statistic either larger than 1.96 or
smaller than −1.96 (a two-tailed test)

2. values of the statistic larger than 1.645 (a one-
tailed test; see Alternative Hypothesis)

3. values of the statistic larger than 1.75 or smaller
than −2.326 (a two-tailed test with asymmetric
cutpoints).

In all three examples, the critical region is dif-
ferent, and yet the size of the critical region (size
of the test) is the same. Figure 1 shows three plots
illustrating these three different critical regions.

Consider the following example. We wish to test
the hypotheses as to whether the population mean,
µ, for some normally distributed random variable is
equal to µ0 (some specified value) or whether it is
larger than µ0. We can write these hypotheses as
H0 : µ = µ0 (the null hypothesis) and Ha : µ > µ0

(the alternative hypothesis). Next, we define a rule
for determining when to accept or reject the null
hypothesis for a specified level of significance α.
One rule may be that we reject the hypothesis if
the mean of the observed data, x, is larger than a
specified value C. A common choice of C in this
setting would be C = µ0 + zα(σ/n1/2), where σ is
the known standard deviation of the variable being
studied, n is the sample size of the observed data, µ0

is the hypothesized value of µ, and zα is the value
from a standard normal distribution which has α area
above it and 1 − α area below (i.e. for α = 0.05,
zα = 1.645 since the area above 1.645 in the standard
normal distribution is 0.05 and the area below 1.645
is 0.95). One would then collect data, X1, . . . , Xn,
and if the observed mean of these data, x, was larger
than C, then the null hypothesis would be rejected.
For this example, the set of values of the test statistic
x that leads to the rejection of the null hypothesis is
the critical region.
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Cronbach’s Alpha

Cronbach’s alpha, or coefficient alpha, is widely used
to assess the internal consistency or reliability of
multiple-item instruments. A multiple-item instru-
ment, also called a multiple-item scale, measuring an
underlying construct, or latent variable, is internally
consistent if its items are highly intercorrelated. Cron-
bach’s alpha measures this internal consistency [1].

The relationship between the latent variable and
the actual responses to the items is known as
the measurement model. The classical measurement
model assumptions are that measurement errors for
each item are random, are not correlated with one
another, and are not correlated with the true score, or
latent variable. Two additional assumptions called the
parallel test assumptions are that the latent variable
affects all items equally and that there is equal
measurement error in each item. Coefficient alpha is
defined as the proportion of variance attributable to
the true score of the latent variable [2].

An equivalent model is generated by assuming that
items cannot be measured without error, and that the
total variation in the items can be partitioned into the
true, or common, variation and the error variation
[4]. The true variation is the variation in latent score
values across the subjects. Coefficient alpha can then
be viewed as the ratio of the true variation to the total
variation.

We now present the derivation of coefficient alpha.
Consider a latent variable which is measured by k

distinct items x1, x2, . . . , xk . The xis are observed
data measured on a sample of n subjects. The
variance–covariance matrix of the k items is

� =




σ 2
1 σ12 . . . σ1k

σ21 σ 2
2 . . . σ2k...
... . . .

...
σk1 σk2 . . . σ 2

k



 .

We assume that each observed item, xi , can be used
to estimate the latent variable Y . A better estimate
of the latent variable is produced by summing the
responses over the set of observed items. Let Y

denote the summed rating scale Y = ∑k
i=1 xi . The

total variation in Y is the sum of the elements of
� : var(Y ) = σ 2

Y = ∑k
j=1

∑k
i=1 σij , where σii = σ 2

i .
The unique variation is the sum of the diagonal
elements of �, or

∑k
i=1 σ 2

i . The ratio of the unique,
or noncommon, variation to the total variation in Y

is given by
∑k

i=1 σ 2
i /σ 2

Y . The proportion of common
variation, or true score variation, in Y is defined as:
1 − ∑k

i=1 σ 2
i /σ 2

Y . Coefficient alpha is based on this
proportion of common or true score variation, and
is adjusted to reduce dependency on the number of
items, k, as follows:

α = k
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As the proportion of true score variation accounted
for by the observed items increases, the reliability
increases. Higher reliability indicates less effect of
random errors in the model.

Researchers interested in measuring an underly-
ing construct or latent variable generally use either
existing items (i.e. manifest or observed variables
with known psychometric properties) or develop new
items which relate to the underlying construct. For
example, suppose a health maintenance organization
(HMO) wishes to measure whether its patients are
satisfied with their medical office visits. The underly-
ing construct or latent variable is patient satisfaction.
Suppose five items are created to measure patient
satisfaction, one of which might be: “How satisfied
are you with your physician’s willingness to answer
all of your questions during your office visits?” The
response options for each item could be a Likert
scale, as shown in Table 1.

Suppose the items are administered by question-
naire to a random sample of patients from the HMO.
To evaluate whether a reliable, multiple-item satis-
faction measure exists (i.e. whether the five items
are consistently measuring the underlying construct,
satisfaction) requires a series of, sometimes itera-
tive, analyses. First, all of the items must be scored
in the same direction (e.g. higher scores indicate
more patient satisfaction for every item). Then the
distributional properties of the items must be evalu-
ated. Specifically, the means and standard deviations

Table 1

Not Somewhat Neither satisfied Very
satisfied satisfied nor unsatisfied Satisfied satisfied

1 2 3 4 5
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should be approximately equal (parallel tests assump-
tion). If the distributional properties of the items are
similar, then coefficient alpha is computed according
to the formula shown above. The value of coeffi-
cient alpha is then evaluated (see guidelines below).
If coefficient alpha is in the acceptable range, then a
multiple-item scale is constructed. If coefficient alpha
is not in the acceptable range, investigators should
examine individual items carefully (see below and
[3] for examples).

The theoretical range of coefficient alpha is 0
to 1. Suggested guidelines for interpreting coeffi-
cient alpha are: <0.60 unacceptable, 0.60–0.65 unde-
sirable, 0.65–0.70 minimally acceptable, 0.70–0.80
respectable, 0.80–0.90 very good, and >0.90 con-
sider shortening the scale by reducing the number of
items [2].

Suppose, in our example, that the five items are
highly consistent, with an observed coefficient alpha
of 0.80. Here, each item has responses ranging from
1 to 5. The summed rating scale is computed by
summing the five item responses for each patient.
The theoretical minimum and maximum values for
the satisfaction scale are 5 and 25, respectively.

Summed rating scales should not be created
when items are not internally consistent (i.e. have
a low alpha coefficient). If a set of items pro-
duces a low alpha coefficient, either there are too
few items or the items have little in common. To
assess the latter, the item–total correlations, which
are the correlations between each individual item
and the sum of the remaining items that consti-
tute the scale, should be investigated. If a particular
item has a low item–total correlation, it should be
dropped from the scale and coefficient alpha should
be recomputed.

Cronbach’s alpha is also used for split-half
reliability assessment. In split-half reliability assess-
ment a set of k items is randomly split into equal
halves of k/2 items each. Scores based on the two
halves are computed (e.g. Y1 =∑k/2

i=1 xi and Y2 =∑k
i=k/2+1 xi) and correlated. Let r12 denote the cor-

relation between Y1 and Y2. There are many ways

to split the items into the two halves. Cronbach’s
alpha (as defined above) is equivalent to the lower
bound on the correlation between scores derived on
sets of k/2 items (i.e. Cronbach’s α < r12 over all
possible r12).

Alternative formulas for coefficient alpha are the
Kuder Richardson Formula 20 (KR-20), which is
primarily used to assess the reliability of mea-
sures based on dichotomous items, and the Spear-
man–Brown prophecy formula which is based on the
average interitem correlations, as opposed to covari-
ances. The respective formulas are:

α = k

k − 1



1 −



∑

pq

σ 2
Y







 ,

where p = Pr (affirmative response in each dichoto-
mous item),

q = 1 − p,

and

α = kr

1 + (k − 1)r
,

where r = the average interitem correlation coeffi-
cient.
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Crossover Designs

Crossover trials are sometimes referred to as change-
over or repeated measures designs, although the latter
term is better reserved for the more general field of
which crossovers form a part. They have been defined
as follows: a crossover trial is one in which individual
subjects are given sequences of treatments with the
object of studying differences between individual
treatments (or subsequences of treatments) [44].

Example 1

Graff-Lonnevig et al. [18] reported a crossover trial
in asthma comparing single inhaled doses of 12 µg
formoterol with a single inhaled dose of 200 µg
salbutamol. Fourteen children with asthma were allo-
cated at random to one of two sequences: formoterol
followed by salbutamol or salbutamol followed by
formoterol, and had their peak expiratory flow (PEF)
measured at various times after treatment. One child
(number 8) failed to complete both periods of treat-
ment. PEF readings 8 h after treatment for the 13
other children for the two periods are given in
Table 1, the last two columns of which need not
concern us for the moment.

This is an example of the most studied type of
crossover design, sometimes referred to as the two-
period crossover and sometimes as the two-treatment,
two-period crossover, but perhaps better designated,
referring explicitly to the sequences employed, as

the AB/BA design. (In this example we have A as
formoterol and B as salbutamol or vice versa.) A
schematic representation of such crossover trials is
given in Figure 1.

Example 2

A crossover trial in migraine compared two doses
(D1 and D2) of the potassium salt of diclofenac,
a nonsteroidal anti-inflammatory drug, with placebo
(P). Patients were allocated at random to one of six
possible sequences of treatment: D1 D2 P, P D2 D1,
D2 D1 P, D2 P D1, D1 P D2, and P D1 D2 [44].

In both of the above examples patients crossed
over from one treatment to another, and this stratagem
gives the design its name. In more complicated
designs, however, not all patients cross over to all
treatments and the essential feature is that which we
have tried to capture in our definition. In both of the

Period 1 Period 2

A A

B B

Treatment

ControlR
an

do
m

iz
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n

Figure 1 Schematic representation of an AB/BA cross-
over

Table 1 Data from Example 1 on PEF in l/min, 8 h after treatment, for a trial in asthmatic children

PEF
Basic Two period

Sequence Patient number Period 1 Period 2 estimator totals

Formoterol/Salbutamol 1 310 270 40 580
4 310 260 50 570
6 370 300 70 670
7 410 390 20 800

10 250 210 40 460
11 380 350 30 730
14 330 365 −35 695

Formoterol/Salbutamol 2 370 385 15 755
3 310 400 90 710
5 380 410 30 790
9 290 320 30 610

12 260 340 80 600
13 90 220 130 310
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designs above the number of treatments equals the
number of periods, but incomplete block designs in
which the number of periods is inferior to the number
of treatments are not uncommon, as in Example 3.

Example 3

A parallel assay comparing beta-agonists in asthma
was run in seven treatments (three doses of a ref-
erence formulation, three doses of an experimental
formulation, and placebo) and five periods [48]. The
trial was planned to have 126 patients allocated in
equal numbers to 21 sequences. In the end, 161
patients were recruited in 15 centers and four coun-
tries with an average of about seven and a half
patients per sequence but with at least six patients
on every sequence.

Designs in which the number of periods exceeds
the number of treatments have also been studied
extensively, if rarely applied. An example is provided
by Ebbut [6], and these designs are discussed below.

Crossover trials are commonly used in drug devel-
opment for various indications where the disease
is chronic and relatively stable – asthma, hyperten-
sion, sleep disturbance, angina, diabetes, migraine,
rheumatism, and epilepsy are examples. They are not
suitable for life-threatening diseases, for the obvious
reason that the patient may die and be unavailable
for further study and, conversely, they are generally
unsuitable for conditions in which a permanent cure
may be affected.

The main advantage of the crossover trial is its
extreme efficiency. Because each patient forms his or
her own control (a feature which makes such designs
intuitively attractive to the physician), an important
source of variability present in parallel group tri-
als (see Clinical Trials, Overview), the variability
between patients, is eliminated. As a consequence,
fewer patients are generally needed to form an ade-
quate conclusion. A further potential advantage is that
individuals’ reactions to treatment may be studied
(although to do this adequately requires crossover
trials in which patients are repeatedly allocated to
the same treatments). Crossover trials place a heavier
burden of participation on the individual patient, how-
ever, whose time in the trial will be much longer than
for a comparable parallel group trial and, therefore,
the danger that patients will drop out is increased (as
for patient 8 in Example 1). The total time to conclude
a crossover trial may be longer, although this is rarely

the case, since the recruitment phase is what domi-
nates most trials and since fewer patients are required.
The analysis of crossover trials is also more complex
and controversial than for parallel group trials and,
as noted above, the design is suitable only for cer-
tain indications. A potential problem with crossover
trials, which is dealt with in detail below, is that of
carry-over.

As a consequence of these potential advantages
and disadvantages, crossover trials are more exten-
sively used in Phase I and Phase II trials than
in the long-term therapeutic studies which charac-
terize phase III. They are by far the most popular
choice of design for bioequivalence. For the indica-
tions in which they may be used, they are generally
much better at dose finding than are parallel group
trials [49], the latter suffering from the fact that
they require group averages to study effects which
operate on the individual level. They are more likely
to be used for single-dose pharmacodynamic studies
of an explanatory nature (see Pharmacokinetics and
Pharmacodynamics) than for multiple-dose thera-
peutic trials of a pragmatic nature. They are the
design of choice for studying individual reactions
to treatment [44]. Because of the potential problem
of carry-over, they are generally viewed with suspi-
cion by drug regulatory agencies. However, they are
extremely popular in certain indications as indepen-
dent physician-initiated trials, for the simple reason
that they are often the only trials that have adequate
power when run in a single center.

Carry-Over

A standard assumption in the design and analysis of
experiments is that there is no interference between
units or treatments given to units – for example, that
crops growing in one part of a field and treated with
a given fertilizer do not affect the growth of crops
treated in another plot with an alternative fertilizer.
In many medical investigations this assumption is
often (and generally safely) ignored, but there are
cases where it could conceivably break down. For
example, if depressive patients in a trial are together
on one ward, affecting the mental state of some
may have an indirect effect on others. Similarly, a
trial of prophylactic education of homosexual men
regarding transmission of human immunodeficiency
virus (HIV) may reduce the chance of infection
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amongst those not selected to receive such educa-
tion, either by reducing infection amongst potential
sexual contacts or by an indirect spread of the rele-
vant knowledge. In crossover trials, the experimental
units are episodes of treatment rather than patients
(see Unit of Analysis). If the treatment given in one
period continues to affect the patient when subse-
quently treated, then this carry-over of the treatment
effect is an example of interference between units. It
can have serious consequences for the interpretation
of treatment effects because we may imagine that we
are studying the response to a single treatment, when
in fact we are also observing a residual effect of a
previous treatment. Carry-over is regarded by many
commentators as being the outstanding problem of
crossover trials and, indeed, having been evoked, it
will continue to have a residual effect throughout the
rest of this article.

Different types of carry-over can be envisaged.
However, for reasons to be explained, we shall make
the following restrictions on carry-over. First, we
assume that it cannot disturb the conclusions of a
trial unless there is a genuine difference between
treatments, and secondly that a carry-over is a true
residual effect of a treatment. These may seem to
be an unrealistic restrictions. For example, we can
surely envisage cases where otherwise similar but
synergistic drugs (see Synergy of Exposure Effects)
may have unequal persistence. In that case, where
the shorter persisting drug is given second, it will
benefit from an interaction which will be denied

Salbutamol

Formoterol

Salbutamol

Figure 2 Illustration of the likely position in any parallel
group trial in asthma comparing formoterol with salbutamol

to the longer persisting drug when it is given sec-
ond. The reason for ignoring such exotic cases
is that similar problems can also be envisaged as
affecting parallel group trials. Consider our Exam-
ple 1. Salbutamol is a standard treatment for asthma
developed in the 1960s, whereas formoterol is a
newer treatment first registered in the UK in the
1990s and (at the time of writing) not yet avail-
able in the US. Most patients recruited to trials of
formoterol had been taking salbutamol for many
years. Thus a parallel group design would really
be as illustrated in Figure 2. There are thus two
ways at least in which carry-over could affect par-
allel group trials comparing formoterol to salbuta-
mol. First, given some persistence of the effects of
salbutamol beyond whatever wash-out period was
instituted, there could be a salbutamol–formoterol
synergy from which patients in the formoterol group
could benefit but which those in the salbutamol
group would be denied. Secondly, patients recruited
could have tachyphilaxis to salbutamol and be no
longer capable of showing the same effect with
that drug. Both of these phenomena are extremely
unlikely to be important, and since they would also
be extraordinarily difficult to guard against, there is
no point in organizing parallel group trials to deal
with them. But, by the same token, we must not sad-
dle crossover trials with these problems either. This
is not to say that interactions between carry-over
and treatments are necessarily unimportant (where
carry-over is appreciable they may be), but that it
is pointless to attempt to deal with the problem
of carry-over for the case where there is no treat-
ment effect at all. As a consequence, whereas carry-
over may affect the power of a test of the effect
of treatment, we shall assume that it cannot affect
its size.

Similarly, we shall not consider the related prob-
lem of period by treatment interaction. A comparable
problem also affects parallel group trials. For exam-
ple, three-month parallel group trials in asthma are
commonly employed to support the registration of
drugs, which may be then be taken by patients for
a lifetime. This extrapolation requires an assumption
about time-by-treatment interaction which, although
not identical to period by treatment interaction (see
below), is analogous. (The difference is essentially
that in a parallel group trial a patient’s time on the
trial is, largely, time on the treatment.)
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Periods

The word period is commonly used in the literature
on crossover trials to describe the different occasions
on which patients are treated. As we shall see, period
effects are also commonly fitted in the models used
to analyze crossovers. Two points are worth noting
in this respect. First, the patients on clinical trials
are rarely recruited at the same time, and crossover
designs are no exceptions. Thus, one patient’s period
2 may actually occur before another’s period 1. Sec-
ondly, for multiple-dose crossover trials, in which the
object is to study the steady-state effect of treatment,
the trialist must determine the length of the period.
The relevant primitive design constraint for such tri-
als is likely to be the total length of time for which it
is considered reasonable to have a patient on the trial.
The number of periods is then a derived design con-
straint given the estimated time it takes for a patient to
reach the steady state. This point has been misunder-
stood in much of the literature on optimal design of
multiperiod crossovers, in which it has been implic-
itly assumed that the number of periods available is
an absolute constraint, within which one must pro-
duce designs and associated analyses which guard
against carry-over. In fact, by increasing the length
of a period at the cost of reducing the number of
periods, the trialist may reduce the risk of carry-over.
The sort of assumptions necessary are no different in
kind from the one commonly made that carry-over
lasts for one period only. Obviously if this is true
and the periods are made twice as long, carry-over
can be eliminated completely.

Wash-Out

In designing crossover trials, precautions are com-
monly taken to attempt to eliminate carry-over. A
period in which the residual effect of a treatment
is presumed to disappear is known as a wash-out,
although this is often a rather arbitrary label. In
single-dose pharmacodynamic trials, the object of a
crossover is to study onset of action as well as dura-
tion. The trialist has to determine how long after
the previous treatment was given the next should
be administered. The distinction between wash-out
and treatment period is then essentially arbitrary. The
treatment period is deemed to end once the trialist
stops measuring the effect of a drug and the next
treatment period starts once the next treatment is

administered. The difference between the two is a
wash-out, but essentially the trialist is faced with the
task of determining the minimum total time interval
between treatments. (In many trials the period varies
from patient to patient, subject only to the constraint
of a predetermined minimum, and the patient will
take his or her regular treatment for at least some
of the time between trial treatments. Both of these
points are regularly overlooked.) For multiple-dose
trials, where the object is to study the steady state,
an active wash-out may be instituted: the effect of a
previous treatment is presumed to wear off gradually
during the period in which the following treatment is
applied. For the purpose of analysis, measurements
from the latter part of a period only are used. Thus
the trialist’s task is to determine the minimum total
time between application of the first treatment and
measurement of the effect of the second. A third case
is where we have multiple-dose studies but wish to
study onset of action as well. In this case there is little
choice but to disrupt the rhythm of regular treatment
and have a true wash-out in which no treatment is
given at all. This is often considered to be a practical
obstacle to running crossover trials, but it should be
noted that it only arises from the need to study the
onset of action and that, if this is the purpose, the
need for a wash-out period will arise in a parallel
group trial also, the difference being that the patient
in a crossover trial will have at least two periods of
wash-out rather than just one.

A Brief Historical Note

As with many experimental designs, crossover trials
received an early application in agricultural research.
Jones & Kenward [25] describe an experiment carried
out in the nineteenth century over a long series of
years at Rothamsted by John Lawes, in which each
member of a pair of plots was treated either with
minerals or ammonia. In clinical crossover trials, the
main source of variability is usually patients rather
than periods. In Lawes’ experiment it would be years
(owing to the weather) rather than plots. From one
point of view, therefore, Lawes’ experiment is an
AB/BA crossover with plots taking the place reserved
for periods in clinical crossovers and years being used
for replication in the way that patients are. (If the
plots were neighboring, the carry-over could occur
both down the years and from plot to plot!)
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An early crossover trial in medicine is the investi-
gation published in 1905 by Cushny & Peebles [5] of
the hypnotic effects of optical isomers. The data were
used for illustrative purposes by Student (see Gos-
set, William Sealy) in his famous paper [11, 40, 47,
51]. Simpson’s 1938 paper [50] provides an example
of their use in studies of nutrition. Crossover trials
are also covered in Cochran & Cox’s famous book,
although the applications considered are not medi-
cal [4]. Finney’s 1956 paper [10] is important and
considers the design of crossover trials for use in
bioassay (see Biological Assay, Overview), a topic
which had been considered with particular relevance
to insulin assay earlier by Irwin [24] in 1937 and
Fieller [9] in 1940, and even earlier by Marks in 1925
in the medical literature [35]. A burst of method-
ological investigation into the AB/BA crossover was
initiated in the 1960s by the papers by Chassan [2]
and Grizzle [22], the latter being extremely influen-
tial in its proposal of a two-stage approach to the
analysis of such trials. This approach was endorsed
with some hesitancy by an influential paper by Hills
& Armitage [23], but was eventually shown to be
potentially extremely misleading by Freeman [16],
whose paper has set the agenda for current research
into the AB/BA design. Bayesian approaches in bioe-
quivalence were proposed by Selwyn et al. [43] in
1981, and an alternative method for crossover tri-
als in general has been developed by Grieve [19–21,
41] in a series of papers starting in 1985. Koch [29]
proposed a nonparametric approach for analysis in
1972. Early papers considering multiperiod designs
are those of Simpson [50] (mentioned above) and
Yates [54], also from 1938. Williams [53] in 1949
explicitly proposed designs for balancing the resid-
ual effects of treatment. Other influential papers will
be mentioned in appropriate Sections below.

The AB/BA Crossover

The Basics of Analysis

This is the simplest of all crossover designs for the
purpose of comparing two treatments, and is illus-
trated in Example 1. The fact that there is an extensive
literature associated with such an apparently simple
design may come as a surprise to those unfamiliar
with the field. The reason has to do with carry-over.
To discuss the effect of carry-over in detail it is nec-
essary to introduce a model for the AB/BA design.

However, since, given an assumption that carry-over
has not taken place, a very simple analysis of such
a design is possible, and which has some claims to
being as good, if not better, than any other, it is
perhaps worth postponing the model until this analy-
sis has been explained. The method has been clearly
described by Hills & Armitage [23].

The first step is to calculate for each patient what
has been referred to as a basic estimator [44] or
crossover difference [29]. This is the difference for a
given patient between the two treatments and is what
we should be constrained to use as our estimate of
the treatment effect, τ , were we to have data only
on the given patient. The basic estimator for each
patient is reproduced in the last column of Table 1. It
has been calculated as the reading under formoterol
minus that under salbutamol. Thus, for patients of the
first sequence it is the period 1 value minus the period
2 value, whereas for patients in the second sequence it
is the converse. Once the basic estimators have been
calculated, there are then two standard approaches to
analysis. One is to ignore the distinctions between
sequences, treat the values as a single sample of
data, and calculate estimates, P values, and confi-
dence intervals accordingly. A parametric approach
uses the (matched pairs) t test (see Student’s t Dis-
tribution), and the nonparametric equivalent is the
Wilcoxon signed-ranks test, or even the sign test.
For a randomization-based mode of inference (see
Randomization Tests), these methods are compatible
with a design in which patients have been allocated
completely at random to the two sequences [44]. If
the matched-pairs t test is applied to the basic esti-
mators here, it will be found that the mean basic
estimator is 45.4 l/min, its estimated standard error
on 12 degrees of freedom is 11.3 l/min, the observed
t ratio is 4.03, the critical values at the 5% level
two-sided are ±2.18, the 95% confidence limits are
21 l/min and 70 l/min, and the P value (two-tailed)
is 0.0017.

The approach we shall concentrate on, however,
does recognize the distinction between sequences.
The first step is to calculate a separate mean of
the basic estimators for each sequence. These two
sequence means are 30.7 and 62.5. The difference
between them is probably due to chance, but might
conceivably be due to a period effect. For example,
if there were a secular tendency for second period
values to be higher, this would diminish basic esti-
mators in the first sequence and increase them in the
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second. This would have two consequences. First,
conditional upon a given unbalanced allocation to the
two sequences, a straightforward average of the basic
estimators would be biased. (Of course, in a random-
ized design, over all possible allocations, it would
not be biased.) A simple way of dealing with this is
to block the design (see Blocking) so that there are
equal numbers of patients per sequence, but this does
not deal with the second difficulty, namely that under
such circumstances the variance of the basic estima-
tors calculated by treating them all as coming from a
single sample will be inflated by a component due to
the effect of the periods.

A simple solution which deals with both problems
is to stratify on the sequences and take an unweighted
average of the two sequence means. In this case,
the unweighted average, which we denote τ̂ , is 46.6
l/min. In general if the two sequences have n1 and
n2 patients, respectively, then such a contrast will
have a variance of qσ 2/4, where σ 2 is the variance
of a basic estimator and q = (1/n1 + 1/n2). The
variance of a basic estimator may in turn be estimated
using the standard approach of pooling within group
sums of squares, familiar from the two-independent-
samples t test, using

σ̂ 2 = (n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
,

where S2
1 and S2

2 are the unbiased estimates of σ 2

from sequence groups 1 and 2, respectively. Putting
this together, we may calculate a t statistic with
indexed degrees of freedom as

tn1+n2−2 = τ̂ − τ

(σ̂ /2)
√

q
. (1)

If we take τ as the value provided by some null
hypothesis of interest (typically that τ = 0), then we
may use (1) in a significance or hypothesis test in the
usual way (see Hypothesis Testing). Alternatively,
by setting the left-hand side of (1) equal to some
percentage point and treating τ as unknown, we
may calculate a confidence limit for τ . For this
example, S2

1 = 1086.9, S2
2 = 1997.5, and hence σ̂ =

38.7 l/min. For τ = 0, the t statistic is 46.6/10.8 =
4.3 and the P value is 0.0012. Alternately, since the
critical values for a test at the 5% level (two-sided) on
11 degrees of freedom are ± 2.2, the 95% confidence
limits are 23 l/min and 70 l/min.

An equivalent analysis to the above is to work
with period differences rather than basic estimators.
The difference between periods is then calculated in
the same direction in each group so that the period
differences in the second sequence group are simply
the negative of the basic estimators. The semidiffer-
ence between the two sequence means, rather than
their average, now reflects the treatment effect. In
fact, if all that is wanted is to test for the treatment
effect, a two-sample t test may be used. Alternatively,
if the semiperiod differences are calculated on the
subjects in the first place, then a confidence inter-
val may be calculated for τ using the two-sample
t . The equivalent nonparametric approach is to use
a Wilcoxon–Mann–Whitney test as proposed by
Koch [29]. Alternatively, Fisher’s exact test using
the signs of the period differences or an adapted
Brown–Mood median test may be used [44].

A Model for The AB/BA Design

The above analysis, most commentators would agree,
adjusts the treatment effect adequately for any dif-
ference due to periods and also validly eliminates
the effect of individual patients from the estimate of
the standard error of the treatment effect. If, how-
ever, carry-over is present, then the estimator of τ is
biased. This is not, necessarily, a compelling reason
for abandoning this approach [44], but the possible
bias has led statisticians to look at the problem of
carry-over in depth. To follow these arguments we
now introduce a model for carry-over as follows.

Let Yijk be the response of subject j, j =
1, . . . , n1 or n2, of sequence i, i = 1, 2, in period
k, k = 1, 2. (Thus both i and j are necessary to
identify a given subject.) Then let

Yijk = αik + sij + εijk, (2)

where αik is an effect common to all subjects in a
given sequence in a given period, sij is an effect
due to the given subject which may, according to
the circumstance, be treated as either fixed or ran-
dom, and εijk is a random error term. The εijk are
assumed to be independent with constant variance
γ 2 and, where the sij are treated as random (see
Random Effects), they are taken to be indepen-
dently distributed both of each other and the εijk , with
constant variance φ2. (Note that σ 2, as previously
defined, is 2γ 2.) This is a components of variance
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(see Variance Components) approach which is com-
monly used. An alternative formulation of the random
effects model [22], which is more general, is to model
a combined error term ξijk with a block diagonal form
for variances and covariances so that correlations
between observations on the same patient are equal
to ρ and correlations of observations between differ-
ent patients are zero. Such a formulation allows for
the theoretically possible, but unlikely, case where
the correlation between observations on the same
patient is negative. If, however, the components of
variance model is correct, then since ξijk = sij + εijk

we have ρ = φ2/(φ2 + γ 2), which can never be neg-
ative. We continue with the components of variance
approach.

The next step is to model the αik terms. A possible
parameterization is given in Table 2, with treatment
effect τ indexed by the treatment labels A and B,
period effects, π indexed 1 and 2, and carry-over
effects λ indexed by engendering and perturbed treat-
ment and general level µ. The object of the crossover
trial is then to make inferences about the contrast
τA − τB, equivalent to τ in our previous formulation.
Also given in Table 2 are four cell means, each of
which is an unbiased estimate of the combination of
parameters in the same cell. Three linear combina-
tions of these cell means have been much studied
in the literature and, together with their expectations,
are given in Table 3. The names of the contrasts are
as used by Freeman [16] and Senn [45].

The first of these, CROS (for crossover), is nothing
less than the simple estimate, τ̂ , of the treatment
effect we encountered above. This can now be seen
to be a biased estimator of τ , except where the
differential carry-over effect, λ = λAB − λBA, is zero.
This will most plausibly be the case where both
λAB and λBA are zero, i.e. when the wash-out has
been successful in eliminating carry-over. In other
cases, the estimator is biased downward by half the
differential carry-over (hereafter simply referred to as
the carry-over). As a consequence, where this occurs,
there will be some loss of power associated with the
test of the treatment effect.

The second linear combination, SEQ (differences
between sequences), has an expectation equal to the
carry-over, and the third, PAR (so called because it is
a between-patient contrast using first-period data only
and hence of the sort commonly used in a parallel
group trial), is an unbiased estimator of the treatment
effect. The three linear combinations have been
presented in terms of the four cell means given in
Table 2. Each corresponds, however, to the difference
between the two sequence groups of the mean over
all the patients in the group of a simple summary
statistic calculated for each patient. For PAR (Lp),
this summary statistic is simply the first period value.
For SEQ (Ls), it is the total over two periods,
and for CROS (Lc), as already discussed, it is the
semidifference between the first and second period
values. Note that these statistics are related by the

Table 2 Model for the AB/BA design

Period 1 (k = 1) Period 2 (k = 2)

AB (i = 1) µ + τA + π1 µ + τB + π2 + λAB

Y 1.1 Y 1.2

Sequence
BA (i = 2) µ + τB + π1 µ + τA + π2 + λBA

Y 2.1 Y 2.2

Table 3 Linear combinations of the cell means

Name Label Definition Expectation

CROS Lc [(Y 1.1 − Y 1.2) + (Y 2.2 − Y 2.1)]/2 (τA − τB) − (λAB − λBA)/2
= τ − λ/2

SEQ Ls (Y 1.1 + Y 1.2) − (Y 2.2 + Y 2.1) (λAB − λBA)

= λ

PAR Lp Y 1.1 − Y 2.1 (τA − τB)

= τ
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relationship Lp = Lc + Ls/2. Of the three summary
statistics, only CROS eliminates the subject effect
given by sij in (2). Therefore, if we are interested only
in this particular contrast, it is irrelevant whether the
subject effect is assumed to be random or fixed since
it is eliminated anyway. For the other two contrasts
this is not the case, and it becomes necessary to treat
the subject effects as random. (For the discussion that
follows, this assumption is now made.) Given this
assumption, the two-independent-samples t test may
be used in connection with SEQ and PAR. If this
is done for Example 1, then the means (estimated
standard errors) are Ls = 14.4(80.4) l/min and Lp =
53.8(45.3) l/min, and the t statistics are 0.18 and
1.19, respectively, both on 11 degrees of freedom.
Thus, if we are prepared to use the potentially biased
estimate of the treatment effect for this example,
then it is significant, but if we insist on using the
unbiased estimate of the treatment effect, then it is
not significant. The inconsistency of such inferences
is not unusual and indeed is to be expected. Crossover
trials are designed to be used with far fewer patients
than parallel group designs, and one should not be
surprised if an estimate which uses the within-patient
structure of a trial is significant whereas one which
discards half the data and is between-patient is not.
The question then arises: can a reasonable choice be
made between the two? For many years the accepted
wisdom for crossover trials was that it could be. We
now examine this procedure.

The Two-Stage Procedure

In Example 1, the estimate of the carry-over effect,
Ls, is not significant, and this suggests no particu-
lar evidence that carry-over has occurred. Why not,
therefore, use the within-patient estimator of the treat-
ment effect, Lc? On the other hand, if Ls had been
significant, it might seem to be more appropriate to
use Lp. Grizzle [22] proposed a general strategy for
testing crossover trials as follows (see Figure 3). First
perform a test for carry-over. If this is not signifi-
cant, perform the within-patient test of the treatment
effect. However, if the test for carry-over is signifi-
cant, use the between-patient estimator. Because the
power of the preliminary test for carry-over is typ-
ically low, Grizzle suggested using a higher (less
stringent) nominal level of significance of 10%. This
general procedure came to be known as the two-stage

Preliminary test for
carry-over

Significant?

Within-patient test for 
treatment 

(CROS test)

Between-patient test for
treatment
(PAR test)

Significant?Significant?

Efficacy 
demonstrated

YesNo YesNo

YesNo

Efficacy  unproven

Figure 3 Schematic representation of the two-stage
procedure

procedure, and for many years was the accepted way
of analyzing crossover trials.

The fact that it now has few supporters amongst
those researching in the field (for example, none
of the three books devoted to crossover designs
recommends it [25, 42, 44]) is due to the extremely
important paper of Freeman’s [16] which, analyzing
the two-stage procedure as a whole, showed that it
had a type I error rate of 7%–9.5% (depending on
the correlation between successive measures, ρ for
a claimed nominal level of 5%. (Note that, since
we have claimed that carry-over cannot occur unless
there is a treatment effect, a type I error can only be
committed where there is no carry-over.) Freeman’s
result can be explained in a number of ways.

A simple explanation is that the test of carry-
over, being a between-patient test, tends to show
significance not only where there is genuine carry-
over but also when, by chance, the patients in the
two groups are very different. Under such circum-
stances, the last thing we should wish is to use
a between-patient test of the effect of treatment,
but this is precisely what the two-stage procedure
leads us to do [44, 45]. An alternative explana-
tion involves the variances of the contrasts. The
argument for the two-stage procedure comes from
considering the expectations of the contrasts, but
considering their variances justifies the opposite pro-
cedure. As already discussed and as confirmed by the
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main diagonal of the variance–covariance matrix
given by Table 4, Lc has a much lower variance
than that of Lp. Thus it is inevitable that they
should often give very different answers. Further-
more, unless we should usually prefer the estimate
given by Lc under the circumstance of their differ-
ing, there would be no point in using a crossover
trial in the first place. However, Ls = 2(Lp − Lc), so
that, when the estimates differ, the contrast used for
examining carry-over will tend to be large. Hence,
based on the variances of the estimators, we should
prefer CROS to PAR where SEQ is large, rather than
vice versa.

A more formal explanation comes from consider-
ing the joint distribution of the three statistics. Table 4
gives not only the variances of the estimates but also
their covariances. Lc and Ls are independent but Lp

and Ls are highly correlated. The ratio of the covari-
ance of Lp and Ls to the variance of Ls gives the
regression of Lp on Ls, which is thus 1/2. In fact,

E[Lp|Ls] = τ + Ls − λ

2
(3)

and the conditional variance is

var[Lp|Ls] = qγ 2

2
. (4)

Since Lc is independent of Ls, its expectation and
variance are as given in Tables 3 and 4. We may
note from (4), however, that conditional on Ls the
variance of Lp is the same as that for Lc. This is,
of course, an inevitable consequence of the fact that
Lp = Lc + Ls/2. Furthermore, conditionally, Lp is
not in general unbiased. Clearly, from (3) its bias
is (Ls − λ)/2, and this is only zero where the carry-
over is perfectly estimated. Of course, the expected
value of E[Lp|Ls] over the distribution of Ls is τ ,
but there are two objections to regarding this as
having any relevance. The first is that in the two-stage
procedure the use of Lp is not unconditional. Hence
the unconditional expectation is irrelevant. Secondly,
but for the possibility of carry-over, the value of Ls

Table 4 Variance–covariance matrix for three contrasts

CROS (Lc) PAR (Lp) SEQ (Ls)

CROS (Lc) qγ 2/2
PAR (Lp) qγ 2/2 q(φ2 + γ 2)

SEQ (Ls) 0 q(2φ2 + γ 2) q(4φ2 + 2γ 2)

is a means of defining relevant subsets. Where such
a relevant subset can be identified, one statistical
viewpoint (that of Fisher [12] himself) is that the
property of the set as a whole is irrelevant.

Whatever philosophical disagreements there may
be about this point, however, the two-stage procedure
as a whole has an inflated type I error rate because,
whereas the conditional type I error rate of the CROS
test (which will be used with probability 0.9) is
0.05 whatever the value of SEQ, that of the PAR
test (which will be used with probability 0.1) is
given by the integral over significant values of SEQ
of the conditional type I error of PAR. This value
lies between 0.25 and 0.5. The latter value arises if
the within-patient variability is zero, so that γ 2 = 0.
In that case there is a perfect correlation between
Lp and Ls, the former being simply half the latter.
Under such circumstances, the P value associated
with PAR is the same as that with SEQ. Hence,
since under the null hypothesis the P values have
a uniform distribution, there is half a chance that
a P value which is below 0.1 will be below 0.05.
Hence if the P value for SEQ is significant at the
10% level, there is half a chance that the P value for
PAR will be significant. Thus, the conditional type I
error rate is 50%. Numerical integration produces
the corresponding result for any combination of the
values of γ 2 and φ2, the other extreme being given
where there is no between-patient error and φ2 = 0.
This case gives a conditional type I error rate of
0.25. Putting these results together, the unconditional
type I error rate for the two-stage procedure lies
between 0.9 × 0.05 + 0.1 × 0.25 = 0.07 and 0.9 ×
0.05 + 0.1 × 0.5 = 0.095. Further details are to be
found in the paper by Freeman [16]. Although some
commentators have since claimed that the two-stage
analysis may be used after all [26], most regard it
as no longer acceptable [42, 44, 45]. Tudor & Koch
[52] have suggested performing the test for carry-over
only if CROS is significant, and this, at least, would
avoid the problem of the increase in type I error
rate with the two-stage procedure. Note, however,
that, when SEQ is significant, PAR and CROS will
differ considerably, so that it is unwise to expect
much comfort from a back-up test using PAR if the
procedure is run this way round. Senn has shown
how it is possible to correct the bias in the two-stage
procedure by carrying out the PAR test (if used) at
the 0.005 level rather than the 0.05 level but shows
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that this has no power advantages over using CROS
alone [46].

A Bayesian Approach

A very simple criticism of the two-stage analysis is
possible from the Bayesian perspective (see Bayesian
Methods). This is to note that the amount of
information regarding carry-over is insufficient to
resolve an initial genuine doubt as to its presence
or not. Thus, first to pretest and then to behave
either as if carry-over definitely is or is not present is
incoherent. Grieve [19–21, 41], in a series of papers,
has introduced an alternative Bayesian approach to
the AB/BA design. This establishes the Bayesian
posterior distribution of the treatment effect under
the highly informative prior distribution that carry-
over is zero (thus corresponding more or less to
a CROS analysis) and also where the prior is
uninformative (corresponding roughly to the PAR
analysis). These posterior distributions can also be
regarded as conditional distributions given particular
models. However, the trialist can also express his
prior belief in the validity of these two models, and
this can be updated using evidence from the trial via a
Bayes factor to produce posterior odds. The posterior
odds can then be used to mix the two conditional
posterior distributions to produce a single posterior.
This technique has been extended by Grieve to cover
the case with baselines also [20].

By permitting the adoption of intermediate posi-
tions, Grieve’s approach is more flexible than the
CROS analysis alone (which is a consistent Bayesian
approach but corresponds to an extreme prior) whilst
avoiding the pitfalls of the two-stage approach. How-
ever, it is not fully Bayesian since it does not model
the dependence of belief in carry-over on belief in
the effect of treatment (on which it must, in practice,

depend strongly), and the appropriate prior weight-
ings are a rather delicate matter. (It is necessary to
give more prior weight to the case of no carry-over
than would literally be believed to be true.)

Using Baseline Data

The difficulty in analyzing the AB/BA design is that
there are not enough model degrees of freedom
available to analyze the contrasts of interest whilst
eliminating other parameters. One solution is to add
information of a different type to the basic design.
Such information may be provided by baseline infor-
mation, i.e. measurements taken prior to treatment.
As Ratkowsky et al. [42] point out, such measure-
ments may be obtained before the first treatment
period, at the end of the wash-out period which inter-
venes between the two treatment periods, and after
wash-out at the end of the trial. The general scheme
is illustrated in Figure 4. The third baseline value is
most rarely taken and the first most commonly. The
most common combination, however, especially in
single-dose trials, is baselines 1 and 2. A cell mean
parameterization corresponding to this latter case is
given in Table 5.

Various authors have proposed various approaches
to estimation of the treatment effect and its standard
error [25, 39], depending upon which of the above
baseline values are available and which of the fol-
lowing assumptions, if any, are made: (i) that the

Table 5 Cell mean expectations for baselines

Period 1 (k = 1) Period 2 (k = 2)

AB (i = 1) ν + θ1 ν + θ2 + λA−
X1.1 X1.2

Sequence
BA (i = 2) ν + θ1 ν + θ2 + λB−

X2.1 X2.2

Run-in
First 

treatment
period

Wash-out
Second

treatment
period

Wash-out

Baseline 1 Outcome 1 Baseline 2 Outcome 2 Baseline 3

Figure 4 Schematic representation of outcome and baseline measurements in an AB/BA crossover trial
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period effect applicable to a baseline measurement is
the same as that which applies to the treatment which
follows (θi = πi); (ii) that the effect of carry-over into
a baseline value is the same as carry-over into a sub-
sequent treatment (λA− = λAB and λB− = λBA); and
(iii) that baselines are measured on the same scale
as outcomes and more particularly that the variances
of outcomes and baselines are the same [var(X) =
var(Y )]. (This latter assumption will not hold, for
example, if some patients are placebo (see Blinding
or Masking) responders and others are not.) Jones
& Kenward [25] have pointed out, however, that
assumptions (i) and (ii) are not necessarily reasonable
and, indeed, one may also claim that assumption (iii)
need not apply [44, 45].

In fact, it is probably fair to say that none of
the solutions to the problem of carry-over by using
baselines has achieved general assent. For example, if
the carry-over into the baseline is assumed to be the
same as that into the subsequent outcome, then the
following within-patient estimator has expectation τ :

Lbc =

[
(Y 11 − X11) − (Y 12 − X12)

+(Y 22 − X22) − (Y 21 − X21)

]

2
. (5)

This is the same estimator as the conventional within-
patient estimator CROS (Lc) associated with the
design without baselines, but with the outcome values
“corrected” by subtracting their respective baselines.
However, unless the treatment period is short com-
pared to the wash-out, then the condition that λA− =
λAB and λB− = λBA is most unlikely to hold. Even
then, the further assumption is required that carry-
over of a treatment into a period where an active
treatment is being given is the same (other things
being equal) as carry-over into a period where no
treatment is given. In fact, it is not hard to think of
cases where either λA− or λB− would be large but
(due to the longer time interval) λAB and λBA small.
If that were the case, the bias in Lbc would be worse
than the bias in Lc. For this reason Ratkowsky et al.
[42] have proposed using the estimator

Lbp = (Y 11 − X11) − (Y 21 − X21), (6)

but this is simply the standard PAR estimator, Lp,
“corrected” for baselines. Hence, if this is used there
is no point in carrying out a crossover trial unless
the purpose is to study carry-over itself. (This would
be an extremely wasteful use of the extra period.)

Jones & Kenward [25] have proposed a complicated
multistage testing process somewhat analogous to the
Grizzle two-stage procedure, which uses the baselines
to make the test for carry-over more powerful. This,
however, may be criticized along rather similar lines
to Freeman’s criticism of the two-stage procedure and
is not recommended.

In fact, considerations such as these suggest that,
whilst there may be many cases where the AB/BA
crossover may be safely analyzed by ignoring base-
lines altogether, there are not a few where attempting
to use them would introduce problems with carry-
over which could otherwise be avoided, and rather
few where the problems with carry-over could be
eliminated by resorting to baselines. This does not
mean that baselines are useless, however. If patients
are subjected to individual time trends, then trends
in baseline values may be correlated with trends in
outcome values. If carry-over is not a problem, then
analysis of covariance using the baselines may bring
a considerable reduction in variance. The estimator is
of the form

Lbc =

[
(Y 11 − β̂X11) − (Y 12 − β̂X12)

+(Y 22 − β̂X22) − (Y 21 − β̂X21)

]

2
, (7)

where β̂ is chosen so as to minimize the variance of
Lbc and hence corresponds to the partial regression of
outcomes on baselines. Details of the implicit error
structure are covered by Jones & Kenward [25], the
properties of this and other estimators are clearly
reviewed by Koch [30], and further discussion and
details of fitting are given by Senn [44, 45]. Although
this estimator does require the assumption that neither
baselines nor outcomes are subject to carry-over, it
does not require the assumption that outcomes and
baselines be measured on the same scale, nor that
period effects for baselines are the same as for their
corresponding outcomes.

Two-Treatment Designs in Three or More
Periods

n-of-1 Trials

Adding further periods to the crossover design per-
mits one to study further types of effect. One which
is potentially important but which has received little
attention is that of treatment by patient interaction.
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The fact that a given patient receives the same treat-
ment more than once may permit one to divide
“within-patient” variation in the AB/BA design into
two further sources: pure random variation from
period to period and a personal response to treatment.
The individual sequences which patients receive are
sometimes referred to as “n-of-1 trials”, and these are
often performed with the object of analyzing each
patient’s results independently. However, if these tri-
als are analyzed as a sequence using a random effects
model, then the whole can be referred to as a multi-
period crossover design [44].

The Simple Carry-Over Model

By adding more periods to the AB/BA design, more
model degrees of freedom are obtained and these
may be used to estimate or eliminate the carry-over
effect, provided that restrictive assumptions are made
about its nature. The most popular set of assumptions
are associated with the so-called simple carry-over
model, namely, that carry-over will last for one period
only and depends only on the engendering and not the
perturbed treatment. Much investigation of optimality
has been reported using this model [25, 28, 32, 36].
At one time this model appeared to have acquired
an importance in the literature on the design of
crossover trials which practical consideration did not
justify; in more recent years it has come under heavy
criticism [13, 14, 44]. For example, the model implies
that the effect of a treatment reaches the steady
state after two periods (and not after one or three
periods). This, in turn, implies that the trialist has

misjudged the length of a period, making it too short
and that if, for example, a parallel group trial were
used as an alternative, only the one-period direct
effect of treatment would be captured, rather than
the more relevant sum of the direct and the residual
or carry-over effects. On the other hand, the much
criticized AB/BA design, but with treatment periods
twice as long, would capture the relevant treatment
effect perfectly!

Dual Balanced Designs in Two Sequences

A dual sequence is obtained from another by
interchanging the A and B treatment labels. So, for
example, BA is the dual of AB and vice versa, and
BAA is the dual of ABB, and so forth. Designs
consisting only of such pairs and in which the two
members of a pair appear equally are often referred
to as dual-balanced. A particularly simple analysis is
possible for designs consisting of a single balanced
pair [25].

For example, a three-period design might allocate
patients in equal numbers to the two sequences
ABB and BAA. A four-period design might use
the sequences ABBA and BAAB. Such designs
can be analyzed using the two-sample t test as
follows. Contrasts are found which, when compared
between sequences, will eliminate subject, period
and carry-over effects whilst estimating the treatment
contrast of interest. For example, Table 6 shows
cell means parameterizations for the AABB/BBAA
design corresponding to four different models of
carry-over. (The cells have been numbered so that

Table 6 Cell means representations of a two-treatment four-period design in two sequences for four different types of
carry-over

Period
Sequence and type

of carry-over 1 2 3 4

AABB 1 2 3 4

Simple µ + τA + π1 µ + τA + π2 + λA µ + τB + π3 + λA µ + τB + π4 + λB

Steady-state µ + τA + π1 µ + τA + π2 µ + τB + π3 + λAB µ + τB + π4

Both µ + τA + π1 µ + τA + π2 + λAA µ + τB + π3 + λAB µ + τB + π4 + λBB

Neither µ + τA + π1 µ + τA + π2 µ + τB + π3 µ + τB + π4

BBAA 5 6 7 8

Simple µ + τB + π1 µ + τB + π2 + λB µ + τA + π3 + λB µ + τA + π4 + λA

Steady-state µ + τB + π1 µ + τB + π2 µ + τA + π3 + λBA µ + τA + π4

Both µ + τB + π1 µ + τB + π2 + λBB µ + τA + π3 + λBA µ + τA + π4 + λAA

Neither µ + τB + π1 µ + τB + π2 µ + τA + π3 µ + τA + π4
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they may be referred to subsequently.) If we let Yijk

be the response for period k for subject j of sequence
i and we calculate the linear combination Cij =∑4

k=1 WkYijk , where w1 = 6/20, w2 = 4/20, w3 =
−7/20, and w4 = −3/20, then since

∑4
k=1 Wk =

0, Cij has the subject effect eliminated from it.
Furthermore, as may be seen by studying Table 6,
if such a linear combination is calculated for a
patient chosen at random from sequence 2 and
subtracted from the corresponding contrast calculated
from a patient in sequence 1, and simple carry-over
applies, the expectation of the result is simply
τA − τB. Thus a comparison of the means from
the two sequences produces the contrast of interest
and may be tested using the two-sample t test.
A nonparametric approach would be to use the
Wilcoxon–Mann–Whitney test [29].

The weakness of the simple carry-over model,
however, is easily illustrated using this design, which
is one of two supposedly optimal designs in four peri-
ods and two sequences. Suppose that B is a placebo
but that A is an active treatment. The elimination of
λA, the carry-over due to A, relies on the fact that
4/20 − 7/20 + 3/20 = 0, these being the weights
which will be associated with cell means 2, 3, and
8. (Note that, in the construction of the final treat-
ment estimate, weights for the cell means in the
second sequence are the negative of those in the first.)
However, pharmacokinetic and pharmacodynamic
considerations might suggest that, if carry-over is
important, it will have much more of an effect on
cell mean 3, which measures the effect of a placebo
after a double period of active treatment, than any-
where else in the design. Yet this is the mean which
attracts the greatest weight. If the steady-state carry-
over model applies instead, therefore, this scheme of
weights will be seen to be quite undesirable.

With the steady-state carry-over model, the one-
period assumption is retained, but it is assumed that
a treatment will show no carry-over into itself. The
relevant weights for this model are w1 = 1/4, w2 =

1/4, w3 = 0, and w4 = −1/2. On the other hand, to
produce an estimator which guards against both kinds
of carry-over, then w1 = 1, w2 = −1/2, w3 = 0, and
w4 = −1/2. If the problem of carry-over is ignored
altogether, then the weights are w1 = 1/4, w2 =
1/4, w3 = −1/4, and w4 = −1/4. Yet another possi-
bility is to suppose that both kinds of carry-over apply
but that we wish to estimate the total effect (direct +
carry-over) of the treatments. Suitable weights would
then be w1 = 0, w2 = 1/2, w3 = 0, and w4 = −1/2.
However, since periods one and three are ignored
altogether, the estimator is then identical to that
which would be produced for an AB/BA crossover
with periods twice as long. This illustrates the prob-
lem nicely, showing that, although more complicated
designs appear to open up the possibility of elimi-
nating carry-over, the reliance on assumptions is not
easily banished.

In indexing the efficiency of the designs, it is often
assumed that the within-patient errors are uncorre-
lated. Although some work has been done on the
more general case where there is autocorrelation,
it has been assumed either that there is no carry-over
or only simple carry-over [31, 36]. Where standard
assumptions of independence and homoscedasticity
(see Scedasticity) apply, then the efficiency of a
design/model combination is proportional to the sum
of the squares of the weights associated with the cell
means. Table 7 gives the variances of three possi-
ble designs in four periods. (These are three designs
based on a single dual pair for which each patient
receives each treatment twice. Such designs are some-
times referred to as being uniform on the patients. In
the absence of carry-over they are more efficient than
designs in which patients receive one treatment three
times and the other once.) The Table gives the vari-
ance of the estimate for the treatment effect for each
of four carry-over models as a ratio of the variance
for the case where no carry-over is fitted.

As can be seen, if either the simple carry-over
model is used, or the steady-state model is used,
the first and third designs are the most efficient, the

Table 7 Variances of estimated treatment effects for three designs and four models as a
ratio of the case where carry-over is not fitted

Design Simple Steady-state Both Neither Cumulative

AABB/BBAA 1.1 1.5 6 1 2
ABAB/BABA 5.5 5.5 5.5 1
ABBA/BAAB 1.1 2 6 1
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second being much more inefficient. However, if both
forms of carry-over are to be eliminated, then the
second design is most efficient. On the other hand, if
the total or cumulative effect under the steady state
is of interest, the first design is the only possibility.

More Complicated Designs

There is no need to restrict the treatment sequences
to a single dual pair, and designs based on the use
of four sequences can prove superior. As above,
however, the optimality of a design depends on
the carry-over model. In nearly all of the litera-
ture the simple carry-over model is assumed with
no investigation of its suitability, and, indeed, in the
purely medical literature, such designs are hardly ever
applied. To drug developers, the steady-state model
will seem at least as plausible as the simple model.

Where a more general model for the correla-
tion structure applies, identifying “optimal” designs
becomes quite complex. There have been a number of
extensive investigations. However, quite apart from
the difficulties with carry-over described above, there
is the added problem that optimal designs depend on
the correlation structure, and this will not be known
in advance nor with any certainty even after running
the trial. Matthews [37] covers the estimation of dis-
persion parameters.

Another paper of Matthews [38] gives a good gen-
eral review of the field. Fleiss [13, 14] and Senn
[44] have provided critical attacks on this general
topic. Jones & Kenward [25] and Ratkowsky et al.
[42] give further details of models and fitting. An
alternate approach to modeling carry-over has come
from the field of pharmacokinetic and pharmaco-
dynamic (PK/PD) modeling, where residual effects
and direct effects are treated in one comprehensive
PK/PD model. Sheiner et al. [49] have used this
to investigate the relative performance of crossover,
dose-escalation, and parallel group studies in dose-
finding.

Designs for Three or More Treatments in
the Same Number of Periods

It is not uncommon to run crossover trials in three or
more periods. Indeed, in drug development, contrary
to popular opinion, except in the field of bioequiv-
alence, such designs are more common than the

AB/BA design. For example, they are very popu-
lar in certain fields as dose-finding studies, using
designs comparing several doses to a placebo. A
very common way of designing such trials is to
choose sequences which, taken together, form one
or more Latin squares. Example 2 described such a
design, comparing two doses of diclofenac to placebo
using six sequences, or two Latin squares. A four-
treatments crossover trial comparing treatments A, B,
C, and D might allocate patients in equal numbers to
sequences such as

A C D B,

B D C A,

C B A D, and

D A B C.

Such a design is not only uniform on the peri-
ods (each treatment appears equally often in every
period), as is any Latin square, but it is sometimes
called balanced, since each treatment appears an
equal number of times (in this case once) after every
other. (This is, however, a rather confusing term since
balance is used generally by medical statisticians in
a different and less specialized sense, and is given
a similar but nonetheless somewhat different mean-
ing in describing incomplete blocks.) Such balanced
Latin squares are known as Williams squares, and are
more efficient if the simple carry-over model is being
fitted [53]. However, this does not necessarily make
them the best choice for dealing with carry-over (for
similar reasons to those discussed above) [44].

Some alternative Latin squares may also be prefer-
able for certain types of analysis. Consider, for exam-
ple, the square

A B C D,

B A D C,

C D A B,

D C B A.

By ignoring treatments D and C and pairing off
sequences 1 & 2 and then again 3 & 4, this design can
be reduced to two AB/BA crossovers. On the other
hand, for the purpose of comparing the treatments
A and C, treatments B & D could be ignored and
sequences 1 & 3, and 2 & 4 can be paired, and so
on. This means that any technique which is available
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for analyzing the AB/BA design (nonparametric, for
binary data, and so forth) can be used to analyze
contrasts for such a design. The results from the two
subdesigns thus formed can be pooled using standard
meta-analytic techniques.

Designs for Three or More Treatments in
Fewer Periods

Occasionally it is of interest to study more treatments
than can realistically be given to a single patient.
Incomplete blocks designs are then an option, as
discussed in Example 3. This design is uniform on
the periods and balanced in the sense of incomplete
blocks designs (i.e. each of the 21 possible pairs of
treatments is given equally frequently to the patients).
However, the design is not balanced in the carry-
over sense since each treatment does not follow every
other equally frequently. However, in this exam-
ple, wash-out was adequate and carry-over was not
adjusted for.

If, as was the case in this example, balancing for
carry-over is ignored, then such designs are simply
examples of incomplete blocks designs, about which
there is an extensive literature. If it is desired to bal-
ance for simple carry-over, then added complications
are involved. In principle, it is also possible to recover
interblock information for such designs. (In fact
even for complete blocks (see Randomized Com-
plete Block Designs), if carry-over is fitted, since
this induces some nonorthogonality, there is some
interblock information available [3].) In practice it
seems common to ignore this refinement and, indeed,
some see advantages in having pure within-patient
estimators, as distributional assumptions regarding
patient effects are then irrelevant.

Computer Analysis

With the help of modern statistical packages
(see Software, Biostatistical), the analysis of
continuous outcomes for crossover designs is
relatively straightforward. An approach using SAS
is as follows. Suppose we have a design where a
number of treatments A, B, C, D, etc. are being
compared. First of all the outcome data (OUTCOME)
are arranged into an n × k vector, where n is the
number of patients and k is the number of periods.
For each such observation the corresponding patient

number (PATIENT), period (PERIOD), and treatment
(TREAT) are recorded as categorical variables.
The analysis via ordinary least squares can then
be carried out with the help of proc glm as
follows:

proc glm;
class PATIENT PERIOD TREAT;
model OUTCOME = PATIENT PERIOD TREAT;
estimate “A−B” TREAT 1 −1 0 0 (etc.);
estimate “A−C” TREAT 1 0 −1 0 (etc.);
etc.
run;

If it is desired to fit simple carry-over, then this can
be done by defining an additional variable CARRY
which has one more level than the number of treat-
ments. This is then coded A, B, etc., depending on
the treatment given in the previous period. An extra
code, say Z, can be used whenever the particular
observation is at the beginning of a sequence. The
“class” and “model” statements then need to include
this term.

It should be noted, however, that for designs in
more than two periods, the analysis using ordinary
least squares produces residual degrees of freedom
for error in excess of the number of patients. This is
an indication that strong assumptions are involved
and, in the presence (say) of patient by treatment
interaction, this analysis may be invalid [40, 44].

Further SAS code for various types of analysis
is given by Ratkowsky et al. [42] and Senn [44], who
also covers alternatives to ordinary least squares as
well as nonparametric approaches.

Other Outcomes

This survey has been entirely in terms of continuous
outcomes. These have a much greater relative impor-
tance for crossover trials than for parallel group trials,
where, unlike for crossover trials (but see below),
survival, for example, can be an important outcome.
Nevertheless, there is a growing body of work on
binary and other outcomes (see Categorical Data
Analysis). All that will be attempted here is a very
brief summary of the literature.

We have also concentrated on the analysis of con-
tinuous outcomes using the general linear model. In
fact, various nonparametric approaches have been
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introduced following Koch’s original paper [29]. Var-
ious simple strategies are discussed by Senn [44],
and an authoritative review listing all the major
approaches is given by Tudor & Koch [52]. In gen-
eral, these techniques are really partially parametric
since various linear manipulations of the data have
to be undertaken before proceeding to the final “non-
parametric” test. Confidence limits are also available
for these approaches.

A simple test which may be used for binary
outcomes in the AB/BA design is the Mainland–Gart
test [17, 34]. The most important modern work in this
field has been by Jones & Kenward [25], who applied
loglinear models and who have since discussed both
marginal and subject-specific models in great detail
[27]. Ezzet & Whitehead [7] have introduced an
alternative random effects proportional-odds model
for ordered categorical (and hence also binary)
data. Again some simple techniques are described by
Senn [44].

Occasionally, survival-type data are obtained from
crossover trials. For example, patients may be asked
to undertake an exercise test, and such observations
can then be censored. A model has been proposed by
France et al. [15]. An alternative approach is given
by Feingold & Gillespie [8].

The crossover trial also provides the possibility of
examining directly patient preferences for treatment.
An important reference is Baskerville et al. [1], and
the subject has recently been treated by Lindsey &
Jones [33].

Further Reading

Three books devoted to crossover designs have
already been referred to [25, 42, 44]. A complete
issue of Statistical Methods in Medical Research
(Vol. 3, no. 4, 1994) was devoted to crossover
designs, and provides review articles on the AB/BA
design [45], binary and categorical data [27],
nonparametric methods [52], multiperiod crossovers
[38], and Bayesian approaches [21].
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Cross-sectional Study

A cross-sectional study is a study to estimate the dis-
tribution of a quantity of interest (or joint distribution
of several quantities) in a target population, at a cer-
tain moment in time. Ideally, this is accomplished by
measurements from a random or stratified random
sample of the target population, although conve-
nience samples may also be used. A cross-sectional
study is characterized by the fact that only one set of
observations is taken from each subject, as opposed
to a longitudinal study in which study participants
provide observations at more than one point in time
(see Cohort Study; Panel Study). Even if repeated
or serial cross-sectional studies are conducted in the
same population, the same individuals generally will
not be sampled again except by chance.

Cross-sectional studies often have a binary vari-
able as the quantity of primary interest, such as
estimating the prevalence of a certain disease, risk
factor, or health behavior. Continuous variables may
also be of interest, for example the subject’s weight
or blood cholesterol level, although such data are
often grouped or categorized in epidemiologic stud-
ies. One use of a cross-sectional study is to deter-
mine the association between an outcome variable
and some explanatory variables, for example to
estimate the prevalence of a disease, perhaps as a
function of some explanatory variables. An associ-
ation between outcomes and explanatory variables
may suggest causality, although a causal link usually
cannot be established from a single cross-sectional
survey (see Causation; Hill’s Criteria for Causal-
ity), because such studies give no information on the
temporal ordering of possibly causal events. A second
use of cross-sectional studies is to monitor changes
in a population over time using a series of cross-
sectional surveys; for example, the Monitoring the
Future surveys [7] track drug use by teenagers over
time in this way. Sometimes a better case for a causal
link can be made with serial cross-sectional data; for
example, Pirkle et al. [9] analyzed blood lead mea-
surements from the second and third National Health
and Nutrition Examination Surveys (NHANES), con-
ducted in 1976–1980 and 1988–1991, respectively,
to document a decline in blood lead levels in the US
population that resulted from the gradual removal,
since 1976, of most lead from gasoline. A third use
of cross-sectional studies is to make some inference

about disease incidence; this is harder to achieve,
although some techniques for estimating incidence
from a cross-sectional survey are discussed below.

As the distribution that is being estimated may be
changing over time, the ideal cross-sectional study
would be conducted instantaneously. However, a real
study typically requires some time to conduct. In
practice, the primary requirement is that the target
distribution changes negligibly over the course of the
study. In some situations this requirement is easily
met: for example, a study of the prevalence of carpal
tunnel syndrome can safely be conducted over an
entire year; a study of the prevalence of varicella
(chicken-pox) probably should be conducted within
a week or two. In some situations cross-sectional
surveys are conducted over a long period as a surveil-
lance system (see Surveillance of Diseases). For
example, the Centers for Disease Control and Pre-
vention (CDC), use ongoing telephone surveys to
assess the prevalence of several chronic disease risk
factors and tracks these over time [11]. These stud-
ies should be distinguished from incidence studies in
which all new occurrences of a disease arising in a
certain population in a given period are recorded; a
defining characteristic of a cross-sectional survey is
that subjects are sampled solely on the basis of their
membership in a target population, not on the basis
of a change in status. This distinction is somewhat
blurred, however, in cross-sectional surveys that also
collect retrospective data on duration of disease, since
this type of data would allow identification of new
cases.

Although a cross-sectional study can only mea-
sure a distribution at a single time point, interest is
often centered on dynamic or time-dependent quanti-
ties; disease incidence is often the quantity of interest.
One circumstance in which disease incidence can be
measured from a cross-sectional survey occurs when
an ephemeral state associated with recent onset can
be identified. If the mean duration, w, of this state
is known, then the prevalence of individuals in the
ephemeral state can be converted into disease inci-
dence using the relation prevalence/w = incidence.
For a disease of short duration, the ephemeral state
can be the entire course of the disease. For this
method to be valid, the time-scale over which the dis-
ease incidence changes must be longer than w. For
example, the serologic testing algorithm for recent
HIV seroconversion [6] estimates the incidence of
HIV(human immunodeficiency virus) infection in a
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population by identifying the proportion of individu-
als who test positive for HIV on a standard(sensitive)
screening assay but who will still test negative on a
less sensitive assay. Weinstock et al. [13] used this
approach to estimate HIV incidence among patients
at clinics for sexually transmitted diseases. Note that
although this method is sensitive to the value of w,
it is possible to test for or estimate trends in inci-
dence in serial cross-sectional surveys by comparing
the prevalence of individuals in the ephemeral state
over time. For such a comparison to provide valid
inference on trends in incidence, it is not necessary to
know w; we need know only that it is small compared
with the time between the surveys [12].

The methods described above are appropriate
for situations in which the incidence is changing
over time. In many situations the population may
be considered homogeneous over time; in these
situations, interest may focus on the age of onset or
on age-specific incidences. Keiding [8] discussed a
variety of assumptions that allow estimation of these
quantities from a cross-sectional survey, and also dis-
cussed methods to estimate disease prevalence from
incidence data (see Incidence–Prevalence Relation-
ships). Some of these methods require either retro-
spective data or external data such as age-specific
mortality for the general population or for people
with the specific disease of interest. Additional infor-
mation about population dynamics can sometimes be
obtained if two or more cross-sectional studies are
conducted in the same population at different times.
For example, it is possible to estimate the incidence of
a disease by comparing two measurements of disease
prevalence taken at different times and accounting for
the aging of the population. By comparing the pro-
portion of 15-year-olds with 19-year-olds who have
a positive ppd (purified protein derivative) TB test
with the proportion five years later among 20- to 24-
year-olds, one could estimate rates of infection with
M. tuberculosis, in essence treating these two groups
as members of the same “pseudo-cohort”. Techniques
are available for converting these “cohort infection
rates” to age-specific period rates [10]. However, the
validity of this calculation depends on the assumption
that there is no differential loss of people with disease
(i.e. mortality or migration caused by the disease);
otherwise, external data on the these effects are neces-
sary. In addition, for different age groups to be treated
as members of the same pseudo-cohort, the distribu-
tion of important covariates must be the same across

age groups, a condition that may pose a special chal-
lenge for observational studies. For example, in a
study of childbearing women, the women aged 15–20
years may have markedly different demographic char-
acteristics than those aged 20–25 years.

Conclusions about incidence can sometimes be
drawn by comparing crude (i.e. not age-specific)
prevalences from successive cross-sectional surveys.
For example, HIV prevalence among injection drug-
users in Bangkok, Thailand, jumped from 1% at the
start of 1988 to 32%–43% by August–September
1988 [14], implying a remarkable incidence of HIV
infection over this period, as well as illustrating the
usefulness of cross-sectional surveys as a surveillance
tool. However, in less dramatic situations, trends in
prevalence may be difficult to interpret because they
are the net result of new cases and death or the loss
of old cases. As with analyses of age pseudo-cohorts,
knowledge of or assumptions on the nature of the
death or loss of prevalent cases are required before
inference on incidence can be made. An unchanging
crude prevalence also does not necessarily imply
steady-state conditions; Batter et al. [1] report an
example where crude prevalence was steady over
time but the distribution of cases by age had shifted.

The line between cross-sectional studies and a
wide variety of retrospective studies is blurred when
retrospective longitudinal data are collected in a
cross-sectional survey. Examples of such data include
age at menarche, the number of months breast-fed,
prevalence of diarrhea in the last two weeks, or con-
ditions surrounding the death of a child. The validity
of such retrospective data is dependent on the respon-
dent’s ability to recall accurately the events of interest
for the time-period considered. For example, to exam-
ine the association between short birth intervals and
the survival of the subsequent child, it is possible to
use birth history reports of mothers [5]. This same
type of data can also be used to estimate fertility and
mortality patterns many years before the study for
analysis of long-term trends.

Several major differences between cross-sectional
studies and longitudinal (or cohort) studies determine
when either should be used. Cohort studies mea-
sure the effect of risk factors on disease incidence in
a defined population, whereas cross-sectional stud-
ies measure the effects of risk factors on disease
prevalence. As a result, differences may arise when
the same associations are studied by the two meth-
ods. Factors that affect both disease incidence and
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mortality after disease will show a different asso-
ciation when measured cross-sectionally than when
measured longitudinally. For example, a risk fac-
tor that is associated with both increased incidence
and increased mortality among individuals with dis-
ease will show a smaller association with disease
prevalence in a cross-sectional survey than with dis-
ease incidence in a longitudinal study, because the
persons with the risk factor will be less likely to
survive until the time of the cross-sectional study
(see Case–Control Study, Prevalent). Even fac-
tors unrelated to disease incidence may show an
association with disease prevalence if they affect
the survival of individuals with disease differentially.
Thus, if disease etiology is of primary interest, cohort
studies or incident case–control studies are usually
preferable, whereas prevalence studies may provide
more useful information for characterization of a pop-
ulation for public health purposes.

Cross-sectional studies sample prevalent, rather
than incident, cases; the selection requirement of
survival to the date at which the survey is con-
ducted results in differences between the population
of prevalent cases and the population obtained by
following incident cases over time. The likelihood of
being observed in a certain transient stage in a cross-
sectional survey is proportional to the time spent in
that stage (see Length Bias). As a result of het-
erogeneity in the course of disease, individuals with
longer survival times are more likely to be sampled
in a cross-sectional study than those with shorter sur-
vival times. Similarly, the population of prevalent
cases who have a given characteristic may differ from
the population of those who have ever developed that
characteristic. A cross-sectional estimate of the rela-
tive prevalence of two types of cancer (one virulent,
the other less so) would not be equal to the relative
incidences, as the relative incidence of the virulent
type would be greater than its relative prevalence.
Although the results of the cross-sectional study may
properly reflect the distribution of survival times or
disease subtypes among those individuals currently
living with disease, these quantities must be inter-
preted as instantaneous pictures of a dynamic, open
population and not necessarily as reflective of some
other population, such as those with incident disease
(see Biased Sampling of Cohorts; Screening Ben-
efit, Evaluation of).

Another distinction between cross-sectional and
longitudinal studies is that a cross-sectional study

or series of cross-sectional studies can only address
aggregate changes in the population; unless the
appropriate retrospective data are available, it is not
possible to measure change at the individual level.
For example, two cross-sectional surveys may find
approximately the same proportion of respondents
used a condom during their last sexual contact; to
plan a public health campaign to increase condom
usage, we may want to know additionally whether
some respondents always use condoms and some
never do, or if all individuals sometimes use con-
doms. Such data are most reliably obtained from
a longitudinal study. In some cases, however, the
closed nature of the longitudinal study is a dis-
advantage. For example, studies of HIV incidence
conducted longitudinally often find a decreasing inci-
dence of new HIV infections which may not represent
the trend in the general population but instead repre-
sent a depletion of high-risk individuals in the cohort,
as well as a change in behavior among study partici-
pants, who receive counseling on how to reduce their
risk of acquiring HIV infection.

Cost is often a deciding factor that favors cross-
sectional studies over longitudinal studies. This is
especially true for studies of rare diseases, where very
large cohorts or long follow-up may be required to
observe enough cases to obtain statistically significant
results. A variety of split-panel designs combine ele-
ments of both cross-sectional and longitudinal stud-
ies. Further discussion of these designs, as well as
a general discussion of what types of questions can
be answered with a cross-sectional study and what
questions require a longitudinal study, can be found
in Curtin & Feinleib [3] and Dwyer & Feinleib [4].
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Cross-validation

Cross-validation is one of several methods for
error assessment of a statistical method. Alternatives
include the jackknife method, the bootstrap
method, Akaike’s AIC (see Akaike’s Criteria), and
others.

The main ideas are simply illustrated by the statis-
tical discrimination (also called classification) prob-
lem, discussed in detail in [5], for example. There
one has, say, two populations, with “training sam-
ples” available from each, and it is desired to assign
a new observation to one of the two populations. For
a given discrimination scheme (which is based on the
training data), the error rate, i.e. probability of mis-
classification, is a useful indicator of its performance
(seeMultivariate Classification Rules: Calibration
and Discrimination). Estimating the error rate by
the proportion of misclassifications when the rule is
used to classify the training data is usually inap-
propriate. This is because of an “optimistic bias”,
caused by the classification rule being fine-tuned for
this particular realization of the data, which usually
entails somewhat worse performance for a different
realization from the same underlying distribution.

The idea behind the cross-validatory approach to
this bias problem is to separate the data into two
pieces, one of which is used to construct the classifier,
and the other to “validate” or estimate the error
rate of the classifier. Dependence on the particular
dichotomy chosen is eliminated by averaging error
rates over a large number of such dichotomies. The
“cross” part of the name “cross-validation” comes
from the fact that each data point is sometimes used
for classifier construction, and at other times for
validation.

A commonly used dichotomy is called “leave one
out”, where the validation set is a single observation,
and the rest are used to construct the classification
rule. In some situations, there is an advantage to
using, say v, observations in the validation set (i.e.
“leaving out v” in construction of the classifier). See
Picard & Berk [9] for an interesting illustration of
this point (in a different statistical setting). This form
has been called “v-fold” cross-validation.

The ideas illustrated via the discrimination prob-
lem above apply to a wide variety of statistical prob-
lems. See [10] for a general formulation. See that
paper and [1] for a good indication of the breadth

of different contexts in which this principle applies,
as well as for historical background. There was a
period of very active research in the mid 1970s, but
the method dates from well before.

An area where a large literature has developed
around the cross-validation idea is in smoothing
parameter (i.e. window width or bandwidth) selection
for nonparametric curve estimation, i.e. smoothing
methods. Rather different perceptions of the perfor-
mance of cross-validatory methods have been devel-
oped, depending on the smoothing method used. Per-
formance is viewed as “acceptable” by most of those
who prefer smoothing splines (see Spline Function),
and “unacceptable” by most of those who prefer
kernel/local polynomial methods. The reason for this
is unclear (because the essence of both smoothing
methods is rather similar), but perhaps it is because
spline researchers tend to work with “less noisy” data
sets than kernel/local polynomial researchers.

In the context of smoothing splines, Wahba and
co-workers have proposed, and demonstrated good
properties of, a variation of cross-validation called
“generalized cross-validation”; see [11], for example.

The deepest insights into the efficacy of cross-vali-
dation for smoothing parameter selection are avail-
able in the context of kernel density estimation; see
[8] and references therein. Here the conclusion drawn
by most researchers is that cross-validatory meth-
ods are “too variable”, but this variability can be
reduced to acceptable levels by alternative measures
such as plug-in methods or the use of smoothed
cross-validation. Similar ideas hold in kernel regres-
sion, as shown, for example, in [3, 6], and [7].

When data are dependent, cross-validation needs
to be modified for use in smoothing parameter
selection [4]. For deeper analysis, see [2].
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and fast method for automatic smoothing, Journal of the
American Statistical Association 86, 643–652.
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Crude Risk

Crude risk is the probability that an individual will
develop a particular disease in a given time interval in
the presence of other competing risks of death. For
example, the probability that a 30-year-old woman
will develop breast cancer between the ages of 30
and 60 is a crude risk. The crude risk is reduced
by the fact that she may die of other diseases before
she develops breast cancer. The term absolute risk is
used synonymously with crude risk. Crude risk can be
estimated without making special assumptions, such
as the “independence” assumption used in competing

risk analysis. Crude risk can be contrasted with the
net risk in the theory of competing risks. Net risk
refers to the probability of developing a particular
disease if other competing risks are eliminated.

Crude risk is also used to describe the risk of
disease in a heterogeneous population composed of
different genders and age groups, for example. Crude
risk is differentiated, in this context, from gender-
and age-specific risks.

(See also Aalen–Johansen Estimator)
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Cumulative Hazard

The cumulative hazard on the interval [0, t) is∫ t

0 λ(u) du, where λ(u) is the hazard rate. If λ(u)
is the hazard for total mortality, then the cumula-
tive hazard is related to cumulative probability of

death, 1 − exp
(
− ∫ t

0 λ(u) du
)

. If λ(u) is a disease-

specific incidence rate and if
∫ t

0 λ(u) du is small,
then the cumulative hazard approximates the “pure”

probability of developing disease in the absence
of other competing causes of death, provided that
those other causes act independently of the cause
of interest.

(See also Competing Risks; Nelson–Aalen Estima-
tor; Survival Analysis, Software; Survival Distri-
butions and Their Characteristics)
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Cumulative Incidence
Rate

The cumulative incidence rate is a cumulative haz-
ard and corresponds to the special case in which
the hazard refers to the incidence rate for a specific
disease. For small incidence rates, the cumulative

incidence rate approximates the “pure” probability of
developing the disease in the absence of competing
causes of death (see Competing Risks) and should
be distinguished from the crude probability of devel-
oping the disease in the presence of competing causes
of death (see Absolute Risk; Crude Risk).

MITCHELL H. GAIL



Cumulative Incidence
Ratio

The cumulative incidence ratio is the ratio of the
cumulative incidence in an exposed cohort to that
in an unexposed cohort over the same time period.

The cumulative incidence ratio is the same as the
relative risk.

(See also Cohort Study)
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Cumulative Incidence

Cumulative incidence is the proportion of individu-
als in a cohort initially free of a given disease who
develop that disease in a defined age or time interval.
Cumulative incidence is a crude risk and is syn-
onymous with the terms cumulative risk, risk, and
absolute risk. Sometimes cumulative incidence refers

to the number, rather than the proportion, of individ-
uals in a cohort initially free of a given disease who
develop the disease in a given age or time interval.

(See also Aalen–Johansen Estimator)
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Cure Models

Most approaches to the analysis of survival, or time
to event, data implicitly assume that, with suffi-
cient follow-up, all subjects would experience the
event of interest. However, there are situations when
it is expected that a fraction of subjects will not
experience the event. In the clinical setting, this
often corresponds to the assumption that a fraction
of patients treated for a disease will be cured of
the disease under treatment, whereas the rest will
experience a recurrence or adverse event of some
sort.

Early work on models for data arising in such
situations was done by Boag [2], Berkson & Gage
[1], and Haybittle [12]. More recently, interest in
such models has focused on the incorporation of
covariates, or explanatory variables, into such mod-
els. The models can be characterized by defining
a binary variable Y , where Y = 1 indicates that a
subject will experience the event of interest and
Y = 0 otherwise (see Dummy Variables). If X cor-
responds to a vector of explanatory variables, with
xi representing the observed values for the ith sub-
ject, then p(xi) can represent the probability of
the event occurring for the ith subject, i.e. Pr(Y =
1|xi), and f (t |Y = 1, xi) can represent the proba-
bility density function for the random variable T ,
which specifies the time of the event if it occurs.
It is convenient also to specify the correspond-
ing survivor function S(t |Y = 1, xi) = Pr(T > t |Y =
1, xi).

If the functions p and f have specified parametric
forms, then maximum likelihood estimation of
unknown parameters is possible. The likelihood is a
product of contributions of the form p(xi)f (t |Y =
1, xi) from individuals who experience the event,
1 − p(xi) + p(xi)S(t |Y = 1, xi) from individuals
observed to time t without experiencing the event,
and, in some cases, 1 − p(xi) if an individual is
known not to have experienced the event. The latter
contributions exist only if follow-up has continued
past a time point before which it is known that the
event must occur if it is to occur.

A variety of parametric forms have been consid-
ered. To incorporate covariates, the logistic model

p(xi) = exp(α + xiβ)/[1 + exp(α + xiβ)],

where β is an appropriately defined vector of
regression coefficients and α is a scalar location
parameter, is convenient (see Logistic Regression).
Farewell [4, 5] combined this with a Weibull
regression model for f , but other choices are
possible. For example, Larson & Dinse [14], in a
competing risk framework, used a proportional
hazards model with a step function for the
baseline hazard, and Yamaguchi [22] used a class
of accelerated failure-time models. Some specific
results for exponential models were given by
Ghitany and coauthors [9, 10].

In many situations, this mixture model approach to
time-to-event data has a natural appeal. Some special
considerations arise, however. There is an identifia-
bility problem, since there can be a high correlation
between the intercept term of the logistic model and
any shape parameters in the model for f [6, 15].
This manifests itself in a nonquadratic and relatively
flat profile likelihood function for α [6]. The extent
of the problem depends on the generality of the
model for f , but is minimized if there are a siz-
able number of censored observations at times well
past the period when most events occur. A formal
specification of this requirement was considered by
Maller & Zhou [17]. Also, tests for the existence
of a population with Y = 0, perhaps of particular
interest when it would correspond to a “cured frac-
tion” of patients or the presence of individuals in
a population immune from some disease, involves
nonstandard maximum likelihood theory as the null
hypothesis lies on the boundary of the parameter
space [23]. A conservative approach is to restrict
the use of the models to situations in which there
is external evidence for the existence of two pop-
ulations. This is quite restrictive, however, and a
general recommendation for caution in their use is
perhaps sufficient to enable a wider application. For
example, the models have been used to establish,
in an informal manner, that there is little evidence
for separate populations under plausible parametric
assumptions [8, 19].

Recently, there has been interest in relaxing the
parametric dependence of these models. Maller &
Zhou [16] examined the estimator defined by the
“flattening out” level of a Kaplan–Meier estimated
survivor curve. This has been compared with para-
metric models [11]. Kuk & Chen [13] combined
a logistic regression model for p with a propor-
tional hazards model for f . Their approach estimates
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the regression parameters of the proportional hazards
model through an approximation to a marginal rank
likelihood and then obtains an estimate of the baseline
hazard function. Taylor [20] used an EM algorithm
approach, as developed by Larson & Dinse [14], to
replace the parametric event time distribution by a
Kaplan–Meier type estimator. Although this work
was not extended to include covariates in the event
time distribution, it was shown to be quite efficient
compared with a parametric alternative. Taylor [20]
recommended that the survivor function S be forced
to zero beyond the last event. Some such restriction
is helpful to avoid nonidentifiability problems which
will be potentially more acute with nonparametric
approaches. It is not too restrictive when a mixture
model is plausible and some follow-up is available at
times in the upper tail of the event time distribution.
Taylor [20] suggested that, if these conditions do not
prevail, then the suitability of the model might be
questioned in any event.

Comparisons of the use of a mixture model to
the application of the commonly used relative risk
regression model of Cox [3] have been made [5,
21]. Advantages associated with the mixture model
relate to prediction [21] and to a simpler speci-
fication of covariate effects [5]. From an empiri-
cal point of view, the usual regression models for
survival data will be useful even when a mixture
model is appropriate. However, if only a subset of
a population is expected to experience the event, the
adoption of a formal mixture model may be more
realistic and, through separate modeling of the prob-
ability of the event and the time to the event, more
informative.

A comprehensive discussion of survival data with
long-term survivors is provided by Maller & Zhou
[18]. The general framework corresponding to “cure”
models can also be applied to other types of data –
for example, when noncure is evidenced by the
observation of a nonzero count variable [7].
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Cutler, Sidney Joshua

Born: April 13, 1917, in Odessa, Russia.
Died: October 21, 1993, in Silver Spring, Mary-

land.

Cutler immigrated to the US in 1923, graduated
from City College of New York in 1938, received
a master’s degree in sociology from Columbia Uni-
versity in 1941, and a doctorate in epidemiology from
the University of Pittsburgh in 1961. During World
War II he served with the US Army in Europe.

A major part of Cutler’s career as a biostatistician
and epidemiologist, from 1948 to 1975, was with
the National Cancer Institute, National Institutes of
Health in Bethesda, Maryland. In the early 1950s
Cutler authored a series of reports, including a
monograph [5] on the 1947–48 incidence of and
mortality from cancer in 10 metropolitan areas of the
US. Twenty years later he was to direct a similar
follow-up study. In 1954–55, nine years before the
landmark US Surgeon General’s Report Smoking
and Health [7], Cutler published an overview of
the strong epidemiologic evidence linking cigarette
smoking to lung cancer [1] (see Smoking and
Health), and, with Donald Loveland, an assessment
of a smoker’s lifetime probability of developing lung
cancer, including the probable age of lung cancer
onset [3].

In the late 1950s Cutler organized and became
director of the End Results Evaluation program of
the National Cancer Institute, a reporting system
to which a number of cancer registries in the US
contributed, on an ongoing basis, uniformly defined
data on individual cases of cancer and their sur-
vival. The purpose of the program, later to become
the SEER Program (Surveillance, Epidemiology, and
End Results), was to develop data on population rates
of incidence, mortality, and survival from cancer, that
would allow comparisons of the results of various
forms of therapy, of various regions of the coun-
try, and time trends. At a meeting in Bethesda in
1959, chaired by Michael Shimkin, representatives of
six national cancer registration programs organized
an international cooperative effort in the evaluation
of end results of cancer therapy and in the inves-
tigation of epidemiologic questions on the effects of
climate, diet, and other environmental factors on can-
cer incidence. Results of this effort were reported

at a symposium in Norway in 1963 [6]. One of the
findings from the international comparisons was that
survival rates from mammary tumors were about the
same in England and the US, although the method
of treatment differed: in England the treatment was
limited surgery, in the US it was radical surgery.
The use of radical mastectomy decreased in the US
subsequently.

As an aid in the analysis of survival data, Cutler
developed the relative survival rate, a method still
in use in the 1990s, as a way of correcting the sur-
vival rate for normal mortality [4]. In 1958 Cutler,
with Fred Ederer, published a paper that explained
in a form understandable by nonstatisticians how to
describe the survival experience of cancer patients,
how to include censored data in this description,
and why it is important to include censored data
[2]. The paper became a standard tool in teaching
statistics to medical students. In the first 20 years
after its publication, it was referred to in the medi-
cal literature 530 times, for which it won a citation
award. In the 1960s Cutler, together with a number
of other statisticians from the National Institutes of
Health Jerome Cornfield, William Haenszel, Nathan
Mantel, and Marvin Schneiderman), taught a course
on current problems in public health at the Univer-
sity of Pittsburgh. During that time Cutler, together
with Schneiderman and Samuel Greenhouse, another
statistician from the National Institutes of Health,
designed the first randomized trial of a screening
agent (see Screening Trials), a study to determine
whether periodic mammographic screening prevents
death from breast cancer; the conduct of the trial was
led by Sam Shapiro of the Health Insurance Plan of
Greater New York.

Cutler was a Fellow of the American Statistical
Association.
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Data Access, National and
International

Data and information are fundamental ingredients
of health situation analysis. A national health infor-
mation system helps safeguard against deterioration
of the health of the population, provides data for
research to improve health, and provides information
for management of the health care system. Addi-
tionally, the system supports and enhances under-
standing of how health and well-being impact on
the economy and other social institutions. The data
collected should be those which are needed for deter-
mining a population’s health status, aiding medical
research, preventing and controlling diseases, assist-
ing in decision-making, framing health policies, orga-
nizing or reorganizing health services, and informing
the population about their state of health. Indica-
tors of mortality, natality, morbidity, health services,
and resource availability are among those which are
useful for this purpose. Additionally, special data
needs have arisen in recent years due to the increased
incidence of several diseases as well as the alarming
appearance of new diseases such as Lyme disease and
acquired immune deficiency syndrome (AIDS) result-
ing from human immunodeficiency virus (HIV). At
the same time, interest in international comparisons
of health data has increased (see Mortality, Interna-
tional Comparisons) and, therefore, gaining access
to relevant and timely data has become an important
health priority.

National Sources of Data

Vital statistics, hospital discharge data, and health
manpower resource statistics are collected and dis-
seminated in virtually all of the industrialized coun-
tries and many of the developing countries. Most
countries collect and publish these data on an annual
basis through government statistical agencies. Access
to these data vary from country to country. Pub-
lished annual or other periodic statistics reports are
the most common form of dissemination; however,
many countries have electronic files available for
public use.

The US National Center for Health Statistics
(NCHS) has developed an International Health Data
Reference Guide [2] which provides information on

the availability and sources of selected national
vital statistics, hospital discharge data, health man-
power resources, and population-based health sur-
vey statistics (see Surveys, Health and Morbidity).
As of 1996, official agencies of 44 industrialized
nations provided information about the availability
of selected health data for their country. The names,
addresses, and facsimile (fax) numbers of these
agencies are listed in the Guide to facilitate requests
for data. This publication is available upon request
from the National Center for Health Statistics, 6525
Belcrest Road, Hyattsville, MD 20782, USA.

Countries publish health data in varying detail and
scope, ranging from simple summary measures of
births and deaths to complex tabulations and anal-
yses of a wide range of health variables. In the US,
for example, two major annual health statistics pub-
lications are prepared, in addition to many one-off or
special topic reports:

1. Health, US – a comprehensive report on the
health status of the nation. It presents national
trend data health status and determinants, supply
and utilization of health resources, health care
resources, and health care expenditures [1].

2. Vital Statistics of the US – a compilation of mor-
tality, natality, marriage, and divorce data with
extensive demographic and geographic detail [4].
A monthly vital statistics report is available
providing monthly and cumulative provisional
data [3].

A few countries release data to the public through
a combination of publications, public use electronic
data files, and unpublished tabulations. An even
smaller number of countries, including the US, make
data available on floppy diskettes, CD-ROM, and the
Internet.

International Sources of Data

In the early 1980s, the World Health Organization
(WHO) launched the Global Strategy for Health for
All by the Year 2000. The Strategy has the aim of
making possible the attainment, by all citizens of
the world by the year 2000, of a level of health
that will permit them to lead a social and econom-
ically productive life. Through the need to change
priorities of information support and the need to
reflect progress in implementation as ascertained by
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the monitoring and evaluation processes, the need for
health data including international comparisons has
increased considerably.

United Nations

The Statistical Division of the United Nations (UN)
has supplied basic statistical data for demographers,
economists, public-health workers, and sociologists
for almost 50 years. A prime publication is the Demo-
graphic Yearbook, which is published annually [8].

The Demographic Yearbook is a comprehensive
collection of international demographic statistics
(see Demography) which features the results of
population censuses. Through the cooperation of
national statistical services, official demographic
statistics are presented for about 233 countries or
areas throughout the world. Tables are presented
giving a world summary of basic demographic
statistics, followed by tables presenting statistics
on the size, distribution, and trends in population,
natality, fetal mortality, infant mortality, maternal
mortality, general mortality, marriages, and divorces.

The Yearbook is available in published format and
on magnetic tape. A database known as the Demo-
graphic and Social Statistics Database containing data
previously published in the Yearbook from 1950 is
available on floppy disks for use on microcomputers.
Contact may be made to the Director, Statistics Divi-
sion, United Nations, New York, NY 10017, USA,
for further information on purchasing data.

World Health Organization

The World Health Organization (WHO) is a spe-
cialized agency of the United Nations with primary
responsibility for international health matters and
public health. Through this organization, which was
created in 1948, the health professionals of more than
180 countries exchange their knowledge and experi-
ence. As part of WHO’s mandate to establish and
maintain statistical services and to provide informa-
tion in the field of health, they publish the World
Health Statistics Annual [9].

The Annual provides a compilation of data
reported by Member States on deaths by cause, age,
and sex, detailed statistics on selected causes of death,
information on cases of deaths from notifiable dis-
eases, and other data of medical and public health

interest. The Annual is available in published for-
mat, and the more detailed mortality databases are
available electronically over the Internet. For further
information, contact the World Health Organization,
Geneva, Switzerland.

Pan American Health Organization

The Pan American Health Organization (PAHO) is a
regional office of the World Health Organization that
provides data and information about the countries of
the Americas. An annual publication Health Statistics
from the Americas complements the quadrennial pub-
lication of Health Conditions in the Americas [6, 7].
The Health Statistics publications present a mortal-
ity database, estimated sex–age-specific death rates
by broad groups of causes, and historical summaries
of reported cases of selected communicable dis-
eases. The Health Conditions publication presents
a regional overview of the health situation with an
annex of health and development indicators and coun-
try reports summarizing some salient conditions and
problems for each country.

These two sources of data are available in pub-
lished format and electronically over the Inter-
net. Contact may be made to the Pan American
Health Organization, World Health Organization, 525
Twenty-third Street, NW, Washington, DC 20037,
USA.

Organization for Economic Cooperation and
Development

The Organization for Economic Cooperation and
Development (OECD), Paris, France, has developed
a set of health data files designed to facilitate
macroeconomic analysis of health care systems in
the 24 industrialized OECD member countries. The
files entitled OECD HEALTH DATA cover data
on expenditures, hospitalization, demography, life
expectancy, death rates, socioeconomic environment,
compensation of health care professionals, length
of stays in hospitals by diagnosis-related groups
(DRG), frequency of selected medical procedures,
and fee schedules [5].

The information in this data bank is available
for analysis through a software package designed
for use on microcomputers. The data are updated
when national administrations release new statistics
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or revise old ones, usually on an annual basis. Con-
tact may be made to the Publications and Informa-
tion Centres, Organization for Economic Cooperation
and Development, 2 Rue André-Pascal, 75775 Paris
Cedex 16, France.

While sources for health data for countries around
the world are increasing, and interest grows in
drawing conclusions about international differences,
it is important to bear in mind that a number of
factors must be carefully considered before deciding
that health information from different countries is, in
fact, comparable. Among these factors are:

1. completeness of the coverage and reliability of
the data

2. lack of standardization of data collection methods
and definitions of terms

3. base population differences, e.g. the noninstitu-
tionalized population vs. the total resident popu-
lation

4. coding and tabulation differences.
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Data and Safety
Monitoring

Phase III clinical trials (see Clinical Trials,
Overview) usually have a (DSMB), with broad
responsibility for monitoring the conduct of the
trial. The responsibilities of the Board typically
include insuring scientific integrity and patient safety,
monitoring the occurrence of adverse events, and
assessing efficacy. As the study progresses, the Board
discusses these issues and makes recommendations to
the study investigators regarding the conduct of the
trial, possibly including a recommendation regarding
early termination of the study.

To simplify the discussion of this monitoring
activity we suppose that the trial is a randomized,
double blind (see Blinding or Masking) study com-
paring an experimental treatment to either a placebo
or a standard treatment. Initially, we also assume that
efficacy is measured primarily by a single, univariate
primary endpoint, allowing that numerous secondary
measures may also be available (see Oblimin Rota-
tion).

Monitoring the scientific integrity of the study
involves reviewing information such as violations
of the protocol, recommendations for modifying the
protocol (see Clinical Trials Protocols), evaluations
of data quality (for example, errors identified at
data entry specific to each form, how many errors
have been corrected and how many are outstanding)
(see Clinical Trials Audit and Quality Control),
recruitment, timeliness of follow-up, drop-outs and
Adjustment for Noncompliance.

A primary responsibility of the DSMB is to insure
that the trial is sufficiently safe to warrant continued
participation of the patients. This activity normally
involves a qualitative review of adverse events. In
view of the varied and somewhat unpredictable nature
of the adverse events that may ultimately become of
concern, formal stopping rules may be less helpful
for assessing safety than for assessing efficacy. How-
ever, one might form a combined safety endpoint,
such as the occurrence of any major adverse event
(suitably defined), and then evaluate this endpoint in
the context of a stopping boundary. At the least, such
an approach might provide the DSMB insights as
to the frequency with which an observed imbalance
between groups would occur by chance, and this in

turn might aid in arriving at a decision whether or
not to terminate the study.

Formal stopping rules have found particular use-
fulness in assessing efficacy. A large number of
approaches have been proposed. We will focus here
on the commonly used group sequential methods, all
of which assume a classical statistical framework.
Decision theoretic approaches are also discussed.
Before describing the mechanics of implementing
interim analyses for efficacy, it is important to con-
sider the larger context in which these analyses occur.
There are numerous considerations that affect the
decision to terminate a study early, and the cross-
ing of a statistical boundary is only one. Thus, the
actual decision may not be the same as the decision
suggested by the statistical test.

Reasons for desiring early termination of a trial
are rather obvious. Certainly, if the evidence in favor
of an experimental therapy is overwhelming, there is
an ethical need to stop the trial and provide the drug
to all study participants as well as other patients (see
Ethics of Randomized Trials). There is also a clear
financial incentive to stopping early under these cir-
cumstances, both in terms of the costs of the study as
well as revenues which may accrue from sales of a
new drug or medical device. Early termination may
also release patients for other trials, especially if the
reason for terminating early is convincing evidence
that the drug is ineffective. Finally, early termination
because of overwhelming evidence of treatment effi-
cacy may facilitate initiation of additional follow-up
studies to understand further the nature of the treat-
ment effect.

Thus, there are important reasons to consider
stopping early. However, there are also arguments
against early termination. The consequent reduction
in sample size may prevent a definitive evaluation of
important secondary endpoints or evaluation of sub-
groups, analyses which might shed important light
on the nature of the treatment effect (see Treatment-
covariate Interaction). When the primary endpoint
is survival, or time to a specified event (see Survival
Analysis, Overview), a dramatic early effect may
prove to be transitory, with the survival curves even-
tually coming together or even crossing, and early
termination may cause this phenomenon to go unob-
served.

As we will discuss in greater detail, early termina-
tion introduces a bias into conventional estimates of
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the magnitude of the treatment effect. Although sta-
tistical techniques are available to adjust estimates,
they are complex, thus compounding the difficulty of
explaining these issues and adjustments to a nonsta-
tistical audience.

Group Sequential Tests

The desirability of performing tests on accumulating
data while a study is ongoing has long been
recognized. Early work on sequential methods (see
Sequential Analysis) focused on procedures which
called for testing after each observation was realized,
and sequential probability ratio tests (SPRT) were a
cornerstone of this approach. It consists of computing
the ratio of the likelihood functions under the
null and alternative hypotheses (both specified as
simple hypotheses) and comparing this to upper and
lower boundaries. Depending on which boundary is
crossed, one accepts the corresponding hypothesis.
Fully sequential designs with a binary outcome were
proposed by Bross [9] and Armitage [4].

Although a large body of theory relating to fully
sequential designs has been developed, these methods
are infrequently used. One limiting feature is that
there is typically no upper bound on the number of
observations that may be required to reach a decision.
An additional problem is the logistical impracticality
of testing after each observation.

These limitations led to consideration of group
sequential tests, where tests are performed only peri-
odically during the course of the study. The idea
for this approach dates back to Armitage et al. [5]
and Samuel-Cahn [36, 37]. A simple strategy for
performing group sequential tests was proposed inde-
pendently by Haybittle [21] and by Peto et al. [32].
The approach is to perform interim tests at a very
stringent level of significance, and then test at the
nominal level at the end of the study if the trial
was not terminated early. For example, one might
test at the 0.01 level if only one or two interim tests
are planned, or at the 0.001 if more than two are
planned. Although the overall probability of type I
error (see Hypothesis Testing) will exceed the nom-
inal level, the excess should be small. More recently,
methods have been developed which provide accu-
rate control over the type I error rate, and which
give the investigator a wide choice of boundary
shapes.

Some Commonly Used Procedures

In describing the most commonly used group sequen-
tial tests, we start with the simplest situation, in
which normally distributed endpoints are observ-
able immediately after treatment, K − 1 interim tests
are planned, and n subjects are recruited into each
arm of the study between successive tests. Let Xij

represent the observation on the ith subject receiving
placebo therapy during the j th period of recruit-
ment (between the j − 1 and j th tests), i = 1, . . . , n,
j = 1, . . . , K . It is assumed that the X variables are
independently distributed with a common normal dis-
tribution having mean µP and known variance σ 2.
Similarly, let Yij , i = 1, . . . , n, j = 1, . . . , K , repre-
sent the observations on the experimentally treated
patients, which are normally distributed with mean
µE and variance σ 2.

For k = 1, . . . , K , let Tk represent the usual t test
statistic (see Student’s t Distribution) based on the
data available after the kth recruitment period:

Tk =

k∑

j=1

(
Y·j − X·j

)
(n/2k)1/2

σ
.

The procedures described below can all be
expressed in terms of boundaries depending on a set
of constants determined by the choice of K and the
overall type I error rate, α : C(1, α), . . . , C(K, α).
After collecting data up to the kth test (k =
1, . . . , K) one computes Tk , and if the test statistic
exceeds C(k, α) one concludes that the trial may be
terminated with overall probability of type I error less
than α.

Three of the most commonly used boundaries are
listed below. For k = 1, . . . , K:

1. Constant boundary (Pocock boundary [33]):

C(k, α) = CP(K, α).

2. Monotone decreasing boundary (O’Brien and
Fleming boundary [29]):

C(k, α) = COF(K, α)

(
K

k

)1/2

.

3. Intermediate boundary (Fleming et al. [17]). Let
πk represent the probability of a type I error
occurring at the kth test. CFHO(k, α) is defined
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such that π1 = · · · = πK−1 and π1 + · · · + πK =
α. Notice that the probability of a type I error
occurring at each of the interim tests equals the
nominal level of the first interim test.

As seen in Table 1, the Pocock (P) boundary
offers the greatest opportunity for stopping at the first
interim test. Conversely, it is the most stringent of
the three boundaries at the final test if the study is
not terminated early. This can result in an awkward
situation for a DSMB, when the nominal P value
at the end of the study is less than 0.05, but is not
sufficiently small to achieve significance as defined
by the group sequential boundary. For a fixed number
of interim tests and equal sample sizes between
each test, the P boundary gives the smallest average
sample size among the three boundaries. However,
for designs with equivalent maximal sample size, it
gives the lowest power. Put differently, it requires
the largest maximal sample size to achieve a specified
power.

The O’Brien–Fleming (OF) boundary requires
very strong evidence of an effect to terminate at the
first interim test, whereas the criteria at the final test
are rather close to those for a single sample design

Table 1 Nominal P values for overall type I error
of 0.05(α = 0.05) Pocock, O’Brien–Fleming, and Flem-
ing–Harrington–O’Brien boundaries

Fleming–Harrington–
k Pocock O’Brien–Fleminga O’Brienb

1 0.0294 0.0051 0.0150
2 0.0294 0.0415 0.0418

1 0.0221 0.0006 (0.001) 0.0050
2 0.0221 0.0151 0.0061
3 0.0221 0.0471 0.0459

1 0.0182 5 × 10−5 (0.001) 0.0067
2 0.0182 0.0039 0.0083
3 0.0182 0.0184 0.0103
4 0.0182 0.0412 0.0403

1 0.0158 5 × 10−6 (0.001) 0.0038
2 0.0158 0.0013 0.0048
3 0.0158 0.0085 0.0053
4 0.0158 0.0228 0.0064
5 0.0158 0.0417 0.0432

aUse of 0.001 for the first test is recommended for the OF
boundary with K > 2.
bLetting π1 represent the probability of type I error occurring
at the kth test, π1 = · · · = πK−1 (where π1 is the tabled entry
for k = 1) and πK = α − (K − 1)π1.

(that is, a design with no interim testing). This fea-
ture may be viewed as desirable in the sense that
monitoring committees typically want very convinc-
ing evidence that a treatment effect is real before
terminating a study very early (for all the reasons dis-
cussed previously), but desire a criterion close to the
single sample test if early termination does not occur.
However, the boundary at the first test is judged to be
too extreme in some applications, particularly if the
number of interim tests exceeds two. In this case, one
may modify the decision rule to stop after the first test
if P < 0.001. The effect of this modification on the
overall type I error rate is negligible.

The boundary proposed by Fleming, Harrington
& O’Brien (FHO) occupies middle ground between
the P and OF boundaries, but is closer in spirit to
the OF boundary. The distinguishing characteristic of
the FHO boundary is that the probability of a type I
error is held constant for each interim test. Thus,
the boundary is determined by specifying the number
of interim tests and the probability of a type I error
occurring at the final test. In the examples shown, this
error rate has been chosen to be close to the overall
type I error rate (α = 0.05).

A different type of approach to group sequen-
tial testing has been proposed by Whitehead [40]
and Whitehead & Stratton [41], using a triangular
boundary. Conceptually, one plots an estimate of the
treatment effect on the vertical axis and a measure
(V ) of the information contained in Z on the horizon-
tal axis. The null or alternative hypothesis is accepted
depending on whether the lower or upper of two lines
are crossed. Since the lines are constructed to cross
eventually for suitably large V , the test terminates
with probability one.

Although the original formulation of these group
sequential designs assumed normal distributions with
known variances, simulation studies have shown that
they provide accurate control over the overall type I
error rate for other types of data. Thus, they are
commonly used when variances are unknown, for
binary endpoints, and survival data. Theoretical work
indicates that independent increments of information
accumulating between successive tests is an impor-
tant underlying consideration relating to the joint
distribution of the K test statistics.

The Alpha-spending Function Approach

Formally, the Pocock and O’Brien–Fleming bound-
aries require two assumptions which may be violated
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in practice. First, one assumes that the number of
interim tests which will be conducted is specified in
advance. This may be problematic if a decision is
made to extend the trial due to slower than anticipated
accrual. Notice that this assumption is not required for
the FHO boundary, since one can adjust the level of
the final test to allow for an increase in the number
of interim tests conducted.

A second assumption is that an equal number
of subjects are recruited between each test, or in
the case of survival-type studies, that the number of
events occurring between each test is constant. This
assumption is typically unrealistic, since meetings
of the DSMB are usually determined according to
calendar times. Simulation studies [13, 29] indicate
that the effects on size and power resulting from using
unequally spaced tests is negligible.

Thus far, we have assumed that modifications to
the monitoring plan are not motivated by accruing
data. For example, it might be tempting to schedule
more frequent tests if it appears that the stopping
boundary is being approached. Proschan et al. [34]
considered a variety of data-driven strategies and
found that the overall type I error rate can be severely
inflated. Thus, these types of monitoring strategies
should be avoided.

In view of the considerations discussed thus far,
it appears that the Pocock and O’Brien–Fleming
boundaries are quite flexible, and can be used without
modification in monitoring trials in a wide range of
circumstances. However, it is of interest to consider
versions of stopping boundaries which are a continu-
ous function of the percentage of the study completed.
This approach was proposed by Lan & DeMets [26],
and is illustrated in Figure 1. In this example, an FHO
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Figure 1 A spending function, α(t), expressing the cumu-
lative type I error rate as a function of the percentage of
the study completed

boundary is specified as in Table 1, with two interim
tests performed at equally spaced time points, with
α(t1) = 0.0050 and α(t2) = 0.0100.

Notice that the times t1 and t2 need not have been
specified in advance. For example, one might suppose
that an FHO boundary had been selected, but the
time of the first analysis (t1) had not been planned. If
t1 corresponded to completion of 1/3 of the study
as in the example, then α(t1) = 0.0050. However,
if t1 were some other time point, then the critical
value would have been the point in the boundary
corresponding to this time.

Continuous spending functions that correspond
closely to the Pocock and O’Brien–Fleming bound-
aries have been identified by Lan & DeMets [26],
and computing software has been developed in order
to address the computational problems required to
identify boundary points as a function of time.

Multiple Endpoints

Thus far, we have assumed that efficacy is defined
by a single univariate endpoint. The situation actu-
ally encountered by a DSMB is often more com-
plex. Of particular concern is the situation in which
the primary endpoint is conceived as a single but
multifaceted endpoint. For example, one might be
evaluating the effects of an experimental therapy in
improving the status of small nerve fibers in diabetic
neuropathy. However, the status of small nerve fibers
may be measured by performance on several neuro-
logic tests, and it is the combined information from
these tests which provides the definitive assessment
of status (see Multiplicity in Clinical Trials).

Ideally, a clinically meaningful method for com-
bining the various measures might be available. In
this case, the resulting global score can be used, and
the statistical issues associated with multiple end-
points do not arise. If such a score is not available,
statistical algorithms for obtaining global scores can
be used (see O’Brien [28]; and see Multiple End-
points, Multivariate Global Tests).

A qualitatively different scenario which may be of
concern to the DSMB is where multiple secondary
endpoints, each of interest in its own right, are con-
sidered. The question may be asked if any of these
endpoints have shown a response to therapy and, if
so, which endpoints. Analyses directed at answering
these questions may produce multiple statistical tests,
in which case questions arise about what error rates
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should be of interest (per comparison, experiment-
wise, or per experiment) and the best way to control
them. An excellent review of these issues can be
found in Hochberg & Tamhane [22]. The case against
attempting to control experimentwise and per exper-
iment error rates is discussed by Rothman [35].

It is perhaps unfortunate that discussion of testing
multiple hypotheses tends to accept as a premise that
one type of error rate is appropriate and the other
not. An alternative approach would be to view the
differing error rates as qualitatively different pieces
of information, one or more of which might be helpful
in any given instance.

Stochastic Curtailment

In comparing the different approaches for interim
testing, it was observed that it is often desirable to
stop only when the evidence for or against a treatment
effect is overwhelming. Under these circumstances,
the OF procedure has the desirable property that the
probability of type I and type II errors are close to
the error rates associated with a single sample test.
Thus, one gains the opportunity to terminate early
with little loss.

Stochastic curtailment follows this train of thought
to its logical conclusion. One examines the data to
see if the final result has already been determined
with certainty [1, 2, 14, 19, 20, 27]. For example, if
the data strongly suggest that treatment is efficacious,
one can suppose that subsequent data will be the
least favorable possible. If the null hypothesis would
still be rejected under this assumption, then there
would be no need to continue the trial, at least as
far as the primary test for efficacy is concerned.
Similarly, if the data indicate a lack of an effect, one
could suppose that subsequent data will be the most
favorable possible, and consider terminating the study
if the null hypothesis would not be rejected under
these circumstances.

Since it is unlikely that a trial will progress to the
point that the outcome is completely determined, a
DSMB is more typically concerned with the proba-
bility that a current trend might be reversed, so that
statistical significance might be achieved despite an
early negative trend, or vice versa. This approach is
closely tied to the concept of conditional power. If
the early trend is positive, one would compute the
probability of achieving significance under the null
hypothesis.

Conversely, if the trend is negative, one would
compute the conditional power under a suitable alter-
native hypothesis. A natural alternative to consider is
the one which was originally proposed in the study
design and used for sample size calculations (see
Sample Size Determination for Clinical Trials).
This approach may be especially appropriate in stud-
ies in which the primary endpoint is time to an event,
where one might suppose that lack of an effect ini-
tially may be due to a delayed onset of treatment
effect.

In other applications, one might argue that, if the
current data indicate that the originally hypothesized
effect is implausible given the current data, one
should consider an alternative which is both clinically
meaningful and also plausible given the current data.
Although some authors have proposed using the point
estimate from current data as the alternative for
computing conditional power, this reasoning seems
somewhat circular.

The issues surrounding early stopping based on
stochastic curtailment are similar in many respects to
those described previously. In particular, any purely
statistical algorithm will in practice be used by a
DSMB as only part of the information to be consid-
ered in arriving at a decision whether or not to termi-
nate the trial. However, a unique aspect of stochastic
curtailment is that it typically does not allow one to
say that statistical significance has occurred, or that it
cannot occur. Rather, stochastic curtailment provides
a mechanism for predicting whether or not signifi-
cance will occur.

Point and Interval Estimation

When accumulating data are monitored during the
course of a trial, one can expect that at times the
results will appear overly encouraging. At other
times, results may appear overly negative. When con-
sidering whether or not to terminate a trial early, a
DSMB will need to account for this in evaluating the
magnitude of treatment effects. Thus, there is a need
to adjust point and interval estimates to account for
interim monitoring, in much the same spirit that P

values must be adjusted.
In formulating appropriate interval estimates, it

is necessary to take into account that the sample
space is two-dimensional, consisting of the number
of tests undertaken (k∗ = 1, . . . , K) and the value of
the test statistic at the last test (T ∗). One must obtain
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a univariate ordering of the sample space, and one
way to do so is to order first according to k∗, then
T ∗. The ordering may be represented as a mapping
from (k∗, T ∗) to Z(k∗, T ∗). By inverting probability
statements about Z(k∗, T ∗) and the parameter of
interest (θ), one obtains confidence intervals for θ .

A detailed discussion of this approach appears in
Tsiatis et al. [39]. A limitation is that the ordering
of the sample space is somewhat arbitrary and may
produce confidence intervals that may be counter-
intuitive. For example, one would suppose that the
need to adjust for overly optimistic data would be
greatest for trials which terminate at the first interim
test. However, using the ordering of the sample space
described above, in this circumstance the adjusted
confidence interval, is the same as the “naı̈ve” single
sample interval. This problem is discussed in Chang
& O’Brien [11], who consider an ordering based on
maximum likelihood criteria. However, there is no
general agreement over the best ordering to use.

There is also the need to adjust point estimates
of treatment effect. Methods for obtaining estimates
which are unbiased in the usual sense are not gen-
erally available. An alternative approach is to use
the confidence interval calculations described above,
but to compute the 50% confidence interval, obtain-
ing an estimate which may be described as “median
unbiased” in the sense that the estimate will be
greater than (and less than) the true value with
probability 0.5.

The methods described above provide a means for
adjusting point and interval estimates upon comple-
tion of a trial when the study has been terminated
early. A conceptually different problem is to obtain
repeated confidence intervals during the course of the
study as an aid in judging the desirability of early
stopping. This approach seems especially well suited
to the way a DSMB works in practice, making assess-
ments about the magnitude of effects which seem
plausible, weighing this information with other con-
siderations, and making a judgment about whether or
not to continue.

Repeated confidence intervals are computed in
a way to insure that all the intervals which may
ultimately be computed will contain the true pop-
ulation parameter with a specified probability (e.g.
0.95). A method to accomplish this is to use the
well known correspondence between interval estima-
tion and hypothesis testing [23]. Since the probability
statements pertain to all confidence intervals which

may be computed, one could use the intersection of
all intervals available at the time they are being con-
sidered. In practice, interest usually centers on the
most recent interval.

One-sided Versus Two-sided Tests

Statisticians often disagree about whether tests should
be one- or two-sided (see Alternative Hypothesis)
[15, 16, 24, 25, 30, 31]. The issues involved are
somewhat more complex in the context of monitoring
a clinical trial. Careful consideration of these issues
is worthwhile, because it provides important insights
into the monitoring process itself. It is helpful first to
consider the controversy in the more general context
of hypothesis testing.

One argument is that a test should be two-sided
if it is possible that an effect could go in either
direction. Thus, if it is possible that a drug could
be worse than placebo with respect to the primary
endpoint, this view would imply that the test for
efficacy should be two-sided. A second argument is
that the test should be two-sided if the investigator
would be interested in an effect in either direction.
Since it is difficult to establish that a phenomenon is
impossible (particularly when the effects of a drug
are unknown), and since investigators are interested
in any new information which might be gleaned
from their study, these two arguments generally lead
proponents to argue for two-sided tests.

A third point of view is that one must first deter-
mine what question the study is intended to answer.
The translation of this question into correspond-
ing null and alternative hypotheses then determines
whether the test will be one-sided or two-sided. To
illustrate, suppose the purpose of a study is to answer
the question, “Is the experimental drug more effi-
cacious than placebo?” The alternative hypothesis
corresponding to this question is clearly one-sided,
and the probability of a type I error (a claim of
efficacy when in fact the drug is not more effica-
cious than placebo) is given by a one-sided P value.
Although it might be possible that the drug effect is
deleterious, and one would certainly be interested in
such a finding, these are additional questions which,
along with many others, would be an appropriate
subject for secondary analyses. A qualitatively dif-
ferent situation occurs when one is comparing two
competing therapies and the question motivating the
study is, “Is one treatment superior to the other?”
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This is a two-sided question, in which a difference
in either direction will lead to an affirmative answer
(and potentially a type I error).

These considerations become increasingly impor-
tant in the context of monitoring a clinical trial. One
might argue that, although the primary analysis at
the end of the study addresses a one-sided question,
the question during the monitoring phase is two-
sided, since the DSMB will terminate the study if the
evidence of a treatment effect is overwhelmingly pos-
itive or negative. Thus, one might argue for two-sided
tests during the monitoring phase, but plan on a one-
sided test at the final analysis for efficacy.

Another approach is for the DSMB to consider
three distinct questions and target correspondingly
distinct analyses towards each: (i) Is the drug effi-
cacious? (ii) Is the drug safe? (iii) Is the probability
of achieving statistical significance so remote that we
might as well stop the trial now?

The first question is one-sided and might be
addressed using a group sequential test or stochas-
tic curtailment, using a one-sided test in either case.
Similarly, the third question would be appropriately
addressed using stochastic curtailment or conditional
power based on a one-sided test.

The second question usually encompasses a wide
range of potential hazards, and some of the dan-
gers may only become apparent during the course
of the trial. An adverse effect on the primary mea-
sure of efficacy may be only one of many such
hazards, and is typically one of the least likely to
materialize. In addition, the desirability of waiting
until statistical significance is achieved, and the level
of significance which is appropriate, may be quite
different in assessing safety vs. efficacy. Thus, the
implementation and interpretation of hypothesis test-
ing in addressing safety may differ from assessments
of efficacy.

Decision Theoretic Methods

Controling the overall type I error rate is a critical
concern in monitoring clinical trials and in making
judgments about the desirability of early termination.
As indicated previously, this piece of information is
combined with other factors, such as the estimated
magnitude of the effect, in arriving at a decision.
Although the decision theoretic approaches of the
sort that we discuss next appear to be infrequently

used by DSMBs, they might provide helpful addi-
tional information. In addition, Bayesian methods
may be especially well suited to monitoring pilot
studies in the drug development process prior to a
large Phase III trial.

Maximizing the Number of Patients Receiving
Better Treatment

Consider the total population of patients who will
receive either the standard or experimental therapy in
the future. One approach to the study design might
be to attempt to maximize the number of patients
who will ultimately receive the superior treatment.
Specifically, let N represent the number of patients
who might receive the new treatment. Among the
number (n) who will be entered into the trial, let ns

and ne represent the number who will be assigned
to standard and experimental therapy, respectively.
If we assume that the remaining N − n will receive
the drug selected at the end of the study and adopt
a prior probability distribution that one treatment is
superior to the other, then we can choose ns and ne to
maximize the expected number of patients receiving
superior treatment.

A fixed sample size test with equal numbers
assigned to each treatment arm of the study, assuming
that the study endpoint is dichotomous and imme-
diately observable, was proposed by Canner [10].
The requirement of equal allocation between treat-
ment arms was obviated in a method by Berry &
Pearson [8]. Earlier work by Colton [12] considered
procedures that are conceptually similar, using mini-
max, maximin, and Bayesian approaches focusing on
the costs associated with a wrong treatment selec-
tion. Group sequential versions of these types of tests
would be desirable for use by a DSMB.

A Bayesian Approach

In a sense, deciding that the evidence in favor of
an experimental therapy is sufficient to justify ter-
minating a trial and recommending the treatment for
future patients is analogous to the decision a physi-
cian makes in choosing a new treatment for future
patients [3, 6]. Furthermore, one might argue that, at
least implicitly, physicians make these types of deci-
sions based on a Bayesian probability; that “medical
researchers . . . act like Bayesians” [7].

This line of reasoning suggests a Bayesian deci-
sion rule rather than a classical group sequential
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approach. A simple example of how such a rule
might proceed is provided by Berger & Berry [6],
who consider a randomized trial comparing exper-
imental and standard therapies. They assume that
patients are randomized in pairs and that a dichoto-
mous response (success or failure) is immediately
observable.

Let p represent the prior probability that there is
no difference between drugs (H0), and let θ represent
the probability that E will be superior to S in a given
pair, where the investigator must specify the constant
p and the distribution for θ . In this case, we assume
p = 0.5 and that θ follows a uniform distribution
over the interval (0, 1).

Hypothetical data for the first 18 pairs are shown
in Table 2, together with the posterior probability that
E is superior to S. Based on these computations, it
would appear that the evidence in favor of E was
convincing well before the eighteenth pair.

It is of interest to consider how the monitoring
of this trial might have proceeded using the classic
group sequential approach, evaluating the data after
every six pairs, supposing that a maximum of 18 pairs
had been planned. The nominal P value for a one-
sided test after 12 pairs is 0.019, slightly larger than
the level required for the OF, but less than the level
required by the P boundary.

Table 2 Results in 18 pairs of patients

Posterior
Superior Cumulative probability E

Pair treatment preference for E better than S

1 E 1 0.750
2 S 0 0.500
3 E 1 0.687
4 E 2 0.812
5 E 3 0.891
6 S 2 0.773
7 E 3 0.855
8 E 4 0.910
9 E 5 0.945

10 E 6 0.967
11 E 7 0.981
12 E 8 0.989
13 E 9 0.994
14 S 8 0.982
15 E 9 0.989
16 E 10 0.994
17 E 11 0.996
18 E 12 0.998

Source: Berger & Berry [6].

This example provides some insights about the
strengths and weaknesses of a Bayesian approach
within the context of monitoring clinical trials. A
subjective assessment may be especially useful for
a pilot study in which the goal is to determine
whether or not to proceed to the next step in drug
development. On the other hand, for trials which are
intended to provide a definitive answer about efficacy,
the necessity to specify prior distributions may pose
a difficulty for the Bayesian approach. Disagreement
about priors may occur both within the DSMB as
well as in the medical and scientific community.

Some ways to integrate Bayesian methods into a
more traditional framework are: to compute the type I
error rate for Bayesian stopping bounds; to adopt
skeptical priors resulting in conservative stopping
bounds; and to treat Bayesian analysis as a source of
additional information complementing the informa-
tion obtained from frequentist analyses. Excellent dis-
cussion of applied aspects of incorporating Bayesian
methods in the monitoring of clinical trials is pro-
vided in Spiegelhalter et al. [38] and Freedman &
Spiegelhalter [18].
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Data Archives

Data archives are accessible and indexed compen-
dia of data which can be accessed and utilized by
researchers intending to perform secondary data anal-
ysis. Such archives have been in existence in the
United States since the early 1960s and have spread
internationally since then. An example is the Eco-
nomic and Social Research Council (ESRC) data
archive at the University of Essex, UK, established
in 1967. Quantitative data from various governmen-
tal, administrative, and research sources are held in
computer-readable forms. Qualitative data archives,
including the ESRC QUALIDATA archive, are a
more recent innovation.

Data archives preserve data against disposal or
deterioration, provide indexing services, and can pro-
vide data in formats useful to secondary data analysts.
There are several reasons why increasing accessibility
of data, through the establishment of data archives, is
beneficial to the research community [1]. Data collec-
tion is expensive, and the use of extant data to answer
research questions which were not originally envis-
aged by the collectors of the data is an efficient use
of resources. Study participants are protected from
being overresearched by the multiple use of data.
Archived data provide a rapid and inexpensive way
of replicating the findings from other studies, and
the interrogation of existing data at the time of the
design of future studies is useful for the performance
of sample size determination, evaluation of data col-
lection instruments (see Questionnaire Design), and
the exact formulation of research questions. Archived
data can be linked to other data (see Record Link-
age) if different sets of records on the same people
exist, creating data sets which can be used to explore

issues which cannot be examined in existing unlinked
studies. The rapidly expanding field of meta-analysis
also benefits from the ready availability of primary
data. Statistical techniques can be applied to data
which were collected when such methods of analy-
sis had not been developed. Finally, the requirement
to provide original data is one protection against the
production of findings based on a particular statistical
approach to the data – findings produced by what is
commonly called “data torture” and the actual fraud-
ulent invention of results.

Primary researchers may understandably view the
provision of data to archives as threatening [1]. Guar-
anteed rights to initial publication, transfer of the
costs of data preparation for archival storage to
funding bodies or secondary analysts, and protec-
tion against the commercial exploitation of data by a
recipient are all reasonable requests by primary data
collectors. Criteria for the evaluation of secondary
(including archived) data sources for use in epidemio-
logic research have been developed [2], and a formal
appraisal of the value of secondary data analysis in
relation to that of primary research would be valuable.
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Data Management and
Coordination

The term “data management” in clinical trials has
become a very general term that covers the proce-
dures both for the collection of data at clinical sites,
and for the quality control of those data after they
have been submitted to a central statistical or coordi-
nating center (see Clinical Trials Audit and Quality
Control). In both locations procedures should be
established for managing the trial data, and steps
taken to ensure that the quality of data is high
throughout a trial. These steps and procedures are
described in this article.

An individual who is responsible for the collec-
tion and quality control of data is known by various
titles, including “data manager”, “clinical research
associate”, “data coordinator” and “research assis-
tant”. For the sake of clarity, in this article the term
“clinical research associate” (CRA) is used for an
individual responsible for the abstraction of data and
completion of forms at the participating institution,
and the term “data manager” is used for an individual
responsible for the quality control and computeriza-
tion of the data at the statistical center. Usually, there
is one clinician who has overall responsibility for the
design and monitoring of the trial and, in this article,
this person is referred to as the “study chair”.

The importance of high-quality data cannot be
overemphasized. The “end-product” of a clinical trial
is the publication of its results in the scientific liter-
ature. To reach this point, trials have to be designed
carefully, required data defined, forms developed,
patients enrolled, data collected, data analyzed, and
a manuscript prepared. The goal of the data manage-
ment team is to collect complete and accurate data
so that the results are correct. By “correct” results is
meant true observations. Whether these are statisti-
cally or clinically significant is not the main concern
of the data management team.

Trial Participants

Clinical trials can be single-institution or multicen-
ter trials. A single-institution trial is conducted in
one location with trial design, patient entry, data col-
lection and analysis all being done at that institution.

Multicenter trials are collaborations between investi-
gators at multiple institutions. Study design is done
as a team, patients are entered from all participat-
ing institutions and the data are usually sent to a
central statistical center or coordinating center for
quality control, computerization and analysis. Most
large Phase III trials are done as multicenter trials,
as few single institutions are able to accrue enough
patients by themselves. In this article, the multicenter
model is used for examples, but most of the discus-
sion applies equally to small single-institution trials.

As well as the participating institutions and the
statistical center, special reference centers (e.g. to
review pathology slides, read x-rays and scans, or to
do specialized laboratory testing not routinely avail-
able at the participating sites) may be used for specific
trials. These reference centers usually generate data
that become part of the database for the clinical trial,
and therefore data management procedures need to
be established to handle the collection and transfer
of these data.

Another major participant in a trial is the sponsor.
Most large trials have sponsors who provide funding
or resources (such as drugs). The sponsor could be a
government, a private agency that supports scientific
research, or a company that manufacturers one of the
treatment components. The sponsor may have special
requirements for data management procedures, and it
is important to discuss these during the design phase
of the trial to be sure that they will be met.

Protocol and Forms Design

Data management input is important during all phases
of a clinical trial, including the design phase. Data
managers can contribute to the clarity, completeness,
and consistency of a clinical trial protocol by pro-
viding feedback. In particular, they should review
the eligibility section (see Eligibility and Exclu-
sion Criteria), the section describing how patients
will be entered, the treatment administration section,
and the section describing the schedule for submit-
ting required data forms. Data management review
of each draft of the protocol can greatly improve the
quality of the final protocol and make it easier to use.
Reviewers should include both CRAs at sites that will
enter patients and the data managers at the statistical
center.

In parallel with the development of the proto-
col, there should be discussion about the data items
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needed to meet the study objectives and monitor the
progress of the trial (see Data and Safety Moni-
toring). The identification of the data items to be
collected, and the subsequent design of the data col-
lection instruments and the computer database (see
Database Systems), are critical. These three activ-
ities are interrelated and are best performed in the
order listed. The data collection instruments, whether
paper forms or electronic screens, should be available
prior to entry of the first patient. A trial should not
be activated without data collection instruments.

Defining The Data Items

There are different types of data that may need to
be collected, and it is important during the planning
phase of a study to think through all the requirements
for the trial. For example, besides the research data,
it may be necessary to collect data to aid the adminis-
tration of the trial and to document compliance with
professional regulations and good clinical practice.

Identification Data. When forms are submitted
they must be linked to the appropriate patient and
also to the correct trial. Therefore, a form must have
space for recording sufficient information for correct
identification of the patient, the trial, and the local
institution.

Research Data. The research data represent the
information that is ultimately analyzed to address the
study objectives. The required data should be iden-
tified during the protocol development phase, with
input from all key members of the trial team, includ-
ing the study chair statistician and data coordinator.

It is always tempting to collect data items “just
in case” they turn out to be interesting when the
data are analyzed. However, collecting large amounts
of data on each individual can be detrimental to
the study because, as the volume of data increases,
the quality of the data can decrease. It is, therefore,
important to limit data collection to those items that
are truly necessary to answer the trial objectives and
manage the trial. In assessing the data requirements,
the team should distinguish between data that are
needed for the clinical care of the patient and data that
are needed to answer the research objectives. Data
collection for the trial should be limited to those items
related to the research objectives. In most trials, only

a small fraction of the clinically relevant information
is entered into the trial database.

Omissions at this stage will be very difficult to rec-
tify once the trial has begun to accrue patients, as it is
hard to collect data retrospectively. To help to ensure
that all necessary data are collected, it is useful for the
statistician and study chair to draft an analysis plan
detailing the information to be included in the final
report. Other members of the trial team can review
this outline and provide input. Once this is done, it is
easier to identify the required data items. At a min-
imum, the required data usually include key dates
of events (such as date of entry to the trial), infor-
mation about the treatment assigned and received,
side effects of treatment, and the study endpoints (see
Outcome Measures in Clinical Trials).

Administrative Data. It is usually necessary to col-
lect administrative data to help with the management
of the trial. An example is the recording of dates of
dispatch of materials sent by the institutions to refer-
ence centers, and an inventory of the materials sent.
The amount of administrative data depends on the
size and complexity of the trial. In a small single-
institution trial, much less information is needed than
in a large multicenter trial, where data and materials
are being shipped to various locations.

Regulatory Data. For some trials it may be neces-
sary to collect documentation that shows compliance
with local, national or international regulations (see
Drug Approval and Regulation). This could include
documentation of protocol approval (and periodic re-
approval) by an ethics committee or institution review
board prior to patient entry, consent of the patient
prior to entry, and the professional qualifications of
the personnel at a participating site. Normally, if
the trial includes investigational treatments, then the
statistical center needs to collect copies of these docu-
ments. For other trials, it may be sufficient to maintain
a file of these at each participating site.

Design of Case Report Forms

Once the data items have been defined, case report
forms (CRFs) should be developed. A CRF is a
printed or electronic document that is designed to
collect the required research, administrative, and reg-
ulatory data for a clinical trial. The measurement and
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recording of the trial data are perhaps the most critical
steps in the overall data management process, and it
is, therefore, important that the CRFs be designed
for clarity and ease of use. Forms should always
be available before a trial is activated. Activating a
trial without the CRFs available is likely to gener-
ate incomplete and inconsistent data; the urgency to
activate a trial should, therefore, always be balanced
by the need to have the forms in place. It is recom-
mended that forms be piloted, to identify problems
that can be corrected prior to starting the trial.

It is always useful to look at the data collected for
other similar trials before designing new forms, and
to take advantage of this prior experience. If there are
existing forms that can be used for the new trial, it
can eliminate much work. A book of more than 600
forms used in previous clinical trials is available [3]
and may provide useful examples. If existing forms
are used, it is important to check that these do, in
fact, collect all the data needed for the new trial, and,
conversely, do not collect data that are superfluous.

When designing forms for a trial, thought should
be given to the following aspects.

Content and Organization of CRFs. The ultimate
objective of the CRF is to collect the data needed
to answer the trial’s objectives. Once identified, it is
necessary to decide how to organize the data items
on the forms. It is not always best to minimize the
number of CRFs by trying to fit as much as possible
onto one form. It may be better to have more forms,
each with a smaller amount of data. When designing
CRFs, one should ask:

1. When will data be available?
2. Who will complete the forms?
3. Where will the data be collected?

As a first step, the timing of the collection of the
different items should be established. For example,
one should identify all of the data items that will be
collected at the time that the patient is entered on the
study. These normally include data on the patient’s
past medical history, data confirming the patient’s eli-
gibility, and results of baseline tests required by the
protocol. Other relevant time points could be the dif-
ferent stages of the protocol treatment period, the end
of treatment, and scheduled follow-up examinations
after the treatment period. All of these are logical
divisions and can help in deciding which data items
belong on which forms.

As well as the timing of the data collection, it is
also useful to identify where the data will be collected
and by whom. These are also logical divisions that
can help to decide which data should be collected
on which form. For example, there may be baseline
data that are gathered from the medical record by a
CRA and other data that are completed by a medical
specialist, such as a surgeon. Even though all the
data are collected at the same time point, it is more
efficient to have two different forms – one for the
CRA and one for the surgeon. This allows each
person to complete their part of the data collection
in parallel, rather than one having to wait for the
other to complete their part before passing the form
on. Likewise, if some of the data are available in
the cardiology department and some in the physical
therapy department, two separate forms may work
better.

Format of Questions and Coding Conventions.
The goal of the CRFs is to collect complete and
unambiguous data and to ensure standardization and
consistency of data across participating clinics. The
format of the CRFs should be designed with three
functions in mind: (i) the completion of the form;
(ii) the entry of the data onto computer; and (iii) the
retrieval of data for analysis. The person completing
the form should be able to answer the questions
and record the answers in an efficient and effective
way, minimizing the possibility of misinterpretation
or transcription errors; the person entering the data
onto computer should be able to transcribe values
from the form to the keyboard with minimum effort
in following the flow of responses and entering the
data values; the person analyzing the data needs to be
able to interface the data and the statistical software
with minimal data conversion. Even if the data are
not computerized, but are tabulated manually, it is
important to design the forms with analysis in mind.

There are several ways to format questions on
CRFs and there are conflicting ideas of the most
effective format for collecting complete, accurate
data. Because the goals of different trials and envi-
ronments of data collection vary, it is recommended
that the user develops forms in the format that best
suits the research being done and the resources avail-
able. If several forms are developed for a trial, the
most important criterion is to use a consistent format
across forms, so that the users can become familiar
with the format used. Page layouts should be similar
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across forms, and the headers of the pages should be
designed in the same way, collecting the same identi-
fication information. Coding conventions should also
be consistent for all data items; for example, 1 = no,
2 = yes for all instances where “no” and “yes” are
possible answers.

When designing the layout of the forms, the ques-
tions should be concise and unambiguous. The text
should be contiguous to the box or space where the
answer is to be written, and there should be ade-
quate space for responding. Instructions should be
clear and located next to the field to which they
apply. Decisions need to be made about the codes to
be used and the inclusion of values for “Unknown”,
“Other”, “Not-Applicable” or “Not-Done” responses.
It is often useful to leave clear space for the partici-
pants to enter comments using free text, as important
information may be conveyed in this way.

Good forms design is a complex subject and
cannot be discussed in detail here. Hosking et al. [1]
summarize many of the issues involved in form
design and their article is recommended for further
reading (see Questionnaire Design).

Role of the CRA

The job description for a CRA varies from one
institution to another, and can include many respon-
sibilities, depending on the qualifications and training
of the CRA. If the CRA is a nurse, the responsibili-
ties can include patient care as well as those oriented
towards data collection. The following responsibili-
ties are usually part of the job description for a CRA.

Tracking Data Submission Requirements

At the participating institutions, particularly those
participating in several trials simultaneously, it is
important to develop systems to ensure submission of
complete and accurate data according to the sched-
ule defined in the protocol. Scheduling systems can
be computer- or paper-based, and the system selected
will depend on the local resources and skills, unless
scheduling software is provided from a central office.
A computer scheduling system usually requires the
building of a database that contains information
on each patient entered, information on the forms
required for a trial, and the time frame for submission
of the forms. Programs are needed to link these data

and to generate calendars based on the patient’s date
of entry to the trial and any relevant events occurring
during the trial. Forms can be required at fixed time
frames (e.g. after each clinic visit), or after particular
events (e.g. failure to respond, or toxicity). The sys-
tem therefore requires the ongoing entry of relevant
data to remind CRAs of forms submission require-
ments. Such a system normally requires programmer
support in development and maintenance.

If computer support is not available at a location,
a paper-based system can be developed, using tools
such as a wall calendar or index cards. Entries are
made for each patient by marking the date of entry on
to the study. At each visit, or time of patient contact,
the CRA completes and submits any required data.
The CRA then calculates when the next form is due
and, with the calendar system, makes an entry under
that date indicating the form needed for that patient.
The calendar needs to be checked regularly to see
what forms are due each week or month. With the
index card system, the CRA sets up a file with a
section for every month or, if necessary, every week.
There is a card for every patient, perhaps listing all
the required forms. After a form is submitted for a
patient, the date of submission is entered on the card
to record that the data were sent; then the date that
the next form is due is calculated, and the card is
filed in the card system according to that date. The
CRA pulls all cards in the relevant section each week
or month, and makes sure that the required forms are
submitted.

While a computer-based system allows more flex-
ibility and eliminates the need for the CRA to cal-
culate future due dates, a paper-based system can be
equally effective, unless there are large numbers of
patients to track or the trial is highly complex.

Data Recording

Another important responsibility of the CRA is to
ensure the collection of complete and consistent data.
This requires ensuring that all trial data are recorded
in the patient’s medical record and that all study
parameters are followed. In a busy clinical environ-
ment, there may not always be sufficient time for a
clinician or nurse to review a protocol and ensure that
all tests are done and required data collected. Any-
thing that a CRA can do to help with this process
will improve the likelihood of complete data being
recorded. The CRA can review the list of patients
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attending clinic on a particular day, identify the pro-
tocol patients ahead of time, prepare a list of tests to
be done at that visit, and place it in a prominent place
in the patient’s chart. This will help the clinical staff
in ensuring protocol compliance.

If there are subjective data to be collected from the
patient, or aspects of a physical examination (such as
tumor measurements) that need to be recorded, the
CRA can prepare a special internal data collection
instrument for use by the clinical staff to ensure that
they ask all the questions necessary. These data col-
lection instruments can become part of the patient’s
trial record and used to complete the CRFs submit-
ted to the statistical center, and are valuable for audit
purposes.

Preparation for Audits

Many trials require complete or partial source ver-
ification by an outside organization, particularly if
investigational treatments are involved, or if the data
from the trial are likely to be used as part of a reg-
ulatory submission for approval of commercial use
of the treatment. This monitoring is usually done by
the sponsor or their designee. The primary goals of
such a monitoring system are to verify that all regu-
latory requirements are being met, and that the data
submitted to the statistical center are complete and
can be substantiated by review of the original medi-
cal records of the patient. Maintaining complete and
well-organized source documents can greatly facil-
itate this process. When an audit is scheduled, the
CRA can assist the auditors by organizing the med-
ical records and marking the relevant parts of the
record. More details of the on-site monitoring pro-
cess can be found in the article on Clinical Trials
Audit and Quality Control.

Role of the Data Manager

The most important function of the data manager at
the statistical center is quality control of the submitted
data. Data need to be checked for completeness,
clarity and consistency over time. If missing, unclear
or inconsistent data are detected, the statistical center
needs to query the responsible institution to resolve
the issue and obtain the correct data values.

Quality control can be done by computer, visual
review of the submitted data, or a combination of

both of these. When planning a study, a quality con-
trol plan should be developed, defining the checks to
be made. Once the trial is active and data are received
and reviewed, the plan will probably need to be mod-
ified on an ongoing basis. It is important to follow
the quality control plan and do consistent quality con-
trol checks on all data entered. Documentation should
be maintained defining all the checks, and keeping a
record of the type and timing of changes to the quality
control plan.

Eligibility Check

There are several checks that should be done as part
of the quality control process. A system should be
developed to ensure that patients are registered in the
trial prior to starting on protocol treatment. A check
should be done to ensure that the patient is eligible for
the trial. The institution can be solely responsible for
ensuring that all eligibility criteria are met, or the sta-
tistical center can check eligibility by asking relevant
questions at the time of registration (see Eligibility
and Exclusion Criteria). It may also be important
to check that all regulatory requirements have been
met prior to entry, e.g. that informed consent has
been given and that the protocol has ethics committee
approval (see Ethics of Randomized Trials). Often,
an eligibility checklist is prepared as part of the forms
for a trial and is used by both the institution and the
statistical center to confirm patient eligibility. The eli-
gibility check should be repeated on review of the
submitted data to ensure that the data given at the
time of registration were accurate.

Logging Receipt of Forms

When data forms are received at the statistical center,
they should first be checked to ensure that patient and
trial identifiers are correct. For example, if patient
initials are on the form, they can be checked with the
initials given at the time of registration of the patient
with that identifier, or the name of the institution can
be checked. If there are any discrepancies, they will
need to be checked with the institution that submitted
the forms. The forms should then be logged in so
that a record is kept of patient and trial identifiers,
type of form and date of receipt. Depending on the
size of the trial, this can be done manually or by
computer. Bar code technology can be used to scan in
this information. Logging receipt allows the statistical
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center to know which forms have been received
and which are overdue. It also allows tracking of
timeliness of data submission.

Logical Checks

Submitted data need to be checked to ensure that the
correct forms have been used, that patient identifiers
are on each form, that the data are consistent over
time and that the forms are complete. Logical checks
can also be defined; for example, checks that dates
are in logical sequence, or for consistency between
associated data items. These types of checks can be
done manually or by computer, and the statistical
center should have a mechanism for sending queries
back to the institutions when discrepancies are found.

Assessment of Compliance and Endpoints

There also need to be defined procedures for moni-
toring compliance to the protocol and evaluating the
study endpoints for each patient, using the criteria
specified in the protocol (see Outcome Measures in
Clinical Trials). The design of the data collection
forms and the level of data computerization deter-
mine whether these checks can be done by computer
or need review by a data manager (or a combination
of the two.) The checks usually require comparison of
data over time or over different data forms. For exam-
ple, in cancer trials, if there is a summary form that
collects data on the best overall response to treatment
and another form that collects tumor measurements
over time, the measurements can be reviewed to con-
firm that the response assessment is correct. If the
tumor measurements are not entered onto computer,
then the check is done manually.

Clinical Review of Data

In many trials, data are also reviewed by the study
chair or another designated clinician. This fulfills
two primary purposes. First, it ensures that complex
medical data are reviewed and assessed by someone
with the appropriate training to detect any clinical
nuances in the data. It also provides a quality control
check on the assessments of the data manager at the
statistical center. If clinical review is part of the trial
procedures, then a system must be developed. This
could involve copying all data as they are received

and sending copies to the reviewer, or having the
reviewer visit the statistical center on a regular basis
to review the data on site. Normally, the results of
the clinical review are compared with those of the
data manager, and disagreements are discussed with
the statistician in an attempt to reach consensus.

Coding Conventions

Conventions need to be developed and documented
for dealing with problems such as missing data val-
ues, or tests not being done, with results consequently
unavailable, or for flagging cases that still have unre-
solved questions. The statistician is normally closely
involved in developing these rules and for ensuring
that they are consistently applied.

Data Requests

It is important to ensure that data are collected and
submitted in a timely way, and lists of overdue
data should be sent to the institutions at frequent
intervals. Often, bad news arrives early and the forms
first received at the statistical center document study
failures. Unless there is a balance to ensure that
data are received on all cases according to the same
schedule, there is a risk of overreacting to the bad
news and drawing erroneous conclusions about the
efficacy of the treatments under study.

Data Queries

A query to the institution can be generated at any time
during the quality control process, when clarification
is needed or missing data has been detected. Queries
should be made in writing so that there is a record of
both the query and the response. It is also advisable to
keep track of dates that queries were sent so that the
response can be tracked. When generating a query,
it is important to provide sufficient information to
the institution so that they understand the question.
The patient and trial identifiers should be on the
query, along with a clear statement of the question
being asked. If the queries are generated by computer,
it is important to avoid being cryptic in the text
of the error message. Decisions need to be made
about whether revised CRFs should be submitted, or
whether the query can be answered with a note from
the institution. If the latter is acceptable, the query
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letter should have space for the institution to write a
response and, when received at the statistical center,
the returned query should be part of the patient’s trial
record.

Data Management Support for Analyses

When an interim or final analysis is being done, the
data manager plays an important role. Normally, a
cut-off date is selected, and all data that have been
submitted by that date are quality controlled and
entered into the trial database. It is important to try
to recover as many responses to queries as possi-
ble. When the statisticians prepare for the analysis,
they usually run programs to check the database, and
inevitably detect further inconsistencies. It is the data
manager’s responsibility to resolve these discrepan-
cies and make corrections to the database. For interim
analyses, (see Data and Safety Monitoring) this is
an ongoing process, and it is not necessary to have all
issues resolved before the analysis is done. However,
when the final analysis is being done in preparation
for a manuscript, it is important to set enough lead
time so that a final effort can be made to retrieve
all missing data from the participants, to resolve all
queries, to ensure that all follow-up is as up to date as
possible, that clinical review (if being done) is com-
plete, and that all database inconsistencies have been
resolved. The data manager works closely with the
statistician to ensure that this is done.

Computing Support

For all clinical trials except very small Phase I and
Phase II studies, it is unlikely that data will be man-
aged without the use of a computer for either quality
control, data storage or statistical analysis. Decisions
therefore need to be made about the computing sys-
tem used.

Data Storage

Clinical trials data are usually managed by a database
management system (DBMS) (see Database Sys-
tems). Choices are available for most types of com-
puters. The most common type of DBMS in use for
clinical trials is the relational database where data are
stored in multiple tables that can be linked by the use
of key fields [2]. Any database system is unlikely to

provide all the functionality required for a clinical tri-
als application, and it is usually necessary to develop
application programs that meet the needs of the trial.
Before embarking on the purchase of hardware or
software, it is important that a detailed analysis of
the requirements be done so that the system chosen
is one that closely meets the needs of the trial. Mis-
takes can be costly, both in terms of purchases and
in the time and effort expended to make the system
work.

Whatever database management system is used, it
is important that it provides an interface to the sta-
tistical software to be used. Many DBMS packages
provide interfaces to the most commonly used statisti-
cal software packages, but if no interface is available,
then one may need to be developed specifically. If
the interface is developed locally, then it is important
that it be rigorously tested to ensure that it produces
complete and accurate data as input to the statistical
software.

Data Entry

If data are collected on paper forms, they need
to be entered onto the computer at the statistical
center. Data entry is usually done by setting up
computer screens that have a layout similar to the
data forms being used. When data are keyed, range-
and field-type checks are usually performed, and
error messages appear if a value is out of range
or of the wrong data type (e.g. alphabetic instead
of numeric). Professional data entry operators are
usually not trained to resolve these kinds of dis-
crepancies, and are therefore required to mark the
field that is causing the error and return the form to
the data manager for resolution. The record is not
entered into the database until the problem has been
resolved. If a data manager is entering the data, he or
she may be able to resolve the problem at the time
of entry. Depending on the resources available, data
may be entered and verified by double key entry.
Data are keyed by one operator and then rekeyed
by a second operator (or sometimes by the same
operator after some specified time has elapsed). The
two resulting files are compared and errors resolved.
This type of system reduces the number of data entry
errors but is considerably more expensive than single
key entry.

Decisions need to be made about the software to
be used for data entry. If the database for the trial
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is being maintained on a mainframe computer or
workstation, then there is usually an option to enter
the data directly into the database, or to enter the
data off-line (using a personal computer (PC)) and
then transfer the data to the main computer for batch
update. The decision depends on the programming
resources available, as well as the types of computers.
If a batch process is used, detailed checks can be
done on the data prior to their entry into the trial
database. If the data are entered directly into the
database and checks are done while the data are
being keyed, the data entry process will be slowed
down as the operator deals with any error messages.
With both systems, additional checks can be run
against the entire database once the new data are in
the database. An advantage of off-line data entry is
that it can continue even if the database computer is
unavailable.

Software Tools

Many software tools can be developed to assist with
the management of data for a clinical trial. Examples
include programs to generate reports on the progress
of a study (e.g. accrual, eligibility rates, adverse
events, etc.), programs to request missing or overdue
data, programs to monitor the performance of partic-
ipating sites, and programs for the use of the data
manager to help with the data processing. The latter
could include programs that allow easy inspection of
data in the database, or programs that generate status
reports of the data for a study. If scheduling soft-
ware is not available at all sites, the statistical center
could also generate patient calendars by computer to
assist the institutions with scheduling visits and forms
submission.

Distributed Computing

The model described so far is one where paper forms
are completed at the institutions and sent to the sta-
tistical center where the data are entered into a com-
puter. It is also possible to distribute all or part of the
computing system to the participating sites. Again,
the extent of distribution depends on the resources
available, both in terms of computing capabilities and
personnel support. The most common component of
a system to be distributed to the sites is data entry,
and this has been used successfully in several clini-
cal trials. However, it may not be the best choice for

all trials, and careful consideration should be given
to the advantages and disadvantages within the con-
text of a specific trial. The main aspects to consider,
prior to deciding, are the volume and frequency of
data to be collected, the number and stability of par-
ticipating sites, the likelihood of frequent changes to
the protocol or forms, the resources available at the
sites and the statistical center, and the need for ready
accessibility to data at the sites and the statistical
center.

Volume

It is important to have accurate estimates of the
volume of data to be collected at each site. Once
the volume exceeds the capacity of the available
hardware and personnel, the data will get backlogged
and the system will be ineffective. If the volume and
frequency of data exceed that which can be handled
by a single person, then consideration will need to be
given to either multiple PCs at the site or a computer
environment with a multiuser operating system. There
also need to be adequate personnel to deal with the
volume of data entry.

Number of Sites

If the number of sites entering patients on the trial
is large and subject to fluctuation over the life of the
study, it is difficult to build and maintain a distributed
system, and the costs may be prohibitively high. If
hardware is purchased as part of the trial budget, as
sites drop out and new ones join, the hardware needs
to be transferred from one site to the other. Staff
training to use the system also requires a substantial
investment of time and effort. Distributed systems
are more advisable in an environment where there
are a relatively small number of sites which are
likely to be participating throughout the life of a trial.
In some environments (e.g. the cancer clinical trial
cooperative groups), the large number of trials active
at any point in time also makes distributed systems
less viable.

Changes to Protocols and CRFs

If the protocol or forms are likely to change fre-
quently during a study, the maintenance burden for
a distributed system can be high, as it is essential
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that any new software be installed simultaneously at
all sites on the day of implementing the change. This
requires rapid development and testing of the changes
at the statistical center, and the ability to ensure that
the new version of the software is implemented at
each site. It is important that the changes should not
be introduced until the software is ready, otherwise
the data collection will be suspended pending intro-
duction of the new software, and this could cause
problems. The distributed system is more suited to
an environment where there are unlikely to be major
changes while the study is in progress.

Resources

Maintaining a distributed system is likely to require
more resources than a paper-based system. Before
deciding to implement a distributed system, it is
important to ensure that there are sufficient resources
for purchase and maintenance of hardware and any
commercial software being used. Software develop-
ment staff must be readily available at the statistical
center and it is essential that there is ongoing user
support to answer questions and deal with problems
at the institutional sites. Without this kind of sup-
port, the sites are likely to get frustrated with the
system. User manuals are also important, and need
to be updated quickly as changes are made.

Accessibility to Data

While data entry is the most common function to be
distributed, it is possible to pass responsibility for
other aspects of a trial to the local site. The site
can be responsible for maintaining their own trial
database and for quality control of all data entered. In
this model, it is important to set rules for the use of
data in the local database so that an investigator does
not release data prematurely. Because the data will
be transferred eventually to the central trial database
so that a full analysis can be done, it is important
to decide which database is the official database, as
changes are likely to be made to the data in both
locations. It may also be necessary to define rules for
concurrency of the two databases.

If it is important for the local sites to have imme-
diate access to all their data, a distributed system
may be the better choice. Examples of this are the
use of a dynamic randomization balancing scheme
that depends on data available only at the site, or

where treatment decisions are based on recent data.
It is possible to implement this kind of system in
the central model, but it requires rapid transmission
of data to the central database and the ability to
access the database from the local sites. If there is
a need to have data available rapidly on the cen-
tral system, then distributed data entry may be the
optimal solution.

Other Solutions

Optical scanning technology is not yet accurate
enough to be a viable option for most clinical tri-
als, although for small trials where all data can be
recorded by marking special areas on the forms, it
can be used. Error rates for character scanning are
still higher than acceptable for a trial.

There is an increasing use of facsimile (fax)
machines for submitting clinical trials data and sev-
eral commercial software packages are now available
for implementing this type of system. This provides
a hybrid system with data being recorded on paper
CRFs at the institution and then sent by fax to the sta-
tistical center. Software at the statistical center allows
the data manager to review the CRFs and do quality
control on-line. Images of the forms can be stored
and, if necessary, retrieved and printed.

While a distributed system may seem appealing
and, in this time of expanding network communica-
tions, the most logical model to use, it is essential that
a detailed resource requirement analysis be done prior
to deciding on such a system. Distributed systems are
most effective in an environment where there are a
small number of sites, a limited number of trials, and
there is the likelihood that there will be few changes
to protocol design or forms during the course of the
study. Inadequate resources for personnel or equip-
ment are likely to cause serious problems.

Summary

Good data management is essential to any clinical
trial, no matter how large or small. It is important
that extensive planning be done and all necessary
systems be in place before a trial is activated. Both the
CRAs at the participating sites and the data managers
at the statistical center play an important role in all
stages of the trial, including protocol development,
forms design, system testing and implementation,
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and in the collection of complete, consistent and
objective data.
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Data Mining and Biostatistics

The term data mining, often used in conjunction with
Knowledge Discovery in Databases (KDD), refers to
the identification – within a typically large database –
of new, valid, and interesting patterns. The focus in
data mining shifts away from that of statistical sig-
nificance, since many effects might turn out to be
significant solely because of the magnitude of the
sample size. The techniques of data mining borrow
from both traditional statistics and computer science,
and include methods such as exploratory data anal-
ysis tools (suitable for large data sets) and predictive
modeling tools such as regression analysis, neural
nets, and decision trees (see Computer-aided Diag-
nosis). Exploratory methods include, for example,
cluster and principal component analyses, as well
as methods that amount to a combination of dimen-
sionality reduction and clustering such as Kohonen
maps (which are in fact a special case of a neural
net). Techniques such as market basket or associa-
tion analysis, in which association rules are identified
(“those who buy cheese tend to also buy crackers”,
for example), are also widespread.

While data mining has become most popular in
the context of, for example, database marketing, most
of the methods under the data mining umbrella have
been widely applied in biostatistics. We detail below
which main applications have arisen recently.

Data Mining Techniques Commonly used
in Biostatistics

Data mining is frequently mentioned in the context of
pharmacovigilance. Reference [17] gives the results
of a literature search on data mining, signal genera-
tion, knowledge discovery in relation to the detection
of adverse drug events (ADE) or pharmacovigilance.
Among the methods mentioned are predictive meth-
ods such as tree classifiers (see Tree-structured Sta-
tistical Methods) and regression models, and market
basket analysis, also referred to as link analysis or
association analysis. This latter method consists in
identifying rules of the form “if x then y”, such as,
for example, “if drug A is taken, then event B is

observed”. Reference [15] presents a Bayesian data
mining technique (empirical Bayes) to detect ADEs
and provide details of the algorithm. Reference [3]
also proposes Bayesian methods for pharmacovigi-
lance signal detection.

Another major area where data mining is applied
is the analysis of microarray data. Microarray data
consist essentially of gene expression levels (one
gene per row) for different samples (one sample per
column). The Microarray Core Facility website at
Dana Farber [10] describes some of the analysis tech-
niques, mostly clustering, used in this context (to
find similar gene expression patterns, for example).
Hierarchical and K-means (nonhierarchical) cluster-
ing methods are described, as well as the Kohonen
map algorithm, which in a nutshell, performs a reduc-
tion of dimensionality together with a clustering and
produces most commonly a two-dimensional map
where clusters can be visualized. These methods are
also covered in the book [2] on data analysis tools
for DNA microarrays.

We also note the application of principal com-
ponent analysis to gene expression mapping prob-
lems [9]. Reference [14] discusses analysis, predic-
tion and discovery in protein data, and [8] discusses
association rules in the context of protein sequence
patterns.

In the context of genetics, [7] discusses how the
results of a market basket analysis, which can be
cumbersome because of the large number of rules
identified, can be made more useful to the scientist.
Reference [13] describes how CART, Multiple Adap-
tive Regression Splines (MARS), Random Forests
and MCMC (Markov Chain Monte Carlo) algo-
rithms can be used, notably to help identify interac-
tions in predictors of diseases.

We also mention an application of CART to the
modeling of the occurrence of bad glycemic control
in a diabetes data warehouse [1], and an application
of neural nets to the prediction of infant mortal-
ity in India [16]. Exploratory factor analysis was
used by [12] to summarize potential predictors of
preterm birth in obstetrical patients. Reference [11]
uses empirical Bayesian data mining in the detec-
tion of vaccine adverse event detection. Reference [5]
applies text mining to the tracking of outbreaks of
diseases.

We finally refer the reader to a presentation [6],
which summarizes methods commonly used in min-
ing health-related data.
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A few Software Packages for Data Mining

In a recent article [4], the authors reviewed five
software packages for data mining, in alphabetical
order, Clementine (SPSS), Ghostminer, Quadstone,
SAS Enterprise Miner, and XLMiner. We refer the
reader to [4] for details and report here only a few
features of particular interest to biostatisticians.

Clementine is a self-standing SPSS package; it
can be run independently of SPSS. It covers all the
standard data mining procedures and is relatively
easy to install and to use. Ghostminer is a self-
standing package with some advantages, as well as
strong restrictions (see [4]). Ghostminer is easy to
install and to use, and comes with a very good
documentation, but is likely to be too restricted for
the needs of most biostatisticians. Quadstone is a
powerful self-standing package that can deal with
very large data sets, but which uses methods that may
not be standard to many biostatisticians. For example,
there is no obvious way to perform a traditional
logistic regression analysis in Quadstone. Quadstone
comes with good documentation and is relatively
easy to use once installed, but is very difficult to
install (the installation is meant to be performed by
an expert). SAS Enterprise Miner runs in conjunction
with SAS, and acts as a special module with its
own user interface. It is the most complete of all
the reviewed packages, and is relatively easy to use.
XLMiner is an Excel add-on (the student version
was reviewed in [4]; a professional version is now
available) with good capability to perform the most
common data mining procedures, such as decision
trees, logistic regression, and market basket analysis,
for example. File sizes are of course restrained to the
allowed Excel maximum. XLMiner is very easy to
install and to use.

Most data mining packages, including the ones
reviewed in [4], tend to target applications such as

in database marketing, where focus is often on the
lift a model can provide. In a nutshell, this means
the following. Suppose an analyst is modeling who
is likely to respond to an offer. A model is expected
to provide a formula, or algorithm, to score the file,
that is to assign a score to each observation as to
the estimated probability of response. One then sorts
the file from the most likely to the least likely to
respond and divides the file into, for example, 10
deciles. The first decile should have a higher response
rate (percent of responders) if the model is working
well. The ratio of a decile’s response rate to the
overall response rate is often referred to as the lift.
SAS Enterprise Miner, as well as Clementine and
XLMiner provide lift charts.

Because most readers who use SAS might be
familiar with the traditional SAS user interface, we
reproduce here (Figure 1) a snapshot of an Enter-
prise Miner diagram, to give an idea of the different
user interface.

We also reproduce typical market basket analysis
output from SAS Enterprise Miner (Figure 2). The
analysis was performed on the Bookbinders Club
Case dataset from the Direct Marketing Educational
Foundation.

The first rule indicates that people who bought
children and art books also tended to buy geogra-
phy books.

As for Kohonen maps, we refer the reader to the
excellent packages provided by the Neural Networks
Research Team at the Helsinki University of Tech-
nology (http://www.cis.hut.fi/research/
software.shtml). Freely accessible libraries for
the package R provide – among other tools, many of
which will be familiar to readers – functions for deci-
sion trees, and some forms of the MARS algorithm,
as well as functions that are more specialized to,
for example, genetics (see http://finzi.psych.

SASUSER.
TWOMERGESAMPLE2

Data
partition

Regression

Assessment

Tree

Figure 1 SAS EM diagram. Reproduced with permission from Haughton et al. (2003) [4]; Figure 15
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Figure 2 Association analysis results from SAS enterprise miner. Reproduced with permission from Haughton (2003) [4];
Figure 38

upenn.edu/R/library/, http://cran.us.r-
project.org/src/contrib/PACKAGES.html).
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Data Mining

Data mining is a new discipline, which has sprung up
at the confluence of several other disciplines, stimu-
lated chiefly by the growth of large databases. The
basic motivating stimulus behind data mining is that
these large databases contain information which is of
value to the database owners, but this information is
concealed within the mass of uninteresting data and
has to be discovered. That is, one is seeking surpris-
ing, novel, or unexpected information and the aim
is to extract this information. This means that the
subject is closely allied to exploratory data anal-
ysis. However, issues arising from the sizes of the
databases, as well as ideas and tools imported from
other areas, mean that there is more to data mining
than merely exploratory data analysis.

Perhaps, the main economic stimulus to the devel-
opment of data mining tools and techniques has come
from the commercial world: the promise of money
to be made from data processing innovations is a
familiar one, and huge commercial databases are now
rapidly growing in size, as well as in number. How-
ever, there is also substantial scientific and medical
interest: philosophers of science have remarked that
advances and innovation often occur when a mis-
match between the data and the predictions of a
theory occurs, and nowadays to detect such mis-
matches often requires extensive analysis of large
data sets. Examples of areas of scientific applications
of data mining include astronomy [3] and molec-
ular biology [8]. Genomics, proteomics, microarray
data analysis, and bioinformatics, in general, are
areas that are making extensive use of data mining
tools (see Bioinformatics; Genetic Markers; DNA
Sequences; Gene Expression Analysis).

Apart from the sizes of the data sets, one of the
distinguishing features of data mining is that the
data to which it is applied are often secondary. That
is, the data will typically have been collected to
answer some other question, or perhaps secondarily
in the course of pursuing some other issue (medical
records will have been collected for monitoring and
treating patients, but can subsequently be analyzed
en masse in the search for previously unsuspected
relationships and causes of disease). Of course, there
is no reason – apart from the expense of collecting
large data sets – why data should not be collected

specifically to answer a particular question, but then
the analysis is a more standard statistical one.

The excitement of data mining is also partly a
consequence of this secondary nature: it suggests that
there is valuable information concealed within the
data one already has, simply waiting for someone to
tease it out. Unfortunately, the “simply” part of this
exercise is rather misleading. Indeed, if it was simple,
it would doubtless already have been done. One of
the problems is that large data sets necessarily have a
great deal of structure in them, but this structure has
three major sources in addition to the target one of
“important, real, undiscovered structure”. These three
sources are data contamination, chance occurrences
of data, and structure which is already known to the
database owner (or, if not explicitly articulated as
known, sufficiently obvious once it has been pointed
out to be of no genuine interest or value – such as the
fact that married people come in pairs). The first and
second of these are sufficiently important to warrant
some discussion.

It is probably not too much of an exaggeration to
say that all data sets are contaminated or distorted in
some way, though with small data sets this may be
difficult to detect. With large data sets, it means that
the data miner may triumphantly return an unusual
pattern which is simply an artifact of data collec-
tion, recording, or other inadequacies. Brunskill [1]
describes errors that occurred in the coding of birth
weights: 14 oz recorded as 14 lb, birth weights of
one pound (1 lb) being read as 11 lb, and misplaced
decimal points - for example, 510 gms recorded as
5100 gms. Note that all of these errors yield over-
reporting of birth weights. A data mining exercise
might therefore report an unusual excess of high birth
weights (indeed, we might hope that a successful
analysis would report this), but an excess that was
of no real interest. Indeed, it seems that this may
have happened [2, 7]. Digit preference is another
cause of such curiosities, and is only detectable in
large data sets. Wright and Bray [9] describe this
occurring in measurements of nuchal translucency
thickness, and Hand et al. [5] describe it in blood
pressure measurements.

In statistics, one is often able to cope with data
inadequacies by extending the model to cope with
them. Thus, for example, distorted sampling may
be allowed for by including a model for the case
selection process (see Selection Bias), and incom-
plete vectors of measurements may be handled via
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the EM algorithm (see Missing Data). However,
such strategies can only be adopted if one has some
awareness (and understanding) of the data contam-
ination mechanism. In data mining, with secondary
data, this is often not the case. Often, such problems
are ignored – with obvious potential for misleading
conclusions.

Statistics tackles the possibility of spurious
(chance) patterns arising in the data using tools which
estimate the probability of such structures arising
by chance, merely as a consequence of random
variation; that is, with hypothesis and significance
tests. Unfortunately, with large data sets, and large
sets of possible patterns being sought, the opportunity
for the discovery of apparent structures is clearly
great. This means that the statistical approach cannot
be readily applied. Instead, data miners simply
define score functions (for the “interestingness” or
“unusualness” of a pattern), without any probability
interpretation, and pass those patterns that show the
largest such scores over to an expert for evaluation.
This description reveals the process nature of data
mining. Data mining is not a “one-off” exercise, to
be done and finished with. Rather, it is an ongoing
process: one examines a data set, identifies features of
possible interest, discusses them with an expert, goes
back to the data in the light of these discussions, and
so on.

The score functions may be the same as the criteria
used in statistical model fitting, without the proba-
bilistic interpretation, or there may be other criteria.
An illustration of the differences in perspective is
given by regression analysis. A statistician may find
the maximum likelihood estimates of the parameters,
assuming a normal error distribution. In contrast, a
data miner may adopt the sum of squared residuals
as a score function to use in choosing the parameters
(see Least Squares). Since maximizing the likeli-
hood based on a normal error distribution leads to
the sum of squares criterion, these two approaches
yield the same result – but they start from different
positions. The statistician has a formal model in mind,
while the data miner is simply aiming to find a good
description of the data. Of course, the distinction is
not a rigid one – there is overlap between the two
perspectives.

This example does show how central the concept
of modeling is to the statistician. In contrast, data
miners tend to place much more emphasis on algo-
rithms. Given the essential role of computers in data

mining, this algorithmic emphasis is perhaps not sur-
prising. Moreover, when data sets are very large, the
popular statistical algorithms may become impracti-
cable (tools that make repeated passes through the
data, for example, may be out of the question with a
billion data points). Computers are, of course, also
important for statistics, but many statistical tech-
niques can be applied on small data sets without
computers – many were originally developed that
way. One consequence of the stress on algorithms is
that it may be difficult to describe exactly what model
is being fit to the data. This can have adverse conse-
quences. For example, cluster analysis is widely used
in data mining, but without careful thought about the
nature of the procedure, it can be difficult to be clear
about what sort of “clusters” are being found. Thus,
compact structures may be appropriate in some situa-
tions (e.g. to produce compact summarizing descrip-
tions, with the clusters being represented by “central”
points), while in others, elongated shapes may be
desirable, in which neighboring points in the same
cluster are similar but distant ones are not. With-
out an awareness of the type of structure that the
method reveals, inappropriate conclusions could be
drawn: a species could be incorrectly partitioned on a
dimension in which it has substantial variability (see
Cluster Analysis of Subjects, Hierarchical Meth-
ods; Cluster Analysis of Subjects, Nonhierarchical
Methods; Cluster Analysis, Variables).

In the above, we have used phrases such as
“model”, “structure”, and “pattern” without defining
them. Hand et al. [4] define a model as a large scale
summary of a set of data (i.e. as the standard sta-
tistical notion of a model), and a pattern as a small
scale, local structure. A Box–Jenkins decomposition
of a time series (see ARMA and ARIMA Mod-
els) is a model, whereas a conjunction of values,
which occasionally repeats itself (e.g. a petit mal
seizure in an EEG trace), is a pattern (see Clin-
ical Signals). Models are the staples of statistics,
but patterns are something with which it has gen-
erally not been concerned (there seem to be three
main exceptions: the study of scan statistics, of spa-
tial disease clusters (see Clustering), and of outliers,
all concerned with local anomalies). An examination
of the data mining literature shows that both mod-
els and patterns are important, but narrow views of
data mining sometimes fail to recognize the diversity
of the tools used. Thus, for example, it is sometimes
claimed that data mining is merely the application of
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recursive partitioning methods (e.g. tree classifiers;
see Tree-structured Statistical Methods), but this
is a parody of the breadth of the field. Likewise, the
viewpoint sometimes proposed in the econometric lit-
erature, that data mining is merely an elaborate and
extensive form of model search (see Model, Choice
of), fails to recognize the various other kinds of data
mining activities that go on.

A large number of different kinds of tools are
used in data mining – reflecting the eclecticism of
its origins. Some recent ones in pattern detection,
culled from the data mining literature with no par-
ticular objective other than to indicate the diversity
of different kinds of methods are: tools for charac-
terizing, identifying, and locating patterns in multi-
variate response data; tools for detecting and identi-
fying patterns in two dimensional displays (such as
fingerprints); identifying sudden changes over time
(as in patient monitoring); and identifying logical
combinations of values that differ between groups.
Some examples of important tools in model build-
ing in data mining (again chosen with no particular
aim other than to illustrate the range of such meth-
ods) include: recursive partitioning, cluster analysis,
regression modeling, segmentation of time series into
a small number of segment types, techniques for con-
densing huge (tens of billions of data points) data
sets into manageable summaries, and collaborative
filtering, in which transactions are processed as they
arrive, so that future transactions may be treated in a
more appropriate manner.

Much statistical theory is aimed at producing valid
inferences from a sample to some population (real
or notional) from which the sample has been drawn.
This might be so that one can make comparative
statements about the populations, or for forecasting,
or for other reasons. These methods are also appropri-
ate in data mining, provided one has a sample and that
it has been drawn in a probabilistic way (so that one
knows the probability of each object appearing in the
sample). Going further than this, in many data min-
ing applications one has available data on the entire
population (for example, all chemical molecules in
a particular class) and then, in model building data
mining applications, analyzing a sample from the data
set may be a sensible way to proceed. In contrast,

however, in a pattern detection exercise, it will typ-
ically be necessary to analyze the entire data set: if
one is seeking those data points that are anomalous,
there is no alternative to examining every data point.

It is clear that data mining will be of increasing
importance as time progresses. However, the impor-
tance should not conceal the difficulties. Finding
unsuspected structures in large data sets and iden-
tifying those that are due to phenomena of genuine
interest and not merely arising from data contamina-
tion or due to chance is by no means a trivial exercise.
Issues of theory, of data management, and of practice
all arise. General descriptions of data mining include
those of Fayyad et al. [4] and Hand, Mannila, and
Smyth [6].

References

[1] Brunskill, A.J. (1990). Some sources of error in the coding
of birth weight, American Journal of Public Health 80,
72–73.

[2] David, R.J. (1980). The quality and completeness of
birthweight and gestational age data in computerized birth
files, American Journal of Public Health 70, 964–973.

[3] Fayyad, U.M., Djorgovski, S.G. & Weir, N. (1996).
Automating the analysis and cataloging of sky surveys,
in Advances in Knowledge Discovery and Data Mining,
U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthu-
rusamy, eds. AAAI Press, Menlo Park, pp. 471–493.

[4] Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P. & Uthu-
rusamy, R., eds. (1996). Advances in Knowledge Discov-
ery and Data Mining. AAAI Press, Menlo Park.

[5] Hand, D.J., Blunt, G., Kelly, M.G. & Adams, N.M.
(2000). Data mining for fun and profit, Statistical Science
15, 111–131.

[6] Hand, D.J., Mannila, H. & Smyth, P. (2000). Principles
of Data Mining. MIT Press.

[7] Neligan, G. (1965). A community study of the rela-
tionship between birth weight and gestational age, in
Gestational Age, Size and Maturity, Vol. 19. Clinics in
Developmental Medicine Spastics Society Medical Edu-
cation Unit, pp.28–32.

[8] Su, S., Cook, D.J. & Holder, L.B. (1999). Knowledge
discovery in molecular biology: identifying structural reg-
ularities in proteins, Intelligent Data Analysis 6, 413–436.

[9] Wright, D.E. & Bray, I. (2003). A mixture model for
rounded data, The Statistician 52, 3–13.

DAVID J. HAND



Data Monitoring
Committees

The randomized controlled clinical trial (see Clin-
ical Trials, Overview) has become a standard as
a research method during the past four decades to
evaluate the risk–benefit ratio of novel or existing
interventions or therapies. The results of a new or
existing intervention are compared with a standard or
a control, using clinically relevant outcome measures
such as survival, morbidity, or quality of life. Most
interventions or therapies should be evaluated by
this rigorous comparative methodology before being
widely accepted or used in practice. Such evaluation
is often required for regulatory approval, especially
for drugs and biologics.

For some trials the outcome of the disease or
the risks of the therapy may be irreversible. Sev-
eral issues in the design and conduct of a clinical
trial were carefully considered by the Heart Spe-
cial Projects Committee [13], commissioned by the
National Heart Institute of the National Institutes
of Health (NIH). The report of this committee is
often referred to as the Greenberg Report. One of
the recommended principles is that comparative tri-
als should be carefully monitored for patient safety
and for evidence of benefit. The process is often car-
ried out by a committee, which we shall refer to as
the Data Committee Monitoring (DMC). The princi-
ples used today in monitoring a randomized control
clinical trial are largely influenced by the Green-
berg Report. The experience with DMCs has been
discussed from several perspectives at an NIH work-
shop and is described in [7]. Fleming & DeMets [8],
DeMets [4], Pocock [20], Fleming [9], Armstrong &
Furberg [1], and DeMets et al. [5] discuss various
aspects of data monitoring and the role of the DMC.
The Task Force of the Working Group on Arrhyth-
mias of the European Society of Cardiology [22]
discusses the causes, consequences, and control of
early termination, including the role of the DMC.
Ellenberg, Fleming, and DeMets provide a compre-
hensive discussion of DMC organization and activity
in their text [8]. This article describes the rationale,
responsibilities, and issues that involve the DMC for
most trials.

Rationale for Data Monitoring

The goals of a randomized controlled clinical trial
are to evaluate the effectiveness of a new inter-
vention, and to assess its safety, so as to estimate
the ratio of benefits to risks. One of the ethical
principles of clinical trials is that they should con-
tinue no longer than necessary to meet the objec-
tives stated in the trial protocol. This is especially
true for trials with serious outcomes, such as mor-
tality, morbidity requiring hospitalization, and irre-
versible adverse effects. Trials may be modified
or terminated early if there is overwhelming evi-
dence for a positive benefit to risk ratio, if the
evidence strongly suggests harm or a negative ben-
efit to risk ratio, or if the trial has no chance of
resolving the primary objectives. Furthermore, if the
observed data are not close to the design assump-
tions, then the trial may need to be modified, such
as increasing the sample size, in order to preserve
the integrity of the trial. If recruitment goals can-
not be achieved in a reasonable time frame, then
the viability of the trial must be reassessed. In
some cases, logistical or data quality issues must
be resolved or the credibility of the trial may be
severely jeopardized. All of these aspects must be
monitored carefully and considered in the continua-
tion of any trial.

The decision to make protocol modifications,
including early termination, is a complex process and
several factors must be taken into consideration. This
has been discussed by the Coronary Drug Project
Research Group [3] and more recently by Fleming
& DeMets [10]. Factors include the balance in risk
factors between the intervention and control groups,
potential biases in outcome ascertainment, compli-
ance to intervention, consistency of results across
primary and secondary outcome measures and across
clinically relevant subgroups, consistency of results
with external information, the effect of repeatedly
testing a single outcome or testing multiple outcomes
on false positive results, and the impact of early
termination on trial participants and future users of
the intervention. Examples of these complex deci-
sions have been described for the Coronary Drug
Project [3], the Beta Blocker Heart Attack Trial [6],
the Cardiac Arrhythmia Suppression Trial [11], and
the Physicians Health Study [2]. All of these trials
involved early termination, either for an early bene-
fit, an unexpected harmful effect, or for lack of an
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effect in the primary outcome. In all cases the deci-
sion process was complex and difficult.

A particularly difficult issue is how much evi-
dence indicating potential harm should be allowed
to accumulate. In some cases, the choice may be
between stopping a trial with a negative trend at the
point when the trial has little or no chance to prove
treatment beneficial, or continuing a trial with a nega-
tive trend until the evidence becomes convincing that
the treatment is harmful. In the PROMISE trial [17],
which evaluated the drug milrinone in congestive
heart failure patients, the trial continued until a statis-
tically significant harmful result was obtained. A sim-
ilar experience occurred in the PROFILE trial [18],
which involved the drug flosequinan in congestive
heart failure. Part of the rationale for continuing to
this level of evidence was that, unless shown to be
convincingly harmful, other beneficial effects of each
drug would encourage their continued use in a large
patient population. In contrast to this experience, the
CONSENSUS II trial [21] with the drug enalapril in
congestive heart failure terminated with a negative
trend before it became statistically significant. Here,
the rationale was that the method of drug delivery
would not be used unless it was beneficial. Once the
point was reached where that outcome was highly
unlikely, there was no reason to continue. In all three
cases many factors had to be considered. Another dif-
ficult decision is whether the same degree of evidence
is required to prove harm as is required for bene-
fit. If the decision process is inherently asymmetric,
then the statistical guidelines for data monitoring (see
Data and Safety Monitoring) should also reflect that
asymmetry.

While carefully monitoring outcome data in a clin-
ical trial is often ethically mandated, the process of
repeatedly examining data also increases the rate of
a false positive result; that is, claiming that a differ-
ence between two interventions or treatments exists
when in fact there is none. Typically, researchers
set the false positive rate at 1% or 5% before con-
ducting statistical tests and interpreting P values.
However, if a particular outcome such as the pri-
mary outcome is tested five times using a P value
of 0.05 each time as the criteria for significance,
then the actual false positive rate is increased to
almost 15%. This is clearly much higher than is sci-
entifically acceptable and five interim analyses are
not unusual during the course of a large multicen-
ter trial. This issue is often referred to as repeated

testing (see Data and Safety Monitoring). Another
related issue is multiple testing, which refers to con-
ducting statistical tests on multiple outcomes (see
Multiplicity in Clinical Trials), and focusing atten-
tion on the one result which has a P value less
than 0.05. Clearly, if 20 independent outcomes are
statistically tested, then one will by chance alone
have a P value less than 0.05. Thus, the ethical
mandate of carefully monitoring the outcomes of a
clinical trial must take into account the increased
chance of falsely claiming a treatment benefit or harm
due to the monitoring process. Statistical methods
adjusting for the repeated testing and multiple testing
have been developed and are discussed in [19, 16],
and [14].

To evaluate these diverse factors thoroughly
requires a great deal of expertise and experience
in clinical trial design, biostatistics, epidemiology,
and the subject-matter or disease process involved.
No single individual is likely to possess such
vast expertise. For this reason, the concept of a
monitoring committee evolved, starting with the
suggestions made in the Greenberg Report Heart
Special Projects Committee [13] (see Clinical Trials,
Early Cancer and Heart Disease). A recent report
by the National Institutes of Health has reconfirmed
that recommendation [15].

DMC Membership and Responsibility

Since several complex issues must be considered at
each interim analysis, requiring expertise from sev-
eral diverse but relevant disciplines, the membership
of the DMC must reflect those disciplines in order to
monitor the data and the safety of the patients. The
disciplines typically included are the relevant clinical
disciplines, laboratory expertise, epidemiology, bio-
statistics, clinical trials, and medical ethics. Often,
three to five individuals are necessary to cover this
broad range of expertise. Clinical trial experience by
all members of the DMC is highly desirable, but prior
experience of serving on a DMC by the DMC chair
is essential. Appointment of members may be made
by either the sponsor or the trial executive commit-
tee, but in either case, the appointments should be
acceptable to both parties. The protocol (see Clini-
cal Trials Protocols) should clearly specify the DMC
appointment process.

The authority of this DMC is to review the accu-
mulating data and make recommendations to either



Data Monitoring Committees 3

the study chair or the sponsor, or both. While it is rare
for a DMC recommendation not to be accepted and
fully implemented, the DMC usually does not have
the final decision-making authority. That final deci-
sion typically resides jointly with the sponsor and the
trial executive committee. The trial protocol should
carefully specify the lines of the DMC reporting so
that any recommendations by the DMC can be prop-
erly received and rapidly taken into consideration by
those with the final decision-making authority. How-
ever, regardless of the lines of reporting, both the
trial investigators and the sponsor must be briefed
as to the rationale for any DMC recommendation
within a reasonably short period of time. Further-
more, the DMC should maintain the view in their
deliberations and recommendations that they are pri-
marily responsible to the trial participants, next to
the investigators who are placing significant respon-
sibility with them for their patients, then to the trial
sponsor, and finally to the regulatory authorities. Any
DMC should fully recognize those interests and take
them into consideration.

The recommendation of the Greenberg Report was
that a trial advisory committee such as the DMC
should be independent of the trial. Members of the
DMC should not be investigators entering patients or
participants into the trial. Otherwise, ethical dilem-
mas arise as trends in data emerge which are not
yet scientifically convincing but could disrupt clini-
cal equipoise about the benefits of the treatment or
intervention. In some trials the study chair has been
allowed to be an ex-officio member of the DMC, to
convey information about the trial to the DMC and to
understand better the recommendations of the DMC.
In such cases the study chair should not be entering
or caring for patients in the trial.

Walters [23] writes that DMC independence is
essential for a trial to achieve knowledge with maxi-
mum objectivity, respecting the contribution of the
patients toward that goal. To be independent, the
DMC members should be free of real conflicts of
interest, especially since they are reviewing confi-
dential and privileged information. Freedom from
any conflict is probably not achievable if the DMC
members are expected to have any expertise and
experience with the goals of the trial. However, finan-
cial conflicts of DMC members should be avoided,
including stock ownership and transactions, large
consulting arrangements with the sponsor, or frequent
speaking engagements on behalf of the intervention.

DMC members should at least disclose any consult-
ing or financial arrangements and sources of research
funding. If conflicts are identified that could be per-
ceived as serious and possibly damaging to the trial,
then the DMC member should either remove the
conflict or not continue to participate on the DMC.
Neither a sponsor nor a member of a regulatory
agency should be a member of the DMC since each
has other specific responsibilities and interests and
thus is not independent. In some cases, sponsors have
been allowed to attend DMC meetings but their role
must be limited.

Since the DMC has access to interim results,
including primary outcome data (see Outcome Mea-
sures in Clinical Trials), absolute confidentiality is
of utmost importance. Results of the trial should not
be discussed beyond the DMC meetings and great
care must be taken that interim reports are secure.
This would include members from sponsoring agen-
cies, should they be allowed to attend. Early in a
trial, trends in accumulating data can be quite vari-
able, and any release of early trends could be both
misleading and damaging to the conduct of the trial.
In some cancer trials, knowledge of interim data and
emerging trends had the effect of hampering recruit-
ment and definitive results were not achieved [12].
Of course, if early trends are overwhelming and
scientifically convincing, then the DMC might very
well recommend early termination. This was the case
in the Cardiac Arrhythmia Suppression Trial [11].
However, the DMC must keep interim results con-
fidential until the trial is terminated and the results
are properly disseminated.

DMC Meetings

The meetings of the DMC must be structured so that
all of the critical elements of a trial are properly
reviewed and the patients’ safety thoroughly exam-
ined. The DMC must meet often enough to carry out
its responsibilities. For many trials, the DMC meet-
ings are held at least once a year and may have at least
three to five regularly scheduled meetings during the
course of the trial. In general, meeting more often
than after every 20% increment in patient recruit-
ment or patient outcome is usually unnecessary, and
does not lead to substantial gains in early termination.
However, it is not unusual to hold an extra meet-
ing if a decision to terminate is approaching. Other
considerations such as slow patient recruitment or
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unanticipated logistical problems may call for addi-
tional meetings of the DMC.

Each DMC meeting must evaluate patient recruit-
ment progress, data quality, baseline characteristics,
patient compliance, primary and secondary outcomes,
adverse effects, and other safety measures. Interim
reports must reflect all of those considerations and
can be quite extensive, depending on the complex-
ity of the trial. The DMC must have the authority to
request any available data from the trial that is neces-
sary to carry out its primary responsibilities. Reports
should be provided through a confidential and secure
process to the DMC prior to the meeting so that mem-
bers have adequate time to review the analysis and
identify concerns.

Attendance at the DMC meeting has been dis-
cussed by the proceedings edited by Ellenberg
et al. [7]. The DMC for the National Institute of
Health’s AIDS Clinical Trial Group (ACTG) devel-
oped a meeting format that addresses most of the
concerns of all interested parties [5]. The general for-
mat starts with an open session where all interested
parties can attend and participate, is followed by a
closed session where confidential data are reviewed
and discussed by the DMC with the statistical anal-
ysis center that prepared the interim report, and con-
cludes with an executive session for DMC members
only. Following the executive session, the DMC chair
may give the trial chair and sponsor a short briefing
on DMC recommendations and any other concerns
raised in the closed or executive session.

At the open session, sponsors, representatives of
the investigators, and representatives from regulatory
agencies may be present to discuss study progress,
including recruitment, general data quality, logistical
matters such as drug supply or shipment of laboratory
specimens, and general compliance issues. Results of
other new studies and their impact on the current trial
may be discussed as well.

In the closed session, where confidential data are
reviewed, the DMC and the trial statistician must be
present. For many trials sponsored by the National
Institutes of Health (NIH), NIH representatives are
present during the closed session. The ACTG DMC
did allow NIH representatives to attend, but indus-
trial sponsors who often were also involved did
not participate in the closed session. For totally
industry-sponsored trials, the practice is not consis-
tent. A few trials have had sponsor representatives
present (e.g. PROMISE, PRAISE), but in general this

is not recommended routine practice. If representa-
tives of the sponsor do attend, they must abide by the
same confidentiality as do members of the DMC, and
must not interfere with the DMC deliberations or use
the information to affect the trial, unless instructed
by the DMC.

The executive session allows the DMC to deliber-
ate and formulate their final recommendations without
other influences. This format has been very effective
for the ACTG DMC meetings, where several trials are
considered during a session, and seems to be useful
in many other settings as well.

Summary

The DMC in a clinical trial is central to review-
ing accumulating evidence on patient safety and
treatment benefit. The complexity of clinical trials
makes the decision process to terminate or continue
trials challenging and requires a DMC to have a
diversity of expertise and experience. DMCs have
been utilized in many clinical trials over the past three
decades and their value to the clinical trial process is
now well established.
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Data Quality in Vital and
Health Statistics

Data quality is not intrinsically interesting, but it is
important. To quote Greenwood, writing about this
in 1948,

Most statistics can be used and are used for propa-
ganda; hardly any are used more frequently for this
purpose than medical statistics, so the student is once
again urged to scrutinize the medical-statistical argu-
ments of very important persons with great care and
to verify the statistics used [7].

Analyses can only be as good as the data that underlie
them: as the computing aphorism puts it, more suc-
cinctly if less elegantly than Greenwood’s stricture,
“Garbage in, garbage out”.

To some extent, like beauty, quality is in the
eye of the beholder – assessment of it is dependent
on the purpose to which the data are to be put.
Nevertheless, there are some general points that need
to be considered when using routinely collected vital
and health data (termed “routine data” hereafter, for
brevity). Before discussing these, however, it is worth
considering the particular ways in which data quality
is of importance for routine data analyses.

Data Quality in Routine Statistics
Compared with ad hoc Studies

Data quality is of course not solely an issue for
routine data analyses – it is important too in ad hoc
studies in which data are collected specifically for
research. The issues present somewhat differently for
routine data, however, for several reasons.

First, routine data sets are often extremely large –
this is one of their attractions for scientific analysis,
but also potentially one of their drawbacks. Files
containing many thousands or even millions of events
will inevitably have involved data collection by a
very large number of people, often with less-close
supervision, or at least less-uniform supervision, than
can be achieved in smaller research studies.

Secondly, the data have often not been collected
primarily for the purpose to which the research
investigator may put them. They may have been
collected to fulfill legal obligations, or to supply
aggregated large-scale statistics for governmental or

administrative purposes, and often it is only secondar-
ily that they are utilized for scientific investigation.
As a consequence, the data collection methods and
quality controls have usually been organized by indi-
viduals who will not use the data for the purposes to
which the statistician wishes to put them. In compari-
son, in an ad hoc study, the data collection has usually
been targeted deliberately to collect the information
the analyst requires. Because of this “second-hand”
aspect of routine data, the assessment of quality by
the user often has also to be a second-hand process.
Information on quality may never have been col-
lected, and often the details of how the data were
collected, and with what constraints and instructions,
may be known only to those working within the data-
gathering organization, whose advice and knowledge
may need to be sought.

Assessment of Data Quality

The following subsections discuss issues that need to
be taken into account when assessing quality.

Quality of Information in the Underlying Data
Sources, Especially with Respect to Diagnosis

Routine data can only be as good as the under-
lying information from which they are compiled.
Thus, for instance, it is likely that advances in diag-
nostic methods have greatly increased the propor-
tion of leukemias and myelomas that are diagnosed
now compared with 50 years ago. Past routine data
on these malignancies were highly incomplete, not
because of inadequate data collection, but because the
cases were often not diagnosed. Similarly, geograph-
ical differences in apparent incidence of conditions
may reflect better diagnosis in one place than another
(see Geographic Patterns of Disease; Mortality,
International Comparisons; Small Area Variation
Analysis).

Incompleteness and inaccuracy of diagnosis may
arise at several stages in the process from disease
incidence to diagnostic labelling, and each needs to
be considered when deciding whether apparent vari-
ations in rates are an artefact. There may be variation
in whether subjects with illness realize they are ill,
and whether they present to a doctor for diagno-
sis, depending, for instance, on social, financial, and
educational factors. If patients present to a doctor, the
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diagnosis will depend on factors such as the propen-
sity of the doctor to investigate, his or her diagnostic
acumen, whether referral is made to a specialist, and
the diagnostic methods and technologies employed,
including, for fatal conditions, the extent to which
autopsies are performed. Thus, for instance, inci-
dence rates of prostatic cancer have been found to be
much greater in Malmö, where “the autopsy service
is superb”, than in other cities in Sweden, but when
cases found “accidentally” at autopsy were excluded,
the incidence rates in Malmö and other cities were
similar [20]. If screening for a disease is introduced
(see Screening, Overview), then asymptomatic cases
will be detected that either would never otherwise
have been diagnosed, or would have been diagnosed
at a later date after they had become symptomatic;
the former detection would be expected to lead to a
permanent artefactual increase in rates, the latter to a
temporary increase.

For mortality, when a diagnosis has been reached,
the quality of the eventual statistics will also depend
on how well the person certifying the cause of death
(see Death Certification) (usually a doctor, but not
always – see below) knows the patient’s past medical
history, which diagnosis he or she considers to have
caused death (see Cause of Death, Underlying and
Multiple), and the way in which he or she completes
the death certificate because the positioning of causes
there can affect the underlying cause selected by the
coding agency [8]. Studies requesting different prac-
titioners to complete “dummy” death certificates for
the same case history have been used to try to ascer-
tain the extent to which, for instance, international
differences in certification practice can affect appar-
ent mortality rates [11], and similarly by requesting
national statistical offices to code the certificates, to
investigate how this coding affects rates [11, 17].

One method frequently used to check the quality
of clinical or death certificate diagnostic information
is to compare the diagnoses from this source with
those reached by autopsy [6, 10]. An often-used gen-
eral marker of quality of death certificate information
in a population is the proportion of deaths recorded
as due to senility: a high percentage of deaths certi-
fied to this cause suggests a poor quality of diagnostic
information, at older ages at least. Quality of diag-
nostic data is also suggested by its source or basis –
for instance, for mortality data, whether the diagno-
sis is supplied by a doctor or not, and for cancer
registrations, the proportion of cases with histological

verification, (although new diagnostic technologies,
for instance, ultrasound imaging plus serum alpha-
fetoprotein estimation for diagnosis of liver can-
cer [16], can sometimes lead to a reduced percentage
histologically verified without reduced quality). For
mortality, Alderson [1] gives tables of the extent to
which deaths have been certified to ill-defined causes
and the percentage of death certificates signed by doc-
tors, in 31 countries (Japan and Western) since early
in the twentieth century, and a description of the death
registration system in each of these countries over
time. For cancer registration (see Disease Registers),
tables of the proportion of cases histologically veri-
fied, and other quality indicators – the proportion of
cases registered from a death certificate only, the ratio
of mortality to incidence, the percentage of cancers
for which the primary site is unknown or ill-defined,
and the proportion of cases with age unknown – for
over 100 cancer registries worldwide, are given in
Cancer Incidence in Five Continents [16].

As well as differences in diagnostic complete-
ness and capability, routine data will also be affected
by medical definitions of diseases, which may vary
greatly by time or place, and can lead artefactually to
apparent large differences in rates. Thus, for instance,
great differences in diagnosis between countries have
been shown for psychiatric conditions [3], and sub-
stantial apparent secular changes in bladder cancer
rates can occur as a result of changes in pathologi-
cal nomenclature for classifying papillomas (e.g. as
“grade O carcinomas”) [20].

The above discussion has related to the quality of
diagnostic data, but the quality of the source data for
other variables such as age, sex, and country of birth,
which may be used in analysis, is also important and
needs to be considered (see below).

Completeness of Data Collection

For legal reasons, certification of births and deaths
is normally virtually complete in Western countries,
although there can be exceptions, for instance dur-
ing wartime [1]. Completeness may be deficient in
a particular area within a country: for instance, a
study in the West of Ireland, found that in 1966–69,
7.5% of deaths were not registered, and in 1974–77,
6.1% [13]. In the US, satisfactory levels of registra-
tion were achieved by different states in different
years (the last, of the then-existent states, Texas,
reached the level required to be admitted to the



Data Quality in Vital and Health Statistics 3

“National Death Registration Area”, for which the
federal government publishes data, in 1933) [12].
One stratagem to overcome quality deficiencies in
particular geographic areas is to analyze only a geo-
graphical subset of the overall data set (e.g. particular
states), for which good quality data are available.

Registration of morbidity is more often incom-
plete, and when comparing morbidity rates between
places or over time, one must consider whether dif-
ferences in completeness may explain apparent dif-
ferences in incidence. Multiple data sources (e.g.
death certificates, hospital admissions lists, pathol-
ogists’ reports) may be needed to gain a high level
of completeness, and addition of a new data source,
for instance adding death certificates as a source for
cancer registration, can lead to an abrupt increase in
recorded rates [22]. For cancer registrations [18] and
infectious disease notifications [24], countries differ
as to whether reporting is legally compulsory, but it is
not clear that in practice this affects completeness. In
several countries a fee is paid to the notifying doctor
for each infectious disease notification [24], but again
it is not clear that this provides high completeness.

Often, completeness is better for more-serious
than for less-serious conditions, if only because the
most serious lead to death. Thus, for instance, non-
melanoma skin cancers (which are rarely fatal) tend
to be the worst registered of the common cancers, and
notification of infections such as acute poliomyelitis
and diphtheria is likely to be far more complete than
that for dysentery [21]. For most purposes, substan-
tially incomplete data are very difficult to interpret,
especially because the missing data may be biased,
but for certain uses they may be serviceable: for
instance, if an infectious disease notification sys-
tem is used primarily to detect epidemics, then it
would not in principle invalidate its use if it was
substantially incomplete, provided that the percent-
age incompleteness remained approximately constant
over time. Nevertheless, greater confidence can be
had in analyses based on reasonably complete data,
because one can rarely be sure that the degree of
incompleteness has remained unchanged; for exam-
ple, for measles there is evidence that completeness
can differ between epidemic and nonepidemic years,
being greater during epidemics [5]. (Of course, if this
was reliably the case, then it would actually improve
detection of epidemics, although still diminishing the
value of the data for scientific uses.)

Assessment of completeness is ideally carried out
by comparison with a “gold standard” complete
dataset collected by independent means, either by an
ad hoc survey or in another routine data system – for
instance, comparison of registration data with death
certificates for anencephaly has been used to check
completeness of congenital malformation notifica-
tion [25]. Failing this, however, capture–recapture
techniques can be used to assess completeness by
comparing the data with those collected by other
incomplete methods. For cancers, a frequently used
but imperfect measure of completeness is the mor-
tality to incidence ratio, comparing the numbers of
cancers in mortality and cancer registration data for
the same year(s): this can give an approximate guide
to completeness, particularly for rapidly fatal cancers,
but it is imperfect because it depends on comparable
accuracy and precision in identification of cancer site
and comparable definitions of place of residence in
the two data sets, and on case-fatality and secular
trends in incidence and mortality rates, as well as
on completeness. It is also imperfect because death
certificates are often used as a source of cancer reg-
istration, so that incidence and mortality datasets
are not independent. Another often-used indicator of
completeness of cancer registration is the percentage
of cases registered from a death certificate only: a
high percentage indicates likely incompleteness, since
equivalent nonfatal cases would probably never be
registered.

Duplication

Like incompleteness, duplication should not be a
problem for mortality and births data in Western
countries, but it can be a substantial one for mor-
bidity data. To avoid duplication, the data collection
agency must first link multiple notifications that refer
to the same person (see Record Linkage), and then
differentiate between genuine double occurrence of
the disease or event of interest in the same individ-
ual – for instance, two primary cancers incident in
the same person, or a particular infectious disease
caught on more than one occasion – and inadver-
tent duplicate recording of the same morbid event,
often because it has been reported from more than
one source.

Much less tends to be published about the extent
of duplication within routine datasets than about their
completeness, and this makes it particularly difficult
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for the user to be sure to what extent duplication has
occurred. One issue that the user may need to clar-
ify is the rules used by data coders to decide what
should count as a duplicate – for instance, whether
two primary cancers of the same site but different his-
tologies, or two contralateral tumors in paired organs
such as kidneys or testes, should count as one or two
malignancies; the effect on recorded incidence rates
can be appreciable. As another example, for tuber-
culosis statistics one needs to ascertain whether the
data refer to new cases only or to all cases (new and
relapses); for some countries the former are not read-
ily available, so that international comparisons may
need to use the latter [19]. On a broader question,
the user will also need to note whether the dataset is
based on persons, disease occurrences, or events.

Having determined the basis of the data set and
the rules used for decisions on duplicates, the user
needs to compare these with the purpose of the
study. Thus, rates of cancer incidence in an analysis
including second and subsequent primary cancers
will be greater than rates restricted to first primaries;
neither is of lower quality for the purpose for which
it was intended, but either is inappropriate or of
deficient quality if intended for the opposite purpose.
Similarly, rates of hospital admission from a hospital
in-patient data system, counting two admissions of
the same person for the same disease incidence as
two records, can give useful information for health
care planning, but will generally be unsatisfactory for
epidemiology.

Late Registrations, Alterations, and Deletions

Whereas birth and mortality data are normally col-
lected within a few days of occurrence of the event,
and will tend to produce complete statistics within a
few months, complete collection of morbidity statis-
tics may take several years. For instance, cancer
registration inevitably takes a year or two to become
reasonably complete: data must be obtained from sev-
eral sources (for instance, clinical records, pathology
records, and death certificates), cross-matched and
duplicates eliminated. Furthermore, diagnostic con-
firmation of an initially suspected cancer may take
weeks or months, and cancers initially identified by a
registry at death may prove in retrospect to have been
incident months or years earlier, and will then need to
be registered as having occurred at that date of inci-
dence. Because of these delays, plus the time taken to

compile statistics and publish them, cancer registra-
tion statistics that are nominally for the same year of
incidence may differ appreciably depending on how
long after the incidence date they were published.
If data are analyzed too soon after incidence, then
apparent decreases in rates may prove to be artefacts.
Similarly, assessments of completeness of cancer reg-
istration need to be conducted sufficient years after
incidence, if they are not to confuse lack of timeli-
ness with eventual incompleteness: an apparent recent
decline in completeness may be a consequence of
premature assessment.

As well as leading to late registration of an event
not previously registered, late information may also
alter a diagnosis or other variable already recorded –
for instance, an autopsy may reveal that a cancer
registered years earlier at initial diagnosis was in fact
of a different site from that registered, or indeed was
not a cancer at all.

Some routine data systems incorporate a specific
facility to improve quality after initial data collec-
tion, by taking account of new information from
subsequent diagnostic investigation: for instance, to
amend a death certificate diagnosis on the basis of
autopsy findings [23] or to correct (or delete) an
infectious disease notification on the basis of labo-
ratory reports [24].

Validity and Precision of Data Collection

Data extraction from original sources, often by
clerks, needs to be conducted accurately and
without, for instance, miscategorization of adjacent
anatomical sites or similar sounding diseases (see
Misclassification Error). Accuracy can be measured
by comparison with data re-collected from original
sources [2], or by searching the files for the frequency
of impossible or unlikely values or combinations,
suggestive of inaccuracy – for instance prostate
operations on women. It should be noted, however,
that this will only provide a proxy for general
quality if the data-collecting agency has not already
conducted range and consistency checks to rid the
data of these particular errors, and that if they have
done so, this will not in itself produce a completely
“clean” dataset because it will leave all those errors
that are not illogical or outside plausible ranges.
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Less obviously, but also importantly, apparent
rates of a disease will be affected by the extent to
which information on diagnosis, even when correct,
is sufficiently precise to identify that particular
disease, rather than a more vague or general
category that includes the disease. Thus, for instance,
malignant melanoma of the conjunctiva is coded
in the International Classification of Diseases to
“malignant neoplasm of the conjunctiva” (ICD-
9 code 190.3), but the same tumor described as
a melanoma of the eye would be coded to a
different 4-digit code (190.9), and if stated simply
as “melanoma” would be coded to a different 3-digit
category (172.9). In more extreme circumstances, if
the tumor were simply known to be an eye disorder,
unspecified, it would be coded in a different ICD
chapter (379.9), and if stated as a death of unknown
cause, in another chapter again (799.9). All of these
codes are therefore locations where melanomas of
the conjunctiva could be allocated, depending on the
precision of data available, and the extent to which
conjunctival melanoma statistics are valid depends
on the extent to which such tumors are precisely
specified and coded.

When procedures are introduced to improve pre-
cision of information, artefactual increases will occur
in rates of precise diagnostic categories. Conversely,
discontinuation of such procedures will tend to reduce
apparent rates. For instance, in England and Wales
from 1881 to 1992, “medical enquiries” were sent
to certifying medical practitioners, requesting more
precise diagnostic information when a death certifi-
cate diagnosis was deemed to be too vague. When
this enquiry procedure has been discontinued, for
instance, in 1981–82 due to a strike of Registrars,
large changes in apparent rates of precise diagnostic
categories occurred [23]. The data user can attempt
to take account of such changes, first by asking
the data collecting agency whether they have used
such procedures and when these have changed; sec-
ondly by calculating and assessing rates for relevant
imprecise (“dustbin”) categories in parallel with con-
sideration of the precise category under investigation;
and thirdly, by tabulating data by single calendar year
and looking for step-changes in rates, which are likely
to indicate artefacts (of many types).

As well as the quality of diagnostic data, and of
denominators (see below), it is also important to con-
sider data quality, both in source material and in data
collection, for variables by which stratification or

adjustment (see Standardization Methods) will be
made in analysis; for instance, age, sex, and occupa-
tion. The percentage of individuals with missing data
for such variables (especially age and sex) can pro-
vide a useful overall quality indicator, and the extent
to which digit preference is present for age (i.e. an
excess of ages ending in 0 or 5) can indicate the
quality of the age information.

Coding, Bridge-Coding, and Assignment of
Underlying Cause

Interpretation of routine datasets is dependent on
understanding of the coding system used. This may
be an internationally accepted and accessible system,
such as the International Classification of Diseases
(ICD) [26], or, for instance often for operations or
occupations, it may be a locally derived classifica-
tion, which may be difficult to access outside the
country. Even when the coding system is interna-
tionally agreed, there may be superimposed upon it
local interpretations and deliberate deviations. Thus,
in England and Wales, mortality coders use in addi-
tion to the ICD, a large locally derived manual with
numerous instructions on actions to take for partic-
ular descriptions of disease for which the ICD does
not give sufficient guidance, or the Registrar General
has decided that the ICD should not be followed.
Similarly, routine data agencies sometimes convert
data coded under one revision of a coding system to
another, and may not subsequently keep the origi-
nally coded data. Interpretation is then dependent on
the methods for, and quality of, the conversion as
well as the original coding. For instance, for disease
coding, since there is not an internationally agreed
ICD conversion system, local judgements will have
been made, and these may be different from those
that the investigator might have chosen.

For underlying cause mortality statistics, the sta-
tistical agency must, as well as coding diseases, select
the “underlying cause” of death when more than
one disease is mentioned on the death certificate
(see Cause of Death, Underlying and Multiple).
Again, although there are internationally agreed rules
in the ICD for making this choice, local decisions are
likely to have been superimposed, and occasionally
the ICD rules may deliberately have been broken. For
instance, in England and Wales from 1984 to 1992,
Rule 3 of the ICD, concerning selection of the under-
lying cause of death, was deliberately set aside for
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individuals with a “major cause” of death such as can-
cer in part II of the death certificate, but whose cause
of death under Rule 3 would have been a “terminal
event” such as heart failure or unspecified pneumo-
nia. This change greatly increased apparent mortality
from several conditions – for instance a 44% increase
occurred in deaths from diabetes and a 22% increase
in deaths from multiple sclerosis [15].

The above issues will be compounded when a
data set has been formed by aggregation of records
collected and coded by several different agencies,
rather than only one: for instance, when data for a
national morbidity registration system are collected
and coded regionally, and then brought together to
form a national data set. Artefacts may then occur
from each coding source, and also secular disconti-
nuities may occur when there is a change in the level
of the hierarchy, e.g. regional vs. national, at which
coding is undertaken.

Data Processing and Editing Errors

Clerical processing may produce individual errors or
repeated ones (see Data Management and Coordi-
nation). Computers offer the opportunity to create
large-scale errors in data at high speed. Often the
data have been processed in batches through several
stages, and errors may arise if a particular batch is
incorrectly processed through a stage, or has a stage
omitted. Thus, for instance, cancer registration data
from registries using the International Classification
of Diseases for Oncology (ICD-O) coding system will
need to be re-coded if aggregate data from several
registries are to be held and analyzed in ICD-9. Since
most codes are the same in these two systems, it may
not be immediately obvious if a batch of data has not
been re-coded, but the presence of a code that exists
in ICD-O but is impossible in ICD-9 (ICD code 169)
should alert the user to a likely failure in re-coding.

Computer editing of data can also lead to artefacts.
Thus, unknown to the user default values may have
been substituted for missing information. In analyses
of seasonality, for instance, such default coding for
month and day of birth can lead to an apparent
large peak of incidence in people born on June 30!
Similarly, many editing systems do not allow entry
of records with variables missing, and data coders
or processors may then invent values, when these
cannot be ascertained, to enable records to be entered
into the system. One should be suspicious that this

has occurred when large datasets, for instance on
national mortality, are published with apparently no
individuals with missing values.

Denominators

Rates calculated from routine data sources are
dependent on the quality of denominators (see
Denominator Difficulties), frequently but not always
derived from the census, as well as on that of the
numerators, to which more attention is often paid.
Census data will tend to be reasonably accurate
in Western countries, although for groups who are
particularly difficult to count, e.g. vagrants, the very
old, or immigrants, the quality of these data may be
a more serious problem.

Inaccuracy may be a greater problem in popula-
tion estimates for intercensal years, which need to
take account of estimated migration, births and deaths
since the last census count. Thus, for instance, Draper
et al. [4] found apparent secular increases in child-
hood leukemia rates of 50% in non-Hispanic whites
and 53% in blacks in Los Angeles based on popula-
tion estimates relating to a previous census, but when
the rates were recalculated with denominators that
took account of a subsequent census, the increases
became only 22% and 24%, respectively.

Numerator/Denominator Discrepancies

A greater problem than the completeness and accu-
racy of the denominator data is frequently their
appropriateness and comparability with the numera-
tor. When denominator data originate (as they usually
do) from a different source to that used for the
numerator, differences in quality, definitions, and data
collection methods between these sources may lead
to bias. For instance, a census might count univer-
sity students at their term-time place of residence,
but when ill they may return to their parental home
for treatment, and hence rates for serious disease in
young adults might be underestimated for univer-
sity towns, especially those where a large proportion
of the young population are students. Similarly, the
occupational data recorded at the census for an indi-
vidual will usually be that person’s own statement
of their occupation, whereas on their death certifi-
cate the occupational description will inevitably have
been given by someone other than themselves, usu-
ally a relative. The relative may view the past career
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of the deceased in a flattering light, such that electri-
cians may become electrical engineers, and nursing
assistants become nurses, or the relative may report
a more prestigious occupation that the deceased left
many years ago by early retirement (for instance,
military officer or aircraft pilot), rather than a cur-
rent, less prestigious occupation that might have been
reported at the census [14]. In studies of disease risk
by country of birth, the census report of an indi-
vidual’s birthplace may be different from that in a
relative’s statement, and discrepancies can also arise
because these two variables are collected at different
times, and boundaries of countries can change over
time.

Special Issues for Analysis of Clusters and Other
Rare Events

As well as the general considerations above, some
further issues apply mainly, or with more force, to
analyses of spatial or temporal clusters and other
rare events (see Clustering). One is that rates of
rare events may be far more disrupted by occasional,
random errors or duplications in a dataset than are
statistics for the data overall. For instance, a low level
of duplication of records can produce an apparently
highly significant cluster of cases in a particular small
area which is due simply to records for one or two
individuals being recorded two or three times, even
though overall rates of disease in the dataset will have
been little affected by the duplication rate. Similarly,
low rates of random misclassification between a
common and a rare category will have a far greater
impact on the rate in the rare category than the
common one. For instance, breast cancer is about 100
times more common in women than men. If there
is a 1% random error rate in categorization of sex
in cancer registration data, this will approximately
double the apparent number of breast cancers in men
but have a negligible effect on the number in women.
Similarly, small random error rates in coding (or data
entry) of diagnosis may greatly inflate apparent rates
of rare diseases, while having little impact on rates
of common diseases.

These considerations suggest that a higher level of
data quality is needed for valid analysis of rare cat-
egories or clusters than for common categories, and
that an effort should be made to verify the original
individual records before coming to conclusions on
the presence of clusters of small numbers of cases,
or rates of rare diseases, within routine datasets.

Record linkage

Many of the most interesting uses of routine statistics
relate to linkage between datasets – for instance, link-
ing a births file with a childhood or adult morbidity
file to determine whether prenatal risk factors are
associated with risk of later disease (see Record
Linkage). It should be noted that the validity of the
analyses will be dependent on both the quality of
the two datasets to be linked, and the quality of the
linkage. Such problems will be cumulated where data
are derived by successive linkage, in stages, through
several data sets. For instance, in England and Wales
notification of incident cancers in study cohorts can
be obtained from the National Health Service Cen-
tral Register (NHSCR); for childhood cancers it has
been found that this is 12.5% incomplete, because of
the cumulation of shortfalls of a few percent at each
of the several stages at which the data are gained,
transmitted or linked, starting from initial cancer reg-
istration by a regional cancer registry and ending with
identification by NHSCR that the cancer occurred in
a cohort member, and notification of this information
to the investigator [9].

Conclusion

Most epidemiologists have had the disappointing
experience of making an apparent discovery in a
dataset, only to find on more careful examination that
it was in fact due to a deficiency of quality in the data,
or to a misunderstanding of the way in which the data
were compiled. It is worth paying great heed to data
quality, if only to try to ensure that as far as possi-
ble one’s publications are not similarly in error. As
Greenwood noted half a century ago in his discourse
on this subject, “This may involve a little trouble –
which is worth taking. One should never believe that
a disease is becoming more, or less, deadly until all
other explanations have been excluded” [7].
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Database Systems

The word “database” is used here in two overlap-
ping ways to refer to a collection of related data and
its storage method, or to programming system soft-
ware used to organize and integrate a collection of
related data. It is management, access, and control
(including efficiency and recoverability), not neces-
sarily size, which distinguish a database from a data
set [23]. There are other definitions of “database”;
see, for example, [21]. The following concentrates on
database software: choosing a database management
system (DBMS), designing databases, and resources
that might be helpful.

Defining a DBMS as “a collection of programs
that enables users to create and maintain a data-
base” [8], Date [6] identified the following benefits
of using a proper DBMS. First, data can be shared
securely. Secondly redundancy can be reduced, incon-
sistency avoided, and integrity maintained – that is,
you have the data you intended to hold, with no
repeats, unexplained absences or anomalies. Thirdly,
data independence can be achieved – the user does
not need to know how or where the physical data
are stored, but instead identifies tables and vari-
ables by name. Finally, and best of all, (conflicting)
requirements can be balanced – and standards can be
enforced.

What a DBMS Stores

A DBMS can store data, which are usually alphanu-
meric, but increasingly include images, sound, and
free-format text for multimedia application, as well
as the following types of information:

1. “Business rules”, namely database description
tables containing extra information about the
data not immediately apparent from the data –
for instance, that a given field cannot be omit-
ted, or that gender must be “M” or “F”. A
good relational DBMS (RDBMS) can enforce
business rules for you (retrospectively) when
required.

2. A data dictionary describing the data, and who
has access to them, namely the authorization
tables and the current access tables.

3. Audit and system performance information.

What a DBMS Does

For the user, a DBMS (and third-party tools that work
with it) might offer: database design tools with a data
definition language; database administration tools; a
data manipulation language, or query language, to
query and update information; data-entry screens and
screen designers; interfaces to other applications or
programming languages; and reporting and statistical
summary tools.

Uses of Databases in Biostatistics

As well as all the typical accounting and administra-
tive uses, databases are used in biostatistics for:

1. Administering studies – storing names and add-
resses of subject participants, generating let-
ters and labels, allocating interviewer schedules,
creating progress reports.

2. Collecting data – with answers or results typed
straight into a laptop or notebook, or downloaded
directly from a measuring instrument.

3. Managing data – data entry, storage, and secure
access to all types of data.

4. Analyzing data – validation, description, model-
ing and analysis.

5. Documenting studies – even the study design can
(and should) be stored in a database!

In fact, the limiting factors for how widely databases
are used are more likely to be time, energy, and
money than database shortcomings!

A Brief History of Databases

The history of databases parallels part of the history
of computing. An overview of the history of com-
puting can be found at http://ei.cs.vt.edu/
∼history/index.html. The earliest true DBMSs
appeared in the 1960s. For example, in 1960 a new
language, COBOL (for “Common Business Oriented
Language”), had the novel approach of separating
data description from programs – in a database – so
data could be easily reused across applications. Pro-
grams could then refer to established variable names.

Early databases were built for speed, not flexibil-
ity. Database design was dependent on anticipated
use. For example, in an (imaginary) early hospital



2 Database Systems

patient appointment system, you would have had a
link from a patient to the point on a file where
her appointments began, then all her appointments
would be listed one after another. In this “hierarchi-
cal” database, some operations would be easy (finding
all the appointments a patient had), some would be
hard (adding a new appointment meant rewriting the
whole file), and some almost impossible (finding all
the patients with appointments falling on a certain
day). To solve the latter two problems, more links
(often called “pointers”) were added to records. Then
our imaginary patient would be linked to her first
appointment, that to the next appointment, with her
last appointment completing the circle and joining
back to the patient. The name of the committee that
made COBOL, CODASYL, is still used in discus-
sions on such “network” DBMSs. The main drawback
of CODASYL databases is that they are obscure to
program – you need to know which way the links
point. In 1997, experienced COBOL programmers
are being called out of retirement to check code
that might have the “millennium bug” – an artifact
of treating all dates as belonging to the twentieth
century.

In 1970, Codd [4] proposed a theoretical table-
based data storage model, and a universal data
manipulation language. His ideas (expressed con-
cisely as a set of 12 rules in 1985 [5]) have yet to
be fully realized, but his RDBMSs and Structured
Query Language (SQL) are now common, devel-
oped by IBM’s DB2, Ingres, and Oracle from the
mid-1970s, to name a few of the industry leaders.
In fact SQL is the standard for both the Interna-
tional Organization for Standardization (ISO) and
the American National Standards Institute (ANSI) –
see http://www.jcc.com/sql stnd.html – so
there is some cross-vendor portability. These fully
implemented RDBMSs were (and are) hard to admin-
ister – Oracle, for instance, recommends identifying
a database administrator (DBA) who should have 2
weeks’ training before trying to install any software,
with a week’s extra training on “tuning”. Even writ-
ing a data-entry screen is a professional job. It is also
very expensive!

The 1980s saw an explosion in personal com-
puters and simple, file-based databases. In these the
data structure (as well as the number of records to
expect and the length of each record) is held at
the top of a data file. Joining data from different

files is possible, but not intuitive – but as most peo-
ple (biostatisticians included) still enter and look at
data one table at a time, software like Ashton Tate’s
(now Borland’s) “dBase” remains enduringly popular
10 years on.

For computer users, the 1990s have been char-
acterized by the emergence of graphical user inter-
faces (GUIs). Accompanying this development has
been the need for databases storing nonalphanumeric
data – video, audio, images, free-format text – that is,
“object” or “multimedia” DBMSs. GUIs also encour-
age a conceptual separation of the “client” (a program
that shows data) and the “server” (a DBMS that
manages it). Much effort has been put into hiding
the connection between these components. Newer,
mouse-driven databases, like Microsoft’s “Access”,
can be self-contained, or can connect transparently as
a client to SQL servers over a network, or even over
the Internet. This “scalability” comes at a price –
and setting up a client/server database is (currently)
hard and expensive.

Choosing Software to Manage Data

For biostatisticians involved with drug trials (see
Pharmaceutical Industry, Statistics in), the choice
is straightforward – SAS (see Software, Biostatisti-
cal) is the de facto standard for statistics and data
management (see [22] and http://www.fda.gov/
cdrh/ost/points.html), combined optionally
with an industry standard SQL server such as Oracle.
However, these are too expensive (involving costs
of the same order of magnitude as the servers on
which they run) to be a default option outside the
drug industry.

Many statisticians manage data in their statistics
package of choice, be it (at increasing cost) EpiInfo,
Stata, or SPSS (see Software, Biostatistical). Many
health professionals keep data in spreadsheets like
Microsoft’s Excel (see Spreadsheet), but care needs
to be taken to separate formatting and data.

In buying database software, the first consideration
relates to the capabilities required of the database. Is
a fully implemented DBMS (such as Oracle) neces-
sary, or is a personal database (like Access or FoxPro)
sufficient? Practical issues that suggest a fully imple-
mented DBMS are:

1. More than one person needs to see the same data
at the same time.
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2. You have a large data set. The limiting factor is
not the size of the file, but how quickly you can
access it.

3. You have a complicated data set – some smaller
databases are unable to make links on more than
one variable, or links back to the same table.

4. You are storing unusual types of data (not text or
numbers).

5. Your data must be securely managed, protecting
confidential data through passworded access, and
with a robust backup regime (see Confidentiality
and Computers).

Of these, confidentiality and multiuser access are the
two main reasons to centralize data, though limiting
factors are that you need networked computers with a
server (which rules out laptops, unless you enjoy con-
figuring modems); financial resources; and that there
is someone available to run a larger installation – the
DBA. The aim is to use appropriate technology. In
practice, we tend to differentiate small databases that
require daily access by one person (like the adminis-
trative databases that are used to recruit and monitor
study subjects) and larger multiuser databases that
store study data sets.

Once the DBMS level has been decided, questions
that help to differentiate products include:

1. How easily can I get data in and out? It should
not require programming to upload existing data
sets or download data for analysis!

2. Does it “talk to” my statistics package? Often
part of the “data dictionary” (variable names and
labels, missing value codes, groupings) is lost in
transit.

3. What sort of access am I after? Most databases
are optimized for quick look-ups and data entry
(“transaction processing”), but sweeps through
the data can be very slow.

4. Can it handle the throughput of data I have in
mind? Uploading tables can be time-consuming.

5. Can I and do I have to program, or can I use
a mouse-driven interface to create and manage
data? A good package will allow both styles of
access.

6. Do I need a new computer? Some laboratory
databases are supplied on a “free” computer, usu-
ally a PC or Macintosh. For data work in the field
a notebook might be necessary. And, a big data
set might require more memory, or a faster disk.

7. How much will it really cost? Pricing policy is
not always clear.

8. Most important of all, can I get help?

Choosing Between SQL Servers

DBMS Magazine publishes comparative reviews of
the leading server-sized DBMSs periodically (see
http://www.dbms.mfi.com/9611d52.html).
Criteria used last time (November 1996) were adher-
ence to the relational model and SQL standards,
ability to store nonalphanumeric data (binary large
objects or BLOBs), and availability of communica-
tion extras. The following “big six” industry lead-
ers were compared: Oracle 7; Sybase; Informix-
online; Microsoft SQL Server; IBM’s DB2; and CA-
OpenIngres.

Database Design

Usually we cannot “optimize” our data structures –
they reflect a questionnaire or some other pre-given
study data – but some effort is needed to “normal-
ize” data. This is the process of squeezing repeat-
ing data out of the main data sets and into look-
up tables and subtables. A simple example of a
look-up would be giving doctors codes in a hospi-
tal database rather than repeating their names end-
lessly. More problematic is repeating subsets of
data – so, in coding drugs, do we allot space for
a fixed number (subscripting the variables drug 1
to drug n), or do we start a separate table for
drugs, one line per patient per drug? Good database
design practice suggests you do the latter, though this
“entity-relationship modeling” suffers from diminish-
ing returns. Fortunately products like Logic Work’s
ERWin data modeling toolset exist to help you – at
a price!

A modern DBMS is often described by a task it
might be good for: data warehousing, data mining,
on-line analytical processing (OLAP), decision sup-
port, and management information systems (MIS).
All of these mean that data are indexed and pos-
sibly stored for maximum efficiency of collation,
not (as is the usual case) for speed of individual
row selection (“transaction processing”). The jargon
obscures a useful tip: that maybe we can design
our databases to make analysis easy. In contrast to
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the normalized model, the design of a data ware-
house is one big table per topic, with only one
level of look-ups around it. This star-shaped model
(or “multidimensional” database) is far easier to
analyze.

Database Interfaces

Many fourth-generation language (4GL) tools are
available to build graphical interfaces to databases –
newer, personal databases like Access and FileMaker
include their own drag-and-drop “Form Wizards”, but
more scalable products include Powersoft’s Power-
Builder, Oracle’s PowerObjects, or Borland’s Delphi
for data-entry design, and Seagate’s Crystal Reports
for report generation. These are useful if you need a
slick presentation for inexperienced computer users.
Making pleasing interfaces is very time-consuming,
and, as data entry is usually quicker without a
mouse, these tools (if bought separately) are often
a luxury.

Recent Developments

Relational databases are a mature technology in com-
puter science, having remained remarkably stable
over the last decade. Improvements have not changed
the fundamental relational database management sys-
tem (RDBMS) framework. Accordingly, the previous
article (from the previous edition of this encyclopae-
dia) stands as a useful reference. This addendum
notes changes in RDBMS usage, and describes the
recent development of object-oriented techniques and
multimedia databases.

Increments

Improvements to RDBMS have occurred in speed,
storage capacity, network capability, and program-
ming language interfaces. General changes in com-
puting infrastructure, such as the continued growth
of the internet, faster networks, faster processors,
cheaper memory, and cheaper storage have encour-
aged these changes. Formerly, specialized areas such
as data mining and distributed databases have become
more widely available.

The open source movement has made this for-
merly expensive software free to all. The major

free RDBMS are MySQL [10] and PostgreSQL [11].
Not free, but still a low cost option for many, is
the Microsoft Access database, supplied as a stan-
dard component of Office Professional Edition [12].
Databases now form the back end to a multitude of
websites, from the smallest personal sites to major
online retailers such as Amazon.com [13].

Associated with the increase in usage, means of
connecting to databases have also greatly multiplied.
Middleware, which inserts a database driver between
database and application, offers a wide variety of
programmer interfaces, pre-built reporting and analy-
sis packages, and graphical interfaces. These all rely
on a standard low-level programmers’ interface to
the database system, such as Microsoft’s ODBC [14]
(Open Database Connectivity) and Sun’s JDBC [15]
(Java Database Connectivity). There is a plethora
of middleware available for developers, supporting
database access from many platforms, languages and
across many network protocols; no major develop-
ment project can afford to be without it [3, 20].

New Developments

Major new database techniques have arisen from use
of the object-oriented programming paradigm [1]. In
object-oriented programming, the focus is on consid-
ering a piece of information as a whole. For example,
a “patient” can be considered as having attributes
such as a name, address, condition, X-ray images,
CAT scan images, and drug treatment history – all
of which are stored together. There can also be sub-
types of patient, where each type “inherits” the basic
structure from the standard patient record, then adds
specific information relevant to the group. Thus an
“oncology patient” can have very different records to
a “maternity patient”, while keeping the basic patient
data in common. This contrasts with the normal rela-
tional model, where information about a patient is
scattered across many separate tables, and a set of
complex Structured Query Language (SQL) queries
may be required to collect everything known.

While this sounds admirable, it also has disad-
vantages [7]. The separation of data in the relational
model is done to prevent repetition, and is an essen-
tial part of preserving data integrity. This must be
handled in some other way in an object design. Also,
the types of objects potentially in use are so varied
that specialization remains necessary. There is thus
no fully standard way of querying object databases;
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each vendor supplies a different query language. A
consortium of object database developers, the Object
Data Management Group (ODMG) [24] did propose
a standard (OQL) [2] in the early nineties, which was
not much implemented.

OQL did have a major impact on the design of
the 1999 release of ANSI SQL 3 (“SQL99”) [16].
SQL99 is not a fully object-oriented query language;
it is instead a superset of SQL92, with extensions for
generic object structures. Any database implementing
this is thus able to function as a standard RDBMS that
uses the older SQL92 conventions.

Since SQL99, major vendors have supported
steadily more object features in a more standard way.
Even so, pure object-oriented database management
systems (OODBMS) still tend to go their own way.
Pure object-oriented database systems also remain
rare, although they have found some success in niche
markets. Object relational database management
systems (ORDBMS), which implement most of
SQL99, are being provided by major vendors
including Oracle and IBM, and more recently
Microsoft. These form the main stream of current
database technology [19].

The ORDBMS is still a fully functional relational
database, but has object capabilities added. Naturally,
these additional capabilities vary across products. For
example, all ORDBMS databases have internal table
structures allowing inheritance, but many RDBMS
have minor extensions such as support for storing
data types other than text and numbers in table
columns, with the minimal addition being the binary
large object (BLOB) type. Major vendors mostly pro-
vide an object layer, in which the database designer
specifies the object structure as it maps to the table
structure. This relieves SQL users of the program-
ming complexity needed to retrieve data, but hands
that complexity over to the database designer. Nor-
mal SQL users can query the objects using a simple
syntax, without needing to know the details of how
the objects are stored.

An important feature of ORDBMS is its support
of the notion of abstract data type (ADT). This
feature allows database designers to specify objects
with associated methods (functions). The database
knows only the names of the methods, and that these
take input and produce output of specific types. For
example, a “photo” data type might have a method
to return size in bytes, as an integer; another method
to return file type, as a text string; a function that

tells whether the picture is of a naked human being,
as a Boolean; and another Boolean function that tells
whether the picture is of a horse. The first two of
these are simple; the latter two either rely on a human
evaluation that is stored with the photo file, or on a
complex function based on the colors and shapes in
the image – indeed, a very interesting problem that no
one has fully solved [9]. And yet the user can input
queries without knowledge of any of these details.

Multimedia database systems currently tend to be
ORDBMS, containing files with manually entered
textual descriptions of the object contents. Multime-
dia systems that are purpose built for film and tele-
vision may include a bundle of viewers, media files,
and relational tables describing the data, together with
ADT definitions specifying how data may be viewed
and how it must be synchronized. While the common
understanding of multimedia limits the binary files to
image, audio or video, there is no real restriction. The
same problems of storage and search of large sets
of large binary data files arise whether one wishes
to search television broadcast archives, fingerprints,
MRI images, or X-rays [18].

While the size of the data can impose scalability
problems for storage and retrieval times, the more
difficult questions arise in identifying and searching
items that are in some sense similar. Similar numeri-
cal and textual values can easily be retrieved with an
SQL query, by approximate text matching or numeric
ranges. But what counts as “similar” for an image,
sound, or video? Classification of data by computa-
tional means continues to be a difficult problem, and
often highly specific to a particular field. For exam-
ple, the program that tells whether an image contains
a naked human will not be able to tell if it contains a
horse, nor whether the image is scanned from a photo-
graph or a Rembrandt oil painting. While support for
querying on spatial and temporal relations is currently
being addressed with the development of a further
SQL extension, SQL/MM [17], there are many prob-
lems that remain the subjects of active research.

Resources

Excellent current information is available from the
World Wide Web. Some sites with good links,
besides DBMS Magazine Online, include: Database
Systems Laboratory, University of Massachusetts
(http://www-ccs.cs.umass.edu/db.html)
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which has an extensive collection of links to
research and development sites (by specialty),
journals, textbooks and manuals, newsgroups,
and conferences, as well as to general sites
and vendors’ details; University of California at
Berkeley DBMS Research Group, (http://s2k-
ftp.cs.berkeley.edu:8000/postgres/other
dbms.html) which has links to vendors and stan-
dards (this group authored Postgres, the best server-
sized free database); the Association for Comput-
ing Machinery’s Special Interest Group on Man-
agement of Data Information Server, or ACM SIG-
MOD (http://bunny.cs.uiuc.edu/), with links
to free software summaries; and Cetus Links: Object-
Orientation/Databases (http://www.rhein-nec-
kar.de/∼cetus/software.html), for every-
thing to do with object-oriented databases (the
recent spate of “universal” databases are mixed
object/relational databases).

Principal vendors (see the “big six” list above)
have Web pages. For personal/desktop databases, the
choice is large, but the best known are: Access,
from Microsoft; FileMaker Pro, from Claris Software;
Visual FoxPro, from Microsoft; and Visual dBase,
from Borland International. All of these have Web
pages. A “Catalog of Free Database Systems” can
be found at http://cuiwww.unige.ch/∼scg/
FreeDB/.
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de Finetti, Bruno

Born: June 13, 1906, in Innsbruck, Austria.
Died: July 20, 1985, in Rome, Italy.

Although born in Austria, where his father was
designing and building a railroad, de Finetti was Ital-
ian. He attended Milan University, where his work
came to the attention of Corrado Gini in Rome, whom
he briefly joined. He became an actuary in Trieste and
held academic posts there and in Padova. Finally,
he returned to Rome as a professor. Although he
is mainly recognized today as a leading probabil-
ity theorist, he was much concerned with practical
applications and regarded probability as an essential
tool in the business of life. He believed in an eco-
nomic system that combined Pareto optimality with
a notion of equity, far removed from the notion of
greed that, in his view, permeated capitalism.

For de Finetti, the sole interpretation of probability
was a number describing the belief of a person,
conveniently referred to as “you”, in the truth of
a proposition. He coined the aphorism, “Probability
does not exist”; meaning that it has no reality outside
the individual’s perception of the world. Probability
describes a relationship between you and that world
and is not solely of that world, as others contend. For
any uncertain quantity X, he introduced the prevision
P(X), a number you use to replace X, in the sense
that you would engage in any transaction that would
yield you s[X − P(X)], for sufficiently small s. For
a proposition, X = 1 (true) or 0 (false), P(X) is
your probability that the proposition is true. The
rules of probability easily follow in some beautiful,
simple mathematics. Generally, prevision plays the
role ordinarily occupied by expectation. Previsions
that do not lose you money for sure, in a set of
the above transactions, are said to be coherent. He
established a basic theorem that shows how a set of
previsions {P(Xi) : i = 1, 2 . . . n} impose constraints
on a further, coherent prevision P (Xn+1). In this
view, the scientific method results in a set of coherent
judgments about the world.

In another theorem he showed how this personalis-
tic approach included frequentist views of probability
as a special case. If your previsions for a set of 0–1

quantities obey a condition he called exchangeabil-
ity, then the theorem shows that the frequency of
quantities that are one will tend to a limit, about
which you have a prevision. Since most situations
studied in modern statistics incorporate some form
of exchangeability, they can be included in the per-
sonalistic view. The procedures it recommends are
often different from those adopted by frequentists.
His approach was Bayesian (see Bayesian Methods),
but he differed from many Bayesians, like Harold
Jeffreys, in refusing to admit that any value of a
probability was more rational than another. You could
coherently have one view, I another, and both be
rational. Uncertainty is only removed, and agreement
reached, by the accumulation of data.

He wrote extensively on the teaching of probabil-
ity. He held that children should study uncertainty
from an early age. In particular, they should be
encouraged not to answer “yes” or “no” to a ques-
tion, when in reality they were uncertain about it,
but respond with a probability. He developed scoring
rules to assess abilities from such responses. These
have found use in medical diagnosis.

De Finetti’s views are so original, and his style
so parenthetical, that his writings are difficult to
understand, even when he writes about statistical
issues. His mathematics is always simple and he
abhorred much technical writing. He does not use the
term random variable for X above. There is nothing
variable about it; it is a fixed quantity the value
of which is uncertain for you. Those who have the
patience to follow his writings find them immensely
rewarding and correct. His first, important papers date
from the early 1930s, but most people, especially
those who do not read Italian, will find the most
accessible approach to his work in the books from
the 1970s [1, 2]. Of all statisticians of this century,
Fisher and de Finetti are the true geniuses.
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de Moivre, Abraham

Born: May 26, 1667, in Vitry, France.
Died: November 27, 1754, in London.

Abraham De Moivre is celebrated by statisticians pri-
marily for his derivation of the normal approximation
to the binomial distribution, and for providing the
first tabulation of the normal integral (see Normal
Distribution).

He studied the humanities and mathematics at
the Protestant University of Sedan, and later at the
University of Saumur and the Sorbonne. After the
repeal in 1685 of the Edict of Nantes, he suffered
imprisonment, and to avoid further persecution as a
Protestant he emigrated to London in 1688. There he
worked as an itinerant tutor, and adviser to gamblers
and brokers, and was elected to the Royal Society in
1697. His famous work, The Doctrine of Chances: or
a Method of Calculating the Probability of Events in
Play, appeared in successive editions in 1718, 1738,
and 1756. His result on the normal approximation
to the binomial appeared first in a separate paper
in 1733, and used what is now known as Stirling’s
formula. He seems to have regarded the normal curve

merely as a means of approximation, rather than as a
distribution in its own right.

De Moivre published also a standard work on
annuity theory, Annuities upon Lives, in 1718 and
1743 (see Actuarial Methods). As noted in [1], De
Moivre’s scope was limited; he excluded from con-
sideration all the forms of insurance then practiced in
London (fire, life, and maritime).

For fuller descriptions of De Moivre’s life and
works, see [2] and [3].
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Death Certification

The processes through which a civil registration and
vital statistics system is informed of the facts about
each death occurring within its coverage area may
involve information supplied by several different
informants. Relatives or friends may supply personal
particulars of the deceased either directly to the civil
registration authorities or indirectly through a funeral
director or other intermediary who then gives the
information to a civil registrar. However, the legal
determination of the fact of death and the statement
of the medical causes of death are usually the respon-
sibility of an attending physician. In the absence of
an attending physician or in the case of death result-
ing from actual or suspected violence (e.g. accident,
suicide, homicide), a medical/legal officer usually
investigates to determine the medical and legal facts
of the case. In many civil registration systems, the
medical/legal officer is known as a “coroner” or
“medical examiner” whose specific responsibilities
are prescribed by law. The physician or medical/legal

officer is required to certify, to the best of his or her
knowledge, that the death took place at the time and
place specified and was due to the causes recorded on
the death certificate. In some countries a shortage of
trained medical personnel makes this process impos-
sible or impractical to carry out, but in those vital
statistics systems where deaths are attended just prior
to death or reviewed after death by qualified med-
ical practitioners, the World Health Organization
(WHO) recommends a specific format and procedure
for the certification of cause of death. The WHO
recommendations are based on the concept that for
each death occurring, one and only one “underlying
cause of death” is to be determined, counted, and
statistically analyzed (see Cause of Death, Under-
lying and Multiple). WHO defines the underlying
cause of death as “(a) the disease or injury which
initiated the train of morbid events leading directly
to death, or (b) the circumstances of the accident or
violence which produced the fatal injury”. WHO fur-
ther recommends the use of the International Form
of Medical Certificate of Cause of Death (Figure 1),
which is designed to facilitate the selection of the

Approximate
interval between
onset and death

Cause of death

I
Disease or condition directly
leading to death*

Antecedent causes
Morbid conditions, if any,
giving rise to the above cause,
stating the underlying
condition last

II
Other significant conditions
contributing to the death, but
not related to the disease or 
condition causing it

*This does not mean the mode of dying, e.g. heart failure, respiratory failure.
It means the disease, injury, or complication that caused death.

(a)

(b)

due to (or as a consequence of)

due to (or as a consequence of)

(c)

due to (or as a consequence of)

(d)

Figure 1 International form of medical certificate of cause of death
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underlying cause of death based on the sequence
of morbid events reported by the medical practi-
tioner [1].

The medical certificate shown in Figure 1 provides
a uniform format for the medical practitioner signing
the death certificate to indicate which condition led
directly to death and to report any antecedent condi-
tions which gave rise to that condition. The medical
certificate is designed to facilitate the selection of
the underlying cause of death when two or more
conditions are recorded. If only one condition is
reported by the certifier, this single condition should
be recorded on line (a) of Part I of the Medical Cer-
tificate of Cause of Death and is considered as the
“originating antecedent cause”. If there is more than
one condition involved in the train of events lead-
ing to death, the direct cause is entered on line (a)
and antecedent causes are entered on lines (b), and, if
needed, (c) and (d). The lowest used line reflects the
originating cause, and the causes entered on the other
lines reflect, in sequence, the train of events leading
to death. Therefore, in a properly completed Medical
Certificate, the lowest used line in Part I is consid-
ered to be the originating antecedent cause. Usually,
the originating antecedent cause corresponds to the
underlying cause of death, the condition used for
statistical tabulation and analysis. However, in some
circumstances the originating antecedent cause may
be superseded by a condition more suitable for use as
the underlying cause of death. In cases where the cer-
tificate does not appear to be properly filled out (e.g.
the reported sequence does not make medical sense,
or the originating cause is a vague or nonspecific
condition and there are other more specific conditions
reported elsewhere on the certificate), there is a set of
international rules promulgated by WHO for selecting
an underlying cause of death. The selected underly-
ing cause may then be modified by additional rules to
make it more useful for statistical and epidemiologic
purposes. These rules are particularly useful when
it is impractical or impossible to query the medical
practitioner who completed the certificate in order
to obtain clarification or a more definitive descrip-
tion of the conditions leading to the death. While
the rules may, in individual cases, appear to be arbi-
trary, they are intended to yield improved mortality
statistics overall.

When determining the underlying cause of death
from conditions recorded on a medical certificate, the
international rules and guidelines first call for the

application of the General Principle, which states,
“. . . when more than one condition is entered on
the certificate, the condition entered alone on the
lowest used line of Part I should be selected only
if it could have given rise to all of the conditions
entered above it”. If the General Principle does not
apply, there are three Selection Rules that are to be
applied sequentially until an originating antecedent
cause is identified. However, that originating cause
may not be the most useful and informative condition
for statistical tabulation and analysis. For example, if
senility or a generalized disease such as hyperten-
sion has been selected, this is less useful than if a
reported manifestation of the aging process or of the
hypertension had been chosen. Further, it might be
necessary to modify the selected condition to conform
with the requirements of the International Classi-
fication of Diseases (ICD), either because a single
code in the classification might represent two or
more conditions that were both reported, or because
the classification may give priority to a particular
cause when it is reported with certain other condi-
tions. Accordingly, there are six Modification Rules
intended to improve the utility of mortality data. The
Modification Rules are applied after the selection of
the originating antecedent condition. Some Modifica-
tion Rules require further application of the Selection
Rules, resulting in an iterative process of selection,
modification, and, if necessary, reselection before an
underlying cause of death is determined [2].

In the case of perinatal deaths, WHO recommends
a special Certificate of Cause of Perinatal Death. This
certificate provides a section for the medical certifier
to list diseases or conditions in the fetus or infant
as well as maternal diseases or conditions which
affected the fetus or infant. In the 10th Revision of
the International Classification of Diseases (ICD-10),
the perinatal period is defined as the period begin-
ning at 22 completed weeks of gestation and ending
at seven completed days after birth. WHO provides
a special set of rules for the certification of deaths
occurring during this period [3].
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Death Indexes

An important aspect of follow-up studies (see Cohort
Study) is the ability to determine which members of
the original study cohort have been lost to follow-
up because of death, and for many such studies, in
addition to the fact of death, the cause of death is
an essential piece of information. In places where a
central register of all deaths is compiled (e.g. pop-
ulation register, or civil registration system) and is
available for research use, the identification of indi-
viduals in a study who have died during some time
period can be accomplished, provided that the nec-
essary identifying information is available. However,
even under relatively ideal circumstances, it is some-
times difficult to match study individuals against lists
of deaths with 100% certainty that a correct match has
been achieved. Most follow-up studies try to match
on several variables (e.g. surname, given name, date
of birth, mother’s maiden name, etc.) and develop
algorithms to establish “presumptive matches” (see
Matching, Probabilistic).

While the fact of death is, in most jurisdictions,
considered public information, the cause of death
may in some places be considered confidential and
not releasable to researchers without the expressed
permission of a next of kin or legal representative of
the deceased. Because of confidentiality provisions,
some custodians of death files require study protocols
to be reviewed for adequate privacy safeguards before
authorizing the release of cause of death data.

In a few countries, the problem of adequate
follow-up for deaths occurring amongst a cohort is
further complicated by the existence of only decen-
tralized death files. A notable example of this is the
US where the primary responsibility for registration
of vital events rests with the individual states. For
many years it was necessary for “death clearance”
of study cohorts for researchers to send their list
of study participants to each of the more than 50
registration areas to determine if any of their sub-
jects had died there during some stated period of
time. This was a costly and time-consuming process
and tended to stifle certain kinds of epidemiologic

research. In addition, each state has its own laws
and procedures regarding confidentiality and release
of information. Therefore, in spite of the fact that
there was a central statistical file for national vital
statistics purposes located at the US National Center
for Health Statistics, the states provided their data
with the restriction that the Center not release indi-
vidual record information without the consent of
the states. After lengthy negotiations, an agreement
between the states and the National Center for Health
Statistics resulted in a US National Death Index
which was designed to address these issues. To uti-
lize this index, researchers submit their study protocol
to a committee comprising selected state registration
officials, federal officials, and representatives of the
health research community. If this committee deter-
mines that the proposed study is bona fide research
and not a commercial activity, and includes appro-
priate steps to protect confidential information and
privacy, the protocol is approved and sent to the
Director, National Center for Health Statistics, for
final approval. Once the study has been approved,
the National Center receives annual lists of study
participants from researchers containing the required
variables for computer matching against the statistical
file of deaths (see Record Linkage). For each “pre-
sumptive match”, the researcher receives information
about the date, place of death, and death certifi-
cate registration number along with some details of
the degree of agreement between the required vari-
ables. If the study requires cause of death information
or other information from the death certificates, the
researcher receives enough information to contact
the appropriate State Registration Officials to request
copies of the pertinent death certificates.

The US National Death Index has been in oper-
ation since data year 1979 and has significantly
improved follow-up procedures for studies conducted
in the US. It has reduced the necessary time and
costs of efficient identification of deaths occurring
in national follow-up study cohorts.

ROBERT A. ISRAEL



Decision Analysis in
Diagnosis and Treatment
Choice

Decision analysis is a quantitative method for
identifying the optimal course of action among a
well-defined set of alternatives under conditions of
uncertainty [18] (see Decision Theory). The optimal
course of action is defined as the one that maximizes
(or minimizes) the expected value (see Expectation)
of the outcome of interest. The application of
decision-analytic methods to medicine is appealing
because uncertainty is inherent in diagnosis and
treatment choice. Consider the clinical setting where a
physician must decide how to care for a patient when
the true underlying disease state is rarely known with
certainty. Although a particular disease will either be
present or absent in any given patient, the physician
must make decisions about use of diagnostic tests
and treatments based on a subjective assessment
of the underlying disease state (see Computer-
aided Diagnosis). In this setting, decision analysis
can identify the clinical approach that maximizes
average survival, life expectancy or quality-adjusted
life years (see Quality of Life and Health Status).
More importantly, decision analysis can be used to
highlight the critical factors in making decisions
about patient care.

The application of decision analysis to clinical
medicine was introduced more than 30 years ago
[11–13]. Since then, its use in clinical medicine has
grown [9, 10, 21], and the role of decision analysis
in the economic evaluation of medical practices has
also been firmly established [8, 24].

By identifying clinical approaches that maximize
health outcomes, decision analysis can be used for
guiding the care of individual patients or groups of
patients. In the latter context, decision analysis can
be useful for clinical guideline development and for
informing health policy decision makers. When costs
are considered as an end point, decision analysis can
be used to identify the least costly course of action
or for cost-effectiveness evaluation (see Health Eco-
nomics).

The basic steps in decision analysis entail defin-
ing the decision problem, structuring the decision
tree, assigning parameter values for both probabili-
ties and outcome values to the tree, and analyzing

Table 1 Basic steps in decision analysis

1. Define the problem
(a) Identify the decision maker and the objective.
(b) Specify alternative actions and consequences.

2. Structure the decision tree
(a) Represent alternative actions as branches

emanating from a decision node.
(b) Represent the temporal sequence of chance

events, actions, and outcomes as subsequent
chance nodes, decision nodes, and terminal
nodes, respectively.

3. Assign values for each parameter in the decision tree
(a) Assign appropriate probabilities based on their

position in the tree.
(b) Assign appropriate outcome value(s) at each

terminal node.

4. Analyze the decision tree
(a) Average-out and foldback the decision tree.
(b) Conduct extensive sensitivity analyses.

the tree (Table 1). In the sections that follow, each
step is described further in the context of a classic
clinical decision problem involving a choice between
no intervention, immediate testing, and immediate
treatment in a patient suspected of having only one
possible underlying disease. To demonstrate quanti-
tative aspects of decision analysis, a more detailed
clinical example is introduced in the section on ana-
lyzing the tree.

Define the Problem

Identify Decision Maker(s) and the Objective

The first step in defining the decision problem is to
identify the decision maker and to state clearly the
decision maker’s objective. This entails specifying
the outcome of interest and whether it is to be
maximized or minimized.

In the classic clinical decision problem, we assume
that the physician is the decision maker and that
his objective is to maximize survival. If the patient
also wishes to maximize survival, then the physician
and patient have a shared perspective. If the patient
wishes to maximize a different end point, such as
time without pain, then the result of the decision
analysis may differ when done from the patient’s
perspective.
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Specify Alternative Actions

Once the objective is defined, a complete set of
alternative actions must be specified. The possible
consequences and temporal sequence of each action
must also be delineated.

Using the classic clinical decision problem as the
paradigm, the alternative actions are no intervention,
immediate testing, or immediate treatment [16]. For
the testing alternative, a positive or negative test
result is observed and a subsequent treatment decision
must be made. Regardless of the actions taken, the
end points of death or survival ultimately ensue. The
probability of survival, however, varies according
to the underlying disease state and the action that
is taken.

Structure the Decision Tree

Decision trees are the basic structure underlying most
applications of decision analyses in medicine. Other
approaches to decision analysis, including the use of
influence diagrams, are not discussed here [15]. Deci-
sion trees depict the temporal sequence of actions and
consequences and are structured from left to right.
They comprise nodes, the point from which branches
emanate, and branches. Two node types – decision
nodes and chance nodes – are always included in
decision trees. Decision nodes are depicted by squares
and indicate that a choice must be made. Branches
emanating from the decision node specify the alter-
native actions being evaluated. Chance nodes are
depicted by circles and indicate that one of sev-
eral chance events or outcomes may occur. Branches
emanating from chance nodes must represent the
entire universe of events or outcomes being con-
sidered.

Consider the decision tree for the classic clini-
cal decision problem introduced earlier (Figure 1).
The tree begins with a decision node from which the
alternative actions of “No Intervention”, “Test”, and
“Treat” emanate as separate branches. Each of these
branches is followed by chance nodes. The “No inter-
vention” and “Treatment” branches are followed by
chance nodes indicating the true underlying disease
state. That is, disease may be present (“Disease”) or
absent (“No disease”). Following each disease state
node is another chance node representing the survival
outcome as either “Die” or “Survive”. The “Test”
branch is followed by a chance node indicating that

the test result may be positive (“T+”) or negative
(“T−”). Following the test result node are additional
decision nodes that represent the decision that must
be made once test results are known. Decision nodes,
such as this, that occur following chance nodes, are
referred to as embedded decision nodes. (Note that,
when embedded decision nodes are eliminated from
decision trees and a set of actions contingent upon
chance events is specified, then the tree is in strate-
gic form. For example, if the strategy is to “Treat”
following a positive test result and to “Do nothing”
following a negative test result, then the decision
nodes in Figure 1 following “T+” and “T−” would
be removed to produce a tree in strategic form.)
Regardless of test outcome and subsequent decisions,
for the “Test” branch, the tree also includes the dis-
ease state and survival chance nodes. Branches at the
far right of the decision tree (e.g. “Die” and “Survive”
in Figure 1) are called terminal nodes.

Assign Parameter Values to the Tree

Assign Probabilities to the Tree

Once the decision tree has been structured, probabil-
ities must be entered for branches emanating from
each chance node. These probabilities may represent
the frequency with which each chance event occurs.
In the simple clinical example, the disease of inter-
est will either be present (D+) or absent (D−) for
each patient, and the frequency with which disease
is present may be estimated based on observations
in large populations of similar patients. Sometimes a
clinical prediction rule can be used to estimate the fre-
quency of disease [22] (see Predictive Modeling of
Prognosis). Alternately, the probability that disease
is present may reflect the subjective probability or
strength of belief of the decision maker that disease
is present.

Recall that the branches emanating from chance
nodes represent the universe of possible (or mod-
eled) events. Thus, by the summation principle of
probabilities, regardless of the type of probability rep-
resented in the decision tree, the sum of probabilities
for branches emanating from each chance node must
equal 1.0. We designate the probability of an event as
Pr(·). In the hypothetical clinical example, the prob-
ability that disease is present is denoted as Pr(D+).
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Figure 1 Decision tree for hypothetical clinical example. Decision nodes are depicted by squares (�) and chance nodes
are depicted by circles (©)
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Tree Structure and Placement of Joint and
Conditional Probabilities

When placing probabilities in a decision tree the
correspondence between the position of each branch
and the type of probability required is an important
consideration. We refer to two general types of prob-
abilities in decision trees – joint probabilities and
conditional probabilities. Joint probabilities rep-
resent the chance that two or more events occur
together. If we consider events A and B, then
the probability of their joint occurrence is denoted
as Pr(A,B). Conditional probabilities represent the
chance that an event occurs given that another event
is known to have preceded. The conditional prob-
ability that event A occurs given that event B has
occurred is denoted as Pr(A|B). The relationship
between joint and conditional probabilities is

Pr(A, B) = Pr(A|B) Pr(B).

When two events are independent, then

Pr(A|B) = Pr(A),

and the joint probability of their occurrence simplifies
to

Pr(A, B) = Pr(A) Pr(B).

In our clinical example, the probabilities of disease
following “No intervention” and “Treat” are straight-
forward and represent the prevalence or subjective
opinion that disease is present, Pr(D+), among such
patients. This reflects the assumption that the action
taken will not affect the true disease state, though it
may (and hopefully will) affect outcomes.

To demonstrate the correspondence between tree
structure and use of joint and conditional prob-
abilities, we consider a simplified portion of the
“Test” branch in which “Treatment” follows a pos-
itive test and “No intervention” follows a negative
test (Figure 2).

The four outcomes of test result and disease status
may be modeled either as four branches emanating
from the “Test” chance node [Figure 2(a)], or as a
series of two binary chance nodes [Figure 2(b)]. Each
terminal node is associated with a path through the
decision tree. The path probability for each terminal
node is obtained by multiplying the probabilities
encountered along the path. In Figure 2, the path
probabilities are shown at the end of each branch

and correspond to the joint occurrence of true disease
state and test result. Note that the path probabilities
for each of the four possible outcomes are the same
regardless of the structure chosen. What differs in
Figures 2(a) and 2(b) is the type of probability used
for each branch. In Figure 2(a), the joint probability
of disease state and test outcome is modeled. In
Figure 2(b), the conditional probability of disease
represents the chance that disease occurs given the
test result that was observed.

In general, the probability that a test result is
positive, Pr(T+) and the complement, Pr(T−) = 1 −
Pr(T+) will depend on the sensitivity, Pr(T + |D+),
and specificity, Pr(T − |D−), of the test and on
the prevalence of disease, Pr(D+). Applying the
summation principle to joint probabilities allows us
to express the probability of a positive test as

Pr(T+) = Pr(T+, D+) + Pr(T+, D−).

The relationship between joint and conditional prob-
abilities allows us to reexpress this as

Pr(T+) = Pr(T + |D+) Pr(D+)

+ Pr(T + |D−) Pr(D−).

Probability Revision: Bayes’ Rule and Tree
Inversion

The probability that disease is present following a test
must be conditioned upon the test result. Thus, the
post-test or posterior probabilities, Pr(D + |T+) and
Pr(D − |T−), often referred to as the positive predic-
tive value and negative predictive value, respectively,
must be used in the decision tree as appropriate
[Figure 2(b)]. Computation of these probabilities may
be done using Bayes’ Theorem, which is shown for
the positive and negative predictive values as:

Pr(D + |T+) = Pr(T + |D+) Pr(D+)

Pr(T + |D+) Pr(D+)
+ Pr(T + |D−) Pr(D−)

,

Pr(D − |T−) = Pr(T − |D−) Pr(D−)

Pr(T − |D+) Pr(D+)
+ Pr(T − |D−) Pr(D−)

.

An alternative to using Bayes’ rule to compute
post-test or posterior probabilities is first to struc-
ture a decision tree to accommodate the probabilities
that are known. When structured with the true dis-
ease state preceding the test result [Figure 2(c)],
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Pr(T+, D+)

Pr(T+, D−)

Pr(T−, D+)
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Pr(T+)

T−
Pr(T−) = 1−Pr(T+)
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Pr(D+|T+)

No disease
Pr(D−|T+)
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Pr(D+|T−)
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Pr(D−|T−)

Path probabilities

Pr(T+, D+) = Pr(D+|T+) Pr(T+)

Pr(T+, D−) = Pr(D−|T+) Pr(T+)

Pr(T−, D+) = Pr(D+|T−) Pr(T−)

Pr(T−, D−) = Pr(D−|T−) Pr(T−)

Test

Disease
Pr(D+)

No disease
Pr(D−) = 1−P(D+)

T+
Pr(T+|D+)

T−
Pr(T−|D+)

T+
Pr(T+|D−)

T−
Pr(T−|D−)

Path probabilities

Pr(T+, D+) = Pr(T+|D+) Pr(D+)

Pr(T−, D+) = Pr(T−|D+) Pr(D+)

Pr(T+, D−) = Pr(T+|D−) Pr(D−)

Pr(T−, D−) = Pr(T−|D−) Pr(D−)

(a)

(b)

(c)

Figure 2 Modeling of simplified test branch and probabilities required: (a) joint outcomes of disease state and test result are
modeled and joint probabilities are required; (b) test results and disease state are modeled sequentially and the probabilities
of disease conditional on test results are required; (c) test branch modeled with disease prevalence and sensitivity and
specificity to determine path probabilities

disease prevalence, test sensitivity, and specificity
are entered directly as probabilities in the tree, and
the path probabilities are computed. Because the
overall probability of a series of chance events is
independent of the order of the events, when the
tree is inverted [Figure 2(b)] we know that the path
probabilities are unchanged. Thus, we can solve for
the unknown conditional post-test probabilities, i.e.
Pr(D + |T+) and Pr(D − |T−), based on the known
path probabilities in Figure 2C and known disease
prevalence. This is best demonstrated with a numer-
ical example.

Suppose that disease prevalence is 0.60, that test
sensitivity is 0.55, and test specificity is 0.99. The
tree structure that uses these probabilities directly
[Figure 3(a)] models the true disease state as a chance
node prior to the test result node. Using disease
prevalence and test characteristics, the path proba-
bilities are computed and the overall probability of a
positive test is

Pr(T+) = Pr(T+, D+) + Pr(T+, D−)

= 0.33 + 0.004 = 0.334.
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Disease
0.6

No disease
0.4

Test

(a)

T+
0.55

T−
0.45

Path probabilities

0.330

0.270

0.004

0.396

T+
0.01

T−
0.99

T+

0.334

T−
0.666

Test

Disease
x

No disease

1−x

0.330

0.004

0.270

0.396

Disease

1−y

No disease

y

Path probabilities

(b)

Figure 3 Example of probability revision using tree inversion: (a) test branch modeled with prevalence, sensitivity, and
specificity to determine path probabilities; (b) inverted tree where unknown probabilities of disease conditional on test
result are solved for based on path probabilities determined in (a)

By placing the path probabilities and probabilities
of a positive test in the inverted tree [Figure 3(b)],
the unknown positive and negative predictive values,
denoted as x and y, respectively, are computed easily
using the following equations:

0.334x = 0.33 ⇒ x = 0.988,

0.666y = 0.396 ⇒ y = 0.595.

Probability Revision with Multiple Disease and/or
Multiple Test Result Categories

In many clinical applications it is necessary to model
more than one disease. Both Bayes’ rule and the
tree inversion approach to probability revision are
easily modified to reflect multiple disease categories,
Di, i = 1, . . . , I . Likewise, when there are multiple

test result categories, Rj , j = 1, . . . , J , a general
form of Bayes’ rule is as follows:

Pr(Di |Rj ) = Pr(Rj |Di)

I∑

i=1

Pr(Rj |Di)

The threshold at which a test result is declared pos-
itive (T+), referred to as the positivity criterion,
corresponds to a single set of test characteristics (i.e.
sensitivity and specificity). Changes in the positivity
criterion will alter both the sensitivity and specificity
of the diagnostic test. To evaluate a diagnostic test
over a range of performance, the receiver operating
characteristic (ROC) curve [14] – a graph of the
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true positive rate (sensitivity) against the false pos-
itive rate (1-specificity) as the positivity criterion is
varied – is useful.

Assign Outcome Values to the Tree

Before analyzing the decision tree, at least one out-
come value must be assigned to each terminal node.
The relevant outcome and whether it should be max-
imized or minimized are usually determined when
the decision problem is defined. In the classic clini-
cal example introduced earlier, the outcomes of death
and survival were modeled. In this setting, we could
assign an outcome value of 0 to death and an out-
come value of 1.0 to survival. The analysis of this
tree would then produce estimates of expected sur-
vival.

Other common outcomes to model include
life years [2, 3] and quality-adjusted life years
(QALYs) [17]. When these outcomes are modeled,
the analysis estimates life expectancy and quality-
adjusted life expectancy, respectively. In analyses
using QALYs, typically, the best possible outcome
is assigned a value of 1.0 (e.g. perfect health) and
the worst possible outcome (e.g. death) is assigned
a value of 0. For intermediate health states formal
utility assessment is undertaken to assign a value to
the intermediate health states (see Utility in Health
Studies).

When one alternative has probabilistic dominance
over other alternatives, it is possible to avoid val-
uation of intermediate health states. To determine
whether or not the principle of probabilistic domi-
nance can simplify the outcome data required, we
first order the outcomes from worst to best and index
them with the subscript i = 1, . . . , I . Let pi repre-
sent the probability of obtaining outcome i. Then, if
the following holds for all J = 1, . . . , (I − 1), alter-
native A is said to have probabilistic dominance over
alternative B, and a decision can be made without
formal valuation of the intermediate outcomes:

J∑

i=1

pAlternative A
i ≤

J∑

i=1

pAlternative B
i .

For example, suppose that the alternatives “No inter-
vention” and “Treatment” produce outcomes of death,
partial paralysis, and full health with probabilities
0.18, 0.13, 0.65, and 0.2, 0.15, and 0.7, respec-
tively. At first glance it would appear that if death

is assigned a value of 0 and full health a value of
1.0, then a value would need to be obtained for the
outcome “partial paralysis” before a decision could be
made. Because we can rank order the outcomes from
worst to best (e.g. death, partial paralysis, and full
health) and because “No intervention” is preferred
when death only is considered (0.18 vs. 0.2) and
when partial paralysis or worse is considered (0.31 vs.
0.35), “No intervention” has probabilistic dominance
over “Treatment” and it is unnecessary to assign a
numeric value for the intermediate outcome of partial
paralysis.

Often there is more than one end point of interest.
For example, cost, life years, and quality-adjusted
life years may all be relevant. By modeling each
of these endpoints, the tradeoffs between increases
in expected cost and increases in health can be
quantified, and formal cost-effectiveness evaluation
can be undertaken [8].

Analyze the Decision Tree

Clinical Example

To demonstrate the process of analyzing a decision
tree, consider a hypothetical clinical scenario involv-
ing an intravenous drug-using patient who has AIDS
and comes to the physician complaining about a per-
sistent cough. The primary disease of concern in
this setting is pneumocystis carinii pneumonia (PCP).
Suppose that the physician must choose between no
intervention, testing induced sputum (IS) for PCP
using a toluidine blue stain, or immediate treatment
with antibiotics for presumed PCP, and that the physi-
cian’s objective is to maximize quality-adjusted life
years (QALY). Assume the sensitivity of IS for PCP
is 0.55 and the specificity is 0.99. Suppose that the
prevalence of PCP among similar patients is 0.60
and treatment of patients with PCP will result in 1
quality-adjusted life year (QALY). Failure to treat
PCP results in 0.5 QALY. Assume that no treatment
in a patient without PCP results in 2 QALYs, but
that treatment in a patient without PCP will result
in only 1.5 QALYs. (Although this clinical example
is derived from a published decision analysis [7], the
QALYs used in this example are purely hypothetical.)
The structure for this hypothetical clinical decision
problem is shown in Figure 4.
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Figure 4 Decision tree and analyzed decision tree for clinical example: (a) decision tree for clinical example involving
AIDS patient with persistent cough; (b) analysis of decision tree for clinical example involving AIDS patient with persistent
cough
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Averaging Out and Folding Back the Decision
Tree: Baseline Evaluation

The decision tree is used to facilitate identifying the
course of action that produces the best outcome “on
average”. Decision trees are evaluated by averaging
out chance nodes as one moves from left to right and
by folding back (i.e. eliminating) all but the branch
with the best averaged-out value when a decision
node is encountered.

To average out and fold back the tree in Figure 4,
we begin at the far right of the tree and first
average out the simple branches. The averaged-
out value for the “No intervention” branch is
1.100 QALYs (1.100 = 0.6 × 0.5 + 0.4 × 2.0). The
averaged-out value for the “Treat” branch is 1.200
QALYs (1.200 = 0.6 × 1.0 + 0.4 × 1.5).

For the more complex “Test” branch, the appropri-
ate post-test probabilities are first computed. Based
on the test characteristics and prevalence of PCP
given above, the probability of a positive test is
0.334, the predictive value of a positive test [i.e.
Pr(PCP + |T+)] is 0.988, and the predictive value
of a negative test [i.e. Pr(PCP − |T−)] is 0.595.

Once these revised probabilities of disease are
computed, we next focus on the decision follow-
ing a positive test result. The averaged-out value
for no intervention following a positive test result is
0.518 QALYs (0.518 = 0.988 × 0.5 + 0.012 × 2.0),
and the averaged out value of treatment follow-
ing a positive test result is 1.006 QALYs (1.006 =
0.988 × 1.0 + 0.012 × 1.5). Because there is a deci-
sion node here, we must fold back the tree pruning
(denoted with a double slash mark) the option that
is suboptimal. Here, we wish to maximize quality-
adjusted life expectancy, and the option of “No
intervention” following a positive test is pruned.
Next, consider the decision following a negative test
result. Averaging out the options of “No interven-
tion” and “Treat” following the negative test yields
expected values of 1.393 and 1.298, respectively.
Thus, we fold back the tree by pruning the “No
intervention” option. Now that the embedded deci-
sion nodes for the “Test” branch have been pruned,
we are ready to average out the “Test” branch. The
expected value of the “Test” branch is computed as
1.263 = 0.334 × 1.006 + 0.666 × 1.393.

We are now ready to determine the initial action
that results in the best life expectancy and compare
the averaged out values for the three alternatives

of “No intervention”, “Test”, and “Treat”, which
have expected values of 1.100, 1.263, and 1.200
QALYs, respectively. Based on this analysis, the
optimal choice is to “Treat”.

Expected Value of Clinical Information

The expected value of clinical information is defined
as the difference in expected value for the outcome of
interest with the information relative to the expected
value of the best alternative without information. In
our example of the patient with AIDS, the expected
value with clinical information provided by the IS test
is 0.063 QALYs and is computed as the difference
in expected value between the “Test” and “Treat”
branches (0.063 = 1.263 − 1.200). Note that, if the
expected value of clinical information were negative,
this would reflect a situation where the optimal action
was not changed by the test result. When we averaged
out and folded back the “Test” branch, our analysis
resulted in “Treat” following a positive test result and
“No intervention” following a negative test result as
the optimal course of action. Thus, the optimal action
varied according to the test result, and the expected
value of clinical information was positive.

A related concept is the expected value of per-
fect information, which is defined as the difference
in expected value for the outcome of interest with
perfect information relative to the expected value of
the best alternative without perfect information. In
our example, if we knew that the patient had PCP
we would elect to treat, and if we knew that the
patient did not have PCP we would elect no inter-
vention. Thus, with perfect information the expected
value is 1.400 QALYs (1.400 = 0.6 × 1.0 + 0.4 ×
2.0). Without a perfect test, the best alternative is
the imperfect test, which has an expected value of
1.263 QALYs. Therefore, the expected value of per-
fect information is 0.137 QALYs (0.137 = 1.400 −
1.263).

The expected value of perfect information can
be a useful filter for assessing the value of risky
tests. In the AIDS example, the expected value of
perfect information informs us about the maximum
loss of QALYs that one should accept to distinguish
PCP from other underlying causes of cough. A loss
of 0.137 QALYs or more would be unacceptable
even for a perfect test. To determine the probabil-
ity of death, Pr(die), to which the loss of 0.137
QALYs corresponds, we solve the equation, 1.263 =
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[1 − Pr(die)] × 1.4. This equation is obtained by set-
ting the expected value of our best alternative, the
imperfect test, equal to the expected value of obtain-
ing perfect information among those who do not die
from the risky perfect test. We find that a loss of
0.137 QALYs corresponds to accepting no greater
probability of death than 0.098. Thus, any risky
imperfect test must carry an even lower probability
of death to be worthwhile.

Sensitivity Analysis

To assess the stability of the baseline results to each
decision tree parameter (e.g. probabilities and out-
come values), a series of analyses are undertaken in
which model parameters are modified systematically
over a range of reasonable values to assess whether
or not the optimal choice varies. Such analyses are
referred to as sensitivity analyses and they help iden-
tify the parameters that have the greatest influence on
the results.

One-Way Sensitivity and Threshold Analyses

In one-way sensitivity analyses, a single param-
eter is varied over a reasonable range and the
expected value of each action is recalculated. Graph-
ical representations of one-way sensitivity analyses
are useful for characterizing how the optimal action
changes as a single parameter is varied. Such anal-
yses are often valuable when debugging a decision
tree.

In the example involving the AIDS patient sus-
pected of having PCP, a graphical representation
of the one-way sensitivity analysis for probability
of PCP highlights the points at which the optimal
action changes [Figure 5(a)]. The points at which
the curves of expected value for each strategy cross
are threshold values. In our example, Figure 5(a)
identifies two thresholds. When the probability of
PCP is below 0.018, “No intervention” is preferred;
when the prevalence is greater than 0.688, “Treat”
is preferred. Analyses that solve for threshold val-
ues directly among pairs of alternative actions are
referred to as threshold analyses.

Multiway Sensitivity Analyses

To assess the impact of changes in multiple parame-
ters simultaneously, higher-order sensitivity analyses
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Figure 5 Results of sensitivity analyses for the clinical
example involving AIDS patient with a persistent cough:
(a) graphical representation of one-way sensitivity analy-
sis. Prevalence of PCP is varied from 0 to 1.0 and the
expected value of each strategy is graphed. Thresholds
where the optimal action changes from no intervention
to testing and from testing to treatment are identified as
(+)0.018 and (∗)0.688, respectively; (b) graphical repre-
sentation of two-way sensitivity analysis. The prevalence
of PCP (baseline value, 0.6) and quality-adjusted life years
(QALYs) for persons with PCP and no treatment (base-
line value, 0.5 QALYs) are varied simultaneously. Regions
where each action is preferred are labeled

are undertaken. Graphical representations of two-way
sensitivity analyses are often useful for identifying
ranges over which analysis results are stable. In
the example involving the AIDS patient, we exam-
ined the impact of prevalence of PCP (baseline
value = 0.6) and QALYs for patients with PCP and
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no treatment (baseline value 0.5 QALYs) simulta-
neously. The corresponding graph highlights com-
binations of these two parameters for which each
action is preferred [Figure 5(b)]. For high preva-
lence of PCP and low QALYs for untreated PCP,
treatment is preferred. In contrast, for high QALYs
for untreated PCP (higher than approximately 1.0
QALY), no intervention is preferred regardless of the
underlying prevalence of PCP.

Probabilistic sensitivity analysis [6] is another
form of multiway sensitivity analysis, which involves
specification of probability distributions for model
parameters and Monte Carlo simulation.

Extensions to Multiple or Repeated
Diagnostic Tests

When multiple diagnostic tests are considered either
simultaneously or in sequence, the decision tree
becomes more complex. In particular, estimating the
revised probability of disease based on either two
repeated or two separate tests is challenging and often
involves strong assumptions.

Conditional Independence

To evaluate the probability of disease on the basis of
results from two or more tests requires either knowl-
edge of the joint receiver operating characteristics of
the tests or assumptions about the operating charac-
teristics. Because the former is often not available,
the assumption of independence of test results con-
ditional on true disease state is often invoked. For
results from two tests, denoted as R1 and R2, the con-
ditional independence assumption is summarized as:

Pr(R1, R2|D+) = Pr(R1|D+) Pr(R2|D+),

Pr(R1, R2|D−) = Pr(R1|D−) Pr(R2|D−).

The extent to which such an assumption is reasonable
will vary by disease area. To assess the validity or
plausibility of the conditional independence assump-
tion in the repeated test setting requires consideration
of the nature of variation in test results.

Extensions to More Complex Decision
Problems

To evaluate clinical management strategies involv-
ing a long time horizon, the use of decision trees

becomes cumbersome. For example, consider evalu-
ating whether or not women should be treated with
hormone replacement therapy (HRT) at menopause
and whether or not such treatment should depend on
screening tests [23]. To model the effects of HRT
accurately, the changing incidence of the multiple dis-
eases that are affected by HRT (e.g. heart disease,
breast cancer, and osteoporosis) must be modeled
over the course of a woman’s lifetime. A decision
tree model for evaluation of HRT quickly becomes
unwieldy. To evaluate diagnosis and treatment deci-
sions involving long time horizons efficiently, which
are common when chronic diseases are considered,
Markov state-transition models are helpful [1, 20].
Markov state-transition models require that a set of
health states be specified along with rules for transi-
tion between health states and corresponding transi-
tion probabilities, which depend on the current health
state. The use of Markov models to evaluate diagnos-
tic and treatment decisions in medicine is increasingly
common. In another clinical example, a Markov state-
transition model was used to evaluate the use of
myocardial revascularization in patients with chronic
stable angina [25].

Software for Analyzing Decision Trees

Software packages are available for analyzing deci-
sion trees and have been frequently used in decision
analyses of diagnosis and treatment [4, 5, 19]. In addi-
tion to allowing for the analysis of simple decision
trees, these software packages facilitate evaluation of
more complex model structures, including recursive
decision trees and Markov state-transition models.
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Decision Theory

The theory underlying methods for the selection of
the best decision to be made in the setting of uncer-
tainty is called statistical decision theory [2, 11, 12,
15, 17–19, 21]. While both frequentist and Bayesian
approaches to decision problems exist, the Bayesian
paradigm for gaining information from data provides
the most coherent framework in which to make deci-
sions in the setting of uncertainty [2]. This article
gives a general overview of statistical decision theory,
emphasizing the Bayesian approach, and illustrates
some general classes of problems with examples. We
begin by reviewing Bayes’ theorem and defining
some important expectations.

Updating Bayesian Probabilities

Within the Bayesian framework, the probability of
any particular value of an unknown parameter being
the true value is described by a probability density
function (pdf). The unknown parameter, which may
be a vector, is denoted by θ and the range of possible
values is the parameter space Θ . Experimental data
are often obtained in an effort to increase one’s
knowledge about the unknown parameter. Generally,
one can make better decisions with more information
about θ .

Before experimental data are available, the pdf
describing our knowledge about θ is termed the prior
pdf and is denoted π(θ). The information contained
in the prior may come from previous experience in
similar situations, from expert opinion, or from other
sources [10]. Methods for determining prior pdfs will
not be discussed here [10].

We assume that the probability of observing any
particular set of experimental data, x, on the space X,
is given by a normalized pdf, denoted f (x|θ), which
in turn is characterized by the unknown parameter θ .
Then, given an observed set of data, x, the posterior
pdf for θ , π(θ |x), is given by

π(θ |x) = f (x|θ)π(θ)∫

Θ

f (x|θ)π(θ) dθ

.

This is the continuous form of Bayes theorem. Con-
sidered as a function of θ , f (x|θ) is called the
likelihood function.

Decisions may be made before data from the
experiment in question become available, on the basis
of the prior π(θ), or after the experiment, on the basis
of the posterior pdf π(θ |x). The pdf for θ at the time
a decision must be made will be denoted π∗(θ) or
π∗. Much of the notation used here has been adapted
from Berger’s excellent monograph [2].

Expectations

When determining the expectation of a function,
one must distinguish the arguments that are random
from those that are fixed. Three expectations will
be important for the material that follows: (i) the
expectation of a function when the parameter θ is
fixed and the data x are random, having pdf f (x|θ);
(ii) the expectation of a function when the data are
fixed and θ is random, having pdf π∗(θ |x); and
(iii) the expectation of a function when θ is random
having pdf π∗(θ), and x is random for each θ , having
pdf f (x|θ).

In the first case, in which θ is fixed and x

is random, the expectation of g(x) is written as
EX

θ g(X). This is equivalent to
∫
X g(x)f (x|θ) dx.

When x is fixed and θ is random, the expectation
of h(θ) is written as Eπ∗

x h(θ). This is equivalent to∫
Θ

h(θ)π∗(θ |x) dθ . In the last case, in which both
θ and x are random, the expectation of j (θ, x)

is written as Eπ∗
[EX

θ j (θ, X)]. This is equivalent
to

∫
Θ

∫
X j (θ, x)f (x|θ)π∗(θ) dx dθ . If the function

being considered is the loss function (see below), then
these three expectations will be called the frequentist
risk, the conditional Bayes risk, and the Bayes risk,
respectively (see below) [2].

Elements of a Decision Problem

A decision problem consists of three parts: (i) the
parameter space, Θ , in which the unknown parameter
θ exists; (ii) the set of all possible actions A, from
which an action a is to be selected; and (iii) the loss
function, L(θ, a) [2, 15].

Parameter Space or State of Nature

The parameter space, Θ , defines the possible values
of θ . Usually the unknown parameter θ represents
the true state of nature. In game theory, however,
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θ may be the position or tactic of the opponent,
and thus may be selected nonrandomly and with
specific objectives in mind [15]. In a classification
problem the parameter space is the list of possible
classes. For example, if the objective of a decision
problem is to determine the species of an animal
on the basis of some measured characteristics, then
the parameter space is the set of all possible species.
In an estimation problem, θ is the parameter to be
estimated.

A Set of Possible Actions or Decisions

The set of all possible actions or decisions is denoted
A. This set may be discrete, for example selecting a
particular medical therapy, determining which disease
a patient has, or deciding the number of patients
to be enrolled in a clinical trial. An action space
may also be continuous, as commonly occurs when
the action is an estimate of an unknown parameter,
such as the mean of a population. In problems of
experimental design, A is the set of all possible
study designs. The set of possible study designs may
have both discrete elements, such as sample size, and
continuous elements, such as a dosage level to be
used, the duration of observation, or the parameter
estimate to be given (see below).

The Loss Function

The loss function, L(θ, a), represents the loss asso-
ciated with taking the action a when the true value of
the unknown parameter is θ . The loss function must
be bounded and defined on the space Θ × A. In esti-
mation problems the loss function usually includes a
term related to the error of the estimate. In problems
involving both estimation and the selection of a data
collection or experimental strategy (e.g. deciding the
number of subjects to be enrolled in a trial, or select-
ing an experimental design) the loss function should
also include the cost of the data collection itself. The
development of realistic loss functions for complex
decision problems can be extremely difficult, and can
require the consideration of economic, social, psycho-
logical, political, and other factors.

Utility is the negative of loss; it is the gain realized
if the action a is taken when the true value of the
unknown parameter is θ .

Example of Loss Functions. Consider a case in
which a patient may have one of three diseases,

Table 1 An example of a loss function. Drug D1 is the
best treatment for disease A and drug D2 is the best
treatment for disease B. Both D1 and D2 are ineffective
treatments for disease C

Action

Give drug Give drug
D1 D2

Disease A 1 10
Actual disease present Disease B 20 5

Disease C 25 25

labeled {A, B, C}, and may be given one of two
drugs, labeled {D1, D2}. D1 is the better treatment
for disease A, D2 is the better treatment for disease
B, and neither drug is effective for Disease C. Table 1
shows a possible loss function. In addition to quanti-
fying the chance of treatment failure with each of the
drugs, this loss function should incorporate the mon-
etary costs of the drugs, difficulty in taking the drugs,
and the likelihood and seriousness of side-effects. The
action that minimizes the expected loss will depend
on the probability that the patient has each of the
three diseases under consideration.

As another example, consider the situation in
which one wishes to collect data in order to estimate
the unknown mean, µ, of a normally distributed vari-
able. There are two parts to the decision problem: (i)
choosing the sample size, n, and (ii) estimating µ.
In this case the loss function might be L(µ, a) =
K(µ − µ∗)2 + cn, where a = (µ∗, n) incorporates
both the estimate of µ to be given, denoted µ∗, and
the sample size selected, n. The constant c is the cost
per observation. The loss function thus incorporates
both the error of the estimate ultimately given, and the
cost of acquiring the data. This example is developed
more fully later.

The Decision Rule

The decision rule, δ(x), is a function that maps the
data, if any, into the possible set of actions – it is
the action to be taken (or the estimate to be given)
if the observed data are x. The space of all possible
decision rules will be denoted D. During the solution
of a decision problem, a decision rule will be chosen
to minimize the expected loss, where the expected
loss is defined in some specific manner (see later).

A randomized decision rule has the characteristic
that, for at least some data x ∈ X, the action to be
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taken is a random variable. Thus the data determine
the probability of each action being taken, but more
than one action may be possible for a given set
of data.

Types of Loss and Risk

The term risk is used to denote measures of expected
loss associated with a specific action or using a
specific decision rule (Table 2). We will consider
three types of risk: frequentist risk, conditional Bayes
risk, and Bayes risk [2]. The definitions of types of
risk and the related terminology vary from author to
author.

Frequentist Risk. The frequentist risk of a decision
rule is denoted R(θ, δ(x)) and is defined by

R(θ, δ(x)) = EX
θ [L(θ, δ(X))]

=
∫

X
L(θ, δ(x))f (x|θ) dx.

The frequentist risk is the average loss incurred by
using a decision rule δ(x) when the true value of the
unknown parameter is θ . Sometimes this is called the
expected loss.

In selecting a decision rule according to the mini-
max principle (see below), it is necessary to consider
the maximum frequentist risk that might occur, con-
sidering all possible values of θ . This maximum
frequentist risk is written

Rmax(δ(x)) = sup
θ∈Θ

R(θ, δ(x)).

Conditional Bayes Risk. The conditional Bayes
risk of an action or decision rule is the expectation
of the loss incurred by using that action or decision
rule, assuming the data are known. In determining
the conditional Bayes risk, the data x are assumed
fixed, so the action to be taken, ax = δ(x), is also
fixed if the decision rule is not randomized. This risk
is denoted ρ(π∗(θ), ax) and is defined by

ρ(π∗(θ), ax) = Eπ∗
x L(θ, ax) =

∫

Θ

L(θ, ax)π
∗(θ |x)dθ.

The conditional Bayes risk is the expected loss asso-
ciated with using a specific action, given the data. It
is also called the posterior expected loss.

Consider the loss function in Table 1. Assume
that on the basis of the available data, the current
distribution is π∗(disease A) = 0.3, π∗(disease B) =
0.2, and π∗(disease C) = 0.5. The conditional Bayes
risk for giving drug D1 is then

ρ(π∗, D1) =
∑

disease={A,B,C}
L(disease, D1)π∗(disease)

= 1 × 0.3 + 20 × 0.2 + 25 × 0.5 = 16.8.

Similarly, for drug D2 the conditional Bayes risk is
ρ(π∗, D2) = 10 × 0.3 + 5 × 0.2 + 25 × 0.5 = 16.5.
Thus, conditional on the available data, the optimal
action is to give drug D2.

Bayes Risk. The Bayes risk of a decision rule is
the expected loss, before the data are known, incurred
by using the decision rule. Information about possible

Table 2 Definitions of risks used in the analysis of decision problems

Type of risk Description Symbol

Frequentist risk The frequentist risk is the expected value of
the loss function, L(θ, δ(x)), assuming that
θ is fixed and the data x have distribution
f (x|θ).

R(θ, δ(x))

Conditional Bayes risk The conditional Bayes risk is the expected loss
(with respect to the current probability
distribution for θ ) after the data are known.
It is the posterior expected loss.

ρ(π∗(θ), ax)

Bayes risk The Bayes risk is the expected loss associated
with using a particular decision rule, before
the data are known. The expectation is
taken with respect to the pdf for θ and the
pdf for the data, given θ .

r(π∗(θ), δ(x))
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values of θ enters through π∗(θ). This risk is denoted
r(π∗, δ(x)) and is defined by

r(π∗(θ), δ(x)) = Eπ∗
[R(θ, δ(x))]

= Eπ∗
[EX

θ L(θ, δ(X))]

=
∫

Θ

∫

X
L(θ, δ(X))f (x|θ)π∗(θ) dx dθ.

Minimization of the Bayes risk is an important crite-
rion used to determine an optimal decision rule.

Criteria for Selecting Decision Rules

Different criteria can be used to judge which decision
rules are “better” than others, or even optimal. The
principal Bayesian criterion is minimizing the Bayes
risk, r(π∗, δ(x)), while an important frequentist cri-
terion is minimizing the maximum risk, Rmax(δ(x)).

Admissibility and Bayes Rules

A decision rule, δ1(x), is admissible with respect to
another decision rule, δ2(x), if there is at least some
value of θ for which the frequentist risk for δ1(x),
given by R(θ, δ1(x)) = EX

θ L(θ, δ1(X)), is less than
that for δ2(θ).

A decision rule, δ(x), is a “Bayes rule” if the deci-
sion rule minimizes the Bayes risk, r(π∗(θ), δ(x));
such a decision rule is denoted δ∗(x). In general,
the Bayes rule will depend upon π∗(θ). The mini-
mum risk achieved by a Bayes rule, for the particular
π∗(θ), is denoted r∗. Any other decision rule which
leads to the same Bayes risk is also a Bayes rule [2].

If a decision rule δ1(x) is admissible with respect
to all other decision rules in D, meaning that there
is at least one value of θ for which R(θ, δ1(x)) <

R(θ, δi(x)) for all other rules δi(x) ∈ D, i �= 1, then
δ1(x) is a Bayes rule for some π∗(θ).

Minimax Rules

The definition of Bayes risk and the determination
of a Bayes rule require specifying the pdf for the
unknown parameter θ . In some cases one might desire
to use a classical method to select the “best” decision
rule, and avoid the use of the Bayesian pdf. One
such method for rule selection seeks to minimize the
maximum frequentist risk, Rmax(δ(x)).

Recall that the maximum frequentist risk that
might be incurred using a decision rule δ(x), as θ

varies, is

Rmax(δ(x)) = sup
θ∈Θ

R(θ, δ(x)).

According to the minimax principle, a decision rule
δ1(x) is preferred over a second rule δ2(x) if

Rmax(δ1(x)) < Rmax(δ2(x)).

The value of θ that leads to the maximum value of
R(θ, δ1(x)) is not, in general, the same value of θ

that leads to the maximum value of R(θ, δ2(x)).
The best decision rule will be the one that mini-

mizes the maximum frequentist risk; this is the mini-
max rule, denoted δ∗M(x). The resulting minimax risk
is given by

r∗M = inf
δ(x)∈D

sup
θ∈Θ

R(θ, δ(x)).

The minimax rule is an appropriate method for
selecting a decision rule if the goal is to minimize
the “worst case” loss that might be incurred. This
is a reasonable approach when the selection of θ is
performed by an opponent who seeks to maximize
your loss, for example when playing a game against
an intelligent adversary [15].

Consider again the loss function shown in Table 1.
Regardless of the drug given, the maximum loss of 25
occurs if the patient has disease C. Thus, both giving
drug D1 and giving drug D2 are minimax rules and
the minimax risk is 25. If the disease is selected by an
intelligent adversary (say in biological warfare), then
a minimax approach to treatment selection would be
reasonable.

The Range of Decision Problems

In Bayesian decision theory the range of decisions
that can be considered is very broad – limited
only by the types of decision space that can
be defined. Decision problems include simple
classification, parameter estimation, optimal sample
size determination, and experimental design [3–11,
14, 18, 24–26].

A distinction should be made between a decision
problem and an estimation problem, in which the
goal is to return the “best” (in some defined sense)
estimate of an unknown parameter. Once a suitable
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loss function, such as quadratic error loss, is defined,
the goal of an estimation problem is still to minimize
the Bayes risk. In an estimation problem, however,
the decision rule is an estimator of the unknown
parameter. A design problem is a decision problem
in which the action space is the set of possible
experimental designs. A special case is the problem
of choosing a sample size: this is a decision problem
in which the action space is {0, 1, 2, . . .}.

Some examples of classes of Bayesian decision
problems will be given in the following sections.

Example: Choosing a Treatment

Recall the loss function shown in Table 1 for the
problem of selecting one of two treatments when the
patient might have one of three diseases. Inspection
of the loss structure shows that the optimal treatment
will depend on the probabilities of the different dis-
eases. Suppose we have a diagnostic test available,
at a cost of one unit, the characteristics of which are
shown in Table 3. We wish to decide whether to order
the test and, if we use the test, what treatment to give
for each possible result. As before, the probabilities
of the three diseases before the test result is avail-
able are π∗(disease A) = 0.3, π∗(disease B) = 0.2,
and π∗(disease C) = 0.5. Because the data space X
consists of only two possible test results, we directly
calculate the conditional Bayes risk for each test
result, and for the strategy of not ordering the test
and treating on the basis of prior information alone.

As shown above, if we do not order the test
then the optimal action is to give drug D2 and
the conditional Bayes risk is 16.5. If we order the
test, and the result is negative, then the posterior
probabilities for diseases A, B, and C are 0.056,
0.296, and 0.648, respectively. Using these posterior
probabilities, the conditional Bayes risk associated
with giving drug D1 is 22.2. The total cost, if one

Table 3 Probabilities of a positive and negative test result,
depending on the actual disease present, using a diagnostic
test marketed as being useful for the identification of
disease A

Test result

Negative Positive

Disease A 0.1 0.9
Actual disease present Disease B 0.8 0.2

Disease C 0.7 0.3

obtains a negative test and gives drug D1 anyway, is
22.2 plus the cost of the test, or 23.2. Similarly, the
total cost of giving drug D2 after a negative test is
19.2. Thus, if the test is ordered and negative, then
the optimal action is to give drug D2.

If the test is positive, then the posterior proba-
bilities of diseases A, B, and C are 0.587, 0.087,
and 0.326, respectively. Now the cost of testing and
giving drug D1 is 11.5 and the cost of testing and
giving drug D2 is 15.5. Thus, if the test is ordered
and positive, then the optimal action is to give drug
D1. This is not surprising, since the test is meant to
detect disease A and drug D1 is the better treatment
for disease A.

To decide whether to order the test, one must
calculate the prior probability that the test will be
negative or positive. The prior (or “predictive”)
probability of a negative test result is 0.3 × 0.1 +
0.2 × 0.8 + 0.5 × 0.7 = 0.54. The prior probability
of a positive test result is 0.46. Thus, the Bayes risk, if
the test is obtained (and the optimal treatment is given
for each test result) is 0.54 × 19.2 + 0.46 × 11.5 =
15.7. Since the Bayes risk associated with ordering
the test, 15.7, is less than the risk associated with
not ordering the test, 16.5, the optimal decision is
to order the test. If the test costs two units instead of
one unit, however, then it would be better not to order
the test and simply treat with drug D2 (see Decision
Analysis in Diagnosis and Treatment Choice).

Example: Choosing a Sample Size

Assume one wishes to estimate the unknown mean,
µ, of a normally distributed variable with a known
standard deviation, σ . There are two parts to the
decision problem, choosing the sample size, n, and
estimating µ. We assume a loss function L(µ, a) =
K(µ − µ∗)2 + cn, where a = (µ∗, n) includes both
the estimate of µ to be given, µ∗, and the sample
size to be used, n. The constant c is the cost per
observation. The prior for µ is µ ∼ N(µ0, σ0).

The observed data will be X = {X1, X2, . . . , Xn}.
Since the n observations are independent, f (X|µ) is
given by

Nn(µ, σ) = (2πσ 2)−(n/2) exp

[
− 1

2σ 2

n∑

i=1

(Xi − µ)2

]
.

The Bayes risk after n measurements, using an
estimator µ∗ which will be a function of the prior
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and the observed data, is

r(N(µ|µ0, σ0), a) =
∫ ∞

−∞

∫

X
[K(µ − µ∗)2 + cn]

× f (X|µ)N(µ|µ0, σ0) dX dµ.

It can be shown that minimizing the Bayes risk is
equivalent to minimizing the conditional Bayes risk
(the posterior expected loss), for each value of X [2].
The posterior for µ is given by N(µ1, σ1) where

µ1(X) =
(

σ 2σ 2
0

σ 2 + nσ 2
0

)(
µ0

σ 2
0

+ nX

σ 2

)

and

σ 2
1 =

(
σ 2σ 2

0

σ 2 + nσ 2
0

)
.

Since σ 2 is known, X is a sufficient statistic.
The conditional Bayes risk is given by

ρ(N(µ|µ1, σ1), a) =
(

1

(2πσ 2
1 )1/2

)

×
∫ ∞

−∞
[K(µ − µ∗)2 + cn]

× exp

[
− (µ − µ1(X))2

2σ 2
1

]
dµ.

The conditional Bayes risk is minimized by expand-
ing the loss function, differentiating by µ∗, and set-
ting the result equal to zero. Thus,

0 = d

dµ∗

∫ ∞

−∞
[Kµ2 − 2Kµµ∗ + K(µ∗)2 + cn]

× exp

[
− (µ − µ1(X))2

2σ 2
1

]
dµ,

0 = 2K

∫ ∞

−∞
[µ∗ − µ] exp

[
− (µ − µ1(X))2

2σ 2
1

]
dµ,

and
(

µ∗

(2πσ 2
1 )1/2

)∫ ∞

−∞
exp

[
− (µ − µ1(X))2

2σ 2
1

]
dµ

=
(

1

(2πσ 2
1 )1/2

)∫ ∞

−∞
µ exp

[
− (µ − µ1(X))2

2σ 2
1

]
dµ

and
µ∗ = EN(µ|µ1,σ1)[µ] = µ1(X).

It is a general result that the best squared error loss
estimator is the mean of the posterior distribution for
the parameter [2, 15]. The Bayes conditional risk of
this estimator is then given by

ρ(N(µ|µ1, σ1), µ1(X))

=
(

1

(2πσ 2
1 )1/2

) ∫ ∞

−∞
[K(µ − µ1(X))2 + cn]

× exp

[
− (µ − µ1(X))2

2σ 2
1

]
dµ.

Performing the integration leads to

ρ(N(µ|µ1, σ1), µ1(X)) = Kσ 2
1 + cn.

Thus, the Bayes conditional risk is proportional to the
posterior variance plus the sampling cost [2].

To determine the sample size that minimizes the
risk, one can differentiate the Bayes conditional risk
by n and set the result equal to zero. Thus

0 = d

dn

{
K

(
σ 2σ 2

0

σ 2 + nσ 2
0

)
+ nc

}

= −K

(
σ 2σ 4

0

(σ 2 + nσ 2
0 )2

)
+ c.

The minimum conditional risk is given by setting n

equal to

n∗ = σ

(
K

c

)1/2

− σ 2

σ 2
0

.

This expression has the important characteristic that
the optimal sample size depends on the ratio of the
error loss to the sampling cost. Since n is not really
a continuous variable, the two integer values of n

closest to n∗ must be checked to see which of the
two gives the minimum.

This decision problem is simplified by the fact that
the minimum conditional Bayes risk, which is propor-
tional to the posterior variance, does not depend on
the data, except through n. If the conditional Bayes
risk depends on the data itself (as will occur with
binomial sampling, for example), then the predictive
distribution of the data is required to calculate the
expected Bayes risk plus sampling costs (see Sample
Size Determination).

Example: Sequential Stopping Rules

Bayesian decision theory can be used: (i) to decide
the optimal estimate to be given once all data are
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available; (ii) to decide the optimal sample size (see
previous section); and (iii) if the measurements can
be taken sequentially, to decide the optimal time to
stop making observations. This last application is
termed sequential analysis [1, 2, 8, 12, 15, 16].

In a sequential stopping problem, two sets of
actions are available at each decision point: (i) the
collection of more data; and (ii) stopping data col-
lection and giving an estimate or making a decision
on the basis of the data already collected. Many such
decision points may exist. The total cost of the exper-
iment includes contributions from both the terminal
decision loss function (e.g. squared error loss of the
final estimate), and the sampling cost.

The decision function for a sequential decision
problem contains both a stopping rule, which deter-
mines which results will lead to termination of data
collection, and a decision rule, which determines
what action will be taken or estimate given once
the experiment is terminated. The optimal decision
and stopping rules minimize the Bayes risk, which
must be calculated using the prior information and
the predictive distribution of possible future data. The
quantity of future data will depend, in turn, on the
stopping rule, as the decision to stop the trial results
in a truncation of the sequence of available data.

Once data collection has stopped, the optimal
decision or estimate is determined by minimizing the
conditional Bayes risk. Thus the sequential nature of
the study does not complicate the determination of
the decision rule.

The complexity of considering all possible future
data can make the determination of optimal stopping
rules difficult. The solution is greatly simplified if
the posterior expected loss is independent of the
observations, as this allows the direct determination
of the value of n that minimizes the posterior
expected loss. This simplification is illustrated by the
example in the previous section. In that example the
optimal sequential stopping rule is the same as the
optimal fixed-size stopping rule.

When risks are finite, and the sampling cost is
positive, then the optimal stopping rule will always
require stopping after some maximum number of
samples have been taken. The actual optimal stopping
point will depend on the data. In this case the method
of backward induction can be used to determine the
optimal stopping rule. Because of the complex nota-
tion involved, the description of backward induction
given here will be qualitative. The interested reader

is referred to the following references for details and
examples: [1, 2, 8, 9, 12, 15, 16].

In backward induction, one begins by determin-
ing the optimal decision and the associated risk for
each result that might occur after the maximum data
collection. At this “terminal” point, which we will
call stage M , the option of continuing the trial does
not exist and the determination of the optimal deci-
sion is made by minimizing the conditional Bayes
risk. Next, for each possible data set available one
experimental step earlier (stage M − 1) one deter-
mines the expected cost of stopping the experiment,
assuming the decision that minimizes the conditional
Bayes risk is made. This expected “stopping” cost
at stage M − 1 is compared with the expected cost
associated with continuing data collection until stage
M . The expected cost associated with continuing data
collection is calculated using the predictive distribu-
tion of future data, based on the data available at
stage M − 1. This is an example of “preposterior”
analysis. The optimal action at stage M − 1 is the
action (stopping or continuing data collection) that
minimizes the expected cost. Typically, there is some
decrease in the expected decision loss associated with
further data collection, but this gain may or may not
offset the additional sampling cost.

In a similar manner, one can step backwards
through each stage {M − 2, M − 3, . . . , 2, 1, 0} and,
for each possible set of results at each stage, deter-
mine the optimal stopping and decision rule. This
“backward induction” continues until stage 0 is
reached, before any data collection. It is possible that
the optimal action at this initial stage will be to not
collect any data at all, and instead make a decision
or estimate based solely on prior information. Thus,
sequential analysis allows one to decide whether it
is optimal to even conduct the experiment at all. An
excellent example of the power of this approach is
illustrated in [9].

Example: Sequential Allocation of Experiments
(Bandits)

In most clinical trials, patients are randomized in
a balanced fashion to the candidate therapies. The
advantage of a balanced design is that it gives
maximal information about the differences between
therapies. When results of a trial are published they
help to guide the treatment of patients who present
thereafter. Patients in the trial are not ignored, and
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data and safety monitoring boards are charged
specifically with ensuring that patients in the trial are
not exposed to undue risks. But effective treatment
of patients in the trial is not a formal objective.

An alternative approach is to address explicitly the
effective treatment of patients in the trial as well as
those who present thereafter. The goal is to maxi-
mize overall effectiveness. Therapies – or arms – are
assigned on the basis of accumulating results; that is,
assignment is adaptive (see Adaptive and Dynamic
Methods of Treatment Assignment). An arm that is
performing well is more likely to be assigned than
is a poor performer. Information gleaned during the
trial about the relative effectiveness of the arms has
value in that it improves therapy for patients entering
later in the trial, and also for patients who come after
the trial [4, 5, 7, 8].

The decision space is complicated. Its first compo-
nent indicates the arm selected initially. Suppose that
the first observation is X1. The second component of
the decision is the arm selected next, given X1 and
also given the first arm selected. The third compo-
nent depends on X1 and the second observation X2

and on the corresponding arms selected. And so on.
Temporarily consider only the n patients in the

trial and suppose that there are two available arms.
Outcomes are dichotomous; arm 1 has success prob-
ability θ1 and arm 2 has success probability θ2. The
goal is to maximize the expected number of successes
among the n patients. (From the perspective of losses,
this goal is the same as minimizing the expected num-
ber of failures.) Arm 1 is standard and has known
success proportion θ1. Arm 2 has unknown efficacy.
Uncertainty about θ2 is given in terms of a probabil-
ity distribution F . To be specific, suppose that F is
uniform on (0, 1).

If n = 1, then the decision space is simply the
list of possible initial selections, {1, 2}, and the
decision problem is easy. Choosing arm 1 has
expected number of successes θ1. Choosing arm 2
has conditional expected number of successes θ2, and
unconditional expected number of successes E(θ2) =∫ 1

0 pFi( dp) = ∫ 1
0 p dp = 1/2.

Therefore arm 1 is optimal if θ1 ≥ 1
2 and arm 2 is

optimal if θ1 ≤ 1
2 . (Both arms – and any randomiza-

tion between them – are optimal when θ1 = 1
2 .)

The problem is more complicated for n ≥ 2.
Consider n = 2. There are two initial choices and
two choices depending on the result of the first
observation. There are eight possible decisions, or

Table 4 Possible strategies and the resulting
expected number of successes

Strategy Expected number of successes

{1; 1, 1} 2θ1

{1; 1, 2} θ1 + θ2
1 + (1 − θ1)(1/2)

{1; 2, 1} θ1 + θ1(1/2) + (1 − θ1)θ1

{1; 2, 2} θ1 + 1/2
{2; 1, 1} 1/2 + θ1

{2; 1, 2} 1/2 + (1/2)θ1 + (1/2)(1/3)

{2; 2, 1} 1/2 + (1/2)(2/3) + (1/2)θ1

{2; 2, 2} 2(1/2) = 1

sequences of decisions, called strategies. We can
write a strategy as {a; aS, aF}, where a is the initial
selection, aS is the next selection should the first
observation be a success, and aF is the next selection
should the first observations be a failure. To find
the utility (the negative of the expected loss) of a
strategy we need to know such quantities as the
probability of a success on arm 2 after a success
on arm 2 (E(θ2

2 )/E(θ2) = 2
3 ) and the probability of a

success on arm 2 after a failure on arm 2 (E(θ2(1 −
θ2))/E(1 − θ2) = 1

3 ). The possible strategies and their
utilities are given in Table 4.

It is easy to check that only three of these utilities
are candidates for the maximum, with the optimal
strategy depending on θ1. If θ1 ≥ 5

9 , then {1; 1, 1} is
optimal; if 1

3 ≤ θ1 ≤ 5
9 , then {2; 2, 1} is optimal; and

if θ1 ≤ 1
3 , then {2; 2, 2} is optimal.

Enumeration of possible strategies is tedious for
large n. Most strategies can be dropped from consid-
eration on the basis of theoretical results [5, 7, 20].
For example, there is a break-even value of θ1, say θ∗

1 ,
such that arm 1 is optimal for θ1 ≥ θ∗

1 . Also, one need
consider only those strategies that continue to use arm
1 once it has been selected. But many strategies will
still remain. Backward induction can be used to find
an optimal strategy. Table 5 gives the expected pro-
portion of successes for selected values of n and for
fixed θ1 = 1

2 , using an optimal strategy. The asymp-
totic maximal expected proportion of successes is 5

8 ,
which is the expected value of max(θ1, θ2).

Both arms offer the chance of success on the
current patient, but only sampling from arm 2 gives
information that can help in choosing between the
arms for treating later patients. Table 6 gives the
break-even values θ∗

1 for selected values of n.
Table 6 shows that information from arm 2 is more

important for larger n. For example, if θ1 = 0.75, then
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Table 5 The optimal expected
proportion of successes for selected
values of n, assuming θ1 = 1

2 . Opti-
mal strategies were determined using
backward induction

n Proportion of successes

1 0.500
2 0.542
5 0.570

10 0.582
20 0.596
50 0.607

100 0.613
200 0.617
500 0.621

1000 0.622
10 000 0.6245

Table 6 The break-even
values of θ∗

1 , as a function
of n

n θ∗
1

1 0.500
2 0.556
5 0.636

10 0.698
20 0.758
50 0.826

100 0.869
200 0.902
500 0.935

1000 0.954
10 000 0.985

only using arm 1 would be an optimal strategy for
n = 10, but it would be advisable to test arm 2 when
n = 100 even though arm 1 has probability of 0.75
of being better than arm 2.

When there are several arms with unknown char-
acteristics, the problem is even more complicated.
Optimal strategies may well include selections of an
arm that was used previously and set aside in favor
of another arm because of inadequate performance.
Methods and theory for solving such problems are
described in [3, 7]. Optimal strategies are generally
difficult to describe. Berry provides easy-to-use adap-
tive strategies that are not optimal and shows that they
perform reasonably well [4].

Having the flexibility to choose an arm based on
results of all previous patients is not common in

clinical trials. Usually there are response delays. For
example, when the end-point is survival, only partial
information is available until the patient dies. Eick
[13, 14] has shown how to handle such delays in the
adaptive setting.

We have not yet addressed the matter of patients
that are treated after the clinical trial. The patient
horizon N is the number of patients who will be
treated either in the trial or later with one of the
therapies considered in the trial. Clearly, in almost
every real situation N is unknown. Information about
N can be included in the decision problem in the
usual way, by incorporating uncertainty about N

into a probability distribution. Alternatively, one
can assume particular values of N and assess the
sensitivity of the optimal strategy to values assumed.
Suppose that the clinical trial allows for adaptive
allocation and that later patients will be assigned the
treatment that performs best in the clinical trial. Berry
& Eick [6] considered the case of two arms in a
trial with dichotomous response and showed how to
incorporate all N patients into the decision problem.
They compare a Bayes strategy assuming θ1 and θ2

independent and having uniform prior distributions
on (0,1) with various other adaptive strategies and
with balanced randomization. The Bayes strategy
performs best on average, as it must, and it is robust
in the sense that it outperforms the other strategies
for essentially all (θ1, θ2).
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Degrees of Freedom

Different authors have variously described or attemp-
ted to define the term degrees of freedom as the
effective number of independent observations; the
number of free variables; the number of observations
that are free to vary after applicable restrictions are
imposed; the number of observations minus the num-
ber of restrictions; the number of observations minus
the number of parameters that are estimated from the
observations; or something similar. Although descrip-
tions such as these may be appropriate in a number
of contexts, they fail to cover certain situations (e.g.
those involving noninteger degrees of freedom).

Thus, for full generality it seems more suitable to
think of degrees of freedom simply as a parameter
(ordinarily a known parameter) of the different distri-
butions with which the term is associated. There are
three such distributions: chi-square (χ2), t (see Stu-
dent’s t Distribution), and F . Although the gamma
distribution is a generalization of the χ2 distribution,
and the beta distribution is obtainable from the F

distribution through a simple transformation, the term
degrees of freedom is not customarily used in connec-
tion with either the gamma or the beta distributions.

The usual abbreviation for degrees of freedom is
df. The χ2 distribution has just one df parameter, as
does the t distribution. The F distribution, however,
has two df parameters; if they are shown as “df =
3, 29”, for example, then this means that there are
3 df for the numerator of the reported F statistic
and 29 df for the denominator. Published works that
report values of χ2, t , or F should always indicate
the associated df parameters so that readers will be
able to make proper interpretations.

In general applications it is the central χ2, t , and
F distributions that one encounters. The more com-
plicated, noncentral χ2, t , and F distributions also
have df parameters, however, in the same fashion as
the central distributions (see Noncentral t Distribu-
tion). The noncentral distributions are used for power
calculations.

Significance tests that involve the χ2, t , and F dis-
tributions, with associated df, are available for numer-
ous applications (see Hypothesis Testing). These
include t tests for a mean and for the equality of
two means (see Student’s t Statistics), the χ2 test
for a variance, the F test for the equality of two
variances, various t and F tests in regression and

in analysis of variance, chi-square goodness-of-fit
tests, chi-square tests for independence in contin-
gency tables, and likelihood ratio tests that use χ2.
Confidence intervals and confidence regions that are
related to these significance tests are also available in
many cases.

Noninteger degrees of freedom arise when a vari-
able, u, has a complicated distribution for which one
seeks a simple approximation. Specifically, one tries
to choose a constant c and a df parameter ν so
that y = cu follows approximately a χ2 distribution
with df = ν. One would like to select ν and c so
that y has the same mean and variance as χ2 with
df = ν, that is, so that E(y) = ν and var(y) = 2ν.
This means choosing ν = 2[E(u)]2/var(u) and c =
2E(u)/var(u); but if E(u) and var(u) are unknown,
then one has to replace them with estimates. Gen-
erally, ν will not be an integer. The technique just
described is known as Satterthwaite’s [3] approx-
imation. Applications include those involving the
Behrens–Fisher problem, variance components (see,
for example, [1]), and contingency tables [2].

Before the advent of modern computers, an appli-
cation with noninteger df required interpolation in a
table of χ2, t , or F . Today, however, this is no longer
necessary, because values for noninteger df can be
obtained through statistical software packages.

It may be useful to point out certain special rela-
tionships that pertain to degrees of freedom:

1. The t distribution with df = 1 is the same as the
Cauchy distribution with median 0.

2. The χ2 distribution with df = 2 is the same as
the exponential distribution with mean 2.

3. A table of the t distribution typically has a line
at the bottom that shows ∞ for df. For given sig-
nificance levels (see Level of a Test), the values
on this line are the same as those for a standard
normal deviate. (This is because the distribution
of t approaches the standard normal distribution
as the df parameter approaches infinity.)

4. Similarly, tables of the F distribution typically
have lines at the bottom that show ∞ for the
denominator df. For given significance levels and
for ν, ∞ as the df, the F values on these lines are
the same as the values for χ2(ν)/ν that appear in
a table of χ2 divided by its df. [Here the notation
χ2(ν) refers to a χ2 variable with df = ν.]

5. The distribution of F with df = 1, ν is the same
as the distribution of the square of a t variable
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with df = ν. In reporting results in a publication,
however, it is better and more informative to
show the value of t (ν) rather than the value of
F(1, ν), because the former has a plus or minus
sign that indicates the direction of the effect
whereas the latter is always positive.

6. The distribution of χ2 with df = 1 is the same
as the distribution of the square of a standard
normal deviate. In reporting results, though, it is
more informative to show the standard normal
deviate (with its plus or minus sign indicating
direction) rather than χ2(1).

References

[1] Anderson, R.L. & Bancroft, T.A. (1952). Statistical
Theory in Research. McGraw-Hill, New York.

[2] Nass, C.A.G. (1959). The χ2 test for small expectations
in contingency tables, with special reference to accidents
and absenteeism, Biometrika 46, 365–385.

[3] Satterthwaite, F.E. (1946). An approximate distribution of
estimates of variance components, Biometrics Bulletin 2,
110–114.

RICHARD F. POTTHOFF



Delayed Entry
Analysis of survival data with delayed entry has in
principle been known for centuries, since any life-
table construction involves following persons from
an entrance age to an exit age and registering whether
exit is due to death or end of observation for other
reasons (censoring, in modern terminology). Kaplan
& Meier [16] briefly mentioned the validity of their
product-limit estimator (see Kaplan–Meier Estima-
tor) also under delayed entry, and Cox & Oakes
[5, Section 11.6] gave a brief, but highly informa-
tive survey. However, the topic is absent from the
authoritative texts by Kalbfleisch & Prentice [15] and
Fleming & Harrington [8].

I first introduce the two main approaches to study-
ing delayed entry: left truncation, or complete obser-
vation of a conditional distribution (next section), and
left filtering, or observing events only when an obser-
vation switch is “on” (following section). In spite of
the very different conceptual foundations of the ideas
of left truncation and left filtering, the modifications
of many non- and semiparametric hazard-based sur-
vival analysis estimators to delayed entry situations
are exactly the same, essentially consisting in mod-
ifying the risk sets to only include individuals that
have entered. As a consequence, also the calculations
are the same.

For both left truncation and left filtering, the pos-
sibility of defining a concept of independent delayed
entry is discussed. Conditionally independent delayed
entry given covariates, as well as the special role
of the Cox regression model for studying delayed
entry, are then outlined. Deviation from independent
truncation may happen if there is association between
truncation time and survival time not accounted for
by observable covariates, as briefly surveyed in a later
section.

I then discuss the special delayed-entry problems
in the epidemiologic prevalent cohort study, in which
a cross sectional sample of persons with a certain
disease is followed up. At entry to the study the
patients will already have had the disease for a certain
time. When this current duration is known, analysis
by delayed entry at sampling is possible and can be
shown to be valid if the statistical model is rich
enough. I also briefly comment on the associated
length-bias problems, and discuss what to do if
current duration is not observed (for fuller discussion,
see Biased Sampling of Cohorts).

The next section gives a nonstandard example,
employing delayed-entry methods to obtain a faster
confirmatory test in a clinical trial with staggered
entry. The final section makes some brief comments
on the relation to left censoring, right truncation
and the retro-hazard, and mentions as an example
retrospectively collected time-to-pregnancy data.

Random Left Truncation

Let V and X be independent positive random vari-
ables with density functions g(v) and f (x), distri-
bution functions G(v) and 1 − S(x) and hazards
γ (v) = g(v)/[1 − G(v)] and ϕ(x) = f (x)/S(x). We
call S(x) the survival function of X (see Survival
Distributions and Their Characteristics). The ran-
dom truncation model [19, 29, 33] considers n inde-
pendent replications (V ∗

1 , X∗
1), . . . , (V ∗

n , X∗
n) from the

conditional distribution of (V, X) given V < X. An
important property (independent truncation) of the
random truncation model is that the the hazard of
X given X > V = v at x > v equals the hazard of X
at x: in heuristic notation, for x > v,

Pr{X = x|V = v, X > V }
Pr{X ≥ x|V = v, X > V } = Pr{X = x, V = v}

Pr{X ≥ x, V = v}
= Pr{X = x}

Pr{X ≥ x}
= φ(x).

This property is the key to the simple result that
the nonparametric maximum likelihood estimator
S(x) is given by the product-limit estimator

Ŝ(x) =
∏

Xi≤x

(
1 − 1

Y (Xi)

)
,

where Y (u) is the number at risk at u.
This result was briefly mentioned by Kaplan &

Meier [16] under the interpretation of counting the
delayed entrants as “negative losses” and further
discussed and elaborated in the three references just
mentioned.

An unsatisfactory aspect of the random truncation
model is its formulation in terms of the “latent”
random variables (Vi, Xi) which remain unobserved
when Vi > Xi . It was pointed out by Wellek [32]
and Tsai [25] that it is sufficient to require that the
conditional density of (V, X) given V < X may be
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written as f (x)g∗(v) for v < x. Indeed, the above
calculation then yields (for x > v)

Pr{X = x|V = v, X > V }
Pr{X ≥ x|V = v, X > V } = f (x)g∗(v)∫ ∞

x

f (u)g∗(v) du

= ϕ(x).

The condition for independent truncation may there-
fore be formulated in terms only of the “observable”
area {v < x}.

The above considerations rather immediately
generalize to also accommodating right censoring (cf.
[16, 25, 26], and [32]).

Tsai [25] derived a formal test for independence
of truncation time and survival time, also valid
under independent censoring. Tsai’s test generalized
Kendall’s τ (based on the number of concordant and
discordant pairs of observations (Vi, Xi), (Vj , Xj )) to
a “conditional Kendall’s τ” that is estimable from the
conditional distribution of (V, X) given (V ≤ X) (see
Rank Correlation). Kalbfleisch & Lawless [14] and
Jones & Crowley [12] provided important additional
discussion.

The Counting Process Approach and
Filtering

The counting process approach to survival analysis
allows an alternative approach to delayed entry and to
the formalization of independence between survival
and delay, directly generalizing the concept of inde-
pendent censoring : see the article Censored Data or
Andersen et al. [3, Chapter III].

For n independent, identically distributed uncen-
sored survival times (random variables) X1, . . . , Xn

with survival function S(x) and hazard ϕ(x), define
the counting process

N(t) =
n∑

i=1

Ni(t) =
n∑

i=1

I {Xi ≤ t}.

With respect to the so-called self-exciting family
of σ -algebras (Nt ),Nt = σ {N(u) : 0 ≤ u ≤ t}, N(t)

has the compensator
∫ t

0
ϕ(u)Y (u) du,

with

Y (t) =
n∑

i=1

Yi(t) =
n∑

i=1

I {Xi ≥ t},

which means that the difference between N(t) and
the compensator is an (Nt )-martingale. The integrand
ϕ(t)Y (t) is called the intensity process.

Now assume that observation is partially inhibited
by some further noise, formalized by the concept
of filtering processes, stochastic processes Ci(t) on
[0, ∞) assuming the values 1 or 0 as observation
is “on” or “off” and predictable with respect to an
increasing family (Gt ) of σ -algebras such that Nt ⊆
Gt for all t . Then

Nc
i (t) =

∫ t

0
Ci(u) dNi(u)

= I {Xi ≤ t, Ci(Xi−) = 1}
is again a counting process, indicating whether the
event has taken place before time t and while obser-
vation is “on”.

Independent filtering will be taken to mean that the
intensity process of N(t) is ϕ(t)Y (t) also with respect
to the larger family of σ -algebras (Gt ) that includes
information on the filtering. Intuitively, the intensity
when individuals are observed should be the same as
when they are not observed. Under this assumption,
by stochastic integration theory

Nc
i (t) =

∫ t

0
Ci(u) dNi(u)

=
∫ t

0
Ci(u)ϕ(u)Yi(u) du +

∫ t

0
Ci(u) dMi(u),

where the last term is a (Gt )-martingale, so that Nc
i (t)

has intensity process ϕ(u)Ci(u)Yi(u) = ϕ(u)Y c
i (u)

with
Y c

i (u) = I {Ci(u) = 1, Xi > u};
that is, observation is on and the event has not
happened. As before, we may aggregate: Nc(t) =∑

Nc
i (t) has intensity process ϕ(t)

∑
Y c

i (t), where∑
Y c

i (t) is the number at risk under the filtering.
Right censoring at Ui corresponds to Ci(t) =

I {t ≤ Ui} and left filtering and right censoring cor-
responds to Ci(t) = I {Vi < t ≤ Ui}.

With this definition of delayed entry, asymptotic
distribution results are immediate and easily inter-
pretable via increasing number at risk. This approach
was advocated by Aalen [1, 2].

Kaplan & Meier [16] in their brief discussion of
delayed entry took care to call this left truncation, in
contrast to the then relatively newly specified concept
of censoring (so termed by Hald [10, 11]). Still, the
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spirit of Kaplan & Meier’s idea seems closer to left
filtering.

Consider now, for ease of exposition, a single
individual. A minimal family (Gt ) for independent
left filtering only, with no right censoring, is then
specified by

Gt =σ(I {V ≤ t}, V I {V ≤ t}, I {X ≤ t}, XI {X ≤ t}).
The intensity process of Nt = I {X ≤ t} with respect
to (Gt ) is Pr{Nt − Nt− = 1|Gt−}, and here are three
cases. First, Pr{Nt − Nt− = 1|X < t} = 0; secondly,

Pr{Nt − Nt− = 1|X ≥ t, V = v < t}
= Pr{X = t |X ≥ t, V = v < t} = ϕ(t)

as derived above; and thirdly,

Pr{Nt − Nt− = 1|X ≥ t, V ≥ t}

=

∫ ∞

t

f (t)g∗(v) dv

∫ ∞

t

∫ ∞

t

f (u)g∗(v) du dv

= ϕ(t);

so that altogether the intensity process

Pr{Nt − Nt− = 1|Gt−} = ϕ(t)I {X ≥ t}
= Pr{Nt − Nt− = 1|Nt−},

as was to be proved. Hence it is seen that under
the assumption that the conditional density of (V, X)
given V < X may be written as a product g∗(v)f (x),
left filtering is independent.

Delayed Entry and Covariates

If the lifetime X and entry time V are condition-
ally independent given a covariate Z (but possibly
marginally dependent), then the filtering specified by
delayed entry at V is still independent in the model
for the conditional intensity given Z. For example,
we then have, heuristically

Pr{X = x|V = v, Z = z, X > V }
Pr{X ≥ x|V = v, Z = z, X > V }

= Pr{X = x|Z = z}
Pr{X ≥ x|Z = z} .

This means that the conditional intensity given Z

may be validly estimated also under “conditionally
independent” delayed entry.

In particular, the Cox regression model speci-
fies the dependence on time nonparametrically, and
the estimation works with “numbers at risk” in the
same way as for the fully nonparametric techniques.
Delayed entry may therefore be handled – by trun-
cation or filtering – as specified in the two previous
sections. Cnaan & Ryan [4] compared this “correct”
approach with other approaches and called attention
to special problems with time-dependent covariates:
see further Keiding & Knuiman [20] and the detailed
discussion by Wang et al. [28].

Dependent Delayed Entry: Two Examples

Keiding [18] gave two examples where the assump-
tion of independent delayed entry is violated.

In the first, assume that, given a random variable
Z = z, V and X are independent, and for simplicity
exponentially distributed with intensities γ z and
ϕz, respectively. The frailty Z is assumed to be
an unobserved gamma-distributed random variable.
A direct calculation then documents that the hazard
of X given X > V = v at x > v differs from the
marginal hazard of X at x. In this case, unobserved
heterogeneity is the culprit.

The other example regarded differential selection
into observation from two states with different haz-
ards of death (such as a healthy state and a diseased
state). A numerical example showed that the net
effect of the differential selection can go either way
depending on the concrete values of selection and
death intensities.

The Prevalent Cohort Study

A cross sectional sample of patients suffering from a
certain disease is taken at a particular calendar time tV
and followed up, usually for some fixed time interval.

Assume first that the age of onset of disease Y

is known for each patient; let V be age at entry.
The calendar time-, age- and duration-specific death
intensity ν(t, a, d) may then be estimated by con-
sidering the patients as having delayed entry (with
delay Y − V ) at tV (and possibly also right censoring
at the end of the follow-up interval). Keiding [18]
gave a formal calculation within the framework of
illness–death processes (see Stochastic Processes)
to show that this delayed entry is independent in
the model for the ν(t, a, d). With X = age at death,
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T = time at death, TV = T − (X − V ) time at entry,
the hazard of X in the conditional distribution given
(Y = y, T = t, TV = tv, X > V ) was shown to equal
ν(t, x, x − y).

Keiding [18] also compared the delayed-entry esti-
mator to two other possibilities: the length-biased
estimator relevant if patients are counted from dis-
ease onset (see also Wang [27] and the article on
Length Bias); and the forward recurrence time esti-
mator [6] based on time from sampling to death only,
not requiring knowledge of age at onset. The lat-
ter two possibilities require very strong stationarity
assumptions and would rarely be justified in biomed-
ical applications.

There is an extensive literature, primarily moti-
vated by AIDS, on how to approach prevalent cohort
studies when age at disease onset is unknown (for a
survey, see Biased Sampling of Cohorts).

Example: Confirmatory Analysis of an
Unexpected Finding at Interim Analysis

As an example, I quote an analysis regarding the
prognostic significance of residual cancer tissue after
diagnostic biopsy in breast cancer. The trials of the
Danish Breast Cancer Cooperative Group (DBCG)
were started during 1978 and, based upon the expe-
rience until December 31, 1981, a negative effect
on recurrence-free survival of the presence of resid-
ual cancer tissue (RCT) after diagnostic biopsy was
noted for premenopausal patients considered to be at
high risk based on histological findings. The diagnos-
tic biopsy is a tissue specimen that is examined by
the pathologist for presence of malignant (i.e. can-
cerous) cells. If such cells were found, the whole
breast was removed shortly thereafter, usually within
0.5–1.0 hours after the biopsy was taken, and only
these patients are included in this study. It was
considered unexpected, and not easily interpretable,
to find a connection between the presence of can-
cer tissue in the biopsy cavity and recurrence-free
survival, and a reanalysis on an independent set of
data was therefore judged necessary before the find-
ing could be considered an established fact within
breast cancer prognostics. Ordinarily one would use
patients accrued after January 1, 1982. Since accrual
to this protocol was closed toward the end of 1982,
only rather few patients were available, and even
an average follow-up time of almost four years was

not enough to reproduce the early finding. Alter-
natively, the recurrence-free survivors on January
1, 1982, might be included, counted with delayed
entry with the duration obtained on that date: these
patients are included with left truncated disease dura-
tions [21] (for full surgical discussion, see Watt-
Boolsen et al. [31]).

Assuming that there are no hidden heterogeneities,
the simple delayed entry correction provides a valid
test based on the experience after January 1, 1982,
conditional on survival until then for those accrued
earlier (see Keiding et al. [21]). In fact, there were
significant covariates (age at operation, pathoanatom-
ical characteristics of the tumor; see Watt-Boolsen
et al. [31]); in unpublished analyses by T. Bayer and
N. Keiding these were included in the delayed entry
approach through a Cox regression model, which did
not change the qualitative conclusions.

Parner and Keiding [23] showed, under a broad
class of model misspecifications, that the indepen-
dence between interim and confirmatory analyses is
robust.

Left Censoring, Right Truncation,
Time-reversal, and the Retro-hazard

It is important to distinguish delayed entry (where the
individual under study is only identified if the event
(such as death) occurs after the entry time) from left
censoring, where all individuals are counted, but for
some of them it is only known that the event took
place before a certain censoring time.

Technically, left censoring can sometimes be han-
dled by the well-established hazard rate and risk
set-based survival analysis techniques in reverse time;
but examples of left censoring are rare in survival
analysis – see, however, Ware & DeMets [30] and
Andersen et al. [3, Examples I.3.7 and IV.3.5].

Right truncation can also often be handled by
reversing time and focusing on the retro-hazard
ϕ(x) = f (x)/F (x); see, for example, Lagakos
et al. [22], Kalbfleisch & Lawless [13], Keiding &
Gill [18], Keiding [17] and Gross & Huber-Carol [9].
Right truncation has become an important bio-
statistical tool in connection with retrospective
epidemiologic observation plans particularly in study-
ing AIDS, where only those individuals who con-
tracted the disease before a certain calendar date
are included. see Esbjerg et al. [7] for an applica-
tion in neuroepidemiology (see Truncated Survival
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Times). Also when retrospectively observing time-
to-pregnancy it is quite common to observe only
those who gave birth before study completion, neces-
sitating correction for right truncation particularly in
studying calendar time effects [24].
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Delta Method

The delta method is really a theorem which states
that a smooth function of an asymptotically nor-
mal estimator is also asymptotically normally dis-
tributed (see Large-sample Theory). The result is
applied in numerous contexts for the computation of
large-sample tests and confidence limits for nonlin-
ear functions of parameters which have already been
estimated. Typically, the method of estimation is
a standard large-sample technique which cannot be
directly applied to the problem of interest.

Let θ̂n denote a sequence of estimates of some
parameter θ , such that

√
n(θ̂n − θ)

L−−−→ N[0, σ 2(θ)] (1)

(see Convergence in Distribution and in Proba-
bility). For example, θ̂n = θ(X1, X2, . . . , Xn), where
X1, . . . , Xn is a random sample from a distribution
Fθ , the simplest cases being θ̂n = Xn, the sample
mean, with θ = µx , or θ̂n = s2

n , the sample variance,
with θ = σ 2

x . Let g be a function which is differen-
tiable in a neighborhood of the true value θ with
g′(θ) �= 0. Then the delta method states that

√
n(g(θ̂n) − g(θ))

L−−−→ N{0, σ 2(θ)[g′(θ)]2}. (2)

The result follows from (1) using standard conver-
gence theorems [14, 2c.4]. Briefly, substitution of θ̂n

into a Taylor expansion for g about θ yields

g(θ̂n) = g(θ) + (θ̂n − θ)g′(θ) + (θ̂n − θ)op(1),

where op(1)
p−−−→ 0. Then

√
n(g(θ̂n) − g(θ)) − √

n(θ̂n − θ)g′(θ)

= √
n(θ̂n − θ)op(1) = op(1).

In fact, a slightly stronger result is needed, in
which we assume that g′ and σ 2 are continuous at
θ, σ (θ̂n)|g′(θ̂n)| is used to standardize (2), and con-
vergence is to a standard normal distribution [14,
6a.2; 2, 12.1.2]. In practice, the standard error (se)
of θ̂n is taken to be σ/

√
n, and the se of g(θ̂n) is

|g′(θ)|σ(θ)/
√

n, with θ estimated by θ̂n. Thus the
delta method can also be viewed as a technique for
approximating the mean and variance of a function

of a random variable, g(T ) [10]. For this approxima-
tion to be valid we must have var(T ) = O(1/n). The
Taylor expansion can also be used to provide a bias
correction [8, 8.4(iii)].

In applications, a multivariate version of the
theorem is typically needed. Suppose that θ̂n =
(θ̂1, . . . , θ̂k) is an asymptotically [in the sense of (1)]
multivariate normal random vector with asymptotic
mean θ and variance matrix Σ(θ). Let g(θ) =
[g1(θ), . . . , gq(θ)]′ and ∂g/∂θ denote the q × k

matrix of partial derivatives. Then, if for each
i, ∂gi/∂θj �= 0 for some j , we have

√
n[g(θ̂n) − g(θ)]

L−−−→ N

(
0,

∂g
∂θ

∑ ∂g′

∂θ

)
. (3)

The proof involves either a multivariate Taylor expan-
sion [1, Appendix C; [4], 14.6.3] or, alternatively, an
application of (2) using an arbitrary linear combi-
nation of the coordinates of g(θ̂n) and well-known
characterizations of the multivariate normal distri-
bution and of convergence in distribution of random
vectors [14, 6a.2]. In most applications q = 1.

The delta method is closely related to the method
of maximum likelihood. As is well known, if θ̂

is the maximum likelihood estimator (MLE) of θ

and g is a one-to-one differentiable transformation,
then φ̂ = g(θ̂) is the MLE of φ = g(θ). A Taylor
expansion of the score vector (see Likelihood) may
also be used to show that the information matrix
becomes [6; [8], Exercise 4.15]

I (φ) = ∂θ ′

∂φ
I (θ)

∂θ

∂φ
.

Thus the asymptotic distribution of φ̂ obtained from
the delta method is the same as that of the MLE.
Indeed, in single parameter exponential families,
where there is a sufficient statistic for the natural
parameter (such as the multinomial distribution) the
method of maximum likelihood can be regarded as an
application of the delta method using the transforma-
tion implicitly defined by the score equations [5, 3,
2, 12.2.1]

Two classes of applications may be distinguished.
The first involves choosing a transformation g(θ) so
that var[g(θ̂)] = constant, in which case g is known as
a variance-stabilizing transformation. From the delta
method,

g(x) = c

∫
dθ

σ(θ)
.
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Examples include the angular (arc sin square root)
transformation for a binomial proportion, and Fisher’s
z transformation for the sample correlation coeffi-
cient, r , [14, 6g.4]. The multivariate delta method
can be used to establish the asymptotic normality
of r [15, Chapter 3]; a similar technique can be
used to show the asymptotic normality of the sam-
ple variance, s2. Another general class of examples
is given by the ladder of powers, var(X) = c2µ2α

for α > 0 (see Power Transformations). In this
case

g(x) = 1

c(1 − α)
µ1−α,

with the understanding that α = 1 (constant coeffi-
cient of variation) gives g(x) = log x. Other special
cases include the square root transformation (α =
1/2), which is used with the Poisson distribution.
Strictly speaking, if Xn ∼ Poisson (nθ), then the delta
method must be applied to the sequence θ̂n = Xn/n

[4, Example 14.6-3; [15], p. 121].
The second class of applications involves nonlin-

ear functions of parameters for which large-sample
estimates can easily be obtained, often from the
central limit theorem, or from a generalized lin-
ear model. The simplest example is provided by
the asymptotic normality of the sample standard
deviation s = √

s2. The standard example is the vari-
ance of a ratio:

var

(
T1

T2

)
≈

[
E(T1)

E(T2)

]2 {
var(T1)

[E(T1)]2
− 2cov(T1, T2)

E(T1)E(T2)

+ var(T2)

[E(T2)]2

}
.

An application is the estimation of the dose corre-
sponding to a given frequency of response in the
analysis of quantal response data in toxicology [13,
2.7.1]. Related applications include the variance of
the log of the relative risk, rr = p1/p2, and the log
odds ratio (the logarithms of these quantities being
more nearly normally distributed) in epidemiology
[11, 15.5]. For example,

var[log(rr)] ≈ 1 − p1

n1p1
+ 1 − p2

n2p2
.

Another interesting class of examples involves the
calculation of large-sample standard deviations for
various measures of association in two-way contin-
gency tables. These have the form ζ = ν(πij )/δ(πij ),

where ν(πij ) and δ(πij ) are known functions of the
population proportions [1, 10.3; [4], 11.3]. A special
case is the measurement of agreement between two
raters on a categorical scale. The standard measure
of interrater reliability is the observed proportion of
agreement corrected for chance, known as kappa.
A large sample standard deviation may be computed
using the delta method [4, 11.4; [9], 13.1].

In multinomial regression models, the delta me-
thod can be used to establish the asymptotic distribu-
tion of the predicted cell probabilities and residuals,
typically standardized cell residuals [2, 12.2–12.3].
Cox & Ma [7] used a similar application to develop
confidence bands for generalized nonlinear regres-
sion models. For extensions of the basic result
(g′(θ) = 0 and σn → 0 instead of σ/

√
(n) → 0), see

[15, Chapter 3].
Lehman [15, Section 6.3] considers the extension

to limit distributions of statistical functionals.

References

[1] Agresti, A. (1984). Analysis of Ordinal Categorical
Data. Wiley, New York.

[2] Agresti, A. (1990). Categorical Data Analysis. Wiley,
New York.

[3] Benichou, J. & Gail, M.H. (1989). A delta method for
implicitly defined random variables, American Statisti-
cian 43, 41–44.

[4] Bishop, Y.M.M., Fienberg, S.E. & Holland, P.W. (1975).
Discrete Multivariate Analysis: Theory and Practice.
MIT Press, Cambridge, Mass.

[5] Cox, C. (1984). An elementary introduction to maximum
likelihood estimation for multinomial models: Birch’s
theorem and the delta method, American Statistician 38,
283–287.

[6] Cox, C. (1990). Fieller’s theorem, the likelihood, and
the delta method, Biometrics 46, 709–718.

[7] Cox, C. & Ma, G. (1995). Asymptotic confidence bands
for generalized nonlinear regression models, Biometrics
51, 142–150.

[8] Cox, D.R. & Hinkley, D.V. (1974). Theoretical Statis-
tics. Chapman & Hall, London.

[9] Fleiss, J.L. (1981). Statistical Methods for Rates and
Proportions, 2nd Ed. Wiley, New York.

[10] Johnson, N.L. & Kotz, S. (1988). Encyclopedia of
Statistical Sciences, Vol. 8. Wiley, New York, pp.
646–647.

[11] Kleinbaum, D.G., Kupper, L.L. & Morgenstern, H.
(1982). Epidemiologic Research. Lifetime Learning Pub-
lications, Belmont.

[12] Lehman, E.L. (1999). Elements of Large Sample Theory.
Springer-Verlag, New York.



Delta Method 3

[13] Morgan, B.J.T. (1992). Analysis of Quantal Response
Data. Chapman & Hall, London.

[14] Rao, C.R. (1973). Linear Statistical Inference and Its
Applications, 2nd Ed. Wiley, New York.

[15] Serfling, R.J. (1980). Approximation Theorems of Math-
ematical Statistics. Wiley, New York.

C. COX



Demography

Demography is the study of human populations with
respect to their size, structure, and dynamics. For
demographers, a population is a group of individuals
that coexist at a point in time and share a defining
characteristic such as residence in the same geograph-
ical area. The structure or composition of a population
refers to the distribution of its members by age, sex,
and other characteristics, such as place of residence
and marital or health status. The age and sex structure
of a population results from past trends in fertil-
ity, mortality, and migration. Thus, these processes
comprise the components of demographic change.
The age and sex structure of a population, in turn,
affects birth rates, death rates, and rates of migra-
tion. Changes in status such as getting married or
divorced interact with population structure in a sim-
ilar way.

Some authorities reserve the term demography
for the mathematical and statistical study of the
interrelationships between population size and struc-
ture and the components of demographic change.
According to this terminology, demography can be
contrasted with population studies, which investigate
the determinants and consequences of demographic
phenomena drawing on the concepts and theories
of disciplines such as the social sciences, health
sciences, and history. Others encompass population
studies within demography and use the term for-
mal demography to distinguish the statistical core of
the discipline. Demography (according to this wider
definition) is a multidisciplinary field: subdisciplines
such as economic demography, historical demogra-
phy, anthropological demography, and mathematical
demography exist. They differ not only in their sub-
ject of study but also in their theoretical orientation
and methods.

The term demography has been ascribed to a Bel-
gian statistician, Achille Guillard, who coined it in
1855. However, the origins of modern demography
are usually traced back to John Graunt’s quantita-
tive analyses of the “Bills of Mortality” published in
1662 [5]. The “Bills of Mortality” provided weekly
lists of burials and baptisms in the parishes of Lon-
don. Graunt used these data to examine the sex ratio
at birth and to estimate the population of London.
He showed that more deaths than births occurred

in London, implying that the growth of the capi-
tal was due to in-migration from the countryside.
He also estimated the proportion of births surviv-
ing to a range of ages, thereby developing the basic
concept of the life table. Graunt’s research prefig-
ures modern applications of demographic science:
information on fertility and mortality and population
estimates for small areas (see Small Area Estima-
tion) remain the fundamental results of demographic
analysis required by those engaged in policy formu-
lation and planning.

Demographic Data

In most developed countries, civil registration of
births and deaths is the primary source of fertility and
mortality data. Government agencies routinely collect
demographic information when births and deaths are
certified for administrative purposes (see Vital Statis-
tics, Overview, Overview). The primary source of
data on the size, structure and distribution of national
populations is the population census. Censuses aim
to enumerate the whole population of a defined geo-
graphical area. They collect individual-level data on
the population’s characteristics that refer to a sin-
gle point in time. As well as collecting data on the
size and composition of the population, most cen-
suses also ask about moves in a fixed period of
time before the enumeration. In countries where vital
statistics data are incomplete, questions may also be
asked about fertility and mortality. Countries that
issue identity numbers and require their population to
report their place of residence can maintain continu-
ous population registers. In a few European countries
these registers now fuse the functions of the registra-
tion system with those of the census.

The evolution of demographic analysis and of
routine collection of data on populations by the
government were interlinked. Standard demographic
measures and techniques of analysis were developed
largely for the study of vital statistics with census-
based denominators. In recent decades, however,
demographers have relied increasingly on survey data
to supplement those from traditional sources (see
Surveys, Health and Morbidity). In particular, in
countries where registration of vital events is incom-
plete national sample surveys are the main source of
vital statistics. One of the first subjects to be inves-
tigated in demographic surveys was family planning
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(see Reproduction). Other early surveys collected
women-based fertility histories to supplement the
event-based data generated by birth registration. Fer-
tility history and family planning data remain the
focus of many demographic surveys, including the
two major international programs of surveys con-
ducted since the 1970s, namely the World Fertility
Survey and the Demographic and Health Surveys.

Issues

Between the mid-nineteenth and mid-twentieth cen-
turies the more developed regions of the world
went through a demographic transition from a high-
fertility, high-mortality, and low-growth demographic
regime to a low-fertility, low-mortality, and low-
growth demographic regime. As mortality tended
to fall before fertility, this transition was marked
by rapid population growth. Since 1945, a similar
transition has begun in most less developed countries.
As a result, the world’s population has grown from
about 2.5 billion to about 6 billion in the second half
of the twentieth century. It is expected to grow to
between 9 and 16 billion by 2100.

Efforts to understand the determinants of the tran-
sition of fertility and mortality to low levels are
a central concern of demography. Many demogra-
phers now believe that explanations that focus on
economic factors and the provision of health and fam-
ily planning programs are inadequate and need to be
supplemented by accounts that take into account the
ideational and cultural determinants of demographic
behavior.

Thomas Malthus was the first author to develop
a systematic argument that high fertility leading to
population growth could have adverse effects on
economic welfare [7]. He argued that a growing pop-
ulation must eventually outstrip its subsistence base,
bringing about rising mortality from famine, pesti-
lence, and war. Although the past two centuries of
human history have followed a very different path
from that envisaged by Malthus, concern still exists
about the impact of population growth on economic
development and the environment. Today, however,
economic demographers tend to be more sanguine
about the consequences of population growth than
those with a background in ecology [3].

Many demographic outcomes are of concern to
policy makers and much demographic research has

an avowedly applied intent. Demography bears on the
efforts of international agencies and national govern-
ments to promote family planning and improve health
in the developing world. In the developed world, pop-
ulation growth has slowed but low fertility and the
reduction in death rates in old age are producing an
increasingly aged population. Recent changes in pat-
terns of marriage and divorce and of childbearing
inside and outside marriage also have major implica-
tions for the family and public policy.

Demographic studies of mortality tend to focus on
the analysis of routine data. Demographers’ research
into health and mortality cannot be distinguished
clearly from that of epidemiologists. However, de-
mographers tend to be concerned with the distribution
of disease and premature death (see Descriptive Epi-
demiology) across social groups (see Social Classi-
fications) and their implications for other aspects of
social life, rather than with measuring risk factors for
specific conditions.

Demographic Analysis

The aim of formal demographic analysis is to isolate
the components of demographic patterns by dividing
a population into relatively homogeneous subgroups.
Analysis by age and sex has primacy over analy-
sis by other compositional factors. Human biology
causes the propensity to die and to give birth to be
differentiated by age and sex everywhere. It imposes
a degree of uniformity on age patterns of mortality
and fertility in all human populations.

Classical demographic analysis is based on a fairly
small set of measures and techniques. Most of these
are also used in cognate disciplines. Calculation of
rates, ratios, and proportions represent the basic way
for controlling for population size. In demography,
rates calculated for the whole population that make
no allowance for the influence of population structure
on the phenomenon of interest are referred to as crude
rates. Examples are the crude birth rate and crude
death rate (see Vital Statistics, Overview).

Calculation of age-specific rates and rates specific
to other subgroups of the population allow the ana-
lyst to isolate the propensity to experience the event
being studied from the influence of population struc-
ture. A range of methods of standardization are used
to produce synthetic indices that summarize such spe-
cific rates (see Standardization Methods). The dis-
tinction between cohort analysis and cross-sectional
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or period analysis is fundamental to demography.
Demographers use the term cohort to refer to groups
of individuals who experience a defining event at the
same time. Examples include birth cohorts and mar-
riage cohorts. Cohort analysis studies the subsequent
experience of such groups. This contrasts with epi-
demiologic usage, which refers to all those eligible
for recruitment into a longitudinal study as a cohort.

Period measures are often treated as referring to
a synthetic or hypothetical cohort, so that summary
indices can be calculated that indicate what would
happen to a cohort that went through life experienc-
ing the specific rates of the period under study. For
example, the most widely used index of period fertil-
ity is the total fertility rate. This measures how many
children women would bear on average if they went
through life with the fertility of a specific period. It is
calculated by summing the age-specific fertility rates
of a particular year, usually for five-year age groups,
over all ages at which women bear children. The total
fertility rate is thus a form of directly standardized
rate, calculated using a uniform age distribution as
the standard.

Two basic aspects of any demographic process are
its intensity, or quantum, and its timing, or tempo.
The intensity of a nonrenewable event such as death
or first marriage can be measured by the proportion of
a cohort who eventually experience the event. Both
the expected timing of any nonrenewable process and
the distribution of times of its occurrence can be
studied using life table methods. The intensity of a
renewable process such as birth or disease incidence
can be measured by the mean number of events per
person, and their tempo by the characteristics of the
distribution of the events in time. Renewable events
can be categorized by the order of their occurrence,
and events of a particular order can be analyzed as
a nonrenewable process. For example, the proportion
of women who have had a birth of order i that go on
to bear a child of order i + 1 is known as a parity
progression ratio.

Investigation of the determinants of fertility and
mortality has been facilitated by making a distinc-
tion between proximate and distal determinants. The
approach is most developed with respect to fertility. A
proximate determinant is one that has a direct impact
on the outcome of interest while a distal determinant
can only affect the outcome via a proximate deter-
minant. The proximate determinants of fertility are
those factors that determine a woman’s exposure to

sexual intercourse, her probability of conceiving, and
the probability that a pregnancy ends in a live birth.
The strength of the approach is that only a few of the
proximate determinants of individuals’ fertility differ
between populations in their impact at the aggregate
level. Thus, the four main proximate determinants
of fertility differences between groups and over time
are the proportion of women in sexual unions, post-
partum infecundity associated with breast-feeding,
contraception, and abortion. Socioeconomic deter-
minants of fertility must operate through these few
proximate factors and a single characteristic may
have countervailing effects on fertility via different
proximate determinants.

Demographic Models

Analysis of data on actual populations is paral-
leled by mathematical models of the interrelationship
between population size and structure and the com-
ponents of demographic change. Stable population
theory as developed by Lotka in the 1920s and 1930s
demonstrates that any closed single-sex population
subject to constant fertility and mortality rates con-
verges on an unchanging age structure and a constant
rate of growth. This stable outcome is independent
of the initial age structure of the population. The
special case of a stable population that is unchang-
ing in size is termed a stationary population. Its
age structure is a function of the life table. Recent
developments, known as generalized stable popu-
lation theory, demonstrate that the mathematics of
stable populations can be extended to populations in
which growth rates vary by age because of a history
of fertility and mortality change and to populations
subject to decrements other than mortality [8].

One crucial application of demography is to the
forecasting of future population change. This is usu-
ally undertaken using cohort-component methods of
population projection [2]. These methods provide a
precise way of controlling for the influence of popu-
lation structure and of working out the implications of
any scenario postulated for future vital rates. Despite
this, population forecasts have often proved wide of
the mark. Fertility, mortality, and migration remain
difficult to predict. Forecasts informed by a theo-
retical understanding of the determinants of these
components of population change often perform little
better than the simple extrapolation of past trends in
vital rates.
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The increasing availability of survey data and
information technology that makes it practicable
to undertake individual-level analysis of data on
large samples, have facilitated convergence between
demographic methods and other forms of statistical
analysis. Thus, many of the developments in demo-
graphic analysis during the past few decades have
been closely linked to those in statistical methods
more generally. Demographers have both adopted
and contributed to the development of methods
such as event history analysis [10], the modeling
of unobserved heterogeneity, and random-effects
models [4]. Other fields of methodologic research
in recent years include the extension of life table
methods into multistate models that allow for incre-
ments as well as decrements from each state [6] and
methods and models for the study of families and
households [1]. (see Multilevel Models)

One particularly successful field has been the
development of indirect methods for estimating vital
rates in populations with limited and defective vital
statistics [9]. Indirect methods use stable popula-
tion theory and its extensions to describe the rela-
tionship between conventional indices of fertility,
mortality, and migration and items of information
that can be collected more reliably in single-round
surveys and censuses in less developed countries.
For example, it is possible to estimate life table
indices of child mortality from data on the pro-
portion of women’s children ever-born who have
died, tabulated by the age of the women con-
cerned [9].
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Dendrogram

The term “dendrogram” (Greek dendron, a tree)
is used in numerical taxonomy for any graphical
drawing or diagram giving a treelike description of
a taxonomic system. More generally, a dendrogram
is a two-dimensional diagram representing a tree of
relationships, whatever their nature.

Some of the earliest examples of dendrograms are
the customary phylogenetic trees used by systema-
tists. It seems that the term “dendrogram” was first
used by Mayr et al. [13] (see also [16]).

Depending on the nature of the relationships
described by the diagram, the term “dendrogram” is
sometimes replaced by another, such as phenogram or
cladogram. The former is used for a dendrogram rep-
resenting phenetic, and the latter for that representing
cladistic relationships [3, 12].

The representation of a taxonomic system by a
dendrogram is particularly suitable in connection
with a cluster analysis applied to investigate the
structure of the corresponding operational taxonomic
units; that is, entities or individuals considered as
the lowest-ranking taxa within the system, such as
individual patients or case histories initially used to
construct disease classifications [16]. This becomes
apparent when it is desirable to interpret the results of
the analysis in terms of a natural nonoverlapping tax-
onomic hierarchy. The usual basis for a cluster anal-
ysis is a resemblance (proximity) matrix, its rows and
columns referring to the operational taxonomic units,
and its entries being the estimates (measurements)
of the resemblances between the corresponding units
(see Cluster Analysis of Subjects, Hierarchical
Methods; Similarity, Dissimilarity, and Distance
Measure).

There are various ways of drawing a tree diagram
to illustrate the fusions and partitions that have been
made at each successive level of the cluster analysis
applied. The early practice of drawing dendrograms
tended to have the branches of the treelike diagram
pointing upward or downward. But later, with ever-
increasing numbers of operational taxonomic units,
it has become more convenient to place the den-
drograms, and particularly the phenograms, almost
uniformly on their side, with branches running hori-
zontally across the page. The abscissa is then scaled
in the resemblance measure on which the clustering
has been based, and the points of furcation between

stems along the scale imply that the resemblance
between two stems is at the similarity coefficient
value shown on the abscissa. It should be realized,
however, that the order in which the branches of
a dendrogram are presented has no special signifi-
cance, and can be changed within wide limits with-
out actually changing the taxonomic relationships
implied by the dendrogram. This multiplicity of ways
in which the same relationships can be represented in
a dendrogram may be regarded as a disadvantage. In
fact, a dendrogram representation of a resemblance
matrix is likely to be satisfactory only if the data
are strongly clustered and have an hierarchical type
of structure. Otherwise, the dendrogram can be very
misleading. Several methods have been suggested to
overcome this (see, for example, [14]).

Examples of dendrograms and methods of
their presentation are described in many textbooks
on numerical taxonomy and multivariate analysis
(see Cluster Analysis of Subjects, Hierarchical
Methods) (see also [6, 11, 14, 16], and [17]).

Two different clustering methods may lead to dif-
ferent dendrogram representations of the results, even
if both methods are based on the same resemblance
matrix. Among the various clustering methods, one is
particularly relevant to a dendrogram representation.
It is the single linkage cluster analysis, also known
as the nearest-neighbor technique, introduced by Flo-
rek et al. [7, 8] and, independently, by McQuitty [10]
and Sneath [15]. As shown by Gower & Ross [9],
the most efficient procedure for the single linkage
cluster analysis is based on producing the short-
est dendrite (the minimum spanning tree; see [1]).
In fact, the single linkage clusters can be obtained
from the shortest dendrite by successively remov-
ing its edges, largest first, the second largest next,
and so on. The shortest dendrite itself also gives an
alternative graphical representation of the single link-
age cluster analysis results (see, for example, [14]).
This may appear more convenient than the usual
application of a dendrogram, particularly when super-
imposing the dendrite on the operational taxonomic
units scattered in an ordination plot of two or three
dimensions obtained, for example, from the principal
components analysis [16] or the canonical variate
analysis [1].

Dendrograms can also be applied when using a
cluster analysis in order to partition treatment means
in the analysis of variance, as shown, for example,
by Caliński & Corsten [2] (see also [4]).
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Several statistical packages include computa-
tion procedures for displaying dendrograms: see
Digby [5] in particular (see Software, Biostatistical).
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Denominator Difficulties

Epidemiologists often report data in terms of rates
and proportions. These measurements require denom-
inators (defined by Last [3] as the lower portion of
a fraction used to calculate a rate or ratio) as well
as numerators (the upper portion of such a frac-
tion [3]). A rate is a specific kind of fraction in which
the numerator represents the frequency of occurrence
of an event during a particular time period and the
denominator represents the average population at, or
exposed to, risk for occurrence of the event over the
time period. Neglect of this “exposed to risk” term is
one of the commonest errors made in the everyday
use of statistics for calculating rates [2, pp. 238–247].

The essence of the denominator problem is that
percentages, proportions, or ratios are misrepre-
sented as rates [1, pp. 289–313; 2, pp. 238–247].
Methodological errors in regards to denominator
data usually fall into one of three categories:
(1) missing denominators; (2) wrong denominators;
and (3) unknown denominators. Missing denomina-
tors are numbered among the more frequently found
flaws in data analysis. When denominators are miss-
ing, for whatever reason, numerators may be found
serving in their stead, and the proportions and per-
centages derived from these numerators are mistak-
enly interpreted as rates [1, pp. 289–313]. Confusion
results when the misinformed reader tries to interpret
these so-called rates; for example, proportional rates
[2, pp. 248–257].

Suppose that physicians compared rates of a new
infectious disease (ID) among diabetics and nondi-
abetics in their clinic and found that diabetics were
ill more frequently with this disease. Based on these
numerator data, they might wrongly conclude that
morbidity rates from this ID were higher among
diabetics. However, these data indicate only that
diabetics account for the largest proportion of the
cases. To compare rates of disease occurrence, the
missing denominator data, representing the exposed
population (the total numbers of diabetics and nondi-
abetics served by the clinic and “at risk” for the ID)
must be supplied. If many more diabetics than nondi-
abetics attended the clinic, when one takes into con-
sideration the magnitudes of the denominators, non-
diabetics could have the higher morbidity rate for the
ID despite having the lower number of actual cases.

The wrong denominator is likely to be used
when the population exposed to risk cannot be
estimated adequately. Suppose, for example, that a
clinic reported rates of disease Z of four per 1000 vis-
its among men but two per 1000 visits among women.
Whereas disease Z may account for a greater per-
centage, (or, proportional rate) of visits by men than
women, one cannot conclude that the prevalence rate
for disease Z is twice as high in men than in women.
These percentages are based on those who presented
for evaluation and treatment, and may be specific for
this clinic (sometimes called “treated prevalence”).
The appropriate denominators for prevalence rates
are based on the total numbers of “at risk” men and
women in the community served by the clinic, rather
than on the number of visits. The two sexes may have
similar prevalence rates for disease Z, but because
women may visit the clinic for all causes more often
than men do, proportionately more men than women
present with disease Z.

Another instance of the wrong denominator in-
volves mortality (also, morbidity) rates. The mortality
rate for a disease is calculated as the number of deaths
due to the specific cause divided by the population
at risk for the specific cause of death. Thus, the
mortality rate is a measurement of the absolute risk
for death from a specific cause (see Vital Statistics,
Overview). If the number of deaths due to a specific
cause is divided by the number of deaths due to all
causes, the result is a proportion instead of a rate.
Proportional mortality rates indicate the percentage
of deaths due to a given cause in relation to other
(or all) causes of death. It has also been argued that
cause-specific mortality rates, themselves, are not the
most accurate reflection of the risk of mortality, and
that it would be more meaningful to use the risk of
exposure to a specific cause as the denominator term
[1, p. 277]. However, population data often are the
only denominator data available in sufficient detail to
allow rates to be compared.

The unknown denominator problem occurs when
rates are derived from data that may have been dis-
torted by selection bias. In other words, one may
be misled by the cases one has at hand. For exam-
ple, consider 100 depressed patients who initially
responded to electroconvulsive therapy (ECT) and
later experienced relapse. Prior to relapse and sub-
sequent referral to a consulting psychiatrist, 50 were
prescribed maintenance antidepressant therapy after
ECT and 50 were not. The consultant may conclude
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that maintenance drug treatment does not improve
post-ECT one-year remission rates. However, main-
tenance therapy failures may represent a relatively
small fraction of those so treated, compared with
those who do not receive post-ECT antidepressant
treatment, most of whom will relapse within one
year. The fallacy is in calculating relapse rates with-
out knowing the denominator; that is, deriving rates
from the number referred for consultation instead of
from the population at risk (the number who received
each treatment regimen). Those responding to treat-
ment without suffering a relapse will not be in this
psychiatrist’s series.
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Density Estimation

Density estimation is the fitting of a probability
density function (pdf), f (x), to data. We have the
choice of performing a parametric or nonparametric
fit. In common usage, the phrase density estimation
usually refers to the nonparametric methodology,
which is the focus of this article. We introduce
the classic nonparametric estimator, the histogram,
and outline its theoretical properties as well as
good practice (see Frequency Distribution). We
demonstrate how to improve the histogram, leading
to our discussion of popular kernel methods. We
conclude with a bivariate example, a way of choosing
smoothing parameters, and new directions that
promise further improvements (see Nonparametric
Regression).

Why choose nonparametric over parametric
density estimation? Parametric density estimation
requires both proper specification of the form
of the underlying sampling density, fθ (x), and
estimation of the parameter vector θ . Parametric
modeling entails two risks of bias: in estimation
of θ and incorrect specification of fθ (see
Misspecification). Nonparametric density estimation
provides a consistent algorithm for nearly any
continuous density and avoids the specification
step. Although the cumulative distribution and
probability density functions carry the same
information, densities are more easily interpreted than
distributions, especially in more than one dimension,
so our focus on the density is appropriate.

Density estimation is broadly applicable for
exploring data relationships, presenting data sum-
maries, and constructing sophisticated nonparamet-
ric models of biostatistical data (see Exploratory
Data Analysis). Graphical representation of data
is a powerful tool for summarization. Three simple
exploratory graphical summaries are the box-and-
whiskers plot (or boxplot), the stem-and-leaf plot,
and the histogram. Consider the cholesterol levels
of 320 males with diagnosed coronary artery dis-
ease [21]. Figure 1 displays a boxplot of these data.
The data appear symmetric with a few outliers. The
various percentiles displayed in the boxplot do not
hint of any unusual feature such as we see in Figure 2
in the right histogram, which shows mild evidence
of bimodality (see Mode); however, even with 320
observations, the weight of evidence is probably not

0
0

0
0

100

C
ho

le
st

er
ol

 (
m

g/
dl

)

200

300

400

Figure 1 Boxplot of log10 cholesterol data (n = 320)
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Figure 2 Two histograms of the cholesterol data with
the same bin width but shifted meshes. The first appears
Gaussian; the second appears bimodal

strong. Observe that the two histograms have the
same bin width, but their meshes are shifted. The
stem-and-leaf plot (not shown) indicates specific data
values but otherwise has no frequency information
beyond the histogram.

Histogram

A histogram is the simplest density estimator and is
one example of a frequency curve, using tabulation of
data in bins. Frequency curves have had an important
role to play since their introduction by John Graunt,
who searched for patterns of death in the Bills of
Mortality collected during the London plague of the
seventeenth century. Graunt performed a primitive
survival analysis by grouping age of death in five-
year-wide intervals. Here we highlight the theoretical
properties of a histogram.

Given a sample x1, x2, . . . , xn contained in an
interval (a, b), the histogram is constructed over
a partition {tk} of (a, b) into M intervals, Bk =
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[tk−1, tk), such that a = t0 < t1 < . . . < tM = b. Let
the bin width of Bk be denoted by hk = tk − tk−1. Let
the bin count be denoted by νk , so, that

∑M
k=1 νk = n.

Then the histogram estimate of the density, f (x), is
given by

f̂H(x) = νk

nhk

= νk

n(tk − tk−1)
, x ∈ Bk,

and zero outside [a, b). Observe that f̂H satisfies
both conditions of a density function as f̂H ≥ 0 and∫

f̂H = 1.
Usually, all the bin widths are chosen to be

equal, hk = h, as in the stem-and-leaf plot. While
any choice of the bin width will produce an infor-
mative diagram, the notion of an optimal bin width
has been studied extensively [6, 17]. At each point
x, f̂H (x) is generally biased, so that the mean square
error (MSE) is an appropriate criterion. A Taylor’s
series analysis reveals that the sum of the point-
wise variance and squared bias decomposition is
given by

MSE[f̂H(x)] = f (x)

nh
+ 1

12
h2f ′(x)2.

(Terms omitted are of lower order n−1.) If h is too
large, then the histogram has too few bins and is
“oversmoothed” – exhibiting low variance but high
bias. However, if h is too small, then f̂H (x) has too
many bins and is “undersmoothed” – suffering high
variance.

For an entire histogram, the pointwise mean
squared error criterion may be integrated to give a
global criterion, the integrated mean squared error
(IMSE):

IMSE(f̂H) =
∫ ∞

−∞
MSE[f̂H (x)] dx

= 1

nh
+ 1

12
h2R(f ′),

where R(f ′) = ∫ ∞
−∞ f ′(x)2 dx is referred to as the

“roughness” of the unknown density function. Ordi-
nary calculus reveals the optimal bin width

h∗
H(f ) = 61/3R(f ′)1/3n−1/3.

The optimal IMSE decreases to zero at the rate n−2/3,
far short of the usual parametric rate of n−1. Only
one function of the unknown density is relevant to
the optimal bin width.

Using a normal density, φ = N(µ, σ 2), as a
reference, R(φ′) = 1/(4π1/2σ 3), so that

h∗
H(φ) = 3.5σn−1/3.

In practice, the unknown standard deviation, σ , is
replaced by the sample standard deviation or a robust
estimate. This formula is more general and useful
than its motivation might suggest. By considering all
possible densities in h∗

H(f ), it has been found that
h∗

H(φ) is within 7% of a theoretical upper bound [27].
Thus for real data, use of h∗

H(φ) will almost always
result in mild oversmoothing of the data. In no case
should a wider bin width be selected. More refined
choices will be discussed in the section Choosing
Smoothing Parameters below.

Improvements on Histograms

Frequency Polygon

A continuous version of the histogram is the
frequency polygon (FP), which is formed by
interpolating the midpoints of a histogram. The
theoretical properties of the frequency polygon are
superior to the histogram. Scott [18] showed that its
IMSE decreased at the much faster rate of n−4/5, and
that h∗

FP(φ) = 2.15σ n−1/5. (This is within 8% of the
oversmoothed upper bound bin width.) The optimal
frequency polygon uses wider bins than the optimal
histogram. (The optimal histogram requires more and
narrower bins to try to approximate the density where
the slope is greatest.)

Averaged Shifted Histogram (ASH)

Both the histogram and frequency polygon share
a second design parameter that can have a large
visual impact, especially for small sample sizes, as
demonstrated in Figure 2. This parameter is the bin
origin, t0. For a fixed bin width, there is an unlimited
number of possible choices for t0 in the interval
(a − h, a]. In many situations, t0 may be viewed as a
nuisance parameter. Scott [19] proposed averaging
over shifted meshes to eliminate the bin edge effect.
To be specific, form a finer (narrower) mesh of width
δ = h/m for some positive integer m, and let Bk and
νk refer to this new, finer set of bins. Then for x ∈ Bk ,
there are m different histograms with bin width h =
mδ that cover (include) bin Bk . The bin counts for



Density Estimation 3

these m shifted histograms are (νk−m+1 + · · · + νk) to
(νk + · · · + νk+m−1). A little algebra reveals the mean
or averaged shifted histogram (ASH) as

f̂A(x) = 1

m

m−1∑

j=1−m

(m − |j |)νk+j

nh

= 1

nh

m−1∑

j=1−m

(
1 − |j |

m

)
νk+j , x ∈ Bk. (1)

Figure 3 displays an example for m = 14 for the
cholesterol data as in Figure 2. The estimate is not
only visually smoother and more appealing than the
histogram, but also shares the improved theoretical
properties of the frequency polygon, while, in fact,
being about 20% more efficient. The two modes are
more clearly uncovered.

Kernel Estimator

As m → ∞, the ASH takes on an equivalent and
widely studied form. Since νk is either 0 or 1 in
the limit (excluding ties), the sum in (1) can be
re-expressed as a sum over the n data points:

f̂K(x) = 1

nh

n∑

i=1

K

(
x − xi

h

)
, (2)

with K(t) = [1 − |t |]+, where [x]+ is the positive
part of x, or zero. This so-called kernel estima-
tor was extensively studied by Rosenblatt [12] and
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Figure 3 Weighted average of 14 shifted histograms
of the cholesterol data. The weights {wm(j)} used were
derived from the kernel K(t) = 315/256(1 − t2)4 accord-
ing to (3)

Parzen [11] although first proposed in a technical
report by Fix & Hodges [5]. Similar ideas were
more developed in spectral density estimation at that
time (see Spectral Analysis). The parameter h is no
longer a bin width, per se, and is called a smoothing
parameter.

The kernel density estimator turns out to be quite
general. Any probability density that is square inte-
grable can be selected for the kernel. The usual
requirements are that

∫
K = 1 and

∫
xK = 0. Pick-

ing a symmetric probability density satisfies both.
Even higher order rates of convergence such as n−8/9

are possible if
∫

x2K = 0, but such kernels must take
on negative values.

Apparently, the kernel estimator is a mixture of
n densities, each centered on a data point. Compu-
tationally, kernel estimation can be quite expensive
for large samples. Prebinning the data is an accepted
technique for speeding the evaluation. This is equiv-
alent to the ASH with weight function wm(j) =
1 − |j |/m in (1) replaced by

wm(j) = mK(j/m)

m−1∑

i=1−m

K(i/m)

(3)

for kernels defined on [−1,1]. Fast Fourier trans-
formations may be used if the kernel is the Gaussian
probability density function (pdf) [22].

There are many other techniques based on filtering
or orthonormal estimation, but these may be shown to
be equivalent to the use of a particular “equivalent”
kernel function. Recent interest in the use of wavelets
as an orthonormal basis illustrates the generality of
kernel methodology (see Orthogonality).

Multivariate Density Estimation

The kernel estimator has a simple extension to two
dimensions (and similarly for more dimensions) by
using a bivariate probability density, K(x, y), as the
kernel:

f̂K(x, y) = 1

nhxhy

n∑

i=1

K

(
x − xi

hx

,
y − yi

hy

)
, (4)

where each coordinate direction has its own smooth-
ing parameter. Some authors [29] advocate the use of
the correlation coefficient as an additional smoothing
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Figure 4 Bivariate averaged shifted histogram of choles-
terol and triglyceride blood concentrations for 320 patients
as in earlier figures. At least two patient clusters are
suggested

parameter. Similarly, the averaged shifted histogram
may be defined by averaging over histograms shifted
along both the x and y axes. The latter is illustrated
in Figure 4 on the coronary artery disease data. (The
bivariate kernel was taken as the product of two uni-
variate kernels used in Figure 3.) The bivariate ASH
clearly reveals the nonnormality of the data, suggest-
ing an extra mode or two much more strongly.

Examples in three and four dimensions, includ-
ing visualization, with applications to clustering,
discrimination, and regression are presented by
Scott [20].

Choosing Smoothing Parameters

A good deal of research has appeared on improved
and automatic algorithms for choosing h in (1), (2),
and (4). Some focus on plug-in estimates of quantities
such as R(f ′), while others rely on modification of
maximum likelihood or information measures.

We mention only one method, least-squares
cross-validation, which if not the most efficient
procedure, is clearly the most general and widely
applicable. The IMSE criterion is the average of the
integrated squared error (ISE) between f̂h and f :

ISE(h) =
∫

[f̂h(x) − f (x)]2 dx

=
∫

f̂h(x)2 − 2
∫

f̂h(x)f (x) dx

+
∫

f (x)2 dx

= R(f̂h) − 2Ef̂h(X) + R(f ).

Rudemo [13] and Bowman [1] observed that the third
term, R(f ), is constant for all choices of h and can
be ignored. The first integral is directly computable
as h varies. Finally, the second term has an unbiased
estimator:

− 2

n

n∑

i=1

f̂h,−i (xi),

where f̂h,−i (xi) is the density estimate based on the
n − 1 points with xi omitted. For the histogram, the
least-squares cross-validation functional is

CV(h) = 2

(n − 1)h
− n + 1

(n − 1)n2h

∑

k

ν2
k .

The functional can be immediately extended to
pick the bin origin, t0, as well. The minimizer of
CV(h) may be found by grid search or numerical
methods (see Optimization and Nonlinear Equa-
tions). Several CV formulae for kernel estimates,
including the multivariate case, are given in Sain
et al. [14].

New Directions and Resources

Locally adaptive density estimation will play an
increasingly important role now that that technology
has begun to appear. Promising approaches include
plug-in [16], log spline [9], wavelet [8], local like-
lihood [8, 10], and local CV bandwidths [15]. The
reader is cautioned about overfitting difficulties, as
many degrees of freedom are consumed during the
estimation of the adaptive smoothing parameters
(either explicitly or implicitly). A more conservative
approach is to follow some of the simple transforma-
tion ideas of Wand et al. [30].

Historical information and greater detail are avail-
able in the following selection of monographs: Tapia
& Thompson [25], Silverman [23], Devroye [2],
Härdle [7], Scott [20], Tarter & Lock [26], Wand &
Jones [29], Fan & Gijbels [4], and Simonoff [24].
These references also discuss the wide array of
closely related nonparametric techniques including
regression, spectral densities, time series, cluster
analysis, discrimination, and survival and hazard
estimation. Software is available in packages such as
SAS, S-PLUS, and Systat, for example, or at internet
sites such as statlib and netlib.
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Density Sampling

Density sampling is a method of sampling controls
in a case–control study. Controls are sampled from
the population at risk at the times of incidence of
each case or, as is more common in practice, over the
period of accrual of the cases. Time-matched analysis
of such case–control data yields unbiased estimates
of the relative hazard (or incidence density ratio),
even when the disease is common [1–4]. An advan-
tage of density sampling is that it can reduce bias
from secular changes in the prevalence of exposure
during the course of the study [1].
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Dermatology

Dermatology is the branch of medicine that is con-
cerned with the physiology and pathology of the
skin. It is estimated that one in three Americans
has a skin condition serious enough to warrant a
visit to a physician and that 10% of visits to physi-
cians are at least in part for skin complaints [12].
The most common diseases seen by dermatologists
include acne vulgaris, veruca vulgaris (warts), psori-
asis, nonmelanoma skin cancer (basal and squamous
cell skin cancer), dermatitis, dermatophytosis (fun-
gal infections of the skin), and actinic keratoses [9].
Thus, commonly encountered skin diseases arise from
a wide variety of etiologies. For example, warts and
dermatophytosis are infections of the skin caused by
human papilloma virus and fungi, respectively; non-
melanoma skin cancers are due to a combination
of factors including genetic predisposition and expo-
sure to ultraviolet light; and dermatitis is commonly
caused by delayed type hypersensitivity (allergy) to
a wide variety of chemicals.

Several statistical techniques and methodologies
are heavily utilized in the study of skin diseases.
Paramount among them are use of case–control stud-
ies and multivariate analysis to identify risk and
prognostic factors in melanoma, development of
tools to assess skin disease activity and response to
treatment, and the use of linkage analysis to iden-
tify genetic defects responsible for hereditary skin
diseases.

There were approximately 38 300 new cases of
malignant melanoma and 7300 deaths attributed to
it in the US in 1996. The incidence and mortality
rates of melanoma have risen steadily since 1930.
Finding ways to identify patients at highest risk
and to identify alterable risk factors are important
since early diagnosis and adequate surgical resection
remain the best ways to treat melanoma. However,
the development of melanoma is a complex trait
that involves the interaction of genetic and environ-
mental factors (see Gene-environment Interaction).
Therefore, carefully conducted case–control studies
have been essential to identify important risk factors
for the development of melanoma. Odds ratios are
highest for a family or personal history of atypical
moles and melanoma, a family or personal history
of melanoma, presence of atypical melanocytic nevi
or many melanocytic nevi, a history of multiple sun

burns, and intermittent, intense sun exposure [15, 16,
20]. Families that have a genetic susceptibility for
developing melanoma have been identified [10, 14,
17]. These families have members who have multiple
atypical nevi and have a lifetime risk of developing
melanoma that approaches 100%. Many family mem-
bers develop multiple melanomas.

Many methods have been advocated to predict the
prognosis (see Predictive Modeling of Prognosis)
of patients with melanoma. The tumor type, level of
invasion, location, clinical features, thickness, cyto-
logic characteristics and lymph node involvement
have all been used and advocated as prognostic indi-
cators. No single factor will predict accurately the
outcome for all patients. Multivariate analyses of sev-
eral large cohorts of melanoma patients were, there-
fore, essential in identifying the best indicators of
prognosis in patients with melanoma. They have iden-
tified tumor thickness (from the top of the granular
layer to the bottom of the tumor) as the best indicator
of prognosis in patients with stage I melanoma (local-
ized disease with no clinical or histopathologic lymph
node involvement). The pivotal studies of Breslow
and others have been confirmed by several groups
and have established that the five-year survival of
patients with tumor thickness of less than 0.75 mm,
0.76 mm–1.5 mm, 1.51 mm–3.99 mm and greater
than 4 mm were 100%, 90%–94%, 76%–83%, and
40%, respectively [2, 4–6, 18]. Whereas the utility
of tumor thickness as a prognostic indicator has its
detractors [11] it remains the best and most widely
used indicator.

Two principal methods are used to assess skin
disease activity and to determine patient outcomes in
dermatologic clinical trials [1, 3] (see Clinical Trials,
Overview). The first involves examining patients
before, during, and at the conclusion of treatment,
and reporting how the patients appear at the various
time points. The second involves determining the
degree of improvement during treatment or during the
observation period. An example of the first method
was developed to assess the response of psoriasis
to novel treatments. The psoriasis area and severity
index (PASI) assigns numerical values to the amount
of erythema, scaling, and degree of infiltration and
multiplies them by the area of the body surface
involved to formulate an “index” of the patient’s
condition [8]. The PASI ranges from 0 to 72. The
major problem with indices is that they confound
area of involvement with severity of disease. For
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example, a patient with thick plaque-type psoriasis
of the knees, elbows and scalp may have the same
index as a patient with diffuse but minimal psoriasis
of the trunk and arms [1, 3]. The second problem with
indices is that they lend an undeserved air of precision
to the analysis and presentation of data [1, 3]. For
example, Tiling-Grosse & Rees [19] demonstrated
that physicians and medical students were poor at
estimating the area of skin disease and, therefore,
some of the components that make up indices may be
inaccurate. Finally, calculating the means, differences
in means, and percentages of change in indices in
response to treatment may not convey an accurate
clinical picture of the changes that have occurred.
The major limitations of the use of the second method
(determining the degree of improvement) are that the
categories of improvement are often not well defined
and that the categories are often assumed to be, but
are, in fact, not, additive [1, 3]. That is, 60%–80%
improvement is often assumed to be twice as good as
20%–40%, although no such numerical relationship
exists between these subjectively defined categories.
To overcome some of the limitations of currently
utilized methods, some groups are beginning to use
quality of life assessment tools to assess skin disease
activity [7].

As in other fields of medicine, clinical trials are the
best sources for determining the best available treat-
ments in dermatology. However, published clinical
trials should be approached with a sense of skep-
ticism. In many reviews of clinical trials, they often
are found to be poorly performed or reported. Specific
methods must be employed in the conduct of clinical
trials to lead to valid conclusions. There are many
practical and logistical difficulties inherent in con-
ducting therapeutic trials in dermatology, including
limited numbers of patients, difficulties in measuring
the outcome of treatment (see Outcome Measures in
Clinical Trials), and difficulties in blinding. Adher-
ence to all recommended methods is not always
possible. However, investigators must provide read-
ers with adequate information about the methods
employed in published clinical trials. Several fea-
tures strengthen clinical trials and help validate their
conclusions. These features include proper selection
and allocation of patients, inclusion of an appropriate
control group, randomization, prior selection of clin-
ically and biologically important outcome variables,
blinding of assessment when possible, consideration

of patient compliance and dropout, and proper pre-
sentation and statistical analysis of results [3].

Linkage analyses (used in conjunction with
positional cloning) have aided in the identification
of the genetic causes of many skin diseases.
Linkage analysis consists of finding a model M1 (of
inheritance of a gene of interest and a phenotype of
interest) that is much more likely to have produced
the observed data than a null hypothesis M0 (in which
the inheritance of an unrelated gene has no linkage to
the phenotype) [13]. The evidence for the hypothesis
is measured by the lod score [log10 (likelihood ratio
of the hypothesis vs. the null hypothesis; where the
likelihood ratio = Pr(data|M1/ Pr(data|M0)))]. Lod
scores >3 are conventionally considered significant.
Analyses are facilitated with the use of available
computer programs (LIPED and LINKAGE) [13]
(see Software for Genetic Epidemiology). Linkage
analyses have aided in the identification of the genetic
deficits that are responsible for the basal cell nevus
syndrome, several forms of epidermolysis bullosa,
several of the icthyoses, some cases of Waardenberg’s
syndrome, dyskeratosis congenita, and pachyonychia
congenita. It has also identified possible genetic loci
for psoriasis.
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Descriptive Epidemiology

Descriptive epidemiology is the study of the inci-
dence and prevalence of diseases and associated mor-
tality in populations. Unlike analytic epidemiology,
descriptive epidemiologic studies usually do not rely
on individual-level data, for example on exposures,
disease outcome, and potential confounders. Instead,
descriptive studies estimate the risk of disease in var-
ious groups defined by age, gender, and ethnicity (see
Ethnic Groups), evaluate time trends in disease rates,
identify geographic localization of populations with

high rates of disease (see Geographic Patterns of
Disease), and attempt to correlate disease rates in
populations with features of the population, such as
the average level of exposure to a potential carcino-
gen. Descriptive studies are used to determine the
effectiveness of programs to control disease (see Pro-
gram Evaluation), and descriptive studies are used
to generate etiologic hypotheses that are then tested in
analytic studies (see Age–Period–Cohort Analysis;
Correlational Study; Ecologic Study).

MITCHELL H. GAIL



Design Effects

For an estimator, x̂, under a particular sampling
design, D, the design effect (denoted DEFF) is
defined as the ratio of the variance of the estimator
under the particular sampling design to its variance
at equivalent sample size, n, under simple random
sampling without replacement (see Sampling With
and Without Replacement) [2–4]. That is:

DEFFD(x̂) = varD(x̂)

varSRS(x̂)
, (1)

where DEFFD(x̂) is the design effect for an estimate,
x̂, under sample design, D; varD(x̂) is the variance of
x̂ under the sample design, D; and varSRS(x̂) is the
variance of x̂ under simple random sampling without
replacement.

The comparable ratios of standard errors, gener-
ally denoted DEFT, is referred to as the design factor.

A design effect greater than unity indicates that the
particular sample design would yield an estimate hav-
ing higher variance than what would be obtained from
a sample of the same number, n, of units under sim-
ple random sampling. Conversely, a design effect less
than unity would imply that the particular sampling
design would result in the estimate having a lower
variance than what would be obtained under simple
random sampling. Design features such as stratifica-
tion generally result in design effects less than unity,
whereas cluster sampling in its many manifestations
generally produces design effects greater than unity.
Again, the above comparisons are made at equiva-
lent n, whereas it may be more appropriate to make
comparisons at equivalent cost (see Multistage Sam-
pling).

The variance of a sample mean under simple ran-
dom sampling is equal to (S2

x/n) × (1 − f ), where
S2

x = ∑N
i=1(Xi − X)2/(N − 1), N is the population

size, X is the population mean, and f is the sampling

fraction, n/N . Thus the design effect for a sample
mean under a particular design, D, is given by

DEFFD(x) = varD(x)

(S2
x/n) × (1 − f )

. (2)

From (2), we see that varD(x) can be put in the
following form:

varD(x) = S2
x(1 − f )

n∗ , (3)

where n∗ = n/DEFFD(x) is known as the effective
sample size. Since the numerator of (3) is that of
the numerator for the variance of the estimator under
simple random sampling, the effective sample size
for the design tells us that a sample of n units under
the particular design is equivalent to a sample of n∗
units under simple random sampling. For example, if
the design effect for a particular multistage sampling
design is 2.8, then a sample of 100 units under this
design is equivalent to a sample of 40 units under
simple random sampling.

Design effects have been estimated numerically
for many important surveys and for many variables
(see, for example, Groves & Kahn [1]). These are
very useful in the planning of sample surveys, partic-
ularly in determination of required sample sizes (see
Sample Size Determination).
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Detection Bias

Detection (also called diagnostic or unmasking)
bias results from closer follow-up or more intense
scrutiny of one comparison group than another. In
a case–control study, the detection of a higher
proportion of subclinical outcomes among the
exposed leads to an overrepresentation of exposed
cases relative to exposed controls in the study
population. In a cohort study, as subjects are
followed over time for the occurrence of a disease,

subjects who develop unrecognized subclinical
disease would be misclassified as nondiseased. If
exposed subjects are under greater scrutiny than the
unexposed, then they may be less likely to have
such undiagnosed subclinical disease. This implies
that detection bias can lead to selection bias in a
case–control study, and can also be a source of
differential misclassification in a follow-up study (see
Misclassification Error).
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Diagnosis Related Groups
(DRGs): Measuring
Hospital Case Mix

Introduction

The Diagnosis Related Group (DRG) system consti-
tutes an approach to measuring hospital case mix,
which may be understood as a “system for separat-
ing hospitalized patients into unique groups based on
their diagnoses and procedures” [5]. Case-mix mea-
surement has been identified by Hornbrook [9] as one
of the three fundamental dimensions of hospital out-
put, the other two being volume and quality. While
volume is straightforward and refers to the total num-
ber of patients treated by the hospital, the definition
of case mix and quality are more complex. Horn-
brook defines quality as “the hospital’s contribution
to the successful outcome or resolution of patients’
illnesses or health problems” [9, p. 295] and case mix
as “the proportion of cases of each disease and health
problem treated in the hospital” [9, p. 296].

While recognizing the importance of all dimen-
sions of hospital output, in particular, the issue
of quality of care, this paper will focus on one
particular dimension, that is, the specification of hos-
pital case mix and, in particular, the DRG case-
mix classification system. The DRG system came to
international prominence in 1983 when this was the
chosen approach for case-mix adjustment within the
Prospective Payment System introduced within the
Medicare program by the US government. While
DRGs have been shown to be amenable to a wide
range of applications, the strength of the system in
providing an accessible framework for the determi-
nation of resource requirements for different patient
types has meant that it has been increasingly used
within the United States and overseas by payment
bodies interested in applying a case-mix adjustment
within their reimbursement systems.

DRGs: Development and Construction of
an Operational Case-mix Measure

If classes of patients that share common clinical
attributes can be differentiated according to the “bun-
dle” of services received as part of the therapeu-
tic process, this framework constitutes the basis for

a case-mix classification scheme that “provides a
means for examining the products of the hospi-
tal, since patients within each class are expected to
receive a similar product” [3]. The hospital prod-
uct can therefore be defined by the development
and application of a case-mix classification system
consisting of discrete classes of patients exhibiting
common clinical attributes and similar output utiliza-
tion patterns.

The complexity of both illness and the therapeu-
tic process means that, in turn, the development of
a system for classifying case mix is a complicated
undertaking. The development of the DRG patient
classification system by the Health Systems Manage-
ment Group at the Yale School of Organization and
Management in the late 1960s was originally moti-
vated by the need to develop operational techniques
for utilization review. The importance of developing
an explicit link between the clinical characteristics of
patients and their use of hospital resources was rec-
ognized as an essential prerequisite to the evaluation
of the appropriateness of service utilization within the
hospital setting [4].

In developing a classification system for the defi-
nition of case types within the acute hospital setting,
the following attributes were specified for the system
by the Health Systems Management Group [3]:

1. The system must be interpretable medically, with
subclasses of patients from homogeneous diag-
nostic categories;

2. Individual patient classes should be defined on
variables commonly found on hospital abstract
systems and relevant to output utilization;

3. The number of classes in the system must be
manageable, mutually exclusive, and exhaustive;

4. The classes should be constituted by patients with
similar expected measures of output utilization;

5. Class definitions should be comparable across
different coding schemes.

Variable Specification and Measurement

The independent variables (see Explanatory Vari-
ables) used for the purpose of specifying a system to
achieve these objectives were selected to be descrip-
tive of the patient, of the patient’s disease condition,
and of the treatment process. In addition, it was
considered essential that information relating to the
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selected variables should be easily available on dis-
charge abstract summaries if the resultant system was
to be available for general application. The initial
stages of the analyses identified a number of variables
which, in descriptive studies of hospital activity, had
been found to be associated with variations in length
of stay and other resource use measures [3]. Ulti-
mately, a set of independent variables were identified
as representing the essential demographic and clini-
cal attributes of inpatients. These variables include
the following: primary diagnosis, secondary diag-
noses, surgical procedures performed, age, sex, and
discharge status.

For the specification of an accurate and acceptable
measure of hospital case mix, a measure of hospital
output had to be incorporated within the develop-
ment process. To place the choice of output measure
for the purpose of case-mix measurement in con-
text, it may be useful at this point to consider the
hierarchy of hospital output classification schemes
constructed by Hornbrook [8]. This hierarchy fol-
lows the sequence of the medical care process and
begins with iso-symptom groups, progressing through
to iso-disease groups and iso-illness groups. When
iso-illness groups are collapsed into classes that are
homogeneous in terms of the level of resources used
in treatment, iso-resource groups are produced. The
DRG system fits into this category, as homogeneity
with respect to clinical attributes is an essential pre-
requisite for class determination, with the additional
expectation that resource use at the group level will
also be relatively homogeneous.

For the development of the iso-resource groups,
or DRGs, limitations on data availability meant that
the options available for choosing an appropriate
dependent variable (see Response Variable) were
restricted. While costs may be a most desirable mea-
sure of output, accurate and comprehensive data on
costs for a representative sample of hospitals are very
difficult to obtain. Even where cost data are avail-
able, it can be very difficult to interpret because of
variations in the method of collection and estima-
tion. These data problems led to the Yale researchers
choosing length of stay (LOS) as the measure of out-
put to be used as the dependent variable [3]. Length
of stay, as a measure of output, has the advantage of
being standardized, reliable, and routinely available
on discharge abstract summaries. In addition, length
of stay and ancillary service use have been found to

be significantly interrelated for a number of common
medical and surgical conditions [6, 7].

The DRG Assignment Process

In developing a classification system with the required
attributes, three key inputs were required: physician
review, efficient information systems, and statisti-
cal algorithms. The objective of ensuring that the
patient groups formed by the classification process
were medically meaningful was the responsibility of
panels of physicians established for this purpose. The
basic framework for DRG assignment may be sum-
marized as follows:

Step 1: Hospital discharges are partitioned into mutu-
ally exclusive and exhaustive primary diagnostic
groupings called Major Diagnostic Categories
(MDCs). The MDCs were specified under the fol-
lowing conditions [3]:

1. Major Diagnostic Categories must be consistent
with regard to the anatomic, physiopathologic
classification, or in the manner in which they are
clinically managed;

2. Major Diagnostic Categories must have sufficient
numbers of patients; and

3. Major Diagnostic Categories must cover all codes
without overlap.

There are currently 25 MDCs [11]. This classi-
fication is primarily based on the organ system or
the specialty that would usually provide patient care.
There are a number of exceptions including MDC
12 (Diseases and Disorders of the Male Reproduc-
tive System) and MDC 13 (Diseases and Disorders
of the Female Reproductive System), where urogen-
ital conditions are split on the basis of the sex of
the patient.

Step 2: Where relevant, discharges within the MDC
are subdivided according to whether or not a surgical
procedure was performed. For specific MDCs, there
are some exceptions to this initial major procedure
split, for example, MDC14 (pregnancy, child birth,
and the puerperium) where the initial split is “delivery
during this admission?”.

Step 3: Coming into this level, there are two groups
within most MDCs – the medical group and the sur-
gical group. During this stage, the medical patients
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are further subdivided into categories based on their
principal diagnosis. Surgical patients are categorized
according to the procedures performed. The proce-
dures, in turn, are ranked in terms of resource inten-
sity. Surgical patients are categorized into subgroups
on the basis of the most resource intensive procedure
received, which is related to the primary diagnosis.

Step 4: The final stage in the classification involves
the derivation of additional diagnostic or surgical sub-
groups based on age, specific secondary diagnoses,
comorbidities or complications (CC), nonoperating
room procedures, and discharge status where these
variables have been found to be significant in clinical
terms and have a significant effect on length of stay.

While this process of assignment represents the
generic framework underlying the original develop-
ment of the DRG system, this system has evolved into
a number of manifestations in response to increasing
demands on patient classification systems to address
a wide range of requirements including (see [1])

• the comparison of hospitals across a range of
resource and outcome measures,

• evaluation of differences in inpatient mortality
rates,

• the implementation and support of critical
pathways,

• facilitation of continuous quality improvement
projects,

• support of internal management and planning
systems,

• management of capitated payment systems, and
so on.

Up to the development of the eighth version of
the DRG system (in 1990), the principal diagno-
sis was the initial variable in DRG assignment. For
the eighth and subsequent versions, the procedure
performed, if any, is the initial step in DRG assign-
ment. In particular, where liver, bone marrow, and
lung transplants, together with tracheostomies are
performed, the patients are assigned to the relevant
DRGs independent of the MDC of the principal diag-
nosis (3M, 1998).

Experience with a wide range of DRG appli-
cations has now developed into an extensive lit-
erature and reflects the variety of such applica-
tions in different settings and different countries.
One of the early examples of experimentation with
DRGs on a European database involved analyses for

selected high-volume pathologies on a multinational
database including over 3.3 million cases from 12
countries [14]. Differences in length of stay both
within and between countries were assessed for three
alternative measures of hospital case mix applied to
over 119 400 discharges for three surgical DRGs
(DRG 39 lens procedures, DRG 198 cholecystec-
tomy without common duct exploration (CDE), with-
out complication/comorbidity (CC), and DRG 119
vein ligation and stripping) and two medical DRGs
(DRG 294 diabetes age >35 years and DRG 122 cir-
culatory disorders with acute myocardial infarction
(AMI), without cardiovascular complications, dis-
charged alive). The results showed that irrespective
of the case-mix measure applied, substantial unex-
plained variation in hospital length of stay persisted
leading to the conclusion that in addition to stan-
dardizing for case mix, future research on this issue
should also focus on additional potentially influen-
tial factors, including health system characteristics,
medical practice variation, and patient behavior and
expectations.

DRG Grouper Development

Developments in the DRG system are a reflection
of the evolution in potential applications as well
as developments in expertise, information technol-
ogy, and data systems. Six main categories of DRG
system, as developed in the United States, may be
identified [1]

• Medicare DRGs
• Refined DRGs (RDRGs)
• All Patient DRGs (AP-DRGs)
• Severity DRGs (SDRGs)
• All Patient Refined DRGs (APR-DRGs)
• International Refined DRGs (IR-DRGs).

The Medicare DRGs are the closest to the system
originally developed in the 1980s and continue to
constitute one of the most widely used groupers cur-
rently. Following the implementation of the Medicare
prospective payment system in 1983, responsibility
for the maintenance and modification of this system
became the responsibility of the Health Care Financ-
ing Administration (HCFA). (HCFA is now known as
the Centers for Medicare and Medicaid Services.)

There are currently over 500 groups within the
Medicare DRG system that is updated annually.
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Under a grant from HCFA to Yale University,
the Refined Diagnosis Related Groups (RDRGs)
were developed in the mid-1980s incorporating a
revised specification of complications and comorbidi-
ties. Essentially, this system involved the categoriza-
tion of the secondary diagnosis groups as moderate,
major, or catastrophic [1]. All age and CC splits were
eliminated and replaced by four subgroups for surgi-
cal patients (non-CC, moderate CC, major CC, and
catastrophic CC) and three subgroups for medical
patients (non-CC, moderate or major CC and catas-
trophic CC). The number of groups in the RDRGs
approximates 1170 and as there is no single source
for this system, versions produced by different ven-
dors may differ.

During the late 1980s, a version of the HCFA
DRGs was amended under contract with the National
Association of Children’s Hospitals and Related Insti-
tutions (NACHRI). A New York (NY) grouper was
also developed around this time in response to legisla-
tive changes in the state of New York. These groupers
form the basis for what have become known as the
All Patient (AP) DRGs.

Given the origins of this system, it is not sur-
prising that the AP-DRGs are more differentiated to
reflect factors like birth weight that are considered
significant in a neonatal and pediatric population. In
addition, some of the advancements emerging from
the development of the RDRGs, specifically, the des-
ignation of major CC splits, have also been incor-
porated into subsequent revisions to the AP-DRGs,
which now number over 650 groups.

In the mid-1990s, a severity refined (SR) DRG
system was developed following a reevaluation of
the complications and comorbidities within the HCFA
DRGs. When finalized, this system incorporated over
650 groups, though while published by HCFA in
1994, an implementation date was not established and
the system has not subsequently been updated [1].
The All Patient Refined Diagnosis Related Groups
(APR-DRGs) took as the starting point the AP-DRGs
and focused on development to take account of sever-
ity of illness or risk of mortality. Within this system,
a discharge is assigned three distinct descriptors:
the base APR-DRGs, the severity-of-illness subgroup
and the risk-of-mortality subgroup. Averill [1] notes
with regard to APR-DRG assignment that “The most
important component of determining the final patient
subgroup is the recognition of the impact of inter-
actions among secondary diagnoses” (p. 399). Each

base APR-DRG may have four severity subgroups
representing minor, moderate, major, or extreme
severity of illness or risk of mortality amounting to
a total of around 1530 APR-DRGs.

The system known as the International Refined
Diagnosis Related Groups (IR-DRGs) had a some-
what different starting point to other such systems in
that it was originally designed for use in the inter-
national health setting and, specifically, to be com-
patible with differences in coding schemes used in
different health systems. The development of the IR-
DRGs took as the starting point the AP-DRG concept,
applied refinements to the base DRGs, and under-
took a consolidation process for the complication
and comorbidity splits (CC), the major complication
and comorbidity splits (MCC), the age splits and the
DRGs founded on the complicated Principal Diagno-
sis [12]. Unlike previous DRG systems in this series,
which were developed from US databases, data from
a number of European countries were used for the
development of the IR-DRGs, which currently incor-
porate over 900 groups.

Conclusion

In addition to being applied extensively throughout
North America, the case-mix systems described here
are now also widely used internationally, particularly
in Europe and Australia [13]. Many European coun-
tries employ some form of case-mix adjustment
for hospital financing and/or management purposes,
while local applications may include support for clin-
ical budgeting, waiting-list reduction, increased pro-
ductivity, and so on [10]. In Australia, states like
Victoria and South Australia use case mix for hos-
pital payment purposes in addition to supporting a
range of management functions.

Outside of the United States, Australia is prob-
ably the country where the most extensive DRG-
type development programme has been underway
since the early 1990s. Following the initial release
of the Australian National Diagnosis Related Groups
(AN-DRGs) in 1993, this system was updated annu-
ally until 1996. The Australian Refined Diagnosis
Related Groups (AR-DRGs) were then developed and
a biennial update schedule put in place for subse-
quent revisions [2]. Since the mid-1990s, the total
number of groups has remained stable at around
660 and there are currently 23 MDCs within the
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AR-DRG system. While retaining the “DRG” label,
it should be noted that the Australian system is
now distinctly different from the US-developed sys-
tems described above. Specifically, the AR-DRGs
are based on an Australian morbidity coding sys-
tem (International Statistical Classification of Dis-
eases and Related Health Problems, 10th Revision,
Australian Modification (ICD-10-AM)) and groups
discharges based on data items including diagnoses
(up to 30 per record), procedures (up to 30 per
record), sex, age, mode of separation, length of stay,
leave days, admission weight, mental health status,
and same-day status [2]. As the Australian DRG sys-
tem is copyrighted to the Commonwealth of Australia
(Department of Health and Ageing), detailed infor-
mation on the specifics of the system and updates
applied can be found on the government’s case mix
internet site, www.health.gov.au/casemix. (see
International Classification of Diseases (ICD))

While the US-developed DRG systems are widely
used internationally, the Australian DRG system is
also being adopted for use in a number of coun-
tries. Specifically, the Australian DRG system is
used in New Zealand, a number of Asian countries
and the German government has adopted this sys-
tem with some local modifications for use within the
German health system. A number of European coun-
tries have also developed case-mix systems for use
within national health systems. While systems like
the Nord DRGs developed and used in the Nordic
countries and the Groupes Homogenes de Malades
used in France could be considered to fall within the
DRG-type framework, other systems like the Leis-
tungsorientierte Krankenanstaltenfinanzierung (LKF)
in Austria, the Health Resource Groups in England,
and the Diagnose Behandelings Combinatie (DBC)
in the Netherlands pursue quite different approaches.
Given the dynamic nature of health service devel-
opment, case-mix measures generally and DRG-type
systems specifically may be expected to continue to
evolve in response to advancements in diagnoses,
treatment innovations, and technological develop-
ments. Given the range of case-mix measures now
applied internationally, it would also be expected
that continuing diversification of case-mix-type sys-
tems like DRGs will become increasingly in evidence
with improvements in the availability of high-quality

activity and cost data systems, developments in the
skills base, and better access to the appropriate infor-
mation technology.
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Diagnostic Test Accuracy

A diagnostic test is said to have high accuracy if it
achieves a high overall proportion of correct diag-
noses. The accuracy of a test reflects the prevalence
of disease in the population being tested and the
conditional misclassification rates for true cases and
noncases of disease, or equivalently on the preva-
lence, and the test sensitivity and specificity. Because
the clinical implications are quite different for a
false positive diagnosis on a noncase compared to

a false negative diagnosis for a disease case, diag-
nostic test performance is usually not summarized
by an overall accuracy index, but by more detailed
measures, such as sensitivity and specificity, false
positive and negative rates, predictive values, or by
its receiver operating characteristic (ROC) curve.

(See also Gold Standard Test; Diagnostic Tests,
Evaluation of; Diagnostic Tests, Multiple)

STEPHEN D. WALTER



Diagnostic Test Evaluation
Without a Gold Standard

Diagnostic tests are an important part of medical
decision making. In daily clinical practice many tests
are performed to obtain diagnoses. To interpret a test
it is important to realize that a negative answer does
not always mean that the disease is absent, because
false negative results may occur. Also, a positive
result does not always mean that disease is present.
A finding usually associated with a disease sometimes
occurs in patients who do not have the disease: a false
positive result.

A perfect test is positive in all patients with the
disease and negative in all patients who do not have
the disease. Usually this test is referred to as the
gold standard. After applying the gold standard
test one knows which patients have the disease and
which patients are free of it. However, most tests
are imperfect. Measures to assess the performance of
a diagnostic test are sensitivity and specificity. The
sensitivity of a test is defined as the proportion of
positive test results in those with the disease. The
specificity is defined as the proportion of negative
test results in those without the disease. To measure
the sensitivity and specificity of a test for a disease,
the test’s results are compared with those on a gold
standard test, as shown in Table 1. The sensitivity is
the ratio of the number of patients with true posi-
tive tests and the number of diseased patients. The
specificity is the ratio of the number of patients with
false negative tests and the number of nondiseased
patients.

Problems arise when the sensitivity and the speci-
ficity of the reference test are unknown. The 2 × 2
table of test vs. reference test contains too little
information to estimate all unknown parameters, even
if the prevalence of the disease is known.

Hui & Walter [3] pointed out that the parameters
can still be estimated for two tests if data can be
collected from populations with different prevalences
and it can be assumed that the test errors are condi-
tionally independent given the disease status.

Notation

Let D stand for disease status; D = 1 if diseased and
D = 0 if not. Let Ti stand for the result of test i, i = 1
or 2; Ti = 1 if the test is positive and Ti = 0 if the
test is negative. The sensitivity of test i is denoted by
SENSi and the specificity by SPECi , i.e. SENSi =
Pr(Ti = 1|D = 1) and SPECi = Pr(Ti = 0|D = 0).
Let there be G subpopulations (groups) indexed by g

with prevalences πg = Pr(D = 1| group g). Under
conditional independence of T1 and T2 given D,
the probabilities in the T1 × T2 contingency table in
group g are given by

Pr(T1 = t1, T2 = t2|group g)

= πg × SENSt1
1 × (1 − SENS1)

1−t1

× SENSt2
2 × (1 − SENS2)

1−t2

+ (1 − πg) × (1 − SPEC1)
t1 × SPEC1−t1

1

× (1 − SPEC2)
t2 × SPEC1−t2

2 . (1)

Estimation

The ng observations in group g follow a 4-nomial
distribution (see Multinomial Distribution) with
these probabilities for the four cells. The number of
parameters is G + 4 (G prevalences, two sensitivi-
ties, and two specificities). The number of degrees
of freedom is 3G, so the minimal requirement for
identifiability of the model is that G ≥ 2. If at
least two prevalences are different, identifiability is
indeed obtained, provided that it is assumed that

Table 1 The relationship between the results of a test and gold standard

Results of gold standardResults of test for
disease under study Disease present Disease absent Total

Positive True positive False positive Positive tests
Negative False negative True negative Negative tests

Total Diseased patients Nondiseased patients



2 Diagnostic Test Evaluation Without a Gold Standard

SENS + SPEC > 1. (See [3] for the invariance of
the problem under “reflection with respect to 1/2”.)
The parameters can be obtained by direct maximum
likelihood applied to the joint likelihood of the G

tables, as proposed by Hui & Walter [3] for the case
when G = 2.

In de Bock et al. it is shown that the estima-
tion problem can be solved elegantly by the EM
algorithm [2]. Multinomial distributions with amal-
gamated cells is one of the examples given in that
paper. The EM algorithm considers the true disease
status D of all individuals as the missing observation.
If this information were available, the data for each
group could be conveyed in the 2 × 2 × 2 table of
T1 × T2 × D.

The M-step of the EM algorithm estimates all
parameters in a straightforward way. Let Xg,ijk be
the number in the ijk-cell of the gth 2 × 2 × 2 table.
The index i (0, 1) corresponds to T1, index j to test
T2, and k to disease D. Let “+” stand for summation;
then the estimates are given by

π̂g = Xg,++1

Xg,+++
, (2)

̂SENS1 =
∑

g

Xg,1+1

/∑

g

Xg,++1,

i.e.
number positive on T1 and diseased

number diseased
, (3)

and

̂SPEC1 =
∑

g

Xg,0+0

/∑

g

Xg,++0,

i.e.
number negative on T1 and not diseased

number not diseased
, (4)

and similarly for SENS2 and SPEC2.
In the E-step, the full table Xg,ijk is reconstructed

from the available table Xg,ij+ by

X̂g,ijk = P̂ (D = k|T1 = i, T2 = j, group = g)

× Xg,ij+. (5)

In the estimated probabilities P̂ the parameter esti-
mates from the previous step are used.

For example,

P̂ (D = 1|T1 = 1, T2 = 1, group = g)

= π̂g × ̂SENS1 × ̂SENS2{
π̂g × ̂SENS1 × ̂SENS2 + (1 − π̂g)

×(1 − ̂SPEC1) × (1 − ̂SPEC2)

} . (6)

The EM algorithm converges in a slow but sure way
to the ML estimator. The process can be stopped if
the increase in total log likelihood is smaller than
some prespecified ε. To compute the standard errors
of the estimated parameter, second derivatives of log
likelihood have to be used as in Hui & Walter [3].
The advantages of EM are that it is very easy to
program, and that the estimates never exceed the
boundaries of the parameter space.

Generalizations

De Bock et al. [1] generalized the situation sketched
above to the case where there are more than two
tests, and in each group test results are available for
precisely two tests. The generalization of the EM
algorithm is straightforward.

A second generalization can be made by relax-
ing the condition of conditional independence. The
model can be extended by introducing odds ratios
lambda (λ) in the conditional 2 × 2 tables to model
the dependency. The simplest model is when λ is
constant. An extension would be to have different
λs for diseased (D = 1) and not diseased (D = 0).
See LeCessie & van Houwelingen [4] for a gen-
eral discussion on modeling dependence in 2 × 2
tables.
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Diagnostic Tests,
Evaluation of

The field of diagnostic medicine is complex. In part,
this is due to the fact that the process of medical
diagnosis is dynamic, and it is difficult to formu-
late straightforward scientific questions amenable to
simple study designs. For example, in interpreting
the result of an individual test the doctor must con-
sider the context in which it is applied. Has it been
selected to rule-in or rule-out a diagnosis? What other
tests have already been performed and what were
their results? What options are available for perform-
ing subsequent tests? What are the characteristics
of the patient that might predispose to the diagno-
sis under consideration? The evaluation of a test in
the context of other tests is addressed elsewhere (see
Diagnostic Tests, Multiple). In this article, discus-
sion is limited to evaluation studies of individual
tests, or comparisons of two alternative tests. Fur-
thermore, we consider only diagnostic tests, i.e. tests
of symptomatic patients in which we wish to rule-in
or rule-out a candidate diagnosis. This contrasts with
screening tests, performed on asymptomatic normal
subjects, e.g. the use of mammography on a popula-
tion at risk of breast cancer (see Screening Benefit,
Evaluation of; Screening, Models of; Screening,
Overview).

Many diagnostic tests, especially radiologic and
psychometric tests, are evaluated subjectively, lead-
ing typically to test results that are classified in
ordinal categories which are defined verbally. This
contrasts with tests which possess quantitative results,
as is the case for most laboratory tests. In either case,
a useful conceptual device is to consider the test as
having an underlying continuous scale, which may be
discretized into ordinal categories either by judgment
or by arithmetic rounding. The underlying continuous
scale provides a metric for trading off the two differ-
ent kinds of errors of diagnosis, false positives and
false negatives, and thus for establishing a scale on
which to calibrate the results of alternate tests for the
purposes of comparison. The notation defined below
reflects this assumption. There are various outcomes
that can in principle be used to evaluate and compare
the utility of medical diagnostic tests. The ultimate
outcome involves evaluating whether use of the test,
and the subsequent impact on medical therapy, leads

to improvements in the natural history of the disease,
e.g. lower mortality from the disease. It is rare for
tests to be evaluated against this standard. Even stud-
ies of the impact of individual diagnostic tests on
patient management are unusual. Overwhelmingly,
medical researchers have been satisfied with eval-
uating tests on the basis of measures of diagnostic
accuracy. In the following we thus limit attention to
the issue of diagnostic accuracy.

Measures of Accuracy

Consider a diagnostic test result denoted x, and
let D be a binary indicator of the “true” disease
status, where D = 1 represents disease and D = 0
represents absence of disease. Let Fx(x) = Pr(X ≤
x|D = 1) be the distribution of the test result in dis-
eased cases, and let Gx(x) = Pr(X ≤ x|D = 0) be
the corresponding distribution in “control” subjects,
i.e. patients suspected of having the disease who are
candidates for testing in the relevant medical con-
text. The most commonly used measures of accuracy
are based on a binary classification of the test result.
Suppose that the classification point is x, i.e. the test
is positive if X > x and negative otherwise. Then
the sensitivity of the test is defined to be the pro-
portion of diseased patients who are classified as
diseased, i.e. 1 − Fx(x). The specificity is the cor-
responding proportion of control patients who are
classified as normal, i.e. Gx(x) [25]. High values of
the sensitivity and the specificity indicate an accu-
rate test.

There are several other measures in common usage
related to the sensitivity and specificity. The false
positive ratio is the specificity subtracted from 1, i.e.
1 − Gx(x). The false negative ratio is the sensitiv-
ity subtracted from 1, i.e. 1 − Fx(x). “Prospective”
measures of accuracy are defined in terms of the con-
ditional probabilities that the patient is diseased given
the test results [22]. Thus the positive predictive
value is

Pr(D = 1|X ≥ x)

= π(1 − Fx(x))

π[1 − Fx(x)] + (1 − π)[1 − Gx(x)]
,

where π = Pr(D = 1) is the “prior” probability of
disease, i.e. the prevalence of disease in the popu-
lation under study. Likewise the negative predictive
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value is defined to be

Pr(D = 0|X ≤ x) = (1 − π)Gx(x)

(1 − π)Gx(x) + πFx(x)
.

In fact, the term “accuracy” is often used in medical
circles to mean the overall relative frequency of
correct diagnosis in a study. That is, if A(x) is the
accuracy, then

A(x) = π[1 − Fx(x)] + (1 − π)Gx(x).

Finally, the likelihood ratio can be used to represent
the extent to which the odds of disease is altered
as a result of the test, via Bayes’ Theorem [19]
(see Diagnostic Tests, Likelihood Ratio). In the
context of a binary test there are two likelihood
ratios, corresponding to a negative and a positive test
result, Fx(x)/Gx(x) and [1 − Fx(x)]/[1 − Gx(x)],
respectively.

Clearly, all of these measures are limited by the
fact that they correspond to a specific, and possibly
arbitrary, classification point, x. For the likelihood
ratio in particular, knowledge of the actual test result,
X, leads obviously to a more appropriate factor for
updating using Bayes Theorem, i.e. fx(X)/gx(X),
where fx(·) and gx(·) are the corresponding density
functions of the test result. Likewise, changing the
classification point will either increase the sensitiv-
ity at the expense of the specificity, or vice versa,
with corresponding effects on the error rates and the
predictive values. The arbitrariness of the classifica-
tion point is especially a problem when diagnostic
tests are being compared, or when the same test
is used in different studies with different classifi-
cation points since the classifications for the two
tests are unlikely to be “calibrated” in practice (see
later discussion). For this reason receiver operating
characteristic (ROC) curve analysis has become a
preferred method for evaluating and comparing tests.
The ROC curve is a plot of Fx(x) vs. Gx(x). If
the ROC plot lies along the 45° line, then the test
is random and hence uninformative. The higher the
curve lies above the 45° line, the more accurate is the
test. Thus the area under the curve is often used as a
measure of accuracy that does not require a specific
classification point. The area, A, is given by

A = 1 −
∫ 1

0
Fx(x) dGx(x). (1)

The area can be interpreted as the probability that
a randomly chosen diseased subject has a test result

that is greater than that of a randomly chosen control
subject [11].

Biases

Despite the availability of the various measures of
accuracy described in the previous Section, diagnostic
tests are characterized predominantly by their sensi-
tivities and specificities in the literature. These are
often reported on the basis of a retrospective anal-
ysis of a series of patients treated in a hospital or
clinic, and may suffer from incomplete reporting of
study details, especially the factors affecting selection
of patients for inclusion in the analysis. However,
regardless of the quality of the studies, it is empir-
ically evident that the ranges of values reported for
the sensitivity and specificity of any important diag-
nostic test are usually very wide. A typical example
is presented in the meta-analysis of the use of myel-
ography for the detection of lumbar disk herniation,
where the sensitivity estimates ranged from 75% to
98%, and the specificity estimates ranged from 20%
to 100% [14]. Wide variation in reported estimates is
due to the fact that studies of diagnostic test accu-
racy are plagued by a number of common biases [3].
These have been studied extensively in recent years,
and various methods have been proposed for provid-
ing bias corrections.

Perhaps the most important factor causing varia-
tion in reported estimates of sensitivities and speci-
ficities is the fact that the classification point for the
test may differ dramatically from study to study. This
is, of course, not really a bias, but merely a defini-
tional problem, and one that can be resolved in the
meta-analytic context by plotting the pairs of sen-
sitivity/specificity estimates in an ROC format [13].
Usually this will demonstrate the fact that sensitivi-
ties and specificities are inversely related, due to the
fact that the classification point varies from study to
study. Ideally, the classification points used would
be defined in the individual studies, but often this is
not the case. Indeed, for subjectively interpreted tests,
the classification point (or points) cannot be defined
precisely, and can only be inferred empirically. If
variation in the reported sensitivities and specificities
is due only to variation in the classification points
used, then the plotted values should lie on a single
ROC curve, except for random variation in the esti-
mates. However, a much wider scatter is common,
and this can be due to a number of possible biases.
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Perhaps the most common biases are those due
to problems with the “gold standard” reference test
(see Gold Standard Test). These fall into two major
categories: the problem of verification bias in which
only a selected subset of patients receive the reference
test and where unverified patients are ignored, and the
problem in which the reference test is recognized to
be an imperfect standard.

Verification bias is an especially serious problem
since it has a counterintuitive aspect (see Bias in
Observational Studies). The bias is caused if the
selection of patients to receive the reference test is
influenced by the result of the test under investiga-
tion [18]. If the study is restricted to patients who
receive the reference test, say biopsy proven cases,
then the study is biased, yet many investigators will
believe that such a restriction follows sound scientific
practice. It is often impossible to design an unbi-
ased study since application of the possibly invasive
reference test may be unethical when the test under
investigation is negative. That is, the risks or incon-
venience of the reference test may be considered to
be medically inappropriate in the absence of a posi-
tive test. The standard bias correction method is based
on the assumption that selection of a patient for the
reference test is a conscious decision, and must there-
fore be based on available clinical factors, such as the
test result, x, and the results of other relevant tests or
patient factors, denoted collectively by z [5]. Conse-
quently, the predictive values, conditional on x and
z, can be estimated without bias from the verified
sample, denoted v+, i.e.

Pr(D = 1|x, z, v+) = Pr(D = 1|x, z),

and so unbiased estimates of the distributions Fx(·)
and Gx(·) can be obtained by combining these unbi-
ased predictive values with the distribution of the
test result unconditional on disease status, denoted
hx|z(x), estimated from all subjects, both verified and
unverified, using

fx|z(x) ∝ hx|z(x) Pr(D = 1|x, z, v+)

and

gx|z(x) ∝ hx|z(x) Pr(D = 0|x, z, v+).

Clearly, such an approach requires that data be col-
lected on the test results and covariates of all patients
in the series on whom the test is applied, regardless of
whether the reference test is performed subsequently.

All of the accuracy measures described earlier are
defined in relation to a “gold standard” reference
test. Inaccuracy in the reference test will invariably
lead to bias in the estimated characteristics of the
test under consideration. If conditional independence
between the two tests can be assumed, then bias
corrections are possible. However, this assumption
is usually untenable since most tests of the same
phenomenon are likely to be positively correlated,
even after conditioning on true disease status [24].
In these circumstances, the effect of the bias will
be to inflate the sensitivity and specificity estimates
artificially.

In evaluating the reported accuracy of diagnos-
tic tests there are a number of other issues that
can adversely affect the validity of the estimates,
or cause further between-study variation in accu-
racy measures. Frequently, a test may produce an
uninterpretable result. For example, for abdominal
examinations bowel gas may obscure the result of
ultrasound [17]. Barium in the gastrointestinal tract
may obscure the result of computed tomography. A
needle aspirate for the diagnosis of hepatic cancer
may produce fragments which are inadequate for his-
tological examination [20]. These problems are fre-
quently not reported, the uninterpretable tests being
simply removed from the analysis [17]. For subjec-
tively interpreted tests, interobserver variation (see
Observer Reliability and Agreement) can have a
substantial impact. This may be reflected by vari-
ation in the empirical classification points used, or
by genuine variation in accuracy, or both, and only
ROC analysis can resolve these issues. Finally, the
accuracy of a test may change over time, due to
improvements in the ability of the readers to make use
of the technology, or due to technological enhance-
ments. For example, it is widely accepted that the
quality and resolution of mammograms has improved
markedly during the three decades since they became
available, and the published accuracy results reflect
this trend [9].

Comparisons of Tests

Consider two diagnostic tests, with results denoted
by x and y. Parameters of test y have corresponding
notation to those of test x, as defined earlier. Compar-
ison of the two tests on the basis of accuracy requires
that we calibrate the classification points used, oth-
erwise, for example, the sensitivity of test x may be
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larger than that of test y merely because the classifi-
cation rule was more strict for test x. ROC analysis is
a natural way of calibrating the comparison, and this
is the reason for its use as the definitive analytic tool.

Calibration of the comparison at a specific clas-
sification point is achieved by equating the marginal
distributions of the two tests, where the prevalence of
disease is standardized. Let the marginal distributions
be defined by

Mx(x) = πFx(x) + (1 − π)Gx(x),

and

My(y) = πFy(y) + (1 − π)Gy(y). (2)

Let xz = M−1
x (z) and yz = M−1

y (z). Then xz and yz

represent the classification points corresponding to
the zth quantile of these marginal distributions, i.e.
Mx(xz) = My(yz), for all z. It is easily seen from
Eq. (2) that if the sensitivity of test x is greater
than the sensitivity of test y at this quantile, then the
specificity of test x is also greater than the specificity
of test y, i.e.

1 − Fx(xz) > 1 − Fy(yz) ⇐�⇒ Gx(xz) > Gy(yz).

Thus the tests are fully equivalent if and only if
1 − Fx(xz) = 1 − Fy(yz) and Gx(xz) = Gy(yz), for
every value of z, i.e. throughout the entire ROC
curve. The preceding theory relies on π being com-
mon to the two tests. In a comparison study this
is necessarily true in the paired-sample design (see
Crossover Designs), and indeed this design is the
common design in comparison studies for reasons of
efficiency [12].

The widely used methods developed for ROC
analysis have mostly focused on comparing the areas
under the ROC curves rather than comparisons at
different calibrated quantiles. In fact, if one con-
structs the combined ranked sample of test results
for a given test, i.e. combining diseased and normal
subjects, and then evaluates the Wilcoxon statistic
for comparing diseased and normal subjects (see
Wilcoxon–Mann–Whitney Test), then this statistic
is the area under the nonparametric trapezoidal ROC
curve [2]. The asymptotic variance of this statistic is
well known under the null hypothesis that the test is
uninformative, i.e. the area is 0.5, and can be mod-
ified easily for the more common circumstance in
which the area is substantially greater than 0.5 [11].

In the paired-sample setting, i.e. where both diagnos-
tic tests are applied to each subject, the correlation
between the test results within each subject must be
taken into account, and methods have been developed
specifically for this purpose [7].

Parametric methods are also widely used, primar-
ily based on the binormal model. In this model it
is assumed that if the distribution of tests results in
normal (control) subjects is transformed to a standard
normal distribution, then the same transformation
on the diseased subjects will also lead to a normal
distribution, with mean µx and variance σ 2

x , say, for
test x [8]. In this case the area under the ROC curve
is given by

A = Φ

(
µx

(1 + σ 2
x )1/2

)
,

where Φ(·) is the standard normal distribution func-
tion. However, it is conventional to test for equiva-
lence of the ROC curves by simultaneously testing
that µx = µy and σ 2

x = σ 2
y , rather than simply test-

ing for equality of the areas. In the paired sample
setting the two test results are assumed to have corre-
sponding bivariate normal distributions in the dis-
eased and nondiseased populations, with correlation
parameters to account for the within-patient depen-
dencies [16]. Widely distributed noncommercial soft-
ware is available for performing these analyses [15].

Finally, methods have recently been proposed for
testing the equivalence of the two tests at all pos-
sible classification points in a nonparametric fash-
ion, using bootstrapping techniques [6]. This can be
accomplished for continuous paired data by permut-
ing within pairs the ranks of the marginal rank order
statistic, and obtaining a permutation test [23]. Such
an analysis does not rely on the comparison of a sum-
marized (parametric) measure of accuracy, such as
the area or the binormal parameters as outlined above.

Study Design

In designing a study to evaluate or compare diag-
nostic tests, great care is necessary to ensure that
the data are collected in a format suitable for resolv-
ing the problems and biases outlined in the previous
Section. A source of detailed practical advice, with
an emphasis on radiologic imaging studies, is the text
by Swets & Pickett [21]. A recent trend has been
the development of multi-institutional field studies,
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which parallel the early development of multicenter
trials, and which have provided guidance on the orga-
nizational and methodologic challenges of large-scale
accuracy studies [10].

There are five general issues pertinent to compar-
ative studies of diagnostic tests: representativeness of
the sample; completeness of data reporting; record-
ing of test results; mapping of test results to “truth”
data; and control of the comparison. First, represen-
tativeness is especially important since the ease with
which a patient can be diagnosed accurately varies
widely from patient to patient, and so a nonrepre-
sentative sample of patients could substantially bias
the estimates of accuracy. Secondly, completeness
of data recording and reporting is important in the
context of verification bias and the problems of unin-
terpretable test results. In cases where verification
bias might be a problem, the ideal study is one in
which we can be sure that all patients are sched-
uled for the definitive reference test (e.g. surgery)
prior to the conduct of the tests under evaluation,
otherwise the missing data are likely to be selec-
tive, i.e. not missing at random. Thirdly, as we have
seen, valid comparison of tests is only possible if a
“calibrated” analysis is achievable, i.e. using ROC
analysis. Therefore, the test data must be collected in
sufficient detail to facilitate such an analysis. That is,
binary reporting of test results (positive or negative)
is inadequate, and a minimum requirement is sev-
eral ordinal classifications. Fourthly, it is critical that
the data from the experimental tests and from the
reference test are recorded in a manner that permit
meaningful correlation. In medical imaging studies
(see Image Analysis and Tomography), this means
that a precise anatomical mapping of the results is
possible. For example, if the purpose of the study
is not only to detect disease, but to localize it, each
of the test results, including the reference test, needs
to be recorded for each of the anatomic regions of
interest. Thus, careful form design (see Question-
naire Design) and data collection is essential. Fifthly,
if the tests under evaluation are interpreted subjec-
tively, it is critical that evaluation of the second test
is accomplished without knowledge of the first. Thus,
blinding the test readers, or randomization of the
test order, is necessary to prevent bias.

Finally, as is the case for all research studies, an
adequate sample size is necessary to reduce statistical
variation in the accuracy estimates to a level that
permits meaningful interpretation of the data (see

Sample Size Determination). Various methods for
calculating study power are available [11, 15, 21].

Current Developments

There has been a substantial recent increase in
research activity in the biostatistical literature on
methods pertaining to the evaluation of diagnos-
tic tests. The major themes of this work were
summarized in a recent review article [4]. Even
more recently, an issue of Academic Radiology was
devoted to statistical developments in this field per-
tinent to medical imaging studies [1]. All of the
articles addressed either one of two topics: covari-
ate analysis of ROC curves, including models for
accommodating random effects, such as test read-
ers; and meta-analysis of diagnostic tests. Interest
in covariate modeling stems from recognition of the
fact that studies of the accuracy of diagnostic tests can
be influenced by multiple factors. Meta-analysis is
important in recognition of the fact that there exists a
vast literature of published diagnostic accuracy stud-
ies, and we need methods that can synthesize these
results reliably, in recognition of the limitations and
biases that may be present in the individual studies.
The field promises to continue to be an active area
of biostatistical research in the foreseeable future.
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Diagnostic Tests,
Likelihood Ratio

The use of sensitivity and specificity to quantify
the performance of a diagnostic test in relation to
the true presence or absence of a specific disease is
now well established in the medical literature. The
emphasis on the formal evaluation of the information
yielded by a diagnostic test and its incorporation into
the diagnostic process has been an important theme
in what is now called clinical epidemiology [4]. A
renewed methodologic interest in the evaluation of
diagnostic tests has led to alternative approaches
being proposed, both to quantify test performance
and to compare more easily the relative merits of
competing tests [2]. One of these newer techniques is
the use of likelihood ratios [1]. The objective of this
article is to define the likelihood ratio in the context
of a diagnostic test, to explain its use in the diagnostic
process, and to contrast it with other techniques (see
Diagnostic Tests, Evaluation of).

The Diagnostic Process

The term “diagnostic test” is used here to denote
any item of diagnostic information derived from
patient history, physical examination, biochemical or
histologic examination of tissue, blood, or urine, or
some sort of imaging. For example, a clinician might
use the presence or absence of heart murmur to help
diagnose a defective heart valve or a test that detects
the presence of a normally intracellular enzyme in
the blood of a suspected heart attack victim. In these
situations the clinician would modify his/her degree
of belief that the patient has the disease of interest
on the basis of the test result. This might lead in turn
to the immediate application of therapy, a decision
to conduct further diagnostic testing which is usually
more costly and/or more invasive (e.g. a coronary
angiogram or ultrasound) but more definitive, or
possibly to cease further workup on the grounds that
the disease is unlikely to be present.

The result of the diagnostic test may be inherently
dichotomous (e.g. the presence or absence of a
physical sign), ordinal (e.g. the grade of murmur), or
purely quantitative, as in the case of many laboratory
tests. Despite this quantification, test results are often
dichotomized into so-called positive and negative

results based on some predetermined cutpoint. The
choice of cutpoint may be fairly arbitrary (e.g. the
95th percentile for “normal” patients) or selected
to yield the best discrimination between truly
diseased and not diseased subgroups. Optimally
chosen cutpoints would, in addition, take into account
the “costs” associated with the consequences of
subsequent clinical decisions and the true disease
status.

Clearly, the dichotomization of a test result dis-
cards some of the diagnostic information but it allows
the clinician to incorporate more easily the test infor-
mation into the diagnostic process. Dichotomization
allows the performance of the test to be quanti-
fied and the straightforward computation of post-test
probability of disease by Bayes’ theorem [3].

Sensitivity, Specificity, and Predictive
Value

In the context of a dichotomous diagnostic test, sensi-
tivity and specificity define the test’s inherent ability
to be positive when disease is truly present and neg-
ative when it is absent. In other words

sensitivity = Pr(positive test | disease present)

= 1 − β,

specificity = Pr(negative test | disease not present)

= 1 − α.

The complementary probabilities are analogous to the
type I (α) and type II (β) errors in the context of
hypothesis testing, hence the notation.

Suppose we have a population of patients in which
a proportion, p, truly have a particular disease and the
remainder, 1 − p, do not. In other words, the back-
ground prevalence of disease is p. If the diagnostic
test was conducted on each member of the popula-
tion, then the distribution of the test results that would
occur is displayed in Table 1. The expression within
each cell of the table represents the proportion of the
population with a particular combination of test result
and true disease status. Note that the tacit assumption
here is that the sensitivity and specificity are known
for the test in this population.

Faced with a diagnostic challenge for an individ-
ual patient in this population, the physician would
start from the prior expectation, p, that the dis-
ease is present. This would then be modified in
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Table 1 Test results in patients with and without disease

Disease status
Diagnostic Predictive value
test result Present Absent (post-test probability)

Positive p(1 − β) (1 − p)α
p(1 − β)

p(1 − β) + (1 − p)α

Negative pβ (1 − p)(1 − α)
pβ

pβ + (1 − p)(1 − α)

the light of the test result for the patient, increas-
ing the probability of disease if the test was posi-
tive and reducing it if it was negative. Exactly how
much the prior probability is modified in the light
of the test result depends on the test’s sensitivity
and specificity. In the population as a whole, the
proportion p(1 − β) + (1 − p)α would test positive;
of this total, p(1 − β) would actually have the dis-
ease (true positives) and (1 − p)α would not (false
positives). Thus, given a positive test, a proportion
p(1 − β)/[p(1 − β) + (1 − p)α] would truly have
the disease. Similarly, a proportion pβ/[pβ + (1 −
p)(1 − α)] would have the disease in those who
tested negative. These quantities are referred to either
as post-test probabilities or predictive values and by
inspection can be seen to result from a direct appli-
cation of Bayes’ theorem.

Post-Test Odds

Odds are an alternative way of expressing the likeli-
hood of an event. Saying that an event has odds of one
to three of occurring (i.e. an odds of 1/3) is equivalent
to saying the probability is one quarter. Probabilities
are thus converted to odds by the relationship

odds = probability

1 − probability
,

and odds back to probability by

probability = odds

1 + odds
.

If, in the diagnostic situation above, we express
the post-test chance of disease in terms of odds, then
we produce the following expressions:

post-test odds(positive test)

= p(1 − β)/[p(1 − β) + (1 − p)α]

(1 − p)α/[p(1 − β) + (1 − p)α]

= p

1 − p
× 1 − β

α

= pre-test odds × sensitivity

1 − specificity
.

The quantity sensitivity/(1 − specificity) is called
the likelihood ratio (LR) for a positive test result. A
similar calculation for the odds of disease given a
negative test result leads to

post-test odds(negative test)

= p

1 − p
× β

1 − α

= pre-test odds × 1 − sensitivity

specificity

and the quantity (1 − sensitivity)/specificity is called
the likelihood ratio for a negative test result.

A Numerical Example

The present-day horseshoe crab (Limulus Polyphe-
mus) remains virtually unchanged from its primeval
ancestors. Its primitive defenses include a blood-
clotting mechanism designed to isolate and encap-
sulate certain types of bacteria infecting its blood
stream. A purified extract of horseshoe crab blood
forms the basis of the limulus lysate test for detecting
the presence of gram-negative infections in humans.
This test can yield a result in about one hour com-
pared with two or three days for the definitive blood
culture. In a recent study of febrile patients, the
limulus test was found to have sensitivity 79% and
specificity 96% in a population with a 4% prevalence
of septicemia [6]. Thus, using the post-test probabil-
ity expressions above, we have

Pr(septicemia | positive test)
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= 0.04 × 0.79

0.4 × 0.79 + (1 − 0.04)(1 − 0.96)

= 0.4514,

Pr(septicemia | negative test)

= 0.04 × (1 − 0.79)

0.04 × (1 − 0.79) + (1 − 0.04) × 0.96

= 0.0090.

In other words, a positive test would increase the
probability of septicemia from 4% to 45%, whereas
a negative test would reduce it to less than 1%.
From the quoted sensitivity and specificity:

LR(positive test) = sensitivity

1 − specificity
= 0.79

1 − 0.96

= 19.75,

LR(negative test) = 1 − sensitivity

specificity
= 1 − 0.79

0.96

= 0.2188.

A pre-test probability of 0.04 corresponds to an
odds of 0.04/(1 − 0.04) = 0.0417. The post-test odds
are then:

post-test odds (positive test) = 0.0417 × 19.75

= 0.8236,

post-test odds (negative test) = 0.0417 × 0.2188

= 0.0091.

Conversion from odds back to probability yields the
same probabilities as above. Note that a positive
test causes the odds to be multiplied by almost
20, whereas a negative test requires the odds to be
reduced by a factor of about five.

Generalization of the LR

The initial objective of the diagnostic workup is to
determine the probability that the patient has the dis-
ease in the light of the test result. While sensitivity
and specificity are simple statistics that describe test
performance, their combined influence on post-test
probability is not obvious. By contrast, LR has a
direct multiplicative effect on pre-test odds, making
the impact of the additional diagnostic evidence pro-
vided by the test more apparent. The calculation of

post-test odds can be done approximately using a
little mental arithmetic. Alternatively, simple nomo-
grams are available which convert pre-test to post-test
probability via the appropriate LR [4].

The most important advantage of LR is that it
can be generalized to handle ordinal (see Ordered
Categorical Data) or purely quantitative tests [1].
While the computation of post-test probability via
Bayes’ theorem can incorporate a quantitative test
result, the terms sensitivity and specificity can only
be directly applied if the quantitative test is first
dichotomized at some cutpoint into positive and
negative categories. Other than for simplicity, there
seems little justification for collapsing a quantita-
tive test into this dichotomy. A patient whose test
result was only just over the cutpoint for positiv-
ity would be assigned the same post-test probability
as a patient whose test result was extremely ele-
vated. At some stage the physician must make the
decision whether the patient has, or does not have,
the disease. However, this ultimate dichotomization
should be based on actual post-test probability, not
on the intermediate test result. This issue would
be especially important if the current test was only
one step in a more extensive sequential diagnostic
workup.

For a continuous test result, X, the definition of
LR is

LR(X) = Pr(X| patient diseased)

Pr(X| patient not diseased)
.

These probabilities, and thus the LR, can be estimated
empirically for an inherently ordinal test (e.g. the
traditional +, ++, +++ grading of heart murmur)
or, for a purely quantitative test, by dividing the test
result into subranges. In either case, the post-test odds
are computed as the product of pre-test odds and LR,
but now the LR is computed for the patient’s own
test result, as opposed to an average LR for all test
results above or below a cutpoint.

Empirical LR Estimates

Table 2 shows LR computed for various ranges of
creatine kinase (CK) for patients with and without
myocardial infarction (MI) from a study by Smith [5].
Now, by using the LR for the range of the test result
obtained, one can compute a more specific post-test
probability. Obviously, the more extreme CK value
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Table 2 Creatine kinase (CK) in patients with and without
myocardial infarction (MI)

Proportion of Proportion of
MI patients non-MI patients LR

CK range (A) (B) (A/B)

≥280 97/230 1/130 54.8
0.4217 0.0077

200–279 37/230 2/130 10.5
0.1609 0.0154

120–199 51/230 5/130 5.8
0.2217 0.0385

40–119 43/230 34/130 0.71
0.1870 0.2613

<40 2/230 88/130 0.013
0.0087 0.6769

of ≥280 would lead to a higher post-test probability
of MI compared with a relatively mildly elevated CK
at say 150.

Purely Continuous LR

Although going some way to creating a LR for
each level of the test result, in the example above
we have had to combine patients within a range of
CKs to provide enough data points to estimate the
LR. Conceptually, the purely continuous test result
situation is depicted in Figure 1. The individual test
results for patients with and without the disease form
two continuous distributions where the heights of the
curves at any point are the relative frequencies of
that test result for the populations of patients with
and without the disease. By definition, the LR at
any value of the test result, X, is the ratio of the
relative frequency (i.e. probability density) of X in
the diseased to nondiseased distributions. If the data
for the test results from representative samples of
diseased and nondiseased patients can be adequately
described by some appropriate mathematical model,
then the LR can in turn be described mathematically
at each X. For example, if both samples of test results
were normally distributed with different means and
variances so that

X ∼ N(µ1, σ 2
1 ) for diseased patients,

X ∼ N(µ2, σ 2
2 ) for nondiseased patients,

Nondiseased Diseased

f1
f2

m2 m1

LR (x) =         = f1
f2

f (X | diseased)
f (X | nondiseased)

Figure 1 Likelihood ratio for a quantitative test

then the LR would be

LR(X) =
(
2πσ 2

1

)−1/2
exp

[
− (X − µ1)

2

2σ 2
1

]

(
2πσ 2

2

)−1/2
exp

[
− (X − µ2)

2

2σ 2
2

] ,

which simplifies a little to

LR(X) = σ2

σ1
exp

[−0.5(z2
1 − z2

2)
]
,

where the z1 and z2 are the standardized deviates (see
Standard Normal Deviate) of the test result X with
respect to the diseased and nondiseased distributions,
respectively.

The CK data from Smith are almost perfectly
lognormally distributed with logε CK having mean
= 5.45 and SD = 0.737 for MI patients and mean =
3.19, SD = 1.030 for noninfarct patients. Substitu-
tion of these parameter estimates into the expression
above leads to the continuous curve (Figure 2), which
provides a value for LR corresponding to each indi-
vidual value of the CK test.
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Figure 2 Continuous likelihood ratio curve
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Summary

In its simplest form, LR is a useful measure of the
diagnostic information conveyed by a diagnostic test.
Compared with sensitivity and specificity, it offers
a more interpretable measure of the impact of the
test result on the probability of disease and also a
simplification in the calculation, especially if one is
prepared to think in terms of odds rather than proba-
bility. More importantly, it allows a natural extension
to accommodate truly quantitative test results. The
LR can reflect the diagnostic information at any level
of test result. This leads to a post-test probability
for the actual test result observed in the patient as
opposed to a less specific post-probability computed
from a test result which has been first dichotomized
into positive and negative categories. Full utilization
of the diagnostic information would require knowl-
edge of the LR at each value of X and this may be
quite feasible in many clinical situations.
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Diagnostic Tests, Multiple

In medical practice, diagnostic tests are rarely used
in isolation. Typically, the evidence for forming a
diagnosis comes from multiple sources, in the form
of signs and symptoms and other patient character-
istics, in addition to specific tests that are ordered
to rule in or rule out a candidate diagnosis. Thus,
the evidence from individual diagnostic tests must
be used collectively in forming the diagnosis, and
the statistical dependency of the information from
these multiple sources becomes an important factor
in assessing the weight of evidence. In this article we
consider the two settings in which data from many
diagnostic tests are relevant. In the first, we consider
discriminant analysis, where one wishes to develop
diagnostic rules on the basis of an available data set
encompassing information on multiple tests. In the
second setting we consider the problem of sequen-
tially updating diagnostic probabilities as new tests
are selected and performed in the course of making
a diagnosis for an individual patient.

Discriminant Analysis

The general goal of discriminant analysis is to pro-
vide a statistical framework for characterizing two or
more diagnostic categories on the basis of a set of
diagnostic indicator variables (e.g. diagnostic tests),
either to provide allocation rules, ideally with low
error rates, or to provide realistic probabilities of the
diagnostic categories for an individual (future) patient
to facilitate decisions about medical management of
the patient. Suppose that there is a baseline diagnostic
category, denoted by zero, and an additional t diag-
nostic categories, where zd = 1 is the patient belongs
to the dth category, d = 0, 1, . . . , t , and zd = 0 other-
wise. Let there be p diagnostic test variables, denoted
s = (s1, . . . , sp). Let φd(·) denote generically the
probability of category d given the values of the vari-
ables in parentheses, and let fd(·) denote the corre-
sponding sampling distribution given the diagnostic
category. As examples, φd(s) = Pr(zd = 1|s) is the
probability that a patient with test vector s belongs to
diagnostic category d, while fd(s1|s2, . . . , sp) is the
conditional density function of s1, given s2, . . . , sp,
and zd = 1.

Discriminant analysis is a widely used statistical
technique available in numerous commercial statisti-
cal packages (see Software, Biostatistical). The tra-
ditional formulation involves the assumption of mul-
tivariate normal distributions for fd(s). If a com-
mon covariance matrix across diagnostic categories
can be assumed, then the likelihood ratio distinguish-
ing any two diagnostic categories (see Diagnostic
Tests, Likelihood Ratio) is a linear function of s, and
so allocation of patients into diagnostic categories can
be based on these linear functions. Diagnostic prob-
abilities can then be obtained using Bayes’ theorem
and the prevalences or “prior” probabilities of the
diagnoses. For a review of traditional approaches to
discriminant analysis, see Lachenbruch [6].

An alternative “paradigm” is to model the diagnos-
tic probabilities {φd(s)} directly, using models such
as logistic regression [4]. The linear logistic model,
for example, is consistent with the assumption of
normal sampling distributions with equal covariance
matrices, but is based on a more parsimonious and
directly relevant parameterization than the modeling
of the sampling distributions. Specifically, the simple
linear logistic model is represented as follows:

ln

(
φd(s)

φ0(s)

)
= β0 + β1s1 + · · · + βpsp,

d = 1, . . . , t.

By introducing additional terms the model can
be made more flexible. For example, quadratic
terms or interaction terms could be introduced to
accommodate discrimination between multivariate
normal populations with unequal covariances. Use
of the predicted probabilities of disease categories
obtained from a logistic regression on new patients
requires the assumption that the relative frequencies
of the diagnoses in the “training” data set, denoted
π0, π1, . . . , πt , be representative. If one wants to alter
these “prior” probabilities to π∗

0 , π∗
1 , . . . , π∗

t , then the
log odds comparing category d with the baseline
would need to be changed by the addition of the
factor log(π∗

d π0/π
∗
0 πd).

The literature on discriminant analysis encom-
passes numerous other modeling strategies, includ-
ing formal Bayesian approaches that provide more
realistic (i.e. more conservative) diagnostic predic-
tions, kernel estimation techniques (see Density Esti-
mation), and others. Recently, much attention has
been directed toward computer-intensive techniques,
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especially those based on classification and regres-
sion trees (CART) (see Tree-structured Statisti-
cal Methods), and also methods based on com-
puterized neural networks. CART methods involve
the partitioning of s into mutually exclusive sub-
groups of diagnostic test results that are diagnosti-
cally informative. It has been argued that this facili-
tates the interpretation of the rules for clinicians [2].
Neural networks involve the creation of a possi-
bly hierarchical structure of test results, and these
tend to be more heavily parameterized than conven-
tional statistical models. For a review, see Cheng &
Titterington [3].

Regardless of how the discriminant model is
selected and applied, its validity can only be assessed
definitively by evaluating its performance on a differ-
ent data set from the one in which it was derived.
In general, parametrically rich models will appear
to perform relatively well when the error rates are
evaluated on the data set on which the model was
derived, and so the inevitably improved fit due
to adding greater complexity to the model may
be illusory. In the absence of a “test” data set
to complement the “training” set, cross-validatory
techniques can provide guidance on the degree of
overfitting [9].

Sequential Testing

In medical practice a diagnosis is not usually reached
either on the basis of a single definitive test or on
a set of prescribed tests that could form the basis
of a discriminant analysis, as outlined above. Tests
may be applied in sequence, in an effort to ascer-
tain a single diagnosis with high confidence. Doctors
usually select the sequence of tests using medical
judgment, and the level of confidence in the result-
ing diagnosis is assessed nonquantitatively. In recent
years clinical epidemiologists have addressed the
issue of how to evaluate these diagnostic probabilities
quantitatively. Sackett et al. [8] provide examples of
this process. The updating of diagnostic probabili-
ties on the basis of the result of a new test, say
sk , given the information from previous tests, say
s1, . . . , sk−1, is the critical statistical problem in this
setting.

Updating of diagnostic probabilities can be accom-
plished using Bayes’ theorem, which is most conve-
niently expressed in its odds ratio form:

φd(s1, . . . , sk)

φ0(s1, . . . , sk)
= φd(s1, . . . , sk−1)

φ0(s1, . . . , sk−1)

× fd(sk|s1, . . . , sk−1)

f0(sk|s1, . . . , sk−1)
, (1)

where φd(s1, . . . , sk−1)/φ0(s1, . . . , sk−1) is the “prior”
odds before the test result sk is obtained. Setting
αd(·) = φd(·)/φ0(·), d = 1, . . . , t , the pairwise odds
in (1) are easily converted to probabilities using

φd(·) = αd(·)
1 + α1(·) + · · · + αt (·) , d = 1, . . . , t.

In fact, if we consider, for expository purposes, that
each of the tests has been administered sequentially,
then it is convenient to express (1) in the form

φd(s1, . . . , sk)

φ0(s1, . . . , sk)
= πd

π0

fd(s1)

f0(s1)

fd(s2|s1)

f0(s2|s1)
. . .

× fd(sk|s1, . . . , sk−1)

f0(sk|s1, . . . , sk−1)
,

where each of the sequence of likelihood ratio terms
represents the appropriate factor, at that stage, for
updating the disease probabilities.

Sequential updating of probabilities using Bayes’
theorem has become established as the theoretical
paradigm for handling quantitative diagnostic infor-
mation [8]. However, clinical epidemiologic texts
rarely emphasize the critical requirement that the
likelihood ratios should be conditioned on the data
that have already been used to determine the cur-
rent “prior” probabilities. In fact, the “current” prior
should only be updated using the unconditional like-
lihood ratio fd(sk)/f0(sk) if the test sk is condition-
ally independent of the “tests” that have contributed
to the current prior odds [1]. In practice, this is
unlikely to be even approximately true, and so the
use of unconditional likelihood ratios will tend to
lead to overoptimistic, i.e. anti-conservative, diagnos-
tic probabilities [5]. Moreover, in the absence of such
conditional independence, the data requirements to
provide the appropriate conditional probabilities for
each step in a series of tests are formidable, and such
data are generally not available [7].

The application of Bayes’ theorem in updating
diagnostic probabilities is most commonly utilized
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in the construction of decision analytic models [10].
It is unlikely that many doctors utilize this for-
malized paradigm routinely in day-to-day clinical
settings.
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Diagnostics

Introduction

Diagnostics are methods for identifying and under-
standing differences between a model and the data
to which it is fitted. This article is mainly concerned
with the linear regression model, although the tech-
niques of regression diagnostics, especially the study
of the effect of the deletion of observations, are more
widely applicable. Extensions to other models are
described in the last section.

Some differences between the data and the model
may be due to isolated observations: one, or a few,
observations may be outliers, or may differ in some
unexpected way from the rest of the data. Other dif-
ferences may be systematic, for example, a term may
be missing in a linear model. Systematic departures
can often be detected by aggregate statistics, that is,
quantities calculated over all the data, such as a t or
F test in regression. But there is the important pos-
sibility that the evidence, for example, for an extra
term, or a transformation of the response, may be
being unduly influenced by a few observations. The
main emphasis of diagnostics in statistical usage is on
the effect of individual cases (observations y and the
associated vectors of explanatory variables or car-
riers x) on inferences about the model. These effects
are customarily determined by deletion of individ-
ual cases. Exact formulae for the effects of deletion
in regression mean that only one fit to the data
yields the required diagnostic quantities. When exact
formulae are not available, for example, for General-
ized Linear Models, similar techniques yield useful
approximations to the effect of deletion. In some
statistical fields, such as econometrics, the term diag-
nostics is often taken to include aggregate statistics.
An example is [Harvey 11, Section 5.4]. Here we dis-
cuss deletion diagnostics. Related material is included
in the entries Forward Search, Goodness of Fit and
residuals.

Outliers

An outlier is an isolated observation that does not
agree with the model fitted to the majority of the
data. The statistical problem is that fitting the model
may disguise the presence of outliers. For simple

samples, the effect of fitting is often not crucial. For
example, a human birth weight recorded as 35 kg,
perhaps due to multiplication of the weight by 10
on data entry, is clearly wrong, whatever model is
fitted. The early chapters of Barnett and Lewis [5]
describe the history of the definition of outliers and
methods for their detection in univariate samples.
For more complicated models, such as regression,
large residuals indicate outliers, but outliers do not
necessarily give rise to large least-squares residuals,
especially if they occur at remote points in the factor
space, which is at “leverage points”. More formally,
the least-squares estimate of the parameters in the
linear regression model is

β̂ = (XT X)−1XT y, (1)

where X is the n × p matrix of carriers, that is, of
explanatory variables and perhaps functions of them,
such as quadratics and interactions. It is assumed
that the additive errors of observation ε are inde-
pendently distributed with constant variance σ 2. The
least-squares residuals are then given by

e = y − ŷ = y − Xβ̂ = y − X(XT X)−1XT y

= (I − H )y = Ay. (2)

In (2) I is the n × n identity matrix and H is
the “hat” matrix, so-called because ŷ = Hy. The
diagonal elements hi of H are such that 0 ≤ hi ≤ 1,
with average value p/n. Observations with “large”
values of hi are said to be leverage points.

The residuals e are not independent, nor do they
have the same variance since var(ei) = σ 2(1 − hi).
The standardized residuals ri are given by

ri = ei√{s2(1 − hi)}
, (3)

where s2 = ∑
e2
i /(n − p) is used to estimate σ 2. The

distribution of r2
i is a scaled Beta distribution.

The t test (see Student’s t Distribution) for the
hypothesis that observation i is an outlier is based
on the deletion residual r∗

i , which is found by the
deletion of case i or, equivalently, by fitting the mean
shift outlier model

E(Y ) = Xβ + dT
i φ, (4)

where d i is an n × 1 vector of zeroes except for a 1
in the ith position. If β̂(i) is the least-squares estimate
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of β when yi is not used in fitting, the prediction at
xi is ŷ(i) = xT

i β̂(i). The deletion residual is then

r∗
i = yi − ŷ(i)

s.e. (yi − ŷ(i))
= yi − xT

i β̂(i)

s.e. (yi − ŷ(i))
.

= ei√
{s2

(i)(1 − hi)}
. (5)

In (5) s2
(i) is the residual mean square estimate of σ 2

on n − p − 1 degrees of freedom after the deletion
of case i. From the further results discussed in resid-
uals, it follows that r∗

i can be calculated from the
standardized residuals since

r∗
i = ri√{

(n − p − r2
i )

(n − p − 1)

} . (6)

In the absence of outliers, the deletion residuals
have a t distribution on n − p − 1 degrees of freedom
so that, unless the degrees of freedom are small,
they will give an almost straight normal probability,
or Q–Q, plot. If the straightness is in doubt, a
simulation envelope can be generated of the type
described in residuals.

As an example, we turn to the analysis of the data
from Royston and Altman [14] on mandible length as
a function of gestational age in 167 fetuses with ages
from 12 to 33 weeks. The data are plotted in Figure 2
of goodness of fit. The analysis there and in residuals
suggests that a transformation of y should be taken.
Whether or not y is transformed, the skeleton analy-
ses of variance in Table 1 indicate that a quadratic in
age should be included (see Polynomial Regression).
The F values for both linear and quadratic terms are
higher for the transformed data than for the original,
especially for the quadratic term. The F value for the
cubic term is significant at the 5% level, but not at
1%. Given the number of observations that we have,

Table 1 Skeleton analysis of variance for regres-
sion models and transformations fitted to data on
mandible length

Response y log y

Source F F

Age 1468.7 1851.1
(Age)2 20.2 161.3
(Age)3 4.8 5.0

we ignore the cubic term and work with a quadratic
model in the gestational age, x, with log y as the
response. Diagnostic scrutiny of both transformation
and linear model in the articles on fan plot and for-
ward search show that this choice does not depend
on just a few observations. We also note that the doc-
tors quoted by Royston and Altman felt that younger
fetuses might differ systematically from those older
than 28 weeks. These are cases 159 to 167.

Figure 1 shows a normal Q–Q plot of the dele-
tion residuals for all cases. There is no evidence of
any outliers. This plot is very different from Figure 3
of the article on residuals when a first-order model
is fitted to the untransformed data. That Q–Q plot
showed three appreciable outliers, cases 149, 165, and
166, which lie well below the trend of the rest of the
observations in the scatter plot of Figure 5. The loga-
rithmic transformation of the data seems to reconcile
these cases with the remaining data. However, their
importance may be masked by the least-squares fit.
The purpose of the methods described in this article is
to assess the effect of such cases on the fitted model
and conclusions drawn from it. Since the Q–Q plot
of Figure 1 is virtually straight, further analysis can
proceed on the assumption that the residuals, and so
the errors, are normally distributed.

Quantiles of standard normal

D
el

et
io

n 
re

si
du

al
s

−2 −1 0

−3

−2

−1

0

2

21

1

Figure 1 Mandible length data. Normal Q–Q plot of
deletion residuals r∗

i from a quadratic model in age and
a logged response. The data seem well fitted by this model
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Leverage

Several diagnostic measures are combinations of the
least-squares residuals ei and the leverage measures
hi . It is sometimes informative to look at the hi on
their own. Figure 2 is an index plot of hi , that is, a
plot against observation number, for the 167 observa-
tions on mandible length. Since the observations are
in order of increasing y, they are pretty much in order
of increasing x as well. It is clear from the figure, and
expected, that observations at the extreme values of x

have the highest leverages. For multiple regression
data, the pattern is often less clear, although some-
times informative. It is however, the combination of
y with x, which is important in making inferences
about appropriate models.

Influence and Cook’s Distance

The deletion residuals r∗
i provide a test for out-

liers. However, an outlier may or may not have an
important effect on inferences drawn from the data.
This information can be obtained by considering the
change in the parameter estimates when case i is
deleted, that is, the distance β̂ − β̂(i), or components
of this distance, preferably suitably scaled. Cook’s
distance [7] provides a measure of influence for all
parameters based on the increase in the residual sum

Observation number

Le
ve

ra
ge

0 50 100 150

0.05

0.10

0.15

Figure 2 Mandible length data. Index plot of leverage
measure hi for all 167 cases

of squares for all the data when the deletion estimate
β̂(i) replaces β̂. Cook’s distance is defined as

Di = (β̂(i) − β̂)T XT X(β̂(i) − β̂)

ps2
. (7)

The use of standard deletion formulae (Cook and
Weisberg [8, p. 210]; Atkinson [1, p. 19]) leads to
the alternative form

Di = e2
i hi

{ps2(1 − hi)2} = r2
i hi

{p(1 − hi)} . (8)

For plotting purposes, Atkinson [1, p. 25] suggests
the modified Cook Statistic Ci , which is a scaled
square root of Di with s2 replaced by s2

(i). Thus,

Ci =
(

n − p

p

hi

1 − hi

) 1
2 |r∗

i |. (9)

Figure 3 is an index plot of Ci for the 167 observa-
tions of the mandible length data. Six cases, 1, 7, 149,
163, 165, and 167 have large values of the modified
Cook statistic, suggesting that they may be unduly
influencing the parameters of the fitted model. Three
of these are cases, which were originally regarded
with some suspicion, three are not. To demonstrate
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Figure 3 Mandible length data. Index plot of modified
Cook’s distance Ci for all 167 observations. Cases 1, 7,
149, 163, 165, and 167 appear highly influential
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Figure 4 Mandible length data. Index plot of modified
Cook’s distance Ci after the deletion of six cases. Now
original case 166 appears especially influential

what information can be obtained using diagnostic
methods, we omit these six and refit to obtain the
plot of Figure 4. Now original case 166 appears as
especially influential.

As a result of this analysis, seven out of 167 cases
have been identified as potentially outlying or other-
wise different. It must be stressed that the purpose
of diagnostic analyses is not to delete all cases with
any egregious characteristics. Rather the purpose is to
identify such cases, to ascertain their importance and,
if they are crucial to an understanding of the data, to
check for transcription errors, unsuspected variations
in conditions of measurement or source of the data,
or other explanations of apparent anomalies.

Multiple Deletion and very Robust
Regression

The deletion diagnostics for individual case deletion
can readily be extended to a subset of m observa-
tions with index I . However, such procedures are not
as useful as the deletion of individual cases, due to
the combinatorial explosion in the number of quan-
tities to be considered. Even for the 167 cases of
the mandible length data, there are 13 861 diagnos-
tics from deletion of pairs. Often, information on
diagnostic matters can be extracted by the repeated

use of single deletion diagnostics. But sometimes this
can fail, a condition known as “masking”, caused for
example, by the presence of several outliers at lever-
age points. In such conditions very robust regression
can be used, which resists up to 50% of outliers in
the data, and the results compared with those from
least-squares analyses.

In least trimmed squares (see Trimming and Win-
sorization), the model is fitted by least squares to
the q data points giving the smallest residual sum
of squares. The greatest robustness against outliers is
obtained by taking q as approximately half the data,
that is,

q =
[n

2

]
+

[
(p + 1)

2

]
, (10)

when allowance is made for fitting. Calculation of
the least trimmed squares estimate involves repeated
searches from random starting points. Figure 5 shows
the fitted line obtained using the algorithm in the sta-
tistical package S-PLUS. Although log(length) was
used as the response in all models fitted, the plot is
on the original scale of the data. One consequence is
that the outlying nature of cases 149, 165, and 166
on the original scale is apparent. The plot also shows
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Figure 5 Mandible length data. Data with three fitted
quadratic models with logged response: (a) least squares
fit to all data; (b) - - - - - - least squares fit when the seven
marked cases are omitted; (c) . . . . . . . . least trimmed
squares. The very robust and diagnostic-led analyses give
similar results. Case 166 is marked with a cross
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why case 166, marked with a cross, is shown as influ-
ential in Figure 4 when cases 163, 165, and 167 have
been deleted, but is not especially influential in the
plot for all 167 cases in Figure 3.

Also shown is the fitted line obtained from the
diagnostic procedure, which omitted seven cases.
This plot is similar to that for the least trimmed
squares, especially for the older cases, and distinct
from the more curved least-squares fit to all the data.
The plot confirms the doctors’ suspicion that some
readings at higher values of age might be atypical.
However, after transforming the data to obtain a
normal distribution of errors, it seems that some
readings at low ages may also be atypical. Further,
some of the readings at high ages are, despite the
doctors’ suspicions, informative about the general
relationship between age and mandible length.

Extensions and Literature

Deletion diagnostics of the sort described here have
received book length treatment by Belsley et al. [6],
Cook and Weisberg [8], and by Atkinson [1]. They
are also emphasized in the regression books of Weis-
berg [16] and of Ryan [15]. Added variable and
constructed variable plots (see Residuals) indicate
the contribution of individual cases to the evidence
for inclusion of an explanatory variable, provided
cases with high leverage are not important. If they
are, deletion versions of the appropriate statistics
are useful (Atkinson [2]). Interactive graphics allow
exploration of multiple aspects of the effect of dele-
tion and of the change of, for example, transformation
parameters [9]. The diagnostic use of very robust
regression is described by Rousseeuw and Leroy [13].
An example combining diagnostics and such regres-
sion is Atkinson [3]. The extension of diagnostics
to generalized linear models is in Chapter 12 of
McCullagh and Nelder [12]. A more detailed descrip-
tion is Atkinson [10]. Methods for determining the
influence of several observations are described in the

article on the forward search and, at greater length,
in the book of Atkinson and Riani [4].
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Differential Error

Suppose a response variable Y has a conditional
distribution F(y|x) given a true exposure measure-
ment X = x. Suppose that an error process yields Z

instead of X. Then the error process is differential if
F(y|x, z) �= F(y|x); namely, if it is not nondifferen-
tial error. Naive use of Z in place of X in the model
F(y|x) leads to estimates of exposure effect that
can be biased in any direction (see Bias in Obser-
vational Studies; Bias, Overview; Measurement

Error in Epidemiologic Studies; Misclassification
Error; Validity and Generalizability in Epidemio-
logic Studies).

The term differential error can also be applied to
errors in the outcome measure, Y . Suppose that one
measures the error-prone version W of Y , instead
of Y itself. Then the error process is differential
if F(w|x, y) �= F(w|y). Such differential error can
also result in bias in any direction if W is simply
substituted for Y in the model F(y|x).

MITCHELL H. GAIL



Diggle–Kenward Model
for Dropouts

A typical longitudinal study design (see Longitu-
dinal Data Analysis, Overview) specifies a time
sequence of measurements on each of a number of
subjects. A common feature of the resulting data is
that some of the intended sequences of measurements
are incomplete because the corresponding subjects
withdraw prematurely from the study. We refer to
this as attrition or drop-out.

Drop-outs can arise for many reasons. For exam-
ple; the study protocol may specify the removal
of subjects who show adverse side-effects of the
treatment being administered; subjects may die for
reasons related or unrelated to the context of the
trial; subjects may be unwilling to continue because
they perceive no benefit from further participation.
Often, in practice, the exact causes of drop-outs are
unknown. This raises a potential difficulty for the
analysis of the resulting data, since the processes
which govern the drop-out may be related to the
measurement process which is the primary focus of
the study. Figure 1, reproduced from Diggle et al.
[3, Chapter 11] illustrates the problem. It shows a
simulated data set in which, for each of 100 sub-
jects, the mean response is constant over the intended
duration of the study but the probability that a sub-
ject drops out at any time is inversely related to
the value of their last recorded measurement. Also,
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Figure 1 Simulation of a longitudinal data set in which
the probability of drop-out is inversely related to the value
of the last recorded measurement. Reproduced from [3]
with permission from Oxford University Press

the sequence of measurements on any one subject
is highly correlated. The result is that the lower-
responding subjects are progressively removed from
the study and the observed mean response amongst
the nondrop-outs rises steadily over time. Suppose
that each measurement represents a clinical response
to treatment and that an increased response is ben-
eficial. A naive analysis of the data might conclude
that the treatment under investigation produces the
desired rise in the mean response, whereas in real-
ity no subject receives any clinical benefit from the
treatment.

It is convenient to assume that the study proto-
col specifies a common set of measurement times for
all subjects. Let Y ∗ = (Y ∗

1 , . . . , Y ∗
n ) then denote the

intended sequence of measurements on a single sub-
ject, and D the subject’s drop-out time, with the con-
vention that an observed value D = d means that the
values of Y ∗

d , . . . , Y ∗
n are missing, whilst D = n + 1

signifies no drop-out. A statistical model for longitu-
dinal data with drop-outs can then be thought of as
a specification of the joint distribution of Y ∗ and D.
Quite generally, we can write this joint distribution
in two equivalent ways:

f ∗(y, d) = f ∗(y)g(d|y)

= g(d)f ∗(y|d). (1)

Models derived from the first factorization are called
selection models [4]. Those derived from the second
factorization are called pattern mixture models [5].
One advantage of a selection model is that it includes,
in the f ∗(y) term, a model for the study as designed.
A counterbalancing advantage of a pattern mixture
model is that it corresponds more directly to what is
actually observed, namely the distributions of mea-
surements within the subgroups defined by the dif-
ferent drop-out times.

Diggle & Kenward [2] introduce an explicit class
of selection models for longitudinal data. They spec-
ify a multivariate Gaussian distribution for f ∗(y) and
a logistic regression for g(d|y). Explicitly, if pt(y)

denotes the conditional probability of drop-out at time
t , given Y ∗ = y, then

logit[pt(y)] = α0yt +
r∑

k=1

αkyt−k.

Molenberghs et al. [6] describe a model of the same
kind, but for an ordered categorical response vector
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Y ∗, replacing the multivariate Gaussian specification
of f ∗(y) by a model due to Dale [1].

From an inferential point of view, it is important to
distinguish three subclasses of the Diggle–Kenward
model, which correspond to the three kinds of missing
data mechanism defined in a more general setting by
Rubin [8]:

1. completely random drop-outs (CRDs): pt(y) =
pt . The probability of drop-out at time t is
independent of the measurement process Y ∗

2. random drop-outs (RDs): pt(y) = pt(y1, . . . ,

yt−1). The probability of drop-out at time t may
depend on any or all of the observed measure-
ment history y1, . . . , yt−1, but cannot depend on
the unobserved yt

3. informative drop-outs (IDs): pt(y) = pt(y1, . . . ,

yt ). The probability of drop-out at time t depends
on the unobserved yt .

For likelihood-based inference, it turns out that
the important distinction is between IDs on the one
hand and CRDs or RDs on the other. If we assume
that the measurement model f ∗(y) and the drop-out
model g(d|y) are parameterized separately by θ and
α, respectively, then under either CRDs or RDs, the
log likelihood for θ and α separates into two terms,
one involving θ only and, the other involving α only,
whereas in the general ID case, the log likelihood is
a sum of three terms, the third of which involves
both θ and α. It follows that under CRD or RD
assumptions, valid likelihood-based inferences about
θ can be made without explicitly modeling the drop-
out process. For this reason, CRD or RD mechanisms
are sometimes collectively known as ignorable drop-
outs. However, the example of Figure 1, which uses
an RD model, makes the point that the practical

interpretation of an analysis conducted on this basis
still needs some care.

As pointed out in the discussion of Diggle &
Kenward [2], the inferences made in the ID case
are very sensitive to the underlying distributional
assumptions. This is of particular concern because
Molenberghs et al. [7] show that the RD hypothesis
is not testable without additional assumption.
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Dilution Method for
Bacterial Density
Estimation

There are many methods for measuring bacterial
mass and concentration. For example, estimates of
protein content, or of optical density, may be used
as an index of bacterial mass, but such a mea-
sure would ignore heterogeneity of cell size and
type and viability of cells. There are various meth-
ods for counting numbers of cells [4]. Cell numbers
in a given suspension may be estimated by com-
parison with standard suspensions, but this method,
depending on the parameter measured, may not dis-
tinguish between viable and nonviable cells. The
number of viable bacteria in a suspension may be
estimated in several ways. The most precise of these
is a direct count of the number of viable bacteria,
if these can be identified and counted; an indirect
method for obtaining such a count is by determining
the number of colony-forming units by counting the
colonies produced when the suspension is cultured
on a plate. When the number of (viable) bacteria (or
other microorganisms) in a given volume of material
cannot be directly counted, the dilution method may
be used.

In this procedure a suspension of material is
diluted to the point at which some samples con-
tain such a small amount of the original suspension
that they will contain no viable bacteria, whence
dilution to extinction. A known volume of each dilu-
tion is inoculated into one or more experimental
units, which in the classical method are tubes filled
with culture medium. After incubation, the num-
ber of experimental units showing the presence or
absence of the microorganism of interest is noted;
if tubes filled with culture medium are used, the
numbers of turbid and clear tubes at each dilution
are noted. Experimental units showing a negative
response are assumed not to have received even one
organism.

If every viable microorganism gives a positive
response, and if the organisms are distributed at ran-
dom throughout the material being assessed, then
the number of organisms in any volume of the sus-
pension follows a Poisson distribution. These two
assumptions, under which the frequency of nega-
tive responses, or clear tubes, p, is related to the

mean number of microorganisms, m, by the rela-
tion p = e−m, provide the basis for estimation of
the number of microorganisms. Fisher [2] noted that
the ideal proportion of negative responses is just
over one-fifth, and further noted that, even under the
most favorable circumstances, 155 samples would be
needed to reduce the standard error below 10%. Thus
this method is rarely used if precise estimates are
required.

The dilution method is frequently used when little
is known about the likely concentration of bacteria
and hence a large dilution factor, commonly tenfold,
may be used. Tables of estimates of the “most prob-
able number” are available (see, for example, [3,
4]) and, particularly where computational facilities
are limited, experiments may be designed to con-
form to an arrangement for which the results have
been tabulated. Tables of “acceptable results” have
also been produced for some designs, based on the
probabilities of various results; for example, under
the assumptions above, it is virtually impossible for
there to be no positives at the highest, and no neg-
atives at the lowest, of three concentrations in an
experiment using a tenfold dilution series [5]. For
further details of analysis and design see Serial Dilu-
tion Assay.

Any method for the determination of bacterial
mass or concentration should only be used after
careful consideration of the relation of the mea-
sured quantity to the cells of interest together with
all factors that affect that relation, since the valid-
ity of the determination depends on the validity
of the assumed relation. Applications of modern
technology have emphasized the heterogeneity of
microbial populations, and have thus concentrated
on counting and characterizing individual bacterial
cells [1].
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Direct and Indirect
Effects

Of considerable interest in epidemiology and clinical
medicine (see Clinical Epidemiology) is identifying
the causal mechanism by which a risk exposure or
treatment has its effect (see Causal Direction, Deter-
mination; Causation). One means of doing this is to
consider the role of a putative intermediate variable
M, shown in Figure 1, as the potentially mediating
part of the association between the primary causal
exposure E and outcome D.

If Pr(D|M,E) = Pr(D|E), then E is considered as
having no direct effect on D; its effects are mediated
or are indirect through M. The distinction between
M being an intermediate variable or a confound-
ing variable often depends upon theory or study
design issues. For the association of E and D to be
interpreted as one of indirect causation, there is an
assumption that the association between E and M is
one where E causes M.

In psychiatry, biometrical genetics, and comm-
unity medicine the estimation of direct and indirect
effects has been largely synonymous with the use
of path analysis and path diagrams. Path diagrams
display the directional (single-headed arrows) and
correlational associations (lines with arrowheads at
both ends) among a set of variables. Path analysis,
first systematically developed by Sewall Wright [11],
exploits linearity assumptions to allow the covari-
ance between two variables on a path diagram to
be decomposed into contributions arising from each
legitimate path that connects them, with simple rules
for determining the legitimate paths [4, 12] in the
case of nonrecursive diagrams. If, to the traditional
diagram, a residual variance is added to each variable
in the form of a double-headed arrow running both
from and to that variable, then the path tracing rules
for legitimate paths can be reduced to the following:
trace backward from a variable, change direction at a
two-headed arrow, then trace forward. Multiplication
of the (standardized) coefficients along each chain
gives the expected (standardized) covariance for that
path, and these may be summed to give the total,
direct, and indirect expected covariances (or effects).
Implicit in these diagrams is the fact that we are mod-
eling these sets of variables as a set of simultaneous

equations. These would now be commonly estimated
in software for structural equation modeling.

Biostatistical applications often confront categori-
cal outcomes and intermediate variables. Winship and
Mare [10] elaborate path modeling in the case of
binary variables where the simultaneous equations
take the probit form (see Quantal Response Mod-
els) and where effects of each variable may arise from
two sources: the effect of the observed binary value
and the effect of the latent continuous (condition-
ally normal) variable that may underlie the observed
binary variable (see Latent Class Analysis). This
second effect arises where the binary variable reflects
an underlying propensity that has been measured
subject to error in categorical form. Both effects
may be of interest, for example, psychiatrists might
want to distinguish the effects of an actual episode
of depression from the effects of a predisposition
for depression, the latter reflecting genetics, among
other things.

Where the linearity assumptions of path analysis
are considered too strong or where the causal argu-
ments are to be based in the paradigm of explicit
counterfactuals, then the consideration and estimation
of direct and indirect effects can be undertaken within
the less parametric framework of directed acyclic
graphs [3, 5, 6, 8]. In this framework, the direct
effect of E on D controlling for M is a causal direct
effect of E on D when the M value of everybody in
the population is physically set to a predetermined
value. Moreover, we may need to talk in terms of
plural direct effects, one for each level of M. In this
framework, G-estimation [7] (see Structural Nested
Failure Time Models) or marginal modeling [9]
may be the preferred method of estimation.

Whichever framework is used, the diagram or the
equivalent algebraic representation of the full causal
model plays a critical role in determining what is or is
not included in the calculation of direct and indirect
effects. The possible presence of other variables not
shown in the diagram that could be influencing any or

E M

D

Figure 1 Direct and indirect effects of exposure E on
disease D
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all of E, M, and D should always be considered [1].
In addition, measurement error in the intermediate
variable can attenuate the estimated indirect effects,
resulting in artifactual residual direct effects. Many
longitudinal studies of a repeat measure find, that
even after controlling for a time 2 measure, a time
1 measure still predicts the time 3 measure but no
longer does so once measurement error has been
accounted for [2].
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Discrete Survival-time
Models

Most methods for analyzing survival-time data (fail-
ure time or event history data) are based on time
as a continuously measured variate. A basic assump-
tion for large parts of theory is that failure times
are untied; see Andersen et al. [2]. In practice, there
is always some smallest time unit, so that ties can
occur (see Tied Survival Times). A moderate num-
ber of ties, while banned in theory, can be treated
by appropriate modifications. If many ties occur, e.g.
due to grouping in larger time units or intervals, or if
time is truly discrete, then discrete survival or failure
time models are more consistent with the data. Such
situations arise in medical work when patients are
followed up at fixed intervals like months, in certain
biostatistical problems, for example human fertility
studies and time to pregnancy [19], or in labor market
studies where duration of unemployment is measured
in weeks, at best, or in months. We review parametric
models and outline recent nonparametric approaches.
More details, in particular for parametric models, are
given for example in Fahrmeir & Tutz [11, Chapter
9] and further references cited there.

Basic Concepts

Let time be divided into intervals [a0, a1), [a1, a2),

. . . , [aq−1, aq), [aq, ∞). Usually a0 = 0 is assumed,
and aq denotes the final follow up. Identifying the dis-
crete time index t with interval [at−1, at ), a discrete
failure time T is considered, where T = t denotes

failure within the interval t = [at−1, at ). The basic
quantity characterizing T is the discrete hazard func-
tion

α(t) = Pr(T = t |T ≥ t), t = 1, . . . , q, (1)

which is the conditional probability for the risk of
failure in interval t given the interval is reached. The
discrete survivor function for reaching interval t is

S(t) = Pr(T ≥ t) =
t−1∏

s=1

[1 − α(s)], (2)

and the unconditional probability for failure at t is
Pr(T = t) = α(t)S(t).

For a homogeneous population, discrete failure
time data are given by (ti , δi), i = 1, . . . , n, where
ti = min(Ti, Ci) is the minimum of the survival time
Ti and censoring time Ci , and δi is the indicator vari-
able (see Dummy Variables) for failure (δi = 1) or
censoring (δi = 0). In what follows we assume that
censoring occurs at the end of the intervals, oth-
erwise appropriate modifications have to be made.
Simple estimates for α(t) are crude death rates
α̂(t) = dt/nt , where nt is the size of the popula-
tion at risk and dt the number of observed failures
in [at−1, at ) (see Vital Statistics, Overview). The
so-called standard life table estimate replaces nt by
nt − wt/2, where wt is the number of censored obser-
vations in [at−1, at ), thereby assuming that censored
observations are under risk for half the interval. In
particular, for large t , where the size nt of the risk
set often becomes small, these estimates may be quite
unsteady, and smoothing by one of the nonparametric
methods outlined further below will be appropriate.
This is illustrated in Figure 1, which shows crude
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Figure 1 Posterior mean estimates ( ) and pointwise two standard deviation confidence bands (- - - - - ) together
with crude death rates (+)
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death rates at age t in years for a population of retired
American white females together with a smoothed
estimate. A look at the data (Green & Silverman
[13, p. 101]) shows that nt becomes rather small for
higher age t , resulting in unstable estimates towards
the end of the observation period.

Discrete failure time data can also be described
by a discrete-time counting processes Ni(t), i =
1, . . . , n, defined by Ni(0) = 0 and

∆Ni(t) = Ni(t) − Ni(t − 1)

=
{ 1, if individual i is at risk

and fails at t ,
0, else,

for t ≥ 1; see, for example, Arjas & Haara [3]. Thus,
for every individual i under risk at t , the value
∆Ni(t) can be considered as the outcome of a binary
experiment, with Pr(∆Ni(t) = 1) = α(t). The sum
N(t) = ΣiNi(t) counts the number of observed fail-
ures up to t , and crude death rates can be derived as
nonparametric maximum likelihood estimators, in
analogy to the Nelson–Aalen estimator for continu-
ous time.

In most studies a vector of possibly time-depend-
ent basic or derived covariates xit is observed in
addition to failure times. The time-dependent com-
ponents of xit are assumed to be fixed within the
interval t . Then the hazard function for survival time
Ti of individual i will generally depend on covariates
and is defined by

αi(t |x∗
it ) = Pr(Ti = t |Ti ≥ t, x∗

it ), t = 1, . . . , q,

(3)

where x∗
it = (xi1, . . . , xit ) denotes the history of co-

variates up to time t . Expressions for the survivor
function (2) and for Pr(T = t) have to be modified
accordingly. Also, the sequence of binary experi-
ments for ∆Ni(t), t ≥ 1, will depend on xit . Unless a
separate analysis for homogeneous subgroups can be
carried out, it is natural to describe the dependence of
conditional probabilities of failure by binary regres-
sion models. Let Ft− denote the history of events
registered up to time t , but excluding the failure at t ,
and let ri(t) denote a risk indicator, with ri(t) = 1 if
individual i is at risk in interval t , and ri(t) = 0 oth-
erwise. Then it will be assumed that the conditional
probability of failures can be expressed as

Pr(∆Ni(t) = 1|Ft−) = ri(t)αi(t |x∗
it ),

with hazard functions linked to a time-varying pre-
dictor ηit by

αi(t |x∗
it ) = h(ηit ) (4)

through a suitable link function h, for example the
logistic function (see Logistic Regression). The pre-
dictor ηit is modeled parametrically or nonparamet-
rically as a function of time t and basic or derived
covariates xit .

Parametric Models

This section deals mainly with parametric models (4),
where the predictor has the common linear parametric
form

ηit = z′
itβ (5)

as in generalized linear models, with the design
vector zit formed from basic covariates. In many
applications the linear predictor is chosen as

ηit = β0t + x′
itβx, (6)

where βx is a vector of covariate effects and β0t , t =
1, . . . , q, is a time-varying baseline effect. Model
(6) can be written in the form (5) by defining z′

it =
(0, . . . , 1, . . . , 0, x ′

it ) and β ′ = (β01, . . . , β0q, β ′
x).

Other predictors are discussed further below.
Different discrete-time failure models are determi-

ned by choice of the link function h. Most com-
mon are discrete proportional hazards and logistic
models.

The Discrete Proportional Hazards Model

Suppose that an underlying continuous failure time
obeys a proportional hazard or relative risk model
α0(t) exp(x′

itβx). If time T can only be observed as
a discrete random variable, T = t denoting failure
in [at−1, at ), this yields the discrete proportional
hazards model

α(t |xit ) = 1 − exp[− exp(β0t + x ′
itβx)], (7)

with baseline effects

β0t = log
∫ at

at−1

α0(t) dt

derived from the baseline function α0(u) (see, for
example, Kalbfleisch & Prentice [17]). An alternate
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formulation of (7) is the complementary log–log
model log{− log[1 − α(t |x′

it )]} = β0t + x′
itβx (see

Quantal Response Models). The parameter vector
βx is unchanged by the transition to the discrete
version, so that the same analysis as with the
proportional hazard model is possible as far as the
influence of covariates is concerned. However, βx

and time-varying effects β0t now have to be estimated
jointly. If the number of intervals is large, then the
dimension of β01, . . . , β0q may become dangerously
high often even leading to the nonexistence
of maximum likelihood estimates. Then more
parsimonious parametric forms like polynomials
β0t = β0 + · · · + βkt

k , piecewise constant effects,
or regression splines with only a few cut points
are preferable. Often, cubic-linear splines of the
form β0t = β0 + β1t + β2(t − tc)

2− + β3(t − tc)
3−, are

useful, where (t − tc)− = min(t − tc, 0) and tc is a
cut-point. The baseline effect is cubic before tc and
linear after tc. Such a simple spline model is more
robust against few data at the end of the observation
period than polynomials, and it is a smooth function
as compared with piecewise constant modeling. Of
course, other forms of regression splines may be
considered. Also one may use the numerically more
stable B-spline basis instead of the truncated power
form, cf. Sleeper & Harrington [20] in a continuous-
time setting. By appropriate definition of the design
vector, regression spline models can also be written
in linear parametric from (5).

The Logistic Model

An alternate model is the logistic model for the
discrete hazard,

α(t |xit ) = exp(β0t + x′
itβx)

1 + exp(β0t + x′
itβx)

, (8)

considered by Thompson [21] and, in slightly differ-
ent form, by Cox [5]. For short intervals this model
becomes rather similar to the discrete proportional
hazards model. An advantage of the logistic model
is that the covariate effects βx can be estimated
semiparametrically, considering baseline effects β0t

as nuisance parameters and leaving them unspec-
ified as in the continuous-time proportional hazards
model; see Cox & Oakes [6].

Other discrete-time failure models result for other
choices of h. Very flexible models are obtained if

the link is an element of a parametric family of link
functions. Examples are the model of Aranda–Ordaz
(see Fahrmeir & Tutz [11, p. 318]) or the families
considered by Czado [7].

Although choice of the link function is an impor-
tant issue, we feel that careful modeling of the pre-
dictor is often even more essential. To simplify the
discussion, we consider only two covariates, x and
w, where x is a continuous variable like tumor size
or hormone concentration and w is binary, indicating,
for example, sex or treatment group.

Models with time-varying effects are obtained by
assuming

ηit = β0t + β1xi + β2twi, (9)

where β2t could be the time-varying effect of a
therapy, possibly decreasing with time. Alternately,
the term β2twi may be considered as a particular
form of interaction between time t and the covariate
w. The function β2t may be modeled parametrically
in the some way as the baseline effect β0t . A more
detailed discussion of parametric time-varying effects
is in Yamaguchi [24]. If the simple linear form β1xi

for the influence of x is too restrictive, then one may
also try to replace it by a nonlinear smooth function
β1(x) as in generalized additive models. As in Hastie
& Tibshirani [15], one may go a step further and
consider varying coefficient models of the form

ηit = β0t + β1(xi) + β2(xi)wi + β3twi . (10)

Here the smooth function β2 may be viewed as an
effect of w varying over x, or it is interpreted as
an interaction term between the continuous covariate
x and the binary covariate w. Without further prior
knowledge it will often be difficult to specify certain
parametric forms for the smooth functions in (9) and
(10). Instead, it will be reasonable to explore patterns
with nonparametric approaches outlined in the next
section and to proceed then with a simpler parametric
likelihood-based inference.

Likelihood Inference

Under appropriate conditions on censoring and co-
variate processes, the likelihood reduces to the com-
mon form known for binary regression models. Intro-
ducing the indicators

yi = (yi1, . . . , yit ) =
{

(0, . . . , 0), δi = 0,

(0, . . . , 0, 1), δi = 1,
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the log likelihood is proportional to

l(β) =
n∑

i=1

ti∑

s=1

{yis log αi(s|x∗
is) + (1 − yis)

× log[1 − αi(s|x∗
is )]}.

Arjas & Haara [3] give a careful discussion of
assumptions leading to l(β) as a (partial) log like-
lihood (see Partial Likelihood). They will generally
hold for noninformative random censoring and time-
independent or external covariates, but can become
critical for internal covariates. In particular, the like-
lihood is valid in the presence of ties, by making
the weak assumption that failures at t are condi-
tionally independent given covariates and past fail-
ures. By appropriate construction of the design vec-
tors zit , the parameters β can then be estimated
with software for binary regression models, and
other tools of likelihood inference for these models
may be adopted, see Fahrmeir & Tutz [11 Chap-
ter, 9].

Nonparametric Approaches

Often, the common assumptions of linearity, addi-
tivity, and time-constancy of effects are definitely
violated and the parametric specifications of more
flexible models like (9) or (10) may be difficult.
In this situation nonparametric approaches provide
useful tools for detecting and exploring nonlinear
or time-dependent effects. We outline the rough-
ness penalty approach, leading to spline-type smooth-
ing and related Bayesian nonparametric techniques.
Other methods are based on discrete kernels (e.g.
Fahrmeir & Tutz [11, Chapters 5 and 9] (see Density
Estimation), or local likelihoods (Wu & Tuma [23],
and in a continuous-time setting, Tutz [22]). Consider
models like (9) or (10) with an unknown parameter
vector β and unknown ”smooth functions” β1, β2,

. . . , βq of time or continuous covariates. The rough-
ness penalty approach maximizes a penalized log
likelihood criterion

pl(β, β1, . . . , βp) = l(β, β1, . . . , βp) −
p∑

j=1

λjJ (βj ),

where J (βj ) are roughness penalties and λj are
smoothing parameters. A simple roughness penalty

for a time-varying effect βjt , t = 1, . . . , q, is

J (βj ) =
q∑

s=2

(βjt − βj,t−1)
2

at − at−1
. (11)

The same form may be used for a function βj (x)

of some continuous covariate x. Another common
penalty is

J (βj ) =
∫

[βj (x)′′]2 dx

leading to cubic smoothing splines (see, for exam-
ple, Green & Silverman [13]). Kiefer [18] proposes
a discrete proportional hazards model with time-
varying effects βjt and penalty function (11). Dan-
negger et al. [8] use the roughness penalty approach
to explore the nonlinear and time-varying effects of
risk factors in a breast cancer study with monthly
data. Related Bayesian nonparametric approaches put
smoothness priors on βjt or βj (x) and estimation is
based on posteriors, given the data. If, for example, a
random walk (see Stochastic Processes) of first order

βjt = βj,t−1 + (at − at−1)
1/2vt , vt ∼ N(0, 1/λj ),

is taken as the smoothness prior for the sequence
{βjt }, then the posterior mode or MAP estimate is
identical to the penalized likelihood estimate with
penalty (11); see Fahrmeir [9]. Full posterior anal-
yses can be carried out with Markov chain Monte
Carlo (MCMC) techniques (see Fahrmeir & Knorr-
Held [10]) and in the related context of generalized
additive models (Biller & Fahrmeir [4]). Nonpara-
metric methods are also useful for smoothing hazard
functions in the absence of covariates. The smooth
curve in Figure 1 is the posterior mean estimate
obtained from a Bayesian MCMC approach. The cor-
responding cubic spline smoother is very close, see
Green & Silverman [13].

Some Extensions

More Complex Discrete-Time Event History Data

Discrete failure time models can be extended in the
same way as continuous-time models. Often one may
distinguish between several types R ∈ {1, . . . , m} of
failure or terminating events. For example, in a med-
ical study there may be several causes of death, or in
studies on unemployment duration one may consider
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full-time and part-time jobs that end the unemploy-
ment duration. The basic quantities for models with
multiple modes of failure are now cause-specific haz-
ard functions,

αir (t |x∗
it ) = Pr(T = t, R = r|T ≥ t, x∗

it ), (12)

i.e. conditional probabilities for failure of type r

in interval t (see Competing Risks). Polytomous
response models can be used for regression anal-
ysis of cause-specific hazard functions. A common
candidate for unordered events is the multinomial
logit model (e.g. Allison [1]) (see Polytomous Data).
Other discrete choice models like a probit or a nested
multinomial logit model [16] may also be consid-
ered. If events are ordered, then ordinal response
models (e.g. [11]) are appropriate. Again parametric
and nonparametric approaches are possible. Penalized
likelihood and Bayesian smoothing techniques with
models for time-varying effects are applied to unem-
ployment durations in Fahrmeir & Wagenpfeil [12]
and Fahrmeir & Knorr-Held [10].

Discrete failure time models can also be extended
to general multiepisode–multistate models or, in
counting process terminology, marked point pro-
cesses. Hamerle [14] studies parametric regression
analysis for such discrete event history data, but gen-
erally much less theoretical or applied work has been
done here.

Unobserved Heterogeneity and Frailty Models

The above model specifications assume that indi-
vidual heterogeneity can be described by observed
variables. However, it is likely that not all relevant
variables are included in a regression model. The
conventional approach to account for neglected het-
erogeneity or frailty is to include individual-specific
parameters into the predictor, i.e. modifying ηit to
ηh

it = ηit + θi , and to assume that the individual-
specific parameters are independent, identically dis-
tributed (iid) random variables from a prior density
function f , e.g. a normal density. Estimation can
then be based on approaches for generalized mixed
models with random effects, and recent MCMC
methods seem particularly well suited. However, for
single-spell failure time models the estimates can be
very dependent on the choice of the prior specifica-
tion. More experience is needed here. The problem
becomes less severe with repeated events.

References

[1] Allison, P.D. (1982). Discrete-time methods for the
analysis of event histories, in Sociological Methodology,
Vol. 13, S. Leinhardt, ed. Jossey-Bass, San Francisco, pp.
61–98.

[2] Andersen, P.K., Borgan, O., Gill, R.D. & Keiding, N.
(1993). Statistical Models Based on Counting Processes.
Springer-Verlag, New York.

[3] Arjas, E. & Haara, P. (1987). A logistic regression model
for hazard: asymptotic results, Scandinavian Journal of
Statistics 14, 1–18.

[4] Biller, C. & Fahrmeir, L. (1997). Bayesian spline-type
smoothing in generalized regression models, Computa-
tional Statistics 12, 135–151.

[5] Cox, D.R. (1972). Regression models and life tables
(with discussion), Journal of the Royal Statistical Soci-
ety, Series B 34, 187–220.

[6] Cox, D.R. & Oakes, D. (1984). Analysis of Survival
Data. Chapman & Hall, London.

[7] Czado, C. (1992). On Link Selection in Generalized
Linear Models, Springer Lecture Notes in Statistics, Vol.
78, Springer-Verlag, New York, pp. 60–65.

[8] Dannegger, F., Klinger, A., and Ulm, K. (1995). Iden-
tification of Prognostic Factors with Censored Data.
Discussion Paper 11, Sonder forschungsbereich 386,
Ludwig-Maximilians Universität, München.

[9] Fahrmeir, L. (1994). Dynamic modelling and penalized
likelihood estimation for discrete time survival data,
Biometrika 81, 317–330.

[10] Fahrmeir, L. & Knorr-Held, L. (1997). Dynamic dis-
crete-time duration models: estimation via Markov
Chain Monte Carlo, in Sociological Methodology, Vol.
27, A. Raftery, ed. Blackwell, Oxford, pp. 417–452.

[11] Fahrmeir, L. & Tutz, G. (1994). Multivariate Statis-
tical Modelling Based on Generalized Linear Models.
Springer-Verlag, New York.

[12] Fahrmeir, L. & Wagenpfeil, S. (1996). Smoothing hazard
functions and time-varying effects in discrete duration
and competing risk models, Journal of the American
Statistical Association 91, 1584–1594.

[13] Green, P.J. & Silverman, B.W. (1994). Nonparametric
Regression and Generalized Linear Models. Chapman &
Hall, London.

[14] Hamerle, A. (1986). Regression analysis for discrete
event history or failure time data, Statistical Papers 27,
207–225.

[15] Hastie, T. & Tibshirani, R. (1993). Varying-coefficient
models, Journal of the Royal Statistical Society, Series
B 55, 757–796.

[16] Hill, D.H., Axinn, W.G. & Thornton, A. (1993). Com-
peting hazards with shared unmeasured risk factors, in
Sociological Methodology, Vol. 23, P.V. Marsden, ed.
Blackwell, Oxford, pp. 245–277.

[17] Kalbfleisch, J.D. & Prentice, R.L. (1980). The Statistical
Analysis of Failure Time Data. Wiley, New York.



6 Discrete Survival-time Models

[18] Kiefer, N.M. (1990). Econometric methods for grouped
duration data, in Panel Data and Labor Market Studies,
J. Hartog, G. Ridder & J. Theeuwes, eds. Elsevier,
Amsterdam, pp. 97–117.

[19] Scheike, T.H. & Jensen, T.K. (1997). A discrete survival
model with random effects: an application to time to
pregnancy, Biometrics 53, 349–360.

[20] Sleeper, L.A. & Harrington, D.P. (1990). Regression
splines in the Cox model with application to covariate
effects in liver disease, Journal of the American Statisti-
cal Association 85, 941–949.

[21] Thompson Jr, W.A. (1977). On the treatment of grouped
observations in life studies, Biometrics 33, 463–470.

[22] Tutz, G. (1995). Dynamic modelling of discrete duration
data: a local likelihood approach, Report 95-15. Institut
für Quantitative Methoden, Tech. Univ. Berlin.

[23] Wu, L.L. & Tuma, N.B. (1991). Assessing bias and fit
of global and local hazard models, Sociological Methods
and Research 19, 354–387.

[24] Yamaguchi, K. (1993). Modeling time-varying effects
of covariates in event-history analysis using statistics
from the saturated hazard rate model, in Sociological
Methodology, Vol. 23, P.V. Marsden, ed. Blackwell,
Oxford, pp. 279–317.

(See also Survival Analysis, Overview; Survival
Distributions and Their Characteristics)

LUDWIG FAHRMEIR



Discriminant Analysis,
Linear

Linear discriminant analysis is a statistical method for
studying the differences between classes of objects.
Broadly speaking, the method may be used with two,
rather distinct, objectives in mind. The first is as
a predictive tool (see Prediction). Here the aim is
to formulate a rule which will permit objects to be
classified into one of several predefined classes. The
second is to help understanding. Here the aim is to
build a model which helps us understand the structure
in data (see Model, Choice of). We illustrate both of
these uses below. Although different, both of these
uses are based on the same underlying principles
and both are essentially inferential: in the first case
the inferences are from a sample of objects to new
objects and in the second case from the sample to the
underlying population of objects.

We begin with a sample of objects drawn from
the population being studied. Usually this sample,
often called a design or development sample, will
be a simple random sample, though other sampling
schemes can also be used. For each member of this
sample we require that (i) we know its true class, and
(ii) we know the values of a (fixed) set of variables
describing that object. If our aim is prediction, then
we will use this sample to construct a model which
will allow us to predict the class membership of a new
object from only its vector of measurements. If our
aim is understanding, then we will use this sample to
characterize the main ways in which the groups differ.
Some examples will help to clarify these ideas.

1. Our aim is to construct a rule which will assist
in diagnosing patients suffering from hepatitis as
having either acute infectious hepatitis or hepati-
tis secondary to infectious mononucleosis. The
information on which we must base our diagno-
sis are the values of two variables: the activity of
lactate dehydrogenase isoenzyme-5 and the activ-
ity of lactate dehydrogenase isoenzyme-3 [20].

2. Is it possible to predict who is likely to suffer
from osteoporosis in later life on the basis of the
answers to the questions on a simple noninvasive
screening questionnaire [5, 22]?

3. Can we identify which children will respond pos-
itively to a new behavioral treatment for enuresis,
based on variables such as age, sex, whether or

not the child was an only child, type of enuresis,
and so on [19]?

4. Can we predict, without the need for surgery, for
which patients prostate cancer will have spread
to the surrounding lymph nodes [4]?

5. In what way do those infants at high risk of dying
from Respiratory Distress Syndrome differ from
those at low risk? Variables in the study included
sex, responsiveness, gestational age, birthweight,
etc. [36].

As far as the prediction problem is concerned,
a legitimate question is: “Why bother?” If the true
classes of the objects can be found – they were, after
all, found for the objects in the design set – why not
use the same method for new objects? The answer is
indicated by some of the above examples. We might
want a prognostic classification (see Prognostic Fac-
tors for Survival), so that we can undertake some
treatment intervention, and we cannot wait to dis-
cover the true class.

Perhaps discovering the true class requires a post-
mortem examination. Perhaps it is very expensive
to discover the true class so that a cheaper (if less
accurate) method is needed. Maybe the procedure for
determining the true class is very time-consuming –
for example, growing a bacterial culture – and a
quicker method of classifying an object is needed,
and so on.

Since the objects in the design set have known
class memberships, methods for tackling the above
problems are sometimes described as methods of
supervised classification (or supervised pattern recog-
nition). This distinguishes them from unsupervised
classification methods, where no class memberships
are known a priori. The objective of the latter meth-
ods, also termed methods of cluster analysis, is to
determine the class structures, not to model a pre-
existing such structure. We do not discuss the latter
in this article. Details of such methods can be found in
[1, 10, 17], and [41] (see Classification, Overview;
Cluster Analysis of Subjects, Hierarchical Meth-
ods; Cluster Analysis of Subjects, Nonhierarchical
Methods).

Many methods of supervised classification have
been developed. They include linear discriminant
analysis (which is the subject of this article), logistic
discriminant analysis (see Logistic Regression),
classification trees (see Tree-structured Statistical
Methods), nearest neighbor methods, neural network
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and other highly parameterized models, and
innumerable variations on all of the above.
Comparative descriptions and reviews of these
methods may be found in [21, 37], and [23].

Linear discriminant analysis is the oldest of the
methods, at least in terms of formal development. The
ideas can be traced back at least as far as Fisher [11].
Although originally described for the case of only two
classes, it has been extended to handle more than two
classes. It is convenient for us, however, to introduce
the ideas via the special case of only two classes, as
we do in the next section.

The Two-Class Case

Suppose that we have a sample of objects from each
of the two classes. For each of these objects we
know its parent class and the values of a vector of
measurements taken on that object. Suppose that our
aim is the second of the two described in the opening
paragraph – to gain an understanding of the nature
of the differences between the classes, based on their
measurements. To do this, we attempt to construct
a measure of “classness”, based on the measured
variables, such that, for example, large values of
this measure correspond to membership of one class
and small values to membership of the other class.
We can then tackle the first problem of the opening
paragraph by imposing a threshold on this measure:
those new objects whose “classness” value exceeds
the threshold will be classified into one class and
those whose value is less than the threshold will be
classified into the other class.

Perhaps the most obvious initial approach is to
look at each measured variable separately. However,
this will not always be very helpful. Suppose, for
simplicity (it permits us to draw diagrams), that only
two variables, x1 and x2, are measured on each object,
and that we have only four objects, two from each
class, in the design set. Figure 1(a) shows these
four objects plotted on a line showing their values
for variable x1 and Figure 1(b) shows them plotted
against the x2 variable. In each case, objects from
one class are represented by circles and objects from
the other class by crosses. No threshold on the x1

variable permits good separation between the classes.
Wherever we put the threshold, some design set
objects lie on the “wrong” side of the line. The same
applies to the x2 variable. Now, however, consider

Figure 2, which shows the design set points plotted
in the two-dimensional space of the variables. If we
project the points onto the direction of the dashed
line, as shown in Figure 3, we see that we can easily
produce a threshold which perfectly separates the two
classes. The position on the dashed line represents
“classness”.

0 1 2

o x o x

x1

(a)

0 1 2

o x o x

x2

(b)

Figure 1 Four objects plotted according to their values
on (a) the single variable x1, and (b) the single variable x2.
In neither case can the two classes be well separated

2

1

0
0 1 2

x1

x2

o

x

o

x

Figure 2 The four objects from Figure 1 plotted in the
two-dimensional space of x1 and x2

o o x x

Figure 3 The projection of the four objects onto the
broken line in Figure 2 permits the two classes to be easily
separated
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This is the essence of linear discriminant anal-
ysis. We seek some direction in the space spanned
by the measured variables such that the projections
of the design set points onto that direction are well
separated. This direction characterizes the difference
between the classes, so that describing the direction
permits us to tackle the second objective presented
in the opening paragraph. Imposing a threshold on
the direction permits us to tackle the first objective.
In terms of the complete space, such a threshold cor-
responds to a surface (a line in the two-dimensional
case). For the artificial example above, such a surface
(line) is illustrated in Figure 4. This surface is called
a decision surface.

Directions in a space defined by the measured vari-
ables correspond to linear combinations of the defin-
ing variables. So our objective is to find some linear
combination which leads to good separation of the
projections of the points in that direction. Denoting an
arbitrary set of weights by a = (a1, . . . , ap), the pro-
jection of a point xi = (xi1, . . . , xip), with p measure-
ments xij , j = 1, . . . , p, onto the direction defined by
a, is given by yi = a′xi . An obvious measure of the
separation between the projections of the points in
the two groups is then the separation between their
means. However, for the same reason as with the
two group t-test (see Student’s t Distribution) Dis-
tribution, it makes more sense to take into account
the within-group variability, and standardize using the
(assumed common) within group standard deviation.
That is, denoting the mean of the groups’ projections
by y(1) and y(2), and the standard deviation of the
projections within each of the groups by sd(y), the

2

1

0
0 1 2

x1

x2
o

x

o

x

Decision surface

Figure 4 The dashed line shows the position of the
decision surface separating the two classes

measure of separation is (y(1) − y(2))/sd(y). It will
be more convenient to work with the square of this,
which is (y(1) − y(2))2/var(y). In terms of the original
variables, this is (a′x (1) − a′x(2)

)2/a′Sa, where x(k) is
the mean vector for group k and S is the average of
the sample covariance matrices of the two groups.
We now need to find the vector a which maximizes
this measure.

Differentiating the above measure with respect to
a and equating to zero reveals that it is maximized by
â ∝ S−1(x(1) − x(2)). The function â′x is then called
a linear discriminant function. The components of
the vector â can thus be studied to understand how
the two groups differ, what variables (when taken
in combination with the others present) contribute
most to the difference, and so on. To classify a new
point we still have to decide on a threshold. The
most natural way to choose a suitable threshold is
revealed if we take a step back and attempt to tackle
the classification problem directly.

Let the underlying distribution of points from class
k, k = 1, 2, be f (x|k) and let the prior probability
of belonging to class k be pk , so that p1 + p2 = 1.
Then a natural thing to do would be to classify a new
point to class k if it seemed more likely to have come
from class k. That is, we will estimate the probability
that the new point came from classes 1 and 2 and
assign it to that class with the highest estimated
probability. Now, by Bayes’ theorem, the probability
of belonging to class k is f (k|x) = pkf (x|k)/f (x),
where f (x) = p1f (x|1) + p2f (x|2) is the overall
mixture distribution of the x. Thus the solution is,
replacing the unknown distributions by estimates, the
class which maximizes f̂ (k|x). With only two classes,
this is equivalent to classifying into class 1 if the ratio
f̂ (1|x)/f̂ (2|x) exceeds 1 and to class 2 otherwise.
Again using Bayes’ theorem, this is equivalent to
comparing

p̂1f̂ (x|1)/f̂ (x)

p̂2f̂ (x|2)/f̂ (x)
= p̂1f̂ (x|1)

p̂2f̂ (x|2)

with 1.
So far we have not assumed any particular distri-

butional form for the class conditional distributions
f (x|k). Suppose we make the assumption, common
in multivariate analysis, that they are multivariate
normal distributions, and suppose we also assume
that the covariance matrices of the two groups are
equal. Then the above classification rule becomes:



4 Discriminant Analysis, Linear

compare

f̂ (1|x)

f̂ (2|x)
=

p̂1

(2π)p/2|S|1/2
exp

[
−1

2

(
x − x(1)

)′
S−1

(
x − x(1)

)]

p̂2

(2π)p/2|S|1/2
exp

[
−1

2

(
x − x(2)

)′
S−1

(
x − x(2)

)]

with 1. This can be considerably simplified if we take
logarithms. It reduces to a comparison of

x′S−1
(x(1) − x(2)) + ln(p̂1/p̂2) − 1

2 x(1)′S−1x (1)

+ 1
2 x(2)′ S−1x (2)

with 0. The first term in this expression is identical to
the optimal â′x expression derived above. Moreover,
the last three terms in this expression depend solely
on the design set, and not on x. Thus, approaching
the problem from the perspective of classifying a
point has led to the same solution as above: we must
project the point to be classified onto the direction
which we derived as the “best separating direction”.
The last three terms above are merely constants –
they serve to define the threshold with which we
compare x′S−1

(x(1) − x(2)) to see if it is greater or
less than 0. Put another way, the classification rule
is: if x′S−1

(x(1) − x(2)) is greater than − ln(p̂1/p̂2) +
1
2 x(1)′ S−1x(1) − 1

2 x(2)′S−1x(2) assign the new object to
class 1, otherwise to class 2. Ties can be settled
arbitrarily.

The above derivation assumes that misclassifying
a class 1 object as a class 2 object is equally as serious
as the reverse. Although this is a common assumption
(particularly in methodological studies) it is rarely
realistic. More usually, one type of misclassification
is more serious, or costly in some sense, than the
other. Suppose, then, that the cost of misclassifying
a class 1 object to class 2 is c1 and the cost of
misclassifying a class 2 object to class 1 is c2. Our
classification rule will be: if a point x falls in region
Ω1, classify it as belonging to class 1, and if it falls in
region Ω2 (which is the complement of Ω1) classify
it to class 2. Our aim is to choose these two regions
such that the overall cost is minimized. This overall
cost is

c1

∫

Ω2

f (1|x)f (x) dx + c2

∫

Ω1

f (2|x)f (x) dx.

To minimize this we must choose Ω1 so that x is
in Ω1 whenever c2f (2|x)f (x) < c1f (1|x)f (x). That
is, the overall cost will be minimized if we classify x
as belonging to class 1 when f (1|x)/f (2|x) > c2/c1

and to class 2 otherwise. Assuming multivariate nor-
mal distributions, and replacing them by their esti-
mates, the optimal rule, in terms of minimal cost is
then: if x′S−1

(x(1) − x(2)) is greater than ln(c2/c1) −
ln (p̂1/p̂2) + 1

2 x(1)′S−1x(1) − 1
2 x(2)′S−1x(2) assign

the new object to class 1, otherwise to class 2. Again
ties can be settled arbitrarily. When c1 = c2 this
reduces to the rule above, as it should.

Although the above was described in terms of
multivariate normal distributions, exactly the same
results apply to any ellipsoidal distribution – that is,
any distribution defined in terms of the mean vector
and covariance matrix.

For classification rule purposes, we can relax the
restriction that the covariance matrices in the two
groups are assumed equal. If we do this, the classifi-
cation rule above becomes more complicated, includ-
ing separate terms for the two covariance matrices, so
that it takes a quadratic form. For purposes of under-
standing, introducing these extra complications is of
limited value – it certainly makes interpretation more
difficult. The reason for considering it when classifi-
cation is the aim is that it might lead to more accurate
results: the more flexible the model, the more accu-
rately it can reflect the underlying structure of the
populations. While this is true, it is not the only influ-
ence on accuracy. In particular, the parameters in the
classification rule must be estimated from the design
set, and the accuracy of the resulting rule depends on
the accuracy with which they are estimated. When a
linear decision surface is used, the decision surface
involves only p + 1 parameters. However, when a
quadratic surface is used, an extra (p + 1)/2 para-
meters need to be estimated. As a consequence, the
resulting surface has a higher variance. To overcome
this a larger design set is needed.

The linear discriminant function can also be
derived by a regression argument. If we define a
response variable (see Dummy Variables) taking one
value for the members of group 1 and some other
value for the members of group 2, then the regression
function is proportional to x′S−1

(x(1) − x(2)).
There is also a close link between linear dis-

criminant analysis and logistic discriminant analysis.
Whereas linear discriminant analysis can be viewed
as starting with the class conditional distributions
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f (x|j), and then using Bayes’ theorem to derive
estimates of the f (j |x), logistic discriminant analysis
goes straight for the latter. The basic model is

f (1|x) = exp

(
α0 +

p∑

k=1

αkxk

) /

1 + exp

(
α0 +

p∑

k=1

αkxk

)
.

Using this model, the log odds ratio is

ln[f (1|x)/f (2|x)] = α0 +
p∑

k=1

αkxk,

that is, a linear function of the xk . However, we have
already seen that, if we assume multivariate normal
distributions, then the linear discriminant analysis
approach also yields a linear function for the log odds
ratio. The difference between the two methods lies in
the parameter estimation and the assumptions which
are made: logistic discriminant analysis also yields a
linear log odds ratio for other distributional forms.

More Than Two Classes

If we assume multivariate normal distributions (more
generally, ellipsoidal distributions) then the above
generalizes immediately to more than two classes.
For a point x at which a classification is required, we
want to find the class j which maximizes f̂ (j |x), the
estimated posterior probability of belonging to class
j . That is,

max
j

f̂ (j |x) = max
j

p̂j

(2π)p/2|Sj |1/2

× exp

[
−1

2

(
x − x (j)

)′
S−1

j

(
x − x (j)

)]
.

Since log is a monotonic increasing function, we can,
alternatively, seek the j that maximizes

ln p̂j − 1
2 ln |Sj | − 1

2

(
x − x(j)

)′
S−1

j

(
x − x(j)

)
.

Also, if we again assume that the covariance matrices
are equal, we need the j that maximizes

ln p̂j − 1
2 x(j)′ S−1x(j) + x′S−1x(j).

Such functions, or equivalent variants of them, are
often called classification functions.

Description requires identifying those dimensions
of the spaced spanned by the measured variables
which are most important in distinguishing between
the classes. For the multiclass situation we can again
generalize the approach of the preceding section.
There we had two classes and we sought that direc-
tion in which the class means were most separated
(standardized to take into account the within class
variation in that direction). We can do the same
sort of thing with more than two classes. In par-
ticular, we can seek that direction which maximizes
the variance between the class means, standardized
for the (assumed common) within class variance. Put
another way, we seek that direction which gives the
largest between-to-within variance ratio. Analogous
to the preceding section, if the covariance matrix of
the group means is B and the (common) covariance
within the groups is S, then we seek the direction a
which maximizes a′Ba/a′Sa. In fact, a subtle point
arises here. B can be estimated as an unweighted
matrix, proportional to

∑
j (x

′
j − x)′(x′

j − x), where
xj is the mean vector for class j and x is the overall
mean vector, or as

∑
j nj (x′

j − x)′(x′
j − x), where nj

is the number of objects in the sample which belong
to class j . The latter is the more common; it places
greater emphasis on separating the more important –
larger – groups, and so is what is normally required.

The vector a which maximizes the ratio a′Ba/a′Sa
is given by the eigenvector corresponding to the
maximal root of the equation (B − λS)a = 0. In
general, however, this equation will have more than
one solution. This reflects the fact that, with more
than two classes, more than one direction is needed
to describe the differences between the mean vectors
of the classes. With g classes and p variables, there
will, in general, be min(p, g − 1) solutions. (Special
cases arise when the class means lie in a subspace of
less than min(p, g − 1) dimensions – if, for example,
they were all in a straight line.) The eigenvector
corresponding to the second solution is that direction
which leads to the greatest value of the ratio, subject
to this second eigenvector being orthogonal to the
first. The third solution maximizes the ratio in the
space orthogonal to the first two eigenvectors, and
so on.

These “best separating” dimensions, or canonical
variates (see Canonical Correlation), are often used
to produce a graphical display of the distribution
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Figure 5 The samples of the three classes of kangaroo
skulls, plotted in the space spanned by the first two
canonical variates

of the classes in multidimensional space. Figure 5
illustrates this for three species of kangaroos [2]:
1 = M. giganteus, 2 = M.f. melanops, 3 = M.f. fuli-
ginosus. Eight variables were measured, these being
the lengths, in tenths of a millimeter, of basilar length,
occipitonasal length, nasal length, nasal width, zygo-
matic width, crest width, mandible depth, and ascend-
ing ramus height. The horizontal axis shows the first
canonical variate and the vertical axis the second. The
separation between the groups is quite clear.

Table 1 shows the coefficients of the canonical
variates, standardized so that the canonical variates
have zero mean and unit variance. From this it
is possible to see which variables are important
contributors to each of the canonical variates.

In the preceding section we showed how the linear
discriminant function could be derived using regres-
sion analysis to predict an indicator variable which
took different values for the two classes. This can

Table 1 Total-sample standardized canonical
coefficients

CAN1 CAN2

BASLEN 0.61 −2.29
OCCLEN −2.05 −1.42
NASLEN 3.03 1.93
NASWID 0.71 0.38
ZYGWID −2.05 1.70
CREWID −0.76 0.43
MANWID 0.36 1.80
ARAMHT −0.83 −1.20

be generalized to more than two classes: define a
set of indicator variables to characterize the different
groups and use canonical correlation analysis. The
mathematics here is also equivalent to multivariate
analysis of variance. The difference lies in what
aspects of the results are the focus of interest. Typ-
ically in multivariate analysis of variance interest
lies in testing particular between-group contrasts and
particular combinations of variables. In discriminant
analysis, however, interest lies either in describing the
linear combinations which lead to overall differences
between the groups (and concern is seldom with par-
ticular contrasts) or in formulating a rule permitting
classification of future objects.

Assessing Classification Accuracy

A convenient way of summarizing the performance of
a classification rule is by means of a confusion matrix.
This is simply a cross-classification of the predicted
class by the true class for a set of objects which the
rule has classified. An example is given in Table 2

Table 2 Confusion matrix for classifying chromosomes into 10 classes

True class

1 2 3 4 5 6 7 8 9 10

1 171 2 7 0 0 0 0 0 0 0
2 3 177 0 0 0 0 0 0 0 0
3 6 1 172 0 0 1 0 0 0 0

Predicted 4 0 0 0 344 16 0 0 0 0 0
class 5 0 0 1 16 1379 2 2 0 0 0

6 0 0 0 0 0 535 0 1 0 3
7 0 0 0 0 0 0 157 16 7 0
8 0 0 0 0 0 1 12 334 7 6
9 0 0 0 0 0 0 9 5 343 3

10 0 0 0 0 0 1 0 4 3 393
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(from Tso & Graham [43]). This shows the results
of classifying human chromosomes into ten groups
(approximating what is known as the “Denver”
classification). As is common with such matrices, the
diagonal elements are the largest, signifying that most
of the chromosomes are correctly classified. Such a
matrix can be used to identify the classes which are
most commonly confused.

The most popular single measure of performance
is misclassification or error rate – the proportion of
new objects which the rule will misclassify (see Mis-
classification Error). This is simply the proportion
of the objects in the confusion matrix which lie off
the leading diagonal. Of course, this measure does
not take account of different severities of different
types of misclassification, but these can be included
with the aid of a cost matrix.

To obtain a reliable estimate of future perfor-
mance, the confusion matrix (or any other measure
of performance) must be computed from a data set
other than that used to derive the classification rule.
After all, the parameters of the rule will have been
estimated to optimize, in some sense, performance
on the design set. In the above, the x(j) and S were
estimated from the design set, so that they will be
particularly well matched to that data set. Any new
data are unlikely to fit the model quite as well.
Performance estimates based on the design set are
known as resubstitution or apparent measures. Vari-
ous approaches to estimating true future performance
have been adopted. The most straightforward is to
use an independent set of data, a test set, but this
assumes that sufficient data are available. Alternative
approaches involve repeatedly splitting the data into
two parts, designing on one and testing on the other,
and then averaging the results. They include the jack-
knife method, leave-one-out (see Cross-validation),
and bootstrap method. Until recently the leave-one-
out approach was the most popular. Here a single
element is chosen for the test set and the classifier is
built using the remaining n − 1 design set elements.
This is repeated for all n design set elements, and the
predicted error rate of the rule based on all n is esti-
mated as the proportion of the classifications which
are correct. In general, the leave-one-out method is
computationally intensive, since it requires n classi-
fication rules to be constructed. However, in the case
of linear (and quadratic) discriminant analysis sim-
ple variants of the resubstitution estimator have been

developed which yield the leave-one-out estimate
without recalculating n times from scratch [31].

More recently bootstrap methods have gained in
popularity. These involve adjusting the optimistic
bias of a performance estimate based solely on the
design data using estimates of that bias based on
subsamples from the design set. There are several
variants, but the so-called 632 estimator [9] seems
to be the most widely recommended. This can be
approximated by a cross-validation approach based
on using half the data for the design set and half for
the test set, doing this repeatedly and averaging the
results.

The jackknife procedure has a superficial similar-
ity to leave-one-out, in that it requires n computations
based on all but one of the data points, but in fact it
is based on a different underlying principle.

The case of two classes is particularly impor-
tant, especially in medical and epidemiological con-
texts where interest is often in whether or not a
particular disease is present. Because of this, spe-
cial measures of performance of classification rules
have been developed for this case. Table 3 shows
the confusion matrix for a generic two-class prob-
lem. Suppose that class 1 corresponds to “cases” and
class 2 to “noncases”. Then the sensitivity (Se)∗ of a
rule is defined as a/(a + c) and the specificity (Sp)∗
as d/(b + d). Sometimes sensitivity and specificity
are called true positive rate and true negative rate,
respectively. Sensitivity and specificity define per-
formance in terms of predicted classifications within
each of the true classes. Complementary to this, defin-
ing performance as proportions correct within those
predicted to belong to each class, we have the positive
predicted value (a/a + b) and the negative predicted
value (d/c + d) (see Predictive Values).

All of these measures, as well as the error rate,
are dependent on a particular threshold having been
chosen. If this is difficult to do (because, for example,
precise costs cannot be determined) then one might
prefer to examine performance over a range of

Table 3 Confusion matrix
notation for the two-class case

True class

1 2

1 a b

Predicted class
2 c d
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situations. Receiver operating characteristic (ROC)
curves do this by plotting sensitivity on the vertical
axis against 1-specificity on the horizontal axis (other
equivalent variants are also sometimes used).

Classification is all very well, but sometimes more
subtle insights into the performance of a rule are
required. For example, one might want to know
whether 80% of the objects to which the rule assigns
a probability of 0.8 of belonging to class 1 really
do belong to class 1. Measures of such things have
gone under various names, including reliability, cali-
bration, validity, and imprecision. Detailed discussion
of these and the other performance issues discussed
above are given in [23] (see Multivariate Classifi-
cation Rules: Calibration and Discrimination).

Robustness

Linear discriminant analysis assumes that the covari-
ance matrices of the classes are equal. If this is not
the case, then the true decision surface is nonlin-
ear, so that the linear discriminant analysis decision
surface is necessarily biased in some parts of the
measurement space. This is particularly important
in a biostatistical context, where often the variables
are categorical, and so cannot be supposed to fol-
low a multivariate normal distribution. The problem
is especially severe when the variables are simply
binary – as is the case, for example, if they measure
the presence or absence of symptoms. In this situa-
tion the covariance matrices are very unlikely to be
equal if the mean vectors of the classes differ since,
for Bernoulli variables, the means and variances are
functionally related (see Binary Data).

Despite all this theoretical argument, practical
studies have shown that the method often performs
well. A partial explanation may be found in that fact
that, as we have already pointed out in the context
of the quadratic extension, the bias in the estimated
decision surface may be more than compensated for
by the reduction in variance which follows from
the fact that fewer parameters need be estimated in
the linear case. In general it seems that, if the true
decision surface is approximately linear, the method
will perform well, but this is clearly also a function
of the number of variables involved, the sample size,
and other aspects (see Robustness).

There have been many empirical and simulation
studies comparing classification rules in general and

linear discriminant analysis with other methods in
particular. Examples include [16, 19, 35], and [42].

Choosing the Variables

Given a large set of potential discriminatory vari-
ables, interest often lies in identifying an effective
subset (see Variable Selection). If the objective of
the study is understanding, then there may be doubt
about the relevance of all of the variables to the dif-
ference(s) between the groups. One might want to
describe the differences in a concise and convenient
summary. On the other hand, if the aim is to construct
a classification rule, then one may want to identify an
effective separating subset on practical grounds: the
fewer variables which need to be measured on future
objects the better, in terms of cost, speed, and so on.
Moreover, an aspect of the relationship between bias
and variance discussed above is that the more vari-
ables there are (relative to a fixed size design set) the
more parameters there are to be estimated and the
greater is the opportunity for overfitting the design
set: the bias may be small but the variance may be
large. This can be tackled by reducing the number of
variables, so yielding better classification rules.

The obvious approach of choosing variables on
the basis of the separation between groups using
variables one at a time will generally not be very
effective (recall Figures 1 and 2 and the associated
discussion). What we want to know is which set of
variables is effective, when they are taken in combi-
nation, not when examined individually. To answer
this question we must, in principle, examine all pos-
sible subsets of variables. If there are p variables to
choose from, then there are 2p − 1 possible subsets –
potentially a vast number. When one considers that,
for each such subset, a classification rule must be
constructed and its performance assessed, the magni-
tude of the task becomes apparent. Since there are
so many possible subsets of variables, a common
strategy is to restrict the search through the space
of subsets. The most popular way of restricting this
search is to use stepwise methods. The basic idea is
as follows, illustrated by a forward stepwise method.
This begins by examining all the variables individu-
ally and selecting the best single one. Then each of
the others is examined, one at a time, to see which
of them, when used together with that already cho-
sen, leads to the best results. The best is added to
the one already chosen, to yield a pair. Then each
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of the others is examined, to see which, when com-
bined with that pair, yields the most effective triple,
and so on. Backward stepwise methods work on a
similar principle, but progressively eliminating vari-
ables according to which leads to least degradation in
performance. More sophisticated versions can also be
used, in which groups of variables, rather than single
ones, are added or deleted at each step. Forward and
backward methods can also be combined, for exam-
ple, adding two variables and taking one away at
each step. Forward methods have the advantage that
they are generally less computationally expensive,
but they may miss interaction detected by backward
methods.

At each step of such a procedure it is necessary to
decide which of the possible contenders is “the best”.
Clearly a performance criterion which is quick to
evaluate is needed: constructing a classification rule
and assessing its error rate may not be feasible. Mul-
tivariate analysis of variance constructs measures of
the difference between the groups (based on compar-
ing the variation between the mean vectors with the
within-group variation, in the way discussed above),
and these measures can be used. They include mea-
sures such as Wilks’s lambda and the Pillai–Bartlett
trace [25]. A slightly different variant is to find the
subset of variables which maximizes Mahalanobis
distance between the two closest groups. Other mea-
sures are possible and are implemented in various
packages.

Often the variables are also examined individually,
to ensure that they pass some minimum criterion
for selection (in a forward procedure) or maximum
criterion for exclusion (in a backward procedure).
For example, in the former, if the extra separation
produced by a possible new variable beyond that due
to the variables already included is less than some
threshold (sometimes called the F-to-enter), then the
variable will not be considered (at this stage, at least).
The F-to-remove serves a similar role for backward
methods. Sometimes these are combined (for example
checking if previously included variables have lost
their separating power during the course of forward
selection). A cautionary note is worth making here.
Although these measures of (extra) separability are
F statistics, they are the result of a sequence of steps
in which “the best” has been selected. They therefore
do not follow an F distribution.

Other approaches to variable selection include
studying the canonical variates to see which variables

do not contribute significantly to any, and examin-
ing “all” subsets though a search strategy such as
branch and bound, which permits some subsets to
be identified as suboptimal without explicitly test-
ing them.

McKay & Campbell [32, 33], and Hand [18, Chap-
ter 6] review variable selection methods in discrimi-
nant analysis.

Other Variants of Linear Discriminant
Analysis

Linear discriminant analysis has been extended in
many directions in an effort to produce more flex-
ible models, less constrained by assumptions, and to
produce more accurate classification rules. We have
already referred to the extension to quadratic dis-
criminant analysis which follows from relaxing the
requirement that all the classes should have the same
covariance matrix. Some other generalizations are as
follows.

A compromise between the extremes of linear dis-
criminant analysis and quadratic discriminant analy-
sis is to require the covariance matrices of the classes
to be the same apart from certain parameters. For
example, in the common principal components model
one assumes that they are the same apart from the
variances, which may be proportional [12, 13].

Regularized discriminant analysis [14] sought to
find an ideal compromise between the extra vari-
ability of quadratic discriminant analysis and the
possible bias of linear discriminant analysis by adopt-
ing a weighted sum of the two. In particular, it
estimates the covariance matrix of the j th class by
(1 − λ)�̂j + γ cj I, where

�̂j = (1 − λ)(nj − 1)Si + λ(n − g)S
(1 − λ)(nj − 1) + λ(n − g)

and cj = (trace �̂j )/p. This thus shrinks the sample
covariance matrix for class j towards the overall
average within sample covariance matrix, S, and then
further shrinks the result towards the identity matrix
(see Shrinkage).

Quadratic discriminant analysis relaxes the con-
straint of linear discriminant analysis that the covari-
ance matrices should be equal. The penalty for the
increased flexibility resulting from this relaxation is
a danger of overfitting the design set. Regularized
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discriminant analysis seeks to overcome this by aver-
aging the quadratic and linear approaches. Another
alternative is to try to model the covariance matrices,
perhaps based on some knowledge of the processes
underlying the data. For example, if the variables rep-
resent repeated measures, then likely structures for
covariance matrices have been well explored (e.g. [7]
and [24]). They are based on underlying mecha-
nisms such as random effects and serial correlation
between consecutive measurements. More generally
one can model the covariance matrix in terms of pos-
tulated underlying relationships. In particular, one can
hypothesize or identify likely conditional indepen-
dence relationships: if two variables are conditionally
independent given the others in the model, then the
corresponding entry in the inverse of the covari-
ance matrix is zero [6]. This leads to a covariance
matrix in which fewer parameters need to be esti-
mated, so reducing the overall variance of the final
model.

Krzanowski ([28, 29], and other papers), in his
location model, described extensions of linear dis-
criminant analysis to the case when the variables are a
mixture of continuous and categorical. In essence the
model assumes that density functions of the classes
are each multivariate normal in the space spanned
by the continuous variables, but takes the mean vec-
tors (and, perhaps, the covariance matrices) to differ
between the cells induced by the cross-classification
of the categorical variables.

Computation

Fisher’s 1936 paper introducing linear discriminant
analysis was written before the age of computer
technology. Because of this, all the major packages
(see Software, Biostatistical) include implementa-
tions of this procedure. Some examples are described
below, but readers should be aware that software,
above all else, evolves rapidly. New releases of pro-
grams appear regularly, including improvements and
advances. In any case, we have simply attempted to
indicate the flavor of the programs available and have
not attempted a detailed specification of all of their
features.

1. The discriminant procedure in SPSS/PC+ [40]
provides a comprehensive routine for linear dis-
criminant analysis. A choice of five criteria is
given for choosing which variables should be

entered in a stepwise variable selection pro-
cess, including Wilks’s lambda and maximiz-
ing the minimum pairwise separation between
groups. Various options can be specified to con-
trol the selection process in stepwise procedures.
The number of canonical variates computed can
be specified [up to min(p, g − 1)] or alterna-
tively a value for the cumulative percentage
of the eigenvalues associated with the variates
can be specified. Various diagnostics can be
requested, such as Box’s M test for equality
of the covariance matrices. Classification can
be on the basis of equal priors, priors propor-
tional to the design set class sizes, or user-given
values. A plot such as that in Figure 5 can
be requested, as can various other plots and
classification tables. Either quadratic or linear
discriminant analysis can be selected for clas-
sifying objects.

2. SAS PROC DISCRIM [38] provides a variety of
discriminant analysis procedures, including lin-
ear discriminant analysis and quadratic discrimi-
nant analysis but also including methods such as
kernel and k-nearest-neighbor methods. Canoni-
cal variates are produced. Both the resubstitution
and leave-one-out estimates of error rate can be
requested, as can a smoothed estimate with lower
variance than the leave-one-out method. Various
graphical displays are available.

3. SAS PROC CANDISC [38] determines canon-
ical variates, the scores of the cases on those
variates, and performs univariate and multivari-
ate analysis of variance.

4. SAS PROC STEPDISC [39] performs stepwise
linear discriminant analysis using forward or
backward methods, or a combination of the two.

5. BMDP 7M [3] performs stepwise discriminant
analysis by either forward or backward methods.
Important contrasts between the groups may be
specified to guide the selection procedure. Resub-
stitution classification results may be requested,
as may leave-one-out results. Prior probabilities
can be specified and plots based on the first two
canonical variates are available.

Conclusion

Linear discriminant analysis is just one of a large
class of methods for performing supervised classifi-
cation. It is the oldest and in some senses the simplest.
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Other methods include:

1. logistic discriminant analysis, mentioned above
2. nonparametric methods such as k-nearest-

neighbor and kernel methods (see Density
Estimation). These apply ideas of local
smoothing (see Nonparametric Regression),
relating the predicted class of a new object to the
classes of those objects which are most similar
to it, where similarity is measured in terms of the
variables describing the objects

3. recursive partitioning or tree-structured statisti-
cal methods, in which the space of the measured
variables is sequentially split, to yield a partition
within which each cell corresponds to a particular
class

4. the feed-forward neural network and other flex-
ible regression models, in which sophisticated
combination and transformation procedures are
applied to the raw measured variables to yield a
predicted classification

5. expert systems, in which patterns of values in
the measured variables and in derived variables
are sequentially matched to stored patterns (see
Artificial Intelligence).

The literature of the area is now huge. Books
devoted to linear discriminant analysis include [31,
27], and [26]. More general works on supervised
classification include [18, 23, 34], and [37]. Most
books on multivariate statistics include sections on
linear discriminant analysis; an excellent example
is [30]. Books on statistical pattern recognition, such
as [8] and [15], also often discuss linear discrim-
inant analysis, though typically from a different
perspective.
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Discrimination and
Clustering for
Multivariate Time Series

New sophisticated instrumentation in biology and
medicine will routinely result in massive databases
that often are composed of many series that are
measured over time. Examples are micro-arrays in
gene studies (see DNA Sequences), and functional
magnetic resonance images (fMRI) or EEG series
in brain imaging studies (see Image Analysis and
Tomography; Clinical Signals). Classic problems
in analyzing such observed multivariate time series
involve (1) the grouping or clustering of the time real-
izations into similar categories (see Cluster Analysis
of Subjects, Hierarchical Methods; Cluster Analy-
sis of Subjects, Nonhierarchical Methods) and (2)
the classification of new observed series, possibly
belonging to one or more of the categories. Exam-
ples are clustering of gene patterns associated with a
particular disease using micro-arrays, somatosensory
discrimination using fMRI profiles, or detection of
early onset Alzheimer’s disease using multiple EEG
sensors.

All of the above experiments receive data in a sim-
ilar format, namely, as multivariate time series con-
sisting of observations on a vector yyyt = (yt1, yt2, . . . ,

ytp)′ observed over a number of time points, say
t = 1, 2, . . . , n. Typically, the number of time points,
n, exceeds the number of components of the vec-
tor, p. For example, EEG measurements may con-
tain thousands of observations in time measured at
p = 19 channels monitoring different areas of the
brain. Data from such studies are often divided a
priori into a number of groups or populations, say
Π1, Π2, . . . , Πm. A new measurement comes in and
is to be classified into one of the groups using
discriminant analysis. A more challenging prob-
lem materializes in cluster analysis when there are
no a priori subgroups defined over the database. In
that case, one wishes to determine the number of
groups, m, and the group membership of experi-
mentally observed series using one of a family of
procedures for defining clusters.

Discrimination and clustering problems have, of
course, been studied for conventional multivariate
data and there exists a substantial literature devoted to
discrimination and clustering of vector observations

(for example, see [3, Chapters 11 and 12]; also Mul-
tivariate classification rules: calibration and dis-
crimination). The components of the vector can be
features extracted from the multivariate time profiles
yyyt measured by instrumentation like that mentioned
above. In the physical and engineering sciences, there
is a long history devoted to extracting features of
time series that can be used for discrimination. For
example, Shumway and Stoffer [6, Section 5.7] show
an example that involves distinguishing series orig-
inating from earthquakes from those that might be
nuclear explosions using various amplitude values
extracted from the bivariate seismic recordings. The
key to applying this feature extraction approach is
the reduction of the vector time series to a small vec-
tor of discriminating features. Although the feature
extraction approach can be moderately successful in
the hands of a skilled analyst, the magnitude of the
databases suggests that discrimination and clustering
techniques based on using the complete waveforms
are potentially more powerful.

For general discriminant analysis, one usually has
a collection of p-dimensional vector time series rep-
resenting each of m population groups, say yyykti, i =
1, 2, . . . , nk, k = 1, 2, . . . , m. The nk p × 1 vectors
from group Πk are used to find maximum likelihood
estimators for the common parameters of the group,
denoted generically here by Θ̂k . These common
parameters determine a log-likelihood function for
each of the groups, say log L(Θ̂k), k = 1, 2, . . . , m.
We may also evaluate the log-likelihood for a new
observation, say log L(Θ̂) at the estimated parameters
for that particular observation. The new observation is
classified by choosing the population corresponding
to the value of k leading to the minimum value of the
log-likelihood ratio, namely log L(Θ̂) − log L(Θ̂k).
This difference and various forms can be regarded
as a rough measure of distance between the observed
vector and the kth group. Kakizawa et al. [5] show
a number of different forms based on information
theoretic measures of discrepancy.

Hierarchical cluster analysis assigns observations
to clusters based on the same concept of distance.
Since we have no a priori knowledge of either the
number of clusters or the cluster composition, we
begin with N clusters, each containing a single mem-
ber, where N is the size of the database. Then, define
the two closest members as a new single cluster, lead-
ing to a new partition into N − 1 clusters composed
of N − 1 single member clusters and one cluster with
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two members. Then, evaluate all between-cluster dis-
tances using the distance between the two closest
elements of the cluster. Merge the two closest into a
new cluster The procedure stops when every element
of the database has been merged into a single cluster.
An alternative partitioned cluster analysis approach
begins with a set of clusters of a given size and
adjusts the membership by evaluating sequentially
the distance of each element in a cluster to every
other cluster. If it is closer to a cluster to which it
does not currently belong, it is moved to the clos-
est neighboring cluster. When no more interchanges
are indicated the current membership determines the
cluster configuration for a given number of clusters.

There are two possible approaches to modeling
the observed data leading to an evaluation of the log-
likelihood function mentioned above. For lack of a
better description, we divide the modeling approaches
into those emphasizing time domain methods and
those emphasizing frequency domain methods. Fre-
quency domain methods (see Spectral Analysis)
have the advantage that the representation of the data
in terms of stationary or locally stationary processes
agrees with physical intuition, suggesting that peri-
odic phenomena can be modeled best in terms of
cyclical behavior. Time domain methods (see ARMA
and ARIMA Models) have the advantage that they
can often be couched in terms of regression mod-
els for which there will be a large body of statistical
software for computations. As a general rule in bio-
statistical applications, longitudinal data can often
be fitted using time domain methods, whereas the
frequency domain often is better suited for large data
sets such are produced in fMRI and EEG analysis.

Time domain approaches usually attempt to model
the vector series yyyt as linear combinations of fixed
covariates and stochastic processes and character-
ize population membership in terms of the parameters
of the linear model. A number of examples of these
kinds of representations for vector series can be found
in [2] for fMRI series and in [6, Chapter 4], [4],
or [1] for models that can be put into state-space
form. In these models, one usually has an equa-
tion in mind for the observations that includes fixed
covariates capable of modeling smooth behavior and
a random series that induces a smoother stochas-
tic component. Structural forms for these models
in the multivariate case are given in the previously
mentioned references. In general, there will be a para-
metric form for the process that will be typical of its

population grouping, leading to a value of the log-
likelihood log L(Θ̂k), i = 1, 2, . . . , m for each group.
Computing the difference between the log-likelihood
of the observation and that for the group leads to met-
rics for discriminant and cluster analysis in this case.

Frequency domain methods may be indicated
when the stimuli are repetitive, as in many fMRI
experiments, or when the response is expected to
contain important information at given frequencies.
For example, the alpha and beta frequencies for an
EEG series are thought to be important components.
In the frequency domain model, it is convenient
to parameterize the Fourier transforms (see Fast
Fourier Transform (FFT)) of the multivariate series
as being approximately complex multivariate nor-
mal with covariance or spectral matrices that differ
for the different population groups. In this case, we
still evaluate a log likelihood, called the Whittle [7]
likelihood, over frequencies of interest and follow the
same general procedures as above for discriminant
and cluster analysis. The population differences in
this case are assumed to be characterized in terms
of the spectra and coherences between the multivari-
ate recordings. The data in this case are summarized
by the spectral matrix of the vector. The likelihood
classification and clustering then works best when
using functionals of the estimated group k spectral
matrix, Ŝk(f, t), and the estimated spectral matrix
of the observation to be classified, Ŝ(f, t), where
f denotes frequency in cycles per unit time and t

denotes time. Examples using this approach for dis-
criminating seismic recordings of earthquakes from
those generated by presumed nuclear explosions are
given in [6, Chapter 5, Section 5.7]. One can average
over informative frequencies and over time windows
where the data are locally stationary.
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Disease Registers

Disease registers are an important tool for clinicians,
epidemiologists, and health service planners. Their
nature will vary according to the functions they are
serving, but all relate to individuals with, or at high
risk of, a specified chronic disease. Often registers
are used for more than one purpose.

The following sections describe: examples and
objectives of registers of different types; problems of
case definition, ascertainment, and biases; validity
checks; and possibilities created by record linkage.

Types of Disease Registers

Registers Contributing to the Organization and
Quality of Clinical Care

Patient Registers Held by Clinicians. The sim-
plest form of disease register is one set up by indi-
vidual clinicians relating to their own patients. The
conditions registered are usually those that require
either regular maintenance therapy or screening for
early signs of preventable complications. Such reg-
isters are essentially part of the normal process of
clinical care. They are generally designed for preva-
lent cases, i.e. patients who are alive, have not moved
away, and whose condition is clinically important.

One of the most common conditions for which
disease registers are used is diabetes mellitus. This is
typical in that most patients have an ongoing need
of insulin or another prescribable drug. They are
also at high risk of future complications, particularly
problems of the feet, or eyes, and of the cardiovascu-
lar system. Many of these complications have been
shown to be either preventable, or less serious if diag-
nosed and treated early.

In recent years the holding of disease registers has
extended from one held by a clinician of his/her own
patients, with a special interest in a particular condi-
tion, to the sharing of registers by groups of clinicians
working in general or hospital practice. Moreover, for
an increasing number of conditions, including dia-
betes [6] and coronary artery disease [11], there are
now internationally shared registers, with all the nec-
essary confidentiality constraints.

Registers of Relatives of Patients with Genetic
Conditions. A more recent development is to ext-
end registration to blood relatives of individuals

known to have a serious genetic condition. An exam-
ple of this is the condition of familial adenomatous
polyposis. Persons with this condition have numbers
of colonic polyps, initially benign but at high risk of
becoming malignant.

One method of management is to screen teenage
members of affected families and to remove the colon
of those found to have polyps at the age of 18–20 as
a prophylactic measure [2]. Another approach under
investigation is to treat those at high risk with low-
dose aspirin, which may be protective against malig-
nancy. Implementation of such programs on a popu-
lation scale, and their audit, is greatly assisted by the
existence of registers of those at risk.

Registers of Individuals at Risk because of Haz-
ardous Exposure. Where specific hazards are
known to increase the risk of subsequent serious dis-
orders, registration of those who have been exposed
may be a useful clinical tool. This has been done for
babies who were born extremely immature, or who
have had severe asphyxial episodes. These babies are
at high risk of neurologic damage which may not
manifest itself for some years. Early diagnosis of
sensory or neurologic problems in children on such
registers allows prompt action, although it is mostly
in visual and hearing disorders that it has been shown
to be effective [5]. Parents of children at risk because
of stormy births are normally aware of such risks and
appreciate the surveillance.

Registers Held for the Implementation of Public
Health Functions

Registers of serious common conditions may be held
for the purpose of monitoring and improving the
health of populations as opposed to that of individ-
uals. They are usually held at the level of residents
of an administrative area. Questions of exclusion or
inclusion may arise when residents of one area are
treated, move into, or are born or die, in another area.

In contrast to most registers held for clinical
purposes which need only include prevalent cases,
registers held for public health functions may need
to include all incident cases regardless of severity or
survival. Moreover, for most public health functions
the measures used will be incidence or prevalence
rates rather than absolute numbers of cases.

The calculation of rates implies that the number
of individuals at risk is known. In some registers, for
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instance those of congenital anomalies, this implies
the inclusion of cases lost as late prenatal or postnatal
death amongst the numerator and denominator. This
is possible where there is a definitive diagnostic
test which can be used prenatally or in the early
postnatal period, e.g. the detection of a chromosomal
anomaly, of a specific genetic defect, or ultrasound
visualization of malformations visible during or after
pregnancy [10].

The aims of such registers include:

1. the ascertainment of environmental hazards to
health (see Environmental Epidemiology)

2. the provision of current and projected prevalence
and severity data for health care planners (see
Health Services Research, Overview)

3. the monitoring of survival, or quality of life, of
affected individuals

4. the monitoring of the efficacy, implementation
and acceptance of preventive measures.

Important examples are cancer, diabetes, ischemic
heart disease, or congenital anomaly registers, which
may be held at regional, national, or international
levels.

Ascertainment of Environmental Hazards to
Health. New environmental causes of ill-health
may be suspected when trends in registration rates
of specific conditions change over time, in different
places or in persons of different characteristics,
or occupations. New patterns of incidence, such
as clusters over time and space, may also draw
attention to possible causes (see Clustering). When
the conditions concerned are rapidly lethal, or lethal
prenatally, it is important to ascertain all incident
cases as far as possible, as well as prevalent cases.
Where evidence is found that there has been a real
change in incidence, registered cases may act as a
sampling frame to set up case–control studies to
investigate possible causes.

Negative findings from such studies are as impor-
tant as positive findings if they can rule out putative
associations with environmental exposures.

Provision of Current and Projected Prevalence
and Severity Data for Health Care Planners.
Health care planners require information to allow
them to project future needs of individuals with spe-
cific conditions, in terms of prevalence and severity.

This requires good quality prevalent disease registers,
which include clinical and survival data.

Monitoring of Outcome of Affected Individuals.
Registers which provide information on survival,
quality of life, and treatment given, are important
sources of clinical audit, allowing the comparison
of survival after different treatments or treatment
in different places. Such audit will, however, also
require basic demographic data such as age, sex,
place of residence and, if possible, socioeconomic cir-
cumstances, which could confound comparisons of
survival. Such comparisons, although not so rigorous
as randomized controlled trials (see Clinical Trials,
Overview), may point to differences that should be
further explored.

Monitoring of the Efficacy, Implementation, and
Acceptance of Preventive Measures. Preventive
measures of disease may include primary prevention,
namely the abolition of the cause. In the case of
cancers or heart disease, these include smoking or
alcohol abuse. Preventable serious congenital disor-
ders include neural tube defects, in part preventable
by periconceptional folic acid supplementation, and
rubella embryopathy, preventable by preconceptional
rubella immunization. Where registers exist of inci-
dent cases of such conditions, trends over time, place,
or in different population groups will act as an audit
of the extent to which the preventive action is being
implemented.

In conditions where secondary preventive action
may follow the screening out of asymptomatic or
prenatal cases, the use of a disease register to monitor
the prevalence of symptomatic cases, or births with
specific congenital anomalies, will allow the auditing
of the efficacy and effectiveness of specific screening
programs. Examples are where cervical or breast
cancer screening is on offer, and how this affects
the mortality due to such cancers; or where prenatal
screening programs are available, whether there is a
change in ratio of legally terminated pregnancies with
Down’s syndrome or neural tube defects to registered
affected births.

Registers Held for Research Purposes. Registers
may be held purely for etiologic research. They
typically require the inclusion of incident rather than
prevalent cases. Their design and maintenance must
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take account of, or may reveal, the natural history
of the condition registered.

How the Natural History of a Disease may
Affect Registration

Congenital Anomalies

Many congenital conditions which lead to permanent
impairment are ascertainable and therefore register-
able at birth, e.g. spina bifida. Others may not be
visible or do not lead to symptoms until some time
after birth. These include congenital heart defects,
cerebral palsy, or mental retardation. For such con-
ditions it is impossible to estimate true incidence
rates since many affected children may have died
before ascertainment, and only age-specific preva-
lence rates can be calculated. Other congenital con-
ditions, e.g. gastrointestinal atresias, are curable by
surgery shortly after birth. Such conditions may need
to be considered in the ascertainment of incident
cases, but not in ascertaining prevalent cases.

The advent of prenatal diagnosis of some con-
ditions, often leading to termination of pregnancy,
raises other questions. Had they not been prena-
tally diagnosed, many fetuses with conditions such
as chromosomal anomalies would have been lost as
spontaneous miscarriages, and the cause would not
have been ascertained. This is an important point
in registers of Down’s syndrome, where in recent
years in England and Wales about half of all affected
pregnancies are diagnosed prenatally, leading to an
apparent increase in incident cases, although the num-
bers of affected births are falling [1].

Acquired Diseases

Acquired chronic conditions may lead to permanent
impairment which cannot be cured, or they may
be “curable”, at least in the sense of not recur-
ring. The course of the disease may be variable,
as in multiple sclerosis, with attacks and remis-
sions, the patient sometimes having no symptoms or
clinical signs in remission. Alternatively, in condi-
tions such as ischemic heart disease, minor symptoms
and signs of the disease may persist, but this may be
punctuated by acute episodes of myocardial infarc-
tion. Tunstall–Pedoe [11] gives a full account of the
methodologic problems raised in the registration of

ischemic heart disease, stemming from the notifica-
tion of heart attacks as acute episodes instead of as
“abstractions from a chronic disease”. He shows that
such registration, which has been used for interna-
tional comparisons, is the only way to measure the
burden of chronic heart disease.

Case Definition

The nature and quality of a register is crucially depen-
dent upon the ascertainment of individuals meeting a
clear and unambiguous case definition. Case defini-
tion must include guidance on which cases should
be included and which excluded, including the cutoff
points in terms of level of severity or objective test
results. Where relevant, it is helpful if registration
forms include diagrams which indicate the parts of
the body that are affected, or scales which indicate
severity.

Sometimes researchers may choose to use a very
broad definition on the assumption that they can
select specific subgroups from the information req-
uested.

One question that commonly arises is how to
handle cases with multiple pathology, e.g. multiple
apparently unrelated malformations or cancers. Par-
ticularly for research purposes, the setting up of a
register must include a protocol which deals with
these questions and the method of ascertainment to
be used. For clinical registers held by one practitioner
this may be less important, but as soon as clinical reg-
isters are shared with others (and this often implies
a new use as a research tool also), such a protocol is
equally important.

Ascertainment

The completeness of registers varies with the methods
used for ascertainment and diagnosis.

Methods of Ascertainment

Ascertainment may depend on clinical presentation
and the recognition of the defined condition, or it may
be the result of a process of screening where this is
clinically possible. Both the severity of the condition
and the characteristics of the individuals ascertained
will usually vary sharply depending on the methods
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used. Examples are the marked differences between
numbers of cases on registers of individuals with
diabetes mellitus who presented for medical care,
and those registers which resulted from population
screening of urine and glucose tolerance testing [3].
The ease and completeness with which cases are
found may be helped if the treatment is standard and
unique, as in the case of insulin, where monitoring of
prescriptions is a method of ascertainment of cases.

Methods of Diagnosis

Particularly where the register is shared with others,
the diagnostic process must be based on a formal pro-
tocol. There are many different methods of diagnosis.
For those conditions where a definitive diagnostic test
is available e.g. an identifiable single gene defect or
a chromosome anomaly, or the results of bacterial or
viral culture, the easiest and most complete ascer-
tainment may be obtained from laboratory results.
Where diagnosis is largely based on clinical findings
its success may depend on the personal acumen of
the physician, but is usually backed up by objective
blood, urine, or imaging investigations. Such meth-
ods may lead to full, or nearly full, ascertainment
where the condition is such that self-referral is the
rule. For lethal conditions clinical ascertainment can
be backed up by searching for relevant details on
death certificates.

Multiple Sources of Ascertainment

It is now increasingly common to use multiple
sources of ascertainment. This can be particularly
useful for chronic conditions of low lethality which
may not always require medical care. For instance,
individuals with conditions such as cerebral palsy
or mental retardation may present to a variety of
services – medical, paramedical (such as physiother-
apy), educational, or social. Moreover, it has been
shown that even the ascertainment of diabetes or can-
cer can be improved by the use of multiple sources.
For diabetes, multiple sources that have been used
include prescriptions, family practitioner registers,
hospital diabetic clinic records, and, where rele-
vant, health insurance data. For cancer registrations,
sources include hospital records or death certificates
with a mention of cancer, histology reports, and
oncology clinic records.

Multiple ascertainment is designed to lead to
duplication of notification, and the information gath-
ered and the design of the register must be such that
duplicates can be identified and eliminated.

Duplicate Notification. Duplicate notification will
also occur where affected individuals already reg-
istered in one place move to another place which
keeps a related register, and precautions must be
taken to eliminate these. Clerical errors in record-
ing dates, spelling mistakes in recording names, or
name changes are all difficulties which must be taken
account of in seeking for duplicates. Record link-
age techniques can be used to check for duplicates,
including phonetic name matching [7].

Case Identification

The degree to which registered cases need personal
identification will vary according to the aims of the
register. Clinical registers are often part of family
practitioner or hospital records, and named identifi-
cation is essential for their use.

Registers kept for public health or research pur-
poses often do not need to be named except where
a follow-up of registered individuals is planned. On
the other hand the recording of some personal iden-
tifiers is essential, if only to allow the finding and
elimination of duplicates, and to have such basic epi-
demiologic information as date of birth and sex.

If the aims of the register include an investiga-
tion of changes in incidence, prevalence, or survival,
other dates must be collected, such as at first pre-
sentation and, where relevant, of death. Similarly,
to seek for evidence of clustering, place of resi-
dence, and sometimes of birth or occupation, will
be needed, usually recorded in the form of post-
or zip-code data. When personal identifiers are kept
there must be meticulous care to preserve patient
confidentiality.

Record Linkage

The growth of computerized health information (see
Administrative Databases) has led to opportunities
to link records from different sources, and thus to
enhance register information.

For instance, in the UK it is possible to access
information from death registration. Given Ethics
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Committee permission, bona fide researchers are per-
mitted to arrange for the linkage of this information
with their own register data, thus providing the nec-
essary data to calculate the survival of the individuals
on a register, and to find their causes of death. Simi-
larly, linkage with nonconfidential items from birth
records may provide valuable information linking
birth events with health in later life [9].

Such linkage is an essential part of cancer reg-
istration in the UK, since recording of cancer as a
cause of death is an important method of ascertain-
ment for the regional cancer registers. Moreover, the
linkage at national level of data from all regional can-
cer registers allows for identification and elimination
of duplicate records due to patient movements [8].

Validation

An important aspect of maintaining the quality of dis-
ease registers is the validation of the data at regular
intervals. Validation can include an assessment of
completeness of registration and of data on each
record, the success with which duplicates are elim-
inated, and most importantly the rigor to which the
given case definition is adhered.

There is a growing literature on methods of
examining the likely completeness of ascertainment.
Where there are different but independent methods,
“capture–recapture” techniques can be used [4].

The examination of the validity of case registration
can be a difficult task. An area where this has received
particular attention is in the World Health Organi-
zation MONICA study, which was the registration
in a number of different countries of heart attacks.
This is well described by Tunstall-Pedoe [11], who
discusses problems arising from different standards
of record keeping, the use of coding rules for clinical
history, symptoms and diagnostic tests, and validity
checks of the clinical data, coding, and laboratory or
other tests.

Conclusions

Disease registers are becoming an increasingly pow-
erful clinical and epidemiologic tool, particularly for
international comparisons. Their use predicates clear
aims, good design, coverage, complete and accurate

recording of validated data, and rigorous methods of
preserving confidentiality.
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Disease-marker
Association

The primary aim of a disease–marker association
study is to evaluate the potential role of a gene(s)
in the expression of a measured trait. The gene
may be measured directly at the DNA level (such
as DNA sequence variation), at the level of the
gene product (such as blood serum proteins and
enzymes), or indirectly by DNA markers (such
as restriction–fragment–length–polymorphisms or
simple sequence repeats) that are on the same
chromosome and physically close to, and associated
with, the disease-causing gene. It is convenient to
refer to any of these measured phenotypes of a gene
as a genetic marker, which is defined as a genetically
determined trait for which the relationship between
genotype and phenotype is known. The DNA
markers chosen for studies are often codominant, i.e.
there is a one-to-one relationship between marker
genotype and phenotype, allowing unambiguous
determination of marker alleles. When a marker is not
codominant, the error of classification of the genotype
based on the marker phenotype should be considered
in analyses, which requires knowing the distribution
of the marker phenotype, given the marker genotype,
as in a general penetrance function.

For a marker to be useful in an association study, it
should have sufficient variation (i.e. polymorphism)
in the population. Measures of polymorphism for a
marker are (i) heterozygosity, the probability of hav-
ing a heterozygous genotype and (ii) polymorphism
information content, which was derived for linkage
studies of a rare autosomal dominant disease using a
codominant marker, and which corrects the heterozy-
gosity for noninformative matings when parents and
child all have the same heterozygous genotype.

Although the cause of association between genetic
markers and disease cannot be determined by associ-
ation studies, it is important to consider the possible
causes of association so that potential biases can be
evaluated. One most desirable cause is the direct
effect of marker alleles on the trait phenotypes, such
as in a candidate–gene study. A second, indirect,
cause of association is linkage disequilibrium (LD),
i.e. both linkage between disease and marker loci
and nonrandom association of the alleles at these
two loci on chromosomes in the population. This

type of association is likely to occur if most dis-
eased subjects inherited from a common ancestor a
segment of chromosome containing the disease allele
and marker allele (founder effect), and is most easily
detected in a homogenous population, because the
main factor influencing the association is recombi-
nation between the two loci. Recombination breaks
association between the alleles at the two loci, so
that after many recombinations, which accumulate
over generations, the alleles at the two loci will be
randomly associated on chromosomes in the popu-
lation. However, this is a slow process when the
chance of recombination, θ , is small. Denote by mi

a marker allele with frequency pi , dj an allele from
the disease-causing locus with frequency qj , and hij

the frequency of a chromosome bearing alleles mi

and dj (i.e. haplotype). The deviation of the haplo-
type frequency from random association (i.e. equi-
librium) is hij − piqj , which is expected to decrease
by the factor (1 − θ)n after n generations, where θ

is the recombination fraction (see Linkage Analysis,
Model-based). Because of this, association studies
based on LD are generally not sensitive to θ > 1%
(1 centimorgan).

A complication of associations caused by LD is
that different mutations causing the same disease
phenotype can arise on chromosomes that bear
different marker alleles. This can cause the associated
marker allele to differ across different populations,
and can decrease LD in a population mixed with
different mutations. To study this effect in detail,
one could perform studies of haplotypes composed of
multiple marker loci to determine whether particular
haplotypes are associated with disease. However,
determination of haplotypes may require much work
(e.g. family studies), and there are statistical errors
when inferring haplotypes. Note that if there are
multiple genes over a short chromosomal region,
each of which can be associated with disease, then
a marker within that region can be associated with
disease due to any one (or more) of those genes,
making it difficult to determine the causative gene(s).
Examples of this complexity occur in association
studies of the major histocompatibility complex (see
HLA System).

In addition to direct effects or LD causing asso-
ciations, there are other less interesting causes of
association that can exist at the population level, yet
which can cause misleading interpretations. These
are joint selection for both marker and disease locus
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alleles, small population variation (random genetic
drift (see Population Genetics)), and the structure
of the population, which may include inbreeding,
or stratification due to either admixture of different
ethnic groups or nonrandom mating. If a population
is composed of a recent admixture of different eth-
nic groups that have different frequencies of marker
alleles, then any trait more frequent in an ethnic
group will be positively associated with any marker
allele that is more frequent in that group, even if
these loci are not linked. This spurious association
is an example of confounding due to ethnic back-
ground. Although linkage disequilibrium is often used
to describe general associations between disease and
marker alleles, it is better to use the term “allelic
association”, because of the other causes of associa-
tion described above.

The traits evaluated in association studies are
often based on affection status (diseased vs. normal),
as in case–control studies. For this reason, case-
control studies are discussed in detail, although other
study designs may be useful: cohort, cross-sectional,
admixed populations, case–parent, family-based con-
trols, haplotype analyses, and pedigree studies. Fur-
thermore, it is important to recognize that marker
association studies are useful to address a number
of scientific questions, such as prognosis of sur-
vival outcome of diseased subjects based on marker
genotypes (using censored survival analysis meth-
ods), or the amount of variation of quantitative traits,
among either diseased or normal subjects, explained
by genetic markers (using regression analysis and
analysis of variance).

Criteria for selection of diseased cases often
include newly diagnosed incident cases (instead of
prevalent cases, which are confounded by disease
duration and survival), and ways to minimize pheno-
copies (e.g. strong family history, early onset, severe
cases). To avoid confounding, it is best to match cases
and controls by potential confounders such as age,
sex, and ethnicity. Because ethnicity can be diffi-
cult to define and measure, and population structure
may not be known, the choice of adequate con-
trols can be quite difficult. Although relatives of
cases may serve as convenient controls, especially
for matching on ethnic background, the statistical
dependence between cases and their relatives can
lead to less power than a random sample of con-
trols.

The comparison of marker phenotype frequen-
cies, say G different types, between cases and con-
trols can be performed using traditional methods
for case–control studies [4, 27] (see Analytic Epi-
demiology): 2 × G tables with chi-square tests or
exact tests [35], cross-product odds ratios (for small
samples it may be necessary to use Haldane’s for-
mula [10] by adding 0.5 to the cells of the table
before computing odds ratios), logistic regression
(unconditional or conditional for matched studies),
and population attributable risk [1]. When the num-
ber of marker phenotypes (G) is large, it is common
practice to compare the frequency of the presence
of particular marker phenotypes, such as carriers of
particular alleles, between cases and controls in multi-
ple, 2 × 2 tables, with correction for multiple testing
(see Multiple Comparisons). Alternatively, when
marker alleles can be unambiguously determined, as
for codominant markers, power may be improved
by reducing the large number of categories based
on marker phenotypes to fewer categories based on
marker alleles, say K distinguishable alleles. Allele
frequencies can then be compared between cases
and controls by constructing a 2 × K contingency
table, such that each person contributes two alle-
les, and then calculating a probability value based on
either the large sample chi-square distribution of
the Pearson chi-square statistic or Monte Carlo test-
ing [30]. The chi-square statistic has (K − 1) degrees
of freedom. When it is plausible that a disease sus-
ceptibility allele is associated with only one of K

marker alleles, although it is not known which allele
is associated, power can be improved by use of
a mixture likelihood, which uses the frequency of
marker alleles to predict which allele is associated
with disease, and creation of a likelihood ratio statis-
tic [37].

The validity of Pearson’s chi-square statistic for
comparing allele frequencies requires independence
of alleles in the general population. When randomly
sampling cases and controls, genotypes are indepen-
dent between people, but alleles within genotypes
may not be independent, such as can occur when
there is recent mixture of populations. Independence
of alleles can be tested by comparing the observed
genotype proportions to those expected when there
is Hardy–Weinberg Equilibrium (HWE). This test
should be performed only among the controls, be-
cause even if the general population is in HWE, the
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expected marker genotype proportions among dis-
eased cases can deviate from HWE when a true asso-
ciation exists, and the amount of deviation depends
on the genetic mechanism. For example, if a marker
allele is associated with a disease caused by a rare
dominant disease susceptibility allele, then HWE is
not expected to hold, yet for association with a reces-
sive disease susceptibility allele, HWE may hold
among the cases, but with a marker allele frequency
greater than in the general population [21, 42].

If HWE does not hold among the controls, then
the variances (and covariances) of allele frequen-
cies should not be based on binomial variances
(and covariances), because they do not account for
the dependence of alleles. For example, let nA· and
nAA be the number of controls heterozygous and
homozygous, respectively, for allele A, and let N be
the total number of controls. The estimated relative
frequency of allele A is q̂A = (nA· + 2nAA)/(2N),
and the estimated frequency of AA homozygotes is
q̂AA = nAA/N . When there is deviation from HWE
the estimated variance of q̂A is var(q̂A) = [q̂A(1 −
q̂A) + (q̂AA − q̂2

A)]/(2N) [46], which deviates from
the binomial variance because of the term (q̂AA −
q̂2

A). One can use corrected variances and covari-
ances to compute a valid chi-square statistic for
comparison of allele frequencies when HWE does not
hold, although the usual Pearson chi-square statistic
is robust (see Robustness) to moderate deviations
from HWE.

In contrast, if the assumption of HWE is plau-
sible, then analyses can be improved. For example,
if the relationship between the marker genotype and
phenotype is not one-to-one, then the assumption of
HWE can be used to estimate allele frequencies by
maximum likelihood; for example, using the EM
algorithm; the HWE proportions give the relative
probabilities of the different genotypes that corre-
spond to the same phenotype. Furthermore, risk esti-
mates can be improved with smaller variances [14];
multivariate statistical tests, which account for cor-
relations among alleles from a single locus due to
allele frequencies summing to one, as well as corre-
lations among alleles from different loci, can be used
as omnibus tests for association [32]; and one can fit
genetic models to assess the effects of marker alleles
on relative risks for disease [21].

When evaluating multiple alleles at a single marker
locus, or multiple marker loci, one can use logistic
regression and loglinear models [8, 45] to assess

associations. Advantages of these regression models
are that nongenetic covariates can be included (which
allows estimation of marker relative risks adjusted for
potential confounders), interactions of marker alle-
les on relative risk can be evaluated (say, additive
vs. dominant effects of alleles on the log relative
risk), and interactions between the marker alleles and
nongenetic covariates can be assessed (see Gene-
environment Interaction).

The statistical methods used to evaluate asso-
ciations with marker alleles can also be used to
evaluate associations with haplotypes created by mul-
tiple marker loci. Haplotypes can be inferred either
by family studies, such as for cases, or statistically
by using measures of population linkage disequi-
librium to predict the most likely haplotypes [16],
such as for controls. Some statistical difficulties are
ambiguous haplotypes, error in haplotype prediction,
ambiguity of disease genotype, and confounding from
population structure. It is not unusual for the largest
relative risks to occur with the smallest haplotype
frequencies, resulting in large variances of risk esti-
mates. Although it may be necessary to combine rare
haplotypes to validate use of chi-square statistics, it
may be better to use exact or simulated P values
[30, 35]. A novel attempt to improve power in this
situation is to use a “cladistic” analysis in which the
evolutionary history of haplotypes (i.e. evolutionary
tree) is first created, and then to perform nested anal-
yses to determine which tree branches differ most
between cases and controls [36].

With the availability of many genetic markers, one
of the most challenging statistical issues is the choice
of the level of statistical significance to maximize
power yet minimize the chance of false positives.
The success of an association study depends on the
likelihood that the marker is involved (directly or
indirectly via LD) in the disease process, so that
the most meaningful association studies are those
that evaluate markers with clear biological functions.
When testing many markers, the prior probability
that any one is associated with disease is often so
low that one needs to be very conservative to avoid
false-positive associations. To account for multiple
comparisons with many alleles (or many haplotypes),
the Bonferroni correction is often used, although one
should consider the power of this method vs. omnibus
multivariate methods. Also P value plots [28] and
empirical Bayes shrinkage estimates [40, 41] may
prove useful.



4 Disease-marker Association

Because of the difficulty in defining an appropriate
control group for association studies in heterogeneous
populations, Falk & Rubenstein [7] proposed to mea-
sure the genetic marker on both the diseased cases
and their parents in order to compare the frequencies
of those alleles that were transmitted from parents
to children with those that were not transmitted. For
example, to test the association of allele A, vs. all
other alleles combined into group B, in a sample of n

cases (2n parents), the alleles of each parent are clas-
sified as in Table 1, so that each parent contributes a
count to this table. The genotype of each parent can
be considered a matched pair of alleles, one trans-
mitted and the other not, and the McNemar test for
matched pairs, which does not require independence
of parental alleles, is valid. This is also called the
transmission/disequilibrium test, or TDT [34]. Note
that only discordant pairs (see Matching), i.e. het-
erozygous parents, contribute to the TDT statistic. An
alternative approach, which uses all parental alleles,
is to ignore the matching in order to compare the fre-
quency of allele A among the 2n transmitted alleles
vs. the 2n nontransmitted alleles. This can be accom-
plished by rearranging the marginal totals of Table 1
into the cells of Table 2, and applying Pearson’s
chi-square statistic (also called the haplotype-based
haplotype relative risk statistic, HHRR, for this type
of analysis [38]). However, this method requires that
parental alleles be independent in the population,
which is not true for a stratified population [33]. The
statistical properties of various methods of analysis
for parental controls have been investigated [2, 6, 11,
12, 18–20, 25, 26, 31, 34, 38, 43, 44] but a general
framework can be developed based on a conditional
likelihood method [29]. To see this, note that by con-
ditioning on the two alleles of the mother, m1 and
m2, and the two alleles of the father, f1 and f2, there
are four child genotypes that can be produced, m1f1,
m1f2, m2f1, and m2f2. One of these four genotypes is
that for the diseased case, and the remaining three can
be considered matched hypothetical sib controls. This
framework allows development of omnibus score
statistics [24], as well as use of standard conditional
logistic regression software (see Software, Biosta-
tistical) to compute maximum likelihood estimates
of allelic effects and to assess interactions between
marker genotypes and environmental covariates [13,
23, 29, 39]. It is critical to recognize that these statis-
tical methods are sensitive only to associations caused
by both linkage disequilibrium and linkage.

Table 1 Matched analysis for transmitted and nontrans-
mitted parental alleles: TDT = (b − c)2/(b + c)

Nontransmitted allele

Transmitted allele A B Total

A a b w

B c d x

Total y z 2n

Table 2 Nonmatched analysis for transmitted and non-
transmitted parental alleles: HHRR = (wz − xy)2 × 4n/

[(w + y)(x + z)4n2]

Allele type

A B Total

Transmitted alleles w x 2n

Nontransmitted alleles y z 2n

Total w + y x + z 4n

Association studies using pedigree data offer yet
another useful design because members of the same
pedigree are likely to have the same genetic etiology,
which reduces etiologic heterogeneity, and extended
pedigrees give more information about the genetic
mechanisms underlying the trait than does a sam-
ple of unrelated persons. An important feature of
pedigree data is that the statistical dependence of
members in the same pedigree needs to be incor-
porated into analyses to obtain accurate estimates
of the variances of parameter estimates. For a large
number of independent pedigrees, the robust method
of generalized estimating equations [15, 47] can
be used. However, for one or a few pedigrees, the
asymptotic results for generalized estimating equa-
tions are not likely to hold, so it is necessary to use
a statistical model that incorporates familial correl-
ations. For dichotomous traits, one can use either
likelihood methods based on combined association,
segregation (see Segregation Analysis, Classical),
and linkage (see Linkage Analysis, Model-based)
[17, 22], or a method called the Marker Associa-
tion Segregation Chi-squares (MASC) [5], which fits
models for the simultaneous segregation and asso-
ciation of marker alleles within pedigrees based on
minimization of chi-squares. For continuous traits,
methods based on the multivariate normal distribution
with covariance matrices determined by the genetic
relationships among pedigree members can be used
[3, 9] (see Genetic Correlations and Covariances).
It can sometimes be advantageous to confirm case-
control population association studies with pedigree
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studies in order to rule out spurious associations and
to understand better the genetic mechanism causing
the trait phenotype.
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Distance Sampling

Distance sampling is the most widely used tech-
nique for estimating abundance of biological popu-
lations. It is used for a diverse range of populations:
whales, dolphins, seals, apes, monkeys, deer, ante-
lope, rabbits, seabirds, gamebirds, songbirds, fish,
butterflies, trees, bird nests, animal burrows, animal
carcasses, etc. There are several strategies available to
wildlife managers and ecologists for assessing abun-
dance [10]. The most obvious is to census (count)
the population. If this is impracticable, sample counts
might be made in randomly selected quadrats. Two
forms of “quadrat” sampling are point counts, in
which numbers of objects (usually birds or plants) in
a circle about a point are counted, and strip transects,
in which the observer travels along a line, count-
ing all objects within a predetermined distance of
the line. Both methods yield an estimated density
(objects per unit area) simply by dividing the total
count by the total area surveyed. For many popula-
tions, it is difficult to ensure that all objects within the
circle or strip are detected and counted. Furthermore,
for scarce species, the methods are wasteful, because
detections of objects beyond the circle or strip bound-
ary are ignored. If the radius of the circle or the width
of the strip is made sufficiently small that detection of
any object within the surveyed area is almost certain,
then perhaps 50% or more of detections are outside
the surveyed area, and so are ignored. In distance
sampling, distances from the center line or point to
detected objects are recorded, which allows us to esti-
mate object density without having to assume that all
objects within the surveyed area are counted.

The term “distance sampling” is used because the
population can be regarded as the set of distances
of objects from the line or point. We sample from
this population of distances in a “size-biased” way,
because smaller distances are more likely to be sam-
pled. That is, objects closer to the line or point are
more likely to be detected.

The two primary methods of distance sampling
are line transect sampling, an extension of strip tran-
sect sampling in which line-to-object distances are
sampled, and point transect sampling, an extension
of point counts in which observer-to-object distances
are sampled [4]. Related methods are cue count-
ing [7], used on large whale populations, and trapping
webs [1], which extend the applicability of distance

sampling to small mammals and ground insect pop-
ulations. The theory for these approaches is closely
similar to that for point transects. Free software Dis-
tance [8] for analyzing distance sampling data is
available from the web site http://www.ruwpa.
st-and.ac.uk/distance/. Related techniques
sometimes used by botanists to estimate densi-
ties (and sometimes also termed distance sampling)
are nearest neighbor (see Clustering) and point-to-
nearest object methods [5].

Methods for estimating wildlife abundance that do
not involve distance sampling include capture–re-
capture, which is often more labor-intensive and
more sensitive to failures of assumptions than dis-
tance sampling. However, it is applicable to some
species that are not amenable to distance sampling
methods, and can yield estimates of survival and
recruitment rates, which distance sampling cannot do.
Capture–recapture methods can be useful for pop-
ulations that aggregate at some location each year,
whereas distance sampling methods are more effec-
tive on dispersed populations. They should therefore
be seen as different tools for different purposes. In
fisheries applications, catch per unit effort, catch-at-
age and catch-at-length are all commonly used to
estimate abundance, as they require that the commer-
cial catch is sampled, which is more cost-effective
than sampling the living fish. Acoustic surveys of
fish schools often provide data amenable to distance
sampling methods. For difficult terrestrial species,
abundance is often indexed using indirect methods,
such as dung counts for deer or rabbits. To convert
the index to an estimate of abundance, typically one
or more rates must be estimated, such as deposition
rate and decay rate for “standing crop” dung counts.

Line Transect Sampling

In line transect sampling, a series of straight lines is
traversed by an observer. This may be achieved in
various ways, depending on the study species. In ter-
restrial studies, these include walking, horseback, trail
bike, all-terrain vehicle, fixed-wing aircraft, and heli-
copter. Transect surveys for aquatic environments can
be conducted by divers with snorkels or scuba gear,
from surface vessels ranging in size from small boats
to large ships, from fixed-wing aircraft, helicopters or
airships, from small submarines, or from sleds with
mounted video units pulled underwater by a surface
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vessel. In the case of large observation platforms,
there is typically a team of observers.

Estimation

Perpendicular distances x are measured from the
line to each detected object of interest (usually an
animal, or “cluster” of animals). In practice, detec-
tion distances r and detection angles θ are often
recorded, from which perpendicular distances are cal-
culated as x = r sin θ (Figure 1). Suppose k lines
of lengths ll , . . . , lk (with

∑
lj = L) are positioned

according to some randomized scheme, and n animals
are detected, at perpendicular distances x1, . . . , xn.
Suppose that animals farther than some distance w

from the line are not recorded. Then the surveyed area
is a = 2wL, within which n animals are detected.
However, not all animals within the surveyed area
are detected. Let Pa be the probability that an animal
within the surveyed area is detected, and suppose an
estimate P̂a is available. Then animal density D is
estimated by

D̂ = n

2wLPa

. (1)

To provide a framework for estimating Pa , we define
the detection function g(x) to be the probability that
an animal at distance x from the line is detected,
0 ≤ x ≤ w, and assume that g(0) = 1. That is, we
are certain to detect an animal on the trackline. If
we plot the recorded perpendicular distances in a
histogram, then conceptually the problem is reduced
to specifying a suitable model for g(x), and fitting
it to the perpendicular distance data. As shown in

Figure 1 If sighting distance r and sighting angle θ are
recorded, then perpendicular distance x of the animal from
the line is found as x = r sin θ

g(x )

1.0
1.0 ×  w

m

m w
x

Figure 2 The area µ under the detection function g(x),
when expressed as a proportion of the area w of the rect-
angle, is the probability that an object within the surveyed
area is detected; µ is also the effective strip width, and
takes a value between 0 and w

Figure 2, if we define µ = ∫ w

0 g(x) dx, then Pa =
µ/w. The parameter µ is called the effective strip
(half-) width; it is the distance from the line for which
as many animals are detected beyond µ as are missed
within µ (Figure 2). Thus

D̂ = n

a × P̂a

= n

2wL × µ̂/w
= n

2µ̂L
. (2)

We now need an estimate µ̂ of µ. We can turn this
into a more familiar estimation problem by noting
that the probability density function of perpendicular
distances to detected objects, denoted f (x), is sim-
ply the detection function g(x), rescaled so that it
integrates to unity. That is, f (x) = g(x)/µ. In par-
ticular, because we assume g(0) = 1, it follows that
f (0) = 1/µ (Figure 3). Hence

D̂ = n

2µ̂L
= nf̂ (0)

2L
. (3)

The problem is reduced to modeling the probabil-
ity density function of perpendicular distances, and
evaluating the fitted function at x = 0. The large lit-
erature for fitting density functions is now available
to us. Distance uses the methods of Buckland [3], in
which a parametric “key” function is selected and,
if it fails to provide an adequate fit, polynomial or
cosine series adjustments are added until the fit is
judged to be satisfactory by one or more criteria.
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Figure 3 The probability density function of perpendicu-
lar distances, f (x), plotted on a histogram of perpendicular
distance frequencies (scaled so that the total area of his-
togram bars is unity). The area below the curve is unity by
definition. Because the two shaded areas are equal in size,
the area of the rectangle, µ × f (0), is also unity. Hence
µ = 1/f (0)

Often, the perpendicular distances are recorded
by distance category, so that each exact distance
need not be measured, or data are grouped into dis-
tance categories before analysis. Standard likelihood
methods for multinomial data are used to fit such
“grouped” data.

Variance and Interval Estimation

The variance of D̂ may be approximated using the
delta method, assuming no correlation between n

and f̂ (0):

V̂ (D̂) = D̂2

[
V̂ (n)

n2
+ V̂ [f̂ (0)]

[f̂ (0)]2

]
. (4)

The variance of n is generally estimated from the
sample variance in encounter rates, nj/ lj , weighted
by line lengths lj . When f (0) is estimated by max-
imum likelihood, its variance is estimated from the
information matrix.

If we assume that D̂ is lognormally distributed,
approximate 95% confidence limits are given by
(D̂/C, D̂ × C) where

C = exp{1.96[V̂ (loge D̂)]0.5}, (5)

with

V̂ (loge D̂) = loge

[
1 + V̂ (D̂)

D̂2

]
. (6)

Often, bootstrap variance and interval estimation
(see Estimation, Interval) is preferred. Resamples
are usually generated by sampling with replacement
from the lines, so that independence between the lines
is assumed, but independence between detections on
the same line is not. If the model selection procedure
is applied independently to each resample, the boot-
strap variance includes a component due to model
selection uncertainty.

Cluster Size Estimation

Animals often occur in groups, which we term “clus-
ters”. These may be flocks of birds, pods of whales,
schools of fish, herds of antelope, etc. If one ani-
mal in a cluster is detected, then it is assumed that
the whole cluster is detected, and the position of the
cluster is recorded. Eq. (3) then gives an estimate of
the density of clusters. To obtain the estimated den-
sity of individuals, we must multiply by an estimate
of mean cluster size in the population, E(s):

D̂ = nf̂ (0)Ê(s)

2L
. (7)

Probability of detection is often a function of cluster
size, so that the sample of cluster sizes exhibits
size bias. In the absence of size bias, we can take
Ê(s) = s, the mean size of detected clusters. Several
methods exist for estimating E(s) in the presence
of size bias [4]. One that works well in practice is
to regress log s on ĝ(x), the estimated probability
of detection at distance x ignoring the effect of
cluster size, and then predict log s when detection
is certain, ĝ(x) = 1, as there can be no size bias in
that circumstance. The prediction is back-transformed
using a bias adjustment.

Assumptions

The physical setting for line transect sampling is
idealized as below:

1. N objects are distributed through an area of size
A according to some stochastic process with
average rate parameter D = N/A.

2. Lines, placed according to some randomized
design (see Randomization), are surveyed and
a sample of n objects is detected.

It is not necessary that the objects be randomly (i.e.
Poisson) distributed. Rather, it is critical that the line
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or point be placed randomly with respect to the local
distribution of objects. This ensures that objects in the
surveyed strip are uniformly distributed with distance
from the line. Thus if the strip has half-width w,
animal-to-line distances available for detection are
uniformly distributed between zero and w.

Three assumptions are essential for reliable
estimation of density using standard line transect
methods:

1. Objects directly on the line are always detected,
g(0) = 1.

2. Objects are detected at their initial location, prior
to any movement in response to the observer.

3. Distances are measured accurately (for ungroup-
ed distance data), or objects are correctly allo-
cated to distance interval (for grouped data).

A fourth assumption is made in many derivations
of estimators and variances: whether an object is
detected is independent of whether any other object
is detected. Point estimates are robust to the assump-
tion of independence, and robust variance estimates
are obtained by taking the line to be the sampling
unit, either by bootstrapping on lines, or by calcu-
lating a weighted sample variance of encounter rates
by line.

It is also important that the detection function has
a “shoulder”; that is, probability of detection remains
at or close to one initially as distance from the line
increases from zero. This is not an assumption, but
a property that allows more reliable estimation of
object density.

Point Transect Sampling

In point transect sampling, an observer visits a num-
ber of points, the locations of which are determined
by some randomized design. The method is usually
(but not exclusively) used for songbird populations, in
which typically many species are recorded, and most
detections are aural. By recording from points, the
observer can concentrate on detecting the objects of
interest, without having to navigate along a line, and
without having to negotiate a randomly positioned
line through possibly difficult terrain. The principal
disadvantages are that detections made while trav-
eling from one point to the next are not utilized, a
problem especially for scarce species, and the method
is unsuited to species that are generally detected by

flushing them, or to species that typically change their
location appreciably over the time period of a count
(generally around 3–10 minutes).

Estimation

Detection distances r are measured from the point to
each detected object of interest (usually a bird or a
small group of birds). Suppose the design comprises
k points, and distances ≤ w are recorded. Then the
surveyed area is a = kπw2, within which n objects
are detected. As for line transect sampling, denote the
probability that an object within the surveyed area is
detected by Pa with estimate P̂a . Then we estimate
object density D by

D̂ = n

kπw2P̂a

. (8)

We now define the detection function g(r) to be
the probability that an object at distance r from the
point is detected, and we again assume that g(0) = 1.
For line transects, the area of an incremental strip at
distance x from the lines is L dx, independent of x,
which leads to the result that the probability den-
sity function of distances differs from the detection
function only in scale. By contrast, an incremental
annulus at distance r from a point has area 2πr dr ,
proportional to r , so that the probability density
function of detection distances is f (r) = 2πrg(r)/ν,
where ν = 2π

∫ w

0 rg(r) dr . The respective shapes of
the two functions are illustrated in Figure 4. If we
define an effective radius ρ, analogous to the effective
strip width of line transect sampling, then ν = πρ2

is the effective area surveyed per point (Figure 5).
Hence

D̂ = n

a × P̂a

= n

kπw2 × πρ̂2/πw2
= n

kν̂
. (9)

The area of the triangle in Figure 5 is ρ2f ′(0)/2
where f ′(0) is the slope of f (r) at r = 0. Since this
is equal to the area under f (r), which is unity, it
follows that ν = πρ2 = 2π/f ′(0), and

D̂ = nf̂ ′(0)

2πk
. (10)

We therefore need to model the probability density
function of detection distances, and evaluate the slope
of the fitted function at r = 0. Distance does this
using the same set of models for the detection func-
tion as for line transect sampling.
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Figure 4 Histograms of detection distances from a
point transect survey. In the upper plot, each histogram
frequency has been scaled by dividing by the midpoint
of the corresponding group interval. Also shown are the
corresponding fits of the detection function [g(r), upper
plot] and the probability density function of detection
distances [f (r)]

f(r)

r w r

Figure 5 The probability density function of detection
distances, f (r). The area under the curve is unity by
definition. Because the two shaded areas are equal in size,
the area of the triangle, ρ2 × f ′(0)/2, is also unity. Hence
ν = πρ2 = 2π/f ′(0)

Variance and Interval Estimation

The methods for variance and interval estimation for
line transect sampling apply also to point transects
with minor modifications. In the case of the bootstrap,
resampling is normally carried out by sampling with
replacement from the points. However, point transect
surveys are often designed by defining a series of
lines, as if a line transect survey is to be carried out,
then locating a series of points along each line. If
the distance between neighboring points on the same
line is smaller than the distance between neighboring
points on different lines, then resampling should be
carried out by sampling lines with replacement. If a
line is selected, then all the points associated with
that line are included in the bootstrap resample.

Assumptions

Assumptions are virtually unchanged from those
given for line transect sampling. As there, the stan-
dard analyses are very robust to failure of the assump-
tion of independent detections, but if objects occur in
clusters, so that when one of the cluster is detected
they all are, then the cluster is generally taken to be
the object, and mean cluster size in the population is
estimated using the same techniques as for line tran-
sect sampling. Point transect sampling is more subject
to bias than line transect sampling when objects move
through the area around a point. In principle, we try
to obtain a snapshot, locating each object at the posi-
tion it occupied when the count at that point started.
However, the count is not instantaneous, because the
observer needs time to detect all objects close to
that point. If, during that time, movement brings new
objects into the neighborhood of the point, then object
density will be overestimated.

Current Research

Double platform methods are becoming common-
place in sightings surveys for whales. Observers
search simultaneously from two platforms. This
allows extension of the standard methods to the
case that g(0) < 1, and also, given appropriate field
methods, allows adjustment for responsive move-
ment of animals prior to detection. There have
been advances by several researchers recently in
developing methodology for analyzing such data.
Perhaps the most promising approach, based on
Horvitz–Thompson-type estimators [2], has also
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led to a unified approach to the analysis of line tran-
sect data, in which object density is estimated in a
single step, which contrasts with the conventional
strategy of independently estimating the three param-
eters: encounter rate, effective strip width, and mean
cluster size.

Generally, probability of detection is a function of
many factors other than distance of the object from
the line or point. We have considered briefly one
other factor, cluster size, because if we do not allow
for size bias in detection, then our object density
estimator will be biased. Other sources of hetero-
geneity contribute little to bias, provided g(0) = 1,
but nevertheless, higher precision might be antici-
pated if additional covariates are recorded and their
effects on g(x) modeled. Ramsey et al. [9] modeled
effective area surveyed as a function of covariates
using generalized linear modeling methods. Again,
a Horvitz–Thompson formulation provides a natural
framework for estimation, if probability of detection
is modeled as a function of relevant covariates.

The global spatial coordinates of detections are
often recorded in distance sampling surveys so that
spatial modeling of density surfaces is possible. Very
little has been done on this problem (but see [6]);
rather, current practice is simply to estimate average
density by strata.
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Distribution-free Methods
for Longitudinal Data

Repeated measure designs are used in many areas of
application and are especially common in biomedical
research. The characteristic feature of such studies is
that multiple measurements of a response variable are
obtained from each independent experimental unit.
The repeated measures may be obtained at a set of
scheduled time points for each subject or experimen-
tal unit. In other applications the response from each
experimental unit is measured under multiple condi-
tions, rather than at multiple time points.

There are two main difficulties in the analysis
of data from repeated measure designs. First, the
analysis is complicated by the dependence among
repeated observations made on the same experimental
unit. Secondly, the investigator often cannot control
the circumstances for obtaining measurements, so that
the data may be unbalanced or partially incomplete.

Many approaches to the analysis of data from
repeated measure designs have been studied; see,
for example, the 1980 review and bibliography
of parametric and nonparametric approaches by
Koch et al. [28]. When the response variable is
normally distributed, classical multivariate analy-
sis techniques, repeated measures analysis of vari-
ance (see Analysis of Variance for Longitudi-
nal Data), growth curve analysis (see Nonlinear
Growth Curve), and mixed effects models can be
used. The development of methods for the analysis
of repeated measures categorical data, for binary,
polytomous, and ordered categorical response vari-
ables, is also an important area of research (see, in
particular, Multivariate Methods for Binary Longi-
tudinal Data). In addition, recently developed gen-
eralized estimating equations approaches based on
extensions of generalized linear model methodology
can be applied to a wide variety of types of continu-
ous and categorical response variables with marginal
(univariate) distributions from the class of general-
ized linear models.

While all of the above methods require assump-
tions on either the joint or the marginal distribu-
tions of the response variable, there are at least
three situations in which distribution-free methods
may be useful (see Nonparametric Methods). First,
when the response is continuous, the assumption

of multivariate normality may not be reasonable,
or the underlying distribution may be unknown. In
this case, the use of standard parametric procedures
may not be justified. Secondly, when the response
is an ordered categorical variable with a large num-
ber of possible outcomes, the general categorical data
methods may be inapplicable owing to sample size
limitations. In addition, the restrictive proportional-
odds assumption underlying some of the approaches
for analyzing ordered categorical repeated measures
may not be justified. Apart from these considerations,
there are also situations in which it may be desirable
to confirm the results of a parametric analysis using
distribution-free methods.

Table 1 displays the general layout and notation
for a repeated measures design with n subjects
(experimental units) and ti measurement times for
the ith subject, i =1, . . . , n. The response from sub-
ject i at time j is yij and xij =(xij1, . . . , xijp)′ is
the corresponding p × 1 vector of covariates. In
general, the covariates can be a mixture of time-
independent (between-subject) covariates and time-
dependent (within-subject) covariates. Since values
of the response variable and/or covariates might be

Table 1 Layout and notation for a general repeated mea-
sures design

Time Missing
Subject point indicator Response Covariates

1 1 δ11 y11 x111 . . . x11p

...
...

...
...

. . .
...

j δ1j y1j x1j1 . . . x1jp

...
...

...
...

. . .
...

t1 δ1t1 y1t1 x1t11 . . . x1t1p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i 1 δi1 yi1 xi11 . . . xi1p

...
...

...
...

. . .
...

j δij yij xij1 . . . xijp

...
...

...
...

. . .
...

ti δiti yiti xiti 1 . . . xitip

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n 1 δn1 yn1 xn11 . . . xn1p

...
...

...
...

. . .
...

j δnj ynj xnj1 . . . xnjp

...
...

...
...

. . .
...

tn δntn yntn xntn1 . . . xntnp
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missing, it may be convenient to define indicator
variables δij by

δij =
{

1, if yij and xij are observed,

0, otherwise.

One simplification of the general notation dis-
played in Table 1 is the case when every subject
has the same fixed set of measurement times, so
that ti = t , for i = 1, . . . , n. The situation is also
simplified when there are no missing data. A spe-
cial case which has been studied extensively from
the distribution-free perspective is the multisample
setting in which repeated measurements are obtained
from samples from s subpopulations. The s groups
may be defined by the s levels of a single covariate or
by the cross-classification of several discrete covari-
ates. In terms of the general notation, the s groups
can thus be described in terms of p = s − 1 dichoto-
mous, time-independent covariates. In this setting, the
notation of Table 2 is useful, in which yhij denotes
the response at time j from subject i in group h, for
j = 1, . . . , t, i = 1, . . . , nh, and h = 1, . . . , s.

In the case of repeated measurements obtained at
t time points from each of n subjects from a single

Table 2 Layout and notation for a multisample repeated
measures design

Time point

Group Subject 1 . . . j . . . t

1 1 y111 . . . y11j . . . y11t

...
...

. . .
...

. . .
...

i y1i1 . . . y1ij . . . y1it

...
...

. . .
...

. . .
...

n1 y1n11 . . . y1n1j . . . y1n1t

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h 1 yh11 . . . yh1j . . . yh1t

...
...

. . .
...

. . .
...

i yhi1 . . . yhij . . . yhit

...
...

. . .
...

. . .
...

nh yhnh1 . . . yhnhj . . . yhnht

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s 1 ys11 . . . ys1j . . . ys1t

...
...

. . .
...

. . .
...

i ysi1 . . . ysij . . . ysit

...
...

. . .
...

. . .
...

ns ysns 1 . . . ysnsj . . . ysns t

Table 3 Layout and notation for a one-sample repeated
measures design

Time point

Subject 1 . . . j . . . t

1 y11 . . . y1j . . . y1t

...
...

. . .
...

. . .
...

i yi1 . . . yij . . . yit

...
...

. . .
...

. . .
...

n yn1 . . . ynj . . . ynt

sample, the data can be displayed even more simply
in an n × t matrix, as shown in Table 3. As before,
missing value indicators can be defined by

δij =
{

1, if yij is observed,

0, otherwise.

Univariate Methods

The simplest approach to repeated measures is to
reduce the vector of responses from each subject
or experimental unit to a single measurement. This
avoids the issue of serial correlation among the
repeated measures for each subject. Several authors
[39, 35, 20, 16] refer to these types of methods
as the “summary statistic approach” (see Summary
Measures Analysis of Longitudinal Data). Crowder
& Hand [11] and Diggle et al. [17] call such methods
“response feature analysis” and “derived variable
analysis”, respectively. The univariate function of the
repeated measures from each subject can then be
analyzed using distribution-free methods.

For example, in the one-sample setting (Table 3),
interest may focus on assessing the extent of associ-
ation between the response variable and the repeated
measures factor. If the Spearman rank correla-
tion coefficient between the response variable and
the repeated measures variable is used as the sum-
mary statistic for each subject, then the sign test
or the Wilcoxon signed-rank test can be used to
test if the median of the distribution of the sum-
mary statistic is equal to zero. In the multisample
setting (Table 2), similar methods can be used. For
example, the Mann–Whitney–Wilcoxon (if s = 2)
or Kruskal–Wallis (s > 2) test (see Nonparametric
Methods) can be used to assess if the distribution of
the summary statistic is the same across the s groups.
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While the summary statistic approach can be use-
ful in certain situations, a shortcoming is that the
results may be misleading if the selected univari-
ate summary measure does not adequately describe
each subject’s data. Ghosh et al. [21] describe multi-
variate nonparametric methods based on the use of
two or more summary statistics for each subject.
This extension of the univariate summary statistic
approach may be useful when multiple univariate
statistics are necessary to adequately summarize each
subject’s data. Carr et al. [9] describe a different type
of multivariate approach based on summary statis-
tics. They consider the situation in which an ordered
categorical or interval response variable is measured
at multiple time points for each subject in two or
more ordered groups. Rank measures of association
between group and response are constructed at each
time point; the estimated covariance matrix of these
summary measures is then used to test hypotheses
concerning the rank measures of association.

Multivariate Generalizations of Univariate
Distribution-Free Methods

Standard asymptotically distribution-free tests for
multivariate one-sample and multisample problems
can also be used in the repeated measures setting.
These rank-based methods are appropriate for sam-
ples from continuous multivariate distributions.

For the one-sample case with complete data, Hett-
mansperger [23, Chapter 6] and Puri & Sen [41, Cha-
pter 4] study multivariate generalizations of the sign
and Wilcoxon signed rank tests (see Multivariate
Median and Rank Sum Tests). In the repeated
measures setting of Table 3 with no missing data,
let θt denote the median of the marginal distribution
of the response at time t . By transforming each of
the n t-component vectors yi = (yi1, . . . , yit )

′ to a
(t − 1)-component vector of differences y∗

i = (yi1 −
yi2, . . . , yi,t−1 − yit )

′, these methods can then be used
to test the null hypothesis that θ1 = · · · = θt .

Hettmansperger [23] also considers the two-sam-
ple situation with complete data; the test statistic
is a multivariate version of the Wilcoxon–Mann–
Whitney test. Puri & Sen [41, Chapter 5] dis-
cuss multivariate generalizations of the Kruskal–
Wallis [29] and Brown–Mood [8] tests for the mul-
tivariate multisample situation with complete data.
On the basis of these results, Schwertman [43] gives

a computer algorithm for two of these tests, the
multivariate multisample rank test and the multivari-
ate multisample median test. These methods can be
applied to the repeated measures setting of Table 2.
Let Fh(u) denote the t-variate cumulative distribu-
tion function (cdf) in group h, for h = 1, . . . , s,
where u = (u1, . . . , ut )

′. Assume that the cdfs Fh

have a common unspecified form with possible dif-
ferences in their location (or scale) parameters (see
Location–Scale Family). For example, suppose that
Fh(u) = F(u + �h), where �h = (∆h1, . . . , ∆ht )

′.
The null hypothesis of no difference among groups
across all time points tests H0 : �1 = . . . , �s =
(0, . . . , 0)′. The omnibus alternative hypothesis is
that �1, . . . , �s are not all equal. Schwertman [44]
describes this approach in further detail and gives
an example of its application to the analysis of
repeated measurements.

Randomization Tests

In the one-sample repeated measures setting
(Table 3), a randomization test based on the use
of Mantel–Haenszel methods can be used to test
the null hypothesis of no association between a
repeated measurement factor and a response variable,
adjusting for the effect of subject. The randomization
model approach applies to categorical or continuous
outcome variables yij , requires no distributional
assumptions, and is useful in small samples. Landis
et al. [32] give a general overview of the three types
of Mantel–Haenszel statistics; Landis et al. [33] and
Crowder & Hand [11, Section 8.6] describe the use
of these procedures in analyzing repeated measures.

The basic idea underlying the Mantel–Haenszel
randomization model approach to one-sample repea-
ted measures is to restructure the n × t data matrix of
Table 3 as follows. First, let c denote the number of
distinct values of the response yij . If the response
variable is categorical with a limited number of
possible values, then c will be relatively small. At the
other extreme, if each of the n subjects has a unique
response at each time point, then c = nt . Now define
indicator variables

nijk =





1, if subject i is classified in response
category k at time j ,

0, otherwise,
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Table 4 Contingency table layout for subject i in the
one-sample repeated measures design

Response category

Time point 1 . . . c Total

1 ni11 . . . ni1c ni1+
...

...
. . .

...
...

t nit1 . . . nitc nit+

Total ni+1 . . . ni+c ni

for i = 1, . . . , n, j = 1, . . . , t , and k = 1, . . . , c. The
data from subject i can then be displayed in a t × c

contingency table, as shown in Table 4. Thus, the
data from a one-sample repeated measures study can
be viewed as a set of n independent t × c contingency
tables.

When the data are complete, i.e. the outcome
variable is measured at every time point for each
subject, the total sample size for each of the n tables
is ni = t and every row marginal total nij+ is equal
to one. In this case, each row of Table 4 has exactly
one nijk value equal to one and the remaining values
are equal to zero. If, however, a particular subject
has a missing response at one or more time points,
then the corresponding row of the subject’s table will
have each nijk value, as well as the marginal total
nij+, equal to zero. The total sample size ni will then
equal t minus the number of missing observations.

In the framework of Table 4, Mantel–Haenszel
statistics can be used to test the null hypothesis of no
association between the row dimension (time) and the
column dimension (response), adjusted for subject.
Under the assumption that the marginal totals {nij+}
and {ni+k} of each table are fixed, the null hypothesis
is that, for each subject, the response variable is
distributed at random with respect to the t time points.
As discussed in Landis et al. [32], this null hypoth-
esis is precisely the interchangeability hypothesis
of Madansky [34]. In turn, the hypothesis of inter-
changeability implies marginal homogeneity in the
distribution of the response variable across the t time
points. Although the interchangeability hypothesis is
a somewhat stronger condition than marginal homo-
geneity, the Mantel–Haenszel general association
statistic [with (t − 1)(c − 1)df], mean score statistic
(with t − 1df), and correlation statistic (with 1 df)
are directed at alternatives that correspond to various
types of departures from marginal homogeneity.

Several common nonparametric test procedures
are special cases of Mantel–Haenszel randomiza-
tion model tests. These include the tests of Fried-
man [19], Durbin [18], Benard & van Elteren [6],
and Page [37], as well as the aligned ranks test
introduced by Hodges & Lehmann [24] and further
studied by Koch & Sen [27]. Randomization tests for
other types of repeated measures situations have also
been studied. For example, Zerbe & Walker [52] and
Zerbe [50, 51] developed randomization tests for the
multisample situation of Table 2. These procedures
can be used to test the equality of s mean growth
curves over a specified time interval.

Other Methods

Asymptotically distribution-free analogs of paramet-
ric procedures for normally distributed outcomes
have also been studied. Bhapkar [7] discusses non-
parametric counterparts of Hotelling’s T 2 statis-
tic and profile analysis (see Longitudinal Data
Analysis, Overview). Sen [45] studies nonparamet-
ric analogs of the Potthoff & Roy [40] growth
curve model.

Distribution-free methods for the two-sample case
(Table 2 with s = 2) when the data are incom-
plete were studied by Wei & Lachin [49] and Wei
& Johnson [48]. These approaches allow the miss-
ing value patterns in the two samples to be dif-
ferent, but require the assumption that the missing
value mechanism is independent of the response.
Wei & Lachin [49] study a family of asymptotically
distribution-free tests for equality of two multivari-
ate distributions. Although their methodology was
motivated and developed for multivariate censored
failure time data, an important application is to
repeated measures with missing observations. The
Wei–Lachin methodology is based on a random-
censorship model and they focus on an omnibus test
of equality vs. a general alternative. In contrast, Wei
& Johnson [48] focus primarily on optimal methods
of combining dependent tests and propose a class
of two-sample nonparametric tests for incomplete
repeated measures based on two-sample U statistics.
Davis [12, 13] provides further discussion of these
methods and a computer program. Lachin [31] pro-
poses additional test statistics and provides estimators
of the treatment difference, Palesch & Lachin [38]
extend these methods to more than two groups,
and Thall & Lachin [46], Davis & Wei [15], and
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Davis [14] study related methods for special types
of situations with incomplete data.

Another potential approach to the analysis of
repeated measures when the underlying parametric
assumptions are not satisfied is the rank transform
method, which consists of replacing observations
by their ranks and performing a standard para-
metric analysis on the ranks [10]. Unfortunately,
the rank transform method has been shown to be
inappropriate for many common hypotheses [2, 3].
Thompson [47] and Akritas & Arnold [4] provide
valid asymptotic tests based on the rank trans-
form for selected hypotheses of interest in several
repeated measures models. Kepner & Robinson [25]
consider the one-sample situation of Table 3 under
the assumption that the repeated measurements yij

from the ith subject are equally correlated. They
show the relationships between the rank transform
method and the rank tests of Agresti & Pender-
gast [1] and Koch [26] for testing the null hypothesis
of no time effect, expressed as H0 : F(x1, . . . , xt ) =
F(xα(1), . . . , xα(t)), where F(x1, . . . , xt ) is the t-
variate distribution of the data vectors y1, . . . , yn and
[α(1), . . . , α(t)] is any permutation of the first t pos-
itive integers.

Müller [36], Diggle et al. [17, Chapter 3], and
Kshirsagar & Smith [30, Chapter 10] discuss non-
parametric regression methods for the analysis of
repeated measurements, including kernel estimation,
weighted local least squares estimation, and
smoothing splines. Hart & Wehrly [22] study the
theoretical properties of kernel regression estimation
for repeated measures and show how the case of
correlated errors changes the behavior of a kernel
estimator; Altman [5] demonstrates that the standard
techniques for bandwidth selection perform poorly
when the errors are correlated. Raz [42] describes
an analysis procedure for repeated measurements that
combines nonparametric regression methods and the
randomization tests of Zerbe [50].

Examples

Repeated Measures from a Single Population

As part of a protocol for the University of Iowa Men-
tal Health Clinical Research Center, 44 schizophrenic
patients participated in a four-week antipsychotic
medication washout. The severity of extrapyramidal
side effects was assessed just prior to discontinuation

Table 5 Simpson Angus ratings for 44 schizophrenic
patients

Patient Week 0 Week 1 Week 2 Week 3 Week 4

1 1 4 0 0 0
2 4 5 8 9 3
3 1 2 2 1 1
4 8 7 0 5 5
5 1 1 0 1 1
6 3 2 0 0 0
7 4 4 4 – 2
8 – – 1 9 6
9 6 6 0 0 0

10 3 3 0 0 0
11 6 4 1 0 0
12 0 0 0 0 –
13 3 0 17 5 22
14 8 1 2 2 0
15 0 0 0 0 0
16 0 0 5 1 2
17 1 5 4 5 2
18 2 1 – – –
19 0 0 0 0 0
20 0 0 6 8 5
21 0 0 0 0 –
22 11 12 0 0 0
23 10 6 0 0 1
24 3 0 2 1 1
25 1 0 1 1 0
26 0 5 0 2 4
27 0 0 0 – –
28 3 0 0 0 –
29 7 7 3 4 5
30 12 22 15 24 5
31 3 0 0 0 0
32 0 0 0 0 0
33 1 0 0 0 0
34 0 0 0 0 0
35 7 1 10 7 5
36 2 0 0 1 0
37 10 5 5 8 2
38 2 0 4 0 1
39 5 2 1 3 2
40 0 0 0 – –
41 1 1 0 1 3
42 0 0 0 0 –
43 0 0 0 0 0
44 1 0 2 1 1

of antipsychotic medication and at weeks 1, 2, 3,
and 4 during the washout period (see Psychometrics,
Overview). Table 5 displays the resulting ratings on
the Simpson Angus (SA) scale; a few missing values
are denoted by a dash. The marginal distributions of
the scores are clearly nonnormal.
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The summary statistic approach is one possi-
ble method of testing if there is an association
between SA ratings and measurement week. When
the Spearman rank correlation coefficient between SA
rating and week is computed for each subject, the
correlation coefficients range from −1 to 0.8. Of the
32 nonzero correlations, eight are positive and 24 are
negative. On the basis of the sign test, the exact two-
sided P value is 0.007. Using the Wilcoxon signed
rank test, the sum of the ranks corresponding to pos-
itive correlations is 103 and the sum of the ranks of
negative correlations is 425. The normal approxima-
tion to the distribution of the Wilcoxon statistic yields
P = 0.003. Both tests indicate the tendency of scores
to decrease over time.

The randomization model approach using the
Mantel–Haenszel mean score and correlation statis-
tics is also applicable. Using within-subject rank
scores for the SA rating, the Mantel–Haenszel mean
score χ2 statistic is 13.674 with 4 df (P = 0.008);
thus, there is substantial evidence that the distribu-
tions are not the same at the five measurement times.
Using rank scores for the SA rating and the scores 0,
1, 2, 3, and 4 for the five measurement times, the
Mantel–Haenszel correlation statistic is 10.375 with
1 df (P = 0.001). This result indicates that there is a
consistent monotonic association between SA rating
and week across subjects. Both of these methods use
all available data from each subject.

Repeated Measures from Two Populations

Table 6 displays plasma inorganic phosphate mea-
surements obtained from 13 control and 20 obese
patients 0, 0.5, 1, 1.5, 2, and 3 hours after an oral glu-
cose challenge [50]. The sample means are plotted in
Figure 1. Since the relationship between plasma inor-
ganic phosphate level and time is not monotonic, the
univariate approach using slopes or correlation coef-
ficients seems inappropriate. Zerbe [50] compared
the two groups over the period from 0 to 3 hours
using his randomization analysis of growth curves
and reported a P value of 0.002.

The two groups can also be compared using the
multivariate nonparametric tests of Puri & Sen [41].
Using the multivariate multisample rank sum test,
the χ2 statistic is 21.5 with 6 df (P < 0.001). The
multivariate multisample median test gives a less
significant result (χ2 = 16.2, df = 6, P = 0.013).

Table 6 Plasma inorganic phosphate levels in 13 control
and 20 obese patients

Hours after glucose challenge

Group Patient 0 0.5 1 1.5 2 3

Control 1 4.3 3.3 3.0 2.6 2.2 2.5
2 3.7 2.6 2.6 1.9 2.9 3.2
3 4.0 4.1 3.1 2.3 2.9 3.1
4 3.6 3.0 2.2 2.8 2.9 3.9
5 4.1 3.8 2.1 3.0 3.6 3.4
6 3.8 2.2 2.0 2.6 3.8 3.6
7 3.8 3.0 2.4 2.5 3.1 3.4
8 4.4 3.9 2.8 2.1 3.6 3.8
9 5.0 4.0 3.4 3.4 3.3 3.6

10 3.7 3.1 2.9 2.2 1.5 2.3
11 3.7 2.6 2.6 2.3 2.9 2.2
12 4.4 3.7 3.1 3.2 3.7 4.3
13 4.7 3.1 3.2 3.3 3.2 4.2

Obese 1 4.3 3.3 3.0 2.6 2.2 2.5
2 5.0 4.9 4.1 3.7 3.7 4.1
3 4.6 4.4 3.9 3.9 3.7 4.2
4 4.3 3.9 3.1 3.1 3.1 3.1
5 3.1 3.1 3.3 2.6 2.6 1.9
6 4.8 5.0 2.9 2.8 2.2 3.1
7 3.7 3.1 3.3 2.8 2.9 3.6
8 5.4 4.7 3.9 4.1 2.8 3.7
9 3.0 2.5 2.3 2.2 2.1 2.6

10 4.9 5.0 4.1 3.7 3.7 4.1
11 4.8 4.3 4.7 4.6 4.7 3.7
12 4.4 4.2 4.2 3.4 3.5 3.4
13 4.9 4.3 4.0 4.0 3.3 4.1
14 5.1 4.1 4.6 4.1 3.4 4.2
15 4.8 4.6 4.6 4.4 4.1 4.0
16 4.2 3.5 3.8 3.6 3.3 3.1
17 6.6 6.1 5.2 4.1 4.3 3.8
18 3.6 3.4 3.1 2.8 2.1 2.4
19 4.5 4.0 3.7 3.3 2.4 2.3
20 4.6 4.4 3.8 3.8 3.8 3.6

Although the Wei–Lachin [49] and Wei–
Johnson [48] procedures were developed for the two-
sample case with incomplete data, these procedures
can also be applied. The Wei–Lachin vector of test
statistics at the six time points is W′ = (−0.5539,
−0.8862, −1.0761, −0.9390, −0.1319, −0.0633)

with estimated covariance matrix

�̂ =




0.080180 0.047379 0.065353 0.062623 0.031898 0.042313
0.047379 0.088898 0.052950 0.028881 0.014827 0.013615
0.065353 0.052950 0.095713 0.062215 0.002469 0.021214
0.062623 0.028881 0.062215 0.093537 0.031306 0.045055
0.031898 0.014827 0.002469 0.031306 0.071744 0.049681
0.042313 0.013615 0.021214 0.045055 0.049681 0.075706
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Figure 1 Mean plasma inorganic phosphate levels

The Wei–Lachin omnibus χ2 statistic for testing
equality of distributions is W′�̂−1

W = 20.9 with
6 df (P = 0.002). The Wei–Johnson procedure using
the “kernel” function

φ(x, y) =





1, if x > y,

0, if x = y,

−1, if x < y,

gives a vector U of test statistics equivalent (apart
from a scale factor) to the Wei–Lachin W, but uses a
different estimator of the covariance matrix. Weight-
ing each time point equally, the Wei–Johnson uni-
variate statistic c′U/(c′�̂Uc)1/2, with c′ = (1, . . . , 1),
is equal to −2.21. With reference to the standard nor-
mal distribution, the two-sided P value is 0.027.
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DNA Sequences

The hereditary information of essentially all living
organisms is carried by DNA molecules made up of
complementary chains of nucleotides twisted around
each other into a double-helical structure (Figure 1).
The four possible nucleotides are the two purines,
adenine (A) and guanine (G), and the two pyrim-
idines, cytosine (C), and thymine (T). As the first step
in the synthesis of proteins, DNA is transcribed to
RNA which is usually single-stranded and uses the
nucleotide uracil (U) in place of thymine. The pri-
mary data on the composition of these molecules are
then sequences of nucleotides presented in a four-
letter alphabet (A, C, G, or T/U). The ability of
molecular biologists to generate nucleotide sequences
rapidly has created many new areas of biomedi-
cal research and fundamentally changed the focus
of many others. The most important technology to
facilitate rapid sequencing over the past decade has
been the polymerase chain reaction (pcr) technique
which was first described in the early 1970s [16]
but not made practicable as a standard laboratory
technique until the late 1980s [18]. In pcr ampli-
fication, two primers that flank the region to be
sequenced are used to initiate the reaction. Alter-
nating applications of heat which “melts” the DNA
into a single stranded state, followed by slow cool-
ing in the presence of synthetic nucleotides, allow
for a heat-stable polymerase to catalyze the synthe-
sis of new DNA. With each cycle, duplicates of the
copies of the DNA bridging the two primers are cre-
ated until they dominate the mixture and can be easily
sequenced.

Databases with nucleotide sequences have grown
exponentially in size – the most widely used data-
base being GenBank, maintained by the National
Center for Biotechnology Information of the US

T
 A

A
 T C

 G

G
 C

G
 C

A
 T

A
 T

C
 G G

 C

G
 C

A
 T

T
 A

Figure 1 The DNA double helix. Each strand carries
equivalent information because of the A:T, G:C pairing
across strands

National Library of Medicine, which at this writ-
ing contains about a half-billion nucleotides from
a half-million sequences. New technologies, such
as the use of hybridization techniques to produce
“DNA sequencing chips”, promise to increase the
rate that data are generated by another order of
magnitude.

The statistical analysis of nucleotide sequences
involves a collection of interrelated, and computa-
tionally intensive, problems which have been attacked
somewhat in isolation. These include the problem of
assembling a single sequence from many overlap-
ping partial sequences, developing stochastic models
of molecular evolution, aligning homologous com-
binations of sequences, and studying the common
evolutionary history of a large group of sequences.

The Sequencing Chip

The process of assembling DNA sequences has led
to many interesting problems in combinatorics [28].
Consider, for instance, the recent proposal to use
hybridization techniques to find all distinct k-tuple
fragments (i.e. subsequences of k nucleotides) that
exist within the chain to be reconstructed. This
requires the use of a “DNA sequencing chip” which is
typically a matrix of 4k probes [20]. For example, if
k = 5 and the (unknown) sequence being constructed
is TACGGAACGGAT, then the hybridized 5-tuples
specified by the chip will be TACGG, ACGGA,
CGGAA, GGAAC, GAACG, AACGG, and CGGAT.
Note that the chip cannot tell us that the 5-tuple
ACGGA appeared twice in the sequence. The prob-
lem is to reconstruct the full sequence from the
observed k-tuples. To do this, a graph is formed
with directed edges connecting two observed k-
tuples if the first k − 1 letters of one are equal
to the last k − 1 letters of the other. The possible
full sequences are then represented by paths con-
necting all observed k-tuples. Reconstructing long
sequences with many repetitive features is obvi-
ously a daunting task. However, the sequencing chip
idea has recently become more practicable as a
general tool with the current production of chips
reading all 10-tuples in a sequence. Also, the spe-
cialized use of “designer chips” with a variety of
different sized fragments geared toward a specific
application is already a reality in some laborato-
ries [11].



2 DNA Sequences

Models of Sequence Evolution

Stochastic models of molecular evolution typically
assume that evolution proceeds independently at each
nucleotide site via homogeneous Poisson substitu-
tion models. Specifically, assume that during a small
increment of time (t, t + h), (i) the probability that
a substitution changes the nucleotide i into nucleotide
j has probability qijh + o(h), (ii) the probability that
no substitution occurs at a site currently occupied by
the nucleotide i is 1 − ∑

j �=i qij h + o(h), and (iii) the
probability that two or more substitutions occur is
o(h). This gives the framework for the models stud-
ied by Rodriquez et al. [21]. The specific form of
the model is fixed by the instantaneous rate matrix,
Q, which has off-diagonal elements qij and diag-
onal elements −∑

j �=i qij (i.e. each row sums to
zero). The elements of the matrix P = exp(tQ)(=∑∞

n=0(Q
ntn/n!), where Q0 is the 4 × 4 identity

matrix) then provide the transition probabilities for
a single site:

Pij (t) = Pr [nucleotide j at time t |nucleotide

i at time 0].

The simplest model of this type was introduced by
Jukes & Cantor [14] and makes all of the qij s(i �= j)

identical, say = α. Under this model we can derive
the explicit expression:

Pij (t) =






1 + 3 exp(−4αt)

4
, if i = j,

1 − exp(−4αt)

4
, if i �= j.

If two sequences evolved independently for a time
t from a common ancestor, then there is 2t time
between them and θ = Pr[two sequences are differ-
ent at a single site] = 3[1 − exp(−8αt)]/4. Also,
the expected number of substitutions that occurred
along the two branches over this time t is 6αt =
−3/4 ln(1 − 4/3θ). Finally, we may substitute θ̂ ,
the proportion of sites that differ between the two
sequences, into this last expression to obtain the
Jukes–Cantor distance between the sequences. Jukes
& Cantor’s one-parameter model was extended by
Kimura [15] to allow for a different rate when the
substitution is between two purines or between two
pyrimidines than when the substitution is from one
group to the other. Felsenstein [5] extended the

Jukes–Cantor model in a different way by tak-
ing qij = πj/4α, where πj is the stationary prob-
ability of observing nucleotide j at any site. The
Kimura and Felsenstein models were combined into
the five-parameter model investigated by Hasegawa
et al. [12]. Distance measures between sequences can
be based on any of these models using a pro-
cedure analogous to the one above based on the
Jukes–Cantor model. Also, each of these widely
used models is time reversible so that the proba-
bility of a change from nucleotide i to j is the
same as the probability of a change from j to i [i.e.
πiPij (t) = πjPji(t)]. This property makes the direc-
tion of time irrelevant, which is helpful in likelihood-
based phylogenetic analysis. Site independent substi-
tution models with more than five parameters have
generally been found to overfit the empirical data.
To describe sequence evolution more accurately it
is important to account for other complexities – the
most discussed being: (i) allowance for the inser-
tion or deletion of nucleotides, singly or in groups;
(ii) allowance for time heterogeneity in rate param-
eters; (iii) allowance for different rates when the
amino acid structure in protein coding sequences is
changed by a substitution; (iv) allowance for linkage
between sites; and (v) allowance for recombination
events.

Aligning Sequences

Suppose that two sequences are thought to be homol-
ogous in some way, for example they might be for
the same gene from two different species. In the pair-
wise alignment problem we wish to designate which
are the corresponding sites in the two sequences to
be related. As an illustration, consider the following
two short sequence segments of the 28S rRNA gene
from the human and the carp:

site 123456789 · · · · · · · · · · ·
human CGGCAAGGCTTCCCTGCCGG
carp CGGTCAAGCCTTCCCTCCGG

The alignment implied by this way of arranging these
two sequences requires at least seven substitutions
to have occurred in their common history (the C/T
change in site 4, the A/C change in site 5, etc.).
However, if we use a model of evolution that also
allows for insertions and deletions of nucleotides, the
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following alignment becomes possible:

site 123456789 · · · · · · · · · · ·
human CGG-CAAGGCTTCCCTGCCGG
carp CGGTCAAGCCTTCCCT-CCGG

This alignment requires two gaps (insertions or dele-
tions denoted by a “-”) but only one substitution
(the G/C change at site 9). If insertions or deletions
are common, then the second alignment should be
preferred, but if they are rare, then gaps should be
heavily penalized and the first alignment may be pre-
ferred. The choice of alignment then depends on a
score function that specifies appropriate weights for
different types of substitutions and gaps.

To give the problem a more mathematical frame-
work, suppose the sequence a, which has nucleotide
ai at position i for i = 1, . . . , N , is to be aligned
with sequence b, which has nucleotide bj at posi-
tion j for j = 1, . . . , M . The problem is to pro-
duce optimal sequences a∗ and b∗, each of length
K ≥ max{N, M}, whose elements are either gaps or
the original elements of a and b. A typical criterion
for optimization is the function

∑K
k=1 δ(a∗

k , b∗
k ). The

score function δ may be a measure of similarity (the
maximum is optimal) or of distance (the minimum is
optimal) between the sequences.

Next, define S(n, m) to be the optimal (say max-
imum) score aligning sequence a up to position n

with sequence b up to position m. To find the opti-
mal score, S(N, M), for the global alignment of the
two sequences, it is possible to use dynamic program-
ming algorithms [1]. These are essentially based on
the idea that the optimal alignment may be found
through the appropriately initialized recursion:

S(n, m) = max{S(n − 1, m − 1) + δ(an, bm),

S(n − 1, m) + δ(an, gap),

S(n, m − 1) + δ(gap, bm)}.
Different dynamic programming algorithms have
been proposed for different circumstances (see, for
example, [19] for the 20-letter amino acid alphabet
of protein sequences; [24] for the problem of
finding local similarities). Typically, global alignment
algorithms can be proven to produce an optimum
in O(K2) time. Crucial to the implementation here
is the decision of what scoring function, δ, is to
be used. A simple choice is to take δ(x, y) = 1 if
x = y �= gap, α if x or y = gap, and 0 otherwise.

The choice of δ(x, y) can also be tied to a statistical
model. In particular, take δ(x, y) to be the log of
the probability that x is in sequence a∗ and y is
in sequence b∗ at a particular site under a model
of molecular evolution that assumes independence
across sites. The resulting optimal alignment then
maximizes the likelihood under this model (see
Maximum Likelihood). Because the simultaneous
insertion or deletion of several adjacent nucleotides
is common in the evolution of some sequences, it is
important to generalize the site independent models
to allow for this possibility. In this regard, similarity-
based score functions which are concave functions of
the length of the gap can still be treated with efficient
dynamic programming algorithms [17].

The problem of simultaneously aligning r sequen-
ces presents greater computational challenges since a
dynamic programming algorithm leading to an exact
solution takes O((2K)r) time. Suboptimal align-
ments are often found by various methods of merg-
ing all pairwise alignments. An alternative approach
attempts to find the multiple alignment that is most
compatible with a phylogenetic analysis [13, 29].

Instead of starting with sequences known to be
homologous, sometimes a single target sequence is
compared with a large library of sequences in a
search for sequences that have a statistically signifi-
cant degree of similarity with the target. This leads to
a study of the probability distribution for independent
sequences of alignment scores and of other measures
of coincidence, such as the length of the longest exact
match. Alignment procedures are also used exten-
sively in sequence assembly procedures. For exam-
ple, copying errors made during pcr can sometimes
be eliminated by replicating the process several times
and comparing the aligned results for differences.
An excellent discussion of these problems and other
computational, mathematical, and statistical aspects
of alignment methodology may be found in [28].

Phylogenetic Analysis

Phylogenetic analysis tries to infer the evolutionary
history that is most consistent with a set of
observed nucleotide sequences. (Phylogenies are also
commonly built from data on amino acids, from
data on the allele’s of specific genes, or from
morphological data using procedures analogous to
those described below.) Consider the aligned HIV-1
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Table 1 Viral nucleotide sequences from five AIDS patients (84 bases in the TAT region)

Country Sequence

Djibouti-1 CAGGAAGTCAGCCTAAAACTGCTTGTAATAAGTGTTATTGTAAAAAATGTAGCTATCATTGTCTAGTTTGCTTTCAGACAAAAG
Djibouti-2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗C∗∗∗A∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Zambia ∗G∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗CC∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗G∗∗∗T∗∗∗∗∗∗∗∗∗∗C∗C∗∗∗G∗∗∗∗∗∗∗TA∗AC∗∗∗∗
Brazil ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗AG∗∗∗∗CC∗∗T∗∗C∗∗∗∗∗∗∗∗∗∗∗G∗∗∗T∗∗∗T∗∗∗∗∗∗C∗A∗∗∗∗∗∗T∗∗CACA∗∗∗∗∗∗∗
US ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗G∗∗∗∗∗∗∗∗∗∗CC∗∗T∗∗C∗∗∗∗∗∗∗∗∗∗∗G∗∗∗T∗∗CT∗∗∗∗∗∗C∗A∗∗∗∗∗∗T∗∗CACA∗∗∗∗∗∗∗
Uganda ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗C∗∗∗∗∗∗C∗∗∗∗∗∗∗∗T∗G∗∗∗∗∗∗∗∗∗∗∗∗∗T∗∗∗∗∗∗∗∗∗∗A∗∗∗∗∗∗∗∗∗∗∗T∗∗AC∗∗∗∗
Cameroon ∗T∗∗G∗∗CA∗∗∗∗CC∗∗∗∗CC∗∗∗∗∗∗C∗∗∗T∗∗C∗∗∗∗∗C∗∗∗∗G∗∗∗CT∗∗∗∗∗∗∗∗∗∗-∗∗∗TG∗∗TG∗∗∗∗∗C∗A∗G∗∗∗
Note: An asterisk (∗) designates the same nucleotide as the first patient from Djibouti.

sequences (from the TAT gene of the virus) of seven
AIDS patients presented in Table 1.

We can see that the sequences from the two Dji-
boutian patients are very similar – indicating a recent
common ancestry. However, the sequence from the
Cameroonian patient is quite different from the oth-
ers, indicating an earlier divergence. This evolution-
ary history is illustrated by means of a phylogenetic
tree, such as the ones in Figure 2. The external
nodes at the tips of the phylogenetic tree represent
the current nucleotide sequences under considera-
tion. The internal nodes represent ancestors of the
current sequences. The trees in Figure 2 are both
bifurcating (each node splitting into two branches)
and show the same relative relationships among
the seven sequences. In the rooted tree of Figure
2(a) evolutionary time proceeds from the root (the
common ancestor of all nodes) at node 1 down
to the current time. Whether rooted or unrooted,
our interest lies in estimating key properties of
the true underlying tree, especially (i) the branch-
ing structure or topology of the tree, and (ii) the
lengths of the branches. The space of trees is very
large; there are Πn

k=2(2k − 3) possible distinct rooted
topologies relating n sequences (when n = 40 this is
already > 1057).

The wide variety of methods used to estimate phy-
logenetic relationships generally fall into three cat-
egories: distance-matrix, parsimony, and maximum
likelihood. Distance-matrix methods use pairwise dis-
tances to infer the tree. An early algorithm of this
type is UPGMA, which is an unweighted recursive
pairwise grouping method [25]. The neighbor-joining
method [22] weights pairwise distances on the basis
of their average distance from all other external
nodes, while the Fitch–Margoliash procedure [9]
minimizes a chi-square-like criterion measuring dis-
agreement between the branch lengths of the tree

Djibouti-1 Djibouti-2 Uganda Zambia BrazilUS Cameroon

Djibouti-1

Djibouti-2

Uganda

5

4 3

2

6

Zambia US Brazil

Cameroon

1

2

3
4

5
6

(a)

(b)

Figure 2 Two phylogenetic trees relating seven HIV-1
DNA sequences identified by country of origin: (a) a rooted
tree; (b) an unrooted tree. The arrow indicates the hypoth-
esized position of the root used to make tree (a)

and the corresponding observed distances. Distance-
matrix methods are computationally very efficient,
although important information may be lost in the
reduction to pairwise distances.

Algorithms based on the parsimony concept att-
empt to minimize the number of evolutionary steps
required to explain a given set of data. The idea
was introduced for amino acid data by Eck & Day-
off [3] and for nucleotide sequences by Fitch [8]. As
an example, the branching structure in Figure 2 is the
most parsimonious for the HIV data in Table 1 – it
explains the data using a total of 49 nucleotide base
substitutions. Parsimony methods ignore the possi-
bility of multiple substitutions at one site along the
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same branch and have been shown to give inconsis-
tent estimates of the true phylogeny [4]. However,
parsimony methods that give weights to different
types of events appear to improve the consistency and
efficiency of the technique. Also, parsimony is the
preferred method of analysis amongst researchers in
cladistics, which concentrates on the branching rela-
tionships of species.

The maximum likelihood approach seeks to find
the tree that maximizes the likelihood of the observed
sequences under a particular model of the evolution-
ary process. Most algorithms require the stochastic
model to be time-reversible and Markovian and to
assume independence between sites. In this setting the
log likelihood is summed across sites and the likeli-
hood at an individual site is computed using Felsen-
stein’s peeling algorithm [5]. In particular, define
L(iat j) to be the conditional likelihood of the sub-
tree descending from node j given that nucleotide
i is at j . The peeling algorithm is based on the
observation that if node 1 is the parent of nodes 2
and 3 (with corresponding branch lengths t12 and
t13), then

L(iat 1) =
{

∑

k

Pik(t12)L(kat 2)

}

×
{

∑

k

Pik(t13)L(kat 3)

}
.

Using this recursion, the likelihood is finally derived
under the further assumption that the probability of
each nucleotide being at the root node follows the
stationary nucleotide distribution of the evolutionary
model. Coincidentally, it turns out for the data of
Table 1 that the maximum likelihood method using
the Hasegawa–Kishino–Yano model gives the same
topology as the parsimony method. The maximum
likelihood method is consistent if the assumed model
is true. However, it is very intensive computationally
and when the number of sequences is larger than 20,
we must resort to a heuristic search for the maximum.

To evaluate the variability in an estimated tree,
Felsenstein [6] introduced the use of the bootstrap
method to phylogenetic inference. Bootstrap sam-
ples are created by sampling the observed sites, with
replacement, to create a set of pseudo-sequences
of the same length as the original data. For each
bootstrap sample, a bootstrap tree estimate is made
using the specific phylogenetic construction method

being studied. The sampling distribution of the esti-
mated phylogeny is approximated by the empirical
distribution of the bootstrap estimates. Care must be
taken in the interpretation of the bootstrap results
since no information is provided about whether the
estimation technique being studied is itself biased.

Phylogenetic tree-building algorithms rely on
many key assumptions and there have been a number
of proposals to test their validity. Methods that
assume rate homogeneity over the whole tree can
examine this assumption with a relative rate test
(e.g. [23]). Trees based on maximum likelihood are
not robust to deviations in the assumption that all
sites evolve at the same rate [10] and many proposals
are available to deal with this problem (e.g. [27]). A
phylogenetic tree cannot depict situations in which
recombination events play an important role in the
history of a group of homologous sequences. In this
case a network, which allows for cycles amongst the
nodes, may be appropriate [2]. The preponderance
of work in the analysis of DNA sequences assumes
that all the relevant information about the history
and function of the molecule is contained in the
sequence. Although higher-order structure probably
plays an important functional role, the lack of data in
this area makes the development of useful statistical
procedures problematic.

Computer programs to carry out a wide variety
of alignment and phylogenetic tree-building algo-
rithms are generally available for little or no cost.
A fairly comprehensive list of such programs is dis-
tributed as part of the documentation for the program
PHYLIP [7]. A broad discussion of phylogenetic
methods is provided by Swofford et al. [26].
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Dorn, Harold Fred

Born: July 30, 1906, in Tompkins County, New
York.

Died: May 9, 1963, in Bethesda, Maryland.

At the time of his death from cancer, Harold Dorn
was Chief of the Biometrics Research Branch of the
National Heart Institute of the National Institutes of
Health (NIH). He was originally trained as a sociolo-
gist, receiving his Ph.D. from the University of Wis-
consin in 1933. His interest in statistical methods was
stimulated by his post-doctoral year in London where
he attended, among others, the lectures of Egon Pear-
son and R.A. Fisher. He joined the US Public Health
Service in 1936. Shortly thereafter he was assigned to
the NIH where he spent his entire career as a medical
statistician and epidemiologist. Dorn will be remem-
bered for the major role he played in starting and
developing the statistical program at the NIH. His pri-
mary interest, however, was the conduct of his own
studies in the epidemiology of cancer. He was respon-
sible for some early work in the association between
smoking and lung cancer (see Smoking and Health)

and, as a result of initiating a 10-city survey of cancer
morbidity, was the first to collect a fairly large body
of data on cancer incidence in the US. For these and
other contributions that he made in medical statistics,
epidemiology, and demography, he received a num-
ber of honors, among which were his designation as
the Cutter Lecturer in Preventive Medicine at Harvard
University in 1959 and his receiving the distinguished
Service Award from the US Department of Health,
Education and Welfare. He was a member of the
National Committee on Vital and Health Statistics, a
member of the World Health Organization (WHO)
Expert Committee on Health Statistics, and a US rep-
resentative from 1948 until his death to conferences
on the revision of the International List of Diseases,
Injuries and Causes (see International Classifica-
tion of Diseases (ICD)). Dorn was a Fellow of the
American Statistical Association (ASA), served on
its Board of Directors and its Council, and at his death
was Chairman of the Social Statistics Section.

(This account is based on the Dorn obituary writ-
ten by Jerome Cornfield in the American Statisti-
cian, June 1963.)

SAMUEL W. GREENHOUSE



Dose-response in
Pharmacoepidemiology

Since pharmacoepidemiology (PE) deals with the
action of drugs within the population, the estimation
of dose–response parameters is somewhat different
than that used in either biological assay or clinical
trials. As discussed below, these differences are pri-
marily due to the controlled data collection available
in bioassay and clinical trials which usually is not
available in PE trials. However, the basic idea behind
a dose–response curve is the same. As the amount of
drug used increases, the number of subjects who will
respond to the drug increases. This relationship pro-
duces an S-shaped or sigmoid curve when amount of
drug is plotted on the horizontal axis and proportion
of subjects responding is plotted on the vertical axis.

Such a dose–response curve is shown in Figure 1.
The plotted points indicate the proportion of subjects
(usually 3–6) who have responded to a particular
dose of the drug being studied. The sigmoid curve has
been drawn through this set of points. In practice, the
parameters describing this curve would be estimated
using nonlinear regression or by transforming the
data (see Transformations) so that linear regression
could be used [5]. The ends of the curve flatten out at
the lower end where a certain amount of the drug has
to be given to obtain any response, and at the upper
end where increasing the amount of drug above a
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Figure 1 Plotted points and a sigmoid curve for a typical
dose–response situation

particular dose produces no increase in the effect that
the drug produces.

Dose–response is evaluated with a pharmacody-
namic (PD) model. That is, its results are measured
in terms of an observable response by the subject.
Underlying this response are pharmacokinetic (PK)
actions of the drug within the body; for example, the
time it takes the drug to clear from the body. PK
information is thought to provide clues as to how a
subject will respond to various doses of a drug, but
it is not a perfect predictor of PD response.

The dose–response model in PE shares the S-
shaped curve concept and the PD response with
similar models in bioassay and clinical trials. In other
ways it is quite different from these models. In PE the
dose–response information comes exclusively from
human subjects. Bioassay and clinical trials models
are used in both animals and humans. Although cross
species comparisons are difficult to make, the animal
studies are used to complement human studies in
bioassay and clinical trials.

In PE the dose–response model is best repre-
sented by two S-shaped curves. The first curve uses as
response the medically intended purpose of the drug,
i.e. its benefit. The second curve uses as response
the negative or adverse outcomes that the drug pro-
duces. The curves in Figure 2 represent the ideal
situation in which the adverse and beneficial effects
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are widely separated in dose and the curves are par-
allel to one another. In reality the two curves may
overlap and cross one another or they may lie on
top of one another. They do not have to be parallel,
and their shape and relationship to one another may
change with changing characteristics of the subjects
being studied; for example, the age of the subjects
usually affects this relationship. PE studies using
dose–response models attempt to estimate parameters
for both of these curves, and to estimate the effect that
population characteristics have on these parameters
and hence on the relationship between the curves.

Bioassay and clinical trials dose–response studies
are controlled studies similar to the premarket studies
conducted on drugs before they are allowed to be sold
to the public. The number of subjects who are tested
with a drug before it is put on the market is extremely
small compared with the number of patients who
will use the drug once it is generally available. For
this reason the information about the relationship of
the beneficial and adverse effects curves given in
Figure 2 that is available from controlled (premarket)
studies may not provide a complete picture of this
relationship. One of the major research foci for PE
is to determine the relationship of the two curves in
Figure 2 in the general population. It is not uncom-
mon that an effective dose for a drug can be lower
than the doses used in premarket testing. It may also
be necessary to increase the dosage for some sub-
groups in a population. Studies of the drug verapamil
have shown that, for a given dose, elderly patients
will have a blunted electrophysiologic response and a
greater drop in blood pressure than younger patients
given the same dose [15]. Using the recommended
dose on the package insert for verapamil would there-
fore result in getting less electrophysiologic response
than expected and a greater drop in blood pressure
when the person being given the drug was older
than the groups on which premarket studies had been
done.

Bioassay and clinical trials dose–response exper-
iments are controlled, prospectively planned, exper-
iments. A great deal of the dose–response data in
PE is currently gathered as retrospective information
obtained from data sets that have been collected for
other purposes. Some of the methodologic issues in
PE dose–response research have to do with abstract-
ing information from large computer databases (see
Administrative Databases).

Since PE seeks to determine dose–response infor-
mation for a population, it must deal with variables
other than dose which can influence response. Deci-
sions need to be made, often with limited information,
about whether these variables are important enough
to be studied separately. The alternative is to allow
them to become one of the sources of variation for
the models developed.

Finally, dose–response results in PE will almost
surely be compared with data collected by phar-
maceutical companies to determine adverse events,
and with physicians’ customary prescribing habits.
While these results are not always in conflict, there
are economic and political consequences that make
the method of presenting these dose–response stud-
ies very important. The methods of PE are also
being used to investigate drug prescribing practices
among physicians (see Drug Utilization Patterns),
the economic impact of altered dosing strategies,
and the long-term adverse effects of drugs taken
over extended periods of time (see Postmarketing
Surveillance of New Drugs and Assessment of
Risk). These are areas of investigation that are diffi-
cult to incorporate into the classic bioassay or clinical
trials structure.

As with any complicated problem, a good way
to proceed is to divide the problem into manageable
parts. I have chosen to divide this article into three
sections, each dealing with an important aspect of
dose–response in PE. First I will discuss the param-
eters that need to be estimated, next the current tech-
niques for estimating these parameters and, finally,
some of the computer software currently available
for obtaining the estimates.

Dose–Response Variables

Responses can be divided into two categories – ex-
pectation and effect. There are two levels of expecta-
tion, anticipated and unanticipated, and two levels of
effect, adverse and beneficial. We usually have some
prior expectation about how a drug will affect the
body both beneficially and adversely. These are the
anticipated responses. They are the easiest to deal
with, since we can include them in our advance plan-
ning. The unanticipated responses cannot be planned
for in advance. Again, they can be either beneficial
or adverse but they are determined by skillful obser-
vation of the effect of the drug on the human subject
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during the course of the study. They are frequently
detected by their increasing occurrence with increas-
ing amounts of a drug.

The effect levels, adverse and beneficial, refer to
PD responses as mentioned in the introduction. These
can usually be clearly defined in the same way for all
subjects. There are some situations, if for example a
quality of life measure is used as the response, where
some interpretation is necessary to decide what is
beneficial and what is adverse.

While our basic dose–response model deals with
PD responses, it seems reasonable to assume that the
PD responses that we obtain from a drug depend to
some extent upon how that drug acts in the body,
that is, pharmacodynamics is some function of phar-
macokinetics. Therefore the first set of responses that
we want to estimate are not dose–response measures
but the basic pharmacokinetic actions of a drug.

Pharmacokinetics (PK) has been defined as the
“study of factors influencing the absorption, distri-
bution, metabolism, and excretion of a drug” [7].
Pharmacodynamics is the study of the effect of a
drug on the body [9], for example, whether or not
the patient improves or has an adverse reaction when
the drug is given. This effect is related to the drug’s
effective concentration (bioavailability) in the body.
This concentration could be measured by the initial
dose given, but because of the confounding effects
caused by a subject’s biochemistry other PK param-
eters may be better.

Several variables of drug administration influence
the PK outcomes of any drug. Examples include the
route of administration (oral, bolus injection or IV
drip, etc.), the timing of administration (once per day,
twice per day, etc.), the number of administrations,
and the dose per administration. These variables,
along with a subject’s unique biochemistry, determine
the bioavailability of a drug in the body. Aspects
of this bioavailability are expressed by several PK
parameters. The most common of these are the area
under the curve (AUC ), peak plasma concentration
(Cp), and half-life (T1/2). Depending upon the drug
and the effect being examined, one of these parame-
ters may be more important than the others in deter-
mining the PD response. The effect of some drugs
is closely related to their maximum or peak con-
centration. Other drugs have effects related to their
minimum concentration or trough. The PD response
of others is most easily predicted by some integrated
summation of bioavailability over time (AUC ).
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Figure 3 A pharmacokinetic curve for a single dose of
cyclophosphamide

Figure 3 is a graphic representation of AUC,
Cp, T1/2, and trough for a single administration of
the drug cyclophosphamide. From the time at which
the drug is injected, 0, the plasma concentration rises
until it reaches the peak, Cp. The time that it takes
to reach half of Cp, about 362 minutes, is T1/2, and
the lowest value is the trough. The shaded area is the
area under the curve, AUC.

In pharmacoepidemiologic dose–response (PDR)
we determine the values of these PK parameters not
just for a single individual but for a population of
individuals. To the extent that PK values determine
PD responses this would give us information about
how the entire population would react to a drug.
Obtaining estimates in this way is called population
pharmacokinetic (PPK) modeling. DeVane et al. [4]
give an example of this in their paper on alprazolam,
a drug used for a number of psychiatric disorders. In
that paper mixed-effect modeling was used to deter-
mine the mean and standard deviation for the clear-
ance (= dose/AUC) for 94 psychiatric inpatients.
The authors found an average clearance of 0.05 liters
per hour per kg with a 95% confidence interval
of 0.04–0.06. They also found that clearance was
increased by 59% in women, and decreased by 26%
in patients with multiple organ disease and 23% in
patients over the age of 60. Increased clearance indi-
cates that the drug is leaving the body more quickly
and may not be in the plasma long enough to be fully
effective. Decreased clearance indicates that the drug
is remaining in the body longer and that may indicate
a greater opportunity to cause an adverse reaction.
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Subject factors such as age, gender, and co-
morbid conditions can have considerable impact on
a drug’s effect (see Co-morbidity). The effect of
these variables could be measured directly in planned
experiments. What is more frequently done in PDR
modeling is to use PPK models to determine how
these subject specific variables effect PK parame-
ter estimates and to impute from this what types
of PD responses one would see in the population.
This was the strategy used in the DeVane study
mentioned above. The data for this study were not
collected by taking multiple samples from a sin-
gle patient and measuring the drug concentration at
each time as in the linear kinetics example given
below. Instead, two blood samples were drawn at
random from each patient at some time during the
course of their treatment. This method has devel-
oped because subject variables, and beneficial and
adverse responses, are routinely recorded in medical
charts and can be abstracted for the PPK models. To
test the effect of these variables directly in planned
experiments would be time consuming and expen-
sive. The statistical methods necessary to obtain the
PPK parameter estimates when data are collected in
this fashion are discussed briefly below.

The final set of parameters to be estimated are the
PD parameters which measure the subject’s overall
response to the drug. Beneficial parameters are typ-
ically proportions of subjects completely cured, par-
tially cured, or relieved of symptoms. Adverse event
parameters are proportions of patients experienc-
ing these events. There are other measures of these
responses that are continuous, e.g. time to remission,
and are dealt with using other models such as sur-
vival analysis.

Both the PD and the PK parameters are needed
here because PDR encompasses more than just the
classic dose–response model. In its broadest form it
can be seen as the reason for PE investigations: “The
objective of many pharmacoepidemiologic investiga-
tions is to determine the incidence of an adverse event
and identify risk factors associated with the event.
These risk factors can include patient characteristics
such as age, race, sex, and so forth, and drug char-
acteristics such as the dose, the dosing regimen, and
the level of systemic response” [7]. The PK parame-
ters provide a broader spectrum of risk factors with
which to evaluate a drug than just dose. Given, as
above, that it is the availability of the drug to act in

the body and not the dose administered that deter-
mines the response that we obtain, we should be able
to take advantage of the PK parameters to develop
active-concentration (bioavailable) response models
and not just dose–response models.

It is not always easy to determine if a response
can be directly attributed to the action of a drug.
Determining this is difficult enough in a controlled
experiment. Given the undesigned nature of the
data collection for data used in PDR studies, it
becomes even more difficult. Unanticipated responses
are particularly hard to detect using only a classic
dose–response design. The PK parameters can help
to corroborate that a response is related, as one might
expect, to one of the PD parameters. For example,
chart notations of nausea that occurred within the
population limits of a drug’s peak concentration could
more easily be called an adverse reaction than such
notations that could not be linked to this PK measure.

What we know about dose–response from con-
trolled experiments provides only a very small part
of the response that we see in the larger population
to which the drug is ultimately administered. Incor-
porating the PK parameters as part of PDR models
allows us more latitude to explore the nuances of drug
activity in this large population.

Using only the PD, binary outcome, of classic
dose–response (dead/alive, improved/not improved)
does not allow us to classify drugs with similar
risk profiles into meaningful risk groups. Classifying
drugs based upon how many and what types of
responses were related to peak concentration, trough
concentration or area under the curve will give us
more knowledge about drug activity in general. It
will also allow us to develop strategies for separating
the beneficial dose–response curve and the adverse
event curve more completely. Drugs where benefit
depends upon the area under the curve, but where
adverse events are only noted if a particular peak
concentration is exceeded, can be administered to
maximize benefit and minimize adverse results.

The final step in PDR modeling is to bring together
all of the information available about all of the param-
eters mentioned above and form a coherent picture
of the activity of a drug in the general population.
This final model should allow us to predict the PD
responses that will occur in any segment of the pop-
ulation as we manipulate the controllable aspects of
drug administration in order to produce the most
favorable PK responses.
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Estimating the Parameters

Estimates for the values of the PK parameters are
made using compartment modeling (see Pharma-
cokinetics and Pharmacodynamics), with experi-
mental designs developed specifically for obtaining
the PK values [14]. The definitions, figures, and pro-
cedures given below are based upon the simplest of
these models, a single-compartment model with first-
order linear kinetics.

In the simplest single compartment model the
drug is almost immediately available from an outside
source (bolus injection), resides only in one place in
the body (the single compartment which is usually
taken to be the plasma), and is then eliminated from
the body. A representation of this model is shown in
Figure 4.

To estimate the PK parameters, an injection of the
drug is given at t = 0, where t is the time from injec-
tion. Blood is drawn from the subject at pre-specified
intervals and the amount of drug still in the plasma
is measured. Figure 5 indicates what the subsequent
natural log (ln) by time concentration curve might
look like for a first-order kinetics model, that is, the
concentration curve follows an exponential distribu-
tion and the log of concentration by time curve will
be a straight line.

Algebraically, our PK parameters are defined as
follows. The concentration at time t , conc(t), is
obtained from (2), although (3) is often easier. The

Plasma
single body

compartment

Bolus injection

rate = instantaneous

Elimination

rate = k10

Figure 4 The single-compartment model

7

6

5

4

3

2

1

0

ln
 (

co
nc

)

0 2 4 6 8 10 12

T1/2

Trough

Peak

0.693

Time (h)

Figure 5 The ln(conc) vs. time curve

concentration in the plasma immediately after the
injection is conc(0). In this simple model

conc(0) = dose injected

volume of plasma
. (1)

Subsequent concentrations can be obtained from the
following equations:

conc(t) = conc(0) × exp[−k10 × t] (2)

or

ln[conc(t)] = ln[conc(0)] − k10 × t. (3)

k10 is the constant that indicates how rapidly the drug
is excreted from the body (plasma), compartment 1,
to the outside world, compartment 0.

It is clear that what drives these relationships is the
constant k10. From the curve in Figure 5, k10 could
be estimated by eye, but a more precise way is to
perform a simple least squares linear regression on
the data in this plot of (3). In this model conc(0) is
equal to Cp, which is estimated as the intercept of
the regression. The parameter k10 is then estimated
as the slope of this regression. The half life of the
concentration then becomes

T1/2 = the time it takes to reduce the concentration

by half = − ln(0.5)

k10
. (4)

The value, − ln(0.5) = 0.693. In Figure 5 T1/2 can
be obtained graphically by determining a 0.693 dif-
ference on the vertical axis and projecting this on to
the time axis.

If we integrate the exponential function in (2) from
0 to infinity we find that the area under the curve is

AUC = conc(0)

k10
. (5)

Since theoretically the logarithmic curve will never
reach zero, the trough is taken as the lowest pre-
dicted value that is obtained before the next injection.
When multiple injections are not given, the trough is
reported as the lowest predicted value within the time
of observation.

The values of these parameters for the data in
Figure 5 are found as follows. We inject a bolus of
drug at time zero. From blood drawn from the subject
at times after t = 0, we obtain plasma concentrations.
Logarithms of these concentrations are the plotted
points in Figure 5. By regression, Cp = 493 ng/ml,
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trough (at 12 h) = 18.18 ng/ml, and k10 = 0.275/h.
From this we can obtain T1/2 = 2.52 h, which is also
reflected in the drawing in Figure 5. AUC becomes
1127.27 ng h/ml. AUC has units which are difficult
to interpret physiologically. It is primarily an interme-
diate variable which allows us to estimate the system
clearance rate as

Cls = [conc(0) × Vd]

AUC
. (6)

Here Vd is another intermediate variable called the
volume of distribution. It is the proportion of drug
that remains in the plasma and is not distributed to
other body compartments. In this simple model, it
equals 1. From the definitions it is clear that in this
simple model Cls equals Vd × k10 = 0.275 ml/h.

The PK models used in practice are much more
complicated than those that we have presented here.
They use both multiple administrations of a drug and
multiple compartments within the body. However,
the general approach to the estimation of the PK
parameters remains the same.

The example of estimation of PK parameters given
above is for data from a single subject. The phar-
macoepidemiologic dose–response (PDR) is obtained
from need the population values for these PK param-
eters. This means that we need information from
more than one subject, and that we must consider
variability in these values both within and between
individuals in a population. In addition, we want our
population model to provide information about how
various subgroups react to the drug. Are older people
more inclined to have adverse reactions because they
have slower clearance? Is the drug more effective in
people with AIDS because their condition allows it
to reach a higher peak? Can we give a lower dose
of the drug (preventing adverse events) because we
find that in the general population the minimal effec-
tive dose is less than the dose used in the controlled
clinical trials used to prove the drug’s effectiveness?

Ideally, controlled, planned experiments to answer
the above questions should be undertaken. Time and
sample size constraints make this unrealistic in most
cases. The strategy developed for PDR is to use infor-
mation that is available in a patient’s chart or in
a medical database to try to obtain PK estimates
that will provide answers to some of these ques-
tions [13]. This means that the data collected will be
fragmentary, collected under a variety of conditions,
unbalanced and subject to many sources of varia-
tion. Procedures for analyzing this type of data are

currently being developed in the statistical literature.
Yuh et al. [16] has an excellent bibliography on cur-
rent work in this area. The development of standard
methods for dealing with these data and appropri-
ate software will greatly increase the effectiveness of
PDR research.

As an example of PPK modeling, consider
the curves in Figure 6. Here instead of having
observations for a single individual for our simple,
one-compartment model, we have results from ten
individuals. This example is idealized, since PPK
models seldom have enough information to estimate
individual regression parameters for each individual.
Typically, each individual has his or her own response
to the drug. In this case, one subject has a response at
odds with the other nine subjects. PPK models usually
assume that responses of similar subjects are parallel.
This nonparallel response should be investigated to
see if this subject differs in some meaningful way
from the rest of the group. If correction of initial
data or adjustments for confounding factors is not
appropriate, this subject’s data should remain in the
model. The effect of this decision will be to increase
the variance of the parameter estimates obtained.

Where the PK example given above had one
regression equation we now have ten equations of
the following type:

conc(t)i = αi × exp[−βi × t] (7)

or

ln[conc(t)i] = αi − βi × t. (8)

To emphasize the variability of different subjects
to the drug, we have replaced conc(0) by αi , which
is the individual subject’s intercept at the time of
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Figure 6 An example of population PK curves
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injection. We have also replaced k10 by βi , so that
the discussion below is consistent with regression
analysis models.

We usually assume that there is enough similarity
in the response among individuals that the parameters
αi and βi can be viewed as representative values from
a distribution of such parameters, where the mean of
the distribution is the population value α or β. They
can then be written as

αi = α + ξi, βi = β + ei . (9)

In the simplest case, ξi and ei are assumed to be
independently distributed as N(0, σ 2

1 ) and N(0, σ 2
2 ),

respectively.
The regression equations required to obtain esti-

mates for αi and βi are referred to in various
parts of the statistical literature as mixed effects,
stochastic parameter, or empirical Bayes models.
Under the appropriate assumptions, these models will
yield essentially the same results. Racine-Poon &
Smith [12] has a comparison of the models mentioned
above. While our simple model is linear using a
logarithmic transformation, PK models are usually
nonlinear. This increases the difficulty of obtaining
the estimates.

Notice that the regression structure provides for
much more model complexity than we are using
here. In particular, we may want to incorporate some
important covariates that have their own fixed effect
or strata values. If our ten subjects were five males
and five females, we might consider having a differ-
ent α value for each gender, thus removing gender
from the undifferentiated sources of variability. It
is possible, however, that gender affects the rate of
elimination and not the intercept of the concentra-
tion curve. In that case we would want a different
β for each gender. It is obvious that models which
incorporate subject specific covariates into the PK
equations can become quite complex. Considerable
thought and testing needs to go into the selection of
the correct models (see Model, Choice of) The bibli-
ography in Yuh et al. [16] contains references for the
procedures currently being used to obtain estimates
for the parameters in these models.

Naively, we might begin by ignoring the fact that
these observations came from ten individuals. A sin-
gle regression could then be performed and the results
taken as the values for α and β. This approach ignores
the complicated relations of inter- and intraperson
variation. Its shortcomings are easily demonstrated

if we consider how to deal with different numbers of
observations for each subject.

A slightly better approach is first to estimate αi

and βi from a single linear regression on the data of
each individual. These individual estimates can then
be combined in some fashion, usually a weighted
mean, to produce population estimates of α and β.
This approach allows for weighting for different num-
bers of observations per subject and it provides both
individual and population estimates of the parame-
ters. What is missing from this approach is a way of
estimating simultaneously both the individual and the
population parameters.

Simultaneous estimates of these parameters can
proceed along the lines of maximum likelihood
[10, 11] or Bayesian [12] estimation. While these
simultaneous estimates are preferred, they too have
a drawback. They require assumptions about the
variance–covariance structure of these models (see
Covariance Matrix) which are often difficult to
make. They also require iterative solutions which
may converge slowly to stable estimates. Finally they
are currently being estimated using software which
is under development. Nevertheless, the advantages
which these estimates have in completely specifying
the relationship between the population parameters
and the individual parameters is thought to be worth
the effort.

Computer Software

Several software packages are available for individual
PK modeling. A recent paper [3] reviews a number
of the programs available in terms of ease of use.
In addition, procedures exist within large statistical
packages such as SAS, S-PLUS, SPSS, and BMDP
for mixed-effects analysis and nonlinear regression
(see Software, Biostatistical). These procedures can
be adapted to produce estimates for many of the
individual PK models.

At this time, the only computer program that is
specifically designed to deal with the type of data
used in PDR is NONMEM [2], a program devel-
oped to obtain population estimates of PK parame-
ters from available clinical data. While some studies
show that NONMEM provides good estimates in data
from Phase III trials [8], controversy still exists about
its use in situations with more variability [12]. In
addition, NONMEM provides only limited access to
model the variance components, and it provides only
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the population estimates α and β, and not αi or βi .
It does, however, allow for some limited testing of
parameters between different subgroups or strata (see
Stratification) of the population.

Summary

Pharmacoepidemiologic dose–response (PDR) is
closely related to the analysis of pharmacoki-
netic/pharmacodynamic data. In particular, the esti-
mation of population pharmacokinetic parameters is
the current analytic tool for PDR. The information
that these estimates provide about the dose–response
relationships in subgroups of the population is nec-
essary for pharmacoepidemiologic investigation of
risk factors associated with drug use. These estimates
also provide information for improving the separation
between dose–benefit and dose–toxicity curves in the
population.

Estimation procedures and associated software for
obtaining population pharmacokinetic parameters are
still evolving. A bibliography for current estimation
procedures is provided in [16] and software reviews
and suggested improvements for current software are
provided in [3] and [1]. While the procedures in use
at this time are providing useful information, this area
of pharmacoepidemiologic research will be greatly
enhanced when standard methods for design and
analysis, and readily available, user friendly, software
have been developed.
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Dose–Response Models in
Risk Analysis

In biological and health sciences, a dose–response
model is an expression that describes a measure of a
biological or health effect as a mathematical function
of a dose of a substance. In risk analysis (see Risk
Assessment; Risk Assessment for Environmental
Chemicals), the biological or health effect is gener-
ally a measure of an adverse outcome, such as the
proportion of individuals with a disease or the mag-
nitude of body weight loss. The primary goal is to
estimate the proportion of individuals in a popula-
tion that are expected to experience an adverse health
effect when exposed to a specified biological insult,
usually a chemical substance. The dose is the amount
of the chemically active substance at the affected tis-
sue site. Often the body converts a chemical into
other forms (metabolites) that are the biologically
active substances. Occasionally, elaborate differen-
tial equations based on physiology can be constructed
to provide pharmacokinetic models to estimate the
doses of the active chemical substances at the affected
tissue sites. In the absence of this information, the
amount of the active chemical is generally assumed
to be proportional to the dose of a chemical that is
administered by inhalation, dermal, or oral exposure.
Since various species of animals tend to react simi-
larly when a dose is administered on a body weight
basis, dose often is expressed as milligrams (mg) of
a substance per kilogram (kg) of body weight. For
many biological effects, similar effects among species
are noted when body weight is raised to a power; for
example, 2/3 or 3/4. This often corresponds closely
to a dose expressed as a concentration; for example,
parts per million (ppm) in air, food, or water.

For risk analysis, dose–response data seldom
are available for exposures of humans to specific
toxic substances. Hence, most dose–response data
are obtained from well-controlled animal bioassays.
Typically, relatively small numbers of animals
(generally 5–50) are exposed to a few dose levels
(generally 3–5), and there is a group of control
animals that are not exposed to the chemical
substance under investigation. Generally, the purpose
of the bioassay is to establish a dose–response
function from which a relatively “safe” dose for
human exposure can be estimated. Where the

biological mechanism of toxicity is known, it
may be possible to represent this situation with a
biologically based dose–response model that will
provide sufficiently precise estimates of risk at human
exposure levels.

Generally, it is desired to limit risk levels (the
proportion of adversely affected individuals) to less
than 1 in 10 000. Hundreds of thousands of animals
would be required to measure such levels of risk
directly with precision. Since the resources to do this
do not exist, relatively small numbers of animals
are exposed to doses well above human exposure
levels in order to elicit potential toxic effects. Then,
it becomes necessary to extrapolate the results from
high-dose experiments to low-dose human exposure
levels. That is, the bioassay data are used only to
obtain a dose–response model in the experimental
dose range and some form of low-dose extrapolation
is employed (see Extrapolation, Low Dose).

Various dose–response models have been em-
ployed for quantal (dichotomous) endpoints, where
an animal is classified as either possessing an adverse
effect (such as cancer or a birth defect) or considered
normal. For quantal data, it has been common to
use tolerance distributions to relate the probability
of disease to dose (see Quantal Response Models).
It is assumed that the probability that an animal
will develop an adverse effect at a dose, d, is
described by a specified distribution. For example, if
the probability density function of tolerated doses is
normal (Gaussian), then the probability of an effect at
dose d is given by the cumulative normal distribution
function (probit):

Pr(d) = Φ(β0 + β1d),

where the regression coefficients, β0 and β1, are
estimated from bioassay data [5]. More commonly,
for biological endpoints the lognormal tolerance
distribution provides a better description (log probit):

Pr(d) = Φ(β0 + β1 ln d).

A second model used extensively for quantal
responses is the logistic [2]:

Pr(d) = {1 + exp[−(β0 + β1 ln d)]}−1.

Chand & Hoel [4] showed that when the time-
to-tumor distribution is a Weibull distribution, the
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dose–response model follows an extreme value
model:

Pr(d) = 1 − exp[− exp(β0 + β1 ln d)].

If k similar events are required to produce an
adverse biological effect, the probability of this effect
is given by the multi-hit model based on the Poisson
distribution:

Pr(d) = 1 −
k−1∑

i=0

(λd)i exp(−λd)

i!
.

When λd is small, the multi-hit model is approxi-
mately

Pr(d) = βdk or ln Pr(d) = ln β + k ln d.

In the special case in which only one event is
necessary to produce an adverse effect (for example,
a single mutation in a cell), the resulting model is the
one-hit model

Pr(d) = 1 − exp(−λd).

When λd is small, the one-hit model is approximately
linear:

Pr(d) = λd.

In the above models in which ln d is used, when
d = 0 (ln 0 = −∞), the background rate is Pr(0) =
0. This is often not the case. If a chemical acts
independently of the background, the total (back-
ground plus induced) probability of an event is

∗
Pr(d) = Pr(0) + [1 − Pr(0)] Pr(d).

If a chemical adds to the background dose (that is,
the background rate is due to an effective dose d0),
then ∗

Pr(d) = Pr(d + d0).

The Armitage–Doll multistage carcinogenesis
model [1] is widely used to represent the probability
of cancer by a given age as a function of dose,

∗
Pr(d) = 1 − exp

[
−β0

k∏

i=1

(β0i + β1id)

]
,

where it is assumed that a cell progresses through k

stages leading to cancer and that the rate of change of
the ith stage is β0i + β1id, with β0i > 0 and β1i ≥ 0

for i = 1, 2, . . . , k. The parameter β0i represents the
spontaneous background rate and β1id represents
the increase in rate of the ith stage due to dose
of a carcinogen; β0 is constant greater than zero.
The Armitage–Doll multistage model is generally
expressed in a polynomial form,

∗
Pr(d) = 1 − exp

(
−

k∑

i=0

βid
i

)
,

where the constraints βi ≥ 0 are usually employed.
The background tumor incidence is Pr∗(0) = [1 −
exp(−β0)]. In the special case in which the rate of
only one stage is increased by a carcinogen, the one-
hit model is obtained:

∗
Pr(d) = 1 − exp[−(β0 + βid)].

The Weibull model is a special case of the polynomial
form:

∗
Pr(d) = 1 − exp[−(β0 + β1d

k)].

In studies of such duration where death occurs,
death from causes other than the specific disease of
interest can result in distorted dose–response curves.
For example, suppose that mortality increases with
increasing doses from causes other than the disease of
interest. For a later occurring disease such as cancer,
the incidence of cancer at high doses many decrease
because the animals die from other causes before
the disease is observed. Hence, tumor rates adjusted
for intercurrent mortality are required to obtain unbi-
ased dose–response functions. This is accomplished
by adjusting the number of animals at risk. Kaplan
& Meier [7] provide a nonparametric procedure for
estimating the incidence of fatal tumors as a func-
tion of time (see Kaplan–Meier Estimator). Hoel
& Walburg [6] present a method for estimating the
prevalence of nonfatal (incidental) tumors as a func-
tion of time. Kodell et al. [8] combine these two
procedures to provide nonparametric estimates for
tumor onset. These procedures require assigning a
tumor to the most likely category, fatal or nonfatal.
All tumors observed as the result of a scheduled sacri-
fice of animals are considered incidental, even though
they may generally progress to cause the death of an
animal (see Serial-sacrifice Experiments).

Moolgavkar & Venzon [13] and Moolgavkar &
Knudson [12] propose a two-mutation carcinogene-
sis model that includes proliferation of initiated cells.
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In this model a normal cell may mutate to an initiated
cell, an initiated cell may undergo clonal expansion,
and an initiated cell may be transformed by a sec-
ond mutation to a cancer cell. The probability that an
individual or animal has a particular type of cancer
by age t is given by

Pr(t) = 1 −
[

2C exp(−1/2(B + C)t)

(B + C) exp(−Ct) − (B − C)

]ν/β

where C = [(β + δ + µ)2 − 4βδ]1/2, B = β − δ − µ

and the cell kinetic parameters ν, β, δ, and µ are
defined as follows. It is assumed that the number of
normal cells in a tissue that are at risk of produc-
ing initiated cells upon cell division remains rela-
tively constant. Consequently, normal cells generate
initiated cells by a Poisson process with constant
intensity ν. An initiated cell living at time t may
undergo cell division producing two initiated cells
in the time interval (t , t + ∆t) with an approximate
probability of β∆t , and die (either physiologically
or pathologically) with an approximate probability of
δ∆t , where ∆t is small. In this time interval, a living
initiated cell may also divide into an initiated cell and
a cancer cell with approximate probability of µ∆t .
New research in this area is increasing the number
of stages, considering cell kinetics that change with
age, incorporating DNA repair, considering specific
events at the nucleotide level, and incorporating dose.

For continuous (nonquantal) data, a multitude of
dose–response curves is used. It is desirable that
the models reflect pharmacokinetics and physiology.
For example, it might be hypothesized that limits
are approached due to saturation of biological pro-
cesses. Once a dose–response model is obtained to
describe average levels, the distribution of individual
levels about the average is needed for risk estimation.
Some biological measures tend to follow a normal
distribution (for example, body and organ weights).
Frequently, biological measures appear to be lognor-
mally distributed. In these cases, only the standard
deviation is needed in addition to the average to
describe the distribution of measures of biological
effects. If an adverse level has been identified, then
the probability of individuals being in the adverse
range can be estimated as a function of dose. Where
an adverse range is not specified, the probability of
abnormal levels (for example, below the first per-
centile and/or above the 99th percentile of unexposed
control individuals) can be estimated as a function
of dose.

In reproductive and developmental studies, a che-
mical is administered to the father and/or mother
before or during pregnancy and the results are eval-
uated in the fetuses or offspring. Hence the litter is
the experimental unit. Common endpoints measured
near the end of pregnancy are the number of implants
per litter, the proportion of implants that result in
resorptions or dead fetuses per litter, the proportion
of specific types of malformations per litter among
the live fetuses, and average fetal weight per litter.

One of the first models devised specifically for use
with developmental data was provided by Rai & Van
Ryzin [14]. Their model contained the feature that
the probability of a malformed fetus is a function of
litter size (s) as well as dose:

∗
Pr(d, s) = {1 − exp[−(β0 + β1d)]}

× exp[−s(α0 + α1d)],

where β0 > 0, β1 > 0, α0 > 0, and (α0 + α1d) > 0.
Rai & Van Ryzin [14] postulated that larger litters
are an indication of healthier litters, so that the
probability of a malformation should decrease with
increasing litter sizes.

Kupper et al. [10] used a log-logistic dose–res-
ponse model for litter-type data. A generalization of
their model to include litter size s is

∗
Pr(d, s) = β0 + β1s

+ 1 − β0 + β1s

1 + exp[β2 + β3s − β4 log(d − d0)]

Kodell et al. [9] provide a model for the results
of a bioassay with g dose groups (indexed by i =
1, . . . , g), and ni pregnant females in the ith group
receiving a dose di . Let xij denote the number of
affected fetuses out of the sij fetuses in the j th
litter of the ith dose group. Kodell et al. [9] use
the beta-binomial distribution for the xij given a
fixed litter size sij . It is assumed that the occurrence
of an affected fetus in a litter follows a binomial
distribution with probability pij , while the pij within
the ith dose group are distributed according to a beta
distribution. The probability of an adverse effect for
a fetus in a litter of size sij at dose di is

Pr(di, sij ) = 1 − exp{−[β0 + β1(sij − s)]},
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for di less than or equal to a threshold dose of d0.
For doses above the threshold dose,

∗
Pr(di , sij ) = 1 − exp{−[β0 + β1(sij − s)

+ (β2 + β3(sij − s))(di − d0)
k]},

where s is the average litter size over all dose groups,
with β0 ≥ 0, β2 ≥ 0, d0 ≥ 0, k ≥ 1, [β0 + β1(sij −
s)] ≥ 0 for all sij , and [β2 + β3(sij − s)] ≥ 0 for all
sij . The parameters of this Weibull-type model can
be estimated by the method of maximum likelihood.

If death and malformation occur independently,
the number of dead, malformed, and normal fetuses
in a litter can be modeled as a trinomial distribu-
tion (see Multinomial Distribution). In order to
account for the overdispersion induced by litter
effects, the quasi-likelihood method of McCullagh
& Nelder [11] that inflates the standard multinomial
variance can be used. Ryan [15] discusses techniques
for estimating the various probabilities assuming a
log-probit and logistic model to describe the prob-
abilities as a function of dose. Catalano et al. [3]
also include a continuous measurement (fetal weight)
along with the quantal endpoints of death and mal-
formation in a multivariate model.

The beta–Poisson model is frequently used for
microbial risk assessment. The probability of infec-
tion is ∗

Pr(d) = 1 − (β0 + β1d)−k,

where d is the dose of an organism (generally
expressed as number per mass or volume). As k

approaches infinity, the dose–response curve approa-
ches the exponential.
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Dose–Response

Dose–response refers to a relationship between an
amount of exposure or treatment and the degree or
probability of an outcome in an individual or popula-
tion. The dose may represent the amount, duration or
intensity of exposure or treatment, and the outcome
may represent a favorable effect, such as lower-
ing of elevated blood pressure, or an unfavorable
effect, such as increased risk of developing cancer.
For example, the risk of lung cancer is known to

increase with the number of cigarettes smoked each
day and with the duration of smoking. A monotonic
relationship of increasing disease risk with increasing
exposure is often taken as one indication of a causal
relationship between exposure and risk (see Hill’s
Criteria for Causality).

(See also Dose-response in Pharmacoepidemiol-
ogy; Dose–Response Models in Risk Analysis)

MITCHELL H. GAIL



Double Sampling

Double sampling procedures are widely used in sam-
ple surveys, in acceptance sampling, for quality con-
trol, and also for statistical tests of hypotheses (see
Hypothesis Testing). Hill [36] presents a review of
the literature on this method up to 1980, and Hewett
& Spurrier [35] summarize the double sampling pro-
cedures for tests of hypotheses.

This article contains a review of the developments
of this approach for finite population sampling, and
related topics. In finite population sampling, dou-
ble sampling is widely used for determining strata
weights (see Stratified Sampling), estimating the
mean of the auxiliary variable for ratio and regres-
sion estimates, finding sample sizes for comparing
the means of domains or subgroups (see Sample Size
Determination), estimating and comparing propor-
tions and percentages from misclassified observations
(see Misclassification Error), and similar purposes.
Double sampling is also known as two-phase sam-
pling; it should be distinguished from two-stage sam-
pling, where a sample of clusters are selected at the
first stage and a sample of elements are chosen at the
second stage.

We first present some applications of the double
sampling procedures, followed by stratification, ratio
and regression methods, and other procedures that
employ double sampling.

Selected Applications

Double sampling was employed by Hall [30] for esti-
mating the number of transmission sources in a Pois-
son process, by Ahmed et al. [2] and Catchpole &
Catchpole [11, 12] for biomass estimates, by Stock-
ford & Page [96] and Potter et al. [60] for estimation
related to the Vietnam service, by Crete et al. [21]
for correcting helicopter counts of moose, by Eber-
hardt & Simmons [25] for estimating sizes of ani-
mal populations, by Fairley et al. [27] for estimation
related to welfare programs, by Baker [5] for eval-
uating a new medical diagnostic test, by Heerschop
& Lieftinck-Koeijers [34] for estimating employment
rates, and by Oderwald [56], Oderwald & Jones [57],
and Reich et al. [72] for estimation in forestry. Mag-
den & Holstein [49] use the double sampling method
for determining the sample size for estimation related
to rare items.

Stratification

Consider a finite population of size N divided into L

strata of sizes Nh, h = 1, 2, . . . , L; N = ∑
Nh. From

samples of sizes nh, n = ∑
nh, selected randomly

without replacement (see Sampling With and With-
out Replacement) from the strata, the estimator for
the population mean Y is

yst =
∑

Whyh,

where Wh = Nh/N are the weights and yh are the
sample means.

In some situations, only the sample means are
reported, but the weights are not available. In such
cases, as recommended by Neyman [55], initially a
large sample of size n′ is selected without replace-
ment from the N population units. With the observed
sample size n′

h in the hth stratum, n′ = ∑
n′

h, Wh

is estimated from wh = n′
h/n′. At the second phase,

a sample of size nh = νhn
′
h, 0 ≤ νh ≤ 1, is selected

without replacement from the n′
h units and the sam-

ple mean yh is obtained. The population mean is now
estimated from

yst(d) =
∑

whyh.

The estimator of this variance and its variance are
presented by Cochran [18, p. 333] and Rao [63].

The cost of selecting the samples at the two phases
is considered to be of the form C = c′n′ + ∑

chnh.
Optimum n′ and nh for minimizing the variance
of yst(d) = ∑

whyh for a given average cost or for
minimizing the average cost for a given variance are
presented by Cochran [18, p. 331].

An alternative method for determining nh was
suggested by Srinath [93] and Rao [63], and its con-
sequences were discussed by the author, Rao [68].
Treder & Sedransk [105] also suggest a method of
determining the sample sizes at the two phases.
Instead of selecting nh proportional to n′

h, Singh
& Singh [81] suggest three alternatives: (i) select
the nh units with replacement from the n′

h units,
(ii) select the nh units with replacement, but con-
sider only the distinct units, and (iii) for the sample
size at the second phase, consider the minimum of
(nh, n′

h).



2 Double Sampling

Ratio Estimator

The ratio estimator for Y is

Ŷ R =
(

y

x

)
X,

where (x, y) are the means of a sample of n

units selected randomly without replacement from
the N units, and X is the population mean of an
auxiliary variable. The double sampling procedure is
implemented when X is unknown. In this situation,
a large and inexpensive sample of n1 units is first
selected without replacement from the N units. The
mean x1 of these n1 units provides an unbiased
estimator for X. At the second phase, a sample of
size n is selected without replacement from the n1

units and the means (x, y) are obtained. The ratio
estimator for Y is now

Ŷ Rd =
(

y

x

)
x1.

With a cost function of the form C = c1n1 + cn,
optimum values of n1 and n can be determined to
minimize the cost or variance.

Different procedures, including the jackknife, are
available for reducing the bias of Ŷ R. Rao [67]
investigates the merits of eight modifications and
extensions of these procedures for estimating Y

through the ratio method and the double sampling
procedure.

In some situations, the second sample of n units is
selected independently of the first sample. For such
a case, Rao [65, 66] considers estimating X from
x∗ = ax1 + (1 − a)x or the mean xν of the ν distinct
units of the two samples, and compares

Ŷ
∗
Rd =

(
y

x

)
x∗

and

Ŷ Rν =
(

y

x

)
xν,

with Ŷ Rd; the constant a is chosen to minimize the
variance of x ′.

With stratification, the combined (RC) and sepa-
rate (RS) ratio estimators for Y are

Ŷ RC =
∑

Wh

(
yh

xh

)
Xh

and

Ŷ RS =
(

yst

xst

)
X,

respectively. In these expressions, Xh is the mean
of the auxiliary variable of the Nh units of the hth
stratum, xh is the mean of a sample of nh units
selected randomly without replacement from the Nh

units, and xst = ∑
Whxh. If Xh and X are not known,

then the above estimators can be obtained through the
double sampling procedure. Tripathi & Bahl [107]
extend such a procedure to the case of more than one
auxiliary variable. Ratio estimation with stratification
was also considered by Ige & Tripathi [39], and with
poststratification by Sethi & Srivastava [79] and
White [110].

For the chain ratio estimator of Y , additional
information on a variable which is inexpensive to
measure but less correlated with y than x is utilized.
Srivastava et al. [94, 95] and Singh & Singh [88]
apply the double sampling procedure to this method
of ratio estimation.

Regression Estimator

The linear regression estimator for Y is

Ŷ lr = y + b(X − x),

where b is the regression coefficient obtained from
the sample of size n selected randomly without
replacement from the N units. As in the case of the
ratio estimator, for the double sampling regression
estimator the unknown X is replaced by the mean x1

of the first sample. Cochran [18, Chapter 12] presents
the variance of this estimator, the estimator of vari-
ance, and the optimum sample sizes for minimizing
the variance or the cost. A model-based estimate for
the variance is presented by Dorfman [24]. Bellhouse
& Joshi [7] examine the admissibility of the double
sampling regression estimator.

Selection of the first and second samples inde-
pendently was considered by Bose [9]. For this case,
Rao [64] considers replacing X with x∗ or xν . Tikki-
wal [104] considers the second sample to be selected
from the (N − n1) units.

For a large population, Han [31] first tests whether
X is zero. If this hypothesis is rejected, then the above
estimator can be used for estimating Y ; otherwise,
X is set to zero. Esimai & Han [26] extend this
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procedure to more than one auxiliary variable. Sisodia
& Srivastava [91] consider an extension of this
procedure by considering two specified alternative
values for X.

The regression method has been extended to more
than one auxiliary variable, for example by Kiregy-
era [43] and Singh [83] for two auxiliary variables.
Conniffe [19] considers the double sampling estima-
tor with unequal regression coefficients. Matloff [52]
employs the double sampling procedure for non-
linear regression and Baker et al. [6] for logistic
regression. Tamhane [100] uses the double sam-
pling procedure for the regression method and tests
of hypothesis. Prediction through the double sam-
pling ratio and regression methods was examined by
Agrawal & Jain [1]. Singh & Singh [87] consider the
double sampling chain regression estimator. Conniffe
& Moran [20] use the double sampling regression
estimator for comparative studies.

Multivariate ratio and regression estimators are
formed by including information for more than one
auxiliary variable. Tripathi [106] and Kiregyera [42]
consider the multivariate chain ratio estimator with
double sampling.

Further topics related to the regression or ratio
methods appear in [6, 17, 53, 59, 88, 100, 108],
and [109].

Analytic Surveys

In these types of surveys, importance is given to the
determination of the sample sizes for estimating the
differences of means of domains or subpopulations.
Sedransk [75, 76] and Booth & Sedransk [8] present
the double sampling procedures for finding the sam-
ple sizes for minimizing the variances or costs.

Nonresponse

When only n1 of the n sampled units respond, Hansen
& Hurwitz [32] suggested subsampling m of the
n1 = n − n2 nonrespondents (see Nonresponse). The
population mean is now estimated from

Ŷ H = (n1y1 + n2y2m)

n
,

where y1 and y2m are the means of the respondents
and the subsampled units. If X is known, the ratio

estimator for the mean is

Ŷ HR =
(

Ŷ H

X̂H

)
X,

where X̂H for the auxiliary characteristic is defined
analogous to Ŷ H. When X is unknown, Rao [69, 70]
constructs estimators for Y through the ratio method
and also extends them to the regression method.

Multistage Sampling

In two-stage sampling, cluster or primary sampling
units (PSUs) are selected at the first stage and ele-
ments or secondary sampling units (SSUs) are chosen
at the second stage from the units selected at the first
stage (see Cluster Sampling; Multistage Sampling).
Stratification may be implemented at either stage
and ratio or regression methods of estimation may
be employed. In multistage sampling, this procedure
is extended to several stages. Double sampling for
multistage sampling was considered by Robson [73],
Robson & King [74], Garg & Pillai [28], and others.

Successive Sampling

For some types of survey, samples are selected at
two or more periods of time. Stratification and ratio
and regression methods of estimation are also used in
these types of survey. Double sampling procedures
for successive sampling are considered by Arnab
& Okafor [4], Singh & Singh [82], Sen et al. [77],
Sisodia [89], and Lamba & Singh [45].

Classification Errors

In some applications, errors made in observing
or measuring a unit can lead to its classification
into the wrong group. In medical diagnosis, these
misclassifications are known as false positives
and false negatives. For estimating binomial
and multinomial proportions, Tenenbein [101–103]
first considers inexpensive and less than perfect
measurements on a sample of units and then
expensive and accurate measurements on a subsample
of them; the proportions are estimated from the
observations of both the samples.
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Nedelman [54] uses a double sampling method
for estimating the prevalence of malaria from the
inaccurate observations. Lie et al. [48] estimate the
percentage of congenital malformations from dou-
ble registrations. The double sampling procedure was
considered by Hochberg [38] for analyzing misclassi-
fied categorical data, by Mak & Li [51] for estimating
subgroup means, by Chernoff & Haitovsky [16] and
DeWith [22] for comparing two binomial probabili-
ties, and by Swensen [97] for estimating the change
in a probability.

Jolayemi [40] considers the above type of esti-
mation for multiple outcomes and misclassifications.
Chen [15], Korn [44], and Palmgren [58] also con-
sider it for misclassified categorical data.

Further Topics

Des Raj [23] considers double sampling for sampling
with probability proportionate to size (PPS). Bell-
house & Joshi [7] examine the double sampling and
regression method of estimation for PPS sampling.
Chaudhuri & Adhikary [13, 14] examine varying
probability of selection with double sampling.

A double sampling procedure was suggested by
J. N. K. Rao [62] for estimation when the sampling
frame contains duplications and there is nonresponse
in the selected sample. Hinkins & Scheuren [37]
apply the “hot deck” imputation when nonresponse
occurs for a double sampling procedure (see Missing
Data Estimation, “Hot Deck” and “Cold Deck”).

The difference estimator is the regression estima-
tor presented earlier with the regression coefficient
set to unity. This method of estimation with double
sampling was considered by Talukder [99] and Singh
& Singh [87].

The product estimator for the mean is Ŷ =
(xy)/X. For large samples, the mean square error
of this estimator can be smaller than the variance of y

if the correlation of x and y is negatively large. The
ratio and product methods can be combined if some
of the auxiliary variables are positively correlated
with y and some are negatively correlated. For esti-
mating the population mean of the auxiliary vari-
ables, double sampling procedures were considered
by Ray & Singh [71], Sisodia & Dwivedi [90], and
Singh [84, 85].

The jackknife method for reducing the biases of
the double sampling ratio and product estimators

was examined by Sengupta [78]. Bayes estimation
with double sampling was considered by Chaudhuri
& Adhikary [13, 14], Geng & Asano [29], and
Smith [92]. Ahuja & Srivastava [3] consider the
double sampling method for systematic sampling.

Double sampling for the measurement of process
bias was considered by Lessler [46], for the response
bias by Talukder [99], and for nonresponse at the
second phase with stratification by Swensson [98].
Kawatheker [41] considers a modified ratio estimator
with double sampling, and Li et al. [47] consider
double sampling for estimating strata means with
corrections based on the second phase sampling.
Further results on double sampling appear in [10, 33,
50, 61, 80, 83, 108], and [109].
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Drug Approval and
Regulation

Before it can be marketed, any new medicinal prod-
uct generally requires the regulatory approval of
the appropriate governmental agency. In making the
decision whether or not to license the product, the
regulatory agency will normally consider evidence
relating to the pharmaceutical quality of the product
(its purity, and consistency), its efficacy (the extent
to which it works, or achieves desired therapeutic
effects), and its safety (the extent to which undesir-
able side effects attributable to the drug are absent).
Some, but certainly not all, countries also require evi-
dence that there is a clinical need for such a drug.
The set of evidence considered will generally include
results from preclinical toxicological studies (see
Preclinical Treatment Evaluation), pharmacoki-
netic and pharmacodynamic studies, dose-finding
studies (see Phase I Trials; Phase II Trials), Phase
III comparative clinical trials of efficacy and safety,
and sometimes from bioequivalence studies. Subse-
quently, data collected from postmarketing surveil-
lance of adverse events may be reviewed at a later
date. Much of what is described here with reference to
licensing of medicinal products (drugs) also applies in
parallel areas of approval and regulation of medical
devices, dental and surgical materials, and veterinary
products, although consideration of statistical issues
is to date rather less well developed in some of these
fields.

Regulatory Agencies and Statisticians

Statistical issues arise in many aspects of the process
of drug approval and regulation, and statisticians
are thus employed in, or used as advisors by, drug
regulatory agencies to support that process. What
may be more surprising is the relatively recent and
haphazard provision for such involvement in some
agencies. In the latter half of the twentieth century,
the regulatory agencies that have had the greatest
influence on pharmaceutical development are those
of the United States, the European Union, and Japan.
Most pharmaceutical companies have centered their
regulatory strategies on satisfying the requirements of
these authorities, knowing that relatively little extra
work would generally be needed to satisfy the many

other national authorities. However, this should not
be taken to imply that there is an absence of scientific
competence or statistical expertise in other agencies,
many of which take strong independent positions on
statistical issues when the need arises.

The regulatory agency in the United States is the
Food and Drug Administration (FDA). Since the
1960s, this agency has employed large numbers of
statisticians to review licensing applications. In addi-
tion, as part of the process of arriving at licensing
decisions, the FDA has regularly elicited the opin-
ions of experienced external statisticians, mainly aca-
demics, through their Advisory Committee Meetings.

The statistical resourcing of European agencies
has been less generous and there is no consistent
model [3]. However, starting in the 1990s, consid-
erable improvements in this situation have been
noted [4]. Since 1995, the coordinating and admin-
istrative body for the licensing of medicinal prod-
ucts in the European Union has been the European
Medicines Evaluation Agency (EMEA). So far this
organization has not employed statisticians. Indeed
up to the present time, it has not employed any
staff to carry out the work of scientific assessment
of regulatory dossiers because, under the European
procedures that were introduced in 1995, this activity
is delegated to the national agencies of the individ-
ual Member States. Three national agencies (UK,
Germany, and Sweden) have each employed small
numbers of professional statisticians for 10 years or
more, and their work has been mostly connected with
the licensing of new products or modifications to
existing licenses but has also extended into pharma-
covigilance. All EU agencies, including the EMEA,
have made some use of external expert statisticians
for advice on statistical and methodological issues but
the extent and manner of their use has varied consid-
erably. Some Member States, such as France, have
made extensive use of external statistical experts,
involving them directly in assessment work, drafting
guidelines, and other related activities. Other Mem-
ber States, such as the Netherlands, have appointed
statisticians to the national advisory committees that
provide formal advice to aid regulatory decisions.
These different ways of involving professional statis-
ticians in the regulatory process are by no means
exclusive: in addition to employing full-time pro-
fessionals, the German agency also makes regular
use of external expert statisticians in its assessment
work; likewise, the UK agency had a long history of
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appointing expert statisticians to its advisory bodies
well before it took the step of recruiting full-time
statistical staff.

In Japan, the licensing of medicinal products is
carried out within the Ministry of Health, Labour and
Welfare (MHLW). For several years, a small group of
statisticians had been employed within this organiza-
tion specifically for regulatory work. The MHLW also
makes extensive use of academic consultants in pro-
viding regulatory advice and ensuring the appropriate
conduct of regulatory clinical trials.

Statistical Assessment

In view of the considerable differences in the numbers
of statisticians in regulatory bodies and in their man-
ner of employment, it follows that statistical assess-
ment procedures also vary markedly. In the United
States, for example, the system ensures that FDA
statisticians have access to the complete database
of clinical trial and other data. They can thus carry
out their own independent analyses of the key find-
ings. These can then be considered in conjunction
with the licensing applicant’s own analyses by those
charged with drawing scientific conclusions to sup-
port licensing decisions. This process has a tendency
to polarize the analyses. The applicant’s statisticians
tend to emphasize the methods and aspects that sup-
port a more positive conclusion while the regulatory
statisticians tend to be more conservative. Although
there is clearly a danger that appreciable bias can
be introduced by partisan presentations from either
side, these are natural positions for the two groups
to adopt and, by the end of the process, they usually
lead to balanced decisions. This approach certainly
minimizes the danger of assessors being unduly influ-
enced by biased analyses from the applicant, and it
also reduces the possibility of fraud.

In other agencies, such as those in the EU, inde-
pendent analyses are rarely carried out. EU regula-
tory statisticians focus on verifying the validity and
accuracy of the applicant’s analyses and the appropri-
ateness of the conclusions drawn from them. If they
identify any apparent deficiencies, they may request
the applicant to carry out further clarifying statisti-
cal work. Only rarely will they ask to be supplied
with raw data in order to carry out their own anal-
ysis. In view of the limited resources available in
the EU agencies, this approach is almost inevitable.

However, it has the beneficial consequence that it is
in the applicant’s interest to submit a balanced anal-
ysis that discusses clearly all the pros and cons and
presents well-justified conclusions. In this way, the
applicant can try to avoid the delays that arise when
further work is requested.

In the majority of regulatory agencies, the statisti-
cal resource is insufficient to assess all applications.
This leads to another varying aspect of assessment,
namely the question of which applications should
be selected for assessment by a professional statis-
tician. In some agencies, statistical review is invoked
on grounds of perceived statistical complexity by
nonstatistical reviewers. In others agencies, statisti-
cal assessment is routinely invoked for certain types
of application or product, such as new chemical enti-
ties. Sometimes a senior statistician plays a part in
selecting applications for statistical assessment. The
different parts of an application also receive varying
amounts of statistical attention. The most vigorously
and routinely assessed part is the Phase III program of
clinical trials and, in particular, the evidence of effi-
cacy provided by these. Other issues, such as those
associated with quality or safety, are less likely to
be assessed by regulatory statisticians unless they are
found to have a difficult methodological aspect.

The relative merits of the various assessment pro-
cedures described are a matter of continuing debate.
However, the case for some form of statistical assess-
ment of license applications is strong on grounds
of both quality of the assessment made and effi-
ciency with which it is made [5]. As noted above,
drug license applications inevitably include a com-
plex variety of statistical evidence. Critical profes-
sional assessment and review of this evidence is
essential if correct licensing decisions are to be made
efficiently. Methodological input to the regulatory
process, leading to more rapid agreement on appro-
priate approaches to obtaining the required evidence
of safety, quality, and efficacy, may have direct eco-
nomic benefits to applicant companies in the short
term, and thus to potential consumers of their prod-
ucts in the longer term. Erroneous decisions can be of
two kinds: (i) inadequately stringent assessment may
allow products with unsatisfactory risk/benefit ratios
through to the market; or (ii) overcautious interpreta-
tion of evidence, perhaps in the light of statistical
complexity, may lead to the failure of potentially
valuable medicinal products to reach the market. In
either case, the human and financial consequences
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may be grave. For example, the first kind of error
may result in patients being exposed unnecessarily
to serious, possibly fatal, side effects of drugs; the
second may prevent pharmaceutical companies from
profiting from substantial investments in research
and development but, more importantly, may prevent
patients from receiving beneficial treatments.

License Application

A license application consists of a body of written
evidence that supports a number of claims made on
behalf of a medicinal product. At the base of the pyra-
mid of evidence is usually a large number of pertinent
studies, animal and human, in vitro and in vivo. The
design and analysis of each of these individual studies
are presented, and the conclusions that can be drawn
from them are described. In addition, there may be
summaries, and sometimes meta-analyses [2] that
bring together the results of the separate studies to
support specific licensing proposals.

The presentation of each study can and should
involve statistical interpretation of evidence in sup-
port of the claims made. Summaries of the results
of several studies should receive similar statistical
attention. For the most part, this will involve straight-
forward application of standard methods. For exam-
ple, we may expect or at least hope to see interval
estimation (see Confidence Intervals and Sets) of
the percentage of impurities in samples of the drug,
of the response to the drug (on perhaps a binary
success/failure scale, or as a continuous measure) in
clinical trials, and of the incidence of adverse events
following use of the drug in an identified cohort. We
may also expect to find a discussion of the statis-
tical precision and reliability of important estimates
and sometimes an investigation of the robustness of
the estimates to the analytical assumptions that have
been made.

Unfortunately, at present some overemphasis on
mechanical application of significance testing (see
Hypothesis Testing) remains, and there are also other
aspects of analysis where standardized approaches are
overemphasized. Although mainstream applications
of familiar statistical methods are often necessary,
many of the more difficult issues require the
intelligent application of a range of statistical
approaches. Specification of “standard” approaches
deemed acceptable by regulatory authorities are

sometimes overzealously sought, perhaps especially
by those lacking appropriate technical skills and
experience, as a result of the commercial and health-
related importance of the regulatory decisions that
rest on them. There is often insufficient recognition
that statistics is a science that requires interpretation
and judgment; this in turn may require the evaluation
of alternative approaches coupled with carefully
argued justification of the conclusions finally reached.

The desire for the specification of approaches that
are acceptable to regulatory authorities and the iden-
tification of areas where controversy remains has led
to the development of regulatory guidelines in many
areas of pharmaceutical science and, in particular, in
pharmaceutical statistics. The development of statis-
tical guidelines is fully described elsewhere, includ-
ing the important ICH E9 guideline [1] that was
developed as part of the international conference on
harmonization (ICH) process. Statistical guidelines
provide a consensus view of current methodology.
However, they do not, and cannot, take away the need
for professional statistical involvement in regulatory
work, either in preparing applications or assessing
them. Indeed, the ICH E9 guideline emphasizes the
importance of the statistician’s role. Difficult and con-
tentious statistical issues often lie at the heart of the
evidence provided by clinical trials and other exper-
imental work. It is important that these are always
investigated, interpreted, and described with care and
understanding.
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Drug Interactions

Interaction is a familiar term to most biostatisticians.
When the effect of one factor differs across levels
of a second factor, interaction between the factors
is present. Drug disposition refers to the processes
of how a drug is absorbed, distributed, metabolized
(broken down), and excreted [6]. Variations in drug
disposition and/or effect may result from interactions
with, for example, diseases or genetic make-up. Drug
interactions refers to the alteration of the disposition
and/or effect of one drug, owing to the presence of a
second drug.

What Causes Drug Interactions and Why
are They Important?

Drug interactions arise from a myriad of complex
physiologic conditions [5]. Pharmacokinetics refers
to what the body does to the drug (processes of
drug disposition), while pharmacodynamics refers to
what the drug does to the body (the drug effect).
Changes in the processes of drug disposition, known
as the pharmacokinetic interaction, may take place
when one drug’s rate of elimination from the kid-
neys or liver is altered by a second drug. In such
circumstances a drug can improperly accumulate in
the body or be excreted too quickly. Another type of
pharmacokinetic interaction can occur when specific
enzymes that metabolize a drug become inhibited or
induced by the presence of a second drug. A phar-
macodynamic interaction refers to the alteration of
the effects of one drug when given concurrently with
another drug. The net result of a pharmacodynamic
interaction may be an enhanced or diminished effect
or the appearance of a new side-effect that was not
seen with either drug alone.

Drug interactions may pose a dangerous threat
to public health, especially when two commonly
prescribed (and co-administered) drugs interact. A
notable example is the gravely serious drug inter-
action between terfenadine (Seldane), a commonly
prescribed anti-histamine, and ketoconazole, a popu-
lar anti-fungal drug [2, 4] When these drugs were
taken simultaneously, unexpected life-threatening
EKG changes (a syndrome known as Torsades de
Pointes) and deaths occurred that were later attributed
to an interference to the same key metabolizing
enzymes shared by both drugs.

How Does Inter-Subject Variability
Play a Role?

Studies that measure drug pharmacokinetics and/or
pharmacodynamics are often challenged by substan-
tial and unpredictable inter-subject variability. How
the body processes a drug can differ greatly among
subjects. This inherent variability in drug disposition
is known as inter-subject pharmacokinetic variation.
For a group of subjects given a fixed dose of a
single drug, a large variation in serum drug levels
(i.e. a coefficient of variation of 60% or greater) is
commonly noted. Hence, for a two drug interaction
study it is extremely difficult to partition the observed
pharmacologic variation of one drug into underlying
inter-subject pharmacokinetic variation vs. the varia-
tion due to the presence of a second drug. Moreover,
identifying the sources of observed variability in drug
effect, termed inter-subject pharmacodynamic varia-
tion, poses even greater difficulties. Suppose a target
serum drug level can be achieved and maintained in
a group of subjects. Even though the body’s exposure
to the drug is the same in all subjects, the variation in
effect (e.g. lowered blood pressure) among subjects
may be substantial. Introducing an additional source
of variability, such as a second drug, further compli-
cates the interpretation of inter-subject differences.

Which Study Design Addresses
Inter-Subject Variability?

One design appropriate for testing drug interaction is
a repeated measure design (see Longitudinal Data
Analysis, Overview) [1]. This design, commonly
called a crossover or randomized complete blocks
designs, allocates all treatments to each subject, with
an adequate “washout” period between treatments.
Repeated measures denotes the serial measurements
of drug disposition and/or effect after each treatment
is administered. As each subject serves as his/her
own control, all sources of variability among subjects
are controlled. Only variation within subjects (the
treatment effect) enters into the analysis. Typically,
crossover studies designed to test for pharmacokinetic
interaction enroll 10–25 subjects.

For a two-drug interaction study of drugs A and
B, each subject receives drug A, drug B, and a
combination of drugs A and B. The order of the three
treatments is often randomly assigned and balanced
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so that the measurements are not confounded by
treatment order. The model for a repeated measures
design for a two-drug interaction study is

Yij = µ·· + ρi + τj + εij ,

i = 1, . . . , n, j = 1, 2, 3,

where i denotes the subjects and j denotes the treat-
ments (let j = 1 for drug A, j = 2 for drug B, and
j = 3 for a combination of A and B). Yij denotes
the measure of drug disposition or effect when the
ith patient is given the j th treatment, µ·· denotes the
overall outcome mean, ρi denotes the subject effect,
τj denotes the treatment effect, and εij denotes the
error term. Individual subject effects are not of inter-
est and only serve to reduce experimental error due to
inherent inter-subject variability. Interaction is tested
by a comparison between treatment means (analo-
gous to a paired t test) and is performed by planned
contrasts. For example, to test whether the effect of
drug A is altered by drug B, the null hypothesis of
no interaction is tested by

H0 : µ·j − µ·j ′ = 0,

where, as noted above j = 1 and j ′ = 3. Similarly,
to test whether the effect of drug B is altered by drug
A, the null hypothesis of no interaction is tested by:

H0 : µ·j − µ·j ′ = 0,

where j = 2 and j ′ = 3.
A recently published crossover study designed

to test for the pharmacokinetic interaction between
two agents, atovaquone and zidovudine, serves as an
example [3]. Patients with human immunodeficiency
virus (HIV) are at risk from adverse drug interactions
because of the many drugs commonly prescribed to
treat their disease and symptoms, such as pneumo-
cystis carinii pneumonia (PCP). Atovaquone is an
agent shown to be effective against PCP. Zidovudine
is an anti-retroviral agent used as primary treatment
for acquired immunodeficiency syndrome (AIDS). A
high percentage of patients who receive treatment for
PCP are also treated with anti-retroviral agents, so it
is likely that these agents may be co-administered.
A study was conducted to test whether the drugs
could be co-administered without significant pharma-
cokinetic interaction. The treatment consisted of 26
consecutive days of therapy, defined by three dosing

periods. Zidovudine was administered in the first
dosing period (on days 1 and 2). Periods 2 and 3 con-
sisted of 12-day intervals in which either atovaquone
alone or atovaquone plus zidovudine was adminis-
tered. The order of periods 2 and 3 was randomly
assigned (see Randomization). Fourteen men with
HIV enrolled on the study. Repeated measures analy-
sis revealed that zidovudine and atovaquone could be
co-administered without clinically significant phar-
macokinetic interaction. Zidovudine had no effect on
the disposition of atovaquone, while the systemic
exposure of zidovudine was found to be increased
by 33% after atovaquone administration.
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Drug Utilization Patterns

Exponential growth in prescription drug costs has
raised questions about whether the expected cost-
benefits (see Health Economics) of drug therapy are
being realized in the population [61, 151]. At least
three factors may dramatically alter the population’s
experience with a drug in comparison with effects
observed in a clinical trial. First, most drug trials are
carried out in populations of middle-aged adults, usu-
ally with a single health problem and who take few,
if any, medications [52]. Evidence from these studies
is generalized to the main users of prescription drugs,
the elderly population, who receive 40% of prescrip-
tion medication even though they comprise only 10 to
12% of the population in Western countries [46, 101,
133]. Seniors differ from middle-aged adults in sev-
eral important respects. They are much more likely
to have concurrent disease and use a number of med-
ications, which may alter the absorption, distribution,
and excretion of a drug, and influence the expected
risks and benefits of therapy [13]. Secondly, drug use
in the population often spans a broader set of indica-
tions than those evaluated in the context of a clinical
trial. Thirdly, sample sizes in a clinical trial are usu-
ally estimated on the basis of the expected benefit of a
drug (see Sample Size Determination for Clinical
Trials). Therefore, clinical trials are usually under-
powered (see Power) to detect clinically meaningful
differences in less common, but clinically important,
adverse outcomes. For example, placebo-controlled
trials of the efficacy of aspirin in the prevention of
myocardial infarction (MI) and stroke (see Preven-
tion Trials) show a reduction in the occurrence of MI
and stroke without evidence of adverse effects [22,
41, 149]. However, the size of the study population
in each of the trials was insufficient to evaluate less
common, but clinically important, adverse outcomes
such as hemorrhagic stroke. When meta-analysis was
used to pool results across trials, a twofold increase in
the risk of hemorrhagic stroke was observed among
aspirin users in comparison with placebo [90, 144].

To avoid such limitations, postmarket observa-
tional studies have been the primary means of pro-
viding information about the utilization of a drug in
the population and its corresponding risks and bene-
fits (see Postmarketing Surveillance of New Drugs
and Assessment of Risk). Skegg [130] discusses
many methodological issues related to observational

studies of postmarketing surveillance. Control of
biases in selection, information, and confounding
are the main challenges in observational studies (see
Bias in Observational Studies). In this respect, the
increasing use of population-based administrative
databases to study prescription drug use in the popu-
lation [7, 84, 112, 113, 125] and to examine the asso-
ciations between prescription drug use and morbidity
and mortality outcomes [49, 107, 108, 134] has come
with its own advantages and particular challenges.

The Use of Administrative Databases in
Drug Utilization Studies

To measure drug exposure, two types of administra-
tive databases can be distinguished: (i) prescription
claims databases (reimbursement claims for prescrip-
tions dispensed to individuals in drug insurance
plans) and (ii) pharmacy networks (pharmacy pre-
scription drug profiles are linked by a computerized
network in a region or district). Table 1 outlines the
advantages and disadvantages of using these types of
databases to ascertain drug exposure.

When a prescription database contains a unique
identifier, such as a health insurance number, or nom-
inal information, such as name, age, and birth date,
there is the potential to link information describing
an individual’s exposure to a drug with other health
care databases that contain information on morbidity
and mortality (see Record Linkage). A description
of the types of databases that are used, and the types
and sources of information available, are summarized
in Table 2.

Future Opportunities for Research through
Point-of-care Data Collection from Electronic
Health Records

In the next decade, we can expect to see a dramatic
change in the data sources used for drug utiliza-
tion research (see Health Care Utilization Data).
The increasing use of information technologies to
enable health care delivery are gradually replacing
a predominantly paper-based system with integrated
electronic health records. The integrated electronic
health record can initially be expected to provide
standardized, coded information on drugs prescribed
and dispensed, laboratory, radiology and pathology
results, operative reports, and active and past health
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Table 1 Prescription databases: advantages and disadvantages

Advantages Disadvantages

Comprehensiveness • All dispensed prescriptions (except
exclusions) from all prescribers and all
pharmacies documented, not just those
known by the primary physician or
reported by the patient [140] duration or
prescribing

• Over-the-counter drugs excluded
• Noninsured drugs excluded (for claims

data only)
• Borrowed drugs from friends excluded
• Drugs during hospitalization may or may

not be included
• Documentation of prescription physician

not always required for reimbursement

Drug information • Data required for reimbursement is
complete, including date dispensed, drug
identification number (format, strength,
drug), quantity, approximate duration,
prescriber (claims data)

• Completeness and accuracy of drug
information data superior to that obtained
from medical charts or by self-report

• Prescribed dosing not documented, which
is a problem for drugs prescribed on an
“as needed” basis, drugs prescribed on
alternate day or graduated regimens (e.g.
coumadin)

• Substitution of one drug for another not
recorded

• Indication for prescription not recorded

Efficiency • Data on prescription drug use can be
retrieved at considerably less cost than
retrieving the same information by primary
data collection

• High-speed computer equipment and
technical sophistication required to manage
millions of prescription records and to
produce usable measures for each patient

Population coverage • A population-based sample can be readily
assembled in many jurisdictions
(exclusions noted) without concern for bias
due to nonresponse or the significant cost
of recruitment

• With claims data, subgroups in the
population may not be covered by the drug
insurance plan; also, inclusion in the drug
insurance plan may be based on factors
such as poor health or poverty, which may
also influence the risk and benefit of a
drug, and produce a biased estimate of its
actual impact in the source population

problems. Eventually, with the increasing sophisti-
cation of the clinical interface, physicians and other
health professionals will document history, lifestyle,
and physical examination findings in electronic clin-
ical notes. Hospitals have led the implementation of
electronic health records, with the exception of a few
countries such as Australia and the United King-
dom, where government initiatives have subsidized
implementation in community-based care [12]. The
transition to the electronic health records will provide
the detailed clinical data that is needed to character-
ize study populations, and will enable new avenues
of research, such as the effects of drugs on phys-
iological parameters, the quantification of primary
noncompliance with prescribed treatment and its pre-
dictors, and the treatment indications and outcomes
associated with hospital-based drug and transfusion
therapies. Surprisingly, only a few pioneering insti-
tutions [10, 11] have capitalized on the benefits of
electronic health records for research; an issue that

needs to be redressed through formal links between
the health care information technology divisions and
the research enterprise [89].

Studying the Effects of Drugs in the
Population: Methodological Challenges

In many studies of drug utilization, the purpose of
the study is to determine whether a class of drugs
or a specific drug is associated with a greater risk of
adverse outcomes than either other drugs or no drug.
A number of methodological challenges are present
in these types of observational studies, irrespective of
the source of information: database or primary clini-
cal data.

Assignment of Outcomes to Individual Drugs

Clinical Indication Bias. Patients who are selected
for a specific drug treatment may differ considerably
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Table 2 Databases available to assess morbidity and mortality outcomes

Database Population Source Relevant data available

Hospitalization Individuals discharged
dead or alive from
hospital

Abstraction and coding of
the patient chart by
medical records
archivists [36, 111, 148]

• Cause of accidents leading to
admission

• Discharge diagnosis and 10–15
secondary diagnoses

• Major treatments, surgery, and
complications

• Date of admission, discharge
• Discharge destination
• Death in hospital
• Type of service delivered (e.g.

fracture reduction of femur, carotid
endarterectomy, pap smear)

Physician claims Individuals receiving
physician services in
community and
institutional settings

Reimbursement claims for
physicians providing
services on a
fee-for-service basis

• Date and location of service and
type of provider

• Diagnosis (not an accurate indicator
of reason for visit)

• Primary cause of death

Vital statistics Deaths occurring among
national, regional
residents

Death certificates
completed by
physicians, legal
requirement for
documentation

• Contributing causes of death
• Name, birth date, sex, date of death

Table 3 The risk of adverse gastrointestinal events in a random database sample of
51 814 elderly in Quebec in 1990 [42]

Drug treatment group Odds ratio 95% confidence interval

No NSAID prescription 1 –
NSAID alone 0.74 0.7, 0.8
NSAID + misoprostol 4.14 3.5, 5.4
NSAID + other GI drug prophylaxis 4.44 4.1, 4.8

in their risk of an adverse outcome from patients who
are not treated. For example, misoprostol is a drug
that has been shown in clinical trials to be efficacious
as a prophylactic treatment for nonsteroidal (anti-
inflammatory) drug (NSAID)-related ulcers [128]. In
clinical practice, however, physicians tend to pre-
scribe prophylactic gastrointestinal (GI) therapy to
patients who are at higher risk of NSAID-related GI
problems, or avoid prescribing NSAIDs altogether.
As a result, as illustrated in Table 3, patients who
receive prophylactic misoprostol or other GI-related
therapy appear to have a greater risk of experi-
encing an adverse GI event, and persons receiving
NSAIDs alone are at less risk of adverse GI events
than the untreated population. These paradoxical find-
ings dramatically illustrate the pitfalls of conducting
observational studies on the risks and benefits of

specific drug treatment without controlling for base-
line differences, independent of the drug use, in risk
of the outcome between patients started and not
started on the drug.

In this example, the problem was addressed by
using baseline preexposure information to measure
a patient’s risk of an adverse GI event prior to the
initiation of NSAID therapy. Data from the prescrip-
tion and physician claims databases and the hospi-
talization database were used to measure prior GI
bleed, prior ulcer treatment, investigation and/or ulcer
diagnosis, concurrent use of medications that would
increase the risk of bleeding (e.g. coumadin), and
other relevant comorbid conditions.

Propensity Scores. To reduce confounding by indi-
cation, it is essential to adjust the estimated drug
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effect for the differences in the baseline character-
istics of users versus nonusers. Adjustment through
multivariable regression (see Multivariate Multi-
ple Regression) becomes more popular in this con-
text than alternative techniques such as matching or
stratification. However, in some observational stud-
ies, the investigators’ ability to adjust the drug effect
for numerous covariates may be limited, for exam-
ple, because of small number of outcomes, which
would affect numerical stability of the estimates if
the ratio of observed outcomes to the number of esti-
mated regression parameters decreases below the crit-
ical range of 5 to 10. In such situations, the propen-
sity scores approach may provide a feasible way
to adjust for multiple potential confounders [114],
provided these variables are available. A propen-
sity score is an estimated conditional probability of
a subject receiving a given drug, rather than an
alternative drug or placebo, conditional on subject
characteristics (covariates). The propensity scores are
estimated using multiple logistic regression, with a
binary indicator of the drug of interest (versus alterna-
tive treatment or placebo) as the dependent variable,
and the relevant covariates as independent variables
(see Explanatory Variables). Thus, the logic of the
propensity score is, in fact, a weighted average of
the original covariates, with weights corresponding
to maximum likelihood estimates of the respective
parameters of the multiple logistic regression model.
Accordingly, including a single covariate, represent-
ing the estimated propensity score, in the model
used to assess the effect of the drug on the out-
come of interest, provides an approximate method of
adjusting simultaneously for all potentially confound-
ing subjects’ characteristics that are related to the
treatment choice [114]. D’Agostino [30] provides an
excellent tutorial on the propensity scores methodol-
ogy, together with interesting examples of its applica-
tions. An acknowledged limitation of the propensity
score method is that it weights the importance of
pretreatment patient characteristics by the strength
of association with treatment assignment, and not
the outcome [120]. This limitation may introduce
residual confounding as equivalent propensity scores
may be assigned to patients on the basis of differ-
ent characteristics, both of equivalent importance in
predicting probability of treatment assignment, but
possibly only one being of importance in predicting
the outcome.

Multiple Drug Use. In seniors, multiple drug use is
the norm. Seniors fill an average of 29 prescriptions
per year for seven different drugs [142]. Concurrent
drug use creates a host of methodological problems.
First, multiple drug exposure increases the risk of
potential drug interaction (the effect of one drug
is altered by the presence of a second drug, thereby
increasing the risk of overdose toxicity or treatment
failure) (see Figure 1) [137] and adverse drug events
[51, 97] (see Pharmacoepidemiology, Adverse and
Beneficial Effects).

Secondly, the assignment of an adverse outcome
to a specific drug is complicated by the existence of
a host of competing explanations, for example, other
drugs and diseases [66]. Thirdly, methods of clas-
sifying multiple drug users into comparable groups
with respect to the risk of adverse drug outcomes
have not been developed. The simplest method has
been to count the number of concurrent drugs taken.
However, Granek [47] demonstrated that the risk of
an injury with exposure to sedative hypnotics varied
from 2.4 to 17.8 depending on the specific combi-
nation of drugs used. The methodological challenge
in drug use research is to move beyond the simple
solution of excluding multiple drug users to avoid
confounding. Practicing physicians need to identify
the subset of multiple drug users who are at greatest
risk of adverse outcomes with a specific drug as
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well as the subset who will probably benefit. Pop-
ulation level databases [1, 36, 40, 46, 82, 110, 111,
149, 150] provide the opportunity to address some of
these questions as a large number of individuals can
be studied at a comparably low cost. Large sample
sizes provide an opportunity to model simultaneously
the effects of various medications and various dis-
eases, thereby enabling the investigator to dissociate
these effects as well as to test for clinically important
interactions.

Prescriber Effects. Conventional multiple regres-
sion models rely on the assumption that outcomes
of patients are independent [72]. Yet, there is sub-
stantial evidence that physicians vary considerably
in their propensity to prescribe drugs, in their use
of new drugs that come into the market, and in the
appropriateness of their choice of drug treatment [32,
33, 38, 55, 92, 93, 126, 140]. Indeed, one recent
study showed that physicians with lower scores on
licensure examinations of clinical competence were
not only more likely to prescribe inappropriate medi-
cations, but were also even less likely to demonstrate
lower levels of quality of care in other domains.
This suggests that physician competence may mod-
ify the effectiveness of prescribed therapy, and the
probability of adverse outcomes [139]. Since most
individual patients tend to be treated by one or two
physicians [141], it is plausible that outcomes among
patients of the same physician are correlated.

Comparison of the results of few recent studies
that have provided relevant empirical evidence sug-
gest that the strength of within-physician correlation
depends strongly on the outcome. The reported val-
ues of the intraclass correlation coefficient (ICC) (see
Correlation), measuring the proportion of the total
variance in the outcomes of individual patients that
can be attributed to physicians, ranged from ICC =
0.04 in a study of physician contributions to man-
aged care pharmacy expenses [27] to ICC = 0.44 for
the impact of unobserved prescriber characteristics
on the occurrence of generic drug substitution [94].
Moreover, even after adjusting for patients’ charac-
teristics, a marked within-physician correlation has
been also reported for various clinical outcomes of
patients with rheumatoid arthritis, with ICC ranging
from 0.16 to 0.25, depending on the outcome [29].
The same authors found a strong impact of individ-
ual rheumatologists on the decision to use prednisone
and second-line agents. Ignoring such correlations

may lead to underestimation of standard errors of
regression coefficients [18] and inflated type I error
rates in hypothesis testing [116]. Moreover, ignoring
possibly systematic impact of skills, attitudes and/or
beliefs of individual physicians on their prescribing
choices and/or on the outcomes of their patients, may
induce confounding bias if, for example, the choice
of a given drug depends on physicians’ characteristics
that are also correlated with the outcome. Yet, Cowen
and Strawderman [27] have recently pointed out that,
in spite of the availability of more appropriate statisti-
cal models, most studies of the physician prescribing
patterns continue to employ ordinary least squares
regression (OLS), that relies on the independence
assumption and ignores potential prescriber effects.

The methods able to account for within-cluster
correlations of the outcomes include generalized
estimating equations (GEE) [152], mixed models
[70, 77], and multilevel modeling [16, 43, 44]. These
methods handle both binary and continuous outcomes
[76, 95, 152]. The choice of the specific method
should depend on the scope of the analyses and on
the plausibility of the underlying assumptions. In the
simplest case, when the analyst is interested only
in the effects of patient-level covariates, the stan-
dard “marginal” GEE model (sometimes referred to
as GEE1 [85] may be used to correct the standard
errors for the within-physician correlation [53]. In
such analyses, the user may prefer to obtain a robust
standard error which is not affected by misspecifica-
tion of the structure of the covariance matrix of
residuals (see below) [18]. Hanley et al. [53] pro-
vide an excellent nontechnical guide to applications
of GEE in epidemiological and clinical studies with
correlated outcomes, and identify some practically
relevant limitations of this technique. Specifically,
the GEE estimates of the regression coefficients for
patients’ characteristics, including treatment effects,
have the “population average” interpretation, imply-
ing that they may be substantially different from
the average within-physician effects that would be
obtained, for example, from conventional matched
analyses. This occurs because GEE yields a marginal
version of the regression model, that is, the model
that is estimated separately from the parameters of
the covariance matrix [152]. Moreover, GEE does
not provide an empirical criterion for the choice
of an appropriate structure for the covariance of
residuals [18] which, in our context, would represent
deviations between observed outcomes of subsequent
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patients of a given physician and the corresponding
values predicted from the regression model [70, 146].
When correlations between such residuals are due, for
example, to a systematic tendency of a given physi-
cian to chose a particular treatment more often than
it could be expected based on his/her patients’ char-
acteristics, under the estimated regression model, the
exchangeable covariance structure [142], sometimes
referred to as compound symmetry structure [76], is a
natural a priori choice as it assumes the expected cor-
relation is the same for all pairs of patients of a given
physician. However, in some cases the physicians’
treatment preferences and the resulting prescribing
patterns may change systematically over time [31].
In that case, the strength of between-patients corre-
lations may decrease with increasing time elapsed
between their respective prescriptions, making the
autoregressive covariance structure, such as AR (1), a
plausible alternative [146] (see ARMA and ARIMA
Models).

An alternative approach relies on mixed mod-
els with random effects for individual physicians
[70, 77]. Mixed models combine modeling of fixed
effects of independent variables, representing their
systematic impact on the outcome, as in the conven-
tional multivariable regression, with random effects
of individual physicians (“clusters”), that are not
attributed to any observable covariates but are pre-
sumed to reflect their latent beliefs and attitudes.
The random effects are assumed to be normally dis-
tributed (see Normal Distribution), with mean of
0 and variance that has to be estimated [27]. While
the normality assumption may require some trans-
formation of the dependent variable [15, 105], the
above assumption avoids the need to specify explic-
itly the structure of the covariance of residuals [70].
Burton et al. [18] provide an excellent tutorial for
researchers not familiar with a wide range of mul-
tilevel models for clustered and longitudinal data,
including different versions of mixed models. Cur-
rent research on prescribing patterns seems to favor
the simplest version of the random effects model in
that only intercepts are allowed to vary across physi-
cians, while the associations between the patients’
covariates and the outcome, such as treatment choice,
are a priori assumed to be the same for all physi-
cians [27, 29, 54, 94] The intercepts represent the
individual physicians’ systematic tendency to pre-
scribe the drug of interest more or less often than
it would be expected based on characteristics of their

patients [27]. Cowen and Strawderman [27] explain
well how to use random effects model with random
intercepts in the research on prescribing patterns, and
discuss its advantages, compared to either (i) naive
OLS regression, or (ii) fixed-effects regression with
n − 1 dummy variables explicitly identifying each
of n physicians. Specifically, random effects model
increases efficiency of the analysis by replacing esti-
mation of n − 1 parameters by a single parame-
ter representing the variance of random intercepts,
helps separate the impact of individual physicians
from the systematic effects of their characteristics,
such as age or education, and avoids overestimat-
ing the impact of those physicians that contribute
only relatively few patients. A further extension of
the random-intercept model would include random
slopes modeling [18], which would imply that the
dependence of prescribing decisions on patient char-
acteristics may vary across physicians. We found little
evidence of the use of random slopes in the stud-
ies focusing on prescribing patterns, and the potential
advantages of such more complex modeling remain
to be investigated [27].

Finally, it should be noted that the mixed mod-
els represent a special case of the broader family
of hierarchical multilevel models [16]. Hierarchi-
cal models are able to represent more than two
levels of clustering, making it possible to account
for clustering of patients within physicians’ prac-
tices and for clustering of physicians within hos-
pitals [17]. This allows for simultaneous modeling
of patient-, physician- and hospital-level covariates,
as well their interactions, while accounting for ran-
dom effects of both physicians and hospitals [132].
For example, incorporation of cross-level interactions
allows one to test if the impact of the patient health
status on the choice on treatment varies between
general practitioners and specialists. Finally, it is
possible to quantify the proportion of the total vari-
ance in outcomes as these powerful models become
increasingly available in user-friendly commercial
software packages [16]. Raudenbush and Bryk [106]
and Goldstein [45] present comprehensive descrip-
tions of hierarchical multilevel models while Sni-
jders et al. [132] and Burton et al. [18] provide user-
oriented introductions. Burgess et al. [17] discuss
many methodological issues relevant to implemen-
tation of hierarchical regression in the assessment of
physicians’ performance. Other examples of medical
applications are found in [42] and [20].
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Accounting for intercorrelations of either drug
choices or potential clinical outcomes of medication
use among patients of the same physician presents
additional analytical challenges if the analysis has to
rely on survival analytical methods such as the Cox
model. Indeed, we are not aware of any commer-
cial software package that would incorporate the Cox
model analyses of multilevel data. Therefore, we ten-
tatively propose two alternative approaches. Firstly,
one may use a very recent method for incorporat-
ing random effects in Cox model, which relies on its
affinity with Poisson regression [87]. An alternative
approach would resemble the GEE methodology in
that it yields “population average” point estimates of
regression coefficients while attempting to correct the
confidence intervals for the reduced amount of avail-
able information due to within-physician correlations
of outcomes [53]. The proposed approach will adapt
the method, developed by Abrahamowicz et al. [3],
for bootstrap -based inference in complex nonlinear
models involving nested or correlated data. The basic
idea is to first estimate the conventional Cox model
from the data pooled across all patients of all physi-
cians, as for independent data. Next, the computer-
intensive bootstrap procedure [35] is employed to
simulate directly the effect of various sources of sam-
pling error on the estimates. Specifically, the effects
of (i) sampling physicians, and (ii) sampling patients
within physicians’ practices, are directly simulated by
random resampling, with replacement, of (i) n orig-
inal study physicians, and (ii) mj patients original
patients of each physician (j = 1, . . . , n) sampled in
step (i). To adapt this approach to our context, 1000
bootstrap samples should be generated by random
resampling of the original data (Efron & Gong), and
each sample should be independently analyzed with
the Cox model. Finally, the 2.5th and 97.5th per-
centiles of the empirical distribution of the resulting
1000 Cox model-based hazard ratio (HR) estimates
will provide the approximate bounds of the 95%
confidence interval (CI) for the adjusted HR, and
the null hypothesis of no effect of a given vari-
able on hazard will be rejected at 0.05 level if the
CI excludes 1.0 [3]. Whereas the procedure is com-
putationally expensive, an exponential progress on
the computational front makes it nowadays entirely
feasible. However, further studies are necessary to
assess the accuracy and relative efficiency of these
alternative methods.

Measuring Drug Exposure

Compliance. To produce an accurate measure of
the risk and benefit of drug treatment, patients need to
be classified by the extent to which they were exposed
to the respective drugs of interest. Database studies
of drug utilization use information about dispensed
prescriptions to determine whether an individual is
likely exposed, information that tends to be superior
to patient self-report or chart documentation of writ-
ten prescriptions [50, 65, 71, 109, 134]. Although
a dispensed prescription does not necessarily mean
that a drug is taken, prescription refill rates have
proven to be a valid means of measuring an individ-
ual’s compliance with drugs that are used for chronic
disease (e.g. hypertension) [69]. Figure 2 illustrates
prescription refill rates for two hypnotic drugs. The
beginning of each block is the date the drug was dis-
pensed and the end is the date dispensed plus the
recorded prescription duration (in days) (note that in
some database files, duration is not specified, and sen-
sitivity analysis [8, 39] is conducted to assess several
duration time windows). Several approaches can be
used to summarize these data, depending on whether
the medication obtained by an early refill of a pre-
scription (prescriptions 1 and 2) are added or not to
the number of days of potential drug use.

Measuring Drug Dose. Figure 2 also provides
information about drug dose, information that is
ascertained from data on the quantity dispensed, the
duration of the prescription, and the dose per unit
of drug (e.g. 5 mg per pill). The first challenge is
to decide how these data should be summarized to
reflect the dose of drug taken in this 90-day window.
For some drugs, such as lipid-reducing agents and
prophylactic estrogens, the primary interest may be in
the cumulative dose or average dose over time, while
in others, such as sedative-hypnotics and nonsteroidal
anti-inflammatory drugs, the starting dose, peak dose,
or largest change in dose (such as precipitously
stopping a high-dose, short half-life drug) may
be the most important landmarks with respect to
the risk of adverse events. The next challenge
is to decide how overlaps of drugs in the same
pharmacological class are to be handled, a situation
that is relatively common in the elderly [136].
For example, it could be assumed that hypnotic
B (prescription 3 in Figure 2) was substituted for
hypnotic A (prescriptions 1 and 2), and hypnotic A
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Figure 2 Summarizing drug use over time

was stopped. Using this assumption, daily hypnotic
doses during the three-month time window vary
from 30 mg per day to 60 mg per day (assuming
bioequivalence for the sake of simplicity). However,
hypnotics A and B were refilled in the subsequent
month, suggesting that B was added – not substituted
for – A. If it is assumed that both drugs were used
concurrently, then the daily hypnotic dose varied
from 30 mg per day to 105 mg per day. Generally,
it is advisable to carry out the analysis under both
types of assumptions as this may substantially alter
the estimates of the association between drug dose
and risks.

Patterns. Figure 2 also illustrates that drug use
can fluctuate considerably, even over short periods
of time. In the following section, we outline some
methodological issues related to the description of
variation over time in drug use and/or dose, and
review some promising methods for analyzing such
variations.

Describing Longitudinal Patterns. Many studies
of drug utilization patterns are limited to simple
descriptive aggregate statistics such as the preva-
lence of use and distribution of number of prescrip-
tions [117], or temporal changes in either prevalence
[115, 154] or the mean defined daily dose (DDD) [6]

over time. Yet, a change in DDD is a compound
of (i) the changes in prevalence of use, and (ii)
changes in dose among users and, thus, may be dif-
ficult to interpret. This argument is supported by the
results presented by van Hulten et al. [145], one of
the very few among many studies of benzodiazepines
use that assessed different aspects of longitudinal pat-
terns of use. This study revealed several complexities,
such as a nonmonotone change in the age-adjusted
point prevalence rates over time, and the interaction
between the effects of age and sex on the daily dose.
Moreover, while the prevalence of use decreased con-
siderably during the 10 years, the average number of
prescriptions per user, and the relative proportions
of incidental, regular and long-term users, remained
quite stable. However, each of the three groups of
users showed a different rate of decrease in the aver-
age dose per prescription [145]. Finally, the patterns
of temporal changes in average dose for different
benzodiazepines were quite inconsistent. On aver-
age, between 1983 and 1992 the dose increased for
hypnotics and decreased for tranquilizers. Moreover,
these trends differed substantially across individual
compounds in each class of drugs. Among tranquil-
izers, the average daily dose increased for oxazepam,
remained stable for diazepam, and decreased for
lorazepam. Among hypnotics, the dose increased
threefold for temazepam whereas flurazepam dose
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showed a threefold decrease over the same period.
Similarly, Hylan et al. [67] showed that both duration
of initial prescription and the number of prescrip-
tions depended on the specific antidepressant. These
discrepancies emphasize the importance of separate
assessments of each compound within the same class
of drugs, and call for a careful modeling of dif-
ferent aspects of temporal patterns of exposure to
medication.

Recently, Bartlett et al. [9] proposed some easy-
to-implement methods for assessing different aspects
of longitudinal patterns of drug use in individual
subjects. Specifically, they suggested using subject-
specific Spearman rank correlation between (a) the
ordinal variable representing subsequent periods of
uninterrupted medication use, and (b) period-specific
dose, as a measure of individual’s tendency to
increase or decrease the daily dose over time. Next,
they employed multiple logistic regression to iden-
tify subjects’ characteristics associated with a par-
ticularly strong trend toward dose increase, opera-
tionally defined as the Spearman correlation above
0.89, corresponding to the 90th percentile of the sam-
ple distribution. The cut-off discriminates subjects
with a very consistent, strong tendency to increase
dose over time. Specifically, for subjects with three
periods of use, it requires a systematic increase from
each period to the next one. For subjects with four to
seven periods of use, it identifies patterns of a strictly
monotonic (r = 1.0) or reality monotonic (dose may
increase or remain stable from interval i to (i + 1)
but never decreases) patterns of dose increase, with
at least three different, gradually increasing dose lev-
els. An alternative approach was also considered,
based on GEE extension of the multiple linear
regression [153], with the repeated-measures depen-
dent variable defined as the subsequent values of
daily dose, and independent variables including both
subject baseline (fixed-in-time) characteristics and a
time-dependent variable indicating subsequent peri-
ods of use. In addition, the GEE model included
interaction terms between selected baseline variables
and period of use, and the statistical significance of
this interaction was tested to assess if the pattern
of dose changes over time did depend on the cor-
responding characteristics [9]. These methods were
then employed to demonstrate that longitudinal pat-
terns of dose changes differed substantially across 11
different benzodiazepines.

Bartlett et al. [9] have also analyzed the patterns
of switching from one to another benzodiazepine.
They argued that a simple proportion of users of
drug A who switch to drug B may not be a suffi-
ciently sensitive measure of the popularity of drug
B as a “second-line” treatment, because this pro-
portion may largely reflect a current market share
of drug B. Instead, they suggested that the propor-
tion of subjects who had been switched from other
drugs in the same class (numerator) among all new
users of drug B (denominator) will capture the spe-
cific preference toward using drug B as the treat-
ment of choice for switchers, over and above what
could be explained by drug B’s market share. This
distinction becomes important, for example, in the
context of comparing adverse effects of alternative
products. Given that subjects who switch drugs may
be expected to have worse outcomes [14] including
poorer tolerance and lower probability of positive
response [127], a comparison of outcomes between
current users of different compounds may be biased
if switching is not properly accounted for. Indeed,
Bartlett et al. [9] reported that prevalent users of
lorazepam were at higher risks of adverse events than
prevalent users of several other benzodiazepines. Yet,
Bartlett et al. [9] show that lorazepam was a particu-
larly popular “second-line” choice for benzodiazepine
switchers, who represented 22% of its new users,
compared to 6 to 15% for nine other benzodiazepines.
Thus, apparent higher risk among lorazepam users
reported by Neutel et al. [96] could be an artifact,
reflecting the worse outcomes for (more frequent)
switchers rather than the impact of lorazepam per se.
On the other hand, oxazepam had an almost as high
proportion of switchers (20%) among its first users
as lorazepam (22%). This would not be captured by
the comparison of the proportions of switchers who
had switched to oxazepam and lorazepam (17 versus
33%, respectively), which is largely affected by the
much higher, and increasing over time, market share
of lorazepam.

A different novel approach to assess the pat-
terns was proposed by Coste et al. [25] who empha-
size the multidimensionality of the drug prescrib-
ing phenomena, and propose the following empirical
criteria for appropriateness of prescribing practice:
placebo effect, novelty, “exoticism”, misdosage, and
drug–drug interactions.

Finally, it may be interesting to adapt methods
employed to assess longitudinal patterns of changes
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in different characteristics of individual subjects, not
necessarily related to drug use, to the specific context
of patterns of medication utilization. For example,
methods proposed by [68, 123] may be employed to
(i) identify different, statistically independent aspects
of longitudinal changes in, for example, current dose,
duration of uninterrupted drug use, and so on, and
then (ii) perform cluster analyses to classify indi-
vidual users into clusters of subjects with similar
multivariate profiles of drug use.

Assessing Impact of Policy Changes. A related,
methodologically challenging, issue of increasing
societal importance concerns evaluating the impact
of different changes in drug benefits policy on the
longitudinal patterns of drug utilization. Schneeweiss
et al. [122] and Tamblyn et al. [138] both used some
form of interrupted time series analyses to assess to
what extent the frequency and/or duration of drug use
has changed after the policy implementation while
accounting for the autoregressive structure of the
data (see ARMA and ARIMA Models). A chal-
lenge in such analyses is to separate the impact of
the policy change from the concurrent effect of sec-
ular trends in medication use. The strong secular
trend toward increasing medication use, systemati-
cally observed in different populations not affected
by any policy changes [130] may bias a “naive” pre-
post comparison of the use before and after policy
change. This may result, for example, in a spuri-
ous lack of difference if the reduction entailed by an
increased co-payment is counterbalanced by a “nat-
ural” increase consistent with secular trends [138].
To avoid such biases, one may compare the actual
use after the policy to the expected level of use,
estimated by extrapolating the pre-policy trend over
time [122, 138]. This approach may be further refined
to discriminate between (i) the “main effect” of the
policy change, modeled by a binary time-dependent
policy indicator (assigned 0 before and 1 after the
policy implementation) (see Dummy Variables), and
(ii) the time-dependent time-by-policy interaction.
The former would imply a constant-over-time dif-
ference between observed and expected utilization
rates, corresponding to their initial drop followed by
an increase with the slope on time similar to the
pre-policy slope [122]. The latter would result in a
post-policy slope being systematically different from
the pre-policy slope, entailing a gradual increase in
the discrepancy between the observed and expected

utilization rates. In either case, subgroup analyses or
interaction testing may be necessary to explore if
the policy impact varies across different subpopula-
tions. However, to avoid a serious increase of type
I error rates, such analyses should be limited to a
small number of a priori specified, clinically plau-
sible potential effect modifiers. For example, one
may expect that the impact of changes in the ben-
efits will vary across socioeconomic strata, and will
be smaller among users of essential, life-saving med-
ications than among patients prescribed nonessential
symptom-relief drugs [138].

Adequate representation of the pattern of within-
patient changes in exposure levels and accurate mod-
eling of such data present considerable challenges to
biostatisticians. Whereas recent developments in flex-
ible modeling of censored survival data offer some
potentially useful tools to address some challenges, to
date there is little evidence of their use in the empiri-
cal studies of drug effects. Moreover, some analytical
problems occurring in modeling all potentially rele-
vant aspects of the relationship between exposure and
outcome remain to be addressed. In the next section,
we review some promising new methods and suggest
some directions for future research.

Modeling the Effects of Exposure to a Drug:
Recent Developments in Survival Analysis and
Future Challenges

Flexible Dose-response Modeling. In this section,
we focus on the situation when an individual patient
is assumed to be assigned a fixed dose of a drug,
and the drug is prescribed once or at a constant dose
throughout the follow-up period (see Dose-response
in Pharmacoepidemiology). In most practical sit-
uations, there will be considerable between-patient
variation in the duration of follow-up, and the first
occurrence of an adverse reaction will often lead to a
change in drug therapy or cessation of the drug. Both
considerations suggest that time-to-event would be an
appropriate outcome measure and, accordingly, that
statistical methods for censored survival data should
be used.

Medical applications of survival analysis are
dominated by implementation of the proportional
hazards model developed by Cox [28]. The theoret-
ical elegance and versatility of the Cox model make
it an extremely useful “first-line” tool for analyzing
survival data in many practical contexts. However,
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in some drug studies the assumptions underlying
the model may be too restrictive to represent the
dose–response relationship of interest. First, the con-
ventional Cox model belongs to the parametric fam-
ily of general linear models (GLM). The effect
of a continuous covariate on the dependent vari-
able, transformed by an appropriate link function (see
Generalized Linear Model), is a priori assumed
to be linear. In the context of the Cox model, this
assumption implies that the logarithm of the hazard
is a linear function of the covariate value. Yet, the
assumption of the loglinearity of the dose–response
relationship may be questionable in many studies
of drug side-effects. A priori considerations suggest
that, at least in some cases, an increase in dose
over an interval of low-to-moderate doses may have
very minor effects on the risk of an adverse reac-
tion, whereas a further increase in the dose may
result in a dramatic risk increase as the “tolerance
threshold” will be exceeded. In such cases, the effect
would be better described by an upward concave
function, such as an exponential or quadratic curve.
It would be advantageous to model the shape of this
function in a flexible way. Moreover, it is possible
that the “tolerance thresholds” differ systematically
from one subgroup of patients to another. In this
situation, the dose–response function may have sev-
eral relatively flat portions interchanged with more
abrupt increases at doses corresponding to subgroup-
specific thresholds. To model such complex shapes
of dose–response curves one may use some of the
recently proposed generalizations of the Cox model
that replace the loglinear HR by a more flexible
function [34, 48, 56, 131]. Hastie & Tibshirani [56]
discuss a number of nonparametric smoothers that
can be used to provide a smooth estimate of the
effect (see Smoothing Hazard Rates; Smoothing
Methods in Epidemiology) while avoiding a pri-
ori assumptions about the functional form of the
dose–response relationship.

The advantages of flexible nonparametric model-
ing of dose–response relationships have been demon-
strated in many practical applications [2, 104, 105];
however, there is little evidence of the use of such
methods in drug studies. This approach is of partic-
ular interest in observational studies of the effects
of drug utilization where one may expect consider-
able between-patient variation in the dose. Computer
simulations have demonstrated the ability of non-
parametric methods to provide reasonably unbiased

and stable estimates of a broad variety of functions,
including curves with local plateaus and abrupt
increase [56, 104]. These methods may be of interest
in studying the effects of increasing dose on the risk
of an adverse reaction.

Using nonparametric modeling in practice requires
additional methodological decisions regarding the
choice of a particular smoothing technique and the
desirable complexity of the estimated model. Both
decisions are far from trivial as the theoretical under-
standing of related phenomena and practical experi-
ence in this area have only recently begun to accumu-
late. On the basis of our experience in nonparametric
modeling of biomedical data [2, 3, 105] and some
computational considerations, we have a few sugges-
tions. First, we suggest selecting a priori a specific
type of smoother and degrees of freedom, other-
wise statistical inference about the estimates becomes
difficult [4]. Moreover, limited comparisons between
methods suggest that the estimates are reasonably
robust with respect to the smoothing technique cho-
sen [103]. In our experience, the smoothing spline
option incorporated in the generalized additive mod-
els (GAM) proposed by Hastie & Tibshirani [56] has
provided numerically stable and clinically plausible
estimates [2]. GAM also has two important practical
features. First, the use of this methodology is largely
facilitated by the fact that the GAM program is
included in the S-PLUS commercial package and the
monograph by GAM authors [56] is a useful guide on
how to apply this powerful methodology in practice.
Secondly, GAM allows the user to make an inference
about the estimates. The simulations reported in the
same monograph indicate that both type I error rates
at conventional significance levels (0.05 or lower) and
point-wise confidence intervals are accurate within a
practically acceptable error margin [56].

Finally, flexibility of the GAM estimators can
be used to determine if there is a threshold in the
dose–response relationship, an issue of consider-
able importance in the studies of potential adverse
effects of medications. Indeed, if one could estab-
lish that there is a threshold for the dose below
which the risks of adverse effects are similar to
those associated with a placebo, such a finding could
suggest an “optimal” dose that would offer thera-
peutic benefits while avoiding negative side effects.
In this context, methods proposed in [19, 75] for
threshold detection are of interest, although their
accuracy and efficiency remains to be systematically
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evaluated through simulations. Moreover, statistical
inference regarding both the existence of a threshold
and the precision with which its location is esti-
mated is complicated by the fact that the underlying
model is nonlinear in its parameters (threshold loca-
tion). Therefore, computer-intensive techniques such
as bootstrap [35] may be applied to assess “hon-
est” P values for testing the alternative hypothesis
of a threshold-based dose–response curve against
the null hypothesis of either no association or lin-
ear (no-threshold) dose–response, as well as to esti-
mate empirical confidence intervals around the esti-
mated threshold (see Extrapolation, Low Dose). To
ensure the accuracy of bootstrap-based inference, it
is essential to replicate the entire estimation and/or
model selection process, including, for example, data-
dependent selection of degrees of freedom in each
individual bootstrap sample [3].

The fractional polynomials methodology may
offer an interesting alternative to nonparametric
GAM-based estimation of the dose–response rela-
tionships. A fractional polynomial model is estimated
by first, selecting one or two best-fitting functions
from an a priori-defined basis of a restricted num-
ber of fractional polynomials, that is, polynomials
whose degrees are fractions such as, for example,
1/2 or 1/3 [118, 119]. Then, the standard multivari-
able regression methods (see Multivariate Multiple
Regression) are employed to estimate the regression
coefficients defining the “optimal” linear combination
of the selected functions. Thus, fractional polynomi-
als combine the parsimony and easy interpretation
characteristic of parametric regression models with
flexibility comparable to low-dimensionality non-
parametric models [118]. The method is user-friendly
and is implemented in the STATA computer package.
In our opinion, further comparisons, involving both
carefully designed simulations studies and analyses
of empirical data, are necessary to assess relative
advantages of GAM versus fractional polynomials,
and their dependence on the sample size and/or com-
plexity of the underlying “true” relationships.

Assessing and Modeling Time-dependence of the
Drug Effects. Another important assumption under-
lying the Cox model [28] is that the ratio of hazards,
corresponding to different covariate vectors, is con-
stant over the entire follow-up period (i.e. that haz-
ards are proportional). The proportional hazards (PH)
assumption implies that the relative risks associated

with different drug doses do not change over time.
Although several tests of the PH assumption have
been proposed in the statistical literature [86], their
use in clinical and epidemiologic studies is limited
and the PH model is typically accepted a priori as
a valid model [5]. However, for many drugs, the
effect of a constant dose of medication will change
over time. For example, a review of findings on the
effects of cholesterol lowering on coronary heart dis-
ease risk suggested that about five years of treatment
is necessary to achieve the full benefits of lipid-
lowering medication [79]. The presence of a lag in
the effect of statins is also suggested by the results of
a large clinical trial, namely, the 4S study where the
Kaplan–Meier survival curves for the placebo and
active treatment groups are identical for the first year
of follow-up and then start to diverge gradually [143].
If the effect of a drug gradually increases with
increasing treatment duration, then the PH model, in
which these risks are a priori forced to be constant,
will yield the hazard ratio estimate corresponding to
the average-over-time relative risks [100]. Such an
estimate will overestimate the early effect and under-
estimate the long-term effects of the treatment [105].
In other situations, the effect of a constant dose may
decrease with increasing exposure duration. Analysis
of data from a randomized trial of aspirin effec-
tiveness in preventing cardiovascular events among
asymptomatic patients with carotid bruits provides an
example [26]. A constant dose of aspirin appeared to
have a short-term protective effect that did not last
beyond the first year. Interestingly, an in vitro study
suggested a biological mechanism that might underlie
such a gradual loss of aspirin efficacy with increasing
exposure duration [26].

Moreover, the pattern of time-dependence may
vary depending on the specific type of drug’s effect.
For example, tolerance to the depressant effects of
benzodiazepines develops rapidly, in contrast to a
gradual process of slowly increasing tolerance to
their anxiolytic effect, with increasing duration of
use [124].

To avoid such systematic biases, several authors
have proposed flexible generalizations of Cox model
[4, 48, 57, 63, 74]. In these models, the constant
log hazard ratio, β, a parameter of the Cox model
is replaced by a flexible function of follow-up time,
jβ (t), and this function is estimated using vari-
ous nonparametric methods. Abrahamowicz et al. [4]
recently developed a regression spline-based model
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for time-varying relative risks. In simulation studies,
they demonstrated its ability to uncover a variety of
patterns of hazard ratio changes over time. Moreover,
by using simple properties of regression splines [105,
147] they were able to propose simple and relatively
reasonable accurate inferences about their estimates.
Clinical applications of such methods yielded new
insights that could not be obtained with more con-
ventional methods [26, 37, 48, 63, 83, 99, 100, 103].

It would be desirable to use similar methods in
observational studies of drug utilization, as in many
cases the relative risks of adverse reactions may
change over time. For example, benzodiazepines are
drugs that have a depressive effect on the central
nervous system, with side effects of motor incoordi-
nation and diminished cognitive function. It is likely
that the effect of benzodiazepine use on the risk of
adverse events is not loglinear and is more consistent
with a threshold model. However, such a thresh-
old remains to be estimated. Moreover, the risk of
injury resulting from the side effects of exposure is
expected to be greatest when the drug is first started,
but it will diminish over time, even at constant doses,
because of metabolic adaptation. Sudden cessation of
the drug (such as may occur during hospitalization),
dose incrementation, or the addition of a second drug
which potentiates the effect of benzodiazepines (drug
interaction) may all contribute to an increase in the
risk of an adverse event.

Thus, it is plausible that the effect of a constant
dose of a drug may be at the same time nonloglinear
and time-dependent. In these instances, simultaneous
flexible modeling of both effects will be necessary
to represent the relative risks of interest. Relatively
little work has been done to date on hybrid mod-
els that could incorporate both effects simultaneously.
Gray [48] discusses nonparametric modeling of either
nonloglinear or time-varying effects of continuous
risk factors, but does not address the issues spe-
cific to the situation when both effects are estimated
for the same risk factor. Simultaneous modeling
of both effects is possible using hazard regression
(HARE) [74], a very versatile spline-based method-
ology. However, HARE relies on adaptive model
selection, and none of the examples presented in the
article shows the selection and simultaneous mod-
eling of nonloglinear and timedependent effects for
the same covariate. This may be partly due to poten-
tial collinearity between the nonloglinear and time-
dependent effects of the same continuous predictor.

A hypothetical example will illustrate the problem.
Assume, for example, that the relationship between a
drug dose and the logarithm of the hazard is expo-
nential rather than linear (i.e. changes in dose within
the low-to-moderate dose range have very little effect
on the risk, but increases in dose in the high-dose
range result in dramatic increases in the risk of an
adverse event). Assume, further, that this effect of a
dose remains constant, which means that it does not
change as a function of treatment duration. The cor-
rect modeling of this effect would involve flexible
transformation of drug dose, X, but it would con-
form with the PH assumption that the hazard ratio
is constant over time. Accordingly, the effect of drug
dose should be represented by β∗f (x), where β (con-
stant over time) is the log hazard ratio and f is the
flexible transformation (resulting from nonparamet-
ric modeling of the effect of dose at a fixed point in
time). Yet the same data may be well represented by
a loglinear, time-dependent model in which the effect
of the dose will be modeled as, β(t)∗x, where β(t)

represents the slope of the linear effect of dose (x)
at time t . This model is obviously inconsistent with
the actual relationship between dose and risk. This
incorrect alternative representation may fit the data
quite well because the shape of the true “constant-
in-time” risk function implies that most patients who
are dispensed high doses will have adverse events
quite early. Thus, the initial slope of the linear risk
function, β(t)∗x (for values of t close to zero) will
be quite high to reflect the contrast between risks
associated with low and high doses. However, as
treatment duration increases, most of the individu-
als with high doses will be filtered out and the slope
will be mostly determined by outcomes among those
with low to moderate doses. As the dose has little
effect in that interval, the slope of β(t) will gradually
decrease with increasing t , creating an apparent time-
dependence of the dose effect. In the absence of a pri-
ori grounds to prefer a constant nonloglinear model
over the time-dependent loglinear alternative, fitting
such data may create identifiability problems. These
theoretical concerns about identifiability have been
confirmed in a simulation study [129]. The devel-
opment of an appropriate methodology that is able
to offer simultaneous modeling of various effects, as
well as accurate inference about the estimates, is a
major challenge for further development of survival
analytic tools, useful for studying the effects of drug
utilization.
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Estimating Lags in the Effects of a Drug. Related
to the issue of modeling time-dependent changes
in the impact of a medication is the problem of
assessing the latency or temporal lag between drug
exposure and a subsequent change in risks. Indeed,
both the therapeutic and adverse effects of many
drugs may be observed only after a certain latency
and/or may wane after another longer time interval.
Conventional methods for assessing latency involve
estimating alternative models with exposure lagged
by a different time interval, and then selecting the
best-fitting of this model as an “optimal” represen-
tation of the lag duration [91, 98, 121]. However,
the underlying assumption that only exposure that
occurred in a specific period is relevant limits the
clinical plausibility of the results. An alternative
approach is to include several period-specific expo-
sure indicators, for example, representing NSAIDs
use in subsequent five-year intervals such as 0 to
5 years ago, 5 to 10 years ago, 10 to 15 years ago, and
so on in the same model, and to compare the respec-
tive relative risks estimates [21]. However, such an
approach induces a risk of multi-collinearity if the
exposure status of individual subjects changes little
during their lifetime, and the implicit assumption that
the impact of exposure is a discontinued step-function
of the time since exposure may be questionable.

To avoid such difficulties, more recent methods
rely on flexible modeling techniques to estimate
smooth functions representing different aspects of the
lagged exposure effect, based on different conceptual
models. For example, Rachet et al. [102] estimate a
smooth distribution of lag time, defined as the time
elapsed between the beginning of exposure and the
subsequent change in risks, assuming that the rela-
tive risks exposed/unexposed remain constant after
that time. In contrast, Hauptmann et al. [60] assume
that the effect of exposure changes gradually with
increasing time since exposure and postulate that the
etiologically relevant measure of cumulative expo-
sure should be best calculated as a weighted function
of exposure intensity in different time periods. They
use cubic regression B-splines to estimate a smooth
weight function directly from the data, and propose a
likelihood ratio test to compare the resulting model
with the simple unweighted measure of cumulative
exposure. Other promising methods for assessing
latency include the bilinear model [78] and the slid-
ing time window approach of Hauptmann et al. [58].

Use of Time-dependent Covariates to Model
Changes in Drug Use Over Time. The forego-
ing illustrates the complexity of analytic problems
in studying the effect of drug doses that are fixed
over time. It is clear that the same problems are con-
siderably more challenging when modeling involves
doses that change over time. In the conventional Cox
model [28], dose changes can be represented by a
time-dependent covariate [i.e. a covariate that is a
function of time X(t)]. Dose changes also include
situations in which cumulative dose rather than a con-
stant daily dose is considered to be the most important
determinant of the outcome. If the cumulative dose
were treated as a fixed-in-time covariate in survival
analysis, then the results will be considerably biased,
and even paradoxical due to length bias [24]. Indeed,
those having early adverse events would have much
shorter exposure to the drug and, thus, a lower cumu-
lative dose. Therefore, higher risks, corresponding
to shorter time-to-event, would appear to be asso-
ciated with a lower cumulative dose. Representing
cumulative dose by a time-dependent covariate would
eliminate the risk of such length-biased confounding
(see Screening Benefit, Evaluation of).

In some applications where the dose changes over
time, it may be preferable to separate information
about these changes by using two time-dependent
variables: one measuring current dose and the other
indicating whether the dose had been increased in
the last period. The former variable will be used
to study the association between current dose and
immediate risks and the latter to test the hypoth-
esis that recent changes in dose increase the risks.
However, simultaneous estimation of different time-
dependent aspects of the same exposure may lead
to multi-collinearity problems. A recent study of
smoking exposure explores various models with time-
dependent covariates that may be used to separate
different interrelated aspects of the longitudinal expo-
sure history, while avoiding multi-collinearity and
ensuring interpretability of the estimates [81]. An
alternative approach is to aggregate different aspects
into a single compound exposure measure, represent-
ing clinically relevant overall index of cumulative
exposure. For example, a one-compartment exponen-
tial elimination model (see Compartment Models)
proposed by Hauptmann et al. [59] accounts simulta-
neously for the duration of use and medication dose,
as well as for time elapsed since the end of expo-
sure, while making specific assumptions about the
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way they interact. However, further empirical and
simulation studies are necessary to assess the per-
formance of such models.

The incorporation of time-dependent covariates
in flexible generalizations of the Cox model will
be necessary to account for situations where (i) the
dose may change over time, and (ii) the effect of a
given dose (current or cumulative) may also change
as a function of treatment duration. In principle,
flexible modeling of time-dependent covariates does
not generate major additional theoretical problems;
however, very efficient algorithms are required to
manage the increased computational burden. Indeed,
Heinzl et al. [62] have proposed a regression spline
model that incorporates time-varying effects of binary
time-dependent covariates. This method allows for
modeling the changes over time in the impact of the
current drug use, so that, for example, one can test
if the risk of adverse effects decrease with increas-
ing duration of use, which may occur if the users
gradually develop tolerance. Finally, Clarkson and
Kooperberg [73] extend the HARE methodology to
incorporate flexible modeling of both binary and
continuous time-dependent covariates. Such a devel-
opment would likely allow new insights into the
mechanisms underlying the risks and benefits of drug
use (see Time-varying Treatment Effect).

The aforementioned methods, developed in the
context of environmental or occupational exposures,
may offer new insights into the role of medication,
especially in long-term observational studies of large
cohorts with detailed data on the time and dose of
a drug use that can be derived from administrative
prescriptions databases. However, one common lim-
itation of the administrative prescription databases
is that exact timing of the actual drug exposure is
unknown and has to be inferred from (i) the date
when the prescription was filled, and (ii) its duration.
Whereas it is reasonable to assume that the patient
did start taking the drug at or soon after the date of
its purchase, the actual end of the period of active
use may be quite different from the date correspond-
ing to the end of prescription. In such situations,
some sensitivity analyses of the robustness of the
results with respect to various assumptions about the
plausible structure and magnitude of errors in the tim-
ing of exposure are recommended. This may involve
simulating a large number of similar datasets, with
randomly distributed errors in the “observed” dura-
tion of exposure, and directly assessing the changes

in the parameters of interest. To this end, one may
use a versatile permutational algorithm for generating
censored time-to-events, described in [4] and vali-
dated in [88]. As described by Leffondré et al. [80],
this algorithm can be adapted for generating events
conditional on time-dependent covariates, that are
necessary to represent temporal variation in drug use
correctly. The analyst may also consider adapting
here the simulation extrapolation method (SIMEX)
(see Measurement Error in Epidemiologic Studies)
for handling measurement errors in predictors [23,
135]. In some cases, where the expected variance of
the measurement errors can be well approximated, for
example, based on relevant previous publications, the
SIMEX method can accurately estimate the under-
lying true relationship that would be observed with
error-free variables [64].
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[80] Leffondré, K., Abrahamowicz, M. & Siemiatycki, J.
(2003). Comparison of cox’s model and logistic regres-
sion for case-control data with time-dependent covari-
ates: a simulation study, Statistics in Medicine 22(24),
3781–3794 .

[81] Leffondré, K., Abrahamowicz, M., Siemiatycki, J.
& Rachet, B. (2002). Modeling smoking history: a
comparison of different approaches, American Journal
of Epidemiology 156(9), 813–823.

[82] Lennard-Barrett, G.T. (1962). Dimensions of therapist
response as causal factors in therapeutic change, Psy-
chology Monographs 76, 1–36.

[83] Lewis, R.F., Abrahamowicz, M., Côté, R. &
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Dummy Variables

Usually explanatory variables take on values that
are measured or observed quantities (e.g. height,
weight, age). Sometimes, however, they are cate-
gorical, or qualitative, and as such have no natural
numeric values associated with them (e.g. political
affiliation, sex, race). An individual is simply iden-
tified as belonging to one specific category out of a
set of, say, K ≥ 2 mutually exclusive categories or
levels. To allow such variables to be included in sta-
tistical models, a set of so-called dummy variables
can be defined to provide numerical representations
for a categorical variable.

If there is an intercept term included in a regres-
sion model and if a K-level categorical variable is
to be included in the model, then K − 1 dummy
variables must be defined to represent this categorical
variable. For example, if we want to include sex in
a regression model containing an intercept, we need
one dummy variable to represent sex in the model.
The K − 1 dummy variables are usually chosen to be
linearly independent.

The typical choice for the definition of a dummy
variable is the use of an indicator variable (0, 1
representation) which indicates whether a particular
observation belongs to a specific level of the categori-
cal variable. If an intercept is included in a regression
model, then indicators are derived for K − 1 of the K

possible levels. The remaining level, not associated
with an indicator, is termed the referent category or
the baseline category. For example, suppose data are
available for n individuals to be included in a lin-
ear regression model and suppose the relationship
between sex of the individual and the response vari-
able is of interest. An intercept term, X0i = 1, for
all i = 1, . . . , n, is included in the design matrix (see
General Linear Model) so we need one dummy vari-
able to represent sex. If we let X1i represent sex in
a linear model, then we may choose to define the
dummy variable as

X1i =
{

1, if individual i is female,

0, otherwise.

So, if Yi is the response for individual i, then the
model that would be investigated is

E(Yi) = β0 + β1X1i .

In this case the male category is the referent category.
The choice of the referent category often depends
on the study situation since specific choices may
mean that regression coefficients have a more direct
interpretation. This is particularly the case when com-
parisons relative to some control or unexposed group
are of interest. In this case it is natural to have the
unexposed category as the baseline.

The use of indicator dummy variables is also
valuable if models for each level of a categorical
variable are to be derived and compared. Kleinbaum
et al. [1] present such an example where the rela-
tionship between systolic blood pressure (SBP) and
age are compared for females and males. In the data
which they present, there are 29 females and 40 males
and therefore a total of 69 observations. Let Yi rep-
resent SBP and let X1i represent age for individual
i, i = 1, . . . , 69. Also, define

X2i =
{

1, if individual i is female,

0, otherwise.

Now, consider the model

E(Yi) = β0 + β1X1i + β2X2i + β3X1iX2i .

Substituting the appropriate X2i value for males, the
model is

E(Yi) = β0 + β1X1i ,

whereas for females the model is

E(Yi) = (β0 + β2) + (β1 + β3)X1i .

By fitting one model, we can investigate whether the
linear model for females has the same slope as the lin-
ear model for males (H0 : β3 = 0) and/or whether the
intercept for the model for females is the same as the
intercept for the model for males (H0 : β2 = 0). This
example assumes a linear regression model. Note that
identical arguments regarding tests for equal inter-
cepts and slopes over varying levels of a qualitative
variable can be made for other link functions in the
generalized linear models framework.

So far, only a two-level categorical variable has
been considered (i.e. sex). In [1], an example of
a three-level categorical variable is presented. The
categories are regions of the US and are listed as
western, central, or eastern. One way of representing
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this region variable is to define two dummy vari-
ables as

X1 =
{

1, if residence is western region,

0, otherwise,

and

X2 =
{

1, if residence is central region,

0, otherwise.

Note that the eastern region is the referent or baseline
category in this representation.

While indicators have been used so far to define
dummy variables, other representations can be used.
For example, for sex one can use the dummy variable
definition:

Xsex =
{

1, if female,

−1, if male.

With this specification, the regression coefficient for
Xsex provides the departure from an average outcome
level (intercept) associated with being female or male.
For the three-level region variable one could similarly
define two dummy variables as:

Xregion 1 =





1, if residence is western region,

0, if residence is central region,

−1, if residence is eastern region.

and

Xregion 2 =





0, if residence is western region,

1, if residence is central region,

−1, if residence is eastern region.

Global tests concerning the categorical variable (i.e.
testing the hypothesis that all regression coefficients
corresponding to a set of dummy variables are equal
to 0) will not depend on the choice of dummy vari-
able definitions. Since the goal is to investigate a
relationship between a response variable and a cat-
egorical variable, then this invariance to the choice
of dummy variable representation is important. The
interpretation of the coefficient for each dummy vari-
able will, however, depend on the coding selected for
a categorical variable.
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Duration Dependence

A variety of techniques are available in survival anal-
ysis to assess the dependence on covariates of the
time to some defined event, measured from a defined
origin. However, in many problems more than one
event may be measured on each subject. For example,
a patient with Parkinson’s disease is likely to require
levodopa therapy within two years of diagnosis. The
actual time to this event may be regarded as a mea-
sure, albeit imperfect, of the rate of progression of
disability. At some later point in the disease process,
side-effects of levodopa therapy, such as dyskinesias,
may appear, or levodopa may lose its effectiveness
in controlling symptoms, leading to the occurrence
of end-of-dose “wearing-off” and the more extreme
“on–off” phenomenon. Other milestones, such as
“freezing”, may occur before or after initiation of lev-
odopa therapy. Ultimately, possibly after many years,
the patient dies.

A simpler example is common in cancer studies.
Patients, once diagnosed with a cancer, alternate
between periods of remission and of relapse into
active disease, and ultimately die.

There are many choices in modeling such relation-
ships among the several outcomes, and the effect on
these outcomes of covariates and treatments admin-
istered. First, one may use a single time origin for
all types of failure, or reset the clock to zero when
certain events occur. For example, in Parkinson’s dis-
ease, time to freezing, which may occur before or
after initiation of levodopa, is most naturally mea-
sured from the date of diagnosis. Time of initiation
of levodopa may be a preferable origin for assess-
ing time to levodopa-related side-effects, which by
definition can occur only after initiation of levodopa.
However, if primary interest centers on the occur-
rence of later events, modeling the full times to these
events directly may lead to results that are more inter-
pretable (cf. Parkinson Study Group [20]). The time
origin for a randomized study is best taken at the
date of randomization to preserve the randomization
justification for the analysis.

One very simple model is that an individual moves
among different states m (e.g. remission, relapse,
death) according to a discrete epoch Markov chain
and that the sojourn time spent in each state is
exponentially distributed. Then the process M(t)

indicating the state at time t becomes a continu-
ous time Markov chain, with death as an absorbing
state. Remission and relapse may each be transient,
as any number of transitions between these two states
may occur before the ultimate transition to the third
state. Lagakos et al. [12] allowed the sojourn times to
have arbitrary distributions, leading to semi-Markov
rather than Markov processes. It is also straightfor-
ward to allow the distribution of the sojourn times
to vary with the number of previous transitions, so
that successive periods of remission could become
shorter, and periods of relapse could lengthen. Non-
homogeneous Markov processes may also be consid-
ered – see, for example, the discussion of “dynamic
stratification” models below.

One typically observes a fairly short sequence of
transitions on each of a large number of individuals.
However, standard parametric or nonparametric pro-
cedures for estimation and inference may be applied.
One may solve the inference problem for the full pro-
cess by applying standard procedures to each of its
probabilistic components – the transition matrix of
the embedded discrete Markov chain is estimated by
a discrete analog estimate, and the sojourn time dis-
tributions are estimated by the usual Kaplan–Meier
estimates from the sojourn data for each state. These
estimates have all the usual desirable features, includ-
ing asymptotic normality and the availability of a
simple variance estimate via Greenwood’s formula
(see Aalen–Johansen Estimator) for the sojourn
time distributions. The estimates for the several com-
ponents are asymptotically independent.

Inclusion of baseline covariates in the models via
a proportional hazards assumption following Cox [5]
is straightforward. Care must be taken with time-
dependent covariates. Consider, for example, the
modulated renewal processes suggested by Cox [6].
Here there is just a single type of event, which may
occur many times, and the intensity of an event at
time t is given by

h(t) = exp{βZ[t,H(t)]}h0(Ut ).

Here Ut is the backwards recurrence time – the
time from the immediately preceding event – and
Z[t,H(t)] is any function of the history H(t) of
events experienced by that individual before time t .
For example, Z[t,H(t)] could be the length of the
immediately preceding interval, in which case the
sequence of interevent times will follow a discrete
time continuous state Markov chain. Cox suggested
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that the usual partial likelihood approach be applied
on the reordered time scale Ut . A difficulty pointed
out by Oakes [16] and others is that reordering the
time scale this way destroys the Markov property
needed for the validity of this approach – Oakes [16]
gave a simple example involving matched pairs (see
Matching), where naı̈ve use of this procedure would
lead to inconsistent estimates (see Consistent Esti-
mator). However, Oakes & Cui [19] showed that
for a single long stationary sequence of events the
standard asymptotic theory would hold for Cox’s
method, even though the standard martingale theory
does not apply. Dabrowska et al. [7] allowed time-
dependent covariates in a five-state Markov renewal
model for bone marrow transplant data. By requir-
ing that the covariates depend only on the backwards
recurrence time to the previous event, they pre-
served the martingale structure of the process. Klein
et al. [11] give a somewhat parallel application.

Prentice et al. [22] considered two models for the
dependence of the intensity of an event at time t on
the H(t), namely

h[t,H(t)] = h0s(t) exp[βsZ(t)] (1)

and
h[t,H(t)] = h0s(Ut ) exp[βsZ(t)], (2)

where in each case the h0s(t) are arbitrary baseline
functions – in the first case of the total time on study,
and in the second case of the time Ut since the
immediately preceding event. Here s = s[H(t)] is a
stratum indicator, which may change over time for a
given subject.

Gail et al. [8] also considered the model in (2).
Andersen & Gill [2] discussed the special case of
(1) with only a single stratum. There is no problem
with applying standard partial likelihood approaches
to (1). In (2) the partial likelihood can be applied
so long as the Z(t) are exogenous covariates (i.e.
do not depend on the history of the process), or if
the stratification is sufficiently fine to ensure that
each individual may experience at most one failure
in a given stratum. Voelkel & Crowley [25] give a
careful discussion. In many examples s = j , which is
one plus the number of previous failures experienced
by that individual. Many of these models can now be
seen as special cases of a general counting process
formulation; see, for example, Andersen et al. [3,
Sections IV.4 and X.1].

Direct modeling of the time to successive events
from a common origin was introduced by Wei
et al. [26] and has recently been popularized by
Therneau [24]. They model the marginal (uncondi-
tional) intensity of the j th event at time t as

hj (t) = h0j (t) exp[βjZj (t)]. (3)

Under this model separate partial likelihood estimates
can be written down corresponding to the first, sec-
ond, . . . , j th, . . . event occurring to each individual,
and the usual asymptotic properties hold for each j

separately. These estimates are also jointly asymptot-
ically normal but, unlike in the model in (1), they are
not independent. However, their correlation matrix
can be consistently estimated and used to derive
tests of hypotheses such as β1 = β2 = . . . = βk and
combined estimates of a common β. Hughes [10]
examined the gain (or occasionally losses) in power
from incorporating second events in the analysis of a
randomized clinical trial, where covariate effects act
on both first and second events through Wei et al.’s
model.

Pepe & Cai [21], Oakes [18], and others have crit-
icized the counterintuitive property of Wei et al.’s
procedure that individuals are assumed to be at risk
of the j th event before they have experienced the
(j − 1)th event. Lin [15] pointed out that this could
be avoided by redefining risk set indicators appro-
priately, but this in effect converts the model to (1)
and loses the “marginal” interpretation of the covari-
ate effects. Pepe & Cai [21] proposed conditioning
on the number j − 1 of previous events, but not on
their times of occurrence – a compromise between
the fully conditional models of counting process the-
ory and the marginal models of Wei et al. However,
there is in general no simple relationship between this
intensity and the corresponding marginal intensity.

For the model in (1), Pepe & Cai’s partly condi-
tional intensity becomes the full conditional intensity.
This model, which was also discussed by Clayton [4],
can be fitted by the dynamic stratification proce-
dure in BMDP 2L (see Software, Biostatistical).
Oakes [18] showed that the assumption of propor-
tional hazards within a dynamic stratification model
is not consistent with the assumption of proportional
hazards within Wei et al.’s model.

Oakes [16] indicated how such models also arise
naturally from a frailty (heterogeneity) interpretation.
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Suppose that there is an unobserved individual-
specific random variable W and that the full con-
ditional intensity of an event at time t is just

h[t,H(t), W ] = Wb(t)

for some baseline intensity b(t). Then the number
of events in (0, t) carries all predictive informa-
tion from H(t) regarding W , so that the model of
(1) applies (without covariates). An interesting spe-
cial case, due in essence to Greenwood & Yule [9],
is when the unobserved W has a gamma distri-
bution (See Accident Proneness). In this case the
various hj (t) turn out to be proportional to each
other [though not to b(t)]. Covariates can then be
included in a proportional hazards model for these
conditional intensities and their coefficients esti-
mated together with the index of the gamma frailty
distribution from a single partial likelihood. See
Oakes [17].

This model must be distinguished from one in
which the covariates act on b(t). Estimation proce-
dures for this model have been proposed by Law-
less [13, 14] and Self & Prentice [23]. Aalen &
Husebye [1] allowed a frailty term in a simple
renewal process, giving a conditional intensity of the
form

h[t,H(t), W ] = Wh0(Ut ),

with a power law form for h0(t) leading to Weibull
interevent times. These authors also make the very
important point that the common practice of omitting
the last incomplete interval from the analysis of a
sequence of interevent intervals can lead to biased
estimates, because t − Ut is not a stopping time
in terms of counting process theory (cf. Andersen
et al. [2]).
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Durbin–Watson Test

The standard linear multiple regression model
assumes that the conditional expectation of a
response variable Y is a linear function of k

explanatory variables, x1, . . . , xk . The “errors” are
usually assumed to be independent N(µ, σ 2) random
variables. When a multiple regression model is fitted
to time series data, it is often found that successive
residuals through time are not independent but
are (auto)correlated. There may, for example, be
a run of positive residuals followed by a run of
negative residuals, which corresponds to positive
autocorrelation (see Autocorrelation Function).
With correlated errors it may be possible to improve
the model to get a better fit and better forecasts
and the Durbin–Watson test is one way of checking
for this.

Let (yt , x1t , . . . , xkt ) denote the observed values of
all the variables at time t for t = 1, 2, . . . , n. Then
the residual at time t is the difference between the
observed value of yt and the value predicted by the
fitted regression model, and may be calculated as

ẑt = yt − β̂1x1t − · · · − β̂kxkt . (1)

The Durbin–Watson statistic is then given by

d =

n∑

t=2

(ẑt − ẑt−1)
2

n∑

t=1

ẑ2
t

. (2)

The value of d is routinely calculated by most regres-
sion packages. It is unfortunate that many analysts
misinterpret the result, as the value of d will be close
to two, and not to zero, if the errors are indepen-
dent. The sampling distribution of d under the null
hypothesis of independence unfortunately depends on
the value of k and on the x values as well as on n,
so that it is not possible to give a single critical value
for d. Instead, upper and lower critical values, say,
dL and dU, have been tabulated for different values
of k and n. If the observed value of d lies between
dL and dU, then the test is annoyingly inconclusive.

Another difficulty with the Durbin–Watson test is
that it is not strictly valid when the explanatory vari-
ables include lagged values of the response variable,
as is often the case.

The time series analyst will generally be more
familiar with checking for autocorrelation by looking

at the autocorrelation function of the residuals. In
particular, the first-order autocorrelation coefficient
of the residuals measures the correlation between
successive pairs of residuals and is given by

r1 =

n∑

t=2

ẑt ẑt−1

n∑

t=1

ẑ2
t

. (3)

It can be shown that this statistic is related to the
Durbin–Watson statistic d by

d � 2(1 − r1). (4)

Positive autocorrelation (r1 > 0) corresponds to a
value of d less than two, and this is the more normal
direction of departure from independence. To test
the null hypothesis of independence against positive
autocorrelation, we look up values of dL and dU

depending on k and n and then, if d < dL, we reject
H0, while, if d > dU, we accept H0. Otherwise, the
test is inconclusive.

When k gets large and n small, the range of incon-
clusive values can get alarmingly wide, but for k

small and n large, it can be much easier to carry
out a test on the value of r1 using the result that,
for reasonably large n, r1 is approximately N(0, 1/n)

for random data. The Durbin–Watson test is usu-
ally carried out in a one-tailed form. For k = 2
and n = 100, say, the one-tailed 5% values of dL

and dU are 1.63 and 1.72 when testing for positive
autocorrelation, whereas the approximate one-tailed
5% value for r1 is 1.64/

√
n = 0.16. The latter corre-

sponds to a d value of 2(1 − 0.16) = 1.68, which is
halfway between the dL and dU values. This writer’s
preference is generally to look at the autocorrela-
tion function of the residuals and use an approximate
test on r1 rather than carry out the much more com-
plicated Durbin–Watson test. However, with several
explanatory variables, the latter may be advisable and
significance points up to k = 5 and n = 100 are tab-
ulated, for example, by Kendall & Ord [4], as well
as in the three original papers by Durbin & Watson
[1–3], after whom the test is named.
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Dynamic Allocation Index

Dynamic allocation indices (or Gittins indices) arise
when it is necessary to optimize in a sequential
manner the allocation of effort between a number of
competing projects. The effort and the projects may
take a variety of forms. Examples are: an industrial
processor and jobs waiting to be processed; a server
with a queue of customers; an industrial laboratory
with research projects; any busy person with jobs to
do; a stream of patients and alternative treatments; a
searcher who may look in different places. In every
case, effort is treated as being homogeneous, and the
problem is to allocate it between the different projects
so as to maximize the expected total reward which
they yield. It is a sequential problem, as effort is
allowed to be reallocated in a feedback manner, tak-
ing account of the pattern of rewards so far achieved.
The choice at each stage is determined partly on the
basis of maximizing the expected immediate rate of
return, and partly by the need to reduce uncertainty,
and thereby provide a basis for better choices later
on. It is the tension between these two requirements
that makes the decision problem both interesting and
difficult. The reallocations are assumed to be costless,
and to take a negligible time, since the alternative is
to impose a traveling-salesman-like feature, thereby
adding a serious further level of complication.

The techniques that come under the heading of
dynamic programming have been devised for sequen-
tial optimization problems. The key idea is a recur-
rence equation relating the expected total reward (call
this the payoff) at a given decision time to the dis-
tribution of its possible values at the next decision
time. Sometimes this equation may be solved analyt-
ically. Otherwise a recursive numerical solution may,
at any rate in principle, be carried out. This involves
making an initial approximation to the payoff func-
tion, and then successive further approximations by
substituting in the right-hand side of the recurrence
equation. As Bellman [1], for many years the chief
protagonist of this methodology, pointed out, using
the recurrence equation involves less computing than
a complete enumeration of all policies and their corre-
sponding payoffs, but nonetheless soon runs into the
sands of intractable storage and processing require-
ments as the number of variables on which the payoff
function depends increases.

For the problem of allocating effort to projects, the
number of variables is at least equal to the number
of projects. An attractive idea, therefore, is to estab-
lish a priority index for each project, depending on
its past history but not that of any other project, and
to allocate effort at each decision time only to the
project with the highest current index value. To cal-
culate these indices it should be possible to calibrate
a project in a given state against some set of standard
projects with simple properties. If this could be done
we should have a reasonable policy without having
to deal with any function of the states of more than
one project.

Gittins & Jones [6] showed that for exponentially
discounted independent projects a policy of this form
is actually optimal.

Since they may change as more effort is allo-
cated, these priority indices may aptly be, and often
are, termed dynamic allocation indices. The main
methods available for determining the indices are by
(i) interchange arguments, (ii) exploiting any special
features of the bandit processes concerned, in particu-
lar those which lead to the optimality of myopic poli-
cies, (iii) calibration by reference to standard bandit
processes, often involving iteration using the dynamic
programming recurrence equation, and (iv) using the
fact that a dynamic allocation index may be regarded
as a maximized equivalent constant reward rate.

A detailed account of the theory, calculation, and
application of Gittins indices is given in [4]. An
important further contribution to the theory has been
made by Bertsimas & Niño-Mora [3], who also give
a useful review of the recent literature.

An important area of application is the selection
of compounds for screening as potential drugs in
pharmaceutical research. Here the competing projects
are different families of compounds with different,
and initially unknown, distributions of the relevant
activity. More details are given in [2] and [5].
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Dynamic Population

A dynamic population is a population that gains
and loses members, unlike a fixed population. A
dynamic population is stable or in the steady state
if the sizes of all subgroups (e.g. age and gen-
der subgroups) remain constant. Relative hazards
can be estimated in a dynamic population from

case–control studies based on density sampling.
The well-known relationship, disease prevalence =
disease incidence × average disease duration, which
holds when a dynamic population is stationary, re-
quires modification for nonstationary dynamic popu-
lations (see Incidence–Prevalence Relationships).
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Dynamic Programming

The term dynamic programming was first coined
by Richard Bellman as early as 1952. In 1957, his
book on dynamic programming [2] provided the first
comprehensive introduction to the mathematical the-
ory of “multistage decision processes” or dynamic
programming. The term programming describes an
iterative mathematical approach to problem-solving,
which became feasible with the advent of high-speed
digital computers [8]. Dynamic programming is not
to be confused, however, with computer program-
ming, which is subsequently used to implement the
mathematical technique. The term dynamic referred
to the original application of the multistage decision
approach to processes in which a time step played
an important role. However, dynamical systems can
be used to model any process in which the order of
operations is crucial. In the alignment of molecular
sequences, for example, (see the section on “Appli-
cation to Molecular Sequence Analysis”) each stage
of the dynamic programming algorithm corresponds
to a step along the sequence.

Dynamic programming is an approach to optimiza-
tion, that is, the process of finding the “best solution”
among a number of alternatives. This usually involves
selecting from a large number of possible strate-
gies, the strategy that will maximize (or minimize)
the value of a function, which has been defined by
a mathematical model. The dynamic programming
method makes a decision at every stage based upon
an assessment of the optimal strategy at that stage
only. At the end of the process, the maximum value
can be calculated by following the path (or course of
action) consisting of these individual decisions.

The problems for which dynamic programming
can be used are those that can be broken down into
smaller iterative steps such that the overall maximum
is reached by making the optimal choice at every step.
The sum of these optimal choices is called an optimal
policy. This was stated mathematically by Bellman in
the Principle of Optimality:

An optimal policy has the property that whatever
the initial state and initial decisions are, the remain-
ing decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

Applying the principle of optimality sequentially
from the initial state to each subsequent state implies

that the optimal policy will consist of the set of
optimal decisions that were made at every stage of the
process (The reader familiar with Markov processes
will note some similarity here. An early generaliza-
tion to the probabilistic decision-making (Markov)
case appears in [6]. The connections between hidden
Markov models and dynamic programming in mole-
cular sequence analysis (see the section on “Applica-
tions”) are well-documented in [4] and [3]).

Applications

Initially, dynamic programming was designed to
solve problems that arose from calculus, such as
time-dependent differential equations. Bellman noted
in [2] that although it is possible in principle to
find the exact solution to many differential equations
using calculus alone, in complex situations involv-
ing many variables and multidimensional sets of
equations, classical approaches to solving differential
equations become infeasible. Referring to “the curse
of dimensionality” faced by physicists attempting to
solve complex systems of equations, Bellman intro-
duced the idea of an “approximate (solution) in policy
space”. His more pragmatic approach was feasible
due to the rapid development of high-speed computer
technology.

A dynamical system is essentially a vector of
values that describe a set of states. The components
of this vector might be, for example, the positions
in a queue. The queue might consist of patients
who require scheduling in a medical clinic. The
mathematical model would include factors such as
the time required with different practitioners, the
nature of the patient’s condition, the schedule of
each individual practitioner, and so on. The optimal
schedule is found by making a sequence of decisions
determined by the model.

Dynamic programming had its initial applications
in physics, engineering, economics, and resource
management. Problems arose, for example, in
“the study of optimal inventory or stock control,
input–output analysis of a complex of interdependent
industries, in the scheduling of patients through
a medical clinic, or the servicing of aircraft at
an airfield, the study of logistics or investment
policies. . .or in sequential testing. . .” [2].

But the most important breakthrough occurred
in molecular biology where dynamic programming
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greatly improved the computational accuracy and effi-
ciency of molecular sequence alignment. Indeed, the
new era of genetic research (see Bioinformatics)
would have been impossible without the develop-
ment of reliable computational and statistical meth-
ods with which to assemble and search the new
databases. For publicly available genetic informa-
tion, see, for example, the website of the National
Center for Biotechnology Information (NCBI) at
www.ncbi.nlm.nih.gov.

Applications to Molecular Sequence
Analysis

The most innovative and successful application of
dynamic programming to biology has been in the
area of molecular sequence analysis, where it has
provided an efficient method of finding the optimal
alignment between two molecular (usually DNA or
protein) sequences. At each step, the decision is made
whether to align (i.e. match) the two next letters or
not (in which case a gap is left in one or other of the
sequences). At the end of this multistep process, we
are able to read off the optimal alignment between
the two sequences.

A single strand of DNA is essentially a string of
nucleotides that contain the information required to
build proteins. Protein sequences are strings of amino
acids rather than nucleotides. The term residue refers
to either. The residue is represented as a single letter
from the four letter DNA alphabet {C,A,T,G} or the
20-letter amino acid alphabet.

Related genes from two different species will have
similar DNA sequences. Throughout the evolution
of DNA, not only do individual nucleotides change
but also whole segments of DNA are inserted into
or deleted from the sequence. As a result, if we
want to assess the similarity between two possibly
related segments of DNA or protein, we will need to
count the number of unchanged (or similar) matching
residues in some sections while allowing for the
possibility of leaving “gaps” or unmatched residues
in other sections. This process is called aligning the
two sequences, and was originally done by eye.

Although no direct mention was made of Bell-
man’s methods in [7], Needleman and Wunsch were
the first to apply a dynamic programming method
to protein sequence alignment in 1970. The gapped
alignment of two sequences corresponds to an opti-
mal path down a scoring matrix (see the section

on “An Example: The Local Alignment of Two
Sequences”). Adjustable gap penalties were intro-
duced into the alignment process to discourage the
opening of gaps without excluding them completely.
The method produces a global alignment, which is
the optimal alignment between the two sequences in
their entirety.

The dynamic programming algorithm was modi-
fied by Smith and Waterman in 1981 [10]. Noting the
existence of numerous noncoding regions or introns
within the gene, Smith and Waterman altered the
algorithm so that the optimal local alignment could be
found. For local alignments, gaps at either side of the
aligned sections were not penalized. The result of this
modification was that shorter, biologically relevant
regions of similarity (corresponding, for example, to
coding regions or exons) could be detected efficiently.

It should be noted that in order to make use
of the alignment scores obtained using the above
methods, further statistical analysis is required; see,
for example, [4].

An Example: the Local Alignment of Two
Sequences

Say we have two sequences A = a1a2 . . . aM and
B = b1b2 . . . bN , where ai and bj are taken from the
appropriate alphabet. In practice, when we compare
two sequences we want to count not only when the
two letters under consideration are the same but also
when they are similar. Let s(a, b) be the similarity
score between letter a and letter b. (We usually store
this information in a square substitution matrix S =
[sij ] – not to be confused with the scoring matrix.
How we create this substitution matrix is complex;
see, for example, [3, 5]. In the simplest case, the
substitution matrix is the identity matrix.)

We introduce a “gap penalty” gk , which is some
function of the gap-length, k. In the example given
in [10], a gap penalty function of gk = 1 + 1

3k was
used. This is an example of the commonly used
affine gap penalty [3]. A penalty of 1 1

3 = 1 + 1
3 is

charged for opening a gap and a penalty of 1
3 is

charged for extending the gap by one. These values
(1 1

3 and 1
3 in this case), referred to as gap opening and

gap extension penalties, are set so that a biologically
relevant (as opposed to a random) alignment will on
average score well.

In Figure 1, we show the Smith–Waterman
dynamic programming scoring matrix for the
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C A G C C T C G C T T A G
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

A 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
A 0.0 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7
T 0.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7
G 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0
C 0.0 1.0 0.0 0.0 2.0 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3
C 0.0 1.0 0.7 0.0 1.0 3.0 1.7 1.3 1.3 1.7 0.3 0.0 0.0
A 0.0 0.0 2.0 0.7 0.3 1.7 2.7 1.3 0.7 1.0 1.3 1.3 0.0
T 0.0 0.0 0.7 1.7 0.3 1.3 2.7 2.3 1.0

1.0
1.0

0.7 1.7 2.0 1.0 1.0
T 0.0 0.0 0.3 0.3 1.3 1.0 2.3 2.3 2.0 0.7 1.7 2.7 1.7 1.0
G 0.0 0.0 0.0 1.3 0.0 1.0 1.0 2.0 3.3 2.0 1.7 1.3 2.3 2.7
A 0.0 0.0 1.0 0.0 1.0 0.3 0.7 0.7 2.0 3.0 1.7 1.3 2.3 2.0
C 0.0 1.0 0.0 0.7 1.0 2.0 0.7 1.7 1.7 3.0 2.7 1.3 1.0 2.0
G 0.0 0.0 0.7 1.0 0.3 0.7 1.7 0.3 2.7 1.7 2.7 2.3 1.0 2.0
G 0.0 0.0 0.0 1.7 0.7 0.3 0.3 1.3 1.3 2.3 1.3 2.3 2.0 2.0

Figure 1 Smith–Waterman dynamic programming scoring matrix for the DNA sequences CAGCCTCGCTTAG and
AATGCCATTGACGG, which are the two example sequences given in [10]. The scoring scheme used is as follows:
s(a, b) = 1 if a = b and s(a, b) = −1/3 if a �= b. The gap penalty function is gk = 1 + 1/3 k. The first row and first
column of D are entered as zeros. The remaining values are then calculated using (1) starting from the top left corner and
proceeding to the right and downwards until the matrix is complete. The optimal local alignment is then located by looking
for the highest value in the matrix. Once this element is found, the other elements in the alignment are located by tracing
back along the path. The traceback ceases when a value of zero is reached as this indicates the end of the optimal local
alignment. The elements in the traceback path are shown in bold

DNA sequences AATGCCATTGACGG and CAGC-
CTCGCTTAG, which are the two example sequences
given in [10]. The scoring scheme is as follows:
s(a, b) = 1 if a = b and s(a, b) = − 1

3 if a �= b, with
the gap penalty function as in the last paragraph.

Starting the (M + 1) × (N + 1) scoring matrix
D = [dij ] with a row of zeros and a column of zeros,
the remaining values are then calculated using (1).

di−1,j−1

di,j−1

di−1,j

di,j

1.0 0.3

0.0 2.0

Figure 2 (a) A decision is made at each position i, j . The
value of dij is chosen to be the maximum of three values
(or zero) according to (1). The preferred path is recorded
(as an arrow facing back towards the previous element)
for the traceback procedure. (b) For example, the value of
2.0 in Figure 1 is obtained by taking the maximum value
of 1 + 1 = 2, corresponding to a match between C and C
(which scores 1) being added onto the score of 1.0 in the
cell diagonally upwards to the left

In Figure 2, the reader can see that at each position
three paths are possible, noting that the convention is
to draw the arrow backwards because we will want to
trace our way back to get the final alignment. As in
the global alignment, the optimal path proceeds either
diagonally (which corresponds to a match between
the ith and j th entry in the two sequences), horizon-
tally or vertically (which corresponds to leaving a gap
in the first or second sequence) at each step. At each
step, the direction is stored so that we can traceback
along the path. Starting from the top left corner and
proceeding to the right and downwards, each cell is
filled in until the matrix is complete.

di,j = maximum






di−1,j−1 + s(ai, bj )

di−1,j − gk

di,j−1 − gk

0

(1)

The optimal local alignment is then located by
looking for the highest value in the matrix. Once this
element is found, the other elements in the alignment
are located using the traceback procedure, further
details of which can be found in [10]. Essentially,
the traceback follows back along the optimal path
using the directions that were saved in every cell,
although this process can be made more efficient
[3]. The traceback ceases when a value of zero is
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reached as this indicates the end of the optimal local
alignment. The elements in the traceback path are
shown in bold.

To read off the alignment in Figure 1, start with
the boldface cell uppermost and to the left that
contains a 1.0. This corresponds to a match between
G and G. Now go to the next boldface number, 2.0.
Since the path to that number is diagonal the next two
letters, C and C, are aligned. As we progress down to
3.0, the next step is also diagonal and we so match
the next two letters, C and C. The next step of the
path to 1.7 is vertical. This means a gap is left in
the sequence written along the top of the matrix. (A
horizontal step leaves a gap in the sequence written
along the left of the matrix.) Proceeding in this way,
the alignment can be read off the matrix.

The alignment obtained in the example is

G | C | C | A | T | T | G| | | | | |
G | C | C | | T | C | G.

which has a Smith–Waterman score of 3.3, the final
value in the path.

Computational Efficiency

Dynamic programming became popular due to its
efficiency in searching for optimal solutions. In gen-
eral terms, an exponential or factorial search space
can often be reduced to a linear or quadratic time
process using dynamic programming techniques.

If we were, for example, to search exhaustively
through every possible sequence alignment in the
above example of sequence alignment, looking for
the highest scoring match according to our scoring
scheme, we would require at least some multiple
of (N + M)! operations, that is O((N + M)!) (see
Orders of Magnitude). Using the dynamic program-
ming algorithm, this is reduced to O(MN), where M

and N are the lengths of the sequences. This is cal-
culated by noting that a finite number of operations
must be made at each position of the matrix based
upon (1) as illustrated in Figure 1. We refer to this
machine complexity as O(N2) since M ≈ N . The
amount of storage space required is also O(N2). The
algorithm can be made even more efficient by storing
only two rows of the matrix at any one time; see, for
example, [3].

Quite often in bioinformatics research, we are
looking not for one optimal alignment but the highest

scoring alignment between a nominated query seq-
uence and a large database of sequences such as
the human or mouse genome, for example. In this
case, quadratic time algorithms are often prohibitively
slow, even on the fastest computers. Faster alignment
tools such as BLAST [1] and FASTA [9] are based
upon a reduction of search space by first looking for
high scoring sections. This is then followed by using
dynamic programming to find the best alignment
among a reduced number of the candidate sequences.
Owing to the efficient shortcut made by BLAST,
it is currently the most popular tool for searching
the genome databases for the best match to a query
sequence but it should be emphasized that BLAST
itself is not a dynamic programming method, but used
in conjunction with them.

A reliable Smith–Waterman dynamic program-
ming algorithm, SSEARCH, can be accessed at
the FASTA website: http://alpha10.bioch.vir
ginia.edu/fasta/.
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Ecologic Fallacy

The ecologic fallacy is the mistaken assumption that a
statistical association observed between two ecologic
(group-level) variables (see Ecologic Study) is equal
to the association between the corresponding vari-
ables at the individual level in the same population.
This assumption is often made implicitly or explicitly
when using ecologic data to make inferences about
the biologic (individual-level) effect of an exposure
on the risk of a disease or other health outcome. Sup-
pose, for example, we observe a positive ecologic
association between exposure prevalence and the
rate of a disease across many regions (groups). The
magnitude and direction of the association between
exposure status and disease risk within regions (at
the individual level) could be different from the
ecologic association, even if there is no error in
measuring either ecologic variable. Just because the
disease rate is higher in regions with a larger exposure
prevalence does not mean that exposed individuals
are at greater risk of disease than are unexposed
individuals. It is possible that the risk is particularly
high for unexposed individuals living in regions with

a relatively high exposure prevalence. The underlying
problem of the ecologic fallacy, therefore, is that each
group is not entirely homogeneous with respect to the
exposure. If every region were made up entirely of
exposed individuals or unexposed individuals, then
there would be no ecologic fallacy because informa-
tion on the joint distribution of exposure and disease
within groups would not be missing.

From a statistical perspective, the ecologic fallacy
is due to cross-level bias in estimating the biologic
effect of an exposure on disease risk on the basis
of ecologic data. Thus, the fundamental problem
of cross-level inference is not an all-or-none phe-
nomenon, but rather a continuum of systematic error
in effect estimation. In an ecologic analysis involv-
ing simple linear regression, cross-level bias arises
when the disease rate in the unexposed (reference)
population is correlated with exposure prevalence
across groups or when the difference in rates between
exposed and unexposed populations (biologic effect)
varies across groups. (see Ecologic Study for a con-
temporary interpretation of “ecologic fallacy” and for
a discussion of cross-level bias.)

HAL MORGENSTERN



Ecologic Study

An ecologic or aggregate study focuses on the
comparison of groups, rather than individuals. The
underlying reason for this focus is that individual-
level data are missing on the joint distribution of at
least two and perhaps all variables within each group;
in this sense, an ecologic study is an “incomplete”
design [48]. Ecologic studies have been conducted by
social scientists for more than a century [18] and have
been used extensively by epidemiologists in many
research areas. Nevertheless, the distinction between
individual-level and group-level (ecologic) studies
and the inferential implications are far more compli-
cated and subtle than they first appear. Before 1980,
ecologic studies were usually presented in the first
part of epidemiology textbooks as simple “descrip-
tive” analyses in which disease rates are stratified by
place or time to test hypotheses preliminarily; little
attention was given to statistical methods or inference
(for example [56]). The purpose of this article is to
provide a methodologic overview of ecologic studies,
which emphasizes study design, statistical methods,
and causal inference. Although ecologic studies are
easily and inexpensively conducted, the results are
often difficult to interpret.

Concepts and Rationale

Before discussing the design and interpretation of
ecologic studies, we must first define the concepts
of ecologic measurement, analysis, and inference.

Levels of Measurement

The sources of data used in epidemiologic stud-
ies typically involve direct observations of indi-
viduals (e.g. age and blood pressure); they may
also involve observations of groups, organizations,
or places (e.g. social disorganization and air pol-
lution). These observations are then organized to
measure specific variables in the study population:
individual-level variables are properties of individu-
als, and ecologic variables are properties of groups,
organizations, or places. To be more specific, ecologic
measures may be classified into three types:

1. Aggregate measures are summaries (e.g. means
or proportions) of observations derived from

individuals in each group, e.g. the proportion of
smokers and median family income.

2. Environmental measures are physical character-
istics of the place in which members of each
group live or work, e.g. air-pollution level and
hours of sunlight. Note that each environmen-
tal measure has an analog at the individual level,
and these individual exposures (or doses) usually
vary among members of each group (though they
may remain unmeasured).

3. Global measures are attributes of groups, orga-
nizations, or places for which there is no distinct
analog at the individual level (unlike aggregate
and environmental measures), e.g. population
density, level of social disorganization, the exis-
tence of a specific law, or type of health-care
system.

Levels of Analysis

The unit of analysis is the common level for which
the data on all variables are reduced and analyzed. In
an individual-level analysis, a value for each variable
is assigned to every subject in the study. It is pos-
sible, even common in environmental epidemiology,
for one or more predictor variables to be ecologic
measures. For example, the average pollution level
of each county might be assigned to every subject
who is a resident of that county.

In a completely ecologic analysis, all variables
(exposure, disease, and covariates) are ecologic mea-
sures so that the unit of analysis is the group, e.g.
region (see Geographic Epidemiology), worksite,
school, health-care facility, demographic stratum, or
time interval. Thus, within each group, we do not
know the joint distribution of any combination of
variables at the individual level (e.g. the frequen-
cies of exposed cases, unexposed cases, exposed
noncases, and unexposed noncases); all we know is
the marginal distribution of each variable, e.g. the
proportion exposed and the disease rate (i.e. the T

frequencies in Figure 1).
In a partially ecologic analysis of three or more

variables, we have additional information on certain
joint distributions (the M , N , or A/B frequencies
in Figure 1); but we still do not know the full joint
distribution of all variables within each group (i.e.
the ? cells in Figure 1 are missing). For example,
in an ecologic study of cancer incidence by county,
the joint distribution of age (a covariate) and disease
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Figure 1 Joint distribution of exposure status (x = 1 vs.
0), disease status (y = 1 vs. 0), and covariate status (z = 1
vs. 0) in each group of a simple ecologic analysis: T

frequencies are the only data available in a completely
ecologic analysis of all three variables; M frequencies
require additional data on the joint distribution of z and y

within each group; N frequencies require additional data on
the joint distribution of x and z within each group; A and B

frequencies require additional data on the joint distribution
of x and y within each group; and ? cells are always missing
in an ecologic analysis

status within each county (the M frequencies in
Figure 1) might be obtained from the census and a
population tumor registry (see Disease Registers).
From these sources, the investigator would be able to
estimate age-specific cancer rates for each county.

Multilevel analysis is a special type of modeling
technique that combines analyses conducted at two
(or more) levels [7, 27, 100, 101]. For example,
an individual-level analysis might be conducted in
each group, followed by an ecologic analysis of all
groups using the results from the individual-level
analyses (see Multilevel Models). This approach will
be described in a later section.

Levels of Inference

The underlying goal of a given epidemiologic study
or analysis may be to make biologic (or biobehav-
ioral) inferences about effects on individual risks or
to make ecologic inferences about effects on group
rates [62]. The target level of causal inference, how-
ever, does not always match the level of analysis. For
example, the purpose of an ecologic analysis may be
to make a biologic inference about the effect of a
specific exposure on disease risk. As discussed later
in this article, such cross-level inferences are partic-
ularly vulnerable to bias.

If the objective of a study is to estimate the bio-
logic effect of wearing a motorcycle helmet on the
risk of motorcycle-related mortality among motor-
cycle riders, the target level of causal inference is
biologic. On the other hand, if the objective is to
estimate the ecologic effect of helmet-use laws on the

motorcycle-related mortality rate of riders in different
states, the target level of causal inference is eco-
logic. Note that the magnitude of this ecologic effect
depends not only on the biologic effect of helmet
use, but also on the degree and pattern of compli-
ance with the law in each state. Furthermore, the
validity of the ecologic effect estimate depends on
our ability to control for differences among states
in the joint distribution of confounders, including
individual-level variables such as age and amount of
motorcycle riding.

We might also be interested in estimating the con-
textual effect of an ecologic exposure on individual
risk, which is also a form of biologic inference [3,
92]. If the ecologic exposure is an aggregate measure,
we would generally want to separate its effect from
the effect of its individual-level analog. For example,
we might estimate the contextual effect of living in a
poor area on the risk of disease, controlling for indi-
vidual poverty level [45]. Contextual effects can be
profound in infectious-disease epidemiology, where
the risk of disease depends on the prevalence of the
disease in others with whom the individual has con-
tact [50, 93] (see Communicable Diseases).

In evaluating motorcycle-helmet laws in the US,
we would probably not expect a contextual effect of
living in a state that mandates helmet use on the risk
of motorcycle-related mortality in riders, controlling
for individual helmet use. If a rider’s helmet use
does not change after the helmet law takes effect,
we would not expect his risk of motorcycle-related
mortality to change. Nevertheless, we might expect
to observe a contextual association between the same
variables after the law because of differential compli-
ance with the law within states. That is, those riders
who comply with the law, but who would not have
worn helmets without the law, may be at lower risk
than are riders who do not comply with the law.
Consequently, the risk of motorcycle-related mortal-
ity among riders who do not wear helmets will be
higher in states with the helmet law than in states
without the law.

Rationale for Ecologic Studies

There are several reasons for the widespread use of
ecologic studies in epidemiology, despite frequent
cautions about their methodologic limitations:

1. Low cost and convenience. Ecologic studies are
inexpensive and take little time because various
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secondary data sources, each involving different
information needed for the analysis, can easily
be linked at the aggregate level. For example,
data obtained from population registries, vital
statistics records, large sample surveys, and the
census are often linked at the state, county, or
census-tract level.

2. Measurement limitations of individual-level stud-
ies. In environmental epidemiology and other
research areas, we often cannot accurately mea-
sure relevant exposures or doses at the individual
level for large numbers of subjects – at least not
with available time and resources. Thus, the only
practical way to measure the exposure may be
ecologically [62, 63]. This advantage is espe-
cially true when investigating apparent clusters
of disease in small areas [94] (see Clustering).
Sometimes individual-level exposures, such as
dietary factors, cannot be measured accurately
because of substantial within-person variability;
yet ecologic measures might accurately reflect
group averages [41, 76].

3. Design limitations of individual-level studies. In-
dividual-level studies may not be practical for
estimating exposure effects if the exposure varies
little within the study area. Ecologic studies cov-
ering a much wider area, however, might be able
to achieve substantial variation in mean exposure
across groups (for example [68, 72], and [81]).

4. Interest in ecologic effects. As noted above, the
stated purpose of a study may be to assess an eco-
logic effect; i.e. the target level of inference may
be ecologic rather than biologic – to understand
differences in disease rates among populations
[60, 81]. Ecologic effects are particularly relevant
when evaluating the impacts of social processes
or population interventions such as new pro-
grams, policies, or legislation. As discussed later
in this article, however, an interest in ecologic
effects does not necessarily obviate the need for
individual-level data.

5. Simplicity of analysis and presentation. In large
complex studies conducted at the individual
level, it may be conceptually and statistically
simpler to perform ecologic analyses and to
present ecologic results than to do individual-
level analyses. For example, data from large
periodic surveys, such as the National Health
Interview Survey, are often analyzed ecologically
by treating some combination of year, region,

and demographic group as the unit of analy-
sis. As discussed later in this article, however,
such simplicity of analysis and presentation often
conceals methodologic problems.

Study Designs

In an ecologic study design, the planned unit of
analysis is the group. Ecologic designs may be clas-
sified on two dimensions: the method of exposure
measurement and the method of grouping [48, 62].
Regarding the first dimension, an ecologic design is
called exploratory if there is no specific exposure
of interest or the exposure of potential interest is
not measured, and it is called analytic if the pri-
mary exposure variable is measured and included in
the analysis. (This use of the term “analytic” is not
to be confused with analytic epidemiology, which
refers to cohort and case–control studies conducted
at the individual level.) In practice, this dimension
is a continuum, since most ecologic studies are not
conducted to test a single hypothesis. Regarding the
second dimension, the groups of an ecologic study
may be identified by place (multiple-group design),
by time (time-trend design), or by a combination of
place and time (mixed design).

Multiple-Group Designs

Exploratory Study. In an exploratory multiple-
group study, we compare the rate of disease among
many regions during the same period. The purpose
is to search for spatial patterns that might suggest
an environmental etiology or more specific etiologic
hypotheses. For example, the National Cancer Insti-
tute (NCI) mapped the age-adjusted cancer mortality
rates in the US by county for the period 1950–69
[58]. For oral cancers, they found a striking differ-
ence in geographic patterns by sex: among men, the
mortality rates were greatest in the urban Northeast;
but among women, the rates were greatest in the
Southeast. These findings led to the hypothesis that
snuff dipping, which is common among rural south-
ern women, is a risk factor for oral cancers [2]. The
results of a subsequent case–control study supported
this hypothesis [99].

Exploratory ecologic studies may also involve
the comparison of rates between migrants and their
offspring and residents of their countries of emigra-
tion and immigration [41, 56] (see Migrant Studies).
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If the rates differ appreciably between the countries
of emigration and immigration, migrant studies often
yield results suggesting the influence of certain types
of risk factors for the disease under study. For exam-
ple, if US immigrants from Japan have rates of a
disease similar to US whites but much lower than
Japanese residents, the difference may be due to envi-
ronmental or behavioral risk factors operating during
adulthood. On the other hand, if US immigrants from
Japan and their offspring have rates much lower than
US whites but similar to Japanese residents, the dif-
ference may be due to genetic risk factors. Such inter-
pretations, however, especially in the first instance,
are often limited by differences between countries in
the classification and detection of disease or cause of
death.

In mapping studies (see Mapping Disease Pat-
terns), such as the NCI investigation, a simple com-
parison of rates across regions is often complicated by
two statistical problems. First, regions with smaller
numbers of observed cases show greater variability
in the estimated rate; thus, the most extreme rates
tend to be observed for those regions with the fewest
cases. Second, nearby regions tend to have more
similar rates than do distant regions (i.e. autocorrela-
tion) because unmeasured risk factors tend to cluster
in space. Statistical methods for dealing with both
problems have been developed by fitting an autore-
gressive spatial model to the data and using empirical
Bayes techniques to estimate the smoothed rate for
each region [12, 17, 61, 64] (see Geographic Epi-
demiology). The degree of spatial autocorrelation or
clustering can be measured to reflect environmental
effects on the rate of disease [96, 97]. The empiri-
cal Bayes approach can also be applied to data from
analytic multiple-group studies (described below) by
including covariates in the model (for example [11],
and [15]).

Analytic Study. In an analytic multiple-group
study, we assess the ecologic association between the
average exposure level or prevalence and the rate of
disease among many groups. This is the most com-
mon ecologic design; typically, the unit of analysis is
a geopolitical region. For example, Hatch & Susser
[38] examined the association between background
gamma radiation and the incidence of childhood can-
cers between 1975 and 1985 in the region surround-
ing a nuclear plant. Average radiation levels for each
of 69 tracts in the region were estimated from a 1976

areal survey. The authors found positive associations
between radiation level and the incidence of leukemia
(an expected finding) as well as solid tumors (an
unexpected finding) (see Leukemia Clusters; Radi-
ation).

Data analysis in this type of multiple-group study
usually involves fitting a mathematical model to the
data. Ordinary least squares procedures, however,
may be inadequate because the groups typically vary
in size and much of the unexplained variability in
rates across groups cannot be attributed to sam-
pling error alone. To address these concerns, Pocock
et al. [69] proposed a linear model in which the
unexplained variation is treated as random effects.
Model parameters were estimated by an iteratively
reweighted least squares procedure. A similar proce-
dure was used by Breslow [6] to fit loglinear models.
Prentice & Sheppard [73] proposed a linear relative
risk model, which leads readily to the estimation of
rate ratios (assuming the model is properly specified).
Prentice & Thomas [77] considered an exponential
relative risk model, which they argue may be more
parsimonious than the linear-form model for speci-
fying covariates. These methods can be applied to
data aggregated by place and/or time (to be dis-
cussed below). Use of ecologic modeling to estimate
exposure effects (rate ratios and differences) will be
described in the next section.

Time-Trend Designs

Exploratory Study. An exploratory time-trend or
time-series study involves a comparison of the dis-
ease rates over time in one geographically defined
population. In addition to providing graphical dis-
plays of temporal trends, time-series data can also
be used to forecast future rates and trends. This latter
application, which is more common in the social sci-
ences than in epidemiology, usually involves fitting
autoregressive integrated moving average (ARIMA)
models to the outcome data [39, 66] (see ARMA
and ARIMA Models). The method of ARIMA mod-
eling can also be extended to evaluate the impact of
a population intervention [59], to estimate associa-
tions betweens two or more time-series variables [9,
66], and to estimate associations in a mixed ecologic
design ([85]; see below).

A special type of exploratory time-trend analysis
often used by epidemiologists is age–period–cohort
analysis. This approach typically involves the
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collection of retrospective data from a large
population over a period of 20 or more years.
Through graphical or tabular displays (for example
[23] and [25]) or formal modeling techniques (for
example [42] and [57]), the objective is to estimate
the separate effects of three time-related variables
on the rate of disease: age, period (calendar time),
and birth cohort (year of birth). By describing the
occurrence of disease in this way, the investigator
attempts to gain insight about temporal trends, which
might lead to new hypotheses.

Lee et al. [54] conducted an age–period–cohort
analysis of melanoma mortality among white males in
the US between 1951 and 1975. They concluded that
the apparent increase in the melanoma mortality rate
was due primarily to a cohort effect. That is, persons
born in more recent years experienced throughout
their lives a higher rate than did persons born earlier.
In a subsequent paper, Lee [53] speculated that
this cohort effect might reflect increases in sunlight
exposure or sunburning during youth, which he
hypothesized is a risk factor for melanoma.

From a purely statistical perspective, there is an
inherent problem in making inferences from the
results of age–period–cohort analyses because of
the linear dependency among the three time-related
variables [25, 26, 42]. Thus, we cannot allow the
value of one variable to change when the values
of the other two variables are held constant. As
a result of this identifiability problem, each data
set has alternative interpretations with respect to the
combination of age, period, and cohort effects; there
is no unique set of effect parameters when all three
variables are modeled simultaneously. The only way
to decide which interpretation should be accepted is
to consider the findings in light of prior knowledge
and, possibly, to constrain the model by ignoring one
effect.

Analytic Study. In an analytic time-trend study, we
assess the ecologic association between change in
average exposure level or prevalence and change in
disease rate in one geographically defined population.
As with exploratory designs, this type of assessment
can be done by simple graphical displays or by time-
series regression modeling (for example [66]).

In their analytic time-trend study, Darby & Doll
[16] examined the associations between average
annual absorbed dose of radiation fallout from
weapons testing and the incidence rate of childhood

leukemia in three European countries between 1945
and 1985. Although the leukemia rate varied over
time in each country, they found no convincing
evidence that these changes were attributable to
changes in fallout radiation.

Causal inference from analytic time-trend studies
is often complicated by two problems. First, changes
in disease classification and diagnostic criteria can
produce distorted trends in the observed rate of dis-
ease, which can lead to substantial bias in estimating
exposure effects. Second, there may be an appreciable
induction/latent period between first exposure to a
risk factor and disease detection. To deal with the lat-
ter issue in an ecologic time-trend study, the investi-
gator can lag observations between average exposure
and disease rate by a duration assumed to reflect the
average induction/latent period of exposure-induced
cases. There are two approaches for selecting the lag:
(i) an a priori method based on knowledge of the dis-
ease; and (ii) empirical methods that maximize the
observed association of interest or optimize the fit
of the model that includes a lag parameter. Unfortu-
nately, the first method is often problematic because
adequate prior knowledge is lacking, and the sec-
ond method can produce results that are biologically
meaningless and very misleading [37].

Mixed Designs

Exploratory Study. The exploratory mixed design
combines the basic features of the exploratory
multiple-group study and the exploratory time-
trend study. Time-series (ARIMA) modeling or
age–period–cohort analysis can be used to describe
or predict trends in the disease rate for multiple
populations. For example, to test Lee’s [53]
hypothesis that changes in sunlight exposure during
youth can explain the observed increase in melanoma
mortality in the US, we might conduct an
age–period–cohort analysis, stratifying on region
according to approximate sunlight exposure (without
measuring the exposure). Assuming the amount of
sunlight in the regions has not changed differentially
over the study period, we might expect the cohort
effect described earlier to be stronger for sunnier
regions.

Analytic Study. In an analytic mixed design, we
assess the association between change in average
exposure level or prevalence and change in disease
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rate among many groups. Thus, the interpretation
of estimated effects is enhanced because two types
of comparisons are made simultaneously: change
over time within groups and differences among
groups. For example, Crawford et al. [14] evaluated
the hypothesis that hard drinking water (i.e. water
with a high concentration of calcium and magnesium)
is a protective risk factor for cardiovascular disease
(CVD) mortality. They compared the absolute change
in CVD mortality rate between 1948 and 1964 in 83
British towns, by water-hardness change, age, and
sex. In all sex–age groups, especially for men, the
authors found an inverse association between trends
in water hardness and CVD mortality. In middle-aged
men, for example, the increase in CVD mortality was
less in towns that made their water harder than in
towns that made their water softer.

Effect Estimation

A major quantitative objective of most epidemio-
logic studies is to estimate the effect of one or more
exposures on disease occurrence in a well-defined
population at risk. A measure of effect in this con-
text is not just any measure of association such as
a correlation coefficient; rather, it reflects a partic-
ular causal parameter, i.e. a counterfactual contrast
in disease occurrence [30, 33, 36, 63, 83]. In studies
conducted at the individual level, effects are usually
estimated by comparing the rate or risk of disease,
in the form of a ratio or difference, for exposed
and unexposed populations. In multiple-group eco-
logic studies, however, we cannot estimate effects
directly in this way because of the missing informa-
tion on the joint distribution within groups. Instead,
we regress the group-specific disease rates, Y , on the
group-specific exposure prevalences, X. (Note that
throughout this article uppercase letters will be used
to represent ecologic variables and their estimated
regression coefficients; lowercase letters will be used
to represent individual-level variables and their esti-
mated regression coefficients.)

The most common model form for analyzing eco-
logic data is the linear model. Ordinary least-squares
methods can be used to produce the following pre-
diction equation: Ŷ = B0 + B1X, where B0 and B1

are the estimated intercept and slope. An estimate of
the biologic effect of the exposure (at the individual
level) can be derived from the regression results [1,

28]. The predicted disease rate (Ŷx=1) in a group that
is entirely exposed is B0 + B1(1) = B0 + B1, and the
predicted rate (Ŷx=0) in a group that is entirely unex-
posed is B0 + B1(0) = B0. Therefore, the estimated
rate difference is B0 + B1 − B0 = B1, and the esti-
mated rate ratio is (B0 + B1)/B0 = 1 + B1/B0.

Alternatively, fitting a loglinear (exponential)
model to the data yields the following predic-
tion equation: 1n[Ŷ ] = B0 + B1X or Ŷ = exp[B0 +
B1X]. Applying the same method used above for lin-
ear models, the estimated rate ratio is Ŷx=1/Ŷx=0 =
exp[B1].

Note that the ecologic method of effect estimation
requires rate predictions be extrapolated to both
extreme values of the exposure variable (i.e. X = 0
and 1), which are likely to lie well beyond the
observed range of the data. It is not surprising,
therefore, that different model forms (e.g. loglinear
vs. linear) can lead to very different estimates of
effect [31]. Fitting a linear model, in fact, may lead
to negative, and thus meaningless, estimates of the
rate ratio.

As an illustration of rate-ratio estimation in an eco-
logic study, consider Durkheim’s [20] examination
of religion and suicide in four groups of Prussian
provinces between 1883 and 1890 (see Figure 2).
The groups were formed by ranking 13 provinces
according to the proportion (X) of the population
that was Protestant. Using ordinary least-squares lin-
ear regression, we estimate the suicide rate (Ŷ , per
105/year) in each group to be 3.66 + 24.0(X). There-
fore, the estimated rate ratio, comparing Protestants
with other religions, is 1 + (24.0/3.66) = 7.6. Note
in Figure 2 that the fit of the linear model appears
excellent (R2 = 0.97). In general, however, ecologic
tests of fit can be misleading about the underlying
model at the individual level that generated the eco-
logic data [35].

Confounders and Effect Modifiers

There are two methods used to control for confoun-
ders in multiple-group ecologic analyses. The first
is to treat ecologic measures of the confounders as
covariates (Z) in the model, e.g. percent male and
percent white in each group. If the individual-level
effects of the exposure and covariates are additive
(i.e. if the disease rates follow a linear model), then
the ecologic regression of Y on X and Z will also
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Figure 2 Suicide rate (Y , per 105/year) by proportion Protestant (X) for four groups of Prussian provinces, 1883–90.
The four observed points (X,Y ) are (0.30, 9.56), (0.45, 16.36), (0.785, 22.00), and (0.95, 26.46); the fitted line is based
on unweighted least-squares regression. Adapted from Durkheim [20]

be linear with the same coefficients [31, 52] (see
Additive Model). That is, the estimated coefficient
for the exposure variable in a linear model can be
interpreted as the rate difference adjusted for the
covariates, provided the effects are truly additive
and there are no other sources of bias. To estimate
the adjusted rate ratio for the exposure effect, we
must first specify values for all covariates (Z) in the
model, because the effects of X and Z are assumed to
be additive – not multiplicative. Thus, the estimated
rate ratio, conditional on covariate levels (Z), is the
predicted rate in a group that is entirely exposed
(Ŷx=1|Z) divided by the predicted rate in a group that
is entirely unexposed (Ŷx=0|Z).

Fitting an additive loglinear model to the ecologic
data yields an estimate of the adjusted rate ratio that
is independent of covariates – i.e. Ŷx=1|Z/Ŷx=0|Z =
exp[B1], where B1 is the estimated coefficient for
the exposure. Thus, the effects of X and Z are
assumed to be multiplicative (see Multiplicative
Model). Unfortunately, this ecologic estimate is a
biased estimate of the individual-level rate ratio, even
if the effects are multiplicative at the individual level
and no other sources of bias are present [31, 79].

The second method used to control for con-
founders in ecologic analyses is rate standardization
for these confounders, followed by regression of
the standardized rates as the outcome variable (see
Standardization Methods). Note that this method
requires additional data on the joint distribution of
the covariate and disease within each group (i.e. the
M frequencies in Figure 1). Nevertheless, it cannot
be expected to reduce bias unless all predictors in the

model (X and Z) are also mutually standardized for
the same confounders [31, 34, 82]. Standardization of
the exposure prevalences, for example, requires data
on the joint distribution of the covariate and exposure
within groups (i.e. the N frequencies in Figure 1);
unfortunately, this information is not usually avail-
able in ecologic studies.

As in individual-level analyses, product terms (e.g.
XZ) are often used in ecologic analyses to model
interaction effects, i.e. to assess effect modification.
In ecologic analyses, however, the product of X and
Z (both group averages) is not, in general, equal to
the average product of the exposure, x, and covariate,
z, at the individual level within groups. Assuming a
linear model, XZ will be equal to the mean xz in
each group only if x and z are uncorrelated within
groups [31]. Thus, as pointed out in the next section,
interaction (nonadditive) effects at the individual
level complicate the interpretation of ecologic results.

Methodologic Problems

Despite the many practical advantages of eco-
logic studies mentioned previously, there are several
methodologic problems that may severely limit causal
inference, especially biologic inference.

Ecologic Bias

The major limitation of ecologic analysis for making
causal inferences is ecologic bias, which is the fail-
ure of expected ecologic effect estimates to reflect
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the biologic effect at the individual level [22, 28,
34, 35, 62, 79]. In addition to the usual sources
of bias that threaten individual-level analyses, the
underlying problem of ecologic analyses for estimat-
ing biologic effects is heterogeneity of exposure level
and covariate levels within groups. As noted earlier,
this heterogeneity is not fully captured with ecologic
data because of missing information on joint distri-
butions (see Figure 1). Although researchers have
long recognized the discrepancy between individual-
and group-level associations (for example [24] and
[91]), Robinson [80] was the first to describe math-
ematically how ecologic associations could differ
from the corresponding associations at the individ-
ual level within groups of the same population. He
expressed this relationship in terms of correlation
coefficients, which was later extended by Duncan
et al. [19] to regression coefficients in a linear model.
The phenomenon became widely known as the eco-
logic fallacy [86], and researchers came to recognize
that the magnitude of the ecologic bias may be severe
in practice [13, 21, 79, 87, 89].

As an illustration of ecologic bias, consider again
Durkheim’s data on religion and suicide (Figure 2).
The estimated rate ratio of 7.6 in the ecologic analysis
may not mean that the suicide rate was nearly 8 times
greater in Protestants than in non-Protestants. Rather,
since none of the regions was entirely Protestant
or non-Protestant, it may have been non-Protestants
(primarily Catholics) who were committing suicide
in predominantly Protestant provinces. It is certainly
plausible that members of a religious minority might
have been more likely to take their own lives than
were members of the majority. The implication
of this alternative explanation is that living in a
predominantly Protestant area has a contextual effect
on suicide risk among non-Protestants, i.e. there is
an interaction effect at the individual level between
religion and religious composition of one’s area of
residence.

Interestingly, Durkheim [20] compared the sui-
cide rates (at the individual level) for Protestants,
Catholics, and Jews living in Prussia. From his data,
we find that the rate was about twice as great in
Protestants as in other religious groups. Thus, there
appears to be substantial ecologic bias (i.e. compar-
ing rate-ratio estimates of about 2 vs. 8). Durkheim,
however, failed to notice this quantitative difference
because he did not actually estimate the magnitude
of the effect in either analysis.

Greenland & Morgenstern [34] showed that eco-
logic bias can arise from three sources when using
simple linear regression to estimate the crude
exposure effect: the first may operate in any type
of study; the latter two are unique to ecologic stud-
ies (i.e. cross-level bias) but are defined in terms of
individual-level parameters.

1. Within-group bias: ecologic bias may result from
bias within groups due to confounding, selec-
tion methods, or misclassification, even though
within-group effects are not estimated. Thus, for
example, if there is positive confounding of the
crude effect parameter in every group, we would
expect the crude ecologic estimate to be biased
as well.

2. Confounding by group: ecologic bias may re-
sult if the background rate of disease in the
unexposed population varies across groups, spe-
cifically, if there is a nonzero ecologic correlation
between mean exposure level and the background
rate.

3. Effect modification by group (on an additive
scale): ecologic bias may also result if the
rate difference for the exposure effect at the
individual level varies across groups.

Confounding and effect modification by group (the
sources of cross-level bias) can arise in three ways:
(i) extraneous risk factors (confounders or modifiers)
are differentially distributed across groups; (ii) the
ecologic exposure variable has a contextual effect on
risk separate from the biologic effect of its individual-
level analog, e.g. living in a predominantly Protestant
area vs. being Protestant (in the suicide example); or
(iii) disease risk depends on the prevalence of that
disease in other members of the group, which is true
of many infectious diseases [50].

To appreciate the sources of cross-level bias, it
is helpful to consider simple numerical illustrations
involving both individual-level and ecologic analyses
with the same population. The hypothetical example
in Table 1 involves a dichotomous exposure, x, and
three groups. At the individual level, both the rate
difference and rate ratio vary somewhat across the
groups, but the effect is positive in all groups; the
crude and group-standardized rate ratio is 2.0. Fitting
a linear model to the ecologic data, however, we find
that the slope for the exposure variable, X, is negative
and the rate ratio is 0.50, suggesting a protective
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Table 1 Number of new cases, person-years (P-Y) of follow-up, and disease rate (Y , per 100 000/year), by group and
exposure status (x) (top panel); summary parameters for each group (middle panel); and results of individual-level and
ecologic analyses (bottom panel): hypothetical example of ecologic bias due to effect modification by group

Group 1 Group 2 Group 3
Exposure
status (x) Cases P-Y Rate Cases P-Y Rate Cases P-Y Rate

Exposed (x = 1) 20 7 000 286 20 10 000 200 20 13 000 154
Unexposed (x = 0) 13 13 000 100 10 10 000 100 7 7 000 100
Total 33 20 000 165 30 20 000 150 27 20 000 135

% exposed (100X) 35 50 65
Rate difference (per 105/year) 186 100 54
Rate ratio 2.9 2.0 1.5

Individual-level analysis: Ecologic analysis: Linear model
Crude rate ratioa = 2.0 Ŷ = 200 − 100X (R2 = 1)
Adjusted rate ratio (SMR)b = 2.0 Rate ratio = 0.50

aRate ratio for the total population, unadjusted for group.
bRate ratio standardized for group, using the exposed population as the standard.

effect. The reason for such large ecologic bias is
heterogeneity of the rate difference across groups
(effect modification by group). In this example, there
is no confounding by group because the unexposed
rate is the same (100 per 105/year) in all three
groups.

The example in Table 2 illustrates the conditions
for no cross-level bias. First, group is not a mod-
ifier of the exposure effect at the individual level
because the rate difference (100 per 105/year) is
uniform across groups (even though the rate ratio
varies). Second, group is not a confounder of the
exposure effect because there is no ecologic corre-
lation between the percent exposed (100X) and the
unexposed rate. Thus, the individual-level and eco-
logic estimates of the rate ratio are the same (1.8) and
unbiased, even though the R2 for the fitted model is
very low (0.029).

Unfortunately, the two conditions that produce
cross-level bias cannot be checked with ecologic
data because those conditions are defined in terms of
individual-level associations. This inability to check
the validity of ecologic results seriously limits bio-
logic inference. Furthermore, the fit of the ecologic
regression model, in general, gives no indication of
the presence, direction, or magnitude of ecologic
bias. Thus, a model with excellent fit may yield sub-
stantial bias, and one model with a better fit than
another model may yield more bias. For example,
there was substantial bias when fitting a linear model
to Durkheim’s suicide data in Figure 2, despite an

excellent fitting model (R2 = 0.97). Recall that the
estimated rate ratio was 7.6, compared with a “true”
rate ratio of approximately 2 (see section “Effect
Estimation” above). If we fit a loglinear model to
the same data, we get Ŷ = exp[1.974 + 1.418X]
and R2 = 0.91; therefore, the estimated rate ratio is
exp[1.418] = 4.1. Thus, the loglinear model produces
less bias even though it has a smaller R2 than does
the linear model. In general, we cannot expect to
reduce bias by using better-fitting models in ecologic
analysis.

A potential strategy for reducing ecologic bias
is to use smaller units in an ecologic study (e.g.
counties instead of states) to make the groups more
homogeneous with respect to the exposure. On the
other hand, this strategy might not be feasible owing
to the lack of available data aggregated at the same
level, and it can lead to another problem: greater
migration between groups (see the section “Other
Problems”, subsection “Migration Across Groups”)
[62, 95].

Problems of Confounder Control

As indicated in a previous section, covariates are
included in ecologic analyses to control for con-
founding, but the conditions for a covariate being
a confounder are different at the ecologic and indi-
vidual levels [34, 35]. At the individual level, a
risk factor must be associated with the exposure
to be a confounder. In a multiple-group ecologic
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Table 2 Number of new cases, person-years (P-Y) of follow-up, and disease rate (Y , per 100 000/year), by group and
exposure status, x, (top panel); summary parameters for each group (middle panel); and results of individual-level and
ecologic analyses (bottom panel): hypothetical example of no ecologic bias

Group 1 Group 2 Group 3
Exposure
status (x) Cases P-Y Rate Cases P-Y Rate Cases P-Y Rate

Exposed (x = 1) 16 8 000 200 30 10 000 300 24 12 000 200
Unexposed (x = 0) 12 12 000 100 20 10 000 200 8 8 000 100
Total 28 20 000 140 50 20 000 250 32 20 000 160

% exposed (100X) 40 50 60
Rate difference (per 105/year) 100 100 100
Rate ratio 2.0 1.5 2.0

Individual-level analysis: Ecologic analysis: Linear model
Crude rate ratioa = 1.8 Ŷ = 133 + 100X

(R2 = 0.029)

Adjusted rate ratio (SMR)b = 1.8 Rate ratio = 1.8

aRate ratio for the total population, unadjusted for group.
bRate ratio standardized for group, using the exposed population as the standard.

study, in contrast, a risk factor may produce eco-
logic bias (i.e. it may be an ecologic confounder)
even if it is unassociated with the exposure in
every group, especially if the risk factor is ecologi-
cally associated with the exposure across groups [31,
34]. Conversely, a risk factor that is a confounder
within groups may not produce ecologic bias if it
is ecologically unassociated with the exposure across
groups.

Control for confounders is more problematic in
ecologic analyses than in individual-level analyses
[31, 34, 35]. Even when all variables are accu-
rately measured for all groups, adjustment for extra-
neous risk factors may not reduce the ecologic
bias produced by these risk factors. In fact, it is
possible for such ecologic adjustment to increase
bias [34, 35].

It follows from the principles presented in the
previous section that there will be no ecologic bias
in a multiple linear regression analysis if all the
following conditions are met:

1. There is no residual within-group bias in expo-
sure effect in any group due to confounding by
unmeasured risk factors, selection methods, or
misclassification.

2. There is no ecologic correlation between the
mean value of each predictor (exposure and
covariate) and the background rate of disease
in the joint reference (unexposed) level of all

predictors (so that group does not confound the
predictor effects).

3. The rate difference for each predictor is uniform
across levels of the other predictors within groups
(i.e. the effects are additive).

4. The rate difference for each predictor, conditional
on other predictors in the model, is uniform
across groups (i.e. group does not modify the
effect of each predictor on the additive scale at
the individual level).

These conditions are sufficient, but not necessary,
for the ecologic estimate to be unbiased, i.e. there
might be little or no bias even if none of these
conditions is met. On the other hand, minor devi-
ations from the latter three conditions can produce
substantial cross-level bias [31]. Since the sufficient
conditions for no cross-level bias cannot be checked
with ecologic data alone, the unpredictable and poten-
tially severe nature of such bias makes biologic
inference from ecologic analyses particularly prob-
lematic.

The conditions for no cross-level bias with covari-
ate adjustment are illustrated in the hypothetical
example in Table 3. Both the exposure, x, and covari-
ate, z, are dichotomous variables, and there are three
groups. At the individual level, the covariate is not
a confounder of the exposure effect because there
is no exposure–covariate association within any of
the groups. Thus, the crude and adjusted estimates of
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Table 3 Number of new cases, person-years (P-Y) of follow-up, and disease rate (Y , per 100 000/year), by group,
covariate status, z, and exposure status, x (top panel); summary parameters for each group (middle panel); and results
of individual-level and ecologic analyses (bottom panel): hypothetical example of no ecologic bias; covariate is an ecologic
confounder but not a within-group confounder

Group 1 Group 2 Group 3
Covariate Exposure
status (z) status (x) Cases P-Y Rate Cases P-Y Rate Cases P-Y Rate

1 Exposed 18 3 000 600 24 4 000 600 24 4 000 600
Unexposed 60 12 000 500 40 8 000 500 30 6 000 500
Total 78 15 000 520 64 12 000 533 54 10 000 540

0 Exposed 4 2 000 200 8 4 000 200 12 6 000 200
Unexposed 8 8 000 100 8 8 000 100 9 9 000 100
Total 12 10 000 120 16 12 000 133 21 15 000 140

Total Exposed 22 5 000 440 32 8 000 400 36 10 000 360
Unexposed 68 20 000 340 48 16 000 300 39 15 000 260
Total 90 25 000 360 80 24 000 333 75 25 000 300

% exposed (100X) 20 33 40
% with z = 1 (100Z) 60 50 40

Individual-level analysis: Ecologic analysis: Linear models
Crude rate ratioa = 1.3 Crude: Ŷ = 420 − 286X (R2 = 0.94);

rate ratio = 0.32
Adjusted rate ratio (SMR)b = 1.3 Adjusted: Ŷ = 100 + 100X + 400Z

(R2 = 1); rate ratioc = 1.3

aRate ratio for the total population, unadjusted for group or the covariate.
bRate ratio standardized for group and the covariate, using the exposed population as the standard.
cSetting Z = 0.50 (the mean for all three groups).

the rate ratio are nearly the same (1.3). In the eco-
logic analysis, however, the covariate is a confounder
because there is an inverse association between the
exposure, X, and the covariate, Z, across groups.
Thus, although the crude ecologic estimate of the rate
ratio (0.32) is severely biased, the adjusted estimate
(1.3) is unbiased. The reasons for no cross-level bias
with covariate adjustment are: (i) the rate (100 per
105/year) in the joint reference group (x = z = 0)

does not vary across groups, i.e. condition 2 is met;
and (ii) the rate difference (100 per 105/year) is uni-
form within groups and across groups, i.e. conditions
3 and 4 are met.

The example in Table 4 illustrates cross-level bias
when the null hypothesis is true. At the individual
level, the covariate (z) is a strong confounder because
it is a predictor of the disease in the unexposed
population and it is associated with exposure status,
x, within groups. Thus, the crude rate ratio (2.1)
is biased. At the ecologic level, however, there
is no association between the exposure, X, and
the covariate, Z, so that the covariate is not an
ecologic confounder. Nevertheless, both the crude

and adjusted rate ratios (8.6) are strongly biased
because the rate in the joint reference category
(x = z = 0) is ecologically correlated with both the
exposure, X, and the covariate, Z – i.e. condition 2
is not met.

Lack of additivity at the individual level (refer
to condition 3) is common in epidemiology, but
unmeasured modifiers do not bias results at the
individual level if they are unrelated to the exposure
[30]. Furthermore, interactions may be handled read-
ily at the individual level by including product terms
as predictors in the model (e.g. xz). In ecologic anal-
yses, however, lack of additivity within groups is a
source of ecologic bias, and this bias cannot be elim-
inated by the inclusion of product terms (e.g. XZ)
unless the effects are exactly multiplicative and the
two variables are uncorrelated within groups [78]. If x

and z are correlated within groups, additional data on
the x –z associations (the N frequencies in Figure 1)
can be used to improve the ecologic estimate of each
predictor effect controlling for the other [68, 76].

Another source of ecologic bias is misspecifica-
tion of confounders [35]. Although this problem can
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Table 4 Number of new cases, person-years (P-Y) of follow-up, and disease rate (Y , per 100 000/year), by group,
covariate status, z, and exposure status, x (top panel); summary parameters for each group (middle panel); and results of
individual-level and ecologic analyses (bottom panel): hypothetical example of ecologic bias due to confounding by group;
covariate is a within-group confounder but not an ecologic confounder

Group 1 Group 2 Group 3
Covariate Exposure
status (z) status (x) Cases P-Y Rate Cases P-Y Rate Cases P-Y Rate

1 Exposed 40 8 000 500 195 13 000 1500 140 14 000 1 000
Unexposed 60 12 000 500 180 12 000 1500 60 6 000 1 000
Total 100 20 000 500 375 25 000 1500 200 20 000 1 000

0 Exposed 2 2 000 100 6 2 000 300 12 6 000 200
Unexposed 28 28 000 100 69 23 000 300 48 24 000 200
Total 30 30 000 100 75 25 000 300 60 30 000 200

Total Exposed 42 10 000 420 201 15 000 1340 152 20 000 760
Unexposed 88 40 000 220 249 35 000 711 108 30 000 360
Total 130 50 000 260 450 50 000 900 260 50 000 520

% exposed (100X) 20 30 40
% with z = 1 (100Z) 40 50 40

Individual-level analysis: Ecologic analysis: Linear models
Crude rate ratioa = 2.1 Crude: Ŷ = 170 + 1300X(R2 = 0.16);

rate ratio = 8.6
Adjusted rate ratio (SMR)b = 1.0 Adjusted: Ŷ = −2040 + 1300X + 5100Z

(R2 = 1); rate ratioc = 8.6

aRate ratio for the total population, unadjusted for group or the covariate.
bRate ratio standardized for group and the covariate, using the exposed population as the standard; also the common rate ratio
within each group.
cSetting Z = 0.433 (the mean for all three groups).

also arise in individual-level analyses, it is more diffi-
cult to avoid in ecologic analyses because the relevant
confounder may be the distribution of covariate histo-
ries for all individuals within each group. In ecologic
studies, therefore, adjustment for covariates derived
from available data (e.g. proportion of current smok-
ers) may be inadequate to control confounding. It is
preferable, whenever possible, to control for more
than a single summary measure of the covariate dis-
tribution (e.g. the proportions of the group in each
of several smoking categories), provided the out-
come rate is not standardized (see section “Effect
Estimation” above). In addition, since it is usually
necessary to control for several confounders (among
which the effects may not be linear and additive), the
best approach for reducing ecologic bias is to include
covariates for categories of their joint distribution
within groups. For example, to control ecologically
for race and sex, the investigator might adjust for
the proportions of white women, nonwhite men, and
nonwhite women (treating white men as the referent),
rather than the conventional approach of adjusting for

the proportions of men (or women) and whites (or
nonwhites).

Within-Group Misclassification

The principles of misclassification bias with which
epidemiologists are familiar when interpreting the
results of analyses conducted at the individual level
do not apply to ecologic analyses. At the individual
level, for example, nondifferential misclassification
of exposure nearly always leads to bias toward the
null. In multiple-group ecologic studies, however,
this principle does not hold when the exposure
variable is an aggregate measure. Brenner et al. [5]
have shown that nondifferential misclassification of
a dichotomous exposure within groups usually leads
to bias away from the null and that the bias may be
severe.

As an illustration of this distinct feature of eco-
logic analysis, consider the two-group example in
Table 5, which contrasts analyses with correctly clas-
sified and misclassified exposure data at both the
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Table 5 Number of new cases, person-years (P-Y) of follow-up, and disease rate (Y , per 100 000/year), by group, type
of exposure classification (correct vs. misclassifieda), and exposure status (top panel); % exposed by group (middle panel);
and results of individual-level and ecologic analyses (bottom panel): hypothetical example of ecologic bias away from the
null due to nondifferential exposure misclassification within groups

Group 1 Group 2
Exposure Exposure
classification status Cases P-Y Rate Cases P-Y Rate

Correctly Exposed (x = 1) 50 20 000 250 100 40 000 250
classified Unexposed (x = 0) 40 80 000 50 30 60 000 50

Total 90 100 000 90 130 100 000 130
Misclassifieda Exposed (x ′ = 1) 49 26 000 188 93 42 000 221

Unexposed (x ′ = 0) 41 74 000 55 37 58 000 64
Total 90 100 000 90 130 100 000 130

% exposed – correctly classified (100X) 20 40
% exposed – misclassified (100X′) 26 42

Individual-level analysis: Ecologic analysis: Linear models
Correct: rate ratiob = 5.0 Correct: Ŷ = 50 + 200X;

rate ratio = 5.0
Misclassified: rate ratioc = 3.4 Misclassified: Ŷ = 25 + 250X′;

rate ratio = 11.0

aSensitivity = specificity = 0.9 for both cases and noncases (nondifferential misclassification).
bCommon rate ratio within each group.
cCommon rate ratio, using the Mantel-Haenszel method.

individual and ecologic levels. The sensitivity and
specificity of exposure classification are assumed to
be 0.9 for both cases and noncases in the popula-
tion. The correct rate ratio at the individual level
is 5.0; with nondifferential exposure misclassifica-
tion, the observed rate ratio would be 3.4, which is
biased toward the null. Although an ecologic analysis
of the correctly classified data yields an unbiased
estimate of the rate ratio (5.0), an analysis with
misclassified data would yield an observed rate ratio
of 11.0, which is strongly biased away from the
null. To appreciate the direction of the misclassifi-
cation bias in this ecologic analysis, notice that the
difference in the percent exposed (100X) between
the two groups decreases from 40% − 20% = 20% to
42% − 26% = 16% when the exposure is misclassi-
fied (see Table 5). Thus, the slope in the misclassified
analysis increases from 200 to 250 per 105/year. In
addition, the intercept decreases from 50 to 25 per
105/year. Each of these changes causes the observed
rate ratio with the misclassified data to increase (away
from the null).

It is possible to correct for nondifferential mis-
classification of a dichotomous exposure or disease
in ecologic analyses, based on prior specifications
of sensitivity and specificity [[4], Appendix 1; 32].

Suppose, for example, we wish to correct for non-
differential exposure misclassification when using
simple linear regression (no covariates) to estimate
the exposure effect. The corrected estimator of the
rate ratio derived from the model results is (B0 +
B1Se)/[B0 + B1(1 − Sp)], where B0 and B1 are the
estimated intercept and slope from the misclassified
data, Se is the sensitivity of exposure classification,
and Sp is the specificity. For example, the cor-
rected rate-ratio estimate for the misclassified expo-
sure data in Table 5 is (25 + 250 × 0.9)/(25 + 250 ×
0.1) = 5.0, which is equal to the estimate based
on Greenland & Brenner [32] also derived a cor-
rected estimator for the variance of the estimated rate
ratio.

In studies conducted at the individual level, mis-
classification of a covariate, if nondifferential with
respect to both exposure and disease, will usu-
ally reduce our ability to control for that con-
founder [29, 84]. That is, adjustment will not com-
pletely eliminate the bias due to the confounder.
In ecologic studies, however, nondifferential mis-
classification of a dichotomous confounder within
groups does not affect our ability to control for
that confounder, provided there is no cross-level
bias [4].
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If the outcome and all but one predictor (i.e.
the exposure or a covariate) in a given analysis
are measured at the individual level, then this par-
tially ecologic analysis may also be regarded as
nonecologic with the ecologic variable misclassified.
Thus, the resulting bias may be understood in terms
of misclassification bias operating at the individual
level.

Other Problems

Lack of Adequate Data. Certain types of data,
such as medical histories, may not be available in
aggregate form; or available data may be too crude,
incomplete, or unreliable, such as sales data for
measuring behaviors [62, 95]. In addition, secondary
sources of data from different administrative areas
or from different periods may not be comparable.
For example, disease rates may vary across countries
because of differences in disease classification or case
detection. Furthermore, since many ecologic analyses
are based on mortality rather than incidence data,
causal inference is further limited because mortality
reflects the course of disease as well as its occurrence
[48].

Temporal Ambiguity. In a well-designed cohort
study of disease incidence, we can usually be confi-
dent that disease occurrence did not precede the expo-
sure. In ecologic studies, however, use of incidence
data provides no such assurance against this tempo-
ral ambiguity [62]. The problem is most troublesome
when the disease can influence exposure status in
individuals or when the disease rate can influence
the mean exposure in groups (through the impact of
population interventions designed to change exposure
levels in areas with high disease rates).

The problem of temporal ambiguity in ecologic
studies (especially time-trend studies) is further com-
plicated by an unknown or variable induction and
latent periods between exposure and disease detec-
tion [37, 95]. The investigator can only attempt to
deal with this problem in the analysis by examining
associations for which there is a specified lag between
observations of average exposure and disease rate.
Unfortunately, there may be little prior information
about induction and latency on which to base the lag,
or appropriate data may not be available to accom-
modate the desired lag.

Collinearity. Another problem with ecologic anal-
yses is that certain predictors, such as sociodemo-
graphic and environmental factors, tend to be more
highly correlated with each other than they are at
the individual level [13, 87]. The implication of such
collinearities is that it is very difficult to separate the
effects of these variables statistically; analyses yield
model coefficients with very large variances so that
effect estimates may be highly unstable. In general,
collinearity is most problematic in multiple-group
ecologic analyses involving a small number of large,
heterogeneous regions [19, 92].

Migration Across Groups. Migration of individu-
als into or out of the source population can produce
selection bias in a study conducted at the individual
level because migrants and nonmigrants may differ on
both exposure prevalence and disease risk. Although
it is clear that migration can also cause ecologic bias
[49, 70], little is known about the magnitude of this
bias or how it can be reduced in ecologic studies [63].

Ecologic Results and Epidemiologic
Controversy

Contemporary epidemiologists take a conservative
view of ecologic studies. Knowing that ecologic
estimates of effect may be severely biased because
of problems discussed in the previous section, epi-
demiologists tend to trust ecologic findings only if
such findings agree with the results of other stud-
ies conducted at the individual level, particularly
case–control and cohort studies. Nevertheless, this
conservative view ignores the possibility that in cer-
tain situations ecologic results might be less biased
than are results from case–control and cohort studies,
which may, for example, involve appreciable error
in measuring exposures (see Measurement Error in
Epidemiologic Studies). Inconsistencies between the
results of ecologic and other studies, therefore, can
generate controversy about risk-factor effects and the
potential for prevention.

One such controversy involving ecologic evidence
concerns the possible effect of dietary fat on the risk
of breast-cancer. In 1990, Prentice & Sheppard [74]
reported results from three types of ecologic stud-
ies: (i) an international comparison of breast-cancer
incidence during the period 1978–82 in 21 coun-
tries (analytic multiple-group design); (ii) a compar-
ison of trends in breast-cancer incidence between
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the 1960s and 1978–82 among 10 of the 21 coun-
tries in the previous analysis (analytic mixed design);
and (iii) a comparison of breast-cancer incidence in
US residents of Japanese descent vs. Japanese resi-
dents (exploratory multiple-group design). Using data
from the 21-country study, the authors found that
a 50% reduction in the supply (disappearance) of
total fat is associated with a 60% reduction in the
incidence of breast cancer among post-menopausal
women (ages 55–69). The magnitude of this asso-
ciation did not change appreciably when controlling
for gross national product, per capita supply of non-
fat calories, and other ecologic variables available to
the investigators. The results were similar when the
exposure was measured as grams of fat per day and
percent of calories from fat [75]. In addition, the asso-
ciation between fat and breast cancer observed in the
21-country analysis was consistent with the results of
the two other ecologic analyses.

Despite the large effect and the consistency of
these ecologic findings, causal inference is limited for
several reasons (for example [40, 43, 75], and [98]):
First, because of food wastage, nonhuman consump-
tion, and poor reporting, the per capita supply of fat
may not be proportional to the per capita consump-
tion of fat across countries. Furthermore, the ecologic
analyses were conducted within age–sex strata, but
per capita fat supply was obtained only for the total
population of each country. Second, there may have
been systematic differences in breast-cancer detec-
tion across countries. Third, Prentice & Sheppard
did not have data to control for certain breast-cancer
risk factors, such as reproductive history and energy
restriction or physical activity early in life. Fourth, the
ecologic estimates of effect are susceptible to cross-
level bias for other reasons discussed in the previous
section.

Although Prentice & Sheppard [74] could not
address the above limitations directly, they conducted
additional analyses to demonstrate that their ecologic
findings were consistent with the results of a pooled
analysis of raw data from 12 case–control studies of
fat and breast cancer [44]. Using the effect estimate
from the 21-country study, they projected the rate
ratios (“relative risks”) that would be expected in
the pooled analysis of case–control studies, assuming
random nondifferential error in measuring dietary
fat – i.e. assuming the amount of measurement error
does not depend on other variables in the analysis. To
estimate the amount of measurement error, Prentice

& Sheppard used the results of a validation study
in which food-frequency data (the type used in
the case–control studies) were compared with food-
record data for the same subjects. They found, for
example, that the projected rate ratio for the highest
quintile of fat consumption vs. the lowest quintile was
1.46, compared with an observed rate ratio of 1.53 in
the pooled analysis of case–control studies [74].

Reactions to the results of Prentice & Sheppard
varied considerably. While Hiller & McMichael [40]
called their work “a revitalization of ecological
studies”, Willett & Stampfer [98] maintained that
“virtually all the analyses presented by Prentice
and Sheppard are irrelevant to etiologic relationships
between fat intake and risk of cancer”.

One possible problem with the method of Pren-
tice & Sheppard is their assumption that error in
measuring fat intake is nondifferential with respect
to disease status. Since dietary fat is measured after
cases are detected in case–control studies, it is pos-
sible that cases were more likely to exaggerate their
past consumption of fat or that controls were more
likely to underestimate it; thus, the rate ratio would
be positively biased. To address this concern, Hunter
et al. [46] conducted a pooled analysis of raw data
from seven cohort studies in which error in measuring
fat intake at baseline would be expected to be non-
differential with respect to subsequent disease status.
The estimated rate ratio for the highest quintile of
(energy-adjusted) fat intake versus the lowest quin-
tile was 1.05, and this estimate did not change much
when correcting for random nondifferential error in
measuring fat intake. Thus, Hunter et al. [46] con-
cluded that there was no evidence of a positive effect
of dietary fat on breast-cancer risk. The implication
is that effect estimates from the case–control stud-
ies were positively biased by differential recall of
fat intake and/or selection methods (see Recall Bias)
and that effect estimates from ecologic studies were
also positively biased due to the problems mentioned
above.

As coherent as these interpretations may appear,
they still depend on rather strong assumptions about
the error in measuring fat intake at the individual
level. It is possible, for example, that the amount
of measurement error depends on relevant variables
other than disease status. This possibility was eval-
uated in a recent study by Prentice [71], who used
the fat-effect estimate from the 21-country study to
project the rate ratios expected in cohort studies under
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more realistic assumptions of measurement error.
To assess the amount of measurement error, Pren-
tice used the results of another validation study in
which food-frequency data were compared with 4-
day food-record data at two times, one year apart. In
this way, he allowed the amount of error in mea-
suring fat intake to depend on body mass index;
and he allowed for measurement errors for the two
assessment instruments to be correlated. Under these
conditions, he found that the projected rate ratio
for the effect of total fat, comparing the highest
and lowest quintiles, is approximately 1.1. Pren-
tice concluded, therefore, that the results of Hunter
et al.’s [46] pooled analysis of cohort studies is con-
sistent with an effect of fat intake estimated from the
international ecologic study.

It is not likely that these recent findings of
Prentice will settle disagreements about the possible
effect of dietary fat on the risk of breast cancer.
Whether ecologic or nonecologic studies provide
more accurate estimates of diet effects on cancer
incidence remains controversial.

Multilevel Analyses and Designs

Knowing the severe methodologic limitations of
ecologic analysis for making biologic inferences,
many epidemiologists who report ecologic results
argue that there can be no cross-level bias when their
primary objective is to estimate an ecologic effect (for
example [8, 10] and [88]). For example, we might
want to estimate the ecologic effect (effectiveness)
of state laws requiring smoke detectors by comparing
the fire-related mortality rate in those states with the
law vs. other states without the law [62]. Although
this is a reasonable objective, the interpretation of
observed ecologic effects is complicated by two
related issues.

First, disease occurs in individuals; thus, the
disease rate in a population is an aggregate, not
a global, measure. Consequently, biologic inference
may be implicit to the objectives of an ecologic
study unless the underlying biologic and contextual
effects are already known from previous research.
Can smoke detectors placed appropriately in homes
reduce the risk of fire-related mortality in those
homes by providing an early warning of smoke?
Does living in an area where most homes are
properly equipped with smoke detectors reduce the

risk of fire-related mortality in homes with and
without smoke detectors? The first question refers to
a possible biologic (biobehavioral) effect; the second
question refers to a possible contextual effect. The
ecologic effect of smoke-detector laws depends on
these biologic and contextual effects as well as other
factors, e.g. the level of enforcement, the quality
of smoke-detector design and construction, the cost
and availability of smoke detectors, and their proper
placement, installation, operation, and maintenance.
In an ecologic study without additional information,
the ecologic effect is completely confounded with
related biologic and contextual effects.

The second complicating issue in interpreting
observed ecologic effects is the need to control for
confounders measured at the individual level. Even
if the exposure is a global measure, such as a law,
groups are seldom completely homogeneous or com-
parable with respect to confounders. To make a valid
comparison between states with and without smoke-
detector laws, for example, we would need to control
for differences among states in the joint distribution
of extraneous risk factors, such as socioeconomic sta-
tus of residents, firefighter availability and access,
building design and construction (see also the earlier
section “Problems of Confounder Control”).

Perhaps the best solution to these problems is to
incorporate both individual-level and ecologic mea-
sures in the same analysis. This approach might
include different measures of the same factor; for
example, each subject would be characterized by
his or her own exposure level as well as the aver-
age exposure level for all members of the group to
which he or she belongs (aggregate measure). Not
only would this approach help to clarify the sources
and magnitude of ecologic and cross-level bias, but
it would also allow us to separate biologic, contex-
tual, and ecologic effects. It is especially appropriate
in social epidemiology, infectious-disease epidemiol-
ogy, and the evaluation of population interventions.

There are various statistical methods for including
both individual-level and ecologic measures in the
same analysis; two will be discussed here. The first
method, often called contextual analysis in the social
sciences, is a simple extension of conventional (gen-
eralized linear) modeling such as multiple linear
regression and logistic regression [3, 47]. The model,
which is fit to the data at the individual level, includes
both individual-level and ecologic predictors. For
example, suppose we wanted to estimate the effect of
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“herd immunity” on the risk of an infectious disease.
The risk, y, of disease might be modeled as a func-
tion of the following linear component: β0 + β1x +
β2X + β3xX, where x is the individual’s immunity
status and X is the prevalence of immunity in the
group to which that individual belongs [93]. There-
fore, β1 represents the biologic effect of individual
immunity, β2 represents the contextual effect of herd
immunity, and β3 represents the interaction effect,
which allows the herd-immunity effect to depend on
the individual’s immune status. The interaction term
is needed in this application, since we would expect
no herd immunity effect among immune individuals.
Note, however, that the interpretation of the interac-
tion effect depends on the form of the model.

An important limitation of contextual analysis is
that outcomes of individuals within groups are treated
as independent. In practice, however, the outcome
of an individual in one group often depends on the
outcomes of other individuals in that group. Ignor-
ing such within-group dependence (“clustering”) gen-
erally results in estimated variances of contextual
effects that are biased downward, making confi-
dence intervals too narrow. To handle this prob-
lem of within-group dependence, we can add ran-
dom effects to the conventional (contextual) model
described above; this approach is called mixed-effects
modeling, multilevel modeling, or hierarchical regres-
sion [7, 27, 100, 101]. Multilevel modeling is a
powerful technique with many applications. It can be
used to estimate contextual and ecologic effects and
to derive improved (empirical Bayes) estimates of
biologic effects. It can also be used to determine how
much of the difference in outcome rates across groups
(ecologic effect) can be explained by differences in
the distribution of individual-level risk factors (bio-
logic effects).

As an illustration, suppose that we want to esti-
mate the biologic and contextual effects of income
level on a continuous measure of health status (ignor-
ing other potential confounders). Let yij = the health
status of the ith individual living in the j th census
tract (group), and xij = the annual income of the ith
individual living in the j th census tract. At the first
level of analysis, we model the individual’s health
status within each census tract as a function of income
level – i.e.

yij = β0j + β1j xij + εij , (1)

where εij is the error term representing the unique
(residual) effect associated with the ith individual in
the j th census tract. At the second (ecologic) level,
we model the census tract-specific intercepts (β0j )

and slopes, β1j , from the first level as a function of
average census-tract income, Xj – i.e.

β0j = B00 + B01Xj + E0j , (2)

β1j = B10 + B11Xj + E1j , (3)

where E0j and E1j are error terms representing the
random effects associated with the j th census tract.
The underlying assumption is that the census tract-
specific regression parameters are random samples
from a population of such parameters. By substituting
(2) and (3) into (1), we obtain the following combined
two-level model:

yij = B00 + B01Xj + B10xij + B11xijXj

+ E0j + E1jxij + εij , (4)

where B10 represents the biologic effect of individual
income on health status, B01 represents the contextual
effect of average census-tract income on health status,
and B11 represents the interaction effect of individual
income and average census-tract income. Using an
empirical Bayes procedure, we can also derive an
improved estimate of the individual-income effect
(β1j ) for each census tract. This is accomplished by
computing a weighted average of the estimated slope
for census tract j in level 1 (equation 1) and the
predicted value of this slope using all census tracts
in level 2 (equation 3).

Applying multilevel analysis to survey data col-
lected in the UK, Humphreys & Carr-Hill [45] found
that living in a poor area (electoral ward) had a detri-
mental effect on several health outcomes, controlling
for socioeconomic status and other individual-level
covariates. In a conventional ecologic analysis, the
effects of living in a poor area and being poor (low
socioeconomic status) would be confounded, and eco-
logic estimates of effect would be susceptible to
cross-level bias.

Multilevel analysis can also be extended to more
than two levels. For example, we might want to
predict certain health outcomes in nursing-home res-
idents as a function of characteristics of the residents
(e.g. age and health status), their physicians (e.g. type
of specialty and country of medical training), and the
nursing homes (e.g. size and doctor-to-patient ratio).
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In this type of analysis, residents are grouped by their
physician (who might provide care to many residents
in one home) and by their nursing-home affiliation.

The simplest design for generating multilevel anal-
yses is a single survey of a population that is
large and diverse enough so that multiple groups
(e.g. counties or ethnic groups) can be defined
for ecologic measurement and analysis. In addition
to environmental and global variables for regions
or organizations, ecologic measures are derived by
aggregating all subjects in each group. An alternative,
more efficient, approach is a multilevel or hybrid
design in which a two-stage sampling scheme is
used first to select groups (stage 1), followed by the
selection of individuals within groups (stage 2) (for
example [45] and [65]) (see Multistage Sampling).
A hybrid design might involve conducting a con-
ventional multiple-group ecologic study by linking
different data sources, then obtaining supplemental
data from individuals randomly sampled from each
group (see Record Linkage). For example, by esti-
mating the exposure–covariate association in each
subsample, this approach can be used to improve
the control of confounders in an ecologic analysis
[65, 68, 73]. A variation of this hybrid design might
involve a case–control study as the second stage.
Cases would be identified in the first (ecologic) stage,
and controls would be matched to cases on group
affiliation and possibly other factors (see Matching).

Conclusions

There are several practical advantages of eco-
logic studies, which make them especially appealing
for doing various types of epidemiologic research.
Despite these advantages, however, ecologic analysis
poses major problems of interpretation when making
ecologic inferences and especially when making bio-
logic inferences. From a methodologic perspective, it
is best to have individual-level data on as many rele-
vant nonglobal measures as possible. Just because the
exposure variable is measured ecologically, for exam-
ple, does not mean that other variables should be as
well. The accuracy of effect estimates from ecologic
studies can often be improved by obtaining additional
data on the within-group associations between covari-
ates, between the exposure and covariates, or between
the disease and covariates.

Several epidemiologists have recently called for
greater emphasis on understanding differences in

health status between populations – a return to a
public-health orientation, in contrast to the individ-
ual (reductionist) orientation of modern epidemiol-
ogy [51, 55, 60, 67, 81, 90]. This recommendation
represents an important challenge for the future of
epidemiology, but it cannot be met simply by con-
ducting ecologic studies; multiple levels of measure-
ment and analysis are needed. Even when the purpose
of the study is to estimate ecologic effects, individual-
level information is often essential for drawing valid
inferences about these effects. Thus, to address the
underlying research questions, we typically would
want to estimate and control for biologic and con-
textual effects, preferably using multilevel analysis.
In contemporary epidemiology, the “ecologic fallacy”
reflects the failure of the investigator to recognize the
need for biologic inference and thus for individual-
level data. This need arises even when the primary
exposure of interest is an ecologic measure and the
outcome of interest is the health status of entire
populations.
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Econometric Methods in
Health Services

Introduction

The purpose of this article is to provide a brief
summary of prominent econometric applications in
modern health economics, by providing a broad
overview of problems to which econometric methods
have been applied, without a detailed exposition of
the underlying mathematics, which can be found
elsewhere (see [20, 22]).

These methods typically are used to address prob-
lems in health, health care delivery, and health care
costs from a cross-section of observations at a given
time. Methods to analyze data generated from the
same units of observation (typically individuals) over
time also have been developed in many cases, but
those are not presented here in detail. The meth-
ods discussed below have evolved to deal with four
common, and sometimes interrelated problems with
health economic data:

1. The inability to observe fully a variable of inter-
est. For example, in some situations, the only
available measure of the health of an individual
is whether he or she died, was hospitalized, or
incurred some other health outcome that can be
measured only with an indicator variable (i.e. a
one if the event occurred or a zero otherwise) (see
Dummy Variables). Even when continuous mea-
sures are used, such as health expenditure data or
measures of functional status from the SF-36, the
data can be truncated. The research cannot detect
functional status lower than the lowest score on
the SF-36, and cannot observe negative values
for health expenditures.

2. The high prevalence of outliers. This is espe-
cially salient in health care cost data. In virtu-
ally every health expenditure data set there are
some very high users of medical care, resulting
in skewed distributions of costs and other mea-
sures of utilization. The section on the two-part
model and log transformations below discusses
these issues.

3. The need to compare two groups that were not
created through random assignment (see Ran-
domization). For example, in comparing patients

in a fee for service plan versus patients in a man-
aged care organization, we account for the fact
that patients self-select into these plans, instead
of being randomly assigned. This self-selection
may have implications for the underlying health
or health behaviors of the two groups that may
be difficult to observe. Thus, differences in out-
comes between the two groups may reflect selec-
tion process rather than differences in the quality
of care delivered to the two groups. Techniques
of instrumental variables and sample selection
address this type of problem.

4. The nonrandom sampling structure of many
health databases. Many databases used by
health economists were developed using non-
random sampling techniques (see Administra-
tive Databases). For example, some national
databases randomly sample households but then
survey several people in the household (e.g.
National Health Interview Survey). Others ran-
domly select a zip code or other geographic
area and then sample persons within those zip
codes to participate in the survey (e.g. Medicare
Current Beneficiary Survey, Community Track-
ing Survey).

This chapter presents an overview of econometric
methods that have been used in health services
research and increasingly in biostatistics [14]. The
statistical issues that econometric and biostatistical
methods are designed to address are often the same,
but different terminology is used to describe the same
concept [21]. Table 1 below illustrates the common
terms used to describe some of these concepts.

Econometric methods are useful in addressing a
range of problems in health services and may be
an alternative approach to analysis of health, health
care, and health insurance problems addressed by
biostatistical methods. A more detailed discussion
of the methods reviewed here can be found in the
chapter by Jones [18] or textbooks and published
papers referenced herein.

The Estimation Problem

Suppose we have a dataset on the three health insur-
ance plans, a fee-for-service (FFS) plan and two
managed care (e.g. HMO) plans, offered to 1000 peo-
ple working for 10 different employers. Also suppose
that the dataset includes demographic information of
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Table 1 Study design and statistical terms

Common term Synonymous terms

Panel data study Longitudinal or cohort study
Time series study Longitudinal study
Cross-section, time series Longitudinal study
Choice-based sampling Case–control study
Dependent variable Outcome, response, endogenous variable
Explanatory variable of

interest
Dose, treatment, exposure, intervention, exogenous

variable of interest, predictor variable
Explanatory variable Confounder, independent variable, regressor,

exogenous variable, covariate
Interaction Effect modification
Parameter estimate Beta, regression coefficient, treatment effect
Partitioned model Stratified model
Multiple regression Multivariate regression
Qualitative analysis Categorical data analysis
Logit (or probit) model Binomial logistic regression, logistic regression
Ordered logit regression Ordinal logistic regression, ordinal log-linear

regression
Multinomial logit regression Polytomous logistic regression
Conditional logit regression Conditional logistic regression, McFadden’s logit
Survival analysis Cox regression, hazard model, duration model

failure-time analysis, event history analysis
Omitted variable Unmeasured covariate, unmeasured confounder,

unobservable
Sample selection bias Censoring, selection bias, incidental truncation
Selection bias Unmeasured confounding, omitted variable bias,

confounding by indication or contraindication
Simultaneous equations Multiple multivariate regression

Source: Maciejewski, Diehr, Smith and Hebert, 2002.

these 1000 people, key characteristics of each health
plan (e.g. total premium, cost-sharing, benefits pro-
vided) in each of the 10 employers. In addition, we
observe the total health care expenditures that the
1000 people incurred in their health plan over a one-
year period and whether or not any employee died
sometime during the year.

In the discussion of econometric methods in health
services, there are various outcomes we will consider:
(1) the dichotomous choice between the two managed
care plans that each employee has to make, (2) the
trichotomous choice between all three health plans,
and (3) the total health care expenditures of each
employee. If the outcome of interest is not continu-
ously distributed, then methods to analyze these dis-
crete dependent variables are necessary. An overview
of these methods is discussed in the next section. The
following section considers methods for analyzing
continuous, nonnormally distributed outcomes, which
is followed by a discussion of simultaneous equa-
tion methods. A section on methods for count data,

such as utilization data (see Health Care Utilization
Data), concludes the chapter.

Discrete Dependent Variables

Discrete dependent variable methods are designed for
modeling dependent variables (see Response Vari-
able) that take specific ordinal or nominal values as
representations for a continuous “latent” variable (see
Path Analysis) that is unobserved by the researcher
[22]. A common outcome in health services research
is whether someone dies or not in a study period.
The researcher observes the discrete event of death
(Y ) but does not observe the latent or “true” propen-
sity to die (Y ∗). We would like to estimate whether
some set of explanatory variables (X), such as age,
gender, and race, are related to the propensity to die,
such that

Y ∗ = XB + u, (1)
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where B is a vector of parameters of interest (see
Estimation), and u is a random error term. We do
this by assuming that the discrete outcome of death
is observed if the propensity to die exceeds some
threshold. So,

Y = 0 if XB + u ≤ 0

Y = 1 if XB + u > 0. (2)

We can estimate B in one of two basic ways. We can
treat Y as if it were a continuous variable and esti-
mate a linear probability model (LPM) (see General
Linear Model) in which B is estimated by ordinary
least squares. Alternatively, we can use maximum
likelihood techniques to estimate B by expressing the
probability that Y = 1 as:

P(Y = 1) = P(XB + u > 0)

= P(u > −XB) = 1 − F(−XB), (3)

where F is the cumulative distribution of u. This
leads to the likelihood function:

Pr(Y = 1)

Pr(Y = 0)
= eXβ. (4)

Assumptions about the cumulative distribution of u

provide a means of estimating B. The probit model
(see Quantal Response Models) assumes a stan-
dard normal distribution, while the logit model (see
Logistic Regression) assumes a standard logistic dis-
tribution.

The logistic model is used most often in the health
literature, but probit and logit models often give very
similar results. An alternative is the (LPM, which
has the benefit of not relying on untestable distri-
butional assumptions regarding u, but is naturally
heteroscedastic (see Scedasticity) and therefore inef-
ficient. Moreover, predicted values of Y ∗ from the
LPM can be greater than one or less than zero. The
functional form of logit and probit models prevent
predicted values from exceeding the [0,1] interval,
but heteroscedasticity in the logit and probit models
may be a problem and could lead to biased estimates
of B.

The next types of discrete dependent variable
methods are those that take on three or more discrete
values, such as the decision by the 1000 employees
in our example to enroll in the FFS plan or one of
the two HMO plans. To explain this choice, we can
include employees’ demographic characteristics (e.g.

“characteristics of the chooser”) and/or information
about the premium, cost-sharing, and benefits of each
health plan (e.g. “characteristics of the choice”). With
these dependent variables, the method to apply is
dependent on two factors: whether there is a natural
ranking or ordering to the values of the dependent
variable and whether the independent variables are
characteristics of the outcome or characteristics of
the chooser. Qualitative dependent variables that can
be ordered, such as levels of health (e.g. excellent,
good, fair, poor) are estimated using ordered logit
or ordered probit models (see Ordered Categorical
Data). In this case, Y takes on different values
depending on the range of the latent variable (See
Figure 1).

From Figure 1 above, it is clear that Y ∗ crosses
several thresholds indicated as c1 and c2. Specific
values of Y are determined from the relation of
specific values of Y ∗ with the various thresholds as
indicated below:

Y = 0 if Y ∗ < 0

Y = 1 if c1 > Y ∗ > 0

Y = 2 if c2 > Y ∗ > c1

Y = 3 if c2 < Y ∗. (5)

If the dependent variable is unordered, such as patient
choice of providers (e.g. primary care physician, spe-
cialist, chiropractor), and the independent variables
(see Explanatory Variables) are characteristics of
the choices, then a conditional logit is appropri-
ate [22]. If the dependent variable is unordered and
the independent variables are characteristics of the
chooser, then a multinomial logit or multinomial pro-
bit is appropriate [13, 18, 22] (see Polytomous Data).
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Figure 1 Classification of latent variable Y ∗ into discrete
categories
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Dowd et al. [8] describe an example of the multino-
mial logit model applied to health plan choice. To
yield valid interpretations, the multinomial logit and
conditional logit models must satisfy the assump-
tion of independence of irrelevant alternatives (IIA),
which states that the introduction or withdrawal of
a choice will leave the probabilities of remaining
choices unchanged. For example, if patients with
lower back pain were allowed to choose either a
physician or a chiropractor, and twice as many chose
the physician, the IIA assumption states that if a new
provider were introduced – for example, a physical
therapist – the resulting distribution of patients across
providers would still have twice as many patients
choosing the physicians than the chiropractors.

This assumption often does not hold. If the IIA
assumption is not met, nested logit models may be
worth considering (see Hierarchical Models). In
these models, choices are grouped into subgroups on
the basis of some characteristic that is common to all
choices in each subgroup. Feldman et al. [10] esti-
mated a model of health plan choice using a nested
logit model. The IIA assumptions held within the
nests, but not between the nests. Additionally, recent
computer processing advances have made estimation
of multinomial and conditional probit models tenable,
which do not require the IIA assumption to be met.

Limited Dependent Variables

Limited dependent variables are continuous variables
from classical linear regression (6) that are cen-
sored or truncated for some reason [22]. This can
be expressed as:

Y ∗ = α + xβ + e, where e ∼ N(0, σ 2). (6)

In classical linear regression, data for Y ∗ are avail-
able for all observations (e.g. individuals), but Y ∗ is
never completely observed in limited dependent vari-
able models. In censored data, Y ∗ is observed only if
Y ∗ is greater (and/or lower) than some threshold, such
as survival time or healthcare costs [22]. Otherwise,
Y takes on the value of the threshold(s). For exam-
ple, survival time can be censored if some people are
still alive when the period of observation ends. This
is censoring “from above”. Health care expenditures
often are censored “from below” because we cannot
observe expenditures less than zero.

Truncated data are slightly different. For truncated
data, we observe Y ∗ only for people for whom Y ∗ is
greater than (or less than) a given threshold. We have
no information on people for whom Y ∗ does not meet
the threshold. For example, a sample of low-income
families contains information on income and other
variables only for families whose income is below a
poverty threshold. No data exist for families above
the income threshold.

Figure 2 demonstrates the consequences of cen-
sored data. The ‘o’s represent the true or uncensored
data, the ‘x’s represent the data observed by the
researcher, the solid line represents the regression
line through the uncensored data, and the dotted line
represents the regression line through the censored
data points. The mass of observations at the censoring
point – zero, in this example – forces the regression
line to be more shallow that it should be. In general,
the consequences of censored data is to bias the slope
coefficients toward zero.

Figure 3 demonstrates the consequences of trun-
cated data. The only data that are observable are
those above the truncation point. This means that for
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Figure 3 Truncated data
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persons with low values of X, only those with unusu-
ally high values of Y given X are observed by the
researcher. Again, this has the effect of biasing the
slope coefficient toward zero.

Truncated data can be estimated using a Tobit
model that estimates parameters based only on obser-
vations not at the limit(s) [30]. This model has been
used to estimate such diverse outcomes as labor sup-
ply in depressed people [1], health related quality of
life [2, 15], and utilization of health services [16].

Two-part models are a third type of limited depen-
dent variable model that models a continuous variable
outcome in which zero is a “true” value not due to
censoring or truncation, unlike the Tobit model above.
The most common application of two-part models
is cost data, where individuals who never interacted
with the health care system during the study period
have zero costs [7, 23]. Two-part models address
particular distributional properties of most cost data,
namely, a large preponderance of zeros and tremen-
dous skewness due to several high-cost outliers (see
Zero Padding).

Two-part models estimate the continuous outcome
(e.g. cost) in two parts, hence the name. In the first
part, the probability of positive costs is estimated
using a logit model. The second part estimates the
level of positive costs only for those observations
with positive costs. The second part may take a
variety of distributions and variance structures. Nor-
mally distributed costs typically are modeled using
untransformed costs, which is appealing for the ease
of interpretability and generating predictions. If the
positive observations are nonnormally distributed,
then logarithmic or square root transformations are
worth considering. Data that are log-transformed
must be retransformed to enable interpretable esti-
mates in the unlogged (or dollar) scale [9, 24]. If
heteroscedasticity is a concern, retransformation must
take account of the heteroscedasticity [23, 27, 32].
Alternatively, a generalized linear model with a
gamma density and linear or log link may be worth
exploring [3].

A fourth type of limited dependent variable model
that is closely related to a Tobit model is the sample
selection, or incidental truncation model. These mod-
els address a special case of truncation in which the
process generating unobserved Y is not independent
of the process generating specific values of observed
Y [18]. For example, nonresponse to survey ques-
tions can be modeled using sample selection models.

The process generating nonresponse is estimated as
well as the process generating the observed values,
which is the main equation of interest. These two pro-
cesses can be modeled in two steps, which is called
Heckman’s two-step estimator [17]. Alternatively,
the two processes can be modeled simultaneously
with maximum likelihood, which yields more effi-
cient estimates. The simultaneous model requires that
the errors in the selection equation and the errors in
the main equation of interest are distributed bivari-
ate normal.

Sample selection models have been extended to
include bivariate outcomes, such as whether or not
someone chooses a zero-deductible plan. For exam-
ple, if we wanted to use data from our example of the
1000 employers in which employees from 10 employ-
ers have a choice of three plans: an FFS plan, an
HMO plan with a copayment for an office visit, and
an HMO plan without a copayment. If we wanted to
estimate whether an employee chooses the FFS plan
or one of the HMO plans and then estimate whether
the employee chooses the HMO plan with the copay-
ment or the other HMO plan, bivariate probit models
with sample selection are appropriate. For more infor-
mation on these types of models, see papers by Van de
Ven and Van Praag [31] and Meng and Schmidt [26].

Simultaneous Equations

For many health services problems, it is important to
estimate the response of a variable to another endoge-
nous factor determined by the model. For example,
the codetermination of total health care expenditures
and health plan choice must be taken into account
in order to identify the effect of choosing an FFS
plan on total healthcare expenditures. The steps are
twofold; hence, the appropriate econometric proce-
dure is termed two-stage least squares (2SLS). The
reason for this two-stage procedure is that an ordi-
nary least squares (OLS) estimate of the coefficient
on FFS health plan in an (structural) equation would
be biased by the correlation between the disturbance
term and the actual health plan choice. A structural
equation is one that lists all the variables associ-
ated with total health care expenditures, even if they
are correlated with the disturbance term (e.g. endoge-
nous). A reduced form equation excludes endogenous
variables from the equation.

In the first step, one estimates a reduced form
equation that expresses total health care expenditures
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as determined by the type of health plan chosen by
an employee and the cost-sharing and benefits of that
plan. If health plan choice is endogenous and we
want to know the effect of health plan type on total
expenditures, we need to include the predicted value
of total expenditures as a regressor in the second-
stage equations.

“Identification” has a specific meaning in econo-
metrics: it implies that the coefficients of the regres-
sors in separate simultaneous structural equations can
be uniquely determined (see Identifiability). The
necessary (“order”) condition for identification of a
given equation requires that the number of variables
whose coefficients are constrained to zero or restric-
tions on the value of some linear combination of
coefficients should not be less than the number of
endogenous variables in the equation. The rank con-
dition, the second requirement that must be satisfied
for identification, states that none of the structural
equations in the system can be expressed as a linear
combination of one or more of the other equations.

An alternative approach is the instrumental vari-
ables method that seeks to overcome the same
simultaneity bias problem with OLS estimation. The
instrumental variables approach also develops a “pre-
dictive” equation for the endogenous variable(s), the
(causal) influence of which on other endogenous vari-
ables in the model is being estimated. As in the first
stage of 2SLS, all the “predictors” (regressors) in
the equation for the “instrument” (the name given to
the endogenous variable whose causal influence on
another variable is being estimated) are exogenous
and uncorrelated with the error term in the equation
of interest. Thus, in principle, the predicted value of
the instrument will be independent of the disturbance
term in the regression of the dependent variable of
interest on that instrument.

The major difference between 2SLS and the instru-
mental variables (IV) method is that in IV applica-
tions the investigator does not necessarily develop
the model as a simultaneous system of equations in
which the reduced form solutions for all the endoge-
nous variables in the system are determined by the
same set of exogenous variables. A recent application
of IV estimation in health economics was the study by
Gaynor & Gertler [12] of physician compensation and
physician production within medical groups. In this
paper, the investigators acknowledged that physician
production levels (e.g. productivity per hour worked
and per physician) would likely be influenced by the

method of physician compensation and would them-
selves affect the choice of compensation method by
the medical group. They then developed instrumental
variable estimates for choice of compensation using
logistic regression and estimated the effect of com-
pensation method on individual physician production
using the instruments.

IV estimation also is often used to deal with selec-
tion bias issues in health services research applica-
tions. Selection bias is a common problem of cohort
studies where the treatment (or intervention) is not
randomly assigned, but rather is chosen by the parties
being studied. A paper by McClellan et al. [25] dealt
with this issue.

Given the importance of discerning causal effects
(see Causation) in health economics, the need for
econometric models that deal with two-way causa-
tion, and that eliminate (or at least mitigate) simul-
taneity bias in estimates of those causal effects, is
apparent. Nelson & Startz [28] and Bound, Jaeger and
Baker [4] have shown that the results of IV estima-
tion can be highly misleading when the instrument is
a poor one. This is often likely to be true in health ser-
vices applications using administrative or health plan
claims databases (see Administrative Databases)
since these sources typically do not include infor-
mation on key exogenous variables (e.g. household
income, occupation, family size, and marital status)
that might otherwise act as useful instruments.

Specifically, they show that, in cases where there
is “feedback” between the dependent variable and an
independent variable of interest (precisely the “two-
way causation” that we discuss) and the instrument
is a “poor one” (in the sense of low R2 – in the IV
estimating equation):

1. The probability limit of the estimated coeffi-
cient will approach “a value that is related to
the amount of feedback, rather than to the true
coefficient” [28]; and

2. even when the true coefficient is zero, the (spuri-
ous) level of significance of the IV estimate will
increase with the amount of feedback.

They conclude, ironically, that in the very cases in
which OLS is a poor estimator because of feedback,
a poor instrument will be even worse. The analysis of
Nelson and Startz [28] offers, therefore, an important
cautionary note in the application of IV estimation to
empirical health economics.
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In cross-sectional analysis of a particular out-
come, a different type of simultaneous equation may
be useful. Switching regression methods are appro-
priate when the intercept and slope coefficients may
be expected to vary from observation to observation.
Typically, there are two regimes that may correspond
to health states (e.g. healthy, sick) or policy envi-
ronments. In longitudinal data, regimes typically
correspond to time periods. Switching regressions are
considered a type of simultaneous equation model,
because two regressions are run simultaneously (one
for each regime). The likelihood function for the
switching regression model is listed below.

Gaynor [11] estimated a switching regression
model of physician group practices, where demand
for their services was constrained in one regime
and demand was not constrained in another
regime. Bretteville-Jensen [5] estimated a switching
regression model of heroin consumption for men and
women, where gender was the regime determination.
Regimes can be exogenous variables, such as gender
or age, or endogenous variables, such as a choice of
provider. In the case of endogenous switching that
is explicitly determined by the unit of observation,
the choice of which regime to be in can be
modeled explicitly. O’Donnell [29] models such an
endogenous switching process and the regressions in
each of the regimes in a model of disability benefits
and labor participation by disabled people in the
United Kingdom. Readers interested in these methods
are directed to [19] for more information.

Count Data Variables

Count data variables are those that take on integer
values [6, 18]. As in the two-part model discussed
above, count data typically have a preponderance of
zeros that leads OLS methods to be biased. Count
data in health services commonly refers to events,
such as number of physician visits, weeks of care, or
length of stay.

Count data have most frequently been modeled as
Poisson processes with a Poisson distribution where
the expected number of events equals the variance of
events [20]. In count data, the mean number of events
may not always equal the variance of events. In cases
where the mean number of events is greater than the
variance, these data are defined as overdispersed. In
the presence of overdispersion, count data can be

modeled as negative binomial distribution that is
a special case of the gamma distribution [13].

Finally, developments in these basic count models
have addressed the possibility that count data will
have a preponderance of zeros. Zero-inflated Poisson
and zero-inflated negative binomial models have been
developed to address this scenario [6]. These models
allow explicit modeling of the zeros, akin to the Tobit
model. Alternatively, there may be cases where there
is some process that differentiates observations with
values at zero and observations with positive values.
In this case, it may be useful to model the zero
observations in count data separately from the process
determining the positive integer-valued observations
in a hurdle model, which is akin to the two-part
model [18, 27]. Readers interested in these methods
are directed to [6] for more information. Panel data
methods (see Panel Study) also are available and are
discussed in [6].

Conclusion

This chapter summarizes some of the economet-
ric methods currently used to address problems of
health, health care, and health insurance. The focus
was largely on cross-sectional methods using obser-
vational data, since most health services applica-
tions rely on nonexperimental settings. Application
of these methods to longitudinal data is becoming
more widespread.

Many statistical problems addressed in biostatis-
tical methods have analogues in econometrics, as
illustrated by Table 1. Survival and duration models
have relatively recently been applied to econometric
problems. Selection models (and other approaches to
endogeneity) and count data models used to analyze
utilization and costs may represent more unfamiliar
ground for biostatisticians [14]. Most of the methods
for analysis of cross-sectional models are available
in SAS and STATA, while longitudinal models are
increasingly available in these statistical packages
(see Software, Biostatistical).

Econometric applications to health services are
also expanding into semiparametric and nonparamet-
ric versions of the parametric methods presented here.
Terminological differences aside, econometric meth-
ods represent another set of tools that biostatisticians
should add to their toolbox, particularly if they expect
to conduct analyses of nonexperimental data.
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Edgeworth Expansion

The expansions named for Edgeworth were devel-
oped by P.L. Chebyshev [6] and F.Y. Edgeworth
[9–11]. Chebyshev was a Russian mathematician
whose interest in the expansions derived from his
earlier contributions to probability theory and to the
theory of orthogonal functions (see Orthogonality).
Edgeworth was a self-taught Irish mathematician,
who trained as a linguist and lawyer but made his
academic career as an economist in England. His
contributions to the expansions that bear his name
were motivated by a desire to explore, in a statistical
setting, properties of probability distributions.

The Edgeworth expansion of one density, f say,
with respect to another, φ, may be formally defined
in terms of cumulants (see Characteristic Function).
Specifically, writing D for the differential opera-
tor d/ dx, it may be shown that

f (x) = exp

[ ∞∑

i=1

(
κ

f

i − κ
φ

i

) {
(−D)i

i!

}]
φ(x)

= φ(x) − (
κ

f

1 − κ
φ

1

)
φ′(x) + · · · , (1)

where κ
f

i and κ
φ

i denote the ith cumulants of the indi-
cated densities, and, among other assumptions, it is
supposed that κ

f

i and κ
φ

i become “close” sufficiently
quickly as i increases. The latter condition is most
likely to hold when the density f is converging to
φ, in some sense (see Convergence in Distribution
and in Probability). The context suggests the cen-
tral limit theorem, where φ is the standard Normal
density.

Indeed, the central limit theorem is the standard
setting for studying Edgeworth expansions. In this
case, assuming f and φ have been standardized
for location and scale (so that the corresponding
distributions have zero mean and unit variance),
and noting that all cumulants of the standard Normal
distribution vanish, we see that (1) simplifies to

f (x) = exp

{
− κ

f

3

(
D3

3!

)

+ κ
f

4

(
D4

4!

)
+ · · ·

}
φ(x). (2)

It is at this point that a connection is made to
Chebyshev’s interest in orthogonal functions. The

Chebyshev–Hermite polynomials (see Polynomial
Approximation), H0(x) = 1, H1(x) = x, H2(x) =
x2 − 1, and so on, sometimes written in the notation
Hej rather than Hj , are orthogonal with respect to
the Normal N(0, 1/2) density:

∫ ∞

−∞
Hi(x)Hj (x) exp

(
− 1

2
x2

)
dx = 0, (3)

for i �= j . The right-hand side of (2) may be formally
expanded in terms of these functions, giving:

f (x) =
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3!
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}
φ(x) . (4)

The special case where f is the density of a sum
of n independent and identically distributed random
variables Xi , corrected for location and scale so that
it has zero mean and unit variance, is of particular
interest. Assume the summand distribution, after stan-
dardizing for location and scale, has ith cumulant λi .
Then the ith cumulant, κ

f

i , of the distribution of the
standardized sum is simply n−(i−2)/2λi , for i ≥ 1.
Making this substitution into (4), we see that the
expansion here assumes a particularly simple form,
the coefficient of Hi(x) now being of size n−(i−2)/2.
(The function f on the left-hand side of (4) is now
the density of n1/2(X − µ)/σ , where X denotes the
mean of independent random variables X1, . . . , Xn,
with E(Xi) = µ, var(Xi) = σ 2, and the ith cumulant
of (Xi − µ)/σ equal to λi .)

In particular, noting that Hi is an odd or even poly-
nomial according as i is odd or even, respectively, we
see that we can write

f (x) = {
1 + n−1/2 p1(x) + n−1 p2(x) + · · · }φ(x),

(5)

where pi(x) is an odd or even polynomial according
as i is odd or even. If we integrate (5) term by term,
we obtain:

F(x) =
∫ x

−∞
f (x) dx = Φ(x) + n−1/2 P1(x) φ(x)

+ n−1 P2(x) φ(x) + · · · (6)

where Pi is an odd or even polynomial according as
i is even or odd, respectively. (Therefore, parities
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are reversed in passing from the density to the
distribution expansion.)

The properties we have just described are common
to a great many distributions, which are asymp-
totically Normal, not just to the distribution of a
standardized sample mean. Details are given by Hall
[14, Chapter 2]. Modulo regularity conditions, in par-
ticular, moment and continuity conditions on the
distribution of the data, expansions (5) and (6), and
the parity property of the associated polynomials pi

and Pi , apply when f and F are the density and
distribution functions, respectively, of a statistic T ,
which can be expressed as a smooth function of a
vector of means.

For example, they apply when T = n1/2{θ(Y ) −
θ(ν)} and

F(x) = Pr
[
n1/2{θ(Y ) − θ(µ)} ≤ σx

]
, (7)

where Y denotes the average value of a sample of
n random d-vectors with mean ν, θ is a smooth
function of d variables, and n−1σ 2 denotes the
asymptotic variance of the statistic θ(Y ). Examples
include the case where θ(Y ) is the sample variance,
which is a function of two means – the mean of
the Xi’s and the mean of the X2

i ’s. Therefore, in
this case, Y is the mean of 2-vectors Yi = (Xi, X2

i ).
Likewise, an empirical variance ratio (a function
of four sample means), an empirical correlation
coefficient (a function of five sample means), and
so on, may be treated in this way. This approach
uses the so-called “smooth function model” for
developing valid Edgeworth expansions, introduced
by Bhattacharya and Ghosh [2].

The expansion (6), of F(x) defined by (7), con-
tinues to hold if σ in (7) is replaced by an estimator
of σ , provided that estimator too can be expressed
as a smooth function of means of independent ran-
dom vectors. This is the so-called Studentized, or t ,
case (see Studentization). Again the parity proper-
ties hold, but the polynomial sequences p1, p2, . . .

and P1, P2, . . . are different in the Studentized and
non-Studentized settings. However, in either case, Pi

is a polynomial of degree 3i − 1, and the degree of
pi equals 3i − 2.

Therefore, Edgeworth expansions for sample
means, sample variances, variance ratios, the sample
correlation coefficient, and related quantities can be
derived in a unified way, and all have the same basic
properties. There are of course many other statistics

that admit Edgeworth expansions. Results there are
usually derived using special properties of individual
cases. Note, however, that the previously mentioned
parity properties of polynomials will not necessarily
hold.

The parity properties are important when using
Edgeworth expansions to elucidate properties of two-
sided confidence intervals. Indeed, note from (6)
that, provided P1 is an even polynomial, and P2 is
odd,

F(x) − F(−x) = 2Φ(x) − 1 + 2 n−1 P2(x) φ(x)

+ O
(
n−2). (8)

This fortuitous cancellation of terms of size n−1/2

can be used to show that, in cases where the parity
properties hold, two-sided confidence intervals gener-
ally have coverage error no worse than O(n−1), even
though their one-sided counterparts may do no bet-
ter than O(n−1/2). (Coverage error is the difference
between the true coverage of a confidence region and
its nominal level, for example, 0.95.)

This type of application of Edgeworth expansions
is the predominant one today; they are used mainly
to explore properties of procedures that are not them-
selves based on those expansions. Modern methods
for constructing confidence regions and hypothesis
tests are often highly computer-intensive, and math-
ematical techniques based on Edgeworth expansions
allow us to elucidate their behavior; see [14] for dis-
cussion of the bootstrap in this context.

In the past, however, Edgeworth expansions were
sometimes relied upon to produce confidence inter-
vals with good orders of coverage accuracy. Such an
approach is not always particularly effective, since
Edgeworth series, like those at (5) and (6), gener-
ally do not converge as infinite series. They are only
“asymptotic” series, in the sense that the order of
magnitude (as a function of n) of the remainder in a
truncated form of either series equals the order of the
first omitted term. Therefore, including more terms in
the series can actually make the approximation less
accurate, unless sample size, n, is sufficiently large.

Edgeworth expansions and Cornish–Fisher expan-
sions [7, 12] are related, in that the latter are expan-
sions of a quantile for a given probability level,
while the former are expansions of a probability level
for a given quantile. They are, therefore, essentially
inverses of one another, and indeed either can be
obtained by inverting the other; see [14, Chapter 2].
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Gram–Charlier expansions (e.g. [15, p. 17ff] can be
viewed as Edgeworth expansions with the terms rear-
ranged in a different order. This operation degrades
their convergence properties, however, and partly as a
result, Gram–Charlier expansions are seldom studied
today.

Surveys of Edgeworth expansions, and significant
papers of historical interest in the development of
statistical and econometric applications of the expan-
sions, include those of Wallace [18], Bickel [4],
Sargan [17], Albers, Bickel and van Zwet [1], Bhat-
tacharya and Rao [3], Bhattacharya and Ghosh [2],
Bowman, Beauchamp and Shenton [5], Phillips [16],
Cressie [8] and Götze and Hipp [13].
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Edgeworth, Francis
Ysidro

Born: February 8, 1845, in Edgeworthstown, Ire-
land.

Died: February 13, 1926, in London, England.

Edgeworth, a rather reclusive figure, contributed
importantly to the development of statistical theory
at the end of the nineteenth century. After an Oxford
degree in classics, he trained as a barrister while self-
studying advanced mathematics. From 1880, he held
university appointments in logic, and in economics
and statistics, before accepting a chair in political
economy at Oxford in 1891, which he occupied until
retirement in 1922.

He published extensively in mathematical eco-
nomics. His interest in probability and statistics,
starting in the 1880s, was stimulated by contact
with Francis Galton and later with Karl Pearson.

His approach was usually, although not consistently,
Bayesian, and included early advocacy of maximum
likelihood. Many publications deal with the normal
distribution, including the bivariate and multivari-
ate forms, and with associated problems of correla-
tion and regression. His work on skew distributions
(see Skewness), involving the “Edgeworth expan-
sion”, brought him into conflict with Karl Pearson,
whose own system of curves (see Pearson Distribu-
tions) had been criticized by Edgeworth.

For fuller accounts, see [1] and [2], and further
references listed on p. 373 of [2].
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Effect Modification

The term effect modification is due to Miettinen [5],
and is highly related to the concept of interaction.
When we analyze the association of an exposure
with disease incidence, an effect modifier is a vari-
able over which the effect of exposure on disease
risk varies. For example, we might use the relative
risk to describe the association of cigarette smok-
ing to lung cancer risk. If the relative risk associated
with cigarette smoking is statistically different among
asbestos-exposed subjects from that among subjects
with no asbestos exposure, then we say that asbestos
exposure modifies the effect of cigarette smoking on
lung cancer risk, and we call asbestos exposure an
effect modifier.

We study effect modification for a variety of rea-
sons. We may be interested in effect modification for
its public health implications: if the effects of certain
modifiable risk factors for breast cancer are confined
to a subgroup of women, for example, efforts to mod-
ify these risk factors or increase screening might be
targeted only at subpopulations where the interven-
tion will prevent the most women from developing
advanced disease.

Or we may think that the joint biologic effect
of two exposures may be either to inhibit or to
enhance each others’ individual effects, and we might
expect this to cause effect modification. Siemiatycki
& Thomas [7] and Thompson [8] have argued, how-
ever, that in most cases it is foolish to infer much
about biological interaction from the pattern of dis-
ease rates in an epidemiologic study because so little
is known about biologic mechanisms. The one excep-
tion to this is the case where an exposure decreases
risk for one value of the effect modifier and increases
risk for another value of the effect modifier. Thomp-
son [8] has called this “crossover”, and has argued
that it is the one case where some form of biologic
interaction may be inferred (see Synergy of Expo-
sure Effects).

Relationship to Interaction

Effect modification is highly related to statistical
interaction in regression models. In relative risk
regression models, where regression coefficients for
main effect exposure variables have the interpretation

of log relative risks, a significant interaction between
exposure and a second variable means that the sec-
ond variable is an effect modifier (see Relative Risk
Modeling). This is true because the model with inter-
action says the relative risk associated with exposure
will be different depending on the value of the effect
modifier.

However, the relationship between statistical inter-
action and effect modification depends on the corre-
spondence between what measure we choose for the
effect of exposure on disease risk and the form of
the regression model we use to assess interaction. To
see this, we examine three possible regression models
and their corresponding measures of effect.

Multiplicative Models and Relative Risks

Logistic regression, Poisson regression with a log
link function (see Generalized Linear Model), and
multiplicative Cox regression are all examples of
multiplicative models for which the relative risk is
the implicit measure of effect [1, 2]. For example,
if we applied the logistic regression model to data
from a case–control study of smoking and asbestos
exposure as risk factors for mesothelioma, then for

XA =
{

0, no occupational asbestos exposure,
1, occupational asbestos exposure,

XS =
{ 0, never smoked,

1, ever smoked,

and p = the probability of being a case in the
case–control sample, a simple logistic model without
interaction is

logit p = ln
p

1 − p
= β0 + βAXA + βSXS.

In a cohort study, a similar model would hold
with p = the population probability of developing the
disease during the study period.

This model implies that the odds ratio associated
with ever having smoked, eβS , is the same whether
or not an individual has had occupational exposure
to asbestos. To allow the odds ratios associated with
smoking to differ according to whether or not the
subject had been exposed to asbestos, we add the
interaction term βASXAXS to the model. Thus, if
we use the logistic regression model, the presence
or absence of interaction corresponds to presence or
absence of effect modification, where the measure
of effect we use is the odds ratio, or the relative
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risk, which it approximates. This correspondence also
holds for the following Poisson regression model:

ln λ = β0 + βAXA + βSXS,

where λ is the disease incidence rate for a time
interval/covariate combination (see Time-dependent
Covariate), and for the multiplicative Cox regression
model

ln λ(t) = ln λ0(t) + β0 + βAXA + βSXS,

where λ(t) is the hazard function. If we are interested
in whether the relative risk difference (see below)
associated with smoking is different among asbestos-
exposed individuals from what it is among non-
asbestos-exposed individuals, the presence or absence
of an interaction term in a multiplicative model will
not give us this information. Instead, we need to look
for interaction in an additive relative risk regression
model.

Additive Relative Risk Models and Relative Risk
Differences

Most investigators would agree that when they are
considering public health implications of some expo-
sure, additive measures of the effect of exposure on
risk are more useful than multiplicative measures for
identifying subgroups where interventions should be
targeted. In addition, Rothman has argued that the
additive scale is better for assessing whether there
is biological interaction, and that additive models
should be used instead of the multiplicative mod-
els when assessing whether there is effect mod-
ification [6]. However, this has been disputed by
Siemiatycki & Thomas [7] and Thompson [8] among
others, who show that, depending on the biologic
model for how exposure affects disease risk, biologic
interaction may or may not manifest itself as a statisti-
cal interaction on either the additive or multiplicative
scales.

In a case–control study, the additive measure of
effect that can be estimated is the additive relative
risk. For a case–control study of lung cancer like
the one described above, the additive relative risk
is defined as follows. Let p(0, 0) be the probability
of being a case among those exposed to neither
smoking nor asbestos, and p(XA, XS) the probability
of being a case among those with asbestos and
smoking exposure given by XA and XS. Then the

relative risk difference comparing combinations of
exposure (XA, XS) and (X′

A, X′
S) is

RRD = p(XA, XS) − p(X′
A, X′

S)

p(0, 0)
.

If this is the measure of the effect of exposure
(XA, XS) compared with exposure (X′

A, X′
S), then

we say that asbestos exposure modifies the effect
of smoking if the relative risk difference associated
with smoking is different among those occupationally
exposed to asbestos from what it is among those
without occupational asbestos exposure. Whether or
not this type of effect modification exists depends
on whether or not there is an interaction term in the
additive relative risk regression model:

p

1 − p
= eβ0(1 + βAXA + βSXS).

Similar correspondences hold for the additive relative
risk versions of the Poisson regression model

λ = eβ0(1 + βAXA + βSXS),

and the Cox regression model

λ(t) = λ0(t)(1 + βAXA + βSXS).

See Breslow & Day [2] for more details.

Additive Risk Models and Risk Differences

The relative risk difference measures the difference
in risk of disease for different exposure combinations
relative to the disease risk in a baseline group where
all the covariates have the value zero. Using data from
a cohort study, it is also possible to estimate absolute
differences in the risk of disease or the disease
incidence rate. Letting p(xA, xS) denote the disease
risk or probability of developing disease during the
study period for those with asbestos exposure given
by XA and smoking exposure given by XS, then the
risk difference comparing combinations of exposure
(XA, XS) and (X′

A, X′
S) is

RD = p(XA, XS) − p(X′
A, X′

S).

If the risk difference is the measure of the effect of
exposure (XA, XS) compared with (X′

A, XS), then we
say asbestos exposure modifies the effect of smok-
ing if the risk difference associated with smoking
is different among those occupationally exposed to
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Table 1 History of having given birth, family history of breast cancer, and breast cancer risk, from Colditz et al. [3]

No family history Family history

Cases Person-years Relative risk 95% CI Cases Person-years Relative risk 95% CI

Never given birth 150 69 666 1.0a – 16 5 816 1.0a –
Ever given birth 1788 994 628 0.83 (0.71, 0.99) 5816 78 559 1.4 (0.83, 2.3)

aReference group

asbestos from what it is among those without occu-
pational asbestos exposure. Whether or not this type
of effect modification exists depends on whether or
not there is an interaction term in the additive risk
model:

p = β0 + βAXA + βSXS.

Similar correspondences hold for additive versions of
the Poisson regression model

λ = β0 + βAXA + βSXS,

and incidence rate regression models

λ(t) = λ0(t) + βAXA + βSXS.

See Lin & Ying [4] for inference under the additive
incidence rate model.

Example

Colditz et al. [3] studied how a variety of known risk
factors for breast cancer were modified by family
history of breast cancer. Data abstracted from the
article are given in Table 1, broken down by whether
the woman had ever given birth and whether she had
a family history of breast cancer in a mother or sister.
Crude relative risks based on a Poisson regression
model are also given in Table 1.

From these results we see that without adjustment
for other factors, among women without a history
of breast cancer in their mother or sisters, the birth
of a child appears to confer protection from breast
cancer. However, among women with a history of
breast cancer in the mother or a sister, the birth of
a child is associated with, if anything, an increase in

risk. If these differences are also seen in other studies,
they might argue that screening schedules should be
the most frequent in parous women with a family
history of breast cancer. If the relative risk associated
with parity among women with a family history
were statistically different from one, these data would
satisfy Thompson’s [8] criteria for crossover, from
which some interaction in the biological mechanisms
might be inferred.
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Egret

Egret is a commercial software produced by Cytel
Software Corporation. It was originally developed
as a DOS-based software but a Windows version
has been available since 1999, which makes Egret
fairly easy to use. It is devoted to the analysis
of epidemiologic and biomedical studies. It allows
users to perform some data editing. Its main strength
is its fairly extensive analytical capabilities. They
include linear regression, unconditional and condi-
tional logistic regression (with the useful option
of including random effect terms), Poisson regres-
sion, and semiparametric and parametric survival
analysis. Moreover, Egret offers additive and mul-
tiplicative versions of logistic and Poisson regres-
sion models (see Relative Risk Modeling), fairly

extensive regression diagnostics, and goodness-of-
fit procedures for all models, some exact or quasi-
exact tests (see Exact Inference for Categorical
Data) and procedures for the analysis of contin-
gency tables, and has some graphical capabilities.
Besides Egret, Egret-SIZ is a separate DOS-based
program also produced by Cytel Software, which per-
forms advanced sample size calculations for uncon-
ditional and conditional logistic regression, Poisson
regression, and Cox regression, and offers the option
of performing power calculations based on Monte-
Carlo simulations.

(See also Software, Biostatistical; Software, Epi-
demiological; Survival Analysis, Software)
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Eigenvalue

Eigenvalues (also known as eigenroots or latent roots)
are a feature of square matrices. The definition and
calculation of eigenvalues involves determinants. The
eigenvalues of square matrix A, of order n, are the
n solutions for λ to what is called the characteristic
equation of A, namely,

|A − λI| = 0, (1)

i.e. the determinant of A − λI is equated to zero.
The nature of the determinant of a matrix (see

Matrix Algebra) is such that for A of order n (1)
is a polynomial equation of order n, thus having n

solutions for λ. Those solutions are the eigenvalues
of A. As an example, for

A =
[

3 1
2 4

]
,

|A − λI| =
∣∣∣∣
3 − λ 1

2 4 − λ

∣∣∣∣

= (3 − λ)(4 − λ) − 2

= λ2 − 7λ + 10,

and so the characteristic equation is

λ2 − 7λ + 10 = 0,

which has solutions λ = 2 and 5. Thus 2 and 5 are
the eigenvalues of A.

General Properties

1. An eigenvalue, through being a solution of a
polynomial equation, can be positive, negative,
zero, real, or complex.

2. Eigenvalues of a matrix need not all be different.
If λ is a root m times, then it is said to be a
multiple root with multiplicity m.

3. For a scalar c, an eigenvalue of cA is c (eigen-
value of A).

4. When λ is an eigenvalue of A, λr is an eigenvalue
of Ar , for r being zero or a positive integer. This
extends to a polynomial function of A: p(A) has
p(λ) as an eigenvalue.

5. The sum of all n eigenvalues of A of order n

equals the trace of A, the sum of its diagonal
elements.

6. The product of all n eigenvalues of A is the
determinant of A.

Special Cases

1. Nonsingular matrices: all eigenvalues are non-
zero.

2. Inverse matrices: A−1 has eigenvalue 1/λ where
λ is an eigenvalue of A.

3. Positive (semi)definite matrices: all eigenvalues
are positive (zero or positive).

4. Symmetric matrices: all eigenvalues are real and
the number of nonzero eigenvalues equals the
rank of the matrix.

5. Orthogonal matrices: eigenvalues come in pairs
λ and 1/λ, with one value being ±1 when the
matrix is of odd order.

6. Idempotent matrices: all eigenvalues are +1 or
zero; the number that is +1 is the rank of the
matrix.

There are numerous uses of eigenvalues in
multivariate analysis (see, for example, [1, Sec-
tion 11.2]). One is in principal components analysis
applied to a vector X of random variables. The
linear combinations of these variables known as
principal components, are β ′

rX, where β ′
r is the

eigenvector corresponding to an eigenvalue λr of the
variance–covariance matrix of the variable X. Then
the variance of β ′

r is λr , and so one can rank the
principal components according to the size of their
variances.

A second use of eigenvalues is in linear dis-
criminant analysis where one wants to classify
observational units on the basis of a vector of vari-
ables, X, say, measured on each unit. This is done
using some t′X, often through maximizing the ratio
of two quadratic forms, t′At and t′Bt, say. This
is achieved by choosing λ and t so that (B −
λA)t = 0, or equivalently (A−1B − λI)t = 0. Thus,
λ is the eigenvalue of A−1B and t a corresponding
eigenvector.

Other uses of eigenvalues involve what is known
as Wilks’s test criterion for testing a linear hypothesis
in the multivariate linear model. It consists of a ratio
of the form of det A/det(A + B), where A and B
are matrices of sums of squares and products: det(A)

represents the determinant of A, which is the product
of all the eigenvalues of A (see [3, Chapter 8]).
Some alternatives to this are Hotelling’s [2] trace
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of BA−1, which is the sum of the eigenvalues of
BA−1, or Pillai’s [4] trace of B(A + B)−1, being the
sum of the eigenvalues of B(A + B)−1, or Roy’s
[5] criterion of the largest eigenvalue of A(A +
B)−1.
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Eigenvector

Eigenvectors and eigenvalues (or eigenroots) are fea-
tures of any square matrix. For square A, of order n,
its eigenvalues are the n solutions for λ to what is
known as the characteristic equation:

|A − λI| = 0. (1)

For each solution λi there is always a vector, ui , say,
such that

Aui = λiui , or equivalently (A − λiI)ui = 0.

(2)

The vector ui is called an eigenvector of A corre-
sponding to the eigenvalue λi . Sometimes “charac-
teristic” (or even, old-fashionably, “latent”) is used
in place of “eigen”.

Example

For

A =
[

3 1
2 4

]
,

(1) simplifies to λ2 − 7λ + 10 = 0, giving λ1 = 2 and
λ2 = 5 as eigenvalues. The second equation in (2) is
satisfied as follows:

[
3 − 2 1

2 4 − 2

] [
a

−a

]
=

[
0
0

]
and

[
3 − 5 1

2 4 − 5

] [
b

2b

]
=

[
0
0

]
. (3)

Thus u1 = [a − a]′ is the eigenvector corresponding
to λ1 = 2, and u2 = [b 2b]′ corresponds to λ2 = 5.

General Properties

For scalar c, an eigenvector of A is also an eigen-
vector of cA. This is so because Au = λu implies
that cAu = cλu, i.e. (cA)u = (cλ)u. The latter is also
A(cu) = λ(cu), showing that if u is an eigenvector
of A so is cu. This is evident in (3), where a and b

can be any scalars.
There is also the simple algebraic result that Au =

λu gives A2u = A(Au) = A(λu) = λAu = λ(λu) =
λ2u. Thus u as an eigenvector of A is also an eigen-
vector of A2. This extends to u being an eigenvector

of any integer power of A (and negative powers for
nonsingular A).

Because every eigenvalue λi has a corresponding
eigenvector ui ,

A[u1 u2 . . . ui . . . un]

= [λ1u1 λ2u2 . . . λiui . . . λnun] (4)

and, on defining U = [u1 u2 . . . ui . . . un] and D as
the diagonal matrix of the λs, (4) is

AU = UD. (5)

Calculation

For eigenvalue λi , the matrix A − λiI is always
singular. The theory of solving linear equations then
yields a solution for ui to (2) as [(A − λiI)−(A −
λiI) − I]z for (A − λiI)− being a generalized inverse
(see Matrix Algebra) of A − λiI, and z being an
arbitrary vector of order n.

Multiple Eigenvalues

Since (1) is a polynomial equation of order n it has
n solutions for λ, which need not be all different.
Suppose λt is a root mt times, for t = 1, . . . , k, for
λ1 . . . λk being all different. Then mt is called the
multiplicity of λt , and

∑k
t=1 mt = n. When (A − λtI)

has rank n − mt one can always find mt linearly
independent eigenvectors corresponding to λt . When
this rank property holds for all t = 1, . . . , k (and it
always holds whenever mt = 1), then all eigenvectors
are linearly independent and U is nonsingular.

Nonsymmetric Matrices

For nonsymmetric A it is the preceding rank con-
dition (known as the diagonability theorem, e.g. [1,
p. 305], which determines whether U is nonsingular
or not. When it is nonsingular, (5) yields D = U−1AU
and D is known as the canonical form under simi-
larity, or equivalently as the similar canonical form.
Likewise A = UDU−1 and Ar = UDrU−1.

Symmetric Matrices

For symmetric A:

1. All λi and ui are real.
2. U is always nonsingular.
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3. Eigenvectors are pairwise orthogonal: u′
iuj = 0

for i �= j .
4. Each ui can be standardized to be a unit vector

vi = ui/(u′
iui )

1/2, so that v′
ivi = 1.

5. Replacing each ui in U by vi makes U orthogo-
nal: U′U = UU′ = I.

6. D = U′AU is called the canonical form under
orthogonal similarity; A = UDU′ =∑n

i=1 λiuiu′
i ,

the latter being known as the spectral decompo-
sition of A.

These properties are important to statistics wherein
symmetric matrices occur in a variety of situations,
e.g. dispersion matrices, and X′X in linear models.
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Eligibility and Exclusion
Criteria

The choice of eligibility criteria in a clinical trial
can increase or decrease the magnitude of between-
patient variation, which will in turn decrease or
increase the statistical power of the trial for a given
sample size. Theoretically, the more homogeneous
the trial population, the greater is the power of the
trial, but the more limited is the ability to generalize
the results to a broad population. Thus, the choice
of eligibility criteria can profoundly influence both
the results and the interpretation of the trial. Besides
controlling variation, the Institute of Medicine (IOM)
Committee on the Ethical and Legal Issues Relat-
ing to the Inclusion of Women in Clinical Studies
[16] discusses four other issues related to the choice
of trial population; namely, disease stage, clinical
contraindications, regulatory or ethical restrictions,
and compliance considerations. We will discuss these
and the related issues of explanatory vs. pragmatic
trials, screening and recruitment processes, and the
impact of eligibility criteria on the generalizability of
trial results. Other factors influencing the selection of
patients, such as factors in the selection of institutions
in multicenter studies and physician preferences are
discussed elsewhere [2, 22].

Explanatory vs. Pragmatic Trials

The objectives of a trial affect the appropriate eli-
gibility criteria [20]. If the trial is designed to esti-
mate the biological effect of a treatment (explanatory
trial), then the eligibility criteria should be chosen
to minimize the impact of extraneous variation, as
in early investigations of protease inhibitors against
human immunodeficiency virus (HIV) infection [18].
If, however, the trial is designed to estimate the
effectiveness of a treatment in a target population
(pragmatic trial), then the eligibility criteria should
be chosen to allow valid inferences to that pop-
ulation. For example, the Hypertension Prevention
Trial (HPT) was aimed at normotensive individu-
als 25–49 years old with diastolic blood pressure
between 78 mm Hg and 90 mm Hg, and these were
the main eligibility criteria [3]. Choosing the narrow
eligibility criteria often appropriate for an explana-
tory trial can make it difficult to apply the results

to a broader population [11]. Yusuf [23], moreover,
argues that a truly homogeneous cohort cannot be
constituted because even apparently similar individu-
als can have very different outcomes. The consensus
is that most Phase III randomized trials should be
regarded as pragmatic.

The Uncertainty Principle

Byar et al. [4] describe the simplest possible form
of eligibility criteria for a trial, in which patients
are eligible provided the treating physician and the
patient have “substantial uncertainty” as to which
of the treatment options is better. This definition,
known as the uncertainty principle, incorporates all
factors that contraindicate one or more of the treat-
ment options including stage of disease, co-existing
disease, and patients’ preferences (see Ethics of Ran-
domized Trials). However, it also largely devolves
definition of eligibility to the individual physicians
participating in the trial. The consequent lack of con-
trol and strict definition of the cohort of patients
entering the trial has been unattractive to some
investigators.

Control of Variation vs. Ease of
Recruitment

The debate over the uncertainty principle highlights
the tension between two different ways of improv-
ing the precision of the estimated effect of treatment
in a randomized trial. By using very strict eligibility
criteria we seek to reduce between-patient variation
in clinical outcomes, leading to improved precision
of the treatment difference estimate. By using very
flexible eligibility criteria (as with the uncertainty
principle), we seek to allow a wider entry to the trial,
thereby increasing the number of eligible patients and
usually the precision of the treatment difference esti-
mate. The question is, therefore, do we try to control
variation and accept the smaller size of the sample,
or do we try to increase the sample size and accept
a wider between-patient variation? While this debate
continues, the general consensus among clinical trial
statisticians is that it is generally difficult to control
between-patient variation successfully because often
we do not know the important determinants of prog-
nosis. Therefore, attempts to use very strict eligibility
criteria are less successful than attempts to gain pre-
cision by entering very large numbers of patients into
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trials [23]. However, if there are categories of patients
who are considered very unlikely to benefit from the
treatment, it is clearly conceivable to exclude them
from the trial (see later sections on Stage of Disease
and Clinical Contraindications).

Begg [2] criticizes the common practice of intro-
ducing a long list of eligibility criteria in clinical
trials, particularly in the treatment of cancer. Such an
approach greatly increases the difficulty of recruiting
patients in large numbers. In examining such lists
it is often found that many of the criteria are of
questionable importance and do not relate directly to
the safety of the patient or to the lack of benefit to
be derived from the treatment.

Issues in the Screening and Recruitment Process

Establishing eligibility often involves a screening
process. Examples include choosing individuals for
a heart disease trial with ejection fraction between
0.35 and 0.8 and a specific number of ectopic beats, or
choosing HIV-infected individuals with slowly rather
than rapidly progressing disease [15].

Some eligibility criteria may be implicit in this
process. For example, the recruitment method may
require the patients to be accessible by telephone
contact or to be able to read and write in English, such
as trials in which the initial contact is via a prepaid
postal response card. Multiple “baseline” visits that
are sometimes used in the screening process can
provide multiple opportunities for exclusion, e.g. the
Coronary Primary Prevention Trial used five baseline
visits and the HPT used three baseline visits. Thus,
those ultimately enrolled may affect the recruitment
and screening mechanisms and resources for multiple
participant contacts as much as the protocol-specific
eligibility criteria.

The impact of eligibility criteria and of recruit-
ment procedures on the overall cost of the trial has
rarely been investigated. Borhani [3] indicated that
the ordering of the application of eligibility crite-
ria can substantially affect costs. These costs are
also sensitive to the cutoffs applied to continuous
responses, e.g. diastolic blood pressure, high density
lipoprotein cholesterol, coronary ejection fraction,
and T-cell lymphocyte counts.

As mentioned earlier, eligibility criteria can have
a strong impact on the ease of recruitment. For exam-
ple, the need to enroll newly diagnosed or previously
untreated patients can severely restrict the ability to

recruit. The need to enroll rapidly after a stroke,
myocardial infarction, head trauma, or exposure to
infectious agent can lead to difficulties. If the condi-
tion renders the patient unconscious for some period
of time, or the patient lives far from the treatment cen-
ter, or is unaware that an infection, stroke, infarction,
or other event has occurred, it is less likely that they
will be available for enrollment. Similarly, Carew [5]
suggests that recruitment be enhanced by broad eli-
gibility criteria, allowing potentially more sites and
more individuals to participate.

Stage of Disease

Often the stage of disease strongly affects the out-
come of treatment, and is a primary source of vari-
ation. Eligibility is often restricted to the stages of
disease most appropriately managed by the treatment.

For many diseases, classification or staging sys-
tems have been developed to aid clinical manage-
ment. Eligibility criteria involving stage of disease
are best defined using an established classification
system that is in wide use. Examples of such classifi-
cation systems include the coronary functional class
[7], Dukes’ colon cancer staging system, and the
World Health Organization staging system for HIV
infection [26].

Clinical Contraindications

Exclusions arising because one of the treatments is
clearly contraindicated are common [14]. For exam-
ple, 18% of those screened for the Beta Blocker Heart
Attack Trial were excluded due to contraindications
to the administration of propranolol [12]. Since these
prior conditions would preclude use of some of the
treatments in a trial, the trial results could not apply
to individuals with those conditions. Some argue that
contraindications should be clearly delineated in the
protocol to avoid investigator or regional differences
in their use.

Compliance Considerations

A run-in (or qualification) period is sometimes built
into the trial design so as to identify potential non-
compliers and exclude them from enrollment. This
reduces the dilution of treatment differences that non-
compliance introduces. In some studies, this period
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can also be used to eliminate placebo (see Blind-
ing or Masking) responders. In these cases, the
determination of noncompliance becomes one of the
outcome measures of the trial (see Compliance
Assessment in Clinical Trials).

Regulatory or Ethical Considerations

Various demographically or otherwise defined popu-
lations have been excluded from clinical trials in the
past. For example, in trials of heart disease preven-
tion, women have been excluded as their incidence of
heart disease is lower than in men and their inclusion
would have required a larger sample size. Similarly,
minority groups have sometimes had little or no rep-
resentation because no special efforts had been made
to include them. Recent changes in US regulations
have required special justification for the exclusion
of women, minorities, or the elderly from National
Institutes of Health sponsored trials. The scientific
argument for including these groups is that it pro-
vides a more solid basis for extrapolating the results
of the trial to the general population [6, 8, 10, 13, 17,
19, 24, 25] (see Validity and Generalizability in
Epidemiologic Studies). There will usually be inad-
equate statistical power for detecting different effects
in subpopulations, but sometimes meta-analysis of
several studies may be able to detect such differences.

Implementing the Eligibility Criteria

The characterization of the target population and
baseline homogeneity can be subverted by deviations
during the conduct of the trial from the protocol
specified eligibility criteria. If extensive, these can
adversely affect the assumptions underlying analyses
and the interpretation of the results. Thus, monitoring
the determination of eligibility criteria during the
conduct of the trial is an important component of
the implementation of the trial. Often, the office
that conducts the randomized treatment assignment
checks the eligibility criteria before enrolling the
patient. Finkelstein & Green [9] discuss the exclusion
from analysis of individuals found to be ineligible
after enrollment in the trial.

Generalization of Results to Broader Populations

Treatment trials (or prevention trials) are usually
conducted on samples of convenience, enrolling par-
ticipants who present at specific hospitals or clinical

sites. Therefore, the population to whom the trial
results apply is generally not well defined. External
validity – the ability to generalize from the trial to
some broader population – is the ultimate goal of any
trial. Adequately randomized trials can be assumed to
produce valid results for the specific group of indi-
viduals enrolled, i.e. internal validity; the difficulties
arise in extending the inference beyond that lim-
ited cohort. Since complete enumeration of the target
population is rarely possible, inferences from studies
are based on substantive judgment. A strong argu-
ment that is often used is that treatment differences
in outcome are generally less variable among dif-
ferent patient populations than the outcomes them-
selves [23].

Following publication, critics questioned the gen-
eralizability of the results of the International Co-
operative Trial of Extracranial–Intracranial (EC/IC)
Arterial Anastomosis to evaluate the effect of the
EC/IC procedure on the risk of ischemic stroke.
The results showed a lack of benefit that surprised
many in the surgical profession. It became clear
that many of the eligible patients at the participat-
ing clinical sites did not enter the trial, while those
enrolled in the trial were considered to have poorer
risk and some argued that they were less likely to
benefit from surgery [1, 21]. The ensuing contro-
versy slowed acceptance of the trial results by the
surgical community, although eventually they had a
profound effect on the frequency with which EC/IC
was performed.

Conclusions

The goals and objectives of the trial, the intended tar-
get population, and the anticipated inferences from
the trial results should all be carefully specified from
the outset. If that is done, then the appropriate choice
of eligibility criteria usually becomes clearer. Expe-
rience has shown that simplifying eligibility criteria
generally enhances recruitment, allows a wider partic-
ipation, and gives greater justification for generalizing
the results to a broader population.
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Eligibility Restriction

Eligibility restriction, or simply restriction, is a design
strategy used to control for a potential confounder.
For example, if gender is a potential confounder in
a study of heart disease and diet, then one might
choose to restrict the study to females. This design
would eliminate gender as a potential confounder, but

it would yield no direct information on the effect of
diet on heart disease risk in males (see Matching).

Eligibility restrictions are also used in clinical
trials for various other purposes, such as eliminating
individuals not thought to benefit from the treatments
under study or eliminating subjects not thought to be
healthy enough to comply with protocol requirements
(see Eligibility and Exclusion Criteria).

MITCHELL H. GAIL



Elston–Stewart Algorithm

Define a pedigree of size n to be a set of n related
persons such that for each person in the set either nei-
ther parent or both parents are also in the set. Suppose
that the first n1 of these persons have no parents in
the pedigree, and call them founders; and that the
last n − n1 of these persons have both parents in the
pedigree, and call these nonfounders. Let gi denote
the genotype, and yi the phenotype, of individual i.
Assume that, conditional on the genotypes gi , all the
phenotypes yi are independent. Then the joint prob-
ability of the gi and yi for all the pedigree members
can be expressed as

n1∏

i=1

Pr(gi)

n2∏

i=n1+1

Pr
(
gi |giM , giF

) n∏

i=1

Pr(yi |gi), (1)

where Pr(gi) is the population probability of founder
i’s genotype, Pr(gi |giM , giF) is the probability of non-
founder i’s genotype conditional on the genotypes of
the mother and father of i (genetic transition prob-
ability), and Pr(yi |gi) is the probability of i’s pheno-
type conditional on genotype (penetrance function).
Any of these probabilities may be a function of model
parameters, and as a function of these the probability
(1) is a joint likelihood. However, the genotypes are
unobserved latent variables, so that the likelihood of
interest, given only the observations yi , is

∑

g1

∑

g2

. . .
∑

gn

n1∏

i=1

Pr(gi)

n2∏

i=n1+1

Pr
(
gi |giM , giF

)

×
n∏

i=1

Pr(yi |gi). (2)

Elston & Stewart [2] derived this likelihood by
a different argument, specifically for a pedigree of
simple structure – i.e. a pedigree in which there are
no loops and each pedigree member traces back
to the same single set of ancestral parents. This
results in a formulation in which each summation
sign in (2) is pushed as far to the right as possible,
suggesting a recursive algorithm for its calculation
that decreases the amount of computing time nec-
essary. In particular, the amount of computation in
this Elston–Stewart algorithm increases linearly with
the size of the pedigree, but exponentially with the

number of loci in the genotype g. The algorithm was
soon adapted to pedigrees of complex structure [1, 6],
but at increased computational cost. Later, with the
advent of multipoint linkage analysis, a completely
different algorithm for calculating a pedigree likeli-
hood was proposed by Lander & Green [5] (see also
[4]); the computational time for this algorithm, for
which pedigree loops are no impediment, increases
exponentially with the size of the pedigree but lin-
early with the number of loci. These two algorithms
are widely used in the analysis of pedigree data.

The likelihood for a pedigree under polygenic
inheritance can be expressed in a form analogous to
(2): each summation is changed to an integration and
each probability function becomes a normal density
function (see Normal Distribution). Elston & Stew-
art [2] similarly expressed this likelihood with each
integration sign pushed as far to the right as possible,
and gave an algorithm to perform each integral in
sequence analytically (see also [3]). In this way the
likelihood under polygenic inheritance for a simple
pedigree of size n, which can also be expressed as
an n-variate normal density (see Multivariate Nor-
mality, Tests of), can be evaluated without needing
inversion of an n × n symmetric matrix.
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EM Algorithm

In the practice of biostatistics, one is often faced with
the problem of estimation with incomplete or miss-
ing data. Some common examples include grouped,
censored or truncated data, and multivariate data
with some individuals having missing responses (see
Missing Data). Many simple techniques have been
developed for this problem, which are based on a
“filling in” or “successive substitution” algorithm.
The idea is based on the intuitive notion that (i) if
we had the values of the missing observations we
could estimate the parameters in the “standard” way,
often without iteration, and (ii) if we knew the param-
eters, we could “fill in” the missing observations by
setting them equal to their expected values under the
model. This suggests estimation can proceed itera-
tively, alternating between computing expectations
for the incomplete data and estimating parameters
with “complete data”.

The EM Algorithm [5, 11, 17, 18, 30, 47, 57]
is a general computational method for calculat-
ing maximum likelihood estimates with incomplete
data. Its implementation capitalizes on the intuitive
notion behind “filling in” algorithms. The name EM
was introduced by Dempster et al. [11], hereinafter
referred to as DLR; its name is derived from the two
steps required at each iteration: an E-step for comput-
ing the expectation of the missing data and an M-step
for computing the maximum likelihood estimates of
the parameters assuming complete data. Not all “fill-
ing in” algorithms are versions of the EM algorithm;
both the E-step and the M-step must be specified with
reference to an appropriate formulation of the incom-
plete data and its likelihood in order for the resulting
parameter estimates to be ML.

Before describing the EM algorithm and present-
ing some of its properties, we present two simple
examples which illustrate many of the features of
the EM. The first is a very simple version of the
gene counting algorithm in genetics, one of the ear-
liest uses of the EM algorithm. The second example
is two-way analysis of variance (ANOVA) with
missing cells. In this case, a naive “filling in” algo-
rithm is not EM, but a simple adjustment can be made
which leads to the EM, using the general theory pre-
sented in the following section.

Example 1: Gene Counting

Suppose we wish to estimate the frequency of an
allele A at a gene (see Gene Frequency Estimation),
based on a random sample of N individuals. Each
person has two alleles; we assume Hardy–Weinberg
equilibrium and random mating, so that if we could
observe the value of each allele directly, the desired
probability estimate would be the observed propor-
tion of A alleles out of 2N independent alleles.
To formalize this idea, we introduce some notation.
Let pA be the proportion of A alleles, nAA be the
number of individuals who are AA, and likewise
for nAa and naa, so that nAA + nAa + naa = N and
p̂A = (2nAA + nAa)/2N . Here, lower-case “a” is used
to denote an allele which is not A.

Depending upon what data are available on the
N individuals, the value of an allele may not be
directly observable. However, pA can still be esti-
mated by assuming a specific genetic model. For
illustration, we will assume we observe a recessive
trait with Y = 1 if a person is AA, and Y = 0 other-
wise. Here we know an individual has two A alleles
if Y = 1, but if Y = 0 we only know they have less
than two A alleles. Denote by n1 and n0 the number
of individuals with Y = 1 and Y = 0, respectively.
Notice that n1 = nAA and n0 = nAa + naa. Given n0

and n1 and a provisional estimate of pA, say p̃A,
we can calculate the expected number of A alle-
les as

E(2nAA + nAa) = 2n1 + E(nAa|n0, n1, p̃a).

The last term can be easily calculated assuming
Hardy–Weinberg equilibrium as

ñAa = E(nAa|n0, n1, p̃A) = n0 Pr(Aa|Aa or aa)

= n02p̃A(1 − p̃A)

2p̃A(1 − p̃A) + (1 − p̃A)2

= n02p̃A

1 + p̃A
. (1)

Now, treating ñAa as if it were actually the count of
Aa individuals, we get our updated estimate of pA as

pnew
A = (2nAA + ñAa)

2N
(2)

= 2n1 + 2n0p̃A/(1 + p̃A)

2N
. (3)
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In this example, iterating between (1) and (2) to solve
for pA will yield the ML estimate. Note that setting
p̃A = pnew

A = p̂A in (3) yields an equation for p̂A

which can be solved to yield

p̂A =
√

n1

N
.

This estimate can be derived directly by noting
that under Hardy–Weinberg equilibrium Pr(Y =
1) = p2

A: showing that it is a fixed point of the
EM algorithm shows that p̂A is ML. Although
no iteration is required in this simple example,
with three or more alleles iterative computations
are required and the EM is often used. Ceppellini
et al. [8], present the gene counting algorithm for the
general case, and also consider estimation of allele
frequencies when the data consist of random samples
of families. Hartl & Clark [16] and Lange [29]
give examples implementing the EM for estimating
the allele frequencies which control the ABO blood
groups.

Example 2: ANOVA with Missing Cells

Suppose we have the usual two-way layout with one
observation per cell, xij , i = 1, . . . , I, j = 1, . . . , J .
We assume the standard model (see Analysis of
Variance):

xij = µ + αi + βj + eij ,

where
∑

αi = ∑
βj = 0 and the eij s are taken to be

independent with zero mean and variance σ 2. With
complete data, the standard estimates for µ, αi, βj

and σ 2 are

µ = x··,

αi = (xi· − x ··), (4)

βj = (x ·j − x ··),

σ 2 =

∑

ij

(xij − xi· − x ·j + x ··)2

(I − 1)(J − 1)
. (5)

If observations are missing for some cells, one
can still obtain least squares estimates for the
parameters by setting up a design matrix (which
is no longer orthogonal), and using any standard
regression package (see Software, Biostatistical).
Prior to the easy availability of regression packages,

a popular alternative to the required matrix inversion
was to use “filling in” algorithms. Several versions
were proposed; Little & Rubin [35] give a rationale
for using “filling in” algorithms in this setting and
review the literature. The version we describe is due
to Healy & Westmacott [19] and is also given in Little
& Rubin [35].

One can start the algorithm with any set of initial
values for the parameters. One could, for example,
use (4) and (5) where the means and sum of squares
are based only on those cells where xij is observed.
Having provisional estimates, any missing cell, say
xlk, is filled in by

xlk = E(xlk|µ̃, α̃, β̃) = µ̃ + α̃l + β̃k. (6)

Since (4) and (6) do not involve σ 2, we may iterate
between (4) and (6) to obtain the least squares
estimates of µ, α, and β. That is, given the current
estimates, fill in for any missing cells using (6) and
then use (4) to reestimate µ, α, and β, treating the
x̃lk as observed data.

Using “filling in” algorithms to obtain estimates of
variance components is more complicated. A naive
approach would be to continue to use (6) to fill in for
the missing values and to use (5) for estimating σ 2.
But since (x̃lk − µ̃ − α̃l − β̃k)

2 = 0 for all missing
cells, this would be equivalent to ignoring the missing
cells in computing the sums of squares and dividing
by an inflated number of degrees of freedom. Healy
& Westmacott [19] suggested just this, but replacing
(I − 1)(J − 1) with the correct number of degrees of
freedom, (I − 1)(J − 1) − m, where m denotes the
number of missing cells.

Alternatively, notice that for least squares esti-
mates, (5) can be written

(I − 1)(J − 1)σ̂ 2 =
∑

ij

x2
ij −

∑

ij

(µ̂ + α̂i + β̂j )
2.

(7)

This suggests filling in E(x2
lk|µ, α, β) in (7) for the

missing xlk. Since

E(x2
lk|µ, α, β, σ 2) = σ 2 + (µ + αl + βk)

2,

this would lead to the following iterative equation
for σ 2:

σ 2
new =

∑

ij

(xij − µ̃ − α̃i − β̃j )
2 + mσ̃ 2

(I − 1)(J − 1)
. (8)
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Since (µ, α̂, β̂) do not depend upon σ 2, (8) can be
solved directly for σ̂ 2 to yield

σ̂ 2 =

∑

ij

(xij − µ̂ − α̂i − β̂j )
2

(I − 1)(J − 1) − m
, (9)

yielding the Healy & Westmacott estimator. This is
not ML under the assumption of normality for the
error terms because the maximum likelihood estimate
of σ 2 is the error sums of squares divided by the
sample size rather than the number of degrees of
freedom. Substituting IJ for (I − 1)(J − 1) in (8)
and (9) yields the EM equations and the ML estimator
for σ 2.

These simple examples illustrate several features
of the algorithm. First is the simple and intuitive
nature of the algorithm. This is particularly true for
the gene counting algorithm. For the second example,
filling in E(x2

lk) for the missing cells in estimating
the variance is not so obvious. The general principle,
discussed in the next section is that one must “fill in”
by computing expectations of the sufficient statistics
(in the case of exponential families). If all sufficient
statistics are linear in the data, as they are in standard
multinomial problems, then filling in by computing
expectations of the data is appropriate. Second is the
simple nature of each step of the algorithm. Although
it can be implemented in a wide variety of situations,
it is easiest to implement when maximum likelihood
with complete data has closed form solutions and
when the required expectations can be computed in
closed form. Third is the fact that the EM is not
always the best computational procedure; in both of
our simple examples, the existence of a closed form
solution and widespread availability of computing
resources make the EM obsolete in these cases. Even
in this setting, characterizing an estimate as the fixed
point of the EM can be an easy method for deriving
formulas for maximum likelihood estimates. We now
turn to a discussion of the general theory underlying
the EM.

Maximum Likelihood Estimation with
Incomplete Data: The EM Algorithm

We discuss here the problem of maximum likelihood
with incomplete data in complete generality, but
will refer back to our two examples to make ideas
concrete. We denote the complete data vector by

x and its associated density by f (x|φ), where φ

denotes an r-vector of parameters. Here x could be
an n-vector of independent scalar observations as in
Example 2 where x = (x11, . . . , xIJ )T. In Example
1, there are many choices for x; it could be the 2N

vector of allele values, the N vector of genotypes
for each subject, or the counts nAA, nAa, and naa.
Any choice leads to equivalent results, but potentially
different implementations of the algorithm. We will
take x to be the 2N vector of allele values. In many
settings, each sampling unit will contribute a vector
of observations to the complete data vector.

Denote the observed data by y. There are two
sample spaces, X and Y , and the data vectors x and
y define a many-to-one mapping from X to Y . For
example 2, X is RIJ and Y is RIJ−m; y is the IJ − m

vector of observed xij s. For Example 1, X is the
space of 2N vectors whose components are binary,
xi1 and xi2 being indicator vectors for the ith subject’s
two alleles, i.e. xij = 1 if A, and 0 otherwise. We
shall take Y to be the space of N vectors whose
components are also binary, yi = 1 if a person is AA,
yi = 0 otherwise.

By definition, the density of the observed data y
can be written as

g(y|φ) =
∫

X(y)

f (x|φ) dx, (10)

where X(y) denotes the subset of X where x must
lie, having observed y. For example 2, X(y) is just
Rm and (10) simply integrates out the missing xij s,
leaving the normal density of the observed data
vector. For Example 2, we have yi = xi1xi2; hence
the integral is a summation over all values of xi1 and
xi2 which yield yi . This implies that each yi is binary
with probability density

g(yi) = (p2
A)yi (2pA(1 − pA) + (1 − pA)2)1−yi

=
∑

p
xi1
A p

xi2
A (1 − pA)1−xi1(1 − pA)1−xi2 ,

where summation is over all (xi1, xi2) such that yi =
xi1xi2.

Notice that this formulation is quite general and
does not apply merely to missing data in the usual
setting where one or more subjects are missing some
or all of their observations. It also applies to con-
volutions, where each component of y is the sum
of several components of x, and to latent variable
problems (see Random Coefficient Repeated Mea-
sures Model), random effects models and mixtures
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(see Method of Moments), where inherently unob-
servable variables are considered to be part of the
complete data.

Since y is completely determined by x, their joint
density is simply f (x|φ). Thus, by definition,

f (x|φ) = k(x|y, φ)g(y|φ),

where k(x|y, φ) denotes the conditional density of x
given y. Taking logs yields

l(φ; x) = l(φ; y) + l(φ; x|y), (11)

where l(φ; ·) denotes the log likelihood associated
with the density of (·|φ). To obtain the ML estimate
of φ we maximize l(φ; y), or equivalently l(φ; x) −
l(φ; x|y). Taking the expectation of both sides of (11)
with respect to k(x|y, φ′), we get

Q(φ|φ′) = L(φ) + H(φ|φ′), (12)

where

L(φ) ≡ l(φ; y),

Q(φ|φ′) = E(log f (x|φ)|y, φ′),

and
H(φ|φ′) = E(log k(x|y, φ)|y, φ′).

As a consequence of the information inequality
[30], H(φ|φ′) is maximized as a function of φ by
setting φ = φ′ for any φ′. Furthermore, the ML
estimator, φ̂, maximizes L(φ) by definition. Thus
L(φ) and H(φ|φ̂) are both maximized when φ = φ̂,
and it follows that Q(φ|φ̂) is maximized by setting
φ = φ̂. This fact both provides a characterization
of the MLE in terms of the complete data log
likelihood, and also suggests a computing algorithm.
The algorithm in its general form is as follows. Given
the current estimate of φ at the pth iteration, say φ(p):
E-step: Compute

E[log f (x|φ)|y, φ(p)] = Q(φ|φ(p)).

M-step: Maximize Q(φ|φ(p) as a function of φ to
obtain φ(p+1). It follows immediately that the MLE
is a fixed point of the EM algorithm, since φ̂ will
maximize Q(φ|φ̂).

Although this general formulation can be success-
fully implemented in many examples, it is easiest to
implement the EM when the complete data density

has a regular exponential family form. In this case,
ignoring any functions of x alone, we can write

log f (x|φ) = φTt − log a(φ),

where we now assume φ denotes an r-vector of the
canonical parameters and t is an r-vector of sufficient
statistics which are functions of x. Since log f (x|φ)

is linear in the sufficient statistics, the E-step is easily
implemented by setting:
E-step: t(p) = E(t|y; φp).

For the M-step we maximize φTt(p) − log a(φ),
treating t(p) as if it were the sufficient statistic
based on completely observed data. For regular
exponential families, ∂ log a(φ)/∂φ = E(t|φ), hence
the likelihood equations are obtained by setting t
equal to its expected value, or solving

E(t|φ) − t = 0.

Thus, regarding t(p) as data, and maximizing φT t(p) −
log a(φ) to find φp+1 leads to:
M-step: Solve

E(t|φ(p+1)) − t(p) = 0.

At convergence φ(p+1) = φ(p), and we have

E(t|φ̂) − E(t|y, φ̂) = 0.

This striking representation for the likelihood equa-
tions provides an easy derivation in settings where the
complete data can be chosen to have an exponential
family distribution. The recipe is: (i) find the vec-
tor of sufficient statistics t , assuming complete data
(ii) find an expression for its expectation, E(t|φ), as
a function of φ with respect to the complete data,
(iii) find an expression for the expectation given the
observed data y, E(t|y, φ), and (iv) equate the two
expectations to solve for φ. Since the representation
for the complete data is not unique, there may be sev-
eral choices for x and thus t; some choices may lead
to an easier solution of the M- and E-steps than oth-
ers. In multivariate settings, such as multinomial or
normal, the conditional distribution of the complete
data conditional on observed data will often have the
same form as the complete data, making the condi-
tional expectations easy to compute.

Having given a general characterization of the EM,
we now return to our two examples. The properties
of the algorithm and other applications are discussed
in the following sections.
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Example 1

Since we chose x to be the 2N vector of indica-
tors for each allele, our complete data likelihood
is binomial (pA, 2N); hence the sufficient statis-
tic is the number of A alleles, or t = ∑

i (xi1 +
xi2). The M-step is p̃A = t/2N and given p̃A the
E-step computes E(t|y, p̃A). Since t is linear in
xi1 + xi2, its expectation can be computed by con-
sidering

E(xi1 + xi2|yi, p̃A) =
{

2, if yi = 1,

2p̃A/(1 + p̃A), if yi = 0.
(13)

Thus, E(t|y, p̃A) = 2n1 + 2n0p̃A/(1 + p̃A), as be-
fore. Note that (13) is based on k(x|y, φ); in this
example, and in many others, it is not necessary
to calculate this density in complete generality,
but only to be able to take conditional moments
of xij .

Example 2

Assuming the error terms are independently and
normally distributed gives an exponential family form
for f (x|φ). Two choices are possible for dealing with
the parameter space. We can take φ to consist of
µ, σ 2, the Iαis, the Jβj s and impose constraints, or
take only (I − 1)αis and (J − 1)βj s. We choose the
former because it yields a simpler set of sufficient
statistics and illustrates the implementation of the
EM with constraints; either choice gives equivalent
results.

When φ is the vector of (I + J + 2) parameters,
the sufficient statistics are easily found to be

t1 = x++,

tT
2 = (x1+, . . . , xI+),

tT
3 = (x+1, . . . , x+J ),

t4 =
∑∑

x2
ij .

(14)

Here a + replacing a subscript indicates summation
over that index. The complete data log likelihood can
be maximized by setting tT = (t1, tT

2 , tT
3 , t4) equal to

its expected value, subject to the constraints
∑

αi =
0 and

∑
βj = 0. Assuming these constraints hold,

the expectations of t are:

E(t1) = IJµ,

E(tT
2 ) = J (µ + α1, . . . , µ + αI ),

E(tT
3 ) = I (µ + β1, . . . , µ + βJ ),

E(t4) = IJσ 2 +
∑ ∑

(µ + αi + βj )
2.

(15)

Equating (14) and (15) and solving for the parame-
ters gives the well-known estimates (apart from the
denominator of σ 2):

µ̂ = x++,

α̂i = xi+ − x++,

β̂j = x+j − x++,

σ̂ 2 = 1

IJ

∑
(xij − xi· − x ·J + x ··)2.

(16)

If cells are missing, then the E-step is easy, since
t is just summations of xij and x2

ij over individuals.
Explicit derivation of the sufficient statistics shows
why E(xlk) is substituted into the formulas for
(µ̂, α̂, β̂) and E(x2

lk) is substituted into the formula
for σ̂ 2. In this case the conditional expectations are
particularly easy since the xij are all independent.
This implies f (xlk|y, φ) = f (xlk|φ) ∼ N(µ + αl +
βk, σ 2), i.e. the distribution of the unobserved xs is
independent of the observed ys, but it does depend
upon the unknown parameters.

Notice that it is not actually necessary to identify
the vector of canonical parameters, φ. It is only
necessary to identify the vector of sufficient statistics
t and to be able to express E(t|φ) as a function
of the parameters of interest. In our Example 2 it
was particularly easy to solve the complete data
maximization problem subject to the constraints. In
other settings Lagrange multipliers can be used.

The use of the term EM algorithm is sometimes
criticized because it is actually only a prescription for
an algorithm. The exact formulas for its implementa-
tion will vary in each application. In many examples
the E- and M-steps will be obvious and easily imple-
mented. In other cases, either the E- or the M-step
will be difficult; later we will consider extensions of
the EM designed to deal with several problems which
arise in practice. First we will consider the properties
of the EM.
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Properties of the EM Algorithm

As previously mentioned, the MLE of φ is a fixed
point of the EM. In addition, the EM is numerically
very stable and each iteration increases the likelihood.
This fact is easily proved. By definition of the
algorithm,

Q(φ(p+1)|φ(p)) ≥ Q(φ(p)|φ(p)), (17)

and, as previously noted, the information inequality
implies

H(φ(p+1)|φ(p)) ≤ H(φ(p)|φ(p)).

Thus

L(φ(p+1)) = Q(φ(p+1)|φ(p)) − H(φ(p+1)|φ(p))

≥ Q(φ(p)|φ(p)) − H(φ(p)|φ(p)) = L(φ(p)).

See also Baum et al. [5]; DLR, and Lange [30].
The EM algorithm naturally incorporates param-

eter bounds and constraints whenever the complete
data come from an exponential family. For example,
with a complete data sample from the multivariate
normal, the sample variance–covariance matrix is
the MLE; it is also nonnegative definite. With miss-
ing data, using the EM to estimate µ and � means
that, provided the initial value for � is nonnega-
tive definite, each iterate will remain so. Another
common example is estimates of probabilities which
are equal, with complete data, to x/n, say, for a
count 0 < x < n. When x and possibly also n are
incompletely observed, the probability estimate will
remain between zero and one with the EM, since
0 < E(x) < E(n). Parameter bounds such as these
will not hold in general for other iterative algorithms.

The EM is not guaranteed to converge, even to a
local maximum, except in special circumstances. The
original proof of convergence given in DLR is flawed.
Wu [63] and Boyles [6] have studied convergence.
Two general results given by Wu [63] are (1) if
the complete data density is a curved exponential
family with a compact parameter space, then all limit
points of any EM sequence are stationary points of
the likelihood and (2) if the likelihood function is
unimodal and the first derivative of the Q function
with respect to φ is continuous in both φ and φ′,
then the EM converges to a unique maximum. In
most instances it will be difficult to show that an
incomplete data likelihood is unimodal; thus case 1 is

of more interest. Since convergence guarantees only
a stationary point, and not even a local maximum,
much less a global one, it is sometimes useful to
use several starting values for the algorithm. Multiple
solutions are a feature of many incomplete data
problems, especially boundary solutions. See Baker
et al. [3] and Baker & Laird [4].

Even though the EM algorithm may not provide
the most efficient computational approach, it often
provides an easy way to characterize the deriva-
tives of the log-likelihood, and thus expressions for
the ML score equations and observed information
matrix, in terms of the complete data log likelihood.
In addition, because of its stability and simplicity, the
EM algorithm can be easily programmed in many
cases; its property of increasing the likelihood can
be useful in debugging programs. These facts make
it worthwhile to represent data as incomplete in
cases where it is possible to do so, while choosing
the complete data to correspond to an easily han-
dled case.

As an optimization procedure, the EM enjoys
many advantages over its main competitor, New-
ton–Raphson. Although more iterations are generally
required, each iteration may be faster and easier to
program. It is less sensitive to poor starting val-
ues, it automatically bounds parameter values in their
proper space and it is easier to implement with many
parameters.

The EM algorithm is a method for computing ML
estimates which does not require second derivatives.
This is attractive when second derivatives are difficult
to evaluate and often makes it easy to program the
equations, but it can also mean slow convergence
and the asymptotic variance–covariance matrix is
not available as a byproduct of the computations.
Enhancements to the basic algorithm to deal with
these and other issues are discussed in the next
section.

Enhancements and Modifications to the
EM Algorithm

Because of its popularity, many enhancements and
modifications have been suggested for the EM
algorithm. If the M-step and/or the E-step are diffi-
cult, i.e. the E-step requires numerical integration or
the M-step requires numerical methods to maximize
the Q-function, then it may be infeasible to imple-
ment the EM easily. In their original paper, DLR
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proposed a Generalized EM (GEM) designed to deal
with the case where maximization is difficult at the
M-step. A GEM algorithm is an EM, with the M-step
changed to
M-step: Choose φp+1 so that

Q(φ(p+1)|φ(p)) ≥ Q(φ(p)|φ(p)).

Clearly the GEM retains many of the properties of the
EM and will be easier to implement in some cases.

Various other proposals have been suggested for
dealing with a Q-function which is difficult to
maximize. One obvious approach to maximizing the
Q-function at each iteration is to use some rapidly
converging algorithm, such as Newton–Raphson, and
only take one iteration away from φ(p) at each
M-step. Providing the single iteration increases the
likelihood, this would provide an instance of a GEM.
This approach has been formalized by Lange [27]
who describes a gradient algorithm locally equivalent
to EM. Meng & Rubin [45] propose using a series
of “conditional” maximization steps (hence the name
ECM), or cyclic coordinate ascent to maximize
Q(φ|φ(p)). Liu & Rubin [36] extend this idea with
the ECME algorithm, which allows some components
of φ(p+1) to be chosen to maximize the observed
data log likelihood rather than Q(φ|φ(p)). Green [14]
proposes an extension of the EM for the Bayesian
setting, where addition of the log of the prior to the
Q function makes its maximization intractable.

There have been fewer proposals for how to deal
with intractable E-steps arising because numerical
methods are required to evaluate the expectations.
One approach is to approximate k(x|y, φ(p)) by a
distribution which makes the E-step expectations easy
to compute. This approach was used by Laird [23]
and by Stiratelli et al. [56] in estimating variance
components in a random effects model with binary
data. They assumed that the conditional distribution
of the missing random effects was approximately
normal, given an individual’s observed data; this
makes it easy to compute the required expectations,
but the approximation fails if individuals have only
a few data points. More recently, Steele [55] used
Laplace’s method to obtain an analytic approximation
for the E-step which performs well in simulations.

Other ways for dealing with this problem are based
on Monte Carlo methods or data augmentation.
Tanner & Wong’s [58] data augmentation method
for iteratively computing the entire posterior density
of φ with missing data is similar in spirit to the

EM algorithm. Wei & Tanner [62] introduce the
Monte Carlo EM (MCEM) for use when the E-
step is difficult to implement. If one can generate
a sample x1, . . . , xm from k(x|y, φ(p)), Q can be
approximated by

Q(φ|φ(p)) = 1

m

m∑

j=1

log f (xj |φ).

Although this avoids integrals, one must be able
to generate data from k(·|·) and maximizing the Q

function may be more difficult because of the mixing.
Meng & Schilling [46] describe the use of Gibbs
sampling (see Markov Chain Monte Carlo) to carry
out a MCEM for item factor models.

The convergence of the EM can be very slow and
several authors have suggested methods for speeding
convergence. Louis [37], Laird et al. [24], and Lind-
strom & Bates [34] suggested Aitken acceleration; its
use has met with mixed success. Jamshidian & Jen-
nrich [20] apply generalized conjugate gradient meth-
ods to accelerate the EM and term the resulting algo-
rithm the AEM (accelerated EM). Lange [28] sug-
gests a version of quasi-Newton which uses EM type
ideas to approximate the Hessian used by the New-
ton–Raphson algorithm to maximize the observed
data log likelihood. An alternate method [2] is to start
with the EM and switch to Newton–Raphson. This is
advantageous because just when the EM slows down,
near a maximum, the Newton–Raphson works best.

Because the convergence rate of the EM is deter-
mined by the amount of missing information, if one
can find ways to specify the complete data so as to
decrease the amount of “missing data”, one should
increase the rate of convergence. Meng & van Dyk
[42] give a general approach for choosing the com-
plete data to minimize the fraction of missing data
with applications to fitting Student’s t distribution,
random effects models, and image reconstruction (see
Image Analysis and Tomography). The approach
is like the EM itself in that there is only a general
methodology and the implementation must be worked
out independently for each case.

Besides slow convergence, the absence of sec-
ond derivative computations means that asymptotic
standard errors require additional computation. As
noted below, there have been a considerable number
of proposals for approximating the asymptotic vari-
ance–covariance matrix. However, in practice it is
often simplest to calculate the observed information
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matrix numerically and invert it. Because derivatives
of Q with respect to its left variable coincide with the
score, one can compute second derivatives by taking
finite differences of the exact first derivatives of Q.
This approach will be attractive whenever the first
derivative of Q is easily computed. In early work,
Hartley & Hocking [18] present a general method
for computing the observed information in an incom-
plete data setting which is based on creating a system
of simultaneous equations from successive iterations
of the EM algorithm, one for each parameter to be
estimated.

Many recent procedures have been proposed for
computing the second derivatives of L(φ) which cap-
italize on the representation of the data as incomplete.
By rearranging (12), differentiating twice under the
integral signs and evaluating at φ′ = φ, we can derive
an expression for the observed information, Iy, as

Iy = Ixc − Fx|y. (18)

Here Fx|y is the expected or Fisher information in x|y:

Fx|y = E

[
∂2 log k(x|y, φ)

∂φ∂φT

∣∣∣∣y, φ

]
,

where expectation is with respect to k(x|y, φ) and
Ixc is the expected value of the information in x,
conditioned on y:

Ixc = E

[
∂2 log f (x|φ)

∂φ∂φT

∣∣∣∣y, φ

]
.

Eq. (18) has the appealing interpretation as

observed data information
= complete data information

− missing data information,

which Orchard & Woodbury [47] termed the missing
information principle. Taking expectations of both
sides of (18) with respect to g(y|φ) yields

Fy = Fx − ave Fx|y,

where ave denotes expectation over g(y|φ). When
the complete data have the exponential family form,
expression (18) simplifies to

Iy = var(t|φ) − var(t|φ, y),

and the expected information in y is

Fy = var[E(t|y, φ)].

Louis [37] shows that Fx|y can also be expressed
in terms of the derivatives of log f (x|φ):

Fx|y = E[S(x; φ)S(x; φ)T] − [ES(x; φ)][ES(x; φ)]T,

(19)

where S(x; φ) is the derivative of log f (x|φ) and
expectations are with respect to k(x|y, φ). Under
regularity conditions on the Q function, it will be
maximized by setting its derivatives to zero; hence
the second term in (19) vanishes at φ̂. Assuming
x consists of n independent vectors, say xi , and
yi (x) = yi (xi ), a simple expression can be derived for
Iy using expressions for the first and second deriva-
tives of log f (xi |φ) [37]. For this same setting of
independent observations, Meilijson [41] and Redner
& Walker [50] propose the use of the empirical Fisher
information to estimate the asymptotic variance:

F̂y =
n∑

i=1

s(yi , φ)sT(yi , φ) − 1

n2
S(y; φ)ST(y; φ),

(20)

where s(yi , φ) is the derivative of log g(yi |φ), and
s(yi ; φ) is the sum of the s(yi ; φ), hence the derivative
of the observed data log likelihood. At the maximum,
S(y; φ̂) = 0. As shown in Louis [37],

s(yi ; φ) = E[s(xi ; φ)|yi , φ], (21)

where si (xi , φ) is the derivative of log f (xi |φ). Thus
si (yi , φ) is available from the E-step computations.
Meilijson [41] attributes (21) to Fisher [12]; (20) and
(21) combine to give a method for estimating the
asymptotic variance with independent data vectors
which is very easy to implement in many settings,
but is not a fully efficient estimate.

Meng & Rubin [44] propose a method for com-
puting the asymptotic variance which is based on a
reexpression of (18) which represents Iy in terms of
Ixc and the “fraction of missing information” matrix
given by

DM = Fx|yI−1
xc .

Their method, like Louis’s [37], requires the code for
the complete data asymptotic variance–covariance
matrix. It does not require independently distributed
data, and uses numerical differentiation only to
approximate the “fraction of missing information”
matrix.

Baker [1, 2] has developed a general method for
computing the observed information matrix when
using the EM with categorical data. It is used
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when the incomplete data is a vector of cell counts
which can be expressed as a linear function of com-
plete data cell counts. The basic approach is to
express the vector of expected cell counts in terms
of matrix functions; the variance–covariance matrix
can be easily obtained as a function of these matri-
ces and the vector of expected cell counts. Baker
[1] also gives a review of methods for comput-
ing the information matrix with incomplete categori-
cal data.

Applications

Perhaps the most attractive feature of the EM algo-
rithm is the very wide range of problems which can
be characterized as incomplete data problems. Meng
& Pedlow [43] conducted a bibliographic search of
the EM literature from 1977 through 1991. They
found over 1000 articles from almost 300 statisti-
cal and nonstatistical journals that contain material
on the EM. Many of these articles describe applica-
tions in medicine, genetics, engineering, psychology,
animal breeding and economics, to mention a few.
Clearly, the range of application is broad. In their
original paper, DLR described applications in miss-
ing data, grouping, censoring and truncation, finite
mixtures, variance components, hyperparameter esti-
mation, iteratively reweighted least squares (see Gen-
eralized Linear Model) and factor analysis. We
refer the reader to that paper for detailed discussion of
those applications, concentrating here on more recent
work and applications in genetics.

Indirect Measurement Problems, Including Image
Reconstruction

An application of the EM which has met with much
success is its use in image reconstruction problems,
including positron emission tomography [31, 52],
transmission tomography [32], stereology [53], and
particle size reconstruction via diffusion batteries
[38]. These problems are also sometimes called
indirect measurement problems. A related problem is
back projection, or using prevalence data to estimate
the distribution of incident cases of a disease which
has a long and variable incubation period [39, 40]
(see Back-calculation).

The general problem is to estimate a distribution,
usually of particle sizes or intensities, when the par-
ticles undergo some known thinning process before

being observed. The approach is to discretize the orig-
inal distribution, into bins or pixels, and estimate the
density in each bin, say µj . The complete data can
be represented as independent Poisson counts; with
complete data the density in each bin is estimated
by the count in the bin divided by the total count.
Because of the thinning process, the observed data
are also Poisson counts, with a mean which can be
expressed as an integral, or in the discretized version,
as a linear combination of the µj and known coeffi-
cients which characterize the thinning process. Given
the observed data, the µj , and the characteristics of
the thinning process, it is easy to compute expecta-
tions of the complete data and implement the EM.
Transmission tomography is somewhat more com-
plex, since here the logarithms of the mean of the
observed Poisson counts are linear in the µj .

Because the problem can sometimes be formu-
lated as a standard regression problem, except that the
responses are counts, and the unknown coefficients
are constrained to be positive, ordinary least squares,
or nonnegative least squares have been used in some
cases [38], but the results are not very satisfactory.
The EM is attractive in this setting because the non-
negativity constraints are automatically satisfied (as
they would be if complete data were observed), the
algorithm can converge to a boundary maximum
(some µ̂j = 0), and is computationally feasible in
the tomography applications where the number of
parameters range in the thousands. In this case, and
others, the maximization is often ill-conditioned, and
a penalty function (see Penalized Maximum Like-
lihood) or a Bayes prior have been used both to
enhance the quality of the reconstructed image and
eliminate the ill-conditioning [13, 32, 39, 53]. In fact,
Lange & Fessler [32] are able to establish global
convergence for the EM when the log posterior is
maximized.

A related example concerns estimation of the dis-
tribution of infectivity (see Infectivity Titration),
as measured by infectious units in a fixed volume
of blood, in a sample of AIDS patients [64]. Here,
infectivity cannot be directly measured, but must be
assessed using blood from uninfected donors and
serial dilution assays. The complete data are the
infectivity levels for each individual and with com-
plete data the empirical cumulative distribution func-
tion (cdf) could be used to estimate the distribution
nonparametrically. The observed data are a vector of
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binary observations for each individual, each compo-
nent indicating whether or not the individual’s blood
infected the donor blood at a given concentration.
The EM can be used to recover the empirical cdf of
infectivity, estimating both the support points and the
probability mass at each point. The general method
extends easily to other serial dilution assays and for
use with parametric assumptions for the underlying
distribution.

Molecular Biology

Alignment and restoration of DNA sequences are
another area where the EM algorithm has proven use-
ful. With the advent of the Human Genome Project
and the goal of sequencing the entire human genome,
methods for large-scale DNA sequencing are impor-
tant. Sequencing means determining the values (A,
C, G, or T) of a sequence of nucleotides in a strand
of DNA. In large-scale DNA sequencing, the goal
is to determine the sequence of large segments of
DNA made up of many thousands of bases. Because
the current technology can only sequence relatively
short fragments (<1000 bases) using size separation
on electrophoretic gels, the process of sequencing
involves breaking the original large fragment into
multiple overlapping smaller fragments, this pro-
cess being repeated sequentially. To obtain the DNA
sequence of the original segment, one must recon-
struct the order of the smaller fragments, using the
information in the overlap. Depending upon the strat-
egy used, the location of the fragments may not be
known, but must be deduced from determining the
overlap with other fragments. Churchill & Waterman
[10] and Thorne & Churchill [60] describe EM meth-
ods for the restoration of sequences; Lawrence &
Reilly [33] and Cardon & Stormo [7] discuss the use
of the EM for the related problem of finding common
protein binding sites in a series of unaligned frag-
ments. Churchill [9] gives an overview of statistical
issues in DNA sequencing.

Genetics

The use of the EM algorithm is quite natural in
genetics because the genetic data one would like
to use for inference about genetic models and
parameters are typically not directly observable, but
only indirectly observable by measured traits, referred
to as phenotypes. The gene counting algorithm used

to estimate allele frequencies is one of the earliest
uses of the EM algorithm [8, 54]. These authors also
noted its application to other areas of genetics, includ-
ing segregation and linkage analysis.

The general idea behind segregation analysis is to
test the fit of a specific genetic model to phenotypic
data from families. Smith [54] shows how the EM
can be used to estimate a ‘segregation ratio’ and thus
test whether it differs from the ratio specified by the
genetic model. The specific example he considers is
an assumed recessive model for a common trait with
disease allele G. Individuals with genotypes GG are
affected, and those with Gg or gg are not. We draw
random samples of families with one affected parent,
one unaffected parent, and at least one affected child.
The unaffected parent can be assumed to be Gg, since
they are unaffected, but they have an affected child.
The segregation ratio is the ratio of the number of
affected to unaffected children in families of a given
mating type; it should be 1:1 in the given model
since a child always gets a G gene from the affected
parent, and gets a G gene from the unaffected parent
with probability 1/2. The difficulty is that some Gg ×
GG matings will have no affected children, hence be
absent from our sample (see Ascertainment). To get
a proper test, the segregation ratio must be estimated.
Smith [54] does this by treating the “lost” families as
missing data and using the EM to estimate the number
of unobserved unaffected cases. Weeks & Lange [61]
give a general treatment of this problem.

Segregation analysis is somewhat more compli-
cated with quantitative phenotypes, largely because
realistic genetic models are more complicated and
involve numerous parameters which need to be esti-
mated. Ott [49] shows how the EM may be used
to obtain ML estimates of the parameters in poly-
genic and mixed models. Ott [48] also shows how
the Mendelian transmission probabilities,

p1 = Pr(child inherits g|parent gg) = 1,

p2 = Pr(child inherits g|parent Gg) = 1/2,

p3 = Pr(child inherits g|parent GG) = 0,

can be tested by assuming general values for
(p1, p2, p3), writing down the likelihood based on
samples of families, and using EM to estimate the
transmission probabilities.

Linkage analysis is another area where the EM
algorithm is used. In the typical linkage study, one
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seeks to locate the position of a disease gene by cor-
relating inheritance of the disease with inheritance of
a “marker” whose position in the genome is known,
at least approximately. A marker is a segment of
DNA whose alleles can be observed directly; usu-
ally markers are highly polymorphic, meaning they
have multiple alleles with nontrivial frequencies. In
the formation of gametes, parental chromosomes may
break and recombine, so that the chromosome inher-
ited by a child may consist of a combination of
disease and marker alleles that did not exist in the
parent; this is called a recombination event. If the
disease and marker alleles inherited by the child are
identical to those located on one of the parental chro-
mosomes, then no recombination event has occurred.
The distance between two locations on a chromo-
some is measured statistically by the recombination
fraction, which gives the probability that a recom-
bination occurs between the marker and the disease
gene during the formation of gametes. The larger the
recombination fraction, the farther apart the marker
and disease gene are. Even if one could directly
observe both marker and disease alleles for parents
and children, it might still not be possible to tell if
a recombination has occurred because one can only
infer from genotypes which allele is inherited from
which parental chromosome. Thus if there is dupli-
cation of allele values for the parental marker and
disease genes, there may be several possible trans-
mission patterns (and hence possible recombinations)
consistent with a child’s genetic values. When one
can only observe marker alleles directly, and only
disease phenotypes, there are additional missing data
with some mating types.

In this setting, the missing data which would make
the estimation of the recombination fraction triv-
ial are an indicator for each child’s data, telling us
whether or not a recombination occurred between the
two locations of interest. Thus, unlike gene count-
ing and segregation analysis, the values of the alleles
are not used directly; the relevant information is
knowing the parental source of DNA at each child’s
location so that recombination can be determined
unambiguously.

In plant and animal genetics, crosses can be
arranged between parents with known genetic
combinations (called haplotypes), so that recombi-
nants and nonrecombinants can be directly observed
from the offspring of phenotypes. Smith [54] shows

how the EM can be used with “repulsion single back-
cross” data, where even though parent haplotype data
are known, it is not possible to count recombinants
directly. He also developed a general framework for
linkage and applied it to estimate the recombina-
tion fraction between the genes for color blindness
and muscular dystrophy, both conditions assumed to
be sex-linked recessives. Ott [48] gives a very gen-
eral treatment of using the EM in linkage analysis,
considering the multiparameter situation where the
recombination fraction might depend upon age, sex,
etc. and also permitting the estimation of additional
parameters in the genetic model.

Thompson [59] discusses the utility of a simulta-
neous analysis of three or more markers as opposed
to considering a series of pairwise analyses. She
proposes the use of the EM to estimate the recombi-
nation fractions and also Sundberg’s [57] formulas for
curvature with incomplete data, to compute the infor-
mation gain in a joint marker linkage analysis. Lander
& Green [26] present another approach to estimat-
ing recombination fractions between multiple mark-
ers using the EM with data from three-generation
pedigrees, assuming that the order of the markers is
known. Here the complete data are the inheritance
vectors at each location, telling which founder alleles
are inherited by each person at each marker location.
With this information it is easy to tell where recom-
binations have occurred, and estimate the recombina-
tion fractions between each location (M-step). Having
the recombination fractions, the observed marker data
at each location, and knowing the pedigree relation-
ships, one needs to compute the expected number of
recombinations in each interval (E-step). They give
three alternative methods for carrying out the E-step
which are useful in different settings. Using the EM in
this setting permits the simultaneous analysis of many
more markers than previously possible, using large
numbers of small pedigrees. In related work, Lander
& Botstein [25] propose the use of the EM for linkage
studies involving multiple markers and quantitative
outcomes. Guo & Thompson [15] suggest using a
Monte Carlo EM for a combined linkage and segre-
gation analysis, again with quantitative outcomes.

An alternate method for testing linkage is to
count the number of alleles which are identical-
by-descent (IBD) in pairs of affected relatives, and
compare the observed to that expected based on
the relationship alone. An allele shared IBD in two
relatives means they share two copies of a single
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gene by inheritance; for example a parent and his
or her offspring share exactly one allele IBD at
each location in the genome provided there is no
inbreeding. They might also share other alleles by
chance, called IBS for identity-by-state, if parents
share the same type of alleles at some locations.
It is not always possible to determine IBD status,
either because of missing relative information or
duplicate versions of the same allele in relatives. To
solve this problem, Risch [51] suggested a simple
EM algorithm for estimating the proportions shared
IBD based on the observed data at a single locus.
This approach was extended by Kruglyak & Lander
[22] to incorporate information from markers at
other locations by calculating the distribution of
the inheritance vectors to determine IBD status.
They also extend this basic approach to carry out a
maximum likelihood analysis of allele sharing when
the disease outcome is measured quantitatively. These
approaches were extended to incorporate parametric
methods of linkage analysis with multiple marker
locations by Kruglyak et al. [21]. Other applications
of the EM in genetics, and a review, are given in
Weeks & Lange [61].
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Empirical Bayes

“Empirical Bayes” is the term Herbert Robbins
coined in his 1955 paper [26] to describe how, if
certain estimation situations are encountered many
times, the data from all these situations can be used
in combination to construct estimates for each indi-
vidual case that approach the greater accuracy of a
Bayes estimator (see Bayesian Methods). This is
without knowing the Bayesian’s prior distribution.
Since then, the concept of empirical Bayes has been
widened periodically so that today the term is used
by authors in biostatistics [5] and in other sciences to
embrace an array of models and methods that include,
for example, hierarchical models, random effects
models, linear mixed effect models for longitudi-
nal data, and multilevel models. Empirical Bayes
derived from the frequency perspective, emphasiz-
ing asymptotic evaluations of procedures. Today’s
inferences often are developed by using Bayesian
methods, although less emphasis is often placed on
evaluating new procedures.

Empirical Bayes research concerns analyses of
observed data y that follow a two-level (hierarchical)
model with known density function f at level 1:

Y |θ ∼ f (y|θ) (1)

Here, θ is a vector of random effects. At level 2, with
α, an unknown parameter vector (hyperparameter)
that governs the possible distributions of θ , and
with G, having density gα(θ), modeled as a known
(distribution) function

θ ∼ gα(θ). (2)

Robbins’ empirical Bayes referred to this frame-
work with θ a k-dimensional vector of unknowns
θ = (θ1, . . . θk) and y = (y1, . . . yk) independent and
with k going to infinity. In (2), G corresponds to let-
ting g be a one-dimensional completely unspecified
density for θ1, and then letting all the other parame-
ters θ2 . . . θk be independently identically distributed
(i.i.d.) with the same g. In the context of (2), the
parameter α is identified with g here, and the key
assumption for repeated problems is that among all
possible distributions on k-dimensions, the θ are i.i.d.

Yi |θi ∼ f (yi |θi) indep i = 1, . . . , k. (3)

θi ∼ g(θi) indep i = 1, . . . , k. (4)

This setup allows for building up of information
about this unknown g.

A scientist who knows g( ) would use it to calcu-
late the Bayes estimate for each θ , for example, the
posterior mean

θ̂i,g(yi) = E(θi |yi, g) = ∫ θf (yi |θ)g(θ) dθ

∫ f (yi |θ)g(θ) dθ
. (5)

Robbins

Robbins and his direct successors focused on the con-
struction of estimates for each θi that asymptotically,
as k → ∞, perform as well as the Bayes rule in (5),
as summarized in Maritz and Lwin [24]. Robbins
[26] made independence assumptions of (3) and (4)
in his initial example, with yi having a Poisson dis-
tribution with mean θi , and θi having an unknown
distribution, as in (4). Such a model could apply to
evaluations of medical units if, for example, yi were
the number of patients who experienced bad out-
comes (mortality, or postoperative infection, assum-
ing these are rare events) at treatment center i (i =
1, . . . k), and then θi would be the expected num-
ber of bad outcomes. Under these assumptions, the
marginal distributions of the observed yi values are
i.i.d. and depend on the unknown g (see Marginal
Models). Then, it is easily seen for any component i
with outcome Y and E(Y ) = θ in this Poisson setup,
that Bayes’ formula gives E(θ |Y = y) = (1 + y) ∗
P(Y = y + 1)/P (Y = y). Robbins used this fact and
consistency of the sample distribution function based
on the marginal distribution of (y1, . . . yk) to approxi-
mate the Bayes estimate of θi in (5) by his “empirical
Bayes” estimate

θ̂i = (1 + yi)
N1+yi

Nyi

. (6)

Here, Nyi
is the number of units (treatment centers,

here) that observed exactly yi Poisson events, and
Ny/k is a consistent estimate of P(Y = y) as k →
∞.

This two-level Poisson model (3) and (4) applies
in practice if the expected number of bad outcomes at
center i are i.i.d. and the number of patients exposed
is the same in every center. (This is rare, in practice.)
Robbins’ estimate (6) of the Bayes rule is consistent
so that, as k → ∞, it improves as an approximation
to the Bayes estimate (5) for most centers if k is
sufficiently large.
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Unfortunately, no matter how many treatment cen-
ters, k, are considered, some centers always will be
estimated badly by (6). To see this, let ymax denote
the maximum number of bad outcomes in any center.
This is a finite number for any k (but it goes to infinity
as k → ∞). By definition of ymax, N(1 + ymax) = 0,
so (6) estimates the corresponding θi to be 0. We
see that the treatment center with the worst outcome
record is estimated by (6) to be the best!

Better empirical Bayes estimates than (6) were
developed by Robbins’ immediate successors for
this Poisson situation and other distributions, and
Maritz’ book [24] summarizes many of these
investigations. While those advances improved the
estimation techniques, they still required k →
∞, and the models considered (3) and (4) often
were prohibitively restrictive for real applications,
which require much less symmetry at both levels.
For example, treatment centers almost always
treat different numbers of patients, so the level-1
distribution f in (3) must depend on i. Also, in
real problems, the identically distributed assumption
for the {θi} values in (4) becomes harder to meet,
especially if k must be large. And, methods were
needed that work for small and moderate values of
k, for example, for a moderate number of treatment
centers.

Parametric Empirical Bayes

Stein first proved in 1955 [27] that the means of k

independent Normal distributions, in the setup of
(3) (but not introducing or considering (4)), could
be estimated better, for sums of squared error loss
functions if k is at least 3. A specific, simple
estimator was introduced by James and Stein [18].
Efron and Morris [10–13] added (4) and reinterpreted
Stein’s estimator as an empirical Bayes estimator of
the posterior mean of θi , given the data. They allowed
for different distributions f in (3), replacing f by fi ,
so that sample sizes (or “exposures”, in the Poisson
case) could differ across units. Since the level-2
distributions were Normal, for example, although
with unknown moments, this was a “parametric
empirical Bayes”. In this Normal case, (3) and (4)
become

Yi |θi ∼ N

(
θi, Vi = σ 2

ni

)
indep i = 1, . . . , k (7)

θi ∼ N(µi, τ 2) indep i = 1, . . . , k. (8)

Then the posterior distribution of θi , assuming
α = (β0, β1, τ ) in this case, is known, with Bi =
Vi/(τ

2 + Vi), Vi ≡ σ 2/ni , takes the form

Eθi = µi = β0 + β1xi, (9)

with xi a covariate (more generally xi could be
a vector).

The yi’s, are observed, and the ni values are
known. Usually σ , needed in Vi , is known or is so
accurately estimated that it can be assumed known.
Then Vi is known, and unknown hyperparameters
α = (β0, β1, τ ) are the α in (2) and must be estimated
(with errors, but that diminish as k increases). The
terms µi and τ are of central interest in random
effects research, but the emphasis in empirical Bayes
focuses on making inferences about the many values
of θi .

Efron and Morris, in the 1970s, [10–13] devel-
oped parametric empirical Bayes that were useful in
practice for moderate values of k, and with varying
Vi values, but these papers were mainly about point
estimation of the parameters θi . Parametric empirical
Bayes estimators took the form, for example, [11]

θi |Yi, α ∼ N((1 − Bi)yi + Biµi, Vi(1 − Bi)). (10)

Bi = Vi

Vi + τ 2
, (11)

The Bi in (10) are “shrinkage factors”, in the
sense that the estimate θ̂i is shrunken away from yi

by the fraction Bi toward the mean µi . Thus Bi repre-
sents the fraction of regression toward the mean, µi .
Their developments were that shrinkage estimates
of the θ’s emerging from this two-level structure had
lower risk (often for mean squared error) for each i.
Risks, as a function of α, are computed by averaging
over the data and assuming the level-2 distribution (8)
holds while not knowing the hyperparameter vector
α (= β and τ , here). In keeping with the evalua-
tion requirements of the empirical Bayes perspective,
various resulting shrunken estimators were shown to
improve uniformly (every component i, all α) on the
best procedures that do not combine data for fixed
k, including for fairly small k. Other developments
included letting each yi be multivariate, and includ-
ing regressions at level 2, so that the θi need not be
identically distributed. That is, the distribution in (8)
extends to let µi depend on i (so α is (τ, β0, . . . , βr ),
with a constant term and with r observed predictors).
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Empirical Bayes estimates of θi then typically
mimic the posterior mean in (10) using estimates of
Bi and µi , so that

θ̂i = (1 − B̂i)yi + B̂i µ̂i . (12)

Making Full Inferences for Each Unit

Until the 1980s, research from the empirical Bayes
perspective said little about interval estimates. Actual
applications generally require interval estimates, and
empirical Bayes methods would be of limited interest
without them. If α in (2) or (8) were known exactly,
or if a hyperprior distribution were known for α,
then posterior probability (Bayes) intervals provide
such intervals.

Large-sample approaches are unreliable for empir-
ical Bayes interval estimates. To illustrate, an often-
applied approach to deriving interval estimates in the
Normal case has been to find the maximum likeli-
hood estimate (MLE) of α (e.g. of µ and τ in (8))
and then to plug those values into (9) to obtain an
estimated variance for θi . However, the MLE of the
shrinkage factor Bi is biased toward overshrinkage,
and noticeably so for small values of k and for Bi not
near 0. Worse yet, in some data sets (even with large
k), the MLE of τ 2 can equal 0. Then, the MLE esti-
mates Bi as 1 and the posterior variance Vi(1 − Bi) in
(10) as 0. This is likely if the true τ is near 0, even
for large k. Then, the corresponding MLE interval
estimates for θi are given zero width, and they can-
not possibly cover the true value. Despite this, rules
based on the MLE or on other “plug-in” estimates
for τ used in Vi(1 − Bi) continue to be proposed and
used, even though they give intervals that are much
too small.

Conditional probability and Bayesian reasoning
can guide construction of procedures meant to have
good frequency properties. Bayes rules based on an
uninformative hyperprior distribution on α show how
to account for the added variability due to not know-
ing the level-2 mean parameters and the variance τ 2

by identifying additional terms needed in the poste-
rior variance of θi . That approach was used [25] to
construct interval estimates in the Normal case. Stan-
dards for empirical Bayes inference are defined in
[25], requiring that procedures meet those standards
in repeated sampling for every value of the hyperpa-
rameter vector, α. One then seeks prior distributions
on α that lead to empirical Bayes inferences that also

meet these standards. For Normal problems (7) to
(12), choosing a uniform distribution on τ 2 (and
flat distributions on µ, or on β0, β1 in (8) or (11))
has produced interval estimates that approximately
meet or exceed the nominally claimed coverages.
Certain other distributions, including some uniform
shrinkage priors [7] also meet these standards. Such
intervals then cover all θi values appropriately in set-
tings covered by (7) to (12). Evaluations of these
procedures, which do not allow knowledge of α, must
be checked to hold for every possible value of α =
(β, τ 2), and for various values of k, including fairly
small k. These empirical Bayes evaluations depend on
the distributional assumptions (e.g. Normal, indepen-
dence) made at both levels of the model. If one does
not allow averages over the level-2 distributions of θi

(for each fixed value of α) then no shrinkage inter-
val estimate can achieve the empirical Bayes nominal
coverage standard for every i.

Bayes, Hierarchical Bayes, and Other
Approaches

Bayesian ideas for carefully chosen prior distribu-
tions on the hyperparameter have been so successful,
even in the frequency sense, that in recent years, there
have been a variety of such approaches that address
the two-level model (1) and (2) in many forms, for
example [19], [23]. That includes the approach of
Lindley and Smith [21], which deals with models
similar to (7) and (8) from the Bayesian perspec-
tive. More recently, powerful computation coupled
with Markov chain Monte Carlo (MCMC) sam-
pling tools has made Bayesian computations feasible.
The texts by Carlin and Lewis [5] and by Gelman
et al. [15], as well as Greenland’s article [16], are
excellent sources for these developments. Other fre-
quency approaches include analysis of the two-level
model (1) and (2) with random and mixed effect mod-
els, repeated measurement models, models for lon-
gitudinal data, generalized linear mixed models,
random coefficient models, models for latent vari-
ables (see Latent Class Analysis), graphical models,
hidden Markov models, variance components, and
so on. Some of these topics are covered in this
encyclopedia and probably all could be models for
biostatistical applications. The term empirical Bayes
may not often appear, even when interest is on esti-
mating multiple values θi , but such methods could be
considered under this term.



4 Empirical Bayes

Empirical Bayes Evaluation

A key concern of empirical Bayes has always been
the attempt to evaluate the performance of such
procedures over a range of incidences. That needs
to be done more often when methods are being
proposed under these other names. In particular,
Bayesian methods depend on choices of a hyperprior
distribution on α, and such evaluations can identify
which hyperpriors are likely to produce rules that can
be broadly applied. Asymptotic methods often are
used by frequentists to evaluate estimates, and many
methods such as generalized estimating equations
(GEE), MLE, penalized quasi-likelihood (PQL), and
overdispersion approaches are used.

Such methods, justified for large samples (large
k), may or may not work for a small k. For example,
let us return to the original empirical Bayes–Poisson
setting of Robbins, (3), but now with parametric
assumptions for g(θ) in (4). Christiansen and Mor-
ris [7] studied several such methods, including when
the hyperparameters α for the prior gamma distri-
butions are estimated by MLE or by standard GLM
overdispersion methods, and the Poisson parameters
θi are assumed to follow their estimated posterior dis-
tribution (via plugging in α̂ for α). When k = 15,
their examples show that resulting nominal 95% con-
fidence intervals cover only about 70% of the time
for the MLE, and 80% of the time for GLM. How-
ever, accurate interval estimates are derived in the
paper [7] that do meet their nominal 95% coverages.

Small-sample empirical Bayes methods can be
derived, often drawing on parametric models at level
2, and often relying on Bayesian methods or Bayesian
heuristics. With sufficient analysis and simulation,
some of these can be shown to meet their nominal
risk and coverage claims.

Applications: Empirical Bayes and Gene
Expression Data

Analyzing DNA microarray data and other gene
expression data leads to testing many hypotheses,
each meant to measure whether a gene is an effec-
tive marker (see DNA Sequences). There may be
thousands of such tests made, one for each gene
in the array. That raises the multiple comparisons
problem, in that many “statistically significant” genes

will found, even when none are true markers. Ben-
jamini and Hochberg [3] introduced the false dis-
covery rate (FDR) to help measure and control the
seriousness of this problem in such applications. Sev-
eral authors, including Efron and Tibshirani [9, 14],
and Kendziorski, Newton, Lan, and Gould [20] have
shown that empirical Bayes, and parametric empir-
ical Bayes modeling and analyses offer a powerful
way to clarify and attack these multiplicity issues,
and produce methods closely related to the FDR.

To see how these tests are related to empirical
Bayes, Efron and Tibshirani suppose there are k sta-
tistical tests made independently (see Hypothesis
Testing). More complicated assumptions are consid-
ered, but in simpler settings the ith case might be
based on a test statistic yi that is N (0, 1) under
the null hypothesis, but when the site is a genuine
marker, has mean θi that differs from 0. Then, a
model like (7) and (8) is assumed, but with a distribu-
tion function G(θi) that is more general than Normal
at level 2:

θi ∼ G() indep, i = 1, 2, . . . , k. (13)

The problem then is to learn about the conditional
distribution of each θi value, given all the data
(y1, . . . , yk). For hypothesis testing, G in (13) would
give substantial positive probability p0 to θi being
0. Since the same G is assumed for every gene, the
observed marginal distribution of yi is available to
learn about the unknown G. If G were known, then
Bayes rule could be used for inferences about θi , and,
of course, it would depend only on yi . That is, the
role of the other k − 1 values yj is only to help learn
about G. Efron and Tibshirani study this model and
its inferences without making parametric assumptions
about G.

In a related study of breast cancer data,
Kendziorski et al. [20] observe positive intensities yi ,
and so their parametric empirical Bayes model starts
with Gamma distributions at level 1 and then specifies
conjugate Gamma distributions at level 2. Another
model in [20] considers lognormal distributions at
level 1, in which case, their log transformations and
Normal distributions at level 2 provide a structure
much like (7) and (8). For each gene, results are
the posterior odds that different rat strains have
differential expressions for that gene. The authors use
simulations to verify that their procedures are reliable
for the empirical Bayes model assumed.
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Empirical Bayes applications abound in the liter-
ature. Some examples appear in [1, 2, 4, 6, 8, 17,
22, 28].
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Endocrinology

There are two systems that we commonly envisage
to control the functioning of animals: the nervous
system, and the endocrine, or hormonal, system. A
simple model would view the endocrine system as
consisting of several well-defined ductless glands
(pituitary, thyroid, parathyroid, adrenals, gonads, and
pancreas) that secrete chemical messengers, called
hormones, directly into the blood stream. The hor-
mones then travel, via the circulatory system, to cer-
tain target cells that then respond in specific ways. By
contrast, the faster-acting nervous system functions
by transmitting electrical impulses down specially
constructed nerve cells.

We can, then, define the subject of endocrinology
as the study of all aspects of the endocrine sys-
tem. These include: the physiology of the glands;
the action and effect of the hormones; and the
genetic sequencing (see DNA Sequences) of the
genes responsible for the hormones. Since many
metabolic diseases and impairments result from some
deficiency in the endocrine system, endocrinology has
always been considered under the remit of clinical
medicine, and, to a large extent, still is. However,
endocrinology is now beginning increasingly to come
under the remit of molecular biology (see Molecular
Epidemiology).

Most of the “true” endocrine glands were discov-
ered in antiquity by such early workers as Aristotle
and Galen. The last endocrine gland discovered was
the parathyroid in 1891 by Gley. The anatomy of
“true” endocrine glands has, therefore, essentially
long been completed. The bulk of research is cur-
rently focused on trying to determine the effect and
method of action of hormones, and optimal therapeu-
tic treatments.

The first real scientific experiment was con-
ducted by Berthold in the mid-nineteenth century.
Berthold demonstrated that by transplanting testes
from roosters into previously castrated roosters (het-
erotransplantation) he could maintain the male char-
acteristic of these roosters; in particular, crowing.
Yet, even to this day, this type of in vivo exper-
iment, where a gland is surgically removed (a
process known as ablation), forms the basis of
much physiological endocrine research. An excellent
account of the history of endocrinology can be found
in [6].

One key feature often encountered in endocrinol-
ogy is the negative feedback mechanism. Here, high
levels of a particular hormone within the circulatory
system inhibit secretion of more hormone. This usu-
ally results in a dose–response curve that peaks at
a single maximum, and then declines with additional
stimulation [1]. It should also be noted that any indi-
vidual hormone may have a variety of effects.

All of this makes for a complex picture of the
endocrine system. This is even more the case when
it is considered that many of the current models
are very experimental [7] and current research is
constantly updating them. Fortunately, the system is
not as difficult to control as it might first appear, since
there is often a natural hierarchy of hormones within
any endocrine system.

Experimental Methods Used

The experimental process in endocrinology typically
follows a step-by-step methodology. Usually, differ-
ent teams of researchers work on each step in the
research process. The entire process is typically moti-
vated from a clinical aspect, through a metabolic
disease, with a measurable response.

The first step in endocrinology is to isolate the
gland responsible. This is usually done through
ablation. Next, it is necessary to demonstrate that this
is the gland directly responsible for the metabolic
response of interest. This is usually done using in
vitro experimental techniques, or transplanting the
gland to another site in the body (homotransplan-
tation). The third stage is then to isolate the hor-
mone in question. This is usually demonstrated by
ablation of the gland, and hormone replacement
therapy to remove the clinical symptoms. Typi-
cally, a dose–response curve is constructed at this
point. Having isolated the hormone, molecular biol-
ogy techniques are then used to sequence the DNA
responsible for the hormone, with the aim of using
recombinant techniques to synthesize it. Since the use
of such techniques is relatively new, with the hor-
mone insulin being the first such product [4], well
over half of the published work in endocrinology in
the last decade has taken place in this area. Finally,
therapeutic trials (see Clinical Trials, Overview) are
undertaken to discover the optimal treatment regimes
for those who suffer from the metabolic condition.

There is a great deal of literature on therapeu-
tic trials, mainly within the medical journals. This is
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because the selection of a particular treatment regime
usually needs very careful consideration. The reason
for this difficulty lies in medicine’s inability to match
exactly the body’s own homeostatic regulation sys-
tem. So that, although taking one tablet per day of
hormone will give a correct mean normal serum level
of hormone, it will lead to wide fluctuations in hor-
mone level, which can cause complications. This is
particularly important as a single hormone can have
several functions. For example, oestrogen replace-
ment in post-menopausal women has been linked to
an increased risk of breast cancer. Therefore, deter-
mining the correct therapeutic regime can require
much investigation, often over many years. Finally,
the treatment regime must be tailored to the individ-
ual. For example, in diabetes it is necessary not only
to tailor treatment, with insulin, around the physical
characteristics of the patient, but also around their
lifestyle.

The consequences of such a step-by-step approach
are that at each stage the experimental design rests
on the conclusions of the previous stage. However,
these assumptions must be interpreted from a variety
of sources. Endocrinology is, therefore, clearly an
area of research requiring good review articles, and
many endocrinology journals do include a forum for
such articles; for example, Campbell & Scanes [2].
Yet such review articles rarely employ a systematic
review, or the use of meta-analysis techniques (see
Meta-analysis of Clinical Trials).

Statistical Methods Used

Much endocrinology is investigative and, because
of this, some researchers, particularly in the past,
have employed only descriptive statistics. Yet most
of the main hormones are now probably known and
so the remaining investigations need to be increas-
ingly sophisticated. Therefore, most studies are now
accompanied by some form of hypothesis testing,
or confidence intervals and, indeed, this is often
now expected by the relevant subject journals; for
example, the Journal of Endocrinology. However, in
general, the coverage of statistics within endocrinol-
ogy journals involves routine techniques.

The analysis of an ablation experiment is usually
fairly simple and typically uses routine methods. A
more complex experiment may involve monitoring
the effect of hormone replacement, or ablation, over

a time course. This is becoming increasingly popular
with the advent of slow-release hormonal implants
and more sophisticated monitoring systems. The
analysis involved for this type of experiment is almost
without exception carried out as a multivariate
analysis of variance repeated measures analysis (see
Longitudinal Data Analysis, Overview).

Another type of analysis often conducted is the
calculation of a dose–response curve. It is often diffi-
cult to fit a prior functional form to the dose–response
curve, since the particular characteristics may vary
considerably, and, indeed, the appropriate dose range
may be known only very vaguely. For example, in
two articles on diabetes research, two growth curves
were postulated. The first article, [8] plotted empiri-
cally the means of the data, with confidence intervals,
and suggested a bi-modal response resulting from a
complex negative feedback mechanism. The second
[5] postulated that there was no negative feedback
mechanism involved and fitted parametric hyper-
bolic responses to the data (see Nonlinear Growth
Curve).

Future Developments

The use of modeling (see Model, Choice of), or mul-
tivariate multiple regression techniques should, and
almost certainly will, become more popular because
the administration of complex schemes of hormone
replacement and monitoring is now beginning to
become practical. This is necessary if for no other
reason than that the large amount of data generated
will be difficult to handle using the current visual
inspection techniques. In addition, such monitoring
techniques will allow for the adjustment of responses
by covariates, which is rarely done at present.

Once a fairly complete understanding has been
gained of the entire system being studied it should
then be possible to use the techniques of pharmaco-
kinetics, such as compartmental modeling, to try to
gain some deeper model-based description of the
system. Unfortunately, at present the best under-
stood endocrine system is the glucose regulation
system. However, even here knowledge is not yet
sufficient to undertake such an analysis competently,
although such analyses have been attempted. Yet, as
endocrinology progresses, a more detailed knowledge
of the endocrine system can only go toward provid-
ing a higher confidence in such models, and increase
their usage.
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For the future, the development of mainstream
techniques, hopefully incorporated within statistical
software, for the analysis of repeated measures cat-
egorical data and ranked data (see Ranks) is one
area of applied, and theoretical, statistical research
that would benefit researchers in this field. This is
because there are many measurements of disease that
can only be measured somewhat indirectly; in partic-
ular, behavioral response. Such a response can often
only be based on a ranked, or an ordered categor-
ical scale. For example, if modeling dominance or
aggression, which are known responses of androgen
hormones, a ranking procedure, or ordered scale, may
be the only feasible outcome measure [3].
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Environmental
Epidemiology

Environmental epidemiology encompasses a wide
array of topics related to the study and evaluation of
the determinants of diseases in human populations.
The term “environmental” as used here is general in
scope, and pertains to all aspects of our environment
that may influence disease risk. Environmental expo-
sures include substances that might affect our imme-
diate surroundings, such as pollutants in the air we
breathe or water we drink, as well as factors related
to our occupation, recreation, and lifestyle that might
influence probabilities of disease occurrence. Thus,
for example, the dominant environmental determinant
of lung cancer in nearly all populations around the
world is cigarette smoking, while diet and nutri-
tion contribute to risk of several other cancers and
cardiovascular and other diseases. Since molecular
and genetic traits may predispose individuals to the
adverse effects of exposure to specific environmental
factors, environmental epidemiology can be consid-
ered to include the entire spectrum of research into
the etiology and prevention of human diseases.

In this article we describe methods for and exam-
ples of epidemiologic studies of the environmental
determinants of chronic diseases, the major killers in
human populations today. Emphasis is placed upon
epidemiologic and statistical methodologic tools for
the detection and evaluation of risks associated with
environmental exposures. Acute diseases are not con-
sidered, although some of the basic techniques for
assessing environmental factors have arisen from
principles developed in tracking outbreaks of infec-
tious diseases.

The article is divided according to method of
study of environmental factors in disease risk. First
are descriptive epidemiologic studies. These inves-
tigations, which study patterns of disease in general
populations and their correlations with environmen-
tal indices of the populations, are useful primarily
for generating hypotheses about disease etiology.
More important are case–control and cohort stud-
ies, which are analytic epidemiologic studies that
evaluate risk of disease in individuals characterized
by presence and level of exposure to environmental
variables of interest. These observational (nonex-
perimental) epidemiologic studies form the basis for

most of what is known about the causes of chronic
diseases. Finally, are randomized trials (see Clini-
cal Trials, Overview), whereby agents or procedures
that are thought to have potential for reduction in
disease risk are evaluated experimentally with ran-
dom assignment of individuals to various exposure
groups (see Randomization; Randomized Treat-
ment Assignment). The credibility of evidence from
these clinical intervention trials is usually higher than
from observational studies, but for practical reasons
only a limited number of such trials have been under-
taken.

Providing Clues to Environmental Factors

Clues to environmental causes of disease are often
uncovered by examining patterns of disease mortality
and incidence. For extremely rare diseases, even
occurrence of a few cases within a short period of
time and at a particular space can raise suspicion.
Such “clusters” of disease (see Clustering), often
detected by alert clinicians, can in some situations
lead to the eventual discovery of the causal agents.
For instance, the development of hepatic angiosar-
coma among three workers in a single manufacturing
plant in Kentucky led to the identification of vinyl
chloride as the likely causal agent [24], and the obser-
vation of vaginal adenocarcinoma in several young
women in Boston was traced to synthetic estrogens
taken by their mothers during pregnancy [38]. The
large majority of clusters of a few cases of a dis-
ease, however, have proven to be uninformative with
respect to discovering or evaluating a causal agent.
Heath [36], for example, described investigations by
the Centers for Disease Control of clusters of child-
hood cancer in a number of communities in the
US, none of which conclusively linked the leukemia
or other cancer cases with environmental exposures.
Leukemia clusters around nuclear power facilities
have also failed to be causally related to radiation
exposures from the plants [46]. Similarly, clusters
of birth defects and other abnormalities have been
assessed among residents near hazardous waste sites
with potential for exposure to solvents, metals, and
other compounds, but firm conclusions have been dif-
ficult to achieve [55, 65]. Although some clusters
may be due to environmental determinants, it seems
likely that many apparent clusters have resulted from
selection bias, limitations of geographic boundaries
or time periods, or chance [46, 56].
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The play of chance is sometimes underestimated
in assessment of clusters of small numbers of dis-
ease events, especially when the clusters occur in one
of many arbitrarily and narrowly defined space-time
units. Occurrence of a cluster of two events when 0.2
are “expected”, for example, can result in a “signif-
icant” (P = 0.02 for a one-sided test under Poisson
assumption) excess. If the boundaries of the clus-
ter were drawn specifically to encompass the cases,
however, the statistical significance loses its nomi-
nal meaning. Furthermore, if the cluster was in one
of many time–space units evaluated, the multiple
comparisons may generate at least one with a “sig-
nificant” excess. Sometimes investigators are tempted
to include the index cluster (that is, the cases that
generated the cluster) in determining whether the dis-
ease excess occurs in other time–space units, but this
fundamental violation of principles of independence
invalidates such an evaluation. Finally, the existence
of a cluster per se of a small number of disease events
in a time–space unit conveys no information about
the causes of the cluster.

Geographic clustering can also occur for more
common chronic diseases, and be based on fairly
large numbers of disease events. Excess occurrences
of more common diseases are not so obvious to
the practicing physician, but broad clustering may
be uncovered through a systematic monitoring of
disease morbidity and mortality (see Surveillance of
Diseases). These clusters, typically based on large
enough numbers of cases for the calculation of stable
rates across time and space, may more often prove
to be useful in generating productive leads to disease
causation. Primary examples are the clusterings of
high rates of certain diseases in contiguous areas seen
in national atlases, which depict the distribution of
mortality rates across small geographic units, such
as counties in the US [47, 62] (see Geographic
Epidemiology; Mapping Disease Patterns).

Geographic variation suggestive of environmental
determinants can be particularly useful for leads to
cancer studies. The US cancer maps have shown dis-
tinctive patterns of clearly nonrandom distributions
of various cancers [47, 62]. Sharply elevated rates
of oral cancer mortality among women, for example,
have clustered in the southeastern part of the coun-
try. The finding led to several hypotheses, including
one concerning occupational exposures in the tex-
tile industry, an industry employing large numbers
of southern women, and one concerning smokeless

tobacco, used by some women in rural areas of the
South [8]. Subsequent analytic epidemiologic studies
generated by the patterns seen in the cancer maps
identified the use of oral snuff as the key risk factor
and the cause of the large majority of cheek and gum
cancers, tumors occurring where the tobacco powder
was typically placed [70].

Mortality records have generally been the primary
source of health data for generating clues to environ-
mental factors for chronic diseases. In most countries
of the world, systematic recording of all deaths is
conducted by local governments (see Death Certi-
fication) and used for the compilation of national
death rates by causes of death. Using population
estimates generated from the national censuses as
denominators, mortality rates by age, sex, and race
can be computed for deaths due to various causes
across time and for various geographic units. The
ascertainment of deaths is nearly 100% complete in
most populations, but inaccurate determination of the
cause of death and certain other limitations may affect
routinely collected mortality data. Cancer deaths are
generally properly identified on death certificates,
although the accuracy and completeness in recording
cancer deaths vary by the type of cancer [59], but
misclassification can be problematic for some other
causes of death. Changes in recording practices and
the coding of cause of death (see International Clas-
sification of Diseases (ICD)) also may contribute
to the apparent changes in secular trends of cause-
specific mortality [33]. Mortality data are of limited
use for diseases with low fatality, and disease-specific
death rates can be influenced by nonenvironmental
factors such as improved survival due to changes
in treatment modalities or early detection (see Vital
Statistics, Overview).

Some limitations that may affect mortality patterns
can be circumvented by using incidence data. Reg-
istries sometimes exist for various diseases, most
notably cancer, with population-based registries in
many parts of the world [58] (see Disease Registers).
In the US, registries participating in the Surveillance,
Epidemiology, and End Results (SEER) Program sup-
ported by the National Cancer Institute have been
collecting diagnostic, treatment, and survival infor-
mation on newly diagnosed cancer cases in about
10% of the population across the country since 1973
[43]. These data have been used for monitoring can-
cer incidence trends and patterns of cancer occurrence
by demographic and geographic subgroups [27]. For
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instance, it has been observed recently that adeno-
carcinomas of the esophagus and gastric cardia are
among the cancers with the most rapid rise in inci-
dence during the past two decades in the US, partic-
ularly among white men [12]. This striking trend has
led to the generation of multiple hypotheses about
environmental factors. One hypothesis is that the
increasing use of exposures that promote reflux, par-
ticularly obesity and pharmaceutical agents that relax
the lower esophageal sphincter, may contribute to the
rising incidence trends [20, 69].

Registries of incident cases of nonmalignant dis-
eases are more limited in number and tend not be
national in scope. If the population base from which
the cases arise is well defined, however, these too
can provide the basis for the calculation of rates and
trends which may trigger hypotheses about environ-
mental causes. Thus, for example, in Sweden and
Denmark, all hospitalizations are registered, so that
national patterns of various diseases requiring hos-
pitalizations can be routinely monitored [1]. Illnesses
not resulting in hospitalization will be missed, but the
incidence and prevalence of serious conditions can
be ascertained for the entire country.

Information on births is usually routinely collected
in populations throughout the world. In addition to
sociodemographic variables such as maternal age,
race and occupation, information on birthweight,
Apgar score and method of delivery is often col-
lected. In the US birth certificates were standard-
ized nationally in 1989 to include a checkbox for
congenital abnormalities and medical risk factors,
including tobacco and alcohol use, medical history,
and prenatal care [19, 71]. The birth certificate data
therefore can be used not only for monitoring dis-
ease occurrence among newborns [49], but also as
a research tool to identify potential risk factors for
these newborn illnesses, such as maternal sociode-
mographic characteristics in relation to congenital
syphilis [26] and maternal smoking, ethnicity, and
birthweight in relation to sudden infant death syn-
drome [45].

Systematically ascertained data on exposure to
environmental agents are less readily available than
data on measures of disease mortality or incidence.
Thus, for example, the prevalence of cigarette smok-
ing – the single most important environmental cause
of disease in the US – is not known for counties
across the country. National probability sample sur-
veys, such as the National Health Interview Surveys

conducted periodically beginning in 1960 and the
series of National Health and Nutrition Examina-
tion Surveys (NHANES) starting from NHANESI
in 1971–75 to the NHANESIII in 1988–94 have
estimated smoking prevalences by broad, but not
small-area, geographic regions. These National Cen-
ter for Health Statistics (NCHS) surveys can be
useful for monitoring national estimates of prevalence
of a number of environmental exposures classified by
demographic subgroups and over time [23, 42, 63].
The exposures include not only tobacco consumption,
but also diet and nutrition, medical variables, occu-
pation, and other characteristics measured over time
and by geographic areas.

Census data often provide a rich source of expo-
sure data for generating clues to environmental risk
factors. In addition to population counts by age, sex,
and race, the census yields information on income,
education, urbanization, occupation, and other fac-
tors for various geographic units, the smallest in the
US being census tracts and postal zip codes. Usu-
ally this information is provided every 10 years. In
some countries special censuses of manufacturing
provide detailed industrial data at the small-area level,
enabling calculation of indices of the percent of the
population employed in hundreds of industrial cat-
egories. Although small-area data are generally not
routinely available on average levels of general popu-
lation exposures to chemical or physical agents, some
registries of environmental exposures (e.g. to radon)
exist in selected areas. In Sweden, a number of reg-
istries of exposure to chemical substances have been
established for record linkage with national registries
of cancer and mortality [1].

Statistical analyses of correlations of mortality or
other aggregate health data with measures of aver-
age environmental exposures for the populations can
help generate and refine hypotheses about disease
causation. The correlations can assess not only con-
cordance across geographic areas but also across
time, and can be useful in helping to refute as well as
refine hypotheses. Thus, rising then recently declin-
ing trends in lung cancer mortality correlate well with
the rise and decline in smoking prevalence among
American men [11, 31]. However, mortality rates of
all cancers combined in the US have been relatively
steady since the 1930s once lung cancer is removed
[3, 21, 43], a pattern not consistent with the the-
ory that increases in environmental exposures from
pesticides or other chemicals are causing large-scale
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increases in cancer. Rising incidence of breast and
prostate cancers, the major cancers among women
and men, respectively, has been reported recently,
but the increases seem related to changes in diagnos-
tic techniques rather than environmental influences
[27]. Furthermore, complete explanations for the ris-
ing incidence of non-Hodgkin’s lymphoma are not
clear. Geographic correlations have indicated that
rates of lymphoma were highest in the north central
part of the country, and have led to case–control stud-
ies evaluating workplace and environmental expo-
sures associated with farming and other occupations
[72] (see Occupational Epidemiology). Similarly,
rates of lung cancer in US counties among work-
ers employed in the chemical, petroleum, paper/pulp,
and shipbuilding industries, adjusted for urbaniza-
tion and other demographic factors (but not cigarette
smoking), suggested that exposures associated with
these industries may be contributing to lung cancer
in the affected counties [9]. As described later, some
of these hypotheses have been confirmed and some
dismissed through subsequent analytic epidemiologic
studies.

One of the reasons the descriptive studies link-
ing rates of disease and exposure for groups may
generate spurious leads is that correlation can occur
among group averages in the absence of associa-
tions between disease and exposure at the individual
level, the so-called “ecologic fallacy” (see Ecologic
Study). Thus, studies of individual patients and their
exposures typically are required to evaluate ade-
quately hypotheses about the environmental determi-
nants of disease. Such investigations are described in
the next section.

Testing Hypotheses About Environmental
Risk Factors

There are many environmental substances for which
sufficient exposure is known to increase risk of cer-
tain chronic diseases. Foremost is cigarette smoking,
believed to result in premature death in nearly half
of all individuals who smoke and to account for
more than one in every six deaths in the US [68]
(see Smoking and Health). Table 1 lists a number
of substances besides cigarette smoke which have
been classified as causes of cancer in humans [16,
40]. Many are drugs used to treat some cancers
that can subsequently increase risk of other cancers,

Table 1 Agents classified by the International Agency for
Research on Cancer as carcinogenic to humans

Aflatoxins
Aluminum production
4-Aminobiphenyl
Analgesic mixtures containing phenacetin
Arsenic and arsenic compounds
Asbestos
Auramine, manufacture of
Azathioprine
Benzene
Benzidine
Beryllium and beryllium compounds
Betel quid with tobacco

N,N -Bis(2-chloroethyl)-2-naphthylamine
(Chlornaphazine) Bis(chloromethyl)ether and
chloromethyl methyl ether (technical-grade)

Boot and shoe manufacture and repair
1, 4-Butanediol dimethanesulphonate (Myleran)
Cadmium and cadmium compounds
Chlorambucil

1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-
nitrosourea (Methyl-CCNU)

Chromium compounds, hexavalent
Chronic infection with hepatitis B virus
Chronic infection with hepatitis C virus
Coal gasification
Coal-tar pitches
Coal-tars
Coke production
Cyclophosphamide
Diethylstilbestrol
Erionite
Estrogen replacement therapy
Estrogens, nonsteroidal
Estrogens, steroidal
Ethylene oxide
Furniture and cabinet making Hematite mining,

underground, with exposure to radon
Human papilloma virus
Infection with schistosoma hematobium
Iron and steel founding Isopropyl alcohol

manufacture, strong-acid process
Magenta, manufacture of
Melphalan 8-Methoxypsoralen (Methoxsalen) plus

ultraviolet radiation
Mineral oils, untreated and mildly treated MOPP

(combined therapy with nitrogen mustard,
vincristine, procarbazine, and prednisone) and
other combined chemotherapy including
alkylating agents

Mustard gas (sulfur mustard)
2-Naphthylamine
Nickel and nickel compounds
Oral contraceptives, combined
Oral contraceptives, sequential
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Table 1 (continued)

Radon
Rubber industry
Shale-oils
Solar radiation
Soots Strong inorganic acid mists containing

sulfuric acid
Talc containing asbestiform fibers
Tobacco products, smokeless
Tobacco smoke
Treosulphan
Vinyl chloride
Wood dust

but also included are environmental substances to
which certain occupational groups or certain seg-
ments of the general population may be exposed.
Almost all of these substances have been identi-
fied by means of epidemiologic studies, although
supporting evidence from experimental studies in ani-
mals generally exists. There are other compounds
for which carcinogenicity is suspected because the
compounds (often at very high doses) have induced
tumors in one or more species of nonhuman animals
(see Tumor Incidence Experiments), but evidence
from environmental epidemiology is required before
a substance can be considered a known human car-
cinogen.

Determining whether an environmental exposure
has caused an increased risk of disease is generally
not easy. A series of criteria need be satisfied before
an association between the exposure and the disease
can be considered causal in nature (see Hill’s Crite-
ria for Causality), and evidence regarding whether
they are met is not always clear. The primary tools
for making such an assessment are epidemiologic
case–control and cohort studies; their utility in envi-
ronmental epidemiology is described below.

Case–Control Studies

The most common epidemiologic study design for
evaluating the environmental determinants of chronic
diseases is the case–control study. This approach
provides the advantage of the ability to assemble rel-
atively large numbers of patients with the disease of
interest (often not feasible via cohort studies) whose
exposure histories can then be ascertained. These
histories are then compared with those obtained in

a similar manner from appropriately selected con-
trols, and odds ratios calculated as the measure of
association between the environmental exposure of
interest and the risk of the disease. The case–control
approach typically enables the collection of informa-
tion not only on the key exposure, but also on other
factors that may influence risk, so that confounding
by these other disease determinants can be controlled.

Methods for the appropriate selection of controls,
a key concern in case–control studies, are described
in detail in the article on case–control studies. The
essential feature is that the controls be selected from
the same base population (study base) from which
the cases arise. Thus, if cases arise, say, from among
patients with lung function impairment detected by
screening employees in a particular industrial facil-
ity, whereas controls are selected from the general
population of the area where the facility is located,
it is possible that case–control differences could be
influenced by nonenvironmental determinants that led
to employment in the facility. Some of these con-
founding factors (e.g. age, sex, education) might be
controlled for in the statistical analysis, but differ-
ences in unmeasured factors may exist.

This fundamental requirement of the same study
base for cases and controls is sometimes violated
in studies of environmental risk factors because the
underlying population from which the cases arose is
not always well defined. For example, in studies of
rare diseases, specialty treatment centers are often
sought for the ascertainment of cases. Selecting con-
trols from other patients is generally advantageous
when cases are restricted to a particular one or sev-
eral hospitals, but in this situation the case patients
come not only from the surrounding areas, but also
from far distances to receive the specialized care.
Patients admitted to the same facility for other con-
ditions might not have the same referral patterns,
and thus selecting the most appropriate controls is
problematic.

The method of ascertainment of information sho-
uld also be similar for cases and controls. Suppose
the cases with lung function abnormalities men-
tioned above and the controls were both drawn from
employees of similar characteristics (except for their
disease) at the industrial facility. Suppose also that
information on exposure to silica, the environmen-
tal factor of interest, and on presence of concomitant
silicosis, was obtained for the cases as part of their
evaluation of lung abnormalities. Then if information
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for the controls came not from a review of person-
nel or radiographic information as for the cases, but
from questionnaires about silica exposures and about
diagnoses of silicosis, differences between cases and
controls could be due to the way the information was
ascertained rather than to the presence of silica expo-
sure or silicosis per se (see Bias in Case–Control
Studies).

Issues regarding selection, information or other
biases must be considered in all case–control studies.
When evaluating certain environmental exposures,
additional concerns need be addressed. One is recall
bias. Individuals afflicted with a disease, particularly
if life threatening in themselves or in a close relative,
often tend to wonder about what may have caused the
illness, or may have been prompted to examine past
events during medical work-up and treatment. Some-
times this involves attempts at reconstructing events
that may have taken place many years before, and can
involve a process of speculating as to possible crit-
ical initiating “environmental” events. Controls, on
the other hand, will typically have not gone through
such prompting or soul searching. Thus, when cases
and controls are interviewed, the responses may be
different in part because the cases may have thought
more about their illness (see Bias in Observational
Studies).

Such recall biases can be mitigated in part by ask-
ing structured and specific as opposed to open-ended
questions (see Interviewing Techniques; Question-
naire Design). At one time it was thought that expo-
sure to chicken pox and the Varicella virus during
pregnancy might increase the risk of cancer in the
offspring. The suggestion came from a case–control
study in which mothers were asked to list illnesses
occurring during pregnancy, and mothers of the can-
cer patients more often listed chicken pox than
mothers of the controls [7]. When prenatal medical
records were examined for mention of chicken pox,
however, no case–control differences were found.
Furthermore, when the questionnaire for the moth-
ers was changed to ask specially about chicken
pox during pregnancy, again no case–control differ-
ence was apparent [13]. The main effect of medical
record review and specific questioning was to raise
the reported prevalence of chicken pox among the
controls to match that among the cases. The con-
trols had underreported the infection when asked
the nonspecific open-ended question about illnesses
during pregnancy, probably because they had not

thought about and recalled antecedent conditions to
the extent of the mothers whose children had devel-
oped cancer.

Despite the potential problems with the case–con-
trol approach, if conducted properly these studies
can provide crucial information about environmen-
tal determinants of disease. Case–control studies
are often the most appropriate mechanism to test
hypotheses generated by the ecologic studies of
grouped cancer rates and their correlates described
in the previous section. Thus, the US cancer maps
spawned a series of case–control studies in areas of
the country where rates of particular cancers were
elevated. The case–control studies obtained detailed
information on the lifestyle, occupational, medical,
and other characteristics of the subjects. These stud-
ies determined, for example, that although cigarette
smoking was the dominant risk factor for lung can-
cer, employment in shipyards during World War II
(and presumed exposure to asbestos) contributed to
the clustering of excess rates of this cancer in the
1960s–1980s in southern coastal areas [10, 14]. Other
case–control studies showed that use of herbicides
in farming was associated with the higher rates of
non-Hodgkin’s lymphoma in the plains states [66],
factors associated with northern European ancestry
contributed to the clustering of excess kidney can-
cer mortality in north central states [52], and use
of moonshine whiskies was largely responsible for
the excess of esophageal cancer among black men in
coastal South Carolina [18].

Case–control studies have also helped elucidate
environmental factors for other diseases, especially
when used to test etiologic hypotheses. The studies
also have been used for hypothesis generation. An
advantage of the case–control approach is the ability
to look at many different antecedent exposures
simultaneously. Often multiple associations are
examined in case–control studies with a tendency
to report in separate articles those associations
based on odds ratios whose confidence limits
exclude the value 1.0. The inherent multiple
comparison problem is sometimes masked by the
splitting of findings into multiple publications,
especially when ex post facto explanations of
the findings emerge as if they were a priori
hypotheses, which can lead to undue emphasis of
their importance. The case–control study, however
has proven to be the key tool of environmental
epidemiology, and its strengths generally outweigh
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its disadvantages. Some of the problems that
beset case–control studies of environmental factors
can be overcome in cohort studies, as described
below.

Cohort Studies

Cohort studies involve the identification of individu-
als characterized by exposure status and followed for
the occurrence of disease after exposure. The studies
tend to be much larger, and often more expensive than
case–control studies, because sizable numbers of par-
ticipants must be enrolled and followed to generate
sufficient numbers of cases for meaningful analysis.

Cohort studies are especially useful in tracking
occupational groups exposed to chemical or physical
substances hypothesized to increase risk of cancer or
other diseases. The hypotheses about potential risks
can best be tested among groups of people with the
widest range of exposure to the substance, typically
workers involved in the manufacture or use of the
agent. Of the over 50 compounds or processes classi-
fied as capable of causing cancer in humans following
sufficient exposure (Table 1), more than half are
found in occupational settings. Hence studies, typi-
cally cohort studies, among occupational groups have
provided key evidence regarding whether human
exposure might increase risk of cancer.

Occupational cohort studies also are of direct rel-
evance to assessing effects of general environmental
exposures. If no excess risk is seen among work-
ers handling or otherwise heavily exposed to the
agents, then it is highly unlikely that off-site expo-
sures, generally at much lower doses, would increase
risk. If an occupational excess is found, detailed study
would be undertaken to characterize the risk as a
function of level, timing and duration of exposure.
The resultant dose–response trends would then be
informative in predicting risks at low environmental
levels. Hence, much of the information on poten-
tial effects of general environmental exposures arises
from occupational studies, typically cohort studies
(see Occupational Mortality).

In evaluating environmental agents with cohort
studies, a key element is the measurement and clas-
sification of exposure status of cohort members. One
of the strengths of a cohort study, besides its abil-
ity to ascertain a broad spectrum of health outcomes,
is its ability to characterize all participants by expo-
sure level prior to disease outcome. In principle, a

prospective cohort study (where current cohort mem-
bers are followed forward in time) should generally
be able to obtain more reliable exposure data than
a case–control study. Special problems may arise
in historical cohort studies (where cohort members
identified in the past are traced to the present) and
in difficult settings where there may be imprecision
of exposure assessment, including misclassification
of categorical levels of exposure. In occupational
studies of potentially hazardous substances, espe-
cially retrospective or historical cohort surveys where
rosters of past employees are assembled, complete
knowledge of levels and duration of exposure to indi-
vidual workers is seldom known, even for relatively
heavily studied substances. For example, asbestos
is a well-known carcinogen, substantially increasing
risk of lung cancer and mesothelioma when expo-
sure levels are sufficiently high, but in nearly 50
cohort studies of various groups of asbestos-exposed
workers, estimates of cumulative exposures to indi-
vidual workers are available in less than a dozen, and
even in those the individual estimates are based on
rough approximations of presumed average airborne
asbestos exposure concentrations associated with spe-
cific jobs across broad time periods [39]. Thus, some
level of misclassification of exposure is bound to
occur. For dichotomous categorization of exposure,
if misclassification is random (nondifferential), then
on average the relative risks associated with the
exposure will be dampened and pulled towards the
null (see Bias Toward the Null), although this is
not necessarily the case when multiple categories
are involved (see Measurement Error in Epidemi-
ologic Studies). Of course, in any particular inves-
tigation, chance errors in classification could result
in exaggerated as well as attenuated relative risk
estimates.

One cohort study with relatively precise exposure
estimates is the study of survivors of the atomic
bombs of Hiroshima and Nagasaki. Since the
early 1950s, a cohort of nearly 100 000 individuals
has been tracked for mortality, and subsets have
been tracked for other health outcomes [41]. Each
cohort member at enrollment into the study was
questioned about his/her whereabouts at the time
of explosion. The event was so traumatic that
nearly all individuals could recall exactly where they
were and even what position they were standing
in when the blast occurred. The radiation from
the bombs was released almost instantaneously, so
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that exposure occurred within seconds (there was
little radioactive fallout). Experimental models had
demonstrated that levels of gamma and neutron
radiation declined exponentially as distance from
the hypocenter increased and provided the basis,
after taking into account shielding from metal,
wooden, brick, and other structures, for estimates
of radiation received for almost all cohort members.
Subsequent statistical analyses have shown that
rates of mortality from leukemia, breast, and
several other cancers, but not nonmalignant disease,
varied in proportion to radiation dose [66], and
have provided a valuable base of information
for the establishment of radiation safety standards
worldwide.

Cohort studies of nonoccupational population gro-
ups exposed to environmental chemicals or other
pollutants seldom are able to measure exposure
very precisely. For example, in 1976 an explosion
in a plant near Seveso, Italy, resulted in 2,3,7,8-
tetrachlorodibenzo-p-dioxin contamination in sur-
rounding neighborhoods. Chloracne and other rever-
sible acute effects of exposure were observed in
some residents closest to the plant, and a long-term
monitoring for mortality, cancer, and other health
outcomes was established. Cohorts of over 50 000
residents, classified in residential zones according to
degree of potential for dioxin exposure, have been
followed since. Results have been mixed, with little
departure from expectations in mortality, suggested
excesses of certain types of cancer, and no evidence
of birth abnormalities following the contamination
[4–6, 48, 60]. There have been difficulties in estimat-
ing exposure, but average exposure levels may have
been below the limits of epidemiology as a tool for
detecting and quantifying risks of chronic diseases in
this population [17].

Other prospective cohort studies also may enable
precise exposure classification for exposures occur-
ring at the start of or during follow-up. In the
Framingham [25, 30] and other cohorts where heart
disease was the primary endpoint, measurement of
blood pressure, serologic indicators, and other expo-
sure markers could be assessed using best available
methodology, and participants could be classified by
baseline levels of these variables. Many of the mark-
ers are measured with error, sometimes with the
particular measured value being a realization from
an underlying probabilistic distribution with a large

variance, so that even in these investigations pertur-
bations in exposure classification can occur. Never-
theless, cohort studies have provided key information
on the environmental determinants, including lifestyle
factors, and disease risk. In the Framingham study,
follow-up of approximately 5000 residents beginning
in 1948 has demonstrated the predictive value of
serum cholesterol (originally total and subsequently
LDL and HDL fractions), hypertension, smoking, and
dietary factors in cardiovascular disease risk [32, 64].
Other cohorts established from the 1950s classified
individuals by tobacco smoking status. Reports from
the US Surgeon General in a series of comprehen-
sive US governmental monographs which unequiv-
ocally declared that cigarette smoking increases risk
of lung cancer, relied heavily on results from cohorts
of British physicians [28], American Cancer Society
volunteers [34], US veterans [51], and other groups
in reaching this conclusion.

One of the problems facing case–control studies,
the potential for recall bias associated with the
differential recollection of events because of the
disease, is eliminated in cohort studies since the
environmental exposure is determined prior to and
independent of the disease occurrence.

Cohort studies also are less likely than case–con-
trol studies to be affected with selection or infor-
mation biases, because the study base can often be
unambiguously defined and data on all cohort mem-
bers may be more readily collected in a standardized
fashion (see Bias in Cohort Studies). Potential study
base problems can arise, however, in situations where
the cohort consists of exposed individuals whose dis-
ease experience is compared with that of an external
population, for example with national rates of dis-
ease. Such comparisons are common in occupational
and other cohort studies, but the resulting indices of
risk (e.g. relative and absolute risks, standardized
incidence or mortality ratios; see Standardization
Methods) can be influenced by differences between
the cohort and external populations other than the
exposure itself. Among the 50 cohort studies of
asbestos-exposed workers, for example, only a minor-
ity involved comparisons of disease rates among
heavy vs. light vs. nonexposed workers, but instead
usually compared the overall occupational group vs.
national or local populations [39]. It is known that
employed populations tend to have a somewhat more
favorable mortality experience than the general popu-
lation because ill and less fit individuals are less likely
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to be employed (see discussion of the “healthy worker
effect” in Occupational Epidemiology). On the other
hand, some groups, especially of blue collar workers,
may have higher prevalences of cigarette smokers
(this is the case for heavily asbestos exposed insu-
lation workers [35]) or have other attributes which
could increase risk relative to general population
norms. This problem is mitigated by use of inter-
nal comparisons by level of exposure, but even here
nonexposure-related differences could confound com-
parisons. Thus, for example, neurologic and behav-
ioral differences of production workers in the same
facility could be related to social or other traits rather
than to exposure to solvents or other chemicals.

Hence, cohort studies, like case–control studies,
must take care to control for confounding in evalu-
ations of potential adverse effects of environmental
exposures. Cohort studies, however, are often at a
disadvantage compared to case–control studies with
respect to control for confounding. With their smaller
size, case–control studies usually seek information
on all known or suspected risk factors for the disease
being studied. Cohort studies, on the other hand, typ-
ically with multiple disease endpoints and large num-
ber of participants, generally do not have this luxury
and must limit the amount of information obtained
per subject. A solution to this problem is offered
by conducting case–control studies nested within
cohort studies (see Case–Control Study, Nested).
This approach enables detailed exposure and con-
founding variable assessment in samples of cohort
members rather than in the entire cohort. In a cohort
study of over 35 000 workers in mines and factories
in Southern China, for example, broad classification
of exposure to silica was obtained for all cohort mem-
bers, but detailed occupational exposure, smoking,
and other histories were obtained only for the nearly
300 persons with lung cancer plus about twice as
many matched controls [29, 50]. The study found
mixed results, suggesting a small increase in lung
cancer among those with silicosis but not with silica
exposure per se.

Cohort studies, particularly those involving a large
number of lifestyle variables, can also suffer from
the tendency to report on one variable at a time in
a publication, as mentioned earlier when discussing
case–control studies. Thus, the multiple comparison
problem can arise in cohort studies when results
are divided and described according to the least
publishable unit.

Together, cohort and case–control studies pro-
vide the basis for most of what is known about the
environmental determinants of human illness. Nev-
ertheless, because of methodologic limitations these
nonexperimental studies often fall short of providing
sufficient evidence to determine whether exposure to
a particular environmental agent can increase risk of
disease. The most definitive epidemiologic evidence
for determining a cause-and-effect relation can come
from an experimental trial, whereby random assign-
ment of individuals to exposed and unexposed groups
mitigates against the biases that can afflict observa-
tional studies (see Bias in Observational Studies;
Bias, Overview). Such trials are described below.

Randomized Trials

Trials involving exposure of individuals to environ-
mental substances are ethical only when there is
sufficient suspicion that the substance may lower risk
of disease (see Ethics of Randomized Trials). Trials
involving the evaluation of new drugs, for example,
have been common and have provided the mechanism
for the discovery and/or confirmation of the effec-
tiveness of various treatments for human illness. The
principles of these clinical trials also apply to the
evaluation of a variety of agents that offer potential
for the prevention of disease.

A number of randomized prevention trials have
been launched, many within the past decade or
so. The largest investigations have involved nutri-
tional interventions, randomly assigning participants
into groups receiving vs. not receiving certain vita-
mins, minerals or dietary modifications. Follow-up
has typically been concurrent with the intervention,
with cancer and heart disease generally the pri-
mary endpoints. In some instances the randomization
unit is not the individual, but rather a group, for
example, as in the one trial where communities were
randomized to receive intense vs. routine educational
programs aimed at smoking cessation [22] (see
Group-randomization Designs). In this trial the
direct endpoint was not a health outcome, but rather
an exposure (cigarette smoking), which if reduced
would lower subsequent disease risk. Some of the
key trials in cardiovascular disease research also have
involved interventions to lower exposure markers.
The Multiple Risk Factor Intervention Trial, a large
trial enrolling nearly 13 000 males age 35–57 at high
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risk of heart disease, sought to alter several expo-
sure (e.g. smoking), biomarker (e.g. serum choles-
terol), and precursor conditions (e.g. hypertension)
that increase risk of cardiovascular disease [53, 54].
Thus, intervention trials can be used to provide exper-
imental tests both of whether increasing exposure to
an environmental agent thought to reduce disease risk
or decreasing exposure to an agent thought to be haz-
ardous results in a lower risk.

The primary advantage of clinical/intervention tri-
als over observational studies arises from randomiza-
tion. The random assignment of persons to treatment
groups tends to reduce differences between the groups
with respect to all variables except the intervention or
variables correlated with the intervention. Thus two
of the main afflictions of case–control and cohort
studies, namely bias and confounding, are removed.
Chance is still an issue, but by choosing a sufficiently
large study size for the trial, the effects of random
errors can be minimized. One of the largest interven-
tion trials involved random assignment, within strata
defined by age and sex, of nearly 30 000 individ-
uals in Linxian, China, into one of eight treatment
groups [15]. The groups were defined by a one-half
replicate of a 24 factorial experimental design (see
Fractional Factorial Designs), whereby four types
of vitamin/mineral supplements were being assessed
as potential inhibitors of esophageal and stomach can-
cer in a population with one of the world’s highest
rates of these cancers. Cigarette smoking status, a
risk factor for these cancers, was not matched for in
the design, but the randomization accomplished this
task. After randomization, the prevalence of smok-
ing across the eight intervention groups varied by
less than 1% [44]. Similarly, other measured differ-
ences across the treatments were all uniformly small,
providing confidence that unmeasured variables were
also likely to be evenly distributed by treatment, and
thus bias and confounding were unlikely to affect
study results.

The large vitamin/mineral intervention trials thus
far have shown mixed results for the effects of sup-
plementation on subsequent cancer or heart disease
risk, despite the consistent demonstration from both
case–control and cohort studies of lowered risks
among persons with high intakes of foods (espe-
cially fruits and vegetables) with high contents of
carotenoids, vitamin C, and other nutrients. The Linx-
ian trial [15] found a small (13%) but significant
reduction in cancer mortality following 5 years of

supplements with a combination of beta carotene,
vitamin E, and selenium. Large trials in Finland
[2] and the US [57], however, found significantly
increased, rather than decreased, risks of lung can-
cer among smokers supplemented with beta carotene
or beta carotene plus retinol, respectively, while a 12-
year follow-up of among 22 000 US physicians, few
of whom smoked, found no effect of beta carotene
supplementation on cancer or heart disease [37].

The beta carotene results from these trials provide
a stark reminder of the limitations of the observa-
tional (case–control and cohort) studies. The vast
majority of observational studies have shown lowered
cancer risks, with reductions typically of 30%–50%
among heavy compared with light consumers of
foods rich in beta carotene [67]. Limited evidence of
cancer inhibition from beta carotene studies in exper-
imental animals provided a biologic basis for the
hypothesis, and even a potential mechanism of action,
in particular beta carotene’s ability to quench singlet
oxygen radicals. Publication in 1981 of a prominent
review article [61] helped to stimulate enthusiasm for
the beta carotene hypothesis and to lead to the incor-
poration of beta carotene in several randomized trials.
The results of these trials now indicate that the enthu-
siasm may have been misplaced, and that correlates
of beta carotene rather than beta carotene per se may
have been responsible for the reduced risks associated
with intake of beta carotene-containing foods seen in
the case–control and cohort studies. This unfolding of
events suggests that caution be applied in the inter-
pretation of case–control or cohort studies linking
various environmental exposures with disease risk,
and heightens the necessity for careful assessment
of bias, confounding, and chance before etiologic
interpretations are offered, especially since few envi-
ronmental exposures will be able to be evaluated via
randomized intervention trials.
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Epi Info

Epi Info is a free software originally developed by
the US Centers for Disease Control (CDC) and
further developed from a collaboration between the
CDC and the World Health Organization. It was
originally developed as a DOS-software but a Win-
dows version has been available since 2002. Epi Info
is devoted to the design and analysis of epidemio-
logic studies. It has several functions for performing
basic sample size calculations, developing a study
questionnaire and creating a database, helping with
data entry and checking (see Data Management and
Coordination), performing statistical analysis, and
displaying study data on maps (see Statistical Map)
and graphs. Whereas its capabilities are extensive
regarding questionnaire development, data entry, and

checking, its analytical capabilities are more limited.
Complex survey analysis (see Sample Surveys in
the Health Sciences) and logistic regression can be
performed in Epi Info 2002 for Windows. The soft-
ware can be downloaded from the Epi Info web site
(http://www.cdc.gov/epiinfo/). Epi Info is a
widely known and used software worldwide. Accord-
ing to information on the web site, over 280 000
downloads of Epi Info had been documented in 2001
(one million according to an update in 2003) and
the manual had been translated from English into 13
additional languages.

(See also Software, Biostatistical; Software, Epi-
demiological)
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Epicure

Epicure is a DOS-based commercial software,
produced by HiroSoft International Corporation
(http://www.hirosoft.com). It is devoted to the
analysis of epidemiological and biomedical studies. It
is structured as a package of five programs, GMBO,
PECAN, PEANUTS, DATAB, and AMFIT. It allows
users to perform some data editing (see Data
Management and Coordination; Clinical Trials
Audit and Quality Control). Its main strength is its
fairly extensive analytical capabilities. They include
linear and nonlinear regression, unconditional and
conditional logistic regression, Poisson regression,
and semiparametric and parametric survival analysis,
through the use of the programs, GMBO, PECAN,
PEANUTS, and AMFIT. Moreover, Epicure allows
additive and multiplicative versions of regression
model forms (see Relative Risk Modeling) and
a number of unique alternative and generalized
forms, as well as an easy creation of person-year

tables through the use of the program DATAB,
and a fairly advanced standardized mortality ratio
analysis (see Standardization Methods) with the
program AMFIT. Being a DOS-based program,
Epicure may have a slightly steeper learning
curve than Windows-based programs, although it
is not particularly difficult to use. No sample size
calculations are available, although the developers
of Epicure have produced a free, separate program,
“Power”, that can be downloaded from the
website of the US National Cancer Institute’s
Division of Cancer Epidemiology and Genetics
(http://dceg.cancer.gov) and can be easily
used for tests of interaction, a rare feature in sample
size calculation programs.

(See also Software, Biostatistical; Software, Epi-
demiological; Survival Analysis, Software)
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Epidemic Curve

An epidemic curve is a plot of time trends in the
occurrence of a disease or other health-related event
for a defined population and time period. The epi-
demic curve can help to demonstrate that the events
are in excess of what would be expected based on
past experience [4]. Time intervals are indicated on
the x-axis and the event rate is shown on the y-
axis. The event rate may measure the number of
cases per unit time (e.g. cases per day or year),
or it may express the numbers of events relative
to the number in the study population (cases per
100 000 person–years). The latter incidence rates
may be age-adjusted (see Standardization Meth-
ods).

Historically, the epidemic curve has been widely
used by infectious disease epidemiologists to docu-
ment the scope and duration of an epidemic, to help
determine the source of the infection and the modes
of transmission or exposure, and to glean information
about the incubation period of the disease [6]. Epi-
demic curves are used in other settings to document
the scope of public health problems.

Example 1 An estimated 224 000 persons nation-
wide became ill with salmonellosis during 1994 after
eating a nationally distributed brand of ice cream
that was contaminated with Salmonella enteritidis
[5]. Epidemic curves for Minnesota, an epicenter of
the outbreak, and for the entire US helped to deter-
mine that the outbreak occurred during September
and October of that year as a result of contamination
that occurred between mid-August and mid-October.

Example 2 The number of AIDS cases in the US
exhibited exponential growth during the early 1980s,
followed by a slowing of the rate of increase begin-
ning in mid-1987 [2]. This pattern likely reflects
a decline in the number of new HIV infections
compared with peak infection rates in the mid-
1980s.

Example 3 Age-adjusted lung cancer death rates
per 100 000 men in the US climbed 15-fold between
1930 and 1990 [7], a result of trends in tobacco
consumption during earlier decades [3] (see Smoking
and Health). The epidemic curve is expected to
decline in the US as a result of smoking cessation [3];
but epidemiologists predict a rising epidemic curve

for tobacco-related deaths in the next century among
Chinese men, as a result of their recent increase in
cigarette smoking [8].

While it is reasonable to speak of an “epidemic”
of violent death or of specific neoplastic diseases
(Example 3), analysis of the epidemic curve is cur-
rently most refined in the field of infectious disease
epidemiology.

In a common source outbreak, susceptibles are
exposed to a pathogen about the same point in time
(Example 1). In this type of outbreak the resulting
epidemic curve tends to be relatively short and sharp,
as the cases distribute according to the incubation
period of the disease. With food-borne outbreaks,
a point source of exposure is sometimes identified
from the case reports and the pathogen may be
recognized from the observed incubation period. In
a propagated or progressive outbreak, cases result
from person-to-person transmission, often yielding a
broader epidemic curve (Example 2).

Statistically, if the infection curve is known, one
can estimate the distribution of the incubation period
from the observed epidemic curve [1]. Conversely,
if the incubation period is known, one can estimate
the infection curve from the observed epidemic curve
(see Back-calculation). To avoid bias, it is essential
that the epidemic curve be constructed using a well-
defined case definition and that surveillance for the
event is as complete and consistent as possible. In
practice, the case definition may include both clinical
and epidemiologic criteria [9].
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Epidemic Models, Control

The main reason for studying mathematical models of
disease spread must surely be the hope that improved
understanding of the transmission processes may lead
to more effective control strategies.

In the literature on mathematical modeling
(whether deterministic or stochastic) of infectious
disease spread, there have been essentially two
approaches to epidemic control (see Epidemic Mod-
els, Deterministic; Epidemic Models, Stochastic).
These are (a) to intervene in such a way as to reduce
the basic reproduction ratio R0 to below (see Repro-
duction Number) 1; and (b) to define explicit costs
of intervention and of infection and choose the inter-
vention policy which minimizes the expected total
cost. In either case, there are a variety of possible
forms of intervention that may be considered, includ-
ing vaccination of susceptible individuals, isolation of
infective individuals from the susceptible population,
or interventions (such as public education campaigns)
aimed at reducing the rate of contact between infec-
tives and susceptibles.

A third approach that has been suggested more
recently is that of contact tracing. This may be
regarded as a variant of (a) above, in which individ-
uals to be vaccinated are chosen not at random, but
rather by tracing potential infectious contacts made
by known infected individuals.

Threshold-based Intervention

Much work has concentrated upon vaccination strate-
gies aimed at reducing R0 to below 1. The motivation
for this is provided by threshold theorems such as
that of Kermack and McKendrick [8], which tell us
that if R0 < 1, then a major epidemic is not possi-
ble; only a minor outbreak can occur (see Epidemic
Thresholds). To be more specific, consider a partic-
ular model for disease spread. The most commonly
used continuous time stochastic model, sometimes
referred to as the general stochastic SIR (Suscepti-
ble – Infective – Removed) epidemic, is defined as
follows.

For t ≥ 0, denote by X(t), Y (t), Z(t) the num-
bers of susceptible, infective, and removed individ-
uals, respectively, in the population at time t . The
population is supposed closed, so that total popula-
tion size X(t) + Y (t) + Z(t) remains constant over

time. Thus, the process is completely described by
{(X(t), Y (t)) : t ≥ 0}, which is taken to be a contin-
uous time Markov chain with infinitesimal transition
probabilities

Pr(X(t + δt) = x − 1, Y (t + δt) = y + 1 | X(t)

= x, Y (t) = y) = βxyδt + o(δt),

Pr(X(t + δt) = x, Y (t + δt) = y − 1 | X(t)

= x, Y (t) = y) = γyδt + o(δt), (1)

where β is the infection rate parameter and γ the
removal rate parameter.

For the general SIR model, the basic reproduction
ratio is given by R0 = βX(0)/γ , so that (by the
threshold theorem) major outbreaks are only possible
if X(0) > γ/β. If R0 > 1, then in order to prevent a
major outbreak, we must vaccinate at least a propor-
tion θ = 1 − (1/R0) of the susceptible population, so
that the vaccinated population has reproduction ratio
R′

0 ≤ β(1 − θ)X(0)/γ = 1.
For more complicated models, such as those fea-

turing nonhomogeneous contact structure between
individuals, reducing R0 to below 1 can be a more
challenging problem. It may not be merely a matter of
calculating how many susceptibles to vaccinate, but
also of deciding which particular individuals should
be vaccinated. For instance, Ball et al. [4] define
(inter alia) a stochastic model for the spread of infec-
tion through a population consisting of a large number
of households, the rate of infectious contact being
greater between individuals within the same house-
hold than between individuals in distinct households.
In [4], it is conjectured (and proved in certain par-
ticular cases) that the policy that requires the least
number of vaccinations in order to reduce the value
of its threshold parameter R̃0 to below 1 is the equal-
izing strategy of vaccinating in such a way as to leave
the remaining numbers of susceptibles in each house-
hold as nearly equal as possible.

Contact Tracing

Usually, vaccination models suppose that the indi-
viduals to be vaccinated will be chosen at random,
whether from the entire population or from partic-
ular groups within the population. An alternative
approach is via contact tracing. One now attempts to
identify infectious contacts of each known infected
index case, targeting the vaccination effort toward
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such contacted individuals. Such an approach has
been suggested for STDs, tuberculosis, and infec-
tions spread by needle sharing ([12] and references
therein). The advantage is that vaccinations are tar-
geted at those most in need. The disadvantage is
that tracing such individuals may be costly and time-
consuming, so that the total number of vaccinated
individuals at any time will be smaller than under a
mass vaccination strategy; furthermore, vaccinations
might be better directed to protect those who have
not yet been contacted.

There has been particular interest recently in
whether mass vaccination or targeted vaccination
based on contact tracing would be more effective in
combating a bioterrorist smallpox attack. The possi-
bility of combining the two approaches has also been
considered, either with targeted vaccination in the
early stages of an epidemic, switching to mass vacci-
nation if the number infected grows beyond a certain
point, or alternatively, mass vaccination applied to
a certain proportion of the population prior to any
outbreak, with further targeted vaccinations once an
outbreak begins.

The conclusion as to which method is more effi-
cient is found to depend upon the particular modeling
assumptions, such as whether a continuous popula-
tion or discrete individual model is used, how one
allows for the time taken to carry out vaccinations,
and whether the population is assumed to mix homo-
geneously or in some more structured way ([9] and
references therein). The importance of realistic mod-
els, and of considering a variety of models capturing
different aspects of the reality, is thereby vividly
illustrated.

Control Theoretic Approaches

For practical implementation, the approach of vac-
cinating susceptibles so as to reduce R0 to below
1 has the great advantage of simplicity. However,
such an approach does not make explicit the costs of
infection or of intervention. One effectively assumes
that prevention of a major epidemic is worth any
cost, whereas intervention that does not prevent a
major epidemic is worthless, even if the spread of
infection is reduced. Thus, for instance, a policy of
isolating some infectives from the susceptible popula-
tion, which clearly will tend to decrease the spread of
infection, nevertheless, has no effect upon the value
of R0.

A more thoroughgoing approach to epidemic con-
trol can be provided through mathematical control
theory. When adopting such an approach, it is neces-
sary to set out explicitly the costs of intervention and
of infection. One then aims to find the intervention
policy which minimizes the expected total cost. A
comprehensive review of applications of control the-
ory to infectious disease models up to 1977 is given
in [14].

Isolation of Infectives

To give a specific example, we return to the general
stochastic SIR epidemic described above. For this
model, Abakuks [2] considered a form of interven-
tion, which allows for the instantaneous isolation of
any number of infective individuals from the sus-
ceptible population. The cost of disease spread was
taken to be proportional to the number of individu-
als infected during the epidemic, while the cost of
intervention was taken proportional to the number of
infectives artificially isolated.

Suppose that at time t the epidemic is in state
(X(t), Y (t)) = (x, y). Then one must decide whether
to isolate a single infective, or do nothing until the
next natural transition occurs. (Isolation of several
infectives can be achieved by repeatedly choosing
to isolate single infectives.) Take the cost of an
individual being infected to be the unit of cost; denote
by L the cost of isolating one infective, and denote
by V (x, y) the expected total future cost of adopting
an optimal policy. Then for x, y ≥ 1, the expected
future cost of waiting until after the next natural
transition, and adopting an optimal policy from then
on, is given by

W(x, y) = βx

βx + γ
(1 + V (x − 1, y + 1))

+ γ

βx + γ
V (x, y − 1). (2)

The expected future cost of isolating an infec-
tive immediately, then adopting an optimal policy,
is L + V (x, y − 1). The optimal policy is to take
whichever of the above two actions results in the
smaller expected cost, and so the expected cost of
such a policy is

V (x, y) = min{W(x, y), L + V (x, y − 1)}
(x, y ≥ 1). (3)
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Equations (2) and (3) are the Bellman optimal-
ity equations for this system (see Dynamic Pro-
gramming). Together with the boundary conditions
V (x, 0) = 0 for x ≥ 0 and V (0, y) = 0 for y ≥ 0,
the Bellman equations may be recursively solved to
determine the cost function V (x, y) and the optimal
policy itself. From (2) and (3), it was shown in [2]
that the optimal isolation policy takes the following
simple form. For each x ≥ 0, there exists an integer
s(x) ≥ 0 such that the optimal policy is to isolate
all infectives if 1 ≤ y ≤ s(x), but to isolate none
otherwise. Furthermore, s(x + 1) ≥ s(x) for x ≥ 0.
So if an epidemic starts from a state (x, y) with
y ≤ s(x), then the optimal policy immediately iso-
lates all infectives, thereby terminating the epidemic;
on the other hand, if y > s(x), then the epidemic
is allowed to proceed unimpeded until the first time
that Y (t) ≤ s (X(t)), at which point the epidemic is
terminated by the isolation of all infectives.

The intervention considered in [2] is of impulse
type, meaning that intervention causes an instanta-
neous change in the state of the system. An alternative
to this is intervention to change the rate at which tran-
sitions occur. For instance, for the general stochastic
SIR epidemic Wickwire [13] considers intervention
to increase the removal rate parameter at time t from
γ to γ + v(t) (0 ≤ v(t) ≤ 1). The cost of infection
is taken equal to the time spent in an infectious state
by all individuals during the course of the epidemic,∫ ∞

0 Y (s) ds, while the cost of intervention is taken to
be proportional to

∫ ∞
0 v(s)Y (s) ds, so that the total

expected cost is

E

[∫ ∞

0
(1 + hv(s))Y (s) ds

]
(4)

for some constant h.
The expected cost V (x, y) of an optimal policy

starting from state (x, y) then satisfies the Bellman
equations

V (x, y) = min
v∈[0,1]

(1 + hv) + βxV (x − 1, y + 1)
+(γ + v)V (x, y − 1)

βx + γ + v

(x, y ≥ 1). (5)

An analysis of (5) allows Wickwire [13] to show
that the form of the optimal policy is as follows:

If hγ ≤ 1 then take v = 1 for all (x, y) with
x, y ≥ 1.

If hγ > 1 then for each x ≥ 1 there exists an
integer s̃(x) ≥ 0 such if 1 ≤ y < s̃(x) then take v =
1, if y ≥ s̃(x) take v = 0.

The optimal policy is thus of bang-bang type; that
is, the value of v is always taken to be either 0 or 1,
never any intermediate value. Notice that this policy
is of the same form as the optimal impulse control
policy of [2]. In each case, if the number of infectives
y lies above some boundary then we intervene to
isolate infectives as rapidly as possible; if the value
of y lies below the boundary, we do not intervene.

In the examples above, the spread of infection
is reduced by isolation of infective individuals from
the susceptible population. One could alternatively
intervene by immunizing susceptible individuals, or
by reducing the rate of contact between susceptible
and infective individuals.

Immunization

Policies which allow the instantaneous immunization
of susceptible individuals are studied in [1]. Equa-
tions corresponding to (2) and (3) can be written
down and solved recursively just as for isolation poli-
cies, but the structure of the optimal policy proves
somewhat more complicated. For this reason, in [3]
attention is restricted to total immunization poli-
cies, in which the only possible intervention is to
immunize all x susceptibles simultaneously, at cost
A + Kx. In this case it is found that for each x ≥ 0
there exists an integer t (x), 0 ≤ t (x) ≤ ∞, such that
the optimal policy is to immunize all susceptibles if
y > t(x), but not otherwise.

Alternatively, one may allow for immunizations
at a finite rate. Some results for this problem are
outlined in [14]. The transition rates of the gen-
eral stochastic SIR epidemic are now modified by
allowing additional transitions (x, y) → (x − 1, y) to
occur at rate u(t), where the value of u(t) is to be
chosen in 0 ≤ u(t) ≤ 1. Higher values of u(t) incur
higher costs, but reduce the spread of infection. A
cost function similar to (4) can be written down, and
Bellman equations corresponding to (5) derived. The
structure of the optimal policy is found to be of sim-
ilar form to the impulse control of [1].

Deterministic Models

Although our discussion so far has been based on
stochastic models, similar considerations apply when
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dealing with deterministic models. As an illustration,
consider the general deterministic SIR epidemic. This
is described by the differential equations

dx

dt
= −βxy,

dy

dt
= βxy − γy, (6)

where x(t), y(t) denote, respectively, the numbers of
susceptible and infective individuals in the population
at time t . We can, for instance, control the spread
of infection by increasing the removal rate parameter
from γ to γ + v(t), where 0 ≤ v(t) ≤ 1. This control
problem has been studied in [13], where the total
cost was taken to be

∫ ∞
0 (1 + kv(s))y(s) ds. As for

the corresponding stochastic problem, it is found that
the optimal control is of bang-bang type; that is, u(t)

should always be taken to be either 0 or 1.

Extensions

In the above examples, quite simple cost functions
have been used, as much for mathematical conve-
nience as from considerations of realism. Consider
first the cost due to infection. In [1, 2, 3], this was
taken to be proportional to the number of individuals
becoming infected, whereas in [13], it was taken to
be proportional to the total time spent in an infec-
tious state by all individuals during the epidemic.
(If we assume that infectious individuals are those
displaying symptoms and unable to work, then this
latter cost function has an economic interpretation as
the number of hours work lost due to the infection.)
More generally, the cost due to infection could be
some more complicated function of the number of
individuals to become infected and of the time spent
in the infectious state. Other possible contributions
to the cost function include the total duration of the
epidemic and the maximum number of infectives to
be present at any time during the epidemic.

Secondly, consider the cost of intervention. For
impulse control policies, this can most simply be
taken proportional to the number of individuals iso-
lated, or vaccinated, but in general, could be some
more complicated function of the number of inter-
ventions. When we intervene by altering the rates of
transitions, for instance, by increasing the removal
rate parameter from γ to γ + v(t), then the cost
due to intervention could reasonably be taken pro-
portional to either

∫ ∞
0 v(s) ds, or

∫ ∞
0 v(s)Y (s) ds.

More generally, the cost due to intervention could

be taken as
∫ ∞

0 f (v(s)) ds or
∫ ∞

0 f (v(s))Y (s) ds for
some nondecreasing function f (v).

In practical applications, it is clearly important to
ensure that the cost function used reflects the real-
ity of the situation. This may well be difficult to
achieve. Quantification of the cost of intervention,
while not entirely trivial, seems relatively straightfor-
ward; quantification of the cost due to infection seems
much more problematic, particularly for serious dis-
eases. However, for nonserious infections it seems
reasonable to express the cost of infection in terms
of the number of working hours lost. For infections
of livestock, the cost of any infection can be taken
to be the monetary cost to the farmers involved. A
further difficulty is that if the cost function is not
sufficiently simple, then the mathematics required in
order to evaluate an optimal policy analytically may
well prove intractable.

For more complicated models than the general
stochastic SIR epidemic, finding an optimal policy
can be considerably more difficult. However, some
progress has been made for various specific models.
For instance, for models of SIR type, with infection
rate β(x, y) in place of βxy and removal rate γ (x, y)

in place of γy, Clancy [6] found conditions on the
functions β(x, y) and γ (x, y) under which the results
of [2], [3] for the general stochastic SIR epidemic still
apply. Kyriakidis [10], [11] considered adapting the
results of [2], [3] to a model for two competing dis-
eases. Greenhalgh [7] investigated isolation policies
for a model in a heterogeneous population, in which
the contact rate between a pair of individuals depends
upon the particular individuals involved.

For practical implementation, there remain sub-
stantial difficulties with the use of optimal control
theory. First, one must specify an appropriate cost
function; then the optimal policy must be found,
which is often a nontrivial problem; finally, imple-
mentation of the optimal policy may be difficult, since
one must keep track of the numbers of susceptible
and infected individuals in the population at all times.
Even if taking the simpler approach of reducing R0

to below 1, practical problems remain. One must take
account of the fact that vaccines are generally not
100% effective. The true values of parameters such
as β and γ are not known, but must be estimated
from data. In a control theoretic context, the issue
of estimating parameter values has been addressed
in [5].
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For the time being, and for more serious infections
whose cost is not easily quantified, the more simple-
minded strategy of aiming to reduce R0 to below
1 appears to remain the more practical approach.
However, for nonserious infections or for diseases
of livestock, when the cost of infection can reason-
ably be measured in economic terms, the control
theoretic approach should ultimately lead to control
policies which explicitly take into account the relative
costs of infection and of intervention. The mathe-
matics involved in evaluating such optimal policies
for realistic models for specific diseases is, however,
quite involved, and much remains to be done.
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Epidemic Models,
Deterministic

In this article we review some of the approaches, both
standard and recent, to the theory of deterministic
epidemic models. By deterministic we mean that one
considers populations consisting of sufficiently many
well-mixed individuals. At the level of the individ-
uals, however, we do consider processes such as
infection and the individual course of infection to
be stochastic events. What separates the determin-
istic models from the approach taken in stochastic
epidemic models (see Epidemic Models, Stochastic)
is that we invoke a law of large numbers argument
to lift these individual stochasticities to population
determinism.

There are many ways in which an article like
this could be structured. We have chosen to use four
concrete infections as stepping-stones to review cur-
rent issues in epidemic modeling and the types of
deterministic model employed and questions stud-
ied. These infections are measles, malaria, helminths,
and HIV, respectively, reflecting the order in which
they were important historically in shaping epidemic
theory. Of course, many of the models discussed
under these headings are used in a great variety of
settings and there is a certain degree of arbitrari-
ness in the place in which they occur here. We do
not intend to provide detailed mathematical results,
but on the contrary stress the evolution of the sub-
ject and the practical problems faced. Our main aim
is to point the interested reader to more advanced
literature.

The current issues in epidemic modeling – both
stochastic and deterministic – are illustrated in the
recent review books by Mollison [42], Isham &
Medley [33] and Grenfell & Dobson [20]. In these
most of the issues touched on below are discussed
and reviewed extensively. For a review of the recent
mathematical deterministic theory, see [13].

Measles

As in stochastic epidemic modeling, the diseases that
sparked the development of modern deterministic
theory are the childhood infections, most notably
measles. This arises predominantly from their large
public health importance in the late nineteenth and

early twentieth centuries. In late nineteenth century
England a sophisticated system of vital statistics
had been initiated by William Farr, and data series
became available that were both reliable enough
and long enough to generate hypotheses about the
possible mechanisms underlying epidemic spread. It
should be noted that the germ theory of infection
became firmly established only after the 1880s. Germ
theory is the notion that certain diseases are caused
by living organisms multiplying within the host and
capable of being transmitted between hosts.

The most striking aspect of measles epidemics,
i.e. their regular cyclic behavior, was noticed first
by Arthur Ransome around 1880. Speculation about
the underlying cause centered around the availability
of sufficiently many susceptible individuals of the
right age-class in close enough proximity to each
other. Early shimmers of the modern notion of crit-
ical community size for sustaining endemic measles
[4, 5] were also present. Two factors that commonly
occur in many current models to investigate epidemic
spread of measles and other infections are the impor-
tance of age-structure and of periodicity in contacts.
The age and school season were recognized as impor-
tant as early as 1896 [25].

Against this background it was William Hamer
who published a discrete time epidemic “model” for
the transmission of measles [26]. The mathematical
rendering was later given in [52]. Hamer’s observa-
tion can be reformulated as stating that the incidence
of new cases in a time interval is proportional to the
product SI of the (spatial) density S of susceptibles
and the (spatial) density I of infectives in the popula-
tion. This assumption of mass action – in analogy to
its origin in chemical reaction kinetics – is fundamen-
tal to the modern theory of deterministic epidemic
modeling (see Random Mixing). When densities are
constant and one would like to express the incidence
in terms of numbers of individuals, the incidence is
proportional to SI/N , where N is the total population
size [9].

The popularity of mass action is explained because
of its mathematical convenience and the fact that
at low densities it is a reasonable approximation of
a much more complex contact process. At higher
densities it grossly overestimates contact opportu-
nities. As a side remark we note that Frost and
Reed in 1928 recognized for measles that although
multiple contacts of infectives with the same suscept-
ible can occur, this susceptible can become infected
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only once. This led them to develop the stochastic
Reed–Frost model that does not have this particu-
lar problem (see Chain Binomial Model). Inciden-
tally, this problem with mass action had already been
solved by P.D. En’ko long before it was introduced.
He studied a model for measles transmission that is
very similar to the Reed–Frost approach (see [14]).
For a comparison between all approaches, see Dietz
& Schenzle [16].

Currently, expressions like βC(N)SI/N are fre-
quently used for the incidence, where βC(N) gives
the successful contacts per unit of time for a given
infective. A fraction S/N of these contacts will be
with a susceptible in a homogeneously mixing pop-
ulation. The function C(N) is taken to saturate with
increasing density, reflecting the fact that contacts
take time and moreover satiation occurs (think of
sexual contacts and insect vectors taking blood meals;
see, for example, [28], [53]). A standard compartment
model for infection transmission with a latent period
and lasting immunity (a so-called SEIR model) is

dS

dt
= µN − βC(N)

SI

N
− µS, (1)

dE

dt
= βC(N)

SI

N
− (σ + µ)E, (2)

dI

dt
= σE − (γ + µ)I. (3)

An equation for R is superfluous here since N =
S + E + I + R is constant in this model. A very
large number of variants of this model – usually
denoted by strings of S, E, I, and R – are stud-
ied in the literature for a large number of different
infections. In most cases this entails analysis of the
dynamic behavior with practical applications to prob-
lems concerning control of the infection (see [31] for
a brief review of this area). Examples of important
extensions are introducing an additional death rate
due to the disease, loss of immunity with re-entering
of the S-class, a birth rate directly into the infec-
tive class (vertical transmission) (see [7] for all of
these), density-dependent demography, and of course
heterogeneity which we will discuss later. In [34] a
comprehensive treatment of the mathematical theory
of compartmental systems is given. Whether cer-
tain possible additions matter depends partly on the
time scale of the phenomenon one is interested in.
For example, on the time scale of individual epi-
demic outbreaks, the population can often be regarded

as being in a demographic steady state (see [12]),
and the inflow of new susceptibles can often be
neglected in a short enough period (closed popula-
tion). Useful results include the so-called final size
equations for closed populations. These relate the
initial size S0 of the susceptible population to the
basic reproduction number R0 (see below) and the
size S(∞) of the susceptible population that remains
after the epidemic has come to an end. Both S0

and S(∞) might be observable in practical situations
or estimated from population data. Estimates of R0

can then be obtained from a final-size relation. In
the case of system (1)–(3), with C(N) = N (mass
action) and disregarding latency (i.e. σ → ∞), we
obtain

ln
S(∞)

S0
= R0

[
S(∞)

S0
− 1

]
. (4)

One of the many present-day approaches towards
understanding the dynamics of measles epidemics
(see [6] for a review) is to include a periodic forc-
ing β(t) = b0[1 + b1cos(2πt)] in the contact rate of
compartmental models to mimic the increase in suc-
cessful contact opportunities during school seasons
(see [21]). The dynamics of these models have been
extensively studied (see, for example, [49], [51]) and
compared with data. Detecting nonlinearity and chaos
from stochastic effects in data of recurrent epidemics
is an important theme in this area [17].

In contrast to seasonal contact rates – that are
studied in only a few other settings (see malaria
section below) – the incorporation of age structure is
relevant to almost all important human infections (see
[3], [7]). Age-structured models come in discrete age-
class systems of differential equations and continuous
age systems of partial differential equations [54]:

∂S

∂t
+ ∂S

∂a
= −µS − λS, (5)

∂I

∂t
+ ∂I

∂a
= −µI + λS − γ I, (6)

∂R

∂t
+ ∂R

∂a
= −µR + γ I, (7)

with

S(t, 0)=
∫ ∞

0
b(a)N(t, a) da, I (t, 0)=R(t, 0)=0,

(8)
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and appropriate initial conditions. The so-called force
of infection λ(t) is defined by

λ(t) =
∫ ∞

0
k(a′)I (t, a′) da′. (9)

Often the force of infection depends on the age a

of the susceptible with the kernel k(a′) replaced by
k(a, a′) to reflect the different mixing patterns of
individuals of different ages. Extensions of models
like this have been compared with data for measles,
notably by Schenzle [50], and showed remarkable
accuracy even in following the shift in trend after
vaccination was implemented. Mathematical theory
centers around dynamic behavior and stability criteria
for endemic steady states for various variants of this
model (see [32]).

One of the applied issues in studying age-
structured models is to predict the effects of
changes in vaccination strategies [18] (see Vaccine
Studies). For childhood infections not all strategies
of vaccinating children at various ages can result
in eradication of the infectious agent from the
population. For this to occur the basic reproduction
number R0 has to be less than 1 in a population where
the distribution with respect to age and vaccination
status is in a demographic steady state. The basic
reproduction number is one of the central notions of
epidemic theory. It is defined as the expected number
of secondary cases caused by a single infective in
a susceptible population that is in a demographic
steady state. For modern theory of calculating R0

for infections in heterogeneous populations (see [11],
[27]). Consider system (5)–(9). Let the stable age
distribution be given by S(a) = S0e

−raFd(a), where
r is the intrinsic population growth rate and Fd is
the survival function. One can show that

R0 = S0

∫ ∞

0
k(a)e−raFd(a) da. (10)

In the article on Reproduction Number a relation is
given for the fraction of the population that needs to
be vaccinated in order to assure eradication:

ν > 1 − 1

R0
. (11)

If we vaccinate a fraction ν at birth, then we have
a susceptible population of size S0(1 − ν) and the
relation is the same as above with R0 given by (10).

Optimal vaccination policies can also take eco-
nomic considerations into account using similar meth-
ods (see, for example, [24], [43]).

These models have shown that some vaccination
strategies in use can have unforeseen detrimental
effects in a population (see [3], for exposition and
review). If fewer susceptibles are around in cer-
tain age-classes as a result of vaccination, then the
average age at acquiring infection will rise. For infec-
tions such as rubella, complications can arise when
the infection is contracted for the first time during
pregnancy. This leads to the situation where even
though rubella prevalence can decrease due to vac-
cination, the number of serious complications can
increase as a result. It is in this type of application for
childhood infections that age-structured models and
their analysis have provided important epidemiologic
insight that might otherwise have been difficult to
obtain.

Malaria

Independently from Hamer, Ronald Ross in 1911
introduced the mass action idea in continuous time in
his study of the transmission of malaria [46]. Ross’s
work in subsequent years (see [47]) qualify him as
the true founding father of modern epidemic the-
ory. It was partly under his influence that Anderson
McKendrick started his own studies into the math-
ematical modeling of epidemic phenomena, initially
also in the context of malaria and other tropical infec-
tions. His series of papers with Kermack from 1927
onwards, see below, is regarded as the foundation
upon which much of modern theory rests. The papers
have recently been reprinted [36].

One of the distinguishing characteristics of malaria
is that the protozoan parasite is indirectly transmitted
between humans by mosquitoes. Several important
human infections depend on similar vectors for their
transmission. For modeling this brings about a new
problem in that the population dynamics of the vector
have to be described. A simple model capturing the
essentials is (see [3])

dx

dt
= ab

M

N
y(1 − x) − γ x, (12)

dy

dt
= acx(1 − y) − µy, (13)

where x and y are the fractions of infected humans
and mosquitoes, respectively, and where M/N is the
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number of (female) mosquitoes per human host in
an infection free steady state. Common extensions in
a similar vein are seasonality in vector emergence
and the incorporation of heterogeneity in the human
population. The basic reproduction number for the
above model is given by

R0 = M

N

a2bc

γµ
. (14)

Since the work of Ross and notably Macdonald
[38], eradication campaigns have been aimed at con-
trolling the mosquito population strongly enough to
achieve R0 < 1. With the emergence of both vector
resistance to chemical control and parasite resistance
to drug treatment malaria is regaining its strength as
arguably the most severe infectious disease of man.

There has been much debate over the possibility
of eradicating malaria by vaccination. We have seen
that the minimum proportion of hosts that must be
vaccinated to prevent a disease from establishing,
or to eradicate it when present in the population, is
1 − 1/R0. Estimates of R0 > 80 based on the age at
first infection would then imply that eradication by
vaccine would be a hopeless task. However, Gupta
& Day [22] have suggested that malaria could be
composed of several strains, each of which confers
strain-specific lifelong immunity. This observation is
consistent with sero prevalence data obtained from
the Gambia. The age at first infection would then be

A = L
∑

j

R
j

0

, (15)

where the R
j

0 are the basic reproduction numbers of
the individual strains, and L is the life expectancy
of the host. The proportion that must be vaccinated
is then 1 − 1/ max(R

j

0 ). As max (Rj

0 ) could be in
the range 5–10 this analysis implies that the eradi-
cation of malaria by vaccination could be a feasible
proposition. See Saul [48] for a critique of this theory.

One of the most important outstanding issues in
malaria and in many other infections is to under-
stand the phenomenon of acquired immunity. Here,
an individual’s immune level to disease rises with
frequent reinfection. It is unclear how this should
be modeled mathematically. An infection pressure
in the vector population gives rise to a distribution
of initial doses of infection that a human receives.
The infectious output towards biting mosquitoes of

a given infected human is the result of a complex
battle with the immune system. This output distribu-
tion then feeds back into the population. Currently
the word immunoepidemiology is used to signify an
area of modeling that tries to link both immunologic
processes within individual hosts with epidemiologic
processes of transmission between hosts. Given the
implications that this interaction between immunity
and epidemiology has for control strategies that affect
the build-up of natural immunity, this area is likely to
see much activity by epidemic modelers in the near
future.

Helminths

Chronologically speaking, the tropical helminth
infections such as schistosomiasis are the next step
in the genesis of epidemic theory. Early work by
Kostitzin in 1934 was followed 30 years later by
Macdonald’s study of schistosomiasis [39] and a
flourishing of activity in the 1970s and 1980s (see
[3] for a review).

A major difference between microparasites and
macroparasites is that the former reproduce rapidly
within the host, whereas the latter reproduce by
releasing infective stages into the environment, which
eventually complete a life cycle and (re)infect hosts.
Hence, for infections caused by parasitic helminths
the compartment models that classify a host as sus-
ceptible, infectious, etc. become inappropriate, and a
model that allows multiple infections is required. A
second problem then presents itself. The notion that
the pool of susceptibles diminishes during the course
of an epidemic does not necessarily hold, differential
equation models no longer have a negative feed-
back mechanism that is automatically incorporated,
and careful attention must be paid to the mechanisms
that regulate the parasite population. Early models for
parasites of wild animals [1] included increased mor-
tality of the host due to parasitic infection, therefore
heavily parasitized hosts had a short life expectancy,
and upon dying removed large numbers of parasites
from the system. For many helminth infections of
humans this would not be the case, and cognisance
must be taken of regulatory mechanisms such as
acquired immunity.

A simple model for the dynamics of a parasitic
helminth in a population of constant size would be

dM

dt
= µ(Q(M) − 1)M, (16)
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where M is the mean number of parasites per host,
µ is the loss rate of parasites from the system and
Q(M) is the ratio of parasite transmission rate to
loss rate. This model could stand as a prototype for
many similar formulations to be found in [3] and
other sources, and would be appropriate where host
immunity was a function of current mean parasite
burden. Hence Q is a positive nonincreasing function
of M , at steady state Q(M) = 1, and the parasite
population can persist whenever Q(0) > 1.

The number Q(0) is the basic reproduction num-
ber (ratio, quotient) for the parasite population. It may
be defined as the expected number of offspring of a
typical parasite that reach reproductive maturity, in
a completely susceptible host population [2]. Hence,
whereas for microparasites the reproduction number
is defined in terms of secondary infections of hosts,
for macroparasites it is defined in terms of the par-
asite population dynamics. This definition has been
formalized in Heesterbeek & Roberts [29].

The model presented above incorporates simplis-
tic expressions for parasite transmission and host
immunity. Many helminth parasites have complicated
development stages outside the definitive host that
must be modeled explicitly. For example, cestode
parasites are tapeworms, with an obligatory inter-
mediate host and transmission maintained by a car-
nivore–herbivore relationship (see [45]). The domi-
nant feedback is provided by immunity to the larval
stage acquired by the intermediate host. For trema-
todes, such as the parasites that cause schistosomiasis,
there is an obligatory two host cycle (for example
human/snail) with a free-living stage, and immunity
to superinfection is acquired by the definitive host.

Immunity acquired against adult helminth par-
asites may be stimulated by larvae (hence chal-
lenge) or adult parasites, and may act against lar-
vae by protecting the host from further infection,
against adult parasites by increasing their rate of
mortality, or against continued transmission by reduc-
ing their egg output. A theoretical framework for
these mechanisms has been developed by Woolhouse
[55]. Essentially, the model presented above was
extended to include the age structure of the host to
obtain

∂M

∂t
+ ∂M

∂a
= µ(Q(M) − 1)M(a, t), (17)

where, for fixed time t, M(a, t) is the density of
mean parasite burden over host age a. Woolhouse

[55] remarks that the function Q (in our notation)
“represents the entire process of transmission
between hosts, incorporating the dynamics of any
free-living or vector-born stages, host exposure and
innate susceptibility to infection”. The inclusion of
an age structure in the model was motivated by
the fact that host–parasite data are often presented
via age–intensity curves, and age-structured models
may be used to analyze these. Assuming that the
epidemiology of the parasite has remained constant
for some time we set ∂M/∂t = 0 and obtain predicted
age–intensity relationships.

Acquired immunity may be included in a variety
of ways, for example if Q were also a function of
past worm burden we could have Q(M, H) with
∂Q/∂H < 0 and, when ∂M/∂t = 0, write

dH

da
= M − σH, (18)

where σ is the rate of fade of immunity. Wool-
house [56] used this framework to compare the
age–intensity and age–egg output curves generated
by four assumed mechanisms with data from studies
of schistosomiasis infections. See [8] for the incor-
poration in a more comprehensive model for schis-
tosomiasis control. For a review of the epidemiology
and modeling of schistosomiasis, see [57].

Since parasite numbers within hosts are frequently
too low to warrant a deterministic description at that
level, models have been developed that allow for
stochasticity within individuals but continue to treat
the host population deterministically with an age-
structured model (see [23], [37]). In addition, these
models incorporate the fact that as a rule there is large
variation in individual parasite burden. This implies
that a description using only mean burdens is often
less appropriate.

HIV/AIDS

The infection that has sparked off a tremendous
increase in epidemic modeling activity is undoubt-
edly HIV, starting with seminal papers by Anderson
and May (e.g. [40]) (see AIDS and HIV). The effect
has been that in the past 10 years more different infec-
tions of humans and animals have been studied with
more realistic models than ever before. Progress of
the whole area of epidemic modeling is no longer
attached to specific classes of infections as it was
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in the early days. There is now much progress not
only on the applied front, but also in mathematical
advances necessary to cope with the more involved
models that aim to take relevant heterogeneity in the
population into account. One of the reasons could
be that sexually transmitted diseases, and certainly
AIDS, call for the incorporation of much structure
combined. Examples are age structure for differences
in infectivity, susceptibility, and certainly also con-
tact structure and discrete characteristics such as sex,
sexual preferences, and sexual activity. Two compli-
cations are particularly important: varying infectivity
as a function of time elapsed since infection and long-
lasting partnerships. The first complication is relevant
to almost all infectious diseases, the second is related
to sexual transmission. We deal with both below. One
of the key notions to come out of HIV modeling
is that of a core-group of infecteds. This is a small
group that is very active in contacts and can keep
the epidemic going in a much larger group where
the internal contacts alone cannot sustain it [35] (see
Partner Study).

It was realized early on in the modeling of HIV
that humans generally form (sexual) partnerships that
last longer than individual sexual contacts. Let us
assume monogamous partnerships. During such a
partnership two susceptible partners are not at risk
to infection, and an infective can only cause a sin-
gle new case until the partnership dissolves. This
has consequences for the spread of infection. This
observation has given rise to pair formation models
where the formation and breaking up of partnerships
is explicitly taken into account [15]. These models
differentiate in the most basic case between single
susceptibles and infectives and three types of pairs.
If one lets partnership duration tend to zero while
keeping the infection potential during a partnership
constant, then one obtains the mass action models
we discussed previously. In recent years progress
has turned to more complicated contact structures
such as circles of friends [10] and beyond deter-
ministic theory to random graphs that reflect an
underlying dynamic social contact structure in a pop-
ulation.

We now turn to variable infectivity. Chronologi-
cally this important aspect of deterministic epidemic
theory was introduced by Kermack and McKendrick
in 1927 after McKendrick’s ventures into epidemiol-
ogy had broadened beyond tropical infections. Their
integral equation model incorporates – in modern

notation – a function A(τ) to describe the aver-
age infectivity of an individual at a time τ since
this individual became infected. For childhood infec-
tions, influenza, and other infections with long-lasting
immunity A(τ) is a one-humped curve with nar-
row support. Usually the function does not rise away
from zero immediately since many infections have a
nonnegligible latency period between infection and
becoming infectious. The latency period should not
be confused with the incubation period which sep-
arates infection from the occurrence of symptoms.
We consider incubation periods below. For HIV, the
function A(τ) is typically a two-humped function.
There is a peak in the early months of infection, fol-
lowed by a long period of very low but probably
nonzero infectivity (typically lasting several years),
and ending in a second rise to high levels as the infec-
tion progresses to full-blown AIDS and ultimately
death.

One striking feature of infection with the HIV
virus is the long (>8 year) incubation period of AIDS.
A proposed explanation is that the virus mutates
within the host, with each strain stimulating both
strain-specific and nonspecific immune responses;
and although each strain is able to multiply in the
presence of specific responses, it is regulated by the
combination of specific and nonspecific responses.
A simple mathematical model then shows that ini-
tially the individual virus strains are suppressed at
a low level by the immune system of the host, but
eventually the number of strains exceeds a “viral
diversity threshold”. When this occurs the nonspecific
responses can no longer contain the virus population,
and all viral strains are able to multiply [44]. Here
a mathematical model has generated a hypothesis for
the within-host dynamics of a disease that has yet to
be tested against observation.

Now imagine an infection that results in complete
immunity or death, in a population that is closed (i.e.
inflow of new susceptibles is negligible on the time
scale of the epidemic), where contacts are described
by mass action. Let S(t) be the density of suscepti-
bles in the population at time t . Assume that a single
infection triggers an autonomous process within the
host. This allows an age representation for the infec-
tivity. We can describe the infection process by the
following integral equation:

dS

dt
(t) = S(t)

∫ ∞

0
A(τ)

dS

dt
(t − τ) dτ. (19)
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The incidence of new infecteds i(t, 0) = − dS/ dt (t)

and we can reformulate the above in terms of the
incidence i(t, τ ) as

i(t, 0) = S(t)

∫ ∞

0
A(τ)i(t − τ, 0) dτ, (20)

where the latter integral is the force of infection.
This equation can be understood by noting that
the infected individuals of infection age τ that are
infecting susceptibles at time t are doing so with
infectivity A(τ). These infecteds are precisely those
who became infected at time t − τ . Only if we choose
C(N) = N (mass action) and the unrealistic A(τ) =
β exp(−γ τ), and if we neglect latency, can we reduce
the above to the system of ordinary differential equa-
tions (1)–(3) by calculating I (t) = ∫ t

−∞ exp[−γ (t −
τ)]( dS/ dt)(τ ) dτ and differentiating. Kermack and
McKendrick already showed that the disease will
spread in the population of constant density S0 if and
only if R0 > 1 with

R0 = S0

∫ ∞

0
A(τ) dτ. (21)

This basic result of deterministic epidemic theory
can be extended to populations with arbitrary het-
erogeneity. Consider the individuals labeled with a
variable ξ , say, taking values in some state space
Ω ⊂ �m. Now, both S and A can depend on the
type of individual. The general integral equation for-
mulation for a closed population is

i(t, ξ) = S(t, ξ)

∫

Ω

∫ ∞

0
A(τ, ξ, η)i(t − τ, η) dτ dη.

(22)

The compartmental ordinary differential equation
models, with and without heterogeneity, and the age-
structured model above are special cases of this
equation for specific choices of A. One can show
that R0 generalizes naturally to the spectral radius
of the so-called next generation operator associated
with equation (22) [11, 13, 30].

To show the connection with age-structured mod-
els let Ω = [0, ∞) and ξ = a and disregard demog-
raphy. Under the condition

A(τ, a, b) = k(a, b + τ) exp

[
−

∫ b+τ

b

γ (c) dc

]

(23)

define

I (t, a) =
∫ a

0
i(t − τ, a − τ) exp

[
−

∫ a

a−τ

γ (c) dc

]
dτ.

(24)

Differentiating I leads to the system (5)–(6) (with
µ = 0).

In the HIV/AIDS context questions relate again
to evaluating effects of control measures (including
behavior change). In an age-structured setting the
possible demographic impact of HIV in developing
countries is an important issue [41]. In Heesterbeek
& Dietz [27] it is shown how models with continuous
age structure in the form (22) relate to models with
discrete age-classes and the so-called WAIFW matri-
ces (Who Acquires Infection From Whom). These
matrices are studied as an approach to link theory to
population data [3, 19]. One can also give a final size
relation for (22) in a closed population.

The modeling process within the deterministic
frame of model (22) has shifted to specifying the
infectivity kernel A. The modeling depends of course
on the type of question to be studied. Often the mod-
eling will make use of stochastic processes – notably
Markov processes – to describe change in an indi-
vidual’s set of characteristics. Many models are in
some sense special cases of (22). In a way, these
models have already made a choice for A, as we have
seen in the age-structured and compartmental model
for measles. The modeling of A for more realistic
(measurable) situations combining heterogeneity (in
individual traits, individual behavior and space) and
immunologic and evolutionary processes is one of
the major challenges in the near future. This model-
ing will draw on deterministic but increasingly also
on stochastic techniques and theory. It is likely that
the days are numbered for realistic progress in theory
that is only deterministic. The theory has reached a
stage where progress on current issues of epidemio-
logic importance (e.g. understanding persistence and
critical community size) can only be achieved if
deterministic and stochastic theory go hand in hand.
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Epidemic Models,
Inference

Introduction

Statistical inference for epidemics is most often based
on stochastic epidemic models (see Epidemic Mod-
els, Stochastic). A special property of such models
is that individuals are dependent in that the chance of
getting infected depends on whether or not other indi-
viduals are infected. When making inference, another
complicating property is that most often the underly-
ing epidemic process is only partially observed. It is
very rare that information about who infected whom
is available. The most common type of data actu-
ally consists of only knowing who was infected and
who was not, that is, having no information about
the time evolution of the spread. This type of data is
called final size data.

In the present overview, we present inference pro-
cedures for what is known as the general epidemic
model, which assumes a homogeneous community,
and a model for a structured community (see Epi-
demic Models, Structured Population) in which
the community is partitioned into households. Which
inference procedure to use depends on the underlying
model, but also on the type of available data. Below,
both maximum likelihood and martingale methods
are used on the general epidemic model, depending
on the type of data. Further, in a separate section,
Markov chain Monte Carlo (MCMC) methods for
more complex models, having other structured com-
munities or partial observations, are discussed.

Outbreak in a Homogeneous Community

Below, we present inference procedures for the gen-
eral epidemic model. It assumes a community of
homogeneous individuals that mixes uniformly. One
way to relax the assumption of homogeneity is to
allow for different types of individual, where different
types may have different susceptibility, infectivity,
and/or mixing patterns. Inference procedures for such
extended models can for example be found in [10],
where inference for a multitype epidemic in a closed
community is considered, or Farrington et al. [18],
who consider estimation procedures for an endemic
situation where types corresponds to age-cohorts.

The general epidemic is an SIR model (see SIR
Epidemic Models) for a closed community. Let
S(t), I (t), and R(t) respectively denote the number
of susceptible, infectious, and removed (= recovered
and immune) individuals, at time t , and let n denote
the community size. One way to define the gen-
eral epidemic is by specifying the intensities for the
two counting processes N(t) = n − S(t) (the num-
ber of individuals who have been infected) and R(t):
given the process at time t , the rate of new infec-
tions (the intensity for N(t)) is λN(t) = βS(t)I (t),
where S(t) = S(t)/n, and the rate of removals (the
intensity for R(t)) is λR(t) = γ I (t); see [2] for the-
ory on counting processes. The parameter β is hence
the rate at which an infectious individual has contact
with other individuals, so βS(t) is the rate at which
he or she infects other individuals since only suscep-
tible individuals can be infected. The parameter γ is
the recovery rate of infectious individuals, so 1/γ is
the average length of the infectious period.

Complete Data

First, we sketch how to perform inference assuming
the epidemic process is observed continuously – so-
called complete data. If (S(u), I (u), R(u)), or equiv-
alently (N(u), R(u)) is observed continuously up to
time t , then the log-likelihood is given by

�(β, γ ) =
∫ t

0
[log(βS(u−)I (u−)) dN(u)

− βS(u)I (u) du]

+
∫ t

0
[log(γR(u−)) dR(u) − γR(u) du].

(1)

The first term of each integral above is actually a
sum. The counting process N(u) increase 1 unit at
a time making dN(u) = 1 at these time instants
and dN(u) = 0 otherwise. The first term of the
first integral is hence the sum of log(βS(u−)I (u−))

evaluated at these time instants, and similarly, for the
first term of the second integral.

From this, the maximum likelihood estimates can
be derived and shown to equal:

β̂ML = N(t)
∫ t

0
S(u)I (u) du

, (2)
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γ̂ML = R(t)
∫ t

0
I (u) du

. (3)

Standard errors can also be derived using large pop-
ulation results from the general epidemic (e.g. [8]).
The most important parameter, the basic reproduc-
tion number R, for the general epidemic is given by
R = β/γ , so the maximum likelihood estimator of
R, given complete data, is

R̂ML = β̂ML

γ̂ML
= N(t)

∫ t

0 I (u) du

R(t)
∫ t

0 S(u)I (u) du
. (4)

The critical vaccination coverage v∗, the community
proportion necessary to vaccinate in order to obtain
herd immunity assuming a 100% effective vaccine, is
given by v∗ = 1 − 1/R (see Epidemic Thresholds).
Accordingly v∗ is estimated by

v̂∗
ML = 1 − 1

R̂ML

. (5)

Standard errors for R̂ML and v̂∗
ML can be obtained

using the delta method.

Final Size Data

As mentioned in the introduction, the most common
type of data is final size data in which only the
final state of the outbreak is observed, that is, how
many were infected and how many were not. It
is not possible to estimate β and γ separately for
such data, since both parameters are related to time,
and final size data contains no information about
the time evolution of the epidemic. In fact, the log-
likelihood in (1) is not observable for final size data.
Instead, we use that M1 = N(t) − ∫ t

0 βS(u)I (u) du

and M2 = R(t) − ∫ t

0 γ I (u) du are martingales (see
Counting Process Methods in Survival Analysis;
also [2] for the underlying theory). From M1 and
M2, we can form a new martingale such that the
unobservable quantities of M1 and M2 cancel out.
It turns out that the “right” martingale is

M(t) =
∫ t

0

1

S(u−)
dM1(t) − β

γ
M2(t)

=
∫ t

0

1

S(u−)
dN(t) − β

γ
R(t) (6)

= n

n − 1
+ n

n − 2
+ · · · + n

S(t) + 1

− β

γ
R(t) ≈ n log

(
n

S(t)

)
− β

γ
R(t). (7)

The second equality relies on the assumption that
initially one individual was infectious and the rest
were susceptible, that is, (S(0), I (0), R(0)) = (n −
1, 1, 0). At the end of the epidemic (t = τ ) there
are no infectious individuals present, so R(τ) = n −
S(τ) and M(τ) ≈ −n log(1 − p̃) − n(β/γ )p̃, where
p̃ = R(τ)/n is the observed final proportion infected.
Since M is a zero mean martingale, we can apply the
method of moments to get an estimate of R = β/γ

from final size data:

R̂FSD =
(

n
n−1 + n

n−2 + · · · + n
n−R(τ)+1

)

R(τ)

≈ − log(1 − p̃)

p̃
. (8)

This is the same estimator as if estimation would be
based on the deterministic limit of the general epi-
demic (see Epidemic Models, Deterministic) where
the final proportion infected p is known to solve
the equation 1 − p = exp(−Rp). However, in the
stochastic setting we can also obtain standard errors
for the estimator using martingale theory (e.g. [24]):

s.e.(R̂FSD) =
[

1

(n − 1)2
+ 1

(n − 2)2

+ · · · + 1

(n − R(τ) + 1)2
+ R̂2

FSD

n
p̃

]1/2/
p̃. (9)

The critical vaccination coverage v∗ = 1 − 1/R is of
course estimated by v̂∗

FSD = 1 − 1/R̂FSD from final
size data. Standard errors can as before be obtained
by applying the delta method.

The maximum likelihood estimate of R, and hence
also of v∗, given final size data can in principle be
derived using formulae for the final size distribu-
tion (e.g. [5, pp. 93, 94]). However, these formulae
quickly become cumbersome for large communities,
making such inference computationally involved and
numerically unstable.
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Outbreak in a Community of Households

We now present inference procedures in a different
setting where individuals reside in households and
where it is believed that infection rates are much
higher between individuals of the same households
than between individuals of different households. We
do this for a fairly simple model originating from
Longini and Koopman [20], where households are
treated as if they were independent. Since then these
ideas have been refined in several ways, for example,
by allowing individuals of different types and/or treat-
ing a fully stochastic model where households are
dependent (e.g. [1], [6], [11] and [21]). The key idea
in the Longini–Koopman model [20] is to treat the
probability of getting infected from outside the house-
hold during the course of the epidemic as a parameter.
In reality, this probability depends on the number of
individuals who get infected and is hence a stochas-
tic quantity, but the simplifying assumption reduces
computational complexities tremendously. Further,
by estimating the parameter it will be close to its
“correct” value.

A Simple Household Model

Individuals reside in households. An individual who
gets infected has infectious contacts with other indi-
viduals in the household independently and with
equal probability pW = 1 − qW . Additionally, each
individual receives an infectious contact from out-
side the household with probability pB = 1 − qB (the
indices stand for within and between households).
Individuals who receive at least one infectious contact
from infected household members, or from outside
the household, get infected. Only those who escape
infectious contacts both from within and outside the
household avoid getting infected during the epidemic
outbreak. Let ph(j); j = 0, . . . , h denote the prob-
ability that j individuals get infected in a house-
hold having h (initially susceptible) individuals. Then
these probabilities can be derived recursively from
the following equations:

ph(j) =
(

h

j

)
q

j (h−j)

W q
h−j

B −
j−1∑

r=0

(
h − r

j − r

)

× ph(r)q
(h−j)(j−r)

W j = 0, . . . , h, (10)

(e.g. [1]). For example, ph(0) = qh
B and ph(1) =(

h

1

)
(1 − qB)qh−1

B qh−1
W , which can easily be explained.

No one gets infected if everyone escapes infection
from outside. One individual gets infected if 1 out
of h gets infected from outside, and the remaining
h − 1 individuals escape infection both from outside
and from the infected household member. The proba-
bilities quickly become complicated as the requested
number of infected increases, but for households
smaller than say 5 or even 10, formulae for them
can be obtained using a computer algebra package.

Inference for the Simple Household Model

Inference is quite straightforward once the relevant
ph(j)’s have been calculated, since households were
assumed independent. Let {nh(j)} denote the col-
lected data, where nh(j) denotes the observed number
of households of size h in which j individuals got
infected during the epidemic. Then the log-likelihood
for the data is simply

�(qW , qB) =
∑

h,j

nh(j) log(ph(j)), (11)

where the dependence on the parameters is implicit
from the definition of {ph(j)} in (10). The param-
eters are simply estimated by maximizing the log-
likelihood with respect to qW and qB . Because
households are assumed independent, standard large
population theory is applicable when the number of
households is large, and the maximum likelihood
estimators are consistent. Standard errors for the
estimates can be obtained from the observed infor-
mation matrix by differentiating the log-likelihood
twice (e.g. [13]).

As the model is defined, there is no basic repro-
duction number R, because households behave inde-
pendently. In Ball et al. [6], a related fully stochastic
model is considered, enabling estimation of the basic
reproduction number R.

Inference Using MCMC Methods

In previous sections, we have mainly treated models
and data for which it was possible to derive expres-
sions for outcome probabilities. In more realistic (i.e.
complex) settings, this may not be practically pos-
sible. Often, the detail in the data does not allow
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for straightforward estimation of parameters. Then
some missing data method can sometimes be helpful.
There are a few examples where the EM algorithm
can be helpful (see e.g. [4]), but here we focus on
MCMC methods (e.g. [17]). This methodology has
been successfully applied in a few situations but
its real breakthrough in epidemic inference still lies
ahead.

The main idea of MCMC analysis in epidemic
inference is to explore the outcome space of unob-
served (latent) variables for which inference proce-
dures would have been much easier, had these vari-
ables been observed (see Instrumental Variables).
Most often, uninformative priors are used for model
parameters, but in specific cases prior knowledge can
of course be incorporated into informative prior dis-
tributions. Below, we list some inference problems
where MCMC methods have been applied, and refer
to listed references for details.

Inference is nontrivial even for the general epi-
demic model when the removal times, but not the
infection times, are observed. Such data is quite
common since the removal time of an individual is
approximately the same as detection time, which is
quite often known. The reason for the complication
is that the likelihood then has to be integrated over
all possible infection times, a time-consuming task
even for very small community sizes. In O’Neill
and Roberts [23], this problem is analyzed using
MCMC methods in which the Markov chain explores
the space of possible infection times. (A different
approach, using martingales, is performed in [9].)

Also for household data, detection times but not
infection times may sometimes be available. For
a model allowing a fairly general distribution for
the infectious period, perhaps preceded by a latency
period, inference is complicated even for house-
holds of size two and when treated as independent.
In O’Neill et al. [22], such data is analyzed using
MCMC methods, where the unobserved infection
times and latency periods are explored in the Markov
chain.

It is of course hard to include all heterogeneities
into a model. For example, to determine all social
connections between individuals in a community is
impossible. A way out of this problem is to model
unknown social structures by introducing unobserved
random social contacts. In [12], a first step in this
direction was taken by modeling the social structure
using a random graph, and assuming that transmission

may only occur between neighboring individuals of
the graph. Inference is performed without assum-
ing any information about the social graph, and the
Markov chain explores the possible graphs, where
detection times close in time increase the probabil-
ity of a social link between the corresponding pair of
individuals.

Concluding Remarks

The emphasis of this article has been on inference
procedures for epidemic models in general, rather
than on models for specific diseases. The methods
are suited for diseases in which transmission occurs
by person-to-person contact, and not for vector-borne
diseases like malaria or infectious diseases caused by
contaminated water or food like salmonella. Exam-
ples of such diseases are childhood diseases like
measles and mumps, smallpox, HIV (although het-
erogenous structures tend to be very complex here;
see AIDS and HIV), influenza, and common cold.

We have described inference procedures for a few
stochastic epidemic models. In many applications,
the underlying setting is too complicated to enable
inference from stochastic models, for example when
long term endemic situations are considered and the
community changes dynamically, or when there are
too many types of heterogeneities. Then data can be
calibrated to deterministic models thus giving param-
eter estimates. A thorough treatment of many such
situations is given in [3] (see also Epidemic Mod-
els, Deterministic). Inference using stochastic mod-
els, as opposed to deterministic, has the advantage
that it provides uncertainty estimates of parameters.
Stochastic models are also better suited for situations
where small social units, such as households, play an
important role in the disease spread. In this case deter-
ministic models, relying on large population results,
may give misleading results. Deterministic models on
the other hand, have the clear advantage of being sim-
pler to analyze, thus permitting more complex models
to be used.

The practical problem to estimate the effect of
a vaccine against an infectious disease, the vaccine
efficacy, is not treated in the present article (see Vac-
cine Studies). Clearly, this is an important inferential
problem within infectious disease epidemiology, but
it is left out from the presentation as epidemic mod-
els play a minor role in such analyses. Estimation
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procedures for such problems can, for example, be
found in [19] and [15] and the references therein.

For more detailed presentations on statistical infer-
ence for epidemic models, we recommend the mono-
graphs by Becker [7] and Andersson and Britton [4],
and the survey paper [8]. More on epidemic models
in general can be found in [5], [3], [14], and [16].
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Epidemic Models,
Multi-strain

Multi-strain epidemics typically refer to the simul-
taneous development of infectious processes in a
population, caused by different strains of a pathogenic
agent, where the fact of having been infected by one
or more of the agents may modify the sensitivity to
infection by the other agents. In general, as in the
single strain situation, the focus may be either on
the endemic or on the epidemic timescale. Typical
“endemic” questions are – which strains will domi-
nate in the long run, whether sustained oscillations
are possible (see Epidemic Models, Recurrent), or
whether new strains will be able to gain a foothold in
the population, in the presence of already established
strains. In the epidemic perspective, the main ques-
tion usually is what happens upon introduction of the
diseases in a human population and what composition
outbreaks will have, in terms of the different strains.

The endemic aspect is usually dealt with in deter-
ministic, differential equation, models based on the
classic SIR (susceptible → infective → removed)
model, but with an I and R class for each one
of the strains and demographic dynamics (see Epi-
demic Models, Deterministic). The description of
the effects of previous infections on the sensitivity
to further infections may be complicated (the phe-
nomenon is often referred to as cross-immunity, in the
literature), and the behavior of the resulting models
also seems to be quite complicated (for some recent
studies, see e.g. [2, 6]).

We will explain the epidemic case in some detail,
starting with two mutually exclusive strains that con-
fer immunity after infection. This is the only situation
for which some definite results seem to be available
(see [5, 7]). The evolution of the two infections in
a population may be modeled by a system of differ-
ential equations, in the same style as the classical
SIR epidemic. The population size is assumed to
remain constant (closed population), s(t) represents
the proportion of susceptible individuals, i1(t) and
i2(t) the proportions currently infected and infec-
tive with each one of the two strains, and r1(t) and
r2(t), the respective proportions of removed individ-
uals, that is, immune to further infection after having
been infected by one of the two strains. Infection
with one strain is assumed to confer immunity to

further infection from the same strain, but also from
the other strain. Each infection lasts, on average, 1/µi

time units (i = 1,2) and each infected is assumed to
cause βi (i = 1,2) new, secondary cases per time unit,
in a completely susceptible population. The equations
representing the evolution are (it is customary to write
the involved functions without the time argument,
since time is not explicitly used in the description;
a so called autonomous system)

s ′ = −(β1i1 + β2i2)s

i ′1 = β1i1s − µ1i1

i ′2 = β2i2s − µ2i2

r ′
1 = µ1i1

r ′
2 = µ2i2 (1)

with initial conditions s(0) = 1 − ε1 − ε2, i1(0) = ε1,
i2(0) = ε2, r1(0) = r2(0) = 0, where ε1 and ε2 are
assumed to be small (a few initial infectives enter a
wholly susceptible population).

This system does not admit explicit solutions, but
its properties may be studied in a qualitative way.
Eventually, the numbers of infective will tend to zero
and the spread will stop. This will leave the pop-
ulation with a proportion s(∞) of individuals not
having been infected during the epidemic and pro-
portions r1(∞) and r2(∞) having had, respectively,
disease 1 or 2. The question whether one or both dis-
eases may give rise to large outbreaks is answered
by considering the reproductive values θi = βi/µi

(i = 1,2) of the two diseases (these are the same
as the basic reproduction number R0 in models of
one disease) and the epidemic threshold conditions
θi = 1 (i = 1,2). If both parameters are below or on
threshold, both diseases die out quickly after intro-
duction and no large outbreaks may arise. If one is
above and the other one is below threshold, there will
be a large outbreak of the first one and few cases of
the other one. The large outbreak will have affected
a proportion r(∞) of the population, where r(∞)

is the largest solution of the final size equation (see
[4] for this and many other useful results on epi-
demic models)

r = 1 − exp(−θr) (2)

(with the appropriate θ-parameter and assuming that
ε1 and ε2 are negligible, i.e. essentially zero), just as
in the case with one disease in a closed population.
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When both parameters are above threshold, both
diseases start to spread, and using the same technique
as used to derive the one-strain final size equation,
one finds that the final proportions of the two diseases
satisfy the equation

r1(∞) + r2(∞) = 1 − exp(−θ1r1(∞) − θ2r2(∞))

(3)

This equation does not have a single solution; in
fact, if one thinks of the two axes in the plane
as representing possible (r1(∞), r2(∞)) values, the
equation describes a curve connecting the two solu-
tions describing one-strain epidemics only (the other
component is set to zero and the equation reduces
to the one-strain case) on the two axes in the first
quadrant. The equation also admits (0,0) as a solu-
tion, representing small outbreaks of both diseases. In
order to determine a specific point in the plane, a sec-
ond equation would be needed, but in their paper [5],
Kendall and Saunders conclude that no such relation
has been found.

Some recent results [7] on the asymptotics (essen-
tially large population size) of the corresponding
stochastic model (see Epidemic Models, Stochastic)
cast some light on the problem. In essence, depend-
ing on parameter values, there may be no single
final point, as expected from one-strain theory, but
stochastic variability at the start of the spread (in
deterministic theory represented by the pair (r1, r2)

still in, or very close to, the origin) may yield “unpre-
dictable”, stochastic final size proportions distributed
along the whole curve. The results are also interesting
because they show that the classical parameters (θ1,
θ2) are not sufficient to describe the final size of the
spread in the population. In addition to these parame-
ters, two new parameters ζi = βi − µi (i = 1,2), the
“initial speeds of spread”, and the numbers of ini-
tial infectives need to be considered. In order to
understand the results, it is useful to recall some
classical results on the time course of a stochastic
epidemic in large population, first strictly given by
Barbour [3] (see also [1] for stochastic epidemic mod-
els in general). The stochastic model itself uses the
same terminology and parameters as the deterministic
model (1) in the two-strain case, with a correspond-
ing natural reformulation in terms of just s, i and
r in the one-strain case. However, individuals are
thought of as remaining infected for a random, expo-
nentially distributed, time with average 1/µ and the

term bis in the (1) is seen as the intensity with which
a susceptible becomes infected, adopting a standard
Markov process formulation. It is also more natural
in the stochastic model, to have the numbers of sus-
ceptible, infective, and removed individuals as basic
quantities, described as integers. The basic difference
between a deterministic and a stochastic one-strain
model is that, if θ ≤ 1, both models predict, in large
populations, only small outbreaks (r(∞) ≈ 0), while,
if θ > 1, the deterministic model predicts that there
will always be a large outbreak with r(∞) close to
the solution of (2), while the stochastic model asserts
that the outbreak may still be small (with a certain
probability that can be determined from the param-
eters) due to chance, but if it becomes large, r(∞)

will again be close to the solution of (2). Associated
with these possibilities, there is a description of the
time course. If the outbreak is small, the disease dies
out rather quickly, and the distribution of this time
is independent of population size. If the outbreak
is large, the numbers of infectives (and removed)
grow exponentially, as a branching process, for a
time that is proportional to the logarithm of popu-
lation size, until the epidemic reaches a size of the
same order of magnitude as the population size, then
moves quickly, essentially following the deterministic
differential equations, through the culmen of the epi-
demic, then again, now being very close to the final
size, spend a time proportional to the logarithm of
population size until effective die-out of the disease
is achieved.

The asymptotic behavior of the two-strain model
can now be explained in the following way, omitting
some details. First, if one or both the θ-parameters
are below threshold, the two epidemics (one for each
strain) will behave as independent one-strain epi-
demics, according to the behavior explained above. If
both parameters are above threshold, chance may still
lead to a small outbreak of one of the strains; in that
case, the other strain may give rise to either a small
or a large outbreak, as in a one-strain model. These
three possibilities (both small or one small and one
large) have well-defined probabilities and correspond
to the solutions (0,0) and the two points on the two
axes of the (3). Finally, if both epidemics start grow-
ing, the fastest one (with the largest ζ -parameter),
which we assume is denoted as type 1, completes its
course as if it were alone in the population, reach-
ing its final proportion r1(∞), which is the solution
of (2) with the parameter θ1. The slower strain will
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then achieve a final proportion corresponding to a
redefined θ-parameter equal to (1 − r1(∞))θ2 (rep-
resenting the effective secondary cases that can be
achieved in the susceptible population left untouched
by the first strain). This point is a point on the curve
defined by (3). Finally, if initial speeds are equal,
both epidemics reach the same order of magnitude
as the total population at the same time, but the ini-
tial proportions of infectives have now been modified
by stochastic effects coming from the exponential
growth phase. With these new, random, proportions
as starting points, the two epidemics follow the corre-
sponding trajectory of the differential equations (1) to
a corresponding point on the final curve (3) (there is a
one-to-one mapping between starting points �= (0, 0)

and points on the curve). Thus, the random distri-
bution of the “population-size” starting points maps
to a random distribution on the curve. This distribu-
tion does not have an explicit expression, but can be
computed numerically. A notable case is when, in
addition to equal speeds, the two strains also have
equal θ-parameters. Then, the curve (3) is a straight
line and, if one initial infective of each strain is
assumed, the above described distribution becomes
uniform on this line.

There are two main directions in which the model
could be made more general. One is allowing more
than two strains. As long as each one confers immu-
nity to all the others, the results should be in line
with those for two strains, only more complicated
to state. A more significant generalization would be
to consider other forms of interaction than complete

exclusion, that is, allowing susceptibility to one strain
to depend in a general way on the previous infections,
maybe only decreasing it slightly or even increasing
it. At the present time, there seem to be no results
about such epidemic models.
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Epidemic Models,
Recurrent

Observations of the number of childhood infections,
such as measles, are available over long time periods
from a large number of cities in developed countries.
Data from the time before large-scale vaccination was
introduced show two interesting properties. One is
recurrence of infection outbreaks, and the other one
is spontaneous disappearance of the infection in small
populations. It is a classical challenge in mathemati-
cal epidemiology to understand the mechanisms that
cause these phenomena. A description of the work
in this area will follow the two lines formed by
the competing branches of deterministic and stochas-
tic modeling (see Epidemic Models, Deterministic;
Epidemic Models, Stochastic). A major finding is
that the deterministic model is a poor approximation
of the stochastic one. All models for recurrent epi-
demics are based on the idea that an inflow of new
susceptibles is necessary before a new outbreak can
occur. This goes back to the model formulated by
Soper [38], based on ideas by Hamer [15]. It means
that the model accounts for both epidemic and demo-
graphic forces.

The Classic Endemic Model –
Deterministic Version

The deterministic model given by the following sys-
tem of differential equations is denoted the classic
endemic model by [18]. We use this term in a broader
sense, since we shall study both deterministic and
stochastic versions of the same model.

dS

dt
= µN − β

N
SI − µS, (1)

dI

dt
= β

N
SI − (γ + µ)I, (2)

dR

dt
= γ I − µR. (3)

Here, S, I , R denote the number of individuals that
are susceptible, infective, and removed, respectively.
The total population size S(t) + I (t) + R(t) = N

is constant, provided S(0) + I (0) + R(0) = N . Four
parameters are used, namely, the contact rate β, the

death rate µ, the recovery rate γ , and the total pop-
ulation size N . This model has, with some variation
in the parameterization, been studied by a number of
authors, including [1, 11, 16, 17, 24, 25, 26] (see SIR
Epidemic Models).

The model is two-dimensional, since R does not
affect S and I . The parameter space can be simplified
by the following reparameterization:

R0 = β

γ + µ
,

α = γ + µ

µ
. (4)

Here, R0 is the basic reproduction ratio (see Repro-
duction Number), and α is the ratio of life length
to time infected. Note that the parameter α is large
for the recurrent epidemic models. After the repa-
rameterization, we still have four parameters. By
using the parameter classification introduced in [32],
we find that two of the parameters, R0 and α, are
essential, while the remaining ones, N and µ, are
innocent. (A parameter is innocent if it can be elimi-
nated by rescaling of state variables or of time). The
results for the deterministic version of the model can
be described with reference to the two-dimensional
space of essential parameters (R0, α), modulo rescal-
ing if necessary.

We single out three properties of major interest,
namely, the threshold (see Epidemic Thresholds),
the recurrence, and the extinction.

With regard to the first of these properties, the
deterministic model has a threshold at R0 = 1; see
[18]. This means that if R0 is less than or equal to one,
then any infection will ultimately disappear, while an
endemic infection level will establish itself at

I = R0 − 1

αR0
N (5)

if R0 > 1 and I (0) > 0.
The recurring outbreaks of infection are reflected

in the deterministic model solutions as damped oscil-
lations about the endemic infection level if R0 > 1.
The quasi-period of these oscillations is found from
the eigenvalues of the matrix determined by lin-
earization of the system of differential equations
about the critical point corresponding to the endemic
infection level. It is approximately given by (for
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large α)

T0 ≈ 2π

µ

1√
α(R0 − 1)

. (6)

The tendency to oscillate is a realistic feature, while
the damping is not.

The third item of interest, the extinction of the
infection for R0 > 1, cannot be explained by the
deterministic model.

Mainly for historical reasons, we describe also the
deterministic model due to Hamer and Soper:

dS

dt
= µN − β

N
SI,

dI

dt
= β

N
SI − γ I. (7)

This model allows for inflow of new susceptibles,
but it does not allow for death of susceptible or
infected individuals. It has no threshold, but it is
quite similar to the classic endemic model with regard
to recurrence and extinction. The model is further
discussed by [5] and [30].

The Classic Endemic Model – Stochastic
Version

The stochastic version of the model is a so-called
Markov population process. This means that it is
a Markov chain with continuous time and discrete
state space, where only transitions to nearest neigh-
bors are possible. The size of any population can only
take nonnegative integer values. This is clearly more
realistic than the continuous state space used for the
deterministic model. The stochastic version of the
model takes the form of a bivariate Markov chain
{S(t), I (t)}, as described in detail by [30].

The deterministic version of the model can be
derived as an approximation of the stochastic one
by first scaling the state variables S and I with N

and then letting N approach infinity. This explains
why N , which is essential for the stochastic version,
becomes innocent as we go to the deterministic ver-
sion. The stochastic model has a reputation of being
difficult to analyze. Monte Carlo simulation is there-
fore a useful method.

The states (s, 0), where the number of infected
individuals is equal to zero, correspond to absence
of infection and form what is called an absorbing
class for the stochastic process. Absorption can be

interpreted as extinction of the infection. The stochas-
tic process of concern here will reach the absorbing
class in finite time. After that, it will be confined to
this class forever. The remaining states (s, i), where
i ≥ 1, are transient. It turns out that there exists
an important distribution, called the quasi-stationary
distribution, which is a stationary distribution, con-
ditional on nonextinction. The concept of quasi-
stationarity for continuous-time Markov chains was
introduced by [10]. It is supported on the transient
states. It is a useful approximation of the distribu-
tion of states of the process before extinction. The
long-term behavior of the state of the process can
be described by two quantities: the quasi-stationary
distribution and the time to extinction. (There is also
a stationary distribution, without any conditioning. It
is mathematically easier to deal with than the quasi-
stationary distribution, but it is much less informative.
It is supported on the absorbing class, and deals
therefore only with susceptible individuals. It is com-
pletely independent of the parameter R0.)

The powerful threshold result for the determinis-
tic model is based on bifurcation for the system of
differential equations (1)–(3). An extension of this
result to the stochastic setting is highly desirable.
It can be achieved by first noting that the deter-
ministic threshold can be described as a partition of
the parameter space where R0 takes its values into
two subsets 0 < R0 < 1 and R0 > 1, where phase
portraits for the differential equations differ qualita-
tively. The counterpart for the stochastic model is
an identification of three subsets of the parameter
space, where R0 and N take values, in which the
quasi-stationary distribution and the time to extinc-
tion differ qualitatively. Exact expressions for these
quantities are not available. (And if they were, they
would not be useful in this connection, since they
would not show qualitative differences in different
parameter regions.) Progress in this situation is made
by seeking asymptotic approximations. It turns out
that the asymptotic approximations for both of these
quantities show qualitative differences in different
parameter regions, exactly as required for an exten-
sion to the stochastic setting of the threshold result
for the deterministic model.

The approach for a qualitative analysis of a
stochastic model outlined in the preceding paragraph
can be followed for univariate models, as exempli-
fied by the Verhulst logistic model analyzed by [31].
There are still mathematical difficulties to overcome
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for multivariate models, as exemplified by the one
treated here.

The stochastic version of the Hamer–Soper model
was introduced and analyzed by Bartlett in some clas-
sical papers [6, 7, 8]. Bartlett’s main conclusion was
that both the recurrence and the extinction phenom-
ena, which were not well modeled by the determinis-
tic Hamer–Soper model, could be explained with the
aid of the stochastic feature.

For the recurrence, Bartlett claimed that the damp-
ing in the deterministic model was offset by random
variability. This result was supported in his 1956
paper by Monte Carlo simulations. Bartlett’s recur-
rence result was strengthened by [33]. This paper
uses the important mathematical result that the deter-
ministic model solution is an approximation of the
expectation over a large number of realizations of
the stochastic model with the same initial point. It
is important to realize that this expectation does
not necessarily share properties with the individual
realizations. This is, in particular, true for the trou-
blesome damping associated with the deterministic
model solutions. Individual stochastic model realiza-
tions that avoid extinction show recurrent outbreaks
with stochastically varying periods and amplitudes,
and essentially without damping. One consequence
of this stochastic variability is that early outbreaks
are closely synchronized, but that the synchronization
is weaker for later outbreaks. This implies that the
expectation over a large number of such realizations
gives damped oscillations. The damping associated
with the deterministic model is thus explained as a
measure of the stochastic variability in periods and
amplitudes.

With regard to extinction, Bartlett derived an ana-
lytic approximation of the expected time to extinction
that showed it to be an increasing function of the
population size N . Improvements of these analytic
results are given by [30]. Bartlett showed also that
this qualitative result was supported by data from sev-
eral cities in England and the United States: Fade-out
was observed in small cities, but not in large ones. He
therefore introduced the concept “Critical Commu-
nity Size” (CCS) as “the size for which measles is as
likely as not to fade out after a major epidemic.” This
constitutes a threshold result for the stochastic model,
as discussed by [29, 30]. It generalizes the determin-
istic model threshold R0 = 1 by giving a threshold
value for R0 as a function of N that approaches the

value one as N → ∞. The inverse of this function
gives the critical community size as a function of R0.

A crude approximation of the expected time to
extinction is derived in [30]. It takes the form

E(τQ) ≈ ρ

µR0

Φ(ρ)

ϕ(ρ)
, (8)

where
ρ =

√
(R0 − 1)N

α
, (9)

and where Φ and ϕ denote the normal distribution
function and the normal density function, respec-
tively. Putting the right-hand side of (8) equal to
a constant defines R0 as a function of N for fixed
values of µ and α. This function is an approxima-
tion of the persistence threshold, since the latter is
defined by the requirement that the expected time
to extinction is constant. By putting this constant
equal to K/µ and using the approximation (8) for
E(τQ), we can derive the following crude approxi-
mations of the persistence threshold value in the case
where average life time is 1/µ = 70 years, K/µ = 3
years, and α = 1 + γ /µ = 3500: If N = 104, then
ρ ≈ 2.86, and the threshold value for R0 is approx-
imately 10 000. If N = 105, then ρ ≈ 1.59, and the
threshold value for R0 is approximately 310. In these
cases, therefore, the deterministic threshold value
R0 = 1 is a poor approximation of the persistence
threshold.

We summarize by noting that the determinis-
tic model is an unacceptable approximation of the
stochastic one (unless the population size is really
huge), with respect to all three of the major indica-
tors, namely, threshold, recurrence, and extinction.

Variations and Extensions of the Classic
Endemic Model

The phenomenon of recurring epidemic outbreaks has
aroused a large interest among deterministic mod-
elers. As described above, the deterministic version
of the classic endemic model (or the rather similar
Hamer–Soper model) is unrealistic since it predicts
damped oscillations. A broad search for alternative
mechanisms that predict undamped oscillations has
therefore taken place. A review of the work in this
area up until 1989 is given by Hethcote and Levin in
[19]. Most of this work has taken the form of sug-
gesting a variation or extension of the deterministic
model. It has tended to disregard the explanation
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put forward by Bartlett, and supported by the later
work by Nåsell, that undamped oscillations can be
explained by the stochastic version of the model,
without any additional hypotheses. The review in
[19] deals with five different types of variations or
extensions of the deterministic version of the classic
endemic model, namely, (1) Models with periodic
coefficients, (2) Models with delays in the removed
class, (3) Models with nonlinear incidence, (4) Mod-
els with variable population size, (5) Models with age
structure. For all of these cases, deterministic models
with undamped periodic solutions exist.

Among the models with periodic coefficients, par-
ticular attention has been paid to an SEIR model,
with a state E (for exposed, meaning infected but
not yet infective) inserted between the states S and
I . The contact rate was assumed to be periodic, with
a period of one year reflecting the periodicity in con-
tact caused by the aggregation of children in schools
(see Seasonal Time Series). The resulting seasonally
forced SEIR model can exhibit chaos, as was reported
in a series of papers, [4, 9, 12, 27, 34–36]. Arguments
similar to those in the preceding section can be given
to argue that the deterministic SEIR model with con-
stant infection rate is a poor approximation of the
corresponding fully stochastic model. The prospects
that periodicity in the contact rate would improve this
approximation are slim. The chaos phenomenon was
studied in a very concrete way by [33], using the
stochastic version of the SEIR model with periodic
forcing. It was found with parameter values typical
for measles that the minimum “number” of infected
individuals between outbreaks could go down to the
order of 10−11 in a population of 1 million indi-
viduals. (This low value resembles the “atto-fox”
discovered by [28] in a model for rabies. One atto-
fox equals 10−18 foxes.) The conclusion reaffirmed
an easy extension of our previous finding, namely,
that the deterministic approximation of the stochastic
model is unacceptable. A direct consequence is that
the chaos phenomenon is driven by an unacceptable
mathematical approximation.

In search for additional realism, Schenzle estab-
lished an SEIR model in [37] that combined age
structure and seasonality in transmission. It explains
prevaccination data on measles in England and Wales
very closely. It is referred to as the RAS (Realistic
Age-Structured) model by [14]. The model formula-
tion is deterministic, and evaluations are numerical,
but the author notes that it is straightforward to

formulate and simulate the corresponding stochastic
formulation.

Schenzle’s work has stimulated a study of deter-
ministic models with age dependence, but without
seasonal variation in the contact pattern. One goal
of these studies has been to search for conditions
that lead to undamped oscillations. Some positive
answers, but involving rather extreme conditions, are
given by [3, 39].

An additional possible reason for periodic solu-
tions in deterministic models was suggested by Feng
and Thieme in [13]. They study an SIQR model,
where a state Q (for quarantine) is inserted between
the states I and R. They argue that infected individu-
als stay at home after they develop disease symptoms.
Their isolation (quarantine) reduces their ability to
infect others. Analysis of the resulting ODE model
shows that periodic solutions are possible for a range
of lengths of isolation period. Further extensions of
these results are given by [20].

Keeling and Grenfell in [21] showed that the
stochastic version of the Schenzle model, formulated
in the natural way as a Markov population process,
predicted much less persistence than is observed.
They point to one consequence of the Markov popu-
lation model, namely, that the distribution of waiting
time in each state is exponential. This is quite unre-
alistic. They claim that considerable improvement
in the prediction of persistence can be achieved by
assuming a more realistic distribution of the duration
of infection. Investigations along the same line were
undertaken by Lloyd in [22]. The question of what
influence a more realistic distribution of infectious
period has on the persistence is far from settled: Some
of the conclusions reached by Lloyd are opposite to
those of Keeling and Grenfell. Further studies in the
same direction have been undertaken by Andersson
and Britton, [2].

Spatial heterogeneity is believed to play an impor-
tant role in the persistence of recurrent epidemics,
with asynchrony between subpopulations allowing
global persistence, even if the infection dies out
locally (see Epidemic Models, Spatial). A study of
such questions, accounting for both stochastic and
deterministic aspects, is contained in [23].
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Epidemic Models,
Sensitivity Analysis

Recent years have seen the use of increasingly com-
plex models for epidemic dynamics. For example, the
emergence of the AIDS epidemic has resulted in the
development of models including a variety of features
[2, 3, 5–9, 13–15, 19, 27, 28] (see AIDS and HIV).

All these developments are necessary to increase
our understanding of the mechanics of transmission.
For example, again referring to the AIDS epidemic,
certain features have had to be included to explain
such things as:

1. the variability in infectiousness observed in part-
ner studies;

2. the long duration of the incubation period;
3. the pattern of early growth of the epidemic; and
4. the differences between high- and low-risk sub-

groups of the population.

These complex models have developed out of a
range of much simpler models. When we consider
simple models with relatively few parameters it is a
straightforward task to analyze and compare models:
for example: To which changes in parameters is the
model sensitive? What ranges of epidemic dynamics
are possible? Are two models similar?

Consider, for example, the two models, A and
B, described in Figure 1. There is only one dif-
ference between these models: where model A has
two parameters c (the contact rate) and p, model

Susceptible
m0n

x

Infectious

y

m0x m1y

cpxy
n

Susceptible
m0n

x

Infectious

y

m0x m1y

bxy
n

Model A

Model B

Figure 1 Two simple models for epidemic spread

B has a single parameter β. It is clear that if
β is equal to cp and if all other parameters are
equal, then the two models will give precisely the
same dynamics. So, in one sense, model A con-
tains a parameter that is redundant. The reason for
why we might use the formulation described in
model A is that it gives us, in a simplistic way,
a more detailed understanding of the mechanics of
transmission.

This sort of reasoning has been the driving force
behind the development of the complex models
for AIDS described above. However, an impor-
tant aspect of the development of more complex
models is the need to identify whether or not the
addition of an additional parameter makes a sub-
stantial difference to the dynamics of an epidemic
model. The example which compares models A
and B described above is a special case: the extra
parameter in model A has absolutely no effect
on the dynamics. In other cases the situation may
not be so clear-cut. In most cases the addition
of an extra parameter will add to the variety of
outcomes which may be observed, but this may
range from a substantial to a very insignificant
change.

The reduction in the number of parameters
between model A and model B is similar to the
approach described by Nåsell [29]. Nåsell, who
considers equilibrium incidence of malaria, uses
dimensional analysis to strip out a number of
unnecessary parameters.

The question of how much influence individ-
ual parameters have on certain quantities of inter-
est was first considered in a systematic fashion
by Bailey & Duppenthaler [4]. They presented a
detailed approach to sensitivity analysis by consid-
ering the full set of basic parameters. By incorpo-
rating the uncertainty associated with each param-
eter they assessed which parameters have the most
influence on the level of incidence in the equilib-
rium state. The use of random input parameters
to investigate sensitivity is a method which has
rarely been used since. The most significant devel-
opment along these lines is the method described
by Blower & Dowlatabadi [6]. Their method is
described in more detail in a later section and con-
forms to the conventional notion of a sensitivity
analysis.

Sometimes it is possible for us to reparameterize
a model to give us more obvious insight into its
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workings. Let us look again at the dynamics of
model B:

dx

dt
= µ0n − µ0x − βxy

n
,

dy

dt
= βxy

n
− µ1y.

Suppose the value of β is known to be equal to 0.1.
What can be said about the epidemic? The answer is,
of course, “very little”: the epidemic could die out or
it could take off and be quite substantial. We can only
say something about the dynamics when we know the
values of some of the other parameters.

Suppose, instead, that we define

τ0 = 1

µ0
, the mean lifetime in the absence of

infection,

τ1 = 1

µ1
, the mean duration of infectiousness,

R0 = βτ1, the basic reproductive ratio: the mean
number of secondary cases of infection
caused by one primary infective in the early
stages of the epidemic (see Reproduction
Number), and

θ = β − µ1

= R0 − 1

τ1
, the initial growth rate.

Then

dx

dt
= n

τ0
− x

τ0
− R0

τ1

x

n
y,

dy

dt
= R0

τ1

x

n
y − y

τ1
.

Using this formulation, if we know the value of R0,
then we immediately know something about how the
epidemic will progress: there will be an epidemic
if and only if R0 > 1 and the disease will become
endemic again only if R0 > 1. If we also know the
value of τ1, then we begin to get a picture of how
quickly the epidemic will progress: the higher the
value of τ1 the slower the progress. Furthermore
we can derive the value of θ from R0 and τ1 and
this tells us about the early dynamics (see Epidemic
Thresholds).

A conventional sensitivity analysis is carried out
without such a reparameterization. As a consequence,
a typical conclusion is that all parameters have a

relatively significant impact on the dynamics of the
epidemic. Blower & Dowlatabadi [6] developed this
by using methods which allow us to make statements
along the lines of “parameter θi explains 25% of the
variation in the total number of cases”.

We later describe the method of primary com-
ponents [9, 10]. This is a method that formalizes
the process of reparameterization. In particular, the
aim is to find a parameterization in which there is a
small number of parameters (or primary components)
which between them explain a very large part of the
dynamics of the epidemic. Put another way: suppose
the primary components are fixed. The remaining
secondary parameters may be uncertain or random,
but, within the possible range of values that they can
take, the dynamics of the epidemic model are largely
unchanged. The approach is similar to a principal
components analysis. The important distinction is
that the primary components have a simple interpre-
tation (for example, the basic reproductive ratio R0)
and, therefore, lose the optimality of principal com-
ponents.

There are three differences from the Blower–
Dowlatabadi approach. First, the method of primary
components considers the whole epidemic curve or
some subsection of it rather than a single outcome.
This is the aim of many sensitivity analyses, and
the later section describes how this can be done in
a systematic way and with reference to past data.
Secondly, by reparameterizing the model, a small
number of inputs (the primary components) explain
a much larger part of the variance in the output.
Thirdly, the method is easily applied to model fitting
and projection of an epidemic curve.

Reasons for Carrying Out a Sensitivity
Analysis

Before thinking about why a sensitivity analysis is
necessary and desirable it is important to consider
why we are modeling in the first place. There are
various reasons:

1. to explain the observed pattern of epidemic
spread;

2. to explain the mechanics of transmission;
3. to predict

• the total numbers of cases
• the evolution of the epidemic curve
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• the severity of spread into different subgroups
• the chance that the epidemic dies out;

4. to make provision for future healthcare;
5. to investigate and devise strategies for epidemic

reduction or eradication through

• vaccination (see Vaccine Studies)
• treatment of infected individuals
• education;

6. to determine modes of behavior

• thresholds
• endemicity
• stability.

Let us consider a general model. Let

θ = (θ1, . . . , θk)
T the vector of input parameters,

y(t) = y(t, θ), the vector of output variables
of interest.

For example, y(t) might include numbers of suscep-
tible, infectious, removed, immune or dead (preva-
lence curves) or the rates of new infection, recovery
or death (incidence curves). y(t) might be deter-
ministic or stochastic, certain components may be
incompletely observed, or not observable at all, and
most components will be subject to some degree of
measurement error.

The purpose of a sensitivity analysis is to assess
how sensitive y(t) (or some of its components) is
to changes in the values of the various components
of the parameter vector θ . The reasons behind such
an analysis are partially motivated by the reasons for
modeling in the first place.

1. to consider the effects of uncertain parameter
values;

2. to consider the sensitivity of the outcome of
modeling to the choice of model;

3. to assess uncertainty in the future;
4. to assess the likely effectiveness of specified

control strategies;
5. to identify which parameters we should obtain

improved estimates of in order to reduce future
uncertainty by the maximum amount;

6. to gauge how much information about the under-
lying model can be obtained from an observed
incidence curve;

7. to assess the importance of certain components
or structures in a model;

8. to assess which parameter combinations are con-
sistent with existing data;

9. to be aware of the possible existence of bifur-
cations within the likely range of parameter val-
ues.

This list does not intend to be comprehensive, but
it does indicate the wide variety of questions that
need to be considered.

The driving force behind the need for sensitiv-
ity analyses are the first two items: parameter and
model uncertainty. If both of these were known, then
the task of an epidemic modeler would be consider-
ably easier, but also rather boring! However, even if
parameter values are known for the past, changes can
happen in the future as a result of control strategies,
changes in the underlying population, or mutations
of the disease. The effects of these sorts of changes
are rather harder to predict, but sensitivity analysis is
still desirable since we can get some sort of a feel for
the magnitude of the effect.

It is important that a sensitivity analysis should
be as comprehensive as possible in terms of how
parameter values are varied. Bailey & Duppenthaler
[4] warn against the risks of focusing on a subset
of the parameter set: “Examination of small numbers
of supposedly important parameters may be substan-
tially affected by unconscious bias”.

Sensitivity Analysis for Single Quantities

The approach described here follows that of Blower
& Dowlatabadi [6]. For the basic form of analysis we
make the following assumptions:

1. we are interested in a single quantity (for exam-
ple, cumulative cases of AIDS over the next 30
years or the equilibrium incidence of new infec-
tion);

2. the input parameters are independent random
variables;

3. we do not use past incidence or prevalence data.

Assumptions 2 and 3 imply that we can use only
data from secondary studies which, for example,
follow the progress of specific individuals. Each of
these assumptions can be relaxed: a point that will be
discussed later in this section.

Let y = y(θ) be the quantity of interest and f (θ)

be the probability density function for θ . Under
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assumption 2:

f (θ) = f1(θ1)f2(θ2) · · · fk(θk).

We are interested in the unconditional distribution of
y(θ) and also in the degree of correlation between
y(θ) and each of the inputs θ1, . . . , θk .

Let θ∗ be the mean value of θ given the density
function f (θ). Then

y(θ) = y(θ∗) + hT(θ − θ∗) + o(|θ − θ∗|)
where h = h(θ∗) is the response vector.

If the range of values for θ around θ∗ is rela-
tively small, and if there are no bifurcation points
nearby, then ŷ(θ) = y(θ∗) + hT(θ − θ∗) gives a good
approximation to y(θ). We then have (in a similar
fashion to Bailey & Duppenthaler [4]):

E[ŷ(θ)] = y(θ∗),

var[ŷ(θ)] =
k∑

i=1

h2
i var(θi),

cov[ŷ(θ), θi] = hivar(θi)

⇒ ρi = cov[ŷ(θ), θi]

= hivar(θi)
1/2




k∑

j=1

h2
j var(θj )




1/2 .

Under this assumption of linearity, the correlation
coefficient, ρi , is a measure of the sensitivity of
y(θ) to changes in θi . The closer ρi is to 1 or −1
the more sensitive y(θ) is to changes in θi . Note
that this measure explicitly accounts for the level
of uncertainty in the input parameters. Now the ρi

indicate the levels of sensitivity relative to other
input parameters. Absolute levels of sensitivity can
be gauged by combining this information with the
variance of y(θ).

The response vector, h(θ∗) can be estimated by
carrying out only k + 1 simulations of the model:
one with θ = θ∗, and one for each i = 1, . . . , k with
θi = θ∗

i + ε and θj = θ∗
j for j �= i (where ε is small).

Latin Hypercube Sampling and Partial Rank
Correlation Coefficients

Now y(θ) may in fact be sufficiently nonlinear within
the range of values of θ (possibly with a bifurcation

point) so that ŷ(θ) gives a poor approximation to
y(θ) except near to θ∗. The method described above
still gives a good guide to the sensitivity of y(θ)

to changes in θi . However, if we wish to be more
precise, then the method of partial rank correlation
coefficients (as described by Blower & Dowlatabadi
[6]) is appropriate.

A complete, deterministic analysis would need to
cover all possible values of θ . This is only feasible if
the model has very few parameters and if y(θ) can
be computed relatively quickly. Often there are 10
or more parameters and y(θ) can be computationally
very expensive, so that another approach is necessary.

A simple approach is to use simple random sam-
pling. This takes N independent and identically dis-
tributed realizations of θ . By analyzing correlations
between each parameter θ1, . . . , θk and y(θ) we can
assess the level of sensitivity of y(θ) to each input
parameter. The approach described by Blower &
Dowlatabadi [6] is similar but they make use of Latin
hypercube sampling to choose the N parameter sets.

The Latin hypercube sampling technique was first
described by McKay et al. [24]. The method can sig-
nificantly reduce the variance of various estimates
relating to the distribution of y(θ) (for example, its
mean and variance) and its relationship with each of
the input parameters. Put another way, Latin hyper-
cube sampling requires a smaller number of sim-
ulations of y(θ) to match the variance of various
estimates under simple random sampling.

Some of the mathematics behind the technique
were tightened up by Stein [34] who, in particular,
proved that the variance of estimates under Latin
hypercube sampling is lower for large N in all cases.
In the worst cases the advantage in using Latin
hypercube sampling might be small, but in practice
the difference between the two methods can be very
significant.

Owen [30] and Park [31] have both devised
algorithms for choosing Latin hypercube designs
which optimize certain criteria. The technique
proceeds as follows. We wish to generate N values
for θ . For each i = 1, . . . , k let θi0 be the left-
hand end of the range of θi and θiN be the right-
hand end. We also define Fi(x) = ∫ x

−∞ fi(u) du to
be the marginal cumulative distribution function
for θi . Thus, Fi(θi0) = 0 and Fi(θiN ) = 1. We
also define θi0 ≤ θi1 ≤ · · · ≤ θiN such that Pr(θij <

θi ≤ θij+1) = Fi(θij+1) − Fi(θij ) = 1/N . Let P1 =
(P11, . . . , P1N), P2, . . . , Pk be k independent random
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permutations of (1, 2, . . . , N). For i = 1, . . . , k

and j = 1, . . . , N let ξij be independent and
identically distributed random variables with a
uniform distribution on [0, 1] and let

Zij = F−1
i

[
(Pij − 1 + ξij )

N

]
.

For each i and j the unconditional distribution for Zij

is the same as the marginal distribution for θi . We also
have, for each i, exactly one Zij , j = 1, . . . , N , in
each of the intervals (θi0, θi1], . . . , (θiN−1, θiN ]. This
gives a rather more uniform look to a Latin hypercube
sampling scheme than a typical random sample.

For each j let Zj = (Z1j , Z2j , . . . , Zkj ) and yj =
y(Zj ). We can immediately now look at the estimated
or empirical distribution for y(θ). The empirical
distribution derived from y1, . . . , yN will tend to that
of y(θ) as N gets large. Furthermore, for a given N ,
the arguments of McKay [24] and Stein [34] indicate
that this empirical distribution is likely to be more
accurate than that using simple random sampling.

If the output variable is significantly nonlinear
within the normal range of values for the input param-
eters, then a conventional analysis of correlation will
tend to understate the importance of those input
parameters to which y(θ) is most nonlinear. To avoid
this problem, Iman et al. [18] suggest making use of
the ranks of the input parameters and of the outputs
rather than their absolute values.

This approach was used by Blower & Dowlatabadi
[6] in their analysis of a model for the spread of
AIDS. They suggest that partial rank correlation coef-
ficients should be used to investigate the sensitivity
of y(θ) to changes in each of the input parameters.

The method proceeds as follows. Recall that each
of the Pi is a random permutation of 1, 2, . . . , N .
Thus Pij is the rank of Zij in the set {Zi1, . . . , ZiN }.
Let R = (rij ) be a (k + 1) × N matrix with rij = Pij

for 1 ≤ i ≤ k and 1 ≤ j ≤ N , and rk+1,j be equal to
the rank of yj = y(Zj ) in the set {y1, . . . , yN }. Let
C = (ρij ) be the symmetric (k + 1) × (k + 1) matrix
defined by

ρij =

N∑

t=1

(rit − µ)(rjt − µ)

[
N∑

t=1

(rit − µ)2
N∑

s=1

(rjt − µ)2

]1/2 ,

where µ = (N + 1)/2 is the mean rank. The matrix
C is the matrix of rank correlation coefficients.
Another matrix, B, is defined as the inverse of C,
i.e. B = C−1. The partial rank correlation coefficient
between parameters i and j [or between parameter i

and y(θ) if j = k + 1] is then defined as (see [12]
and [20])

γij = −bij

(biibjj )1/2
.

γi,k+1 is the correlation between the rank of θi and
the rank of y(θ) given that all other input parameters
are fixed. The larger the value of γi,k+1, the more
sensitive y(θ) is to changes in θi .

There exist tests of significance of the hypothesis
that θi and y(θ) are independent (for example, see
[12]). This independence, of course, is very rarely the
case. With a limited sample size, however, some of
the γi,k+1 might not be significantly different from 0.
On the other hand, if we take a large enough sample
size, then we will eventually find that all of the γi,k+1

are significantly different from 0.
Both the rank correlation coefficients, ρi,k+1, and

the partial rank correlation coefficients, γi,k+1, give us
information about the sensitivity of y(θ) to changes in
parameter i. If the input parameters are independent,
then the ρij will tell us as much as the γij . However,
if y(θ) gets closer to being a deterministic function of
θ , then the γi,k+1 will all get closer to 1 while the ρij

converge to values that still reflect, more obviously,
the relative importance of each input parameter.
Blower & Dowlatabadi [6] use the transformation

ti = γi,k+1

(
N − 2

1 − γi,k+1

)1/2

.

The ti , relative to one another, give a much better
measure of the relative importance of each parameter.
In this respect the values of the ti relative to one
another give a much better measure of the relative
importance of each parameter.

If the input parameters are not independent, then
this will tend to distort the ρij and the γij . For
example, take model A in Figure 1. Suppose that
the two infection parameters, c and p, are correlated
in such a way that cp = β + ε, where β is constant
and ε has zero mean and a relatively low variance.
Then we will find that the partial rank correlation
coefficients are very high while the rank correlation
coefficients are very low.

The use of both sensitivity measures is discussed
by Iman & Helton [17]. They note that while they will
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give qualitatively similar results, they may indicate
significantly different levels of sensitivity to certain
input parameters.

Relaxation of Assumptions

Often we are interested in a projection of the epi-
demic curve rather than a single quantity at a single
point in time: that is, y(t, θ) for t > T0, the time
of the last observation. Clearly it is not sensible to
repeat the exercise, say m times (at times T0 < t1 <

· · · < tm), in succession. Instead, the exercise should
be run m times in parallel, to take advantage of the
fact that y(t1, θ), . . . , y(tm, θ) are all directly con-
nected. Thus, for each Zj , j = 1, . . . , N , we generate
a full epidemic up to time tm and extract values for
y(t1, Zj ), . . . , y(tm, Zj ). This allows the construction
of some sort of confidence band for the epidemic.
However, in the sensitivity analysis, we can still only
talk about the sensitivity of y(tj , θ) to changes in
parameter i. We are not able easily to talk about
the sensitivity of the whole curve to changes in
parameter i.

The input parameters do not need to be indepen-
dent, although random but dependent input param-
eters can be more difficult to generate. Blower &
Dowlatabadi [6] give a simple example of how this
can be done: they specify that θ2 has a triangular dis-
tribution with minimum value θ1 and maximum 1.
Stein [34] describes a more general method for gen-
erating dependent input parameters within a Latin
hypercube sampling framework.

Besides using secondary data to help specify the
distributions for the input parameters it is desirable
to make use also of the observed epidemic curve
itself. This can be a lengthy process since it involves
first, numerical evaluation of, for example, the max-
imum likelihood or Bayesian estimators; and sec-
ondly, derivation of a suitable approximate distribu-
tion around this central estimate. Taking account of
the observed epidemic curve is not easy, therefore,
within the framework described in this section.

Since it is essential that we should take account of
the observed epidemic curve, the method of primary
components was devised.

Primary Component Analysis

This section describes an alternative method of
sensitivity analysis which considers the whole epi-
demic curve, and which is appropriate for model

fitting and projection. The method seeks to repa-
rameterize the model leaving us with a small num-
ber of primary components which dictate epidemic
dynamics. A common example of a primary com-
ponent is the basic reproductive ratio, R0, as in the
development of model B at the beginning of the arti-
cle.

The concept of such a set of primary components
has been described by Mollison [25] and Cairns [9,
10]. Typically, a complex model will have many
parameters but perhaps only three or four primary
components. Knowledge of the values of the pri-
mary components will provide enough information
to describe the epidemic curve to within a very high
degree of accuracy.

The central idea behind this section is the notion
that, in many cases, it is sufficient to estimate the
primary components of a model to be able to obtain
an adequate fit of past data and an adequate projection
of the future course of an epidemic.

An important problem is that of how to fit a model
to primary data (the epidemic curve) and secondary
data (data gathered indirectly through medical and
other studies related to the epidemic). Full maximum
likelihood or a full Bayesian analysis would take
all this data together resulting in a rather complex
and difficult-to-evaluate function. First, maximization
would take a long time. Secondly, the likelihood
surface often will be very flat in some dimensions,
meaning that the estimates of some parameters are
subject to large standard errors.

The primary component method offers two
principal advantages over full maximum likelihood
methods:

1. estimation of the small number of primary com-
ponents is much easier and faster than estimation
of the full set of basic parameters; and

2. primary components can still be estimated reli-
ably when secondary parameters are only backed
up by unreliable or statistically unsound sec-
ondary data.

The fundamental requirements for a set of primary
components are as follows:

1. A primary component is a function of the basic
epidemic parameters which dictates epidemic
dynamics.

2. Each primary component should be simple to
interpret. The reason for this is that it makes it
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much easier to transmit our conclusions from an
analysis to nonexperts or laymen. Often these are
the people who will make decisions about, for
example, future provision of healthcare facilities.
If results can be presented in a way that is
simple to interpret, then it is more likely that
an epidemic modeler will be in a position to
influence what decisions are made.

3. The set of primary components should be as
small as possible. This ties in with an overall
objective of minimizing the time spent in fitting
a model to a set of data: “Why estimate 10
parameters when 3 will do?” However, this can
conflict with the previous requirement. It may
be that a set of primary components could be
reduced further but at the cost of leaving a set in
which one or more of the primary components
no longer has a simple interpretation. In such
circumstances it may be undesirable to proceed
with this final shrinkage of the set in order to
retain the ease of interpretation.

It is also desirable (but not essential) that each
primary component affects either short- or long-term
dynamics, but not both. This is a useful criterion from
the point of view that it eases comparison of epidemic
curves generated by different parameter sets and it
can speed up the process of estimation of parameter
values.

The requirement that primary components should
be easy to interpret provides the main distinction
over the more rigorously founded theory of principal
component analysis. This would produce a set of
orthogonal components in order of their magnitude
of influence on the likelihood function (and hence
on the dynamics of the epidemic). While this
would provide a theoretically optimal set of primary
components, the result would be both at the expense
of interpretability and also of restricting the effect of
individual components to either short- or long-term
dynamics. It is no coincidence, however, that a set of
primary components will be closely aligned with the
principal components.

Complementing the set of primary components
we have the set of secondary parameters. The
characteristics of this set are that provided the
primary components remain fixed, then we can vary
the remaining set of secondary parameters without
significantly altering the dynamics of the epidemic.
The range of values tested is designed to be consistent

with the various sources of secondary data. In
terms of model fitting this means that it is not of
significance whether we optimize over the full set of
parameters or just over the set of primary components
in combination with a realistic rather than optimal set
of secondary parameter values.

If, however, we do find that we can vary the
secondary parameters within a realistic range and
significantly alter the dynamics, then this indicates
that the set of primary components is in some way
incomplete or inadequate.

Cairns [9, 10] describes how primary components
can be identified by subjective means:

1. Identify a potential first primary component (or
the first two, say). Typically this might be
the basic reproductive ratio, R0, or the initial
exponential growth rate of the epidemic. Let this
set be denoted by θP.

2. Subject to θP being fixed, vary the remaining
parameters, θS, within a realistic range around
a central value, θ0 (without specific reference to
probability distributions).

3. If there is no significant variation, then the set of
primary components, θP, is complete.

4. Otherwise we need either to choose an alternative
set of primary components of the same size or to
increase the size of the set by one. Let θP be the
new, altered set of primary components and then
return to step 2.

An example of this process applied to a simple
model for the spread of HIV and AIDS can be found
in [10]. Cairns [10] also discusses how the number
of components depends on whether we consider just
the incidence of new cases of AIDS or include the
numbers of new infections in addition.

An objective means of carrying out a primary
component analysis of an epidemic model was
first proposed by Cairns (in discussion of Mollison
et al. [26]). Hearne [16] has described the use of a
similar objective function in the sensitivity analysis of
a systems dynamics problem. This will be developed
in the next section.

A Measure of Sensitivity

Previous work (for example, [9] and [10]) has relied
on a degree of subjectivity when a decision must be
made as to whether or not two epidemic curves are
significantly different.
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Consider Figure 2. It is clear that there is a much
better match between curves (a) and (b) than curves
(a) and (c). In this example the distinction is clear,
but often this is not the case and this section aims to
aid this process.

Let us consider the problem of modeling the AIDS
epidemic. Suppose we assume that observed cases of
AIDS occur as a Poisson process with an intensity
following the deterministic curve (this is only valid
when the population is large) then the log likelihood
will be

l(A, θ) =
T∑

t=1

[At log(at ) − at ] + constant,

where At is the observed incidence of AIDS in time
period t and at = at (θ) is the predicted incidence
based on the parameter values θ .

If the aim of modeling is at some stage to fit the
model to a set of data {At }, then it seems appropriate
to design a sensitivity function that reflects the
characteristics of the log likelihood. An appropriate
function is thus

l(θ0, θ) =
∫ T

0
[at (θ0) log at (θ) − at (θ)] dt,

where θ0 is the central or “true” parameter set, and
at (θ0) and at (θ) are the epidemic curves generated by
θ0 and θ , respectively. θ0 is chosen to reflect existing
primary and secondary data, a task that becomes
easier as we reparameterize the model.
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Figure 2 Three epidemic curves: (a) and (b) are better
matched in some sense than (a) and (c).

It may be appropriate to consider the discrete form
of the sensitivity function. This is

l(θ0, θ) =
T∑

t=1

[at (θ0) log at (θ) − at (θ)].

In what follows we consider the continuous and
discrete forms interchangeably.

A further alternative is to note that −2 × (log
likelihood) is asymptotically equivalent to the chi-
square statistic (see Likelihood Ratio Tests). The
equivalent sensitivity function would therefore be

c(θ0, θ) =
T∑

t=1

[at (θ0) − at (θ)]2

at (θ)
,

≈ 2[l(θ0, θ0) − l(θ0, θ)].

For a given value of t note that at (θ0) log at (θ) −
at (θ) is maximized when at (θ) = at (θ0) (for
example, if θ = θ0). Hence

lmax = sup
θ

l(θ0, θ) = l(θ0, θ0).

Furthermore, by Taylor’s expansion we have

l(θ0, θ) = lmax − 1
2 (θ − θ0)

TH(θ − θ0)

+ o(|θ − θ0|2), (1)

where H = −D2
θ l(θ0, θ)|θ=θ0 (the matrix of second

derivatives evaluated at θ0) is a positive semidefinite
k × k matrix and k is the number of basic parameters
in the model.

If l(·) is thought of as a likelihood function,
then H is an information matrix in the normal
statistical sense. The eigenvalues of H are λ1 ≥ λ2 ≥
· · · ≥ λk ≥ 0 and the corresponding eigenvectors are
e1, . . . , ek with eT

i ej = δij . A large eigenvalue, λi ,
means that l(·) is more sensitive to changes in the
parameter values in line with ei (at least in absolute
terms). This also means that e1 gives us the most
information about the shape of the epidemic curve,
e2 the second most information, etc.

In theory, we should select primary components
that match exactly the principal eigenvectors.
However, the resulting components would not have
a simple interpretation, and would violate the second
requirement for a primary component. We therefore
investigate different potential sets of primary
components which are not necessarily optimal in the
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sense of providing maximum information but which
are, nevertheless, closely aligned with the principal
eigenvectors.

The following sections develop the sensitivity
function from a statistical point of view, but the first
step is always to reparameterize the model in such a
way that we can divide the set of parameters θ into
θP, the p potential primary components, and θS, the
remaining s = k − p secondary parameters.

Model Fitting

Before carrying out a projection of an epidemic and
a sensitivity analysis of this projection with respect
to variation of the input parameters, it is necessary to
fit the model to what data we have available. We then
have an approximate joint distribution for the primary
components, θP, and the secondary parameters, θS,
derived from the existing data. This can be used
to generate random input parameter values, each
producing a different projection of the epidemic.
A sensitivity function for the projected part of the
epidemic curve, of the form described in the previous
subsection, can then be analyzed for sensitivity to
changes in each of the input primary components or
secondary parameters.

To aid comprehension, the remainder of this
section will continue to consider a model for the
spread of HIV and AIDS.

Two types of data are assumed to be available:
(primary) AIDS incidence data; and (secondary) data
from other studies which give us information about
the secondary parameters and perhaps also about
the primary components. Within the field of AIDS
modeling, an example of such secondary data is that
which relates to the distribution of the infectious
period (for example, [21–23]).

These data can be treated in a number of different
ways. One of these is to pool the data and maximize
the likelihood over the full set of basic parameters.
When the model is complex this may be a very
lengthy or perhaps even impossible task if the data
are not suitably detailed.

Here we describe an alternative approach.

1. Use the secondary data to estimate the secondary
parameters. These estimates will then be used in
the second stage.

2. Use the primary data and maximize their
likelihood over the set of primary components
only.

A modeler needs to be satisfied, however, that
the use of fixed rather than uncertain secondary
parameter values does not produce a significantly
narrower range of fits and projections.

The estimation procedure will inevitably result in
some loss of accuracy. However, it is intended that
if the set of primary components has been chosen
carefully, then this loss of accuracy will be minimal.
Conversely, if the loss of accuracy is significant, then
the set of primary components should be considered
as being inappropriate or inadequate in some way.

The major advantage is that by breaking down the
process of estimation we can make the task much
simpler and faster without having a significant loss
of accuracy.

We consider four different estimators for θ :

1. θ̂ : the maximum likelihood estimator (MLE)
based on primary data alone;

2. θ̃ : the MLE based on secondary data alone;
3. θ̇ : the MLE based on pooled primary and

secondary data; and
4. θ : the primary component maximum likelihood

estimator (described below).

Let l(A; θ) be the likelihood function given only
the primary AIDS incidence data {At }. Then

l(A; θ) ≈ lmax − 1
2 (θ − θ̂)THp(θ − θ̂),

where lmax = l(A; θ̂) is the maximum likelihood, and
Hp is the information matrix for the primary data as
defined in (1).

Suppose, also, that secondary data have been
collected and that we wish to fix the secondary
parameters at θS = θ̃S. Estimation of the primary
components, θP, is then reduced to the problem

minimize f (θ) = (θ − θ̂)THp(θ − θ̂)

subject to θS = θ̃S.

Given that θP is p × 1 and θS is s × 1, we write

Hp =
(

Hp11 Hp12

Hp21 Hp22

)
,

where Hp11 is a p × p matrix, Hp12 = HT
p21 is p × s,

and Hp22 is s × s.
The minimization with the constraint is then

equivalent to the unconstrained problem:

minimize f (θP) = (θP − θP)
THp11(θP − θP) + C,
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where

θP = θ̂P − H−1
p11Hp12(θ̃S − θ̂S)

and

C = (θ̃S − θ̂S)
T[Hp22 − Hp21H−1

p11Hp12](θ̃S − θ̂S).

It is clear that this is minimized when θP = θP.
Note that C = f (θP, θ̃S) ≥ 0 since Hp is positive

semidefinite. Also, since θ̃S is a random variable
depending on the secondary data, C is a random
variable.

We define θS = θ̃S and call θ = (θP, θS) the
primary component maximum likelihood estimate
(PCMLE). We can then write.

θ = Ep θ̂ + Es θ̃ ,

where Ep =
(

Ip H−1
p11Hp12

0 0

)

and Es =
(

0 −H−1
p11Hp12

0 Is

)
.

We are concerned with the accuracy of the PCMLE,
θ , relative to the full MLE, θ̇ , and to do this we need
to know about θ̂ and θ̃ .

With a large population, it is well known that θ̂
.∼.

N(θ0, A−2
p ), where A2

p = Hp. Similarly, we have θ̃
.∼.

N(θ0, A−2
s ), where A2

s = Hs and Hs is the information
matrix for the secondary data.

Assuming that these distributions apply, we have
the following distributional results:

θ − θ0
.∼. N(0, A−2

b ), (2)

where

A−2
b = EpH−1

p ET
p + EsH−1

s ET
s ,

and

(θ − θ0)
THp(θ − θ0) ≈ Xp + Xs, (3)

where Xp ∼ χ2
p

and Xs =
∑

i

λ′
iY

2
i ,

and where Y ∼ N(0, Ip+s) and λ′
1 ≥ λ′

2 ≥ · · · ≥ λ′
s ≥

0 = λ′
s+1 = · · · = λ′

s+p are the eigenvalues of the
matrix A−1

s ET
s HpEsA−1

s .

Eq. (2) tells us about parameter estimates; (3)
tells us about how well we have estimated the
true underlying epidemic curve up to time T . We
anticipate that if the set of primary components has
been well chosen, then the “error” term, Xs , will be
small relative to Xp (that is, λ′

1, . . . , λ′
s 
 1).

To facilitate comparison with the results of full
maximum likelihood described below, we define
λ = (λ1, . . . , λp+s), where λ1 = · · · = λp = 1 and
λp+k = λ′

k for k = 1, . . . , s.
Suppose, on the other hand, we consider the full

MLE, θ̇ . Using a similar normal approximation we
have:

θ̇ − θ0
.∼. N(0, A−2

f ), (4)

where A2
f = Hf

and Hf = Hp + Hs ,

and (θ̇ − θ0)
THp(θ̇ − θ0) ≈

∑

i

νiY2
i (5)

where Y ∼ N(0, Ip+s ) and 1 ≥ ν1 ≥ · · · ≥ νp+s ≥ 0
are the eigenvalues of the matrix A−1

f HpA−1
f . If

the primary component maximum likelihood method
is appropriate, then we should find that of the
eigenvalues, νi , of A−1

f HpA−1
f , p will be close to 1,

and the remaining s will be close to 0, so that

(θ̇ − θ0)
THp(θ̇ − θ0)

.∼. χ2
p.

In (2) and (3) we also found that

(θ − θ0)
THp(θ − θ0)

.∼. χ2
p;

that is, the accuracy of the model fitting will be
improved only marginally if the full process of
maximum likelihood is performed instead of primary
component maximum likelihood.

Departures from these approximations may occur
if:

1. The secondary data contain significant informa-
tion about some of the primary components. That
is, if vTv = 1 and Hpv = γ v, where γ is large
(so v is predominantly aligned within the space
of primary components) and if (vTHsv)/γ is not
close to zero, then one or more of ν1, . . . , νp will
be significantly less than 1. Hence full maximum
likelihood will produce a better estimate of the
true underlying epidemic curve.
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2. The secondary data contain little information
about some of the secondary parameters. That
is, if vTv = 1 and Hpv = γ v where γ is small
(so v is predominantly aligned within the space
of secondary parameters) and if (vTHsv)/γ

is not very large, then one or more of the
νp+1, . . . , vp+s will be significantly greater than
zero. This will have a similar effect on the pri-
mary component estimate by making the error
term, Xs , more significant. However, whereas
the νi will always be bounded above by 1, no
such bound exists for the eigenvalues used in
Xs . For a given set of primary components this
problem is more likely to occur as the size of the
population increases. This indicates that, when
one of the λi exceeds, say, 0.5 or 1, the set of
primary components should be reviewed and per-
haps enlarged.

The process described here is similar in some respects
to the process of model selection (for example, see
Akaike’s Criteria [1, 32, 33]). In simple terms,
the model selection process keeps adding in extra
parameters until the fit of the next model is no
longer a significant improvement on the previous,
simpler model. This matches the process described
here of increasing the set of primary components until
the dynamics of the model are no longer sensitive
(in a significant way) to changes in the remaining
(secondary) parameters.

Projection

A great variety of problems exist here, so that it
is only possible to discuss a small but typical sub-
set. Our starting point is that the projected epidemic
curve for t > T is at (θ̇), using full maximum likeli-
hood, or at (θ), using primary component maximum
likelihood.

We are concerned with the following questions:

1. Given the past data, to what input parameters is
the projected epidemic curve sensitive?

2. Are the ranges of projections (confidence bands)
for the full MLE and PCMLE approaches
similar?

We can also consider how the level of uncertainty
in the future can be reduced in the most effec-
tive way by carrying out further secondary stud-
ies. The framework described here will identify

whether or not a proposed study will have the
effect of reducing this uncertainty by a significant
margin.

Projection of the Epidemic Curve. Suppose we
wish to consider the accuracy of the projected
curve between times T0 and T1 (commonly T ,
the end of the period of observation, and T0

will coincide). Again we may use the sensitivity
function

l(θ0, θ) =
∫ T1

T0

[
at (θ0) log at (θ) − at (θ)

]
dt

≈ lmax − 1
2 (θ − θ0)

THq(θ − θ0),

where at (θ0) is the true future incidence rate and
at (θ) is the projection based on the (PC)MLE, θ .

It is appropriate, first, to carry out a preliminary
analysis similar to that described in an earlier
section. The starting point will be the set of primary
components, θP, relevant for the observed epidemic
curve up to time T . This set may already, in effect,
fix dynamics between times T0 and T1 (that is,
the projected curve is not sensitive to changes in
θS). If this is the case, then there is no need to
proceed any further and it should be found that
the observed epidemic curve will provide enough
information to permit an accurate projection. On the
other hand, the dynamics between T0 and T1 may
be sensitive to changes in θS. If this is the case,
then θP should be enlarged in such a way that it
fully describes the dynamics both up to time T and
between T0 and T1. (For convenience we will call the
revised set (θP, θQ), where θQ is the set of additional
primary components). In these circumstances the
observed epidemic curve will not contain much (if
any) information about θQ. θQ is, however, required
for an accurate projection between T0 and T1. If
we cannot get good estimates of all of θQ, then
potentially there will be considerable uncertainty
in the projected curve. In particular, the projected
curve:

1. will be sensitive to changes in θQ;
2. will not be sensitive to changes in the remaining

reduced secondary parameter set, θR = θS\θQ;
and

3. may be sensitive to changes in the original set of
primary components, θP.
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The sensitivity to changes in θQ could be reduced
if the existing secondary data contain enough
information to get a good estimate of θQ.

This heuristic approach can be placed in a more
rigorous framework in the following way.

Recall that θ ≈ A−1
b Z, where Z ∼ N(0, Ip+s) and

A−2
b = EpH−1

p ET
p + EsH−1

s ET
s [Eq. (2)]. Hence,

2(l(θ0, θ0) − l(θ0, θ)) ≈ ZTA−1
b HqA−1

b Z

=
∑

i

ψiY
2
i ,

where ψ1 ≥ ψ2 ≥ · · · ≥ ψp+s ≥ 0 are the eigenval-
ues of A−1

b HqA−1
b and Y ∼ N(0, Ip+s).

The accuracy of the projection is therefore
determined by the magnitudes of the ψi . Clearly,
the accuracy depends on how well the primary
components of the observed epidemic curve relate
to the primary components of the projected curve.
For example, if the primary data contain good
information about all the primary components of the
projected curve, then the projection will be accurate.
On the other hand, if the primary data contain
relatively little information about one or more of the
primary components of the projected curve, then the
projection may be quite inaccurate (this is a problem
with long-term projection based on a limited amount
of early incidence data – see [9]).

If accuracy of projection is our objective, then it
may be appropriate to choose a number and set of
primary components which will be estimated using
the observed incidence data which minimizes the
eigenvalues of A−1

b HqA−1
b .

Similarly, recall that θ̇ ≈ A−1
f Z, where Z ∼

N(0, Ip+s ). Hence

2[l(θ0, θ0) − l(θ0, θ̇)] ≈ ZTA−1
f HqA−1

f Z =
∑

i

ξiY
2
i

where ξ1 ≥ ξ2 ≥ · · · ≥ ξp+s ≥ 0 and Y ∼ N(0, Ip+s).
Because Hq is quite independent of Hp and Hs ,

it is impossible to make any theoretical remarks on
the relative accuracy of the two methods of projec-
tion. This can only be done by considering specific
examples.

Sensitivity Analysis of the Projected Epidemic
Curve. From the earlier discussion, it is necessary

only to carry out a sensitivity analysis with reference
to the set of primary components (θP, θQ). Such
an analysis could be carried out in the same way
as in the section “Sensitivity Analysis for Single
Quantities”. One immediate advantage of having first
carried out a reparameterization to separate out the
primary components is that we now find that the
small set of primary components will explain a very
large part of the variation in dynamics. The usual
form of sensitivity analysis would have found that
knowledge of a much larger number of the basic
parameters would be required to get the same level
of accuracy.

This reduction in the number of significant com-
ponents can be put to advantage. Instead of carrying
out a sensitivity analysis of the full parameter set it is
only necessary to consider the primary components.
The preceding analysis took a quadratic approxima-
tion around the PCMLE. It may be felt, however,
that this approximation may not be adequate within
the range of values for (θP, θQ). Typically, the number
of primary components will be as small as three or
four. This allows quite a wide range of combinations
to be investigated, far more than would be possible
to consider if the full parameter set was being inves-
tigated.

This can be done in a number of ways:

1. Latin hypercube sampling can be employed,
followed by an analysis of the rank and partial
rank correlation coefficients.

2. A regular lattice framework around the PCMLE,
as described by Cox & Medley [11] and Cairns
[9], can be used, taking into account the relative
likelihood of each point on the lattice.

3. Or a quadratic approximation around the PCMLE
can be assumed.

The small number of primary components, in par-
ticular, allows investigation of interactions between
different combinations of components and over the
full range. Method 1 can be employed in an investi-
gation of the sensitivity of single quantities of interest
to changes in the primary components. Methods 2 and
3 can be applied to the sensitivity function defined in
the previous subsection. If there are only two or three
primary components, then it is possible to present
the results of the sensitivity analysis graphically, for
example using contour plots. Methods 2 and 3 are
also appropriate for the construction of confidence
intervals [9–11].
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Epidemic Models, Spatial

If we are to gain proper understanding of the disper-
sal and control of diseases such as malaria, rabies,
and AIDS, then we have to recognize that they
develop within a truly spatial framework. The com-
mon assumption that individuals mix homogeneously
over the whole region available to them stems mainly
from mathematical convenience (see Random Mix-
ing); in real life, we have to accept that both indi-
viduals and disease often develop within separate
subregions. Classic examples of such spatial catastro-
phes include: 25 million deaths in fourteenth century
Europe from Black Death out of a population of 100
million; the Aztecs lost half their population of 3.5
million from smallpox; around 20 million died in
the world influenza pandemic in 1919; whilst mil-
lions of people are believed to be currently affected
by HIV/AIDS. A particularly interesting case is the
spread of one of the world’s greatest cholera pan-
demics, the El Tor strain. It was first identified outside
Mecca in 1905, and was later recognized in the 1930s
as being endemic in the Celebes. Little was heard
of it until 1961, when it suddenly exploded out of
the Celebes, reaching India in 1964, and advancing
into central Africa, Russia, and Europe by the early
1970s. The total burden of misery and suffering that
results from such disease is clearly immense, and any
understanding that modeling techniques can bring to
alleviate this terrible state of affairs has to invoke
spatial transmission properties.

Disease is spread through two different mecha-
nisms. First, infected individuals may migrate to a
different location, thereby infecting susceptibles at
this new site. Migration patterns can be truly local
(spread of HIV in “shooting galleries”), mid-range
(sexual transmission between neighboring cities), or
global (spread of human disease through interconti-
nental travel). Second, the disease itself may spread
through cross-infection, either locally (between neigh-
boring trees) or globally (aerosol dispersal of plant
disease). Some situations may involve both mecha-
nisms, such as the UK outbreaks of foot-and-mouth
disease. Hengeveld’s account [6] of documented
invasion scenarios contains many varied examples,
including cholera in North America, stripe rust in
wheat, the expansion of cattle egret in North and
South America, and rabies in Central Europe.

If migration or cross-infection is highly localized,
then infectives/infection may diffuse over a contin-
uous region. In contrast, if it results in substantive
changes in location, then we either have a spatial
jump process (plants infected by windblown spores),
or a stepping-stone process if infection can only occur
at specific sites (influenza epidemics in Icelandic
coastal settlements).

Given that many populations develop within rea-
sonably well-defined subregions, the stepping-stone
approach is a sensible one to consider first. We envis-
age the process as being spatially distributed amongst
n sites, with migration and/or cross-infection being
allowed between them. This may involve nearest
neighbors, all sites with a common transmission rate,
or all sites but with the transmission rate changing
with intersite distance (called the contact distribu-
tion). Such migration scenarios were first posed by
Kimura [8] in a genetics context, but substantive
theoretical development really began following Bai-
ley’s simple birth–death–migration process [1]. In
this model, the population develops on an infinite
set of colonies (thereby avoiding edge-effect prob-
lems), all individuals undergo a simple birth–death
process with rates λ and µ, respectively (see Stochas-
tic Processes), and individuals in colony i can
migrate at rate ν1, ν2 to the two nearest neighbors
i + 1, i − 1. For the equivalent general epidemic
process, with Xi(t) susceptibles and Yi(t) infectives
in colony i at time t , the infective population at i

increases at rate βXi(t)Yi(t). In the opening stages,
βXi(t) � βXi(0) = λ (say), so there the two pro-
cesses are roughly equivalent. Unfortunately, even
Bailey’s process teeters on the edge of mathemat-
ical tractability, so the prospects for making sub-
stantial theoretical progress with more complicated
spatial epidemic processes are remote. Replacing
migration with cross-infection (at rate α1, α2) makes
this situation even worse, since the infective popula-
tion birth rate changes to Xi(t)[βYi(t) + α1Yi−1(t) +
α2Yi+1(t)].

Consider, for example, the recent (nonspatial)
upsurge of interest in modeling the population dynam-
ics of the AIDS epidemic. Much of the mathematical
development is deterministic (see Epidemic Mod-
els, Deterministic), though this does facilitate the
allowance of many sources of change [7]. One sur-
prisingly tractable nonlinear model is that of Ball &
O’Neill [2], and to place this within a spatial nearest-
neighbor setting, let xi(t), yi(t), and zi(t) denote the
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number of susceptible, HIV-infected, and removed
(i.e. full-blown AIDS or dead) individuals at site i.
Then allowing for the migration of infectives gives
rise to the deterministic representation

dxi

dt
= −βxiyi

xi + yi

,

dyi

dt
= βxiyi

xi + yi

− (ν1 + ν2)yi + ν1yi−1 + ν2yi+1,

dzi

dt
= γyi. (1)

This situation is in marked contrast with the spatial
general epidemic model with cross-infection, with

dxi

dt
= − xi[βyi + α1yi−1 + α2yi+1],

dyi

dt
= xi[βyi + α1yi−1 + α2yi+1] − γyi,

dzi

dt
= γyi . (2)

Such equations are easily modified to enable gen-
eral migration at rate νij from site i to site j , and
cross-infection at rate αij between infectives in site
i and susceptibles at site j . Exact solution is usu-
ally not possible, though approximate results may be
obtained using careful linearization procedures: for
numerical solutions use MATLAB, and so on. Often,
we are interested in qualitative, rather than quanti-
tative, behavior, and visual inspection of graphical
output over a range of parameter settings is usually
sufficient to highlight the most important aspects of
the process.

Although the propagation of an epidemic through
towns or villages is easily visualized in terms of a
stepping-stone process, for disease dispersal in ani-
mals or plants, a diffusion model may be more appro-
priate. Near the wavefront itself, the number of sus-
ceptibles may be assumed to be fairly constant, and
so there the process reduces to a simple birth–death
process amenable to Skellam’s diffusion approach
[21]. On describing the infective density at posi-
tion (u, v) by Brownian motion with zero drift and
displacement variances var[u(1)] = var[v(1)] = D2,
we have the polar normal probability density function
(pdf) (see Bivariate Normal Distribution)

φ(r, θ ; t) = (2πD2t)−1r exp

[ −r2

2D2t

]
. (3)

Since there is no drift, this pdf spreads out in
ever-expanding circles, and for an infective popu-
lation of final size N , the radial velocity R(t)/t is
D{[2 ln(N)]/t}1/2, which decreases as t−1/2. For a
long timescale, say, several decades, which is the
case for fox rabies in Europe and the El Tor cholera
strain, we might assume exponential growth at rate ψ ,
whence N is replaced by N exp(ψt) and the veloc-
ity now remains constant at D{[2ψ ln(N)]}1/2. The
combination of population growth and diffusion is
essential if spatial expansion is not to fade out.

The diffusion approach involves a poor Taylor
series expansion, and so the two scenarios can give
rise to substantially different results. For example,
with Bailey’s birth–death process, the wavefront
velocities (for λ > µ) are the solutions to the equation
[13]

ν1 + ν2 + µ − λ = (c2 + 4ν1ν2)
1/2

− c ln

{
[c + (c2 + 4ν1ν2)

1/2]

(2ν1)

}
, (4)

while the equivalent diffusion velocities take the
much simpler form

cdiff = (ν1 − ν2) ± {2(λ − µ)(ν1 + ν2)}1/2. (5)

These two results are compatible only if λ − µ �
ν1 + ν2.

Mollison [9] argues strongly that when consid-
ering the velocity of spread, one should lean heav-
ily towards using basic linear deterministic models,
claiming that their assumptions are relatively trans-
parent, they are easy to analyze, yet they gener-
ally give the same velocity as more complex linear
stochastic and nonlinear deterministic models. Their
relative simplicity allows more freedom to choose
a biologically/epidemiologically realistic model, and
hence, greatly facilitates examination of the depen-
dence of conclusions on model components. Note,
however, that such linear models provide only an
upper bound for the velocity of more realistic stochas-
tic nonlinear models. Further, both deterministic
and stochastic linear models are usually completely
unsuitable for modeling complex features such as
the transition to endemicity and endemic patterns.
Nonlinear deterministic models may provide useful
information regarding the transition to endemicity but
they are usually wholly inadequate for fluctuations
about an endemic state.
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Many useful conclusions from models for spatial
spread are sensitive to the assumptions made in for-
mulating and fitting them, and incorporating realistic
epidemiological parameters will make exact theoret-
ical analysis impossible to achieve. Such parameters
can be framed in terms of the following concepts.
The basic reproductive ratio R0 is the mean number
of contacts made by an infective, and this plays a
crucial role in determining whether an epidemic out-
break can occur (see Reproduction Number); the
carrying capacity K , which enters via R0, denotes
the maximum population density. The time T of a
typical infection relative to that of its parent infective
is called the generation gap, and its relative location
in space X, the dispersal distance; whilst the distri-
bution of T itself is called the reproduction kernel
and that of X, the dispersal or contact distribution.
The wavefront velocity c can then be expressed as a
function of R0β(x, t), where β(x, t) is a probability
kernel describing the joint distribution of X and T ;
see [9] for details.

Note that when determining population size, lin-
earization is a highly suspect technique, since differ-
ent nonlinear models can have the same linearization
(e.g. epidemics with (i) removals and (ii) recovery);
though it is strongly conjectured that nonlinear dif-
ferential equations for population spread will always
have the same velocity as their linear approximation.

Given that substantial behavioral differences can
occur between deterministic and stochastic analy-
ses of the same process, ideally, a deterministic
approach should always be performed in parallel
with a stochastic analysis. Unfortunately, even the
simplest stochastic spatial scenario of a two-site
birth–death–migration process produces intractable
mathematics. Some degree of success is possible
using approximation techniques, such as regarding
{xi(t), yi(t), zi(t)} as a multivariate normal distri-
bution with moments obtained from the cumulant
equations by replacing third- and higher-order cumu-
lants by zero. Though a far more powerful way of
using such moment closure is to evaluate cumulants
up to the third- or fourth-order, and then use these in
the multivariate saddlepoint approximation, thereby
determining a much more realistic approximating
probability density function [17]. Any awkward alge-
braic manipulation may be easily overcome through
the use of a computer algebra package, whilst direct
numerical computation of the original population
probability equations presents another option.

The problem with probability “solutions” is that
they usually convey information only on population
values at a fixed time t . What we really require is
the full history of process development. Simulation
provides the answer, for given the rapidly expand-
ing nature of affordable computer power, moments
and probabilities may be obtained using standard
Monte Carlo procedures. Detailed examples of how
to construct simulation code for space–time stochas-
tic models are contained in [14], and these are easily
modified to cope with any spatial epidemic con-
struction. No matter how complicated, a process can
always be described as a series of events E1, E2, . . .

occurring at times t1, t2, . . .. First, detail all possi-
ble infection, removal, migration, and cross-infection
changes. Then, in essence:

1. evaluate the corresponding rates r1, r2, . . . and
put R = r1 + r2 + · · · ;

2. generate two uniform U(0,1) random variables
U1 and U2;

3. select the j th event if r1 + · · · + rj−1 ≤ U1R <

r1 + · · · + rj ;
4. evaluate the interevent time s = − ln(U2)/R;
5. update population sizes and time t → t + s, and

return to 1.

Figure 1 shows two simulations of a two-colony
Ball & O’Neill process under both migration and
cross-infection regimes. At time t = 0 there are 100
susceptibles in each colony, with one infective in
colony 1 and none in colony 2. For illustration, only
one-way spatial rates are used, namely, from colony
1 to 2. Thus, an epidemic in colony 2 has to be
kick-started from colony 1 before all the infectives
there have been removed. Whilst the determinis-
tic and stochastic developments for cross-infection
are broadly comparable, under migration, substan-
tial time-shift differences occur between them, espe-
cially in colony 2. Though rough agreement between
stochastic and deterministic realizations will usually
occur, the problem is one of consistency. Unlike
cross-infection, with migration, total colony sizes are
not fixed, so individual sites may pass through their
threshold population values and thereby undergo con-
siderable behavioral change.

Such differences can become even more marked
when the system comprises three or more sites,
and susceptibles may both migrate and give birth.
For with appropriate parameter values, susceptibles
can move ahead of epidemic flare-ups and grow to
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Figure 1 Deterministic (smooth) and stochastic (rough) realizations of a two-colony Ball & O’Neill model under
cross-infection (upper) and migration (lower) showing the number of susceptibles ( ), infectives (- - - - - - )
and removals (— — — —): parameter values are β = 0.5, γ = 0.1, ν1 = 0.1, ν2 = 0, α1 = 0.01, α2 = 0 (produced by Ian
Hirsch)

above the local threshold population value before
either a migrating infective or cross-infection starts a
fresh epidemic outbreak (see Epidemic Thresholds).
Persistence occurs through a stochastic dynamic: it is
precisely the ability of susceptibles to be constantly
on the move recolonizing empty sites, and infectives
to pursue them, that keeps the whole process alive.
In such situations, we have to rely on simulating
individual stochastic realizations. For even if exact
probability expressions could be constructed, they
would tell us little, being an average over all possible
realizations. Moreover, if the behavioral variability
between realizations is considerable, then even using
a basic deterministic approach can be risky, especially
when it relates to epidemic control (see Epidemic
Models, Control). Mollison [9] provides a striking
example of this, in which he challenges Murray
et al.’s deterministic study [12] of how fox rabies
might invade a new country: they predict a roughly
circular expanding wave of advance, followed after
a quiet phase of about seven years by another wave
originating from the same starting point. First, Euro-
pean evidence suggests that after a short while, the

rabies invasion could break back across the devas-
tated territory immediately behind it and induce an
epidemic equilibrium there. Second, the later wave
is an artifact of modeling population size as con-
tinuous, rather than discrete. For the model has fox
density declining not to zero, but to 10−18 of a fox
per square kilometer, and this “atto-fox” restarts the
epidemic wave as soon as the susceptible population
has grown sufficiently large. Though such numerical
nonsense may be easily eliminated by replacing any
population size below a given cut-off value by zero,
the discrepancies between the overall predictions and
reality are a serious cause for concern, and highlight
the danger in using deterministic models at very low
levels of infection prevalence.

The mathematics surrounding spatial stochastic
processes is notoriously difficult, and where
deterministic solutions can be of considerable help is
in determining qualitative behavior when there exists
an underlying endemic equilibrium level {X∗, Y ∗} of
susceptibles and infectives. In a brilliant pioneering
paper, Turing [23] developed elegant deterministic
solutions that predict the types of behavior likely to
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be encountered when N colonies lie on a ring. In
general, let f (Xi, Yi) and g(Xi, Yi) denote the rates
of change at colony i in susceptibles, Xi(t), and
infectives, Yi(t), respectively. Then if susceptibles
and infectives migrate to neighboring sites at rates
µ and ν,

dXi

dt
= f (Xi, Yi) + µ(Xi+1 − 2Xi + Xi−1),

dYi

dt
= g(Xi, Yi) + ν(Yi+1 − 2Yi + Yi−1). (6)

On considering local departures from equilibrium by
writing Xi(t) = X∗ + xi(t) and Yi(t) = Y ∗ + yi(t),
the functions f and g may be approximated by linear
forms in xi and yi [14, 16]. The resulting equations
are amenable to Laplace transform solution, whilst
adding white noise (see Noise and White Noise) to
the linearized deterministic equations allows the con-
struction of second-order moments and spectra [15].
Cross-infection may be treated similarly. Turing’s
aim was to examine whether it is feasible to gener-
ate spatially stable waves, and his idea is simple but
profound. For, if in the absence of diffusion, Xi and
Yi tend to a linearly stable uniform state, then under
certain conditions, spatially inhomogeneous patterns
can evolve through diffusion-driven instability. Since
diffusion is usually considered to be a stabilizing pro-
cess, care is clearly needed when “guessing” how
nonspatial models will behave when they are placed
in a spatial environment. Furthermore, the behavior of
nonlinear stochastic models can change radically with
dimension, as even the number of local sites affected
by the migration or cross-infection contact distribu-
tion increases markedly as the dimension increases.

Whilst so far we have considered population num-
bers of infected, susceptible, immune, recovered, and
so on individuals, for processes that develop over
a grid, it is worthwhile highlighting the close link
with percolation processes. For a wealth of asymp-
totic theory has been developed (see references in
[5]), which can be carried across directly to epi-
demic scenarios. Here, the information is essentially
qualitative, rather than quantitative, with each site
being in (say) one of three states, namely, immune,
healthy, or infected. Note the close interpretation here
with models for “forest fires”, which have the equiv-
alent states burned, live, and on fire. Typically, an
infected individual emits germs according to a Pois-
son process, which then move to one of the four

nearest neighbors chosen at random. If a germ goes
to a healthy site, then that site becomes infected
and immediately starts to emit more germs, staying
infected for a random time with known distribution
function until it recovers and is immune to further
infection. Questions of interest revolve around the
set of sites that will ever become infected if initially
the origin is infected and all other sites are healthy.
Though this structure lends itself to substantial math-
ematical analysis, to study time-dependent behavior,
we have to revert to using simulation. The advantage
of this latter approach is that there is no need to make
unrealistic assumptions in order to achieve mathe-
matical tractability, and that with a little practice,
computer codes can be developed extremely quickly.
A prime example relates to the 2001 UK foot-and-
mouth epidemic, whose aftermath left heated discus-
sion over the control policies employed. A simple
QBASIC program with good screen graphics output
can be developed almost instantaneously to show (for
example) an array of farms where each site is either
healthy, infected, burned, or culled [18]. Everyday,
each healthy site next to an infected site becomes
infected itself with probability q; healthy sites neigh-
boring an infected site are culled with probability p;
whilst infected sites are burned (i.e. become removed)
with probability r . Simulation experiments quickly
reveal not only threshold values of p and r for fixed
q, above which the disease soon stops but below
which the infection keeps on advancing, but also the
existence of “creep” in which slow advance relent-
lessly continues in spite of the process appearing to be
under control. This latter behavior was observed for
real in parts of the United Kingdom. Had such quali-
tative features been known at the start of the outbreak,
far better control strategies could have been devel-
oped, especially since the position, size, and network
connections of all farms are held on GIS (geographic
information system) databases, thereby enabling this
simple grid-based simulation exercise to be extended
to the UK itself through the development of a more
refined space–time structure.

Although the spread of infectives/infection through
local migration/contact is commonplace, propaga-
tion will often occur between nonnearest colonies.
Provided the colonies lie on a regular grid, such
as a Turing ring, spatial measures of autocorrelation
and frequency may be obtained by using time-series
techniques [19]. However, sites will often not be reg-
ularly spaced: for example, cities, towns, and villages
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connected by air, road, and rail; and we need to use
weighted measures based upon local population size,
area of location, extent of links with other areas, and
so on. [4]. We therefore have a space–time bivariate
marked point process {(Xu,v, Yu,v); (u, v) ∈ R} with
association between the locations (u, v) in a region R,
local epidemic reactions at each location, and spatial
epidemic migration/infection between different loca-
tions. The study of such complexity is still in its
infancy (see [20] for a single-“species” discussion),
and stochastic modeling has to proceed through sim-
ulation. Appropriate measures of spatial correlation
that are applicable to both marks (X, Y ) and points
(u, v) can be found in Stoyan and Stoyan’s excellent
overview [22].

For the purpose of illustration, we have concen-
trated on purely spatially homogeneous scenarios.
However, recent interest in AIDS has stimulated
much progress in diverse areas of epidemic modeling,
particularly with regard to the treatment of hetero-
geneity, both between individuals and in mixing of
subgroups of the population. The study of epidemics
is an exciting, active, and rapidly expanding field,
and the review papers of Mollison et al. [11] and
Bolker et al. [3] provide excellent starting points for
investigating the dynamics of diseases in human, ani-
mal, marine, and plant populations. Key theoretical
issues are addressed in [10]. Moreover, improved
computer technology has led to the availability of
better databases and computationally intensive meth-
ods in the analysis of data: it has also allowed
the simulation of more detailed and realistic mod-
els. We can therefore now tackle major challenges
to our understanding of spatial epidemics, includ-
ing the effects of: heterogeneity due to differences
between both individuals and mixing; the depen-
dence of persistence on chaotic behavior and spatial
patchiness (see Chaos Theory); nonstationarity due
to weather, demographic variables, and evolution;
varying migration and cross-infection scenarios; and
boundary edge-effects.
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Epidemic Models,
Stochastic

Although the development of an epidemic in a popu-
lation susceptible to disease is a stochastic (random)
process, it can often be described with reasonable
accuracy by a deterministic model, provided the ini-
tial number of susceptibles is sufficiently large (see
Epidemic Models, Deterministic). The deterministic
results for the numbers of susceptibles and infectives
in the population at time t ≥ 0, are taken to represent
the equivalent means of the more accurate stochastic
process.

When the initial number of susceptibles is mod-
erate or small, as in a school or a household, the
deterministic model is inadequate and it becomes nec-
essary to rely on a stochastic model. Such a model can
be constructed in discrete time t = 0, 1, 2, . . ., with
the unit being the latent period of infection, or pos-
sibly a day or a week. It may also be constructed in
continuous time t ≥ 0; in both cases the models are
usually Markovian (see Markov Chains; Markov
Processes). Most of the models assume homogeneous
mixing (law of mass action), which states that the
probability of a susceptible becoming infected is pro-
portional to the number of possible contacts between
susceptibles and infectives, or the product of these in
the population at the instant of infection (see Ran-
dom Mixing).

Explicit solutions can be found for some of
the main stochastic models in use, but, however
intractable the problem may be analytically, one can
always describe the development of an epidemic by
simulation methods. In this article we give a brief
outline of the most common discrete- and continuous-
time stochastic epidemic models.

Stochastic Models in Discrete Time

The most commonly used models in discrete time are
the chain binomial models; these are due to Reed
& Frost (see [1]), and Greenwood [12]. Since the
Greenwood model is simpler, we consider it first.

The Greenwood Chain Binomial

In this model, we assume that at time t = 0, there are
X(0) = n susceptibles subject to an infection which

is not dependent on the existing number of infec-
tives in the population. We follow the progress of the
epidemic at times t = 1, 2, . . ., the epochs at which
the number of infectives and surviving susceptibles
are recorded. Suppose that the probability of instan-
taneous infection of a susceptible at time t = 0 is
p < 1. If each susceptible is infected independently,
then the distribution of the remaining susceptibles
at time t = 1 will be binomial, with the probability
q = 1 − p of noninfection, so that

Pr{X(1) = x1|X(0) = n}
=

(
n

x1

)
qx1pn−x1 , x1 = 0, 1, 2, . . . , n. (1)

The infectives Y (1) = n − x1 are now removed,
and the infection process is repeated for t =
1, 2, . . . , T until either no further infectives are
produced at T , Y (T ) = 0, or all the susceptibles
have been infected, X(T ) = 0. The infection process
then ceases, and T is referred to as the duration
of the epidemic. The evolution of the epidemic is
dictated by the sequence of binomial distributions,
whence the name “chain binomial” for the model.
Gani & Jerwood [10] noted that the process {X(t);
t = 0, 1, . . . , T } was in fact a simple Markov chain
with transition probability matrix

P =





0 1 · · · · n↗
0 1 0 · · · · 0

1 p q 0 · · · 0
...

...
...

...
...

n pn

(
n

1

)
pn−1

q · · · · qn




. (2)

This formulation allows one to carry out simple
calculations on the probabilities of such quantities
as the number of infectives generated up to time t ,
or the duration of the epidemic, within the Markov
chain framework. For example, the probability of the
duration T of the epidemic is given by

Pr{t = T }

= E′





0 · · · · 0
p 0 · · · 0
...

...
...

pn

(
n

1

)
pn−1

q · · · 0





T −1 



1
q...
qn



 ,

(3)
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where the 1 × (n + 1) row vector E′ = {0 . . . 0 1}
indicates that X(0) = n, the (n + 1) × 1 column vec-
tor {1 q . . . qn}′ gives the probabilities that Y (t) = 0
at any time t , and the central matrix is the P of (2)
with its diagonal elements replaced by zeros. This
matrix geometric distribution states that X(t) cir-
culates among the states 0, 1, 2, . . . , n for the first
T − 1 epochs, before Y (T ) = 0 at T .

The Reed–Frost Chain Binomial

In this slightly more complex model, we assume
that at time t = 0 there are X(0) = n susceptibles
and Y (0) = y0 infectives. Infection is now dependent
on the number of infectives y0. The probability of
contact of each susceptible with an infective is p < 1,
with a contact resulting in infection; q = 1 − p is the
probability of no contact. If each infective is indepen-
dent of all other infectives, then the probability of at
least one infectious contact will be (1 − qy0). If the
susceptibles are also independent, then at time t = 1,
with x1 + y1 = n,

Pr{X(1) = x1, Y (1) = y1|X(0) = n, Y (0) = y0}
=

(
n

x1

)
(qy0)x1(1 − qy0)y1 . (4)

Note that if qy0 is replaced by q, then (4) reduces to
the Greenwood formula (1).

We see that we now have a bivariate Markov chain
{X(t), Y (t); t = 0, 1, 2, . . .} which provides us with
standard methods for calculating probabilities related
to the epidemic. We also remark that for small values
of p, the probability of at least one infective contact
is 1 − qy0 ∼ py0, so that the mean number of new
infectives is py0n, as for the law of mass action.
At t = 1, the infectives y1 are again removed, but
not before they can infect the remaining susceptibles,
which they are assumed to do instantaneously. The
process is now repeated for t = 2, 3, . . . , T until
either Y (T ) = 0, X(T ) > 0, or X(T ) = 0, when the
epidemic terminates.

An example for X(0) = 3, with Y (0) = 1, 2, or 3
may help to visualize the Markov chain more clearly.
The transition probability matrix P takes the form
shown at the top of the opposite page or, in abridged
form

P =





I 0 0 0
Q A11 A12 A13

Q2 A21 A22 A23

Q3 A31 A32 A33



 , (5)

One can carry out Markov chain calculations with P
in much the same way as for the Greenwood model.
The structure of larger matrices for n > 3 is similar,
with probabilities of the form (4).

In the present example, the duration T of the
epidemic with X(0) = 3 and Y (0) = 1, will have the
distribution

Pr{t = T }

= E′ ×





0 0 0 0
0 A11 A12 A13

0 A21 A22 A23

0 A31 A32 A33





T −1 



I
Q
Q2

Q3



 . (6)

where E′ = { 0000, 0001, 0000, 0000 }.
Here, the initial 1 × 16 row vector records the values
X(0) = 3 and Y (0) = 1 at t = 0, the final 16 × 4
matrix gives the probabilities that Y (t) is zero at any
time t , and the central matrix indicates that X(t)

circulates among the states 0, 1, 2, 3, for T − 1
epochs before Y (T ) = 0 at time T .

While the structure of the bivariate Markov chain
in the Reed–Frost model is more complex than that of
the simple Markov chain in the Greenwood model,
both follow the same basic principles. It should be
pointed out that for X(0) = 2 and Y (0) = 1, the two
models yield exactly the same probabilities, but this
is not the case for larger values of X(0) or Y (0).
For further details of these models, the reader is
referred to Bailey’s treatise [4] and Daley and Gani’s
monograph [6]. It may be worth mentioning that the
models can be modified to allow for immigration
into and emigration out of the population subject to
infection; for such an example on the spread of HIV
(see AIDS and HIV) among intravenous drug users,
see [11].

Stochastic Models in Continuous Time

There are many continuous time models in use, of
which three are the most common. The first is the
simple epidemic (SI model) in which the population
is subdivided into two categories, susceptibles (S)
and infectives (I). This is not entirely realistic, but
may hold approximately over a short period of time.
The second is the general epidemic (SIR model)
where there are three categories, susceptibles (S),
infectives (I) and removals (R), that is individuals
who have recovered and are immune, or who have
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Y(t + 1) = 0 1 2 3
X(t + 1) = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

X(t) = 0 1
1 1

Y(t) = 0 2 1
3 1

0 1 0 0 0
1 q p 0 0 0 0 0

1 2 q2 0 2pq 0 p2 0 0 0 0 0
3 q3 0 0 3pq2 0 0 3p2q 0 0 p3 0 0 0









0 1 0 0 0
1 q2 1 − q2 0 0 0 0 0

2 2 q4 0 2(1 − q2)q2 0 (1 − q2)2 0 0 0 0 0
3 q6 0 0 3(1 − q2)q4 0 0 3(1 − q2)2q2 0 0 (1 − q2)3 0 0 0

0 1 0 0
1 q3 1 − q3 0 0 0 0

3 2 q6 0 2(1 − q3)q3 0 (1 − q3)2 0 0 0 0
3 q9 0 0 3(1 − q3)q6 0 0 3(1 − q3)2q3 0 0 (1 − q3)3 0 0 0

,

died from the disease. This is a more realistic model
for a population of fixed size. The third is the carrier-
borne epidemic (CSR model) consisting of infective
carriers (C) of the disease who may not know that
they are infectious and are gradually dying off, and
a separate category of susceptibles (S) subject to
infection by the carriers, who are then removed (R)
directly after they become infected. We consider each
of these in turn.

The Simple SI Epidemic

In this model, we shall consider an initial population
consisting of X(0) = n susceptibles, and Y (0) = 1
infective for simplicity, subject to homogeneous mix-
ing. At any time t > 0, we assume that in any time
interval (t, t + δt), the infinitesimal transition proba-
bility of a further infection is given by

Pr{X(t + δt) = x − 1, Y (t + δt) = y + 1|X(t) = x,

Y (t) = y} = βxyδt + o(δt), (7)

where y = n + 1 − x, and β is the infection rate.
Note that the infectives remain infectious for all time,
and X(t) + Y (t) = X(0) + Y (0) = n + 1, so that we
need keep track of only one quantity, say X(t) at
t ≥ 0. The equation (7) indicates that {X(t); t ≥ 0} is
a Markov chain in continuous time, namely a death

process with the state-dependent death parameter

µx = βx(n + 1 − x).

It is readily shown that the state probabilities
px(t) = Pr{X(t) = x|X(0) = n} satisfy the system of
Kolmogorov forward differential equations

dpx

dt
= β(x + 1)(n − x)px+1 − βx(n + 1 − x)px,

0 ≤ x ≤ n − 1,

dpn

dt
= −βnpn, (8)

subject to the initial condition pn(0) = 1. Bailey
[3] has shown that an explicit solution of these
equations is possible by solving the partial differential
equation for the moment generating function (or the
probability generating function) of the process, in
terms of hypergeometric functions, but these prove
rather difficult to handle.

A simpler method relies on the use of the Laplace
transforms

p∗
x(s) =

∫ ∞

0
exp(−st)px(t) dt, Re(s) > 0,

of the state probabilities. From (8), it is easily seen
that

p∗
n(s) = 1

s + βn
, (9)
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or pn(t) = exp(−βnt), and

p∗
x(s) = β(x + 1)(n − x)

s + βx(n + 1 − x)
p∗

x+1(s),

0 ≤ x ≤ n − 1. (10)

Thus, in principle, the transform p∗
x(s) can be

found as

p∗
x(s) = n!(n − x)!

x!
βn−x

n∏

j=x

1

s + βj (n + 1 − j)
,

(11)

so that px(t) may be derived explicitly. Unfortun-
ately, the values s + βj (n + 1 − j) are repeated for
j = n and j = 1, j = n − 1 and j = 2, and so on,
with the result that px(t) is rather more complicated
than a simple sum of exponentials.

The problem can be overcome by an approxi-
mation which replaces the integer n by the number
N = n + e, where e > 0 is some small positive quan-
tity. Then, the Laplace transforms p∗

x(s) of (11) are
replaced by the approximate q∗

x (s) of the form

q∗
x (s) = n!(n − x)!

x!
βn−x

n∏

j=x

1

s + βj (N + 1 − j)
,

(12)

where the values s + βj (N + 1 − j) are now distinct
for all values of j . It follows that qx(t) is a sum of
exponentials of the form

qx(t) =
n∑

j=x

cxj exp[−βj (N + 1 − j)t], (13)

for which the coefficients cxj can be readily evaluated
(see [4]). Letting e → 0 in (13) allows us to derive
the exact values px(t).

Since the random intervals between each infection
have negative exponential density functions

βj (n + 1 − j) exp[−βj (n + 1 − j)t], 1 ≤ j ≤ n,

the mean duration of the epidemic has the form

E(T ) =
n∑

j=1

1

βj (n + 1 − j)
. (14)

This can be approximated by

1

β(n + 1)

∫ n

1

(
1

x
+ 1

n + 1 − x

)
dx = 2 ln n

β(n + 1)
.

(15)

Kendall [16] has obtained the elegant result that for
large values of n, the distribution of W = (n + 1)T −
2 ln n can be approximated explicitly by a modified
Bessel function of the second kind.

The General SIR Epidemic

This is possibly the most frequently used continuous-
time epidemic model; it was foreshadowed in a paper
by McKendrick [18] and analyzed in more detail
by Bartlett [5]. Here the closed population is sub-
divided into three categories: susceptibles (S), infec-
tives (I) and removals (R), with their initial values
being respectively X(0) = n, Y (0) = 1 for simplic-
ity, and Z(0) = 0, the total population remaining
fixed at n + 1.

We assume that in any time interval (t, t + δt), the
infinitesimal transition probabilities of the process are
given by the probability of a further infection

Pr{X(t + δt) = x − 1, Y (t + δt) = y + 1|X(t) = x,

Y (t) = y} = βxyδt + o(δt), (16)

precisely as for the SI epidemic in (7), and the
probability of a removal

Pr{X(t + δt) = x, Y (t + δt) = y − 1|X(t) = x,

Y (t) = y} = γyδt + o(δt). (17)

These hold for all 0 ≤ x ≤ n, 0 ≤ y ≤ n + 1 − x,
with β as the infection rate and γ as the removal rate,
except when the values of X(t) or Y (t) are outside
their permissible ranges. Note that x + y ≤ n + 1 for
all t ≥ 0; we do not need to keep track of the value
of Z(t), since X(t) + Y (t) + Z(t) = n + 1 for all
t ≥ 0.

In this model, {X(t), Y (t); t ≥ 0} is a bivariate
Markov chain in continuous time. X(t) is a death
process with parameter µxy = βxy, dependent on
both the number of susceptibles x and the number of
infectives y, while Y (t) is a birth and death process
with birth parameter µxy = βxy and death parameter
γy (see Stochastic Processes).
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The state probabilities pxy(t)=Pr{X(t)=x, Y (t)

= y|X(0) = n, Y (0) = 1} satisfy the forward Kol-
mogorov differential equations

dpxy

dt
= β(x + 1)(y − 1)px+1,y−1

− (βx + γ )ypxy + γ (y + 1)px,y+1,

0 ≤ x ≤ n, 0 ≤ y ≤ n + 1 − x, (18)

with pxy(t) = 0 when x or y is outside the permissi-
ble range, and pn1(0) = 1. Gani [9] was able to obtain
an explicit solution for the Laplace transforms of the
pxy(t) based on a matrix formulation of the problem,
but this is rather complicated, and a simpler approach
such as that of Griffiths et al. [13] may prove more
suitable in practice.

Quantities of interest are the final size of the
epidemic, apart from the initial Y (0) = 1, and its dis-
tribution for varying parameters β and γ . Bailey [4]
lists the probabilities of this final size for X(0) =
1, 2, 3, 4, 5, and Y (0) = 1, and exhibits graphs for
the cases X(0) = 10, 20, 40 for increasing values of
ρ = γ /β. But perhaps the most illuminating result
about the final size of the epidemic is the Threshold
Theorem of Whittle [24] (see Epidemic Thresh-
olds). This is obtained by bounding the stochastic
process for the number Y (t) of infectives above
and below by birth and death processes with a
simpler birth parameter than the actual value βxy.
We shall simply quote Whittle’s results, which the
reader can study in greater depth by reference to his
paper.

Assuming an intensity i for the epidemic, so that
the final number of infectives other than the initial
Y (0) = 1 is ni, and writing ρ = γ /β and

πi =
ni∑

w=0

Pw,

where the Pw = Pr{X(∞) = n − w}, 0 ≤ w ≤ n,
are the probabilities of a final size w of the epidemic,
Whittle [24] proves that for large n

ρ

n
≤ πi ≤ ρ

n(1 − i)
, for ρ < n(1 − i),

ρ

n
≤ πi ≤ 1, for n(1 − i) ≤ ρ < n,

πi = 1, for n ≤ ρ.

(19)

This may be interpreted as stating that if ρ ≥ n,
then there is a zero probability that the epidemic
exceeds any preassigned intensity i, while if ρ < n,
then the probability of an epidemic is approximately
1 − ρ/n for small i. Similar results hold for the
case where Y (0) = a > 1 with ρ/n and ρ/n(1 − i)

now raised to the power a in the inequalities (19).
This threshold theorem is the stochastic analog of
Kermack & McKendrick’s threshold theorem [17] for
the deterministic general epidemic.

The Carrier-Borne CSR Epidemic

In this model, the carriers U(t), t ≥ 0, form a
separate category, with an initial number U(0) =
b ≥ 1. The process {U(t); t ≥ 0} is a pure death
process with parameter µu = µu, such that the
infinitesimal probability of a carrier dying in
(t, t + δt) is

Pr{U(t + δt) = u − 1|U(t) = u} = µuδt + o(δt),

1 ≤ u ≤ b,

independent of the number of susceptibles in the
population. The state probabilities of this process at
any time t ≥ 0 are known to be of the binomial form

Pr{U(t) = u|U(0) = b}
=

(
b

u

)
[exp(−µut)][1 − exp(−µt)]b−u,

0 ≤ u ≤ b. (20)

The susceptibles X(t) are infected by homoge-
neous mixing with the carriers U(t), and the infinites-
imal probability of such an infection in any interval
(t, t + δt) when U(t) = u ≥ 1, is

Pr{X(t + δt) = x − 1, U(t + δt) = u|X(t) = x,

U(t) = u} = βxuδt + o(δt), 1 ≤ x ≤ n,

where β is the infection parameter. After becoming
infected, a susceptible is removed directly from the
population.

The process {X(t), U(t); t ≥ 0} is a bivariate Mar-
kov chain in continuous time, in which U(t) is itself
an independent Markov chain which influences the
process X(t). If we denote the state probabilities at
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time t ≥ 0 by

pxu(t) = Pr{X(t) = x, U(t) = u|X(0) = n,

U(0) = b}, 0 ≤ u ≤ b, 0 ≤ x ≤ n,

we can derive the forward Kolmogorov differential
equations of the process as

dpxu

dt
= β(x + 1)upx+1,u − (βx + µ)upxu

+ µ(u + 1)px,u+1, (21)

with pxu(t) = 0 when x or u are outside their per-
missible ranges, and pnb(0) = 1.

The model was originally formulated by Weiss
[23], and solved by him, Dietz [7] and Downton [8].
A straightforward method of solution, also outlined
in Bailey [4], involves the derivation of the partial
differential equation of the probability generating
function obtained from (21). Its solution is found by
the method of separation of variables. An alternative
method relies on the more general approach presented
by Puri [21], and outlined in Daley and Gani [6]. The
probabilities pxu(t) are found explicitly as

pxu(t) =
(

n

x

)(
b

u

) n∑

j=x

(−1)j−x

(
n − x

j − x

)

×
(

µ

µ + jβ

)b−u

(exp −u(µ + jβ)t)

× [1 − exp −(µ + jβ)t]b−u, (22)

with the expectation of X(t) given by

E[X(t)] = n

(
µ + β exp −(µ + β)t

µ + β

)b

. (23)

The distribution of the duration time T of the epi-
demic, which ends when either U(t) = 0 or X(t) =
0, can also be derived explicitly. The model can
be made more complex by making the parameters
time-dependent, and also allowing emigration and
immigration of both the susceptibles and carriers.

Concluding Remarks

A very large number of stochastic models have been
developed for a variety of diseases, including most
recently AIDS. These include spatial models for the

geographic spread of infections (see Epidemic Mod-
els, Spatial), models for parasitic or host–vector
diseases such as malaria and schistosomiasis, and
models for sexually transmitted diseases. While each
disease may require a slightly different model in order
to approximate realism, the principles used in con-
structing them are similar to those displayed in the
small range of examples above.

There is a wealth of recent literature on stochastic
epidemic research, and the reader may wish to refer
to the recent review paper by Mollison et al. [20],
the book of papers on AIDS epidemiology edited
by Jewell et al. [15], or the books on more general
epidemic models edited by Mollison [19] and Isham
& Medley [2, 14, 22].
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Epidemic Models,
Structured Population

The use of mathematical models to describe the
spread of infectious disease has become a topic
of increasing importance in recent years. Carefully
formulated models play a vital role in helping to
understand the dynamics of disease outbreaks that
have already occurred, and in analyzing the effec-
tiveness of potential strategies to deal with future
outbreaks. Diseases such as HIV/AIDS, BSE/CJD
and Foot-and-mouth disease have all received consid-
erable modeling attention. However, in order to cor-
rectly describe real-life disease dynamics, it quickly
becomes apparent that models need to capture some-
thing of the mixing behavior of individuals within the
at-risk population. For example, it is rarely realistic
to assume that an entire population mixes homoge-
neously, that is, that each currently susceptible indi-
vidual is equally likely to be infected by any currently
infective individual in the population. Predictions
based on models defined using unrealistic assump-
tions should be viewed with considerable caution.
Motivated by such concerns, a number of models
have been developed that attempt to take into account
some elements of structure within the population of
interest. In the following, we review some of these
models and draw attention to their salient features.

Independent-households Model

For many infectious diseases, the mode of
transmission involves the sort of close contact
between individuals that would be facilitated by
those individuals living or working together in a
shared environment. It is therefore natural to consider
models in which individuals who commonly spend
time together have a different (usually greater) chance
of transmitting the disease to one another than
individuals who seldom meet. Longini and Koopman
[11] describe the following model, in which the
population is divided into households, and infections
can arise either from infected household members, or
from the community at large.

Consider a population of N individuals that is par-
titioned into households, which need not necessarily
be all of the same size. Individuals are assumed to
be equally susceptible to contracting the disease in

question. Every individual in the population has a
fixed probability, qc, of avoiding infection from out-
side their household. This probability is assumed to
be once-and-for-all, rather than per unit time, and can
be thought of as the probability of not acquiring the
disease from the community at large for the duration
of the epidemic. The fates of different individuals
with respect to this community-acquired infection are
assumed to be independent. Thus, the number of indi-
viduals who are infected from the community has a
binomial distribution with parameters N and 1 − qc.

Within a household initially comprising n sus-
ceptible individuals, the disease spreads as follows.
First, suppose that a number Y0 = a of the individ-
uals become infected from the community. If a = 0,
the household epidemic is over, with no infections
occurring. Otherwise, each infective has a proba-
bility 1 − qh of transmitting the disease to each
of the still-susceptible household members, inde-
pendently, during their infectious period. Thus, to
remain susceptible, a susceptible individual must
avoid infection from all a infectives, which occurs
with probability qa

h . Thus, the number of newly
created infectives, Y1 say, has a binomial distri-
bution with parameters n − a and 1 − qa

h . Each of
these new infectives then has a probability 1 − qh

of infecting any one of the remaining n − Y0 − Y1

susceptibles as before, and so on. The household
epidemic continues in this way until zero new infec-
tions occur. The within-household epidemic is thus
described by a Reed–Frost model [4, Chapter 1] with
a initial infectives, n − a susceptibles, and infection
probability 1 − qh (see Chain Binomial Model).

We mention three important features of the above
model. First, there are two parameters, qc and
qh, which control, respectively, community-acquired
and within-household-acquired infections. Thus, the
model allows consideration of two different routes of
infection, and can, for example, be used to determine
which route is most important in disease spread in
specific applications. Second, the fates of different
households are independent of each other, in the
sense that the number infected in one household
is independent of the number infected in another.
Third, the model as described above is essentially
not temporal, in the sense that it only describes final
outcomes (infected or not), rather than the times at
which events occur.

The probability mass function of the final number
infected (i.e. the final size of the epidemic) in a given
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household can be obtained as follows. Let πjk denote
the probability that the epidemic produces a total
of j infective individuals in a household initially
containing k susceptibles. There are

(
k

j

)
ways to

select the j individuals who become infected. For the
subepidemic propagated among these j individuals,
the probability that all become infected is πjj .
Additionally, each of the remaining k − j individuals
must avoid infection both from the community, and
also from the j infected individuals, the probability of
these avoidances being q

k−j
c q

(k−j)j

h . We thus obtain
that for k ≥ 1,

πjk =
(

k

j

)
πjjq

k−j
c q

(k−j)j

h , 0 ≤ j < k, (1)

where

πkk = 1 −
k−1∑

j=0

πjk, and π00 = 1. (2)

Equations (1) and (2) can be used to recursively deter-
mine the πjk’s. It is also possible to find a closed-
form expression for πjk in terms of certain nonstan-
dard polynomials; see [14]. Finally, since households
are independent, the probability of observing a par-
ticular set of final outcomes in the community of
households is obtained by multiplying the relevant
πjk values together. Viewed as a function of the
model parameters, this probability is simply the like-
lihood, which provides a basis for statistical inference
procedures.

The basic model above can be extended in a
number of ways, of which we now mention a few.
The within-household epidemic can be generalized by
removing the independence assumption between the
fates of individuals who may be contacted by a given
infective 1. This situation arises naturally when one
assumes that an infective individual can infect others
during an infectious period of random length T . Sup-
pose that, during their infectious period, the individ-
ual makes contact with each susceptible in the house-
hold at times given by the points of a Poisson process
of rate β. It is assumed that the Poisson processes
corresponding to different susceptible-infective pairs
are mutually independent. Then, the probability that
a given set of k − j susceptibles escape infection
from a single infective during his or her infectious
period is simply ET [exp(−βT (k − j))] = φ(k − j),
say. Within the nontemporal framework of the model,

we can without loss of generality set β = 1, so that φ

then depends only upon the parameters of T . The cor-
responding equation to (1) is obtained by replacing
the avoidance probability q

k−j

h by φ(k − j). Note that
the original model is obtained when T is constant.

An alternative generalization of the basic model
is to introduce some kind of heterogeneity into the
population. O’Neill et al. [14] consider a model in
which each individual in the population indepen-
dently has immunity to the disease with some fixed
probability v. This could represent, for example,
immunity acquired via vaccination, or by previous
exposure to the disease. This essentially corresponds
to a random-effects model for individuals. Alterna-
tively, individuals could be categorized according to
some known quantity (e.g. age, or a physiological
measure), and then assumed to be susceptible to the
disease in a manner that depends on their category.
In this setting, extra model parameters are introduced,
corresponding to the different categories [1, 12].

Models with Two Levels of Mixing

In the independent-households model described
above, the probability of acquiring infection from
outside the household is not dynamically altered by
the numbers infected within each household. This
slightly unrealistic assumption can be overcome by
allowing person-to-person transmission both within
a household, and in the entire population, at
two (possibly) different rates. Ball et al. [8] define
the following model. Consider a population of
N individuals that is partitioned into households.
Initially, all but a small number of individuals are
susceptible, and the rest infective. An individual
j who becomes infected remains so for a period
of time T (j), where T (j) is distributed according
to some prespecified nonnegative random variable
T . The infectious periods of different individuals
are assumed to be mutually independent. During
their infectious period, individual j makes contact
independently with each susceptible in the population
at times given by the points of a Poisson process
of rate λG/N . The first such contact results
in the immediate infection of the susceptible.
Simultaneously, and independently, j also has
infectious contacts with each member of his or her
household according to a Poisson process of rate
λL. Thus λL and λG determine, respectively, the
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local (i.e. within-household) and global (i.e. with
any population member) rates of infection. At the
end of its infectious period, j can make no further
contacts, and moreover is assumed to be immune to
reinfection. The epidemic continues until there are
no more infectives remaining in the population. Note
that this model is temporal, because all events are
explicitly modeled with respect to time.

Note that the scaling factor of N in the global
contact rate λG/N appears in order to maintain a real-
istic model as N becomes large. Specifically, as N

increases so the Poisson rate of global contacts made
by an individual, namely, N(λG/N) = λG, remains
the same. Conversely, it is natural to suppose that
as N increases, individual household sizes should
remain roughly constant, so that it is the number
of households that increases rather than their size.
Thus the local infection rate parameter, λL, need
not be scaled. Note also that the fact that household
sizes remain locally “small” as N increases mean
that a corresponding deterministic model (see Epi-
demic Models, Deterministic), defined by a set of
differential equations describing the epidemic within
each household, is inappropriate as an approxima-
tion of the stochastic model (see Epidemic Models,
Stochastic), and, in particular, has different epidemic
threshold behavior (see [8] for details).

As might be expected, the interdependence of
households within the two-level mixing model
complicates any analysis considerably. For example,
the exact final size distribution is essentially
intractable for any realistic population, because
evaluation implicitly involves summing over all
possible paths of infection. However, by appealing
to asymptotic considerations as the number of
households tends to infinity, it is possible to make
analytic progress (see [8]). This is essentially due to
the fact that, in an infinite population, households
contained in any specified finite set are mutually
independent of one another. There are two key
results. First, a threshold theorem can be obtained,
which indicates that the early stages of an epidemic
can be approximated by a suitable branching
process. Moreover, there is a threshold parameter,
RT , such that, in the limit as the number of
households tends to infinity, an epidemic of infinite
final size can occur with positive probability if
and only if RT > 1. Second, there exists a central
limit theorem for the final size and final severity,
where the latter represents the total amount of

person-time units of infection. This result essentially
says that, when the number of households is large,
and conditional upon a major outbreak occurring, the
joint distribution of final size and severity can be
approximated by a bivariate normal distribution
whose mean vector and covariance matrix depend
on λL and λG. Methods of both classical and
Bayesian statistical inference for this model have also
been considered; see [5] and [13], respectively.

The notion of two levels of mixing, namely, local
and global, can be extended to more general models.
Examples include the great circle model ([7, 8]) in
which individuals are situated on the circumference
of a circle, and in which local contacts occur with
adjacent or other nearby neighbors, while global
contacts are chosen uniformly at random from all
individuals in the population. Such a model can be
motivated by disease spread among certain kinds
of spatially structured populations, such as animals
living in lines of pens, or animals that inhabit
adjacent stretches of a coastline. Models of this
kind are closely related to so-called small-world
models [15, 16], which have attracted considerable
attention within the Social-Sciences and Physics
literatures. Another generalization of the household
model is to allow populations to be partitioned in
more than one way, for example, by household and
school/workplace [6, 9]. Finally, it is also possible
to formulate models with three or more levels of
mixing, for example, representing within-household,
within-city, and between-city mixing.

Epidemics on Graphs

Given a population of individuals, it is mathemati-
cally natural to represent their contact structure by
means of a graph. Specifically, suppose that each
vertex in a graph corresponds to an individual, and
each edge, joining two vertices, corresponds to some
form of social contact, which is sufficient to allow the
possibility of disease transmission between two indi-
viduals. Given such a graph, an epidemic process can
be defined as follows. A small number of vertices are
initially infectious, the rest susceptible. If a vertex j

becomes infected, it remains so for a period of time
given by some random variable T (j), which is dis-
tributed according to some prespecified nonnegative
random variable T . During its infectious lifetime,
a vertex makes infectious contacts with each of its
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neighbors in the graph (i.e. those vertices to which j

is joined by an edge) at times given by the points of
a Poisson process of rate λ. Any such contact results
in the immediate infection of the neighbor, provided
that the vertex has not been previously infected. At
the end of its infectious period, a vertex becomes
immune to further reinfection, and essentially plays
no further part in the epidemic. All infectious peri-
ods and Poisson processes are assumed to be mutually
independent. The epidemic continues to spread until
there are no more infectives remaining.

The above formulation is clearly very general, and
contains several special cases of importance.

Complete Graph

The complete graph (in which every pair of vertices is
connected) corresponds to a homogeneously mixing
population, and the model reduces to a standard
SIR (Susceptible-Infected-Removed) model (see [4,
Chapter 2].)

Lattice Model

Suppose that vertices are situated at all points (x, y)

in the plane, where both x and y are integers, and
that the vertex at (x, y) is connected to the four
nearest vertices in the plane according to Euclidean
distance. Suppose further that the infectious period
T is constant, so that θ = 1 − exp(−λT ) is the
probability that a given vertex infects any of its
susceptible neighbors, independently of the fate of
its other neighbors. This model is equivalent to a
percolation model on the two-dimensional integer
lattice, in which each “infected” edge corresponds
to an open channel, and vertices are either “wet” (no
longer susceptible) or “dry” (susceptible). Suppose
that, initially, precisely one site is wet. It is well-
known from percolation theory that, for θ > 1

2 , there
is a positive probability of an infinite wet connected
cluster. Conversely, for θ < 1

2 , all wet clusters are
finite in size with probability one. In terms of
the epidemic, this translates to a threshold result
stating that infinitely many vertices become infected
with positive probability if λ > T −1 log 2, and with
probability zero if λ < T −1 log 2.

Random Graphs

In some contexts, the exact contact structure of a
population is unknown, and thus it is reasonable to

also attempt to model this structure stochastically.
Andersson [3] considers various cases of this kind,
including a simple Bernoulli structure (described
below), graphs with predetermined vertex degree
sequences, and dynamic graphs in which social struc-
ture changes over time (see also [2]). The extent to
which such models can be analyzed mathematically
varies considerably, depending upon the exact struc-
ture considered.

As an example, consider the case where the con-
tact structure is described by a Bernoulli random
graph. Specifically, each vertex has a fixed probabil-
ity p of sharing an edge with any other given vertex,
independently of all other vertex pairs. Thus the num-
ber of edges emanating from a single vertex has a
Binomial distribution with parameters n − 1 and p,
where n is the total number of vertices in the graph.
Setting p = µ/n, so that the average of this Binomial
distribution is bounded as n → ∞, and assuming that
the infectious period T is exponentially distributed
with mean γ −1, it can be shown that the threshold
parameter of this model is

R0 = µλ

λ + γ
, (3)

see [10]. The quantity R0 should be interpreted as
meaning that, in an infinite population, an epidemic
can infect infinitely many individuals with positive
probability if and only if R0 > 1.

The temporal behavior of this stochastic model
is not straightforward to analyze in detail, although
under suitable assumptions the model behaves as
a limiting deterministic model as n → ∞. For this
deterministic model, it is possible to (numerically)
find time-dependent trajectories for the numbers of
infective and susceptible individuals at a given time,
and to analytically determine the final outcome [3].
Regarding inference reference, [10] contains methods
of Bayesian inference, using Markov chain Monte
Carlo techniques, for the stochastic model.
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Epidemic Thresholds

The practically most important result to come out of
the mathematical theory of epidemics is the threshold
theorem, which broadly states that an epidemic can
only become established in a population if the ini-
tial susceptible population size is larger than some
critical value, which depends on the parameters gov-
erning the spread of disease. The threshold theorem
is important because it immediately tells us what pro-
portion of susceptibles need to be vaccinated in order
to prevent an epidemic occurring.

Two broad classes of epidemic models are con-
sidered in this article. The majority of the article
is devoted to closed population epidemic models,
which assume that the timescale of the epidemic
is sufficiently short so that demographic changes
in the population can be ignored. The models con-
sidered are of the SIR (susceptible → infective
→ removed) type, in which a susceptible individ-
ual becomes infected by having “adequate contact”
with an infective. It then remains infectious for a
while before being removed, by either death, the
termination of its infectious period or public health
measures. Removed individuals are assumed to be
immune to further infection and thus play no fur-
ther role in the epidemic. The threshold behaviors
of a homogeneously mixing deterministic model and
its stochastic counterpart, the so-called deterministic
and stochastic general epidemics, are considered first,
before moving on to more general stochastic models
incorporating, for example, more realistic infection
mechanisms, heterogeneous populations, and spatial
effects. The article closes with a brief description of
the threshold behavior of open population models,
which incorporate demographic effects.

Closed Population Epidemics

General Deterministic Epidemic

The general deterministic epidemic is defined by the
following system of differential equations:

dx

dt
= −βxy,

dy

dt
= βxy − γy,

dz

dt
= γy,

(1)

where x(t), y(t), and z(t) denote, respectively, the
numbers of susceptible, infectious, and removed indi-
viduals at time t , and the parameters β and γ are

known as the infection and removal rates (see Epi-
demic Models, Deterministic). The model assumes
a homogeneously mixing population, with adequate
contacts between two given individuals occurring at
rate β. Thus if there are x susceptibles and y infec-
tives at time t , there are xy possible contacts, each
occurring at rate β, that will result in a new infection
occurring; hence the term βxy in (1). The model also
assumes that infectious individuals are each removed
at rate γ , giving rise to the term γy in (1).

Suppose that at time t = 0 there are a infectives,
n susceptibles, and no removed cases. It follows from
the second formula in (1) that, provided that y >

0, dy/ dt > 0 if and only if x > ρ, where ρ = γ /β.
Thus a build-up of infection will occur in the pop-

ulation if and only if n > ρ. This is part of the cele-
brated threshold theorem of Kermack & McKendrick
[17].

General Stochastic Epidemic

The general stochastic epidemic is obtained by
replacing the infinitesimal transition rates governing
(1) by infinitesimal transition probabilities (see
Epidemic Models, Stochastic). For t ≥ 0, let
X(t), Y (t), and Z(t) be, respectively, the numbers
of infective, susceptible, and removed individuals at
time t . Suppose that (X(0), Y (0), Z(0)) = (n, a, 0),
so that X(t) + Y (t) + Z(t) = n + a (t ≥ 0). Then
the epidemic is completely specified by {(X(t), Y (t));
t ≥ 0}, which is a continuous time Markov chain
with infinitesimal transition probabilities

Pr{(X(t + h), Y (t + h)) = (i − 1, j + 1)|(X(t), Y (t))

= (i, j )} = βijh + o(h)

for an infection, and

Pr{(X(t + h), Y (t + h)) = (i, j − 1)|(X(t), Y (t))

= (i, j )} = γj + o(h)

for a removal.
The epidemic terminates as soon as the number

of infectives becomes zero. Let T = n − X(∞) be
the total size of the epidemic; that is, the number of
initial susceptibles that are ultimately infected. Note
that rescaling the time axis so that the infection rate
β is one shows that the distribution of T depends on
β and γ only through ρ = γ /β. A system of linear
equations governing the distribution of T is given
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in Bailey [3, p. 94], in which diagrams illustrating
the distribution for various values of n and ρ are also
given [3, pp. 98–99]. When n < ρ the distribution of
T is unimodal, with the mode at some small argument
value (often zero), while if n > ρ the distribution
of T is bimodal, with a second mode at a large
argument value. Thus again there is a threshold at
n ≈ ρ, although, because of the presence of chance
effects, the change in behavior at the threshold is
less sharp than in the deterministic model. Also, the
value of n at which the distribution of T changes from
being unimodal to bimodal is slightly larger than ρ

[20].
To understand its threshold behavior it is fruitful

to give a more detailed, but equivalent, description
of the general stochastic epidemic. The assump-
tions underlying the general stochastic epidemic are
consistent with a model in which infectives behave
independently, making contacts at the points of a
Poisson process with rate nβ throughout an infec-
tious period that follows a negative exponential
distribution with mean γ −1. For each contact, the
individual contacted is chosen independently and uni-
formly from the n initial susceptibles. If a contacted
individual is susceptible then it becomes infected;
otherwise, nothing happens. Clearly, the rate at which
an infective is removed is γ , and if there are x sus-
ceptibles and y infectives at time t the rate at which
infectious contacts are being made is ynβ. How-
ever, the probability that a given contact is with a
susceptible is x/n. Hence, the rate at which new
infections occur is ynβ × x/n = βxy, as required by
the general stochastic epidemic.

Note that if all the contacts in the above epi-
demic were to result in the spread of infection, then
the process of infectives would follow a birth-and-
death process (see Stochastic Processes) (see for
example, [12, pp. 270–273]) with birth rate nβ and
death rate γ . Of course, it is unlikely that all the
contacts made in the epidemic are with suscepti-
bles, so the birth-and-death process is usually only
an upper bound to the process of infectives. How-
ever, if n is large the probability of contacting a
previously contacted individual will be small, par-
ticularly in the early stages of the epidemic. Thus,
for large n, the early stage of the epidemic is well
approximated by the above birth-and-death process
and occurrence of a minor/major epidemic may be
associated with extinction/nonextinction of the birth-
and-death process. Hence, by standard results for

birth-and-death processes, the probability that a major
epidemic occurs is given by

pMAJ =
{

0, if nβ ≤ γ ,

1 − (γ /nβ)a, if nβ > γ ,

so major epidemics can occur only if n > ρ.
The above threshold behavior can be made math-

ematically precise in several ways: see, for example,
Whittle [23], who gave the first stochastic epidemic
threshold theorem, Williams [24] and Ball [4].

Although the deterministic and stochastic general
epidemics both have the same threshold value of
n = ρ, the interpretation of the threshold behavior is
quite different in the two models. In the deterministic
model, if n ≤ ρ (n > ρ) minor (major) epidemics
will always occur. In the stochastic model, for large
n, if n ≤ ρ minor epidemics always occur, while if
n > ρ a major epidemic occurs with a probability
lying strictly between 0 and 1.

R0 and Vaccination Strategies

A unifying concept in the analysis of the threshold
behavior of epidemic models is the reproduction
number (or ratio) R0 of the epidemic, which is
usually defined informally as the expected number
of infectious contacts made by a typical infective
during its entire infectious period, in a population
consisting of susceptibles only (see, for example,
[13, 14]). The difficulty in applying this definition
for complex models is in determining what is a
typical infective. Diekmann et al. [10] show that, for
a very broad class of deterministic models, R0 is
given by the maximal eigenvalue of an appropriate
“next generation” linear operator, thus providing a
formal definition. However, in the general stochastic
epidemic, it is clear that a typical infective makes
infectious contacts at the points of a Poisson process
with rate nβ throughout an infectious period that
follows a negative exponential distribution with mean
γ −1. Thus, R0 = nβ/γ and from the previous section
major epidemics can only occur if and only if R0 > 1.

Now consider a general epidemic that is above
threshold and suppose that a proportion θ of initial
susceptibles are vaccinated against the disease being
modeled. After vaccination, the initial number of sus-
ceptibles is reduced to n′ = (1 − θ)n and hence R0

is reduced to R′
0 = (1 − θ)R0. Thus major epidemics
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will be prevented if R′
0 ≤ 1; that is if

θ ≥ 1 − 1

R0
.

This formula, which gives the critical level of vac-
cination coverage to prevent an epidemic occurring,
holds quite generally for single population epidemic
models. It was given first by Smith [22].

General Single Population Epidemic

The approximation of the process of infectives by a
birth-and-death process holds for a very wide class
of epidemic models, although the approximating pro-
cess is generally a branching process. Now con-
sider an epidemic, initiated by a infectives among
n susceptibles, in which infectious individuals have
independent and identically distributed life histories,
H = (TI , η), where TI is the time elapsing between
an individual’s infection and its eventual removal
or death, and η is a point process of times, rela-
tive to an individual’s infection, at which infectious
contacts are made. As before, for each contact, the
individual contacted is chosen independently and uni-
formly from the n initial susceptibles and an infec-
tion occurs only if the contacted individual is still
susceptible.

If the initial number of susceptibles n is large,
the process of infectives can be approximated by
a branching process (corresponding to the case in
which all contacts result in new infections), in which
a typical individual lives until age TI and reproduces
at ages according to η. Moreover, the approximation
can be made precise in the limit as n → ∞ (see [6]).
Let R be the number of contacts made by a typi-
cal infective in the epidemic model, let R0 = E(R),
and let f (s) = E(sR) be the probability generating
function of R. Then, by standard branching process
theory (see, for example, [16]), a major epidemic
occurs with nonzero probability if and only if R0 > 1
and the probability of a major epidemic is 1 − pa ,
where p is the smallest solution of f (s) = s in
[0, 1].

A few examples illustrate the generality of the
model:

1. Suppose that η is a Poisson process with rate β.
Then R follows a Poisson distribution with ran-
dom mean βTI , so R0 = βE(TI ). Note that if TI

follows a negative exponential distribution with

mean γ −1, then the general stochastic epidemic
is obtained.

2. In most, if not all, real-life epidemics the infec-
tious period of an infective is preceded by a
latent period during which a recently infected
individual is unable to infect other susceptibles.
Let TL and TI be random variables describing
the lengths of typical latent and infectious peri-
ods, respectively. Suppose that η is a Poisson
process with rate β(t), where

β(t) =
{

β, if TL < t < TL + TI ,

0, otherwise.

Then, again, R0 = βE(TI). Note that the intro-
duction of a latent period does not change R0.

3. Suppose that η is a Poisson process with
random rate Λ(t) (0 ≤ t < ∞). Then R is
Poisson with random mean

∫ ∞
0 Λ(t) dt , so

R0 = ∫ ∞
0 E[Λ(t)] dt . Such a model might

be appropriate for the spread of AIDS, as
it is known that the infectiousness of an
infective varies considerably throughout the long
incubation period (see, for example, [1]).

General Multipopulation Epidemic

Now consider the spread of an epidemic among a
population that is partitioned into m groups, labeled
1, 2, . . . , m, with group i consisting initially of ai

infectives and ni susceptibles. The partitioning of
the population into groups could reflect important
heterogeneities (such as owing to age, sex, and geno-
type), geographic location, or a multispecies popu-
lation, as in host–vector epidemics such as malaria.
Infectious individuals have independent life histories,
with life histories of infectives in the same group
being identically distributed. For i = 1, 2, . . . , m, the
life history of a typical group i infective is Hi =
(T

(i)
I , ηi1, ηi2, . . . , ηim), where T

(i)
I denotes the infec-

tious period and, for j = 1, 2, . . . , m, ηij is a point
process governing times when infectious contacts are
made with group j individuals. For each contact,
the individual contacted is chosen independently and
uniformly from the initial susceptibles in the con-
tacted group.

If the initial numbers of susceptibles in every
group are all large, then the process of infectives
approximately follows a multitype branching pro-
cess, and the approximation can be made precise
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in the limit as ni → ∞ (i = 1, 2, . . . , m) [5]. For
i, j = 1, 2, . . . , m, let Rij be the total number of
group j contacts made by a typical group i infec-
tive throughout its infectious period. Let M = (mij )

be the m × m matrix with elements mij = E(Rij ) and
let R0 be the eigenvalue of M having maximum mod-
ulus. Then, by standard multitype branching process
theory [18], subject to mild regularity conditions, a
major epidemic occurs with nonzero probability if
and only if R0 > 1.

The models of the last two sections can be
extended to allow for some or all previously infected
individuals to become susceptible again, either imme-
diately following their infectious period or at some
later time. The process of infectives for such models
can be sandwiched between that of the corresponding
SIR model and its branching process approximation,
so the two models have identical threshold behav-
ior. Models in which all infectives become suscepti-
ble immediately following their infectious period are
known as SIS (susceptible → infective → suscepti-
ble) models.

Deterministic versions of the models of the last
two sections can usually be written down, although
they will often involve a continuous partitioning
of the population; for example, to incorporate non-
exponential infectious periods. The framework of
Diekmann et al. [10] can be used to determine R0

for such a deterministic model. The value of R0

will be the same as for the corresponding stochastic
model.

Structured Populations

The threshold behavior of the above multipopulation
epidemic assumes that all the group sizes are large.
Although this may be reasonable in some practical
situations, in others it clearly is not. Two such cases
are now outlined.

Epidemics Among Households

Consider the spread of an epidemic among a pop-
ulation consisting of m households, each of size n.
Suppose that infectives have independent and iden-
tically distributed life histories, H = (TI , ηL, ηG),
where TI denotes the infectious period of a typi-
cal infective, and ηL and ηG are point processes
governing times at which local and global contacts

are made, respectively. Each local (global) contact
of a given infective is with an individual chosen
independently and uniformly from the n(nm) initial
individuals in its household (the population).

Becker & Dietz [9] consider the case of highly
infectious diseases, and assume that if one indi-
vidual in a household becomes infected then the
whole household becomes infected. Let R̃ be the
total number of global contacts emanating from a
typical infectious household. Then, provided that
the number of households, m is large, the process
of infected households can be approximated by a
branching process with offspring distribution the dis-
tribution of R̃. Thus a major epidemic (one affecting
a large number of households) can only occur if
R̃0 = E(R̃) > 1. Note that under the above “highly
infectious” assumption R̃0 = nR0, where now R0 is
the expected number of global contacts made by a
typical infective. In general, R̃0 = µR0, where µ is
the expected total size (including the initial infective)
of a single household epidemic initiated by one infec-
tive, in which global infections are ignored; see Ball
et al. [7], where extensions – for example, to unequal
household sizes – are discussed.

Spatial Epidemics

A spatial model is often appropriate for plant dis-
eases and also for animal diseases, such as fox
rabies (see Epidemic Models, Spatial). The sim-
plest spatial models usually assume that individuals
are located one to each point of a regular lattice
and that successive contacts of an infective are with
individuals at locations (relative to the infective)
chosen independently from a contact distribution
(see, for example, [19]). The threshold behavior of
such epidemics is usually obtained by taking the lat-
tice to be infinite and determining conditions under
which a finite initial number of infectives can give
rise to an infinite epidemic.

Let R0 be the expected number of contacts made
by a typical infective. For one-dimensional lattices,
the epidemic goes extinct with probability one, so no
threshold exists. For two-dimensional lattices, there is
a critical value of R0, RCRIT

0 say, such that the prob-
ability of an infinite epidemic is zero if R0 < RCRIT

0
and strictly positive if R0 > RCRIT

0 . The existence of
RCRIT

0 is usually shown by comparing the epidemic
with an appropriate percolation process. The value
of RCRIT

0 depends on the contact distribution. It is
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known only in a few very special cases. However,
RCRIT

0 > 1 and for nearest-neighbor infection models
simulations show that RCRIT

0 ≈ 2.
Note that for both epidemics among a community

of households and spatial epidemics, the deterministic
and stochastic models will have different thresh-
old values, essentially because a deterministic model
implicitly assumes that all the group sizes are large.
For stochastic models, the threshold values of SIR
and corresponding SIS models are now different.

Open Population Epidemics

Consider the general deterministic epidemic, and
suppose that susceptibles are recruited into the pop-
ulation at rate ν and all individuals die from natural
causes at rate µ. Then the differential equations in
(1) become

dx

dt
= −βxy − µx + ν,

dy

dt
= βxy − (γ + µ)y,

dz

dt
= γy − µz. (2)

Setting dx/ dt = 0 and β = 0 shows that the disease-
free equilibrium population size is x0 = ν/µ. Thus
the expected number of infectious contacts made by
an infective in an otherwise susceptible population
is given by R0 = βν/(γ + µ)µ, since now infectives
are effectively removed at rate γ + µ.

Setting dx/ dt = dy/ dt = 0 in (2) gives the equi-
librium numbers of susceptibles and infectives. When
R0 ≤ 1, the only equilibrium point is the disease-
free one (x∗, y∗) = (ν/µ, 0). Moreover, this equilib-
rium is globally asymptotically stable, in the sense
that (x(t), y(t)) → (x∗, y∗) as t → ∞, irrespective
of the initial values (x(0), y(0)). When R0 > 1, there
is a second endemic equilibrium point (x∗, y∗) =
(β−1(γ + µ), (γ + µ)−1ν − β−1µ), and this too is
globally asymptotically stable (unless, of course,
y(0) = 0); see, for example, Hethcote [15] for de-
tails. Thus, if R0 ≤ 1 the disease cannot become
established in the population, while if R0 > 1 it will
become established and remain endemic. A similar
conclusion holds for a very broad range of open
population deterministic epidemic models, including
multipopulation models.

The stochastic version of the above model is far
more difficult to analyze. Suppose that the disease
is introduced into a susceptible population, which is
at its disease-free equilibrium level x0 = ν/µ. Then,
provided that x0 is sufficiently large, the early stages
of the epidemic can still be approximated by a birth-
and-death process. Hence, the epidemic will only
have a nonzero probability of taking off if R0 > 1.
However, even if it does take off, the epidemic will
ultimately go extinct with probability one (cf. [21]),
although it may take a very long time to do so.
Thus, for practical purposes, endemic behavior is
possible. However, simulations and observed data
on epidemics show that long-term persistence of
infection can only occur if the population is larger
than some critical level. This has a long history,
going back to the pioneering work of Bartlett [8].
The problem of determining the critical community
size, for endemic outbreaks to occur, in terms of
the parameters of the underlying model still awaits a
satisfactory solution [11]. See Andersson and Bitton
[2], pp73–77 for a brief discussion of this stochastic
model.
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Epidemiology as Legal
Evidence

In tort cases concerned with diseases resulting from
exposure to a toxic chemical or drug, epidemio-
logic studies are used to assist courts in determining
whether the disease of a particular person, typically
the plaintiff, was a result of his or her exposure. This
may seem puzzling to scientists, because whenever
there is a natural or background rate of an illness one
cannot be certain that its manifestation in a specific
individual who was exposed to a toxic agent actu-
ally arose from that exposure. Indeed, the probability
of causation in a specific individual is nonidentifi-
able [19]. The standard of proof courts utilize in civil
cases, however, is the preponderance of the evidence
or the “more likely than not” criterion. Thus, sci-
entific evidence that a particular agent can cause a
specific disease or set of related diseases in the gen-
eral population supports an individual’s claim that his
or her disease came from their exposure. Conversely,
scientific studies indicating no increased risk of a spe-
cific disease amongst exposed individuals are relied
on by defendants, typically producers of the chemical
or drug, to support the safety of their product. Sim-
ilar questions of causation arise in cases alleging
harm from exposure to hazardous wastes, although
the issue in these cases is often whether the exposure
was sufficient in magnitude and duration to cause the
disease (see Risk Assessment for Environmental
Chemicals).

Epidemiologic studies are also used to determine
eligibility for Workers’ Compensation, where the
issue is whether the employee’s disease arose from
exposure to an agent in the course of employment
[6, p. 831], in regulatory hearings to determine safe
exposure levels in the workplace (see Occupational
Health and Medicine), and have even been sub-
mitted as evidence in criminal cases [5, p. 153].
We emphasize scientific evidence in tort law, which
includes product liability and mass chemical expo-
sure cases, because it is the major area of the law
utilizing epidemiologic studies as evidence.

Tort Law

Tort law generally concerns suits for wrongful injury
that do not arise from a contract between the par-
ties. Thus, remedies to compensate for injuries from

a wide variety of accidents resulting from someone’s
negligence, e.g. professional malpractice, assault and
battery, environmentally induced injury, and fraud
can be obtained by a successful plaintiff. Product
liability is a special area of tort law dealing with
the obligations of manufacturers of products to con-
sumers who may suffer personal injury arising from
the use of the product.

In any tort claim the plaintiff needs to establish
a prima facie case by showing that the defendant
has a legal duty of care due to the plaintiff and
that the defendant breached that duty. In addition, a
plaintiff needs to show that (i) she suffered an injury
and that the defendant’s failure to fulfill its duty of
care was the (ii) factual and (iii) legal cause of the
injury in question. The law also recognizes defenses
that relieve the defendant of liability. The two most
prominent ones in tort suits are contributory neg-
ligence by the plaintiff and statutes of limitations,
which bar suits that are brought after a specified
period of time has elapsed from either the time of
the injury or the time when the relationship between
the injury and the use of the product was known to
the plaintiff [8]. In some jurisdictions, especially in
Europe [14, p. 834], if the injury results from a defect
arising from the product’s compliance with a manda-
tory legal provision at the time it was put on the
market, then the manufacturer is not liable. There
are substantial differences between jurisdictions as to
whether a plaintiff’s contributory negligence totally
absolves the defendant from liability, reduces it in
proportion to the relative fault of the parties, or has no
effect on the liability of a defendant whose contribu-
tion to the injury was small. In the US, the plaintiff’s
fault is rarely a complete bar to recovery when the
defendant’s negligence had a significant role. Sim-
ilarly, the effective starting date of the limitations
period varies among nations and among the states in
the US.

When reading actual legal cases that rely on sci-
entific evidence one needs to be aware of the relevant
legal rules. For example, although the epidemiologic
evidence linking the appearance of a rare form of
vaginal cancer in a young woman to her mother’s
use of diethylstilbestrol during pregnancy is quite
strong [1], some states barred plaintiffs from suing
because the statute of limitations had expired. Since
the cancers were recognized only when the young
women passed puberty, typically in the late teens or
early twenties, a number of injured women could not
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receive compensation. Other states, however, inter-
preted the limitations period as beginning at the time
the plaintiff should have been aware of the connec-
tion. In Europe, the European Economic Community
(EEC) directive of 1985 provides for a 10-year statute
of limitations and allows plaintiffs to file claims
within three years after discovering the relationship.
Markesinis [14] summarizes the directive and the rel-
evant English and German laws.

Epidemiologic evidence is most useful in resolv-
ing the issue of cause in fact, i.e. whether exposure
to the product made by the manufacturer, or chemi-
cals spilled onto one’s land by a nearby company,
can cause the injury suffered by the plaintiff. An
alternate formulation of the factual cause issue is
whether exposure increases the probability of con-
tracting the disease in question to an appreciable
degree. Case–control studies were used for this pur-
pose in the litigation surrounding Rely and other
highly absorbent tampons [6, p. 840]. Within a year
or two after these products were introduced, the
incidence of TSS (toxic shock syndrome) amongst
women who were menstruating at the time of the
illness began to rise sharply. Several studies, cited
in Gastwirth [6, p. 918], indicated that the estimated
relative risk of contracting the disease for users of
these tampons was at least 10, which was statistically
significant (see Hypothesis Testing).

In light of the sharp decline in the incidence
of TSS after the major brand, Rely, was taken off
the market, the causal relationship seems well estab-
lished and plaintiffs successfully used the studies to
establish that their disease was most likely a result
of using the product. When only one case–control
study, however, indicates an association between
exposure and a disease, courts are less receptive.
Inskip [12] describes the problems that arose in a
British case concerning radiation exposure of work-
ers and leukemia in their children (see Leukemia
Clusters).

There is a rough rule relating the magnitude of the
relative risk, R, of a disease related to exposure and
the legal standard of preponderance of the evidence,
i.e. at least half of the cases occurring amongst indi-
viduals exposed to the product in question should be
attributable to exposure. As the attributable risk is
(R − 1)/R, this is equivalent to requiring a relative
risk of at least 2.0. While a substantial literature dis-
cusses this requirement (see [20, pp. 1050–1054], [6,
Chapters 13 and 14, 24], and [10, pp. 167–170] for

discussion and references), courts have been reluc-
tant to adopt it formally, since it would allow the
public to be exposed to agents with relative risks just
below 2.0 without recourse. The lowest value of R

accepted by a court the writer has seen is 1.5, in a
case concerning the health effects of asbestos expo-
sure. Courts usually require that the estimated R be
statistically significantly greater than 1.0 and have
required a confidence interval for R but also con-
sider the role of other error rates [10, pp. 153–154].
When a decision must be based on sparse evidence,
courts implicitly consider the power of a test and
may not strictly adhere to significance at the 0.05
level.

The relative risk estimated from typical case–
control studies is taken as an average for the over-
all population. Courts also consider the special cir-
cumstances of individual cases and have combined
knowledge of the prior health of a plaintiff, the time
sequence of the relevant events, the time and duration
of exposure, as well as the latent period of the dis-
ease, with epidemiologic evidence to decide whether
or not exposure was the legal cause of a particular
plaintiff’s disease.

So far, our discussion has dealt with the crite-
ria for factual causality where an injury has already
occurred. In some cases concerning exposure to a
toxic chemical, plaintiffs have asked for medical
monitoring, such as periodic individual exams or a
follow-up study. As this is a new development, a
specific minimal value of R has not been estab-
lished.

In product liability law, a subclass of tort, in
addition to negligence claims, sometimes one can
assert that the manufacturer is subject to strict lia-
bility [15, 18]. In strict liability the test is whether
the product is unreasonably dangerous, not whether
the manufacturer exercised appropriate care in pro-
ducing the product. Epidemiologic studies indicat-
ing a substantial increased risk of a disease can
be used to demonstrate that the product is “unrea-
sonably dangerous” from the viewpoint of the con-
sumer.

Some product liability cases concern the manu-
facturer’s duty to warn of dangers that were either
known to the manufacturer or could reasonably have
been foreseen at the time the product was marketed.
In the US, producers are also expected to keep abreast
of developments after the product is sold and to issue
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a warning and possibly recall the product if post-
marketing studies show an increased risk of serious
disease or injury.

One rationale underlying the duty to warn is
informed consent [17, p. 209] (see Ethics of Ran-
domized Trials). Because asbestos was linked to lung
cancer by a major study [23] published in the 1960s,
the plaintiff in Borel vs. Fibreboard Paper Products
Corp., 493 F. 2d 1076 (5th Cir. 1973) prevailed on
his warning claim. The opinion observed that a duty
to warn arises whenever a reasonable person would
want to be informed of the risk in order to decide
whether to be exposed to it.

The time when the risk is known or knowable to
the manufacturer is relevant. In Young vs. Key Phar-
maceuticals, 922 P. 2d 59 (Wash. 1996) the plaintiff
alleged that the defendant should have warned about
the risk of seizure from the drug given him for
asthma. The firm argued that the studies existing in
1979, when the child was injured, were not clinically
reliable. Even though subsequent research confirmed
those early studies that suggested an increased risk,
the court found that the defendant did not have a duty
to warn in 1979.

The reverse situation may have occurred in the
Wells case, 788 F. 2d 741 (11th Cir. 1986). At the
time the mother of the plaintiff used the spermicide
made by the defendant, two studies had shown an
increased risk of limb defects and the court found
the firm liable for failing to warn. Subsequent stud-
ies, which still may not be definitive, did not confirm
the earlier ones, and in a later case the defendant was
found not to be liable. While this seems inconsistent
from a scientific point of view, from a legal perspec-
tive both decisions may be reasonable because the
information available at the two times differed.

Government Regulation

Epidemiologic studies are used by regulatory agen-
cies such as the Food and Drug Administration
(FDA) and Occupational Safety and Health Adminis-
tration (OSHA) to get manufacturers to recall harmful
products or give an appropriate warning. Indeed, the
manufacturer of Rely tampons recalled the product
after the fourth case–control study linked it to toxic
TSS. More recently, case–control studies supported
a warning campaign.

In 1982, after a fourth study indicated an asso-
ciation between aspirin use and Reye’s syndrome,

the FDA proposed a warning label on aspirin con-
tainers. The industry challenged the original studies,
and the Office of Management and Budget (OMB)
asked the FDA [16, 22] to wait for another study.
The industry suggested that caretakers of cases would
be under stress and might guess aspirin, especially if
they had heard of an association, so two new con-
trol groups (children hospitalized for other reasons
and children who went to an emergency room) were
included in the follow-up study [25]. The odds ratios
(OR) for cases compared with each of these two
control groups were about 50, far exceeding those
of the school (OR = 9.5) and neighborhood controls
(OR = 12.6).

In late 1984 the government, aware of these
results, asked for a voluntary warning campaign; a
warning was mandatory as of June 1986. The fol-
lowing are the Reye’s syndrome cases and fatalities
from 1978 to 1989: 1978 (236, 68); 1979 (389, 124);
1980 (555, 128); 1981 (297, 89); 1982 (213, 75);
1983 (198, 61); 1984 (204, 53); 1985 (93, 29); 1986
(101, 27); 1987 (36, 10); 1988 (25, 11); 1989 (25, 11).
The cases are graphed in Figure 1. Notice the sharp
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decline between 1983–84 and 1985–86, reflecting
the effect of the warning campaign.

Criteria for Admissibility of
Studies as Evidence

Courts are concerned with the reliability of scientific
evidence, especially as it is believed that lay people
may give substantial weight to scientific evidence. In
the US, the Daubert decision, 113 US 2786 (1993),
set forth criteria that courts may use to screen sci-
entific evidence before it goes to a jury. The case
concerned whether a drug, Bendectin, prescribed for
morning sickness caused birth defects, especially in
the limbs. Related cases and the studies are described
at length in Green [9]. The Daubert decision replaced
the Frye 293 F. 1013 (DC Cir. 1923) standard, which
stated that the methodology used by an expert should
be “generally accepted” in the field by the criteria in
the Federal Rules of Evidence. The court gave the
trial judge a gatekeeping role to ensure that scientific
evidence is reliable. Now judges may examine the
methodology used and inquire as to whether experts
are basing their testimony on peer reviewed studies
and methods of analysis before admitting the evi-
dence at trial.

The US Supreme Court decision in Daubert re-
manded the case for reconsideration under the new
guidelines for scientific evidence. The lower court,
43 F. 3d (9th Cir. 1995), decided that the expert’s
testimony did not satisfy the Daubert guidelines for
admissibility in part because the plaintiff’s expert
never submitted the meta-analysis of several stud-
ies, which was claimed to indicate an increased
relative risk, for peer review. Similarly, in Rosen
vs. Ciba-Geigy, 78 F. 3d 316 (7th Cir. 1996), the
court excluded expert testimony that a man’s smok-
ing while wearing a nicotine patch for three days
caused a heart attack. The appeals court said that the
expert’s opinion lacked the scientific support required
by Daubert because no study supported the alleged
link between short-term use of the patch and heart
disease caused by a sudden nicotine overdose. The
Rosen opinion notes that the trial judge is not to do
science but to ensure that when scientists testify in
court they adhere to the same standards of intellec-
tual rigor they use in their professional work. If they
do so and their evidence is relevant to an issue in the
case, then their testimony is admissible, even though

the methods used are not yet accepted as canonical
in their branch of science.

In two opinions that followed Daubert, Joiner vs.
General Electric, 522 U.S. 136 (1997) and Kumho
Tire Co. v. Carmichael, 119 S.Ct. 1167 (1999) the
Court expanded the trial judge’s role in screening
expert testimony for reliability. Now, testimony rely-
ing on studies from social science and technical or
engineering experience will be subject to review by
the judge before the expert is allowed to testify.
The Kumho opinion noted that the factors mentioned
in Daubert (e.g. whether the theory or technique
on which the testimony is based has been tested,
whether it has been subject to peer review and pub-
lication, the known or potential error rate) were only
a guideline rather than criteria to be strictly applied
to prospective expert testimony. In particular, the cir-
cumstances of the particular case will have a major
role. Commentators [2, 3, 11, 21]) have discussed
its implications as well as cases where the circuit
courts (covering different regions of the U.S.) have
disagreed in their evaluations of similar evidence.
Fienberg et al. [4] and Loue [13] discuss the review-
ing process, noting some important factors for judges
to consider.

Courts have reached different conclusions con-
cerning the admissibility of the method of differential
diagnosis, where medical experts conclude that a
disease was caused by a particular exposure by elim-
inating other potential causes. The cases concerning
the drug Parlodel and its relationship to stroke, dis-
cussed in [7] illustrate the problem. After studies
showed that the drug could cause ischemic strokes,
some plaintiffs offered expert testimony that these
studies showed the drug could cause hemorrhagic
strokes too. The Rider v. Sandoz, 295 F. 3d 1194
(11th Cir. 2002) opinion upheld a lower court’s rejec-
tion of this extrapolation. At the same time it cited
favorably Globetti v. Sandoz (111 F. Supp. N.D. Ala
2001) which admitted testimony based on differential
diagnosis and also stated that epidemiologic studies
are not an absolute requirement. While no human
studies had been carried out, animal studies had indi-
cated a risk. The expert was allowed to utilize this
information in a differential diagnosis. Thus, the trial
judge’s assessment of the care and thoroughness with
which a differential diagnosis or other scientific study
has been carried out by a prospective expert as well
as whether the expert has considered all other rel-
evant evidence that is available at the time will be
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a major factor in deciding whether the testimony is
admissible.
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Epidemiology, Overview

Epidemiology and biostatistics together constitute the
quantitative foundation for public health and clini-
cal research. Epidemiology has been variably defined
[20, 25], but all definitions have as essential compo-
nents the collection and use of data from populations
or groups. Epidemiology might be viewed as formu-
lating study designs to provide unbiased evidence for
testing hypotheses by applying methods for gather-
ing and using data from populations or groups of
people. The domain of epidemiology includes both
observation and experiment, although, ethically, the
study of injurious factors is limited to observation.
The consequences of exposure to potentially injuri-
ous agents can only be assessed by comparing disease
risks in persons exposed through natural circum-
stances, including personal choice, with disease risks
in those not exposed. Potentially beneficial agents,
like chemopreventive micronutrients, might be eval-
uated using the same observational approaches or,
in a clinical trial, by randomly assigning participants
to the agent to be tested or to a placebo or other
comparison therapy.

The principles of epidemiologic research are not
unique to epidemiology and, in fact, permeate other
branches of science concerned with human health
and well-being: health services research, psychol-
ogy, sociology and anthropology. Nor can a sharp
point of demarcation be drawn between biostatis-
tics and epidemiology. The most basic distinction
places statistical aspects of design and data analy-
sis in the domain of biostatistics and overall design
and data collection in epidemiology, but the conduct-
ing of contemporary epidemiologic research needs
integrated efforts from biostatisticians and epidemiol-
ogists, and often from clinicians and basic scientists.
In addition, since the findings of much epidemiologic
research often have immediate applications to clini-
cal and public health policy, considerable media and
public attention is directed to epidemiologic studies,
frequently before they have been replicated and their
results confirmed.

This article provides an overview of the field of
epidemiology, setting a context for the more specific
articles in this volume. It addresses the history of epi-
demiology, the purposes of epidemiologic research,
the pathways for using epidemiologic evidence to
further public health, and the current scope of the

field, which is increasingly fragmented into specific
areas of inquiry. The other articles in this book
provide detailed reviews of different study designs,
analytic methods and specifically focused areas of
epidemiology.

History of Epidemiology

The beginning of contemporary epidemiology is often
dated to the mid-twentieth century, when many large-
scale studies were initiated to assess the causes
of the shifting pattern of disease in the developed
world observed during the preceding decades: ris-
ing mortality from seemingly new chronic diseases,
like coronary heart disease and lung cancer, even
as mortality from infectious diseases declined [39].
The many landmark studies on this theme that gave
rise to current approaches are well known to bio-
statisticians and epidemiologists alike; for example,
the Framingham Heart Study initiated in 1949 [11],
and the British physicians’ study initiated in 1951
[13]. In addition to these cohort studies, case–control
studies were also carried out to characterize more
quickly and efficiently the causes of the emerging
chronic diseases. For example, the first convincing
evidence on smoking and lung cancer was derived
from case–control studies reported in the 1940s and
early 1950s [52]. Cohort studies were also initiated to
characterize the consequences of unique exposures,
like the study of Japanese atomic-bomb survivors,
which still continues today [43].

The origins of epidemiology, however, can
be traced back centuries. Society has continually
attempted to find the causes of epidemics of disease,
whether the plague centuries ago or the sudden
appearance of acquired immune deficiency syndrome,
(AIDS), only two decades ago [46]. The search for
causes, discussed in the third section, is intrinsically
linked to the search for cures and avenues for
prevention, and now as in the past, epidemiologic
evidence remains central to the development of
policies to protect and improve the public’s health.
An epidemiologic perspective is also central to the
provision of care for individual patients who need to
be cared for in a population context that recognizes
the many factors determining their health and disease
status. While “evidence-based” medicine and clinical
epidemiology have been only recently touted [18,
40], the role of quantitative inference in clinical
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medicine was recognized in the nineteenth century
by the French physician, Pierre Louis [28, 46].

One element of epidemiology is the description
of the occurrence of disease, generally by person,
place and time. The counting of disease events can
be traced to Graunt who published his book, Natural
and Political Observations Made Upon the Bills Of
Mortality, in 1662 [6]. In this volume, he analyzed
the bills of mortality for London, which included
the weekly numbers of deaths and their causes, and
the numbers of children christened. From these data,
he inferred a lifetable for survival in London at
the time. His acquaintance, Sir William Petty, also
saw the relevance of counting to medicine and he
too attempted to estimate life expectancy at birth
[6, 46]. Thirty years after the publication of Graunt’s
book, Edmund Halley, better known for the comet
bearing his name, described a lifetable for Breslau
and in doing so he showed a clear understanding of
population dynamics.

In the nineteenth century, major developments
again took place in London. Wlliam Farr advanced
counting to a new level through his work at
the General Register Office [15, 46]. Farr held
responsibility for health statistics for England and
Wales and in that capacity he systematically
collected and analyzed data, developing new
methods and showing the insights into population
health that could be gained from valid descriptive
data (see Vital Statistics, Overview). Farr’s
contemporary, John Snow, undertook investigations
of cholera epidemics in London and also practiced
anesthesia, giving chloroform to Queen Victoria for
childbirth [44]. Snow’s investigations of cholera in
London, undertaken by the newly founded London
Epidemiological Society, led to the determination that
cholera was transmitted via contaminated drinking
water. Proof of this hypothesis prompted preventive
interventions, including the recommendation to
remove the handle of the Broad Street pump, a source
of contaminated drinking water.

The further rise of epidemiology to the modern
era was based in a scientific framework grounded
in the emerging recognition of the role of micro-
organisms in causing disease and the rise of infec-
tious disease epidemiology. In fact, the first prin-
ciples for evaluating research findings for evidence
of causality are often attributed to Robert Koch,
although he had benefited from his teacher, Jacob

Henle [14]. Koch applied these principles in his iden-
tification of the tubercle bacillus as the cause of
tuberculosis.

Epidemiology has also used experimental meth-
ods. Early eighteenth-century examples include
Lind’s small trial of fresh fruit to prevent scurvy
and Jenner’s experimental use of cowpox vaccina-
tion to prevent smallpox. Early in the twentieth cen-
tury, Goldberger conducted experiments that showed
pellagra to result from a dietary deficiency, subse-
quently shown to be a lack of niacin [2, 32]. The
contemporary clinical trial originated in the twen-
tieth century as the concept of randomization of
participants was introduced and the power of the
design was shown in studies of streptomycin for
tuberculosis and of vaccination for polio, for example
[27, 31].

The first academic department of epidemiology
was founded at the Johns Hopkins University School
of Hygiene and Public Health in Baltimore in 1919
with the appointment of Wade Hampton Frost [16].
Frost combined interests in infectious diseases and
research methods [30] and he saw the relevance of
epidemiology to solving problems in public health.
His department and its problem-oriented teaching
methods became a model for institutions worldwide.
Now, schools of public health throughout the world
grant master’s and doctoral degrees in epidemiology,
as do some medical schools.

By the mid-twentieth century, the stage was set for
the rise of modern epidemiology: academic depart-
ments were established and the new epidemics of
coronary heart disease, chronic lung disease, and
cancer motivated new research approaches that could
address multicaused diseases with lengthy incuba-
tion periods and long natural histories. The prospec-
tive cohort study was initially the central design for
investigating these diseases. Prospectively conducted
cohort studies afforded the opportunity to collect data
to test multiple hypotheses concerning disease etiol-
ogy and the strength of this design was quickly shown
by the success of the Framingham and other studies
in identifying causes of heart disease and through the
rapid confirmation that smoking caused lung cancer
and other diseases by the studies of British physicians
and other groups, including the one million persons
enrolled in the American Cancer Society’s Cancer
Prevention Study (CPS) [41].

The Framingham study is still considered a model
for community-based research. Dawber [11] has
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chronicled the origins of the study, which was imple-
mented in the late 1940s to address the rising
occurrence of cardiovascular disease. The long-term
success of the study can be attributed to the selec-
tion of a small and cooperative community, sustained
support from the National Institutes of Health (NIH),
and to the prescience of the original investigators
who established rigorous and standardized protocols
for data collection. Data were collected relevant to
testing the principal extant hypotheses concerning eti-
ology, which were listed at the study’s beginning.
As a result, much of our initial understanding of
risk factors for cardiovascular diseases was based
on evidence from this study. Supplementary stud-
ies of other diseases capitalized on the opportunity
afforded by having the Framingham population under
follow-up, and offspring of the original cohort have
now been enrolled in a new cohort study that should
be informative on familial factors affecting cardio-
vascular disease risk. The longitudinal data on multi-
ple risk factors necessitated methodologic advances,
since appropriate multivariate methods had not been
available. For example, Gordon and colleagues [21]
described application of discriminant analysis in a
1959 paper.

The cohort design (see Cohort Study) remains
central to observational epidemiologic research,
although elaborations of the design have been made
to enhance feasibility while reducing costs. For
example, large cohorts, like the Nurses’ Health Study
participants, have been followed primarily by using
mailed questionnaires and matching against central
registries to determine vital status. It has even been
possible to obtain biologic specimens, including
toenails for trace metal analysis and blood for DNA,
using this approach. In the US, the NIH has taken
the lead in establishing multicenter prospective cohort
studies, particularly in the area of cardiovascular
disease – for example, the Atherosclerosis Risk in
Communities (ARIC) study, the Community Heart
Study (CHS), and the Strong Heart Study of heart
disease in Native Americans. These multisite studies
gain external validity by drawing participants from
communities across the US. Data collection is
standardized and data are accumulated, evaluated and
managed at central coordinating centers.

Opportunities for data linkage have now facili-
tated the conduct of cohort studies. Using record
linkage approaches, lists of exposed individuals can
be matched for outcome against death indexes and

disease registries (see Record Linkage). Pioneering
cohort studies based on this approach were con-
ducted in Canada, where a mortality register of deaths
back to 1950 has been available for matching and
establishing vital status and cause of death [36].
The National Health and Nutrition Examination Sur-
vey (NHANES) conducted by the National Center
for Health Statistics has been given a longitudinal
component by linkage against death certificates and
additional follow-up data collection [10].

The case–control design, discussed in detail else-
where in this volume, is the other principal obser-
vational design for testing hypotheses and has also
evolved over the same 50 years. Inherent limita-
tions of this design have led some epidemiologists
to consider it inferior to the cohort study [2, 17].
Information obtained by interview from cases and
controls may be affected by bias; differential bias
across cases and controls may create confusing pat-
terns of association. The results of case–control stud-
ies conducted among persons selected through a par-
ticular institution, e.g. a hospital or clinic, may also
be subject to selection bias [4]. Control selection may
also be problematic [46] and design principles and
feasibility may be in conflict.

There is now substantial understanding of these
problems, however, and a methodologic foundation
for the case–control design has been firmly estab-
lished [1]. Cornfield [9] proposed the odds ratio as an
estimate of the relative risk for case–control data and
Mantel & Haenszel [29] described methods of strati-
fied analyses in their 1959 paper: “Statistical aspects
of the analysis of data from retrospective studies of
disease”. Miettinen further elaborated the underlying
principles and analytic methods [33, 34] as did others
[7, 42]. More generally, the links between cohort and
case–control designs were noted and case-based sam-
pling designs for cohort studies were proposed that
unified the two approaches [26, 38].

The case–control design has proved effective
for identifying strong causes of disease, such as
smoking and lung cancer, diethylstilbestrol and
adenocarcinoma of the vagina, and vinyl chloride
and angiosarcoma of the liver. The design has been
widely applied in research on the etiology of cancer,
primarily by using population-based registries to
identify cases and sampling to select representative
controls. This design is conceptually equivalent
to a case–control study nested within a cohort
representing all residents of the registry’s catchment
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area. One landmark study of this design addressed
artificial sweeteners and bladder cancer; the study
included 3010 cases and 5783 controls [23]. The
case–control approach has now also been applied to
assess screening and the risks and benefits of therapy.

The randomized trial, an experimental design, is
widely held to be the gold standard of population
studies. While experimental designs have been used
to test therapeutic interventions for several centuries,
the modern clinical trial originated in the twentieth
century [27]. The use of randomization was advo-
cated in the late 1940s by Austin Bradford Hill and
applied in two seminal trials: a test of the pertussis
vaccine and an assessment of the efficacy of strep-
tomycin in treating tuberculosis [12]. The clinical
trial has since rapidly evolved to include variations
in the design and the development of multicenter
approaches that make extremely large trials possible.

The core element is the random assignment of sub-
jects to different therapeutic or preventive options.
While randomization does not guarantee comparabil-
ity of the study groups, it does eliminate the potential
bias that may result from an investigator’s preconcep-
tions. Randomization makes it impossible to predict
the assignment of the next person enrolled in the
study. While in observational studies we will often
match on variables that are known to influence out-
comes, the advantage of randomization over matching
is that randomization increases the likelihood of com-
parability of the groups even for factors that influence
prognosis but of which we may be unaware or may
be unable to measure. Ideally, randomized trials are
conducted “blindly” – that is, the subject is unaware
of which regimen he is receiving, and the physi-
cian or other health care provider does not know to
which therapy the individual has been assigned. This
is often accomplished by using a placebo, an inert
material that looks and tastes like the active drug. At
times, however, blinding may be difficult or impossi-
ble to implement, a problem that is most significant
when the outcome being studied is a subjective one
such as pain. In recent years considerable attention
has focused on ethical issues pertaining to the use
of placebos since using placebos may often involve
not offering a currently available agent that is at least
partially effective.

The randomized trial has most often been applied
to clinical therapies, but has found increasing value
for studying the benefits of community-wide inter-
ventions with public health measures.

The Specialization of Epidemiology

With the increasing complexity of epidemiologic
research, epidemiologists and their areas of inquiry
have become increasingly focused and specific. The
bifurcation of the field into “infectious disease epi-
demiology” and “chronic disease epidemiology” no
longer holds. The field has become multidimensional
with cells defined by disease (e.g. cancer or heart dis-
ease), exposure (e.g. environment or nutrition), meth-
ods (e.g. genetic or molecular) and problem domain
(clinical or outcome). Increasingly, genetics overlays
all lines of inquiry, particularly those directed at dis-
ease etiology.

The core methods and principles are comparable
across these areas of epidemiology, but each has
its own special aspects. Of course, in each area
there is a specific biomedical substrate, reflecting the
exposures and outcomes of interest and the under-
lying biological phenomena. Additionally, methods
for exposure and outcome assessment may be spe-
cific to an area. In studying occupation and health
there are specific measurement methods for char-
acterizing workplace exposures and the job itself
may be used as an exposure surrogate, sometimes
with the application of a job-by-exposure matrix
[8]. Studies in the domain of genetic epidemiology
use specific study designs, often family-based, and
analytic methods that characterize patterns of asso-
ciation of disease risk with genetic markers. Other
articles in this volume cover clinical epidemiology,
environmental epidemiology, genetic epidemiology,
nutritional epidemiology, occupational epidemiol-
ogy, pharmacoepidemiology and risk assessment.

Epidemiology, Policy and Public Health

The direct linkage of epidemiologic evidence to mak-
ing policy intended to advance public health is widely
acknowledged. Almost universally, epidemiologists
tell the story of John Snow and the Broad Street pump
as an illustration of the immediacy of observational
findings for solving public health problems. This
example is particularly compelling because Snow
demonstrated the waterborne transmission of cholera
before there was knowledge of the existence of the
Vibrio cholerae organism. There are numerous other
examples, also considered as triumphs of epidemi-
ologic inquiry: establishing cigarette smoking as a
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cause of lung cancer and other diseases, identify-
ing powerful and remediable causes of cancer like
asbestos exposure and diethylstilbestrol administra-
tion during pregnancy, and the characterization of risk
factors for AIDS.

As a core discipline of biomedical research, epi-
demiology is not unique in generating evidence rel-
evant to policy. After all, the ultimate goal of all
biomedical research is to advance the health of peo-
ple. Epidemiology, as a scientific method applied
directly in the population context, brings evidence
that directly bears on the health of the population
and this direct linkage is what distinguishes epidemi-
ology from other branches of biomedical research.
As a consequence, epidemiologic findings generally
have immediate relevance to setting policies pertinent
to health and this relevance often gives prominence
to epidemiologic evidence in the diverse processes by
which policies are made. This prominence has occa-
sioned targeted review and criticism of specific epi-
demiologic findings and of epidemiology generally.
As epidemiologic research has addressed increasingly
complex questions concerning the causes of disease,
the risks of environmental factors and the benefits of
interventions, the resulting evidence may be subject
to uncertainties that cloud decision-making, leading
some to question the utility of epidemiologic data.

The community of epidemiologic researchers is
divided in its view of epidemiology and policy. At
one extreme, some would consider epidemiology as

being no different from other branches of science
where the rationale for research is often given as
advancing knowledge; at the other, epidemiologic
research would be construed as justified only if the
evidence were to be relevant to advancing pub-
lic health. Epidemiologists are similarly divided in
their view of the role of epidemiologists in policy-
making processes. Some eschew such involvement
and one respected journal, Epidemiology, does not
allow authors to offer policy recommendations. Oth-
ers have called for renewed activism by epidemi-
ologists and engagement with the sweeping social
problems that underlie many of the increased risks
that epidemiologists have elegantly and repetitively
described [37, 45]. Even as debate continues, the use
of epidemiology for policy purposes is burgeoning
with the rise of the outcomes movement and calls
for evidence-based medicine, and the need to apply
the explosively expanding knowledge of the human
genome in clinical and population contexts.

The paths and processes leading from hypothesis
to policy are diverse and often lengthy and ill-defined
(see Figure 1 and Table 1). In the area of infectious
diseases, findings may lead quickly to action; John
Snow acted immediately in response to his own
findings on the waterborne transmission of cholera.
Continuing in this tradition, investigators addressing
infectious disease problems make policy recommen-
dations more often than investigators working in
other areas [24]. For some areas of inquiry, evidence

Figure 1 Science/policy interface
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Table 1 Some pathways and examples for translation of
epidemiologic evidence into policy

Regulatory
• Occupational health and safety
• Environmental quality
• Drug safety

Public health recommendations

• Vaccination
• Diet
• Smoking

Legal system

• Causation of injury

Health care delivery

• Practice guidelines
• Outcome assessment

may accumulate slowly, e.g. diet and cancer, and only
reach a level of certainty sufficient for policy-making
after decades of research. Of course, research and
policy-making are interactive and iterative, and poli-
cies may change as evidence evolves.

Some of the routes for translating epidemiologic
and other data into policy are listed in Table 1. They
range from formal and structured, as in the require-
ments of specific regulations, to informal and unstruc-
tured, as in the choices that individuals take for their
own lifestyles. For example, the 1996 draft cancer
policy guidelines of the US Environmental Protection
Agency [51] offer instruction for evaluating and inter-
preting epidemiologic data. Criteria for causality have
been rigorously applied in the reports of the Surgeon
General on smoking and health [49, 50]. Gail [19]
traced the application of these criteria to the evidence
on smoking and lung cancer and showed their util-
ity for organizing the relevant lines of evidence and
making certain that alternatives to the causal hypoth-
esis could be satisfactorily addressed. Specific actions
may be invoked if the evidence reaches a threshold
of certainty, e.g. a causal association is found or a
target level of risk is reached. Embedded within these
translation routes are processes for identifying and
evaluating the relevant evidence (Table 2).

New tools for conducting epidemiologic research,
together with the increasing capacity to manage and
analyze large databases, have made epidemiologic
evidence more informative for answering policy-
maker’s questions. Large administrative databases,
such as the Health Care Financing Administration’s

Table 2 Some processes for translation of epidemiologic
evidence into policy

Application of causal criteria
Expert opinion
Consensus methods
Committee review
Quantitative synthesis
Risk assessment
Jury evaluation

Medicare files, can be explored to test hypothe-
ses with immediate policy relevance – outcome of
myocardial infarction in relation to hospital volume
[47] and patterns of care by race and gender [22,
35], for example. Increasingly powerful multivariable
methods for data analysis can detect policy-relevant
patterns of association with the confidence that the
associations are not spurious, while new models for
longitudinal data analysis facilitate the capacity to
describe disease and its development in time [48].

For many policy issues, the evidence comes from
numerous and sometimes heterogeneous studies. Syn-
thesis of such data for policy purposes has often
been accomplished by expert review and consensus,
tabular summary, or the application of criteria for
causality. These processes have proved effective, par-
ticularly for strong associations, but uncertainties in
the evidence have undermined conclusions, particu-
larly if conclusions weighted by policy are reached.
An example is the epidemiologic evidence on passive
smoking, which has been the scientific basis for pro-
grams to reduce smoking in public places and repeat-
edly questioned by the tobacco industry and its con-
sultant scientists. Combining evidence from multiple
studies, whether experimental or observational, has
proved to be an efficacious approach for synthesis.
This combination can be accomplished by meta-
analysis, combining summary estimates from indi-
vidual studies, and pooled analysis, analyzing data
jointly from individual participants in multiple stud-
ies (see Meta-analysis in Epidemiology). While the
use of meta-analysis has been questioned [3], prop-
erly conducted meta-analyses have yielded useful and
sometimes unexpected findings [5]. Pooled analysis
is a more powerful approach, offering the possibil-
ity of controlling, confounding and exploring effect
modification at the individual level, but requiring the
effort of creating the pooled data set for analysis. The
array of alternative approaches for synthesis, rang-
ing from expert opinion to quantitative summary,
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has not been rigorously evaluated, but more recent
approaches, involving a systematic evaluation and
quantitative summary of data, seem preferable.

Summary

The twentieth century has seen a remarkable evo-
lution of epidemiology and also of biostatistics, the
companion quantitative science of public health and
medicine. Epidemiology has moved from being a
problem-solving approach used in the field to a core
scientific method of biomedical research. As scientific
questions around the public’s health have become
more complex, the field of epidemiology has itself
become more complex with speciation into subareas
defined by exposures, outcomes, and the methods and
domains of inquiry. Evidence forthcoming from epi-
demiologic research is given weight in policy devel-
opment for health care and public health, attesting to
the immediacy and relevance of epidemiologic data.
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Epilepsy

Approximately 22 of every 1000 people will suffer
a seizure (convulsion or fit) sometime during their
lives and, of these, 17 will have a recurrence within
a comparatively short period (about one year) and
be diagnosed with epilepsy; about 10 per 1000 are
currently prescribed anti-epileptic drugs (AEDs), and
about 5 per 1000 have “active” epilepsy (a seizure
within the previous two years). The last is equiva-
lent to a point prevalence for epilepsy of 500 per
100 000 population. With an annual incidence of 40
per 100 000 there are about 65 new cases each day
in a population of 60 million.

The epilepsies are one of the oldest documented
groups of diseases; they were described and classified
in a neo-Babylonian stone “textbook” of medicine
(700–600 BC), and effective treatment was claimed
by Hippocrates (460–377 BC) who advocated “use
of drastic measures including drugs”; various forms
of epilepsy are featured in the Bible. Despite this
long history, “epilepsy” is poorly understood, a cause
being clearly identified in only 50% of cases. This is
changing following the introduction of noninvasive,
high-definition, computerized scanning techniques,
such as magnetic resonance imaging, which can local-
ize lesions deep within the brain. Epilepsy affects
all age groups, being particularly associated with
birth trauma and infection in the very young, head
injury in teenagers and young adults, alcohol in mid-
dle age, and vascular disease, cerebral tumors, and
pneumonia in the elderly; seizures may be induced
by lack of sleep, stress, the menses (catamenial
epilepsy), and in some people who are photosensi-
tive, by watching television and playing video games.
In some patients seizures may only occur during spe-
cific periods (whilst asleep or on wakening), in others
randomly.

Towards the end of the nineteenth century Gowers
(1845–1915), the first neurologist to study epilepsy
scientifically and who initiated the modern era of
epilepsy epidemiology, listed about 50 extracts from
plants and other chemical compounds (some of
them poisons) which had been used during the
previous 1400 years to treat epilepsy. Earlier, in
1860, Sieveking had wryly commented that “there
is scarcely a substance in the world capable of pass-
ing through the gullet of man that has not at one
time or another enjoyed the reputation of being

antiepileptic”. The modern era of pharmacological
treatment started with the introduction of bromides
(which are quite toxic) by Locock in the 1860s,
and culminated by 1976 in the licensing of 37
major drugs under 480 proprietary names world-
wide; (see [14]). Today most patients are maintained
on one of four AEDs: phenobarbitone (discovered
in 1912), phenytoin (1938), carbamazepine (1974),
and sodium valproate (1978). During the 10 years
following the introduction of sodium valproate few
new AEDs were discovered, a situation which has
reversed since the late 1980s with 15–20 new agents
now under intense investigation, and several already
licensed.

Seizures

Most epileptic seizures are spontaneous (unpro-
voked), short-lived (rarely exceeding 15 minutes
in duration), and self-limiting (thus terminate with-
out intervention); however, they are recurrent in
some patients and may re-occur over many years
either intermittently or in bursts (clusters). An epilep-
tic seizure is thus a transient disturbance of brain
function resulting from repeated simultaneous firing
(paroysmal discharge) of nerve cells sometimes lim-
ited within a specific region of the brain (for exam-
ple, the temporal lobe or motor cortex), sometimes
spreading from a specific region (focus) to the whole
brain, and sometimes engulfing the whole brain from
onset. This gives rise to a natural subdivision into par-
tial seizures (sometimes secondarily generalized) and
primary generalized seizures; partial seizures may
or may not be associated with loss of conscious-
ness, leading to further subdivision. In practice there
are several different types of both partial and gen-
eralized seizures and these have been delineated in
a classification system devised by the International
League Against Epilepsy (ILAE). Besides a classi-
fication of seizure types the ILAE has also devised
a classification of the epilepsies (the pathology that
underlines the seizures themselves); the former is
simpler and ubiquitous (almost mandatory) in stud-
ies of epilepsy, the latter is much more complex
and, consequently, of less practical use. Both systems
require an electroencephalogram (EEG) for precise
application. (The EEG is a multi-electrode device
which, from the surface of the scalp, records electrical
activity integrated over a few million nerve cells situ-
ated within different regions of the brain and outputs
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multiwave (one from each region, often about 16)
continuous traces; these are examined for several spe-
cific abnormal patterns characterizing high frequency
neuronal discharges.) The majority of patients suffer
just one type of seizure, the commonest being pri-
mary generalized tonic–clonic and complex partial
seizures. With the former the subject loses conscious-
ness, falls to the ground, stiffens (tonic phase), and
then suffers violent jerking (clonic phase) of the
whole body, which eventually subsides; the subject
then regains consciousness but may be confused and
tired, and consequently sleeps. With partial complex
seizures the subject engages in complicated circular
movements of the arms and/or legs and/or fidgety
movements with the fingers. A minority of patients
manifest seizures of two, or much more rarely, three
types. It is important to stress that not all seizures are
associated with epilepsy. For example, children under
six years of age may suffer a (febrile) convulsion as
a result of a high temperature induced by fever; such
seizures are not epileptic. However, the induction of
a series of epileptic seizures by electrical stimulation
of the brain is a therapeutic maneuver for the treat-
ment of some psychiatric disorders [electroconvulsive
therapy (ECT)]. Furthermore, some patients may suf-
fer from an illusion that they have had seizures and
provide a credible description of them – a psychiatric
disorder categorized as “pseudoseizures”.

Treatment and Prognosis

In clinical practice patients who experience a seizure
are often first seen by a community physician (gen-
eral practitioner), who will refer most to a neurologist
for further investigation, and may, dependent on cir-
cumstances, initiate treatment with an AED. Since
referral to a specialist often takes about three months,
the neurologist will have a longer clinical history
upon which to base a firm diagnosis and conse-
quently better grounds for deciding in consultation
with the patient whether or not to initiate treatment.
In the UK and elsewhere in Europe, drug treatment
will start with a comparatively low dose of one of
the three or four first line AEDs, with dose escala-
tion only on inadequate seizure control to the point
where the patient experiences toxic and unaccept-
able side-effects. At this point another AED may
either be added or substituted. Treatment is some-
times monitored by assaying serum concentrations

of the AED as a guide to whether it is actually
being taken (many patients – perhaps 40% – may be
“noncompliant”) and sometimes as a guide to dose
or drug changes. Following observational studies
serum drug concentrations have been grouped into
three broad strata: subtherapeutic (inadequate seizure
control); therapeutic (seizure control without unac-
ceptable side-effects), and toxic (unacceptable side-
effects of the drug). In the US patients may be treated
more aggressively, being started on higher doses of
AEDs with the objective of quickly achieving opti-
mal (i.e. therapeutic) serum concentrations. However,
many patients do remain seizure-free once low dose
AEDs are started. In developing areas of the world
epileptic seizures are often not treated with AEDs,
first because they are unlikely to be available and
secondly because many are far too expensive for
patients to afford. (Net costs (2003) NHS prescrib-
ing (UK) for minimum recommended dosage (cost
per year); phenobarbitone (£10); phenytoin (£20);
carbamazepine (£77); sodium valproate (£108); and
two newer drugs –lamotrigine (£420) and vigaba-
trin (£655)). Local customs and medical practices
may result in patients being treated by traditional
methods.

In any group representative of newly diagnosed
patients about 75% will become seizure-free for long
periods (in excess of two years) within five years
of diagnosis, about 10% will continue to experience
an occasional seizure or cluster of seizures, and the
remaining 15%, despite (multi-) AED therapy (poly-
therapy), will develop chronic epilepsy experiencing
seizures at least once every six weeks and perhaps
up to several hundred per day. Although most peo-
ple with epilepsy reside in the community, some
with chronic epilepsy will have an occasional stay
in a specialist institution where (re-)establishment of
seizure control may be attempted; the more extreme
chronic patients will reside there permanently. Some
patients for whom AED treatment has failed will
request and be assessed for neurosurgery, where part
of the brain containing the epileptogenic focus will be
removed. Optimistic claims, sometimes startling, of
the successful outcome of “epilepsy surgery” have led
to increased demands for these procedures over the
past decade in Europe and the US though it should
be noted that the efficacy of this form of surgery
has only recently been established in a randomized
clinical trial (RCT) [40].
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Even today, in developed countries, epilepsy is a
socially stigmatizing disease which can lead to unem-
ployment and difficulty in finding work, debarment
from certain occupations (such as working within
the vicinity of potentially dangerous machinery or
driving a public service or heavy goods vehicle),
restricted social networks, and genuine fear and anx-
iety. In primitive communities it is still regarded
as “possession by a devil or spirits” and treated by
traditional methods (“native medicine” (see Alterna-
tive Medicine)). People in the UK who report the
occurrence of a seizure (as required by law) to the
Driving Vehicles Licensing Authority will have their
driving licenses withdrawn until they have demon-
strated complete seizure control (usually freedom
from seizures of all types for a period of at least one
year); those who reduce their doses of AEDs (perhaps
because of side-effects or pregnancy) are advised to
stop driving for several months. However, driving
regulations vary widely from one country to another,
and in the US from state to state; most require a
period of two years free of seizures, others impose a
lifetime ban.

Early Clinical Trials

There have been hundreds, perhaps thousands of stud-
ies assessing the efficacy of AEDs mainly through
observing numbers of seizures; indeed one of the best
known and most quoted references in epilepsy is a
monograph by Coatsworth [7] that may claim to be
one of the first published comprehensive overviews
of treatment. Not only does it predate the first for-
mal meta-analysis in epilepsy by 35 years, but it
demonstrates some appreciation of exclusion bias for,
as Penry states in the Foreword “In keeping with
the general philosophy of thorough documentation
for better evaluation, a bibliography of publications
judged unworthy of profile has been included in
addition to the bibliography of profiled articles”.
Coatsworth garnered articles (either clinical trials
which utilize prospectively some form of experi-
mental design, or case reports (see Case Series,
Case Reports) of the results of drug treatment
retrospectively without initial design) from 64 differ-
ent journals and published over the period from 1920
to mid-1970. Of the 110 clinical trials, 43% had fewer
than 50 patients, 27% more than 100; almost one-half
(47%) did not report duration of the study; crucially,
three were “multiple group crossovers”, presumably

explaining the only two that were double-blind and
one that was single-blind, as well as the three that
were randomized! For of these 110 “trials”, 106
were single-group studies, with no information about
patient evaluation in 74. In Coatsworth’s summary:

the average reported clinical trial may be character-
ized as a study of one drug given over a variable
period to a group of 20 to 29 outpatients of dif-
fering seizure types. No controls are used, and the
drug is varied in dosage by the needs of the patient.
Seizure counts, types of seizure, and side effects are
the data collected by an unreported evaluator using
the clinical examination and laboratory data as his
observational methods. The patients are evaluated
before the trial and irregularly during the trial. The
results of treatment are reported by the percentage
of patients improved. In those studies with fair to
good results, the investigator’s opinion is that this
drug is a valuable addition to the present regimen of
antiepileptics.

This situation is apparent even today, for in the early
stages of drug development the single-group “before
and after” study is used as a screening mechanism
for further investigation and, though important for
initial safety testing, the results of such studies are
sometimes presented with inappropriate conclusions.
Patients who suffer seizures (despite AED treatment)
are observed over a baseline period (not necessarily
of fixed duration) and those with a seizure frequency
above a stipulated threshold are all given the new
putative AED for a set “test” period. The changes in
seizure frequencies between baseline and test periods
are then summarized and any reduction interpreted
as a demonstration of efficacy. That such reductions
may be explained by regression to the mean, even
in the absence of any treatment effect, is gradu-
ally becoming better understood. Indeed, it has been
demonstrated, in the form of regression towards the
median, by Spilker & Segreti [37] who abstracted
data from published epilepsy trials that included at
least 10 patients and where the baseline and placebo
periods were of equal length.

Crossover Trials

The next stage of development (Phase II and early
Phase III) consists of two-treatment, two-period
crossover trials in patients with “drug-resistant”
epilepsy. Here again patients are observed over a
baseline period (perhaps 8–12 weeks) and those
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taking (specific) AEDs and experiencing seizures
of predefined types and in excess of a stipulated
threshold are randomized to the two sequences of
“add-on” treatment with the new agent or “add-
on” placebo; treatment periods frequently last up
to 12 weeks with an intervening washout period
of four weeks. Occasionally the new agent will be
substituted for, rather than added to, existing AEDs,
in which case the first four weeks of each treatment
period may be used for tapering-off the original
AEDs while starting the new. The primary responses
are seizure counts over the three periods and side-
effects over the two treatment periods. Since the
variation in seizure counts between patients may
be almost two orders of magnitude greater than
variation within patients, these designs are much
more efficient than the parallel-group design (see
Clinical Trials, Overview). Unfortunately, much
of this gain in efficiency is sacrificed in analysis
by massive data reduction. Seizure counts are not
normally distributed, and rather than attempt any
form of data transformation to achieve this, or
the application of any statistical method (such as
Poisson regression or a mixture model) to allow
for it, triallists resort to reporting and comparing
the percentages of patients who achieve at least a
(rather arbitrary) 50% reduction in seizure frequency
by comparison with the baseline period.

Trials of this type are expected to demonstrate an
improvement in seizure control on the new agent over
that achieved with placebo; however, since there is
no active control it is possible that these trials may
miss potentially useful agents since the recruitment of
“drug-resistant” patients may result in a sample that
does not respond to either treatment; this cannot be
gauged without the external validity supplied through
the inclusion of an internal “active” control. For this
and other reasons use of the crossover trial in epilepsy
has declined and in the development of some of the
newer AEDs abandoned altogether in favor of parallel
group studies.

Parallel Group Trials

Traditionally, once a series of crossover trials had
been successfully completed in patients who suffered
more serious epilepsy, attention switched to the rou-
tine clinical treatment of newly diagnosed patients
in the community. Such (Phase III) trials are paral-
lel group studies which incorporate an active control;

although perhaps originally designed to demonstrate
an important clinical advantage of a new AED over
established AEDs, experience suggests that this is
in fact extremely difficult to achieve, and in prac-
tice such studies are now more frequently designed
as equivalence trials or noninferiority trials. It is
of interest that many of the established AEDs, par-
ticularly the older ones, have never been subjected
to placebo-controlled trials, and it is now regarded
as unethical to treat newly diagnosed patients with
placebo. The majority of patients in the commu-
nity experience few seizures and consequently seizure
counts are not a useful outcome measure, often being
too sparse for sensible analysis. Attention focuses
instead on survival-type analyses of events associ-
ated with seizure remission (that is complete absence
of seizures) as much as seizure recurrence.

The interval from randomization to first seizure
recurrence is popular because it provides an estimate
of the percentage of patients who remain seizure-
free. However, it has the disadvantage of concen-
trating upon events that occur early in the follow-up
period and thereby makes no allowance for dose
adjustment. Alternatives are interval from random-
ization to first seizure after an initial window of
(say) two months during which dose titration may
take place to establish seizure control, interval from
randomization to a particular type of seizure [e.g.
major (tonic–clonic) seizure], or interval from ran-
domization to the nth seizure (n > 1), or the nth
day on which a seizure occurs. (Interestingly, Shofer
& Temkin [36] investigated the power of analyses
based on time to the nth seizure by comparison with
seizure frequency in a simulation study of crossover
trials where seizure frequencies were quite high and
assumed to follow a negative binomial distribu-
tion. They found that while statistical tests based on
seizure frequency itself exhibited the highest power,
tests on time to the twelfth seizure for a sample size
of 50 approached the power of tests on seizure fre-
quency with a sample size of 20).

However, since the main purpose of AEDs is to
eliminate seizures altogether through the establish-
ment of long-term control, analyses now mainly focus
on the interval from randomization to the achieve-
ment of a defined period of remission (complete
absence of seizures of any type); popular choices are
six months, one, two, and five years. In epidemiologic
studies, and increasingly in clinical trials where some
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measure of long-term outcome is required, the pro-
portion of patients in terminal remission at different
stages of follow-up is also reported; for example, the
proportion of patients free from seizures during the
two years immediately before five-year follow-up.

Modified Designs

Problems with the active equivalence design clini-
cal trial in epilepsy have been succinctly summarized
by Leber [21] and Gram [9], and these, combined
with the ethical problems of withholding effective
treatment (see Ethics of Randomized Trials) have
led to suggestions for alternate designs. Pledger &
Kramer [29] discuss two of these, including the active
low-dose control where the aim is to establish a treat-
ment difference, rather than equivalence, between
the randomized groups. Another option is the design
proposed by Amery & Dony [3] where all eligible
patients are first treated for a set period with the drug
under investigation; those who do not show a bene-
ficial response are not followed further while those
who do are randomized either to continue treatment
or to have the investigational drug substituted by a
placebo.

Quality of Life

People with epilepsy suffer social stigmatization as a
consequence both of seizures and of taking AEDs;
one result of this has been an awareness of the
need to study not just the recurrence of seizures but
their severity and their social consequences. Several
groups have developed scales for assessing seizure
severity and for disease-specific quality of life; these
are now used frequently in clinical trials [39].

International League Against Epilepsy
(ILAE)

The ILAE is a confederation of the world’s leading
experts in epilepsy and allied specialties that has been
responsible for setting standards through Guidelines
produced by Commissions set up to advise on specific
issues. Apart from the classification systems men-
tioned above these include, among other Guidelines,
those for Clinical Evaluation of Antiepileptic Drugs
[12, 13], for Therapeutic Monitoring of Antiepileptic
Drugs [16], for Antiepileptic Drug Trials in Children

[17], and for Epidemiologic Studies on Epilepsy [15,
18]. ILAE has also produced an International Glos-
sary of Antiepileptic Drugs [14], and commentaries
on the economic burden of epilepsy [19], and genetic
epilepsies [20].

Journals

There are four journals devoted entirely to epilepsy,
although papers in this specialty are published reg-
ularly in general medical and general neurology
journals. The four are Epilepsia (official journal of
the ILAE; started 1960), Epilepsy Research (1987),
Seizure (journal of the British Epilepsy Association;
1992), and Journal of Epilepsy (1988). The standard
of statistical presentation in these journals is compa-
rable with most other medical specialties and rarely
ventures farther than the use of routine summary
measures and associated significance tests; actuarial
methods first appeared about 20 years ago. In some
ways this is surprising since epilepsy is a heteroge-
neous, recurrent condition in which seizures may not
be accurately recorded, and which would appear to
offer an ideal opportunity for the application of a
range of sophisticated, contemporary statistical tech-
niques such as multilevel, random effects models,
frailty models, and stochastic models (see Stochastic
Processes) including measurement error; all with
recurrence.

However, there are a few exceptions; for
example, Hopkins et al. [10] and Milton et al. [28]
examine seizure occurrence patterns using Poisson
processes; the former, as well as Albert [1] look
at Markov processes. Racine-Poon & Dubois [30]
use a hierarchical random-effects model to predict
maximum plasma carbamazepine concentrations in
individual patients. Thall & Vail [38] and Breslow
and Clayton [5] present reanalyses of an earlier
trial using generalized linear mixed models
that account for overdispersion, heteroscedasticity
(see Scedasticity), and dependence (see Statistical
Dependence and Independence).

Landmark Studies

With many hundreds of papers on epilepsy published
over more than a century it is difficult, if not unfair,
to identify any as being of such outstanding merit
that methodologically they are vastly superior to all
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others. While there have been many comparatively
useless investigations, there have also been many
very fine studies that demonstrate the best principles
of design, conduct, and analysis. Those identified
below should therefore be viewed as a sample of the
better studies, not the only ones.

The first RCTs in epilepsy were published in 1956
[31, 35] but it was another 30 years before compara-
tive trials in the community recruited in excess of 100
patients per treatment [25], and more than another 10
years before the first meta-analysis [24]. The impor-
tance of overviews for emerged since the establish-
ment of the Cochrane Epilepsy Group in Liverpool,
UK, in 1996 with its database of over 350 trials
involving more than 3500 patients. (see Cochrane
Collaboration). Meta-analyses from this Group have
been used to illustrate methods for extracting esti-
mates of hazard ratios from published trials [42], and
methods for evaluating putative interactions between
epilepsy type and treatment outcome [41], as well
as to discuss difficulties in the interpretation of the
summary statistic, number needed to treat ([11, 22]).

The largest RCT in epilepsy was the Medical
Research Council Anti-epileptic Drug Withdrawal
Study [26] which recruited over 1000 patients with
a history of epilepsy who had been seizure-free for
more than two years, and compared the risks of
seizure recurrence in those randomized to withdraw
AEDs with those randomized to continue; it also
provided a predictive model for the risks of seizure
recurrence under the two treatment policies that is
now used in counseling patients [27].

While the first randomised trial of epilepsy surgery
has been mentioned above [40], another innovative
trial also published in 2001, was that of treatment of
patients suffering prolonged seizures (status epilep-
ticus) and unconscious, with lorazepam, diazepam,
or placebo. Single drug packs were allocated ran-
domly to ambulances, and trial entry was authorized
by paramedical staff using radio contact to a physi-
cian at the base hospital under a waiver of informed
consent [23]. The trial demonstrated the safety and
effectiveness of the two active drugs compared with
placebo [2].

The methodologic problems of epidemiologic
follow-up studies in epilepsy have been summarized
by Sander & Shorvon [33]; besides describing the
difficulties of case ascertainment, and the problems
of diagnosis, classification, and selection bias, they
include an appendix of prevalence and incidence

studies. Three groups have presented a series of
papers based on follow-up of extensive cohorts
of patients. The first in Minnesota, USA, is a
retrospective study of 618 patients diagnosed with
epilepsy at the Mayo Clinic between 1935 and 1974
(later extended to 1984) [4]; they report on the
remission of seizures, prevalence, incidence, and
mortality, as well as the risk of recurrence after
an initial unprovoked seizure, a subject which has
caused considerable debate over many years as a
result of diagnostic and verification problems. The
second [8] identified 122 patients with epilepsy out of
a population of 6000 from a single general practice in
the UK; they reported prevalence and outcome. The
third, also in the UK, is the National General Practice
Study of Epilepsy [34] in which 1195 patients
considered by their general practitioners to have a
possible diagnosis of epilepsy or febrile convulsions
were followed up prospectively; the study reported
risks of seizure recurrence and remission, and also
examined mortality.

Recent information about epilepsy and antiepilep-
tic drugs can be found in Browne & Holmes [6], and
Sabers & Gram [32]. In addition, there are several
very useful websites:

American Epilepsy Society: //www.aesnet.
org/
Cochrane Epilepsy Group: //www.liv.ac.uk/
epilepsy/
Epilepsy Action: //www.epilepsy.org.uk/
European Epilepsy Academy: //www.
epilepsy-academy.org/
International League Against Epilepsy: //www.
ilea-epilepsy.org/
National Society for Epilepsy: //www.epilep
synse.org.uk/
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Equivalence Trials

Frequently, a clinical trial is designed to evaluate
whether an experimental treatment (e.g. a therapy,
preventive agent, or medical device) is sufficiently
similar to an accepted or “standard” treatment, by
some measure of treatment effect, to justify its use.
The experimental treatment is often expected to be
equal in effect to the standard, but not superior to it.
Hence, such a study is commonly called an equiv-
alence trial [5, 7]. The term similarity trial [5] has
also been suggested, since we cannot actually show
treatments to be equivalent but may be able to show
that they are sufficiently similar by an appropriate
criterion. Furthermore, investigators might not expect
the treatments to have exactly equal effects, but they
might nevertheless wish to demonstrate that the dif-
ference in effects is acceptable, considering the bene-
fits of the experimental treatment, such as fewer side
effects, greater convenience of use, or lower cost. In
this article, equivalence and similarity are used inter-
changeably. Other terms that have been suggested
include active control [19], positive control [19, 24],
δ-equivalence [22], and δ-no-worse-than [22], where
δ denotes the difference in the outcome measure
between two treatments.

The Question Under Study

Formally, we design the trial to show that the exper-
imental and standard treatments are similar with
respect to a suitable parameter Θ , which might
represent, for example, a difference or ratio of
proportions, a difference or ratio of means, or a ratio
of event rates of hazards. Assume Θ is defined so
that positive values (or values greater than one, in
the case of a ratio) indicate superiority of the standard
treatment. Letting subscripts E and S refer to exper-
imental and standard, respectively, Θ might be the
difference pE − pS in probabilities of disease, or the
ratio µS/µE of geometric means of protective serum
antibody levels induced by a vaccine. Because of
the variability inherent in biologic experimentation,
we cannot demonstrate exact equivalence statistically,
even if the treatments are identical. We can, how-
ever, estimate Θ as precisely as desired from a large
enough study.

Generally, in a study of therapeutic or preventive
agents where the outcome is a clinical measure of

treatment effect such as death or onset of disease
(or a surrogate thought to be related to the clini-
cal outcome), an equivalence or similarity trial will
be designed to show that the standard treatment is
not superior by a prespecified quantity Θ0 or more.
Thus, the question of primary interest in such a trial is
usually one-sided (see Alternative Hypothesis); we
place no restriction on the possible degree of supe-
riority of the experimental treatment. (Note that the
standard can be superior to the experimental treat-
ment by an amount less than Θ0 and the experimental
treatment still be considered acceptable. If this is not
the case, the trial is not a similarity trial, and it should
be designed to show superiority of the experimental
treatment.) For example, if Θ represents a difference
pE − pS in probabilities of disease and it is consid-
ered sufficient to demonstrate that the probability of
disease using experimental treatment is not more than
0.15 greater than the probability using standard treat-
ment, then Θ0 = 0.15.

Choice of a meaningful value for Θ0 is crucial,
since it defines levels of similarity sufficient to jus-
tify use of the experimental treatment. Θ0 must be
considered reasonable by clinicians (see Clinical Sig-
nificance Versus Statistical Significance) and must
be less than the corresponding value for placebo com-
pared to standard treatment, if that is known [24].
Thus, the sample size required (see Sample Size
Determination for Clinical Trials) may be much
larger than that for a trial comparing the experimental
treatment to placebo [15]. The choice of Θ0 depends
on the seriousness of the primary clinical outcome,
as well as the relative advantages of the treatments
in considerations extraneous to the primary outcome
[7]. Careful choice of design parameters is not, how-
ever, unique to a similarity trial; in a trial designed
to show superiority, it is important to select a mean-
ingful and realistic value for the minimum effect to
be detected [20].

Confidence Intervals and Hypothesis Tests

There are advantages to considering design and anal-
ysis of an equivalence trial in terms of confidence
intervals rather than hypothesis testing [7, 15, 18,
25]. The confidence interval approach makes the
desired outcome of the trial clear and avoids the
mistake of choosing an inappropriate hypothesis (see
below). Figure 1 depicts a 100 (1 − 2α)% confidence
interval for Θ around a point estimate Θ̂ . We assume
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Figure 1 100(1 − 2α)% confidence interval for Θ around
a point estimate Θ̂ . An upper limit less than Θ0 allows a
conclusion of similarity, or “equivalence”. E: experimental
treatment; S: standard treatment

equal probability α in each tail. For a specified value
of α (e.g. 0.05, 0.025, 0.01), we consider the treat-
ments similar if the upper confidence limit is less
than the prespecified quantity Θ0. Thus, for exam-
ple, the conventional α of 0.05 corresponds to a
two-sided 90% confidence interval. Only a one-sided
100 (1 − α)% interval is really needed. It is appro-
priate, however, to report a two-sided interval with
confidence coefficient 1 − 2α, since there is usually
interest in the lower limit also. Note, in particular,
that a lower limit >0, which indicates superiority of
the standard, is consistent with similarity or “equiva-
lence” according to our definition as long as the upper
limit is less than Θ0.

In hypothesis-testing terms, the appropriate null
hypothesis is that the standard is superior to the
experimental treatment by at least Θ0; i.e. we test
the null hypothesis H0 : Θ ≥ Θ0. Rejection of H0

at significance level α in favor of the one-sided
alternative that Θ < Θ0 is then sufficient to show
similarity. Though such a procedure is correct and is
equivalent to the corresponding confidence interval
procedure, it encourages consideration of the situation
as one of decision making, whereas it is usually
one of estimation. A test tells us the strength of
the evidence against a specific hypothesis, whereas
a confidence interval tells us what values of Θ are
consistent with the data.

Design of a similarity or equivalence trial has
often been based on the null hypothesis H0 : Θ ≤ 0
(or H0 : Θ ≤ 1, for a ratio), as though the purpose
of the trial were to demonstrate superiority of the
standard treatment. Failure to reject the null hypoth-
esis would then lead to a conclusion of equivalence.
Such an approach is not appropriate [1, 3, 6, 7, 13,
18, 19, 25, 26], for several reasons. First, it contorts
the logic of hypothesis testing; as has long been rec-
ognized, we cannot prove statistical hypotheses [9],
so we design a study to reject, not accept, the null
hypothesis [3], i.e. we measure the strength of the
evidence against, not for, the null hypothesis [1, 2].

Secondly, if a trial has insufficient sample size, large
variability, or some other defect due to poor design
or conduct, it may fail to reject the null hypothesis of
no difference, even if an important difference exists
[3, 6, 7, 15, 18, 19, 24–26]. Thus, an inadequately
designed or conducted trial may give the desired
result, whereas a well designed and well conducted
one would not. Furthermore, in a trial designed with
high power, we may reject the null hypothesis of no
difference and thus fail to conclude equivalence, even
if the actual magnitude of the difference is unim-
portant [1, 7, 25, 26]. Hence, the hypothesis of no
difference is an inappropriate basis for designing an
equivalence trial, and the P value against that hypoth-
esis is irrelevant to a conclusion of similarity. The
size of trial so obtained may be larger or smaller
than that based upon a correct approach (see section
on sample size).

One-Sided and Two-Sided Questions

As already noted, in an equivalence trial with a
clinical outcome, the question of primary interest
is usually one-sided, namely can we show that the
experimental treatment is not worse than the stan-
dard treatment by as much as Θ0 [3, 18]? We do not
wish to show that Θ > Θ ′ for some Θ ′. (Note that
demonstrating superiority of the experimental treat-
ment – i.e. showing Θ < 0 for a difference or Θ < 1
for a ratio – does not imply a test in the “other” direc-
tion from Θ0, but corresponds to Θ0 = 0 or 1; if we
wish to show superiority of the experimental treat-
ment, then by definition we do not have a similarity
trial.)

If we wish to demonstrate that the effects of two
treatments do not differ much in either direction, we
are interested in whether Θ01 < Θ < Θ02 for some
Θ01 and Θ02 with Θ01 < Θ02. To show this, the con-
fidence interval for Θ should lie entirely between Θ01

and Θ02. Such a situation is two-sided. An impor-
tant class of two-sided trial is a bioequivalence or
bioavailability trial [1, 13, 25, 26], in which it is
desired to show that the biological activity or avail-
ability of two treatments is similar in both directions.
Comparison of lots of a vaccine might also involve a
two-sided question. Consideration of the correspond-
ing hypothesis tests demonstrates, however, that the
two-sided equivalence setting is different from the
more familiar two-sided test situation (Figure 2(a)).
The latter involves a null hypothesis that Θ takes a
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Θ0

Alternative
Θ < Θ0
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Θ = Θ0
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Θ > Θ0
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Θ01 Θ02

Null
Θ ≤  Θ01 

Alternative
Θ01 < Θ < Θ02

Null 
Θ ≥  Θ02

(b)

Figure 2 Null and alternative hypotheses for differ-
ent types of two-sided tests: (a) two-sided alternative;
(b) two-sided null

single value Θ0 and an alternative hypothesis that Θ

differs from Θ0 in either direction; thus, the alterna-
tive is “two-sided”, since its values lie on both sides
of the null value. In the two-sided equivalence situa-
tion [Figure 2(b)], however, it is the null hypothesis
(i.e. Θ ≤ Θ01 or Θ ≥ Θ02) that is two-sided, because
it includes values on both sides of the alternative
values [1, 23]. This difference has implications for
sample size calculation, as indicated below.

Here, we will continue to assume a one-sided
situation unless it is specifically stated otherwise.

Type I and Type II Errors

In an equivalence trial, we make a type I error if
we falsely conclude similarity; i.e. if we obtain an
upper confidence limit < Θ0 when the true value
of Θ is ≥ Θ0 [Figure 3(a)] or, in hypothesis-testing
terms, if we reject H0 : Θ ≥ Θ0 when H0 is true.
When we base the conclusion on the upper limit of
a two-sided 100(1 − 2α)% confidence interval or on
the corresponding one-sided test, the probability of a
type I error is ≤ α.

A type II error is a failure to conclude similarity
when the treatments are similar; i.e. obtaining an
upper confidence limit ≥ Θ0 when the true value of
Θ is < Θ0 [Figure 3(b)] or failing to reject H0 when
H0 is false. We denote the probability of a type II
error for some specific value of Θ < Θ0 by β; 1 − β

is then the power of the test or confidence interval
procedure for that value of Θ .

It is, of course, desirable to keep both α and β

small. However, as is usually the case in clinical
trials, it is generally more important to keep α small.

Θ Θ0   

100 (1−2α)% Cl

Θ0   

100 (1−2α)% Cl

Θ

(a)

Θ

(b)

E
Better

S
Better

E
Better

S
Better

Θ

Figure 3 (a) Type I and (b) type II errors in an equiv-
alence or similarity trial. E: experimental treatment; S:
standard treatment. Θ denotes the true value, Θ̂ the point
estimate, and Θ0 the criterion for concluding similarity

Sample Size

Sample size formulations are available for various
types of comparative measures in one-sided similarity
trials – e.g. a difference in normally distributed
means, a difference or ratio of proportions, and a
ratio of event rates or hazards. In the descriptions of
specific formulations below, Θ refers to the value of
the difference or ratio for which we calculate power
and Θ0, as before, denotes the value we wish to rule
out. We assume Θ < Θ0. The sample size will also
depend on the type I and type II error probabilities
α and β and, in comparisons of proportions, the
assumed true values of the proportions.

For testing the hypothesis of no difference between
means from two normal distributions with equal and
known variances, we have

N = σ 2

[
1

k
+ 1

1 − k

]
(zα + zβ)2

δ2
,

where N is the total number of individuals in two
groups, σ 2 is the common variance, k and (1 − k)
are the proportions of the total sample in the two
groups, zα and zβ are upper quantiles of the normal
distribution corresponding to α and β, and δ is the
minimum difference to be detected [16]. The only
change necessary for a similarity trial is to replace
δ with Θ0 − Θ . Thus, for Θ = 0, we obtain the
same sample size for a similarity trial as for the
conventional hypothesis of no difference with Θ0 as
the minimum difference to be detected.

If the comparison is based on a ratio of geometric
means, as in comparing serum antibody levels, we
can take logarithms of the original observations and
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proceed as above, if the logarithms are approximately
normally distributed.

Various methods have been suggested for ana-
lyzing differences [3, 6, 12, 18] and ratios [4, 11]
of proportions in an equivalence trial. A likelihood
score approach has been suggested as the best method
overall in these settings [4, 8, 11, 21]. Sample size
formulas based on score statistics have been derived
for analysis of both differences [8, 21] and ratios [8].
If the null difference is 0 and the null ratio is 1,
the two likelihood score sample size formulations of
Farrington & Manning [8] are equivalent, and both
reduce to a familiar formula for comparing propor-
tions [16].

Table 1 shows sample sizes for some trials in
which the outcome is an adverse event, such as the
development of disease or a reaction to a treatment
or vaccination. Total sample sizes for two equal-sized
groups, calculated by the likelihood score method,
are given for comparisons based on a difference in
proportions (pE − pS) and on a ratio of proportions
(pE/pS) [8]. In these examples, the ratio compari-
son requires larger sample sizes than the difference
comparison. Nevertheless, for small proportions, the
ratio may be the preferred measure, since it may
be more stable than the difference over a variety
of settings. Table 1 also shows the sample size
obtained from the inappropriate approach of testing
the hypothesis of no difference; it can be either larger
or smaller than the sample size obtained from the
correct calculation. In addition, if the probability of
disease is assumed to be higher with the experimental
treatment than with the standard treatment, then the

Table 1 Total sample size in two equal-sized groups for
comparing proportions: α = 0.05, β = 0.10

Total sample sizea

pE pS pb
E0 Difference Ratio

0.01 0.01 0.015 14 100 (17 000)c 21 100
0.10 0.10 0.200 332 (434) 684
0.40 0.40 0.600 202 (212) 324
0.50 0.40 0.600 826 (212) 1 330
0.60 0.60 0.700 820 (776) 972

aCalculated by method of likelihood scores [8].
bpE0 refers to the value of pE under the null hypothesis that
pE − pS ≥ Θ0 (or pE/pS ≥ Θ0), where Θ0 = pE0 − pS (or
pE0/pS).
cSample size for testing hypothesis of no difference [16],
where now pE0 is assumed to be the true value of pE.

sample size required can be much greater than if the
probabilities are assumed equal.

If the outcome of interest is an event rate or time
to an event (see Survival Analysis, Overview), one
may wish to show similarity via the ratio of event
rates or ratio of hazards. Fleming [10] has given
a sample size formula for the familiar two-sided
situation of a single null value to be ruled out (not
for a two-sided equivalence trial; see below). The
sample size for a one-sided similarity trial can be
obtained from Fleming’s formula by substituting α

for α/2. A Poisson distribution assumption can be
employed for analyzing the ratio of sufficiently small
event rates [4].

For a two-sided equivalence trial, where we want
to show that Θ01 < Θ < Θ02, a 100 (1 − 2α)% con-
fidence interval with equal tail probabilities provides
a test of the hypothesis H: Θ ≤ Θ01 or Θ ≥ Θ02

with significance level ≤ α (not 2α) [13, 23]. The
power, however, will be lower than for either of the
corresponding one-sided trials with the same num-
bers of individuals. In the symmetric situation where
Θ01 = −Θ02 and the assumed value of Θ is 0 (or, for
ratios, Θ01 = 1/Θ02 and the assumed value is 1), the
sample size for type I error probability α and power
1 − β in two equal-sized groups is obtained from
the formula for the corresponding one-sided prob-
lem, with the same zα but with zβ/2 substituted for
zβ [8]. This is a consequence of the null hypothe-
sis, not the alternative, being two-sided; in the more
familiar two-sided situation of a single-valued null
hypothesis, we would substitute α/2 for α, but keep
β the same. Sample size formulations have also been
given for bioequivalence studies designed as two-
period crossover trials [1, 26].

Interim Analysis

In monitoring accumulating data from an equivalence
trial (see Data and Safety Monitoring) for possible
early stopping, familiar methods can be applied –
for example, a confidence interval procedure,
corresponding to a group sequential test, requiring
an upper limit < Θ0 before considering termination
[14]. Durrleman & Simon [7] have suggested a
related procedure. Alternatively, if a trend develops
in favor of the experimental treatment, it might be
desirable to continue the trial unless the stronger
result is obtained that the experimental treatment
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is clearly superior to the standard; that is, unless
the upper limit of the interim confidence interval
is <0.

Special Considerations

Several authors have pointed out problems associ-
ated with equivalence trials and requirements for a
conclusion of effectiveness of an experimental treat-
ment on the basis of similarity to a standard treatment
[15, 19, 24]. Assuming there is no placebo control
in the trial, for ethical (see Ethics of Randomized
Trials) or other reasons, the conclusion must rely in
part on historical data. From earlier trials, it must
be clear that the standard is superior to placebo. It
must also be clear, from the equivalence trial itself,
not only that the standard and experimental treat-
ments are similar to each other, but also that both are
more effective than placebo would have been in that
trial. Thus, the equivalence trial should include sim-
ilar patients and employ similar procedures to those
in the trials that previously showed the standard to
be effective. The trial should also be large enough to
support a conclusion that both treatments are superior
to placebo.

Failure to conduct an equivalence trial rigorously
according to protocol may obscure important differ-
ences between the treatments and contribute to a con-
clusion of similarity [15, 19, 24]. Thus, the incentive
to adhere strictly to the protocol (see Clinical Trials
Protocols), to obtain the desired result, is not present.
Appropriate monitoring of protocol adherence is,
therefore, especially important in this type of trial.

Most statisticians agree that an intention-to-treat
analysis is essential when reporting the results of a
randomized clinical trial. Such an analysis includes
all randomized individuals, in the groups to which
they were originally assigned, regardless of the treat-
ment actually received and their level of compliance
with the treatment regimen. In a trial designed to
show superiority, this approach provides a valid test
of the null hypothesis of interest, that the experimen-
tal treatment has no benefit. That is, the probability
of a type I error does not exceed the nominal value.
Such may not be the case, however, in an equiva-
lence or similarity trial. To the extent that individuals
receive the wrong treatment or are otherwise noncom-
pliant, an intention-to-treat analysis tends to make the
treatments appear more similar in effect than they are.

An equivalence trial can thus have a type I error prob-
ability larger than the nominal value; a conclusion of
similarity may therefore require support from other
appropriate analyses [17, 19].

Clearly, there are special issues, as noted above,
associated with equivalence trials. Nevertheless, such
trials – well designed, conducted, and analyzed – are
essential in many areas of medicine for properly
evaluating new treatments.
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Errors in the
Measurement of
Covariates

Problems involving covariate measurement error
arise frequently in health research. In retrospective
epidemiological studies, for example, it may be dif-
ficult or impossible to accurately assess the level of
exposure to potential risk factors for cancer such
as radiation [20], herbicides [25], or dietary fat [22]
(see Case–Control Study). In prospective studies,
risk factors of interest may be difficult to observe
because of physical location or cost (see Cohort
Study). For example, the degree of narrowing of
coronary arteries may reflect risk of heart failure, but
physicians may measure the degree of narrowing in
carotid arteries instead because of the less invasive
nature of this method of assessment. In other set-
tings, the risk factor may be an average value of a
quantity over time and any practical way of measur-
ing such a quantity necessarily features measurement
error. This was the case in the Framingham Heart
Study [15] where one of the risk factors of inter-
est for coronary artery disease was average daily
systolic blood pressure. In some settings, interest
may lie in assessing associations between categorical
exposure variables and disease status. Some expo-
sure variables are inherently categorical (e.g. genetic
classifications), but categorical covariates also arise
when cutpoints are specified for continuous covari-
ates such as systolic blood pressure (SBP) (e.g. SBP
<140, 140 ≤ SBP < 160, 160 ≤ SBP) (see Catego-
rizing Continuous Variables). In the latter case,
measurement error in the continuous scale results in
incorrect category assignments.

When mismeasured covariates are continuous, by
convention the problems are said to involve covariate
measurement error, whereas mismeasured categorical
covariates are said to be misclassified (see Misclas-
sification Error). In both of these settings, models
based on covariates measured with error generally
produce biased estimates of parameters characteriz-
ing the association between the covariates and the
outcome of interest (see Unbiasedness). A textbook
treatment of measurement-error problems is given by
Fuller [9] for multiple linear regression models and
by Carroll et al. [5] for generalized linear models.

A comprehensive review of the issues and method-
ologic advances pertaining to covariate and response
measurement error is found in the entry Measure-
ment Error in Epidemiologic Studies. Statistical
methods for dealing with misclassified categorical
variables are reviewed in the entry Misclassification
Error. In this article, we provide a brief survey of
strategies for dealing with mismeasured or misclassi-
fied covariates in the context of regression models.
An illustrative application is presented using data
from a case–control study [3], and the impact of
misspecifying the nature of the misclassification dis-
tribution is discussed.

Survey of Methods

Let Y be a response variable, Z the vector of covari-
ates free of error, X be the covariates subject to
measurement error, and W be the result of attempt-
ing to observe X in the presence of measurement error
(i.e. W is the mismeasured version of X). Suppose that
the distribution of Y is dependent on (X , Z ) through
a model denoted by h(Y, X , Z ; βx , βz ), where the
dependence of Y on X and Z is reflected by a lin-
ear predictor X ′βx + Z ′βz and additional nuisance
parameters are suppressed for convenience. Primary
interest lies in the estimation of the vector of regres-
sion coefficients β = (β ′

x , β ′
z )

′. Naive use of W in
place of X could introduce a considerable bias in
the estimation of βx , and in many cases βz . Mech-
anisms inducing measurement error can lead to dif-
ferential or nondifferential measurement error. If the
distribution of Y given (X , Z , W ) depends only on
(X , Z ), then the measurement-error process is called
nondifferential, but otherwise it is called differential.
Nondifferential measurement error can be equiva-
lently stated such that the conditional distribution of
W given (X , Z , Y ) depends only on (X , Z ). In this
case, it is clear that the term “nondifferential” means
that the error distribution is not different for those
with different values of Y .

Corrections for measurement error typically rely
on there being some data available with which to
estimate parameters of the error distribution. This
may be, for example, a data set of replicated mea-
surements W for a particular value of X to facilitate
estimation of variance components of the error dis-
tribution in the case of continuous covariates. In
other contexts, a validation data set may be avail-
able with which to estimate misclassification rates
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for categorical covariates. Further remarks on the
different types of supplementary data including repli-
cation, validation, and instrumental data are found in
Measurement Error in Epidemiologic Studies.

Approximate Methods of Correction

A variety of approaches have been proposed to cor-
rect for the bias induced by measurement error (e.g.
[1, 30, 31, 41]). Two widely used approaches are
regression calibration and simulation extrapolation
[5]. Except for some special models such as linear and
loglinear regression models, these approaches only
yield approximately consistent estimators; the appeal
of these approaches lies in their simplicity and ease
of implementation.

If µxz = E(Y |X , Z ), then given a link function
g(.), a regression model may be formed by specifying

g(µxz) = X ′βx + Z ′βz . (1)

It is not possible to estimate β from this model
using standard methods since X is not available.
Given a validation data set, however, an approximate
version of the model may be obtained by replacing X
with an estimate of its conditional expectation given
W and Z, which we denote by m(W , Z ; θ). That is, if
θ̂ denotes an estimate of θ and m̂(W , Z ; θ̂) denotes
the estimate of the conditional expectation, the mean
specification

g(µxz) ≈ m̂(W, Z ; θ̂)′βx + Z ′βz (2)

may be used to estimate β. If only replication data
are available, alternative estimates of X may be used
in place of X, such as the mean value over all
replications. Instrumental data provide an alternative
approach for inserting an estimate of X based on
suitable regression models.

The approach of regression calibration was first
suggested by Prentice [21] for the proportional haz-
ard models in survival analysis. A general form of
regression calibration was suggested by Carroll &
Stefanski [7] and Gleser [10]. Further developments
for generalized linear models were discussed in [2,
23], and [24]. More recently, Wang et al. [38] studied
this approach in the context of the Cox model with
missing or mismeasured covariate data, where the
missing data are estimated on the basis of a valida-
tion data set. The method performs surprisingly well

given its simplicity, though the estimates of regres-
sion parameters may not be consistent in general.

Simulation extrapolation is an attractive simple
approach for reducing bias due to measurement
error. Estimates based on simulation extrapolation are
obtained by adding additional measurement error to
the data in a resampling-like step, establishing a trend
of measurement error-induced bias as a function of
the variance of the added measurement error, and
extrapolating back to the case of no measurement
error. This approach, proposed by Cook & Stefan-
ski [8], is well suited to additive or multiplicative
measurement errors and leads to improved estimates
subject to correct model specification [5]. Refine-
ments have been developed in [4] and [34], where
the theoretical justification to this approach and the
asymptotic distribution of the simulation extrapola-
tion estimates have been investigated.

Methods Based on Estimating Equations

Unbiased estimating equations (see Generalized
Estimating Equations) provide consistent estimates
for parameters of interest and it is natural to consider
ways to construct unbiased estimating functions for
problems involving measurement error. The various
forms of estimating functions may be formulated
under the assumptions of either a so-called functional
error model for which the covariates X are treated
as fixed constants, or a structural error model for
which X are treated as random variables arising
from a particular distribution. Two widely used
approaches are based on conditional and corrected
score functions.

Suppose that given (X , Z ), Y arises from a dis-
tribution in the exponential family and (1) holds.
When the surrogate W is assumed to have a nor-
mal distribution with, for example, W ∼ N(X , Σ),
a generalized linear measurement-error model may
be formulated by combining these two distributions.
Stefanski & Carroll [32] specifically discussed the
conditional score method in this context, where the
estimating functions are obtained by conditioning on
sufficient statistics for some important models such
as linear, logistic, loglinear, and the inverse-gamma.

Nakamura [17] proposed the use of corrected score
functions, illustrating this method with applications
to a number of practical models (e.g. Gaussian and
Poisson), when the measurement error is additive
with a distribution. A corrected score function is a
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function of the observed data (W , Z ; Y ) such that
its expectation with respect to the conditional distri-
bution of W |X is equal to the score function based
on the distribution of (X , Z ; Y ). More specifically,
if S(β; X , Z , Y ) is the score function from the true
model of Y and (X , Z ), any function S∗(β; W , Z , Y )

is called a corrected score function if

EW |X (S∗(β; W , Z , Y )) = S(β; X , Z , Y ). (3)

Estimation of β may proceed on the basis of the
equation

S∗(β; W , Z , Y ) = 0. (4)

The corrected score function approach is a func-
tional method in the sense of [5] and therefore does
not require specification of a distribution for X. One
drawback of this approach, however, is that the cor-
rected score function does not always exist and it
is not generally easy to obtain when it does exist.
Novick & Stefanski [18] discussed using Monte
Carlo simulation to obtain corrected score functions
for many problems, and this approach is related to
the approach of simulation extrapolation.

Likelihood and Pseudo-likelihood Methods

The methods described thus far are often applied
to problems with continuous covariates subject
to error where few distributional assumptions are
required. Likelihood based analyses provide an
alternative approach for many quite general problems
including those with misclassified covariates. Let
PY |X ,Z (y|x , z ; β) be the model of interest where the
error-prone true covariate X is unobserved for some
subjects and β is the parameter of primary interest.
Then PY,W |Z (y, w |z ; β, δ, λ) is the model for the
observed data. With the nondifferential measurement
error, we may construct the likelihood from the
following factorization

PY,W |Z (y, w |z ; β, δ, λ) =
∫

PY |X , Z (y|x , z ; β)

× PW |X ,Z (w |x , z ; δ)PX |Z (x |z ; λ) dµ(x), (5)

where dµ(x) indicates that the integrals are sums
if X is discrete and integrals if X is continuous,
and PW |X ,Z (w |x , z ; δ) and PX |Z (x |z ; λ) represent the
conditional distributions of W given X and Z and of
X given Z, respectively.

Likelihood approaches to measurement error have
received comparatively less attention in the litera-
ture, perhaps due to its computationally demanding
nature and a possible lack of robustness [29]. How-
ever, likelihood methods may be more flexible, effi-
cient, or reliable for dealing with some problems
involving measurement error [29]. For example, like-
lihood ratio inferences can be considerably better
than those based on bootstrap or normal approxima-
tions (e.g. [5, 29]). Stefanski & Carroll [33] compared
estimates obtained from the conditional score func-
tion approach and maximum likelihood for logistic
regression models and found that the latter is more
efficient when the measurement error is “large” or the
logistic coefficient is “large”. Schafer & Purdy [29]
studied likelihood analysis of normal linear regres-
sion models with mismeasured covariates using the
EM algorithm.

When a direct likelihood approach is computation-
ally demanding, one may use an approximate but
simpler version to replace the likelihood function
and proceed with the so-called pseudo-likelihood
approach [3]. Hanfelt & Liang [11] proposed an
approximate approach for generalized linear models
with measurement error in covariates. Other work
that explores this approach for measurement error,
includes [6, 12, 26, 27, 28, 37, 40].

Semiparametric and Nonparametric Methods

One may classify approaches for measurement error
problems as being parametric, semiparametric,
or nonparametric by considering the assumptions
regarding the distribution of the measurement error.
Unlike the approaches described above, one may
not need to assume a parametric family for the
error distribution, but rather can make simple
conditional moment assumptions. Pepe & Fleming
[19] used the empirical estimation of the likelihood
to deal with the mismeasured covariate problem
with validation data when measurement error is
described nonparametrically. Stefanski et al. [35]
proposed a semiparametric correction for bias caused
by measurement error. Jiang et al. [14] discussed
semiparametric regression models with random
effects and measurement errors. The error distribution
is not fully specified except for assumptions on
the moment generating function of the error.
Kulich & Lin [16] developed a class of estimating
functions for the regression parameters for the
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additive hazards models with covariates subject
to measurement error. Tsiatis & Davidian [36]
developed a semiparametric method for estimation in
the context of the proportional hazards model with
time-dependent covariates measured with error.
Huang & Wang [13] avoid distributional assumption
and proposed a nonparametric approach to deal with
the Cox model when repeated measurements on the
covariates are available.

An Application Involving Misclassification

Misclassified Exposure Variables in Case–Control
Studies

We now consider an illustrative example based on
a case–control study examining the association be-
tween invasive cervical cancer and exposure to herpes
simplex virus type 2 (HSV-2) [3]. Exposure to HSV-2
was assessed both by a refined western blot procedure
and by a less accurate western blot procedure for
cases (Y = 1) and controls (Y = 0). Primary interest
is in evaluating the relationship between Y and the
result of the refined western blot test (X), but this test
result is only directly observed for less than 6% of
the subjects. Data based on the less accurate standard
western blot test (W ) are available for all subjects.
Data reported in [3] are reproduced in Table 1.

If there are n subjects under study, let Yi = 1
if subject i is a case and Yi = 0 otherwise, i =
1, 2, . . . , n. Let Xi and Wi be the result of the refined
and standard western blot tests respectively for sub-
ject i, and let Vi = I (Xi is observed), i = 1, 2, . . . , n.
Then V = {i : Vi = 1} is the index set for subjects

Table 1 Validation and nonvalidation data from cervical
cancer case–control study reported in [4]

Y X W Frequency
Validation data 1 0 0 13

1 0 1 3
1 1 0 5
1 1 1 18
0 0 0 33
0 0 1 11
0 1 0 16
0 1 1 16

Nonvalidation data 1 0 318
1 1 375
0 0 701
0 1 535

in the validation sample and V = {i : Vi = 0} is the
index set of subjects in the nonvalidation sample.
The triple {Yi, Xi, Wi} is therefore available if i ∈ V
but only {Yi, Wi) is observed if i ∈ V. Let nvy =∑n

i=1 I (Vi = v, Yi = y) and nv = ∑n
i=1 I (Vi = v),

so, for example, n11 is the number of cases and n1 is
the total number of subjects in the validation data set.

Consider a prospective logistic model

P(Yi = 1|Xi = x, Vi = v) = exp(β
(v)

0 + β1x)

1 + exp(β
(v)

0 + β1x)
,

(6)

where β
(0)
0 and β

(1)
0 are the intercepts corresponding

to the nonvalidation and validation data sets respec-
tively, and β1 characterizes the increase in risk of
cervical cancer with exposure to HSV-2 according to
the refined western blot test. Let β = (β

(0)
0 , β

(1)
0 , β1)

′.
Note that

β
(1)
0 = β

(0)
0

+ log

(
P(Vi = 1|Yi = 1)/P (Vi = 0|Yi = 1)

P (Vi = 1|Yi = 0)/P (Vi = 0|Yi = 0)

)
,

(7)

and if πv = P(Yi = 1|Vi = v) then the second
term on the right-hand side can be reexpressed
as log(π1(1 − π0))/(π0(1 − π1)) and since π̂v =
nv1/nv , it is estimated by log(n11n00/n10n01).

The objective here is to estimate β1 based on the
full data set, taking into account the fact that W is a
misclassified assessment of X. Inferences on β1 may
be carried out by considering the likelihood

L =
∏

i∈V
[P(Xi = xi |Yi = yi, Vi = 1)

· P(Wi = wi |Xi = xi, Yi = yi, Vi = 1)]

·
∏

i∈V

[
∑

xi

P (Xi = xi |Yi = yi, Vi = 0)

· P(Wi = wi |Xi = xi, Yi = yi, Vi = 0)

]
, (8)

where we note that

P(Xi = 1|Yi = y, Vi = v)

= P(Yi = y|Xi = 1, Vi = v) · P(Xi = 1|Vi = v)

πv

.
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The conditional probabilities δxy = P(Wi = 1|Xi

= x, Yi = y, Vi = v) characterize the misclassifica-
tion distribution and we let δ = (δ00, δ01, δ10, δ11)

′.
The assumption of nondifferential misclassification is
imposed when we constrain δxy = δx , x, y = 0, 1.

The likelihood in (8) is a function of θ =
(β ′, δ′, λ′)′, where λ is a vector of additional nuisance
parameters required to evaluate P(Xi = x|Vi = v)

and πv = P(Yi = y|Vi = v). We may replace πv by
the empirical estimate nv1/nv , v = 0, 1, and λ may
simply comprise the parameters λ1 = P(Xi = 1|Vi =
1) and λ2 = P(Xi = 1|Vi = 0).

Table 2 summarizes parameter estimates and stan-
dard errors obtained from likelihood analyses of the
validation data alone and the full data set [3]. For
both data sets, the likelihood in (8) is constructed
under the assumption of differential and nondifferen-
tial misclassification. The estimate of the odds ratio
characterizing the increase in risk of cervical cancer
with exposure to HSV-2 based on the full data set is
1.84 (95% CI (0.93, 3.65)) under the assumption of
differential misclassification and 2.61 (95% CI (1.64,
4.15)) under the assumption of nondifferential mis-
classification. These estimates can be contrasted with
the findings from a naive analysis of the full data
set in which Wi is used in place of Xi , where we
obtain an odds ratio estimate of 1.57 (95% CI (1.31,
1.89)). Analyses based on the validation data alone
give unbiased estimators of β1, but with somewhat
lower precision.

Misspecification of the Misclassification
Distribution

Differential misclassification is a concern in
case–control studies since disease status is known
at the start of the study and cases and controls

can therefore be treated differently. If the true error
distribution features differential misclassification, but
one assumes δxy = δx , then the estimator maximizing
(8) will not be consistent for β. Some authors
have empirically investigated the impact of assuming
nondifferential misclassification when it is in fact
differential (e.g. [3]) and a detailed study can
be carried out using the theory of misspecified
models [39].

Let S(θ) be the estimating function obtained from
the assumed likelihood (8), and let θ̂ be the solution
to S(θ) = 0. If (8) is constructed assuming nondif-
ferential misclassification, the asymptotic bias in β̂1

under differential misclassification can be evaluated
as follows. Let ET (·) denote the expectation operator
with respect to the true joint distribution involving
differential misclassification, given by

∏

i∈V
P(Wi = wi, Xi = xi |Yi = yi, Vi = 1)

·
∏

i∈V
P(Wi = wi |Yi = yi, Vi = 0). (9)

This joint distribution may be reexpressed as

∏

i∈V
[P(Xi = xi |Yi = yi, Vi = 1)

· P(Wi = wi |Xi = xi, Yi = yi, Vi = 1)]

·
∏

i∈V

[∑
xiP (Xi = xi |Yi = yi, Vi = 0)

· P(Wi = wi |Xi = xi, Yi = yi, Vi = 0)
]
. (10)

Table 2 Parameter estimates and standard errors arising from likelihood analyses of cervical cancer data [4]

Validation data set Entire data set

Differential Nondifferential Differential Nondifferential

Parameter est. s.e. est. s.e. est. s.e. est. s.e.

β1 0.681 0.400 0.681 0.400 0.609 0.350 0.958 0.237
δ00 0.250 0.065 – – 0.311 0.055 – –
δ01 0.188 0.098 – – 0.189 0.085 – –
δ10 0.500 0.088 – – 0.578 0.0657 – –
δ11 0.783 0.086 – – 0.784 0.068 – –
δ0 – – 0.223 0.055 – – 0.257 0.043
δ1 – – 0.618 0.064 – – 0.679 0.041
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Let ET (S(θ)) denote the expectation of the esti-
mating function and let θ∗ denote the value of θ solv-
ing ET (S(θ)) = 0. Then θ∗ represents the value to
which the naive estimators of θ converge, so β∗

1 − β1

represents the asymptotic bias in the estimator of β1

when nondifferential misclassification is incorrectly
assumed.

To illustrate, consider the same model adopted in
the preceding example and take the design features

and true parameter values to be roughly comparable
to those reported. Specifically, we set β

(0)
0 = −1,

β1 = log(2), n00 = 1600, n01 = 800, n10 = 200, and
n11 = 100. We let δ00 = 0.3, δ10 = 0.6, and let ψv =
δv1(1 − δv0)/(δv0(1 − δv1)), v = 0, 1. If ψ0 = ψ1 =
1, then the misclassification is nondifferential, but
not otherwise. Figures 1 and 2 illustrate how the
asymptotic percent relative bias in β1 varies as a
function of (ψ0, ψ1)

′, where attention is restricted to
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values of ψv , v = 0, 1 such that the respective mis-
classification rates are no larger than those implied by
δ00 and δ10. Note that the resulting bias may be pos-
itive or negative in sign, reflecting the fact that bias
away from the null value may arise under nondiffer-
ential misclassification. Moreover, seemingly small
degrees of differential misclassification can lead to
appreciable bias.
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Errors in Variables

Errors in variables may occur for a variety of reasons;
for example, because of limitations of a measuring
instrument (e.g. weight) or because of random fluctu-
ations in a physiologic process (e.g. blood pressure).
Consider a simple linear regression model in which
a dependent variable Y is related to an explanatory
variable X according to Y = α + βX + ε, where
ε ∼ N(0, σ 2). Observation errors in Y are usually
taken to be part of the error specification in the
model, while the explanatory variable or covariate,
X, is usually assumed to be fixed. Concern is there-
fore primarily with errors in the measurement of X.
Here, we shall refer to the value of the explanatory
variable, if it could be measured without error, as the
“true covariate” and to the actual value of the variable
as the “observed covariate”.

If the estimated regression parameters are to be
used only for prediction and if the true value of the
explanatory variable will never be available, then the
usual regression model is appropriate [7, 8]. How-
ever, errors in variables can be a problem when the
primary interest is in the estimation of the relationship
between the dependent variable and the true covariate
values.

In uncontrolled experiments, in which the indepen-
dent variable is allowed to vary freely, the observed
covariate is usually assumed to be measured as the
true covariate plus an error term. Such errors in mea-
surement cause the estimate of the slope parameter to
be biased [3, 7]. The estimate of the slope obtained
from the observed covariate, β∗, is related to the slope
appropriate for the true covariate, β, according to
β∗ = βσ 2

x /(σ 2
x + σ 2

ε ), where σ 2
x is the variance of the

true covariate in the population and σ 2
ε is the variance

of the errors. In controlled experiments in which the
dependent variable is measured at prespecified levels
of the explanatory variable, the estimated coefficients
are found to be unbiased. This is true because on
average, over repeated experiments, the value of the
explanatory variable is correct in controlled experi-
ments. The controlled experiment, in which the true
covariate is randomly distributed about the observed
covariate, has become known as the “Berkson model”
in the literature [3].

Generalized Linear Models

A number of strategies for revising estimates of coef-
ficients of mismeasured covariates in a generalized
linear model have been suggested. Armstrong [1]
describes the use of an iteratively reweighted least
squares algorithm (see Generalized Linear Model)
to find maximum quasi-likelihood estimates, Ste-
fanski [15] describes methods for reducing bias in
M-estimates (see Robustness), and Schafer [14] sug-
gests using the EM algorithm and treating the mis-
measured covariates as missing variables. Methods of
correcting the score function (see Likelihood) and
estimating its efficiency have also been suggested
for use when covariates are measured with errors in
generalized linear models [9, 17]. It has been found
that errors in confounding covariates included in the
model may lead to incorrect conclusions when testing
for treatment effects in unbalanced nonrandomized
studies [5] (see Measurement Error in Epidemio-
logic Studies). The severity of this problem depends
on the size of the error, the degree to which the
study is unbalanced, and the strength of the rela-
tionship between the confounder and the dependent
variable. When confounders are measured with error
in randomized studies, treatment effects are underes-
timated [5]. Pepe & Fleming [10] discuss the use of
nonparametric methods to estimate coefficients of
covariates measured with error when both the true
and the observed data are available for a subsample
of the population.

Regression Models for Binary Data

Error in the measurement of the explanatory variable
in logistic regression causes estimates of the odds
ratio to be biased toward one in most situations [13,
15, 16]. When the majority of the cases have very
high or very low risk, however, the odds ratios may
be biased away from one [15]. If more than one vari-
able is included in the model, and one or more of
these is measured with error, any of the effects may
be under- or overestimated, even for variables mea-
sured without error [13]. Estimates of regression coef-
ficients from probit models (see Quantal Response
Models), for covariates measured with error accord-
ing to the Berkson model, have also been shown
to be biased [4]. The use of validation information
to correct estimates of relative risk has been sug-
gested for probit regression with binary or ordinal
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outcomes [18] and for logistic regression when more
than one covariate is measured with error [13]. Meth-
ods of improving estimates of relative risks have been
suggested for situations in which the errors in the
covariates are assumed to be normally distributed [6,
15]. Errors in covariates have also been shown to bias
the asymptotic levels of test statistics related to treat-
ment in nonrandomized studies when the covariates
are unbalanced between treatment groups [15].

Regression Models for Survival Data

Error in the measurement of controlled covariates has
been shown to bias regression coefficient estimates
in the Cox relative risk regression model [12]
(see Cox Regression Model; Measurement Error
in Survival Analysis). In this model, explanatory
variables may depend on time. When the true
covariate, Z(t), can be assumed to be normally
distributed about the observed covariate, X(t),
with variance h[X(t)]σ 2, the estimated relative risk
is E{exp[βZ(t)]} = exp{βX(t) + β2h[X(t)]σ 2/2}.
Error in the measurement of uncontrolled covariates
also causes estimates of the relative risk from
this model to be biased [11]. The coefficient
of the observed covariate, β∗, is related to the
coefficient of the true covariate, β, according to
β∗ = βi(β)/(i(β) + σ 2), where i(β) is the second
derivative of the log likelihood and σ 2 is the variance
of the errors. The amount of bias in the coefficient of
the variable measured with error has been shown to
be increased by the presence of a confounder, even
when the confounder is measured without error [2].
When only the confounder is measured with error,
then one may not fully adjust for it and the coefficient
of the covariate of interest will still be biased due to
confounding. If both the confounder and the covariate
of interest are measured with error, and if the errors in
these covariates are correlated, the relative risk may
be biased toward or away from one.
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Establishment Surveys
With Population
Survey–Generated
Sampling Frames

Introduction

Though virtually all establishment surveys use stand-
alone establishment sampling frames, defined as
frames that list all establishments in the universe, the
stand-alone frame is not a requirement for unbiased
estimation. When stand-alone frames contain estab-
lishment size measures, the Hansen–Hurwitz (HH)
pps estimator is typically used to estimate the volume
of transactions between establishments and house-
holds (see Sampling With Probability Proportional
to Size). This article features a network sampling
(NS) version of the HH estimator. Because the NS
estimator does not use a stand-alone frame, it is a
potential competitor of the HH estimator, particularly
when stand-alone frames with good quality establish-
ment coverage and size measures are unavailable or
are relatively expensive to construct and maintain.
The NS estimator uses a population-survey-generated
establishment sampling frame – a sample sampling
frame that lists the households enumerated in a popu-
lation sample survey, the establishments with whom
the survey households have transactions, and the
number of transactions each establishment has with
survey households. The population-survey-generated
frame is constructed with information that is collected
from household respondents in the population sam-
ple survey.

The survey design of the Consumer Price
Index (CPI) is a rare and notable example of an
establishment survey design that uses population-
survey-generated sampling frames [1]. CPI pricing
surveys use population-survey-generated sampling
frames that contain the business establishments,
which sell commodities to households in the CPI
continuing point of purchase surveys, a population
sample survey.

This article features a two-stage unbiased NS
estimator of X, the sum of the x-variate over
transactions between establishments and populations
residing in households. The NS estimator and its

first- and second-stage variance components are pre-
sented in the section “NS Estimation”. Clusters of
establishments with whom survey households have
transactions are the first-stage sampling units, and
the transactions that those establishments have with
all households are the second-stage selection units.
The effect of alternative second-stage sampling pro-
cedures on the stage 2 variance of the NS estimator
is also presented in the section “NS Estimation”. The
well-known two-stage pps HH estimator and variance
are presented in the section “HH Estimation” (see
Multistage Sampling). The section “Relative Preci-
sion of the HH and NS Estimators” compares the pre-
cision of the two estimators in single- and two-stage
sample designs under conditions yielding roughly the
same expected sample sizes in both types of establish-
ment surveys. Recent research on population-survey-
generated sampling frames is cited in the section
“Research on Population-survey-generated Frames”,
and some potential benefits and outstanding chal-
lenges of research on population-survey-generating
frames are summarized in the final section.

Research on Population-survey-generated
Frames

Research on designing establishment sample surveys
using population-survey-generated sampling frames
has a relatively short history and is in an early devel-
opmental stage. The research was motivated by a
recommendation of a Panel of the Committee on
National Statistics [11] convened by the National
Center for Health Statistics (NCHS) to review its
plans to restructure the national health care provider
surveys [3]. The Panel proposed using listings of
health care providers servicing households enumer-
ated in the National Health Interview Survey (NHIS)
as the sampling frames of health care provider sur-
veys. (The NHIS [2] is a continuing survey of
the civilian noninstitutional population.) In view of
the difficulties of constructing and maintaining good
quality stand-alone frames, especially during periods
of rapid institutional structural changes like the ones
now occurring in the nation’s health care deliv-
ery system, the Panel proposed that NHIS-generated
establishment frames might provide better quality
frames at lower frame construction and maintenance
costs.
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NCHS [4] presents rough comparisons of the
precision of estimates of the volume of dental ser-
vices between two-stage sample surveys using a
stand-alone sampling frame of dentists and an NHIS-
generated sample frame of dentists. Difficulties ini-
tially encountered in obtaining closed formulas of
the variances of establishment survey estimates using
population-survey-generated sampling frames were
overcome by developing two-stage network sam-
pling estimators [6, 10]). Sirken, Shimizu, and Jud-
kins [9] and Shimizu and Sirken [5] determined the
Hansen–Hurwitz versions of the NS estimator and
variance presented in the section “NS Estimation”.
Sirken [7] determined the differences in the sam-
pling efficiencies of the two estimators presented in
the section “Relative Precision of the HH and NS
Estimators”. Sirken and Shimizu [8] determined the
Horvitz–Thompson version of the two-stage NS esti-
mator, but it is not included in this article.

Notation

A universe of R establishments has M transactions
with a population of N households.

Let Mij denote the number of transactions which
household i (i = 1, 2, . . . , N) has with establishment
j (j = 1, 2, . . . , R), where Mij ≥ 0. Then

Mj = ∑N
i=1 Mij = the number of transactions of

establishment j with N house-
holds and

M = ∑R
j=1 Mj = the total number of transactions

between R establishments and
N households.

M = M/N = the average number of transac-
tions per household.

Let Xjk denote the value of the x-variate for
transaction k (k = 1, 2, . . . , Mj) of establishment j

(j = 1, 2, . . . , R). Then,

Xj = ∑Mj

k=1 Xjk = the sum of the x-variate over the
Mj transactions of establishment
j ,

X = ∑R
j=1 Xj = the sum of the x-variate over

the transactions of R establish-
ments, and

Xj = Xj/Mj = the average value of the x-variate
over the Mj transactions of estab-
lishment j .

NS Estimation

From the perspective of network sampling, a two-
stage establishment survey using a population-
survey-generated frame is viewed as a two-stage
population sample survey in which clusters of
establishments having transactions with households
(i = 1, 2, . . . , N) are first-stage selection units,
and the Mj transactions of establishment j (j =
1, 2, . . . , R) that has transactions with household i,
Mij > 0, are second-stage selection units.

This article assumes that a sample of n households
is selected by simple random sample (srs) with
probabilities πi = π = n/N (i = 1, 2, . . . , n) and
with replacement (see Sampling With and Without
Replacement). (However, the NS estimator can be
applied to more complex population survey designs
than are considered in this article.) Respondents at
the N households identify establishments with whom
they have transactions and report the number, Mij

(i = 1, 2, . . . , n) (j = 1, . . . , R), of their transactions
with each establishment. (The population-survey-
generated frame is constructed with the information
provided by household respondents). In the survey
conducted with the rNS establishments reported by
the N sample households, establishment j (j =
1, 2, . . . , rNS) reports the values of the x-variate
for a sample of mj = cNS

∑n
i Mij from its Mj

transactions, where cNS is a positive integer. Two
sampling procedures for selecting mj of the Mj

transactions from establishment j (j = 1, 2, . . . , rNS)

are presented and compared:

Procedure (α): Samples of mij = cNSMij transactions
are independently drawn from the Mj transac-
tions of establishment j by srs without replace-
ment for each household i (i = 1, . . . , n) that has
transactions with establishment j ;

Procedure (β): A single sample of mj = cNS
∑n

i Mij

transactions is drawn from the Mj transac-
tions of establishment j by srs without replace-
ment.

The unbiased NS estimator of X using stage 2
sampling procedure α is

X′
NS = N

n

n∑

i=1

R∑

j=1

MijX
′
j (i), (1)
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where

X
′
j (i) = 1

cNSMij

cNSMij∑

k=1

Xjk (2)

is an unbiased estimate of Xj based on the sample of
cNSMij transactions of establishment j selected for
household i. Because households are selected with
replacement, the NS estimator counts the quantity∑R

j MijX
′
j (i) every time the same household i (i =

1, 2, . . . , n) is selected in the sample. Because the
same establishment has transactions with multiple
households, the NS estimator also counts MijX

′
j (i)

every time establishment j has transactions with a
different sample household.

The variance of X′
NS is

Var(X′
NS) = N2

n
σ 2

NS1 + N

ncNS

N∑

i=1

R∑

j=1

Mij

×
(

1 − cNSMij

Mj

)
σ 2

j , (3)

where the first and second terms respectively on
the right side of (3) are the first- and second-stage
variance components, and

σ 2
NS1 = 1

N

N∑

i=1




R∑

j=1

MijXj − X

N




2

(4)

is the between-household population variance and

σ 2
j = 1

Mj

Mj∑

k=1

(Xjk − Xj)
2 (5)

is the within-establishment population variance for
establishment j (j = 1, 2, . . . , R).

An unbiased estimate of the variance of the NS
estimator in (3) is

σ̂ 2
NS = N2

n(n − 1)

n∑

i=1




R∑

j=1

MijX
′
j (i) − X′

N




2

+ N

ncNS

n∑

i=1

R∑

j=1

Mij

(
1 − cNSMij

M ′
j

)
σ̂ 2

j ,

(6)

where

σ̂ 2
j = 1

mj − 1

mj∑

k=1

(Xjk − X
′
j )

2 (7)

is an unbiased estimate of σ 2
j and

X
′
j = 1

mj

mj∑

k=1

Xjk (8)

is the unbiased estimate of the transaction mean Xj

for establishment j .
The second term on the right side of (3) represents

the stage 2 variance using sampling procedure α. The
stage 2 variance using sampling procedure β is

(
N

n

)2

E




n∑

i−1

R∑

j=1

M2
ij

(
1

mj

− 1

Mj

)
σ 2

j



 . (9)

Using the inequality
∑

i M2
ij ≤ (∑

i Mij

)2
, it is

demonstrated below that the stage 2 variance based
on sampling procedure α is the upper bound of the
stage 2 variance based on sampling procedure β.

(
N

n

)2

E




n∑

i−1

R∑

j=1

M2
ij

(
1

mj

− 1

Mj

)
σ 2

j





=
(

N

n

)2

E





R∑

j=1





n∑

i=1

M2
ij

cNS

n∑

i=1

Mij

−

n∑

i=1

M2
ij

Mj




σ 2

j





≤
(

N

n

)2

E





R∑

j=1





(
n∑

i=1

Mij

)2

cNS

n∑

i=1

Mij

−

n∑

i=1

M2
ij

Mj




σ 2

j





=
(

N

n

)2 R∑

j=1

E





n∑

i=1

Mij

cNS
−

n∑

i=1

M2
ij

Mj




σ 2

j

= N

ncNS

N∑

i=1

R∑

j=1

Mij

(
1 − cNSMij

Mj

)
σ 2

j . (10)

Thus, when feasible, it is more efficient to use
sampling procedure β rather than procedure α at the
second stage.



4 Establishment Surveys

HH Estimation

A two-stage establishment sample survey using a
stand-alone frame is conducted to estimate X. The
stand-alone frame lists R establishments and the
number of their respective transactions Mj (j =
1, 2, . . . , R). At stage 1, a sample of rHH establish-
ments j (j = 1, . . . , rHH) is selected by pps with
replacement, and at stage 2, a fixed size sample of cHH

transactions is independently selected from the Mj

transactions of establishment j (j = 1, 2, . . . , rHH)

by srs without replacement.
The unbiased HH estimator of X is

X′
HH = M

rHH

r∑

j=1

X
′
j , (11)

where X
′
j = ∑cHH

k=1 Xjk/cHH is an unbiased estimate
of Xj = Xj/Mj (j = 1, 2, . . . , R). The variance of
X′

HH is

Var(X′
HH) = M2

rHH
σ 2

HH1 + M

rHHcHH

×
R∑

j=1

(Mj−cHH)σ 2
j , (12)

where the first and second terms respectively on
the right side of (12) are the first- and second-stage
variance components, and

σ 2
HH1 = 1

M

R∑

j=1

Mj

(
Xj − X

M

)2

(13)

is the between-establishment variance, and σ 2
j is the

within-establishment population variance for estab-
lishment j (j = 1, 2, . . . , R) defined in (5).

Relative Precision of the HH and NS
Estimators

Let

mHH = cHHrHH = the transaction sample

size of the HH estimator of X

and

mNS = cNS

n∑

i=1

R∑

j=1

Mij = the transaction sample

size of the NS estimator of X.

Set cNS = cHH = c and rHH = ∑n
i=1

∑R
j=1 Mij and it

follows that HH and NS transaction sample sizes are
equivalent, mHH = mNS, and E(mHH) = E(mNS) =
cnM . (From the viewpoint of survey costs, it is wor-
thy to note that for a fixed transaction sample size, the
expected number of distinct establishments is smaller
in NS than in HH because multiple households have
transactions with the same establishment and often
households have multiple transactions with the same
establishment.) Under these simplifying conditions,
the difference between the variances of the NS and
HH estimators of X given in (3) and (12), respec-
tively, can be written as

Var(X′
NS) − Var(X′

HH)

= N2

n
(σ 2

NS − Mσ 2
HH1) − N

nc

R∑

j=1

ρj (α)σ 2
j , (14)

where the first term and second terms, respectively,
on the right side of (14) are the differences between
the stage 1 and stage 2 variance components of the
NS and HH estimators, and

ρj (α) = (Mj − c) −
(

1

Mj

) N∑

i=1

Mij (Mj − cMij )

=
(

c

Mj

) N∑

i=1

Mij (Mij − 1) ≥ 0 (15)

is the difference between the HH and NS second-
stage finite population corrections for establishment
j if the NS estimator is based on sampling procedure
α. If the NS estimator is based on sampling procedure
β, then ρj (β) ≥ ρj (α).

Under the conditions of equivalent transaction
sample sizes specified earlier, the NS and HH esti-
mators are equally efficient in stage 1 and stage 2
components, if and only if, the M transactions are dis-
tributed over N households such that every household
i (i = 1, 2, . . . , N ) has a single transaction. Under
these conditions, the NS and HH estimators are equiv-
alent. The direction and magnitude of differences
between variances of the NS and HH estimators will
vary from survey to survey depending on the kinds
and extent of clustering of transactions within house-
holds. For example, the first-stage variance compo-
nent is likely to be less for the HH estimator than
for the NS estimator if M = M/N is a small frac-
tion and/or if households have multiple transactions
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with the same establishments. On the other hand, as
evident from (15), the second-stage variance compo-
nent is less for the NS estimator than for the HH
estimator if any of the establishments have multi-
ple transactions with the same households, and the
magnitude of their difference depends on the extent
of households having multiple transactions with the
same establishments.

Summary Remarks

Unbiased estimation can be obtained in establishment
surveys that use population survey-generated frames,
that is, sample sampling frames that list only
the establishments that have transactions with
households in a population sample survey. Clearly,
population-survey-generated establishment frames
definitely deserve consideration whenever stand-
alone establishment frames of good quality are
unavailable or prohibitively expensive to construct
and maintain. However, even when good stand-alone
frames are available, population-survey-generated
frames may be competitive.

For example, this article compares the sampling
variances in two-stage establishment sample survey
designs that use a HH estimator and an NS estima-
tor that depend on flawless sampling frames. The HH
estimator depends on a stand-alone sampling frame
with parametric measures of establishment size, and
the NS estimator depends on a population-survey-
generated sampling frame showing the total number
of transactions of each establishment with survey
households. When the transaction sample sizes of the
NS estimator and the HH estimator are roughly the
same, neither estimator is necessarily more efficient
than the other, and the direction and magnitude of the
difference between their variances depends on several
parameters whose values are likely to vary consider-
ably from survey to survey and between population
domains in the same survey. Empirical studies are
needed to estimate the values of the parameters.

Empirical studies are also needed to determine
the cost and error effects of three major assumptions
of the theoretical findings presented in this article:
(1) the stand-alone frame and the population-survey-
generated frame are flawless in coverage and size
measures, (2) the population survey, which yields the

population-survey-generated sampling frame is based
on an srs design, and (3) the simplifying conditions
specified to yield equivalent HH and NS transaction
sample sizes. Fortunately, the estimation procedures
are robust and are applicable to more complex survey
designs and less stringent survey conditions than are
considered in the article.
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Estimating Functions

In common with other areas of statistics, a major
activity in biostatistics consists of constructing prob-
abilistic models. These models can be classified very
broadly as (i) parametric models and (ii) semipara-
metric models. In (i) the distributions are specified up
to a number of unknown parameters, some of which
are of scientific interest; the others are commonly
called nuisance parameters. In (ii) the parameters
of scientific interest are modeled directly thus elim-
inating generally, though not altogether, the effects
of the nuisance parameters. For estimation of the
unknown parameters two distinct methodologies have
been in practice for a long time. The method of max-
imum likelihood was put forward with a statistical
justification by Fisher [13], for parametric models in
(i) above; the method, however, was also known to
Gauss a century before. The method of least squares
was formulated by Legendre [28] and was statistically
justified by Gauss [15, 16]. As illustrated below, both
methods, maximum likelihood and least squares, have
their strengths and weaknesses. It is further demon-
strated how the method of estimating functions put
forward by one of the present authors, Godambe
[17], has in recent years provided a unification and
extension of the two historical methods of maximum
likelihood and least squares. The estimating function
methodology eliminates the weaknesses and com-
bines the strengths, of both the maximum likelihood
and the least squares methods. This methodology,
because of its inbuilt flexibility, provides a versatile
tool for applications in diverse areas including bio-
statistics. The topics particularly covered here are
case–control studies, prospective and retrospective
sampling, overdispersion, longitudinal data, and the
like.

The Methods of Maximum Likelihood
(ML) and Least Squares (LS)

We assume the random variate y has a density func-
tion f (y; θ). The function f is completely specified
up to the unknown parameter, θ , assumed for simplic-
ity to be a scalar. The maximum likelihood method
(ML) consists of estimating the unknown parameter
θ on the basis of the response, y, by the value θ̂ (y)

which, for the fixed y, maximizes f (y; θ) for all vari-
ations of θ . Granting regularity conditions the score

function (see Likelihood) is defined as ∂ log f/∂θ

and the ML estimate, θ̂ (y), is given by solving for θ

the ML equation

∂ log f (y; θ)

∂θ
= 0. (1)

If the random variate y consists of n components
y = (y1, . . . , yn), then under very general conditions,
as n → ∞, i.e. asymptotically (see Large-sample
Theory) the solution of the ML equation (1) tends to
be an unbiased minimum variance estimate of θ , with
the variance → 0; Fisher [13]. That simply means
that among the consistent estimates of θ , the ML esti-
mate has an asymptotically smallest variance. This is
the strong property of ML estimation. But now sup-
pose the density f of the random variate y is specified
by two parameters, θ1 and θ2, f = f (y; θ1, θ2), θ1

being the parameter of interest and θ2 the nuisance
parameter. Now given the response y, what is the
ML estimate of θ1 ignoring θ2? This question has
no answer. Suppose we estimate both parameters θ1

and θ2 by the ML method; (θ̂1, θ̂2). That is, the den-
sity f (y; θ1, θ2) is maximized for the joint variation
of (θ1, θ2) at θ1 = θ̂1(y) and θ2 = θ̂2(y). If now, as
before, y = (y1, . . . , yn) and if the dimensionality
of the nuisance parameter θ2 increases with n, then
θ̂1(y) may tend to a false value of θ1 as n → ∞
(see Convergence in Distribution and in Prob-
ability). Suppose, for example, yi = (yi1, yi2), i =
1, . . . , n, and that all ys are distributed independently
and normally with the means E(yi1) = E(yi2) = θ2i ,
i = 1, . . . , n, θ2 = (θ21, . . . , θ2n) and with a common
variance θ1. In this case the ML estimate

θ̂1(y) = 1

4

n∑

1

(yi1 − yi2)
2

n
−−−→ 1

2
θ1.

That is, the ML estimate θ̂1 is inconsistent [40]. This
then is a major weakness of ML estimation.

As noted above, the ML method of estimation pre-
supposes a fully parametric model f (y; θ). However,
the least squares (LS) method assumes only a semi-
parametric model: the mean values of the responses
are modeled as functions of the parameter of interest
θ . Let y = (y1, . . . , yi, . . . , yn) be the vector of inde-
pendent random variates with mean values E(yi) =
αi(θ) and variances E(yi − αi)

2 = σ 2
i , i = 1, . . . , n,

where the αi are some specified functions of the
parameter θ ; θ , as before, is assumed a scalar. The
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variances σ 2
i are assumed to be known constants. As

usual, the value of the parameter θ is unknown. The
LS method consists of estimating θ , on the basis of
the response, y, by the value θ̂ (y), which minimizes
for the fixed y,

∑n
1[(yi − αi)

2/σ 2
i ] for all variations

of θ . Thus the LS estimate, θ̂ (y), is obtained by solv-
ing for θ the LS equation

n∑

i=1

[yi − αi(θ)]
∂αi(θ)/∂θ

σ 2
i

= 0. (2)

For linear functions αi , this method of estimation,
as previously indicated, was proposed by Legendre
[28]. The estimate θ̂ (y), so obtained, was shown by
Gauss [16] to have minimum variance in the class
of all linear unbiased estimates of θ . Usually this
is known as the Gauss–Markoff theorem. Thus the
Gauss–Markoff theorem gives a strong finite sam-
ple property of LS estimation. Even if the functions
αi are not linear, granting some regularity condi-
tions, the LS estimate, though no longer unbiased,
is consistent. The LS method, however, breaks down
when the variances σ 2

i are not “known constants” but
are “known (specified) functions” of θ ; E(yi − αi)

2 =
σ 2

i (θ), i = 1, . . . , n. Now the LS equation (2) is to be
replaced by

{
n∑

i=1

[yi − αi(θ)]
∂αi(θ)/∂θ

σ 2
i (θ)

}
+

{
2

n∑

i=1

[yi − αi(θ)]2

× 1

σ 3
i (θ)

· ∂σi(θ)

∂θ

}
= 0. (3)

Here the second term on the left-hand side of (3),
for large samples, is of the order

∑n
1 ∂ log σi(θ)/∂θ .

Hence it is easy to see that the solution of (3), unlike
that of (2), would provide an inconsistent estimate of
θ . This then is a major weakness of the LS method.

The Method of Estimating Functions (EF)

The two methods of estimation, ML and LS, are char-
acterized by the “estimating equations”, (1) and (2),
respectively. More generally, we define an estimating
function as a function of the random variate y and
the parameter of interest θ, g(y, θ) say. For every
observation y, the solution of the estimating equa-
tion g(y, θ) = 0, namely θ̂ , provides an estimate of

θ . Thus in (1) and (2) the estimating functions are

g1(y, θ) = ∂ log f (y; θ)

∂θ
and

g2(y, θ) =
n∑

i=1

[yi − αi(θ)]
∂αi(θ)

∂θ

1

σ 2
i

, (4)

respectively. Unlike the two methods of estimation,
ML and LS, which emphasize the properties of the
“estimate”, i.e. the solution of the equation g(y, θ) =
0, the EF method emphasizes the properties of the
estimating function g itself. For instance, it is called
unbiased if, for all θ , the expectation

Eg(y, θ) = 0. (5)

Thus, although the estimates (solutions) θ̂ obtained
from (1) and (2) are generally biased, the correspond-
ing estimating functions g1 and g2 in (4) are unbiased:
E(g1) = 0 and E(g2) = 0. Interestingly, the inconsis-
tency of the solution of the estimating equation, (3),
is due to the fact that the corresponding estimating
function, namely

g3 = g2 +
{

2
n∑

i=1

(yi − αi)
2 1

σ 3
i

∂σi

∂θ

}
, (6)

unlike g2, is not unbiased.
In EF methodology we deal with EFs g which are

unbiased, i.e. they satisfy the property (5). To com-
pare the efficiencies of various unbiased estimating
functions g, the variance of g, E(g2), is not a useful
criterion, for trivially E(g2) ≡ 0 for the unbiased esti-
mating function g which is identically 0 for all values
of y and θ . This difficulty is overcome by using the
standardized version of g, namely

gs = g

E

(
∂g

∂θ

)
. (7)

Note that the standardized versions of two unbiased
estimating functions, namely g and k(θ)g, k(θ) being
a constant depending on θ , are identical. This is
necessary for the estimating functions g and k(θ)g

to have the same inferential content. Although the
standardization given by (7) is somewhat arbitrary, it
has proved to be very versatile, with applications in
various fields of statistics. This is illustrated below.
Initially, the standardization (7) provides a definition
of an optimal estimating function.
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Definition. For a given model, let G be an arbitrary
class of unbiased estimating functions g, G = {g}. In
G, the estimating function g∗ is said to be optimal if
for any other g ∈ G,

E(g∗
s )

2 ≤ E(gs)
2, (8)

for all θ .
Now consider the parametric model f (y; θ) men-

tioned previously in relation to ML estimation. Fur-
thermore, in the above definition, let G0 be the class of
all unbiased estimating functions satisfying some reg-
ularity conditions. Then in G0 the optimal estimating
function g∗ is given by the score function (SF)

g∗ = ∂ log f (y; θ)

∂θ
(9)

(see [17]). This is a finite sample optimality of ML
estimation in contrast to its asymptotic property [13]
mentioned earlier. Actually, the latter follows from
the former. Again, as before, we consider the nui-
sance parameter situation. In the model f (y; θ), θ =
(θ1, θ2), let θ1 be the parameter of interest and θ2 the
nuisance parameter. To estimate θ1, ignoring θ2, we
consider the class Gc of unbiased estimating functions
g which depend on θ only through θ1. Now suppose
the model f admits a complete sufficient statistic t
(independent of θ1) for θ2 and f (y|t ; θ1) denotes the
density of y conditional on t . Then granting some
regularity conditions, the optimal estimating function
in Gc is given by the conditional score function

g∗ = ∂ log f (y|t ; θ1)

∂θ1
; (10)

the definition of “optimality” used being the same as
before [18]. The solution of the estimating equation
g∗ = 0, in (10), unlike that of the ML equations, (1),
is a consistent estimate generally for problems of the
Neyman–Scott [40] type. Thus, EF theory corrects
the ML estimation for its major weakness. A similar
correction to LS estimation is provided by the EF
theory. This is shown in what follows.

As previously indicated, LS estimation presup-
poses a semiparametric model. We have a ran-
dom vector of observations, y = (y1, . . . , yi, . . . , yn),
with independent components. The mean values,
E(yi) = αi(θ), and the variances, E(yi − αi(θ))2 =
σ 2

i (θ), i = 1, . . . , n; αi , and σi are some specified
functions of the parameter of interest θ . It was noted
earlier that LS estimation works well when αi are

linear functions of θ and σi are independent of θ . In
this case the estimation derived from the LS equa-
tion (2) is supported by the Gauss–Markoff theorem.
However, when σi depends on θ , the LS equation (3)
leads to an inconsistent estimate. This inconsistency
is due to the fact that the EF g3 in (6) is not unbiased.
To correct this situation the EF theory here starts with
the elementary unbiased EFs hi = yi − αi(θ) and
E(hi) = 0, i = 1, . . . , n. Now the linear estimates of
the Gauss–Markoff theorem are replaced by the class
Gl of linear unbiased EFs,

g =
n∑

i=1

hiai, (11)

where ai can be arbitrary functions of θ . Note that g is
linear in hi and is unbiased, E(g) = 0. Furthermore,
it can be shown that in this class Gl of linear unbiased
EFs the “optimum” g∗ satisfying the inequality (8) is
given by

g∗ =
n∑

i=1

[yi − αi(θ)]
∂αi(θ)/∂θ

σ 2
i (θ)

. (12)

Note that when the variances σ 2
i are constants inde-

pendent of θ , the estimating function g2 in (4) pro-
vided by the LS method is identical to g∗ in (12).
However, when σ 2

i depends on θ, σ 2
i = σ 2

i (θ), g∗ in
(12) is different from the EF g3 in (6), provided by the
LS method. Not only does the equation g∗ = 0, unlike
the LS equation g3 = 0, provide a consistent solution,
but in fact g∗ = 0 is the ML equation (g∗ being the
score function) for the exponential family of dis-
tributions [3, 45]. Actually, since Wedderburn [45],
g∗ = 0 is called the quasi-likelihood equation [34]
(see Generalized Linear Model). The optimality of
the estimating function g∗ in (12) was established in
a wider setting of stochastic processes by Godambe
[19]; following that reference we call g∗ the quasi-
score function.

The quasi-score function is a synthesis, provided
by the EF theory, of the two traditionally distinct
methods of estimation namely ML and LS. For,
note that the EFs g∗ in (9), (10), and (12) all
satisfy the same criterion of optimality, namely (8);
only the competing classes in the three cases G0,Gc,
and Gl , respectively, are different. These classes are
derived from the underlying models. The quasi-score
function, that is the optimum EF g∗ in (12), has a
wider domain of application than either the ML or
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the LS methods. The domain of application of g∗
is vastly enhanced further by letting the elementary
estimating functions hi in (11) be arbitrary functions
of y and θ , which are conditionally unbiased, i.e.
unbiased conditional on some partition (σ -field) of
the sample space. For, in that case the constants
a(θ) in (11) can be replaced by any functions of
y and θ which are measurable with respect to the
σ -field generated by the partition. This provides
an enlarged class Glc,Glc ⊃ Gl of the competing
estimating functions. The optimal estimating function
g∗ in Glc, i.e. the one satisfying condition (8),
was obtained by Godambe & Thompson [23]. This
covers areas of stochastic processes underlying many
biostatistical applications.

From the above discussion it should be clear
that the optimal EF, g∗, not only provides a point
estimate through the equation g∗ = 0, but it also
provides a substitute for a score function (1), in a
semiparametric model. Let g be any unbiased EF,
and furthermore let the semiparametric model be a
union of families of parametric distributions. Then,
very generally, we have:

1. E(g∗ − SF)2 ≤ E(g − SF)2.
2. correlation (g∗, SF) ≥ correlation(g, SF), where

the score function, SF, and the expectation, E,
correspond to the underlying parametric family
of distributions.

3. Moreover, the confidence intervals obtained by
inverting the distribution of g∗ are asymptotically
shorter than the corresponding ones based on
g [21].

Now for a parametric family of distributions the
optimal EF, g∗, is given by the score function as
in (9). Also, according to the just stated property, 3,
the confidence intervals based on the score function
are asymptotically shortest [48].

One important implication of point 3 above, for
all statistical (including biostatistical) practice, is that
the confidence intervals based on the inversion of
the distribution of the optimal EF g∗ are preferable
to those based on any (unbiased minimum variance)
estimate. Even operationally, the distribution of the
estimate often is far less tractable than that of
an estimating function consisting of independent
components. This is often the case in biostatistical
applications, as will be seen subsequently.

Case–Control Studies

Case–control or retrospective studies are of great
importance in both biostatistics and the social sci-
ences where they are referred to as choice-based
sampling studies. In such a study comparisons are
made between individuals who have a particular dis-
ease or condition, the cases, and individuals who do
not have the disease, the controls. In the simplest
case, where a single binary risk factor or exposure
variable is of interest, one might sample cases from
a population having the disease and also controls
from the disease-free population. One then ascertains
retrospectively whether or not the sampled individ-
uals have been exposed to the risk factor. In the
simplest situation this reduces to a comparison of
two binomial distributions with the odds ratio θ =
[p1(1 − p2)/p2(1 − p1)] the parameter of interest,
this being a measure of association between disease
and exposure. Here pi, i = 1, 2, is the probability of
exposure for cases and controls, respectively. The
nuisance parameter complementary to θ may be taken
as p2 and one is interested in an optimal estimat-
ing function for θ free of the nuisance parameter p2.
If y = (y1, y2) are the observed number of exposed
individuals in the samples of cases and controls,
respectively, then t = y1 + y2 is a complete sufficient
statistic for the nuisance parameter p2. Hence by a
result of Godambe [18], mentioned in (10) above, the
optimal estimating function for θ is the conditional
score ∂ log f (y|t ; θ)/∂θ . In this case

∂ log f (y|t ; θ)

∂θ
= y1 − E(y1|t ; θ), (13)

which is free of p2 and clearly unbiased. We note
also that while conditioning is important in eliminat-
ing the nuisance parameter, the result of Godambe
[18] implies unconditional global optimality for this
estimating function. We note also that this argument
in terms of estimating functions is related to Fisher’s
use of conditional likelihood for the 2 × 2 table (see
Fisher’s Exact Test).

In practice, there will be a number of confounding
variables or factors that may conceal or exaggerate
the true effect of the risk factor of immediate interest.
A common strategy is to stratify the cases and con-
trols into a number of strata i, i = 1, . . . , N , say, on
the basis of such confounding variables (see Stratifi-
cation). If the odds ratios θ = [pi1(1 − pi2)/pi2(1 −
pi1)], i = 1, . . . , N , are the same for each stratum,
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then we have N 2 × 2 tables with pi1 and pi2 being
the exposure probabilities for cases and controls in
the ith stratum. Here we have a single parameter
θ of interest and N nuisance parameters pi2, i =
1, . . . , N . The difficulties involved in maximum like-
lihood estimation with many nuisance parameters, as
mentioned earlier, are well known since Neyman &
Scott [40]. This is a classic Neyman–Scott type sit-
uation. However, the estimating function approach
avoids the inconsistency of the maximum likelihood
estimate of θ by conditioning on ti = yi1 + yi2, where
yi1 and yi2 are the number of exposed individuals for
the cases and controls, respectively, in the ith stra-
tum. The conditioning statistic, ti , is again complete
and sufficient for pi2 and the optimal estimating func-
tion for θ is obtained by summing terms like (13) for
each stratum. Yanagimoto [51] considers combina-
tions of unbiased estimating functions from different
strata which, although suboptimal, may be simpler
computationally than (13). Yanagimoto suggests the
following unbiased estimating equation for stratum i:

gi(yi ; θ) = yi1(ni2 − yi2) − θyi2(ni1 − yi1),

where yi = (yi1, yi2) and ni1 and ni2 are the sam-
ple sizes for cases and controls, respectively. The
optimal weighted combination of these, minimizing
Godambe’s criterion (8), is

g(y; θ) =
N∑

i=1

wigi(yi ; θ),

where wi = wi(θ) = E(∂gi/∂θ)var−1(gi). For θ = 1,
Yanagimoto finds wi(1) = (ni + mi)

−1, yielding the
celebrated Mantel–Haenszel estimator [32].

The optimality of the conditional score func-
tion exemplified above for the binomial distribution
applies more generally to canonical exponential fam-
ilies. For example, mortality rates are often modeled
under Poisson assumptions, and the parameter of
interest, the standardized mortality rate θ , may be
taken as a ratio of Poisson means for exposed vs. non-
exposed. Again, ti = yi1 + yi2, the total number of
deaths in each stratum, is a complete sufficient statis-
tic for the nuisance stratum parameter and derivation
of the optimal estimating function parallels the bino-
mial case. Computationally the situation is simpler
in that the conditional score involves the binomial
distribution of yi1, given yi1 + yi2, while (13) above
involves the noncentral hypergeometric.

Prospective and Retrospective Sampling

Frequently the analysis of case–control studies pro-
ceeds by ignoring retrospective sampling and assum-
ing that the data arose prospectively. Prentice & Pyke
[42] provided one justification for this by showing
that the resulting estimators of the logistic regression
coefficients are consistent and that the usual standard
errors are asymptotically correct. In this respect the
advantages of the estimating functions approach have
been recently demonstrated by Carroll et al. [6] as
follows.

Simple ideas from estimating function theory may
be used to generalize the above result of Prentice
& Pyke to a variety of other analyses and sam-
pling schemes. For example, the logistic model may
be replaced by robust models; measurement error
models may be accommodated; missing data pat-
terns of general types, as well as stratified studies, are
encompassed. The multiplicative model of Weinberg
& Wacholder [46], and other models not necessar-
ily of the logistic form, are also included. In the
more general situation just mentioned a somewhat
weaker result than that of Prentice & Pyke holds.
If the case–control sampling scheme is ignored and
asymptotic standard errors are derived as if the study
were prospective, then the standard errors are, in gen-
eral, at worst asymptotically conservative. However,
the asymptotic theory based on estimating functions
enables one to identify a simple sufficient condi-
tion which ensures that prospectively derived stan-
dard errors are, in fact, asymptotically correct. This
condition can be shown to apply to a variety of
examples.

The simple case of the classical logistic model
exemplifies the essence of the argument. The estimat-
ing equations for prospective sampling are given by

0 =
n∑

i=1

(
1
Xi

)
[Di − H(θ∗

0 + θ1Xi)], (14)

where Di is the binary variable for the ith individual,
Xi the covariate, and H(·) the usual logistic distribu-
tion function. This may be written as

0 =
n∑

i=1

ψi(Di, Xi, θ∗) = �, (15)
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where θ∗ = (θ∗
0 , θ1)

′ is the unknown parameter.
Prospectively, the right-hand side of (15) is an unbi-
ased estimating function. Furthermore,

Eψi(Di, Xi, θ∗) = 0 (16)

for each i, so that each component is also an unbi-
ased estimating function in the prospective sampling
scheme. The asymptotic standard error of the solution
to (15) is, by the usual Taylor series argument,

B−1(θ∗)A(θ∗)B−1(θ∗),

where

B(θ∗) = n−1E

(
∂�

∂θ∗

)

and

A(θ∗) = n−1cov(�).

Moreover, because of (16):

A(θ∗) = n−1
n∑

i=1

E[ψi(Di, Xi, θ∗)ψ ′
i (Di, Xi, θ∗)]

= C(θ∗), say.

Turning now to the retrospective sampling scheme,
with θ∗ replaced by θ = (θ0, θ1)

′, where θ0 = θ∗
0 +

log(n1/n0) − log[Pr(D = 1)/ Pr(D = 0)], where ni

is the sample size for individuals with D = i, i = 0
or 1, and Pr(D = 1) is the unknown prospective
probability of success. Consider (15) with θ∗ replaced
by θ . While � remains unbiased [42], the component
estimating functions ψi(Di, Xi, θ) are, in general, not
unbiased. Instead of A(θ) = C(θ), we now have, by
an elementary calculation,

A(θ) = C(θ) − D(θ),

with

D(θ) = n−1
n∑

i=1

E[ψi(Di, Xi, θ)]E[ψ ′
i (Di, Xi, θ)]

a positive semi-definite matrix. The positive semi-
definiteness of D(θ) implies that the use of the
prospective formula B−1(θ)C(θ)B−1(θ) will, in gen-
eral, produce inflated standard errors when applied to
data collected retrospectively.

This simple argument can be generalized to a wide
variety of models and measurement error schemes.

A key assumption is that a general version of (15),
which is prospectively unbiased, is also retrospec-
tively unbiased. As an informal argument justify-
ing this assertion note that prospective unbiased-
ness implies E{ψ(D, X, θ)|X} = 0, for the classical
model, i.e.

1∑

d=0

ψ(d, x, θ)Hd(x, θ)[1 − H(x, θ)]1−d = 0. (17)

Similarly, conditioning on the disease outcome vari-
able D, retrospective unbiasedness implies E{ψ(D,

X, θ)|D} = 0. Suppose we define

kd =
∫

ψ(d, x, θ)Hd(x, θ)[1 − H(x, θ)]1−dτ (x) dx,

where τ(x) is the marginal density of x induced
by the case–control sampling scheme. Then it fol-
lows from (17) that k0 + k1 = 0, implying retro-
spective unbiasedness. Note that k1 equals the first
column of −E(∂Ψ/∂θ), which is the condition that
prospectively derived standard errors are retrospec-
tively asymptotically correct. These results for the
classical model can be generalized to a variety of
more complex schemes.

Many other applications of estimating functions
in biostatistics are similar to this one in that the
primary focus is on the generation of point esti-
mates together with asymptotic standard errors. How-
ever, a consequence of the optimality of an esti-
mating function is that confidence intervals based
directly on it are asymptotically the shortest, as
pointed out earlier. Hence, interval estimation based
on inversion of appropriately standardized optimal
estimating functions should be superior to those based
on estimates and standard errors, even if these lat-
ter are obtained from optimal estimating functions.
Special cases of this phenomenon have been demon-
strated, e.g. Boos [2] or Sprott & Viveros [43].

In the works of Prentice & Pyke [42] and Carroll
et al. [6] discussed above, and others, the parameters
estimated belong to a model and the sample is sup-
posed to be drawn from the hypothetical population
generated by the model. However, generally in bio-
statistical applications the “sample” is drawn from
a finite survey population consisting of individuals
or units. This survey population is supposed to be
a random sample from the hypothetical population
mentioned above. In many situations the statistician
is interested not only in estimating the parameters of
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the hypothetical population (model), but also in esti-
mating the survey population parameter related to
or induced by the model [22]. For instance, if the
model parameter β represents the regression coeffi-
cient in the hypothetical population, then the induced
survey population parameter βs is the regression coef-
ficient in the finite survey population. The estimating
function theory provides optimal estimation of both
parameters β and βs jointly, on the basis of a sam-
ple drawn from the survey population with a speci-
fied sampling design. Utilizing this theory, Godambe
& Vijayan [24] have obtained, among other things,
optimal estimation for the logistic model based on
a “sample” drawn with response-dependent retro-
spective sampling from a survey population. These
results, as a special case, become identical to those
of the earlier authors when the “sample” is the same
size as the “survey population”. The authors also pro-
vide a proof of the often conjectured large-sample
equality of “prospective” and “retrospective” scores
for the parameter of interest.

Modeling Overdispersed Data

Data involving counts or proportions occur frequently
in medical applications. For example, disease inci-
dence data or mortality statistics usually involve data
in the form of counts. In teratology the proportion of
malformed fetuses in litters, for which the mother has
been subjected to a given dose of teratogen, provides
data used to model the probability of malformation as
a function of dose. The simplest models for such data,
namely the Poisson and binomial, respectively, are
usually inadequate in that they predict less variation
than is exhibited in such data. One source of such
overdispersion or extravariation is lack of indepen-
dence. For example, in spatial mortality statistics,
counts in contiguous areas will tend to be correlated
(see Geographic Epidemiology), while in teratol-
ogy the binary responses of members of the same
litter tend to be correlated, the so-called litter effect
(see Preclinical Treatment Evaluation). Estimation
of regression parameters in the mean of the response
variable often will be of primary interest, although in
studies of disease association within families, corre-
lation or association parameters will be of substantive
interest. In the former case the parameters in the
link function for the mean will be the parameters
of interest, whereas correlation or association effects

will be described by nuisance parameters. Optimal
estimating functions for the parameters of interest in
the presence of nuisance parameters are therefore of
some interest. However, estimation of the nuisance
parameters is important in that standard errors and
the validity of associated tests and confidence inter-
vals for the parameters of interest will depend on
these so-called nuisance parameters.

Consider the generalized linear models with, for
example, Poisson errors for counts and binomial
errors for proportions. Here often the systematic part
of the model is assumed to be “correct” with an
appropriate choice of a link function and covariates.
Yet the variance of replicate or near replicate obser-
vations is considerably greater than that suggested by
such simple exponential family models. As Cox [7]
points out, maximum likelihood estimates of regres-
sion parameters will not be seriously in error if one
ignores this so-called overdispersion. However, asso-
ciated standard errors, and hence tests and confidence
intervals based on them, which ignore such overdis-
persion can be very misleading.

Overdispersion is frequently modeled using a fully
parametric mixed Poisson or mixed binomial model.
In this approach the means associated with each
Poisson count or binomial proportion are assumed
to be random variables with specified parametric
distributions. Estimation of the parameters in these
mixed distributions proceeds by full maximum like-
lihood. Manton et al. [33], Hinde [26], and Lawless
[27] for count data and Crowder [8], Williams [49,
50] for proportions, provide examples of this. Man-
ton et al., for example, deal with an application to
modeling spatial variability in lung cancer mortality
rates. The mixing distributions most frequently used
(i.e. gamma for the Poisson (see Contagious Dis-
tributions) and beta for the binomial (see Beta-
binomial Distribution)) are selected for their math-
ematical tractability rather than scientific plausibility.
Sometimes, if the actual mechanism leading to the
overdispersion is known, then such fully parametric
modeling may be entirely convincing, but in practice
this is the exception rather than the rule.

To avoid this criticism, models that specify only
second-order properties of the mixing distribution, or
equivalently second-order properties of the observed
counts or proportions, may be formulated. This leads
to a more robust approach based on quasi-likelihood.
Many ad hoc techniques used historically in the anal-
ysis of counts or proportions may now be regarded
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as instances of quasi-likelihood. For example, the use
of a multiplicative variance inflation factor in probit
analysis [[12], Chapter 4] (see Quantal Response
Models), or the treatment of continuous responses by
Fisher [14] with variance proportional to the mean
as essentially having a Poisson likelihood, can be
regarded as primitive instances of quasi-likelihood.

Estimation of Dispersion Parameters

Major interest usually focuses on the regression
parameters, the dispersion parameters being of impor-
tance only to the extent that they reflect the precision
of the regression parameter estimates. For this reason,
relatively ad hoc methods are used to estimate the
dispersion parameters. Sometimes, however, the dis-
persion parameters are of interest in their own right.
Furthermore, in multivariate multiple regression
problems, association or correlation parameters are
also of interest, e.g. in segregation analysis in genet-
ics; see Whittemore & Gong [47] or Zhao [52]. Also,
Zhao & Prentice [53] note the importance of simul-
taneous estimation of mean, variance, and covariance
parameters in a variety of biostatistical applications.
The theory of optimal estimating functions treats all
parameters on the same logical footing and shows
the way to a formal theory of joint estimation of
both regression and dispersion parameters. Less for-
mal approaches have been developed by Nelder &
Pregibon [39] and Davidian & Carroll [9]. Wedder-
burn’s quasi-likelihood was originally designed for
parameters in the link function. Nelder & Pregibon
[39] attempt to obtain a function of both mean and
dispersion parameters which has the properties of a
log likelihood for both sets of parameters. However,
consistent estimation of parameters in the variance
function is not achieved in general owing to the
lack of the unbiasedness property of the underly-
ing estimating functions. Clearly, then, their extended
quasi-score cannot be identified with an optimal esti-
mating function in the sense of this article. The same
terminology as used by Nelder & Pregibon is adopted
by Godambe & Thompson [23], but in their case the
identification of an extended quasi-score with an opti-
mal estimating function is preserved – at the expense
of specification of higher-order moments.

More formally, let us assume that we have inde-
pendent observations, yi, i = 1, . . . , n, with

E(yi) = µi, µi = µi(β),

var(yi) = V (µi ; λ).

Standard multiplicative overdispersion, or more com-
plicated structural variance parameters, as in McCul-
lagh & Nelder [[34], Chapter 10], can be accommo-
dated in this formulation. The common approach to
this is to note that if the variance parameter λ is
known, then the Wedderburn equations,

U(y; β, λ) =
∑ yi − µi

V (µi ; λ)

∂µi

∂β
= 0, (18)

are optimal linear estimating equations for β. A vari-
ety of methods for estimating the variance parameters
λ have been proposed to supplement (18). Examples
of such methods are:

1. moment methods (e.g. [4, 27], and [35]);
2. extended quasi-likelihood [39]; and
3. pseudo-likelihood [9].

These methods do not lead jointly to optimal esti-
mating equations in the sense of this article. However,
methods based strictly on optimal estimating func-
tions may well be less robust than these methods.

To review them briefly, method (1) involves
supplementing (18) with the moment equation for λ,
given by

n∑

i=1

[
(yi − µi)

2

V (µi ; λ)
− 1

]
= 0, (19)

or the bias-corrected version,

n∑

i=1

[
(yi − µi)

2

V (µi ; λ)
− n − p

n

]
= 0, (20)

where p is the dimension of β. Then (19) or (20) and
(18) would be solved jointly, possibly in a doubly
iterative fashion. The above is for a scalar λ. In the
case where λ is a vector, additional quadratic forms
could be equated to their expected values to obtain
additional equations, as in McCullagh & Nelder [34,
Chapter 10].

For method (2), the extended quasi-likelihood of
Nelder & Pregibon is given by

Q+(β, λ) = −1

2

n∑

i=1

D(yi, µi, λ)

− 1

2

n∑

i=1

log[2πV (yi ; λ)], (21)
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where

D(y, µ, λ) = −2
∫ µ

y

y − t

V (t ; λ)
dt.

Q+ is then maximized jointly in β and λ.
Finally, in the pseudo-likelihood method of David-

ian & Carroll, one fixes β at a preliminary estimate,
β = β̂ say, and maximizes the normal theory likeli-
hood in λ:

lpl(β̂, λ) = −
n∑

i=1

log V (µi ; λ) −
n∑

i=1

(yi − µi)
2

V (µi ; λ)
.

(22)

An updated estimate of β can be obtained by succes-
sive iterations.

The methods of pseudo-likelihood and extended
quasi-likelihood correspond to taking the Pearson
chi-square statistic and the deviance, respectively, as
response variables in the analysis of dispersion (see
Chi-square Tests). Davidian & Carroll [9] prefer
pseudo-likelihood, based on asymptotic considera-
tions. However, recent work by Nelder & Lee [38]
suggests that extended quasi-likelihood performs bet-
ter in finite sampling. In the analysis of Taguchi-type
experiments, for example, dispersion parameters must
frequently be estimated on the basis of rather limited
data, so that finite sample performance may be of
some practical importance. A similar concern applies
to many biostatistical applications.

Godambe & Thompson [23] obtain jointly optimal
estimating equations as follows. Let γ1i and γ2i ,
respectively, denote the skewness and kurtosis of the
ith observation. Also, let ∆i = γ2i + 2 − γ 2

1i . Define
the elementary orthogonal estimating functions for
i = 1, . . . , n as

h1i = yi − µi, h2i = (yi − µi)
2 − V (µi ; λ)

− γ1i[V (µi ; λ)]1/2(yi − µi).

Then, the optimal combination of h1i and h2i is given
by Godambe & Thompson [23] as

n∑

i=1

[
h1i∂µi/∂βj

V (µi ; λ)
− h2i

× [V (µi ; λ)1/2γ1i − ∂V/∂µi]∂µi/∂βj

V (µi ; λ)∆i

]
= 0, (23)

j = 1, . . . , p, and

n∑

i=1

h2i

∂V /∂λj

V 2(µi ; λ)∆i

= 0, (24)

j = 1, . . . , k, where k is the dimension of λ. We
remark that within the exponential family, the second
term on the left-hand side of (23) vanishes. Thus,
the optimum linear and quadratic equations for β

coincide in this case.
Godambe & Thompson [23] refer to these as

extended quasi-likelihood equations. They are clearly
not, however, the same as the equations derived from
(21). The adjective “extended” is unnecessary in a
sense here, as pointed out by Heyde [25], because
if one identifies the quasi-score with the optimal
estimating function according to criterion (8), then
these are simply the quasi-score equations derived
from the class of combinations of the elementary
functions h1i and h2i . The other methods are not
quasi-score functions in this sense. Nelder [36] has
explored the consequences of replacing h2i above
by an approximately unbiased elementary estimating
function based on the deviance component, di , of
the ith observation. Under certain approximating
assumptions, he shows that deviance-based versions
of (23) and (24) are the same as those obtained using
(21). Nelder [37], in discussion of Desmond [10],
points out that the use of deviance residuals absolves
the statistician of the need to make assumptions about
the form of third and fourth moments (at least to
first order). He predicts that with further refinement
this may lead to good approximations to jointly
optimum estimating equations which do not depend
on assumptions about higher-order cumulants.

Other Applications

The aim of this article has been twofold. First,
to point out that the methodology of estimating
functions produces a unification and extensions of
approaches to statistical modeling and inference, both
parametric and semi-parametric. Secondly, to illus-
trate, via selected examples, how this methodology
applies in biostatistics. We have limited our discus-
sion here to case–control studies, prospective and
retrospective sampling, and overdispersion. There are
many other applications not discussed here, in partic-
ular to longitudinal studies which we outline briefly
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in the following paragraphs. Since this is discussed
elsewhere, we simply draw the reader’s attention to
some recent pertinent work.

Many studies in the biomedical sciences involve
data which are longitudinal in nature. In such studies
a response variable, frequently a health indicator, is
measured repeatedly in time for the individuals in the
study, together with covariate vectors, including treat-
ment covariates which may influence the response.
Frequently, more than one response variable, which
may be discrete or continuous or a combination of
both, is measured leading to a multivariate response
vector. Liang et al. [31] give several examples from
public health research. Such data structures lead nat-
urally to problems involving the estimation of mean
and association parameters for discrete and continu-
ous multivariate regression analysis. There has been
a great deal of development in this area recently
for non-Gaussian responses, especially as it applies
to binary longitudinal data (see Multivariate Meth-
ods for Binary Longitudinal Data). Also, likelihood
approaches to multivariate regression modeling of
normal data, including longitudinal studies, have been
much studied, e.g. Ware [44]. These methods exploit
the tractability of the multivariate normal distribu-
tion to provide full maximum likelihood solutions.
Likelihood analysis for non-Gaussian data is consid-
erably less tractable. Prentice [41], in the context of
binary data, emphasizes the difficulties in obtaining
computationally simple likelihood analyses for such
longitudinal data, except for special cases.

The estimating function methodology is particu-
larly attractive here for two reasons. First, in lieu
of specifying a complete likelihood we can simply
model the first- and second-order moments of the
response in terms of mean, dispersion, and associa-
tion parameters i.e. construct a semiparametric model.
Secondly, this method is more robust to incorrect
model assumptions about higher-order moments, e.g.
Liang & Rathouz [29]. We do not describe this work
here, since an excellent exposition is given in Diggle
et al. [11] (see Generalized Estimating Equations).
However, for a more expansive discussion of the
connections of GEE methods with the concepts of
quasi-score and optimal estimating functions, see [10]
and [30].

In the regression models treated in this article we
have assumed that covariates are measured without
error. However, measurement error in the covariates
is often an important consideration in the biomedical

sciences, since ignoring it can produce serious bias
in the estimation of covariate effects (see Errors
in Variables). Carroll et al. [5] consider a variety
of methods for dealing with measurement error in
nonlinear models, and in particular make use of
estimating functions in their development.

Further examples of areas of application in bio-
statistics, e.g. survival analysis, may be found in
Godambe [20], which is a good general reference for
both theoretical developments and applied investiga-
tions. Additionally, [1] contains contributions from
leading researchers in the field.
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Estimation, Interval

As the phrase implies, interval estimation concerns
the use of available data from a study to construct an
interval estimator (often called a confidence inter-
val) that is used to make a statistical inference about
the true (but unknown) value of a parameter θ of
interest (see Estimation). More specifically, an exact
100(1 − α)% confidence interval is defined in terms
of two random variables, a lower limit L and an
upper limit U , such that Pr[L < θ < U ] = 1 − α,
where 0 < α < 1 and where α is typically chosen
to take values such as 0.10, 0.05, 0.02, and 0.01.
The exact confidence level (1 − α) associated with
the interval estimator (L, U) can be interpreted in
two ways. In an infinite number of repetitions of
the study leading to an infinite number of such
100(1 − α)% confidence intervals, an exact propor-
tion (1 − α) of all such intervals, the confidence
coefficient, will enclose the true value of the param-
eter θ . Equivalently, before the study is conducted
and hence before any data are collected, the prob-
ability is exactly (1 − α) that any random interval
(L, U) will enclose the true value of the parameter
θ . For any particular study, once the data are col-
lected and the confidence interval is computed using
the available data, the actual probability is either 0 or
1 that this observed interval [called the realization
of the interval estimator (L, U)] actually encloses
the true value of θ , and it is not known which of
these two values (0 or 1) is correct. For example, if
1.25 and 3.80 are the observed (or realized) values
of L and U for a given set of data, a statement like
“Pr(1.25 < θ < 3.80) = 0.95” is statistically incor-
rect. Also, since it is L and U that are the random
quantities (and not the parameter θ), it is inappro-
priate terminology to say that “θ falls inside the
confidence interval”. Indeed, the true unknown value
of θ is fixed, and it is the interval estimator (L, U)

that either encloses or does not enclose the true value
of θ .

To consider a simple example, suppose that
Y1, Y2, . . . , Yn constitute a random sample of size
n from an N(µ, σ 2) population, and we wish
to use these n observations to construct an
exact 100(1 − α)% confidence interval for the
parameter µ. With Y = n−1 ∑n

i=1 Yi and S2 =
(n − 1)−1 ∑n

i=1(Yi − Y)2, then the random variable

Tn−1 = √
n(Y − µ)/S has exactly a Student’s t-

distribution with n − 1 degrees of freedom (df),
namely Tn−1 ∼ tn−1. Hence, if tn−1,1−α/2 is the
100(1 − α/2) percentile point of Student’s t-
distribution with n − 1 df, then

1 − α = Pr(−tn−1,1−α/2 < Tn−1 < tn−1,1−α/2)

= Pr(−tn−1,1−α/2 <
√

n(Y − µ)/S

< tn−1,1−α/2)

= Pr(Y − tn−1,1−α/2S/
√

n < µ

< Y + tn−1,1−α/2S/
√

n),

so that L = Y − tn−1,1−α/2S/
√

n and U = Y +
tn−1,1−α/2S/

√
n. Thus, based on the assumption that

we have a random sample of size n from an N(µ, σ 2)

population, then Y ± tn−1,1−α/2S/
√

n is an exact
100(1 − α)% confidence interval for µ. If the stated
assumption is true, then this is the best 100(1 − α)%
confidence interval for µ in the sense that it has the
shortest expected width.

Making the fully parametric assumption that the
available data consist of independent random samples
from normal populations allows for the construction
of exact confidence intervals in more general settings.
In particular, consider using data on n independent
subjects to fit the multiple linear regression model

E(Yi |xi1, xi2, . . . , xik) = β0 +
k∑

j=1

βjxij = x′
iβ,

i = 1, 2, . . . , n, (1)

where the (univariate) response for the ith subject
is Yi , where the covariate vector for the ith
subject is x′

i = (1, xi1, xi2, . . . , xik), and where the
vector of unknown regression coefficients is β ′ =
(β0, β1, . . . , βk). Under the classical assumptions
that the conditional distribution of Yi given
xi1, xi2, . . . , xik is normal with conditional mean
given by (1) and with conditional (homogeneous)
variance σ 2, then the maximum likelihood (and
unweighted least squares) unbiased estimator β̂ =
(β̂0, β̂1, . . . , β̂k)

′ of β is β̂ = (X′X)−1X′Y, where
X′ = (x1, x2, . . . , xn) and where the row vector
of responses is Y′ = (Y1, Y2, . . . , Yn). Under the
given assumptions, for j = 0, 1, 2, . . . , k, it follows
that β̂j ∼ N(βj , vjjσ

2), where vjj is the j th
diagonal element of the matrix V = (X′X)−1. With



2 Estimation, Interval

the unbiased estimator of σ 2 being σ̂ 2 = (n −
k − 1)−1(Y′Y − β̂ ′X′Y), the standardized random
variable (β̂j − βj )/(vjj )

1/2σ̂ has exactly a tn−k−1

distribution. Thus, it follows directly that the exact
100(1 − α)% confidence interval for βj has the
specific form β̂j ± tn−k−1,1−α/2(vjj )

1/2σ̂ .
However, in contrast to the classical multi-

ple linear regression scenario described above,
there are many realistic and important multivari-
able modeling applications in biostatistics where
assumptions like normality of the response variable,
homogeneous variance, and even independence
among responses are not justified. For example,
if the response variable Yi is dichotomous (e.g.
Yi = 1 if subject i has a certain disease, and
Yi = 0 if not), then the distribution of Yi is
point-binomial with mean E(Yi |xi1, xi2, . . . , xik) =
Pr(Yi = 1|xi1, xi2, . . . , xik) = πi and with variance
var(Yi |xi1, xi2, . . . , xik) = πi(1 − πi), so that the
variance of Yi is not the same for all i (i.e. is not
homogeneous across subjects) since the mean of Yi

varies with i. In this situation, a useful and popu-
lar maximum likelihood approach for modeling πi

as a function of covariates xi1, xi2, . . . , xik is logistic
regression, where we consider the logistic regres-
sion model

logit(πi) = ln
πi

(1 − πi)
= β0 +

k∑

j=1

βjxij . (2)

In contrast to model (1), model (2) describes logit
[E(Yi |xi1, xi2, . . . , xik)] as a linear function of the
regression coefficients β0, β1, . . . , βk . The theoret-
ical aspects and practical applications of logistic
regression methods have been described in several
textbooks (e.g. see Breslow & Day [1], Hosmer &
Lemeshow [5], and Kleinbaum et al. [6]).

More generally, the logistic regression model
is one example of a very broad family of
generalized linear models for describing discrete
and continuous outcome data [7]. The generalized
linear model (GLM) family includes, as some special
cases, multiple linear regression and analysis of
variance models under normality, logistic regression
and Poisson regression models, probit models
(see Quantal Response Models), multinomial
response models for categorical outcomes, and some
commonly used models for survival data.

Maximum likelihood methods, which are optimal
asymptotically under certain regularity conditions,

are typically used to fit generalized linear models;
thus, associated interval estimation procedures are
generally valid only for large samples. To discuss
the use of maximum likelihood-based interval estima-
tion methods, suppose that L(Y, X; θ) is a likelihood
function, where Y and X are as defined earlier and
where θ = (θ1, θ2, . . . , θp)′ is a vector of unknown
parameters. For example, L(Y, X; θ) would be a
product of appropriately defined normal distributions
for the multiple linear regression example consid-
ered earlier, where θ ′ = (β ′, σ 2) and p = k + 2. And
L(Y, X; θ), with θ = β and p = k + 1, would be a
product of point-binomial distributions for the logis-
tic regression situation previously discussed. More
generally, L(Y, X; β) could be a hypergeometric
distribution-based likelihood appropriate for condi-
tional logistic regression [6, Chapter 20], or it could
represent a partial likelihood appropriate for the
Cox regression model in survival analysis [7, Chap-
ter 13].

The maximum likelihood estimator θ̂ = (θ̂1,

θ̂2, . . . , θ̂p)′ of θ is the vector solution to the
set of p maximum likelihood (or score) equations
∂ ln L(Y, X; θ)/∂θj = 0, j = 1, 2, . . . , p. In most ge-
neralized linear model situations (one notable
exception being the multiple linear regression exam-
ple considered earlier), these maximum likelihood
equations are nonlinear in the elements of θ , and
so they must be solved by iteratively reweighted
least squares. Iteratively reweighted least squares
methods produce the large-sample estimated vari-
ance–covariance matrix of θ̂ as the (p × p) matrix
V̂ = [I(Y, X; θ̂)]−1, where I(Y, X; θ̂) is the observed
information matrix with (j, j ′)th element defined as
−∂2 ln L(Y, X; θ)/∂θj ∂θj ′ , evaluated at θ̂ . Since the
estimated variance of θ̂j is v̂jj , the (j, j)th element
of V̂, it follows from maximum likelihood theory
that, for large samples, the quantity (θ̂j − θj )/

√
v̂jj is

approximately distributed as a standard normal ran-
dom variable if the assumed statistical model is valid.
Hence, an approximate 100(1 − α)% large-sample
(normal approximation-based) confidence interval for
the parameter θj is θ̂j ± Z1−α/2v̂jj .

It is also possible to construct a confidence interval
for θj using the principles underlying likelihood
ratio tests. In particular, let ψθj

= (θ1, θ2, . . . , θj−1,

θj+1, . . . , θp)′ be the (p − 1) × 1 column vector of
all parameters in θ except for θj . Then, if ψ̂θj

is the
maximum likelihood estimator of ψθj

with θj fixed
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(so that ψ̂θj
will, in general, be a function of θj ), then

the log likelihood ratio statistic

2 ln L(Y, X; θ̂) − 2 ln L(Y, X; θj , ψ̂θj
)

has an approximate χ2
1 distribution (chi-square dis-

tribution with one degree of freedom) for large
samples if the assumed model is valid. Then, the set
of all values of θj satisfying

2 ln L(Y, X; θ̂) − 2 ln L(Y, X; θj , ψ̂θj
) ≤ χ2

1,1−α

constitutes an approximate large-sample 100(1 −
α)% confidence interval for θj . It is important to note
that such likelihood ratio-based confidence intervals
often perform better for small samples than do
the normal approximation-based intervals discussed
earlier. The partially maximized log likelihood
ln L(Y, X; θj , ψ̂θj

) is called the profile log likelihood
for θj . All of these methods can be generalized to
produce confidence sets for a vector of parameters
(e.g. [7]).

There are several other general methods for con-
structing interval estimators of unknown parame-
ters. For example, for correlated response data as
encountered in longitudinal studies where the same
response variable is measured more than once on each
subject, generalized estimating equations (GEE)
methods based on quasi-likelihood theory can be
used to develop interval estimators that involve the
use of a robust estimator of the variance–covariance
matrix of the parameter estimates (e.g. [2]). There
are numerous nonparametric methods available for
developing interval estimators (e.g. [4] and [9]), and
there are so-called exact confidence interval methods
based on the use of certain network algorithms (e.g.
[8]) (see Exact Inference for Categorical Data).
And, last but not least, computer-intensive boot-
strap interval estimation methods [3] have become
very popular in recent years.

In most practical situations it is possible to con-
sider the use of several different types of interval

estimators, some involving more assumptions than
others. It is generally good advice to use various alter-
native interval estimation methods in such situations,
these methods hopefully ranging from being fully
parametric to being fully nonparametric in nature.
Only when global statistical conclusions about the
parameters of interest vary distinctly from method
to method would one have to be seriously con-
cerned about the appropriateness of any assumptions
that have been made. When in doubt, it is best to
use interval estimation methods that possess good
statistical properties not depending directly on the
validity of unverifiable assumptions.
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Estimation

The object of estimation is to use available data to
estimate or guess the values of unknown quantities.
The unknown quantities, which are called parame-
ters, may be familiar population quantities such as
the population mean µ, population proportion p,
population variance σ 2, and population median ν.
In other situations the parameters are part of more
elaborate statistical models, such as the coefficients
β0, β1, . . . , βp in a linear regression model

Y = β0 +
p∑

j=1

xjβj + ε,

which relates a response variable Y to covariates or
explanatory variables, x1, x2, . . . , xp.

For instance, we may be interested in the mean
diastolic blood pressure µ = E(Y ) of a target popu-
lation, in which case the sample mean Y is a familiar
estimator, or we may model the blood pressure as
a function of the predictor x = age, and a random
error ε, in a linear model such as Y = β0 + β1x + ε.
In this case natural estimators of the parameters β0

and β1 are the least squares estimators

β̂1 =
∑

(xi − x)Yi

∑
(xi − x)2

, β̂0 = Y − β̂1x.

The field of biostatistics is, to a large extent, con-
cerned with developing estimators for parameters in
different types of medical and public health stud-
ies and to give measures of the accuracy of these
estimates. Another important concern is to select effi-
cient, or, if possible, optimal estimators of a parame-
ter vector θ = (θ1, . . . , θm) from classes of reasonable
estimators.

Let P = P(y) denote the probability distribution
of the data Y = (Y1, Y2, . . . , Yn). In the discrete case,
P is the probability function of Y, and in the con-
tinuous case it is the distribution function of Y. The
postulated relationship between P and θ is crucial
for estimation. Two commonly used approaches are
as follows:

1. In parametric models, a vector θ = (θ1, . . . , θm)

determines P . Thus, suppose θ = (θ1, θ2) =
(µ, σ 2); then, if the distribution of the response

Y is normal, θ determines P , that is, P(y) =
P(y, θ).

2. In the θ = (µ, σ 2) example, if it is not possible to
assume normality or any other specified distribu-
tion for Y, then θ does not determine P . In such
cases it is often useful to express θ as a func-
tion of P , that is, θ = θ(P ) = [µ(P ), σ 2(P )].
In general, such representations are not unique.
For a given θ in a study we will see in what
follows that it is possible to have θ = h1(P )

and θ = h2(P ) for different h1 and h2. Another
parameterization in the (µ, σ 2) example consists
of introducing the parameter θ = (µ, σ 2, Fε),
where Fε is the unknown distribution of ε =
Y − µ. Under general conditions this θ deter-
mines P . In such cases, where at least one of
the unknowns in θ is real and at least one is
a function, the model is called semiparametric.
In the simple linear model for blood pressure
vs. age, if ε is normal (0, σ 2) and the equation
Y = β0 + β1x + ε is assumed, then the distri-
bution of Y is determined by θ = (β0, β1, σ 2)

and the model is parametric. However, we can
define β0 and β1 to be the coefficients in the
best linear predictor of Y , that is, they min-
imize E[Y − (b0 + b1X)]2. In this case β1 =
cov(X, Y )/var(X), β0 = E(Y ) − β1E(X), σ 2 =
var[Y − (β0 + β1X)], and (β0, β1, σ 2) does not
determine the distribution F of (X, Y ). This
second approach has the advantage that it is not
necessary to assume a linear model. Instead, the
goal is to estimate the coefficients of the best lin-
ear predictor β0 + β1X of Y . In this case β0, β1,
and σ 2 are functions of the distribution P of
(X, Y ). In some cases it is useful to consider
the semiparametric model where the full param-
eter is θ = (β0, β1, σ 2, FX, Fε,x). Here FX is the
distribution of X and Fε,x is the conditional dis-
tribution of ε = Y − (β0 + β1X) given X = x.
Under general conditions, this expanded θ deter-
mines P .

Note that the notational scheme θ = θ(P ) also
works in the parametric case; however, when appro-
priate, parametric modeling with P = Pθ often leads
to simple analysis and efficient estimators. Parametric
models are often natural for studies where the distri-
butions are binomial, multinomial, hypergeometric,
negative binomial or, more generally, can be derived
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by probabilistic calculations from an experimental sit-
uation. The semiparametric approach is appropriate
when population means, regression coefficients, vari-
ances, and other population quantities are of interest
but it is not possible to assume normality of distribu-
tions or linearity of mean relationships.

The next sections discuss some of the standard
methods of estimation including some of the theory.
Books that treat these topics in detail include Bickel
& Doksum [1], Lehmann [6], and Bickel et al. [2].
Books that focus on estimation in biostatistics include
Kalbfleisch & Prentice [4], Lawless [5], and Cox &
Oakes [3].

Methods of Estimation

We consider several techniques for estimating a vec-
tor parameter θ = (θ1, . . . , θm) or, more generally, a
vector [q1(θ), . . . , qr(θ)] of functions of θ, r ≤ m.
The first three classes of estimates are for parameters
that can be expressed as θ = θ(P ). The fourth and
fifth are parametric with P = Pθ .

The Frequency Plug-in Method

Suppose we obtain a sample of n independent identi-
cally distributed responses and classify each response
into one of d distinct categories. Let pj denote the
probability of the j th category and let Nj denote the
number of responses that fall in the j th category.
Then the distribution of N1, . . . , Nd is multinomial
(n, p1, . . . , pd ) and pj = E(Nj )/n. The frequency
plug-in estimator p̂j of pj replaces the unknown fre-
quency E(Nj ) with the observed frequency Nj , that
is, p̂j = Nj/n. For functions θs = hs(p1, . . . , pd)

the plug-in estimators are θ̂s = hs(p̂1, . . . , p̂d), s =
1, . . . , m.

Examples are provided by multiway contingency
tables. For instance, using different subscripting,
suppose Nijk denotes the number of high blood
pressure patients in a study that fall in the category
(i, j, k) based on the following three classifications:

1. treatment membership (i = 0, control; i = 1,
treatment),

2. reduction in blood pressure (j = 0, zero or
negative; j = 1, moderate; j = 2, high),

3. age group (k = 0, <30; k = 1, 30–40; k = 2,
41–50; k = 3, 51–60; k = 4, >60).

Let pijk be the probability of the category
(i, j, k), then p̂ijk = Nijk/n. Moreover, the contrast
parameters

θk =
2∑

j=1

j (p1jk − pojk), k = 0, 1, . . . , 4,

which measure the expected improvement in blood
pressure score due to the treatment for age group k,
has the plug-in estimators

θ̂k =
2∑

j=1

j (p̂1jk − p̂ojk), k = 0, 1, . . . , 4.

Returning to the general notation pj , Nj , j =
1, . . . , d, consider the case where pj = pj (θ)

depends on some parameter θ = (θ1, . . . , θm), m ≤ d.
For example, suppose θ denotes the probability of
alleles A1 at a certain locus and suppose A2 has
frequency (1 − θ). In the Hardy–Weinberg model
the three genotypes A1 A1, A1 A2, and A2 A2 have
probabilities

p1 = θ2, p2 = 2θ(1 − θ), p3 = (1 − θ)2.

In this case, θ can be written as θ = √
(p1),

or θ = 1 − √
(p3), or θ = p1 + 1

2p2. Thus plug-in
estimators are not unique and three plug-in esti-
mators are

√
(p̂1), 1 − √

(p̂3), and p̂1 + 1
2 p̂2. In

general, plug-in estimators of θ = (θ1, . . . , θm), m ≤
k, are obtained by solving the equations pj (θ) =
p̂j , j = 1, . . . , k, for θ = (θ1, . . . , θm). Let the solu-
tion be θ̂ = (θ̂1, . . . , θ̂m), then the plug-in estimator
of (q1(θ), . . . , qr(θ)) is (q1(θ̂), . . . , qr(θ̂)).

The Method of Moments

Another plug-in method is the method of moments.
For a vector X = (X1, . . . , Xk), of observations, let
the moments be

mjkrs = E(Xj
r X

k
s ), j ≥ 0, k ≥ 0, r, s = 1, . . . , k.

For independent identically distributed Xi =(Xi1, . . .,
Xik), i = 1, . . . , n, we define the empirical or sample
moment to be

m̂jkrs = 1

n

n∑

i=1

X
j

irX
k
is, j ≥ 0, k ≥ 0, r, s =1, . . . , k.
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If θ = (θ1, . . . , θm) can be expressed as a function of
the moments, then the method of moment estimate
θ̂ of θ is obtained by replacing mjkrs by m̂jkrs .
For instance, when k = 1, the method of moments
estimator of θ = (µ, σ 2) = [E(X), E(X2) − µ2] is
[X, (1/n)

∑
X2

i − X
2
], where X = n−1 ∑

Xi . In the
example where β0 and β1 are the parameters of the
best linear predictor of X and Y ,

β1 = cov(X, Y )

var(X)
= E(XY ) − E(X)E(Y )

E(X2) − E2(X)
,

β0 = E(Y ) − β1E(X).

Thus the method of moment estimators are

β̂1 =
n−1

∑
XiYi − X Y

n−1
∑

X2
i − (X)2

, β̂0 = Y − β̂1X.

For a parametric example consider a study where
the survival time T is modeled to have a gamma
distribution with density

[
λα

Γ (α)

]
tα−1 exp{−λt}, t > 0, α > 0, λ > 0.

In this case θ = (α, λ), µ1 = E(T ) = α/λ, and µ2 =
E(T 2) = α(1 + α)/λ2. Solving for θ gives

α =
(µ1

σ

)2
, α̂ =

(
X

σ̂

)2

,

λ = µ1

σ 2
, λ̂ = X

σ̂ 2
,

where σ 2 = µ2 − µ2
1 and σ̂ 2 = n−1ΣX2

i − X
2
. In

this example the method of moment estimator is
not unique. We can express θ as a function of µ1

and µ3 = E(T 3) and obtain a method of moment
estimator based on µ̂1 and µ̂3.

Weighted and Generalized Least Squares
Estimators

Suppose Y is a response such as blood pressure whose
distribution depends on the levels x1, . . . , xp of p

predictor variables such as X1 = level of treatment,
X2 = age, X3 = dietary salt intake, etc. Suppose β =
(β0, β1, . . . , βp) is the vector of coefficients of the
best linear predictor, that is, β minimizes

E







Y −
p∑

j=0

bjXj




2

w(X, Y )



 ,

where X0 = 1, X = (X0, X1, . . . , Xp), and w(X, Y )

is a given weight function exemplified in what
follows. Here β = β(P ) depends on the probability
distribution P of (X, Y ). To estimate β(P ) we replace
P by the empirical probability distribution Pn which
gives probability n−1 to each observed sample point
(xi1, . . . , xid , yi) = (xi , yi), i = 1, . . . , n. This leads
us to seek the minimizer β̂ of

∑


yi −
p∑

j=0

bjxij




2

wi,

where wi = w(xi, yi) and xi0 = 1. The solution
is β̂ = (XT

DWXD)−1XT
DWy, where XD is the n ×

(p + 1) design matrix (xij ), y = (y1, . . . , yn)
T, W =

diag(w1, . . . , wn) and XD and W are assumed to have
ranks p + 1 and n, respectively. This β̂ is called the
weighted least squares estimator.

The weights wi are determined by the application.
For example, consider a study where a health indi-
cator such as CD4 blood cell count is taken at time
points t0 < t1 < · · · < tk for HIV infected subjects.
After adjusting for changes in blood cell counting
technology, the mean of the fourth root of such blood
cell counts decreases linearly over time [7]. That is,
the slope is constant. For the ith subject the responses
are the local slopes

Yij

= {CD4 at time ti,j }1/4−{CD4 at time ti,j−1}1/4

ti,j − ti,j−1
,

j = 1, . . . , ki, i = 1, . . . , m,

where ki = number of measurements for subject
i. The predictors considered are xi1 = age and
xi2 = {CD8 at first visit time = ti,0}1/4, where CD8
is another blood cell count health indicator. The
shorter the time interval length ∆ij = ti,j − ti,j−1

is, the more variable Yij is. The standard deriva-
tion of Yij is close to being proportional to ∆−1

ij ;
thus a reasonable weighted least squares estimator
β̂ = (β̂0, β̂1, β̂2) is the minimizer of

m∑

i=1

ki∑

j=1

[yij − (b0 + b1xi1 + b2xi2)]
2∆ij .

Returning to the general design matrix notation,
the generalized least squares estimator is defined as
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the minimizer of

(Y − bXD)TW(Y − bXD)

where b = (b0, b1, . . . , bp)T and W is an n × n

matrix not necessarily diagonal. Again, it is assumed
that XD has rank p + 1 and W has rank n, in which
case the estimator is given by the same formula as
before.

Maximum Likelihood Estimators

The idea of maximum likelihood is to find the
value θ̂(y) of θ which is “most likely” to have
produced the data y = (y1, . . . , yn). These estima-
tors θ̂(y) are defined for regular parametric models,
that is, for models where in the discrete case the
set of y, where the probability function p(y, θ) =
Pr(Y = y), is nonzero does not depend on θ , and
in the continuous case Y has a density p(y, θ). It
is also assumed that p(y, θ) < ∞ for all y ∈ Rn

and all θ in Θ , where the parameter set Θ of
possible θ is a subset of Rk for some k. If y =
(y1, . . . , yn) are data values obtained in a study, the
likelihood function Ly(θ) is defined as the function
of θ given by Ly(θ) = p(y, θ), θ ∈ Θ . A maximum
likelihood estimator (mle) of θ is a value θ̂ = θ̂(y)

which satisfies Ly(θ̂) = max{Ly(θ) : θ ∈ Θ}. The
maximum likelihood estimator of [q1(θ), . . . , qr(θ)]
is defined as [q1(θ̂), . . . , qr(θ̂)]. The maximum like-
lihood estimator θ̂ is obtained as the solution to the
likelihood equations

∂

∂θj

ly(θ) = 0, j = 1, . . . , m,

where ly(θ) = log Ly(θ).
For example, if Y1, . . . , Yn are independent, iden-

tically distributed with normal (µ, σ 2) distribu-
tion, then

ly(θ) = − 1
2n log(2π) − n log σ

− 1
2σ−2

∑
(yi − µ)2

and the maximum likelihood estimators are easily
shown to be µ̂ = y and σ̂ 2 = n−1 ∑

(yi − y)2. In the
trinomial Hardy–Weinberg example with p1 = θ2,
p2 = 2θ(1 − θ), p3 = (1 − θ)2, we have

Ln(θ) = p(n, θ) = P(N = n, θ)

= n!

n1!n2!n3!
θ2n1 [2θ(1 − θ)]n2(1 − θ)2n3 ,

where n = n1 + n2 + n3. Solving the likelihood eq-
uation l′n(θ) = 0, we find the mle θ̂ = p̂1 + 1

2 p̂2,
which we recognize as the third plug-in method
estimator in the section on the Frequency Plug-in
Method above.

Bayesian Estimators

In Bayesian models a distribution π(θ), called a
prior distribution, is introduced for the parame-
ter θ = (θ1, . . . , θm). In the discrete case, π(θ) is
the probability function of θ and in the continuous
case it is the density. The probability function (dis-
crete case) or density (continuous case) of the data
Y = (Y1, . . . , Yn) now represents the conditional dis-
tribution of Y given θ , and is written p(y|θ). The
conditional distribution of θ given the data y is called
the posterior distribution of θ and by Bayes’ Theo-
rem, it is given by

π(θ |y) = cπ(θ)p(y|θ),

where c−1 = ∑
k π(k)p(y|k) in the discrete case and

c−1 = ∫
π(t)p(y|t) dt in the continuous case. One

approach to Bayesian estimation consists of selecting
the value θ̂ = θ̂(y) that makes the observed y most
“probable” according to the posterior distribution
π(θ |y), that is, it is a value of θ that maximizes
π(θ |y). Another approach is to use the value θB that
minimizes the posterior mean square error. That is,

θB = arg min E[(θB − θ)2|y]

= E(θ |y) = the posterior mean.

Unbiased Estimation.
Residual Sum of Squares

The error in using the observable θ̂ to estimate the
unknown θ is ε̂ = θ̂ − θ . In many cases it is possible
to adjust estimators so that their long-run average
error is zero, that is, so that E(ε̂) = 0. Such esti-
mators are called unbiased. For example, consider
the parameter σ 2 = var(Y ). Suppose Y1, . . . , Yn are
independent identically distributed, then we arrived
earlier at the estimator σ̂ 2 = n−1 ∑

(Yi − Y )2. With
a little algebra it can be shown that E(σ̂ 2) =
[(n − 1)/n]σ 2, and σ̂ 2 is not unbiased. There is a
debate as to whether unbiased estimation is desirable.
However, a nearly universal tradition has developed
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where variances are unbiasedly estimated. In our
case, this amounts to adjusting σ̂ 2 by multiplying it
by (n − 1)/n. That is, σ 2 is unbiasedly estimated by

S2 = (n − 1)−1
∑

(Yi − Y )2.

As another example, consider the linear model

Yi = β0 +
∑

xijβj + εi, E(εi) = 0,

σ 2 = var(Yi) = var(εi).

Here ε1, . . . , εn are independent identically dis-
tributed. When the design matrix XD = (xij ) has rank
p + 1, the unbiased estimator of σ 2 is RSS/[n −
(p + 1)], where RSS = residual sum of squares is
defined by

RSS =
∑

i



Yi −
∑

j

xij β̂j




2

(see Multiple Linear Regression). Here β̂0, . . . , β̂p

are the unweighted [W = weight matrix = diag(1,
. . . , 1)] least squares estimators of β0, . . . , βp.

Standard Errors

It is crucial to provide a measure of the accuracy of
estimators. The error in using θ̂ to estimate θ is ε̂ =
θ̂ − θ . Suppose that ε̂ has an expected value close to
zero in the sense that

√
nE(ε̂) → 0 as n → ∞. Then

a measure of how close the distribution of the error
is concentrated near zero is given by the standard
deviation σ0 = sd(ε̂) = sd(θ̂) of ε̂. In the parametric
case σ0 is a function σ0(θ) of θ and in the general case
it is a function σ0(P ) of the probability distribution
P . Thus we can use the estimation methods provided
earlier to estimate σ0. Such an estimate σ̂0 of σ0

is called the standard error of θ̂ , and it is written
as se(θ̂).

For example, if Y1, . . . , Yn are independent iden-
tically distributed, then for estimating the mean
µ, sd(Y ) = σ/

√
n and se(Y ) = S/

√
n, where S2 =

(n − 1)−1Σ(Y − Y )2. In the trinomial Hardy–
Weinberg case, θ̂ = p̂1 + 1

2 p̂2 and it can be shown
that var(θ̂ ) = (2n)−1θ(1 − θ). It follows that se(θ̂ ) =
[(2n)−1θ̂ (1 − θ̂ )]1/2.

In the linear model Yi = β0 + Σxijβj + εi , with
σ 2 = var(εi), the covariance matrix of the (un-
weighted) least squares estimator β̂ is cov(β̂) =

(XT
DXD)−1σ 2. The standard error of β̂j is then√
vjSp, where vj is the j th diagonal element of

(XT
DXD)−1 and S2

p = RSS/n − (p + 1) is the unbi-
ased estimator of σ 2.

Comparison of Estimators: Efficiency

For any given unknown q(θ) there are many possible
estimators. The preferable estimator is the one that
makes the most efficient use of the data; that is,
the estimator T (Y) of q(θ) should be such that
the distribution of the error ε̂ = T (Y) − q(θ) is as
closely as possible concentrated near zero. There are
many ways of making this idea precise. The most
common is to try to minimize the long-run squared
error, that is, to minimize the mean squared error
(mse):

M(T ; θ) = E[T (Y) − q(θ)]2.

The mse can be decomposed into a “systematic error”
represented by the square of the bias B(T ; θ) =
E[T (Y) − q(θ)] and the intrinsic variability repre-
sented by the variance V (T ; θ) = var(T (Y)). Thus

M(T ; θ) = B2(T ; θ) + V (T ; θ).

For instance, suppose Y1, . . . , Yn are independent
identically distributed random variables that represent
the survival times of n patients in a medical study.
If the distribution is exponential, we can write the
survival function S(y) = P(Y > y) as exp{−y/θ},
where θ is the mean survival time E(Y ). It is easy to
see that the mle of θ is Y = n−1ΣYi . Thus the mle
of q(θ) = exp{−y/θ} is

T (Y) = q(Y ) = exp

{−y

Y

}
.

Since 2
∑n

1 Yi/θ has a chi-square distribution with
2n degrees of freedom (χ2

2n), numerical integration
will yield the systematic error (bias) and variance of
T (Y). On the other hand, good approximations can
be obtained from the expansion

q(θ̂) ∼= q(θ) + q ′(θ)[θ̂ − θ] + 1
2q ′′(θ)[θ̂ − θ]2

and the first four moments of the χ2
2n distribution.

Such computations yield insight into the components
of the mse of T (Y). However, it is useful to have
general results to check whether a given estimator
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can be improved upon. One such result for parametric
models is the information inequality

var[T (Y)] ≥ [ψ ′(θ)]2

I (θ)
, (1)

where ψ(θ) = E[T (Y)] and

I (θ) = E

{[
∂

∂θ
log p(Y, θ)

]2
}

(2)

is the Fisher information of the model with
probability function (discrete case) or density
function (continuous case) p(Y, θ). If Y1, . . . , Yn

are independent, identically distributed, then I (θ) =
nI1(θ), where I1(θ) is the expression (2) with Y
replaced by Y1. In this case it can be shown (e.g.
[6]) under general conditions that if θ̂ is the mle,
then n1/2[q(θ̂) − q(θ)] is asymptotically normal with
mean zero and variance [q ′(θ)]2/nI (θ). That is, in
the limiting distribution,

√
n (bias) is zero and n

(var) reaches the lower bound in (1). (However,
it should be remembered that the variance in the
limiting distribution is not always equal to the
limit of the variance.) This analysis is used to
conclude that in the preceding sense, the mle q(θ̂) is
an asymptotically optimal (most efficient) estimator
of q(θ). (There are other asymptotically optimal
estimators, e.g. Bayes estimators.) Note that from the
above it can be concluded that the standard error of
q(θ̂) is |q ′(θ̂ )|/[nI (θ̂ )]1/2. The above considerations

can be extended to the case of multiple parameters
θ1, . . . , θm, (e.g. [6]) and to semiparametric models,
(e.g. [2]).

References

[1] Bickel, P.J. & Doksum, K.A. (1977). Mathematical
Statistics: Basic Ideas and Selected Topics. Prentice Hall,
New Jersey.

[2] Bickel, P.J., Klaassen, C.A.J., Ritov, Y. & Wellner, J.A.
(1993). Efficient and Adaptive Estimation for Semipara-
metric Models. Johns Hopkins University Press, Balti-
more.

[3] Cox, D.R. & Oakes, D. (1984). Analysis of Survival Data.
Chapman & Hall, London.

[4] Kalbfleisch, J.D. & Prentice, R.L. (1980). The Statistical
Analysis of Failure Time Data. Wiley, New York.

[5] Lawless, J.F. (1982). Statistical Models and Methods for
Lifetime Data. Wiley, New York.

[6] Lehmann, E.L. (1983). Theory of Point Estimation. Wiley,
New York.

[7] Normand, S.-L. & Doksum, K.A. (1997). Gaussian
models for degradation processes. Part II: Analysis of
biomarker data, in Lifetime Data Analysis, to appear.

(See also Asymptotic Relative Efficiency (ARE);
Confidence Intervals and Sets; Estimating Func-
tions; Estimation, Interval; Generalized Estimat-
ing Equations; Generalized Maximum Likelihood;
Inference; Sufficiency)

KJELL A. DOKSUM



Ethics of Randomized
Trials

Ethical concerns about human experimentation have
been of concern for thousands of years [3, 16]. How-
ever, since the Nazi atrocities [12] in the name of
medical research, there has been a resurgence of ethi-
cal concerns. This has resulted in enactment of codes,
guidelines, and laws, including the Nuremberg Code
[15], the Declaration of Helsinki [5], and Federal
Regulations [7]. In addition, there has been ongoing
concern for the ethical dimensions of the patient and
physician relationship; as evidenced, for example, by
the Hippocratic oath [14]. The ethics of randomized
clinical trials (RCTs) deal with a subset of concerns
about human experimentation. This article addresses
both general and specific ethical concerns.

Philosophical Basis

There are no universally accepted ethical principles to
guide experimentation and RCTs in humans, neither
through religious revelation and dogma nor through
any philosophical system. However, all thoughtful
commentators agree that there is a need for guidance.
Even in more recent times, there have been examples
of behavior that most commentators consider uneth-
ical. For example, the Tuskegee study [8] withheld
the newly discovered cure for syphilis and continued
to observe the natural history of syphilis on humans
without obtaining their consent.

In addition to religious revelation, there are two
primary approaches to human ethics. During the
eighteenth and nineteenth centuries, David Hume,
Jeremy Bentham, and John Stuart Mill, among oth-
ers, developed Utilitarian philosophy as a method of
determining appropriate standards for human behav-
ior [2]. This philosophy is sometimes summarized as
obtaining the greatest good for the greatest number, or
maximizing the sum of human happiness. Utilitarian
philosophies advocate acts that result in increasing
some measure of utility for the entire human popula-
tion. At one end of the Utilitarian spectrum each act
is assessed for the results for the entire human pop-
ulation (possibly including those yet unborn). Other
Utilitarian philosophers argue that it is impracticable
to evaluate each act; principles that approximately
result in optimal utility should be used. Under most

Utilitarian philosophies, RCTs result in good for the
greater number of individuals and are justified.

Other, deontologic ethical systems advocate gen-
eral principles that are appropriate for human behav-
ior. For example, Beauchamp & Childress [2] present
four principles for biomedical ethics. The principle
of autonomy states that there is inherent value in
allowing each individual to act as an independent
being. The principle of beneficence states that one
should act for the good of others. The principle of
nonmalfeasance states that one should avoid doing
harm to others. The principle of justice states that one
should act in a just manner. In the clinical trial area,
Pappworth [13] suggests the principle of equality: the
investigator should be willing to participate or have
family members participate under similar conditions.

Specific codes for the physician have a long
history, including the Hippocratic oath [14]. Current
important codes for the medical community include
the Nuremberg code [15] and the Declaration of
Helsinki of the World Medical Congress [5]. Both
agree that subjects should be informed of experimen-
tation, that the physician’s first responsibility is to
her/his patient, and that experiments must not expose
subjects to undue risk that is not commensurate with
the gain from the experiment. These principles may
also be argued from the ethical principles given above
[2]. Specific possible implications and dilemmas of
current ethical standards are now considered.

Informed Consent

Informed consent was first introduced as a term in
case law in 1957 [6], but was emphasized (without
the terminology) in the Nuremberg Code [15]. The
roots go back at least as far as 1900, when the Prus-
sian minister for religious, educational, and medical
affairs issued a directive that the subject had to give
“unambiguous consent” after a “proper explanation of
the possible negative consequences . . .” [19]. In most
countries, informed consent is now a matter of law.
In practice, the issue of informed consent is a difficult
one, since communication about complex scientific,
biologic, medical material is problematic even in the
best of circumstances. There are exceptions to requir-
ing informed consent of the experimental subject. In
some countries, for minors and individuals who can-
not reasonably give an informed consent, those with
power of attorney are allowed to give consent. In
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other circumstances, where time and situation do not
permit informed consent (e.g. during cardiac arrest)
separate rules have been developed in some countries
to allow research (including RCTs) after appropriate
review. Zelen [20] has proposed a design for a stan-
dard therapy against a new therapeutic arm. He argues
that it is ethical to randomize before talking to the
subjects; only those randomized to the new therapy
need to give informed consent, since the others would
have received the standard therapy if there had been
no trial. The ethics of the design vis-à-vis informed
consent have been considered questionable.

Review of Ethics

A second procedure for protecting patient and sub-
ject safety is to require an independent body to
review and approve a study before it can begin.
In the United States, this independent body is an
institutional review board (IRB). For trials under the
purview of the US Food and Drug Administration
(FDA), such boards must satisfy a number of federal
regulations (that carry the force of the enabling law
[7]). In addition, experiments involving new drugs,
biologics (that is, drugs that are compounds naturally
occurring in the human body), and devices must have
the experimental protocol approved by the FDA as
well as an IRB before implementation. In approving
experiments with new compounds, both law and the
Declaration of Helsinki [5] mandate that appropri-
ate preclinical (basic science and animal) studies be
performed before beginning human experimentation.

Physician–Scientist Conflict

The most difficult and extensively argued ethical
debate about clinical trials and medical experimen-
tation is the real or perceived conflict between the
physician’s duty to put the patient’s welfare and
treatment first and the scientist’s desire to obtain
adequate and well-controlled experimental data. In
a RCT the physician has delegated to a statistical, or
random, assignment his role of collaboratively decid-
ing with the patient the best diagnostic or therapeutic
approach (see Randomization; Randomized Treat-
ment Assignment). To some this is viewed as a
potentially morally unacceptable role for the physi-
cian; for example, Hellman & Hellman [11] mention
that the conflicting physician roles arise “from the

classic conflict between rights-based moral theories
and utilitarian ones”. Some argue that randomization
is appropriate if the physician is in equipoise; that is,
the physician truly has no preference as to the best
treatment. It has also been argued that it is enough
that there be “clinical equipoise” [10]; that is, “if there
is genuine uncertainty within the expert medical com-
munity – not necessarily on the part of the individual
investigator – about the preferred medical treatment”.
A large group of AIDS researchers has advocated the
use of “the uncertainty principle” [4]:

Patients and physicians can be encouraged to partic-
ipate in randomized clinical trials by adhering to the
uncertainty principle and understanding the limited
circumstances in which randomization may not be
appropriate. By the uncertainty principle, we mean
the principle that a trial should be open only to
patients for whom the choice of a treatment remains
substantially uncertain.

In addition, if a treatment is known but the conse-
quences of no treatment are reversible and moder-
ate – for example, a headache, with the possibility
of rescue medication – one can argue under certain
circumstances that the risk–benefit ratio still allows
a randomized trial.

Approximate equipoise may be considered a rea-
sonable requirement to begin a trial. However, as any
small amount of additional evidence becomes avail-
able an exact individual equipoise would be lost. Thus
complete equipoise cannot reasonably be maintained
throughout a RCT, even though it holds at the begin-
ning of the trial. For this reason, RCT investigators
must address the potential conflict between a health
researcher’s or physician’s responsibilities to her or
his patient and the physician’s responsibilities as a
scientist. If a physician has an overriding obligation
in every circumstance to recommend the “best ther-
apy”, no matter how lacking or slender the scientific
evidence, then most RCTs are probably unethical.
Arguably, such a stance is not good for society as
a whole; but proponents of this view argue that
ethical considerations of the patient–physician rela-
tionship, or implied contract, must take precedence.
On the other hand, if, lacking a reasonable stan-
dard of evidence about the risk–benefit ratio of a
proposed therapy, it is reasonable to perform human
experimentation, then many RCTs are appropriate and
ethical. Trials may then continue until a reasonable
standard of evidence shows that one of the assigned
treatments is efficacious or harmful. Of course, such
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trials must have appropriate informed consent. Where
informed consent is inappropriate (e.g. with some
mental states) or impossible (e.g. in a subject under-
going a cardiac arrest), there is an even greater need
for independent review of its ethics. Other RCTs may
be appropriate when the risk to the subjects is small
compared to the potential gain from the experiment.

Many countries have decided de facto that RCTs
are ethical if the objective level of scientific evidence
about a potential therapy is lacking. In these countries
drug, biologic, or device laws restrict the physician’s
choices until a new therapeutic or diagnostic method
has adequate scientific evaluation. Depending upon
one’s focus, the medical declarations seem to favor
either RCTs or the primacy of the physician–patient
relationship. For example, the widely quoted and used
Declaration of Helsinki [5] notes:

The Declaration of Geneva of the World Medical
Association binds the physicians with the words.
“The health of my patient will be my first consid-
eration.” The International Code of Medical Ethics
declares that, “A physician shall act only in the
patient’s interest when providing medical care which
might have the effect of weakening the physical and
mental condition of the patient”.

Yet the Declaration of Helsinki also goes on to give
principles for medical experimentation and notes that
the research “cannot be legitimately carried out unless
the importance of the objective is in proportion to
the inherent risk to the subject”. The tension between
what has been called the “clinical imperative” and
research seems unlikely to be totally resolvable. For
this reason, safeguards about independent review of
research proposals and informed consent must be
taken most seriously. All individuals, including statis-
ticians, involved in such clinical research have an
obligation to insure an ethical RCT (to the extent
that they may reasonably be expected to understand
the ethical issues).

The theme of the clinical imperative versus the
need of society for reasonable evidence of efficacy
and safety for medical diagnostic and therapeutic
methods has analogs in other areas. Similar balancing
of needs between the individual and society exist
for eminent domain (the government’s right to take
property for public use, usually with compensation),
mandatory immunization, mandatory service in the
armed services, restrictions on smoking, reportable
diseases, quarantine, and so on. However, in medical

research the issue is more difficult, because of the
dual role and commitment of the physician/scientist.

Placebo Treatment Arms

Another related major area of ethical concern in clin-
ical trials is the use of placebo treatment arms (see
Blinding or Masking). Some commentators assert
that when there is a known therapy of value, it is
unethical to use a placebo (see, for example, [17]).
Many scientists involved in RCTs feel that placebos
may ethically be used when any adverse outcomes
are reversible and the potential gain from the exper-
iment justifies the risk or discomfort to the exper-
imental subjects. For example, trials of analgesics
for headache pain or upset stomach and antihyper-
tensive drug trials often use placebos with rescue
allowed or required for severe or protracted pain or
blood pressures above fixed levels. Because of the
many well-known difficulties with active control tri-
als, it has been suggested that “if it is ethical to
use a placebo it is unethical not to use one” [9].
There is a consensus that placebos are not ethical in
most circumstances when there is a known beneficial
treatment that prevents a serious irreversible adverse
outcome: in this case active control trials are used.

Trial Monitoring

There is an ethical consensus that trials with a serious,
irreversible endpoint must not continue when one
treatment of a trial is shown to be superior. The
Nuremberg Code [15] states:

During the course of the experiment the scientist in
charge must be prepared to terminate the experiment
at any stage, if he has probable cause to believe, in
the exercise of the good faith, superior skill and care-
ful judgment required of him that a continuation of
the experiment is likely to result in injury, disability,
or death to the experimental subject.

The Declaration of Helsinki [5] states that “Physi-
cians should cease any investigation if the hazards
are found to outweigh the potential benefits”. In RCT
practice, this means that trials with serious, irre-
versible endpoints must stop when one therapy is
“proven” to be superior. This had led to boards or
committees, often called Data and Safety Monitoring
Boards (DSMBs), that evaluate the study data as the
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accumulate. As a result there is a substantial litera-
ture on stopping rules for clinical trials (see Data and
Safety Monitoring). Because investigators delegate
their ethical responsibility to monitor accumulating
data for patient harm or benefit, the ethical respon-
sibility and pressure is assumed by such boards. By
current guidelines, the DSMBs consider a therapy not
proven to be efficacious or harmful when the trial data
are very close to reaching a stopping criteria but have
not reached a stopping criteria, but consider the result
as decisive with a small amount of additional data
that are sufficient to satisfy such a criterion (with all
other factors supporting this interpretation). It should
be emphasized that the statistical stopping rules are
only guidelines; a DSMB must consider all relevant
information (including, but not restricted to, other
trials of the same treatment or related treatments, bio-
logic reasoning and plausibility, and other possible
explanations, such as imbalance between treatment
arms, unblinding, and so on).

Experimental Design

The Nuremberg Code [15] asserts that “The experi-
ment should be such as to yield fruitful results for
the good of society . . .”. It has been argued that
this implies that an experiment must have a sound
experimental design, including appropriate statis-
tical analysis plans and adequate statistical power.
Others feel that pilot studies do not need to have
enough statistical power to meet the usual standards
of proof under important alternative hypothesis. As
a member of the research team in a RCT, the bio-
statistician should insure an appropriate experimental
design.

Professional Conduct

Both the American Statistical Association [1] and
the Royal Statistical Society [18] publish guidelines
for the practice of statistics. Both guidelines address
the need to respect privacy, although the majority
of the points made refer to more general statistical
practice. The Declaration of Helsinki [5] states that
“In publication of the results of his or her research,
the physician is obliged to preserve the accuracy
of the results”. All of the ethical strictures on the
collection, analysis and reporting of data [1, 18]
hold for RCT data (see Data Management and

Coordination). This is particularly important, since
there are often powerful scientific career or financial
pressures on biostatisticians involved in the conduct,
analysis, presentation, and review of RCT results.
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Ethnic Groups

The word “ethnic” is defined in Webster’s Unabridged
Dictionary as “designating or of any of the basic
divisions or groups of mankind, as distinguished by
customs, characteristics, language, etc.”. Technically,
the word “racial” has a more biological or genetic
definition. However, by custom, these terms have
come to be used interchangeably. Since the issues
related to study design and data analysis are the same
for either “ethnicity” or “race”, this distinction is not
important for the present discussion. In most con-
texts, an individual’s ethnicity is either self-declared
or assigned on the basis of nativity, ancestral origin,
or some other observable characteristic.

Ethnicity is an important variable in human studies
because of the substantial differences in risk among
ethnic groups for many chronic diseases, both infec-
tious (e.g. hepatitis B, AIDS) and noninfectious (e.g.
heart disease, cancer). These ethnic disparities may be
explained by differences in the prevalence, intensity
or type of exposures to environmental or behavioral
factors, such as cigarette smoking or diet, that are
causally related to the disease. They may also be due
to certain inherited genetic variations (see Genetic
Epidemiology) acting as modifiers of these associa-
tions (e.g. in genes involved in metabolic activation
or detoxification of drugs and carcinogens), or they
may result from an increased prevalence of a major
susceptibility gene in a particular ethnic group (e.g.
the breast cancer 1 gene in Ashkenazi Jews). There-
fore, ethnicity may be considered as either a con-
founder or as an effect modifier in research studies.

However, ethnicity is generally not a simple vari-
able to manage. It is usually classified as a nominal
variable, although division into degrees of adherence
to cultural traditions or extent of genetic admixture
is sometimes possible. Data sources often agglomer-
ate distinct ethnic groups into assemblages that are
not meaningful for a particular study, yet cannot be
disaggregated. For example, the US census combines
Asians with Pacific Islanders, each of which is itself
a heterogeneous mix of genetic and cultural groups.
Assessment of ethnicity can lead to substantial mis-
classification, because individuals of mixed ancestry
may only partially identify their origins, or, if the
characterization is based on appearance, it may be
misassigned. A further problem when using existing
data sources in an analysis is lack of comparability

in definition between two or more sources of ethnic
information. For example, the computation of cancer
incidence rates utilizes data from tumor registries (see
Disease Registers) for the numerators and census
data for the denominators; the basis for classifying
individuals in these two sources often varies.

Despite the difficulties in accurately assigning
ethnicity, research studies can often be enhanced by
including different ethnic groups. For example, by
doing so, the extent of variation in exposure vari-
ables is generally increased, and this can be helpful
to the research in appropriately combined analyses.
An examination of similarities and differences across
ethnic groups may also offer new clues to etiology,
and may help to elucidate the role of genetic factors
in disease occurrence. Furthermore, ethnic-specific
analyses are sometimes important for public health,
economic, or other nonbiological reasons.

The way ethnicity is dealt with in study design and
data analysis depends on whether it is considered as
a confounder or an effect modifier, and on the sample
composition. To begin with, if few in number, sub-
jects of some ethnic backgrounds may be excluded
altogether. Sample size requirements for the ethnic
groups studied will differ depending on whether eth-
nicity is considered as an adjustment variable or
an interaction variable. Also at the design stage, a
matched case–control design or oversampling may
be used to ensure balanced representation of smaller
ethnic groups, a desired feature even if ethnicity
is merely an adjustment variable. If an unmatched
design is preferred, or in a prospective study, ethnic-
ity is usually adjusted for in the analysis, either by
stratification or by introducing dummy variables in a
multivariate analysis. However, the danger of over-
matching or overadjusting must be considered when
ethnicity is thought to be on the same etiologic path-
way as the dependent variable. An unmatched design
must also be used if a residual association with eth-
nicity is to be tested for, after adjustment for other
independent risk factors.

In summary, ethnicity is an important variable for
classifying individuals in biomedical research. It is
often an indicator of group exposure or genetic dif-
ferences that may be important in disease causation.
It is also a major confounding factor, which can be
adjusted for either in the design or analysis stage of
a study.

L.N. KOLONEL & L. LE MARCHAND



Eugenics

The study of human biology as an intellectual and
academic discipline expanded vigorously during the
late nineteenth century, largely in response to the
publication of Charles Darwin’s On the Origin of
Species by Means of Natural Selection in 1859 and
The Descent of Man in 1871. Two significant con-
sequences of the introduction of evolutionary the-
ory were the birth of the Eugenics Movement and
the emergence of the concept of social Darwinism.
The Eugenics Movement was founded by Francis
Galton, Karl Pearson, and their colleagues at the
Galton Laboratory for National Eugenics in London.
These investigators concentrated their inquiries on
the perpetuation of traits that they held to be prefer-
able in the human species. These traits, under the
idea of social Darwinism, included personal quali-
ties of “talent” and “natural ability” observed more
frequently in classes of persons regarded as socially
“fit”. Excluded were the many undesirable traits
that abounded among lower social classes that were
regarded as socially “unfit”. Galton coined the term
“eugenics” in 1883, deriving it from Greek roots
meaning “good in birth”, and intending the word
to describe a scientific inquiry into describing and
improving the genetic endowment of man [13].

The theory and practice of eugenics quickly
expanded to the US. In 1910 the leading American
eugenicist, Charles B. Davenport, founded the
Eugenics Record Office (ERO) at Cold Spring
Harbor, New York, and installed Harry H. Laughlin
as the director. The ERO became the center of
eugenic research in the US and was generously
funded from numerous sources, including the fortunes
of the Rockefeller, Harriman, and Carnegie families
[13]. American eugenic research followed two
distinct but related lines of inquiry: first, the
documentation of the transmission of biological and
social traits in succeeding generations of particular
families, and, secondly, the development of social and
scientific policies and legislation that would support
biological solutions to the unwanted perpetuation of
undesirable human traits.

The activities of both the British and the Amer-
ican schools of eugenics proceeded in tandem with
the development of eugenic theory in Germany.
The unique nature of German eugenics as a social
force rested in large measure on the position of

most eugenicists as members of the respected and
revered university-based academic elite. Although
many supporters of German eugenics were not affil-
iated with university communities [15], the strength
of the movement was solidly established in the Ger-
man universities – a fact that afforded credibility and
acceptability to professional writings and public poli-
cies about the inequalities of man [10].

As the study of eugenics expanded, several lines
of inquiry were pursued at different times, in various
locations. These more circumscribed areas of research
included, early on, intense investigations of the phys-
ical traits of man, accompanied by interpretations
about the relationship between physical attributes
and social qualities. Somewhat later, numerous social
traits received close attention and analysis, as did
mental traits, including intelligence, mental retarda-
tion, and several types of mental illness. As the
Eugenics Movement reached its peak, underlying the-
ories and historical policies became the justification
for “directed medical killing” [14], barbarous medical
experimentation [17], and racial genocide [16].

Physical Traits

Curiosity about hereditary physical differences among
human beings has been documented since the writ-
ings of the ancient Greeks, including Hippocrates,
who noted, for example, the familial nature of bald-
ness, blue eyes, and “long” heads [20]. As scientists
raced to investigate the implications of social Dar-
winism in the last decades of the nineteenth cen-
tury, they amassed enormous sets of data on the
size of the brain in humans and primates and were
able to conclude that the larger brains “in men than
women, in eminent men than in men of mediocre
talent”, reflected the superior intelligence of talented
men. The practice of weighing brains evolved in the
late nineteenth century into more sophisticated mea-
surements of myriad body parts as the science of
anthropometry emerged. Calipers became standard
investigative tools as investigators sought to correlate
physical characteristics with social traits, and anthro-
pometry enjoyed a period of dubious glory in the
late nineteenth century with the studies of the Ital-
ian anthropologist Cesare Lombroso, who concluded
that “[c]riminals are the apes in our midst, marked
by anatomical stigmata of atavism”, such that crim-
inality and guilt could be reasonably predicted from
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physical measurements in certain groups including
the handicapped and Gypsies [11]. These early meth-
ods found new applications in the 1930s and 1940s
when the Nazis used anthropometry to support racial
classifications and segregation.

Social Traits

The leap from anthropometry and criminality to a
plethora of other social characteristics was a short
one. At the time when Lombroso was measuring the
bodies of criminals and promoting the elimination of
these persons from society, eugenicists in the Galton
Laboratory were noting the concentration of talent
among the educated classes of the British popula-
tion. Decades before the rediscovery of Mendel’s
laws of single gene inheritance, Galton, in 1869, pub-
lished his concepts of eugenics and the origins of
“natural ability” under the title, Hereditary Genius:
An Inquiry into Its Laws and Consequences [13].
British investigators noted two centuries of numerous
blood relatives in the ranks of jurists and statesmen,
artists and musicians, politicians and military lead-
ers, and scientists and humanists. These observations
were used to support conclusions about the heredi-
tary superiority of these more accomplished classes
of human beings.

While the Galton Laboratory collected data on
those who excelled, eugenicists on both sides of
the Atlantic were documenting the familial nature
of a number of less attractive social traits in the
human population. The most notable account of
social pathology was the study of seven genera-
tions of the Juke family of New York, published by
Richard Dugdale in 1877, and confirmed in a follow-
up study some 40 years later [8]. The Jukes were
documented to be a family of criminals, prostitutes,
and social misfits, characterized by personal traits
of “feeblemindedness, indolence, licentiousness, and
dishonesty”. Similar studies of other social traits
expanded the reach of genetics and social Darwinism
to alcoholism, pauperism, insanity, and communi-
cable social diseases. The possibility that traits of
social degeneracy could be related to the dismal liv-
ing circumstances of legions of families in the early
twentieth century was either unrecognized or ignored
as the proponents of eugenic theory looked to future
control of the propagation of these unfortunate human
groups.

From an analytic point of view, the major
difference between British and American approaches
was the biometric approach of the British in
their analysis of metric traits, contrasted to the
intense compulsion of the Americans to document
a monogenic etiology of familial social traits. Of
importance to the followers of Galton were principles
of correlation and regression to the mean, both
of which added strength to ideas of hereditary
social degeneracy and decline. American eugenics,
however, found support in suggestions that complex
traits, or qualities, could be determined by simple
modes of single gene inheritance. Thus, for example,
the tendency of seafaring fathers to have seafaring
sons was attributed to a single gene for a trait that
was designated thalassophilia, as was nomadism, or
the impulse to wander, among the Comanches, the
Gypsies, and the Huns.

Mental Traits

In addition to physical and social traits, the famil-
ial nature of mental traits was also scrutinized by
researchers in eugenics as well as by investigators in
psychology and education. Early measures of intel-
ligence were developed by Alfred Binet, a French
psychologist, and later refined by British and Ameri-
can investigators, to produce the intelligence quotient
(IQ), a measure initially assumed to represent an
innate, immutable quality of individual mental acuity.
Early studies of intelligence in twins, with applica-
tion of methods of factor analysis, added credence to
claims of the genetic determination of intelligence,
an idea supported by the widely read, but fraudulent,
reports of Cyril Burt, who claimed to have studied 53
twin pairs who in fact had never existed. Significant
applications of intelligence testing in the American
military suggested that most white American males
were of very low intelligence, and tests used in
American immigration procedures purported to prove
that immigrants from southern Europe and eastern
Mediterranean countries were of consistently lower
intelligence than immigrants from northern Europe.
More recent studies continue to support claims of
substantial genetic differences among races in the
development of intelligence [12].

Tests of mental capacity were also used to define
the mental status of persons who were mentally
retarded, and individual scores were used to assign
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the retarded to groups of morons, imbeciles, or idiots,
depending on the degree of mental deficiency. (This
language was later replaced by less pejorative terms
of mild, severe, and profound retardation.) Retarded
children born to parents of limited mental capac-
ity lent credence to claims of the predominantly
hereditary nature of mental deficiency, although some
studies continued to indicate the significant role
of environmental influences in the development of
mental abilities. Complex and conflicting evidence
for monogenic, polygenic, and environmental contri-
butions to the phenotypes of mental retardation led
to exhaustive studies by Lionel Penrose in the 1930s
into the sources of retardation among the patients at
the Royal Eastern Counties’ Institution in Colchester,
England. Penrose confirmed the hereditary nature of
some monogenic diseases, including phenylketonuria,
congenital hypothyroidism, Huntington’s disease and
others. He also noted the similarities among patients
with Down’s syndrome and the increased frequency
of these children born to older mothers. But, he noted,
most patients appeared to suffer from retardation that
arose in combinations of environmental, pathological,
and genetic factors, and he cautioned against facile
labeling of patients without firm justification.

In contrast to the diverse etiologies of mental retar-
dation, mental illness includes a number of organic
pathological processes that underlie such diseases
as schizophrenia, depression, and manic-depression.
While early family studies of these illnesses noted
significant clustering in certain families, suggesting
single gene inheritance, later introduction of sound
epidemiologic principles and correction for ascer-
tainment bias have reduced the figures for disease
frequency and recurrence risks and have implied mul-
tifactorial etiologies for these disorders [13]. Mental
illnesses have also been the subject of twin studies
(see Twin Analysis) that have generally verified a
significant genetic contribution to disease phenotypes,
as well as a greater risk to closely related persons who
share similar environments [20].

Providing care for the mentally retarded and
mentally ill has progressed hesitantly over much of
Western history. In ancient times, the burden of car-
ing for defective infants was often eliminated when
the infants were exposed and abandoned. In later
centuries, placing the backward child in the care
of an incompetent nurse often hastened the end of
the child’s existence [7]. Society later assumed the
responsibility of caring for these unfortunate persons,

although early institutional care consisted of little
more than providing separate warehouses for male
and female patients. As the Eugenics Movement gath-
ered momentum, however, proponents of improving
the genetic endowment of man advocated more per-
manent methods of genetic control among the men-
tally disabled, particularly surgical sterilization of
both men and women whose continuing fertility could
result in further generations of mentally deficient
persons. These suggestions became the subject of leg-
islation in some 28 American states before 1931, and
tens of thousands of mental patients were forcibly
sterilized under these statutes [18]. The propriety
of sterilization programs for eugenic purposes was
reinforced in 1927 when the United States Supreme
Court upheld a Virginia sterilization statute by not-
ing that “three generations of imbeciles are enough”
[5]. These programs continued into the 1960s, long
after the Supreme Court reexamined the issue of
reproductive rights in 1942 and found the right to
procreate to be a fundamental right, deserving of
the strictest constitutional protection [19]. Finally,
during the years of legislatively sanctioned steriliza-
tion programs, voluntary sterilization was generally
encouraged among families in the general public who
had mentally retarded or otherwise severely deficient
children or were at risk of having such children in
the future.

Racial and Ethnic Traits

From its inception the Eugenics Movement was dedi-
cated to the proposition of ranking and valuing human
groups on the basis of racial and ethnic characteris-
tics, although distinctions among racial, ethnic, and
even national origins were often indistinct. Pearson,
for example, noted that Jewish youth in London’s
East End were quite as intelligent as Gentiles but
tended to be physically inferior and somewhat dirtier.
Davenport regarded the Poles, the Irish, the Ital-
ians, and the “Hebrews” as distinct racial groups.
He further concluded that the Poles were “indepen-
dent and self-reliant though clannish”, that the Italians
were prone to “crimes of personal violence”, and
that the Hebrews were “intermediate between the
slovenly Serbians and Greeks and the tidy Swedes,
Germans, and Bohemians” though given to “thiev-
ing”. These types of quasi-cultural distinctions were
ultimately compiled, along with exhaustive biological
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traits, by the German eugenicists Erwin Baur, Eugen
Fischer, and Fritz Lenz, who noted, for example, that
the “Mediterranean” race was typified by “narrow,
long skulls, like the Nordic, but smaller and some-
what wider and steeper forehead”, very dark brown
to black hair and eyes, and significantly brownish
skin; furthermore, this group had “neither the quiet
industry of the Mongoloid race nor the initiative
and energy of the Nordic people”. With respect to
Germanic peoples, these authors further noted that
the “sturdy, blond race” of Westfalen and Schwaben
could be distinguished by their clumsiness, stubborn-
ness, rigidity, and sedentary nature, compared with
the “slim, blond race” of more Nordic descent that
was more inclined toward thought, discovery, nature,
and beauty of form [3]. Both American and Euro-
pean eugenicists consistently agreed that the Negro
race represented the nether end of the human racial
scale, while the white, Anglo-Saxon, Protestant pop-
ulation of northern Europe represented the fortunate
epitome of human evolution. These and thousands
of other distinctions, delineated in professional pub-
lications and in the popular press, gave substance to
human differences and were the foundation for further
judgments about the relative value of various groups
in the human “hierarchy” [13].

Racial and ethnic distinctions, whether based in
fact or fiction, became the foundation for vigorous
campaigns to limit immigration, particularly from
southern and eastern Europe into the US. Davenport
was concerned that the influx of immigrants from
these areas, their tendency to have large families, and
their subsequent marriage into the American popula-
tion, would result in making the American population
“darker in pigmentation, smaller in stature, more
mercurial . . . more given to crimes of larceny, kid-
napping, assault, murder, rape, and sex-immorality”.
So fervent was this fear of racial decline that a
strong lobby, led by Laughlin, developed for the sin-
gle purpose of restricting immigration into the US
by establishing quotas for immigration from individ-
ual European countries. The immigration lobby suc-
ceeded in introducing federal legislation that resulted
in the Immigration Act of 1924, overwhelmingly
passed by Congress and signed by President Calvin
Coolidge, who was already on record as noting that
“America must be kept American. Biological laws
show . . . that Nordics deteriorate when mixed with
other races” [13] (see Admixture in Human Popu-
lations).

Excesses of National Socialism in Germany

The development of eugenics in Germany during the
1930s and 1940s was the result of a confluence of
social and political forces that had been develop-
ing for several decades. On the practical side, for
example, the German economy had never recovered
from the crippling penalties imposed at the end of
World War I, and German eugenicists were careful to
emphasize, at every opportunity, the interminable and
substantial costs of housing and caring for persons
with inherited or acquired disabilities and diseases.
On the theoretical and intellectual side, from a neg-
ative perspective, the university community read and
absorbed the early writings of Adolf Jost, who argued
that the German “Volk”, as a racial–cultural entity,
should have the right to kill some individuals in order
to preserve the health of the body of the whole Volk.
Somewhat later, Karl Binding and Alfred Hoche, a
jurist and a psychiatrist, argued that the state had a
right, and perhaps even a duty, to end the lives of
people whose “lives were not worthy of life” [4].
Finally, among the innumerable racist and eugenic
arguments included in Mein Kampf were declarations
that the fiscal woes of Germany could, in large mea-
sure, be ascribed to the Jews, and that a person’s right
to life ends when he is no longer capable of fight-
ing for his own health. From a positive perspective,
both academic eugenicists as well as the Nazis argued
the physical and mental superiority of the Nordic,
or “Aryan”, race and proposed programs that would
encourage qualified individuals and couples to pro-
duce children who would be a credit to their German
Vaterland.

The academic thrust of eugenics was well estab-
lished by the time the Nazis assumed power in
1933. Thereafter, the government implemented pro-
grams that for the first time legally separated unde-
sirable persons from the body of society through
restrictive social legislation about marriage and occu-
pational licenses. Separations from society contin-
ued to escalate through legislation and clandestine
directives until, in the world of medicine, the men-
tally retarded and the mentally ill who were cared
for in public institutions were targeted for destruc-
tion. These patients had such severe disabilities
that they were not expected to return to produc-
tive lives in German society: these were the “leben-
sunwertig”, the lives “not worthy of life” [1]. As
these groups disappeared, the next step was the
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annihilation of institutionalized Jews who, though
mentally ill, had favorable prognoses for recovery.
Medical and anthropological interests soon reached
into the concentration camps that filled rapidly with
the unwanted in German society, including politi-
cal detainees, Jews, Gypsies, homosexuals, convicted
criminals, and, later, prisoners of war. These vast
assemblies provided material for anatomy collections
and descriptive studies at major universities and for
numerous medical experiments, including investiga-
tions of sterilization methods, infectious diseases, the
effects of poisons, and the effects of high altitude
and extreme cold. The meticulous system of docu-
mentation in the German bureaucracy later provided
exhaustive information about the nature and extent of
Nazi biomedical research and experimentation [6].

The atrocities committed during the Third Reich
were the subject of criminal prosecution during the
Nuremberg trials, and many of the more prominent
leaders of National Socialism were sentenced to death
or to long prison terms. While most of the current
community of bioethics and medical research contin-
ues to acknowledge revulsion at the horrors of Nazi
research and experimentation, professionals in many
disciplines remain divided over the issue of using var-
ious sets of Nazi data in contemporary studies. One
conflict that may never enjoy a resolution is whether
using these data, on the one hand, gives tacit approval
to the barbarous circumstances under which the data
were collected, or, on the other hand, gives acknowl-
edgement and value to the lives of the subjects who
perished in the experiments [2, 9].

Contemporary Perspective

The Eugenics Movement has a long record of intel-
lectual and racist elitism that in recent decades
has lost much of its earlier support. The Move-
ment was founded and nourished by intellectual
leaders in Europe and the US, and it enjoyed
strong support from persons of political, financial,
and social advantage. Early contributions and sup-
port from such disciplines as biometrics, genetics,
anthropology, evolutionary biology, medicine, psy-
chology, and sociology provided credence to concepts
that eventually became major contributing factors
to vast programs of social and racial genocide. As
the world discovered the unspeakable truth of the
Holocaust, the word “eugenics” acquired a tone of

terror in the interrelationships of man, a tone that
constantly implied the obscene violation of human
rights. Only recently, however, have researchers in
genetics and bioethics begun to distinguish between
eugenics imposed by government and eugenics prac-
ticed by individual choice. The former was the source
of forced sterilizations, legislation designed to pro-
tect “racial purity”, programs of “directed medical
killing”, and ultimately the practice of mass murder.
The latter, however, is an integral part of contem-
porary programs of nondirective genetic counseling
that are dedicated to moral and legal principles of
personal autonomy and individual choice in issues of
human reproduction. Eugenics has come full circle,
from genuine, though misguided, concern about the
health of the human race, through brutal programs of
cleansing society of its undesirable elements, to a new
concern for human health that allows personal choice
about bearing children with genetic impairments.
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European Federation of
Statisticians in the
Pharmaceutical Industry
(EFPSI)

The Federation is open to nationally constituted
groups of statisticians who are working in or for
the pharmaceutical industry (see www.EFSPI.ORG).
Thus, EFSPI is engaged in statistical aspects of
research, development, production, and post-market-
ing surveillance of drugs, biologics, and medical
devices. The objectives of the Federation are (accord-
ing to the EFSPI constitution):

1. to promote professional standards of statistics
and the standing of the statistical profession in
matters pertinent to the European pharmaceutical
industry

2. to offer a collective expert input on statistical
matters to national and international authorities
and organizations.

3. to exchange information on and to harmonize
attitudes to the practice of statistics in the Euro-
pean pharmaceutical industry and within the
member groups

The Federation was constituted and officially
launched in August 1992. There are now eleven
member groups representing:

Belgium – BVS/SBS (Belgishe Verening voor
Statistiek/Societe Belge de
Statistique) – Biostatistics
Section

Denmark – DSBS (Dansk Selskab for Biofar-
maceutisk Statistik)

Finland – SSL (Statistikot Suomen Lääkete-
ollisuudessa)

France – SFdS Societé Francaise de Statis-
tique – Biopharmacy and
Health Group

Germany – APF (Arbeitsgruppe Pharmazeuti-
sche Forschung at German
region of International Bio-
metric Society)

Italy – BIAS (Biometristi dell’Industria-
Farmaceutica Associati)

Netherlands – PSDM (Workgroup Pharmaceutische
Statistiek en Datamanage-
ment van Verenining voor
Statistiek – Biometrische
Sectie)

Spain – ABC if (Asociacion de Biometria
Clinica para la Investigacion
Farmaceutia.

Sweden – FMS (Foreningen for Medicinsk
Statistik)

Switzerland – BBS (Basler Biometrische Sektion
of International Biometric
Society)

UK – PSI (Statisticians in the Pharma-
ceutical Industry)

Thus, 11 European countries, with a total member-
ship of over 2000, statisticians are represented via
EFSPI and can be reached by mailings organized by
the respective national groups. Links to the individ-
ual member organizations can be found via EFSPIs
website at www.EFSPI.ORG.

EFSPI has established a number of special interest
groups (including one in nonclinical statistics). EFSPI
working parties are set up when appropriate to con-
sider specific topical issues. The question of certifica-
tion of statisticians and the interpretation of the term
“qualified and experienced statistician”, a description
used in regulatory guidelines, have been considered.
The initial results of the working party were pub-
lished in 1999 in Drug Information Journal [1].

The main activities of the Federation, however,
have been concerned with guidelines for, and other
regulatory aspects (see Drug Approval and Regula-
tion) of, statistical issues in clinical trials. In recent
years, this has involved EFSPI input to a number
of guidelines including those issued by the Com-
mittee for Proprietary Medicinal Products (CPMP)
of the European Community and by the Food and
Drug Administration (FDA) in the US. These have
included guidance documents on good clinical prac-
tice [2] and on biostatistical methodology in clinical
trials, in general or within specific therapeutic areas.
Examples are guidance documents on “Bioavail-
ability and Bioequivalence” and on Points to Con-
sider documents on more specific statistical topics
such as for example, “Superiority, Noninferiority and
Equivalence”, “Validity and Interpretation of Meta-
Analysis, and one Pivotal Study”, “Missing Data and
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Multiplicity Issues in Clinical Trials” and “Base-
line Covariates” [3] and [4]. In addition, input has
been made to guidelines developed under the Inter-
national Conference on Harmonization (ICH), which
has included guidelines on the structure and content
of clinical trial reports, on statistical principles for
clinical trials, and on the choice of control group.
In each case, review comments have been harmo-
nized between the member EFSPI groups and sent to
the regulatory agencies and industry associations as
a joint statement.

Activities of EFSPI have been presented at the
International Statistical Institute’s (ISI) 49th Ses-
sion in Florence and 52nd in Helsinki and at Drug
Information Association (DIA) meetings, since 1993
in both clinical and nonclinical areas. In collaboration
with DIA, EFSPI contributes to suggestions of topics
for the clinical and nonclinical DIA workshops.

Cooperation has been achieved with a number of
other organizations, including:

1. the EFPIA (European Federation of Pharmaceuti-
cal Industries Association), concerning European
regulatory issues

2. the FDA and the PhRMA (Pharmaceutical
Research and Manufacturers Association) bio-

statistics subsection, in the US, concerning reg-
ulatory harmonization

3. the DIA concerning scientific publications and
conferences

4. the ISCB (International Society for Clinical
Biostatistics).

EFSPI now has a website www.EFSPI.ORG.
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European Organization
for Research and
Treatment of Cancer
(EORTC)

The main aim of the European Organisation for
Research and Treatment of Cancer (EORTC), which
is based in Brussels, is to conduct, develop,
coordinate, and stimulate multidisciplinary research
in Europe on the experimental and clinical bases of
cancer treatment, with the final goal being to develop
optimal treatment strategies in order to improve the
standards of cancer treatment. It is a scientifically
driven organization consisting of a unique pan-
European network involving more than 2000 clinical
investigators and scientists in some 300 hospitals,
laboratories, and research institutions in 31 different
countries. In 2003, approximately 6000 new patients
were entered into the 130 trials handled at the EORTC
Data Center, with more than 800 patients being
entered in intergroup trials carried out with other
regional, national, or international research groups.

The EORTC was founded in 1962, as an interna-
tional nonprofit organization under Belgian law, by
workers in the main cancer research institutes of the
European Common Market countries and Switzer-
land. In order to provide a central coordination of
its clinical trials, an EORTC Coordinating Office
was established in 1969. Through the efforts of Henri
Tagnon and Marvin Zelen and the support of the US
National Cancer Institute (see National Institutes of
Health (NIH)), this was transformed into the EORTC
Data Center, which was formally launched in January
1974. Located at the Institut Jules Bordet in Brussels,
Belgium, it was set up with the help and expertise of
a number of American statisticians, including Al Bar-
tolucci, Jim Williams, and Steve George. The last two
served as the initial (temporary) directors and princi-
pal statisticians. Upon the departure of Steve George
in the summer of 1975, Maurice Staquet took over as
director, and its first permanent full-time statistician,
Richard Sylvester, joined the staff. In 1979, he was
named Assistant Director for Biostatistics, a post that
he still holds. In 1984, members of the EORTC Data

Center edited Cancer Clinical Trials: Methods and
Practice [1], a very successful book dealing with the
methodology of designing, conducting, and analyzing
cancer clinical trials.

In 1990, the EORTC Data Center moved to the
Brussels campus of the medical school of the Uni-
versité Catholique de Louvain. A year later in 1991,
Françoise Meunier was appointed as Director of the
EORTC Central Office/Data Center. In 1995, she was
appointed as Director General of the EORTC and
Patrick Therasse was appointed as Director of the
EORTC Data Center.

Since its inception, the primary role of the EORTC
Data Center has been to provide state-of-the-art sta-
tistical, medical, data management, quality control,
and computer expertise to some 20 EORTC Clinical
Research Groups for the phase I, phase II and large,
multicenter phase III clinical trials that they carry
out. It has also assumed a major role in teaching
statistics and the methodology of cancer clinical tri-
als, and has developed Fellowship Programs for the
training of statisticians and other scientists.

As of January 2004, there were nine biostatis-
ticians working at the Data Center. Traditionally,
its statistical research activities have been applied
in nature. In recent years, it has greatly expanded
its statistical activities through the development
of an applied statistical research program dealing
with problems in treatment outcome research and
frailty models, designs for phase II/III trials, non-
proportional hazard models (see Survival Analysis,
Overview), design and analysis of Quality of life
quality of life studies, independent data monitoring
committees and interim analyses (see Data Mon-
itoring Committees), and the design and analysis
of biomarker studies (see Molecular Epidemiology).
Statistical methodology and results are discussed in
its twice-monthly Stats Club meetings.
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Event History Analysis

Introduction

Event history analysis deals with data obtained by
observing individuals over time, focusing on events
occurring for the individuals. Thus, typical outcome
data consist of times of occurrence of events and of
types of events that occurred. Frequently, an event
may be considered as a transition from one state to
another and, therefore, multistate models will often
provide a relevant modeling framework for event
history data. Multistate models are discussed from
several points of view in the books by Andersen
et al. [10], Blossfeld & Rohwer [18], Courgeau &
Lelièvre [26] and Hougaard [45, Chapters 5-6] and
Kalbfleisch & Prentice [48, Chapter 8]; see [14, 22,
44] for recent survey papers.

Survival Data

The simplest multistate model is the two-state model
for survival data with one transient state “0: alive”
and one absorbing state “1: dead”; see Figure 1. In
general, an absorbing state is a state from which
further transitions cannot occur, while a transient
state is a state that is not absorbing. The observa-
tion for a given individual will here in the simplest
form, consist of a random variable, say T , repre-
senting the time from a given origin (time 0) to
the occurrence of the event “death”. The distribu-
tion of T may be characterized by the probability
distribution function F(t) = Prob(T ≤ t) or, equiva-
lently, by the survival distribution function S(t) =
1 − F(t) = Prob(T > t). It is seen that S(t) and
F(t), respectively, correspond to the probabilities of
being in state 0 or 1 at time t . If every individual is
assumed to be in state 0 at time 0, then F(t) is also
the transition probability from state 0 to state 1 for
the time interval from 0 to t . In continuous time, the
distribution of T may also be characterized by the
hazard rate function

α(t) = − d log S(t)

dt

= lim
∆t→0

Prob(T ≤ t + ∆t | T ≥ t)

∆t
, (1)

that is,

S(t) = exp

(
−

∫ t

0
α(u) du

)
(2)

(see Survival Distributions and Their Characte-
ristics).

Thus, α(·) is the transition intensity from state 0
to state 1, that is, the instantaneous probability per
time unit of going from state 0 to state 1.

In general, event history analysis deals with infer-
ence for transition intensities and transition probabil-
ities in multistate models. This includes estimation
and hypothesis tests for these quantities and anal-
ysis of regression models where these quantities
are related to (possibly time-dependent) explanatory
variables observed for the individuals under study.
Most frequently, multistate models are defined by
their transition intensities from which transition prob-
abilities may or may not be derived depending on the
modeling assumptions. This latter activity is some
times denoted “survival synthesis”.

A typical feature of event history analysis is the
inability to observe complete event histories, for
example, by the end of the observation period all indi-
viduals under study may not have reached an absorb-
ing state. In survival analysis, this would correspond
to individuals still being alive by the end of the study,
and this kind of incomplete observation is known as
right censoring. Furthermore, all individuals may not
have been observed from the same time origin. This
kind of incomplete observation where individuals are
only observed conditionally on not having reached
an absorbing state by the time of initiation of the
study is known as left-truncation. Restricting atten-
tion to right censoring, a crucial problem is whether
the available incomplete data enables one to make a
valid inference on parameters in the multistate model
for the complete data. The condition for this is known
as independent right censoring (see Censored Data).

Multistate Models

In this section, we will present a number of different
multistate models. We will begin with a few heuristic

0 1

Alive Dead
a(t)

Figure 1 The two-state model for survival data
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definitions that may all be made rigorous within the
framework of so-called marked point processes [10,
Chapter III; 16].

A multistate process is a stochastic process
(X(t), t ∈ T) with a finite state space S = {1, . . . , p}
and with right-continuous sample paths: X(t+) =
X(t). Here, T = [0, τ ] or [0, τ ) with τ ≤ +∞. The
process has initial distribution πh(0) = Prob(X(0) =
h), h ∈ S. A multistate process X(·) generates a
history Xt (a σ -algebra) consisting of the observation
of the process in the interval [0, t]. Relative to this
history, we may define transition probabilities by

Phj (s, t) = Prob(X(t) = j | X(s) = h,Xs−) (3)

for h, j ∈ S, s, t ∈ T, s ≤ t and transition intensities
by the derivatives

αhj (t) = lim
∆t→0

Phj (t, t + ∆t)

∆t
(4)

which we shall assume exist. Some transition inten-
sities may be 0 for all t . Graphically, multistate
models may be illustrated using diagrams with boxes
representing the states and with arrows between the
states representing the possible transitions, that is, the
nonzero transition intensities [10, Section I.3; 43]. A
state h ∈ S is absorbing if for all t ∈ T, j ∈ S, j �=
h, αhj (t) = 0; otherwise h is transient. The state
probabilities πh(t) = Prob(X(t) = h) are given by

πh(t) =
∑

j∈S
πj (0)Pjh(0, t). (5)

Notice that the Phj (·, ·) and thereby the αhj (·) depend
on both the probability measure Prob and on the his-
tory though this dependence has been suppressed in
the notation. If αhj (t) only depends on the history
via the state h = X(t) occupied at t , then the pro-
cess is Markovian. Sometimes, one is interested in
considering an extended history that also includes
observed covariates. If only time-fixed covariates Z

are studied, then the observed history is Ft = Xt ∨
Z0, whereas time-dependent covariates Z(t) give
rise to an extended history of the form Ft = Xt ∨ Zt

where, in both cases, Zt is the history generated by
the covariates in [0, t]. We shall here focus on the
purely endogenous case where Zt ⊂ Xt ∨ Z0; that is,
the covariates are either all time-fixed or the ran-
dom development of the time-dependent covariates
is fully specified by the history of the process itself

(see, however, the section “ Partial model Specifica-
tion” for cases with time-dependent covariates that
are not endogenous).

The Two-state Model for Survival Data

This model, illustrated in Figure 1, has p = 2 states
and only one possible transition from state 0 to
state 1. The corresponding transition intensity α01(t)

is given by the hazard rate function α(t), while
α10(t) = 0 for all t , that is, state 1 is absorbing. The
initial distribution is degenerate in 0: π0(0) = 1 and
the process is Markovian. Covariates may be entered
into the model using a regression model for α(·).

The Competing Risks Model

This model (see Competing Risks) has one transient
state “0: alive” and a number, k, of absorbing states,
state h, h = 1, . . . , k corresponding to “death from
cause h”. Thus, there are p = k + 1 states. The model
is illustrated for k = 2 in Figure 2.

The transition intensities α0h(t) for h = 1, . . . , k

are given by the cause-specific hazard functions:

αh(t)

= lim
∆t→0

Prob(Dead from cause h by t + ∆t | T ≥ t)

∆t
(6)

where T is the survival time. The initial distribution
is degenerate in 0, the only transient state of the
model, that is, αhj (t) = 0 for all h �= 0 and all j .

1
Dead cause 1

2

0

Dead cause 2

Alive

a1(t)

a2(t)

Figure 2 Competing risks model for mortality from 2
causes
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The transition probabilities are given by the survival
function

P00(0, t) = S(t) = Prob(T > t)

= exp

(
−

∫ t

0

k∑

h=1

αh(u) du

)
, (7)

and the cumulative incidence functions

P0h(0, t) =
∫ t

0
S(u−)αh(u) du, h = 1, . . . , k.

(8)

Like the simple two-state model (k = 1), the com-
peting risks model is Markovian and covariates may
be included into the model via regression models for
the cause-specific hazards. This model was studied
by Andersen et al. [9].

The Illness–death Model

This model (see Aalen–Johansen Estimator) is
illustrated in Figure 3. Often, the time t is the age
of the individual, and usually individuals will be
assumed to be in state 0 at t = 0.

However, individuals will not always be observed
from t = 0 as shall be further discussed in the
sections “Counting Process Representation, Likeli-
hood” and “Statistical Model Specification”. The
mortality α12(t) of the diseased (the lethality) may
sometimes depend on duration d since entry to state
1 in addition to the dependence on “age” t . (Notice
that, despite the notation, α12(t) then depends on the
random time of the most recent transition into 1.) If
α12(t) does not depend on d the process is Markovian,
otherwise it is a semi-Markov process, an example
of a purely endogenous process.

In Figure 3, we have indicated the possibility of
reversibility: the transition back from state 1 to 0 is

Disease-free
0

Diseased
1

2
Dead

a02 (t) a12 (t)

a10 (t)

a01 (t)

Figure 3 The illness–death or disability model

possible. It will turn out that the simple unidirectional
model where α10(t) = 0 is rather easier to analyze
statistically. Thus, the transition probabilities in this
model have simple explicit expressions:

P00(s, t) = exp

(
−

∫ t

s

(α02(u) + α01(u)) du

)
(9)

and (in the Markovian case)

P01(s, t) =
(∫ t

s

P00(s, u−)α01(u)P11(u, t) du

)

(10)

where

P11(s, t) = exp

(
−

∫ t

s

α12(u) du

)
.

More generally, the lethality α12(·) may depend on
both age and duration. If we then define

α12(t, d) = lim
∆t→0

Prob

(
X(t + ∆t) = 2|X(t) = 1,

0 → 1 transition at t − d

)

∆t
,

P11(u, t) in (10) should be replaced by
exp(− ∫ t

u
α12(s, s − u) ds). The illness–death model

is one of the most important multistate models and it
was discussed in early papers by Fix & Neyman [31]
and Sverdrup [71].

Repeated Events

If interest focuses on repeated occurrences of a given
event, for example, hospital admissions, childbirths,
infections and so on. then a model as illustrated in
Figure 4 (where transitions to an absorbing “Dead”
state have been omitted) may be considered. In
applications of such a model, an interesting functional
is often the expected number of occurrences of the
event over the time interval [0, t]; see [24] and
Repeated events.

Interaction Between Life History Events

This Markov model, illustrated in Figure 5, describes
the joint behavior of two life events A and B; if
α0B = αA,AB but α0A �= αB,AB , A is called locally
dependent on B but B is not locally dependent on
A. The temporal order of events allows for this
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0
No events

1
1 event

2
2 events

a01 (t) a12 (t) a23 (t)
…

Figure 4 A model for repeated events

0

A

B

AB

a0A (t)

a0B (t)

aA,AB(t)

aB,AB(t)

Figure 5 Interaction between life history events

asymmetric concept of dependence, which yields
more information for drawing causal inference (see
Causal Direction, Determination; Causation) than
the standard symmetric association concepts from
cross-sectional studies. Similar duration dependence
as in the illness–death process might be added. A
model of this type was discussed by Aalen et al. [6]
for a study of interaction between menopause and a
certain chronic skin disease; see also [18, 26].

Bone Marrow Transplantation

A model combining most of the above features has
been studied in detail (e.g. [56, 58, 60]) as describing
some of the possible states of a leukemia patient fol-
lowing bone marrow transplantation; see Figure 6.

Patients have been given various kinds of therapy
to temporarily keep the disease down, they are said
to be in remission. In our context these patients are
followed since bone marrow transplantation (t = 0),
initially considered in state 0. Two different types of
complications are considered: acute graft-versus-host

R

D

0C A AC

Figure 6 A model for events following bone marrow
transplantation: Acute and chronic graft-versus-host dis-
ease, relapse and death

disease (A), chronic graft-versus-host disease (C),
and a special state AC is defined for those patients
acquiring both A and C. Patients are followed until
relapse of the leukemia (R) or death (D) while still in
remission. Relapsed patients are not followed further
in this context. If all transition rates depend only on
time t since transplantation, we have again a Markov
process, but various kinds of duration dependence
(semi-Markov process models) may also be relevant.

Counting Process Representation,
Likelihood

Assume that multistate processes Xi(t), such as
described in the section “Multistate Models”, are
observed over intervals [0, τi] for individuals i =
1, . . . , n. Assume, first that τi is a fixed (i.e. non-
random) time of termination of observation for indi-
vidual i. Random right-censoring (see the section
“Survival Data”) and delayed entry are treated below.
Since Xi(t) is constant between transitions, it is
equivalent to record Xi(0) and the counting processes

Ni
hj (t) = # (direct transitions h → j in [0, t] for i),

(11)

described by the times T ik
hj of these transitions, where

0 < T i1
hj < · · · < T

iNi
hj

(τi )

hj ≤ τi (12)

(see Counting Process Methods in Survival Ana-
lysis).
Let Nhj (t) = ∑n

i=1 Ni
hj (t). It will turn out to be

useful to also introduce Y i
h(t) = I {Xi(t−) = h} and

Yh(t)=# (individuals “at risk” in state h at time t−)

=
n∑

i=1

Y i
h(t).

Note that, for t > τi , Ni
hj (t) = Ni

hj (τi), and Y i
h(t) =

0; these can thus be considered to be defined on
(0, ∞).
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For individual i, denote the initial distribution
(πi

h(0)), the density of time-fixed covariates f (Zi),
and the transition intensities αi

hj (t), then the likeli-
hood is (see [10, Section III.2])

n∏

i=1

f (Zi)πXi(0)

∏

h�=j

Ni
hj

(τi )∏

k=1

αi
hj (T

ik
hj )

× exp

(
−

∫ τi

0
αi

hj (t)Y
i
h(t) dt

)
. (13)

It is very common to condition on Zi and on the
initial values Xi(0) (the distribution of which may
often be degenerate anyway), and consequently omit
the factors f (Zi)πXi(0) from the likelihood. We shall
do so without further comment in the sequel.

Recall from above that the notation αi
hj (t) repre-

sents possible dependence of the transition intensity
on the whole history X i

t of the process. Thus, αi
hj (t)

may well contain covariates and other random ele-
ments, as already exemplified.

Two patterns of incomplete observations are par-
ticularly easily tractable, because they lead to only
minor modification of this likelihood: Delayed entry
where individual i enters at some time Vi , and right-
censoring where nothing is known about i after some
time Ui . Both Vi and Ui may be random although
either only dependent on the previous history of the
process or independent of the process (see e.g. [10,
Chapter 3], for precise specification of this and further
discussion). The reason for the particular tractability
of these mechanisms is that the “at risk” indicator
Y i

h(t) = I {Xi(t−) = h} in the likelihood just needs
to be amended to

Y i
h(t) = I {Xi(t−) = h, Vi < t ≤ Ui}. (14)

(see Counting Process Methods in Survival Ana-
lysis).

Statistical Model Specification

As indicated in the introduction, the first purpose
of event history analysis is to gain insight into the
dynamics of the processes by quantifying transition
intensities and perhaps assessing their dependence
on covariates, possibly using various stratifications.
Sometimes, additional functionals are useful, particu-
larly various types of transition probabilities obtained

by integrating certain functions of the transition inten-
sities. A final purpose may be prediction, both as
illustration of the dynamics and for concrete practical
purposes.

Markov Processes

The most important class of models is the (continuous
time) Markov process X(t) on the finite state space
S = {1, . . . , p}, where the dependence of αi

hj (t) on
the history Xt , introduced at the beginning of the
section “Multistate Models”, is only via the current
state of X(t) (and possibly via time-fixed covariates).
Statistical models are usually obtained by specifying
the class of transition intensities (αi

hj (t)) for each
individual i.

Parametric Models for Transition Intensities.
The simplest class of models is obtained by keeping
the transition rates constant: αi

hj (t) = αi
hj . Piecewise

constant intensities

αi
hj (t) = α

i(l)
hj , t

hj

l−1 < t ≤ t
hj

l , all t0 = 0, (15)

form the next step up and this choice is of widespread
use, particularly in large studies in econometrics,
epidemiology, sociology and demography [10,
Section VI.1; 21, 43, 62].

Transition probabilities for the constant and piece-
wise constant Markov process models are explicit
functions of the transition intensities (e.g. [20]),
allowing direct “plug-in” maximum likelihood esti-
mation, as well as calculation of standard error esti-
mates via the delta method.

Although the piecewise constant model is often
sufficient to describe the dependence of intensities on
time, other possibilities exist. Certain mathematical
functions of time may generate the model, such as the
Gompertz–Makeham model for mortality (see Aging
Models)

α(t) = α + βγ t (16)

but except for mortality studies in actuarial and
some demographic contexts, such parametric mod-
els are used rather little. One reason for this may be
the powerful development of methodology for “non-
parametric” statistical inference, where αhj (t) is left
unspecified (see Semiparametric Regression).

Freely Varying (“Nonparametric”) Transition
Intensities. Assume first that the transition inten-
sities are the same for all individuals but that they
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are allowed to vary freely with time: αi
hj (t) = αhj (t).

Statistical inference is then conveniently phrased in
terms of the counting process approach pioneered by
Aalen [1, 2]; see Andersen et al. [10] for a detailed
exposition. Estimators (which may be given a non-
parametric maximum likelihood interpretation) of
the integrated intensities

Ahj (t) =
∫ t

0
αhj (u) du (17)

are obtained as the Nelson–Aalen estimators (see
Nelson–Aalen Estimator).

An elaborate mathematical theory based on
stochastic integrals and martingales is available
to study exact and asymptotic properties of these
estimators (see Counting Process Methods in
Survival Analysis).

When estimates are desired of the transition
intensities αhj (t) themselves rather than their
integrals, smoothing techniques are necessary (e.g.
[10, Section IV.2]) (see Smoothing Hazard Rates).

An important feature of the nonparametric
approach is its elegant generalization (due to
Aalen and Johansen [7]) to estimating transition
probabilities. The basic tool is the (matrix) product-
integral (see Product-integration).

Define αhh(t) = −∑
j �=h αhj (t) and the intensity

matrix function A(t) = ((αhj (t))); then the matrix
P(s, t) = ((Phj (s, t))) of transition probabilities

Phj (s, t) = Prob(Xi(t) = j |Xi(s) = h) (18)

is given by

P(s, t) = Πt
s (I + A( du)). (19)

The Aalen–Johansen estimator of P(s, t) is obtained
by plugging the matrix of Nelson–Aalen estimators
((Âhj (t))) into this formula:

P̂ (s, t) = Πt
s (I + Â( du)). (20)

(see Aalen–Johansen Estimator).
For the simple two-state model for survival data,

P̂00(0, t) reduces to the classical Kaplan–Meier [49]
estimator Ŝ(t) = ∏

Ti≤t (1 − dN01(Ti)/Y0(Ti)) of the
survival function S(t).

As documented in detail by Anderson et al. [10,
Section IV.4], there is a well-developed theory, again
based on stochastic integrals and martingales, about

the asymptotic properties of the Aalen–Johansen esti-
mator.

Markov Regression Models. For Markov models
with several states, there will often be too little empir-
ical basis for estimating freely varying transition
intensities between all states for all subgroups, so that
more parsimonious regression models are required.
The most frequently used regression models in event
history analysis have a multiplicative structure with a
baseline h → j transition intensity αhj0(t), assumed
common for all individuals. For an individual, i, with
time-fixed covariates Zi = (Zim), the transition inten-
sity is then modeled as

αi
hj (t) = αhj0(t)exp

(
β ′

hjZi

)
, (21)

where the effect of a covariate Zim is described by
factors of proportionality exp(βhjm). In (21), the base-
line hazard may be completely unspecified as in the
Cox [27] proportional hazards model for survival
data (see Cox Regression Model), or it may be
assumed to be piecewise constant leading to Pois-
son regression models. In both cases, inference may
be based on the likelihood (13), which for the Cox
model leads to the so-called Cox’s partial likelihood
[10, Section VII.2; 28]. The choice between Cox and
Poisson models is frequently a matter of convenience,
though the latter may be advantageous in large stud-
ies where a sufficiency reduction of data into tables of
event counts and person-years within groups of (cat-
egorical) covariates is feasible (e.g. [21, Chapter 31]).
In contrast, application of the Cox model requires one
data record per individual for each transition.

In (21), the notation suggests that separate base-
line hazards and regression coefficients are assumed
for each possible transition. If that is the case, then
the parameters may be estimated by fitting separate
Cox or Poisson models for each transition. How-
ever, more parsimonious models may be obtained by
assuming some baseline transition intensities propor-
tional (e.g. [56, 58]) or by assuming some covariates
to have the same effect on several transitions (e.g.
[10, p. 494]). Also, models in which the proportional
hazards assumption is relaxed may be considered. In
the Poisson case, this is simply an interaction between
time and the covariate giving rise to nonproportion-
ality whereas, for the Cox model, the less restrictive
model is known as the stratified Cox model.

Andersen and Keiding [14] described how such
flexible Cox models may be formulated in a way
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that shows how standard computer software may be
applied. In a similar way, Poisson regression models
may be analyzed using standard generalized linear
models software (e.g. [68, 72]).

Another regression model for survival data that
readily extends to multistate models is Aalen’s [3, 4]
nonparametric additive model:

αhji(t) = αhj0(t) + β
′
hj (t)Zi (22)

(see also [10, Section VII.4]; Aalen’s additive
regression model). In this model, both the
baseline transition intensities αhj0(t) and the
regression functions βhjm(t) are left unspecified and
nonparametric estimates may be obtained using a
generalized least squares procedure. Aalen et al. [5]
presented a review of this model and its use in
multistate models.

“Survival synthesis”, that is, combination of the
regression estimates for the transition intensities into
transition or state probability estimates, may be
performed using the product-integral as described by
Andersen et al. ([10, Section VII.2.3]; see also [19]).
However, except for the simple case of survival data
no standard software exists for these computations.

Beyond Markov Processes

The most important deviations from the Markov
property in practice are various kinds of duration
dependence, where transition intensities depend on
other time origins than t = 0, typically the time
at entry to the present state. There are two main
approaches to handling these.

As long as transition intensities depend only on
one time origin each (e.g. all intensities depend only
on duration in the present state), a model for the
multistate process may be obtained by combining
independent submodels for each transition intensity.
These may, in turn, be modeled as constant or piece-
wise constant or by non- or semiparametric models,
and as long as there is a unidirectional flow in the
model, transition probabilities are still straightforward
explicit functionals that may be estimated by plug-
ging in the intensity estimates. Variance calculations
may, however, become less direct.

More elaborate models will include several time
origins (such as both age, disease duration, calendar
time), often in piecewise constant intensity (Poisson)
models or semiparametric regression models such as
the Cox model.

In the Poisson models, the various time variables
all enter the models as explanatory factors in a
symmetrical way (and also symmetrical with respect
to the other covariates of the model). However, in
Cox models, one of the time variables must be chosen
as the “baseline” time variable while the others
may be included as time-dependent covariates. The
choice of baseline time variable may be governed by
several considerations. First, the effect of the baseline
time variable is given by the unspecified baseline
hazard and, therefore, no regression coefficients are
estimated for this variable. Thus, a time variable
whose effect is of particular interest may not be the
obvious choice as the baseline time variable. On the
other hand, if a time variable is suspected to have
an irregular effect that may not be easy to model
parametrically via a time-dependent covariate, then
this time variable may conveniently be chosen as the
baseline time variable (e.g. [21, Chapter 31]).

Hypothetical Calculations in Multistate Models

As mentioned earlier, there is often considerable
interest in studying the consequences of the esti-
mated transition intensities by calculating summary
measures such as transition probabilities. When a
full model has been estimated, this can be done
not only for the model observed “in this world”.
Rather, the consequences of an assumed (or fitted)
multistate model may be usefully further illustrated
by calculating transition probabilities in hypothetical
models obtained by changing some of the param-
eters. An elaborate example of this was given by
Keiding et al. [56] for the bone marrow transplan-
tation context; see also [60]. Similar calculations
have in fact been performed in the competing risks
model ever since the first discussion by Bernoulli [17]
of the effect on population mortality of removing
smallpox through vaccination. The interpretational
justification of such calculations was discussed by
Gail [34], Prentice et al. [69], Kalbfleisch and Pren-
tice [48, Chapter 7] and Andersen et al. [9].

Partial Model Specification

We have so far assumed that the multistate model
was completely specified through statistical modeling
of all transition intensities and a specific probability
mechanism for the combination of these into tran-
sition probabilities. In a series of papers, [25, 65,
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66, 67], Pepe and her colleagues have developed
estimates of certain functionals in multistate mod-
els without assuming a full probability structure. One
example is the prevalence of a transient condition
indicated by state c defined as

P0c(0, t)
∑

j∈T
P0j (0, t)

,

where T is the set of transient states and 0 is a fixed
“initial” state. The idea is to estimate numerator and
denominator separately by simple linear combina-
tions of Kaplan–Meier estimates. Easily applicable
variance estimates are then available, which in one
recent application [59], showed that the precision of
the Pepe approach was close to the more elaborate
(and restrictive) complete Markov model.

Datta and Satten [29], Satten and Datta [70], and
Glidden [37] studied the product-integral of the Nel-
son–Aalen estimator and showed that, also for non-
Markovian processes, this combined with the initial
distribution πh(0) provides consistent and asymptot-
ically normal estimators for the state probabilities
πh(t) (see the section, “Multistate Models”).

Andersen et al. [15] showed how regression
models for transition probabilities Phj (s, t) or state
probabilities πh(t) may be obtained directly in
multistate Markov models using jackknife pseudo-
observations. In fact, their approach may be extended
to state probabilities in non-Markovian models using
the results of Glidden [37].

Another example of partial model specification
occurs when the model contains time-dependent
covariates that are not purely endogenous. In fact,
for time-fixed covariates, we just (see the section
“Multistate Models”) conditioned on their observed
values without specifying their distribution f (Zi), but
for time-dependent covariates, such a conditioning
is more tricky. Formally, the likelihood will contain
factors for the stochastic development of Zi(t), given
the history Ft− = Xt− ∨ Zt− and the likelihood (2)
is not the full likelihood but only a partial likelihood
for the parameters for the transition intensities αi

hj (t).
This means that inference for the transition intensities
may be based on this partial likelihood, whereas the
transition probabilities will typically depend also on
the parameters in the model for Zi(t).

Thus, if the model contains time-dependent covari-
ates that are not purely endogenous, then transition

probabilities cannot be estimated using only a partial
model specification. A joint model for the multi-
state process Xi(t) and the time-dependent covariates
Zi(t) is needed. When Zi(t) only takes a finite num-
ber of values, this joint model could, again, be a
multistate model where Zi(t) is now endogenous (e.g.
[8, 13]). Examples of more general joint models were
presented by Wulfsohn & Tsiatis [73] and Henderson
et al. [40] (see Joint Modeling of Longitudinal and
Event Time Data).

Kalbfleisch and Prentice [48, Chapter 9] studied
intensities obtained from conditioning on a smaller
history than that generated by the process itself,
particularly within the repeated events framework.

Observational Patterns

As emphasized in the introduction, event history data
are rarely observed completely. Some patterns of
incomplete observation are more easily handled than
others, and this final section aims at introducing some
of the more important classes. As mentioned above
(see the section “Counting Processes Representation,
Likelihood”), independent delayed entry and right
censoring only modify the likelihood slightly and the
statistical methods then all go through.

Interval Censoring

An important class of incomplete observational pat-
terns consists in the times of some (but often not all)
transitions not being known exactly but only up to
an interval, for example, between visits to a clinic
or between censuses. (The number of transitions is
usually assumed to be known precisely.) A classical
approach in demography [41] is to approximate the
“exposure”

Si
h =

∫ Ui∧τi

Vi

Y i
h(t) dt ; (23)

another to impute values in the observation interval
for the time at risk. Systematic studies of nonpara-
metric maximum likelihood estimation under interval
censoring of the healthy → diseased transition in
the unidirectional illness–death model are by Fryd-
man [32, 33], Joly et al. [46], and Gaüzère [35]. Kay
[50] and Andersen et al. [12] exemplified interval-
censored observation in the reversible illness–death
model, using piecewise constant intensity models. A
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particular example is panel data; see for example,
[36] and the references therein. Interval censoring in
multistate models was discussed by Commenges [23],
(see Interval Censoring).

Conditioning in Multistate Models

Many observational patterns in event history analysis
may be described by conditional distributions in sim-
pler models, which often describe “direct” observa-
tions that are practically unobtainable. A prime exam-
ple is left truncation; another, right truncation with
widespread use in studies of AIDS patients whose
development is often observed conditional on having
contracted the disease before the study entry. For gen-
eral discussions, see [47, 54, 39]. A more elaborate
application of such retrospective observational plans
obtained by conditioning in an underlying “prospec-
tive” Markov process model was documented by
Aalen et al. [6] for the four-state interaction of life
history events example described above (Figure 6).
These authors relied heavily on the concise but
important general framework of Hoem [42]. We shall
here briefly outline how this methodology works for
a simple example of retrospective incidence estima-
tion, obtained from the Markov illness–death model
without recovery illustrated in Figure 4. Assume that
we study a random sample of individuals alive at
same fixed age u; for those who had by then con-
tracted the disease the age at which this happened
is recorded. The observed multistate model has state
space K = {0, 1} and transition probabilities

Qhj (s, t) = Prob{X(t) = j | X(s) = h, X(u) �= 2}
(24)

for h, j ∈ {0, 1} and 0 < s < t < u. We get

Qhj (s, t) = Phj (s, t)
PjK(t, u)

PhK(t, u)
, (25)

where Phj (s, t) are the transition probabilities in the
original illness–death process and PhK = Ph0 + Ph1.
Hoem [42] used the term purged for the conditional
Markov process on K with transition probabilities
Qhj (s, t). The transition intensity of the purged
process is

λ01(t) = α01(t)
P11(t, u)

P1K(t, u)
(26)

and it may be proved that if the mortality of the dis-
eased is never smaller than that of the healthy, that

is, α02(t) ≤ α12(t) for all t ≤ u, then λ01(t) ≤ α01(t),
with equality if and only if α02(t) ≡ α12(t). This
documents the intuitively obvious result, that the ret-
rospective study will underestimate the disease inci-
dence because of survivor selection. Andersen and
Green [11] used such methodology to study robust-
ness of diabetes incidence estimates in a situation
where diabetics were only observed conditionally on
not emigrating before a certain age.

The Prevalent Cohort Study. An important sam-
pling frame for the illness–death model without
recovery is the prevalent cohort study in which a
cross-sectional sample of diseased is taken at a fixed
calendar time; see Biased Sampling of Cohorts. Kei-
ding [52], (cf. Lund [63]), discussed the conditions
for correct inference on mortality α12(t) based on
follow-up of the diseased, studied under left trun-
cation, and compared to inference based on the
length-biased durations, which include the retrospec-
tive time from disease onset, as well as to the forward
recurrence time from sampling to death, assuming
stationarity.

Retrospective estimation of incidence based on
the disease onset information of the survivors and
independent lethality information was exemplified by
Keiding et al. [55] (cf. Ogata et al. [64]).

Some Other Partial Information Designs

Sometimes interval-censoring is extreme – in a cross-
sectional study, it is for all individuals where it is only
known whether or not an event has happened at age
of sampling. Such current-status data were discussed
in detail by Diamond & McDonald [30], Keiding
[51] and Keiding et al. [53]; and there is an elaborate
recent mathematical–statistical development in this
area; see, for example, [38] and Lin et al. [61]
(see Interval Censoring). For time to pregnancy
data, Keiding et al. [57] proposed using the current
duration elapsed so far; under suitable stationarity
conditions, this distribution can be considered a
backward recurrence time; (see Time to Pregnancy).
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Event-related Potential

Event-related potentials (ERPs) are brain electrical
potentials used to study sensory and cognitive pro-
cessing [8]. In a typical ERP experiment, a sen-
sory stimulus is presented to a human subject or
experimental animal, and the brain electrical activ-
ity following the stimulus is recorded by electrodes
on the scalp or implanted in the skull or brain.
Commonly used stimuli include tones presented to
one or both ears, and symbols presented to a spec-
ified part of the visual field. ERPs allow millisec-
ond time resolution of brain electrical activity, so
they can be used to study the fast time course
of sensory and cognitive processing. Brain imaging
techniques, such as functional magnetic resonance
imaging (fMRI), yield much better spatial resolution,
but they have poor time resolution measured in sec-
onds or minutes.

Vaughan [9] proposed the term “event-related
potential” to include potentials related to either
cognitive or sensory events. The more specific term
“evoked potential” refers to responses directly related
to sensory processing of stimuli. Data containing
both evoked potentials and cognitive ERPs are
shown in Figure 1. These data were collected in
an auditory oddball experimental design. In this
design, the subject is presented with a series of
stimuli, each of which is one of two different tones.
The two tones are presented in a random sequence,
but one tone (“standard”) occurs with probability
0.8, while the other (“rare target”) occurs with
probability 0.2. The subject is instructed to count
the number of occurrences of the rare target tone.
The recorded time series show a large negative
trough near 100 milliseconds (“N100”), which occurs
equally in response to either the standard or the rare
target tone. In contrast, the positive wave occurring
approximately 300 milliseconds after the stimulus
(“P300”) has a larger amplitude in response to the
rare target tone, which is more salient to the subject’s
task. Based on results such as these, investigators
have concluded that the N100 is an evoked potential
reflecting sensory processing of the stimulus, while
the P300 is an ERP related to cognitive processing.

The characteristic peaks and troughs that appear
in plots such as Figure 1 are called “components”.
Many components occurring within the first 100
milliseconds after the stimulus can be attributed to
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Figure 1 Human auditory event-related potentials. The
response is plotted against time from stimulus presentation.
Each time series is the average of ERPs acquired from
10 subjects, each of which is the average of responses to
many stimulus presentations. The peak between 300 ms
and 400 ms has much greater amplitude in response to the
target stimulus, which indicates that it is related to cognitive
processing. The large trough near 100 ms is an evoked
potential reflecting sensory processing

activity in localized anatomic structures along known
sensory pathways [2]. Later components appear to
arise from more dispersed cortical sources [2].

Statistical analysis of ERPs is challenging, since
typical ERP data sets consist of a large number of
time series, which vary among individuals, record-
ing channels, and explanatory variables such as
stimulus type, drug condition, and disease state.
Investigators commonly wish to decompose these
many time series into meaningful component wave-
forms, estimate the effect of the explanatory variables
on the amplitude and latency (time since stimu-
lus presentation) of each component, and estimate
the locations of the brain sources of the compo-
nents.

The simplest and most commonly used method for
analyzing ERP data is to measure the amplitudes and
latencies of various peaks and troughs in the recorded
time series, and then apply analysis of variance and
other traditional statistical methods to these derived
measures. This approach is not always satisfactory,
since two or more brain processes may be simultane-
ously active, resulting in superposition of components
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in the recorded time series. Furthermore, identifica-
tion of relevant peaks can be highly subjective when
noisy recordings are analyzed, and analysis of peaks
does not provide estimates of the component wave-
forms themselves.

Donchin [3] proposed analyzing ERPs using
principal component analysis (PCA) by treating
each time point as a separate “variable” and each
time series from a particular individual, combination
of explanatory variables, and recording channel as
a multivariate “observation”. Investigators typically
apply varimax rotation, interpret the factor loadings
(rotated eigenvectors) as ERP components, and use
analysis of variance to test for effects of explanatory
variables on the factor scores. Several authors
have criticized this use of PCA. The factor scores
are necessarily uncorrelated, which can lead to
misleading inference, and the choice of rotation
sometimes seems arbitrary.

Implicit in the use of PCA is a bilinear statistical
model in which the expected responses are repres-
ented by unknown linear combinations of unknown
component time series. Möcks [4] noted that while
bilinear models are not identifiable due to rotation,
multilinear models are identifiable up to scaling, and
he proposed multilinear models for ERPs.

Brillinger [1] and several other statisticians have
suggested analyzing ERPs by modeling the Fourier
coefficients of the data. This approach is particularly
useful when the explanatory variables are assumed to
change the amplitude and latency of some underlying
common response, as in the following time-domain
model:

Yjt = βjγ (t + τj ) + εjt ,

j = 1, . . . , m; t = 1, . . . , n, (1)

where Yjt is the recorded potential at time t under
the j th combination of explanatory variables, βj

is the amplitude, τj is the latency, and γ (t) is
an underlying mean function, with appropriate con-
straints to make the model identifiable. The noise
vector (εj1, . . . , εjn) is assumed to be generated by
a stationary, mixing random process. This simple
model assumes a single component and applies to
data from a single recording channel and a single
subject, but more general frequency domain models
have been proposed.

Applying the discrete Fourier transform to (1)
yields an approximate frequency domain model in

which the latency effects τj appear as phase shifts.
When n is large, the errors in the frequency domain
model are approximately independent and normally
distributed with variances proportional to the spectral
power of the noise process. This representation leads
to inference based on an approximate multivariate
normal likelihood.

The frequency domain model can be generalized
to more than one ERP component (assuming that con-
straints are introduced to ensure identifiability), but it
will be less useful when each component is localized
in time, since such components will not be parsimoni-
ously represented by their Fourier coefficients. If the
Fourier transform is replaced by the wavelet trans-
form (or one of the many related transforms), then
localization in both time and frequency is achieved,
but some of the advantages of the frequency domain
approach are lost.

Estimation of the location of the brain sources
of ERPs is of great scientific interest, but poses a
variety of difficult problems in biophysical modeling.
A statistical approach was proposed by Raz et al. [7],
who used a relatively simple biophysical model of the
head as part of a frequency domain method for source
localization.

When a time series of brain electrical potentials
is acquired following an experimentally controlled
stimulus, the response to the stimulus is small and is
usually obscured by unrelated brain activity. Investi-
gators almost always average the responses to many
stimulus presentations (“single trials”) to enhance the
signal-to-noise ratio and obtain an estimate of the
ERPs, which are the brain potentials that are time-
locked to the stimulus. The average recorded poten-
tial, however, may be a poor estimator of the expected
brain response (“signal”) if the brain responds differ-
ently to different stimulus presentations; that is, if
the signal is heterogeneous. Several statisticians have
considered the problem of estimating heterogeneous
signals and testing the null hypothesis of signal
homogeneity [5, 6].

ERP data continue to present challenges for
statisticians. Open problems include: constructing
statistical models that realistically account for the
variability among subjects, recording channels, levels
of explanatory variables, and single trials; further
advancing a statistical perspective on the difficult
problem of source localization; and developing stat-
istical methods for relating ERPs to brain images.
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Evidence-based Medicine

Evidence-based medicine has been defined by its pro-
ponents as the conscientious, explicit, and judicious
use of current best evidence in making decisions
about the care of individual patients [10] (see Deci-
sion Analysis in Diagnosis and Treatment Choice).
In this definition, the practice of evidence-based
medicine means integrating individual clinical exper-
tise with a critical appraisal of the best available
external clinical evidence from systematic research.
By individual clinical expertise is meant the profi-
ciency and judgment that individual clinicians acquire
through clinical experience and clinical practice.
Increased expertise is reflected in many ways, but
especially in more effective and efficient diagnosis
and in the more thoughtful identification and com-
passionate use of individual patients’ predicaments,
rights, and preferences in making clinical decisions
about their care. By best available external clini-
cal evidence is meant clinically relevant research,
often from the basic sciences of medicine, but espe-
cially from patient-centered clinical research into the
accuracy and precision of diagnostic tests (including
the clinical examination), the power of prognostic
factors, and the efficacy and safety of therapeutic,
rehabilitative, and preventive regimens [4].

The practice of evidence-based medicine is a
process of lifelong, self-directed learning in which
caring for one’s own patients creates the need
for clinically important information about diagnosis,
prognosis, therapy, and other clinical and health care
issues, and in which its practitioners:

1. Convert these information needs into answerable
questions.

2. Track down, with maximum efficiency, the best
evidence with which to answer them (and making
increasing use of secondary sources of the best
evidence). Examples of such secondary sources
are the Cochrane Library and journals of critically
appraised clinical articles such as ACP Journal
Club and Evidence-Based Medicine.

3. Critically appraise that evidence for its validity
(closeness to the truth) and usefulness (clinical
applicability).

4. Integrate the appraisal with clinical expertise and
apply the results in clinical practice.

5. Evaluate one’s own performance.

Evidence-based medicine is one of several dis-
ciplines that has evolved from clinical epidemi-
ology and critical appraisal. Parallel developments,
still with the individual patient as the focus of
attention, are occurring in other clinical disciplines
(evidence-based surgery, evidence-based nursing,
evidence-based dentistry, etc.). Other evidence-based
disciplines consider the community as the focus of
attention rather than the individual patient (evidence-
based public health), or add an explicit economic
element and seek to purchase or provide that mix of
health care that will maximize some group or public
benefit (evidence-based purchasing).

Recent audits in the front lines of clinical care
have documented that some inpatient clinical teams
in general medicine [3], psychiatry [5], and surgery
(P. McCulloch, personal communication) have pro-
vided evidence-based care to the vast majority of their
patients. Such studies show that busy clinicians who
devote their scarce reading time to selective, efficient,
patient-driven searching, appraisal, and incorporation
of the best available evidence can practice evidence-
based medicine.

Common misconceptions about evidence-based
medicine include the concern that it might degenerate
into “cookbook” medicine. However, because it
requires a bottom-up approach that integrates the best
external evidence with individual clinical expertise
and patient choice, it cannot result in slavish, cook-
book approaches to individual patient care. External
clinical evidence can inform, but can never replace,
individual clinical expertise, and it is this expertise
that decides whether the external evidence applies to
the individual patient at all and, if so, how it should
be integrated into a clinical decision. Similarly, any
external guideline must be integrated with individ-
ual clinical expertise in deciding whether and how it
matches the patient’s clinical state, predicament, and
preferences, and thus whether it should be applied.
Clinicians who fear top-down cookbooks will find the
advocates of evidence-based medicine joining them at
the barricades.

Others fear that evidence-based medicine will be
hijacked by purchasers and managers to cut the costs
of health care. This would not only be a misuse of
evidence-based medicine but suggests a fundamental
misunderstanding of its financial consequences. Doc-
tors practicing evidence-based medicine will identify
and apply the most efficacious interventions to max-
imize the quality and quantity of life for individual
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patients; this may raise rather than lower the cost of
their care.

Finally, in terms of study designs, evidence-based
medicine is not restricted to randomized trials (see
Clinical Trials, Overview) and meta-analyses. It
involves tracking down the best external evidence
with which to answer our clinical questions. To
find out about the accuracy of a diagnostic test
(see Diagnostic Test Accuracy), its practitioners
seek likelihood ratios, sensitivities, and specifici-
ties derived from proper cross-sectional studies of
patients clinically suspected of harboring the rele-
vant disorder, not a randomized trial. For a question
about prognosis, they search for multivariate predic-
tion rules (see Multivariate Multiple Regression)
generated from proper follow-up studies (see Cohort
Study) of patients assembled at a uniform, early
point in the clinical course of their disease; some-
times the evidence will come from the basic sciences
such as genetics or immunology. It is when ask-
ing questions about therapy that the practitioners of
evidence-based medicine avoid the nonexperimental
approaches (see Observational Study), since these
routinely lead to false positive conclusions about
efficacy. Because the randomized trial, and espe-
cially the systematic review of several randomized
trials [2], is so much more likely to inform clini-
cians and so much less likely to mislead them, it
has become the gold standard for judging whether a
treatment does more good than harm. Clinically use-
ful measures of the effects of treatment are sought,
such as the number needed to treat to prevent one
additional event (the reciprocal of the absolute risk
reduction).

Despite its ancient origins, evidence-based
medicine remains a relatively young discipline whose
positive impacts [1] are just beginning to be validated,
and it will continue to evolve. This evolution will be
enhanced as several undergraduate, postgraduate, and
continuing medical education programs adopt and
adapt it to their students’ needs.

For more reading, users can refer to any of the
growing number of texts on this subject [6, 8, 9] or
examine it on the Internet [7].
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Exact Inference for
Categorical Data

Modern statistical methods rely heavily on nonpara-
metric techniques for comparing two or more
populations. These techniques generate P values
without making any distributional assumptions about
the populations being compared. They rely, however,
on asymptotic theory that is valid only if the sample
sizes are reasonably large and well balanced across
the populations (see Large-sample Theory). For
small, sparse, skewed, or heavily tied data, the
asymptotic theory may not be valid; see [5] for some
empirical results, and [42] for a more theoretical
discussion.

One way to make valid statistical inferences in
the presence of small, sparse, or unbalanced data is
to compute exact P values and confidence intervals,
based on the permutational distribution of the test
statistic (see Randomization Tests). This approach
was first proposed by R. A. Fisher [18] and has been
used extensively for the single 2 × 2 contingency
table (see Fisher’s Exact Test). Previously, exact
tests were rarely attempted for tables of higher dimen-
sion than 2 × 2, primarily because of the formidable
computing problems involved in their execution.
In recent years, however, the easy availability of
immense quantities of computing power combined
with many new, fast, and efficient algorithms for
exact permutational inference have revolutionized
our thinking about what is computationally feasible.
Problems that would previously have taken several
hours or even days to solve now take only a few min-
utes. Exact inference is now a practical proposition
and has been incorporated into standard statistical
software packages.

In the present paper, we present a unified frame-
work for exact inference, anchored in the permutation
principle. We demonstrate that, for a very broad class
of nonparametric problems, such inference can be
accomplished by permuting the entries in a con-
tingency table subject to fixed margins. Exact and
Monte Carlo algorithms for solving these permu-
tation problems are referenced. We then apply these
algorithms to several data sets. Both exact and asymp-
totic P values are computed for these data so that
one may assess the accuracy of the asymptotic meth-
ods. Finally, we discuss the availability of software

and cite an internet resource for performing exact
permutational inference.

Exact Permutation Tests for r × c
Contingency Tables

For a broad class of statistical tests, the data can
be represented in the form of the r × c contingency
table x displayed in Table 1.

The entry in each cell of this r × c table is the
number of subjects falling in the corresponding row
and column classifications. The row and column clas-
sifications may be based on either nominal or ordered
variables (see Ordered Categorical Data; Measure-
ment Scale). Nominal variables take on values that
cannot be positioned in any natural order. An exam-
ple of a nominal variable is profession – Medicine,
Law, Business. In some statistical packages, nomi-
nal variables are also referred to as class variables,
or unordered variables. Ordered variables take on
values that can be ordered in a natural way. An
example of an ordered variable is Drug Dose – Low,
Medium, High. Ordered variables may of course
assume numerical values as well (for example, the
number of cigarettes smoked per day).

The Exact Permutation Distribution of x

The exact probability distribution of x depends on
the sampling scheme that was used to generate x.
When both the row and column classifications are cat-
egorical, Agresti [1] lists three sampling schemes that
could give rise to x; full multinomial sampling, prod-
uct multinomial sampling, and Poisson sampling.
Under all three schemes, the probability distribution
of x contains unknown parameters, πij , relating to
the individual cells of the r × c table (see Loglinear
Model). For instance, for full multinomial sampling,
πij denotes the probability of classification in row

Table 1 Layout for a generic r × c contingency table

Rows Col−1 Col−2 . . . Col−c Row−total

Row−1 x11 x12 . . . x1c m1

Row−2 x21 x22 . . . x2c m2...
...

... · · · ...
...

Row−r xr1 xr2 . . . xrc mr

Col−tot n1 n2 . . . nc N
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i and column j , whereas for product multinomial
sampling πij denotes the conditional probability of
falling in column j given that the subject belongs to
row i.

Consider the null hypothesis of no row by column
interaction. Since statistical inference is based on
the distribution of x under the null hypothesis of no
row by column interaction, the number of unknown
parameters is reduced (πij being replaced by πi.π.j

or π.j depending on the sampling scheme) but not
eliminated. Asymptotic inference relies on estimating
these unknown parameters by maximum likelihood
and related methods. The key to exact permutational
inference is getting rid of all nuisance parameters
from the probability distribution of x. This is accom-
plished by restricting the sample space to the set of all
r × c contingency tables that have the same marginal
sums as the observed table x. Specifically, define the
reference set

Γ =



y : y is r × c;
c∑

j=1

yij

= mi ;
r∑

i=1

yij = nj ; for all i, j

}
. (1)

Then one can show that, under the null hypothesis
of no row by column interaction, the probability
of observing x conditional on x ∈ Γ is of the
hypergeometric form

Pr(x | x ∈ Γ ) ≡ P(x) =
r∏

i=1

c∏

j=1

nj !mi!

N !xij !
. (2)

Equation (2), which is free of all unknown parame-
ters, holds for categorical data whether the sampling
scheme used to generate x is full multinomial, prod-
uct multinomial, or Poisson. (See, for example, [2].)

Since (2) contains no unknown parameters, exact
inference is possible. The nuisance parameters were,
however, eliminated by conditioning on the margins
of the observed contingency table. Now some of these
margins were not fixed when the data were gathered.
Thus, it is reasonable to question the appropriateness
of fixing them for purposes of inference. The justifi-
cation for conditioning at inference time on margins
that were not naturally fixed at data sampling time
has a long history. R.A. Fisher [18] first proposed

this idea for exact inference on a single 2 × 2 con-
tingency table. At various times since then prominent
statisticians have commented on this approach. The
principles most cited for conditioning are the suf-
ficiency principle, the ancillarity principle, and the
randomization principle (see Conditionality Princi-
ple). An informal intuitive explanation of these three
principles is provided below.

Sufficiency Principle. The margins of the contin-
gency table are sufficient statistics for unknown nui-
sance parameters. Thus, conditioning on them affords
a convenient way to eliminate nuisance parameters
from the likelihood function. For example, if the
data are generated by product multinomial sampling,
the row margins, mi , would ordinarily be considered
fixed but the column margins, nj , would be consid-
ered random variables. The null hypothesis of interest
states that πij = π.j for all i. Thus, the probability
of x depends on c unknown nuisance parameters,
(π.1, π.2, . . . π.c) even under the null hypothesis. By
the sufficiency principle, these nuisance parameters
are eliminated if we condition on (n1, n2, . . . nc), their
sufficient statistics. It follows that by restricting our
attention to r × c tables in Γ , we are implicitly con-
ditioning on (n1, n2, . . . nc), since the other set of
margins, (m1, m2, . . .mr), are fixed naturally by the
sampling scheme. Similar sufficiency arguments can
be made for full multinomial and Poisson sampling.

Ancillarity Principle. The principle underlying
hypothesis testing is to compare what was actually
observed with what could have been observed in
hypothetical repetitions of the original experiment,
under the null hypothesis. In these hypothetical
repetitions, it is a good idea to keep all experimental
conditions unrelated to the null hypothesis unchanged
as far as possible. The margins of the contingency
table are representative of nuisance parameters whose
values do not provide any information about the null
hypothesis of interest. In this sense, they are ancillary
statistics. Fixing them in hypothetical repetitions
is the nearest we can get to fixing the values of
the nuisance parameters themselves in hypothetical
repetitions, since the latter are unknown.

Randomization Principle. The case for condition-
ing is especially persuasive if the r rows of the
contingency tables represent r different treatments,
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with mi subjects being assigned to treatment i by
a randomization mechanism. Each subject provides
a multinomial response that falls into one of the
c columns. Thus, nj represents the total number
of responses of the j th type. Now, under the null
hypothesis, the r treatments are equally effective.
Therefore, the response that a patient provides is the
same, regardless of the treatment to which that patient
is randomized. Thus, the value of nj is predetermined
and may be regarded as fixed. The statistical signifi-
cance of the observed outcome is judged relative to
its permutational distribution in hypothetical repeti-
tions of the randomization rule for assigning patients
to treatments.

An excellent exposition of the conditional view-
point is available in [52]. For a theoretical justifi-
cation of the sufficiency and ancillarity principles,
refer to [16, 43]. For a detailed exposition of the ran-
domization principle, highlighting its applicability to
a broad range of problems, refer to [17]. Through-
out the present paper, we shall adopt the conditional
approach. It provides us with a unified way to perform
exact inference and thereby compute accurate P val-
ues and confidence intervals for r × c contingency
tables (see Stratification), stratified 2 × 2 contin-
gency tables, stratified 2 × c contingency tables, and
logistic regression.

Exact P Values

Having assigned an exact probability P(y) to each
y ∈ Γ , the next step is to order each contingency
table in Γ by a test statistic or “discrepancy measure”
that quantifies the extent to which that table deviates
from the null hypothesis of no row by column
interaction. Let us denote the test statistic by a real
valued function D : Γ −−−→ R mapping r × c tables
from Γ onto the real line R. The functional form of
D for some important nonparametric tests is specified
in the next section.

The P value is defined as the sum of null
probabilities of all the tables in Γ , which are at least
as extreme as the observed table, x, with respect to
D. In particular, if x is the observed r × c table, the
exact P value is

p =
∑

D(y)≥D(x)

P (y) = Pr{D(y) ≥ D(x)}. (3)

Classical nonparametric methods rely on the large-
sample distribution of D to estimate p. For r × c

tables with large cell counts and the usual forms
for the function D, it is possible to show that D

converges in distribution to a chi-square distribution
with appropriate degrees of freedom. Thus, p is
usually estimated by p̃, the chi-square tail area to
the right of D(x). Modern algorithmic techniques
have made it possible to compute p directly instead
of relying on p̃, its asymptotic approximation. This
is achieved by powerful recursive algorithms that
are capable of generating the actual permutation
distribution of D instead of relying on its asymptotic
chi-square approximation. We shall see later that p

and p̃ can differ considerably for contingency tables
with small cell counts.

The main advantage of using p rather than p̃

is that it is guaranteed to bound the type 1 error
rate of the hypothesis testing procedure to any
desired level. Moreover, this guarantee is provided
unconditionally even though each P value, p, is
calculated conditionally by restricting attention to a
specific reference set Γ . To see this, let

S(Γ ) = Pr(p ≤ α|Γ ). (4)

That is, S(Γ ) is the conditional type 1 error rate
of a level-α hypothesis testing procedure in which
you repeatedly generate r × c tables from the same
reference set, Γ , under the null hypothesis, and reject
whenever p ≤ α. Under the null hypothesis, S(Γ ) ≤
α. Now the unconditional type 1 error rate, where Γ

may be different each time you execute the test, is

S =
∑

S(Γ ) Pr(Γ ), (5)

the sum being taken over all possible reference sets,
Γ . Notice that (5) is a weighted sum of terms of the
form S(Γ ), where each such term is less than or equal
to α, the weights, Pr(Γ ), are positive, and they sum
to 1. Thus,

S ≤ α.

That is, the guaranteed protection against the type
1 error of an exact conditional hypothesis test also
applies unconditionally. Note, however, that this
guarantee does not hold if you use p̃ rather than p

in the decision to reject the null hypothesis, since
Pr(p̃ ≤ 0.05|Γ ) ≤ α holds only asymptotically.

Choosing the Test Statistic

As stated previously, the reference set Γ is ordered
by the test statistic D. Here, we define D for three



4 Exact Inference for Categorical Data

important classes of problems; tests on unordered
r × c contingency tables, tests on singly ordered
r × c contingency tables and tests on doubly ordered
r × c contingency tables.

When both the row and column classifications of
the table are nominal the table is said to be unordered
and the Fisher, Pearson, and likelihood ratio test
statistics are the most appropriate. Tests based on
these three statistics are known as omnibus tests for
they are powerful against any general alternative to
the null hypothesis of no row by column interaction
(see Chi-square Tests).

Fisher’s exact test orders each table, y ∈ Γ , in
proportion to its hypergeometric probability, P(y),
given by (2). Fisher [18] originally proposed this test
for the single 2 × 2 contingency table. The idea was
extended to tables of higher dimension by Freeman
and Halton [19]. Thus, this test is also referred to
as the Freeman–Halton test. Asymptotically, under
the null hypothesis of no row by column interaction,
−2 log γP (y) has a chi-squared distribution with
(r − 1)(c − 1) degrees of freedom, where γ is a
normalizing constant [31].

The Pearson test orders the tables in Γ according
to their Pearson chi-squared statistics. Thus, for each
y ∈ Γ the test statistic is

D(y) =
r∑

i=1

c∑

j=1

(yij − minj/N)2

minj/N
. (6)

Asymptotically, under the null hypothesis of no row
by column interaction, the Pearson statistic has a chi-
squared distribution with (r − 1)(c − 1) degrees of
freedom.

The Likelihood Ratio test orders the tables in Γ

according to the likelihood ratio statistic. Specifically,
for each y ∈ Γ the test statistic is

D(y) = 2
r∑

i=1

c∑

j=1

yij log

(
yij

minj/N

)
. (7)

In many textbooks, this statistic is denoted by G2.
Asymptotically, under the null hypothesis of no
row by column interaction, D(y) has a chi-squared
distribution with (r − 1)(c − 1) degrees of freedom.

When there is a natural ordering of the columns
of the r × c table, but the row classifications are
based on nominal categories, appropriate tests are
the Kruskal–Wallis test [25] (see Nonparametric

Methods), and its generalization, the one-way anal-
ysis of variance (ANOVA) test [37]. For exam-
ple, suppose that the r rows represent r differ-
ent drug therapies, and the c columns represent c

distinct ordered responses (such as, no response, mild
response, moderate response, severe response, etc.).
One is interested in testing the null hypothesis that
the r drugs have the same multinomial response
rates. The Kruskal–Wallis and generalized one-way
ANOVA tests are more powerful than the Fisher,
Pearson, or likelihood Ratio tests for testing this
null hypothesis against ordered alternatives which
imply that some of these r drugs are more responsive
than others. These tests take advantage of the natural
ordering of the columns by assigning a rank or col-
umn score to all the observations in a column. The
test statistic is obtained as a quadratic function of an
r-dimensional vector whose components are formed
by summing the column scores of the observations in
each of the r rows and standardizing each sum. For
the Kruskal–Wallis test, the observations in a col-
umn are assigned their midrank and the special case,
r = 2, yields the Wilcoxon–Mann–Whitney rank-
sum test. For the generalized one-way ANOVA test,
any monotone scores may be assigned. By suitable
choice of these scores, one can construct a large num-
ber of tests, including the normal scores, exponential
scores (see Order Statistics), and logrank tests as
special cases. The test statistics for all these tests are
given in Chapter 18 of the StatXact User Manual
[48]. Asymptotically, they are all distributed as chi-
square, with (r − 1) degrees of freedom under the
null hypothesis of no row by column interaction.

When the r × c contingency table has a natu-
ral ordering along both its rows and its columns,
the Jonckheere–Terpstra test [24] and the linear-by-
linear association test [3] have more power than the
Kruskal–Wallis test or the various (r − 1) degree
of freedom generalized ANOVA tests. For exam-
ple, suppose the r rows represent r distinct drug
therapies at progressively increasing doses and the
c columns represent c ordered responses. Now one
would be interested in detecting alternatives to the
null hypothesis in which drugs administered at larger
doses are more responsive than drugs administered at
smaller doses. The Jonckheere–Terpstra and linear-
by-linear association test statistics cater explicitly to
such alternatives for they are better able to pick up
departures from the null hypothesis in which the
response distribution shifts progressively toward the
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right as we move down the rows of the contin-
gency table. The Jonckheere–Terpstra statistic is the
normalized sum of r(r − 1)/2 Wilcoxon rank-sum
statistics formed by taking all possible pairs of rows
from the r rows of the observed r × c contingency
table and computing a Wilcoxon rank-sum statistic
for each resulting 2 × c contingency table. The linear-
by-linear association statistic is obtained by standard-
izing

∑
i,j uivj yij , where the ui’s are arbitrary row

scores and the vj ’s are arbitrary column scores. The
row scores often represent progressively increasing
doses of a treatment, while the column scores often
represent progressively increasing levels of response
to treatment. If the ui’s and vj ’s represent the original
raw data, the linear-by-linear test is a test of signifi-
cance for Pearson’s correlation coefficient. However,
if the raw data are replaced by Wilcoxon midrank
scores, we have a test of Spearman’s rank correla-
tion coefficient. Refer to Chapter 22 of the StatXact
User Manual [48] for the precise functional forms
of the Jonckheere–Terpstra and the linear-by-linear
test statistics. Under the null hypothesis of no row by
column interaction these test statistics are normally
distributed. The special case, r = 2, yields the family
of two-sample linear rank tests. For these tests, row
scores are irrelevant but a large number of different
column scores, covering most of the important non-
parametric tests, are listed in Chapters 7, 17 and 18
in the StatXact User Manual [48]; see also Linear
Rank Tests in Survival Analysis; Nonparametric
Methods; Rank Correlation; Isotonic Inference.

Extension to Continuous Data

The methods described above extend naturally to
continuous data. In principle, such data can also be
represented as contingency tables but the columns
of these tables will sum to 1. Thus, these methods
provide a unified approach to handling nonparametric
data both for the categorical case and the more
traditional continuous case. For example, consider
the two-sample problem involving continuous data

displayed in Table 2. The two groups are “males” and
“females”. The continuous variable being compared
in the two groups is “monthly income”.

These data can be represented by the 2 × 8
contingency table, displayed as Table 3, which may
then be permuted in the usual way for exact inference.

The same idea extends to continuous K-sample
data with or without stratification, and with or without
censoring.

Stratified 2 × 2 Contingency Tables

A very important class of exact nonparametric tests
and confidence intervals is defined on data in the form
of s 2 × 2 contingency tables. The ith such table is
displayed in Table 4 below.

We may regard the two columns of each table
as arising from two independent binomial distribu-
tions. Specifically, let (xi1, xi2) represent the number
of successes in (ni1, ni2) Bernoulli trials, with respec-
tive success probabilities (πi1, πi2). The odds ratio
for the ith table is defined as

Ψi =
(

πi2

1 − πi2

)/(
πi1

1 − πi1

)
. (8)

Stratified 2 × 2 contingency tables arise commonly in
prospective studies with binary end points as well as
in retrospective case–control studies. Thus, although
we have specified that the two columns of the 2 × 2
table represent two independent binomial distribu-
tions, this is just a matter of notational convenience.
We could equivalently assume that the two rows
represent the disease status (present or absent) and
the two columns represent the exposure status (not
exposed or exposed) in the ith of s matched sets.

Table 2 Two-sample continuous data represented the tra-
ditional way

M M M M F F F F
2010 3100 2555 2095 1990 2122 1875 2550

Table 3 Two-sample continuous data represented as a 2 × 8 contingency table

Rows Col−1 Col−2 Col−3 Col−4 Col−5 Col−6 Col−7 Col−8 Row−total

Male 0 0 1 1 0 0 1 1 4
Female 1 1 0 0 1 1 0 0 4
Col−tot 1 1 1 1 1 1 1 1 8
Col−score 1875 1990 2010 2095 2122 2550 2555 3100
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Table 4 Layout for the ith of s 2 × 2 contingency tables

Rows Col−1 Col−2 Row−total

Row−1 xi1 xi2 mi1

Row−2 x ′
i1 x ′

i2 mi2

Col−tot ni1 ni2 Ni

We shall be interested in deriving an exact test for
the null hypothesis that

Ψ1 = Ψ2 = · · · = Ψs = Ψ. (9)

This is known as the homogeneity test. Next, under
the assumption of homogeneity, we shall be interested
in computing an exact confidence interval for the
common odds ratio, Ψ , and in testing that it equals 1.

Homogeneity Test

Let x denote the observed collection of s 2 ×
2 contingency tables, where the ith table in this
collection is displayed in Table 4, and define

t = x11 + x21 + · · · + xs1. (10)

Let Ω denote a reference set of collections of s 2 × 2
contingency tables whose margins are fixed at the
values that were actually observed:

Ω =
{

y: yi1 + yi2 = mi1; y ′
i1 + y ′

i2 = mi2

yi1 + y ′
i1 = ni1; yi2 + y ′

i2 = ni2.

}

(11)

Define the more restricted reference set

Ωt = {y ∈ Ω: y11 + y21 + · · · + ys1 = t}. (12)

Zelen [53] has shown that under the null hypothesis
of homogeneity (9)

Pr(x|x ∈ Ωt) =
∏s

i=1

∏2
j=1

(
nij

xij

)

∑
y∈Ωt

∏s
i=1

∏2
j=1

(
nij

yij

) . (13)

An exact test for the homogeneity of odds ratios can
thus be constructed by ordering all elements y ∈ Ωt

according to the test statistic

D(y) = − log Pr(y|y ∈ Ωt) (14)

and computing the exact P value

p =
∑

D(y)≥D(x)

Pr(y|y ∈ Ωt). (15)

This test is known as Zelen’s exact test. A statistic
proposed by Breslow and Day [12] is approximately
distributed as chi-square with (s − 1) degrees of
freedom under the null hypothesis (see Breslow–Day
Test).

Common Odds Ratio Inference

Exact inference about Ψ , the common odds ratio, is
based on the conditional distribution of

T = y11 + y21 + · · · + ys1 (16)

given y ∈ Ω . It is shown in [32] that

Pr(T = t |y ∈ Ω) = CtΨ
t

∑
u CuΨ u

, (17)

where

Ct =
∑

y∈Ωt

s∏

i=1

2∏

j=1

(
nij

yij

)
, (18)

and the denominator of (17) is simply the normalizing
constant obtained by summing over all possible
values of u in the range tmin ≤ u ≤ tmax.

To test the null hypothesis that Ψ = 1 and to com-
pute an exact confidence interval for this common
odds ratio, we need the coefficients Ct for all possible
values of t . Network algorithms for this and related
computations are described in [32]. Once these coeffi-
cients have been obtained, the conditional distribution
of t for any value of Ψ can be generated by (17) and
hypothesis tests and confidence intervals may thereby
be obtained as shown in the above references.

Asymptotic inference for Ψ is usually based on
the popular Mantel–Haenszel [28] method.

Extension to Stratified 2 × c Contingency Tables

In this section, we discuss inference on stratified 2 ×
c tables, where the ith of s such tables is displayed
as Table 5.

This collection of s 2 × c tables, denoted by x, can
accommodate two situations; two multinomial popu-
lations, and c binomial populations. For both cases,
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Table 5 Layout for the ith of s 2 × c contingency tables

Rows Col−1 Col−2 . . . Col−c Row−total

Row−1 xi1 xi2 . . . xic mi1

Row−2 x ′
i1 x ′

i2 . . . x ′
ic mi2

Col−tot ni1 ni2 . . . nic Ni

Col−score vi1 vi2 . . . vic

we assume that data are stratified into s indepen-
dent strata. Inference is conditional on ordering all
three-way collections of s 2 × c tables in the condi-
tional reference set

Λ =



y: yij + y ′
ij = nij , ∀ij ;

c∑

j=1

yij = mi1,
c∑

j=1

y ′
ij = mi2, ∀i




 (19)

according to some discrepancy measure D(y). We
shall be concerned in this section with the special case
where the c columns of each 2 × c contingency table
have a natural ordering. In this case, an appropriate
(unstandardized) discrepancy measure is the linear
rank test statistic

t (y) =
s∑

i=1

c∑

j=1

vij yij (20)

where the vij ’s are arbitrary column scores.

Two Multinomial Populations. The two rows of
stratum i represent two independent multinomial
populations. Each observation falls into one of c

ordinal response categories. Thus, xij is the number
of stratum-i observations, out of a total of mi1, falling
into ordered category j for population 1, and x ′

ij is
the number of stratum-i observations out of a total of
mi2 falling into ordered category j for population 2.
The Wilcoxon rank-sum test, the Normal scores test,
the Savage test, and the logrank test are examples
of tests that are applicable to such data. The vij

scores for these tests are defined in StatXact-3 [48,
Chapter 15].

Several Binomial Populations. The c columns of
stratum i represent c independent binomial popula-
tions with row 1 representing successes and row 2

representing failures. For population j in stratum i,
there are xij successes and x ′

ij failures in nij indepen-
dent Bernoulli trials. The Cochran–Armitage Trend
test and the Permutation test with arbitrary scores are
applicable to such data, and determine whether the
success rates of the c populations are the same, as
against the alternative that they follow an increas-
ing or decreasing trend (see Trend Test for Counts
and Proportions). The scores, vi1, vi2, . . . vic typi-
cally represent doses, or levels of exposure, affecting
the success rates of the c binomial populations. Often
one uses the equally spaced scores vij = j for all i.

We shall assume that there exists no three-factor
interaction between rows, columns, and strata, al-
though an analogue of Zelen’s test does exist for
assessing homogeneity in 2 × c tables. This is an
extension of the exact test of homogeneity for 2 × 2
tables that we will discuss further on. Given that
there is no three-factor interaction, we are inter-
ested in testing the null hypothesis that the row and
column classifications in each stratum are indepen-
dent. This is known as the hypothesis of conditional
independence. One can show that, for both the two
multinomial and the c binomial settings under the null
hypothesis of conditional independence, the probabil-
ity of observing y given y ∈ Λ is

Pr(y|y ∈ Λ) =

s∏

i=1

c∏

j=1

(
nij

yij

)

s∏

i=1

(
Ni

mi1

) . (21)

The exact one-sided P value for testing the null
hypothesis of conditional independence is therefore

p1 =
∑

t (y)≥t (x)

Pr(y|y ∈ Λ). (22)

The exact two-sided P value is defined by reflecting
the observed value of the test statistic an equal distant
away from its mean in the opposite tail; see StatXact
[48] for details.

Test for Interaction in 2 × c Tables

We wish to test whether the set of odds ratios (1)
describing association between a binomial response
and exposure, or (2) whether the set of odds ratios
describing association between an ordered multino-
mial response and a dichotomous covariate, vary
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across strata. This represents a generalization of
the Breslow–Day and Zelen tests for homogene-
ity already described for the stratified 2 × 2 setting.
These tests can be extended naturally regardless of
the underlying sampling mechanism. However, as
the derivation of these extension to 2 × c tables
differs for multinomial versus binomial sampling,
we describe the underlying formulation for binomial
data. A derivation for multinomial data is given in
StatXact [48].

As before, the data are in the form of s 2 ×
c contingency tables consisting of two rows, c

columns, and s strata. Let πjk be the “success”
probability associated with population j in stratum k.
We begin with a general logistic model for the bino-
mial response probabilities. Specifically, consider the
logistic regression model

log

(
πjk

1 − πjk

)
= αk + (β + λk)wj . (23)

Identifiability of model parameters requires a con-
straint such as

∑s
k=1 λk = 0 or λ1 = 0. Denote the

set of s(c − 1) odds ratios that describe associations
in the s × 2 × c table by

Ψjk = πjk(1 − π1k)

π1k(1 − πjk)
, (24)

k = 1, . . . , s and j = 2, 3, . . . , c. The model yields
the odds ratio model

log Ψjk = (β + λk)wj , (25)

so that the stratum specific sets of (c − 1) odds ratios
describing association between rows and columns
are allowed to vary across strata. Given model (23)
and the identifiability constraint λ1 = 0, the null
hypothesis of no interaction across strata is

H0 : λ2 = · · · = λs = 0. (26)

An asymptotic test can be derived using likelihood-
based methods. For binomial data, such a test com-
pares the logistic model (23) that includes the appro-
priate interaction terms to the logistic model that does
not.

Whether the data arise from binomial or multi-
nomial populations, an exact test of interaction is
derived by considering a restricted conditional ref-
erence set ΛI = {y ∈ Λ :

∑
i

∑
j wij yij = t}, where

Λ is the conditional reference set given in (19), and

t = ∑
i

∑
j wij xij . This additional constraint ensures

the elimination under H0 of all nuisance parameters
contained in either the logistic model for stratified
binomial populations or the loglinear model for strat-
ified multinomial populations. A probability length
test can therefore be carried out by ordering the tables
in ΛI according to their hypergeometric probabili-
ties under the null hypothesis of no interaction. This
framework provides a generalization of Zelen’s test
to stratified 2 × c tables. Further details are given in
StatXact [48].

Stratified 2 × c Contingency Tables with
Clustered Data

When the data arise from cluster-correlated bino-
mial populations, the dependence among observations
within clusters leads to what is known as “extrabino-
mial variation” or “overdispersion” (e.g. see [38],
Chapter 6). An investigator must account for this
extra variability to obtain an accurate P value. If the
researcher naively treats observations within a clus-
ter as independent – for example, by collapsing over
the clusters and using the standard trend test already
discussed – the most common result is an anticon-
servative P value, or a P value that is inaccurately
smaller due to an artificial inflation of sample size.
The question, however, is fundamentally the same
as the one addressed in introducing the trend test for
several ordered binomial populations described previ-
ously: is there an increasing (or decreasing) average
success rate for increasing levels of the risk factor
under investigation? Many well-known methods may
be employed in evaluating this hypothesis for clus-
tered binomial data, including random-effects mod-
els and marginal models. However, these methods
are justified by large-sample distributional approxi-
mations, and they may fare poorly with samples that
are small or sparse.

The formulation is slightly different from that
shown in Table 5. In this case, in the ith stratum,
there are ci clusters, with all members of any one
cluster exposed to some distinct level of the risk
factor of interest. The exposure level for the j th
cluster in stratum i is quantified by the “score”
wij . The data can hence be represented in stratified
form as a collection of s tables, where the ith of
these tables is 2 × ci . Note that j is always indexed
over j = 1, . . . , ci , and i is always indexed as i =
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Table 6 Layout for the ith of s 2 × ci contingency tables
comprised of cluster-correlated binary populations

Stratum k

Rows Col−1 Col−2 . . . Col−ck Row-total

Row−1 y1k y2k . . . yckk mk

Row−2 y ′
1k y ′

2k . . . y ′
ckk

m′
k

Col-total n1k n2k . . . nckk Nk

Col-score w1k w2k . . . wckk

1, . . . , s. The ith such table is displayed in Table 6.
For unstratified data, s = 1.

The tabular representation of stratified uncorre-
lated binomial populations shown in Table 5 has an
equal number of populations across strata, where the
number of populations is determined by the number
of exposure levels. In the case of correlated binomial
data, however, the number of populations for a given
stratum is equal to the number of clusters within that
stratum. Hence, the number of populations may differ
from stratum to stratum.

In addition, the conditional inference for clustered
binomial data varies slightly from that described for
uncorrelated data. First, for notational convenience,
let

u =
s∑

i=1

ci∑

j=1

yij y
′
ij . (27)

Analogous to (19), we define the reference set
ΛC as all possible three-way collections of 2 × ci

contingency tables – for i = 1, . . . , s – whose row
and column margins are fixed at the corresponding
values of the observed three-way collection of tables,
x, displayed above, with one additional constraint:

ΛC =
{

y: y is 2 × ci ∀i; yij + y ′
ij = nij , ∀ i, j ;

ci∑

i=1

yij = mi,

s∑

i=1

ci∑

j=1

yij y
′
ij = u




 . (28)

The primary difference between the Λ defined in
(19) for independent data and ΛC defined here is
the additional constraint that

∑s
i=1

∑ci

j=1 yij y
′
ij =

u. This conditions out the nuisance overdispersion
effect (or the effect due to extra variation) induced
by dependence among observations within clusters.
Corcoran et al. [14], show that this conditioning leads

to a distribution of Y that is known, thereby making
exact inference possible even where the binomial
populations are clustered. Under the null hypothesis
of no row and column interaction, the probability of
observing any specific y ∈ ΛC is

Pr(Y = y) = P(y) =
s∏

i=1

mi!m′
i!Π

ci

j=1nij !

Ni!Π
ci

j=1yij !y ′
ij !

. (29)

The linear rank test statistic for clustered binomial
data has a form similar to (20):

T =
s∑

i=1

ci∑

j=1

wijYij , (30)

where the wij are chosen to accurately reflect the
effect of exposure on the average response probabil-
ity. As in the uncorrelated case, the observed statistic
t∗ = ∑s

i=1

∑ci

j=1 wijyij will be used to test the null
hypothesis that there is no association between the
two rows and ci columns of each of the s strata.
This inference is based on assessing how extreme
the observed statistic t∗ is relative to other values of t

that could have been observed under the null hypoth-
esis of interest. Analogous to the uncorrelated case,
in making this assessment, it is convenient to restrict
attention to all possible values of y ∈ ΛC . With the
possible values of the test statistic arising from ΛC

ordered, and their exact probabilities determined from
(29), the one-sided P value is computed in a manner
identical to that shown in (22), and the exact two-
sided P value is defined by reflecting the observed
value of the test statistic an equal distant away from
its mean in the opposite tail; see StatXact [48] for
details.

Calculating Exact Power and Sample Size

For unstratified 2 × 2 and 2 × c contingency tables,
we can compute the power of the exact test versus
a specific alternative hypothesis. However, this is a
somewhat more computationally challenging problem
in comparison to exact conditional inference, as
power must be calculated unconditionally.

For example, suppose that an investigator wishes
to compare a new drug to a standard therapy, and
hence plans an experiment where 50 subjects will
be randomized to each of the two treatment groups
(see Clinical Trials, Overview). Note that before the
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trial is complete the investigator does not know how
many of the 100 subjects will exhibit a response.
Once the trial is finished, there are legitimate reasons
to condition on the total number of responses (e.g.
the ancillarity principle, the sufficiency principle, and
the randomization principle) in order to compare the
success probabilities of the two regimens. However,
when assessing the power of the study a priori against
a specific alternative, the investigator must consider
all 101 possible outcomes: there may be any number
of total responses between 0 and 100.

We illustrate first by describing exact uncondi-
tional power computations for comparing two bino-
mial proportions, and then for comparing several
ordered binomial proportions against an ordered alter-
native. Such calculations are also available for two
ordered multinomial populations, although we do not
describe this derivation here (see [23]).

Exact Power when Comparing two Binomial
Populations

Consider first the problem of sampling from two
independent binomial populations, where πj is the
binomial probability, nj is the sample size, and xj

is the binomial response of population j , j = 1, 2.
The observed data may thus be represented as a
single 2 × 2 contingency table, an example of which
is shown in Table 4.

We wish to compute the power of tests of the null
hypothesis

H0 : π1 = π2 ≡ π (31)

versus the two-sided alternative hypothesis

H1 : π1 	= π2 (32)

at fixed sample sizes n1 and n2.
As discussed previously, the exact probability of

x under H0, conditional on x1 + x2 = m, is given by

Pr(x|m, H0) =
(
n1

x1

)(
n2

x2

)
(
N

m

) . (33)

Notice that (33) does not depend on the common
null response probability π . Thus, this probability
need not be specified for purposes of calculating
power. The two response probabilities π1 and π2

are, however, needed to evaluate the probability of
x under H1.

We will only be concerned here with two-sided
tests. To test (31) versus (32), we will consider
Fisher’s exact test, Pearson’s exact test, and the likeli-
hood ratio exact test. For notational convenience, we
will denote all three of these statistics by the sym-
bol T .

Our goal is to compute the exact power of two-
sided level-α tests based on the statistic T . Recalling
that the sample sizes n1 and n2 are already fixed, let

Γm = {x : x1 + x2 = m} (34)

and define its critical region

Γm(t) = {x ∈ Γm : T ≥ t}. (35)

The exact null distribution of T may then be obtained
by evaluating

Pr(T ≥ t |m, H0) =
∑

x∈Γm(t)

[(
n1

x1

)(
n2

x2

)
(
N

m

)
]

, (36)

for each possible value of t .
Let α be the maximum allowable type-1 error and

tα(m) be the smallest possible cut-off such that

Pr(T ≥ tα(m)|m, H0) ≤ α. (37)

The conditional power is defined as

Pr(T ≥ tα(m)|m, H1) =
∑

x∈Γm(tα(m))

×





2∏

j=1

(
nj

xj

)
π

xj

j (1 − πj )
nj −xj

∑

x∈Γm

2∏

j=1

(
nj

xj

)
π

xj

j (1 − πj )
nj −xj




.

(38)

Denote this conditional power by β(m). Finally, the
unconditional power is defined as

β =
N∑

m=0

β(m)P (m) (39)

where
P(m) = Pr(x1 + x2 = m|H1), (40)
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a convolution of two binomials under H1. It is
relatively straightforward to compute (39) as only
2 × 2 tables are involved.

Example Suppose n1 = n2 = 5. The exact distribu-
tion of Pearson’s statistic, conditional on x1 + x2 = 5,
is given in Table 7 under both the null hypothesis
(π1 = π2 ≡ π), and under the alternative hypothesis
(π1 = 0.2, π2 = 0.8). Note that the null distribution
does not depend on the common value of π , which
need not be specified.

From these distributions, it is clear that t0.05(5) =
10 so that β(5) = 0.336. That is, the exact condi-
tional power of Pearson’s test conducted at the 5%
significance level, given m = 5, is 34%. Uncondi-
tional power is a weighted sum of conditional powers,
one for each value of m, as computed by (39). Table 8
displays each possible value of m, its weight, and the
corresponding conditional power. Values of m whose
contributions to total power are less than 0.00001
have been ignored in this table as they will not affect
the first three decimal digits of the answer.

The exact unconditional power is thus

β =
9∑

m=0

β(m)P (m) = 0.376 (41)

Table 7 Exact conditional distributions under null and
alternative hypotheses for comparing two independent bino-
mial populations

t Pr(T ≥ t |5,H0) Pr(T ≥ t |5,H1)

0.4 1.000 1.000
3.6 0.206 0.861

10 0.007 0.336

Table 8 Conditional power for
possible values of m

m β(m) P (m)

0 0.533 0.212
1 0.533 0.212
2 0.533 0.212
3 0.533 0.212
4 0.642 0.302
5 0.671 0.237
6 0.713 0.111
7 0.563 0.033
8 0.408 0.006
9 0.533 0.212

10 0.181 0.001

This idea has been extended to power and sample
size computations for two ordered multinomial pop-
ulations by Hilton and Mehta [23], and to several
ordered binomial populations by Mehta et al. [35].
Corcoran [15] extend this latter work to compare
the exact operating characteristics of the exact trend
test versus the asymptotic trend test (see Trend Test
for Counts and Proportions). Further details can be
found in StatXact [48].

Unconditional Exact Inference for 2 × 2 Tables

To this point, we have based our inference on con-
ditioning to eliminate nuisance parameters under the
null hypothesis. It is possible also, though compu-
tationally much more challenging, to eliminate nui-
sance parameters unconditionally. Because of the
relatively greater computational complexity required
for unconditional exact inference, such tools are not
yet widely available aside from those used to analyze
2 × 2 tables. We describe one such method here.

We are interested in comparing two population
proportions. The starting point is the 2 × 2 contin-
gency table, x, displayed as Table 4 with s = 1. As
we consider only a single stratum, for convenience,
we will drop the subscript i. Without loss of gen-
erality, suppose that the row variable specifies the
“outcome” of interest, so that we may consider the
column totals n1 and n2 fixed by design. Then x1 and
x2 are realizations, respectively, of Binomial(n1, π1)
and Binomial(n2, π2) random variables, where π1 and
π2 individually represent the outcome probabilities
for each population. We wish to test

H0: π1 = π2 = π, (42)

against two-sided alternatives of the form

H2: π1 	= π2. (43)

Recall that this table was created by taking nj inde-
pendent Bernoulli samples from population j , and
observing xj successes, j = 1, 2. The unconditional
probability of observing x under H0 is f0(x), spec-
ified by (17) with Ψ = 1. In order to compute an
exact P value, we need to specify a reference set of
2 × 2 contingency tables and sum the probabilities
of tables that are at least as extreme as x in it. For
conditional inference, we used the reference set Ω in
which both the row and column sums of the 2 × 2
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tables were fixed at their observed values. Uncondi-
tional inference uses a larger reference set of 2 × 2
contingency tables in which only the column sums,
or the binomial sample sizes, are fixed. The row sums
are treated as random variables. Denote this reference
set by

Ω∗ = {y: yj + yj = nj , j = 1, 2}, (44)

and order each table y ∈ Ω∗ according to the test
statistic

D(y) = π̂2 − π̂1√(
y1 + y2

N

)(
y1 + y2

N

)(
1

n1
+ 1

n2

) ,

(45)

where π̂j = yj /nj , j = 1, 2. If y1 = y2 = 0, or y1 =
y2 = 0, set D(y) = 0. The denominator of (45)
is the standard error of the observed difference
of binomial proportions under the null hypothesis.
Therefore, the statistic D(y) has a mean of 0 and
variance of one under H0. A large positive value for
the observed statistic D(x) furnishes evidence against
H1, while a large negative value furnishes evidence
against H ′

1.
The exact P value is the sum of probabilities of

all tables y ∈ Ω∗ that are more extreme than the
observed table x with respect to the test statistic (45).
The trouble is that each such extreme table has a
probability f0(y), which, by (17), depends on the
unknown nuisance parameter, π . In our previous
discussion of conditional inference, we were able to
eliminate the nuisance parameter by conditioning on
its sufficient statistic, m1. But we can no longer do
so because we have specified Ω∗ rather than Ω to be
the reference set. For exact unconditional inference,
we utilize a different argument to eliminate π . We
consider all possible values of π in its range and
select that value, which produces the largest P value.
This produces a conservative answer so that no matter
what the true value of π might be, the type-1 error of
the test cannot exceed its nominal significance level.

The main advantage of using Ω∗ is that it is
larger than Ω . Consequently, the distribution of any
test statistic usually has more support points if it
is defined on Ω∗ rather than on Ω . This reduces
conservatism, since it is possible to construct exact
hypothesis tests whose true significance levels come
closer to their nominal significance levels under Ω∗

than they do under Ω . The main disadvantage is that
the nuisance parameter, π , can only be eliminated by
considering all possibilities in its range and catering
to the worst case. This increases the conservatism of
the hypothesis test. There is thus a trade-off between
the advantage gained by enriching the reference
set and the disadvantage of catering to the worst
case for the nuisance parameter. For a single 2 × 2
contingency table, Mehta and Hilton (1993) [29] have
shown that, on balance, the gain in power from using
Ω∗ outweighs the loss in power because of catering
to the worst case. They go on to show, however, that
this advantage quickly evaporates as the dimensions
of the table increase from 2 × 2 to 2 × 3.

We compute the P value in two stages. At the
first stage, we express the P value as a function of
π . Then, at the second stage, we obtain the supremum
of this function over all values of π ∈ (0, 1). We use
this supremum as the P value. Since the P value
based on the actual value of π can never exceed
the supremum over all possible values of π , this
procedure guarantees that the type-1 error will always
be preserved. In effect, we compute a conservative P

value that will preserve the desired type-1 error rate
no matter what the true value of π might be, since it
is designed to cater for the worst case.

This test is known as Barnard’s test, named after
George Barnard who first proposed it as an alterna-
tive to Fisher’s exact test amidst some controversy.
(See [7, 8, 9, 10, 52] for interesting philosophical dis-
cussions and references). Its critical values for exact
testing of H0 have been tabulated by Suissa and Shus-
ter (1985) [50]. A proposed restriction by Berger and
Boos [11] adds stability and reduces the conservatism
of the procedure.

Computational Issues

Computing quantities such as (3) is nontrivial. When
analyzing an r × c table, for instance, the size of
the reference set grows exponentially so that explicit
enumeration of all the tables in Γ soon becomes com-
putationally infeasible. For example, the reference set
of all 5 × 6 tables with row sums of (7, 7, 12, 4,
4) and column sums of (4, 5, 6, 5, 7, 7) contains
1.6 billion tables. Yet, the tables in this reference
set are all rather sparse and unlikely to yield accu-
rate P values based on large-sample theory. Network
algorithms have been developed by Mehta, Patel, and
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coworkers, [30–32, 34, 36] to enumerate the tables
in Γ implicitly. In these algorithms, the reference set
is represented by a network of nodes and arcs. A
sequence of connected arcs from the starting to the
terminal node constitutes a path through the network.
Each such path represents one and only one table in
Γ . The length of a path equals the value of the test
statistic for the table to which that path corresponds.
The probability of the path equals the probability
of the corresponding table. Thus, the problem of
computing an exact P value is equivalent to the
problem of identifying paths whose lengths equal or
exceed a specified value, and summing the probabil-
ities of all these paths. This can be accomplished by
well-known operations research techniques such as
backward induction and forward probing through the
network. These methods are very efficient and make
it feasible to compute exact P values.

Alternate approaches are provided by Pagano and
Halvorsen [39], Pagano and Tritchler [40], Streitberg
and Rohmel [49], Baglivo, Olivier and Pagano [6],
Vollset, Hirji, and Elashoff [51], and Cheung and
Klotz [13]. Sometimes a data set is too large even
for implicit enumeration, yet it is sufficiently sparse
that the asymptotic results are suspect. For such
situations, a Monte Carlo estimate and associated
99% confidence interval for the exact P value may
be obtained. In the Monte Carlo method, tables are
sampled from Γ in proportion to their hypergeometric
probabilities (2), and a count is kept of all the sampled
tables that are more extreme than the observed table.
For details, refer to [4, 33, 41] and [45].

Analysis of Data Sets

In this section, we will illustrate the techniques
developed in the previous sections with some data
analyses. Each example will highlight the different
conclusions one might draw if an asymptotic analysis
were performed instead of an exact analysis. A
large number of additional examples are available at
the Cytel web site http://www.cytel.com. All
results were obtained by the StatXact-3 software
package [48].

An Unordered Contingency Table

Data were obtained on the location of oral lesions, in
house to house surveys in three geographic regions

of rural India, by Gupta, Mehta, and Pindborg [22].
Consider a hypothetical subset of these data displayed
by Table 9 as a 9 × 3 contingency table in which the
counts are the number of patients with oral lesions
per site and geographic region.

The question of interest is whether the distribu-
tion of the site of the oral lesion is significantly
different in the three geographic regions. The row
and column classifications for this 9 × 3 table are
clearly unordered, making it an appropriate data set
for either the Fisher, Pearson, or likelihood ratio tests.
The exact and asymptotic P values are displayed in
Table 10. There are striking differences between the
two methods. The exact analysis suggests that the
row and column classifications are dependent, but the
asymptotic analysis fails to show this.

A Singly Ordered Contingency Table

The tumor regression rates of five chemotherapy
regimens, Cytoxan (CTX) alone, Cyclohexyl-
chloroethyl nitrosourea (CCNU) alone, Methotrexate
(MTX) alone, CTX + MTX, and CTX + CCNU +
MTX were compared in a small clinical trial. Tumor
regression was measured on a three-point scale: no
response, partial response, or complete response. The
results are tabulated in Table 11.

Table 9 Oral lesions data

Site of Lesion Kerala Gujarat Andhra

Labial mucosa 0 1 0
Buccal mucosa 8 1 8
Commissure 0 1 0
Gingiva 0 1 0
Hard palate 0 1 0
Soft palate 0 1 0
Tongue 0 1 0
Floor of mouth 1 0 1
Alveolar ridge 1 0 1

Table 10 Exact and asymptotic P values for oral lesions
data

Three tests of independence

Type of inference Pearson Fisher Likelihood ratio

Value of D(x) 22.1 19.72 23.3
Asymptotic P value 0.1400 0.2331 0.1060
Exact P value 0.0269 0.0101 0.0356
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Table 11 Chemotherapy pilot study data

Partial Complete
Chemo No resp. resp. resp.

CTX 2 0 0
CCNU 1 1 0
MTX 3 0 0
CTX + CCNU 2 2 0
CTX + CCNU + MTX 1 1 4

Small pilot studies like this one are frequently
conducted as a preliminary to planning a large-
scale randomized clinical trial. For such data, the
Kruskal–Wallis test may be used to determine
whether or not the five drug regimens are significantly
different with respect to their tumor regression rates.
The observed value of the Kruskal–Wallis statistic
for this table is 8.682. Referring this value to a
chi-square distribution with four degrees of freedom
yields an asymptotic P value of 0.0695, which is not
significant at the 0.05 level. However, on the basis of
the permutation distribution of the Kruskal–Wallis
statistic, the exact P value is 0.039, which is
statistically significant.

Analysis of Stratified 2 × 2 Contingency Tables

Testing the Homogeneity of Odds Ratios. The
binary response data tabulated in Table 12 compare
a new drug with a control drug at 22 hospital sites.

The data can be thought of as twenty-two 2 × 2
contingency tables, one for each site. If you examine
the 2 × 2 tables carefully, you notice that site 15

Table 12 Site by treatment interaction data

Control Control
New drug drug New drug drug

Test Test
site Resp No Resp No site Resp No Resp No

1 0 15 0 15 12 0 12 1 11
2 0 39 6 32 13 0 24 5 19
3 1 20 3 18 14 2 10 2 11
4 1 14 2 15 15 0 14 11 3
5 1 20 2 19 16 0 53 4 48
6 0 12 2 10 17 0 20 0 20
7 3 49 10 42 18 0 21 0 21
8 0 19 2 17 19 1 50 1 48
9 1 14 0 15 20 0 13 1 13

10 2 26 2 27 21 0 13 1 13
11 0 19 2 18 22 0 21 0 21

appears to be different from the others. Whereas all
the other sites have a low response rate for both
the new drug and the control drug, the response
rate of the control drug is 79% at site 15. The
Homogeneity test can tell you whether the observed
difference at site 15 is a real difference or whether
it is just a chance fluctuation due to a small sample.
Because of the sparseness in the data, the asymptotic
(Breslow–Day) statistic might not yield an accurate
P value. The exact (Zelen) test is preferred. The exact
P value is 0.0135. Thus, we reject the null hypothesis
that there is a common odds ratio across the 22 sites.
The data strongly suggest that the odds ratio at site 15
is different from the other odds ratios. The asymptotic
(Breslow–Day) P value is much larger (0.0785) and
is only marginally significant.

Estimating the Common Odds Ratio

The court case of Hogan versus Pierce [20] involved
the minority hiring data displayed in Table 13.

The most notable feature of these data is that
at each hiring opportunity not a single black was
hired, whereas small numbers of whites were hired.
This makes it impossible to use the usual large-
sample maximum likelihood or Mantel–Haenszel
[28] methods for estimating the odds of being hired
for whites relative to blacks. These methods simply
fail to converge. Only the exact method provides a
valid answer and it shows that the odds of being hired
for a white relative to a black are no lower than 2.3
to 1, with 95% confidence.

Table 13 Minority hiring data

Whites Blacks

Date of hire Hired Not Hired Not

7/74 4 16 0 7
8/74 4 13 0 7
9/74 2 13 0 8
4/75 1 17 0 8
5/75 1 17 0 8
10/75 1 29 0 10
11/75 2 29 0 10
2/76 1 30 0 10
3/76 1 30 0 10
11/77 1 33 0 13
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Test of Trend in Stratified 2 × c Contingency
Tables

The data for this example were provided by the US
Food and Drug Administration (FDA). Animals were
treated with four dose levels of a carcinogen and then
observed (at necropsy) for the presence or absence of
a tumor type. The data were stratified by survival time
(in weeks) into the four time-intervals 0 to 50, 51 to
80, 81 to 104, and terminal sacrifice. Since there were
no tumors found in the first time-interval, this stratum
may be excluded from data entry. The data for the
remaining three strata are displayed in Table 14.

We use the stratified Cochran–Armitage trend test
(Breslow and Day [12], p. 148) to determine if there
is a dose-response relationship between the level
of carcinogen and the presence of tumors. The test
statistic is defined by (20), where vij is the dose-
level of carcinogen and yij is the number of animals
with tumors, at the j th dose level in the ith stratum.
The results are tabulated in Table 15.

Table 14 FDA Animal toxicology data

Stratum 1: 51–80 weeks of survival

Dose of carcinogen

Disease status None 1 unit 5 units 50 units Total

Tumor present 0 0 0 1 1
Tumor absent 7 10 6 8 31

Stratum 2: 81–104 weeks of survival

Dose of carcinogen

Disease status None 1 unit 5 units 50 units Total

Tumor present 0 1 0 1 2
Tumor absent 11 9 13 14 47

Stratum 3: Sacrificed at end of 104 weeks

Dose of carcinogen

Disease status None 1 unit 5 units 50 units Total

Tumor present 1 1 1 2 5
Tumor absent 29 26 28 20 103

Table 15 One and two-sided P values for FDA data

P values One-sided Two-sided Double one-sided

Exact 0.0651 0.0769 0.1302
Asymptotic 0.0410 0.0820 0.0820

There are large differences between the exact
and asymptotic one-sided P values, and they lead
to different conclusions about the significance of
the dose-response relationship. They also show that
the usual practice of doubling the one-sided P

value is unnecessarily conservative with asymmetric
distributions. But the most interesting finding of all
is that the distribution of the linear rank statistic (20)
has multiple towers. A normal approximation would
be seriously misleading. This is shown in Figure 1.

Software and Related Resources for Exact
Inference

We have presented the essential idea behind exact
permutational inference, described one numerical
algorithm, referenced others, and shown through
several examples that exact inference is a valuable
supplement to corresponding asymptotic methods.

Software support for these methods is available
in many standard packages including StatXact [48],
LogXact [26], SPSS Exact Tests [47], and SAS
Version 9 [44]. A brief description of the StatXact
and LogXact software packages is given elsewhere
(see StatXact).

Some of the newer textbooks on nonparametric
methods, for example, [1, 17, 21, 27, 46] devote con-
siderable space to exact and Monte Carlo methods
of inference for categorical data. A useful survey
paper, in which a unified treatment of exact infer-
ence for categorical data is presented through the
loglinear model, was recently published by Agresti
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[2]. A complete collection of references to statisti-
cal methodology, numerical algorithms, commercial
software, shareware, and textbooks on exact permuta-
tional inference can be obtained by visiting the Exact-
Stats worldwide web site on the Internet. The add-
ress is http://jiscmail.ac.uk/lists/exact-
stats.html.
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Excess Mortality

In the modeling of mortality in clinical or epidemi-
ologic studies, it is sometimes relevant to use the
mortality of the general population as a reference
for comparisons. Rather than establishing a refer-
ence sample of the general population from which
the study sample is drawn, one usually relies on
published life tables and includes the population mor-
tality rate as a known function in the model for
the survival times in the study group. Two classes
of hazard rate models have been studied in some
detail: multiplicative hazard rate models, in which
the mortality of the study group is described by mul-
tiplying the reference rate by some parameter, the
relative mortality, which may further depend on spe-
cific risk factors or follow-up time; and additive
hazard rate models, in which the reference rate is
modified by adding a parameter, the excess mortality,
which again may depend on specific risk factors or
follow-up time. Multiplicative models are related to
calculation of standardized mortality ratios (SMR),
a technique that has been employed by epidemiolo-
gists for many years (see Standardization Methods).
However, additive models may be viewed as the the-
oretical basis for calculation of relative survival and
the corrected survival curve.

In a simple additive hazard rate model, the mortal-
ity rate λi(t) of an individual i, i = 1, . . . , n, in the
sample satisfies

λi(t) = µi(t) + γ (t),

where µi(t) is the known population rate at time t

for an individual of the same sex and born in the
same year as individual i. The excess mortality γ (t)

is assumed common for all individuals in the sample.
The integrated excess mortality is defined as

Γ (t) =
∫ t

0
γ (u) du.

Unlike the multiplicative model, which is mainly a
descriptive means for relating the observed mortality
in a sample to population mortality rates, the additive
model may be given an interpretation in a compet-
ing risk framework when the excess mortality rate
is positive. If the sample consists of individuals suf-
fering from a given disease, one may consider using
the population mortality rate for all other causes of

deaths as the known rate µi(t) and the excess rate
γ (t) will then represent mortality due to the disease.
In this situation, the model may therefore permit esti-
mation of cause-specific mortality without relying on
information about cause of death.

For a sample of individuals i = 1, . . . , n, let xi

denote the time of entry and Xi ≥ xt the survival time
(in which case Di = 1) or censoring time (in which
case Di = 0). In a clinical setting the time t would
usually be time since treatment and xi is typically
zero, but the model could also be used with age as
the underlying time scale and then left truncation,
i.e. xi > 0, will often be present. Define N(t) to be
the observed number of deaths in [0, t] and let Y (t)

denote the number at risk at time t :

Y (t) =
n∑

i=1

Yi(t) =
n∑

i=1

I (xi < t ≤ Xi).

Following Andersen & Væth [2], the integrated ex-
cess mortality may be estimated by

Γ̂ (t) =
∑

Xi≤t

Di

Y (Xi)
−

∫ t

0
µ∗(u) du.

The first term is the ordinary Nelson–Aalen estimate,
and the second term is the integral of the average
population mortality rate, µ∗(u), defined for each
u as the average of the population mortality rates
corresponding to the individuals at risk at time u

µ∗(u) = 1

Y (u)

n∑

i=1

µi(u)Yt (u).

The variance of Γ̂ (t) can be estimated by

∑

Xi≤t

Di

[Y (Xi)]2

An estimate of the excess mortality rate γ (t) can
be obtained by kernel smoothing techniques (see,
for example, Andersen et al. [3, Section IV.4.2]) (see
Smoothing Hazard Rates). The survival function

S∗(t) = exp

(
−

∫ t

0
µ∗(u) du

)

derived from the hazard rate µ∗(t) may be viewed
as a continuous time generalization of the so-called
Ederer Method II for calculation of the expected sur-
vival curve, which, unlike Ederer Method I, adjusts
for deaths and censoring during follow-up (see [6]
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or [10]). Furthermore, an estimate of the “survival”
function

exp

(
−

∫ t

0
γ (u) du

)

for the excess mortality is obtained as the relative
survival function Ŝ(t)/S∗(t).

A parametric version of the simple additive haz-
ard rate model above has been studied by Buckley [4],
who considered maximum likelihood estimation in a
model with piecewise constant excess mortality rate.
An iterative procedure is required to solve the like-
lihood equations, but simple, explicit moment esti-
mates are also available (see Method of Moments).
For the special case with a constant excess mortal-
ity rate γ for all t ∈ [0, τ ], τ < ∞ denoting an upper
limit for the observed survival times, one may show
[2, 4] that the maximum likelihood estimate is the
solution to

n∑

i=1

Di

γ̂ + µi(Xi)
= T (τ),

where

T (τ) =
∫ τ

0
Y (u) du =

n∑

i=1

(Xi − xi)

is the total number of person–years at risk during
follow-up (i.e. the total time on test). The moment
estimate is simply

γ̃ = N(τ) − E(τ )

T (τ)
,

where

E(τ ) =
n∑

i=1

∫ τ

0
µi(u)Yi(u) du

may be interpreted as the expected number of deaths
during follow-up, and the moment estimate is there-
fore the excess number of deaths divided by the total
time at risk. The variance of the estimate γ̃ can be
estimated by

N(τ)

[T (τ)]2
.

Within the framework of parametric models, stan-
dard large-sample methods provide goodness of fit
tests for the constant excess mortality model rela-
tive to a piecewise constant excess mortality. Alter-
natively, generalized total time on test procedures
are available for assessing the goodness of fit of a

constant excess mortality rate (see [2] and [3, Section
VI.3.2–3]).

Both parametric and nonparametric regression
models generalizing the simple, additive excess mor-
tality model have been developed. The paramet-
ric models for the excess mortality rate include,
among others, loglinear regression models studied
by Pocock et al. [8] and Hakulinen & Tenkanen [7],
and a linear regression model considered by Camp-
bell [5]. A semiparametric proportional hazards
regression model for the excess rate has been pro-
posed and studied by Sasieni [9], and Zahl [11] has
introduced a linear nonparametric regression model
for the excess rate, generalizing Aalen’s linear hazard
regression model [1].

References

[1] Aalen, O.O. (1989). A linear regression model for
the analysis of life times, Statistics in Medicine 8,
907–925.

[2] Andersen, P.K. & Væth, M. (1989). Simple paramet-
ric and nonparametric models for excess and relative
mortality, Biometrics 45, 523–535.

[3] Andersen, P.K., Borgan, Ø., Gill, R.D. & Keiding, N.
(1993). Statistical Models Based on Counting Processes.
Springer-Verlag, New York.

[4] Buckley, J.D. (1984). Additive and multiplicative mod-
els for relative survival rates, Biometrics 40, 51–62.

[5] Campbell, M.J. (1985). Multiplicative and additive mod-
els with external controls in a cohort study of cancer
mortality, Statistics in Medicine 4, 353–360.

[6] Ederer, F., Axtell, L.M. & Cutler, S.J. (1961). The
relative survival rate: a statistical methodology, National
Cancer Institute Monographs 6, 101–121.

[7] Hakulinen, T. & Tenkanen, L. (1987). Regression anal-
ysis of relative survival rates, Applied Statistics 36,
309–317.

[8] Pocock, S.J., Gore, S.M. & Kerr, G.R. (1982). Long
term survival analysis: the curability of breast cancer,
Statistics in Medicine 1, 93–104.

[9] Sasieni, P.D. (1996). Proportional excess hazards,
Biometrika 83, 127–141.

[10] Zahl, P.H. (1995). A proportional regression model for
20 year survival of colon cancer in Norway, Statistics in
Medicine 14, 1249–1261.

[11] Zahl, P.H. (1996). A linear non-parametric regression
model for the excess intensity, Scandinavian Journal of
Statistics 23, 353–364.

(See also Survival Analysis, Overview)

MICHAEL VÆTH



Excess Relative Risk

Relative risks are commonly used to describe the
relationship between the risks or rates in different
populations. For populations with risks R0 and R1,
the relative risk is RR = R1/R0. In many situations,
it is useful to describe R1 as R0 + E, where E is
the excess risk. In this case we have RR = (R0 +
E)/R0 = 1 + ERR, where ERR represents the excess
relative risk. The most commonly used approach to
modeling relative risks involves loglinear models
of the form RR = eβz. But it is often useful, espe-
cially in dose–response analyses, to model the ERR
directly.

When exposures vary over a broad range, simple
ERR models (e.g. linear in dose) can provide a

clearer, and in many cases better, description of
the exposure effect on the risk than loglinear risk
models. Ratios of ERRs are more appropriate than
ratios of RRs as a summary of the impact of
exposure. Effect modification and analyses of the
joint effects of multiple exposures (see Synergy of
Exposure Effects) are often expressed more naturally
in terms of effects on the ERR rather than as
interactions in multiplicative relative risk models.
For additional details about specific ERR models
and issues related to the use of these models (see
Parametric Models in Survival Analysis; Poisson
Regression in Epidemiology).
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Excess Risk

The excess risk or rate in a population is the
difference between the risk (rate) R1 for a population
exposed to some risk factor (e.g. radiation or smok-
ing) and the risk R0 in an otherwise identical popula-
tion without the exposure. In simple terms the excess
risk E is defined as E = R1 − R0. The excess risk is
closely related to the attributable risk AR = E/R1

and the excess relative risk ERR = E/R0.
Since excess risk models involve the sum of back-

ground and excess risks, they are intrinsically addit-
ive, and it is common, though potentially confusing,
to refer to them as additive models. The development
of adequate excess risk models generally requires that
the risk be modeled as a sum of nonlinear functions
describing the background and excess risks. Mod-
els for both the background and excess risks often
involve multiplicative functions of risk-modifying
factors. In contrast to relative risk models, for which
it is possible to use semiparametric Cox regression
models, fitting excess risk models generally requires
explicit parametric modeling of R0 or specification of
R0 with external rates.

It is both feasible and useful, however, to model
background rates directly for problems involving
either excess or relative risk by using modern
statistical methods, such as Poisson regression.
(See Parametric Models in Survival Analysis for
additional information on the modeling of excess
risks.)

Relative risk models have come to dominate dis-
cussion of risk in epidemiologic studies. However,
description in terms of excess risks and rates is impor-
tant for: understanding the impact of an exposure on
risk in a population; developing exposure standards to
limit risks to the general public or to special groups;
and developing and assessing mechanistic models of
the effect of exposure on risk.

Historically, attention has focused on the com-
parison of simple (usually time-constant) excess and
relative risk models [3]. However, when one makes
use of more general classes of excess and rela-
tive risk models, it is best to view these models as
complementary, rather than competing, descriptions
of risk.

Excess risk and attributable risk can also be esti-
mated from population-based case–control studies
[1, 2].
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Exchangeability

In probability theory, the random variables Y1,

. . . , YN are said to be exchangeable (or permutable or
symmetric) if their joint distribution F(y1, . . . , yN) is
symmetric; that is, if F is invariant under permutation
of its arguments, so that

F(z1, . . . , zN) = F(y1, . . . , yN)

whenever z1, . . . , zN is a permutation of y1, . . . , yN .
There is a related epidemiologic usage which is
described in the article on confounding. In many
ways, sequences of exchangeable random variables
play a role in subjective Bayesian theory analogous
to that played by independent identically distributed
(iid) sequences in classical frequentist theory. In
particular, the assumption that a sequence of random
variables is exchangeable allows the development of
inductive statistical procedures for inference from
observed to unobserved members of the sequence
[1–3, 5, 6, 9].

Exchangeable random variables are identically
distributed, and iid variables are exchangeable. Now
suppose that Y1, . . . , YN are iid given an unknown
parameter θ that indexes their joint distribution
(see Identifiability). Such variables will not be
unconditionally independent when θ is a random
variable, but will be exchangeable. Consider, for
example, the case in which Y1, . . . , YN have a joint
density. The unconditional density of Y1, . . . , YN will
be

f (y1, . . . , yN) =
∫

θ

f (y1, . . . , yN |θ) dF(θ)

=
∫ ∏

i

f (yi |θ) dF(θ).

Exchangeability of Y1, . . . , YN follows from the
identity of the marginal densities in the product.
However, given that these densities depend on θ ,
the integral and product cannot be interchanged,
so that f (y1, . . . , yN) �= ∏

i f (yi). We thus have
that a mixture of iid sequences is an exchangeable
sequence, but not iid except in trivial cases.

One consequence of this result is that the usual
procedures for generating a sequence Y1, . . . , YN of
iid random variables for inference on an unknown
parameter (such as Bernoulli trials of binary data
with unknown success probability) generate only

an exchangeable sequence when the parameter is
generated randomly and the sequence is considered
unconditionally. From a Bayesian perspective, this
means that, when your uncertainty about the param-
eter is integrated with your uncertainty about the
realizations of Y1, . . . , YN , the latter are (for you)
exchangeable but dependent. This subjective depen-
dence is immediately clear if you consider (say)
tossing a coin N = 99 times, with Yi the indicator of
heads on toss i. Starting from a uniform prior for the
chance of heads, you should have Pr(Y99 = 1) = 1/2
before seeing any toss, but

Pr

(
Y99 = 1

∣∣∣∣∣

98∑

i=1

Yi = 98

)
= 0.99

after seeing the first 98 tosses come up heads [8].
A generalization important for statistical model-

ing is partial or conditional exchangeability [2, 3].
For example, suppose that the sequence Y1, . . . , YN

is partitioned into disjoint subsequences. Then the
sequence is said to be partially exchangeable given
the partition if each subsequence can be permuted
without changing the joint distribution. If the Yi rep-
resent survival times within a cohort of male stroke
patients, then a judgment of unconditional exchange-
ability of the Yi would be unreasonable if the patient
ages were known, because age is a known predictor
of survival time. Nonetheless, one might regard the
survival times as partially exchangeable, given age,
if no further prognostically relevant partitioning was
possible based on the available data.

While exchangeability is weaker than iid, de
Finetti [[3], Chapter 11] proved that finite subsequen-
ces of an infinite exchangeable sequence of Bernoulli
(binary) variates must have representations as mix-
tures of iid Bernoulli sequences – a partial converse
of the fact that any mixture of iid sequences is an
exchangeable sequence. More precisely, suppose that
Y1, Y2, . . . is an infinite sequence of exchangeable
Bernoulli variates (that is, every finite subsequence
of the sequence is exchangeable), and that θ is the
limit of (Y1 + · · · + Yn)/n as n goes to infinity. De
Finetti showed that there exists a distribution function
P(θ) for θ such that, for all n,

Pr(Y1 = y1, . . . , Yn = yn) ≡ Pr(y1, . . . , yn)

=
∫ 1

0
θs(1 − θ)n−s dP(θ), (1)
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where s = y1 + · · · + yn. Many Bayesian statisticians
find this theorem helpful, because it partially specifies
the form of the predictive probability Pr(y1, . . . , yn)

when Y1, . . . , Yn can be considered a subsequence of
an infinite exchangeable sequence.

In the representation shown in (1), P(θ) is recog-
nizable as the prior distribution for θ , a distribution
that may be developed from what is known about θ

before the Yi are observed. As noted in [7], how-
ever, the strength of the theorem’s conclusion is easy
to overstate: it does not imply that all binary data
must be analyzed using the representation shown in
(1); it merely says that if you judge Y1, Y2, . . . to be
an exchangeable sequence, then there is a P(θ) that
allows you to use (1) to specify Pr(y1, . . . , yn).

Finite versions of the theorem [4] show that, if
Y1, . . . , Yn is the start of an exchangeable Bernoulli
sequence Y1, . . . , YN and n/N is small enough, then
Pr(y1, . . . , yn) may be approximately expressed as
in (1), with the approximation improving as n/N

approaches zero. There are further generalizations
to exchangeable sequences of polytomous variates,
as well as exchangeable sequences of continuous
variates [4]. The latter generalization requires a prior
distribution on the space of continuous distributions,
however, which can be much harder to specify than
a prior for a vector of multinomial parameters,
and which may lead to intractable computational
problems [5].
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Exclusion Mapping

Exclusion mapping is the identification of the loca-
tion of a disease gene by excluding other possible
genomic regions; it relies on the fact that informa-
tive meioses can provide evidence for or against
linkage (see Linkage Analysis, Model-based; Link-
age Analysis, Model-free). If a disease locus exists,
then it must be somewhere in the genome. There-
fore, if the disease locus is not linked to any of the
regions that have already been considered, then it
must be present elsewhere in the genome. By using
the existing linkage information to define regions of
exclusion, efforts can be focused on the remaining
regions of the genome that are more likely to con-
tain the gene. Of course, the strength of the evidence
for or against linkage in a particular region must be
taken into account, since a locus may be present in
a region even if it is not detected (e.g. if the sam-
ple size is too small). Therefore, in order to create
an exclusion map, one must define a measure of the
strength of the evidence for or against linkage and
a criterion that represents at most a small likelihood
that the gene is contained in the region. This is done
using the lod score.

Consider first the case in which there is a single
family or a collection of families but no locus hetero-
geneity (i.e. a single disease locus predisposes to the
disease). All informative meioses provide evidence
for or against linkage to a particular location. The
absence of recombination between a marker and the
phenotype provides evidence for linkage to a par-
ticular region, while the presence of recombination
consistent with a rate expected by chance (1/2 of
meioses) provides evidence against linkage in that
region. The lod score provides us with a yardstick to
measure the strength of the evidence for or against
linkage in the region. In the context of testing a single
marker, the classic limit for exclusion is a lod score
of −2 [9], which represents a 100 : 1 likelihood ratio
against linkage in the region. This criterion is quite
stringent, and generally results in a small region of
exclusion around a marker locus. Larger regions of
the genome can be excluded by testing multiple mark-
ers that are located close together. In this case, a
lod score of −2 is still considered sufficient evidence
against linkage, despite the fact that multiple tests are
performed.

In the presence of locus heterogeneity (see
Genetic Heterogeneity) and more than one sampled
family, exclusion mapping results are more difficult
to interpret. The study sample may include some
families that are linked to the region and some
families that are not linked to the region. The lod
score will reflect the proportion of linked families.
Therefore, even if we find strong evidence against
linkage in a region, a small proportion of the families
may be, in fact, linked to the region. Since this is the
case for complex diseases, evidence for linkage to a
region is often more convincing than evidence against
linkage to a region, and exclusion mapping is not
helpful. Methods that allow for locus heterogeneity
within the study sample, such as estimating the
proportion of linked families in addition to the
recombination fraction [10], may provide a way to
use exclusion mapping when locus heterogeneity is
present.

Programs that provide a visual representation
of the excluded and nonexcluded regions include:
Exclude [3], Lodview [5], and Mapmaker/Sibs [7].
In the Exclude program, the probability of containing
the gene is computed for each chromosomal region.
An equal prior probability of containing the gene for
each chromosomal region is assumed. The posterior
probability computed by this program incorporates
the fact that if a gene is excluded from one region,
then the probability must increase in the remaining
regions. The Lodview program produces a graphical
view to observe regions with a lod score less than
−2 from data generated by programs such as Link-
age [8]. The method implemented in Mapmaker/Sibs
identifies regions of exclusion depending on partic-
ular model parameters such as λs, the locus-specific
sibling recurrence risk ratio. Regions are excluded
for a gene that confers susceptibility with λs greater
than some pre-specified value. However, it may be
difficult for a user to identify which regions have
been excluded for the phenotype of interest because
of the difficulty in accurately estimating λs [4].

Genes for several diseases have been mapped
using exclusion mapping, including Marfan syndrome
and Rett syndrome. Marfan syndrome is a connec-
tive tissue disorder that is inherited in an autoso-
mal dominant fashion (see Segregation Analysis,
Classical). Blanton et al. [2] produced an exclusion
map for Marfan syndrome based on linkage data
for 75 marker loci from nine contributing labo-
ratories. Eleven candidate regions were suggested
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from this analysis, including chromosome 15. Kainu-
lainen et al. [6] found significant evidence for linkage
(lod score = 3.92) to a region on chromosome 15
using eight Finnish families with Marfan syndrome,
which was later found to include the fibrillin gene.
Rett syndrome is a progressive neurodevelopmental
disorder that causes mental retardation. Because this
disorder is found almost exclusively in females, it
was suggested that Rett syndrome is caused by an
X-linked dominant mutation that is lethal for hemi-
zygous males. Rett syndrome families were used to
exclude regions of the X chromosome and to map
the locus to the Xq28 region. Amir et al. [1] identi-
fied mutations in the MECP2 gene in this region, and
found this gene to be responsible for causing Rett
syndrome.
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Expectation

The expectation or expected value of a random vari-
able Y , denoted E(Y ), is its mean. When Y has
density or probability mass function f (y), E(Y ) =∫

f (y) dy or
∑

yf (y), respectively. A rigorous treat-
ment [1, 2] first defines E(Y ) for simple random
variables (discrete random variables taking only
finitely many values), then extends the definition to
arbitrary nonnegative random variables, and then to
arbitrary random variables. For a simple random vari-
able Y taking values y1, . . . , yk with respective prob-
abilities p1, . . . , pk, E(Y ) is defined as

∑k
i=1 yipi .

Any nonnegative random variable Y may be writ-
ten as a limit limn→∞ Yn of increasing simple ran-
dom variables Yn; E(Y ) is defined as limn→∞ E(Yn).
Any random variable Y may be written as Y+ − Y−,
where Y+ = YI (Y ≥ 0) and Y− = −YI (Y < 0) are
nonnegative; E(Y ) is defined by E(Y+) − E(Y−) pro-
vided at least one of these is finite. If exactly one
is finite, the expectation is +∞ or −∞ depending
on whether the infinite term is E(Y+) or E(Y−). If
neither is finite, the expectation does not exist. For
example, the mean does not exist for the Cauchy
density f (y) = {π(1 + y2)}−1, −∞ < y < ∞.

The term “expectation” is a misnomer; a Bernoulli
random variable (see Binary Data) Y with parame-
ter 3/4 has expectation 3/4, though Y = 3/4 would be
most unexpected since Y = 0 or 1. Still, E(Y ) pro-
vides the best prediction of Y in that it minimizes the
mean squared error E{(Y − a)2} over all constants
a, assuming E(Y 2) < ∞. It is a measure of the center
of a distribution. Because (Y − a)2 is very sensitive
to extreme Y values, E(Y ) is pulled toward them
for skewed distributions. For such distributions, the
median is a better measure of central tendency than
E(Y ); it minimizes E(|Y − a|) over a, and |Y − a| is
less sensitive to extremes than is (Y − a)2.

The expectation of a random variable Y may
also be thought of as its long-run average, assuming
E(|Y |) < ∞. If one continually and independently
repeats the experiment that generated Y , the average
value Y = (1/n)

∑n
i=1 Yi will be very close to E(Y )

by the strong law of large numbers.

Useful Properties of Expectation

E1. If E(|Y |) < ∞, then |E(Y )| ≤ E(|Y |).

E2. E(aX + bY ) = aE(X) + bE(Y ) for real numbers
a and b, provided the right side is not of the form
+∞ − ∞ or −∞ + ∞.

E3. Jensen’s inequality: If ψ(y) is convex and E(Y )

and E{ψ(Y )} are both finite, then E{ψ(Y )} ≥
ψ{E(Y )}.

E4. Monotone convergence theorem: If Yn ↑ Y and
E(Yn) > −∞ for some n, then E(Yn) ↑ E(Y ).

E5. Dominated convergence theorem: If Yn → Y

in probability and |Yn| ≤ Z, E(Z) < ∞, then
E(Yn) → E(Y ) (see Convergence in Distribu-
tion and in Probability).

E6. If Y1, Y2, . . . are nonnegative or
∑∞

i=1 E(|Yi |) <

∞, then E
(∑∞

i=1 Yi

) = ∑∞
i=1 E(Yi).

E7. If Y is nonnegative, then E(Y ) = ∫ ∞
0 P(Y > y)

dy, whether finite or not.
E8. If E(Y 2) < ∞, then a = E(Y ) minimizes E(Y −

a)2 over all a ∈ �.

Expectation can also be taken conditioned
on events, random variables, or arbitrary sigma
fields (see Conditional Probability). Assume that
E(|Y |) < ∞. If A is an event of nonzero probability,
the conditional expectation of Y given A, denoted
E(Y |A), is defined as E{YI (A)}/P (A), where I (A)

is the indicator of event A. For example, let (X, Y )

have joint probability mass function f (x, y), and let
A = {X = x}. Then E{YI (X = x)} = ∑

y yf (x, y)

and

ψ(x) = E(Y |X = x) =
∑

y

yf (x, y)

g(x)
, (1)

where g(x) is the marginal probability mass func-
tion of X. In other words, we can take the expectation
of Y with respect to the conditional probability mass
function h(y|x) = f (x, y)/g(x). Similarly, if (X, Y )

has a density f (x, y), we could, by analogy, integrate
over the conditional density h(y|x) = f (x, y)/g(x):

ψ(x) = E(Y |X = x) =
∫

yf (x, y) dy

g(x)
(2)

when g(x) �= 0. But what if (X, Y ) does not have
a density or probability mass function? We need
a more general definition of conditional expecta-
tion given a random variable. Consider the discrete
setting and replace x with X in ψ(x) : ψ(X) =∑

y yf (X, y)/g(X). For any Borel set B of x points
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with nonzero probability,

E{ψ(X)I (X ∈ B)} =
∑

x∈B

∑

y

{
yf (x, y)

g(x)

}
g(x)

=
∑

y

∑

x∈B

yf (x, y)

= E{YI (X ∈ B)}. (3)

In other words, ψ(X) has the same average value
as Y over any X set of nonzero probability. The
same thing happens in the continuous situation with
sums replaced by integrals. Note that E{ψ(X)I (X ∈
B)} = E{YI (X ∈ B)} also holds when P(X ∈ B) =
0 because both sides are 0. This is the generalization
we are looking for. For any random vector X =
(X1, . . . , Xn), the conditional expectation of Y given
X, denoted E(Y |X), is any (Borel) function ψ(X)

such that

E{ψ(X)I (X ∈ B)} = E{YI (X ∈ B)} (4)

for all n-dimensional Borel sets B.
Strictly speaking, we call ψ(X) a version of

E(Y |X) because more than one function satisfies (4).
For example, if Y has a density, then Z1 = Y is
a version of E(Y |Y ), but so is Z2 = YI (Y �= 0) +
10I (Y = 0). Though Z1 and Z2 are not identical,
P(Z1 �= Z2) = P(Y = 0) = 0. It is clear that by
replacing 10 with any other number we can create
infinitely many versions. That two versions Z1 and
Z2 of E(Y |X) differ only on a set of probability, 0 is
not unique to this example. It always holds.

When (X, Y ) has a probability mass function or
density f (x, y), one version of E(Y |X) is (1) or
(2). Indeed, we have already seen that (1) implies
(4). Sometimes E(Y |X) is clear without resorting to
conditional densities. For example, suppose we draw
a random sample X1, . . . , Xn from a population
with expectation µ, and select one of {X1, . . . , Xn}
at random. The randomly selected value, Y , has
the same unconditional distribution as an Xi . But
conditioned on X1, . . . , Xn, Y = Xi with probability
1/n, i = 1, . . . n. Thus, the conditional expectation of
Y given X1, . . . , Xn is

∑n
i=1 Xi(1/n) = X.

Here is an example showing why E(Y |X = x)

should not be thought of as conditioning on the event
A = {X = x} when A has probability 0. Suppose we
want to compare the difference in sample propor-
tions, p̂1 − p̂0, to the relative risk, p̂1/p̂0 from two
independent random samples. Of specific interest is

how likely various values of the difference in sample
proportions are given the relative risk. Because p̂0

and p̂1 behave asymptotically like independent nor-
mal random variables (X, Y ) with respective means
p0 and p1 and respective variances p0(1 − p0)/n

and p1(1 − p1)/n, the delta method implies that the
asymptotic joint distribution of (p̂1 − p̂0, p̂1/p̂0) is
that of (Y − X, Y/X). It seems, therefore, that the
conditional distribution of (p̂1 − p̂0|p̂1/p̂0) must be
that of (Y − X|Y/X). To avoid resorting to the use
of transformations and Jacobians, write the event
p̂1/p̂0 = λ as p̂1 − λp̂0 = 0. It is tempting to say
that the conditional distribution of (Y − X|Y/X = λ)

must be that of (Y − X|Y − λX = 0). The latter dis-
tribution is easy to compute: (Y − X, Y − λX) is
bivariate normal, so the conditional distribution of
(Y − X|Y − λX = 0) is univariate normal.

A surprising mistake in the above argument
is concluding that because the events {Y/X = λ}
and {Y − λX = 0} are the same (barring X = 0),
the conditional distribution of (Y − X|Y/X = λ)

is that of (Y − X|Y − λX = 0). In fact, Proschan
and Presnell [5] show using Jacobians that the former
conditional distribution is not normal. This example
shows the danger of viewing conditional expectations
given a random variable as conditional expectations
given an event of probability 0. Incidentally, another
flaw in the above argument is the assumption
that because the asymptotic joint distribution of
(p̂1 − p̂0, p̂1/p̂0) is that of (Y − X, Y/X), the
conditional distribution of (p̂1 − p̂0|p̂1/p̂0) must be
that of (Y − X|Y/X). In general, convergence of
(Un, Vn) to (U, V ) in distribution does not imply
convergence of the distribution of (Vn|Un) to that
of (V |U) (the converse is also not true; weak
convergence of marginal and conditional distributions
does not necessarily imply weak convergence of joint
distributions; see [7]). Other interesting anomalies in
conditional expectation are given in [4–6].

Conditional expectation may be viewed geomet-
rically as a projection [3], Chapter 8. Equation
(4) says that E{(Y − Z)I (X ∈ B)} = 0 for every n-
dimensional Borel set B, where Z = E(Y |X). It fol-
lows that for any simple random variable W that is
a function of X, E{(Y − Z)W } = 0. Because sim-
ple random variables are the building blocks used
to generate any random variable, it can be shown
that E{(Y − Z)W } = 0 for any W that is a func-
tion of X such that E{(Y − Z)W } exists and is finite.
To ensure E{|(Y − Z)W |} < ∞, assume E(Y 2) < ∞
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and consider those W that are Borel functions of
X with finite variance, L2(X) = {W : W = f (X),
f[ is a Borel function, E(W2) < ∞}. Then E{(Y −
Z)W } = 0 for all W ∈ L2(X).

When E(UV ) = 0 for random variables U

and V , we can think of U and V as being
orthogonal and write U⊥V . The analogy with
n-dimensional vectors u and v is that u and v

are orthogonal ⇔ ∑
uivi = 0 ⇔ E(UV ) = 0, where

(U, V ) is a random draw from a population with
values {(u1, v1), . . . , (un, vn)}. The condition E{(Y −
Z)W } = 0 means that Y − Z⊥W . Picture the random
variable Y as a vector in the plane. The set L2(X)

is a linear subspace, which we can picture as
a line. Then Z = E(Y |X) is the projection of Y

onto L2(X) (Figure 1). This geometric perspective
makes clear certain properties of conditional
expectation. For example, if L2(X1) ⊆ L2(X2), then
E{E(Y |X2)|X1} = E(Y |X1) with probability 1. To
see this, let W ∈ L2(X1) and set Z1 = E(Y |X1) and
Z2 = E(Y |X2). Then E{(Z2 − Z1)W } = E[{−(Y −
Z2) + Y − Z1}W ] = 0 because Y − Z2⊥L2(X2) ⊇
L2(X1) and Y − Z1⊥L2(X1). Because E{(Z2 −
Z1)W } = 0 for every W ∈ L2(X1), Z1 is a version of
E(Z2|Z1). Though this geometric argument implicitly
assumes E(Y 2) < ∞, the result holds whenever
E(|Y |) < ∞.

Y

Z L2 (X)

Y–Z

Figure 1 Conditional expectation as a projection. Think
of the random variable Y as a two-dimensional vector,
and the set L2(X) = {W : W = f (X) : E(W 2) < ∞} of
potential predictors of Y based on covariates X as vectors
on a line. Then Z = E(Y |X) is the projection of Y onto
L2(X). That is, Y − Z⊥W for every W ∈ L2(X)

The geometric perspective is useful for under-
standing another interesting fact about conditional
expectation. We have noted that when E(|Y |) <

∞ and in the absence of any other informa-
tion, E(Y ) is the prediction of Y that mini-
mizes the mean squared error E{(Y − a)2} over
all a. But now suppose one is allowed to pre-
dict Y after observing random variables X1, . . . , Xn.
Among all predictors W = f (X1, . . . , Xn) with
finite variance, Z = E(Y |X1, . . . , Xn) minimizes the
mean squared error E{(Y − W)2}. This is read-
ily apparent from Figure 1 and the fact that
E{(Y − W)}2 is the L2 distance between Y and
W . More formally, E{(Y − W)2} = E{(Y − Z + Z −
W)2}. The cross product term 2E{(Y − Z)(Z −
W)} is 0 because Y − Z⊥L2(X) and Z − W ∈
L2(X), so E{(Y − W)2} = E{(Y − Z)2} + E{(Z −
W)2} ≥ E{(Y − Z)2}.

The definition of conditional expectation can be
generalized. Notice that condition (4) involves X only
through the collection of sets {X ∈ B, B Borel} it
generates, known as the sigma field generated by
X and denoted σ(X). For example, suppose X is
the indicator that a patient has a history of hyper-
tension, and Y is his systolic blood pressure on
a given day. Further, suppose that E(Y |X = 0) =
120 and E(Y |X = 1) = 150. Even though E(Y |X =
0) �= E(Y |1 − X = 0) and E(Y |X = 1) �= E(Y |1 −
X = 1), the random variables E(Y |X) and E(Y |1 −
X) are the same, namely, 120 on the set where
X = 0 and 150 on the set where X = 1. Similarly,
E(Y |X) = E{Y |t (X)} for any invertible transforma-
tion t (X). Because E(Y |X) depends only on the
sigma field  = σ(X), some authors prefer the nota-
tion E(Y |). It is helpful to think in terms of sigma
fields rather than random vectors. Sigma field 2

contains more information than sigma field 1 if
1 ⊆ 2. For example, 1 = σ(|X|) ⊆ σ(X) = 2.
Knowing which events in 2 occurred tells us which
events in 1 occurred, but not vice-versa. Similarly,
1 = σ(X1) ⊆ σ(X1, X2) = 2. Conditional expec-
tation can be defined for arbitrary sigma fields (not
just those generated by a random vector); E(Y |) is
any -measurable random variable Z (meaning that
{ω : Z(ω) ∈ B} ∈  for every Borel set B) such that
E{ZI (A)} = E{YI (A)} for all A ∈ . Define L2()

as the collection of -measurable random variables
W with E(W 2) < ∞. The above results can be gen-
eralized as follows.
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Useful Properties of Conditional
Expectation

C1–C7: same as E1–E7 with expectation replaced
by conditional expectation and the phrase “with
probability 1” added.

C8. Among all functions W ∈ L2(), Z = E{Y |}
minimizes the conditional and unconditional mean
squared errors: E{(Y − W)2|} and E{(Y − W)2},
assuming E(Y 2) < ∞.

C9. If W is -measurable and E(|W |) < ∞, E(|Y |) <

∞, then E(WY |) = WE(Y |) with probability 1.

C10. If E(|Y |) < ∞ and 1 ⊆ 2, E{E(Y |2)|1} =
E(Y |1) with probability 1.

C11. If E(|Y |) < ∞, E{E(Y |)} = E(Y ).
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Expected Number of
Deaths

Several procedures are available if the mortality in
a study group is to be compared with the mortal-
ity of the general population from which the sam-
ple is drawn. In a clinical setting calculation of an
expected survival curve is often performed, and in
epidemiologic studies of geographic or occupational
variations of mortality the observed number of deaths
is usually compared with the expected number of
deaths based on published mortality rates for the
general population. Calculation of expected number
of deaths is an integral part of the standardization
of vital rates, which is one of the oldest statistical
techniques; see Keiding [10] for a review of early
applications of the method. Standardization of rates is
closely related to multiplicative hazard rate models
and the use of relative mortality to describe devia-
tions from the expected mortality (see, for example,
Breslow [5], Breslow & Day [6] or Hoem [9]).

Two methods have been developed for the calcu-
lation of expected number of deaths. The classical
approach, the person-years method, is derived as a
sum of products of age- and sex-specific rates and the
corresponding time at risk, whereas the prospective
method involves calculation of a sum of conditional
survival probabilities. For a further description the
following setup is introduced.

Consider a sample of n independent individuals.
Individual i is followed from time ui to time ti
if death does not occur prior to ti . Let Ti denote
the time of death and define Xi = min(ti , Ti). The
mortality rate at time t , assuming that the individ-
ual is subject to the same risks as a person from
the external reference population having the same
demographic description, is denoted λi(t). The cor-
responding survival function is denoted Si(t). The
reference population is usually taken to be the gen-
eral population, and the mortality rate and the survival
function may be determined from published data tak-
ing into account the sex, date of birth, and age at
entry of the person.

Set Di to 1 if death occurs during follow-up and to
0 otherwise, i.e. Di = I (ui < Ti ≤ ti ). The observed
number of deaths is then D = ∑

Di . Introduce

Ai =
∫ Xi

ui

λi(s) ds,

and let A = ∑
Ai denote the total exposure to death.

The probability of dying during follow-up is
obtained as

pi = Si(ui) − S(ti)

Si(ui)
.

It is easily seen that E(Di |Ti > ui) = pi . Moreover,
one may show (see, for example Breslow [4] or Berry
[2]) that also E(Ai |Ti > ui) = pi .

These results suggest two different ways of cal-
culating the expected number of deaths, E(D), on
the assumptions that mortality in the study group is
identical to that of the reference population.

The prospective method [8, 11] utilizes the rela-
tionship E(D) = ∑

pi directly; the expected number
of deaths is simply obtained as

∑
pi . Note, however,

that the potential follow-up time, ti , must be known
for all individuals in order to compute the expected
number of deaths by this method. Such knowledge is
not available for many censoring schemes, and this
requirement therefore severely limits the applicability
of the prospective method.

Deviations from the expected number of deaths
may be assessed by computing

X2
P =

(
D −

∑
pi

)2

V
,

where V = ∑
var(Di) = ∑

pi(1 − pi). The distri-
bution of the test statistic is approximately a chi-
square distribution on one degree of freedom.

The person-years method (see, for example, Case
& Lea [7] or Berry [2]) relies on the relationship
E(A) = ∑

pi , which shows that A is an unbiased
estimate of the expected number of deaths on the
hypothesis that the mortality in the study group is
identical to that of the reference population. The
total exposure to death, A, is therefore used as an
estimate of the expected number of deaths. Usually
the distinction between “total exposure to death” and
“expected number of deaths” is not done and the ran-
dom variable A simply denotes the expected number
of deaths. Note, however, that for extended follow-
up of old individuals the contribution Ai to the total
exposure to death may exceed 1. Consequently, one
may encounter situations where the expected num-
ber of deaths is larger than the number of individuals
in the sample (see Smith [12] for one such exam-
ple) suggesting that this terminology is misleading.



2 Expected Number of Deaths

Note, moreover, that A is not an unbiased estimate of
the expected number of deaths if the mortality in the
sample differs from that of the reference population.
The size of the bias has been studied by Keiding &
Væth [11] within the framework of the multiplicative
hazard rate model.

With this method the hypothesis of no difference
between observed and expected number of deaths
may be tested by computing

X2
PY = (D − A)2

A
.

On the null hypothesis the distribution of the test
statistic is approximately a χ2 distribution on one
degree of freedom. Calculations of asymptotic rela-
tive efficiency by Anderson & Anderson [1] indicate
that the person-years method is more efficient than
the prospective method for proportional hazards
alternatives and that the efficiency gain increases as
the proportion of individuals dying during follow-up
goes up.

The person-year method is easily adapted to
studies of cause-specific mortality (see Compet-
ing Risks). The total mortality rate in the refer-
ence population is simply replaced by the relevant
cause-specific mortality rate and deaths from other
causes are treated as censoring. This solution is not
applicable for the prospective method as it would
require knowledge of when an individual who dies
of the cause in question would have died from one
of the other causes. One may instead extend the
above model by introducing cause-specific mortal-
ity probabilities for each individual taking all causes
of mortality into account. Interpretation of deviations
from the expected number of deaths is, however,
complicated by the fact that excess death for one
cause will necessarily imply a deficit for some of
the other causes [12].

In application of the person-years method one usu-
ally assumes that the mortality rate λi(t) is constant
in one-year (or five-year) intervals, and the contribu-
tion Ai is then the sum of products of the age-specific
rates and the time spent in the corresponding age cat-
egory during follow-up. Interchanging the order of
summation one obtains the standard formula for the
expected number of deaths, A = ∑

λasYas, where λas

is the sex- and age-specific mortality rate of the ref-
erence population and Yas is the total person-years at
risk in the corresponding sex and age category. From

this formulation it is seen that D/A is the standard-
ized mortality ratio (see, for example, Breslow and
Day [6, Chapter 2]), which is used extensively in the
analysis of epidemiologic data on occupational haz-
ards for comparing mortality in a study population
with mortality in a standard population (see Stan-
dardization Methods).

The classical approach of indirect standardiza-
tion and calculation of a standardized mortality ratio
(SMR) follows from a simple, multiplicative model
relating the mortality rate λi(t) of an individual in the
study population to the known mortality rate λ∗

i (t) for
the reference population

λi = θλ∗
i (t).

For this model one may show [3] that the standard-
ized mortality ratio, D/A, is the maximum likeli-
hood estimate of the relative mortality θ and that
the test statistic, X2

PY, given above is a score test
(see Likelihood) for testing the hypothesis θ = 1.
The simple, multiplicative model has been developed
further to deal with regression problems using pro-
portional hazards regression models of the form

λi(t ; zi ) = exp(β ′zi)λ
∗
i (t),

where zi is a vector of independent variables and
β the corresponding vector of regression parameters.
With grouped data such models are often referred
to as Poisson regression models (see, for example,
Berry [2] or Breslow & Day [6, Chapter 4]).
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Expected Survival Curve

Expected survival curves aim at calculating how an
actual group of patients would have survived under
“standard” or “historical” conditions, (cf. the general
discussion in Bias from Historical Controls).

The standard or historical conditions are avail-
able as a survival curve Si(t) for each patient i

individually, perhaps based on estimates in a regres-
sion model for survival data. The direct adjusted
survival curve or corrected group prognostic curve
S(t) was discussed by Makuch [14], Chang et al. [3],
Gail and Byar [5], Markus et al. [15] and Thomsen
et al. [18] as

S(t) = 1

n

∑
Si(t). (1)

An important objection to the use of the direct
adjusted survival function is that is does not take
the realized censoring pattern into account – on
the contrary, it depends strongly on an assumption
of independent censoring and involves an averaging
operation across the censoring pattern. Invoking each
patient’s potential follow-up time Bonsel et al. [2]
proposed what in continuous time would amount
to the following estimator. Let 0 < f1 < · · · < fn

be the potential follow-up times for the n patients,
and define iteratively, for fj < t ≤ fj+1, Bonsel’s
estimator

SB(t) = SB(fj )

n∑

j+1

Si(t)

n∑

j+1

Si(fj )

. (2)

A slightly different definition was proposed by
Væth [20], (cf. [9, 12, 19)].

If the historical mortality is given as a Cox
regression model so that patient i has hazard
λi(t) = λ0(t)eβ ′zi , it has been fairly common to
calculate the average covariate z = ∑

zi/n and
use S(t, z) as expected survival curve. This
average-covariate approach is clearly suboptimal, as
explained in [3, 6, 17, 18].

As discussed in the article expected number of
deaths, it is often unrealistic to assume the poten-
tial follow-up times known (possible occurrence of
ordinary loss to follow-up gives unknown potential
follow-up times), and it may be preferable to base

the calculation of the expected survival curve, S∗,
on exposing each study individual to his/her stan-
dard mortality rate over the actually experienced
period at risk. One such proposal [18] general-
ized the classical calculation of expected number of
deaths as follows. Assume that the historical mor-
tality is given as a Cox regression model so that
patient i has hazard λi(t) = λ0(t)eβ ′zi . Let Yi(t) =
I {patient i still at risk at time t}, Y (t) = ∑

Yi(t).
Then under the historical hypothesis on the mortality,
the average hazard of the patients still under obser-
vation at time t would be

λ∗(t) =
∑

Yi(t)λ0(t) exp(β ′zi)

Y (t)
. (3)

Defining the cumulative hazard as Λ∗(t) =∫ t

u=0 λ∗(u) du, the survival function S∗(t) =
exp{−Λ∗(t)} is a continuous-time version of the
“expected survival rate” [4] or “expected survival
curve” [8]. Andersen and Væth [1] pointed out that it
has the following desirable property: let the standard
Nelson–Aalen estimator of Λ(t) be defined by

Λ̂(t) =
∑

Tj ≤t

1

Y (Tj )
, (4)

where T1 < T2 < · · · are the times of (observed)
deaths. Then Λ∗(t) − Λ̂(t) has expectation zero,
under the null hypothesis that patient i has haz-
ard λi(t). Therefore, S∗(t) represents, under the null
hypothesis, an expected survival curve. Outside of the
null hypothesis, it is not so easy to interpret S∗(t),
containing as it does information on study group
mortality, through Yi(t), as well as standard mortal-
ity, through λi(t). S∗(t) therefore cannot be recom-
mended as an expected survival function, despite its
wide use for this purpose.

S∗(t) is, however, useful for inference on excess
mortality, as follows. In the particular case where
the study group has an additive excess mortality
α(t) over the standard, that is, patient i has hazard
α(t) + λi(t), one may obtain an estimate of the cor-
responding “survival” function

exp

[
−

∫ t

0
α(u) du

]
(5)

as the so-called relative survival function Ŝ(t)/S∗(t).
Andersen and Væth [1] showed that results
on unbiasedness, consistency, and asymptotic
normality are available. Thomsen et al. [18, 19]
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compared this “expected survival curve” to the
previously discussed estimators.

These matters were discussed earlier by Hakulinen
[7] who considered three estimators of “the expected
survival rate”. He divided the study population into
homogeneous subgroups and considered a weighted
average of the group-specific survival functions (his
formula (2.2)) and the survival functions correspond-
ing the two different weighted averages of the stan-
dard mortality rates (his formulas (2.3) and (2.4)).
When each subgroup consists of a single patient, his
formula (2.2) equals the direct adjusted survival curve
and his formula (2.3) equals S∗. Finally, the mortal-
ity rate in his formula (2.4) equals the mortality rate
corresponding to Bonsel’s estimator; see [17] for a
related idea.

Nielsen’s Asymptotic Results

Nielsen [16] considered the observed survival curve,
Ŝ, estimated by the Kaplan–Meier method, and
estimated survival curves based on the Cox regression
model. He showed the following asymptotic results
under the null hypothesis of standard mortality, where
‖ · ‖ is supτ≤t | · |,
1. Under standard boundedness regularity condi-

tions, and assuming conditional independence
between survival time and censoring time given
covariates, ‖ S∗ − Ŝ ‖ P→0 and ‖ SB − Ŝ ‖ P→0.

2. Assume, in addition that the censoring times are
identically distributed and marginally indepen-
dent of covariates (and hence survival times),
then ‖ S − Ŝ ‖ P→0.

Nielsen also proved asymptotic normality and
gave martingale-based test statistics for the histori-
cal hypothesis (see Counting Process Methods in
Survival Analysis).

Thus, the use of the direct adjusted survival
curve requires marginally independent censoring, but
no information about actual survival or potential
follow-up is needed. In addition, it has the sim-
ple interpretation as the expected survival curve of
the study population under standard mortality in the
absence of censoring. The use of Bonsel’s method
requires conditional independence and information
on all potential follow-up times. S∗ requires neither
restrictive assumptions on the censoring pattern nor
any knowledge of the potential follow-up times, only

information about the actual time at risk is needed.
However, the latter depends on both the actual sur-
vival of the study group and the standard mortality
rates and, therefore, has no interpretation outside the
null hypothesis.

Individual Comparison of Prognosis for
New versus Old Treatment

Keiding et al. [10] extended the above framework,
to also include a fitted regression model for the
study patients. Under the Cox model for the historical
hypothesis, the survival probability of patient i would
be (in obvious notation)

Si
H (t) = exp

[−ΛH (t) exp(β ′
H zi)

]
, (6)

while under the Cox model for current treatment, the
survival probability would be

Si
T (t) = exp

[−ΛT (t) exp(β ′
T zi)

]
. (7)

Since the prognostic indices β ′
H zi and β ′

T zi as well
as the underlying intensities ΛH (t) and ΛT (t) will
usually be rather different, the relative survival at
time t

γi(t) = Si
H (t)

Si
C(t)

(8)

will usually depend strongly on patient i and time
t . Keiding et al. [10], Fig. 5) proposed using γi(t)

as one aid in deciding on the best treatment for
each individual patient and developed a diagram to
illustrate the rather dramatic variation of γ̂i (t) when
comparing transplantation to conservative treatment
in a set of Nordic primary biliary cirrhosis patients;
(see Prognostic Factors for Survival).

Difficulties in Applying Non- or
Semiparametric Models for the Historical
Controls

Two largely unnoticed difficulties in applying the
Cox regression model and similar non- or semi-
parametric models as historical controls concern the
interpretation of the time variable in the underlying
intensity and the use of time-dependent covariates.

The first point is most easily explained through
specific reference to the transplantation example
hinted at above. The model based on the historical
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data specifies that the death intensity at duration t

after entrance into the clinical trials is λ0(t) exp(β ′z).
This is to be compared with survival since transplan-
tation for the study patients. Patients would usually
be assumed to be at a more advanced stage of dis-
ease at transplantation than at entry into a trial, so
that the conventional choice of t = 0 at transplanta-
tion (that is, underlying intensity λ0(t) at time t since
transplantation) is ill motivated. Only if λ0(t) is con-
stant over t does the conventional application seem
justified, and one ought indeed to always postulate
this and (if possible) refit this parametric model to
the historical data before the comparison; see [13]
for a general discussion of comparing survival after
transplantation with conservative treatment.

The other difficulty is related to the use of time-
dependent covariates, in particular, when a natural
time origin is available prior to the entry on study of
the study patients. Delayed entry (left truncation)
methods are then appropriate, but as pointed out
by Keiding and Knuiman [11], it is then usually
impossible to incorporate time-dependent covariates
into the Cox regression model.
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(1990). Survival after liver transplantation of patients
with PBC in the Nordic countries: comparison to
expected survival from another series of transplanta-
tions and from an international trial of medical treatment,
Scandinavian Journal of Gastroenterology 25, 11–18.

[11] Keiding, N. & Knuiman, M.W. (1990). Letter to the
editor on ‘Survival analysis in natural history studies of
disease’ by A. Cnaan and L. Ryan, Statistics in Medicine
9, 1221–1222.

[12] Keiding, N. & Thomsen, B.L. (1999). Survival curves,
Bonsel and Væth estimators of, Encyclopedia of Statisti-
cal Sciences Update 3. Wiley, New York, pp. 228–230.

[13] Klein, J.P. & Zhang, M.-J. (1996). Statistical challenges
in comparing chemotherapy and bone marrow transplan-
tation as a treatment for leukemia, in Lifetime Data:
Models in Reliability and Survival Analysis, N.P. Jew-
ell, A.C. Kimber, M.-L.T. Lee & G.A. Whitmore, eds.
Kluwer, Dordrecht, pp. 175–185.

[14] Makuch, R.W. (1982). Adjusted survival curve estima-
tion using covariates, Journal of Chronic Diseases 3,
437–443.

[15] Markus, B.H., Dickson, E.R., Grambsch, P.M., Flem-
ing, T.R., Mazzaferro, V., Klintmalm, B.G.B., Wies-
ner, R.H., van Thiel, D.H. & Starzl, T.E. (1989). Efficacy
of liver transplantation in patients with primary bil-
iary cirrhosis, New England Journal of Medicine 320,
1709–1713.

[16] Nielsen, B. (1997). Expected survival in the Cox model,
Scandinavian Journal of Statistics 24, 275–287; Adden-
dum 26, 1999, 159.

[17] Nieto, F.J. & Coresh, J. (1996). Adjusting survival
curves for confounders: A review and a new method,
American Journal of Epidemiology 143, 1059–1068.

[18] Thomsen, B.L., Keiding, N. & Altman, D.G. (1991). A
note on the calculation of expected survival, Statistics in
Medicine 10, 733–738.

[19] Thomsen, B.L., Keiding, N. & Altman, D.G. (1992).
Reply to a letter to the editor, cf. Thomsen et al. (1991),
Statistics in Medicine 11, 1528–1529.

[20] Væth, M. (1992). Letter to the editor re Thomsen et al.
(1991), Statistics in Medicine 11, 1527–1528.

(See also Marginal Models; Marginal Models for
Multivariate Survival Data)

NIELS KEIDING



Experimental Design

R.A. Fisher’s 1935 text, The Design of Experiments
[4], unified applied statistics and still shapes the
subject today. Fisher had to define and defend
his notion of a scientific experiment, of statistical
inference, and of probability, and then lay out a set
of practical procedures for the novice. In the Preface
to his text, he proclaims:

A clear grasp of simple and standardized statistical
procedures will . . . go far to elucidate the principle
of experimentation; but these procedures are them-
selves only the means to a more important end.
Their part is to satisfy the requirements of sound
and intelligible experimental design, and to supply
the machinery for unambiguous interpretation.

Fisher used the word “experiment” with special force.
The investigator was obliged to plan and to control
the experiment, leaving only one aspect to chance,
the random assignment of the treatments to the study
subjects or objects (see Randomized Treatment
Assignment). Randomization legitimized the statis-
tical inference by mechanically imposing a probabil-
ity distribution on the set of potential observations.
Using a prespecified type I error, one tested the null
hypothesis with a set of reproducible arithmetic pro-
cedures (see Hypothesis Testing).

When William Cochran and Gertrude Cox wrote
their 1950 text, Experimental Designs [2], nearly all
statisticians followed these protocols and most pre-
ferred to analyze laboratory-like experiments, such
as the first real-data example in the Cochran & Cox
text, “to measure the effectiveness of 4 soil fumi-
gants in keeping down the number of eelworms in
the soil”. Typical experimental units were “a plot of
land, a patient in a hospital, or a lump of dough, or it
may be a group of pigs in a pen, or a batch of seed”
(see Unit of Analysis).

The term treatments has a positive connotation.
Treatments cure patients, increase crop yield, and
improve the quality of industrial products. Other
terms are deliberately bland, such as “blocks, plots,
classes, units, and replicates”. The experimental lay-
out resembles a rectangle of land, partitioned into
blocks or plots that contain units. A typical design
allocates treatments in either a regular or a random
manner to units within plots or within blocks. Units
receiving the same treatment are “replicates”.

In Fisher’s time “design” connoted choice. One
reviewed various shapes and sizes for blocks and
plots and ways of making regular or random assign-
ments of units. Then one chose a design to maximize
the chance of detecting at a prespecified type I error
level a factor producing a pattern of wide dispersion
among a set of mean treatment effects. As the novelty
of choice has worn off, “design” has come to mean
a precise description of the statistical model. Searle
et al. [6] have provided a brief, readable, and insight-
ful history that covers this subject in the context of
variance components.

Today, investigators often conduct experiments in
which they cannot entirely control the experimental
conditions. Accordingly, the theory and methods have
extended to deal with these irregular conditions.

This article gives a narrow overview of the basic
theory and methods of classical design of experiments
and then briefly discusses some of the major recent
extensions. After introducing some terminology, this
article addresses: (i) the mathematical core of the
subject, the decomposition of the sum of squared
deviations, and the associated computational work-
table; (ii) the link between the analysis of variance
(ANOVA) and linear regression; (iii) the design of
medical experiments; (iv) fixed and random effects;
and (v) balance, missing data and robustness.

Some Terminology for the Design of
Experiments

Fisher had provided a unified theory, a choice of
many designs, and a worktable (the ANOVA table)
that allowed a novice to carry out tests of significance.
He moved study design beyond the adequacy of sam-
ple size (statistical power). Designs could include
several interacting factors such as the factor “fertil-
izers” with four levels (F, G, H, K) and the factor
“fumigants” with two levels (a, b) (see Factorial
Experiments). The investigator could choose to have
all possible combinations (Fa, Fb, Ga, Gb, Ha, Hb,
Ka, Kb) or a balanced subset such as (Fa, Gb, Ha,
Kb) (see Fractional Factorial Designs). Combina-
tions introduced “interactions” between a type of
fertilizer and a type of fumigant.

A balanced incomplete blocks (bib) design is
suited to small block sizes, n units per block, and
many treatments, I > n; more treatments than one
could fit into a block. A typical bib design places n of
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the I distinct treatments in each block and has overall
balance among treatments. For example, with each
column representing a block of size 4, and cyclically
listing the seven treatments (ABCDEFG), a layout of
a 7-block design is:

A E B F C G D
B F C G D A E
C G D A E B F
D A E B F C G

Crossed and nested designs represent extremes in
balanced designs that have two (or more) distinct
treatment factors. For example, let factor 1 with lev-
els (ABCD) be completely crossed with factor 2 with
levels (efgh). That is, each unit has a pair of treat-
ments, one from factor 1 and one from factor 2. A
layout for this crossed design is:

A B C D
e f e f e f e f
g h g h g h g h

A layout for a completely nested design is:

A B C D
e e f f g g h h
e e f f g g h h

A more precise notation such as “Ae Af Ag Ah”
lists the explicit pairs with the uppercase treatment
level first and the lowercase treatment level second,
whereas the notation above shows how the second
pair-member in the crossed design varies more than
in a nested design.

When the number of levels of factor 1 (blocks)
equals the number of levels of factor 2 (treatments
ABC) and columns and rows are physically present,
as in an agricultural field, then one can simultane-
ously balance treatments within both columns and
within rows by means of a Latin square design. For
n = 3, with columns representing blocks, the layout
of a Latin square design is

A B C
B C A
C A B

Lattice designs have a block size n and a treatment
factor with I = n2 levels. A lattice design assigns a
subset of distinct treatments to each block and each
pair of levels appears equally often within the blocks.
For example, with 12 blocks, block size = 3, and

I = 9 treatments (abcdefghi), a layout for a lattice
design with columns denoting blocks is:

a d g a b c a b c a b c
b e h d e f e f d f d e
c f i g h i i g h h i g

“Classical” design of experiments contains many
other topics (see Magic Square Designs; Orthog-
onal Designs; Partially Balanced Incomplete
Block Design; Youden Squares and Row–Column
Designs).

The Decomposition of the Sum of
Squared Deviations

Squared Deviations

Under the null hypothesis, all the levels or categories
of treatment have the same effect on a continuous out-
come, Y . The vague alternative hypothesis merely
posits that treatment effects differ. The method of
analysis, the analysis of variance (ANOVA), does
not reveal which treatment appears to work best. For
ANOVA, one computes the grand mean of Y and the
set of treatment means. If the values in this set sub-
stantially deviate from the grand mean, then the factor
“treatments” is significant. The individual treatments
become anonymous when their deviations from the
grand mean enter into a single summary statistic, the
sum of squared deviations from the grand mean.

The ANOVA table is a worktable for computing
the test of a null hypothesis. The user provides “sums
of squares” based on a “decomposition” of the total
sum of squared deviations.

As an example, the N = 8 observations, Yij ,
shown in Table 1, displayed in two rows with J = 4
per row, have a grand mean of Y .. = Y../N = 32/8 =
4. Table 1 also displays the deviations from the mean,
Yij − Y ... The small sample size that makes it easy

Table 1 Notation for one-way ANOVA with observed
data, Yij

Row Yij Total Mean Yij − Y ..

1 2 4 4 2 Y1. = 12 Y 1. = 3 −2 0 0 −2
2 7 4 6 3 Y2. = 20 Y 2. = 5 3 0 2 −1

Y.. = 32 Y .. = 4
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to verify the calculations would, in practice, call for
a cautious interpretation of results.

The total sum of squared deviations, the total sum
of squares, or total deviations is

∑

ij

(Yij − Y ..)
2 = 4 + 0 + 0 + 4

+ 9 + 0 + 4 + 1 = 22.

The within sum of squared deviations, the within sum
of squares, or within deviations, is

∑

ij

(Yij − Y i.)
2 = 1 + 1 + 1 + 1

+ 4 + 1 + 1 + 4 = 14.

The Decomposition of the Total Sum of Squared
Deviations

For the one-way ANOVA model, the decomposition
formula is
∑

ij

(Yij − Y ..)
2 =

∑

ij

(Yij − Y i.)
2 +

∑

ij

(Y i. − Y ..)
2,

total deviations = within deviations

+ between deviations.

With J observations per row, the between deviations
or the sum of squared deviations between the row
mean and the grand mean is

∑

ij

(Y i. − Y ..)
2 = J

∑

i

(Y i. − Y ..)
2,

which in Table 1 is 4[(3 − 4)2 + (5 − 4)2] = 8.
The general formula allows row i to have ni

columns. When all ni = J , the ANOVA design has
“balanced” replications; otherwise replications are
“unbalanced”.

To prove the decomposition formula, one shows
that a cross-term equals zero, thereby linking the for-
mula to the geometry of least squares. Specifically,
rewrite the deviation Yij − Y ... as

(Yij − Y i.) + (Y i. − Y ..).

Now, the squared deviation has two squared terms
and a cross-term. Summing over all i and j yields
the decomposition formula when the cross-term drops
out; that is,

∑

ij

(Yij − Y i.)(Y i. − Y ..)

=
∑

i

(Y i. − Y ..)
∑

j

(Yij − Y i.),

=
∑

i

(Y i. − Y ..)0 = 0.

The vector of within deviations is orthogonal to
the vector of between deviations because their inner
product is zero. Hence, the decomposition formula
illustrates the Theorem of Pythagoras by forming a
right-angled triangle from the three vectors of devi-
ations with the vector of total deviations as the
hypotenuse.

Other terms are used in place of “between” and
“within”. If the model for a one-way ANOVA holds,
then the data in each row cluster about the row
mean. Such a model “explains” between deviations,
while within deviations remain as unexplained errors.
Hence, instead of the terms “between” and “within”,
some authors use “model” and “error” or “explained”
and “unexplained”.

The ANOVA Table

The null hypothesis that the row means are equal is
tested by comparing the between-mean square to the
within-mean square. A balanced one-way ANOVA (I
rows and J columns with N = IJ observations) has
the ANOVA table shown in Table 2.

Within a row of the ANOVA table, the mean
square equals the sum of squares divided by the
degrees of freedom. For the data from Table 1, the
ANOVA table values are shown in Table 3.

The sum of squares column contains the values
for the terms in the decomposition. The degrees of
freedom column entries total N − 1, one less than
the sample size.

Table 2 Balanced one-way ANOVA

Source Sum of squares df Mean square F -ratio

Between (model) Between deviations I − 1 Between-mean square Between-mean square
Within-mean squareWithin (error) Within deviations I (J − 1) Within-mean square

Total Total deviations N − 1
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Table 3 ANOVA table values from data in Table 1

Sum of Mean
Source squares df square F -ratio

Between 8 1 8/1 = 8.0 8.0/2.3 = 3.4
Within 14 6 14/6 = 2.3

Total 22 7

The underlying normality assumptions (see Nor-
mal Distribution) imply that the between deviations
and the within deviations have independent chi-
squared distributions with the respective degrees of
freedom given in the ANOVA table. The observed F

ratio follows an F distribution.
For Table 1 the row means would differ signifi-

cantly if the observed F ratio of 3.4 exceeded v, the
value of the F distribution with one and six degrees
of freedom for which Pr (F ≥ v) = 5%. But the F

ratio of 3.4 is less than v = 5.99 and the null hypoth-
esis cannot be rejected.

The phrase “degrees of freedom” has a useful
interpretation. Typically it arises when discussing the
sample variance,

s2 =
∑

(xi − x)2

(n − 1)
.

The sum has n terms, yet is divided by n − 1. This
suggests that a degree of freedom is lost because the
parameter, the population mean, µ, is estimated by
the sample mean, x. The first column of the ANOVA
table identifies a source or a factor associated with
each row. The number of degrees of freedom is
roughly the number of terms in the sum of squares
minus the number of parameters associated with the
row source.

The Link Between the Analysis of
Variance and Linear Regression

The framework of linear regression helps to specify
the model and the null hypothesis (or hypotheses).
But the ANOVA model has many simple represen-
tations as a regression model. For example, let each
row in Table 1 represent a treatment applied to four
subjects. The one-way ANOVA model corresponds
to a linear regression model with intercept α, namely

y = α + βt1 + error,

where the zero–one variable t1 = 1 for treatment 1
and t1 = 0 for treatment 2. One might choose this

model if treatment 1 were the experimental treatment
and if treatment 2 were the control group.

The one-way ANOVA model also corresponds to
a no-intercept model

y = β1t1 + β2t2 + error,

where t1 and t2 are the respective zero–one variables
for treatments 1 and 2. Note that in this model
if t1 = 0 then t2 = 1 and vice versa. One might
choose this model if both treatments were active
treatments. One can show that α = β1 + β2 and that
β = β1, indicating the sense in which the models are
equivalent. The test that the row effects are equal in
the ANOVA model, the test that β = 0 in the intercept
model, and the test that β1 = β2 in the no-intercept
model are all the same test. In each of these three
tests under the given constraint the null hypothesis
expected value of y does not vary with treatment.

In fact, the ANOVA model is equivalent to an infi-
nite class of equivalent regression models, a source of
confusion until one decides to choose one convenient
model and ignore all the others.

When adopting the intercept model, one treat-
ment category is viewed as “baseline” or “control”
while all other categories of treatment are viewed
as “active” compared with the common baseline
treatment. A one-way ANOVA model with three
treatments, t1, t2, and t3, has the corresponding no-
intercept regression model

y = β1t1 + β2t2 + β3t3 + error,

and lumps all treatments under one global null
hypothesis that β1 = β2 = β3. In this model if t1 = 0
then t2 = t3 = 0; if t2 = 0 then t1 = t3 = 0, and if
t3 = 0 then t1 = t2 = 0. The regression model per-
mits one to break up the global ANOVA test into
separate tests for each β coefficient.

ANOVA Equations

ANOVA models simultaneously test all levels of a
factor within a row of the ANOVA table. The general
procedure for testing each of several factors is as
follows: decompose the total deviations into one line
of (between) deviations for each factor followed by
a final line of within deviations. For each factor,
the F ratio is the mean square for a factor (factor
deviations/factor degrees of freedom) divided by the
within-mean square.
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Regression equations list all parameters, while
ANOVA equations list only the factors. For example,
for the one-way model with I levels of treatment and
J replications per treatment, one form of the ANOVA
model equation is

Yij = µi + εij ,

where Yij is replication j of treatment i, µi is the
mean for treatment i, and εij are mutually indepen-
dent normally distributed random errors each with
mean zero and variance σ 2. Another form is

Yij = µ + αi + εij ,

where αi is the difference between the mean for
treatment i and the grand mean µ. Note that µ is not
the intercept. The ANOVA table yields only tests of
the factors. Thus, a variety of post hoc tests, known
as “multiple comparison tests”, typically compare
the many pairs of mean values after carrying out the
ANOVA F tests. These post hoc tests more closely
resemble the many tests in a regression model, one
for each β coefficient.

The General Linear Model

The mathematical theory behind the design of exper-
iments provides precision and places ANOVA within
the general theory of linear regression, “the gen-
eral linear model”. Few statisticians can resist this
efficient but abstract view of the design of exper-
iments. Hence, most modern texts and articles use
the formalisms and notation of the general linear
model. It succinctly expresses the decomposition for-
mula and relates it to the geometry of least squares.
The vector of estimates of the regression β coeffi-
cients are obtained by applying a “projection” matrix
that maps from the vector space of observations
(total deviations) into the subspace of the model
(between deviations). The orthogonal complement to
the model subspace is the error subspace (within devi-
ations), thereby completing the right-angled triangle.
The notation streamlines the expression of the null
hypotheses and the development of the distribution of
test statistics associated with these hypotheses. Under
normality assumptions, summary statistics based on
orthogonal vectors are statistically independent.

The design matrix, X, appears in the regression
model equation

Y = Xβ + error,

where the observation vector Y is an N × 1 vector,
X is an N × k matrix, and the vector of regression
parameters β is a k × 1 vector. The design is specified
by the design matrix X and by the joint distribution
of the error terms. The investigator then gathers the
data, Y, estimates the unknown vector of parameters,
β, and tests the null hypothesis under the specified
distribution.

For the one-way ANOVA model with I = 2 rows
and J = 4 columns as in Table 1, one can write the
transpose of the vector Y as

YT = (Y11, Y12, Y13, Y14, Y21, Y22, Y23, Y24).

Now, consider again the intercept and no-intercept
regression models discussed at the beginning of this
section, associating the subscript “1” with “intercept”
and “0” with “no-intercept”. Then for the intercept-
regression model with βT = (α, β), and for the no-
intercept regression model with βT = (β1, β2) the
respective design matrices, X1 and X0, are

X1 =





1 1
1 1
1 1
1 1
1 0
1 0
1 0
1 0





and X0 =





1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1





.

Note that the second column of X1 is the same as the
first column of X0, whence β = β1. If one adds the
first column of X0 to the second column of X0, one
obtains a column of 1s which is the same as the first
column of X1, whence α = β1 + β2. Then X1 and the
transformed X0 have the same pair of column vectors,
but in reverse order. It follows that the columns of
each matrix span the same two-dimensional space.

In general, given a regression model of the form,
Y = Xβ + error, with an N × k design matrix X
of rank k ≤ N , let the columns of X form a basis
for k-dimensional subspace Ek of the N -dimensional
vector space E. Then the set of all possible design
matrices for the ANOVA model corresponding to X
is the set of all possible bases for Ek . This char-
acterizes all regression models that yield the same
ANOVA model.

In practice, one specifies a convenient basis for
Ek; that is, X is fixed by choosing a convenient form
of the regression model such as the model with an
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intercept and a baseline category for each categorical
variable.

The Design of Medical Experiments

Currently ANOVA is applied to many contexts that
little resemble a laboratory setting. For example, to
compare medical treatments one might enroll patients
within several hospitals. Ideally, to achieve the same
level of control as in an agricultural study, all patients
might be brought to a large rectangular room with
rows and columns of beds organized in blocks or
plots. Setting aside one block of beds for each hos-
pital, treatment might be allocated in regular patterns
within each block (see Blocking).

Obviously, few medical studies can arrange for
such convenient designs, but balance and varying
adjacent treatments remain important methods of con-
trolling error. For example, one does not want to give
treatment A to the first 20 patients that enroll in a
study and treatment B to the next 20 patients that
enroll. This borrows from agricultural designs; if the
left end of a field is the more fertile, then

A B A B A B
B A B A B A

is preferable to

A A A B B B
A A A B B B

Superimposing a structural factor, such as the 2 × 2
blocks in the first pattern, controls error. Thus, the
design for a study that enrolls 40 patients might
divide the sequence into 10 blocks of size 4 and
within each block randomly assign two patients to
treatment A and two patients to treatment B. Unlike
the regular pattern in the agricultural design, the
medical study randomly assigns treatments within
blocks to prevent an investigator from anticipating
what treatment the next patient might receive.

Factorial Designs

Factorial designs have one or more factors. For
example, patients with systemic lupus erythemato-
sus (SLE) at four hospitals received either at-home
counselling or in-hospital counselling. They were
stratified by the severity of disease; those without
and with system damage (usually cardiac or kidney
failure). The factors are treatments, hospitals, and

severity of disease. A chronic disease, SLE “flares”
take the form of fatigue, rash, and other such symp-
toms. Experts believe that deteriorating patients have
more flares. Counselling promotes taking medications
regularly and thereby reduces the number of flares.

Factors often divide into treatment factors that
have scientific import and structural factors, like
blocks, that pattern the allocation of treatments.
The factor, “hospitals”, may be structural, may
have scientific import (if testing the hypothesis that
teaching hospitals do no better treating SLE than
other hospitals), or fall into the gray area between
“treatment” and “structure”, into a third category,
“adjustment factors”, that include “confounders”,
“nuisance parameters”, and the type of factor that
converts an ANOVA into an analysis of covariance
(ANCOVA). The underlying linear regression model
absorbs adjustment factors in two ways, as extra
terms each with a β coefficient or as a set of
interaction terms that replace a single term as in the
extension form an ANOVA to an ANCOVA model.

The lack of control over hospital protocols, physi-
cian practices, counselling practices, patient behavior,
and the accuracy of medical charts, combined with
uncertainty about how the disease progresses, raise
many design issues. Factorial designs capture some
of these extra sources of variation by introducing
interaction terms. The ANOVA model can include
two-way interactions (hospitals and treatments, treat-
ments and disease severity, and hospitals and disease
severity) and possibly three-way interactions.

This approach may “overfit” the model. A few
ANOVA factors may add so many insignificant fac-
tors and interactions that the error (within deviations)
shrinks, the F ratios inflate, and null hypotheses
are falsely rejected (type I error). Suppose the study
includes four hospitals, three levels of severity of dis-
ease, and two treatments. Then, while the ANOVA
equation has seven terms (three main factors, three
two-way and one three-way interaction), the corres-
ponding regression equation has 24 β coefficients
including one intercept, six main effect, 11 two-way
effect, and six three-way effect parameters.

This calculation also gives the formula for the
degrees of freedom in the corresponding ANOVA
table. A one-factor design with R rows has R

parameters; either a grand mean and R − 1 of the
rows of the factor as in the intercept regression model,
or R rows as in the no-intercept model. A two-factor
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model with R rows and C columns has RC interac-
tion terms. The mean of column 1 is the grand mean
of the R interaction terms with column 1. Thus, after
fixing all the row and column means, there remain
(R − 1)(C − 1) two-way interaction terms to deter-
mine. Note that (R − 1)(C − 1) + (R − 1) + (C −
1) + 1 = RC. Analogously, a three-factor model with
R rows, C columns, and S slices partitions the
RCS parameters into (R − 1)(C − 1)(S − 1) three-
way interactions, (R − 1)(C − 1) + (R − 1)(S −
1) + (C − 1)(S − 1) two-way interactions, R −
1 + C − 1 + S − 1 main effect parameters, and one
grand mean.

One must decide which interactions to include,
how to model the adjustment factors, in what order
to test the hypotheses, and whether to simplify the
model after failing to reject a null hypothesis. For
instance, should the model drop a “useless” factor? If
such a factor and all its interactions are insignificant,
should one pool its associated sums of squares with
the error sum of squares in subsequent hypothesis
tests?

Classical design of experiments [2] contains test-
ing protocols that control for type I error and that
specify how to update the model after an insignif-
icant test result. But precisely when to apply such
protocols depends on the underlying biology. The
biological model dictates which factors belong in the
model.

Medical studies often uncover new factors. In the
SLE example, the frequency of flares may depend on
physicians’ practice styles, a factor not considered
so far in the model. Previous data or expert opinion
may support inclusion of the factor “physicians” in
the SLE ANOVA model. One or two physicians may
stand out as specialists. Should the model identify
them as separate factors, or merely include them,
anonymously, among all the physicians?

Cochran & Cox [2] addressed the same issue
by extending the eelworm-data model to account
for other soil factors. In Chapter 3 of their text,
they use the analysis of covariance to add to the
ANOVA model an extra covariate; namely, the level
of eelworm infestation before the experiment began.
Taking samples before fumigants were applied deter-
mined the initial level of infestation. Without such
data the analyst would have had to assume equal ini-
tial levels of infestation.

Who recognized the need to gather such data?
R.A. Fisher had designed the eelworm experiment

conducted in 1935 by the Rothamsted Experimental
Station. A major figure in genetics, Fisher knew the
pertinent biology and agronomy.

Fixed and Random Effects

Random Effects

The agronomist of Fisher’s era fixed the levels of
fertilizer and then controlled the allocation of these
treatments. The term “fixed effects” refers to fixing
the levels of a factor. Strictly speaking, “random
effects” ought to imply making a random selection
of levels from an extensive list or “population” of
possible levels. Why would anyone make such an
odd selection? Typically, in randomized complete
blocks designs, one randomly assigns treatments to
blocks of subjects (the levels of a structural fac-
tor) because one has no other choice. For example,
in the SLE example, only one form of counselling
treatment might be feasible at each hospital because
patients counselled at home would “contaminate” the
treatments by speaking with those given in-hospital
counselling. Many surveys save money by using clus-
ter sampling, and hence introduce random effects
into the analysis. An interviewer goes to a home and
interviews all three adults in this household, rather
than traveling to three separate homes and interview-
ing only one adult in each home, thereby introducing
the random factor “household”. Individuals who are
interviewed several times (e.g. repeated measures)
or the aliquots of an individual laboratory specimen
introduce the random factor “individual”.

In the SLE example, the randomized block design
assigns the same treatment to the entire block of
patients at each hospital. In contrast, a “completely
randomized design” would randomize each subject
separately. From what population are the blocks ran-
domly selected? Were the hospitals drawn from a long
list of all US hospitals, or from a “convenient” short-
list of hospitals inclined to participate?

Many convenience samples of blocks are treated
as “random effects” because this lack of control
more closely resembles “random effects” than “fixed
effects” and because the former provides more con-
servative inference than the latter. For example,
some forms of meta-analysis [5] based on published
articles use a random effects model, without any data
on the rest of the population; that is, unpublished arti-
cles. However, in the SLE example, if one regards the
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factor “hospital” as a fixed effect, then critics might
argue that a significant treatment difference would
only occur at the study hospitals. Hence, regarding
the factor “hospital” as a random effect adds credence
to the assertion that treatment effects generalize to
other hospitals.

Computation Using the ANOVA Table

The ANOVA table and all the foregoing theory
assume fixed effects or fixed factor level models.
Fisher also used the ANOVA table as a worktable for
the random effects model (all factors random) and
the mixed model (some factors fixed and some fac-
tors random). But each row in the ANOVA table for
a random factor now contributes to the error sum
of squares and the F ratio becomes much harder to
compute. This means that the one-way fixed effects
model has only one source of error (within) devi-
ations, while the one-way random effects model has
two sources of error, a source within treatments and a
source between treatments. Fisher adopted a reason-
able, but imperfect, strategy to separate the model
deviations from the error deviations. Today, high-
speed computing makes feasible other more rigorous
solutions [6]. In the fixed effects model, both the
between-mean square and the within-mean square
have the same expected value, σ 2, the error vari-
ance. In the random effects model, these expected
mean squares are expressions linear in σ 2 and in
the variance of the randomly selected levels of the
between factor, σ 2

A. Fisher set these two expressions
equal to the observed values in the mean square
column of the ANOVA table, solved the two simul-
taneous equations in two unknowns, σ 2

A and σ 2, and
set the F ratio equal to the ratio of these solu-
tions.

For the balanced one-way random effects model
with N = IJ observations, J replicates of each level
i = 1, 2, . . . I , the expected values of the between-
mean square, B, and of the within-mean square W ,
are, respectively, Jσ 2

A + σ 2 and σ 2. It follows that
the estimate of σ 2

A is (B − W)/J , a negative quantity
whenever B is less than W . A negative value under-
mines the hypothesis test. Mixed or random models
with two or more factors generate sets of three or
more simultaneous linear equations with solutions
that can be negative and that seldom have simple
closed forms.

The Abstract Viewpoint

The one-way random effects model has the ANOVA
equation

Yij = mi + εij ,

where the mi are mutually independent normally dis-
tributed random variables with mean µ and variance
σ 2

A, the εij are mutually independent normally dis-
tributed random errors each with mean zero and
variance σ 2, and each of the mi is independent of
each and every εij . Note that the fixed effects model
is an extreme case of the random effects model
because mi is fixed when σ 2

A = 0. Also, note that
when j = j ′ the variance, var(Yij ), equals the covari-
ance, cov(Yij , Yij , ) = σ 2

A + σ 2, but when j �= j ′,
cov(Yij , Yij , ) = σ 2

A. It follows that, when σ 2
A is pos-

itive and when j �= j ′, the random variables Yij and
Yij ′ , are dependent and have a positive correlation
σ 2

A/(σ 2
A + σ 2) that Fisher named the “intraclass cor-

relation coefficient”. In contrast, in the fixed effects
model, all the random variables, Yij , are independent.

The general linear model transforms the dependent
normal random variables, Yij , into independent nor-
mal random variables, Zij . Then, within the frame-
work of the fixed effects models, one obtains from
the Zij , the sum of squares, degrees of freedom, and
distribution theory needed for the Y ANOVA table.

This provides formulas and distributions for the
simpler mixed models and a theoretical foothold
for justifying approximations when the estimation
scheme breaks down (e.g. a negative estimate of
a variance). However, the abstract approach merely
asserts that a factor is “random” without asking
what mechanism has generated the associated normal
errors.

Balance, Missing Values, and Robustness

Balance and Missing Values

Having “balance” greatly simplifies the theory, the
formulas, and the ANOVA table. Generally, when
the number of replicates per treatment level varies
(imbalance), the F ratio may no longer follow an
F distribution and closed formulas and computation
become much more complicated. Hence, having a
few missing values from a balanced design often calls
for restoring the balance by imputing the missing
values.
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Having many missing values or major imbalance
remains a thorny issue. While imputation may restore
balance and vastly simplify theory and computation,
the investigator still has to justify the assumptions
behind the imputation. However, the credibility
of computer-intensive solutions (on the basis of
maximum likelihood or Bayesian methods) often
depend on the correctness of the model and of the
error distributions [6].

Robustness

Until recent advances removed some barriers, limits
on computation allowed only simple patterns of cor-
relation among normally distributed errors, such as
equal correlation among all observations in a block of
units. The body of theoretical results associated with
generalized estimating equation (GEE) models [3]
and restricted maximum likelihood (REML) meth-
ods [6] addressed the problem of an excess number of
parameters destabilizing the parameter estimates. For
example, in a one-way ANOVA design with N = IJ

observations, J replications for each of I subjects, the
maximum number of I (I − 1)/2 correlations among
the I subjects exceeds N whenever J < (I − 1)/2.
Advances, such as the GEE models, have produced
robust estimates of treatment effects; robust against
a wide variety of possible correlation patterns among
the error terms. As embodied in the REML solution,
one integrates the full likelihood function over the
possible correlation patterns to obtain estimates from
a marginal likelihood function containing only the
treatment parameters.

Normality assumptions are another source of con-
cern. While recent advances allow other distributional
structures for error, notably the binomial and Pois-
son families for discrete data, the multivariate nor-
mal distribution dovetails with the theory of least
squares. Simulation methods such as the bootstrap
and well-chosen approximate nonparametric meth-
ods offer effective validation of results based on
normal assumptions.

Errors in variables refers to errors in the mea-
surement of the values in the design matrix, X, that
represents the factor levels, as opposed to the error
terms associated with the outcome measure, Y, as
in the regression model matrix equation, Y = Xβ +

error. For example, a medical study might require a
standard form on each patient at the time of diagnosis,
but rely on a medical chart review for patients diag-
nosed before the study began. The quality of medical
chart data varies enormously and is seldom as accur-
ate as a standard form. To distinguish these sources
let X denote the data from the standard form and let
W denote the same “surrogate” data abstracted from
medical charts.

Solutions for the errors in variables problem [1]
call for assumptions about the models relating the
random variables W, X, and error distribution. These
models extend to include other sets of covariates
besides X. Carroll et al. [1] have provided robust
solutions by extending their results to nonlinear
regression models and introducing functional mod-
eling that makes minimal assumptions about the dis-
tribution of X.

Previous discussion has touched on the lack of
randomness when using convenience samples, as in
the SLE example where the study hospitals were
those inclined to join and in meta-analyses of pub-
lished articles. One can emulate a randomized study
by the methods of quasi-experimental design or,
more broadly, the methods of choosing controls for a
case–control study. All such methods try to balance
known measurable confounding factors, or at least
produce a conservative bias in known but hard-to-
measure factors. But only randomization can balance
unknown factors.

References

[1] Carroll, R.J., Ruppert, D. & Stefanski, L.A. (1995).
Measurement Error in Nonlinear Models. Chapman &
Hall, London.

[2] Cochran, W.G. & Cox, G. (1950). Experimental Designs.
Wiley, New York.

[3] Diggle, P.J., Liang, K. & Zeger, S.L. (1994). Analysis of
Longitudinal Data. Clarendon Press, Oxford.

[4] Fisher, R.A. (1935). The Design of Experiments. Oliver
& Boyd, Edinburgh.

[5] Hedges, L.V. & Olkin, I. (1985). Statistical Methods for
Meta-Analysis. Academic Press, Orlando.

[6] Searle, S.R., Casella, G. & McCullogh, C.E. (1992).
Variance Components. Wiley, New York.

ROBERT LEW



Experimental Study

An experimental study is a study in which condi-
tions are controlled and manipulated by the experi-
menter. For example, in a comparative clinical trial
the method of assigning treatments to subjects is
determined by the investigator. Often, randomized
treatment assignment is employed to assure that
the innumerable potential confounding factors not
controlled by the experimental design have similar
distributions in the various treatment groups. Special
design features are used to improve the efficiency
of an experimental study, including stratification,
matching, and factorial experiments to study sev-
eral treatments simultaneously. Experimental studies
afford good opportunities to reduce the possibility
of confounding, to obtain good measurements on
various factors that might influence outcomes (see
Covariate; Effect Modification), to avoid biases in

measuring outcomes, and to limit the obfuscating
impact of other controllable factors that influence out-
comes.

An experimental study is distinguished from an
observational study in which the investigator does
not control the treatment or exposure assignment, nor
many other aspects of the process under study. An
observational study is thus more subject to problems
of confounding, measurement error, and bias than
an experimental study, but many of these issues must
also be carefully considered and controlled in the
design, conduct, and interpretation of experimental
studies.

(See also Bias from Nonresponse; Bias in Obser-
vational Studies)

MITCHELL H. GAIL



Experiment-wise Error
Rate

Medical experiments are frequently designed to per-
form multiple comparisons. For example, a two-
treatment cancer trial can require comparisons on
the following outcome variables (called endpoints):
survival, quality of life, and reduction in weight. Sim-
ilarly, three pairwise comparisons are possible on a
three-treatment trial. Alternatively, patients can be
stratified and subgroup analysis performed on each
stratum. Also, repeated significance testing is possible
at different stages of a lengthy trial. Let us suppose
that L comparisons are to be made, resulting in M ′
incorrect decisions. Then, the experiment-wise error
rate is defined as Pr(M ′ ≥ 1). Usually, only false
positives (type I errors) are of interest, resulting in
the typical definition of the experiment wise error
rate as Pr(M ≥ 1), where M ≤ M ′ is the number of
type I errors committed (see Hypothesis Testing).
The experiment-wise error rate is frequently called
the family-wise error rate, although the term fam-
ily can be more restrictive than experiment, as an
experiment can consist of several families of compar-
isons. Ignoring such differences, the experiment-wise
error rate, Pr(M ≥ 1), is denoted by FWE.

A companion measure is the per-experiment error
rate, defined as E(M). Clearly, Pr(M ≥ 1) ≤ E(M).
For L = 1 and significance level α, Pr(M ≥ 1) =
Pr(M = 1) = E(M) = α. More recently, a less strin-
gent measure of error rate, called the false discovery
rate, has received attention; see, for example, [1, 2].

Consider L independent comparisons, each at size
α. Assume that the null hypothesis for each com-
parison is true. Then Pr(M ≥ 1) = 1 − (1 − α)L. If,
for example, α = 0.05 and L = 6, then Pr(M ≥ 1) =
0.26, which is far greater than the nominal α = 0.05.
Medical researchers frequently ignore this multiplic-
ity effect and base their conclusions on multiple
individual unadjusted comparisons resulting in the
over-reporting of false positive treatment differences
[7]. On the conservative extreme, the Bonferroni
inequality, which uses α/L for each comparison,
protects the FWE in the strong sense, but at the
cost of considerable loss of power. Such protec-
tion can frequently be achieved more efficiently, for
example, by using Tukey’s T procedure for pair-
wise comparisons in a one-way analysis of variance

(ANOVA). Protection in the strong sense means that
Pr(M ≥ 1) ≤ α, even when some of the individual
null hypotheses are not true. Similarly, protection
in the weak sense guarantees that Pr(M ≥ 1) ≤ α

when the L individual null hypotheses are true. The
difference between these two concepts can be illus-
trated with one-way ANOVA. For that case, the least
significant difference (LSD) procedure recommends
performing first an overall F test of size α, and then
making individual comparisons, again of size α, only
when the overall test is significant. Although this pro-
cedure protects the FWE weakly, it can result in a
large FWE value when, for example, one of the treat-
ments differs from the others. This difference leads
to a significant overall finding, resulting in a loss of
protection on the individual comparisons.

The approach used to handle errors in a multi-
ple comparison experiment depends on the type of
experiment being performed. Protection of the FWE
in ANOVA procedures has been carefully studied [4].
Group sequential methods based on alpha-spending
functions (see Data and Safety Monitoring) have
been devised for adjusting for multiple looks [5]. The
handling of multiple endpoints and multiple treat-
ments are less developed areas at this stage. Multiple
endpoints can sometimes be combined into a single
measure, such as the Karnofsky performance score in
gastroenterology. Alternatively, some endpoints can
be viewed as primary, while others are secondary,
with control of the FWE only for the primary end-
points. For a more technical discussion of treating
multiple endpoints in an experiment, see [6]. Multi-
ple treatments can be compared using the Bonferroni
inequality, although less stringent methods are often
possible. As an example, the comparison of two dif-
ferent treatments with a control can be viewed as two
separate experiments, each at size α, as this is the way
in which they would have been viewed had they been
performed by different experimenters. An excellent
source for discussion of the FWE and multiple com-
parisons procedures is [3]. In summary, care needs to
be exercised during the planning of an experiment to
ensure protection of the experiment-wise error rate.
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Expert Witness,
Statistician as

Until fairly recently, the applications of inferential
statistics (see Inference) in legal proceedings have
been minor and limited. With the advent of civil
rights legislation, however, the courts have embraced
statistical inference with enthusiasm. The needs of the
courts are not well matched with the usual practice
of statistics, and this mismatch has serious adverse
consequences for both fields. The various sources
of difficulty are outlined, and tentative proposals for
their amelioration are put forward.

Although the field of statistics can find its origins
in matters pertaining to society and its governance,
statistics as a formal discipline has only recently
received special recognition in legal proceedings. To
be sure, statistics in the sense of numerical summaries
are pervasive – in legal settings as in many others.
But statistical inference based on probability models
is another matter, and in that respect statistics has had
only a minor and restricted role in the law.

The Howland will case of 1867 [13], in which
Benjamin Peirce undertook a statistical analysis of
handwriting, is a case in point. The analysis was
ingenious, and might even have been persuasive, but
the court in that instance found a technical excuse to
put it aside. From time to time, most notably in the
Collins case a century later [16], statistical analyses of
identification evidence have come before the courts,
and generally the courts have rejected them, except in
rather special cases of genetic evidence of paternity
(see Paternity Testing) and of fingerprint evidence.

Following the passage of the Civil Rights Act of
1964, however, the courts have looked to statistical
analysis to decide on the substantiality of evidence
of illegal discrimination, and by now the statistical
expert witness is definitely in the big time.

It might be thought that this is cause for celebra-
tion within our profession. Inference is our field, of
course, and what could be more appropriate than a
long overdue recognition by the courts of our spe-
cial expertise. However, there is room for second
thoughts as well, when we pause to consider the con-
sequences for other professions that have come to
occupy a similar role. The situation of psychiatry
(to choose a not-at-all random example) is notorious.

In the case of the most recent would-be presiden-
tial assassin, John Hinckley, neither the prosecution
nor the defense had any difficulty in finding distin-
guished psychiatrists, academics, and others to testify
that Hinckley was or was not legally sane at the time
he fired the shots. Indeed, it is not stretching mat-
ters to say that the courts and the bar, and even the
public at large, have come to hold the profession of
psychiatry in considerable contempt – as a clan of
hired guns, available for a price to whichever side
first knocks on the door. That this perception is not
altogether fair is beside the point. The statisticians
may have cause for congratulation in this new-found
status – they also have cause for worry.

Indeed, psychiatry is not alone in its notoriety. The
evident ease with which experts in almost any field
can be found to testify in support of either side of
a case has led to an aphorism in the law that has a
familiar ring to statisticians: there are three kinds of
liars – liars, damned liars, and expert witnesses. (The
origins of this aphorism are uncertain, but it appears
in various forms in legal writing during the past
century.) Statistics has had a hard time establishing its
credibility as a scientific domain, and the credit that
it now has may well be threatened by our new-found
prominence.

The views expressed here are idiosyncratic, and
the interested reader may wish to consult additional
sources dealing with the interaction between statis-
tics and law. In particular, the collections edited by
Peterson [17], Monahan & Walker [15], and DeGroot
et al. [4] present much relevant material and a num-
ber of alternate views.

The remainder of this article is divided into
four sections: the first reviews the different domains
in which statistical testimony is sought; the next
discusses the environment in which such testimony is
given and contrasts that environment with the quite
different system prevalent in Europe. The manifold
corrupting influences that lead to the unsavory repu-
tation of expert witnesses in American courts are then
reviewed, and I close with a very modest proposal for
reform.

Domains of Application of Statistics in
Law

I start by distinguishing particular domains in which
statistical expertise is called upon.
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Scientific Sampling

The simplest and, in many ways, the most satisfac-
tory application of statistics in legal proceedings, is
the use of scientific sampling methods (see Probabil-
ity Sampling). In this area, W.E. Deming has been
the preeminent pioneer [5], and he has taken the pains
to lay out a clear recipe for satisfactory performance.
This consists largely of eschewing any responsibility
for choice of population to be sampled or for the eval-
uation of sampled units. His advice, which I believe
to be eminently sensible, is that the sampling expert
limit himself to testimony about the inference from
the sample to the population, when the same evalu-
ation process is used for both. Deming emphasizes
that although the sampling expert may have become
familiar with the substantive field and may have given
good advice about other aspects of the study, his pro-
fessional expertise is limited, and he should testify
only within that area.

Following in Deming’s footsteps, on a number of
occasions I have assisted in the sampling of railroad
traffic, in connection with studies of the effects of
a merger between two railroads or of the effects
on railroad A of the abandonment of certain lines
by railroad B. I have presented such work before
administrative law judges of the Interstate Commerce
Commission and have often been cross examined
thereon. However, despite strong controversy and
aggressive examination of management personnel,
the sampling testimony has generally been accepted
with minimum fuss, and the cross examination has
ordinarily consisted solely of emphasizing the limits
of my responsibility.

Sampling testimony is not always so cut and dried,
however. An early case is that of Sears Roebuck &
Co. vs. City of Inglewood [19], in which the sales
to nonresidents had been erroneously subject to tax
and Sears was seeking recovery. The expert retained
by Sears sampled 33 days from the 826 business
days in the period at issue, and all sales slips from
each of those 33 days were examined and assessed.
The estimated overpayment was $27 000, subject to a
standard error of $2000. No quarrel with the method
of sampling was made, but the judge in the case
was uneasy about this unfamiliar technique. He ruled
that no recovery could be made for individual sales
that had not themselves been individually examined,
and Sears had to go back and look at each sales
slip. The result is a choice teaching example, of

course, because it is one of those exceedingly rare
cases in which a well-drawn sample is followed by a
complete census, illustrating the ultimate validation
of the statistician’s art. In this case the complete count
was surprisingly close to the estimate – a deviation
of less than $300.

However, even in the clean world of scientific
sampling, a witness may find himself in difficulty.
He may be asked to comment on the sample drawn
by the opposite party – perhaps by a nonstatistician –
and it may turn out to have been a systematic
sample, without randomization of any kind. And
here a prudent witness has a problem. The failure to
randomize opens the way to possible biases, but as all
experienced in sampling are aware, for a great many
sampling frames (i.e. those with very little internal
structure) the bias in the estimate and even in the
calculated standard error is not likely to be large.
Should one testify that the job was not competently
done and the results should therefore not be given
credence? (Counsel for one’s own side would believe
such testimony is entirely proper and the least that is
owed him.) Or should one testify that, although the
sample does not adhere to the canons, it is not likely
that the result is for that reason wide of the mark?
One will be tempted to add that when incompetence
is manifest in the visible part of the operation, it is
suspect in that which is less visible, and therefore the
result should be received with caution. Should one
yield to that particular temptation, however, one is
most likely to be cut off by an objection from the
opposing attorney, protesting testimony that is “mere
speculation”. Since the court is only interested in the
result of one’s judgment about design, one is likely
either to overstate the objections to the systematic
sample or so understate them as to make one’s client
wonder why he was put to the trouble of drawing a
random sample in his case. (And what should one say
when the sample one is called upon to criticize was
drawn by Dr Deming or Professor W.G. Cochran,
who – in the exercise of professional judgment –
decided that the fuss required to randomize was
not worth the trouble in the case at hand? Indeed,
Cochran was fond of telling of the occasion on
which he was called on to carry out a sampling
study of, I believe, a class of retail stores, and he
instructed that the sample consist of every tenth
establishment of that type listed in the Yellow Pages.
The judge, he said, welcomed his expert testimony
as a learning experience and remarked, after Cochran
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had been sworn, “I am glad to hear and to learn
from Professor Cochran about this scientific sampling
business, because I know virtually nothing about it. In
fact, about the only thing I do know is that you should
not just start at the beginning and take every 10th
one after that”.) I confess that, not being Deming or
Cochran, I make it a point when drawing a sample to
be sure that the design has as much internal credibility
as I can give it, and as little dependence on the quality
of my own judgment as I can manage.

Paternity and Fingerprints

In the sampling domain, statistical inference works
well because we impose the probability model
directly on the situation – through randomization –
and our testimony has both the appearance and the
substance of relative objectivity. We can feel rather
sanguine about our contributions to legal proceedings
in this domain.

We have somewhat less security when we turn
to certain areas of identification evidence. I refer to
blood tests for assessing evidence of paternity and to
fingerprint evidence. In the former, at any rate, there
is a probability element introduced by Mendelian
genetics (see Mendel’s Laws), and the statistical
expert may have a real contribution to make. Unfor-
tunately, the ultimate probability calculation depends
on population gene frequencies; even where these are
known for the population at large, it is often some
subset of the population that is at issue, for which
the frequency is not well established, and the expert
finds himself on doubly uncertain ground. There are
controversies aplenty in this domain, but this is not
where most of the action lies.

Observational Data

The broad, almost limitless, domain in which the
courts have come more and more to look to statisti-
cians for guidance is in the analysis of observational
data.

Consider, for example, the association between
cigarette smoking and the subsequent development of
lung cancer (see Smoking and Health). First identi-
fied as an incidental and highly uncertain association,
the accumulated evidence today appears overwhelm-
ing, although there are no clinical experiments to
support it and only indirect support from cellular biol-
ogy. The primary evidence is indeed statistical, and it

is convincing, but not as a result of conventional sig-
nificance testing (see Hypothesis Testing). Rather, it
is the robustness of that association over time, place,
and population that is convincing. For the most part,
probability-based statistical testing is irrelevant to the
strength of our conviction.

I do not quite share David Freedman’s hard-
line position against formal statistical inference for
observational data. As explained in a superb elemen-
tary textbook [9], Freedman regards probability-based
testing in a situation without a plausible probability
model to be at best irrelevant and more likely mis-
leading. I think, in contrast, that such testing serves a
useful purpose as a benchmark. If the observed asso-
ciation would not be counted statistically significant
had it arisen from a randomized study, it could not
be counted as persuasive, when even that founda-
tion was lacking. If the observed association is highly
statistically significant, however, the extent of its per-
suasiveness depends on many uncertain judgments
about background factors, and its persuasive value is
not at all reflected in the significance level itself.

However, the principles of statistical inference
relevant to the courts are not the province of the
statistics profession alone.

The Courts, Civil Rights, and Statistics

The Supreme Court has canonized formal statistical
inference in a series of decisions, beginning with a
jury discrimination case, Castaneda vs. Partida [3],
decided in March 1977. Having noted that the popula-
tion of Hidalgo County was 79% Spanish surnamed,
but that the jury panels selected in accordance with
the prevailing Texas “key man” system averaged only
39% Spanish surnamed (i.e. 339 of 870 jurors), the
Supreme Court itself – or more likely one of the Jus-
tices’ law clerks – calculated the familiar critical ratio
(see Normal Scores) according to the binomial dis-
tribution; that is, the difference (39% minus 79%, or
40%) divided by the standard error ((pq)1/2/n, which
works out to be 1.5%), obtaining a critical ratio of
29. The Court then commented, “as a general rule
for such large samples, if the difference between the
expected value and the observed number is greater
than 2 or 3 standard deviations, then the hypothesis
that the jury drawing was random would be suspect
to a social scientist”.

Formal significance testing next appears in an
employment discrimination case, Hazelwood School
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District vs. United States [14], decided three months
later. In that case, the proportion of qualified teach-
ers in St Louis County (excluding the city of St
Louis) who were black was estimated to be 6%,
and during the two year period at issue, only 15
of 405, or 4%, were black. The Hazelwood court
now says, “A precise method of measuring the sig-
nificance of such statistical disparities was explained
in ‘Castaneda v. Partida’ . . .”, and the opinion goes
on to paraphrase the earlier two or three standard
deviation rule, but with a slight shift; that is, “. . .
if the difference exceeds 2 or 3 standard deviations,
then the hypothesis that teachers were hired without
regard to race would be suspect” (emphasis added).
The reference to randomness is now absent, as is
the social scientist. Since it is self-evident that the
process of selection is not – nor is it desirable that
it be – random, it is far from clear why either the
social scientist or the Supreme Court should look
upon a standard based on randomness as appropriate
to assess the likelihood of purposeful discrimination.
To be sure, there was much other evidence in the
case, showing explicit discrimination at earlier dates,
but the preceding quotation is the only place in the
opinion where the relevance of the statistical sig-
nificance test is in any way explained. Nonetheless,
in Hazelwood the court went further, in an obscure
remark that pointed clearly to the preeminence of
statistics. It said, “Where gross statistical disparities
can be shown, they alone may in a proper case con-
stitute prima facie proof of a pattern or practice of
discrimination”. Thus, in the space of a less than
half a year, the Supreme Court had moved from
the traditional legal disdain for statistical proof to
a strong endorsement of it as being capable, on its
own, of establishing a prima facie case against a
defendant. (It is sometimes argued that the use of
doubtful evidence to support a prima facie – that is,
preliminary – finding is a matter of small legal con-
sequence. Such a finding merely shifts the burden of
proof from the plaintiff to the defendant. In fact, how-
ever, there is nothing at all “mere” about this shifting
of the burden, since the difficulty of proving one-
self innocent of discrimination turns out to be great
indeed.)

The accelerating role of statisticians in employ-
ment discrimination cases arises from a combina-
tion of the statistical significance testing endorsed
in Hazelwood with an earlier decision, Griggs vs.
Duke Power Company [11], in 1971. In Griggs, it

was found that the requirements of a high school
diploma and a certain score on a standardized IQ test
for employment in such jobs as maintenance and lab-
oratory work operated to exclude black applicants far
more frequently than they did to exclude white appli-
cants. The court concluded that, in the absence of
direct evidence that these criteria related to improved
performance on the job, the “adverse impact” of those
requirements constituted a violation of Title VII, even
though there may have been no intent to discriminate
on the grounds of race. (To be sure, there was plenty
of evidence of intent to discriminate in the Griggs
case, most especially in the facts that the power com-
pany had explicitly excluded blacks prior to passage
of the Civil Rights Act, and that it had put in the
new requirements at the same time that the jobs were
first made available to blacks. The principle estab-
lished in Griggs clearly put the issue of intent aside,
however, and the doctrine has been widely applied
by lower courts in cases in which there was little or
no evidence of invidious intent. Once again, proof
of “job relatedness” or, as the Supreme Court says,
“business necessity”, has proved generally elusive,
and a great many employment standards and admis-
sions tests have been found to be in violation of the
law for lack of such proof.)

The criterion seems reasonable enough until we
are faced, as was the Supreme Court, with a case
such as Washington vs. Davis [20]. In this case,
Walter Washington, mayor of Washington, D.C., and
his police chief had set about to recruit blacks
into the D.C. police force, with an aggressive cam-
paign to encourage black applications. The campaign
was successful and many blacks were recruited, but
among the newly encouraged applicants the written
test “operated”, in the language of the Griggs deci-
sion, “to disqualify Negroes at a substantially higher
rate than White applicants”. Thus, affirmative action,
clearly intended to recruit blacks, fell foul of the
adverse impact principle developed in Griggs. The
trial court dismissed the charge, but the appeals court
reversed, citing Griggs. The Supreme Court side-
stepped the issue. It supported the district program,
but it did so on a technicality that did not require
it to comment on the general validity of the Griggs
principle. In subsequent cases, the Griggs principle
has continued to guide the lower courts.

It must be acknowledged that there has been some
slackening of the tide in Title VII enforcement in
the last two or three years, especially with regard
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to race and sex discrimination. Under the Reagan
administration there was more emphasis on freeing
business from government interference and less on
righting the wrongs of the oppressed. In response,
the courts appear to have given somewhat less weight
than before to purely statistical evidence.

The Position of the Statistical Expert

The result of the preceding and related decisions has
been to place the statistical expert witness in a most
unaccustomed and exalted position. Despite the mod-
erate recent decline in enforcement, the role of the
statistical expert remains critical in the cases that
are brought. Lawyers gaze with awe as he exam-
ines the entrails of complex multiple regression
computer output, and they await breathlessly his con-
clusion that the coefficient of the variable designating
sex is indeed more than twice the standard error.
Similar attention attends his calculation of continuity-
corrected 2 × 2 chi-squares to see whether they are
larger or smaller than 3.84 (see Chi-square Tests).
Indeed, the case may be won or lost largely on these
outcomes.

That this position is a false one, none can doubt.
Certainly the statistical experts know it, and most
of them say so to some extent – or at least they
assert that the meaningfulness of their numerical
results depends on a number of assumptions that they
are unable to verify. The courts, however, are not
engaged in academic exercises and, having urgent
need to come to some conclusion, turn to the Supreme
Court instead of to the witness’s cautional phrases
for guidance. Those opinions have, intentionally, a
somewhat Delphic quality. They tell us that “gross
disparity” in pass rates is evidence of illegal discrim-
ination, and they also tell us that the hypothesis of
random selection is made to appear doubtful when a
difference is larger than two or three standard errors.
They do not quite say that statistical significance
at the 5% level constitutes gross disparity, but that
is how the lower courts read them. The statistical
experts cannot help but find this heady stuff, and we
should not be surprised to find ourselves speaking
with far more assurance about our conclusions than
an objective appraisal of the evidence might warrant.

Thus we are led to the unedifying spectacle of two
well-qualified statistical witnesses providing analy-
ses that they interpret oppositely, each supporting the

interest of the party who introduces him. Other cat-
egories of expert witnesses have been there before
us, of course – the psychiatrists, medical internist
and surgeons, and structural engineers, among oth-
ers. The courts have urgent need for the assistance of
these experts, but they seem uncommonly ill served
by them. The point was made clearly in an editorial
in the British Medical Journal [2]:

Medical evidence delivered in our courts of law has
of late become a public scandal and a professional
dishonour. The Bar delights to sneer at and ridicule
it; the judge on the bench solemnly rebukes it; and
the public stand by in amazement; and honourably
minded members of our profession are ashamed of it.

This was printed more than a century ago, but little
has changed in the intervening years. Statisticians
have escaped comparable condemnation because we
have been, until recently, too unimportant in the
courts to be noticed, not because of any higher ethical
standard of our profession.

One cannot help speculating on the possibility of
improvement. In fact, I believe that some of the dif-
ficulty is structural, and that there are ways in which
we could function usefully in legal settings without
so large a sacrifice of professional integrity. To this
end, I now discuss the players in the game and the key
influences on them. Among the players or participants
in the legal ballet, I distinguish three: (i) the courts
themselves, most especially the Supreme Court, who
together with the Congress set the rules by which
the system operates; (ii) the lawyers – collectively,
the Bar – who primarily control the direction of play
within those rules: and (iii) the expert witnesses on
whose performance the integrity of the enterprise
ultimately depends.

The Courts and the Expert

The obvious objective of the courts in respect to
expert testimony is to optimize the search for truth.
The courts would like to get the most well-qualified
expert, keep him in a situation in which he can
devote his best efforts to analyzing the evidence, and
have him testify in an atmosphere free of coercion
or bias. The courts also want to be sure that the
expert is adequately examined to test and verify his
qualifications, the adequacy of his preparation, and
his objectivity.

To this end, the courts in Germany and France
arrange matters very differently from the English
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and American courts. In cases in which experts are
needed, they are in the first instance appointed by
and responsible to the court and not to either party:
they are first examined by one of the judges and also
cross examined by him. Attorneys for the plaintiff
and defendant may also cross examine, but the pro-
ceedings are not generally adversarial as are our own,
and the appearance of neutrality, at least, is the rule.
Thus the continental system seeks the best witnesses
and seeks to put them in a neutral setting, primarily
by putting the major responsibilities in the hands of
the judges.

The Anglo-American system, in contrast, is based
on the proposition that truth is most likely to emerge
through the best efforts of adversaries. No point in
favor of the defendant will be overlooked or under-
valued, it is thought, if responsibility for bringing it
out is assigned to the defendant’s advocate.

Nonetheless, whatever the merits of the adversary
system may be in general, it is well recognized that
it wreaks havoc with expert testimony, and propos-
als for reform appear regularly. Chief among them
is to borrow from the continental system and to
have the primary expert witnesses appointed by and
responsible to the court. This reform was vigorously
advocated by the past century’s revered commenta-
tor on legal evidence, John Wigmore [21], and model
codes have been proposed to this end. Indeed, Rule
706 of the Federal Rules of Evidence provides explic-
itly for court-appointed experts. Regardless of the
merits, in practice this power is used extremely spar-
ingly. (There may be some cases of court-appointed
statisticians in Title VII cases, but I have not heard
of any.) One can conceive of many reasons for the
ineffectiveness of these “reforms”, not least the vul-
nerability to criticism of a judge who appoints an
expert later shown to be inadequate, but it is enough
for my purposes to observe that such reforms have
not taken hold in this country, and that they do
not seem likely to become influential in the near
future.

The Bar and the Expert

The position of legal counsel, although in principle
identical to that of the judge, is in fact quite different.
Having committed himself to the adversary system
as the best method of reaching a just conclusion, the
lawyer for the plaintiff now accepts his position in
the system, that of advocate, and leaves to the court

the responsibility for discerning the path of justice.
To him, the expert is simply one of the elements that
he must fit into place to make the most effective case.
To be sure, any lawyer of competence recognizes that
it is usually favorable to his case for the witness to
appear to be dispassionate and objective. The best
lawyers recognize that a witness will make the best
appearance of objectivity if he feels that he is indeed
free to go where his research and reflection lead him.
This is not to say that these excellent advocates are
really in the market for unbiased witnesses who may
testify to their side’s disadvantage.

John C. Shepherd of St Louis, a distinguished
trial lawyer who was president of the American Bar
Association in 1984–1985, spoke to a conference for
lawyers on relations with the expert witness, and this
[18, pp. 21–22] is what he said:

Many people are convinced that the expert who
really persuades a jury is the independent, objective,
nonarticulate type . . . I disagree. I would go into a
lawsuit with an objective, uncommitted, independent
expert about as willingly as I would occupy a foxhole
with a couple of non-combatant soldiers.

If you find the expert you choose is independent
and not firmly committed to your theory of the case,
be cautious about putting him on the stand. You
cannot be sure of his answers on cross-examination.
When I put an expert on the stand, he is going to
know which side we are on.

The trial lawyer must make of the expert a
convincing, persuasive witness. The lawyer deals in
words, and he knows how to put the package together
to impress the jury favorably. It is his job to instruct
the expert, an exercise requiring great tact and firm
conviction.

Keep in mind that the lawyer does not need to make
bricks without straw. It is perfectly proper for him to
consult a great many potential witnesses but to bring
to court only that one whose honest convictions fit
well with the lawyer’s needs. The phenomenon of
“shopping for witnesses” is well recognized by the
courts, and it contributes to the wary attitude that
they have about experts in general. The shopping is
done by the lawyers, however, and is thus not subject
to exposure in the actual testimony.

Corrupting Influences

As we have just seen, the professional integrity of the
expert witness and, through him, of the profession
that he represents, is not well protected by the courts
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and hardly at all by counsel. But before we assume
too readily that simple morality and personal ethics
will be an adequate substitute, we should reflect for a
bit on what I call, for lack of a more delicate phrase,
corrupting influences. Some are inherent in the nature
of the situation, and others are special to the adversary
situation.

First, there is the fact that the expert witness is
playing someone else’s game and, inevitably, has
to accept the rules as he finds them. His instructor
in these matters is, of course, his client’s counsel,
and the witness is ill-equipped to resist the role of
adversary when his lawyer thrusts it upon him. But
even supposing that the lawyer is less demanding than
Shepherd, the expert is beset with temptations.

General. Among the most difficult of the corrupt-
ing influences to deal with is what I call aggran-
dizement. In Title VII cases (i.e. those dealing with
employment discrimination), the Supreme Court has
placed the statistician in the key role. Long ignored
and treated with contempt in literature and in the
courts, the statistician has been elevated to Olympian
levels. Thus the Hazelwood court, quoting its remark
in an earlier case, commented [12]:

We also noted that statistics can be an important
source of proof in employment discrimination cases,
since, “absent explanation, it is ordinarily to be
expected that nondiscriminating hiring practices will
in time result in the work force more or less repre-
sentative of the racial and ethnic composition of the
population in the community from which employ-
ees are hired.” Evidence of long lasting and gross
disparity between the composition of the work force
and that of the general population that may be sig-
nificant even though paragraph 703 (j) makes clear
that a work force need not mirror the general popu-
lation.

Taken together with the court’s embrace of statisti-
cal significance testing, the statistician is here given
a virtual license for intellectual robbery. Indeed,
not only the court but a large contingent of fel-
low academics (economists numerous among them)
give strong endorsement to the particularly magical
properties of multiple regression analysis. (Two arti-
cles in the Columbia Law Review – Fisher [8] and
Finkelstein [7] – are noteworthy in this regard.) All
in all, the statistician is strongly tempted to give the
definitive rather than a qualified answer to the key
questions. He will be tempted to ignore or to mini-
mize those qualifications that he might emphasize in

a more academic setting, he may fail to emphasize the
existence of schools of thought other than his own,
and he may lay claim to overly broad scope for the
inferences he draws.

Adversarial. The adversary system adds a host of
additional influences, some quite direct, but others
indirect:

1. Bribery. The witness is paid by his client and,
as often noted, he who pays the piper feels a
right to call the tune. To be sure, all the client
is entitled to is an honest report of the expert’s
best effort, but an expert who habitually finds
evidence against his client will not be much
sought after.

2. Flattery. Some, of course, are not bought by
money or the prospect of future money: either
they already have enough of it or they are suf-
ficiently on guard against that particular type of
seduction. Other corruptions await them.
I well recall an occasion on which I was asked
to consult in a case at a time that was not espe-
cially convenient. I explained that I really could
not participate on this occasion. The lawyer, with
whom I had worked before and for whom I had
a great deal of respect, pled the sorry state of
statistical testimony in the courts in general, and
in the instant case in particular. He read from
the transcript some particularly egregious quotes
from the statistical expert for the other side, and
he urged the importance for the future of statistics
in the domain of public affairs of having correc-
tive testimony. That being a viewpoint I could
only share, and tacitly mindful of our shared
opinion that I was the ideal candidate to cham-
pion the honor of the profession, I reluctantly
agreed to testify. Imagine my chagrin when, at
a later date, I read some other remarks of the
trial lawyer, John Shepherd, whom I quoted ear-
lier. He advises on “Approaching the Expert” as
follows [18, p. 19]:

Almost every one who considers the subject of
experts in court will start with the same thought:
The first thing you need to get along with your
expert witness is money. But the hiring and suc-
cessful use of an expert may not be that easy – a lot
of good experts are rich. Although you will even-
tually be talking about money with your expert, it
is wiser to begin on another tack. Tell your expert
how justice will be served if he will testify on your
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side of the case. Remind him that the unfortunate
situation in our courts today can be improved if we
have people of his caliber to help in the adminis-
tration of justice. That ploy will impress even the
rich expert.

3. Co-option. To be sure, effective as this ploy may
be, it does not in itself lead the expert away from
his duty. It establishes an aura of objectivity and
mutual respect, however, which may make the
expert especially vulnerable to another inevitably
corrupting aspect of the adversary system: that is,
the simple fact that the expert’s introduction to
the case comes from the client’s counsel and will
inevitably tend to appear in the light most favor-
able to the client. He will be introduced to the
principals – perhaps a plaintiff, movingly indig-
nant about years of abuse and low pay, perhaps
a defendant who truly believes that his cause is
just and is worried sick about the distraction of
his institutional resources from their proper role
into the defense against a baseless charge. This
goes along with co-option into advocacy arising
when one is asked to review the other side’s tes-
timony, point out flaws therein, and assist in the
development of effective cross examination.
F. Downton of the University of Birmingham
has written cogently about this latter difficulty,
in a symposium on statistics and the law [6].
Downton had been consulting with the police
on games of chance, because the law prescribed
strict rules for games that, if violated, would
allow the police to close the clubs. Since the
clubs were widely regarded as dens of iniquity,
this was clearly a public service. Downton wrote
[6, p. 171]:

As in any other consulting situation, a certain
amount of identification with the aims of the client
is inevitable; it is fortunate that probability and
statistics are basically mathematical in content,
since the constraints of mathematics act as a brake
on overenthusiasm. It cannot, however, be denied
that a conscious change of attitude was needed to
effect the change-over from helpful consultant to
objective expert witness. . .. This ambiguity of roles
did create a conflict, which presumably can only be
resolved by individual witnesses in their own way.

4. Gladiatorial Role. The adversarial environment
works against objectivity in yet other ways. The
object of cross examination is not only to expose

weaknesses in the expert’s analysis but, if possi-
ble, to discredit the witness and the weight that
should be given to his testimony generally. Thus
the cross examiner may, by adroit framing of
questions, force the witness into complex expla-
nations and apparent contradictions. Feeling his
credibility slipping away, such a witness may be
less likely to give a full and frank answer to a
later question that might fairly expose a fact or
conclusion operating in favor of the other side.
The expert no longer views his interrogator as
a fellow searcher for truth, but as an adversary
against whom he must defend.

5. Personal Views. My final source of corruption
is perhaps the most difficult to deal with, and
that is the problem of strongly held personal
views. Surely there are many cases in which the
expert is a priori indifferent between the claims
of the contestants, but in other areas, particu-
larly in the great domain opened up by Title
VII, there are few of us without strong opinions.
In the matter of a contest between a chemical
waste disposal company and the residents of a
new Love Canal, for example, I would be reluc-
tant to testify on behalf of the company. It might
well be, for example, that the evidence of adverse
health effects caused by carelessly buried wastes
is really nonexistent. Feeling as strongly as I do,
however, that such careless behavior is repre-
hensible and deserving of punishment, I should
not like to assist the company’s case. I have
no problem reconciling my preferences and my
professional responsibilities in this case. I am,
and should be, free to accept an engagement
or not, for whatever personal reason, and rea-
sons of this kind are at least as good as most
others.

My problem comes on the other side. Suppose
that I should be an expert retained by the residents
affected by the dump. I find that, in respect of total
mortality, there is no evidence of an effect, but in
the matter of childhood leukemias there is an excess
mortality amounting to 1.8 standard errors greater
than the rate in some control group. If I ignore
the fact that I am reporting on leukemia because
it is the disease category showing the largest dif-
ference, and if I adopt the conventional 5% signif-
icance level as a standard, and if I urge the relevance
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here of a one-sided significance test (see Alterna-
tive Hypothesis), I may be able to strike a blow for
truth and justice, and it would no doubt be tempt-
ing to do so. But to paraphrase a major figure in the
Watergate investigation, “I could do that, but it would
be wrong”. I really do not think one-sided 5% level
deviations provide convincing evidence one way or
the other, and – whatever one’s views on that – I
expect that most statisticians would agree with me
that it is misleading to the point of dishonesty to quote
an unadjusted significance level (see Level of a Test)
when I have chosen to present the most extreme of a
number of alternative measures.

Perhaps the point can be brought home most
forcefully by addressing an even touchier exam-
ple. There are many of us who view the legacy of
slavery as our most appalling and pressing social
problem, and the effort to explain the low status
of the oppressed on the grounds of inherent infe-
riority as an intolerable offense. Indeed, although
the possibility of some average difference in intel-
lectual capacity among different groups can never
be ruled out, the evidence appears clear that what-
ever differences there might be in average innate
ability, they are quite small compared with the vari-
ation between individuals. The effects ascribed to
race in regression analyses of school child perfor-
mance, after adjustment for age, years of schooling,
mother’s socioeconomic status, and the like, are read-
ily explainable as attenuation and other distracting
effects that afflict regression analyses generally, and
they need not be interpreted as reflecting a real dif-
ference due to race.

At the same time, we observe the past and present
systematic discrimination against blacks in many
areas of employment. Such discrimination has many
forms, but its pervasiveness, except where sharply
controlled by law, is hardly in doubt. Being confi-
dent, then, that a charge of race discrimination likely
corresponds to the existence of actual discrimina-
tion, what are we to say about a multiple regression
in which a salary difference unfavorable to blacks
emerges as significant even after adjustment for age,
years of schooling, mother’s socioeconomic status,
and the like? The problems of attenuation apply with
equal force, but we may now be reluctant to dismiss
the evidence of bias in pay. This time we may believe
that there really is discrimination in the system, but it
is by no means clear why we should, as statisticians,
take different positions in the two situations.

Ways to Defend the Integrity of Statistical
Testimony

With the variety of assaults on the credibility of
expert statistical testimony, I turn again to the ques-
tion of what possible defensive measures could be
implemented. A change to the apparently more neu-
tral continental system is the one answer that has
come from the courts, but there seems little likeli-
hood of its adoption. There have been proposals that
experts who testify falsely should be punished for
perjury, as is an ordinary witness who testifies falsely
about an event. This, too, seems far-fetched, since the
essential nature of expert testimony is that it is largely
a matter of informed opinion.

Professional Codes

There seems to be only one other direction in which
to turn, and I have only slender hopes for it. See-
ing that neither the bench nor the bar will help us,
the only alternative is to help ourselves; that is, to
develop limited codes of ethical behavior in the con-
text of legal proceedings that may help to ameliorate
the worst excesses.

I come to this conclusion reluctantly, because I
have little taste for collective moral instruction and
little confidence in its efficacy in general. And yet
one cannot deny that codes of ethics for judges, while
they do not eliminate venality, are good to have. Vio-
lation of these rules can and does lead to discipline,
on occasion, as in the case of a distinguished Supreme
Court Justice a few years ago, and reminders such as
that help to keep others on the right path. Similarly,
codes of medical ethics dealing with the proper rela-
tionship between physician and patient serve a useful
purpose.

A quarter of a century ago, Gibbons [10] reviewed
our society’s efforts in the direction of developing
such codes, and she clearly laid out some of the prob-
lems that such codes might help to solve. Evidently,
there was some movement in that direction in the
early 1950s, but momentum was lost, and nothing
came of it. The issue of ethical codes continues to
elicit debate, a recent instance being the report of the
Ad Hoc Committee on Professional Ethics [1]. I see
no sign, however, that this or any other code is likely
to be adopted as a guide by any of our major profes-
sional organizations. Indeed, although discussion of
codes of ethics for statisticians continues, I know of
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only one instance in which such a discussion has had
any noticeable practical effect.

The exception is an interesting one, and it may
be instructive. As I mentioned earlier, in the context
of sample survey design and analysis, W. Edwards
Deming established a code that he provided to clients,
explaining the reach and the limitation of his meth-
ods. The code is notable for its careful restriction of
the role of the statistician. In effect, Deming acknowl-
edges that the statistical consultant may come to have
a good deal of knowledge about the subject mat-
ter under study, and that this knowledge may help
him to design an effective sample. He makes clear,
however, that responsibility for the choice of popu-
lation to be sampled (see Target Population), and
for the processing of each sampled unit, belongs to
the client and not to the sampling consultant. The
consultant undertakes to say only that, had the entire
population been processed in the same way that the
sampled elements were processed, the sample esti-
mate for the population would be found to be close
to the population value, subject to error limits that can
be given in the usual probability sense. It might seem
that the scope of the sampling expert’s testimony is
so narrow according to this code that his contribu-
tion will have little weight in the proceedings. In
fact, of course, the contrary is true. By not reach-
ing beyond well-stated boundaries, the testimony of
sampling experts has achieved an enviable level of
credibility.

Deming’s code, effective as it is in a specific
context, gives only a little guidance for the expert
testifying in a Title VII case. I submit that a proper
code for the latter expert should copy Deming by
being specific to the situation and rather restrictive
as to the scope of the testimony. I do not think it will
pay to start with an ethical code trying to embrace all
statistical activities. Let me try to clarify my proposal
by being specific. (Here I borrow from Deming where
I can.)

I suggest that a statistician asked to testify in
court should require that he be given access to all
data thought by the client to be relevant, and to
all previous analyses of that data, and he should
demand a commitment on the part of the client to
a “good faith” effort to supply whatever other data
the statistician may judge relevant.

He should advise the client that in his professional
role he will remain neutral between the parties (and
he should pray for strength when he does this, for he

will need it). He undertakes to provide his best effort
to analyze the data in ways that seem to him pertinent,
and he undertakes further to provide a written report.
His report, if it is to be used, must be taken in its
entirety.

When testifying, the expert will explain the limi-
tations of his techniques, as seen by a professional
statistician, regardless of any statistical principles
anointed by the Supreme Court. He will explain the
variety of schools of thought within the profession
and his place among them.

Doubtless there are a number of other principles
to be enunciated, but this is not the time or place for
full details. Some will think that the principles given
are simple and obvious, but they can be assured that
they are not obvious to most lawyers. Many lawyers,
for example, think it proper to select for attention the
principles laid down by the high court as a basis for
expert testimony. (I cannot help but wonder if, should
a court declare that π = 3, these lawyers would insist
that we accept that too.) Gratuitous testimony about
limitations will be especially unwelcome (and, in my
opinion, especially necessary). The point is that the
expert should be much more his own man and much
less the puppet of his client’s counsel than is typically
the case today.

Consequences

The consequences of such a code, should we adopt
and use it, are substantial and not entirely welcome.
I do not believe it would help us much in protecting
against the influence of our own strongly held social
views or against the biases that arise because we are
oriented and informed by just one of the adversaries.
Nor would it keep us from reflexive defensiveness
under hostile cross examination.

Adherence to such a code is likely to result
in a reduction of the pivotal role that statistical
analysis has come to play in discrimination law,
and we may see the resulting gap filled, by oth-
ers whose competence and good will we question
even more than our own. It is conceivable that a
more modest posture might lead the courts to seek
greater clarity by adopting the reforms, if such they
be, of the continental system with court-appointed
experts. It is certain, I think, that adherence to such
a code would improve the credibility of statistical
witnesses.



Expert Witness, Statistician as 11

Acknowledgments

This article is a modified version of a previously published
paper: “Damned Liars and Expert Witnesses”, Journal of
the American Statistical Association 81 (1986) 269–276.

References

[1] Ad Hoc Committee on Professional Ethics (1983). Eth-
ical guidelines for statistical practice, American Statisti-
cian 37, 1–20.

[2] British Medical Journal (1863). Medical evidence in
courts of law (editorial), 2 May, 456–457.

[3] Castaneda vs. Partida (1977). 430 US 482.
[4] DeGroot, M., Fienberg, S. & Kadane, I.B., eds. (1997).

Statistics and the Law. Wiley, New York, to appear.
[5] Deming, W.E. (1954). On the presentation of the results

of sample surveys as legal evidence, Journal of the
American Statistical Association 49, 814–825.

[6] Downton, F. (1977). Experience as an expert witness in
gambling cases, Statistician 26, 163–172.

[7] Finkelstein, M.O. (1980). The judicial reception of
multiple regression studies in race and sex discrimination
cases, Columbia Law Review 80, 737–754.

[8] Fisher, F. (1980). Multiple regression in legal proceed-
ings, Columbia Law Review 80, 702–736.

[9] Freedman, D., Pisani, R. & Purves, R. (1978). Statistics.
Norton, New York.

[10] Gibbons, J.D. (1973). A question of ethics, American
Statistician 27, 72–76.

[11] Griggs vs. Duke Power Company (1971). 401 US 424.
[12] Hazelwood School District vs. United States (1977). 433

US 299.
[13] Meier, P. & Zabell, S. (1980). Benjamin Peirce and

the Howland will, Journal of the American Statistical
Association 75, 497–506.

[14] Meier, P., Sacks, J. & Zabell, S. (1984). What happened
in Hazelwood: statistics, employment discrimination,
and the 80% rule, American Bar Foundation Research
Journal, Winter, 139–186.

[15] Monahan, J. & Walker, L. (1985). Social Sciences in
Law: Cases and Materials. Foundation Press, Mineola.

[16] People vs. Collins (1968). 68 Cal. 2d 319.66 Cal. Rptr.
497.

[17] Peterson, D.W. (1983). Statistical inference in litigation,
Law and Contemporary Problems 46, 1–303.

[18] Shepherd, J.C. (1973). Relations with the expert witness,
in Experts in Litigation, G.W. Holmes, ed. Institute of
Continuing Legal Education, Ann Arbor.

[19] Sprowls, R.C. (1957). The admissibility of sample data
into a court of law: case history, UCLA Law Review 54,
222–232.

[20] Washington vs. Davis (1976). 433 US 229.
[21] Wigmore, J.H. (1940). Evidence in Trials at Common

Law. Little, Brown, & Company, Boston.

PAUL MEIER



Explained Variation
Measures in Survival
Analysis

When fitting a regression model to survival data,
one is frequently faced with a situation in which
accurate predictions for individual survival cannot be
derived from the model even though the regression
coefficients are highly significant and the model fits
the data well. For example, consider a population
where the five-year survival rate drops from 60 to
30% depending on whether a certain risk factor
is present or absent (see Prognostic Factors for
Survival). Suppose that the risk factor is present in
50% of the population, so that, overall, 45% will
survive beyond year five. Although the risk factor
has an important impact on survival, it is hard to
use it for predictions of whether an individual will
be alive after five years. In particular, knowledge
of the risk factor does not gain much precision for
predictions compared to predictions based on the
overall rate of survival. Thus, the predictive power of
the risk factor is low. Still, in a sample of sufficient
size, a model that accounts adequately for the risk
factor will fit the data well and yield a significant
regression coefficient. Measures for the proportion
of explained variation similar to the coefficient of
determination used in multiple linear regression,
R2, can be helpful in order to quantify predictive
power and to separate it conceptually from statistical
significance and goodness of fit [5].

The first measures of explained variation suitable
for survival data appeared around the beginning of the
1990s, and there is as yet no commonly agreed choice
[10]. Two proposals are described here in some detail,
with more references toward the end of the article.

Korn and Simon [4] took an approach based
on loss functions to measure the explained varia-
tion. Let T be a survival time distributed according
to a survival curve S(t) = P(T > t) (see Survival
Distributions and Their Characteristics), and let
L(t, p) be the loss incurred when survival time p

is predicted for an individual with actual outcome
t . An optimal predictor p̃ for T is one that mini-
mizes the expected loss

∫ ∞
0 L(t, p) d[1 − S(t)] over

p (see Decision Theory). Let R(S) be the expected
loss (or risk) associated with p̃. Then, on the basis
of a sample of size n in which xi is a covariate for

individual i and Ŝ(.|xi) is an estimate of the survival
curve for individual i, the variation explained by the
model Ŝ(.|xi), i = 1, . . . , n, may be defined as

explained variation = 1 −
1
n

∑
R(Ŝ(.|xi))

R(S)
, (1)

where S = 1
n

∑
Ŝ(.|xi) estimates the marginal distri-

bution of survival based on the mean of the estimated
conditional survival curves given the covariate. With
squared error loss, (t − p)2, the optimal predictor
p̃ is the mean, and (1) is a model-based estimator
of the proportional reduction of variance achieved
when the marginal variance of the survival outcome
is compared to the mean conditional variance, given
the covariate. Other loss functions [4] include abso-
lute error, |t − p|, squared and absolute error loss
on log scale, (log t − log p)2 and | log t − log p|, and
squared error loss censored at some specified time
t0: This means that a prediction p = t0 is consid-
ered successful even if the actual survival t is greater
than t0, and incurs no loss. Thus, compared with
simple squared error loss, var(T̃ ) is used in place
of var(T ), where T̃ = min(T , t0). Finally, if all that
matters is prediction of whether an individual will
have died by time t0, binary squared prediction error
loss, [I (T > t0) − p]2, with I the indicator function,
may be considered. The resulting risk is the binomial
variance of the survival status at t0, S(t0)[1 − S(t0)].
In the introductory example, this gives an explained
variation of 1 − {

1
2 (0.6 × 0.4 + 0.3 × 0.7)

}
/(0.45 ×

0.55) = 0.09 at t0 = 5 years.
Note that, in this proposal, censoring is adequately

dealt with in two ways. The choice of a censored
version of the loss function allows one to view (1)
as an estimator of a population parameter where the
range of data to be collected in a sample can be
accounted for. For example, in a study that is planned
to be analyzed at a median follow-up time of five
years, squared error loss censored at year five may
be an appropriate choice. On the other hand, if some
individuals are censored prior to year five because
of limited follow-up, the estimate given in (1) can
still be calculated, since estimated survival curves
for those individuals will usually be available beyond
the time of censoring. If censoring is dealt with ade-
quately in the estimation of survival curves in the
sense that it introduces no bias, then so it is in the
estimation of explained variation. However, a draw-
back of the measure is that when misspecified models
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are used to estimate survival curves, the explained
variation shown in (1) may be misleading: It incor-
porates no comparison of observed versus predicted
survival and thus measures only the variation that the
model itself appears to explain.

Graf et al. [2] proposed a measure of explained
variation, where observed and predicted values of the
survival status are contrasted explicitly. It is based on
binary squared prediction error loss. For a sample of
size n, let ti denote the time individual i was under
observation, and let the censoring indicator δi equal
1 if individual i was observed to fail at ti , 0 if it was
censored at ti . Then let

explained variation

= 1 −

n∑

i=1

wi[I (ti > t0) − Ŝ(t0|xi)]
2

n∑

i=1

wi[I (ti > t0) − Ŝ(t0)]
2

, (2)

where the weights

wi =






δi

nĜ(ti)
if ti ≤ t0

1

nĜ(t0)
if ti > t0

incorporate the Kaplan–Meier estimator Ĝ of the
censoring or potential follow-up distribution [9] cal-
culated by exchanging the role of censored and
uncensored observations, that is, with censoring indi-
cator 1 − δi . Ŝ denotes the usual Kaplan–Meier esti-
mator of the entire sample, which is used to estimate
the marginal failure time distribution S(.). Under
suitable regularity conditions, this measure produces
a consistent estimator of the population explained
variation

1 − EX{∫ ∞
0 [I (t > t0) − Ŝ(t0|X)]2 d[1 − S(t |X)]}
∫ ∞

0 [I (t > t0) − S(t0)]2 d[1 − S(t)]
,

(3)

in which the sample means given in (1) and (2) are
replaced by the expected risks of the covariate-based
model and the marginal distribution of failure time.
This will hold even if censoring is present and if
a misspecified model Ŝ(.|X) is used instead of the

optimal predictor. The measure can be adapted for
other loss functions.

Two other explained variation measures were pro-
posed specifically for the context of proportional
hazards models (see Cox Regression Model), and
censoring is adequately dealt with in both. Schemper
and Henderson [8] constructed a measure in which
the model-based and marginal variance of the binary
survival status I (T > t) at time t is averaged across
a time-interval [0, t0], weighted by the marginal sur-
vival distribution. O’Quigley and Xu [7] suggested
a measure that compares mean squared Schoen-
feld residuals (see Residuals for Survival Analysis)
under a proportional hazards model to the null model
of no covariate effect. Although their measure has
a range of desirable properties, it actually measures
the predictability of a covariate from a given failure
time and thus does not directly aim at quantifying the
ability of the model to predict time to failure from a
given covariate.

Other proposals to modify R2 in a way suitable
for survival analysis rest upon interpretations of R2

different from the proportion of explained variation.
The relation of R2 to the likelihood ratio for a model
with covariate against the null of no covariate effect
is explored in [6, 11, 12]. Approaches related to the
interpretation of R2 as (squared) correlation between
observed and predicted values are taken in [1, 3, 4].
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Explanatory Variables

In many studies, multiple measurements are available
for each individual. One variable may be considered
to be the response of interest or the outcome (see
Response Variable). A model may be developed
to investigate the form of the relationship between
the outcome and the remaining variables, this usu-
ally being some form of regression model. These
variables are then often termed the explanatory vari-
ables. Thus, explanatory variables are distinguished
from the response or outcome. They are denoted as
explanatory variables because the model will inves-
tigate how they explain the outcome. Other terms
used for explanatory variables are independent vari-
ables, regressor variables, predictor variables, and,
in some situations, covariates. The term “explana-
tory variables” is somewhat more generic than the
other alternatives, which may or may not be appro-
priate in different settings. For example, the use of
the term “predictor variable” presumes that predic-
tion is the goal of model building, and this may not
be applicable. Use of the term “independent variable”
is not recommended since the dependence between
the response variable and explanatory variables is
the goal of modeling and since independence among
explanatory variables often cannot be assumed.

Various ways of classifying explanatory variables
are described in Cox & Snell [1]. In particular, an
explanatory variable can be quantitative or qualita-
tive. If it is quantitative, then the way in which it
is included in the model must be investigated. One

question to consider is whether the explanatory vari-
ables enter the model in an additive or multiplicative
manner. Another question is whether the original
explanatory variable or some transformation of it
should be used. A related question is whether poly-
nomial terms should be considered.

If an explanatory variable is qualitative, then
dummy variables must be defined to represent the
explanatory variable. The choice of dummy vari-
able definitions depends on the study situation. In a
regression model, the significance of the relationship
between the outcome and the qualitative explanatory
variable can then be assessed by testing the hypoth-
esis that all regression coefficients for the dummy
variables defined from this explanatory variable are
equal to 0.

Explanatory variables can be fixed by the design
of the experiment, representing factors such as levels
of treatment. Explanatory variables can also simply
be measurements for an individual obtained without
any experimental control, as is generally the case in
observational studies.
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Exploratory Data Analysis
Statisticians, as well as others who apply statisti-
cal methods to data, have often made preliminary
examinations of data in order to explore their behav-
ior. In this sense, exploratory data analysis has long
been a part of statistical practice. Since about 1970,
“exploratory data analysis” has most often meant the
attitude, approach, and techniques developed, primar-
ily by John W. Tukey, for flexible probing of data.

Broad Phases of Data Analysis

One description of the general steps and operations
that make up practical data analysis identifies two
broad phases: an exploratory phase and a confirma-
tory phase. Exploratory data analysis is concerned
with isolating patterns and features of the data and
with revealing these forcefully to the analyst. It often
provides the first contact with the data, preceding
any firm choice of models for either structural or
stochastic components (see Model, Choice of); but
it also serves to uncover unexpected departures from
familiar models (see Diagnostics). An important ele-
ment of the exploratory approach is flexibility, both
in tailoring the analysis to the structure of the data
and in responding to patterns that successive steps of
analysis uncover.

Confirmatory data analysis concentrates on assess-
ing the reproducibility of the observed patterns or
effects. Its role is closer to that of traditional statisti-
cal inference in providing statements of significance
(see Hypothesis Testing) and confidence; but the
confirmatory phase also encompasses (among others)
the step of incorporating information from an analy-
sis of another, closely related, body of data and the
step of validating a result by collecting and analyzing
new data.

In brief, exploratory data analysis emphasizes flex-
ible searching for clues and evidence, whereas confir-
matory data analysis stresses evaluating the available
evidence. The rest of this article describes the basic
concepts of exploratory data analysis and illustrates
some simple techniques.

Four Themes

Throughout exploratory data analysis, four main
themes appear and often combine. These are resis-
tance, residuals, re-expression, and display.

Resistance

Resistance is a matter of insensitivity to misbehavior
in data. More formally, an analysis or summary is
resistant if an arbitrary change in any small part of
the data produces only a small change in the analysis
or summary. This attention to resistance reflects an
understanding that “good” data seldom contain less
than about 5% gross errors, and protection against the
adverse effects of these should always be available.

It is worthwhile to distinguish between resistance
and the related notion of robustness. Robustness
generally implies insensitivity to departures from
assumptions surrounding an underlying probabilistic
model. (Some discussions regard resistance as one
aspect of “qualitative robustness”.)

In summarizing the location of a sample, the
median is highly resistant. (In terms of efficiency,
it is not so highly robust because other estimators
achieve greater efficiency across a broader range
of distributions.) By contrast, the mean is highly
nonresistant. A number of exploratory techniques
for more-structured forms of data provide resistance
because they are based on the median.

Residuals

Residuals are what remain of the data after a sum-
mary or fitted model has been subtracted out, accord-
ing to the schematic equation

residual = data − fit.

For example, if the data are the pairs (xi, yi) and
the fit is the line ŷi = a + bxi , then the residuals are
ri = yi − ŷi .

Exploratory data analysis takes the attitude that
an analysis of a set of data is not complete without
a careful examination of the residuals. This emphasis
builds on the tendency of resistant analyses to provide
a clear separation between dominant behavior and
unusual behavior in the data (see Outliers). When the
bulk of the data follows a consistent pattern, that pat-
tern determines a resistant fit. The residuals then con-
tain any drastic departures from the pattern, as well as
the customary chance fluctuations. Unusual residuals
suggest a need to check on the circumstances sur-
rounding those observations. As in more-traditional
practice, the residuals can warn of systematic diffi-
culties with the data – curvature, nonadditivity, and
nonconstancy of variability (see Scedasticity).
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Re-expression

Re-expression involves the question of what scale
would help to simplify the analysis of the data
(see Measurement Scale). Exploratory data analysis
emphasizes the benefits of considering, at an early
stage, whether the scale in which the data are origi-
nally expressed is satisfactory. If not, a re-expression
into another scale may help to promote symmetry,
constancy of variability, straightness of relationship,
or additivity of effect, depending on the structure of
the data.

The re-expressions most often used in exploratory
data analysis come from the family of functions
known as power transformations, which take y

into yp (almost always with a simple value of p

such as 1
2 , −1, or 2), together with the logarithm

(which, for data-analysis purposes, fits into the power
family at p = 0). For example, one investigation of
the relationship between gasoline mileage and the
characteristics of automobiles gained substantially
from re-expressing mileage in a reciprocal scale and
working with gallons per 100 miles instead of miles
per gallon.

Such changes of scale are not solely a specialized
concern of data analysis; they arise in everyday
experience. For example, in the Richter scale for
intensity of earthquakes, the pH scale for acidity,
and the average speeds in an auto race, the numbers
reported have already been re-expressed from the
scale in which the basic data were collected. Hoaglin
[1] discusses these and other examples.

Displays

Displays meet the analyst’s need to see behavior –
of data, of fits, of diagnostic measures, and of residu-
als – and thus to grasp the unexpected features as well
as the familiar regularities (see Graphical Displays).

A major contribution of the developments
associated with exploratory data analysis has been the
emphasis on visual displays and the variety of new
graphical techniques. The example below includes
one of these, the schematic plot or boxplot.

Example

An example illustrates the themes of exploratory data
analysis, with particular emphasis on re-expression
and display.

Table 1 Concentration of nicotine (nanograms
per milliliter) in the urine of a group of nonsmo-
kers exposed to a smoke-filled room (NS1), two
groups of nonsmokers with customary expos-
ure to smoke (NS2 and NS3), and a group of
smokers (S)

NS1 NS2 NS3 S

13 0.8 0 104
33 0.8 0.2 109
35 1.2 0.2 128
45 3.3 2.0 312
45 3.5 2.2 375
61 6.2 4.2 802
92 6.3 5.2 833
93 8.0 9.0 937
98 8.6 12.0 1006

157 10.3 12.0 1049
208 11.3 19.3 1629

21.0 23.5 1788
28.6 26.0 1808
64.3 1967

1990
2073
2609
2732

Source: Russell & Feyerabend [5].

In research that bears on the effects of passive
smoking, Russell & Feyerabend [5] studied the effect
on nonsmokers of exposure to tobacco smoke. For
four groups of volunteers they measured the concen-
tration of nicotine in each subject’s urine during the
early afternoon. The first group of nonsmokers (NS1)
spent an average of 78 minutes seated among smokers
in an unventilated smoke-filled room. The second and
third groups of nonsmokers (NS2 and NS3) were not
subject to any special conditions and simply received
their usual exposure to smoke in the workplace. The
fourth group, the smokers (S), was included for com-
parison. For the four groups Table 1 shows the urine
nicotine levels (in nanograms per milliliter).

In this scale the data do not yield an effective
display. A straightforward plot that includes the
data from all the smokers would show almost no
detail in the other three groups. This is one of the
difficulties that re-expression aims to remedy. For
these data, re-expression in a logarithmic scale leads
to a much more effective analysis. The results are
easy to interpret, because an additive difference in the
log scale corresponds to a ratio in the original scale.
For example, for logarithms to base 10, the medians
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of NS1 and S are 1.8 and 3.0, respectively. The
difference, 1.2, corresponds to a ratio of 16, similar to
what one would get by comparing observations near
the middle of the two groups.

To facilitate comparisons among the four groups,
Figure 1 displays their boxplots. In this graphical
summary of the data the box extends from the lower
hinge (an approximate quartile; see Quantiles) to the
upper hinge and has a line across it at the median.
The dashed lines show the extent of the data, except
for observations that are apparent strays (defined
according to a rule of thumb based on the hinges).
Such strays appear individually – in order to focus
attention on them – as the lowest observation in NS3
does in Figure 1. The general intent is to indicate the
median, outline the middle half of the data, and show
the range, with more detail at the ends if needed.

Figure 1 shows that the passive smokers (NS1)
have relatively little overlap with the smokers (S)
above or with the nonsmokers (NS2 and NS3) below.
As mentioned previously, the passive smokers’ urine
nicotine levels are typically about 1/16 of the smok-
ers’. However, the difference of about 1 on the log
scale between NS1 and either NS2 or NS3 means
that the passive smoking produced about a tenfold
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Figure 1 Parallel boxplots for the logarithm (base 10) of
nicotine concentration in the urine of the smokers (S) and
the three groups of nonsmokers (NS1, NS2, and NS3). The
subjects in NS1 were exposed to the smoke-filled room

increase in urine nicotine. These differences in level
are the main story; and it is easy to focus on them
because the variation within the four groups is quite
similar, whether measured by the length of the boxes
or the extent of the dashed lines. Some members
of NS3 apparently were more successful in avoiding
exposure to smoke, as indicated by the longer dashed
line at the lower end of that boxplot and, especially,
by the one stray observation. This subject had no
detectable nicotine in her urine. As a mathematical
function, the logarithm transforms 0 into −∞, but
this result does not affect the median or the lower
hinge for the group.

Literature

The first published presentation of exploratory data
analysis was the preliminary edition of the book by
John W. Tukey [6]; the 1977 edition [9] represents
the definitive account of the subject. A paper by
Tukey [8] describes and illustrates a number of the
most important displays.

The book by Mosteller & Tukey [4] contains
substantial discussions of exploratory attitudes and
techniques.

The two volumes edited by Hoaglin et al. [2, 3]
provide conceptual, logical, and mathematical sup-
port for a number of exploratory techniques. They
also explain and illustrate the connections of those
techniques to more-conventional techniques and to
classical statistical theory.

Broader discussions of the roles of exploratory and
confirmatory data analysis in scientific inquiry appear
in Tukey [7, 10].
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Exponential Distribution

The simplest distribution used to model survival
data is the exponential distribution (see
Parametric Models in Survival Analysis). This
model has survival function S(t) = e−λt and density
function f (t) = λe−λt . The exponential distribution
is characterized by a constant hazard rate, h(t) = λ.
This constant hazard rate implies a lack of aging and
leads to several other equivalent characterizations of
the exponential distribution.

The first characterization is referred to as the
lack of memory property. If T has an exponential
distribution, then it follows that

Pr(T ≥ t + x|T ≥ t) = Pr(T ≥ x).

This means that the chance that an individual of age
t survives an additional x years is the same as a new-
born surviving to age x. Because of this distributional
property, it follows that E(T − t |T ≥ t) = E(T ) =
1/λ, i.e. the mean residual life is constant. Because
the time until the future occurrence of an event does
not depend upon past history, this property is called
the “no-aging” property or the “old as good as new”
property of the exponential.

The second characterization of the exponential
distribution is as the distribution of the interarrival
times of a Poisson process. If N(t) is a Poisson
process with intensity rate λ, then the times between
successive occurrences of the process are independent
exponential random variables with hazard function, λ.
Also, the length of the interval from some fixed time
to the next occurrence of the Poisson process has an
exponential distribution with rate λ.

For an exponential random variable the mean is
λ−1 and the variance is λ−2, so the coefficient of vari-
ation is 1. The median time to the event is (log 2)/λ.
Based on independent, possibly right-censored sur-
vival times X1, . . . , Xn from the exponential dis-
tribution with hazard λ, the maximum likelihood
estimator for λ is the “occurrence/exposure rate”

λ̂ =
∑

Di

∑
Xi

,

where Di is an indicator for failure of individual i.
For large n, λ̂ is approximately normally distributed
with mean λ and a variance which may be estimated
by

∑
Di/(

∑
Xi)

2.
The exponential model may be checked using the

Nelson–Aalen estimator, which, under the model,
will approximate a straight line with slope λ. Also,
total time on test (see [1]) techniques are designed
especially for testing for exponentiality.

Regression analysis of exponentially distributed
survival times was pioneered by Feigl & Zelen [2],
who studied uncensored data, and generalized to
right-censoring by Zippin & Armitage [3].

A more general form of the exponential distri-
bution is the two-parameter exponential distribution
with survival function

S(t) =
{

1, if t < µ,
exp[−λ(t − µ)], if t ≥ µ.

Here the parameter µ is a threshold or guarantee
parameter. This distribution still has a constant hazard
rate and the lack of memory property.

The exponential distribution has found limited use
in biomedical applications since its lack of aging
property is too restrictive for most problems. It is use-
ful, however, as a special case of both the Weibull
distribution, the gamma distribution, and the distri-
bution with a piecewise constant hazard function (see
Grouped Survival Times). Furthermore, the model
is frequently used for sample size determination and
in simulation studies.
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Exponential Family

Many of the families of probability distributions
arising in biostatistics are of exponential form,
e.g. normal, exponential, gamma, beta, binomial,
multinomial, hypergeometric, Poisson, etc. The
class of models is theoretically important because
in multiparameter settings exact frequency methods
of inference exist only for certain exponential
family settings and for another general class called
transformation models, e.g. location-scale models.
Much of the underpinnings of general theory of
inference arise from consideration of exponential
families. Moreover, adequate understanding of some
of the most important aspects of biostatistics,
e.g. matched case–control studies (see Matching),
requires a grounding in theory of inference for
exponential families.

Basic Definitions and Examples

For a collection of data y, an exponential family is a
class of distributions with densities (meant to include
probability mass functions for discrete data) of the
form

f (y; θ) = m(y) exp




k∑

j=1

cj (θ)sj (y) − d(θ)



 , (1)

where θ ∈ � is typically a vector parameter. The
density is often zero outside some specified set, which
must not depend on θ . Very often y consists of inde-
pendent but not identically distributed observations
y1, y2, . . . , yn, which themselves have exponential
family distributions of simpler form. The primary
aims involve comparison of the distributions of the
yi or studying their relation to covariates of inter-
est. Most intermediate-level statistical theory texts
focus on the case of identically distributed obser-
vations, but this fails to meet practical needs or to
raise generally important issues discussed here. The
texts by Cox & Hinkley [4], Cox & Snell [6], and
Lehmann [12] give treatments closer to the following,
with the latter giving mathematical details avoided
here. Further mathematical treatment and some inter-
esting general inferential aspects are given in Barn-
dorff–Nielsen [1].

For example, basic modeling concepts of least
squares regression can be extended to likelihood
analysis where the component observations yi have
exponential family densities of the form

f (yi ; ω) = ai(yi) exp[ωyi − bi(ω)] (2)

by modeling the parameter for yi as ωi = x′
iθ , where

xi is an associated vector of covariables. The joint
density can be written in the form of (1), with cj (θ) =
θj , the coordinates of θ , and sj (y) = ∑

i xij yi . An
important example is logistic regression, where the
component observations yi have binomial distribu-
tions with probabilities of success πi which are to be
modeled in terms of covariables. The densities can
be expressed in the form of (2) as

f (yi ; πi) = ai(yi) exp

{
log

[
πi

(1 − πi)

]
yi − bi(πi)

}
,

and the logistic model relates the πi to covariate
vectors xi in a manner such that log[πi/(1 − πi)] =
x′

iβ, where in more conventional notation we write
β in place of θ .

Often a single parameter ω is not adequate for
modeling the component distributions, and this is
generalized to models with a vector parameter ω,

f (yi ; ω) = ai(yi) exp




l∑

j=1

ωjgj (yi) − bi(ω)



 ,

(3)

also leading to the form of (1) for the joint density
for some k ≥ l. An instance of this with l = 2 arises
in gamma regression with scale parameters σi and
unknown common shape parameter ν, where the
densities can be expressed in the form of (3) as

f (yi ; σi, ν) = ai(yi) exp

[(−1

σi

)
yi + ν ln(yi)

− bi(σi, ν)

]
.

A regression model which is theoretically tractable,
but not always the most practically useful, takes
1/σi = x′

iβ. Then, in (1), the cj (θ) consist of the
coordinates of β supplemented by ν, and the sj (y)

consist of the quantities −∑
i xij yi supplemented by∑

i ln(yi).
Both of the above examples are generalized lin-

ear models [10, 14]. Examples not of this form, in
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particular where the data y do not consist of indepen-
dent observations, include Gaussian mixed models
such as randomized block designs, Gaussian multi-
variate and time series models, and multinomial or
hypergeometric models.

The likelihood function based on (1) depends
on the data only through the collection of statistics
[sj (y); j = 1, . . . , k], and thus such a reduction of the
data is a sufficient statistic – one of the key aspects
of exponential families. Ordinarily there are various
choices for how (1) is expressed for a given setting,
and henceforth we assume that this is in terms of
the smallest possible choice of k, which is called
the order of the family. The collection [sj (y), j =
1, . . . , k] is then minimally sufficient. It is the clas-
sical Fisher–Darmois–Koopman–Pitman result that,
in general, under regularity conditions, when data y
consist of n independent observations, a sufficient
statistic of fixed dimension k for all n can exist only
when the component observations yi have exponen-
tial family distributions as indicated by (3). Even
then, when the yi are not identically distributed, this
occurs only under special conditions discussed below.
It is assumed that the coordinates of θ ∈ � can vary
independently of one another, i.e. that the dimension
of the space � is really dim θ . Since the distribution
of y is determined by [cj (θ), j = 1, . . . , k], unless
k ≥ dim θ the parameter θ will contain redundancies
resulting in lack of identifiability, as in one-way clas-
sifications in parameterization µ + τj . We assume
here that these redundancies have been eliminated.
The present discussion is not mathematically rigor-
ous, but is intended to convey the essential ideas as
simply as possible.

Canonical Parameters; Regular and
Curved Families

It is useful to consider a reparameterization, taking
[γj = cj (θ); j = 1, . . . , k], and thus to express the
model in (1) as

f (y; γ ) = m(y) exp




∑

j

γj sj (y) − K(γ )



 .

The γj are called the canonical parameters of the
exponential family, and the statistics sj (y) the canon-
ical sufficient statistics. Note that these are only speci-
fied up to linear transformations; any full-rank linear

transformation of the collection (γj ) is another set
of canonical parameters, with correspondingly trans-
formed canonical sufficient statistics. The density of
s takes similar form,

f (s; γ ) = n(s) exp[γ ′s − K(γ )], (4)

for a function n(s) which in the discrete case is the
sum of m(y) for y values mapping into s. Another
useful parameterization utilized below is in terms of
the vector µ = Eγ (s), which is referred to as the mean
parameter.

The function K(γ ) is essentially the cumulant
generating function (see Characteristic Function)
of the statistic s. That is, derivatives of K(γ )

yield moments of s in a useful form: K̇(γ ) =
Eγ (S), K̈(γ ) = varγ (S), K

··· = skewγ (S), and so forth.
Here, and in the following, overdots on functions
denote derivatives, with respect to parameters if there
are additional arguments. As seen above, s is often
the sum of independent observations, and in any case
normal approximations for its distribution apply as
the information in the data becomes large.

Recall that the order of the family is the minimal
value of k which can be used in (1) – that is, the
minimal dimension of γ in the above expressions.
There are then two major cases: where k = dim θ

and where k > dim θ . If k = dim θ , as in the two
examples above, the family is said to be regular,
which simplifies inferential issues. In particular, the
maximum likelihood estimator of θ is a one-to-one
function of s, and hence is a sufficient statistic. In
addition, s is complete; that is, there is at most one
unbiased estimator based on s of any given paramet-
ric function ψ(θ) [12, Section 4.3]. If k > dim θ ,
then the parameters [γj (θ), θ ∈ �] are functionally
related, jointly tracing out a curved space of dimen-
sion dim θ within k-dimensional Euclidean space Rk ,
and thus the model is called a curved exponential
family [7, 8]. The maximum likelihood estimator of
θ is then not a sufficient statistic, being of dimen-
sion less than that of the minimal sufficient statistic.
Ideal inference is severely hampered by the need to
utilize the information not contained in the maximum
likelihood estimator of θ , and approximate methods,
which may be very good, are always employed.

The above examples are readily modified to yield
curved exponential families, by modeling quantities
other than the canonical parameter as linear in β.
That is, in the binomial example, if πi = g(x′

iβ)
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for any function g(·) other than that corresponding
to log[πi/(1 − πi)] = x′

iβ, then the family is curved
unless the covariates are very special, i.e. taking on
only dim β or fewer values. Without special covariate
structure the minimal value of k is the sample size
n. In the gamma example, if some function other
than 1/σi is modeled as x′

iβ, then the family is
similarly curved. In that setting it is often more
natural and practically useful to take ln σi = x′

iβ.
Although these are practically important instances,
curved exponential families arise in many other ways.
An interesting and more tractable example arises in
identically distributed negative exponential response
times which are censored if they exceed a fixed time
C. The minimal sufficient statistic is (T , r), where
T is the total time on test and r is the number of
failures; and the maximum likelihood estimator of
the scale parameter is T/r . Another often-considered
example arises from identically distributed Gaussian
observations with known coefficient of variation.

Basic Issues of Estimation

For inferential purposes it will be best to consider
inference about some underlying parameter θ , rather
than γ , with the understanding that in the regular case
one may sometimes simply want to consider θ = γ .
The log likelihood function for θ in terms of s is

l(θ ; s) = γ (θ)′s − K[γ (θ)]. (5)

For regular families where the coordinates of γ

vary freely, the maximum likelihood equations are
Eθ (S) = s; that is, the maximum likelihood estimator
of the mean parameter µ is µ̂ = s. This can be seen
by reparameterizing in terms of γ and differentiating
(5), using the fact that K̇(γ ) = µ. For curved families
µ(θ) does not vary freely over Rk and the equations
µ̂ = s generally have no solution. In this case the
maximum likelihood estimator µ̂ is a weighted least
squares approximate solution to these equations, as
described below.

In either case the expected information for θ , i.e.
−E[l̈(θ ; S)] = var[l̇(θ, S)], is i(θ) = (∂γ /∂θ)′K̈(γ )

(∂γ /∂θ), or simply K̈(γ ) for regular families when
θ = γ . The observed information given data s is
j (θ̂) = −l̈(θ̂ ; s), where θ̂ is the maximum likeli-
hood estimator. For regular exponential families,
i(θ̂) = j (θ̂), and for curved exponential families
these always differ except for samples with s = µ̂. In

fact, the standard deviation of the ratio j (θ̂)/i(θ̂) of
these information measures can provide a useful mea-
sure of “how curved” the family is [7, 8]. When the
information is substantial the maximum likelihood
estimator θ̂ is approximately normally distributed
with mean θ and variance [i(θ)]−1. For curved fami-
lies a dominant part of the information not contained
in the maximum likelihood estimator can often be
utilized by replacing this by [j (θ̂)]−1 [9].

When for regular families the maximum likelihood
equations cannot be solved in closed form, or when a
least squares solution is called for because the model
is curved, numerical methods can often be organized
most simply in terms of iterative nonlinear weighted
least squares (see Generalized Linear Model). Often
this is for convenience based on a version of (5),
where k = dim s is not chosen minimally, and in par-
ticular may be where s there is taken as the original
data y. Departing momentarily from the assumption
that k has necessarily been chosen minimally, the fol-
lowing holds for any choice of k ≥ dim θ , and for
either regular or curved models. Let M represent the
space of values of the mean parameter [µ(θ); θ ∈ �],
a space of dimension p = dim θ within Rk , which
is typically curved even for regular families if k is
not minimal. Differentiating (5) and using the rela-
tion that µ̇(θ) = K̈(γ )γ̇ (θ), it is seen that the vector
(s − µ̂) is orthogonal to M at the point µ̂ in the
sense that

(s − µ̂)′�̂−1T̂ = 0,

where �̂ = varθ̂ S and the columns of T̂ span the
tangent space to M at µ̂; for example, T̂ = ∂µ/∂θ

evaluated at θ̂ . This may be solved by iterative
nonlinear least squares, with the step from an iterative
value µ̃ given by

(µ̂ − µ̃) = [T̃′�̃−1T̃]−1T̃′�̃−1(s − µ̃).

This is the Newton–Raphson method if the model
is regular, and the Fisher scoring method if the
family is curved (see Optimization and Nonlinear
Equations).

Exact Frequency Inference

Exact inference for multiparameter exponential
families is a fundamental aspect of theory of
inference. Consider inference about a scalar-valued
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parametric function ψ = ψ(θ) in terms of a
significance test of ψ = ψ0 against the alternative
ψ > ψ0 (see Hypothesis Testing). This can then be
inverted to yield a lower confidence limit given by
the smallest ψ-value which would not be rejected
at the specified level as a hypothesized value. In
our view confidence intervals are best determined by
individually determined lower and upper confidence
limits. It is useful in theoretical development to
consider a reparameterization from θ to (ψ, ν), where
ν is referred to as a nuisance parameter.

The fundamental condition imposed in deriving
an inference about ψ is that operating characteristics
under the hypothesis of the inferential procedure –
that is the size of a test (see Level of a Test), the
P value, or the coverage probability of a confidence
interval – should be independent of ν. Exactness is
achieved only when the model is regular and ψ is
a canonical parameter, i.e. a linear function of any
specific choice γ of canonical parameters. In this case
ν can be chosen as a complementary set of canonical
parameters, and the density of a sufficient statistic can
be expressed as

f (t, s; ψ, ν) = n(t, s) exp[ψt + ν ′s − K(ψ, ν)].
(6)

All inferences which are independent of ν in the sense
indicated above may be based on the conditional dis-
tribution of T given S = s; note that s is the complete
sufficient statistic for ν in the subfamily, where ψ

is fixed at any value [12, Chapter 4; 4, Chapter 5]
(see Conditionality Principle). This conditional dis-
tribution depends only on ψ and belongs to a related
exponential family of the form

f (t |S = s; ψ) = n(t, s) exp[ψt − K∗(ψ ; s)] (7)

for a function K∗(ψ ; s), which is, of course, the
cumulant generating function of the conditional dis-
tribution. The P value for testing ψ = ψ0 against
the alternative ψ > ψ0 is Pr[T ≥ tobs|S = sobs; ψ0],
where tobs, sobs are the observed data.

The conditional distribution involved in this is
ordinarily fairly intractable. However, for a variety
of settings involving continuous data, in particular
Gaussian and gamma models, this P value can be
reexpressed in terms of an unconditional probability.
The standard t tests for means and regression coef-
ficients for Gaussian data, the standard F tests for
variances of Gaussian data, and F tests for negative

exponential and gamma data can be derived in this
manner [12, Chapter 5].

For discrete data this conditional P value can often
be computed by enumeration of the sample space for
either t or the original data y, within the set where
S = sobs. Aside from possibly extensive calculations,
this is straightforward since the conditional density
is simply proportional to n(t, s) exp(ψ0t), and if nec-
essary the first term can be computed as indicated
following (4) by enumerating samples y mapping
into (t, s). In particular, these calculations do not
require the function K∗(ψ ; s), which may be diffi-
cult to calculate. This method leads, for example,
to Fisher’s exact test for comparison of two bino-
mial samples [4, Section 5.2; 6, Section 2.3]. Much
of the methodology for matched case–control stud-
ies (see Matched Analysis) is based on this theory.
A simple version of this pertains to independent
pairs of binomial observations y1i , y2i with proba-
bilities π1i , π2i modeled as log[π1i/(1 − π1i )] = νi

and log[π2i/(1 − π2i )] = νi + ψ . Inference about the
common log odds ratio ψ is made by conditioning
on the sufficient statistics (y·i ) for the collection of
nuisance parameters (νi) [6, Section 2.4; 3, Chap-
ter 7].

Sophisticated enumeration algorithms have been
developed, providing for feasible computation of
P values for various settings involving single and
multiple contingency tables, logistic regression,
and related problems (for example, see LogXact
[13]; see Exact Inference for Categorical Data;
StatXact). However, these methods for discrete
data are, in general, an application of theory
which applies exactly only for continuous data,
and when the discreteness of the distribution of
T |S = s is substantial the operating characteristics
of the procedures are often quite poor. That is,
the unconditional size of tests, the unconditional
distribution of P values, and even the conditional
level of confidence intervals, can be far from the
nominal levels (see, for example, [21] and [11]). In
our view [16], it is generally best to “smooth the data”
by using, without continuity corrections, the best of
the asymptotic methods discussed below.

The above theory can also be applied indirectly
when ψ(θ) is the ratio of canonical parameters,
and this need arises frequently – for example, in
testing a Gaussian mean. If ψ = γi/γj , then testing
ψ = ψ0 is equivalent to testing γi − ψ0γj = 0, which
reduces the problem to a hypothesis for a canonical
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parameter. Of course, if ψ is a monotonic function of
a canonical parameter, then the theory applies simply
by transforming the hypotheses to one involving
the canonical parameter. These extensions exhaust
the situations where there is even in principle an
exact inference for a single parametric function in
multiparameter exponential families. Extensions of
the exact theory to settings where dim ψ > 1 are
rather limited, consisting mainly of the standard F

tests for Gaussian regression. There is virtually never
an exact inferential method for curved exponential
families.

Approximate Methods of Inference

There are several approximate methods of inference,
whose definition and most basic properties are not
really special to the exponential family setting [4].
However, this setting provides a good opportunity to
compare and evaluate them, since they can be referred
to exact methods. We continue to write ψ = ψ(θ) as
the interest parameter, but for the methods of this
section it is not required that this be a canonical
parameter. It is assumed in the following that ψ-
values of special interest, either maximum likelihood
estimators or hypothesized values, are not on the
boundary of the parameter space.

The direct use of approximate normality of the
maximum likelihood estimator ψ̂ , often called the
Wald method (see Likelihood), utilizes an approx-
imate standard error computed from [i(θ̂)]−1 or
[j (θ̂)]−1 by using the delta method (if necessary).
Some caution is required in using this method. If
ρ = g(ψ) is a monotonic function of ψ , then ideally
most inferences should be essentially independent of
the choice of which parameter is used; this is called
invariance. For example, a confidence interval for ρ

should consist of the mapping of a confidence interval
for ψ under the transformation g(ψ). This does not
obtain when using the Wald method, and of course
the normal approximation will be better for some rep-
resentations of the parameter than for others. When
the information is modest, one should seldom rely
on the Wald method without some consideration of
choosing a suitable parameterization. The advantage
of the method is the simplicity and transparency of
reporting a point estimate and its approximate stan-
dard error.

The following alternative methods are presented
in terms of significance tests for hypothesized values

of ψ , which represent a rather incomplete inference
without attention to estimation. However, confidence
intervals for ψ may serve to rectify this even better
than maximum likelihood estimators. These can be
obtained from the following approximate methods, in
the same manner as indicated above for exact tests,
as the set of ψ-values which would not be “rejected”
as hypothesized values.

The score test method (see Likelihood), some-
times called Rao’s method, has useful characteristics.
Writing (5) in terms of ψ and an arbitrary choice of
nuisance parameter ν as

l(ψ, ν; s) = γ (ψ, ν)′s − K[γ (ψ, ν)], (8)

the score test of ψ = ψ0 is based on the derivative of
(8) with respect to ψ , evaluated at ψ0. Large values of
this, in absolute value, indicate evidence against the
hypothesis, without the need to compute ψ̂ where this
derivative is zero. None of the methods in this section
depends on the particular choice of ν. In contrast
to the Wald method, both the score test and the
likelihood ratio method discussed below are invariant
under monotonic reparameterizations ρ = g(ψ). For
the score test the derivative presented below would
then simply be multiplied by the constant 1/ġ(ψ0),
which has no effect on the ultimate test.

More precisely, the derivative of (8) is evaluated at
ψ0 and ν̂0, where the latter is the maximum likelihood
estimator of ν under the hypothesis. When ψ is a
canonical parameter this is given by t − Eψ0,ν̂0(T ) in
terms of the notation for (6). This special case gives
a clear view of the fundamental nature of the score
statistic, whose more general form is given by

[∂γ (ψ0, ν̂0)/∂ψ]′[s − Eψ0,ν̂0(S)].

The expectation of this statistic under the hypothesis
is approximately zero, and its approximate variance
is the adjusted information for ψ allowing for estima-
tion of ν. This adjusted information is the reciprocal
of the var(ψ̂) element in the inverse information
matrix [i(ψ0, ν̂0)]−1. The score test statistic con-
sists of the log likelihood derivative divided by
its asymptotic standard deviation, with the P value
for alternatives ψ > ψ0 being the probability that a
standard normal variate is as large as the observed
value of this statistic. The most important charac-
teristic of the score test is that one needs only to
compute the maximum likelihood estimator under the
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hypothesis, ν̂0, rather than the full maximum likeli-
hood estimator (ψ̂, ν̂), which may simplify computa-
tions substantially. For example, consider the logistic
regression example above when xi consists of a con-
stant term and a single covariable, and testing whether
the regression coefficient of the covariable is zero.
Writing mi for the binomial sample sizes, the numer-
ator of the score test is simply

∑
xi(yi − π̂), where

π̂ = ∑
yi/

∑
mi ; its asymptotic variance is given by

π̂(1 − π̂)
∑

mi(xi − xw)2, where xw is the average
of the xi using weights mi .

Generally, the most reliable inference is based
on the asymptotic distribution of the generalized
likelihood ratio (see Likelihood Ratio Tests), which
is sometimes referred to as Wilks’ method. Denoting
the likelihood function by L(θ ; y), this likelihood
ratio is defined as

W(ψ0, y) = max
θ

L(θ ; y)/ max
θ :ψ(θ)=ψ0

L(θ ; y),

which will tend to take large values when the data do
not support the hypothesis. In terms of a reparameter-
ization to (ψ, ν) as above, computing the constrained
maximum of the denominator amounts to fitting the
nuisance parameter ν by maximum likelihood when
ψ = ψ0. When the hypothesis is true, the sampling
distribution of 2 ln[W(ψ0; Y)] is approximately chi-
square on 1 degree of freedom (df). Moreover, the
distribution of

z(ψ0, Y) = sign(ψ̂ − ψ0){2 ln[W(ψ0; Y)]}1/2 (9)

is approximately standard normal, and can be used
for directional inference. A P value for alternatives
ψ > ψ0 is taken as the chance that a standard nor-
mal variate is as large as z(ψ0, yobs). This normal
approximation is the best of the three discussed in this
section, and is ordinarily adequate in practice unless
dim ν is moderately large in relation to the available
information. Improvements for that case are discussed
in the following section.

Inversion of tests based on (9) to obtain confidence
limits is often best carried out in terms of the profile
likelihood function

Lp(ψ ; y) ∝ max
θ :ψ(θ)=ψ

L(θ ; y).

In practice one typically chooses a suitable grid
of ψ-values and computes Lp(ψ ; y) by numerical

methods or otherwise for each value in the grid.
A plot of the result is useful, and a confidence
interval corresponding to the likelihood ratio test
can be taken as those ψ-values for which the ratio
of Lp(ψ ; y) to its maximum value is at least a
threshold value. For a 100α% level confidence inter-
val this threshold value is taken as exp(− 1

2χ2
1−α).

Although this may be a computationally intensive
method, with modern computing capabilities it is
quite feasible once one organizes the calculations, or
uses software with such procedures incorporated. It
is noteworthy that the information computed from
differentiation of the log profile likelihood is the
same as the adjusted information for ψ as defined
earlier.

All of these approximate methods generalize natu-
rally to the case that dim ψ > 1 in terms of chi-square
tests. For tests based directly on the maximum likeli-
hood estimator, and for score tests, a quadratic form
is computed using the multivariate statistic and its
asymptotic variance matrix. For the likelihood ratio
test, the approximate distribution of 2 ln[W(ψ0; Y)]
is chi-square on dim ψ df.

Improved Approximations Based on
Higher-Order Asymptotics

For regular families more accurate approximations
to the distribution of s may be obtained from so-
called saddlepoint approximations, which might bet-
ter be referred to as likelihood ratio approximations.
These are readily computed from K(γ ) and the max-
imum likelihood estimator γ̂ corresponding to the
value of s at which the approximation is desired. In
terms of the density of s this is discussed by Barn-
dorff–Nielsen & Cox [2], and approximations to the
distribution function are reviewed by Pierce & Peters
[15]. These approximations are both very accurate
and theoretically intriguing due to their connections
with likelihood ratio concepts. The text by Severini
[17] gives a thorough treatment of the following, in
the general setting not restricted to exponential fam-
ilies.

Improvements on the above classical approxima-
tions, based on these methods, are relatively simple
to implement for regular exponential families, and
are particularly useful when dim ν is moderately
large in relation to the information available. The
Cox–Reid [5] adjusted profile likelihood function
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approximates more closely the conditional likelihood
function based on (7), and when ψ and ν are canon-
ical parameters it takes the form

Lap(ψ ; y) ∝ Lp(ψ ; y)|∂2K(ψ, ν̂ψ)/(∂ν)2|1/2,

where ν̂ψ denotes the maximum likelihood estimator
when ψ is held fixed (see also Pierce & Peters [15]).
This also applies without modification when dim ψ >

1. With some modification it applies to noncanonical
parameters and also outside of exponential family
settings. The matrix whose determinant is involved
is the expected information for ν when ψ is fixed,
and is available when one uses the iterative method
indicated above for computing ν̂ψ . The maximizing
value of Lap, and confidence intervals computed from
it as indicated above in terms of Lp, have reduced bias
when dim ν is moderately large.

For inference about canonical parameters when
dim ψ = 1 it is possible through these approxima-
tions to modify the likelihood ratio statistic, (9),
to obtain an improved estimate of Pr(T ≥ tobs|S =
sobs; ψ0). This makes more accurate allowance both
for the conditioning which eliminates the nuisance
parameter, and for nonnormality of the conditional
distribution involved [15]. This modification is sim-
ple to compute, and again the quantities required are
ordinarily byproducts of the fitting process required
for computing (9).

Bayesian Inference

Bayesian inference is also particularly tractable for
exponential families. Consider the form (4) of an
exponential family, and a family of prior distributions
for γ , with parameters λ and κ , of the form

π(γ ; λ, κ) ∝ exp{κ[γ ′λ − K(γ )]}.
This is referred to as a conjugate family of prior
distributions, attractive in that the posterior distribu-
tion based on data with sufficient statistic s following
(4) is

π(γ |s; λ, κ) ∝ exp

{
(κ + 1)

[
γ ′ (s + κλ)

(κ + 1)
− K(γ )

]}

∝ π(γ ; λ∗, κ∗),

which is an updated member of the conjugate fam-
ily with parameters λ∗ = (s + κλ)/(κ + 1) and κ∗ =

κ + 1. Not only is this highly tractable but it provides
an interpretation of the prior information specified by
(λ, κ) as equivalent to hypothetical data with suffi-
cient statistic λ but having weight κ times that of
s, combined with an initially locally uniform prior
distribution. Asymptotic methods for Bayesian infer-
ence are closely related to those discussed above, both
in terms of the classical results and the higher-order
asymptotics [18–20].

References

[1] Barndorff-Nielsen, O.E. (1978). Information and Expo-
nential Families in Statistical Theory. Wiley, New
York.

[2] Barndorff-Nielsen, O.E. & Cox, D.R. (1979). Edgeworth
and saddle-point approximations with statistical applica-
tions (with discussion), Journal of the Royal Statistical
Society, Series B 41, 279–312.

[3] Breslow, N.E. & Day, N.E. (1980). Statistical Methods
in Cancer Research. Vol. 1. The Analysis of Case–
Control Studies. International Agency for Research on
Cancer, Lyon.

[4] Cox, D.R. & Hinkley, D.V. (1974). Theoretical Statis-
tics. Chapman & Hall, London.

[5] Cox, D.R. & Reid, N. (1987). Parameter orthogonality
and approximate conditional inference (with discussion),
Journal of the Royal Statistical Society, Series B 49,
1–39.

[6] Cox, D.R. & Snell, E.J. (1989). Analysis of Binary Data,
2nd Ed. Chapman & Hall, London.

[7] Efron, B. (1975). Defining the curvature of a statistical
problem (with applications to second-order efficiency),
Annals of Statistics 3, 1189–1217.

[8] Efron, B. (1978). The geometry of exponential families,
Annals of Statistics 6, 362–376.

[9] Efron, B. & Hinkley, D.V. (1978). Assessing the accu-
racy of the maximum likelihood estimator, Biometrika
65, 457–481.

[10] Firth, D. (1991). Generalized linear models, in Statis-
tical Theory and Modelling, D.V. Hinkley, N. Reid &
E.J. Snell, eds. Chapman & Hall, London, Chapter 3.

[11] Haviland, M.G. (1990). Yates’ correction for continuity
and the analysis of 2 × 2 contingency tables, Statistics
in Medicine 9, 363–367.

[12] Lehmann, E. (1986). Testing Statistical Hypotheses, 2nd
Ed. Wiley, New York.

[13] LogXact (1992). A Software Package for Exact and
Asymptotic Logistic Regression, Version 1.0. Cytel Soft-
ware, Cambridge, Mass.

[14] McCullagh, P. & Nelder, J.A. (1989). Generalized
Linear Models, 2nd Ed. Chapman & Hall. London.

[15] Pierce, D.A. & Peters, D. (1992). Practical use of higher
order asymptotics for multiparameter exponential fam-
ilies (with discussion), Journal of the Royal Statistical
Society, Series B 54, 701–737.



8 Exponential Family

[16] Pierce, D.A. and Peters, D. (1999). Improving on
exact tests by approximate conditioning, Biometrika 86,
265–280.

[17] Severini, T.A. (2000). Likelihood Methods in Statistics.
Oxford University Press, Oxford.

[18] Sweeting, T.J. (1995). A framework for Bayesian and
likelihood approximations in statistics, Biometrika 82,
1–24.

[19] Sweeting, T.J. (1995). A Bayesian approach to approx-
imate conditional inference, Biometrika 82, 25–36.

[20] Tierney, L. & Kadane, J.B. (1986). Accurate approxima-
tions for posterior moments and marginal densities, Jour-
nal of the American Statistical Association 81, 82–86.

[21] Upton, G.J.G. (1982). A comparison of alternative tests
for the 2 × 2 comparative trial, Journal of the Royal
Statistical Society, Series A 145, 86–105.

(See also Large-sample Theory)

DONALD A. PIERCE



Exposure Effect

An exposure effect is a quantitative measure of the
impact of exposure on an outcome measure. Estimates
of exposure effects are derived by contrasting the out-
comes in an exposed population with outcomes in an
unexposed population or in a population with a differ-
ent level of exposure. Relative risk, excess risk, and
relative odds are examples of exposure effects used in
connection with dichotomous outcomes, whereas rela-
tive hazards are used to characterize exposure effects
when the outcome is time-to-response or the event rate
per person–year exposure time. Mean differences are
often used to characterize exposure effects for quanti-
tative outcomes.

When regression models are used, exposure ef-
fects correspond to model parameters. For example,
consider a model with multiple linear regression
β0 + β1E + β2X, where E indicates a level of expo-
sure and X some other factors influencing outcome.
The exposure effect, β1, measures the effect on out-
come of a unit increase in exposure, with other factors,
X, held constant. IfE only takes on values 1 for exposed
and 0 for unexposed, β1 is the adjusted mean difference

between exposed and unexposed; and if, in addition,
the outcome is dichotomous, β1 is the adjusted risk dif-
ference. If the effect of exposure depends on levels of
another factor, say X1, an interaction term involving
X1E is needed in the previous regression. Then no sin-
gle number characterizes the exposure effect, and effect
modification is said to occur.

In the theory of causation, each individual or study
unit is hypothesized to have two responses, the response
ifexposedand the response ifunexposed.Onlyonesuch
response is observed on each individual, but hypothe-
sized individual-level effects can be defined, such as
the difference in responses the individual would have if
exposed and if unexposed. In the context of this “coun-
terfactual” theory of causal effects, the exposure effects
described in the previous paragraph can be regarded as
summary measures of individual-level causal exposure
effects.

(See also Cox Regression Model; Generalized Lin-
ear Model; Logistic Regression; Poisson Regres-
sion; Relative Risk Modeling)

MITCHELL H. GAIL



Extrapolation, Low Dose

At high doses, most substances are toxic to humans.
Thus, it is imperative to establish conditions for
the use of toxic substances that are relatively safe.
Because of its devastating effects, cancer is a major
concern. Considerable research is focused on iden-
tifying chemical substances (carcinogens) that cause
cancer. Occasionally, it is possible to identify car-
cinogens in human populations by epidemiologic
studies. Since humans are exposed to many sub-
stances, generally at unknown dose levels, it is diffi-
cult to quantify the risk (probability) of cancer from
human studies. Cancer risks are generally estimated
from bioassays conducted in laboratory animals (see
Tumor Incidence Experiments). Animals are gen-
erally exposed at a few dose levels, and unexposed
control animals are used, for a lifetime (from weaning
up to two years in rodents). Chemicals are admin-
istered in the diet, drinking water, subcutaneously,
via gavage, or by inhalation. Usually fewer than
100 animals are used per dose level. Thus, high doses
must be used to elicit potential cancer effects at inci-
dence rates high enough to be detected and measured
in animal bioassays. However, humans are usually
exposed to much lower levels of toxic substances.
This requires extrapolation (estimation) of cancer
incidence (risk) at doses well below the experimental
dose range.

The dose of interest is the active dose at the
target tissue. Many chemicals are metabolized by the
body to an active or inactive state. Physiologically
based pharmacokinetic studies are often conducted
to study the absorption, distribution, and excretion of
chemicals in the body. In some cases it is possible
to measure the dose of the active chemical at the
target tissue site. Generally, this information is not
available and it is assumed that the target tissue
dose is proportional to the administered dose. The
nonlinearity of dose–response curves can be due, in
part or wholly, to the pharmacokinetics of a chemical
(see Dose–Response Models in Risk Analysis). In
general, it is not known whether a test species is more
or less sensitive than humans to a carcinogen. In the
absence of such information, the US Environmental
Protection Agency [22] proposes equal sensitivity
across species when dose is expressed as a ratio
of body weight to the 3/4 power. This is nearly

equivalent to expressing dose as concentration in the
diet or drinking water.

Risk is generally expressed as the probability that
an individual will develop cancer by some age, usu-
ally lifetime, when exposed to a specified dose of
a carcinogen (see Risk Assessment). For a popu-
lation of individuals exposed to different doses, the
expected number of cancer cases is

expected number =
∑

i

Ni Pr(di),

where Ni is the number of individuals exposed at
dose di and Pr(di) is the probability (proportion)
developing cancer at that dose. The average risk for
the population is

Pr =

∑

i

Ni Pr(di)

∑
Ni

.

If the dose–response is linear, then the population
risk is simply the slope (risk per unit dose) times the
average dose level in the population.

One of the earliest procedures for low-dose cancer
risk estimation was proposed by Mantel & Bryan
[19]. They noted for many chemicals that the doses
that produced cancer appeared to be lognormally
distributed. That is, plots of tumor incidence as
probits vs. log dose were approximately linear (see
Quantal Response Models). Mantel & Bryan [19]
observed that the probits versus log dose slopes
were steep and generally much greater than one.
They proposed extrapolating from the low end of
the observable experimental dose–response to lower
doses using a conservative shallow slope of one.
Mantel & Bryan [19] postulated that this procedure
should overestimate the true cancer incidence at
low doses and provide conservative overestimates at
doses with low levels of risk.

Theoretically, one molecule of a genotoxic car-
cinogen can interact with the DNA of a cell and
initiate a carcinogenic process. In such cases there
is no threshold dose below which cancer does not
occur; that is, there is a positive slope as the dose
approaches zero. Furthermore, if the chemical under
study augments an existing carcinogenic process that
is already producing tumors, then no threshold dose
for the added chemical exists, as the endogenous
dose already exceeds the threshold dose, if one exists.
Hence, there is an increase (positive slope) for tumor
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incidence at low doses of the administered chemi-
cal with additivity to the background carcinogenic
process [6, 20].

Since the slope of the log probit procedure of
Mantel & Bryan [19] approaches zero at low doses,
that procedure is not compatible with the nonthresh-
old, low-dose positive slope expected for genotoxic
chemicals or with additivity to background. For any
dose–response that is curving upward in the low-
dose region, linear extrapolation to zero excess risk
at zero dose from the low end of the dose–response
curve provides an overestimate of the risk at low
doses. Since the shape of the dose–response curve
cannot be determined at low incidence rates with the
numbers of animals typically used, Gaylor & Kodell
[10] proposed linear extrapolation to zero from an
upper confidence limit on the estimate of risk at the
lowest experimental dose, to provide a conservative
procedure for low-dose extrapolation. Since the accu-
racy of the estimate at the lowest experimental dose
could be poor, Farmer et al. [7] modified the proce-
dure to extrapolation from a dose with a minimum
excess risk of 1% or the lowest experimental dose,
whichever was larger. The choice of the form of the
dose–response model generally makes little differ-
ence above this point, as long as an adequate fit to
the data is obtained.

Where a chemical operates independent of any
background carcinogenic process, the total risk can
be expressed as

∗
Pr(d) = Pr(0) + [1 − Pr(0)] Pr(d),

where the excess risk due to the chemical of
interest is

Pr(d) = Pr∗(d) − Pr(0)

1 − Pr(0)
.

This is also known as Abbott’s correction (see
Quantal Response Models). In general, the total risk
can be expressed as

∗
Pr(d) = Pr(0) + Pr(d),

where the excess risk due to the chemical under
study is

Pr(d) = ∗
Pr(d) − Pr(0).

The multistage carcinogenesis model [2] is used
widely to describe cancer risk by a specific age as a

function of dose:

∗
Pr(d) = 1 − exp

[
−

k∏

i=0

(β0i + β1id)

]
,

where β0i > 0 is the spontaneous rate for the ith stage
and β1id ≥ 0 is the increase in the rate of the ith
stage due to dose d. For fitting dose–response data,
the model is written in a generalized form [6]:

∗
Pr(d) = 1 − exp

[
−

k∑

i=0

(βid
i)

]
,

where βi ≥ 0. For small d, the risk is approximately

∗
Pr(d) = 1 − exp[−(β0 + β1d)],

which is approximately linear at low doses:

∗
Pr(d) = β0 + β1d.

Since low-dose linearity cannot be excluded, the
upper confidence limit for the generalized multistage
model becomes linear at low doses. An upper limit
of excess risk at low doses is provided by

Pr(d) = q∗
1 d,

where q∗
1 is an upper limit on the estimate of β1

also referred to as the low-dose slope (risk per unit
dose) or carcinogenic potency. The above process
has been used widely by US regulatory agencies to
provide conservative overestimates of cancer risks at
low doses. Conversely, doses can be estimated that
correspond to specified levels of allowable risk; for
example, risks of less than one in 100 000.

In addition to upper limit estimates of risk, a best
(central) estimate can be obtained over the range
where the dose–response is linear. Maximum likeli-
hood estimates of the linear term in the generalized
multistage model are quite unstable with sample sizes
commonly used, and a discontinuity occurs where
the estimate changes from zero to a positive value.
Gaylor et al. [14] provide a stable estimate of the
low-dose slope for the linear dose–response region

Pr̂(d) = β̂1d,

where β̂1 = 0.01/ED01 and ED01 is the estimate of
the dose producing an excess tumor incidence of 1%.
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An upper limit can be estimated by

UL(β̂1) = 0.01

LED01
,

where LED01 is a lower confidence limit on a dose
producing an excess risk of 1%.

Krewski et al. [17] proposed a model-free app-
roach to low-dose extrapolation without making an
assumption other than low-dose linearity. For each
of the dose groups an upper confidence limit (Li) on
the tumor incidence is calculated. A lower confidence
limit (L0) is calculated for the tumor incidence of the
control group. An upper limit for the low-dose slope
for the ith dose group is

β̂i = (Ui − L0)

di

,

where di is the dose level. The minimum of these
values is then used for low-dose excess risk of cancer:

Pr̂(d) = (min β̂i )d.

Because the minimum of k slopes is selected, the
individual confidence limits must be adjusted so that
the overall confidence level is maintained. Using
the Bonferroni inequality, the individual confidence
limits are set at the {1 − [0.05/(k + 1)]} × 100%
level to maintain an overall confidence level of 95%.
In general, upper limits of estimates of low-dose risk
based on this model-free approach and the multistage
model are comparable. For convex dose–response
curves with low background tumor rates, upper limits
of risk estimates based on the model-free procedure
are typically twofold or more higher than those based
on the multistage model.

One measure of carcinogenic potency is the TD50

(the daily dose that causes a tumor in 50% of the
exposed animals that otherwise would not develop
that type of tumor in a standard lifetime, gener-
ally two years for rodents). Variation in the TD50

appears to be approximately described by a lognormal
distribution. Gaylor et al. [12] show that, for near-
replicate bioassays, approximately 95% of the TD50s
are within a factor of four of their mean. Among
strains within species and among species, approxi-
mately 95% of the TD50s are within a factor of their
means of 11 and 32, respectively. For a select group
of 20 chemicals that have been shown to be car-
cinogenic in both humans and animals, the overall
variability in the TD25s is about a factor of 110 [1].

Based on these 20 chemicals, about 2/3 of the time
the potency of human carcinogens is within a fac-
tor of ten of the potency in animals at doses high
enough to produce a measurable incidence of cancer.
This does not include the uncertainty in the shape of
the dose–response relationship at lower doses.

The maximum tolerable dose (MTD) is used as
the highest dose for chronic bioassays conducted by
the US National Toxicology Program. The purpose
of using the MTD is to maximize the probability of
detecting carcinogenicity. The optimal experimental
design for estimating cancer potency depends on the
shape of the dose–response relationship. For typi-
cal shapes of dose–response curves and the limited
number of animals generally used, Portier & Hoel
[21] and Gaylor et al. [13] concluded that a good
all-purpose design for both testing and estimation is
to allocate equal numbers of animals at the MTD,
MTD/2 and MTD/4 or MTD, MTD/3 and MTD/9,
plus unexposed control animals.

Human exposure to carcinogens often is via expo-
sure to mixtures of carcinogens. At low doses well
below saturation of physiologic or metabolic pro-
cesses, the total risk may be estimated by the sum
of the risks of the individual components. In such
cases an upper limit of the total risk can be approx-
imated by U = (

∑
U 2

i )1/2 where Ui is the upper
limit for the ith component [8]. For the two-stage
clonal expansion model of carcinogenesis (the Mool-
gavkar–Venson–Knudson model), the age-specific
relative risk is multiplicative for simultaneous expo-
sure to an initiator and a completer or to an initiator
and a promoter. At low levels of risk, additive and
multiplicative risks of mixtures are nearly identical.
Kodell et al. [16] show that simultaneous exposure to
two promoters results in supra-multiplicative relative
risks.

In most bioassays, animals are exposed to chem-
icals for a lifetime (generally two years in rodents).
Exposures of humans to carcinogens often are inter-
mittent. Based on the multistage model of carcinogen-
esis, Kodell et al. [15] show that using the average
daily lifetime dose to estimate cancer risk is not likely
to underestimate the risk by more than a factor of six.
Using the two-mutation carcinogenesis model (the
Moolgavkar–Venson–Knudson model), utilizing the
average daily lifetime dose is not likely to underesti-
mate the risk by more than a factor of ten [4].

Several researchers have noted a strong correlation
between the MTD and cancer potency. This is due in
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part to the limited range of doses used in bioassays
and the limited range of tumor incidence observable
for animal carcinogens with relatively small numbers
of animals per dose group. Gaylor & Gold [9] show
that a quick estimate of potential cancer potency can
be obtained from a 90-day MTD without conducting
a two-year bioassay. Based on a survey of chemicals
shown to be carcinogenic by the US National Toxi-
cology Program, the TD01 is generally within a factor
of ten of the MTD/74.

As discussed earlier, linear extrapolation is used
for low-dose risk estimation for genotoxic
carcinogens. Also, low-dose linearity is expected
when a substance augments a carcinogenic process
(additivity to background) that is already producing
tumors due to endogenous or other exogenous expo-
sure. For other conditions, it is generally postulated
that adverse health effects do not occur at low doses,
where the body is capable of excreting or detoxi-
fying small amounts of potentially toxic substances.
That is, it is often postulated that there are threshold
doses below which no toxicity occurs. However, this
becomes a rather tenuous assumption for a hetero-
geneous population. The recent US Environmental
Protection Agency [23] carcinogen risk assessment
guidelines propose estimation of the ED10 (the dose
producing an excess 10% tumor incidence), being a
dose that is in or near the experimental dose range
and can generally be determined with adequate pre-
cision. A lower confidence limit LED10 is used to
account for experimental variation. The LED10 is then
used as a point of departure for low-dose extrap-
olation. Where linearity is expected, low-dose risk
estimation is obtained by linear extrapolation to zero.
That is, the probability of cancer produced by a dose
d is Pr(d) = (0.10/LED10)d, where (0.10/LED10) is
the low-dose slope (carcinogenic potency). Where
a nonlinear dose–response is expected, biologically
based dose–response models may be used to esti-
mate risk or the LED10 may be divided by a series of
safety (uncertainty) factors to arrive at a dose with an
acceptably low level of risk, and perhaps zero risk.

Noncancer Endpoints

For biological endpoints other than cancer, quantita-
tive risk estimation generally is not used. Here it is
assumed that excretion and/or detoxification at low
doses will eliminate any adverse health effects. That

is, it is assumed that there is a threshold dose below
which no adverse health effects occur. This may be
a tenuous assumption for heterogeneous populations
or where a chemical exposure may contribute to an
ongoing process that already results in adverse effects
in unexposed individuals. In this case, additivity of a
dose to an endogenous/exogenous dose that already
surpasses a threshold dose will result in increased
risk.

The general safety assessment procedure for non-
cancer endpoints is to divide the no observed adverse
effect level (NOAEL) by safety (uncertainty) factors
to obtain an acceptable daily intake (ADI) or refer-
ence dose (RfD)

ADI = RfD = NOAEL

(U1*U2***)
.

A safety (uncertainty) factor of ten is generally used
for extrapolation from animals to humans. Another
factor of ten is generally used for sensitive individu-
als in a population. Another factor of up to ten may
be used for shortcomings in the available data. If all
the doses in a bioassay produce an adverse effect,
a NOAEL is not present. In this case, the lowest
observed adverse effect level (LOAEL) is used, and
an additional factor up to ten is introduced to account
for the ratio of the LOAEL to the NOAEL. Barnes
& Dourson [3] state that: “RfD (reference dose) is an
estimate (with uncertainty spanning perhaps an order
of magnitude) of a daily exposure to a human pop-
ulation (including sensitive subgroups) that is likely
to be without appreciable risk of deleterious effects
during a lifetime”. Biologically based dose–response
models have been developed sparingly to estimate
risk below the NOAEL or LOAEL.

The process utilizing the NOAEL is limited to the
dose levels used in an experiment, and does not make
use of the dose–response information. Poorer exper-
iments with higher NOAELs are unjustly rewarded
with higher ADIs or RfDs. To overcome these short-
comings, Crump [5] proposed a benchmark dose
(BMD) approach. Here the dose–response data are
used to estimate a low level of excess risk; for exam-
ple, 1%–10%. This dose is generally in or near the
experimental dose range and is directly estimable
without extrapolation. To account for experimental
variation, a lower confidence limit on the BMD is
used. This rewards better experiments with tighter
limits with a higher ADI or RfD. This limit on
the BMD can then be used as a substitute for the
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NOAEL in calculating an ADI or RfD. This proce-
dure eliminates the use of NOAELs with potentially
high levels of risk, perhaps greater than 20%, for
quantal data [18].

Often, continuous (nonquantal) data are obtained
for noncancer endpoints; for example, clinical chem-
istry, hematology, and body and organ weights. For
such cases, there generally is no sharp demarcation
between normal and adverse levels of an effect. Gay-
lor & Slikker [11] proposed that the distribution of
the results in unexposed control animals be used
to establish an abnormal range; for example, below
the 1st percentile or above the 99th percentile (see
Quantiles). From the distribution of levels in dosed
animals – for example, normal or lognormal – it is
possible to estimate the proportion in the abnormal
range as a function of dose. This procedure can also
be used to estimate benchmark doses for low-dose
safety assessment.
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Extrapolation

As used here, the term, extrapolation, refers to a
projection made at a point that is beyond the range
of the data used to estimate the parameters of the
statistical model on which the projection is based.
For example, data from a hypothetical observational
study among persons 20–64 years of age may have
been used to derive a simple linear regression model
that states that the expected maximum heart rate, y,
for a person x years of age follows the relationship
given by

y = 210 − 0.5x.

If this model, derived from subjects 20–64 years of
age, were applied to teenagers or to very elderly per-
sons, then it may be that the resulting extrapolation
does very poorly. While the relationship may be lin-
ear within the range of the data used in the estimation
of parameters, the same linear model may not fit out-
side this range.

In spite of the dangers involved in extrapolation,
policy decisions on the health risks of certain environ-
mental exposures are sometimes based on evidence
found in studies in which the exposures are much
higher than those found in even the most highly pol-
luted environments (see Risk Assessment for Envi-
ronmental Chemicals). For example, human studies
on the existence and strength of the putative relation-
ship between asbestos and lung cancer are invariably
based on epidemiological investigations conducted in

occupational settings, where the exposure to asbestos
among workers (see Occupational Epidemiology) is
orders of magnitude higher than what would be found
in the environment. Likewise, in studying the associ-
ation with cancer of variables such as the intake of
micronutrients, food additives, pharmaceutical drugs,
etc. evidence is often presented on the findings of
relationships in animal experiments (see Tumor Inci-
dence Experiments). In these experiments, however,
it is frequently the case that the animals are tested
not only at levels of the particular substance that are
much higher than those experienced by humans, but
also under conditions that cannot be duplicated in
humans. An example of this is the decision made by
the Food and Drug Administration in the late 1960s
to ban the food additive cyclomate, because a Cana-
dian Study conducted at very high levels of cyclomate
seemed to indicate an association with bladder cancer.

In time series studies, models are constructed
showing the relationship of a variable with time and
the parameters fit on the basis of available current
and past data. The main objective of these studies,
however, is to extrapolate from these models into the
future.

In conclusion, extrapolation is risky but sometimes
necessary, and investigators should be aware that they
are extrapolating and should exert extreme caution in
the interpretation of their findings.

PAUL S. LEVY



Extreme Values

Extreme-value statistics, or statistics of extremes,
is concerned with the occurrence and sizes of rare
events, be they larger or smaller than usual. Examples
are the ages of the oldest members of a population,
highest annual tides [5] or rainfall [7] or wind speeds
[8], athletics records [33], and the time to failure of
a system with many components. This last example
makes a connection with reliability theory and sur-
vival analysis, to which statistics of extremes is con-
nected, though it has a somewhat different emphasis.
Primarily under the impetus of problems in environ-
mental science and engineering, statistics of extremes
has developed very rapidly in the two decades. Coles
[2] gives an excellent introduction to the subject, and
the more mathematical book-length treatment [12]
is oriented toward applications in finance. A recent
overview is provided by the edited volume [14], while
[31] and [23] give other accounts.

The discussion below concerns high extremes –
maxima – but in applications, minima can be dealt
with by reversing the signs of the observations and
applying procedures for maxima.

Maxima

The commonest approach to extremes is through
sample maxima. A key result in this context
is the Extremal Types Theorem [15–17], which
addresses the following question: given a sample
of independent identically distributed random
variables X1, . . . , Xk , what are the possible limiting
distributions of Mk = ak[max(X1, . . . , Xk) − bk] as
k → ∞? The answer the theorem gives is that
if a nondegenerate limiting cumulative distribution
function (cdf) exists for some sequences of constants
ak and bk , it must fall into one of the following three
classes

I: F(x) = exp[−e−x ], −∞ < x < ∞,

II: F(x) =
{

0, x ≤ 0,
exp(−x−α), x > 0, α > 0,

III: F(x) =
{

exp[−(−x)α], x < 0, α > 0,
1, x ≥ 0.

(1)

These distributions are known collectively as the
extreme-value distributions, with types I, II, and III

known as the Gumbel, Fréchet, and Weibull types
(see Parametric Models in Survival Analysis). The
more usual form for the Weibull distribution arises
as a limit for minima rather than for maxima, and
is given by the type III class with x replaced by
−x. The importance of the Extremal Types Theo-
rem is that it guarantees that if a limit exists for
maxima, it must have one of the specified forms.
Consequently, much of the older literature [18, 30]
on extreme values focuses on fitting these distribu-
tions to sample maxima. The modern approach is to
combine them into the generalized extreme-value dis-
tribution (GEV) with cdf

H(y) = exp

{
−

[
1 + ξ

(
y − η

τ

)]−1/ξ
}

,

− ∞ < η, ξ < ∞, τ > 0, (2)

defined for values of y for which 1 + ξ(y − η)/

τ > 0. Apart from a location and scale change param-
eterized by η and τ , this gives the type II and III
classes for ξ > 0 and ξ < 0, and the type I arises in
the limit as ξ → 0. Consequently, the shape parame-
ter ξ plays a key role, with ξ > 0 giving distributions
with heavy upper tails and ξ < 0 giving distributions
with a finite upper endpoint, while the Gumbel dis-
tribution has cdf

H(y) = exp

{
− exp

[
−

(
y − η

τ

)]}
,

− ∞ < y < ∞, (3)

and lies between the two.
A typical hydrological application of the GEV is

to fit it to a sample of annual maxima of daily river
levels and to use the fitted distribution to estimate the
1/p-year return level, that is, the river level exceeded
once on average every 1/p years; here 0 < p < 1.
The quantity 1/p is known as the return period and
is important in engineering design. The usual return
level estimate is the 1 − p quantile of the GEV,

y1−p = η − τ

ξ

{
1 − [− ln(1 − p)]−ξ

}
, (4)

with parameters replaced by estimates. Two concerns
in practice are that inference is often required for a
return period longer than the amount of data available
and that the fitted GEV is very sensitive to the values
of the most extreme observations; these difficulties
are inherent in the subject.
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Many methods [22] have been proposed for fit-
ting extreme-value distributions to an independent
identically distributed sample of maxima, Y1, . . . , Yn.
Most attention has been focused on the Gumbel
case, for which a probability plot of sample order
statistics Y(1) ≤ · · · ≤ Y(n) is a valuable tool. This
plots Y(r) against the quantiles − ln{− ln[r/(n + 1)]},
r = 1, . . . , n, and is useful for detecting outliers and
assessing the fit of the distribution, in addition to
providing graphical estimates of η and τ from the
intercept and slope of the graph. Other methods of
fitting include the use of moments (see Method
of Moments) – which can be highly inefficient –
and of probability-weighted moments [19], but these
approaches are hard to extend to the more compli-
cated models needed when data are censored, for
example. Bayesian modeling is discussed by Coles
and Powell [3] and Coles and Tawn [6].

Usually, maximum likelihood estimates of the
GEV parameters can be obtained numerically and
their standard errors calculated from the observed
information matrix, though convergence problems
can arise. There are theoretical difficulties when
ξ < − 1

2 , in which case the usual properties of max-
imum likelihood estimates do not apply [34]. Confi-
dence intervals for the estimated return level ŷ1−p

can be obtained from its profile loglikelihood, or
by applying the delta method to get standard errors
for ln ŷ1−p . Similar techniques can be applied to
more complex situations, for example, where η and
τ depend on explanatory variables.

Point Process Characterization

A serious objection to the approach sketched above
is that the use of maxima alone is wasteful of data:
most of the information in the sample is ignored. This
has led to other approaches, based on the following
characterization. Let X1, . . . , Xnk be a set of nk

independent identically distributed random variables,
and consider the pattern in the plane with points
at (x, y) coordinates (j/(nk + 1), ak(Xj − bk), j =
1, . . . , nk. Then, provided ak and bk are chosen in
such a way that a limiting distribution for Mk exists
as k → ∞ with n fixed, the pattern of points above
a sufficiently large threshold t will converge to a
nonhomogeneous Poisson process with the properties
that: (a) the numbers of points in nonoverlapping
regions of the set (0, 1) × (t, ∞) are independent;

and (b) if u > t , the probability that there are no
points in the rectangular region (x1, x2) × (u, ∞) in
the (x, y)-plane can be written as

exp

[
−n(x2 − x1)

(
1 + ξ

u − η

τ

)−1/ξ
]

. (5)

This characterization can be used to derive a
variety of limiting results for maxima. The simplest
is given by noting that the rescaled maximum of k

observations, Mk , is less than y > t only if there
are no points in the set (0, 1/n) × (y, ∞), in which
case (5) immediately gives (2). For a second result,
the characterization shows that if N observations,
y1, . . . , yN , exceed a threshold u > t over a period
of n years, their joint probability density function
(pdf) is

exp

[
−n

(
1 + ξ

u − η

τ

)−1/ξ
]

×
N∏

j=1

1

τ

(
1 + ξ

yj − η

τ

)−1/ξ−1

,

which can be used as a likelihood for η, τ , and
ξ . Maximum likelihood inference can be performed
numerically for this point process model and regres-
sion models based on it [36].

One practical matter is the choice of level t above
which this characterization can be used. Too high a
value for t will result in loss of information about
the process of extremes, while too low a value will
lead to bias because the point process model applies
only asymptotically for high thresholds and will not
fit the data adequately, if t is too low. The value
of t is usually chosen empirically, by calculating
the quantities of interest for a number of thresholds
and choosing the lowest above which the results are
relatively stable.

Further uses of this characterization are outlined
below.

Resnick [32] discusses related point process rep-
resentations for extremes.

r-largest Extremes

Clearly, the r largest observations among X1, . . . , Xk

will contain more information about the extremes
than the maximum alone. Let us denote the r
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largest observations by M1
k ≥ · · · ≥ Mr

k . Then on set-
ting u = Mr

k in the point process characterization
described above, we see that the asymptotic joint pdf
of M1

k , . . . , Mr
k at m1

k, . . . , mr
k is

exp

[
−

(
1 + ξ

mr
k − η

τ

)−1/ξ
]

×
r∏

j=1

1

τ

(
1 + ξ

m
j

k − η

τ

)−1/ξ−1

,

which can be used to form a likelihood for the
parameters. In applications, r is chosen in order to
trade off the increased precision from large values of
r against the bias incurred if r is too large; a typical
choice is to take r in the range from 5 to 10 values
per year of data. Once again, likelihood inference
for more complicated situations can be based on this
model; see Smith [35] and Tawn [37].

Threshold Methods

A further approach is based on the idea of modeling
exceedances of the data over a high threshold. The
characterization sketched above can be used to show
that the cdf of the amount by which an observation
exceeds a high threshold t , given that it has done
so, is

pr(X ≤ t + y | X > t) = G(y)

= 1 −
(

1 + ξ
y

τ

)−1/ξ

, y > 0; (6)

this is called the generalized Pareto distribution (see
Parametric Models in Survival Analysis). As ξ →
0, G(y) becomes the exponential distribution with
mean τ , which here occupies the same central role
as the Gumbel distribution for maxima. Notice that
the conditioning in (6) removes dependence on the
location parameter η. Equation (6) can be used as the
basis for a likelihood for τ and ξ , and its properties
also lead to procedures for choosing the threshold t ,
for example, by taking the lowest threshold above
which the mean residual life plot of the exceedances
is straight (see Life Expectancy).

Davison and Smith [9] give an extensive discus-
sion of this model.

Dependence

In practice, extreme values generally arise from
series of dependent observations, rather than from
independent data, and this would seem to limit the
usefulness of the results described above. Problems
might potentially be raised either by long-range or
short-range dependence of the series.

An extensive mathematical theory summarized in
Leadbetter et al. [25] and Leadbetter and Rootzén
[26] shows that provided there is no long-range
dependence between extremes, the same limiting
results apply for maxima of dependent series as for
independent series. Independence of widely separated
extremes seems reasonable in most applications, but
they almost always display short-range dependence,
in which clusters of extremes occur together.

Suppose that a stationary series X1, . . . , Xk with
no long-range dependence of extremes has short-
range dependence, which leads to extremes occurring
in clusters with mean size 1/θ , where 0 ≤ θ ≤ 1;
θ is called the extremal index of the process. The
notion of a cluster here is deliberately vague. Let
X∗

1, . . . , X∗
k be a sequence of independent variables

with the same marginal distribution as the Xj . Then
a key result [24] is that the rescaled maximum
Mk = ak[max(X1, . . . , Xk) − bk] has a nondegener-
ate limiting distribution H(y) if and only if M∗

k =
ak[max(X∗

1, . . . , X∗
k ) − bk] has a nondegenerate lim-

iting distribution H ∗(y), and H(y) = [H ∗(y)]θ . The
importance of this is to show that the type of limit dis-
tribution is unaffected by short-term dependence, as
although the values of η and τ for H(y) and [H ∗(y)]θ

will differ, they have the same value of ξ . The usual
solution to clustering therefore is to identify clusters,
fit the point process model to their maxima, and then
to adjust the estimated values of η and τ to allow for
the clustering through an estimated extremal index.
Ferro and Segers [13] give a recent discussion of
estimation of θ .

Multivariate Extremes

Multivariate extremes arise when there is interest in
rare values of two or more different series. Sup-
pose, for example, that there is a series of bivariate
observations (X1j , X2j ), j = 1, . . . , k, and that inter-
est is focused on the componentwise maxima M1k =
max(X11, . . . , X1k) and M2k = max(X21, . . . , X2k).
The analogue of the Extremal Types Theorem is then
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to seek sequences of constants a1k , b1k , a2k and b2k

such that

pr [a1k(M1k − b1k) ≤ x1, a2k(M2k − b2k) ≤ x2] (7)

converges to a nondegenerate limiting distribution.
If they exist, the marginal limiting distributions for
the rescaled versions of M1k and M2k must be of
form (2). The joint distribution can then be of a wide
range of possible forms, subject to mild conditions.
Suppose that the probability integral transform is used
to transform each of the rescaled maxima into a min-
imum, with a unit exponential distribution. Then the
possible joint limiting distributions of maxima corre-
spond to a class of bivariate exponential distributions
for minima Z1 and Z2, whose joint survivor function
S(z1, z2) = pr(Z1 > z1, Z2 > z2) can be written as

S(z1, z2) = exp

[
−(z1 + z2)A

(
z2

z1 + z2

)]
, (8)

where the dependence function A(w) is a convex
function on w ∈ [0, 1], with its graph lying entirely
in the triangle with vertices (0, 1), (1, 1) and

(
1
2 , 1

2

)
.

An example of such a function is A(w) = [w1/α +
(1 − w)1/α]α , with parameter α such that 0 ≤ α ≤ 1
[20], though numerous other functions have been
proposed [23, Chapter 3]. The usual approach to esti-
mation of such a model based on a sample of pairs
(Y1j , Y2j ), j = 1, . . . , n, is to maximize the likeli-
hood for the parameters of the dependence function
and both marginal distributions.

Ledford and Tawn [27–29] have investigated the
behavior of joint extremes when the underlying vari-
ables are close to asymptotic independence.

For problems with several maxima, a somewhat
different approach is better [11], though the basic
ideas are similar; the extension to extremal processes
of maxima [1, 7, 10] is more complicated. There is a
related approach based on threshold analyses of the
marginal series [4, 21].
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[32] Resnick, S.I. (1987). Extreme Values, Point Processes
and Regular Variation. Springer, New York.

[33] Robinson, M.E. & Tawn, J.A. (1995). Statistics for
exceptional athletics records, Applied Statistics 44,
499–511.

[34] Smith, R.L. (1985). Maximum likelihood estimation in
a class of non-regular cases, Biometrika 72, 67–92.

[35] Smith, R.L. (1986). Extreme value theory based on the r

largest annual events, Journal of Hydrology 86, 27–43.
[36] Smith, R.L. (1989). Extreme value analysis of environ-

mental time series: An example based on ozone data
(with discussion), Statistical Science 4, 367–393.

[37] Tawn, J.A. (1988). An extreme value theory model
for dependent observations, Journal of Hydrology 101,
227–250.

A.C. DAVISON



F Distributions

This is a statistical distribution with considerable
practical importance. Suppose that X2

1 and X2
2 have

independent chi-square distributions with m and n

degrees of freedom, respectively. The ratio of these
two χ2 distributed variables, each divided by its
degrees of freedom, has an F distribution. The F

distribution is sometimes called the variance ratio
distribution, or Snedecor’s F distribution, and is
related to Fisher’s z distribution. A formal theorem
which defines the F distribution is as follows.

Theorem. Let χ2
1 have a distribution with m deg-

rees of freedom; and let χ2
2 have an independent

χ2 distribution with n degrees of freedom. Then the
random variable

F = (χ2
1 /m)

(χ2
2 /n)

has an F distribution with m and n degrees of
freedom. Such an F distribution is described by the
density function

f (x) = mm/2nn/2

B(m/2, n/2)

xm/2−1

(n + mx)(m+n)/2
, x ≥ 0.

The expression B(m/2, n/2) represents a beta
function evaluated at m/2 and n/2. The density
function for a typical F distribution with degrees of
freedom m = 5 and n = 40 is displayed in Figure 1.

Properties

Like most density functions, the density f (x) defines
the moments of the F distribution. The expectation is

E(F ) = n

n − 2
, n > 2,

with associated variance

var(F ) = 2n2(m + n − 2)

m(n − 1)2(n − 4)
, n > 4.

For an F distribution with m = 5 and n = 40 degrees
of freedom, the expectation is E(F ) = 1.053 with
var(F ) = 0.529. Values of the parameters m and n

define a family of F distributions. Examples are

Figure 1 A typical F distribution: degrees of freedom m

= 5 and n = 40

Figure 2 A family of three F distributions where
m = 3, 5, and 10 for n = 40

illustrated in Figure 2 (m = {3, 5, and 10} and n =
40) and Figure 3 (m = 10 and n = {5, 10, and 20}).
The shape of the F distribution is called quasi-
symmetric, since

Fα[m, n] = 1

F1−α[n, m]
,
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Figure 3 A family of three F distributions for m = 10,
where n = 5, 10, and 20

where Fα[m, n] is the α-level quantile of the F

distribution (i.e. Pr(F ≤ Fα[m, n]) = α). In more
concrete terms, Pr(F ≤ 0.75) = 0.409 when m = 5
and n = 40 and Pr(F ≤ 1/0.75) = Pr(F ≤ 1.333) =
0.591 = 1 − 0.409 when m = 40 and n = 5. This
quasi-symmetry property is displayed in Figure 4.

The probabilities associated with an F value (a
random value with an F distribution) can be found
in tables (e.g. [3]) for a variety of degrees of free-
dom, particularly when the m and n are small. For
F values not in tables, a number of approxima-
tions exist [1]. A remarkably accurate (n > 10 or
so) but relatively simple approximation based on the
Wilson–Hilferty approximation [2] to the χ2 distri-
bution produces a value z from the standard normal
distribution given by

z =

[(
1 − 2

9n

)
x1/3 −

(
1 − 2

9m

)]

(
2

9n
x2/3 + 2

9m

)1/2

where Pr(F ≤ x) ≈ Pr(Z ≤ z). For example, Pr(F ≤
0.75) ≈ Pr(Z ≤ −0.235), where z = −0.235 is cal-
culated from the Wilson–Hilferty expression when
m = 5 and n = 40. Specifically, Pr(Z ≤ −0.235) =
0.407 from a standard normal distribution [3]. The
exact value is 0.409, as before.

Relationships to Other Statistical
Distributions

Several important statistical distributions are related
to the F distribution. The random variable mF has a

Figure 4 An example of the quasi-symmetry property of the F distribution (degrees of freedom m = 5 and n = 40).
(a) df = 5, 40; (b) df = 40, 5
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χ2 distribution with m degrees of freedom when the
variable F has an F distribution with m and infin-
ite (∞) degrees of freedom. Similarly, the random
variable

√
F has a Student’s t distribution with n

degrees of freedom when F has an F distribution
with 1 and n degrees of freedom. If k is an integer
(0 ≤ k ≤ N ), then

Pr

[
F ≥ (1 − p)n

pm

]
= Pr(B ≥ k)

and B has a binomial distribution with parameters
N and p when F has an F distribution with m =
2(N − k + 1) and n = 2k degrees of freedom. The F

distribution can be viewed as a special case of the β

distribution. When the value F has an F distribution
with m and n degrees of freedom, then the random
variable Y = mF/(n + mF) has a beta distribution
with shape parameters m/2 and n/2. Also, Fisher’s
z distribution is simply another version of the F

distribution, where Z = (1/2) log(F ).

Applications of the F distribution

The most fundamental application of the F distribu-
tion comes from exploring differences between two
estimated variances. If observations represented by
yij are sampled independently from two normally dis-
tributed populations, the estimated variances are

S2
1 =

n1∑

j=1

(y1j − y1)
2

n1 − 1
and S2

2 =

n2∑

j=1

(y2j − y2)
2

n2 − 1
,

where ni represents the number of observations sam-
pled from each population (i = 1, 2). The ratio F =
S2

1/S
2
2 has an F distribution with n1 − 1 and n2 − 1

degrees of freedom when both sampled populations
have the same variance. Large or small values of the
test statistic F are unlikely when the two population
variances are equal. The F distribution, therefore,
makes it possible to assign formal significance prob-
abilities to the likelihood associated with differences
observed between two estimated variances using an
F ratio (see Hypothesis Testing).

The primary importance of the F distribution
derives from its application to a large number of
statistical tests involving the comparison of nested
analytic models. A general approach to testing hypo-
theses involves collecting a random sample of n

observations (represented by yi) and contrasting the
“fit” of the sampled data to two models developed
under differing conditions. The first set of conditions
(H1) is evaluated by

SS1 =
n∑

i=1

(yi−[mean estimated under specified

conditions])2,

with associated degrees of freedom df1. The degrees
of freedom equal the number of sampled observa-
tions minus the number of independent estimates
necessary to establish the components of the analytic
model. The quantity SS1 measures the goodness of
fit of the data under the conditions specified by H1

and is referred to as a residual sum of squares. A
more restricted model (nested) is then postulated (H0,
called the null hypothesis) and a second residual sum
of squares calculated, where

SS0 =
n∑

i=1

(yi − [mean estimated under more

restricted conditions])2,

with associated degrees of freedom df0. One model
is nested within the other when the second model is
a special case of the first (see Hierarchical Models).
Frequently, a nested model is created by deleting
terms (H0) from a more extensive model (H1). The
property that H0 is a restricted case of H1 guarantees
that SS0 will be equal to or larger than SS1 and
df0 will be larger that df1. The difference SS0 − SS1

reflects the impact of the additional restrictions which
created the second model. Furthermore, if the yi

values are sampled from normal distributions with
the same variances, then the random variable

F = (SS0 − SS1)/( df0 − df1)

SS1/ df1

has an F distribution with df0 − df1 and df1 degrees
of freedom when the restrictions have only random
effects on the sampled values yi . Again, this makes
it possible to use the F distribution to assign formal
probabilities to observed test statistics. The compari-
son of residual sums of squares produces a systematic
approach to statistical testing called the analysis of
variance.

A test of two simple hypotheses concerning the
mean value illustrates the contrasting of two nested
models using an F test. The question addressed
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is whether the sampled data are consistent with a
population mean value of µ = 2[H0] or whether there
is evidence that the population mean value is not
µ = 2[H1]. A small data set consisting of n = 20
observations independently sampled from a normal
distribution is

y ={0.4, 1.4, 2.0, 0.4, 1.4, 0.9, 2.5, 2.6, 0.5, 1.6, 0.7,

1.0, 2.4, 2.9, 2.1, 0.9, 0.4, 1.2, 2.7, and 2.3}.
The residual sum of squares assessing the conjecture
that the population mean is not equal to 2[H1 : µ �=
2] is

SS1 =
20∑

i=1

(yi − y)2 = 14.026,

where

y = 1

n

n∑

i=1

yi = 1.515.

For the more restricted conditions where the popula-
tion mean is postulated to be µ = 2[H0 : µ = 2], the
second residual sum of squares is

SS0 =
20∑

i=1

(yi − 2)2 = 18.730.

An F statistic ( df1 = n − 1 = 19 and df0 = n − 0 =
20) allows a significance probability to be calculated
reflecting on the likelihood that the difference SS0 −
SS1 = 4.705 arose by chance when the mean of the
sampled population is in fact µ = 2(H0 is true). The
F statistic is F = 4.705/0.738 = 6.373 and the cor-
responding significance probability is 0.021. Using
an F test (analysis of variance) approach, the data
indicate that it is not likely that the 20 observations
are a random sample from a population with a mean
value of µ = 2. This same comparison can be made
with Student’s t test (y = 1.515 vs. µ = 2). How-
ever, the pattern of comparing nested models with an
F ratio is the basis of a large variety of statistical
testing procedures.
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Factor Analysis,
Confirmatory

The purpose of a factor analysis is to study the
intercorrelations among p observed variables by pos-
tulating a set of common factors. Ideally, the number
of common factors, say m, is less than the number of
the observed variables, p. In a common-factor anal-
ysis model, each observed variable is written as a
weighted sum of m common-factor scores and one
unique-factor score. The collection of these equations
for all p variables is called a factor pattern. It is given
as follows:

X1 = a1A + b1B + · · · + m1M + u1U1,

X2 = a2A + b2B + · · · + m2M + u2U2,
...

...

Xp = apA + bpB + · · · + mpM + upUp,

where X1, X2, . . . , Xp represent the standardized
measurement of the p observed variables, A, B, . . . ,

M represent the standardized scores in the uncor-
related common factors, ai, bi, . . . , mi, i = 1, . . . , p,
are the common factor loadings, U1, U2, . . . , Up rep-
resent the standardized scores on the p unique factors,
and u1, u2, . . . , up are the unique factor loadings. In
the above model the m latent factors and the p unique
factors are uncorrelated.

Through this linear model, we attempt to find a
small number of underlying factors, which contain
all the essential information about the correlations
among the observed variables. In general, there are
two steps to perform this analysis: (i) initial factoring
of the data determining the number of salient fac-
tors to be retained (see Battery Reduction); and (ii)
rotating the factors to obtain unique and interpretable
results. There are various procedures available to
carry out each of the three steps. Discussion on those
procedures can be found in the articles on Factor
Analysis, Principal Components Analysis, Rota-
tion of Axes, and articles on different rotation meth-
ods. In the above we use factor analysis to explore the
underlying construct of the data and to find and inter-
pret the factors through the estimated factor matrices.

Sometimes, an investigator may have a hypoth-
esized factor pattern or she may have obtained a
factor matrix from a previous study which contains

X1

X2

X3

X4

X5

e 1

e 2

e 3

e 4

e 5

x 1

x 2

Figure 1 Path diagram for confirmatory factor analysis

the relationships between the variables and the fac-
tors. Instead of exploring the underlying construct
of new data, the investigator might wish to estimate
and test the fit of the data to the hypothesized factor
model or to the model obtained from the previous
study. In other words, she wants to perform an anal-
ysis to find out how the estimated factor matrix from
the data matches with the hypothesized factor matrix.
We call this analysis a confirmatory factor analysis.
Figure 1 shows an example of a path diagram for a
confirmatory factor analysis. It shows the paths that
link the observed variables Xi with the factors ξj

and the error terms εi involved in the system. In the
Figure, the observed variables are enclosed in boxes,
the factors are enclosed in circles, and εi represent
the error terms. The single-headed arrow indicates
the influence of the factors and error terms on the
observed variables. The double-headed arrow indi-
cates that the factors are correlated. The mathematical
model for this confirmatory factor analysis is

X1 = a1ξ1 + ε1,

X2 = a2ξ1 + ε2,

X3 = a3ξ1 + ε3, (1)

X4 = b1ξ2 + ε4,

X5 = b2ξ2 + ε5.

Krzanowski [3] presented the Procrustes analysis,
which is appropriate to use in a confirmatory factor
analysis. The procedure involves standardization of
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matrices in terms of their relative positions, orien-
tations, and scales and also computation of the test
statistic based on the standardized matrices. Lawley
& Maxwell [4] have outlined some least squares
methods for rotating to factor structures that come
as close as possible to an a priori pattern of ones and
zeros. Jöreskog & Sörbom [2] developed the LIS-
REL package which consists of computer programs
for such confirmatory factor analysis. There is also a
computer package in SAS (see Software, Biostatisti-
cal) that can perform a confirmatory analysis [5]. The
procedure is known as PROC CALIS. Hatcher [1]
presented a detailed step-by-step approach on how to
perform the confirmatory factor analysis using PROC
CALIS and how to interpret the output obtained from
the program.
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[2] Jöreskog, K.G. & Sörbom, D. (1982). LISREL V – Esti-
mation of Linear Structural Equations by Maximum Likeli-
hood Methods. National Educational Resources, Chicago.

[3] Krzanowski, W.J. (1988). Principles of Multivariate Anal-
ysis: A User’s Perspective. Oxford University Press, New
York.

[4] Lawley, D.N. & Maxwell, A.E. (1963). Factor Analysis
as a Statistical Method. Butterworth & Co., London.

[5] SAS Institute Inc. (1989). SAS/STAT User’s Guide,
Version 6, 4th Ed, Vol. 2. SAS Institute Inc., Cary.

(See also Factor Loading Matrix; Oblimin Rota-
tion; Oblique Rotation; Optres Rotation;
Orthoblique Rotation; Orthogonal Rotation;
Structural Equation Models)

RALPH B. D’AGOSTINO, SR &
HEIDY K. RUSSELL



Factor Analysis, Overview

Suppose that we have measurements on a moder-
ate or large number of variables. The central idea of
factor analysis is that a smaller number of unobserv-
able “factors” underlie the measured variables. More
specifically, each measured variable can be written as
a linear function of the factors, apart from a residual,
or specific, factor.

Spearman [19] is generally acknowledged to be
the “inventor” of factor analysis. However, as Bartho-
lomew [2] points out, Spearman’s original paper has
little in common with the later developments which
led to factor analysis as it is currently known. Spear-
man’s “two-factor theory” assumed that scores of
individuals on a number of tests could be decomposed
into a “general” factor, common to all variables, mea-
suring general intelligence, and a “specific” factor
which was different for each variable. Bartholomew
[2] describes Spearman’s contribution more fully.

In current factor analysis terminology, Spear-
man’s theory involves only a single (common) factor,
whereas most factor analyses involve multiple fac-
tors. A key early reference to the idea of multiple
factors is Thurstone [20]. The “factors” which were
sought and modeled in much of the development of
factor analysis were psychological factors. For exam-
ple, Yule et al. [22] measured the scores, between 0
and 20, for 150 children aged 4 1

2 –6 years, on ten sub-
tests of the Wechsler Pre-School and Primary Scale
of Intelligence. Five of the tests were “verbal” tests
and five were “performance” tests so the expecta-
tion might be that the ten scores could be largely
explained by two underlying factors, measuring “ver-
bal” and “performance” abilities, respectively. This
is, to some extent, true but as we shall see later when
we look in detail at this example, this is not the whole
story. Although factor analysis was developed largely
as a tool for psychometricians (see Psychometrics,
Overview), it has increasingly found use elsewhere in
biostatistics. It has the potential to model and explain
successfully a data set whenever the measured (con-
tinuous) variables can be linearly related to a smaller
number of unobservable factors.

The Factor Model

Suppose that x is a vector of p variables (measure-
ments, test scores) x1, x2, . . . , xp. The most usual

model for factor analysis is, in matrix form,

x = µ + �f + e, (1)

where a typical equation in the system given by (1) is

xi = µi + λi1f1 + λi2f2 + · · · + λimfm + ei,

i = 1, 2, . . . , p. (2)

In (1), µ = E(x); in (2) f1, f2, . . . , fm are unobserv-
able common factors comprising the vector f, and
ei is a residual or specific factor for variable xi, i =
1, 2, . . . , p. (1) and (2) imply that the measured vari-
ables can be expressed as linear combinations of the
common factors, apart from a factor specific to each
variable.

Certain assumptions are usually associated with
the factor model, namely

E[f] = E[e] = 0,

E[fe′] = 0 (matrix of zeros),

E[ee′] = � (diagonal),

E[ff′] = Im (identity matrix).

The assumptions concerning the expectations of f
and e are conventional, convenient, and lose no
generality. The first two covariance assumptions are
simply stating that the elements of e are specific to
each xi (hence uncorrelated), and that these specific
factors are uncorrelated with any common factors.
The final assumption is not always made. It states that
the common factors are uncorrelated and is a common
and convenient assumption. However, some factor
analysts argue that in reality common factors are often
correlated (oblique) and so relax the assumption. For
the moment we impose all the assumptions above.
An additional assumption is sometimes made, namely
that the xis are standardized, so E[xx′] = Ip. We shall
not use this assumption at present.

The factor model is one type of latent vari-
able model in which a set of measured variables
is “explained” by postulating the existence of unob-
served “latent” variables. Factor analysis is a simple
case in which both the measurements (x) and the
latent variables (f) are continuous and relationships
are linear. Bartholomew and Knott [3] describe mod-
els in which either x or f define categories. Some
recently developed techniques such as structural
equations models [4] and the neural network [5]
also involve latent variables.
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Estimation of the Factor Model

In the factor model there are a number of param-
eters which need to be estimated. The vector µ is
usually estimated by the vector x of sample means
for x1, x2, . . . , xp, but estimation of the elements of
the matrices � and � is more complex. The matrix
� comprises so-called loadings (see Factor Load-
ing Matrix), which describe how the variables are
related to the common factors, while � tells us how
much of the variation in each xi cannot be explained
by the common factors. To understand some of the
subtleties in estimating � and �, we find the covari-
ance matrix of each side of (1) which, using our
assumptions, gives

� = ��′ + �, (3)

where � is the covariance matrix of the vector of
variables x.

In practice � is unknown, but a sample covariance
matrix, S, is available, and fitting a factor model can
be viewed as finding � and � which satisfy

S = ��′ + �

as closely as possible. If the xis are standardized, then
S is replaced with the sample correlation matrix R.

There is indeterminacy in finding �, for suppose
that T is an orthogonal matrix and that �∗ = �T.
Then

�∗�∗′ = (�T)(�T)′ = �(TT′)�′

= ��′,

so �∗ is as acceptable as � in fitting the model.
This multiplication of � by an orthogonal matrix
is known as rotation and, having found an initial
solution, it is used to “simplify” the elements of
�∗ as much as possible. Simplification can be even
greater if � is multiplied by a nonorthogonal matrix,
leading to oblique, rather than orthogonal factors.
In this article we concentrate on how to find an
initial solution. Details of rotation in factor analysis
are given elsewhere (see, in particular, Orthogonal
Rotation; Oblique Rotation; Oblimin Rotation).

We describe three commonly used methods for
finding initial estimates. A number of other methods
have been proposed over the years, though few are
widely used.

Maximum Likelihood Estimation

Maximum likelihood is perhaps the most “respecta-
ble” method of estimation, statistically speaking, but
it makes the strong assumption that f and e, and hence
x, have a multivariate normal distribution. We can
then write down the likelihood function for �, � and
µ as

L(�, �, µ; x) = (2π)−p/2|��′ + �|−1/2

× exp
[− 1

2 (x − µ)′(��′ + �)−1(x − µ)
]
.

Maximizing this with respect to µ, � and � gives
µ̂ = x, and the following equations for �̂ and �̂ (for
details of the derivation, see [3]):

�̂−1/2S�̂−1/2(�̂−1/2�̂)

= (�̂−1/2�̂)(I + �̂′�̂−1�̂), (4)

�̂ = diag(�̂�̂′ − S). (5)

Eqs. (4) and (5) must be solved iteratively. For fixed
�̂ an estimate �̂ is found from (5) and substituted
into (4). The eigenequation (4) is then solved for
�̂−1/2�̂, and hence for �̂. The new estimate �̂ is
substituted into (5), and so on until convergence.

Example

Table 1 lists the variables for the example from
Yule et al. [22] introduced earlier, together with esti-
mates of the loadings λij obtained from maximum
likelihood estimation, assuming that the number of
common factors, m, is 2. Also given are maximum
likelihood estimates of the specific variances, ψi ,
subtracted from 1. ψi is the amount of var(xi) unac-
counted for by the common factors, so var(xi) − ψi ,
known as the communality for variable i, is the vari-
ance in variable i explained by the common factors.
Recall that often, as in Table 1, factor analysis is
done using variables standardized to have variance
1, so that the communality is 1 − ψi . In this case,
the covariance matrices � and S become correlation
matrices.

The results given in Table 1 were produced for
the correlation matrix using Minitab, which has a
fairly limited range of options for factor analysis (see
Software, Biostatistical). Most standard statistical
packages will have some factor analysis procedures,
and in some cases an extensive selection of estima-
tion and rotation techniques is available. It can be
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Table 1 Maximum likelihood factor analysis for data from [22]: two-factor solution

Unrotated loadings Rotated loadings

Variable Factor 1 Factor 2 Factor 1 Factor 2 Communality

Information (x1) 0.703 0.363 0.757 0.229 0.626
Vocabulary (x2) 0.729 0.300 0.732 0.294 0.622
Arithmetic (x3) 0.723 0.071 0.568 0.453 0.528
Similarities (x4) 0.587 0.131 0.512 0.316 0.362
Comprehension (x5) 0.710 0.307 0.723 0.275 0.598
Animal house (x6) 0.528 −0.181 0.252 0.497 0.311
Picture completion (x7) 0.663 −0.195 0.340 0.602 0.478
Mazes (x8) 0.616 −0.377 0.179 0.700 0.522
Geometric design (x9) 0.458 −0.115 0.249 0.402 0.223
Block design (x10) 0.777 −0.368 0.300 0.805 0.739

seen from Table 1 that the first unrotated factor has
nontrivial loadings for all 10 variables, so that it could
be interpreted as a general factor, measuring overall
ability in the tests. The second unrotated factor con-
tributes mainly to the first, second and fifth variables
in a positive sense, and negatively to the eighth and
tenth variables.

The communalities show that over 45% of the
variability in the first, second, third, fifth, seventh,
eighth, and tenth variables is accounted for by the
two common factors, but that variables 4, 6, and 9
are rather poorly explained by these two factors.

Also given in Table 1 are the factor loadings after
rotation. Different methods of rotation will not be
discussed here. (See the section on Rotation in Prin-
cipal Components Analysis.) For illustration Table 1
shows the results for the normal varimax rotation,
which is often the default method in computer soft-
ware. Different orthogonal rotation methods will
often give similar results. The effect of rotation is to
replace the general factor and the contrast between
variables, which we had before rotation, by two fac-
tors involving subsets of the variables. The first factor
contributes much more strongly to the first five vari-
ables than to the last five, reflecting the grouping
of the 10 variables into two sets of five, which was
noted earlier. The second factor is less clear; it has
large loadings for variables 7, 8, and 10 and mod-
erate loadings for variables 3, 6, and 9. The aim of
rotation is to simplify the loadings and to produce
a simple structure. This has been less successful in
this example than in many, with substantial contribu-
tions from more than one factor to the same variable
(x3). Communalities are unchanged by orthogonal
rotation.

The maximum likelihood approach to estimation
seems rather restrictive because it assumes that all
the variables in the factor model have multivari-
ate normal distributions. In fact, the same solution
can be obtained without making this distributional
assumption. If the factor model in (1) is valid,
together with its usual assumptions concerning means
and variances, then the partial correlations between
the elements of x, given the values of f, will all be
zero. In attempting to fit the model we might therefore
try to make all such partial correlations small. We can
construct a p × p matrix of these partial correlations,
the determinant of which will be maximized when all
off-diagonal elements are zero. If this determinant is
expressed in terms of the unknown parameters λij and
ψi , and then maximized, the resulting estimates of λij

and ψi are identical to the maximum likelihood esti-
mates; for more details see [17, Section 8.8]. It can
be argued that the use of linear models and corre-
lations goes some way to an implicit assumption of
multivariate normality, but the alternative derivation
does away with the explicit assumption, and means
that the maximum likelihood estimates are relevant
in a rather broader range of problems.

Estimation Using Principal Components

This is the most common method of estimating initial
factor loadings – it is often the default in computer
software. Taking a pragmatic point of view, it is
relatively simple to implement and often works well,
giving similar results to other estimation techniques.
However, its use has been responsible for a great deal
of confusion between factor analysis on the one hand
and principal components analysis on the other [11,
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13]. It has led to the common misconception that
principal components analysis is simply a special
case of factor analysis, whereas they are really quite
distinct techniques. We give here a brief introduction
to principal components analysis, returning to a more
detailed comparison with factor analysis later in the
article.

Principal components analysis, like factor analy-
sis, is a dimension-reducing technique, but it does
not postulate any underlying unmeasurable factors.
It simply finds linear functions of the measured
variables y1 = α′

1x, y2 = α′
2x, . . . , yp = α′

px, which
successively have maximum variance, subject to each
yi being uncorrelated with earlier yj s. The matrix
A, the columns of which are α1, α2, . . . , αp, con-
tains elements which are used to express the derived
variables y in terms of the measured variables x.
The properties of principal components analysis mean
that A is orthogonal, and we can also use its ele-
ments to express the measured variables x in terms
of the derived variables y. This is beginning to look
rather like factor analysis, so the first m columns of
A are often used as an initial estimate of � in an
m-factor model. Table 2 gives the same information
as Table 1, except that principal components load-
ings are presented instead of maximum likelihood
loadings. It can be seen that, although there are differ-
ences in detail, the general patterns of loadings are
very similar in Tables 1 and 2. The communalities
are larger in Table 2 than in Table 1 for nine of the
10 variables. This is not unexpected because the def-
inition of principal components analysis implies that
it will maximize the sum over the variables of the
communalities for any value of m.

After rotation, the general pattern of the loadings
in Table 2 is again very similar to that in Table 1. It is
quite often the case that the choice of an initial factor
solution (and the choice of rotation method, provided
we stick to orthogonal rotation) has little effect on the
solution. The choice of the number of factors, which
is discussed below, is often much more important in
determining what the factors “look like”.

Principal Factor Solutions (Common Factor
Analysis)

Historically, various types of principal factor solu-
tion have been widely used; we describe them briefly
here. Principal factor solutions recognize that princi-
pal components analysis is not really designed to fit
the factor model in (1), and attempt to modify it in an
ad hoc, but appropriate, way. Principal components
analysis is based on an eigenanalysis of the covari-
ance matrix S (see Eigenvalue; Eigenvector), and
because principal components maximize variances
they concentrate on “fitting” the diagonal elements
of S. Factor analysis, on the other hand, is mainly
concerned with fitting the off-diagonal elements of S
using common factors. As noted earlier, the variables
x are often standardized, so that S is a correlation
matrix. In this case, common factor analysis concen-
trates on explaining the correlations between vari-
ables using common factors, whilst allowing some of
the (unit) variance of each variable to be unique to
that variable. What principal factor analysis does is
to replace principal components analysis’s eigenanal-
ysis of S by a similar analysis of S − �̂, where �̂ is a
diagonal matrix containing estimates of ψi . The diag-
onal elements of S − �̂, sii − ψ̂i , are estimates of the

Table 2 Two-factor solution based on principal components for data from [22]

Unrotated loadings Rotated loadings

Factor Factor Factor Factor Communality
Variable 1 2 1 2

x1 0.732 0.413 0.816 0.201 0.706
x2 0.746 0.393 0.813 0.225 0.711
x3 0.762 0.109 0.630 0.443 0.593
x4 0.647 0.253 0.645 0.259 0.483
x5 0.739 0.343 0.773 0.256 0.663
x6 0.587 −0.260 0.250 0.591 0.412
x7 0.706 −0.284 0.320 0.690 0.579
x8 0.648 −0.539 0.103 0.837 0.711
x9 0.511 −0.230 0.215 0.518 0.314
x10 0.780 −0.353 0.327 0.791 0.733
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communalities in the factor model, and these are the
parts of the variances of x which are explainable by
the common factors.

The different varieties of principal factor analy-
sis arise for two reasons. The first is that �̂ can be
defined in several ways. A popular choice where S
is a correlation matrix is to estimate the communal-
ity (1 − ψi) by the square of the multiple correlation
between xi and the other (p − 1) x variables. The
second reason is that the eigenanalysis may be done
just once to get estimates of �̂, given �̂, or we can
iterate. Iteration involves estimating the communal-
ities by

∑m
j=1 λ̂2

ij , and hence ψi by 1 − ∑m
j=1 λ̂2

ij ,
given some estimate of the λij s. An eigenanalysis is
then done using the new estimates of ψi , leading to
new estimates of �, and so on until convergence of
�̂ and �̂ see [8, Section 5.2] and [9, Section 6.3] for
further discussion of communality estimation.

Rotation of Factors

Factor analysis without rotation is not really factor
analysis at all. We have seen in the example above
that rotation aims to simplify the factor loadings in
the sense that each loading should ideally be close
to, or far from, zero, so that it is clear whether or
not a given factor has an effect on a particular vari-
able. Medium-sized, equivocal, loadings are to be
avoided. It was noted above that orthogonal rotation
is achieved by postmultiplying the original matrix of
loadings �̂ by an orthogonal matrix T, to give �̂∗ =
�̂T, where T is chosen so that �̂∗ has a simple struc-
ture. Various criteria exist for achieving this sim-
plification. Usually there are only small differences
between results for different forms of orthogonal
rotation, but oblique rotation may provide somewhat
different, and simpler, structure. Oblique rotation also
transforms �̂ to �̂∗ = �̂T, but here T is no longer
constrained to be orthogonal, and so does not strictly
give a “rotation” of rigid axes. If � = (T′T)−1 is the
matrix of correlations between factors after rotation,
then � is the identity matrix for orthogonal rotation,
but is only restricted to have unit elements on the
diagonal for oblique rotation, with no restrictions on
off-diagonal elements; see [12] for further details.

Estimation of Factor Scores

Factor analysis may stop with the estimation and
interpretation of (rotated) factor loadings and com-
munalities. Sometimes, however, it is desirable to

“estimate” the values or scores of each individual
observation on the factors (see Factor Scores). As
an illustration, computing such scores for the 150
children in our example will rank the children with
respect to the “ability factors” which the analysis has
uncovered. Plotting the scores might reveal groups or
clusters of children with similar abilities, or individ-
uals who differ from the bulk of the data set with
respect to these factors. Finally, the scores might be
used in further analyses, such as regression or linear
discriminant analysis.

In (1) the variables are expressed in terms of
the factors, whereas in computing the scores we
require the relationship to be in the opposite direction.
As Bartholomew [1] has pointed out, “estimation”
is really the wrong word here. The factor scores
are random variables, not unknown parameters, so
prediction is a better description of what is being
attempted.

If we make the normality, and other, assumptions
used in deriving maximum likelihood estimates of �

and �, the conditional distributional of f, given x,
can be found. It is the multivariate normal distribu-
tion N[�′�−1(x − µ), (�′�−1� + I)−1]. One plau-
sible way of calculating factor scores is to use a
sample version of the mean of this distribution:

f̂ = �̂′S−1(x − x). (6)

An alternative approach to the prediction of factor
scores makes no explicit distributional assumptions,
but attempts to find a linear function of x which
minimizes the variance of the prediction error for
each factor. This leads to (see [1, Section 3.5])

f̂ = (�̂′�̂−1�̂)−1�̂′�̂−1(x − x). (7)

Note that (6) can also be written

f̂ = [I + (�̂′�̂−1�̂)]−1�̂′�̂−1(x − x),

which is rather similar to (7) in its general form.
Other methods are discussed in [3]. At times the
factor scores are simplified further to produce a
cluster score. This involves obtaining groups (or
clusters) of variables and generating linear functions
for each group (see Cluster Analysis, Variables; [8,
Chapter 14]).

Choice of Number of Factors

The decision on how many factors, m, underlie the
data can be a crucial one in the analysis. Consider
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Table 3 Three- and four-factor solutions, based on principal components and varimax rotation, for data from [22]

Three-factor solution

Variable Factor 1 Factor 2 Factor 3 Communality

x1 0.815 0.131 0.182 0.714
x2 0.805 0.254 0.069 0.717
x3 0.623 0.335 0.308 0.596
x4 0.632 0.347 0.001 0.520
x5 0.775 0.113 0.292 0.698
x6 0.216 0.818 −0.064 0.720
x7 0.296 0.714 0.225 0.648
x8 0.094 0.535 0.672 0.747
x9 0.231 −0.014 0.847 0.771
x10 0.310 0.646 0.470 0.734

Four-factor solution

Variable Factor 1 Factor 2 Factor 3 Factor 4 Communality

x1 0.799 0.128 0.202 0.150 0.719
x2 0.810 0.227 0.211 −0.032 0.753
x3 0.587 0.330 0.291 0.242 0.596
x4 0.423 −0.001 0.758 0.223 0.804
x5 0.819 0.233 0.028 0.166 0.753
x6 0.076 0.501 0.718 −0.099 0.783
x7 0.335 0.751 0.213 −0.080 0.728
x8 0.168 0.803 −0.029 0.352 0.797
x9 0.174 0.192 0.078 0.911 0.903
x10 0.281 0.682 0.328 0.288 0.734

Table 3, which shows rotated factors for our example,
based on a principal component initial solution and
varimax rotation, for m = 3 and m = 4 factors.

As m varies, so does the factor structure. For m =
2 (Table 2), the two factors corresponded roughly to
the first and last five of the 10 variables. When m = 3,
the association of the first five variables with a single
factor (factor 1) becomes stronger. Factors 2 and 3
are mainly associated with (x6, x7, x10) and (x8, x9),
respectively, although x8 and x10 have nontrivial
contributions from both factors 2 and 3.

For m = 4, the four factors are associated chiefly
with (x1, x2, x5), (x7, x8, x10), (x4, x6), and (x9),
respectively. The remaining variable, x3, has nontriv-
ial contributions from all four factors.

The choice of m can be made in a number of ways.
One possibility is to examine solutions for several
values of m, as we have done, and decide subjec-
tively which gives the most clear-cut structure. With
underfactoring (too few factors) the retained factors
contain too many high loadings, and are not as “sim-
ple” as they might be. Conversely, overfactoring (too

many factors) leads to factors which are fragmented
and difficult to interpret meaningfully. It is arguable
that, on this basis, m = 3 is the best choice in our
example.

We could also use communalities to decide on
m. If prior values are available for communalities,
not necessarily the same for all variables, we can
choose m to be the minimum number of common
factors for which the estimated communalities are no
less than the specified values for all variables. In our
example, for m = 2, communalities for three of the
variables are less than 0.5, which is perhaps rather
low, although unavoidable when looking for common
factors if any of the variables is largely independent
of all others. Communalities for two of these three
variables are increased substantially if m is increased
to 3, and for m = 4 only x3 has a communality less
than 0.7.

Another approach to choosing m is to examine
the eigenvalues of the correlation matrix S. A well-
established, but subjective, way of proceeding is
to plot the eigenvalues lk, k = 1, 2, . . . , p, against
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k. Joining these points gives the so-called scree
graph due to Cattell [6]. On the graph the slope
generally becomes less steep as k increases, and we
look for an “elbow” where the decrease in slope
is substantial. If the elbow occurs at k = m + 1,
we choose to retain m = k − 1 factors. Individual
eigenvalues can also be used to choose m. The
most common rule (Kaiser’s rule [14]) is to keep
as many factors as there are eigenvalues greater than
1. The reasoning behind this rule is that individual
standardized variables each have variance 1, and for
a factor to be worth keeping it must explain more
variation than this. The validity of this rule is blurred
by the fact that the eigenvalues represent variances of
principal components, not factors. Also, after rotation
variation becomes more evenly distributed among
factors than before rotation. Hence, each of a set
of rotated factors may account for more variance
than an individual variable even if unrotated factors
corresponding to eigenvalues less than 1 have been
retained.

In our example two eigenvalues exceed 1, but the
third is only just below this threshold. The scree graph
is unhelpful – it suggests taking m = 1.

A final type of approach to the choice of m is
based on hypothesis testing. The scree graph is an
informal way of looking for eigenvalues which are
significantly larger than the remainder, the latter cor-
responding to “noise” rather than “real factors”. More
formally, if we make normality assumptions we can
construct a likelihood ratio test of the null hypothe-
sis that the covariance matrix � has the form given in
(3) for a specified value of m, against the alternative
of an unrestricted �. The χ2 approximation associ-
ated with this test statistic is often valid even when
multivariate normality does not hold [3]. To decide on
a suitable value for m we could conduct the test suc-
cessively for m = 1, 2, . . . until we first fail to reject
the null hypothesis, although the nonindependence of
such a sequence of tests makes it difficult to assess
the overall significance level of such a procedure. In
addition, these procedures are influenced by the total
sample size N . There is a tendency for underfactor-
ing to occur for small N , with overfactoring for large
N [8, p. 301].

This section is by no means exhaustive – for fur-
ther discussion and methods, see [3, paragraphs 3.8,
3.13, Chapters 4 and 5], [8, Section 5.5], [9, Chap-
ter 8], [13, Section 6.1] and [14, Section 2.4]. Al-
though [13] is concerned with principal components

analysis, many of the techniques described are more
relevant to factor analysis.

Comparison with Principal Components
Analysis

It was noted above that there is much confusion
between principal components analysis and factor
analysis. A number of differences between the two
techniques have already been mentioned. Here we
reiterate these briefly, and discuss some others.

1. Factor analysis postulates a model for the data –
principal components analysis does not.

2. Factor analysis concentrates on explaining co-
variance or correlation by means of a few com-
mon factors. Principal components analysis is
concerned mainly with explaining variance.

3. If the number of retained principal components is
increased from m to m + 1, the first m principal
components are unchanged. For rotated factors
we have seen in our example that there can
be substantial changes in all factors if m is
changed.

4. Because principal components are defined as lin-
ear functions of x, computation of principal com-
ponent “scores” is unambiguous, unlike factor
analysis.

5. Principal components analysis, like factor anal-
ysis, can be performed on standardized or on
unstandardized variables, corresponding to an
eigenanalysis of the correlation or covariance
matrix, respectively. For principal components
analysis the results of the two analyses are dif-
ferent, and one cannot be derived directly from
the other. However, for maximum likelihood fac-
tor analysis the results are invariant in the sense
that those based on the covariance matrix are
equivalent to those derived from the correlation
matrix.

Second-order Factor Analysis

When oblique rotation is used in factor analysis, the
resulting factors are correlated. The correlation matrix
between these (first-order) factors can be used as the
input to a factor analysis, in the same manner as the
correlation matrix for the original measured variables.
This leads to second-order factor analysis (see Factor
Analysis, Second-order).



8 Factor Analysis, Overview

Confirmatory Factor Analysis

What has been discussed above is exploratory in
nature. There is no preconception of what form
the factors will take – we let the data tell us this.
Although this is what is usually meant by “factor
analysis”, it may not always be what is required.
Sometimes there is some psychological or other the-
ory which leads to a specified factor structure, in the
sense that some loadings are known to be zero in this
structure. Confirmatory factor analysis is concerned
with estimating and testing the fit of such models.
The technique is a special case of structural equa-
tions models, which have a large literature – see, for
example, [4].

Further Reading

The multiple-factor approach to psychological data
was first described at length in 1947 by Thurstone
[21]. A number of substantial texts appeared in
the next 40 years; the traditional, psychologist’s,
approach to the subject is well documented in [7].
Other traditionally based references are [8, 9], and
[10]. Lawley & Maxwell [15] gave the first extensive
account of the statistical, likelihood-based, approach,
and a more recent account is in [3]. Chapter 17 of
[11], and Chapter 13 of [15] provide good reviews,
together with many references, of various aspects of
factor analysis which are noted only briefly in this
entry. Lewis-Beck [16] packages together five short
monographs on factor analysis and related meth-
ods: the first two are readable introductory texts on
exploratory factor analysis; the third covers princi-
pal components analysis; and the last two discuss
confirmatory factor analysis and structural equations
models.
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Factor Analysis,
Second-order

In factor analysis we factor a reduced correlation
matrix R∗ to obtain an initial factor matrix F, which
in turn is often rotated by means of a transformation
matrix � to produce a rotated factor matrix V. R∗ is
obtained by replacing the estimated communalities
on the diagonal of the original correlation matrix R.
The elements of F and V are called loadings (see Fac-
tor Loading Matrix). They are usually correlations
of the original variables and the factors. From the
high loadings, we interpret the factors of V in terms
of the meanings of the functions measured by the
original variables. This analysis is a first-order factor
analysis. If an oblique rotation is used to transform F
to V, the factors of V are correlated in general. With
the correlation of these factors, we may perform a
second-order factor analysis to push the interpreta-
tions a step further.

In second-order factor analysis we first obtain the
second-order correlation matrix Rs, which is given by

Rs = T′T,

where T = (�′)−1D is the primary structure trans-
formation matrix. � is the matrix that is used to
transform the initial factor matrix F to the first-order
factor matrix V. D is the diagonal matrix that normal-
izes the columns of (�′)−1. The matrix Rs contains
the correlations among the primary axes of the first-
order factor analysis. From Rs, we obtain the reduced
second-order correlation matrix R∗

s (with estimated
communalities on the diagonal). We can then factor
this R∗

s to obtain Fs, the second-order initial fac-
tor matrix. We can next rotate Fs to obtain Vs, the
second-order rotated factor matrix. Again, the factors
of Vs can be interpreted from the high loadings in
terms of the meanings of the functions represented
by the first-order factors.

We interpret the first-order factors directly in terms
of the original variables. The original variables may
have errors of measurement as well as specific fac-
tors. These error factors and specific factors lump
together in the unique factors and lie outside the
first-order common-factor space in which the first-
order factors (or factors of V) are defined. Therefore,
when we interpret the second-order factors directly
in terms of these first-order factors, any error factors

existing in this analysis can be due only to imperfect
first-order analysis. Usually, the error factors in the
second-order analysis are negligible and we can con-
clude that the second-order unique factors are entirely
specific factors which lie outside the second-order
common-factor space.

Two First-order Factors

In general, we do not perform a second-order factor
analysis when there are only two first-order factors
because there is usually very little information this
analysis can add to the first-order analysis.

Three First-order Factors

In the case of having three first-order factors, there
are three linearly independent correlations in the
second-order correlation matrix Rs, namely, r12, r13,
and r23. Using the theorems on triads, if these corre-
lations can be accounted for by a factor pattern with
one general factor and three unique factors, then all
the triads computed from these correlations must be
positive or zero and not greater than unity (see [1,
Chapter 1, Section 1.5.5] for more related theorems
on triads). On the Basis of the theorems, we can per-
form the second-order analysis by first computing the
triads:

t123 = r12r13

r23
,

t213 = r12r23

r13
,

t312 = r13r23

r12
.

If all the computed triads are at least 0.001 and not
greater than 0.999, then these triads correspond to the
communalities of the second-order factors. They are
usually denoted by h2

j , where j = 1, 2, . . . , m and m

is the number of the first-order factors. The second-
order general-factor loadings, gj , are the square roots
of the communalities, and the specific-factor loadings
are sj = (1 − h2

j )
1/2 for j = 1, 2, 3. For each factor

j , gj + sj = 1.
To make this second-order analysis possible, we

not only need to have all the triads to be within
the specified range, we also need to have a very
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good first-order analysis with additional refinement
of the simple structure on the reference vectors (see
Primary Factors). (See [1, Chapter 10] for various
refinement transformations.)

Four First-order Factors

In the case of having four first-order factors, there
are six second-order correlations, namely r12, r13, r14,

r23, r24, and r34. If these correlations can be accounted
for by a factor pattern with one general factor
and four unique factors, we may proceed to calcu-
late the 12 triads and perform the triad analysis as
follows:

h2
1 = (t123 + t124 + t134)

3

= (r12r13/r23 + r12r14/r24 + r13r14/r34)

3
,

h2
2 = (t213 + t214 + t234)

3

= (r12r23/r13 + r12r24/r14 + r23r24/r34)

3
,

h2
3 = (t312 + t314 + t324)

3

= (r13r23/r12 + r13r34/r14 + r23r34/r24)

3
,

h2
4 = (t412 + t413 + t423)

3

= (r14r24/r12 + r14r34/r13 + r24r34/r23)

3
.

Then we can obtain the general factor loadings,
gj = √

h2
j , and the specific factor loadings, sj =

(1 − h2
j )

1/2 for j = 1, 2, 3, 4.
To find out if one general factor is sufficient to

account for the second-order correlations, we have to
consider the standard errors of the tetrads. The tetrads
are computed as:

t1234 = r12r34 − r13r24,

t1243 = r12r34 − r14r23,

t1342 = r13r24 − r14r23,

where t1234 + t1342 = t1243 and a conservative approx-
imation to their standard errors is given by 1/(N −
1)1/2, where N is the total sample size. If the absolute

values of all three tetrads are less than 1/(N − 1)1/2,
we can tentatively assume that there is only one
second-order general factor and proceed to calcu-
late the triads and the factor loadings as described
above. If there are any triads that are lower than
−1/(N − 1)1/2 or higher than 1 + 1/(N − 1)1/2 and
also if there are any h2

j that are less than 0.001 or
greater than 0.999, then we have to consider that only
one second-order general factor is insufficient.

If one second-order general factor is not sufficient,
then we have to use a more complicated procedure
to postulate two second-order factors. For postulating
one second-order general factor and one second-order
group factor, we can use the triads analysis given
in [1, Chapter 1, Sections 1.5.10 and 1.6.2–1.6.7].
For postulating two second-order general factors, we
can employ the principal-axes method and factor the
second-order correlation matrix twice to make the
sum of the final communalities close to the sum of
the estimated communalities for the second analysis,
and then to rotate the second-order factor matrix
obliquely.

Five or More First-order Factors

In the case of having five or more first-order fac-
tors, we can use principal axes to factor the reduced
second-order correlation matrix R∗

s . If there appears
to be only one salient second-order factor, we will
refactor using the squares of the first-factor load-
ings from the first factoring as the communality
estimates. The first factor of the second factoring
is then the second-order general factor, with load-
ings gj , j = 1, 2, . . . , m, and m is the number of
salient first-order factors. The second-order specific
factor loadings are sj = (1 − g2

j )
1/2, and for each fac-

tor, g2
j + s2

j = 1. The second-order matrix G is then
formed as 



g1 h2
1 s1

g2 h2
2 s2

...
...

...

gm h2
m sm



 .

When there is more than one salient second-order
factor, with the number less than half of the first-order
factors, we refactor using the row sums of squares
of the first G as the estimated communalities. The
resulting second G may be rotated to obtain a second-
order reference-structure V matrix. Interpretation of
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this matrix must be based on quite clear interpretation
of the meanings of the first-order factors.

In second-order analysis, one is likely to obtain
communality greater than unity. This is called a
Heywood case. If this happens, we may try increasing
or decreasing the number of second-order factors
by one.
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Factor Loading Matrix

A factor loading matrix is a matrix of coefficients
(or weights) for a set of linear equations relating p

observed variables to m factors (or components) (see
Factor Analysis, Overview; Principal Components
Analysis). Sometimes, it is referred to as a factor
pattern. The rows of the matrix correspond to the
observed variables and the columns correspond to
the factors. Consider the hypothetical factor pattern
matrix, F obtained from a common factor model (see
Table 1). The ai and bi are the coefficient from the
following set of specification equations:

X1 = a1A + b1B + u1U1,

X2 = a2A + b2B + u2U2,

X3 = a3A + b3B + u3U3,

X4 = a4A + b4B + u4U4,

X5 = a5A + b5B + u5U5,

where Xi is the standardized score of the original
variable i, ai and bi are the coefficients for the com-
mon factors A and B of variable i, ui is the coefficient
for the unique factor Ui of variable i. Under this
model, we usually call F the initial common-factor
loadings matrix. Each pair of these loadings (or coef-
ficients) can be expressed as the coordinates of a point
in a plane. Figure 1(a) presents a plot of the factor
pattern loadings for a variable X with respect to the
initial unrotated factor axes a and b. The a coordi-
nate is measured parallel to the axis a from the axis b

and the b coordinate is measured parallel to the axis
b from the axis a.

The term “factor loading matrix” is also used to
refer to the matrix that contains the correlations
between the variables and the factors. This matrix
is then called a factor structure. It is obtained by

Table 1 Factor pattern matrix, F

Factor

a b

1 a1 b1

2 a2 b2

Variable 3 a3 b3

4 a4 b4

5 a5 b5

a

b1
X

a1

b
0

(a)

a

0
(b)

X

b

a1

b1

a

0

a1

X PI
b1

a1

b1

PII

b

(c)

Figure 1 (a) Initial pattern loadings with respect to the
initial axes a and b. (b) Initial structure loadings with
respect to the initial axes a and b. (c) Orthogonal rotated
pattern and structure loadings with respect to the primary
axes PI and PII

postmultiplying the initial factor matrix, F, with a
matrix the columns of which represent the coordi-
nates of a set of unit axes. These axes can be a set of
primary axes or reference vectors (see Primary Fac-
tors). The row vectors of the resulting factor structure
are the correlations between the variables and the fac-
tors defined by these axes. In geometrical terms, these
structure loadings can be thought of as the projec-
tions of the variable point i on the axes that define
the factors. They are measured as the distances from
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the origin to the intersection points of the axes and
the perpendicular lines dropping from the variable
point i. A plot of the structure loadings for a variable
X with respect to the initial unrotated axes a and b

is presented in Figure 1(b). The pattern and structure
loadings are identical in Figures 1(a) and 1(b). In fact,
these two types of loadings coincide for any orthogo-
nal rotation of the factor axes. A plot illustrating both
the pattern and structure of X with respect to a pair
of orthogonal primary axes PI and PII is shown
in Figure 1(c). As long as we assume that the factors
are uncorrelated (orthogonal), there is no confusion in
the use of the term “factor loading matrix”, because
both the pattern and structure matrices provide the
same set of loadings.

However, the pattern and structure loadings are
not identical after an oblique rotation. In this sit-
uation, we need to have an explicit designation to
indicate if the factor loading matrix is a pattern or a
structure. Figure 2 presents plots of the pattern and
structure loadings of a variable X with respect to two
oblique-rotated primary axes PI and PII . The dot-
ted lines show the projections of the point X on the
primary axes.

In Figure 2(a), the vectors 0c and 0d are the
parallel projections on the primary axes PI and PII .
They are the primary factor pattern loadings, which
are the regression coefficients of the variables on the
factors. The primary pattern loadings are interpretable
as measures of the contribution of each factor to the
variances of the variables. The formula to obtain
this primary factor pattern matrix P is given by
P = F�D−1, where F is the initial factor matrix, � is
the matrix the column vectors of which represent the
coordinates of the reference axis, and D is the matrix
of correlations between the reference vectors and the
primary axes. (See Cureton & D’Agostino [1, Chapter
6] for the derivations of each transformation matrix.
Also see below for clarification of reference vectors.)
This primary factor pattern matrix is useful in the
interpretation of the factors because the variables that
are highly loaded on one factor usually have low
loadings on other factors. We can identify a cluster
of similar variables in terms of their coefficients.
Unlike correlation coefficients, these coefficients do
not lie within ±1. It is possible for these coefficients
to be greater than 1 even when the variables are
standardized.

The vectors 0e and 0f of Figure 2(b) are the
perpendicular projections on the primary axes PI

PI

a

PII
X

d

c

0
(a)

b

PI

a

PII
X

0
(b)

b

e
f

Figure 2 (a) Oblique-rotated pattern loadings with respect
to the primary axes PI and PII . (b) Oblique-rotated struc-
ture loadings with respect to the primary axes PI and PII

and PII . They are the primary structure loadings,
which are the correlation coefficients between the
variable X and the oblique primary factors if X is a
standardized variable. This structure matrix, S, on the
primary factors is defined as S = FT = F(�′)−1D.
This matrix need not conform to the simple structure
principle, so it may not be useful for interpretation.
However, it may be used in the determination of
factor scores.

With an oblique rotation, an alternative set of axes
may be employed. They are the reference vector
axes, which are defined as axes normal to planes
or hyperplanes, depending on the number of factors
involved, and they usually set a boundary for the
primary factor axes unless the angle between the
primary factor axes is obtuse (i.e. a rare case). In
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RI

PI

a

PII
X

RII

b

h

0
(a)

g

RI

PI

a

PII
X

RII

b

j

0
(b)

i

Figure 3 (a) Oblique-rotated pattern loadings with respect
to the reference axes RI and RII . (b) Oblique-rotated
structure loadings with respect to the reference axes RI

and RII

the two-factor case, the reference axes are simply
the axes that are orthogonal to the primary factor
axes. Plots of the pattern and structure loadings of a
variable X with respect to the reference axes RI and
RII are shown in Figure 3. The dotted lines show
the projections of the point X on the reference axes.
Note that since RI is the reference vector for PI , it
is correlated with PI and uncorrelated or orthogonal

to PII . Similarly, RII is correlated with PII and
uncorrelated with PI .

The vectors 0g and 0h of Figure 3(a) are the par-
allel projections on the reference vectors RI and
RII . They are the reference vector pattern loadings.
Figure 3(a) shows that these loadings are in fact pro-
portional to the primary factor structure loadings. The
complete pattern matrix on these reference vectors is
given by W = F(�′)−1. This matrix is seldom used
for interpretation.

The vectors 0i and 0j of Figure 3(b) are the
perpendicular projections on the reference vectors
RI and RII . They are the reference vector struc-
ture loadings. Figure 3(b) shows that these loadings
are proportional to the primary factor pattern load-
ings. These structure loadings usually reflect a simple
structure solution to a higher degree than do the load-
ings on the primary scale [2]. The values of these
structure loadings are constrained to lie within ±1.
V = F� gives the structure matrix on the reference
vectors. It is useful for interpretation of factors.

For simplicity and visual convenience, we have
focused the discussion of the factor loading matrices
in terms of a two-dimensional model throughout
this article. The reader should refer to Cureton &
D’Agostino [1] for further discussion using models
with higher dimension.
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Factor Scores

After a set of interpretable factor loadings is deter-
mined, the next possible step is to compute the factor
scores. Exact factor scores can be obtained for a
principal components analysis model. These scores
are usually referred to as component scores. Meth-
ods for computing these component scores are given
in Principal Components Analysis. In this article
we present primarily methods that compute factor
scores in the common factor analysis model. Under
this model, it is not possible to obtain the exact factor
scores because we have more unknowns (m common
factors and p unique factors) than the observed vari-
ables (of size p). We can only estimate the scores on
the m common factors in this case. There are various
methods that can be employed to obtain the estimates,
but the most common method to estimate the factor
scores is least squares regression.

The linear regression of any factor score on
the p standardized original variables is expressed as
follows:

Z = βX + η, (1)

where Z is the m × N matrix of true (unknown)
standardized factor scores, X is the p × N matrix
of standardized original variables, β is the m × p

matrix of true regression coefficients, and η is the
m × N matrix of residuals. N is the sample size.
Each row of Z of (1) represents one primary factor,
and we can solve the scores on each factor separately
by minimizing for that row the sum of squares of the
residuals. The resulting least squares estimates for the
factor scores are given by

Ẑ = ��−1F′R−1X, (2)

where � is the m × m diagonal matrix that nor-
malizes the columns of (�−1)′, � is the m × m

transformation matrix, F is the p × m initial factor
loading matrix, R is the p × p correlation matrix of
the original variables, and X is the matrix of stan-
dardized original variables. An alternative formula to
(2) is given by

Ẑ = RsF′R−1X. (3)

This formula can be used if P the primary pattern
matrix and Rs the second-order correlation matrix are

Table 1 Factor scoring coefficients for retained compo-
nents for Framingham depression data
Rotation method: varimax
Standardized scoring coefficients

Factor 1 Factor 2 Factor 3

EFFORT −0.043 0.321 0.034
RESTLESS −0.006 0.137 0.005
DEPRESS 0.275 0.048 0.059
HAPPY 0.195 0.131 −0.084
LONELY 0.222 −0.055 0.014
UNFRIEND −0.029 −0.018 0.349
ENJOYLIF 0.148 0.012 −0.042
FELTSAD 0.314 −0.073 0.024
DISLIKED −0.053 0.007 0.356
GETGOING −0.062 0.326 0.050

available (see Factor Analysis, Second-order). We
can also get the standardized weights for these factor
scores from the SAS software package PROC FAC-
TOR [3]. An example of these standardized weights
is given in Table 1. These weights are obtained from
performing a factor analysis with varimax rotation
on the Framingham depression data (see Principal
Components Analysis for data description). For a
complete discussion on this regression method, read-
ers can refer to [1] for details.

Even though Ẑ contains good estimates for the
true common factor scores, they are still subject to
error. A measure of the deviation of the estimates
from the true scores is the multiple correlation of
the estimated factor scores with the p variables of
the data. These squared multiple correlations R2

j ,
j = 1, . . . , m, can be obtained as the diagonal ele-
ments of

(��−1F′)R−1(��−1F′)′.

R2
j is shown to be the variance of the estimated factor

scores. Since the variance is not equal to unity, these
estimates leave parts of the total variance (the total
unique variance) unaccounted for. The standard error
of estimate for a set of primary factor scores can be
computed as

sej = (1 − R2
j )

1/2.

The higher the Rj , the lower the standard error of
estimate. This method maximizes the validity of the
factor scores (i.e. it gives the highest Rj ).
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The drawback of this method is that the regression
estimates are not univocal: the correlations of these
estimated factor scores are not the same as the cor-
relations between the primary factors. In particular,
these scores are correlated even when the primary
factors are not. A number of other estimation proce-
dures have been proposed to improve on the criteria
of univocality and orthogonality of these regression
estimates (see [2, Chapter 16]), but none of these
methods has the level of validity provided by the
regression method.

In general, there is limited value in the use of
factor scores, for even though the factors are inter-
pretable, the estimated factor scores are not well
determined. Cureton & D’Agostino [1] suggest the

use of the cluster scores as the more stable score to
be used as a summary measure.
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Factor

Factor analysis is a set of procedures that use math-
ematical models to explain the interrelationships of a
set of manifest (i.e. observed) variables by a smaller
number of underlying factors that cannot be observed
or measured directly. These underlying factors are
sometimes known as the latent variables. In 1927,
Spearman [4] developed the common factor analy-
sis model for two factors and Thurstone [5] later
extended the model to multiple factors. The Spear-
man–Thurstone approach expresses a variable as a
weighted sum of some unknown common factors and
a unique factor . A factor pattern is the set of equa-
tions relating the measurements on p variables to the
m postulated common factors (m < p) and p unique
factors. A general factor pattern is given as follows:

X1 = a1A + b1B + · · · + m1M + u1U1,

X2 = a2A + b2B + · · · + m2M + u2U2,

...
...

Xp = apA + bpB + · · · + mpM + upUp,

(1)

where: X1, X2, . . . , Xp represent measurements
(usually the standardized measurements) of the
p manifest variables; A, B, . . . , M represent the
standard scores on the m common factors; ai, bi ,
. . . , mi , i = 1, . . . , p, are the weights or common
factor loadings of the p variables on the m common
factors; U1, U2, . . . , Up represent the standard scores
on the p unique factors; and u1, u2, . . . , up are
the weights or unique factor loadings of the p

variables on the p unique factors. In many settings
the common factor loadings are also the correlations
of the manifest variables and the common factors.

The common factors are interpreted with reference
to the p manifest variables. The unique factor in each
variable is merely whatever part of that variable is
uncorrelated with all the other variables, including
its error of measurement. The p unique factors are
always taken to be uncorrelated with one another and
with the common factors. These common factors may
or may not be uncorrelated.

The factors or latent variables are not uniquely
determined by the intercorrelations among the
manifest variables. The factors are only hypothetical
constructs that are postulated in order to arrive at
an explanation of the intercorrelations of the original

set of variables. Once the number of factors m and
the final factor pattern model in (1) is determined,
the factor complexity is used to interpret the factors.
Factor complexity refers to the number of manifest
variables that have moderate or high factor loadings
(or weights) on a factor. What an investigator deems
moderate or high depends on the assessment of error
in their data, and the overall intercorrelation between
the manifest variables and the findings of other
similar studies. The various approaches of factor
analysis can generate different configurations of
factor complexity. So, it is important to decide upon
the appropriate procedure for performing the factor
analysis. Standard procedures are common factor
analysis [2] and maximum likelihood factor analysis
[1, 3]. Other procedures are also well developed [1,
3] (also see Factor Analysis, Overview). Within
the concept of factor complexity, different types of
factors can be identified. If a common factor has
moderate or high loadings on all p manifest variables,
it is called a general factor. If it has moderate or
high loadings on only two or more, but not all, of
the variables, then it is called a group factor. If a
group factor has moderate or high loadings on only
two variables, it is termed a doublet factor. If the
loadings of the group factor are such that there are
both high positive and negative loadings, it is called
a bipolar factor. These different types of factors are
illustrated in Table 1.

Table 1

Factor

Variable 1 2 3 4

1 + 0 + 0
2 + + + 0
3 + 0 0 0
4 + 0 + 0
5 + + 0 0
6 + + 0 0
7 + 0 − 0
8 + 0 − 0
9 + 0 0 +

10 + + 0 +
general bipolar doublet

︸ ︷︷ ︸
group

Note: + = high or moderate positive loadings.
− = high or moderate negative loadings.
0 = near-zero loadings.
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In Table 1, factor 1 is a general factor, while
factors 2, 3, and 4 are group factors. Among the three
group factors, factor 3 is a bipolar factor and factor 4
is a doublet factor.

One traditional aim in factor analysis is to obtain
a simple structure, where the m factors are group
factors, each highly or moderately correlated to only
approximately m manifest variables.
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Factorial Designs in
Clinical Trials

Factorial experiments test the effect of more than
one treatment (factor) using a design that permits an
assessment of interactions between the treatments.
A treatment could be either a single therapy or a
combination of interventions. The essential feature
of factorial designs is that treatments are varied sys-
tematically (i.e. some groups receive more than one
treatment), and the experimental groups are arranged
in a way that permits testing whether or not the treat-
ments interact with one another.

The technique of varying more than one treatment
in a single study has been used widely in agricul-
ture and industry based on work by Fisher [10, 11]
and Yates [33]. Influential discussions of factorial
experiments were given by Cox [8] and Snedecor &
Cochran [28]. Factorial designs have been used rel-
atively infrequently in medical trials, except recently
in disease prevention studies (see Prevention Trials).
The discussion here will be restricted to randomized
factorial clinical trials.

Factorial designs offer certain advantages over
conventional comparative designs, even those emp-
loying more than two treatment groups. The factorial
structure permits certain comparisons to be made that
cannot be achieved by any other design. In some cir-
cumstances, two treatments can be tested in a factorial
trial using the same number of subjects ordinarily
used to test one treatment. However, the limitations of
factorial designs must be understood before deciding
whether or not they are appropriate for a particular
therapeutic question. Additional discussions of facto-
rial designs in clinical trials can be found in Byar &
Piantadosi [6] and Byar et al. [7]. For a discussion of
such designs related to cardiology trials, particularly
in the context of the ISIS-4 trial [17], see Lubsen &
Pocock [20]. This article is based on a recent chapter
discussing factorial designs in medical studies given
by Piantadosi [24].

Basic Features of Factorial Designs

The simplest factorial design has two treatments (A
and B) and four treatment groups (Table 1). There
might be n patients entered into each of the four
treatment groups for a total sample size of 4n and

a balanced design. One group receives neither A nor
B, a second receives both A and B, and the other two
groups receive one of A or B. This is called a 2 × 2
(two by two) factorial design. The design generates
enough information to test the effects of A alone, B

alone, and A plus B.
The 2 × 2 design generalizes to higher order facto-

rials. For example, a design studying three treatments,
A, B, and C, is the 2 × 2 × 2. Possible treatment
groups for this design are shown in Table 2. The
total sample size is 8n if all treatment groups have n

subjects.
These examples highlight some of the prere-

quisites necessary for, and restrictions on, using a
factorial trial.

First, the treatments must be amenable to being
administered in combination without changing dosage
in the presence of each other. For example, in
Table 1, we would not want to reduce the dose of A in
the lower right cell where B is present. This require-
ment implies that the side effects of the treatments
cannot be cumulative to the point where the combi-
nation is impossible to administer.

Secondly, it must be ethically acceptable to with-
hold the individual treatments, or administer them
at lower doses as the case may be (see Ethics of
Randomized Trials). In some situations, this means

Table 1 Treatment groups and sample sizes
in a 2 × 2 balanced factorial design

B

A No Yes Total

No n n 2n

Yes n n 2n

Total 2n 2n 4n

Table 2 Treatment groups in a balanced 2 × 2 × 2
factorial design.

Treatments
Sample

Group A B C size

1 No No No n

2 Yes No No n

3 No Yes No n

4 No No Yes n

5 Yes Yes No n

6 No Yes Yes n

7 Yes No Yes n

8 Yes Yes Yes n
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having a no-treatment or placebo group in the trial.
In other cases A and B may be administered in addi-
tion to a “standard” so that all groups receive some
treatment.

Thirdly, we must be genuinely interested in learn-
ing about treatment combinations; otherwise, some
of the treatment groups might be unnecessary. Alter-
nately, to use the design to achieve greater efficiency
in studying two or more treatments, we must know
that some interactions do not exist.

Fourthly, the therapeutic questions must be cho-
sen appropriately. We would not use a factorial
design to test treatments that have exactly the same
mechanisms of action (e.g. two ACE inhibitors for
high blood pressure) because either would answer
the question. Treatments acting through different
mechanisms would be more appropriate for a fac-
torial design (e.g. radiotherapy and chemotherapy for
tumors). In some prevention factorial trials, the treat-
ments tested also target different diseases.

Efficiency

Factorial designs offer certain very important efficien-
cies or advantages when they are applicable. Consider
the 2 × 2 design and the estimates of treatment effects
that would result using an additive model for analy-
sis (Table 3). Assume that the responses are group
averages of some normally distributed response
denoted by Y . The subscripts on Y indicate which
treatment group it represents. Half the patients receive
one of the treatments (this is also true in higher order
designs). For a moment, further assume that the effect
of A is not influenced by the presence of B.

There are two estimates of the effect of treatment
A compared to placebo in the design, YA − Y 0 and
YAB − YB . If B does not modify the effect of A, the
two estimates can be combined (averaged) to estimate
the overall effect of A(βA),

βA = (YA − Y 0) + (YAB − YB)

2
. (1)

Table 3 Treatment effects from a 2 × 2
factorial design

B

A No Yes

No Y 0 YB

Yes YA YAB

Similarly,

βB = (YB − Y 0) + (YAB − YA)

2
. (2)

Thus, in the absence of interactions (i.e. the effect of
A is the same with or without B, and vice versa),
the design permits the full sample size to be used to
estimate two treatment effects.

Now suppose that each patient’s response has a
variance σ 2 that is the same in all treatment groups.
We can calculate the variance of βA to be

var(βA) = 1

4
× 4σ 2

n
= σ 2

n
.

This is the same variance that would result if A

were tested against placebo in a single two-armed
comparative trial with 2n patients in each treatment
group. Similarly,

var(βB) = σ 2

n
.

However, if we tested A and B in separate trials,
we would require 4n subjects in each trial or a total
of 8n patients to have the same precision. Thus, in
the absence of interactions, factorial designs estimate
main effects efficiently. In fact, tests of both A and
B can be conducted in a single factorial trial with the
same precision as two single-factor trials using twice
the sample size.

Interactions

The effect of A might be influenced by the presence
of B (or vice versa). In other words, there might be
a treatment interaction. Some of the efficiencies just
discussed will be lost. However, factorial designs are
even more relevant when interactions are possible.
Factorial designs are the only type of trial design
that permits study of treatment interactions. This is
because the design has treatment groups with all
possible combinations of treatments, allowing the
responses to be compared directly.

Consider again the two estimates of A in the 2 × 2
design, one in the presence of B and the other in the
absence of B. The definition of an interaction is that
the effect of A in the absence of B is different from
the effect of A in the presence of B. This can be
estimated by comparing

βAB = (YA − Y 0) − (Y AB − YB) (3)
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to zero. If βAB is near zero, we would conclude
that no interaction is present. It is straightforward
to verify that βAB = βBA. When there is an AB

interaction present, we must modify our interpretation
of the main effects. For example, the estimates of the
main effects of A and B [(1) and (2)] assumed no
interaction was present. We may choose to think of an
overall effect of A, but recognize that the magnitude
(and possibly the direction) of the effect depends on
B. In the absence of the other treatment, we could
estimate the main effects using

β ′
A = (Y A − Y 0) (4)

and
β ′

B = (YB − Y 0). (5)

In the 2 × 2 × 2 design, there are three main
effects and four interactions possible, all of which
can be tested by the design. Following the notation
above, the effects are

βA = 1
4 [(YA − Y 0) + (Y AB − YB) + (Y AC − YC)

+ (YABC − YBC)], (6)

for treatment A,

βAB = 1
2 {[(YA − Y 0) − (YAB − YB)] + [(YAC −YC)

− (Y ABC − YBC)]}, (7)

for the AB interaction, and

βABC = [(YA − Y 0) − (YAB − YB) − (YAC − YC)

− (YABC − YBC)] (8)

for the ABC interaction.
When certain interactions are present, we may

require an alternative estimator for βA or βBA (or for
other effects). Suppose that there is evidence of an
ABC interaction. Then, instead of βA, one possible
estimator of the main effect of A is

β ′
A = 1

2 [(YA − Y 0) + (YAB − YB)],

which does not use βABC . Other estimators of the
main effect of A are possible. Similarly, the AB

interaction could be tested by

β ′
AB = (YA − Y 0) − (YAB − YB),

for the same reason. Thus, when treatment interac-
tions are present, we must modify our estimates of

main effects and lower order interactions, losing some
efficiency.

Scale of Measurement

In the examples just given, the treatment effects
and interactions have been assumed to exist on an
additive scale. This is reflected in the use of sums
and differences in the formulas for estimation. Other
scales of measurement may be useful. As an example,
consider the response data in Table 4, where the
effect of Treatment A is to increase the baseline
response by 10 units. The same is true of B and there
is no interaction between the treatments on this scale
because the joint effect of A and B is to increase the
response by 20 units.

In contrast, in Table 5 are shown data in which
the effects of both treatments are to multiply the
baseline response by 3.0. Hence, the combined effect
of A and B is a nine fold increase which is greater
than the joint treatment effect for the additive case. If
the analysis model were multiplicative, then Table 4
would show an interaction, whereas if the analysis
model were additive, then Table 5 would show an
interaction. Thus, to discuss interactions, we must
establish the scale of measurement.

Main Effects and Interactions

In the presence of an interaction in the 2 × 2 design,
one cannot speak simply about an overall, or main,

Table 4 Response data from
a factorial trial showing no
interaction on an additive scale

B

A No Yes

No 5 15
Yes 15 25

Table 5 Response data from
a factorial trial showing no
interaction on a multiplicative
scale

B

A No Yes

No 5 15
Yes 15 45
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effect of either treatment. This is because the effect of
A is different depending on the presence or absence
of B. In the presence of a small interaction, where
all patients benefit from A regardless of the use of B,
we might observe that the magnitude of the “overall”
effect of A is of some size and that therapeutic deci-
sions are unaffected by the presence of an interaction.
This is called “quantitative” interaction, so-named
because it does not affect the direction of the treat-
ment effect. For large quantitative interactions, it may
not be sensible to talk about overall effects.

In contrast, if the presence of B reverses the
effect of A, then the interaction is “qualitative”, and
treatment decisions may need to be modified. Here,
we cannot talk about an overall effect of A, because it
could be positive in the presence of B, negative in the
absence of B, and could yield an average effect near
zero (see Interaction in Factorial Experiments;
Treatment-covariate Interaction).

Analysis

Motivation for the estimators given above can be
obtained using general linear models. There has
been little theoretic work on analyses using other
models. One exception is the work by Slud [27]
describing approaches to factorial trials with survival
outcomes (see Survival Analysis, Overview). Sup-
pose we have conducted a 2 × 2 factorial experiment
with group sizes given by Table 1. We can estimate
the AB interaction effect using the linear model

E{Y } = β0 + βAXA + βBXB + βABXAXB, (9)

where the Xs are indicator variables for the treatment
groups and βAB is the interaction effect. The design
matrix has dimension 4n × 4 and is

X′ =




1 . . . 1 . . . 1 . . . 1 . . .

0 . . . 1 . . . 0 . . . 1 . . .

0 . . . 0 . . . 1 . . . 1 . . .

0 . . . 0 . . . 0 . . . 1 . . .



 ,

where there are four blocks of n identical rows repre-
senting each treatment group and the columns repre-
sent effects for the intercept, treatment A, treatment
B, and both treatments, respectively. The vector of
responses has dimension 4n × 1 and is

Y′ = {Y01, . . . , YA1, . . . , YB1, . . . , YAB1, . . .}.

The ordinary least squares solution for the model
(9) is

β̂ = (X′X)−1X′Y.

The covariance matrix is (X′X)−1σ 2, where the
variance of each observation is σ 2.

We have

X′X = n ×




4 2 2 1
2 2 1 1
2 1 2 1
1 1 1 1



 ,

(X′X)−1 = 1

n
×





1 −1 −1 1
−1 2 1 −2
−1 1 2 −2

1 −2 −2 4



 ,

and

X′Y = n ×




Y 0 + YA + YB + YAB

YA + YAB

YB + YAB

YAB



 ,

where Y i denotes the average response in the ith
group. Then,

β̂ =




Y 0

−Y 0 + YA

−Y 0 + YB

Y 0 − YA − YB + YAB



 , (10)

which corresponds to the estimators given above in
(3)–(5). However, if we assume no interaction, then
the βAB effect is removed from the model, and we
obtain the estimator

β̂∗ =




3
4Y 0 + 1

4YA + 1
4YB − 1

4YAB

− 1
2Y 0 + 1

2YA − 1
2YB + 1

2YAB

− 1
2Y 0 − 1

2YA + 1
2YB + 1

2YAB



 .

The main effects for A and B are as given above in
(1) and (2).

The covariance matrices for these estimators are

̂cov{β} = σ 2

n
×





1 −1 −1 1
−1 2 1 −2
−1 1 2 −2

1 −2 −2 4





and

̂cov{β∗} = σ 2

n
×




3
4 − 1

2 − 1
2

− 1
2 1 0

− 1
2 0 1



 .
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In the absence of an interaction, the main effects of A

and B are estimated independently and with higher
precision than when an interaction is present. The
interaction effect is relatively imprecisely estimated,
indicating that larger sample sizes are required to
have a high power to detect such effects.

Examples

Several clinical trials conducted in recent years have
used factorial designs. A sample of such studies is
shown in Table 6. One important study using a 2 × 2
factorial design is the Physicians’ Health Study [16,
30]. This trial has been conducted, in 22 000 physi-
cians in the US and was designed to test the effects
of (i) aspirin on reducing cardiovascular mortality
and (ii) β-carotene on reducing cancer incidence. The
trial is noteworthy in several ways, including its test
of two interventions in unrelated diseases, use of
physicians as subjects to report outcomes reliably,
relatively low cost, and an all-male (high risk) study
population. This last characteristic has led to some
unwarranted criticism.

In January 1988 the aspirin component of the
Physicians’ Health Study was discontinued, because
evidence demonstrated convincingly that it was asso-
ciated with lower rates of myocardial infarction [20].
The question concerning the effect of β-carotene on

cancer remains open and will be addressed by con-
tinuation of the trial. In the likely absence of an
interaction between aspirin and β-carotene, the sec-
ond major question of the trial will be unaffected by
the closure of the aspirin component.

Another noteworthy example of a 2 × 2 factorial
design is the α-tocopherol β-carotene Lung Cancer
Prevention Trial conducted in 29 133 male smokers
in Finland between 1987 and 1994 [3, 15]. In this
study, lung cancer incidence is the sole outcome. It
was thought possible that lung cancer incidence could
be reduced by either or both interventions. When the
intervention was completed in 1994, there were 876
new cases of lung cancer in the study population
during the trial. Alpha-tocopherol was not associated
with a reduction in the risk of cancer. Surprisingly,
β-carotene was associated with a statistically signifi-
cantly increased incidence of lung cancer [4]. There
was no evidence of a treatment interaction. The unex-
pected findings of this study have been supported by
the recent results of another large trial of carotene
and retinol [32].

The Fourth International Study of Infarct Sur-
vival (ISIS-4) was a 2 × 2 × 2 factorial trial assessing
the efficacy of oral captopril, oral mononitrate, and
intravenous magnesium sulfate in 58 050 patients
with suspected myocardial infarction [12, 17]. No
significant interactions among the treatments were
observed and each main effect comparison was based

Table 6 Some recent randomized clinical trials using factorial designs

Trial Design Reference

Physicians’ Health Study 2 × 2 Hennekens & Eberlein [16]
ATBC Prevention Trial 2 × 2 Heinonen et al. [15]
Desipramine 2 × 2 Max et al. [22]
ACAPS 2 × 2 ACAPS Group [1]
Linxian Nutrition Trial 24 Li et al. [19]
Retinitis pigmentosa 2 × 2 Berson et al. [5]
Linxian Cataract Trial Sperduto et al. [29]
Tocopherol/deprenyl 2 × 2 Parkinson Study Group [23]
Womens’ Health Initiative 23 Assaf & Carleton [2]
Polyp Prevention Trial 2 × 2 Greenberg et al. [14]
Cancer/eye disease 2 × 2 Green et al. [13]
Cilazapril/hydrochlorothiazide 4 × 3 Pordy [25]
Nebivolol 4 × 3 Lacourciere et al. [18]
Endophthalmitis vitrectomy study 2 × 2 Endophthalmitis Vitrectomy Study Group [9]
Bicalutamide/flutamide 2 × 2 Schellhammer et al. [26]
ISIS-4 23 ISIS-4 Collaborative Group [17]

Source: adapted from Piantadosi [16].



6 Factorial Designs in Clinical Trials

on approximately 29 000 treated vs. 29 000 control
patients. Captopril was associated with a small but
statistically significant reduction in five-week mortal-
ity. The difference in mortality was 7.19% vs. 7.69%
(143 events out of 4319), illustrating the ability of
large studies to detect potentially important treatment
effects even when they are small in relative mag-
nitude. Mononitrate and magnesium therapy did not
significantly reduce five-week mortality.

Similar Designs

Fractional and Partial Factorial Designs

Fractional factorial designs are those which omit
certain treatment groups by design. A careful analysis
of the objectives of an experiment, its efficiency,
and the effects that it can estimate may justify not
using some groups. Because many cells contribute to
the estimate of any effect, a design may achieve its
intended purpose without some of the cells.

In the 2 × 2 design, all treatment groups must be
present to permit estimating the interaction between
A and B. However, for higher order designs, if
some interactions are thought biologically not to
exist, omitting certain treatment combinations from
the design will still permit estimates of other effects
of interest. For example, in the 2 × 2 × 2 design,
if the interaction between A, B, and C is thought
not to exist, omitting that treatment cell from the
design will still permit estimation of all the main
effects. The efficiency will be somewhat reduced,
however. Similarly, the two-way interactions can still
be estimated without YABC . This can be verified from
the formulas above.

More generally, fractional high-order designs will
produce a situation termed “aliasing”, in which the
estimates of certain effects are algebraically identical
to completely different effects. If both effects are
biologically possible, the design will not be able
to reveal which effect is being estimated. Naturally,
this is undesirable unless additional information is
available to the investigator to indicate that some
aliased effects are zero. This can be used to advantage
in improving efficiency and one must be careful in
deciding which cells to exclude. See Cox [8] or
Mason & Gunst [21] for a discussion of this topic.

The Women’s Health Initiative clinical trial is a
2 × 2 × 2 partial factorial design studying the effects
of hormone replacement, dietary fat reduction, and

calcium and vitamin D on coronary disease, breast
cancer, and osteoporosis [2]. All eight combinations
of treatments are given, but participants may opt to
join one, two, or all three of the randomized compo-
nents. The study is expected to accrue over 64 000
patients and is projected to finish in the year 2007.
The dietary component of the study will random-
ize 48 000 women using a 3:2 allocation ratio in
favor of the control arm and nine years of follow-up.
Such a large and complex trial presents logistical dif-
ficulties, questions about adherence, and sensitivity
of the intended power to assumptions that can only
roughly be validated.

Incomplete Factorial Designs

When treatment groups are dropped out of factorial
designs without yielding a fractional replication, the
resulting trials have been termed “incomplete fac-
torial designs” [7]. In incomplete designs, cells are
not missing by design intent, but because some treat-
ment combinations may be infeasible. For example,
in a 2 × 2 design, it may not be ethically possi-
ble to use a placebo group. In this case, one would
not be able to estimate the AB interaction. In other
circumstances, unwanted aliasing may occur, or the
efficiency of the design to estimate main effects may
be greatly reduced. In some cases, estimators of treat-
ment and interaction effects are biased, but there may
be reasons to use a design that retains as much of
the factorial structure as possible. For example, they
may be the only way in which to estimate certain
interactions.
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Factorial Experiments

Experimental designs in which the treatments can
be classified by the levels of two or more factors are
called factorial experiments. For example, consider a
study conducted to compare the effectiveness of four
treatments in the reduction of blood cholesterol. The
treatments were: diet with a palm oil supplement, diet
with a rice-bran oil supplement, diet with both the
supplements, and diet with neither supplement. The
four treatments could be grouped into two factors,
namely, palm oil (factor A) and rice-bran oil (fac-
tor B) each having two levels, namely the presence
or absence of the respective diet supplement. The var-
ious combinations of the factor levels comprise the
four treatments.

In the factorial experiment the treatments are
randomly assigned to the study subjects (see
Randomized Treatment Assignment) and an
outcome variable (see Outcome Measures in
Clinical Trials), say the reduction in cholesterol after
8 weeks, is observed. Table 1 presents hypothetical
data on the reduction in cholesterol from the
experiment. In this example each treatment was
replicated on two individuals (experimental units).
The number of replicates on each treatment need not
be the same. If the number of replicates is the same
for all the treatments, then the experiment is called a
balanced experiment; if not, then the experiment is
called an unbalanced experiment.

The design of factorial experiment described here
is known as a 2 × 2 or a 22 factorial design. Factorial
experiments could have several factors and the num-
ber of levels for the factors could vary. For instance,
in the cholesterol reduction example, if we include
exercise as another factor (factor C) at two levels

Table 1 Hypothetical data from a 2 × 2 factorial
experiment on cholesterol reduction

Factor A: Factor B: rice-bran oil
palm oil Present Absent

Present 25 11
20 13

Mean = 22.5 Mean = 12

Absent 18 −5
23 4

Mean = 20.5 Mean = −0.5

(whether or not an individual is prescribed an exer-
cises regimen), then the experiment would be 23

factorial. That is, it is a factorial experiment with
three factors where each factor has two levels. In
general, a factorial experiment that has k factors, each
having two levels, is called a 2k factorial design. An
example of a more general factorial design would be
a 4 × 5 × 3 design that has three factors, where the
first factor has four levels, the second has five levels
and the third has three levels. The number of experi-
mental units (or runs) needed for this design would be
4 × 5 × 3 = 60 per replicate for a balanced design.

Analysis of Factorial Experiments

The purpose of a factorial experiment is to exam-
ine whether the factors have significant effects on the
outcome being measured. In the cholesterol reduction
example the purpose would be to test the hypotheses
(see Hypothesis Testing) that: (i) palm oil supple-
ment has an influence on the reduction of cholesterol,
and (ii) rice-bran oil supplement has an influence on
the reduction of cholesterol. To test these hypotheses,
estimates of the effects of each supplement, called the
main effects, are calculated.

The main effect for palm oil, for example, would
be the average of the difference between the two
levels of palm oil at each level of the rice-bran oil.
That is,

(22.5 − 20.5) + (12.0 − (−0.5))

2
= 7.25.

Similarly, the main effect for the rice-bran oil is

(22.5 − 12) + (20.5 − (−0.5))

2
= 15.25.

These estimates are interpreted as follows: the palm
oil supplement, on average, will reduce cholesterol
by 7.25 units, while the rice-bran oil will reduce it by
15.25 units. However, notice that the effect of palm
oil is much higher [12 − (−0.5) = 12.5] when the
rice-bran oil is absent than when it is present (2.0).
Viewed in another way, the effect of rice-bran oil is
much higher (21.0) when the palm oil is absent than
when it is present (10.5). This differential effect could
be shown by a plot of the cell means, as shown in
Figure 1.

Notice that the line corresponding to the case
where the rice-bran oil is present is not parallel
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Figure 1 Interaction between the supplements

to the line corresponding to the case where rice-
bran oil is absent. This differential effect is called
an interaction between the factors A and B (see
Interaction in Factorial Experiments). When the
interaction effect is statistically significant the main
effects are not additive, and hence it is not meaningful
to interpret them. In that situation the effect of each
factor should be interpreted at each level of the other
factor. The interaction effect between any two factors
is measured by the difference between the average
effects of one factor at the two levels of the other
factor. For the cholesterol reduction example the
interaction effect between palm oil and rice-bran oil
is estimated as

(22.5 − 12) − (20.5 − (−0.5))

2
= 5.25.

To test formally whether the effects in a 2k factorial
experiment are statistically significant, an estimate
of the standard deviation of the effects is needed.
Since there are two replicate measurements at each
treatment combination, an estimate of the standard
deviation could be obtained in this situation. Assum-
ing the variances of the four treatments to be equal,
an estimate of the variance could be obtained by pool-
ing the variances of each run. Since there are only two
replicates in the cholesterol example, the variances
for each run could be computed by the square of
the difference between the observations divided by 2.

Thus the estimate of the pooled standard deviation is

s =




(25 − 20)2 + (11 − 13)2

+(18 − 23)2 + (−5 − 4)2

2 × 4





1/2

= 4.12.

The degrees of freedom for the pooled standard
deviation equal the number of runs. Then, assuming
the reduction in cholesterol is normally distributed,
for any given effect, the statistic

F = effect2

s2/4
,

which follows an F1,4 distribution can be used to test
the hypothesis that the effect is zero. Thus an analysis
of variance (ANOVA) table for the example could be
constructed (Table 2). The observed F values in the
table should be compared with the F1,4 distribution
to obtain the P values.

The estimation of the effects in higher-order fac-
torial designs is performed employing similar con-
cepts. Several algorithms for facilitating calculations
are available (see Yates’s Algorithm). A widely used
algorithm that uses contrasts is described here. Con-
sider a 23 factorial design. Suppose the levels of the
factors are denoted by a + (present, high, etc.) or a
− (absent, low, etc.) and let y denote the outcome.
Then, a table of contrast coefficients is constructed
(Table 3).

The first three columns in Table 3 simply repre-
sent the treatment combination for the eight runs. For
example, if exercise is included as the third factor
C in the cholesterol reduction experiment, the com-
bination −,−,− corresponding to the A, B, and C
columns, would represent the run in which both palm
oil and rice-bran oil supplements were absent in the
data and the subject did not exercise. Then the signs
in the AB column are obtained by multiplying the A

Table 2 ANOVA for the experiment on choles-
terol reduction

Sum of Mean sum
Effect squares df of squares F

Main A 52.56 1 52.56 12.40
Main B 232.56 1 232.56 54.85
Interaction 33.06 1 33.06 7.80
Error 16.97 4 4.24

Total 45.22 7
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Table 3 Contrast table for calculating effects in a 23

factorial design

A B C AB AC BC ABC Mean Observation

− − − + + + − + y1

+ − − − − + + + y2

− + − − + − + + y3

+ + − + − − − + y4

− − + + − − + + y5

+ − + − + − − + y6

− + + − − + − + y7

+ + + + + + + + y8

column by the B column (and defining − × − = +
and − × + = −) and the AC column is obtained by
multiplying the A column by C column, and so on.
The effects are then obtained by summing the observa-
tions with the respective signs attached and dividing
by 4. (The divisor for the mean column however is 8.)
Thus, for instance the effect for the BC interaction
will be estimated by

(y1 + y2 − y3 − y4 − y5 − y6 + y7 + y8)

4
.

The same method could be extended to higher-order
factorial designs by filling the first k columns by the
2k treatment combinations and then by multiplying
the appropriate columns for interactions. The divisor
for each effect in a 2k factorial design is 2k−1.

Since one of the main advantages of factorial
design, especially when there are a large number
of factors, is that it is inexpensive, it is primar-
ily employed for conducting pilot studies. There-
fore, adequate replicate measurements are seldom
available to estimate the standard error of the
effects with reasonable power. Consequently, for-
mal testing of the effects using F tests as described
above becomes infeasible without making additional
assumptions. For instance, if the higher-order interac-
tions could be assumed to be zero, the corresponding
effects could be treated as random variability. Then,
using this as an estimate of the variance, formal
F tests as above could be obtained. An alternative
method for identifying the significant effects is per-
formed using normal probability plots.

Under the assumption that the observations are
normally distributed with equal variance, the effects,
being linear combinations of the observations, would
also be normally distributed with mean zero (under
the null hypotheses) and equal variance. Therefore, a

normal probability plot of the effects should fall on a
straight line that has a slope of 1 and passes through
the origin. The effects that fall away from this line
could then be deemed important.

An example of a normal probability plot for the
15 effects from a 24 factorial design is presented
in Figure 2. Since in Figure 2 the main effects of
A, B, and D, and the interaction between B and D,
do fall relatively farther than the other effects from
the straight line passing through the origin, they are
deemed important.

Fractional Factorial

When the number of factors in a factorial design is
large, the number of runs needed may be too large
to perform within a reasonable time or with available
resources. In such situations a fractional factorial
design is utilized. In this design, a fraction of the 2k

runs is selected systematically so that all the main
effects can be estimated, while compromising some
higher-order interactions.

Blocking and Confounding in
Factorial Designs

In all factorial experiments, it is desirable to per-
form the various runs on homogeneous subjects.
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Figure 2 Normal probability plot for a 24 factorial exper-
iment. Reproduced from Box et al. [2], Figure 10.9(a),
p. 332, by permission of John Wiley & Sons
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However, in some experiments the number of homo-
geneous runs that can be performed together may
be restricted. In these circumstances the number of
runs is often split into smaller equal-sized homo-
geneous groups. This procedure is called blocking.
Suppose in the 23 factorial design for the cholesterol
reduction experiment (including exercise as factor C)
only eight individuals were available, of which four
are males and four are females. Considering that the
males and females may respond to diet and exer-
cise differently, the eight runs randomly assigned
could not be assumed to come from homogeneous
individuals. Therefore blocking, in this case by gen-
der, is necessary.

Blocking poses a peculiar problem. How to split
the eight runs into four for males and four for
females? If four of the runs that include the palm
oil supplement are all given to the males and the
other four that do not are given to the females, it
would be impossible to distinguish the effect of palm
oil supplement from the effect of gender. Therefore,
the choice of the effects has to be made judiciously.
Whichever way the block assignments are made,
one of the effects will be indistinguishable from
the effect of gender. This phenomenon is called
confounding. In other words, the block (or gender)
effect is confounded with the main effect due to
palm oil.

The highest-order interaction is often the choice
for confounding where blocks are used. In the choles-
terol example the ABC interaction would be the best
choice. In other words, assign the runs to the blocks
according to the ABC column in Table 3. Therefore,
the males will get the first, fourth, sixth, and seventh
runs, while the females will get the second, third,
fifth, and eighth runs. When more than two blocks
are required, more than one effect will be confounded
with the block effect. The blocking scheme for these
situations is much more complex. The book by Box
et al. [2] describes different schemes for construct-
ing the blocks and also provides tables that suggest
blocking assignments.

ANOVA for General Factorial
Experiments

Typical steps in the analysis of a general factorial
(or a multifactor) experiment include: (i) formulating
a model; (ii) estimating the effects; (iii) testing the

effects; and (iv) model diagnostics. For an a × b

two-factor experiment the model could be written

outcome = overall average + effect due to factor A

+ effect due to factor B

+ effect due to AB interaction

+ random error.

In mathematical notation the model is written

Yijk = µ + αi + βj + (αβ)ij + εijk,

where Yijk is the observation corresponding to the
kth individual receiving the ith level of factor A
and the j th level of factor B. The parameter µ

corresponds to the overall mean and the parameters
αi, βj , and (αβ)ij correspond to the main effects of
A and B and the interaction effect, respectively. The
last term in the model, εij , represents the random
error. The assumptions of the model are that the
errors are independent and identically distributed as
normal with mean zero and equal variance and the
effects summed over the respective levels of each
factor add up to zero (see Additive Model).

The estimates of the parameters are obtained by a
least squares method that minimizes the sum of the
squared errors. This method of estimation requires the
equality of the error variance but the normality is not
required. However, under normality, the least square
estimates coincide with the maximum likelihood
estimates.

The distribution of the estimates of the various
parameters, under the assumption of normality of
errors, can be shown to be normal as well and hence,
using appropriate quadratic forms, F tests for testing
the hypothesis on each effect can be derived. In
the case of a balanced design the F tests can be
derived as ratios of the respective mean sums of
square deviations.

As in all statistical methods, the assumptions of
the model must be verified by appropriate diagnostic
methods. In the factorial model, the assumptions of
normality, equal variance, and independence must be
checked. A normal probability plot of the residuals
and scatter plots of the residuals vs. specific variables
are useful for diagnostics. Books by Cook & Weis-
berg [3] or Box & Draper [1] are wonderful sources
for a more complete understanding of this topic.

Most computer packages carry the procedures that
can perform the analyses of factorial experiments.



Factorial Experiments 5

The SAS package [6] has PROC ANOVA for bal-
anced design and PROC GLM and PROC MIXED
for complex factorials that may have unbalanced or
missing data. SPSS [7] and MINITAB [5] can also
perform these analysis (see Software, Biostatistical).

An Historical Note on Factorial
Experiments

The father of statistics is also the father of the facto-
rial experiment. The term “factorial experiment” itself
was coined by Fisher [4]. Prior to his introduction of
the term these experiments were exclusively known
as “complex experiments”. Yates continued to use the
term complex experiments during the earlier years of
his work on this topic, but later he also referred to
them as factorial experiments. Factorial experiments
were primarily used for agricultural experiments.
According to Yates [8] the use of factorial experi-
ments (complex experiments) dates back to 1843.

The major extensions and developments of
Fisher’s presentations of the concepts on factorial
experiments were bestowed to the field of statistics
by Yates. Other major contributors to the field include
Cochran, Finney, Kempthorne, Rao, and Snedecor.

References

[1] Box, G.E.P. & Draper, N.R. (1987). Empirical Model-
Building and Response Surfaces. Wiley, New York.

[2] Box, G.E.P., Hunter, W.G. & Hunter, J.S. (1978). Statis-
tics for Experimenters. Wiley, New York.

[3] Cook, R.D. & Weisberg, S. (1982). Residual and Influence
in Regression. Chapman & Hall, London.

[4] Fisher, R.A. (1926). The arrangement of field experi-
ments, Journal of Ministry for Agriculture 33, 503–513.

[5] MINITAB (1989). MINITAB Reference Manual, Release
7. Minitab Inc., State College.

[6] SAS (1987). SAS User’s Guide: Statistics, Version 6. SAS
Institute, Cary.

[7] SPSS (1986). SPSS User’s Guide, 2nd Ed. SPSS, Chicago.
[8] Yates, F. (1970). Experimental Design: Selected Papers of

Frank Yates, CBE, FRS. Hafner (Macmillan), New York.

Bibliography

Cochran, W.G. & Cox, G.M. (1957). Experimental Designs,
2nd Ed. Wiley, New York.

Fisher, R.A. (1966). The Design of Experiments, 8th Ed.
Hafner, New York.

Kempthorne, O. (1952). The Design and Analysis of Experi-
ments. Wiley, New York.

Neter, J., Kutner, M.H., Nachtsheim, C.J., Wasserman, W. &
Kutner, M.H. (1995). Applied Linear Statistical Models,
4th Ed. Irwin, Homewood.

Snedecor, G.W. & Cochran, W.G. (1980). Statistical Methods,
7th Ed. Iowa State University Press, Ames.

V. RAMAKRISHNAN



False Negative Rate

The false negative rate of a diagnostic or screening
test is conventionally taken to be the probability
that a true case of disease is given an incorrect,
negative result; in other words, the false negative
rate is Pr(negative test result | disease). In the table
in the article Sensitivity, the false negative rate is
c/(a + c). The false negative rate is the complement
of sensitivity, which is a/(a + c).

As has been pointed out [1, 2], the name implies
some ambiguity about the appropriate denominator
for the false negative rate. The definition given here
uses as denominator the number of true disease cases,
a + c. Elsewhere, one may encounter this rate based

on a denominator c + d, i.e. the total number of
negative tests.
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(See also Gold Standard Test)
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False Positive Rate

The false positive rate of a diagnostic or screen-
ing test is conventionally taken to be the probability
that a noncase of disease is given an incorrect, posi-
tive result, or Pr(positive test result | no disease). In
the table in the article on Sensitivity, the false posi-
tive rate is b/(b + d). Its complement, d/(b + d), is
known as the specificity of the test.

As with the definition of false negative rate, there
is some ambiguity about the appropriate denominator.

The definition invoked here uses as denominator for
the false positive rate the number of true noncases of
disease, b + d. Elsewhere, one may encounter this
rate based on a denominator a + b, i.e. the total
number of positive tests.

(See also Gold Standard Test)

STEPHEN D. WALTER



Familial Correlations

In a lecture at the Royal Institution on February 9,
1877, Francis Galton [13] described reversion as
“the tendency of the ideal mean filial type to depart
from the parental type, reverting to what may be
roughly and perhaps fairly described as the average
ancestral type”. Having found it difficult to obtain
human data for two generations, Galton reported the
analysis of data from carefully selected sweet pea
seeds. Galton introduced the first letter of the word
“reversion” as a symbol for representing a numeri-
cal measure of what he [14] later termed regression.
Galton had in essence defined the interclass corre-
lation coefficient. With the assistance of Hamilton
Dickson of Cambridge University, in 1886 Galton
[15] reported the discovery of the bivariate nor-
mal distribution in which the correlation coefficient
is expressed as a parameter. In this study of fam-
ily likeness in stature, he set about the calculation
of coefficients of correlation among various pairs of
relatives: parent and offspring, brothers, fathers and
sons, uncles and nephews, grandparents and grand-
sons. In considering the correlations among brothers,
Galton [15] had in essence defined the intraclass cor-
relation coefficient as the simple correlation over all
possible pairs of brothers. The term co-relation or
correlation does not appear until 1889, when Galton
[15] defined it in the context of heredity to describe
the degree of likeness among family members or so-
called relations. Galton [16] used the term “partial
co-relation” in the path towards the development of
the multiple correlation coefficient.

In the process of defining and providing estimates
of familial correlations, Galton formulated regression
analysis and the multivariate normal distribution –
two major elements not just of quantitative genetics
but also of mathematical statistics.

In 1896, Karl Pearson [26] proposed the well-
known product-moment estimators of the intraclass
and interclass correlation coefficients by replacing the
median and probable error (or interquartile range) by
the mean and standard deviation, respectively, in Gal-
ton’s estimators – which incidentally are more robust.

Similarly, Pearson [26] proposed the product-
moment estimator of the parent–offspring interclass
correlation coefficient as the simple correlation
coefficient computed in a sample of k families over
all possible pairs of observations in the ith family

formed from the parent’s value yi and the offspring’s
values (xi1, xi2, . . . , xini

):

rms =

k∑

i=1

(yi − yn)

ni∑

j=1

(xij − xn)

[
k∑

i=1

ni(yi − yn)
2

]1/2



k∑

i=1

ni∑

j=1

(xij − xn)2




1/2 ,

(1)

where the sample means yn = (n1y1 + n2y2 + · · · +
nkyk)/N and xn = (n1x1 + n2x2 + · · · + nkxk)/N

for N = n1 + n2 + · · · + nk and xi = (xi1 + xi2 +
· · · + xini

)/ni .
Without explicitly stating the formula, Pearson

[26] proposed the product-moment estimator of the
sibling intraclass correlation coefficient as the simple
correlation coefficient computed in a sample of k

families over all possible pairs of observations on
siblings in each family:

rp =

k∑

i=1

k∑

j=1
m=1
j �=m

(xij − xp)(xim − xp)

k∑

i=1

(ni − 1)

ni∑

j=1

(xij − xp)2

, (2)

where xp = ∑k
i=1 ni(ni − 1) xi/

∑k
i=1 ni(ni − 1).

Some researchers substitute xn for xp in the above
definition for consistency with the previous definition
for the pairwise estimator of the interclass correla-
tion – see Konishi [22].

In 1913, Harris [17] simplified the laborious hand
calculation of the product-moment estimator rp of the
intraclass correlation by considering in the balanced
case a decomposition of the pairwise sum of squares
which avoids the computation of the cross product in
the numerator. This decomposition in the unbalanced
case produces

rp =

k∑

i=1

ni(ni − 1)(xi − xp)
2 −

k∑

i=1

ni∑

j=1

(xij − xi)
2

k∑

i=1

(ni − 1)

ni∑

j=1

(xij − xp)2

.

(3)
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In 1915, Fisher [9] derived the sampling distribu-
tion of the simple (interclass) correlation coefficient
and developed the z-transformation as a variance sta-
bilizing transformation (see Delta Method).

In 1918, Fisher [10] studied the impact of
dominance, epistasis (see Genotype), linkage, and
assortative mating on familial correlations under
Mendelian inheritance (see Mendel’s Laws) and
introduced a new method: the analysis of variance.
Yet again, a third major element of quantitative
genetics and also of mathematical statistics is
formulated in the context of familial correlations.
Fisher [10] is noted for both laying the foundations of
biometrical genetics and reconciling this theory with
Mendelian genetics.

In 1921, Fisher [11] derived the exact sampling
distribution of the product-moment estimator of the
intraclass correlation for the balanced case under nor-
mality and developed the z-transformation for this
estimator. He also showed that the range of values of
the intraclass correlation is given by [−1/(n − 1), 1)

for families of size n, in contrast to the range of
(−1, 1) for the simple correlation coefficient. Fisher
[12] later argued that “there is probably nothing in
the production of a leaf or a child which necessi-
tates that the number in such a family should be less
than any number however great, and in the absence
of such a necessary restriction we cannot expect to
find negative correlations within such families”. This
restriction has been accepted by some researchers
who have adopted estimators of the intraclass cor-
relation that are truncated at zero. But Fisher [12]
also noted in his example of card games that where
the number of suits is limited to four, the correla-
tion between the number of cards in different suits
in the same hand may have negative values down to
−1/3, and so some researchers do not use truncated
estimators.

In 1925, Fisher [12] proposed an estimator of the
intraclass correlation based on a ratio of variance
components from the one-way analysis of variance
(ANOVA) in the balanced case under the assumption
of normality. In so doing, Fisher [12] broadened
the scope of application of the intraclass correlation
which led to its application in sensitivity analysis
in the design of experiments, intracluster variation in
sample surveys and reliability theory in psychology.
From Fisher [12], the statistical model for the j th
member (or sibling) of the ith group (or family) is

xij = µ + ai + eij ,

where µ is the mean of the observations in the
population, the group effects {ai} are normal and
identically distributed with mean 0 and variance σ 2

a ,
the random errors {eij } are normal and identically
distributed with mean 0 and variance σ 2

e , and the {ai}
and {eij } are independent. The intraclass correlation
coefficient parameter is defined to be ρs = σ 2

a /(σ 2
a +

σ 2
e ). Furthermore, under Fisher’s model [12], it can

be shown that corr(xij , xik) = ρs for j �= k.
Without explicitly stating the formula, Fisher [12]

defined the ANOVA estimator of the intraclass cor-
relation coefficient in the balanced case to be

ρ̃s = MSB − MSW

MSB + (k − 1)MSW
, (4)

where the mean sum of squares between fam-
ilies is MSB = ∑k

i n(xi − xn)
2/(k − 1) and the

mean sum of squares within families is MSW =∑k
i

∑n
j (xij − xi)

2/(N − k). Note the minimum
value that Fisher’s ANOVA estimator ρ̃s can attain
is −1/(k − 1), as is the case for Pearson’s product-
moment estimator rp, which is at odds with the
definition of the parameter ρ which takes values on
the interval [0, 1). So some researchers use a version
of ρ̃s truncated at zero.

Fisher [12] commented in comparison that Pear-
son’s product-moment estimator ought to be consid-
ered “slightly defective” in that one estimator of a
component of variance (see Variance Components)
implicit in the product-moment estimator is biased.
The introduction by Fisher [12] of the ANOVA esti-
mator of the intraclass correlation has had the effect
of dividing researchers developing and using intra-
class correlations into two factions: one faction using
estimators based upon the analysis of variance; and
the other faction using estimators based upon product
moments, that is, those who use the ML method.

Estimation of the Intraclass Correlation
Coefficient

Wald [38] and Bhargava [3] independently developed
an interval estimator based on a statistic known
to follow the F distribution exactly even in the
unbalanced case for normally distributed data. By
choosing

ui = ni

1 − ρs

ni − (ni − 1)(1 − ρs)



Familial Correlations 3

as a weight associated with the ith family and
defining xu = ∑

i uixi/
∑

i ui , they showed that the
endpoints of a 1 − α confidence interval can be
found by solving the nonlinear equation

N − k

k − 1

∑

i

wi(xi − xu)
2

∑

i

∑

j

(xij − xi)2
= Fγ,k−1,N−k (5)

for values of γ equal to 1 − α/2 and α/2. By
setting γ = 0.5, a median unbiased estimator of the
intraclass correlation can be obtained. The point
and interval estimates can be found by iterative
algorithms such as the bisection method or the secant
method.

Fieller & Smith [8] generalized the ANOVA
estimator to the unbalanced case. Smith [30] pro-
vided a further generalization of this estimator by
allowing arbitrary weights other than the number of
offspring when computing the between-family sum
of squares. Smith [30] also derived the asymptotic
variance of this new generalized weighted ANOVA
estimator. Karlin et al. [18] introduced the use of
arbitrary weights in a generalization of the product-
moment estimator. Eliasziw & Donner [5] provided
the asymptotic variance for the generalized weighted
product-moment estimator following the method of
Smith [30]. These results can be summarized as fol-
lows [19]. Associate weights vi , αi , and βi with
the ith family. Define xv = ∑

i vixi/
∑

i vi , SSi =∑
j (xij − xi)

2, and the following components of
variance:

SXv =
∑

i

vi(xi − xv)
2,

SEα =
∑

αiSSi,

SEβ =
∑

βiSSi.

Depending on the choice of weights,

r̃v = SXv − SEα

SXv + SEβ

(6)

can represent any one of the previously mentioned
product-moment or ANOVA point estimators of
the intraclass correlation coefficient. Selecting vi =
ni(ni − 1) yields the pairwise weights implicitly con-
ceived by Pearson [26]. Selecting vi = ni yields

the sibship- or group-size weights implicitly con-
ceived by Fisher [11]. Selecting vi = 1 yields the
uniform weights explicitly conceived by Smith. Upon
selecting vi , if one sets αi = vi/[ni(ni − 1)] and
βi = vi/ni , the product-moment estimators of Karlin
et al. [18] are obtained. Upon selecting vi , defin-
ing V = ∑

i vi , vc = ∑
i (vi − v2

i /V )/ni , and vo =
(V − ∑

i v2
i /V )/vc, and setting αi = vc/(N − k) and

βi = vc(vo − 1)/(N − k), the ANOVA estimators of
Smith [30] are obtained.

Monte Carlo simulations [19, 20] have shown that
the efficiency of rv is a function of the parameter
value, with some choices of weights being better than
others given prior information about the parameter
value. The pairwise weights are best for ρs < 0.2,
the uniform weights for ρs > 0.8, and the group-
size weights for the intermediate range. As far as the
choice of product moment vs. ANOVA is concerned,
the product moment is preferred for pairwise weights
and the ANOVA for group-size and uniform weights.

Typically, prior information about the intraclass
correlation parameter is unavailable. So following
the approach of Srivastava [34] and introducing
the weights wi , κi , and λi with W = ∑

i wi , xw =∑
wixi/W , wc = ∑

i (wi − w2
i /W)/ni , and wo =

(W − Σiw
2
i /W)/wc for a second estimator

r̃w = SXw − SEκ

SXw + SEλ

, (7)

a combination estimator

ρ̃vw = ρ̃v

1 + ρ̃v − ρ̃w

(8)

is defined with asymptotic variance given by

av(ρ̃vw) = (1 − ρ̃vw)2av(ρ̃v)

+ 2ρ̃vw(1 − ρ̃vw)ac(ρ̃v, ρ̃w)

+ ρ̃2
vwav(ρ̃v). (9)

The asymptotic variance of either ρ̃v or ρ̃w and the
asymptotic variance of these two estimators can be
determined from

ac(r̃v, r̃w) = 2(1 − ρ)2

ψvψw

{
Dvw +

∑

i

(ni − 1)αiκi

+
∑

i

(ni − 1)[(αiλi + βiκi)ρ + βiλiρ
2]

}
,

(10)
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where

Dvw = cov(SXv, SXw)

2σ 4
=

k∑

i=1

k∑

j=1

viwjφ
2
vw(i, j),

φvw(i, j) = δij τi − wi

W
τi − vj

V
τj +

∑

l

vlwl

V W
τl,

τi = ρ + 1 − ρ

ni

,

ψv = vc +
∑

i

(ni − 1)βi

+
⌈

(vo − 1)vc −
∑

i

(ni − 1)βi

⌉
ρ,

ψw = wc +
∑

i

(ni − 1)λi

+
⌈

(wo − 1)wc −
∑

i

(ni − 1)λi

⌉
ρ

with δij = 1 if i = j and δij = 0 if i �= j by the
approach of Smith [30]. A suitable estimator of ρ

when estimating the asymptotic variance of either
a product-moment or ANOVA estimator is the esti-
mator itself, whereas a suitable estimate of ρ when
estimating the asymptotic variance of the combina-
tion estimator is the combination estimator.

Choosing the pairwise weights for vi and uniform
weights for wi in the combination estimator results
in a point estimator that is nearly fully efficient, in
comparison with the maximum likelihood estimator,
for the full range of the intraclass correlation coeffi-
cient [20]. An appreciation of this result can be gained
from the equation

ρ̃vw = (1 − ρ̃vw)ρ̃v + ρ̃vwρ̃w,

which also defines the estimator ρ̃vw. Note that ρ̃vw

shrinks towards ρ̃v for small ρs and towards ρ̃w for
large ρs . So it is reasonable to expect that ρ̃vw will
perform well for small ρs if ρ̃v is efficient for small
ρs – with a similar consideration for large ρs if ρ̃w is
efficient for large ρs.

Estimation of the Parent–Offspring
Interclass Correlation Coefficient

The parent–offspring interclass estimator assumes
only one parent and a variable number of offspring
per family.

Karlin et al. [18] developed a generalized weigh-
ted version of the pairwise product-moment estima-
tor. Srivastava & Keen [35] developed a generalized
weighted version of the ANOVA estimator given
by Srivastava [33] based on the uniform weighting
scheme. Srivastava & Keen also derived the asymp-
totic variance of the weighted ANOVA estimator. The
asymptotic variance of the product-moment estimator
is given by Eliasziw & Donner [5].

Using the notation above for the sibling intraclass
correlation and letting yi denote the parent’s value
in the ith family, the weighted product moment and
a version of the weighted ANOVA estimators of the
interclass correlation can be expressed as

r̃ms =

∑

i

vi(yi − yv)(xi − xv)

[
∑

i

vi(yi − yv)
2

]1/2

× 1
[
∑

i

vi(xi − xv)
2 +

∑

i

βiSSi

]1/2 , (11)

where yv = (v1y1 + v2y2 + · · · + vkyk)/V . Upon
selecting vi , if one sets βi = vi/ni , then the product-
moment estimators are obtained, or if one sets βi =
vc(vo − 1)/(N − k), then versions of the ANOVA
estimators are obtained.

The choices of weights that have been studied
in Monte Carlo simulations [5, 35] are the sibship-
size weights (vi = ni) and the uniform weights (vi =
1), with the recommendation of using sibship-size
weights when the sibling intraclass correlation ρs <

0.3 and uniform weights otherwise.
When the sibship-size weights are used, the result-

ing product-moment and ANOVA parent–offspring
interclass correlation estimators have been referred to
as pairwise estimators. It must be understood that the
pairs are taken with respect to parent and offspring.

A number of other parent–offspring estimators
have appeared in the literature. On the basis of Monte
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Carlo simulations, Rosner et al. [29] did not rec-
ommend the sib-mean and random-sib mean estima-
tors – recommending instead the pairwise and ensem-
ble estimators. (The ensemble estimator is obtained
by setting vi = 1 and βi = (k − 1)/(kni) in the for-
mula for r̃ms .) However, Srivastava & Keen [35]
established theoretically, under normality for the uni-
form ANOVA estimator ρ̃ms,u and the ensemble esti-
mator ρ̃ms,e, that av(ρ̃ms,u) ≤ av(ρ̃ms,e). In Monte
Carlo comparisons of the asymptotic variance for-
mulas for ρ̃ms,u and ρ̃ms,e, Eliasziw & Donner [5]
reached the same conclusion.

The exact sampling distribution of the uniform
ANOVA estimator of the interclass correlation is
given by Velu & Rao [37].

In parallel with the intraclass correlation, Eliasziw
& Donner [6] showed for the interclass correla-
tion that the pairwise product-moment estimator has
a smaller asymptotic variance than the pairwise
ANOVA estimator.

Maximum Likelihood Estimation of
Familial Correlations

Elston [7] derived expressions for the maximum
likelihood estimators of correlations in nuclear fam-
ilies for the balanced case, together with expressions
for the asymptotic variances of these estimators. From
this flows the justification of the pairwise estimators
of sibling and parent–offspring correlations in the
general unbalanced situation, reducing to the maxi-
mum likelihood estimators in the balanced case.

In the unbalanced case, closed-form expressions
are not available for correlations in nuclear families
and it is necessary to resort to iterative numerical
algorithms [2, 27, 28, 31, 32, 36, 39] to find these
estimates. Nevertheless, closed-form expressions are
available for the asymptotic covariances of all param-
eters (including sibling intraclass correlation) in data
consisting of siblings only [4] and for all parameters
(including brother intraclass correlation, sister intra-
class correlation and brother–sister interclass corre-
lation) in data consisting of brother and sisters only
[21]. Of course, the parent–offspring situation can
be regarded as a special case of the brother–sister
situation.

Estimation of Multivariate Correlations in
Extended Families

Suppose that there are q classes of relatives to be
considered and a random sample of k independent
families is available. Suppose the j th family has nij

observations for the ith class with kij > 0 for at least
one class i so the j th family is nonempty. Here
the groups may represent a three-generation family
or even an extended pedigree structure. Assume the
vector of observations for a member of the ith class
of relatives has length pi so the variables measured
on members of each class may not be identical either
in quality or quantity. Let xijs denote the random
vector of pi observations for the sth member in the
ith class of relatives in the j th family. The first and
second moment structure is defined by

µi = E(xijs ),

Ai = (Aiαβ) = cov(xijs ),

Bi = (Biαβ) = cov(xijs , xij t ), s �= t,

Cim = (Cimαβ) = cov(xijs , xmjt ), i �= m,

for 1 ≤ i ≤ q and 1 ≤ m ≤ q. The mean vector
µi is of length pi , the pi × pi matrix Ai is the
class covariance matrix of the ith class, the pi × pi

matrix Bi is the intraclass covariance matrix of
the ith class, and the pi × pm matrix Cim is the
interclass covariance matrix between classes. Note
that the class and intraclass covariance matrices are
symmetric. Although Cim is not symmetric, it is
easily verified that Cim = C′

mi .
Upon defining the diagonal matrix composed of

class variances

Di =





Ai11 0 0 · · · 0
0 Ai22 0 · · · 0
0 0 Ai33 · · · 0
...

...
...

. . .
...

0 0 0 · · · Aipipi




,

the correlation structure for the model is

�i = corr(xijs ) = D−1/2
i AiD

−1/2
i ,

�i = corr(xijs , xij t ) = D−1/2
i BiD

−1/2
i , s �= t,

�im = corr(xijs , xmjt ) = D−1/2
i CimD−1/2

m ,

provided i �= m, where �i is the class correlation
matrix for class i, �i is the intraclass correlation
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matrix for class i, and �im is the interclass cor-
relation coefficient between classes i and m. The
parameters in this model can be estimated in the
case of multivariate normality by any number of
numerical methods currently available, including the
Newton–Raphson method [27, 36]. Standard errors
are found by inverting the Hessian matrix (of second
derivatives) of the likelihood function evaluated at
the maximum likelihood estimates.

Konishi & Khatri [23] have provided general-
ized noniterative estimators of correlation matrices in
the multivariate parent–offspring case based on the
product-moment and ANOVA approaches including
the uniformly–weighted ANOVA estimators intro-
duced by Srivastava et al. [36].

Konishi et al. [25] discussed the use of canonical
correlations to find suitable measures for the degree
of resemblance between parent and offspring. Konishi
& Rao [24] discussed the application of principal
components analysis for multivariate familial data.
Both discussions use the generalized estimators of
Konishi & Khatri [23].

Other Estimation Issues

Although the preceding discussion is with respect
to continuous random variables, with the exception
of the maximum likelihood estimators, the preceding
estimators and their standard errors are valid without
modification for binary random variables and, in the
multivariate setting, for combinations of continuous
and binary random variables.

With regard to dropping the requirement for the
assumption of normality, a discussion of robust M-
estimation of the intraclass correlation is given by
Bansal & Bhandary [1]. Alternatively, one can return
to the early work of Galton, and replace means
by medians and standard deviation by probable
errors (interquartile ranges) in the product-moment
estimators.
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Family History Validation

A fundamental source of data for any genetic epi-
demiologic study is the family history of the research
subject [10, 12, 19, 28]. The essential family his-
tory consists of two components: the pedigree struc-
ture and the specification of those members of the
pedigree who have the trait(s) or disease(s) of inves-
tigative interest. Increasingly, the family history also
includes information on relatives, such as age of dis-
ease onset or diagnosis, or environmental exposures
such as tobacco and alcohol use. The family history
is obtained by direct interview of or questionnaire
administration to an informant, usually the proband
or index case (see Ascertainment). If the proband is
deceased, a surrogate or proxy (spouse or other next
of kin) is asked to provide the information.

The quality of the family history thus obtained can
vary according to the amount of information sought,
the way in which the information is collected, and
who is providing the information. Depending upon
the nature of the study, it also follows that if the fam-
ily history information sought is detailed or needs to
be of high quality, then the process to obtain such
data can be time consuming for both the informant
and the investigator [17]. A key methodologic issue in
this regard is validation of the completeness or accu-
racy of the information provided by the informant.
In turn, what is learned from empirical studies of
family history validation can inform the study design
and analytic strategies to compensate for missing or
inaccurate data.

Validation of Reported Family History

There are two major methods by which a reported
family history can be validated:

1. Direct query or health assessment (by interview
or questionnaire) of the family members about
whom the informant has provided information.
A variation of this approach is to interview as
many members of the kindred as feasible and
compare reported family histories.

2. Obtain documentation of disease in family mem-
bers by medical records, death certificates, or
population-based disease registries.

Table 1 Assessment of agreement of informants’ reported
family history

Family member’s self-report or medical
documentation that family member is:

Informant
reports that
family
member is: Affected Unaffected

Affected a b
Unaffected c d

When such information has been obtained, family his-
tories are validated by designating as the “gold stan-
dard” the self-report given by the relative (Method 1)
or the medical documentation (Method 2). The agree-
ment or concordance of the informant’s reported fam-
ily history is then assessed by sensitivity = a/(a + b)

and/or specificity = d/(c + d), according to Table 1.
In general, use of Method 1 can provide fairly

complete data to estimate both sensitivity and speci-
ficity, and Method 2 yields good data for estimating
sensitivity, but less so for specificity – except per-
haps when population-based disease registries are
employed for validation. The quality of sensitivity
and specificity estimates are thus dependent upon the
quality and completeness of the “gold standard” data.

Family History Validation Studies

There have been numerous studies that performed
validation of reported family histories. The choice
of validation method and the accuracy of reported
history are often dependent upon the disease under
study. Studies of psychiatric disorders [5, 13, 16, 26]
and one study of aneurysms [8] validated family
history by Method 1, interviewing or directly assess-
ing relatives in the kindreds. These studies found that
reported family histories were of variable quality, and
that specificity was generally high, but sensitivity was
modest.

In contrast, studies of cancer and heart disease
have often utilized Method 2, obtaining medical
records or pathology reports and death certificates
[1–4, 6, 14, 17, 18, 23, 24]. Large-scale, population-
based family history validation studies are possible
because of the existence of regional or national tumor
registries [11]. In general, these studies have found
that sensitivity of reporting cancer family history is
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high, greater than 70%. As mentioned above, given
the type of information used to assess accuracy,
specificity often cannot be properly estimated, unless
documentation is exhaustive.

An interesting variation on family history vali-
dation was conducted by Glanz et al. [7] in which
first-degree relatives of patients who were known to
have colorectal cancer were asked to complete a fam-
ily history survey. (The relatives were recruited under
the auspices of a different research question.) All
respondents were known beforehand to have a rela-
tive with colorectal cancer, yet the investigators found
that family history of this cancer was underreported
by 25.4%.

Factors that Influence Accuracy of
Reported Family History

Many of the above studies also investigated the
factors that affected the accuracy of family history
of disease. It is clear that the type of disease under
investigation greatly influences accuracy; how visi-
ble the condition is, and the degree of stigma that is
associated with the condition (both socially and in the
family) have an impact. Personal characteristics of the
respondent, including age, gender, affection status,
comorbid conditions, education level, and knowl-
edge and concern about the condition can influence
accuracy. Finally, degree of relationship between the
respondent and the relative being reported on affects
accuracy: it has been confirmed in a number of stud-
ies that the more distant the relationship, the less
accurate the history.

In the context of case–control studies, when the
validity of reported exposures – such as tobacco or
alcohol consumption by family members – has been
investigated, the accuracy has been reported to be
reasonably high, ranging from 60% to 90% agreement
by next of kin or close proxy respondents [9, 15, 20].
However, reports about all relatives across kindreds
have not been systematically examined.

Analytic Implications

The results of family history validation studies to
date suggest that family histories of some diseases
can often be considered reliable, particularly of major
cancers or common/familiar conditions among first-
degree relatives. However, these studies also sug-
gest that recall bias and incomplete data collection

can occur, and that the method of querying, demo-
graphic and clinical characteristics of the informant,
and psychosocial factors may influence the accuracy
of the reported history.

The consequence of an inaccurate family history is
misclassification or missing data, which can severely
influence the results of the analysis [25, 27]. Saito
et al. [21, 22] showed the bias that can occur in the
estimation of odds ratios for family history of stroke
and diabetes when the gender and age of the rel-
atives is ignored. Silberberg et al. [24] found that
classification of “Don’t know” responses by infor-
mants with respect to family history of cancer or heart
disease about second-degree relatives could result
in lower sensitivity. In conclusion, an awareness of
these issues should help to guide the design, analy-
sis, and imputation of missing data in studies that use
family histories.
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Family-based Association
for Quantitative Traits

Allelic association tests have been introduced to ana-
lyze the relationship between allelic variability and
individual traits (see Gene). As with ordinary asso-
ciation tests, population admixture is a potential
source of confounding. Below we describe family-
based approaches to adjusting for potential confound-
ing due to population admixture when analyzing a
quantitative (continuous) trait. These family-based
association tests often aim to extend the trans-
mission/disequilibrium test (TDT) [13, 15] from a
dichotomous (affectation status) trait to a quantitative
trait (see Family-based Case–Control Studies).

The approaches can be differentiated by the kind
of assumptions they make on the distribution of
the quantitative trait (e.g. normal distribution), the
ascertainment of the sample (e.g. random sample),
and the kind of data that can be evaluated (e.g. only
family trios). Most of the approaches test for linkage
in the presence of association but there also exist tests
for association in the presence of linkage.

First we review papers that introduce tests that
make assumptions on the distribution of the quantita-
tive trait given the genotypes. Later we will turn to
nonparametric tests that do not make assumptions on
the distribution of the quantitative trait.

Allison [2] developed five test statistics for sam-
ples of independent nuclear-family trios. The first test
(TDTQ1) is a t-test that assumes random sampling of
the family data. The other four tests (TDTQ2 –TDTQ5)
can be used both for random and extreme sampling.
Three of the tests (TDTQ1, TDTQ3, TDTQ5) are ordi-
nary least squares approaches, which assume that the
residuals are independent and normally distributed;
the tests tend to be quite robust to nonnormality
because the central limit theorem ensures that the
coefficient estimators are asymptotically normally
distributed. TDTQ5 was found to be more power-
ful than the other tests under a variety of genetic
models. It is an F -test that compares the fit of two
regression models. For the three informative mat-
ing types (Aa × AA, Aa × Aa or Aa × aa), the first
model regresses the offspring phenotype value on the
parental mating types. The second model regresses
the offspring phenotypes on both the parental mating
types and the offspring genotypes.

For data with siblings and no parents, Allison et al.
[3] proposed two tests: a mixed effect model and a
permutation test, which does not make assumptions
on the distribution of the quantitative trait. Simulation
studies have shown that the permutation test is more
powerful than the mixed effect model test for additive
or nearly additive quantitative trait loci.

Xiong et al. [18] developed an approach that is
similar to the one by Allison [2]. The test assumes
that parental genotype information is available and
that the phenotype is normally distributed or that
the sample size is large. The test, which allows for
more than one child per family, compares the aver-
age trait values of offspring inheriting one allele vs.
the other from heterozygous parents. George et al.
[6] proposed a regression-based TDT method, which
regresses the trait on the parental transmission of a
marker allele. Similarly, Zhu & Elston [22] devel-
oped a TDT method for quantitative traits by defin-
ing a linear transformation to condition out founder
information. Both methods allow one to analyze pedi-
gree data since they do not assume independence of
observations. Both tests assume normally distributed
residuals and random sampling. Simulation studies
comparing the two regression methods have been
described in [21].

Yang et al. [19] defined a different regression-
based approach to adjusting for confounding due
to population admixture. Their approach involves
augmenting linear regression models with additional
regressors that are defined through family genotype
data. This ensures that the estimates of the regres-
sion coefficients that parameterize the influence of
allelic variability on the trait are unbiased. The basic
assumption that underlies the approach is that the
offspring genotypes and the residual trait value are
independent conditional on the parental genotypes.
The validity of the approach has only been derived
for settings where individuals are sampled at random.
The approach can be extended to general pedigrees
and missing parental genotype information.

Clayton & Jones [4] use a likelihood framework
to derive a quantitative trait TDT-type test for trio
families. The authors assume that the quantitative trait
for a given individual has a normal distribution con-
ditional on the individual’s genotype. Furthermore,
they assume that on some arbitrary scale, the geno-
type effects on the trait mean may be decomposed
into sums of haplotype effects: if for genotype (i, j )
the corresponding mean trait value is denoted µ(i,j),
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then they assume the existence of a function h(·) such
that h[µ(i,j)] = h(µ) + βi + βj . The probability of
the offspring genotype data is computed conditional
on the parental genotypes (to protect against popu-
lation stratification effects) and on the offspring trait
values (to allow one to use data irrespective of the
ascertainment scheme). Finally, the authors derive a
score statistic that is similar to the distribution-free
test introduced by Rabinowitz [10] (see below).

For normally distributed traits and complete
parental genotypes, Van den Oord [16] describes
a framework for identifying quantitative trait loci
in association studies using structural equation
modeling. Fulker et al. [5] introduce a variance
component model for a combined quantitative
trait locus (QTL) linkage and association analysis.
The authors simultaneously model the means and
covariances of sibling pairs. The linkage test is
based on differences in covariances according to
the identity-by-descent (ibd) status at the candidate
locus. The model for the means is partitioned into
between- and within-pairs (i.e. inter- and intra-
sibship) components; an association test based on
the within-pair component is robust to population
stratification. The variance component model is
not directly applicable to either samples selected
for extreme trait values or nonmoral quantitative
phenotypes. Abecasis et al. [1] and Sham et al.
[12] extend this variance component approach to
nuclear families of any size and to arbitrary sibships,
respectively. For randomly ascertained sibships,
Sham et al. [12] found that the power of their
association test is related to the QTL heritability and
the square of the linkage disequilibrium measure,
while the power of the linkage method is related to
the square of the QTL heritability.

We now discuss approaches that make fewer or
no assumptions on the distribution of the quantitative
trait. Rabinowitz [10] introduced an approach that
does not make any distributional assumptions on the
quantitative trait values. The essence of the approach
is to start with a statistic for association between
a marker and phenotypes and then to use parental
information to modify the statistic to avoid the possi-
bility of spurious association induced by population
admixture. Because no assumption is made about the
distribution of the trait values under this approach,
the tests are valid for any type of sampling schemes
based on the phenotypes of the individuals. Denote
by n the number of families and by ni the number of

offspring in the ith family. Denote the trait value of
the j th offspring in the ith family by Qi,j . Following
the notation outlined in Zhao [20], define the follow-
ing index function Y m

i,j = 1/2 or (−1/2) if the mother
in the ith family is heterozygous and transmits the
A (or a) allele to the j th offspring, and Y m

i,j = 0 if
the mother is homozygous; similarly, define Y f

i,j for
the father. Under the null hypothesis of no linkage
between the marker locus and the quantitative trait
loci, the trait value and the index functions Y m

i,j and
Y f

i,j are conditionally independent given the parental
alleles. Thus, for any constant c, conditional on the
trait values and the parental genotypes

s(c) =
n∑

i=1

ni∑

j=1

(Qi,j − c)(Y f
i,j + Y m

i,j ) (1)

has mean 0. The test statistic proposed by Rabinowitz
takes the form s(c)/σ(c), where σ(c) is an esti-
mate of the conditional variance of s(c). Rabinowitz
[10] suggests using the trait average of all the chil-
dren in all the families to replace c. This approach
was generalized by several authors to include fam-
ilies with missing parental information; see Sun
et al. [14], Rabinowitz & Laird [11], and Horvath
et al. [7].

Waldman et al. [17] propose a logistic-regression-
based extension of the TDT that also allows one
to examine the relation between a marker and one
or more continuous or categorical explanatory vari-
ables. The method models allelic transmission as
the dependent variable and the quantitative and cat-
egorical explanatory variables as the independent
variables.

Apart from those described in [6, 21] and [22],
the tests described thus far test for linkage. However,
there are situations when it may be advantageous
to test for association in the presence of linkage,
e.g. if a chromosomal region is shown to be linked
to a trait, association tests may be useful for fur-
ther localization of a susceptibility locus. For this
setting, Monks & Kaplan [9] develop three family-
based tests that avoid finding spurious association
due to population stratification. The first test (TQP),
which adapts the test by Rabinowitz [10] to this
new setting, uses genotype information of the par-
ents and all of their children. The second test, TQS,
ignores parental information and uses only sibship
information. Finally, the third test, TQPS, is a com-
bination of the previous two test types. These tests
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make no assumption on the distribution of the quan-
titative trait and allow one to use information from
all available offspring. Lake et al. [8] have gener-
alized the method described in Rabinowitz & Laird
[11] to allow tests of association of a quantitative
trait in the presence of linkage between the marker
and the trait gene, which permits arbitrary family
configurations.
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Family-based
Case–Control Studies

Case–control studies are used often in epidemiologic
studies to investigate the association between dis-
ease and one or more risk factors. With increasing
frequency, the set of risk factors being considered
includes genotypes at one or more susceptibility,
candidate, or marker loci. The goals of associa-
tion studies will differ, depending on the state of
knowledge about a given disease. For example, once
a susceptibility locus has been identified, the goals
include estimating the relative risk and penetrance
associated with specific mutations, and testing for
interaction with environmental exposures or other
genes [14] (see Disease-marker Association; Gene-
environment Interaction). If a candidate locus has
been identified on the basis of a biological hypothesis
that relates gene function to phenotypic expression,
then the primary goal is testing the null hypothesis of
no association between the locus and disease. Finally,
multiple tests of association with finely spaced mark-
ers in a chromosomal region that has been previously
established to contain loci linked to the disease (see
Linkage Analysis, Model-based) may be used in the
hope of detecting linkage disequilibrium with a dis-
ease locus.

For diseases, candidate genes may be part of
a larger hypothesized disease pathway that includes
other genes and/or environmental exposures. For
example, Gilliland et al. [13] have hypothesized that
asthma and other respiratory phenotypes are related
to air pollution through a pathway of oxidative stress
that includes several genetic loci (see Causation).
Even for BRCA1, a major susceptibility locus for
breast cancer that substantially increases risk by itself,
there is evidence for some effect modification by use
of oral contraceptives [56]. It is therefore important
in studies of candidate genes to consider not only the
main effect of the gene but also its interactive role
with other genes and/or environmental factors.

Traditional unmatched or matched case–control
studies [1] may not be optimal for the study of
genes. A potential problem is that estimates of genetic
effect are subject to confounding when cases and
controls differ in their ethnic backgrounds. This phe-
nomenon, also known as population stratification bias
[2, 23], can occur when both disease risk and genetic

mutation frequencies vary among ethnic groups (see
Bias in Case–Control Studies). If all or part of the
disease-risk variation is due to factors other than the
candidate gene (e.g. environmental exposures, a sec-
ond gene), and those other risk factors also vary
among ethnic groups, then a spurious association
with the candidate gene may occur simply due to
the indirect correlation of its distribution with the
other risk factor(s). A classic example of such con-
founding is the reported association between the Gm
locus and non insulin-dependent diabetes in Ameri-
can Indians that disappeared when the analysis was
restricted to full-heritage Pima–Papago Indians [17].
To avoid the problem of population stratification bias,
one can attempt to match cases to controls on eth-
nic background (see Matched Analysis; Matching).
However, determination of ethnicity in a large-scale
epidemiologic study is difficult, especially with the
great diversity in cultural backgrounds that exists in
the urban areas where studies are most likely to be
conducted. It should be noted here that the degree
to which population stratification can cause spurious
findings for a candidate gene is the subject of current
debate [57]. There has also been interest in using
genetic markers to adjust for population stratification
[32, 33, 37].

In this article we review family-based case–
control designs that have as one of their primary
features freedom from population stratification bias.
These include the case–sibling and case–parent
designs. We discuss methods for analyzing these
designs that provide parameter estimates and
hypothesis tests for genetic main effects and for
gene–environment (G × E) or gene–gene (G ×
G) interactions (see Multilocus (Gene × Gene
Interaction)). We provide comparisons among the
case–sib, case–parent, and standard case–control
designs of the sample size requirements for testing
these hypotheses. Finally, we review alternative study
designs that make use of family data.

Case–Sibling Design

In this design, one matches each case to one or more
unaffected siblings. For complex diseases with vari-
able age at onset (see Age-of-onset Estimation),
controls should be sampled from the “risk set” con-
sisting of those siblings who were disease-free at the
age the case became affected (the index age) [12, 61,
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65]. A sibling who is disease-free at the index age
but is known to later develop the disease should not
be eliminated from consideration as a control. In fact,
general elimination of such siblings will result in a
genetic effect estimate that is biased away from the
null [26]. Data on known environmental risk factors
at the index age should be collected for both cases
and controls.

If only recent incident cases are included, then the
age-matching requirement restricts control selection
to older siblings. This could lead to confounding
of the effects of environmental exposures that have
secular trends or birth-order effects [12, 61, 65]. For
example, older siblings may be less likely in general
to take up smoking [47]. While this phenomenon will
probably have little effect on an estimate of genetic
risk, it should be considered as a potential source
of bias in estimates of environmental and G × E
interaction effects.

Some cases may not have any controls who have
attained the index age, effectively excluding them
from the analysis. This can be corrected in principle
by constructing a likelihood involving the probability
that younger controls remain disease-free up to the
index age. However, inclusion of such controls can
still pose problems if time-dependent covariates are
involved. The validity of the case–sibling design also
depends on the assumption that the ability to recruit
cases and controls is not differentially related to their
genotype, conditional on parental genotypes [61].

From a practical standpoint, the use of sibling
controls may offer several nonstatistical advantages
over population controls. The occurrence of disease
in the case may make his or her relatives easier
to recruit than an unrelated subject from the gen-
eral population. In addition to reducing cost, this
may improve data quality, since family members of
controls may be more careful filling out risk-factor
questionnaires. Researchers can also cross-validate
questionnaire information related to family-specific
variables that has been obtained from the case and
sibling (see Family History Validation). The avail-
ability of family-based cancer registries can also
make finding sibling controls much less expensive
than finding controls from the general population.
These resources can be used to identify case–sib
pairs that are potentially most informative for testing
genetic effects; for example, pairs that have a parent
affected with the disease of interest [12]. However,

care must be taken in using such a restricted sam-
pling design, since bias in parameter estimates can
result [16].

Analysis

Standard methods for the analysis of matched
case–control data can be applied to the case–sibling
design [1]. These include McNemar’s and Man-
tel–Haenszel chi-squared tests and the associated
estimates of the odds ratio [20, 48]. More gen-
erally, conditional logistic regression can be used
to simultaneously model genetic and environmental
main effects, as well as G × E interaction. If we let
βg, βe, and βge denote parameters for the effect of a
gene (G), environmental factor (E), and G × E inter-
action, respectively, then the conditional likelihood
for a sample of N case–sibling sets has the form:

L(βg, βe, βge)

=
N∏

i=1

exp(βgGi1 + βeEi1 + βgeGi1Ei1)∑

j∈M(i)

exp(βgGij + βeEij + βgeGijEij )
.

(1)

The index 1 refers to the case, and the set M(i)

includes the case and all controls from family i. If
controls are matched to the case’s age and selected
according to the principles of risk set sampling as
described above, the quantities Rg = exp(βg), Re =
exp(βe), and Rge = exp(βge) can be interpreted as the
corresponding hazard-rate ratios. If age of onset is
not a factor (e.g. the disease is a birth defect), then
these quantities represent odds ratios. The genetic
covariate G is coded according to the assumed
susceptibility of each genotype. For example, for a
diallelic locus, G(AA) = 1, G(Aa) = δ, and G(aa) =
0. If the gene is assumed to be dominant, then
δ = 1; if recessive, then δ = 0; if log-additive, then
δ = 0.5. Alternatively, G could be coded using two
dummy variables to allow for separate estimation of
the heterozygote (Aa) and homozygote (AA) effects
relative to baseline (aa). Any of these coding schemes
can be generalized to a locus with more than two
alleles [38].

Score, Wald and likelihood ratio tests based on
(1) can be formed as usual to test hypotheses about
main or interactive effects [5]. If there are more
than two subjects per family, however, then these
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tests will only be valid if outcomes are conditionally
independent within families. This will not be the case
if the locus under study is simply a marker that is
linked to the disease-predisposing locus. A number
of different methods have recently been proposed to
test for association in the presence of linkage [6, 15,
18, 19, 29, 35, 46].

Case–Parent Design

In this design, no actual controls are selected. Instead,
genotypic data are obtained on the parents of the
case, and the genotype transmitted to the case is com-
pared with the three genotypes (pseudo-siblings) that
were not transmitted to the case. For example, if the
father’s genotype is Aa, the mother’s Aa, and the
case’s AA, then the pseudo-sibling genotypes are Aa
(paternal A, maternal a), aA, and aa. The validity of
this approach depends on the assumption that parental
alleles are transmitted with equal and independent
probability in the population. This assumption would
fail if, for example, inheriting a certain genotype led
to fetal death. Validity also depends on the assump-
tions that the ability to recruit a case is independent
of the genotype given the parental genotypes, and
that the genotyped “parents” are in fact the case’s
biological parents [61].

As with the case–sibling design, parents are
more likely to be willing to participate than a
population control, and the design will take advantage
of information from a family-based registry. The
disease status of the parents is not required in this
design, nor is any information on their environmental
exposures. In practice, the utility of this design is
limited to disorders that occur at young enough ages
that parents of the cases are likely to be alive.

Analysis

Conditional logistic regression for 1 : 3 matched
sets provides a flexible framework for analyzing
case–parent data [11, 38–41, 43]. The likelihood
including both a genetic main effect and a G × E
interaction has the form:

L(βg, βge) =
N∏

i=1

exp(βgGi1 + βgeGi1Ei1)∑

Gij |GiP

exp(βgGij + βgeGijEi1)
,

(2)

where again the index 1 refers to the case. The
summation in the denominator of (2) is over the four
possible genotypes that could be transmitted to an
offspring given parental genotypes GiP. As above, the
covariate G can be coded to reflect assumptions about
the relationship among alleles [38]. The quantities
Rg = exp(βg) and Rge = exp(βge) can be interpreted
as relative risks. Estimation of a main environmental
effect is not possible since the three pseudo-siblings
are perfectly matched to the case except for genotype.
Valid estimation of the interaction effect βge requires
that G and E are independently distributed in the
population. However, even if independence holds,
G×E interactions can be difficult to interpret in this
design – absent knowledge of the main effect of
exposure [61].

Under a log additive genetic model without G × E
interaction, the maximum likelihood estimate β̂g

and the score test based on (2) are equivalent to
the McNemar log odds ratio and chi-square test
from the diallelic transmission-disequilibrium test
(TDT) [49]. The TDT treats each parent as an
independent matched pair of alleles, and compares
the alleles transmitted from heterozygous parents of
cases to those not transmitted. Schaid & Sommer [42]
present the often-confusing history of this statistic
and compare it with earlier variants, such as the
haplotype relative risk [8, 36, 52].

Again, if more than one case per family is included
in the analysis, then the usual tests based on (2)
will only be valid if outcomes are conditionally
independent within families. Multiple cases can be
included if the conditioning event in (2) is restricted
to genotypes that have the same identity-by-descent
status as the cases’ observed genotypes [24, 28, 45]
or if an empirical estimate of the variance of the score
(treating nuclear families as independent) is used [18,
22]. The Pedigree Disequilibrium Test [29, 30] also
accommodates multiple-case families.

If genotype information for only one parent is
available, then restricting the TDT to parent–child
pairs where transmission is unambiguous (e.g. het-
erozygous parent; homozygous offspring) can induce
bias [7]. Several techniques have been introduced in
the last few years which remain valid when only
one parent is available [34, 51, 54, 59, 63]. Another
analysis approach to case–parent data based on Pois-
son regression instead of (2) can test for parent-of-
origin effects as well as G × E interaction [55, 60,
62, 64].
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Sample Size Considerations

We compare sample size requirements between the
case–sibling and case–parent designs, and also com-
pare each of these with the requirements for the stan-
dard matched case–control design (see Matching).
In the latter design, controls are matched to cases
on one or more factors (e.g. ethnicity, age), but are
assumed to be genetically unrelated to cases. The con-
ditional likelihood in (1) for the case–sibling design
can also be used to estimate hazard-rate ratios or odds
ratios for this design. For each design, we compute
the minimum number of matched sets required to
provide 80% power for testing genetic main effects,
G × E interaction, and G × G interaction. Calcula-
tions were carried out using the program QUANTO,
freely available at http://hydra.usc.edu/GxE.
Details on the methods used for computing sample
size are included in the program documentation, or
in Gauderman [11].

In addition to the magnitudes of the relative risks
Rg, Re, and Rge, sample size requirements depend on
the prevalence of genetically susceptible individuals
in the population [Pr(G = 1)]. We consider four
types of genes: rare dominant, common dominant,
rare recessive, and common recessive (see Mendel’s
Laws; Segregation Analysis, Classical). A rare gene
is defined as one for which 1% of the population is
genetically susceptible, i.e. Pr(G = 1) = 0.01, while
for a common gene we assume Pr(G = 1) = 0.20.

Table 1 shows the number of matched sets re-
quired to detect a genetic main effect for vary-
ing values of the true genetic relative risk, Rg =
exp(βg). For rare genes, sample size requirements
are prohibitively large for all three designs, unless
the genetic relative risk is large. For a more common
gene, relative risks in the range of 1.5 to 2.0 can
be detected with attainable sample sizes. In all situ-
ations, the case–sibling design requires the largest
sample size, approximately 1.5 to 2 times greater
than the case–control design. This reduced efficiency
is due to overmatching of cases and their siblings
on the genotype of interest [65]. The case–parent
design, on the other hand, is nearly equivalent in
efficiency to the case–control design for a dominant
gene but more efficient for a recessive gene. The
reason for the increased efficiency in the recessive
situation is based on the fact that here the proba-
bility that a parent has the Aa genotype is relatively
large. Examination of the likelihood in (2) shows that
only parents with the Aa genotype are informative
for testing genetic main effects. Thus, for a reces-
sive gene, use of the case–parent design enriches
the sample for informative parent-to-case transmis-
sions.

To compare sample sizes needed to detect a G × E
interaction, we assume Rg = Re = 1, i.e. that risk
is only increased in subjects who are both exposed
and genetically susceptible. We also assume that
the prevalence of exposure (E = 1) is 0.3, and

Table 1 Number (N ) of matched sets required for 80% power to detect a genetic main effect with true relative risk Rg

Proportion
susceptible Mode of Case–control,

Case–sibling Case–parent

[Pr(G = 1)] inheritance Rg N N (Ratio)a N (Ratio)a

0.01 Dominant 1.5 7914 15808 (0.50) 7905 (1.00)
3.0 773 1544 (0.50) 772 (1.00)
5.0 283 566 (0.50) 283 (1.00)

Recessive 1.5 7914 11234 (0.70) 5449 (1.45)
3.0 773 1097 (0.70) 505 (1.53)
5.0 283 402 (0.70) 178 (1.59)

0.20 Dominant 1.5 536 1040 (0.51) 521 (1.03)
3.0 66 127 (0.52) 64 (1.03)
5.0 30 59 (0.51) 30 (1.00)

Recessive 1.5 536 901 (0.59) 443 (1.21)
3.0 66 110 (0.60) 53 (1.25)
5.0 30 51 (0.59) 24 (1.25)

aCompared with the case–control design; ratios above (below) 1.0 indicate greater (lesser) efficiency.
Assumptions: 0.05 significance level and two-sided alternative hypothesis.
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Table 2 Number (N ) of matched sets required for 80% power to detect a G × E interaction with true relative risk ratio Rge

Proportion
susceptible Mode of Case–control,

Case–sibling Case–parent

[Pr(G = 1)] inheritance Rge N N (Ratio)a N (Ratio)a

0.01 Dominant 2.0 12699 11901 (1.07) 12669 (1.00)
3.0 4585 4072 (1.13) 4573 (1.00)
5.0 1949 1584 (1.23) 1945 (1.00)

Recessive 2.0 12700 12215 (1.04) 8372 (1.52)
3.0 4586 4267 (1.07) 2881 (1.59)
5.0 1949 1715 (1.14) 1151 (1.69)

0.20 Dominant 2.0 849 821 (1.03) 809 (1.05)
3.0 326 308 (1.06) 309 (1.06)
5.0 152 141 (1.08) 145 (1.05)

Recessive 2.0 851 828 (1.03) 669 (1.27)
3.0 327 312 (1.05) 247 (1.32)
5.0 153 143 (1.07) 112 (1.37)

aCompared with the case–control design; ratios above (below) 1.0 indicate greater (lesser) efficiency.
Assumptions: Exposure prevalence 0.30, Rg = 1, Re = 1, 0.05 significance level and two-sided alternative hypothesis.

Table 3 Number (N ) of matched sets for 80% power to detect a gene–gene interaction with magnitude Rgh = 3.0

Proportion susceptible Mode of inheritance
Case–control,

Case–sibling Case–parent

Pr(G = 1) Pr(H = 1) G H N N (Ratio)a N (Ratio)a

0.01 0.20 Dom Dom 5617 7001 (0.80) 3157 (1.78)
Dom Rec 5617 6613 (0.85) 2906 (1.93)
Rec Dom 5617 6355 (0.88) 2685 (2.09)
Rec Rec 5617 6163 (0.91) 2568 (2.18)

0.20 0.20 Dom Dom 400 498 (0.80) 231 (1.73)
Dom Rec 400 475 (0.84) 213 (1.88)
Rec Rec 400 458 (0.87) 201 (1.99)

aCompared with the case–control design; ratios above (below) 1.0 indicate greater (lesser) efficiency.
Assumptions: Rg = 1, Rh = 1, 0.05 significance level and two-sided alternative hypothesis.

that there is no correlation in exposure between
siblings. Table 2 shows the required sample size to
detect a G × E interaction for varying the magni-
tude of Rge. Again, for a rare gene and moderate
G × E effect, sample sizes are prohibitive. How-
ever, the case–sibling and case–parent designs are
always more powerful than the case–control design.
In this context, siblings’ concordance on genotype
makes them more informative for testing for G ×
E interaction (see Table 1 in [12]). However, this
increase in efficiency disappears as the at-risk allele
becomes more common, or with increasing correla-
tion in exposure between siblings.

The likelihoods in (1) and (2) can be modified
to test for the effect of a second measured locus

simply by replacing E by a second genetic effect
H , which can be coded according to assumptions
about inheritance at the second locus. If, for example,
both loci are diallelic and recessive, the interaction
term G × H will only be 1 if the case is a homozy-
gote carrier at both loci. Table 3 shows the required
sample sizes to detect a three-fold gene–gene inter-
action effect (Rgh = 3) when H is a common gene
and Rg = Rh = 1. The case–sibling design is least
efficient. The case–parent design, on the other hand,
provides large efficiency gains over the case–control
design, requiring approximately half the matched
sets. Again, this is because the case–parent design
enriches the sample for informative parent-to-case
transmissions.
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Discussion

Family based case–control studies offer an attractive
alternative to population-based case–control designs
using unrelated controls. Their primary advantage is
that they overcome the problem of population strat-
ification that can lead to spurious associations. For
the case–sibling design, this protection from bias
comes at the price of reduced statistical efficiency
for some tests due to overmatching on genotype.
For the case–parent design, one can generally expect
increased efficiency relative to the case–control
design, particularly for tests of gene–gene interac-
tion. One should keep in mind that the case–parent
design will probably be more expensive per matched
set, as DNA needs to be collected and processed
for three subjects rather than for two subjects in the
other designs. Finally, family designs offer nonstatis-
tical advantages, such as improved cooperation and
reduced cost. These must be weighed against any
losses in sample size from cases who do not have
a suitable family control and the potential selection
bias if such losses are nondifferential (see Bias in
Case–Control Studies; Validity and Generalizabil-
ity in Epidemiologic Studies).

Statistical methodology for the analysis of family-
based association studies remains an active area of
research. The basic methods described above do not
utilize all aspects of family data. For example, if
phenotype and genotype information are available on
parents and siblings of a case, the analytic approaches
described above will discard information. Several
new approaches make use of cases, parents, and
siblings in a unified framework – and have also been
extended to utilize data from extended pedigrees [21,
22, 25, 27, 34, 54, 63]. Many of these approaches
also allow analysis of a continuous phenotype, in
addition to binary and censored-age-of-onset traits.
Also proposed are methods that will make use of
relatives of cases whose phenotypes are known, but
who have not been genotyped. The “kin–cohort”
and “genotyped proband” designs are examples of
these approaches, both of which have been used
to estimate age-specific penetrance of BRCA1 and
BRCA2 among Ashkenazi Jews [9, 10, 31, 50, 58].

Finally, we mention extensions of family designs
that use haplotypes from multiple tightly linked mark-
ers instead of analyzing individual loci separately
(see Haplotype Analysis). This approach is becom-
ing possible with the increasing density of available

markers, and should improve our ability to localize
a disease-causing gene. If the haplotype phase could
be unambiguously determined for all subjects, then
a set of markers could be analyzed as one highly
polymorphic locus. Unfortunately, this phase often
cannot be uniquely determined. New methods to han-
dle this situation have been proposed [3, 4, 44, 66],
and this will continue to be an active area of future
research. Furthermore, the number of possible hap-
lotypes can create multiple comparisons problems.
Without a plausible biologic model for grouping hap-
lotypes together, one approach to this problem is first
to use statistical tools to cluster haplotypes and then
estimate relative risk parameters for each cluster [44,
53] (see Cladistic Analysis). In general, the util-
ity of family-based study designs relative to other
alternatives should be re-evaluated in the context of
haplotype-oriented studies.
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Fan Plot

Introduction

The fan plot is a graphical procedure for determining
the effect of one or more observations on the trans-
formation parameter λ in the Box and Cox family of
power transformations of the response in regression.
Such transformations, for example, from y to log y,
are often important for ensuring that the assumptions
behind least squares are satisfied and that therefore,
efficient use is made of data (see Power Transfor-
mations). The fan plot is based on a forward search
through the data to fit subsets of increasing num-
bers of observations, with any outliers being included
toward the end of the search. The plot monitors the
behavior of the approximate score test for five differ-
ent transformations and reveals whether the evidence
for a transformation depends on a few observations
or is, preferably, spread throughout the data.

Interest is in transformation of the response y in
the multiple regression model

y = Xβ + ε, (1)

y is the n × 1 vector of responses, β is the p × 1 vec-
tor of parameters and it is assumed that the additive
errors of observation ε are independently distributed
with constant variance σ 2. Also in (1) X is the n × p

matrix of carriers, that is, of explanatory variables
and perhaps functions of them, such as quadratics and
interaction terms. To obtain the approximate score
test we add a “constructed variable” (see Residuals)
to the regression model and obtain the augmented
model

y = Xβ + wγ + ε, (2)

where w is n × 1 and γ is a scalar parameter. The
approximate score test is the Student t-test tγ for
testing that γ in (2) equals zero. The constructed
variable for the transformation is derived in the next
section. Testing that γ = 0 is testing that there is no
evidence for any transformation of the response.

A Score Test for Transformations

The analysis of the data on mandible length in the
article on residuals shows appreciable evidence not

only of the normality of the residuals (see Nor-
mality, Tests of, Figure 3) but also of increasing
variance with fitted value, Figure 1. Often, normal-
ity and constant variance can be achieved by fitting
the regression model not to y but to a function of y;
Figure 1 of the article on diagnostics shows the bene-
ficial effect of the transformation to log(y) combined
with quadratic regression (see Polynomial Regres-
sion) on the residuals from the mandible length data.
The appropriate transformation frequently, but, as
will be seen later, not always, also leads to a simple
linear model, without quadratic or interaction terms.

The logarithmic transformation is one special case
of the normalized power transformation [4]

z(λ) =





yλ − 1

λẏλ−1
λ �= 0

ẏ log y λ = 0,

(3)

where the geometric mean of the observations is
written as ẏ = exp(Σ log yi/n). For inference about
the transformation parameter λ, Box and Cox sug-
gest likelihood ratio tests. A computationally sim-
pler alternative test is the approximate score statistic
(see Likelihood) derived by Taylor series expansion
of (3) as

z(λ)
.= z(λ0) + (λ − λ0)

∂z(λ)

∂λ

∣∣∣∣
λ=λ0

= z(λ0) + (λ − λ0)w(λ0). (4)

In (4), w(λ0) is the “constructed variable” for the
transformation and can be treated as is the extra-
explanatory variable in (2). To test the transformation
λ = λ0 the response y is transformed to z(λ0) in (3).
The approximate score statistic, Tp(λ0), is then the t

statistic tγ for regression of the transformed response
on w(λ0) in (2). Details of the constructed variables
are in the article on residuals.

The Fan Plot

In the forward search, the p parameters of the
regression model (1) are estimated by least squares
applied to a carefully chosen subset of m observa-
tions. We start the search with m small, usually p or
perhaps p + 1, and randomly select 1000 subsamples.
The initial subset provides the least median of squares
estimator, that is it minimizes the median squared
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Figure 1 Poisson data: fan plot–forward plot of Tp(λ) for five values of λ. The curve for λ = −1 is uppermost: both
λ = −1 and λ = −0.5 are acceptable. There is no evidence of any outliers or influential observations

residual [5]. We then order the residuals and augment
the subset.

When m observations are used in fitting, the opti-
mum subset yields n residuals e(m∗). We order the
squared residuals e2(m∗) and take the observations
corresponding to the m + 1 smallest as the new sub-
set. Usually, this process augments the subset by
one observation, but sometimes two or more obser-
vations enter as one or more leave. Owing to the
form of the search, outliers, if any, tend to enter as
m approaches n.

We combine calculation of the test statistic Tp(λ0)

with the forward search. Since observations that are
outlying on one scale may not be outlying for a differ-
ent transformation, we conduct several searches for
different values of λ0. In most applications, including
the examples here, we use five searches for the val-
ues λ = −1, −0.5, 0, 0.5, and 1. If there are outliers
for a particular λ, they will enter the search last and
influence the value of the test statistic.

As a first example, we use the Poisson Data from
Box and Cox [4], partly analyzed in the article on
residuals. These data are well behaved: there are
no outliers or influential observations that cannot be
reconciled with the greater part of the data by a suit-
able transformation. Our fan plot clearly indicates the
reciprocal transformation. We then consider a series
of modifications of the data in which an increasing
number of outliers is introduced. The fan plot reveals
the structure in all instances.

The data are the times to death of animals in a
3 × 4 factorial experiment with four observations

at each factor combination. All our analyses use an
additive model, that is, without interactions, so that
p = 6, the model used by Box and Cox when finding
the reciprocal transformation. The implication is that
the model should be additive in death rate, not in time
to death.

The fan plot of the values of the approximate
score statistic Tp(λ) for the five searches as the sub-
set size m increases is given in Figure 1 and shows
that the reciprocal transformation is acceptable as is
the inverse square root transformation (λ = −0.5).
The horizontal lines are at ±2.58, corresponding to
1% significance, assuming the statistics have a stan-
dard normal distribution. The results of Atkinson
and Riani [3] show that this is a good working
approximation.

Initially, for small subset sizes, there is no evi-
dence against any transformation. During the whole
forward search, there is never any evidence against
either λ = −1 or λ = −0.5 (for all the data λ̂ =
−0.75). The log transformation is also acceptable
until the last four observations are included by the
forward search. These are some of the largest obser-
vations, which will be informative about the need
to transform. Evidence that some transformation is
needed is spread throughout the data, less than half
of the observations being sufficient to reject the
hypothesis that λ = 1. There are no jumps in this
curve, just an increase in evidence against λ = 1 as
each observation is introduced into the subset. The
relative smoothness of the curves reflects the lack
of outliers and exceptionally influential cases and



Fan Plot 3

the general shape of the plot justifies the name of
“fan plot”.

For the introduction of a single outlier into the
Poisson data, we follow Andrews [1] and change
observation 8, one of the readings for Poison II,
group A, from 0.23 to 0.13. This is not one of the
larger observations, so the change does not create
an outlier in the scale of the original data. The
effect on the estimated transformation of all the
data is, however, to replace the reciprocal with the
logarithmic transformation: λ̂ = −0.15. And, indeed,
the fan plot of the score statistics from the forward
searches in Figure 2 shows that, at the end of the
forward search, the final acceptable value of λ is 0,
with −0.5 on the boundary of the acceptance region.

Figure 2 clearly reveals the altered observation
and the differing effect it has on the five searches.
Initially, the curves are the same as those of Figure 1.
But for λ = 1, there is a jump due to the introduction
of the outlier when m = 41, which provides evidence
for higher values of λ. For other values of λ, the
outlier is included further on in the search. When
λ = 0.5, the outlier comes in at m = 46, giving a
jump to the score statistic in favor of this value of
λ. For the other values of λ, the outlier is the last
value to be included. Inclusion of the outlier has
the largest effect on the inverse transformation. It
is clear from the figure how this one observation is
causing an appreciable change in the evidence for a
transformation.

We now further modify the Poisson data; in addi-
tion to the previous modification, we also change
observation 38 (Poison I, group D) from 0.71 to 0.14.

This creates an example of masking, in which one
outlier hides the effect of another, so that neither
is evident when using the methods for the dele-
tion of single observations described in the article
on diagnostics.

The effect of the two outliers is clearly seen in the
fan plot, Figure 3. Here, only λ = 0 is acceptable at
the end of the search. The plot also reveals the dif-
fering effect the two altered observations have on the
five searches. Initially, the curves are again similar to
those of the original data shown in Figure 1. The dif-
ference is greatest for λ = −1 where addition of the
two outliers at the end of the search causes the statis-
tic to jump from an acceptable 1.08 to 10.11. The
effect is similar, although smaller, for λ = −0.5. It is
most interesting, however, for the log transformation.
Toward the end of the search this statistic is trending
downwards, below the acceptable region. But addi-
tion of the last two observations causes a jump in the
value of the statistic to a nonsignificant value. The
incorrect log transformation is now acceptable.

For these three values of λ, the outliers are the last
two observations to be included in the search. They
were created by introducing values that are too near
zero when compared with the model fitted to the rest
of the data. For the log transformation, and more so
for the reciprocal, such values become extreme and
so have an appreciable effect on the fitted model. For
the other two values of λ, the outliers are included
earlier in the search. The effect is most clearly seen
when λ = 1; the outliers come in at m = 40 and 46,
giving upward jumps to the score statistic in favor of

Subset size m

S
co

re
 te

st
 s

ta
tis

tic

10 20 30 40
–10

–5

0

5

10

–1

–0.5

0

0.5

1

Figure 2 Modified Poisson data: fan plot–forward plot of Tp(λ) for five values of λ. The curve for λ = −1 is uppermost:
the effect of the outlier is evident in making λ = 0 appear acceptable at the end of the search
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Figure 3 Doubly modified Poisson data: fan plot–forward plot of Tp(λ) for five values of λ. The curve for λ = −1 is
uppermost; the effect of the two outliers is clear
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Figure 4 Mandible length data: fan plot–forward plot of Tp(λ) for the five transformations of the data when the regression
is on age

this value of λ. For the remaining value of 0.5, one
of the outliers is the last value to be included.

These three plots exhibit the main features of
the fan plot. Further analyses of the examples and
comparison with other procedures are in Atkinson
and Riani [2, Sections 4.4 and 4.7]. One conclusion
is that alternative diagnostic procedures, such as the
constructed variable plot in Figure 5 of residuals, can
fail in the presence of masking and multiple outliers.

Mandible Length Data

The preceding examples calibrate the properties of
the fan plot. We now use it to analyze transformations
of the mandible length data.

The plot of the residuals of the untransformed
data after regression on gestational age, for example,
Figure 3 of residuals, showed three negative outliers
as well as many smaller residuals lying outside the
simulation envelope. In contrast, the residuals after
regression of log y on a quadratic in age, Figure 1
of diagnostics, are much more nearly normal. Is the
evidence for this transformation largely dependent on
the outlying observations? How is it affected by the
linear model?

We start with just simple regression. Figure 4
is a fan plot for the five transformations of the
data when the regression is on age. There is no
evidence for a transformation – all values except
λ = 1 are rejected by the end of the search. The



Fan Plot 5

Subset size m

S
co

re
 te

st
 s

ta
tis

tic

0 50 100 150
–10

–5

0

5

10

15
–1

–0.5

0

0.5

1

Figure 5 Mandible length data: fan plot–forward plot of Tp(λ) for the regression of log y on a quadratic in age

statistic for this value remains within the bounds of
±2.58 throughout the search. Although the values are
toward the lower boundary at the end of the search,
there is no obvious evidence of the effect of the three
outlying observations, of the kind seen in Figure 3.
Such jumps in the curve of the statistic are most in
evidence for the reciprocal transformation λ = −1,
where the observations giving negative residuals on
the untransformed scale are even more extreme after
transformation.

Although there is no evidence for transformation
when regression is on age, we know from Table 1 of
diagnostics that the quadratic term in this regression
is significant. The final plot, Figure 5, is therefore the
fan plot for the regression of log y on a quadratic in
age. It shows that, for this more complicated model
with an extra term, the log transformation is the
only one that is acceptable. Although the last three
observations to enter the search increase the value of
the statistic, it does not change dramatically. There
are no jumps in the other curves of the kind visible
for λ = −1 in Figure 4.

The general conclusion is that the logarithmic
transformation with a quadratic model is to be pre-
ferred to simple regression and no transformation. As
the forward plots of t statistics for regression coef-
ficients in Figure 4 of the article on the forward
search show, this conclusion is supported by all the
data and is in agreement with the Q–Q plots of resid-
uals mentioned above. An interesting feature of the
analysis is that transformation has strengthened the
evidence for a more complicated regression model.
Often transformations result in a simpler model, but

here there is a conflict between the linearity of the
plot of y against x and the increasing variance with
y evident in Figure 2 of the article on Goodness of
Fit. This conflict was a reason for the fractional poly-
nomial models used by Royston and Altman [6]. An
alternative analysis is to keep the simple linear model,
but to transform both sides of the model to obtain
errors with constant variance (see Power Transfor-
mations). The forward search for this transformation
is illustrated in [2, Section 4.12].
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Farr, William

Born: November 30, 1807, in Shropshire, UK.
Died: April 14, 1883, UK.

Reproduced by permission of the Royal Statistical Society

William Farr must be counted as the founder of epi-
demiology in its modern form [4]. He studied many
aspects of the distribution and determinants of health
disorders in populations, and the application of the
studies to the prevention and control of disease. His
publications have been grouped under six headings:
population, marriages, births, deaths, life tables, and
miscellaneous [4]. He developed an interest in accu-
rate mortality statistics by age and sex and changed
the British system of death registration into an instru-
ment for measuring the sanitary condition of the
country. His studies on mortality differences among
different occupations helped in understanding indus-
trial hazards [2].

Farr’s work had a great impact and influence on
many pioneers in the health field. Among them are
Edwin Chadwick and John Simon, who were the driv-
ing forces of the new movement for sanitary reform,
and the mathematicians Karl Pearson, Ronald Ross,
and John Brownlee, who improved on his method
of description. Farr anticipated the germ theory of
disease by almost 20 years before John Snow’s clas-
sic studies of cholera, and he had an extensive and
productive relationship with Florence Nightingale

in her campaign for improving social health and
hygiene [1].

Coming from a very poor family, William Farr
was apprenticed at age eight to Joseph Pryce of Dor-
rington, near Shrewsbury, who enabled him to pursue
his elementary studies. Farr was a self-taught math-
ematician and an accomplished linguist who learned
Latin, French, Italian, and also studied Hebrew. Rec-
ognizing Farr’s interest in learning and his insatiable
desire for knowledge, Pryce encouraged him to enter
a profession. In May 1826 he began his medical edu-
cation. In November 1828, a legacy of £500, inherited
on Pryce’s death, made his trip to Paris possible. The
Paris school was then the leader in clinical medicine,
hygiene, and medical statistics, and there he learned
the statistical methods applied by Pierre C. A. Louis.
In March, 1832, he passed the examination of the
Society of Apothecaries – the only examination he
ever took [3]. A year later, he married Miss Lang-
ford and tried to set up a practice at 8 Grafton
Street, Fitzroy Square, London. After the death of
his wife, he married Miss Whittall in 1841 and they
had eight children, of whom four daughters and one
son survived.

In 1830, several of his articles on hygiene and
vital statistics appeared in the Lancet, and in 1835
he served as a medical editor and began to study
vital statistics. He also edited his own journal, British
Annals of Medicine, Pharmacy, Vital Statistics, and
General Science, which lasted only from January to
August 1837. He wrote six major articles for this
journal; four on vital statistics, and two on medical
reform. He clearly emphasized that medicine was
both a science and a social institution [1]. In his many
editorials in the British Annals of Medicine he insisted
on the restructuring of the medical profession and the
potential value of medicine to society, especially in
matters of prevention and hygiene.

Farr accounted for the importance of demographic
data in determining mortality patterns. He constantly
strove to improve the quality and the extent of data
collected and devised standard classifications for dis-
eases and for causes of deaths [2]. He examined
secular changes in mortality, specific causes of death,
deaths by area, season of year, residence, occupation,
and by marital status. He observed the association of
mortality with the density of the population, including
other factors such as water and air pollution. He also
made the census serve not only as a denominator, but
as a vehicle for national surveys of the prevalence
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of blindness and deafness. He developed descriptive
statistics for institutions, thus illuminating the charac-
teristics and the ill-effects of hospitals, workhouses,
asylums for the insane, and prisons. Furthermore, Farr
envisaged a national system of morbidity statistics
that embraced hospitals and other services.

Farr’s medical training influenced his statistical
career. When he began to consider social problems
and public health, his medical perspective remained
and tempered both his statistical approach and his
ideas of reform. He worked on data analysis, on the
procedures of tabulation, comparison, and inference.
He measured the death-toll by defining standard rates
for comparison, invented the standardized mortality
rate (see Standardization Methods), and compared
areas and occupations by means of summary statistics
unconfounded by demographic differences such as
sex and age (see Occupational Mortality). He used
life tables to estimate the effects of prevention on
the expectation of life. He was the first to describe
epidemic curves and to use models for prediction.
He defined the relationship between death, health, and
energy of body and mind, between death, birth, and
marriage, and he also connected the effect of literacy
on the quality of life.

In the years 1838–1839, he derived the general
“law of epidemics” from the 15-month epidemic of
smallpox. In 1839, under the influence of Sir James
Clark, he was appointed as the Compiler of Abstracts
in the General Register Office, then as superintendent
of the Statistical Department. He wrote in his first
letter to the Registrar General that “diseases are more
easily prevented than cured, and the first step to
their prevention is the discovery of their exciting
causes” [4]. For the next 40 years, he devoted himself
to the task of creating and developing a national
system of vital statistics, that was used not only
in England but in all the civilized countries. He
blamed the appalling number of maternal deaths (see
Maternal Mortality) to the failure of the Royal
Colleges to train doctors and midwives in obstetrics.
In the cholera epidemic of 1854, he admonished
the water companies for supplying water that was
dangerously contaminated.

Among the honorary degrees and distinctions
that were presented to him are the Honorary M.D.
Degrees by the New York University in 1847, and
by Trinity College, Dublin, in 1857. Also in 1857,

he was elected Honorary Fellow of the Royal Med-
ical and Chirurgical Society. In 1867, he became an
Honorary Fellow of King and Queen’s College of
Physicians, Dublin. In 1868, he became a member of
the important Joint Committee on State Medicine of
the British Medical Association and the Social Sci-
ence Association. By 1869, his interest had grown
in medical statistics, and social problems – public
health in particular – and he was made president of
the Section of State Medicine by the British Medi-
cal Association. Between 1853 and 1876, he took an
active part and interest in the International Statisti-
cal Congresses, and between 1876 and 1881 he was
a member of the Anthropometric Committee of the
British Association [4].

In his later career, Farr was a member of the
Scientific Committee appointed by the General Board
of Health to investigate the cholera epidemic of
1853–1854. In 1880, William Farr resigned his post
at the General Register Office, and retired completely
from public life. After Farr’s retirement, a resolution
was passed by the council of the British Medical
Association [3]:

The Gold Medal of the Association be awarded by
the Committee of Council of the British Medical
Association to William Farr, M.D., F.R.S., D.C.I.,
C.B., as an expression of their high appreciation of
his long, unwearied, and successful labours in behalf
of statistical and sanitary science; as a recognition
of the light he has thrown upon many physiological
and pathological problems, and on account of the
extraordinary services his work has rendered to the
advancement of the health of the nation.

William Farr was a man of undoubted genius.
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Fast Fourier Transform
(FFT)

The discrete Fourier transform (DFT) of the time
domain sequence g = (g0, . . . , gN−1)

�,

Gn = 1√
N

N−1∑

t=0

gte
−i2πnt/N , (1)

gives us the discrete-frequency representation of g.
Gn is often called the “Fourier coefficient” or “Har-
monic” associated with frequency f = n/N . If t

is measured in seconds, then f is in Hertz (or
cycles per second). However, there is no reason
why t has to be measured in time – it could, for
example, be distance. The Fourier transform of the
data, whatever the units of measurement, tells us
about the periodic structure of the data. Calcula-
tion of the DFT is a critical step in many pro-
cedures, such as spectral density estimation, which
describes how the variance of the process is dis-
tributed amongst the frequencies (see Spectral Anal-
ysis). Spectral density estimation finds widespread
use across many disciplines including the analysis
of electrocardiology (ECG), electroencephalography
(EEG) data, and medical image analysis (see Clini-
cal Signals).

The calculation of the N Fourier coefficients can
be phrased in terms of matrix algebra,

G = FNg, (2)

where G and g are N × 1 vectors given by G =
(G0, . . . , GN−1)

�, g = (g0, . . . , gN−1)
� and the N ×

N matrix FN is given by,

FN =





1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

. . . . . .

1 wN−1 w2(N−1) . . . w(N−1)2



 ,

(3)

where w = e−i2π/N . This matrix is full, in that none
of the elements are zero, this implies that direct
calculation of the DFT is of order N2, and as such
would quickly become unfeasible for the majority of
datasets, particular high-resolution images.

The fast calculation of the DFT is possible via a
family of fast Fourier transform (FFT) algorithms.
While the FFT has been attributed originally to
Gauss (see [3]), it has been popularized by the Coo-
ley–Tukey [1] algorithm. When N is a power of 2,
the matrix can be factorized into the multiplication
of three matrices as follows:

FN =
[

IN/2 DN/2

IN/2 −DN/2

] [
FN/2 0N/2

0N/2 FN/2

]
ΠN, (4)

where IN/2 is the identity matrix, 0N/2 is a matrix
of zeroes, and DN/2 is a diagonal matrix with
diagonal (1, w, w2, . . . , wN/2). The second matrix is
only half-full compared to FN , which implies less
arithmetic. ΠN is a permutation matrix that con-
verts (g0, g1, . . . , gN−1)

� into (g0, g2, . . . , gN−2, g1,

g3, . . . , gN−1)
�. The effect of this factorization is

to split the data into an even and an odd vector
and calculate the DFT of these half-length vectors,
the first matrix then recombines this vector to pro-
duce the right answer. This process can be repeated
for the matrix containing FN/2, until the matrix is
reduced to the multiplication of very sparse matri-
ces. The order of arithmetic calculations is required
to evaluate the DFT drops from N2 to N log2 N ;
this decrease in computational need becomes more
pronounced the larger N becomes. For an excellent
tutorial of FFTs, see [2].

The FFT can be used as a vital step in deter-
mining underlying periodicities in data. Given data
(X0, . . . XN−1)

�, the simplest spectral density esti-
mator is the periodogram,

I (fj ) = 1

N

∣∣∣∣∣

N−1∑

t=0

Xte
−i2πfj t

∣∣∣∣∣

2

, fj = j

N
,

j = 0, . . . ,
N

2
. (5)

and so utilizes the DFT of the data sequence.
Figure 1 shows some simulated data with an

underlying annual and daily periodicity and the asso-
ciated periodogram. While the annual cycle is evident
in the time domain plot, the higher frequency daily
periodicity is harder to distinguish. The peaks in the
spectrum clearly show both inherent periodicities in
the data – namely, at frequencies 1/365 (annual) and
1/7 (weekly).



2 Fast Fourier Transform (FFT)

Time (days)

X

0 500 1000 1500 2000 2500

–4

–2

0

2

4

Frequency

S
pe

ct
ru

m

0.0 0.1 0.2 0.3 0.4 0.5

–40

–20

0

20

Figure 1 (a) Simulated data and (b) associated periodogram
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Fiducial Probability

What is fiducial probability? Introduced in a brief
article [5] for the Cambridge Philosophical Society on
“inverse probability”, that is inference from sample to
population, R.A. Fisher proposed fiducial probability
as his alternative to Bayesian posterior probability.
Consider a continuous univariate distribution param-
eterized by a parameter θ . Let F(x, θ) denote the
one-parameter cumulative distribution function (cdf)
for the random variable x, with density f (x, θ) =
∂F/∂x (with respect to the Lebesgue measure). With
fid(θ |x) denoting the fiducial probability density for
θ given x, Fisher [5, p. 534] defined it as

fid(θ |x) ∝ −∂F

∂θ
. (1)

Example 1 [7, p. 346]

Let xi ∼ N(µ, σ 2), i = 1, . . . , n, be independent,
identically distributed (iid) normal variates, where
µ and σ 2 are the unknown population parameters.
The sample statistics x = (1/n)

∑n
i=1 xi and s2 =

{1/(n − 1)} ∑n
i=1(x − xi)

2 are jointly sufficient for
the two population parameters. Note that s2 has
a distribution that depends only on σ 2. Specifi-
cally, (n − 1)s2/σ 2 follows the chi-square distri-
bution on n − 1 degrees of freedom. Applying (1)
to this distribution we obtain a fiducial probability
for σ 2 that is inverse-χ2, based on the sample vari-
ance s2.

Following the 1930 publication, during the re-
maining 32 years of his life, through two books [[23],
Chapter 10; [24], Section III.3] and numerous arti-
cles [6–15, 17–22, 25], Fisher steadfastly held to the
idea captured in (1). However, his reasoning behind
(1) evolved quite noticeably and contributed to the
enigmatic quality of fiducial probability. If we dis-
tinguish between fiducial probability, (1), and the
reasoning leading to it, which we may call “fidu-
cial inverse inference”, then there is little wonder that
Fisher caused such puzzles with his novel idea.

There were confusions between fiducial inverse
inference and, on the one hand, Bayesian posterior
probability, such as H. Jeffreys advocated [27,
28, Section 7.1] at about the same time. Fisher
[6] acknowledged that, at least sometimes, there
were straightforward Bayesian models, i.e. “prior

densities” p(θ), which resulted in the same inverse
probabilities through Bayes’ theorem [p(θ |x) ∝
f (x, θ)p(θ)] as his fid(θ |x) gave directly. Also, there
were confusions between fiducial probability and
the rival theory of confidence intervals, developed
by Neyman [33] only a few years later. (Fisher’s
contribution to the discussion of Neyman’s 1934
paper [33] only added to such confusions.) Here is
an elementary case illustrating how all three theories
might look alike.

Example 2

Consider x uniformly distributed on the inter-
val [0, θ]. That is, let x ∼ U[0, θ], θ > 0. Thus,
f (x, θ) = 1/θ for 0 ≤ x ≤ θ , and f (x, θ) = 0 oth-
erwise, and F(x, θ) = x/θ for 0 ≤ x ≤ θ, F (x, θ) =
0 for x ≤ 0, and F(x, θ) = 1 for x ≥ θ . Evid-
ently, fid(θ |x) ∝ −∂F/∂θ = 1/θ2 for x ≤ θ , and
fid(θ |x) = 0 otherwise. [The normalizing constant
here equals x, so that fid(θ |x) = x/θ2.] Evidently,
this is also a Bayesian posterior density for θ given
x, based on the “improper” prior density p(θ) = 1/θ .
This is nothing less than Jeffreys’ recommended prior
for a scale parameter, which θ is. Also, since the
likelihood function [f (x, θ) taken as a function of
θ] is monotone decreasing in θ for x ≤ θ , by a
well-known result of Neyman, there is a system of
“best” confidence intervals for this problem. These
are obtained by inverting on the family of uniformly
most powerful (UMP) likelihood ratio tests for the
different possible values of the null hypothesis θ = θ0

against the two-sided alternative θ �= θ0. All three
approaches produce the same numerical values for
interval estimates. For instance, each assigns, respec-
tively, a fiducial or posterior or confidence level of
1 − α to the interval [x ≤ θ ≤ x/α], 0 < α ≤ 1, e.g.
the level 0.5 is assigned to the interval estimate
x ≤ θ ≤ 2x.

Fisher generalized his 1930 fiducial reasoning by
focusing fiducial inference on pivotal quantities. Let
θ be a real-valued parameter, let t be a statistic of
the data, and let h be some real-valued function of
them both. Call v = h(θ, t) a pivotal quantity if the
distribution of v, F(v), does not depend upon the
parameter θ . Then pivotal reasoning in support of
fiducial probability is just to say that F(v) = F(v|t);
that is, the information contained in t is irrelevant
to v. From Example 1, let t = (n − 1)s2 and then
v = t/σ 2 is pivotal, having a χ2 distribution on
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n − 1 degrees of freedom. Fiducial probability for the
parameter is obtained by inverting on the distribution
for the pivotal variable given the data, assuming the
data are irrelevant to that pivotal.

When do pivotal variables exist? In the one-
dimensional, continuous case they always do, as
the cdf F(x, θ) is itself a pivotal! The cdf, F ,
is uniformly distributed on the closed unit inter-
val, independent of θ : F ∼ U [0, 1]. If we invert
on F as a pivotal, the resulting fiducial probabil-
ity is Fisher’s [5] fid(θ |x) ∝ −∂F/∂θ , as given by
(1). In Example 2, the pivotal F = x/θ illustrates
this technique. (See Fraser [26] for important exten-
sions of fiducial pivotal reasoning with group struc-
tures.)

Fiducial Probability and Confidence
Intervals

Evidently, such pivotal reasoning conforms to confi-
dence interval theory. However, not all pivotals sup-
port a fiducial probability, as the following illustrates.

Example 2 (Continued)

Suppose, as before, that x ∼ U [0, θ], θ > 0. How-
ever, let the parameter space be truncated with a
known upper bound, θ ≤ k. Since the “best” con-
fidence intervals for this problem are based on
inverting UMP tests, they do not change with the
upper bound, they merely get truncated. That is, the
“best” system of confidence intervals for this problem
assigns a confidence level of 1 − α to the inter-
val [x ≤ θ ≤ min(x/α, k)], 0 < α ≤ 1. However, this
system results in interval estimates that, at less than
100% confidence, cover the full parameter space con-
sistent with the data. For example, if k = 20 and
α = 0.1, then this confidence interval system covers
all possible parameter values at a 0.90 level when-
ever x ≥ 2. Thus, inverting on a pivotal does not
always produce a fiducial probability, since it does
not always produce a probability, though it supports
estimation by confidence intervals.

In the light of the phenomenon just illustrated, to
permit the assumption that the data are irrelevant to
the distribution of the pivotal, Fisher restricted fidu-
cial reasoning with pivotals to those that have the
same range and which are one-to-one for all possible
data (and which are based on a sufficient statistic for

the parameter of interest; see Tukey [39]). A prac-
tical case in point arose with interval estimates for
the ratio of two normal means, where the pivotal
reasoning supporting confidence intervals is invalid
for fiducial probability, since those interval estimates
cover the full parameter space at less than 100%
confidence: the so-called “Creasy–Fieller” problem
(see Fieller’s Theorem). (See Fisher [14].) How-
ever, the difference between fiducial probability and
confidence interval statements became evident 20
years earlier, in connection with Fisher’s treatment of
the so-called “Behrens–Fisher” problem: inference
about the difference in two normal means from inde-
pendent populations with unknown variance ratios.
To appreciate that development, we need to consider
more carefully the relationship between fiducial prob-
ability and Bayesian posterior probability.

According to Fisher, fiducial probability is special
only by its genesis, not by its content. (He says this in
numerous places, e.g. [24, p. 59].) That is, whatever
we call fiducial probability must satisfy the mathe-
matical calculus of probability. The uniqueness of
fiducial probability is, supposedly, that it provides
statements of inverse probability without admitting
into the inference any (unwarranted) “prior” proba-
bility for statistical hypotheses, i.e. without relying
on Bayes’ theorem to derive inverse probability from
a likelihood and prior probability. More accurately,
fiducial inference attempts to derive inverse prob-
ability in the absence of statistically based prior
probability. As Fisher expresses it [24, p. 59], a pre-
condition for fiducial inference is that there is insuf-
ficient background knowledge to determine an initial
(or “prior”) value for probability about unknown
parameters by direct inference using, say, a hyper-
population.

Fisher’s claim that fiducial probability is proba-
bility becomes the basis for its use in Bayes’ theo-
rem to solve other forms of statistical inference. In
what follows we illustrate three such applications:
inverse inference with data of two “kinds”, inverse
inference involving nuisance parameters – multipa-
rameter fiducial inference, and predictive inference.

Data of Two “Kinds”

Suppose datum x admits fiducial inference about
parameter θ , but that (independent) datum y (where
y’s distribution also depends only on θ) does not
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allow fiducial inference. For instance, θ may be con-
tinuous though y is discrete and there is no accept-
able pivotal connecting y and θ . Bayes’ theorem
yields: p(θ |x, y) ∝ p(y|θ)p(θ |x). Fisher relies on
fiducial inference to derive the inverse probability
term “p(θ |x)” and uses it in Bayes’ theorem in this
way, as illustrated in the next example.

Example 3 [24, Section 5.6]

Let x be exponential, with F(x, θ) = 1 − exp(−xθ)

for 0 < θ , 0 ≤ x. Let y be a binomial count of a suc-
cesses and b failures out of n independent trials, each
trial with a chance of success ρ = exp(−cθ). Then,
given x, there is an inverse fiducial density fid(θ |x) =
x exp(−xθ)dθ . Let λ = x/c. Transformed to express
inverse probability for ρ, fid(ρ|x) = λρλ−1 dρ. But
p(y|ρ) ∝ ρa(1 − ρ)b. Hence, with the fiducial prob-
ability serving as a “prior” for ρ in Bayes’ theorem,
p(ρ|x, y) ∝ ρa+λ−1(1 − ρ)b dρ.

Fiducial Inference With Nuisance
Factors – the “Step-by-step” Argument
[24, Section 6.12]

Suppose δ, the parameter of interest, is bound to
a nuisance parameter ζ, p(data|δ, ζ ) depends on ζ .
That is, there is no satisfactory pivotal connecting
(a sufficient summary of) the data with δ alone.
Instead, let the likelihood factor in two components,
for example,

p(g, h|δ, ζ ) = p(g|δ, ζ, h)p(h|ζ ),

where (g, h) are a jointly sufficient reduction of the
data with respect to the two parameters. Suppose
the second factor, p(h|ζ ), supports fiducial inference
to yield p(ζ |g, h) = fid(ζ |h). This corresponds to
the claim that, in the absence of knowledge of δ, h

summarizes all the relevant evidence about ζ . (The
claim makes sense, I believe, only in connection with
the step-by-step method, which affords a Bayesian
check for the coherence of the claim. It is used in
Example 1, for instance, to say that s2 contains all
the relevant information about σ 2 in the absence
of knowledge of µ.) Last, suppose the first factor
supports fiducial inference for δ from g, given ζ and
h, fid(δ|ζ, g, h). Then these terms may be combined

using Bayes’ theorem to yield

p(δ|g, h) =
∫

ζ

p(δ|ζ, g, h)p(ζ |g, h) dζ.

This is Fisher’s “step-by-step” method for solving the
infamous Behrens–Fisher problem.

Example 4: The Behrens–Fisher Problem

Let xi be iid N(µx, σ 2
x ), i = 1, . . . , n. Likewise, let yi

be iid N(µy, σ 2
y ), i = 1, . . . , n. All four parameters

are unknown, but we are interested in the difference
in means: δ = µx − µy . The variances, σ 2

x and σ 2
y ,

are nuisance factors. Define ζ = (σ 2
x /σ 2

y ), the pop-
ulation variance ratio, and let z = s2

x/s
2
y , the sample

variance ratio. Last, define the quantity

d ′ = x − y{[
s2
x + (

s2
y

)
ζ
] [

(ζ + 1)

2ζ

]}
0.5

.

Then, given ζ , there is a simple fiducial inference
from d ′ to δ, yielding: p(δ|d ′, ζ ), as p(d ′|δ, ζ ) is a
Student’s t (with 2n − 2 df), centered on the param-
eter of interest, δ. Fisher uses a fiducial inference
from z to ζ , yielding p(ζ |z), as p(z|ζ ) has Fisher’s
F distribution. (Here is where Fisher assumes z is
sufficient for ζ in the absence of knowledge of δ.)
Then these fiducial probabilities are combined using
Bayes’ theorem:

p(δ|data) =
∫

ζ

p(δ| d′, ζ )p(ζ |z) dζ.

It is important to understand that there can be no
(exact) confidence intervals or “direct” fiducial argu-
ment obtained by inverting on a pivotal, duplicating
this inference about δ [32]. That is, to appreciate
the Bayesian aspects of the Behrens–Fisher solu-
tion, where Bayes’ theorem is used to integrate out
the nuisance parameter ζ , let us contrast it with the
“step-by-step” fiducial method for inference about an
unknown normal mean, µ, when σ is a nuisance
parameter.

Example 5: Student’s t-distribution as a Fiducial
Probability

Let xi be iid N(µ, σ 2), with both parameters un-
known, but with µ, alone, the parameter of interest.
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The two sample statistics x and s2, are jointly suf-
ficient for the two parameters. Recall that the likeli-
hood for the data factors:

p(x, s2|µ, σ 2) = p(x|µ, σ 2)p(s2|σ 2).

The second term, p(s2|σ 2), supports fiducial infer-
ence about the nuisance factor σ 2, given s2, as in
Example 1. The first term, p(x|µ, σ 2), supports fidu-
cial inference about the parameter of interest, µ,
given x and σ 2. Fiducially, p(µ|x, σ 2) is normal
N(x, σ 2/n). These fiducial probabilities may be used
in Bayes’ theorem to solve for the marginal, inverse
probability for the parameter of interest, just as in the
Behrens–Fisher problem:

p(µ|x, s2) =
∫

σ

p(µ|x, σ 2)p(σ 2|s2) dσ.

This yields the familiar Student’s t distribution (n − 1
df) as a fiducial probability for µ. However, unlike
the Behrens–Fisher distribution for δ, the t distribu-
tion may also be derived in a one-step, “direct” argu-
ment using the pivotal variable: t = N1/2(µ − x)/s,
which has Student’s t distribution (with n − 1 df).

Alas, there is no guarantee that such “direct”
fiducial reasoning coheres with what the “step-by-
step” methods yields. The difficulty is illustrated in
the next example.

Example 5 (Continued): The Buehler–Feddersen
Problem

Let n = 2, so we have two (iid) observations from
N(µ, σ 2). Trivially, there is the direct probability,

p(xmin ≤ µ ≤ xmax|µ, σ 2) = 0.5, (2)

for each pair (µ, σ 2). Likewise, the fiducial “mar-
ginal” t probability (1 df) satisfies,

p(xmin ≤ µ ≤ xmax|x1, x2) = 0.5, (3)

for all samples (x1, x2). Define the statistic u =
|x1 + x2|/|x1 − x2|. Then, as Buehler & Feddersen
[1] proved, within a year of Fisher’s death, for each
pair (µ, σ 2),

p(xmin ≤ µ ≤ xmax|µ, σ 2, u ≤ 1.5) > 0.518. (4)

If the observed sample satisfies u ≤ 1.5, then does
not the inequality (4) give relevant information that

conflicts with the statement (2), thus precluding (3)?
Given u ≤ 1.5, is not the fiducial step invalid for the t

pivotal? Is the evidence u ≤ 1.5 relevant to inference
about the pivotal quantity: p(t) �= p(t |u ≤ 1.5)? The
question remains open. For some recent discussion
of this apparent conflict, see Seidenfeld [37, 38] and
Zabell [40].

Fiducial Prediction

Prediction of independent observations offers a
third variety of fiducial inference using fiducial
probabilities in Bayes’ theorem. Suppose that the
joint likelihood for our data factors: p(x1, x2|µ) =
p(x1|µ)p(x2|µ). Bayes’ theorem leads to the result:

p(x2|x1) ∝
∫

µ

p(x2|µ)p(µ|x1) dµ.

We can use the fiducial probability fid(µ|x1) =
p(µ|x1) in this simple consequence of Bayes’
theorem to derive a fiducial prediction for x2 given
x1. Fisher [19] gives this analysis for a case of
normal prediction when both µ and σ 2 are unknown.
That problem involves the joint fiducial posterior
for (µ, σ 2) given an observed sample, which then
is integrated out to yield the fiducial prediction
for a second, independent sample from the same
population.

Non-Bayesian Aspects of Fiducial
Inference

The fiducial argument displays its non-Bayesian char-
acter through reliance on the sample space of possible
observations to locate its Bayesian model. That is, the
prior in a Bayes’ model for fiducial inference may
depend upon which component of the likelihood is
used to drive the fiducial argument.

Example 6: Inconsistent Fiducial Inferences Using
Bayes’ Theorem

Let x ∼ N(µ, 1) and, independently, let y ∼ N(ν, 1),
where µ = ν3. Such a variety of data might arise by
using different measurement techniques for the same
(theoretical) unknown parameter. However, because
µ and ν are not linearly related, there is no real-
valued sufficient statistic for the pair (x, y) – they
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are minimally sufficient by themselves. The joint
likelihood factors:

p(x, y|µ) = p(x|µ)p(y|µ),

so there is the opportunity for using Bayes’ theorem
with a fiducial probability based on (either) one of
these factors:

p(µ|x, y) ∝ p(x|µ) fid(µ|y)

and
p(µ|x, y) ∝ p(y|µ) fid(µ|x).

However, contrary to Bayes’ theorem, the fiducial
probability, p(µ|x, y), depends upon which factor
of the likelihood is used for fiducial inference.
This is readily understood in terms of Jeffreys’
Bayesian model for the fiducial argument. When
we create p(µ|y) by fiducial reasoning, we use
the pivotal y − ν whose Bayesian model requires a
uniform (“improper”) prior over ν. When, instead,
we create p(µ|x) by fiducial reasoning, we use
the pivotal x − µ whose Bayesian model requires a
uniform (“improper”) prior over µ. Because µ and ν

are nonlinear transformations of the same quantity,
it is impossible to have a uniform distribution
simultaneously over both. (See Lindley [31] for
an important discussion of conditions when fiducial
and Bayesian posterior probability agree. Fisher’s
reply [19] is disappointing, by comparison.) In his
1957 paper, Fisher [16] proposes a modified fiducial
argument with inequalities in place of equalities of
probabilities, e.g. fiducial conclusions of the form
p(θ ≥ 0) > 0.5 to replace statements like p(θ ≥
0) = 0.5. This idea relates to current research using
sets of probabilities, rather than a single probability,
to represent an inductive conclusion. Can ignorance
be depicted by a large set of prior probabilities?
Explicit connection of this approach with fiducial
inference is found in Dempster’s [3] work and
in Kyburg’s [29, 30] novel theory. Perhaps it is
premature to say we have seen the end of the
fiducial idea!

In a 1963 conference on fiducial probability,
Savage wrote [36, p. 926]: “The aim of fiducial
probability . . . seems to be what I term ‘making
the Bayesian omelet without breaking the Bayesian
eggs’.” In that sense, fiducial probability is impos-
sible. As with many great intellectual contributions,
what is of lasting value is what we learn trying to

understand Fisher’s insights on fiducial probability.
(See Edwards [4] for much more on this theme.) His
solution to the Behrens–Fisher problem, for example,
was a brilliant treatment of nuisance parameters using
Bayes’ theorem. In this sense, “. . . the fiducial argu-
ment is ‘learning from Fisher”’ [36, p. 926]. Thus
interpreted, it certainly remains a valuable addition
to the statistical lore.
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Fieller’s Theorem

Fieller’s theorem is used in finding a confidence
set for a ratio of parameters, ρ = θ1/θ2. This prob-
lem arises in a variety of biostatistical problems
including inverse dose estimation in quantal bioassay
(see Quantal Response Models) [estimation of the
LD50 (or median effective dose) is a special case],
estimation of relative potency in slope-ratio and
parallel-line bioassays (see [2]), and the assessment
of bioequivalence. Other applications include inverse
prediction in linear calibration and estimation of the
point of intersection of two linear regressions or
the point of extremum in a quadratic regression (see
Polynomial Regression).

In general there are two statistics, θ̂1 and θ̂2, which
estimate θ1 and θ2, respectively. It is assumed that
(θ̂1, θ̂2) follows either exactly or approximately a
bivariate normal distribution with mean (θ1, θ2) with
σ11 = var(θ̂1), σ22 = var(θ̂2), and σ12 = cov(θ̂1, θ̂2).
An estimate of the covariance matrix is available with
σ̂ij denoting the estimate of σij . In the original, exact
form of Fieller’s theorem [1] (θ̂1, θ̂2) is exactly nor-
mally distributed with σij = σ 2vij , where the vij are
known constants, and there is a σ̂ , independent of
(θ̂1, θ̂2), such that dσ̂ 2/σ 2 follows a chi-square dis-
tribution with d degrees of freedom. This leads to

H(ρ) = (θ̂1 − ρθ̂2)

(σ̂11 − 2ρσ̂12 + ρ2σ̂22)1/2

following exactly a Student’s t distribution with d

degrees of freedom. This arises when estimating a
ratio of linear combinations in a normal linear model;
see [5]. In other contexts (θ̂1, θ̂2) is only approxi-
mately normal and the σ̂ij s are consistent estimators
of the σij s leading to H(ρ) being approximately t

distributed with d degrees of freedom; where d = ∞
designates a standard normal distribution.

With t1−α/2(d) denoting the 100(1 − α/2)th per-
centile of the t distribution with d degrees of freedom,

P [H(ρ)2 ≤ t1−α/2(d)2] = 1 − α. (1)

This holds exactly or approximately according to
whether H(ρ) follows exactly or approximately a t

distribution, and the resulting confidence set is exact
or approximate accordingly. Eq. (1) can be rewrit-
ten as P(Q(ρ) ≤ 0) = 1 − α, where Q(ρ) = f0 −

2f1ρ + f2ρ
2 is a quadratic function of ρ, with f0 =

θ̂2
1 − t1−α/2(d)2σ̂11, f1 = θ̂1θ̂2 − t1−α/2(d)2σ̂12, and

f2 = θ̂2
2 − t1−α/2(d)2σ̂22. A confidence set for ρ with

confidence coefficient 1 − α is given by the set of
values c satisfying Q(c) ≤ 0. Defining D=f 2

1 −
f0f2, r1 =(f1 − D1/2)/f2, and r2 =(f1 + D1/2)/f2,
the confidence set for ρ is:

Case 1. A finite interval [r1, r2], if D ≥ 0 and f2

≥ 0.

Case 2. The complement of a finite interval,
(−∞, r2] ∪ [r1, ∞), if D ≥ 0 and f2 < 0.

Case 3. (−∞, ∞) if D < 0 and f2 < 0.

It is known that D < 0 and f2 ≥ 0 cannot occur
together; see [4]. Hence we get a finite interval if and
only if f2 ≥ 0 or equivalently |θ̂2/σ̂

1/2
22 | ≥ t1−α/2(d),

which means rejecting H0 : θ2 = 0 (see Hypothe-
sis Testing). When f2 < 0 we do not reject H0 :
θ2 = 0 and the confidence set is infinite (Cases 2
and 3). Note that if θ2 = 0, then ρ is ill defined.
While such confidence sets have often been dismissed
as uninformative or worse (Miller [3] calls them
“absurdities”) they can have a reasonable interpre-
tation. Fortunately, a finite interval usually results in
practice.

One alternative confidence interval uses

ρ̂ ± t1−α/2(d)

[
σ̂11 − 2ρ̂σ̂12 + ρ̂2σ̂22

θ̂2

]1/2

,

where ρ̂ = θ̂1/θ̂2. This results from a delta method
approximation to the variance of ρ̂. While this inter-
val (which is close to [r1, r2] from Fieller’s theorem
for many data sets) is sometimes suitable it can
perform badly in terms of achieving the desired con-
fidence coefficient of 1 − α.
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Finite Population
Correction

In simple random sampling without replacement of
n units from a population of N units (see Sampling
With and Without Replacement), the variance of
an estimate differs from that which would have
been obtained under simple random sampling with
replacement by a factor known as the finite population
correction (fpc). This factor is given by

fpc = N − n

N − 1
.

For example, the variance of a sample mean, x, of a
variable, χ , is given under simple random sampling
without replacement by the expression:

var(x) = σ 2
x

n

(
N − n

N − 1

)
,

where σ 2
x is the variance of the distribution of x.

Under simple random sampling with replacement, the
variance would be equal to σ 2

x /n without the fpc.
The effect of the fpc on the standard error of an

estimate is very small in surveys where the sampling
fraction, n/N , is low (e.g. below 10%). For sampling
fractions that are not small, however, it could produce
a sizable reduction in the standard error of an esti-
mate and should not be ignored in the construction
of confidence intervals or tests of hypotheses (see

Hypothesis Testing). High sampling fractions are
most likely to occur in practice when oversampling
of relatively small population groups is carried out.

For an estimated variance under simple random
sampling without replacement, the finite population
correction is given by the expression, (N − n)/N ,
and the estimated variance of an estimated sample
mean given by:

v̂ar(x) = s2
x

n

(
N − n

N

)
,

where s2
x is the sum of the squared deviations about

the sample mean divided by n − 1. The derivation of
this is shown in most sampling texts (e.g. Levy &
Lemeshow [1]).

Some form of an fpc appears for designs other
than simple random sampling that involve sampling
without replacement (e.g. stratified sampling, single-
stage cluster sampling, multistage sampling). For
example, in single-stage cluster sampling, the fpc has
the form, (M − m)/(M − 1), where M is the number
of clusters in the population, and m is the number of
clusters in the sample.
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Fisher Lectures

The major statistical legacy of R.A. Fisher is marked
by three series of lectures: in North America, in the
United Kingdom, and in Australia.

North America

The R.A. Fisher Lectureship was established in 1963
by the Committee of Presidents of Statistical Soci-
eties (COPSS) to honor both the contributions of Sir
Ronald Aylmer Fisher and the work of a present-day
statistician for their advancement of statistical theory
and applications. The list of Fisher lectures well
reflects the prestige that COPSS and its constituent
societies place on this lectureship. Biometrics and
biostatistics have repeatedly been prominent in the
lectures themselves in large part because of Fisher’s
pivotal contributions to these areas, directly and indi-
rectly. The Fisher Lectureship is a very high recog-
nition of meritorious achievement and scholarship
in statistical science and recognizes the highly sig-
nificant impact of statistical methods on scientific
investigations.

The Fisher lecture is intended to be broadbased
and emphasizes those aspects of statistics and proba-
bility, which bear close relationship to the scientific
collection and interpretation of data, areas in which
Fisher made outstanding contributions. The lecturer is
expected to prepare a manuscript based on the appro-
priate lecture and to submit it to one of the COPSS
society journals.

Fisher Lecturers

1964 Maurice S. Bartlett, “R.A. Fisher and the last
fifty years of statistical methodology”

1965 Oscar Kempthorne, “Some aspects of experi-
mental inference”

1967 John W. Tukey, “Some perspectives in data
analysis”

1968 Leo A. Goodman, “The analysis of cross-
classified data: independence, quasi-independ-
ence, and interactions in contingency tables
with or without missing entries”

1970 Leonard J. Savage, “On rereading R.A.
Fisher”

1971 Cuthbert Daniel, “One-at-a-time plans”

1972 William G. Cochran, “Experiments for non-
linear functions”

1973 Jerome Cornfield, “On making sense of data”
1974 George E.P. Box, “Science and statistics”
1975 Herman Chernoff, “Identifying an unknown

member of a large population”
1976 George A. Barnard, “Robustness and the logic

of pivotal inference”
1977 R.C. Bose, “R.A. Fisher’s contribution to mul-

tivariate analysis and design of experiments”
1978 William H. Kruskal, “Statistics in society:

problems unsolved and unformulated”
1979 C.R. Rao, “Fisher efficiency and estimation of

several parameters”
1982 F.J. Anscombe, “How much to look at the

data”
1983 I.R. Savage, “Nonparametric statistics and a

microcosm”
1985 T.W. Anderson, “R.A. Fisher and multivariate

analysis”
1986 David H. Blackwell, “Likelihood and suffi-

ciency”
1987 Frederick Mosteller, “Methods for studying

coincidences”
1988 Erich L. Lehmann, “Model specification:

Fisher’s views and some later strategies”
1989 Sir David R. Cox, “Probability models: their

role in statistical analysis”
1990 Donald A.S. Fraser, “Statistical inference:

likelihood to significance”
1991 David R. Brillinger, “Nerve cell spike train

data analysis: a progression of technique”
1992 Paul Meier, “The scope of general estimation”
1993 Herbert E. Robbins, “N and n - sequential

choice between two treatments”
1994 Elizabeth A. Thompson, “Likelihood and link-

age: from Fisher to the future”
1995 Norman E. Breslow, “Statistics in epidemiol-

ogy: the case-control study”
1996 Bradley Efron, “R.A. Fisher in the 21st Cen-

tury”
1997 Colin L. Mallows, “The Zeroth Problem”
1998 Arthur Dempster, “Logistic statistics: model-

ing and inference”
1999 Jack D. Kalbfleisch, “Estimating functions

and the bootstrap”
2000 Ingram Olkin, “R.A. Fisher and the combining

of evidence”
2001 James O. Berger “Could Fisher, Jeffreys, and

Neyman have agreed on testing?”
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2002 Raymond J. Carroll, “Variability is not always
a nuisance parameter”

2003 Adrian F.M. Smith, “On rereading L. J. Sav-
age rereading R. A. Fisher”

2004 Donald B. Rubin, “Causal inference using
potential outcomes: design, modelling, deci-
sions”

United Kingdom

The series of Fisher Memorial Lectures in Great
Britain is the responsibility of a Committee estab-
lished in 1965 by representatives of the Royal Soci-
ety of London, the Royal Statistical Society, the
Genetical Society, and the British Region of the
International Biometric Society. The Committee are
the trustees of a fund whose purpose is to provide
for lectures to be given “on any subject or field of
science or learning associated with the name of the
late Sir Ronald Aylmer Fisher, namely, the applica-
tion of mathematics to biology”, any residue to be
used “to further knowledge and research in any of
the said fields”.

1966 F. Yates, “Computers, the second revolution
in statistics”

1968 R.R. Race, “Blood groups in human genetics”
1969 E.A. Cornish, “Developments from the

Fisher–Cornish expansions”
1970 K. Mather, “On biometrical genetics”
1972 G.A. Barnard, “Statistical inference in its his-

torical development”
1974 L.L. Cavalli-Sforza, “Cultural versus biologi-

cal evolution”
1977 R. Hide, “Motions in planetary fluids”
1978 D.J. Finney, “Bioassay and the practice of

statistical inference”
1981 J. Maynard Smith, “The evolution of the sex

ratio”
1981 J.H. Bennett, “R.A. Fisher and the genetical

theory of natural selection”
1983 S. Karlin, “Kin selection and altruism”
1984 D.R. Cox, “Regression and the design of

experiments”
1986 S.M. Stigler, “Francis Galton and the unrav-

elling of the normal world”
1988 G.E.P. Box, “Scientific method in quality and

productivity improvement”
1990 Sir Walter Bodmer, “Genetic sequences”
1992 D.V. Lindley, “Statistics of the market place”

1993 A.J. Jeffreys, “Molecular sleuthing: the story
of genetic fingerprinting”

1994 A.W.F. Edwards, “Fiducial inference and the
fundamental theorem of natural selection”

1995 M.J.R. Healy, “The life and work of Frank
Yates”

1996 J.A. Nelder, “Computers: the continuing rev-
olution in statistics”

1998 Sir John Kingman, “Mathematics of genetic
diversity: before and after DNA”

2000 B. Efron, “The essential Fisher”
2001 Sir Richard Doll, “Proof of causality: Deduc-

tions from epidemiological evidence”
2002 Oliver Mayo, “The realisation of Fisher’s

research programme”
2003 Warren Ewens, “Statistics and the transition

from genetics to genomics”
2004 Adrian F.M. Smith, “Towards an evidence-

based society: the role of statistical thinking”

Australia

With the impending centenary of Fisher’s birth in
1990, the following lectures were given at La Trobe
University, Victoria, supported by the Department of
Genetics and Human Variation:

1986 Bryan C. Clarke, “The Selective theory of
molecular evolution”

1987 R.J. Berry, “Mice and the mess of molecular
evolution”

In 1989, Professor P.A. Parsons decided to endow
the continuation of this series at the University of
Adelaide, where Fisher spent the last two years of
his life. The lectures are specified to be “in a field to
which Sir Ronald Fisher contributed namely, Genet-
ics, Evolutionary Biology or Statistics”. The lectures
so far have been given by:

1990 R.S. Holmes, “Ultraviolet light and the cornea:
genetic and biochemical aspects of ultra-violet
radiation photoreception”

1992 A.W.F. Edwards, “Mendel, Galton, Fisher”
1995 P.A. Parsons, “Conservation strategies: adap-

tation to stress versus the preservation of
genetic diversity”

1995 J.H. Bennett, “Fisher’s work on inheritance
in the tetrasomic wild plant Lythrum salicaria
1935–1959”
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1996 Sir Gustav Nossal, “Genetics and vaccination:
theoretical and practical aspects”

1997 Sean B. Carroll, “Living in the past: Xox
genes and the evolution of animal body pat-
terns”

DOUGLAS G. ALTMAN



Fisher, Ronald Aylmer

Born: February 17, 1890, in East Finchley, Lon-
don, UK.

Died: July 29, 1962, in Adelaide, Australia.

Reproduced by permission of the Royal Statistical Society

Ronald Aylmer Fisher achieved original scientific
research of such diversity that the integrity of his
approach is masked. Born into the era of Darwin’s
evolutionary theory and Maxwell’s theory of gases,
he sought to recognize the logical consequences of
an indeterministic world, the certainties of which
were essentially statistical. His interests were those
of Karl Pearson, who dominated the fields of evolu-
tion, biometry, and statistics during his youth, but his
perspective was very different. His ability to perceive
remote logical connections of observation and argu-
ment gave his conceptions at once universal scope
and coherent unity, so that he was little influenced
by current scientific vogue at any period of his life.

Fisher was the seventh and youngest child of
George Fisher, fine arts auctioneer in the West End,
and Katie, daughter of Thomas Heath, solicitor of the
City of London. His ancestors had showed no strong
scientific bent, but his uncle, Arthur Fisher, was a
Cambridge Wrangler.

Already, in childhood, Fisher met the misfortune
of poor eyesight and the eye strain that was always
to limit his private reading, and he learned to listen

while others read aloud to him. His general intel-
ligence and mathematical precocity were apparent
early. From Mr Greville’s school in Hampstead he
went on to Stanmore in 1900, and entered Harrow
School in 1904 with a scholarship in mathematics.
In his second year there he won the Neeld Medal in
mathematical competition with the whole school. To
avoid eye strain he received tuition in mathematics
under G.H.P. Mayo without pencil, paper, or other
visual aids. Choosing spherical trigonometry for the
subject of these tutorials, he developed a strong geo-
metrical sense that was greatly to influence his later
work. Fisher’s interest in natural history was reflected
in the books chosen for special school prizes at Har-
row, culminating in his last year, in the choice of
the complete works of Charles Darwin, in 13 vol-
umes. In 1909 he won a scholarship in mathematics
to Cambridge University. In 1912 he graduated from
Cambridge as a Wrangler and, awarded a studentship
for one year in the Cavendish Laboratory, studied the
theory of errors under F.J.M. Stratton and statistical
mechanics and quantum theory under J. Jeans.

In April 1912, Fisher’s first paper [1] was pub-
lished, in which the method of maximum likelihood
was introduced (although not yet by that name). As
a result, that summer Fisher wrote to W.S. Gosset
(“Student”) questioning his divisor (n − 1) in the
formula for the standard deviation. He then refor-
mulated the problem in an entirely different and
equally original way in terms of the configuration of
the sample in n-dimensional space, and showed that
the use of the sample mean instead of the population
mean was equivalent to reducing the dimensionality
of the sample space by one; in this way he recog-
nized the concept of what he later called degrees
of freedom. Moreover, the geometrical formulation
immediately yielded Student’s t distribution, which
Gosset had derived empirically, and in September
Fisher sent Gosset the mathematical proof. This was
included in Fisher’s paper when, two years later,
using the geometrical representation, he derived the
general sampling distribution of the correlation
coefficient [2].

Fisher’s mathematical abilities were directed into
statistical research by his interest in evolutionary
theory, especially as it affected man. This interest,
already developing at Harrow, resulted in the forma-
tion of the Cambridge University Eugenics Society
in the spring of 1911, at Fisher’s instigation. He
served on its Council even while he was chairman
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of the undergraduate committee, and he was the
main speaker at the second annual meeting of the
Society. While famous scientists wrangled about the
validity either of evolutionary or of genetic theory,
Fisher accepted both as mutually supportive. While
the applicability of genetic principles to the contin-
uous variables in man was disputed on biometric
grounds, Fisher assumed that the observed variations
were produced genetically, and in 1916 [3] justified
this view by biometric argument.

In its application to man, selection theory raised
not only scientific but practical problems. The birth
rate showed a steep and regular decline relative to
increased social status. This implied the existence
throughout society of selection against every quality
likely to bring social success (see Adverse Selec-
tion). Fisher believed, therefore, that it must result in
a constant attrition of the good qualities of the pop-
ulation, such as no civilization could long withstand.
He considered it important to establish the scientific
theory on a firm quantitative basis through statistical
and genetic research, and, more urgently, to publi-
cize the scientific evidence so that measures could be
taken to annul the self-destructive fertility trend.

Fisher accepted at once J.A. Cobb’s suggestion
in 1913 that the cause of the dysgenic selection lay
in the economic advantage enjoyed at every level of
society by the children of small families over those
from larger families. Later, he proposed and urged the
adoption of various schemes to spread the financial
burden of parenthood, so that those who performed
similar work should enjoy a similar standard of living,
irrespective of the number of their children. In this
he was not successful, and the family allowance
scheme adopted in Great Britain after World War II
disappointed him.

To further these aims, on leaving college he began
work with the Eugenics Education Society of Lon-
don, which was to continue for 20 years. From 1914
he was a regular book reviewer for the Eugenics
Review; in 1920 he became business secretary and
in 1930 vice-president of the Society; and he pur-
sued related research throughout this period. Major
Leonard Darwin, Charles Darwin’s fourth son and
president of the Society from 1912 to 1929, became
a dear and revered friend, a constant encouragement
and support while Fisher was struggling for recog-
nition, and a stimulus to him in the quantitative
research that resulted in The Genetical Theory of Nat-
ural Selection [12].

In 1913 Fisher took a statistical job with the Mer-
cantile and General Investment Company in the City
of London. He trained with the Territorial Army and,
on the outbreak of war in August 1914, volunteered
for military service. Deeply disappointed by his rejec-
tion due to poor eyesight, he served his country for
the next five years by teaching high school physics
and mathematics. While he found teaching unattrac-
tive, farming appealed to him both as a service to
the nation and as the one life in which a numerous
family might have advantages. When, in 1917, he
married Ruth Eileen, daughter of Dr Henry Grattan
Guinness (head of the Regions Beyond Missionary
Union at the time of his death in 1915), Fisher rented
a cottage and smallholding from which he could bicy-
cle to school, and with Eileen and her sister began
subsistence farming, selling the excess of dairy and
pork products to supply needs for which the family
could not be self-sufficient. Their evening hours were
reserved for reading aloud, principally in the history
of earlier civilizations.

In these years, Fisher’s statistical work brought
him to the notice of Karl Pearson. In 1915, Pear-
son published in Biometrika [2] Fisher’s article on
the general sampling distribution of the correlation
coefficient, and went on to have the ordinates of the
error distribution of estimated correlations calculated
in his department. The resulting cooperative study
was published in 1917, together with a criticism of
Fisher’s paper not previously communicated to its
author. Pearson had not understood the method of
maximum likelihood that Fisher had used, and con-
demned it as being inverse, or Bayesian, inference,
which Fisher had deliberately avoided. Fisher, then
unknown, was hurt by Pearson’s high-handedness and
lack of understanding, which eventually led to their
violent confrontation. Meanwhile, Pearson ignored
Fisher’s proposal to assess the significance of corre-
lations by considering not the correlation r itself but
a remarkable transformation z = 1

2 ln[(1 + r)/(1 −
r)] that reduced the highly skewed distributions with
unequal variances to distributions which, to a close
approximation, are normal with constant variance.

Fisher’s paper on the correlation between relatives
on the supposition of Mendelian inheritance [3] (see
Mendel’s Laws), submitted to the Royal Society in
1916, had to be withdrawn in view of the referees’
comments (by Pearson and R.C. Punnett). Knowing
that Pearson disagreed with his conclusions, Fisher
had hoped that his new method, using analysis of
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variance components, might have been persuasive.
In this paper the subject and methodology of bio-
metric genetics were created (see Human Genetics,
Overview). These facts influenced Fisher’s decision,
in 1919, not to accept Pearson’s guarded invitation
to apply for a post in his department at University
College London.

In September 1919, Fisher started work in a new,
at first temporary, post as statistician at Rothamsted
Experimental Station, where agricultural research had
been in progress since 1843. He quickly became
established in this work. He began with a study of
historical data from one of the long-term experi-
ments, with wheat on a field known as Broadbalk,
but soon moved on to consider data obtained in cur-
rent field trials for which he developed the analysis
of variance. These studies brought out the inadequa-
cies of the arrangement of the experiments them-
selves, and so led to the evolution of the science of
experimental design. As Fisher worked with exper-
imenters using successively improved designs, there
emerged the principles of randomization, adequate
replication, blocking and confounding, and random-
ized blocks, Latin squares, factorial arrangements,
and other designs of unprecedented efficiency. The
statistical methods were incorporated in successive
editions of Statistical Methods for Research Workers
(1925) [8], and an 11-page paper on the arrange-
ment of field experiments [9] was expanded into a
book, The Design of Experiments (1935) [14]. These
volumes were supplemented by Statistical Tables for
Biological, Agricultural and Medical Research (1938)
[18], co-authored with Frank Yates.

Following up his work on the distribution of
the correlation coefficient, Fisher derived the sam-
pling distributions of other statistics in common use,
including the variance ratio (called F in his honor by
G.W. Snedecor) and the multiple correlation coef-
ficient (see Multiple Linear Regression). Using
geometric representations, he solved, for normally
distributed errors, all the distribution problems for the
general linear model, both when the null hypoth-
esis is true and when an alternative hypothesis is
true [7, 10].

Concurrently, the theory of estimation was devel-
oped in two fundamental papers in 1922 [5] and
1925 [6]. Fisher was primarily concerned with the
small samples of observations available from scien-
tific experiments, and was careful to draw a sharp
distinction between sample statistics (estimates) and

population values (parameters to be estimated). In
the method of maximum likelihood he had found a
general method of estimation that had many advan-
tages. It not only provided a method by which to
calculate unique numerical estimates for any problem
that could be precisely stated, but also indicated what
mathematical function of the observations ought to be
used to estimate the parameter. His first application
of the method of maximum likelihood was in 1922,
to the estimation of genetic linkage in an example
with no fewer than seven parameters.

In 1920, Fisher had compared two different esti-
mators of the standard deviation σ of a normal
distribution [4], showing that the sample standard
deviation s was not only better but uniquely best,
because the distribution of any other measure of
spread conditional on s does not involve the param-
eter σ of interest. Once s is known, therefore, no
other estimate gives any further information about
σ . Fisher called this quality of s sufficiency. This
finding led to his introduction of the concept of the
amount of information in the sample, and to the
criteria of the consistency and efficiency of esti-
mators measured against the yardstick of available
information. He exploited the asymptotic relative
efficiency of the method of maximum likelihood in
1922, and, extending consideration to small sam-
ples in 1925, observed that small-sample sufficiency,
when not directly available, was obtainable via ancil-
lary statistics derived from the likelihood func-
tion.

Thus, seven years after moving to Rothamsted,
Fisher had elucidated the underlying theory and pro-
vided the statistical methods that research workers
urgently needed to deal with the ubiquitous variation
encountered in biological experimentation. There-
after, he continued to produce a succession of original
researches on a wide variety of statistical topics. For
example, he initiated nonlinear design, invented k-
statistics, and explored extreme-value distributions,
harmonic analysis, multivariate analysis and the dis-
criminant function, the analysis of covariance, and
new elaborations of experimental design and of sam-
ple surveys.

In developing his theory of estimation Fisher
explored the type of uncertainty expressible precisely
in terms of the likelihood, and his ideas on the sub-
ject never ceased to evolve. From the beginning he
distinguished likelihood from mathematical probabil-
ity, the highest form of scientific inference, which
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he considered appropriate only for a restricted type
of uncertainty. He accepted classical probability the-
ory, of course, and used Bayes’ theorem in cases in
which there was an observational basis for making
probability statements in advance about the popula-
tion in question, as was often the case in genetics;
furthermore, he proposed the fiducial argument as
leading to true probability statements, at least in one
common class of cases.

Fisher introduced the fiducial argument in 1930
[11]. In preparing a paper on the general sampling
distribution of the multiple correlation coefficient in
1928, he noticed that in the test of significance the
relationship between the estimate and the parameter
was of a type that he later characterized as pivotal.
He argued that if the one quantity were fixed,
then the distribution of the other was determined;
consequently, once the observations fixed the value
of the observed statistic, the whole distribution of the
unknown parameter was determined. Thus, in cases in
which a pivotal relationship existed, true probability
statements concerning continuous parameters could
be inferred from the data provided that exhaustive
(fully informative) estimators were available [13].

Controversy arose immediately. Fisher had pro-
posed the fiducial argument as an alternative to the
Bayesian argument of inverse probability, which he
condemned in all cases in which no objective prior
probability could be stated. While H. Jeffreys led
the debate on behalf of the less restrictive use of
inverse probability, in 1934 J. Neyman developed
an approach to the theory of estimation by delib-
erately omitting from Fisher’s fiducial theory the
requirement for exhaustive estimation, thus inaugu-
rating the theory of confidence intervals. In some
instances this led to numerical results that were differ-
ent from Fisher’s. For many years the debate focused
on the case of estimating the difference between two
normally distributed populations with unknown vari-
ances not assumed to be equal (Behrens’s test; see
Behrens–Fisher Problem). Later difficulties with the
fiducial argument arose in cases of multivariate esti-
mation because of the nonuniqueness of the pivotals.
Fisher did not achieve clarification of the criteria
for selection among such alternative pivotals; he was
working on the problem at the end of his life.

In proposing the fiducial argument in 1930, Fisher
highlighted the main issues of scientific inference
and compelled a more critical appreciation of the
assumptions made, and of their consequences, in the

various approaches to the problem (see Inference,
Foundations of). In reviewing the subject in Sta-
tistical Methods and Scientific Inference (1956) [17],
he distinguished the conditions in which he believed
significance tests (see Hypothesis Testing), likeli-
hood statements, and probability statements each had
an appropriate and useful role to play in scientific
inference.

In his genetic studies, having demonstrated the
consonance of continuous variation in man with
Mendelian principles, and having thereby achieved
the fusion of biometry and genetics [3], in the 1920s
Fisher tackled the problems of natural selection,
expressed in terms of population genetics, culmi-
nating in The Genetical Theory of Natural Selection
in 1930 [12], which heralded the neo-Darwinian rev-
olution. The book was dictated to his wife during
evenings at home; for a while it took the place of the
reading and conversation that ranged from all of the
classics of English literature to the newest archaeo-
logical research.

At home, too, was Fisher’s growing family. His
oldest son George was born in 1919; then followed a
daughter who died in infancy, a second son, and in the
end six younger daughters. True to his eugenic ideal,
Fisher invested in the future, living simply under con-
ditions of great financial stringency while the children
were reared. He was an affectionate father, especially
with George, who was soon old enough to join him in
such activities as looking after genetic mouse stocks.
Wherever possible, he brought the children into his
activities and answered their questions seriously, with
sometimes brilliant simplicity; he promoted family
activities and family traditions. Domestic government
was definitely patriarchal, and he punished larger
offences against household rules, although with dis-
taste. For as long as possible, the children were taught
at home, for he trusted in their innate curiosity and
initiative in exploring their world rather than in any
imposed instruction. In fact, he treated his children
like his students, as autonomous individuals from the
beginning, assuming that they would act and think on
their own responsibility, even when doing so involved
danger or adult disapproval.

In 1929, Fisher was elected a Fellow of the Royal
Society, as a mathematician. The influence of his sta-
tistical work was spreading, and he was already con-
cerned that statistics should be taught as a practical
art employing mathematical reasoning, not as self-
contained mathematical theory. In 1933 Karl Pearson
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retired and his department at University College, Lon-
don was split; E.S. Pearson succeeded his father as
head of the statistics department, and Fisher suc-
ceeded as Galton Professor of Eugenics, housed in
the same building. For both men, it was an awkward
situation. While others gave their interpretation of
Fisher’s ideas in the statistical department, he offered
a course on the philosophy of experimentation in his
own. After J. Neyman joined the statistics department
in 1934, relations between the new departments dete-
riorated and controversy followed.

Fisher continued both statistical and genetic
research. In 1931, and again in 1936, he was
visiting professor for the summer sessions at Iowa
State University at Ames, Iowa, at the invitation of
G.W. Snedecor, director of the Statistical Laboratory.
In 1937–1938 he spent six weeks as the guest of
P.C. Mahalanobis, director of the Indian Statistical
Institute in Calcutta. In his own department, where
Karl Pearson had used only biometric and genealogic
methods, Fisher quickly introduced genetics. Work
with mouse stocks moved from the attic at his
home, was expanded, and experimental programs
were initiated on a variety of animal and plant
species; for example, to study the problematic tristyly
in Lythrum salicaria. Fisher was very eager also to
initiate research in human genetics.

Sponsored by the Rockefeller Foundation, in 1935
he was able to set up a small unit for human serologic
research under G.L. Taylor, who was joined by R.R.
Race in 1937. His hopes that a linkage map of man
could be built up using blood groups as genetic
markers with a view to locating disease loci were
only to be realized after his death. In 1943, he
interpreted the bewildering results obtained with the
new Rh blood groups in terms of three closely linked
loci and correctly predicted the discovery of two new
antibodies and an eighth allele. Fisher’s enthusiasm
for blood-group polymorphisms continued to the end
of his life, and he did much to encourage studies of
associations between blood groups and disease.

In 1927, Fisher proposed a way of measuring
selective intensities on genetic polymorphisms occur-
ring in wild populations, by a combination of lab-
oratory breeding and field observation, and by this
method later demonstrated very high rates of selec-
tive predation on grouse locusts. E.B. Ford was one of
the few biologists who believed in natural selection at
the time, and in 1928 he planned a long-term investi-
gation of selection in the field, based on Fisher’s

method. To the end of his life, Fisher was closely
associated with Ford in this work, which involved
development of capture–recapture techniques and
of sophisticated new methods of statistical analysis.
The results were full of interest, and wholly justified
their faith in the evolutionary efficacy of natural
selection alone.

Fisher took a continuing delight in computa-
tion, introducing an electric calculating machine to
Rothamsted and taking pleasure in the neat devices
by which he could reduce the labor of computation.
He showed little enthusiasm for electronic comput-
ers; yet in 1950 he was the first person to publish
results in a biological context obtained from the new
machines [16].

Forcibly evacuated from London on the out-
break of war in 1939, Fisher’s department moved to
Rothamsted and, finding no work as a unit, gradu-
ally dispersed; Fisher himself could find no work of
national utility. In 1943 he was elected Arthur Balfour
Professor of Genetics at Cambridge, which carried
with it a professorial residence. Lacking other accom-
modation, he moved his staff and genetic stocks
into the residence, leaving his family in Harpenden.
Estranged from his wife, separated from home, and
deeply grieved by the death in December 1943 of
his son George on active service with the Royal Air
Force, Fisher found companionship with his fellows
at Caius College, and with the serologic unit (evac-
uated to Cambridge for war work with the Blood
Transfusion Service), which planned to join his new
department after the war.

There was little support after the war for earlier
plans to build up an adequate genetics department.
No bid was made to keep the serologic unit. No
departmental building was erected. Support for the
research in bacterial genetics, initiated in 1948 under
L.L. Cavalli (Cavalli-Sforza), was withdrawn in 1950
just as Cavalli’s discovery of the first Hfr strain of
Escherichia coli heralded the remarkable discover-
ies soon to follow in bacterial and viral genetics.
Fisher cultivated his garden, continued his research,
published The Theory of Inbreeding (1949) [15] fol-
lowing his lectures on this topic, and built a group
of good quantitative geneticists. He attempted to
increase the usefulness of the university diploma
in mathematical statistics by requiring all candi-
dates to gain experience of statistical applications by
doing research in a scientific department. Speaking
as founding president of the International Biometric
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Society (1947), as president of the Royal Statistical
Society, and as a member or as president of the Inter-
national Statistical Institute, he pointed out how
mathematical statistics itself owes its origin and con-
tinuing growth to the consideration of scientific data
rather than of theoretic problems.

In 1957, Fisher became involved in the con-
troversy over the interpretation of the association
between smoking and lung cancer, believing that the
inference of causation was premature and likely to
inhibit the further research that he felt was necessary.

Fisher’s own interests extended to the work of
scientists in many fields. He was a fascinating conver-
sationalist at any time – original, thoughtful, erudite,
witty, and irreverent; with the younger men his gen-
uine interest and ability to listen, combined with
his quickness to perceive the implications of their
research, were irresistible. He encouraged, and con-
tributed to, the new study of geomagnetism under
S.K. Runcorn, a fellow of Gonville and Caius Col-
lege, of which he was president during the period
1957–1960.

Fisher received many honors and awards: the
Weldon Memorial Medal (1928), the Guy Medal of
the Royal Statistical Society in gold (1947), and three
medals of the Royal Society, the Royal Medal (1938),
the Darwin Medal (1948), and the Copley Medal
(1956); he was created Knight Bachelor by Queen
Elizabeth in 1952.

After retirement in 1957, Sir Ronald Fisher trav-
eled widely, joining E.A. Cornish in 1959 as honorary
research fellow of the C.S.I.R.O. Division of Math-
ematical Statistics in Adelaide, South Australia. He
died in Adelaide on July 29, 1962. His ashes are
interred in St Peter’s Cathedral, beneath a plaque in
a side aisle.
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Fisher’s Exact Test

Fisher’s exact test can be used to assess the signifi-
cance of a difference between the proportions in two
groups (see Exact Inference for Categorical Data
for a broader context). The test was first described
in independently written articles by Irwin [14] and
Yates [25]. Yates used the test primarily to assess
the accuracy of his correction factor to the χ2 test,
and attributed the key distributional result underlying
the exact test to R.A. Fisher. Fisher successfully pro-
moted the test in 1935, presenting two applications,
one to an observational study on criminal behavior
patterns [8], and another to an artificial example of a
controlled experiment on taste discrimination [9].

Typical recent applications are to the results of
simple experiments comparing a treatment with a
control. The design must be completely randomized,
and each experimental unit must yield one of two pos-
sible outcomes (like success or failure). Consider, for
example, the study reported by Hall et al. [13]. This
was a randomized, double-blind, placebo-controlled
study on the effect of ribavirin aerosol therapy on a
viral infection (RSV) of the lower respiratory tract of
infants. After five days of treatment, each infant was
examined for the continued presence of viral shed-
ding in nasal secretions.

There were 26 patients in the randomized trial. For
illustrative purposes, the following discussion focuses
on hypothetical results from a smaller set of only
eight patients. Also, a patient showing no signs of
viral shedding in nasal secretions will be said to have
recovered. Consider, then, the “results” displayed in
Table 1.

All three recoveries were in the treatment group.
For a frequency table based on only four treatments
and four control subjects, the evidence could hardly
be more convincing, but is it statistically signifi-
cant? Had the experiment included more patients, an
approximate P value could have been obtained using

Table 1 Results from a small, comparative experiment

Not
Recovered recovered Totals

Treatment 3 1 4
Control 0 4 4

Totals 3 5 8

the standard χ2 test (see Chi-square Tests). But we
cannot trust the accuracy of this approximation when
it is based on observations on so few patients. Fisher’s
exact test provides a way around this difficulty.

The reasoning behind the test is as follows. Sup-
pose that the treatment was totally ineffectual, and
that each patient’s recovery over the subsequent five
days was unaffected by whether the treatment were
applied or not.

Precisely three patients recovered. If the treat-
ment was ineffectual, then these three, and only these
three, individuals would have recovered regardless of
whether they were assigned to the treatment or con-
trol group. The fact that all three did indeed appear
in the treatment group would then have been just a
coincidence whose probability could be calculated as
follows.

When four out of the eight subjects were randomly
chosen for the treatment group, the chance that all
three of those destined to recover should end up in
the treatment group is given by the hypergeometric
distribution as

(3C3)(5C1)

8C4
= 0.071.

This is the standard P value for Fisher’s exact
test of the null hypothesis of no treatment effect
against the one-sided alternative that the treatment
has a positive benefit.

Consider the more general setting, as portrayed in
Table 2.

The P value for testing the null hypothesis that the
treatment has no impact vs. the one-sided alternative
that it has a positive value is

P =
min(n,S)∑

y=a

(SCy)(F Cn−y)

NCn

. (1)

For a two-sided alternative there is no univer-
sally accepted definition. The two most common

Table 2 Notation for a 2 × 2 frequency table of out-
comes from a comparative experiment

Not
Recovered recovered Totals

Treatment a b n
Control c d m

Totals S F N
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approaches are (i) to double the one-sided P value, or
(ii) to extend the above sum over the other tail of the
distribution, including all those terms which are less
than or equal to the probability for the observed table.
The latter strategy is deployed by the major statisti-
cal packages, BMDP (Two-Way Tables in [5]), JMP
(Contingency Table Analysis in Fit Y by X in [21]),
SAS (FREQ procedure in [20]), S-PLUS (function,
fisher.test in [17]), SPSS (Crosstabs in [23]), StatX-
act [6], and Systat (Tables in [24]). Gibbons & Pratt
[12] discuss possible alternatives.

The test can be extended to an r × c contingency
table, as proposed by Freeman & Halton [11]. It
is also used on r × 2 tables for multiple compar-
isons, with the usual controversy over adjustments
for simultaneous inferences on a single data set (see
[22] and references therein).

Applicability and Power

A major advantage of Fisher’s exact test is that it can
be justified solely through the randomization in the
experiment. The user need not assume that all patients
in each group have the same recovery probability,
nor that patient recoveries occur independently. The
patients could, for example, go to one of four clinics,
with two patients per clinic. Two patients attending
the same clinic might well have experienced delayed
recovery from having contacted the same subsidiary
infection in their clinic, but the above argument
would still be valid as long as individuals were
randomly selected without restriction from the group
of eight for assignment to the treatment vs. control
groups.

If, however, the randomization was applied at the
clinic level, with two of the four clinics selected for
assignment to the treatment group, then the test would
be invalid. Compared with the hypergeometric distri-
bution, the data would most likely be overdispersed
(see Overdispersion).

Similarly, if the randomization was restricted by
blocking with respect to clinic, the pair of individuals
from each clinic being randomly split between the
treatment and control groups, then the test would
again be invalid. These alternative designs certainly
have their place, particularly in larger experiments
with more subjects, but the results would have to be
analyzed with another test.

The example also illustrates a major weakness of
Fisher’s exact test. The evidence for a table based

on only four subjects in each of two groups could
hardly have been more favorable to the alternative.
Yet the P value still exceeds 5%, and most observers
would rate the evidence as not statistically signifi-
cant. It is in general difficult to obtain a statistically
significant P value with Fisher’s exact test, and the
test therefore has low power. The most effective way
to increase the power may well be to take quantita-
tive measurements. Suppose, for instance, that all four
patients who received the treatment showed reduced
nasal shedding of the virus. By quantifying this evi-
dence, and subjecting the quantitative measurements
to a test of significance, the experimenter could, in
many instances, generate a more powerful test.

One could also, of course, consider running the
study on a larger group of patients.

Competing Binomial-model Test

It is also possible to obtain greater power by
analyzing the above table with another statistical
model. The most commonly used competitor involves
assuming that the numbers of recovered patients in
each group are independently binomially distributed
(see Binomial Distribution). The test was mentioned
by Irwin [14], and promoted by Barnard [2].
Although he soon withdrew his support [3], it has
since become a popular alternative. Its increased
power has been amply demonstrated by D’Agostino
et al. [7] and others. For the above table, the P value
is 0.035 vs. the 0.071 for Fisher’s exact test. The
P value based on this binomial model is typically
smaller than the one generated by Fisher’s exact
test. The main reason for the difference is that
the standard definition of the P value contains the
probability of the observed table, and this probability
is higher for Fisher’s exact test than for the binomial
model [1, 10, 18]. Thus the null hypothesis is more
frequently rejected, and the binomial-model test is
more powerful. This test is available in StatXact [6].

However, the increased power comes at a cost. To
justify the binomial model, one must either assume
that all patients within each group have the same
recovery probability, or envisage that the patients
were randomly sampled from some larger group. The
trial must also have been conducted so as to ensure
that patient deaths occur independently. They cannot,
for example, attend four clinics, with two patients
per clinic.
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There is another, more subtle problem with the
binomial model. Simple calculations show that had
fewer than three or more than five patients recov-
ered, then neither P value could possibly have been
significant. This puts the researcher in an awkward
quandary. For example, had only two patients recov-
ered after 5 days, the researcher would have had
an incentive either to present the results after more
than five days of treatment when at least one more
patient had recovered, or to incorporate more patients
into the experiment. One does not win accolades
for announcing the results of experiments that are
not only statistically insignificant, but also apparently
barely capable of ever producing significant results.

These are important complications when it comes
to interpreting the results of these sorts of small
experiments. Suppose, for example, that in the above
experiment the researcher was to have adjusted the
five-day reporting time, if necessary, so as to guar-
antee between three and five recoveries. Then the
binomial P value would be invalid. The probability
of obtaining a table at least as favorable to the treat-
ment as the above one can be shown to be 0.056, not
0.035, as generated by the standard binomial model.

The Mid-P Value

The P value of 0.071 generated by Fisher’s exact test
is still large compared with the 0.056 figure produced
by this modified binomial model. There is yet another
alternative with important theoretical and practical
advantages (see, for example, [16, 4, 1], and [19]).
This is the mid-P value, first introduced in 1949 by
Lancaster [15]. In place of the standard definition,

P value = Pr (evidence at least as favorable to

Ha as observed |H0),

they propose the alternative,

mid-P value = Pr(evidence more favorable to Ha

as observed |H0)

+ 1
2 Pr(evidence equally favorable

to Ha as observed |H0).

Table 3 summarizes the possible P values for
the above example. This table illustrates that the
mid-P has the potential to provide a smaller, more

Table 3 Comparison of P values for the data in Table 1

Fisher’s Binomial Modified
exact test model binomial model

Standard P value 7.1% 3.5% 5.6%
Mid-P value 3.6% 2.0% 3.0%

significant-looking P value, and to reduce the dis-
crepancy between P values generated by competing
models. However, by using a smaller P value, one
may reject a valid null hypothesis too frequently.
Fortunately, amongst other desirable attributes of the
mid-P , its routine use does indeed control a quantity
closely related to the type I error rate (see [19], and
references therein). The computer package, StatXact
[6] facilitates the calculation of the mid-P by provid-
ing the probability of the observed table along with
the standard P value.

Conclusion

Fisher’s exact test provides a widely applicable
way to assess the results of simple randomized
experiments leading to 2 × 2 contingency tables.
But it has low power, especially when the standard
P value is used. The power can be increased
considerably through (i) using the mid-P value, or
(ii) carefully constructing a test based at least in
part on a binomial model. Further power increases
can be generated through (iii) taking quantitative
measurements on each subject, or (iv) running the
trial with a larger number of patients.
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Fixed Effects

Consider an explanatory variable which takes on k

possible values in a particular data set and which
is to be related to a response variable via a
regression model. Assume that some function of the
response variable is related to the linear predictor
µ + αi, i = 1, k − 1; or, equivalently, αi, i = 1, k,
where i indexes the possible values of the explanatory
variable (see Dummy Variables). Examples of such
explanatory variables are an indicator for clinics in
a multiclinic study, school classrooms in a study of
school children, different studies in a meta-analysis,
and blocking factors in experimental design. Other
explanatory variables may be included in the linear

predictor. For example, a single additional variable
could be added to define a linear predictor µ + αi +
βX, i = 1, k − 1.

If the regression analysis focuses on the estimates
of the αis only for values of the explanatory variable
in the data set, then the αis are referred to as
fixed effects. This contrasts with the assumption
that the αis represent a random sample from a
distribution of effects associated with a wider range
of possibilities for the explanatory variable, in which
case the αis are referred to as random effects. For
general discussions of the distinction and its effect on
methods of analysis see Analysis of Variance.

VERN T. FAREWELL



Fixed Population

A fixed population or fixed cohort is a group of
individuals defined by a common fixed characteristic,
such as all men in the US born in 1941. Membership
in a fixed population does not change over time

by immigration or emigration, unlike a dynamic
population, although members of a fixed cohort may
experience the health event under study, or may die
or be lost to follow-up.

MITCHELL H. GAIL



Fix–Neyman Process

Fix & Neyman [2] introduced a stochastic model to
describe recovery, relapse, death and loss of patients
in medical follow-up studies of cancer patients. The
model is useful also in other areas of research includ-
ing compartmental analysis, survival analysis, and
reliability studies. Some examples of applications of
the process are given in Table 1.

The Fix–Neyman process has two transient states,
S1 and S2, denoting health and illness of patients,
and two absorbing states, R1 and R2, for causes of
death. We shall consider it as a special case of a finite
Markov process [1] with two states. Generally, the
states in a Markov process are communicative: any
state in the process can be reached from any other
state in the process. This means that we shall consider
only the two health states S1 and S2 in the process,
and derive formulas related to the death states R1 and
R2 through their relationship with the health states.
Since a death state is an absorbing state, the number
of death states does not influence the complexity of
the process.

Fix & Neyman regarded state S1 as a health
state, and S2 as an illness state, so that a tran-
sition from S1 to S2 means onset of illness or a
relapse, and a transition from S2 and S1 means recov-
ery. In the following discussion, we shall consider
illness as a state of health, and allow transitions
S1 → S2 and S2 → S1 to take place without specific
designation.

Consider, then, a system consisting of two health
states, S1 and S2, and two death states, R1 and R2.
Transitions are possible between the two health states
S1 and S2 and from either one of the health states
to a death state. Each death state is an absorbing
state: once an individual enters it, he will remain
there for ever. Figure 1 is a graphic description of the

Table 1 Examples of Applications of the Fix–Neyman
Process

S1 S2

A person is employed unemployed
An elevator is occupied unoccupied
A telephone line is engaged free
A nuclear particle

counting instrument is free dead
An automobile is working out of order

S1 S2

R1 R2

Health state
(transient)

Death state
(absorbing)

Figure 1 Transitions in the Fix–Neyman process

transition process; the arrows indicate the directions
a transition may take place.

Transition Probabilities and Intensity
Functions

For a time interval (τ, t), we define the health tran-
sition probabilities

Pαβ(τ, t) = Pr{an individual in state Sα at τ will be

in state Sβ at t}, α, β = 1, 2, (1)

and the death transition probabilities

Qαδ(τ, t) = Pr{an individual in state Sα at τ will be

in state Rδ at t}, α = 1, 2, δ = 1, 2.

At time t = τ , these probabilities will have obvious
specific values:

Pαβ(τ, τ ) =
{

1, β = α,

0, β �= α, α, β = 1, 2,

Qαδ(τ, τ ) = 0, α = 1, 2, δ = 1, 2.

We assume independence between the transitions
in (1). Consider two contiguous time intervals (τ, ξ)

and (ξ, t) and two events:

A = {an individual in state α at time τ will be

in state γ at time ξ }

and

B = {an individual in state γ at time ξ will be

in state β at time t}.
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If the events A and B are assumed independent, then
we have an important set of Chapman–Kolmogorov
equations:

Pαβ(τ, t) =
∑

γ

Pαγ (τ, ξ)Pγβ(ξ, t). (2)

Transition Intensity Functions

Transition from one health state Sα to another health
state Sβ is governed by the health intensity func-
tion, or transition rate, ναβ , and transition from a
health state Sα to a death state Rδ is governed by
the death intensity function µαδ , with the additional
definition

ναα = −
[
ναβ +

2∑

δ=1

µαδ

]
, α �= β, α, β = 1, 2,

(3)

where ναα < 0, α = 1, 2. Since these intensity func-
tions are independent of time, the process is time
homogeneous.

Differential Equations and Transition
Probabilities

For the interval (τ, t + ∆) and the two contiguous
intervals (τ, t) and (t, t + ∆), the Chapman–Kolmo-
gorov equations are

Pαα(τ, t + ∆) = Pαα(τ, t)Pαα(t, t + ∆)

+ Pαβ(τ, t)Pβα(t, t + ∆),

Pαβ(τ, t + ∆) = Pαα(τ, t)Pαβ(t, t + ∆)

+ Pαβ(τ, t)Pββ(t, t + ∆).

These equations, as ∆ → 0, lead to the following
differential equations:

∂

∂t
Pαα(τ, t) = Pαα(τ, t)ναα + Pαβ(τ, t)νβα,

∂

∂t
Pαβ(τ, t) = Pαα(τ, t)ναβ + Pαβ(τ, t)νββ,

α �= β, α, β = 1, 2. (4)

This is a system of linear, homogeneous, first-order
ordinary differential equations with constant coeffi-
cients. (Note that, since τ is fixed, the resemblance

of (4) to a set of partial differential equations is only
formal.) The solution is

Pαα(τ, t) =
2∑

i=1

ρi − νββ

ρi − ρj

exp[ρi(t − τ)]

and

Pαβ(τ, t) =
2∑

i=1

ναβ

ρi − ρj

exp[ρi(t − τ)],

j �= i, α �= β, j, α, β = 1, 2, (5)

where

ρ1 = 1
2 {ν11 + ν22 + [(ν11 − ν22)

2 + 4ν12ν21]1/2},
and

ρ2 = 1
2 {ν11 + ν22 − [(ν11 − ν22)

2 + 4ν12ν21]1/2}
are both negative.

The probabilities in (5) depend only on the dif-
ference t − τ but not on τ and t separately; thus
the process is homogeneous with respect to time, as
pointed out earlier. We shall therefore let τ = 0 and
let t be the interval length, and write

Pαα(0, t) =
2∑

i=1

ρi − νββ

ρi − ρj

exp(ρi t),

Pαβ(0, t) =
2∑

i=1

ναβ

ρi − ρj

exp(ρi t), j �= i,

α �= β, j, α, β = 1, 2. (6)

Death Transition Probabilities

The death transition probability Qαδ(0, t) has a defi-
nite relation with the health transition probabilities:

Qαδ(0, t) =
∫ t

0
Pαα(0, τ )µαδ dτ +

∫ t

0
Pαβ(0, τ )µβδ dτ.

(7)

Substitution of (6) into (7), and integration of the
resulting expression, gives the formula for the death
transition probability:

Qαδ(0, t) =
2∑

i=1

exp(ρi t) − 1

ρi(ρi − ρj )
[(ρi − νββ)µαδ



Fix–Neyman Process 3

+ ναβµβδ], j �= i, α �= β,

j, α, β, δ = 1, 2. (8)

Chapman–Kolmogorov Equation

The Fix–Neyman process described in this article
is a Markov process in the sense that the transi-
tions an individual might make in the future are
independent of the transitions made in the past. An
important consequence of this Markovian property is
the Chapman–Kolmogorov equations in (2). Since
this process is homogeneous with respect to time, we
may rewrite (2) as follows:

Pαα(0, t) = Pαα(0, τ )Pαα(τ, t) + Pαβ(0, τ )Pβα(τ, t)

and

Pαβ(0, t) = Pαα(0, τ )Pαβ(τ, t) + Pαβ(0, τ )Pββ(τ, t),

for 0 ≤ τ ≤ t, α �= β, α, β = 1, 2.
Chapman–Kolmogorov-type equations can be

established also for the transition probabilities leading
to death:

Qαδ(0, t) = Qαδ(0, τ ) + Pαα(0, τ )Qαδ(τ, t)

+ Pαβ(0, τ )Qβδ(τ, t),

α �= β, α, β, δ = 1, 2.

These equations may be verified from (6) and (8).

Expected Duration of Stay

In a study of human health, we may wish to estimate
the length of time a person is expected to be healthy.
In other studies we may inquire about the length
of time an automobile is expected to be in working
condition, a person is expected to be employed, or a
telephone line is expected to be busy. These inquiries
lead to an important concept in the Fix–Neyman
process: What is the expected duration of stay in each
of the states S1, S2, R1, and R2 within a time period
of length t? This duration depends on the initial state
and the corresponding transition probability. For an
individual in state Sα at time t = 0, let

eαβ(t) = the expected duration of stay in Sβ in

the interval (0, t), β = 1, 2,

and

εαδ(t) = the expected duration of stay in Rδ in

the interval (0, t), δ = 1, 2.

These quantities are related to the transition proba-
bilities by the following equations:

eαβ(t) =
∫ t

0
Pαβ(0, τ ) dτ

and

εαδ(t) =
∫ t

0
Qαδ(0, τ ) dτ.

Substitution from (6) and (8) gives the explicit
formulas:

eαα(t) =
2∑

i=1

ρi − νββ

ρi(ρi − ρj )
(exp(ρi t) − 1)

and

eαβ(t) =
2∑

i=1

ναβ

ρi(ρi − ρj )
(exp(ρi t) − 1)

for α �= β, α, β = 1, 2, and

εαδ(t) =
2∑

i=1

{
1

ρi

[exp(ρi t) − 1] − t

}

× (ρi − νββ)µαδ + ναβµβδ

ρi(ρi − ρj )
,

for α �= β, α, β, δ = 1, 2. The sum of the expected
durations of stay over all the states is equal to the
entire length of the interval:

eα1(t) + eα2(t) + εα1(t) + εα2(t) = t, α = 1, 2.

Limiting Probabilities

Since both ρ1 and ρ2 are negative, each of the
health transition probabilities in (6) approaches zero
as t → ∞:

lim
t→0

Pαα(0, t) = lim
t→∞

2∑

i=1

ρi − νββ

ρi − ρj

exp(ρi t) = 0,

lim
t→0

Pαβ(0, t) = lim
t→∞

2∑

i=1

ναβ

ρi − ρj

exp(ρi t) = 0,

j �= i, α �= β, j, α, β = 1, 2,
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and each of the death transition probabilities in (8)
approaches a constant:

lim
t→∞ Qαδ(0, t) = lim

t→∞

2∑

i=1

exp(ρi t) − 1

ρi(ρi − ρj )

× [(ρi − νββ)µαδ + ναβµβδ]

=
2∑

i=1

−[(ρi − νββ)µαδ + ναβµβδ]

ρi(ρi − ρj )
,

α �= β, α, β, δ = 1, 2.

where
2∑

δ=1

Qαδ(0, ∞) = 1.

A Time-dependent Fix–Neyman Process

In the above discussion the intensity functions
ναβ and µαδ were assumed to be independent
of time. If they are replaced by time-dependent
functions ναβθ(ξ) and µαδθ(ξ), with (3) and ρ1

and ρ2 unchanged, the formulas for the transition

probabilities become

Pαα(τ, t) =
2∑

i=1

ρi − νββ

ρi − ρj

exp

[
ρi

∫ t

τ

θ(ξ) dξ

]
,

Pαβ(τ, t) =
2∑

i=1

ναβ

ρi − ρj

exp

[
ρi

∫ t

τ

θ(ξ) dξ

]
,

j �= i, α �= β, j, α, β = 1, 2,

and

Qαδ(τ, t) =
2∑

i=1

exp
[
ρi

∫ t

τ
θ(ξ) dξ

]
− 1

ρi(ρi − ρj )

× [(ρi − νββ)µαδ + ναβµβδ]

for α �= β, α, β, δ = 1, 2.
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Fleiss, Joseph L.

Born: November 13, 1937, in Brooklyn, New York.
Died: June 12, 2003, in Ridgewood, New Jersey.

Joseph L. Fleiss was a statistician whose writings
influenced thousands of biomedical researchers in
fields ranging from psychiatry to dentistry. His most
influential contributions were in the analysis of binary
and categorical data, statistical analysis of diagnostic
reliability (see Diagnostic Tests, Evaluation of), and
the design and analysis of clinical trials. He wrote
more than 200 scientific and statistical papers, as
well as two books that are considered classics in
biostatistics.

Fleiss received an A.B. cum laude from Columbia
College in 1959. While still in college, he worked as
a statistical clerk with the Biometrics Research Unit
at the New York State Psychiatric Institute (NYSPI).
After attending the program in Biostatistics at the
University of Minnesota in 1960, he returned to the
Columbia School of Public Health where he earned
his M.S. degree in Biostatistics in 1961. He received
his Ph.D. from Columbia’s Department of Mathe-
matical Statistics in 1967, writing a dissertation on
“Analysis of variance in assessing errors in interview
data”. This work was motivated by applied problems
that he encountered in the Biometrics Unit, and the
progress he made guaranteed his position at NYSPI

for many years to come. He worked full time at
NYSPI as a Research Scientist and Biostatistician
until 1975 and remained affiliated with the institute
until 1986.

In 1975, Fleiss was recruited by Columbia Uni-
versity to be Professor and Head of the Division of
Biostatistics at the School of Public Health, taking
over a program that had been established by John W.
Fertig. During Fleiss’s tenure as Head of the Bio-
statistics division, the program grew in stature and
size. He established a Ph.D. program in 1977. Over
the next 15 years, he recruited a first-class faculty
to train new doctoral and master’s degree students,
generate independent research in biostatistics, and
support clinical research initiatives throughout the
health sciences at Columbia. Even as the department
thrived, Fleiss’s health went into a steep decline. A
particularly disabling form of Parkinson’s disease led
to his stepping down as Biostatistics Head in 1992, at
the age of 55. He continued to think about biostatis-
tics problems as long as he could but was unable
to work beyond the age of 58. His last statistical
paper, a commentary on meta-analysis, was pub-
lished in 1995.

Even though Fleiss’s career was tragically cut
short by illness, his 30 years of productivity had an
enormous impact. His first book, Statistical Methods
for Rates and Proportions [4], addressed the appar-
ently simple issue of using proportions to summarize
counts and frequencies. Although this appeared to be
a specialized topic, the book attracted a wide read-
ership with its many engaging examples and a thor-
ough, but accessible, discussion of esoteric statistical
principles. The book was released in a second edition
in 1981. It was particularly influential in the fields of
epidemiology and psychiatry, where it was used to
define acceptable statistical practice for many scien-
tific journals. After Fleiss’s death in 2003, a third
edition was released by Wiley, through the efforts of
his Columbia colleagues Bruce Levin and Myunghee
Cho Paik [14].

Fleiss’s second book, The Design and Analysis
of Clinical Experiments [7], was equally influen-
tial but with a completely different group of med-
ical researchers. This book reviewed the princi-
ples of experimental design for experiments on
people. Unlike rats in basic science studies, peo-
ple present experimenters with all sorts of difficul-
ties. They refuse to participate after randomization,
they drop out, they fail to take the treatment, and
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they sometimes misrepresent outcomes. Fleiss’s text
addressed these issues directly. Instead of simply
dwelling on the details of statistical analysis of data
already in hand, Fleiss challenged biostatisticians and
medical researchers to think carefully about how to
plan and interpret studies that used humans as the
experimental subjects. This book was so influential
that the publisher, John Wiley and Sons, reissued it
in the Wiley Classics Library series.

Fleiss began his career in psychiatric research and
won acclaim in this field for his many valued publica-
tions. His work with colleagues at NYSPI is widely
cited as instrumental in the study of measurement
and reliability of psychiatric diagnoses [2, 20–23]. A
paper with Endicott, Spitzer, and Cohen [2] on the
Global Assessment Scale has been especially influ-
ential, with over 2000 citations in the literature as of
January 2004.

Dentistry also benefited from Fleiss’s contribu-
tions. In 1983, he was recruited as chairman of the
Task Force on Design and Analysis, an independent,
not-for-profit organization of biostatisticians and clin-
ical scientists working in dental and craniofacial
research. Under Fleiss’s leadership, the Task Force
promoted the development and use of creative strate-
gies in the conduct and analysis of dental research
studies, with major funding provided by commercial
sponsors. Over the years, the Task Force has played
a key role in the development of basic study designs
for oral health trials and techniques for measuring
periodontal disease. Fleiss coauthored a number of
published manuscripts on the design and analysis
of dental research data [1, 10, 15, 16], as well as
two Task Force–sponsored guideline papers on con-
ducting clinical trials of treatments for gingivitis and
periodontitis [17, 18].

Fleiss was also recognized as a leader in the
field of randomized controlled trials. He served as
the senior statistical consultant on several important,
major randomized trials in cardiology and neurol-
ogy. He also produced reader-friendly manuscripts
on the history, design, and analysis of clinical trials
[6, 8, 9, 11].

Fleiss was a prolific researcher, publishing over
200 journal articles in his curtailed career, as well as
numerous book chapters, book reviews, and editorial
letters. A number of his articles on statistical methods
continue to be influential today. Among his most
cited articles are a paper with Cohen and Everitt
on large sample standard errors for kappa [13],

with 458 citations; a paper on measuring nominal
scale agreement [3], with 682 citations; another paper
with Cohen on kappa [12], with 326 citations; a
paper on measuring agreement between two judges
(see Agreement, Measurement of) [5], with 220
citations; and a very frequently referenced paper
with Shrout on the use of intraclass correlations
in assessing reliability (see Correlation) [19], with
almost 2500 citations (January 2004 data).

Recognized as a leading biostatistician, Fleiss was
asked to participate in a number of scientific panels,
workshops, and review groups for the Food and
Drug Administration and the National Institutes of
Health. He served as a reviewer for many scientific
journals and as an associate editor for Biometrics
(a leading journal in statistical methods for medical,
public health, and biological research) from 1975 to
1984. In 1986, Fleiss was elected President of the
Eastern North American Region of the International
Biometric Society.

Fleiss received many honors for his work bridging
statistics and medical science. He was elected Fellow
of the American Statistical Association and won the
Mortimer Spiegelman Health Statistics Award from
the American Public Health Association in 1973. In
1988, the Statistics Section of the American Public
Health Association (1988) presented him with their
Recognition Award. The Departments of Epidemiol-
ogy and Biostatistics at Harvard University honored
him with a Lifetime Contribution Award in 1998.

Fleiss married Isabel Bogorad, whom he met on
Columbia University’s Morningside campus. They
are survived by their three children, Arthur, Elizabeth,
and Deborah, and six grandchildren (Amir, Yamit,
Eden, Shana, Sarah, and Jesse).
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Floating Point Arithmetic

Floating point number representations are a response
to the demand to store and manipulate in a com-
puter, using a fixed number of digits, numbers which
range widely in magnitude. Most formats that are in
common use store the rough equivalent of either 7
or 15 decimal digits. The consequent finite precision
of floating point arithmetic has large implications for
practical computation, of a kind that we will explore
in this article.

Floating point contrasts with the fixed point repre-
sentations that are common on metering devices. For
example, a car’s dashboard indicators may represent
distance to the nearest tenth of a kilometer or of a
mile, i.e. with the decimal point fixed one place from
the right. In addition to storing the digits of the num-
ber, a floating point representation stores an indicator
of the position of a varying or floating point.

Floating Point Representation

For illustration, assume a computer representation
which retains the seven most significant decimal dig-
its in any calculated result. While modern computers
typically use a base of 2 or 16, exactly the same
principles apply.

On such a computer, 12024 may appear as
0.12024 × 105. The fraction (= 0.12024) and
exponent (= 5) are stored as separate items:

exponent fraction

+ 0 5 + 1 2 0 2 4 0 0

Note that the number is normalized, i.e. stored so
that the leading digit in the fraction is nonzero.
The number of digits for the fraction determines the
precision of the representation, while the number
of digits for the exponent determines the range of
numbers that can be represented.

The square of 12024, calculated in a double-width
register, is 144576576. Storage back in a seven-digit
register gives

exponent fraction

+ 0 7 + 1 4 4 5 7 6 6

The relative error from rounding to seven deci-
mal digit precision is largest when a number of the
form 0.10000004999 . . . × 10z is rounded to 0.1 ×
10z. Thus, the relative error is never more than u =
0.5 × 10−6. The number u, known as the unit round-
off, measures the relative precision of the numerical
representation. Machine epsilon (macheps), which is
the distance between 1.0 and the next largest exact
representation, is twice the unit roundoff.

Observe the contrast between precision and accu-
racy. The limited precision of the arithmetic restricts
the accuracy that is possible in any actual calcula-
tion. The example that now follows demonstrates how
failure to take account of the finite precision of float-
ing point numbers may lead to a catastrophic loss of
accuracy.

The Sum of Squares About the Mean

Sums of squares and products about the mean appear
in the calculation of variances, covariances, correla-
tions, and a variety of multivariate calculations. We
consider the calculation of sums of squares about the
mean, i.e. of

S =
n∑

i=1

(xi − x)2. (1)

The alternative expression,

S =
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

n
, (2)

allows, in principle, a one-pass calculation of
∑n

i=1
(xi − x)2. With x1 = 4007, x2 = 4008, x3 = 4009,
on a computer which rounds the result of each pair-
wise calculation to the seven most significant dec-
imal digits before proceeding, it yields 16056050+
16064060+161072080−144576600/3=48192190−
48192200 = −10.

Table 1 gives the steps at which accuracy is lost
in this calculation.

The final subtraction in (2) made obvious a loss
of accuracy that had occurred earlier in the formation
of each of the quantities

∑n
i=1 x2

i and (
∑n

i=1 xi)
2/n.

More generally, the use of the algorithm that is based
on (2) for a set of numbers where the mean is x

and the standard deviation is s can be expected to
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Table 1

Machine
Exact representation

x2
1 16056049 0.1605605 × 108

x2
2 16064064 0.1606406 × 108

x3
2 16072081 0.1607208 × 108

x2
1 + x2

2 + x2
3 – 0.4819219 × 108

(x1 + x2 + x3)
2 144576576 0.1445766 × 109

(x1 + x2 + x3)
2/3 – 0.4819220 × 108

lose around 2 log10 x/s decimal digits of precision
[6, p.12] in the calculated result.

A simple one-pass algorithm that is vastly prefer-
able to (2) uses

S =
n∑

i=1

(xi − x1)
2 −

[
n∑

i=1

(xi − x1)

]2 /
n.

Updating Algorithms

Even better is the use of a formula that updates the
mean at each step. It illustrates the

new value = old value + correction

approach which is often a good starting point for
the design of a stable algorithm, i.e. an algorithm
that avoids unnecessary loss of accuracy. We include
also the extension that allows the calculation of cross-
products. For this, we define x(k) = k−1 ∑k

i=1 xi , with
y(k) defined similarly, and

s(k)
xx =

k∑

i=1

(xi − x(k))2,

s(k)
xy =

k∑

i=1

(xi − x(k))(yi − y(k)).

Then

x(k) = x(k−1) + k−1(xk − x(k−1)),

s(k)
xx = s(k−1)

xx + (xk − x(k−1))(xk − x(k)),

s(k)
xy = s(k−1)

xy + (xk − x(k−1))(yk − y(k))

(see [1] and [6, p. 13]).

Implications for Regression Calculations

The least squares regression problem (see Linear
Regression, Simple) determines b such that (y−Xb)′
(y − Xb) = ||y − Xb||2 is a minimum. Algebraically,
it is equivalent to solving the normal equations

X′Xb = X′y.

Whenever the mean of one or more columns of
X is large relative to its standard deviation, the
computed versions of X′X and X′y may be inaccurate
representations of the data in X and y.

Floating Point Number Systems

A floating point number system is characterized by
the base β, the number of digits t in that base, and
the exponent range. Thus, numbers take the form
±m × β±z. In the example just given we had a
base β = 10, with t = 7 digits stored. Some Hewlett-
Packard calculators had β = 10, t = 12, and were
able to represent numbers ranging from approxi-
mately 10−499 to just under 10500 with a relative error
of no more than 0.5 × β1−t = 0.5 × 10−11. The use
of base 10 does not take advantage of the simplicity
of the numeric representation that is available when
the base is a power of 2, typically 2 itself or 24 = 16.
While it avoids conversion of numbers between bases
at input and output, it slows arithmetic calculations.

The IEEE Standard

The use of the base β = 2 is now almost univer-
sal for computers, with β = 16 on high-end IBM
machines the main exception. The Institute of Elec-
trical and Electronic Engineers (IEEE) standard 754
[4], developed by a working group over several years,
has become the accepted international standard for
floating point arithmetic. This specifies β = 2, t = 24
binary digits (≈ 7 decimal digits) for single preci-
sion, and t = 53 (≈ 15 decimal digits) for double
precision. Table 2 gives details of selected param-
eters of IEEE single- and double-precision floating
point arithmetic. Most major computer manufacturers
now supply processors that implement these stan-
dards.

Overflow, i.e. a number that is too large to be
represented, or division of a nonzero number by
zero, both lead to ±∞. The operations 0/0, 0 ×
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Table 2 Selected parameters of IEEE single and double-precision floating point arithmetic

Single-precision Double-precision

Maximum floating point number 2128 = 3.403 × 1038 21024 = 1.798 × 10308

Minimum floating point numbera 2−126 = 1.755 × 10−38 2−1022 = 2.225 × 10−308

Unit roundoff (u) 2−24 = 5.96 × 10−8 2−53 = 1.110 × 10−16

Machine epsilon 2−23 = 1.192 × 10−7 2−52 = 2.220 × 10−16

aThis is the smallest number that is stored to full precision.

∞, and
√−1, all lead to NaN (not a number).

Graceful underflow ensures that, whenever possible,
leading zeros in the fraction (= mantissa) supplement
the exponent. Otherwise underflow gives a result
of zero.

There are, in addition, IEEE single- and double-
extended number formats. The double-extended for-
mat must ensure a relative error of no more than
5.42 × 10−20 for numbers in a range of at least
10±4932. A double-extended IEEE format is supported
by the Intel 8087 chip and its successors through to
the Pentium and beyond, and by the Motorola 68000
series chips used in Macintosh computers. There are
as yet few software systems that take advantage of
the double-extended format.

The default rounding mode for IEEE arithmetic
is rounding to the nearest representable number, so
that unit roundoff is u = 0.5 × β1−t , i.e. 5.96 × 10−8

for single-precision and 1.11 × 10−16 for double-
precision arithmetic. The standard requires that all
arithmetic operations are to be performed as if they
were first calculated to infinite precision and then
rounded to the specified precision. For comments on
how this is achieved, see [2] and [3].

The importance of the IEEE standard is that results
are accurate and predictable, providing a sound basis
on which to build reliable numerical software. Even
where IEEE arithmetic is available, compilers do not
necessarily allow access to all features. For a detailed
discussion of IEEE arithmetic, and comments on the
aberrant arithmetics still found on some computers,
see [3]. There is a public domain computer program,
due in the first place to W. Kahan, which checks
out in detail the arithmetic of the computer on which
it runs. BASIC, C, FORTRAN, Modula and Pascal
versions are available; go to http://netlib.bell-
labs.com/netlib and search for paranoia. In S-
PLUS the list .Machine holds settings of a number
of machine arithmetic parameters.

Scaling to Avoid Overflow

Computations can often be reorganized so that the
risk of overflow becomes, instead, the possibility of a
harmless form of underflow. Consider a = 1020, b =
1, and assume single-precision IEEE arithmetic. Then
evaluation of a2 + b2 as a first step in the calculation
of r = (a2 + b2)1/2 will lead to overflow. Thus r

will be set to (∞)1/2 = ∞, with implications for
all subsequent calculations that involve r . This is
avoided by setting d = max{|a|, |b|} and calculating

r = d

[(a

d

)2 +
(

b

d

)2
]1/2

= 1020(1 + 10−40)1/2.

Underflow in the attempt to calculate 10−40, so that
the result is set to zero, is harmless.

Extreme Fitted Proportions in Logistic and
Related Models

A general principle is that one should avoid, or seek a
detour around, the computation of intermediate quan-
tities that are incapable of accurate representation.
Consider the following logit model for binomial data
(see Logistic Regression):

log
πi

1 − πi

= ηi = x′
iβ, (3)

where π is the expected value of a binomial propor-
tion p, and x′

i is the ith row of the model matrix
X. This is a Nelder & Wedderburn style General-
ized Linear Model [7], with logit link and binomial
error.

We consider implications from the finite precision
of floating point arithmetic when one or more esti-
mated πi is very close to one. (Almost inevitably
the observed pi is then one.) Dose–mortality studies
with insects or other pests or pathogens, where the
highest dose may be designed to achieve a very high
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level or mortality, provide examples. Note in passing
that when niπi ≈ ni for one or more i, the asymp-
totic theory for the distribution of both deviance and
Pearson chi-square distribution breaks down.

An iteratively reweighted least squares scoring
algorithm [7, pp. 40–43] fits this model by solving,
successively for k = 1, 2, . . ., the following regres-
sion equation:

X′WXβ
(k) = X′Wu(k)

. (4)

Here W has diagonal elements

wi = (var[pi])
−1

(
dπi

dηi

)2

= diag[niπi(1 − πi)],

and u(k) has elements

u
(k)
i = η

(k−1)
i + dηi

dπi

(pi − π
(k−1)
i )

= η
(k−1)
i + pi − πi

πi(1 − πi)
.

Expressions involving ηi and πi are evaluated at their
current estimates η

(k−1)
i and π

(k−1)
i .

If exp −ηi is less than u = unit roundoff, then

πi = exp ηi

1 + exp ηi

(5)

will be calculated as 1. In fact, to retain around d

significant decimal digits, exp −ηi must be at least
10du. It is important to calculate 1 − πi , not by
subtracting πi from 1, but as

1 − πi = 1

1 + exp ηi

. (6)

This allows accurate calculation of πi(1 − πi) pro-
vided that overflow does not occur in the evaluation
of exp ηi . This has the much less restrictive require-
ment that 1 − πi > 10−308 approximately, in order to
calculate the result to d significant digits in IEEE
double precision arithmetic. A further refinement is
to rewrite (5) and (6) in terms of exp −(ηi/2) and
exp(ηi/2).

If in place of the model (3), one has the com-
plementary log–log model (see Quantal Response
Models)

log[− log(1 − πi)] = ηi = x′
iβ, (7)

then in (4)

W = diag{π−1
i (1 − πi)[log(1 − πi)]

2},

u
(k)
i = η

(k−1)
i − pi − π

(k−1)
i

(1 − πi) log(1 − πi)
.

Here 1 − πi should be evaluated, using the value of
ηi from the previous iterate, as exp(−eηi ).

Even these steps may not be adequate. For the
model (7), consider the data x = 0, 2, 3, 4, 6, 12;
p = 0.450, 0.837, 0.977, 0.998, 1.0, 1.0; with ni =
1000, i = 1, 2, . . . , 6. Then η̂i = 0.5420 + 0.5974x.
For x6 = 12, η̂6 = 6.627, so that in IEEE double-
precision arithmetic exp(−eη6) underflows to 0. The
crossover is at log[− log(2.25 × 10−308)] ≈ 6.563.
Once the current estimate of η6 exceeds this, it will be
necessary to set w6 and u6 to their limiting values as
π6 → 1, i.e. w6 = 0 and u6 = η6. Similar issues arise
when π̂i � 0 for one or more i. The aim is to ensure
that small and mostly meaningless differences of any
π̂i from one or from zero do not prevent calculations
from running to completion.

Rounding Errors and Error Analysis

Rounding errors are likely to occur in any extended
sequence of calculations that involve floating point
numbers. This happens even with carefully designed
algorithms. A key result for IEEE arithmetic is that

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u

where u is the unit roundoff, op is any of the
four arithmetic operations +, −, ×, ÷ [3, p.44], and
fl(x op y) denotes the result of the floating point
computation of x op y. This forms the basis for error
analysis for IEEE arithmetic. It may seem surprising
that the result applies to x − y when x and y have the
same sign. As happened in the example that followed
(2) above, in the calculation of x and y any serious
loss of accuracy occurs before the subtraction.

For the two-pass calculation of S = ∑n
i=1(xi −

x)2 that is based on (1), one can show [3, p.38] that,
neglecting terms in u2 or higher powers, the relative
error in the calculated value of S is no more than
(n + 3)u, where u is the unit roundoff. This bound is
unlikely to be attained in practice. A more realistic
bound may be c(n)1/2u, where a conservative choice
for c might be 1.5. While the error may be of no
consequence when n is small, it may become serious
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for single-precision calculations with, for example,
n = 109.

The bound (n + 3)u on the error in the computed
result is an example of a forward error analysis. It
contrasts with backward error analysis which sets
bounds on the perturbations needed in the input
values so that an exact computation would yield
the computed result. For further examples of such
analyses, see [3, 8] and [9].

Condition Numbers and Ill-conditioning

Ill-conditioning, i.e. a large condition number, implies
that changes that are of the order of the relative
precision of representation of x will lead to large
relative perturbations in y, making a highly accurate
result impossible.

Let y = f (x) be the result of an exact calculation
with input value x. A condition number relates
changes in the elements of y, measured in a manner
that is convenient or appropriate, to changes in the
elements of x. The calculation of y = log x provides
a simple example. The approximate change, ∆y,
which results from a small change ∆x in x, is
∆y ≈ f ′(x)∆x. Thus

∆y

y
≈ ∆x

x

1

log x
.

Any change in x is magnified by a condition number
1/ log x, which becomes large when x is close
to 1. Small changes in x will then lead to large
relative perturbations in y, making a highly accurate
result impossible. A stable algorithm carries out a
computation to the precision allowed by the condition
number. It will give an accurate answer to a well-
conditioned problem, and do as well as can be
expected for an ill-conditioned problem.

Observe that the definition of a condition number
is entirely a matter of algebra. An approximate
estimate of the relative change in y that results
from a relative change ∆x/x is usually adequate.

These ideas have wide application to error analysis
in matrix computations, optimization, numerical
integration, and the numerical solution of differential
equations (see Numerical Analysis).

Condition numbers for vectors or matrices are
usually expressed in terms of vector or matrix norms.
These are further discussed in the article on Matrix
Computations.

Further Reading

Good general references for this article are [2, 3,
8–10].
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Follow-up, Active Versus
Passive

Disease registers are records of all cases of a disease
that have occurred in a known population, and follow-
up is the essential process whereby they are kept
up-to-date, the most important item being vital status
(whether alive or dead).

Cancer registries are the most well-established dis-
ease registers, and for them, recording vital status is
essential. All registries do this, the means being either
active or passive follow-up. The most commonly used
is the passive method where registries depend on the
national death registration system (see Death Certifi-
cation) to inform them about the death of any cancer
patient resident in the area covered by the registry.
The alternative is active follow-up, where, in addition
to passive notification of death, the registry reviews
the vital status of all registered patients not known to
be dead at regular intervals, say five years, until death.

If the death and cancer registration systems were
both perfect, the results of active or passive follow-up
should be the same. However, the number of deaths
to be matched with cancer registrations is huge. In
England and Wales, for example, the list is reduced
by notifying cancer registries only of (i) those deaths
of residents in their area in which cancer appeared
on the death certificate, and (ii) deaths of patients
already known to be on a cancer register. Deaths
may be missed for a variety of reasons; patient
migration after diagnosis, clerical error and computer
matching failure, for example. This results in an
optimistic view of survival and “immortal” patients

who only come to light when they apparently achieve
an impossible age.

Active follow-up, if done properly and patients can
be traced, should avoid these problems. In addition
to passive follow-up, clerks find out from hospitals
or from the patient’s own doctor or from a central
register if one exists, when they were last known to
be alive or when they died.

Use of an active follow-up system produces esti-
mates of survival that depend wholly on patients
whose vital status is known; after the date they were
last known to be alive no assumptions are made about
their status and they do not contribute to the estimate
of survival (the process of censoring; see Censored
Data). While this method is unbiased, there is a loss
of precision in proportion to the number of patients
lost to follow-up. Estimates of survival at a time
after completion of follow-up mean that all living
patients will be censored, but since passive notifica-
tion of death continues, a very pessimistic estimate
of survival, depending only on the patients known
to have died at the time of the estimate, will result.
To avoid this, survival estimates must refer to a time
at or before the time of follow-up; if a later date is
needed, then the assumptions and methods of passive
follow-up must be used.

Active follow-up is more expensive and gives a
less biased and more truthful estimate of survival,
but whether it is worth doing depends on the loss of
accuracy and timeliness resulting from a dependence
on passive follow-up, and how important this is
thought to be.

T. DAVIES & S. GODWARD



Food and Drug
Administration (FDA)

The Food and Drug Administration (FDA) is a fed-
eral regulatory agency with oversight of a wide range
of consumer products: food; medical treatments,
devices, and diagnostics (human and veterinary);
vaccines; blood and blood products; cosmetics; and
other related products. Approximately one-quarter
of consumer dollars are spent on products regu-
lated by the FDA. The agency headquarters are in
Rockville, Maryland, but field offices are located
across the United States and its territories, and an
important research unit of the FDA, the National Cen-
ter for Toxicological Research, is located in Arkansas.
More than 9000 individuals are employed by the
FDA, including many laboratory and clinical scien-
tists, statisticians, epidemiologists, computer scien-
tists, engineers, lawyers, and others. The FDA is part
of the Department of Health and Human Services in
the Executive Branch of the federal government.

Although some aspects of federal oversight of
health issues can be traced back to the nineteenth
century, the first major step in regulating the use of
medical products was the passage of the Biologics
Control Act of 1902. This legislation, resulting from
the deaths of 13 children who received a diphtheria
antitoxin that had been contaminated with tetanus,
provided for federal oversight of the production
of vaccines, serums, toxins, antitoxins, and related
products. A few years later, in 1906, the Federal
Food and Drugs Act prohibited the sale of adulter-
ated and/or misbranded food and drugs. Additional
legislation further clarified and extended regulatory
authorities during the early part of the twentieth cen-
tury, but the next major step in protecting consumers
from unsafe products was the passage of the Federal
Food, Drug and Cosmetic Act in 1938. As with the
Biologics Control Act, the FD&C act was motivated
by tragedy; 107 deaths resulted from an elixir that
had been manufactured using a toxic substitute for the
alcohol that was a routine component of all “elixirs”.
This Act greatly expanded the regulatory authority of
the growing agency, which had been officially desig-
nated as the Food and Drug Administration in 1930.
It added cosmetics and medical devices to the scope
of regulated products, authorized factory inspections,
required drugs to be labeled for safe use, enhanced

enforcement capabilities, and, perhaps most notably,
established a drug approval process so that manufac-
turers would now have to demonstrate a drug was
safe before it could be marketed. In 1962, the Act
was significantly amended. New provisions included
the requirement that drugs be shown to be effec-
tive as well as safe before marketing approval could
be granted (see Drug Approval and Regulation).
Other additions included the requirement that patients
involved in clinical trials provide informed consent,
the shifting of authority over drug advertising from
the Federal Trade Commission to the FDA, and the
establishment of good manufacturing practices for the
drug industry.

Changes in FDA structure and function continued
into the latter part of the twentieth century. In 1971,
FDA assumed responsibility for regulating products
emitting radiation. In 1972, the regulation of bio-
logical products, which had been a function of the
National Institutes of Health, was transferred to the
FDA, and in 1976, the Medical Device Amendments
provided increased and more specific authority for the
regulation of medical devices. The 1992 institution of
user fees – fees paid by pharmaceutical companies
at the time a marketing application was submitted –
resulted in an increased workforce in the areas of
drugs and biologics and consequent acceleration of
product review. User fees were extended to medical
devices in 2003.

FDA consists of six centers, each focused on
a particular area of FDA responsibility, plus the
field offices (Office of Regulatory Affairs) that
handle special investigations, consumer complaints,
and inspections. The basic structure is shown in
Figure 1. The National Center for Toxicological
Research (NCTR) is a basic research facility; the
other five centers are focused on particular areas
within FDA’s jurisdiction: drugs, biologics, medical
devices/radiology, foods, and veterinary products.

Center for Biologics Evaluation and
Research (CBER)

CBER has responsibility for ensuring the safety,
purity, potency, and efficacy of biological products
used to treat, prevent, or diagnose disease and for
ensuring the safety of the nation’s blood supply.
(Biological products are substances derived from liv-
ing organisms or produced by biotechnological pro-
cesses.) This Center regulates vaccines, allergenic
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Figure 1 The structure of FDA

extracts, blood and blood products, test kits for donor
blood, cellular therapies, tissues, and gene therapies.
Biological therapeutics – cytokines such as inter-
ferons and interleukins, monoclonal antibodies, and
other therapeutic proteins – have also been regulated
by CBER, but in 2003, authority for these products
was transferred to the Center for Drug Evaluation and
Research.

Center for Devices and Radiological
Health (CDRH)

CDRH regulates medical devices, ranging from the
simplest items such as tongue depressors to pace-
makers and cardiac stents, diagnostic imaging devices
such as X-ray and mammography machines, comput-
erized axial tomography (CAT) scanners and mag-
netic resonance imaging (MRI) devices, contact
lenses, and computer software used in the diagno-
sis and treatment of disease. Also regulated in this
Center are products that emit radiation that could
potentially impact on health, for example, cellular
phones, microwave ovens, lasers, and sun lamps.

Center for Drug Evaluation and Research
(CDER)

CDER is responsible for drug products, including
over-the-counter (nonprescription) drugs and generic
drugs. The Center is organized according to disease
areas, so that different divisions address oncology

drugs, cardiovascular and renal drugs (see Cardi-
ology and Cardiovascular Disease), anti-infectives,
antivirals, anti-inflammatory drugs, neuropharmaco-
logical drugs, and so on. CDER regulates the vast
majority of new medications, including over-the-
counter and generic drugs, and plays the lead role
within the FDA in regard to policy development relat-
ing to drug development and evaluation.

Center for Food Safety and Applied
Nutrition (CFSAN)

CFSAN oversees safety of domestic and imported
food, with the exception of meat, poultry, and eggs,
which are regulated by the Department of Agricul-
ture. Its regulatory oversight also extends to infant
formula, dietary supplements, food additives, and
cosmetics. CFSAN is directly responsible for safety
aspects of food manufacturing, processing, and stor-
age during the distribution process, including devel-
opment of nutritional labeling, and for developing
the guidance and model standards used by states for
oversight of restaurants, grocery stores, and other
food outlets.

Center for Veterinary Medicine (CVM)

CVM is responsible for ensuring the safety and effec-
tiveness of drugs and food additives (including those
derived from biotechnology techniques) approved
for use in animals, including companion animals
(dogs, cats, and horses), food animals (poultry, cat-
tle, swine), and other species such as honeybees,
wildlife, and zoo animals. When drugs are approved
for use in food animals, the determination of safety
also includes a demonstration that any food derived
from these animals treated according to label direc-
tions is safe to consume.

National Center for Toxicological Research
(NCTR)

NCTR studies issues related to FDA’s regulatory
needs, particularly with regard to understanding the
potential toxicity of FDA-regulated products. Scien-
tists at NCTR collaborate with scientists in other
FDA centers as well as in other parts of the gov-
ernment and in academic institutions to better under-
stand the biology underlying safety issues affecting
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foods and drugs and to develop methods to improve
risk assessment in a variety of areas such as food
safety and human susceptibility to adverse effects of
pharmaceuticals.

Office of Regulatory Affairs (ORA)

ORA is the enforcement arm of the FDA. Most
ORA staff work in more than 150 field offices across
the United States and in Puerto Rico. To ensure
that FDA-regulated products intended for use in the
United States meet required standards and that clin-
ical studies of such products are conducted appro-
priately, ORA staff inspect manufacturing and ware-
house facilities in the United States as well as abroad,
inspect clinical research sites, and test samples in
ORA laboratories. In cases of suspected criminal mis-
conduct relating to these products, ORA takes the
lead in determining appropriate legal actions.

To accomplish their respective missions, each
center has many components. These may include
units focusing on clinical science, laboratory science,
statistics, epidemiology, compliance and enforce-
ment, policy development, press and legislative liai-
son, legal issues, administrative issues (personnel,
budget, etc.), staff training, information technology,
international activities, and other areas. The Office
of the Commissioner coordinates many initiatives in
these areas, particularly when more than one center
is involved, and oversees all center activities.

The Regulatory Process

The FDA derives its authority from legislation, going
back to the FD&C and Biologics Control Acts;
amendments to these acts; and additional legislation
designed to clarify regulatory authority in specific
areas. Regulations specifying required standards for
all aspects of product development are developed on
the basis of this legislation and are published in the
Federal Register when issued. Generally, regulations
are issued in draft form, with opportunity for pub-
lic comment to be submitted and considered before
a final version of the regulation is issued. Volume 21
of the Code of Federal Regulations, published each
year by the Government Printing Office, includes all
current regulations pertaining to FDA authorities.

In addition to regulations, the FDA issues many
guidance documents. These documents are devel-
oped to clarify the intent of the regulations and/or
to present methodological approaches that are recom-
mended (but not necessarily required) by the agency
in specific contexts. Guidance documents are also
published in the Federal Register and are also usu-
ally revised on the basis of public comment, but no
compendium of current guidance documents is pub-
lished yearly, as is done for regulations. All operative
regulations and guidance documents are available for
reading or printing from the website of the FDA cen-
ter(s) issuing the document.

Statistics at the FDA

Each FDA component except for the Office of Reg-
ulatory Affairs and the Office of the Commissioner
has its own statistical group whose work focuses on
the particular responsibilities of the center in which
it resides. For example, the statisticians in the Center
for Food Safety and Applied Nutrition deal substan-
tially with survey and other observational data and
risk assessments related to possible food contami-
nants (see Nutritional Epidemiology); statisticians
at the National Center for Toxicological Research
work in the area of bioassay; while the statisticians
in the centers that evaluate investigational drugs, bio-
logics, and medical devices review data from clinical
trials, testing these new products, as well as the study
designs that are proposed for such tests. Statistical
aspects of postmarketing safety surveillance, and risk
assessment more generally, are of increasing inter-
est in all centers. FDA statisticians are also often
involved in the development of new regulations and
guidance documents (see Guidelines On Statistical
Methods in Clinical Trials) that focus on statisti-
cal issues or for which statistical considerations are
important and frequently publish on methodological
issues arising from their review work.

In 2003, there were more than 150 statisticians
at the FDA. All FDA statisticians are automatically
granted membership in the Food and Drug Adminis-
tration Statistical Association (FDASA), established
in 1995 to provide a focus for cross-center statistical
activities. The FDASA cosponsors an annual meeting
with the Biopharmaceutical Section of the American
Statistical Association and plans a yearlong semi-
nar program for FDA statisticians.
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In addition to statisticians employed by the FDA,
a large number of statisticians from academic insti-
tutions and other organizations contribute statistical
expertise to FDA decision making, primarily by serv-
ing on FDA Advisory Committees. These commit-
tees are established by each center to provide expert
advice and comment on product submissions, poten-
tial risks of regulated products, and other issues. Most
Advisory Committees include at least one statistician.
Statisticians external to the FDA may also be asked
to assist with the review of submissions or develop-
ment of policy documents that include discussion of
statistical issues.

Relevant Websites

www.fda.gov: Main FDA website; includes links
to all Center websites and general information
about the FDA.

www.gpo.gov/nara/cfr/index.html: Code of
Federal Regulations

www.gpo.gov/su docs/aces/aces140.html:
Federal Register

SUSAN ELLENBERG



Forecasting

Many data sets in biostatistics arise naturally as time
series, meaning a set of data collected sequentially
through time. Examples include (i) an electrocardio-
gram trace (ECG), (ii) the number of cases of measles
in successive months in a particular country, and
(iii) the size of an insect colony on successive days.
The analysis of time series data poses special prob-
lems because successive observations are usually not
independent but are correlated through time. This
phenomenon is called autocorrelation (see Autocor-
relation Function).

The first step in any time series analysis or fore-
casting activity is to plot the data against time in a

graph called a time plot. This sounds a simple task,
but, in fact, it may not be easy to choose appropri-
ate scales to present the data. Figure 1 shows two
plots of a famous time series called the lynx data.
Figure 1(b) has a more compressed vertical scale and
may initially seem a less natural way to present the
data. However, it does, in fact, allow the viewer to
see that the series typically falls faster than it rises.
This nonlinear feature cannot be seen in Figure 1(a).
An alternative possibility is to plot a transformation
of the data such as logarithms. More generally, atten-
tion to detail is needed to label the scales carefully,
to give the graph a clear self-explanatory title, and
so on. Only then will it be possible to interpret the
graph safely. Indeed, a good time plot should enable
the analyst to get a good idea of the properties of

Figure 1 Two time plots of the annual numbers of Canadian lynx trapped in the Mackenzie River district of North-West
Canada over the period 1821–1934. Part (b) has a compressed vertical axis that enables the rise and fall of the graph to
be more easily assessed. Source: Records of the Hudson Bay Company
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the time series, as well as identifying any outliers or
discontinuities.

Finding an appropriate time series model for a
given time series is a complex process that involves
looking at a time plot of the data and also at the
autocorrelations of the series at different lags. The
reader is referred to Diggle [4] for a biostatistical
introduction and to Chatfield [3] and Wei [6] for more
general introductions. These three books also include
introductions to the special time series activity of
forecasting, which is the topic of this article (see
Spectral Analysis; Variogram).

Denote an observed time series by x1, x2, . . . , xn

and suppose we wish to predict a value at some time
in the future, say, xn+k . Here, the integer k is called
the lead time and the forecast of xn+k made at time
n is denoted by x̂n(k). Most authors use the terms
“forecast” and “prediction” interchangeably.

Many different forecasting methods are available
and this article can only give a flavor of them.
The choice of method depends partly on clarifying
the objectives of a particular study and finding out
exactly how a forecast will be used. The choice also
depends on the skill of the analyst; for example,
in deciding whether to use a univariate projection
forecast, which only uses past values of the given
variable, or a multivariate forecast, which incorpo-
rates the effects of one or more explanatory variables.
This article restricts attention to univariate forecasts,
apart from noting that multiple regression can be used
to produce multivariate forecasts, but has difficulty in
coping with correlated errors and can give spuriously
high values of R2.

Some methods are specifically designed to cope
with two sources of variation called trend and season-
ality (see Seasonal Time Series). Trend may loosely
be described as a long-term change in the under-
lying mean level, while seasonality describes cyclic
variation (see Circadian Variation) that might take
place over a period of one day (diurnal variation),
one week or one year. For example, the number of
(human) deaths is typically higher in winter than sum-
mer. Figure 1 shows little evidence of trend in the
number of lynx caught, but shows clear evidence of
cyclic variation with a period of between nine and
10 years. However, as the period does not appear to
be fixed, the variation would generally be described
as cyclic rather than seasonal, and is more difficult to
model and forecast.

An obvious procedure for forecasting a time series
that shows an approximately linear trend is to fit a
simple linear regression on time; namely, xt = β0 +
β1t + εt , and substitute the required future value of
t – see, for example, [4, Section 7.1]. This procedure
emphasizes that forecasting is extrapolation in that it
involves using the model outside the range of data to
which it has been fitted. If the trend changes, forecasts
will have poor accuracy. In any case, the trend is
unlikely to be exactly linear, and a more modern
approach is to assume local linearity and update
forecasts by a procedure such as Kalman filtering
and smoothing. Details will not be given here, but we
introduce a very simple example of a Kalman filter
called exponential smoothing, which is more typical
of modern time series forecasting methods than linear
regression on time.

A general form of linear forecast is to take a linear
combination of the observed values; namely,

x̂n(1) =
n−1∑

j=0

wjxn−j , (1)

where the weights {wj } need to be determined. It is
natural to give more weight to more recent observa-
tions and to choose a set of weights that sum to unity.
One suitable set of weights is given by

wj = α(1 − α)j , (2)

where α is a constant such that 0 < α < 1. These
weights do sum to unity as n → ∞ and decay geo-
metrically. However, the real virtue of choosing geo-
metric weights is that (1) incorporating (2) can be
rewritten in the recursive form

x̂n(1) = αxn + (1 − α)x̂n−1(1). (3)

Thus, as each new observation becomes available,
forecasts can readily be updated. The smoothing
parameter, α, can be chosen so as to optimize the one-
step-ahead forecasts for the data we already have. A
higher value of α gives more weight to more recent
observations.

Exponential smoothing can readily be generalized
to cope with a linear trend (called Holt’s linear
trend method) and also with seasonality (when it is
generally called the Holt–Winters method).

Another class of models that is often used to pro-
duce forecasts is that of autoregressive (AR) models.
(see ARMA and ARIMA Models). A time series,
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Xt , is said to follow an autoregressive process of
order p, denoted AR(p), if Xt is a linear func-
tion of the preceding p values in the time series,
together with an “error” term, εt , that is usually
assumed to be from an independent sequence of
N(0, σ 2) variables. Thus, an AR(1) process may be
written

Xt = αXt−1 + εt , (4)

where the parameter α has to be chosen such that
|α| < 1 in order for the process to be stationary.
It turns out that AR models can generally be fit-
ted by methods similar to those used for ordi-
nary regression models, except that the explana-
tory variables are now lagged values of the given
variable. Forecasts may be computed in an intu-
itively obvious way. For example, the AR(1) model
gives a one-step-ahead forecast at time n equal
to x̂n(1) = αxn. AR models can be generalized to
include lagged values of the “error” terms (called
moving average terms – a rather misleading termi-
nology) and can also be applied to nonstationary
data by suitably differencing the data. For exam-
ple, first-order differencing gives the series (x2 −
x1), (x3 − x2), . . . , (xn − xn−1) and will remove a
linear trend. The large class of models formed in
the above way is called the autoregressive inte-
grated moving average (ARIMA) class and forms
the basis of the Box–Jenkins forecasting approach –
see [1].

The final approach mentioned here is based on the
state-space or structural time series model – see,
for example, [5]. A simple example is given by the
so-called steady model for which

Xt = µt + nt , (5)

where µt denotes the unobservable current level and
nt denotes the error term. It is further assumed that
µt is itself a random variable that evolves through
time according to a random walk so that

µt = µt−1 + wt, (6)

where wt denotes a second error variable independent
of nt . The (unobservable) variable µt is called a state

variable and the current estimate of it is provided
by the updating procedure called the Kalman filter.
Given an estimate of µt , forecasts of Xt may readily
be computed.

Choosing the most appropriate forecasting method
for a particular problem is not easy and the reader is
referred to [3, Section 5.4].

This article has concentrated on the computation
of point forecasts. In practice, it is often desirable
to calculate an interval forecast. The term prediction
interval is used to describe an interval within which
a future value is expected to occur with a specified
probability. Some forecasting methods lend them-
selves more easily than others to the computation
of the relevant standard errors that enable prediction
intervals to be calculated. However, the possible pres-
ence of model uncertainty (the model may change
in the future or may have been wrongly identified)
means that prediction intervals are typically too nar-
row. A review of methods for computing prediction
intervals is given in [2].
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Forensic Medicine

There are several problems in forensic medicine for
which a statistical approach is particularly apt. These
include, in particular, estimation of the post-mortem
interval, or time since death, the estimation of the age
at death, determination of sex from skeletal remains
and, amongst the living, the estimation of the quantity
of alcohol consumed, as well as issues of paternity.
Simple summary statistics are used often; for exam-
ple, in recording variations in relative frequencies
amongst genetic marker systems in different popu-
lations. This issue is extended to a general discussion
of problems of forensic identification, with particular
reference to DNA profiling, by Dawid & Mortera [2].
Many standard statistical techniques, such as regres-
sion, are used. Only recently have other techniques,
e.g. kernel density estimation and Bayesian meth-
ods been suggested.

Post-mortem Interval

Accurate estimation of the post-mortem interval
(PMI) is of obvious importance in the resolution of an
investigation involving a corpse. The most common
approach is to study factors, such as the temperature
of various parts of the body, which vary with PMI,
and to determine a suitable relationship between these
factors and temperature. In 1962 Marshall & Hoare
[9] published the following formula modeling rectal
body temperature:

Tr − Ta

T0 − Ta
= A exp(Bt) + (1 − A) exp

(
AB

A − 1
× t

)
,

(1)

where Tr denotes rectal temperature at any time,
Ta denotes ambient temperature, T0 denotes rectal
temperature at death (t = 0), A is a constant that
expresses the relative duration of a post-mortem tem-
perature plateau phase, B is a constant that describes
the cooling rate for as long as there is a differ-
ence between the ambient temperature and that of
the body, and t is the time of death. Note, how-
ever, that it is a mathematical formula. While no
attempt appears to have been made to model the
errors implicit in the estimation of the parameters,
there have been many empirical studies to deter-
mine the magnitude of the errors. Correction factors

have been introduced to allow for different environ-
mental factors, for example. Sometimes nomograms
are used that relate rectal temperature, ambient tem-
perature and body weight to time since death. The
Marshal–Hoare formula measures time since death
in the early post-mortem period (i.e. in hours). For
longer periods of time, measurement of post-mortem
enzyme activity may be used [5].

Age at Death

Gustafson [6] determined age at death on the basis
of a regression of adult human age on morphological
changes of six characteristics in the structure of teeth.
This was based on applying normal linear regression
techniques to ordinal and categorical data. Gustafson
claimed an error of about three to four years, though
later estimates of about seven years or even 16 years
have been determined. Various Bayesian approaches
that account for the data structure and provide results
with mean absolute deviations of four to six years
are advocated by Lucy et al. [7] and kernel density
methods are described by Aykroyd et al. [1].

Sex Determination

Linear discriminant analysis is used to aid the
determination of the sex of skeletal remains. The high
accuracies of discrimination obtained have their basis
in the unique form of sexual dimorphism exhibited by
the adult human pelvis. One recent study [8] derived
a score function, using discriminant analysis, from
122 adults of known sex and applied this to 230 other
adults of known sex with 100% correct classification.

Blood Alcohol Measurements

The amount (A) of alcohol consumed based on the
blood alcohol concentration (Ct ) is calculated using
Widmark’s [12] formula:

A = r × p × [Ct + (β × t)], (2)

where r is the ratio of the total body ethanol con-
centration to the blood ethanol concentration, p is
the body weight, and β is the ethanol elimina-
tion rate constant. Note that r varies between males
and females. Various empirical studies have investi-
gated the relationship between predicted and actual
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concentrations. The formula is also used for breath
alcohol concentration by the substitution of its value
for Ct in (2). This introduces another source of error,
generally leading to a reduction in the estimated
amount of alcohol consumed [4].

Inverse Prediction

Notice that (1) gives an equation for determining rec-
tal temperature from time since death and that (2)
gives an equation for determining the amount of alco-
hol consumed from a blood alcohol concentration. In
both cases, the inverse prediction is required. This has
been discussed briefly by Aykroyd et al. [1], where
age at death is regressed on a score determined from
six dental indicators of Gustafson [6].

Paternity

In a paternity case, a male is alleged by the mother of
a child to be the father of the child. The truth of the
allegation can be partially tested by calculating a so-
called “probability of nonpaternity” or “probability
of exclusion” (Q, say) in a specific genetic system.
The genotypes of the mother and child provide
information about the true father in that males with
certain genes are excluded from fatherhood of the
child.

Consider a co-dominant system where all geno-
types are detectable (in contrast to a domi-
nant/recessive system in which only phenotypes are
detectable). Let

p1, p2, . . . , pk,

(
k∑

i=1

pi = 1.0

)

represent the gene frequencies associated with a co-
dominant system with k alleles, then

Q =
k∑

i=1

[pi(1 − pi)]2 +
k−1∑

j=1

k∑

i=j+1

pipj {[1 − pi]3

+ [1 − pj ]3 + [pi + pj ][1 − (pi + pj )]
2},

where the assumption is made that all individuals
involved in the paternity case come from a large
random mating population at equilibrium [10].

Consider now several loci and let Ql be the
probability of exclusion at locus l. The overall

probability of exclusion (i.e. the probability the
system will exclude a falsely accused male in a
paternity action), Q, follows from being able to
exclude the alleged father from at least one locus.
Thus, if the loci are independent [11],

Q = 1 −
∏

l

(1 − Ql).

A related approach expresses the probability that
the alleged father is the true father (F ), given the
evidence (E1, E2, . . . , En) of n phenotypic systems,
as follows:

Pr(F |E1, E2, . . . , En)

=
{

1 + Pr(F )

Pr(F )

n∏

i=1

Pr(Ei |F)

Pr(Ei |F)

}−1

,

where F is the event that the alleged father is
not the true father. A particular example of this
approach with Pr(F ) = Pr(F ) is described by Essen-
Möller [3].
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Forward Search

Introduction

The forward search is a powerful robust statistical
method for exploring the relationship between data
and fitted models. It is a development of the methods
described in the articles on Residuals and Diagnos-
tics that aids the discovery of clusters of observations
and previously unidentified important subsets of the
data as well as revealing any groups of outliers.

In this article, we give examples of the use of
the forward search for regression and generalized
linear models. These applications, together with the
material on transformations of data covered in the
article Fan Plot and the extension to nonlinear
regression, are described by Atkinson and Riani [1].
We also give an example involving multivariate
data, a topic extensively covered in [3].

Regression and Residuals

The forward search orders the observations by close-
ness to the assumed model, starting from a small
subset of the data and increasing the number of obser-
vations m used for fitting the model. Outliers and
small unidentified subsets of observations enter at the
end of the search.

We write the multiple regression model as

ym = Xβ + ε, (1)

where y is the n × 1 vector of responses, β is the
p × 1 vector of parameters, and it is assumed that
the additive errors of observation ε are independently
distributed with constant variance σ 2. Also in (1), X

is the n × p matrix of carriers, that is, of explana-
tory variables and perhaps functions of them, such
as quadratics and interaction terms.

It is helpful to list the various stages of the forward
search.

1. Notation. The vector of p parameters β is esti-
mated by least squares applied to subsets of the
observations. For an arbitrary subset of m observa-
tions, the estimate is denoted β̂(m). For a subset
S∗(m) of size m chosen by the forward search, the
estimate is written β̂(m∗).

2. Starting the Search. The search starts from a
small subset of size m0; usually m0 = p or perhaps
p + 1. To find the starting subset S∗(m0), we ran-
domly select 1000 subsamples of size m0. The initial
subset S∗(m0) provides the least median of squares
estimator β̂(m∗

0), that is, it minimizes the median
squared residual (Rousseeuw [5]) of the observations
over the 1000 samples.

3. Moving Forward in the Search. When the m

observations constituting S∗(m) are used in fitting,
the fitted values from the estimate β̂(m∗) yield n

least-squares residuals e(m∗). We order the squared
residuals e2(m∗) and take the observations corre-
sponding to the m + 1 smallest as the new subset
S∗(m + 1). Usually, this process augments the sub-
set by one observation, but sometimes two or more
observations enter as one or more leave. This may
also happen at the beginning of the search, where
S∗(m0) is chosen to minimize the median squared
residual, not to find the subset yielding the m0 +
1 smallest squared residuals. Because of this very
robust starting point and the form of the search, out-
liers, if any, tend to enter as m approaches n.

4. Monitoring the Search. If any quantity is of
interest when it is calculated for the complete set of
n observations, we can monitor its evolution during
the forward search. In our example, we first look at
a forward plot of the residuals e(m∗), scaled by the
final estimate of σ . Examples of forward plots of
other quantities of interest, such as estimates of the
parameters β and σ 2 are given by Atkinson and Riani.

The analysis of the data on mandible length [6] in
the article on Goodness of Fit using simple regres-
sion shows appreciable evidence of nonnormality of
the residuals. The normal plot of the least-squares
residuals in Figure 3 of the article “Goodness of Fit”
shows three large negative residuals and two further
residuals that are also rather large.

This structure is apparent in the forward plot of the
residuals in Figure 1. Units 165, 166, and 149 have
large negative residuals throughout the search. Units
146 and 167 also have appreciable negative residuals
for much of the search. Working backwards, the last
units to join the search are these five, in order 165,
166, 149, 146, and 167. These are the five negative
residuals visible in the Q–Q plot in Goodness of
Fit, which is of the unscaled version of the residuals
at the end of the search in Figure 1. The forward
search shows that, in this example, the residual plot,
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Figure 1 Mandible length data, first-order model: forward plot of scaled residuals. There are five large negative residuals
for much of the search, but those for units 146 and 167 are masked at the end of the search
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Figure 2 Mandible length data, second-order model, logged response: forward plot of scaled residuals. Four units, 164
to 167, behave differently from the rest, which have an approximately normal distribution

when all observations are fitted, identifies most of
the structure of the residuals. The values of x and
y for these units is clear from the scatter plot of
Figure 5 of the article on Diagnostics. If the last three
units, which are shown as open circles or crosses in
the plot, are excluded, the straight line fitted to the
data becomes such that unit 167 has an appreciable
negative residual. As the forward plot shows, this
residual is reduced when the last three units enter
the subset. There is therefore some masking of the
outlying nature of this unit.

The units with large residuals identified in this
analysis are not all of those plotted with open circles
in Figure 5 of the article Diagnostics. One reason is
that these were identified as being influential obser-
vations, rather than having large residuals. A second
reason is that that analysis was for a logged response
with a second-order model. Figure 2 shows the for-
ward plot of the residuals from this model.

Four units are highlighted in Figure 2. If we ignore
them, the forward plot of the residuals is virtually
symmetrical throughout the search, with no other
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appreciable outliers. The most negative residuals are
those for units 149, 7, 1, 145, and 146. But these
values do not change much during the search and, as
the Q–Q plot in Figure 1 of the article on Diagnos-
tics shows, these are not particularly extreme values
when compared with order statistics from a normal
distribution. The four highlighted units in the figure
are units 164 to 167. They are highlighted because
their behavior is very different. Initially, they all have
large negative residuals, but by the end of the search,
the residuals are all appreciably smaller, two having
become positive. These units are those for the four
oldest fetuses. It seems as if the model toward the
end of the search may be being altered by their pres-
ence and so produces small residuals. Certainly, this
would not be surprising as such extreme points in X

space will be leverage points, a property amplified by
fitting a quadratic model. Figure 2 of the article on
Diagnostics shows how extreme these leverage val-
ues are. A question we then have to consider is how
the evidence for a quadratic model depends on these
four units.

Forward Added Variable T Test

If the fitted model and data agree, the parameter esti-
mates should be reasonably constant throughout the
forward search. These estimates are orthogonal to the
residuals used to order the entry of units into the sub-
set S∗(m). The same is not true of the estimate of σ 2,
which, being the sum of squared residuals, increases
during the search as increasingly outlying observa-
tions are included in the subset. As a result, the t tests
(see Student’s t Distribution) for the parameters in
the linear model decrease dramatically during the for-
ward search. We describe here an alternative form of
search that provides information on the inferential
effect of the units on the estimated linear model.

If the standard regression model (1) is rewritten as

y = Xβ + ε = Qθ + wγ + ε, (2)

Q is the n × p − 1 matrix of carriers obtained by
deleting the column w from X. At the end of the
search, the t test for the column of X corresponding
to w from multiple regression on X is identically the
added variable test described immediately after equa-
tion (11) in the article on Residuals. This is found
by first regressing y and w on Q and then testing the

regression through the origin of the resulting residuals
of y on those of w.

We adapt the added variable test to the forward
search by dropping each column of X in turn to create
p − 1 vectors w. We then use regression on each Q to
provide a forward search from which w is excluded.
We monitor the behavior of the added variable test for
each w, thus obtaining p − 1 plots of t statistics from
p − 1 different forward searches: p − 1 because we
are not usually interested in testing hypotheses about
the value of the constant in the regression model.
Because we exclude w from the search, the t test for
w has the correct distribution and increases during the
search rather than decreasing. The details are in [2].

We start, in Figure 3, with a forward plot of the
added variable t test for regression of untransformed
mandible length on gestational age. The plot shows
a steady upward trend to a very significant value
of 35.90. There is no sign of the importance of
individual observations such as the units giving large
residuals in Figure 1; evidence for the regression is
spread throughout the data.

Figure 4, for regression of log y on a quadratic
in age is similarly well behaved. The value of t1, the
t test for regression on age, rises steadily to 18.08,
while that for t2 for the quadratic term decreases to
−12.55. The leverage points 164 to 167, which are
such a notable feature of Figure 2, do not enter at
the end of either of the added variable searches on
which the plots in Figure 4 are based. The plot shows
no evidence that these four units are responsible
for the quadratic term in the model. Despite the
appearance of Figure 2, the evidence of curvature
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Figure 4 Mandible length data, second-order model,
logged response: forward plot of added variable t tests t1
and t2 for regression on age and its square. Evidence for
the regression is again spread throughout the data

in the relationship with a logged response is spread
throughout the data.

Our analysis thus shows that taking a logged
response combined with a quadratic model produces
residuals, which have an approximately normal dis-
tribution, with four leverage points, the residuals for
which change appreciably during the search. These
four units are not influential for the choice of terms in
the linear model. However, they might be influential
for the choice of the transformation. But the forward
plot of the test for transformation in Figure 5 of the

article on the Fan Plot shows that this is not the case.
Thus, these procedures provide no evidence for the
suggestion mentioned by Royston and Altman that
the fetuses with an age greater than 28 weeks were
different from the younger ones.

Generalized Linear Models

The structure provided by the theory of generalized
linear models allows us to apply the forward search
to, particularly, gamma, Poisson, and binomial data
in a manner analogous to that used for multiple
linear regression. Chapter 6 of Atkinson and Riani
[1] contains theory and examples.

In generalized linear models, we have a response
y, a vector of linear predictors with elements η =
xT β, and a link function g(µ) = η connecting the
two. In the article on Residuals, the deviance D, the
analogue of the residual sum of squares in regression,
was written as

D =
n∑

i=1

d2
i , (3)

where d2
i is the contribution of the ith unit to the total

deviance. The deviance residual was then defined as

rDi = di sign (yi − µ̂i). (4)
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(c) complementary log-log links



Forward Search 5

To extend the forward search to generalized linear
models, we replace the least-squares residuals ei

with the deviance residuals rDi . Then, as before,
when m observations are used in fitting, the optimum
subset S∗(m) yields n deviance residuals rD(m∗).
We order the squared residuals r2

D(m∗) and take the
observations corresponding to the m + 1 smallest as
the new subset S∗(m + 1).

For the regression models in the previous sections,
we looked at forward plots of residuals and of t tests
for components of the linear predictor. As well as
problems about individual outliers and the correct
form of the linear predictor, there is also a need
in generalized linear models to specify the correct
form of link function. In the articles on Goodness
of Fit and Residuals, analyses are given of Bliss’s
beetle data. These are binomial data in which the
probability of success θi at dose level xi is modeled
by the link function g(θi ) = ηi . The analysis used the
logistic link

g(θ) = log
θ

1 − θ
. (5)

There was evidence that this link was not satisfactory
for these data. Alternative links are the probit

g(θ) = Φ−1(θ), (6)

where Φ is the cdf of the standard normal distribu-
tion, and the complementary log–log link

g(θ) = log{− log(1 − θ)}. (7)

(see Quantal Response Models).
We explore these three possible link functions by

looking at forward plots of absolute deviance resid-
uals, which will indicate whether the unsatisfactory
nature of the logistic link was caused by a few out-
liers or whether there is a systematic lack of fit.
Figure 5 shows plots of absolute deviance residuals
from forward searches for three models in which the
explanatory variable is log(dose) and the three links
are the logit, probit and complementary log–log. The
observations are numbered from the lowest dose level
to the highest. For the logit link observations, 1 and 2
are the last two to be included in the forward search.
The crossing of the lines at the end of the plot in
the top panel of Figure 5 shows that the inclusion
of observations 1 and 2 seems noticeably to affect
the ordering of the residuals. With the probit link
units 3 and 4 (the last two to be included) seem to

be different from the rest of the data: they are badly
predicted by models in which they are not included.
However, the residuals from the forward search with
the complementary log–log link in the bottom panel
of the figure show no such behavior; all residuals
are smaller than two throughout, and relatively con-
stant. Since the scale parameter is not estimated, it
is possible to make such absolute comparisons of the
residuals across different models, even if they come
from different link families.

The conclusion from Figure 5 is that the comple-
mentary log–log link is satisfactory and that the other
two are not. This conclusion is not dependent on a
few observations, but is spread throughout the data.
To sharpen and quantify this general impression based
on forward plots of residuals, we now consider the
goodness of link test, introduced in the article on
Goodness of Fit. This provides a test for the ade-
quacy of each link from the t test for the inclusion
of the constructed variable η̂

2 in the linear predic-
tor. The constructed variable plot in Figure 8 of the
article on Goodness of Fit indicates rejection of the
logistic link when all observations are used in fitting.
We use forward plots of the test statistics to test three
links and to see whether the conclusions are based on
all observations.

Figure 6 shows a forward plot of the goodness of
link test, the order of introduction of the observations,
as in Figure 5, being different for the three links. For
the logit and probit links, these plots show evidence
of lack of fit at the 5% level, which is indicated
by the statistic going outside the bounds in the plot.
Although, it is inclusion of the last two observations
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that causes the values of the statistic to become
significant, it is clear from the steady upward trend
of the plots that lack of fit is due to all observations.
The plot for the complementary log–log link shows
no evidence of any departure from this model. This
plot also shows that unit 5, which is the one with the
biggest residual for the complementary log–log link
and the last to be included in this forward search, has
no effect on the t value for the goodness of link test.

This analysis shows that, of the three links consid-
ered, only the complementary log–log link is satis-
factory. The plot of fitted values for the logistic link
in Figure 6 of the article on Residuals relates this
finding to individual observations. The fitted dose
response curve for this symmetrical link fits badly
in the center of the experimental region, whereas,
as Figure 6.36 of Atkinson and Riani [1] shows,
the asymmetric complementary log–log link provides
an appreciably better fit over the whole range of
x values.

Multivariate Data

With multivariate observations, we replace the
squared residuals used in the forward search for
regression and generalized linear models with the
squared Mahalanobis distances

d2
i (m∗) = {yi − µ̂(m∗)}T Σ̂

−1
(m∗){yi − µ̂(m∗)},

(8)

where µ̂(m∗) and Σ̂(m∗) are estimates of the mean
and covariance matrix of the observations based on
the subset S∗(m). These distances are used for order-
ing the observations and for determining how we
move forward in the search. We use the robust bivari-
ate boxplots of Zani et al. [7] to determine an initial
subset, which is not outlying in any two-dimensional
plot of the data. The content of the contours is
adjusted to give an initial subset of the required size.
Once we have some idea of the structure of the data,
we start the search with subsets that seem potentially
interesting.

As an example with some expected and some
unexpected structure, we look at readings on six
dimensions of 200 Swiss bank notes, 100 of which
may be genuine, and 100 forged. All notes have
been withdrawn from circulation and classified by

an expert, so some of the notes in either group may
have been misclassified. Also, the forged notes may
not form a homogeneous group. For example, there
may be more than one forger at work. The data, and
a reproduction of the bank note, are given by Flury
and Riedwyl [4, pp. 4–8].

Figure 7 is a forward plot of Mahalanobis dis-
tances scaled by the estimate of Σ at the end of
the search. The search starts with 20 observations
on notes believed genuine. In the first part of the
search, up to m = 93, the observations seem to fall
into two groups. One has small distances and is com-
posed of observations within or shortly to join the
subset. Above these there are some outliers and then,
higher still, a concentrated band of outliers, all of
which are behaving similarly. The plot clearly shows
the difference between the genuine notes and the forg-
eries. Toward the end of the search, there is evidence
that the group of forgeries is not homogeneous.

The structure of the group of forgeries is also
readily revealed by the forward search. Figure 8 is
a forward plot of the scaled Mahalanobis distances
just for the forgeries. In the center of the plot,
around m = 70, this shows a clear structure of a
central group, one outlier from that group and a
second group of 15 outliers. As successive units
from this cluster enter after m = 85, they become
less remote and the distances decrease. By the end
of the search there is appreciable masking, so that
the group of 15 observations is no longer clear from
the plot of the Mahalanobis distances. Under such
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Figure 7 Swiss Banknote Data, all 200 observations:
forward plot of scaled Mahalanobis distances starting with
20 notes believed to be genuine. The two groups are clear,
but a third group seems to appear toward the end of the
search
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Figure 8 Swiss Banknote Data, 100 notes classified as
forgeries: forward plot of scaled Mahalanobis distances.
Toward the end of the search, there seems to be a group of
15 observations and a further single outlier
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Figure 9 Swiss Banknote Data: scatterplot of y6 against
y4. The “genuine” notes are marked with crosses; the
labeled units are the last 15 to enter the search

conditions, the deletion methods described in the
article on Diagnostics are likely to fail to reveal the
structure.

In this example, the forward search clearly indi-
cates not only the presence of two groups of notes, but

also an unexpected subset of 15 observations, show-
ing that the group of forgeries is not homogeneous but
consists of two subgroups. Once attention has been
drawn to the existence of this structure, it is possi-
ble to find it in the data. Figure 9 is one of the 15
different panels of the scatterplot matrix for these six
dimensional data and by far the most revealing. The
last 15 observations to enter the subset are numbered:
the other forgeries are shown by filled circles and the
“genuine” notes by crosses. It seems that one genuine
note has been misclassified.

The entries in this article show various ways in
which the forward search can elucidate the structure
of data and, in the case of the third example, reveal
unexpected subsets. A fuller analysis of the data
on Swiss banknotes, together with numerous other
applications of the forward search to multivariate
data, are described in [3].
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Foundations of
Probability

Probability obeys three, basic laws (given below)
about which there is little disagreement; and what
there is has little effect on their mathematical conse-
quences or on practice. Any quantity obeying these
laws is termed a probability and, in contrast to
the mathematics, there is considerable disagreement
about the interpretation of the quantity. Furthermore,
the disagreements over interpretation have important,
practical consequences in that an Inference made
from a data set can vary profoundly as a result of
distinct views about probability. Probability is a sub-
ject where the foundations really matter. This article
begins on the solid ground of the three laws, and then
passes to the shifting sands of interpretation.

Probability is a numerical measure of uncertainty
about an event. Uncertainty depends on the knowl-
edge available at the time the uncertainty is being
quantified. Probability therefore depends on two argu-
ments, the uncertain event, A, under consideration
and the truth of an event, B, describing the knowl-
edge then possessed. It is written Pr(A|B) and reads
“the probability of A, given B”, the vertical line sep-
arating the uncertain and given events. [Many writers
introduce it as Pr(A), omitting reference to the sec-
ond argument, but experience shows that this can be a
cause of practical confusion. They then term Pr(A|B)

a conditional probability]. The three, basic laws,
holding for a suitable collection of events, usually
members of a Borel field, are

1. Convexity. For all A, C, 0 ≤ Pr(A|C) ≤ 1 and
Pr(C|C) = 1.

2. Addition. If the events of a sequence A1, A2, . . .

are exclusive, then

Pr(∪iAi |C) =
∑

i

Pr(Ai |C).

3. Multiplication.

Pr(A ∩ B|C) = Pr(A|C) Pr(B|A ∩ C).

(see Axioms of Probability). Events are exclusive if
the truth of any one precludes any of the others being
true. ∪iAi denotes the union of the events; namely,
the event that is true if and only if any one of the
individual events is true. In the case of two events,

the union is written A ∪ B. A ∩ B is the event that
is only true if A and B are both true.

The whole of the rich calculus of probabilities
flows from these three laws, or axioms. Yet the laws
are merely simple expressions about proportions, as is
seen by consideration of an urn containing a number,
N , of balls, identical except that they are either white
or black, and simultaneously either plain or spotted.
Let one ball be drawn at random from the urn, event
C above. Let A be the event that the ball is white,
then Pr(A|C) is interpreted as the proportion of white
balls w/N . It therefore lies between 0 and 1. Also
Pr(C|C) = 1 since some ball is certain to be drawn.
This is convexity. To demonstrate additivity, let B

be the event that the withdrawn ball is spotted and
suppose that there are no white, spotted balls in the
urn. This ensures that A and B are exclusive, and that
A ∪ B is the event that the withdrawn ball is either
white or spotted. Then,

Pr(A ∪ B|C) = w + s

N
= w

N
+ s

N

= Pr(A|C) + Pr(B|C),

where s is the number of spotted balls. For multiplica-
tion, suppose that the exclusive condition is removed,
so that there are balls that are both white and spotted,
r in number, and A ∩ B is the withdrawal of such a
ball. Then,

Pr(A ∩ B|C) = r

N
=

(w

N

)
·
( r

w

)

= Pr(A|C) Pr(B|A ∩ C).

That r/w = Pr(B|A ∩ C) follows, since, in the prob-
ability, A, being a white ball, is known to be true and
the only uncertainty in B is the additional requirement
of it being spotted. It is, therefore, the proportion of
spotted balls amongst the white.

Mathematically, probability is very simple, namely
just a proportion. It is remarkable that such rich,
mathematical consequences follow from such ele-
mentary ideas. In performing numerical calculations
with probabilities, it is often useful and sensible to
think of them as proportions. The addition law has
been illustrated for only two events. Using more
than two colours of balls, it easily extends to any
finite number of events. The only disagreement about
the laws of any significance is whether the addi-
tion law extends to an enumerable infinity of events.
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The minority who say it does not, call probabil-
ity finitely-additive. Otherwise, it is sigma-additive,
although, this being the majority view, the adjec-
tive is usually omitted. Occasionally, the convex-
ity law is extended by replacing Pr(C|C) = 1 by
Pr(A|C) = 1 if and only if C logically implies A.
This conveniently excludes some zero probabilities,
since, equally, Pr(A|C) = 0 if and only if C logically
implies the falsity of A. The mathematical founda-
tions of probability are simple, precise and essentially
agreed. We now turn to interpretations, of which there
are three principal ones.

Interpretations

The Classical View

The mathematical treatment of probability began with
games of chance, like the rolling of dice. Here, there
are often a number, N , of exclusive possibilities each
of which has the same uncertainty. For example,
with a single die, N = 6 and, if it is well-made and
sensibly thrown, each of the six faces has the same
chance of occurring. The illustration above, of an urn
with a ball drawn at random, means that each ball has
the same chance N−1 of being drawn. Exactly as in
the discussion above, this leads to other probabilities
and to the three laws based on the equiprobable cases.
In games of chance, the laws may then be used as the
basis of mathematical calculations to obtain values of
interest, such as the probability of winning a game.
Though influential in the early development of the
subject, and still valuable in calculations, the classical
view fails because it is seldom applicable. Thus, if
actuaries want to find the probability of death within
a period, there is no obvious set of cases having the
same uncertainty.

The Frequentist View

This is currently the most popular interpretation of
probability and that used in most biostatistical studies.
It finds expression in many forms. The one that is
most nearly related to the classical view is to think
in terms of a population, usually infinite and often
conceptual, where a proportion p of members have
a property, A. In a change of language, p is the
frequency of A in the population and Pr(A) = p is
the probability that a member of the population has

property A. [Here is an example where the second
argument of probability is omitted. In this view,
Pr(A|B) is defined, at least when Pr(B) �= 0, by
the multiplication law, as Pr(A ∩ B)/ Pr(B).] Thus,
the actuary can think of a population, say, of white
females in their 50s in a country, and think of the
proportion dying within a year.

Another expression of the frequentist view is illus-
trated by the repeated tossing, under similar circum-
stances, of a drawing pin (American: thumb tack),
which may either fall with the point up, U , or down,
D. Experience shows that the frequency of Us in a
long sequence of similar tosses appears to settle down
to a limit. This limit is interpreted as Pr(U) for a
single toss. It is not difficult to see that such an inter-
pretation will satisfy the three laws. The concept is of
considerable value in science because a good experi-
ment can be thought of as a member of a sequence of
similar experiments and the identification of proba-
bility with frequency makes sense. Indeed, the ability
to repeat a phenomenon under controlled conditions
is a hallmark of science. In the usual model for sta-
tistical inference, in which data x has probability (or
probability density) f (x|θ) dependent on a parameter
θ , the interpretation is the frequency of occurrence of
x were the parameter to have the value θ , exhibiting
the conditional form used in the formulation of the
axioms above.

The classical exposition of the foundations of the
frequentist view is by von Mises [13], though the
important ideas of Fisher [5] have had more influ-
ence. For example, we have seen that probability
requires the knowledge of a population with known
frequencies. Fisher pointed out that it is also neces-
sary to have ignorance, expressed by our inability
to recognize any subpopulation within which differ-
ent frequencies obtain. This observation has become
important in restricting the sample space from all val-
ues of a random variable X to the subset of those
values having a statistic with the value observed in
the data. For instance, Fisher claimed that in the anal-
ysis of a contingency table, the population should be
restricted from all tables of a given total size to tables
having the same margins as that observed. The idea
of recognizable subsets or subpopulations is impor-
tant in applied work.

Although useful and widely applied, the frequency
view has some limitations, the most serious of which
is that it typically does not apply to uncertainty about
the parameter in f (x|θ). θ is an uncertain number,
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but it is not usually natural to think of it as a mem-
ber of a population, or as having a frequency in a
series. Consequently, in the frequentist position, it is
not ordinarily sensible to refer to the probability of θ ,
given x, despite the fact that the value of the param-
eter, given the data, may be the principal interest in
inference. These, and other difficulties, have largely
been overcome by extensive developments this cen-
tury. For instance, confidence limits for θ , based on
x, provide an appealing substitute for Pr(θ |x). Sig-
nificance levels for a hypothesis H (see Hypothesis
Testing; P Value) replace Pr(∼H |x), where ∼H is
the complement of H .

The Bayesian View

This interpretation is fundamentally different from
the other two. It starts with a person, or subject,
conveniently referred to as “you”. You are uncertain
about the truth of an event, A, but have knowledge
summarized by B. Then Pr(A|B) is a numerical mea-
sure of your belief that A is true, given B. The key
concepts here are “you” and “belief”. This interpreta-
tion of probability is personalistic, or subjective, and
expresses the opinions of a person, or subject, about
the uncertain aspects of the world as seen by that
person. For the not very sound reason that Bayes’
theorem plays a more important role when proba-
bility is interpreted as belief, rather than frequency,
this attitude is called Bayesian. It has an immedi-
ate advantage over the frequentist view because it is
always applicable. In particular, it makes sense to talk
about Pr(θ |x) or the probability that global warming
is taking place. There are, however, some consider-
able difficulties associated with it.

The first problem is why your beliefs should be
capable of being expressed by numbers and, if they
are, why they should obey the three laws of prob-
ability. This has been answered by several, varied
lines of argument that demonstrate that the numer-
acy and the laws follow from other, simpler axioms.
These demonstrations will be discussed later. For the
moment, it suffices to remark that there is substantial,
logical support for the Bayesian position.

A second problem is that, even if belief can be
equated with probability, how are the numbers to
be obtained? In the frequency view, data on observ-
able frequencies in finite series are available and only
require the conceptual passage to the limit. The prob-
ability of death is measured by the frequency of death,

or at least by suitable, actuarial treatment of observed
frequencies. How are you to measure your belief that
you will die within the year? Or, even harder, your
belief that the political party you support will win at
the next election? This difficulty has not been over-
come satisfactorily, although, in many cases studied
in frequentist statistics, it presents no serious prob-
lem. A valuable, recent reference is [16].

It is often said that a third difficulty with the
Bayesian view is its subjectivity. A great strength of
science is its claimed objectivity, so that the Bayesian
position is often thought inappropriate for scientific
inference. There are two responses. In the first it is
held that two people with the same information, B in
our notation, would, if logical, agree on Pr(A|B), so
that any differences between persons are due either to
different information or to false logic. One approach
is to introduce situations, B0, in which probabili-
ties, given B0, are agreed and then to calculate the
general values by Bayes’ theorem. B0 is commonly
thought of as a position of ignorance. Whilst substan-
tial progress has been made, difficulties remain. This
is sometimes called a “necessary” view: for stated
A and B, Pr(A|B) necessarily follows. The second
response is to deny that all of science is objective.
Scientists differ strongly in their beliefs concerning
global warming. The early stages of a scientific study,
which is where inference may be useful, is sub-
jective. Objectivity occurs when enough data have
been accumulated and beliefs converge. The sun will
rise tomorrow. Additionally, we notice that much
of “objective” science is based on probability, or
what we will later call “chance”. Quantum mechanics
and genetics are two examples. A modern, subjective
approach is provided in [8].

These are the three, principal, foundational aspects
of probability. In the remainder of this article, the fre-
quentist and Bayesian views are explored in greater
depth because their practical differences are of impor-
tance to biostatisticians.

Justification for the Laws

Ever since the earliest days of probability, the laws
have been discussed. They were finally put into a
precise, mathematical form in 1933 by Kolmogorov
[7], essentially that given above. This formulation
has provided the basis for the enormous advance
in probability, as distinct from scientific inference,
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since then. Probability is a field in which the founda-
tions are the laws, and problems of interpretation are
often not needed or, if they are, can comfortably be
accommodated within the frequentist view. The situ-
ation is different in statistics. At about the same time
as Kolmogorov, Ramsey [10] took a very different
approach. He was concerned with someone, “you”,
having to choose amongst a number of actions in a
world where uncertainty was present and relevant. He
asked what principles you might use to decide on one
action in preference to others. He developed a num-
ber of basic principles that he felt should obviously
obtain in decision-making and used these as axioms
to construct a calculus. Here is an example of such
an axiom. Suppose event A is the only uncertainty
present and that, were A to be true, you would prefer
action a1 to action a2. Suppose that this preference
persists were A to be false. Then the axiom says that
you would still prefer a1 to a2 when A is uncertain
for you. This is a form of the “sure-thing” principle;
sure, because the status of A is irrelevant.

The calculus of decision making that Ramsey
developed had to encompass the uncertainties present,
described by beliefs about relevant events. To pro-
duce a single number as a measure of uncertainty,
he introduced the idea of an ethically, neutral event
of probability 1/2: one for which you did not care
whether it was true or not, and where the uncertain-
ties of truth and falsity were equal. The toss of a coin
that you judge to be fair is an example. This pro-
vided a standard by which other uncertainties could
be compared. He showed that the axioms implied
that beliefs should obey exactly the three laws listed
above. In other words, he provided a justification for
the Bayesian position by showing that beliefs had to
be expressed through probabilities. Ramsey’s axioms
are at a more fundamental level than Kolmogorov’s.
The latter’s laws are the former’s theorems.

It was a startling advance but lay essentially unap-
preciated until Savage [11] independently presented a
similar development that attained the level of modern,
rigorous mathematics. By then, two other approaches
had appeared. In 1939, Jeffreys [6], a geophysi-
cist, was concerned with inference in the handling of
scientific data and developed axioms for reasonable
inferential procedures. Again, the principal deduction
from his axioms was that scientific beliefs must obey
the probability laws. Unlike other writers, Jeffreys
went on to develop practical procedures for treating

scientific data. In particular, he developed an origi-
nal method of testing a hypothesis, H , that addressed
Pr(H |data) directly, rather than through a significance
level. Partly because Jeffreys was a physical scien-
tist, and partly because Fisher, working in biological
fields, was successfully originating frequentist meth-
ods, these Bayesian ideas have had less impact in
biostatistics than in other fields.

Meanwhile, two other approaches were being
developed by de Finetti [4]. Suppose you were asked
to describe your belief in the truth of an uncertain
event, A, by a number x. Suppose, further, you were
told that, were you to state x, you would be given a
penalty score (x − 1)2 if A were subsequently shown
to be true, and x2 if false. What value of x would you
choose? Extend this idea to several events, each with
its associated value and consequent score. Finally, the
scores are to be added. What properties would the
chosen values possess? In some simple and beautiful
mathematics, de Finetti showed that your numbers
must obey the laws, although, in the case of the addi-
tion law, it need only hold for a finite number of
events – the finite additivity already mentioned. The
procedure for calculating the penalty is called a scor-
ing rule. That above is the quadratic scoring rule. It
has subsequently been shown that the result holds for
any, reasonable rule.

De Finetti also introduced a second method based
on bets concerning an uncertain event, A. Suppose
that you were required to post odds x against A,
in the sense that you would accept a stake s on A,
and be prepared to pay out xs (and return the stake)
were A subsequently shown to be true, retaining the
stake if false. Furthermore, unlike most real betting
situations, you were also prepared to have the stake
s placed on ∼A, returning x−1s if ∼A were true;
odds against ∼A being the inverse of odds against
A. Suppose that you did this for several events, each
with its associated odds. Then he showed that unless
the values (1 + x)−1 obeyed the laws of probability,
again with the finite restriction, a person could make
a Dutch book against you; that is, the person could
place a series of bets that would result in your
experiencing sure loss, whatever the truth or falsity
of the events. Again, the laws of probability are an
inevitable consequence of reasonable requirements.

There have been numerous extensions of these
ideas and the position today is that there are many and
varied ways, either based on decision-making under
uncertainty, or directly on belief as a primitive notion,
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that lead to the use of the probability calculus in the
expression of beliefs about uncertain events. These
all provide a justification for the Bayesian view. It is
noteworthy that adherents of the frequentist position
have not been prepared to state which of the axioms
they object to. This they should do, since implicit
acceptance of them implies the Bayesian paradigm.
There have been cogent objections raised, but these
lead to attitudes that are far removed from those
adopted by frequentists. For example, one approach
leads to upper and lower probabilities, employing two
numbers to describe uncertainty for an event instead
of the single probability. These two values obey
laws similar in character to, and extensions of, those
listed above. Walley [15] is an excellent reference.
Shafer [12] has introduced another variant, in “belief
functions”.

Inference and Action

The approach to uncertainty, leading to probability,
used by Ramsey, Savage and some others, is indirect
in that it investigates, and treats as fundamental,
decision-making, rather than belief (see Decision
Theory). An advantage is that it yields two other
dividends besides probability. It demonstrates that
the outcome to any action needs to be described by
a number describing its worth to you. This is your
utility for that outcome. Furthermore, the optimum
act is that which maximizes your expected utility,
MEU. The expectation is calculated by reference to
the probabilities. Thus, if an act can lead to one of
n exclusive and exhaustive outcomes with utilities
u1, u2, . . . , un, having probabilities p1, p2, . . . , pn,
the expected utility of that act is

∑
uipi . Finally,

that act is taken of maximum expected utility.
In a modified form, this conclusion has been

accepted by the frequentist school. This stems from
the work of Wald [14]. He used loss in place of
utility, so minimizing expected loss instead of MEU,
but the change is of no serious content. Wald started
from the frequentist approach and adopted loss as
a primitive idea in extension of the earlier ideas of
losses in connection with errors of the two kinds
in hypothesis-testing. Loss, unlike utility, was not
deduced from more basic requirements, as with Ram-
sey. Wald proved a basic, general theorem that essen-
tially showed that only decisions that were MEU
could be sensible. Against any other rule, a Dutch

book could be made. Wald called such solutions to a
decision problem, Bayes’ solutions. Because he had
no way of determining the probabilities (pi above),
which did not have a meaning within the frequentist
paradigm, they were merely positive numbers, adding
to one. Wald was unable to recommend a unique deci-
sion rule, but only to say that a sensible rule must be
a Bayes’ solution. He did advocate a rule, minimax,
which was soon shown to be unsound. Today, fre-
quentists often choose a Bayes’ solution, justifying
the p’s by frequency considerations of how the rule
would behave in conceptual repetitions.

The decision-oriented work is important for infer-
ence because it supplies perhaps the best answer to
the question: what is the purpose of inference? Why
do we test hypotheses and estimate parameters? Some
might reply that it is carried out in pursuit of an
understanding of the world and that it is part of
knowledge for its own sake. But knowledge, how-
ever “pure” scientists like to think of it, is used
to select actions. Knowledge about DNA is used
to change plants. The studies we have mentioned
show that MEU is the proper method to select an
action. It follows, therefore, that our pure knowledge
should be stated in a form appropriate to MEU. In
particular, scientific inference should be so appropri-
ate. MEU requires, in estimation, probability state-
ments about parameters, Pr(θ |data), probabilities that
are only available in the Bayesian approach. Confi-
dence intervals are not in a form suitable for MEU.
Therefore, according to followers of Savage, they
are unsatisfactory as a form of statistical inference.
Similarly, in hypothesis-testing, Pr(H |data) fits with
MEU, whereas a significance level does not.

Exchangeability

It often happens that probability as belief differs
numerically from probability as frequency. To take
a simple example, return to the tossing of a draw-
ing pin mentioned above. After you have tossed it a
few times, you will have a belief about the uncer-
tain event of it falling point uppermost at the next
toss. This may differ from the limiting frequency of
such falls, a value that may be unknown to you.
The biometrician, W. F. R. Weldon, had probabil-
ity 1/6 that a die his research assistant was tossing
would show six. After many tosses, the frequency
was found to exceed that value. There is, however,
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a relationship between the two values of belief and
frequency expressed in a result usually ascribed to
de Finetti. Consider a sequence of uncertain quanti-
ties (random variables is the frequentist terminology)
X1, X2, . . . , Xn. With the pin or the die, Xi = 0 or 1
according to the result of the ith toss. There are many
situations in which your beliefs about the sequence
are such that they are invariant under permutation
of the suffixes. Thus, Pr(X1 = 0, X2 = 1, X3 = 1) =
Pr(X3 = 0, X1 = 1, X2 = 1), etc. If this is true for
all n, the sequence is said to be exchangeable; any
Xi can be exchanged for any other as far as your
beliefs are concerned. With exchangeable, binary Xi ,
your probability for any finite sequence of 1’s and
0’s depends only on r and n − r , the numbers of 1’s
and 0’s, respectively, in the sequence. De Finetti’s
result says that for a binary, exchangeable sequence,
the probability of any sequence with r 1’s and n − r

0’s is ∫ 1

0
xr(1 − x)n−r dF(x)

for some distribution function F(·) on [0, 1]. Further-
more, r/n tends, with probability one, to a limit, θ

say, as n → ∞. There is a similar result for general,
exchangeable sequences.

The integral effectively says that you can express
your beliefs about the sequence by supposing that
there exists a value x such that, given x, the X’s are
independent and identically distributed with Pr(Xi =
1|x) = x, in other words, a Bernoulli sequence (see
Binary Data). Your belief about x is described by
the function F(·). Using the limit result, you, as
a Bayesian, can act like a frequentist, having a
Bernoulli sequence with parameter θ , but, unlike a
frequentist, having a probability distribution for θ .
Notice that although to a frequentist θ is a probability,
indeed, it is the defining expression; to a Bayesian it is
not usually a belief. It would describe a belief were it
known, which, being a limiting frequency, it usually
is not, as with Weldon. Bayesians often describe θ

as a chance, to emphasize the distinction. Without
the distinction, Pr(θ) appears as a probability of a
probability, which is nonsense.

Since most situations studied in statistical infer-
ence are either based on exchangeable sequences
(as with a random sample from a population) or
on sequences that are modified from an underly-
ing exchangeable one (as in an autoregressive pro-
cess (see ARMA and ARIMA Models), Xn+1 =

αXn + εn where the ε’s are exchangeable), this result
is of wide applicability in providing a link between
frequentist and Bayesian ideas. It is also important
in physics, where the behavior of a set of particles
is often judged exchangeable. The probabilities that
physicists use are chances in the above terminology,
not beliefs.

The Likelihood Principle

It therefore happens that a Bayesian and a frequentist
will use the same model of independent and identi-
cally distributed random variables, given a parameter
θ , but the former will add a probability distribution
for θ . Foundationally, the two viewpoints come close
together as a result of de Finetti’s theorem. However,
there is something that pulls them apart and can make
their results differ. Repeating what was said above,
the foundations of probability really do matter. What
separates them are their attitudes towards the likeli-
hood principle.

Let data x be obtained as a result of observing a
random variable X having density f (x|θ) for each
parameter value θ . This is the part common to the
two schools. As a function of θ for fixed x, f (x|θ) is
called the likelihood of θ (at x). Let p(θ) be the den-
sity for θ adopted by you, as a Bayesian, expressing
your beliefs about the parameter based on general
knowledge of the situation, but excluding the data.
This is usually termed the prior (to x) distribution.
The data will change your belief about θ to

p(θ |x) ∝ f (x|θ)p(θ)

by Bayes’ theorem. This is the posterior (to x) distri-
bution of θ , given x. The important point here is that
the posterior belief about θ depends on X, the quan-
tity observed, only through x, the observed value. In
particular, if two values, x and y, have the same like-
lihood, f (x|θ) = f (y|θ) for all θ , then the inferences
about θ from x and from y are the same. That state-
ment constitutes a form of the likelihood principle.
Bayesians respect and obey the principle in infer-
ences from data, as the above development shows.
(The principle does not apply in experimental design
or generally in pre-data analysis.) A good reference
is [2].

The frequentist does not obey the principle and
therein lies a major, practical difference between the
two paradigms. For example, a frequentist may use
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an unbiased (see Unbiasedness) estimate t (x) of θ ;
that is, one satisfying

∫
t (x)f (x|θ) dx = θ,

for all θ , where the integral is over the sample space,
the range of X. This concept uses, in the integration,
values of X other than the observed value x, thereby
violating the principle. Often the space is restricted,
as we saw above with Fisher’s ideas, by confining the
range to values of x having common elements with
that observed, as with the margins of a contingency
table. The key point is that the frequentist requires
a space of x-values; the Bayesian does not. By
the likelihood principle, the latter restricts the space
to one value; that observed. The contrast between
the two views is clarified by a slight exaggeration:
Bayesians operate in the space of the parameter θ ;
frequentists in the sample space of X. For example,
in contrast to the frequentist’s unbiased estimate, the
Bayesian might use the posterior mean

t (x) =
∫

θp(θ |x) dθ,

with integration over the whole parameter space.
Here is an example that illustrates the difference.

Suppose a drawing pin is tossed a number of times
under conditions that lead both the frequentist and
the Bayesian to think the sequence exchangeable
and therefore, by de Finetti, Bernoulli. Consider two
scenarios:

1. An integer n is selected. The pin is tossed n

times and is observed to fall point uppermost on
r occasions.

2. An integer r is selected. The pin is tossed until
is falls uppermost for the rth time. This takes n

tosses.

Suppose the values (r, n) are the same in the
two scenarios. Then, for a given sequence; that is,
including the order of the results, the likelihood for
both scenarios is θr (1 − θ)n−r for parameter (chance)
θ . The Bayesian will make the same inference in both
cases; namely,

p(θ |r, n) ∝ θr(1 − θ)n−rp(θ).

However, the frequentist will use the binomial distri-
bution nCrθ

r (1 − θ)n−r in 1 and the negative bino-
mial n−1Cr−1θ

r (1 − θ)n−r in 2. In 1, the unbiased
estimate of θ is r/n; in 2, it is (r − 1)/(n − 1).

The violation of the likelihood principle by
frequentists is surprising, since the principle follows
logically from the conditionality principle and
sufficiency, usually accepted by frequentists, see [3].

Hypothesis Testing

A common activity in science is that of testing a
hypothesis. A null hypothesis is erected as an “Aunt
Sally” (American: “Straw man”) and data are col-
lected in an attempt to destroy it. Repeated failure
to do this leads to its acceptance as part of scien-
tific knowledge. The frequentist approach to test-
ing uses the concept of a significance level. The
Bayesian, following Jeffreys, addresses the problem
directly through the probability of the null hypothesis,
given the data. To illustrate the substantial differ-
ences between the approaches, take the case where
exchangeable observations x1, x2, . . . , xn are, given
θ and σ 2, normally distributed with mean θ and
variance σ 2. Here σ 2 is known but θ is not and
the null hypothesis is that θ = 0. Although some-
what specialized, many testing situations resemble
it approximately, at least in large samples, and the
conclusions derived from it apply rather generally. A
more detailed treatment is provided by [1].

The frequentist will use the statistic t = n1/2x/σ ,
where x is the sample mean. On the null hypoth-
esis, this is standard normal with zero mean and
unit variance. The significance level of a two-sided
test is P = 2Φ(−t), where Φ is the distribution
function of a standard normal deviate. Thus, if
t = 1.96, P = 0.05.

The Bayesian will require a prior distribution for
θ when θ �= 0. Suppose this is N(0, τ 2). The mean
is reasonably at the null value and τ measures the
spread of plausible alternatives about the null value.
The next stage is to calculate by Bayes’ theorem the
posterior odds on θ = 0. Odds are chosen in pref-
erence to probabilities since the theorem is simpler
in terms of them. Under the null, x, which is suf-
ficient, is N(0, σ 2/n). Under the alternative, it is
N(0, σ 2/n + τ 2). To pass from prior to posterior
odds it is necessary to multiply by the likelihood
ratio; namely, the ratio of the probability of x when
θ = 0, to that when θ �= 0. This is

n1/2σ−1 × exp[−nx2/2σ 2]

(σ 2/n + τ 2)−1/2 × exp[−x2/2(σ 2/n + τ 2)]
,
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which simplifies to

(1 + ρ−2)1/2 × exp[−t2/2(1 − p2)],

where ρ = σ/τn1/2. This is well approximated by its
form for a large sample size when ρ → 0;

n1/2τ/σ × exp(−t2/2).

The posterior odds will therefore be small if, like
the P value of the frequentist, |t | is sufficiently large.
Both schools therefore agree that t = n1/2x/σ is the
right statistic and that numerically large values cast
doubt on the null. But how large does it need to
be for significance? The frequentist says larger in
modulus than a value that does not depend on n,
but only on P . Thus, if P = 0.05, it needs to exceed
in modulus 1.96 for all n. The Bayesian treatment
says it has to be large enough for the posterior odds
on θ = 0 to be sufficiently small. Taking logarithms
of the approximate value above, this amounts to
saying

t2 > log n + 2 log
( τ

σ

)
+ K, (∗)

where K is a constant depending on the critical value
selected for the odds. Thus, to compare with the
frequentist P = 0.05, odds of 19 to 1 against might
be selected, when K = 2 log 19 = 5.89.

A striking difference between the two schools is
now revealed. The frequentist demands for signifi-
cance that t2 is greater than a fixed value, whereas
the Bayesian demands that it exceeds the value in
(∗). The latter depends on what alternatives were
reasonable a priori as expressed by τ/σ . But, more
importantly, it depends on the sample size, unlike
the frequentist’s value. Either for sufficiently large
τ or for a sufficiently large sample, the Bayesian
would not declare significance, whereas the frequen-
tist would. It is easier for the frequentist to obtain
significance than it is for the Bayesian. The inclusion
of the term in log n in the Bayesian approach, but not
in the frequentist, makes for substantial operational
differences between the two schools. This conclu-
sion applies not just in this little problem but more
widely; for example, in model selection, the loga-
rithm acting like an automatic Occam’s razor and
deterring the introduction of extra parameters (see
Parsimony).

Fuzzy Logic

Probability is a way of handling uncertainty. It is not
the only way that has been suggested. An alternative
approach is by fuzzy logic. It is now possible to buy
electronic equipment “designed by fuzzy logic”. The
laws of this logic concern uncertain events, as does
probability, but are not based on addition and mul-
tiplication, but on minimization and maximization.
This results in considerable operational differences
between the two methods. One feature that distin-
guishes fuzzy logic from probability is that the former
has no axiomatic justification. The minimization law
has not been proved from other, more primitive,
assumptions on the lines followed by Ramsey, de
Finetti and others. Rather, it has been invented as
simple and apparently sensible. A good discussion of
the foundational position and its practical effect is
given in [9], with discussion.
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Founder Effect

The “establishment of a new population by a few
original founders (in an extreme case, by a single
fertilized female) that carry only a small fraction of
the total genetic variation of the parental population”
was termed the founder principle by Mayr [3]. The
effect on the descendant population resulting from
the small number of genes brought by the founders
is called the founder effect. The effects are many.
First, there is a great reduction in genetic variability
compared with the parental population. If heterozy-
gosity, averaged over a large number of loci, is used
as a measure of genetic variability, then there is a
great reduction in heterozygosity. Secondly, there is a
high probability of extinction of the descendant pop-
ulation. Thirdly, the effect of random genetic drift
is very pronounced, resulting in large fluctuations of
allele frequencies in the initial generations. Fourthly,
the levels of inbreeding are high in the initial genera-
tions, which adds to loss of heterozygosity. Compared
with the parental population, there is not only a great
reduction in average heterozygosity (calculated from
allele frequencies at several neutral loci; see Gene
Frequency Estimation) in the small, newly founded
population, but the average heterozygosity remains
reduced for a very long time even after the descendant
population recovers its original parental population
size [4]. The frequencies of recessive disease alleles
(see Genotype) and neutral alleles are particularly
affected. Some disease alleles are lost through drift,
and some alleles that may have been rare in the
parental population are pushed to high frequencies.
For example, three specific mutations in BRCA1 and
BRCA2 genes that are responsible for breast cancer
are more common in the Ashkenazi Jewish popula-
tion, whose ancestry can be traced to a small group
of founders from central and eastern Europe. Studies
indicate that there is a markedly increased prevalence
of two mutations in the BRCA1 gene, 185delAG
and 5382insC, and one mutation, 6174delT, in the
BRCA2 gene, among Ashkenazi Jews than among
their ancestral populations, which has been attributed
to the founder effect [5–7]. These effects and fea-
tures are being fruitfully exploited for understanding
the architectures of genetic diseases.

Consider a large population, from which a group
of individuals moved out and founded a new pop-
ulation. In the large parental population, except for

newly arisen ones, disease genes occur on many
haplotype backgrounds (see Haplotype Analysis).
That is, if one considers a number of marker loci
in the region flanking the disease locus, then the
combinations of alleles at these marker loci on
chromosomes that carry the disease-causing allele are
usually many. However, in the newly founded pop-
ulation, because the number of founding individuals
is small, the haplotypes of chromosomes carrying the
disease-causing allele are much fewer. Thus, individ-
uals who are affected will show a much greater shar-
ing of marker alleles in the genomic region surround-
ing the disease locus in the descendant population
than in the parental population. Therefore, by examin-
ing the sharing of haplotypes among affected individ-
uals, one can map more easily the disease locus in the
descendant population than in the parental population.
This enhances the power of mapping genes in a newly
founded population with a small number of founders.
This feature has been very successfully exploited to
map a gene for a rare autosomal recessive disease,
namely benign recurrent intrahepatic cholestasis [2].
This gene was mapped to chromosome 18 by an
analysis of shared genomic segments in only four
affected individuals belonging to an isolated fishing
community, of several thousand individuals, in The
Netherlands.

In newly founded populations, dominant disease
alleles are lost much more quickly than recessive dis-
ease alleles, unless the reduction in fitness due to
the dominant disease is negligible. In other words,
recessive disease alleles tend to persist longer in
small populations compared with dominant disease
alleles. However, due to the founder effect, and sub-
sequent genetic drift, different newly founded pop-
ulations often have different sets of recessive dis-
eases. Therefore, such populations are very useful
in mapping genes underlying various recessive dis-
eases.

Unless the initial number of founders is very
small, alleles and haplotypes that are common in the
parental population are seldom completely absent in
a descendant population [8]. Many common diseases
are currently thought to be due to actions of com-
mon alleles at multiple loci. Furthermore, genotypes
at the loci that underlie a common disease also are
known to interact with environmental (including cul-
tural) factors (see Gene-environment Interaction).
Populations that are founded by a small number
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of individuals often share environmental and cul-
tural factors. Thus, such populations are generally
environmentally and culturally homogeneous. This
is a nongenetic founder effect, which is currently
being exploited by geneticists to map genes under-
lying common and complex diseases. Examples of
populations, which are currently being investigated
for such purposes, are the Amish of the US and the
Bedouins of west Asia. While founder effects can be
fruitfully exploited for mapping genes, it is becoming
increasingly clear that there are other crucial deter-
minants of the success of such endeavors. Haplotype
sharing among affected individuals provides clues
to the locations of disease genes. However, when
there are multiple genes underlying a disease, such
as a common, complex disease, it is harder to dis-
cern haplotype sharing. If a disease allele is old,
then the region around the disease locus in which
marker alleles will be shared among affected individ-
uals is expected to be short. Thus, gene mapping by
examination of haplotype sharing is more efficient
in newly founded populations. There is currently a
major interest in estimating the nature and extent of
linkage disequilibrium in isolated populations with
different founding and demographic histories. The
data being generated through individual efforts of
researchers and the Single Nucleotide Polymorphism
(SNP) Consortium will be of great value in judg-
ing the usefulness of population isolates that exhibit
strong founder effects [1].
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Fractional Factorial
Designs

Fractional factorial designs are designs in which only
a fraction of the total number of possible factor
combinations is used (see Factorial Experiments).
Fractional factorials were introduced by Fisher [5]
in 1942 for use in agricultural experiments. Unfortu-
nately, these powerful designs were not widely used
in medicine or the health sciences until much later.
In the biopharmaceutical arena, fractional factorial
designs are widely used in exploratory studies of new
organic synthesis routes and pharmaceutical formu-
lation development. In addition, fractional factorials
are the basis of matrix designs used in drug stability
studies (see [13]).

Fractional factorials are a very efficient method-
ology for reducing the number of experimental runs
necessary for exploratory studies. When one is inter-
ested in many factors, use of a full design would
result in a prohibitively large number of runs. For
example, suppose one wants to include eight factors
in a two-level design; a full factorial would require
28 = 256 runs! Experience has shown that it is rea-
sonable to assume that three-way and higher-order
interactions are negligible, and hence it is indeed
wasteful to use a full factorial for a moderate to large
number of factors. With eight factors, there are only
eight main effects and 28 two-way interactions, which
requires 37 runs not 256 runs.

In this article we will see how to select fractions
of full designs so that effects of interest are estimated
as efficiently as possible. The focus of the discussion
will be directed toward two-level designs; however,
other fractional designs are discussed and references
are given for the interested reader.

Construction of Fractional Factorials

The construction of general fractional factorials is
a challenging combinatorial problem. There is no
unique method for construction, and given the char-
acterization of the factorial, many methods have been
developed. A variety of construction methods are
summarized in Raktoe et al. [15].

Fractional factorials are characterized by the num-
ber of levels r1, . . . , rk specified for a set of k factors.
Designs are symmetric if all factors have the same

number of levels, ri = r, i = 1, . . . , k, and are said
to be mixed otherwise. Prime powered designs have
ri = pm, where p is a prime and m is a positive inte-
ger. Construction methods based on group theory and
finite geometry have been developed for prime pow-
ered symmetric fractional designs. Details are given
in Raghavarao [14]. The special subclass of two-level
designs is expounded upon in the next section.

An Algorithm for Standard Two-level Designs

A two-level fractional factorial design with k vari-
ables is denoted as a 2k−p design, where 1/2p is the
size of the fraction and 2k−p is the number of runs. It
is easy to construct these designs with a specialized
representation of the design and model matrices. The
design matrix of a factorial design defines the settings
of individual factors over the series of experiments.
The model matrix is an extension of the design matrix
that includes all terms in the model: main effects and
interactions. The first column of the model matrix
is a column of 1s, the next k columns comprise the
design matrix, and the remaining columns depict any
interactions of interest.

We begin with a simple example for three factors.
This is for illustration of principles only. The model
matrix for a full 23 design is given in Table 1. We use
both the ±1 notation and the lowercase letter notation
to denote experimental combinations.

Suppose we wish to select four of these eight runs
to estimate the main effects of the three factors. Then
we need a 23−1 design. The one rule we must always
obey is to select runs that result in an orthogonal
design. An orthogonal design is one in which the
sums of all pairwise column products equals zero.
This ensures that we have an optimal design. One
orthogonal run selection is c, b, a, and abc, which

Table 1 A full 23 design

Experiment I A B C AB AC BC ABC

1 (1) 1 −1 −1 −1 1 1 1 −1
2 c 1 −1 −1 1 1 −1 −1 1
3 b 1 −1 1 −1 −1 1 −1 1
4 bc 1 −1 1 1 −1 −1 1 −1
5 a 1 1 −1 −1 −1 −1 1 1
6 ac 1 1 −1 1 −1 1 −1 −1
7 ab 1 1 1 −1 1 −1 −1 −1
8 abc 1 1 1 1 1 1 1 1
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results in the following fractional design matrix:

Run A B C

c −1 −1 1
b −1 1 −1
a 1 −1 −1

abc 1 1 1

What are the consequences of use of the four-
run vs. the eight-run design? The answer is that less
information is available. The reader may verify that,
in the fractional design, the interaction effects are
such that BC = A, AC = B, AB = C, and ABC =
I . This phenomenon is called confounding and it
means that the interactions are not separable from the
main effects. Unseparable effects are called alias sets.
The four orthogonal estimable effects in the fractional
design,

δ1 = (−c − b + a + abc)

2
,

δ2 = (−c + b − a + abc)

2
,

δ3 = (c − b − a + abc)

2
,

δ4 = (c + b + a + abc)

4
,

actually estimate A + BC, B + AC, C + AB, and
I + ABC, respectively. Thus, if δ1 is large, then we
do not know if it is due to the main effect of A

or the interaction BC or both. This is the price we
pay. However, this is not serious because designs
may be augmented with additional experiments to
gather more information if necessary. Even in situa-
tions where there is some confounding with two-way
interactions, one can intelligently guess which effects
are likely to be contributors because experience has
shown that real interactions are unlikely when main
effects are not present. Suppose, in the above exam-
ple, only δ1 and δ2 are large; then one can postulate
that main effects A and B are probably present rather
than interactions BC and AC since δ3 was small.
However, confirmatory experiments should always be
run!

The general algorithm for construction of 2k−p

designs is based upon defining design generators.
Design generators generate the design and identify
associated alias sets. We begin with an example
of six factors in 16 runs. This is a 26−2 design.

The process begins with a full 24 design in which
columns A–D are designated as usual. We complete
the design matrix by assigning two added factors E

and F with E = BCD and F = ACD to produce
the design matrix in Table 2. All of the resulting
confounding relationships are obtained with use of
the defining relationships E = BCD and F = ACD.
The other confounding relationships are identified
by use of a convenient multiplicative relationship,
A � B = AB and A � A = I . The � binary mul-
tiplication of uppercase letters corresponds to colum-
nwise multiplication of ± 1s in the design matrix.
We begin by multiplying both sides of defining rela-
tionships by the letter on the left. The defining
relationships produce E � E = BCD � E or I =
BCDE and F � F = ACD � F or I = ACDF .
Both of these imply I � I = BCDE � ACDF or
I = ABEF . We now have the design generator
sequence:

I = BCDE = ACDF = ABEF.

A design generator sequence has 2p effects, where
p is the degree of fractionation. The complete alias
structure of the design is comprised of 2k−p cosets
with p aliased effects in each. A 26−2 design has 16
cosets with four aliases in each. For example, the
second coset (take the first coset as the design gen-
erator sequence) is A = ABCDE = CDF = BEF .
The complete alias structure is:

I = BCDE = ACDF = ABEF,

Table 2 Design matrix for a 26−2 design

Experiment A B C D E F

1 abcdef 1 1 1 1 1 1
2 abc 1 1 1 −1 −1 −1
3 abd 1 1 −1 1 −1 −1
4 abef 1 1 −1 −1 1 1
5 acdf 1 −1 1 1 −1 1
6 ace 1 −1 1 −1 1 −1
7 ade 1 −1 −1 1 1 −1
8 af 1 −1 −1 −1 −1 1
9 bcde −1 1 1 1 1 −1
10 bcf −1 1 1 −1 −1 1
11 bdf −1 1 −1 1 −1 1
12 be −1 1 −1 −1 1 −1
13 cd −1 −1 1 1 −1 −1
14 cef −1 −1 1 −1 1 1
15 def −1 −1 −1 1 1 1
16 (1) −1 −1 −1 −1 −1 −1
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A = ABCDE = CDF = BEF,

B = ABCDF = CDE = AEF,

C = ABCEF = BDE = ADF,

D = ABDEF = BCE = ACF,

E = ACDEF = BCD = ABF,

F = BCDEF = ACD = ABE,

AB = ACDE = BCDF = EF,

AC = ABDE = BCEF = DF,

AD = ABCE = BDEF = CF,

AE = ABCD = CDEF = BF,

AF = ABCDEF = CD = BE,

BC = ABDF = ACEF = DE,

BD = ABCF = ADEF = CE,

ABC = ADE = BDF = CEF,

ABD = ACE = BCF = DEF.

Upon assuming that three-way and higher-order inter-
actions are negligible, we have “clean” main effects
and aliasing of two-way interactions with each other.
This is a Resolution IV design.

Design resolution is categorized as follows:

1. Resolution III: main effects are aliased with two-
way interactions.

2. Resolution IV: main effects are aliased with three-
way interactions and two-way interactions are
aliased with each other.

3. Resolution V: main effects are aliased with four-
way interactions and two-way interactions are
aliased with three-way interactions.

It is not necessary to generate the entire alias struc-
ture to ascertain the resolution of a design because
resolution is simply the shortest word length in the
generator sequence.

Before proceeding to an example, it is important
to note that one should be very careful in the selec-
tion of the original defining relationships. It is quite
possible to try different defining relationships in the
26−2 design. What about E = ABCD and F = ACD

rather than E = BCD and F = ACD? The impli-
cations of the new assignment with E = ABCD

are the design generator sequence I = ABCDE =

ACDF = BDE, which produces a less efficient Res-
olution III design.

Tables that provide the highest resolution frac-
tional designs for a given number of runs and fac-
tors are available. Extensive tables are listed in the
National Bureau of Standards [12] and a shorter list
for up to seven factors in eight runs and 15 fac-
tors in 16 runs appears in Lochner & Matar [9].
There are also statistical software packages that will
generate 2k−p designs. Two relatively inexpensive
Windows software packages, ECHIP and SAS JMP,
generate the designs, provide the alias structure, and
include analysis options. Any statistical package that
performs regression analysis may used for actual
analysis if the user specifies only one member per
alias set (see Software, Biostatistical).

An Example in Preformulation

A 25−1 design was employed to determine the effect
multiple components of excipients exerted upon drug
stability. Four excipient components and the amount
of water added to a wet granulation technique com-
prised the factors of interest. The example appears
in [8]. The first four factors were designated to be
filler (lactose, mannitol), lubricant (stearic acid, mag-
nesium stearate), disintegrant (starch, Avicel), and
binder (PVP, gelatine). The fifth factor was amount of
water added (0, 3%w/w). Samples were prepared and
stored at 50°C for 4 weeks to determine the effects
of the factors on drug stability. The design and data
are given in Table 3, where −1 and 1 correspond
to the first and second of the pairs specified in the
description of the factors.

Leuenberger & Becher [8] constructed the design
by hand with defining relationship E = ABCD, that
is, the designated level changes for the amount of
water added was determined by the four-way inter-
action of the remaining factors. A Yates analysis
scheme (see Yates’s Algorithm) was used to cal-
culate effects.

For the sake of illustration, an example of analy-
sis by SAS JMP is included in the present material.
First, the design was created by choosing the Design
Experiment Option in the Tables menu of JMP. The
two-level designs option was selected to create the
Resolution V 16-run design. The design was aug-
mented with the data and we proceeded with the
analysis. These data have 15 available degrees of
freedom, all of which are used to estimate the five
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Table 3 Design and results of a drug stability study

Sample Filler (A) Lubricant (B) Disintegrant (C) Binder (D) Water (E) Yield

1 −1 −1 −1 −1 1 59.6
2 1 −1 −1 −1 −1 86.4
3 −1 1 −1 −1 −1 95.0
4 1 1 −1 −1 1 97.0
5 −1 −1 1 −1 −1 83.4
6 1 −1 1 −1 1 53.8
7 −1 1 1 −1 1 93.7
8 1 1 1 −1 −1 99.7
9 −1 −1 −1 1 −1 54.1

10 1 −1 −1 1 1 45.8
11 −1 1 −1 1 1 92.8
12 1 1 −1 1 −1 96.1
13 −1 −1 1 1 1 53.6
14 1 −1 1 1 −1 64.7
15 −1 1 1 1 −1 94.0
16 1 1 1 1 1 96.3

main effects and the 10 two-way interactions. For this
reason, we examine the relative size of the effects
through the normal plot option (see [1]). The plot
is depicted in Figure 1, where sizable effects are
labeled. It is evident that lubricant, binder, and water
appear to be significant. This is confirmed through
the results of an analysis of variance on the reduced
three-factor model, which is given in Table 4. The
cube plot in Figure 2 is a nice graphical depiction of
the results.

In summary, stability of drug product is sensitive
to moisture, magnesium stearate is clearly superior
to stearic acid, and PVP is somewhat preferable
to gelatine. Fillers and disintegrants do not affect
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Figure 1 Normal plot of effects

Table 4 Analysis of variance table

Source df Sum of squares F ratio Pr > F

Lubricant 1 4329.6400 190.0910 <0.0001
Binder 1 316.8400 13.9107 0.0047
Water 1 408.0400 17.9148 0.0022
Lubricant�binder 1 216.0900 9.4873 0.0131
Lubricant�water 1 313.2900 13.7549 0.0049
Binder�water 1 100.0000 4.3905 0.0656
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Figure 2 Cube plot of significant factors

the stability and hence the formulator may choose
among the four combinations of these two compo-
nents. Finally, the binder effect depends heavily on
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the lubricant used. Use of PVP is clearly indicated
in the presence of stearic acid, but either PVP or
gelatine provide desirable results in the presence of
magnesium stearate. The investigators chose to rec-
ommend lactose, mannitol, starch, Avicel, PVP, and
magnesium stearate as suitable excipients.

Augmenting Designs to Separate Confounded
Effects

Of course, one can visualize instances in which it is
impossible to single out aliases that are the real con-
tributors. One of the very important advantages of
using a well-designed fractional factorial is that an
initial design may be subsequently augmented with
additional runs, if necessary, to separate effects with-
out starting over. For example, suppose one alias set
of two-way interactions is significant and the aim is
to separate the confounded effects in this set. An eco-
nomic route for separation of m effects is to augment
the experiment with a minimum number of (m − 1)
complementary runs. Most software packages that
generate designs include an option to augment the
design. Details on selection of runs for augmentation
are given in [16].

If one wishes to separate some effects in all
alias sets, a foldover design should be considered.
Foldovers are most commonly used to separate two-
way interactions from main effects in Resolution III
designs. A foldover design is the complementary
fraction of the original design. Foldovers are easily
generated by simply reversing the signs of the main
effects in the initial design.

The alias structure of the combined design follows
from examination of the alias structures in comple-
mentary fractions. There are 2p fractions of size 2k−p

available from a 2k design. These fractions may be
aligned into complementary pairs. To illustrate, con-
sider a 25−2 design generated with D = AB and
E = AC, and consequently, I = ABD = ACE =
BCDE. Three additional fractions may be gener-
ated with D = −AB and E = AC, D = AB and
E = −AC, and D = −AB and E = −AC. The com-
plete set of four fractions has defining relationships:

I = ABD = ACE = BCDE, (1)

I = −ABD = ACE = −BCDE, (2)

I = ABD = −ACE = −BCDE, (3)

I = −ABD = −ACE = BCDE. (4)

The generator sequence of a foldover design is
such that the sign of words with an odd number
of letters is reversed and the sign of words with an
even number is the same. Thus, designs (1) and (4)
and (2) and (3) are complementary. The contrasts in
the A columns of designs (1) and (4), say δA1 and
δA2, estimate A + BD + CE and A − BD − CE,
respectively. Thus, (δA1 + δA2)/2 and (δA1 − δA2)/2
respectively estimate A and BD + CE. All other
main effects are also separated from their aliased two-
way interactions.

Other Fractional Factorial Designs

So far the discussion has been of two-level designs
with the number of runs equal to a power of two.
There are situations for which this is not the most
efficient choice. This is particularly true when one
has interest in only main effects such as in screen-
ing experiments with a large number of factors. For
example, suppose one has 10 factors and wishes to
detect which subset of these factors is really influen-
tial in the outcome of interest. The minimum number
of runs necessary for the experiment is 11. The small-
est standard design one could use would be a 210−6

design with 16 runs. There are alternative saturated
designs that may be used. A design for k factors is
saturated if the number of runs is N = k + 1. Two
types of saturated designs are Plackett–Burman and
simplex designs.

Plackett–Burman Designs

Plackett–Burman designs are saturated designs for k

two-level factors with N = k + 1, where N must be a
power of four (see Response Surface Methodology).
These designs are equivalent to the standard 2k−p

designs when N is a power of two. Construction
of Plackett–Burman designs is based on the theory
developed around Hadamard matrices, which are
simply orthogonal matrices with all elements being
equal to ±1s (see [6]). Plackett–Burman designs may
be folded over, but the confounding relationships are
not easy to obtain. Details are discussed in [4].

Simplex Designs

Simplex designs are also saturated, but N is not
restricted to be a multiple of four as in the Plack-
ett–Burman designs. However, the simplex design



6 Fractional Factorial Designs

only applies to quantitative factors. These designs
are often used as sequential searching algorithms to
locate optimal domains for a full experimental study.
A simplex is a k-dimensional figure constructed so
that each vertex has the same Euclidean distance to
all other vertices. In two dimensions, a simplex is
simply an equilateral triangle. Natural design points
are generated with specialized scaled factors that sat-
isfy the equidistant vertices restriction. If we let xij

denote the level of the ith scaled factor on the j th
run, then the level of the ith natural factor on the j th
run is uij = ui + δixij , where ui is a selected initial
value and δi is a selected step size. A four-factor
simplex design from Carlson [3] is given in Table 5.
The background and application of simplex designs
is thoroughly discussed in [2] and [11] (see Simplex
Models).

D-optimal Designs

In general, optimal designs are designs for which
variances of estimated effects are as small as possi-
ble. The variance of the vector of estimated effects
is σ 2(X′X)−1, where X is the model matrix of the
design and σ 2 is the experimental error. Thus, vari-
ances may be controlled through selection of X. One
mathematical criterion is to maximize the determinant
of X′X, which in turn minimizes the determinant of
the inverse. This criterion is deemed D-optimality.
Other optimality criteria exist, such as A-, E-, and
G-optimality, but in most cases all criteria produce
equivalent designs. Kiefer [7] is an excellent source
for a rigorous understanding of optimality.

All of the designs we have discussed thus far are
D-optimal and can be constructed by hand. In gen-
eral, D-optimal designs must be constructed by spe-
cial computer algorithms. In particular, the exchange
algorithm developed by Mitchell [10] is widely used
in software packages. To obtain a D-optimal design,
the number of runs desired, as well as the terms one

Table 5 A four-factor simplex design

Addition Reaction Ratio of Amount of
Experiment time time reagents catalyst

1 60 180 3.00 0.400
2 32 167 2.78 0.378
3 54 125 2.78 0.378
4 54 167 2.07 0.378
5 54 167 2.78 0.300

wishes to estimate, must be specified. The algorithm
initially randomly selects a set of N runs. Then an
iterative procedure sequentially adds and deletes runs
until the determinant of X′X is maximized.

A general D-optimal approach is necessary if:
(i) some combinations of factors are not reason-
able (these may be excluded in algorithmic design
searches); (ii) a saturated design with some interac-
tions is desired; (iii) one would like to add comple-
mentary runs; and (iv) factors have mixed levels.
It must be stressed that the designs obtained are
only optimal if the model specified is accurate. The
Windows packages ECHIP and SAS JMP use the D-
optimality criterion for some choices of designs. A
very good software package for choice of optimality
criteria, choice of algorithms, and multiple choices of
designs is available in PROC OPTEX of the SAS/QC
module.
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Frailty

Introduction

Conceptually, the frailty models are similar to the
mixed models, so that conditional on some random
variable (which in survival data is the term denoted
frailty), the observations are independent. Uncondi-
tionally, that is, when the frailty is integrated out, the
observations are dependent. Thus the frailty gener-
ates the dependence between the times. A review is
in [13]. Frailty models have been used for univariate
data to extend parametric models and to understand
the effect of heterogeneity (not accounting for impor-
tant covariates), but they are more interesting in the
multivariate case, where the frailty approach makes
a completely new class of models.

Basically, there are four types of multivariate
survival data where frailty models are relevant. The
first type is the time to some event (e.g. death)
for several individuals, related by family member-
ship (see Familial Correlations), marriage, expo-
sure to some agent, and so on. Secondly, there are
failures of several similar physically related com-
ponents, like right/left eye or right/left kidney on a
single individual. Thirdly, there are recurrent events
(see Repeated Events), where the same event, like
myocardial infarction (see Cardiology and Cardio-
vascular Disease), epileptic seizure, childbirth, or
car accident, can happen several times for an indi-
vidual. The fourth type is a repeated measurements
type, typically the result of a designed experiment,
where the time to the same event is studied on mul-
tiple occasions for the same individual. There are
two further types of multivariate survival data where
these models are slightly less relevant. First, there is
the study of different events on a single individual,
like the times to complication for the eyes, nerves,
and kidneys for a diabetic patient. Finally, there are
competing risks (data on cause of death), where the
frailty models are relevant probability models, but
where the basic parameters cannot be identified, mak-
ing them less relevant for statistical inference [13].

These models may be applied in biostatistics to
study dependence in lifetimes as well as time to onset
of specific diseases in order to evaluate the clustering
within families. Also, they can be used to quantify
the subject differences for recurrent events and may
be applied in actuarial science to describe a joint

insurance for a married couple or for updating the
risk of car accidents on the basis of the experience
that accumulates for each driver as time goes by. The
aim of using frailty models can either be to study the
dependence per se or to account for the dependence in
the evaluation of the effect of explanatory factors (and
its uncertainty). Using a model with dependence, with
as well as without a given covariate (say, describing
a specific gene in a twin study), allows for discussing
the extent to which the covariate “explains” the
dependence seen between the times.

The term frailty was first introduced for univariate
data by Vaupel et al. [32] to illustrate the conse-
quences of a lifetime being generated from several
sources of variation. However, frailty models have
actually been used earlier for recurrent events [9] (see
Accident Proneness) and for describing the depen-
dence between lifetimes of several individuals [6].
To illustrate the idea, consider family data as a stan-
dard setup. Suppose there are n independent families,
indexed by i. Let j = 1, . . . , k denote the number
of members within families. The number of mem-
bers could vary between families, without making
the problem more complicated. The frailty, say Yi ,
is specific to the family. The key assumption is that
the lifetimes (Ti1, . . . , Tik) are conditionally indepen-
dent given the family’s frailty. Technically, this is
obtained by assuming that the hazard is

Yiλ(t),

where t denotes age, and λ(t) is a function describ-
ing the age dependence. This can be generalized to
include known covariates, say a p-vector zij for indi-
vidual (i, j ), giving a conditional hazard function of
Yi exp(β ′zij )λ(t). By assigning some distribution to
Yi and integrating it out, we have created a multi-
variate survival model with dependence between the
coordinates.

The frailty is an unobservable quantity. For small
groups, we can only obtain limited information on
the individual value by observing the time of death
or event respectively (see Censored Data). But we
can evaluate the frailty variability by studying a
population with many groups.

While most of the literature on frailty models is
of the “common frailty” (or “shared frailty”) type
described above, where all members of a group have
the same (constant) value Yi of the frailty, this may
not fully capture the complexity of relationship in
all cases. There are a number of ways where the
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models can be extended to allow for more general
dependence structures; see the section on “Extension
to Multivariate Frailty”.

Comparison to the Variance Components
Model

One can ask why the normal distribution models
are not applied. There are many simple results and a
broad experience with these models. However, they
are not well-suited for survival data for three reasons.

1. Data are often censored, meaning that for some
observations, it is only known that they exceed
some given values, for example, the lifetime of
a person alive today is only known to be at least
his current age. This makes it difficult to apply a
standard variance components model, because
multivariate distribution functions are needed for
the calculations, and simple formulas for them
are not available in the normal case.

2. For survival data, it also makes sense to condition
on the history up to a certain time point, giving
truncated data, and this is not well-suited to the
normal distribution.

3. The normal distribution gives a very bad fit
to survival times, as lifetimes of human beings
are left-skewed positive variables with a very
high variation, and the normal distribution is
symmetric and not concentrated on the positive
numbers. The standard approach to get positive
variables is to apply a normal distribution after
a logarithmic transformation, but that makes
the original variable right skewed, rather than
left skewed.

Four other aspects, however, make the analysis of
random effects more complicated for survival data.

1. The normal distributions satisfy very simple mix-
ture properties, as the sum of two independent
normally distributed variables is again normally
distributed. The normal distributions are the only
distributions with finite variance satisfying this
property together with the property that any such
distribution can be transformed into any other
normal distribution by a linear transformation.
The mixture results behind other random effects
models necessarily are more complicated. In the
frailty model case, both the gamma distributions

and the positive stable distributions have inter-
esting theoretical properties.

2. Balanced variance components model can be
analyzed very simply, by means of the analysis
of variance (ANOVA) decomposition of the sum
of squares, but due to censoring, survival data
are rarely balanced, and thus simple analyses are
seldom possible.

3. Whereas rather general dependence structures are
possible for variance components models, both
including many different components and includ-
ing general linear functions of a few components
(random coefficient regression models), similar
general models are not yet available for survival
data; see the section “Extension to Multivariate
Frailty”.

4. In the normal case, it is simple and natural
to evaluate the dependence by means of either
the values of the variances or by the correla-
tion coefficients of the observations. It is more
difficult to quantify the dependence in the sur-
vival case.

Distributional Assumptions

Various choices are possible for the distribution of the
frailty term. Most applications use a gamma distribu-
tion, with density f (y) = θδyδ−1 exp(−θy)/Γ (δ). In
most models, the scale parameter is unidentifiable,
and therefore it is necessary to let δ = θ during esti-
mation, giving a mean of 1 and a variance of 1/θ

for Y . Let Dij be an indicator of death of individual
(i, j ). Then, the observed (marginal; integrating over
the frailty) likelihood (neglecting index i) is
∫

f (y) Pr(D1, . . . , Dk, T1, . . . , Tk|y) dy

=
∫

θθyθ−1 exp(−θy)

Γ (θ)

×
k∏

j=1

[yλj (tj )]
Dj exp

[
−y

∫ tj

0
λj (s) ds

]
dy

= θθ

Γ (θ)

k∏

j=1

λj (tj )
Dj

∫
yθ−1+D. exp[−y(θ + Λ.)] dy

= θθΓ (θ + D.)

(θ + Λ.)θ+D.Γ (θ)

k∏

j=1

λj (tj )
Dj , (1)
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where D. = ΣjDj and Λ. = ∑k
j=1

∫ tj
0 λj (s) ds. The

gamma distribution has the further advantage that
the conditional distribution of Y , given the survival
experience in the family – the integrand in the penul-
timate expression above – is also gamma, with the
shape parameter increased by the number of deaths in
the family, that is, with parameters (θ + D., θ + Λ.)
instead of (θ , θ). In a similar manner, the joint sur-
vival function can be derived as

S(t1, . . . , tk) =



k∑

j=1

S1−θ
j (tj ) − (k − 1)




−1/(θ−1)

,

(2)

where Sj (t) is the marginal survival function for
individual j . Using the marginal survivor functions
offers an alternative parameterization of the model
as further discussed in the section, “Conditional and
Marginal Models”.

A positive stable distribution of Y has other
nice probabilistic properties [12]. It has one parame-
ter (the stability index) α, α ∈ (0, 1], where α = 1
corresponds to independence and α near 0 corre-
sponds to maximal dependence. If λ(t) corresponds
to a Weibull distribution of shape parameter γ ,
the unconditional distribution of the lifetime is also
Weibull, but of shape αγ . This result is probably
the closest we can come to the variance components
model, where the normal distribution appears on all
stages of the model. The change from γ to αγ corre-
sponds to increased variability. If there are covariates
in a proportional hazards model, and Y follows a
positive stable distribution, the unconditional distri-
butions also show proportional hazards (unlike the
gamma model), but the regression coefficients are
changed from β to αβ.

Basically, any other distribution on the positive
numbers can be applied, but the probability results are
not equally simple. The multivariate distribution can
be simply formulated by means of the derivatives of
the Laplace transform L(s) = E exp(−sY ). The gen-
eral density is (−1)D.L(D.)(Λ.)

∏k
j=1 λj (tj )

Dj , where
L(p)(s) is the p-th derivative of L(s). The gamma dis-
tributions and the positive stable distributions can be
unified in a three parameter family; see [11, 31]. The
inverse Gaussian distributions are also included in
this family. The family is called the power variance
function (PVF) model because it is characterized by
the variance being a power function of the mean,

when considered as a natural exponential family.
The positive stable frailty distributions lead to high
dependence initially, whereas the gamma distribu-
tions lead to high late dependence [13]. The inverse
Gaussian distributions are intermediate. From a prac-
tical point of view, it may be difficult to discrimi-
nate between the various distribution families because
data may be insufficient to estimate two dependence
parameters, but from a theoretical point of view, it is
interesting to study the different nice properties that
the families offer. Another argument for using the
more general model is that (particularly with heavily
censored data) the estimated degree of dependence is
sensitive to the model assumed and thus the use of
one of the simpler models may suggest a too precise
value for the dependence; instead the two-parameter
model may better capture the high variation due to the
limited knowledge that follows from the censoring.

Furthermore, lognormal distributions have been
suggested for the frailty; this allows the use of
restricted maximum likelihood (REML)-like proce-
dures [21]. The inverse Gaussian and the lognormal
distributions are reasonably similar to each other.
Oakes [25] reviews various frailty distributions.

Univariate Models

Initially, the frailty models were used to illustrate
consequences of hidden heterogeneity, that is, risk
factors being unknown or unobserved for indepen-
dent (i.e. univariate) data. In this model, the total
variation of a lifetime is split into the effect of known
covariates, unknown covariates, and randomness. The
effect of unknown covariates is modeled by a propor-
tional hazards frailty model, and the randomness is
modeled by the hazard function. One consequence is
that even though individual hazard functions increase,
the hazard function in the population can decrease
due to differences between the individual hazard
functions. With a gamma frailty distribution, a con-
ditional proportional hazards model, using a known
explanatory variable z, is marginally no longer of the
proportional hazards form. Instead, the marginal haz-
ard for a single individual j is

µ(t, zj ) = λ(t) exp(β
′
zj )

1 + θΛ(t) exp(β
′ zj )

, (3)

the denominator reflecting the “survival of the fittest”
effect, that is, the differential survival implies removal
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of the high-risk subjects over time. Although in the
presence of known covariates, it is, in principle,
possible to estimate the frailty variance using only
survival-time data on independent individuals, this
estimator depends critically on the proportionality of
the hazards conditional on the frailty, an assumption
that is unlikely to be strictly true in practice and is
inherently untestable. It can be discussed as to the
extent to which it should be possible to discrimi-
nate between unknown factors and plain randomness.
This is analogical to the normal distribution vari-
ance components models, where it is not possible to
discriminate between variation between and within
individuals, unless there are several observations for
each individual, with or without known covariates.
The positive stable Weibull model is a similar model
for survival data. In this model, it is not possible
with univariate data to separately determine the influ-
ence of unknown covariates and of plain randomness.
Aalen [2] reviews univariate frailty models.

Conditional and Marginal Models

Instead of having the hazard in the conditional distri-
bution λ(t) as starting point, one may use the hazard
in the marginal distribution, say µ(t), as basis (see
Marginal Models for Multivariate Survival Data).
This function has the advantage that it is directly
observable, and therefore can be estimated in sev-
eral different ways. This is particularly relevant when
the dependence is not the object of study but a nui-
sance that has to be accounted for. Such models are
considered with the assumption that the marginal dis-
tributions are of a specific form, possibly after a
transformation. If the marginals are uniform (0,1),
the multivariate distribution is said to be of copula
form [8]. In this way, one can separate the inference
into that regarding the marginal distribution and that
regarding the dependence structure. Liang et al. [20]
compare the conditional and marginal approaches.
The positive stable frailty distribution is the only one
where the two approaches are identical for the pro-
portional hazards model.

Accelerated Failure Time Models

In the case of Weibull models, the frailty models
can also be given an accelerated failure time for-
mulation, so that the lifetime has a multiplicative

expression as Y−1/γ T0, where T0 has a Weibull dis-
tribution of shape γ . With covariates, the formula is
Y−1/γ T0 exp(−η′z), where the relation to the coeffi-
cients in the hazards formulation is η = −β/γ . In
the positive stable frailty model, this implies that
the hazard regression parameter β differs between
the conditional and the marginal distribution, but the
accelerated failure time regression parameters η are
the same, and thus they make a better parameteriza-
tion [16].

Quantifying Dependence

A key problem for quantifying dependence is that
standard nonparametric survival analysis assigns no
relevance to the variance of the lifetime, making
it irrelevant to evaluate correlations and variance
components. Some authors have used the variance
of the frailty term as a measure of that variance
component, but this is inconvenient, as can be
illustrated in the Weibull model of shape γ , say
with hazard Yγ tγ−1. Conditional on Y , this has
mean of Y−1/γ Γ (1 + 1/γ ), say c1(γ )Y−1/γ and
variance Y−2/γ [Γ (1 + 2/γ ) − Γ (1 + 1/γ )2], say c2

Y−2/γ giving the unconditional variance Var(T ) =
c2

1 Var(Y−1/γ ) + c2E(Y−2/γ ), and a correlation of
{c2

1Var(Y−1/γ )}/Var(T ) between two individuals
with common Y . This shows that the inverse
moments of Y are more relevant than the ordinary
moments. Much simpler formulas are obtained for
the logarithm to the time, where the conditional
variance is π2/(6γ 2), the unconditional variance
is {Var(log Y ) + π2/6)}/γ 2, and the correlation is
Var(log Y )/{Var(log Y ) + π2/6)}, independently of
γ , and this may not be well described by the moments
on the ordinary scale.

For the nonparametric models, it is more relevant
to consider measures that are unchanged by trans-
formations of the time axis, for example, Kendall’s
coefficient of concordance τ (see Rank Correla-
tion). This is defined as Esign{(T11-T21)(T12-T22)},
where (T11,T12) and (T21,T22) are the lifetimes for two
pairs from the distribution. Another possibility is the
grade correlation (the theoretical measure underlying
the Spearman correlation), which has the advantage
of an interpretation similar to the standard product
moment correlation.
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Estimation

The first estimation method for multivariate data with
covariates was suggested by Clayton and Cuzick
[7], but most applications have rather used an EM
algorithm [17]. It is also possible to maximize the
observed nonparametric likelihood function, that
is, where the frailties have been integrated out, but
including a parameter for each time of event [13].
This method has the advantage of directly giving
a variance estimate for all parameters [4]. Instead
of using the conditional hazards, one may use the
marginal hazards for this evaluation, which has the
advantage that the dependence parameters and the
hazard parameters are closer to be stochastically
independent. An alternative is a penalized likelihood
approach [29].

The gamma and lognormal shared frailty models
can be fitted by means of S-Plus [29]. There is no
other commercially available software that handles
frailty models with nonparametric hazard functions.

Asymptotics

The statistical inference has been performed by doing
standard calculations, that is, using maximum likeli-
hood estimation and using normal distributions for
the estimates, with the variance evaluated as the
inverse of (minus) the second derivative of the log
likelihood function, the so-called observed informa-
tion. For parametric models, this is easily justified.
For the bivariate positive stable Weibull model also,
the Fisher (expected) information has been calculated
for uncensored data [26]. A similar evaluation for the
gamma frailty model was made by Bjarnason and
Hougaard [5].

For non- and semiparametric models, the stan-
dard approach also works, although it has been more
difficult to prove that it does. For the gamma frailty
model with nonparametric hazard, Murphy [22] has
found the asymptotic distribution of the estimators
and a consistent estimator of the asymptotic vari-
ance. These results were generalized by Parner [27].
Murphy and van der Vaart [23] show that using the
observed nonparametric likelihood as a standard like-
lihood is correct for testing and for evaluating the
variance of the dependence parameter as well as for
the explanatory factors.

Extension to Multivariate Frailty

The assumption of the frailty being common for the
individuals in the family (the shared frailty model)
has been criticized for not being sufficiently flexi-
ble, particularly for large pedigrees. One extension is
to exchange the scalar Yi with a multivariate vector
(Yi1, . . . , Yik) with each component connected to one
observation. One such trivariate nested model based
on the positive stable distribution was suggested by
Hougaard [12]. A bivariate model based on depen-
dent gamma variables was suggested by Aalen [1],
but this model is complicated to handle, except for
some special cases. The simplest model in which
exact calculations can be done is to let the multivari-
ate frailty vector be a linear function of independent
terms, for example, the so-called correlated frailty
model, Yij = Xi0 + Xij , with all X variables inde-
pendent [33]. In this case, the Laplace transforms
are easily calculated. In the bivariate case, this is
not a major extension because the individual terms
only modify the marginal distribution and not the
dependence structure. It can, however, be useful for
combining groups with different degree of depen-
dence into one analysis, for example, monozygotic
and dizygotic twins. In the multivariate case, this can
be made a real generalization. Korsgaard and Ander-
sen [18] describe an extension of this approach to
pedigree data, where each possible line of descent
has an associated gamma frailty component. Unfor-
tunately, this approach leads to the number of frailty
components growing exponentially with family size.

The multivariate lognormal distribution may, after
a few approximations, be used for more complex
pedigree data and may thus be much easier to handle
than an additive frailty model [19].

Another generalization is to let the frailty change
over time, as a stochastic process or as piecewise
constant values. This allows a dependence, which
is more concentrated in time than the shared frailty
models, and this may be relevant. As an example,
there could be cause-specific frailty terms, like one
for accidents and one for heart disease. As accidents
have a high influence at young ages, and heart disease
at older ages, this apparently leads to a short-term
dependence in total mortality.

Applications to Multivariate Data

Hougaard [13] gives a list of references to
applications, of which most are to family data.
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Guo [10] and Klein [17] study mortality of general
families, Nielsen et al. [24] study mortality of
adoptive children and their relation to the lifetimes
of the biological and adoptive parents, and Hougaard
et al. [14] study the dependence in the lifetimes
of twins. Thomas et al. [30] study breast cancer
concordance in twins using the shared gamma frailty
model. Yashin and Iachine [33] study the lifetimes
of twins, by means of the correlated gamma frailty
model. Pickles et al. [28] study other times than
lifetimes, and consider several of the extended
models. Aalen et al. [3] have a dental application
to the lifetimes of amalgam fillings for a number of
individuals.

For recurrent events, Hougaard et al. [15] con-
sidered various frailty models for counts of epilep-
tic seizures.
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Framingham Study

When the Framingham Study began, the physical
and intellectual apparatus available to assemble and
use the data collected was, by today’s standards,
primitive. This article describes some of the statistical
issues and how they were addressed. Topics discussed
are: the study design, data handling problems, the
development and uses of logistic regression, using
repeated characterization, subsampling problems, and
the injection of new questions into the study.

Study Design

The idea of the Framingham Study is, in retrospect,
a fairly straightforward one [4]. A defined popula-
tion, namely a random sample of the population
of Framingham, Massachusetts, would be enlisted,
examined, and at periodic intervals re-examined, to
determine what changes had occurred and how these
changes were related to pre-existing characteristics
(see Cohort Study). The primary changes of inter-
est were the development of the first clinical evi-
dence of hypertensive disease, coronary heart disease
(CHD), and stroke, but once the study population was
under observation, any number of changes and clini-
cal events could be examined.

A number of papers have reported the difficulties
encountered in realizing this design [6, 11–13, 14].
This is not the place to recapitulate this story but one
issue warrants restating. When the first examination
began, the study design was not in place and even
as the design developed the details changed. What
started out as a purely volunteer population in 1948
was altered during recruitment into a random sam-
ple of the Framingham population aged 30–59 as of
1950, and then altered again to a mixed random sam-
ple and volunteer group. The purposes of the study
were also redefined, so that the study ended up as a
relatively clear-cut prospective study of cardiovascu-
lar disease.

However, what is obvious a posteriori is not
always so clear a priori. For example, if one is inter-
ested in the development of hypertensive disease,
why include persons with already evident hyperten-
sive disease? If one is interested in the development
of coronary heart disease, why include persons with
already present coronary heart disease? The answer

to the first question is that hypertension may be a fac-
tor in the development of coronary heart disease or
stroke. Moreover, hypertension is, by definition, the
upper end of the blood pressure distribution, so that
omitting persons with hypertension amounted to trun-
cating the blood pressure distribution – a statistical
nuisance. The answer to the second question is that
coronary heart disease may be a factor in the develop-
ment of stroke and may influence blood pressure lev-
els, and that neither hypertension nor coronary heart
disease is necessarily well defined or static. Fortu-
nately, the logical error implicit in excluding persons
with pre-existing disease was quickly realized and
corrected before the study was well under way.

After specifying the population to study and the
diseases to investigate, the next question was: which
characteristics should be investigated as possible fac-
tors in the development of these diseases? It is diffi-
cult to remember that at the time the study began it
was not at all clear that cigarette smoking was one of
those factors. In fact, the study began without obtain-
ing smoking histories. Only part way through the first
examination was this deficiency repaired. Moreover,
the standard technique for measuring the concentra-
tion of serum cholesterol, the Abell–Kendall method,
became available only part way through the initial
examination, when it was hastily substituted for a
much inferior method. Thus, the beginning of the
study was characterized by patching and improviza-
tion. While this story has been detailed before, it
is well to remember these facts since each of them
entailed problems in assembling and analyzing the
study results. These have been identified and dis-
cussed in a number of early reports [6, 11–13, 15,
16, 18].

Data Handling

It is difficult now to imagine the problems involved
in handling large bodies of data when the Framing-
ham Study began. And it was literally “handling”.
Data were entered on IBM punch cards, which were
typically run through a counting sorter or a tabulator,
two ingenious pieces of machinery which occasion-
ally would mutilate the punch cards. The trick was to
design a coding and punching scheme to put as much
information on one card as possible. This entailed a
high level of alertness in tabulating the information.
It also meant that when the computer became avail-
able, transferring the information to tape taxed both
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the ingenuity and patience of those responsible. Only
gradually did the investigators become comfortable
with the computer and only by slow stages were the
older techniques for tabulating the data relinquished.

The other major tabulating accessory was the
3 × 5 card. This was used to enter information about
incident cases. By using all four corners and the mid-
dle, and both sides of the card, a surprising amount of
information could be entered. This may seem primi-
tive, but any time one wanted to retabulate, the means
to do so were right on one’s desk. For those who have
prompt turnaround time on their computer this may
seem a trivial matter, but immediate computer access
is a relatively modern phenomenon and for a long
time was simply not a consideration.

Ultimately, the investigators were simply forced to
move their data on to the computer, since the count-
ing sorter and tabulator were no longer maintained
properly and were finally phased out. The transitional
period was painful in the extreme. When the initial
computer system was replaced by a better but non-
compatible system, the changeover was again painful.

These details may seem trivial but they are at the
heart of analytic productivity. It is often assumed that
the key to analysis is primarily statistical technique. It
is not. The essential key is in the organization of data
files and in the maintenance of data quality. Grad-
ually the Framingham investigators developed files
that were more and more accessible and more and
more trustworthy. Such matters are now managed by
software of varying sophistication and which is more
or less simple to use (see Software, Biostatistical).
That was not always true. At the beginning of the
study it was necessary to cobble together everything
necessary to assemble the study files and fit them to
the needs of the study (see Data Management and
Coordination).

The Introduction of Logistic Regression

Initially, a major restriction in analyzing the study
results was the slow accumulation of new clinical
events, but this was compounded by an inability
to deal efficiently with the analysis. Suppose one
wanted to consider two variables, serum cholesterol
and blood pressure. Both of these were continuous
variables but they could be dealt with categorically
by arbitrarily dividing them into, say, high and not-
high. One could, then, examine rates in the four

cells obtained by cross-classifying the independent
variables. Clearly, as one increased the number of
classes and the number of variables – that is, as one
got closer to the original data in its full detail and
complexity – cross-classification was no longer of
much use.

The original publication of the six-year follow-up
data dealt with the multivariate problem by catego-
rizing events according to whether persons were high
on one independent variable, high on two, or high on
three [4]. As one went up that scale, the incidence of
CHD increased. However, this did not leave one with
a measure of the contribution of each of the specific
variables. Faced with this problem the investigators
appealed to a procedure developed by Jerome Corn-
field, which used continuous variables as continuous
variables and addressed the multivariate question in
terms of specific independent variables. The idea he
had was the following [2].

Suppose one had two normal populations with
different means but the same variance, say a popu-
lation of cases and a population of noncases. Then
it could be shown that the mixture of these two
populations led to a logistic regression. In effect
this transformed a classification approach, histori-
cally dealt with by discriminant analysis, into a
regression approach. If one considered two bivari-
ate normal distributions (the variables originally
used were serum cholesterol and blood pressure) one
could extend this concept to the bivariate case. It was
demonstrated that the procedure was quite robust,
at least where the variables were continuous. Ulti-
mately, Truett et al. [24] extended the model to deal
with any number of variables, although robustness
in this case was less assured. Logistic regression has
since become a mainstay of analysis in prospective
studies generally; and while there may be misgivings
about some of the uses to which it has been put [7],
there is no question it has proved quite useful.

The Cornfield approach to logistic regression
assumed, among other things, equal variances in the
cases and noncases. Manifestly, that could not be
true for dichotomous variables, since a difference
in means implied a difference in variances. This
difficulty was noted by Max Halperin and others,
who showed that in the case of dichotomous variables
one could sometimes arrive at absurd results using the
Cornfield model [19].

In the meantime, another method for estimat-
ing the parameters of the logistic regression was
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being developed by Walker & Duncan [25]. The
study statisticians replaced the estimating procedure
suggested by Walker & Duncan with a maximum
likelihood approach and incorporated this modi-
fied Walker–Duncan procedure into the statistical
armamentarium of the study. The estimating proce-
dure, however, did not lead to an explicit solution
and required successive iterations. The trick was to
develop a method that minimized the number of itera-
tions and protected against divergence. Over time the
study statisticians were able to devise and refine their
own computing program to achieve these desiderata.
At the same time, the program gave associated statis-
tics to assist in interpreting the results.

There was a problem, however. At the time this
iterative computation became available, computer
capacity was limited and computer costs per unit of
work were quite high. And so the study statisticians
looked for a method to estimate the parameters of
the logistic regression by maximum likelihood that
would minimize costs. When the problem was put
to Nathan Mantel he came up with a sampling
procedure which led to unbiased estimates using
all the cases, but only a sample of noncases [22].
The method was ingenious but there was inevitably
an increase in sampling error compared with using
the full data set. Clearly, if the variables involved
were truly normally distributed and the variances
for cases and noncases not too dissimilar, then the
Cornfield estimation, which was explicit and cheap to
compute, was manifestly simpler and better. Before
long, computer capacity increased and computer costs
decreased, so that ingenuity was no longer necessary.
Mantel’s procedure, however, led to applications
in case–control studies. It could be argued that
case–control studies are the wrong place for such
a procedure; but if the cases and the controls come
from the same population, then it is clearly justifiable
to treat them by this method, and if they do not come
from the same population, then no analytic method is
quite safe (see Case–Control Study, Nested).

One of the hazards in using logistic regression is
that the user may confuse it with linear regression.
In particular, there has been a tendency to ask and
answer the question: what proportion of the variance
in the dependent variable is accounted for by the
independent variables, i.e. the known risk factors?
Presumably, it was felt that the larger the proportion
explained the more we understand about the causes of
the disease – a rather unscientific notion. However,

since the dependent variable was either a case or a
noncase, it should be obvious that the analogy with
multivariate normal theory might be hazardous.
As Max Halperin pointed out, this is not an easily
addressed question; in fact, it does not ordinarily
allow for a precise answer [14].

Replication

A key element of the scientific method is replication.
In epidemiology one would like to find that simi-
lar relations hold in different populations. Logistic
regression was used to explore this issue in two ways.
One was to apply the parameter estimates derived
from the Framingham Study to a number of other
populations included in the American Heart Asso-
ciation Pooling Project [23]. It was shown that the
estimates derived from the Framingham Study closely
predicted the actual incidence of coronary heart dis-
ease in all but one of these populations. The Framing-
ham Study parameter estimates were also applied to
the CHD experience found in a Yugoslav population.
While the estimates for the parameters associated
with the independent variables were quite similar
for the two groups, the estimates for the constant
term were not. Thus, the Framingham Study esti-
mates grossly overstated the CHD incidence actually
observed in Yugoslavia [20]. A similar approach was
used in comparing data from Honolulu and Puerto
Rico with data from Framingham [10].

Prediction

The preceding observations bear on another use made
of observations from the Framingham Study. If the
findings from Framingham with respect to the rela-
tionship between blood pressure, serum cholesterol,
and cigarette smoking are generalizable to other US
populations, then it made sense to estimate the risk
of developing CHD as a guide to preventive pro-
grams, not only identifying who was at high risk
but what their actual risk was. For that purpose the
Framingham investigators constructed a set of CHD
risk tables for the American Heart Association to use
in their public health programs [17]. These tables
emphasized two things: first, that the disease, at least
so far as prediction was concerned, was a multifac-
torial disease; secondly, that persons were more or
less at risk and that it was conceptually wrong to
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assert that a person was either a sure case-to-be or
was sure never to develop the disease. It was also
a fact that for CHD, contrary, say, to lung cancer,
there was no really strong predictor, but there were
a number of weak predictors. Hence, the more per-
tinent information one had about the individual the
more precisely one could estimate the risk of devel-
oping CHD. While this way of looking at disease
prediction has not always prevailed in discussions of
the etiology of CHD, it seems to have permeated the
thinking about this disease.

Using Repeated Characterization

The study design called for repeated examinations
of the Framingham cohort (see Longitudinal Data
Analysis, Overview). The primary reason for that
was to determine disease incidence and progression,
and also to identify changes in factors thought to
predispose to disease. Ultimately the interval between
examinations came to be two years with a window
on either side. Thus, each person returning for
examination had a series of observations. How should
those repeated observations be used? The method
to use depended, of course, on the question to be
addressed and the assumptions one was prepared
to make.

Take a simple question: What was the incidence
of coronary heart disease for each age–sex group?
If the cohort of 5209 persons were divided, say, into
five-year age groups by sex, then the incidence for
each of these groups in, say, two years would be
so small that the calculated rates would be subject
to very large sampling variability. However, at each
examination the entire cohort was, on average, two
years older than it was on the previous examination.
This meant that any five-year age group would be
depleted of some persons (who had moved into the
next age bracket) and replenished by other persons
recruited from the next younger age group until the
entire cohort moved out of the age range. Thus,
if one redefined the cohort at each examination in
terms of age and disease status, one could simply
pool the observations from successive examinations
to obtain average incidence rates over the period
of observation. This method was extended to other
characteristics that were repeatedly observed, e.g.
serum cholesterol concentrations and blood pressure.
Thus, it was possible to calculate the conditional

incidence in a very simple fashion using all of the
available data from the successive examinations.

The major assumption in this procedure was that
successive subgroups of the total population had the
same conditional incidence rate. This is probably true
only in an approximate sense. While it was possible
to test that assumption, the small sample sizes meant
that the sensitivity of the test was obviously very
low. In some sense what was being presented was an
average picture for the various generations included
in the cohort.

Obviously this is not the only feasible approach. It
was possible to characterize the cohort at entry and
follow them for some specified period. That would
tell us the predictive value of, say, a serum choles-
terol observation for the defined period of follow-up.
It was also possible to use repeated measurements
taking account of the fact that they were made
on the same persons [26]. That would obviously
give somewhat different conclusions than the pool-
ing procedure. It would also lead to highly complex
computation and to necessarily strong assumptions
respecting missing data. One would hope that no
matter how the data were looked at, the subject-matter
conclusions would remain consistent. In general, that
seemed to be the case, but since each analytic tech-
nique really implies a different question, consistency
is not necessarily easy to parse.

Subsampling: The Selection Trap

Early in the Framingham Study a sample of the cohort
was interviewed to determine what they usually ate,
the primary interest being in the relationship between
what they ate and their serum cholesterol levels.
Since each interview took an experienced dietitian
a long time, it was impracticable to interview the
entire cohort. A sample was chosen consisting of
a random sample supplemented by all persons with
either very high or very low serum cholesterol levels.
This seemed to be (and in this case, was) an efficient
way to address the question at issue.

It was not recognized, however, that linear
regressions of serum cholesterol level on various
dietary components calculated by the usual least
squares method would yield estimates that were
biased, in some instance grossly biased. This, of
course, was a consequence of selection on the
dependent variable. Dietary data, because of the
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intercorrelations among the various elements of the
diet, are exceedingly difficult to interpret under the
best of circumstances [9] and the sampling frame
used only added to the difficulty.

The sampling problem was addressed by DeMets
& Halperin [5]. They showed that unbiased regres-
sions could be estimated from such data, provided
that the necessary supplementary information had
been collected, which fortunately had been done.
Their solution has proved highly useful to persons
concerned with sampling procedures.

Pouring New Wine into Old Bottles

One of the really strong points of a long-running
prospective study in which the population is subject
to continuing recharacterization is the opportunity
to examine new questions as new ideas and new
techniques arise. Formally, of course, one is supposed
to initiate a study with a well-defined set of questions
and methods for addressing them. However, ideas
change, new methods become available, and some
flexibility, if cautiously administered, is all to
the good. There were many instances where the
Framingham Study introduced new questions and
new methods into their protocol.

From the beginning, the Framingham Study cohort
was used to study a variety of chronic diseases and
noncardiovascular conditions. The study staff has
been receptive to proposals by investigators whose
interests lay outside of cardiovascular disease but
were anxious to avail themselves of the opportuni-
ties for investigations within the study cohort. In the
more than 1000 publications based on the Framing-
ham study cohort are papers on a variety of subjects,
e.g. nontoxic thyroid nodules, gall bladder disease,
eye disease, osteoarthritis, and cancer. But the major
innovations over time were in the area of cardiovas-
cular disease. One example may be cited.

The classical lipid measurement included in the
Framingham Study was total serum cholesterol,
although other lipid measurements were also
included. However, serum cholesterol is not a
single substance but includes components carried
in lipoproteins of varying density. When it was
discovered in a cooperative case–control study in
which the Framingham Study participated that there
was a strong negative relationship between serum
cholesterol in the high density lipoproteins and

coronary heart disease [1], the Framingham Study
was able almost immediately to demonstrate that
this was equally true prospectively [8]. In fact,
this negative relationship had been demonstrated
almost as early as the beginning of the Framingham
Study, but discovery and acceptance are two different
things. The Framingham investigators were aware of
these early findings but, like others, chose to ignore
them. However, the confluence of replication in the
case–control studies, confirmation in a prospective
study, and the application of multivariate analysis
techniques which had become a standard in analyzing
Framingham Study data, made it clear that this
negative relationship between the concentration of
HDL cholesterol and CHD was not some kind of
artifact. Even with the great weight of evidence
that accumulated so quickly, there was considerable
covert resistance to accepting this new-old finding,
which paralleled the resistance to the initial reports.
Resistance was overcome, however, in part because
of the authority that the Framingham Study had by
then come to command.

Extensions of the Original Study

The Framingham Study has grown dramatically over
the years. In 1971 the Framingham Offspring Study
began consisting of children of the original cohort
and the children’s spouses. This consisted of 2489
males and 2646 females with examinations conducted
every four years. In addition to all the examination
components of the original cohort, new technologies
such as carotid ultrasound, heart and brain MRIs and
echocardiograms are part of the evaluations. Further,
the study often leads the field in collecting new
and novel risk factors such as homeostatic (clotting)
factors including fibrinogen, inflammatory markers,
and infection marker.

In 2002, a sample of over 3500 third generation
children (Gen3 Study) and their spouses began. The
Framingham Study is unique as a genetics study. Not
only is there the risk factor collection (phenotypes)
but there is also DNA and cell lines on many of
the three cohorts (Original Cohort, Offspring Study,
and Gen3 Study). The original study consisted mainly
of whites of European extraction. A new substudy,
the Omni Study, consisting on nonwhites is now an
integral component of the study. Further, a number of
ancillary studies evaluating stroke, dementia, arthritis,
hearing, vision, sleep apnea, cancer, and nutrition
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are major components of the study. Initially, the
Framingham Study was the Framingham Heart Study.

Study Validation

The Framingham Study is an epidemiological study
consisting mainly of whites of European extraction.
The generalization of its results is always a major
concern. Other epidemiological studies and clinical
trials have repeatedly verified and validated its results
(for example, [10]). Recently, a major validation
study showed again the validation and transportability
of its results to other populations [3]. Its results with
minor calibration adjustments are valid even for the
entire country of China [21].

Conclusion

The unique thing about the Framingham Study is
its continuity and productivity. The continuity arises
from its sponsorship since 1948, with one break,
by the National Institutes of Health. We owe
that to the persuasiveness of the first statistician
involved in the study, Felix Moore, who cajoled the
then National Heart Institute to embrace this study,
reluctantly it must be said, and who transformed
it into a clearly defined prospective study and set
it on its course of methodical data collection. The
productivity was a function of the close collaboration
between the statisticians and the medical staff but was
made possible and fruitful by careful handling and
organization of the data files and continuing search
for appropriate statistical techniques. It is sometimes
forgotten that many epidemiologic studies have failed
to realize their potential because the data that got
into the medical folders remained in the medical
folders. Providing adequate staff and resources for
exploring the data is as important as conceiving and
operating a prospective study. In this respect, the
Framingham Study has been singularly fortunate for
the able medical and statistical investigators that have
worked together over the years. Both were necessary.
Fortunately, both were available.

Closing Comment

The Framingham Study was a bold innovation in
epidemiology. It remains unique among epidemiolog-
ical studies. We can no longer perform such a study.

Today we treat blood pressures as low as systolic
blood pressure of 140 and diastolic pressures of 85.
We treat total cholesterols of 200. These are correct
decisions based, in part, on the results of the Fram-
ingham Study. Still they render impossible the study
of natural history. The Framingham Study is unique
in that is has true natural history of the development
of coronary and cardiovascular disease. It has this
over generations. It is truly unique and precious.
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Fraud in Clinical Trials

Scientific research has a long history of fraud [4,
10, 15]. Over 150 years ago, Charles Babbage, the
far-seeing inventor of the calculating machine, estab-
lished a catalog of data manipulations, which he
called trimming (reducing the variance of the data
while preserving their mean by deleting extreme
observations), cooking (reporting only selected obser-
vations: “If a hundred observations are made, the
cook must be very unhappy if he cannot pick out
fifteen or twenty which will do for serving up”)
and forging (inventing data). Allegations of data
tampering have been made against Ptolemy, Galileo,
Newton, Dalton, Mendel, and Burt, to name just a
few. R.A. Fisher’s reanalysis of Gregor Mendel’s data
on peas is a celebrated example of the use of statis-
tical methods to reveal abnormalities: the agreement
between the observed frequencies of certain traits of
the peas with the theory was too good to be plausible,
which suggested that Mendel or one of his assistants
had either manipulated the observations or reported
only those results most closely matching theoretical
expectations. The fraud perpetrated by Cyril Burt was
far worse, since it seems to have involved the com-
plete fabrication of data on identical twins supposedly
separated at birth. Here again the fraud was discov-
ered because of numeric anomalies. The number of
identical twins reported by Burt (53 pairs) was too
large to be plausible and, while the number of pairs
increased from less than 20 to more than 50 in a series
of Burt’s papers, the average correlation of IQ mea-
surements between pairs remained unchanged to the
third decimal place! In recent years, scientific journals
as well as the lay press have extensively debated over
some cases of fraud in clinical trials, thereby fueling
suspicions that fraud is a major problem in clinical
research [2, 13].

Definitions

Fraud comes in many guises, including some that
are well-intended. The boundary between fraud and
simple carelessness is often fuzzy, although the for-
mer is characterized by a deliberate attempt to
deceive [10]. The deliberate character of fraud may be
very hard to prove in the absence of positive external
evidence or confession. Data discrepancies expected

as part of the research process, such as transcription
errors between the source documents and the case
report forms, may potentially be regarded as fraud if
they occur in some systematic way or with abnor-
mally high frequency, two circumstances that require
a statistical assessment. In many cases, statistical evi-
dence is however likely to reveal misunderstandings
and unintentional errors rather than fraud [1].

In the US, the term “fraud” implies injury or dam-
age to victims, therefore the term “misconduct” might
be preferred. However “misconduct” also includes
practices that fall beyond the scope of this chap-
ter, such as plagiarism, conflicts of interest, mis-
use of funds, and other questionable research prac-
tices. In the UK, a Joint Consensus Conference on
Misconduct in Biomedical Research held in Octo-
ber 1999 defined research misconduct as “behaviour
by a researcher, intentional or not, that falls short
of good ethical and scientific standards” [7]. We
shall use the term “fraud” specifically to refer to
data fabrication (making up data values), and data
falsification (changing or eliminating data values).
We are aware that this use of the word is at
once far more restrictive than is implied in nor-
mal conversation, and less specific than in legal
texts, but we prefer the use of this single word for
brevity.

Prevalence of Fraud in Clinical Trials

Scientific fraud (in the limited sense of data fabri-
cation or falsification) is, in all likelihood, a rare
phenomenon, although other misconduct may well be
common [15]. Many authors also believe that fraud
is also uncommon in clinical trials [4]. A few cases
were uncovered, but they attracted so much media
attention that the uncritical observer may have been
misled into thinking that the problem was far worse
than it actually is. While there may be substantial
bias in estimating the actual number of cases of fraud
(because of those cases that remain unnoticed or unre-
ported), all systematic investigations carried out to
uncover fraudulent data found that the proportion of
investigators who had actually committed fraud was
less than 1% (Table 1).

Even though serious deficiencies were found in
11% of the audits performed by the US Food and
Drug Administration (FDA) between 1977 and 1988,
the “for-cause” investigations that followed revealed
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Table 1 Incidence of fraud found in random audits performed by several groups

Number
Group Period of audits Incidence of fraud

FDA [23] 1977–1988 1955 Incidence of fraud not reported
Note: 11% of audits showed “serious
deficiencies”; 4% required a “for-cause”
investigation

South West Oncology Group (SWOG) [20] 1983–1990 1751 No case of fraud = 0%
Pharmaceutical company [18] 1000 Four of 1000 = 0.4%

Note: fraud affected 438 (6%) of 7000
patients

CALGB [19] 1982–1992 691 Two of 691 = 0.3%
Pharmaceutical company [12] 1990–1994 234 One of 234 = 0.4%

in most cases sloppiness or incompetence rather than
fraud. Hence all available estimates point to a low
prevalence of fraud. Against these reassuring statis-
tics lingers the possibility that a large number of
cases of fraud may have remained completely un-
noticed, and that reported cases only constitute the
tip of the iceberg. Although this situation remains
hypothetical, there have been reports of fraud being
detected and then covered up in trials sponsored
by pharmaceutical companies as well as in those
performed in academic settings. Additionally, audits
may be ineffective at detecting fraud, as demon-
strated by the fact that an investigational center that
passed Cancer and Leukemia Group B (CALGB)
audits was subsequently found to have problems [24].
In a recent cross-sectional survey of biostatisticians
who were members of the International Society for
Clinical Biostatistics in 1998, more than half of the
respondents (51%) stated that they knew of a project
in which fraud had occurred in the previous 10
years, while almost one-third (30%) of them had been
engaged in a project in which fraud took place or was
about to take place [16]. All in all we lack reliable
data to estimate the true prevalence of fraud, and fur-
ther prospective investigations in this matter would
be very valuable.

Perception of Fraud

Shapiro claims that “scientific misconduct is com-
mon enough in investigational drug trials to be a
continuing public concern” [15]. Quantitatively, the
opposite seems true: fraud in clinical trials is prob-
ably rather uncommon and, as we discuss below,

it is often inconsequential in multicenter settings.
Fraud, however, is so much at variance with the
ethics of scientific research that any amount of it is
deemed utterly unacceptable. The concern with fraud
in clinical research may in fact be due to common
practices that are scientifically unacceptable, such as
data dredging, post hoc analyses, selective report-
ing of the most “interesting” results, nonpublication
of negative findings, etc. Although such practices
do not constitute fraud in the narrow sense used
in this article, they may profoundly bias the results
of a study as well as their interpretation. The pub-
lic may in fact be far more misguided by studies
that are poorly designed, wrongly analyzed and inap-
propriately reported, or not reported at all, than by
fraud [1]. Systematic reviews of randomized trials
are very important for clinical practice and policy;
when important data are not reported this can lead to
bias in the overall conclusions.

Intent of Fraud

The major difference between fraud and mere error
lies in the “intention to cheat” that defines fraud
[10]. This difference must however be qualified by
the nature of the intent, as illustrated by the fol-
lowing examples. Consider, first, the case of data
falsification. Suppose that at some time point the dias-
tolic blood pressure of a patient is read as equal to
96 mm Hg. If the value is reported as being equal to
100 mm Hg, the discrepancy between the value read
and the value reported would constitute a case of data
falsification. However, the physician who read the
diastolic blood pressure may have reported 100 mm
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Hg for simplicity, in recognition of the fact that blood
pressure varies substantially in the same patient and
that the measurement error is of the order of 5 mm
Hg anyway. The reporting of a round number that
closely approximates the truth would not per se be
wrong. If, however, a value of 100 mm Hg made
the patient eligible for the trial while 96 mm Hg
did not, then the biased reporting would be cause
for concern. However, such bias prior to randomiza-
tion will not affect the overall results of a trial in
terms of whether a treatment is efficacious (its inter-
nal validity). A much more serious problem arises if
this biased reporting took place in a nonblinded trial
in order to make the control group worse. Then the
charge of fraud and the need for corrective action
would be more than justified. The same arguments
hold true for data fabrication. Suppose that the level
of neutrophils, a required laboratory examination,
were truly missing at the last visit of a patient in
a certain trial. Any reported value would therefore
have had to be fabricated, perhaps by simply car-
rying over the value of the previous visit. If this
had been done in order to avoid a query from the
data management center for a safety variable of sec-
ondary interest, there would be less cause for concern
than if neutrophils constituted the primary endpoint
of the trial.

The most serious cases of fraud are those in which
there is an expectation of gain in terms of prestige,
advancement or money. These cases may involve fab-
ricating complete patients or tampering with the data
in order to obtain a desirable result. These cases may
also be the easiest to detect statistically, especially in
multicenter studies, as will be discussed below.

Data Items Frequently Affected by Fraud

Some data items collected in clinical trials seem to
be more prone to error and/or fraud than others, as
follows.

1. Eligibility criteria: data may be “pushed” a little
to make a patient eligible for the trial when in
fact that patient does not strictly meet the cri-
teria. Many such examples of fraud may have
occurred because eligibility criteria were exces-
sively restrictive and widening entry standards is
often a good solution (see Eligibility and Exclu-
sion Criteria).

2. Repeated measurements: when the same mea-
surements are requested repeatedly over time
(such as, for instance, a battery of laboratory
examinations), data may be “propagated” from
the previous visit if the measurements are miss-
ing for a particular visit. Such imputation of
missing values should be reported clearly. Impu-
tation methods may be appropriate at the time of
analyzing the data, not at the time of making the
observations.

3. Adverse events: adverse events are likely to be
underreported by some investigators (although
such underreporting may reveal a lack of interest
or differences in interpretation rather than fraud).

4. Compliance data: these data are notoriously
unreliable if they are based on the number of
medications returned (“pill counts”). Whenever
compliance information is deemed important,
it is advisable to use objective measurements
based on blood or urine tests (see Compliance
Assessment in Clinical Trials).

5. Patient diaries: a number of cases of data fabri-
cation have been detected through the color and
texture of the pen supposedly used on successive
days by the patient, the patient’s handwriting, etc.
The reliability of information collected in patient
diaries can often be questioned.

Preventing Fraud by Making Trials Simple

Some types of fraud could be prevented through a
drastic simplification of randomized clinical trials.
Two measures might be particularly effective in this
respect: a simplification of the eligibility criteria and a
reduction in the amount of data requested. These two
measures are feasible and desirable in a surprisingly
large number of clinical trials, and neither jeopardizes
the validity of the trial results. For example, very
detailed measurement of large amounts of biochemi-
cal tests in late-phase trials is usually unnecessary. In
trials requiring prolonged observation of each patient,
the follow-up can generally be kept as simple and no
more frequent than in routine clinical practice. Sim-
plicity is essential in trials conducted with a public
health intent, especially when these are large, but it
can be justified even in trials conducted as part of a
new drug development program, for there is no regu-
latory requirement that pivotal trials for drug approval
be especially complex. However, the risk of failing
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to get approval for a new drug along with the fear
of potential litigation may dominate all other consid-
erations of cost or efficiency, and as a result clinical
trials may end up being excessively complex. The
growing number of regulations governing the con-
duct of clinical trials, even with approved drugs, may
also have the unintended consequence of making tri-
als ever more complex. As mentioned above, such
complexity may be counterproductive and may cre-
ate a situation where an investigator is tempted to
fabricate data.

Preventing Fraud by Allowing Missing
Data

There is obviously no excuse for making up data, but
the temptation will be great for investigators to find
ways of avoiding long lists of queries in trials con-
ducted in a fastidious way. It is the responsibility of a
competent trial organization to make sure that investi-
gators are not submitted to excessive requests for data
clarification. Missing data occur in the real world,
and thus they should generally be tolerated in clinical
trials (except, of course, for the primary endpoint of
the trial). While complete data are undoubtedly better
than missing data, attempting to collect too much
data, and repeatedly demanding complete data on all
patients, may be conducive to fraud, even though it
does not exonerate the trial participants if they com-
mit it!

Detecting Fraud through Intensive On-site
Monitoring

The traditional approach to detect fraud has involved
monitoring visits to the clinical centers participating
in the trial (see Clinical Trials Audit and Qual-
ity Control). Some such on-site monitoring may be
needed and useful, for many types of fraud would
remain completely undiscovered if it were not for the
careful checks carried out during these visits. How-
ever, on-site monitoring is labor intensive and hence
expensive, and it too may fail to pick up fraudulent
data. Moreover, the law of diminishing returns indi-
cates that it is not cost-effective to demand 100%
verification of all source data. The approach used for
quality control in industrial or laboratory settings can
be used so that the monitoring activities are limited to

some random selection of the data, with the possible
exception of data pertaining to the primary endpoint
(see Outcome Measures in Clinical Trials) of the
trial. The random selection can be done at the level of
the investigators, the patients or the data items them-
selves. With such a random sampling scheme, one can
estimate the overall data error rate with prespecified
precision, and increase the amount of on-site moni-
toring if the observed rate exceeds some upper limit.
Another approach consists of visiting only the cen-
ters in which problems, errors or fraud are suspected.
Such “for-cause” audits have confirmed major cases
of fraud both in multicenter trials and in single institu-
tion trials [6, 22]. The major International Conference
on Harmonization (ICH) guidelines on Good Clini-
cal Practice (GCP) emphasize that a sampling scheme
may be appropriate and these can be acceptable to
regulatory authorities. It is a major misunderstanding
that GCP requires 100% source data verification.

Detecting Fraud through Statistical Checks

Most data entry and data management software used
for clinical trials perform basic checks, such as range
and consistency checks, but more extensive data
checks typically occur at the end of the study along
with other statistical analyses, far too late for cor-
rective action. Batteries of checks using standard
statistical techniques could also be used early on in
the course of a trial without large increases in costs,
and could save considerable time if problems are
detected and corrected early (see Data Management
and Coordination).

The principles involved in uncovering fraud
through statistical techniques rest on the difficulty of
fabricating plausible data, particularly in high dimen-
sions [17]. Univariate observations can always be
fabricated to fall close to the mean, although pre-
serving their variance is more of a challenge to the
inexperienced. Even the astute cheater who takes care
to preserve both the mean and the variance may be
tripped up by examination of the kurtosis of the dis-
tribution. Multivariate observations must in addition
be consistent with the correlation structure between
their individual components. In general, when data
are fabricated to pass certain statistical tests, they are
likely to fail on others; Haldane referred to this as
“second order” faking [17].

Another way of checking fabricated data is based
on the fact that humans are poor random number
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generators. Even informed people seem unable to
generate long sequences of numbers that pass sim-
ple tests for randomness. Digit preference, especially
terminal digit preference, or an excess of round num-
bers may easily reveal data fabrication. Benford’s law
may also be used to check the randomness of the first
digit of all real numbers reported by a single individ-
ual (or a single center). This law establishes that the
probability of the first significant digit being equal
to D (D = 1, . . ., 9) is approximately given by a
logarithmic distribution [11]:

Pr(D) ≈ log(D + 1) − log(D).

Hence the frequency of 1’s as the first digit should
be as high as 30%, the frequency of 2’s as the
first digit should be close to 18%, while that of 9’s
should be lower than 5%, a result that runs against
intuition. More sophisticated techniques are available
to check the randomness of digits in a sequence of
data values.

Statistical approaches may also take full advan-
tage of the highly structured nature of clinical trials,
which are prospective studies, entirely specified in
a written protocol and data collection instrument
(the “case report form”), usually involving several
centers and, when comparative, a randomly assigned
treatment. Comparing each center or treatment with
the others in terms of the distribution of some vari-
ables, either taken in isolation (univariate approach)
or jointly (multivariate approach), can detect unusual
patterns in the data. Comparisons between centers are
particularly informative if there are more than a few
observations per center (in which case fraud in any
one center may have a sizeable impact on the over-
all result). Such comparisons are useful with different
types of fraud; for instance, the presence of outliers or
the consistency in the effect of treatment may reveal
fraud aimed at exaggerating the effect, while the pres-
ence of “inliers” or underdispersion in the data may
reveal invented cases.

Univariate Methods

Beyond range checks and missing data checks, which
are performed as part of routine data management,
one can use other univariate statistical techniques to
inspect the data (Table 2).

Statistical checks may reveal unusual data patterns
that are often the mark of fraud (Table 3). Invented

Table 2 Some statistical techniques that may be used to
uncover fraud

One variable at a time Descriptive statistics
Box and whisker plot
Frequency histogram
Stem and leaf plots
Tests for slippage

Several variables at a time Cross-tabulation/scatterplot
Correlation/regression
Cook’s distance
Mahalanobis’ distance
Cluster analysis
Discriminant analysis
Chernoff faces
Star (needle, spike) plots
Hotelling’s T 2

Tests for treatment contrasts

Repeated measurements Autocorrelations
Profiles
Polynomial contrasts
Runs tests

Calendar time Residual plots
Cusum
Control charts

Table 3 Some patterns that may reveal fraud in clinical
trial data

One variable at a time Digit preference
Round number preference
Too few or too many outliers
Too little or too much

variance
Strange peaks
Data too skewed

Several variables at a time Multivariate inliers
Multivariate outliers
Leverage
Too weak or too strong

correlation

Repeated measurements Interpolation
Duplicates
Invented patterns

Calendar time Breach of randomization
Days of week (Sundays or

holidays)
Implausible accrual
Time trends

or manipulated data tend to have too little variance,
no outliers or an abnormally flat distribution [8].
Their distribution may be too close to a simple but
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implausible model, such as a Normal distribution with
round numbers for the mean and standard deviation.

Since fraud usually occurs in a single center
(except in the unlikely situation of a coordinated
fraud across several centers), statistical checks must
be performed within each center as well as overall. A
comparison of the results reported by different cen-
ters may reveal too little variability in one or more
centers as compared with the overall variability. Per-
fect compliance with the protocol, for instance, may
be the mark of fraud. Such a comparison may also
reveal “slippage” of one or more centers, the null
hypothesis being that the means of the variable of
interest are equal, but for random fluctuations, to the
overall mean [5]. These tests are not informative if
there are many centers and few patients per center;
on the other hand, grouping small centers could mask
a problem in any one of them and is therefore not
generally advisable.

Multivariate Methods

Data management usually includes logical checks to
ensure the consistency between the values of two
or more variables. Multivariate statistical techniques
offer more checking possibilities, but they are seldom
used in clinical trials, if at all. Multivariate statistical
methods include correlations between several patient-
related variables as well as comparisons between the
randomized groups (Table 2). Simple two-way cross-
tabulations or scatter plots for various pairs of vari-
ables can be compared across centers, and unusual
patterns investigated further. Outlying observations,
or outlying groups of observations coming from the
same center, can be detected more effectively in
multidimensional space than in a single dimension.
Moreover, in multidimensional space, “inliers” can be
detected through the use of the Mahalanobis’ distance
just as well as outliers: inliers have an abnormally
low Mahalanobis’ distance (they fall too close to the
multivariate mean), while outliers have an abnormally
high Mahalanobis’ distance (they fall too far from
the multivariate mean) (Table 3). The Mahalanobis’
distance is computed by standardizing the variables
of interest (subtracting the mean and dividing by the
standard deviation), and summing the squares of these
standardized variables. The sum approximately fol-
lows a χ2 distribution with N degrees of freedom, if
N variables are considered. The detection of inliers

may be more useful to detect fraud than the detec-
tion of outliers, because fabricated data will tend not
to contain outliers which are at higher risk of being
detected than are values close to the (multivariate)
mean. This method can also be used to see if the
N variables of interest are too close to each other
for some pair(s) of individuals, in which case one of
the individuals in the pair may be a (slightly mod-
ified) copy of the other. Robust methods such as
using ranks in place of the observations are advis-
able for the detection of outliers because these can
create severe departures from multivariate normality.

Repeated Measures

When, as is often the case, some variables are mea-
sured repeatedly over the course of the trial on the
same patient, these measures lend themselves well to
a variety of checks (Table 2). Here, again, an insuffi-
cient variability over time may reveal the propagation
of previous values rather than genuine observations
(Table 3). Sometimes the fraud involves a mechanism
or computer algorithm for making up data.

Calendar Time

In any trial with prolonged patient entry and follow-
up, one can use calendar time to perform additional
checks on the data (Table 2). Simple checks can
be performed on the day of the week, as certain
events or examinations are unlikely to have taken
place on a Sunday. Time intervals between successive
visits and the number of visits per unit time provide
further opportunities for checking the plausibility of
a sequence of events (Table 3). A comparison of
treatment groups by week or month of randomization
can reveal suspect periods during which all treatments
were not allocated with equal probability. Perfect
compliance with the protocol in terms of dates may
be a marker, as noted above, but should not be taken
on its own as necessarily misconduct. More advanced
checks may sometimes be performed, such as the
variance of observations over time. An excellent
example is provided by an animal study in which
the variability of the heart rates of dogs treated
consecutively showed far too little variance initially,
leading to a strong suspicion of data fabrication in
the early stages of the study [3].
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Impact of Fraud on the Results of Clinical
Trials

The highly publicized case of fraud in the National
Surgical Adjuvant Breast and Bowel Project
(NSABP) provides a framework to examine the
impact of such fraud on the results of clinical trials
[9]. Briefly, one of the investigators in breast can-
cer trials systematically altered some baseline patient
data so that these patients became eligible for entry
into the trials. The data subject to falsification were
the dates of surgery and biopsy or estrogen recep-
tor values. For example, in one study, the delay
between the surgery and randomization had been set
to a maximum of 30 days by the trial protocol, and
dates were falsified for a few patients in whom this
limit had been exceeded. The fraud clearly was not
aimed at distorting the results of the trials one way or
another (it could only have done so had the treatment
effect been substantially different among the wrongly
entered patients than among the others). As a matter
of fact, a careful reanalysis of NSABP trials without
the data from the fraudulent institution confirmed that
the trial outcomes had not been materially affected by
the fraud [9]. In another large trial in stroke published
recently, all data from one center suspected of fraud
were excluded from the analysis, again with negligi-
ble impact on the study results. Yet this center had
contributed 452 (6.4%) of the 7054 patients random-
ized in the study, and statistical analysis of the vari-
ability of their data supported the belief that no real
patients had actually been studied in this center [21]!

Fraud is unlikely to affect the results of a trial if
any of the following conditions hold:

• the fraud is limited to one or a few investiga-
tors (perhaps one center in a multicenter setting)
and/or to a few data items, provided that there are
many investigators or centers;

• the fraud bears on secondary variables that have
little or no effect on the primary endpoint of the
trial;

• the fraud affects all treatment groups equally,
and hence does not bias the results of the trial.
Fraud committed without regard to the treatment
assignments (e.g. prior to randomization or in
double-blind trials) generates noise but no bias.

At least one of these conditions frequently holds,
and therefore fraud should not be expected to have a

major impact on the results of multicenter clinical
trials. As a matter of fact, a search of Medline
from 1966 to 1997 revealed that 235 articles had
been retracted, 86 of which were deemed to be
due to misconduct [4]. These numbers do not bear
specifically on clinical trial reports, but they are quite
small compared with the total number of articles
published during the same period.

One caveat is that where an increase in noise
occurs, this can make dissimilar treatments appear
similar. With a trend towards using equivalence or
noninferiority trials for licensing purposes this is of
concern and could result in ineffective medicines
being licensed.

Actions in Cases of Fraud

When fraud is suspected in a center, all analyses can
be repeated with and without that center, in order
to assess the sensitivity of the trial results to the
fraud. Although fraudulent data would in general
have to be excluded from the main analysis of the
trial, other validated data from the same center might
well be kept in the analysis. If a Data and Safety
Monitoring Board oversees the trial, then it seems
appropriate to leave such decisions to their discretion.
Biostatistical methods can only point at problems;
further investigations and hard evidence are needed
to confirm fraud.

Conclusion

Randomized clinical trials constitute, by design, the
most reliable type of medical experiment. Their data
can be verified using statistical techniques that take
advantage of their highly structured nature. Their
results are generally robust to occasional cases of
data falsification and fabrication at some participating
centers. As George put it, “the methodology of
clinical trials de facto provides a measure of pro-
tection against deliberate deception that is generally
unappreciated by those not familiar with the method-
ology” [10]. Claims to the contrary notwithstanding,
we are not aware of quantitative evidence that fraud is
common in clinical trials. However, fraud is a cause
for concern regardless of its prevalence or conse-
quences because the “habit of truth” is the cardinal
value in scientific endeavors. Fraud must be fought,
but attempts to impose more bureaucracy and heavier
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monitoring on clinical trials is the wrong answer to a
problem that can be overrated in the media. Fraud can
largely be prevented through proper design of the trial
protocol and case report form, and detected by statis-
tical procedures and computerized checks that make
use of the unique structure of clinical trial data [14].
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Frequency Distribution

A frequency distribution is a method of summarizing
a set of numerical data in tabular or graphical form.
For example, one might summarize the height of
individuals, family incomes, or chemical concentra-
tions in blood samples. A frequency distribution is
constructed from k nonoverlapping class intervals,
usually of equal length. Let a0, a1, . . . , ak denote the
class boundaries. A value, x, is in the j th class inter-
val if aj−1 < x ≤ aj . A frequency distribution reports
the frequency or count of data values falling into each
class interval. Let the j th frequency, fj , denote the
number of data values falling into the j th class. The
above description can be summarized in tabular form
(Table 1).

If numerical observations are from a completely
censused population, then the result of the above pro-
cedure is a population frequency distribution. When
the observations are from a sample of the popula-
tion, as is usually the case, Table 1 is called a sample
frequency distribution.

The procedure can be illustrated with weights of
92 Pennsylvania State University students as reported
in Ryan & Joiner [2] (Table 2).

Care and judgment must be exercised in select-
ing the number of classes and the class boundaries.
Whenever possible it is important to keep the class

Table 1 Summary of frequency
distribution

Class interval Class frequency

a0 < x ≤ a1 f1

a1 < x ≤ a2 f2

. . . . . .

aj−1 < x ≤ aj fj

. . . . . .

ak−1 < x ≤ ak fk

Sum n

intervals the same length: this maintains the close
relationship between the sample frequency table and
the underlying population density function. Also,
class intervals should be written unambiguously so
that each data value falls in exactly one interval. For
example, if in the student weight data frequency table
the weight classes had been described as 140–150
and 150–160, then the 10 students who self reported
their weights as 150 pounds could not be assigned
unambiguously to a weight class. In the above fre-
quency distribution the intervals are unambiguous,
and also boundaries are kept away from weights that
are multiples of 5, i.e. those weights where self-
reporting biases are most likely.

Before the advent of modern computing, fre-
quency tables were often used to condense the data
before doing time-consuming arithmetic computa-
tions: for example, approximate means and variances
can be quickly calculated from frequency distribu-
tions. Today, however, frequency distributions are
primarily used to display and understand data.

Frequency distributions are usually graphically
displayed as histograms. In a histogram each class
interval is represented by a vertical bar whose base
is the class interval and whose height is the number
of observations in the class interval. Figure 1 shows
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Figure 1 Histogram for student weight data

Table 2 Pennsylvania State University student weight data

Weight in pounds Frequency Weight in pounds Frequency

87.5 < x ≤ 102.5 2 162.5 < x ≤ 177.5 8
102.5 < x ≤ 117.5 9 177.5 < x ≤ 192.5 8
117.5 < x ≤ 132.5 19 192.5 < x ≤ 207.5 1
132.5 < x ≤ 147.5 17 207.5 < x ≤ 222.5 1
147.5 < x ≤ 162.5 27 Sum n = 92
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the histogram for the student weights, along with a
dot plot representing each of the 92 weights. For
unequally spaced intervals the histogram should be
modified so that the area of each bar is proportional
to the frequency for that class interval.

There are other ways of presenting the same
summary information contained in a frequency dis-
tribution. The relative frequency distribution reports
the proportion of observations falling in each class
interval. And the cumulative frequency table reports
the number of observations falling in or below each
class interval. Kendall et al. [1] give a detailed

review of frequency distributions and their exten-
sions.
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Frequency Matching

Frequency matching, also known as category match-
ing, is a sampling design used in case–control stud-
ies that yields controls with the same distribution
over categories defining levels of potential con-
founders as is observed in the cases. For example,
suppose that cases are classified into 20 categories
defined by gender and by ten ten-year age intervals,
and that the distribution of cases in these categories
is observed. A frequency-matched sample of controls
with this same distribution could be obtained by sam-
pling as controls a constant multiple of the number of

cases in each category. Sometimes, for convenience,
one obtains frequency-matched controls that conform
to the expected distribution of cases rather than wait
to match the on actual distribution of cases.

Frequency matching is also used in cohort studies
to assure that the control cohort has the same distribu-
tion over categorical levels of potential confounders
as the exposed cohort.

(See also Matching)

MITCHELL H. GAIL



Galton, Francis

Born: February 16, 1822, in Birmingham, UK.
Died: January 17, 1911, in Haslemere, UK.

Francis Galton was the founder of biometry. The ori-
gins of many statistical procedures can be seen in his
pioneering efforts. A Victorian polymath, although
no mathematician, he influenced the development of
mathematical statistics through Karl Pearson (who
wrote a massive life of him in three volumes), F. Y.
Edgeworth and, at one remove, R. A. Fisher. He
was a half-cousin of Charles Darwin (they shared a
grandfather in Erasmus Darwin) and throughout his
life he enjoyed both private means and a wide circle
of intellectual relatives and friends.

A precocious child, he went up to Trinity College,
Cambridge, in 1840 to study mathematics and then
medicine, but suffered a breakdown which forced him
to abandon an honors mathematics degree. Although
he almost completed his medical studies he disliked
the idea of practising, and with his father’s death
in 1844 he inherited sufficient wealth to remove the
need. In 1853 he married Louisa Butler, daughter of
the Dean of Peterborough, whose brother Montagu
was later to be Master of Trinity.

Between 1844 and 1853 Galton indulged in
African travels, sailing up the Nile and subsequently
undertaking extensive explorations in South West
Africa, which earned him the 1854 Founder’s Medal
of the Royal Geographical Society, on whose Council

he served for many years. He used his experiences as
the basis for a book The Art of Travel [1], published
in 1855, and the following year he was elected a
Fellow of the Royal Society.

In 1861, Galton’s statistical inclination showed
as he gathered meteorological information from
all over Europe from which, on plotting the
barometric pressure, he discovered – and named – the
“anticyclone”. His statistical interests were channeled
into questions of heredity by the publication, in
1859, of Charles Darwin’s On the Origin of Species,
coupled very probably with the realization that he and
Louisa were likely to remain childless. The result was
Galton’s first important book, Hereditary Genius [2]
(see Human Genetics, Overview).

From the publication of Hereditary Genius in 1869
to his death in 1911, Galton occupied himself prin-
cipally with statistical questions bearing on heredity.
In 1874, with the Reverend H. W. Watson, he wrote
a paper [7] on the extinction of families, which is
regarded as the origin of the statistical theory of
branching processes. The following year he discov-
ered that a normal mixture of normal distributions is
itself a normal distribution, about which S. M. Stigler
has written “Galton’s conceptual use of the result was
new and ingenious and represents the most impor-
tant step in perhaps the single major breakthrough in
statistics in the last half of the nineteenth century”.
The breakthrough continued with Galton’s introduc-
tion of regression in 1877 in connection with the
analysis of a genetics experiment that he had planned
which was the continuous analog of Mendel’s 1865
discrete experiments, and which laid the foundations
of biometric genetics (see Genetic Epidemiology;
Mendel’s Laws).

In 1885, Galton presented his explanation of
regression in terms of the geometry of the bivariate
normal distribution, for which J. Hamilton Dickson
of Cambridge provided the mathematics. All of these
advances were brought together early in 1889 with
the publication of Natural Inheritance [3]. After the
book had gone to press, Galton realized that if in his
regression diagram the two variates were scaled so
as to have the same probable error on the paper, then
both regression lines would have the same slope (each
with respect to its proper axis) which was therefore
suitable as an “index of co-relation”, or “correlation
coefficient”, as it soon became. In 1899, he invented
normal probability paper, a natural extension of his
earlier use of the cumulative normal probability
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distribution, which he termed an “ogive”. In 1901,
Galton assisted Pearson and his colleague W. F.
R. Weldon in the launch of the journal Biometrika,
and contributed a short introduction to Biometry for
the first number.

In 1883, Galton had coined the word “eugenics”,
but it was not until the early years of the twenti-
eth century that he was able to promote his ideas. In
1904 he gave University College money to establish
a “Eugenics Records Office”, with a Research Fel-
low and an assistant, later to become the “Eugenics
Laboratory” under Pearson. In his will he left Univer-
sity College £45 000 to endow a Chair of Eugenics,
initially called the Galton Professorship of Eugen-
ics. The first two holders were Pearson and Fisher
(ultimately the Laboratory became the Galton Labo-
ratory and the Professorship one of Human Genetics).
In 1907 a “Eugenics Education Society” was formed,
and Galton soon agreed to become its Honorary Pres-
ident. The Society flourished, especially under the
later presidency of Leonard Darwin, becoming the
Eugenics Society (and now the Galton Institute).

Galton was a prolific writer on many subjects,
numbering 17 books amongst his 300 publications.
Of those not yet mentioned, his pioneering books on
fingerprints and their uses (1892 [4] and 1895 [5])
may be recalled.

In 1902 Galton was awarded the Darwin Medal of
the Royal Society, and was particularly delighted to
be elected an Honorary Fellow of his old Cambridge
college, Trinity. Further honors came in extreme old
age: he was knighted in June 1909 and received the
Copley Medal, the Royal Society’s highest award, in
October 1910 a few months before he died at the
age of 88.

Although Galton was very much a product of his
times and his social class, his views were by no
means typical. He thought, as did others, that the

explorer H. M. Stanley had treated Africans badly;
he went out of his way, in Hereditary Genius, to
express his “grief” that paucity of data prevented
him from discussing the influence of mothers on their
offspring, which he knew to be as important as that
of fathers; and in respect of eugenics he wrote at the
end of his autobiography [6]: “Man is gifted with pity
and other kindly feelings; he also has the power of
preventing many kinds of suffering. I conceive it to
be within his province to replace Natural Selection by
other processes that are more merciful and not less
effective”.
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Galton–Watson Process

The Galton–Watson process should more accurately
be called the Bienaymé–Galton–Watson process; or,
better, just the simple branching process. Descen-
dants of a single ancestor at generation zero at any
given subsequent generation produce offspring, inde-
pendently of each other and of individuals in preced-
ing generations. The probability distribution of the
number of offspring of any one individual is iden-
tical with that of the initial ancestor. Denoting by
pr, r = 0, 1, 2, . . ., the probability that any one indi-
vidual has r offspring, and by Zn the number of
individuals at generation n, we have pr = Pr(Z1 =
r). If we write F(s) = ∑∞

r=0 prs
r , 0 ≤ s ≤ 1, for the

probability generating function (pgf) of Z1 (see Gen-
erating Functions), then a crucial property is that the
pgf of Zn, Fn(s), is in fact the nth functional iterate
of F(s) (i.e. Fn(s) = F(Fn−1(s)), where F0(s) = s).
This is reflected in the fact that if the mean number
of offspring per individual is denoted by m (i.e. m =∑∞

r=0 rpr = F ′(1)), then the mean number of indi-
viduals at time n is mn (i.e. EZn = mn). If m > 1, we
thus have “exponential” (Malthusian) average growth
with n. However, even in this “supercritical” case,
extinction may occur with positive probability. The
Criticality Theorem for the process, if the trivial case
p1 = 1 is excluded, asserts that if m ≤ 1 extinction
occurs with probability q = 1; but if m > 1 the prob-
ability q of ultimate extinction is the unique root of
the equation F(x) = x in the interval 0 ≤ x < 1.

The process and the Criticality Theorem are im-
portant because of the breadth of practical applica-
bility [2, 4]. The individuals in the stochastic pro-
cess {Zn} may be (as in the original application to
the problem of extinction of surnames) direct male
descendants of a single male ancestor; or carriers of
copies of a mutant gene, electrons in an electron mul-
tiplier, neutrons in a nuclear chain reaction, branch
units in a polymer molecule [3], or branches emanat-
ing from a point of propagation in crack growth. Even
though the independence assumptions will tend to
break down in practice if numbers become large, par-
ticularly in biological applications, the value of q cal-
culated under these assumptions in the case m>1 will
nevertheless often provide a good approximation [4].
The structure of the process is easily generalized to
several types of individual (the multitype process,
with an accompanying Criticality Theorem) which is

of very great applicability; for example, in popula-
tion genetics and polymer chemistry. Another impor-
tant direction of generalization is to permit immigra-
tion (e.g. recurrent mutation), in which case when
m<1 an equilibrium may result due to a balance
between the immigrants and tendency to extinction.

For the simple branching process, I.J. Bienaymé
[1] gave a completely correct statement of the Criti-
cality Theorem in 1845. This passed unnoticed until
recent decades [5, 7]. The usual designation for the
process originates from the partly correct statement of
the Criticality Theorem in 1873–1874 by F. Galton
and H.W. Watson. Kendall [6] gives a vivid history
from this starting point.
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Gamma Distribution

The gamma density in its general form is

g(x; s, a, ρ) = (x − s)ρ−1

aρΓ (ρ)
exp

(
s − x

a

)

(s < x < ∞; a, ρ > 0).

It is a Pearson type III density, and includes the
χ2 density (see Chi-square Distribution); the latter
refers to a “goodness-of-fit” test based on the sum
of squared normed deviations. This in turn relates
to the distribution of the sum of squares of normal
deviates. The distribution may be reverse J-shaped if
0 < ρ < 1. The basic parameters (s, a, ρ) are asso-
ciated with origin, scale, and shape; the skewness
is α3 = √

β1 = µ3/µ
3/2
2 = 2/

√
ρ, and kurtosis, β2 =

µ4/µ
2
2 = 3 + 6/ρ. For normality these two moment

parameters take the values 0 and 3, respectively,
so that ρ has to be large to decrease the skewness
to insignificance. It is well known that the gamma
distribution approaches normality very slowly (see
Convergence in Distribution and in Probability). A
recent study by Revfeim [7], using a transformation,
and manipulation of series, relates the distribution and
its inverse to the corresponding normal functions.

If we choose g(·) as a suitable model to account
for experimental data with some success, then sam-
ple size is important. Applications of the gamma
distribution are numerous and cover many applied
sciences. The reader may refer to the bibliography
in Johnson et al. [5], which includes some 300 refer-
ences. Historically, we may glance at Karl Pearson’s
Early Statistical Papers [6], illustrations relating to
the state of the art towards the end of the nineteenth
century. Examples are:

1. Range of the barometer; p. 80;
2. Professor Weldon’s crab measurements; p. 82;
3. Heights for 25 878 recruits in the US Army

(1875); p. 83;
4. Length–breadth index of 900 Bavarian skulls;

p. 86;
5. The distribution of 8689 cases of enteric fever

received into the Metropolitan Asylums Board
Fever Hospitals (1871–1893); p. 88.

Examples of the gamma density are given in
Figure 1.
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Figure 1 Illustrations of the densities g(x; 0, 1, ρ). Note
that for a > 0, g(x; s, a, ρ) tends to ∞ as x → s when
0 < ρ < 1, but equals unity when x = s, and ρ = 1

Histograms should be unimodal (see Frequency
Distribution); high density near the origin may lead
to estimation problems especially in the estimation
of s. A brief account of simulation studies for the
maximum likelihood estimators [1] shows that the
distribution of s may be U-shaped if ρ is small (less
than unity). If, on the other hand, ρ is large then the
distribution may have a large variance. Moreover, in
this case it was found that confidence intervals for ρ

would require sample sizes exceeding 500 to control
their variance. Cohen & Whitten [3] have considered
modified maximum likelihood estimators including
the use of the smallest sample value (see Order
Statistics) to estimate s, and with special attention
to cases when ρ is small.

In sampling studies of the estimators (s, a, ρ),
given a gamma density (s, a, ρ) with specified sam-
ple size, among the great variety of possible forms
samples with negative skewness may arise. For exam-
ple, in sampling from (0, 1, 6) and a sample of 50,
there were 20 000 valid solutions with 2157 failures
including 432 cases of negative skewness. Similarly
for ρ = 10, and n = 50, there were 182 cases of neg-
ative skewness out of some 20 000 trials.

A new parametric form due to Cheng and Tray-
lor [2] avoids the negative skewness syndrome with
µ, σ , and λ relating to origin, scale, and shape, the
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density being

g(x; µ, σ, λ) = 1

σλΓ (λ2)

{
λ−2

[
1+ λ(λ − µ)

σ

]}λ2−1

× exp

{
− 1

λ2

[
1 + λ(x − µ)

σ

]}

(σ > 0; λ �= 0 and 1+ λ(x−µ)

σ
> 0).

In our notation

ρ = 1

λ2
, a = σ |λ|, s = µ − σλ−1.

Moreover,
√

β1 = 2/
√

ρ = skewness.
If λ > 0, then the distribution has positive

skewness; if λ < 0, then the distribution is
valid with negative skewness. Hirose [4] has a
program for maximum likelihood estimation using
a predictor–corrector algorithm. Asymptotic co-
variances using the Hessian matrix will be available,
but caution in finite sample interpretation is advised.
Let it be said that in finite samples there is no panacea
in maximum likelihood estimation procedures.

In the present context it would be remiss to ignore
the link between the gamma distribution and the
gamma function. Euler in the eighteenth century used
the unnormed gamma density as the integrand and
integrated over the range (0, ∞) to define the gamma
function. Of course, at that time there was no con-
nection with statistics. This definition, interpreted for
complex variables, is to be found in modern text-
books. After Euler, Weierstrass introduced an infinite
product formula. Inevitably new forms arose for prod-
ucts of gamma functions such as Γ (x), Γ

(
x + 1

2

)
,

and Γ (x)Γ (1 − x), as well as the question of approx-
imations for large variables. Stirling’s formula (eigh-
teenth century)

ln[Γ (x)] = (
x − 1

2

)
ln(x) − x + 1

2 ln(xπ)

+ J (x) (x → 0, |arg x| < π)

plays a role in many asymptotic structures, including,
for example, the transition to normality of the bino-
mial distribution. The residue J (x) is a divergent
power series in odd powers of 1/z, the coefficients
being Bernoulli numbers; these diverge ultimately.
A partial sum of the series has an integral form
which may be bounded and shown to be valid.
Stieltjes [8] produced a convergent continued fraction
for the residue and this gives monotonic increasing,
and decreasing bounds when the variable is real and
positive.
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Gardner, Martin John

Born: July 25, 1940, in Essex, UK.
Died: January 22, 1993, in Southampton, UK.

Although Martin Gardner achieved fame for his work
at Sellafield, which showed that paternal exposure to
ionizing radiation was linked to leukemia in child-
hood [3] (see Leukemia Clusters), this discovery
came towards the end of a varied and highly pro-
ductive career in medical statistics. After receiving a
first class degree in mathematics he joined the Med-
ical Research Council Social Medicine Unit at the
London School of Hygiene and Tropical Medicine.
It was there that he became interested in the prob-
lem of why the rates of common diseases vary
so much between different parts of Britain – an
interest to which he returned repeatedly through-
out his career. He carried out a series of novel
analyses on the geographical links between socioe-
conomic conditions and coronary heart disease (see
Geographic Patterns of Disease; Geographic Epi-
demiology). Later, at the MRC Environmental Epi-
demiology Unit in Southampton, he produced two
uniquely detailed atlases of mortality in England and
Wales [4, 5].

In 1971 Gardner moved to Southampton as a
senior lecturer. One of his hallmarks in those early
years was his ability to form creative partnerships
with doctors. This arose from his facility in grasping

medical problems and reducing them to their essence,
and from his personality. He was a modest and
immensely likeable man, and his promotions to a
Readership followed by a personal chair in 1985 were
widely welcomed.

He was a gifted teacher of statistical methods.
He once gave a lecture on life tables that evoked
spontaneous applause. Only seldom do lectures on
statistics evoke such a response from doctors. He
was statistical advisor to the British Medical Jour-
nal for many years, a position of which he was
justly proud. He campaigned vigorously to improve
the quality of statistics in medical journals (see Sta-
tistical Review for Medical Journals) and helped to
draw up guidelines for statistical analysis. He coor-
dinated the development of statistical checklists for
referees, and the production of a series of papers on
confidence intervals. These were brought together
in Statistics with Confidence [2]. When refereeing
papers Gardner was positive, searching out strengths
and scientific importance and not dwelling unduly on
weaknesses and errors.

In 1978 Gardner and Donald Acheson published
their report on the ill effects of asbestos on health [1].
It was a tribute to Gardner’s balanced approach
to difficult and contentious issues – a balance that
made him much in demand to serve on committees.
He rapidly became an expert on control limits for
industrial hazards. He was a frequent visitor to the US
and through this and his work with the International
Agency for Research Against Cancer established an
international reputation.

Gardner gave time to the scouts, schools, and
other local activities. As a schoolboy he had been
an exceptional athlete, and sport was a major hobby
throughout his life. He and his wife, Linda, whom he
met at Berkeley, had three children.

In 1983 Gardner was asked to join the committee,
chaired by Sir Douglas Black, examining the excess
of childhood leukemia around the nuclear plant at
Sellafield in Cumbria. Over the next few years he
devised and carried out three major studies together
with colleagues in the Environmental Epidemiology
Unit. The “Gardner Report” [3], the result of fastid-
ious research, aroused immense public interest and
scientific controversy. He handled the media with
great skill and addressed the scientific debate with
balance and good humor. His career ended all too
soon, but on a high note.
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Gastroenterology

The specialty of gastroenterology concerns diseases
of the digestive tract from the esophagus to the rec-
tum. The biliary tract and pancreas are included, but
diabetes is regarded as a subspeciality of endocrinol-
ogy. Often the definition of gastroenterology is
widened to include the liver also (see Hepatology).
At one time the internal organs constituting the gas-
trointestinal tract were directly accessible only at
surgery. Nowadays, less invasive investigative tech-
niques include contrast radiography and endoscopy
for direct visualization and biopsy. Surgical maneu-
vers may be effected via endoscopic or minimal-
access “keyhole” routes.

Disease taxonomy, though not as problematic
as in psychiatry, is nevertheless not entirely
straightforward. Quite exhaustive investigations fail
to demonstrate an organic cause in many cases of
abdominal pain. Thus nonspecific acute abdominal
pain and irritable bowel syndrome are recognized
diagnoses, albeit defined by absence rather than
presence of specific diagnostic features.

One important area of ambiguity relates to inflam-
matory bowel disease (or nonspecific colitis). Crohn
et al. [3] described a regional ileitis with granuloma-
tous pathology, yet which in many respects closely
resembled the already well-established diagnosis of
ulcerative colitis (or idiopathic proctocolitis). Dif-
ferential diagnosis between ulcerative colitis and
Crohn’s disease is sometimes clear-cut but is often
so problematic that many have debated whether
they should be regarded as different diseases. Jones
et al. [11] sought to resolve this issue by applying
numerical taxonomy to a series of patients with non-
specific colitis. Two main clusters emerged, that could
be identified with proctocolitis and Crohn’s disease,
but the latter category was relatively heterogeneous,
with several subclusters apparent.

Subsequently Harries et al. [8] pointed out that
ulcerative colitis is less frequent in current smok-
ers than in lifelong nonsmokers or ex-smokers; the
latter often develop the disease within a year or so
of quitting smoking. This observation, contrasting
with Crohn’s disease, which is slightly commoner
in smokers, suggests differences in etiology. Ulcera-
tive colitis shares its nonsmoking epidemiology with
a few other conditions, notably the related condi-
tion of oral aphthous ulceration, and Alzheimer’s and

Parkinson’s diseases. The possibility of therapeutic
use of nicotine is limited by the propensity to cause
side-effects. It is thus a particularly appealing option
for ulcerative colitis, for which topical administration
is feasible.

It was traditionally held as axiomatic that no
microorganism could thrive in the highly acidic envi-
ronment of the stomach. This view was overturned
when Warren [17] demonstrated the existence of a
hitherto unidentified strain of curved bacilli on the
gastric epithelium in patients with chronic gastritis.
This organism, now known as Helicobacter pylori,
is regarded as playing a major role in the etiology
of peptic ulceration, and perhaps gastric cancer also.
Prospects for identifying and eradicating the organism
from symptomatic patients are regarded as good [9].
Guidelines for clinical trials of eradicative regimes
are given in [18].

Population gastroscopic screening for malignancy
is practiced in Japan, where the incidence is
much higher than in the West. Evidence from
large population-based randomized trials [7, 13, 14]
indicates a moderate benefit from screening for
colorectal cancer using fecal occult blood tests –
colonoscopy is also being developed as a screening
method. As in other screening contexts, optimizing
sensitivity and specificity is critical, both by
avoidance of factors (here, dietary ones) that lead to
a false result, and also by choice of test. Studies such
as that by Hope et al. [10] point to the great need
for methods to compare two tests for both sensitivity
and specificity simultaneously. A suitable approach
is now available [15].

Gastroenterology has been a major area for devel-
opment of knowledge-based differential diagnosis
systems. de Dombal et al. [5] described a comput-
erized system to assist in the diagnosis of acute
abdominal pain (see Computer-aided Diagnosis),
which was able to outperform experienced clinicians.
However, one of the greatest benefits was an educa-
tive one: as they used the system, clinicians directed
their attention towards the factors that were most
discriminatory, and their performance improved [6].
Knill-Jones et al. [12] described a model for diagno-
sis of jaundice. Clamp et al. [2] produced a scoring
system for the differential diagnosis of inflammatory
bowel disease. Spiegelhalter & Knill-Jones [16] out-
lined many of the statistical issues involved in scoring
systems such as GLADYS (Glasgow Dyspepsia Sys-
tem), which grew out of de Dombal’s work. An
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excellent review of progress, including a balanced
view of the usefulness to clinical practice, is given
by de Dombal [4].

Gastroenterological journals are similar to other
speciality journals in their statistical content. As an
example of process quality improvement, Gut has
had a statistical advisor for several years, and now
has an identified team of some 20 statistical ref-
erees. Clinical trials will be required to conform
to the CONSORT guidelines with effect from Jan-
uary 1998 [1].
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Gauss, Carl Friedrich

Born: April 30, 1777, in Brunswick, Germany.
Died: February 23, 1855, in Göttingen, Germany.

Described in [1] as “one of the greatest scientific
virtuosos of all time”, Gauss came from a poor and
semiliterate family, and quickly revealed himself as
a highly intelligent child and a calculating prodigy.
He was supported from 1792 by a stipend from the
Duke of Brunswick, which enabled him to study in
Brunswick, and later at Göttingen and Helmstedt.
During this period he produced a stream of original
mathematical and astronomical work, and in 1807 he
became director of the Göttingen observatory, where
he remained for the rest of his life.

May [1] lists the subjects in which Gauss worked
as follows: arithmetic, number theory, algebra, anal-
ysis, geometry, probability and statistics, astronomy,
geodesy, geomagnetism, mechanics, dioptrics, and
physics. In all these he had an enormous international
reputation. He was something of a lone worker, with
no major mathematical collaborators and little per-
sonal contact with other mathematicians. He collabo-
rated to a greater extent in applied work, particularly
with an experimental physicist, Wilhelm Weber.

Gauss’s importance in statistics rests on his work
in the theory of least squares, and the central role
played in it by the normal (or Gaussian) distri-
bution. Least squares had been proposed by A.M.
Legendre in 1805 as an intuitively satisfactory way
of combining observations. Gauss’s account, pub-
lished in 1809, underpinned the “principle” by a

“theory”. Using what we should now describe as a
multiple linear regression model, and a Bayesian
formulation with uniform prior distributions for the
parameters, he chose the mode of the posterior dis-
tribution (or, equivalently, the maximum likelihood
(ML) solution). He considered that, for a single sam-
ple from a distribution, the arithmetic mean was a
reasonable estimator, and showed that this implied
the use of the normal distribution, which in turn led
to the least squares solution to the ML equations.
He showed also that, for general error distributions,
the least squares solution minimized mean square
error amongst all linear estimators (the result usu-
ally called the Gauss–Markov Theorem). For fuller
accounts, see [2] and [3].

May’s memoir [1] provides a broad coverage
of Gauss’s scientific work, and an extensive
bibliography.
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Gavarret,
Louis–Denis–Jules

Born: January 28, 1809, in Astaffort, France.
Died: August 21, 1890, in Château de Valmont,

France.

Jules Gavarret was born into a middle-class family
and initially planned on a military career. To pur-
sue this end, he enrolled in the École Polytechnique
in 1829 and was named lieutenant of artillery in
1831; however, he resigned his military position in
1833 to pursue a career in medicine. Subsequently,
Gavarret began an extensive collaboration with the
eminent Parisian clinician Gabriel Andral with whom
he conducted several investigations into the compo-
sition of blood. In 1843, Gavarret became a doctor
by defending a thesis entitled “De l’Emphysème des
Poumons et ses Rapports Avec les Différentes Mal-
adies du Coeur et des Bronches” and ascended to
the chair of medical physics in the Paris Faculty of
Medicine. During his ensuing 44 year career in aca-
demic medicine, Gavarret wrote several more studies
that attempted to expand the understanding of how
physical principles (heat, electricity, etc.) could be
used to explain the functioning of the human body; he
retired in 1887 after being awarded numerous honors
for his scientific accomplishments.

While still a student of Andral, Gavarret wrote
the book that would be his principal legacy to the
field of biostatistics: Principes Généaux de Statistique
Médicale, ou Développement des Règles Qui Doivent
Présider à Son Emploi (1840). In this book, Gavarret
responded to a debate that had occurred at the Paris
Academy of Medicine in 1837 over Pierre Charles
Alexandre Louis’s “numerical method”. According
to Louis, one should record the numbers of patients

who died and recovered from each disease in the hos-
pital wards as well as the types of treatments that
each patient received. From these numerical results
one could compute the percentage of patients who
died after receiving a particular treatment and the
percentage of patients who died after not receiving
the treatment. If the former percentage was higher
than the latter (as was the case for the then-common
practice of bloodletting), the procedure should be
suspended since it was not truly efficacious. In cri-
tiquing Louis’s numerical method, Gavarret drew on
the probabilistically based work of the contempo-
rary mathematician Siméon Denis Poisson to show
that the percentages could vary between “limits of
oscillation” which depended on the number of cases
observed. By applying Poisson’s idea to Louis’s var-
ious numerical conclusions, Gavarret determined, for
example, that the average mortality rate from typhoid
fever could vary between 26% and 49% on the basis
of the 140 cases observed.

Throughout the latter half of the nineteenth
century Gavarret’s probabilistic analysis of medical
statistics was discussed in treatises produced in
America, Great Britain, France, and Germany.
Although some German commentaries attempted
to modify Gavarret’s formulas to make them
more useful in practice, most accounts did little
more than repeat Gavarret’s examples verbatim and
highlight the “novelty” of applying the “calculus of
probabilities” to medical statistics. As a result, few
nineteenth-century biostatisticians saw Gavarret’s
probabilistic concerns as central to their work;
nevertheless, Gavarret’s approach is still important
historically since it foreshadows the probabilistically
informed concerns that have become so common
within contemporary biostatistical research.
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Geisser, Seymour

Born: October 5, 1929 in the Bronx, New York.
Died: March 11, 2004 in St. Paul, Minnesota.

Seymour Geisser was a leading proponent of the
importance of prediction in the practice of statis-
tics as well as a leading exponent of multivariate
analysis. He was also a prominent administrator and
consultant in the fields of statistics and biostatistics.

Seymour’s parents emigrated from Poland to New
York City in the early 1920s where they became
garment workers. He was a student at Lafayette High
School in Brooklyn and received his undergraduate
degree in mathematics from the City College of New
York in 1950. “It was quite a chore to get up to
City College from where I lived”, said Geisser, as he
remembered his undergraduate days. “City College
was up on Convent Avenue and 137th Street and I
lived down in Bensonhurst [Brooklyn]. It took almost
two hours going and two hours coming back. I spent
a lot of time sleeping on the subway.”

His interest in statistics arose from conversations
with his cousins. His cousin and his cousin’s wife
(Leon and Dorothy Gilford) were statisticians who
assured him that the field provided good opportu-
nities for employment. Dorothy Gilford worked for
the Census Bureau and had been trained by Harold
Hotelling at Columbia University. They suggested
that Seymour apply for graduate school at Hotelling’s
new institution, the University of North Carolina.
“When I left City College to go to Chapel Hill,
I thought I was entering a country club,” reflected
Geisser. “It was such a pretty campus.” Many of his
fellow students went on to prominent careers in statis-
tics. Ralph Bradley, Sudish Ghurye, Ingram (Red)
Olkin, Milton Terry, Sutton Munroe were already
students there. Others, like Don Burkholder, Ted
Colton, Fred Descloux, Ed Gehan, Shanti Gupta, Jack
Hall, T.V. Narayana, Bill Howe, Jim Pacheres, K.D.
Ramachandran, Bill Thompson, John Wilkinson, and
Marvin Zelen were contemporaries.

In graduate school, Seymour selected Harold
Hotelling as his major professor and wrote a Mas-
ter’s thesis on computing roots and characteristic
vectors of matrices (see Matrix Algebra). His Ph.D.
thesis was on the mean square successive differ-
ence in statistics. During the summers of 1952 and
1953, while still a graduate student, he worked at
the Aberdeen Proving Ground in Maryland. This is

where he formulated his Ph.D. thesis problem, which
was an extension of the work von Neumann had done
there. His Masters and Ph.D. degrees were conferred
in 1952 and 1955, respectively.

His first position after graduate school was as
an assistant to Herman Chernoff at the National
Bureau of Standards (NBS). He worked at a branch
of the Operations Research Office located in the
Army War College. Others who worked for NBS
at the time were Jack Youden, Churchill Eisenhart,
Marvin Zelen, Bill Connor, Bill Clatworthy, and
Norman Severo. He then joined the Commissioned
Officers Corps of the US Public Health Service, with
the understanding that he would be assigned to the
National Institute of Mental Health, working under
Sam Greenhouse. Jerry Cornfield, Max Halperin,
Nathan Mantel, and Marvin Schneiderman also
worked at the National Institutes of Health (NIH).
Seymour spoke fondly of that time. “We used to eat
lunch together and talk about everything from his-
tory, to statistics, to religion, to politics. The table
talk was really interesting.” In those conversations,
Jerry Cornfield provided Seymour with his first intro-
duction to Bayesian ideas.

His first Bayesian work was in multivariate anal-
ysis. In the early sixties, Seymour wanted to see
what would happen if he considered the usual mul-
tivariate problems from the Bayesian point of view.
After looking at multivariate analysis of variance,
he turned to classification and discrimination. Geisser
said “It dawned on me that with Bayesian Theory
you didn’t have to make a [strict] separation for lin-
ear discrimination. For example, everything on one
side was guilty and the other side innocent, if you
like. [A Bayesian] could find the probability of each
individual being one or the other. It was a much finer
distinction than using, say, the usual Fisher linear
discriminant. That really swung me to the Bayesian
approach.” (see Discriminant Analysis, Linear).

His appointments at the National Bureau of Stan-
dards and the National Institute of Mental Health
were from 1955 to 1961. From 1961 until 1965, he
was Chief of the Biometry Section at the National
Institute of Arthritis and Metabolic Diseases. At this
time he also began teaching. From 1960 to 1965,
he was a professorial lecturer at George Washing-
ton University, teaching in the Statistics Graduate
Program at night. Sam Greenhouse and Solomon
Kullback were also on the faculty.



2 Geisser, Seymour

In 1965, he became the founding Chair of the
Department of Statistics at the State University of
New York (SUNY), Buffalo, remaining in that capac-
ity until 1970. During his tenure there, the faculty
included Norman Severo, Bill Clatworthy, Marvin
Zelen, Manny Parzen, Charles Mode, Jack Kalbfl-
eisch, Ross Prentice, and Peter Enis, who was Sey-
mour’s first Ph.D. student at George Washington.
When asked about his efforts to build the SUNY,
Buffalo department, he said, “Building a group is
difficult. There are lots of ups and downs. When you
have money, so does everybody else. So you are com-
peting for some very good people. That becomes a
difficult chore. And when you don’t have money, you
can’t hire anybody. So a lot of time is spent haggling
and fighting with deans about lines, space, money:
the usual trinity.”

During the 1960s, Seymour developed a strong
interest in prediction. This started with his work on
classification, which is essentially a prediction prob-
lem. His thinking during this period is summarized
in [8]. From this point on, his professional efforts
were largely driven by his strong belief that the
majority of statistical endeavor should be focused on
prediction of observables rather than on estimation of
unobservable parameters. “It always seemed to me,”
said Geisser, “that prediction was critical to mod-
ern science. There are really two parts, especially for
statistics. There is description; that is, you are try-
ing to describe and model some sort of process. [The
model] will never be true and, essentially, you intro-
duce lots of artifacts. . . Prediction is the one thing
you can really talk about because what you predict
will either happen or not happen and you will know
exactly where you stand. . . Science changes when
predictions do not come true.” The majority of his
work on prediction is summarized in Geisser [12].

In 1971, he became the founding Director of the
School of Statistics at the University of Minnesota,
remaining in that position until 2001. In the early
years, the faculty included Don Berry, Kit [Chris]
Bingham, Bob Buehler, Dennis Cook, Somesh Das
Gupta, Joe [Morris L.] Eaton, Steven Fienberg, Cliff
Hildreth, David Hinkley, F. Kinley Larntz, Bernie
Lindgren, David Lane, Frank Martin, Michael Perl-
man, Milton Sobel, and Sandy Weisberg. During his
tenure at Minnesota, there was an emphasis on the
foundations of statistics. Geisser commented, “We
brought in of a lot of people who were interested
in foundations. We had a lot of seminars on it and

there was a lot of interesting work that was done on
foundations at that time. That was, in a sense, more
interesting than methodology. [Without foundations,
statistics is] just a trite engineering problem.” In this
regard, the School held a series of lectures on R.A.
Fisher’s contributions, which led to the monograph,
R. A. Fisher: An Appreciation, in 1980 [2]. Seymour
taught a graduate course called “Statistical Inference”
for many years. In that course, he discussed the var-
ious modes of statistical inference and gave thought
provoking lectures about the relative advantages and
disadvantages of these modes. Recently, he compiled
his lecture notes into a manuscript entitled Modes of
Parametric Statistical Inference [13].

In the late 1980s and early 1990s, Seymour devel-
oped an interest in forensic DNA profiling. He was
involved as an expert in over 100 litigations involving
murder, rape, paternity, and other issues (see Expert
Witness, Statistician as). His experiences in dealing
with the FBI throughout these litigations are cata-
logued in the article “Statistics, litigation and conduct
unbecoming,” published in [4]. His purpose in these
litigations was to point out that statistical calcula-
tions displayed in court should be valid. It was his
contention that the methods then being used by the
prosecution in DNA cases were flawed.

In discussing the people who most influenced his
career, in addition to Harold Hotelling and Jerry
Cornfield, he mentioned George Barnard. “I was
particularly influenced by George Barnard. I always
read his papers. He had a great way of writing. Excel-
lent prose. And he was trained in philosophy, in
logic, at Cambridge.” Seymour’s favorite statistics
books were Fisher’s, Statistical Method in Scientific
Inference [3] and Cramer’s, Mathematical Methods
of Statistics [1]. Seymour chose Cramer for the math-
ematics of statistics and Fisher for the philosophical
underpinnings of statistics. Late in life he said, “I
still read those books. There always seems to be
something in there I missed the first time, the second
time, the third time. . .”

Seymour authored or coauthored 176 scientific
articles, discussions, book reviews, and books over
his career. One of his articles, Greenhouse and
Geisser [14], is a citation classic. He pioneered
several important areas of statistical endeavor. He
and Mervyn Stone simultaneously and independently
invented the now popular method for validating
statistical models called cross-validation. Geisser
[9] developed the equivalent method of “predictive
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sample reuse.” He also pioneered the areas of Baye-
sian Multivariate Analysis and discrimination [5,
6, 7, 17], Bayesian diagnostics for statistical predic-
tion and estimation models [15, 16], Bayesian interim
analysis [10] and testing for Hardy–Weinberg equi-
librium using forensic DNA data [11].

Seymour served on many committees of the NIH,
Food and Drug Administration, National Institute
of Statistical Science, and National Research Council.
In addition, he was a National Science Foundation
Lecturer in Statistics from 1966 to 1969, a mem-
ber of the National Research Council Committee on
National Statistics from 1984 to 1987, Chair of the
National Academy of Sciences panel on Occupational
Safety and Health Statistics from 1986 to 1987. He
delivered the American Statistical Association Pres-
ident’s Invited Address in 1991.

He held numerous visiting professorships includ-
ing the University of Tel Aviv, 1971; Stanford Uni-
versity, 1976, 1977, 1988; Harvard University, 1981;
the University of Chicago, 1985; the University of
Warwick (England), 1986. He was the Lady Davis
Visiting Professor, Hebrew University of Jerusalem,
1991, 1994, 1999, and the Schor Scholar, Merck
Research Laboratories (2002–2003). He was a Fel-
low of the Institute of Mathematical Statistics and the
American Statistical Association.

Two special conferences were convened to honor
his contributions to statistics. The first was organized
by Jack Lee and held at the National Chiao Tung
University of Taiwan in December of 1995. The
second was organized by Glen Meeden and held
at the University of Minnesota in May of 2002. In
conjunction with the former conference, a special
volume entitled Modeling and Prediction: Honoring
Seymour Geisser, edited by Lee et al., was published
in 1996 [18].

Seymour had an avid interest in history, archeol-
ogy, particularly biblical archaeology, and religion,
philosophy, and literature. He was a prolific reader
of novels. He studied Latin, French, and German. He
enjoyed traveling, especially to wildlife preserves and
national parks.

He married his first wife while a graduate student
in Chapel Hill. They had four children: Mindy, Dan,
Georgia, and Adam. He met his second wife, Anne,
while visiting Harvard University. They were married
for 22 years. His brother, Martin, was a high school
teacher and counselor. He had five grandchildren,
Emma, Liam, and triplets Joshua, Eden, and Rachel.

The Department of Statistics at the University of
Minnesota has established the Geisser Lectureship in
Statistics. Each year, starting in the fall of 2005,
an individual will be named the Seymour Geisser
Lecturer for that year and will be invited to give
a special lecture. Individuals will be selected on
the basis of excellence in statistical endeavor and
their corresponding contributions to science, both
statistical and otherwise. For more information, visit
the University of Minnesota Department of Statistics
web page, www.stat.umn.edu.
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Gene Conversion

Gene conversion is said to occur when one of the
alleles, “A” or “a”, at a locus, is converted to the
other allele during the process of replication. In
diploid species, if the paternal genotype at a locus
is “AA” and the maternal genotype is “aa”, then
all offspring are anticipated to have genotype “Aa”
under normal circumstances. Occasionally, offspring
from this mating are observed to have either geno-
type “AA” or genotype “aa”. This implies that one
allele has been replaced or converted by the other
into a form like itself. Gene conversion frequently

occurs in association with recombination in the flank-
ing sequences, and the prevailing hypothesis is that
gene conversion happens as a consequence of recom-
bination and erroneous mismatch repair in the small
segment of heteroduplex DNA that contains one
strand (allele) from each parental molecule. Gene
conversion drives the evolution of some genes. Gene
conversion events are difficult to detect in species
such as humans, where all the products of meio-
sis cannot be observed, but are easily identified in
fungi such as yeast or Neurospora, where all the four
products of meiosis (see Linkage Analysis, Model-
based) are contained in a 4- or 8-spore ascus.

S. IYENGAR



Gene Expression Analysis

A (protein coding) gene is determined to be expressed
in a cell or group of cells when its transcribed
messenger RNA (mRNA) or the resulting protein
product is detected (see DNA Sequences). There
is a wide variety of techniques for determining and
quantifying gene expression, and many of these have
substantial statistical components to them. In this
article we review some of the statistical models and
methods used in analyzing gene expression data,
focusing entirely on approaches quantifying mRNA.
Before doing so, we present a small sample of the
extensive biological and technological background to
gene expression analysis.

Why do we measure gene expression? The most
common experiment is comparative: we want to com-
pare the mRNA levels of one or more genes in
cells from different sources. Comparisons of interest
include tumor vs. normal cells, cells from a specific
organ in a mutant or genetically modified organism
vs. cells from the same organ in a normal organism of
the same strain, and cells before and after an interven-
tion such as a drug treatment. Another important class
are the time-course experiments, where cells are sam-
pled at different times, e.g. after the administration of
a drug, or as the cell cycle or development proceeds,
and interest is in temporal patterns of gene expres-
sion. Yet other experiments focus on spatial patterns
of gene expression. There are many other kinds of
gene expression experiments, essentially as many as
there are organisms, cell types, and conditions of bio-
logical interest.

How do we measure gene expression? As stated
above, there are many techniques for doing so, but
most rely on DNA–RNA or DNA–DNA hybridiza-
tion. This is the biophysical process through which
single-stranded DNA or RNA molecules find and
base-pair with their complementary sequences amidst
a complex mixture of many molecules of the same
kind. The terminology we adopt names the sequence
representing a gene of interest, the probe, while the
pool within which a complementary copy of the probe
is sought is named the target DNA or RNA. Other
terminologies are the reverse of ours.

On what scale do we measure gene expression?
Much of the recent interest by statisticians in this
area stems from the availability of data sets giving
expression measurements on tens of thousands of

genes, so-called microarray gene expression data.
However, nylon membrane filters with thousands of
genes spotted on them have been around for over
a decade, and smaller-scale quantitative expression
data for much longer. We begin with a discussion of
the first and simplest method of quantifying RNA, as
many of the features of the high-throughput methods
are already present here.

Low-throughput Methods

Quantitative Northern Blots

Isolated mRNA is separated according to size by
electrophoresis, and transferred by blotting to an
immobilizing matrix such as a nylon membrane.
A labeled DNA probe is incubated with the blot
under conditions that promote annealing, and the
probe will then bind to the RNA molecules on the
blot complementary to it. This is the hybridization
reaction. The result is then imaged, either directly
[e.g. by laser scanning or the use of a charge-couple
device (CCD) camera], or indirectly, by exposing an
X-ray film to the blot.

The amount of RNA can be quantified by measur-
ing the intensity of the signal in the image in regions
corresponding to the probe of interest. Usually con-
trol RNA is measured at the same time, typically a
gene that is thought to be expressed at a more or
less constant level, (a “housekeeping” gene), and the
expression level of the gene of interest is then given
relative to the control gene.

Although this technique has been in use for
over 20 years, it has attracted little attention from
statisticians. In part this is because low-throughput
assays with simple read-outs are usually seen as out-
side the domain of statistical analysis, apart from
simple matters such as analyzing replicate data.
This attitude changes when the assay becomes high-
throughput, or when much more data are collected on
a given unit. These considerations lead naturally into
our next topic, which is an important development of
the northern blot.

Quantitative PCR, Including Real-time PCR

The polymerase chain reaction (PCR) can be used to
estimate the concentration of a particular target RNA
relative to a standard. Standards are control sequences
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(such as housekeeping genes) that are present in the
same preparation of RNA as the target sequence.
Quantification is achieved by amplifying the target
RNA (and the reference RNA) to a more readily
detectable quantity, and by comparing the amount of
amplified product generated by the standard and the
target sequences.

The method works well if the amplified products
are measured during the exponential phase of the
chain reaction, if the reference and target sequences
are present in approximately equal concentrations,
and if they amplify with equal efficiency. More accu-
rate variants involve adding reference molecules in
known amounts to a series of amplification reactions.

A more recent technique for quantitating RNA
is real-time PCR (RT-PCR) [14], where the target
and reference sequences are amplified and detected
in the same instrument, and the endpoint is when
the reported fluorescence passes a fixed threshold
above baseline. There are a number of different pro-
tocols, including TaqMan, and a number of different
instruments for carrying out this assay. Details can
be found in the technical notes from PE Applied
Biosystems [24, 25] and Roche Molecular Biochem-
icals [27]. Rather more statistical research has been
devoted to improving quantification methods for
RT-PCR; see, for example, [26], but there are still
many issues remaining. This is a fertile area for
biostatisticians.

High-throughput Methods

Serial Analysis of Gene Expression

Serial analysis of gene expression (SAGE) is
a method for comprehensive analysis of gene
expression patterns. It is the main quantitative
approach to gene expression not based upon
hybridization. Three principles underlie the SAGE
methodology: (a) a short sequence tag (10–14 bp)
contains sufficient information to uniquely identify an
mRNA transcript, provided that the tag is obtained
from a unique position within each transcript; (b)
sequence tags can be linked together to form long
serial molecules that can be cloned and sequenced;
and (c) a count of the number of times a particular
tag is observed provides the expression level of the
corresponding transcript.

A typical SAGE experiment would involve two
sources of mRNA, say tumor and the corresponding

normal tissue. For each source a set (called a library)
of (say) 50 000 tags would be derived using the
SAGE protocol. In these two libraries there might be
20 000 distinct (termed unique) tags observed, and
for each unique tag, the frequency with which that
tag appeared in each library could be calculated. The
data for this comparative experiment are then two
lists of counts, one for each unique tag observed.

The first question a biologist asks here is: Which
tags are significantly differentially represented in the
two libraries? For any given tag, say tag i, the
natural null hypothesis here is Hi : the proportions
of tag i in the two libraries coincide. Rejection of
this null hypothesis leads to the conclusion that the
gene corresponding to tag i is differentially expressed
between the two sources of RNA.

Making an independence assumption that might be
difficult to verify, one current approach to this ques-
tion starts with the observation that under Hi , the
number of times tag i appears in library 1, say, given
the total number across the two libraries, is binomial
with p = 1/2. This is the basis of a test of Hi , and
when this is done for all i = 1, . . . , 20 000, a Bonfer-
roni adjustment can be used. The test just described
is one of a number in use [2, 21]. There is a range
of outstanding questions with these data including:
dealing with sequencing errors, which might be of
the order of 1%–3% per base in the tags; considering
the independence assumption leading to the binomial
model; and seeking a valid multiple testing correction
less conservative than Bonferroni. The difficulty is
that because of the co-expression of genes, different
tag counts in a library cannot be regarded as inde-
pendent. However, the extent to which this matters
is not yet clear. When more SAGE libraries accumu-
late in a given context, questions will undoubtedly
arise that lead naturally to classification and cluster
analyses; see below in the context of microarray data.
As with the technologies outlined above, there seem
to be many opportunities for biostatistical research
involving SAGE data. A general source on this topic
is http://www.sagenet.org.

Array-based Approaches

The principal class of high-throughput methods for
quantifying gene expression are those based on
microarrays, although the term “macroarray” is also
used. Broadly speaking there are three basic microar-
ray technologies: nylon membrane arrays, spotted
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arrays, and high-density oligonucleotide arrays. The
special supplement of Nature [23] provides a good
overview of the production and utilization of the last
two technologies.

We explain each briefly before turning to statistics.
There we will attempt to discuss the issues in a
general way when applicable to two or more of
these technologies, and leave the reader to consult the
references for material on topics rather more specific
to the different technologies.

Different Array Technologies

Nylon Membrane Filters

This is the oldest array technology, but one that is
still widely used around the world. A typical filter
microarray has 5000 complementary DNA (cDNA)
clones, 600–2400 bases in length, spotted in a grid
on the membrane. Radio-labeled target cDNA derived
from the mRNA of interest is hybridized to the array,
and the filter is then exposed to X-ray film and the
film imaged. The resulting digital image constitutes
the raw data from the experiment.

A very high-density variant of the traditional filter-
based microarray is the oligonucleotide filter array,
which can have 50 000 spots consisting of pools of
10-mers [22].

Spotted cDNA Microarrays

Introduced in [29], a typical spotted array consists of
5000–20 000 cDNA probes of length 600–2400 bp
placed in a regular pattern on a glass microscope
slide. The main advantage of the nonporous glass sup-
port is that it facilitates miniaturization and the use of
fluorescence (rather than radiolabel) based detection.
Essentially all spotted arrays use two sources of
mRNA. They are converted to cDNA and at the
same time labeled with one of two fluorophores hav-
ing different emission spectra following laser excita-
tion. The labeled cDNAs are mixed in equal quan-
tities and competitively hybridized to the spots on
the slide. Following hybridization, laser excitation
stimulates the spots to fluoresce, and the photons
emitted are collected using band-pass filters tuned
to each of the two fluorophores. These are then
amplified, converted to digital form, and presented
as two digital images of the slide, each quantifying

the amount of cDNA on the spots labeled by one
of the two fluorophores. These two digital images
are the raw data of a spotted microarray experiment.
In an obvious sense, each spotted array experiment
may be regarded as several thousand paired compar-
isons.

A variant of the spotted arrays uses as probes
long (60–75 bp) oligonucleotides representing part of
a gene or expressed sequence tag [15]. These are put
onto the glass using an ink-jet printer device, and
generally lead to higher quality data. As with the
original spotted arrays, a two-color system is used,
although the technology may well be good enough to
provide reliable single-color quantification.

High-density Oligonucleotide arrays

A quite different technology can be used to place
up to 250 000 short (25 bp) oligonucleotide probe
pairs on a small glass chip, with 16 or 20 of these
probe pairs representing a part or all of a single
gene, see [12] and [20]. Each probe pair consists
of a perfect match (PM) probe, and a mismatch
(MM) probe, the latter being the same as the for-
mer apart from a single nucleotide change (A ↔ G
or C ↔ T) in the middle (13th) position. A tagged
target cRNA sample hybridizes with the complemen-
tary oligonucleotides on the chip, and detection is
via laser excitation followed by the collection of flu-
orescence emission, as with spotted arrays. As with
the approaches already discussed, the image is the
starting point of analysis.

Statistical Issues

Design of Experiments

The careful design of microarray experiments is in
its infancy. Most work to date concerns spotted array
experiments, which require more care by virtue of the
paired nature of each experiment. Also, many users
of spotted arrays construct the arrays themselves,
whereas filter arrays and high-density oligonucleotide
arrays tend to be bought “off the shelf”. In spotted
array experiments, there are two main aspects to the
design question: (a) the design of the array itself, i.e.
deciding which cDNA probe sequences to print on
the slide, whether to use replicated spots and control
sequences, and how many and where these should be
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printed on the slide; and (b) the allocation of mRNA
target samples to the slides, i.e. deciding how the
mRNA samples should be paired for hybridization,
the dye assignments, and the type and number of
replicates.

Proper experimental design is needed to ensure
that questions of interest can be answered and that
this can be done accurately and efficiently given
experimental constraints, such as cost of reagents
and availability of mRNA. Designs specifically suited
for the question of interest and judicious pairing of
mRNA samples for hybridization can greatly improve
the efficiency of microarray experiments by ensur-
ing the precise measurement of relevant effects. A
number of statisticians have been involved in these
questions, but there is little literature so far. For some
initial work in this area, see [16]. We can expect
much more published research on this topic in the
near future.

Image Analysis

As explained above, the “raw data” arising from all
microarray technologies are images: of labeled probes
on a nylon filter, a glass slide, or a glass chip. There
seems little doubt that the results of downstream
analyses can be appreciably influenced by the initial
image analysis, though few studies of this topic exist
at present; see [35] for one such.

Three broad analysis issues can be identified with
microarray images, although not all approaches pro-
ceed in this way: finding the probe centers (registra-
tion); partitioning the pixels in the image into probe
and nonprobe regions (segmentation); and assigning
summary values to probe intensity and background
(quantification). Rather than assign pixels to probe
and nonprobe categories, some approaches (espe-
cially with nylon filters) use parametric, semiparamet-
ric, or nonparametric modeling to determine probe
intensity. Once summary values of probe intensi-
ties are calculated, there remains the question of
combining these to measure absolute or relative gene
expression. With nylon filter and spotted arrays,
intensity is usually the difference between foreground
and background values, and ratios of these quantities
are the main vehicle for later analysis. In general there
are many ways of carrying out the image analysis,
and several commercial and freely available pack-
ages for doing so, see [7] for nylon filter arrays [35],
and references therein for spotted arrays, and [28] for

high-density oligonucleotide arrays. Brandle et al. [5]
is a good overall reference, and other articles in that
volume can be consulted on this topic, as well as
Buhler et al. [6] and Wang [32].

In the case of high-density oligonucleotide arrays,
the image analysis does not result in expression val-
ues, but in PM and MM probe intensity values.
One further analytical step is necessary with this
technology before we have a gene (or probe set)
expression value: the 16 or 20 PM and MM pairs
must be summarized. This is not entirely straightfor-
ward and research on it is continuing, but see [18]
and [19] for the most thorough published discussion
to date.

Preprocessing Tasks: Normalization

As indicated earlier, the most common gene expres-
sion experiment is the comparative one. With nylon
filter arrays this leads us to compare the images from
two hybridizations onto copies of the same basic fil-
ter. Sometimes this is done by stripping the results
of a first hybridization and re-using the filter, but
more commonly a new filter is used. Because the
nylon substrate is not solid, there may be warping,
and this can make registration across different fil-
ters a challenging problem. When this is adequately
addressed, interest focuses on comparing the two
expression levels for each of the genes spotted onto
the array. An entirely analogous situation arises when
we have reduced the two images of a single spot-
ted array or two high-density oligonucleotide array
experiments to lists of gene expression values. We
are back to the same (biologist’s) question that we
met with SAGE data: Which genes seem to be sig-
nificantly differentially expressed between the two
mRNA sources?

Before we can address this question in the micro-
array context, however, there is usually a need for
normalization. This is a generic term describing the
identification and removal of systematic sources of
variation, other than differential expression, from
the measured gene expression values. Systematic
effects can come from different labeling efficiencies,
different scanning parameters, and a variety of other
causes, see [30] for a good list. These effects can
be related to intensity, location on the filter, slide
or chip, and other features of the process such
as reagent batch and laboratory conditions. The
need for normalization can be seen most clearly in
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experiments involving two identical mRNA samples
hybridized to different membranes or chips, or on
the same glass slide, as long as the results are
appropriately visualized.

Pairs of gene expression values, say from a treated
(T ) and a control (C) source, are usually displayed
by plotting the log2 or log10 intensities against one
another, e.g. log2 T vs. log2 C. Such plots give an
unrealistic sense of concordance between the two
sets of intensities and can mask important features
of the data. It is better to plot M = log2 T/C vs.
A = log2

√
T C, which amounts to a rotation of the

previous plot and a rescaling of the axes. Assuming,
as is almost always the case, that we expect the
majority of genes to be expressed at about the same
level in both cell samples, regardless of overall
intensity, the M vs. A plot should be scattered around
the horizontal (A-) axis, in a more or less symmetrical
manner, and the histogram of M values should be
centered around zero. This is rarely found to be
the case.

A standard normalization for nylon filter and spot-
ted array data is to shift the log ratios so that
their mean or median is zero. Frequently there is a
strong enough intensity dependence that a smooth-
ing of M values along the A-axis defines a better,
A-dependent centering. Spatial effects require a mod-
ified solution, and there are yet other effects that
need to be dealt with from time to time. For a
discussion of these issues in the context of spot-
ted arrays, see [34], while [30] is also of interest.
Normalization is also relevant to the high-density
oligonucleotide technology, but is less well discussed
and somewhat more complex, see [18] and [19] for
some comments.

Comparative Analyses

Once the log ratios of intensities have been nor-
malized, interest focuses on those that seem to be
genuinely different from zero, i.e. that correspond to
genes that are differentially expressed. There is no
reliable method of assigning statistical significance
to log ratios from unreplicated experiments, although
a number of model-based approaches claiming to
do this can be found in the literature, see [9] for
a discussion of this issue in the context of repli-
cated spotted microarrays. For a single comparison,
the best approach is probably to apply a careful

normalization to the log ratios, rank them, and con-
struct a normal Q–Q plot of them. Typically the
plot will not be linear, but an examination of the
extremes in conjunction with the M vs. A plot can
give a good sense of the outlier log ratios. It is also
advisable to carry out a quality examination of the
spots corresponding to extreme log ratios. Exactly
where to draw the line with ranked log ratios, when
determining putatively differentially expressed genes,
will depend on a variety of factors, such as the shape
of the Q–Q plot, the level of false positive and
false negative rates deemed acceptable, and the nature
and number of follow-up experiments envisaged. No
simple guidelines seem possible, and no formal sta-
tistical approach seems available which deals with
the question. The situation is different when there
are replicate pairs of filters, slides, or chips. We
broaden the context somewhat to discuss the issue of
multiple testing (see Multiple Comparisons) more
generally.

Multiple Testing

The identification of differentially expressed genes,
i.e. genes whose expression levels are associated
with a response or covariate of interest, is but one
of the testing problems that arise with microarray
data. The covariates could be either polytomous,
e.g. treatment/control status, cell type, drug type,
or continuous, e.g. dose of a drug, time, and the
responses could be, for example, censored survival
times or other clinical outcomes. The biological
question of differential expression can be restated
as a problem in multiple hypothesis testing: the
simultaneous test for each gene of the null hypothesis
of no association between the expression levels and
the responses or covariates. As a typical microarray
experiment measures expression levels for several
thousands of genes simultaneously, we are faced
with an extreme multiple testing problem. Special
problems arising from the multiplicity aspect include
defining an appropriate type I error rate (i.e. false
positive rate) and devising powerful multiple testing
procedures that control this error rate and account
for the joint distribution of the gene expression
levels.

A number of recent papers have addressed the
question of multiple testing in the context of microarray
experiments [10, 13, 31]. However, the proposed
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solutions were not cast in the standard statisti-
cal framework and do not provide adequate type I
error rate control. When going from single to
multiple hypothesis testing, several definitions of
the type I error rate are possible and include: the
per-comparison error rate (PCER), defined as the
expected value of (number of type I errors/number
of hypotheses); the family-wise error rate (FWER),
defined as the probability of at least one type I error;
and the false discovery rate (FDR), or expected pro-
portion of type I errors among the rejected hypothe-
ses. In general, for a given multiple testing procedure,
PCER ≤ FWER and FDR ≤ FWER, one should thus
decide on an appropriate error rate to control for the
problem under consideration. It is important to note
that the expectations and probabilities above are con-
ditional on assumptions concerning which hypothe-
ses are true, i.e. on which genes are differentially
expressed. A fundamental, yet often ignored distinc-
tion in multiple testing is that between strong and
weak control of the type I error rate. Strong con-
trol refers to control of the type I error rate under
any combination of true and false hypotheses, i.e.
for any combination of differentially and constantly
expressed genes. In contrast, weak control refers to
control of the type I error rate only when none of
the genes is differentially expressed, i.e. under the
complete null hypothesis that all the null hypothe-
ses are true. In general, weak control without any
other safeguards is unsatisfactory. In the microarray
setting, where it is very unlikely that none of the
genes is differentially expressed, it seems particu-
larly important to have strong control of the type I
error rate.

Adjusted P values provide useful and flexible
summaries of the strength of the evidence in favor
of differential expression. The adjusted P value for
a particular gene reflects the overall false positive
error rate for the family of hypotheses when genes
with smaller P values are declared differentially
expressed. Adjusted P values may also be used to
summarize and compare the results from different
multiple testing procedures.

In their 1993 book, Westfall & Young [33] pro-
posed resampling-based P value adjustment pro-
cedures that are highly relevant in the context of
microarray experiments. In particular, these authors
defined adjusted P values for multiple testing proce-
dures that control the FWER and take into account
the dependence structure between test statistics (their

min P and max T adjusted P values). In Dudoit
et al. [9] these ideas are applied in the context of
microarray data. It is clear that this area is undergoing
rapid development.

Classification and Clustering

Microarray experiments have revived interest in
both cluster and discriminant analysis by raising
new methodological and computational challenges. In
discriminant analysis, also called supervised learning
or class prediction, we might have observations on
tumor mRNA samples known to belong to prespec-
ified classes, and the task is to build predictors for
allocating new observations to these classes. By con-
trast, in cluster analysis, also called unsupervised
learning or class discovery, the classes are unknown a
priori and the task is to determine these classes from
the data themselves, i.e. to determine the number of
classes and assign each observation to one of these
classes. Either experiments or genes or both can be
clustered, and the commonest approach uses hierar-
chical procedures based on correlation as a measure
of dissimilarity. Clustering of this kind is currently
the most popular way of analyzing gene expression
data, undoubtedly because of the power of the tech-
nique to group co-expressed genes and hence shed
light on the function of uncharacterized genes. For
some examples see [3, 11] and [1].

The ability successfully to distinguish between
tumor classes (already known or yet to be discovered)
using gene expression data is an important aspect of
this novel genomic approach to cancer classification.
There are already many papers on this topic, and
almost every technique from the field of machine
learning has already been applied to this problem.
How do they compare? Are there advantages to the
more recent or more elaborate classification tech-
niques? While it is not possible to give a single
long-term answer to this question, it is possible to
obtain some insights. The study by Dudoit et al. [8]
compared a number of familiar methods for classify-
ing tumors based on gene expression data, including
nearest neighbor classifiers, linear discriminant anal-
ysis, and classification trees. Two recent machine
learning devices known as bagging and boosting were
also considered. The discrimination methods were all
applied to data sets from three recently published
cancer gene expression studies, and the main conclu-
sion, for these data sets, was that simple classifiers



Gene Expression Analysis 7

such as diagonal linear discriminant analysis and
nearest neighbors performed remarkably well com-
pared with more elaborate ones such as aggregated
classification trees. These conclusions may change as
the size of data sets grows.

Other Topics

When expression levels are measured for thousands
of genes in time and space, a challenging problem
is to discover and recognize reproducible temporal
expression patterns, including those not previously
known. Networks of interacting genes that might
suggest new biochemical or signaling pathways are
of particular interest. Current approaches to this class
of questions with microarray data are rather ad hoc,
usually involving one- or two-dimensional clustering
methods. These methods, typified by Eisen’s “heat
diagrams” [11], rearrange the order of genes and
experiments to map the data onto a plane in a more
visually compelling way. The hope is that visual
examination of the resulting image will identify
patterns to which explanations can be attached. Other
researchers rely on multi-dimensional scaling, which
uses distances between genes or arrays to produce
a scatter plot in the plane for subsequent visual
examination.

More systematic approaches are clearly needed,
with [17] being one such. This are will undoubtedly
attract a great deal of biostatistical research in coming
years.
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Gene Frequency
Estimation
Gene frequency estimation refers to the estimation of
population frequencies of alleles at a given genetic
locus or to the estimation of the population frequen-
cies of haplotypes. A haplotype, derived from the
term “haploid genotype”, refers to the particular set
of alleles present at a series of linked loci on a chro-
mosome, i.e. alleles at loci that are present relatively
close together on a continuous strand of DNA. Each
human being has two haplotypes for any given series
of linked autosomal loci; one inherited maternally,
and the other, paternally. The haplotype transmitted
to an offspring of that individual may be identical
to one of these two, or may reflect reshufflings due
to recombination events. Allele and haplotype fre-
quencies may be estimated from various types of
human data, including information from pedigrees,
parent–child dyads, or individuals; however, estima-
tion based upon random samples of individuals is
emphasized in this article.

Good estimates of gene frequencies are needed
for a variety of purposes: they are essential to the
generation of valid risk estimates in the context of
genetic counseling, and form the basis for popu-
lation descriptions and comparisons and for deci-
sions about genetic screening of populations. Because
of their impact upon power considerations, sound
estimates of gene frequencies are also helpful in plan-
ning genetic studies. Marker allele frequencies are
required for the application of certain types of link-
age analysis, such as the Haseman–Elston model-
free approach to sib-pair analysis in the absence of
parental marker information [7], and the affected-
pedigree-member method of Weeks & Lange [15].
Beyond the specifics of gene frequency estimation
methodology outlined here, it must always be borne
in mind that the sample from which inferences are
made must be drawn from the appropriate population
according to the needs of the analysis, and must be
of a size to achieve the requisite precision. Care must
also be taken that purportedly random samples have
not been collected in such a way that it is likely that
family members have been included.

Allele Frequency Estimation

When all allelic variants corresponding to a partic-
ular locus are codominantly expressed, genotypes

can be fully discerned on the basis of phenotype,
and the estimation of allele frequencies becomes a
simple matter of “gene counting”. Each individual
bears two alleles at a particular locus, so that per-
sons expressing only a single allele are known to be
homozygous, possessing two copies of that particu-
lar allelic variant (see Heterozygosity). If a random
sample of N individuals is collected, and there are
Xi copies of allele Ai among the 2N alleles, then
the estimator of the allele frequency qi is Xi/2N ,
the maximum likelihood estimator. The variance
is obtained using the standard binomial expression,
i.e. qi(1 − qi)/2N . However, if dominance relation-
ships govern the phenotypic expression of genotypes
at a given locus (for example, one allele masks the
expression of another) the situation becomes more
complicated. By way of illustration, suppose there
are a number of codominantly expressed allelic vari-
ants at a given autosomal locus, and also a null allele
that results in no detectable product. Then, individu-
als who are homozygous for a particular codominant
allele cannot be distinguished phenotypically from
those heterozygotes who have one copy of that allele
and a copy of the null allele – both express only
a single allele at the phenotypic level. The “gene
counting” approach cannot be used in such instances
unless haplotype analysis has been used to clarify
exactly which alleles are present at all loci concerned;
for example, by examination of transmission among
family members [16] (see Genetic Transition Prob-
abilities).

Whatever the nature of these relationships, a max-
imum likelihood approach may be taken. Suppose
that a random sample of individuals is taken from
the relevant population, and that there are K dis-
tinguishable phenotypes associated with the locus
of interest, indexed by k = 1, 2, . . . , K . Generally,
an assumption must be made in order to set up
the correspondences between genotype and pheno-
type, expressed via the allele frequencies; most typi-
cally, the Hardy–Weinberg equilibrium assumption
is made so that the population frequency Φk of each
phenotype can be expressed as a function of the allele
frequencies. On the basis of the observation of nk

individuals with the kth phenotype, the likelihood of
the sample is given by

L ∝
K∏

k=1

Φ
nk

k
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and the ln likelihood as

ln L =
K∑

k=1

nk ln(Φk) + a constant.

For example, consider a locus with a codominant
alleles A1, A2, . . . , Ai , . . . , Aa plus a null allele
Ax , which cannot be detected, with population allele
frequencies q1, q2, . . . , qa , qx . Then, there are

(
k

2

)

phenotypes of the type Ai Aj , which occur with
population frequency 2qiqj , and k phenotypes of the
type that express only a single allele Ai , which may
be either Ai homozygotes or heterozygotes involving
a null allele and occur with population frequency
(q2

i + 2qiqx), and a phenotype expressing no allele
Ax , which occurs with population frequency q2

x . If
we define the sample counts of these phenotypes
analogously, we obtain the log likelihood

ln L =
∑∑

i<j

nij ln(2qiqj ) +
∑

i

ni ln(q2
i + 2qiqx)

+ nx ln(q2
x ).

The estimates of the allele frequencies are obtained
using standard iterative methods based upon the
maximum likelihood approach, and estimates of the
standard errors can be derived numerically via the
Fisher information using standard methods. Excel-
lent initial estimates can be obtained using the method
of Bernstein [1]; these estimators are also based
upon Hardy–Weinberg assumptions. If fi denotes the
proportion of individuals expressing the ith allele,
then the Bernstein estimator is q̃i = 1 − (1 − fi)

1/2

(since under Hardy–Weinberg expectations this is
1 − [(1 − qi)

2]1/2 = qi ; qx is generally estimated by
subtraction [8]; and additional refinements of the
Bernstein method exist [1, 8].

It may be noted that this same maximum like-
lihood approach is applicable even in the presence
of more complex dominance relationships, and the
Bernstein estimators generally provide reasonable ini-
tial values for iteration. Furthermore, another source
of so-called “null” or “blank” alleles is the techni-
cal inability to detect particular alleles. For example,
in the case of the HLA system, specificities were
originally detected serologically, utilizing sera from
multiparous women; particular alleles could therefore
be designated as “blanks” not because they produced
no product, but because the reagents that would per-
mit their detection were not yet available. This led

to a decreasing frequency of the blank allele as the
entire constellation of alleles at a particular locus
eventually came to be identifiable. The subsequent
application of molecular techniques revealed that at
least some serologically determined “alleles” could
be further subdivided.

An alternative approach to allele frequency esti-
mation in the presence of dominance relationships,
which also yields the maximum likelihood estimate,
employs the EM algorithm [3]. From this perspec-
tive, the genotypes of individuals may not be fully
observable, but can be estimated under a specific
genetic model with suitable assumptions, utilizing
phenotypic data, which can be observed. Given phe-
notypic counts, and a provisional estimate of the
allele frequencies, the expected numbers of geno-
types and so of alleles can be obtained (generally
under Hardy–Weinberg assumptions), and the gene
counting approach used to update allele frequency
estimates. Iteration continues in this manner until
convergence; this approach is often referred to as
“iterative gene counting” for obvious reasons.

Haplotype Frequency Estimation

If haplotyping has been carried out, then all hap-
lotypes in the sample are known, and haplotype
frequency estimation is accomplished in a straight-
forward manner by a process analogous to the gene
counting procedure described previously: the num-
ber of haplotypes of a given type are counted and
standard binomial theory applied to obtain the point
estimates and their estimated standard errors [5].
However, in the absence of such information, hap-
lotype frequencies are more typically estimated from
observed phenotypic frequency data, based upon a
random sample of individuals. Consider estimation
of a particular combination of alleles Ai at the A
locus and Bj at the B locus. Under equilibrium con-
ditions, the frequency of the haplotype AiBj would
be equal to the product of their two allele frequen-
cies, pi and qj , respectively; however, this is not
true in general, and this displacement from equilib-
rium is measured by the coefficient of disequilibrium
∆ij = hij − piqj , where hij is the population fre-
quency of the AiBj haplotype. Alternatively, the
observation may be made that

hij = piqj , +∆ij .
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This is the basis of one approach to haplotype
frequency estimation [2, 11, 12] in which phenotypic
data are first used to estimate the coefficient of
disequilibrium under Hardy–Weinberg assumptions,
as follows:

∆ij = √
f −− − [(f+− + f−−)(f−+ + f−−)]1/2,

where f−− denotes the proportion of persons with
neither the Ai nor the Bj allele, f+− denotes the
proportion of persons with the Ai but not the Bj

allele, and f−+ denotes the proportion of persons
with the Bj but not the Ai allele. The relevant
allele frequencies, pi and qj , are then estimated
using the phenotypic data as previously described,
and the estimated quantities are then substituted
into the equation hij = piqj + ∆ij to obtain the
estimate of hij . An alternative iterative approach that
provides maximum likelihood estimates [17] can also
be employed.

It is important to note that the Hardy–Weinberg
assumptions are critical to the estimation of
haplotype frequencies from phenotypic data in
the situations described. The utilization of such
methods in an inappropriate context, such as an
inbred population (see Inbreeding), can lead to
invalid and misleading results. Kostyu et al. [10]
demonstrated the importance of haplotyping in
inbred populations and the dangers of inappropriate
application of Hardy–Weinberg assumptions in
conjunction with phenotypic data, which could
seriously impair inferences about the nature
of linkage disequilibrium and thereby produce
erroneous haplotype frequency estimates. Moreover,
it should be noted that very large sample sizes are
required to achieve reasonable levels of power to
detect deviations from Hardy–Weinberg proportions
due to inbreeding in human populations [4] even
on the basis of fully codominant systems; therefore,
it may be unwise to assume that failure to
reject Hardy–Weinberg assumptions for such loci
implies that they may be safely made in general,
particularly when the presence of inbreeding is
known or suspected. In studies of inbred populations,
the investigator may attempt to study the entire
population. Failing that, it may be advisable to strive
for both breadth and depth in sampling on the
basis of social and anthropological considerations;
for example, sampling from a large number of
demographic units, such as colonies, and securing
information from a large proportion of the members

of each such unit. Other approaches have included
restriction of the sample to persons of reproductive
age and to considerations of persons of a single
gender, such as females in a patrilocal system (e.g.
where the woman relocates to the colony of her
husband) [9, 13].

Although this treatment has emphasized inference
based upon random samples from the population of
interest, gene frequency estimates may be obtained
from other types of data, although appropriate
statistical methods must be employed. Allele
frequency estimates may be obtained from family
data [3, 6, 14, 16] and are typically estimated jointly
with other genetic parameters; for example, in the
context of segregation analysis of pedigrees [6].
However, such estimates are derived mainly from
the information provided by persons marrying into
the families in the sample; if the sample consists of
many small pedigrees or nuclear families, then one
would expect better estimates of allele frequencies
than if a few large pedigrees were being analyzed.
Furthermore, if the pedigrees were brought into the
sample because of the presence of one or more
affected individuals, the allele frequency estimates
may be affected if the correction for bias due to
ascertainment is not accomplished completely.
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Gene

The word gene has been, and still is, used with vari-
ous meanings. The genetic material of higher organ-
isms is DNA (deoxyribonucleic acid), a constituent
of the 23 pairs of chromosomes a person has. Each
DNA molecule has a sequence of many bases along it
(see DNA Sequences), most of which have no known
function. About 3% of the bases code for various
products, either polypeptide chains or molecules of
ribonucleic acid, and a commonly accepted defini-
tion of a gene is a combination of DNA segments
that together code for one of these functional units.
Genes thus occur in pairs at locations, or loci, along
the pairs of chromosomes. Different genes that can
occupy the same locus are allelic, or alleles, so that
there may be many alleles at a given locus in the
population – but only two in any one person. Genes
that occupy different loci are nonallelic. A common
definition of alleles is given as “different forms of the
same gene”, so that the term “gene” then means the
general type of DNA that occurs at a particular locus,
as opposed to an allele, which is a specific sequence

of DNA that occurs at the locus. It is unfortunate that
the word gene is used with either of these two distinct
meanings, perhaps better differentiated as “locus”
and “allele”. A rough analogy can be made with
the distinction between “estimator” and “estimate”,
the latter being a specific instance of the former.
English-speaking writers, earlier writers, and popu-
lation geneticists have tended to use the word gene
with the specific (“allele”) meaning, whereas non-
English writers, more recent writers, and biochemi-
cal geneticists tend to use it with the more general
(“locus”) meaning. (But biochemical geneticists talk
of “cloning genes”, meaning alleles.) A further dis-
parity occurs when human geneticists speak of there
being “two genes at each locus”, whereas Drosophila
geneticists speak of “two loci for each gene”. Just as
statisticians are rarely confused when the word esti-
mate is used when estimator might be better (as in the
distribution of an estimate), so are geneticists rarely
confused by the word gene, whose exact meaning is
always clear (to them) by the context.

ROBERT C. ELSTON



Gene-environment
Interaction

The interdependent action of genes and envi-
ronment in disease causality is measured by
gene–environment interaction. When interaction
exists, the combined action of genes and environ-
ment can increase or decrease disease risk beyond
that due to purely genetic and purely environ-
mental actions. While Haldane [3] first considered
gene–environment interaction over half a century
ago, evidence continues to emerge that most dis-
eases do not result from entirely genetic or entirely
environmental factors, but rather from a compli-
cated interaction of these factors [7]. In fact, Khoury
et al. [5] assert that the basis of genetic epidemi-
ology comes from the evolving recognition that
gene–environment interactions contribute to the eti-
ology of most diseases.

Types of causal interaction include synergism,
whereby both factors are needed for disease to occur,
and antagonism, where each factor results in dis-
ease only when the other is absent [6]. The relation
between the recessive gene for Phenylketonuria
(PKU) and dietary phenylalanine in mental retar-
dation provides an example of gene–environment
interaction. PKU is a genetic disorder in which
phenylalanine metabolism is blocked. The interac-
tion between PKU and blood phenylalanine levels
produces an increased risk of mental retardation
beyond that resulting from either factor alone [10].

We focus here on statistical interaction, which
does not necessarily imply interaction on the bio-
logical or mechanistic level. Statistical interaction is
commonly measured by departures from additivity
of effects on the chosen outcome scale. Follow-
ing [8], let Rij be the average risk when G = i and
E = j , where G ∈ (g, g), E ∈ (e, e), and g(g) indi-
cates the presence (absence) of the genetic factor of
interest and e(e) indicates the presence (absence) of
the environmental factor of interest. Then one can
express additivity on the risk ratio scale (see Relative
Risk) as

Rge

Rge

= Rge

Rge

+ Rge

Rge

− Rge

Rge

. (1)

That is to say, the risk ratio due to the combined
action of the genetic and environmental effects is

simply equal to the sum of the risk ratios for
the genetic effect and for the environmental effect
(minus the null effect). Departures from (1) indicate
statistical interaction on an additive risk ratio scale.
Lack of departure from (1), however, implies the
existence of statistical interaction on a multiplicative
risk scale [8]. One can express multiplicativity of the
risk ratios as

Rge

Rge

= Rge

Rge

× Rge

Rge

. (2)

That is to say, the risk ratio due to the combined
action of the genetic and environmental effects is
equal to the product of the risk ratios for the
genetic effect and for the environmental effect. If
the genetic and environmental exposures of interest
are associated with disease (i.e. Rge/Rge > 1 and
Rge/Rge > 1), then (1) and (2) can never both be
true. Specifically, if (1) is true, then the only way (2)
can also be true is if Rge/Rge = 1 or Rge/Rge = 1.
Clearly, the opposite is also true (i.e. if both g and e

have effects and (2) is true, then (1) cannot be true).
Hence, the presence or absence of gene–environment
interaction depends on the scale used to measure
effects, and statistical interaction on the risk scale
implies no interaction on the log risk scale and vice
versa [8].

One can use stratified analysis (see Stratification)
to assess gene–environment interaction. Cross-classi-
fying the genetic and environmental factors by
disease status and applying statistical techniques
such as Woolf’s test of homogeneity [11] can
provide estimates and tests for interaction. Evaluating
multiple potential gene–environment interactions
simply requires further stratification, but this can lead
to problems in sparse data. Instead, one can use
a regression approach to assessing interaction. This
entails entering into a regression model terms for
the genetic and environmental factors, plus a product
term for the interaction. For example, suppose that
in a case–control study one collects genetic data xg,
environmental data xe, and data on disease status.
Then one can estimate the coefficients corresponding
to the effects of these exposures on disease by fitting
a logistic regression model,

Pr(disease |xg, xe)

= exp(β0 + βgxg + βexe + βg·exgxe)

1 + exp(β0 + βgxg + βexe + βg·exgxe)
, (3)
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to the data. Here, β0 is an intercept term, βg is the
main effect due to genes, and βe is the main effect
of environment. The coefficient βg·e of the product
xg × xe estimates the gene–environment interaction
on the logit scale. One can evaluate this interaction
using the likelihood ratio test of a logistic model
without the xg × xe product vs. (1) [1]. When βg·e �=
0, a departure from odds-ratio multiplicativity (i.e.
interaction on the logit scale) exists. If no interaction
exists, this model implies that the odds ratio for
each factor (genes or environment) is constant across
levels of the other factor.

One can evaluate the numerous potential gene–en-
vironment (or gene–gene and environment–envi-
ronment) interactions expected in multifactorial
diseases by incorporating additional product terms
(including triple products and more complex
combinations) into a regression model. The phrase
“n-order interactions” refers to interactions where
the ‘n’ is one less than the number of factors
involved. However, interpretation of coefficients
from models with many interaction terms can be
quite complicated. Finally, one should be aware
that detecting gene–environment interactions can
require substantially larger sample sizes than are
necessary for detecting genetic or environmental
effects alone [2, 4], and that gene–environment
interactions can be confounded by dose–response
relations [9].
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General Linear Model

The term “general linear model” refers to a specific
model formulation which relates a response variable,
Y , to a set of explanatory variables, X1, . . . , Xk .
The basic relation is written as

y = β0 + β1x1 + · · · + βkxk + e,

where y is the observed value of Y corresponding
to an observed set of values for the explanatory
variables, x1, . . . , xk , and the βs are regression coeffi-
cients, which are usually to be estimated. It is further
assumed that

E(Y ) = β0 + β1x1 + · · · + βkxk

and therefore, that E(e) = 0. Note that the linear-
ity of the model relates to the occurrence of the
βs and that the x values may represent nonlinear
functions of other variables, polynomial terms and
standard transformations, such as logarithms, being
commonly used.

The general linear model is usually written in
vector notation as

y = Xβ + e,

where y represents a column vector of n Y val-
ues, X is a n × K matrix with rows correspond-
ing to sets of X values, β is a column vector of

regression coefficients, and e is a column vector of
values usually called residual or error terms. The
term “design matrix” is often used for X. The vari-
ance–covariance matrix of e, and therefore of y,
is nonnegative definite, and is usually denoted by
V = E[y − E(y)][y − E(y)]′. A common assumption
is that all e values have the same variance, σ 2, and
that the covariance of all pairs of e values is zero. In
this case, V = σ 2I, where I is the identity matrix.

Estimation of β does not require further distri-
butional assumptions (see Least Squares) but it is
customary to assume that the es are normally dis-
tributed to allow hypothesis testing and interval
estimation. Some authors include the assumption
of normal distributions as part of the general linear
model formulation.

Many standard statistical models fall into the class
of general linear models. These include the models
used in linear regression (simple), multiple linear
regression, analysis of variance, and analysis of
covariance. See the articles on these topics for a
description of inference procedures for the general
linear model.

The general linear model is a special case of a
generalized linear model, a term used to refer to
a regression model that relates a function of the
mean of a response variable to a linear function of
explanatory variables.

VERN T. FAREWELL



General Practice

General or family practice – more generically, pri-
mary care – is defined as “the provision of integrated,
accessible health care services by clinicians who are
accountable for addressing a large majority of per-
sonal health care needs, developing a sustained part-
nership with patients and practicing in the context of
a family and community” [28].

Strictly speaking, general or family practice is
the medical element of a much wider set of health
care services delivered in community settings. The
generic term for such services is primary care, which
is characterized by the fact that patients usually attend
for care on their own initiative. General practice is
therefore distinguished from secondary (hospital) and
tertiary (specialist center) care in that it is immedi-
ately available to the population, without the need for
referral from other agencies. Although such referrals
can and do take place, in the UK about a half of
all consultations with doctors in general practice are
patient-initiated [34].

It is of course true that the precise nature of effec-
tive access to such services (and in particular the
funding of it (see Health Care Financing)) varies
from one health care system to another. There are
nevertheless a number of common features which
are pertinent to the biostatistical issues which arise
in the specialty. The most important of these is that
the medical conditions which are seen most com-
monly by family doctors are, quite literally, those
that occur commonly in the community (see Com-
munity Medicine). Examples include acute upper
respiratory tract infection, low back pain, accidents,
and problems associated with the ageing process such
as osteoarthritis. In general practice, the old adage of
“when you hear the sound of hooves, think of horses
not zebras” is particularly apt. The reverse of this
coin is that conditions which to specialists appear
quite often, such as cancer of the lung or breast and
even acute myocardial infarction, are relatively rare
in general practice.

The common presenting conditions also include
those of a chronic, multifactorial nature. The psy-
chological and social aspects of general practice thus
require a multidisciplinary approach to care. They
have also led to an emphasis on both organizational
issues and on care of the family, rather than just
purely medical treatment by doctors for individual

patients. Concomitantly, research in general practice
is necessarily multidisciplinary, incorporating quali-
tative as well as quantitative methodologies.

Biostatistical Issues in General Practice

Clearly, many of the biostatistical issues which arise
in general practice are the same as in many if not all
such areas of application. Even some of these com-
mon issues take on a particular flavor, though. For
example, consider the importance of estimating the
magnitude of differences between groups of subjects
using confidence intervals rather than just relying on
statistical significance (see Hypothesis Testing) [46].
With the large numbers of individuals often available
for community-based studies, confidence intervals
are necessary to portray possibly excessive preci-
sion (for example, where effects of negligible clinical
importance are nevertheless statistically significant;
(see Clinical Significance Versus Statistical Sig-
nificance) as well as to highlight inadequate power
when sample sizes are too small. Another example
is that the wide variety of sources of (systematic and
random) differences between subjects means that the
advantage in comparative studies of random alloca-
tion (see Randomization) over nonrandom allocation
followed by statistical adjustment for confounding
effects, is arguably particularly marked in a commu-
nity setting.

The methodologies discussed in detail here,
though, will be a selection of those which have a
specific relevance to the specialty, although few if
any of them are solely applicable to general practice.
First, there is the issue of ascertaining the basic
pattern of demand and symptomatology in general
practice, and variation in referral to secondary care.
Next there are methodological aspects of clinical
epidemiology – such as screening and diagnostic
tests – which have particular relevance. Lastly, issues
in the design and analysis of randomized controlled
trials (see Clinical Trials, Overview) in general
practice will be discussed.

Observational Studies

Routine Statistics

The key difficulties are in ascertaining the correct
numerators and denominators for assessing pat-
terns of demand and levels of morbidity in general
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practice [32, 34, 35]. A particular problem has been
obtaining valid and reliable estimates of the popula-
tion at risk. For example, Morrell et al. [34] applied
corrections to their observed denominators by using
simple regression techniques to adjust for changes
in registrations, including those who were at risk but
not registered with the study practice. The ongoing
process of computerization of registers, both practice-
and community-based, ameliorates this problem but
does not obviate the need for such statistical consi-
derations.

The difficulties are compounded in developing
countries, where two-fifths of the population have
been estimated to be outside the health care sys-
tem [10]. In this context, methods based on cluster
sampling for health surveys have been extensively
developed and widely used [3, 10, 31].

More recent developments in the use of routine
statistics in general practice have included investi-
gations of referrals to (usually expensive) secondary
services. These studies have often been based on
the assumption of the Poisson distribution, both in
the context of statistical models for observed data or
computer simulation techniques [2, 15, 33].

Cluster Sampling

This is a special case of multistage sampling [1,
11], where all the second stage units (for exam-
ple, individuals) are selected within the first stage
units sampled (such as households). The biostatistical
issues relate to the two concepts of accuracy (system-
atic bias) and precision (sampling error). Unbiased
estimates are as usual obtained by equal probability
of selection methods (epsem), which for multistage
sampling depends on whether fixed numbers or fixed
proportions of second stage units are sampled. For the
latter (which is the case in cluster sampling where the
sampling fraction is 100% for the second stage units),
simple random sampling or stratified sampling of
first stage units is required [1, 37].

The statistical theory of sampling errors in such
designs is well established [11, 30]. Whether for
sample size planning or for estimating precision and
confidence intervals, at issue is the calculation of
the design effect (or inflation factor or Kish design
effect) to allow for the inefficiency of this design
compared with single stage random sampling. There
are two general approaches: one requiring an estimate
of the variance between the clusters [14, 31]; the

other requiring an estimate of the intracluster (more
generally, intraclass) correlation coefficient [3, 22];
for more details, see the section below on Cluster
Randomization. In either case, although there is no
practical constraint on an estimate of the design
effect, in general the consequence is to increase
standard errors.

Clinical Epidemiology

Screening and Diagnostic Tests

An example of a methodologic aspect of clinical
epidemiology which is particularly relevant to gen-
eral practice is the effect of the prevalence of the
condition on the standard performance statistics for
screening and diagnostic tests [25, 42]. In partic-
ular, the positive predictive value (probability of
disease among subjects with a positive test result)
falls as the underlying prevalence decreases, even if
the sensitivity (ability of the test to detect the dis-
ease) and specificity (ability of the test to exclude
the disease) remain unaltered. For example, a test
with 70% sensitivity and 90% specificity for prostatic
cancer gave a positive predictive value of 93% for
a group of patients with a particular clinical symp-
tom. For patients in a general practice population,
however, the same test yielded a positive predictive
value below 0.5% [25]. This fundamental point is
not altered by employing more sophisticated statis-
tical measures such as likelihood ratios for positive
and negative test results (used in conjunction with
Bayes’ Theorem to update pre-test to post-test prob-
abilities of disease) and receiver operating charac-
teristic (ROC) curves (plots of sensitivity against
1-specificity).

In summary, diagnostic tests which are highly
useful in a secondary care environment may well be
of no practical value in general practice, where the
test conditions are likely to be relatively rare. This is
one reason why screening in a general population is
often difficult to justify [38].

Agreement

The issue of interobserver agreement often arises
in research in general practice, particularly in the
context of health status measurement [47]. For con-
tinuous variables, simple correlation coefficients are
inappropriate as measures of agreement; rather, the
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analysis should be based on paired differences [5].
Tests and confidence intervals, for example on
(paired) mean differences, assess the “bias” of one
assessment relative to the other. Assuming a nor-
mal distribution for the differences, 1.96 standard
deviations (of the differences) either side of the
mean difference forms a 95% reference range for
the paired differences, or limits of agreement [5]. A
plot of each paired difference against the mean of
the respective two measurements portrays the agree-
ment graphically, and may suggest that a logarithmic
transformation would be worthwhile.

For noncontinuous variables, the most widely used
measure of agreement is the kappa statistic κ [12].
Specifically, kappa measures chance-corrected agree-
ment, with the option of introducing weights for
different levels of disagreement where there are more
than two ordered categories [1, 13, 24]. If quadratic
weights are employed (that is, weights proportional to
the square of the discrepancy on the original scale),
then, apart from terms in 1/(sample size), weighted
kappa is equivalent to the intraclass correlation coef-
ficient [1, 47].

For a binary variable, unweighted kappa is equiv-
alent to the intraclass correlation coefficient using
scores of 0 and 1 [22, 47]. McNemar’s test for paired
proportions may be used to ascertain whether there
is evidence that the discrepancy is in a particular
direction, but this is difficult to interpret without also
bearing in mind the extent of disagreement overall.

Randomized Controlled Trials

Design

The key biostatistical features of designing random-
ized controlled trials (RCTs) in general practice are
that they should be essentially pragmatic rather than
explanatory [43], and that the unit of randomization
is often not the individual but a group of individuals
(see Group-randomization Designs) [21]. In addi-
tion, by the nature of the context, selection criteria
for entry into such trials should be inclusive rather
than exclusive (see Eligibility and Exclusion Crite-
ria). In more general terms, all aspects of their design
should be realistic, recognizing and allowing for the
limitations in respect of, for instance, blinding and
contamination.

Pragmatic RCTs are where the interventions are
designed to be as close as possible to the situations

in which they would be applied [43]. In this way, the
efficacy of an intervention (performance under ideal
circumstances) which RCTs evaluate is brought as
close as possible to effectiveness (performance under
everyday circumstances) (see Pharmacoepidemiol-
ogy, Adverse and Beneficial Effects) [4, 38]. The
primary data analyses should be on an intention-
to-treat basis, comparing the groups as they were
randomized. Comparing subjects in terms of interven-
tion actually received (the explanatory approach) will
in general be biased since it does not correspond to
the random allocation; nevertheless, secondary analy-
ses of this kind will often be worthwhile. Even in the
primary analysis the impact of missing outcome data
should not be ignored [27], and different assumptions
regarding missing values may well need to be the
subject of sensitive analyses [41].

The second key feature is allocation of groups
rather than individual subjects – that is, cluster ran-
domization. As indicated in the section above on
Cluster Sampling, the effect of this is to reduce the
efficiency of the trial; all other things being equal,
then, the sample sizes of such trials will need to
be larger. Sample size determination for cluster-
randomized trials has received considerable attention
in epidemiological and statistical journals [14, 16,
22, 45], although it has until recently been relatively
neglected in the applied primary care literature [7–9].
In such applications, the cluster is usually the general
practice, though it may be individual practitioners.
The design is considered as an option because of the
likelihood of contamination between the interventions
if they are conducted within the same practice.

There has been debate about the importance of
removing the effect of contamination in the study
design [49]. Cluster randomized trials are, however,
likely to remain a reasonable option and the UK Med-
ical Research Council is currently developing guide-
lines regarding their design, conduct and presentation.
Certainly, leaving adjustments for contamination to
the analysis has dangers in terms of the ability to
estimate and control for it adequately; moreover, any
such adjustment for extraneous variables in the pri-
mary analysis of the trial runs the risk of interfering
with the central principles of an intention-to-treat
analysis [27].

As noted above, the two general approaches to
sample size planning require prior estimation of either
the intercluster variation [14, 31] or the intraclus-
ter correlation coefficient [3, 22]. While the latter is
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at least potentially more generalizable, particularly
for small clusters, these methods are related [22].
In practice, though, the choice will often depend
on the type of prior information available. Basi-
cally, each obtains an inflation factor as the inverse
of the relative efficiency of cluster randomization
compared with individual randomization. The sample
size requirement calculated using standard methods
for individual randomization is then multiplied by this
inflation factor [16].

The first approach, described by Cornfield [14]
for comparing a binary outcome between two inter-
ventions, obtains the inflation factor as IF = (cσ 2)/

[p(1 − p)], where c is the mean cluster size, and
p and σ 2 are the mean and (population) variance,
respectively, of the cluster-specific proportions. The
second, described by Donner et al. [22] for contin-
uous and binary outcome variables, calculates IF =
1 + (c − 1)ρ, where c is as before and ρ is the intra-
cluster correlation coefficient [16, 22, 30]. For binary
variables, the latter is equivalent to the kappa statistic,
κ , described above [12, 24].

From the second approach it is clear that if κ = 0
(the case of “mavericks” when individuals within
clusters are no more similar to one another than
individuals randomly selected from the population),
then the inflation factor is unity – the cluster design
introduces no additional inefficiency over individual
randomization. At the other extreme, κ = 1 (the case
of “clones” within clusters) and IF = c; the sample
size is then effectively the number of clusters.

In the context of binary outcomes in general prac-
tice, the values of κ observed are quite small – for
instance, of the order of 0.05 for controlled hyperten-
sion [23]. Given the proportional relationship of the
design effect with cluster size, however, apparently
small clustering effects in terms of κ can translate
into large design effects when the number of individ-
uals per practice is large. To offset this inefficiency,
such designs should almost always be accompanied
by features that improve efficiency, such as strat-
ification and applications of factorial and Latin
square designs [1]. In fact, the efficiency benefits
of stratification are in general even more marked for
cluster randomization than for individual random-
ization [30]. In addition, stratified randomization to
ensure balance in respect of key variables is likely
to be essential in the (common) situation where the
number of clusters is relatively small.

Analysis

It is essential that the statistical analysis of data from
RCTs does at least at some point take into account
any complex design features such as stratification and
cluster randomization [14, 16, 21, 50]. While a sim-
ple (unadjusted) analysis may be helpful initially, the
effects of adjustments for such characteristics should
at some point be ascertained. For instance, having
stratified for a variable in the design, only condition-
ing on this factor in the analysis will achieve both
unbiased estimates and maximize efficiency [44].

This can be achieved by the use of either cor-
rections to basic analytic procedures, or generalized
linear models, with for example fixed effects terms
for any stratification variables [17–20]. For variables
representing clusters which have been randomized –
practices, for example – one approach is to repre-
sent these by random effects terms in an appropriate
model [18]. Whatever the magnitude of the effect of
these corrections, the key trial comparisons derived
from relatively complex models can be presented (in
terms of statistical significance and confidence inter-
vals) just as simply as the corresponding results from
unweighted analyses such as t tests (see Student’s t
Statistics).

The most general approach to all the above ana-
lytic issues, though, is by multilevel modeling [18,
26, 40]. Such models are, of course, not restricted
to studies (experimental or observational) where the
clustering is explicitly taken into account in the
design. As mentioned earlier, general practice is
implicitly characterized by a variety of sources of
variation at a number of levels.

Anticipated Developments and Unresolved
Problems

The unresolved problems generally take one of two
forms. The first is the ascertainment of the magnitude
of the benefit which will accrue in general practice
research by the application of the more complex of
the methods described above. To achieve this, both
methodologic work and applied research is needed –
for instance, only rarely in the literature are values
of intracluster correlation coefficients quoted [123],
although this situation is improving [50]. In addition,
research is needed into the circumstances in which
either Cornfeld’s or Donner’s approaches to sample
size determination is to be preferred, and also into cir-
cumstances in which one or both corrections appear
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not to be applicable – for example, when an estimated
inflation factor is less than unity. Further investigation
is also required into whether there are any patterns in
the number and nature of the major sources of varia-
tion in suitable multilevel models in general practice.

The second general challenge is for research into
the relative values of different study designs in
evaluating interventions in general practice [4]. This
includes the value of large amounts of routinely col-
lected data, particularly as computer technology in
general practice becomes more widespread and bet-
ter developed for this purpose. Clearly, though, the
issues of validity and reliability remain even with
computerization. Moreover, with observational data
(particularly in a context such as general practice with
many sources of potentially major variation), com-
parability in terms of case mix will continue to be
difficult to establish.

Overall, randomized controlled trials in general
practice have met many practical problems – for
example, recruitment of practitioners and subjects,
objections to randomization, and poor subsequent
compliance [29, 48]. This has led many to question
their central role as the gold standard for evaluating
interventions [39], calling for a role for observational
studies [4] and the patient preference trial, where
patients who express a strong preference are given
their choice and only the remainder are random-
ized [6, 29]. A further possibility is the comprehen-
sive cohort, where randomized subjects are nested
within a wider cohort of individuals who for one rea-
son or another were not included in the trial [36].
To date, all these alternatives remain either relatively
little developed, or controversial, or both. Whilst fur-
ther methodologic and applied research in general
practice will no doubt continue on these and similar
approaches, the central role of the pragmatic ran-
domized controlled trial will undoubtedly continue
in general practice research.
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Generalized Additive
Model

In the statistical analysis of clinical trials and obser-
vational studies, the identification and adjustment
for prognostic factors is an important component.
Valid comparisons of different treatments requires
the appropriate adjustment for relevant prognostic
factors. The failure to consider important prognostic
variables, particularly in observational studies, can
lead to errors in estimating treatment differences. In
addition, incorrect modeling of prognostic factors can
result in the failure to identify nonlinear trends or
threshold effects on survival.

This article describes flexible statistical methods
that may be used to identify and characterize the
effect of potential prognostic factors on an outcome
variable. These methods are called “generalized addi-
tive models”, and extend the traditional general lin-
ear model. They can be applied in any setting in
which a linear or generalized linear model is typi-
cally used. These settings include standard continuous
response regression, categorical or ordered cate-
gorical response data, count data, survival data and
time series.

One of the most commonly used statistical mod-
els in medical research is the logistic regression
model for binary data. We use it here as a specific
illustration of a generalized additive mode. Logis-
tic regression (and many other techniques) model
the effects of prognostic factors xj in terms of
a linear predictor of the form

∑
xjβj , where the

βj are parameters. The generalized additive model
replaces

∑
xjβj with

∑
fj (xj ), where fj is a unspec-

ified (“nonparametric”) function. This function is
estimated in a flexible manner using a scatterplot
smoother (see Graphical Displays). The estimated
function f̂j (xj ) can reveal possible nonlinearities in
the effect of xj .

We first give some background on the method-
ology, and then discuss the details of the logistic
regression model and its generalization. Some related
developments are discussed in the last section.

Smoothing Methods and Generalized
Additive Models

The building block of the generalized additive model

algorithm is the scatterplot smoother. We will first
describe scatterplot smoothing in a simple setting, and
then indicate how it is used in generalized additive
modeling.

Suppose that we have a scatterplot of points
(xi, yi) such as that shown in Figure 1. Here y is
a response or outcome variable, and x is a prognos-
tic factor. We wish to fit a smooth curve f (x) that
summarizes the dependence of y on x. If we were to
find the curve that simply minimizes

∑
[yi − f (xi)]2,

the result would be an interpolating curve that would
not be smooth at all.

The cubic spline smoother imposes smoothness on
f (x). We seek the function f (x) that minimizes

∑
[yi − f (xi)]2 + λ

∫
f ′′(x)2 dx. (1)

Notice that
∫

f ′′(x)2 measures the “wiggliness” of
the function f : linear f s have

∫
f ′′(x)2 = 0, while

nonlinear f s produce values greater than zero. λ

is a nonnegative smoothing parameter that must be
chosen by the data analyst. It governs the tradeoff
between the goodness of fit to the data (as measured
by

∑
[yi − f (xi)]2) and wiggliness of the function.

Larger values of λ force f to be smoother.
For any value of λ, the solution to (1) is a cubic

spline; that is, a piecewise cubic polynomial with
pieces joined at the unique observed values of x in
the dataset. Fast and stable numerical procedures are
available for computation of the fitted curve. The
right panel of Figure 1 shows a cubic spline fit to
the data.
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Figure 1 The left panel shows a fictitious scatterplot of
an outcome measure y plotted against a prognostic factor
x. In the right panel, a scatterplot smoother has been added
to describe the trend of y on x



2 Generalized Additive Model

What value of λ did we use in Figure 1? In fact,
it is not convenient to express the desired smooth-
ness of f in terms of λ, as the meaning of λ

depends on the units of the prognostic factor x.
Instead, it is possible to define an “effective number
of parameters” or “degrees of freedom” of a cubic
spline smoother, and then use a numerical search to
determine the value of λ to yield this number. In
Figure 1 we chose the effective number of param-
eters to be 5. Roughly speaking, this means that
the complexity of the curve is about the same as
a polynomial regression of degree 4. However, the
cubic spline smoother “spreads out” its parameters
in a more even manner, and hence is much more
flexible than a polynomial regression. Note that the
degrees of freedom of a smoother need not be an
integer.

The above discussion tells how to fit a curve to
a single prognostic factor. With multiple prognostic
factors, if xij denotes the value of the j th prognostic
factor for the ith observation, we fit the additive
model

ŷi ≈
∑

j

fj (xij ). (2)

A criterion such as (1) can be specified for this
problem, and a simple iterative procedure exists for
estimating the fj s. We apply a cubic spline smoother
to the outcome yi − ∑

j �=k f̂j (xij ) as a function of
xik , for each prognostic factor in turn. The process
continues until the estimates f̂k stabilize. This proce-
dure is known as “backfitting”, and the resulting fit is
analogous to a multiple regression for linear models.

When generalized additive models are fit to binary
response data (and in many other settings), the appro-
priate error criterion is a penalized log likelihood or a
penalized log partial-likelihood (see Penalized Max-
imum Likelihood). To maximize it, the backfitting
procedure is used in conjunction with a maximum
likelihood or maximum partial likelihood algorithm.
The usual Newton–Raphson routine (see Optimiza-
tion and Nonlinear Equations) for maximizing log
likelihoods in these models can be cast in an IRLS
(iteratively reweighted least squares) form (see Gen-
eralized Linear Model). This involves a repeated
weighted linear regression of a constructed response
variable on the covariates: each regression yields a
new value of the parameter estimates which give
a new constructed variable, and the process is iter-
ated. In the generalized additive model, the weighted

linear regression is simply replaced by a weighted
backfitting algorithm. Details can be found in [7,
Chapter 6].

The Generalized Additive Logistic Model

Generalized additive models can be used in virtu-
ally any setting in which linear models are used.
The basic idea is to replace

∑
xijβj , the linear com-

ponent of the model with an additive component∑
fj (xij ).
In the logistic regression model the outcome yi is

0 or 1, with 1 indicating an event (such as death or
relapse of a disease) and 0 indicating no event. We
wish to model p(yi |xi1, xi2, . . . , xip), the probability
of an event given prognostic factors xi1, xi2, . . . xip.
The linear logistic model assumes that the log odds
are linear:

log
p(yi |xi1, . . . , xip)

1 − p(yi |xi1, . . . , xip)

= β0 + xi1β1 + · · · + xipβp. (3)

The generalized additive logistic model assumes
instead that

log
p(yi |xi1, . . . , xip)

1 − p(yi |xi1, . . . , xip)

= β0 + f1(xi1) + · · · + fp(xip). (4)

The functions f1, f2, . . . , fp are estimated by an
algorithm like the one described earlier.

To illustrate this, we describe a study on the
survival of children after cardiac surgery for heart
defects [13]. The data were collected during the
period 1983–1988. A pre-operation warm-blood
cardioplegia procedure, thought to improve chances
for survival, was introduced in February 1988. This
was not used on all of the children after February
1988, only on those for which it was thought
appropriate and only by surgeons who chose to use
the new procedure. The main question is whether
the introduction of the warming procedure improved
survival; the importance of risk factors age, weight,
and diagnostic category is also of interest.

If the warming procedure was given in a random-
ized manner, we could simply focus on the post-
February 1988 data and compare the survival of those
who received the new procedure to those who did not.
However, allocation was not random, so we can only
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try to assess the effectiveness of the warming pro-
cedure as it was applied. For this analysis, we use
all of the data (1983–1988). To adjust for changes
that might have occurred over the five-year period,
we include the data of the operation as a covariate.
However, operation date is strongly confounded with
the warming operation and thus a general nonpara-
metric fit for date of operation might unduly remove
some of the effect attributable to the warming proce-
dure. To avoid this, we allow only a linear effect for
operation date. Hence we must assume that any time
trend is either a consistently increasing or decreasing
trend.

We fit a generalized additive logistic model to the
binary response death, with smooth terms for age and
weight, a linear term for operation date, a categorical
variable for diagnosis, and a binary variable for the
warming operation. All the smooth terms are fitted
with four degrees of freedom.

The resulting curves for age and weight are
shown in Figure 2. As one would expect, the high-
est risk is for the lighter babies, with a decreas-
ing risk over 3 kg. Somewhat surprisingly, there
seems to be a low risk age around 200 days, with
higher risk for younger and older children. Note
that the numerical algorithm is not able to achieve
exactly four degrees of freedom for the age and
weight terms, but 3.80 and 3.86 degrees of freedom,
respectively.

An analysis of deviance (see Generalized Linear
Model) can be carried out for inference from a
generalized additive model, analogous to that done
for generalized linear models. The only new twist
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Figure 2 Estimated functions for weight and age for warm
cardioplegia data. The shaded region represents twice the
pointwise asymptotic standard errors of the estimated curve

is estimation of the degrees of freedom or effective
number of parameters of the fitted model, which was
discussed in the previous section. This analysis shows
that the warming procedure is strongly beneficial to
survival. There are strong differences in the diagnosis
categories, while the estimated effect of operation
date is not large.

Since a logistic regression is additive on the logit
scale but not on the probability scale, a plot of the fit-
ted probabilities is often informative. Figure 3 shows
the fitted probabilities broken down by age and diag-
nosis, and is a concise summary of the findings of
this study. The beneficial effect of the treatment at
the lower weights is evident. As with all nonrandom-
ized studies, the results here should be interpreted
with caution. In particular, one must insure that the
children were not chosen for the warming operation
based on their prognosis. To investigate this, we per-
form a second analysis in which a dummy variable
(say, period), corresponding to before vs. after Febru-
ary 1988, is inserted in place of the dummy variable
for the warming operation. The purpose of this is
to investigate whether the overall treatment strategy
improved after February 1988. If this turns out not to
be the case, it will imply that warming was used only
for patients with a good prognosis, who would have
survived anyway. A linear adjustment for operation
date is included as before. The results are quali-
tatively very similar to the first analysis: age and
weight are significant, with effects similar to those
in Figure 2; diagnosis is significant, while operation
date (linear effect) is not. Period is highly signifi-
cant. Hence there seems to be a significant overall
improvement in survival after February 1988. For
more details, see [13].

Discussion

The nonlinear modeling procedures described here
are useful for two reasons. First, they help to prevent
model misspecification, which can lead to incorrect
conclusions regarding treatment efficacy. Secondly,
they provide information about the relationship
between prognostic factors and disease risk that is not
revealed by the use of standard modeling techniques.
Linearity always remains a special case, and thus
simple linear relationships can be easily confirmed
with flexible modeling of covariate effects.

The most comprehensive source for generalized
additive models is [7], from which the example was
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Figure 3 Estimated probabilities for warm cardioplegia data, conditioned on two ages (columns) and three diagnostic
classes (rows). The broken line is standard treatment; the solid line is warm cardioplegia. Bars indicate ± 1
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taken. A detailed example of the use of general-
ized additive models in the proportional hazards
setting is given in [10]. Other medical applications
are discussed in [6] and [9]. Penalization and spline
models in a variety of settings are discussed in [5],
and [12] is a good source for the mathematical back-
ground of spline models. See also [3] for an exposi-
tion of modern developments in statistics (including
generalized additive models), for a nonmathematical
audience.

There has been some recent related work in
this area. A different method for flexible hazard
modeling is described in [11] and a generalization
of additive modeling that finds interactions among
prognostic factors is proposed in [4]. Of particular
interest in the proportional hazards setting is the
varying coefficient model [8] (see Semiparametric
Regression), in which the parameter effects can
change with other factors such as time. The model
has the form

h(t |xi1, . . . , xip) = h0(t) exp
p∑

j=1

βj (t)xij . (5)

The parameter functions βj (t) are estimated by
scatterplot smoothers in a similar fashion to the
methods described earlier. This gives a useful way of
modeling departures from the proportional hazards
assumption by estimating the way in which the
parameters βj change with time.

Software for fitting generalized additive mod-
els is available in the S/SPLUS statistical environ-
ment [1, 2], in a FORTRAN program called gamfit
available at statlib (in general/gamfit at the ftp site
lib.stat.cmu.edu) and also in the GAIM pack-
age for MS-DOS computers, available from the
authors.
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Generalized Estimating
Equations

It is common practice in statistical modeling, as epit-
omized in the generalized linear model, to divide
variation in some measure into a systematic part and
a random part. The validity of classical maximum
likelihood inference for such models depends upon
the correct choice of model for both parts, includ-
ing a specific choice of distribution for the random
part. Typically, substantive theory guides the con-
struction of the model for the systematic part (see
Model, Choice of). For the random part, although
some guidance may be obtained from knowledge
of the distributional consequences of a simple and
plausible stochastic process that might be respon-
sible for this variation, and from experience gained
with other comparable data, we rarely have com-
plete confidence in our choice of distribution. This
is of especial concern where samples are too small
to allow scope for detailed checking of the distri-
butional assumptions, where a multivariate distri-
bution must be specified for the random part, and
where the available forms of multivariate distribution
lack flexibility. This describes well the circumstances
that we face with many longitudinal datasets, and
where it is often helpful to use “generalized esti-
mating equations” (GEEs) [11]. The GEE approach,
while making weaker distributional assumptions than
those required for a fully parametric likelihood-
based model, maintains the properties of consistency
and asymptotic normality of parameter estimates [8]
(see Large-sample Theory). The description of GEE
methods presented here focuses on their use with
longitudinal data. However, these methods are also
applicable to other forms of multivariate or corre-
lated response data including, for example, studies
involving clustered or multistage sampling and the
joint analysis of several response features.

Tables 1 and 2 provide simple examples of the
kind of longitudinal data at issue. Table 1, from [4],
concerns 56 patients from one center (center 1) in a
multicenter treatment trial for a respiratory disease,
with a binary self-rated response variable measured
at a baseline and on four subsequent occasions. The
effects of interest are those for the time-constant
or between-subjects variables for treatment (active

Table 1 Repeated measures data on respiratory disease

ID 1 2 3 4 0 t s Age

1 0 0 0 0 0 0 0 46
2 0 0 0 0 0 0 0 28
3 1 1 1 1 1 1 0 23
4 1 1 1 1 0 0 0 44
5 1 1 1 1 1 0 1 13
6 0 0 0 0 0 1 0 34
7 0 1 0 1 1 0 0 43
8 0 0 0 0 0 1 0 28
9 1 1 1 1 1 1 0 31

10 1 0 1 1 0 0 0 37
11 1 1 1 1 1 1 0 30
12 0 1 1 1 0 1 0 14
13 1 1 0 0 0 0 0 23
14 0 0 0 0 0 0 0 30
15 1 1 1 1 1 0 0 20
16 0 0 0 0 1 1 0 22
17 0 0 0 0 0 0 0 25
18 0 0 1 1 1 1 1 47
19 0 0 0 0 0 0 1 31
20 1 1 0 1 0 1 0 20
21 0 1 0 1 0 1 0 26
22 1 1 1 1 1 1 0 46
23 1 1 1 1 1 1 0 32
24 0 1 0 0 0 1 0 48
25 0 0 0 0 0 0 1 35
26 0 0 0 0 0 1 0 26
27 1 1 0 1 1 0 0 23
28 0 1 1 0 0 0 1 36
29 0 1 1 0 0 0 0 19
30 0 0 0 0 0 1 0 28
31 0 0 0 0 0 0 0 37
32 0 1 1 1 1 1 0 23
33 1 1 1 1 0 1 0 30
34 0 0 1 1 0 0 0 15
35 0 0 0 1 0 1 0 26
36 0 0 0 0 0 0 1 45
37 0 0 1 0 0 1 0 31
38 0 0 0 0 0 1 0 50
39 0 0 0 0 0 0 0 28
40 0 0 0 0 0 0 0 26
41 0 0 0 0 1 0 0 14
42 0 0 1 0 0 1 0 31
43 1 1 1 1 1 0 0 13
44 0 0 0 0 0 0 0 27
45 0 1 0 1 1 0 0 26
46 0 0 0 0 0 0 0 49
47 0 0 0 0 0 0 0 63
48 1 1 1 1 1 1 0 57
49 1 1 1 1 1 0 0 27
50 0 0 1 1 1 1 0 22
51 0 0 1 1 1 1 0 15
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Table 1 (continued )

ID 1 2 3 4 0 t s Age

52 0 0 0 1 0 0 0 43
53 0 0 0 1 0 1 1 32
54 1 1 1 1 0 1 0 11
55 1 1 1 1 1 0 0 24
56 0 1 1 0 1 1 0 25

Adapted from [4].

vs. placebo), and age of the subject and the time-
varying or within-subjects effect of time. Table 2,
from [34], gives data of a very similar structure,
but here concerned with a 59 patient treatment trial
(0 = placebo, 1 = progabide) for epilepsy, where the
response measure is a count reflecting the number of
seizures within four successive intervals of 2 weeks.
In both datasets a pretreatment baseline measure
of the response was also taken. In models fitted
later in this article this baseline measure has been
included as an additional covariate, in the style of
analysis of covariance (see Baseline Adjustment
in Longitudinal Studies).

The multivariate normal distribution provides
the basis of many methods for analyzing longitudinal
continuous responses. Since the normal distribution
can be linked to a binary response through its cumu-
lative distribution function, the probit, it is not sur-
prising that methods based on the multivariate probit
likelihood have been proposed for multivariate binary
data, such as that of Table 1 (see Quantal Response
Models). However, the probit does not have a closed
form, and requires the use of moment-based approx-
imations typically requiring large samples (e.g. [25])
or computationally intensive numerical quadrature
(e.g. [9]). The probit scale also lacks some of the
desirable properties of the log odds scale, for example
the ability to estimate the same effect from both retro-
spective case–control studies and prospective cohort
studies. However, multivariate generalizations of the
logistic distribution lack the flexibility of the multi-
variate normal.

For the multinomial distribution the same
parameters occur in both the first and higher-order
moments of the distribution, and no model exists
that can simultaneously produce simple expressions,
in terms of model parameters, for the joint,
marginal, and conditional distributions [15]. Similar
considerations often apply with other types of data
with which we are faced. Thus, an important

Table 2 Treatment trial of epilepsy

ID Y1 Y2 Y3 Y4 Treatment Baseline Age

104 5 3 3 3 0 11 31
106 3 5 3 3 0 11 30
107 2 4 0 5 0 6 25
114 4 4 1 4 0 8 36
116 7 18 9 21 0 66 22
118 5 2 8 7 0 27 29
123 6 4 0 2 0 12 31
126 40 20 23 12 0 52 42
130 5 6 6 5 0 23 37
135 14 13 6 0 0 10 28
141 26 12 6 22 0 52 36
145 12 6 8 4 0 33 24
201 4 4 6 2 0 18 23
202 7 9 12 14 0 42 36
205 16 24 10 9 0 87 26
206 11 0 0 5 0 50 26
210 0 0 3 3 0 18 28
213 37 29 28 29 0 111 31
215 3 5 2 5 0 18 32
217 3 0 6 7 0 20 21
219 3 4 3 4 0 12 29
220 3 4 3 4 0 9 21
222 2 3 3 5 0 17 32
226 8 12 2 8 0 28 25
227 18 24 76 25 0 55 30
230 2 1 2 1 0 9 40
234 3 1 4 2 0 10 19
238 13 15 13 12 0 47 22
101 11 14 9 8 1 76 18
102 8 7 9 4 1 38 32
103 0 4 3 0 1 19 20
108 3 6 1 3 1 10 30
110 2 6 7 4 1 19 18
111 4 3 1 3 1 24 24
112 22 17 19 16 1 31 30
113 5 4 7 4 1 14 35
117 2 4 0 4 1 11 27
121 3 7 7 7 1 67 20
122 4 18 2 5 1 41 22
124 2 1 1 0 1 7 28
128 0 2 4 0 1 22 23
129 5 4 0 3 1 13 40
137 11 14 25 15 1 46 33
139 10 5 3 8 1 36 21
143 19 7 6 7 1 38 35
147 1 1 2 3 1 7 25
203 6 10 8 8 1 36 26
204 2 1 0 0 1 11 25
207 102 65 72 63 1 151 22
208 4 3 2 4 1 22 32

(continued overleaf )
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Table 2 (continued )

ID Y1 Y2 Y3 Y4 Treatment Baseline Age

209 8 6 5 7 1 41 25
211 1 3 1 5 1 32 35
214 18 11 28 13 1 56 21
218 6 3 4 0 1 24 41
221 3 5 4 3 1 16 32
225 1 23 19 8 1 22 26
228 2 3 0 1 1 25 21
232 0 0 0 0 1 13 36
236 1 4 2 2 1 12 37

Reproduced from [34] by permission of the publisher.

preliminary consideration before embarking on
longitudinal analysis of discrete data is to decide
which effects should be directly parameterized in
the model, and which represented only by more
complex functions of those parameters or treated as
a nuisance. This is the rationale underlying the GEE
approach, which for the most part is concerned with
how to make inference about the marginal regression
parameters of a generalized linear model (GLM),
and to a lesser extent with the association among
responses.

Generalized Linear Models

GLMs cover a range of models in common use in
medical statistics, including Gaussian linear regres-
sion, logistic regression, and loglinear models for
count data. As described in Generalized Linear
Model, the general class of model requires the spec-
ification of a link function that relates the mean
response to a vector of covariates Xi and a vari-
ance function that relates the variance of the response
to the mean. Then, for any response with a distri-
bution that is a member of the exponential family,
the likelihood Li can be expressed as Li = f (yi) =
exp{[yiθi − b(θi)]/a(φ) + c(yi, φ)}, where in canon-
ical form θi = ηi = Xiβ, E(yi) = µi = b′(θi), and
var(yi) = b′′(θi)a(φ). In the case of binary logis-
tic regression b(θi) = log(1 + eθi ) and φ = 1, while
Poisson regression for a count response has b(θi) =
eθi again with φ = 1.

For any members of this wide class of mod-
els, maximum likelihood estimates of the regres-
sion coefficients β can be obtained by an iterative
weighted least squares solution (see Generalized
Linear Model) to the score equations (the derivatives

of Li with respect to the regression parameters)

U(β) =
n∑

i=1

(
∂µi

∂β

)T

ν−1
i {Yi − µi(β)} = 0, (1)

where {ν−1
i } are weights derived from the variance

function νi = var(Yi). The large sample covariance
matrix of the parameter estimates is given by the
inverse of the Hessian H1(β)

Ĥ1(β) =
n∑

i=1

(
∂µi

∂β

)T

ν−1
i

(
∂µi

∂β

)
. (2)

Huberized/Sandwich Estimator of a
Sample Covariance Matrix

The validity of the covariance matrix based on (2)
depends upon the correctness of the specification of
the variance function. An alternative estimator for the
covariance matrix that provides a consistent estimate
even when the specification of the variance function
is incorrect is the so-called “sandwich” estimator
H−1

1 (β)H2(β)H−1
1 (β), where

Ĥ2(β) =
n∑

i=1

(
∂µi

∂β

)T

ν−1
i {Yi − µi(β)}

× {yi − µi(β)}Tν−1
i

(
∂µi

∂β

)
. (3)

The “bread” of the sandwich is the standard
covariance matrix estimator and the sandwich is the
cross-product of the empirical scores [13, 37, 38].
This is also known as the robust or “heteroscedastic
consistent” covariance estimator, or the “variance
correction”.

The sandwich estimator plays an important role
in GEE methodology, but its appropriateness should
not be accepted uncritically. For comparison purposes
Drum & McCullagh [6] consider the simple case of a
difference of means test for two independent samples,
for which the conventional estimate of the variance
of the group difference would be s2(1/n1 + 1/n2),
whereas the sandwich estimate is s2

1 [(n1 − 1)/n2
1] +

s2
2 [(n2 − 1)/n2

2]. These correspond to the alternative
forms of the two-sample t test that use pooled or
separate variance estimates (see Student’s t Statis-
tics). Where one or both samples is small, the loss
of power in using the latter form is substantial, and
should not be accepted lightly. With medium to large
samples the loss of power is likely to be slight [1].
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Bias in this estimator for unbalanced designs is also
considered by Chesher & Jewitt [3]. Such considera-
tions have prompted some criticism of the use of the
label “robust” for the sandwich estimator.

Independence Working Models

Combining generalized linear models and the robust
estimator for var(β) provides a very simple means of
analyzing repeated measures data. Individuals now
provide a response vector µi = (µi1, µi2, . . . , µiT )

and the score equations take the form

U(β) =
n∑

i=1

DT
i V−1

i {yi − µi(β)} = 0, (4)

where D is a vector of partial derivatives ∂µ/∂β and
Vi is a covariance matrix for the Y s. The solution
to these equations provides consistent estimates of β

even where the Vi matrix has been specified incor-
rectly. Appropriate standard errors can be obtained
for such a misspecified model by using the sandwich
estimator. If, for estimation purposes, Vi is speci-
fied to by �i = diag[var(Yi1), . . . , var(YiT )], in other

words the responses are naively assumed to be inde-
pendent (an independence working model or IWM),
then estimation can proceed using standard GLM
software with each subject contributing as many
records as repeated measures. The operational sim-
plicity of this approach is hard to exaggerate. Of
course, these estimates are not efficient, but the loss
of efficiency is often not great [10].

Table 3 gives the parameter estimates from a
logistic regression fitted to the respiratory disease
data of Table 1, in which each subject contributes
a set of four records. Three forms of standard error
are shown together with their associated test statistic:
(i) the classical standard error that is based on the
false assumption that the four records within a set
are independent; (ii) the “robust/sandwich” standard
error; and (iii) one based on bootstrap resampling of
subjects. The bootstrap estimate is always closer to
the robust/sandwich estimate than the classical esti-
mate, which, for between-subjects effects, is much
too small. However, in the case of the within-subjects
effect for the time trend, it is the robust and bootstrap
estimates that are smaller. Assuming independence is
not always anticonservative.

Table 3 Logistic regression estimates for respiratory data

Independence working model Random effects model

Standard
error

Classical Standard
(Robust) z error z

Regressor Estimate [Bootstrapa] test Estimate Classical test

Time −0.131 0.148 −0.89 −0.174 0.172 −1.01
(0.132) −0.99
[0.122]

Treatment 0.938 0.337 2.78 1.220 0.596 2.05
(0.445) 2.11
[0.456]

Age −0.034 0.016 −2.13 −0.041 0.027 −1.52
(0.019) −1.79
[0.025]

Baseline 2.770 0.392 7.07 3.758 0.767 4.90
(0.506) 5.47
[0.615]

Constant −0.141 0.639 −0.389 1.030
(0.706)
[0.711]

Scale parameter 1.480 0.381

aFrom 500 replicates.
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Marginal vs. Conditional Estimation

Before describing potentially more efficient use of
generalized estimating equations for longitudinal data
it is worth considering the interpretation of the param-
eters that we have just obtained. We have estimated
a cross-sectional model simultaneously to each of
the four measurement occasions. The fit is to the
four univariate margins and not to any joint distri-
bution of responses as such. Moreover, unlike in a
random effects model for repeated data there is no
subject-specific effect. Estimates for the effects of
covariates, whether time-dependent or not, are thus
not conditional upon any such subject-specific effect,
but instead relate to effects averaged over individuals.

The two alternative measures of the effect of a
covariate are the same in the case of linear link
models with additive subject-specific effects and log
link models with multiplicative subject effects. For
a logistic link, as with the other link functions,
the average effect coincides with the subject-specific
effect only for no effect or no subject-specific vari-
ance. Where subject-specific effects are substantial,
Figure 1 illustrates how the marginal response curve
is obtained from averaging the subject-specific curves
which, if each was logistic, results not only in a
marginal curve of smaller slope but one that is not
even logistic in form. Zeger et al. [41] discuss the
relationship among these different estimates of the
regression coefficients. The broad consensus is that
average effects are often of interest from a public
health point of view, but may not be so pertinent
where interest lies in scientific investigation of the
individual-level process or in individual-level pre-
diction. It is also of interest that marginal models
rarely provide descriptions of the data that fully spec-
ify a possible data-generating mechanism as would
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Figure 1 Logistic subject-specific and marginal effects

be required, for example, to specify a Monte Carlo
simulation.

For comparison, Table 3 presents the estimates
and standard errors from a random effects logis-
tic model [24] applied to the respiratory data. As
expected, these subject-specific regression coeffi-
cients are larger than the corresponding marginal
parameters, but so too are the standard errors, result-
ing in comparable test statistics.

Quasi-likelihood

Wedderburn [35] pointed out that the GLM score
equations (1) could be solved for any choice of link
and variance function even where the integral of the
score equations – a likelihood-type function given
the name quasi-likelihood – did not actually corre-
spond to a member of the exponential family nor even
to a known parametric distribution. McCullagh [22]
showed that the regression estimates obtained from
solving such quasi-score functions were approxi-
mately normal with mean β and variance still given
by (2).

Medical statisticians frequently encounter counts
and proportions data where perhaps, through geo-
graphic, social, or genetic proximity, the several units
contributing to each response are not independent.
Such data then typically possess greater variance
than expected under the ordinary GLM. In the case
of count data, in place of a GLM specified with
var(Yi) = E(Yi) as appropriate to Poisson distributed
counts, a model in which var(Yi) = φE(Yi) might be
estimated with φ > 1 to account for the extra vari-
ance or overdispersion. Although in this instance
this does not change the estimated regression coef-
ficients, the estimated parameter variances increase
by the factor φ.

Simple moment estimators for this scale parameter
φ were proposed [23] on the basis of the
Pearson residuals r̂i = {yi − b′(θ̂i )}{b′′(θ̂i)}−1/2, of
the form φ = ∑

i r̂2
i /(N − p). Firth [7] examined the

relative efficiency of such quasi-likelihood estimators
concluding that greater efficiency can only be
obtained by making assumptions about higher-order
moments.

Wei & Stram [36] consider a direct application
of this kind of approach to longitudinal data in
which a separate occasion-specific quasi-likelihood
equation is estimated for each time point after which
a special parameter covariance matrix covering all
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the parameters is estimated and used as the basis of
subsequent tests. This represents a special case of the
IWM approach described previously (see [4]).

Table 4 presents the results from fitting overdis-
persed Poisson regression models to the epilepsy data
using the IWM approach. For illustrative purposes,
the fitted model includes simple main effects and
a common pattern of overdispersion, though Thall
& Vail [34] find some evidence for a more compli-
cated structure. The estimated dispersion parameter
based on the Pearson residuals is 5.1, showing that
the variability in these data is well in excess of those
for Poisson counts, for which it would be 1. Again
the standard errors derived using the sandwich esti-
mator are larger than the naive estimates for the
between-subjects effects but is smaller for the within-
subjects effect of time. We have again provided esti-
mates from a random effects model for comparison.
This model assumes a gamma distributed random
effect uncorrelated with included regressors, acting
multiplicatively on the Poisson rate parameter. Unlike
the logistic model there is no consistent increase in
the parameter estimates over those from the marginal
model.

Generalized Estimating Equations

Liang & Zeger [16] and Zeger & Liang [40] extended
the quasi-likelihood approach to consider a multi-
variate mean vector and suggested that improved

efficiency could be obtained by simultaneously esti-
mating parameters in the covariance matrix of the
response vector. This corresponds to taking the esti-
mating equations (3) and, where previously we have
considered using a diagonal matrix as the working
matrix for Vi , now using something which begins to
approximate the off-diagonal covariance. An obvious
form is

Vi = �
1/2
i Ri (α)�

1/2
i

φ
,

where Ri (α) is a T × T “working correlation mat-
rix” with parameter vector α. Typical possibilities for
Ri(α) are:

1. An identity matrix – equivalent to the IWM
approach of the previous section.

2. An exchangeable correlation matrix with a sin-
gle parameter, similar to that which underlies
repeated measures analysis of variance in which
corr(Yij , Yik) = α, j �= k.

3. An AR-1 autoregressive correlation matrix,
also with a single parameter but in which
corr(Yij , Yik) = α|k−j |, j �= k (see ARMA and
ARIMA Models).

4. An unstructured correlation matrix with T (T −
1)/2 parameters, similar to that underlying
multivariate analysis of variance, in which
corr(Yij , Yik) = αjk .

If Vi is correctly specified, then the covariance matrix
for the fitted regression coefficients could be obtained

Table 4 Overdispersed Poisson regression estimates for the epilepsy data

Independence working model Random effects model

Standard Standard
error error

Classical z Classical z

Regressor Estimate (Robust) test Estimate (Robust) test

Time −0.059 0.046 −1.28 −0.059 0.019 −3.13
(0.035) −1.68 (0.030) −1.96

Treatment −0.154 0.108 −1.42 −0.197 0.169 −1.17
(0.171) −0.90 (0.166) −1.18

Age −0.023 0.009 −2.56 −0.016 0.014 −1.19
(0.012) −1.92 (0.010) −1.61

Baseline 0.227 0.011 20.6 0.279 0.030 8.97
×10−1 (0.012) 18.9 0.026 10.70

Constant 0.712 0.326 0.698
(0.349)

Frailty variance 0.366
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from the inverse of the information matrix H1(β):
n∑

i=1

D̂T
i V̂−1

i D̂i .

However, although we should have regard to possible
loss of power, it is in general safer to use a robust
sandwich variance estimator with a construction that
parallels that already described.

In the first applications of non-IWM GEE
estimation, Liang & Zeger [16] followed the
pattern set in quasi-likelihood estimation of using
moment estimators (see Method of Moments)
for both the scale parameter, φ, and for the
correlations, α. With observation-specific Pearson
residuals, the scale parameter φ̂ is first estimated
by 1/{∑i

∑
j r̂2

ij /(N − p)} and then α̂ is estimated

by φ̂
∑

i

∑
k>j r̂ij r̂ik/{∑i[ni(ni − 1)/2] − p} for the

exchangeable model, or by the regression slope of
log(r̂ij r̂ik) on log(|j − k|) for the AR-1 model. In
the case of the unstructured or saturated form of
the covariance matrix for balanced data the (jk)th
element can be estimated by φ̂

∑
i r̂ij r̂ik/(N − p).

This last form is typically only practicable with
large samples or with few observation occasions.
Whichever form is chosen, the estimation process
consists of an iteration between iterative weighted
least squares estimation of the regression parameters
for a given estimate of the association parameters
followed by recalculation of the estimates of the
association parameters based on the residuals from
the current estimates of the regression parameters.

Of course the correlation matrix need not be
parameterized directly. Indeed, since multivariate dis-
crete distributions give rise to complex constraints
on the feasible correlation matrices there may be
some advantage in not doing so. In the case of
binary data Lipsitz et al. [19] suggested using the
pairwise marginal odds ratios γijk for j = 1, T − 1
and k = j + 1, T where

γijk = E(YijYik)E[(1 − Yij )(1 − Yik)]

E[Yij (1 − Yik)]E[(1 − Yij )Yik]
. (5)

Although these estimators for the association param-
eters α may suffice where scientific interest lies in
the estimation of the regression coefficients, they
are not especially good estimators of the association
parameters themselves. Moreover, it is sometimes
appropriate to consider the association, for exam-
ple as characterized by the correlation matrix, as

depending explicitly on covariates or experimental
or sampling design variables. Prentice [26] proposed
extending the estimating equation approach to the
estimation of the association parameters. A second
set of equations is estimated for which the “observed
data” are the cross-products over measurements of
the time-specific residuals sijk = rij rik . As was the
case for the score equations for the regression coef-
ficients, this involves a choice of some “working
covariance matrix”. In simple cases the estimates
obtained correspond to the simple moment estimates
already described.

These two sets of estimating equations can be
combined [28, 42] as follows:

∑

i





∂µi

∂β
,

∂µi

∂α

∂σi

∂β
,

∂σi

∂α





T
(

cov(yi), cov(yi, si)

cov(yi , si), cov(si)

)−1

×
(

yi − µi

si − σi

)
= 0,

where σijk = E(sijk). Liang et al. [17] present a sim-
ilar set of estimating equations for the mean and
marginal odds ratios. In either case, the score func-
tions for β and α are solved together using a modified
Fisher scoring algorithm (see Generalized Linear
Model). If the equations for α and β are assumed
orthogonal, then the off-diagonal elements of the first
two matrices (for derivatives and weights, respec-
tively) are assumed zero and these are referred to
as first-order estimating equations and the estima-
tion method as GEE1. If these matrix elements are
nonzero and the two sets of equations are solved
jointly, then this corresponds to a second-order esti-
mating equations approach or GEE2. GEE1 gives
consistent estimates of β when the model for α is
misspecified. GEE2 does not share this “robustness”
but can give more efficient estimates. In practice
(e.g. [17]), there is little or no gain in efficiency for
β in the use of GEE2, but there can be substantial
gains for the association parameters α.

As with the estimation equation for β, these esti-
mating equations for α now involve the specification
of a “working” covariance matrix for cov(si) (for
GEE1 and GEE2) and cov(yi, si) (for GEE2 only).
These involve third and fourth moments of the data
about which most applied statisticians will have little
intuitive grasp and which may be subject to com-
plex constraints. (In theory, the estimating equation
approach could be extended further to estimate these



8 Generalized Estimating Equations

higher-order moments as well.) In addition, for large
numbers of repeated measures the size of this covari-
ance matrix can make it difficult to invert.

In the discussion of Liang et al. [17], Prentice &
Pepe [27] suggested a reparameterization in terms of
conditional residuals, which, tending to be less cor-
related than unconditional residuals, might provide
greater efficiency. Carey et al. [2] (but see also [5])
proposed a simple iterative schema involving condi-
tional residuals for the special case of odds-ratio asso-
ciation models with multivariate binary data. They
suggested estimating a common odds ratio αijk = α

[see (4) above] from the following logistic regression:

logit Pr(Yij = 1|Yik = yik)

= αyik + log

(
uij − µijk

1 − µij − µik + µijk

)
,

where µijk = Pr(Yij = Yik = 1) and the second term
on the right-hand side is an offset. Since µijk and
hence the offset depends upon the values of α and
β, iteration is required between the offset logistic
regression for α and the GEE logistic regression
for β, giving rise to the name alternating logistic
regression (ALR). The approach can be extended
to allow variation in the degree of association with
covariates by replacing yik in the above equation by
xijkyik with a corresponding change in α to a vector
of regression-type coefficients.

This last approach exploits the robustness proper-
ties of GEE1 estimation with respect to the β regres-
sion parameters but typically achieves almost as good
efficiency in the estimation of the odds-ratio associa-
tion parameters α as the much more complex GEE2
method, and at the same time substantially reduces
the matrix inversion problem. Lipsitz & Fitzmau-
rice [18] consider the conditional residual approach
where the association is modeled using correlations.
They report similarly good performance for autore-
gressive correlation structures, and more generally
where there are missing data.

Recently Wild & Yee [39] have adapted the GEE
approach to allow for the fitting of generalized addi-
tive models (GAMs rather than GLMs) of the sort
described by Hastie & Tibshirani [12].

In practice, the GEE estimation algorithms
described above do not always converge. Lipsitz
et al. [20] considered restricting the estimation
process to one step. Starting from an IWM solution,
the association parameters are estimated using the
IWM residuals and the regression coefficients are

re-estimated once more. They concluded that where
the fully iterated method failed to converge, the one-
step estimator could well be adequate. They found
no discernible differences in power or bias among
IWM logistic regression, one-step or iterated GEE1.
In addition, efficiency was comparable except where
the correlation over time was high and the variable
time-varying.

Comparative Results from GEE Models

Table 5 presents results of logistic regressions with
exchangeable, AR-1, unstructured, and ALR esti-
mates, with classical and robust standard errors.
Table 6 gives the lower triangle of the estimated cor-
relation matrices from each of these models. The
estimated correlations from the unstructured model
look to be closer to those of an exchangeable struc-
ture than the autoregressive structure, but regression
estimates and standard errors from the three models
are all very similar, as also are the classical and robust
standard errors from within the same model (where
any differences might have suggested possible model
misspecification).

Table 7 presents results from the epilepsy data
with exchangeable, overdispersed exchangeable, AR-
1, and unstructured models, again with standard and
robust standard errors. As expected, allowing for
overdispersion in the exchangeable model does not
result in different parameter estimates nor in different
estimates of the robust standard errors. Differences
do arise in the case of the classical standard errors,
reflecting the fact that for these data allowing for the
correlation alone is not sufficient to avoid a misspec-
ified model, a fact indicated by the substantial differ-
ences between classical and robust standard errors.
Once allowance is also made for overdispersion the
two forms of standard error are much more compa-
rable. Inspection of the estimated correlation matrix
under the unstructured model shown in Table 8 might
suggest the autoregressive structure as the more
appropriate of the structured models.

Missing Data, Weighted Estimating
Equations, and Complex Sampling
Designs

In general, under the assumption of data missing
completely at random (MCAR) [21], marginal model
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Table 5 Logistic regression estimates for respiratory data

Classical Robust

Regressor Model Estimate Standard error z test Standard error z test

Time Exch −0.131 0.129 −1.01 0.132 −0.99
AR-1 −0.148 0.152 −0.97 0.133 −1.11
Unstr −0.169 0.131 −1.29 0.140 −1.21
ALR −0.118 0.131 −0.90

Treatment Exch 0.924 0.438 2.11 0.444 2.08
AR-1 0.894 0.395 2.26 0.447 2.00
Unstr 0.939 0.439 2.14 0.450 2.09
ALR 0.934 0.459 2.04

Age Exch −0.034 0.020 −1.67 0.019 −1.76
AR-1 −0.034 0.018 −1.85 0.019 −1.77
Unstr −0.034 0.020 −1.67 0.019 −1.77
ALR −0.034 0.019 −1.82

Baseline Exch 2.739 0.507 5.41 0.504 5.43
AR-1 2.739 0.455 6.02 0.501 5.47
Unstr 2.881 0.521 5.53 0.506 5.70
ALR 2.777 0.513 5.42

Constant Exch −0.150 0.751 0.704
AR-1 −0.113 0.720 0.685
Unstr −0.088 0.745 0.745
ALR −0.237 0.582

Table 6 Estimated correlation matrices for the respiratory data

Exchangeable (and ALR)
models AR-1 model Unstructured

1 1 1
0.23 (0.18) 1 0.23 1 0.13 1
0.23 (0.18) 0.23 (0.18) 1 0.05 0.23 1 0.18 0.19 1
0.23 (0.18) 0.23 (0.18) 0.23 (0.18) 1 0.01 0.05 0.23 1 0.21 0.35 0.34 1

specification together with an appropriate parameteri-
zation of the covariance matrix requires the occasion-
wise subsets of data to be complete for the mod-
eling of each response measurement, but does not
require complete data across all measurement occa-
sions (see Nonignorable Dropout in Longitudinal
Studies). Moreover, GEE methods typically provide
estimates of parameters whose interpretation is not
dependent upon the pattern of MCAR missing data.
However, the occurrence of missing data compli-
cates the estimation of the totally unspecified cor-
relation matrix since the estimate obtained from the
nonmissing data is not guaranteed to be positive def-
inite.

Robins et al. [30] describe how weighting the
estimating equations by the weights given by the
inverse of the response probabilities can extend

the missing data properties of GEE estimation to
the case of data missing at random (MAR). This
approach also allows the application of the GEE
methodology to multiphase designs and other designs
involving the use of surrogate measurement. Multi-
stage sampling designs are considered by Qaqish &
Liang [29].

Specialized methods are required for the applica-
tion of GEE methodology in the presence of non-
ignorable missing data.

Discussion

The field of GEE continues to be one of rapid devel-
opment, particularly in respect of efficient estimation
of the structure of association among observations.
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Table 7 GEE Poisson regression estimates for the epilepsy data

Classical Robust

Standard z Standard z

Regressor Model Estimate error test error test

Time Exch −0.059 0.016 −3.76 0.035 −1.67
Excha −0.059 0.035 −1.67 0.035 −1.67
AR-1 −0.064 0.020 −3.20 0.034 −1.87
Unstr −0.052 0.018 −2.87 0.043 −1.21

Treatment Exch −0.154 0.071 −2.10 0.173 −0.89
Excha −0.154 0.161 −0.88 0.161 −0.93
AR-1 −0.165 0.068 −2.41 0.162 −1.02
Unstr −0.148 0.067 −2.20 0.132 −1.12

Age Exch 0.023 0.006 3.92 0.012 1.93
Excha 0.023 0.014 1.73 0.012 1.96
AR-1 0.026 0.006 4.53 0.012 2.17
Unstr 0.024 0.006 4.19 0.012 1.92

Baseline Exch 0.228 0.008 30.1 0.012 18.2
×10 Excha 0.228 0.017 13.3 0.013 18.1

AR-1 0.232 0.007 32.01 0.013 18.5
Unstr 0.228 0.007 31.9 0.012 19.3

Constant Exch 0.712 0.205 0.352
Excha 0.712 0.464 0.358
AR-1 0.597 0.199 0.354
Unstr 0.625 0.195 0.381

aAllowing for overdispersion.

This will further enhance the value of these meth-
ods for longitudinal data. As with other model fitting
methods for longitudinal data, special care needs to be
taken in the interpretation of results where predictor
variables include those that may be endogenous. This
can include baseline measures of the type used in the
illustrations.

Programs for GEE model fitting are available
for software platforms such as S-PLUS [33], with
a suite of such programs and data exploration and
management tools specifically for longitudinal data
being provided by OSWALD [31]. With the more
recent availability of basic GEE methods in more
popular packages (e.g. the SAS macros of [14]; Stata
V.5.0 [32]) widespread application of these methods
is assured.

Table 8 Estimated correlation matrix for the epilepsy data

Unstructured model

1
0.24 1
0.42 0.68 1
0.21 0.29 0.59 1
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Generalized Linear Mixed
Models

Introduction

Generalized linear mixed models (GLMMs) are an
extension of the class of generalized linear models
in which random effects are added to the linear pre-
dictor. This modification extends the broad class of
generalized linear models to accommodate correla-
tion via random effects, while retaining the ability to
model nonnormal distributions and allowing nonlin-
ear models of specific form. The class of GLMMs
includes the special cases of linear mixed models,
random coefficient models, random effects logistic
regression, and random effects Poisson regression,
to name a few.

The incorporation of random effects is a natu-
ral way to model or accommodate correlation in the
context of a nonlinear model for nonnormal data. It
generates a rich class of correlated data models that
would be difficult to specify directly. Readily avail-
able, flexible, multivariate distributions analogous
to the multivariate normal distribution do not exist
for most nonnormally distributed data.

Inferences for these models can be of the usual
variety, that is, modeling the effect of predictors on
the mean, in which case the random effects and cor-
relation are “nuisance” features of the model. In other
situations, however, both estimation and testing of the
variances of the random effects, as well as prediction
of the realized values of the random effects, may be
of interest (see Variance Components).

We will illustrate several of our points using as
an example the longitudinal study of physicians and
their patients described by Korff et al. [8]. This study
classified 44 primary care physicians in a large HMO
according to their practice styles in treating back pain
management (low, moderate, or high frequency of
prescription of pain medication and bed rest), and
followed an average of 24 patients per physician for
2 years (1 month, 1 year, and 2 year follow-ups) after
the index visit. Outcome variables included functional
measures (e.g. Did you experience moderate to severe
activity limitation?), patient satisfaction (e.g. “After
your visit with the doctor, did you fully understand
how to take care of your back problem?”), and cost.

Generalized Linear Mixed Models: A
Definition

Generalized linear mixed models constitute a class of
models for describing the stochastic relationship of
an n-dimensional outcome vector Y to an (n × p)-
dimensional matrix of covariates X, with rows x ′

i .
The construction of generalized linear mixed mod-

els begins with the specification of a generalized
linear model conditional on a vector u of random
effects. That is, given a vector u (often with compo-
nents specific to a subject or cluster), the conditional
density of Yi is of the exponential family form
f (yi |u) = exp[{yiθi − b(θi)}φ + c(yi, φ)], where b

and c are functions of known form. In addition, one
assumes that E(Yi | u, xi ) = g−1(x ′

iβ + z′
iu), where

zi is a specified vector of covariates, analogous to
xi . Given u, the model additionally assumes that the
responses Yi are independent. The function g links the
linear predictor to the expected value of the response.
The model further assumes that the random effects
u follow a distribution G, typically (but not neces-
sarily) multivariate normal with mean vector 0 and
covariance matrix Σ(γ ), where γ is a vector of
(co)variance parameters, for example, variances and
correlation coefficients.

Thus, the model assumes that the linear predic-
tor consists of two portions: the fixed effects portion
x ′

iβ, and the random effects portion z′
iu, for which a

distribution is assigned to u. Just as with linear mixed
models, the assumption of a distribution for the ran-
dom effects induces correlations among observations.
Finally, the assumptions underlying GLMMs specify
the multivariate distribution of Y = (Y1, . . . , Yn)

′, so
that one can base inference with these models on
likelihood methods.

The specification of covariate effects conditional
on random effects determines the interpretation of the
fixed effects parameters β. For example, considering
the activity limitation outcome in the back pain study,
GLMMs would measure how the risk of activity lim-
itation in a particular patient of a particular physician
changes over time, and how that change relates to
the practice style of the physician. Using GLMMs,
one can also directly relate changes in explanatory
variables within an individual subject to changes in
the expected value of the subject’s response.

To be more specific, we consider the simple and
common case in which the data are correlated in clus-
ters, where i = 1, . . . , m indexes the clusters (e.g.
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patients) while j = 1, . . . , ni indexes units within
clusters (e.g. different time points) (see Cluster Sam-
pling). In a GLMM with a single fixed effect, the
parameter β measures the change in the conditional
expectation of Y corresponding to a unit increase in
the covariate within the ith cluster,

β = g[E(Yij |xij + 1, ui )] − g[E(Yij |xij , ui )], (1)

where ui is a cluster-specific vector of random
effects. This contrasts with marginal models, where
one specifies the marginal or population-averaged
(PA) distribution of the response of the j th unit in
the ith cluster, integrated over the distribution of u,
together with some working (hypothesized) covari-
ance structure for the ni responses in the ith cluster
to account for intraclass correlation. For the single
fixed effect example, marginal models measure the
change in the marginal expectation E(Yij |xij ), uncon-
ditional on the random effects, associated with change
in the covariate. Such covariate effects are exactly
those one would estimate with a single response per
subject; the cluster structure thus plays no role in the
interpretation of the model regression coefficients.

In addition to estimates of the effects of covariates
on the expected value of the response, GLMMs can
provide estimates of the dependence of responses
within clusters, such as subjects. Measures such as
the intraclass correlation coefficient, corr(Yij , Yij ′),
depend on the random effects distribution G, along
with its parameters γ ; using estimates of γ one can
construct estimates of intraclass correlation.

As well as modeling within-cluster response de-
pendence and estimates of its magnitude, GLMMs
allow consideration of the individual random effects,
which themselves may be of interest. For example, in
the back pain study, we would include random effects
to describe both the physician and patient effects on
each of the outcomes. We might be interested in
obtaining predicted values for the random effects of
each physician to help indicate which physicians had
better outcomes and/or lower costs, after adjusting
for fixed effects of model covariates. The random
effects in a GLMM are best predicted by their
conditional expectations given the data, E(u|Y ).
However, this expectation is unknown since it
depends on the unknown parameters β and γ . Hence,
one typically estimates E(u|Y ) using estimates of
these parameters. The estimated values of E(u|Y ) are
shrinkage estimates and “borrow strength” across the
data set in order to improve estimates of individual

random effects, especially when data incorporating a
particular random effect are sparse (see Shrinkage
Estimation).

Inference and Estimation

Maximum likelihood (ML), or variants such as
restricted maximum likelihood (REML), are stan-
dard methods of estimation for linear mixed mod-
els and generalized linear models (e.g. logistic
regression). Evaluation of the likelihood and hence
likelihood inference with GLMMs is computation-
ally difficult, however, because the random effects
on which the likelihood is conditioned must be inte-
grated out of the distribution prior to maximization
as a function of the fixed effects. Although sev-
eral useful computational methods currently exist, the
development of new methods for GLMMs continues
to be an active research area.

To illustrate the inherent complexity, consider a
general mixed logistic regression model for binary
data. The marginal likelihood takes the form

∫
· · ·

∫
exp

{
∑

i

Yi(x
′
iβ + z′

iu)

}

×
∏

i

{1 + exp(x ′
iβ + z′

iu)}−1 dG(u), (2)

where G is the distribution function of the random
effects and the integration is of a dimension equal
to the dimension of u. For most choices of G, the
integral cannot be evaluated in closed form although,
for simple cases like random intercept and/or random
slope models, (1) reduces to a product of lower-
dimensional integrals amenable to numerical integra-
tion. Numerical integration becomes inaccurate for
three or more dimensions, but simulation-based meth-
ods such as Markov Chain Monte Carlo [3], in par-
ticular, Gibbs sampling, and Monte Carlo EM [13]
have proven useful in these settings. Such methods
can also handle complications such as crossed ran-
dom effects.

If ML estimation is feasible, then the usual infer-
ential methods are available. In particular,

• ML estimators are asymptotically normal, with
standard errors available from second deriva-
tives of the log likelihood.
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• One can carry out hypothesis tests using like-
lihood ratio, score, or Wald procedures.

• One can calculate best-predicted values as ex-
pected values of the random effects conditional
on the data, substituting ML or REML esti-
mates for unknown parameters. Typically, one
cannot evaluate the conditional expected val-
ues in closed form, so these calculations involve
numerical integration.

• One can test whether variances of random
effects are zero using the likelihood ratio
statistic. As with linear mixed models, the
asymptotic null distribution involves a mixture
of chi-square distributions rather than the null
chi-square distribution usual in fixed effects
models [15].

For the case of random intercepts only, sev-
eral authors have proposed a semiparametric mixed
model approach that jointly estimates the regres-
sion parameters and the (nonparametric) mixing
distribution G. These methods are given in several
papers, including [1, 2, 9, 10, 11]. This approach
provides consistent estimation of the effects of all
covariates and of G under conditions of identifiabil-
ity [7].

Although GLMMs require specification of the ran-
dom effects distribution G, several studies of the
performance of logistic models with random inter-
cepts show that estimates of the fixed effects param-
eters β are robust to misspecification of G. For
example, using both approximations and simulations,
Neuhaus et al. [14] showed that incorrectly assum-
ing that G was Gaussian produced fixed effects
covariate effect estimates with very little bias (see
Unbiasedness). Heagerty and Kurland [5] corrob-
orated these findings but pointed out that more
severe model misspecifications, such as the fail-
ure to model interactions of covariates and random
effects, could yield biased estimates of covariate
effects.

Contrasting the Marginal and Conditional
Approaches

We return to the special case of correlated clusters and
the notation used previously to describe them. Many
investigators have considered alternative methods for
clustered data that focus on models for the marginal

expectation of the response,

E(Yij | xij )

=
∫

y

[∫
· · ·

∫
f (y|xij , ui ) dG(ui )

]
dy, (3)

where xij is the vector of covariate values associated
with Yij . Some approaches, such as Generalized
Estimating Equations (GEEs), do this without fully
specifying the functional form of the joint distribution
of the responses Yi1, . . . , Yini

within the ith cluster.
GLMM and marginal models are similar in that

both parameterize the mean and covariance matri-
ces of correlated groups of observations, and both
base inferences on marginal likelihoods or marginal
quasi-likelihoods of the observed data. However, the
implications of modeling the response distribution
conditional on random effects, as do GLMMs, rather
than averaged over random effects, as do marginal
models, are profound. With a nonlinear link function,
the impact of a conditional main effect in the linear
predictor varies, on the scale of E(Y ), with the values
of accompanying fixed and random effects. Hence,
in contrast with the linear case, when averaging
over the random effect distribution, the mean linear
predictor does not correspond (transform to) to the
marginal conditional expectation Eui

[E(Yij |xij , ui )].
Similarly, linear predictors based on within-group
covariate means do not transform to means of the
response within the corresponding groups. Hence, as
stated earlier, marginal approaches measure concep-
tually and numerically different covariate effects than
do GLMMs. In some cases, scientific interest and
inferential goals of a problem lead one clearly to the
marginal or conditional specification of a model; in
other cases, the appropriate direction is less clear.
Since the distinctions between marginal models and
GLMMs are commonly blurred in practice, it is useful
to contrast them further.

Marginal models are most helpful when corre-
lation among observations cannot be ignored, but
neither the nature of the clustering that generates
such correlations, nor the individual clusters them-
selves, are otherwise of particular scientific interest.
This characterization often applies when public health
impact is the focus of an investigation. From that
perspective, there may be little concern with either
intracluster factors or with predictions about the spe-
cific units, such as families observed cross-sectionally
or individuals observed over time, that generate the
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measurement clusters. In the back pain study men-
tioned earlier, in which practice style was constant
within subjects over time, marginal modeling would
be natural to study a presumed homogeneous effect
of practice style across subjects and times, and any
population time trend. (However, it would not be use-
ful for quoting the odds of reduction over time in,
say, the risk of activity limitation for an individual
patient.)

In such circumstances, for example, where lon-
gitudinal observation is used for logistical reasons
or statistical efficiency, and correlations are nui-
sance parameters in analysis, then, there is techni-
cal advantage in bypassing a conditional model (see
Efficiency and Efficient Estimators). For example,
GLMMs that mistakenly assume random effects that
are homoscedastic can produce biased estimators [5,
6]. In contrast, estimates of marginal model parame-
ters obtained using GEE are consistent, even if the
association structure is misspecified.

In other circumstances, however, marginal models
may not measure covariate effects of primary scien-
tific interest, for example, in longitudinal studies in
which explanatory variables change over time within
a subject and interest is in how individuals respond
to such changes. In the back pain study, investigators
were interested specifically in assessing patterns of
change over time in individual subjects. In such sit-
uations, GLMMs are more ambitious than marginal
models in attempting to (i) parse, using explicit ran-
dom effects and predicted values for them, sources
of variation that produce correlated observations, and
to (ii) portray and predict, for instance, shapes of
individual longitudinal disease trajectories, vulnera-
bilities of individual litters to teratogenesis, breeding
values of individual bulls, and susceptibilities of indi-
vidual families to inheritable diseases. The price of
this ambition is paid in more stringent assumptions,
and in greater complexity of the model fitting process
and computations.

If one is willing to pay such a price, then GLMMs
may be used to make inferences about marginal
distributions, even when purely marginal methods
would be adequate. Marginal modeling, however,
without such assumptions does not allow conditional
inference, for example, about longitudinal trajectories
typical of individual subjects. More specifically,

• Variations of Simpson’s paradox and the
ecologic fallacy may apply at several levels.

The marginal distribution may be of a different
form from any conditional distribution and,
indeed, the form of a conditional mixing
distribution required for common marginal
models may be quite unusual [17]. In extreme
cases, features in every conditional model
may be absent in the marginal model, for
example, the marginal effect averaged across
2 × 2 conditional tables might be opposite in
direction to those in each conditional table.
More commonly, however, population average
effects may simply understate the strengths of
effects on individuals [18].

• GEE for marginal models may not estimate the
variance–covariance structure efficiently and
does not allow, without further assumptions,
prediction of random effects. However, see [4,
16, 18] for developments in these directions.

For a more detailed critique of marginal modeling,
see [12].

Summary

During the past decade, GLMMs have become an
important statistical tool and now see heavy use for
modeling correlated, nonnormally distributed data.
Software for fitting GLMMs is starting to mature,
and much experience has contributed to better appre-
ciation of both the utility and pitfalls of the currently
available techniques. GLMMs are a natural modeling
approach for longitudinal data when changes within
subjects are of interest.
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Generalized Linear Model

The term generalized linear model was first
introduced in a landmark paper by Nelder &
Wedderburn [23], in which a wide range of seemingly
disparate problems of statistical modeling and
inference (analysis of variance (ANOVA), analysis
of covariance (ANCOVA), Gaussian, binomial, and
Poisson regression, and so on) were cast in an
elegant unifying framework. The flexibility and
power of the generalized linear model are perhaps
best illustrated by initial consideration of the simple
Gaussian linear model (see Linear Regression,
Simple). Let Yi be a random response variable
and let xi denote an explanatory variable. In the
Gaussian linear model, we assume that

Yi = β0 + β1xi + σEi, i = 1, 2, . . . , n,

where E1, E2, . . . , En are errors that are indepen-
dently and identically distributed standard normal
random variables. An equivalent way of writing the
model is as Yi ∼ N(µi, σ 2), i = 1, 2, . . . , n, where
Y1, Y2, . . . , Yn are independently, but not identically,
distributed and µi = β0 + β1xi , i = 1, 2, . . . , n. The
objective of this model is to use the explanatory vari-
able to characterize the variation in the mean of the
response distribution across observational units, and
hence to learn about the relationship between the
explanatory and response variables.

Frequently, interest lies in the formulation of
regression models for responses with other contin-
uous or discrete distributions. In such settings, while
the objective is typically to model the mean of the
distribution, it must be modeled indirectly via the use
of parameter transformations. In a generalized linear
model this is done through the introduction of a link
function g(·) and the model assumption, which, in
the case of a single explanatory variable, takes the
form

g(µi) = β0 + β1xi.

The error distribution must also be generalized,
usually in a way that complements the choice of
link function. This leads to a very broad class of
regression models.

This unifying theory has impacted the way
such statistical methods are taught, has provided
greater insight into the connections between various
statistical procedures, and has led to considerable

further research. McCullagh & Nelder [22] provide
a comprehensive lucid account of the theory and
applications which involve generalized linear models.
Dobson [12] serves as an excellent introduction to the
topic. In the following exposition, we draw primarily
on the former.

The Generalized Linear Model (GLM)

The Exponential Family

Let Y be a random response variable of interest,
and let y denote its corresponding realized value.
The random variable Y has a distribution in the
exponential family if

fY (y; θ, φ) = exp

{
θy − b(θ)

a(φ) + c(y, φ)

}
, (1)

where fY (y; θ, φ) is a probability density or mass
function, if Y is a continuous or discrete random
variable respectively, a(·), b(·), and c(·, ·) are known
functions, and φ is known. The parameter θ is
often referred to as the canonical parameter or
natural parameter, and φ is called the dispersion
parameter. When φ is unknown, it is considered a
nuisance parameter and (1) may or may not be a
member of the exponential family. For simplicity,
we will initially assume that φ is known, and we
will subsequently denote its specified value as φ0.

The function a(φ0) typically takes the form φ0/w,
where w is a fixed weight that may vary from
observation to observation. The importance of the
weight function arises in the analysis of grouped
data, where it is often the group size. The func-
tion b(·) is termed the cumulant function, since it
plays a central role in the determination of the cumu-
lants (see Characteristic Function), and c(·, ·) is
an arbitrary function of (y, φ0), and possibly the
weight w.

With φ = φ0, the log likelihood arising from (1)
takes the form

l(θ ; y) = θy − b(θ)

a(φ0)
+ c(y, φ0). (2)

Since E{∂l/∂θ} = 0 it follows that E{Y } = µ =
∂b(θ)/∂θ = b′(θ). Furthermore, since E{∂2l/∂θ2} +
E{(∂l/∂θ)2} = 0, it follows that var{Y } = V =
a(φ0)b

′′(θ). To make the dependence of the variance
V on µ explicit, we will sometimes write it as
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var{Y } = a(φ0)ν(µ), where ν(·) is called the variance
function.

Formulation of a Regression Model

Let Y1, Y2, . . . , Yn be a set of random response
variables in which Yi , the response for the ith unit,
has a distribution governed by

fYi
(yi ; θi, φ0) = exp

{
θiyi − b(θi)

ai(φ0)
+ ci(yi , φ0)

}
.

(3)

In (3), ai(·) and ci(·, ·) are all assumed to have
the same functional form across responses; the sub-
scripts are introduced only to accommodate varying
weights across responses (e.g. ai(φ0) = φ0/wi). The
cumulant function is assumed to be common for all
observations, and the subscript on θ accommodates
different expectations for the different responses. The
dispersion parameter is considered to be fixed and
common.

We then let y1, y2, . . . , yn represent a sample of
size n arising from the corresponding n random vari-
ables, which we write more compactly in vector form
as y = (y1, y2, . . . , yn)

′. Let xi = (x1i , x2i , . . . , xpi)
′

denote a p × 1 vector of explanatory variates aris-
ing from the same unit on which yi is observed, with
x1i = 1, and let β = (β1, β2, . . . , βp)′ be a p × 1 vec-
tor of regression coefficients. For convenience we
let X = (x1, x2, . . . , xn)

′ denote the n × p matrix of
covariate vectors. The inner product x′

iβ = ηi con-
sists of a linear combination of the regression param-
eters and hence is termed the linear predictor for the
ith observation. Thus Xβ = η = (η1, η2, . . . , ηn)

′ is
an n × 1 vector of linear predictors. The objective in
forming a generalized linear model is to relate these
linear predictors to the corresponding means, and to
model the variation in the mean from one observa-
tion to the next, using the explanatory variates and the
regression parameters. For estimability, interpretabil-
ity, and to serve the central purpose of data reduction,
p < n.

The link function is a monotonic differentiable
function that typically maps the parameter space for
the mean µi = b′(θi) on to the real line. The role
of the link function is to make explicit the nature of
the relationship between the linear predictor and the
mean. That is, we typically select a link function g(·)
and let

g(µi) = ηi = x′
iβ.

A wide variety of link functions are often suitable, but
several criteria are available to guide their selection.
First, while it is not essential, link functions that map
on to the real line are generally preferred to avoid
numeric difficulties in estimation that arise since the
linear predictor is unconstrained. Secondly, certain
link functions lead to regression parameters that have
attractive properties in terms of their interpretation.
Thirdly, for each member of the exponential family
there exists a so-called canonical link function that
leads to inference for β based solely on sufficient
statistics. Canonical link functions arise by equating
the canonical parameter to the linear predictor; substi-
tution of θi = ηi into a likelihood based on (3) gives
X′y as a sufficient statistic for β. Fourthly, using
procedures for model diagnostics one can consider
the goodness of fit of various link functions to guide
the choice.

Examples

Before proceeding, it is perhaps worthwhile to con-
sider some particular members of the exponential
family with a view to gaining better insight into
the current model formulation. In each of the fol-
lowing cases, we begin with a probability density
or mass function in its usual form, rewrite it in
the form of (1), identify the canonical and disper-
sion parameters as well as the functions a(·), b(·),
and c(·, ·), and finally consider possible link func-
tions. For convenience, we drop the subscript i on
the response variable and the vector of explanatory
variables.

Example 1: the GLM for Poisson Responses

Suppose that Y is a Poisson random variable with
mean µ > 0. Then

Pr(Y = y; µ) = fY (y; µ) = µye−µ

y!
,

y = 0, 1, 2, . . . .

This can be rewritten as

fY (y; θ, φ0) = exp[(θy − eθ ) − log(y!)],

where θ = log µ, a(φ0) = 1, b(θ) = eθ , and c(y, φ0)

= − log(y!). The dispersion parameter φ0 can in fact
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be taken as one, and since there are no weights
involved, we obtain the particularly simple form of
a(·). Note that E{Y } = µ = b′(θ) = eθ and var{Y } =
a(φ0)b

′′(θ) = ν(µ) = eθ . Thus ν(µ) is an identity
function and the mean equals the variance, as one
would expect for a Poisson random variable.

The log link is the canonical link and is the
standard link function for Poisson regression. It
generates the familiar loglinear model

log(µ) = β1 + β2x2 + · · · + βpxp.

Note that covariate effects that are additive on the log
scale have multiplicative effects on the mean of the
distribution. However, any link functions that map
the positive real line on to the entire real line are
also possible.

Example 2: the GLM for Binomial Responses

Suppose that mY ∼ bin(m, π) with E{Y } = µ = π .
Then

Pr(Y = y; π) = fY (y; π)

=
(

m

my

)
πmy(1 − π)m−my,

y = 0,
1

m
,

2

m
, . . . , 1.

This can be rewritten as

fY (y; θ, φ0) = exp

[
θy − log(1 + eθ )

m−1

+ log

(
m

my

)]
,

where θ = log(π/(1 − π)), a(φ0) = 1/m, b(θ) =
log(1 + eθ ), and

c(y, φ0) = log

(
m

my

)
.

Again since the variance is a function solely of the
mean, the dispersion parameter may be set to one.
The function a(φ0) = 1/m then takes the familiar
form, with the number of Bernoulli trials forming
the binomial sample serving as the weight. Note that
E{Y } = µ = b′(θ) = exp{θ}/(1 + exp{θ}) = π and
var{Y } = a(φ0)b

′′(θ) = a(φ0)ν(µ) = exp{θ}/

(m(1 + exp{θ})2) = π(1 − π)/m, as one would
expect.

The canonical link leads to the specification of
a logistic regression model, which is perhaps the
most widely used for binomial data. Reasons include
those discussed earlier in the context of canonical
links, the fact that the regression coefficients may
be interpreted as log odds ratios, and the resulting
attractive features for the regression analysis of
retrospective data [22] (see Retrospective Study).
We obtain

log

[
π

(1 − π)

]
= β1 + β2x2 + · · · + βpxp.

In particular contexts, other link functions are
routinely adopted, the basic requirement being that
they map the interval [0, 1] on to the entire real
line. For example, in dose–response studies the
probit link, given by g(π) = Φ−1(π), where Φ(·) is
the cumulative distribution function for a standard
normal random variable, is commonly used [14]. In
applications involving discrete time survival data the
complementary log–log link (g(π) = log(− log(π)))
has connections to proportional hazards models,
and so is also frequently adopted [22] (see Quantal
Response Models).

Example 3: the GLM for Gaussian Responses

Suppose that Y ∼ N(τ, σ 2) with σ 2 known, giving
the usual Gaussian probability density function

fY (y; τ, σ 2) = 1

(2π)1/2σ
exp

[−(y − τ)2

2σ 2

]
,

− ∞ < y < ∞.

This can be rewritten as

fY (y; θ, φ0) = exp

{(
θy − θ2

2

)/
φ0

− 1

2

[
y2

φ0 + log(2πφ0)

]}
,

where θ = τ, φ0 = σ 2, b(θ) = θ2/2, a(φ0) = φ0, and
c(y, φ0) = − 1

2
[y2/φ0 + log(2πφ0)]. Here the mean and vari-
ance are functionally independent and hence
the variance function can be taken as ν(µ) =
1. The weights are all taken to be unity.
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Note that E{Y } = µ = b′(θ) = θ = τ and var{Y } =
a(φ0)b

′′(θ) = a(φ0)ν(µ) = φ0 = σ 2.
The canonical link function is the identity link

function, giving g(µ) = µ = η, or

µ = β1 + β2x2 + · · · + βpxp,

which is the deterministic part of the usual multiple
linear regression model.

Other examples of distributions within the expo-
nential family include the gamma and inverse Gaus-
sian distributions. Details regarding the formulation
of related regression models are provided in McCul-
lagh & Nelder [22].

Estimation

The Fisher Scoring Algorithm

We now consider maximum likelihood as a method
for obtaining an estimate of the regression parameter
vector β. In the following derivations, it will be
useful to bear in mind the role of the following
mappings:

θ
b′(·)−−−→ µ

g(·)−−−→ η.

We now reintroduce the subscripts to distinguish
between observations within the sample. Consider a
log likelihood arising from n observations, each with
a probability distribution governed by the density or
mass function of the form given in (3) with specified
φ0. Letting li (θi ; yi) = log[fYi

(yi ; θi, φ0)], we obtain

l(θ ; y) =
n∑

i=1

li (θi ; yi) =
{

n∑

i=1

[θiyi − b(θi)]
/
ai(φ0)

+
n∑

i=1

ci(yi , φ0)

}
.

Given a covariate vector and upon specification of a
link function, a transformation from θ to β is defined
indicating that the log likelihood can be written in
terms of β as l(β; y). The maximum likelihood
estimate is the solution to a system of p score
equations of the form ∂l/∂β = 0. One strategy for
solving this system is to employ the Fisher scoring
methods, which can be thought of as a standard
Newton–Raphson search in which the matrix of

second derivatives is replaced by its expectation (see
Optimization and Nonlinear Equations).

Specifically, note that by the chain rule the contri-
bution to Uj(β) = ∂l/∂βj from the ith subject may
be written as

∂li

∂βj

= ∂li

∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

, (4)

where

∂li

∂θi

= yi − b′(θi)

ai(φ0)
,

∂θi

∂µi

= 1

b′′(θi)
, and

∂ηi

∂βj

= xij .

Substituting into (4), we obtain

∂li

∂βj

= yi − b′(θi)

ai(φ0)

1

b′′(θi)

∂µi

∂βj

= xij .

Noting that µi = b′(θi) and Vi = ai(φ0)b
′′(θi), we

can write

Uj(β) =
n∑

i=1

(yi − µi)

Vi

∂µi

∂ηi

xij . (5)

The complete score vector is given by U(β) =
(U1(β), . . . , Up(β))′.

The contribution from the ith subject to the
(j, k)th element of the observed information matrix
I(β) is given by ∂2li/∂βj∂βk and may be written

[yi − b′(θi)]
∂

∂βk

[
1

ai(φ0)b′′(θi)

∂µi

∂ηi

xij

]

+
[

1

ai(φ0)b′′(θi)

∂µi

∂ηi

xij

]
∂

∂βk

[yi − b′(θi)]. (6)

The use of the expected (Fisher) information obviates
the need to derive an expression for the derivative
in the first term, since E{yi − b′(θi)} = 0. Therefore,
if [I(β)] = E{[I(β)]} is the expected information
matrix, the (j, k)th entry is given by

[I(β)]jk =
n∑

i=1

1

ai(φ0)b′′(θi)

(
∂µi

∂ηi

)2

xij xik. (7)

The Fisher scoring method involves iterating accord-
ing to

β̃(h) = β̃(h−1) + [I(β̃(h−1))]−1U(β̃(h−1)), (8)
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where β̃(h) denotes the value of β after h steps.
Typically, iteration is continued until the distance
between successive estimates becomes less than some
tolerance level.

Note that when the canonical link is used,
∂µi/∂ηi = ∂b′(θi)/∂θi = b′′(θi), indicating that the
first term in (6) vanishes even for the observed
information matrix. Therefore, since the second
term in (6) is not random, for canonical links the
Fisher scoring procedure coincides with a standard
Newton–Raphson search.

Iteratively Reweighted Least Squares

The Fisher scoring method is sometimes referred to
as “iteratively reweighted least squares” and it is of
interest to consider the reason for this. Multiplying
both sides of (8) by I(β̃(h−1)) gives

[I(β̃(h−1))]β̃(h) = [I(β̃(h−1))]β̃(h−1) + U(β̃(h−1)).

(9)

The expected information matrix given by (7) can be
expressed as

I = X′WX,

where X is the matrix of covariates as before, and W
is an n × n diagonal matrix with (j, j)th entry

[W]jj = (∂µj/∂ηj )
2

Vj

. (10)

Also note that the score vector U may be
rewritten using this notation as X′WD, where D =
(D1, . . . , Dn)

′ with Dj = (yj − µj )∂ηj /∂µj . Thus,
if W(h−1) is the matrix formed by (10) evaluated at
β̃(h−1), (9) may be rewritten as

X′W(h−1)Xβ̃(h) = X′W(h−1)Xβ̃(h−1)

+ X′W(h−1)D(h−1)

= X′W(h−1)Z(h−1),

where D(h−1) again indicates evaluation at β(h−1), and
Z(h−1) = (Z

(h−1)
1 , . . . , Z(h−1)

n )′ with

Z
(h−1)
j = x′

j β̃
(h−1) + D

(h−1)
j .

Therefore the iterative step given by (8) can equiva-
lently be written as

X′W(h−1)Xβ̃(h) = X′W(h−1)Z(h−1). (11)

Because the expression above is reminiscent of the
equations of estimation for weighted least squares,
the resulting algorithm is sometimes referred to as
“iteratively reweighted least squares”.

Alternative Methods of Estimation

For hierarchical loglinear models, iterative propor-
tional fitting is another approach for maximum likeli-
hood estimation [10]. In this approach, the parameter
estimates are iteratively modified until the fitted val-
ues for the sufficient statistics are as close as possible
to the observed values. See Agresti [1] or Bishop
et al. [3] for details.

Other methods such as minimum chi-square, mod-
ified minimum chi-square, and minimum discrimina-
tion algorithms [1] are feasible, but do not in general
provide maximum likelihood estimates, and so are
not commonly used (see Ban Estimates).

Assessing Model Fit

A central question in fitting generalized linear models
relates to quality of fit. That is, it is important that the
model adequately reflect the variation and trends in
the data before much stock is placed in the parameter
estimates and related inferences. Issues pertaining to
model fit may be broadly classified as based on the
assessment of a particular model, or the assessment
of one model relative to another.

Omnibus Goodness-of-fit Statistics

A natural basis on which to judge the quality of fit
of a model is how closely the model-based estimates
for the expected values, or fitted values, approximate
the observed data. These fitted values are typically
computed as

µ̂i = µi(β̂) = g−1(η̂i ),

where η̂i = x ′
i β̂, i = 1, . . . , n. To facilitate such an

assessment it is instructive to conceptualize a so-
called saturated model in which the observed data
are reproduced exactly by the fitted values. Such
a model can be obtained by allowing the number
of parameters in the linear predictor to equal the
number of observations and by judicious choice of
the covariate vector. Note that while such a model
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is attractive in that it reproduces the data, it does
not serve the purpose of data reduction, and so is
not particularly useful apart from as a benchmark for
model assessment.

Let βsat denote the n × 1 vector of regression
coefficients arising from the saturated model, and βred

denote the p × 1 regression parameter of our reduced
model (p < n). Again, we let β̂sat and β̂red represent
the corresponding maximum likelihood estimates.
Since the likelihood ratio test statistic

gD = 2[l(β̂sat) − l(β̂red)]

measures the “distance” or deviance between the
saturated and reduced models on the likelihood met-
ric, and because it plays an important role in what
follows, it is referred to as the scaled deviance statis-
tic”. To be specific, we let GD and gD denote the
random variable and realized value of the scaled
deviance respectively. The (unscaled) deviance statis-
tic simply refers to φ0gD.

An alternative intuitive omnibus measure for the
quality of fit is the Pearson chi-square statistic,
which takes the form

gP =
n∑

i=1

[
(yi − µ̂i)

2

V̂i

]
=

n∑

i=1

[
(yi − µ̂i )

2

ai(φ0)ν(µ̂i)

]
.

A variety of other types of goodness of fit statistics
are available. In fact, Cressie & Read [5] show that
both the scaled deviance and Pearson chi-square
statistics are members of a broader class of measures
in the power divergence family. Here we restrict
consideration to the scaled deviance and Pearson chi-
square statistics.

For the Gaussian linear model with a known
variance, gD and gP are the error sum of squares
divided by the variance parameter, and so, subject
to correct model specification are exactly chi-square
distributed on n − p degrees of freedom, In this
context, values of gD or gP near n − p are typically
thought to represent an adequate fit of the model
to the data, with large values suggesting that a
substantial reduction in the quality of fit is incurred in
using the reduced model vs. the saturated model. This
judgment may be formalized and made somewhat
more rigorous by exploiting the relevant chi-square
distribution on n − p degrees of freedom. That
is, one can test with size α the null hypothesis
of an adequate fit with the scaled deviance and
claim an inadequate fit if Pr(T > gD) < α, where

T is a generic χ2(n − p) random variable. Usually,
however, in the Gaussian linear model, the dispersion
parameter φ is unknown. It can be eliminated from
the goodness-of-fit assessment by the use of the
standard F test [12].

There is considerable debate over the role of
the scaled deviance and Pearson statistics in the
assessment of the overall fit of a non-Gaussian
linear model. A key issue of debate is the ade-
quacy of the approximation involved in adopting
a chi-square reference distribution for these quan-
tities. For concreteness and convenience, we illus-
trate the following points in the context of bino-
mial data and subsequently make remarks specific
to other distributions in the exponential family.
Let the data consist of pairs (yi, xi ), where Yi ∼
bin (mi, πi), i = 1, . . . , n with log[πi/(1 − πi)] =

x′
iβ. Then E(Yi) = µi = miπi , which is estimated

as µ̂i = miπ̂i = mi exp(xi β̂)/[1 + exp(x′
i β̂)], where

β̂ is the maximum likelihood estimate. If interest
lies in the asymptotic behavior of a function of the
estimated means, it is important to recognize that
there are two ways in which the total amount of data
may increase. The chi-square approximation of the
deviance statistic under the binomial distribution is
based on the behavior as mi (and hence µi) tends
to infinity, i = 1, . . . , n, with the total number of
binomial samples, n, fixed. In this case GD is approx-
imately independent of π̂i , i = 1, . . . , n, and hence
is a reasonable measure of goodness of fit. In con-
trast, McCullagh & Nelder [22] demonstrate that, as
n → ∞, if miπi(1 − πi) is bounded, not only is the
chi-square approximation to the distribution of GD

poor, but GD is not independent of β̂. This latter point
suggests that larger values of GD need not reflect poor
fit, but could simply arise due to a particular value
of β̂. If µ̂i or mi − µ̂i , i = 1, . . . , n are relatively
small, then one is faced with so-called sparse data.
The Pearson statistic shares the degeneracy properties
of the deviance statistic arising with very sparse data,
which were considered by McCullagh & Nelder [22].
Thus caution is warranted for the use of either mea-
sure in these settings. Further studies of the asymp-
totic behavior of GD and GP for multinomial data,
reviewed by Cressie & Read [6], suggest that the
same considerations apply in this context. For Poisson
data, the sparse data setting arises when µ̂i = exp(η̂i)

are small for some i, i = 1, . . . , n. Hence the asymp-
totic chi-square approximations for Poisson models
improve as µi → ∞ for each i, i = 1, . . . , n.
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A second consideration relates to the interpretation
and the particular type of lack of fit that
these statistics are designed to detect. Pierce &
Schafer [24] suggest that in general the deviance
provides a more meaningful measure of lack
of fit than the Pearson statistic, and that given
the inadequacy of the chi-square approximation
for the distribution of GD, efforts to provide
a better approximation to its distribution, or to
develop modifications to the deviance that maintain
its attractive features, would be worthwhile. In
particular, computer-intensive exact methods can
be utilized to enumerate the distribution of GD

or GP under an assumed model [6]. Alternatively,
McCullagh [20, 21] suggests that the effect of the
estimates on the distribution of GD and GP may be
addressed by relying on estimates of the conditional
moments of a goodness-of-fit statistic. Thus, rather
than relying on approximate chi-square distributions,
moments of the distribution of GD, conditional on
the sufficient statistics for β, should be derived.
Having derived the conditional means and variances,
a normal approximation can then be employed to
compute approximate significance levels for testing
goodness of fit. To date, this proposal has received
relatively little attention. See Firth [16] and the article
on Goodness of Fit for further details.

Model Selection

Since parsimony is a major consideration in model
selection, given a model with q covariates, it is
often desirable to test whether a model with fewer
covariates (say, p < q) would suffice. Let βq =
(β1, . . . , βp, βp+1, . . . , βq)

′ and βp = (β1, . . . , βp)′
and suppose that interest lies in testing H0: βp+1 =
βp+2 = · · · = βq = 0. It is natural to carry out such a
test by computing the corresponding likelihood ratio
statistic 2[l(β̂q) − l(β̂p)], which is approximately chi-
square distributed on q − p degrees of freedom.
Note that this may equivalently be thought of as
the difference in the scaled deviance statistics for the
model with q and p regression parameters.

For this reason one can think of tests of this sort
as being directed at comparing the quality of fit of
the reduced and fuller models and doing so based on
the change in deviance. Specifically, we do this by
examining whether the simpler model significantly
reduces the quality of fit relative to the full model.

If G
(q)
D represents the deviance of a model with an

q × 1 vector β, and if

∆G
(q,p)
D = G

(q)
D − G

(p)
D ,

then we reject H0 : βp+1 = βp+2 = · · · = βq = 0
with size α if

Pr(T > ∆g
(q,p)
D ) < α,

where T is a generic χ2(q − p) random variable and
∆g

(q,p)
D represents the realized change in deviance.
We remark that while the asymptotic chi-square

approximation for the distribution of the scaled
deviance may be questionable in many practical
situations, the validity of the approximation for
the comparison of nested unsaturated models, as
described here, is typically quite good.

Residual Analyses

Residual analyses provide another means by which
to investigate issues pertaining to quality of fit. We
consider three types of residuals here, and cite Pierce
& Schafer [24] for further details. The first two types
are closely related to the scaled deviance and Pearson
statistics previously discussed.

Note that the scaled deviance may be written as

gD =
n∑

i=1

2[li (β̂sat) − li (β̂
red)] =

n∑

i=1

di,

where di is the contribution from the ith subject to
the overall statistic. The (scaled) deviance residual is
taken as the signed square root of di and is denoted

rDi
= (−1)I (yi−µ̂i<0)(di)

1/2,

where I (A) is an indicator function (see Dummy
Variables) taking the value 1 if A is true and zero oth-
erwise. These residuals have a limiting (i.e. µi → ∞)
standard normal distribution, but the approximation
for modest sample sizes can be improved by adopting
an adjusted deviance residual of the form

rADi
= rDi

+ δ(β̂),

where δ(β̂) = E[(Yi − µi)
3/6V̂

3/2
i ] [24].

The second type of residual is the Pearson residual,
which takes the form

rPi
= yi − µ̂i

[Vi(µ̂i)]1/2
.
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It is the signed square root of the contribution
to gP from the ith observation, and also has an
asymptotically standard normal distribution.

Another class of residuals may be formed by con-
sidering transformations to the data such that the
distribution of the residuals, linear in the transformed
data, is more closely represented by the standard nor-
mal distribution. These transformations are generally
derived to reduce the skewness of residuals taking
the form

rAi
= T (yi) − Ê[T (Yi)]

{var[T (Yi)]}1/2
.

Wedderburn is credited [2] with showing that, for
likelihoods in the exponential family under a gen-
eralized linear model, the appropriate transformation
T (·) is given by

T (·) =
∫

dµ

ν1/3(µ)
.

The particular form of such residuals will clearly
depend on the family of distributions, and numerical
integration may be required to find the appropri-
ate form of T (·). Having obtained, analytically or
numerically, the form of T (·), the approximate mean
and variance terms necessary to compute rAi

may be
approximated by Taylor series expansion.

For discrete distributions, Pierce & Schafer [24]
recommend adopting continuity corrected versions of
the above residuals by replacing yi with yi − 1/2 if
yi > µi or with yi + 1/2 if yi < µi . A detailed study
suggests that the adjusted deviance residual, with con-
tinuity correction applied as appropriate, appears to
be the most attractive since its sampling distribution
is well approximated by the standard normal distri-
bution, at least for binomial and Poisson data [24].

For further definitions of residuals, and a discus-
sion of useful diagnostic procedures based on resid-
uals, see the articles on Residuals and Diagnostics.

Assessment of the Link Function

When several link functions are available for use,
it is desirable to consider the implications of link
function misspecification, and to explore which link
function provides the best fit to the data. On the
former point, there exists a general theory of misspec-
ified models [32]. With regard to generalized linear
models, Fahrmeier & Tutz [13] make pertinent com-
ments, and further related references are contained in
this text.

The objective of discriminating between several
link functions can be facilitated by casting these link
functions into a broader parametric family. Thus, hav-
ing specified a distribution from the exponential fam-
ily and a set of covariates, a model may be specified
with a parametric link g(µ; γ ) = η, where γ is an r ×
1 parameter vector indexing members of the family of
link functions. Typically, r = 2 forms a sufficiently
rich class that it may contain relevant links, and even
this has been argued by some to require a great
deal of data to enable identification of suitable links.
Specific two-parameter families have been proposed
for various members of the exponential family, but
applications to binomial data have received the most
attention [8, 27, 29]. Prentice [26] and Pregibon [25]
present quite general approaches.

There are several options available in terms of
analyses involving such families. Perhaps the most
obvious is to maximize the enriched log likelihood
l(β, γ ; y) with respect to all parameters. It may be
desirable, however, to identify which of the more
commonly used link functions are supported by
the data. In this case, examination of the profile
likelihood of γ (in which β is a nuisance parameter)
provides insight into the most plausible values of γ .
If γ10 and γ20 are specific values of γ corresponding
to two commonly used links, likelihood ratio tests can
in principle be performed to help determine which is
more appropriate. An alternative strategy is to fit a
model with a specific link given by γ0, and to carry
out a score test of the hypothesis H0: γ = γ0 [27, 29]
(see Likelihood).

Pregibon [25] describes the following convenient
way in which to carry out approximate tests for the
adequacy of a given link. If g(µ; γ0) is the specified
link and g(µ; γ ) is the correct link, note that by a
first-order Taylor series expansion one can write

g(µ; γA) � g(µ; γ0) + γ ′
∗D(µ; γ0),

where γ∗ = (γ − γ0) and D(µ; γ ) = ∂g(µ; γ )/∂γ .
Given the fitted value µ̂ obtained under the specified
link, one can then evaluate D(µ̂; γ0). The approach
then involves thinking of D(µ̂; γ0) as a vector of
supplementary covariates to be added to the linear
predictor. Fitting a revised model with γ = γ0 and

x = [x1, x2, . . . , xp, D1(µ̂; γ0), . . . , Dr(µ̂; γ0)]
′,

and testing the significance of γ∗ via the change
in deviance, is an approximate test of H0 : γ = γ0.
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Pregibon [25] indicates that this method of testing
may be thought of as equivalent to a test based on
the first iteration of the method of Fisher scoring for
the full likelihood approach with starting values given
by β̂0 (the MLE under the null model) and γ0.

Inference

Interval Estimation and Hypothesis Testing

Upon obtaining the maximum likelihood estimate
β̂, it is natural to consider hypothesis testing
and interval estimation. Here we discuss various
options for interval estimation. Related procedures for
hypothesis tests follow directly.

We consider the multiparameter case and, with
only a slight loss of generality, suppose that inter-
est lies in the first r < p elements of β. Full
generality may be immediately achieved by reorder-
ing the elements of β such that the r parame-
ters of interest are listed first, and by rearrang-
ing the information matrix conformably with this
parameter vector. Let β(1) = (β1, β2, . . . , βr)

′, β(2) =
(βr+1, βr+2, . . . , βp)′, and hence β = (β ′

1, β ′
2)

′. Let
I(1,1) and I(2,2) denote the r × r and (p − r) ×
(p − r) submatrices of I corresponding to β(1) and
β(2) respectively, and let I(1,2) and I(2,1) denote the
upper and lower off-diagonal submatrices, respec-
tively, giving

I =
[ I(1,1) I(1,2)

I(2,1) I(2,2)

]
.

Furthermore, let

� =
[

�(1,1) �(1,2)

�(2,1) �(2,2)

]

denote the inverse of the expected information matrix
partitioned conformably with I.

From standard likelihood theory, (β̂(1) − β(1))
′

[�(1,1)]−1(β̂(1) − β(1)) is an approximate χ2(r)

pivotal quantity (see Fiducial Probability) if �(1,1)

is evaluated at (β̂1, β̂2). Hence one can construct an
approximate joint confidence region for β(1) with
simultaneous coverage probability 100(1 − α)%, by
finding all values of β(1) for which

(β̂(1) − β(1))
′[�(1,1)]

−1(β̂(1) − β(1)) < χ2
1−α(r),

(12)

where �(1,1) is evaluated at (β̂1, β̂2).

As an alternative, score-based confidence inter-
vals may be derived as follows. Let β̂(2|1) denote
the profile likelihood estimate of β(2) for specified
β(1). Furthermore, let U(1)(β(1), β̂(2|1)) denote the first
r elements of U evaluated at β(1) and β̂(2|1). Then
an approximate 100(1 − α)% score based joint con-
fidence region for β(1) is constructed by finding all
values of β(1) such that

U′
(1)(β(1), β̂(2|1))[�(1,1) − �(1,2)�

−1
(2,2)�(2,1)]−1

× U(1)(β(1), β̂(2|1)) < χ2
1−α(r), (13)

where all elements of � are evaluated at (β(1), β̂(2|1)).
Finally, an approximate joint likelihood based con-

fidence region with simultaneous coverage probabil-
ity 100(1 − α)% is given by all values of β(1) for
which

2[l(β̂(1), β̂(2)), −l(β(1), β̂(2|1))] < χ2
1−α(r). (14)

Under fairly standard regularity conditions, the
asymptotic approximations involved for Wald and
score-based intervals are Op(n−1/2), while those for
likelihood ratio-based intervals are O(n−1). High-
order improvements in the former are available via
the use of corrections from Edgeworth expansions
(see Skewness), but the performance of likelihood
ratio-based intervals is generally quite good even for
relatively small samples [22].

Let β(10) denote a specific value of β(1). Approx-
imate tests of the hypothesis H0: β(1) = β(10) can be
carried out by evaluating the approximate pivotal
quantities in (12)–(14) at the null value and comput-
ing the corresponding significance level. Specifically,
Wald, score, and likelihood ratio based P values are
derived by computing

PW = Pr(T > (β̂(1) − β(10))
′[�(1,1)]

−1

× (β̂(1) − β(10))),

PS = Pr(T > U′
(1)(β(10), β̂(2|1))[�(1,1) − �(1,2)

× �−1
(2,2)�(2|1)]

−1U(1)(β(10), β̂(2|1)),

and

pL = Pr(T > 2[l(β̂) − l(β(10), β̂(2|1))]),

where β̂(2|1) now represents the maximum profile
likelihood estimate of β(2) at β(10), and T is a generic
χ2(r) random variable.
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The Dispersion Parameter

Implication of an Unknown Dispersion Parameter

Note that, thus far, we have assumed that the dis-
persion parameter φ was a known fixed parameter,
and hence that the likelihood was a function only
of the regression parameters in the linear predictor.
As indicated earlier, this is entirely appropriate for
binomial and Poisson responses with no overdis-
persion when the dispersion parameter is defined
to be one. For other distributions in the exponen-
tial family, however, this parameter will also require
estimation.

It would be natural to wonder how this might
impact the methods of estimation and inference
considered thus far. Fortunately, both the score vector
and information matrix are scaled by φ and hence the
Fisher scoring algorithm is unaffected by unknown φ;
the maximum likelihood estimate for β arising from
(8) is unaffected by unknown φ.

In terms of the interval estimates arising from
(12)–(14), if an estimate φ̃ is obtained, suitable
adjustments are made by replacing φ0 in I(β̂)

and �(β̂) with φ̃. Asymptotically, the methods for
interval estimation and testing previously described
will maintain their frequency properties.

Estimation of the Dispersion Parameter

A convenient, consistent and approximately unbiased
estimate of φ is obtained by noting that if

GP =
n∑

i=1

[
(yi − µ̂i)

2

V̂i

]

is approximately chi-square distributed on n − p

degrees of freedom, then E(GP) = n − p. However
if Vi = φν(µi)/wi , a moment-type estimate (see
Method of Moments) can be obtained by substituting
this expression into GP, equating this to its expected
value, and solving for φ to give

φ̃ =
n∑

i=1

(yi − µ̂i)
2

ν(µ̂i)w
−1
i (n − p)

. (15)

Note, for example, that in linear regression models
with Gaussian residuals, (15) gives φ̃ as the usual
sample variance estimate based on the mean square
error.

Overdispersed Data

One might elect to estimate a dispersion parameter
even when one is not part of the specified distribu-
tion function. Distributions for which the variance
is functionally determined by the mean (and possi-
bly a weight) are potentially too restrictive for some
applications. The binomial and Poisson distributions
are two such distributions in which, even after con-
trol of all appropriate covariates, deviance statistics,
residual plots, and other diagnostic procedures may
demonstrate a nonnegligible lack of fit. If this appar-
ent lack of fit is not limited to a small fraction of
exceptional observations but, rather, appears to be
a general inadequacy of the model, it is common
to describe this feature as overdispersion, meaning
that there is greater variability in the data than that
expected based on the model.

In such situations, it is common to generalize
the standard variance function ν(µ) = µ(1 − µ) for
binomial data and ν(µ) = µ for Poisson data) by the
introduction of a dispersion parameter. The variance
function is extended in the usual way, taking the form
V = φν(µ)/w.

The revised expected information matrix becomes
I/φ, leading to information-based large-sample vari-
ance estimates inflated by a factor φ. This in turn
leads to tests that are appropriately more conservative
and confidence intervals for the regression coeffi-
cients that are correspondingly wider. The dispersion
parameter is estimated again as in (15).

Alternative strategies for accommodating overdis-
persion are increasingly common. Mixed models may
be formulated in which a latent random effect may
be thought of as mimicking the explanatory role of
one or more missing covariates that would explain the
outlying observations. Such mixed models have seen
a great deal of application in clustered/longitudinal
data where, conditional on the random effect, the
responses follow a distribution from the exponen-
tial family. The resulting marginal likelihoods some-
times have a closed form (as in a Poisson regres-
sion model with canonical link and a random inter-
cept, exp(β1), following a gamma distribution),
but generally do not. See Fahrmeier & Tutz [13]
for a good discussion of modeling, estimation, and
inference issues related to mixed generalized linear
models.
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Applications

Example 4: Beetle Mortality Data

Bliss [4] provides data from a toxicology study in
which beetles were assigned to one of eight groups
and subsequently exposed to a specified dose of
carbon disulfide. The response of interest relates to
survival over a five hour exposure period, and can be
summarized at the group level simply as the fraction
of the entire sample of beetles at that dose group that
survived. The dose, xi , is measured as the logarithm
(base 10) of the concentration of carbon disulfide
(mg/l). If mi is the number of beetles assigned to
the ith dose group, then we assume that Yi has a
binomial probability mass function as in Example 2.
The data are summarized in Table 1.

The fitted values which arise from fitting regres-
sion models with three different link functions are
also given in Table 1, the corresponding maximum
likelihood estimates are given in Table 2, and the
corresponding Pearson residual plots are given in
Figure 1. The deviance residuals give a similar plot.
Note that the fitted values and residual plots indicate
considerable variation in the quality of fit for the dif-
ferent link functions. In particular, since the residuals

are much closer to zero on average, it appears that the
model with the complementary log–log link fits the
data better than either the logistic or probit models
(see Quantal Response Models). This statement is
not contradicted by the scaled deviance and Pearson
chi-square statistics, suggesting that there is no need
to accommodate overdispersion. On this basis it is
most reasonable to base inference on the complemen-
tary log–log link model.

We can therefore claim that there is a very highly
significant dose–response effect. An approximate
Wald-based 95% confidence interval for β2 is (18.52,
25, 56).

Example 5: Cellular Differentiation Data

Consider an in vitro biomedical study with the
objective of investigating the tendency for two
agents [tumor necrosis factor (TNF) and interferon
(INF)] to induce cellular differentiation, and their
tendency to act in a synergistic manner. In a
study reported by Trinchieri et al. [30], cells were
grouped and received one of 16 combination doses
of TNF and IFN according to a two-way facto-
rial design. We take as the response of interest

Table 1 Data and fitted values for beetle mortality data

Fitted value, µ̂i

Observation Dose, xi Number, mi Dead, yi Logit Probit CLL

1 1.691 59 6 3.457 3.358 5.589
2 1.724 60 13 9.842 10.722 11.281
3 1.755 62 18 22.451 23.482 20.954
4 1.784 56 28 33.898 33.816 30.369
5 1.811 63 52 50.096 49.615 47.776
6 1.837 59 53 53.291 53.319 54.143
7 1.861 62 61 59.222 59.665 61.113
8 1.884 60 60 58.743 59.228 59.947

Source: Bliss [4].

Table 2 Maximum likelihood estimates for beetle mortality data

Logit Probit CLL

Parameter β̂j {[Σ(β̂)]jj }1/2 β̂j {[Σ(β̂)]jj }1/2 β̂j {[Σ(β̂)]jj }1/2

Intercept, β1 −60.72 5.174 −34.93 2.648 −39.57 3.237
Log (dose), β2 34.27 2.908 19.73 1.487 22.04 1.797

Scaled deviance, gD 11.232 10.120 3.446
Pearson’s χ2, gP 10.005 9.514 3.292

Source: Bliss [4].
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Figure 1 Residual plots for binary models with various
link functions

Yi , the number of cells showing evidence of cel-
lular differentiation after exposure, and model this
according to a Poisson process, as in Fahrmeier &
Tutz [13].

Since a central question relates to the possible
synergism of the two agents, we fit a Poisson
regression model with the two main effects and a first-
order interaction. The results are given in Table 3 and
appear to indicate synergism. Examination of various
types of residuals (plots not shown here) reveal
serious lack of fit of this model to the data. Since no
other covariates are available, we elect to introduce
a dispersion parameter into the model. Using the
moment estimate for φ given by (15), we obtain φ̃ =
140.82/(16 − 4) = 11.735. The revised large sample
standard errors for the regression coefficients are then
computed from the revised large sample covariance
matrix (11.735)1/2 × [�(β̂)]1/2 and are also given

in Table 3. An approximate 95% confidence interval
for β4 is given by (−1.472 × 10−4, 3.383 × 10−5),
and suggests that there remains little evidence of a
synergistic effect after addressing the lack of fit of the
Poisson model via the introduction of the additional
dispersion parameter.

Quasi-likelihood

Wedderburn [31] used the term quasi-likelihood to
describe objective functions that can be used to
generate estimates of a linear regression model in
a somewhat more general context than has been
discussed thus far. The approach is based on the
fact that the score vectors and information matrices
arising from a generalized linear model from the
exponential family rely solely on the first and second
moments of the assumed distributions. This suggests
more general models may be formulated subject to
specification of mean and variance functions (and a
dispersion parameter as appropriate).

To this end, let y1, y2, . . . , yn denote a sample of
observations, where associated with yi is a p × 1
vector of explanatory covariates xi . Let E(Yi) =
µi and var(Yi) = Vi = φν(µi)/wi and g(µi) = x′

iβ

as before, where β is a p × 1 vector of regres-
sion parameters and g(·) is a link function. The
generalization originates from the fact that ν(µi) can
be a somewhat arbitrary variance function and is not
necessarily determined by a particular distribution in
the exponential family.

Equations of the form

Uj(β)=
n∑

i=1

(yi − µi)

φw−1
i ν(µi)

∂µi

∂βj

=0, j =1, 2, . . . , p,

may be solved to obtain a consistent estimate of β.
This solution may be aided as before, by a modified

Table 3 Maximum likelihood estimates for cellular differentiation data

Poisson Overdispersed Poisson

Parameter β̂j {[�(β̂)]jj }1/2 β̂j {φ̃[�(β̂)]jj }1/2

Intercept, β1 3.436 6.377E−2 3.436 2.184E−01
TNF (U/ml), β2 1.553E−2 8.308E−4 1.553E−2 2.846E−3
IFN (U/ml), β3 8.946E−3 9.668E−4 8.946E−3 3.312E−3
TNF∗IFN, β4 −5.670E−5 1.348E−5 −5.670E−5 4.619E−5

Scaled deviance, gD 142.39
Pearson’s χ2, gP 140.82

Source: Trinchieri et al. [30].
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Newton–Raphson procedure in which the variance
of U(β) is estimated by the expected value of
E{∂U(β)/∂β} which is a p × p matrix with (j, k)th
element

Ijk(β) =
n∑

i=1

∂µi/∂βj ∂µi/∂βk

φw−1
i ν(µi)

.

Specifically,

β̂(h) = β̂(h−1) + [I(β̂(h−1))]−1U(β̂(h−1)).

Again, by equating the Pearson statistic to its degrees
of freedom, the dispersion parameter may be esti-
mated as

φ̃ =
∑ (yi − µ̂i)

2

ν(µ̂i)w
−1
i (n − p)

, (16)

and the large sample covariance matrix for β̂ is given
by [I(β̂)/φ̃]−1 = φ̃�(β̂).

The term “quasi-likelihood” comes from the fact
that U(β) behave in many respects like score vectors
from a bona fide likelihood function from the expo-
nential family, and thus may be thought of as quasi-
score equations. Furthermore, one can construct a
quasi-likelihood function Q(β, φ; y) by integrating

Q(β, φ; y) =
∫ µ

y

(y − t)

φw−1
i ν(µ)

dµ

dβ
dt.

This can in turn be used to define quasi-likelihood
ratio statistics which behave similarly to genuine
likelihood ratio statistics, although the distributional
approximations are of lower order [19].

A variety of other quasi-likelihood approaches
have been proposed for use when the variance func-
tion does not have the form var(Yi) = φν(µ)/wi .
Scenarios for which this is not a viable assumption
include most mixed models, autoregressive models
(see ARMA and ARIMA Models), and very general
multivariate responses. Liang & Zeger [18] adopted
a quasi-likelihood approach for estimation in the con-
text of longitudinal/clustered data and coined the term
generalized estimating equation. In this context the
variance functions are arranged in matrix form and,
with arbitrary specification, the estimating equations
yield consistent estimators for the regression parame-
ters. Various estimates for the covariance parameters
under particular formulations may be defined based
on Pearson-type residuals.

Crowder [7], Firth [15], and Godambe & Thomp-
son [17] discuss quadratic estimating equations in
which improved efficiency of estimation can be
achieved by specification of higher-order moments
of the response (see Estimating Functions). Pren-
tice & Zhao [28] motivate joint estimating equa-
tions for mean and covariance parameters from
quadratic exponential models. For further comments,
see Dean [9] and Zhao & Prentice [33]. For text-
book treatments of the subject, refer to Fahrmeier
& Tutz [13] and Diggle et al. [11].

Software

There are now numerous statistical software pack-
ages available for fitting generalized linear mod-
els. Fahrmeier & Tutz [13] contains an annotated
appendix devoted to the discussion of software pack-
ages and so serves as a useful reference.

The package GLM is specialized for fitting gen-
eralized linear models and there is now a “glm”
function in S-PLUS. SAS has various procedures
available for fitting particular types of generalized
linear model, and a generic procedure is currently
under development. SPSS and BMDP also have rou-
tines that facilitate fitting many types of linear models
from the exponential family, but no generic proce-
dures are currently available.
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Generalized Linear
Models for Longitudinal
Data

Generalized linear models [8] have unified
regression analysis for discrete and continuous, inde-
pendent responses. In longitudinal studies, how-
ever, we observe repeated observations on each of
many independent persons. It is likely that repeated
responses for the same person are autocorrelated
with one another. This correlation must be taken into
account to draw valid and efficient inferences about
parameters of scientific interest.

With a single observation on each subject, the only
available target of estimation is E(Y ), the marginal
mean or cross-sectional average value among per-
sons with the same value of x. For example, in
a cross-sectional study of alcohol use, this might
be the prevalence of reported use in the popula-
tion sample under study. With repeated observa-
tions on each person, there are additional possible
targets, including the conditional mean given past
responses, or the conditional mean given underlying
latent variables (see Random Coefficient Repeated
Measures Model). Approaches to longitudinal data
analysis can be distinguished by their target of
estimation. Different targets also correspond to dif-
ferent assumptions about the source of autocorre-
lation.

It is possible to formulate linear models for corre-
lated responses so that the interpretation of regression
parameters is insensitive to the particular target or
model for correlation. With nonlinear models such
as logistic regression, distinct targets have regres-
sion parameters with distinct interpretations. This
article contrasts three approaches to longitudinal data
analysis: marginal, random effects, and transition
models, each with its own target of estimation and
implied autocorrelation structure.

To illustrate the ideas, we focus on data from a
Johns Hopkins Prevention Research Center (PRC),
randomized community trial [5] in which first grade
youths in Baltimore City received in 1986 either a
behavioral or reading intervention and were visited
at least once a year to monitor their mental health
development. We consider data on reported alcohol
use and level of psychiatric distress in a subset of
692 youths who had complete data for the years

1991–1994. In 1991 the youths were between the
ages of 10 and 14. A question we address is whether
youths with higher levels of distress as measured by
a 14-item questionnaire are more likely to self-report
having ever used alcohol.

Psychiatric distress was measured by administer-
ing 14 items asking the youth whether or not he:
worries a lot, is afraid a lot, has trouble sleeping,
worries that bad things will happen, is sad, has
nothing that makes him/her happy, is afraid to go
outside, wants to hurt himself, worries parents will
never come back, is tired all the time, and does not
feel like eating. Each item is rated on a four-point
scale with higher score indicating greater psychi-
atric distress. An age-standardized mean score was
used as the predictor variable in this analysis. The
response variable is a self-report of whether or not
the youth had ever consumed alcohol. Note that in
the absence of reporting errors, having reported use
in one year would determine the outcome in subse-
quent years. But this is not the case here because
of the substantial inconsistencies in the reported
records.

Approaches to Modeling

In this section we consider model formulation and
interpretation for the three kinds of generalized linear
model: marginal, random effects, and transition mod-
els, each with a unique target of estimation. To illus-
trate the differences between the three approaches,
we focus in each case on the problem of relating
a binary response, Y , such as alcohol use, and a
single explanatory variable, x, for example psychi-
atric distress score. The standard generalized lin-
ear model for this problem when the responses are
mutually independent is the logistic linear regression
model,

logit Pr(Y = 1) = β0 + β1x, (1)

where logit Pr(Y = 1) = log[Pr(Y = 1)/ Pr(Y = 0)]
is also called the log odds.

For longitudinal data, repeated observations on the
same subject are typically correlated. The three kinds
of model discussed below differ in their target of
estimation and in the way they introduce correlation
structure, and this has implications for the correct
interpretation of the regression parameter β1.
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Notation

We use Yij to denote the j th of ni responses on
the ith of m subjects. Each Yij is associated with
a unique time tij at which the response is measured.
Associated with each response Yij is a vector x′

ij =
(xij1, . . . , xijp) of explanatory variables. We write
µij = E(Yij ) and Vij = var(Yij ).

A classical generalized linear model [8] assumes
that the complete set of responses Yij , j = 1, . . . , ni ,
i = 1, . . . , m are mutually independent, with means
and variances determined as follows:

h(µij ) = x′
ijβ, for some known link function h(·);

Vij = φV (µij ), for some known variance
function V (·).

We call the above a cross-sectional generalized linear
model, to distinguish it from a longitudinal gener-
alized linear model, in which we retain this basic
structure but relax the independence assumption.

Marginal Models

In a marginal model the target of estimation is the
population-average or cross-sectional mean response,
µij . We model the relationship of this marginal mean
and the explanatory variables xij separately from the
within-subject correlation. Specifically, a marginal
model makes the following assumptions:

h(µij ) = x′
ijβ,

Vij = φV (µij ),

corr(Yij , Yik) = ρ(µij , µik; α),

where ρ(·) is a known function.

The first two of these assumptions are exactly the
assumptions made in a cross-sectional generalized
linear model. It follows that the marginal regres-
sion coefficients, β, have the same interpretation as
coefficients from a cross-sectional analysis.

In the PRC study, we express the log odds of alco-
hol use as a function of age and psychiatric distress
score. From (1) we see that the regression parameter
β for distress score represents the change in the log
odds of reporting having ever used alcohol per unit
increase in the explanatory variable x. By construc-
tion, this change is averaged over the whole popula-
tion. A marginal regression model does not address

questions concerning heterogeneity between subjects.
Nor, in the longitudinal setting, does it address ques-
tions concerning the possible effect of a subject’s
previous responses on their current response.

Random Effects Models

In a random effects generalized linear model, the tar-
get of estimation is the mean of Yij , conditionally
on the values of unobserved (latent) random vari-
ables, Ui , specific to person i. For example, when
the outcome is a binary indicator of alcohol use,
the latent variable might represent the youth’s pre-
disposition to use and/or report the use of alcohol.
Specifically, for each i let Ui denote a vector of
random variables of dimension q, representing the
ith subject, and let dij denote an associated vector
of q explanatory variables. The Ui are assumed to
be mutually independent with a common underly-
ing multivariate distribution, usually multivariate
Gaussian (see Multivariate Normal Distribution),
and the assumptions of the cross-sectional general-
ized linear model are modified to

h(µc
ij ) = x′

ijβ
∗ + d′

ij Ui ,

V c
ij = φV (µc

ij ),

where µc
ij and V c

ij denote the conditional mean and
variance of Yij , given Ui . We use β∗ rather than
β to emphasize that the substantive meaning of the
regression parameter is different from that of β in
a marginal model. The random vector Ui represents
a set of unobserved, or latent, characteristics of the
ith subject which influence the mean response; for
example, if d′

ij = (1, tij ), then the elements of Ui

correspond to the intercept and slope of a subject-
specific time trend in the mean response.

In the specific case of a simple logistic regression
and scalar Gaussian Ui , the random effects GLM
reduces to

logit Pr(Yij = 1|Ui) = β∗
0 + β∗

1 xij + αUi, (2)

where Ui ∼ N(0,1). Note that the restriction to a
standard normal distribution for Ui implies no loss
of generality, as any other mean and/or variance of Ui

could be absorbed into the model parameters β∗
0 and

α. In (2), the regression parameter β∗
1 again represents

a change in the log odds per unit change in x, but
this is now conditional on the subject’s own value of
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Ui . It is instructive to derive the marginal properties
of the random effects model (2). This requires us to
integrate out the dependence on the unobserved Ui .
For example, the unconditional mean response is

Pr(Yij = 1) =
∫

Pr(Yij = 1|u)f (u) du

=
∫

exp(β∗
0 + β∗

1 xij + αu)

1 + exp(β∗
0 + β∗

1 xij + αu)
f (u) du,

where f (·) is the standard Gaussian density function.
This integral is not easily expressible in closed
form, but a good approximation is available. Zeger
et al. [15] show that for the model (2),

logit P(Yij = 1) ≈ (c2α2 + 1)−1/2(β∗
0 + β∗

1 xij ),

(3)

where c = 16(3)1/2/(15π), from which it follows that

β ≈ (c2α2 + 1)−1/2β∗, (4)

where c2 ≈ 0.346. This shrinkage effect is also eas-
ily demonstrated by simulation. Figure 1 illustrates a
simulation of the model (2) when β∗

0 = −1, β∗
1 = 1,

and α = 1.5. The solid lines show Pr(Yij = 1|Ui) as
functions of x for each of 25 subjects whilst the dot-
ted line shows Pr(Yij = 1), calculated as the average
of all 25 subject-specific functions. The dotted line,
which is in effect what we would be estimating in a
marginal model, is very well approximated by a linear
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Figure 1 Simulation of the probability of a pos-
itive response in a random intercept model logit
Pr(Yij = 1|Ui) = −1.0 + xij + 1.5Ui , where Ui is a stan-
dard normal random variable. The dotted line is the average
over all 25 subjects

logistic, but with the regression parameter β1 substan-
tially smaller than β∗

1 , as predicted by (4). Note that α

is a measure of the degree of heterogeneity between
subjects, because the subject-specific intercepts are
β0 + αUi ; i = 1, . . . , m, and the Ui have a standard
Gaussian distribution.

Incidentally, if we replace the logit link in (3) by
the probit we can derive an exact expression for the
shrinkage of the regression parameter. We now have

Pr(Yij = 1) =
∫

Φ(β∗
0 + Ui + β∗

1 xij )f (u) du, (5)

where Φ(·) is the standard Gaussian distribution
function. Using the threshold interpretation of the
probit model and the property that the sum of two
Gaussian random variables is itself Gaussian, (5)
becomes

Pr(Yij = 1) = Φ[(1 + α2)−1/2(β∗
0 + β∗

1 xij )]. (6)

In particular, the marginal regression parameter in
this random effects model is β1 = (1 + α2)−1/2β∗

1 .

Transition Models

In a transition GLM, the target of estimation is the
conditional mean at a fixed time given the history of
responses to that point. Hence we model the mean
and variance of Yij , conditionally on past responses
Yi,j−k , for k ≥ 1. For example, we might replace the
assumptions of a cross-sectional GLM by

h(µt
ij ) = x′

ijβ
∗∗ +

r∑

k=1

αkyi,j−k,

V t
ij = φV (µt

ij ),

where now µt
ij and V t

ij are the expectation and
variance of Yij conditional on all Yi,j−k for k ≥ 1,
and the notation β∗∗ emphasizes that the regression
parameters again differ in their substantive meaning
from the regression parameters in the analogous
marginal or random effects models. The integer r

is called the order of the model. Note that, strictly,
the above assumptions do not determine the joint
distribution of Yi1, . . . , Yin, but only the conditional
distribution of Yi,r+1, . . . , Yin given Yi1, . . . , Yir . This
reduces the practical usefulness of transition models
when n, the number of observations per subject,
is small.
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A simple example of a transition logistic regres-
sion GLM is the first-order model in which

logit Pr(Yij = 1|Yi,j−k : k ≥ 1)

= β∗∗
0 + β∗∗

1 xij + αYi,j−1. (7)

The transition model (7) is superficially similar to
the random effects model (2), in the sense that both
include a stochastic term in the linear predictor for
the conditional mean response. However, the effect
of the stochastic term is somewhat different for two
reasons: first, the “random intercept” β∗∗

0 + αYi,j−1

takes one of only two possible values according
to whether Yi,j−1 = 0 or 1; secondly, and perhaps
more importantly, the random intercept for a given
subject changes over time and has a reinforcing
effect over time because for α > 0, a realized value
of Yij = 1 increases the conditional probability that
Yi,j+1 will also equal 1. Note also that, in contrast
to the analogous random effects model (2), the
physical meaning of the parameter α depends on the
time separation between ti,j−1 and tij . The model
as defined therefore makes no sense either for data
collected at irregularly spaced times, or for data in
which the set of measurement times is not common
to all subjects.

Simulation again provides a convenient way to
illustrate the kind of relationships that can arise
between the transition regression parameter β∗∗

1 in
(7) and the corresponding marginal regression param-
eter. Figure 2 shows a simulation of the model (7)
in which β∗∗

0 = −1, β∗∗
1 = 1, α = 1.5, and measure-

ments are taken on each of 1100 subjects at times
tj = j − 6; j = 1, . . . , 11. Part (a) uses xij = tj for
each subject to represent an increasing time trend in
the probability of a positive response, whereas part
(b) uses xij = xi to correspond to a time-independent
explanatory variable, and with 100 of the 1100 sub-
jects assigned to each of 11 equally spaced values of
xi to span the range −5 to 5. The solid lines show
the two conditional probabilities Pr(Yij = 1) given
Yi,j−1 = 0 and given Yi,j−1 = 1, each as a function
of x. The dots show the observed proportions of pos-
itive responses amongst the 100 responses associated
with each of the 11 values of x. In both cases this
marginal proportion increases more rapidly with x

than do either of the two conditional proportions,
that is, the marginal regression parameter of (7) is
β1 > β∗∗

1 . In these simulations we generated initial
observations Yi0 at time t0 = −6 by sampling from
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Figure 2 Simulation of the probability of a positive
response in a transition logistic regression model
logit Pr(Yij = 1|Yi,j−k : k ≥ 1) = −1.0 + xij + 1.5Yi,j−1,
j = 1, . . . , 11, i = 1, . . . , 1100. Part (a) xij = j − 6 for
each subject; Part (b) uses xij = xi , to correspond to a
time-independent explanatory variable with 100 of the 1100
subjects assigned to each of 11 equally spaced values of xi

to span the range −5 to 5. The solid lines show the two
conditional probabilities Pr(Yij = 1) given Yi,j−1 = 0 and
given Yi,j−1 = 1, each as a function of x. The dots show
the observed marginal proportions of positive responses
amongst the 100 responses associated with each of the 11
values of x

independent Bernoulli distributions with

logit Pr(Yi0 = 1) = β∗∗
0 + β∗∗

1 [(xi1 − (xi2 − xi1)]

+ 0.5α,

which is equivalent to extrapolating the time trend in
the explanatory variable for each subject and taking
a notional value of 0.5 for a fictitious observation at
time t−1 = −7.

Inference

With random effects and transitional extensions of the
GLM, it is possible to estimate unknown parameters
using traditional maximum likelihood methods.

For random effects models, the likelihood of
the data, expressed as a function of the unknown
parameters, is given by

L(β∗, α; y) =
m∏

i=1

∫ ni∏

j=1

fij (yij |u)f (u; α) du, (8)
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where α represents the parameters of the random
effects distribution. The likelihood is the integral
over the unobserved random effects of the joint
distribution of the data and the random effects.
Except in the special case of a Gaussian linear
model, numerical integration techniques are usually
necessary to evaluate the likelihood (8).

Transition models can also be fitted using a version
of maximum likelihood. The joint distribution of the
responses Yi1, . . . , Yini

can be written in the form

f (yi1, . . . , yini
) = f (yini

|yi,ni−1, . . . , yi1)

× f (yi,ni−1|yi,ni−2, . . . , yi1) . . .

f (yi2|yi1)f (yi1). (9)

In a first-order Markov model (see Markov Chains)

f (yij |yi,j−1, . . . , yi1; β∗∗, α)=f (yij |yi,j−1; β∗∗, α)

so the likelihood contribution from person i simpli-
fies to

f (yi1, . . . , yini
; β∗∗, α)

= f (yi1; β∗∗, α)

ni∏

j=2

f (yij |yi,j−1; β∗∗, α).

(10)

One difficulty that arises with (10) is that
the marginal distribution of Yi1 often cannot
be determined from the conditional distributions
f (yij |yi,j−1) without additional assumptions. A
simple alternative is then to maximize the conditional
likelihood of Yi2, . . . , Yini

given Yi1, which is
obtained by omitting f (yi1) from the equation
above (see Conditionality Principle). Conditional
maximum likelihood estimates can be found using
standard GLM software, treating functions of
the previous responses as explanatory variables.
Inferences conditional on Yi1 are less efficient than
maximum likelihood estimators but are all that
is available without additional assumptions about
f (Yi1). The need to condition on the initial response
from each subject makes it clear why these models
are of limited value for short series, and the problem
is exacerbated for transition models of higher order.

In the marginal model described above, we need
only specify the first two moments of the responses
for each person. With Gaussian data, the first two
moments fully determine the likelihood, but this is not

the case for GLM models in general. Hence, to use
likelihood-based inference, additional assumptions
about higher order moments must also be made.
Examples for binary data are given by Prentice
& Zhao [10], Fitzmaurice & Laird [2], and Liang
et al. [7].

Even if additional assumptions are made, the
likelihood is often intractable and involves many
nuisance parameters in addition to α and β which
must be estimated. For this reason, in applications
for which the marginal regression parameters address
the questions of primary scientific inference, a better
approach may be to use generalized estimating
equations or GEE. This is a multivariate analog
of quasi-likelihood, with the same feature that it
leads to consistent inferences about mean responses
without requiring specific assumptions to be made
about second and higher-order moments. Here, we
give only a brief outline. For more detailed accounts,
see Liang & Zeger [6], Zeger & Liang [14] and
Prentice [9].

In the absence of a convenient likelihood function,
the GEE method estimates β by solving a multivari-
ate analog of the quasi-score function [12]:

Sβ(β, α) =
m∑

i=1

(
∂µi

∂β

)′
var(Yi )

−1(Yi − µi) = 0.

(11)

In the multivariate case there is the additional
complication that Sβ depends on α as well as
on β since var(Yi ) = var(Yi ; β, α). This can be
overcome by replacing α in the equation above by an
m1/2-consistent estimate, α̂(β). Liang et al. [7] and
Gourieroux et al. [3] show that the solution of the
resulting equation is asymptotically as efficient as if
α were known.

The correlation parameters α may be estimated
in a similar fashion by simultaneously solving Sβ =
0 and

Sα(β, α) =
m∑

i=1

(
∂ηi

∂α

)′
H−1

i (Wi − ηi ) = 0, (12)

where Wi = (Yi1Yi2, Yi1Yi3, . . . , Yi,ni−1Yini
, Y 2

i1,

Y 2
i2, . . . , Y 2

ini
)′, the set of all products of pairs

of responses and squared responses, and ηi =
E(Wi ; β, α) [9].

The choice of the weight matrices, Hi , in (12)
will affect the efficiency of the resulting estimators,
and good choices are problem-dependent. When the
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parameters α are not of direct interest, we can use
simple models for the within-subject correlation lead-
ing to a working variance matrix, Wi . Substituting
this for var(Yi), gives the estimating equations

Sβ(β) =
m∑

i=1

(
∂µi

∂β

)′
W−1

i (Yi − µi) = 0. (13)

The solution, β̂, of (14) is asymptotically Gaus-
sian [6], with variance consistently estimated by

(
m∑

i=1

D′
iW

−1
i Di

)−1 (
m∑

i=1

D′
iW

−1
i V0iW−1

i Di

)

×
(

m∑

i=1

D′
iW

−1
i Di

)−1

(14)

evaluated at β̂, where

Di = ∂µi

∂β

and

V0i = (yi − µi )(yi − µi)
′.

This empirical variance estimate [4, 13] is con-
sistent as the number of individuals contributing
to each element of the matrix goes to infinity.
For example, in an analysis of variance problem,
the number of units in each treatment group must
get large.

GEE estimators enjoy two properties. First, β̂ is
nearly efficient relative to the maximum likelihood
estimates of β in many practical situations provided
that the working variance matrices, Wi , are reason-
able approximations to var(Yi ) (e.g. [6] and [7]). In
fact, GEE is equivalent to maximum likelihood for
multivariate Gaussian data and for binary data from
a loglinear model when var(Yi ) is correctly speci-
fied [2]. Secondly, β̂ is consistent as m → ∞, even
if the covariance structure of Yi is incorrectly spec-
ified. When marginal regression coefficients are the
scientific focus, it may be reasonable to sacrifice a
small amount of efficiency in return for robustness
against possible misspecification of the second and
higher moment structure.

The robustness of the inferences about β can be
checked in particular applications by fitting a final
model using different covariance assumptions and
comparing the two sets of estimates and their robust

standard errors. If these differ substantially, then a
more careful treatment of the covariance model may
be necessary [1].

Example

To illustrate the main ideas above, we use each of
the three approaches to describe a different aspect
of the dependence of alcohol use on the reported
level of psychiatric distress. In the marginal approach,
the target of estimation is the prevalence (or log
odds) of reporting ever having used alcohol and its
dependence on psychiatric distress score and time. In
a marginal analysis, we must also specify a model for
the association among the four repeated responses for
each youth. After preliminary analyses, we assume
that the association, measured by the log odds ratio
for Yij and Yik , is a linear function of the difference
between and the mean of the two observation times.
Hence, the model specification is

logit Pr(Yij = 1) = β0 + β1tij + β2xij ,

log OR(Yij , Yik) = α0 + α1|tij − tik|

+ α2(tij + tik)

2
,

where xij is the psychiatric distress score for youth i

at visit j .
The parameter estimates, model-based and empiri-

cal standard errors, obtained using GEE, are shown in
Table 1. There is evidence of increasing prevalence of
reporting ever having used alcohol in older children
and significantly higher reported use among children
with higher distress. The population odds of use is
estimated to be 19% [= exp(5 × 0.0345) − 1] higher

Table 1 Results from marginal logistic regression analy-
sis of alcohol use data

Standard errors
Variable Estimate Model-based Empirical

Mean model
Intercept (β0) −0.243 0.0702 0.0701
Time (β1) 0.228 0.0293 0.0294
MH score (β2) 0.0345 0.00723 0.00707

Association model
Intercept (α0) 1.66 0.328
Time lag (α1) −0.225 0.0823
Average time (α2) 0.118 0.111
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in one subgroup with psychiatric distress score that is
five points higher than another (95% CI: 11%, 28%).
The odds ratio between repeated observations on a
subject decreases with increasing lag from 4.3 for
observations one year apart to 2.8 at three years apart.
At a fixed lag, the estimated odds ratio increases
toward the later years of the study, but the evidence
for this increase is weak.

A random effects model was fit to these same data
to estimate a youth’s predisposition of reporting ever
having used alcohol and to examine the dependence
of this risk on psychiatric distress. The approximate
likelihood approach of Stiratelli et al. [11] was used
for estimation. The results for the following random
intercept logistic model are shown in Table 2:

logit Pr(Yij = 1|Ui) = β∗
0 + β∗

1 tij + β∗
2 xij + αUi.

In this model it is assumed that the random effects
Ui are an independent sample from a Gaussian
distribution with mean 0 and variance 1 and that
given Ui , the repeated binary responses for youth i

are independent of one another. Given the cumulative
nature of the outcome, this assumption is unlikely to
be valid.

Using the random intercept model, we estimate
that a youth’s odds of reporting ever having used
alcohol increases by 27% [= exp(5 × 0.0473) − 1]
if his distress score increases by five points (95% CI:
16%, 38%). The standard deviation, α, of the ran-
dom intercept is estimated to be 1.64 so that roughly
95% of youths would have log odds of reporting ever
having used alcohol within ± 3.3 of the mean value.
Note this is an extreme level of heterogeneity, indicat-
ing strong association among repeated observations
on each youth. This also reflects, if less directly, the
consistency of reports across time by a youth.

The coefficients for the random effects model are
larger than those from the marginal model owing to
the attenuation that results from averaging personal
risks of reported use to obtain prevalences. Note that

Table 2 Results of random intercept model for the alcohol
use data

Variable Estimate Standard error

Intercept (β∗
0 ) −0.363 0.0907

Time (β∗
1 ) 0.322 0.0350

MH score (β∗
2 ) 0.0473 0.0090

α 1.64

the degree of attenuation is similar for all coefficients
and is roughly equal to the value given in (3).

Finally, the following transition model can be
estimated from these data:

logit Pr(Yij = 1|Yi,j−1) = β∗∗
0 + β∗∗

1 tij + β∗∗
2 xij

+ α1Yi,j−1 + α2Yi,j−1xij .

Note that we have allowed the log odds of reporting
ever having used alcohol in one year to depend
on whether or not the youth reported use in the
prior year and have included an interaction between
psychiatric distress score and prior report. In this way
we estimate a separate effect of psychiatric distress
on a new report of alcohol use given no reported
use at the prior visit β∗∗

2 , and on the confirmation of
a prior report of ever using alcohol, β∗∗

2 + α2. The
results are shown in Table 3.

The strongest predictor of reported use at a given
visit is having reported use at the prior visit with an
odds ratio of 5.5 (95% CI: 4.5, 6.7). This indicates
a reasonably high degree of consistency in repeated
assessments of ever use. Psychiatric distress score is
positively associated with the outcome among those
with no prior reported use, the odds being 25% higher
for children whose score is five points higher (95%
CI: 12%, 38%). The indication from these data is
that the effect of psychiatric distress is smaller among
those who reported having used alcohol at the prior
visit; a five point higher distress score is associated
with only a 10% higher odds of consistently reporting
use in this case.
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Generalized Maximum
Likelihood

Many interpretations of the phrase “generalized max-
imum likelihood” are possible. A few such, which
are to be found in the literature, are listed here, in
no particular order. These methods have been stud-
ied by many authors, but here, for brevity, we quote
only one or two references for each from which other
work can be traced. Also, discussion will be restricted
to the fully parametric case, so that semiparametric
methods such as Cox’s partial likelihood for the
proportional hazards model (see Cox Regression
Model), and nonparametric estimators such as that
of Kaplan and Meier for the survivor function, are
not covered. Throughout, “maximum likelihood” is
abbreviated to ML.

Maximum Probability Estimators

Weiss & Wolfowitz [12] drew attention to the overly
simplistic, in their view, assumptions made in order
to construct “regular” likelihood theory. In particular,
they were concerned with the common restriction to
estimators which have asymptotic normal distribu-
tions (see Large-sample Theory).

Let the data be Dn, where n represents the sam-
ple size or some similar quantity, and let fn(·; θ) be
the density or probability function of Dn depend-
ing on a parameter θ . The ordinary ML estima-
tor is found by maximizing fn(Dn; θ) over θ . It
is assumed that a normalizing sequence kn → ∞
for the family fn(Dn; θ) can be found somehow
such that: there exists an estimator Tn and m(θ) > 0
such that

lim inf
n→∞ Pr

θ
[kn|Tn − θ | < m(θ)] > 1 − ε,

for every ε > 0. In addition, it is assumed that if kn

is replaced by a sequence k′
n tending to infinity faster

than kn, k′
n|Tn − θ | is not bounded in this way for any

Tn, so the above probability then tends to zero instead
of being close to 1. Thus, kn is the maximal rate, and
Tn is a consistent estimator tending to θ at this rate.
In the “regular” likelihood case, kn can be taken as
n1/2 (or as 3n1/2 or n1/2 + log n, etc.) and Tn as θ̂n,
the ML estimator (or as θ̂n + 3/n2, etc.).

A maximum probability (MP) estimator is defined
as the θ value that maximizes

In(θ) =
∫ θ+r/kn

θ−r/kn

fn(Dn; t) dt,

r being some specified positive constant. As n →
∞, the interval (θ − r/kn, θ + r/kn) shrinks towards
its midpoint θ . The MP estimator is chosen so
that the average value of fn(Dn; θ) over this inter-
val; namely, In(θ) ÷ (2r/kn), is maximized. When
fn(Dn; t) is continuous in t , In(θ) ÷ (2r/kn) →
fn(Dn; θ) as r/kn → 0, and then MP estimation
becomes equivalent to ML estimation. In this sense,
MP estimation is a kind of smoothed version of ML
estimation, and is asymptotically equivalent to it in
the regular case. Weiss & Wolfowitz actually defined
MP estimation more generally with the integral over
a shrinking set {t : kn(t − θ) ∈ R}, where R is a spec-
ified bounded subset of the real line.

The MP estimate has an optimality property:
roughly speaking, kn(Tn − θ0) is asymptotically smal-
lest in probability when Tn is the MP estimator,
θ0 being the true parameter. This maximum effi-
ciency of the MP estimator was explained by Weiss
& Wolfowitz by interpreting it as being asymptot-
ically equivalent to a certain Bayes estimator with
respect to a prior distribution uniform on (θ − r/kn,
θ + r/kn). Various other technical properties and
extensions, including that to vector parameters, were
discussed by Weiss & Wolfowitz. The main thrust
is that the MP estimator is not restricted to the
regular cases which support the standard theory of
ML estimation. Some further results are given in [1,
Section 3.3].

Maximum Probability of Spacings

Let x1, . . . , xn be an ordered random sample from
a continuous univariate distribution with distribution
function F(x; θ) and density f (x; θ) on (α1, α2). The
end points α1 and α2 may be known or unknown; in
the latter case they are included as components of the
parameter vector θ .

Define di(θ)=F(xi ; θ) − F(xi−1; θ) for i =1, . . . ,

n + 1, taking x0 as α1 and xn+1 as α2. Under θ , the
di(θ) are the “uniform spacings” derived from the
x-sample, with

∑
di(θ) = 1. The maximum product

of spacings (MPS) method of Cheng & Amin [3]
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chooses as the estimator of θ that value which
maximizes

G(θ) =
n+1∏

i=1

di(θ).

Note that G(θ) ≤ (n + 1)−(n+1), this maximum pos-
sible value being attained when the di(θ)s are all
equal to (n + 1)−1. The MPS estimator is thus the θ

value which makes the sample spacings most nearly
uniform.

Cheng & Amin pointed out that, in “regular”
situations, the remainder term r(xi, xi−1; θ) in

di(θ) = f (xi ; θ)(xi − xi−1) + r(xi, xi−1; θ)

becomes negligible as n → ∞, and (xi − xi−1) does
not depend on θ . Then, maximizing

∏
di(θ) is

asymptotically equivalent to maximizing
∏

f (xi ; θ),
the likelihood function, and so MPS estimation is
asymptotically equivalent to ML estimation. In non-
regular situations this equivalence can break down,
and Cheng & Amin gave examples in which MPS
yields better estimates than ML, the latter method
sometimes failing altogether.

Corrected Likelihood

Let x1, . . . , xn be a random sample from a continu-
ous univariate distribution with distribution function
F(x; θ) and density f (x; θ), and let

H(θ) =
n∏

i=1

[F(xi + hi ; θ) − F(xi ; θ)],

where the hi are small positive quantities. This would
be the likelihood function appropriate to grouped
data in which the ith observation is only known to
lie in the interval (xi, xi + hi]; it has been argued
that, because all measurement is of limited accuracy,
this form of likelihood is more realistic in practice.
Cheng & Iles [4] described the standard approach in
which one makes the approximation

H(θ) �
n∏

i=1

[f (xi ; θ)hi],

where f (x; θ) is the density function, and then
ignores the hi since they do not involve θ . Thus,
the standard likelihood function is defined as L(θ) =∏

f (xi ; θ).

Consider, as an example, the Weibull distri-
bution function F(x; θ) = 1 − exp[−(x − α)β ] on
(α, ∞) with θ = (α, β), α being the lower end-
point and β the shape parameter. It is known that
when β < 1 there is no consistent solution of the
likelihood equation ∂ log L(θ)/∂θ = 0, so the usual
ML theory fails. Cheng & Iles identified the source
of the problem as follows. For β < 1, L(θ) is an
increasing function of α, so α̂ = min(x1, . . . , xn) =
xm, say. The contribution to H(θ) from xm when
θ = (α̂, β) is

F(xm + hm; θ) − F(xm; θ) = 1 − exp(−hβ
m) � hβ

m.

In contrast, the corresponding contribution in the
approximated version is

f (xm; θ)hm = hmβ(x − xm)β−1 exp[−(x − xm)β]

= ∞.

Their suggestion was to use H(θ) as the “cor-
rected” likelihood. In regular cases, this will be equiv-
alent to using L(θ). In the Weibull example, only hm

will have any effect, and Cheng & Iles make some
suggestions for its choice.

General Estimating Functions

Perhaps the most general definition of an estima-
tor is simply that it is some function of the data,
and that of a generalized ML estimator is that
it results from maximizing some function of the
data, this function deputizing for the likelihood. In
the above, this function is In(θ) for MP estima-
tion, G(θ) for MPS estimation, and H(θ) for “cor-
rected likelihood” estimation. These three methods
assume that the parametric distributional form for
the data is known, and the generalization focuses
upon extending the theory beyond the usual regu-
larity restrictions. Other suggestions in the literature
are more concerned with robustness: the deputiz-
ing function is chosen to avoid critical dependence
on the parametric form adopted for the likelihood.
Such proposals include: least squares [7]; condi-
tional least squares [10]; Gaussian estimation [6, 13];
M-estimators [8]; maximum quasi-likelihood [11];
and minimum chi-square [2]. General asymptotic the-
ory for estimating functions has been given by
Huber [9] and Crowder [5].
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Generating Functions

Biostatistical information usually comes in the form
of a sample of observed values, e.g. serum cholesterol
levels in a group of 30 students. Often a hypothesis
is constructed concerning the distribution of the val-
ues in the population from which the sample (group)
is drawn. This may be specified by a formula for
its probability density function (pdf) for a continu-
ous distribution, or by its probability mass function
(pmf) for a discrete distribution. Pdfs and pmfs are,
however, often less informative than the moments
of a distribution. Moments can be summarized by a
moment generating function.

A generating function is similar to an alphabetical
list – it is a single piece of documentation about
a sequence of items. When a moment generating
function for a distribution is expanded into a series, it
gives the values of all the moments as the coefficients
of successive terms in the series. The first term gives
the mean, the second tells us about the variability,
the third about the skewness, etc.

Another type of sequence that occurs in biostatis-
tics is a sequence of probabilities, for instance the
probabilities of 0, 1, 2, . . . spina bifida births in a
region per month. The coefficients in a probabil-
ity generating function (pgf) provide a sequence of
probabilities.

Suppose that a0, a1, a2, . . . is an infinite sequence
of real numbers all of which are finite. Then the
power series

H(s) = a0 + a1s + a2s
2 + · · · =

∞∑

r=0

ars
r

turns the sequence into the function H(s) [given a
finite sequence, a0, a1, . . . , an, then the correspond-
ing function is H(s) = ∑n

r=0 ars
r ]. H(s) is called the

generating function of the sequence and s is called
the generating variable (s is a mathematical artifact –
it has no statistical interpretation and is not a ran-
dom variable). When the sequence is infinite, the
restriction that all the ar are finite ensures that H(s)

exists and has a finite sum, provided that s is not
too large. Two sequences that are identical have the
same power series generating function. Less obvi-
ously, if two generating functions are identical, then
so are the sequences that they generate; this property
of uniqueness is important.

A second form of generating function somewhat
resembles an exponential series and is called an expo-
nential generating function. The connection between
an infinite sequence and its exponential generating
function is

h(t) =
∞∑

r=0

ar t
r

r!
;

for a finite sequence the exponential generating func-
tion is h(t) = ∑n

r=0 ar t
r/r!. Even if the ar increase

with r without bound, h(t) will exist if ar/r! is finite
for all r . An exponential generating function also has
the property of uniqueness.

Generating functions are useful not only as gen-
erators of formulas for the individual items in a
sequence. They give recurrence relations when the
mathematical expressions for the ar are compli-
cated and they can provide good approximations.
In discrete distribution theory they are particularly
valuable for combining sequences of probabilities in
various ways.

Moment Generating Functions

The rth uncorrected moment, µ′
r , of the random

variable X is the expected value of Xr , where r is
a positive integer, i.e. µ′

r = E(Xr). If µ′
r/r! is finite

for all r , then

UX(t) = E

(
1 + Xt + X2t2

2!
+ X3t3

3!
+ · · ·

)

=
∑

r≥0

µ′
r t

r

r!
= E[exp(Xt)] (1)

is the uncorrected-moment generating function
(umgf). It is an exponential generating function. By
successive differentiation

µ′
1 =

[
dUX(t)

dt

]

t=0

,

µ′
2 =

[
d2UX(t)

dt2

]

t=0

, . . . , (2)

µ′
r =

[
drUX(t)

dt r

]

t=0

, . . . .
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Example 1: Uncorrected Moments of the Binomial
Distribution

Suppose that bacteria in a particular culture have
fixed and independent probabilities p of being mutant
and that n of them are examined under a microscope.
Assume that the number of mutants has a binomial
distribution with probability mass function (pmf)(
n

x

)
px(1 − p)n−x , where n is a positive integer, 0 <

p < 1, x = 1, 2, . . . , n. Then

UX(t) = E[exp(Xt)]

=
n∑

x=0

n!px(1 − p)n−x

x!(n − x)!
· ext

= (1 − p + pet )n

= 1 + np(et − 1)

1!

+ n(n − 1)p2(et − 1)2

2!
+ · · ·

= 1 + np

(
t + t2

2!
+ t3

3!
+ · · ·

)

+ n(n − 1)p2

2!

(
t2 + 2t3

2!
+ · · ·

)
+ · · · .

The uncorrected moments are therefore µ′
1 = np,

µ′
2 = np + n(n − 1)p2, etc. A quicker way to find

them is to set t = 0 in

dUX(t)

dt
= n(1 − p + pet )n−1pet ,

d2UX(t)

dt2
= n(n − 1)(1 − p + pet )n−2p2e2t

+ n(1 − p + pet )n−1pet , etc.

The variable X + c has the distribution of X

shifted c units to the right of the origin. Because
E{exp[t (X + c)]} = exp(ct)E[exp(tX)], we have

UX+c(t) = ectUX(t); (3)

this relates the moments of a shifted distribution to
those of the original distribution.

Example 2: Uncorrected Moments of the Two- and
Three-parameter Gamma Distribution

Let the survival time after a particular surgical
procedure have an (unshifted) two-parameter gamma

distribution with parameters a and b. Then the
probability density function (pdf) for survival
time is f (x) = ab exp(−ax)xb−1/Γ (b), 0 < a, 0 <

b, 0 ≤ x < ∞. The umgf is therefore

UX(t) =
∫ ∞

0

abe−axxb−1ext

Γ (b)
dx

=
(

a

a − t

)b ∫ ∞

0

e−yyb−1 dy

Γ (b)
dx,

where y = x(a − t),

=
(

a

a − t

)b

= 1 + bt

a
+ b(b + 1)t2

a22!

+ b(b + 1)(b + 2)t3

a33!
+ · · · ,

and the uncorrected moments are µ′
1 = b/a, µ′

2 =
b(b + 1)/a2, µ′

3 = b(b + 1)(b + 2)/a3, etc. Note that
as a becomes large, the uncorrected moments tend
to zero and the distribution tends to a degenerate
distribution at the origin.

Suppose now that there is an initial constant length
of time, c, during which the patient is kept alive in
intensive care. Assume, then, that the distribution is
shifted by an amount c to the right of the origin.
This gives a three-parameter gamma distribution
with umgf

UX+c(t) = exp(ct)

(
a

a − t

)b

=
[

1 + ct + (ct)2

2!
+ · · ·

]

×
[

1 + bt

a
+ b(b + 1)t2

a22!
+ · · ·

]
,

and its uncorrected moments are µ′
1 = c + b/a,

µ′
2 = c2 + 2cb/a + b(b + 1)/a2, etc. As a gets large,

the new umgf tends to exp(ct), showing that the
distribution tends to a degenerate distribution at
x = c.

Some distributions have moments for which µ′
r/r!

is unbounded and so the umgf does not exist. The
characteristic function (cf) exists for all distribu-
tions, however. For a continuous distribution this is

ϕX(t) = E[exp(itX)] =
∫ ∞

−∞
exp(itx) dF(x), (4)
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where i = √
(−1) and t is real; for a discrete

distribution on 0, 1, 2, . . . it is

ϕX(t) = E[exp(itX)] =
∑

x≥0

exp(ixt) Pr(X = x).

(5)

When the umgf exists, UX(t) = ϕX(−it).
The rth moment about the mean of a distribution is

µr = E((X − µ)r), where µ is the mean; it is called
the rth corrected moment (or the rth central moment).
The first central moment, µ1, is always zero. The
second central moment, µ2, is the variance, var(X).
The central-moment generating function (cmgf) is

MX(t) = E

(
1 + (X − µ)t + (X − µ)2t2

2!
+ · · ·

)

= 1 +
∑

r≥2

µrt
r

r!
= E{exp[(X − µ)t]}. (6)

Shifting a distribution leaves its central moments
unaltered, since

MX+a(t) = E{exp[(X + a − µ − a)t]} = MX(t).

(7)

Example 3: Central Moments of the Normal
Distribution

The concentration of the antibiotic in tubes of chlo-
ramphenicol gel is assumed to have a normal dis-
tribution with parameters µ, σ 2 and pdf f (x) =
exp[−(x − µ)2/2σ 2]/[σ(2π)1/2], −∞ < x < ∞.
The cmgf is

MX(t) = E{exp[t (X − µ)]}

=
∫ ∞

−∞

exp

[−(x − µ)2

2σ 2

]

σ
√

2π

× exp[(x − µ)t] dx

=
exp

(
σ 2t2

2

)

σ
√

2π

×
∫ ∞

−∞
exp

[
− (x − µ − σ 2t)2

2σ 2

]
dx

= exp

(
σ 2t2

2

)

= 1 + σ 2t2

1!2
+ σ 4t4

2!22
+ σ 6t3

3!23
+ · · · .

The odd central moments, µ2r+1, are zero and the
even ones are µr = (2r)!(σ 2/2)r/r!.

The relationship between the cmgf and the umgf is

MX(t) = E{exp[(X − µ)t]} = exp(−µt)UX(t);
(8)

therefore

∑

r≥0

µrt
r

r!
=

[
1 − µt + (µt)2

2!
− (µt)3

3!
+ · · ·

]

×
∑

r≥0

µ′
r t

r

r!
(9)

and

∑

r≥0

µ′
r t

r

r!
=

[
1 + µt + (µt)2

2!
+ (µt)3

3!
+ · · ·

]

×
∑

r≥0

µrt
r

r!
. (10)

Because two sequences that are identical have the
same generating function, we can equate the coeffi-
cients of t r/r! on the two sides of (9) to give

µr =
r∑

j=0

(−1)j
(

r

j

)
µ′

r−jµ
j , (11)

i.e. µ1 = −µ′
1 + µ = 0,

µ2 = µ′
2 − µ2,

µ3 = µ′
3 − 3µ′

2µ + 2µ3, etc.

Also, from (10), we have

µ′
r =

r∑

j=0

(
r

j

)
µr−jµ

j , (12)

i.e. µ′
1 = µ,

µ′
2 = µ2 + µ2,

µ′
3 = µ3 + 3µ2µ + µ3, etc.
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Example 1 continued: Central Moments of the
Binomial Distribution

From Example 1 and the relationship between the
cmgf and the umgf, (8), the cmgf of the binomial
distribution is

MX(t) =
[

1 − µt + (µt)2

2!
− · · ·

]{
1 + npt

+ [np + n(n − 1)p2]t2

2!
+ · · ·

}
,

where µ = np. Hence µ1 = 0, µ2 = np(1 − p), etc.
The well-known binomial and exponential expan-

sions were used in Examples 1 and 2. A standard way
to create an unknown expansion is via a Maclaurin
series:

h(t) = [h(t)]t=0 +
[

dh(t)

dt

]

t=0

t

1!
+

[
d2h(t)

dt2

]

t=0

t2

2!

+
[

d3h(t)

dt3

]

t=0

t3

3!
+ · · · .

This gives µ1 = [ dMX(t)/ dt]t=0 (= 0 always), µ2 =
[ d2UX(t)/ dt2]t=0, and so on.

Example 1 continued again: Central Moments of
the Binomial Distribution

Here h(t) = MX(t) = exp(−µt)(1 − p + pet )n, so

dMX(t)

dt
= −µMX(t) + nMX(t)pet

1 − p + pet
,

d2M(t)

dt2
= −µ dMX(t)

dt
+ n dMX(t)/ dt

1 − p + pet

+ nMX(t)pet

1 − p + pet
− nMX(t)p2e2t

(1 − p + pet )2
.

Therefore µ1 = [ dMX(t)/ dt]t=0 = −µ + np = 0
and µ2 = [ d2MX(t)/ dt2]t=0 = np − np2, as before.

An important property of the umgf is that if
X, Y, Z, etc. are independent random variables, then

UX+Y (t) = UX(t)UY (t),

UX+Y+Z(t) = UX(t)UY (t)UZ(t), etc.,

and

UX−Y (t) = UX(t)UY (−t).

Similarly, for the cmgf,

MX+Y (t) = MX(t)MY (t),

MX+Y+Z(t) = MX(t)MY (t)MZ(t), etc.,

and

MX−Y (t) = MX(t)MY (−t).

These formulas give the moments of sums and
differences of independent variables in terms of the
moments of the individual variables.

Cumulant Generating Function

The cumulant generating function (cgf) of a distri-
bution, K(t), is sometimes simpler to handle than
the umgf or cmgf. It is the logarithm to base e of
the umgf. Expanding it as an exponential generat-
ing function gives the cumulants κr of the distribu-
tion, i.e.

KX(t) = ln UX(t) = ln

(
1 + µ′

1t + µ′
2t

2

2!
+ · · ·

)

=
∑

r≥1

κr t
r

r!
; (13)

Expansion of the logarithm shows that there is no
term in t0 in (13) and that κ1 = µ′

1 = µ.

Example 4: Cumulants of the Poisson Distribution

The response in quanta of acetylcholine released per
stimulus of a nerve cell has a Poisson distribution
with parameter λ and pmf e−λλx/x!, 0 < λ, 0 ≤ x <

∞. The umgf is

UX(t) =
∞∑

x=0

[
e−λλx

x!

]
ext

= exp[λ(et − 1)],

so

KX(t) = λ(et − 1)

= λ + λt + λt2

2!
+ λt3

3!
+ · · · .

The cumulants of the Poisson distribution are all
equal to the mean λ.
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The cgf is an exponential generating function and
so if need be the cumulants can be obtained as
µ1 = [ dKX(t)/ dt]t=0, µ2 = [ d2KX(t)/ dt2]t=0, etc.

Because KX+a(t) = ln[exp(at)UX(t)] = at + KX

(t), the coefficients of t r/r! in KX+a(t) and in KX(t)

are the same for r ≥ 2. This implies that when a
constant is added to X, only κ1 is changed; this is why
the cumulants are sometimes called semi-invariants.

Consider

KX−µ(t) = ln MX(t)

=
(

µ2t
2

2!
+ µ3t

3

3!
+ µ4t

4

4!
+ · · ·

)

−
(

µ2
2t

4

(2!2!2)
+ · · ·

)
+ · · · .

Equating the coefficients of t r in KX−µ(t) and
ln MX(t) shows that for r ≥ 2 the cumulants are
functions of the central moments

κ2 = µ2, κ3 = µ3, κ4 = µ4 − 3µ2
2, etc. (14)

Example 4 continued: Central Moments of the
Poisson Distribution

Because κr = λ for all r for the Poisson distribution,
the mean is µ′

1 = λ and, from (14), µ2 = λ, µ3 = λ,
µ4 = λ − 3λ2.

Let X = X1 + X2 + · · · + Xn, where the Xj s are
independent random variables. The umgf of X is the
product of the individual umgfs, and therefore the cgf
of X is the sum of their cgfs

KX(t) =
n∑

j=1

KXj
(t). (15)

Thus the kth cumulant of a sum is the sum of the
individual kth cumulants.

Joint Moments and Cumulants

When Xj , j = 1, 2, . . . , m, are not independent we
need to look at their joint distribution. The uncor-
rected moments of a joint distribution are quantities
like E(

∏m
j=1 X

rj

j ); they are denoted by µ′
r1r2...rm

and
are called product moments about zero. The central
product moments are

µr1r2...rm
= E




m∏

j=1

[Xj − E(Xj )]
rj



 . (16)

For a bivariate distribution the central product
moment, µ11, is the covariance, cov (X1, X2).

The joint umgf of X1, X2, . . . , Xm is a function of
m generating variables t1, t2, . . . , tm:

UX1,...,Xm
(t1, t2, . . . , tm) = E



exp




m∑

j=1

tjXj







 ,

(17)

the joint cmgf is

E



exp






m∑

j=1

tj [Xj − E(Xj )]










= exp




−
m∑

j=1

tj E(Xj )






× U(t1, t2, . . . , Xm), (18)

and the joint cgf is ln UX1...Xm
(t1, t2, . . . , tm). Their

use is similar to that for univariate distributions.

Example 5: Moments of a Bivariate Gamma
Distribution

Pairs of tumors were initiated at the same time, one
on each side of the back of a mouse. Suppose that the
sizes, X and Y , of the two tumors after one month’s
growth are not independent but have the joint pdf

f (x, y)

=
{

a2{e−ay − e−a(x+y)}, 0 ≤ x < y,

a2{e−ax − e−a(x+y)}, 0 ≤ y < x,

0 < a. Then the marginal distribution of X has the
pdf

f (x) =
∫ y

0
a2{e−ay − e−a(x+y)} dx

+
∫ ∞

y

a2{e−ax − e−a(x+y)} dx

= a2ye−ay

(a particular sort of gamma distribution); the marginal
distribution of Y is similar. The joint umgf is

UX,Y (t1, t2)

=
∫ ∞

0

∫ y

0
a2{e−ay − e−a(x+y)}
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× exp[t1x + t2y] dx dy

+
∫ ∞

0

∫ ∞

y

a2{e−ax − e−a(x+y)}

× exp[t1x + t2y] dx dy

= a2
∫ ∞

0

[
exp[−(a − t1 − t2)y]

t1

+ exp[−(a − t1 − t2)y]

(a − t1)

− exp[−(a − t1)y]

t1
− exp[−(a − t2)y]

a − t1

]
dy

= a3(a − t1)
−1(a − t2)

−1(a − t1 − t2)
−1.

The joint cgf is

KX,Y (t1, t2) = ln[UX,Y (t1, t2)]

= − ln

(
1 − t1

a

)
− ln

(
1 − t2

a

)

− ln

(
1 − t1

a
− t2

a

)

= 2t1

a
+ 2t2

a
+ 2t2

1

a22!
+ t1t2

a21!1!

+ 2t2
2

a22!
+ · · · ,

showing that E(X) = κ1,0 = 2/a, E(Y ) = κ0,1 =
2/a, var(X)=κ2,0 =2/a2, and cov(X, Y )=E(XY ) −
E(X)E(Y ) = κ1,1 = 1/a2.

Probability Generating Function

The probability generating function (pgf) is a very
useful tool for studying discrete distributions; it is not
applicable to continuous distributions. Let X be a dis-
crete random variable X taking the values 0, 1, 2, . . .

with nonzero probability mass function (pmf) px =
Pr(X = x). Then the pgf of the distribution is

GX(z) =
∞∑

x=0

pxz
x = E(zX). (19)

The conditions for GX(z) to be a pgf are

GX(0) ≥ 0,

GX(1)=1 and

[
drGX(z)

dzr

]

z=0

≥0, r >0. (20)

Note that whereas the umgf, cmgf, and cgf are
exponential generating functions where the ar are
the coefficients of t r/r!, the pgf is a power-series
generating function and the px are the coefficients
of zx . If probabilities are obtained via a Maclaurin
series, then it is important to remember that pr =
(r!)−1[ drGX(z)/ dzr ]z=0.

The pgf, cf, umgf, cmgf, and cgf of a discrete
distribution are closely related. We have

GX(z) = E(zX),

ϕX(t) = E[exp(itX)] = G(eit )

UX(t) = E[exp(tX)] = G(et ),

MX(t) = E{exp[t (X − µ)]}
= e−µtG(et ),

KX(t) = ln E[exp(tX)] = ln G(et ).

Example 6: Probability Generating Function of
an Exponentially Mixed Poisson Distribution (a
Geometric Distribution)

Suppose that the number of schistosome ova per
specimen has a Poisson distribution with parameter
λ, where λ varies from patient to patient according to
an exponential distribution with pdf ce−λc dλ. Then
the resultant distribution of the number of ova per
specimen, X, has the pmf

Pr(X = x) =
∫ ∞

0

e−λλx

x!
· ce−λc dλ

= c

(1 + c)x+1
, x = 0, 1, . . . .

This is the pmf for a geometric distribution. Con-
sider now the pgf. In Example 4 we saw that the
umgf of the Poisson distribution is exp[λ(et − 1)], so
its pgf is exp[λ(z − 1)]. Integrating over λ using an
exponential distribution gives the pgf of X as

GX(z) =
∫ ∞

0
eλ(z−1) × ce−λc dλ

= c

c + 1 − s
.

The uniqueness property of pgfs ensures that this is
the pgf of the same (geometric) distribution.

Let X1, X2, . . . , Xk be k independent random
variables with pgfs G1(z), G2(z), . . . , Gk(z) and set
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X = ∑k
j=1 Xj . Then

GX(z) = E(zX1+X2+...Xk ) =
k∏

j=1

E(zXj ) =
k∏

j=1

Gj(z);

(21)

this method of combining distributions is called
convolution. The pgf for the difference of two random
variables, X1 and X2, is

GX1−X2(z) = GX1(z)GX2 (z
−1). (22)

Consider now a “damage” process. If we have
x items initially and each item has an independent
probability (1 − α) of removal, then the probability
that k of them remain is

(
x

k

)
αk(1 − α)n−k . When the

initial number, X, is a random variable with pgf
GX(z) = p0 + p1z + p2z

2 + · · · and R is the number
remaining, then

Pr(R = r) = p∗
r =

∑

x≥r

px

(
x

r

)
αr(1 − α)x−r (23)

and the pgf for R is

GR(z) =
∑

r≥0

p∗
r z

r =
∑

r≥0

∑

x≥r

px

(
x

r

)
αr(1 − α)x−r zr

=
∑

x≥0

∑

r≤x

px

(
x

r

)
αr(1 − α)x−r zr

=
∑

x≥0

px(1 − α + αz)x

= GX(1 − α + αz). (24)

A similar but rather more complicated way of com-
bining two distributions is illustrated in the next
example.

Example 7: A Compound Process for the Negative
Binomial Distribution

Suppose that each year brain fluid is sampled
from anencephalic infants from a varying number
of hospitals. If the number of anencephalics per
hospital, X, has a logarithmic distribution with pgf
ln(1 − θz)/ ln(1 − θ) and the number of cooperating
hospitals per year, N , has a Poisson distribution with

pgf exp λ(z − 1), then the total number of specimens
collected per year, Y , has the distribution with pgf

GY (z) =
∞∑

x=0

e−λλx

x!

[
ln(1 − θz)

ln(1 − θ)

]x

= exp

{
λ

[
ln(1 − θz)

ln(1 − θ)
− 1

]}

=
(

1 − θ

1 − θz

)−λ/ ln(1−θ)

(the sum of x independent variables with the same
pgf, h(z), has the pgf [h(z)]x ). The outcome is a
negative binomial distribution. This is a random-
stopped sum distribution with a pgf of the form
G1[G2(z)], sometimes called a compound or a gener-
alized distribution (these terms have other meanings
as well).

There are also bivariate and multivariate pgfs.
Given k dependent discrete variables X1, X2, . . . , Xk ,
their joint pgf is

GX1,X2,...,Xk
(z1, z2, . . . , zk) = E




k∏

j=1

t
Xj

j



 . (25)

Factorial Moment Generating Functions

For a discrete distribution the factorial moment
generating function (fmgf) is often easier to handle
than other types of moment generating functions.
The term “factorial moment” nearly always refers to
a descending factorial moment; the rth descending
factorial moment of X is

µ′
[r] = E

[
X!

(X − r)!

]
=

∑

x≥r

pxx!

(x − r)!
. (26)

(The rth ascending factorial moment of X is E[(X +
r − 1)!/(X − 1)!].) In the past other notations have
been adopted for the µ′

[r]; these are still used occa-
sionally.

The fmgf is an exponential generating function.
We have

∑

r≥0

∑

x≥r

µ′
[r]t

r

r!
=

∑

x≥0

∑

r≤x

pxx!

(x − r)!

t r

r!

=
∑

x≥0

px(1 + t)x = GX(1 + t), (27)
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where G(z) is the pgf. So

µ′
[r] =

[
drGX(1 + t)

dt r

]

t=0

=
[

drGX(z)

dt r

]

z=1

.

(28)

A joint fmgf for a multivariate distribution with
pgf GX1,X2,...,Xk

(z1, z2, . . . , zk) is defined similarly as
GX1,X2,...,Xk

(1 + t1, 1 + t2, . . . , 1 + tk).
The relationships between the univariate factorial

moments and the uncorrected moments are

µ′
1 = µ′

[1] = µ,

µ′
2 = µ′

[2] + µ′
[1],

µ′
3 = µ′

[3] + 3µ′
[2] + µ′

[1], etc.

and

µ′
[2] = µ′

2 − µ′
1,

µ′
[3] = µ′

3 − 3µ′
2 + 2µ′

1, etc. (29)

Stuart & Ord [7] give further details and formulas. A
particularly useful equation is

µ2 = µ′
[2] + µ − µ2. (30)

The factorial cumulant generating function (fcgf)
is the logarithm of the (descending) fmgf. It is an
exponential generating function and the rth factorial
cumulant, κ[r], is the coefficient of t r/r! in its
expansion, i.e.

ln G(1 + t) =
∑

r≥1

κ[r]t
r

r!
. (31)

The formulas connecting {κr} and {κ[r]} are analogous
to those connecting {µ′

r} and {µ′
[r]}, i.e.

κ1 = κ[1] = µ,

κ2 = κ[2] + µ, (32)

κ3 = κ[3] + 3κ[2] + µ, etc.

Examples 1 and 7 continued: The Factorial
Moment Generating Functions and the Factorial
Cumulant Generating Functions for the Binomial
and Negative Binomial Distributions

In Example 1 the number of mutants had a binomial
distribution. The pgf is

∑n
x=0

(
n

x

)
px(1 − p)n−xzx =

(1 − p + pz)n; the fmgf is therefore

GX(1 + t) = (1 + pt)n

= 1 + npt + n(n − 1)p2t2

2!

+ n(n − 1)(n − 2)p3t3

3!
+ · · ·

and the factorial moments are µ′
[1] = np, µ′

[2] =
n(n − 1)p2, µ′

[3] = n(n − 1)(n − 2)p3, etc. The fcgf
is ln GX(1 + t) = n ln(1 + pt).

In Example 7 the number of specimens collected
per year, Y , had a negative binomial distribution. Set-
ting π = θ/(1 − θ) and l = −λ/ ln(1 − θ) enables
the pgf to be restated as GY (z) = (1 + π − πz)−l .
Thus the fmgf is (1 − πt)−l , giving µ′

[1] = lπ , µ′
[2] =

l(l + 1)π2, µ′
[3] = l(l + 1)(l + 2)π3, etc. The fcgf is

−l ln(1 − πt).

Bibliography
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Genetic Correlations and
Covariances

Fisher [3] devised a theoretical basis for making
inferences about genetic and environmental causes
of variation in continuous traits. This provided a
synthesis of Mendelian inheritance (see Mendel’s
Laws) with the Darwinian theory of evolution
through selection, and overcame serious problems
associated with the theory of blending inheritance, a
concept that Darwin had relied on despite recognizing
that it presented a major obstacle for his theory of
evolution.

Definitions

Genetic Variances

Consider a genetic locus defined by two alleles,
A1 and A2. Assume that a population is in
Hardy–Weinberg equilibrium and that mating
within this population occurs at random. Specifically,
if the frequency of A1 is p, the frequencies of A1A1,
A1A2, and A2A2 are p2, 2p(1 − p), and (1 − p)2,
respectively.

Suppose this genetic locus is the only factor that
causes variation in the trait Y , and let Y = G = µij

for individuals with genotype AiAj . The mean of
Y , µ, is therefore given by p2µ11 + 2p(1 − p)µ12 +
(1 − p)2µ22, and the variance, σ 2, by p2(µ11 −
µ)2 + 2p(1 − p) (µ12 − µ)2 + (1 − p)2(µ22 − µ)2.
Now σ 2 = σ 2

g can be decomposed as σ 2
a + σ 2

d , where

σ 2
a =2p(1 − p)[pµ11 + (1 − 2p)µ12 − (1 − p)µ22]2

=2p(1 − p)[p(µ11 − µ12) + (1 − p)

× (µ12 − µ22)]2 (1)

is called the additive component of variance, and

σ 2
d = {p(1 − p)[µ11 − 2µ12 + µ22]}2 (2)

is called the dominance component of variance. Note
that if µ12 = (1/2)(µ11 + µ22) – i.e. the heterozygote
is the average of the two homozygotes – then σ 2

d = 0.
These genetic variance components, σ 2

a and σ 2
d ,

have an interpretation. If the values µ11, µ12, and
µ22 are plotted against the number of A2 alleles,

and a straight line fitted by weighted least squares
with weight proportional to frequency, the mean
squared deviation about the mean µ is σ 2, and σ 2

a
is the variance “explained” by the straight line, in the
usual linear regression sense. This line represents
the effects of alleles under the additive assumption
that the effect of two A2 alleles is twice that of one
A2 allele; hence, σ 2

a is called the additive genetic
variance. Note that, by considering the ratio of σ 2

a
to σ 2

d , if either p or 1-p is small, then most of the
genetic variance is additive.

The variance not explained by the linear associa-
tion, and therefore attributed to nonlinear effects
of alleles, is the residual sum of squares about
the straight line, σ 2

d ; R.A. Fisher called this the
dominance variance [3].

Note that dominance variance and dominant
inheritance do not refer to the same concept. If a
trait takes just two values, and is solely determined
by a single gene expressed in a dominant fashion,
then µ12 = µ22 �= µ11, say, and then σ 2

a = 2p3(1 −
p)(µ11 − µ22)

2 �= 0, so that σ 2
d does not account for

the total variance.

Genetic Covariance between Relatives

Assume as above that the trait is determined
solely by a single genetic locus, and con-
sider now a pair of genetically related individ-
uals, such as a mother and her son. By sum-
ming over the three possible genotypes of the
father, the genetic covariance between mother
and son is p3µ11

2 + 2p2(1 − p)µ11µ12 + p(1 −
p)µ12

2 + 2p(1 − p)2µ12µ22 + (1 − p)3µ22
2 − µ2,

which can be shown to be equal to 1/2σ 2
a . This

same expression, 1/2σ 2
a , holds for all parent–

offspring pairs.
For sibling pairs, including dizygotic (DZ) twins

(see Zygosity Determination), if the summation is
made over all nine possible genotypes of mother and
father under the assumption that maternal and pater-
nal genotypes are independent, the genetic covariance
between siblings is found to be (1/2σ 2

a + 1/4σ 2
d ).

The above procedure can be extended to determine
the genetic covariance between any pair of relatives.
For second-degree relatives, such as grandparent
and grandchild or uncle and nephew, the genetic
covariance is 1/4σ 2

a , and for third degree it is 1/8σ 2
a ,

and so on, the covariance being multiplied by a
factor of 1/2 for each extra generation. For genetically
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identical (monozygotic, MZ) twin pairs, obviously
the covariance is σ 2 = σ 2

g = σ 2
a + σ 2

d . Apart from
appearing in expressions for the covariance between
sibling (including twin) pairs, the term σ 2

d occurs
only when there is inbreeding. Nonindependence
between parents, or assortative mating, induces
extra covariation.

The genetic correlation is the genetic variance
divided by the total variance.

Genetic Covariance in Terms of Identity
Coefficients

Let Gi and Gj represent the genotype of two indi-
viduals i and j . In general, under Hardy–Weinberg
equilibrium and no inbreeding (unless σ 2

d = 0), the
genetic covariance can be expressed as

cov(Gi, Gj ) = 2φijσ
2
a + K2ij σ

2
d , (3)

where φij , the kinship coefficient or coefficient of
coancestry, is the probability that a gene drawn at
random from a given locus of i is identical by
descent with a gene drawn at random from the same
locus of j , and K2ij is the probability that both
genes at a given locus are identical by descent in
i and j . Under random mating, for MZ twin pairs,
φij = 1/2. In the absence of inbreeding, φij = 1/4
for first-degree relatives (parent–offspring and sib-
ling pairs), 1/8 for second-degree relatives (such as
grandparent–grandchild), and so on, the coefficient
being halved for each successive generation separat-
ing the pair. For MZ pairs, K2ij = 1, and for sibling
pairs, K2ij = 1/4. Otherwise, K2ij = 0, except for
pairs such as double-first cousins, in which case,
K2ij = 1/16, and for offspring of related persons; for
example, of sib-matings, in which case K2ij = 7/32
(see Identity Coefficients).

Genetic Covariance under Polygenic Inheritance

Assume G now represents a polygenic factor, i.e.
the combined effect of a number of genetic factors
Gi, i = 1, 2, . . . , n, at different loci. Let

G = G1 + G2 + G3 + · · · + G1 � G2 + G1 � G2

� G3 + · · · + G1 � G2 � · · · � Gn, (4)

where each Gk has variance σ 2
k = σ 2

ak + σ 2
dk as above,

and the � notation represents interaction between the

loci (epistasis). There may be interactions between
the additive components of loci, between the domi-
nance components of loci, and between additive and
dominance components of loci. It can be shown that
in this case (3) must be extended by including a
term for each interaction of a different type; see [1].
An interaction between pairs of additive components
involves a variance component, σ 2

aa say, multiplied
by (2φij )

2, and between triples of additive compo-
nents a term (2φij )

3σ 2
aaa, and so on. Similar comments

apply to dominance components, with the coefficient
K2ij replacing 2φij . These interaction components
all contribute fully to the covariance between MZ
twin pairs, because the coefficients 2φij and K2ij are
both unity, but contribute far less to the covariance
for other relationships. Therefore, while dominance
contributes to sibling covariance but not to par-
ent–offspring covariance, epistasis can contribute to
both parent–offspring and sibling covariances.

Provided the Gi are independent, which is a
reasonable assumption for unlinked loci, the additive
genetic variance is the sum of additive variances at
each loci. The same holds for the total variance. In the
absence of epistasis, the genetic correlations between
relatives in terms of additive and dominance variance
components are the same for a polygenic factor as for
a single locus.

If G represents a large number of genetic loci,
each having a small additive impact on the trait, mul-
tivariate central limit theorems for the distribution
of G across groups of relatives have been derived,
for example, [8]. The theorems have been proved
under several fairly stringent sufficient genetic restric-
tions: Hardy–Weinberg and linkage equilibrium (see
Linkage Disequilibrium) for all loci; absence of
assortative mating and epistasis; a small variance for
each locus compared with the total variance over
many loci; an upper bound on the number of loci
per chromosome; and no inbreeding if there is domi-
nance variance at any locus. Verification of these,
and other technical conditions, in practice would be
difficult, if not impossible, but it is usually assumed
that these theoretical restrictions are not of practical
importance.

Environmental Variances

Factors that are independent between individuals ir-
respective of their relationship to one another, such
as environmental effects specific to an individual and
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measurement error, induce no covariance between
relatives. If variation in Y is caused only by such
nongenetic factors Ei and Ej for distinct individuals
i and j , then

cov(Ei, Ej ) = 0. (5)

Let σ 2
e = var(E).

If variation in Y is caused only by a factor, C,
that is shared by or common to (classes of) relatives,
these relatives will be correlated. For example, if Ci

and Cj represent the effects of environmental factors
common to the household for distinct individuals i

and j , then

cov(Ci, Cj ) = cijσ
2
c , (6)

where cij = 1 if i and j live in the same house,
else 0, and σ 2

c = var(C). This cohabitation effect
may be more sophisticated, perhaps depending on the
type of relationship between cohabiting individuals,
increasing the longer these individuals live together,
and attenuating the longer they live apart. Some
theoretical models for this have been proposed and
applied [2, 5, 9].

Covariance Between Relatives in Terms of
Genetic and Environmental Variances

The combined effects of genetic, common environ-
mental, and individual specific factors, G, C, and E,
respectively, on the variance of a trait Y can be mod-
eled in numerous ways. The simplest models suppose
that the effects of each component of variation are
independent, i.e.

Y = µ + G + C + E, (7)

in which case

var(Y ) = σ 2
g + σ 2

c + σ 2
e = σ 2, (8)

and

cov(Yi, Yj ) = cov(Gi, Gj ) + cov(Ci, Cj ). (9)

Each of the covariance terms in (9) can take various
forms, depending on whether dominance or epistasis
is included and the sophistication with which the
common environment is modeled.

This general model can be extended to include
gene–environment interactions, in which the effects

of genetic factors are not independent of those of
environmental factors; i.e. the effect of a particu-
lar genotype can depend on the environment. Extra
term(s) for interaction effects need to be included in
both the variance and covariance. In defining genetic
correlations, when there are gene–environment inter-
actions it is not clear what the denominator should be.
Should the effect of genetic factors depend on envi-
ronmental factors that change as an individual ages,
the genetic variance will change with age.

The general model can also be extended to allow
for gene–environment covariation, in which the
distribution of the genetic and environmental factors
is not independent; i.e. certain genotypes are more
common in particular environments.

The Role of the Mean and Measured
Factors in Genetic and Environmental
Modeling

The discussion above has focused on causes of varia-
tion without reference to the presumed population
mean about which this variation occurs. The vari-
ance, covariance and hence variance components (i.e.
random effects) may differ considerably depending
on what factors are taken into account in modeling
the trait mean (fixed effects). For example, if the
trait mean depends on age, then this will induce a
covariance between siblings if they are generally of
a similar age. If the mean is adjusted for age, the
siblings will be less correlated than if the mean is
unadjusted for age [6].

The absolute values of genetic and environmental
components of variance may change as the effects
of different factors are modeled in the mean. For
example, for traits whose mean values depend on
height, adjustment for height usually leads to a
reduction in the genetic variance, provided age has
also been taken into account. This is presumably
because variation in height for age appears to be
predominantly attributable to genetic causes [3].

The effects of genetic variation at a particular
locus for which the individual genotypes have been
measured can be modeled as either a fixed effect or a
random effect [4]. In the fixed effects modeling, the
mean may be assumed to change linearly with the
number of copies of a certain allele the individual
possesses; i.e. an additive genetic variance at this
locus is being modeled (cf. (1)). The mean can also be
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assumed to take a different value for each genotype,
in which case dominance genetic variation at this
locus is also being considered. In the random effects
modeling, similar to the way common environmental
effects are modeled using (6), individuals may be
assumed to be more correlated if they both have the
same genotype, or the same haplotype if alleles at
several closely linked loci have been measured.

For a review of issues surrounding the variance
components models and the methods involved in their
estimation, see [7].

References

[1] Bulmer, M.G. (1980). The Mathematical Theory of
Quantitative Genetics. Oxford University Press, Oxford,
pp. 126–131.

[2] Eaves, L.J., Long, J. & Heath, A.C. (1986). A theory
of developmental change to quantitative phenotypes
applied to cognitive development, Behavior Genetics 16,
143–162.

[3] Fisher, R.A. (1918). The correlation between relatives on
the supposition of Mendelian inheritance, Transactions of
the Royal Society of Edinburgh 52, 399–433.

[4] Hopper, J.L. & Mathews, J.D. (1982). Extensions to
multivariate normal models for pedigree analysis, Annals
of Human Genetics 46, 373–383.

[5] Hopper, J.L. & Mathews, J.D. (1983). Extensions to
multivariate normal models for pedigree analysis. II.
Modelling the effect of shared environment in the analysis
of variation in blood lead levels, American Journal of
Epidemiology 117, 344–355.

[6] Hopper, J.L. (1992). The epidemiology of genetic epi-
demiology, Acta Geneticae Medicae et Gemellologiae 41,
261–273.

[7] Hopper, J.L. (1993). Variance components for statistical
genetics: applications in medical research to character-
istics related to human diseases and health, Statistical
Methods in Medical Research 2, 199–223.

[8] Lange, K. (1978). Central limit theorem for pedigrees,
Journal of Mathematical Biology 6, 59–66.

[9] Lange, K. (1986). Cohabitation, convergence, and
environmental covariances, American Journal of Medical
Genetics 24, 483–491.

(See also Familial Correlations; Heritability;
Population Genetics)

JOHN L. HOPPER



Genetic Counseling

Genetic counseling is the communication process by
which individuals and their family members are given
information about the diagnosis of the disease in
question, quantitation of risk, and the implications
of this genetic information. The ability to predict
accurately an individual’s disease risk is important
at personal and population levels. At a personal
level, knowledge of risk promotes informed health
care decisions. At a population level, risk prediction
enables targeted public health interventions in high-
risk groups. The main contribution of statistics to
genetic counseling is to provide a probabilistic frame-
work for the estimation of the genetic risk.

Genetic counseling is generally concerned with the
probability that an individual will develop a specific
genetic disease. The risk for individual i is then
defined as

Pr(individual i will have disease D) = Pr(Di).

By definition, a genetic disease is associated with a
particular genotype (or genotypes). This association
can be expressed as

Pr(Di) = Pr(D|X, Gi) Pr(Gi),

where X represents environmental factors, and Gi is
the event that individual i has a disease genotype.
Environmental factors are taken to include endoge-
nous characteristics of the individual such as age or
physiological characteristics, as well as exogenous
exposures to compounds that may cause or modify
risk to develop disease. The conditional probability,
Pr(D|X, Gi), is referred to as the penetrance func-
tion of the disease.

In most cases, the genetic counselor’s main con-
cern is Pr(Gi), the probability that an individual has
a disease genotype. Alternately, the concern might
center on determining the probability that an individ-
ual carries a genotype consistent with the inheritance
of a disease genotype by his or her progeny. This
is referred to as carrier risk. When the determina-
tion of the individual’s risk is not based on direct
determination of his or her genotype (e.g. by genetic
testing) but on the genotypes and disease occurrence
in relatives, the disease risk Pr(Di) is referred to as
recurrence risk.

Genetic risks can be classified into three
categories, namely population-, pedigree-, and
individual-based, according to the type of data
available and the analytical tools used in risk
assessment.

Population-based Risk

In population-based risks (also referred to as empiri-
cal risks) the data are the frequencies of affected
and unaffected individuals sampled from populations.
These data include disease incidence rates in defined
populations, often obtained from case–control or
cohort studies. The distinguishing characteristic of
population-based risk is that there is no attempt to
quantify either the penetrance function or Pr(Gi).

An example of this category of risk estimation is a
woman’s lifetime breast cancer risk. This risk is often
quoted to be 0.125 since, from US cancer registries
(see Disease Registers), it has been observed that one
in eight women develop breast cancer. This number
is based on population estimates of lifetime cancer
incidence, and does not reflect the personal risk
factors of the individual (e.g. family or reproductive
history). It is applicable only to women who belong
to the sampled population. Epidemiologic studies can
be conducted to identify endogenous and exogenous
factors that may affect disease risk. These risk
factors can be used to construct models for risk
prediction. For example, Gail et al. [1] generated
breast cancer risk estimates using information about
age at menarche, number of previous biopsies, age at
first live birth, and limited family history.

Pedigree-based Risk

Most frequently, risk estimates in genetic counsel-
ing are based on pedigree information. Traditionally,
one assumes an underlying genetic model for the dis-
ease. The models may include parameters such as
gene frequencies, transmission probabilities, proba-
bility of being a sporadic case, penetrance of geno-
types, mutation rates and, in the case of a linked
marker, recombination fractions, proportion of fami-
lies for which the disease gene is linked to the marker,
and gene order. In general, the unknown parameters
of a given genetic model are replaced by point esti-
mates obtained by segregation analysis or linkage
analysis, model-based.
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As an example, let us assume that unaffected
parents have had one child affected with a rare single
locus dominant, incompletely penetrant, autosomal
disease. What is the probability that the couple’s next
child will be affected? In other words, what is the
recurrence risk for the next child? The evaluation of
this risk is based on two conditional probabilities,
the probability that the next child is affected given
that the affected sib (1) inherited the disease gene
present in the parents, or (2) has it as a result of a de
novo mutation. The recurrence risk is obtained from
these conditional probabilities through an application
of Bayes’ theorem.

Individual-based Risk

Once a disease gene is identified and cloned, its pres-
ence or absence in an individual can be determined
by biochemical assays. In this case, there is very little
uncertainty about the individual’s genotype. Conse-
quently, the probability of disease is equal to the
penetrance if the individual has the disease genotype,
and is equal to zero otherwise.

As an example, the cloning of the hereditary
breast cancer susceptibility gene BRCA1 allowed
individual-based risk estimates to be produced using
direct genetic mutation analysis. Breast cancer risk
in an individual who carriers a mutant form of the
BRCA1 gene can be estimated using the result of this
test. These estimates suggest that women who carry
germline BRCA1 mutations have a substantial risk of
developing breast cancer during their lifetimes.

Interval Estimates of Risk

Traditionally, a point estimate of risk is communi-
cated to the counselee. Methods currently exist to
provide interval estimates (see Estimation, Inter-
val) [2]. This is particularly important when risks are
estimated from small samples.

As an illustration, suppose that a linked genetic
marker is available, and no recombinants have yet
been observed between the marker and the putative
disease gene. Thus, the estimated recombination
probability will be zero, and the risk estimate will
also be zero. Although the risk for a person who does
not inherit the marker allele of risk may be small, the
genetic counselor will be reluctant to provide a risk
estimate of zero, and an upper confidence limit of
risk may be more desirable.
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Genetic Distance

The concept of genetic distance relates to the mea-
surement of genetic difference between populations.
It is designed to answer how dissimilar the popula-
tions are with respect to their genetic compositions.
Since the genetic composition of a population is well
approximated by the allele frequencies at most loci
(see Hardy–Weinberg Equilibrium), the genetic
distance between two populations has been tradition-
ally defined by quantifying the differences in the
allele frequencies between them by a single number.
In devising such a measure it is necessary to deter-
mine the central position of each population, so that
the distance between populations can also take into
account any within-population genetic variation that
may exist. This leads to a geometric interpretation
of the distance concept, where a distance function is
expected to satisfy the three mathematical properties
of a metric; i.e. the distance Dij between popula-
tions i and j should be: (i) nonnegative (Dij ≥ 0,
with Dij = 0 if and only if i = j ), (ii) symmetric
(Dij = Dji), and (iii) Dik + Djk ≥ Dij for any three
populations i, j , and k (the triangle inequality). The
first condition immediately implies that the definition
of Dij must take into account the within-population
variation in each population.

Although the methods of detecting genetic varia-
tion have changed considerably over the history of
biology, and even more changes are expected to occur
through the advent of recombinant DNA technology
(see DNA Sequences), genetic distance studies pre-
date the discovery of genetic markers. Since the
introduction of the first distance measure [9], a vari-
ety of genetic distance measures have been proposed
and used for a variety of purposes, and a detailed
account of these is beyond the scope of this article.
There are many excellent reviews on this subject,
e.g. [5, 10, 14, 21], and [31], several of which are
still up to date. For the purpose of applications,
these distance measures may be classified into two
broad classes: (i) those intended for population clas-
sification, and (ii) those intended for the study of
evolution. Nei [22] classified into the first category
Czekanowski’s mean difference [9] and its varia-
tion (the “Manhattan metric” [32]), Pearson’s coef-
ficient of racial likeness [26], Roger’s distance [28],
Mahanalobis’ distance [18], Sanghvi’s distance [29]

and its variant [1], Kurczynski’s D2 [13], Bhatta-
charyya’s [2], and Cavalli-Sforza & Edwards’ [4]
distances. Into the second category Nei grouped the
distance indices of based on Wright’s FST index
(e.g. [3] and [15]), Morton’s kinship indices [19],
and his own distances [20]. Cockerham & Weir’s [8]
coancestry measure of distance (see Inbreeding) also
falls into this second category. Although as a mea-
sure of genetic dissimilarity between populations this
categorization has little importance, there is a clear
difference when the evolutionary dynamics of gene
frequencies are formulated in terms of defined evo-
lutionary mechanisms (such as mutation, drift (see
Population Genetics), and migration). The first cat-
egory of distance indices does not generally show
a well-defined pattern or trend, such as increasing
with the evolutionary time of separation. In contrast,
genetic distance indices of the second category have
been studied in the context of specific models of
evolution, so that their expected trend with the time
since divergence between populations is fairly well
described [5, 22, 33].

Even though the definitions of these distances are
based on different premises, several of them are ana-
lytically related [5, 27, 33], and even those that are
mathematically dissimilar yield fairly similar infer-
ences regarding interpopulation relationships, at least
for genetically close populations [6]. Dissimilarities
of distance measures, however, emerge from their
being estimated by the sampling of allele frequen-
cies from populations. All distance functions involve
quadratic expressions (and often their ratios) of popu-
lation allele frequencies, and hence their estimates are
biased. Analytical correction for bias is not an easy
task, and can only be achieved either by approxi-
mations that hold under some strict conditions, or
by numerical resampling methods (see Bootstrap
Method). Furthermore, the total variance of an esti-
mated distance consists of both contemporary sam-
pling effects as well as cumulative effects of the past
evolution of populations [5, 17, 24]. Recent work on
the subject suggests that, with the molecular data
currently being employed to study genetic variation
between populations, it is necessary to include the
concept of the coalescence time of alleles (i.e. how
long in the past two alleles had a common ances-
tor) in a distance measure for it to be appropriate for
evolutionary studies, for example, [12, 30]. The sta-
tistical properties of such distance measures are still
to be explored rigorously [11].
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Finally, in the human context, although genetic
distance provides a fairly good indicator of evolu-
tion and dispersal of the species, any graphic display
of interpopulation genetic distances should be inter-
preted with caution. Genetic variation by geographic
or racial classification is a mere reflection of the dis-
continuity of sampled populations. In reality, genetic
variation is gradual in time and is continuous in
space; most of the variation is interindividual, and
the interpopulation component of variation consti-
tutes only a small portion of the total genetic diversity
of the species [7, 16, 23, 25].
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Genetic Epidemiology

By 1967 discussions among researchers had led to
the realization that the merger of methods to analyze
family data from mathematical genetics and statistical
tools from epidemiology was both inevitable and
desirable [9]. This merger was designated genetic
epidemiology, for which Morton [9] proposed the
following definition:

genetic epidemiology: A science that deals with eti-
ology, distribution, and control of disease in groups
of relatives and with inherited causes of disease in
populations.

The formal definition of the new field followed
two decades of discussion dating back to Neel &
Schull [10] defining “epidemiological genetics” in
1954. This dynamic time period saw the emergence
of genetic epidemiology from the broader field of
population genetics and the synthesis of several par-
allel developments in mathematics and statistics as
they applied to human disease. But to understand
the role of this relatively new field, its impact on
human genetics, and its evolving definition in the
post Human Genome Project era, it is necessary to
review its history.

In the beginning, genetics was “genetic epidemi-
ology”. By stating the observation that an offspring
receives one of two factors from each parent and
has a 50% chance of passing each factor to its off-
spring, Gregor Mendel defined the probabilities that
set the mathematical and statistical tone for the broad
scientific discipline called genetics (see Mendel’s
Laws).

Mendel’s original work also set the stage for the
three characteristics that provide the cultural milieu
for genetic epidemiology. First, scientists ignored
Mendel’s seminal discovery for nearly 50 years. The
mathematical proofs, computational details, and sta-
tistical arguments required by genetic epidemiology
leave most geneticists bored and/or frightened, pre-
ferring to ignore genetic epidemiology. Secondly,
the question of whether Mendel’s results were “too
good” [5], foretold a field that relishes controversy
over methods, interpretations, and applications. Such
“family fights” prove stimulating to the investiga-
tors involved but have had the tendency to con-
vince other geneticists that the field lacks focus and

rigor. And finally, until very recently genetic epi-
demiology was a small field easily dominated by
a few creative and powerful figures whose scien-
tific differences and personal animosity made for
exciting and stimulating arguments and intense sci-
entific fads.

As genetics developed at the turn of the century,
the research was concentrated in two areas:

1. defining phenotypes, which for humans is clini-
cal genetics, at that time including rudimentary
biochemical genetics; and

2. studying the mathematical properties of genes in
populations, population genetics.

By the 1930s cytogenetics (the study of chromo-
somes) was flourishing, primarily in Drosophila, and
has continued to develop as a major area of research.
And most recently the field of molecular genetics has
exploded in a wealth of research and knowledge lead-
ing to the initiation of the Human Genome Project
in 1989.

Genetic epidemiology shares the use of mathemat-
ics and statistics as its primary tools with the field
of population genetics, but its definition of a unique
niche within genetics results from its interaction with
all of the other areas. The history will be divided
into three broad and, to some extent, overlapping
categories:

1. population genetics;
2. Mendel’s first law: segregation of alleles at one

locus; and
3. Mendel’s second law: independent assortment of

two loci.

The Beginning (1): Population Genetics

The seminal beginning to population genetics was
the definition of the Hardy-Weinberg Law in
1908 (see Hardy–Weinberg Equilibrium). In 1932
Snyder [13] applied this law to demonstrate the mode
of inheritance for tasting phenylthiocarbamide (PTC).
Snyder not only provided a clear example of the
appropriateness of the Hardy–Weinberg equilibrium
for the human population but also demonstrated a
mathematical method for testing that a phenotype
was inherited. This was both useful and restricted
by the fact that is was limited to traits sufficiently
common to allow random sampling of a large
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number of families. This restriction of population
genetic principles to common traits has limited their
usefulness until recently.

Another significant issue addressed by early
population genetic principles was the role of
Mendelian factors in the inheritance of quantitative
traits. Early investigators argued that segregating
alleles could not possibly account for quantitative
traits with Gaussian distributions (see Normal
Distribution). In 1918 Fisher [4] demonstrated
conclusively that “many small, equal, and additive
loci” would result in exactly the Gaussian distribution
for a phenotype. From that finding grew the
entire field of quantitative genetics, including
heritability, breeding factors, and other crucial
insights for plant and animal breeders. Eventually
these quantitative genetic principles also contributed
to our understanding of human inheritance (see
Genetic Correlations and Covariances).

Population genetics research continued to develop
in several areas relevant to studies in genetic epidemi-
ology, including describing the structure of popula-
tions (see Genetic Distance; Admixture in Human
Populations; Assortative Mating; Heterozygosity).
The principal distinction for these areas is that they
apply to all populations and traits, thus providing
insight for the study of human disease but are not
restricted to the study of specific disease etiology.

The Beginning (2): Mendel’s First Law

A second early and significant area of research devel-
oped to address statistical issues arising from the use
of family data. Mendel began with pure breeding par-
ents and tested the F1, F2, and backcross data. For
human diseases that are rare in the population, the
approach is to ascertain families where the disease
is known to exist thereby avoiding a huge random
sample which might capture little or no information.
However, the use of ascertainment introduces imme-
diate bias into the sample, as recognized as early as
1912 by Weinberg [14]. Although numerous inves-
tigators have proposed solutions to this problem, it
continues as a serious concern for genetic epidemiol-
ogists to this day.

Data were analyzed for the presence of genes
using the Weinberg and a priori forms of ascertain-
ment correction until 1958 when Morton [8] pro-
posed a likelihood approach to segregation analysis.

The use of likelihood scoring to estimate parameters
permitted incorporation of an ascertainment probabil-
ity, proportion of sporadic cases, and other concepts
of interest. It also provided a direct estimate of the
penetrance and a likelihood ratio test for whether
it differed from 1.0. The likelihood model much
more closely approximated reality than the simpler
approaches and was fairly widely applied (see Seg-
regation Analysis, Classical).

By the 1960s, sufficient numbers of genetic loci
had been identified in humans to establish a need
for other forms of statistical analysis. For example,
the procedure for paternity exclusion was refined
and applied both scientifically and in legal situ-
ations (see Paternity Testing). Interest developed
in models specifying the relationship among family
members. Methods originally developed by the bril-
liant but not oft published Charles Cotterman [11]
brought binary numbers and matrix algebra to the
forefront (see Identity Coefficients; Inbreeding). An
elegant modeling system, path analysis, incorporated
the relationships among relatives and the possibility
of environmental factors in order to determine the eti-
ology of more complex traits. Models were developed
to utilize twin data as special cases in an attempt to
estimate more rigorously the importance of environ-
mental factors (see Path Analysis in Genetics; Twin
Analysis; Twin Concordance; Adoption Studies).

Also during the 1960s quantitative genetics made
its presence felt in human genetics. Falconer [3]
introduced the idea of a normally distributed,
quantitative trait as the “liability” or “susceptibility”
for a genetic disorder. This underlying trait was
polygenic in nature, conforming to the work of Fisher
cited above. When environmental factors were known
to influence the trait, such as birth order effects,
the model was called multifactorial to include both
polygenic genetic effects and the environment. The
disorder, however, was dichotomous in phenotype,
such as the presence or absence of a birth defect,
and the underlying quantitative trait led to the
phenotype through theoretical “thresholds”, leading
to the multifactorial threshold models (MF/T). This
breakthrough in thinking was followed by a burst
of research and what amounted to a fad in genetic
epidemiology, as every trait of unknown etiology was
shown to be inherited in a multifactorial fashion.
The bubble burst in 1972 when Reich et al. [12]
pointed out the simple statistical fact that the model
was indeterminate unless there were at least two
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thresholds. Fortunately for many human phenotypes,
e.g. birth defects, the presence of at least two
thresholds was a simple matter since the frequency
of the disorder differed markedly in the two sexes
(see Polygenic Inheritance).

The popularity of the multifactorial models helped
genetic epidemiologists realize that many of the dis-
eases and disorders of interest would have much more
complex etiologies than single locus inheritance. But
few if any traits survived a rigorous test of MF/T.
The popularity of the MF/T model declined and was
replaced by the concept of genetic heterogeneity.

The realization that etiologies were complex
dictated the development of more mathematically
sophisticated models and statistical tests. For
example, until the development of the “mixed
model”, the presence of single locus inheritance
and the presence of multifactorial inheritance were
tested as separate hypotheses that did not contain the
same parameter space, that of an overarching general
model, and so were not true alternative hypotheses.
The “mixed model” was so named because it defined
that necessary general model and led directly to
the more rigorous testing of the possible modes
of inheritance (see Segregation Analysis, Mixed
Models).

A split had developed in the field, however,
and a serious controversy raged over the ques-
tion of whether to use nuclear family data (par-
ents and their offspring) or larger extended pedi-
grees for testing genetic hypotheses. As with the
other previous disputes, the field experienced a
surge forward as models were developed both
for nuclear families and for extended pedigrees.
There were two primary developments in the area
of pedigree analysis. First the publication of the
Elston–Stewart algorithm [2] provided an efficient,
recursive mathematical approach to evaluating the
likelihood over an extended family. Its importance
to all of genetics was recognized with the presenta-
tion of the William Allan Award by the American
Society of Human Genetics to Elston in 1996. (The
first William Allan Award was presented in 1962
to Newton Morton for segregation analysis and the
introduction of lod scores to linkage analysis.) The
second development was the introduction of trans-
mission probabilities. The use of these parameters
expanded the ability to test genetic models to deter-
mine whether they fit the data best while remaining
within the constraints of Mendel’s first law. Which

form of data to use, nuclear families or pedigrees,
was resolved methodologically by a reformulation of
both approaches to incorporate the parameters of the
other and the definition of a single “complex segre-
gation” analysis approach (see Segregation Analysis,
Complex).

Two additional major developments were to occur
in the arena of Mendel’s first law. The first of these
was the introduction, through a series of papers, of
regressive models by Bonney and his colleagues.
These models, the most complex to date, incorpo-
rate numerous confounding factors, such a cohort
effects (see Age–Period–Cohort Analysis). How-
ever, by virtue of their complexity and the number
of parameters involved, they require huge data sets
and are often applied in more restricted forms.

The second remaining development was the
merger of segregation analysis with linkage analysis,
but first it is necessary to discuss linkage analysis
itself.

The Beginning (3): Mendel’s Second Law

The phenomenon of linkage, i.e. the violation of
the independent assortment of Mendel’s second law,
was first studied extensively in experimental organ-
isms, primarily Drosophila and mouse. The concepts
of linkage groups, recombination frequency, genetic
distance, and mapping functions (see Genetic Map
Functions) were all observed, defined, and/or ana-
lyzed throughout the first half of this century. Linkage
has proven to be a powerful genetic tool. In spite of
this power, very little was done in humans before
1950 because so few marker loci existed. The first
linkage in humans was demonstrated by Mohr [6]
in 1954. About this time, however, the use of new
laboratory techniques to identify genes (for example,
electrophoresis) began and is still going on with the
molecular biology revolution.

The breakthrough in human linkage studies
required not only the means to develop marker
loci but also the statistical tools to analyze the
data. Studies with experimental organisms are done
by using fixed mating schemes and counting the
recombinants in the offspring. For humans the two
restricting factors were unknown phase (which of the
two marker alleles was on the chromosome with the
disease allele) of the parents and the small family
size. To overcome these obstacles the data had to
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be pooled, but pooling matings of opposite phase
would result in apparent independent assortment.
Therefore each small family had to be analyzed
and then pooled. By extending the principles of
sequential sampling (see Pedigrees, Sequential
Sampling), Morton [7] defined lod scores for linkage
analysis in humans (see Linkage Analysis, Model-
based). Over the course of the past 40 years untold
numbers of lod scores have been calculated – at
the beginning by hand [7] and later by a plethora
of computer algorithms (see Software for Genetic
Epidemiology).

The observation that insulin dependent diabetes
mellitus type 1, IDDM, showed a strong associa-
tion with alleles of the HLA system on chromo-
some 6 (see Disease-marker Association) defined
a new situation for linkage analysis. The question
debated extensively was whether this association
represented linkage disequilibrium between HLA
markers and an IDDM locus or a susceptibility role
for the HLA alleles. The problem was further com-
plicated by the nature of the HLA multi-locus region
which contained numerous haplotypes in disequi-
librium (see Haplotype Analysis). If IDDM were
solely genetic, then reduced penetrance would have
to be invoked when analyzing unaffected individuals.
This problem stimulated the development of methods
to detect linkage that were directed towards using
only affected individuals (see Linkage Analysis,
Model-free). Recent publications have independently
demonstrated that the “model-free” methods can be
considered as subsets of the model-based methods
and by doing so have raised a set of statistical ques-
tions for genetic epidemiologists to resolve regarding
application and interpretation of the different meth-
ods.

The rapid explosion in the development of
the human genome linkage map led to the
necessity for methods that could analyze multiple
loci simultaneously. These methods (see Linkage
Analysis, Multipoint) provide additional precision
in determining the actual location of purported
disease loci.

Likelihood models were derived for simultane-
ously estimating the segregation parameters and the
linkage relationships for a disease locus (loci). More
recently, alternative approaches of using linkage
information alone to determine the mode of inheri-
tance have been proposed.

In the End. . .

In summary, it is important to emphasize three points.
First it is impossible in any overview to include
all of the important factors that contributed to the
development of a scientific discipline. Therefore, this
discussion slighted some developments and empha-
sized others. The second point is to restate the long-
term goal of genetic epidemiology: to understand the
causes of genetic disease in humans. To this end, the
research efforts must be translated into terms that can
be discussed with patients in families at risk (see
Genetic Counseling) and that leads to the formu-
lation of the next set of research questions. Neither
of these end points is simple to derive from the often
convoluted results of analyzing complex disorders in
less-than-ideal data.

And finally, the field of genetic epidemiology has
been responsive to the need for interaction and the
exchange of ideas. The journal Genetic Epidemiology
was established in 1984 and the International Genetic
Epidemiology Society was founded in 1991, adopt-
ing the journal as its official publication. The depth of
methodological disagreements and their effect on the
genetic community led directly to the establishment
of the Genetic Analysis Workshop (GAW) series, the
most recent being GAW 10 in 1996 [1]. These work-
shops provide a unique atmosphere where methods
are compared and evaluated in a controlled workshop
format.

The next challenge for the field of genetic epi-
demiology is to develop new approaches to utilize the
vast amounts of information that will become avail-
able as the human genome is sequenced and to apply
these techniques to the most common and complex
of disorders rigorously and imaginatively.
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Genetic Heterogeneity

When a trait has a genetically different etiology in dif-
ferent individuals, that trait is said to be genetically
heterogeneous. Two major types of genetic hetero-
geneity are identified: allelic heterogeneity and locus
heterogeneity. With allelic heterogeneity, different
alleles at the same locus confer the same phenotype
in different individuals. An example of allelic hetero-
geneity is the cystic fibrosis gene [17]. About 75%
of the chromosomes in cystic fibrosis patients carry
the ∆F508 mutant allele; the remaining chromosomes
each carry one of a large number of different mutant
alleles of the same gene. With locus heterogeneity,
the phenotype in different individuals is due to dif-
ferent loci. A classic example is autosomal recessive
albinism, which can be caused by a mutant allele in
one of at least two different loci. A report by Trevor-
Roper [34] of four normal offspring from the mating
of two affected parents illustrates this concept. An
earlier description of a disease exhibiting locus het-
erogeneity is given by Morton [20] for elliptocytosis.

When the phenotype (see Genotype) is relatively
rare and the rate of new mutations is low, affected
individuals in the same family (almost always) carry
the same mutant allele. As a result, a set of fami-
lies can, in theory, be grouped according to which
mutant allele they carry. If the genes have not yet
been identified, then the usual first step is to deter-
mine, using linkage analysis and additional positional
cloning methods, the loci involved. Statistical analy-
ses that allow for locus heterogeneity can be used to
improve the power of linkage analysis and to group
families according to the locus causing the pheno-
type. Once the loci have been identified, different
mutant alleles within each locus can be identified
using molecular methods and studied using statistical
methods that model allelic heterogeneity.

If the phenotype is common, then affected individ-
uals within a family may not carry the same mutant
allele and families may not be as easily grouped.
Nonetheless, the same overall plan may be followed
(although researchers may instead opt to investigate
specific candidate genes or use linkage disequi-
librium methods to search for candidate loci). We
consider primarily the problem of locus heterogeneity
in the context of linkage analysis, since a substan-
tial body of statistical work is available in this area,

although locus heterogeneity is an equally important
issue for other gene mapping methods.

Locus Heterogeneity

A disease exhibits locus heterogeneity if alleles at
more than one locus confer susceptibility to the dis-
ease. Locus heterogeneity adversely affects the power
of linkage analysis because the sample of families
to be analyzed is in fact a mixture of families with
different underlying genetic architectures. This is a
particular problem for mapping complex diseases, so
named because of their likely considerable degree
of locus heterogeneity. Mapping complex diseases
remains one of the biggest challenges in gene map-
ping. Power can be improved by employing a statis-
tical model that allows for locus heterogeneity, either
by representing the likelihood as a mixture likelihood
(in the absence of additional phenotypic information)
or by incorporating additional phenotypic information
into the likelihood.

Let θ denote the recombination fraction between
disease and marker loci. Consider a set of families
in which a subset of the families is linked (θ < 1

2 )
to a locus denoted A and the remaining families are
unlinked (θ = 1

2 ) to locus A. The disease in families
unlinked to locus A may be caused by one or more
unlinked loci or by environmental factors. Smith [31,
32] proposed the mixture likelihood

Li(α, θ) = αLi(θ) + (1 − α)Li

(
1
2

)
, (1)

where Li(θ) is the likelihood for family i and α is a
mixture parameter. (See Linkage Analysis, Model-
based for a description of likelihood models for
linkage analysis.) A likelihood ratio test of homo-
geneity, given linkage, is given by

χ2 = 2[ln L(α̂, θ̂) − ln L(1, θ̂ )], (2)

where L(α, θ) = ∏
i Li(α, θ). The test statistic has

asymptotically a distribution that is a 50:50 mixture
of a point mass at zero and a chi-square with one
degree of freedom (df). This test of homogeneity
has been termed the A-test, with A representing
“admixture”.

Likelihood ratio tests of linkage in the presence
of heterogeneity can also be constructed using the
admixture likelihood:

χ2 = 2
[
ln L(α̂, θ̂) − ln L

(
1, 1

2

)]
. (3)
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The asymptotic distribution of this statistic is more
difficult to determine than the test of homogeneity,
because under the null hypothesis of no linkage, α

is undetermined. A conservative approximation com-
pares the likelihood ratio statistic to a χ2 with 2 df.
Faraway [7] showed that the asymptotic distribution
is more accurately approximated as the maximum of
two χ2

1 deviates. More recently, Chiano & Yates [4]
used a reparameterization to determine an approx-
imate asymptotic distribution and recommended a
critical lod score of 3.44 to conclude genome-wide
significance.

Given estimates of α and θ , the conditional prob-
ability that family i is of the linked type can be
estimated using

wi(α̂, θ̂) = α̂Li(θ̂ )

α̂Li(θ̂ ) + (1 − α̂)L
(

1
2

) . (4)

When α and θ are known, wi > 1
2 is an opti-

mal classification rule to group families of the linked
type [12]; when α and θ are estimated, the classifi-
cation rule wi(α̂, θ̂) > α̂ is generally more reliable
in small samples [22]. Power to detect heterogeneity
has been considered by other authors [2, 23].

Several generalizations of the admixture likeli-
hood have been proposed. Ott [24, 25] describes a
mixture model for two linked loci in which two
recombination fractions and the heterogeneity param-
eter are estimated. A more complex mixture model,
also described in [25] (see also [33]) specifies a mix-
ture of three distributions, two of which are unlinked
disease loci for which marker data are available and
one of which represents a hypothetical third locus
(or other factor) unlinked to the first two. These
extensions are available in the HOMOG programs
(see [25]). Vieland et al. [35] extended the admix-
ture model to the combined analysis of multiple data
sets by allowing the admixture parameter to vary
across data sets and confirmed that this “compound”
lod score, denoted HLOD-C, has better power in the
presence of locus heterogeneity than HLOD alone or
model-free linkage methods [16].

MacLean et al. [18] proposed the C-test, given by

C =
n∑

i=1

max
θ

Zi(θ), (5)

where the sum is over all pedigrees in the sample and
Zi(θ) is the lod score for family i. MacLean et al.

claimed that the C-test is much more powerful than
the A-test, but this claim has been disputed [8, 19].
One can also fit two-locus (or more generally, mul-
tilocus) models to investigate locus heterogeneity.
Goldin [11] compared the power of some two-locus
linkage models with the admixture model. She found
that the two-locus model was more powerful when
all the families in the sample are segregating for both
loci, but that this increase in power requires correct
specification of the parameters of the genetic model,
and as a result preferred the admixture lod score in
real-data situations.

It is generally held that allowing for locus hetero-
geneity in the analysis improves power for detecting
linkage for rare Mendelian disorders. For small num-
bers of families, the admixture parameter may not
be well estimated. Chiano & Yates [3] proposed a
bootstrap approach to estimating linkage parameters
in the presence of locus heterogeneity. For com-
mon complex diseases, the problem of locus hetero-
geneity is more complex. Durner et al. [6] explored
whether a phenocopy frequency can approximate or
model locus heterogeneity and found that, in general,
assuming a positive phenocopy frequency does not
compensate for the presence of an unlinked form of
genetic disease. Whittemore & Halpern [36] discuss
the limitations of estimating the admixture proportion
when the disease is not rare and when the underly-
ing genetic model is complex. They argue that, for
common diseases, the admixture likelihood relies on
unverifiable assumptions (including correct specifi-
cation of a phenocopy rate) that, if violated, may
decrease power to detect linkage.

Additional phenotypic information can be used
to help classify families into linked and unlinked
types. A simple and common approach is the sep-
arate analysis of subgroups of families, particularly
when families can be grouped according to some cat-
egorical variable. An alternative test, the M-test [20],
can be applied when families can be grouped into c

classes based on additional phenotypic information.
The likelihood is maximized for each class separately
(i = 1, . . . , c) and compared with the likelihood max-
imized over the entire sample. The test statistic is
written as

M = 2 ln(10)

[
∑

i

Zi(θ̂i) − Z(θ̂)

]
. (6)

Asymptotically (i.e. as the number of opportuni-
ties for recombination in each class goes to infinity)
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and under the assumption of homogeneity, the M

statistic follows a χ2 distribution with c − 1 df. The
M-test requires estimation of a separate recombina-
tion fraction in each class. A more powerful approach
based on a hierarchical model and termed the B-
test (with B representing Bayesian) was proposed
by Risch [28]. For this test, the recombination frac-
tions are assumed to follow a beta distribution, the
parameters of which are estimated from the poste-
rior distribution of θ . The resulting likelihood ratio
test is compared against a χ2 with 1 df and is more
powerful than the M-test.

Regression methods have been proposed recently
that allow discrete and continuous phenotypes to be
incorporated as covariates. A generalization of the
admixture likelihood allows the mixture parameter α

to be a function of covariates [30]. Let

α = exp(γ + βTx)

1 + exp(γ + βTx)
, (7)

where x is a vector of covariates, γ is an intercept
parameter, and β is a vector of regression parameters.
Similar problems in determining the distribution of
overall tests of linkage exist for this model as for
other mixture likelihoods.

Some covariates, such as age-at-onset, can also
be incorporated as part of the disease penetrance
functions. When the associated parameters are esti-
mated previously and fixed in the linkage analysis,
such penetrance functions do not affect the null distri-
bution of the linkage statistic. Alternatively, param-
eters in the penetrance function may be estimated
as part of the linkage analysis. One method that
incorporates a dichotomous covariate into an admix-
ture heterogeneity model was proposed by Houwing-
Duistermaat et al. [15], who proposed a mixture of
four likelihoods that represent all combinations of
the two-locus locations and two binomial covariate
parameters.

For model-free linkage analysis (see Linkage
Analysis, Model-free), the usual approach has been
to subset the data and analyze each subset sepa-
rately. More recently, several methods that better
utilize or incorporate additional phenotypic informa-
tion have been proposed. One method utilizes link-
age information to optimally classify families [27].
Greenwood & Bull [13] incorporated covariates into
the Risch [29] affected-sib-pair likelihood using a
multinomial parameterization. A reparameterization
in terms of genetic risk ratios was proposed by

Olson [21]; this model also allows for covariates. A
further modification with fewer parameters was later
proposed by Goddard et al. [10]. Another method
that incorporates a binary environmental exposure
variable was introduced by Gauderman & Sieg-
mund [9]. Most recently, Devlin et al. [5] propose a
mixture model analogous to the A-test. In general,
these new methods allow for covariate-related locus
heterogeneity and, with an appropriate covariate, can
greatly enhance the ability of model-free linkage
methods to detect linkage to complex diseases.

Allelic Heterogeneity

Once a disease locus has been identified, molecular
work is needed to identify the particular mutant
alleles that contribute to disease susceptibility. Some
methods are useful when a few mutant alleles
(polymorphisms) of interest are common in the
population of interest. In general, investigation of
relationships between common mutations and disease
characteristics can be carried out using standard
biostatistical methods in random or selected samples
of individuals or families. Another direction of study
with its own methodology aims at understanding
the underlying population genetics: the processes
that govern mutation, selection, and the structures of
modern populations. Only a few specialized statistical
methods have been proposed for investigating
extensive allelic heterogeneity (when, say, 100
mutational forms are known). One such class of
methods is the analysis of mutational spectra to
identify “hot spots” within a gene more likely to be
mutated in affected individuals [1, 26]. Such studies
aim to understand the structure and function of the
gene (and resulting protein) at a molecular level
(e.g. [14]).
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Genetic Liability Model

Many common diseases (e.g. hypertension, coronary
artery disease and noninsulin-dependent diabetes mel-
litus) exhibit strong familial tendencies but clas-
sical segregation analysis fails to detect a sim-
ple Mendelian pattern of inheritance (see Mendel’s
Laws). The thorough analysis of these traits requires
the formulation of models that incorporate both
genetic and environmental sources of familial corre-
lations. Two widely used models, the multifactorial
threshold model [1–6, 9, 12–14, 22, 23, 28] and the
mixed model [11, 17, 20] posit that an individual’s
liability to develop a disease results from the additive
effects of many genetic and environmental factors.
The probability of expressing the disorder is then
modeled as a function of this latent liability. Both
models assume that liability is continuous. In addi-
tion, the mixed model allows for the existence of
a major locus that measurably alters an individual’s
liability.

Let l denote liability and D denote the affection
status of an individual and assume, for the moment,
that the trait exists in only two forms, normal (D =
0) and affected (D = 1). Under both the multifac-
torial and the mixed models, the probability that an
individual expresses the disease is given by

P(D = 1) =
∫ +∞

−∞
f (l)S(l) dl,

where f (·) is the probability distribution function of
the liability and S(·) is a risk function, i.e. the con-
ditional probability of expressing the disease given
l. The joint probability of the affection statuses of n

related individuals, D1, . . . , Dn, is

P(D1, . . . , Dn) =
∫ +∞

−∞
. . .

∫ +∞

−∞
fn(l1, . . . , ln)

×
n∏

i=1

S(li)
Di [1 − S(li)]

1−Di dl1, . . . , dln.

Under the multifactorial model, fn(·) is the joint dis-
tribution of n correlated continuous variables. Under
the mixed model, fn(·) is a mixture of distributions
whose weights (mixing proportions) are the proba-
bilities of the genotypes at the major locus. There
is little biological rationale underlying the choice of
S(·). Any convenient risk function can be applied as

long as it provides a good fit to the data when used
in conjunction with fn(·). For example, Eaves [7]
uses the well-known logit transformation, SL(l) =
[1 + exp(−l)]−1, in a study of gene–environment
interactions. From a statistical perspective, there is
nothing to distinguish this particular form of genetic
analysis from any other statistical method designed
to model a polychotomy (see Polytomous Data) as a
function of continuous variables. The technical details
of estimation will be addressed only briefly here.

Risk Functions

Since liability was assumed to be normally dis-
tributed, most early work concentrated on the appro-
priate form of the risk function; that is, on the nature
of a “threshold”. Falconer [12, 13] assumed that the
disorder is expressed only when the liability exceeds
a physical threshold, T , so that

SF(l) =
{

1, l > T ,

0, l ≤ T .

Edwards [8, 9], however, argued that the concept of
a physical threshold is biologically implausible: an
occasional individual with a very high liability may
escape the disease; conversely, one with a very low
liability may not. Accordingly, Edwards proposed to
let the risk be a monotonically increasing function of
l and suggested the use of

SE(l) = a exp(bl)

for a > 0 and b > 0. SE(·) is particularly advanta-
geous when the liability is normally distributed, since
the conditional distribution of liability in affected
individuals is still normal, rather than truncated nor-
mal as would be the case under SF(·). However, SE(·)
may exceed unity for very large values of l and thus
cannot be used to represent conditional probabilities.
This observation led Curnow & Smith [5, 6, 23] to
propose an alternative risk function,

SCS(l) = �

[
(l − λ)

ξ

]
,

in which �(·) denotes the cumulative distribution
function of the standard normal distribution. The sen-
sitivity of the phenotype to the underlying liability
is measured by (1/ξ). For any given liability, higher
values of (1/ξ) yield higher probabilities of affection.



2 Genetic Liability Model

The parameter λ is equivalent to the median lethal
dose (see Median Effective Dose) in toxicology, i.e.
the value of the liability at which the probability of
being affected is 50%. By appropriate definition of
liability, SF(·) and SCS(·) can lead to mathematically
identical expressions for P(D) when the joint distri-
bution of the liabilities is multivariate normal [5].
Moreover, since liability is not directly observed, the
parameters ξ and λ will be confounded. For these
two reasons SF(·) is the most commonly used risk
function.

Multifactorial Models

Under the multifactorial model (Figure 1), a continu-
ous liability represents the sum of a large number of
independent genetic and environmental factors. It is
often assumed that all correlations between relatives
stem from shared genes and not from a shared envi-
ronment. This assumption may be relaxed but it then
becomes impossible to estimate the heritability of the
liability and to extrapolate recurrence risks from one
type of relative pair to another. The basic model also
assumes that liability is normally distributed. This is
not a critical assumption since a normalizing transfor-
mation could always be used as long as the liability
is continuously distributed. The prevalence of the
disorder in the population, K , is given by

P(D = 1) = P(l > T ) = 1 − �

(
T − µ

σ

)
,

in which µ = E(l) and σ 2 = var(l). As the three
parameters T , µ, and σ 2 are confounded, there is no

N(0,1)

Normal

Affected

Liability T

Figure 1 Multifactorial model with threshold. The liabil-
ity is assumed normally distributed with mean zero and unit
variance. An individual is affected when his/her liability
exceeds the threshold T . The shaded area is the population
prevalence

loss of generality in taking µ = 0 and σ 2 = 1. Thus,
individual differences in susceptibility are modeled
exclusively through the threshold T ; for example, by
making T a function of age and gender [5, 22, 23].

On the further assumption that the joint distri-
bution of the liabilities of n related individuals is
multivariate normal with correlation matrix R, the
probability of a pattern D = {D1, . . . , Dn} of affec-
tion statuses becomes

P(D) =
∫

I1

∫

I2

. . .

∫

In

φn(l1, . . . , ln; R) dl1 . . . dln

(1)

where φ(·; R) denotes the probability distribution
function of the standardized multivariate normal dis-
tribution with correlation matrix R. The open interval
Ij (j = 1, . . . , n) is either (−∞, Tj ) if Dj = 0, or
(Tj , +∞) if Dj = 1, where Tj is the threshold for
the j th individual. Eq. (1) can be expressed in a more
compact form [26]:

P(D) = (−1)|D| ∑

�≤D

(−1)|D·�|B(�),

where � = [δ1, . . . , δn]t is a vector of ones and
zeros, |D · �| = ∑

Djδj , and B(·) is the integral (1)
taken over (−∞, Tj ] if δj = 0 or over (−∞, +∞)

if δj = 1 for j = 1, . . . , n. That is to say, B(·) gives
the probability that none of the members of a subset
of {1, . . . , n} is affected. The summation is taken
over all vectors � = [δ1, . . . , δn]t such that 0 ≤ δj ≤
Dj(j = 1, . . . , n).

The model parameters (thresholds and corre-
lations) may be estimated by maximum like-
lihood [26]. A simpler form of analysis uses
information on the prevalence and recurrence of the
disease in several classes of individuals. The thresh-
old for individuals in the ith class is estimated directly
from Ki , the prevalence of the disease in that partic-
ular class: T̂i = −�−1(Ki). Let τij denote the prob-
ability that two relatives, one from class i and the
other from class j , are both affected. The estimate
of the correlation in liability for this particular type
of relative pair is obtained by finding ρij such that
τij = �(−T̂i , −T̂j , ρij ).

It is impossible to assign a genetic interpretation
to the correlation coefficient unless it is assumed
that the environmental components are uncorrelated
and that all genetic factors are additive. In that
case, ρij = ∆ijh

2 where ∆ij equals twice the
kinship coefficient (see Inbreeding) and h2 is the
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heritability of the liability [22]. In the absence
of inbreeding, ∆ = 1/2 for first-degree relatives
(parent–offspring, sib–sib), 1/4 for second-degree
relatives (uncle–niece, grandparent–grandchild) and
so on. Thus, the correlation in liability obtained from
different types of relative pairs is a linear function
of the kinship coefficient. It is then possible to
extrapolate the findings on one pair of relatives to
another type of relative pair.

Unfortunately, there are multiple reasons why the
estimates of the correlation coefficients should not be
a linear function of the kinship coefficients. Possi-
ble explanations for a poor fit of the model include
invalidity of the multivariate normality assumption,
presence of dominance within loci, epistatic interac-
tions between loci (see Genotype), or correlations
between nongenetic familial effects [6, 24, 27]. In
addition, the model may fail due to the presence of a
major gene.

Mixed Models

One of the fundamental questions of genetic epidemi-
ology is whether a disease is purely multifactorial
or whether the available data suggest the presence
of at least one locus of substantial effect. Morton &
MacLean [17] introduced the mixed model to test this
hypothesis. Under this model (Figure 2),

l = gm + ε,

where gm is the effect of the major locus and ε is the
residual liability, representing the cumulative effects

Σ P(g)N(g, σ2
ε)

Normal

Affected

g
AA

g
Aa

T g
aa

Liability

Figure 2 Mixed model with a single threshold. The
liability distribution (solid line) is a mixture of three normal
distributions with means gAA, gAa, and gaa, and common
variance σ 2

ε . The area under each component curve (dashed
curves, shown scaled) is the frequency of the associated
genotype

of multiple genetic and/or environmental factors. For
the sake of convenience it is often assumed that
ε = εc + εp, in which εc ∼ N(0, σ 2

c ) is a random
effect common to all offspring of a mating and
εp ∼ N(0, σ 2

p ) represents uncorrelated effects specific
to each individual (including measurement error). The
major gene component of the mixed model usually
admits only two alleles, A and a, thus introducing
four new parameters: three means, gAA, gAa and gaa

and the gene frequency, pA. The probability of a
pattern of affection, D, is computed by summing over
all possible genotypes at the major locus,

P(D) =
∑

P(g1, . . . , gn)

×
∫

I1

∫

I2

. . .

∫

In

φn(l1, . . . , ln; g, R) dl1, . . . , dln,

in which P(g1, . . . , gn) is the joint probability of
the genotypes and φn(·), the probability distribution
function of the residual terms given the genotypes,
is multivariate normal with mean vector g and
correlation matrix R.

Note that if the residual terms are uncorrelated,
the mixed model reduces to a single gene model with
incomplete penetrance:

P(D) =
∑

P(g1, . . . , gn)

×
∫

I1

∫

I2

. . .

∫

In

φn(l1, . . . , ln; g, R) dl1, . . . , dln

=
∑

P(g1, . . . , gn)

n∏

i=1

∫

Ii

φ(li ; gi) dli

=
∑

P(g1, . . . , gn)

n∏

i=1

S(gi),

where S(g) is the penetrance of the genotype g. Thus,
the mixed model differs from the single gene model
only when there exists a source of familial correlation
(polygenic or environmental) other than the major
locus.

Multiple Thresholds

Many disorders are inadequately described by a
simple dichotomy, such as normal vs. abnormal,
because they exhibit gradations in severity. The
question then arises whether these gradations reflect
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the presence of multiple thresholds or the existence
of biologically distinct forms of the disorder [18,
19]. For example, suppose that the trait exists in
three forms, normal (D = 0), mild (D = 1) and
severe (D = 2). This could result from a single
liability distribution with two thresholds (Figure 3).
To compute P(D) under this assumption, one simply
lets the intervals Ii in (1) range from (−∞, T1) if
Di = 0, (T1, T2) if Di = 1, and (T2, +∞) if Di =
2 [25]. Hackett & Weller [15] discuss this type of
model in the context of linkage analysis. Alternately,
the various forms of the disease may be determined
by two different liabilities that may or may not be
correlated. Figure 4 illustrates a situation in which
there are two correlated liabilities (lm and ls). The
severe form of the disease occurs when ls exceeds
the threshold Ts regardless of the value of lm. The
mild form is expressed when lm > Tm and ls <

Ts. The applicability of this model is limited by
the rapid increase in the number of parameters.
Reich et al. [18] detail several situations in which all
parameters may be estimated from prevalence data.

Computational Considerations

Given the widespread availability of programs
to compute the bivariate normal integral, the
approximations to P(D) provided by Falconer and
others for the simplest types of familial data (pairs
of relatives) are now primarily of historical interest.
The calculation of P(D) may still often involve
the calculation of high dimensional integrals – a
significant problem when these computations occur
during an iterative estimation procedure. Some
simplifications are possible when the structure of

N(0,1)

Normal

Mild

Severe

Liability T1 T2

Figure 3 Single liability model for a multifactorial disease
with three categories. An individual expresses the mild form
of the disease if T1 < l < T2 and the severe form if T2 < l

Normal

Mild

Severe

ls

lm

Tm

Ts

Figure 4 Bivariate liability model for a multifactorial
disease with three categories. In this example, an individual
expresses the mild form of the disease when Tm < lm and
ls < Ts and the severe form when Ts < ls, regardless of lm

the data is simple and strong assumptions are made
regarding the transmission of the trait. In particular,
Curnow [5] has shown that if all relatives within
a pedigree are of the same order (e.g. parents
with offspring) and if it can be assumed that the
correlation in liability is due entirely to additive
genetic factors, then P(D1 = 1, . . . , Dn = 1) may
be calculated through the evaluation of a single
integral:

P(D1 = · · · = Dn = 1)

=
∫ +∞

−∞
φ(x)

[
�

(−(T + xρ1/2)

(1 − ρ)1/2

)]n

dx,

where ρ = h2/2 in the case of first-degree relatives.
Two approximations have remained popular for

the general case [16, 21]. These assume that the con-
ditional distribution of li , the liability for the ith
individual given the affection statuses of the pre-
ceding individuals, is well represented by a normal
distribution with mean µ∗

i = E(li |D1, . . . , Di−1) and
variance σ 2∗

i = var(li |D1, . . . , Di−1). These expecta-
tions and variances are obtained from standard results
regarding the moments of variables in truncated mul-
tivariate normal distributions. P(D) is then approxi-
mated as

P(D1, . . . , Dn) ≈
n∏

i=1

∫

Ii

φ(l; µ∗
i , σ 2∗

i ) dli ,

where the interval Ii depends on Di as in integral
(1). This approximation is very accurate when the
correlations are moderate. The results may vary
slightly depending upon the order in which the
integrals are evaluated.
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Discussion

Edwards [10] once questioned whether the multifac-
torial model “bore fruit or flower”. Indeed, the finding
that a multifactorial model provides the best explana-
tion for the transmission of a disease is an anathema
to many geneticists. Nonetheless, such traits certainly
exist and the chances of encountering them increase
as the focus of genetic epidemiology turns from the
investigation of rare Mendelian diseases to that of
common and complex disorders.

The prevailing modern strategy is to forsake the
initial step of model fitting and to jump directly to the
search for the genes. Accordingly, a simplified form
of the mixed model is used in a series of linkage
analyses. The accuracy of the model is subsidiary to
whether it will allow the detection of the genes. Thus,
estimates of the parameters are themselves of little
interest. This is a radical departure from earlier work
on the multifactorial and the mixed model, where the
determination of these parameters was the goal of the
analyses. Two factors contributed to this departure.
First, the recognition that the best fitting model is
not necessarily the correct one. Secondly, genetic
markers now span the entire human genome and it
has been shown that the inclusion of marker data
increases the power of genetic analyses. Thus, the
trend is toward the use of a hybrid of linkage and
segregation analysis in which the mixed model will
retain an important role.
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Genetic Map Functions

A genetic map function M gives a relation r = M(d)

connecting recombination fractions r and genetic map
distances d between pairs of loci along a chromo-
some arm. Recombination fractions and map dis-
tances are summary statistics concerning potentially
observable characteristics of the single chromosomes
(also known as chromatids) that are the products of
meiosis, and that go into gametes. The recombination
fraction between two loci is the proportion of such
chromosomes that are recombinant, that is, that have
genetic material of differing parental origins, at the
two loci (see Linkage Analysis, Model-based). The
genetic map distance between two loci is the aver-
age number of exchange points that occur along such
a chromosome between the loci, where an exchange
point, also known as a crossover point, is a point
where the parental origin of the genetic material
changes. In these definitions, proportions and aver-
ages are calculated in the hypothetical infinite popu-
lation of single chromosomes resulting from meiosis
in a given organism, occurring under standard condi-
tions. Variations between organisms within the same
species, or of the conditions of meiosis, may lead to
small, but observable, differences in these quantities.
It should be noted that some authors (e.g. [1] and
[9]) use the term map function for the function M−1

in the inverse relation d = M−1(r) expressing d in
terms of r . We follow Karlin [7] and others in call-
ing M a map function, mainly because the theoretical
development is slightly simpler for M than for M−1.

Map functions have been widely used in genetics
because of two facts. The first is that genetic map
distances are additive by definition, whereas recom-
bination fractions are not. Thus, map distances are
preferred for mapping chromosomes. The second is
that recombination fractions are much easier to esti-
mate from data, although with human data indirect
techniques may need to be used, see [9]. This is
because recombination refers only to features of chro-
mosomes at the endpoints of intervals. By contrast,
to estimate a map distance information concerning
exchanges in the entire interval between two loci is
required and, until recently, such information was
rarely, if ever, available. Modern molecular genetic
methods now exist permitting the identification of
points of exchange along chromosomes, and in the

near future it may become much easier to estimate
map distances directly (see [8]).

The traditional use of map functions has been to
take an estimated recombination fraction r̂ between
two loci and a map function M deemed appro-
priate for the organism in question, and estimate
the map distance between the loci by the quantity
d̂ = M−1(r̂). Perhaps the simplest case is the map
function r = d, with inverse d = r . This is quite sat-
isfactory for small r and d, say, in the interval (0,
0.05), but the relative error increases as the magni-
tudes of d and r increase. If two loci can be linked
by a chain of intermediate loci, each having a recom-
bination fraction of no more than 0.05 (say) with
its successor, then a quite satisfactory estimate of
the map distance between the initial and final locus
can be obtained by adding the successive interlocus
recombination fractions. The notion of map function
is helpful in situations where such intermediate loci
are not available.

The recombination fraction and map length of
an interval will differ when there is a nonzero
chance of multiple exchange points occurring in
the interval. The chance of this occurring increases
as the size of the interval increases. If we denote
the distribution of exchange points in a particular
interval by (p0, p1, p2, p3, . . .), so that pk is the
expected proportion of single chromosomes that have
k exchange points in the interval, then the recombi-
nation fraction is

r = p1 + p3 + · · · (1)

(i.e. the probability of an odd number of exchange
points), while the map length is

d = p1 + 2p2 + 3p3 + · · · . (2)

For example, if pk = e−ddk/k!, then the map length
is easily seen to be d, while the recombination frac-
tion is

r = e−d + e−d d3

3!
+ · · · = 1

2
(1 − e−2d). (3)

This relation is known as Haldane’s map function,
and it is widely used today, nearly 80 years after
Haldane [6] first described it. Although simple and
easy to use, especially for multilocus calculations,
the Poisson Process underlying this map function
has only rarely been found to fit recombination data.
As a result, a sizeable body of work in the late
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1940s and 1950s from R.A. Fisher and colleagues and
students, excellently summarized in [1], supposed
that the points of exchange along a chromosome fol-
low a renewal process with independent interpoint
distances distributed as 1

4χ2
4 or 1

6χ2
6 , rather than the

1
2χ2

2 that gives rise to Haldane’s map function. Their
model seemed to fit existing human, mouse, and
other data quite satisfactorily, but possesses no map
function.

The very notion of a map function embodies cer-
tain implicit biological assumptions about the process
of recombination. For example, all map functions in
the literature are bounded above by 1/2, thereby con-
straining recombination fractions to be ≤1/2. This is
widely believed to hold, but there have been instances
where it was felt to be untrue, see [4]. Less obvi-
ously, the use of a map function presumes that distinct
chromosomal intervals having the same map length
necessarily have the same recombination fraction, and
conversely. This form of stationarity or homogeneity
is not observed in the one case in which there is
enough data to test it [3]. A number of writers have
discussed probability models for recombination that
do not constrain recombination fractions to be ≤1/2,
and do not satisfy the stationarity properties leading
to a map function, see [1] and [5]. Map functions are
best viewed as an aspect of certain probability mod-
els for recombination. As such, they reflect modeling
assumptions, and cannot be expected to be consis-
tent with all the relevant biological knowledge. What
matters is whether they are effective for the purposes
to which they are put.

Map functions are also useful in contexts where
all the products of meiosis remain together, as is
the case with ordered or unordered tetrads or octads.
In such situations, the model needs to be modified
slightly, for although the concept of map distance
remains appropriate, the classification of chromo-
somes as recombinant or not between loci is replaced
by a classification of tetrads or octads depending on
the parental origins of genetic material at the loci
(see, for example, [2]). We will not give any details,
here, but simply observe that this development leads
us to consider probability models for recombination
that refer to the four-strand bundle of chromatids,
rather than to the single chromosome products of
meiosis. In this approach, chiasmata (the chromoso-
mal structures at points of exchange) are postulated to
occur along the four-strand bundle according to some
point process, and a mechanism for determining the

strands involved in the chiasmata is also specified.
The distribution of change-points along the resulting
chromosomes is then a consequence of the interplay
between the chiasma location process and the strand
choice mechanism, and, in specifying the recom-
bination process in this manner, we are also able
to calculate the probabilities of interest concerning
tetrad and octad types. The simplest assumption con-
cerning strand choice is that the strands involved
in any given chiasma are chosen at random from
the four possible, independently of those chosen for
other chiasmata. This is known as the assumption of
no chromatid interference, interference being a term
used in genetics to denote some form of dependence.
In what follows we make this assumption, although
(see [11]) map functions can be defined without it.

Under the assumption of no chromatid inter-
ference, a simple relationship widely attributed to
K. Mather follows. It states that among meioses in
which one or more chiasmata occur in a given interval
along the four-strand bundle, on average half of the
resulting chromosomes will be recombinant across
that interval. More formally, if r is the recombina-
tion fraction between two loci, and c0 is the chance
of having no chiasma located in the interval in any
meiosis, then

r = 1
2 (1 − c0). (4)

When c0 = c0(d) depends only on the map length
d of the interval, this relation is a map function.
Now every chiasma involves just two of the four
chromatids, and so the average number of chiasmata
between two loci on the four-strand bundle is twice
the average number of points of exchange between
the same two loci on a single chromosome resulting
from meiosis. Suppose that the number of chiasmata
occurring in an interval along the four-strand bun-
dle is Poisson distributed with mean 2d. Then the
map length of that interval is just d, and the chance
of no chiasmata is e−2d . Substituting into the above
formula, we recover the Haldane map function (3)
once more. It should be pointed out, however, that
we can also recover this map function using a dif-
ferent distribution for the number of chiasmata and
a different assumption concerning strand choice [13].
Keeping to the no chromatid interference assumption,
we can derive many probabilistic models for recom-
bination by postulating that chiasmata occur along the
four-strand bundle according to a stationary renewal
process (SRP). If the interchiasma density is f with
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respect to twice the map length density, then simple
arguments from renewal theory show that for such
models,

c0(d) = 2
∫ ∞

d

∫ ∞

y

f (t) dt dy. (5)

It is shown in [14] that most of the map func-
tions in the literature can be realized by substituting
this expression with a suitable f into Mather’s for-
mula (4). This includes certain empirical map func-
tions, such as the following suggested by Haldane
in 1919,

M−1(r) = 0.7r − 0.15 log(1 − 2r). (6)

Map functions must satisfy certain constraints as
a result of their definition, see [11] for details. Some
functions suggested in the literature as suitable map
functions do not satisfy these constraints [12], and
should probably not be used. More importantly, most
map functions are associated with stationary renewal
processes whose multilocus recombination probabil-
ities are extremely difficult to calculate, and for this
reason are not so useful. The class of SRPs with
chi-square distributed interchiasma distances in the
map distance metric has proved both tractable and
fairly general [14]. Another family of recombination
models in the literature are termed the count-location
processes [7]. These require the specification of a dis-
tribution (gk : k ≥ 0) for the number (count) of chi-
asmata along the four-strand bundle, and a sequence
Fk of functions giving the distribution of the loca-
tions of k chiasmata, given that k occur, k ≥ 1. In
the special case that Fk is equivalent to specifying k

locations independently and identically according to
a fixed distribution F , and no chromatid interference,
we easily find that

c0(d) = g

(
1 − 2d

m

)
, (7)

where g(s) = ∑
k gks

k, (0 < s < 1) and m = g′(0).
Risch & Lange [10] found that this class of
recombination models did not give a very good
fit to certain large data sets involving Drosophila
melanogaster.

For many people, map functions are related to the
notion of interference. Crossover interference is said
to exist when the chance of one or more exchange
points in an interval depends on the occurrence of

exchange points in other, disjoint intervals. When the
points of exchange form a Poisson process, there is no
crossover interference. In general, such interference
is observed, which is another reason why Poisson
processes do not form suitable general models for
recombination. (Note that a similar definition of inter-
ference can be formulated that refers to chiasmata
occurring along the four-strand bundle. The corre-
sponding notion is termed chiasma interference.) The
traditional measure of interference is the coincidence
coefficient, this being, for adjacent intervals A and B,

CA,B = r(A&B)

r(A)r(B)
, (8)

where r(A) and r(B) are the recombination fractions
of A and B, respectively, and r(A&B) denotes the
chance of simultaneous recombination across A and
B. It is easy to check that

r(A&B) = r(A) + r(B) − r(A ∪ B)

2
,

where A ∪ B is the union of the adjacent intervals
A and B. Suppose now that A has map length d,
while B has small map length h, and that we take
a limit (assumed to exist) in the expression for CA,B

as h → 0. Assuming that M ′(0) = 1, which is one of
the conditions that a map function must satisfy, we
obtain the differential equation

M ′(d) = 1 − 2C(d)M(d), (9)

where C(d) is the limiting coincidence coefficient,
assumed to depend only on the map length of A.

This argument is due to Haldane [6], and many
familiar map functions are solutions of this equation
when C(d) has the form (M(d))n−1. For example,
when n = 1, we get the Kosambi map function
widely used in human genetics:

M(d) = 1
2 tanh(2d). (10)

The foregoing discussion shows that there is a
connection between map functions and one aspect
of crossover interference. In fact, this connection
is quite superficial. A more useful (and outside of
genetics more widely used) measure of interference
is the expression C4(d) = CA,B where A and B are
infinitesimal intervals separated by a map distance
d. This measure cannot, in general, be expressed in
terms of the map function. In fact, there exist distinct
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probability models for recombination having the
same map function, with one model having C4(d) =
constant, while the other has C4(d), a function
increasing almost monotonically from 0 at d = 0 to
1 for large d. In short, the two recombination models
have the same map function, but very different
interference properties, using the term interference
in a general sense. Map functions do not adequately
account for interference; this must be done using a
probability model for recombination.

We close with some summary remarks. Map func-
tions can be used to convert recombination fractions
to map distances, correcting for multiple exchanges.
They also correct for the effect of interference, but
do not describe interference completely. They are
essentially organism-dependent, and at best provide
only rough approximations. It is not uncommon to
see multilocus analyses carried out using the Pois-
son (no chiasma or crossover interference) model
underlying Haldane’s map function, at the end of
the analysis correcting the estimated recombination
fractions using Kosambi’s or some other map func-
tion. This is necessary because map functions (such as
Kosambi’s) do not, in general, determine joint recom-
bination probabilities for more than three loci. It is
reassuring that this somewhat illogical approach gives
estimated map distances that are not too different
from those that would be obtained using (for exam-
ple) a comparable stationary renewal process model
with chi-square distributed interpoint distances. Ide-
ally, multilocus mapping and linkage analyses should
be carried out using a properly specified probability
model for recombination suitable for the organism in
question. When this is done, map functions are not
needed.
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Genetic Markers

Genetic markers are genetic polymorphisms used
for the study of population structure (inbreeding,
admixture in human populations), linkage anal-
ysis, disease–marker association, haplotype analy-
sis, paternity testing, and forensics (see Statistical
Forensics). Early markers included the blood groups
and various easy-to-observe polymorphisms such as
the ability to taste phenylthiocarbamide and anthro-
poscopic traits.

Beginning about 1960, protein polymorphisms
became detectable by various electrophoretic and
staining techniques, and the HLA system was devel-
oped; protein polymorphisms, together with the red
cell blood groups, made it possible to type a whole
battery of markers from a sample of blood. These
markers segregate in a simple fashion according to
Mendel’s Laws, each genotype giving rise to a
well-differentiated phenotype, but in many cases two
genotypes would correspond to the same phenotype
because of dominance.

Since about 1980, the genetic markers of choice
have been deoxyribonucleic acid (DNA) polymor-
phisms. The first of these were the restriction frag-
ment length polymorphisms (RFLPs), determined by
digesting the DNA with restriction enzymes that cut
the DNA at specific short sequences of base pairs;
mutations in these sequences prevent the cutting,
and differences in the cut and uncut fragments are
detected by variation in the fragment lengths pro-
duced [1]. However, because so many fragments of
similar sizes are produced when the whole DNA is
digested, the fragments for a particular chromosomal
locus have to be distinguished from the rest by a
specific probe – a cloned sequence of DNA, marked
in some way for detection, that will anneal with only
the fragments from that locus. Such markers typically
yield only two or three alleles per locus.

More recently, sequences of base pairs have been
discovered that are repeated a different number of
times from allele to allele (see Gene), and the varia-
tion in these repeats is the basis of a polymorphism.
The first of these polymorphisms to be commonly
used as markers were the minisatellites, also called
“variable number of tandem repeat” (VNTR) poly-
morphisms [3]. In these, the sequence that is repeated
varies from nine to 60 base pairs in length. These
polymorphisms originally required a specific probe

for their detection but can now also be detected via
the polymerase chain reaction [5]. Since 1989, an
abundance of multiallelic short tandem repeat poly-
morphisms (STRPs), also called microsatellites or
simple sequence length polymorphisms, have been
available, the sequence repeated varying from two to
nine base pairs [6, 7]. (Some authors consider STRPs
to be a type of VNTR polymorphism because the only
difference between them is the size of the repeat-
ing unit and the complexity of the repeat.) Both
minisatellites and microsatellites can have very high
polymorphism information content (PIC) and link-
age information content (LIC) values and, apart
from typing errors, show a one-to-one correspon-
dence between genotype and phenotype. They are
particularly advantageous because, with the advent of
the polymerase chain reaction, which allows specific
segments of DNA to be amplified, they can be typed
without any need for probes. They only require very
small quantities of DNA, such as can be obtained
from a cheek swab, and have largely supplanted all
the earlier markers. During the 1990s, about 10 000
STRPs were identified and mapped, and many hun-
dreds of genes have been mapped using them.

The most recent genetic markers are sin-
gle nucleotide polymorphisms (SNPs, pronounced
“snips”) [2, 4], which are extremely abundant in the
human genome – occurring approximately on aver-
age once every one or two thousand base pairs. SNPs
are essentially diallelic RFLPs that involve a tran-
sition or transversion, or an insertion/deletion of a
single nucleotide. SNPs can be detected by many
different methods. They may supplant STRPs when
the cost of typing them becomes cheaper (at most
a third of the cost of typing multiallelic RFLPs) and
they can be reliably typed because of their abundance
and proximity to coding sequences. SNPs are often
observed within the coding sequence of genes and
may play a direct role in altering the function of a
protein.
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Genetic Risk Ratios

In human genetics and genetic epidemiology, risk
ratios can assume a number of different forms, includ-
ing risk ratios for relatives, for candidate genes, and
for genetic markers. The goal of many genetic stud-
ies is to quantify the risk of disease occurrence asso-
ciated with particular genetic factors. The strength of
this association can depend on interactions between
environmental and genetic factors, gene–gene inter-
actions, and the distance along a causal pathway from
a genetic variant to a disease outcome. Models that
can incorporate these complexities have an important
role. Here, however, we focus on risk ratios corre-
sponding to associations between a single disease
and a single genetic factor.

Let D denote the disease under study, and let G
or G denote the presence or absence of a particular
genetic characteristic in an individual. In these risk
ratios, exposure is defined in terms of an individual’s
genetic information G. Further assume that every
individual is correctly classified as having (D) or
not having (D) the disease. Then, a general genetic
relative risk (RR) is defined as

RR = Pr(D|G)

Pr(D|G)
. (1)

This measure of disease-by-genetic-factor associa-
tion is just the ratio of the conditional probabilities of
having the disease given the presence or absence of
the genetic characteristic. These conditional proba-
bilities are usually referred to as penetrances, and
require cross-sectional or cohort designs for their
direct estimation. Individuals or families are often
sampled according to a disease-related phenotype, so
the odds ratio is also useful because of its invariance
to the direction of sampling. The genetic odds ratio
(OR), that approximates the genetic RR for a rare
disease, is

OR = Pr(D|G)/Pr(D|G)

Pr(D|G)/Pr(D|G)
, (2)

which can be written equivalently as

OR = Pr(G|D)/Pr(G|D)

Pr(G|D)/Pr(G|D)
. (3)

Risk Ratios for Relatives

When a genetic factor cannot be measured directly,
but information on disease status is available on
family members of an affected individual, genetic risk
ratios can be derived indirectly.

Familial Aggregation

Evidence for familial aggregation, which is the ten-
dency of disease to cluster in families, provides
a rationale for subsequent genetic studies intended
to assess particular genetic factors or to search for
disease susceptibility genes. A measure of familial
aggregation that uses information on family history
(FH) of disease, say, in first-degree relatives, is

OR = Pr(D|FH)/Pr(D|FH)

Pr(D|FH)/Pr(D|FH)
. (4)

In a case–control design, D and D correspond
to affected cases and unaffected controls, while FH
is a surrogate for genetic loading in the family, and
is thus subject to misclassification error [14]. Even
in the absence of any genetic etiology, however,
the probability of a positive FH increases with the
number of relatives considered. Alternatively, FH
scores can be defined to take into account the number
of affected relatives and the family structure.

In a family-based case–control design, familial
aggregation can also be assessed by comparing the
risk of disease among relatives of cases with that
among relatives of controls,

Pr(D in relative type R of case|affected case)

Pr(D in relative type R of control|unaffected control)
. (5)

When this ratio is greater than 1, family aggre-
gation can be present, but, without additional envi-
ronmental exposure information, aggregation due to
shared genes can be indistinguishable from that due
to shared environment [5]. For controls that are rep-
resentative of the general population, the denominator
of this ratio approximates the population risk.

Recurrence Risk

A related measure is known as the recurrence risk for
a type R relative of an affected individual. It occurs in
the numerator of the ratio, (5), for familial aggrega-
tion in family case–control designs. In Risch’s [7]
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development of multilocus models of inheritance
(see Segregation Analysis, Classical) for complex
traits that are useful in linkage analysis, he defines
a risk ratio, λR, which compares the recurrence risk
in relatives of type R of an affected individual with
the population prevalence K . For example, when the
relative type is a sibling, λs is defined as

Pr(D in Relative who is a sibling|affected case)

K
.

(6)

Risch [8] also establishes how the power of
affected relative pair studies to detect linkage
critically depends on the value of λR. The relationship
between ds and the genotype RR, defined using (1)
with G and G denoting individuals with or without
the susceptibility genotype respectively, depends
on allele frequency and the genetic inheritance
models [9].

Risk Ratios for Candidate Genes

Investigations of candidate genes are usually based
on a priori biologic hypotheses about a particular
candidate gene. If genetic information is available,
say in the form of a measured candidate gene, then
the association of particular genetic variants with a
disease can be evaluated using several versions of
the genetic risk ratio. These include allelic, genotype,
and haplotype RRs, although the latter is usually
considered in the context of a genetic marker (see
further below).

A common study design involves sampling indi-
viduals by disease status, assembling an appropriate
control group, genotyping cases and controls at a
candidate gene locus, and then comparing the dis-
tribution of the candidate gene between the case and
control groups. Population (case–population control)
and family-based (case–parental control) designs are
two approaches used to assess risk ratios for the asso-
ciation of a candidate gene with a disease phenotype.

In case–control studies of candidate gene loci, a
fundamental issue is the choice of a reference or
control group. Controls can be randomly selected
from the population of unaffected individuals
or can be matched to the affected cases on
relevant characteristics. Because genetic factors
vary greatly by ethnic background and population
history and geography, there is a serious potential

for confounding by population stratification when
unrelated individuals are used as controls or when
matching on available measures of ethnicity is
inadequate. To avoid this problem, the control
group can be drawn from members (or potential
members) of the family of a case instead of unrelated
individuals. However, population controls may be
less costly to recruit, and, in the absence of population
stratification, may be more efficient statistically (see
Family-based Case–Control Studies).

Population Risk Ratios

At a candidate gene locus, each individual inherits
one genetic variant, known as an allele, from each
parent and the two alleles together constitute a geno-
type. When only two variants occur in a population of
individuals, there are three possible genotypes, while
for a locus with multiple variants (n alleles), there are
n(n + 1)/2 possible genotypes. For a single multial-
lelic locus, the genetic factor G can be expressed as

G =
{

ai i = 1, . . . , n, to denote a single allele, or
aiaj i, j = 1, . . . , n, to denote a genotype.

(7)

For a candidate gene with two alleles, a1 and a2,
we can define genotype RRs in which G depends on
the presence or absence of allele a2, i.e.

RR1 = Pr(D|a1a2)

Pr(D|a1a1)
, RR2 = Pr(D|a2a2)

Pr(D|a1a1)
, (8)

and the corresponding genotype ORs as

OR1 = Pr(D|a1a2)/Pr(D|a1a2)

Pr(D|a1a1)/Pr(D|a1a1)
,

OR2 = Pr(D|a2a2)/Pr(D|a2a2)

Pr(D|a1a1)/Pr(D|a1a1)
.

(9)

When an increased risk of disease is associated
with having only one copy of allele 2, i.e. a2 is dom-
inant to allele a1, OR1 = OR2 > 1, whereas when an
increased risk is associated with two copies of a2, i.e.
a2 is recessive to allele a1, OR2 > 1 and OR1 = 1.
This formulation permits tests of overall association
of the candidate gene with a disease by considering
the two ORs jointly, as well as specific tests for mode
of inheritance.

For a multiallele locus, the number of genotype
categories can become large. Because comparisons
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based on the presence or absence of an allele are
more parsimonious, an alternative approach is to
use the allele rather than the genotype as the unit
of analysis, with two observations contributed from
each individual. For example, one approach in a
case–control study is to estimate each allelic RRi

by counting and comparing the frequency of the ai

alleles between cases and controls.

Family-based Risk Ratios with Parental Controls

One particular family-based design involves the as-
certainment of an affected individual followed by
genotyping of this case and their parents. Falk &
Rubinstein [2] proposed that the maternal and pater-
nal alleles transmitted to the affected child form a
case genotype (D) while the nontransmitted alleles
form a control genotype (D).

For a two-allele candidate gene locus with alleles
a1 and a2, a simple genotype RR is

RR = Pr(D|presence of allele a2)

Pr(D|absence of allele a2)
, (10)

which does not distinguish between genotypes with
one or two copies of allele a2. When the measured
candidate gene is the disease gene, this RR is insensi-
tive to population stratification, and can be estimated
without bias by the OR [4, 6]:

OR = Pr(a2 is present|D)/Pr(a2 is absent|D)

Pr(a2 is present|D)/Pr(a2 is absent|D)
.

(11)

This OR is sometimes referred to as a haplo-
type RR, particularly when a genetic marker rather
than a candidate gene is used [2, 6]. Schaid & Som-
mer [11] suggest the use of two genotype RRs to
distinguish between genotypes with one or two copies
of allele a2. Valid inference generally requires that the
case–control matching be taken into account.

Examination at the level of the individual allele,
rather than the genotype, leads to an allelic RR. The
alleles transmitted and not transmitted by each of
the parents are the basis of this risk measure, which
is closely related to the transmission/disequilibrium
tests (TDT) noted in the following section. However,
inference can be complicated by a lack of indepen-
dence between the parental transmissions, and models
that condition on the parental genotypes are more
suitable in this case [10].

For a multiallele locus with parents having alleles
a1a2 and a3a4, there are four possible genotypes that
could be observed in their offspring. If the affected
child (D) received alleles a1 and a3, then the geno-
types a2a4, a1a4, and a2a3 can be taken as control
(D) genotypes. Self et al. [12] formulated a general
likelihood for a series of independent affected chil-
dren based on indicator variables for the presence
or absence of a given allele in the case and control
genotypes. Their approach assumes uniform segrega-
tion of gametes apart from the genotype effect, but
does not require the parental genotypes to be inde-
pendent. The likelihood they develop has the same
form as that for a logistic regression analysis of a
matched case–control study with a single case and
three controls.

Features of other family-based case–control de-
signs that include siblings and cousins as controls
have been of recent interest [3, 15].

Risk Ratios for Genetic Markers

Genotype, allelic, and haplotype RRs analogous to
those described for candidate genes can be estimated
using genetic markers. When specific genetic loci for
a disease are unknown, finely spaced genetic markers
with known locations may be used to screen the
whole genome or selected genomic regions to help
localize a disease-susceptibility gene.

Allelic information for a single locus can be
extended to the multilocus setting by considering
haplotypes. When two or more neighboring loci are
considered together, a haplotype can be defined as
a multilocus analog of an allele. A pattern of alle-
les from each of several loci that are transmitted
together from one parent constitute one haplotype.
For two loci, with n1 and n2 alleles, respectively,
occurring in a population, there are n1 × n2 possible
haplotypes that can be expressed as G = aibj , where
ai and bj represent allele types i, i = 1, . . . , n1, and
j, j = 1, . . . , n2, from the two loci comprising the
haplotype. A pair of haplotypes, one inherited from
each parent, constitutes a multilocus genotype. A
multilocus haplotype of two genetic markers defined
in this way can be used to construct a haplotype
RR analogously to an allelic RR for a single genetic
marker.

A multilocus haplotype can also be constructed
from a genetic marker and disease gene, but the latter
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is usually unobserved. When two loci forming a hap-
lotype on a parental chromosome are close together,
they are less likely to be separated by recombina-
tion when a gamete is formed during meiosis. This
phenomenon can be exploited in disease–gene local-
ization studies through the modeling of a haplotype
consisting of an allele at a known marker location and
an unobserved disease allele. Association between
particular alleles of a genetic marker and specific alle-
les of the unobserved susceptibility gene that occurs
across families in a population is known as allelic
association or linkage disequilibrium, whereas the
term linkage refers to association that occurs within
a family. The absence of tight linkage disequilibrium
between alleles at an unobserved causal disease gene
locus and measured alleles at marker loci can induce
attenuation bias in the RR estimates based on marker
alleles [4, 6].

The class of methods known as TDT used in
family-based designs involve hypothesis tests that
detect linkage only in the presence of allelic associa-
tion [6, 13]. These methods can also test for associ-
ation in the presence of linkage, provided correlation
between parental transmissions or among related indi-
viduals induced by the presence of linkage are taken
into account [1, 13].
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Genetic Transition
Probabilities

Genetic transition probabilities represent one of
four major components of likelihoods employed
in segregation analysis, the statistical methodology
used to elucidate, from family data, the mode
of inheritance of a particular trait. The other
components are concerned with the joint genotypic
frequencies of mating pairs, the method by which the
sample is ascertained, and the relationship between
genotype and phenotype. The set of genetic transition
probabilities describes how genetic variability is
passed from one generation to the next. This
approach to specification of the mode of inheritance
was originally developed in the context of the
“generalized major gene transmission model” [4], but
subsequent synthetic efforts led to the formulation
of a unified model incorporating elements of the
classical mixed model in segregation analysis [5]
while retaining the use of genetic transmission
probabilities (see below) to describe genetic transition
from one generation to the next.

A genetic transition probability specifies the prob-
ability that an offspring has a particular genotype,
conditional on the genotypes of the parents, i.e. the
probability pstu that an offspring has genotype u,
given that one parent has genotype s and the other has
genotype t . For single-locus models, the conditional
probabilities {pstu} form the elements of a three-
dimensional stochastic matrix called the genetic tran-
sition matrix. These matrices represent mathematical
summarizations of the genotypic distribution of off-
spring, conditional on the two parental genotypes, and
possibly upon the gender of the offspring. They are
commonly displayed as a two-dimensional matrix in
which each element is a vector giving the probability
distribution of the set of all possible offspring geno-
types, conditional upon the parental mating type (pair
of parental genotypes). The matrix of genetic transi-
tion probabilities under a simple Mendelian model
(see Mendel’s Laws) positing two allelic gene alter-
natives, A and a, at a single autosomal locus is given
in Table 1, where each entry is a genotypic distribu-
tion [pst1 pst2 pst3], i.e. the vector of probabilities
that the offspring is AA, Aa, and aa, respectively,
conditional upon parental mating type s × t . Thus,
the mating type AA × AA can produce only AA

Table 1

t

s 1 = AA 2 = Aa 3 = aa

1 = AA [ 1 0 0 ] [ 1
2

1
2 0 ] [ 0 1 0 ]

2 = Aa [ 1
2

1
2 0 ] [ 1

4
1
2

1
4 ] [ 0 1

2
1
2 ]

3 = aa [ 0 1 0 ] [ 0 1
2

1
2 ] [ 0 0 1 ]

offspring, and the AA × aa mating only Aa offspring,
while the Aa × Aa mating type is associated with
1/4, 1/2, and 1/4 probabilities of producing AA, Aa,
and aa offspring, respectively. Two such matrices
are required if the locus of interest is X-linked, one
for male offspring, and another for female offspring;
dimensioning is also gender-dependent. The genetic
transition matrix can be specified for any number of
unlinked loci by utilizing Kronecker products to oper-
ate upon the individual genetic transition matrices for
those loci, and this approach can also be generalized
to accommodate linked loci [4].

The genetic transition probabilities {pstu} can be
expressed as functions of transmission probabilities
that describe the probability that an individual with a
given genotype transmits a particular allele (from the
set of possible allelic variants) to his or her offspring.
To illustrate the use of transmission probabilities,
consider the case of an autosomal locus with two
allelic alternatives, A and a, and define τt as the prob-
ability that an individual with genotype t transmits an
A allele to the offspring; by symmetry, (1 − τt ) is the
probability that this individual instead transmits an a
allele, and the entries of the matrix are generated by

[ pst1 pst2 pst3 ] = [τsτt τs(1 − τt ) + τt (1 − τs)

(1 − τt )(1 − τt )] .

If we specify the values τAA = 1, τAa = 1/2, and
τaa = 0, which are appropriate under a Mendelian
model that assumes that there is no mutation and that
either parental allele is equally likely to be trans-
mitted (no meiotic drive), then we obtain the values
given in the above genetic transition matrix for a
diallelic autosomal locus [2, 3]. Typically, the trans-
mission probabilities are estimated jointly with other
model parameters via likelihood and compared with
results obtained under models specifying particular
values or constraints on the transmission probabili-
ties [1–3, 5] (see Segregation Analysis, Complex).
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This general approach is also used in connection with
regressive models for analyzing family data. Other
extensions provide for the inclusion of phenomena
such as mutation in the context of segregation anal-
ysis of pedigrees [7].

Care should be taken to distinguish the term tran-
sition probabilities (pstu) from the component trans-
mission probabilities (τt ). It may be noted that the
matrix of genetic transition probabilities is analogous
to the matrix of transition probabilities from classi-
cal developments using stochastic processes, which
have also been applied fruitfully to genetic problems:
while the genetic transition matrix mediates change
from one generation to the next, it also differs in
that it describes a transition involving genetic trans-
mission from two individuals (the parents) in one
generation to a single individual (the offspring) in
the next. The term “transition matrix” has also been
applied to arrays of genotypic probabilities of indi-
viduals conditional on the genotypes of a relative
of a particular type, such as the I and T matrices
described by Li & Sacks [6] for the one-locus, two-
allele case under panmixia.

In the case of polygenic inheritance, the geno-
type of interest is a polygenotype, which is typically
modeled as having a Gaussian population distribu-
tion (see Normal Distribution) with variance σ 2

G.
The genetic transition probability under such cir-
cumstances is modeled as a probability density; for
example, under the classical additive polygenic model

assuming panmixia, the expression for the offspring
polygenotype H of parental polygenotypes F and
G is a normal density with mean (F + G)/2 and
variance σ 2

G/2. Genetic transition probabilities for a
single locus of major effect and polygenic inheritance
are both utilized in mixed models that contain both
polygenic and monogenic components [2, 3].
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Genitourinary Medicine

The application of biostatistics to genito–urinary
medicine is largely focused on the epidemiology of
sexually transmitted diseases (STDs). The evalua-
tion of treatment efficacy for particular conditions
is, in general, carried out using standard statisti-
cal methods, and these are not considered further.
Some STDs in developed countries are ascertained
with reasonably complete case notification or, alter-
natively, prevalence estimates are derived from data
from sentinel clinics. However, for other important
STDs, e.g. chlamydia and human papilloma virus
(HPV), there is poor case ascertainment and little
knowledge of prevalence or incidence in general
populations.

The epidemiology of STDs differs in important
respects from the epidemiology of many other infec-
tious diseases. As with any infectious disease, risk is
dependent on the prevalence of the disease in the pop-
ulation and, with bacterial STDs, multiple episodes
are possible. However, the analysis of STD transmis-
sion has elements in common with problems often
associated with environmental health exposures. Risk
of disease is largely determined by individual risk
behavior (i.e. numbers of partners, types of sexual
acts, use of condoms, etc.). These different modes of
behavior are heterogeneous [1, 5, 7] and difficult to
measure accurately.

Historical Development

Hethcote & Yorke [4] carried out fundamental the-
oretical work in deterministic modeling of STD
dynamics. This work has been extended to apply
to human immunodeficiency virus (HIV) and AIDS,
notably by May & Anderson [8]. The work essen-
tially involves setting up differential equations to
describe disease incidence in different strata of pop-
ulation, as a function of sexual behavior and disease
prevalence throughout the population. In its simplest
form, the basic reproductive rate (R0) is a product of
the probability of transmission (b), the rate of part-
ner change (C), and the duration of infection (D).
Another important area of theoretical research has
been to investigate the possible effects of concur-
rent partnerships on the dynamic evolution of STDs
and HIV in a population [2]. Researchers have also

used stochastic Monte Carlo microsimulations, but
these have been more focused on HIV and AIDS than
other STDs.

For theoretical models to be useful, they must
use reliable empirical data. However, possible behav-
ioral determinants of STD risk are hard to define,
let alone measure. Models are often posed in terms
of rates of acquisition of new partners, a concept
which is difficult to reconcile with the real expe-
rience of individuals. As a result, people may not
necessarily report their sexual behavior reliably, nor
interpret concepts such as partnerships or sexual
contacts in the way a researcher would wish. Indi-
viduals may tend to report, and indeed remember,
what is socially acceptable rather than what actually
happened.

Development of Survey Methods

In the 1990s, a number of important studies were
carried out in developed countries to attempt to gener-
ate accurate information on the distribution of sexual
behavior in the general population of the UK [5],
France [1], and the US [7]. Although standard sur-
vey methods were used, the sensitivity of the subject
reinforced the need for rigorous attention to detail.
Great care was taken to generate representative sam-
ples. The questionnaires provided appropriate and
clear definitions of concepts (e.g. sexual intercourse,
sexual partner) using unambiguous and nonjudgmen-
tal terms. Respondents were assured of confidential-
ity and the questions were designed to facilitate accu-
rate recall of past events. Nevertheless, all studies to
date have suffered to some extent from inconsistent
responses from men and women, where, for example,
men tend to report more opposite sex partners than
women [10].

Sexual Networks and Mixing

There has been much interest in understanding the
structure of sexual networks and tracing possible
chains of infection. Theoretical and empirical stud-
ies have been carried out [6]. Routine STD clinic
contact tracing (e.g. sexual contacts of gonorrhoea
cases) can provide one possible avenue to identifying
these contact networks. As well as studying part-
ner choice at the micro (individual) level there has
also been considerable research into understanding
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mixing patterns at the macro level. In other words,
is there a general propensity for people dispropor-
tionately to choose partners similar to themselves
(assortative mating), dissimilar to themselves (dis-
assortative mating), or is any partner equally likely to
be selected irrespective of sexual behavior (random
mating)? In matrix terminology, if men and women
are allocated to strata i, j dependent on numbers
of partners, then the proportion of men in stratum
i who have female partners in stratum j will then
be the i, j th element of the mixing matrix. In this
notation, assortative mating is represented by dispro-
portionately large values along the main diagonal, and
conversely for disassortative mating. Renton et al. [9]
have shown how the mating matrix describing a pop-
ulation may be inferred from information about STD
transmission contact pairs attending a genito-urinary
medicine (GUM) clinic.

Study Designs

Studies designed to elucidate risks for STDs are
usually observational. Because of the difficulty of
measuring behavioral variables, residual confound-
ing will always be a potential problem in any attempt
to measure a particular risk factor while controlling
for others. There is limited scope for using random-
ized controlled trials (RCTs) (see Clinical Trials,
Overview) to examine different risk factors for the
acquisition of STDs, because risk factors such as
numbers of partners or types of sex are only amenable
to educational intervention. An important exception
was the RCT of STD treatment carried out in Tanza-
nia [3], where randomization was at the community
level. Case–control studies of STD risk have the
additional problem of identifying suitable control
groups, and several published studies have reported
misleading results. If cases are selected from an STD
clinic setting, then others attending the same clinic
will almost certainly be poor controls because of the
nature of the risk that caused them to attend the clinic.

STD and HIV

It is possible that HIV risk is enhanced in the presence
of concurrent STD, and this could explain some of the
difference in HIV prevalence between the developed
and the developing world. STD intervention in Tan-
zania reduced HIV incidence and Groskurth et al. [3]

provide evidence for this. The trial was the first of
its kind to use an RCT design to avoid any possible
bias by confounding with behavioral factors, which
had been a problem with all previous observational
studies showing a link between HIV and STD. It is
becoming increasingly apparent that silent epidemics
of chlamydia and HPV may be much more important
than was previously realized. The methodologic prob-
lems relating to ascertainment of reliable estimates
of population prevalence for these silent diseases are
considerable.

Future development

It is to be hoped that a better understanding of the
sexual mixing matrix, both empirically and theoreti-
cally, will increase the utility of transmission models.
Further examination of the interaction between HIV
and STD may lead to better understanding of the epi-
demiology of HIV and in particular its geographic
variability. The use of organism typing to determine
chains of transmission in network and contact trac-
ing studies, in particular with gonorrhoea, has the
potential to improve vastly our knowledge of sex-
ual networks and the spread of STD within social
networks. Finally, improved survey methodology is
required to facilitate the collection of better behav-
ioral data.
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Genome-wide Significance

When markers distributed throughout a genomic
region (perhaps 300–500 in present-day whole ge-
nome scans in humans) are used to map a gene or
genes contributing to a phenotype (see Genotype) of
interest, control of the overall false positive error rate
involves a statistical issue of multiple comparisons.

For a single genomic locus t , possibly but not
necessarily a marker locus, let Z(t) be a statistic such
that large values of Z(t) are indicative of linkage
of a trait to the locus t . The nominal significance
level of the threshold b is P0{Z(t) ≥ b}. Here, P0

denotes probability under the null hypothesis that
the trait is unlinked to t . Suppose k genomic loci,
{ti : i = 1, . . . , k}, each defined by its genomic map
position given (for example) in centimorgans (cM)
from a specified chromosomal location, are all tested
for genetic linkage by means of Z(ti), i = 1, . . . , k;
and linkage to location ti is declared if Z(ti) exceeds
a suitable threshold, b. The genome-wide significance
level for testing the hypothesis that none of the
genomic loci is linked equals

P0

{
max

i
Z(ti ) ≥ b

}
. (1)

Now the symbol P0 denotes probability under the
idealized hypothesis that none of the ti is linked.
Although with markers distributed throughout the
genome it is unlikely that this idealized hypothesis
is exactly true, it can, nevertheless, be regarded as
a limiting approximation for the case that the phe-
notypic contributions of all linked genes are so small
relative to the amount of data available that it is effec-
tively impossible to detect those linkages. A slightly
different interpretation is that (1) provides a bound
on the probability that a false positive error occurs
anywhere in the genome.

The simple Bonferroni inequality states that

P0

{
max

i
Z(ti ) ≥ b

}
≤

k∑

i=1

P0{Z(ti) ≥ b}. (2)

In cases where the nominal significance levels are
easily computed and the Z(ti) are not highly depen-
dent (i.e. the ti are sufficiently sparse that there
is a reasonable amount of recombination between
them), the Bonferroni inequality provides a simple,

conservative approximation for the genome-wide sig-
nificance level by the nominal significance levels. Its
virtue is that it requires no assumptions about depen-
dence among the different Z(ti). This is also its weak-
ness, since by taking the dependence into account one
can sometimes obtain more precise results.

For mapping quantitative traits in a backcross,
Lander & Botstein [6] gave a simple approximation
to (1) when the genomic locations ti were an infinitely
dense set of markers; they also provided simulated
values when the ti were markers equally spaced
throughout an idealized tomato genome of 12 chro-
mosomes of 100 markers each. Feingold et al. [5]
showed that a similar analysis could be applied to
allele-sharing statistics in human genetics, provided
the sample size is large enough that a normal approx-
imation to the distribution of the Z(ti) is reasonable;
and they derived an approximation [(4) below] for
the case of fully informative markers equally spaced
at an intermarker distance ∆, which reduces to the
earlier one in the limiting case that ∆ = 0.

In a debated, yet influential opinion piece, Lander
& Kruglyak [7] argued that one should generally use
the dense marker (∆ = 0) approximation because
(a) promising indications of linkage based on a sparse
set of genomic locations was often followed up by
saturating the promising area with what amounts to a
dense set of markers; and (b) even in cases where this
is not a feature of one particular study it is effectively
the case when one considers the scientific community
as a whole.

In particular studies, investigators have used
Monte Carlo methods to determine the genome-
wide significance level under the special conditions
of their study. If direct simulation of the genome-
wide significance level is forbiddingly complex, one
may alternatively simulate the nominal significance
levels and use the Bonferroni inequality to give
a conservative approximation for the genome-
wide significance level. This can be particularly
effective when the nominal significance levels are all
approximately the same.

Although simulations that are tailor made to the
situation at hand are in many respects the best solu-
tion to the problem, simple analytic approximations
can be useful to provide a rough check of a simu-
lation program for gross errors and for theoretical
comparisons of different experimental designs, when
calculations must be repeated many times for differ-
ent parameter values.



2 Genome-wide Significance

Remark

The problem of multiple comparisons in linkage anal-
ysis was recognized already in the classic paper of
Morton [8], but it was dealt with differently. One
assigned a prior probability of linkage to a randomly
distributed marker and then determined a threshold
for the detection of linkage that would make the pos-
terior probability of linkage sufficiently large. See
Ott [10] or Morton [9] for recent expositions of this
idea, which with certain assumptions leads to the
traditional threshold of 3 on the lod scale as the crite-
rion to detect linkage. This analysis requires specific
assumptions about the number, strength, and loca-
tion of trait loci relative to linked markers. It seems
adequate for Mendelian traits and a relatively small
number of markers, where the linkage signal at a
marker lying close by a trait locus is very strong
and the principal impediment to the detection of link-
age is the recombination fraction (distance) between
a trait locus and the nearest markers. It seems less
well suited for present-day genome scans designed
to map genes for complex and/or quantitative traits.
These genome scans involve large numbers of mark-
ers closely spaced throughout the genome, in order
to map what may be multiple genes of variable pen-
etrance, possibly interacting with each other and/or
with the environment; and the major impediment to
the detection of linkage is the absence of strong sig-
nals from the individual genes, even at markers lying
next to or within the genes.

Approximation and Examples

Assume that fully informative markers are equally
spaced at intermarker distance ∆ throughout the
genome. Let Z(ti) denote the statistic to be used for
testing linkage to the marker ti . We assume Z(t) has
been standardized so that at unlinked marker loci it
has mean 0 and variance 1, and that it is reasonable
to regard Z(t) as approximately normally distributed.
An additional condition is that as s → t

cov[Z(t), Z(s)] = 1 − β|t − s| + o(|t − s|), (3)

where o(|t − s|) approaches 0 faster than |t − s|,
and β is a parameter determined by the genetic
relationships of the individuals contributing data to
Z and on the form of the statistic Z.

A simple and important example is a sample of
N independent sib pairs with X(t) equal to the total
number of alleles shared identical by descent (ibd)
at the marker locus t (see Identity Coefficients).
Let Z(t) = [X(t) − N ]/(N/2)1/2 be the ibd count
standardized so that at an unlinked locus it has
mean 0 and variance 1, while its mean is positive
at a linked locus. Approximate normality of Z(t)

is a consequence of the central limit theorem if
the number N of sib pairs is reasonably large. In
this case β = 0.04/cM. A second example is the
standardized regression statistic for testing that t is
a quantitative trait locus in a backcross [6]. In this
case, β = 0.02/cM. Other allele-sharing statistics and
under certain conditions the signed square root of the
(natural) log likelihood ratio statistic will also satisfy
the required conditions. In human genetics the value
of β will typically be slightly larger than 0.04, but its
exact value will depend on the relationships of the
individuals involved.

Under the assumed conditions

P0

{
max

i
Z(i∆) ≥ b

}
≈ 1

− exp{−C[1 − Φ(b)] − Lβbϕ(b)ν[b(2β∆)1/2]}.
(4)

In this formula, C is the number of chromosomes
searched, L is their total genetic length, ϕ is the
standard normal probability density function, Φ is
the standard normal distribution function, and ν(x)

is a special function, which is easily computed
numerically and in the range 0 ≤ x ≤ 2 is well
approximated by exp[−0.583x].

For a numerical example, we consider an ideal-
ized human genome of 23 chromosomes of average
genetic length of 140 cM. For intermarker spacings
of ∆ = 0, 1, 5 and 10 cM, (4) yields a genome-
wide significance level of 0.05 at the thresholds
b = 4.08, 3.91, 3.73 and 3.6, respectively. On the
lod scale, these thresholds are 3.62, 3.32, 3.02 and
2.82. The Bonferroni inequality (2) provides a very
good approximation when ∆ ≥ 10 cM, but it becomes
overly conservative as ∆ approaches 0. For a back-
cross, the smaller value of β indicates greater depen-
dence between the values Z(ti ) with the result that the
conservatism of the Bonferroni inequality becomes
apparent for somewhat larger ∆.

A number of related cases have been studied in
detail and are reasonably well understood.
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1. For qualitative traits studied using sib pairs or
for quantitative traits in either an intercross in
experimental genetics or in sibships, one may
use a two degrees of freedom statistic in order
to have more power to detect a gene having
an additive effect and dominance deviation. A
similar issue arises if we fix one locus, thought
to be a trait locus, and search conditionally
for a second locus using a model that provides
for interaction between the two loci. Appropri-
ate modifications of (4) are given by Dupuis
& Siegmund [2]. For an intercross and an ide-
alized mouse genome of 20 chromosomes of
average length 80 cM, the 0.05 genome-wide
thresholds for the same intermarker spacings
used above are 4.43, 4.28, 4.12 and 4.01, respec-
tively.

2. In experimental genetics, fairly large values of ∆

(say ∆ ≈ 20 cM) are common. If Z(t) is max-
imized only over marker locations, either (2)
or (4) (perhaps as modified in point 1 above
for an intercross) would provide an adequate
approximation. However, following the sugges-
tion of Lander & Botstein [6], one often com-
putes estimated values of Z(t) at a dense set of
positions between markers, then uses both the
interpolated and the actual data. This leads to a
larger value for maxt Z(t) and requires a slightly
larger threshold. The Lander–Kruglyak sugges-
tion to use (4) with ∆ = 0 is one possibility,
but it is typically overly conservative. Appropri-
ate approximations for genome-wide significance
levels have been given by Rebai et al. [11, 12]
and by Dupuis & Siegmund [1]. For the ideal-
ized mouse genome of the preceding example
and ∆ = 20 cM, this would lead to an increase in
the 0.05 genome-wide threshold from b = 3.88
to b = 3.99.

3. In human genetics when (a) sample sizes are
small, (b) pedigrees contain more distant rela-
tives than sibs or half sibs, or (c) there are more
than two affecteds in a pedigree, the distribution
of Z(t) at a fixed genomic location t may be
skewed. A simple modification of (4) has been
suggested by Tang & Siegmund [13]. Since this
is fundamentally a correction for non-normality
of the marginal distribution of Z(t), it can also
be adapted for use with the Bonferroni inequality.
For related approximations, which may be more

accurate but require stronger assumptions and
more complicated calculations, see [4] and [15].

4. For partially informative markers, there is
evidence [14] that (4) is conservative but still
provides a reasonable approximation if founders
are available for genotyping and multipoint
analysis is used. It appears that (4) can be overly
conservative if founders are unavailable and anti-
conservative if multipoint analysis is not used. In
the latter case the Bonferroni inequality may still
be useful.

5. Simultaneous search for multiple linked genes
involves a substantially larger number of tests
and a larger threshold than the simple genome
scans discussed in this article [3].
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Genotype

The genotype of an organism is its genes, or genetic
make-up, as opposed to its phenotype, or outward
appearance. The physical basis of the human geno-
type lies in 23 pairs of chromosomes–microscopic
bodies present in every cell nucleus. One pair are the
sex chromosomes, and the other 22 pairs are known
as autosomes, or autosomal chromosomes. The two
alleles at each locus on the autosomes comprise the
genotype for that locus. If the two alleles are the
same, the genotype is called homozygous; if they are
different, the genotype is called heterozygous. Per-
sons with homozygous and heterozygous genotypes
are called homozygotes and heterozygotes, respec-
tively (see Heterozygosity).

If the phenotype, or phenotypic distribution, asso-
ciated with a particular heterozygote is the same as
that associated with one of the two corresponding
homozygotes, then the allele in that homozygote is
dominant, and the allele in the other corresponding
homozygote is recessive, with respect to the pheno-
type; the locus is said to exhibit dominance. If the het-
erozygote expresses a phenotype that has features of
both corresponding homozygotes–for example, per-
sons with AB blood type have both A and B antigens
on their red cells, determined by A and B alleles at

the ABO locus–then there is said to be codominance
(see Blood Groups). At the DNA level, that is, if
the phenotype associated with a genotype is the DNA
constitution itself, then all loci exhibit codominance.

The genotype being considered may involve the
alleles at more than one locus. However, a distinction
should be made between the genotype at multiple loci
and the multilocus genotype. Whereas the former is
specified by all the alleles at the loci involved, the
latter is specified by the two haplotypes a person
inherited, that is, the separate sets of maternal alleles
and paternal alleles at the various loci (see Haplotype
Analysis).

In the case of a quantitative trait, there is a
dominance component to the variance if the het-
erozygote phenotype is not half-way between the two
corresponding homozygote phenotypes, that is, if the
phenotypic effects of the alleles at a locus are not
additive. Similarly, if the phenotypic effect of a mul-
tilocus genotype is not the sum of the constituent
one-locus genotypes, then there is epistasis. Domi-
nance can be thought of as intralocus interaction and
epistasis as interlocus interaction. Thus, in the case
of a quantitative phenotype, the presence or absence
of dominance and/or epistasis depends on the scale
of measurement of the phenotype.

ROBERT C. ELSTON



Genotyping and
Error-checking

Classifying Genetic Errors

Errors in genetic data can be classified into two
categories: pedigree errors and genotyping errors.
Pedigree errors arise when family relationships of
the individuals under study are misspecified. Possible
sources of misspecification include unrelated individ-
uals such as adopted or switched sibs, nonpaternity
cases such as half sibs who are recorded as full sibs,
faulty family records and incorrect data entry (see
Paternity Testing and Relationship Testing for more
discussion of errors in family relationships). Genotyp-
ing errors arise when the true underlying genotype
of an individual under study is misspecified. Possible
sources include laboratory errors such as switched or
contaminated samples, incorrect allele calls, or mis-
takes in data entry.

Genotyping error rates commonly reported in
mapping and linkage studies range from 1% to
3% [1, 2, 16]. Genotyping errors in general either
negate true recombinants or introduce false recombi-
nants, as illustrated in the following equation for the
expected recombination rate [21]:

E(θ̂ ) = θt + (1 − 2θt )s,

where θt is the true recombination fraction and s is the
misclassification frequency. For θt = 0.5, unlinked
markers, there is no bias, but for θt less than 0.5, the
expected recombination rate is inflated by (1 − 2θt )s.
When θt is close to 0, E(θ̂ ) ≈ s, indicating most
recombination events are false. False recombinants
inflate estimated map distances between markers,
obscure correct marker orders, and deflate lod scores,
thus reducing the power to detect linkage. Negating
true recombination events may inflate lod scores and
lead to false linkage results.

Pedigree error rates due to nonpaternity vary
widely among different populations that have been
studied [3, 23]. Unlike genotype errors, however,
pedigree errors that identify a previously unknown
nonpaternity or adoption can have a profound effect
on participants in the study. Common practice is not
to reveal such errors to the participants.

Genotype Error Detection

Detecting errors in genetic data comprising a small
number of markers and individuals may only require
simple visual inspection, and resolving them may
only require a quick inspection of a few genotypes in
a database or a few entries from a family history when
data entry error is the culprit. However, to handle
the large number of genotypes generated for genome
scans and the varied family structures used in link-
age analysis, a variety of algorithmic and statistical
methods have been developed that offer more power-
ful detection methods and can be implemented into
software to automate the task of “debugging” genetic
data. References to the methods contain details on the
availability of software.

Violations of Mendelian Transmission

Since most genetic analysis software programs re-
quire the marker data to be Mendelian consistent,
errors are often first detected after the program fails
to execute. A marker is Mendelian consistent if
the underlying genotype of the individuals in the
pedigree are consistent with the laws of Mendelian
transmission, otherwise the marker is Mendelian
inconsistent. Although a genotype that contains a
mutated allele (see Gene) may cause a Mendelian
inconsistency, an inconsistency more often indicates
the presence of an error, since mutation rates are
much lower than genotyping error rates. Determining
whether genotype data are Mendelian consistent can
be done using genotype elimination algorithms [14,
20]. These algorithms use available genotyping infor-
mation and family relationships to infer the sets
of consistent genotypes of individuals with missing
information. The pedigree has a Mendelian inconsis-
tency if and only if, after the genotype elimination
is performed, there is an individual with no con-
sistent genotypes. Although genotype elimination is
guaranteed to establish the existence of a Mendelian
inconsistency, the algorithm may not be useful in
identifying the possible source(s) of the inconsis-
tency, since the effect of an inconsistency may prop-
agate to different parts of the pedigree. Factors that
improve the accuracy of identifying the source(s) are
fewer individuals with missing data, highly poly-
morphic markers and larger sibships. The effect of
the latter two factors was demonstrated by Gordon
et al. [7], who studied the probability of detecting
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genotyping errors in diallelic single-nucleotide poly-
morphism data for parent–offspring triples. They
showed that in the case of this important sampling
scheme for linkage disequilibrium studies the true
error rate is over three times that of the error rate
that would be reported using Mendelian consistency
checks. Another very widely used paradigm in dis-
ease studies where Mendelian consistency checks
are inadequate is sibling pairs. When parents are
missing genotype information, two putative sibs will
always be Mendelian consistent at codominant mark-
ers regardless of genotyping and/or pedigree error.
Thus, alternative methods of error detection have
been proposed.

Haplotyping

One method commonly used to check Mendelian
consistent data is haplotyping [24]. Haplotyping is
the processes of constructing the most likely gene
flow in the pedigree assuming a known marker
order, allele frequencies and intermarker recombina-
tion fractions. Finding double recombinants between
closely spaced markers and/or many more recombi-
nants than expected (based on the number of meiosis
and recombination fractions in the most likely hap-
lotype configuration) points to possible genotyping
error. The location of suspect recombinants may
not indicate the location of an error, since there
may be other equally likely haplotype configura-
tions with different locations of the recombinants.
Thus, several likelihood methods that focus on iden-
tifying likely individuals and markers have been
proposed.

Incomplete Penetrance Error Model

The genotyping error for an individual can be mod-
eled within the likelihood at a codominant autosomal
marker by defining an incomplete penetrance func-
tion [15]. Let x = (x1, x2, . . . , xn) be a vector of
phenotypes, which are the observed genotypes, and
g = (g1, g2, . . . , gn) be the vector of actual genotypes
for n individuals in a pedigree. Let G = m(m + 1)/2
be the number of combinatorially possible unordered
genotypes given m alleles at the marker. If we assume
the errors are independent and equally likely, then the
conditional probability of the observed genotype xj

given the true genotype is gj is

Pr(xj |gj ) =
{

1 − ε, if xj = gj ,
ε

G − 1
, if xj �= gj , (1)

where ε is the error rate. For an error rate of 3%
this penetrance function assigns a high probability to
the observed genotyping being correct and a low but
equal probability to all other G − 1 possible geno-
types. More complex penetrance models assuming
individual and locus-specific error rates can be used,
but studies have shown that the penetrance model is
relatively insensitive to the distribution of the error
probability [5, 17, 25].

Although implementing an incomplete penetrance
model into the likelihood of the pedigree is math-
ematically straightforward, the increased computa-
tional requirements of the model may be prohibitive,
since each genotyped individual now has G nonzero
penetrance values instead of 1. The complexity is
less of an issue for small- to medium-sized pedi-
grees since the likelihood can be computed using the
Lander–Green algorithm [13]. But for larger pedi-
grees that require the Elston–Stewart algorithm [6]
to compute the likelihood, even analyzing a sin-
gle polymorphic marker may be difficult when G
is large. To reduce the complexity, several authors
use a reduced incomplete penetrance model [5, 25],
whereby only a single individual at a single marker
has incomplete penetrance and all other genotypes are
assumed correct.

Likelihood Methods

Stringham & Boehnke [25] proposed computing the
posterior probability of genotyping error, Pr(Ek|x; ε),
for each individual at each locus allowing for incom-
plete penetrance. They compute Pr(Ek|x; ε) using
standard likelihood methods as Pr(Ek, x; ε)/Pr(x; ε),
where Pr(x; ε) is the likelihood for the data and
Pr(Ek, x; ε) is the likelihood for the data assuming
individual k has an error, which requires adjusting
his/her penetrance function so the first term is zero.
Individuals with high values are flagged as possible
errors. They also proposed a less computationally
intensive version using reduced incomplete pene-
trance, which can identify individuals who could be
the sole source of a Mendelian inconsistency. Ott [22]
suggested calculating for each individual k the sum
of the squared differences between the conditional
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probability for each genotype gk given the phenotype
xk and each genotype gk given the phenotypes of all
the individuals in the pedigree x:

∑
[Pr(gk|xk) − Pr(gk|x)]2.

Individuals with large values are identified for fur-
ther inspection. O’Connell & Weeks [19] proposed
a method to identify the most likely source of
Mendelian inconsistencies by comparing the most
likely alternative Mendelian-consistent genotype con-
figurations. The method first identifies minimal sets
of individuals who could eliminate the inconsisten-
cies by setting their phenotype to unknown, and then
computes the likelihood of each possible consistent
alternative phenotype for these sets of individuals.
Sets of individuals with the highest likelihood are
targeted as the most likely source of error, since they
have the highest probability of having other geno-
types than those observed.

Besides single marker tests, several authors have
proposed multipoint tests, which have the advan-
tage of being able to detect increased recombination
and inflated map distances. Ehm et al. [5] proposed
a hypothesis test of ε > 0 for each individual at
each locus, assuming a reduced incomplete pene-
trance model. They proposed an exact multipoint
likelihood ratio test statistic that assumed correct
marker order, but jointly estimated the recombination
fractions and the error rate. Owing to the complexity
of the joint estimation, they also proposed an approx-
imate test that used an estimate of the recombination
fractions assuming no errors. P values for the test
are determined by Monte Carlo simulation. Their
simulation studies showed that the power of their
method is directly related to the amount of typing in
the pedigree and the number of loci analyzed jointly,
and is inversely related to the recombination frac-
tion. Douglas et al. [4] investigated the power of the
multipoint posterior probability test assuming correct
marker order for the special case of sibling pair pedi-
grees with no parents available. These pedigrees are
small enough to allow incomplete penetrance for each
individual and each marker. They showed that poste-
rior error rate cutoffs vary substantially as a function
of marker density, prior error rate and false positive
rate. Although their method found less than 50% of
the errors, they showed that the errors identified using
their cutoffs were the most informative for restoring
the true linkage information.

Although the above tests for genotyping errors
assume correct pedigree structure, putative genotype
errors may actually result from pedigree errors. For
example, an adopted sib may be flagged as having
genotyping errors, although the genotypes are correct.
The likelihood depends not only on the penetrance,
but also on allele frequencies and parent–child trans-
mission probabilities. The effect of pedigree errors
through the transmission probabilities may offset var-
ious penetrance values, just as a genotype with a
very rare allele may have a high posterior probabil-
ity of error due the small allele frequency. Lathrop
et al. [16] proposed a method to distinguish between
the two types of error by including an error model
for parental misassignment with the incomplete pen-
etrance model.

Resolving Errors

Resolving errors in genetic data by determining the
true state of a pedigree relationship or genotype may
not always be possible. Correcting data entry errors
is rather easy, but resolving putative genotyping
errors requires regenotyping the individuals involved.
However, since regenotyping may not always be
an option, due to cost or insufficient resources, the
general practice is to prune the data. The methods
presented can be used to identify the most appropri-
ate genotypes to prune. Care must be taken, however,
not to artificially increase evidence of linkage by
removing false positives. Errors identified as pedigree
errors due to misspecified relationships can often be
corrected by removing individuals or by adding the
appropriate relatives to the pedigree. For example,
newly identified half sibs can be retained by adding
in another parent, if necessary.

Other approaches besides pruning the data have
been proposed. Morton & Collins suggest adjust-
ing the recombination fractions for errors to take
into account possible inflated map distance [18].
Göring & Terwilliger [9–12] propose a methodol-
ogy to allow for errors in linkage and/or linkage
disequilibrium analysis. Gordon et al. [8] propose a
transmission/disequilibrium test for single-nucleotide
polymorphism data that allows for errors. Finally, as
stated above, the incomplete penetrance model can
be incorporated into any exact likelihood-based anal-
ysis for small- to medium-sized pedigrees; for larger
pedigrees, an approximate likelihood can be com-
puted using Markov chain Monte Carlo methods.
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Since genotyping error will probably be always with
us, finding improved methods to identify errors or
to allow for them in our analyses to extract maxi-
mum information from our data will continue to be
an important area of research.
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Geographic Epidemiology

The purpose of this article is to give an
overview of methods of analyzing epidemiologic
data in which geographic location is of primary
importance. Methods may be distinguished by the
purposes of the analyses, which include (i) modeling
risk as a function of geographically referenced
variables; (ii) hypothesis testing about specific
sources of risk; (iii) mapping disease patterns to
provide a visual representation of risk variation;
(iv) identifying areas of apparently elevated risk
deserving further epidemiologic investigation (see
Environmental Epidemiology); and (v) detecting
specific or generalized clusters, which may be
indicative of unsuspected sources of risk or of
a contagious disease mechanism (see Clustering).
These methods are reflected in the central sections
of the article, which are preceded by an overview of
the underlying models and followed by a discussion
of the issues involved in the choice of method.

Interest in geographic epidemiology has increased
greatly in recent years and the number of methods
proposed in the literature is very large; two recent
books are given as references [44, 64]. It would
be quite impossible to review these methods com-
prehensively in this article; rather the object is to
form a general classification according to their objec-
tives and the underlying assumptions. Many proposed
analyses will inevitably be omitted and an adverse
judgment on them should not be inferred. On the
face of it, geographic epidemiology is a topic in spa-
tial statistics [27, 31, 36, 85], but there are special
aspects which distinguish it from many of the other
areas of application in the latter field.

It should be remarked at the outset that the likeli-
hood of a geographic analysis revealing relationships
of real scientific or clinical significance in a given
case may be fairly low, for a number of reasons.
First, in spite of considerable improvements in data
availability over recent years, it is difficult to acquire
accurate population sizes. A relatively high rate of
individual migration and the development of new res-
idential districts mean that population estimates can
be seriously in error at the end of the intercensal
period – 10 years in the UK, for example. Migra-
tion also implies that people are typically exposed
to risks associated with different locations as they

move around, which must inevitably dilute the sen-
sitivity of any geographic analysis. Local mobility
further confuses the picture: adults work and children
go to school in areas which are often quite different
from their place of residence, so that geographically
mediated risks may be only weakly related to home
address. It should also be remembered that most
geographic observations – including those that have
subsequently been found to be of real significance
and value – have been anecdotal and the analyses
have been executed post hoc. This inevitably adds to
the difficulty of interpreting them.

Nevertheless, there have been notable triumphs
of geographic epidemiology: the well-known story
of John Snow and cholera [91]; the observations of
Denis Burkitt leading to the recognition of a vector-
related etiology of a human tumor [20, 21]; and more
recently, the detection of the cause of an outbreak
of epidemic asthma [3]; all are striking demonstra-
tions of the epidemiologic potential of geographic
observations. There is also a less positive but equally
important reason for carrying out geographic analy-
ses effectively. People are in practice very concerned
about the impact of their environment on their health
and it is important that anxieties are explored in a
manner that inspires confidence, if only to provide
reassurance in particular cases.

Underlying Models

Case-independence and Other General Issues

It is important to distinguish at the outset mechanisms
of disease in which cases are or are not intrinsi-
cally related. Examples of case-dependence include
contagious and familial diseases (see Communica-
ble Diseases); any tendency of such cases to be close
geographically is unlikely to identify any component
of risk which is essentially geographic. Rather, inter-
est centers on establishing the case-dependence as
an intrinsic phenomenon independent of geographic
location.

For case-independent disease processes, however,
we suppose that cases occur independently of one
another, conditional on the underlying risk factors,
which may include some aspect of geographic loca-
tion. On this assumption, any spatial autocorrelation,
or general tendency of cases to be closer to one
another than expected, will be inherited from the spa-
tial structure of the underlying pattern of risk factors.
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Within the frequentist framework, at least, it is unnec-
essary to model it by means of a spatially correlated
error process, except to the extent that this may be
a convenient way of allowing for spatially varying
risk factors that we cannot observe. We return to this
point below.

Models for case-dependent processes are not well
developed. Spatial modeling of epidemics [4, 72] is
concerned with the dynamics of spatial spread and
has rather little interaction with epidemiologic anal-
ysis in the sense of this article. Some authors [1, 5,
16] have proposed clustering models in which “par-
ent” cases give rise to “offspring” cases according
to a defined stochastic mechanism; it is much easier
to postulate models of this kind than to handle them
analytically. “Second-order” point processes, which
model the tendency of points to be clustered, have
been studied using Ripley’s K functions [84] in the
epidemiologic context by Diggle & Chetwynd [37]
and applied also by Diggle & Morris [39]; they are
not easily related to specific models of person–person
interaction, however.

In practice, much geographic epidemiology is app-
lied to diseases – notably malignant diseases – for
which there is very little evidence of case-dependen-
cy. Although it may be the objective of some analyses
to detect such dependency, the assumption of inde-
pendence is a reasonable basis at least for a null
hypothesis H0 of spatial uniformity. It is therefore
quite sensible to discuss most of the methods of geo-
graphic epidemiology against a modeling background
which assumes case-independence and this will be
the standpoint of this article. Once this position is
accepted, the basic models for the spatial distribution
of disease become relatively simple.

Two other general aspects of the models we dis-
cuss should be mentioned. In the first place, it may be
argued that much of epidemiologic analysis reduces
to considering the associations between observations
on a disease D, a variable of primary interest E, such
as an exposure variable, and a set of other variables
C, which may be thought of as covariates and which
may include possible confounding variables. In many
analyses the variables in C are regarded as being fixed,
even though they may be subject to error or sam-
pling variation. For many purposes this will suffice;
although the analysis may not be strictly correct [41],
it can be justified in terms of a conditional argument –
i.e. it is valid in the subspace of all outcomes in
which C is as observed; alternatively, we may argue

that it is reliably assessing the importance of a mod-
ified variable incorporating the unobservable error.
In observational studies D and E are intrinsically
random, but even here it is quite usual to condition
on one or the other rather than to model the full
joint distribution. This gives rise to a duality of anal-
ysis corresponding to the case–control and cohort
approaches [19]. In this respect, geographic analyses
are no different from any other epidemiologic analy-
ses: geographic location may be treated as a covariate
C or as a primary interest variable E; in the latter
case, E may be regarded as fixed with D random, or
vice versa. This “duality principle”, that either form
of conditioning leads to valid and useful analyses of
epidemiologic data, permits us to employ analyses of
either kind interchangeably, which we will do below
without further comment.

Secondly, we emphasize that, however we choose
to model location, it is imperative to build in a
reference distribution (normally in the form of a
population density) at a fundamental level; not least
this is because of the implication for the underlying
variation in local variance. Analyses which start
by assuming a homogeneous spatial distribution of
cases and “correct for” heterogeneity of population
distribution are to be regarded with suspicion and
may give misleading results.

Areal Data

Most geographic data are in areal form, i.e. counts
Yi, i = 1, 2, . . . , k of numbers of cases in areas Ai ,
nearly always administratively defined, within a study
region R. These will be accompanied by population
information, initially in the form of the sizes of the
populations at risk in different relevant groups; such
groupings will usually include age and sex, and often
other factors such as socioeconomic status and ethnic
group. If the risk within a given area Ai is constant,
the Yi are clearly binomial. Variation of this risk
upsets this assumption, but only slightly in practice,
particularly if the risk is small (which it will be for
a rare disease or when modeling annual rates). In
the latter case we can use the Poisson approximation
even if there is identifiable heterogeneity of risk
within the Ai .

We can therefore simplify the account by adopting
the Poisson model and supposing that the population
sizes have already been used in conjunction with ref-
erence rates to construct “expected” numbers ei of
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disease cases, either by a process of standardiza-
tion or using a suitable regression model [13]. The
case-independence assumption then implies that the
Yi are independently distributed with Poisson distri-
butions having means θiei , say, where we take θi as
the relative risk (RR) in Ai – i.e. the risk relative to
the assumptions under which the {ei} were computed.
The factors θi may now be modeled in terms of pos-
sible explanatory variables using methods which are
well understood, for example a Poisson regression;
this employs a loglinear model, which is a particular
case of a Generalized Linear Model (GLM) [66].
Such a model can be tested for goodness of fit; usu-
ally this may be satisfactorily accomplished using
the residual deviance, though there are problems in
interpreting this if the ei are very small – say with
appreciably many observations significantly less than
around five. If there is evidence that the model does
not fit well, this indicates that there is a compo-
nent of risk that has not been incorporated into the
model; it is said that there is “extra-Poisson” varia-
tion [17]. Modifications of the analysis in this case
include postulating a distribution for θ over the Ai ,
for example from a gamma distribution, which leads
to a negative binomial distribution for the Yi [53].
The implications for model validity and inference do
not depend on whether there is a geographic element
to this variation; if there is, a richer model involving
spatial autocorrelation may be fitted [28].

Continuous Data

The discrete structure of areal data, with the
imposition of administrative boundaries, is not ideal
either practically or mathematically. In principle, data
may be available on a continuous basis, i.e. by
the provision of the exact geographic coordinates
of a sample of cases. The case-independence
assumption and the duality principle then imply
that these cases may be regarded as a random
sample from a bivariate density function ψ(x, y)

of geographic location with coordinates (x, y). This
density function determines the distribution of the
place of residence of a randomly selected individual
with the disease. Equivalently the case locations may
be regarded as a realization of a Poisson process
with intensity f (x, y) proportional to ψ(x, y). As
before, we need a reference group and this may be
taken to be the population density π(x, y), where
we use this term to refer not so much to a general

demographic concept, but to a second mathematical
density function describing the probability that a
randomly selected member of the population will
reside at a given point (x, y). We are now in a
position to define a risk function giving the risk of
being affected by the disease incurred by a randomly
selected individual at location (x, y), namely.

µ(x, y) = f (x, y)

Nπ(x, y, )
,

where N is the aggregate of the population in R, in
the form of person-years at risk if appropriate.

In practice, of course, these mathematically defin-
ed risk functions must be estimated from the data,
the problem being one of estimating the ratio of
two densities. Methods of estimating a single density
have recently been much studied and developed [88,
89] and, although ratios present certain rather special
problems, they are not insuperable. For the distribu-
tion of cases, the general methods apply, with the pro-
viso that population-related densities are extremely
multimodal and in this respect atypical of most of
the examples to which density estimation has been
applied. The estimation of the population density
raises rather special problems, in that published data
will still be in areal form, but the normal methods of
density estimation can be adapted; alternative meth-
ods are available [69, 94].

It should also be noted that the population den-
sity may be satisfactorily estimated from a sample of
controls [8], which has the advantage that the geo-
graphic resolution of their locations will be equal to
that of the cases. Use of controls also removes the
need to ascertain the entire population, though in the
absence of information about whole-population risk
the risk function will be determined only up to an
unknown factor. In this case it may be regarded as a
“relative risk function” (RRF), defined by θ(x, y) =
ψ(x, y)/π(x, y), giving the risk at a particular loca-
tion relative to the average in the whole of R [8].

The continuous model of geographic risk is attrac-
tive mathematically and opens up a number of new
possibilities for analysis. In practice, however, there
are considerable difficulties with obtaining suitable
sampling frames for the controls. Case–control anal-
yses have not been much used in practice, though
they may reasonably be expected to assume greater
significance in the future, as the geographic accuracy
of address data improves.
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Spatial Autocorrelation

The rationale for taking account of spatial auto-
correlation is attributed by Cook & Pocock [28]
to Lazar [65] as being that “failure to allow for
spatially correlated errors may result in serious
overestimates of the significance of relationships”.
Lazar demonstrates that this is true when the rela-
tionships in question are assessed using corre-
lation coefficients with precision estimated from
the data.

As argued above, however, case-independence
implies that any spatial autocorrelation in observed
disease rates must be due to a similar autocorre-
lation in one or more associated factors that have
not been taken into account in the model, i.e. it
is not really the error mechanism that should be
modified by taking account of autocorrelations. Of
course, the word “error” in statistical parlance has
come to be synonymous with anything not accounted
for in an explanatory model. The point is not merely
semantic, however; use of the word in this con-
text has the unfortunate effect of distracting atten-
tion from the importance of case-independence and
to the construction of methods which do not make
use of the known variances of binomial and Pois-
son data.

Cook & Pocock propose, in a study of heart
disease, a model for the Standardized Mortality Ratio
(SMR) (see Standardization Methods) of the form:

ln

(
Yi

ei

)
= Xβ + ε,

where the linear predictor Xβ is in the usual form for
a linear regression model and

ε ∼ N[0, σ 2A],

with A an autocovariance matrix. Exploratory anal-
ysis led them to propose an autocorrelation function
decaying exponentially with distance. Estimation in
this model did indeed lead to a reduction in the signif-
icance of the effect of water hardness, the regression
coefficient being reduced by around 40% and its stan-
dardized value from −5.0 to −3.0 (see Standardized
Coefficients).

Cook & Pocock conclude that failure to adjust for
spatial autocorrelation leads us to overstate the sig-
nificance of fitted regression coefficients. Although

this is probably true in their example, it may not
always be so, as may be seen more easily by con-
sidering a GLM in which terms may be assessed for
significance in their own right, without recourse to
an estimate of residual variance. It would be quite
possible to have an unobserved covariate C which is
spatially autocorrelated and which induces autocorre-
lations in the residuals, but which is independent of a
fitted variable E. Although taking account of C would
improve the fit of the model, it would not necessar-
ily reduce the contribution of E to the total deviance
and need not, therefore, affect its significance. Nor
is the reduction of the estimate of the regression
coefficient conclusive, since C might be incidentally
associated with D and E; the latter could still be an
important causative factor. Incorporation of autocor-
relation is, nevertheless, a feature of many contri-
butions to the field and it is generally supposed to
be of considerable importance, both theoretically and
practically. To some extent this view is encouraged
by Bayesian modeling, where the emphasis is on the
inclusion of terms to represent any unknown com-
ponent of variation without consideration of model
parsimony.

Bayesian Modeling

The models outlined above are essentially frequen-
tist and assume the existence of unique but unknown
parameters. The Bayesian alternative is becoming
increasingly popular in statistics generally and par-
ticularly with the epidemiologic community [25, 32,
50, 55].

The seminal contribution by Clayton & Kaldor
[26] distinguishes heterogeneity deriving from spatial
and nonspatial sources. These give rise to corre-
sponding methods of smoothing rates for disease
mapping (see below) and were motivated primarily
by this application. The methods have had consid-
erable influence on geographic epidemiology and
have been used to elaborate inferential modeling by
numerous authors [63, 71] in the spirit of the frequen-
tist approach outlined above. They are exemplified
by the analysis by Richardson et al. [83] of child-
hood leukemia in relation to natural (background)
radiation. These authors extend the standard Pois-
son regression to a Generalized Linear Mixed Model
(GLMM) [18, 24], with random effect terms ui, vi

specific to area Ai :

ln θi = Xiβ + ui + vi, i = 1, 2, . . . , k.
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Here ui models nonspatial heterogeneity through the
assumption that

[ui |uj , j �= i] ∼ N[ui, λ−1
u ], where

ui =
∑

j �=i

uj

(k − 1)
.

Spatial structure is modeled by vi through the
assumption that

[vi |vj , j �= i] ∼ N[vi, (kiλv)
−1], where

vi =
∑

j �=i

Wij vj

ki

,

and where the adjacency matrix element Wij = 1 if
areas i, j are adjacent, 0 otherwise, and ki is the
number of areas adjacent to Ai . We require

∑
ui =∑

vi = 0 for identifiability.
The parameters λu, λv control the degree of

variation in the dispersion terms. In an empirical
Bayes treatment, these would be estimated; instead
Richardson et al. pursue a “full Bayes” solution
in which, together with β, they are given prior
distributions. Choice of the “hyperparameters” in
such prior distributions leads to the notion of a
“hierarchical Bayes” model.

In the childhood leukemia analysis [83], the effect
of radiation in a frequentist Poisson regression was
very weak and was limited to acute nonlymphocytic
leukemia and to one of three 5-year periods. It
was reduced to the point of nonsignificance in the
GLMM, and the variation in both the {ui} and the {vi}
estimates appeared to be significant. Similar doubts
attach to the interpretation of these results, however:
to the extent that the random effects are independent
of natural radiation, they should not affect inference
for the latter. To the extent that they are associated
with it, they may represent confounders, but the
possibility that radiation is a primary and important
effect cannot be excluded.

The models outlined above preserve the discrete-
ness of areal data. A model for continuous data is
more difficult mathematically. Typically it is assumed
that the logarithm of the RRF is a realization of a spa-
tial Gaussian process [62]. The mean of this process
might be taken to be constant if the primary pur-
pose is to model spatial relationship, which would be
determined by an autocorrelation function; otherwise

it could involve parameters designed to detect loca-
tional effects. The methods are comparatively new
and untested.

The considerable computational difficulties with
Bayesian methods have recently been facilitated by
Markov chain Monte Carlo (MCMC) methods.
These are computationally expensive and care needs
to be taken to ensure that the chain is fully sampling
the stationary distribution it is intended to estimate.
It is also unclear how much the precision is affected
by the need to estimate large numbers of parameters,
though it should be remembered that the precision
of classical frequentist methods incorporates infor-
mation from the specification of the model and is
therefore crucially dependent on its correctness. The
book by Gilks [48] gives much technical detail about
MCMC and available software, and includes a dis-
cussion of geographic applications, particularly issues
affecting the choice of priors [70].

Analysis by Location

Areal Modeling

The simplest kind of geographic analysis merely
attempts to model a disease rate at a particular loca-
tion in relation to geographically defined variables
associated with that location. Examples of such vari-
ables could include geographic variables such as
altitude [20], possible measurable risk factors such as
background radiation levels, and demographic char-
acteristics of the population, such as socioeconomic
status. The latter type of variable imputes to indi-
viduals at risk the average of some risk for the
whole population in their immediate vicinity, giving
rise to an “ecologic” analysis which is not without
its dangers [38, 45] (see Ecologic Fallacy; Ecologic
Study). Functions of location, such as distance from
a specified point, also come into this category of anal-
ysis and are dealt with below.

Under the case-independence assumption discus-
sed above, statistical analysis may proceed in an
entirely classical way, for example using GLMs.
As discussed above, a typical such model would
be a Poisson regression with ln(ei) as an offset.
The residual deviance in this model may then be
used to determine whether there is any extra-Poisson
variation, which may be evidence of clustering (see
below).
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Continuous Analogs

Continuous data require an analogous method to
analyze the risk function µ(x, y) or RRF θ(x, y).
For case–control data with equal numbers of cases
and controls, this can be achieved by a conditional
logistic regression. We define

ρ(x, y) = θ(x, y)

[1 + θ(x, y)]
,

which gives the conditional probability that an
individual sampled at (x, y) is a case rather than
a control [8]. This probability can in principle be
modeled logistically using any variable defined by
location (x, y) as well as other attributes of the
individual concerned [40, 57]. As remarked, above,
however, case–control analyses of this sort have not
to date been used to anything like the same extent as
areal data methods.

Focused Tests of Point Source Hypotheses

A particular kind of locational analysis involves the
study of the relationship between disease incidence
and the location of some putative source of risk S.
Such an analysis imputes risk to geographic location
or, equivalently, uses some function of location
as a surrogate for risk. This inevitably requires
the construction of a one-dimensional function of
location. Distance from S is an obvious choice,
though analyses can apply equally well to other
measures, incorporating, for example, geographic
characteristics such as altitude, bearing to prevailing
wind, etc.

Most analyses of data in relation to point sources
carried out to date are statistically elementary and
consist in examining a single standardized incidence
ratio (SIR) for a predefined region R around S,
comparing it with one or more control rates which
would typically be national (see Standardization
Methods). Such analyses have the great merit that
they are easily understood, but they suffer from the
severe disadvantage that they are not at all powerful
against any sensible alternative hypothesis. They are
also particularly dependent on the size of the region
R, though this is an intrinsic difficulty with other
analyses too.

It is almost certainly better to use a method that
makes explicit use of distance or other risk surrogate.
Suppose that the true RR at a distance d is θ(d).

Then, whether the data are in areal or continuous
form, it follows easily from the Neyman–Pearson
lemma [29] that the most powerful test of the null
hypothesis of constant risk (H0) is based on a Linear
Risk Score (LRS) computed as the sum over n cases

T =
∑

j

ln(θ(dj )),

where dj is the distance of the j th case from S [9].
It follows that the SIR test is only powerful against
a hypothesis that supposes a dichotomization of risk
inside and outside R. Of course, the usefulness of
the general result is limited by the fact that we do
not know the true risk function θ(·), but it provides
a benchmark against which other methods may be
calibrated. Moreover, it turns out that using a (canon-
ical) risk score of 1/d or 1/rank(d) is quite powerful
against a wide range of alternatives [12]. Locally
most powerful tests have also been proposed by
Waller [96] and others [61, 93, 97]; these score tests
are clearly not “uniformly” most powerful against all
alternatives and it is unclear how local their power
properties might be.

The problem of our ignorance of the true risk func-
tion led Stone [14, 92] to propose a test designed to
detect a general monotonic decreasing RRF. This test
has recently become very popular in the UK. Known
as Stone’s MLR test, it is a (maximum) likelihood
ratio test in which the alternative hypothesis is:

H1: θ1 ≥ θ2 ≥ · · · ≥ θk(≥ 1),

i.e. the areas Ai , ordered by distance from S, have
RRs θi estimated by maximizing the likelihood sub-
ject to the restriction that they are monotonic non-
increasing. The final constraint is optional though
important, the issue being similar to the choice of a
conditional or unconditional test discussed below [9].
This estimation problem is related to that of iso-
tonic regression [86]; the computation required is
nontrivial but feasible in practice. Stone also pro-
posed the so-called “Pmax” test based on the first
order-restricted RR estimate, θ̂1. This turns out to be

max
j

j∑

i=1

Yi

/ j∑

i=1

ei,

i.e. the maximal cumulative RR as distance from S
increases. These tests are undoubtedly important and
in some situations very effective. The application
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of the Neyman–Pearson lemma referred to above,
however, implies that Stone’s test is never most
powerful, and it is not hard to find alternatives for
which it has low power compared with canonical LRS
tests.

Whichever test statistic is used, it is crucially
important to distinguish between the conditional
and unconditional form of the test [9]. The former
conditions on the total number of cases observed in
R and is affected only by the spatial information
in the data. It would be appropriate whenever the
rates used to compute the {ei} may not be reliable in
R; if they are trustworthy, however, the conditional
analysis ignores potentially valuable information and
can even lead to the rejection of H0 resulting from a
deficit of cases in the outer parts of the region R. The
unconditional form uses the overall disease incidence
information as well as the spatial information, but
is appropriate only when the {ei} are reliable. In
practice, conditional and unconditional tests may
produce very different results, especially from small
data sets, and it is very important to decide a priori
which form of test will be used.

Disease Mapping

History and Atlases

The mapping of the incidence of disease and mor-
tality has a long history, well summarized by
Howe [51]. Early endeavors were concerned with
depicting the epidemic spread of infectious disease,
often represented by contours of first occurrence date.
More recently, with the diminishing importance of
infectious disease in the developed world, the empha-
sis has changed to representing mortality or incidence
in an attempt to infer geographically related explana-
tions of variation in rates. For example, the Atlas of
United States Mortality [76] contains color maps for
each of 18 major causes of death. The colors indi-
cate the 10, 20, 40, 60, 80, and 90 percentiles of
the age-standardized death rates in Health Service
Areas (HSAs); for example, the top band includes
all HSAs whose rates are in the top 10% for the
US as a whole. Rates based on small numbers are
distinguished by hatching. Cancer atlases, in partic-
ular, have been produced for countries all over the
world, including the US, continental Europe, China,
and the UK [15, 46].

Some maps depict cartograms, in which regions
are drawn with areas proportional to their popula-
tion sizes (see Mapping Disease Patterns). This
may help to overcome the problem of unequal
population distribution, but it has the disadvantage
that the resulting maps are geographically unfamil-
iar. We will confine our attention in this section
to representational maps in which the geometry is
preserved.

Areal Mapping by RR and Other Measures

Most atlases attempt to depict data in discrete form,
using administratively defined areas. One of the major
concerns in such mapping is the question of what
to map. Plotting rates in small areas tends to pro-
duce a misleading picture, in that apparently high
rates may appear in low-density regions by chance.
This problem is exacerbated by the negative cor-
relation usually found between population density
and the sizes of administrative areas. Because areas
of similar population density are often adjacent,
this can induce an apparent spatial pattern where
none exists. Some authors [30, 46] have employed
a measure of statistical significance instead of or
as well as SIRs; with these, however, small val-
ues of P which are statistically but not scientifically
significant may arise in areas with large popula-
tions. It is now generally regarded as preferable
to plot rates rather than P values, controlling the
influence of sampling variation by using a degree
of smoothing [22]. The latter may be empirical or
model-based.

Nonspatial Smoothing

The rationale for smoothing is that the maximum
likelihood estimate of the disease rate in a particular
small area is, because of its statistical variability,
a poor indicator of the true rate in that area. If,
for example, there was very little evidence of geo-
graphic variation, we would probably abandon an
area-specific estimate and use the global rate for the
whole region. Smoothing may be seen as an attempt
to compromise between the two positions, using both
local and global information.

An attractive method of combining this infor-
mation is the Bayesian formulation referred to
above [26, 55, 68]. In this, it is assumed that the
underlying RRs {θi} in areas {Ai} have a gamma
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prior distribution, with mean µ and variance σ 2. It
follows that the mean of the posterior distribution of
θi is

θ̃i = yi + µ2/σ 2

ei + µ/σ 2
,

a formula that demonstrates how θ̃i varies, accord-
ing to the value of σ 2, between the area-specific ML
estimate Yi/ei and the global mean µ, whose ML
estimate is

∑
i Yi/

∑
i ei . Unfortunately the ML esti-

mation of σ 2 requires an iterative method, though a
simpler moment-estimator is available [26].

Estimating the posterior mean in this way is
the basis of the Empirical Bayes (EB) method of
smoothing. It shrinks the local estimates towards the
global mean, but does not take any account of the
spatial relationship of one area to another.

Spatial Smoothing Using Bayesian Models

The Bayesian modeling of spatial structure described
above can be used to produce estimates of the RR
which are smoothed by reference to adjoining areas
as well as the overall mean. The original paper by
Clayton & Kaldor [26] describes a method that did
not take account of the varying number of areas adja-
cent to a given Ai and consequently lacked internal
consistency; developments by Besag et al. [6] have
led to a version that meets this objection. The goal of
making the rates in adjacent areas more similar to one
another than identical rates in well-separated areas
may seem very reasonable. It must be remembered,
however, that it will inevitably give an appearance
of spatial relationship even where none exists; it is
therefore essential that maps produced using these
methods are clearly indicated as such. For a critique
of the effect of smoothing on the interpretation of
spatial relationship, see [47].

Empirical Smoothing

Although the Bayesian methodology is very attractive
theoretically, it employs fairly sophisticated algo-
rithms and is not easily related intuitively to the
original data. Empirical methods of smoothing may
be better in this respect and numerous methods have
been proposed [15]. A particularly attractive method
is described by Pukkala and applied to cancer in
Finland [81]. At each point of a fine lattice, an esti-
mated risk is computed as a weighted average of the

rates in all the Ai whose centers are within a defined
distance of the point. The weights take account of
the distances of the Ai and also of their population
sizes. The result is a map free of the original small
area boundaries. A more elaborate method in which
numerators and denominators of rates are smoothed
separately is described by Kafadar [54].

Smoothing Based on the RRF

The formulation of a model for geographic data in
terms of density functions discussed above suggests
a simple, probability-based method of depicting risk
continuously. All we need to do is to plot an estimate
of the risk function or the RRF as the ratio of the
densities for cases and controls [8, 56]. This method
can also be adapted to employ areal data [10].

Degree of Smoothing and Other Issues

Whatever method of smoothing is employed, it is
important to realize that determining the degree or
scale of smoothing is intrinsic to any spatial method.
For areal data, the sizes of the areas will be involved
in this determination. Particular methods may offer
choice at other levels of the analysis: for example,
the bandwidth in the case of risk function estimation
based on density estimates. The question of whether
one may reasonably expect the data to determine
how much smoothing should be applied is unclear.
From a Bayesian standpoint, one should expect to
build into the analysis a prior idea of the degree of
risk variation. Estimating this degree from the data
is akin to using empirical Bayes ideas and departs
from the spirit of the “full Bayes” approach. Density
estimation methods are certainly associated with data-
driven methods of bandwidth determination, such as
cross-validation [89]. However, these typically use
criteria of doubtful relevance to the presentation of
meaningful maps, and in practice may not produce
satisfactory analyses.

The methods described above all incorporate
information about the variation in the population
density and this should be regarded as essential
because of the variation in precision implied. Meth-
ods designed for homoscedastic continuous data (see
Scedasticity), such as geophysical data, can give
quite misleading results and should be avoided.
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Clustering

Types of Clustering

Clustering may be defined as the tendency of observa-
tions to be situated closer to one another than would
be expected; the role of chance in this expectation is
crucial and much statistical effort is directed towards
determining whether an observed cluster could eas-
ily be accounted for by chance. In the context of
geographic analyses, the issue is that of whether peo-
ple affected by a disease reside, work or otherwise
congregate at places which are closer together than
would be expected. From a mathematical point of
view, the aggregation could be in any continuum and
this gives rise to the notion of clustering in time,
space or in the space–time product space. Mathe-
matical considerations also suggest that the nature of
the continuum should make rather little difference to
the nature of the tests available, specifically that a test
working in time, for example, should have an analog
in space.

We remark also that it may be useful to distinguish
various different types or modes of clustering. Cases
may be close together because of a violation of the
case-independence assumption; such clustering might
provide evidence of a localized genetic effect or of a
contagious process. Alternatively, aggregations might
be due to variations in underlying risk. Either effect
may be highly localized (as with a single familial
cluster or a single environmental hazard) or may be
widely disseminated. The statistical analysis is not
capable of distinguishing these essentially different
mechanisms, though different tests will be more
sensitive to one rather than another.

We aim in this section to give a brief and relatively
abstract overview of the methods available; further
details of several of the methods may be found in
Clustering.

Direct Methods

A set of rates or risk estimates, whether in discrete or
continuous form, may be regarded as a risk function
θ over geographic space and clustering should appear
as some kind of nonuniformity of this function.
Many functionals of θ suggest themselves as possible
statistics to test for nonuniformity and to some extent
the kind of alternative for which they should be
powerful is intuitively obvious.

Thus, to detect a single isolated cluster, extremum
statistics would be appropriate. These might include,
for discrete areal data, occupancy statistics based on
a large count in one or more areas [43], and for con-
tinuous case–control data, an analog in the form of
the maximum height of the RRF estimated by den-
sity estimation [87] and tested under a permutation
hypothesis. For continuous time, the scan statis-
tic [66, 73] counts the maximum number of cases
within a fixed length window as it moves through
the study period; the distribution theory is analyti-
cally difficult [49, 95].

One of the problems with tests based on discrete
areal data is that a cluster straddling two or more adja-
cent areas may be completely missed. A geographic
analog of the scan statistic would solve this prob-
lem, but is presumably even less tractable analytically
than in time, partly because of the dimensionality dif-
ference and partly because it is essential to allow
for variation in population density. This is of minor
importance, however, given that Monte Carlo testing
provides a way to execute even the most complicated
of tests.

The Geographical Analysis Machine of Open-
shaw [75] is effectively a scan test, though it was
derived more by empirical than theoretically well-
founded considerations. By varying the size and
location of the scanning window, it entails a con-
siderable amount of computation; the criterion of
clustering is based on statistical significance. More
recently, Anderson & Titterington [2] have used a
method based on observed frequencies and applied it
to case–control cancer data in South Lancashire. It
adjusts the size of the scanning window at each point
of R to ensure that it contains a constant expected
number of cases under H0; this involves extensive
numerical integration.

If interest is more in general heterogeneity of risk,
it would be more appropriate to use a dispersion
statistic of some sort. For areal data this entails deter-
mining whether there is “extra-Poisson variation”, i.e.
whether the Yi are appreciably different from the ei .
The Potthoff–Whittinghill test has recently become
very popular with epidemiologists [80]. As a like-
lihood score test it is asymptotically locally most
powerful, but it is hard to see why it should be better
than the deviance statistic

∑{ei − yi + yi ln(yi/ei)}
when the null hypothesis is not nearly true and the ei

are moderately large.
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For continuous data we can compute a suitable
measure of overall dispersion, such as the weighted
variance of θ̂ (x, y):

Tvar =
∫ ∫

R
π(x, y){θ̂ (x, y) − 1}2 dx dy.

This is similar to the “integrated squared difference
statistic” used by Anderson & Titterington [2], with
rather different weighting which reflects the extent
to which population density relates to the local
information.

Distance-based Methods

For many problems in statistics, inverse sampling
provides an alternative mode of analysis. In the
clustering context, we may ask “What distance d

from a given point P includes the nearest x cases?”
rather than “What is the number x of cases within a
distance d of P ?”. This gives rise to a class of tests
based on nearest neighbor distances (NND) [33]. The
simplest example, designed for case–control data,
counts the number of individuals among the k nearest
neighbors of each case that are cases (as opposed to
controls). Cuzick & Edwards give analytical results
for the null distributions of the different tests and
evaluate their power. Further details are given in
Clustering. The tests have been widely used in
epidemiologic investigations. A related method for
areal data, due to Besag & Newell [7], considers
each case in turn and aggregates the areas around
it that are necessary to include the xth nearest case.
Tests of this kind have the feature that they adapt
the scale on which they seek to detect clustering to
varying population density; this may or may not be
an advantage according to the clustering mechanism
envisaged.

An historically earlier class of tests forms a kind
of dual to the NND test in that they count the num-
ber of pairs of cases that are close in some sense.
The original idea is due to Knox [59] and relates
to space–time clustering. Because this is effectively
detecting an interaction between the time and space
variables, it can condition on the marginal distri-
butions in time and space and so circumvent our
ignorance about these distributions. To put it another
way, the test uses the information on the marginal
distributions already present in the data by asking
the question “Given the number NT of pairs of cases
close in time and the number of pairs NS close in

space, what should be the number NTS of pairs close
in both time and space?” In fact, the distribution of
NTS depends on complex aspects of the configuration
of the points in space and time, but Knox conjec-
tured that NTS should have approximately a Poisson
distribution with mean

E[NTS] = NTNS

/ (
n

2

)
,

where the denominator is simply the number of pairs
in the set of all n cases considered.

David & Barton [34] demonstrated that, in many
situations, this conjecture is well-founded and derived
expressions for the variance of NTS. In a number of
combinatorially impressive papers, the analysis has
been extended (i) to allow for latent periods [79];
(ii) to permit a more general measure of closeness
than the indicator function originally proposed by
Knox [67]; (iii) to the analysis of cross-clustering
of events of different types [58]; (iv) to a range of
different distance categories [82]; and (v) to a per-
mutation test for space-only clustering using a sample
of controls [77, 78]. More recently, Jacquez [52] pro-
posed a version in which closeness was defined in
terms of belonging to the set of k nearest neighbors.
The power advantages claimed for this may be prac-
tically important, though ultimately dependent on the
form of the alternative.

Knox’s original space–time test remains very
popular, but most of these extensions have been used
rather little. The space-only test (v) is particularly
worthy of more attention, providing as it does an
alternative to the Cuzick–Edwards test.

The power of the Knox-type tests is controver-
sial. Barton et al. [5] demonstrated that the original
space–time test is remarkably sensitive to the intro-
duction of extra, “offspring” cases if E[NST] is small
under the null hypothesis. Chen et al. [23], however,
concluded that the test was not very powerful, though
this seems to have been due to latent periods that were
not allowed for in the analysis. Bradshaw [16] per-
formed extensive simulations to estimate the power
under a similar alternative and concluded that using a
general continuous, distance-based closeness measure
offered rather little improvement over a well-chosen
step-function.
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Spatial Relationship

The modeling of spatial structure suggests a number
of tests based on estimates of spatial similarity. The-
oretical development is possible as long as rates are
modeled using the multivariate normal distribution
as an asymptotic approximation to frequency data; the
normal family is the only one that has an analytically
tractable multivariate form, so that attempts to extend
analytical methods to other families inevitably make
limited progress.

Under the normal model the distribution of the
data is completely specified by the covariance
matrix which, in the spatial context, will be con-
structed by reference to postulated autocorrelations.
These may be expressed as functions of distance,
adjacencies of neighboring areas, lengths of common
area boundaries, or other measures. To some extent
these will be chosen for mathematical convenience,
but the scientific relevance should not be overlooked:
Euclidean distance may be important in some con-
texts and to ignore it could be misleading; in other
contexts a measure of degree of adjacency may better
reflect the variation of risk with population density.

Different structures in a model for spatial data are
reflected in the numerous different tests available.
Cliff & Ord [27] give a comprehensive account,
though epidemiologic application requires attention
to the need to take account of differing population
sizes in different areas. This can be done by suitable
modifications using weights, or by applying the
methods to rates which have been standardized in
respect of their sampling variability. Walter [99]
reports an empirical investigation of the power of
three popular tests of this kind. Munasinghe &
Morris [74] use (local) estimates of “regional spatial
autocorrelation” to identify particular locations with
suspected clustering.

Issues of Interpretation

Much has been written on the interpretation of clus-
ters (see Clustering; Geographic Patterns of Dis-
ease). An essential problem is that clusters are mostly
reported post hoc and it is therefore impossible to
assess their statistical significance formally. To say
that a cluster is unusual begs the question of the
reference set: an extreme that would be unusually
high in a single administrative district might well
occur quite frequently in a national investigation.

From a statistical point of view, it would seem to
be desirable to investigate the tendency of a disease
to cluster by systematic analysis of a case register
(see Disease Registers). Opinions are divided as to
whether this is a good idea [90]. Certainly the inves-
tigator should have some idea of what to do if a
new cluster is detected and ideally should work to an
appropriate protocol.

Choice of Statistical Procedure

It is clear, even from the brief overview in this
article, that there is a plethora of different methods
for addressing questions raised by geographical data
in epidemiology. Even allowing for the multiplicity
of these questions and the different types of practical
situation arising, it must be the case that some
of the methods are worse than others and should
be discarded. Very few studies have attempted to
assess the comparative characteristics of competing
methods and new ones are often introduced without
any justification, either theoretical or empirical. We
may consider optimality of the relevant procedures at
three levels.

Theoretical Considerations

Because the underlying models are complicated it is
difficult to obtain theoretical results on power, for
example. Nevertheless, there are some guiding prin-
ciples that should indicate whether a method is likely
to work well. As discussed above, the principal of
these is that any sensible method should recognize
the importance of population density variation. This is
important not only in relation to a satisfactory control
or comparison group, but also because of the great
variation in local information. Thus the homoscedas-
ticity assumptions of geophysical methods such as
kriging (see Statistical Map), for example, make
them unsuitable for epidemiologic data unless suit-
ably modified. Epidemiology is concerned essentially
with counting people rather than measuring continu-
ous quantities.

Another general principle applies to distance-based
methods. In essence it is closeness of individuals, not
their distance, that is important, yet it is surprising
how many analyses compute mean distances, which
are inevitably heavily influenced by the least inter-
esting, large values. It is essential that distance-based
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methods employ some inverse function to give most
weight to the nearest individuals.

Many analyses are bad simply because they violate
these principles and lose power or efficiency as a
consequence. A smaller number are actually wrong as
a result of serious statistical errors, perhaps concerned
with sampling theory. This may occur, for example,
when small areas are sampled randomly and assumed
to be typical of areas in which index cases reside.
This is almost certainly never the case, since the
latter are sampled with probability proportional
to size and administrative areas vary in size very
considerably. Moreover, they do so in a way that
is highly related to other geographic variables, such
as population density. This can lead to artifactual
associations which are highly misleading [11].

Statistical Performance

Frequently, it will be unclear which of a number of
theoretically acceptable methods is best in the sense
of having the best power or efficiency. It will very
often be necessary to resort to simulation; this is a
relatively straightforward way to address the issue,
though it is not always easy to summarize the output
from simulation experiments.

Some authors compare procedures by looking at
the significance levels achieved in application to par-
ticular data sets, implicitly supposing that a smaller
P value is evidence of a better test. Unfortunately,
this is not so and it really is necessary to exam-
ine test performance on a large number of data sets
simulated under a known alternative. Power is the
usual performance characteristic considered, but it is
worth remarking that the expected significance level
(ESL) of Dempster & Schatzoff [35] has a number
of advantages, including simplicity of simulation and
the removal of type I error as a parameter of the
experiment. Bithell & Dutton [12] follow Stone [92]
in using the ESL in extensive simulations of methods
for point source analyses.

There is a particular difficulty with Bayesian
methods because of the essentially different
philosophical standpoint involved. The Bayesian
formulates a model on certain assumptions that are
subjective, as with the choice of priors. Subject
to these assumptions, the analysis will not only
be optimal, but uniquely correct in some sense.
Appropriate questions about method performance are
therefore concerned more with issues of sensitivity

than efficiency: how different would the answers be if
the underlying assumptions were different in specified
respects? On the whole, rather little of the literature
on Bayesian methods in geographic epidemiology
seems to address such issues.

Parameter Choice

Frequentist analyses also incur a problem of parame-
ter choice, in that most analyses, even within a class
known to work well in theory, will have one or more
“tuning parameters”. Probably the most important
of these are the class of distance scale parameters:
for example, how close is “close” in a clustering
test? The distance scale parameter is intrinsic to
every geographic analysis and appears in the guise
of smoothing parameters, covariance functions, and
so on. Other quantities which may have to be chosen
in advance of the analysis include an analogous time
scale parameter, study region size, age, and diagnos-
tic groups. The practical choice of such parameters
should ideally be informed by knowledge of the dis-
ease process under consideration. In practice this may
be difficult and it will be tempting to do several anal-
yses, with the obvious dangers of multiple testing.
Allowance for multiple testing by parameter varia-
tion is always possible using Monte Carlo methods,
but it does, of course, sacrifice power.

Some Studies to Date

There have been rather few systematic comparative
studies of different methods of analysis to date. Chen
et al. [23] and Walter [98] have carried out studies
of the statistical properties of a limited number of
tests. More general issues – involving the problems of
parameter choice discussed above – are more difficult
to study, involving as they do the decisions of the
investigators.

In the spirit of comparative analysis, the Child-
hood Cancer Research Group in Oxford released a
major set of childhood leukemia data in standard
format to interested investigators, who reported the
results of their differing analyses in a single vol-
ume [42]. There was no element of competition in
this exercise, however, and, since the data were real,
it was not possible to say which investigators had the
“right” answers: simulated data sets are required to
answer such questions.
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The International Agency for Research Against
Cancer have published the results of a “blind trial”
in which investigators were presented with simu-
lated data sets incorporating clustering known only to
the organizers [1]. The results make it clear that the
investigators’ strategies and choice of test parameters
are at least as important as the statistical properties
of the procedures. This reflects real life, but makes it
difficult to extrapolate conclusions to the way meth-
ods would perform in the hands of other investiga-
tors. Interestingly, no investigators in this experiment
chose to use Bayesian methods, even though there
was quite a lot of prior information about the distri-
butions of the parameters governing the construction
of the data sets.

Conclusion

We conclude from this discussion, as have oth-
ers [100], that there is an urgent and widespread need,
not for more elaborate statistical methods, but for
clear principles by which existing methods should be
judged, together with carefully designed simulation
experiments where appropriate.
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image restoration with applications in spatial statistics

(with discussion), Annals of the Institute of Statistical
Mathematics 43, 1–59.

[7] Besag, J. & Newell, J. (1991). The detection of clusters
in rare diseases, Journal of the Royal Statistical Society,
Series A 154, 143–155.

[8] Bithell, J.F. (1990). An application of density estima-
tion to geographical epidemiology, Statistics in Medi-
cine 9, 691–701.

[9] Bithell, J.F. (1995). The choice of test for detecting
raised disease risk near a point source, Statistics in
Medicine 14, 2309–2322.

[10] Bithell, J.F. (1999). Disease mapping using the rela-
tive risk function estimated from areal data, in Disease
mapping and risk assessment for public health deci-
sion making, A.B. Lawson, A. Biggeri, D. Böhning,
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Geographic Patterns of
Disease

The study of geographic patterns of disease is part
of the classic triad in descriptive epidemiology
of “time, person, place”. Here, place is used as a
surrogate for the mix of lifestyle, environmental, and
possibly genetic factors that may underlie variations
in rates of disease across populations. The purpose
is both to describe such variations and to identify
possible causes that could explain them.

Of course, apparent geographic variations in
disease rates may be artifactual rather than real.
Problems may occur either with the enumeration
of cases (numerator) or with the population at risk
(denominator), or both. Thus spurious geographic
variations in disease could reflect differences between
populations in case definition, completeness of
ascertainment, diagnostic accuracy, and coding or
(for mortality) survival rates. Enumeration of the
population (e.g. at census) may be incomplete, or
recent migration may distort population estimates.
Great care is therefore required in interpretation.
Despite these difficulties, publications such as Cancer
Incidence in Five Continents [27], and international
mortality statistics (see Mortality, International
Comparisons) compiled by the World Health
Organization, have provided an invaluable starting
point for epidemiologic enquiry.

The analysis of geographic patterns of disease
depends crucially on scale. Whereas broad-scale pat-
terns may be apparent at an international level, for
example, differences between developed and devel-
oping countries in the incidence of infectious diseases
such as malaria, and in cardiovascular diseases [44],
other patterns may only be apparent at a local level.
These will include, for example, clusters of disease
(see Clustering) and possible variations in disease
risk near putative point sources of environmental
pollution.

In this article we briefly discuss disease variations
both at the broader and at the local (small-area)
scale. We review issues involved in disease mapping
(the usual means of presenting descriptive geographic
data on disease occurrence) and discuss some of the
problems associated with geographic correlational
studies (ecologic studies). Here the aim is to explore
geographic variation in disease in terms of underlying

spatially varying “risk factors”. The emphasis is on
small-area applications, where a number of recent
advances in methodology have been made.

International Variations in Disease

International differences in disease occurrence may
give important clues as to etiology, which may then
be further studied in individual-level studies (e.g.
cohort–control or case–control). Thus, in the Seven
Countries Study, Keys [24] described large differ-
ences in population saturated fat intakes, which were
predictive of population differences in the occur-
rence of coronary heart disease. The INTERSALT
Study found cross-population differences in average
blood pressure levels, and difference in blood pres-
sure with age, that were associated positively with
average levels of salt intake (measured by urinary
sodium excretion); a similar positive relationship was
also found at individual level [17]. Other examples
include the incidence of malignant melanoma and
multiple sclerosis, both of which are strongly related
to latitude. While this relationship is inverse for
melanoma (i.e. a tendency for higher rates near the
equator, reflecting greater exposure to sunlight [19],),
it is positive for multiple sclerosis (i.e. low incidence
in countries near the equator [26]).

Migrant Studies

Migrant studies represent a special case of geo-
graphic study. Here, the disease experience of indi-
viduals or groups of people is examined as they move
from one location or country to another. This affords
a unique opportunity to examine the extent to which
environmental or genetic influences might deter-
mine geographic variations in disease risk. Whereas
genetic factors are important in determining which
individuals become sick, at the population level,
overwhelmingly, environmental and lifestyle factors
predominate [33]. Thus, in the case of multiple scle-
rosis, migrants moving from a high risk to a low
risk area retain their higher risk if migrating after
the age of around 15 years, but attain the risk of the
host country if migrating at younger ages [26]. These
findings are compatible with an infectious etiology of
multiple sclerosis, with infection acquired in child-
hood. Another example is the low levels of blood
pressure, with little or no rise with age, found among
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remote and isolated population groups around the
world [17, 31]. Blood pressures are found to increase
rapidly with migration to an urban environment [31],
again indicating the overwhelming importance of
environmental factors in determining the unfavorable
blood pressure pattern among populations.

Local Variations in Disease

Variations in disease incidence or mortality at
national [23] or subnational [20] level have been
described, usually in the form of a disease atlas
(see the section on Disease Mapping, below). Here
we briefly address the occurrence of disease at the
local (small-area) scale. Although in this context no
satisfactory definition of the term “small area” exists,
Cuzick & Elliott [10] suggest a working definition as
follows:

As a rough guide, any region containing fewer than
about 20 cases of disease can be considered a small
area . . . Many cancers have annual incidence rates
of around 5 per 100 000, so for a collective period
of 5 years a small area constitutes a population of
around 100 000 or fewer. In some instances, such as
a cluster of disease in a remote area or small village,
it could be much less, but usually populations of at
least 10 000 are needed to form an aggregation of
minimal size.

Of course, populations could be much smaller if
the disease experience over many such areas is of
primary interest – for example, in small-area disease
mapping (see next section).

Disease Clusters and Clustering

A problem commonly facing public health author-
ities is how to deal with reports of apparent dis-
ease excess in their locality (i.e. disease “clusters”;
see Clustering). These reports may subsequently be
linked to a putative pollution source. This compli-
cates interpretation since, for post hoc enquires of
this type, formal statistical testing is no longer valid.
Although there is little potential for isolated cluster
investigations to yield new information on the cause
of disease, nonetheless the public health authorities
often feel compelled to respond. A careful review
of cases, and selection of an appropriate denomi-
nator and time frame, may result in risk estimates
(observed/expected ratios) that are close to 1. This

is despite the potential for bias towards elevated risk
ratios (see Relative Risk) – areas at apparently “low”
risk do not come to the attention of the authorities!
In some instances, replication of the study in other
similarly polluted areas (if such can be found), or in
a different time period, may be the only feasible way
forward. It can also be helpful to place an alleged
“cluster” in a wider context by carrying out small-
area disease mapping across a larger region (see [43]
for a recent example).

An alternative approach to the study of a single
disease cluster is to examine more generally for evi-
dence of clustering. Such evidence for Hodgkin’s
disease has been cited in support of ideas of an
infectious etiology [1], although other explanations,
including artifacts related to diagnostic coding, pop-
ulation mobility, or variations in birth rates, are also
possible [10, 18].

Small-area Studies Near Sources of
Environmental Pollution

Recently, high-resolution geographically referenced
routine health data (see Vital Statistics, Overview)
have become available in certain countries. Together
with advances in computing and in statistical method-
ology, this has led to the development of largely
automated systems to examine the distribution of
disease near point sources of environmental pollu-
tion. In the UK, the Small Area Health Statistics
Unit (SAHSU) has been established specifically to:
respond rapidly to reports of disease excess (“clus-
ters”) near sources of environmental pollution; carry
out studies of health statistics more generally around
sources of pollution; carry out descriptive geographic
studies at small-area level; and develop the method-
ology. Recent studies include an investigation of
cancer incidence and mortality near a pesticide fac-
tory following media reports of excess cancers in the
vicinity [43], and a national study of cancer incidence
near radio and television transmitters [10] following
reports of a leukemia excess near one of the trans-
mitters [13] (see Leukemia Clusters).

A major problem in the interpretation of such
studies is the issue of socioeconomic confounding.
Measures of social deprivation (calculated from the
census statistics) have been shown to be powerful
predictors of the occurrence of disease [5], includ-
ing stomach and lung cancer (though not leukemia).
Deprived areas do not occur randomly throughout
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a region, but tend to coincide with industrial sites
and correlate with higher smoking rates. Failure to
account for social deprivation could thus seriously
bias investigation of other lifestyle or environmental
risk factors and ill-health. This is illustrated by results
of a national study of cancer risk near municipal solid
waste incinerators in Great Britain [16]. Excess risk
was found for a number of cancer sites, including
stomach and lung, that persisted after adjustment
for deprivation at the small-area scale. However, in
the areas with available data, a similar excess was
found also for the period before the incinerators were
operational. This indicated the presence of residual
confounding that had not been fully accounted for in
the statistical analysis [16].

Disease Mapping

Maps have long been used to describe geographic
patterns of disease (see Mapping Disease Patterns).
For example, Stocks, in a series of atlases published
in the 1930s, described the geographic variation
in cancer mortality across counties in England and
Wales (reproduced in [38]). A survey in 1991 [42]
identified 49 international, national, and regional dis-
ease atlases; more recent examples include those by
Swerdlow & dos Santos Silva [38] and Bernardinelli
et al. [4]. Such maps typically show standardized
mortality or incidence ratios (see Standardization
Methods) for geographic areas such as countries,
counties, or districts. The rate in area i is estimated
by Oi/Ei , where Oi is the observed number of deaths
or incident cases of disease in the area (assumed to
follow an independent Poisson distribution) and Ei

is the expected number of cases (calculated by apply-
ing age- and sex-specific death or disease rates to the
census population counts for the area).

Maps convey instant visual information on the
spatial distribution of disease and can identify subtle
patterns which may be missed in tabular presenta-
tions. Their purpose is usually to display variations
in ill-health (for example, related to the underlying
sociodemography), formulate etiologic hypotheses,
aid surveillance to detect areas of high disease inci-
dence, and help place specific disease clusters and
point source studies in proper context.

While disease maps have both visual and intu-
itive appeal, considerable caution is required to avoid
overinterpretation. Apparent geographic variation in

rates may simply reflect between-area differences in
the quality of reporting, diagnosis, and classifica-
tion of disease, or confounding due to ethnic and
socioeconomic factors. Furthermore, disease maps
implicitly assume that risk is homogeneous within
areas. This is unlikely for the large areas used in many
national and international atlases, and may result in
misleading inference about individual-level risk.

There is currently considerable scientific inter-
est in exploring more local geographic variations in
disease. For example, in the UK, small-area map-
ping is often carried out at the level of electoral ward
(average 5000 people) and census enumeration dis-
trict (400 people).

Disease mapping at the small-area level raises a
number of statistical issues. For relatively rare events
such as death and cancer incidence, the observed
numbers of cases tend to be small in areas with
low population, and typically exhibit extra-Poisson
sampling variation. This may be assessed formally
using the Pothoff–Whittinghill test [30] (see Clus-
tering). The sparseness of population data results
in unreliable estimates of the area-specific standard-
ized rate ratios, which may create the impression of
spurious geographic variation when displayed on a
map. These considerations have led to the use of
statistical smoothing techniques, which pool infor-
mation across areas. Empirical Bayes [8, 15] and
hierarchical Bayes [7, 39] estimates of area-specific
relative risk (see Hierarchical Models in Health
Service Research) represent a compromise between
the area-specific standardized rate ratios (see Stan-
dardization Methods) and the overall mean for the
whole map.

Small-area disease data often exhibit spatial corre-
lation due to the influence of unmeasured or unknown
risk factors which themselves vary smoothly in space.
Various hypothesis tests are available to assess such
spatial autocorrelation – for example, the rank-adja-
cency D-statistic [23] and Smans’ test [35].

Figure 1 shows a map of “unsmoothed” (stan-
dardized incidence ratio, adjusted for age, sex, and
deprivation) and smoothed (empirical Bayes) esti-
mates of brain cancer incidence for 1974–1986
across electoral wards in the West Midlands region
of England [14]. As can be seen, much of the ran-
dom variability is removed by smoothing, espe-
cially the apparent high rates found in the large,
sparsely populated rural areas. Overall, there is only
weak evidence of heterogeneity across the map
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Figure 1 Age-, sex-, and deprivation-adjusted relative risks of brain and central nervous system tumors for electoral wards
in West Midlands region, England, age 15–64 years, 1974–1986. Unsmoothed risks (left) and after map smoothing (right)
using empirical Bayes method. Reproduced from Eaton et al. [14] by permission of British Journal of Cancer

(Potthoff–Whittinghill test; p = 0.04), and no evi-
dence of spatial autocorrelation [14].

Bayesian prior distributions for the area-specific
relative risks which allow smoothing towards a local
mean, rather than the overall map mean, are also
used to model spatial interdependence in small-
area studies [7, 8, 11, 21, 25, 39]. Implementation
of Bayesian hierachical–spatial models has been
made feasible by recent computational [36] and soft-
ware developments, namely BUGS [37] – involving
Markov chain Monte Carlo simulation algorithms:
this approach represents the current state of the art in
small-area mapping of disease.

Technical Issues Concerning Presentation of
Geographic Disease Data

Maps provide a succinct summary of geographic pat-
terns in disease. However, visual perception may be
influenced by various features of the map, such as the
plotting symbols used (e.g. solid shading vs. hatch-
ing, color vs. gray scale) and the grouping of data
into categories (e.g. percentiles of the distribution of
risk, and numerically equidistant cutpoints) [35]. An

empirical study [41] found that the manner of data
display may have at least as much effect on observer
perception of spatial variation as actual differences in
the data. Recently, nonparametric mixture distribu-
tions (see Contagious Distributions) have been used
to model the underlying relative risk of disease in
small geographic areas [34]. This approach facilitates
more objective mapping of disease patterns, since
areas are categorized according to statistically driven
estimation of the mixture components.

The summary statistic used for presentation may
also influence visual interpretation of disease maps.
Common choices include standardized rate ratios,
smoothed relative risks, or P values. The former tend
to yield erratic maps which are visually dominated
by extreme estimates of low precision in sparsely
populated areas; the latter are criticized for confus-
ing statistical significance with biological importance
(see Clinical Significance Versus Statistical Sig-
nificance) and tend to overemphasize areas of high
population in which even small deviations from the
expected disease rate may achieve statistical signifi-
cance. Significance testing of standardized rate ratios
also suffers from the multiple decision problem (see
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Multiple Comparisons), as each ratio is considered
independently of the others on the map.

In our view, maps showing Bayesian shrinkage
estimates of relative risk represent the best com-
promise, although it is important to realize that
these estimates are not judgment-free. For example,
they depend on the functions used to describe the
distribution of relative risks across the map, and
to define the local neighborhood over which spatial
interdependence between the small areas is assumed.
However, smoothing ensures that precision of the
area-specific estimates is approximately compara-
ble across the map, and Bayesian credible intervals
derived from hierarchical models are not subject to
the constraints of multiple significance testing. Map-
ping of posterior functions of Bayesian risk estimates
is also possible. For example, a map showing the pos-
terior probability that the relative risk in each area
ranks above the median [2, 22] conveys information
about the size and uncertainty associated with each
area-specific estimate. Further advances in the appli-
cation of Bayesian methods to disease mapping, and
appropriate display methods, including measures of
uncertainty, are to be expected.

Geographic Correlation Studies

Geographic correlation studies are a valuable means
of formulating and testing etiologic hypotheses: dis-
ease patterns are compared with the geographic distri-
bution of environmental and lifestyle exposures. They
are particularly useful when individual-level mea-
surements of exposure are either difficult or impos-
sible to obtain for use in epidemiologic study (for
example, air pollution) or are measured imprecisely
(for example, diet, and sunlight exposure). (See [19]
for further discussion and [32] for a review of the
statistical methods.)

Examples of broad-scale ecologic studies are
given in the section on International Variations in
Disease. In some cases – for example, sunlight and
melanoma, salt and blood pressure – the ecologic
relationships have also been demonstrated at indi-
vidual level. However, the potential for bias in such
ecologic studies [19, 32] should be recognized. Expo-
sure within areas is often heterogeneous; thus the
ecologic (average group-level) association between
exposure and disease may not equate to the relation-
ship in individuals. To assume otherwise is to commit

the ecologic fallacy [28]. Small-area studies may be
less prone than broad-scale geographic studies to eco-
logic bias since the group data are closer to the level
of the individual. Nonetheless, positive findings aris-
ing from ecologic analyses usually require replication
in other data sets and, where possible, at individual
level.

As already noted, a major problem in small-area
disease studies is the potential for confounding by
socioeconomic variables. Adjustment may be made
by including, say, a deprivation score such as the
Carstairs [6] index (based on small-area census statis-
tics) as a covariate in the ecologic regression anal-
ysis. Alternatively, indirect standardization of the
expected small-area disease counts can be done by
stratifying on the socioeconomic status of the areas
as well as on age and sex (see Stratification). Mod-
eling of spatial autocorrelation between small areas in
an ecologic regression study also provides some con-
trol for the effect of confounding due to location [9],
but further development of these methods is required,
and in particular their application to “real” data sets.

Interest has focused on ecologic designs which
combine data on the general population with indi-
vidual-level survey data to improve estimation of
group exposure [29, 40]. Methods to adjust for ran-
dom measurement error in exposure are also receiv-
ing attention [3]. Such techniques should enhance the
ability of ecologic analyses to estimate the size of
exposure–disease relationships, not merely to iden-
tify the possible presence of such associations.

Summary and Conclusions

The study of geographic patterns of disease plays a
central role in descriptive epidemiology, and has led
to some notable etiologic insights. However, geo-
graphic studies are associated with major problems
of data quality, bias, confounding, and presentation
which can seriously complicate their interpretation.
The methodologic challenge is clear: to produce
objective, statistically valid analyses of geographic
variations in ill-health and its determinants, with par-
ticular emphasis on developments to combine the
best features of individual-level and ecologic studies.
Recent advances, particularly in methods for small-
area studies, have begun to address these issues.
As such techniques become routinely available, they
should enhance our ability to quantify the effects
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of environmental pollution (see Environmental Epi-
demiology) and lifestyle characteristics on human
health.
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Geometric Distribution

In a coin-tossing problem, let X be the number of
tosses required to obtain a head. The probability that
X = k, Pr(X = k), equals (1 − p)k−1p, k = 1, 2, . . ..
Here p, 0 ≤ p ≤ 1, is the probability of obtaining a
head in a single toss. The random variable X with
this probability mass function (pmf) is known to have
the geometric distribution. The geometric distribution
can also be identified with the experiment of draw-
ing balls from an urn with replacement. Suppose an
urn contains b black balls and w white balls. Let X

be the number of drawings needed to draw a white
ball from the urn; then X is a geometric random vari-
able with p = w/(b + w). For the geometric random
variable, the probability Pr(X = k) is a monotone
decreasing function of k. It is evident that Pr(X =
k + t) = Pr(X = k)(1 − p)t < Pr(X = k). The ran-
dom variable X has the memoryless property, i.e.

Pr(X > r + s) =
∞∑

j=r+s

(1 − p)jp = (1 − p)r+s

= Pr(X > r) Pr(X > s),

where r and s are positive integers. The hazard
function h(x) = Pr(X = x|X ≥ x) is independent of
x, x = 1, 2, . . .. The probability generating function
G(s) of X is G(s) = E(sX) = ps(1 − qs)−1, where
q = 1 − p. We have the probability

Pr(X = j) =
[

1

j !

djG(s)

dsj

]

s=0

.

The noncentral moment generating function is
G(es ). The rth noncentral moment, µ′

r , of X, namely
µ′

r = E(Xr), is

∞∑

j=1

j r(1 − p)j−1p =
[

drG(es)

dsr

]

s=0

.

The central moment, µr = E(X − µ′
1)

r , r = 1,

2, . . ., has generating function p exp(−qs/p)(1 −
qes)−1, t < − ln(1 − p). Using this central moment
generating function, the following recurrence rela-
tions between the central moments can easily be

established:

µr+1 = q
∂µr

∂q
+ rq

p2
µr−1,

with r ≥ 1, µ0 = 1 and µ1 = 0. Thus the mean of
X is

µ′
1 = E(X) =

∞∑

j=1

j (1 − p)j−1p = 1

p
,

and the variance of X is

var(X) =
∞∑

j=1

j 2(1 − p)j−1p − µ2
1 = 1 − p

p2
.

For instance, for an unbiased coin (p = 1/2) the
number of tosses until a head appears has an expec-
tation 2 and a variance of 2.

Suppose X1,m = min(X1, . . . , Xm), where X1, . . . ,

Xm are m independent copies of X, then Pr(X1,m >

x) = qmx, x = 1, 2, . . . ; Pr(X1,m = x) = Pr(X1,m >

x − 1) − Pr(X1,m > x) = qm(x−1)(1 − qm). Thus
X1,m is a geometric random variable. Let X2,2 =
max(X1, X2) and the range, R2 = X2,2 − X1,2. We
have Pr(R2 = 0) = Pr(X2,2 = X1,2) = ∑∞

x=1(pqx−1)2

= p2/(1 − q2). Since Pr(X1,2 = x, R2 = 0) =
Pr(X1,2 = x, X2,2 = x) = (pqx−1)2 = Pr(X1,2 =
x) Pr(R2 = 0), the events {R2 = 0} and X1,2 are
independent. Pr(R2 = r) = ∑∞

j=1 Pr(X1,2 = j, X2,2 =
j + r) = ∑∞

j=1 2p2q2(j−1)+r = 2pqr/(1 + q), r =
1, 2, . . .. Using the equations

∞∑

r=1

2r
pqr

1 + q
= 2q

p(1 + q)

and
∞∑

r=1

2r(r − 1)
pqr−1

1 + q
= 4q2

p2(1 + q)
,

we obtain E(R2) = 2q/[p(1 + q)] and var(R2) =
2q(1 + q2)/p2(1 + q)2.

Further, Pr(X1,2 = j, R2 = r) = Pr(X1,2 = j,

X2,2 = j + r) = 2p2q2(j−1)+r = Pr(X1,2 = j)

Pr(R2 = r) for all j and r , 1 ≤ j , r < ∞; hence
X1,2 and R2 are independent random variables. This
independence property of the range and the minimum
observation is also true for m > 2.
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Gerontology and Geriatric
Medicine

We can distinguish some important features of geri-
atric medicine – a branch of medicine – and geron-
tology – the study of older people in general, healthy
or ill. These include:

1. Co-morbidity; older patients typically suffer
from complaints other than the presenting com-
plaint, a fact which complicates both treatment
and research.

2. An increasing prevalence of degenerative dis-
ease and sensory impairment, particularly in the
later years of life; this has important conse-
quences for treatment, and also for research.

3. The occurrence of almost any disease during this
period of life, almost any of which can occur
before. Nonetheless, the dementias are a high
prevalence disease after age 75 but are almost
unknown before age 55. Even when dementia is
not at issue, cognitive performance may not be
at a level to permit easy treatment or cooperation
in research.

The exact age cutoff is arbitrary, and is based on
historical sociopolitical considerations rather than on
pathophysiological ones. Most research studies use
65 years, although 75 is becoming more popular. The
term geriatric medicine itself has been superseded by
some variant on health care of the elderly. Within this
umbrella, psychiatry of old age is included, but there
seems to be no specialty of, for example, geriatric
surgery.

Statistical Issues

The field of gerontology, here encompassing geriatric
medicine, has not spawned any specific statistical
methods. Its journals publish papers using standard
techniques, but do not stand out from other specialties
statistically.

Randomized Control Trial (RCT) and the Elderly

The RCT (see Clinical Trials, Overview) has
become established as the preferred method of
evaluating therapeutic alternatives when it is possible

to carry it out. The dominant ideology in selecting
patients for an RCT has been that patients should be
included as clear cases of the disease at issue, and no
other (see Eligibility and Exclusion Criteria). This
has brought three problems:

1. Because of the problem of comorbidity, tri-
als recruit disproportionately from younger age
groups, even when they do not employ an explic-
itly or implicitly ageist recruitment policy.

2. Trials exclusively in old age, for instance in
dementia, have very high ratios of screened to
enrolled patients.

3. High rates of mortality, sometimes from compet-
ing causes (see Competing Risks), have made
intention-to-treat analysis vital. Dropout in an
RCT in older people will seldom be at random.

The inevitable paradox is that older patient groups
where most illness occurs have been least studied,
and treatments must be used on the basis of optimistic
generalization from younger age groups. For instance,
in an overview of European studies of thrombolysis
after acute myocardial infarction, it was found that
patients aged 75 and over represented 33% of those
requiring treatment in the population but only 10%
of those enrolled in the major trials [1].

The issue of informed consent does not seem to be
responsible for this deficit in recruitment. In general,
workers in old age research have only seen this as
a problem in the field of dementia, and have usually
relied on consent from relatives in such trials.

Measurement and Scaling

As mentioned above, this field has to cope with
varying degrees of sensory and motor impairment.
This has caused workers here to be more interested in
problems of measurement (see Measurement Scale),
especially of functional ability, than in almost any
other branch of medicine except psychiatry. There is
awareness of the problems of constructing measures
which span very large ranges of ability in the face of
concurrent sensory and cognitive difficulties, but, as
yet, no agreement on how to solve them.

Healthy Active Life Expectancy

Although this technique can be applied to all age
groups it has been used extensively in gerontol-
ogy [4]. Sullivan’s index [2] takes standard life table
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methods and attempts to combine information on
mortality and morbidity.

Consider T + 1 age groups where the age at the
start of each group is xi , with i = 0, 1, . . . , T . Based
on the usual life table notation, li is the number of
survivors to age xi, Li the number of person-years
in age group i, and πi the prevalence of the health
status in question in age group i.

We partition the expectation at age k,

ek = 1

lk

T∑

i=k

Li, (1)

into a diseased part D and a healthy part H :

e
[D]
k = 1

lk

T∑

i=k

πiLi, (2)

e
[H ]
k = 1

lk

T∑

i=k

(1 − πi)Li. (3)

This device has been seen as a way of measuring
and answering the question of whether increases in
life expectancy have merely led to an increase in
the period spent disabled before death, or whether
the onset of disability has been postponed in par-

allel with death itself [4]. Clearly for diseases from
which recovery is possible a more complex model is
needed [2].

There has also been interest in the question of
whether it is possible to estimate the limits on
longevity [3]. This has usually taken the form of
estimating what changes in qi (the conditional prob-
ability of mortality in group i) would be needed to
increase life expectancy to 85, 100 years, or beyond.
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Gestational Age

Gestational age is the duration of a pregnancy.
According to the World Health Organization
(WHO), the duration of gestation is measured from
the first day of the last normal menstrual period [3].
The rationale for this is that women are more likely
to be able to recall the dates of their last period than
they are to know the date when conception took place.
Of course, there are circumstances when the opposite
may be true.

If women conceive soon after stopping oral con-
traception, this may happen before they have had a
spontaneous period. For women with irregular peri-
ods, the relationship between the beginning of their
last period and their date of conception may be
problematic. Because of this, other means are com-
monly used to estimate gestational age and hence the
likely date of delivery. In settings where ultrasound
examinations are standard practice, gestational age is
assessed by measuring the biparietal diameter. In less
developed countries, the fundal height is commonly
used to estimate gestational age, but is generally con-
sidered to be unreliable. Finally, the gestational age of
babies assessed by examination after birth is known
as the “pediatric assessment”. Given that none of the
methods is perfect, the common practice is to choose
the one considered most reliable as the “best esti-
mate” of gestational age for a given woman.

Gestational age is expressed in completed days
or weeks, so events occurring 280 to 286 days after
the onset of the last normal menstrual period are
considered to have occurred at 40 completed weeks
of gestation. In calculating the gestational age, WHO
stipulates that the first day of the last period should
be regarded as day zero and not day one, so days zero
to six therefore correspond to week zero. Thus, for
example, events in the 40th week of gestation should
be described as taking place after 39 completed weeks
of gestation.

Within a given gestation, WHO distinguishes
between preterm, term and postterm:

1. Preterm: Less than 37 completed weeks (less
than 259 days) of gestation.

2. Term: From 37 completed weeks to less than 42
completed weeks (259 to 293 days) of gestation.

3. Postterm: From 42 completed weeks or more
(294 days or more) of gestation.

With increasing interest in the preterm period, it
is becoming common practice to identify two further
categories: extremely preterm, which is less than 28
completed weeks or 196 completed days of gestation;
and very preterm, which is less than 32 completed
weeks or 224 completed days of gestation [1].

It is recommended that tabulations by week of
gestational age group them as 22–23, 24–25, 26–27,
28–31, 32–36, 37–41 and 42 or more completed
weeks of gestation [1].

In the past, the word “premature” was used to
denote a birth that was either preterm or of low birth-
weight or both, but it is now considered insufficiently
precise and therefore incorrect. The definitions above
were introduced in the ninth revision of the Inter-
national Classification of Diseases (ICD) [2] and
should enable a distinction to be made between babies
who are small because they are born too soon and
those who are small for their gestational age.
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Ghosts

In the analysis of survival data Xi , left truncated at vi ,
i = 1, . . . , n (see Truncated Survival Times) each
observed life time Xi = xi > vi “can be considered
the remnant of a group, the size of which is unknown
and all (except the one observed) with x-values less
than or equal to v. (They can be thought of as Xi’s
ghosts.)”. The quotation is (slightly adapted) from
Turnbull’s [5] use of the concept of ghosts to denote
the number by which each truncated observation
needs to be upweighted to provide the nonparametric
maximum likelihood estimator of the survival func-
tion (see Turnbull Estimator for details).

This use of “ghosts” is similar to the handling
of censoring by Inverse Probability of Censoring
Weighted (IPCW) estimating equations, which is
analogous to the Horvitz–Thompson device [1] in
sampling theory introduced into survival analysis
by Koul et al. [3] and used extensively by Robins
(see [4], but also [2] and [6]). The rationale is again
to compensate for the attrition due to censoring or
truncation by letting each observed event represent
not only him/herself, but also the “ghosts” who were
not observed.
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Gini, Corrado

Born: May 23, 1884.
Died: March 13, 1965.

Gini was the leading Italian statistician during the first
half of the twentieth century. He became a university
professor at the age of 26, and held chairs at the uni-
versities of Cagliari, Padua, and Rome. He founded
Metron in 1920, owned the journal until 1962, and
directed it until his death. He contributed widely to
the development of statistical methods, with appli-
cations in demography, biometry, sociology, and

economics. He was particularly influential in the
development of mathematical approaches to descrip-
tive statistics. In 1912, Gini introduced the mean
difference as a measure of variation within a set of
quantities, defined as the mean of the absolute dif-
ferences between pairs of observations. In 1914, he
showed that this is related to the area of concentration
derived from a Lorenz curve representing inequali-
ties in income distribution. (The Lorenz curve relates
the proportion of a population, ordered by size of
income, to the proportion of total income received
by that group.)
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Gold Standard Test

In attempting to classify individuals as cases or non-
cases of disease, clinicians usually apply one or more
diagnostic tests. Typically, however, these tests are
subject to measurement error, and may thus display
less than perfect sensitivity or specificity.

The term “gold standard” is applied to a test that,
theoretically at least, is regarded as being error-free,
that is, having 100% sensitivity and specificity. If
such a test exists, then it can be used as a basis for
comparison for any other candidate test. The gold
standard may also be known as a “reference test” or
method.

Unfortunately, definitive diagnosis through a gold
standard will usually require an invasive or hazardous
clinical intervention. For instance, while a chest X-
ray or CT scan (relatively noninvasive tests) may pro-
vide suggestive evidence that a pulmonary tumor is
present, a histologic evaluation of a biopsy specimen
obtained by surgical intervention is conventionally
required to confirm the diagnosis of a malignancy.

In practice, even tests that are consensually re-
garded as gold standards may be subject to error. In

the lung cancer example, there is variation in where
and how the surgeon elects to sample potentially
malignant tissue; furthermore, there is some subjec-
tivity in the pathologist’s assessment of the biopsy
material, with the result that inter- and intraobserver
variation exists in the final diagnostic classification
(see Agreement, Measurement of; Observer Reli-
ability and Agreement). Such variation reveals the
fact that the gold standard cannot be perfect.

In clinical practice, therefore, the term “gold stan-
dard” is often applied to tests that are regarded as the
best available with current technology, even though
the best method may sometimes be erroneous. A con-
sequence of assuming a test to be gold standard, even
though it is error-prone, is that any other competi-
tor test that is compared with the gold standard will
have apparently inflated error rates; in other words,
estimates of sensitivity or specificity of a compari-
son test relative to the gold standard will be biased
downwards. There is a growing literature on the
appropriate analysis of data involving such “alloyed”
gold standard tests (see Diagnostic Test Evaluation
Without a Gold Standard)
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Goodman–Kruskal
Measures of Association

The popularity of these measures stems from
the articles by Goodman & Kruskal that span
two decades [1–4]. All are used to examine the
association between two categorical variables (A and
B, say). The λ and τ measures are suitable for general
use, with the measure γ being used when both A

and B are ordinal. All are commonly included in
computer packages.

The Lambda Measures

The simple idea underlying the λ and τ measures is
that it may be possible to predict the category of one
variable from knowledge of the category of the other
variable.

As an example, suppose that two boys play a game
in which boy A thinks of some living thing. Boy B
has to guess whether it is a creature or a plant. If B
knows that A thinks of plants on 60% of occasions,
then one strategy for B would be to guess “Plant”
every time (with a 60% success rate). However, if B
is allowed to ask a question such as “Does it have
legs?”, then B’s subsequent guess will be much more
accurate!

Suppose that we know that, for variable A, cat-
egory m is most frequent. In the absence of other
information we would guess that a new individual
belonged to m. However, if told that the individual
belongs to category j of variable B, then we could
examine all past records for this category. If these
records showed i to be the commonest category of
A for these individuals, then we would guess i and
not m. Unless A and B are independent, this method
reduces the probability of a guess being in error. The
λ and τ measures are said to measure the propor-
tional reduction in error (PRE), with 0 corresponding
to independence and 1 corresponding to the complete
elimination of error (e.g. as a result of the question
“Can it move?”!).

Consider the data of Table 1. Knowing nothing of
B we guess A1 with Pr(error) = 144/300 = 0.48. If
we know that an individual belongs to the second
category of B, then we guess A2 and otherwise
guess A1. The probabilities of the three categories

Table 1 Example data

Most
common Probability

A1 A2 Total category Guess of error

B1 16 14 30 1 1 14
30

B2 38 62 100 2 2 38
100

B3 102 68 170 1 1 68
170

Overall 156 144 300 1 1 144
300

are estimated by 30/300, 100/300 and 170/300, so
that the overall probability of an error is now:

(
14

30
× 30

300

)
+

(
38

100
× 100

300

)

+
(

68

170
× 170

300

)
= 120

300
= 0.40.

Hence the proportionate reduction in error is given
by:

λA =
144
300 − 120

300
144
300

= 144 − 120

144
= 24

144
= 1

6
.

The suffix A indicates that we are predicting the
category of A from that of B. Suppose, instead, that
we are asked to guess the category of B, knowing
that of A. There is an immediate problem! For both
categories of A we would guess B3, and so with this
procedure there is no reduction in error. Formally,

λB =
130
300 − {(

54
156 × 156

300

) + (
76
144 × 144

300

)}

130
300

= 130 − 130

130
= 0

130
= 0.

The problem is caused by the dominating size of
a single category. The value of λ is therefore most
informative when the categories are roughly equally
likely.

In cases where it is equally reasonable for the
predictions to proceed in either direction, the hybrid
statistic λ is used. This combines the two numerators
and denominators:

λ = 24 + 0

144 + 130
= 24

274
= 0.09.
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The Tau Measures

The τ measures differ from the λ measures by
using a different guessing strategy. Instead of always
choosing the most common category, categories are
guessed in proportion to their known probabilities
of occurrence. Although the resulting predictions are
less successful, and the resulting formulae are more
complicated, the problems with unbalanced category
frequencies are avoided. The value 0 can only occur
for a table displaying perfect independence. For the
example data τA = 0.31, τB = 0.18, and τ = 0.24.

Note that τ > λ tells us nothing about their rela-
tive merits.

The Measure Gamma

This too can be viewed as a PRE measure. It is
suitable only for cases where both variables have
ordered categories, as in the data of Table 2, which
are obtained from wave 1 of the British Household
Panel Study.

Suppose we predict that those in better health will
also be more satisfied with their job. To test this idea
we need to look at pairs of individuals. The usefully
informative pairs belong both to different health cat-
egories and to different job categories. There are 962
individuals who felt satisfied and in excellent health.
There are (781 + 329 + 100 + 67) = 1277 individu-
als who felt both less healthy and less satisfied. If we
choose one individual out of each of these two groups
(which we can do in 962 × 1277 different ways), then
we will have a pair of individuals who match the pre-
diction. There are other pairs also. The total number
of concordant pairs is C:

C = (962 × 1277) + {1213 × (329 + 67)}
+ {447 × (100 + 67)} + (781 × 67) = 1 835 798.

However, there are also discordant pairs. The total
number, D, is given by:

D = {420 × (447 + 781 + 62 + 100)}
+ {1213 × (447 + 62)} + {329 × (100 + 62)}
+ (781 × 62) = 1 302 937.

Table 2 Job satisfaction and self-reported health

Self-reported health

Excellent Good Not good

Satisfied with job 962 1213 420
Neutral about job 447 781 329
Not satisfied

with job 62 100 67

The statistic γ is given by

γ = C − D

C + D
.

The range of possible values is from −1 (com-
plete discordance) to +1 (complete concordance). For
the given data γ = 0.17. The data suggest a very
weak positive association between health and job
satisfaction.

The significance of any of these measures can
be assessed by comparison with its standard error.
Software packages (such as SPSS and SAS) routinely
report standard errors and tail probabilities in addition
to the measure values.
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Goodness of Fit in
Survival Analysis

As in contexts other than survival analysis, the idea
of goodness of fit is to provide a more or less formal
indication that some or all of the modeling assump-
tions made can be considered reasonable. Goodness
of fit is related to but distinct from; regression diag-
nostics, robust regression, influential data analysis,
cross-validation and, in particular, the prediction
problem as quantified by R2 measures. None of these
are considered in this review, although it would seem
important to point out that R2-type prediction mea-
sures [26, 41, 46] are not goodness of fit measures as
is very widely believed. Korn & Simon [27] provide
some discussion on this. We will limit ourselves here
to the observation that whereas a very poor fit will in
general lead to a low value of R2, the converse is not
so, a simple example coming from linear regression
with near zero slope and large residual variance, in
which the fit may be perfect but we would anticipate
the value of R2 to be small.

Goodness of fit techniques help us address the
very limited question of whether or not the observed
data appear to come into conflict with one or more
of the basic assumptions underscoring the adopted
analytic approach. In this review the major part of
our attention is on the proportional hazards model.
This is for two reasons. First, the literature concern-
ing parametric approaches is more classical and well
reviewed elsewhere (see Parametric Models in Sur-
vival Analysis). Secondly, the proportional hazards
model has become quite overwhelmingly the model
of choice in applied studies so that there is much less
interest in the goodness of fit question for parametric
models. This having been said, it is quite likely that
there will be renewed interest in parametric modeling
in the future, and we include some discussion on the
goodness of fit problem below.

Many tests have been proposed for testing the
proportional hazards assumption, focusing on some
feature of the assumed time independence of the
regression effect, on the form of the link function, on
the functional form of the covariates, and sometimes
all of these. It needs to be stressed that real departures
from proportional hazards can manifest themselves in
different ways; an incorrect functional form appear-
ing as a time-dependent effect, for example. Trying to

separate out the different types of departure is most
often not possible. So, although it is worthwhile con-
sidering tests having good power against a particular
kind of departure, we ought be cautious about inter-
preting significant results; the departure can easily be
of a quite different nature.

In the following sections we organize the dif-
ferent procedures under the headings omnibus tests,
directional tests, and graphical techniques. A test
designed to detect general nonspecific departures
from the null hypothesis is called an omnibus test.
In some cases a test might be especially designed
to have high power against departures in certain
directions; we refer to these as “tests for spe-
cific alternatives”, although some authors call them
“directional tests” (see, for example, Lawless [29]).
Graphical techniques often provide an easy check
on model assumptions. Although they are not for-
mal tests, they are an important aspect of goodness
of fit tests, and can sometimes be combined with
formal ones to obtain significance levels. Finally,
tests based on the empirical distribution function
such as Kolmogorov–Smirnov tests, Cramér–von
Mises type tests and the Anderson–Darling test
are well known (see Kolmogorov–Smirnov and
Cramer–Von Mises Tests in Survival Analysis).
However, their generalization to arbitrary censoring
is difficult, unless the censoring is type I or type II
(see Level of a Test). The interested reader can find
those in Lawless [29] and Andersen et al. [4]. Alter-
natively, resampling techniques could be used (see
Bootstrap Method).

Notation and Data Sets

In the following, let T denote the failure time
random variable. In a survival study with n sub-
jects, let T1, T2, . . . , Tn be the true failure times,
and C1, C2, . . . , Cn the potential censoring times
for the individuals i = 1, 2, . . . , n. We observe Xi =
min(Ti, Ci) and δi = I (Ti ≤ Ci) for each i. Denote
Yi(t) = 1 if Xi ≥ t and 0 otherwise. Often, we will
suppose that the failure time of each subject is related
to a vector of covariates, or explanatory variables,
Zi = (Zil, . . . , Zip)′, i = 1, 2, . . . , n.

We illustrate some of the techniques on two
data sets. The first concerns the well-known Freire-
ich et al. [17] study comparing two treatments in
leukemia. The data consists of remission times in
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weeks of 42 patients, 21 having received 6-MP and 21
having being treated with placebo. These data, used to
illustrate the proportional hazards model in Cox [12],
are widely believed to fit the model well. In contrast,
the second data set, analyzed by Stablein et al. [49],
indicates clear departures from model assumptions.
These data concern a clinical trial in gastric carci-
noma in which 90 patients were treated; 45 treated by
chemotherapy alone and 45 treated by chemotherapy
plus radiotherapy.

Parametric Models

There are various ways to assess the fit of paramet-
ric models without covariates. When covariates are
included, it is often possible to adapt the methods to
deal with this. For more general situations, very little
has been done when compared with the proportional
hazards model, and it is fair to say that such models
are not often used in practice. We consider good-
ness of fit tests for several commonly seen parametric
models without covariates used in survival analysis.
These include the exponential model, the Weibull
and extreme value models, and the lognormal mod-
els. Notice that the problem of testing a lognormal
model is equivalent to that of testing a normal model.

Graphical Tests

The density or hazard functions are too noisy to
estimate nonparametrically without resorting to some
kind of smoothing technique (see Smoothing Haz-
ard Rates). As a general principle, such smoothing
requires some skill on the part of the user, and the
whole subject is rather too vast to be given any
coverage here. For our purposes we will focus atten-
tion on a nonparametric estimate of the survivorship
function, either the Kaplan–Meier estimate or the
Nelson–Aalen estimate.

Once we have an estimate of the survivorship
function S(t) in hand, then we can usually
derive simple graphical techniques which cannot
only provide some indication as to the goodness
of fit but also some very simple estimates of
the unknown parameters (see Graphical Displays;
Hazard Plotting). Even if such estimates are only
to be used as starting values to an iterative cycle in
maximum likelihood estimation, this alone can be
valuable computationally.

We can illustrate the above via some well known
models. For the exponential distribution with param-
eter λ, we can plot log Ŝ(Xi) against Xi . Under the
model this will be a straight line with zero intercept
and slope −λ. For the Weibull distribution with loca-
tion parameter λ and scale parameter k, we can plot
− log{− log Ŝ(Xi)} against log Xi . Under the model
this will be a straight line with intercept log λ and
slope k. For the Pareto model with parameter c a plot
of − log Ŝ(Xi) against log Xi will have zero intercept
and slope c. For the lognormal distribution any of the
usual techniques for assessing normality will work,
assuming that we can consistently estimate the mean
and the variance of log T . For the log logistic model
with location parameter λ and shape parameter k, a
plot of log{1 − Ŝ(Xi)} − log Ŝ(Xi) vs. log Xi will be
linear with intercept equal to k log λ and slope equal
to k. For the extreme value model with mode a and
variance equal to π2b2/6, a plot of log{− log Ŝ(Xi)}
vs. Xi will be linear with intercept equal to −a/b and
slope equal to 1/b.

Apparent departures from the above as indicated
by the plot will be indicative of one of three pos-
sibilities: the chosen parametric model is not of the
correct form, the observed times are not independent
or, thirdly and not to be overlooked, the assumption
of an independent censoring mechanism is not suffi-
ciently plausible.

One of the commonly used tools in graphical tests
is the residual plot. The basic idea here is the same
as that of the usual Q–Q plots, which can be found
in textbooks such as Rice [45] (see Normal Scores).
In survival analysis, it is common to define residuals
based on the unit exponentiality property: if T has
cumulative hazard function Λ(·), then Λ(T ) has a
unit exponential distribution. So define

εi = Λ(Xi) or εi = Λ(Xi |Zi ) (1)

in the presence of covariates, and their estimates

ε̂i = Λ̂(Xi) or ε̂i = Λ̂(Xi |Zi ), (2)

which involve the maximum likelihood estimates of
the unknown parameters. One approach is to treat
ε̂1, . . . , ε̂n as a possibly censored sample from the
unit exponential distribution. One then calculates the
Kaplan–Meier estimate of the survival function, Ŝ(·),
and plots − log{Ŝ(t)} vs. t . When the model is
adequate the plot should give roughly a straight line
with slope one. A second approach uses the fact that if
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ε is distributed as unit exponential, then E(ε|ε ≥ t) =
t + 1. So in the event of a censored observation Xi ,
one replaces the censored residual ε̂i by the adjusted
residual ε̃i = ε̂i + 1, and treats all the residuals as if
they are uncensored. This procedure is convenient if
there are only a few censored observations, or if one
wants to plot the residuals against other factors such
as the covariates.

For exponential distribution with hazard rate
λ, Nelson [39] suggested the following technique
for checking model adequacy. Under the model,
the cumulative hazard function Λ(t) = λt . Let the
ordered failure times be T(1) ≤ · · · ≤ T(n). Then

E{Λ(T(i))} = 1

n
+ 1

n − 1
+ · · · + 1

n − i + 1
.

Thus he suggests plotting T(i) against the right-hand
side of the above, and the points should cluster around
a straight line for a reasonably good fit. He further
points out that the procedure is satisfactory even in
the presence of censoring.

Formal Tests

To check the fit of data to a certain parametric model,
one type of test is obtained by embedding the null
model into a larger class of parametric models (see
Hierarchical Models). Standard procedures such as
a score test (see Likelihood) or likelihood ratio test
can then be used to test for particular parameter val-
ues, and arbitrarily censored data are accommodated.
Of course, tests of this kind may not be effective
at detecting departures that are not closely approxi-
mated by a member of the larger family of models.
Specifically, an exponential model can be seen as a
Weibull model

λ(t) = κθ(θt)κ−1 (3)

with κ = 1, where λ(·) is the hazard function. A test
of the hypothesis κ = 1 is against the alternative of
monotone hazard functions. Meanwhile, an extreme
value distribution (which is the distribution of the
logarithm of a Weibull random variable) can be
embedded in a three-parameter log gamma model
with pdf

∫
(x) equal to

|λ|(λ−2)λ
−2

σΓ (λ−2)
exp

{
x − µ

λσ

− λ−2 exp

[
λ(x − µ)

σ

]}
, λ �= 0,

1

(2π)1/2σ
exp

[
− (x − µ)2

2σ 2

]
, λ = 0. (4)

A test of the extreme value model is obtained by
testing λ = 1. Eq. (4) also includes the normal dis-
tribution as the special case λ = 0, and for λ �= 0 it
provides asymmetric alternatives to normality. There
are many other families of distributions that include
the normal distribution as a special case. For example,
to check symmetric long- or short-tailed departures
from normality, one can use the exponential power
distribution with pdf

f (x) = k(δ)

σ
exp

(
−1

2

∣∣∣
x − µ

σ

∣∣∣
δ
)

, (5)

where k(δ) is a normalizing factor. The normal dis-
tribution is recovered under δ = 2. The generalized
F distribution [24] incorporates all the above para-
metric models as special cases, although since some
of these occur when parameters lie on the boundary
of the parameter space its practical utility is limited.

More General Tests

Our suggestion is to consider any of the well known
distance measures generalized to accommodate an
independent right censoring mechanism. Even large
sample results are complicated and difficult to obtain,
although some specific cases have been worked out
for particular censoring mechanisms [28, 29].

A general approach could be based on resam-
pling techniques, the only difficulty here being to
insure that resampling is carried out under the null
hypothesis that the data are generated from F .
We describe this via the Cramér–von Mises test,
although the arguments apply equally well to a Kol-
mogorov–Smirnov or Anderson–Darling test.

Consider, then, the test statistic D2, where

D2 =
∫

{Fu(t) − Fβ(t)}2 dFβ(t),

which calculates a distance between the observed
empirical Kaplan–Meier estimate, Fu, and that
obtained from fitting the model with parameters
β, Fβ . Our problem is to obtain the null distribution of
D2. In order to accomplish this we need to simulate
under Fβ . We also need to incorporate the censoring
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mechanism C, for which we have a consistent
estimate from its observed (censored by the failure
times) distribution. Our simulated observations will
be Xi = min(Ti, Ci), i = 1, . . . , n, for which we refit
the model and calculate a new value of D2.

Proportional Hazards Regression Models

The Cox [12] proportional hazards regression model
is given by

λ(t |Z) = λ0(t) exp{β ′Z(t)}, (6)

or, equivalently,

λi(t) = λ0(t) exp{β ′Zi (t)}, i = 1, . . . , n, (7)

where λ0(t) is a fixed “baseline” hazard function,
and β = (β1, . . . , βp)′ is a vector of log relative risk
parameters. Many tests have been proposed to check
the model assumption of (6), some of them making
use of counting processes and martingale notation.
So let

Ni(t) = I {Ti ≤ t, Ti ≤ Ci}. (8)

Ni(·) has the intensity process

αi(t) dt = Yi(t)λi(t) dt, (9)

and

Mi(t) = Ni(t) −
∫ t

0
αi(s) ds (10)

is a martingale.
Define

πi(t ; β) = Yi(t) exp{β ′Zi (t)}
n∑

j=1

Yj (t) exp{β ′Zj (t)}
, (11)

and

E(Z|t ; β) =
n∑

j=1

Zj (t)πj (t ; β); (12)

that is, E(·|t ; β) denotes an expectation taken
with respect to the discrete probability distribution
{πi(t ; β)}i . Also, the following notation is sometimes
used:

S(τ)(β, t) = n−1
n∑

i=1

Yi(t) exp{β ′Zi (t)}Zi (t)
⊗r ,

(13)

for r = 0, 1, 2, where for a column vector a, a⊗2

refers to the matrix aa′, a⊗1 refers to the vector a,
and a⊗0 refers to the scalar 1. Then

E(Z|t ; β) = S(1)(β, t)

S(0)(β, t)
. (14)

Finally, define

V(β, t) = S(2)(β, t)

S(0)(β, t)
−

{
S(1)(β, t)

S(0)(β, t)

}⊗2

, (15)

which is the covariance matrix of Z taken
with respect to the discrete probability distribution
{πi(t ; β)}i .

Graphical Tests

Kay [25] suggested a test using a graphical procedure
to check the assumption that a time-invariant covari-
ate to be included in the Cox model affects the hazard
in a multiplicative way. Suppose that the kth covari-
ate Zk is under consideration, k = 1, . . . , p. Denote
Z̃i and β̃ as Zi and β with Zik and βk omitted. For
a binary Zk , (7) is equivalent to

λi(t) =
{

λ0(t) exp(βk) exp{β̃ ′Z̃i (t)}, Zik = 1,

λ0(t) exp{β̃ ′Z̃i (t)}, Zik = 0.

The assumption that zk acts on the hazard function in
a multiplicative way can be tested by fitting the Cox
model with two strata according to the values of zk;
that is,

λi(t) =
{

λ01(t) exp{β̃ ′Z̃i (t)}, Zik = 1,

λ02(t) exp{β̃ ′Z̃i (t)}, Zik = 0,

and estimating λ01(·) and λ02(·). Under the propor-
tional hazards assumption, the log cumulative hazard
functions, log Λ0j (u) du, j = 1, 2, should be paral-
lel. Therefore it was suggested to plot log Λ̂0j (u) du,

j = 1, 2, against t , and constant differences should
result. The procedure extends in an obvious way to
discrete variables taking more than two values, and
appropriate groupings allow similar techniques for
continuous variables [4].

Andersen [1] took Kay’s approach further in
developing a formal test which could then be associ-
ated with this graphical output. This test was based
on a piecewise model and some asymptotic approxi-
mations. In Figure 1 we illustrate such a plot for the
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Figure 2 Log cumulative hazard plot for Stablein data

Freireich data. It is clear that the plot provides little
evidence against the proportional hazards assumption.
In contrast, these plots applied to the Stablein data
look very different (Figure 2) and, even without any
formal test, the proportional hazards assumption for
these data appears doubtful. A number of tests have
been proposed that use the unit exponentiality prop-
erty. Kay [25] applied the residuals of Cox & Snell
in order to obtain hazard-based residuals (assuming
time-invariant covariates).
Define

εi = exp(β ′Zi )

∫ Ti

0
λ0(u) du, i = 1, . . . , n, (16)

and their sample-based estimates

ε̂i = exp(β̂ ′Zi )Λ̂0(Ti), i = 1, . . . , n. (17)

where β̂ is usually the maximum partial likelihood
estimate, and

Λ̂0(t) =
∑

Tk≤t

δk

n∑

1

Yj (Tk) exp{β̂ ′Zj (Tk)}
. (18)

Under model (7) these quantities should exhibit app-
roximately the properties of a random sample with
independent right-censoring from a unit exponential
distribution. This has survival function S(ε) = e−ε.
A plot of an estimated log survival function of
ε1, . . . , εn provides a simple check of the model
assumptions. However, Baltazar-Aban & Peña [7]
pointed out that the critical assumption of approxi-
mate unit exponentiality of the residual vector will
often not be viable. Their analytical and Monte Carlo
results show that the model diagnostic procedures
thus considered can have serious defects when the
failure-time distribution is not exponential or when
the residuals are obtained nonparametrically in the
no-covariate model or semiparametrically in the Cox
proportional hazards model. The difficulties stem
from the complicated correlation structure arising
through the estimation process of both the regression
coefficients and the underlying cumulative hazard. It
has also been argued that, even under quite large
departures from the model, this approach may lack
sensitivity.

Schoenfeld [47] defined the residuals {ri (β)} as
the discrepancy between the observed covariate value
at time point Xi and its expectation over the risk set
under the model:

ri (β) = Zi (Xi) − E(Z|Xi ; β) (19)

(see Residuals for Survival Analysis). For β fixed
and known, these residuals are uncorrelated [13].
Schoenfeld [47] showed that {ri (β̂)} are asymptoti-
cally uncorrelated and E(ri (β̂)) ≈ 0 under the pro-
portional hazards model. Thus a plot of rik(β̂) vs. Xi

should be centered about zero. However, if

λi(t) = λ0(t) exp{β ′Zi (t) + g(t)Zik},
with g(t) varying about 0, it can be shown that

E(rik(β̂)) ≈ g(Xi){E(Z2
k |Xi ; β) − E(Zk|Xi ; β)2}.

Since the term in the brackets is positive, the changes
in g(·) will be reflected in a plot of rik(β̂) vs. Xi .
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Figure 4 Schoenfeld residuals for Stablein data

Figures 3 and 4, illustrating a simple plot of the
Schoenfeld residuals against the failure times, are
not easily interpreted. Unlike Figures 1 and 2, as
well as Figures 5 and 6 below, these direct residual
plots are relatively insensitive to model departures.
In practice, it is more instructive to examine the
cumulative residuals.

Arjas [6] suggested a graphical method for testing
the goodness of fit in Cox’s regression model based
on the martingale property of

M ′
i (t ; β) = Ni(t) −

∫ t

0
πi(s; β) dN(s), (20)

where N(t) = ∑n
1 Ni(t). Suppose that T(1) < T(2) <

· · · < T(K) are the failure times. Let

M〉(‖; β) = M ′
i (T(k); β) = Ni(T(k))

−
∑

j≤k

πi(T(j); β) (21)
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Figure 5 Standardized score process for Freireich data
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Figure 6 Standardized score process for Stablein data

be an “imbedded” discrete time martingale. Write

H(k; β) =
n∑

i=1

∑

j≤k

πi(T(j); β). (22)

Then the martingale property of

M(‖; β) =
\∑

〉=∞

M〉(‖; β) = ‖ − H(‖; β) (23)

reflects the collective balance between the actual
failures and a corresponding cumulative hazard. After
substituting the maximum partial likelihood estimate
β̂ for β, a plot of H(k; β̂) vs. k can be compared
with the diagonal line y = x to check the model
assumption. A similar procedure can be applied to
stratified data, where the sum in (22) and (23) is
within a stratum and there will be one graph for each
stratum. This approach relates closely to total time on
test and other martingale-based residuals described by
Andersen et al. [4].
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Some of these techniques are summarized by Bar-
low & Prentice [8] and Therneau et al. [50], where
they define a martingale-based residual for the ith
subject as

ei(fi ) =
∫ t0

0
fi (t) dNi(t) −

∫ t0

0
fi (t)αi(t) dt

=
∫ t0

0
fi (t) dMi(t). (24)

Here t0 is the maximum follow-up time for the
sample, and fi (·) is a predictable process with fi (t)
defined in terms of data on the ith, and possibly
other, subjects prior to time t . The estimated residual
corresponding to (24) can then be written

êi (f̂i ) =
∫ t0

0
f̂i (t) dNi(t) −

∫ t0

0
f̂i (t) dΛ̂i(t)

=
∫ t0

0
f̂i (t){ dNi(t) − πi(t ; β̂) dN(t)}. (25)

It can be shown that asymptotically êi (f̂i ) has mean
zero, is uncorrelated with êj (f̂j ) for j �= i, and has
variance estimated by

1

n

∫ t0

0
f̂i (t)⊗2πi(t ; β̂) dN(t). (26)

Some special choices of f have been considered.
If fi (·) = 1, (25) is seen to be equivalent to the
hazard-based residuals of Kay [25] when the covari-
ates are time-invariant. fi (t) = Zi (t) is also of inter-
est, while fi (t) = Zi (t) − E(Z|t ; β) gives Schoen-
feld [48] residuals. Henderson & Milner [22] point
out that, for some particular choices of f, plots of
these residuals against time can exhibit systematic
patterns even when the model is appropriate. Their
suggestion is to superimpose estimates of expected
mean or to standardize the residuals when plotting.
For the Schoenfeld residuals, the ones we will most
likely use in practice, the difficulty is not present
unless the sample size is particularly small.

Lin et al. [32] propose procedures derived from
cumulative sums of martingale-based residuals. The
distribution of these stochastic processes under the
proportional hazards model can be approximated by
zero-mean Gaussian processes. They then compare
the observed process with a number of simulated
realizations from the approximate null distribution.

Specifically, define the martingale residuals (see also
(10) and (20))

M̂i(t) = M ′
i (t ; β̂) = Ni(t) −

∫ t

0
Yi(s)

× exp{β̂ ′Zi (s)} dΛ̂0(s), (27)

where Λ̂0(·) is defined in (18). Assuming time-
invariant covariates, define the following two classes
of stochastic processes:

Wz(t, z) =
n∑

i=1

f (Zi )I (Zi ≤ z)M̂i(t), (28)

Wr(t, r) =
n∑

i=1

f (Zi )I (β̂ ′Zi ≤ r)M̂i(t), (29)

where f (·) is a known smooth function, z =
(z1, . . . , zp)′, and the event {Zi ≤ z} means that all
the p components of Zi are no larger than the
respective components of z. It can be shown that
under model (7) n−1/2Wz(t, z) and n−1/2Wr(t, r)

converge to zero-mean Gaussian processes. It is also
shown that in large samples their null distributions
can be approximated through simulations, where one
repeatedly generates normal random samples while
holding the observed data {Xi, δi, Zi} fixed [32].
Different specifications of (28) or (29) can be used
to check different aspects of the model assumption.
For example, Wz(∞, z) with f (·) = 1 and zk =
∞(k �= j) provides a check of the functional form
of the j th covariate, j = 1, . . . , p; Wr(∞, r) with
f (·) = 1 checks the link function of the model;
Wz(t, z) with f (x) = x and z = ∞ is the well-known
score process, and checks the proportional hazards
assumption; finally, Wz(t, z) with f (·) = 1 can be
viewed as an omnibus test when allowing t and z
to vary. In all the cases, one can examine the fit
visually by plotting the observed process along with a
number of simulated ones. Furthermore, the graphical
display may be supplemented with an estimated P
value based on the distribution of the supremum of
the process.

Omnibus Tests

Based on the Schoenfeld residuals, Harrell’s [19] z-
test computes the correlation ρ of the Schoenfeld
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residuals and the ranks of survival times. Then the
approximate z-statistic for nonzero correlation,

(n − 3)1/2

2
log

(
1 + ρ

1 − ρ

)
, (30)

is treated as standard normal. The test is included
in certain software packages (see Survival Analysis,
Software). It has a disadvantage that the type I error
rates tend to be larger than the nominal levels [40]
and that power will not be strong for alternatives
other than trend in regression effect (see Level of
a Test). It has the advantage, outweighing the disad-
vantages in our view, of being simple to construct.
Also, the most common alternatives of interest are
likely to be trend alternatives (see Ordered Alter-
natives). For the Freireich data, we find ρ = 0.049
having an associated z = 0.31, which is not signifi-
cant. For the Stablein data, we find ρ = −0.35 having
an associated z = −3.39, which is significant at the
1% level.

Schoenfeld [47] proposed a class of omnibus chi-
square tests based a partition of the time–covariate
space. Let J1, . . . , JL be a partition of the (p +
1)-dimensional T × Z space. Let It {Z(t), t} be the
indicator function of J1; then

fl =
∑

i∈D

Il{Zi(Ti), Ti} (31)

is the observed number of failures that fall into Jl ,
where D is the set of individuals observed to fail,
l = 1, . . . , L. Denote f = (f1, . . . , fL)′. The “con-
ditional” mean and variance–covariance matrix of
f with respect to {πi(·; β)}i can be written down
explicitly, and these are denoted by e and V, respec-
tively. On the basis of these observed and expected
quantities, Schoenfeld constructed a chi-square type
test, demonstrating the validity of the asymptotic null
distribution as well as that for the noncentral chi-
square under particular departures. Moreau et al. [35]
showed that the Schoenfeld test could be derived
as a score test for a broader proportional hazards
model incorporating heterogeneity with respect to the
regression effect together with a null hypothesis that
the heterogeneity is zero. For the Freireich data and
a simple division of the time axis into two intervals
(less than or greater than 11 weeks) the test statistic,
as well as a conservative approximation, were very
far from being significant. For the Stablein data a

division of the time axis into four intervals, contain-
ing approximately equal numbers of failures, resulted
in a test statistic significant at the 2% level.

For the construction of the partition {Jl}, the
following has been suggested. Divide the time axis
into L1 intervals that contain approximately the same
number of observations. If Z is discrete, one may
use each value as a partition. If Z has many values
or is continuous, one can partition the range of
Z by choosing a partition of the range of β̂ ′Z.
Assuming that the range of Z has been divided into
L2 sets {S}, one can define {Jl} to be the Cartesian
product of the above two partitions. Now suppose
that the proportional hazards assumption does not
hold, and that for a certain interval (τi , τi+1) on the
time axis the effect of a covariate is greater than on
other intervals. Suppose, furthermore, that when this
component of Z has a high value in (τi, τi+1) the
hazard is greater than if it is high on other intervals,
and that Z ∈ Sj whenever this component is high.
Then the partition formed by (τi, τi+1) × Sj will have
more than the expected number of failures. On the
other hand, if the hazard does not depend on Z in
a loglinear manner, then, on each Sj , the expected
and observed number of failures will not agree very
well, and this pattern will repeat itself for each time
interval. See the original paper for simplifications in
computing the test statistic, verification of a technical
requirement in order for the asymptotic result to hold,
and calculation of the noncentrality parameter under
the alternative hypothesis.

Mckeague & Utikal [34] use the doubly cumula-
tive hazard function

A(t, z) =
∫ z

0

∫ l

0
λ(s|x) ds dx

to test the goodness of fit of the Cox model when
there is only one covariate to be considered. Their
method compares two different estimates of A(·, ·).
After stratifying over the covariate, they obtain a fully
nonparametric estimator

Ã(t, z) =
∫ z

0
Λ̃(t |x) dx, (32)

where Λ(t |z) is the Nelson–Aalen estimator of the
cumulative hazard function in one of the strata. Mean-
while, under the model, A(t, z) can be estimated by

Â(t, z) = Λ̂0(t)

∫ z

0
exp(β̂x) dx, (33)



Goodness of Fit in Survival Analysis 9

where Λ̂0(t) is given in (18). Then under the model√
n(Ã − Â) converges weakly to a Gaussian random

field. So Kolmogorov–Smirnov type or Cramér–von
Mises type test statistics, or resampling methods, may
be applied. Alternatively, Mckeague & Utikal [34]
developed a method that follows the above Schoen-
feld [47] approach. The same idea is adapted to
test Cox’s model within general proportional haz-
ards models.

Horowitz & Neumann [23] described a general-
ized moments test which does not require assigning
data to predetermined cells. Their test is based on
the unit exponentiality of (16), and the asymptotic
results were studied. Let g(ε, δ, Z) be a vector-valued
function with the property that E{g(ε, δ, Z)} = 0 if
ε has (possibly right-censored) unit exponential dis-
tribution, and does not equal to zero if not. Here
δ is the censorship indicator of ε. Examples of
g are (1 + δ) exp(−ε) − 1, Z{(1 + δ) exp(−ε) − 1},
and ε2 − εδ, although the first one was found to be
the best in terms of finite sample size and power
properties. The test is based on

Ωn = n−1/2
n∑

i=1

g(ε̂i , δi, Zi ). (34)

Horowitz & Neumann [23] showed that under model
(6) and regularity conditions, Ωn is asymptotically
multivariate normal as n → ∞ with mean zero and
covariance matrix that can be estimated consistently
(see their appendix for details). As with all such tests,
this generalized moments test does not indicate the
sources of error in a rejected model, and may have
little power against certain alternatives. However,
it was shown to perform well against accelerated
failure time models. A small-sample correction has
also been derived.

Another omnibus test, not requiring arbitrary divi-
sion of the time axis, was presented by Lin &
Wei [31] Their idea, developed from White [53], was
to contrast the observed information matrix and the
squared score matrix. These matrices are both con-
sistent for the inverse of the asymptotic covariance
matrix of β̂ under the model but are various ways
of combining the elements of this matrix. Lin &
Wej [31] made two suggestions: the first to take the
largest element in absolute value and the second to
use a Wald-type statistic (see Likelihood). The null
distribution of the largest element was approximated
via simulation, whereas an expression was given for

the covariance matrix needed in the Wald statistic.
The test has the advantage of good power for general
alternatives and does not hinge upon arbitrary choices
such as the time division. Its disadvantage is that the
calculations necessary to obtain a significance level
are relatively involved.

Marzec & Marzec [33] developed the goodness of
fit inference based on Arjas’s [6] graphical method.
Let I ⊂ {1, . . . , n} be a given stratum. Similar to
(13), define

S
(r)
I (β, t) = |I |−1

∑

i∈I

Yi(t) exp{β ′Zi (t)}Zi (t)
⊗r ,

(35)

for r = 0, 1, 2, where |I | means the size of I . Let
NI(t) = ∑

I Ni(t). Define

MI(t ; β) = NI (t) − |I |
n

∫ t

0

S
(0)
I (β, s)

S(0)(β, s)
dN(s). (36)

Under the model, MI(t ; β) describes a collective
balance in the stratum between the actual failures
and a corresponding cumulative hazard. Assume
that |I |/n → q as n → ∞, q ∈ (0, 1). Marzec &
Marzec [33] showed that, depending on two differ-
ent sets of conditions on S

(r)
I (β, t), n−1/2MI(t ; β̂)

converges weakly to a time transformed Brownian
motion, or a more complex Gaussian process. In the
first case,

sup0<t<1|MI(t ; β̂)|
{∫ 1

0 τn(β̂, s) dN(s)
}1/2 , (37)

where

τn(β, t) = |I |S(0)
I (β, t)

nS(0)(β, t)

{
1 − |I |

n

S
(0)
I (β, t)

S(0)(β, t)

}
,

converges weakly to sup0≤t≤1 |W(t)|, where W is the
Brownian motion. In the second case, the same test
statistic (37) converges weakly to sup0≤t≤1 |W 0(t)|,
where W 0 is the Brownian bridge.

For a two-sample problem, the proportional haz-
ards model can be simply written as S1(t) = S2(t)

θ ,
where Si(t) is the survival function of group i, i =
1, 2. This is equivalent to (6) with θ = eβ . For this
model, Wei [52] suggested an omnibus test based
on the score process, which has also been used
by others, including Barlow & Prentice [8] and Lin
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et al. [32]. Because of the simplicity of this particu-
lar case, one can easily write down the explicit form
of the statistic. Instead of the earlier notation that we
have been using, denote (Xij , δij ), j = 1, . . . , ni , the
observations from sample i, and Yi(t) = ∑

j J (Xij ≥
t), i = 1, 2. Then the score (i.e. the derivative of
the log partial likelihood) process can be seen to be
θ−1Un(t ; 0), where

Un(t ; θ) =
ni∑

j=1

δ1j I (X1j ≤ t)

−
2∑

i=1

ni∑

j=1

Y1(Xij )θ

Y1(Xij )θ + Y2(Xij )
I (Xij ≤ t).

(38)

The test statistic is based on the supremum of the
absolute value of the process (38), which has the
interpretation as the observed number of failures
from sample 1 minus the corresponding expected
number of failures before or at time t . Replace θ

by θ̂ , the maximum partial likelihood estimate, and
let Wn(t) = n−1/2Un(t ; θ̂ ). Assuming that ni/n →
ρi, 0 < ρi < 1, it can be shown that under the model
{Wn(t) : 0 ≤ t ≤ ∞} converges in law to

{[θη(∞)]1/2W 0

[
η(t)

η(∞)

]
: 0 ≤ t ≤ ∞},

where W 0 is the Brownian bridge, and η(∞) can be
consistently estimated by

η̂(∞) = n−1
2∑

i=1

ni∑

j=1

δijY1(Xij )Y2(Xij )

{Y1(Xij )θ̂ + Y2(Xij )}2
.

Note that η(∞) in the above was written η(t) in the
original paper, and that this seems to be a typographi-
cal error. Therefore the goodness of fit test statistic is

{θ̂η̂(∞)}−1/2 sup
0<t<∞

|Wn(t)|. (39)

Wei [52] showed that (39) is consistent against the
alternative of nonproportional hazards. A table of
percentage points of sup0≤s≤1 |W 0(s)| can be found
in Koziol & Byar [28]. Alternatively, we can use the
fact that

Pr(sup
t

|W 0(t)| > α) = 2
∞∑

k=1

(−1)k+1

× exp(−2k2α2), α ≥ 0, (40)

a well known result in probability. It can be seen
that absolute values of the standardized score process
greater than around 1.4 can be considered significant
at the 0.05 level. For the Freireich data the standard-
ized score process (Figure 5) lies well within this
limit. In contrast, this process for the Stablein data
(Figure 6) has a maximum around 1.8, which is sig-
nificant at 1%.

Tests for Specific Alternatives

Many of the tests against the alternative of time-
varying regression effects can be summarized under
the following model (for simplicity of notation, we
assume parameters of dimension one):

λi(t) = λ0(t) exp{[β + αQ(t)]Zi(t)}, (41)

where Q(t) is a function of time which does not
depend on the parameters β and α. Under H0 : α = 0
we recover the proportional hazards model (7). In the
context of sequential group comparisons of survival
data, this model has been considered by Tsiatis [51]
and Harrington et al. [20]. Like (11) and (12), we
denote by E(·|t ; β, α) the expectation taken with
respect to the probability distribution {πi(t ; β, α)}i ,
where

πi(t ; β, α) = Yi(t) exp{[β + αQ(t)]Zi(t)}
n∑

j=1

Yj (t) exp{[β + αQ(t)]Zj (t)}
.

(42)

Assume that Q(t) is known: then the score vector
U(β, α) for model (41) has two components,

Uβ(β, α) =
n∑

i=1

δi{Zi(Xi) − E(Z|Xi ; β, α)} (43)

and

Uα(β, α) =
n∑

i=1

δiQ(Xi){Zi(Xi) − E(Z|Xi ; β, α)};

(44)

while the information matrix is

I(β, α) = −
(

Uββ Uβα

Uαβ Uαα

)
=

(
I11 I12

I21 I22

)
, (45)
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where

Ikl(β, α) =
n∑

i=1

δiQ(Xi)
k+1−2{E(Z2|Xi ; β, α)

− E(Z|Xi ; β, α)2}, k, l = 1, 2. (46)

Let β̂ be the maximum partial likelihood estimate
of β under H0: then Uβ(β̂, 0) = 0. So the score test
statistic arising under H0 is

B = Uα(β̂, 0)G−1Uα(β̂, 0), (47)

where G = I22 − I21I
−1
11 I12 and G−1 is the lower

right corner element of I−1. Under H0, S has an
asymptotically χ2 distribution with one degree of
freedom.

As special cases of (41), Cox [12] considered
Q(t) = t , Stablein et al. [49] considered Q(t) =
(t, t2)′, and Brown [11], Anderson & Senthil-
selvan [5], O’Quigley & Moreau [42], Moreau
et al. [36], and O’Quigley & Pessione [43] assumed
Q(t) to be constant on predetermined intervals of the
time axis; in other words Q(t) is a step function.
Although in the latter cases there is more than one
parameter associated with Q(t), the computation of
the test statistic is similar to the above. Murphy [37]
studied the size and the power of Moreau et al. [36]
and found that, although it is consistent against a
wide class of alternatives to proportional hazards, it
is nonetheless an omnibus test which should be used
when there is no specific alternative in mind.

Sometimes Q(t) is chosen to be an unknown
function and needs to be estimated; for example,
Q(t) = Λ(t) [10] and is estimated by the Nelson esti-
mator. Because the estimates at time t depend only
on the σ -field of events up to that time, the devel-
opment of Cox [13] and Andersen & Gill [3] and
thus, the above asymptotic theory, still applies. Bres-
low et al. [10] showed that their choice Q(t) = Λ(t)

has good power against the alternative of cross-
ing hazards. Tsiatis [51], Harrington et al. [20], and
Harrington & Fleming [21] used score processes
based on (44) for sequential tests. They showed
that after Q(t) has been replaced by its estimate,
the score process at different time points converge
in distribution to multivariate normal. Their partic-
ular interest lies in the Gρ family, where Q(t) =
S(t)ρ .

Another special case of (41) is found in O’Quigley
& Pessione [44] and O’Quigley [40], where Q(t) =

I (t ≤ γ ) − I (t > γ ), with γ an unknown change
point. Were γ known, the test statistic in (47)
could be readily calculated and denote B(γ )1/2 =
Uα(β̂, 0; γ )/G1/2. For γ unknown, Davies [14, 15]
demonstrates that an appropriate test should be
based on the supremum B(·). In order to evaluate
the significance level of the test statistic, the
autocorrelation function is required. O’Quigley
& Pessione [44] suggested approximating this via
bootstrap resampling. Alternatively, a simpler
approximation provided by Davies appeared to be
satisfactory for most applications. O’Quigley &
Pessione [44] showed these tests to be powerful
for testing the equality of two survival distributions
against the specific alternative of crossing hazards.
These tests suffer only moderate losses in power,
when compared with their optimal counterparts, if
the alternative is one of proportional hazards.

Other authors [18, 30] have taken a slightly dif-
ferent starting point and introduced the function Q(t)

directly into a weighted score. This can be written

UQ(β) =
n∑

i=1

δiQ(Xi){Zi (Xi) − E(Z|Xi ; β)}, (48)

where Q(·) is a predictable process that converges in
probability to a nonnegative bounded function uni-
formly in t . Let β̂Q be the zero of (48) and let β̂

be the partial likelihood estimate. Under the assump-
tion that model (6) holds and that (Xi, δi, Zi)(i =
1, . . . , n) are iid replicates of (X, δ, Z), n1/2(β̂Q −
β̂) is asymptotically normal with zero mean and
covariance matrix that can be consistently estimated
via derivations very close to those of (45). It then
follows that a simple test can be based on the
standardized difference between the two estimates.
Lin [30] showed such a test to be consistent against
any model misspecification under which βQ �= β,
where βQ is the probability limit of β̂Q. In particu-
lar, it can be shown that choosing a monotone weight
function for Q(t) such as F̂ (t), where F̂ (·) is the
Kaplan–Meier estimate, is consistent against mono-
tone departures (e.g. a decreasing regression effect)
from the proportional hazards assumption.

A simple test of interaction between a linear com-
bination of covariates a′Z and time was developed
by Nagelkerke et al. [38]. It uses the Schoenfeld
residuals defined in (19). Let Uai

(β) = a′ri(β). Then
successive values of Uai

(β) are uncorrelated under
model (6). Now suppose that Cox’s model does



12 Goodness of Fit in Survival Analysis

not hold because the impact of a′Z on the hazard
increases or decreases gradually with time. It can be
seen that successive values of Uai

(β) are positively
correlated. So we can define a test statistic

Va(β̂) =
∑

i

Uai
(β̂)Uai−1(β̂) (49)

and reject the Cox model for large values of Va(β̂).
Notice that even under model (6), Va(β̂) does
not have exactly zero expectation. A permutational
approach is suggested to estimate the first two
moments of the distribution of the test statistic
Va(β̂). Nagelkerke et al. [38] suggest first testing
with a = β̂. If the model is rejected, one then goes
on to test individual covariate by allowing a to have
only one nonzero element. The test comes under
the heading of omnibus tests and has rather weak
power. This, together with the fact that computation
is somewhat involved, has resulted in the test having
seen little practical use. It nonetheless provides
important insights into how the score process is
affected by departures from the proportional hazards
assumption and would seem to be worthy of further
investigation.

Let λ1(t) and λ2(t) be the hazard functions for
two groups. Gill & Schumacher [18] and Deshpande
& Sengupta [16] have developed tests to check the
assumption of proportional hazards vs. the alternative
that the hazard ratio changes monotonically with
time. Under the proportional hazards assumption, the
hazard ratio, or the relative risk, θ = λ2(t)/λ1(l) can
be estimated by the generalized rank estimator

θ̂K =

∫
K(t) dΛ̂2(t)

∫
K(t) dΛ̂1(t)

(50)

[2, 9], where K(t) is a predictable random weight
function, and Λj(t) is the Nelson–Aalen estima-
tor of the cumulative hazard function in group j .
The integrals are over the range (0, τ ), where τ is
the upper limit of observable survival times. Gill &
Schumacher [18] base their test statistic on the dif-
ference between two generalized rank estimators with
two different weight functions say, K1(t) and K2(t).
Specifically, let

Kij =
∫

Ki(t) dΛ̂j (t).

Under the proportional hazards assumption

D = K11K22 − K21K12 (51)

is asymptotically normal with estimated variance

K21K22V11 − K21K12V12 − K11K22V21

+ K11K12V22, (52)

where

Vij =
∫

Ki(l)Kj (t){Y1(l)Y2(t)}−1 d{N1(t)+N2(t)},

Nj (t) is the counting process, and Yj (t) is the number
at risk at time l for group j . The test is shown to
be consistent against alternatives with a monotone
hazard ratio if K2(t)/K1(t) is monotone as well, and
this is the case for any two of the weight functions
common in, for example, generalized linear rank
tests. A related graphical method and discussion of
the choice of appropriate weight functions in terms
of asymptotic relative efficiency are also given in
Gill & Schumacher [18].

Deshpande & Sengupta [16] use a U-statistic test
to check the assumption that λ1(l)/λ2(t) is equal to
a constant versus the alternative that the hazard ratio
increases with time. Under the alternative hypothesis,
one can verify that

S1(a)f2(a)S2(b)f1(b) ≥ S2(a)f1(a)S1(b)f2(b)

(53)

for 0 < a < b, where Si(·) and fi(·) are the survival
function and the density from group i, i = 1, 2. Their
suggestion is to integrate the difference in (53) over
the range 0 < a < b in order to obtain a particular
functional, ∆(S1, S2), having the property of being
zero under the null hypothesis and positive under the
alternative. A U -statistic estimate of ∆(S1, S2) can
be obtained by using the frequencies of observations
falling into certain regions. The asymptotic distribu-
tion of the test statistic is normal and the asymptotic
null variance can be estimated by the use of resam-
pling techniques.
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Goodness of Fit

Introduction

Probably the most famous test in statistics is Pear-
son’s chi-squared goodness-of-fit test that assesses
the agreement between an observed set of frequen-
cies Ok in K classes and the expected numbers Ek in
those classes. As an example, Kendall and Stuart [14,
Section 30.7], take data from Mendel’s classic exper-
iments on pea breeding. Table 1 gives the frequencies
of different kinds of seeds in crosses from plants with
round yellow seeds and plants with wrinkled green
ones. Also given are the theoretical probabilities from
the Mendelian theory of inheritance (see Mendel’s
Laws).

The statistic is given by

X2 =
K∑

k=1

(Ok − Ek)
2

Ek

=
K∑

k=1

(Ok − nθk)
2

nθk

= 0.470.

(1)

With K = 4, the statistic is to be compared with the
chi-squared (χ2) distribution on K − 1 = 3 degrees
of freedom. The value of X2 is not significantly large
(χ2

3,0.95 = 7.81), so the data agree with the theory.
However, the value is arguably not so small (χ2

3,0.05 =
0.352) to indicate too close agreement between obser-
vations and theory, such as might have been caused
by the knowing intervention of Mendel’s gardener.

This well-known procedure shows many impor-
tant characteristics of traditional goodness-of-fit tests.
Most importantly, it employs many degrees of free-
dom to test for an unspecified general departure. If a
particular departure is of interest, more powerful pro-
cedures can be found based on one or a few degrees
of freedom. But, of course, such procedures may fail
to detect departures other than those for which they
are specific.

A second characteristic is that the test is based on
aggregate statistics, that is, on quantities calculated
over all the data. Attention is not paid to the contri-
bution of individual observations or cases. The third
characteristic is that the χ2 distribution of X2 only
holds asymptotically. As with most asymptotic proce-
dures, attention needs to be paid to the small sample
distribution of the statistic. For X2, this includes con-
cerns about the effect of cells with few observations.

This entry can, with advantage, be read in con-
junction with several others. Here we concentrate on
tests based on aggregate statistics, simple plots of
residuals and tests of distributional shape, either for
samples or, more importantly, for residuals. Methods
for determining the contribution of individual obser-
vations are described in the articles on Residuals and
Diagnostics.

Regression

The Analysis of Variance

In the linear multiple regression model

y = Xβ + ε, (2)

where y is the n × 1 vector of responses, β is the
p × 1 vector of parameters, and X is the n × p

matrix of carriers, that is, of explanatory variables
and perhaps functions of them, such as quadratics (see
Polynomial Regression) and interaction terms. It is
assumed that the additive errors of observation ε are
independently distributed with constant variance σ 2.
Many tests of goodness of fit of regression models
either use the assumed distribution of the errors to
provide t or F tests of models (see Student’s t
Statistics; F Distributions), or assess the model by
the normality of the residuals. We give examples of
both procedures.

The least-squares estimates of the parameters in
(2) are

β̂ = (XT X)−1XT y (3)

yielding fitted values

ŷ = Xβ̂ = X(XT X)−1XT y = Hy (4)

and least-squares residuals

e = y − ŷ = y − Xβ̂ = (I − H )y. (5)

In (5), I is the n × n identity matrix and, in (4), H

is the “hat” matrix, so called because ŷ = Hy.
Provided the model (2) fits, the residual sum of

squares

S(β̂) = (y − Xβ̂)T (y − Xβ̂) = yT (I − H )y (6)

is distributed as σ 2χ2
n−p . If σ 2 is known, the fit of the

model can be tested by comparing S(β̂)/σ 2 with this
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Table 1 Mendel’s data on four kinds of pea seeds

Seeds
Observed

frequency Ok

Theoretical
probability θk

Expected frequency
Ek = nθk

Round and yellow 315 9/16 312.75
Wrinkled and yellow 101 3/16 104.25
Round and green 108 3/16 104.25
Wrinkled and green 32 1/16 34.75

Total n = 556 1 556

chi-squared distribution, large values indicating lack
of fit. Usually, σ 2 is not known, but is estimated by

s2 = S(β̂)

n − p
, (7)

so that the goodness-of-fit test is not available. If
however, an independent estimate of σ 2 is available,
s2
ν on ν degrees of freedom, the ratio S(β̂)/{(n −

p)s2
ν } can be compared with the F distribution on

n − p and ν degrees of freedom.
Often, the value of s2

ν is found from replicate
observations within the data. The subtraction of the
replicate sum of squares from S(β̂) leaves a lack of fit
sum of squares, the mean square being compared with
s2
ν . The resulting test is typical of many goodness-

of-fit tests in not being directed against any specific
departure. To test specific departures, the model can
be embedded in a more general one, yielding t or
F tests for the extra terms. In summary, the two
procedures are as follows:

• Embedding. Add extra terms to the model, typ-
ically higher-order polynomials and interactions
in the explanatory variables. These yield t tests
for individual coefficients or, more conserva-
tively, F tests for groups of terms.

• Lack of Fit Sum of Squares. An estimate of
σ 2 either from within or outside the experi-
ment is used to test the residual sum of squares.
Estimates from outside the data being analyzed
should be treated with caution as they are typi-
cally too small through overoptimism about the
accuracy of measurement.

If exact replicate observations are not available,
observations “close” in X space can be grouped to
give approximate replicates and so an estimate of
σ 2. More frequently, it is assumed that the addi-
tion of higher-order terms removes any possibility
of further departures from the model, so that S(β̂)

provides an unbiased estimate of error. The articles
on Residuals and Diagnostics discuss procedures
for detecting individual errant observations, such as
outliers. The extension to groups of observations is
covered in the article on Forward Search.

As an example in which there are replicate obser-
vations so that both embedding and a lack of fit sum
of squares can be used to assess goodness of fit,
consider the data on fetal growth given by Francis
et al. [9, p. 328]. The data, plotted in Figure 1, show
ultrasound measurements of the head to coccyx (htc)
length, in millimeters, of the fetuses of 83 Brazil-
ian women between 7 and 16 weeks pregnant. There
is appreciable replication in the data as presented as
the gestational age is rounded to the nearest week.
This is then strictly an example in which observations
“close” in X space have been grouped. Since there is
at least one measurement at each age, there will be a
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Figure 1 Scatter plot of head to coccyx length data. The
replicate observations provide an estimate of pure error and
so lead to a test of goodness of fit
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maximum of 10 degrees of freedom for the model and
73 degrees of freedom for “pure” error (which will
include woman to woman variation). The plot sug-
gests that there is a linear relationship between the
response htc and age and this fitted model is shown
on the plot. To check the linear model, a quadratic in
age is also included, giving seven degrees of freedom
for lack of fit in the analysis of variance presented
in Table 2.

The impression from the plot of a strong linear
relationship between htc and age is overwhelmingly
confirmed by the value of 160.182 for the F statistic
on 1 and 73 degrees of freedom. There is no evidence
of curvature, that is, of regression on (age)2. The lack
of fit sum of squares has a P value of around 3 1

2 %, a
slight, but uninformative, indication that all may not
be well.

One possibility is that the linear model is inade-
quate. Fitting higher-order polynomial models up to
(age)9 yields significant t values for age to the powers
4, 6, and 7, which powers are hard to credit or inter-
pret. The further analysis of Francis et al. [9] suggests
that variance increases with mean and that a transfor-
mation of htc is appropriate, probably the logarithmic
transformation. With a nonnegative variable such as
length, with a range from 1.0 to 8.9, it is extremely
likely that variance will increase with observation
size. Obtaining a satisfactory transformation is more
systematically dealt with by the methods described
in Power Transformations. The further analysis of
Francis it et al. [9] was based on plots, particularly
of residuals. We now consider some aspects of the
use of residuals in determining goodness of fit.

Residuals

We assumed in (2) that the errors εi, i, = 1, . . . , n,
were identically and independently normally dis-
tributed. Even if this is true, the residuals ei , defined

Table 2 Analysis of variance for regression models fitted
to data on the head to coccyx length of 83 Brazilian fetuses
as a function of gestational age in weeks

Source df
Sum of
squares

Mean
square F Pr(F )

Age 1 165.992 165.992 160.182 0.0000
(Age)2 1 0.966 0.966 0.932 0.3375
Lack of fit 7 16.836 2.405 2.321 0.0340
Residual 73 75.648 1.036
Total 82 259.442

in (5), although normally distributed, have covari-
ance matrix (I − H )σ 2 and will so not quite be a
random sample from a normal distribution. However,
it is customary in goodness-of-fit procedures to pro-
ceed as if the residuals from a satisfactory model will
be such a sample. In Residuals, we describe the use
of simulation envelopes in plotting to correct for this
assumption.

Once a model has been fitted, the normality of
the residuals, and so the goodness of fit of the
model, can be checked in a variety of ways. These
include histograms of the residuals (see Frequency
Distribution), perhaps accompanied by a Pearson
chi-squared goodness-of-fit test, a normal plot of the
residuals and the calculation of a test of normality
(see Normality, Tests of) such as that of Bowman
and Shenton [4]. We first consider an example to
illustrate the graphical techniques.

Royston and Altman [19] discuss the analysis of
measurements of mandible length as a function of
gestational age in 167 fetuses with ages from 8 weeks.
The data are plotted in Figure 2. Although data with
age >28 weeks are felt to be atypical, we include
them in the present analysis.

To obtain a regression model we ignore the repli-
cate observations over weeks. For illustration, we fit
a simple regression on age (see Linear Regression,
Simple). Other models for these data are discussed in
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Figure 2 Scatter plot of mandible length data, showing a
linear relationship and some increase of variance with age
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the article on Diagnostics. The fitted values from this
simple model are shown in Figure 2. It is noticeable
that variance of the observations, and hence the size
of the residuals, increases with age. This is evident in
Figure 1 of Residuals, where the residuals are plot-
ted against fitted values. Here we consider ways of
testing goodness of fit on the basis of these residuals.

Figure 3 shows a normal plot of the least-squares
residuals (5), which range from −11.71 to 6.56. It
is clear from the figure that the residuals are not
normally distributed. The histogram of the residu-
als in Figure 4 confirms the skewness apparent in
Figure 3. One way of formally testing for the appar-
ent nonnormality would be to calculate Pearson’s X2

for the 167 residuals, grouped as in the histogram,
with the expected values given by a fitted normal
distribution. However, the modification to the group-
ing necessary to avoid empty, or nearly empty, cells
would remove much of the evidence of nonnormal-
ity, which comes from the long left-hand tail of the
distribution. We use instead a Monte Carlo version
of the Bowman–Shenton test which shows the statis-
tical power that can be achieved from an appropriate
test on one degree of freedom.

The Bowman–Shenton Test. The test is based on
comparing a combination of the third and fourth
moments of the residuals with those of the normal
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Figure 4 Mandible length data. Histogram of least-
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distribution. Let

mr =
n∑

i=1

(ei − e)r

n
, (8)

where, for regression models containing a constant,
e = ∑

ei/n = 0. Then the skewness measure is

√
b1 = m3

m
3/2
2

, (9)

with the kurtosis measure given by

b2 = m4

m2
2

. (10)

Asymptotically,

√
b1 ∼ N

(
0,

6

n

)
and b2 ∼ N

(
3,

24

n

)
.

Since
√

(b1) and b2 are approximately independent,
the statistic

BS = nb1

6
+ n(b2 − 3)2

24
(11)

should have approximately, a chi-squared distribution
on two degrees of freedom. Bowman and Shenton [4]
take transformations of

√
(b1) and b2 to improve
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normality. They also provide charts and tables for the
distribution of the resulting statistic. In econometrics,
it is customary to use (11) directly (for example,
Harvey [10, p. 260]). When, as here, the statistic is
based on residuals from regression, the effect of the
correlation structure induced by the carrier matrix
X needs to be accommodated. We accordingly use a
form of Monte Carlo testing.

For the data of Figure 2, the value of BS is 49.36,
clearly very large for a statistic with a nominal χ2

2 dis-
tribution. 999 simulated values of the statistic based
on the residuals from regressing random standard
normal deviates on age had a maximum value of
28.68. The observed result is thus significant far past
the 0.1% point. In contrast, application of the same
procedure to the data of Figure 1 yields a value of
3.87. Ordering this within the 999 simulated values
for this particular X matrix puts the observed value
90th, so that the significance level is 9%, implying
no evidence of a departure from normality.

This Monte Carlo procedure is very general and
could be applied to any version of the test. For exam-
ple, the Bowman and Shenton [4] transformation to
improve normality might be used, or the least-squares
residuals could be standardized to have the same vari-
ance, the test statistic being calculated from values of
ei/

√
(1 − hi), where hi is the ith diagonal element

of the hat matrix (4). However, by focusing narrowly
on the normality of the errors, such procedures lose
the information contained in the relationship between
the residuals and other variables, such as fitted val-
ues. The increase of variance with fitted value seen in
Figure 2 is one pointer that a power transformation
of the data might be appropriate. The analysis of the
mandible length data is taken further in Residuals,
Diagnostics, and Power Transformations as well
as in the articles on the Fan Plot and the Forward
Search. In conclusion, we note that any transforma-
tion of the response, such as replacing y by logy,
will affect the apparent linear relationship with age.

Many Regression Models

In the polynomial regressions of the previous section,
there was an obvious hierarchy of models that could
be successively tested for goodness of fit via the
addition of extra terms. However, with regression
on k different variables, there will be 2k possible
models, when all combinations of inclusion of each
variable are considered, and there is no obvious order

in which to test the models. If an estimate of σ 2 is
available, perhaps from replicate observations, the fit
of each model can be determined from the lack of fit
sum of squares and potential models divided into two
classes, those that fit the data and those that do not.
Selection amongst those that do fit can then be based
on grounds of parsimony, since if a model fits, models
formed by adding terms to it will also fit. We now
briefly describe some methods of testing goodness of
fit in the absence of an estimate of σ 2.

The Coefficient of Determination, R2

The coefficient of determination, or multiple R2, mea-
sures the proportion of the variation in the data
“explained” by the fitted model. Let the total cor-
rected sum of squares be So, that is,

So =
n∑

i=1

(yi − y)2. (12)

Then, the regression sum of squares equals So − S(β̂)

and

R2 = So − S(β̂)

So

= 1 − S(β̂)

So

. (13)

The theory is that a “good” model will have a value
of R2 near one.

There are two problems with the use of this mea-
sure of goodness of fit. One is the interpretation of
the values, which do not have a standard distribution
and may be misleading. The results in Table 2 for
the data plotted in Figure 1 give an F value for lin-
ear regression of 160.182, whereas the value of R2 is
a rather uninspiring 0.6398. Likewise, for the data of
Figure 2, F = 1289 with R2 = 0.8865. Despite the
overwhelming evidence for the regressions, the val-
ues of R2 are far from one.

The second problem with R2 is that the value
increases as extra terms are added to the model,
since S(β̂) certainly cannot increase and usually
decreases. Some allowance can be made by the use
of adjusted R2

R2 = 1 − S(β̂)/(n − p)

So/(n − 1)
. (14)

Mallows’ Cp

Mallows Cp measures goodness of fit by considering
prediction by fitted models at the n observational
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points. For satisfactory models

Cp = S(β̂)

s2
+ 2p − n (15)

is approximately equal to p, the dimension of β.
Often s2, the estimate of σ 2, is the residual mean
square estimate from fitting the model including all
terms being considered. If there are p∗ terms, for this
model Cp = p∗. The hope is that at least one reduced
model will also have an acceptably small value of
Cp. Interpretation of the values is often aided by a
plot of Cp against p. Examples of the use of Cp to
select models, and comparison with other procedures,
are given in many statistics textbooks, for example,
Hines and Montgomery [11]. The article on Variable
Selection extends these comments and includes a
discussion of Bayesian methods of selection.

Mallows criterion uses the mean squared error
of prediction at the observational points to strike
a balance between the improved predictions from
fitting a larger model and the resulting increased
variance of the predictions. The scaled residual sum
of squares is penalized by twice the number of
parameters in the model. The generalization of this
idea to likelihood, known as Akaike’s information
criterion, or AIC, is mentioned in the next section.

Once a method such as the analysis of variance, R
2

or Cp has been used to select one, or a few, satisfac-
tory models, further checking should be undertaken.
See Residuals and Diagnostics for methods based on
the deletion of individual observations.

Generalized Linear Models

The Analysis of Deviance

Generalized linear models extend the regression
model of the previous section to errors having a one-
parameter exponential family, most importantly the
binomial and Poisson, as well as the normal and
gamma. The mean of each observation µi = E(Yi)

is related to the linear predictor ηi = xT
i β by the

link function g(µi) = ηi . The standard reference is
McCullagh and Nelder [15], with an introduction by
Dobson [7].

Inference procedures parallel those for regression,
the generalized linear model with normal errors and
identity link, g(µi) = µi . The analysis of deviance is
the generalization of the analysis of variance of the

previous section. The calculation and interpretation
of residuals and other diagnostic quantities are aided
by the reduction of maximum likelihood estimation
to iteratively reweighted least squares.

Let the loglikelihood be l(β, φ; y), where φ is a
scale parameter, equal to σ 2 for the normal distribu-
tion. To test goodness of fit of models the loglikeli-
hood is compared with the model which fits best, the
one for which µ̂i = yi . Call these parameter estimates
β̂max. The scaled deviance

D∗(β̂) = 2{l(β̂, φ; y) − l(β̂max, φ; y)} (16)

equals R(β̂)/σ 2 for the regression model and can be
used in the same way to test goodness of fit of models.
If the hypothesis to be tested is that β = βo, of
dimension p − s, then D∗(β̂o) − D∗(β̂) is compared
with χ2

s , the asymptotic distribution of the likelihood
ratio. If φ is not known, it can be estimated from
the residual unscaled deviance D(β̂) = φD∗(β̂), by
setting φ̂ = D(β̂)/(n − p) for a model known to fit
well.

We shall be particularly interested in generalized
linear models with Poisson and binomial errors, for
both of which φ = 1. The value of either deviance
then provides a test of goodness of fit of the model,
which may again have an asymptotic χ2 distribu-
tion provided the number of observations is suffi-
ciently great relative to the number of parameters,
the binomial case being particularly sensitive. A dis-
cussion and further references are given by Firth [8,
Section 3.5.2]. The generalization of Mallows Cp to
Akaike’s information criterion,

AICp = D∗(β̂) + 2p = D(β̂)

φ
+ 2p, (17)

allows the selection of models with small values of
AICp for further checking. (Omission of the term
in n which appears in the definition of Cp does not
affect the ordering of the models). If it is necessary
to estimate φ, the same estimate should be used for
all comparisons between models. Both in this case
and in regression, if the number of observations is
large, there is the danger of selecting models with
too many parameters. Parsimonious model choice
can be achieved using penalties that increase with n.
For example, Schwartz [20] suggests a criterion of
the form

D(β̂)

φ
+ p log n,
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which is more parsimonious than AIC for n ≥ 8.
Bias-corrected methods for the selection of regression
and time-series models are described by Hurvich and
Tsai [13].

Contingency Tables

Generalized linear models for contingency tables,
such as the data of Table 1, can often be modeled
with Poisson errors and the loglink log µi = ηi . The
deviance for a model giving fitted values µi is

D(µ) = 2
n∑

i=1

{
yi log

(
yi

µi

)
− (yi − µi)

}
, (18)

a statistic often called G2 in the literature on the anal-
ysis of categorical data (for example, Agresti [1]).
For the data of Table 1, the deviance is 0.475 for the
expected frequencies given in the table, which do not
involve any estimated parameters. This value yields
the same inference as the value of 0.47 for Pearson’s
X2. Pearson’s statistic, written in this notation is

X2 =
n∑

i=1

(yi − µi)
2

µi

. (19)

The asymptotic equivalence of the deviance and X2

for testing goodness of fit can be shown by expanding
(18) in a Taylor series in (yi − µi)/µi . (Kendall and
Stuart [14, Section 30.8], McCullagh and Nelder [15,
p. 197]). However, the asymptotic equivalence of the
two tests says little about which has higher power for
moderate samples, although there seems to be little
difference. Some references are given by Agresti [1].

Binomial Data

Table 3 gives data from Bliss [3] on the mortality
of adult beetles after five hours exposure to gaseous

Table 3 Bliss’s data on mortality of beetles

Log dosage,
xi

Number
exposed, ni

Number
killed, Ri

1.6907 59 6
1.7242 60 13
1.7552 62 18
1.7842 56 28
1.8113 63 52
1.8369 59 53
1.8610 62 61
1.8839 60 60

carbon disulfide. At each of the eight dose levels xi ,
there are ni binomial trials resulting in Ri successes
(from the point of view of the experimenter). The
question of interest is the relationship between xi and
the probability of success θi = E(Ri/ni).

A standard model for the analysis of such data is
the linear logistic model (see Logistic Regression)
in which

log

{
θi

1 − θi

}
= g(θi ) = βo + β1xi. (20)

When this model is fitted, the residual deviance is
11.23 on 6 degrees of freedom. Here the number of
insects at each dose level is sufficiently large that a
central limit theorem might be expected to hold for
each Ri and so it is sensible to compare 11.23 with
the chi-square distribution on 6 degrees of freedom,
for which the 5% point is 12.59. Although this is not
a significant value, plots of observed and fitted values
(Residuals, Figure 6) suggest a systematic lack of fit,
which can be addressed either by adding a term in
x2 to the linear predictor or by considering another
link function. There are two ways in which a test of
the link function may be obtained on a few degrees
of freedom. Such tests are often called “goodness of
link” tests.

An alternative to the logistic link is the comple-
mentary log–log link in which g(θi) = log{− log(1 −
θi)}. These two can be combined in the parametric
family

g(θi , λ) = log

[ {1/(1 − θi)
λ − 1}

λ

]
, (21)

which is the logistic link, as in (20), for λ = 1 and
tends to the complementary log–log as λ → 0. A test
on one degree of freedom can be obtained either by
finding the value of λ that maximizes the likelihood
and by performing a likelihood ratio test, or by
using a score test for λ = 0 or 1 (see Likelihood).
A discussion and examples of other embeddings of
links are given by Pregibon [16].

A more general test of the goodness of the link
g(µi) is obtained by assuming that the true link is
indeed g∗(µi) = ηi , so that

g(µi) = g{g∗−1(ηi)} = h(ηi). (22)

Expansion of h(ηi) in a Taylor series leads to a
linear predictor that includes an added term in η̂2

i .
Refitting the model with this extra variable without
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recalculating the weights used in fitting leads to a
reduction in deviance of 7.61 to be assessed on one
degree of freedom – strong evidence, when compared
with χ2

1 , of the need for another link with the linear
predictor in (20).

For these data, two models giving satisfactory
fits, as assessed by the residual deviance, are the
complementary log–log model with a linear term
in x and the logistic link including a quadratic in
x. Further details and related plots are in Residuals
and the Forward Search. The interpretation of the
residual deviances as chi-squared values need care.
With the logistic link and all ni = 1, the residual
deviance is a function only of β̂ and so contains
no information about goodness of fit. McCullagh
and Nelder [15, p. 121] discuss the distribution of
the deviance and Pearson’s X2 for small ni . Atkin-
son and Riani [2, Section 6.18], explore the rela-
tionship between the analysis of deviance and t

tests for coefficients in the linear predictor when
all ni = 1.

The goodness of link test using η̂
2 is an example

of an aggregate test, related to Tukey’s one degree
of freedom for nonadditivity in regression, which
involves regression on ŷ

2. A number of related aggre-
gate tests are described by Hinkley [12]. In Residu-
als, we describe the use of added variable and related
plots to determine the effect of individual observa-
tions on such procedures. Methods for the analysis
of binary data are described, amongst others, by Cox
and Snell [5, Section 2.7], who stress the importance
of not relying on overall tests of goodness of fit, but
of trying to detect scientifically important departures
from the model.

Tests of Distributional Shape

A large part of the literature on goodness of fit is con-
cerned with testing distributional shape. A full cov-
erage is given by D’Agostino and Stephens [6]. One
example is the Bowman–Shenton test, which uses
moment properties of the normal distribution. A more
general class of tests, applicable to a general continu-
ous distribution, compares the empirical distribution
function Fn(y) of the sample with the cumulative dis-
tribution function Fo(y) of the proposed distribution.
As an example, we take the Kolmogorov–Smirnov
test, based on the maximum difference between the

two distributions

D = sup
y

|Fn(y) − Fo(y)|, (23)

and apply it to the residuals of the data on mandible
length.

The empirical distribution function (edf) of a sam-
ple of n observations yi is the number of observations
≤ y. If the ordered observations are denoted y(i), the
e.d.f. is given more formally by

Fn(y) = i

n
y(i) ≤ y < y(i+1), (24)

with

Fn(y) = 0, y < y(1) and Fn(y) = 1 y(n) ≤ y.

(25)

The test is most easily performed by applying the
probability integral transformation to the observations
y to give a sample z that is uniformly distributed
under the hypothesized distribution. For example, for
the normal distribution with cdf Φ(w), let

wi = y(i) − µ

σ
and z(i) = Φ(wi). (26)

Figure 5 shows a plot of the edf of Fn(z) against
z, that is, of i/n against z. The two-sided Kol-
mogorov–Smirnov test for the test of normality is the
maximum of the two one-sided tests calculated as

D+ = sup
i

{
i

n
− z(i)

}
; D− = sup

i

{
z(i) − i − 1

n

}

(27)

giving the test statistic

D = sup{D+, D−}. (28)

The value of the statistic for the mandible data is
0.0667. If the null distribution were completely spec-
ified, the statistic would not depend on the assumed
distribution and the result would not be significant
at the 5% level. In calculating the statistic, an esti-
mate has had to be used for the standard deviation
in the probability integral transformation, although
the mean of the residuals is zero. Both the effect
of estimation and of the correlation pattern of the
residuals should be allowed for in calculating the sig-
nificance of the statistic, although here there seems
no doubt about the lack of evidence of departure from
normality.
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Figure 5 Mandible length data. The Kolmogorov–Smir-
nov test for normality is based on the greatest vertical
distance between the empirical distribution and the dotted
line

The comparison of Figure 5 with Figure 3 shows
that it is not straightforward to interpret the edf of
the z in terms of individual outliers. In particular,
Figure 5 indicates why the Kolmogorov–Smirnov
test failed to detect the outliers from an otherwise
seemingly normal distribution. The general point,
made in the introduction to this article, is the frequent
lack of power of overall tests of fit against specific
alternatives. Normal probability plots are more sen-
sitive to outliers than the plot of Figure 5, although
guidance, for example, from a simulation envelope,
may be needed as to whether the line is sufficiently
straight. If the interesting departures are likely to
be in the tails of the distribution, statistics giving
greater weight to the extremes will be more powerful.
D’Agostino and Stephens [6] describe several such
statistics. For discrete distributions methods such as
Pearson’s X2 are often used.

Tests of multivariate distributions are in general
much less well developed, an exception being the
multivariate normal distribution. One possibility
is to apply the multivariate Box–Cox transforma-
tion to normality (for example, Velilla [21], Riani and
Atkinson [17]), testing to see whether a transforma-
tion is needed. A comparison of tests of multivariate
normality is given by Romeu and Ozturk [18].
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(See also Bayesian Methods for Model Compari-
son; Bayesian Measures of Goodness of Fit; Model
Checking; Model, Choice of)
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Gosset, William Sealy

Born: June 13, 1876, in Canterbury, UK.
Died: October 16, 1937, in London, UK.

William Sealy Gosset was born to Frederic Gosset,
a Colonel in the Royal Engineers, and Agnes Sealy
Vidal. He was a Scholar of Winchester College from
1889 to 1895, when he took up a scholarship at
New College, Oxford, which he left in 1899 with
a first class degree in Chemistry. In October 1899,
he became a brewer with Arthur Guinness, Son &
Co. Ltd and remained with the firm for the whole
of his working life, mostly in Dublin, but moving
to London in 1935. Gosset was married on January
16, 1906, to Marjorie Surtees Philpotts, the sister of
a fellow brewer, and there were three children. He
died aged 61.

The business of Guinness was then entirely con-
cerned with the brewing of stout. Gosset was one
of several men from Oxford and Cambridge who
were appointed to make greater use of scientific
methods. His work called for the analysis of experi-
mental data from short runs, during which there were
changes in both materials and the environment. He
had no statistical training, and turned to the stan-
dard textbooks on the combination of observations
in astronomy and geodesy. Their treatments assumed
long series of observations made under stable condi-
tions, whereas Gosset required methods that could be
applied to small samples. He made contact with Karl

Pearson, head of the Biometric Laboratory at Uni-
versity College, London, and attended lectures and
tutorials there during the period 1906–1907. They
included the idea of correlation, the Pearson system
of nonnormal distributions (see Pearson Distribu-
tions), and the chi-square test for goodness of fit.

Gosset’s early work is a fusion of classical meth-
ods for the combination of observations with the
new ideas promoted at the Biometric Laboratory. His
paper on the probable error of a mean, published in
1908, is the best example. The distribution of his test
criterion, then called z, required him to find the distri-
bution of the variance in normal samples, and prove
its independence from the long-known distribution of
the sample mean. He solved the first by fitting a Pear-
son curve with the same moments, and gave support
to the second by establishing no correlation between
mean and variance. The proof is not rigorous, but
his distribution of z, now modified to t , is correct,
and has been a discovery of the greatest importance
throughout statistical methodology. Those who meet
his test criterion for the first time usually do so as
Student’s t, a pseudonym initially adopted to permit
publication, and retained long after his work became
well known.

After Gosset’s return to Ireland, his published
work was mainly concerned with agricultural field
trials and the design of experiments, derived from his
experience in the Irish barley fields. He always took
an interest in the activities of his former teacher, and
his private correspondence was gradually enlarged to
deal with questions from other statisticians, includ-
ing R.A. Fisher, from 1912. The effect on Fisher of
Gosset’s paper on the probable error of a mean was
profound, leading on the one hand to the detailed
exploration of normal distribution theory, and on
the other to a central part of Statistical Methods for
Research Workers [1], which eventually made Gos-
set’s work known throughout the statistical world.
Their correspondence turned to matters of exper-
imental design after Fisher moved to Rothamsted
in 1919, and here differences of opinion eventually
emerged regarding the relative merits of random-
ization and balance. Towards the end of his career,
Gosset became interested in evolutionary genetics,
and Fisher helped with the promotion of his ideas.

Gosset gave advice, criticism, and enlightenment
at a crucial phase in the career of Egon S. Pearson
between 1926 and 1931, and also friendship, which
the younger man never forgot. The foregoing account
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is based on the book by E.S. Pearson [2] and appears
by permission of Oxford University Press.
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Graeco–Latin Square
Designs

A Graeco–Latin square is a pair of orthogonal
Latin squares, so named because Euler in 1782 used
Roman and Greek letters to distinguish the symbols
of the two Latin squares. Sometimes it is also referred
to as an Eulerian square. If S = (sij ) and T = (tij )

are two Latin squares, each of order n, and defined
on the set of symbols 1, 2, . . . , n, they are said to
be orthogonal if each of the n2 possible ordered
pairs of the symbols occurs just once among the pairs
(sij , tij ). Any two of the Latin squares of order 4 in
Figure 1 are orthogonal, and hence each pair forms a
Graeco–Latin square.

A Graeco–Latin square is usually shown with
the two symbols together in one square, often using
Roman letters A, B, C, . . . for S and Greek letters
α, β, γ, . . . for T . Alternative representations use the
T symbols as a suffix of the S symbols, or use ordered
pairs (sij , tij ). The first two squares in Figure 1 can
be represented as in Figure 2.

Graeco–Latin squares exist for all orders n except
1, 2 and 6. In his original paper, Euler proved the
existence of Graeco–Latin squares when n is an odd
integer or a multiple of 4 but conjectured nonexis-
tence of the squares for n = 4k + 2 for all k = 1, . . ..
In 1900, G. Tarry proved the conjecture for k = 1 but
later, in 1960, Bose et al. [2] proved that it cannot
hold for all k > 1. This constituted the first com-
plete proof on the existence of Graeco–Latin squares
(see [4] for more details, including other proofs).

A Graeco–Latin square can, in theory, be used
for various experimental situations in which there are
four effects that can be assumed to be additive. The
four effects are orthogonal, leading to simple esti-
mates and a simply calculated analysis of variance.
With the usual constraints that the estimates sum to
zero for each effect, the estimate for an effect symbol
is the mean value for that symbol minus the over-
all mean. Each effect sums of squares is the sum of
squares of the n estimates multiplied by n, and each is
on n − 1 degrees of freedom. The residual degrees of
freedom is therefore (n − 1)(n − 3). As written, the
design naturally appears to be a row–column design
(a design with two orthogonal blocking structures)
with n rows and n columns, and treatments formed
by two orthogonal factors each of n levels. Only
the main effects of these factors can be estimated.
Although this use with two factors is rare, the design
essentially arises when the units of an experiment
on n treatments with row–column blocking using a
Latin square design are to be used in a later experi-
ment on another n treatments, and it is wished to have
the new treatments orthogonal to the previous ones.
The new treatments are said to be superimposed on
the old ones.

Other possible situations when a Graeco–Latin
square might be used are as a three-dimensional
row–column–layer design (three orthogonal block-
ing effects each with n categories) for an experiment
on n treatments (using the Roman letters for the layer
levels); a 1/n fractional factorial design for three
orthogonal factors with n categories (n3−1 design)
having n blocks of size n (using the rows for blocks);
and a 1/n2 single block fractional factorial design

Figure 1

Figure 2
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for four orthogonal factors with n categories (n4−2

design). In the factorial cases, only main effects
are estimable. Using the example of Figure 2 and
factors A, B, C, D, the latter two cases give the
following designs in the usual notation with levels
0, 1, . . . , n − 1 (brackets denote blocks, and factors
may be superimposed treatments):
a 43−1 design in four blocks:

(a0b0c0, a1b1c1, a2b2c2, a3b3c3),

(a0b1c2, a1b0c3, a2b3c0, a3b2c1),

(a0b2c3, a1b3c2, a2b0c1, a3b1c0),

(a0b3c1, a1b2c0, a2b1c3, a3b0c2);

a 44−2 design in one block:

(a0b0c0d0, a0b1c1d1, a0b2c2d2, a0b3c3d3,

a1b0c1d2, a1b1c0d3, a1b2c3d0, a1b3c2d1,

a2b0c2d3, a2b1c3d2, a2b2c0d1, a2b3c1d0,

a3b0c3d1, a3b1c2d0, a3b2c1d3, a3b3c0d2).

A Graeco–Latin square can also be used to obtain
a four-replicate resolvable (0, 1) (all within-block
pairwise concurrences are 0 or 1) Lattice square
design for n2 treatments in n blocks of size n. The
replicates are formed by writing the numbers 1 to n2

in an n by n array, and then using the rows for the
blocks for first replicate, the columns for the second,
the Roman letters for the third, and the Greek letters
for the fourth.

Two drawbacks to the widespread use of the
Graeco–Latin square in practice are the need for all
four effects to have n levels, and that it is rare for
a factor to have more than about five levels. When
used, a valid randomization of treatment labels to
units is necessary – see [10]. Preece et al. [12] show
that care is needed to ensure a valid randomization
when treatments are superimposed.

An extension of the Graeco–Latin square is to
have more than two orthogonal Latin squares. Sit-
uations in which m > 2 mutually orthogonal Latin
squares (MOLS) can be used are natural extensions
of those discussed for the Graeco–Latin square. The
maximum possible value for m is n − 1, which is
attainable when n is a prime power. Then the n − 1
orthogonal Latin squares are known as a complete set.
Figure 1 gives an example for n = 4 = 22. Clearly,
for n = 6 (and 1, 2) the maximum value of m is 1.

The maximum value of m that is possible is denoted
N(n). Although N(n) can be bounded below, its
value is not known even for n = 10. It is known that
N(10) ≥ 2, N(12) ≥ 5, and N(n) ≥ 3 for all n > 10.
A table of recent lower bounds for N(n) for n up to
199 is given by Brouwer [3] (but note N(27) = 26,
N(97) = 96). Complete sets of MOLS of orders 3 to
5, 7 to 9, are given in [5].

The existence of m MOLS of order n is equivalent
to the existence of what is known as an orthogon-
al array OA (n, m + 2, 2, 1) of m + 2 constraints,
n levels, strength 2, and index 1. Some design con-
structions are given in terms of the OA (see [8]). If
m > 2, then the above construction using a Graeco–
Latin square for m = 2 can be extended to get
an (m + 2)- replicate resolvable (0, 1) square lat-
tice design for n2 treatments in n blocks of size n.
When m = n − 1, the complete set gives the (n + 1)-
replicate balanced square lattice design or the sym-
metric balanced incomplete block design (BIBD)
(n2, n(n + 1), n), equivalent to a finite projective
plane with n + 1 points on every line. A balanced
lattice square, a nested row–column design with n2

treatments for which each n × n block is a complete
replicate, can be constructed from a balanced square
lattice design, or equivalently from the n − 1 MOLS.
In general, m MOLS can be used to construct an
(m + 2)- replicate lattice square. They can also be
used to construct an (n × n)/m Trojan square design
for nm treatments replicated n times in an n × n row-
column array of plots each with m subplots [11].

Sets of MOLS can be sought for particular types of
Latin squares, such as self-orthogonal, Knut Vik, row-
complete – see [6]. The construction of an r-replicate
rectangular lattice design for n(n − 1) treatments
uses r − 2 MOLS of order n, which have each symbol
on the main diagonal, a semi-diagonal Latin square.
Bailey [1] has shown that complete sets of mutually
orthogonal quasi-complete Latin squares exist when n

is an odd prime power. These have every symbol next
to every other symbol twice in the rows and twice
in the columns. A complete set of MOLS can also
be used as a valid Latin square randomization set.
Sets of MOLS may then be used for a valid Latin
square restricted randomization scheme. Martin [7]
showed that a complete set of mutually orthogonal
quasi- complete Latin squares can be chosen to have
low variation under spatial dependence.

When m MOLS do not exist, it may be possible to
find m Latin squares that are “nearly” orthogonal –
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see [6]. Further discussion of Graeco–Latin squares
and MOLS is in Keedwell [6] and Street &
Street [13]; see also Preece [9, 10].
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Gramian Matrix

A symmetric matrix of real numbers A is said to
be a Gramian matrix if there exists a matrix B of
real numbers such that BB′ = A or B′B = A (see,
for example, [1]).

Consider an application involving a sample of
n subjects measured on k variables. Suppose each
observation yij , i = 1, . . . , k; j = 1, . . . , n, is cen-
tered about its variable mean, i.e. xij = (yij − Y i),

and normalized by dividing by
(∑

j x2
ij

)1/2
. Call this

k × n matrix of centered and normalized observations
W. Note that the elements of W are of the form

wij = xij

/(∑
j x2

ij

)1/2
, i = 1, . . . , k; j = 1, . . . , n.

The k × k correlation matrix, R is WW′. Since every
element of W and R is real, R is a Gramian matrix.
The elements of R are of the form

rii ′ =

∑

j

xij xi ′j




∑

j

x2
ij




1/2 


∑

j

x2
i ′j




1/2 .

Suppose a principal components analysis is
performed on R (the k × k correlation matrix). R can
be written as R = EDE′, where D is a k × k diagonal
matrix whose diagonal elements are the eigenvalues
of R, and E is a k × k matrix which is orthonormal
by columns [1]. Since D is a diagonal matrix it can
be written as D = D1/2(D1/2)′, and therefore R =
(ED1/2)(ED1/2)′ is Gramian as long as the elements
of D are real. Suppose we let F = (ED1/2); F is
called the principal components loading matrix of
R. The matrix F can be viewed as a sequence
of row vectors f′i = (fi1, fi2, . . . , fik), i = 1, . . . , k.

The determinant of the matrix the elements of which
are the inner products of the vectors fi and fi ′ ,
denoted (f′ifi ′),

∣∣∣∣∣∣∣∣

(f′1f1) (f′1f2) . . . (f′1fk)

(f′2f1) (f′2f2) . . . (f′2fk)...
...

(f′kf1) (f′kf2) . . . (f′kfk)

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

f11 f12 . . . f1k

f21 f22 . . . f2k...
...

fk1 fk2 . . . fkk

∣∣∣∣∣∣∣

2

,

is called the Gramian determinant.
In factor analysis the correlation matrix R is

replaced by the reduced correlation matrix R∗, where
the ones on the diagonal of R are replaced with the
communalities. Factor analysis then searches for a
k × m(m < k) matrix F∗, where F∗(F∗)′ = R∗. Here
m is the dimension of the common factor space (see
[1, Chapter 5]).

In practice, Gramian matrices and determinants are
used, for example, in principal components analysis
and factor analysis (see, for example, [1]), and to esti-
mate parameters in multiple regression applications
(see, for example, [2]).
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Gram–Schmidt Process

The Gram–Schmidt process, also called the
Gram–Schmidt orthogonalization process, is a
technique for constructing an orthogonal basis from
a basis spanning the same subspace. Consider a
square oblique matrix X with row vectors x′

i (i =
1, 2, . . . , m). The orthogonal matrix Y the first row
of which is identical to the first row of X can
be determined through the Gram–Schmidt process
using the following equations, which are developed
sequentially:

y′
1 = x′

1,

y′
2 = x′

2 −
(

x′
2y1

y′
1y1

)
y′

1,

y′
3 = x′

3 −
(

x′
3y1

y′
1y1

)
y′

1 −
(

x′
3y2

y′
2y2

)
y′

2,

...

y′
m = x′

m −
(

x′
my1

y′
1y1

)
y′

1 −
(

x′
my2

y′
2y2

)
y′

2 − · · ·

−
(

x′
my(m−1)

y′
m−1y(m−1)

)
y′

(m−1).

Since the (x′
iyj /y′

j yj ) terms produce scalars, each
y′

j (j = 1, 2, . . . , m) is a row vector. The rows
of Y are then normalized producing an orthog-
onal matrix (see, for example, [1, pp. 237–242]
for a complete discussion of the process with
examples).

The technique is used in a variety of set-
tings, including battery reduction analysis and in
estimating parameters in multiple regression appli-
cations. In battery reduction analysis, for example, it
is of interest to reduce the number of variables. One
means of achieving this is through Gram–Schmidt

orthogonal rotations of the initial factor loading
matrix from a principal components analysis. The
process takes the initial factor matrix and finds the
variable with the largest variance shared by other
variables (called the communality).

A Gram–Schmidt rotation is performed so that
the first component is identical to this variable.
The process continues as follows. From the remain-
ing variables, the one with the largest shared vari-
ance is found, and a Gram–Schmidt rotation is
performed so that the second component is identi-
cal to this second variable. The process continues
until m variables are identified, where m < p, and
p represents the total number of original variables.
The goal in battery reduction analysis is to reduce
the number of variables while at the same time
explaining as much variance in the original vari-
ables as possible (see, for example, [2]). In multiple
regression applications, the goal is to reduce the
n-dimensional space (where n represents the num-
ber of observations) to a p-dimensional space (p <

n, where p represents the number of independent
variables).
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Graphical Displays

Statistical graphics are abstract pictures of numbers
that represent either the data themselves or quanti-
ties derived from the data. Their value stems from
the fact that it is often easier to extract information
from well-chosen pictures than from sets of num-
bers. Although a table of numbers can be considered
a graphic, generally, graphics are distinguished from
tables as alternative representations used for different
purposes. For small sets of numbers or for situa-
tions in which the exact values of the numbers are
required, tables are better than graphics; for examin-
ing less local properties (like patterns) in large data
sets, graphics are better. More generally, graphics are
invaluable tools for recording and storing large data
sets, analyzing (describing, exploring, and summa-
rizing) data, enhancing the use of other statistical
tools, communicating numerical information, deco-
rating articles, reports, and so on. Graphics are not
an end in themselves, but are constructed for specific
purposes and should be judged in this context. The
best graphics are those that show clearly and force-
fully, but without distortion, the presence or absence
of features of the data that are important to the sub-
stantive questions underlying the analysis.

Statistical graphics have been in use at least since
Playfair [73] and are in a continuing state of evo-
lution; see [14, 35, 37, 44, 91] for historical back-
ground. Stimulating discussions of the principles and
aesthetics of graphic construction can be found in
a variety of references including [22, 24, 37, 82,
83, 86].

Many of the important ideas concerning graphic
construction can be summarized by the statement that
good graphics are those that convey complex numeri-
cal information with clarity, precision, and efficiency.
The key elements of good graphics can be identified
as substance, statistics, and design. Graphics should
be based on good statistics, both in the sense of being
integrated into statistical analysis and in the choice of
what to plot. For instance, we may variously consider
plotting differences or ratios rather than the raw data,
plotting transformed variables rather than the original
variables, removing gross structures such as linear
trends so that we can concentrate on finer details,
partitioning data that contains clusters and exploring
the clusters separately, augmenting plots with fitted
curves and other statistical summaries or even by

plotting summaries of the data (e.g. boxplots) rather
than the data itself. When possible, statistical meth-
ods should be used to help assess whether a feature in
a graphic is an artifact or not. The design aspects of a
graphic (size, aspect ratio, choice of axes, and plotting
symbols) should be appropriately chosen to reflect
balance, proportion, and a sense of scale. Length and
direction are the preferred basis for plotting symbols;
shape is generally better than size for coding informa-
tion though size is widely used. Color is a potentially
effective encoding method but can be difficult to use
and restrained gray scales may be a better alterna-
tive. Finally, it seems natural to require the visual
impact of a pattern to be matched to importance in
the context of the analysis.

One of the more elusive ideas in graphic con-
struction is that graphics should be simple. At a
basic level, complex, cluttered graphics are difficult
to interpret and can be misleading because clutter can
interfere with our perception. Clutter can be reduced
by eliminating gridlines, choosing appropriate scales
(including plotting characters, transformation, etc.),
and reducing the data (such as by the use of plotting
symbols as in a sunflower plot). Careful, accurate
labeling should be used to reduce complexity but
needs to be balanced against a possible increase in
clutter. Simplicity of perception can be achieved by
noting that straight lines are perceived more clearly
than curves; therefore, reference curves are preferably
straight lines as in quantile–quantile (Q–Q) plots or
residual plots. The difficulty is that simplicity of per-
ception and simplicity of interpretation can conflict.
For example, simplicity of perception can be achieved
by ensuring that deviations of equal magnitude have
equal importance in a graphic. In a histogram, longer
bars are more variable than smaller ones but the
square root transformation can be used to produce
a rootogram [90] in which the bars have equal vari-
ability, at the expense of increasing the difficulty of
interpretation. Similarly, dependence can have unex-
pected effects and complicate the interpretation of a
graphic. For example, the order statistics in a Q–Q
plot are dependent, so apparent structure can be due
to this dependence. An alternative is to base the plot
on the spacings between order statistics but again the
requirements of simplicity of perception and simplic-
ity of interpretation compete. To complicate matters,
interpretability depends on the training and experi-
ence of the observer.



2 Graphical Displays

Successful graphic construction (and data analysis
generally) requires flexible strategies and a computa-
tional environment for implementing these strategies.
Graphics capabilities are hardware dependent (i.e.
they depend on the particular terminal or device
being used) but a minimal requirement includes high-
resolution (even color) screens and printers, a “real-
time” graphic capability to support dynamic graphics,
and the ability to interact directly with the displays.
The simplest interactions we need to make involve
a single window. These include rotating, interpo-
lating, scaling, subsetting, marking, and identifying
points as well as controlling dynamic graphics. It is
also desirable to be able to implement multiwindow
interactions such as linking windows and brushing
(highlighting, downlighting, deleting, and labeling).
We need high-level abstract computing languages that
express manipulations in the way we think about
them. It is convenient for a language to include inbuilt
default settings so that we do not always have to set
explicitly every possible graphical parameter, but it
is vital to be able to adjust all of these parameters
quickly and easily. The graphics in this article are
all constructed in S-PLUS running in a workstation
environment.

The article is organized into six broad sections:
relationships between two variables; relationships
between several variables; the display of one-
dimensional data; data developing through time;
multivariate data; and survival data. We elected to
treat relationships between two variables before the
familiar one-dimensional displays because we felt
that practitioners in biostatistics and statistics in
medicine and the health sciences are more naturally
concerned with relationships between variables than
with simple univariate data. (e.g. in many applications
in medical statistics, there is a well-defined response
variable that is to be modeled in terms of several
explanatory variables.) One-dimensional displays
then arise naturally through looking at topics such
as residual analysis from modeling relationships
between variables.

Relationships Between Two Variables

Scatterplots

The simplest, and one of the most powerful, graphi-
cal tools for describing the relationship between two
variables is the scatterplot, which represents each pair

of data values using (x, y) coordinates in a Carte-
sian plane. The “shape” of the scatterplot is used to
describe the relationship between the two variables.
Two elements of the “shape” of a scatterplot that
are most useful in describing relationships between
variables are measures of “location” and “spread”
for the (x, y) data. For example, location might be
measured as a line or a curve that runs through the
bulk of the data while spread might be measured in
terms of deviations of (x, y) points from the esti-
mated location. The use of notions like location and
spread to describe the relationship observed from a
scatterplot is essentially a form of smoothing applied
to the scatterplot, and the results of this smoothing
can be added to the scatterplot through the addition of
fitted curves. The resultant plot contains information
about individual data points as well as summariz-
ing the relationship between the variables through
the fitted curve. A seminal paper describing the use
of scatterplots (and other graphics) in data analysis
is [4]. Other relevant references for the general use
of scatterplots include [20, 24].

Scatterplot Smoothing

Numerous strategies have been developed for smooth-
ing scatterplots, primarily for estimating the location
of the relationship. One suggestion, due to Cleve-
land [22, 23], is lowess (Locally Weighted Scatter-
plot Smoothing), which smooths by averaging local
straight line fits to the data; see also [20]. Alter-
natives to lowess include running (weighted) mean
smoothing, running (weighted) median smoothing,
and spline smoothing; see [78, 82, 88]. All of these
methods depend on the selection of bandwidths that
control how local the fitting methods are. Smoothing
approaches to estimate spread are usually based on
residuals, deviations of the data from the estimated
location, and are often based on location-smoothing
of scatterplots of absolute residuals versus fitted val-
ues; see below for a discussion of methods based on
residuals. Figure 1 shows a simple scatterplot of brain
weight (in grams) versus body weight (in kilograms)
for 62 mammals. This graphic demonstrates that as
body weight increases, brain weight tends to also
increase, but the precise relationship between brain
weight and body weight is difficult to describe. The
“location” of the scatterplot exhibits significant cur-
vature, and the points seem to be very compressed in
the bottom left corner of the plot. The real question
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Figure 1 Scatterplot of brain weight versus bodyweight
for 62 mammals. (Source: Weisberg [93]; excerpted from a
larger study presented by Allison and Ciccheti [1]). Three
“unusual” points are marked in the plot

arising from this basic graphic is: can it be improved
to more precisely indicate the relationship between
brain weight and body weight?

Use of Transformations to Straighten Scatterplots

One strategy often followed in presenting scatter-
plots is that of trying to find transformations of
the original variables, so that a scatterplot involv-
ing the transformed variables displays a roughly lin-
ear relationship with a roughly constant spread of
the response variable (y) for different values of the
explanatory variable (x). Such strategies are desir-
able from a classical parametric modeling standpoint
because they make the usual assumptions underlying
parametric regression modeling more credible. They
are also desirable graphically from the point of view
of simplicity, visual appeal, and interpretability. It is
important to keep in mind, of course, that the rela-
tionship between variables on the original scale is
usually most important, and variables should not be
transformed without thought for how a linear rela-
tionship on the transformed scale can be interpreted
in terms of the original variables. A general discus-
sion of the use of transformations in analyzing data is
given by Mosteller & Tukey [71]. Broadly speaking,
there are two approaches to transforming variables
in order to understand their relationship: data-driven
approaches and theoretical approaches. Data-driven
approaches attempt to empirically straighten scatter-
plots. One data-driven method, suggested by Box

and Cox [17], selects transformations from the class
of power transformations to obtain the best lin-
ear fit to the data on the transformed scale. Once a
transformation has been thus selected, scatterplots of
the transformed variables can be employed to assess
whether the transformation has been successful in
linearizing the scatterplot. Theoretical approaches to
transformations may be possible when prior informa-
tion about the data can be used to help in selecting an
appropriate transformation. For example, data arising
from an exponential growth model typically yields
a scatterplot that can be linearized by taking logs
of the response variable. (Of course, it is critical
to recognize that taking logs of the response vari-
able affects not only its location but also its spread).
Figure 2 shows how transformations can be used to
effectively clarify the relationship between two vari-
ables. Shown is a plot of log brain weight versus log
bodyweight for the data set described in the previous
paragraph. There is a clear linear relationship between
the logged variables. Points appearing unusual on the
original scatterplot look less so on the transformed
scale and the logged data also has much more uniform
spread (along both sets of axes) than the original data.
By positing a linear relationship between log brain
weight and log body weight, it is possible to make
clear the precise nature of the relationship between
brain weight and body weight, a task rendered diffi-
cult using only the original scatterplot.
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Figure 2 Scatterplot of log brain weight versus log body
weight for 62 mammals. A lowess line is superimposed.
Unusual points marked in Figure 1 are marked in this plot
also for comparison
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Relationships Between Several Variables

The Scatterplot Matrix

While the basic scatterplot is a satisfactory tool for
describing the relationship between two variables,
more sophisticated strategies become necessary when
the goal is to explain a response variable in terms of
several explanatory variables. A basic approach to
this problem involves the use of a scatterplot matrix,
an array of scatterplots relating every pair of variables
for which we have data; see [20]. Individual panels
of the scatterplot matrix can be smoothed, perhaps
using a method like lowess, or with a fitted curve
arising from a parametric model fit. The scatterplot
matrix can be used to describe the marginal relation-
ship between any pair of variables, but it is unable to
provide information on joint relationships involving
three or more variables. Figure 3 shows a scatter-
plot matrix for a data set from a study relating body
fat to three explanatory variables, triceps skinfold
thickness, thigh circumference, and midarm circum-
ference. The scatterplot matrix shows that both triceps
and thigh measurements have a positive relation-
ship with body fat, but that midarm appears to have
little relationship to body fat. Notably, triceps and

thigh measurements appear highly correlated with
one another.

Scatterplots Using Different Plotting Symbols

Basic scatterplots can be embellished to provide
higher-dimensional information in several ways. One
way is through the use of different plotting symbols
on the scatterplot to yield information on other vari-
ables in the problem. For example, if one wished
to plot information about three variables, one of
which was categorical and the other two of which
were measured continuously, one could plot a scat-
terplot involving the two continuous variables but
the plotting symbol could reflect the level of the
third variable. If all three variables were measured
continuously, the magnitude of the third variable
could be encoded as the length of a line segment
that could be then used as a plotting symbol in
a scatterplot of the other two variables. Higher-
dimensional data could be accommodated by using
higher-dimensional symbols: for example, the size
of two variables could be conveniently encoded and
plotted as the width and height of a rectangle. Other
plotting symbols include: metroglyphs, circular sym-
bols with rays extending from them [2]; stars where
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Figure 3 Scatterplot matrix for body fat data. (Source: Neter et al. [72, Chapter 8]). Each cell of the array of plots shows
a simple scatterplot relating the pair of variables indicated in the corresponding row and column of the array. Response
variable is body fat; explanatory variables are triceps skinfold thickness, thigh circumference, and midarm circumference.
The data is based on a sample of 20 healthy females aged between 25 and 34 years
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the number of rays reflects the number of variables
encoded [45]; weather vane symbols [19]; and sun-
flowers [27]. Other ideas have been furnished by Har-
tigan [53], Bachi [8], Bertin [16], Everitt [42], and
Tukey and Tukey [88]. An overview of the use of
symbols in graphing data is given by Cleveland [24].
When choosing the type of symbol with which to
encode information on several variables, a useful
rule of thumb is to use a symbol having the same
dimension as the number of variables it is encod-
ing. Returning to the body fat data introduced in
the previous paragraph, Figure 4 shows a scatterplot
of body fat versus thigh circumference with midarm
and triceps encoded as the width and height, respec-
tively, of rectangles. Note that as thigh circumference
increases, body fat tends to increase and the rectan-
gles change from being shorter and flatter to taller
and thinner, reflecting changes in the other variables.

Coplots

Another approach to presenting higher-dimensional
data that uses simple scatterplots as its basis is the
use of coplots. In a case where the data has two
explanatory variables x1 and x2 and one response
variable y, a set of coplots may consist of a sequence
of scatterplots involving the response variable and
one of the explanatory variables (say x1), but points
plotted within each scatterplot are those whose val-
ues of the second explanatory variable x2 falls within
some specified range. By using a sequence of (poten-
tially overlapping) segments of x2 that span its
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Figure 4 Scatterplot of body fat versus thigh using rectan-
gular symbols to encode for midarm and tricep. The width
of the rectangle encodes midarm; the height encodes tricep

range, the sequence of scatterplots indicates how the
relationship between y and x1 changes as x2 changes.
If one of the variables is categorical, its levels serve
as a natural set of values of the third variable for
which to set up coplots. Geometrically, coplots can
be thought of in terms of examining a sequence of
slices parallel to the (x1, y) plane rather than sim-
ply projecting all the data onto that plane, as occurs
in a simple scatterplot. When there are more than
two covariates, coplots can be constructed by con-
ditioning on all but one of the covariates, although
in this case care must be taken in organizing the
order in which the covariates being conditioned on
change so that the resultant sequence of coplots is
readily interpretable. The idea of using conditioning
as a tool for creating informative graphics was dis-
cussed by Tukey and Tukey [88], and the notion of
coplots was introduced by Cleveland [25]. An exten-
sion of the coplot idea is the trellis display proposed
by Becker et al. [11]. Trellis displays retain the sim-
ple idea from coplots of producing a sequence of
graphics involving two variables after conditioning
on the other variables in the problem. However, trel-
lis displays make clever use of the way in which
the plots are visually presented, and are not limited
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Figure 5 Coplot of body fat versus thigh given tricep.
The top panel presents the range of tricep values for each
of the coplot panels. The three lower plots correspond to
segments of tricep below the dotted line in the top panel;
the three higher plots correspond to segments above the
dotted line. Note that segments of tricep are permitted to
overlap, sometimes significantly, to allow for roughly equal
numbers of points per coplot
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to the use of two-dimensional scatterplots within the
sequence of graphics displayed. An example of a
coplot to investigate the relationship between body
fat, thigh, and tricep for the body fat data is given in
Figure 5.

Graphical Tools for Three-dimensional Data

Data in three dimensions lends itself particularly well
to graphical analyses, and myriad tools are available
for this case. For example, perspective plots and con-
tour plots can be used to visualize relationships in
three dimensions, and coplots are easiest to inter-
pret in three dimensions. Extending these methods
for higher-dimensional data is possible, for exam-
ple, through the use of perspective coplots, or trellis
displays whose panels comprise perspective plots or
coplots. Figure 6 shows a perspective plot and a
contour plot relating body fat to thigh and midarm
circumferences for the body fat data. The plots clearly

show that the response surface is fairly flat, suggest-
ing that a linear model relating body fat to midarm
and thigh may be appropriate.

One particularly promising approach to visualizing
three- (and higher-) dimensional data is through the
use of dynamic displays. Becker and Cleveland [10]
and Cleveland and McGill [28] proposed two
strategies, brushing and spinning displays, that can
be used to graphically investigate three-dimensional
data. Spinning displays amounts to producing a series
of images of data point clouds, simulating motion
as the data rotates about the origin. Structure within
the data is then observed by interpreting the shape
of the point cloud as it appears to move. Critical
to the success of spinning displays is that the user
can control the speed and direction of movement
so that the data can be oriented into interesting
and meaningful directions. Brushing displays can be
used to embellish information obtained by spinning
displays by highlighting (or “brushing”) certain
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Figure 6 Plots specific to three-dimensional data. Plot (a) is a perspective plot relating body fat to the explanatory variables
midarm circumference and thigh circumference. Plot (b) is a contour plot showing contours of the body fat surface projected
onto the midarm–thigh plane



Graphical Displays 7

points or groups of points and watching how they
individually affect the appearance of the point cloud.
Brushing allows for the identification of outliers,
influential points, and clustering within the data,
as well as for other structures that may not be
apparent from the simple scatterplot matrix. Dynamic
graphics is a relatively new area of development
in graphical data analysis, and is heavily reliant on
powerful computing environments that allow the fluid
movement of points in real time.

Exploring the Covariate Space

Apart from betraying relationships between the res-
ponse variable and the various explanatory variables,
the graphical tools described above also play an
important role in finding potential problems for rou-
tine analysis in, and features of, the covariate space.
Important features include the identification of out-
lying observations and influential points, identifying
multicollinearity (see Collinearity) in the covariate
space, and noting joint relationships between more
than two variables that are not apparent from the
two-dimensional plots in the scatterplot matrix. For
example, coplots are useful tools for determining the
marginal effect on the response of a certain explana-
tory variable (say x1) after the effects of the other
explanatory variables have been accounted for. If x1

has a collinear relation with other explanatory vari-
ables in the data, the coplot of the response versus
x1 given the other explanatory variables exhibits no
particular relationship between y and x1 after the
effects of the other variables has been accounted
for, even though the original y versus x1 scatterplot
may have suggested a strong relationship between
y and x1. Note from Figure 5 that the relationship
between body fat and thigh after the effect of tricep
has been taken into account seems weaker than the
marginal relationship observed from the scatterplot
matrix. This discovery makes sense given that tricep
and thigh appear highly correlated, and so contribute
much the same information about body fat. Unfor-
tunately, coplots can be difficult to interpret if the
individual panels contain too few points. Coplots can
also show the existence of joint relationships between
more than two variables when the scatterplot matrix
fails to show a strong marginal relationship between
any pair of variables. The issues of multicollinear-
ity and marginal versus joint relationships between
variables are important because they directly impact

our ability to describe the data in a compact way:
multicollinearity because relationships between the
explanatory variables prevent us saying how individ-
ual variables contribute to explaining the response;
and complex joint relationships because they may not
be obvious from usual, two- and three-dimensional
graphical approaches. Where possible, a parsimo-
nious model (that is, one that fits well with as few
variables as possible) is the primary goal, and the
reduction of the dimension of the covariate space
made possible by visually examining its properties is
an important part of any many-variable data analysis.

Outliers and Influential Points

Another important feature of a graphical exploration
of data is the identification of unusual or aberrant data
points. Here, it is important to distinguish between
outliers (points that are far from the model fit), and
influential points (points that do not seem consis-
tent with the rest of the data, and whose presence
dramatically affects the model fit; see Diagnostics).
Outliers are usually easy to see in simple two-
dimensional data sets, but can become very difficult
to see in higher-dimensional data sets. In particu-
lar, the scatterplot matrix is not a reliable tool for
finding outliers in three or more dimensions because
the limited number of projections on which it gives
information can miss unusual points in other direc-
tions in the data. Brushing and spinning tools can
be highly effective for identifying outliers in three
dimensions, but more general tools are needed for
higher dimensions. Residual plots, discussed below,
are often helpful for finding outliers with respect to
a particular model fit, regardless of the dimension of
the problem. In such cases, it is usually important that
the models chosen be fit robustly so that the effect
of outliers in the model fit is downweighted (see
Robustness). Information about outliers can also be
obtained by plotting the weight function used by the
robust fitting technique and observing which points
were downweighted in the analysis; see Figure 7(a).
While robust fitting techniques can adequately deal
with outliers, they may not be resistant to influen-
tial points. Influential points can be assessed through
the use of leverage plots that display, for each point,
a measure of how far the data point is from the
“center” of the covariate space. Points far from the
center of the data are then assessed as potentially
influential. There is a considerable literature devoted
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Figure 7 Residual diagnostic plots for the body fat data from a model relating body fat to all explanatory variables on
the raw scale. The plots include: (a) a plot of robust regression weights for the model fit revealing data points 13, 14, and
19 as downweighted in the analysis (these points are potential outliers); (b) a normal quantile–quantile plot of the residual
from the model fit showing the residuals as plausibly normal; (c) a plot of residuals versus fitted values; and (d) a plot of
absolute residuals versus fitted values with a lowess line superimposed

to the subject of handling outliers in data analysis;
see, for example, the monographs by Barnett and
Lewis [9] and Hawkins [58], and the survey paper by
Beckman and Cook [12]. Predominantly nongraphi-
cal approaches to measuring influence were discussed
by Cook [29], Belsley et al. [13], Atkinson [7], and
Cook and Weisberg [32].

Exploratory Methods

After an initial graphical exploration of the data has
been carried out, it is usually desirable to model the
data explicitly. The resultant model may be used
to validate a theory about the process from which
the data derived, or it may be used for predic-
tion, or for some other purpose. Recently, several
exploratory methods have been developed to sug-
gest interesting directions in the data, and to sug-
gest whether it is desirable to transform some or
all of the variables in order to obtain a reasonable

fit. Examples of these techniques include Additive
VAriance Stabilized approach (AVAS), Generalized
Additive Models (GAM), and Projection Pursuit
Regression. The results of these methods are naturally
interpreted graphically. The AVAS and GAM meth-
ods attempt to isolate appropriate transformations of
both the response and explanatory variables to obtain
the best additive fit of the transformed variables to the
data. The AVAS method also attempts to transform
the response variable to stabilize its spread. Scat-
terplots of the transformed AVAS variables against
the original variables can be used to suggest appro-
priate transformations of the data for use in fitting
formal parametric models. The AVAS method was
introduced by Tibshirani [84], and the GAM method
was proposed by Hastie and Tibshirani [55]; see
also [54, 56, 83] and [57]. Projection pursuit regres-
sion, introduced by Friedman and Tukey [47] and
discussed further by Friedman and Stuetzle [46], and
Cook et al. [30, 31], attempts to find informative



Graphical Displays 9

projections in the covariate space, and then appro-
priate transformations of the projected data to obtain
the best additive fit of the transformed projections to
the response. Graphical exploration of the result of
a projection pursuit fit can yield useful information
about the effective dimension of the covariate space,
although care must be taken not to overinterpret the
results of projection pursuit regression.

Parametric Model Fitting and Plots Based on
Residuals

Parametric approaches to modeling data assume
a particular parametric form for the relationship
between the response and explanatory variables, and
then estimate the parameters of the relationship based
on minimizing the distance between the fitted rela-
tionship and the original observations. Additional
assumptions usually made in parametric modeling
based on Gaussian models are that the errors asso-
ciated with the model are additive, and have zero
“location” and constant spread (homoscedasticity; see
Scedasticity). For many applications, it is convenient
to assume that the errors have the explicit structure
of independent and identically distributed random,
zero-mean, constant-variance normal variates. Many
graphical tools for assessing the success or otherwise
of the model fitting process are based on residu-
als, estimated deviations of the original observations
from the model fit. The residuals estimate the unob-
servable errors described above. The model fit is
represented by the fitted values, values of the esti-
mated response for each of the observed covariate
values. The plot of residuals (or absolute residuals)
versus fitted values is a simple graphic often used
to assess the validity of some of the error assump-
tions. If the assumptions are valid, this plot should
exhibit a random pattern of residuals in a roughly uni-
form band about zero (homoscedasticity). Common
deviations from this uniform pattern include patterns
where the residuals seem to increase (or decrease) as
fitted values increase (suggesting heteroscedasticity),
or a strong relationship between the residuals and the
fitted values (suggesting a deficiency in the model).
Another useful graphic is a plot of residuals versus
order, which can discover serial correlation among
the residuals; see below for a discussion of dependent
data. To assess the assumption of normality of residu-
als, a normal Q–Q plot is often used; a discussion of
Q–Q plots is given later. Anscombe and Tukey [5]

discuss the graphical use of residuals in regression
diagnostics, and descriptions of standard residual
plots are given in almost any text on basic regression
methods; see, in particular, Cook and Weisberg [33].
Figure 7 shows a typical set of diagnostic plots based
on residuals, there applied to a model for the body
fat data. The four plots pictured are a plot of Huber
weights, used to detect potential outliers in the data
set; a plot of residuals versus fitted values and a
plot of absolute residuals versus fitted values, use-
ful for detecting outliers, assessing the error-variance
assumption, as well as for assessing whether further
modeling is desirable; and a Q–Q plot of residuals,
used to assess the assumption that the error distribu-
tion is normal. The plots suggest no major concerns
about the quality of the linear model fit.

Partial Residual Plots and Added Variable Plots

Plots based on residuals can also be used to assess
which variables should enter the model, and in what
form. Particular examples include partial residual
plots and added variable plots. Partial residual plots
were proposed by Ezekiel [43], and are described
by Larsen and McLeary [68], and Wood [94] (who
termed them component-plus-residual plots). Added
variable plots were suggested by Gnanadesikan [49],
and are described by Larsen and McCleary [67]. To
describe partial residual plots, let ri, i = 1, . . . , n

denote residuals from the model fit, and let β̂k be
the estimated coefficient of the explanatory variable
xk in the model. A partial residual plot is a plot
of ri + β̂kxik versus xik . If the model linear in xk

is appropriate, the partial residual plot for xk should
exhibit a linear trend; curvature in the partial residual
plot suggests that xk should be transformed before
entering the model, or that a quadratic (or higher-
order) term in xk should be added to the model (see
Polynomial Regression).

The added variable plot seeks to answer the ques-
tion of whether a variable (say xk) should be added to
the model if other variables are already in the model.
The graph plots the residuals of a model fitting the
response to a set of explanatory variables not includ-
ing xk (representing that part of the response not
adequately explained by those variables) versus the
residuals of a model fitting xk to the same reduced set
of explanatory variables (representing that part of xk

not accounted for by the other explanatory variables).
The resultant plot depicts the effective explanatory
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power of xk over y after the other variables have
been accounted for. Provided a linear model involv-
ing xk is appropriate and xk is not collinear with
the other variables, the plot should exhibit a linear
trend with slope equal to the estimated regression
coefficient of xk in a linear model fit. Curvature in
the additive variable plot suggests either that xk needs
to be transformed before entering the model, or that
higher-order terms in xk are warranted in the model.
If the plot exhibits no particular structure and the
original scatterplot matrix suggested a relationship
between y and xk , collinearity between xk and the
other explanatory variables is indicated. An example
of an added variable plot applied to the body fat data
is given in Figure 8. The question motivating this plot
is that of whether thigh should enter a model for body
fat if midarm is already present in the model (triceps
have been removed from consideration because it is
highly correlated with thigh). The strong linear trend
of the resultant plot suggests that thigh should enter
the model.

Display of One-dimensional Data

Diagnostic methods based on residuals include checks
on the distributional assumptions made about the
errors associated with the model fit. Hence, it is
important to be able to describe one-dimensional
data, such as the residuals, graphically. The sim-
plest, and perhaps oldest [73], graphical display for

one-dimensional data is the histogram, which divides
the range of the data into bins and plots bars corre-
sponding to each bin, the height of each bar reflecting
the number of data points in the corresponding bin.
Unfortunately, the way in which histograms depict
the distribution of the data is somewhat arbitrary,
depending heavily on the choice of bins and bin-
widths, with large binwidths tending to smooth over
important features of the distribution, and small bin-
widths resulting in histograms that look too rough.
Kernel-based smoothing (see, for example, Silver-
man [78]) can be used to provide a smooth density
estimate, but many of the same issues of choosing an
appropriate bandwidth arise. Examples of histograms
appear in Figure 9 for a data set examining the effect
of ozone (a component of smog) on body weight.
Stem-and-leaf plots (see [89] for a discussion) are a
variant on histograms that combine the features of a
graphic and a table in that the original data values
are explicitly shown in the display as a “stem” and
a “leaf” for each value. The stems determine a set
of bins into which the leaves are sorted, and the
resulting list of leaves for each stem resembles a bar
in a histogram. Tukey [87] developed the boxplot dis-
play, based on the five-number summary (minimum,
first quartile, median, third quartile, maximum) of the
data. The boxplot represents the middle half of the
data (first to third quartiles) by a rectangle (box) with
the median marked within, with whiskers extending
from the ends of the box to the extremes of the data

Residuals of thigh from model containing midarm
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Figure 8 Added variable plot for thigh given the presence of midarm in the model for body fat. Plotted are the residuals
from a model relating body fat to midarm versus the residuals from a model relating thigh to midarm. A robust regression
line relating the two sets of residuals is superimposed, suggesting that a linear model incorporating thigh is appropriate
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Figure 9 Histograms of weight loss in grams for control and ozone groups of rats from an experiment to measure the
effects of ozone, a component of smog. (Source: Doksum and Sievers [41]). The control group contained 23 rats, the ozone
group 22. All rats were around 70 days old, and weight gain was recorded after 7 days of exposure. Both histograms are
drawn on the density scale, and smooth kernel density estimates are superimposed. The histograms are arranged vertically
to facilitate comparisons between the two groups

or to one and a half times the interquartile range of
the data, whichever is closer.

Each of the aforementioned displays tries to
answer the question of how the data is distributed
by showing what the data distribution “looks
like”, but they don’t deal with the issue of
how the data distribution compares with some
theoretical distribution. This issue is important,
particularly for examining residuals from a model
fit, because it is often assumed that these residuals
arise from a normal distribution with zero mean
and constant variance. The most commonly used
graphic to address this issue is the normal Q–Q
plot ; see Wilk & Gnanadesikan [92] for a general
description. A similar graphical display is the P–P
(probability–probability) plot. The normal Q–Q plot
plots theoretical quantiles from a standard normal
distribution against the empirical quantiles from
the data (see Normal Scores). If the resultant
plot appears linear, the data is consistent with the
assumption of normality; departures from linearity,

such as a characteristic “S” shape or concavity,
suggest nonnormality. If nonnormality is indicated for
a set of residuals, it may be useful to transform the
data to achieve plausibly normal residuals, bearing
in mind that the transformation affects other features
of the data. An example of a normal Q–Q plot is
given in Figure 7(c), applied there to the residuals of
a model for the body fat data. Quantile–quantile plots
can also be constructed against reference distributions
other than the normal.

Comparison

Displays for one-dimensional data can often be used
effectively for comparing data distributions. Key to
the success of such ventures are notions of scale and
placement: first, it is critical that the data sets to be
compared are on roughly the same scale (e.g. they
should be measured in the same units); and second,
in combining graphical elements for purposes of com-
parison, it is useful to utilize a common set of basic
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features (axes, orientation, etc.) for all elements, and,
if possible, to place the individual components within
the graphic to facilitate easiest comparison (e.g. side-
by-side boxplots sharing a common set of axes form a
more potent graphic for comparison than do side-by-
side boxplots drawn on different axes, or boxplots
aligned vertically). Other examples of comparative
graphics include histograms using the same axes,
arranged vertically, back-to-back stem-and-leaf plots
(sharing a common stem), and h-plots; see Figure 9.
Quantile–quantile plots relating the empirical quan-
tiles from each of two data sets can also be used
to compare the distributions of the two data sets.
The histograms in Figure 9 facilitate easy compar-
ison of the control and ozone groups of rats by virtue
of their vertical arrangement. Figure 10 displays two
comparative displays of one-dimensional data using
side-by-side boxplots; the use of a log transformation
in plot (b) to symmetrize the data distributions allows
for an easier comparison between the two groups. Of
course, while the use of a log transformation allows
easier comparison between the two groups, it also
makes for a more difficult interpretation. An impor-
tant feature of graphic construction is simplicity, but,
unfortunately, it is often the case in the construction
of good statistical graphics that simplicity of percep-
tion and simplicity of interpretation conflict.

Graphical displays for one-dimensional data are
often encountered in the popular media, but “presen-
tation” graphics encountered in that setting, such as

bar charts, line charts, and pie charts are not terribly
effective tools for communicating numerical informa-
tion. Pie charts, for example, usually summarize only
a handful of numbers that would be more effectively
presented in a small table. Tufte [86] puts this opin-
ion rather bluntly: “A table is nearly always better
than a dumb pie chart . . . Given their low data-
density and failure to order numbers along a visual
dimension, pie charts should never be used”. Bar
charts differ from histograms in that the bars need
not be ordered along the horizontal axis. However,
bar charts published in many popular newspapers
and magazines employ highly stylized bars (e.g. bars
shaped like people) that distort the visual perception
of the bars. Needless to say, many common embel-
lishments of common presentation graphics such as
three-dimensional bar charts, and three-dimensional
or exploded pie charts, should be avoided alto-
gether as they introduce redundant dimensions into
the graphical display. These embellishments can also
introduce unusual perspectives into the graphic, unin-
tentionally (or, occasionally, intentionally!) causing
the viewer to misinterpret the numerical information
being portrayed. Perhaps the only graphic routinely
used in the popular media that is also a good sta-
tistical graphic is the time series plot, although this
display can also be ruined by careless use of shading,
decoration, or other presentation errors. To faithfully
record the various misuses and abuses of graphi-
cal displays in the popular media (and, indeed, in
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Figure 10 Side-by-side boxplots aid in comparison. Data obtained from an experiment to determine whether two forms
of iron (Fe2+ and Fe3+) are retained differently (this feature impacts their usefulness as dietary supplements). The data
relates to two groups of 18 mice each given a form of iron orally in the concentration 1.2 millimolar and the result is
measured as percentage of iron retained. (Source: Rice [75, Chapter 11]) Plot (a) compares raw percentage retention for
the two forms of iron. The boxplots indicate both distributions have similar features but are heavily skewed. Plot (b) shows
boxplots for the logged scores, whose distributions are closer to symmetric
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many scientific papers!) could fill many volumes.
Tufte [86] has done an extraordinary job of describ-
ing the strengths as well as the pitfalls of graphical
displays for visualizing quantitative information; his
delightful book is filled with examples and discus-
sions of the good, the bad, and (literally) the ugly of
statistical graphics.

Data Developing in Time

Data in which development through time is an
important aspect can be classified conveniently into
data which consists of a few relatively long series
of observations which may be dependent (as in
traditional time series analysis) or into data which
consists of a large number of relatively short series
which are typically independent (as in repeated mea-
sures problems). In either case, analysis is simplest

when the data in each series are collected at the
same number of equally spaced time points, becom-
ing more complicated as the lengths of the series vary
and as the observation time points become irregularly
spaced (see Graphical Presentation of Longitudi-
nal Data).

Whether we have a few relatively long series or
a large number of relatively short series, the most
common representation of the data is by means of a
sequence plot (see the top panel of Figure 11), which
is a simple scatterplot of the data against time. Adja-
cent points in the same series are often connected
by linear segments to create a piecewise linear curve
which highlights the basic time series structure and
distinguishes the different series. However, if we have
a very large number of series, the resulting plot can
be very difficult to interpret. For this kind of situa-
tion, Jones and Rice [61] proposed that we connect
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Figure 11 SABL Decomposition for United Kingdom lung disease data. Data are monthly UK deaths of females from
bronchitis, emphysema and asthma from 1974–1979. (Source: Diggle [39, p. 238], data from Appleton) The plot produced
by SABL decomposes the log number of deaths, given in the top panel, into trend, seasonal, and irregular components.
The vertical bar at the right of each plotted component indicates the relative scales of the components
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the points for only selected series in the data. While
it is possible to choose the subset at random, it seems
preferable to select quantiles from curves ordered
with respect to some characteristic of the problem
of interest. Diggle et al. [40, p. 38] have suggested
ordering curves by means of robust measures of the
level of the series, or by variability within series,
or by trend or correlation between successive obser-
vations within the series, and then connecting the
points of the selected series. Series that are grouped
together (by virtue of receiving a common treatment,
for instance) can be distinguished by being plotted
separately, by being plotted with different lines or
symbols or by being represented by common sum-
mary series. Such a plot is depicted in Figure 12 for
data tracking pituitary growth in children of various
ages, each series representing a single child.

Much of the analysis of traditional time series
(which focuses on a few relatively long series of data)
is based on the idea that on some scale determined by
a function g, a series of data Yt can be decomposed
into three components as

g(Yt ) = Tt + St + Et, (1)

where Tt is the trend, St is the seasonal and Et is
the irregular component. The trend is supposed to
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Figure 12 Sequence plots for several short series of pitu-
itary data. Data measured are the distances (mm) between
the center of the pituitary to the pteryomaxillary fissure in
girls and boys aged 8, 10, 12, and 14 years. (Source: Pot-
thoff and Roy [74]) The curves for boys are represented
by solid lines and those for girls by dotted lines. The
graphic shows that the distance generally increases with
age, is generally larger in boys than girls, and that there is
some tracking (children with large or small distances ini-
tially continue to have large or small distances throughout
the study)

describe the long run behavior of the series, so can
be thought of as a smooth curve; the seasonal compo-
nent is supposed to capture periodic variation about
the trend, so can be thought of as a periodic function;
and the irregular component is supposed to represent
whatever is in the series that is not described by the
trend and seasonal components. While the compo-
nents of this decomposition are not unambiguously
defined and the resulting decomposition is not there-
fore unique, it can be quite useful. Once the trend
and seasonal components have been modeled and
estimated, we can plot them and the irregular com-
ponent against time. Further possibilities are to plot
the detrended series (that is, the transformed data
minus the estimated trend), the deseasonalized series
(that is, the transformed data minus the estimated
seasonal component) or the detrended and deseason-
alized series that is simply the irregular component
against time. These plots can be interpreted as plots
of different kinds of residuals against time. The dif-
ferent components can be modeled parametrically or
nonparametrically, and there is a substantial litera-
ture on the different approaches. As an illustration
of the kind of graphic produced, the decomposition
of a series obtained from SABL (see [26]) is shown
in Figure 11 for data on mortality from lung disease.
The decomposition shows a strong seasonal effect,
with most deaths occurring in winter and fewest in
summer. This effect can be observed clearly through
the use of a monthplot, a plot of the monthly sub-
series for the data. Typically, a monthly average is
also plotted; see Figure 13.
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Figure 13 Monthplot of the log number of UK deaths
of females from bronchitis, emphysema, and asthma from
1974–1979. The plot shows the six-year subseries for each
month and the subseries mean. This plot confirms the strong
seasonal effect
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It can be important in dealing with time series
data to keep in mind the dictum that time is not a
real explanatory variable, and that we are often inter-
ested in modeling the relationship between the series
and more interesting explanatory variables. Naturally,
many of the methods developed for exploring rela-
tionships between variables are of use in this kind of
problem and may be applied either to the raw data (in
which case time effects may be explored in the resid-
uals) or to residuals from which time effects have
been removed.

An important feature of data evolving in time is
that observations that are temporally close within a
series are typically dependent. Thus, methods that
explore the dependence between observations are
important in analyzing time series. Once the effects
of trend, seasonal, and other explanatory variables
have been accounted for, we can explore the depen-
dence structure remaining in the irregular or residual
series, which we here denote Zit . If the observations
were made at equally spaced time points, we can
consider plotting Zit against Zi,t−1, t = 1, . . . , n − 1,
to detect first-order (lag 1) dependence. When the
data consist of a large number of short, independent
series of roughly equal length, we can go further
and construct a scatterplot matrix in which Zit is
plotted against Zi,t−1 (lag 1), Zi,t−2 (lag 2), and so
on, for i = 1, . . . , k. If the scatter plots are in the
form of bivariate Gaussian ellipses (see Bivariate
Normal Distribution), we often observe a reduc-
tion in the strength of the relationship (i.e. depen-
dence) as the temporal separation (represented by the
lag) increases.

If the data in the series are Gaussian-distributed,
we can summarize the dependence structure by var-
ious correlation coefficients. Furthermore, if the Zit

have constant mean and variance, and if the corre-
lation between Zit and Zi,t+h depends only on their
temporal separation h, the series is said to be weakly
stationary and we can readily estimate the autocorre-
lation function (ACF) at h by the sample correlation
between observations lag h apart. Explicitly, the sam-
ple autocorrelation function is ρ̂i (h) = γ̂i (h)/γ̂i (0),
where

γ̂i (h) = 1

n

n∑

t=h+1

(Zit − Zi)(Zi,t−h − Zi) (2)

is the autocovariance function. An autocorrelation
plot or correlogram (Figure 14) is a plot of the sam-
ple autocorrelation function ρ̂i against h. The partial
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Figure 14 ACF and PACF of the detrended and desea-
sonalized (irregular) series of log UK deaths of females
from bronchitis, emphysema, and asthma from 1974–1979.
Dotted reference lines are plotted at height ±2/

√
n. These

plots suggest that the observations in the irregular series are
uncorrelated

autocorrelation plot is a closely related plot in which
the partial autocorrelation function (PACF) is plot-
ted against lag. These plots can be used to identify
autoregressive-moving average (ARMA) models for
the residual series; see, for example, [18]. Depen-
dence between pairs of series can be explored simi-
larly by the cross-correlation plot, which is a plot of
the correlation between the observation at t in the one
series and the residual at t + h in the other against h;
again, see [18] for details. If we have a large num-
ber of independent series which are assumed to have
the same within-series dependence structure, we can
average the within series estimates γ̂i across series to
obtain a better estimate of the common autocovari-
ance function.

For irregularly spaced data, the autocorrelation is
more difficult to estimate unless we are prepared
to round the observation times. An alternative func-
tion which describes the dependence structure and
is easy to estimate even when we have irregular
observation times is the variogram [62], originally
referred to as the mean semi-squared difference curve
or the serial variation curve. The sample variogram
(Figure 15) is a scatterplot of the half-squared dis-
tances 0.5(Zit − Zis)

2 against the corresponding time
differences t − s, t ≥ s. The scatterplot is often use-
fully enhanced by scatterplot smoothing, which pro-
vides an estimate η̂i (h) of the variogram at lag h

and by the representation of the process variance
estimated by σ̂ 2

i , the mean of the half-squared dis-
tances 0.5(Zit − Zis)

2 with t �= s, by a horizontal
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Figure 15 Log variogram of the pituitary data after
removing the gender means at each time point. The dot-
ted line represents the log process variance and the solid
line, a piecewise linear estimate of the log variogram. The
plot shows no evidence of correlation in the residuals

line. When the series are weakly stationary, the
autocorrelation function at lag h can be estimated
from η̂i (h) by

ρ̃i (h) = 1 − η̂i (h)

σ̂ 2
i

. (3)

This relationship shows that η̂i (h) increasing as
h increases represents decreasing autocorrelation as
h increases. Again, if we have a large number
of independent series which are assumed to have
the same within series dependence structure, we
can plot the half-squared distances over t ≥ s and
i = 1, . . . , k to obtain better estimates of the com-
mon variogram.

The issues that arise in the exploration of tem-
poral dependence also arise in the exploration of
spatial dependence, although this latter situation is
rather more complicated. The basic graphical dis-
play is the map (the analog of the sequence plot)
with superimposed data (see Statistical Map). Since
at the very least we have three dimensions to dis-
play, surfaces, contour plots, spinning plots, and other
methods for displaying high-dimensional data can
be useful. The variogram is widely used to explore
spatial dependence structure. In the simplest cases,
lagged distances irrespective of direction can be plot-
ted on the x-axis but in general, we may need to con-
sider displaying separately variograms corresponding
to different directions in space.

Multivariate Data

The use of graphics to explore high-dimensional
data in the context of our having identified a single
response variable that we are interested in relating
to the remaining variables has been discussed ear-
lier. The specification of a single response variable
(and the inherent asymmetry it introduces into the
analysis) determines many aspects of the subsequent
graphical and analytical analyses. However, we can
also be interested in looking for structure or pat-
terns in the data (including looking for relationships
between variables as well as outliers and clusters in
the data) without having specified a response variable
and a different set of graphics can be implemented for
this purpose (see Multivariate Graphics).

We have already discussed a number of graphical
techniques that can be useful in the preliminary exam-
ination of multivariate data. As alternative approaches
to these, we can consider representing each indepen-
dent vector of observations by a symbol, the features
of which represent different variables. For example,
Chernoff [21] suggested representing each observa-
tion by a face, the characteristics of which represent
up to 18 variables. However, the fact that interpreta-
tion depends on how the variables are assigned to the
facial characteristics and that it is difficult to exam-
ine simultaneously a large number of faces means
that this graphic is probably more useful as an amus-
ing way to present results than as a practical tool for
data analysis. Other suggestions include using stars,
weathervanes, parallel coordinate plots (each vector
observation is plotted against (1, 2, . . . , p) and the
points connected by lines), and Andrews’ plots [3].

Unfortunately, experience suggests that consider-
able luck is needed to find structure using the above
techniques. It is apparent that to get the most out of
graphical methods, we need to supplement them by
computations that simplify the task of searching for
structure, primarily by reducing the effective dimen-
sion of the data. We will consider several techniques
that may be useful for this task.

Projections

Pairwise scatterplots examine two-dimensional pro-
jections of the data onto the planes defined by pairs
of axes in the coordinate system. Low-dimensional
projections provide one of the most effective meth-
ods for examining points in high-dimensional spaces,
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but there is no good reason to expect projections of
the data onto the planes defined by pairs of axes
in the coordinate system to reveal important struc-
ture and/or relationships in the data. In some cases,
such as when we use a spinning display to exam-
ine three-dimensional data, it is easy to examine a
large number of two-dimensional projections fairly
quickly, but in general it is important to have avail-
able analytic methods for choosing revealing projec-
tions automatically.

The classical approach rotates the data to
a new coordinate system called the principal
components [59] which is determined by the
directions of greatest variability in the data and then
enables us to examine two-dimensional projections in
this coordinate system by constructing a scatterplot
matrix of the principal components. In order to
achieve a reduction in dimension, it is usual to
study only those principal components which make a
substantial contribution to the variance by including
principal components until the proportion of variance
explained is above 80 or 90%, say. Hopefully, this
strategy will result in the need to study only two
or three variables rather than the original number.
Outliers can also sometimes be detected in plots of
the last two principal components; so as a diagnostic
tool, we often also plot the last two principal
components.

It is obvious from the fact that principal com-
ponents analysis finds the projections of maximum
variance that the scale of the data determines the
result of the analysis. Even when the variables are
on the same scale, there can be large differences in
the variability of the variables, so some authors rec-
ommend standardizing the data by the standard devi-
ations of the variables. This is equivalent to applying
the analysis to the correlation matrix rather than the
variance matrix. Working with the correlation matrix
does not remove the scaling problem because it is
simply another arbitrary scale. This strategy is not
generally recommended because it is inappropriate
when the variables are not of equal importance. Prin-
cipal components analysis is also sensitive to the
choice of the variables included in the data. It is
obvious that omitting variables has an impact on an
analysis, but it is less obvious that including redun-
dant variables has an impact on both the last and the
first principal components. In particular, linear rela-
tionships in the data can increase the weight given
to a variable in the principal components. Finally,

when a set of principal components has nearly equal
standard deviations, they are arbitrary and cannot be
interpreted in any meaningful way.

Projection Pursuit [47, 66] and Grand Tours [6]
are modern alternatives to principal components anal-
ysis. Projection Pursuit defines revealing projections
not in terms of variability but in terms of departure
from normality. Thus projection pursuit tries to find
the least ellipsoidal two-dimensional projections of
the data. Grand Tours work by generating two points
at random on the p-dimensional unit sphere and using
these to generate a plane. A sequence of rotations
is then applied to move the first point into the sec-
ond while keeping the orthogonal complement of the
plane fixed. The process is then repeated with another
pair of points. The idea is that the resulting sequence
of projections rapidly becomes dense among all pos-
sible projections, so selected revealing projections
from the sequence can be examined for structure.

Biplots

Biplots [48] provide a graphical description of rela-
tionships among the observations (or rows), and the
relationships among the variables (or columns) in a
data set. It is based on the singular value decom-
position (see Matrix Computations) of the mean-
centered data matrix Z (so the columns of Z have
mean zero), which can be written

Z = L∆MT , (4)

where L is an n × r matrix of rank r such that LT L =
Ir , M is a p × r matrix of rank r such that MT M =
Ir and ∆ = diag(δ1, . . . , δr ) with δ1 ≥ · · · ≥ δr > 0
as the positive square roots of the nonzero eigen-
values of ZT Z. A rank 2 approximation to Z is
obtained by

Z(2) = L(2)∆(2)M
T
(2), (5)

where L(2) represents the first two columns of L, M(2)

represents the first two columns of M , and ∆(2) =
diag(δ1, δ2). The quality of this rank 2 approximation
can be measured by (δ2

1 + δ2
2)/

∑r
k=1 δ2

k . See [51] for
a detailed discussion of the statistical uses of the
singular value decomposition. The biplot is the plot of
the n rows of G = (n − 1)1/2L(2) and the p rows of
H = (n − 1)−1/2M(2)∆(2) represented as vectors. The
plot of the p rows of H alone is called the h-plot [34].
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Figure 16 h-plot of the radiotherapy data. The data con-
sist of average ratings over the course of radiotherapy of
the number of symptoms (such as sore throat or nausea),
amount of activity (1–5 scale), amount of sleep (1–5 scale),
amount of food (1–3 scale), appetite (1–5 scale), and skin
reaction (0–3 scale). (Source: Johnson and Wichern [60]
from Tealey). The plot shows that the number of symp-
toms is far more variable than the other measures. The
directions of arrows in the plot shows that the variables are
highly correlated with the exception of skin reaction, which
appears uncorrelated with the other variables

An example of an h-plot is shown in Figure 16 for
data on cancer patients undergoing radiotherapy.

The distance between the points represented by
two rows of G represents the Mahalanobis distance
between the corresponding observations, the length of
the vector represented by a row of H represents the
standard deviation of the corresponding variable, the
distance between the points represented by two rows
of H is the sample variance of the difference between
the corresponding variables, and the cosine of the
angle between the vectors represented by two rows of
H is the correlation between the corresponding vari-
ables. Thus the h-plot provides a visual representation
of the covariance structure between variables and,
additionally, the biplot contains information about
the distance between observations. The matrix H

from which the h-plot is constructed can be obtained
directly from the principal components analysis of
the covariance matrix of the data so h-plots can be
viewed as an alternative representation of the results
of a principal components analysis.

Ordination

Ordination methods attempt to arrange n data points
in a high-dimensional space with proximity relation-
ships represented by an n × n dissimilarity matrix D
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Figure 17 An ordination based on multidimensional scal-
ing for the Australian Institute of Sport data (Source: Cook
and Weisberg [33, p. 98] on data supplied by Telford and
Cunningham). The data were physiological observations
made on 202 different athletes of both sexes participat-
ing in 10 different sports (men’s and women’s basketball,
swimming, rowing, track (400 meters and sprint), field,
tennis, women’s gymnastics and netball, and men’s water
polo) Classic multidimensional scaling based on Euclidean
distances was used. The ordination suggests some clear
clusters of sports, as indicated by the linked points

in a low (usually 2) dimensional space (see Sim-
ilarity, Dissimilarity, and Distance Measure) by
constructing an n × 2 matrix Y such that the matrix
of Euclidean distances between the points in Y is
approximately the same as D. The columns of Y are
referred to as principal coordinates and the plot of
the first two principal coordinates is referred to as
an ordination. An example of an ordination is given
in Figure 17 for data from the Australian Institute
of Sport. If the dissimilarity matrix D is determined
directly by subjective assignment of dissimilarities,
the ordination is a geometric representation of the
proximity relationships between the objects. Alter-
natively, if the dissimilarity matrix D is calculated
from a data matrix Z, ordination methods yield a
lower dimensional representation of Z with an asso-
ciated Euclidean distance matrix that is close to D.
It is obvious that we can change the location and
rotate the orientation of the ordination without chang-
ing the Euclidean distances between the points so that
an ordination is not unique.
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Multidimensional Scaling can be treated either as
synonymous with ordination or as a particular ordi-
nation method. The subtle differences in perspective
between these views are not particularly important in
a graphical context, so we will treat them as synony-
mous. There are two types of multidimensional scal-
ing depending on the nature of the proximity data:

i) Classical Metric Multidimensional Scaling [76,
85] or Principal Coordinates Analysis [50] which
uses the magnitude of the proximities; and

ii) Nonmetric Multidimensional Scaling [65, 77],
which uses the ranks of the proximities.

Nonmetric scaling is intended to facilitate subjec-
tive proximity assignments because it is usually easier
to order proximities than to assign exact numerical
values. However, if the ordering of the proximities is
more important than the actual values, we may decide
to use nonmetric scaling, even though the proximity
values are available.

The two-dimensional representation of the dissim-
ilarity structure may give a misleading impression of
the actual distances between points because points
that appear close in the first two principal coordi-
nates may be far apart in higher dimensions. This is
particularly likely when the first two principal coor-
dinates fail to explain D. In such cases, the plot of
the first two principal coordinates can be improved
by linking units whose actual distance apart is less
than some user-specified value; see Figure 17. It is
of interest to vary the distance apart we specify to
see how the picture changes. This method is useful
for detecting one-dimensional structure in the data.
If we obtain a two-dimensional representation and
join points with dissimilarities below a user-specified
value, we may obtain a horseshoe shape. This result
suggests that the two-dimensional configuration is
almost a one-dimensional configuration bent into a
horseshoe shape and that ordering along the horse-
shoe curve may give a reasonable one-dimensional
ordering of the data. This discovery is particularly
relevant if we are seeking a one-dimensional ordering
of the data (known as seriation).

It may be that in other problems we achieve a
better ordination by using more than two principal
coordinates. In general, we can choose the number
of principal coordinates to consider by examining the
proportion of the dissimilarities in D explained by the
principal coordinates in the same way as we examine

variance in principal components analysis (although
we need to be careful of the fact that the eigenvalues
can be negative).

One of the attractions of ordination methods is that
they contain as special cases not only principal com-
ponents analysis, but also a number of other classical
multivariate techniques. These analyses are obtained
by making particular choices of D. The most impor-
tant relationship is that metric scaling based on the
Euclidean distances between (mean-centered) points
yields as principal coordinates the principal compo-
nents. That is, metric scaling with Euclidean distances
is principal components analysis. This suggests that
the discussion of the issues underlying the applica-
tion of principal components applies also to metric
scaling. Principal coordinates analysis also includes
correspondence analysis [15], linear discriminant
analysis, and canonical variates analysis (see Canon-
ical Correlation) as special cases. The important
point is that ordination methods allow very general
choices of D and so can be used when we have
large sparse data matrices or subjectively assigned
dissimilarities.

Minimum Spanning Trees

A spanning tree is a set of straight-line segments
joining pairs of points such that there are no closed
loops, each point is visited by at least one line
segment, and every point is connected to every other
point either directly or through a chain of other
intermediary points. The length of a spanning tree
is the sum of the lengths of the line segments so
the minimum spanning tree is the spanning tree with
shortest length [52].

One use of the minimum spanning tree is to assess
the amount of distortion incurred in reducing the
dimension of the data to, say, two dimensions. The
idea is to incorporate the links in the minimum span-
ning tree into the two-dimensional scatterplot and
check that the patterns of relative closeness described
by the minimum spanning tree are preserved. When
substantial distortions in the patterns of relative close-
ness occur, the structure in the two-dimensional rep-
resentation of the data may not represent the same
structure in the original data set.

Cluster Analysis

Although clusters can be detected by ordination
methods, there are a number of techniques avail-
able for the specific purpose of detecting clusters in
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data (see Cluster Analysis of Subjects, Hierarchical
Methods; Cluster Analysis of Subjects, Nonhier-
archical Methods). The major difficulty with these
techniques is that it is extremely difficult to define
a cluster. It follows that it is difficult to specify the
number of clusters in a data set and that the objectives
of the analysis may be difficult to achieve.

Although there is a huge literature on cluster-
ing, there are basically three types of procedures:
partitioning; overlapping clusters; and hierarchical
clustering. From a graphical standpoint, hierarchi-
cal clustering is the most interesting method. Here,
clusters are grouped within larger clusters to form a
tree. The simplest techniques, called agglomerative
methods, start by regarding each object as a cluster
and proceed by merging near objects. Divisive meth-
ods work in the opposite direction by partitioning
the objects into two groups and then by partition-
ing each group into subgroups, and so on. In either
case, the results are best displayed in the form of a
two-dimensional tree diagram called a dendrogram
(Figure 18).

The simple class of agglomerative procedures
known as linkage methods can be used to cluster
either objects or variables. The basic algorithm is
straightforward:
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Figure 18 Dendrogram for the Australian Institute of
Sport data. (Source: Cook and Weisberg [33, p. 98] on
data supplied by Telford and Cunningham). The complete
linkage method based on distances obtained from classic
multidimensional scaling was used to construct the dendro-
gram. The clusters represented are not surprising given the
clustering suggested by the ordination in Figure 17

1. Calculate an n × n symmetric matrix D of dis-
similarities;

2. Regard each object or variable as being in a
cluster so that there are n clusters;

3. Search D to find the most similar pair of clusters
say U and V ;

4. Merge U and V into a single cluster UV . Update
D by deleting the rows and columns relating to
U and V separately and introducing a new row
and column for UV ;

5. Repeat Steps 3 and 4 n − 1 times until there is a
single cluster;

6. Construct a dendrogram from the record of merg-
ers and the levels of dissimilarity at which
they occur.

There are a large number of different ways of mea-
suring the dissimilarity between two clusters in Step
2, and these essentially define different hierarchical
clustering methods. For example, three commonly
used approaches are:

(a) Single linkage or Nearest Neighbor [79]. The
dissimilarity between clusters U and V is the
smallest dissimilarity between a member of U

and a member of V , namely,

d(U, V ) = min{d(r, s) : r ∈ U, s ∈ V }; (6)

(b) Complete linkage or Farthest Neighbor [81].
The dissimilarity between clusters U and V is
the greatest dissimilarity between a member of
U and a member of V , namely,

d(U, V ) = max{d(r, s) : r ∈ U, s ∈ V }; and
(7)

(c) Average linkage [80]. The dissimilarity between
clusters U and V is the average of the n1n2

dissimilarities between all members of U and
V , namely,

d(U, V ) = 1

n1n2

∑

r∈U

∑

s∈V

d(r, s). (8)

The results need not be the same in each case. For
single and complete linkage, dissimilarities with the
same initial ordering lead to the same configuration.
However, for average linkage, dissimilarities with the
same initial ordering need not result in the same con-
figuration. All the methods are sensitive to outliers.
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The sensitivity of the results to so many factors makes
interpretation of the final configuration difficult. Also,
a hierarchical method always yields clusters whether
they are real or not. It is sensible to try different dis-
tances and different methods to check the stability of
the configuration but even so, it is advisable to be
cautious in interpreting the results.

Finally, the similarities between ordination and
clustering mean that as an alternative to a dendro-
gram, we may be able to combine indicators of cluster
membership within an ordination.

Analysis of Survival Data

The analysis of survival times for patients in medi-
cal studies is an important and common biostatistical
application. The broad topic of survival analysis is
covered in considerable detail elsewhere in these vol-
umes; so, here we will focus primarily on graphical
displays that are useful in modeling data of this type.
Although the analysis of patient survival times is a
typical setting for survival analysis, the term applies
more generally to include the analysis of many other
types of waiting times such as times to failure in
an industrial process or, more positively, the time it
takes for a patient to recover from an injury. A par-
ticular feature of survival data that makes its analysis
distinctive is the problem of censoring, for example,
due to individuals leaving the study before it is com-
pleted or to individuals surviving the entire period of
study (so that their survival time cannot be properly
observed). There are many excellent, comprehensive
accounts of survival analysis available, including [38,
69] and [63].

Several functions are useful in the study of sur-
vival times (see Survival Distributions and Their
Characteristics). In particular, the survival function
S(t) = P(T > t), the probability that an individual
will survive beyond some particular time t is a central
concept that is closely related to the distribution func-
tion of the survival times (F (t) = 1 − S(t)). Related
functions include the hazard function (also called the
force of mortality, or the hazard rate), which repre-
sents the instantaneous death (or failure) rate at time
t , and the cumulative hazard H(t) = − log{S(t)} =∫ t

0 h(z)dz. A plot of the survival function S(t) versus
time is referred to as a survival curve and represents
how the probability of survival changes through time.

Of course, in almost all cases the survival function
is unknown and must be estimated. The traditional

actuarial approach, the life table method, groups
survival times into a fixed set of intervals, and tab-
ulates for each interval the number of subjects alive
at the start of the interval, the proportion of subjects
who die during the interval, and the estimated sur-
vival function (proportion surviving) at the start of
the interval. While this approach is reasonable for
large sets of survival times, for small data sets the
potential for lengthy periods during which no deaths
occur makes grouping survival times into intervals
less attractive. The most commonly used estimator
of the survival function is the Kaplan–Meier Prod-
uct Limit estimator [64], which models the survival
probability at time t as the product of the propor-
tions surviving among those alive and present for the
study at the beginning of each preceding time period.
The Kaplan–Meier estimator takes account of cen-
soring by calculating the proportion surviving during
an interval by reducing both the numerator and the
denominator of the proportion by the number of cen-
sored observations in that period. The term survival
curve is usually used in the context of a plot of the
Kaplan–Meier estimator Ŝ(t) of the survival function
versus time. The Kaplan–Meier estimator is a step-
function, constant over periods where there are no
deaths, and falling at the time of each death. Times at
which censoring events occur are represented on the
curve by a distinguishing mark such as a tick mark or
a +. A particularly effective graphical tool in under-
standing survival data where patients are divided
into different groups (for example, treatment/placebo,
male/female) is a plot of several survival curves on
the same axes. This plot allows an effective com-
parison between the survival probabilities of several
groups over time, for example, allowing the com-
parison of the effectiveness of different treatment
regimes. Figure 19 shows estimated survival curves
for male and female lung cancer patients in a Mayo
Clinic study [70]. The graph shows that the survival
experience of females is a little better than for males
in this study. Note, however, that other factors that
may influence survival (such as the age of patients)
were not taken into account in this analysis.

A more sophisticated approach to modeling sur-
vival data allows survival time to be modeled not
only through time but also in terms of other covari-
ates that may influence survival (e.g. patient age or
drug dosage). A commonly used model in this con-
text is the proportional hazards model introduced by
Cox [36] (see Cox Regression Model). This model
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Figure 19 Survival curves comparing male and female
groups of lung cancer patients. The data is described by
Loprinzi et al. [70] from work carried out at the Mayo
clinic. The data also contained information on other covari-
ates such as patient age, weight loss, and some diagnostic
measurements, although this information was not used in
estimating survival probabilities. The estimated survival
curves suggest a significant difference between male and
female survival experience up to about 2 years survival,
though the curves are similar beyond that time. Censored
observations are marked on the plot by a plus (+) symbol
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Figure 20 Expected survival probabilities arising from a
proportional hazards model for the Mayo clinic lung cancer
data (Loprinzi et al. [70]). The model was fit to incorporate
both gender and age effects. Estimated expected survival
curves are depicted for a male patient aged 55 and a female
patient aged 65. Note that despite the 10-year age difference
the female’s expected survival experience remains better
than the male’s. In the model fit, the age covariate was
only marginally significant

assumes that the hazard rate for a patient having
covariate values z is proportional to some base-
line hazard rate (usually corresponding to a patient
having “average” covariates), with the constant of

proportionality depending only on the values of the
covariates z and not on time. A plot of a patient’s
expected survival curve which takes into account
their particular covariate values can then be pre-
sented; see Figure 20 for an example.

Another graphic commonly used for analyzing
survival data is a plot of the estimated survival func-
tion Ŝ(t) (or the estimated cumulative hazard Ĥ (t) =
− log{Ŝ(t)}) against a theoretical survival function
S(t) (or cumulative hazard H(t), respectively). This
graphic allows the comparison of an observed sur-
vival experience with a theoretical model for survival,
with deviations from a straight-line pattern reflecting
departures from the model. The visual basis for com-
parison in this case is similar to that used in Q–Q or
P–P plots.
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Graphical Presentation of
Longitudinal Data

Longitudinal data comprise repeated measurements
over time on many individuals [1]. Typically, a lon-
gitudinal data analysis has the regression objective
of describing the dependence of a response vari-
able Y on time t and other explanatory variables x.
With a single response on each subject, the standard
scatter-plot, perhaps enhanced with a nonparametric
regression estimate of E(Y |x), is an effective graphi-
cal display to explore this dependence. With repeated
measurements, there is the opportunity to display
other features of the data such as the relative varia-
tion in Y across time within a person and differences
among persons in the dependence of Y on t or x.

While there are not commonly accepted rules
for the effective display of longitudinal data, the
following guidelines [1] may be helpful:

1. Display original data relevant to the question
at hand, not just data summaries. This com-
municates the degree of variation against which
summaries should be judged.

2. Make apparent unusual observations and unusual
persons (see Outliers).

3. Contrast variation within and among persons in
the dependence of Y on t or x.

A model for longitudinal data has two compo-
nents: a regression model for the dependence of Y

on (x,t); and a model for the autocorrelation among
the repeated observations for a person. Graphical dis-
plays are necessary for each component.

To illustrate two simple, but effective, displays,
longitudinal data on the growth of Nepali preschool
children, collected in the Nepal Nutrition Intervention
Project [3], are used (see Growth and Develop-
ment). This was a prospective investigation of the
effects of vitamin A supplementation on children’s
morbidity and mortality. The data set here com-
prises 11 290 observations on 2237 children receiving
placebos. Each child was measured in up to five visits
at 4-month intervals.

Regression Displays

Figure 1 displays a standard scatter-plot of the 11 290
weights against age. Note that weight is recorded

to the nearest tenth of a kilogram and age to the
nearest month, which would create an unacceptable
degree of granularity in the display. To overcome this
problem, the x and y values have been jittered by
adding a uniform error. The scale of the error was
chosen to make nearly all points visible but also to
communicate the limited precision of the raw data.

A smoothing spline with 22 equivalent degrees of
freedom [2] was added to highlight the typical growth
pattern. The number of degrees of freedom was
chosen by eye so that the resulting smooth curve was
sufficiently flexible to capture the strong nonlinearity
in growth in the first year. Automatic selection criteria
for longitudinal data have been developed (see [4]
and references therein). But trial and error can be
equally effective at choosing a degree of smoothness
to enhance the data display.

The repeated measurements for a subset of 100
children have been connected to communicate the
degree of consistency across time in a child’s weight
as well as the variation in weight among children.
In some data sets, the repeated observations can
usefully be connected for all subjects. In this case,
doing so produces a useless ink blot. One simple,
alternative strategy is to connect the repeated values
for a judiciously selected subset of, say, 100 children.
This selection can be done at random. However,
this strategy will fail to identify unusual weights
or children. As an alternative, we have chosen 50
children at random and a second 50 that were at the
extremes of the data in the following sense. For each
child, the mean time and weight was calculated. Mean
weight was regressed on mean time and a residual
obtained. The second 50 children comprise those with
the largest residuals in absolute value. Hence, these
children have average weights which are extreme for
their age. Other criteria for identifying a subset of
subjects are discussed by Diggle et al. [1].

In Figure 1, several important characteristics of
the data set are now apparent. First, the average
weight of Nepali children increases by about 1 kg
per month for the first 6 months and then the growth
rate dramatically slows to less than a quarter of the
original rate. Secondly, we can see the degree to
which a description of Nepali growth using these
data will depend upon cross-sectional, in addition
to longitudinal, information. Note that no child was
observed for more than 18 months, as seen in the
Figure by the lengths of the children’s lines. Hence
comparing average size at times separated by a
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Figure 1 Scatter-plot of 11 290 weights on 2337 Nepali children. Bold dots indicate a smoothing spline with 22 equivalent
degrees of freedom as an estimate of the mean weight at each age. The repeated observations for 100 children are connected –
50 chosen at random and 50 with extreme mean weights for their age

greater time interval uses entirely cross-sectional
information. Thirdly, there is much greater variability
in weight across children than across time for a given
child. That is, there is strong tracking of children’s
weight so that repeated observations on the same
child will be highly correlated. Finally, there is some
indication that the rate of growth is greater for larger
children, as evidenced by more positive slopes above
the average curve than below. If substantiated by
a more careful analysis, then this fact would be
important to public health workers who could target
interventions more appropriately.

Association Displays

A scatter-plot matrix is one effective approach to
more directly view the nature and degree of asso-
ciation among repeated observations. First, the mean
structure is removed from the data by regressing the

response Y on predictors x yielding residuals r . If
the data are observed at equally spaced times, the
scatter-plot matrix simply displays rij vs. rik for all
times j �= k, where i denotes the subject. Unequally
spaced times can be rounded to produce an equally
spaced observation grid.

For example, in the Nepali data set, observation
times were categorized into 6-month intervals. This
often produced more than one observation per bin for
a subject. All pairs of observations on each child –
one from bin j and the other from bin k – could then
be plotted in the (j, k) entry in the scatter-plot matrix.
In fact, because there is such a large number of data
pairs (>30 000), only a single pair per child is used
in each scatter-plot in the matrix.

Several characteristics of the data are apparent
in Figure 2. First, we can again see that there is
limited follow-up on each child by the absence of
information away from the diagonal of the matrix.
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Secondly, the extremely strong autocorrelation at all
lags and ages is evident. Thirdly, the display suggests
that the degree of association for two observations
a fixed time apart is stronger at older ages than at
the beginning of life. This is an example of a non-
stationary autocorrelation pattern [1]. It might result
if there is less stability across time in weight when
the growth rate is faster.

If the autocorrelations appear to depend only on
the lag and not on the absolute times of observa-
tion, the correlation pattern is said to be stationary
and the scatter-plot matrix can be usefully sum-
marized by a variogram [1]. Here, the normalized
squared difference 0.5 (rij − rik)

2 is plotted against
the absolute time between the repeated observations
|tij − tik|. A smooth regression curve fit to these data
estimates the variogram, 0.5E [Yi(t) − Yi(t − u)]2 =
σ 2[1 − ρ(u)], u > 0, where t is the first observation
time, u the lag, and ρ(u) the autocorrelation function,
which, because of stationarity, depends only upon u

and not t . Diggle et al. [1] describe the use of the
variogram in choosing models for longitudinal data.
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Graunt, John

Born: April 24, 1620, in London, UK.
Died: April 18, 1674, in London, UK.

John Graunt was a London draper who, in February
1662, published a small book Natural and Political
Observations Mentioned in a following Index and
Made Upon the Bills of Mortality. For this pioneer
study of medical statistics and demography Graunt
is rightly recognized as the founder of statistics as a
scientific discipline.

The book attracted immediate attention. Within a
month Graunt was elected to the Royal Society; a
second edition appeared later in the year, and a third
and fourth in the early weeks of the plague in 1665.
A fifth edition appeared two years after his death, and
there are modern reprints [1, 3, 7].

Graunt was a respected citizen, a Freeman, and
eventually Renter Warden of the Drapers’ Company.
He held various civil and military offices, and his
influence was sufficient, before he was 30, to procure
the professorship of music at Gresham College for his
friend William Petty. Graunt’s house was destroyed
in the fire of 1666, but despite assistance from Petty
his business never recovered. A few years later he
became a Catholic, resigned his offices, and died in
poverty. No portrait is known.

The London Bills of Mortality were weekly
accounts of the numbers of burials, distinguishing
deaths from plague, and christenings, compiled from
parish registers from the mid-sixteenth century.
Causes of death were included from the early sixteen
hundreds. Annual summaries were published, but
initially only during plague years.

Graunt’s study was based mainly on the annual
Bills from 1604 to 1660. He had no information
on population sizes. With this limited material his
approach was thoroughly logical and scientific. He
described in detail how the data were collected, and
their nature; he was critical of their accuracy and
completeness; he tabulated the material extensively
and informatively, checked his first impressions
against more extensive facts, and drew a wide
variety of sensible and valid conclusions. Among
much else, Graunt directed attention to the very
high rates of mortality in infancy (see Infant and
Perinatal Mortality), and showed that mortality
was higher in London than in the country. He

made the first realistic estimates of the numbers
of men and women in London and the population
of the whole country and showed that both were
increasing, with a steady migration into London.
He demonstrated that plague was under-recorded
by about a quarter, examined the relative mortality
in different plague years, discovered the extent to
which London depopulated itself in plague years,
and showed that it repopulated itself within a year.
He distinguished between epidemic and endemic
diseases, and noted the stability of accident and
suicide rates from year to year, the under-recording of
syphilis, and the increase of rickets. Graunt’s methods
and findings are reviewed in [2, 4], and [5].

Graunt had no information on the ages of the
dead or the living. This led him to conceive the first
life table, describing the dying-out of a population
cohort in an attempt to estimate the number of men
of military age (16–56) in London (see Table 1).
However, not appreciating the need to use age-
specific mortality rates, he mistakenly estimated the
proportion of deaths between these ages from his
survivors’ column, and not the proportion living [2]
(see Standardization Methods). His pioneer effort
was nevertheless highly influential in stimulating the
later actuarial development of the life table.

Suggestions that Graunt was not the author of the
“Observations” and that these were the work of Petty
only arose after Graunt’s death, and were revived

Table 1 Graunt’s life table

Exact age Deaths Survivors

0 100
36

6 64
24

16 40
15

26 25
9

36 16
6

46 10
4

56 6
3

66 3
2

76 1
1

80 0
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during the twentieth century (see [3, 6], and [7]).
A comprehensive re-examination by Glass [2] con-
cluded that “there seems little reason to doubt that
the volume published under Graunt’s name was in
all essential respects Graunt’s work”.
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Greenberg, Bernard
George

Born: October 4, 1919, in New York City.
Died: November 24, 1985, in Chapel Hill.

Bernard G. Greenberg, the founder of the Department
of Biostatistics at the University of North Carolina
and a pioneer in the field of public health, played a
key role in the evolution of the discipline of bio-
statistics encompassing a large domain of public
health, demography (population studies), and medi-
cal/clinical research.

Greenberg earned a B.S. degree in mathematics in
1939 from the City College of New York, and before
being inducted into the US Army in 1941, served
briefly as an assistant statistician in the US Bureau of
Census, as well as in the New York State Department
of Health. Following his discharge from the active
military service (where he was raised to the rank of
Captain), in 1946 he attended a special summer ses-
sion of the Institute of Statistics at the North Carolina
State College in Raleigh. His mentor, Gertrude Cox,
organized instruction by eminent statisticians such as
R.A. Fisher; Harold Hotelling; George Snedecor;
William Cochran; Chester Bliss; Jacob Wolfowitz,
and others. Greenberg was strongly influenced by this
program and entered the North Carolina State College
as a graduate student in experimental statistics, earn-
ing his Ph.D. degree in 1949. During the tenure of
his graduate studies, Greenberg studied under Harold

Hotelling, who headed the theoretical division of the
Institute of Statistics of the University of North Car-
olina at Chapel Hill, though he was also influenced
by William Cochran.

In July 1949, Edward G. McGavran, the Dean of
the School of Public Health, University of North Car-
olina at Chapel Hill, invited Greenberg to organize
a new, single faculty, Department of Biostatistics.
Greenberg nurtured the growth of this department for
more than 23 years as the Chairman (1949–1972),
and also later (1972–1982), as the Dean of the School
of Public Health. In the fall of 1982 he returned to
the biostatistics faculty and began development of a
curriculum for statistics of communicable diseases.
Soon after, however, he was afflicted with cancer
and, following a long period of illness, died in the
fall of 1985, only a few months after his retirement.
Thus the Greenberg era of outstanding leadership and
phenomenal developments in biostatistics and public
health started in 1949 and came to an unexpected halt
after nearly 36 years. To outline Greenberg’s major
contributions, we need to focus on his organizational
leadership and developmental vision before outlining
his academic contributions.

In the early 1950s the primary mission of the new
Department of Biostatistics at Chapel Hill was to
offer a few service courses to meet the growing sta-
tistical needs of faculty and students in public health.
This objective was quickly expanded to teaching
courses in the entire field of Health Affairs (includ-
ing the Medical, Nursing, Dental, Public Health,
and Pharmacology Schools), and also providing bio-
statistical consultation support to faculty members.
With generous support from the National Institutes
of Health (NIH) and other Agencies, he intro-
duced masters and doctorate level programs in bio-
statistics at Chapel Hill that ultimately have been
recognized as among the finest programs in the
nation.

Two of Greenberg’s major contributions to the
field of biostatistics prior to the 1960s deserve special
mention. First, he introduced a field training program
in which a master’s degree student was assigned for
several weeks to a counselor in a state health agency
and this was designed to familiarize students with
real problems in public health and to help them in
choosing an appropriate professional career in the
health sciences. Secondly, faculty members became
engaged in cooperative, multicenter clinical trials,
first in cancer clinical trials and later in the 1960s and
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1970s on several large projects including the LIPIDS
(1972–1984) trials sponsored by the National Heart,
Lung and Blood Institute. Greenberg had a special
skill in attracting distinguished statisticians, including
D.R. Cox, David Duncan, and Herbert A. David,
as visiting professors in the Department, with
support from the training grants. In the 1950s and
1960s this aided the development of a biostatistics
curriculum, and enabled the implementation of
interactive research programs and research incentives
for regular faculty and students in and around North
Carolina. The creation of the population laboratory
(PopLab) in the School of Public Health and with
the association of the Carolina Population Center in
the mid 1960s is an example of Greenberg’s bringing
together the key government and academic people
with the broad objective of developing a research and
training program.

Greenberg not only provided leadership to the
Department of Biostatistics, but also contributed to
research, often combining methodological research
with applications. His interest in order statistics
in the 1950s enabled him, in collaboration with
A.E. Sarhan, to edit a fine volume entitled Contri-
butions to Order Statistics [1] which gave an up-to-
date account of developments in that field, including
many of their joint works. In the field of random-
ized response models, Greenberg was instrumental in
incorporating this basic statistical concept to reduce
the bias of responses to sensitive questions in pub-
lic health investigations. The methodological work
began in the early 1960s and continued to have
an important influence in the late 1970s. Perhaps
Greenberg’s major statistical contributions related to
applications in the field of public health, with spe-
cial emphasis on epidemiology, maternal and child
health, nutrition and health administration. Over a
long period he was associated with the North Car-
olina State Board of Health and introduced statisti-
cal tools and concepts in their areas of application.
Though primarily an administrator and a leader in

public health, he was a genuine promoter of the uti-
lization of statistical tools and concepts in scientific
inquiries.

His efforts and contributions were recognized with
numerous honors and awards: the Bronfman Award
(1966) from the American Public Health Associ-
ation; a Kenan Professorship (1969–1985) in bio-
statistics, University of North Carolina; the Watson S.
Rankin Award (1980) from the North Carolina Pub-
lic Health Association; and the Order of the Golden
Fleece, as well as the O. Max Gardner Award, from
the University of North Carolina (1983). He was
elected a Fellow of the American Statistical Asso-
ciation, the Institute of Mathematical Statistics, the
American Public Health Association, the American
College of Epidemiology, and he was an elected
member of the International Statistical Institute,
the American Epidemiological Society, and the Insti-
tute of Medicine. He served on the editorial boards
of the Journal of Statistical Planning and Inference,
International Statistical Reviews, Journal of Chronic
Diseases, and the American Journal of Obstetrics and
Gynecology.

Bernard Greenberg was a humane, caring person
who, in spite of heavy professional, scholarly, and
administrative responsibilities, took a genuine, per-
sonal interest in all his colleagues, former students,
friends and family members. A volume of collected
papers prepared by his colleagues, friends, and for-
mer students was written in 1985 to honor Greenberg
on his 65th birthday [2].

References

[1] Greenberg, B.G. & Sarhan, A.E. (1962). Contributions to
Order Statistics. Wiley, New York.

[2] Sen, P.K., ed. (1985). Biostatistics: Statistics in
Biomedical, Public Health and Environmental Sciences,
the Bernard G. Greenberg Volume. North-Holland,
Amsterdam.

PRANAB K. SEN



Greenhouse, Samuel W.

Born: January 13, 1918, in Bronx, New York.
Died: September 29, 2000, in Rockville, Maryland.

Samuel W. Greenhouse was one of the founding
statisticians at the National Institutes of Health,
who helped pioneer the use of statistical meth-
ods in epidemiological research (see Epidemiology,
Overview), and was influential in the early develop-
ment of the theory and practice of clinical trials (see
Clinical Trials, Early Cancer and Heart Disease).
He was also a distinguished professor of statistics at
the George Washington University.

Sam, as he was known to all, received his BS
in mathematics from the City College of New York
in 1938 and thereafter moved to Washington, DC
to begin his career in the bureau of census with
Edward Deming (1940–1942). He served in the army
during World War II and afterwards worked with
the United Nations Relief and Rehabilitation Agency
(1945–1948). In 1948, he was recruited by Harold
Dorn, along with Jerome Cornfield, Jacob Lieber-
man, Nathan Mantel, and Marvin Schneiderman,
to create the first biometry group at the National
Institutes of Health (NIH) in the National Cancer
Institute (NCI). In 1954, Sam left the NCI to become
head of the theoretical statistics and applied math-
ematics section in the National Institute of Mental
Health (NIMH).

In 1966, he was appointed chief of the epidemi-
ology and biometry branch of the National Institute
of Child Health and Human Development (NICHD),
where he rose to the position of associate director for
epidemiology and biometry (1970–1974) and acting
associate director of the office of program planning
and evaluation (1969–1974). He was the first statis-
tician to hold such a high administrative position at
the NIH.

While working full time at the NIH, Sam taught
part-time and pursued his own graduate degrees under
the direction of Solomon Kullback in the depart-
ment of statistics at George Washington Univer-
sity (GWU).

When Sam retired from government service in
1974, he began a full-time academic career at GWU,
where he served as chair of the department of statis-
tics from 1976–1979 and again in 1985–1986. In
1988, he retired from the university faculty and was

named professor emeritus. From 1988 until his death,
he served as the associate director for research devel-
opment of the GWU biostatistics center.

Sam articulated many times that the primary mis-
sion of the statisticians at the NIH was to collab-
orate and provide statistical support for the NIH
scientists. Yet, it was always understood that these
collaborations would lead to opportunities for statis-
tical research in methodology and theory. It was not
unusual to find Sam and the other early NIH statisti-
cians coauthoring papers in subject matter journals
and publishing corresponding theory and methods
papers in statistics journals. This pattern was evi-
dent in his early papers on the evaluation of diag-
nostic tests. Although this work with Mantel [11]
and Dunn [3] was rooted in the need to implement
noninvasive methods for cancer screening, it also
addressed methodological issues, such as deriving the
estimated variance of sensitivity and specificity for
the case when, the diagnostic cut-point for a quanti-
tative test was also estimated from the data. While at
the NIMH, he helped design and analyze the first mul-
tidisciplinary study of normal aging, and coedited the
resulting book [2]. Recognizing the need for methods
to analyze highly correlated psychological data from
studies such as this one, led directly to new method-
ological work with Geisser [8, 10].

They derived an estimate of the degree of depar-
ture from the assumption of compound symmetry
in the test of within-subjects effects in analysis of
variance ANOVA, and an adjustment to the degrees
of freedom of the F -ratio when that assumption
is violated. The Greenhouse–Geisser correction is
now provided in virtually all computer packages for
repeated measures analysis. Their work [10] was rec-
ognized in 1982 as a science and social science
citation classic (see Analysis of Variance for Lon-
gitudinal Data).

Sam was also influential in the early development
of the theory and practice of clinical trials and shared
an interest with Cornfield in methods for the sequen-
tial analysis of emerging data in clinical trials. While
at the NICHD, his collaborations focused more on
observational data, for example, assessing the safety
of oral contraceptive use, and his interests returned
to the development of methods for epidemiologic
studies. His papers with Seigel [13, 14], for exam-
ple, showed that logistic regression could be applied
to matched and unmatched case–control studies to
obtain an adjusted estimate of the prospective odds
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ratio associated with a risk factor. At GWU in the
late 1980s, Sam and Joe Gastwirth recognized simi-
larities between a class of problems arising in legal
settings and in epidemiologic studies (see Epidemi-
ology as Legal Evidence). A collaboration began that
was deeply grounded in the practical experiences of
their respective fields of application (see, e.g. [5, 6]).

It is a tribute to his energy and enthusiasm for
statistics that Sam received many honors for his intel-
lectual and professional contributions. The American
Statistical Association (ASA) recognized him with
their prestigious Founders Award in 1993, and in
1997, videotaped a discussion with Sam as part of
the ASA series of conversations with distinguished
statisticians [1]. In addition to being elected as a Fel-
low in the major statistical professional societies, Sam
was also an elected Fellow of the American College
of Epidemiology and of the council of epidemiol-
ogy of the American Heart Association. In 1969, he
received the superior service honor award from the
NIH and was named a Johns Hopkins University cen-
tennial scholar in 1976. In 1999, Sam was recognized
by the Harvard Institute of Psychiatric Epidemiology
and Genetics for his lifetime contributions to psychi-
atric epidemiology and biostatistics.

Sam was a much-loved presence in the profession.
He attended the annual meetings of the Eastern North
American Region (ENAR) (see International Bio-
metric Society (IBS)), the Society of Clinical Trials,
the joint statistical meetings (JSM), and the American
Association for the Advancement of Science (AAAS)
without fail, and the ISI (see International Statis-
tical Institute (ISI)) as often as he could. He was
amazingly current and had strong opinions on all
matters. He was not shy about asking questions of
speakers, especially when he did not understand a
point (or felt that they did not), and it would not
be unusual for the discussion to continue in the hall
or even later via e-mail until he felt the issues were
resolved. This was true whether the topic was statis-
tics, literature, music, politics, religion, or sports. In
his 1997 Statistical Science article on his reminis-
cences of the NIH, Sam wrote about how the group
(Cornfield, Halperin, Mantel, he, and others) would
often argue quite publicly over lunch about matters
statistical and otherwise [9]. Although one of Sam’s
most endearing features was his personal warmth
and smile, he could also be quite the provocateur.
We fondly remember times in the late 1970s and
early 1980s, when Sam would visit Max Halperin or

Nathan Mantel at the biostatistics center. Sam loved
nothing more than a friendly spirited argument and
Max and Nathan were always eager to comply. Sam
was capable of arguing either side of an issue and
often would, especially if it would get a rise out of
Max or Nathan.

Sam was passionate about statistics. He relished
the opportunity to teach and engage both colleagues
and young statisticians in statistical discourse. Whe-
ther giving a seminar, making a site visit, or on
sabbatical, Sam was always a popular and stimulating
visitor and speaker. However, if one asked Sam about
the truly important work he was doing, he would
inevitably talk about his scientific collaborations. For
it was through the practice of statistics, he believed,
that statisticians made their biggest impact on science,
and it was through scientific collaborations that the
important statistical problems were identified.

Sam died of cancer at the age of 82. For additional
biographical information see [1, 4, 7, 9, 12].
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Greenwood, Major

Born: August 9, 1880, in the parish of Shoreditch,
East London, UK.

Died: October 5, 1949, London, UK.

Reproduced by permission of the Royal Statistical Society

Major Greenwood played an important role in the
development of biostatistics during the first half of
the twentieth century, both as an epidemiologist and
as a pioneer medical statistician. He was the only
surviving son in the third generation of a family in
general practice in Hackney; a family practice run
in his youth by his father and grandfather, both also
called Major Greenwood. With a view to keeping
the practice in the family, his father insisted that
young Greenwood should have a medical education,
in spite of a taste for history and Latin (so often linked
to mathematical ability) which he had developed
at Merchant Taylor’s School. He was awarded an
entrance scholarship to the London Hospital, where
he qualified in 1904. Having so far bowed to parental
pressure, Greenwood turned to his own interests in
medical research rather than practice, helped and
influenced by two outstanding, very different, scien-
tists. He became a demonstrator in the physiology
department of the London Hospital Medical College
under (Sir) Leonard Hill; and at the same time he
began following the courses in the rapidly developing

science of biological statistics given by Karl Pearson
at University College London.

In Hill’s department the young Greenwood was
introduced to scientific methodology as applied to
medical research, while Pearson’s course made him
one of the earliest medical converts to the use of
biometric measurements in evaluating approaches to
the treatment and prevention of disease. Throughout
his subsequent career, Greenwood was to combine
and develop what he regarded as his double intellec-
tual legacy from his two mentors, to both of whom
he remained a loyal pupil and friend. In the early
decades of the century he succeeded in developing
medical statistics in a way to make its methodology
acceptable to an initially reluctant medical profession,
primarily by adding good clinical judgment to the rig-
orous mathematics that characterized Pearson’s work.

In 1909–10 Greenwood, by now a true disciple
of Pearson, became involved in a debate between
bacteriologists and clinicians. It concerned Almroth
Wright’s research on the so-called “opsonic index” as
a technique for measuring a patient’s capacity to deal
with infection by phagocytosis. Greenwood based his
criticism of Wright’s statistical data on a technical
distinction between “functional” errors of technique
and “mathematical” inferential errors [2]. His cogent
arguments came to the attention of C.J. Martin, Direc-
tor of the Lister Institute, who was impressed by
Pearson’s promising disciple. As a result, Martin cre-
ated a new post for Greenwood, the first of its kind
in Britain, as resident statistician at the Lister. Here
Greenwood’s statistical investigations included stud-
ies of tuberculosis (which had killed his two younger
siblings in infancy, and his mother in the year he
himself qualified in medicine), infant mortality, and
hospital fatality rates. He was also, from the begin-
ning of his time at the Lister, involved in interpreting
data from the Institute’s ongoing major epidemiologic
study of bubonic plague in India. Such studies were
to provide a solid basis for Greenwood’s subsequent
career, with its felicitous blend of epidemiology and
medical statistics.

During the Great War Greenwood served in the
sanitary service of the Royal Army Medical Corps;
in 1916 he was seconded to the Health and Wel-
fare section of the Ministry of Munitions, in charge
of statistical work. In 1919 the new Ministry of
Health was created, and Greenwood was appointed its
first Senior Statistical Officer, working closely with
its Chief Medical Officer, George Newman. Never
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based in Whitehall, Greenwood worked at the Medi-
cal Research Council’s (MRC) National Institute for
Medical Research in Hampstead; he was to be con-
nected with the MRC, in one way or another, for the
rest of his career. After nearly two decades, his sta-
tistical creed had developed from early dependence
on Pearson’s rigorous mathematics and “measure-
ment as an end in itself” to an increasingly humane
approach reflecting clinical judgment. His pioneering
work on large-scale clinical trials designed to eval-
uate prophylactic and therapeutic measures, begun
at the Lister, had gradually softened the medical
profession’s previously hostile attitude to statistical
analysis.

Greenwood’s mind now turned increasingly to
the application of statistics in studies on exper-
imental epidemiology when, in the early 1920s,
he became associated with W.W.C. Topley. Topley
needed Greenwood’s statistical expertise in the stud-
ies he was initiating in “experimental epidemiology”,
using controlled populations of laboratory mice. The
investigations were carried out, with various co-
workers, until the mid-1930s [3]. By then, Green-
wood and Topley had been colleagues, since 1927, as
professors of Epidemiology and Vital Statistics, and
of Bacteriology, respectively, at the London School
of Hygiene and Tropical Medicine. The School was
created, with generous Rockefeller support, as the
successor to Patrick Manson’s old School of Trop-
ical Medicine between 1923 and 1929, when it could
finally move into newly built premises in Keppel
Street. Here teaching was, as ever, an important part
of the staff’s responsibilities. In 1935 Greenwood’s

lectures were published in book form as Epidemics
and Crowd Diseases [1].

In his lifetime, Greenwood published well over
a hundred books and papers on statistical, biomet-
ric, epidemiologic, and also historical subjects [4].
In print and in professional discussion his complex
personality could on occasion make him appear cyn-
ical and censorious; but his intellectual integrity was
absolute, as was his loyalty to those admitted to his
limited circle of friends. He became a Member of the
Royal College of Physicians in 1919, and a Fellow
in 1924; in 1928 he was elected to Fellowship of the
Royal Society. He retired in 1945 and died, suddenly,
in London, during a meeting on cancer research, still
active in his seventieth year. He was a founder mem-
ber, in 1930, of the Socialist Medical Association. A
few weeks before his death he argued, as its elected
representative, the case for the Voluntary Euthanasia
Society, in a broadcast debate arranged by the BBC.
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Grenander Estimators

Grenander [7], in a remarkable paper, derived the
nonparametric maximum likelihood estimators
(NPMLEs) of

1. a decreasing density
2. an increasing hazard
3. an increasing hazard for repeated events.

Of these, the first has been studied in particular detail
by later authors.

NPMLE of a Decreasing Density

Grenander showed that the NPMLE is given by the
derivative of the least convex majorant of the empiri-
cal distribution function (see Goodness of Fit). Bar-
low et al. [3], and its updated version by Robertson
et al. [15], put this in the context of general order
restricted inference (see Isotonic Inference). The
asymptotic properties of the estimator f̂n of the den-
sity f based on n independent, identically distributed
(iid) replications are nonstandard: if f ′(t) < 0, then

n1/3
∣∣ 1

2f (t)f ′(t)
∣∣−1/3

[f̂n(t) − f (t)]

converges in distribution to 2Z, where Z is dis-
tributed as the location of the maximum of the pro-
cess {W(u) − u2 : −∞ < u < ∞} with W the stan-
dard Wiener process on (−∞, ∞) with W(0) = 0
(see Brownian Motion and Diffusion Processes).
Asymptotic distributions of more global measures
of discrepancy between f̂n and f were studied by
Groeneboom & Pyke [10] and Groeneboom [8, 9];
Birgé [4] surveyed “nonasymptotic” properties.

For censored (survival) data with decreasing den-
sity the NPMLE was derived and discussed by Denby
& Vardi [5].

Current Status Data

The order restriction for the above NPMLE prob-
lem reappears in the nonparametric current sta-
tus data model, first studied by Ayer et al. [1],
where n iid replications of pairs of independent
random variables (Xi, Yi) are considered (see Inter-
val Censoring). Based on observation of (I {Xi ≤

Yi}, Yi) an estimate is sought of the survival func-
tion S(x) = Pr{X1 > x}. (Conceptually, all Xi are
either left-censored or right-censored by Yi .) Again,
S is constrained to be a decreasing function, and a
very similar algorithm is available, particularly stud-
ied by Groeneboom (see [11]), who also showed
that similar asymptotic results (n1/3-convergence)
apply. A good general introduction to current sta-
tus data is [6] (see also [12]). An example as well
as details of the distribution of Z can be found
in [13]. An important recent paper [2] derived a
nonparametric likelihood ratio test for these con-
texts.

NPMLE of an Increasing Hazard Rate

Grenander’s derivation [7] was shown by Barlow
et al. [3] to be interpretable as the inverse of the
slope (from the right) of the concave majorant of
the total time on test plot. A similar n1/3 asymptotic
convergence result as above was given by Prakasa
Rao [14].
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Group Randomized Trials

Introduction

Group-randomized trials (GRTs) are comparative
studies in which investigators randomize identifiable
groups to conditions and observe members of those
groups to assess the effects of an intervention [8]. In
this context, an identifiable group refers quite broadly
to any group that is not constituted at random, so
that there is some physical, geographic, social, or
other connection among its members. Just as the
randomized clinical trial (RCT) (see Clinical Trials,
Overview) is the gold standard in public health
and medicine when randomization of individuals
to study conditions is possible, the GRT is the
gold standard in public health and medicine when
randomization of identifiable groups is required. This
situation exists whenever the investigator wants to
evaluate an intervention that operates at a group
level, manipulates the social or physical environment,
or cannot be delivered to individuals (see Cluster
Randomization).

An Example

TEENS was a group-randomized trial occurring in
16 middle schools in the Twin Cities metropolitan
area from 1997 to 2000 [7]. Schools agreeing to be
in the study committed to the measurement proto-
col, randomization to condition, and if randomized to
the intervention condition, to the following interven-
tion protocol: (a) offer all 10 sessions of the TEENS
curriculum in 7th and 8th grade; (b) allow the desig-
nated teacher to attend a full day training each year;
(c) allow for provision of a family education com-
ponent; and (d) allow school food service staff to be
trained on modifying the school food environment.
Sample size calculations, based on fruit, vegetables,
and fat intake data from prior school-based studies,
indicated that with 16 schools and at least 30 students
measured per grade, we had 80% power to detect
differences of 1.1 servings of fruits and vegetables
and a 1.9% difference in energy from total fat intake
between treatment groups. All students who were in
7th grade during the baseline data collection period
were considered eligible to participate.

The primary outcome measures for evaluating
the effectiveness of TEENS were student-level intake

of fruits, vegetables, and energy from fat based on
24-hour dietary recalls. Data were collected at base-
line at the beginning of the 7th grade in Fall 1998 and
again at the end of the 7th and 8th grades in Spring
1999 and 2000.

Schools were randomly assigned from within
matched pairs (see Matching) to either control or
intervention condition. Schools were matched on both
the proportion of 7th graders expected to receive
the TEENS curriculum and on the proportion receiv-
ing free or reduced school lunch; randomization was
constrained so that the four smallest schools were
distributed with two in each of the two conditions.
The eight intervention schools received the TEENS
intervention and related training for two consecutive
years beginning when the grade cohort was in the
7th grade (1998–1999) and continuing through the
8th grade year (1999–2000). The end of 7th grade
data suggested a significant increase in consumption
of fruits and vegetables in the intervention condi-
tion [1]; the end of 8th grade data suggested that
those effects were not sustained through two years
of follow-up [7].

Distinguishing Characteristics

There are four characteristics that distinguish the
GRT from the more familiar RCT [8]. First, the
unit of assignment is an identifiable group; such
groups are not formed at random, but rather through
some physical, social, geographic, or other connec-
tion among their members. Second, different groups
are assigned to each condition, creating a nested or
hierarchical structure for the design and the data (see
Hierarchical Models). Third, the units of observa-
tion are members of those groups so that they are
nested within both their condition and their group.
Fourth, there usually are only a limited number of
groups assigned to each condition.

These characteristics create several problems for
the design and analysis of GRTs. The major design
problem is that a limited number of often heteroge-
neous groups makes it difficult for randomization to
distribute potential sources of confounding evenly
in any single realization of the experiment. This
increases the need to employ design strategies that
will limit confounding and analytic strategies to deal
with confounding where it is detected. The major ana-
lytic problem is that there is an expectation for posi-
tive intraclass correlation (ICC) among observations
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on members of the same group [6]. That ICC reflects
an extra component of variance (see Variance Com-
ponents) attributable to the group above and beyond
the variance attributable to its members. This extra
variation will increase the variance of any group-
level statistic beyond what would be expected with
random assignment of members to conditions. More-
over, with a limited number of groups, the degrees of
freedom (df) available to estimate group-level statis-
tics are limited. Any test that ignores either the extra
variation or the limited df will have a Type I error
rate (see Hypothesis Testing) that is inflated [3].

The Development of Group-randomized
Trials in Public Health

GRTs gained attention in public health in the late
1970s with the publication of a symposium on coro-
nary heart disease prevention trials in the American
Journal of Epidemiology. Cornfield’s paper in par-
ticular has become quite well known among method-
ologists working in this area, as it identified the
two issues that have vexed investigators who employ
GRTs from the outset: extra variation and limited
degrees of freedom [3].

The last 25 years have witnessed dramatic growth
in the number of GRTs in public health and dramatic
improvements in the quality of the design and analy-
sis of those trials. Responding directly to Cornfield’s
warning, Donner and colleagues at the University of
Western Ontario published a steady stream of papers
on the issues of analysis facing group-randomized
trials through the 1980s and 1990s. Murray and col-
leagues from the University of Minnesota began their
examination of the issues of design and analysis
in group-randomized trials in the mid-1980s. Other
investigators from the National Institutes of Health,
the University of Washington, the New England
Research Institute, and elsewhere added to this grow-
ing literature in public health, especially in the 1990s.

In the 1998, the first textbook on the design
and analysis of GRTs appeared [8]. It detailed the
design considerations for the development of GRTs,
described the major approaches to their analysis
both for Gaussian (see Normal Distribution) and
binary data, and presented methods for power anal-
ysis applicable to most GRTs. The second textbook on
the design and analysis of GRTs appeared in 2000 [4].
It provided a good history on GRTs, examined the

role of informed consent and other ethical issues (see
Ethics of Randomized Trials), focused on exten-
sions of classical methods, and included material on
regression models for Gaussian, binary, count, and
time-to-event data. Murray et al. recently reviewed a
large number of articles on new methods relevant to
the design and analysis of GRTs published between
1998 and 2003 [10].

Potential Design Problems and Methods to
Avoid Them

For GRTs, there are four sources of bias that should
be considered during the planning phase: selection,
differential history, differential maturation, and con-
tamination. These biases are well known and may
also occur in RCTs. The first three are particularly
problematic in GRTs where the number of units avail-
able for randomization is often small. GRTs planned
with fewer than 20 groups per condition would be
well served to include careful matching or stratifica-
tion prior to randomization to help avoid these biases.
Analytic strategies, such as regression adjustment for
confounders, can be very helpful in dealing with any
observed bias.

Potential Analytic Problems and Methods
to Avoid Them

There are two major threats to the validity of the anal-
ysis of a GRT, which should be considered during
the planning phase: misspecification of the analytic
model and low power. Misspecification of the ana-
lytic model most commonly occurs when the investi-
gator fails to reflect the expected ICC in the analytic
model. Low power most commonly occurs when the
design is based on an insufficient number of groups
randomized to each condition.

There are several analytic approaches that can
provide a valid analysis for GRTs [4, 8]. In most,
the intervention effect is defined as a function of
a condition-level statistic (e.g. difference in means,
rates, or slopes) and assessed against the varia-
tion in the corresponding group-level statistic. These
approaches included mixed-model ANOVA/
ANCOVA (see Analysis of Variance; Analysis of
Covariance) for designs having only one or two time
intervals, random coefficient models for designs hav-
ing three or more time intervals, and randomization
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tests as an alternative to the model-based methods.
Other approaches are generally regarded as invalid
for GRTs because they ignore or misrepresent a
source of random variation. These include analyses
that assess condition variation against individual vari-
ation and ignore the group, analyses that assess condi-
tion variation against individual variation and include
the group as a fixed effect, analyses that assess the
condition variation against subgroup variation, and
analyses that assess condition variation against the
wrong type of group variation. Still other strategies
may have limited application for GRTs. Applica-
tion of fixed-effect models with post hoc correction
for extra variation and limited df assumes that the
correction is based on an appropriate ICC estimate.
Application of survey-based methods or generalized
estimating equations (GEE) and the sandwich method
for standard errors requires a total of 40 or more
groups in the study, or a correction for the downward
bias in the sandwich estimator for standard errors
when there are fewer than 40 groups in the study [10].

Low power will occur if the investigator employs
a weak intervention, has insufficient replication, has
high variance or intraclass correlation in the end-
points, or has poor reliability of intervention imple-
mentation. To avoid low power, investigators should
plan a large enough study to ensure sufficient repli-
cation, employ more and smaller groups instead of a
few large groups, employ strong interventions with
good reach, and maintain the reliability of interven-
tion implementation. In the analysis, investigators
should consider regression adjustment for covariates,
model time if possible, and consider post hoc strati-
fication.

A detailed exposition on power for GRTs is
beyond the scope of this article. Excellent treatments
exist, and the interested reader is referred to those
sources for additional information. Chapter 9 in the
Murray text provides perhaps the most comprehen-
sive treatment of detectable difference, sample size,
and power for GRTs [8]. Even so, a few points bear
repeating here. First, the increase in between-group
variance due to the ICC in the simplest analysis is cal-
culated as 1 + (m − 1)ICC, where m is the number
of members per group; as such, ignoring even a small
ICC can underestimate standard errors if m is large.
Second, while the magnitude of the ICC is inversely
related to the level of aggregation, it is independent
of the number of group members who provide data.
For both these reasons, more power is available given

more groups per condition with fewer members mea-
sured per group than given just a few groups per
condition with many members measured per group,
no matter the size of the ICC. Third, the two factors
that largely determine power in any GRT are the ICC
and the number of groups per condition. For these
reasons, there is no substitute for a good estimate of
the ICC for the primary endpoint, the target popu-
lation, and the primary analysis planned for the trial,
and it is unusual for a GRT to have adequate power
with fewer than 8 to 10 groups per condition. Finally,
the formula for the standard error for the intervention
effect depends on the primary analysis planned for the
trial, and investigators should take care to calculate
that standard error, and power, based on that analysis.

The Future of Group-randomized Trials

Whenever the investigator wants to evaluate an inter-
vention that operates at a group level, manipulates the
social or physical environment, or cannot be delivered
to individuals, the GRT is the best comparative design
available. Even so, there remain many challenges fac-
ing GRTs. For example, there can be no question that
it is harder to change the health behavior and risk
profile of a whole community than it is to make sim-
ilar changes in smaller identifiable groups such as
those at worksites, physician practices, schools, and
churches. And while no quantitative analysis has been
published, it seems that the magnitude of the inter-
vention effects reported for GRTs has been greater
for trials that involved smaller groups than for trials
involving such large aggregates as whole communi-
ties. With smaller groups, it is possible to include
more groups in the design, thereby improving the
validity of the design and the power of the trial.
With smaller groups, it is easier to focus interven-
tion activities on the target population. With smaller
groups, the cost and difficulty of the implementation
of the study generally are reduced. For these and sim-
ilar reasons, future group-randomized trials may do
well to focus on more and smaller identifiable groups
rather than on whole cities or larger aggregates.

Another challenge is simply the difficulty in devel-
oping interventions strong enough to change the
health behaviors of the target populations. The meth-
ods for the design and analysis of GRTs have evolved
considerably from the 1970s and 1980s, but we con-
tinue to employ interventions that often prove ineffec-
tive. One of the problems for some time has been that
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interventions are proposed, which lack even prelimi-
nary evidence of efficacy [9]. Efficacy trials in health
promotion and disease prevention (see Prevention
Trials) often are begun without the benefit of pro-
totype studies, and often even without the benefit of
adequate pilot studies. This has happened in large part
because the funding agencies have been reluctant to
support pilot and prototype studies, preferring instead
to fund efficacy and effectiveness trials. Unfortu-
nately, the interventions that lead to GRTs tend to
be more complicated than those in other areas or
those that lead to clinical trials. As such, it is even
more important to subject them to adequate testing
in pilot and prototype studies. These earlier phases
of research can uncover important weaknesses in
the intervention content or implementation methods.
Moving too quickly to efficacy trials risks wasting
substantial time and resources on interventions that
could have been substantially improved through the
experience gained in those pilot and prototype stud-
ies. One would hope that the funding agencies will
recognize this point and begin to provide better sup-
port for pilot and prototype studies.

There are remaining methodological challenges as
well. For example, there have been a number of
recent studies that documented the downward bias
in the sandwich estimator used in GEE when there
are fewer than 40 groups in the study [5]. Correc-
tions have been proposed, but none appear in the
standard software packages (see Software, Biostatis-
tical), so those corrections are relatively unavailable
to investigators who analyze GRTs. Absent an effec-
tive correction, the sandwich estimator will have an
inflated Type I error rate in GRTs having less than 40
groups, and investigators who employ this approach
continue to risk overstating the significance of their
findings.

As another example, consider studies that employ
only one or a few groups per condition. With only one
group per condition, it is not possible to separately
estimate variation due to groups and condition, and
so there is no valid analysis or absent strong and
untestable assumptions. With only a few groups per
condition, power is likely to be extremely limited, and
so such studies are to be discouraged, except perhaps
as pilot studies.

As another example, there have been a number
of recent studies that proposed methods for survival
analysis that could be applied to data from GRTs.
Some of these methods involved use of the sandwich

estimator, and so would be subject to the same
concern as noted above for GEE.

As a third example, permutation tests (see Ran-
domization Tests) have been advocated over model-
based methods because they require fewer assump-
tions. At the same time, they tend to have lower
power. To overcome this problem, Feng et al. deve-
loped an optimal randomization test that had nominal
size and better power than alternative randomization
tests or GEE, though it was still not as powerful as the
model-based analysis when the model was specified
correctly [2]. Additional research is needed to com-
pare Braun & Feng’s optimal randomization test and
model-based methods under model misspecification.

There is every reason to expect that continu-
ing methodological improvements will lead to bet-
ter trials. There is also evidence that better trials
tend to have more satisfactory results. For exam-
ple, Rooney and Murray presented the results of
a meta-analysis of group-randomized trials in the
smoking-prevention field [11]. One of the findings
was that stronger intervention effects were associated
with greater methodological rigor. Stronger interven-
tion effects were reported for studies that planned
from the beginning to employ the unit of assignment
as the unit of analysis, that randomized a sufficient
number of assignment units to each condition, that
adjusted for baseline differences in important con-
founding variables, that had extended follow-up, and
that had limited attrition. One hopes that such findings
will encourage the use of good design and analytic
methods.
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Grouped Data

We call data grouped when we observe only some
set Y containing the variable of interest X rather
than the value of X itself. For example, suppose X

represents the length and width of an iris petal, which
we can only measure to the nearest millimeter. If the
observed measurements are 1.4 cm and 0.2 cm, then
X ∈ y = (1.35, 1.45) × (0.15, 0.25). Because we can
neither measure nor store data with infinite precision,
all so-called “continuous” data are actually grouped.

There are two general approaches to analyzing
grouped data. The first is to substitute the center Ỹ

of Y for X, proceeding as if the data were known
exactly. One may be able to correct such estimates
to remove grouping effects, as with Sheppard’s cor-
rections for rounded data. The second approach is to
base inferences directly on the distribution of Y or
the likelihood arising from it. For example, if X fol-
lows a bivariate density f (x; θ), then the likelihood
from nominal measurement ỹ = (1.4, 0.2) is

L(y; θ) =
∫

(1.35,1.45)×(0.15,0.25)

f (x; θ) dx.

A simple approximation is

L̃(y; θ) = f (ỹ; θ) = f (1.4, 0.2; θ).

Typically, exact methods are difficult to implement
but give better answers for large n and coarse groups.

An interesting special case of grouping is heap-
ing, where a single data set contains items rounded
with various levels of coarseness. Heaping can occur
in self-reported variables such as age, income, and
cigarette consumption. Another special case is inter-
val censoring, where a continuous failure time is only
known to lie between two (potentially random) limits.

Grouping has been the subject of research through-
out the modern era of statistics. See [1], [2], and [3]
for reviews.
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Grouped Survival Times

In many investigations involving survival times, data
are grouped prior to their statistical analysis (see
Grouped Data). The grouped survival data consist
of occurrence and exposure data over given time
intervals and possible covariate strata. For grouped
survival (or failure-times) data there is an assumed
continuous underlying hazard function, in contrast
to discrete survival-time data, with an intrinsically
discrete time variable, discrete hazards, survival func-
tions, etc.

One of the primary reasons for grouping can be
found in studies involving large sample sizes such
as epidemiologic studies [6]. Such studies typically
involve the follow-up of large population groups over
certain time periods to assess the cause and rate of
death and/or to compare death rates among different
population groups. Grouping data from such large
sample sizes into tabular presentations (life tables)
often provides a convenient format for presenting and
summarizing life information. Also, grouping could
be done intentionally, for example, to economize on
data transmission and storage, to reduce computa-
tion, to protect the privacy of individual records,
or to account for the limitations of a measurement
instrument. Moreover, some large data sets are pub-
licly released only in grouped form, as discussed
by Haitovsky [16, 17]. Some examples that illustrate
such grouped survival data are: the American Can-
cer Society study of 1 000 000 men and women [18]
to determine the dose–time–response relationships
between smoking and lung cancer or heart disease
and the life span study of over 100 000 Japanese atom
bomb survivors in Hiroshima and Nagasaki [4].

Another important reason for grouping data is that
it is often difficult or even impossible to obtain exact
lifetimes, because ethical, physical, or economic
restrictions in research design allow the subjects in
the follow-up study to be monitored only periodi-
cally. Thus, this type of study only provides grouped
information, that is, the exact failure time is unknown
and the only available information is whether the
event of interest occurred between two inspection
times. The following study illustrates situations where
periodic inspection is used: the National Labor Sur-
vey of Youth (NLSY) study of time to weaning of
breast-fed newborns in which 927 first-born children

of mothers who chose to breast-feed their children
were interviewed yearly.

Similar to continuous data in survival analysis,
grouped survival data can involve censored data
(right censoring, left censoring or double censoring)
and/or truncated data. Moreover, the exact censoring
or truncation times may be unknown for grouped
data. For example, in the study of the time to weaning
of breast-fed newborns, some infants were lost to
follow-up and some infants were withdrawn from the
study without being weaned. Also, grouped survival
data can involve covariates (explanatory variables).
Some parametric models and the well-known Cox
regression model are often fitted to grouped survival
data [34].

The vast literature on grouped survival data in-
volves: deriving the estimators of the hazard function
and survival function under nonparametric or para-
metric models, test statistics for comparing the sur-
vival probabilities among different population groups,
and large sample properties for these estimators
and test statistics. Most estimates are derived based
on maximum likelihood methods. Some references
to such studies will be given later. The Bayesian
approach to analyzing grouped survival data has also
been studied in the literature [8, 24].

Notation of Grouped Survival Data

Let time be partitioned into a fixed sequence of inter-
vals T1, T2, . . . , Tm with Tj = (tj−1, tj ] and 0 = t0 <

t1 < · · · < tm ≤ ∞. For grouped failure time data the
only available information is:

nj = number of subjects entering Tj not having
experienced the event,

dj = number of individuals experiencing the
event in Tj ,

wj = number of individuals lost to follow-up or
withdrawn during Tj and,

Yj = total time of individuals at risk during Tj .

When the subjects are monitored periodically, the
total time at risk Yj is unknown. It is often
approximated by Yj ≈ [nj − (dj + wj)/2](tj − tj−1)

for right-censored data.

Life Table

The life table is one of the oldest and most commonly
used methods of presenting lifetime data. It is a table
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for presenting and summarizing data, and estimating
the survival function, the probability density function
and the hazard function along with the variance of
these estimators. For more details on the life table,
see [15] and [7].

Interval Censored Grouped Data

For interval (doubly) censored grouped data, Turn-
bull [36, 37] proposed a “self-consistency” pro-
cedure, developed by Efron [11], to estimate the
survival function S(t). The Turnbull estimator is
a nonparametric maximum likelihood estimator
(NPMLE). Its derivation and asymptotic properties
are discussed in the article on the Turnbull estima-
tor. Some alternative approaches to maximizing the
NPMLE are discussed in the article on Interval Cen-
soring.

Logrank Test

Comparison of the survival probabilities with treat-
ment groups or covariate strata in the grouped data
can be done through rank tests. In the continuous data
case Fleming & Harrington [13] studied a class of
weighted logrank tests. These weighted logrank tests
can be extended to the grouped failure time data. The
usual logrank test (or evenly weighted logrank test) is
most commonly and widely used in practice. Here we
discuss the grouped data version of the logrank test.
First, consider the two-sample case. Let nij and dij ,
j = 1, . . . , m, i = 1, 2, be the number at risk at the
beginning of the j th interval and observed failures
in the j th interval, respectively, in sample i. Take
nj and dj to be the corresponding values in the com-
bined sample. The data, corresponding to the j th time
interval, can be summarized as shown in Table 1. The
grouped data based two-sample logrank test can be

Table 1

Sample

Failure 1 2 Total

Yes d1j d2j dj

No n1j − d1j n2j − d2j nj − dj

Total n1j n2j nj

computed as

Q =



m∑

j=1

(d1j − E1j )




2 /

m∑

j=1

V1j ,

where E1j and V1j are the expected value and vari-
ance of d1j , given by

E1j = djn1j

nj

and V1j = djn1j n2j (nj − dj )

n2
j (nj − 1)

.

Under the hypothesis of S1(t) = S2(t), the two-
sample logrank test statistic Q has approximately the
chi-square distribution with 1 degree of freedom
when the sample sizes are moderately large for each
sample.

We can extend the two-sample logrank test to
the k-sample comparison. The k-sample logrank test
has a quadratic form with (d1j − E1j ) replaced by
the corresponding values from k − 1 samples and
with V1j replaced by the corresponding covariance
matrix, where the hlth element is

σ̂hl = djnhj

nj

(
δhl − nhj

nj

)
(nj − dj )

(nj − 1)

and δhl is a Kronecker delta, that is, δhl = 1 if h = l,
and 0 otherwise.

Parametric Models and Regression
Analysis

In survival analysis some parametric models have
been studied extensively. The common parametric
distributions considered are exponential, gamma,
Weibull, lognormal, and Gompertz distributions (see
Parametric Models in Survival Analysis). These
parametric models are often fitted to grouped data
as well. The parameters are usually estimated by
maximizing the full (unconditional) likelihood or the
conditional likelihood, that is, the likelihood function
for the interval (tj−1, tj ] conditional on surviving
till tj−1. Many authors have given the maximum
likelihood estimator (MLE) for grouped data [12, 27,
10]. Turnbull & Weiss [38] studied a likelihood ratio
test statistic for testing goodness of fit for grouped
failure data with possible double censoring.

It is important to assess the effects of covariates
that may be associated with lifetimes in many appli-
cations of survival analysis. The regression model
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for the conditional hazard function λ(t |z) of the fail-
ure time given covariate z could be used to examine
the covariate effects. Continuous covariates are often
grouped into a fixed number of strata, and the value
for each stratum is approximated by the midpoint of
the covariate in the stratum (see Stratification). For
simplicity we consider a one-dimensional covariate
case. The methods and results discussed here can be
extended to multidimensional cases. Let the cells into
which the data are grouped be denoted Crj = Tr × Ij ,
where T1, . . . , TLn

and I1, . . . , IJn
are the respec-

tive calendar periods (time intervals) and covariate
strata. Grouped failure time data consist of the total
number of failures (occurrence) and the total time
at risk (exposure) in each cell Crj , given by drj and
Yrj . In the literature, most early work has been done
under the piecewise exponential model, that is, the
hazard function is assumed to be piecewise constant
within each grouping cell. The natural estimate of
the unknown hazard rate λrj is λ̂rj = drj /Yrj (occur-
rence/exposure rate). Deddens & Koch [10] showed
that the maximum likelihood solution is approxi-
mately equivalent to maximizing the piecewise expo-
nential likelihood function

L =
∏

r,j

λ
drj

rj [exp(−λrjYrj )].

The occurrence/exposure rate estimator can also be
obtained by solving the equations of ∂ log L/

∂λrj = 0.
The counting process approach and martingale

techniques are applicable in grouped failure time data
analysis. We assume that the counting process Ni ,
where Ni(t) is the number of failures of the ith
individual during time period [0, t], has intensity

λi(t) = Yi(t)λ[t, Zi(t)],

where Yi(t) is a predictable (0, 1)-valued process
indicating that the ith individual is at risk with
Yi(t) = 1, and Zi(t) is a predictable covariance pro-
cess. The occurrence and exposure in each cell Crj

can be written as

drj =
∑

i

∫

Tr

I [Zi(t) ∈ Ij ] dNi(t)

and

Yrj =
∑

i

∫

Tr

I [Zi(t) ∈ Ij ]Yi(t) dt.

When the censoring processes are independent of the
survival time, we can show that Mi(t) = Ni(t) −∫ t

0 λi(u) du are local martingales. Under the piece-
wise constant model [λ(t, z) = λrj , for (t, z) ∈ Crj ],

λ̂rj = drj

Yrj

= Mrj

Yrj

+ λrj

Yrj

Yrj

,

where

Mrj =
∑

i

∫

Tr

I [Zi(t) ∈ Ij ] dMi(t)

is the martingale part of drj . Since for each t ∈ Tr ,
Yrj is not predictable, the martingale techniques are
not applicable directly. However, in the independent,
identically distributed (iid) case and some mild con-
ditions, we can show that there exists a piecewise
constant function frj bounded away from zero such
that n−1Yrj converges to frj in probability. Then we
can replace Mrj/Yrj by Mrj/nfrj with the difference
of o

P
(1). It follows that

λ̂rj = Mrj

nfrj

+ λrj + o
P
(1),

and the predictable variation process of Mrj/frj is
〈
Mrj

frj

〉
= λrjYrj

f 2
rj

.

Therefore, λ̂rj is an asymptotic unbiased estimator
and the variance can be consistently estimated by

σ̂rj = v̂ar(λ̂rj ) = drj

(Yrj )2
.

For the general nonparametric model where the haz-
ard function is unspecified, Holford [20] noted that
this estimator is inconsistent unless the grouping
becomes finer as the sample size increases (see Con-
sistent Estimator).

The useful models for many applications are the
multiplicative and additive hazard models. The
model equations are given by

λrj = λr0 exp(βzj ) and λrj = λr0 + βzj ,

where λr0 is the baseline hazard rate for the rth time
period. The parameters λr0 and β are readily esti-
mated by the MLE. Berry [5] and Frome [14] provide
explicit MLE for this approach. For the multiplica-
tive risk model the hazard function can be written
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as λrj = exp(αr + βzj ), which has a loglinear form.
It is often called the loglinear piecewise constant
model. Holford [21] derived the log likelihood for
this model:

L =
∑

r

αrdr· +
∑

r,j

drjβzj

−
∑

r,j

Yrj exp(αr + βzj ),

where dr· = ∑Jn

j=1 drj is the number of failures in
the rth calendar period. Taking derivatives of L with
respect to αr and β and setting them equal to zero, the
MLE estimator of β is given by solving the following
equation:

∑

r,j

zj drj −
∑

r

∑
j
Yrj zj exp(βzj )

∑
j
Yrj exp(βzj )

dr· = 0.

As we discuss later, this MLE estimator of β can also
be obtained by maximizing the grouped data version
of Cox’s partial likelihood.

The more general models are: Cox’s proportional
hazards model [9], where λ(t, z) = λ0(t) exp(βz);
and Aalen’s additive regression model [1], where
λ(t, z) = λ0(t) + β(t)z.

Cox’s proportional hazards model has so far been
the most popular model in survival analysis. The
parameter estimator β̂ is obtained by maximizing
Cox’s partial likelihood function. Andersen &
Gill [3] provide an excellent proof that n1/2(β̂ −
β0)

P−−−→ N(0, V), where V−1 is consistently

estimated by −n−1∂U(β̂)/∂β and U is the partial
likelihood score function U(β) = ∂ log L(β)/∂β (see
Likelihood). The grouped data based estimator
β̂g can be obtained by maximizing the following
approximation to the partial likelihood:

Lg(β) =
∏

r,j



 exp(βzj )∑
k
Yrk exp(βzk)




drj

,

where the product is over the grouping cells, the sum
is over the covariate strata, and zj is the midpoint
of the j th covariate stratum. This estimator has been
studied by Kalbfleisch & Prentice [25], Holford [20],
Prentice & Gloeckler [34], Breslow [6], Hoem [19],
Selmer [35], and Huet & Kaddour [22]. It can be

interpreted as the maximum likelihood estimator in
a Poisson regression model, as shown by Laird &
Olivier [26]. Under slightly stronger regularity con-
ditions proposed in Andersen & Gill [3], it can be

shown that n1/2(β̂g − β0)
P−−−→ N(0, V ) when the

time intervals and covariate strata shrink at some
suitable rate as the sample size increases. It is impor-
tant to be able to assess estimation bias caused by
grouping and to correct it if necessary. In the gen-
eral grouped data analysis, a Sheppard correction
can be used to reduce the bias to a higher order
of the interval width [28]. McKeague & Zhang [33]
obtained a Sheppard correction for Cox’s propor-
tional hazards model, provided a consistent estimator
for the Sheppard correction, and derived the optimal
rate of convergence for β̂g . The grouped data based
estimator of the baseline hazard function, λ0, is

λ̂0(t) =
∑

j
drj

∑
j
Yrj exp(β̂gzj )

, for t ∈ Tr .

Aalen’s additive risk model provides a useful and
sometimes biologically more plausible alternative to
the Cox proportional hazards model. For continu-
ous data, Aalen proposed a least squares estima-
tor for the cumulative hazard functions, which has
been studied by Aalen [1, 2], Mau [29, 30], and
McKeague [31]. McKeague [32] and Huffer & Mc-
Keague [23] fit Aalen’s additive risk model to the
grouped data (when the covariates are observed for
each individual and are non-time-dependent), and
studied asymptotic results for the grouped data ver-
sion of the least squares estimator and weighted least
squares estimator. The estimators can be generalized
to the more general grouped data setting where the
only available information is drj and Yrj for each cell
Crj . More work is needed.

Finally, fitting parametric and regression models
to grouped failure time data is based on drj and Yrj .
As we discussed in the univariate case, Yrj may not be
observable in some applications. It is usually approxi-
mated by Yrj ≈ [nrj − (drj + wrj )/2]lr , where nrj is
the number of individuals at risk at the beginning
of the time period Tr for the j th covariate stratum,
wrj is the number of individuals who withdrew in
cell Crj , and lr is the width of the time interval Tr .
This approximation is based on the assumption that,
on the average, the individuals failed or withdrew
at the middle of the each time period. However, in
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most applications, this assumption does not hold true.
The bias introduced by this approximation could be
severe. Caution must be taken when grouping the data
to ensure that the number of grouping cells is suffi-
ciently large (the widths of time periods and covariate
strata are relative small) and each grouping cell con-
tains enough individuals at risk.
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Group-randomization
Designs

Randomized clinical trials compare two or more
intervention or treatment strategies, using random
allocation (assignment) (see Randomization) to
intervention condition. Within this framework,
group randomization designs (sometimes also called
cluster randomization designs) randomly allocate
intact groups (clusters), rather than individuals, to
intervention condition. Units of group randomization
include communities, small towns or villages,
factories (workplaces), schools or classrooms,
religious institutions, chapters of social organizations,
families, and clinical practices.

Randomized trials are the recommended approach
for obtaining valid comparisons of competing inter-
vention strategies. The advantages of randomization
are no less important for group-based trials than for
individual-based trials [14, 15]. Randomized treat-
ment assignment avoids bias, achieves balance (on
average) of both known and unknown predictive
factors between intervention and comparison groups,
and provides the basis for statistical tests (see [2]).

A variety of examples can be cited to illustrate
the range of group-randomized trials. A trial imple-
mented in Indonesia randomly assigned 450 villages
to participate or not to participate in vitamin A sup-
plementation, in the form of capsules distributed to
preschool children at baseline and again six months
later [26]. A trial of the impact of a community-
level intervention for improved treatment of sexually
transmitted diseases on HIV infection in the Mwanza
region of rural Tanzania randomized 12 communi-
ties (six pairs) between intervention and control [16,
17]. The Community Intervention Trial for Smoking
Cessation (COMMIT) randomized 22 communities
(11 pairs) in North America to test a community-
based, multichannel, four-year intervention [3, 12,
15]. The Child and Adolescent Trial for Cardiovas-
cular Health (CATCH) randomized schools to test
a behaviorally oriented cardiovascular health educa-
tion program [22, 27]. As a final example here, the
Eating Patterns Study randomized 28 physician prac-
tices (within six primary care clinics) to evaluate the
effectiveness of a self-help booklet, with physician
endorsement thereof, in lowering dietary fat intake
and raising dietary fiber intake in a primary-care

practice setting [1]. For some other examples, see [8]
and [25].

Randomization by group is less efficient statisti-
cally than randomization by individual, because indi-
viduals in a group-randomized trial will contribute
less information than if individually randomized, as
discussed by Cornfield [4]. There are, however, rea-
sons why randomization by group may be chosen,
some of which are illustrated by the trials referenced
above. As outlined by Green et al. [15], these rea-
sons include feasibility of delivery of the intervention,
political and administrative considerations, the need
to avoid contamination between individuals allocated
to competing interventions, the very nature of the
intervention (i.e. group-level), the existence of ready-
made endpoints measured at the group level (see
Outcome Measures in Clinical Trials), the desire
to use site-specific resources to decrease cost, and
greater generalizability.

When a group entity such as a community is
investigated, two distinct types of outcome measures
may be used. In one approach, we identify a cohort
of individuals in each community at the beginning of
the trial (at the “baseline”, just before randomization)
and then follow the cohort prospectively to measure
changes in behavior or other outcome. Alternatively,
we determine changes in the prevalence of some
condition or behavior in each community, using
independent cross-sectional samples at the baseline
and at the end of the trial (perhaps with intermediate
assessments also). Reasons for selecting one or the
other approach have been given [9, 13, 15, 20]; some
trials include both of these approaches.

As outlined by Green et al. [15], possible advan-
tages of the cohort approach are: that it can target
specific segments of the population (e.g. smokers in
a smoking cessation trial) and measure the effect
of the intervention on such individuals directly; it
tends to have better statistical power; and it is not
influenced by certain changes in the nature of the
community (e.g. migration). Possible disadvantages
are the problem of losses to follow-up, and the theo-
retical risk that repeated contact may affect either the
actual success of the intervention or at least the self-
reports of outcome (such as behavior change). Also,
during a long trial, it can be argued that a cohort
may become less representative of the community
from which it was selected; at a minimum, the sur-
viving members of the cohort will be aging while
the age distribution in the community may remain
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unchanged. However, this latter issue may not be
of concern for trials focusing on the outcome for
individuals, even though group randomization had
been employed. Conversely, possible advantages of
the cross-sectional approach are that it avoids the
problem of losses to follow-up (although, of course,
nonresponse to surveys remains an issue); it reduces
concern about repeated assessment influencing the
outcome; and it can measure overall changes in a
community. Possible disadvantages are that it is less
efficient statistically, and it can be influenced by
in/out migration. For additional discussions of this
topic, see [9], [13], and [20].

Sample size determination for group-randomized
trials needs to consider the extra source of varia-
tion resulting from the inherent heterogeneity across
groups; see, for example, [7], [12], [18], and [27].
Expressed another way, the outcomes of individuals
within a group are generally correlated, as mea-
sured by the intraclass (intracluster) correlation. It
is important to have an adequate number of ran-
domized groups to account for the between-group
variation. Often, in practice, it is easier to obtain a
reasonably large number of individuals per group than
it is to obtain a large number of groups, so the latter
becomes the factor controlling (and perhaps limiting)
the power of the trial. Because of this, to increase
power (efficiency), we may consider stratification
or pair-matching of the groups prior to randomiza-
tion, and then analyzing the data accordingly. While
matching could actually produce a loss in efficiency
when the number of pairs is particularly small, due to
loss of degrees of freedom in the analysis [23], gain
in power can be achieved depending on how effec-
tively the matching reduces community heterogeneity
within pairs (see [11]).

As with the sample size calculations, the method
of analysis must account for the correlation of indi-
viduals within a group (see [5–7]). One approach
that has been used to account for cluster randomiza-
tion is to adjust a standard (individual-level) analysis
for the estimated “design effect” (i.e. the variance
inflation due to clustering), which depends on the
estimated intraclass correlation ρ̂ (see, for exam-
ple, [6]); for clusters of equal size n, the design
effect is [1 + (n − 1)ρ̂]. Alternatively, a variety of
models can be applied to group-randomized data, to
account for individual-level covariates as well as
group variation; for example, by introducing a ran-
dom group effect in an analysis of variance or

analysis of covariance; see, for example, [24], [21],
and [9]. Recently, Feng et al. [10] have compared
various estimation procedures under a linear model
(including maximum likelihood under a normal
mixed model (see Multilevel Models), generalized
estimating equations, and a bootstrap approach),
and Klar [19] has compared model-dependent and
robust tests using a generalized-estimating-equations
extension of logistic regression for binary outcome
data.

Rather than using a model-based method to
account for group randomization, we may prefer a
randomization-based approach. With randomization-
based inference, the outcome data are analyzed
many times (once for each acceptable assignment
that could have been employed, according to
the randomization process) and then compared
with the observed result, without dependence on
additional distributional or model-based assumptions.
Thus, this approach is robust; hypothesis testing
(randomization tests or permutation tests) and
corresponding test-based confidence intervals can
be designed for group-randomized data, based
specifically on the randomization distribution [14,
15]. Such randomization tests involve permuting
the assignment of groups (clusters) to intervention
condition. Therefore, by definition, they account for
the fact that groups (rather than individuals) were
randomized. As discussed by Gail et al. [13], one can
construct randomization tests that are specific for the
design (e.g. unmatched or matched).

For randomization-based inference, although
permutation is at the group level, individual-level
covariates can be incorporated in the analysis (see
COMMIT [3] as an example). We can use individual-
level data for purposes such as imputation for missing
values (see Multiple Imputation Methods), adjust-
ment (of the intervention effect) for baseline charac-
teristics of the individual participants (see Covariate
Imbalance, Adjustment for), or performing sepa-
rate analyses in subsets defined by individual-level
covariates such as demographic variables [13–15].
In the latter situation, in addition to testing the main
effect of intervention, we can construct randomiza-
tion tests for intervention–covariate interactions, to
test formally whether the intervention effect differs
according to the value of a covariate (see Treatment-
covariate Interaction).
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Growth and Development

Growth and development is the process through
which the fetus changes in size, shape, composition,
and function to become a reproductively mature adult.
Growth is generally defined as the change (or rate of
change) in one or more continuous measures of size,
shape or composition, usually assessed by anthro-
pometry. Indeed, the term “growth” is often used as
a shorthand for child anthropometry. Development
reflects maturation as measured by ordinal markers
of function; some markers are inherently discontin-
uous, while others have an underlying continuum.
Menarche, the onset of menstruation, is a marker
of development, while height gain is a measure of
growth.

General Introduction

Growth is a process that all children undergo, and
normal growth is a proxy for good health. Equally,
abnormal growth is a nonspecific marker for poor
health, as many childhood diseases affect growth to
a greater or lesser extent. It is primarily growth that
distinguishes pediatrics from adult clinical medicine.

The most obvious manifestation of growth is an
increase in physical size, which, unlike many other
markers of clinical status, is easily quantified. Statis-
ticians have always been attracted by the qualities
of anthropometry data: they are accessible, cheap,
and reproducible; in addition, measurements are often
highly correlated from one age to another.

Broadly speaking, the rate of change of
anthropometry with age is fairly constant. In
detail, this does not hold, of course – growth in
individuals progresses in fits and starts, and some
markers of development, e.g. menarche, are, by their
nature, sudden in onset. However, the population
assessment of growth is assumed to smooth out these
discontinuities, and a requirement of smoothness
is imposed commonly on summary curves relating
anthropometry to age.

There are broadly two aims to the study of
growth and development – screening individuals and
screening populations. Clinically, the biostatistical
challenge is to characterize normal growth and
development in a way that optimizes its value as
a screening tool. In public health terms, the aim is

to assess the health status (see Quality of Life and
Health Status) of groups of children, defined on the
basis of, say, geography, ethnic make-up, or culture.

The way that individual growth is characterized
depends on the available information. This may be
from one or many measurement occasions, and may
involve anthropometry by itself or other covariates
as well. Ideally, as much relevant information as
possible should be used in the clinical assessment.

The reference centile (see Quantiles) chart, other-
wise known as a growth reference or growth standard,
is the fundamental tool for assessing growth, and it
is used widely throughout the world for this purpose.
It summarizes the distribution of anthropometry in a
known reference population at different ages through
childhood by plotting selected centiles of the distri-
bution against age.

Weight and height are the measurements most
commonly expressed as growth references, although
other anthropometry has also been summarized in
chart form. Figure 1 shows a height centile chart for
British boys in 1990, made up of nine centile curves
ranging from the 0.4th to the 99.6th centile. The
curves are spaced two-thirds of a standard deviation
score (SDS) apart over the range ±2.67 SDS, the
other centiles being (approximately) the 2nd, 9th,
25th, 50th, 75th, 91st, and 98th.

Also plotted on the chart are heights for a boy
measured regularly from birth to 21 years. Until the
age of 12 his height stays close to the median, but
during the adolescent growth spurt it rises to the
75th centile and then falls back to the 25th. This is
a common pattern of growth, with a fairly constant
centile until puberty, then a rise or fall depending on
whether the growth spurt occurs relatively early or
late. Thus, the chart can identify unusual growth in
two ways – single measurements on a relatively large
or small centile, and serial measurements that cross
centiles too rapidly (up or down) over time.

The paradox of the growth chart is that even
though it contains no information about velocity,
being based on single measurements, it is used almost
universally to assess growth. The assumption is that
subjects should grow parallel to the centile curves,
yet this is wrong (see below). In addition, the chart
cannot flag poor growth – the degree of centile
crossing corresponding to an abnormal pattern of
growth is not specified.

Addressing this problem is just one of several sta-
tistical issues that arise in the assessment of growth,
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Figure 1 Height reference for British boys in 1990. The
nine centiles are two-thirds of an SDS apart, at 0.4, 2.3, 9,
25, 50, 75, 91, 97.7 and 99.6. Superimposed are heights for
a French boy measured from birth to 21 years

many of them directly related to the construction and
use of growth charts.

Historical Development

In 1885, Francis Galton described centiles for sum-
marizing the distribution of body measurements, and
Bowditch later applied them to the heights of US
schoolchildren. He divided the children into age
groups, calculated a set of height centiles in each
group, joined up the corresponding centiles across
groups, and the centile chart was born.

Since then, centile charts have become very pop-
ular as a tool for monitoring growth. The statistical
basis for the charts has, until recently, been simplis-
tic – the data grouped by age, centiles for each group
obtained by sorting and counting, and the centiles
joined across groups with hand-smoothed or poly-
nomially smoothed curves (see Polynomial Regres-
sion). For normally distributed measurements, the
centiles can be estimated more efficiently using the

mean and SD, each smoothed across age. For non-
normal data such as weight, the centiles are often
obtained assuming a lognormal distribution.

Two other types of chart have been developed to
help assess growth over time: the velocity chart plots
the rate of change in anthropometry against age, and
the conditional chart plots the measurement against
another covariate besides age. Where the conditional
chart is based on two successive measurements, one
adjusted for the other, this is a generalized form of
velocity chart that has the advantage of adjusting for
regression to the mean. The simple cross-sectional
chart, by analogy to the velocity chart, is commonly
called a distance chart.

During the 1960s and 1970s Tanner et al. [15]
elevated growth chart production to something of
an art form, producing hand-smoothed charts for a
wide range of body measurements in British children.
Since then, growth charts have continued to be
developed, locally, nationally and internationally, and
this interest has led over the past 10 years to a sharp
increase in the statistical literature on the construction
of reference centile curves and age-specific reference
ranges. There has also been work on new forms of
chart that are better suited to the assessment of growth
over time.

Description of the Different Types of Study

Anthropometry data are collected either cross-
sectionally or longitudinally. In a cross-sectional
survey, the subjects each provide a single measure-
ment, and the sample is chosen to be representative of
some larger population. Longitudinal studies involve
measuring the same subjects repeatedly, often at reg-
ular time intervals. The advantage of longitudinal
studies is that they provide information on the dis-
tribution of growth velocity, which is not available
in cross-sectional surveys.

A compromise design is the semi-longitudinal
study, which combines the best features of single-
and multiple-measurement designs. For the initial
survey, a cross-sectional sample is drawn, then, for
later surveys, a fraction of the original sample is
redrawn and the balance is sampled afresh. As a
simple example, efficient estimates of both height
distance and annual height velocity can be obtained
throughout childhood from just two surveys, one
year apart.
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The choice of reference sample is important.
Ideally, it should be representative of the target
population, obtained by random and, if necessary, by
stratified sampling. However, there are two issues
that complicate sampling for growth studies, widely
debated under the titles “representative vs. healthy”
and “national vs. local”.

Since the chart’s purpose is to identify abnormal
growth, some people argue that the reference sam-
ple should be restricted to normally growing children
(i.e. healthy rather than representative). The prob-
lem with this is that abnormal growth is hard to
define, and it can lead to arbitrary exclusion rules.
Using a representative sample avoids the arbitrariness
and permits random sampling. The term “growth
standard” implies a benchmark of healthy growth,
whereas the “growth reference” is representative of
the population and is neutral about its health status.

There is also concern about the appropriateness
of using a nationally or internationally representa-
tive growth reference to assess individuals in areas
of the world where local growth patterns are dif-
ferent. For instance, is it sensible to use an interna-
tional reference based on North American children to
assess growth in the developing world, as the World
Health Organization (WHO) has, until recently, rec-
ommended?

The answer is that it depends. The growth chart is
used in two ways – as a clinical tool and for public
health purposes. Clinically, the chart should represent
growth in the local target population, but in public
health terms, international growth statistics need to
be comparable – this requires the use of a common
growth chart. So the question of “national vs. local”
charts comes down to a question of how the chart
is used.

Landmark Studies

During this century, much has been written on the
statistics of growth, and it is unrealistic to mention
all the relevant studies. On the construction of growth
charts, Tanner et al. [15] introduced the concept of
a velocity chart, and discussed the fundamentals of
centile fitting in some detail. Healy [9] described the
conditional regression chart, subsequently used by
Cameron [3] and developed by Cole [5]. The fitting
of centile curves became a recognized research topic
in 1988, when Healy [10] and Cole [4] described sep-
arately fundamentally different methods for dealing

with skew data. Goldstein [8] illustrated the value
of multilevel models for analyzing data from semi-
longitudinal growth studies, while Wade et al. [16]
proposed a method for deriving centiles of ordinal
developmental data, for example pubertal staging.

There have also been efforts over the past 60 years
to model the shape of the individual human growth
curve in infancy and childhood. Jenss & Bayley [11]
first proposed the linear plus exponential model for
infant growth, and other proposed models have been
of the fractional polynomial family [14]. Preece &
Baines [13] and Jolicoeur et al. [12] described ingen-
ious five- and seven-parameter exponential models
describing height growth during childhood.

Statistical Concepts and Techniques

Growth References

Metric for Calculation. The growth reference sta-
tistically adjusts anthropometry for age and sex,
expressing it as either a centile, a fraction of the
median, or a standard deviation score (SDS or Z

score) (see Normal Scores). For statistical analy-
sis, the centile is inappropriate, due to its nonlinear
scale. The fraction of the median is simple to calcu-
late and removes the age trend, but it does not adjust
for age-related changes in the coefficient of variation
(CV). The SDS adjusts for age trends in the mean
and CV, and, in addition, it can, if the measurement
is normally distributed, be converted to a centile.
The relationship between measurement, fraction of
the median and SDS is as follows:

SDS = (measurement/median) − 1

CV
,

which shows that if the CV is constant, then the
fraction of the median and the SDS convey the same
information.

In practice, measurements with a small CV, like
height or head circumference, tend to be close
to normally distributed, while other more variable
measurements, like weight or skinfold thickness, are
appreciably skew to the right. This nonnormality of
much anthropometry has posed a problem for the
construction of growth references.

Choice of Centiles. The centiles that appear on
the growth chart need (i) to be symmetric about the
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median, (ii) to be roughly evenly spaced across the
distribution, and (iii) to provide reasonable cut-offs
for screening purposes in the tails of the distribution.
A common choice is the set: 3rd, 10th, 25th, 50th,
75th, 90th and 97th, approximately two-thirds of an
SDS apart. Some charts prefer the 5th and 95th to the
3rd and 97th, and the WHO international reference
uses whole SDSs from −3 to +3, reflecting the wide
variation in the populations being assessed.

The scheme used in Figure 1 formalizes the two-
thirds SDS spacing, and adds an extra centile in each
tail to give cut-offs that screen in 4 per 1000 rather
than 3% of the population. This lowers the false
positive rate, which is desirable at a time when the
costs associated with secondary referrals for growth
disorder are rising steeply.

Distance Reference. The task of constructing a
growth reference involves summarizing the distri-
bution of the measurement as it changes with age.
With normally distributed data, this is achieved by
modeling the mean and SD (or CV) with suitable
parametric or nonparametric functions, then calcu-
lating the required centiles. For example, if M(t) and
S(t) are the mean and CV as functions of age t , and
C100α(t) is the 100αth measurement centile, then

C100α(t) = M(t)[1 + S(t) × zα],

where zα is the normal equivalent deviate (NED)
for tail area α. Parametric functions include frac-
tional polynomials and nonlinear exponential func-
tions, while nonparametric functions are the family
of smoothers that includes lowess (see Graphical
Displays), cubic splines and kernel smoothers (see
Density Estimation).

Where the data are not normally distributed, they
can often be transformed; e.g. to logarithms, to
restore normality. However, this assumes that the
same transformation is suitable at all ages. Where
this is not the case, and the degree of nonnormality
is age-related, two quite different approaches have
been proposed. One is an extension of the “smoothed
mean and SD” approach, where an extra parameter
summarizing the third moment of the distribution is
smoothed across age to give a third curve. This allows
for the presence of skewness in the distribution,
either as a constant or changing with age. This third
parameter may be the power λ in the Box–Cox
power transformation g(t) = f (t)λ, or the shift c

in the shifted lognormal g(t) = log[f (t) − c], or the
shape parameter in the gamma distribution. The first
of these alternatives, entitled the LMS method [4],
has been used to construct several national growth
references. The curves defining the Box–Cox power
λ, the median µ, and the CV σ as functions of age t

are denoted by L(t), M(t), and S(t), respectively, and
the curve for measurement centile 100α is given by

C100α(t) = M(t)[1 + L(t)S(t)zα]1/L(t).

The converse of this equation converts a measure-
ment to a standard deviation score (SDS) Z:

Z = [measurement/M(t)]L(t) − 1

L(t)S(t)
.

The LMS curves are obtained either by grouping
the data, estimating λ, µ and σ by group and then
smoothing across groups, or, alternatively, by esti-
mating the curves directly from ungrouped data. Cole
et al. [6] have fitted reference curves for height and
weight in British children using penalized maximum
likelihood, leading to LMS curves that are cubic
smoothing splines.

Estimating the third moment of the distribution as
a function of age requires a very large sample (n >

104, ideally). There have been attempts to estimate
the fourth moment in the same way, but it requires
much larger samples than are currently available. The
benefit is also likely to be small.

An entirely different approach, known as the
Healy–Rasbash–Yang (HRY) method [10], estimates
each of a set of centile curves using a form of scat-
terplot smoother, and models them with low-order
polynomials in age. The coefficients of the polyno-
mials are each constrained to follow a polynomial
in z, the NED of the corresponding centile curves.
This leads to a set of centile curves that are of
similar shape, and where the spacings between cen-
tiles at each age are linked in a way analogous to
a cumulative frequency distribution. The order of
the polynomial in z determines the form of distribu-
tion, according to the shape of the Q–Q normality
plot (see Graphical Displays). A straight line corre-
sponds to a normal distribution, while a quadratic is
similar in shape to a skew distribution and a cubic
curve allows for kurtosis.

Velocity Reference. Distance references identify
individuals whose measurement centile is extreme,
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e.g. below the 4 per 1000 centile, but they give
no information about changes in centile from one
age to another. The velocity reference is designed
to monitor centile change, and it provides centiles
of velocity (i.e. growth per unit time) by age in the
reference population. Thus, it is the direct analogy of
the distance chart, and the same methods can be used
to estimate distance and velocity centiles.

Velocity is calculated as V = ∆H/∆t , where ∆H

is the change in measurement H over time interval
∆t . Thus, the population variance of V depends, inter
alia, on twice the measurement error variance δ2 of
H , and ∆t . For this reason, velocity charts have
to be constructed for a prespecified time interval,
commonly one year for height, and the centile
spacings are particularly sensitive to δ, the size of
the measurement error.

A relatively low velocity appears as centile cross-
ing on the distance chart. If the distance chart is
plotted on the SDS scale, so that the centile curves
are horizontal straight lines, the traces of subjects
growing abnormally depart from the horizontal. The
advantage of working on the SDS scale is that the
variability of centile change in the reference popu-
lation is particularly simple to calculate: the change
in SDS between two ages has a standard deviation
given by

SD(Z2 − Z1) = [2(1 − r)]1/2,

where Z1 and Z2 are the SDSs at each age and r is
the correlation between them, based on the reference
population.

Regression to the mean, which affects the interpre-
tation of change over time, is not taken into account
using the velocity reference. Individuals or groups
below a given measurement centile can expect to
become less extreme, i.e. to regress towards the mean,
when measured again. This affects the velocity ref-
erence directly – subjects initially on a low centile
have a greater expected velocity than those of the
same age starting on a higher centile. For this rea-
son, velocity references are intrinsically flawed, and
to quantify regression to the mean, a regression-based
conditional reference is needed instead.

Conditional Reference. A conditional reference
adjusts (conditions) for another variable as well as
age and sex (e.g. parental height or sibling weight).
Healy [9] first suggested the use of a regression-based

conditional reference to adjust velocity for regression
to the mean by regressing the current measurement
on the previous measurement:

H2 = α + βH1 + ε.

Centiles for H2 conditional on H1 are then given by:

C100α(H2|H1) = α + βH1 + σ × zα,

where σ is the residual standard deviation (RSD)
from the regression. This regression-based reference
of H2 on H1 then correctly predicts H2 given
H1. Berkey et al. [2] extended the regression-based
approach to two or more conditioning variables.

As with the velocity reference, the use of an SDS
scale greatly simplifies the conditional reference, and
the equation above becomes:

C100α(Z2|Z1) = rZ1 + (1 − r2)1/2Zα.

This allows Z2 to be calculated for a range of Z1

values, which, when plotted on the SDS distance
chart, define a line whose slope is the required
100αth conditional velocity centile. Several such
lines can be superimposed on the SDS distance
chart to provide for the simultaneous assessment of
distance and velocity. The values of Z1 and Z2 can
also be converted back and plotted on the original
measurement scale. Figure 2 illustrates a combined
distance and 5th centile conditional velocity chart for
weight in British boys during the first year of life.

Importance of Measurement Error. The princi-
ple of growth monitoring is that individuals who
cross centiles excessively are more likely to have
an underlying growth disorder. The sensitivity and
specificity of a screening test based on centile cross-
ing, be it velocity (Z2 − Z1) or conditional velocity
(Z2 − rZ1), depend critically on the standard error
of the centile change, which in turn depends on the
size of the correlation r between the measurements,
which is mediated by the underlying measurement
error. Unlike the distance chart, the velocity chart
is highly sensitive to even a modest increase in the
measurement error, which can increase the false
positive rate dramatically. Effective growth monitor-
ing demands high-quality measurements.

Developmental Markers. The age of occurrence of
binary markers such as menarche is usually estimated
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Figure 2 Conditional weight reference for British boys in
1990. The heavy lines are nine distance centiles two-thirds
of an SDS apart, as in Figure 1. The slopes of the fainter
lines represent the 5th centile of conditional velocity,
as measured over a four-week period. The slope of an
individual infant’s weight curve needs to be compared with
the slope of the nearest velocity line, to detect weight gain
below the 5th centile

using probit or logit analysis (see Quantal Response
Models), based on information from individual sub-
jects about whether or not the event has occurred.
This is a less biased estimate than the mean of the
recalled age of the event, and adjusts for censoring
in younger subjects.

Wade et al. [16] have described a method for
estimating age-related centiles for ordinal data, which
generalizes this approach.

Growth Curves

Growth curve analysis is a general term for the study
of correlated measurements over time in individuals
and groups, a topic that has been much studied
over the last 30 years. It has tended to be of
statistical rather than pediatric interest, and has been
largely superseded in recent years by more powerful

methods such as generalized estimating equations
and multilevel models.

Growth Models and Adult Prediction

The shape of the human stature growth curve has
always fascinated auxologists. Early attempts to
model it parametrically focused on the early part
of life, where the velocity decreases monotonically.
Second-order fractional polynomials and the linear-
exponential model both fit well over this age
range [1]. However, the greater challenge has been
to model height throughout childhood, including the
pubertal growth spurt where the velocity rises to
a peak then falls to zero. Preece & Baines [13]
proposed a five-parameter exponential model, which
fitted puberty well but failed to model infant growth.
Subsequently, Jolicoeur et al. [12] came up with a
seven-parameter model that has been found to fit well
from birth to adulthood.

Gasser et al. [7] have developed nonparametric
kernel-based methods to model the distance, velocity
and acceleration curves of stature throughout child-
hood. By combining individual curves on suitably
transformed age scales, they have demonstrated the
existence of subtle features of the growth curve, most
notably a transient peak in height velocity around age
7 (the mid-growth spurt).

Clinicians like to be able to predict adult height
for children being treated for a growth disorder,
using information on the height of parents or the
child’s stage of maturation. Statistically, the best way
to do this is by empirical Bayes, combining the
child’s own measurements with information on the
population child–adult growth curve. This is useful
for monitoring the effect of clinical interventions (e.g.
treatment with growth hormone).

Body-size Scaling

Weight and height are highly correlated with each
other, and both are proxies for body size. Weight
adjusted for height removes the size component, and
leaves an index of shape. Shape in this context is
viewed as a measure of body fatness, and the adjust-
ment is carried out on the double logarithmic scale,
leading to a power index of the form weight/heightn.
When n = 2, the index is known as the Body Mass
Index (BMI), and it is widely used as a measure of
adiposity in adults and children of both sexes. The
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choice of n = 2 gives an index that is only weakly
correlated with height (ideally it should be uncor-
related), and that is also well correlated with direct
measures of body fat. Like other variables measured
during childhood, its distribution changes with age
and needs to be adjusted accordingly.

Ratio indices like the BMI can be abused, usually
when the form of the index is assumed (wrongly) to
guarantee a lack of correlation between it and height.
If this is of primary concern, then (log)weight should
be adjusted for (log)height directly, using covariance
analysis (see Analysis of Covariance). However, for
clinical and epidemiologic use, the BMI is a useful
tool for classifying overweight and obesity.
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Guidelines On Statistical
Methods in Clinical Trials

In the early 1960s, the thalidomide disaster led
to a tightening of the national regulations that dictate
the evidence required for authorization of a medicinal
product. Forty years on, these regulations still provide
the basis upon which all regulatory authorities assess
medicinal products. Although the statutory basis for
regulations is different in all countries (the EU is gov-
erned by EC directives and the US is governed by
Federal Government Statutes), the underlying princi-
ples for assessment of medicinal products are com-
mon, i.e. the evaluation of the quality, safety and
efficacy of the medicinal product given the proposed
product labeling (see Drug Approval and Regula-
tion).

As with all statutes, some interpretation of the law
is required. The EC has issued its Notice to Appli-
cants [7]. The Food and Drug Administration (FDA)
regularly publishes the Code of Federal Regulations
and the Japan Pharmaceutical Reference is regularly
issued in Japan [12]. These elucidate some of the high
level issues arising in drug authorization but do not
address specific clinical trial issues. These can only
be addressed in guidelines or guidance documents.
Guidelines are issued by a variety of organizations,
including regulatory authorities, health organizations
and expert groups, and as a result of differences
in health care, populations and regional traditions
in clinical research around the world, the detailed
technical requirements stated in these guidelines often
differ between countries and expert groups.

Many guidelines focus on the appropriate design
and analysis of clinical trials in different therapeutic
fields and mention statistical issues, but only in a rela-
tively limited way. In the last 15 years there has been
a clearer understanding that statistical excellence in
the design and analysis of clinical trials is a necessary
requirement to obtain evidence that is sufficient for
a marketing authorization. This realization led to the
publication of national regulatory guidelines which
addressed statistical methodology in clinical trials and
provided guidance on reporting [1, 8, 20].

In the 1990s there was increasing pressure on
pharmaceutical companies to obtain more rapid global
product approvals. The most efficient way to achieve
this is to perform one drug development program

that is suitable for all regulatory authorities. This is
difficult to achieve when guidelines for drug devel-
opment differ around the world. The need for the
standardization of clinical trial methodology world-
wide has led to the establishment of the International
Conference on Harmonization (ICH) of Technical
Requirements for Registration of Pharmaceuticals for
Human Use. In 1998, the ICH recommended for
adoption the guideline on Statistical Principles for
Clinical Trials [11], which is a consensus document
covering the views of the US, Japan and the EU.
This important document sets worldwide statistical
standards for clinical trials.

In this article the background to the ICH process is
explained. An overview of ICH E9 is presented and
other important sources of guidance to statisticians
working in clinical trials are discussed. The summary
of ICH E9 presented here is inevitably limited in
scope and perspective and cannot do justice to the
carefully crafted wording of the complete document.
The reader for whom the content of ICH E9 is
important is strongly advised to refer to the complete
guideline.

The ICH

The ICH was initiated in April 1990 to discuss scien-
tific and technical aspects of product registration [3].
It is a joint initiative involving the regulatory authori-
ties and pharmaceutical industry representatives from
each of the three regions. The EU is represented by
the European Agency for the Evaluation of Medic-
inal Products (EMEA) and the European Federation
of Pharmaceutical Industries Associations (EFPIA).
Japan is represented by the Ministry of Health
and Welfare (MHW) and the Japan Pharmaceuti-
cal Manufacturers Association (JPMA) and the US
is represented by the FDA and the Pharmaceutical
Research and Manufacturers of America (PhRMA).
There are also observers from other bodies and
regions.

The purpose of the ICH is to make recommen-
dations on the ways to achieve greater harmoniza-
tion in the interpretation and application of techni-
cal guidelines and requirements for product regis-
tration in the development of new medicines. The
objective of such harmonization is a more econom-
ical use of human, animal and material resources,
and the elimination of unnecessary delay in the
global development and availability of new medicines
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whilst maintaining safeguards on quality, safety and
efficacy, and regulatory obligations to protect public
health. The ICH considers topics related to (preclin-
ical) safety, quality and efficacy (including clinical
safety) (see Preclinical Treatment Evaluation).

The basic principles of the ICH are to

• develop scientific consensus through discussions
between regulatory and industry experts,

• provide wide consultation of the draft consensus
documents through normal regulatory channels,

• produce a harmonized text, and
• gain commitment from regulatory authorities to

implement the ICH harmonized texts.

Each new topic is tackled by an Expert Work-
ing Group (EWG) that includes members from the
six cosponsors. The EWG then follows an extensive
(five-step) process of consensus building and con-
sultation during which comments are widely sought
from all interested parties. When a final text is agreed
by the EWG and accepted by the ICH Steering
Committee, it is recommended for adoption by the
authorities in each of the three regions.

ICH E9: Statistical Principles for Clinical
Trials

In November 1995, the ICH Steering Committee
decided that an ICH guideline on statistical methodol-
ogy should be developed (ICH E9). The CPMP Note
for Guidance on Statistical Methodology in Clinical
Trials [1] had been completed in the previous year.
It had been created as a result of considerable col-
laborative effort among many European statisticians
from regulatory agencies, industry and academia [14,
17]. It was the most up-to-date regional guideline
on statistics and so formed the basis for the new
ICH guideline. However, the ICH guideline was also
heavily influenced by the earlier US and Japanese
statistical guidelines [8, 20].

The EWG for ICH E9 consisted of 12 statisticians:
two regulatory and two industry representatives from
each of the three ICH regions. Table 1 gives a list of
members of the Working Group. They decided that
the guideline should concentrate on principles rather
than detailed procedures and that it should attempt to
address a broader audience than statisticians alone.
The draft document (ICH Step 2) was discussed in
the worldwide statistical community so that a large

Table 1 ICH E9 Expert Working Group

Europe – regulatory authority
Joachim Röhmel, BfARM, Berlin, Germany
John Lewis, MCA, London, UK

Europe – industry
Bernhard Huitfeldt, Astra Arcus AB, Södertälje,

Sweden
Trevor Lewis, Pfizer Central Research, Kent, UK

Japan – regulatory authority
Isao Yoshimura, Science University of Tokyo, Tokyo,

Japan
Tosiya Sato, Institute of Statistical Mathematics,

Tokyo, Japan

Japan – industry
Tohru Uwoi, Yamanouchi Pharmaceutical Co. Ltd,

Tokyo, Japan
Hiroyuki Uesaka, Eli Lilly, Kobe, Japan

US – regulatory authority
Robert O’Neill, FDA, Maryland, USA
Susan Ellenberg, FDA, Maryland, USA

US – industry
Bill Louv, GlaxoWellcome, North Carolina, USA
Stephen Ruberg, Hoechst Marion Roussel Inc,

Missouri, USA

number of statisticians and other scientific experts
from all three regions had an influence on the final
content. In February 1998 the ICH Steering Commit-
tee recommended the guideline for adoption to the
regulatory bodies of the EU, Japan and the US. CPMP
adopted the guideline at the end of March 1998 (and
it came into operation in Europe in September 1998).
In September 1998 the guideline came into opera-
tion in the US and was published by the FDA in the
Federal Register. The MHW adopted the guideline
in November 1998. Many therapeutic guidelines now
directly reference ICH E9 and this helps to ensure
that common statistical standards apply in clinical tri-
als. It also increases the awareness of all physicians
leading drug development programs that appropriate
statistical input is essential for regulatory approval.
Therefore, the ICH E9 guideline is essential read-
ing for all statisticians working in the environment
of clinical trials.

The full guideline is published in the statistical
literature [11] with an introduction by Lewis [15] or
can be obtained from the World Wide Web in English
and Japanese (see Table 2).

The scope and content of the guideline are now
addressed by presenting key points from each section
of the guideline, using the ICH E9 section headings.
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Table 2 Useful websites

ICH website: www.ich.org
ICH E9 guideline: www.ich.org/MediaServer.jser?@−ID=485&@−MODE=GLB
CPMP (EU) efficacy guidelines: www.emea.eu.int/index/indexh1.htm
FDA (US) guidelines: www.fda.gov/cder/regulatory/default.htm
MHW (Japanese) guidelines: www.nihs.go.jp/drug/

Introduction

The guideline stresses the critical role of statistical
expertise in clinical research within the whole drug
development program. The focus is on statistical
principles in confirmatory trials. It does not prescribe
specific methods or procedures.

The underlying principles of the guideline deal
with minimizing bias and maximizing precision.
Potential sources of bias need to be identified as com-
pletely as possible so that attempts to limit such bias
may be made, otherwise the ability to draw valid
conclusions from the clinical trial may be seriously
compromised.

Sources of bias may arise in the design, conduct
or analysis of a clinical trial. Therefore, for each
clinical trial it is assumed that important details of the
design, conduct and proposed statistical analysis will
be specified in a trial protocol. The extent to which
the procedures in the protocol are followed and the
primary analysis is planned a priori will contribute
to the degree of confidence in the final results and
conclusions of the trial. Since bias can occur in subtle
or unknown ways and its effect is not measurable
directly, it is important to evaluate the robustness of
the results.

Considerations for Overall Clinical Development

Trial Context. The broad aim of the process of
clinical development of a new drug is to find out
whether there is a dose range and schedule at which
the drug can be shown to be simultaneously safe and
effective, to the extent that the risk–benefit relation-
ship is acceptable (see Benefit/Risk Assessment in
Prevention Trials). The particular subjects who may
benefit from the drug, and the specific indications for
its use, also need to be defined.

Confirmatory trials are required to provide robust
evidence in support of all key claims related to
efficacy or safety. Confirmatory trials should only
address a limited number of questions with a prede-
fined primary objective, which leads to the primary

hypothesis and is the basis upon which the trial is
designed and analyzed. Exploratory trials may have
less precise objectives, a more flexible design and
involve data exploration with data-dependent choice
of hypotheses. Exploratory trials cannot form the
basis of formal proof of efficacy but may contribute
to the total body of evidence.

Scope of Trials. Clinical trial populations range
from a narrow subgroup of patients in early trials,
through to a wider representation of the target popu-
lation in confirmatory trials.

Clinical trials generally contain one primary vari-
able, which should be capable of providing the most
clinically relevant and convincing evidence related to
the primary objective of the trial (see Outcome Mea-
sures in Clinical Trials). The use of a reliable and
validated variable with which experience has been
gained in earlier studies or published literature is rec-
ommended. Secondary variables, their relative impor-
tance and roles in interpretation of results, should be
defined in the protocol. Issues are discussed relating
to specific forms of primary and secondary variables,
namely composite variables, global assessment vari-
ables, multiple primary variables, surrogate variables
and categorical variables.

Design Techniques to Avoid Bias. The optimal
design of studies in a marketing application is the
double-blind (see Blinding or Masking), randomized
controlled trial. However, it is recognized that when
such trials are not feasible, single-blind or open
studies may be necessary.

Blinding should be maintained throughout the con-
duct of the trial and only when the data are cleaned
to an acceptable level should unblinding occur. Some
methods to overcome difficulties in blinding are dis-
cussed (double dummy treatment, separate assessors
for patient care and outcome assessment, centralized
randomization).

Randomization introduces a deliberate element
of chance into the treatment assignment and pro-
vides a sound basis for quantitative evaluation of the
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evidence relating to the treatment effects. It tends
to produce treatment groups in which the distribu-
tions of prognostic factors, known and unknown,
are similar. In combination with blinding, random-
ization helps to avoid possible bias in the selection
and allocation of subjects arising from the predictabil-
ity of treatment assignments. Detailed considerations
about the production of a randomization schedule are
discussed, with specific guidance for crossover tri-
als, multicenter trials, stratified randomization and
dynamic allocation.

Bias can also be reduced at the design stage by
specifying procedures in the protocol aimed at min-
imizing any anticipated irregularities in trial conduct
that might impair a satisfactory analysis, including
various types of protocol violations, withdrawals and
missing values. The protocol should consider ways to
reduce the frequency of such problems and to handle
the problems that do occur in the analysis of data.

Trial Design Considerations

Design Configuration. The most common clinical
trial design for confirmatory trials is the parallel
group design in which subjects are randomized to
one of two or more treatment groups. Crossover
designs in which each subject is randomized to a
sequence of two or more treatments are discussed
and the importance of avoiding carryover is stressed.
Issues related to factorial designs are also presented.

Multicenter Trials. Multicenter trials are used to
facilitate the accrual of subjects within a reasonable
time frame and to provide a better basis for the
subsequent generalization of findings. A common
protocol is needed for all centers, the manner in which
the protocol is implemented should be clear, and
procedures should be standardized as completely as
possible. It may be advantageous to avoid excessive
variation in the numbers of subjects per center if
it is later found necessary to take into account the
heterogeneity of the treatment effect from center to
center. Rules for combining centers in the analysis
should be justified and specified in the protocol or at
least at the time of the blind review.

The statistical model used in the primary analysis
would not normally be expected to include a term
for treatment-by-center interaction (see Treatment-
covariate Interaction). In some trials with very few
subjects per center there may be no reason to expect

centers to have an effect of clinical importance. In
other situations the limited numbers of subjects per
center make it impracticable to include the center
effects. Consequently, it is not appropriate to include
a term for center in these models and it is not
necessary to stratify randomization by center.

Type of Comparison. Efficacy is most convinc-
ingly established by demonstrating superiority to
placebo, or an active control, or by demonstrating
a dose–response relationship. Most of the guidance
given in this document relates to superiority trials.

Trials that use an active control can also be used
to test the objective of equivalence (see Equiva-
lence Trials) or noninferiority (that the efficacy of
an investigational product is no worse than that of
the active control). Such trials, which do not also
include a placebo control or multiple doses of the
new drug, have no measure of internal validity and
thus make external validation necessary. These trials
are not conservative in nature, so that many flaws
in the design or conduct of the trial will tend to
bias the results towards a conclusion of equivalence.
Consequently, the design and conduct of such tri-
als should receive special attention. This discussion
has been augmented in ICH E10 (on Choice of Con-
trol Groups), which provides greater insight into the
problems of demonstrating the internal and external
validity of noninferiority trials.

Group Sequential Designs. Group sequential de-
signs are most commonly applied to facilitate the con-
duct of interim analyses (see Data and Safety Mon-
itoring). The statistical methods employed should be
specified in advance of the availability of information
on subject treatment assignments.

Sample Size. The number of subjects in a clinical
trial should always be large enough to provide a reli-
able answer to the questions addressed (see Sample
Size Determination). This number is usually deter-
mined by the primary objective of the trial. If this
is not the case, then it should be made clear and
justified. The method by which the sample size is
calculated and the estimates of quantities used in the
calculations should be stated in the protocol. The
basis of the estimates should be described and the
sensitivity of the sample size estimate to deviations
from these assumptions should be investigated.
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Data Capture and Processing. The form and con-
tent of the information collected should focus on the
data necessary to implement the planned analysis and
be in full accordance with the protocol and with Good
Clinical Practice (ICH E6).

Trial Conduct Considerations

Trial Monitoring and Interim Analysis. Careful
conduct of a clinical trial according to the protocol
has a major impact on the credibility of the results
(see Clinical Trials Audit and Quality Control).
Careful monitoring that oversees the quality of the
trial can ensure that difficulties are noticed early and
their occurrence or recurrence minimized. This type
of monitoring does not require access to information
on comparative treatment effects, nor unblinding of
the data and therefore has no impact on the Type I
error.

Interim analysis is another form of “monitoring”.
It involves breaking the blind to make treatment
comparisons and should therefore be planned in the
protocol with considerations of the potential biases
that may be incurred.

Changes in Inclusion and Exclusion Criteria. If
changes to the inclusion and exclusion criteria (see
Eligibility and Exclusion Criteria) of a trial are
necessary, then they should be made without break-
ing the blind and should be described in a protocol
amendment, which should cover any statistical con-
sequences.

Accrual Rates. If the rate of accrual falls apprecia-
bly below the projected level, then the reasons should
be identified and remedial actions taken.

Sample Size Adjustment. If the sample size is
revised during the course of a trial, then the steps
taken to preserve blindness and consequences, if any,
for the Type I error and confidence intervals should
be explained.

Interim Analysis and Early Stopping. An interim
analysis is any analysis intended to compare treat-
ment arms with respect to efficacy or safety at
any time prior to the formal completion of a trial
(see Data and Safety Monitoring). Since the num-
ber, methods and consequences of these comparisons

affect the interpretation of the trial, all interim anal-
yses should be carefully planned in advance and
described in the protocol. Special circumstances may
dictate the need for an interim analysis that was not
defined at the start of a trial, in which case a protocol
amendment describing the interim analysis should be
completed prior to the unblinding of the data for the
interim analysis.

The protocol (or an amendment before the first
interim analysis) should describe the schedule of
interim analyses, or at least the considerations that
will govern its generation. The stopping guidelines
and their properties should be clearly described in
the protocol.

The execution of an interim analysis should be a
completely confidential process and all investigator
and sponsor staff involved in the conduct of the trial
should remain blind to the results of such analyses
(except for those directly involved in the execution
of the interim analysis). When a sponsor performs
an interim analysis, particular care should be taken
to protect the integrity of the trial and limit the
dissemination of results.

Any interim analysis that is not planned appropri-
ately (with or without the consequences of stopping
the trial early) may flaw the results and weaken confi-
dence in the results. Therefore, such analyses should
be avoided. The reason for an unplanned interim anal-
ysis should be explained in the study report and an
assessment of the potential magnitude of bias and
impact on interpretation of results discussed.

Role of an Independent Data Monitoring Commit-
tee. An Independent Data Monitoring Committee
(see Data Monitoring Committees) may be estab-
lished to assess the progress, safety data and critical
efficacy variables of a trial, and to make recom-
mendations about whether to continue, modify or
terminate the trial. It should have written operating
procedures and maintain records of all its meetings,
including interim results (which should be available
for regulatory review).

Data Analysis Considerations

Prespecification of the Analysis. The statistical
section of the protocol should include all the prin-
cipal features of the proposed confirmatory analysis
of the primary variable(s) and the way in which antic-
ipated analysis problems will be handled.
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A separate statistical analysis plan may be written
after finalizing the protocol. It gives a more technical
and detailed elaboration of the analyses of primary
and secondary variables, but only results from anal-
yses envisaged in the protocol can be regarded as
confirmatory. The statistical analysis plan should be
reviewed and possibly updated as a result of the blind
review of the data (see Evaluation and Reporting
section below). It should be finalized before breaking
the blind. If the blind review suggests changes to the
principal features in the protocol, then these should
be documented in a protocol amendment. The timing
of the finalization of the statistical analysis plan and
the breaking of the blind should be formally recorded.

Analysis Sets. The sets of subjects whose data are
to be included in the main analyses should be defined
in the statistical section of the protocol.

The intention-to-treat principle [8, 16] (see
Intention to Treat Analysis) implies that all ran-
domized subjects should be included in the primary
analysis (for superiority trials). Compliance with this
principle would necessitate complete follow-up of all
randomized subjects for study outcomes. Since this
may be difficult to achieve in a clinical trial, the term
“full analysis set” is introduced to describe the analy-
sis set which is as complete as possible and as close as
possible to the intention-to-treat ideal of including all
randomized subjects. A few circumstances might lead
to the exclusion of randomized subjects from the full
analysis set (e.g. major eligibility violation, failure to
take any medication or no data post-randomization).
Concerns related to all these exclusion criteria are dis-
cussed in the guideline and it is noted that no analysis
is complete unless the potential biases (arising from
these exclusions or any other reasons) are addressed.

The “per protocol” set of subjects is sometimes
described as the “valid cases” or “efficacy” or “evalu-
able subjects” sample. It refers to a subset of subjects
in the full analysis set who are compliant with the
protocol. The precise reasons for excluding subjects
from the per protocol set should be fully documented
before unblinding.

It is advantageous to demonstrate a lack of sen-
sitivity of the principal trial results to alternative
choices of analysis set. In superiority trials, the full
analysis set is generally used in the primary analysis,
but in an equivalence or noninferiority trial use of the
full analysis set is not generally conservative and its
role should be considered carefully.

Missing Values and Outliers. Missing values rep-
resent a potential source of bias in a clinical trial. A
trial may be regarded as valid, none the less, provided
the methods for dealing with missing values are sen-
sible. If the number of missing values is substantial,
then an investigation should be made into the sensi-
tivity of the results to the method of handling missing
values. The influence of outliers can be explored in
a similar manner.

Data Transformation. The decision to transform
key variables prior to analysis is best made during
the design of the trial on the basis of similar data
from earlier clinical trials and should be specified
in the protocol. The decision on whether and how
to transform a variable should be influenced by the
preference for a scale that facilitates clinical interpre-
tation.

Estimation, Confidence Intervals and Hypothe-
sis Testing. The statistical section of the protocol
should specify the hypotheses to be tested and the
treatment effects to be estimated. Estimates should
be accompanied by confidence intervals and their
method of calculation specified. The underlying sta-
tistical model (including all factors and covariates
to be fitted) should be fully specified. The primary
analysis of the primary variable should be clearly dis-
tinguished from supporting analyses of the primary or
secondary variables.

It is important to clarify whether one- or two-sided
tests will be used and to justify prospectively the use
of one-sided tests. The approach of setting Type I
errors for one-sided tests at half the conventional
Type I error used in two-sided tests is preferable in
regulatory settings.

Adjustment of Significance and Confidence Lev-
els. In confirmatory trials, any important aspects
of multiplicity should be identified in the protocol
and adjustments to the Type I error should be imple-
mented and explained. Alternatively, an explanation
of why adjustment is not thought necessary should
be provided.

Subgroups, Interactions and Covariates. Pretrial
deliberations should identify the covariates and fac-
tors expected to have an important influence on the
primary variable and should consider how to account
for these in the analysis in order to improve precision
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and to compensate for any lack of balance between
treatment groups (see Covariate Imbalance, Adjust-
ment for). Special attention should be paid to the role
of baseline measurements of the primary variable. It
is not advisable to adjust the main analyses for covari-
ates measured after randomization, because they may
be affected by the treatments.

The treatment effect may vary with a subgroup or
covariate (see Treatment-covariate Interaction). In
some cases, such interactions are of particular interest
and a subgroup analysis or model including interac-
tions is part of the planned confirmatory analysis.
In most cases, however, analyses of subgroups or
interactions are exploratory and should be interpreted
cautiously.

Integrity of Data and Computer Software Validity.
The credibility of the results depends on the quality
and validity of the methods and software used for
data management and statistical analysis (see Data
Management and Coordination; Clinical Trials
Audit and Quality Control).

Evaluation of Safety and Tolerability

Scope of Evaluation. In early phase clinical trials,
the evaluation of safety is mostly exploratory. In
later phases, the safety and tolerability profile of
the drug can be characterized more fully. Specific
comparative safety claims should be supported by
relevant evidence from confirmatory trials designed
to evaluate safety.

Choice of Variables and Data Collection. The
safety data collected will depend on various char-
acteristics of the drug, the type of subjects to be
studied and the duration of the trial. A consistent
methodology for data collection and evaluation is rec-
ommended throughout the clinical trial program.

Set of Subjects to be Evaluated and Presentation
of Data. The set of subjects to be summarized for
safety is usually those who received at least one dose
of the investigational drug. All adverse events should
be reported, whether or not they are considered to be
related to treatment, but the summarization of “treat-
ment emergent” events is also helpful to reduce the
noise caused by background signs and symptoms of
the disease. If treatment is long-term and a substan-
tial proportion of treatment withdrawals or deaths

are expected, then time to event analyses should be
considered.

Statistical Evaluation. The previous section noted
that there are a number of methods for calculating
the incidence of an adverse event and that the method
used should be defined in the protocol. For laboratory
data, it is recommended that both the treatment means
and the numbers outside certain thresholds should be
evaluated.

The calculation of P values is sometimes use-
ful as an aid to evaluating a specific difference
of interest, but the general lack of sensitivity of
such safety comparisons means that small but clini-
cally important differences (see Clinical Significance
Versus Statistical Significance) may be overlooked
(Type II error). In addition, when P values are used
as a flagging device, the multiplicity of tests makes
the P values difficult to interpret in a conventional
manner.

Integrated Summary. Safety information is com-
monly summarized across trials, but the usefulness
of this summary is dependent upon the trials being
adequate and well-controlled with high quality data
(See ICH M4: Common Technical Document).

Reporting

Evaluation and Reporting. The reporting of sta-
tistical work is covered in the ICH E3 guideline
and is therefore covered relatively briefly in ICH E9.
It is however noted that statistical judgment should
bear on the analysis, interpretation and presentation
of results, so the statistician should be a member of
the team responsible for the clinical study report.

The use of the blind review is described and
it is stated that decisions made at the time of the
blind review should be described in the report and
should be distinguished from those decisions made
after the statistician was unblinded. Many of the
detailed aspects of presentation and tabulation should
be finalized at the time of the blind review. It is
noted that statisticians or other staff involved in the
unblinded interim analysis should not participate in
the blind review or in making modifications to the
statistical analysis plan. Attention should be paid
to any differences between the planned analysis as
described in the protocol, amendments and statistical
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analysis plan based on the blind review and the actual
analysis.

All subjects who entered the trial should be
accounted for in the report. The effect of losses
of data on the main analyses should be consid-
ered carefully. Descriptive statistics should illustrate
the important features of the primary and secondary
variables and of key prognostic and demographic
variables. The results of significance tests should be
reported with precise p-values.

Summarizing the Clinical Database. An overall
summary and synthesis of the evidence on safety and
efficacy from all the clinical trials is required for
a marketing application and may be accompanied,
when appropriate, by a statistical combination of
results (see Benefit/Risk Assessment in Prevention
Trials). It is always valuable to present the main
results of a series of similar trials in an identical
form to permit comparison, usually in tables or graphs
that focus on estimates and confidence intervals. To
facilitate these analyses, common methods for the
evaluation of primary and secondary variables and
methods for handling protocol deviators are worth-
while, and essential for meta-analysis. Any statistical
procedures used to combine data across trials should
be described in detail. Attention should be paid to
the possibility of bias arising from selection of tri-
als, homogeneity of results and the proper modeling
of the various sources of variation. The sensitivity of
conclusions to the assumptions and selections made
should be explored.

In summarizing safety data, it is important to
examine the safety database thoroughly for any indi-
cations of potential toxicity, and to follow up any
indications by looking for an associated support-
ive pattern of observations. The risks associated
with identified adverse effects should be appropri-
ately quantified to allow a proper assessment of the
risk–benefit relationship.

Other ICH guidelines

By December 2003, the text of 48 ICH guidelines had
been finalized and most of them had been adopted in
all three regions. Fifteen of the finalized guidelines
are denoted as “Efficacy”topics and include diverse
topics from clinical safety to good clinical practice
that would be of interest to many statisticians. In

Table 3

ICH topic
number Guideline title

E3 Structure and Content of Clinical Study
Reports

E4 Dose Response Information to Support
Drug Registration

E5 Ethnic Factors in the Acceptability of
Foreign Clinical Data

E6 Good Clinical Practice
E7 Studies in Support of Special Populations:

Geriatrics
E8 General Considerations for Clinical Trials
E9 Statistical Principles for Clinical Trials
E10 Choice of Control Group in Clinical Trials
E11 Clinical Investigation of Medicinal

Products in the Pediatric Population
E12A Principles for Clinical Evaluation of New

Antihypertensive Drugs
M4 Common Technical Document (format for

summary documents)

December 2003, further three ICH guidelines were
issued in draft from for consultation. This demon-
strates that the ICH process has slowed considerably
and its major work is probably complete. However,
it remains possible to propose and develop new top-
ics and the need to revise topics must always be
remembered.

Table 3 lists those ICH guidelines that have most
impact on the statistician working on clinical trials.
Day and Talbot [4] provide a brief overview of ICH
E3, E9 and E10. The full text of all ICH guidelines
can be obtained from the ICH website (Table 2).

Other guidelines

The CPMP, FDA and MHW produce many new
guidelines each year covering issues in all areas
of drug development (from pharmaceutical work-up
to postmarketing surveillance), and across a broad
spectrum of therapeutic indications (from the use
of hormone replacement therapy to treatments for
cardiac failure). Current details of the US, European
and Japanese guidelines can be easily accessed on the
World Wide Web (Table 2).

The CPMP develops two types of guideline.
A Note for Guidance is produced when there
is substantial experience in a particular field
(hypertension, epilepsy). A Points to Consider
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document is prepared when there is limited
experience, for example, acute respiratory distress
syndrome. All CPMP (and FDA) guidelines are
released for public consultation before they are
finalized.

In 1999, the CPMP announced that it was to
prepare several Points to Consider guidance docu-
ments about biostatistical/methodological issues aris-
ing from discussions on licensing applications [19].
By December 2003, five of these had been issued, on
the following topics:

• Switching between superiority and noninferiority;
• Applications with: 1. meta-analyses; 2. one piv-

otal study;
• Missing data;
• Multiplicity issues in clinical trials;
• Adjustment for baseline covariates.

A draft Points to Consider document on “Choice
of non-inferiority margin”was issued for consultation
in early 2004, and “Use of statistical methods for
flexible design and analysis of confirmatory clinical
trials”is expected to be released for consultation later
in the year. A concept paper outlining the develop-
ment of guidance on “Data monitoring committees”is
also expected in 2004.

The most difficult debates arise when the guidance
given by the FDA and CPMP is markedly different.
The most fervent statistical debate in recent years
(Journal of Biopharmaceutical Statistics, Part 1, Vol-
ume 7, 1997) has focused on the FDA guidance for
statistical approaches to establishing bioequivalence,
which includes methodology for establishing popu-
lation and individual bioequivalence [10]. This com-
pares with the publication of the revised CPMP Note
for Guidance on bioavailability/bioequivalence [2],
which promotes “average” bioequivalence. Another
FDA guideline which has a major statistical content
is that on population pharmacokinetics [10] and for
this topic no CPMP guidance is available at present.

All therapeutic guidelines contain important infor-
mation about trial design relevant to statisticians
working in that field. In many cases these therapeutic
guidelines also introduce interesting statistical topics
such as twofold testing strategies to achieve a pri-
mary objective (e.g. CPMP Note for Guidance on
Bipolar Disorder) and designs to prove lack of dis-
ease progression (e.g. CPMP Note for Guidance on
Parkinson’s Disease).

This article has focused on guidelines that are
issued by the regulatory authorities in the US and
EU. There are many other helpful guidelines that are
issued from a number of sources such as other regu-
latory agencies (Canada, Australia, Nordic Regions),
global and local health organizations (World Health
Organization, Medical Research Council) and statis-
tical organizations (Statisticians in the Pharmaceu-
tical Industry).

Discussion

The ICH E9 guideline provides a consensus view on
statistical principles in clinical trials. The guideline is
a useful reference to promote the importance of sta-
tistical input to all aspects of a clinical trial (design,
conduct, analysis and reporting). It also provides the
basis for further discussion of unresolved or con-
tentious statistical issues and specific topics of debate
are now being addressed in the literature. For exam-
ple, Edwards [5] explores the circumstances under
which the Type I error is influenced by the failure
to prespecify the statistical model and Lin [19] dis-
cusses the weighting of centers in a multicenter trial.

Consensus on Principles Must be Accompanied by
Statistical Understanding

Statisticians working within the pharmaceutical envi-
ronment are used to working within a highly reg-
ulated framework. Consequently, the creation of
guidelines related to statistical matters is generally
welcomed and considered as a tool to facilitate con-
sensus amongst all parties involved in the worldwide
development and authorization of medicinal prod-
ucts. However, statisticians working in other fields
of application often consider the guidelines and need
for careful prespecification of analysis plans in med-
ical statistics as a restrictive block on their statistical
prowess and expertise.

Lewis [13] clearly understood this concern,

. . . Finally, let me quieten the fears that I might be
advocating standardisation of methodology. I will
fight as determinedly as the next man to prevent
our statistical work from becoming in any way an
automatic unthinking process. There are, of course,
strong pressures in this direction in the interest of
efficiency and economy. I do ask for greater efforts
to reach consensus agreement on general approaches.
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I am convinced we can move a long way down this
road without stifling individual freedom.

It is important to remember that regulations are
statutory and enforceable by law. Guidelines, how-
ever, are based on experience to date and seek to
provide a consensus across different disciplines or
regions. The use of a guideline as a “cookbook” with
no scientific thought will rarely result in a recipe for
success. Guidelines can never address all the issues
that arise in the complicated world of clinical trial
experimentation, but they can provide helpful advice
and a starting point for scientific input. To this must
be added the expertise of those involved in the exper-
iment, in order to obtain results that are robust and
meaningful.

Professionalism of Clinical Trials Statisticians

In section 5.4.1 of ICH E6 (on Good Clinical
Practice) it is stated that

The sponsor should utilise qualified individuals,
(e.g. biostatisticians, clinical pharmacologists, and
physicians) as appropriate, throughout all stages of
the trial process, from designing the protocols and
CRFs and planning the analyses to analysing and
preparing interim and final clinical trial reports.

In section 1.2 of ICH E9 it is stated that:

. . . it is assumed that the actual responsibility for
all statistical work associated with clinical trials will
lie with an appropriately qualified and experienced
statistician, as indicated in ICH E6. The role and
responsibility of the trial statistician, in collaboration
with other clinical trial professionals, are to ensure
that statistical principles are applied appropriately in
clinical trials supporting drug development. Thus,
the statistician should have a combination of educa-
tion/training and experience sufficient to implement
the principles articulated in this guidance.

The final sentence of this quotation has led to great
debate in the statistical community questioning the
level of education/training and experience that are
sufficient to qualify a person as a professional clinical
trials statistician [6]. This is a particularly difficult
matter in Japan where very few statisticians are
academically qualified [18].

Implementation and Updating of Guidelines

The ICH initiative is committed to “ensure that there
is a process for updating and supplementing the

current ICH guidelines, when necessary and moni-
toring their use, so that the benefits of harmonisation
achieved so far are not lost” (ICH website).

A guideline can only be properly judged when it
has been put into practice for some time and reviewed
with experience from its practical application. In
January 2004, it is unclear whether ICH has a specific
plan to review E9, but this will be necessary if the
document is to continue to have maximum value.
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Guttman Scale

A Guttman scale is based on a set of items which
address a one-dimensional latent variable or attribute.
The response options for each of the items is of the
form agree/disagree or Yes/No (see Binary Data).
For example, consider an investigation in which we
would like to measure a subject’s physical ability.
Suppose the following four items are developed:
“Can you walk one city block without assistance?”;
“Can you walk six city blocks without assistance?”;
“Can you walk 1 mile without assistance?”; “Can
you walk 2 miles without assistance?” In a Guttman
scale the items are ordered hierarchically such that an
affirmative response to one item implies affirmative
responses to each of the items preceding it. The scale
score is simply the sum of affirmative responses over
the set of items. The score represents the subject’s
level of the attribute under investigation (in this
example, the subject’s physical ability).

In general terms, suppose we have k distinct
items addressing the same attribute which are ordered
hierarchically, i.e. ordered such that an affirmative
response to one item theoretically implies affirma-
tive responses to each of the items preceding it,
and measured on each of n subjects. The data
can be organized into a matrix A with n rows
containing each subject’s responses to the set of
k items, which are called the subject’s response
profiles. For example, subject i has a response
profile a′

i = (ai1, ai2, . . . , aik) with ai1 ≥ ai2 ≥ . . . ≥
aik , and aij = 0 or 1 representing No and Yes
responses, respectively (see Figure 1). If subjects
(rows of A) are compared and sorted according to
their response profiles, i.e. their scores on the set
of items, a Guttman scale is said to exist if every
pair of response profiles is comparable. For exam-
ple, consider subjects i and j with response profiles
a′

i = (ai1, ai2, . . . , aik) and a′
j = (aj1, aj2, . . . , ajk),

respectively. Subjects i and j are comparable if ai1 ≥
aj1, ai2 ≥ aj2, . . ., and aik ≥ ajk [1]. In this example,
subject i has a higher level of the attribute under
investigation than subject j since subject i scores
as high or higher than subject j on every item.
When every pair of response profiles is comparable,

Y YY Y Y Y

Y NY Y Y Y

Y NY Y Y N

Y NY Y N N

Y NY N N N

N NN N N N
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Figure 1 Yes and No responses

a Guttman scale is formed. The relationships among
response profiles allow for subjects to be rank ordered
according to their level of the attribute under inves-
tigation. Figure 1 displays the triangular relationship
among response profiles in a Guttman scale (see, for
example, [2]), where each item is scored as Y = Yes
or N = No.

Although the Guttman scale is theoretically
appealing, it is highly structured and not often
observed in practice [3]. In particular, Guttman scales
do not work well for psychological attributes, since
such attributes are generally less concrete. Guttman
scaling is also known as scalogram analysis and
correspondence analysis.
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Guy, William Augustus

Born: 1810, in Chichester, UK.
Died: September 10, 1885, in London, UK.

Guy studied medicine with P. C. A. Louis, qualified
in Cambridge in 1837, and was appointed Profes-
sor of Forensic Medicine at King’s College, Lon-
don in 1838. He wrote an important appreciation of
Louis’s work in 1839, tinged, however, with doubt

as to the applicability of statistical findings to the
treatment of individual patients, and (as with Louis)
a degree of scepticism about mathematical theory.
He became a prolific writer on public health mat-
ters, and was a prominent member of the Statisti-
cal Society of London (later the Royal Statistical
Society, which commemorates him with the Guy
Medal).
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Haenszel, William M.

Born: Rochester, New York, June 19, 1910.
Died: Wheaton, Illinois, March 13, 1998.

Although William M. Haenszel is probably best
known as the name to the right of the hyphen on the
Mantel–Haenszel test and Mantel–Haenszel odds
ratio, he has made other equally important con-
tributions throughout a very long and productive
career as a biostatistician and epidemiologist. Of par-
ticular importance is his leadership in establishing
and maintaining the population-based cancer reg-
istry known as SEER (for Surveillance Epidemiology
and End Results); his comparative studies of cancer
occurrence in foreign-born and native-born Japanese
Americans; and his use and advocacy of biomarkers
and pathological findings in studies of cancer eti-
ology, especially those involving gastric and large
bowel cancer. His work from the 1950s to 1970s at
the National Cancer Institute (see National Institutes
of Health (NIH)) was at the cutting edge of chronic
disease epidemiology and has greatly enriched that
field both substantively and methodologically.

His early life was spent in Buffalo, New York,
where he went through the public elementary and
high school systems, and through the University of
Buffalo (now, State University of New York at Buf-
falo), receiving a B.A. summa cum laude in sociology
and mathematics in 1931. A year later, he received his
M.A. in statistics, also from the University of Buffalo.
Shortly thereafter, he worked as a statistician at the
New York State Department of Health and later, as
Director of the Bureau of Vital Statistics at the Con-
necticut State Department of Health. His experience
of nearly 20 years in health statistics and record keep-
ing at the State level, gave him a unique expertise and
perspective into registration and data collection at the
“grass roots” level. This expertise became invaluable
in his later work at the National Cancer Institute and
at the University of Illinois at Chicago (UIC) where
he collaborated extensively with State and Local Offi-
cials in his studies of cancer epidemiology. It was
especially useful in the contributions that he made
to establish a population-based cancer registry sys-
tem that could be used for investigating incidence
and etiology of cancers as well as survival in persons
having these diseases.

In 1952, he accepted a position as Head of the
Biometry Section of the newly created National Can-
cer Institute (NCI) and, in 1961, became Chief of
the larger Biometry Branch of NCI. He stayed in
this position until his retirement from NCI in 1976.
During his tenure at the NCI, there was a cadre of
statisticians who themselves made major contribu-
tions in biostatistics and epidemiology. Among them
were Nathan Mantel, Marvin Schneiderman, Sid
Cutler, Marvin Zelen, Ed Gehan, David Byar, John
Gart, and John Bailar. During this period, and largely
owing to Bill Haenszel’s mentoring and manage-
ment skills, the Biometry Branch of NCI became
an internationally recognized center of excellence in
the development of statistical methodology applied
to observational and experimental health studies. He
fostered a culture of productivity and achievement
among statisticians at NCI and the Biometry Branch
(presently under the direction of Mitchell Gail) has
maintained this excellence throughout the quarter
century since his retirement from NCI in 1976.

It was during his tenure at NCI, that he coauthored
with Nathan Mantel his paper on what became
most widely known as the Mantel–Haenszel test [4].
For many years, this was one of the most widely
quoted articles in the entire scientific literature.
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Although this test is now sometimes called the
Cochran–Mantel–Haenszel test (or CMH test) in
recognition of the test developed five years earlier
by William Cochran [1], the two tests differ
statistically, primarily in that the Mantel–Haenszel
test is predicated on a hypergeometric distribution,
whereas the Cochran test is based on a binomial
distribution. The Mantel–Haenszel test and its
associated odds ratio became, soon after its
publication, a backbone of stratified analysis (see
Stratification) and proved to have applications
and extensions to scenarios far beyond the subject
matter of the original article (e.g. tables larger than
2 × 2 (see Contingency Table), survival analysis,
comparisons among adjusted rates, etc.).

There has been much discussion and speculation
concerning the comparative contributions that each
of the two authors made in the development of the
test. Both Mantel and Haenszel, when queried indi-
vidually, have always praised the contribution of the
other. In a 1984 symposium at the University of Illi-
nois at Chicago marking the 25th anniversary of the
original publication, Haenszel indicated that his own
major contribution was in the formulation of “how the
fourfold table (see Two-by-Two Table) was entered
and constructed”. By this, he probably meant that, in
the case–control scenario on which it was originally
based, the appropriate inference issue is predicated
upon the null distribution of exposed cases, given that
the marginals for total cases, total controls, and total
exposed persons are fixed. This leads to the hyperge-
ometric formulation that is different (although gen-
erally indistinguishable numerically) from Cochran’s
earlier hypothesis test.

The Mantel–Haenszel test and its subsequent
extensions represented major advances in statistical
analysis. Its accuracy, however, as with all statisti-
cal tools, is entirely dependent on the quality of the
underlying data, and it could lack generalizability if
the cancer cases being studied were not representa-
tive of the universe of cancer cases with respect to
the exposure being studied (see Validity and Gener-
alizability in Epidemiologic Studies). Recognizing
this, Haenszel and others in leadership roles at the
NCI began efforts for establishing a registry of cancer
cases that would be representative of all cancer cases
in the United States. On the basis of their efforts,
the population-based registry, SEER, was launched
in 1973. It now contains over 30 years of data on

cancer incidence and survival and remains as one of
the flagship programs at the NCI.

Also, while at NCI, Haenszel launched his land-
mark studies comparing the high gastric cancer rates
in Japan to the much lower rates in those Japanese
who had migrated to Hawaii [3], and identified diet as
a possible risk factor for gastric cancer (see Migrant
Studies). He repeated in other ethnic groups, this
model of comparing cancer rates that prevail in the
parent country to those among persons of the same
ethnic group who migrated to the United States as
well as to those among persons of the same ethnicity
who were born in the United States. This model has
served as a tool for generating etiological hypothe-
ses that can be verified in subsequent case–control
or cohort studies.

He also began, while at NCI, his studies focusing
on gastric cancer in Cali, Colombia in collaboration
with Pelayo Correa, a Colombian pathologist and epi-
demiologist at Louisiana State University [2]. This
program was innovative in that it focused on pop-
ulation surveys that included gastroscopic measure-
ments, and that its major objectives were to identify
risk factors for the known precursors of gastric can-
cer. By focusing on the precursors rather than the
much rarer cancers themselves, they could conduct
cross-sectional, case–control, and cohort studies that
had adequate statistical power, whereas similar stud-
ies that focused on gastric cancer rather than the pre-
cursor would have much less statistical power. This
collaboration continued for many years after Haen-
szel’s retirement from NCI and provided a wealth of
information about the epidemiology of gastric cancer,
especially dietetic risk factors.

After his retirement from NCI in 1976, Haenszel
relocated to the Chicago area where he took a joint
position at the Illinois Cancer Council and the Uni-
versity of Illinois School of Public Health. Both of
these Institutions were in their very early years, and
Haenszel’s initial plan was to help these Institutions
for two years and then totally retire at age 68. The
intended two years stretched out to nearly 20 and he
had a truly rich career as a senior mentor and advisor
to both Chicago Institutions, and as a senior con-
sultant to many agencies engaged in cancer research
and cancer control. Among these were Louisiana
State University (where his collaboration with Cor-
rea and his group continued), NCI, the American
Cancer Society, the Illinois Department of Public
Health, and the International Agency for Research
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in Cancer (IARC). During this period, he was a
major force in the establishment in the 1980s, by the
Illinois Department of Public Health of a population-
based cancer registry, which has since matured into
a high quality registry and a resource for investiga-
tions of cancer etiology. At the University of Illinois
at Chicago School of Public Health, he was instru-
mental in enriching the curriculum in chronic disease
epidemiology, developing and teaching a series of
courses in quantitative epidemiology and in cancer
epidemiology. In addition, he devoted much time in
mentoring junior faculty and students, many of whom
are now senior epidemiologists and biostatisticians.
The Haenszel Memorial Award was established in
the early 1990s and is given in his honor annually
to a student in the Division of Epidemiology and
Biostatistics at UIC who has performed outstanding
research during his/her career as a student.

Haenszel’s health began declining in the mid-
1990s, and he retired for a final time in 1996, two
years before his death. His legacy lives on in the

continuing work of his collaborators and disciples
and in the vitality of the Institutions on which he
left his mark.
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Half-normal Distribution

The half-normal distribution will arise in sampling
from a standard normal population when the signs of
the negative observations are lost or not relevant. The
half-normal distribution was introduced by Daniel [2]
in connection with the analysis of variance of fac-
torial experiments. An example of the use of the
half-normal in biostatistics is given by Berlin et al.
[1], where the outcome of interest was the difference
in treatment effects between two treatments in a num-
ber of clinical trials. The treatment effects (and hence
their differences) were assumed normally distributed,
but there was no reason to assign either treatment as
the first of the pair, so the sign of the difference was
made to be positive.

Formally, if z is normally distributed with mean
equal to zero and variance equal to one, then the half-
normal distribution is the distribution of σ |z|. The
probability density function (pdf) is given by

f (x) = 1

σ

√
2

π

{
exp

[−(x/σ)2

2

]}
, x ≥ 0. (1)

The first four central moments of the half-normal
are given by Elandt [3]:
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(
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The standardized third and fourth moments (skew-
ness and kurtosis, respectively) are

√
β1 = (4 − π)

√
2

(π − 2)3/2
= 0.995272 (6)

and

β2 = 3π2 − 4π − 12

(π − 2)2
= 3.86918. (7)

The parameter σ can be estimated by equating the
noncentral theoretical and sample moments:

σ̂ 2 =
n∑

i=1

x2
i

n
, (8)

where n is the sample size. According to Johnson [4],
this is also the maximum likelihood estimator.

The half-normal distribution is a special case of
the folded normal distribution, where the point of
folding is at zero. The folded normal was investigated
by Leone et al. [5], Elandt [3], and Johnson [4].
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Halley, Edmond

Born: November 8, 1656, in Haggerton, UK.
Died: January 14, 1742, in Greenwich, UK.

Edmond Halley was a major English astronomer,
mathematician, and physicist, who was also
interested in demography, insurance mathematics
(see Actuarial Methods), geology, oceanography,
geography, and navigation. Moreover, he was
considered an engineer and a social statistician whose
life was filled with the thrill of discovery. In 1705,
he reasoned that the periodic comet – now known
as Halley’s comet – that appeared in 1456, 1531,
1607, and 1682, was the same comet that appears
every 76 years, and accurately predicted that it would
appear again in December 1758. His most notable
achievements were his discoveries of the motion of
stars, which were then considered fixed, and a scheme
for computing the motion of comets and establishing
their periodicity in elliptical orbits.

Edmond Halley, whose name was also spelled
Edmund, was the eldest son of a prosperous land-
owner, soapmaker, and salter in London. He was
tutored at home before attending St Paul’s School,
where he learned Latin, Greek, and mathematics,
including geometry, algebra, the art of navigation,
and the science of astronomy. In 1673, at the age
of 17, he entered Queen’s College, Oxford, and was
introduced to John Flamsteed, who was appointed
Astronomer Royal in 1676.

In November 1676, Edmond Halley sailed to the
island of St Helena, where he cataloged the stars of
the southern hemisphere, and incidentally discovered
a star cluster in Centaurus, a constellation in the
Southern Hemisphere. In 1677, he timed a transit of
Mercury and of Venus across the sun and made rough
calculations of the mean distance between Earth and
the sun. In 1678, he published his results in Catalogus
Stellarum Australium, was elected a fellow of The
Royal Society, and received the M.A. degree from
Oxford University. He married Mary Tooke in 1682,
and they had three children – two daughters and one
son. He established a home and small observatory
center at Islington, and saw the comet of 1682.

Halley encouraged Newton to expand his studies
on celestial mechanisms and contributed important
editorial aid and financial support to the publica-
tion of Newton’s major work, Philosophiae Naturalis

Principia Mathematica, in 1686. From 1685 to 1696
he was assistant of the secretaries of the Royal Soci-
ety, and from 1685 to 1693 he edited the Philosoph-
ical Transactions of the Royal Society. In 1698 he
was the frequent guest of Peter the Great, who was
studying British shipbuilding in England. He was the
technical adviser to Queen Anne in the War of Span-
ish Succession, and in 1702 and 1703 she sent him
on diplomatic missions to Europe to advise on the
fortification of seaports.

Between 1687 and 1720 Halley published papers
on mathematics, ranging from geometry to the com-
putation of logarithms and trigonometric functions.
He also published papers on the computation of
the focal length of thick lenses and on the calcu-
lation of trajectories in gunnery. In 1684 he studied
tidal phenomena, and in 1686 he wrote an important
paper in geophysics about the trade winds and mon-
soons. From 1683 to 1692 he published two important
papers in geophysics about terrestrial magnetism and
made a chart of the variation of the compass. In 1716
he suggested that the aurora was governed by the ter-
restrial magnetic field.

Halley was a man of great curiosity who combined
his astronomical knowledge to help in the dating of
historical events. In 1691 he published a paper on
the date and place of Julius Caesar’s first landing
in Britain, and in 1695 he published a paper on the
ancient Syrian city of Palmyra. In 1695 he began
an intensive study of the movement of the comets,
using the hypothesis that cometary paths are nearly
parabolic. In 1696 he became deputy controller of
the mint at Chester. Between 1698 and 1700, Halley
was appointed as a naval captain. He charted mag-
netic variations while crossing the Atlantic, and was
the first to adopt isogonic lines to connect points of
equal magnetic variation. In 1704 he was appointed
Savilian Professor of Geometry at Oxford and was
granted the degree of Doctor of Civil Law. In 1705
he published his cometary views in Philosophical
Transactions, and A Synopsis of the Astronomy of
Comets. In 1706 and 1710 he translated and published
Conics, and Sectio Rationis of Apollonius. In 1712
Halley and Newton published Historia Coelestis,
an edition of Flamsteed’s observations, using mate-
rial deposited at the Royal Society, and infuriated
Flamsteed.

Although the major scientific interest of his life
was astronomy, Halley wrote a seminal paper on life
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tables. Since the end of the sixteenth century, regis-
ters of births and deaths by sex and age had been well
kept in Breslau, Silesia. Caspar Neumann, a promi-
nent evangelical pastor and scientist, used the data
to combat some popular superstitions about the influ-
ence on health of the phases of the moon and certain
ages (those divisible by seven and nine). Neumann
sent his results to Leibniz, who in 1689 brought them
to the attention of the Royal Society. Since the work
of Graunt and Petty, members of the Royal Soci-
ety were waiting to receive observations suitable for
construction of a life table and sent the data to Hal-
ley for analysis. In 1693 Halley wrote the paper “An
estimate of the degrees of the mortality of mankind,
drawn from curious tables of the births and funerals
at the City of Breslaw, with an attempt to ascertain
the price of annuities upon lives.” Halley assumed
a constant number of births per year, mortality by
age constant in time, and no migration. He did not
present the data in detail, but he calculated a life table
based on the number of survivors by year, includ-
ing the first empirical distribution of deaths according
to age. He used the life table to calculate the num-
ber of men able to bear arms from age 18 to 56,
the median remaining lifetime for an individual of
age x (see Life Expectancy), the total population
size, and certain calculations relating to annuities. He
found that the value of an annuity is the sum of the
expectation of the payments made to the living, a
concept later pursued by Abraham de Moivre. His
expectation became the fundamental quantity in life
insurance, today called the pure endowment. Having
written an important paper on life tables, Halley never
returned to the topic, which was far from his main
interests.

In 1715 Halley published a paper on novae, and
nebulae, and recorded ideas and experiences of living

underwater. In 1720 Halley succeeded John Flam-
steed in his appointment as Astronomer Royal. In
1729 he was elected a Foreign Member of the
Academie des Sciences at Paris. By 1731 he had
published a method of using lunar observations for
determining longitude at sea. He also studied the
question of the size of the universe and the number
of stars it contained.

At his death, Edmond Halley was 86 years old and
widely mourned. He was a famous and a friendly man
of rare intelligence who was always ready to support
young astronomers. As Joseph Laland said about
Halley, he was “the greatest of English astronomers
. . . ranking next to Newton among the scientific
Englishmen of his time”.

For more complete information about Halley’s
life, see the following references.
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Halperin, Max

Born: November 5, 1917, in Omaha, Nebraska.
Died: February 1, 1988, in Fairfax, Virginia.

Max Halperin was a leading statistician in biostatis-
tics for over 40 years both at the National Institutes
of Health and at the Biostatistics Center at the George
Washington University. At the time of his death he
was Research Professor of Statistics and Director of
the Biostatistics Center of the George Washington
University.

Halperin graduated from the University of Omaha
in 1940 with a B.S. degree and from the Univer-
sity of Iowa in 1941 with an M.S. degree, both in
mathematics. He earned his Ph.D. in mathematical
statistics from the University of North Carolina in
1950. From 1941 to 1946, Halperin served in the
Armed Forces primarily with the US Air Force in
the China–Burma–India theater of operations.

A brief review of his career begins with the year
1948–1949 when he was a research mathematician at
the RAND Corporation where he worked with Alex
Mood. He then spent the years 1950–1955 in the
Biometrics Department of the US Air Force School
of Aviation Medicine at Randolph Field, Texas. He
first came to the National Institutes of Health (NIH) in
1951, joining Felix Moore in the Biometrics Research
Branch of the National Heart Institute (NHLBI).
From 1955 to 1958 he was Chief of the Biometrics
Office of the Division of Biologic Standards, NIH.

For the next eight years he held positions as statis-
tician in private industry with the General Electric
Company and with the Sperry-Rand Corporation. He
returned to the NIH in 1966 as Assistant Chief and
Chief of the Biometrics Research Branch, NHLBI.
After retirement from the NIH in 1977, he spent the
remaining years of his career as Research Professor
of Statistics and Director of the Biostatistics Center
of the Department of Statistics at the George Wash-
ington University.

Max Halperin entered the Statistics Department at
the University of North Carolina shortly after Harold
Hotelling became chairman of the Department. His
first attempt at a dissertation had to be scrapped since
a paper was published on the same topic. In 1948
he met Alex Mood who suggested that he write on
the estimation of parameters in truncated samples. He
successfully completed his dissertation on this theme,
publishing one of the first papers on this subject in
the Annals of Mathematical Statistics [3].

Max Halperin was widely respected and recog-
nized for his contributions to theoretical and applied
statistics and biostatistics. He took great joy in work-
ing on theoretical problems, particularly those initi-
ated by his consultations with investigators engaged
in scientific research. His theoretical work reflected
his strength in multivariate analysis and his adept-
ness in deriving large sample, asymptotic distribu-
tions. His interests in both theoretical and applied
research ranged over a broad spectrum of subjects.
He contributed significantly to (i) various topics in
regression such as inverse estimation [16], errors in
variables [7, 13], interval estimation in nonlinear
regression [9, 12]; (ii) interval estimation (see Esti-
mation, Interval) of parametric nonlinear functions
[11, 14, 21]; and (iii) distribution-free tests (see Non-
parametric Methods) [4, 23, 25, 30]. In addition, he
wrote on applied probability [5, 19], on reliability
[10, 18], and on other problems in general statisti-
cal methodology [6, 8, 15, 20]. Halperin collaborated
with Cornfield and others to write on an alterna-
tive solution for the multiple comparison problem
[24] which turned out to be a powerful method to
detect outliers, and to write on an adaptive procedure
for sequential clinical trials (see Sequential Analy-
sis) [1].

Halperin and his colleagues in the Biometrics
Research Branch of the NHLBI were to a large extent
responsible for developing the statistical foundations
of the multicenter clinical trial. During this period,



2 Halperin, Max

as Chief of the Biometrics Branch in the NHLBI and
later as Director of the Biostatistics Center, his inter-
ests were primarily directed to the clinical trial. The
more he became involved in the conduct of clini-
cal trials the more he realized that the clinical trial
was much more complicated than a simple extension
of a laboratory experiment into the community. He
was led to consider special aspects of design [17,
31] and problems in data and safety monitoring
[27]. His greatest effort at this time was devoted to
two major topics: stochastic curtailment [28, 32] and
early stopping of a clinical trial [2, 22]. His ideas
and writings in these areas had a great impact on the
planning and direction of clinical trials (see Clinical
Trials Protocols). In addition to his personal research
related to clinical trials, Max Halperin greatly influ-
enced the design and conduct of clinical trials through
his service on steering, policy advisory, or data and
safety monitoring boards of many major clinical
trials sponsored by the NHLBI.

Towards the end of his career, he was responsible
for another novel idea related to multiple compar-
isons. Conventionally, statisticians looked for protec-
tion against making no errors – in an experiment,
or family of experiments, etc. Halperin, however,
relaxed the requirement by seeking protection against
making at most one error, or at most two errors,
etc. [29].

Halperin was a member of the Board of Directors
of the American Statistical Association (1975–77)
and served as an Associate Editor of the Journal
of the American Statistical Association (1971–74)
and of the American Statistician (1976–80). He was
a member of a committee on standards for statisti-
cal symbols and notation together with H.O. Hartley
and P.G. Hoel and was the senior author of the
Committee’s report [26]. He was Chairman of the
Biometrics Section of the American Statistical Asso-
ciation in 1974.

Max Halperin received many honors. He was a
Fellow of the American Statistical Association, the
Institute of Mathematical Statistics, the American
Association for the Advancement of Science, and
an elected member of the International Statistical
Institute. He received a Superior Service Award from
the Department of Health, Education and Welfare
(1973) and the Statistics Section Award from the
American Public Health Association in 1985.

Max not only worked on statistical problems –
he also loved to talk about statistics, especially to

point out the difficulties he was running into on a
specific problem. Many of these discussions would
occur at lunch, which for his associates became
special occasions. The problems on which he worked
were primarily those motivated by his work. The sole
criterion: Was it real and interesting?

Max married Mary Ann Thomas whom he met
while both were working at the National Heart Insti-
tute. They have a daughter, Martha.

References

[1] Cornfield, J., Halperin, M. & Greenhouse, S.W. (1969).
An adaptive procedure for sequential clinical trials, Jour-
nal of the American Statistical Association 64, 759–770.

[2] DeMets, D. & Halperin, M. (1982). Early stopping in
the two-sample problem for bounded random variables,
Controlled Clinical Trials 3, 1–12.

[3] Halperin, M. (1952). Maximum likelihood estimation in
truncated samples, Annals of Mathematical Statistics 23,
226–238.

[4] Halperin, M. (1960). Extension of the Wilcoxon-Mann-
Whitney test to samples censored at the same fixed
point, Journal of the American Statistical Association 55,
125–138.

[5] Halperin, M. (1960). Some asymptotic results for a
coverage problem, Annals of Mathematical Statistics 31,
1063–1076.

[6] Halperin, M. (1961). Almost linearly-optimum combina-
tion of unbiased estimates, Journal of the American
Statistical Association 56, 36–43.

[7] Halperin, M. (1961). Fitting of straight lines and predic-
tion when both variables are subject to error, Journal of
the American Statistical Association 56, 657–669.

[8] Halperin, M. (1963). Approximations to the non-central
“t”, with applications, Technometrics 5, 295–305.

[9] Halperin, M. (1963). Confidence interval estimation of
non-linear regression, Journal of the Royal Statistical
Society, Series B 25, 330–333.

[10] Halperin, M. (1964). Some waiting time distributions for
redundant systems with repair, Technometrics 6, 27–40.

[11] Halperin, M. (1964). Interval estimation of non-linear
parametric functions II. Journal of the American Statis-
tical Association 59, 168–181.

[12] Halperin, M. (1964). Note on interval estimation in non-
linear regression when responses are correlated, Journal
of the Royal Statistical Society, Series B 26, 267–269.

[13] Halperin, M. (1964). Interval estimation in linear regres-
sion when both variables are subject to error, Journal of
the American Statistical Association 59, 1112–1120.

[14] Halperin, M. (1965). Interval estimation of non-linear
parametric functions III. Journal of the American Statis-
tical Association 60, 1191–1199.

[15] Halperin, M. (1967). An inequality on a bivariate
Student’s “t” distribution, Journal of the American
Statistical Association 62, 603–606.



Halperin, Max 3

[16] Halperin, M. (1970). On inverse estimation in linear
regression, Technometrics 12, 727–734.

[17] Halperin, M. (in the MRFIT Group Report) (1977). Stat-
istical design considerations in the NHLBI multiple risk
factor trial, Journal of Chronic Diseases 30, 261–275.

[18] Halperin, M. & Burrows, G.L. (1960). The effect of
sequential batching for acceptance-rejection sampling
upon sample assurance of total product quality, Techno-
metrics 2, 19–26.

[19] Halperin, M. & Burrows, G.L. (1961). An asymptotic
distribution for an occupancy problem with statistical
applications, Technometrics 3, 79–89.

[20] Halperin, M. & Lan, K.K.G. (1987). A two sample
ordered alternative test for means and variances, Com-
munications in Statistics – Theory and Methods 16,
1297–1313.

[21] Halperin, M. & Mantel, N. (1963). Interval estimation of
non-linear parametric functions, Journal of the American
Statistical Association 58, 611–627.

[22] Halperin, M. & Ware, J.H. (1974). Early decision in
a censored Wilcoxon two-sample test for accumulating
survival data, Journal of the American Statistical Asso-
ciation 69, 414–422.

[23] Halperin, M., Gilbert, P.R. & Lachin, J.M. (1987).
Distribution free confidence intervals for Pr{X(1) <

X(2)}, Biometrics 43, 71–80.
[24] Halperin, M., Greenhouse, S.W., Cornfield, J. &

Zalokar, J. (1955). Tables of percentage points for
the Studentized maximum absolute deviate in normal
samples, Journal of the American Statistical Association
50, 185–195.

[25] Halperin, M., Hamdy, M. & Thall, P.F. (1989). Distri-
bution-free confidence intervals for a parameter of

Wilcoxon-Mann-Whitney type for ordered categories
and progressive censoring, Biometrics 45, 509–521.

[26] Halperin, M., Hartley, H.O. & Hoel, P.G. (1965).
Recommended standards for statistical symbols and
notation, American Statistician 19, 12–14.

[27] Halperin, M., Lan, K.K.G., Ware, J.H., Johnson, N.J.
& DeMets, D.L. (1982). An aid to data monitoring of
long term clinical trials, Controlled Clinical Trials 3,
311–323.

[28] Halperin, M., Lan, K.K.G., Wright, E.C. & Foulkes,
M.A. (1987). Stochastic curtailing for comparison of
slopes in longitudinal studies, Controlled Clinical Trials
8, 315–326.

[29] Halperin, M., Lan, K.K.G. & Hamdy, M. (1988). Some
implications of an alternative definition of the multiple
comparison problem, Biometrika 75, 773–778.

[30] Halperin, M., Ware, J.H. & Wu, M. (1980). Conditional
distribution-free tests for the two-sample problem in the
presence of right censoring, Journal of the American
Statistical Association 75, 638–645.

[31] Lan, K.K.G., DeMets, D. & Halperin, M. (1984).
More flexible sequential and non-sequential designs in
long-term clinical trials, Communications in Statistics –
Theory and Methods 13, 2339–2353.

[32] Lan, K.K.G., Simon, R. & Halperin, M. (1982). Sto-
chastically curtailed testing in long-term clinical trials,
Communications in Statistics – Theory and Methods 1,
207–219.

SAMUEL W. GREENHOUSE



Haplotype Analysis

Haplotype analysis examines and attempts to specify
the genetic information descending through a pedi-
gree, thus providing a useful visualization of the gene
flow. Specifically, a haplotype for a given individual
and set of loci is defined as the set of alleles inher-
ited, one per locus, from the same parent (see Gene).
Thus, for each person there are two haplotypes, one
of maternal origin and the other paternal. Usually,
the loci under consideration are syntenic, that is, the
haplotype consists of alleles all on a single chromo-
some. Traditional haplotype analysis, also known as
haplotype reconstruction or simply haplotyping, is the
process of obtaining a “best” estimate for each of the
two haplotypes for each person in a pedigree. This set
of haplotypes is the inferred haplotype vector for that
pedigree. For example, Figure 1 shows for a small
fully typed pedigree the most likely of the 262 144
haplotype vectors consistent with the data [11, 15].

In addition to traditional haplotyping that simply
specifies from which parent each child’s allele is
descended, there is a more complete form of hap-
lotyping that specifies from which parental allele
each child’s allele is descended, that is, specifies
grandparental source information. This more com-
plete haplotype analysis includes sufficient informa-
tion to describe completely gene flow through a
pedigree. For example, consider Figure 2(a), which
demonstrates a traditional haplotyping solution at a
single locus, that is, everyone has been assigned
an ordered genotype. (Here, an ordered genotype
is listed with the maternal allele on the left, pater-
nal allele on the right.) However, notice that the
gene flow is not completely specified, in that the
grandparental source of the “1” allele in the grand-
children cannot be determined. Grandparental source
information can be displayed by using a gene flow
representation. Figure 2(b) shows one of the four
gene flow representations consistent with the data in
Figure 2(a). Here, each individual is represented by
two nodes at each locus: one for the allele of maternal
origin and one for the paternal allele. The founders’
nodes have specific alleles assigned to them and then
arcs are drawn connecting each child node with the
parental node from which it descended. This more
complete form of haplotyping can be defined as the
task of reproducing the complete gene flow informa-
tion for a pedigree at the loci under consideration.
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Figure 1 Example of a haplotyped pedigree in which
each founder haplotype has been uniquely hatched. This
is the most likely of the 262 144 haplotypes consistent
with the fully typed pedigree [15]. This pedigree comes
from a study of Krabbe disease: the full-black symbol
indicates an affected person; half-black indicates obligate
carriers; half-hatched indicates carriers identified by an
enzyme assay [11] (see Genetic Counseling). Reproduced
from Sobell et al. [15] by permission of Springer-Verlag

Applications of Haplotype Analysis

Haplotype analysis has several common applications.
An early goal of haplotyping was to make the genetic
data used in linkage analysis more informative. A
locus is defined to be informative at a mating, that
is, for two parents and their child, if the observed
typing information at that locus allows one to infer
from which parental allele each allele in the child
is inherited (see Polymorphism Information Con-
tent). To illustrate this, consider a locus at which the
parents are typed as heterozygotes with no alleles
in common, for example, a/b and c/d, then one is
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1/2 1/4

4/2 1/1 2/4 4/3

4/1 4/1 2/4 4/3

(a)

1  2 1  4

4  2 4  3

(b)

Figure 2 (a) Pedigree data set with one locus in which
ordered genotypes have been inferred for each person.
(Ordered genotypes are shown as maternal-
allele/paternal-allele.) The grandparental origin of the “1”
allele cannot be determined; (b) one of the four gene flow
representations consistent with the data in (a). Reproduced
from Sobel & Lange [14] by permission of the University
of Chicago Press

assured an informative mating. Conversely, consider
the mating in Figure 3(a) in which all three loci are
individually uninformative. To increase informative-
ness, one may construct a single, highly polymorphic
“mega-locus” from a number of less polymorphic,
but closely linked, loci. (Indeed, some researchers
still use the term haplotyping to refer only to this
application or to the related problem of finding the
population frequencies of the newly defined “mega-
alleles”.) The creation of a mega-locus is advanta-
geous because each locus alone may be uninformative
for many matings in the pedigree, while the com-
bined mega-locus will often be informative at nearly
all matings. For example, the mating in Figure 3(a) is
uninformative at all three loci. However, if one can

a/b
1/1
e/e

a/b
1/1
f/f

a1e/b1e a1f/b1f

a/b
1/1
e/f

a1e/b1f

(a) (b)

Figure 3 (a) Unordered genotypes at three loci. Each
locus is uninformative in this mating; (b) shows the three
loci haplotyped and combined into one “mega-locus” that
is informative

create haplotypes for these three loci using the rest
of the pedigree (not shown), then the newly defined
mega-alleles may make the mega-locus informative.
Such an informative mega-locus is seen in Figure
3(b). By treating the combined loci as a single point
in the genome, the results of standard linkage anal-
ysis will often be improved. Clearly, this approach
is best suited for closely linked loci, usually with no
recombination between the loci.

Haplotyping is also used to identify genotyping
or data-entry errors. Even relatively few mistyping
errors can have a significant effect on the deter-
mination of genetic maps and gene localization [1,
8]. Haplotyping, by exhibiting the gene flow within
a pedigree, permits a visual check of the data to
find likely mistypings. Mistyping that results in non-
Mendelian inheritance is easy to detect, for example,
a 1/3 child from two 1/2 parents. (Of course, if these
data stand up to retyping, then nonpaternity or non-
maternity must be considered.) However, mistyping
a true 2/2 child as a 1/2, when both parents are 1/2, is
difficult to detect. Haplotyping across this locus may
highlight the possibility that the child’s typing was in
error. For example, in Figure 4 haplotyping reveals a
double recombination, one on either side of the ques-
tionable allele. If the distance between these flanking
markers is small, then the “1” allele in the child
would be a definite candidate for retyping. Several
papers have discussed statistical tests (usually likeli-
hood ratio tests or their approximation) that indicate
which typings are most likely to be in error [1, 8].

Finally, haplotype analysis may provide a more
precise localization of a putative trait locus than
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Figure 4 Haplotyping results that suggest that the child’s
typing may be in error at the “1” allele. The arrows indicate
flanking recombination events

standard linkage analysis. The introduction of a rare
trait in an isolated population, by new mutation or
immigration, probably occurred in only a few ancient
individuals. Many of the living affected persons will
have inherited the trait from a common founder, even
though it is not apparent that they are related. Haplo-
typing of these affected persons, over loci linked to
the trait, may reveal a conserved haplotype inherited
through many generations from a common founder.
The conserved haplotypes will be flanked by alle-
les not part of the inferred ancient haplotype. These
nonconserved alleles are evidence of recombination
events that may have occurred in any generation
since the introduction of the trait into the popula-
tion. The interval contained within all such flanking
recombination points is most likely to contain the trait
locus. This localization technique, using conserved
affected haplotypes in isolated populations, employs
recombinations from the entire history of the trait’s
segregation within the population. Classical linkage

analysis can only work with the recombination events
manifested within the pedigrees observable today.
Thus, it is not surprising that this use of haplotype
analysis in an isolated population can often localize
a trait to a smaller interval than can classical linkage
analysis alone.

As an example of this use of haplotype analysis,
consider the localization of the autosomal recessive
disorder ataxia-telangiectasia (A-T). In early 1995,
classical linkage analysis on an international consor-
tium of 176 pedigrees generated an approximately
500 kb (kilobase) support interval for an A-T gene
located on the short arm of chromosome 11 [7].
This support interval roughly spanned the region
from S1819 to S1294, which contains the markers
S384 and S535 (see Genetic Markers), as shown
in Figure 5. No recombination events were seen in
the 176 pedigrees between the A-T locus and either
S384 or S535. Figure 6 shows an ancestral haplotype
analysis of Costa Rican A-T affected persons and
demonstrates that 20 out of the 27 seemingly unre-
lated affected individuals (and 34 out of the 54
haplotypes) contain a region from an identical ances-
tral haplotype [19]. Moreover, the boundaries of the
conserved haplotypes (see individuals 26–3, 35–3,
and 13–3) indicate that the trait locus must be dis-
tal to S384. (Here, distal is the direction away from
the centromere and proximal is the reverse.) A sim-
ilar haplotype analysis of a subpopulation of British
A-T affected persons concluded that the locus must
be proximal to S535 [16]. Haplotype analysis thus
localized the A-T gene to the approximately 200 kb
interval between S384 and S535; the approximately
100 kb A-T gene, now called ATM, was subsequently
found within this interval [12].

Origins of Computational Complexity

Haplotyping is not conceptually difficult – it is sim-
ply determining the parental (and grandparental) ori-
gin of the children’s alleles. What makes haplotyping

S1819 S384 S535 S1294

Centromere 350 kb 200 kb 150 kb Telomere

500 kb A-T support interval
from linkage analysis

Figure 5 Map of four loci on chromosome 11 that are closely linked to the A-T gene. The 500 kb support interval is
indicated for the A-T locus found using linkage analysis



4 Haplotype Analysis

3
4
4
5
1

1
5
4
1
3
2
5

9
4
4
5
1

1
5
4
1
7
5
5

9
4
4
5
1

1
5
4
1
3
2
4

9
4
4
5
1

1
5
4
1
3
2
4

9
4
4
5
1

1
5
4
1
3
2
5

9
4
4
5
1

1
5
4
1
5
3
4

9
4
4
5
1

1
5
4
1
3
2
5

3
21
5
5
1

1
5
4
1
3
2
5

9
4
4
5
1

1
5
4
1
3
2
5

8
21
5
4
2

1
4
8
1
3
2
3

5
7
5
5
2

1
5
4
2
3
5
1

9
4
4
5
1

1
5
4
1
5
2
4

9
4
4
5
1

1
5
4
1
3
2
5

9
7
5
4
2

2
5
5
2
5
5
4

3
21
5
5
1

1
5
4
1
3
2
5

9
4
4
5
1

1
5
4
1
3
2
4

9
4
4
5
1

1
5
4
1
5
3
4

9
4
4
5
1

1
5
4
1
3
2
3

3
21
5
5
1

5
4
1
3
2

3
21
5
5
1

5
4
1
3
2

9
4
4
5
1
2
1
5
4
1
3
2
5

9
4
4
5
1

1
5
4
1
5
3
3

9
4
4
5
1
2
1
5
5
2
5
3
3

3
1
4
5
2
2
1
5
5
1
3
2

  5  

9
4
4
5
1
2
1
5
4
1
5
3
4

3
1
4
5
2

1
5
5
1
3
2

  5  

3
1
4
5
2

1
5
5
1
3
2
5

9
4
4
5
1

5
4
1
5
2
5

3
4
3
1
2

5
5
1
9
3

   5  

9
4
4
5
1

1
5
4
1
3
2
5

5
4
3
1
2

2
5
5
1
9
3
5

9
4
4
2
2
1
2
5
5
1
9
3
5

5
4
3
1
2
1
2
5
5
1
9
3
5

5
4
3
1
2

2
5
5
1
9
3
5

9
1
4
2
2

1
4
6
2
5
2
5

5
4
3
1
2

2
5
5
1
9
3
5

9
4
4
1
2

1
4
5
1
6
2
2

5
4
3
1
2

5
5
1
9
3
5

2
9
4
1
2

4
5
1
6
2
2

2
9
4
1
2

1
4
5
1
6
2
2

9
4
4
1
2

1
4
5
1
6
2
2

9
4
4
5
1
2
1
5
4
1
3
2
5

9
4
4
1
2
1
1
4
5
1
6
2
2

5
4
5
5
2

1
5
11
2
4
5
5

5
4
5
5
2

1
5
11
2
4
5
5

4
21
5
5
2

2
4
4
2
6
5
3

3-4 24-3 31-3 16-3 17-5 22-3 14-3 25-3 2-3

19-3 10-3 12-3 6-3 33-3 26-3 35-3 13-3 1-4

5-4 18-4 34-5 36-3 15-3 29-3 27-9 4-3 30-3

[A][A] [A][A] [A][A] [A][A] [H][A] [E][A] [A][G] [A][A] [A][A]

[A][A] [B][A] [B][A] [B][B] [B][A/B] [B][B] [A][B] [B][B] [A][C]

[C][A] [C][C] [J][C] [D][C] [C][D] [D][D] [A][D] [F][F] [I][E]

S1816
S1817
S1343
S1819
S384

B7
S535

S1294
S1818
S1960
S927

S1300
S1391

S1816
S1817
S1343
S1819
S384

B7
S535

S1294
S1818
S1960
S927

S1300
S1391

S1816
S1817
S1343
S1819
S384

B7
S535

S1294
S1818
S1960
S927

S1300
S1391

5
4
4
5
1
2
1
5
5
1
3
2
5

9
4
4
5
1

1
5
5
1
3
2
5

11
4
4
5
1

1
5
5
1
3
2
5 

9
4
4
5
1

1
5
5
1
3
2
5

9
4
4
5
1
2
1
5
5
1
3
2
5

3
1
4
5
2
2
1
5
5
1
3
2

  5  

9
4
4
5
1
2
1
5
5
1
3
2
5

1
7
5
5
2

1
5
4
2
5
3
1

Figure 6 Haplotyping results of 27 living Costa Rican A-T affected persons. The individuals are labeled above the
haplotypes; the haplotypes are labeled by bracketed capital letters. The haplotypes of common ancestral origin are similarly
hatched. Unique haplotypes (G, H, I, and J) are not hatched. Reproduced from Uhrhammer et al. [19] by permission of the
University of Chicago Press
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exceedingly difficult in practice is the amount of
missing information usually encountered in a pedi-
gree data set. With even moderate amounts of missing
data, the number of haplotype vectors that are consis-
tent with the observed data can grow to astronomical
levels. Thus, the search for the “best” haplotype vec-
tor is often a nontrivial combinatorial optimization
problem.

For typical haplotyping problems, the missing data
come in the following three forms: (i) Unknown typ-
ing is seen in real pedigrees because there are often
some people who are simply unavailable for reliable
typing at all the loci under consideration. These peo-
ple may be too remote for sampling; they may decline
to participate; or they may simply be deceased.
(ii) Phase information for a locus at a typed indi-
vidual specifies which allele is maternally inherited
and which paternally. Modern genetic data, usually
marker genotypes and trait phenotypes, do not spec-
ify phase. Marker loci are missing phase information
because almost all are codominant loci that yield
unordered genotypes. In the case of trait phenotypes,
even the underlying alleles may be obscured, for
example, a dominant allele will hide the value of the
other allele. (iii) Grandparental source information is
also required to be assured of complete knowledge of
the gene flow through a pedigree (see Figure 2). How-
ever, no source information is specifically included
in conventional pedigree data, although occasionally
some can be directly inferred.

Much missing data of any type will result in a
large number of possible haplotype vectors, each
consistent with the data. For example, without
phase information even a fully-typed pedigree can
have an abundance of consistent haplotype vectors.
Specifically, with p people fully typed over l loci
there can be as many as 2pl haplotype vectors
consistent with the data [15]. For real fully typed
pedigrees this value is usually significantly smaller,
lowered by homozygosity in the founders and
informativeness in the matings. The inheritance
patterns in the vicinity of the people with missing data
can help one infer the missing values, but the trend
towards highly polymorphic marker loci increases
the number of possible haplotypes the missing data
imply. Considering the extent to which each of
the three types of data is usually absent, it is not
surprising that searching for the best haplotype vector
is often computationally complex.

To demonstrate the size of the space that one
must search to choose a best haplotype vector for
a pedigree, consider the 36 person pedigree struc-
ture shown in Figure 7. This pedigree is from a
study of dopa-responsive dystonia [10]. We sim-
ulated randomly complete gene flow data on the
14 linked polymorphic markers used in the link-
age study. We considered then only the resulting
unordered typing information for each individual,
except for the six people unavailable for typing in
the actual study, for whom no typing information was
included. Table 1 lists for each person the number of
haplotype pairs consistent with the simulated data.
The number of haplotype vectors for the pedigree
would be somewhat less than the product, over all
people, of these numbers of haplotype pairs. Thus,
an exhaustive search of the possible haplotype vectors
is well beyond practical computability. (This analysis
was previously reported by Sobel et al. [15].)

Algorithms for Haplotype Analysis

The algorithms that have been devised to over-
come the computational complexities of haplotyping
have evolved considerably with changes in tech-
nology. The trend has been away from heuristic
and rule-based approaches toward more likelihood-
based methods, while using sophisticated techniques
to avoid as much as possible the computational bottle-
neck of calculating likelihoods for pedigrees with
significant missing data. Manual haplotyping, the first

1* 2*

3* 4* 5 6* 7 8* 9 10

11 12 13 14 15 16 17

18 1920 21 22 23 24 25 26 27 34 35 36

3328 29 30 31 32

Figure 7 This 36-person pedigree structure is part of the
data set used to generate Table 1. The individuals marked
with an asterisk have no typing information assigned to
them. Everyone else is typed at 14 polymorphic linked
loci. Reproduced from Sobel et al. [15] by permission of
Springer-Verlag
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Table 1 The number of possible haplotype pairs for each individual in
the pedigree in Figure 7. Reproduced from Sobel et al. [15] by permission
of Springer-Verlag

Person Haplotype pairs Person Haplotype pairs

1 29,421,583,551,360 19 1

2 29,421,583,551,360 20 2048
3 85,944,603,802,337,280 21 2
4 46,558,955,520,000 22 2048
5 75,776 23 2
6 1,024,479,830,005,632 24 2
7 2048 25 8
8 987,891,264,648,288 26 256
9 256 27 2

10 7168 28 2
11 2048 29 1
12 2048 30 2
13 256 31 8
14 2048 32 1
15 4 33 1
16 4 34 16
17 2048 35 8
18 2 36 1

method used, and still used by some, is likely not to
consider all the possibilities, even for moderate-sized
pedigrees. Indeed, the majority of published haplo-
type vectors we have examined can be improved; for
examples, see Sobel et al. [15]. Another problem with
manual haplotyping is that it is difficult to prove that
one has performed sufficient analysis to enable others
to have confidence in the results. Clearly, the tedious
and error-prone nature of haplotyping lends itself to
computer-based approaches.

The first class of widely-used computer algori-
thms specifically designed for haplotype analysis
were rule-based: PATCH by Wijsman [24] and
CHROMLOOK by Haines [4]. By using logical
rules to transform the available typing information
into inferred underlying haplotypes these programs
avoided all likelihood calculations. This approach
was developed because at that time the major
likelihood calculation programs were fairly limited,
by computer memory and time constraints, in the size
and complexity of the pedigrees they could handle.
Thus, these nonnumeric rule-based algorithms are
faster than any other approach. However, rule-
based algorithms are by their nature somewhat ad
hoc. Particularly in the presence of nontyping or
uninformative matings, these approaches may leave
portions of the haplotypes undetermined. Also, by not
considering the recombination fractions between loci,

which can be quite varied, these methods may miss
a more likely solution.

In contrast to the qualitative rule-based methods,
several quantitative algorithms have been devised.
All are based on searching for the haplotype
vector that maximizes a likelihood calculation. The
most straightforward is the exhaustive enumeration
technique. For small pedigrees with few untyped
people, one can consider systematically every
possible haplotype vector and rank them by exact
likelihood. This brute-force approach has become
feasible with the speed of modern computers and
likelihood calculation programs [21]. This algorithm
is guaranteed to find the maximum likelihood
solution, but is only practical for small pedigrees.

To handle larger pedigrees it is necessary to invoke
some scheme to reduce the number of possible hap-
lotype vectors that are considered or to reduce the
number of calculations required for each vector. One
such strategy is not to compute exact likelihoods over
the untyped and uninformative loci, which is where
the calculations become complex because the num-
ber of possible configurations becomes large. This is
the strategy used by the CHROMPIC option of the
CRI-MAP program developed by Green et al. [2].
Again, however, nontyping may lead to significant
uncertainty or even leave portions of the haplotypes
undetermined.
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Another implemented strategy reduces the number
of configurations that need be considered by using
a sequential conditional probability algorithm. Here,
the haplotype pairs are assigned to people in the
pedigree in a sequential fashion. Once the first i − 1
haplotype pairs have been assigned, individual i is
assigned the most probable haplotype pair given the
observed data and the previously assigned haplotypes.
This is the method used in the program HAPLO
developed by Weeks et al. [15, 21]. This method can
accommodate pedigrees with a modicum of missing
data, in which case the order in which the haplotypes
are assigned can affect significantly the amount of
computation required.

The next strategy for surveying the space of pos-
sible haplotype vectors in reasonable time employs
the combinatorial optimization technique known as
simulated annealing. This technique has been shown
to work on many previously intractable optimization
problems in many fields [20]. However, the stochas-
tic nature of simulated annealing implies that one
is assured only of reaching a near-optimal solution
and repeated applications are normally suggested for
confidence. SIMCROSS, developed by Weeks et al.
[15, 21], includes a particularly fast implementation
of simulated annealing for haplotyping. The speed
is attained by using an easily calculated pseudo-
likelihood for the haplotypes. Specifically, for each
locus interval i with recombination fraction θi , let
ρi = θi if interval i contains a crossover, and 1 − θi ,
otherwise; SIMCROSS uses the pseudo-likelihood∏

i ρi . Missing data and large pedigrees can be
accommodated by simulated annealing, because it
visits only a small fraction of the possible config-
urations and can escape local maxima of the search
space.

Yet another strategy for efficiently searching the
space of haplotype vectors uses the gene flow repre-
sentation of pedigrees as modeled in Figure 2(b). If
one ignores the actual alleles assigned to the founder
nodes in such a complete gene flow representation,
then one is left with only the graph of inheritance
paths. Two facts are notable about the space of all
such graphs that are consistent with the observed typ-
ing. First, the number of these graphs is smaller than
the number of possible haplotype vectors – much
smaller if there is nontyping in the pedigree. Sec-
ondly, given a graph it is straightforward to find the
set of founder alleles such that the complete gene
flow representation (that is, the combination of the

graph and the founder alleles) has maximum likeli-
hood [14]. Thus, one can search the relatively small
space of graphs and rank each graph by the maxi-
mum likelihood of all haplotype vectors consistent
with the graph. Moreover, by conducting this search
of the space of graphs, one is, in effect, searching the
space of all possible haplotype vectors.

Two haplotyping programs use inheritance graphs,
although with different techniques for searching the
graph space. For pedigrees in which 2n − f ≤ 16,
where n is the number of nonfounders and f the num-
ber of founders, GENEHUNTER, by Kruglyak et al.
[5], uses the Viterbi algorithm over hidden Markov
chains to search the graph space comprehensively
in reasonable time. Thus, as with the exhaustive enu-
meration technique, GENEHUNTER is guaranteed to
find the maximum likelihood solution and yet is prac-
tical for pedigrees of small to modest size, including
those with missing data.

However, for large complex pedigrees even the
space of inheritance graphs can become too large
for deterministic analysis. Similar to SIMCROSS,
SIMWALK2, by Sobel & Lange [14], also uses sim-
ulated annealing, but to survey the graph space and
thus obtain an estimate of the most likely graph. The
simulated annealing is performed on a Markov pro-
cess that moves between graphs using the Metropolis
criterion [9], that is, in proportion to the ratio of
their exact likelihoods. Although SIMWALK2 may
be somewhat slower than the above programs for sim-
ple pedigrees (except for the exhaustive enumeration
approach, which is, of course, the slowest), it can pro-
vide in reasonable time a good estimate of the best
haplotype vector for even the most complex pedigree
data set.

Conclusions

Haplotype analysis has evolved considerably, driven
by the rapid change in genetic and computer technol-
ogy. This evolution has moved from an ad hoc qual-
itative methodology to quantitative estimations based
on maximum likelihood considerations. Despite this
progress, haplotype reconstruction can still fail to
recover the true haplotype vector for a pedigree, par-
ticularly in the presence of large intervals between
loci and significant amounts of nontyping. It may sim-
ply be that the true state is not the most likely state
consistent with the observed data [15]. However, the
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process of haplotyping may well reveal those spe-
cific regions in which more information is needed to
pinpoint the true underlying haplotype vector [5].

It is interesting to note that the most recent
advances in haplotyping involve techniques that are
also proving useful in other branches of pedigree
analysis. For example, many areas of pedigree analy-
sis have profited from the use of the gene flow repre-
sentation of genetic data (see Sobel & Lange [13] and
Thompson [18] for reviews). Clearly, haplotyping to
the level of complete gene flow information is equiv-
alent to specifying all the identity by descent (IBD)
characteristics in the pedigree (see Identity Coeffi-
cients). Thus, it is not surprising that the directed
inheritance graphs and the Markov process tech-
niques mentioned above have also been proposed for
use in robust nonparametric IBD-based linkage statis-
tics [3, 5, 14, 22, 23] and for Markov chain Monte
Carlo (MCMC) multipoint linkage analysis [5, 6,
13, 14, 17]. These multiple applications demonstrate
the importance and flexibility of the gene flow repre-
sentation and the Markov process methods employed.
Moreover, it shows that haplotype analysis can play a
central role in the confluence of statistics and genetics
that exists in the field of pedigree analysis.
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Hardy–Weinberg
Equilibrium

The Hardy–Weinberg Equilibrium (HWE) principle,
the most fundamental rule of population genetics,
prescribes the genotype frequencies at a locus in
terms of its allele frequencies in a population. In the
most general form, it states that in the absence of
mutation, selection, migration, and random genetic
drift (see Population Genetics), and with random
mating in a population, the genotype frequencies at
an autosomal locus in a large population will reach
equilibrium in a single generation and will continue to
be in proportions given by the expansion of (p1A1 +
p2A2 + · · · + pkAk)

2, where pi , i = 1, 2, . . . , k, are
the frequencies of k alleles A1, A2, . . . , Ak at the
locus in the population. In other words, the frequency
of a homozygote AiAi becomes p2

i and that of a
heterozygote AiAj becomes 2pipj , the rule that
was independently discovered by the British math-
ematician G.H. Hardy [8] and the German physician
Weinberg [20]. Of course, before them, Yule [22],
Pearson [15], and Castle [1] noted that this rule works
for the special cases of allele frequencies at a bial-
lelic locus (see [12] and [17] for historical notes on
the discovery of HWE).

Several authors attempted to pay tribute to
Castle’s [1] work by renaming this rule as
Castle–Hardy–Weinberg’s (CHW) law (see, for
example, [13]). HWE, as a predictive equation for
genotype frequencies in a large population in terms of
the allele frequencies at a locus, has played a pivotal
role for many other population genetic principles. For
example, since the equilibrium is reached in a single
generation, it implies that if mating is at random,
then to understand the genotypic composition of a
population it is not necessary to investigate the past
history of the population. Also, the rule implies
that random mating (with regard to the locus under
study) is equivalent to random union of gametes.
Furthermore, under this rule, the frequency of a rare
recessive gene is about one-half of its heterozygote
carrier frequency, and, for rare dominant diseases, the
frequency of affected individuals in a large population
is approximately twice the allele frequency.

Since the conditions (i.e. no preferential mating,
no viability and/or fertility differential of alleles, no

immigration or emigration, no mutation, and infi-
nite population size) under which HWE is strictly
valid are quite severe, and perhaps no real popu-
lation satisfies most of these conditions, the appli-
cability of HWE in predicting genotype frequencies
is still being questioned in current work (see, for
example, [11]). The early optimism of the robust-
ness of HWE, however, has turned out to be justified,
since for most loci for which the allelic effects are
not physiologically meaningful (e.g. blood groups,
enzyme-proteins, DNA markers), the rule provides a
good approximation to reality. This is so, because, in
nonexperimental populations, the extent of deviation
from HWE is generally so small that the statistical
power of its detection is “notoriously” small [5, 19].

While HWE can be extended to X-linked loci, to
polyploid genetic systems, and even to genotype fre-
quencies at linked loci, the critical difference is that
the approach to equilibrium under these systems is
gradual, instead of being reached in a single gen-
eration (see [7] for discussions on these systems).
Deviations from HWE, in the presence of “nonde-
tectable” alleles, and/or mixture of subpopulations
that do not completely interbreed, are also well stud-
ied (see, for example, [2, 3, 6, 16, 18], and [21]),
indicating that unless subpopulations are genetically
well differentiated, or the nondetectable alleles are at
high frequency in the population, the approximation
of HWE is accurate relative to the usual sampling
error of genotype frequency evaluation. Both of these
factors cause the expected frequencies of homozy-
gotes to be increased, with corresponding deficiencies
of heterozygotes in relation to the predictions of
HWE, although the deviations are small and are not
generally detectable [4, 14]. In contrast, the finite size
of a population is expected to cause a reduction of
homozygote frequency, with heterozygote frequen-
cies correspondingly increased by a factor of the
order of the inverse of twice the breeding size of
a population [7, 9, 10].
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Hawkins, Francis Bisset

Born: 1796
Died: 1894

Bisset Hawkins is most widely remembered as the
author of the first book on medical statistics in the
English language [2]. He was the first Professor of
Materia Medica at King’s College, London, and was
a prolific author in the fields of industrial medicine
and public health. He was a founder member in 1834
of the Statistical Society of London (later the Royal
Statistical Society), although he does not appear to
have played a very active part in its later proceedings,
and his death at an advanced age went unrecorded
in the Society’s Journal (see Journal of The Royal
Statistical Society).

According to Greenwood [1], Hawkins “was in-
strumental in obtaining the insertion in the first Reg-
istration Act of a column containing the names of the
diseases or causes by which death was occasioned”,
initially on a voluntary basis. That may prove to be a
more lasting claim to fame than the celebrated book.

Unfortunately, Elements of Medical Statistics now
has only curiosity value. Hawkins adopts a purely
descriptive approach, relying heavily on crude death
rates, but with some appreciation of the effects of
the age structure of a population on demographic
measures such as the average age at death. His
detailed comments often show a remarkable lack of
critical awareness. The book contains many compli-
mentary remarks about Manchester, which he appar-
ently thought to have a remarkably low death rate

(1 in 74, as compared with 1 in 43 for Birming-
ham and 1 in 40 for London). Unfortunately, he had
made an arithmetic slip, and in a copy of the book
owned by the Royal Statistical Society all the com-
plimentary references to Manchester are scored out,
apparently in his own hand. Again, he seems to have
accepted anecdotes from classical antiquity with a
degree of naivety. He refers uncritically to reports of
individuals living to ages greater than 150 years; and
he uses a fatality rate from acute fevers quoted by
Hippocrates as a control for more favorable figures
recorded in 1825.

As Greenwood remarks, Hawkins “had been dili-
gent and brought together numerical data from all
parts of the world and was certainly one of the first
physicians to advocate a serious study of hospital
records”. The work of pioneers often shows traces
of fallibility, but they deserve to be remembered
for their achievements rather than their weaknesses.
Hawkins lacked the mathematical abilities of the
younger physicians W.A. Guy in England and Jules
Gavarret in France, but he helped to ensure that
medical applications played a significant part in the
enormous growth of statistical activity during the first
half of the nineteenth century.
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Hawthorne Effect

The Hawthorne effect is an effect on study partici-
pants that results from their knowing that they are
being studied. For example, in a study of methods
to promote smoking cessation, it might be necessary

to contact study participants each year to deter-
mine smoking status. The Hawthorne effect could
distort study results if this repeated annual contact
affected smoking behavior or the reporting of smok-
ing behavior.
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Hazard Models Based on
First-passage Time
Distributions

Introduction

Survival and event history analysis study the occur-
rence of events. It seems highly reasonable to imagine
that these events depend on underlying processes
that determine the occurrence. The dissolution of
a marriage does not happen out of the blue; most
often there is a process of deterioration prior to
divorce. The occurrence of myocardial infarction, as
another example, is the manifestation of a process
of occlusion of coronary arteries. The reason why
these underlying processes do not figure in the statis-
tical analysis of survival data is that they are usually
unobserved. Occasionally, partial information may be
available through covariates or marker processes.

Although observation of the process is a problem,
it might still be of interest to model survival data with
the idea of an underlying process in mind. Such mod-
els will be highly idealized, but may still yield some
insight. Typically, what one would do is to imagine
that the process can be described roughly by some
standard stochastic process with simple mathemat-
ical properties. It could be a Markov model on a
finite state space, with a number of transient states
and one absorbing state, such that the occurrence of
the event in question corresponds to entrance into the
absorbing state. Such distributions are called phase-
type distributions. Or the process could be modeled
as a Wiener process (Brownian motion) with drift,
such that the event occurs when the process passes a
certain limit. The first-passage time in this case fol-
lows an inverse Gaussian distribution. This inverse
Gaussian family has interesting and useful properties
and should definitely be used much more in survival
analysis and other fields.

Assuming the stochastic process point of view
allows for some general considerations of interest
[2], we shall consider a population of individuals
on the transient state space of the stochastic process
(i.e. prior to absorption). In a sense, there are two
forces operating on these individuals, namely, the
general diffusion in the transient state space, and
the attraction of the absorbing state. The rate at
which absorption takes place (i.e. the hazard rate of

the first-passage distribution) is created in a balance
between these two forces. Understanding the shape of
the hazard rate is in general difficult, and the present
point of view might help in doing so.

A very useful concept in this context is that of
an attractor. For many processes, the distribution of
survivors (i.e. the distribution on the transient state
space) moves towards an attractor, that is, a fixed
distribution on the state space. The attractor is often
termed a quasi-stationary limit. It is the limiting
distribution given nonabsorption, and it is a somewhat
surprising fact that such a limit often exists in spite
of the continuous leaking of probability mass into the
absorbing state.

A practical reason for considering the underlying
processes is that many, if not most, covariates used
in survival analysis are not really risk factors, but
rather measures of how far advanced a disease is.
An example is the staging measures used in cancer
(see Oncology). A statistical application of this idea
is given in [2].

Markov Chain with Absorption

The simplest stochastic process of use in this con-
text, is a time-continuous Markov chain on a finite
state space. One state is absorbing, and the idea is
that the process starts out according to some distri-
bution on the remaining (transient) state space. The
first-passage time is the time to absorption, and its
distribution is termed a phase-type distribution; see
[1]. Such distributions play an important role in prob-
ability theory and there exists a lot of theory for their
properties.

An example is given in Figure 1, which represents
a Markov chain where an individual can move up
and down in a state space before eventually being
absorbed. This could model a disease where “repair”
and improvement occur in various stages before the
disease in the end moves into a nonreversible state.
The interesting thing about this model is that it gives
a nice illustration of how the shape of the hazard
rate is influenced by the distance of the starting point
from the absorbing state. Starting in states 1, 3, and 5
respectively and computing the hazard rates of time to
absorption, one gets the result illustrated in Figure 2
(parameters equal to α = 1.5 and β = 1.0). Hence,
the three major shapes of hazard rates occurring
in practice – the increasing, the decreasing, and the
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Figure 1 State space of a phase-type model. (Reprinted
from Aalen and Gjessing, 2001. Reproduced by permission
of the authors)
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Figure 2 Hazard rates for time to absorption dependent
on starting state in phase-type model. Parameters: α = 1.5,
β = 1.0. (Reprinted from Aalen and Gjessing 2001. Repro-
duced by permission of the authors)

unimodal one – arise naturally. This is no accident,
but has to do with how the starting points relate to
the quasi-stationary distribution. For the parameter
values chosen here, the quasi-stationary distribution
on states 1 to 5 is given as 0.037, 0.090, 0.167, 0.276,
0.430. With this starting distribution, the hazard rate
of absorption is constant and equal to 0.0365. The
three states 1, 3, and 5 can be considered to have,
respectively, a short, medium, and long distance from
the absorbing state, compared with a quasi-stationary
distribution.

Sometimes, a unimodal hazard rate (increasing
first and then decreasing) has been given the naive
interpretation that its maximum point represents a
point of “crisis”. An example is the “seventh year
itch” interpretation of divorce rates peaking after
about seven years, the idea being that a typical
marriage goes through a crisis after seven years,
and then the divorce rate declines when it passes
through the crisis. A more sophisticated interpretation

of a declining hazard rate as a result of selection
effects has been promoted within the context of frailty
theory. The present interpretation of varying hazard
rate shapes is yet another one. It tells us in fact that
a unimodal hazard would be expected to arise quite
often, as a natural phenomenon.

An extension of this theory to semi-Markov pro-
cesses has been developed; see [6].

Wiener Process with Absorption

The Wiener process is the prototype of a continuous
and completely random stochastic process. When
combined with a drift term, it is an interesting model
of a process that approaches some aim with a lot
of random detours along the way; see [2, 4, 5] for
statistical applications. We shall consider a Wiener
process with drift −µ (µ > 0, that is, drift towards
zero) and variance coefficient σ 2, this meaning that
the increments of the process over an interval of
length ∆t is normally distributed with mean −µ∆t

and variance σ 2∆t . The process starts out in some
positive state, c, and is absorbed when it hits zero at
some time T . The distribution of T is the classical
example of a first-passage time distribution, and is
usually denoted the inverse Gaussian distribution.
The density of T is given by:

f (t, c, µ, σ) = c

σ
√

2π
t−3/2 exp

[
− (c − µt)2

2σ 2t

]

(1)

In this case, there exist several quasi-stationary
distributions [3], one of which is “canonical” in the
following sense: starting out in a single given state
with probability 1, the distribution of “survivors”
will converge to the canonical one. The canonical
one is given by: (µ2/σ 4) x exp(−µx/σ 2), which is
a gamma distribution, and is illustrated in Figure 3.
If the process is initiated with this distribution on the
positive real line, then the hazard rate of absorption in
zero is constant and given as (µ/σ)2/2. Note that this
hazard rate depends on the square of µ. This means,
for instance, that if the drift towards the event (i.e.
absorption) doubles, then the rate at which the event
occurs is multiplied by four. In practical applications
of the model, such considerations may be of interest
in the interpretation.
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Figure 3 Quasi-stationary distribution for a Wiener pro-
cess with absorption (parameters: µ/σ 2 = 1). (Reprinted
from Aalen and Gjessing 2001. Reproduced by permission
of the authors)

The hazard rate of an inverse Gaussian distribution
is unimodal, that is, increasing first and then decreas-
ing. As pointed out by Aalen and Gjessing [2], when
the starting point is close to the point of absorption
compared to the quasi-stationary distribution, then the
hazard rate is largely decreasing. When the starting

point is far away, it is largely increasing. Finally, with
a starting point in between, both the increasing and
decreasing parts of the hazard rate will be of interest.
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Hazard Plotting

Hazard plotting and nonparametric statistical infer-
ence for hazard rate (intensity) models have been
vigorously studied in the mathematical framework of
counting processes, as illustrated by articles, such as
Counting Process Methods in Survival Analysis,
Nelson–Aalen Estimator, Kaplan–Meier Estima-
tor, Aalen–Johansen Estimator, Repeated Events,
Duration Dependence, and Goodness of Fit in Sur-
vival Analysis. Common to these versions of the
simple techniques for analysis of hazard rate mod-
els are some specific model assumptions that were
not made by W. Nelson when he originally proposed
what is here termed the Nelson–Aalen estimator of
an integrated hazard.

As explained in detail in the article Repeated
Events, the basic estimating equations (see Esti-

mating Functions) for rate and mean functions are
unbiased more generally than under the above model
assumptions, provided that the observation intervals
are independent of the process generating the events.
(In particular, this means a more restrictive assump-
tion on the censoring pattern.) Nelson described his
approach in his monographs [1, 2].
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Hazard Rate

The hazard rate at time t of an event is the limit
λ(t) = limit∆↓0∆

−1 Pr(t � T ≺ t + ∆|t � T ),
where T is the exact time to the event. Special cases
and synonyms of hazard rate, depending on the event
in question, include force of mortality (where the
event is death), instantaneous incidence rate, inci-
dence rate, and incidence density (where the event
is disease occurrence).

For events that can only occur once, such as
death or first occurrence of an illness, the proba-
bility that the event occurs in the interval [0, t) is

given by 1 − exp(− ∫ t

0 λ(u) du) (see Survival Anal-
ysis, Overview; Survival Distributions and Their
Characteristics). The quantity

∫ t

0 λ(u) du is known
as the cumulative hazard.

Often, the theoretical hazard rate λ(u) is estimated
by dividing the number of events that arise in a pop-
ulation in a short time interval by the corresponding
person-years at risk. The various terms, hazard rate,
force of mortality, incidence density, person–years
incidence rate, and incidence rate are often used to
denote estimates of the corresponding theoretical haz-
ard rate.

MITCHELL H. GAIL



Hazard Ratio Estimator

In survival analysis, statistical models are frequently
specified via the hazard function α(t). A simple
model for the relation between the hazard functions
in two groups (e.g. a treatment group 1 and a control
group 0) is the proportional hazards model where

α1(t) = θα0(t), (1)

with θ being the treatment effect. For a parametrically
specified baseline hazard, α0(t), both the treatment
effect and the parameters in the baseline hazard are
usually estimated using maximum likelihood. In a
semiparametric model where the baseline hazard is
left unspecified, several estimators for θ are available:
the maximum partial likelihood (“Cox”) estimator,
cf. [5] (see Cox Regression Model), a class of rank
estimators, and some ad hoc estimators.

Assume that the available data are

(Xij , Dij ; i = 1, . . . , nj , j = 0, 1),

where the Xij are the times of observation: a failure
time if the corresponding indicator Dij is 1, a right-
censoring time if Dij is 0. The Cox estimator, θ̂ , is
then the solution to the following equation:

O1 = E1(θ), (2)

where, for j = 0, 1, Oj = ∑
i Dij and

E1(θ) =
∑

ij

Y1(Xij )θ

Y0(Xij ) + Y1(Xij )θ
Dij .

Here, Yj (t) = ∑
i I (Xij ≥ t) is the number at risk

at time t− in group j, j = 0, 1. Notice that (2)
expresses that for θ = θ̂ , the observed number, O1,
of failures in group 1 should be equal to a corre-
sponding “expected” number, E1(θ) under the pro-
portional hazards assumption. The Cox estimator θ̂

is consistent and asymptotically normal under mild
regularity conditions when n0 and n1 tend to infinity
(see Large-sample Theory).

A class of explicit “rank” estimators originally
introduced by Crowley et al. [6] and further discussed
by Andersen [1] is for a given weight process L(t)

given by

θ̂L =

n1∑

i=1

L(Xi1)(Di1/Y1(Xi1))

n0∑

i=1

L(Xi0)(Di0/Y0(Xi0))

. (3)

For L(t) = I (t ≤ t∗), θ̂L is simply the ratio between
the Nelson–Aalen estimators for the cumulative haz-
ards in groups 1 and 0 evaluated at t∗. Under the
same kind of regularity conditions as for θ̂ , the
rank estimators given by (3) are also consistent and
asymptotically normal if the weight process is well
behaved in large samples. It was shown in the above-
mentioned papers that the Cox estimator θ̂ given by
(2) is always less dispersed than any θ̂L given by (3).
However, for the particular choice

L(t) = Y0(t)Y1(t)

Y0(t) + Y1(t)
, (4)

θ̂L is nearly fully efficient when θ is close to 1.
Furthermore, a fully efficient estimator is the two-
step estimator of Begun & Reid [3] that is obtained
with

L(t) = Y0(t)Y1(t)/θ
∗

Y0(t) + Y1(t)θ∗ ,

where θ∗ is some preliminary, consistent estimator,
e.g. θ̂L=1.

Using an estimator θ̂L and its estimated variance
(see, for example, Andersen et al. [2, Section V.3.1])
the hypothesis θ = 1 of no treatment effect may be
tested. This gives all the standard linear nonparamet-
ric two-sample tests for survival data (see Linear
Rank Tests in Survival Analysis) and, in particular,
the weight process given by (4) gives the logrank
test.

Another explicit ad hoc estimator, discussed by
Breslow [4], is given by

θ̃ = O1/E1(1)

O0/E0(1)
,

with

E0(θ) =
∑

ij

Y0(Xij )

Y0(Xij ) + Y1(Xij )θ
Dij .

The estimator θ̃ is generally inconsistent when θ �= 1
but it has gained some popularity due to its simplicity
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and close connection to the logrank test, which is also
based on the observed, O0 and O1, and expected,
E0(1) and E1(1), numbers of failures.

Tests for the proportional hazards assumption (1)
based on θ̂L were studied by Gill & Schumacher [7]
and further developed by Lin [9] and Sengupta et al.
[10]; see, for example, Andersen et al. [2, Example
VII.3.5].

The estimators discussed above only make sense
under the proportional hazards model (1). How-
ever, Kalbfleisch & Prentice [8] defined, for a given
survival function, S, the average hazard ratio by
θ1(S)/θ0(S) where, for j = 0, 1,

θj (S) = −
∫ ∞

0

αj (t)

α0(t) + α1(t)
dS(t). (5)

Under the model (1), the average hazard ratio reduces
to θ . Particular emphasis was paid to survival func-
tions of the form S(t) = (S0(t)S1(t))

γ where, for
j = 0, 1, Sj (t) is the survival function corresponding
to the hazard function αj (t). In this case (5) reduces
to the following quantity:

−
∫ ∞

0
S0(t)

γ dS1(t)
γ ,

which, for a given value of γ , is easily estimated
by replacing the survival function Sj (t) by its
Kaplan–Meier estimator.
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Health Care Financing

The methods used to finance personal health care
service play a major role in shaping a country’s
health care system. Personal health care services are
those services such as hospital care, physician care,
dental services, and drugs that are provided directly
to individuals. The financing methods influence the
terms under which people access the health care
delivery system, the types of health care provided,
and the mechanisms used to allocate health care
services. They also influence how the costs of health
care services are distributed over the population by
income and by health status.

Two aspects of health care financing are the focus
of this article: the sources of funds for health care
services and the mechanisms used to pay individu-
als and institutions who provide health care services.
Figure 1 presents a diagrammatic representation of
these two aspects of health care financing and pro-
vides a framework for the discussion that follows.

Sources of Payments for Health Care

Overview

Individuals may simply use their own incomes to pur-
chase health care services from health care providers
(physicians, hospitals, clinics, laboratories, and other
firms/individuals). In most other markets, this is the
way goods and services are purchased. However, the
market for health care services has evolved quite dif-
ferently. In this market, other mechanisms such as
private insurance plans, sickness funds, and national
health insurance systems have been developed to
pay for a significant proportion of personal health
care services.

Nevertheless, as indicated in Figure 1, all health
care is eventually paid for by individuals. It is indi-
viduals who ultimately pay the premiums to insur-
ance companies and the taxes to governments, which
in turn pay for health care services. Furthermore,
even though business may be a source for collecting
premiums and/or taxes, the amounts paid by busi-
nesses are passed back to individuals and households
through lower wages, higher prices, or lower returns
on invested capital. The total payments made for
health care are sometimes referred to as the cost of
personal health care.

The way that the funds are raised to pay for health
care services affects the distribution of the cost of
health care within a country. Two types of distribu-
tions of the cost of health care are frequently con-
sidered: the distribution by health status (across the
healthy and the sick), and the distribution by income.
Analysts classify funding sources with respect to
income as progressive, regressive, or proportional.
In a progressive funding system, the fraction of a
person’s income paid in taxes (or premiums) rises as
their income rises; in a regressive funding system, the
fraction of a person’s income paid in taxes (or pre-
miums) declines as their income rises; while under
a proportion funding system, this fraction is constant
regardless of a person’s income. This section will dis-
cuss the sources of funds in some detail and comment
on the distribution of the cost of health care.

Payments by Third Parties

A basic characteristic of health care systems in all
developed countries is that the majority of payments
for medical services flows through third parties. A
third party is an entity, usually an insurance company
or government agency, that pays for medical services
but does not receive or provide health care services.
This payer is the third party, while the patient and
the health care provider are the first two parties. This
distinction between the third party and the providers
is becoming blurred, particularly in the United States.
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Figure 1 Health care financing. Source: adapted from [8]
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In the US, groups of health care providers may
assume some financial risk (thus acting as insurers)
by contracting with governments, businesses, and/or
individuals to provide medical care at a fixed rate
per person covered. In general, third-party financing
arose for two reasons: individuals wanted to insure
against the large and uncertain financial costs associ-
ated with illness, and governments wanted to ensure
that the population at large or certain vulnerable por-
tions of the population had access to needed health
care.

As indicated in Figure 1, there are three basic
sources of third-party funds: general taxes, pay-
roll taxes, and insurance premiums. General taxes
include income taxes, value-added or consumption
taxes, and other specific taxes. Payroll taxes are
employment-related taxes, which are normally set
as a percentage of payroll or wages. (Payroll taxes
may apply to all wages, or to wages up to a cer-
tain amount.) (Additionally, governments may use
other sources of revenue such as that from lot-
teries). Insurance premiums are the amount paid
for an insurance policy – premiums vary according
to the type and amount of insurance purchased as
well as the characteristics of the individuals cov-
ered under the policy. Premiums are the price paid
for an insurance policy. (An individual’s policy may
cover the individual, or the individual and other per-
sons dependent on that individual.) Payments made
by the insurance company for covered medical ser-
vices used by individuals enrolled in the insurance
plan are funded by the premiums. If premiums are
the sole funding source for the plan, then premi-
ums must reflect the expected cost of health care
services used by the individuals covered under that
plan as well as the administrative cost of running
the plan.

There are two different approaches to setting the
health insurance premiums: community rating and
experience rating. Community rating systems use
the average, expected cost of medical care for all
individuals in a community and assign this premium
to each individual in the community. An experience
rating system groups individuals by some common
characteristic (i.e. place of employment, age, whether
or not they smoke) and assigns individuals of like
characteristics the same premium, which is based
on the average, expected cost of medical care for
individuals with those characteristics (see Actuarial
Methods).

Major Sources of Third-party Funds
in Selected Countries

Payroll taxes are the major source of third-party funds
in France and Germany. In both of these countries,
employees and employers pay a certain percentage of
their wages into sickness funds. In Germany, there are
several sickness funds, and employees often have a
wide choice of sickness funds in a region. Once an
employee selects a fund, the fund has the right to
collect its premiums (which vary from fund to fund)
as a percent of the employee’s gross wages – half
the premium is paid by the employer and half by the
employee. There is a limit on the amount of wages
subject to premiums. In France, there is one large
sickness fund (which covers about 80% of the pop-
ulation) and several small funds. The contributions
paid by employers and employees are set by the Cen-
tral Government: the employer pays about 12.6% of
total wage bill and the employee pays about 6.8% of
wages. In both of these countries, systems have been
developed to cover individuals who are unemployed
and those who are retired.

General taxes are the major source of third-party
funds in the United Kingdom and Canada. The British
National Health Service is a national program. The
Canadian Medicare program is a decentralized pro-
gram and the cost of the program is shared between
the federal and provincial governments. Each Cana-
dian province administers its own program and exer-
cises some discretion regarding which medical ser-
vices are covered. Third-party financing in the United
States is fundamentally different from that in all other
developed countries because of the large mix of fund-
ing methods used. Multiple types of third parties
exist, including government programs such as Medi-
care and Medicaid, nonprofit insurance companies
such as Blue Cross/Blue Shield, and numerous private
insurance plans vended to employers, unions, and
individuals. This variety of third-party payers results
in a mix of sources of third-party funds, includ-
ing premiums by individuals and businesses, general
taxes, and payroll taxes.

In the United States, the majority of employed
people and their dependants obtain health insurance
through their employment. However, the provision
of health insurance by employers is strictly volun-
tary (other than the State of Hawaii, which mandates
that employers provide health insurance). The fact
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that many employers voluntarily offer health insur-
ance reflects the strong incentives in the current tax
system for employers to provide health insurance.
Under current tax codes, employer-paid premiums are
considered a cost of doing business and are treated
as a business expense. (Large companies frequently
self-insure and hire administrators to manage their
health benefits. Thus, these companies do not strictly
pay premiums. Nevertheless, conceptually, one can
think of expected, average health care costs as the
premium.) Furthermore, these employer-paid premi-
ums are not considered income for employees and
are exempt from individuals’ income taxes. Wide
differences exist across firms with respect to the
design of the benefit package and the proportion
of the premium paid by the employer. (employ-
ers generally pay a higher proportion of the total
premium for their employees than for their employ-
ees’ dependants who might also be included in the
health plan.). Employers sometimes offer employ-
ees a choice among health insurance plans. Active
competition exists among insurance companies in
the employment-offered health insurance market, and
premiums are set competitively. Premiums tend to
be experience rated rather than community rated, and
businesses with healthy employees have lower premi-
ums than businesses with generally sicker employees.
In the United States, health insurance is also available
to individuals and groups, independent of employ-
ment. Premiums are experience rated and reflect
the average, expected cost of illness for individuals
within the defined group covered by a particular pol-
icy. The sicker the pool of individuals covered by an
insurance policy, the higher the premiums. However,
a number of states have passed legislation that set
limits on the range of premia.

Although the United States lacks universal health
insurance, it provides public health insurance for
the poor, the disabled, and the elderly through two
publicly funded programs, Medicaid and Medicare.
Medicaid, which is jointly funded by the Federal
and State governments, provides medical services to
low-income individuals who meet specific eligibility
criteria. Eligibility criteria may vary slightly across
states. In general, the Medicaid enrollees are medi-
cally disabled and/or poor. Medicaid contains specific
benefits for low-income women and their children,
and the majority of those covered by Medicaid are
women and children. (The majority of payments,
however, go for the disabled and the elderly to pay

for long-term care services not covered under the
Medicare program.) The federally funded Medicare
program insures most people aged 65 and over, as
well as a small subset of the general population who
are medically disabled. The Medicare program is
funded through a combination of payroll taxes, gen-
eral tax revenues, beneficiary premiums, and direct
beneficiary payments (see Health Services Organi-
zation in the US).

It should be pointed out that health insurance mar-
kets have developed in many countries to supplement
government health insurance programs. For example,
people in the United Kingdom may purchase private
health insurance as an additional source of third-
party funding that facilitates access to specialists and
allows individuals to jump queues and to use private
facilities not covered by government programs. Cana-
dians may purchase supplemental health insurance
policies to pay for medical services not covered under
the provincial Medicare programs and to pay for
nonessential amenities such as private rooms. Like-
wise, American Medicare beneficiaries may purchase
supplemental insurance (called Medigap insurance) to
cover expenses not included in the Medicare program,
such as outpatient prescription drugs and extended
nursing home care, as well as Medicare cost-sharing
liabilities.

Direct Payments by Individuals

Individuals may also pay health care providers
directly for services rendered. Direct payments to
providers are often referred to as out-of-pocket
payments. People may pay directly for health care
services for several reasons: they are uninsured, or
a particular service is not covered by their health
insurance plan, or the health insurance coverage is
not complete. For example, many insured individuals
routinely make some out-of-pocket payments because
their health insurance policies (including the national
health insurance programs discussed above) contain
explicit cost-sharing provisions mandating some
amount of direct payment by the individual. Cost-
sharing provisions take several different forms
including: deductibles (a fixed amount that must be
paid by the insured before any third party payment
will be made); copayments such as a specific payment
that the insured must pay for each service (e.g. $6.00
for each prescription filled or $5.00 for each visit to
a physician); or a specific percentage of the bill (such
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as the 20% copayment Medicare beneficiaries must
pay for physician services). Wide variations exist
across countries with respect to the level of out-of-
pocket payments for health care. For example, in both
Canada and in the United Kingdom there are no out-
of-pocket payments for basic services covered under
the respective national health insurance systems. In
Germany, out-of-pocket payments are very limited,
whereas France has substantial cost sharing (i.e.
20%–30%) for many health care services. In general,
out-of-pocket payments in the United States are high
relative to those in other developed countries for a
number of reasons: a significant number of people are
uninsured (no third-party payer), and private health
insurance plans are not standardized with respect
to the types of services covered or the level of
cost-sharing provisions on covered services. Note
that although the Medicare program does contain
significant cost-sharing requirements, few Medicare
beneficiaries actually pay much out-of-pocket for
Medicare covered services. Indigent Medicare
beneficiaries have their cost sharing covered under
the Medicaid program, while the majority of
other Medicare beneficiaries have their cost-sharing
liabilities covered through employer sponsored retiree
health benefits or privately purchased supplemental
(Medigap) policies.

Uninsured Individuals

Among the developed countries, only the United
States has a large number of people without insur-
ance because it is the only country without a universal
health insurance program. Approximately 17% of the
United States nonelderly population was uninsured in
2002 [2]. The uninsured pay for services out of their
own pocket. However, a large portion of the cost of
medical care used by the uninsured is covered by pub-
licly funded clinics, specifically designated charity
funds, and “cost-shifting”. Cost-shifting occurs when
a provider charges some groups of patients higher
than normal fees in order to cover the cost of ser-
vices provided to other groups of patients for whom
the provider receives no or inadequate payments.

Implication of Funding Sources on the Burden of
Illness

In general, health insurance programs funded pre-
dominately by income taxes are the most progressive

with respect to income. Individuals with the most
income pay proportionately more than individuals
with the lowest incomes, regardless of their use of
medical services. Health insurance programs funded
by premiums are the most regressive with respect to
income. Payroll taxes tend to be moderately regres-
sive because the percentage of a person’s income
from wages tends to decline as total income rises.
Value-added or consumption taxes are also regressive
with respect to income because low-income indi-
viduals tend to spend a higher proportion of their
income on consumption goods than do upper-income
individuals. However, the regressive nature of health
insurance programs financed by consumption taxes
can be reduced by excluding specific items (such as
food) from taxation.

The broader and more inclusive the funding base
for health insurance programs, the more the financial
cost of illness is shifted from the sick to the healthy.
The more out-of-pocket payments serve as the source
of funds for health care, the more the burden of
the financial cost of illness is borne by the sick.
The more experience rating is used to set premiums,
the more the relatively sick have to pay for health
care. Thus, under national health insurance systems,
such as those in the United Kingdom, Germany,
and Canada, the financial cost of illness is borne
socially and distributed broadly across the population.
Actual expenditures (in out-of-pocket payments and
premiums) made by the sick are much less than
that of the total cost of their medical care. This
is in contrast to the United States where a higher
proportion of costs are paid out of pocket and a large
number of insurance plans are experience rated.

Third-party Payments and Consumer Demand

Health insurance affects the price that a person pays
for medical service, but the effect can be complicated.
For example, a person who has complete insurance
coverage pays a price of zero for each medical service
used. A person with an insurance plan specifying a
$500 deductible, 20% cost sharing, and a $3000 limit
on out-of-pocket payments, pays out of pocket for
the first $500 of medical services used and then pays
20% of charges for additional medical services until a
total of $13 000 in medical services has been used. At
that point, the person will have spent $3000 in total
out-of-pocket expenses and the insurance policy will
cover all additional costs. Thus, individuals covered
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under the former plan may choose to use medical
services differently than those covered under the
second plan since they face very different prices for
the same unit of medical care.

Not surprisingly, there is considerable interest in
how the structure of cost sharing influences the num-
ber of health care services used, that is, in determin-
ing how responsive consumers are to out-of-pocket
payments for medical services. Since the United
States is the only country where direct patient pay-
ments are a significant source of funds, most research
on this issue has been done in the United States
using that country’s data. Several different analyti-
cal structures have been employed to examine the
use of services (see Health Care Utilization Data)
by individuals who pay different prices for the same
service including the examination of natural experi-
ments (e.g. some exogenous event changes the price
that an individual pays for health care), analyses
of self-reported utilization data from large-scale sur-
veys such as the National Medical Care Expenditure
Survey (see Medical Expenditure Panel Survey
(MEPS)), and analyses of claims data from differ-
ent health insurance plans [7]. The need to control
for nonprice factors that influence the use of health
care services, as well as selection bias complicates
this research. (Selection bias arises when people who
need more services choose plans with more extensive
coverage, and vice versa.) The best study examin-
ing these issues uses data from the Health Insurance
Experiment, a randomized clinical trial (see Clinical
Trials, Overview) conducted by the RAND corpo-
ration [6]. This experiment, conducted in the 1970s,
randomized people from six different locations (both
urban and rural) in the United States into one of
14 insurance plans, which differed by the amount of
the deductible, consumer cost sharing, and maximum
out-of-pocket expenses.

The research revealed that consumers generally
respond to the price of health care services, and the
extent to which they respond varies by the type of
medical service. For example, the price of emergency
services produces very little response, while people
are more highly responsive to the price for elective
services. The demand for mental health care services
is more price responsive than that for physical health
care services.

As argued above, the presence of health insurance
affects an individual’s behavior, relative to what it
would be if he or she were not insured. This effect is

sometimes referred to as moral hazard. Moral hazard
is said to occur when insured individuals change their
behavior because they have insurance. The term was
first applied in the life and fire insurance markets.
For instance, moral hazard is said to exist if a person
burns down the house in order to collect fire insur-
ance, or fakes death with the intent of collecting the
life insurance payments. The use of the term in the
life and fire insurance markets implies some immoral
behavior on the part of the insured.

In the health insurance market, moral hazard
refers to insured individuals engaging in riskier (in
terms of their health) behavior because of the pres-
ence of health insurance or otherwise changing their
health-related behavior, such as using more health
care services or failing to seek out low-cost providers.
However, most commonly the term moral hazard
simply reflects the basic law of demand: as the out-
of-pocket price of medical services decreases, people
use more medical services. In this sense, moral hazard
and price responsiveness (known as price elasticity of
demand) are intimately related. Thus, there is nothing
immoral about this type of moral hazard; it is simply
a manifestation of rational human choice.

Funding Sources in the United States

As indicated above, the financing of health care
services in the United States is more complex than in
other countries. Table 1 presents information on the
sources of funds for personal health care services in
the United States; both total service and by the type
of service. In 2002, expenditures on personal health
care services were $1340.2 billion, of which 15.9
was paid by direct patient payments (out-of-pocket
payments) and 84.1% by third parties. However, the
proportion of expenditures covered by third parties
ranges from 97% for hospital care to 44% for drugs
and other services.

Data Sources

Information on health care expenditures is reported
by the government agencies for each country. For
example, the Center for Medicare and Medicare Ser-
vices website has detailed information on program
expenditures as well as national health care expendi-
tures. Furthermore, both the Health Care Financing
Review and Health Affairs annually publish detailed
information on health care expenditures in the United
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Table 1 Source of payment for selected personal health care 2002. Total: 1340.2 billion (US: 2002)

Patient Private health Other State and
Type of service Total (%) direct insurance private Federala localb

Hospital care 100 3.0 33.9 4.2 47.3 11.6
Physician care 100 10.1 49.1 6.9 27.9 5.9
Dentist services 100 44.0 49.5 0.1 3.8 2.6
Prescription drugs 100 29.9 47.8 – 12.9 9.5
Nursing homes 100 25.1 7.5 3.4 44.1 19.9
All personal health care services 100 15.9 35.8 4.2 33.6 10.6

aIncludes medicaid SCHIP expansion and SCHIP.
bSubset of federal funds.

States. The Department of National Health and Wel-
fare in Canada publishes data on Canadian health
expenditures. The Organization for Economic Coop-
eration and Development (OECD) maintains an ongo-
ing data collection and analyzes effort aimed at
producing timely, consistent data for 24 nations in
Asia, Europe, and North America. The journal Health
Affairs periodically publishes data on the perfor-
mance of health systems in OECD countries.

Paying Health Care Providers

A number of methods exist for paying health care
providers (physicians, hospitals, clinics, labs, and
other individuals/firms supplying health care ser-
vices) for medical care services rendered to individ-
uals. This section presents an overview of the most
important of these payments methods.

Paying for Physician Services

Physicians are generally paid using one of three gen-
eral methods of payment: fee-for-service, capitation,
or salary. In some cases, physicians receive payments
under more than one of these payment methods. The
use of multiple payment methods occurs when either
a given payer uses a combination of methods, or, as
occurs in the United States, a physician receives pay-
ments from more than one third-party payer, each of
which uses a different payment method.

Fee-for-service. Under the fee-for-service method
of payment, physicians receive a fee for each service
provided. The medical service rendered is the unit
of payment, and there is a certain degree of discre-
tion regarding how a service is defined. A service

unit can be very distinct (e.g. a urinalysis) or rel-
atively comprehensive (e.g. an appendectomy where
the physician payment covers all care associated with
the procedure, including the preoperative visit, the
surgical procedure itself, and some follow-up care).
Thus, the service on which the unit of payment is
based can actually be some bundle of separate, dis-
crete services.

Payments to physicians for medical services may
be based on the fees that physicians set for their
services or on a specific fee schedule. A fee schedule
defines the amount or relative amount of fees for each
physician service. In general, only third-party payers
use fee schedules. Individuals without insurance for
physicians’ services are usually billed according to
charges set by the physician.

In the United States, third-party payers using
the fee-for-service method may pay physicians an
amount based on the physician’s charges, prenegoti-
ated rates, or a fee schedule. Because different third-
party payers may use different rates or schedules,
physicians can receive different payment amounts
for the same type of service depending upon the
third party payer involved. By contrast, in most other
countries using the fee-for-service method, physicians
receive payment based on a single negotiated fee
schedule or on regional negotiated fee schedules. The
best-known fee schedule in the United States is the
Medicare fee schedule, the fee schedule used by the
Medicare program to pay physicians for services ren-
dered to Medicare beneficiaries. The Medicare fee
schedule assigns each defined unit of service a rela-
tive value quantifying the resources (such as physi-
cian time, skill, and use of support services) needed
to produce the service. The Medicare fee schedule
employs a conversion factor to translate the value of
the resources used into a specific payment amount.
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In addition to the Medicare program, some of the
other third-party payers in the United States have
adopted the Medicare fee schedule for use with their
own resource conversion factors to set payments for
physician services.

Capitation. The capitation method of payment pro-
vides physicians with a defined, periodic, per patient
payment (usually monthly), regardless of the number
or type of covered services the physician provides to
a patient. Most commonly used to pay primary care
physicians, the periodic payment reflects the expected
cost of providing the covered services. The covered
services and terms of the care provided under capita-
tion vary with the actual capitation agreement. When
used to pay primary care physicians, some subspe-
cialty services provided to patients by other physi-
cians may be charged to the primary care physician
for payment out of the primary care physician’s capi-
tated fee. Likewise, some specified services provided
by the primary care physician may not be included
in the capitated fee and instead may be paid for on a
fee-for-service basis. Again, these arrangements vary
by the actual capitation agreement.

The capitation fee may be adjusted to reflect
patient characteristics such as age in order to com-
pensate physicians for variations in the expected
use of services by groups of patients with similar
characteristics. In the United States, managed care
plans use the capitation method widely to pay pri-
mary care physicians, as does the British National
Health Service.

Salary. The salary method of payment provides
physicians with a fixed monthly or annual salary
that does not vary with the number of patients
treated or services provided. However, not all physi-
cians are paid the same salary, which may be based
on such factors as specialty, hours worked, special
duties (such as administrative tasks), and years of
experience. In many European countries, hospital-
based physicians are paid using the salary method,
while physicians working in the outpatient setting
receive payment under other methods. In the United
States, physicians working for government agen-
cies, some Health Maintenance Organizations, or
large group practices, often receive payment by the
salary method.

It should be noted that a physician can receive
payment under a single payment method, while third-
party payers make payments for the physician’s ser-
vices using several different payment methods. For
example, a physician belonging to a large group prac-
tice may receive a salary even though insurance plans
pay for services rendered by physicians in the group
via a capitation method.

Paying Other Professionals. For other health care
professionals (physical therapists, dieticians, social
workers, home care nurses, etc.), the fee-for-service
and salary methods are widespread, while capitation
is rarely used.

Paying Hospitals

Numerous methods are used to pay for hospital ser-
vices, such as payment based on established charges,
retrospective costs, per diem rates, per case rates, cap-
itated payments, or budgets. Because there are many
different third-party payers in the United States, hos-
pitals located there frequently receive payments under
a host of different methods. In contrast, hospitals in
other countries tend to be paid according to a single
payment method.

Charge-based Payments Method. Prevalent only
in the United States, the charge-based method requires
hospitals to define a price or “charge” for each ser-
vice the hospital provides. This hospital-established
charge (or a negotiated percent of that charge) for
each service is then paid either directly by the patient
or by the patient’s health insurance company. If the
insurance policy requires copayments, then the hospi-
tal’s charge is split between the patient and the health
insurance company according to the conditions of the
insurance contract. The charge-based method allows
the hospital to determine the price of hospital ser-
vices. This method is not used by government payers.

Retrospective-cost-based Payment Method. The
retrospective cost-based payment method pays hos-
pitals on the basis of the actual costs of providing
hospital services as opposed to a hospital set charge
(which may not be linked to the cost of providing
services). Under this method, a set of accounting
rules allocates hospital costs to a group of patients.
Although relatively common in the United States
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from 1966 to 1983 because it was used by the Medi-
care program, most state Medicaid programs, and
several Blue Cross plans, this method has lost impor-
tance since the mid-1980s when Medicare introduced
the Prospective Payment System. When this method
is used, hospital payments are typically subject to
limitations – either limits on the extent to which reim-
bursable costs can rise from year to year and/or limits
on the maximum allowable costs. Limitations on the
maximum allowable costs are normally set relative to
costs reported by other similar hospitals.

Per Diem Payment Method. The per diem pay-
ment method pays hospitals a set amount for each day
that a patient spends in the hospital. In general, the
per diem rate is independent of patient characteristics,
(e.g. the same per diem rate is paid for patients under-
going heart surgery as for maternity cases). However,
the per diem rate may vary by hospital. The rate
is generally set via negotiations between the third-
party payers and the hospital. The per diem method is
relatively common in Europe. In Canada, provincial
governments use the per diem method to pay hos-
pitals located outside the province for hospital care
rendered to residents of the province. These transfer
payments represent only a small proportion of hospi-
tals’ budgets.

Per Case Payment Method. The per case method
pays a hospital a set amount for each patient dis-
charged from the hospital. In the most extreme form
of the per case method, hospitals receive a defined
amount per discharge irrespective of the patient’s
condition. More commonly, patients are classified
into groups on the basis of the expected costs for nec-
essary care (known as case mix formulations). Using
a cost weight established for each group, the hospital
receives a payment related to the patient’s group clas-
sification. A number of patient classification systems
exist, but the most frequently used systems are based
on the diagnosis related groups (DRGs) developed
at Yale University [3]; see [4, 5] for an overview of
case-mix classification issues.

The Medicare Prospective Payment System is the
best known of the case-mix-based per case payment
systems. This system classifies patients into one of
approximately 540 DRGs. A cost weight assigned
to each group reflects the expected relative cost of
treating patients within that group. For each patient
discharged, the hospital receives a set payment that

varies by the DRG assigned to the patient. This
particular per case payment system also contains
provisions for additional payments for patients whose
treatment cost are exceptionally high (referred to
as outlier payments) and adjustments for the higher
costs of teaching hospitals.

Capitation Payment Method. The capitation pay-
ment method pays hospitals a fixed, periodic fee per
patient for a defined group of patients, often referred
to as a panel of patients. The capitation payment does
not vary with the actual use of services. Thus, even
if no hospital services are used by any patient in
the hospital’s panel of patients in a given period,
the hospital still receives payment. Unexpectedly,
high use of hospital services by the patients in the
panel can result in net hospital losses for the period.
This payment method shifts financial risk from the
third-party payer to the hospital itself and its use is
relatively rare.

Budget Payment Method. The budget payment
method provides hospitals with a global budget
designed to cover all services provided by the hos-
pital over the course of the year. The global budget
may be unilaterally set by some government agency;
it may be established according to some generally
accepted formulas, which account for inflation and
changes in the size of the inpatient population; or it
may be negotiated between the payer and the hospi-
tal. In some countries, global budgets involve the use
of case-mix information. For example, in the Cana-
dian provinces of Ontario and Alberta, the provincial
governments use case-mix information to identify
hospitals with global budgets, which may be over- or
underfunded relative to other hospitals serving simi-
lar patients. Like a capitation system, a global budget
system shifts financial risk from the third party to the
hospital system. However, it differs from the capita-
tion system because it is not so closely related to the
number of covered lives.

Paying Other Institutional Providers. The same
methods that have been developed to pay for hospitals
are used to pay other institutional providers.

Data Sources

Government agencies publish reports that include the
detailed specifications of their health care payments.
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For example, the rules for both the Medicare Hospital
Prospective Payment System and the Medicare Physi-
cian Payment system are published annually in the
Federal Register. The former includes a listing of all
DRGs, the associated costs, the relative cost weights,
and other information needed to transform DRG rel-
ative costs into payment rates. The latter includes a
list of physician services, associated codes, associ-
ated relative values, and the conversion factor. The
Ontario Ministry of Health publishes the Schedule
of Benefits for physician services under the Health
Insurance Act. This includes the listing of services,
the associated codes, and the payment amounts.

Incentives Embedded in the Payment
Methods

Theoretical Effects of Provider Payment
Mechanisms

The effects of these different methods of paying
providers have been the focus of a large body of
research (see Health Services Research, Overview).
The basic approach to assessing providers’ response
to methods of payment is to identify those actions
that either increase the providers’ profits or decrease
their losses. This can be done through formal theo-
retical modeling [1] as well as through a thoughtful
consideration of the issues.

In general, analysts believe that the fee-for-service
payment method creates incentives for providers
to increase the number of services provided. Fur-
thermore, the fee-for-service payment method lacks
incentives for physicians to combine services in a
way that minimizes the total cost of treating a patient
to obtain a specific outcome. This effect, combined
with a physician’s desire to deliver thorough and
comprehensive care, can result in too many services
being provided. The capitation payment method elim-
inates the incentive in the fee-for-service method to
increase the number of services rendered. Instead, the
capitation method creates strong incentives for physi-
cians to manage a patient’s care efficiently – at least
with respect to the services covered under the capita-
tion fee. However, the capitated payment method may
result in under-treatment of patients when physicians
are not involved in the long-term planning of patient
care. Furthermore, there may be some incentives for
physicians actively to seek out or recruit relatively

healthy (i.e. less costly) patients and to discourage
relatively sick (i.e. more costly) patients from join-
ing or remaining in the physician’s panel of patients.
This is possible because physicians can influence the
nature of the interaction that they have with patients.

The salary payment method significantly reduces
physician incentives to provide either too many or
too few services. However, this method lacks any
incentives for physicians to manage patient care
efficiently. Furthermore, while the salary payment
method removes the incentive for excessive use of
medical services, physicians may respond by decreas-
ing their work output. Thus, this method may neces-
sitate productivity enhancement and monitoring mea-
sures to ensure an adequate level of work effort on
the part of physicians.

Analysts examine the same factors when they con-
sider the incentive effects embedded in the different
methods used to pay hospitals. Under a charge-based
payment system or a retrospective-cost-based pay-
ment system (when most of the payments are made
by third parties), there are few financial incentives
for hospital administrators to decrease costs or to
develop systems that encourage physicians to manage
care efficiently. Under a per diem payment method,
financial incentives exist to manage the daily costs of
hospital care but not the number of days. Therefore,
as long as the per diem payment rate is higher than
the marginal daily costs, incentives exist to increase
the length of the hospital stay. The per case pay-
ment method creates strong incentives to manage the
use of inpatient services efficiently but also creates
incentives to shorten hospital stays. Hospitals may
achieve shorter stays by transferring patients to other
facilities. The per case payment method also contains
financial incentives for hospital decision-makers to
undertreat patients, to discriminate against relatively
sick patients, and to encourage actively the admission
of relatively healthy patients.

Empirical Research on Supply Response

Research on the supply response to payment methods
has been concentrated in the United States because
of the variety of payment schemes in effect there,
the extensive changes in the level and structure of
payments that have been made by third parties, and
the accessibility of electronic databases (see Admin-
istrative Databases) suitable for testing hypotheses
about supply response.
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Different analytical approaches analyzing provider
response to employer changes have been used. Two
approaches are commonly used are before–after stud-
ies comparing the outcomes for a common set of
providers before and after some specific change in
payment method and fixed effect models analyzing
the effect of payment method using categorical vari-
ables to characterize the payment method. Analysts
also use a difference in the differences approach in
which they analyze the relative differences across two
panels of medical providers (or patients) over time
where one panel has experienced a change in pay-
ment methods and the other panel has not. In general,
empirical results are consistent with the incentive
effects as discussed above (see [9] for a review of
physician supply response).

Databases

As noted, research on supplier response has been
facilitated by the existence of large, electronically
available databases. For example, the Medicare pro-
gram’s administrative records include detailed infor-
mation on all payments made under the traditional
Medicare program. In the Medicare system, an elec-
tronic claim record is created for each service pro-
vided to a Medicare beneficiary by a physician or
other individual medical care provider. A compre-
hensive electronic claim record is also created for
each hospital admission for a Medicare beneficiary.
Each provider of medical services (including hos-
pitals and clinics) and each Medicare beneficiary
has a unique identifier. Therefore, it is possible to
develop records of episodes of care for beneficiaries
and to assess the effect of payment changes for hos-
pital care on length of stay, hospital transfers, the
characteristics of hospital patients, and the use of non-
hospital services. Detailed data linking providers and
recipients (see Record Linkage) are also available
for some state Medicaid programs and some private
insurance companies and health plans. Additionally,
some states require hospitals to report detailed diag-
nostic and charge information on all their discharges
or mandate the collection of limited clinical data
on all patients. These data are available from the
relevant state agencies. Finally, the American Hos-
pital Association (AHA) surveys all hospitals in the
United States about the number of beds, the number
of admissions, and costs. The results are reported in

the AHA Annual Guide to the Health Care Industry
as well as electronically.

Macroeconomic Concerns: A Comment

In all countries, the health care system is shaped by
the general regulatory environment within which con-
sumers make decisions about accessing the health
care system, and providers make decisions about
the types of treatments to provide or recommend.
There are significant differences across countries with
respect to the extent of centralized controls over the
number and location of hospital beds, the number and
specialties of physicians in training, physician licens-
ing, practice location and mobility, and the ability of
hospitals or groups of providers to establish clinics or
purchase advanced technology. In addition, all health
plans (government and private) define the types of
services they will cover, the relative frequency with
which some services (e.g. preventive services) will
be paid for, and the conditions under which patients
can seek specialty care. Under some plans, patients
are allowed to self-refer to specialists; in others, they
must obtain permission from a primary care physician
to visit a specialist.

In addition to the regulatory controls, the level of
control that government authorities have over aggre-
gate health care budgets varies. In general, the more a
health care system is directly budgeted, the more gov-
ernmental control there is over the size of the health
care system (subject of course to the give and play of
the political environment). In those cases where gov-
ernments or regulatory authorities control the prices
of care (per service, per day, or per case), providers
can influence the outcomes by altering the mix of ser-
vices or the volume of care. However, it is possible
to impose budgetary control in a system where prices
are directly controlled. For example, the United States
has imposed physician expenditure targets called Vol-
ume Performance Standards for physicians under the
Medicare program. The conversion factor applied to
determine the Medicare fee schedule is a function of
how well physicians in the aggregate meet the volume
performance standard. In the province of Ontario, the
government sets income limits for individual physi-
cians. As payments to individual physicians reach the
limit, the proportion of the fee paid decreases. In gen-
eral, there is much less aggregate control over the
health care delivery system in the United States than
there is in other countries.
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The financing methods and the type of aggregate
controls imposed on a country do not appear to have a
major independent effect on the size of the health care
sector relative to the aggregate economy. Health care
expenditures per capita are highly correlated with
gross domestic product per capita. In fact, a study
of health care costs in countries that were members
of the Organization for Economic Cooperation and
Development (OECD) found that R2 (see Correla-
tion) was 0.93 for a simple model in which the log
of a country’s per capita expenditures on health care
was regressed against the log of the country’s per
capita domestic product [7].

References

[1] Ellis, R.P. & McGuire, T.G. (1986). Provider behavior
under prospective reimbursement: cost sharing and sup-
ply, Journal of Health Economics 5, 107–193.

[2] Fronstein P. (2003). Sources of Health Insurance and
Characteristics of the Uninsured, Analysis of the March
2003 Current Population Survey. EBRI Issue Brief
264. Employee Benefit Research Institute, Washington,
December 2003.

[3] Health Systems Management Group. (1982). The
New ICD-9-CM Diagnosis-Related Group Classification
Scheme, Final Report. Yale School of Organization and
Management. New Haven, Connecticut.

[4] Hornbrook, M.C. (1982a). Hospital case mix: its def-
inition, measurement, and use: Part I. The conceptual
framework, Medical Care Review 39, 1–43.

[5] Hornbrook, M.C. (1982b). Hospital case mix: its defini-
tion, measurement, and use: Part II. Review of alternative
measures, Medical Care Review 39, 75–123.

[6] Newhouse, J.P. (1993). Free for All? Lessons from the
RAND Health Insurance Experiment. Harvard University
Press, Cambridge.

[7] Phelps, C.E. (1992). Health Economics. Harper Collins,
New York.

[8] Reinhardt, U.E. (1993). An “all-American” health reform
proposal, Journal of American Health Policy 13, 11–17.

[9] Rice, T. (1997). Physician payment policies: impacts and
implications, in Annual Review of Public Health, J.E.
Fielding, L.B. Lave & B. Starfield, eds. Annual Reviews
Inc., Palo Alto, Vol. 18, 549–565.

JUDITH R. LAVE & PAMELA B. PEELE



Health Care Technology
Assessment

What is HTA?

Health technology assessment (HTA) is the evalua-
tion of the properties, effectiveness, and the direct
and indirect impacts of health technologies. A health
technology refers mainly to interventions or methods
used to affect the health of an individual or pop-
ulations. Thus, it includes health promotion, health
care interventions to treat and rehabilitate (including
drugs, devices, and procedures), and the systems for
the support and delivery of care such as telemedicine
and patient records. Health technology assessment
(sometimes referred to as Health Care or Health
Service Technology Assessment ) can be considered
a major component of Health Services Research
(HSR), which is also concerned with broader issues
like the financing, organization, and delivery of care.
HTA is carried out in order to find out whether a
technology works, for whom, at what cost and with
what other intended or unintended consequences for
the individuals, their families, the health service, and
society in general. Therefore, it is best conducted by
teams incorporating disciplines, such as statistics, epi-
demiology, economics, psychology, and sociology.
The results are used to inform health policy and prac-
tice at a national or a local level.

Reasons for HTA

Over the last 25 or so years, health care spending in
developed countries has been rising in real terms and
as a percentage of gross domestic product. Much of
this increased spending has been on new interven-
tions for the prevention or management of disease.
Therefore, health care funders are particular keen to
ensure that this investment is worthwhile and delivers
a sufficient return in the form of improved health out-
comes. In addition to the cost implications of health
technologies, several of them such as in vitro fertil-
ization, genetic testing, organ transplantation, and life
sustaining technologies raise important ethical and
social concerns.

Research has also shown that there are significant
geographical variations in the patterns of practice
even within the same health care system [19] not

explainable by variations in the underlying frequency
of disease. Health care professionals and experts
are not always reliable sources of information about
the effects of a health technology. Clinical practice,
therefore, rather than being determined purely by
professional views, should be more firmly based on
the research evidence. This has led to the call for
“Evidence-based Medicine” and the standardization
of health care informed by the research evidence base.
HTA is the engine that provides much of the data for
evidence-based health care and the evidence base for
the development of clinical practice guidelines.

HTA grew out of general technology assessment
that emerged in the United States in the mid-1960s
in response to concern about the consequences of
the rise of technology in modern life. In 1972, the
US Congress established an Office for Technology
Assessment (OTA) followed by the National Cen-
ter for Health Care Technology and subsequent to
that, the Office of Health Technology Assessment
(OHTA). OHTA was a component of the National
Center for Health Services Research and Health
Care Technology Assessment (NCHSR), which later
became the Agency for Health Care Policy and
Research (AHCPR), the predecessor of the Agency
for Healthcare Research and Quality (AHRQ).

OHTA’s role was to advise the Healthcare Financ-
ing Administration now the Centers for Medicare &
Medicaid Services, (CMS) on coverage decisions for
new medical technologies under the Medicare pro-
gram. The AHRQ continues its role as science advisor
to CMS by providing health technology assessments
to the Coverage and Analysis Group at CMS, whose
coverage decisions are often followed by private
health insurers. (see Health Services Organization
in the US.)

Topics Addressed by HTA

Since there is no standard set of activities that can be
said to form a part of all HTAs, much will depend on
the aims of the HTA and the nature of the technology.
However, one or more of the following elements are
usually present [12].

• Assessment of the current state of development
and use of the technology.

• Assessment of the technical characteristics of the
technology if it is a device (see Medical Devices).

• Assessment of the effectiveness technology.
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• Assessment of the safety of the technology.
• Economic evaluation of the technology to exam-

ine the resource use relative to the benefits/harms.
• Effect of the technology on the organization and

delivery of services.
• Wider impact of the adoption of the technology.
• Ethical issues associated with the use of the

technology.

Though HTA can encompass a wide range of
topics spanning the technical to the social and eth-
ical, in general most of them are limited to consid-
eration of effectiveness and cost-effectiveness (see
also Pharmacoepidemiology, Adverse and Benefi-
cial Effects.)

Titles of some recent HTAs produced around the
world include:

• Implantable Defibrillators (ICD)
• Positron Emission Tomography (PET) Imaging in

Cancer Management
• Monitoring blood glucose control in diabetes: a

systematic review
• Phakic Intraocular Lenses
• Systematic Review and Economic Evaluation of

the Effectiveness of infliximab for the treatment
of Crohn’s Disease

• Evaluation of Molecular Tests for prenatal diag-
nosis of Chromosome Abnormalities

• Oseltamivir for the Treatment of Suspected Influ-
enza: a clinical and economic assessment

• Sentinel Node Biopsy in Breast Cancer
• A Systematic Review of Atypical Antipsychotic

Drugs in Schizophrenia
• Acupuncture: Evidence from Systematic Reviews
• Clinical and Cost-effectiveness of Routine Dental

Checks: A Systematic Review and Economics
Evaluation.

There is a tendency for HTA to focus on new tech-
nologies as these may represent the most pressing
demands on health care budgets and so are of direct
concern to health care funders. However, this can
result in a bias, in which new technologies recom-
mended as cost-effective displace older technologies
that may be equally or more beneficial but which have
not been assessed. Techniques have been developed
to support a more rational and scientific approach
to prioritizing research on technologies. Methods for
estimating the payback from investments in such
assessments have been developed but are quite crude,

More recently, Claxton et al. [1] have developed a
Bayesian decision theoretic approach (see Bayesian
Decision Models in Health Care) to valuing addi-
tional information that helps funders or regulators
decide whether the costs of reducing uncertainty by
carrying out more research is justified by the expected
value of improved information. The model helps reg-
ulators to decide if a health technology should be
adopted on the basis of existing evidence or whether
it is worth undertaking research to reduce uncertainty
further.

Methods Used in HTA

Many HTAs consist of reviews of the results of
existing research. Traditional reviews have now
largely been discredited as being unreliable and
often biased. It is important that reviews are
systematic in order to ensure that there is an
explicit, comprehensive and methodologically sound,
and unbiased approach to identifying, appraising,
and summarizing the research [10]. Quantitative
approaches to combining the results of studies
found in the review – meta-analysis – are now
widely used [18]. This has been an important
area for methodological development with different
methods of handling variations between study
heterogeneity and for combining evidence from
different types of study designs, such as Bayesian
hierarchical models [13]. Recently, there has been
interest in methods for combining quantitative and
qualitative data.

The most reliable evidence for estimating the
effectiveness of a health technology (i.e. its effect
on health outcomes) is a randomized controlled trial
(RCT) (see Clinical Trials, Overview). If well con-
ducted, this method reduces the susceptibility to bias
and provides more reliable estimates of the effect
of the health technology than other designs such
as quasi-experimental and uncontrolled studies that
often overestimate the effects. However, experimen-
tal evaluation of health technologies may be difficult
if the technology is emerging, presents ethical chal-
lenges, and is very expensive to run. Questions are
also raised about the degree to which the results of
trials can be generalized to routine care situations.
Thus, attempts are made to make trials as realistic or
pragmatic as possible. Methods are also being devel-
oped for applying the results of studies to particular
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patient subgroups or individuals, rather than just use
average estimates.

If the technology is widespread and not applied to
individuals, such as telemedicine or media health pro-
motion campaigns, randomization is carried out at a
higher level than the individual – cluster randomized
trials (see Cluster Randomization) – which raises
new methodological and statistical problems.

Assessing the benefits to patients of a technol-
ogy involves deciding what endpoints or outcome
measures should be used. Increasingly, it has been
accepted that conventional clinical outcome mea-
sures such as lung function tests for people with
asthma be replaced or supplemented by more patient-
centered measures (which may be disease specific,
dimension specific or cover the whole of health-
related quality of life) [5]. All too often, technol-
ogy assessments have based their conclusions on
evaluations using surrogate endpoints or interme-
diate outcome measures, often physiological or bio-
chemical markers that are taken to be predictive of
important outcomes such as death. However, this
often wrongly assumes that the predictive models are
accurate and that in real life the pathway between
the intermediate and eventual outcome is clear and
unchanging. In addition, surrogates rarely predict
harm and so a technology that looks beneficial on
the basis of the performance of surrogate endpoints
(e.g. reduction in cholesterol or reduction in cardiac
dysrhythmias) may actually result in worse outcomes
when measured by the effect on, say, total mortal-
ity [8].

Economic evaluation is often an integral part of
a health technology assessment (see Health Eco-
nomics). Using resources for one technology has an
opportunity cost, in that the benefits derived from
using those resources in some other effective inter-
vention are forfeited. Thus, it is important to consider
the resource implications associated with generat-
ing the benefits – cost-effectiveness. The standards
for conducting economic evaluations have become
more established over time [7] and now often employ
complex statistical techniques for modeling the effec-
tiveness and cost data [15].

Though most HTAs are predominantly quantita-
tive in methods resulting in estimates of the costs
and benefits of the technology, increasingly, qual-
itative approaches are being used to gain a richer
understanding of the likely impact of technologies
on patients and the health care system [11].

Timing

Health technologies have a life cycle with an early
developmental phase, early adoption, then (if success-
ful) rapid diffusion, and then a reduction in use as it
becomes obsolete and is either displaced by newer
technologies or abandoned as information about lack
of effect or adverse side effects become available [3].
There is no best time to assess a health technology,
the less established it is the more likely its uptake
will be influenced by the assessment, for it is diffi-
cult to change practice once the use of a technology
is widespread. However, it can be more difficult to
assess a technology in its early phase because there
are less data on effects and costs available on which
the assessment can be based. Early assessments of
some technologies, especially those involving tech-
nical skills, may underestimate the benefits if there
is a learning effect. There is no right solution to this
trade-off, which has been nicely captured as Buxton’s
paradox “its always too early until it is too late”! Sev-
eral countries have established “horizon scanning”
programs for the early identification and assessment
of new and emerging technologies [17].

A good introduction to the wide range of methods
used in conducting HTAs is provided by Stevens
et al. [16].

Organization of HTA

Health Technology Assessment tends to be sponsored
by national or regional health care funders such as
the government, or by social or private insurance
funds, or health care providers. In addition, there
is substantial industrial HTA activity. HTA may be
carried out in-house or by commissioning universities
or specialist consultancy companies.

One of the earliest and sustained programs of
HTA in the English-speaking world was established
in 1993 as part of a national Research and Devel-
opment program for the United Kingdom National
Health Service (www.ncchta.org). It involves a
national system of consultation to determine priori-
ties for assessments reflecting areas where clinicians,
health service managers or health service users felt
there was sufficient uncertainty about the appropri-
ate use of health technologies. More recently, the
program also has a stream of work commissioned
specifically by the National Institute for Clinical
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Excellence, which was established to make recom-
mendations to the NHS and government as to what
health technologies should be publicly funded and
to produce clinical practice guidelines. In most other
European countries, there are well-established agen-
cies for HTA. In Canada also, there have been various
provincially funded HTA programs with a national
Canadian Coordinating Office for HTA (CCOHTA:
www.ccohta.ca).

HTA has had a long but more turbulent history
in the United States [4] partly because of the
fragmentation of the health care system (resulting
in HTA being sponsored by several public and
private organizations) and also because of the
powerful professional and commercial interests.
The congressional OTA and the federally funded
OHTA were both closed down in the 1990s despite
their good international reputation. Federally funded
technology assessments are now conducted internally
at the AHRQ or by contracting with one of
their 14 Evidence-based Practice Centers (EPCs:
www.ahrq.gov/clinic/epc/). One of these is the
Blue Cross and Blue Shield Association Technology
Evaluation Center (TEC), which provides technology
assessment services to all independent Blue Cross and
Blue Shield Member Plans, issuing around 20 to 25
TEC assessments per year.

Most health care systems are facing similar pres-
sures and have to consider the appropriate use of the
same technologies. Thus, an international organiza-
tion was established in 1993 to promote the sharing
of information from different assessments carried
out across the world and to cooperate in the con-
duct of these assessments. Initially established by
publicly funded HTA organizations, the International
Network for Agencies for Health Technology Assess-
ment (INAHTA: www.inahta.org) now has about
40 member agencies from 20 countries, stretching
from North and Latin America to Europe, Australia,
and New Zealand.

The conduct of HTA is also promoted by Health
Technology Assessment International.(HTAi: www.
htai.org), a new professional and scientific society.
This society is the only professional society focusing
specifically on HTAs around the world.

Dissemination of HTAs

The results of HTA are disseminated in a vari-
ety of ways including reports to the commissioner

and articles in major medical journals. The spe-
cialist journal, the International Journal of Tech-
nology Assessment in Health Care, also serves as
a forum for the wide range of professionals inter-
ested in the assessment of medical technology, its
consequences for patients, and its impact on soci-
ety. The Center for Reviews and Dissemination
at the University of York, UK, in collaboration
with the INAHTA, maintains a database of HTAs
produced by a variety of agencies internationally
(http://nhscrd.york.ac.uk/welcome.htm).
It contains details of over 1600 HTA publica-
tions and hundreds of ongoing INAHTA projects.
The National Library of Medicine also main-
tains a searchable collection of large full text
technology assessments mainly carried out in the
USA in Health Services/Technology Assessment Text
(HSTAT: http://hstat.nlm.nih.gov). This in-
cludes the evidence reports from the AHRQ and the
US Preventive Services Task Force’s Guide to Com-
munity Preventive Services.

Impact of HTAs

HTAs are rarely undertaken as a purely academic
exercise; they are carried out in order to inform pol-
icy and practice. The policy impact might be, for
example, the decision of a health regulator to license
a new drug or device of a health care funder to pay
for a health technology and under what conditions
(coverage decisions). At a clinical practice level, an
HTA can feed into the production of clinical prac-
tice guidelines produced by a regulator, a health care
organization or professional association. In ideal cir-
cumstances, HTA can result in the increased uptake
of cost-effective technologies or lead to a reduction
in the use of ineffective, unsafe technologies or those
whose costs are too high, relative to any benefits.
However, rarely does the evidence from an assess-
ment lead to unambiguous policy or practice impli-
cations – the facts rarely “speak for themselves”. Not
only is there usually some uncertainty about the evi-
dence, but also the way that evidence interplays with
the practice, social, economic, and political context,
can result in the same evidence being used to jus-
tify different recommendations. Thus, small benefits
relative to cost may lead to recommendations to pay
for a technology in a rich health economy such as
the United States whilst a more cash limited system
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such as the NHS in the United Kingdom might decide
using the same evidence to restrict use or require
more evidence [6].

At the level of clinical practice, many other factors
will mediate the impact of an HTA, such as the
mode of dissemination, and the degree to which it
requires major professional change and the costs (e.g.
financial, time, and skills acquisition) of adopting the
recommended technology [14]. There has been little
formal evaluation of the impact of HTAs on practice.

HTAs can influence decisions affecting the licens-
ing or, more usually, the coverage of new drugs,
devices and procedures, and so they have the poten-
tial to affect the sales and profits, the costs to health
systems, and the clinicians’ income. Health care pro-
fessionals who use these technologies, and the indus-
tries that sell these are often suspicious that HTA is
a device to cut costs and reduce professional control
over health care.

This can make HTA reports the object of intense
scrutiny by the health care, pharmaceutical and
devices industries, government, and professional
groups [6]. For example, the Canadian Coordinating
Office of Health Technology Assessment (CCOHTA)
had to use 13% of its annual budget to successfully
beat a lawsuit from a pharmaceutical company
seeking to prevent the release of a report on
cholesterol lowering drugs (statins) [9]. In the
United States, orthopedic surgeons orchestrated a
campaign against the AHCPR in response to its
guideline on the management of back pain, which
stressed the importance of nonsurgical approaches.
The backlash contributed to a cut in AHCPR’s budget
and the curtailment of guideline production [2]. This
highly politicized environment makes it all the more
important to have strong and independent procedures
for the conduct of HTA.
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Health Care Utilization
and Behavior, Models of

Models of health care utilization behavior provide
guidance for defining variables, specifying the rela-
tionships between them, and evaluating programs and
policies concerned with access to and utilization of
health care services (see Health Care Utilization
Data; Health Care Utilization Data, Analysis). Dia-
grams (as in Figure 1) are used to categorize the
relevant variables and their interrelationships.

Models may be used to guide the conduct of
descriptive, analytic, or evaluative studies of the oper-
ation and performance of the health services deliv-
ery system. Descriptive studies focus on profiling
the variables in the model (represented by boxes
in Figure 1) for a population or subgroup. Analyt-
ical designs speculate on the hypothesized relation-
ships between the implied predictors (independent
variables) and outcomes of interest (dependent vari-
ables) (displayed by arrows). Experimental designs
or quasi-experimental designs test the impact of a
specific program or intervention on desired outcomes
(the end-points in Figure 1).

Four major types of conceptual models have been
developed and applied in specifying the interrelation-
ships of the array of possible predictors of health
care utilization behavior, and in guiding the conduct

of analytic and evaluative research in this area [2].
These include (i) models of patient decision making,
grounded in sociological theory and research (particu-
larly those developed by Suchman, Kosa and Robert-
son, and Mechanic); (ii) the health belief model,
based in social psychological theory (developed by
Becker); (iii) economic models of the demand for
medical care (as amplified by Grossman); and (iv)
the behavioral model of health services utilization
(developed by Andersen and his colleagues, displayed
in Figure 1) that has guided the conduct of much
health services research on access to and utiliza-
tion of health care services [1, 5]. The first three
types of models will be reviewed next and the behav-
ioral model discussed in more detail in the section
that follows.

Models of Patient Decision Making

Suchman

Suchman’s framework for stages of decision making
about seeking medical care is focused on episodes
of illness. In Suchman’s paradigm, the sequence of
seeking medical care for illness is divided into five
stages: (i) experience of the symptom; (ii) assumption
of the sick role; (iii) medical care contact; (iv) depen-
dent patient role; and (v) recovery or rehabilitation.
A group with more parochial or traditional, in con-
trast to more cosmopolitan, affiliations and a popular,
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Figure 1 An emerging model – phase 4. Reprinted from [3] by permission of the publisher
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rather than more scientific, orientation toward medi-
cal care would, he suggests, be more likely to delay
in recognizing symptoms, linger longer in the stage
of using home remedies, be suspicious of medical
providers and perhaps shop around more, fail to
adhere to prescribed therapies, and relinquish the sick
role as soon as possible.

Kosa and Robertson

Whereas Suchman’s model tended to offer more
sociological or structural explanations for why
individuals might respond differently at different
stages of an illness episode, a model developed by
Kosa and Robertson focused more on psychological
explanations. Behavior is motivated by the indi-
vidual’s psychological need to reduce the anxiety
aroused by the threat of illness. The Kosa and Robert-
son model also assumes stages of individual decision
making in response to illness: (i) an assessment of a
disturbance in usual functioning; (ii) anxiety arousal
based on the perception of the symptoms; (iii) the
application of one’s medical knowledge to address
the problem; and (iv) the performance of activities to
alleviate the anxiety. Activities may be of two kinds:
therapeutic interventions directed at the removal of
the specific health problem, or interventions aimed at
relieving the anxiety of satisfying other needs (e.g.
fear) without addressing the health problem directly.

Each stage of decision making is influenced by
these psychological dynamics as well as the culture
and social groups (e.g. family) of which they are
a part or with whom they come in contact (e.g.
professional medical providers).

Mechanic

Mechanic’s model catalogues an array of social
and psychological factors that might influence the
likely impact of symptoms on individuals care-
seeking. These include: (i) perception of symptoms
(e.g. salience, seriousness, disruptiveness, frequency);
(ii) characteristics of individuals (e.g. tolerance of
discomfort, knowledge of illness, competing needs);
and (iii) accessibility of care causing disruption in the
treatment process (e.g. inconvenient location or hours
of service, out-of-pocket costs). However, the need
for care from the point of view of the patient (self-
defined illness) may not always agree with the need

for care as defined by the provider (other-defined ill-
ness), which may have significant consequences for
patient compliance and continuity [1].

Health Belief Model

The health belief model was originally conceived
to understand preventive health care (health behav-
ior) but has subsequently been applied to explaining
care-seeking in response to illness (illness behavior)
and those activities required for recovery from ill-
ness (sick role behaviors). The major components
of this social–psychologically oriented model are as
follows: (i) an individual’s subjective state of readi-
ness to take action, based on the individual’s per-
ceived likelihood of susceptibility to the illness, as
well as its seriousness; (ii) an individual’s assessment
of engaging in a given health care-seeking behavior,
based on weighing the benefits (reducing susceptibil-
ity or seriousness) relative to the likely costs (physi-
cal, financial, etc.); (iii) the presence of cues to action
to trigger the appropriate action, coming from either
internal (e.g. symptoms) or external (e.g. interper-
sonal interactions, mass media) sources; and (iv) the
role of other modifying factors, such as demographic,
sociopsychological, and structural. These factors all
influence the perceived threat of the disease and the
subsequent likelihood of taking action [1].

Models of Consumers’ Demand for
Medical Care

Economic models of consumer choice stress means
(e.g. health insurance or income) through which peo-
ple can attain services or translate their perceived
need into economic demand for medical care. An
important contribution to the demand models was
made by Grossman, who argued that what consumers
really demand when they purchase medical care is
health [5]. A number of hypotheses might be gen-
erated by this model of joint demand for health and
care including: (i) as people age and their stock of
health declines they will increase their consumption
of medical care to offset the decline; (ii) as peo-
ple’s income increases, their consumption of medical
care will increase because they will place increased
value on healthy days; and (iii) as people’s educa-
tion increases, their demand for medical care will
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decline because they will be more efficient in pro-
ducing health [4]. The best known application of
the demand for medical care model is the RAND
Health Insurance Study which employed random-
ized trials (see Clinical Trials, Overview; Health
Care Financing) to estimate the effects of changes in
health insurance benefits on people’s use of medical
care and their health status [6].

Behavioral Model of Health Services
Utilization

The behavioral model of health services utilization is
arguably the most comprehensive and widely applied
model in health services research focusing on access
to and use of health care services [2, 3]. The most cur-
rent adaptation of the model is displayed in Figure 1.

The original version of the model developed in
the 1960s suggested that people’s use of services
is a function of their predisposition to use services
(predisposing variables), factors which enable or
impede use (enabling variables), and their need
for care (need variables). Predisposing variables
include demographic and social structure factors
(e.g. employment, social class, occupation, race) and
health beliefs. The enabling component encompasses
both resources specific to individuals (e.g. income,
insurance coverage, regular source of care) and
attributes of the community in which they live (e.g.
physician and hospital bed supply). The need for
care may be based on perceptions of the individuals
themselves or diagnostic assessments by providers.

The model provides an empirical approach to
assessing the equity of health services utilization.
Andersen and Aday (originators of the model) assume
that in an equitable system, need (rather than predis-
posing and enabling) components will be the primary
basis for accounting for subgroup variations in use.
They also distinguish those components which are
more mutable (alterable by the health care system) –
enabling factors – vs. those that are not – demo-
graphic or social structural characteristics.

In later versions of the model (1970s) the health
care system was explicitly included in the model
in recognition of the important impact of organiza-
tional and financial factors on the distribution and
delivery of services. The dimensions of health ser-
vices use measures (type, site, purpose, and time
interval for care) were elaborated, and satisfaction

added as another important (subjective) indicator of
individuals experience of care-seeking.

More recently (during the 1980s and 1990s) the
model allowed for the growing recognition of the
importance of considering the impact of health care
utilization in the context of other likely predictors
of health outcomes. Revisions acknowledged that the
external environment (physical, political, and eco-
nomic) and personal health practices (such as diet,
exercise, and self-care) influence formal health ser-
vices utilization and (ultimately) health outcomes.
The revised model added people’s perception of their
health status and clinical (evaluated) measures of
health status as well as patient satisfaction with ser-
vice as outcomes. Finally, it incorporated feedback
loops showing that health outcomes, in turn, affect
subsequent predisposing factors, perceived need for
services, and health behavior.

Limitations of Dominant Models and New
Directions

A number of criticisms have been offered of the origi-
nal and expanded behavioral model of health services
utilization, which may be seen as establishing the
grounding for new substantive and methodological
research based on the model [2, 7]. These criticisms
relate principally to the specification of the indepen-
dent and dependent variables in the model, the causal
pathways between and among them, and the gener-
alizability and policy relevance of research based on
the model.

Independent Variables

The criticisms of the major predictors of utilization
relate primarily to the validity or accuracy of the
operational definitions used to measure major study
concepts; the fact that most studies in which the
model is used do not fully encompass all components
of the model; the need to add other dimensions to
capture adequately the relevant predictors for selected
types of utilization or populations; and the likelihood
of significant interactions between subcomponents
of the model.

Dependent Variables

Important extensions of the model in terms of the
utilization variables themselves would be to explore
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more systematically the interrelationships (or trade-
offs) between different types of service use (e.g.
ambulatory vs. inpatient), as well as the relationship
of utilization to both patient satisfaction and health
outcomes.

Relationships between Variables

Full tests of the interrelationships between and among
variables entail the use of stronger analytic and
evaluative research designs and the application of
more sophisticated modeling techniques in empiri-
cally examining these interrelationships.

Generalizability

Major criticisms of the model have focused on the
fact that most studies in which it has been utilized
explain only a small amount of the variation in health
services utilization. Also, the program and policy
relevance of the model would be enhanced by the
design of studies and analyses to relate more directly
the impact of utilization on patient satisfaction, health
outcomes, and costs.

Summary

In summary, various factors may account for those
who ultimately seek health care. Substantial progress
has been made in specifying and measuring the rela-
tionships among these factors. The conceptual models
reviewed here provide integrative frameworks for
considering many of these factors and their inter-
relationships. However, health services research can

provide continued guidance in refining these mod-
els, designing and implementing empirical studies to
test and evaluate them, and shaping the formulation
and interpretation of the policy relevance of research
guided by such models.
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Health Care Utilization
Data, Analysis

Data on health care utilization are used to address
important questions about what is done for whom,
and can shed light on why and with what outcome,
in the large segment of economic life that “delivers”
health care services to populations. We discuss the
kinds of utilization studies and analytic issues that
commonly arise. Multivariable modeling techniques
are used to identify differences in use and possible
reasons for these differences, although the available
data often limit the questions that can be successfully
addressed (see Health Care Utilization Data).

Important concerns when studying utilization are
(a) identifying all instances of use, (b) identifying the
at-risk population, (c) accounting for differential risk
of individuals, and (d) distinguishing real differences
from random noise. These issues are explored in more
detail in this article, and in the articles on health care
utilization data and risk adjustment.

An influential class of small area variation stud-
ies has established that people in different parts of
the country and in different communities within the
same region receive very different care, for example,
population-based rates of tonsillectomy, hysterec-
tomy, or hospitalization vary tremendously. Addi-
tional research has tried to understand these differ-
ences, for example, asking if areas with high hospital-
ization rates also have high rates of inappropriate hos-
pital admissions (see Health Care Utilization and
Behavior, Models of). Geographic variation in pat-
terns of use may reflect lack of agreement within the
medical community about treatment options, and help
identify opportunities for improving care through
standardization to better treatment protocols.

Disparities studies that explore variations in treat-
ment by patient race or sex may reflect societal preju-
dice in allocating expensive resources. Variations by
payer class, such as Medicaid versus private insur-
ance, or payment method, such as fee-for-service
versus capitation, may point to inequities or inef-
ficiencies related to financing.

Other studies seek to estimate the effect of various
factors on utilization during an instance of caregiving,
such as a hospital admission. Potential predictors of
utilization include patient characteristics (sociodemo-
graphic, medical), characteristics of doctors or other

medical providers (sociodemographic, training, and
experience), and characteristics of the conditions of
practice (the particular site or its features, or the
organizational/financial structures under which the
care is given). Predictor variables can be heavily
confounded; for example, most patients seen at high-
volume hospitals may be city dwellers, making it
difficult to sort out the separate effects. Hierarchical
or nested models are needed to explore the influence
of facility-specific factors, and may be of particular
importance when the units of analysis differ from the
units of inference (e.g. individual hospital admissions
are studied for the purpose of comparing hospitals).

Another goal is to describe differences in case
mix, as a guide to why providers may differ in the
care they give and the outcomes achieved. Case-mix
differences may serve as the basis for redistributing
money among providers, so that those who treat
the sickest patients receive the highest per-patient
reimbursements.

Yet another goal is to provide “quality” reports,
which guide patients and health care purchasers,
assessing what health care providers do and what they
achieve with the people they serve. An important ini-
tiative in the United States in the 1990s has been
developing a protocol for comparing health plans
(HEDIS) along measures such as what fraction of
a plan’s women of an appropriate age receive annual
mammograms. However, HEDIS measures are gen-
erally not risk-adjusted and even when we agree
that providers should encourage mammography, it is
easier to achieve, say, 95% compliance with middle-
class women than with a poor, transient population.
Also, few HEDIS measures assess the quality of care
given to the very sick, largely because this is so dif-
ficult to do.

Cost-effectiveness studies seek to relate the cost
of the health care inputs used to the value of an
achieved outcome. They require data on utilization
and a plausible methodology for “pricing” this, as
well as a numerical measure of the outcome, such as
“quality-adjusted life years” (QALYs). Health care
strategies with the highest QALY yield per dollar
might be the first to be implemented (or the last to be
eliminated) in a health care system with constrained
dollars.

Provider profiling is used to identify individ-
ual doctors, hospitals, or health care systems with
exemplary or problematic practices. Especially when
providers are compared in public releases of analyzed
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data, much harm can be done if good providers are
“flagged” as problematic either because of random
variation (small numbers and a “bad bounce”) or
because they care for an unusually difficult mix of
patients. Appreciation of the “small numbers” prob-
lem and good risk adjustment is critical to useful
provider profiling.

Special Features of Utilization Data that
Require Analytic Attention

Skewness and Heteroscedasticity

Health care utilization variables often have a predom-
inance of low values and long, heavy right tails. This
is true when looking at numbers of office visits or
hospitalizations per year, days of stay in a hospital for
hip fractures, and costs of care for individual hospital-
izations or during fixed periods of time. For example,
in a working insured population during a one-year
period, 20 to 30% of people eligible to receive health
care may incur no costs, many more have low-
level, nonhospital expenses, and the 5% with the
most intense use may account for around 50% of
all expenses; the standard deviation for expenditures
is generally several times larger than the mean, and
in a system with average costs of about $2000 per
year, the most expensive cases exceed a million dol-
lars. A few large outliers can substantially distort
analyses, even in data sets that contain hundreds of
thousands of cases, and decisions about whether to
truncate or remove these extreme cases can affect
study findings. For many purposes, top-coding (e.g.
making the dependent variable equal to the smaller
of $50 000 and actual cost) can effectively control the
undue influence of extremely large observations.

A technique for addressing the concentration of
zero values is to use a two-part model [2], in which
one equation predicts the probability of any use (in
the whole population) and a second equation predicts
the level of use among users. The expected level of
use for an individual is then calculated by multiplying
these two estimates together. This framework has
been extended to a four-part model in which the
probability of hospital use is estimated for users, and
then the costs for users without hospitalization and
for those hospitalized are separately estimated [2].

To address skewness, many authors transform
the utilization variable, for example, by modeling
log (1 + dollars). (We add 1 because log(0) equals

negative infinity). This may help in identifying fac-
tors that affect use because it makes the p-values on
the significance of individual predictors more cred-
ible, but usually does not help predict actual levels
of use (dollars, that is, not log dollars). Log trans-
forms are especially problematic when the data con-
tain both small observations and large ones, because
the same multiplicative change has so different a
meaning when, say, applying a 20% increase to a
$10 versus a $1000 expense. When retransforming
a log-transformed variable into its original scale, a
smearing estimate [2] can be used to address bias,
but the smearing only works under the assumption of
constant variance, which is unlikely when the obser-
vations vary widely in magnitude. A simple way to
put retransformed estimates on the “right scale” is to
multiply all estimates by the number needed to make
the average prediction equal to the average actual
outcome (i.e. multiplying by k = mean actual/mean
predicted). Typically, R2 values are higher for mod-
els in a log scale, although retransformed estimates fit
the actual outcomes less well than models constructed
on untransformed data. General linear modeling
provides an attractive framework for simultaneously
addressing the problems of skewness and nonconstant
variance of the outcome variable, while predicting it
in its original, untransformed scale. For example, the
function that “links” costs to predictors can be speci-
fied as the log function and variances can be specified
as proportional to means.

Lack of Independence

When studying hospital admissions, multiple hospi-
talizations for the same patient cannot necessarily be
identified. Thus, the data may not be able to answer
questions such as “now that patients are being dis-
charged from hospitals earlier, have readmission rates
increased?” Furthermore, random variation is greater
when rehospitalizations are common than when sin-
gle hospitalizations are the norm. When clustered data
are analyzed as if independent, chance variability can
be misinterpreted as evidence of systematic differ-
ences [1].

When examining the role of a site-specific charac-
teristic such as “do hospitals which see lots of AIDS
cases do better with them?” or “do major teach-
ing hospitals see sicker patients?”, analysis should
account for the fact that patients are nested in hos-
pitals, which are in turn nested within hospital type.
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Otherwise, effects attributed to hospital “characteris-
tics” can easily be determined by the experience of a
few large facilities.

Death

Patients who die shortly after entering the hospital
often use the least resources, while those who remain
alive a few days but eventually die are among the
most expensive. Some authors propose treating uti-
lization (a nonnegative variable) as the outcome in a
survival analysis, with death as the censoring vari-
able. The resources that a patient would have used
had he or she not died are then estimated, which may
or may not be a useful concept. In addition, death
is an “informative” reason for censoring, which may
muddle the interpretation of findings. In general, it
is unclear how and whether to use information about
death in predicting utilization.

Study Scope

The Study Population

For many purposes, the “full” or “fully eligible”
population, such as people who reside in a particular
area, persons theoretically eligible to receive care
from the Veteran’s Administration, or enrollees in
an HMO, is the right study frame. However, many
people entitled to receive care in a system do not use
it, perhaps because they require no care or because
they receive it elsewhere. Sometimes the relevant
study population is “all users”, such as people who
have received care at a particular VA center, or who
use a particular physician as their primary care doctor.

To learn how medical problems are treated and
what outcomes are achieved requires problem-defined
study cohorts, such as people with diabetes, with
hypertension, or with low back pain. Eligibility crite-
ria affect what we see. For example, if the data from
system A enable us to find all people who are even
mildly diabetic, while system B data only identify
hospitalized diabetics, we will probably see lower
rates of diabetes, but more intensive treatment and
worse outcomes per diabetic patient in system B.

Breadth of Use Within Relevant Populations

Gross measures of use (such as number of hospital
admissions per thousand person-years of experience)

matter to payers, but administrators need to under-
stand where inefficiencies occur. Thus, for example,
numbers of hospitalizations for respiratory problems
for patients with asthma, and the prevalence of blood
sugar tests and eye exams for diabetics provide more
focused views of a health care delivery system. One
difficulty in conducting such studies is that only some
systems maintain disease registries that specifically
allow the utilization of, say, diabetic patients, to be
tracked.

Individual payers (such as state Medicaid pro-
grams) are principally interested in monitoring the
utilization for which they pay, but the larger commu-
nity has an interest in tracking the outcomes associ-
ated with all care that individuals receive.

Utilization in a Population Versus During a
Period of Treatment

Some services are delivered at most once to any one
person, such as hysterectomy, which is removal of
the uterus. However, many services can be delivered
more or less often and with variable intensity. Thus,
each of the following questions may be of interest
about inpatient hospital care for a population: What
fraction was ever hospitalized during a given year?
How many hospitalizations occurred per person-year
of exposure? How many days of hospital care were
incurred per person-year? How many days of inten-
sive care unit (ICU) stay were used per person-year?

Examples of relevant measures when the hospital
admission is the unit of analysis are: total length of
stay, presence of any special care unit stays, num-
ber of days in special care units, number of x-rays
ordered, and total cost of diagnostic testing. Compar-
isons are only meaningful among relatively similar
cases; little insight is gained by pooling informa-
tion for patients admitted for heart attacks with those
admitted for hernias.

Which measure of utilization is examined depends
upon the policy purpose. For example, when utiliza-
tion is examined for quality-monitoring purposes the
most relevant measure may be whether an appropri-
ate medication or service was delivered, such as beta
blockers for heart attack patients, rather than how
often; with hospice programs that provide supportive
care for people thought to be near death, per-person
utilization, rather than services per month of enroll-
ment, may be most relevant.
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What is the Unit of Analysis?

When summing total hospital costs over a group of
admissions, it does not matter whether an expense
relates to a single admission, to several admissions
for the same individual, or to one admission for each
of several people. Such distinctions are important,
however, to explore whether low costs per admission
are due to frequent readmission for people discharged
“early”. “Unbundling” and “cost shifting” may also
produce apparent shifts in utilization that are not real.
(Are hospital costs lower simply because of separate
billing for procedures that might have been subsumed
in a global hospital bill, or because some services
have been shifted to the outpatient setting?)

Episodes of Care and Calendar-based Time
Frames

Utilization per “episode of care”, ranging from first
problem identification, through active treatment and
follow-up can be used to compare providers on the
efficiency with which they handle a defined medical
problem, such as “stomach pain, due to an ulcer”.
Episodes can only be studied when care offered to
the same person in different settings can be linked.
Other potential difficulties arise in defining when one
episode ends and a second one begins; the concept
may not even make sense for chronic conditions.
Also, when the same person has more than one

medical problem, it is not obvious which services
should be assigned to which episode.

When a medical event has a readily identifiable
starting point, but no clear endpoint, it often makes
sense to examine utilization within a fixed window of
observation long enough for most follow-up care to
occur. For example, we may study all stress tests that
occur within 30 days following a hospital admission
for heart attack, whether or not they are done in the
hospital; or, all respiratory-related tests and services
offered within the first six months after a breathing
problem is identified.

Even costs per “episode” may not capture efficien-
cies associated with preventive care, since the number
and/or severity of episodes may be affected by the
presence and quality of preventive services. A yet
more global way to examine utilization is through
the lens of total use per person-year of coverage.
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Health Care Utilization
Data

Many important questions about the fairness, effi-
cacy or efficiency of health care delivery systems
require utilization data. Ideally, we would like to have
information on the nature, timing, cost, and setting
of each person’s utilization, and the ability to link
that information with personal demographics, health
status characteristics, and health outcomes, including
declines in functional status and death.

Health services research works best when there
is a complete list of persons whose care is being
tracked and longitudinal records of the medical prob-
lems addressed, all care given, and health outcomes.
Such records, maintained by the Centers for Medi-
care and Medicaid Services (CMS) for its Medi-
care program (which covers over 40 million people,
including almost all US citizens over the age of
65) are a uniquely powerful resource for health ser-
vices research (see Medicare Data). Unfortunately,
loss of data, due to the failure to acquire “encounter
records” (dummy bills) from managed care programs,
is of growing concern in the Medicare program and
elsewhere.

Another important source of health utilization data
is the Veteran’s Health Administration (VHA), with
over 4 million users (mostly military veterans) annu-
ally. The main weakness of these data lies in the
difficulty of identifying the set of people who, were
they sick, would seek their care in this system. On
the other hand, the VHA, as the nation’s largest
integrated health care delivery system, supports well-
integrated, research quality, administrative and clini-
cal data systems through the Veterans Affairs Infor-
mation Resource Center (VIREC) [2].

In contrast to the completeness and continuity of
Medicare data, and to the sophistication of the VHA’s
nationally integrated data system, is the fragmented
information available for low-income persons with
Medicaid health coverage. Each state administers
its own Medicaid program, eligibility requirements
constantly change, people move on and off the system
as their incomes and other circumstances that affect
eligibility change, and the same person can appear
under different identification numbers.

Data from privately insured populations have
intermediate-level quality, with most people

remaining enrolled through the same employer year
after year, although they may switch health plans dur-
ing annual, open-enrollment periods. Other problems
arise because coverage is usually offered to “fami-
lies” of employees; thus, marriage, divorce, alterna-
tive coverage that becomes available (or is lost) to
a spouse or child, job loss, and geographical move-
ment can all disrupt the continuity of the data. Typi-
cally, employer-based coverage systems do not record
why someone disenrolls; they may not even have an
explicit record (“positive enrollment”) of each person
entitled to receive care in their “family” contracts.

Several government surveys address these gaps in
US health care utilization data. One is CMS’s Medi-
care Current Beneficiary Survey that seeks to capture
all health care utilization (not just Medicare-covered
utilization) from randomly selected program benefi-
ciaries (see Medicare Data). Another is the National
Health Interview Survey (NHIS) conducted, since
1957, by the National Center for Health Statistics
(NCHS). Although NHIS data focuses on the health
(rather than the health care utilization) of the US
civilian, noninstitutionalized, household population,
it contains some important utilization information,
notably on child immunizations [3]. The Medical
Expenditure Panel Survey (MEPS) contains exten-
sive additional data on a subset of the NHIS sample,
focusing on the nature, frequency, cost, and financing
of health care utilization [4].

Only some health records are computer accessi-
ble and fewer can be reliably tracked at the patient
level. This limits the questions that population-based
studies can address. For example, many statewide
databases capture in a uniform format and make
available for research, a file with one record for each
inpatient admission. Available variables include the
age, sex, zip-code of residence of the patient, the prin-
cipal problem that caused the admission and other
medical problems present (using the International
Classification of Diseases diagnostic coding system),
major procedures (such as surgeries) received, dates
of admission and discharge, discharge disposition
(e.g. in-hospital death, transfer to another facility,
discharge home), days of stay in special care units
(e.g. ICUs), and hospital billing information, includ-
ing “payer”. These data capture very much the same
information that Medicare requires for hospitaliza-
tions, in very much the same format, but for all
persons, not just those in the Medicare program;
see [1, Chapter 5] on administrative data. However,
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despite the richness of these data, a great deal of
important medical information is missing, some of
which can (with time and effort) be captured by ret-
rospectively abstracting information that is usually
recorded in patients’ medical charts; see [1, Chapter
6] on medical record data.

Another way to improve the completeness of
available information is through prospective data col-
lection, which assures that the desired elements will
be present by collecting them while care is being
administered. In certain health care systems, var-
ious additional computerized information, such as
laboratory findings as well as tests ordered, drugs pre-
scribed, and amounts dispensed, can round out the
picture of what medical problems were being seen
and what resources were used.

Patient surveys can capture “outside” utilization,
such as purchases of nonprescription drugs and use of
alternative or uncovered services like chiropractic or
acupuncture, as well as provide insight into patients’
views of their own health or of the care they receive.
Although self-report is not an ideal way to capture
health care utilization, it may be important when
more reliable information is not available. Surveys
can be very helpful in targeting people who might
benefit from case management; see [1, Chapter 7] on
survey data.

Measuring Utilization

Utilization studies may focus on a particular kind
of use or on a summary measure of total uti-
lization or “cost”. Kinds of uses include hospital
admissions, specific surgeries such as hysterectomies
and tonsillectomies, ambulatory care (such as doc-
tor’s office visits and outpatient surgeries), readmis-
sions to hospital (within, say, two weeks of an earlier
discharge), diagnostic tests, referrals for specialist
care, and intensive care unit stays. “Cost” measures
can be constructed as weighted averages of differ-
ent factors, where the weights reflect the intensity of
resource consumption and not necessarily the dollars
exchanged.

Average annual costs per person is a natural sum-
mary measure of health care expenses. In the case of
a purchaser of medical care, such as CMS’s Medicare
program, “cost” is most commonly defined as the sum
of all dollars that the purchaser pays for covered ser-
vices; “cost” can also include overhead (the admin-
istrative costs associated with running the program).

“Total” health care costs are larger than this, how-
ever, including at least the “out-of-pocket” expenses
of health care consumers for covered services (copay-
ments and deductibles) and consumers’ expenditures
for noncovered goods and services, such as over-the-
counter medicines and devices, dental, psychiatric or
long-term care, and visits to “nonorthodox” practi-
tioners such as acupuncturists or chiropractors. Some
calculations also attempt to capture costs ancillary to
the receipt of care, such as the price of transporta-
tion to providers or the value of time lost in care
seeking, as well as costs ancillary to being sick (lost
productivity).

Most health care providers do not know the cost of
particular instances of caregiving. If average (rather
than marginal) costs are sought, the accounting sys-
tem used to allocate fixed overhead expenses to
particular cases matters, as does the universe of
cases over which the average is computed (e.g. all
admissions at the same hospital, admissions to the
same administrative unit, pneumonia cases, admis-
sions paid for from a single source). On the other
hand, marginal costs, such as the cost of drawing
and testing one additional blood sample in a fully
equipped and staffed laboratory, may seriously under-
state the resources needed to provide services.

The “charges” that appear on many billing records
often bear little relationship to either what pay-
ers actually pay or what expenses were actually
incurred. Charge comparisons are suspect, especially
when pooling or comparing cases from institutions
with different accounting systems. Health services
researchers sometimes use the method of “cost-to-
charge ratios” to convert charges to a more credible
estimate of costs.

Another way to summarize utilization is by “pric-
ing” and counting each unit of care; a “synthetic”
total cost is calculated by summing the imputed costs
associated with the care given. The price of a ser-
vice may be generated internally (e.g. as the average
charge associated with it in the data) or externally, as
a “book rate”. The technique is credible so long as
most relevant services are likely to be captured in the
data and the relative prices, at least, form a believ-
able weighting system. Any summary cost figure is
essentially a weighted sum of inputs.

When comparing utilization across different deliv-
ery systems, it is important to recognize that some
data-capture systems are substantially more complete
than others. As a rule, records are most complete
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and accurate when payments are linked to individual
services through bills; “what was done” often cannot
be tracked when capitated, and “lump sum” payment
systems are used.
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Health Economics

The principal foundations of health economics are
based in microeconomic theory and welfare econo-
mics [17]. Essentially, this field of specialization
within the discipline of economics addresses the allo-
cation of resources directed to health improvement
and the organization, delivery, and financing of health
services. Under this broad purview, practitioners in
the field of health economics have tackled such ques-
tions as:

1. How does the uncertainty of health outcomes
influence the optimal forms of organizing and
paying for medical care [1]?

2. What mix of cost-sharing between patients,
health plans (insurers), and health care providers
(e.g. hospitals and physicians) will produce
optimal outcomes in terms of the most improved
health for the least incremental cost [9, 10]?

3. Under what conditions would increased com-
petition among providers of health services be
likely to produce improvements in health status
and efficiency relative to existing market arrange-
ments for health care [29]?

4. What are the economic costs to society of pre-
vailing patterns of illness [32, 33]?

5. How does one measure the cost and benefit of
programs directed toward the improvement of
health [21, 27]?

6. What are the aggregate results of health care,
when measured as increased life expectancy for
given levels of health care expenditure [3]?

7. What are the differences in performance (e.g. in
the quality and efficiency of services) between
not-for-profit and for-profit organizations in
health care [14]?

8. What contractual arrangements provide the great-
est protection for health plans, providers, and
patients from the “agency problems” inherent in
the sometimes-conflicting interests of those par-
ties [25]?

These questions illustrate, but of course do not
fully characterize, the range of issues subsumed in
health economics. A common theme cutting across
theory and empirical work in health economics is
to discover which forms of market structure, indus-
trial organization, and individual behavior lead to
efficient and equitable outcomes. Potential market

structures range from the one extreme of “per-
fect competition”, in which large numbers of con-
sumers and providers interact in an environment of
perfect information, to monopoly, with one large
firm controlling the market. Virtually no health care
services are provided in a market structure that
is close to the perfectly competitive or monopoly
model.

Indeed, health care is distinguished from other
economic markets by specialized information, princi-
pal–agent relationships, a relatively small number of
providers in any given local area (an “oligopoly”), an
inherently intimate and highly personalized service,
and the dominance of third-party insurance. Arrow
[1] highlights the special nature of health care from
the perspective of the economist as uncertain medi-
cal consequences resulting in demand for treatments
determined by physicians with payment emanating
from third-party insurance carriers. Thus, the con-
sumer is unable to predict the illness, not responsible
for selecting the services he will receive, and will
not – for the most part – pay the bill. This peculiar-
ity of medical care markets challenges the traditional
theoretic paradigms.

Accordingly, health economists have approached
market structure from a different tack: What kinds
of economic incentives and countervailing power
would induce consumers and concentrated provider
oligopolies, characterized by few, large firms produc-
ing highly differentiated services for a wide array of
consumers, to behave efficiently and to achieve equi-
table outcomes?

In attempting to answer such questions, the econo-
mist’s attention inevitably turns to the related issue of
how health care providers are organized; in terms of
“vertical” integration among the suppliers of inputs
(e.g. pharmaceutical manufacturers) and the “out-
put” providers (e.g. hospitals and medical groups),
and the “horizontal” integration in local markets of
providers of similar services (e.g. hospital mergers
and consolidations of medical groups) (see Health
Services Organization in the US). Moreover, while
market structure and industrial organization exert a
strong influence on health services outcomes, the fac-
tors governing the individual behavior of consumers
and providers are equally pivotal in the study of
health economics (see Health Care Utilization and
Behavior, Models of). Seminal studies of the role of
coinsurance and deductibles (patient “cost-sharing”)
in encouraging the efficient use of services [30] have
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contributed greatly to our understanding of health
care, as has the theoretic and empirical research on
different modes of provider payment [16, 17] (see
Health Care Financing).

Ever since Kenneth Arrow’s pioneering work
on the role of uncertainty in shaping health eco-
nomics [1], economists have investigated the impor-
tance of payment and organizational arrangements
in determining health outcomes. In the past decade,
economics has made great strides in addressing
these issues through the lens of “agency theory”
[7, 25]. This theory illuminates how the form of
ownership, organizational rules, methods of paying
health care providers, and the level of payment
to providers interact to induce persons and organi-
zations (the “agents”) to act in conformance with
the objectives of parties (the “principals”) who del-
egate discretion and authority to those agents to
act on their behalf. Health economic research has
focused on health plan benefit design, experience
rating of health plans, and risk adjustment–among
other contract features–as mechanisms for amelio-
rating agency problems.

Defining “Efficiency”

In defining efficiency, the economist has in mind two
distinct and quite specific types:

1. Technical efficiency refers to the production of
a given amount of services (“output”) for the
least amount of resources (“cost”). This can be
imagined as minimizing average cost per unit
of output, or – equivalently – minimizing the
total cost of producing a predetermined level of
output.

2. Economic, or “allocative”, efficiency examines
“trade-offs” in the allocation of resources. An
arrangement is allocatively efficient when the
incremental benefits of services provided are
equal to the incremental costs of those services.
Thus, allocative efficiency is measured “at the
margin”: Is the change in total cost (marginal
cost) of services matched by an equal change
in patient health benefit (marginal benefit) from
those services?

Following these definitions then, the search for
efficient arrangements follows the so-called Pareto

criterion: social welfare is optimized when no arran-
gement can be devised under which some individ-
ual(s) could be made better off without others being
made worse off. This criterion effectively requires
both technical and allocative efficiency. Either failure
to produce at least cost or failure to deliver the cor-
rect output (aligning marginal benefit with marginal
cost) would violate the Pareto principle.

Kaldor [20] and Hicks [15] refined the Pareto
rule into a potential compensation criterion. Assum-
ing that the gains to the “winner(s)” under some new
arrangement could be measured, a situation was opti-
mal if and only if no change could be effected that
would leave winners with sufficient gains to com-
pensate fully the losers. The use of a standard of
“potential”, rather than actual compensation, reflects
the existence of real world costs of information and
exchange (so-called “transaction costs”) that impede
actual exchange of compensation.

In recognition of the centrality of efficiency within
economics, a set of methodologies for economic
evaluation has been developed. Those methods can
be broadly categorized as follows:

1. cost–benefit analysis;
2. cost–effectiveness analysis;
3. cost–utility analysis.

Over the past 20 years or so, a substantial liter-
ature has developed in the applied area of health
economic evaluation [8]. Each of these techniques
is grounded in economic theory, and their applica-
tion to health services problems is illustrated in what
follows.

Cost–Benefit Analysis

Cost–benefit analysis translates all costs and bene-
fits into monetary units. The opportunity cost con-
cept underlies the logic and implementation of all
three economic evaluation methodologies. Opportu-
nity cost is defined as the value of the resources used
up in a given activity, measured as the value that
those resources would have produced in their next
best alternate use. Hence the value of opportunities
foregone constitutes the opportunity cost of a given
employment of resources. Even if no money changes
hands – for example, in the case of time and assets
donated for a particular activity – the resources do
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have this opportunity cost, which includes both direct,
observable monetary costs and implicit opportunities
forgone.

The time value of resources, captured in nor-
mal financial dealings through the rate of interest,
is another crucial element in cost–benefit analysis.
Looking forward from today, a cost incurred a year
from now is somewhat less onerous than the same
monetary cost incurred today. Similarly, a benefit
realized one year from now is perceived as less valu-
able than a benefit of equivalent magnitude delivered
today.

This rate of time preference is reflected in the prac-
tice of “discounting” costs and benefits through the
use of a discount rate – analogous to the interest rate
or rate of return required in financial transactions.
The use of a discount rate in valuing costs and ben-
efits implies that those consequences are long-lived,
or spread over a period of time. Thus the discounting
approach is appropriate for health programs that take
the form of investments, which involve commitment
of resources over time in return for future benefits.

Whereas persons considering financial invest-
ments generally accept the logic of requiring interest
(some additional amount above what they invested
originally) as compensation for having to wait to
receive returns in the future, a thought experiment
may be useful for the reader seeking to convince
himself or herself that this approach can be applied
appropriately to investments the direct payoffs of
which are in terms of health, not dollars. Suppose
that investing in a new positron emission tomog-
raphy (PET) scanner costs $1.2 million today, and
is expected to produce health benefits starting three
months from now and lasting for the useful life of
the scanner (estimated to be 10 years, for exam-
ple). Furthermore, assume that those health benefits
are expressed as earlier detection of, and more rapid
recovery from, a variety of acute health problems.
For purposes of the hypothetical, let the incremental
(specific) costs of caring for those health problems
if not detected earlier by PET scanning, be valued
cumulatively at $200 000 per year (say, 20 cases per
year at $10 000 costs saved per case).

The use of costs of caring avoided as the value
of the scanner’s health benefit simplifies the illus-
tration that benefits can be converted into mone-
tary equivalents. Then, to complete the reasoning,
if one assumes that health investments “compete”
with financial investments for scarce resources, it

makes sense that the expected rate of return on the
next best alternate financial investment of compara-
ble risk should become the rate of return required
for a given health investment. Thus, a discount rate
equal to the foregone financial return should be used
to convert the future stream of benefits into its (time
zero) present value equivalents.

Now let the required return on investments of
comparable risk be 20%. In this case, if the initial
costs of the scanner were subtracted from the dis-
counted present value of the future health benefits (in
a technique described in the next section), using 20%
as the discount rate, one would calculate the scan-
ner’s net benefit valued as of now to be a negative
$361 506. The reason is that, given that the benefits
accrue over the future 10 years, they are not suffi-
ciently large to offset the time costs of waiting (the
20% rate of return foregone) to recover the initial
investment cost of $1.2 million.

Inflation would not affect these comparisons,
because the health benefit values and the discount
rate both would simply be increased by the same
proportionate amount to reflect the rising cost of
living. Thus, one can think of these examples as
valuing costs and benefits in “real terms” (i.e. having
abstracted from inflation).

Not only does the discount rate capture the time
value of resources, but also the risk involved in the
costs and payoffs from different programs. In reality,
since health programs often do not adopt the language
of owners, investors, and return on investment, the
notions of business risk, financial risk, and systematic
risk – so central to mainstream economic analysis of
investments – have only infrequently been applied in
health program applications of cost–benefit analysis.
Nonetheless, to the extent that the benefits and costs
of health programs are stochastic, not deterministic,
it is appropriate to increase the discount rate from
the level appropriate for a “riskless” investment, to
compensate for the riskiness of the project.

To convince oneself of the appropriateness of
building a positive “risk premium” into the dis-
count rate for health investments, let us revisit the
earlier thought experiment of the PET scanner. Sup-
pose in that case that the benefits of the scanner
were risky, in the sense that the estimated sav-
ings in cost of caring were dependent on alternate
treatments available and environmental conditions
affecting personal and public health for the kinds
of health problems detected by the scanner. Then
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it seems reasonable that to a risk-averse decision
maker the health benefits per year would be worth
something less than the stated amount of $200 000.
Put differently, the decision maker would accept a
“certainty equivalent” amount of something less than
$200 000 per year for sure in exchange for the cur-
rent risky “claim” to an expected value of $200 000
per year.

Modern finance theory allows one to calculate the
size of the premium to be built into the discount
rate (or to value the certainty equivalent amount per
year) for a given level of riskiness. The risk pre-
mium to be added to the discount rate might, for
example, be calculated from the capital asset pric-
ing model (CAPM) developed by William Sharpe,
Jan Mossin, and John Lintner [5]. The CAPM model
assumes that: (i) the capital market is perfectly com-
petitive; (ii) transaction costs are zero; (iii) investors
have homogeneous beliefs about the risk and return
on assets in the economy; and (iv) investors hold
well-diversified portfolios (assumptions that, while
not strictly true, seem to generate patterns of asset
returns generally consistent with empirical experience
in the security markets, although the CAPM’s specific
validity has come under recent challenge [11]. If these
assumptions hold true, the required return on a par-
ticular investment – “health” or “financial” – is given
by the following equation: ri = rF + βi(rM − rF ),
where ri is the expected (required) return on a risky
investment i, rF is the return on a riskless investment
(say, in 10 year Treasury bonds), rM is the expected
return on the “market portfolio” of economy-wide
assets, and βi is the systematic, or “market”, risk
of investment i. This systematic risk, or “beta”, is
measured by the regression coefficient (covariance
of returns on i with returns on M , divided by the
variance of the market portfolio’s returns), and rep-
resents the notion that only such systematic risk will
be “priced” in required returns. Nonsystematic risk,
the unique variability associated with each asset’s
returns, will be averaged out (“diversified away”,
in the finance lexicon) by holding a large number
of assets not perfectly correlated with each other
in one’s portfolio. Or one might find, equivalently
under the CAPM, that all the risk in the payoffs from
the scanner investment had been diversified away by
the decision maker’s holding of a well-diversified
portfolio of health and financial investments. That
is, suppose the risk was all “diversifiable”; in other
words, the returns on the scanner investment had

zero covariance with broader activity in the market.
In this case, no “risk premium” would be built into
the discount rate. For the purposes of the preceding
example, assume that this “risk premium” accounts
for, say, 10%, or half of the 20% required return. That
implies that, if the health benefits were known with
certainty, the appropriate discount rate would be a
smaller amount, 10%. Then the net benefit in present
value would change to +$28 913, and the scanner
investment would be worth undertaking, on balance.
The trick in factoring risk into health investments
is to determine this risk premium, which in theory
should reflect the extent to which the health payoffs
(and costs) covary with returns on assets reflecting the
larger economy (the “market portfolio”). In practice,
this is extremely difficult to do, and analysts instead
generally perform sensitivity analyses of the impact
of different discount rate assumptions on estimated
net benefits.

The analyst’s perspective is crucial in imple-
menting a specific cost–benefit analysis. Alternative
points of view include the following:

1. society’s – for example, in the case of public
programs, in which the costs and benefits are
broadly diffused among a large population (a
publicly funded mobile coronary care unit for
emergencies represents such an investment);

2. third-party payers’ – for example, if a private
health plan were structuring a new covered
benefit (say, bone marrow transplantation), and
wished to evaluate whether the long-term bene-
fits in terms of market share (additional premium
revenues) would offset the expected costs of the
additional coverage;

3. health care providers’ – for example, if a hospi-
tal or medical group were implementing a new
information system and wished to compare the
capital and operating costs of the investment with
the future benefits of improved patient care and
enhanced clinical efficiency over the long run;
and

4. patients’ – for example, in the case of a con-
sumer cooperative organized for the health care
of its members, the decision to develop a spe-
cialized home care unit (say, for persons with
chronic obstructive pulmonary disease), with the
costs to be fully funded through a surcharge to
member premiums and with caregiver support to
be provided by member volunteers.
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Each one of these points of view suggests a poten-
tially different perspective on costs and benefits. For
example, the nature of the publicly funded mobile
coronary care unit implies that a social opportunity
cost viewpoint be used to assess that program. A full
accounting of the direct monetary costs and implicit
opportunity costs of the investment would be appro-
priate, as would a broad conception of population
benefit. In contrast, the third-party payer might not
incorporate the value of volunteer resources (e.g.
donated time) in its calculation of program cost and
would likely value benefit more narrowly in terms
of gains in premium earned net of health care costs
incurred for subscribers only. Similarly, providers
and patients will view costs and benefits in narrower
terms, based on the inflows and outflows of resources
internalized by them.

Another important consideration in cost–benefit
analysis is the methodology used to measure program
benefits. Two basic approaches exist: (i) the human
capital approach [32, 41], which measures program
benefits as the sum of direct treatment costs (for ill-
ness) saved plus the value of increased production
(in the work-for-pay labor force) attributable to the
program; and (ii) “willingness to pay (WTP)”, which
values program benefits according to what prospec-
tive program “beneficiaries” would be willing to pay
in return for receiving those benefits. The WTP tech-
nique has certain conceptual advantages relative to
the human capital methodology, in that it includes
the perceived value of leisure and nonmarket produc-
tion as well as the quality of life and other indirect
benefits of health program investments [18, 34].

These advantages come at a practical price, how-
ever. Measures of willingness to pay generally require
either that careful population-based surveys be per-
formed to collect sample estimates of benefit, or
that intended beneficiaries’ preferences be inferred
by examining their choices in real-life situations
in which health and money are “traded off”. The
“revealed preference” approach is exemplified in sur-
veys of airline passengers, regarding their willing-
ness to pay for improved airline travel safety [19]
and for improved air quality [39]. Examples of the
“revealed preference” approach include the classic
work by Viscusi [38], which inferred the implicit
value of human life by comparing the wage premium
demanded for jobs at different levels of occupational
health risk. Similar safety choices that have been ana-
lyzed include the use of automobile safety belts [4]

and the decision to purchase new cars with improved
safety features [2].

The Cost–Benefit Analysis Algorithm: A
Geometrical and Numerical Example

The logic of cost–benefit analysis is displayed graph-
ically in Figure 1. Consider the case of a small
local health plan deciding whether to contract with
an independent information systems company for its
information technology support of its patient care
arrangements with hospitals and physicians. The con-
tract is for one year, and the present (year 0) value of
the plan’s total assets is $2 million. The plan expects
additional net revenues (revenues minus costs) next
year of $1 080 000 from the additional transaction
processing efficiencies estimated from this one-year
contract.

The curve BDE, labeled “project opportunity set”,
depicts the set of all projects available to the plan for
investment. The “capital market line”, drawn as CDF,
reflects the tradeoffs for borrowing and lending (rates
of return and interest rates) available for investing in
comparably risky projects. The revenues and costs
are quite risky for this project, in light of the control
given up by “outsourcing” this traditional insurance
function, so the plan assigns a 20% discount rate to
the contract.

The project will require $400 000 in initial invest-
ment (represented as a movement from point B to
point A, drawing down plan assets from $2 million
to $1.6 million), to cover the costs of canceling
existing contracts for this information systems sup-
port function and the incremental costs of hiring
staff to monitor the new arrangement. As shown
in Figure 1, this proposed project would add an
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Figure 1 The logic of cost–benefit analysis
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estimated $500 000 to the net value of the health
plan’s assets. This is represented by the horizon-
tal distance between the plan’s original position
(point B, pre-investment) of $2 million and the end-
ing position (point C) of $2.5 million. This amount
equals the net present value (NPV) of benefits less
costs. Put another way, based on the plan’s esti-
mates, the company’s next year value would be
$3 million, or $600 000 more in year one terms
than would have been the case if the plan’s assets
were simply invested in the capital markets for a
20% rate of return [$3 million − 1.2($2 million) =
$0.6 million]. This $600 000 in increased “future
(year 1) value” is equivalent to receiving $500 000
($600 000/1.2) in increased value today (year 0).

Next, consider the example of a local commu-
nity not-for-profit hospital deciding whether or not
to acquire 49% ownership interest in a large multi-
specialty medical group that is preeminent in its
service area (see Hospital Market Area). The hos-
pital’s total assets are presently worth $400 million.
Acquisition of the group practice would not compro-
mise the hospital’s not-for-profit status, but would
require an investment of $60 million cash by the hos-
pital and lease arrangements with the medical group
for use of imaging and laboratory technology. The
hospital estimates that the proposed lease contract
represents a subsidy to the medical group (hospital
costs greater than revenues recouped by the hos-
pital) of $20 million, for a total net investment of
$80 million in present value. The expected rate of
return to the hospital on comparably risky invest-
ments is 15%, which the hospital’s chief financial
officer chooses as the discount rate for the costs and
benefits of the hospital’s investment in the medi-
cal group.

The hospital takes the “provider’s” perspective in
this cost–benefit analysis. The future revenues (bene-
fits) are estimated at $20 million per year for 25 years
(the expected “economic life” of this investment),
and annual costs to the hospital of supporting the
medical group (e.g. with information systems, health
plan contracting support, billing services) are esti-
mated as $5 million. Thus, the “net benefit” of this
project, measured as total benefits minus total costs
discounted to their present value, is represented as

net present value benefit

=
∑

t=0,1,...,n

benefits in year t minus costs in year t

1/(1 + annual discount rate)t
,

summed over years t = 0 (now), 1, 2, . . . , n,

where n is the terminal year of the project. (1)

In this case the estimated net present value
(NPV) is

NPV (in $millions)

=





∑
t = 1, . . . , 25(20 − 5)

(1.15)t






− 80(the time “0” net investment)

= 15(6.4641) − 80 = $16 962 236. (2)

Thus, based on this cost–benefit analysis, the
investment should be undertaken because the present
value of the net benefits of the project is positive.
The figure of 6.4641 is termed the “annuity factor”,
and it represents the value today (time zero) of $1
paid in each of n years (= 25 years in this case)
invested at a rate of return r (= 0.15 in this case).
The formula for calculating this factor is {(1/r)[1 −
(1/(1 + r)n)]}.

In the case of publicly funded programs with
widely dispersed beneficiaries and many implicit
(rather than direct monetary) costs, it is likely to be
more difficult to isolate the annual stream of costs,
benefits, risk, correct discount rate, and the “eco-
nomic life” of the program, but the principles remain
the same.

Cost–Effectiveness Analysis

Cost–effectiveness analysis compares the incremen-
tal medical costs and health outcomes of alternate
health care programs. In contrast to cost–benefit anal-
ysis, the denominator of the cost–effectiveness ratio
represents health effects expressed in natural units
(e.g. life-years gained (see Person-years of Life
Lost), days free of symptoms, cases avoided) rather
than monetary units. Valuation of outcome using
monetary units favors those with greater income, to
the extent that health outcomes are a “normal good”,
the value of which increases with income [28]. The
cost–effectiveness approach to economic evaluation
avoids the somewhat controversial monetary valu-
ation of improved health outcomes such as lives
saved. However, it should be noted that – in effect –
even cost–effectiveness analysis requires an implicit
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monetary value of health outcomes; otherwise, the
decision maker would not know at what level to
set the cost–effectiveness threshold for minimally
acceptable projects. Under most conditions, results
from cost–benefit and cost–effectiveness methods
lead to similar conclusions [31]. The interest in
the cost–effectiveness model currently stems from
its broader acceptance within the health care field
and, perhaps, from a working assumption that health
decision makers generally operate under externally
imposed budget constraints that effectively fix the
threshold for minimally acceptable projects [23].

A maximization hypothesis underlies the method
of cost–effectiveness analysis. Health outcomes are
maximized for a given level of medical resource input
[12]. The analytic perspective for cost–effectiveness
analysis should be that of the health care decision
maker, as it is the decision maker who seeks to max-
imize aggregate health benefits given a budget con-
straint. This perspective, however, has been criticized
as inconsistent with the theoretic axioms of welfare
economics, and not in the interest of society [13,
18]. Whereas cost–benefit analysis is strictly based
upon a compensation test such as Kaldor–Hicks,
cost–effectiveness analyses do not always result in
a desirable reallocation from gainers to losers, unless
the threshold for minimally acceptable investments
is set according to the net benefit maximization
rule [12].

The types of questions appropriate for cost–effect-
iveness analysis include the following:

1. Which of two drug products is most cost-effective
for the treatment of major depression [35]?

2. Is heart transplantation a cost-effective strategy
[37]?

3. Are work-site intervention programs for hyper-
tension cost-effective [24]?

At the heart of the cost–effectiveness method
is the determination of the average and marginal
ratios of costs and effectiveness [40]. The aver-
age cost–effectiveness ratio is the net cost of each
program divided by its measure of effectiveness,
resulting in an estimate of the cost of the interven-
tion per unit of outcome gained (e.g. cost per case
avoided, or cost per life-year gained). The marginal
cost–effectiveness ratio shows the costs and effec-
tiveness of one program in relation to the alternate
program.

Specifically, the marginal cost–effectiveness ratio
is defined as the difference in medical care costs (net
costs) over the difference in program effectiveness
(net effectiveness) when comparing at least two alter-
natives. The marginal cost–effectiveness ratio can be
expressed as

T Ca − T Cb

Oa − Ob

,

where T C is the total direct medical care costs asso-
ciated with the intervention, O is the health outcome
associated with the intervention, a is program a

(new), and b is program b (existing level of care).
Cost–effectiveness analysis is most useful when

there are multiple health programs with a common
measure of effectiveness, thus allowing direct com-
parison between alternative programs. This is not
always possible, for most medical interventions lack
a common outcome measure. For example, medical
interventions for hypertension involve an outcome
measured in blood pressure units, while antibiotic
treatments are assessed in terms of cases resolved.

Selection of the comparator is important, as the
marginal cost–effectiveness ratio reflects a direct
comparison of the new intervention compared to
a base case. The cost–effectiveness ratio can vary
dramatically depending upon the characteristics (cost
and effectiveness) of the base case comparator.

The analytic horizon of a cost–effectiveness study
should correspond to the expected period over which
program costs and outcomes will be realized. For
acute conditions such as treatment for infection, a less
than one-year horizon is appropriate. However, pro-
grams for treatment of chronic disease (e.g. hyperten-
sion, diabetes, or asthma) and strategies for primary
prevention (e.g. vaccination or disease screening)
require a longer time frame. In those instances in
which costs and outcomes extend beyond one year,
discounting to adjust for time preference of the cost
stream as a consequence of the program is recom-
mended. Discounting nonmonetary clinical benefits
is less widely accepted. Current recommendations for
the selection of discount rates for economic evalua-
tions of health care interventions range from 3% to
5% in the US and Canada [22].

Discounting health care costs and benefits has
intended and unintended consequences. Time prefer-
ence adjustment, also known as net present value cal-
culation, of cost streams from comparator programs
that accrue at different rates and at different time
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periods allows for a standardized valuation of the
numerator of the cost–effectiveness ratio. One poten-
tial down side to discounting is that public health
prevention programs (e.g. immunization or health
promotion interventions) often have relatively high
up-front costs. Monetary savings that offset these
costs may not be realized until much later. Thus,
some programs may be judged as not cost-effective
simply because of the discount factor.

For resource allocation purposes, the cost–effect-
iveness ratio can suggest that a new program:
(i) improves allocative efficiency (same or better
outcome at lower costs); (ii) reduces allocative
efficiency (same or worse outcome at higher costs);
or (iii) is potentially cost-effective (better outcome
at higher cost) relative to the comparator. The latter
result requires some interpretation by the decision
maker as to the amount of additional resources
that they are willing to allocate from other sources
in order to realize the incremental gain in health
outcome [6].

Cost–Utility Analysis

Cost–utility analysis is a special form of the cost–
effectiveness model in which the lack of a
common outcome measure is overcome by estimation
of some composite metric such as the quality-
adjusted life year (QALY) (see Quality of Life
and Health Status). This single outcome measure
incorporates the effect of the program or treatment
on the quality and quantity of life and allows for
comparison of a wide array of interventions [36].
The quality adjustment is derived from preference
weights or health utility scores. Several direct and
indirect approaches have been developed to measure
health utilities or preferences for various outcomes
(see Health Status Instruments, Measurement
Properties of; Outcomes Research).

The QALY is not the only outcome measure used
for cost–utility analysis. The healthy-year equiv-
alent (HYE) has been proposed as an alternative
to the QALY, in part because of the restrictive
assumptions about preference measurement [26]. The
acceptance of the HYE for cost–utility analysis
remains controversial.

The primary application of cost–utility analysis is
in cases in which programs or treatments generally
impact the health status of individuals rather than
improve survival or some other clinical outcome
measure. Most importantly, cost–utility ratios can
be used to compare programs and treatments across
different disease states.

A Cost–Utility Analysis Example

Suppose that three different medical options are
available for the treatment of inoperable stage 3 to
4 nonsmall cell lung cancer. Option 1 is support-
ive care without the use of chemotherapy agents.
Option 2 is a chemotherapy regimen that consists
of two concurrently administered agents. Option 3
is a chemotherapy regimen that consists of three
concurrently administered agents. Patient survival,
preference weights (utility scores), and cost data are
depicted in Table 1. These data show that option 2 is
more effective than either option 1 or option 3 from
the standpoint of median survival. However, best
supportive care without chemotherapy (option 1) pro-
vides better quality of life for patients. Options 2 and
3 are more expensive, owing in part to the additional
cost of the chemotherapy agents, than option 1.

When comparing option 2 to a baseline of
option 1, the incremental cost–utility ratio is
[(9985 − 4639/214 − 112) × 365], or $19 130 per
QALY gained. Option 3 compared to option 1
yields an incremental cost–utility ratio of [(6606 −
4639/165 − 112) × 365], $13 546 per QALY gained.

Table 1 A cost–utility example

Treatment options

Option 1, Option 2, Option 3,
Parameter best supportive care two-drug regimen three-drug regimen

Median survival (days) 112 214 165
Preference weight 0.61(±0.22) 0.34(±0.30) 0.34(±0.30)
QALY 0.187 0.199 0.154
Cost ($) 4639 9985 6606
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The Use of Cost–Effectiveness and
Cost–Utility Studies by Decision Makers

How are cost–effectiveness and cost–utility analy-
ses used to augment resource allocation decisions?
The possible outcomes of a cost–effectiveness or
cost–utility study comparing program or treatment A

to program or treatment B are illustrated in Table 2.
When the overall cost of A is less than B and
the health outcomes associated with A are greater
than for B, then A is considered to be “dominant”,
and should be adopted by providers and purchasers
as they improve efficiency in the delivery of care.
On the other hand, if A is more costly and pro-
vides reduced health benefits when compared to B,
the new technology should be rejected. Most new
programs or treatments are not consistent with the
previous two examples. The third row of Table 2
shows the cost–outcome relationship of most new
medical technology or programs. Health benefits are
improved at some incremental cost for program A

compared to program B. Clinicians, patients, and
payors must decide whether the improvement in
health outcome is “worth” the additional costs. Trade-
offs or substitutions must be made in order to finance
and make available treatment A. The final possi-
ble result of a cost–effectiveness study is one in
which A is less costly when compared to B and
also is less effective. Again, if a health system or
insurance plan were to adopt such a treatment (e.g.
some population screening strategies), then trade-
offs would have to be made in terms of foregone
benefit.

How attractive does a new treatment have to be
to warrant adoption and reimbursement? At what
level of cost per health outcome gained would
decision makers choose to accept and use new
medical innovations? Currently, a cutoff point for
cost–effectiveness determination remains uncertain.
The value of $100 000 per QALY has been discussed

Table 2 Results of cost–effectiveness and cost–utility
analyses for resource allocation decisions

Cost difference Outcome difference Implication

Cost (A) < Cost(B) O(A) > O(B) Accept A

Cost (A) > Cost(B) O(A) < O(B) Reject A

Cost (A) > Cost(B) O(A) > O(B) Tradeoff
Cost (A) < Cost(B) O(A) < O(B) Tradeoff

by policy makers as the level below which a new
program would be described as cost-effective and,
therefore, worth the investment.

Summary

Health economics is a field of specialization
within the discipline of economics that addresses
the allocation of resources directed to health
improvement and the organization (see Health
Services Organization in the US), delivery, and
financing of health services (see Health Care
Financing). In recognition of the centrality of
efficiency within economics, a set of methodologies
for economic evaluation of health care programs
and interventions has been developed. These
methods include cost–benefit, cost–effectiveness,
and cost–utility analysis. The application of these
tools to health economic problems, and particularly
to resource allocation decisions, is an area of intense
interest. For analysts considering the use of these
methods, a complete understanding of the role and
limitations of each is necessary.
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Health Services
Organization in the US

This article describes several of the key features and
components of the health care system in the US.

Integrated Health Systems

The medical care system in the US has many separate
components including physicians’ offices, nursing
homes, hospitals, drug stores, laboratories, and insur-
ance companies. Historically, the US has operated
primarily under the fee-for-service system, whereby
a physician or other practitioner bills the patient for
each encounter or service rendered (see Health Care
Financing). Under this system, the components of
the medical care system have usually operated inde-
pendently.

When various elements of the delivery system
necessary for the provision of care are formally inter-
related, they are referred to as an integrated health
system. An integrated health system may own all
the components of the system, or it may own some
components and contract for the others to achieve
a complete system. The degree of integration can
vary greatly. Some integrated systems include a direct
insurance function, offering packaged insurance ben-
efits to an enrolled population, with all services deliv-
ered through the integrated system. Alternatively, an
employer or insurer may contract with the integrated
system to use the delivery mechanism only.

One early US example of a long-standing, highly
integrated health care system is the Kaiser Health
Plan of California, which has its own salaried doc-
tors who are usually required to treat patients in
Kaiser’s outpatient facilities. In Europe, an example
is the British National Health Service, which pio-
neered integration and coordination with the control
of resources.

The rapid increase in the cost of medical care
has accelerated interest in, and prompted increased
development of, integrated health care systems. It is
believed that integrated systems promote more effi-
cient and effective health care, in part because com-
prehensive management information systems permit
administrators to monitor the use of services, the
referrals to specialists, and access to specific, and
especially expensive, services. A large system can
obtain discounts on supplies and drugs.

Numerous organizational arrangements exist for
structuring the components of an organized system.
The essential features of an integrated delivery sys-
tem are the degree of coordination in its network
and its potential for controlling physician and patient
behavior.

The best-known structure for an integrated system
in the US is the Health Maintenance Organization
(HMO). It is so called because each patient pays a
premium amount prospectively for all covered ser-
vices, independent of which services were actually
provided, which gives a physician or system an incen-
tive to maintain the patient’s health. There are several
variants of the HMO model. In a Closed-Panel HMO,
the HMO owns the outpatient and inpatient facilities
and owns or contracts for most other services, is paid
a fixed amount for each patient covered (capitation),
and pays the doctors (the panel) a salary or other pre-
determined compensation. This model allows a great
degree of control over both physicians and patients.

Another common HMO structure is the Inde-
pendent Practice Association (IPA), which contracts
with some or all community-based physicians, hos-
pitals, and other providers for services provided to
enrolled clients. More structure is offered by the
organizational form termed “group practice without
walls” in which community-based physicians form
a single legal entity while practicing independently
with common office management services and shared
contracting.

Another category of integrated system is based
on legal and organizational relations between hos-
pitals and physicians. These include Physician Hos-
pital Organizations (PHOs) and Management Service
Organizations (MSOs). PHOs are usually initiated by
hospitals for the development of partially integrated
systems of care that can contract with insurance
companies and employers. PHOs may work with a
restricted universe of physicians or may be more
broadly based. The MSO tends to be more physician-
oriented than the PHO, is sometimes initiated by
physicians, and provides greater practice support ser-
vices for the physicians who are participating.

Health services research is easier to perform
within an integrated health care system than in
independent facilities, because there are enrolled pop-
ulations and often a unified information system.
Considerable research has been done to determine
whether one organizational system yields higher
quality of care, higher satisfaction, or lower cost
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than other systems. The impact of such systems and
differences between for-profit and not-for-profit sys-
tems will need a further evaluation as they evolve,
although the evidence thus far is generally positive.
For a further description of integrated health systems,
see Brown [1].

Hospital and Health Systems

Hospitals were first termed “almshouses” or “poor
houses” and provided care primarily to the home-
less poor and chronically disabled. Wealthier people
received care in their own residences. As medicine
advanced, particularly after the turn of the century,
and most notably after World War II, the hospi-
tal’s role as a source of biomedical expertise and
knowledge grew dramatically. In the US, the devel-
opment of professional nursing and specialized tech-
nology and the increasing ability of physicians to
intervene in disease and illness spurred on the growth
of the nation’s hospitals in the first half of the 1900s.
The growth of private health insurance and govern-
ment entitlement programs, and further advances in
medical technology and the professional development
of physicians in the years prior to and after World
War II, gave a further thrust to hospital growth and
development. In the US, health services are increas-
ingly provided in an ambulatory setting, causing hos-
pitals to become more a source of highly specialized
services.

Hospitals and health systems may be organized
and owned as government entities or as private for-
profit or nonprofit entities. Hospital ownership and
hospital management may be differentiated in that in
some instances a hospital may be publicly owned,
or owned by a nonprofit entity, but managed under
contract by a for-profit corporation. Government hos-
pitals may be owned by federal, state, or local entities.
A for-profit hospital is typically part of a larger cor-
poration, as may be the case also for a nonprofit
entity. Publicly held, for-profit companies that own
and operate or manage hospitals under contract are
typically large corporations whose stock is traded on
national stock exchanges.

In recent years, the for-profit hospital sector has
experienced a high degree of turmoil with, most
recently, increasing consolidation. Some controversy
exists as to the extent to which for-profit hospitals
are run more efficiently and have lower personnel-
to-patient ratios. Economic pressures, however, are

forcing all hospitals to improve their economic effi-
ciency and management expertise and to focus on
parameters of performance.

The traditional organizational structure of hos-
pitals in the US includes three sources of power
and authority. The governing board is ultimately
responsible for all of the operations of the hospital.
Hospital administration is delegated responsibility for
the day-to-day management of the facility. The hos-
pital medical staff is typically separately organized
with delegated responsibility from the board for clin-
ical matters, including the credentialing of physicians
and assessing and assuring the quality of health ser-
vices provided. Hospitals that are part of larger health
systems, however, typically lose managerial and gov-
ernance autonomy.

Hospitals and health systems in the US are facing
increasing competition and cost pressures. Managed
care requires an assumption of risk and participation
in various new forms of reimbursement that have a
variety of controls associated with them. Increasing
vertical integration is occurring throughout the US in
the hospital industry. Concerns over quality of care,
malpractice litigation, excess bed capacity, and pro-
vision of care to the medically underserved are also
common in most communities throughout the US.

Research needs to focus on issues of efficiency,
outcomes, and costs of care in the hospital and health
systems. Also relevant are issues associated with the
integration of the hospital with other services and
with systems of care.

Further information on the organization of hospi-
tals in the US can be found in [13].

Ambulatory Care Services

Ambulatory (outpatient) care encompasses those
services provided to a noninstitutional patient, as
opposed to inpatient services, which are provided
to a patient who has been admitted, at least
overnight, to a hospital or other health care facility.
Ambulatory services include a wide range of settings,
professionals, and specific health care clinical
services. Technological advances and financial
pressures are increasingly leading to a shift of
services from inpatient to outpatient care.

The typical US citizen has approximately six
physician contacts per year. The most common set-
ting for ambulatory care services is the physician’s
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office, incorporating solo practitioners, group prac-
tices, and hospital outpatient departments. Ambula-
tory services are also provided in a variety of other
settings, including, most notably, ambulatory surgery
centers, which have grown tremendously in impor-
tance and are now the setting for 70% of all surgery
performed in the US, emergency rooms, and hospital
clinics. Governmentally sponsored ambulatory care
services include those in institutional settings such as
Department of Veterans Affairs facilities and prisons,
as well as military services and the Indian Health
Service.

Ambulatory care plays an important role, partic-
ularly in managed care plans, in the coordination,
organization, and control of all health care. Ambu-
latory care is usually less expensive than inpatient
care.

Research has begun to address key issues such
as the role of the gatekeeper in ambulatory care,
appropriate use of services, coordination and access,
and clinical practices and outcomes (see Outcomes
Research).

Further details on ambulatory care services may
be found in [12].

Group Practice

A group practice is a formal organizational arrange-
ment for the affiliation of three or more health care
professionals characterized by the sharing of income,
expenses, medical records, staff, facilities, and other
resources. The first physician group practice in the US
was the Mayo Clinic in Rochester, Minnesota. Histor-
ically, most physicians were solo practitioners. With
the advent of increasing specialization and adminis-
trative complexity, and, more recently, of insurance
and prepayment, group practice has grown explo-
sively, with approximately 40% of all physicians in
the US practicing in a group.

Group practice provides professional management
and shared financial and patient care responsibility.
Group practice also limits a practitioner’s clinical and
financial freedom, requiring that practitioners con-
form to group norms and standards. Personal auton-
omy is exchanged for greater financial flexibility and
contracting advantages.

Group practices may be organized as professional
corporations, foundations, partnerships, and other
legal forms. Other complex legal entities and con-
tracting arrangements are used in groups that are

involved in managed care. Some larger groups own
their own hospitals, and most groups own ambulatory
surgery, laboratory, and other specialized facilities.
Under managed care, group practice assumes a partic-
ularly important role in managing physician resources
and in controlling patient access to services.

Havlicek [5] provides further description of group
practice.

Primary Care

Primary care is the provision of ongoing, day-to-
day health care services, encompassing preventive
services (see Preventive Medicine) as well as rel-
atively routine and patient- and provider-initiated
services. Primary care typically requires less inten-
sive resources than more specialized care and can
often be provided during a brief office visit. Primary
care also includes follow-up and continuing care for
chronic diseases.

Primary care is typically provided by a physician
in the physician’s office, but is also provided by
other health professionals, such as nurse practitioners,
especially in specialties such as pediatrics. Primary
care is also available in hospital facilities and the
patient’s home.

Primary care provides an important entry into
the health care system. It is the best setting for
ongoing monitoring and coordination of care, and
a reliable source of advice and guidance. It is the
coordinating and controlling aspect of primary care,
combined with increased reliance on primary care
providers (i.e. general internists, family practitioners
(see General Practice), pediatricians, and sometimes
obstetrician/gynecologists), that is a key defining
principle of many forms of managed care.

Wenzel [16] elaborates on the characteristics of
primary care in the US.

Long-Term Care

Long-term care includes a broad array of physical
health, mental health, and social services provided
to individuals with significant, often permanent, ill-
ness and disability. In some instances, the need for
long-term care may be only temporary, with eventual
recovery. Long-term care services, in contrast to
acute or short-term care, typically involve a broader
array of social, and residential, services, as well as
health services. The involvement of social and other
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services may present financial difficulties for many
individuals due to lack of external subsidies such as
health insurance.

Long-term care services include skilled nursing
facilities, such as nursing homes; inpatient hospital
services, including medical, surgical, psychiatric, and
rehabilitation facilities; ambulatory care services, and
mental health facilities; alcohol and drug abuse pro-
grams; adult day care; home health services; hos-
pice care; and social services, including meals on
wheels, homemaker and personal care services; trans-
portation, communication, health promotion activity
programs, and recreational activities; and, finally,
housing programs, including congregate care, retire-
ment communities, assisted living facilities, and other
living arrangements.

Long-term care services are primarily devoted to
individuals with chronic physical or mental disabil-
ity. An important component of long-term care is the
rehabilitation service, particularly for individuals suf-
fering from chronic disease, trauma, and accidents.
The older population of long-term care users typ-
ically have multiple physical and/or mental health
problems, as well as various social and financial con-
straints. A growing population of individuals in both
the long-term and mental health systems is character-
ized by mental and/or physical disability attributable
to various forms of dementia, such as Alzheimer’s
disease.

Nursing homes are an important component of
long-term care. Nursing homes that are Medicare-
certified are eligible to accept patients covered under
the Medicare program. Medicare coverage of long-
term care services is extremely limited, and most
patients are required to spend-down most of their
personal financial resources before becoming eligible
for Medicaid program coverage. The nursing home
resident is typically aged 85 and above with multiple
health, and often mental health, problems and with a
variety of dependency requirements.

Hospice is a form of organizing services for
individuals with terminal illness. Hospice may be
provided in specifically designated facilities or in the
patient’s home and involves a coordinated, multi-
disciplinary approach to addressing the patient’s
needs as well as those of the family.

Home health services is another growth area in
long-term care. Technological advances allow a wider
range of services, such as infusion therapy, to be
provided in patients’ homes, thereby decreasing the

need for inpatient care. Increasing coverage under
Medicare and insurance plans has spurred the growth
of home health care in the US.

Long-term care services are often fragmented and
need integration to match services to patient needs.
Coordination requires integrated information systems
(see Administrative Databases), care coordination,
particularly by case managers, and integrated financ-
ing mechanisms. Current long-term care financing
arrangements in the US limit this type of integration.
Social services, in particular, are often inadequately
coordinated with physical health and mental health
needs. For further reading, see Evashwick [4].

Public Health and Preventive Services

Public health and preventive services are the front
line of protection against injury, disease, and illness.
Primary prevention and many public health services
are population-based, such as the protection of food,
water, and milk supplies, and the monitoring of dis-
ease (see Surveillance of Diseases) and disposal
of wastes. Preventive services delivered to individ-
uals with the purpose of avoiding illness include
vaccinations and immunizations, physician examina-
tions, and screening (see Screening, Overview). Of
increasing importance in recent years is work site
accident avoidance (see Occupational Health and
Medicine).

Public health services are provided through state
and local public health agencies. The core functions
of public health agencies at all levels of govern-
ment (see [7]), are: assessment, development, and
assurance of public health services. State agencies
have responsibility for the entire population in a
state. Local agencies provide direct services, such
as restaurant inspections and monitoring of food and
water supplies. Provision of personal services such as
immunization, venereal disease screening, and fam-
ily planning clinics is a local function. State agen-
cies intervene when local agencies do not perform
adequately legally required public health services.
In the US, federal agencies with responsibility for
public health include the federal Centers for Dis-
ease Control and Prevention, which provides labora-
tory, epidemiologic, and advisory expertise. Federal
grant support for selected priorities is provided to
state and local agencies. Responsibility for pro-
tecting the nation’s health is ultimately shared by
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governmental agencies with front-line providers and
by every citizen as well. Research needs in this
area include cost/benefit analysis of screening (see
Screening Benefit, Evaluation of) and routine per-
sonal preventive services. There is controversy about
the appropriateness and frequency of most preventive
measures. Further discussion on this topic appears in
[7] and [14].

Mental Health Services

Mental health services involve services provided for
psychiatric and neurological disease and illness per-
taining to the brain and its function, as well as to
emotional and behavioral deviance (see Psychiatry;
Neurology).

Until the second half of the twentieth century,
mental illness and dysfunctional behavior were
treated by institutionalization and isolation as well as
persecution. Developmental and experiential origins
for behavior, codified by Freud and others, led to
the establishment of psychiatry and psychoanalysis
to diagnose and treat mental illness. Biomedical
research is now vastly improving the identification
and treatment of such illnesses as depression,
schizophrenia, obsessive–compulsive behavior, and
addictions.

Increasingly, physiologic etiologies are being
identified for many forms of mental illness and aber-
rant behavior, leading to enhanced pharmacologic
intervention. The introduction of psychotropic drugs
in the 1950s, along with community-based outpatient
services, led to the deinstitutionalization of men-
tal health patients in the US. However, inadequate
resources and lack of an integrated and comprehen-
sive delivery system have also caused increases in the
homeless population in many cities, multiple hospi-
talization episodes, and increased criminal activity by
and against those with mental illness.

The US has both public and private mental health
systems. The public system is the provider of last
resort and is characterized by governmental facili-
ties, while the private system cares for individuals
with insurance, the ability to self-pay, or coverage
under entitlement programs. The private system is
characterized by private psychiatric hospitals and
a greater role for psychiatrists as opposed to psy-
chologists, who are more prevalent in the public
system. Mental health services tend to be limited

under private health insurance. Where physiologic
origins for mental disorders are identified, prospects
for enhanced coverage are brighter, as are the social
advantages. However, problems such as developmen-
tal disabilities and severe organic brain disorders,
dementia, including Alzheimer’s disease, substance
abuse, and criminal activity remain complex chal-
lenges. Mental health problems also raise numer-
ous complex legal, ethical, and moral issues regard-
ing individuals’ rights to privacy, to treatment, and
to involvement in society, as well as issues of
access to care, appropriateness of various professional
providers, and avenues for financing.

Research needs include continued epidemiologic
investigations of the nature of illness and deter-
mination of cost-effective interventions (see Health
Economics), as well as determination of the most
appropriate sites for care, best practitioners to utilize,
and financing arrangements.

The reader is referred to [6] and [11] for more
detailed description of mental health services in
the US.

Health Care Personnel

Approximately 8% of US, civilian employment is
involved in the health care system as providers of care
or in organizing or managing the system. Physicians
are the key clinical decision-makers in the health
care system. In the US, federal and state govern-
ment initiatives in the mid-1960s led to substantial
increases in the number of medical schools, as well
as medical school graduates from existing schools.
In addition, during the late 1960s and 1970s, federal
policy allowed for an influx of substantial numbers
of foreign medical school graduates. The result of
these policy actions is a substantial increase in the
number of physicians in training and in practice.
Geographic dispersion of physician supply has also
improved greatly over the past 30 years. Significant
attention has been directed toward specialty distribu-
tion, to focus recently on increasing the supply of
primary care practitioners at the expense of many
surgical subspecialities. Managed care has endorsed
this shift with an emphasis on providing care through
primary care practitioners wherever possible.

There are over 2 000 000 registered nurses in the
US. In recent years, there has been a dramatic shift in
the education of individuals eligible to become reg-
istered nurses from hospital-based diploma programs
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to baccalaureate and associate degree programs based
in colleges and universities. The nursing field also
includes many other roles, including various forms
of nursing assistants and licensed practical nurses,
as well as more heavily credentialed nurses, such as
nurse practitioners.

Numerous other specialty professionals contribute
to health services. For example, improvements in
oral health combined with greater efficiency in dental
practice have impacted demand for dental services
and education; the number of dental schools and
graduating dentists has begun to decline. However,
dental services are still inequitably distributed due to
financial constraints.

Research issues for the future are complex and
include the increasing role of specialists in many
areas, competition between different practitioners for
employment and clinical roles, credentialing and
licensure of professionals, and matching availability
of personnel to the need for such individuals in an
increasingly fiscally constrained environment. Issues
of quality, cost, and appropriateness of utilization,
will also need to be addressed in the future (see
Health Workforce Modeling).

For further information on health care personnel
in the US, see [2, 3], and [8].

Managed Care

Managed care is a general term representing the
realignment of health care services and reimburse-
ment in such a manner as to shift the risk, both finan-
cially and in other forms, from insurers to providers
and consumers. Managed care is the more current
form of what was previously termed prepaid health
care. Although managed care is in a state of flux,
some specific organizational structures are beginning
to evolve.

Managed care plans are designed to reduce uti-
lization, particularly of inpatient services, and at the
same time often to provide a broader benefit structure
with some degree of emphasis on preventive services
in view of their potential long-term cost benefits. One
important feature of managed care plans is the estab-
lishment of contractual arrangements with providers
to allow the plan and its management to impose vari-
ous forms of oversight and control over providers.
Provider risk-sharing through contractual arrange-
ments that provide incentive compensation is also

common. Reduced consumer administrative burdens
are typical of many forms of managed care, although
various barriers are also introduced to reduce con-
sumer incentives for utilization as well.

Managed care provides services in a more finan-
cially constrained framework, whereby both providers
and consumers have greater incentive to control use
of services and hence costs. Substitution of lower-cost
clinical alternatives, rationing of services, coordina-
tion of care, reduction of duplication of services, and
managerial efficiencies are among the approaches uti-
lized in implementing managed care systems. Use of
quantitative databases to monitor and evaluate clini-
cal patterns of care, financial experience, and quality
and utilization is an important component of managed
care, which drives the need for a structured informa-
tion system (see Administrative Databases) and for
statistical evaluation methods for assessing use and
patterns of care.

Managed care often incorporates various forms of
HMOs. The percentage of the population enrolled in
managed care plans has increased dramatically in the
past decade. In the US, entitlement programs such
as Medicare and Medicaid increasingly incorporate
managed care principles and contractors to instill
efficiencies and cost savings.

Managed care plans, through contractual arrange-
ments with providers, establish networks of indi-
vidual and institutional care sources. Less restric-
tive plans, such as Preferred Provider Organizations
and Point-of-Service HMO plans use networks but
allow out-of-plan use at higher cost. More restrictive
forms of managed care, such as Closed-Panel HMOs
often do not allow out-of-plan use of services. Other
incentives and controls affecting consumers include
copayments and deductibles, case management, ben-
efit limitations and exclusions, and access barriers in
various forms.

An increasingly popular mechanism for control-
ling utilization by consumers in managed care plans,
particularly HMOs is the gatekeeper. The gatekeeper
is a primary care physician who must either provide
or approve referrals for any services within the plan.
The gatekeeper concept has assigned much greater
responsibility to the primary care physician and has
reduced direct access to specialists by consumers.

In managed care plans, financial incentives for
providers are often designed to provide rewards for
the careful management of dollars. Various forms of
incentives, such as bonuses and profit-sharing pools,
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are used to encourage physicians to control carefully
the use of services, particularly expensive inpatient
and specialty care. Reimbursement of physicians
has also shifted in many plans from traditional
fee-for-service payment to salary and capitation,
whereby incentives are much more clearly focused
on rationing and control of utilization.

Further research is needed to test many of the
principles of managed care and their long-term effects
on cost, quality, and patient and provider satisfaction.
Possible underutilization, lack of access, and adverse
effects of financial incentives for physicians are other
research issues.

Kongstvedt [9, 10] provides a good source for
further reading regarding managed care.

Regulation and Controls

Regulatory mechanisms to control health care ser-
vices may be imposed by governmental entities or by
payers under contractual arrangements. Government
intervention is usually designed to protect health and
safety or to influence the health care market when the
market fails to achieve those social goals desired by
political forces.

Examples of US governmental regulations pertain-
ing to health and safety include fire, health, and safety
codes imposed by state and local governments. State
regulation of health care personnel includes licensure
of physicians, nurses, and other categories of profes-
sionals. Payers may also implement limited regulation
of this nature, such as evaluation of participating
physicians’ qualifications and credentials.

Marketplace regulations in the US, particularly
by government, date back to the Hill–Burton leg-
islation, which allocated federal funds for hospi-
tal construction and renovation after World War II
on the basis of simple health planning computa-
tions. The more recent era of government inter-
vention dates to the Great Society in the mid-
1960s. Numerous interventions attempted to influ-
ence costs and allocation of resources. Examples
include subsidies aimed at individuals and institu-
tions, such as grant and loan program tax exemptions.
Entitlement programs such as Medicare and Medi-
caid represent large-scale, subsidy-type interventions.
Restrictions on entry into professional fields through
licensure requirements and facility licensure and cap-
ital expenditure controls are additional examples of

interventions. Regulation through payment mecha-
nisms includes requirements under the Medicare and
Medicaid programs, rate-setting commissions, wage
and price controls, payment restrictions under insur-
ance programs, including contractual arrangements
under managed care, and the determination of fee
schedules.

Controls to assure the quality of care are
also common in health services. These are usu-
ally associated with entitlement programs or with
contractual obligations under insurance plans, par-
ticularly under managed care. These mechanisms
have included professional review organizations, uti-
lization review, preadmission authorization, second
opinions for surgery, and other programs to assess
quantitatively various aspects of the quality and uti-
lization of services, and the control of use of services
by providers and patients.

Numerous other regulatory mechanisms have been
utilized in the past or are currently in place. These
include: financial controls on consumers, including
benefit limitations, deductibles, coinsurance exclu-
sions, and other provisions of insurance plans; lim-
itations on the supply of services through rationing,
queues, and other restrictions on access; reviews of
provider services, including claims reviews, medi-
cal audits, institutional reviews; and legal, regulatory,
and practice-influencing effects from medical mal-
practice litigation.

Regulation and control of health services has
historically had a focus on either affecting utiliza-
tion and costs or influencing perceived inadequacies
and misallocations of resources within the health
care system. Although many regulatory efforts in
the past have failed to provide adequate results or
have simply not been cost-effective, marketplace
mechanisms continue to be the primary focus at
the present time with an emphasis on reduction
in cost increases, on influencing patient expecta-
tions of behavior, and on affecting physician practice
patterns and use of resources. Regulatory control
mechanisms are increasingly focusing on economic
considerations with some added focus on monitor-
ing various aspects of the quality of care provided.
Evaluation of consumers and providers by man-
aged care organizations and self-evaluation of such
managed care organizations themselves and by exter-
nal organizations have grown substantially in recent
years. Under the pro-competitive market approach
in the US of recent years, the federal government’s
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direct role in the regulation and control of health
services has focused primarily on costs, access, and
quality issues in government entitlement programs
with a less substantive contribution to the assessment
of various aspects of the larger system.

The reader is referred to [17] for more details
regarding regulating and controlling health services
in the US.

Technology Assessment

Advances in technology can improve the diagnosis,
treatment, and cure of disease and illness. How-
ever, important issues related to the diffusion and
evaluation of technology impinge on policy-making
regarding the role of technology in health services.

The evaluation of technology involves complex
considerations including costs and benefits, regula-
tion, efficacy, and clinical effectiveness. Diffusion of
new technology is driven by financial considerations.
Under fee-for-service reimbursement, technological
advances have a tendency to be utilized as quickly as
regulatory approval is achieved, while in a managed
care environment the potential for some hesitation
exists.

The principal federal agency responsible for tech-
nology assessment in the US is the Food and Drug
Administration (FDA). Drugs and medical devices
must be demonstrated to be safe and efficacious to
achieve FDA approval for clinical application. This
complex and controversial process requires consider-
able time and financial resources.

Clinical research studies are usually necessary to
determine the appropriate clinical situations when
each technology should be utilized. Technologies that
lead to overall cost reductions in health services
due to their substitution for more expensive thera-
pies are of particular research interest. Managed care
organizations are interested in the appropriateness of
various technologies and their associated costs. Con-
troversy is building over the potential restriction of
some technologies under insurance and entitlement
programs due to costs and limited benefits. Ulti-
mately, rationing of resources necessitates making
judgments as to whether particular technologies are
warranted in individual cases.

Further details may be found in Skorup [15].
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Health Services Data
Sources in Canada

The system is referred to as “national” because
plans are linked by the federal government’s Canada
Health Act principles.

Similarly, the provinces and territories have sep-
arate health information systems to serve their par-
ticular purposes. These are a complex assortment of
components operating in different places and at dif-
ferent levels, often quite independently. However,
through agreements, the provinces and territories,
federal government departments, and other organi-
zations have instituted national health information
databases and registries, maintained according to
national standards. These databases do not yet form
a coherent whole, but they are accessible to deci-
sion makers, planners, epidemiologists, researchers,
and others to improve health services, and ulti-
mately the health of Canadians (see Administrative
Databases).

In 1989, the Conference of Deputy Ministers
of Health, concerned about the limited and frag-
mented nature of health information, approved the
establishment of the National Health Information
Council (NHIC). In 1990, a National Task Force on
Health Information was created to assist the NHIC
with identifying health information needs. In addi-
tion, the Task Force was asked to develop priorities
and organizational structures to bring about improve-
ments and changes. Following consultations, the Task
Force recommended establishing a Canadian coordi-
nating council for health information.

These are available from the CIHI, two federal
government departments – Statistics Canada (STC)
and Health Canada (HC) – and a smaller but
important special purpose agency, the Canadian
Centre for Occupational Health and Safety (CCOHS).
Each of these agencies is described briefly in the
section “National Health Information Organizations
in Canada”. There are other data sources in
the provinces/territories but national series and
comparisons are mostly available through the national
agencies.

Framework for Health Information

The evolution of health information has mirrored
paradigm shifts in the view of health care – largely

in-patient acute care and physician administrative
data at first, and over time moving towards informa-
tion across the continuum of care and on a broader
definition of health. Canadian health care informa-
tion consists mainly of information from government
and hospital sources. Canada has standardized and
comprehensive national databases, and these have the
potential for much further development. Currently,
the availability of data is most complete in the areas
of hospitals, identifiable diseases or conditions, and
utilization and costing. Surveys such as NPHS and
CCHS are being used to explore nonmedical deter-
minants of health. For convenience in identifying
current data sources and development activities for
the future, Canadian health information is categorized
into three main areas.

1. Health determinants. The factors that influence
or determine health. They include the environ-
ment, human biology, lifestyles, behaviors and
risk factors, demographics, occupation, and
socioeconomic factors. Examples are satisfaction
with job, cigarettes smoked, proportion of aged,
elderly below low income cutoffs, and labor force
participation, or lack of it.

2. Health services. Services, interventions, and sys-
tems (whether public or private sector) allocated
for restoring, maintaining, or improving health.
These are subdivided into morbidity, health
human resources, environmental and occupa-
tional health, and financial and operational data
areas. Examples include mortality rates, read-
mission rates as well as physician to popula-
tion ratios, numbers of health care facility beds
and financial indicators. (see Health Services
Research, Overview).

3. Health status/population health. Objective and
subjective measures – including morbidity, dis-
ability, life expectancy, and vital statistics –
of the health and well-being of populations
as diagnosed by health care professionals or
reported through self-assessment. Examples are
life expectancy and infant mortality.

The remainder of the article discusses these
broad areas of health information, listing major
data holdings and indicating specific examples of
information that may be derived from the sources. In
addition, a sample of Canadian initiatives underway
to widen the scope and fill the gaps in current
information are described.
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Health Determinants

Data for health determinants are mainly derived
from general or special purpose population surveys,
both periodic and occasional (see Surveys, Health
and Morbidity). After the one-time Canada Health
Survey in 1978, there was a gap until the mid-
1980s when a number of federal and provincial
surveys were initiated. These include surveys to
provide information on current issues such as AIDS,
tobacco control, and fitness. Other surveys have
health-related components for population subgroups,
including aboriginal Canadians, children and youth,
disabled persons, seniors, and women. There have
also been large provincial population sample surveys
in Ontario and Quebec. Many of these activities are
continuing.

A major ongoing survey is the biennial National
Population Health Survey (NPHS) (1994–95,
1996–97, etc.). It includes a set of core population
health status measures, longitudinal data on health
determinants, and in its first three cycles, special,
periodic cross-sectional information. This survey of
17 000 households is conducted by Statistics Canada.
The self-reported information helps to monitor the
health objectives of the provinces and territories,
focusing on conditions responsive to prevention,
treatment or intervention and examining the states
of good health – not just illness. Specific survey
categories are health status, use of health services
(see Health Care Utilization Data), determinants of
health, and demographic and economic information.
The survey also allows the possibility of linking to
the national health databases (see Record Linkage).

In 2000, Statistics Canada began conducting
Canadian Community Health Survey (CCHS) as part
of the Health Information Roadmap Initiative (see
Further Initiatives). The CCHS, provides the basis
for producing cross-sectional estimates to address
priority health data gaps at national, provincial, and
health region levels. The CCHS is composed of two
cross-sectional components conducted over a two-
year cycle. The first component is a health region-
level survey has a sample of more than 130 000
with content adapted to health region needs while the
second is a province-level survey in the second year
with a specific, in-depth theme. With the introduction
of the CCHS, the NPHS has now become a strictly
longitudinal survey.

Other surveys which provide information either
directly or indirectly on health determinants include:
consumer income and expenditure; general social
surveys; labor force surveys; the international literacy
survey; environmental surveys, etc. These may either
originate from or be conducted by Statistics Canada
for another client (i.e. other government departments
such as Industry Canada).

Examples of health determinants available from
population surveys include:

1. Alcohol consumption (Statistics Canada – STC;
Health Canada – HC).

2. Exercise frequency (STC, HC).
3. Measures taken to improve health (STC, HC).
4. Nutrition (HC).
5. Risk factors (lifestyle) (STC, HC).
6. Smoking/tobacco control and use (STC, HC).

Health Services

Health services data sources contain data elements
on health-related curative, preventive, or promotional
services provided to patients or to the general
public. Many of these data have personal and/or
institutional identifiers, so privacy, confidentiality,
and security standards must be maintained. The major
subcategories of data are morbidity, health human
resources, environmental and occupational health,
and financial and operational areas.

Morbidity

Morbidity databases include data from services
provided in hospitals and those provided by
physicians and other health practitioners. The
Hospital Discharge Abstract Database (DAD) and
its companion Hospital Morbidity Database at CIHI
are major service event databases. DAD contains
over 85% of all Canadian hospital patient discharges
(about 4.3 million records annually). It provides
data collection and processing services, reports to
facilities, and carries out comparative reporting.

Major health care services data sources include:

1. Canadian Organ Replacement Register (Cana-
dian Institute for Health Information – CIHI).

2. Hospital Discharge Abstract Database and
Hospital Morbidity Database (CIHI, STC) –
(i) most responsible diagnosis leading to hospital
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length of stay; (ii) interventions; and (iii) relative
resource use by grouping of cases.
CIHI is responsible for many databases and
registries that capture information across the
continuum of health care services in Canada.
This information supports research and analysis
for planning and policy making purposes. A
detailed statement of purpose is included in
the full description of each data holding. All
CIHI’s data holdings are subject to strict privacy
and confidentially principles set out in CIHI
Principles and Policies for the Protection of
Health Information (PDF) 437 KB. Click on any
of the links below for further information on
the database, related publications, availability of
data, and contact information.
Canadian Joint Replacement Register (CJRR) –
captures information on hip and joint replace-
ments performed in Canada and follows joint
replacement patient time.
Continuing Care Reporting System (CCRS) –
contains demographic, administrative and clini-
cal data for residents in facility-based continuing
care in Canada.
Hospital Mental Health Database (HMHDB) –
contains demographic and medical diagnosis
information for inpatient hospital stays for mental
health disorders in Canada.
National Ambulatory Care Reporting System
(NACRS) – includes data for all home-based and
community-based ambulatory care: day surgery,
outpatient clinics emergency departments. Cur-
rently contains Ontario emergency data only.
National Rehabilitation Reporting System
(NRS) – A national health information system
for adult inpatient rehabilitation services.
National Trauma Registry (NTR) – contains
demographic, diagnostic and procedure informa-
tion on all admissions to acute care hospitals in
Canada due to injury.
Ontario Chronic Care Patient System (OCCPS) –
contains demographic, administrative and clini-
cal data for patients in designated chronic care
beds in Ontario Hospital. Beginning in April
2003, these facilities will submit data to the
national database (CCRS) and historical data will
be converted.
Ontario Trauma Registry (OTR) – contains
demographic, diagnostic and procedural data on
all admissions to acute care hospitals in Ontario

due to injury, plus detailed data on major trauma,
and data on all deaths in Ontario due to injury.
Therapeutic Abortions Database (TADB) – con-
tains basic demographic and medical information
related to Canadian patients obtaining therapeutic
abortions in Canada.

3. Health Promotion Surveys (HC).

Health Human Resources

Health human resources databases (see Health
Workforce Modeling) track data elements related
to medical and health practitioners, including
numbers graduating and practicing, geographical
distribution, services provided, and remuneration.
The National Physician Database is a major source
of information on the quantity of physician services,
their costs, and limited patient information. It
receives about 16 million records annually from
the provincial/territorial health insurance (Medicare)
system.

Major health human resources data sources in-
clude:

1. National Physician Database (CIHI).
2. Southam Medical Database (physician demo-

graphics) (CIHI).
3. Registered Nurses Database (CIHI).

Environment and Occupational Health

Environmental health databases (see Environmen-
tal Epidemiology) from Health Canada and Statis-
tics Canada track chemical, biological, and physical
hazards (see Risk Assessment for Environmental
Chemicals), product safety, medical devices, radia-
tion protection, and tobacco control (see Smoking
and Health). Occupational health and safety data-
bases, mainly from CCOHS also provincial depart-
ments of labour and worker compensation boards,
include practical health and safety information on
chemical and other contaminants and hazards, reg-
ulations, standards, and guidelines.

Major environmental health data sources include:

1. Environmental monitoring and analysis databases
(STC).

2. Environmental health databases (HC).
3. Occupational health and safety databases and

information (CCOHS).
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Financial and Operational Areas

Financial and Operational databases contain details
on both governmental and nongovernmental areas, in
particular sectors (including hospitals and residential
care facilities) or geographic areas (provinces and
territories) or at the national level. The main database
is National Health Expenditures which contains data
from 1960 to the present by spending category and
source of funding. The data originate from diverse
public documents, including public accounts and
annual reports, and private sector sources.

Major health expenditures data sources include:

1. National Health Expenditures Database (CIHI) –
actual, real, and per capita expenditures by sector
and category.

2. Annual Hospital Survey (CIHI) – beds per 1000
population by type of care.

Health Status/Population Health

Health status includes demographic information, gen-
eral health status, health status of population sub-
groups, and illnesses or conditions by geographic or
population groups.

The major sources of demographic information are
the census (held every five years) and the regular
reporting of vital statistics (historically – births,
deaths, marriages, and divorces). These programs
are managed by Statistics Canada. Vital statistics
measures are traditional, if indirect, health status
measures and may include such items as the age-
specific fertility rate, births by birthweight, and age
of mother (such as teenage births).

Health status data are derived from mandatory
disease reporting systems (see Disease Registers),
from general or special purpose population surveys
(i.e. the National Population Health Survey), or from
hospital or self-reported morbidity and general mor-
tality databases (see details under the section “Health
Determinants” above). Under the leadership of Health
Canada, national surveillance networks are in place
to create a picture of health risks, patterns, and
trends across Canada. New early warning systems
have been set up to detect communicable diseases
of public health importance. These new surveillance
networks represent combined laboratory and epidemi-
ologic efforts. New surveillance systems are also in

place to detect trends and risk factors in noncommu-
nicable diseases. These include: acute coronary syn-
drome; myocardial infarction; childhood asthma; dia-
betes; congenital anomalies; breast, cervical, prostate,
and brain cancer; perinatal health; and childhood
injuries.

Selected data available include:

1. Demographic – birth rates (STC); fertility rates
(STC); population size and distribution (STC).

2. General health status – health expectancy (STC);
life expectancy (STC); health indicators (STC).

3. Health status of population subgroups – aborigi-
nal health (HC, STC); immigrant health (STC)
children’s health (HC, STC); seniors’ health (HC,
STC); women’s health (HC, STC).

4. Illnesses and conditions – accidents and injuries/
trauma (CIHI, HC); AIDS (HC, also in STC
health indicators); cancer (STC, HC); cardio-
vascular disease (STC, HC); chronic diseases
(HC); communicable diseases (HC, also in
STC health indicators); congenital abnormal-
ities (HC); disability (STC); hospital mental
health (CIHI, STC); hospital morbidity (CIHI,
STC); mortality/causes of death (STC); notifi-
able diseases (HC, also in STC health indicators);
therapeutic abortions (CIHI/STC); tropical dis-
eases (HC).

Further Initiatives

In 1999, the Government of Canada launched the
Health Information Roadmap initiative, a significant
investment to enhance the gathering and sharing
of information on the health of Canadians and the
health of their health care system. The objective
was to ensure the regular dissemination of timely
and relevant information needed to enhance the
public understanding and debate about issues of
health and health care and to provide support to
those responsible for developing policies, designing
and managing programs and evaluating the health
care system.

Health Indicator Conceptual Framework

In order to guide the identification of specific indi-
cators that are primarily intended to support regional
health authorities in monitoring progress in improv-
ing and maintaining the health of the population
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Table 1 Health indicators conceptual framework

Health status
Well-being Health conditions Human function Deaths

Nonmedical determinants of health
Health behaviors Living and working conditions Personal resources Environmental factors

Health system performance
Acceptability Accessibility Appropriateness Competence
Continuity Effectiveness Efficiency safety

Community and health system characteristics
Resources Population Health system

and the functioning of the health care system for
which they are responsible, CIHI developed a health
indicator conceptual framework (Table 1). In addi-
tion, the indicators should assist with reporting to
governing bodies, the public, and health profes-
sional groups. The initial set of indicators was
selected through a consultative process involving
over 500 individuals including health administra-
tors, researchers, caregivers, government officials,
health advocacy groups, and consumers. Ongoing
consultation with representatives from across the
country ensures that existing indicators meet the
needs of stakeholders, and that new indicators are
added as new needs emerge and new data become
available.

This framework is based on a population health,
or determinants of health model. This framework
reflects the principle, based on the supporting sci-
entific evidence, that health is determined by a com-
plex interaction of factors, including the social and
physical environments, well-being, prosperity, health
care, as well as genetic endowment and individual
behavioral and biological response.

About these indicators. In September 2000, First
Ministers issued a CommuniquØ on Health in which
they agreed to provide clear accountability reporting
to Canadians, beginning in September 2002. Over the
past two years, health ministries from all provinces,
territories, and the federal government have been
working to select and to report on a set of comparable
health indicators to the public.

As part (which map back to the conceptual
framework) of their agreement in September 2000,
First Ministers identified 14 areas for comparable
health status and health system performance indica-
tors reporting:

Health status

1. Life expectancy
2. Infant mortality
3. Low birth rate
4. Self-reported health

Health outcomes

5. Change in life expectancy
6. Improved quality of life
7. Reduced burden of disease, illness, and injury

Quality of service

8. Waiting times for key diagnostic and treatment
services

9. Patient satisfaction
10. Hospital re-admission for selected conditions
11. Access to 24/7 first contact health services
12. Home and community care services
13. Public health surveillance and protection
14. Health promotion and disease prevention

National Health Information
Organizations in Canada

Canadian Institute for Health Information (CIHI)

CIHI’s mandate is twofold. It is mandated to be a
national coordinator for the development and main-
tenance of an integrated health information system in
Canada. Also, it provides accurate and timely infor-
mation needed to: establish sound health policies,
effectively manage the Canadian health care sys-
tem, and generate awareness of factors affecting good
health. The Institute was established in 1993 as a non-
governmental, nonprofit agency. CIHI is responsible



6 Health Services Data Sources in Canada

for data collection, processing, and analysis in wide
areas of health, human resources, health care, and
health expenditures. It also develops, promotes, and
applies national standards to improve the accuracy
and comparability of health statistics. Products and
services are described in the Canadian Institute for
Health Information Catalogue of Products and Ser-
vices (2002) and on the CIHI Web site (www.cihi.ca)
Canadian Institute for Health Information. 377 Dal-
housie Street, Suite 200, Ottawa, Ontario, Canada
K1N 9N8. Tel. (613) 241-7860; fax. (613) 241-8120;
internet: www.cihi.ca.

Statistics Canada (STC)

STC is recognized internationally for its expertise in
statistics for all aspects of Canadian life. In health,
it is responsible, mainly through its Health Statis-
tics Division, for data in the areas of determinants
of health, vital statistics, and health surveys to pro-
vide accurate and timely statistical information and
analyses about the health of Canadians. Statistics
Canada provides information on the health status of
the population and other specialized information to
diverse clients, including life insurance companies,
health care associations, pharmaceutical companies,
local health units, federal and provincial policy and
program areas, and the general public. Products and
services are described in the Statistics Canada web
site (www.statcan.ea).
Statistics Canada. Director, Health Statistics Divi-
sion, Statistics Canada, Main Bldg., Tunney’s Pas-
ture, Ottawa, Ontario, Canada K1A 0T6. Tel.
(613) 951-1746; fax. (613) 951-0792; email:
hd.ds@statcan.ca

Health Canada

Health Canada is the federal department responsible
for helping the people of Canada maintain and
improve their health. In partnership with provincial
and territorial governments, Health Canada provides
national leadership to develop health policy, enforce
health regulations, promote disease prevention, and
enhance healthy living for all Canadians. Health
Canada ensures that health services are available and
accessible to First Nations and Inuit communities. It
also works closely with other federal departments,
agencies, and health stakeholders to reduce health and
safety risks to Canadians.

The Population and Public Health Branch (PPHB)
collects the information on health determinants, dis-
eases, and health services related to national pro-
grams on health promotion. Their role is to iden-
tify, investigate, prevent, and control disease on a
national basis. The Healthy Environments and Con-
sumer Safety Branch promotes safe living, working
and recreational environments, and collects informa-
tion on the environment in relation to human health.
The Health Products and Food Safety Branch man-
ages the risks and benefits to health products and food
and collects information in this area. The first Nations
and Inuit Health Branch collects data and information
on Aboriginal Peoples.

The information collected through Health Canada
and its multijurisdictional network is used by the
department and other agencies and government
jurisdictions for prevention, control, and policy
formulation.

Health Canada. Internet: www.hc-sc.gc.ca
The Canadian Integrated Public Health Surveil-

lance (CIPHS) program is one of several projects that
are part of the Network for Health Surveillance in
Canada. CIPHS’ mandate is to bring standards-based
management of public health data and to develop
software applications that will allow for a conver-
gence of the information in existing and new systems
so that crucial public health information will be avail-
able to health professionals and decision-makers at
the local, provincial, territorial, and national levels.
CIPHS brings together a strategic alliance of pub-
lic health and information technology professionals
working collaboratively to build an integrated suite
of computer and databases tools specifically for use
by front-line Canadian public health professionals.
These front-line public health workers will be able
to more effectively undertake public health action
through improved management of information and
access to key data elements.
Health Canada. Assistant Deputy Minister, Health
Protection Branch, Health Canada, Health Protection
Bldg., Tunney’s Pasture, Ottawa, Ontario, Canada
K1A 0L2. Tel. (613) 952-7454; fax. (613) 957-4180;
internet: www.hc-sc.gc.ca

Canadian Centre for Occupational Health and
Safety (CCOHS)

CCOHS is a federal government agency under the
Department of Human Resources Development. It
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is an internationally recognized resource in occupa-
tional health and safety and in electronic information
delivery systems. It provides information and advice
about occupational health and safety in order to pro-
mote safe and healthy working environments.
Canadian Centre for Occupational Health and Safety.
Customer Service, 250 Main Street East, Hamilton,
Ontario, Canada L8N 1H6. Tel. (905) 572-4400;
fax. (905) 572-4500; internet: www.ccohs.ca.
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Health Services Data
Sources in Europe

Describing half a century of development for the
more than 20 health systems of Europe, each of
which has followed a somewhat different path, is
difficult. However, one could summarize by noting
that Europe’s health systems, in general: (i) expe-
rienced a virtually unbridled expansion during the
third quarter of the twentieth century; (ii) underwent
a process of learning to operate under relative fis-
cal constraints between the mid-1970s and the late
1980s; and (iii) in the 1990s are experiencing a host
of reforms that aim simultaneously at consolidat-
ing high but insufficient Equity achievements, and
at doing more (Effectiveness) with fewer resources
(Efficiency) while involving a broader array of partic-
ipants in the decision processes (Empowerment) [3].

Europe’s health systems are typically described
as Bismarckian (i.e. predominantly nationwide pub-
lic schemes to protect individuals against the financial
risks associated with illness, through subsidized med-
ical care benefits largely delivered through autonom-
ous agents) or as Beveridgian (i.e. medical suppliers
accessible to all residents at public expense, often
publicly supplied, with out-of-pocket expenses lim-
ited – generously so in the early decades). In the
Central and Eastern countries – not reviewed here –
the appropriate label to describe collective produc-
tion of, and universal entitlement to, a basic medical
package was that of a Semashko model. That model
nominally supported more preventive interventions
than in the West but a considerably small array of
high-technology procedures aimed at increasing sur-
vival rates in the older age strata. A fourth mixed
model with heavier reliance on private insurance for
sizable population segments and safety nets for frailer
segments applies in a third of the Dutch population
and, in a different way, in Swiss cantons. Although
there is vocal advocacy for higher private insurance
participation, this approach has not been a dominant
model in the pattern of Europe’s health care financ-
ing during the second half of the twentieth century.

There are, of course, many variations in Euro-
pean health systems within this broad classifica-
tion scheme. For example, in Bismarckian France,
insurees are required to pay their bills directly and
are subsequently reimbursed, whereas in Bismarckian

Germany vouchers relieve patients from the necessity
of most cash transactions. These differences are more
than cosmetic. Faced with broadly similar structural
problems, some European public authorities opt for
modest doses of reform in the apparent belief that
structural adjustments can be painless, whereas others
such as Britain choose to restructure on a large scale.
Ambitious blueprints for a different system with com-
petition among providers and among payers with a
larger role for the insurees (the Dutch Dekker Plan
in the late 1980s) appear to have yielded to more
modest and politically easier ways using a small mea-
sure of competition. Stepwise priority setting, which
started in the Netherlands and in the Nordic coun-
tries, is gaining ground in larger countries. After
several decades of a pull towards public responsi-
bility for medical care financing, a redefinition of the
private–public mix is everywhere on the agenda, with
population well-being still a dominant driver but with
a strong concern for cost-effectiveness (see Health
Economics) and greater codetermination.

European averages – used by necessity to describe
expenditure trends and health states of the popula-
tion to highlight the spread of real-world dispersions
among the 22 countries – are published under the
auspices of OECD (Organization for Economic Co-
operation and Development)-Europe. Broadly similar
measurement is available only for the 22 European
country members of the OECD. OECD-Europe in
1997 comprised the 15 Member States of the Euro-
pean Union (formerly referred to as the European
Community), which are Austria, Belgium, Denmark,
Finland, France, Germany, Greece, Ireland, Italy,
Luxembourg, Netherlands, Portugal, Spain, Sweden,
and the UK, together with the Czech Republic,
Hungary, Iceland, Norway, Poland, Switzerland, and
Turkey. OECD’s membership also includes Australia,
Canada, Japan, Korea, Mexico, New Zealand, and the
US (these non-European countries are not reviewed
in this article).

In the 1990s the institutions governing the
European health systems and the mix of incentives
and regulations governing them have become
more diverse. However, there appears to be an
underlying trend towards a separation of finance
and delivery. Health services in Europe involve
monetary transactions, but by and large they are
not an activity like all others and obey a distinct
set of principles. Money increasingly follows the
patient. Monolithic structures are yielding, as in
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Britain, in favor of fund-holding general practitioners
or, as in Italy, in favor of hospitals run as still
publicly owned but autonomous enterprises. The
concern for quality has become pervasive, thereby
generating closer monitoring and a growing demand
for evaluation. External constraints (mainly of a
financing nature, but also strained labor relations or
ideologic debates as well as the time required to
generate micromanagement models) slow down the
transformation process of the multifaceted European
health systems. An underlying converging current
is, however, greatly facilitated by common external
constraints (the need to abide by the discipline of
a common currency unit, for instance, prompted
Belgium, France, Italy, Spain, and others to accelerate
reform proceedings) and by shared ethical principles,
notably with respect to children, to ethnic minorities,
and to underprivileged segments of the population.
The OECD Health Policy Studies series (notably
volumes 2, 5, 6, and 7) and the CD-ROM statistical
compendium OECD HEALTH DATA 97 embrace in
a reasonably comprehensive way the health systems
trends in the 22 countries referred to here.

In 1996 the European nations’ measured effort
to finance the range of medical goods and services
varied by a 2 to 1 ratio (Germany, at 10.5% of
GDP, leading Switzerland and France at the top;
Poland and Turkey, at under 5% of GDP, at the
bottom, with a sizable concentration at around 8%
of GDP). Higher spending in some countries (about
$2400 at purchasing power parity – a level of living
exchange rate – in Switzerland, $2000 in Germany,
and $2000 in France) primarily reflects higher per
capita incomes but also higher costs of in-patient
care episodes, physician contacts, and medicines.
Poland and Turkey, whose measured expenditure
on medical goods and services is closer to $300
per capita, are OECD-Europe’s lowest real income
countries. The elasticity of health expenditure to total
domestic demand – which translates to a relative
citizen and consumer preference for medical goods
and services over all goods and services – has been
well above unity during the second half of the
twentieth century, although financing pressures have
slowed this proclivity in most countries. Sizable
public deficits and public debts have constrained
the management of Europe’s health systems in the
1990s while at the same time providing them with an
opportunity to restructure.

The main driver of Europe’s health systems is
not simply a finance engine, but one which also
has concerns for quantity and quality of life. Gains
in life expectancy at birth have been greater than
three months per year since the 1950s in Europe,
with somewhat faster gains for disability-free life
expectancy. Potential life years lost – a measure
of avoidable mortality below 70 years of age –
has shrunk by two-thirds, and morbidity from a
number of causes has declined, even though the
accelerating demand for services and the fluctuating
indicators of patient satisfaction may convey the
opposite perception. Quality of care and outcomes
remain important concerns in the European health
systems.

Europe’s Health Systems Information

The intrinsic complexity of political and social orga-
nizations implies that – short of mammoth and virtu-
ally unmanageable integrated information systems –
the data describing their features are compartmental-
ized and typically developed in isolated corners of the
system. A catalog of data sources is required in each
European country. No country releases information
on inputs, on throughputs, on financing and on per-
formance indicators, on health status and on outcome
measurement, and on population-based studies in
less than a dozen statistical collections. Multiplied by
22 (not to mention the World Health Organization’s
50 European members), a combined catalog would
reach booklet size. As evidence-based medicine and
evidence-based health systems are only slowly matur-
ing in most countries, the booklet would soon become
a directory. A printout of the OECD HEALTH DATA
sources and methods facility in hypertext – which ties
to the 700–800 time series on 29 health systems con-
tained in the software – exceeds 200 normal pages,
but even that represents a considerable shortcut for
a policy analyst in need of simultaneous access to
information on several industrialized countries. Fore-
runners of the hypertext file have been published in
conventional paper format [1, 2].

In particular, OECD HEALTH DATA covers
macrohealth data pertaining to:

1. Health status (life expectancy, potential years
of life lost, premature mortality, morbidity, and
perceived health status)
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2. Inputs and throughputs (health employment,
medical education and training, high-technology
medical facilities, health R&D, the pharmaceuti-
cal industry activity, and trade in medical goods)

3. Medical consumption and practice (average
length of stay and admission/discharges by case-
mix groupers or by International Classification
of Diseases (ICD) categories, pharmaceutical
deliveries by therapeutic classes, ambulatory
surgical procedures, and other indicators of
medical activity and their prices)

4. Lifestyle and environment (nutrition, nuisances
and pollutions, behavioral parameters affecting
health, and social protection arrangements)

5. Expenditure on health services and finance (see
Health Care Financing) (total and public, out-
lays on medical functions and benefits: in-patient
care, outpatient services, pharmaceuticals, ther-
apeutic appliances; expenditure by age groups;
and sources of funding)

6. Demographic and macroeconomic references
related to the composition of the population and
the labor force, general education, the national
product, public finance, and monetary conversion
rates.

A particular feature of the datafile is the inclusion
of a hypertext facility that lists for every group
of variables the intended content of each series,
known deviations from the standard definition, and
the sources of the data.

Other multicountry datafiles are available to the
analyst. The European Office of the World Health
Organization (WHO) periodically releases a HEALTH
FOR ALL software which focuses on public health
objectives set in the aftermath of the 1978 Alma
Ata Conference. These include 38 targets designed
to reduce substantially the toll of premature mortal-
ity and largely avoidable morbidity, resulting notably
from lifestyle and environmental factors. These tar-
gets reinforce the continuous monitoring exercise of
WHO in the areas of communicable diseases and of
cancer and other chronic diseases. WHO supports a
network of collaborating centers which collate infor-
mation in their area of specialty, e.g. the incidence
of AIDS. The total sum of these datafiles makes up
a sizable amount of reasonably homogeneous data.

The Nordic Council, an informal institutional
machinery set up by Denmark, Finland, Iceland,

Norway, and Sweden, pioneered a harmonized devel-
opment of epidemiologic as well as activity nomen-
clatures, notably in surgery. Health Statistics in the
Nordic Countries, specialized publications on medi-
cines and on social protection, and the relevant tables
in the Yearbook of Nordic Statistics provide a limited
but harmonized supply of data with detailed indica-
tions on the sources in the five countries.

The Commission of the European Union, chiefly
through its Statistical Office (Eurostat), has over time
developed data files dealing with policy areas pur-
sued by the European Union or related to these
pursuits. One example is a large database on congen-
ital anomalies, Eurocat. Another is a database related
to the use of case-mix (diagnosis related groups
or related approaches) management. Many of these
specific datasets are, like those developed under the
auspices of the WHO collaborative work, the product
of learned societies united by prospective economies
of scale in pooling basic data. The European Union
has an ambitious data development program on its
agenda for the 5-year period 1997–2002 that expands
its long-term concern for data on work accidents and
occupational diseases, on the mobility of medical pro-
fessionals, on trade in pharmaceuticals and medical
equipment, and on selected areas of prevention, all
domains in which the Treaties governing the Union
provide the authority.

A few learned societies, like the European Dialysis
and Transplant Association or the International Birth
Defect Monitoring Association, have, over time, built
sizable registries (see Disease Registers). These rea-
sonably homogeneous datasets are similar to those
generated by North American and Australasian bod-
ies. Elsewhere, world associations, such as the Inter-
national Dental Federation, which created a Working
Party with participants from several continents, have
instilled a world standard gradually disseminated
through the national associations willing to take part
in a survey of professional practice. Networks of
social insurance administrators and payers and of
public hospital managers etc. have instilled a cul-
ture in which their domestic reporting procedures are
slowly converging.

The bulk of the data developmental effort lies,
however, where the power to intervene lies: in pub-
lic and in private national machineries. Health is
virtually not defined anywhere; only its absence is
recognized. In much the same way, the characteris-
tics of health professionals and of delivery functions
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such as hospital care and the measurement of quality
of life attributes are not shared. Referring to one of
the most established nomenclatures, the ICD, half a
century of practice has not sufficed to erase variations
in coding practices, let alone in aggregation. Medical
culture is not uniform across countries, nor sometimes
within countries. Since cross-national compendia are
built from national time series or surveys, important
attributes or characteristics may vary among individ-
ual entries. Lengthy commentaries are thus required
for virtually every single component.

International agencies which cooperate in limit-
ing the costly multiplication of nomenclatures are
not immune to the risk of using similar headings
for different datasets since the criteria underlying the
construction of these datasets may vary. The report-
ing of drinking habits supplies an illustration: the
Health for All compendium seeks comprehensiveness
and identity of concepts; it borrows the basic data
from a distillers’ compilation which rests on iden-
tical conversion of beer, wine, and spirits into pure
alcohol. OECD Health Data, on the other hand, seeks
consistency between the hundreds of data elements it
collates from each country more than cross-national
comparability.

The preponderance of national datasets over inter-
national ones relates to the obvious policy relevance
of the former. Companies develop datasets or pur-
chase them from specialized service outfits because of
their contribution to corporate strategy; governments
develop sizable datasets to plan, implement, and eval-
uate incentives and regulatory interventions in their
health systems. The statistical instruments developed
in European countries much resemble those found
in the US, comprising one-off surveys, recurrent
surveys, administrative databases, and elaborate
statistical constructs. Because the governance culture
of most countries comprising OECD-Europe has been

on the whole less quantitative than that prevailing
in North America, and notwithstanding sociopolitical
choices conducive to considerably greater involve-
ment of public authorities in the management of
health care delivery and in health systems financing,
European countries have historically been provid-
ing less quantitative information on their respective
health systems than what may be readily accessible in
the US. The quantity and the quality of information
released in Europe has been progressing at a rapid
pace, however, since the oil crisis of the mid-1970s
forced countries to reappraise the cost-effectiveness
of public spending and since corporations operate
less and less on captive markets but must live in
a competitive environment. The list of these new
statistical products is a long one – concerned ana-
lysts may turn to the OECD Health Data hypertext
facility, to other international sources of quantitative
information and, increasingly, to Annual Statistical
Yearbooks or Statistical Abstracts of the countries
in which they have a greater interest for preliminary
indications of what is currently accessible. Further-
more, the stream of information is not drying up
and, in several areas, new data collection activities
have recently been started in Europe in support of
evidence-based management systems.
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Health Services Data
Sources in the US

The ability of the health care system to respond to
the dynamic needs of a nation, and the adequacy
of that response, is governed by the availability of
relevant data. The necessary information is used for
purposes of planning, and to establish baselines and
assess change. Sociodemographic, economic, medical
utilization, health care expenditure, insurance cover-
age, health status, and diagnostic measures are critical
health care indices that assist in the determination of
the demand for health care by the health service user
population. For effective administration of health ser-
vices, information is also needed on manpower and
facility requirements and supply, access to care, sat-
isfaction with care, manpower shortage areas, and
financial constraints [9].

In the US, federally sponsored health care surveys
and other related data systems such as inventories of
health care providers have served as the primary data
sources to assess the nation’s overall level of health
and health care needs, and to help identify deficien-
cies in the health care delivery system. Resultant ana-
lytic databases (see Administrative Databases) have
been used to formulate analyses with policy impli-
cations, to model the impact of proposed changes
in programs, and to evaluate the impact of policies
over time. Numerous health surveys have also been
conducted by state and local governments to address
comparable health system evaluations at the sub-
national level. Health services information systems
have also been developed with funding from private
foundations and industries, but their focus is usually
quite specific in nature. A brief description of these
health services data systems in the US is presented
below.

Population-based Surveys: Measures of
Health Care Use, Expenditures, Access,
and Need

National data on the incidence of acute illness, the
prevalence of chronic conditions and impairments,
the extent of disability, and the utilization of health
care services are obtained in the US through the

National Health Interview Survey (NHIS). The sur-
vey is an annual cross-sectional survey of approx-
imately 40 000 households selected to represent the
civilian, noninstitutionalized population of the US.
Sponsored by the National Center for Health Statis-
tics (NCHS), the sample data measure demographic
and socioeconomic characteristics, health status, and
the use of health care services. Periodic supplements
in the area of utilization, behavior, and health status
are used on a rotating basis to collect more detailed
information.

The NHIS national core sample also serves as
the sampling frame for the Medical Expenditure
Panel Survey (MEPS), which replaces the periodic
National Medical Expenditure Survey (NMES). The
survey is cosponsored by the Agency for Health
Care Policy and Research (AHCPR) and the National
Center for Health Statistics. This panel survey col-
lects data to provide national annual estimates of
health care utilization, expenditures, insurance cov-
erage, and sources of payment for the civilian non-
institutionalized population, and for an oversample
of policy-relevant subgroups that include the poor
and near poor, the elderly, individuals with func-
tional limitations, and individuals predicted to incur
high levels of medical expenditures. Data collec-
tion for the redesigned MEPS was initiated in 1996,
based on a sample of households from the 1995
NHIS. The MEPS survey is conducted annually, and
obtains both cross-sectional and longitudinal data
needed to monitor health care utilization, expendi-
tures, and health insurance coverage continuously
and to examine changes over time. The survey has
sample size peaks, consisting of 13 000 households
at five-year intervals starting in 1997, that satisfy
national precision requirements for policy-relevant
population subgroups. In the off-years of the survey
(e.g. 1998–2001 and 2003–2006), the sample will be
reduced in scale to approximately 9000 households,
but with sufficient sample for national estimation
and for large policy-relevant population subgroups.
The survey obtains data necessary to make annual
estimates and to model individual (and family-level)
health status, access to care and use, expenditures,
and insurance behavior over the two-year period [5].
Furthermore, the household data on utilization and
expenditures is supplemented by linkage to data from
medical providers [8] (see Record Linkage).

Person-specific data comparable to those collected
in the MEPS are also obtained for a sample of the
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Medicare eligible population in the Medicare Current
Beneficiary Survey (MCBS), sponsored by the Health
Care Financing Administration (HCFA). The MCBS
is an ongoing longitudinal panel survey of 12 000
individuals selected from Medicare administrative
files, that collects health care data covering a three-
year period. Household respondents provide data on
health care utilization, expenditures, insurance cov-
erage, and health status, which is supplemented by
linkage to Medicare Claims Information.

Prevalence data for specific diseases and health
conditions and measurements of the nutritional
status of the US population are collected in the
National Health and Nutrition Examination Survey
(NHANES), which is also sponsored by NCHS
[20]. Data for NHANES are collected through
direct physical examinations, laboratory analyses, and
interviews. In the most recent NHANES, completed
in 1994, approximately 30 000 persons aged two
months and older, were examined in standardized
mobile examination centers to obtain a wide range
of medical measurements. The measurements include
dietary intake, hematologic and biochemical tests, a
physical examination and a nutritional assessment.
The resultant database allows for the monitoring of
national trends with respect to heart disease, diabetes,
lead exposure, iron deficiency, and children’s growth
and development in addition to the nutritional health
of the nation.

National estimates of the incidence, prevalence,
consequences, and patterns of substance use and
abuse are obtained from the National Household
Survey on Drug Abuse (NHSDA). This annual sur-
vey, sponsored by the Substance Abuse and Mental
Health Services Administration (SAMHSA), consists
of about 18 000 household interviews of the popula-
tion aged 12 and older, using special procedures to
assure privacy and anonymity.

Analytic data on the use of medical services for
family planning, infertility, and prenatal care are
obtained in the National Survey of Family Growth
(NSFG), conducted by the National Center for Health
Statistics. The survey collects information from a
nationally representative sample of over 8000 women
in the child-bearing ages (15–44) on fertility, fac-
tors affecting childbearing (such as contraception,
sterilization, and infertility), and related aspects of
maternal and infant health [15]. The survey is usually
conducted approximately every five years, and the

NSFG survey design is consolidated with the NHIS,
which serves as the sampling frame for the study.

Another survey with a focus on children, the
NCHS-sponsored annual National Immunization Sur-
vey (NIS, formerly referred to as the State and Local
Immunization Coverage and Health Survey), has been
designed to produce estimates of early childhood
immunization rates [1]. The annual survey consists of
a telephone screening interview with 800 000 house-
holds each year to identify approximately 32 000
households with children between the ages of 19–35
months of age, in order to obtain more detailed immu-
nization data on this target population.

The Centers for Disease Control and Prevention
(CDC) sponsors the Behavioral Risk Factor Surveil-
lance System (BRFSS), which is designed to collect
state-specific general population data on forms of
behavior that are related to the leading causes of
premature death. The survey is a general popula-
tion telephone surveillance system, which obtains
data of particular interest to state health departments
in targeted risk reduction and disease prevention
activities [29].

Another source of both national and community-
specific population based data on health services
utilization, access to care, insurance coverage, and
consumer satisfaction will be forthcoming from the
household survey component of the Community
Tracking Survey (CTS). The survey is being
conducted by the Center for Studying Health System
Change and is funded by the Robert Wood Johnson
Foundation [16]. The study is designed to track
changes in the health care system and their effects
on care delivery and individuals. The household
survey sample consists of 36 000 households to be
interviewed in 1996–1997, primarily selected in 60
communities, and includes a longitudinal component
with data collection in 1998–1999.

Another set of more targeted person-specific sur-
veys have been designed with a special emphasis on
obtaining statistical information on the older popu-
lation. The Longitudinal Study of Aging, sponsored
by NCHS and the National Institute on Aging (NIA),
was designed to measure changes in functioning and
in living arrangements in a cohort of older Amer-
icans. The survey was based on a supplement on
aging to the 1984 National Health Interview Sur-
vey and consisted of 7500 participants aged 70 or
older, who were interviewed in 1984, 1986, 1988,
and 1990 [17]. The Health and Retirement Survey,
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also sponsored by the National Institute on Aging,
is a national panel survey consisting of a sample
of individuals who were 51–61 in 1992 and their
spouses (7600 households, over 12 600 persons) that
are subsequently interviewed every two years over
a 12-year period. The survey obtains information on
health and cognitive conditions and status, retirement
plans and perspectives, health insurance and pension
plans, and income and net worth, to facilitate analyses
of decisions affecting retirement [14]. In addition, the
Asset and Health Dynamics Among the Oldest-Old
(AHEAD) Survey, sponsored by the NIA, is a panel
study of 10 000 persons born in 1923 or earlier that
were primarily identified in the screening of 69 000
households for the Health and Retirement Survey.
The survey obtains data on physical and functional
health, cognitive functioning, economic status (assets
and income), out-of-pocket costs for service use
(community and nursing home), and other economic
resources, in order to support analyses on the inter-
play of resources and late life health transitions [29].
Data collected in the AHEAD survey will be linked
with information from the National Death Index.

The National Center for Health Statistics collects
and publishes data on births, deaths, marriages, and
divorces in the US through the National Vital Statis-
tics System. In addition to demographic information,
the death certificate data include items on educational
attainment, Hispanic origin, and recent improvements
in the medical certification information on cause of
death [21] (see Vital Statistics, Overview).

A number of national household surveys that have
been designed with a primary emphasis on socio-
economic issues also serve as important sources of
health care estimates in the US. The Current Popula-
tion Survey is an annual household survey consisting
of approximately 60 000 housing units, sponsored by
the Bureau of Labor Statistics and the Bureau of
the Census, to obtain national estimates of employ-
ment, unemployment, and other socioeconomic char-
acteristics of the general laborforce and the overall
population [28]. The survey permits national and
regional estimates of health insurance coverage for
the US civilian noninstitutionalized population. The
Survey of Income and Program Participation is a
panel survey consisting of 36 700 households, spon-
sored by the Census Bureau, to produce national
estimates on the economic situation of households,
families and persons by detailed demographic char-
acteristics covering a four-year period. The survey

has included questions on work disability, functional
limitations, and health insurance coverage which
allow for the derivation of national population esti-
mates for these health-related measures [28]. National
household level estimates of out-of-pocket expen-
ditures for health care can be obtained from the
Consumer Expenditure Survey, sponsored by the
Bureau of Labor Statistics [30]. The survey has been
designed to provide data on the buying habits of
American consumers, and consists of interviews with
approximately 5000 consumer units each quarter.

Surveys of Health Care Institutions and
Providers, and Hospital and Medical
Information Systems

Surveys of medical providers and health care institu-
tions both complement and enhance the information
on health services utilization that are obtained from
household surveys and serve as the primary source
of clinical information on diagnostic and therapeu-
tic services provided to patients (see Health Care
Utilization Data). Physician-specific surveys provide
information on practice characteristics, perceptions
regarding clinical autonomy, scope of care provided,
financial incentives derived through association with
managed care organizations, and the impact of man-
aged care arrangements on the practice of medicine.
Health services utilization data obtained from insti-
tutions, such as from hospital discharge records,
provides essential information on surgical procedure
rates to help inform whether unexplained geographic
variation exists for specific conditions. Furthermore,
surveys of institutions such as nursing homes pro-
vide data for national estimates of institutional health
services utilization, related expenses, and sources of
payment, further distinguished by characteristics of
the facility, including structure, size, certification,
staffing, revenues, and expenses.

The MEPS Medical Provider Survey (MPS), spon-
sored by the Agency for Health Care Policy and
Research, reflects a design strategy to enhance data
reported by households on health services utilization
and related expenditures through a contact with the
associated medical providers. Data from the survey
will be used to reduce the bias in national health
care expenditure estimates that would occur if solely
derived from household reported data. Individuals
enrolled in the Medicaid program, in which financial
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transactions occur only between the provider and the
state Medicaid agency, and enrollees of managed care
plans are often unaware of the total amount billed or
how much the provider is paid for the services they
received [6]. Furthermore, detailed information on the
specific types and intensity of the services provided,
such as physician procedure codes (CPT-4s), diagno-
sis codes (ICD-9s and DSM-IVs), and classification
codes for inpatient stays (DRGs), need to be obtained
directly from the medical providers (see Interna-
tional Classification of Diseases (ICD)). To satisfy
these design objectives, the annual MEPS Medical
Provider Survey targets a nationally representative
sample of the physicians, facilities and home health
providers that were reported to provide medical care
to MEPS household respondents [7].

The National Ambulatory Medical Care Survey
(NAMCS), sponsored by NCHS, is a perennial source
of statistical data on the ambulatory medical care
provided by office-based physicians to the US popu-
lation. The target population consists of office based
visits to physicians engaged in the provision of direct
care to ambulatory patients. The survey data collected
can be used for research on the use, organization,
and delivery of medical care. For the physician prac-
tices selected into the sample, information is collected
on patient visits, date and duration of visit, patient
characteristics, diagnostic and therapeutic services
provided, and the disposition and duration of the visit
[25]. For the 1992 survey a sample of 3000 physicians
was selected, with data obtained from approximately
34 000 patient records.

The National Hospital Ambulatory Medical Care
Survey (NHAMCS), sponsored by NCHS, is an
annual survey of visits by patients to emergency
departments and outpatient departments of non-
Federal short-stay or general hospitals. In 1993,
utilization data were collected for approximately
36 000 patient visits to emergency departments and
35 000 patient visits to outpatient departments [21].
Non-Federal short-stay general hospitals that have a
24-hour emergency room are also eligible for the
Drug Abuse Warning Network (DAWN) sample. The
DAWN is an ongoing drug abuse data collection
system sponsored by the Substance Abuse and Mental
Health Services Administration, which obtains data
on drug abuse occurrences that have resulted in a
medical crisis or death. The primary objective of the
data system is to facilitate the monitoring of drug
abuse patterns and trends [21].

National estimates of the utilization of non-Federal
short-stay hospitals can be obtained from data col-
lected through the NCHS sponsored National Hospi-
tal Discharge Survey (NHDS), from a national sample
of the hospital records of discharged patients. Esti-
mates are provided by the demographic categories of
the patients discharged, geographic regions of hospi-
tals, conditions diagnosed, and surgical and nonsurgi-
cal procedures performed. Measurements of hospital
use include frequency, rate and percent of discharges,
and days of care and average length of stay [11]. For
the 1991 survey, 466 hospitals participated and data
were abstracted from about 235 000 medical records.

The Agency for Health Care Policy and Re-
search’s Healthcare Cost and Utilization Project
(HCUP-3) uses encounter-level administrative data
collected by state governments and state hospital
associations to create research databases. There are
two HCUP-3 inpatient databases. The State Inpatient
Database (SID) contains discharge abstract records
for all discharges from community hospitals in
17 states, comprising half the discharges in the
US. The Nationwide Inpatient Sample (NIS) is a
sample of the SID and approximates a 20% sample
of US community hospitals. The NIS contains all
discharges from 900 hospitals. The HCUP-3 hospital
inpatient databases include patient demographics,
diagnoses, and procedures, length of stay, hospital
charges, expected pay source, and hospital and
physician identifiers. The databases are designed to
support research in the following areas: variations
in medical practice, diffusion in medical technology,
effectiveness of medical treatments, quality of health
services, hospital economic behavior, impacts of
market structure, changes in delivery systems, and
impact of state and federal health care reform
initiatives. HCUP-3 also includes an Alternative
Services Database that contains records for all
hospital-based ambulatory surgeries in five states.
The Alternative Services Database enables studies
examining the shift of health services from inpatient
to outpatient settings [10].

The US Department of Health and Human
Services sponsors three distinct surveys of nursing
homes: the institutional portion of the Medicare
Current Beneficiary Survey (MCBS); the National
Nursing Home Survey (NNHS), conducted by NCHS;
and the National Nursing Home Expenditure Survey
(NNHES), conducted by AHCPR. The MCBS
includes an annual institutional component; the
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NNHS was last conducted in 1995; and the NNHES
was fielded in 1996 as part of the MEPS. To
complement the 1996 MEPS Household Survey,
the National Nursing Home Expenditure Survey
collected data from a sample of 800 nursing
homes and more than 5000 residents nationwide
on the characteristics of the facilities and services
offered, expenditures, and sources of payment on an
individual resident level, and resident characteristics,
including functional limitation, cognitive impairment,
age, income, and insurance coverage for calendar
year 1996. The survey also collected information on
the availability and use of community-based care
prior to admission to nursing homes and data on
the capacity, staffing, and services provided by the
institutions [5, 24]. NCHS also sponsors the annual
National Home and Hospice Care Survey, which
obtains facility characteristics and patient specific
health service utilization information from home
health agencies and hospices.

Other related nongovernment data sources of
health care providers and institutions in the
US include the American Medical Association’s
(AMA) Annual Physician Survey [4], which obtains
information on practice characteristics, patient
profiles, hours and weeks worked, professional
income, professional expenses, and fees. The
Community Tracking Survey (CTS), conducted by
the Center for Studying Health System Change and
funded by the Robert Wood Johnson Foundation [16],
includes a physician survey to obtain data necessary
to track changes in service delivery, access, and
perceived ability to provide quality care. The sample
design complements the CTS household survey,
consisting of a sample of 12 600 physicians in 60
communities.

Health Insurance Data Systems

Coverage and Costs

In the US, the population’s access to health services
is influenced by the presence and generosity of
their health insurance coverage (see Health Care
Financing). Population-based surveys such as the
MEPS and the NHIS provide critical data on the
sources of insurance coverage that characterize the
population. The 1997 Integrated MEPS-Insurance
Component (IC), sponsored by AHCPR, will consist

of interviews with approximately 9200 employers,
300 union officials, and 400 insurers, to obtain
supplemental information on the health insurance
held by respondents to the 1996 MEPS Household
Survey. This linked survey will provide data to
support analyses of individual behavior and choices
made with respect to health care use and expenditures
and insurance coverage (see Health Care Utilization
and Behavior, Models of).

In a complementary fashion, the 1994 National
Employer Health Insurance Survey (NEHIS), co-
sponsored by the Agency for Health Care Policy and
Research, the National Center for Health Statistics,
and the Health Care Financing Administration, was
designed to obtain national and state-level estimates
of the number of employers offering health insur-
ance, their costs, and the coverage and characteristics
of their respective health plans. The 1997 MEPS-
IC will include an establishment component that
conducts interviews at more than 30 000 establish-
ments to obtain national and regional estimates of
the availability of health insurance at the workplace.
The analytic objective is to derive estimates of the
amount, types, and costs of health insurance provided
to Americans by their employers [5, 27].

The Community Tracking Survey (CTS) also
includes an employer survey to measure changes in
employers’ offering of insurance, the types of insur-
ance offered, premiums, and employees’ share of
premiums [16]. The sample design complements the
CTS household survey, consisting of a sample of
approximately 10 000 employers in 60 communities.

Utilization

In addition to survey data, administrative databases
such as data on insurance claims provide another
mechanism to measure health services utilization (see
Health Care Utilization Data). Claims data are gen-
erally gathered and maintained at the patient level in
order to report charges and monitor the use of med-
ical services and resources [2]. In the US there are
three major sources of claims data: Medicare, Medi-
caid, and private insurers [19]. As of 1991, Medicare
claims are available for all Medicare enrollees in the
US. The Medicare claims database includes informa-
tion on cost, diagnoses, and procedures. Alternately,
state-specific Medicaid claims data are available as
part of the Medicaid Statistical Information System
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(MSIS) for 21 states, although the level of detail
provided on diagnosis and procedures varies widely,
given the nonmandatory reporting requirements for
these data elements. Complete Medicaid diagnosis
and procedure coding is available in the Tape-to-Tape
Medicaid database, but is limited to four states (Cal-
ifornia, Georgia, Michigan, and Tennessee). Claims
data from private insurers are generally employer-
based, and vary in the level of detail provided regard-
ing information on cost, diagnoses and procedures,
and enrollment data. Insurers such as Blue Cross/Blue
Shield, United Health Care, and Kaiser Permanente
maintain comprehensive claims databases, as do com-
mercial vendors such as MEDSTAT/SysteMetrics,
Inc. and Shared Medical Systems, Inc. [23]. These
claims data also have been used in the conduct of
cost analyses of clinical practice guidelines.

Health System Inventories and Related
Federal Program Data

The US Department of Health and Human Services
now obtains data on the level, characteristics, and
distribution of the health workforce and the physical
capital in the health system through a number of
separate inventories and surveys, with several more
in the early planning stages.

The Health Resources and Services Administra-
tion (HRSA) has developed and maintained the Area
Resource File System (ARFS), which is designed
to be used by health professionals seeking consis-
tent, current, and compatible information for con-
ducting research on the nation’s health care delivery
system [13] (see Health Services Organization in
the US). The Area Resource File System consists
of four major components: (i) the Area Resource
File (ARF) which is a county-specific database that
consolidates many disparate data elements useful
in the analysis of health professions issues and
developments on a geographic basis (see Small
Area Estimation); (ii) a State/National Timeseries
database; (iii) a microcomputer data series contain-
ing demographic, health facilities, and health pro-
fessions data extracts for use on microcomputers;
and (iv) detailed hospital data files. This data sys-
tem provides the necessary information to allow for
research and analysis of the geographic distribution
and maldistribution of health manpower, the analysis
of health manpower supply, utilization, requirements

and cost, and the development of long-range fore-
casts of the health profession’s supply and require-
ments [13].

The National Health Provider Inventory was deve-
loped and is maintained by the National Center for
Health Statistics to provide counts of the number
of health care facilities such as nursing homes and
board and care homes in the United States. It also
includes an inventory of all home health agencies
and hospices in the US, and has served as a sam-
pling frame for more detailed surveys of these facil-
ities and agencies [26]. The inventory was last con-
ducted in 1991. The American Medical Association
maintains a master file containing data on physician
specialty and current employment status for nearly
every physician in the US [4]. Hospital-level inven-
tory information is obtained in the American Hos-
pital Association’s annual survey of all non-Federal
hospitals in the US [3]. A biennial inventory of men-
tal health organizations and general hospital mental
health services (IMHO/GHMHS) is maintained by
the Substance Abuse and Mental Health Services
Administration.

The Health Care Financing Administration main-
tains the Medicare Statistical System (MSS), which
provides data for examining the program’s effec-
tiveness and for tracking the eligibility of enrollees
and the benefits that they use, the certification sta-
tus of institutional providers, and the payments made
for covered services. The MSS consists of four dis-
tinct databases: the health insurance master file, con-
taining demographic and benefit utilization data for
Medicare enrollees; the service provider file, which
contains information on hospitals, home health care
agencies, skilled nursing facilities, clinical labora-
tories, and suppliers of outpatient physical therapy
services that participate in the Medicare program; the
Hospital Insurance (HI) claims file, which includes
information on the beneficiaries’ entitlement and use
of benefits for hospital, skilled nursing facility, and
home health agency services; and the Supplementary
Medical Insurance (SMI) payment records file, which
provides information on whether the enrollee has met
the deductible and on amounts paid for physician ser-
vices and other SMI covered services and supplies
[12, 21]. The Health Care Financing Administration
also compiles estimates of health expenditures on an
annual basis by type of expenditure and source of
funds in their National Health Accounts [18].
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Other administrative data systems with a health
services focus are maintained by Federal govern-
ment departments outside Health and Human Ser-
vices, in order to satisfy program-specific objectives.
The Department of Defense maintains several health-
related data systems within the Office of the Deputy
Assistant Secretary of Defense. One such system,
the Defense Enrollment Eligibility Reporting System
(DEERS), has information on eligibility for medical,
dental, and other related benefits on approximately
13.8 million uniformed services beneficiaries [22].
The Defense Department also maintains the Defense
Medical Information System (DMIS), which contains
patient data with data elements comparable to those
found on the Uniform Hospital Discharge Data Set or
the UB-82 [2]. The clinical and administrative data
in DMIS on all inpatient episodes at Defense Depart-
ment facilities are obtained for the Automated Quality
of Care Evaluation Support System (AQCESS).

The Department of Veterans Affairs (DVA) main-
tains four main health related data files: the Patient
Treatment File (PTF), which includes patient-specific
claims type data (admission date, diagnosis, and
procedures) for care received at VA facilities; the
Out Patient Care file (OPC), which includes patient
specific outpatient utilization data; the Long-Term
Care Patient Assessment Instrument (PAI) file, which
contains patient-specific demographic, treatment, and
diagnostic data for residents of DVA hospital inter-
mediate medicine wards or nursing home units; and
the Annual Patient Census (APC) file, which con-
tains utilization data on patients in DVA hospitals at
the end of the fiscal year [2].

Summary

In totality, the set of health service information sys-
tems that are available in the US are quite compre-
hensive in their capacity to measure the demand for
health services by the US population, and to assess
the ability of the health system to satisfy that demand.
Future efforts at health service information system
expansions at the federal level will be directed to a
broader systems view that allows for characteriza-
tion of the health system as a whole, the analysis
of interactions between supply and demand, and the
analysis of the relationship between capacity, func-
tioning of the system, and cost. Such information
will allow modeling of the impact of change in one

aspect of the system on others (e.g. the interaction
of the private and public health systems under var-
ious health reform scenarios). Similarly, a stronger
focus on systems-wide or community perspectives
will allow for analysis of the overall structure of the
system in terms of regionalization, organization, and
redundancy [5].
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Health Services Research,
Overview

Health services research (HSR) is the “multidisci-
plinary field of scientific investigation that studies
how social factors, financing systems, organizational
structures and processes, health technologies, and
personal behaviors affect access to health care, the
quality and cost of health care, and ultimately our
health and well-being” [12]. In both basic and applied
research, HSR aims to increase knowledge and under-
standing of the structure, processes, and effects of
health services for individuals, families, organiza-
tions, institutions, communities, and populations [9,
12]. The origins of health services research can be
traced to the 1920s in the US, and several experts
since the 1970s have developed descriptions or defini-
tions of the field [3, 4, 9, 13, 14, 17]. HSR has grown
most prominent in the 1990s in both the US and
abroad, where it is sometimes referred to as health
systems research, or simply health research.

Definitional Concepts

Several important concepts set the field of health
services research apart from other academic or
clinical disciplines. First, HSR is multidisciplinary in
that it involves a wide range of disciplines, clinical
specialties, and distinct academic fields; those who
work in health services research tend to be identified
not by their academic training but rather by the nature
of the research they conduct. Core areas generally
include clinical specialties (e.g. medicine, nursing,
dentistry, pharmacy, social work, and public health),
economics (or health economics), epidemiology,
statistics, and biostatistics. Depending on the research
or policy question at hand, however, a considerable
range of fields can play major roles in HSR,
including anthropology, bioengineering, business
administration, computer sciences, decision analysis,
ethics and bioethics, history, law, management
sciences and administration, psychology, operations
research, and sociology.

Secondly, HSR involves investigations into basic
questions of the behavior of individuals, organiza-
tions, and systems within health care; more com-
monly, HSR comprises applied studies concerned
with practical questions of health policy, health care

delivery and management, evaluation of health care
interventions, and the use of information for pub-
lic and private health care decision-making. Thirdly,
HSR directly generates new or better knowledge
about this range of topics, and it also contributes to
conceptual, theoretic, and methodological structures
by which empirical work can be framed, conducted,
and interpreted. Fourthly, HSR is concerned with
issues of health services that are broadly defined and
involve populations (i.e. members of groups defined
by sociodemographic characteristics, health condi-
tions or diagnoses, cultural or ethnic factors, geogra-
phy or geopolitical jurisdictions, or public or private
health insurance plans); it is not focused solely on
personal health care for individuals.

Finally, HSR is an expansive field that can include
clinical studies (see Clinical Trials, Overview), out-
comes research, and health technology assessment;
it is sometimes characterized as boundary-crossing
[2] when multiple fields, disciplines, and methods are
brought to bear on a single question. HSR is dis-
tinguished, however, from basic biomedical research
and clinical investigation in that it is concerned more
with the effectiveness of health care interventions
(what works in health care in average or day-to-day
practice and health care delivery) than with their effi-
cacy (what works and how safely in ideal settings
or controlled trial circumstances). Thus, for many
decisions about allocation of resources in the health
care sector and day-to-day clinical practice, HSR
often provides the critical information that biomedical
research cannot [10].

Topics Addressed by Health Services
Research

The breadth of health services research is explained
by the fact that the field endeavors to understand and
improve all aspects of the processes and outcomes
of health care delivery and to overcome significant
problems of making high-quality health care available
to all members of a given society at an affordable cost
to that society. The costs and the quality of health
care have been the subject of study for the longest
period (several decades); more recently, HSR has
also been concerned with access to care, health care
reform and restructuring of public- and private-sector
health care systems, computer-based and electronic
communications and information systems, and the
size and changing roles of the health care workforce.
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Costs of Health Services

The costs of health care and public (e.g. national) and
private (e.g. individual) levels of expenditures on care
have long been an important area of investigation in
health services research (see Health Care Financ-
ing; Health Economics). Most basic are studies of
the total expenditures on health care, often described
in terms of the percentage of gross domestic product
(GDP) of a country that is devoted to health care.
The effects of various elements of private or public
health insurance, including the impact of so-called
cost-sharing (coinsurance and deductibles), have been
a major area of research; the most prominent HSR
investigation of these issues was the Health Insurance
Experiment, conducted by the RAND Corporation
in the 1970s and 1980s [15]. Related issues con-
cern what services or benefits are included in health
insurance packages, how insurance is priced, how
health insurance plans reinsure themselves against
catastrophic loss, and how insurance plans should
be regulated. Because consumer choice of health
insurance plans can significantly affect how well and
how extensively health care costs are shared across
healthy and sick individuals, and even undermine the
basic idea of insurance, HSR has directed consid-
erable attention to biased (i.e. adverse or favorable)
selection of risk and risk (or case-mix) adjustment
techniques. HSR also involves studies of who pays
for what portions of the cost of different types of
services (such as health care for physical ailments,
as contrasted with mental or emotional disorders,
or sociomedical problems such as substance abuse).
Most recently, approaches to consumer-designed,
individualized health insurance have been the object
of HSR investigation in the US.

Organization of Health Care

Closely tied to questions of the costs of health
care are issues of how health care delivery is orga-
nized and financed (see Health Services Organiza-
tion in the US). Health services researchers inves-
tigate a wide range of ways in which to structure
health care systems: for example, national health
systems (or universal national or provincial health
insurance), systems in which some portions of a
population are enrolled in publicly supported health
plans or insurance schemes, private-sector approaches
based largely on fee-for-service reimbursement, and

private-sector entities of various sorts that are char-
acterized as health maintenance or managed care
organizations. HSR illuminates how the structure of
health care delivery systems affects the practices and
performance of clinicians and of persons seeking or
obtaining care, and it documents how different orga-
nizational structures and ways of reimbursing health
care facilities or clinicians pose incentives for induc-
ing or constraining the provision of services. It is also
concerned with the effects of different attempts to
control national health care spending through various
regulatory controls and use of competition and free-
market principles. More recently, HSR has examined
aspects of “health care reform”, such as the shift in
the US from a fee-for-service to a prepaid, capitated,
or managed care orientation, and the movement in
countries with national health systems to introduce
various aspects of private-sector health care delivery
or insurance.

Quality of Care and Satisfaction with Care

An important component of HSR is the study of
how populations and individuals can obtain effica-
cious, effective, appropriate, competent, and compas-
sionate health care services – in short, high-quality
health care. Quality of care has been defined as “the
degree to which health services for individuals and
populations increase the likelihood of desired health
outcomes and are consistent with current professional
knowledge” [6]. HSR aims to identify problems with
quality of care, such as overuse of unnecessary or
inappropriate services, underuse of needed and appro-
priate care, and good or poor technical and inter-
personal care. It measures the structural aspects of
care (e.g. professional credentials or characteristics
of facilities), processes of care (e.g. what is done to
and for patients and consumers), and outcomes of
care (e.g. death, disease, disability, or discomfort).
Investigators in this field also study patient safety (or
medical errors) and patient or consumer satisfaction
with health care amenities, delivery system proce-
dures, and/or outcomes. Of particular note in the US
has been the development of the “CAHPS” (Con-
sumer Assessment of Health Plans Survey) family of
surveys. HSR studies that combine issues of costs and
quality are said to be concerned with the “value” of
health care.

HSR also contributes to the measurement and
improvement of the quality of health care by provid-
ing data collection and analysis tools for programs
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of quality assurance and continuous quality improve-
ment or total quality management. Because some of
these programs rely heavily on gathering and dis-
seminating information to patients and consumers,
HSR has contributed to the design of reliable, valid,
and practical means by which information can be
obtained, synthesized, and made available in forms
such as so-called report cards to purchasers and con-
sumers. Such efforts typically imply comparisons
among health care providers and plans, so HSR has
been expected to develop techniques by which differ-
ences in patient severity of illness, presence of other
health problems (“co-morbidity”), or other factors
can be taken into account. These “risk adjustment”
questions are considered to pose among the most
difficult research questions facing the field in the
late 1990s.

To provide adequate guidance on these quality-of-
care issues, HSR is also deeply involved in evaluating
the clinical effectiveness (e.g. expected benefit of
a health care intervention under average conditions
of use) of health services. Such studies typically
focus on the expected benefits and harms of alter-
nate approaches to prevent, diagnose, treat, or pal-
liate illnesses in different patient populations; they
may specifically address the cost–effectiveness of
alternate health care interventions [5]. These activ-
ities may involve assessing and comparing specific
health care technologies (i.e. technology assessment)
or developing clinical practice guidelines (“systemat-
ically developed statements to assist practitioner and
patient decisions about appropriate health care for
specific clinical circumstances” [7]). HSR directed at
these areas also targets questions of how patients (and
their families) and clinicians make treatment deci-
sions (see Health Care Utilization and Behavior,
Models of), the role of shared (or informed) decision-
making, and the contributions of medical informatics
and decision support systems.

Access to Health Care

Health services research has for decades been con-
cerned with the extent to which individuals can
seek and successfully obtain health care when it is
needed – in short, access to care, defined as the timely
receipt of appropriate care [8]. Among the topics
studied are the numerous financial and nonfinancial
barriers that confront individuals or groups in gaining
access to care. These can include costs (especially for

those who have no public or private health insurance),
geographic difficulties (travel distances or times to
obtain care, especially for persons in rural or frontier
areas), ethnic and racial factors, cultural and attitu-
dinal barriers, and language or literacy impediments.
Investigators study the demographic, cultural, finan-
cial, and other factors that influence people to choose
among health insurance plans, to seek preventive
services and health care, to follow healthy lifestyle
or treatment recommendations and regimens, and to
acquire information about illnesses and problems.
Also of concern to HSR investigators are mechanisms
for expanding access to care and the effects on access
(and hence health) of the lack or loss of public or
private health insurance coverage.

Information Systems, Informatics, and Clinical
Decision Making

HSR depends heavily on computer-based health
services information systems (see Administrative
Databases). These supply health care providers and
researchers with faster and easier access to better
and more complete health care information on both
individuals and groups than was ever possible in
the past. Many different information systems are
now available to clinicians and to patients and
consumers, and these provide information on clinical
problems, practice guidelines, and other data needed
to make informed decisions about clinical care. In
addition, computer-based systems often include tools
to assist clinicians in real-time decision making,
such as automatic alerts or reminders at the time
of patient visits or when the results of laboratory
tests or diagnostic procedures are obtained, and
computerized physician order entry for tests or
medications. How such clinical decision making tools
should be developed, deployed, and evaluated in
terms of costs and quality of care are questions of
considerable interest to HSR (see Decision Analysis
in Diagnosis and Treatment Choice).

Computer-based information and telecommunica-
tions systems also permit individuals to communicate
with others about health problems of concern to
them and to learn about different treatment options.
“Telemedicine,” “Telemonitoring,” and the rapidly
expanding availability of health information on the
Internet are additional communications phenomena
that expand interactions within the health care sector.
The impact of all these resources and communica-
tions technologies on the attitudes and behavior of
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clinicians and patients or consumers, and ultimately
on health care systems, is another important area
of HSR.

Health Care Professions and Workforce

Investigators in the HSR field track the supply of and
demand for different types of health care profession-
als and workers, including the development of various
types of models that permit educators and policy
makers to predict the need for and plan for education
and training of health personnel (see Health Work-
force Modeling). In addition, researchers examine
how individual and team education and training, pro-
fessional socialization, and cultural and ethnic back-
ground affect practitioner attitudes, behavior, and per-
formance. HSR also concerns itself with ethical and
bioethical questions involving the health professions,
such as how health care professionals, particularly
physicians, reconcile their professional duties to act
in their patients’ best interests with their responsibil-
ity to society as a whole, especially when resources
are scarce and economic incentives pose difficult or
conflicting obligations.

Methods Used in Health Services Research

Health services research employs virtually all quanti-
tative and qualitative methods found in statistics and
biostatistics, economics (see Health Economics),
sociology (see Social Sciences) and anthropology
(see Anthropometry), psychology, epidemiology
(see Analytic Epidemiology; Descriptive Epidemi-
ology), operations research, actuarial sciences;
finance, management, political science, policy anal-
ysis, and law. The types of studies done in HSR
can include randomized controlled trials (see Clin-
ical Trials, Overview), a wide array of quasi-
experimental investigations involving simple or
complex case–control studies, observational stud-
ies and descriptive studies, and community-based
demonstrations and evaluations; the units of analysis
can be nations; regions, states, or provinces; munic-
ipalities of all sizes, and communities or neighbor-
hoods (see Small Area Variation Analysis); groups
of individuals defined according to many different
sociodemographic (see Social Classifications), cul-
tural, or health characteristics; health care providers,
specified according to type of clinician or facility,

health care plan, or setting of care; and families
or individuals. HSR places significant emphasis on
understanding the end results of health care pro-
grams and health care delivery and on obtaining
self-reported information on processes and outcomes
of care from patients and consumers (see Quality of
Life and Health Status; Outcomes Research; Qual-
ity of Care). The field has generated many reliable
and valid instruments for obtaining such informa-
tion (see Health Status Instruments, Measurement
Properties of) and pursues sophisticated methods
research in outcomes measurement [11]. HSR stud-
ies employ many sources of information (see Health
Services Data Sources in Canada; Health Ser-
vices Data Sources in Europe; Health Services
Data Sources in the US), including various types
of interviews and questionnaires, focus groups, sur-
veys and polls, so-called administrative data from
various types of computer-based information systems
(e.g. insurance billing claims, or hospital discharge
abstracts), administrative records of health care pro-
grams and plans in the private or public sector,
community health information networks, and patient
medical records – both paper- and computer-based.
Generally, the biostatistical methods required in HSR
are similar to those used in biomedical research,
except that the sets of variables of interest in HSR
tend to be more broadly defined, more concerned with
functional and quality-of-life outcomes of interest
to patients, families, consumers, and policy makers,
and sometimes more difficult or costly to measure
than variables of interest in biomedical or clinical
investigations.

Major Funders of Health Services
Research

Globally, the US funds and produces the great major-
ity of health services research work: of this, the
largest portions are supported by agencies of the US
federal government. Since the late 1960s, the leading
agency was the National Center for Health Services
Research (variously titled over the years), a unit of the
Department of Health and Human Services (DHHS,
formerly the Department of Health, Education and
Welfare). In 1989, the Agency for Health Care Policy
and Research (AHCPR) was created from this Center;
reauthorised and renamed the Agency for Healthcare
Research and Quality in 1999, AHRQ continues to
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this day to be the central public-sector funding source
for HSR. As of 2002, AHRQ had centers focused on
evidence-based practice, outcomes and effectiveness
research, primary care, organization and delivery of
health care, cost and financing of health care, quality
of health care and patient safety.

Other DHHS agencies, notably several in the
National Institutes of Health (especially the
National Institute for Mental Health, National Insti-
tute for Drug Abuse, and the National Institute for
Alcoholism and Alcohol Abuse) and the Centers for
Medicare and Medicaid Services (formerly the Health
Care Financing Administration) also support projects
that fall within the HSR rubric. The US Department
of Veterans Affairs has a formal program to sup-
port HSR, and elements of the US Department of
Defense conduct activities focused on HSR issues
such as prevention, quality, or efficient delivery of
services. Numerous private philanthropic organiza-
tions (foundations) also support research (or demon-
strations and evaluations) on HSR topics, especially
in areas related to access to care, quality of care, and
organization and financing of care; often their focus is
on state or local, rather than national or international,
issues. Internationally, some governments have pro-
grams of health systems research within their national
health services (e.g. the UK) or support related efforts
in health technology assessment (e.g. Sweden and
Canada).

Compared with levels of spending on health
care or biomedical research, the support for HSR
is small. As of 2000 in the US, approximately
$1.35 billion (US dollars) was spent on HSR, a figure
that approached only 0.10% of the $1.3 trillion spent
that year on health care in that country. Few nations,
however, support HSR at these or higher levels.

Personnel Engaged In or Trained In
Health Services Research

The number of professionals in the HSR workforce
has always been difficult to estimate, for it consists
of researchers trained to design, supervise or carry
out, and report on HSR work, individuals who assist
in such investigations, and users who analyze HSR
information or apply HSR for management and pol-
icy purposes. A mid-1990s estimate put the number
of current health services researchers at 5000, largely
in the US; of these, about one-half are trained at

the doctoral level and just over one-quarter (mostly
physicians) have clinical degrees [9]. This workforce
has been trained through many different organizations
and programs supported by both public and private
funds; only a small minority of these programs are
formally established to train individuals at the doc-
toral level in health services research per se.

Professional Organizations and
Publications

The most prominent professional organization for
health services researchers is Academy Health, a
private, nonprofit organization, established in 1981
(as the Association of Health Services Research)
and based in Washington, DC. Related organizations
include international societies focused on specific
areas that HSR studies, including quality of care
(International Society for Quality in Health Care)
and technology assessment (International Society for
Technology Assessment in Health Care). Another
global effort is the Cochrane Collaboration with
centers in Australia, Canada, Denmark, France, Italy,
the Netherlands, Norway, the UK, and the US; these
centers, like the evidence-based Practice Centers sup-
ported by AHRQ in the US, prepare, maintain, and
disseminate systematic reviews of the effectiveness
of health care, generally using information from ran-
domized controlled trials or other reliable evidence
(see Meta-analysis of Clinical Trials).

Journals available internationally that exclusively
or frequently publish on HSR-related topics include
Health Care Financing Review, Health Economics,
Health Services Research, Inquiry, Journal of Health
Economics, Medical Care, and Medical Care Review;
some have been publishing since the 1960s. Newer
journals include Health Services Management Re-
search, Journal of Evaluation in Clinical Practice,
Journal of Health Services Research & Policy, and
Quality of Life Research. Health policy publica-
tions, which also typically feature HSR-related work,
include Health Affairs, Health Policy, International
Journal of Health Services, Journal of Health Politics,
Policy and Law, and the Milbank Quarterly. Journals
with a public health, epidemiologic, or clinical ori-
entation that also publish HSR-related work include
the American Journal of Public Health, Annals of
Internal Medicine, BMJ (British Medical Journal),
Journal of the American Medical Association, Journal
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of Clinical Epidemiology, Journal of General Inter-
nal Medicine, Lancet, Medical Decisionmaking, New
England Journal of Medicine, and publications of
other professional and clinical societies in the United
States and other nations. HSR is often at the core
of material published in the journals of international
societies, such as the International Journal for Qual-
ity in Health Care and the International Journal
of Technology Assessment in Health Care. Several
monographs published since 1990 provide substan-
tial overviews of the primary issues that HSR has
covered since that time [1, 4, 9, 16].
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Health Services
Resources, Scheduling

Operations Research had its origins in World
War II, where speedy solutions were required for
new operational problems, usually of a military
kind. The underlying philosophy of innovation and
simplicity was adapted after the war for application
in industry, where it proved to be of considerable
commercial value [8]. It was a natural extension
of scope to explore the possibilities of applying
it to public services and there was a spate of
applications to the health services in the 1960s
and 1970s [7] (see Health Services Research,
Overview). Applications to specific organizational
problems included the planning of appointment
systems, blood bank inventories, ambulance routing,
and the control of hospital bed occupancy. In practice
the implementation of optimal policies was somewhat
limited by political and economic constraints and
the emphasis of research in the area changed to
more qualitative questions and resource planning at
the population level, for example in the assessment
of demographic trends [12]. Important though such
issues may be, the efficient solution of small-
scale operational problems is a significant ingredient
of efficient resource utilization. In particular, the
unpredictability of demand and patient progress
means that the stochastic nature of the processes
involved is important at all but the macroscopic level.

It is the purpose of this article to outline one
particular area, namely that of the utilization of
discrete and equal units of resource, such as beds.
When such units are in use we say they are occupied
and describe the class of corresponding processes as
“occupancy processes”, though the latter expression
may be applied to the utilization of resources that we
would not normally describe as being occupied.

Occupancy Models

Occupancy problems and the models which may be
used to study them have certain common ingredients.
Generally speaking they will fall naturally into the
continuous or discrete time frameworks, the former
being more appropriate for activities that fit into
the span of a working day, the latter for modeling
longer-term activities in which resource utilization

at a fixed point of the day is of interest. The
mathematics of discrete time models tends to be less
elegant but more tractable: rather few continuous
time models of any sophistication can be handled
analytically. In particular, nonhomogeneity in time is
much more easily handled with discrete time models.
The ability to permit variation of parameters with
time is an important practical consideration; so also is
the question of whether we are interested essentially
in the short- or long-run properties of a process. The
latter can be obtained rather more easily than the
former by the derivation of a stationary distribution
(see Stationarity).

The most tractable models have the first-order
Markov property, which means, in practical terms,
that the state of the process must incorporate all
the information necessary for predicting its future
course. This imposes a severe restriction on the situ-
ations that can be modeled simply, though a number
of devices for mitigating its effect are referred to
below. In the face of analytical difficulties, numerical
or simulation methods will usually provide solu-
tions quite feasibly, though they bring their own
problems of interpretation, particularly with complex
models involving many parameters. A simple analyt-
ical model, however, even if not particularly realistic
in points of detail, may give insight into the struc-
tural aspects of a problem that are concealed by more
complex formulations.

The models and situations we consider all have
available at any given time a fixed number N of
units of resource, e.g. beds, operating suites, casualty
nurses. These resource units are assumed to be
exchangeable, i.e. to be equally capable of servicing
the requirements of one unit of demand, i.e. one
patient in each of the latter examples. In queuing
theory applications, these resource units would be
identified with servers. The occupancy of the system
is defined as the number of the units, X(t), that are
actually in use at time t ; this would often be expressed
as a percentage of N .

Arrivals to and departures from the system will
typically increase or decrease the occupancy, except
that, if X(t) = N , then arrivals may form a queue.
Queuing processes put emphasis on characteristics
such as the length of the queue and the mean queuing
time. For many health service applications, however,
these characteristics are less important than those of
the occupancy process, X(t), and its determinants,
such as the nature of the arrival and departure
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processes. Arrivals and departures will typically be
determined by times in a continuous time model,
but by counts associated with the fixed time units
of the process in a discrete time model. Emergency
inputs to the system will result in arrivals determined
by points in a Poisson process (not necessarily
time homogeneous) in the continuous case or by
Poisson distributed counts in the discrete case.
The Poisson process and distribution form important
ingredients of all such models, both in theory and in
practice.

Some Example Applications

We now consider some areas of application of the
general class of models outlined. Each of these areas
has been studied by a number of investigators, but
not necessarily from a modeling point of view that is
consonant with our discussion above.

Appointment Systems

The idea of reducing patient waiting time by pro-
viding a realistic schedule of appointments in an
out-patient facility or in general practice has a long
history [1, 2], though most contributions to the sub-
ject have been concerned with practical feasibility
rather than statistical issues. Stochastic elements of
the problem include the possibility of the nonar-
rival or lateness of scheduled patients, and also the
unpredictability of the lengths of times of individual
appointments. There is a conflict between the time a
patient may expect to wait and the time for which
a doctor might be idle; tuning the parameters of the
system should achieve a balance consistent with pre-
assigned utilities.

Models for the situation are typically formulated
in continuous time and use results from queuing
theory, although nonstandard assumptions, such as
deterministic but unequally spaced arrival times,
quickly lead to analytic difficulties; moreover, the
stationary theory is not generally useful. Certainly,
a queue is an inevitable feature of an appointment
system, but interest may focus as much on the final
finishing time of a clinic as on the waiting and
idle times. Brahimi & Worthington [5] describe a
recent application of queueing theory to appointment
systems, while O’Keefe discusses practical issues and
limitations of theoretic systems [10].

Operating Theater Utilization

This problem has quite a lot in common with
that of appointment systems, though the inputs are
typically under the complete control of the hospital
and patient waiting time would normally be given
little weight. Length of service time, i.e. of individual
operations, would be the main stochastic element
and the optimization criteria might well include the
probability that a scheduled operation would need
to be postponed. In practice, the exchangeability
property of the general model would probably fail and
it would be necessary to put particular operations in
particular theaters, thus introducing a combinatorial
element into the problem.

Casualty Units

Here the units of resource might be regarded as
multidimensional, in the sense that waiting may be
occasioned by a shortage of doctors, nurses or X-
ray facilities, for example. It could well make sense,
however, to model a casualty department by treat-
ing bed-spaces as the fundamental units of resource;
in this case N could be regarded as effectively infi-
nite, the phenomenon of patients waiting on trol-
leys being a not unfamiliar feature of busy units. A
patient in the system could reasonably be assured of
emergency attention by a rearrangement of priorities
among those present, though the average length of
stay within the unit would then be dependent on the
occupancy; this would not preclude using a first-order
Markov model. Continuous time would probably be a
first choice for a casualty unit, though a discrete time
approximation would make it easier to incorporate the
time heterogeneity that could be expected. All arrivals
would effectively be from Poisson processes and the
total occupancy would therefore also follow a Poisson
distribution under weak assumptions (see below).

In-Patient Wards

The hospital ward provides a classic example of
the models we have discussed. Typically, we should
expect a mixture of emergency and scheduled admis-
sions. At one extreme an orthopedic surgical facility
would have very few emergency admissions; at the
other, certain medical facilities may have nearly all
their admissions as emergencies – even a general
medical ward would probably admit over half its
cases as emergencies.
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Early models of bed occupancy [14] borrowed the
ideas of queuing theory, regarding beds as servers.
They were consequently formulated in continuous
time; we would argue, however, that discrete-time
models are much more appropriate. Thus, it is the
number of patients in a hospital ward overnight that
is of crucial importance; during the day patients are
arriving and departing in a way that gives a certain
flexibility of bed use.

The models described in the section below also
mostly assume that N is infinite, largely because
this permits a number of analytic results of great
importance that would otherwise not apply. It may
at first sight seem to be an unrealistic feature of the
models. However, we can argue that results from
such models may provide useful approximations to
the finite capacity case if a ward is not too near to
full capacity. Moreover, it is often possible in practice
to extend the capacity of a ward by using emergency
beds or borrowing from other facilities. Such devices
would entail organizational costs which can then be
quantified by the predictions of the model.

Queuing theory has also been applied, rather more
naturally, to the study of waiting lists [13].

Maternity Units

Before the practice of inducing births, admissions to a
maternity unit would have been very close to a homo-
geneous Poisson process. Nowadays admissions are
likely to be both of an emergency and scheduled char-
acter. In this respect, maternity units have become
more like other hospital in-patient facilities, though
continuous time might have advantages that do not
apply in the general case.

Some Theoretic Results for Occupancy
Processes

Generally speaking, occupancy models are analyti-
cally much more tractable if we make assumptions
of the independent behavior of the individuals in
the system. Assuming Poisson inputs, this implies a
potentially infinite capacity, which clearly conflicts
with reality. However, the models would give a good
guide to the behavior of finite systems that are not
operating at full capacity and in practice there often
are, as argued above, overflow possibilities for emer-
gencies entailing extra costs which can be quantified
by the predictions of the model.

Relaxing assumptions such as the infinite capac-
ity or nonindependent behavior of individuals in the
system quickly leads to analytic intractability. More
sophisticated models can still be studied straight-
forwardly using simulation methods. However, it
is not always easy to extract useful generalizations
from large-scale simulations. On the philosophy that
modeling is as much concerned with providing an
understanding of underlying phenomena as making
precise numerical predictions, analytic methods are
to be preferred. It is in this spirit that in the fol-
lowing section we summarize simple analytic results
concerning the behavior of stochastic occupancy
models.

In the following exposition we consider patients
occupying beds and moving through a hospital with
a number of different wards according to well-
defined stochastic rules, though we emphasize that the
results would apply to any system with a number of
compartments providing units of resource to service
the needs of individuals representing units of demand.
Similarly, we will, for discrete time models, consider
daily time units, though these can also be arbitrarily
defined.

Random Inputs

Suppose that patients are admitted as emergencies to a
single ward with infinite capacity modeled in discrete
time, i.e. the numbers admitted each day are indepen-
dent random variables with a Poisson distribution.
If their lengths of stay (LOS) in the system are deter-
mined independently from an arbitrary distribution,
then the distribution of the occupancy process, or
number of beds occupied, also has a Poisson distribu-
tion [11]; so too does the daily number of discharges.
In the steady state, the mean occupancy is equal to the
mean length of stay multiplied by the mean admission
rate, a result which we refer to as the mean occupancy
theorem and which applies very generally. With suit-
able modification of the theorem, this important result
remains true even when there is day-to-day variation
in the mean number of patients admitted per day and
in their LOS distributions [4, 9].

If a system has many wards through which patients
move independently, then an analogous result applies,
i.e. independent random inputs to one or more wards
result in Poisson-distributed occupancies of them and,
furthermore, the numbers in the different compart-
ments are independent. The same result is obviously
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true for hypothetically defined “compartments” which
may be defined to represent abstract stages of a
patient’s progress, for example.

There is a continuous time analog of these results.
Specifically, if we have a multiward system with
independent inputs to one or more wards result-
ing from Poisson processes, and if patients move
independently through the different wards, then the
resulting occupancies are independently Poisson dis-
tributed. In particular, we may model a set of hypo-
thetical compartments in each of which a patient
spends a length of time, which necessarily has an
exponential distribution, in such a way as to repro-
duce any total LOS distribution with a rational
Laplace transform [6]. Such models may be useful
for modeling flow through a maternity facility, for
example, but do not permit the study of any kind of
control mechanism.

Deterministic Inputs and Independent Progress

If inputs are deterministic and the lengths of stay,
though having an arbitrary distribution, are deter-
mined independently of one another and of the occu-
pancy of the process, then the variance of the latter
is approximately proportional to the standard devi-
ation of the LOS distribution [4], with a mean deter-
mined by the mean occupancy theorem. This result
determines the component of variability in a system
that is due to the unpredictability of the length of
stay and permits the study of a system in which
admissions are planned according to a predetermined
pattern of bookings.

General Inputs and Independent Progress

The analysis underlying the above result provides the
occupancy distribution resulting from general input
distributions and general LOS distributions, which
need not be time homogeneous, i.e. may differ on
different weekdays, for example. The variance of
the occupancy process partitions approximately into
components due to the input variance and the vari-
ability in the LOS. Analytic expressions are available
that completely determine the behavior of an infinite-
capacity system in which patients are admitted and
progress through the system independently of one
another and of the state of the system [4].

Scheduled Inputs

The variance of an occupancy process can, in the-
ory, be reduced by controlling either the admissions
or the discharges, though in practice it would be
unsatisfactory to determine discharge from a unit
merely to control occupancy unless some transfer to
an intermediate or predischarge ward were arranged.
Scheduling the admissions to bring the occupancy
closer to an ideal value, however, is administratively
feasible, for example by admitting from a short-
notice list a number of patients determined by the
occupancy at a given time. The consequential non-
independence in the system can be modeled using
first-order Markov chains. The Markov requirement
implies that the lengths of stay have a geometric
distribution, but there are arguments permitting the
relaxation of this rather severe assumption [3]. More
seriously, the Markov assumption implies, in the first
instance, that patients can be given a maximum of one
time-unit of notice, typically 1 day. This restriction
can also be relaxed with a non-Markovian process
which is a functional of a first-order Markov pro-
cess and for which the marginal distribution is easily
computed [3].

Prediction of Discharge

Using only the current occupancy of a ward to
schedule the number of admissions obviously wastes
information about the probable short-term future
of the process. Predicting the probability of the
discharge of individual patients has obvious potential
for improvement and can generally be expected to
reduce the variance of X(t). The degree of reduction
obviously depends on the degree of predictability, but
empirical and theoretic considerations suggest that a
factor of the order of one-third may be achievable [4].

Discussion

This article has been based on the concept of occu-
pancy, with particular emphasis on bed occupancy.
It may reasonably be argued that concentration on
beds ignores the demand for other resources, most of
which are more expensive than the mere provision
of a bed. It is indeed true that this emphasis has led
to progressively shorter lengths of stay in hospital
and a consequent rise in the cost per bed day. At the
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same time, the availability of a bed in an emergency
is certainly a key question and deployment of other
resources exhibits an elasticity in practice, so that the
effects on the system as a whole of an extra patient
are not as hard to accommodate as the requirement
for an extra bed when a facility is full.

More generally, it may be argued that concentrat-
ing on any one unit of resource is clearly to risk
oversimplifying the problem, given that in practice
we typically require multiple resources, any one of
which may be in short supply. Moreover, resources
are often interrelated in ways that make independent
modeling unsatisfactory. Nevertheless, we need to
start somewhere, and it is the object of modeling as
much to throw light on general principles and under-
lying structural relationships as to provide accurate
representations or predictions.
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The field of statistics in the twentieth century
(see Statistics, Overview) encompasses four major
areas; (i) the theory of probability and mathematical
statistics; (ii) the analysis of uncertainty and errors
of measurement (see Measurement Error in
Epidemiologic Studies); (iii) design of experiments
(see Experimental Design) and sample surveys;
and (iv) the collection, summarization, display,
and interpretation of observational data (see
Observational Study). These four areas are clearly
interrelated and have evolved interactively over the
centuries. The first two areas are well covered
in many histories of mathematical statistics while
the third area, being essentially a twentieth-
century development, has not yet been adequately
summarized. Although the fourth area has been going
on since man first learned to think inductively, it
relies on the state of the art in the first three areas.
In this brief survey of health statistics during the
past five centuries, emphasis will be given to the
development of official health statistics systems in
Europe and the US.

Early Interest in Statistics

At the end of the fifteenth century, mathematics
was at a rather primitive stage and the threshold of
the “scientific revolution” was still two generations
away. The mathematics of the Greeks had only re-
entered European thinking in the twelfth century, and
although some progress had been made in practical
applications in navigation and commercial arithmetic,
the burgeoning of numeracy was only beginning.
Mathematicians still did not recognize the number
zero or know how to deal with negative numbers.
Except for a few examples of probabilistic thinking
such as that in the talmudic literature [10], there was
scant evidence of the use of a mathematical approach
to probabilities to estimate risks or assess the
reliability of measurements until the mid-seventeenth
century.

Most historians of statistics trace the origins of
modern probability theory to the efforts to solve

certain gambling problems [e.g. Pacioli (1494), Car-
dano (1539), and Forestani (1603)] which were first
solved definitively by Pierre de Fermat (1601–1665)
and Blaise Pascal (1623–1662). These efforts gave
rise to the mathematical basis of probability theory,
statistical distribution functions (see Sampling Dis-
tributions), and statistical inference.

The analysis of uncertainty and errors of mea-
surement had its foundations in the field of astron-
omy which, from antiquity until the eighteenth cen-
tury, was the dominant area for use of numerical
information based on the most precise measure-
ments that the technologies of the times permit-
ted. The fallibility of their observations was evident
to early astronomers, who took the “best” obser-
vation when several were taken, the “best” being
assessed by such criteria as the quality of obser-
vational conditions, the fame of the observer, etc.
But, gradually an appreciation for averaging observa-
tions developed and various techniques for fitting the
observational data to parametric models evolved.
Many of the founders of modern statistics contributed
to the early development of the theory of measure-
ment errors including Jacob Bernoulli (1654–1705),
Abraham De Moivre (1667–1754), Pierre Simon
Laplace (1749–1827), and Carl Friedrich Gauss
(1777–1855).

A systematic approach to the collection of data and
tabulating observations in a rational manner began
with the teachings of Francis Bacon (1561–1626).
In his influential treatise Novum Organum (1620),
he attacked the scholastic philosophy which had
developed in the Middle Ages on the basis of
the methods of Aristotle. One of the first areas
influenced by Bacon’s approach was demography
and vital statistics and the social utility of systematic
observations is clearly reflected in these early efforts.

The utilitarian nature of statistics is evident in the
origins of the word from the Italian stato (state), and
the original meaning of statistics was a collection
of facts of interest to a statesman. Initially such
facts were not primarily numerical, but included
information on geography, politics, and customs of
a region. The compilers of such facts were called
statists, a term which survived into the nineteenth
century, when the word statistics came to be used
for numerical data only, replacing the term “political
arithmetic”, and the word “statistician” came into
vogue.
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The Origins of Demography and Vital
Statistics

Since ancient times, sporadic surveys of people and
property were done to set tax assessments and levies
for military service. But after the fall of the Roman
empire, regular censuses covering an entire state
did not occur until the eighteenth century. However,
there were intermittent attempts to keep track of
the births and deaths in some areas through church
records of weddings, christenings, and burials. The
City of London was one of the first to regularize
the maintenance of such records in 1538, but only
within the Church of England. Also at about this
time a surveillance or early warning system of
plague deaths was started in London. To detect the
onset of a plague epidemic, parish clerks submitted
weekly reports on the numbers and causes of deaths.
These weekly Bills of Mortality were noted by the
authorities who were to take actions if they detected
the onset of an epidemic, and by the wealthier citizens
for “an indication of when to leave the city for
the fresh air of the country” [7]. The weekly bills
were published regularly from 1604 until 1842 when
they were superseded by reports from the Registrar
General.

In 1662, John Graunt (1620–1674), a London
tradesman who had been active in local politics
and intellectual society, published his Natural and
Political Observations Made Upon the Bills of
Mortality, which historians of statistics have referred
to as “a remarkable book [12]”, “one of the
great classics of science [6]”, and “a paragon for
descriptive statistical analysis of demographic data
[7]”. Hald summarizes Graunt’s contributions to the
origins of statistics thus:

Graunt’s critical appraisal of the rather unreliable
data, his study of mortality by cause of death,
his estimation of the same quantity by several
different methods, his demonstration of the stability
of statistical ratios, and his life table set up
new standards for statistical reasoning. Graunt’s
work led to three different types of investigations:
political arithmetic; testing the stability of statistical
ratios; and calculation of expectations of life and
survivorship probabilities [7].

At a time when denominator data on the size of
the population by age were not available, Graunt
used several ingenious lines of reasoning to generate

the first life table ever published, perhaps his most
famous contribution.

Owing to the widespread influence of Graunt’s
work, bills of mortality similar to the London bills
were introduced in Paris in 1667, and soon after in
other cities in Europe.

Graunt’s life table was brought to the attention
of Christiaan Huygens (1629–1695) and his brother
Ludwig (1631–1699) who proceeded to develop a
probabilistic interpretation of the life table, which was
rediscovered independently by Nicholas Bernoulli
(1687–1759). These investigations, together with
the more applied techniques of Edmond Halley
(1656–1742) based on the births and funerals in the
City of Breslau (1693), and the work of Deparcieux
(1703–1768) in France who used data from tontines
to construct the first correct life tables, formed the
foundation of the actuarial sciences for life insurance
and annuities. These were developed further by
Abraham DeMoivre (1667–1754), Thomas Simpson
(1710–1761), Benjamin Gompertz (1779–1865), and
William Makeham (1826–1891).

It was not until 1766 in Sweden that Per Wargentin
(1717–1783) published the first mortality tables for
a whole country based on enumerations of the living
population as well as on deaths. These mortality
tables demonstrated for the first time in a general
population that the mortality rate of females was less
than that of males.

Graunt’s methods of statistical analysis were
widely adopted by seventeenth-century statists.
William Petty (1623–1687), who was a protégé
of Graunt, and after Graunt’s financial bankruptcy
in 1666, his patron, coined the term “political
arithmetick” and was one of the founders of the field
of political economy. Gregory King (1648–1712)
and Charles Davenant (1656–1714) contributed to
improvements in the estimates of the population
of England. Sebastien de Vauban (1633–1707)
described the extent of poverty in France, for
which he suffered public disgrace because of its
embarrassment of the royal government. Nicholas
Struyck (1678–1769) instituted town censuses in the
Netherlands and improved the recording of births
and deaths. The revelations of statistical data were
also used to support religious positions such as the
claim of John Arbuthnott (1667–1735), who was a
vigorous proponent of political arithmetic, that the
stability of the sex ratio “is not the effect of chance
but divine providence”. Somewhat later, Johann Peter
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Suessmilch (1707–1767) in Germany gathered vital
statistics from virtually every source then available
as evidence of certain tenets of orthodox Lutheran
theology. He maintained that the life span (see Life
Expectancy) was constant and that little could be
done to improve mortality rates. His work directly
influenced the thinking of Thomas Robert Malthus
(1766–1834). These diverse endeavors eventually
led to the establishment of governmental statistical
offices in the nineteenth century.

Among the developments in mathematical statis-
tics that occurred during the eighteenth century, two
had special relevance for health statistics. Daniel
Bernoulli (1700–1782), who first developed the nor-
mal approximation to the binomial distribution and
used it in studies of the stability of the sex ratio
at birth, applied the methods of calculus to mortal-
ity rates by treating them as continuous functions.
This enabled him to obtain a solution in 1760 to
an important public health question of his day: to
estimate the impact on life expectancy of eliminating
smallpox through a proposed program of mandatory
vaccination. His invention of the method of com-
peting risks, with some improvement by d’Alembert
(1761) and by Makeham (1874), still forms the basic
tool for such analyses.

A second development expanded the techniques
used by Vauban. Laplace proposed a nonrandom sam-
pling method to estimate the size of the population
in 1786. It was based on a notion similar to that of
current ratio estimates, i.e. that the size of the pop-
ulation of a region was proportional to the annual
number of births in that region and that the constant
of proportionality could be determined from a purpo-
sive sample of subregions. Graunt had used a similar
assumption implicitly a century earlier.

Laplace’s method was severely criticized, most
notably by Baron de Keverberg (1827) [11, p. 164].
These criticisms clearly reflected an appreciation that
there were a multitude of factors that could influ-
ence any chosen characteristic of a population, that
subgroups of the population were not homogeneous
with regard to the array of factors influencing the
characteristic, and, therefore, purposive samples of
the population could not reflect the total population.
Only complete censuses of the population would do,
and these would have to amass immense amounts of
information. At this time there was not yet an appre-
ciation for the power of random sampling methods
(see Probability Sampling).

Applying Statistics to Medical and Social
Issues

Just as demographic and economic statistics began
with the name of “political arithmetic” in the seven-
teenth century, medical statistics began with the name
of “the numerical method” early in the nineteenth
century. Although some of his methods were evident
in the works of Phillipe Pinel (1745–1826) and other
French physicians, Pierre-Charles-Alexandre Louis
(1787–1872) has been described “as the first modern
clinician, the man who made bedside medicine a sci-
ence as well as an art, and who established the princi-
ple of learning medicine from thoughtful observation
of patients [1].” His studies on the inefficacy of blood
letting were the beginning of quantitative medicine
and earned him the title of “father of medical statis-
tics” [12]. Louis’s hopes for his numerical method
were echoed by Giacomo Tommasini (1768–1846) in
Italy, and F. Bisset Hawkins (1796–1894) in Eng-
land, who published in 1829 the first English textbook
on medical statistics with the rather grand title of
Elements of Medical Statistics; Containing the Sub-
stance of the Gulstonian Lectures Delivered at the
Royal College of Physicians with Numerous Additions
Illustrative of the Comparative Salubrity, Longevity,
Mortality, and Prevalence of Diseases in the Principal
Countries and Cities of the Civilized World. Although
by later standards Louis’s statistical attempts were
often inadequate, suffering particularly from sparse
numbers, he had a crucial influence on William Farr
who attended his lectures during his two years in
Paris, as did several American physicians who were
influential in the early development of public health
and epidemiology.

Louis’s methods were not immediately accepted
for many of the same reasons that Laplace’s methods
were not: the variability between cases was thought
to be highly individualistic and not subject to statis-
tical summarization. For example, William A. Guy
(1810–1885), who contributed much to public health
and occupational statistics, felt “the formulae of the
mathematician have a very limited application to the
results of observation” [12, p. 151].

The Belgian, Adolphe Quetelet (1796–1874),
who dominated the field of social statistics for half
a century, may have gone too far in the other direc-
tion. Impressed by the central limit theorem and
believing that averages based on large numbers of
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observations from a population had remarkable sta-
bility, he introduced the concept of the “average man”
(l’homme moyen) which had considerable popular
appeal. He was also enamored of the normal distribu-
tion and fitted it to many characteristics, marvelling
at the statistical homogeneity of large bodies of data
which detracted from further exploration of valid het-
erogeneities. However, he influenced a large number
of statisticians including Louis Adolphe Bertillon
(1821–1883), Wilhelm Lexis (1837–1914), Francis
Galton (1822–1911), Karl Pearson (1857–1936),
and Ronald A. Fisher (1890–1962) [11].

Development of Health Statistics in
England

During the eighteenth century many physicians and
registrars in England recognized the inadequacies of
the bills of mortality. There were frequent calls for
reforms but because of concerns about personal liber-
ties, religious arguments, and beliefs that population
figures were crucial state secrets, it was not until 1800
that Parliament passed a population act that set up
the census of 1801. By the 1830s, as in the mid-
seventeenth century (with Graunt and Petty), London
“witnessed a flash of enthusiasm for vital statistics
and political arithmetic” [5, p. 13]. The Statistical
Society of London was founded in 1834 by the same
group that had founded the statistics section (Section
F) of the British Association for the Advancement
of Science in 1833, and started publication of its
Journal in 1838. These and other early statistical
societies in England were greatly concerned with
social problems, conducting several surveys to doc-
ument conditions in England and continuing to push
for social reforms long after the surveys proved too
expensive to continue. Although they claimed scien-
tific objectivity, these statists were superficial in their
use of mathematical methods, paid little attention to
the validity or accuracy of their data, but were aware
that using numeric data gave credibility to political
arguments [5].

A more balanced contribution was made by
William Farr (1807–1883) in the area of vital
statistics. Starting his career as an unsuccessful
London clinician, he quickly became an acknowl-
edged authority on vital and health statistics with
a strong interest in medical and social reform. He
founded his own weekly journal, British Annals of

Medicine, Pharmacy, Vital Statistics, and General
Science, which lasted only eight months, January to
August 1837, but allowed him to write major arti-
cles on medical reform and vital statistics. The Births
and Deaths Registration Act of 1836 had inaugurated
the modern system of civil registration and led to
the establishment of the General Register Office in
1837. Farr joined the staff of the General Register
Office in 1839, serving forty years, first as compiler
of abstracts and then as superintendent of the Statis-
tical Department.

Farr “insisted that the statistician adopt a criti-
cal approach, investigating the accuracy of his data,
questioning the appropriateness of the units used,
and attempting with the help of ratios, logarithms,
and the calculus of probabilities to discover relation-
ships and regularity in order to make predictions”
[5, p. 29]. Farr’s philosophy had an almost immedi-
ate impact on improving British statistics. The first
four censuses were fraught with many problems. The
1841 census was the first conducted under the super-
vision of the General Register Office and Farr was
one of the key advisors. It was a great improvement
over its predecessors and, together with the annual
vital statistics data, enabled Farr to put together tables
and analyses which placed England at the forefront
of this discipline. Between 1836 and the Registra-
tion Act of 1874, Farr was largely responsible for
establishing the procedures for collecting and ana-
lyzing the official mortality statistics. He introduced
the standard death certificate in 1845 which saw
almost no change until 1902. Through Farr’s influ-
ence the census of 1851 introduced questions on
physical disabilities and other medical items which
were continued through 1911.

Farr was greatly interested in statistical nosology,
introducing his first classification of diseases in 1839.
The first International Statistical Congress in 1853
took up the issue, but Farr’s nosology did not win the
support of other European countries. It was not until
1893 that Jacques Bertillon (1851–1922) proposed a
system that became the International List of Causes of
Death (see International Classification of Diseases
(ICD)).

Problems noted in the vital registration system
in the mid-nineteenth century are still of concern
at the end of the twentieth, namely accuracy of
diagnoses was not reliable, selection of a single
underlying cause of death (see Cause of Death,
Underlying and Multiple) from among several listed
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conditions, “the temptation of practitioners to obscure
or falsify the cause of death to save respectable
families embarrassment in certain sorts of death”
[5, p. 62]. Henry Wyldbore Rumsey (1809–1876),
one of the chief proponents of sound vital statistics,
was vigorous in pointing out statistical fallacies
and shortcomings of the existing systems that bear
rereading today.

Many of Farr’s statistical methods have had a
lasting impact: defining mortality rates precisely and
basing them on person-years at risk, establishing the
standard expression of mortality as “deaths per thou-
sand”, using the life table and life expectancy as key
instruments to assess mortality, using the method of
indirect standardization (see Standardization Meth-
ods) to compare mortality rates of localities (although
he seems to have made little use of the direct method
first demonstrated by F.G.P. Neison in his refutation
of the proposal of Edwin Chadwick (1800–1890) to
use average age at death as a criterion for the health
of communities), recommending the establishment
of longitudinal cohort studies [9], and proposing a
paradigm for the estimation of the economic value
of human life at each age and social class. Farr’s
association with Florence Nightingale (1820–1910)
also resulted in contributions to the use of statistical
information for health policy purposes, particularly
in respect to the graphic presentation of data (see
Graphical Displays).

Development of Vital Statistics in the
United States

As interest in statistical information burgeoned in
Europe in the first third of the nineteenth century,
a similar phenomenon was occurring on the other
side of the Atlantic [4]. Although medicine, statis-
tics, and science generally, in the US lagged behind
that in Europe, America had actually preceded other
countries in two important respects. Whereas other
areas relied on church-maintained records of chris-
tenings and burials as the basis for vital statistics,
the Massachusetts Bay Colony enacted a law in 1639
requiring the reporting of every birth and death within
its jurisdiction, thus establishing the collection of
vital statistics as a governmental function covering
the entire population. The other colonies gradually
adopted similar regulations but for at least the next
two hundred years the quality and completeness of

the reports were decidedly deficient. The second
precedent was when the US became the first nation to
establish by constitutional mandate a periodic census
requiring complete enumeration of the entire popula-
tion, conducting its first census in 1790.

At about this time death reports were being used
on occasion in port cities to institute quarantine
measures in efforts to control epidemics of cholera,
yellow fever, and typhus. As the Benthamite social
reform interests reached America and evidence for
the harmful effects of poverty, industrialization, and
unsanitary conditions was sought from vital statis-
tics, the inadequacies of the city and local registration
systems became evident. In 1826, Walter Channing
(1786–1876) in Boston outlined some of the require-
ments for valid data on causes of death, including the
requisite for medical certification. In 1827 Nathaniel
Niles and John D. Russ published the first report on
public health statistics in a comparison of mortality
data from New York, Philadelphia, Baltimore, and
Boston. Other analyses soon followed which became
models for the quantitative health reports produced
by subsequent generations of health officials which
led to increasing pressures for improving the qual-
ity of the information. In 1842 Massachusetts again
achieved a first by establishing a statewide vital regis-
tration system. The effort to establish similar systems
in other states marked the beginning of an orga-
nized public health movement and contributed to
the professionalization of statisticians in this coun-
try [2, 3].

Following on the foundation of the Statistical
Society of London, statistical societies were started
in New York and other American cities. Most did
not last very long but the American Statistical
Association, founded in Boston in 1839, proved to
be enduring. It is significant that 14 of the original 54
local members were physicians. But it was a publisher
and bookseller, Lemuel Shattuck (1793–1859), who
was the Society’s key “statist” for health-related
issues. He consulted with, among others, Quetelet and
was a prime mover for the Massachusetts Registration
Act of 1842. He also played a role in the origins of
national vital statistics by having mortality queries
included in the 1850 census.

In 1846, the first national medical convention
(which led to the founding of the American Med-
ical Association) formed two committees relevant
to health statistics: (i) a committee on registration



6 Health Statistics, History of

whose report “provided for the convention to for-
mally petition every state government to enact effec-
tive registration legislation and to request state and
local medical societies to take the lead in lobbying
for such laws” [3, p. 201], and (ii) a committee on
disease nomenclature which adopted a modification
of Farr’s classification. Neither of these recommen-
dations was widely adopted for at least 50 years.
Although there were many attempts, these efforts
were often failures since “the registration movement
had moved too far ahead of its base of community
support” [3, p. 204]. At the end of the century, no
state had a system as good as those in several Euro-
pean countries.

During the last two decades of the nineteenth cen-
tury, the initiative for improving vital statistics shifted
to the Federal government [8]. Under Dr John Shaw
Billings (1838–1913), who directed vital statistics in
the 1880 and 1890 US censuses, improvements were
made in gathering mortality data. The American
Public Health Association joined with the Census
Bureau, which was established in 1902, in drafting a
model vital statistics law and standard birth and death
certificates that each state could adopt. Because of the
early efforts of Cressy L. Wilbur (1865–1928), Chief
Statistician for Vital Statistics from 1906 to 1914,
the birth- and death-registration areas grew, reaching
completeness in 1933, nearly a century after several
European countries. The Division of Vital Statistics of
the Bureau of the Census was transferred to the Pub-
lic Health Service in 1946, becoming the National
Office of Vital Statistics, with Dr Halbert L. Dunn
(1896–1975) as Director. In 1960, NOVS was com-
bined with the National Health Survey to become the
National Center for Health Statistics with Forrest
E. Linder (1906–1988) as its first Director.

Development of Health Surveys in the
United States

The establishment of the National Health Survey in
1957 marked a milestone in health statistics. With
only a few exceptions, previous data relating to health
came from vital statistics or from diagnosed diseases
seen in hospitals or included in various notifiable dis-
eases registers. As public health concerns in the US
shifted from the surveillance and control of acute
communicable diseases to the prevention of chronic
diseases, it was necessary to develop data systems

that would better describe the current health status
of the population (see Quality of Life and Health
Status) and shed some light on health-associated
behaviors and use of health care services (see Health
Services Organization in the US). The National
Health Survey was the first continuous nationwide
survey to gather information from randomly drawn
representative samples (see Probability Sampling)
of the noninstitutionalized population of the coun-
try to accomplish these aims (see Surveys, Health
and Morbidity). It consists of two distinct surveys:
the National Health Interview Survey (NHIS) and the
National Health Examination Survey, the latter sub-
sequently expanded to the National Health and Nutri-
tion Examination Survey (NHANES). The NHIS
conducts interviews in about 1000 households each
week to obtain information on acute illnesses, chronic
conditions, health-related knowledge and behaviors,
and use of health services. The NHANES involves
detailed standardized medical examinations, includ-
ing laboratory studies and special tests such as ECGs
and X-rays, and extensive questionnaires on nutri-
tion and previous health conditions. The NHANES
is a periodic survey and NHANES III (actually the
sixth cycle of these surveys), being carried out from
1988 to 1994, examined a sample of about 30 000
persons aged 6 months and over. Health interview
surveys have now been conducted in many countries
and examination surveys have been used effectively
in several developing countries to assess the popula-
tion’s health.

These surveys would not have been feasible with-
out the development of survey methodologies which
occurred in the twentieth century. Anders N. Kiaer
(1838–1919), the first director of the Norwegian
Central Bureau of Statistics, reintroduced the idea
of a survey sample in what he called the “rep-
resentative method”, in which the sample was to
be selected purposively as Laplace had suggested a
century earlier, rather than randomly. Arthur Lyon
Bowley (1869–1957) is credited with being the first
statistician to use random sampling (1906). The sem-
inal breakthrough for sampling methodology came
in 1934 when Jerzy Neyman (1894–1981) estab-
lished the theoretical basis for stratified sampling
with unequal inclusion probabilities. He made another
major contribution when he introduced the use of
cost functions into survey sampling theory (1938).
In the early 1940s, Morris Hansen (1910–1990)
and William Hurwitz (1908–1969) at the Bureau of
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the Census perfected the methodologies for complex
multistage sampling designs that are the basis for
most modern large-scale surveys.

Conclusion

At the end of the twentieth century, most industrial-
ized countries have effective vital statistics systems
in place and many have established periodic inter-
view surveys to assess the health status and needs of
their citizens. Much remains to be done in develop-
ing countries to institute health services information
systems (see Administrative Databases) that can
guide public policies and programs. As the pub-
lic health burden continues to shift from infectious
diseases to problems of an aging population, to con-
cerns about health promotion and disease prevention,
and to assuring adequate health care for all citi-
zens, the needs for reliable, relevant, and timely
health statistics become ever greater. Fortunately, the
methodologies developed over several centuries and
the data systems that have been established can, if
appropriate resources are provided, meet these needs.
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Introduction

In this article, we present the key measurement prop-
erties necessary for a useful health status instrument.
This article also includes a comment on the issue
of respondent and administrative burden. The dis-
cussion is drawn largely from a previous publication
[5]. The concepts are most relevant for measurement
of health status, but apply to measurements of any
human attribute or characteristic.

The Structure of Health Status Measures

Since semantic issues in health status measurement
are both controversial and important, we will clar-
ify how we shall use words in our discussion. Some
measures consist of a single question which essen-
tially asks “How would you rate the quality of your
life?” [25].

This question may be asked in a simple or a very
sophisticated fashion, but either way yields limited
information. More commonly, health status instru-
ments are questionnaires made up of a number of
items, or questions. These items are added up in a
number of domains (also sometimes called dimen-
sions). A domain or dimension refers to the area of
behavior or experience that we are trying to mea-
sure. Domains might include mobility and self-care,
which could further be aggregated into physical func-
tion, or depression, anxiety, and well-being, which
could be aggregated to form an emotional function
domain. For some instruments, investigators have
undertaken rigorous valuation exercises in which the
importance of each item is rated in relation to the oth-
ers. More often, items are equally weighted, implying
an assumption that their value is equal.

What Makes a Good Health Status
Instrument?

Current strategies for evaluating health status
measures build on close to 100 years’ work in

the measurement of attributes such as intelligence
and attitudes [1]. These strategies have evolved,
incorporating insights from studies directly relating
to health status and quality of life [23].

Measuring at a Moment in Time versus Measuring
Change

The goals of health status measures include differ-
entiating between people who have a better health
status and those who have a worse health status (a
discriminative instrument), and measuring how much
health status has changed (an evaluative instrument)
[16]. The construction of instruments for these two
purposes can be quite different. For instance, let us
take the example of thyroid disease. If we are trying
to discriminate between those with and without thy-
roid disease, we would be unlikely to include fatigue
as an item, because fatigue is too common among
people who do not have thyroid disease. On the
other hand, in measuring improvement in health sta-
tus with treatment, fatigue, because of its importance
in the day-to-day lives of people with thyroid disease,
would be a key item. In the next sections, concerned
with what makes a good health status instrument,
we list key measurement properties separately for
discriminative and evaluative instruments. The prop-
erties that make useful discriminative and evaluative
instruments are presented in Table 1.

Signal and Noise

Investigators examining physiologic endpoints have
long been aware that reproducibility and validity are
the necessary attributes of a good test. For health sta-
tus instruments, reproducibility translates into having
a high ratio of signal to noise, and validity translates
into whether they are really measuring what they are
intended to measure. For discriminative instruments,
the way of quantifying the signal-to-noise ratio is
called reliability. If the variability in scores between
subjects (the signal) is much greater than the variabil-
ity within subjects (the noise), an instrument will be
deemed reliable. Reliable instruments will generally
demonstrate that stable subjects show more or less the
same results on repeated administration. For evalua-
tive instruments, those designed to measure changes
within individuals over time, the way of determin-
ing the signal-to-noise ratio is called responsiveness.
Responsiveness refers to an instrument’s ability to
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Table 1 What makes a good health status measure

Instrument property Evaluative instruments (measuring
differences within subjects over time)

Discriminative instruments (measuring
differences between subjects at a moment in
time)

High signal-to-noise
ratio

Responsiveness Reliability

Validity Correlations of changes in measures
over time consistent with
theoretically derived predictions

Correlations between measures at a moment in
time consistent with theoretically derived
predictions

Interpretability Differences within subjects over time
can be interpreted as trivial, small,
moderate, or large

Differences between subjects at a moment in
time can be interpreted as trivial, small,
moderate, or large

detect change. If a treatment results in an important
difference in health status, investigators wish to be
confident that they will detect that difference, even if
it is small. Responsiveness will be directly related to
the magnitude of the difference in score in patients
who have improved or deteriorated (the signal) and
the extent to which patients who have not changed
obtain more or less the same scores (the noise).

Validity When There is a Gold Standard

If we have a gold standard or criterion standard
for some aspect of health, it implies that we have
endorsed a particular measurement tool as providing
the underlying truth about that aspect. The concept
of a reference, gold, or criterion standard is most
easily applied for physiologic measures. For instance,
experts may agree that the cardiac angiogram is a
gold standard for measurement of various aspects of
cardiac anatomy and function, and noninvasive tests
should be judged in relation to this criterion.

Although there is no gold standard for health sta-
tus, there are instances in which there is a specific
target for a health status measure that can be treated
as a criterion or gold standard. Under these cir-
cumstances, one determines whether an instrument
is measuring what is intended using criterion valid-
ity, according to which an instrument is valid insofar
as its results correspond to those of the criterion
standard. For instance, criterion validity is applicable
when a shorter version of an instrument (the test) is
used to predict the results of the full-length index (the
gold standard). Another example is using a health sta-
tus instrument to predict mortality. In this instance, to
the extent that variability in survival between patients
(the gold standard) is explained by the question-
naire results (the test), the instrument will be valid.

Self-ratings of health such as more comprehensive
and lengthy measures of general health perceptions
include an individual’s evaluation of her or his phys-
iologic, physical, psychologic, and social well-being.
Perceived health, measured through self-ratings, is an
important predictor of mortality [17].

Validity When There is No Gold Standard

Validity has to do with whether the instrument is mea-
suring what it is intended to measure. When there is
no gold or criterion standard, health status investiga-
tors have borrowed validation strategies from clinical
and experimental psychologists, who have for many
years been dealing with the problem of deciding
whether questionnaires examining intelligence, atti-
tudes, and emotional function are really measuring
what they are supposed to measure.

The types of validity that psychologists have intro-
duced include face, content, and construct validity.

Face validity refers to whether an instrument
appears to be measuring what it is intended to mea-
sure, while content validity refers to the extent to
which the domain of interest is comprehensively sam-
pled by the items, or questions, in the instrument.
Quantitative testing of face and content validity are
rarely attempted. Feinstein [4] has reformulated these
aspects of validity by suggesting criteria for what
he calls the sensibility, including the applicability of
the questionnaire, its clarity and simplicity, likelihood
of bias, comprehensiveness, and whether redundant
items have been included. Some of these criteria com-
pete with one another: redundant items may help to
ensure comprehensiveness, and reduce the likelihood
of bias, while increasing the burden on respondents.
Because of their specificity, Feinstein’s criteria facil-
itate quantitative rating of an instrument’s face and
content validity [18].
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The most rigorous approach to establishing valid-
ity is called construct validity. A construct is a theo-
retically derived notion of the domain(s) that we wish
to measure. An understanding of the construct will
lead to expectations about how an instrument should
behave if it is valid. Construct validity therefore
involves comparisons between measures, and exami-
nation of the logical relationships that should exist
between a measure and characteristics of patients
and patient groups. The first step in construct valida-
tion is to establish a “model” or theoretic framework
that represents an understanding of what investiga-
tors are trying to measure. That theoretic framework
provides a basis for understanding how the system
being studied behaves, and allows hypotheses or pre-
dictions about how the instrument being tested should
relate to other measures. Investigators then administer
a number of instruments to a population of inter-
est, and examine the data. Validity is strengthened
or weakened according to the extent to which the
results confirm or refute the hypotheses. For example,
a discriminative health status instrument may be vali-
dated by comparing two groups of patients; those who
have undergone a very toxic chemotherapeutic regi-
men and those who have undergone a much less toxic
chemotherapeutic regimen. A health status instrument
should distinguish between these two groups, and, if
it does not, it is very likely that something has gone
wrong. Alternately, correlations between symptoms
and functional status can be examined, the expec-
tation being that those with a greater number and
severity of symptoms will have lower functional sta-
tus scores on a health status instrument.

Another example is the validation of an instrument
discriminating between people according to some
aspect of emotional function. Results from such an
instrument should show substantial correlations with
existing measures of emotional function. We call
construct validity that deals with measurements at
one point in time cross-sectional construct validity.
The principles of validation are identical for evalua-
tive instruments, but their validity is demonstrated
by showing that changes in the instrument being
investigated correlate with changes in other related
measures in the theoretically derived predicted direc-
tion and magnitude (longitudinal construct validity).
For instance, the validity of an evaluative measure
of health status for patients with chronic lung disease
was supported by the finding of moderate correlations
with changes in walk test scores [7].

Validation is not an all-or-nothing process. We
may have varying degrees of confidence that an
instrument is really measuring what it is supposed to
measure. A priori predictions of the strength of rela-
tionship with other measures that one would expect if
a new instrument is really measuring what is intended
strengthen the validation process. Without such pre-
dictions, it is generally easy to rationalize whatever
correlations between measures are observed.

Validation does not end when the first study with
data concerning validity is published, but continues
with repeated use of an instrument. The more fre-
quently an instrument is used, and the wider the
situations in which it performs as we would expect
if it were really doing its job, the greater is our
confidence in its validity. Perhaps, we should never
conclude that a questionnaire has “been validated”;
the best we can do is to suggest that strong evidence
for validity has been obtained in a number of different
settings and studies.

Interpretability

A final key property of a health status measure is
interpretability. For a discriminative instrument, we
could ask whether a particular score signifies that a
patient is functioning normally, or has mild, mod-
erate, or severe impairment of health status. For an
evaluative instrument, we might ask whether a par-
ticular change in score represents a trivial, small
but important, moderate, or large improvement or
deterioration. Considerable research has focused on
establishing what constitutes the minimal important
difference (MID) in health status. One can define the
MID as “The smallest difference in score in the out-
come of interest that informed patients or informed
proxies perceive as important, either beneficial or
harmful, and which would lead the patient or clinician
to consider a change in the management” [22]. How-
ever, any change in management will depend on the
downsides, including cost, associated with that out-
come and the values and preferences patients place
on these outcomes.

A number of strategies are available for trying to
make health status scores interpretable and describe
the MID [6, 9, 11]. The first is called an anchor-
based approach. Investigators have often used global
ratings of change (patients classifying themselves as
unchanged, or experiencing small, medium, and large
improvements or deteriorations) as the independent
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standard when correlations between the ratings and
the instrument for which information on interpretabil-
ity is sought are strong, generally greater than 0.5.
Several disease-specific instruments use seven-point
scales with an associated verbal descriptor for each
level on the scale. For each questionnaire domain,
one could divide the total score by the number of
items so that domain scores can range from 1 to
7. Using this approach to framing response options,
the smallest difference that patients consider impor-
tant is often approximately 0.5 per question [10,
14]. A moderate difference corresponds to a change
of approximately 1.0 per question, and changes of
greater than 1.5 can be considered large. So, for
example, in a domain with four items, patients will
consider a one point change in two or more items as
important. This finding seems to apply across differ-
ent areas of disease, including patients with chronic
airflow limitation [10]; patients with both adult [14]
and child [13] asthma patients, and parents of child
asthma patients [12]; and adults with rhinoconjunc-
tivitis [15].

The approach described above relies on within-
patient comparisons as the independent standard. One
alternative is between-patient comparisons. In one
example of this approach, groups of patients with
chronic airflow limitation participating in a respira-
tory rehabilitation program completed the Chronic
Respiratory Questionnaire [20]. The patients con-
versed with one another long enough to make judg-
ments about their relative experience of fatigue in
daily life. While there was a bias in their assessment
(patients generally considered themselves better off
than one another), their relative ratings allows esti-
mates of what differences in the Chronic Respiratory
Questionnaire score constitute small, medium, and
large differences [20].

Another anchor-based approach uses HRQL ins-
truments for which investigators have established the
MID. Investigators can apply regression or other sta-
tistical methods to compute the changes on a new
instrument that correspond to those of the instru-
ment with the established MID [21]. Similar to the
anchor-based approach using transition ratings, inves-
tigators should ensure that the strength of the cor-
relation between the change scores of these instru-
ments exceeds a minimum (e.g. a correlation coef-
ficient of 0.5). Yet another approach to estimate the
MID involves enrolling panels of experts or patients
and qualitative research methods, such as Delphi

techniques [26]. The experts establish a consensus
what constitutes the MID of the CRQ. Investiga-
tors have also proposed distribution-based methods
to determine interpretability of HRQL instruments.
Distribution-based methods differ from anchor-based
methods in that they interpret results in terms of the
relation between the magnitude of effect and some
measure or measures of variability in results [9]. The
magnitude of effect can be the difference in an indi-
vidual patient’s score before and after treatment, a
single group’s score before or after treatment, or
the difference in score between treatment and con-
trol groups. As a measure of variability, investigators
may choose between-patient variability (the standard
deviation of patients at baseline, for instance) or
within-patient variability (the standard deviation of
change that patients experienced during a study).

If an investigator used the distribution-based
approach, the clinician would see a treatment effect
reported as, for instance, 0.3 standard deviation unit.
The great advantage of distribution-based methods
is that the values are easy to generate for almost
any HRQL instrument because there will always
be one or more measures of variability available.
This contrasts with the work needed to generate
an anchor-based interpretation. The problem related
to this methodology is that the units do not
have intuitive meaning to clinicians. It is possible,
however, that clinicians could gain experience with
standard deviation units in the same way they learn
to understand other HRQL scores. Cohen addressed
this problem in a seminal work by suggesting that
changes in the range of 0.2 standard deviation unit
represent small changes, those in the range of 0.5
standard deviation unit represent moderate changes,
and those in the range of 0.8 standard deviation unit
represent large changes [3]. To further respond to
this problem, investigators have attempted to provide
empirical evidence about the relationship between
distribution-based and anchor-based results. These
studies address the question, “What is the appropriate
interpretation of a particular magnitude of effect, in
distribution-based units, as judged by the results of
anchor-based studies?”.

The standard error of measurement (SEM)
presents another distribution based method and is
defined as the variability between an individual’s
observed score and the true score and is computed
as the baseline standard deviation multiplied by
the square root of 1 minus the reliability of the
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Table 2 Modes of administration of health status measures

Mode of administration Strengths Weaknesses

Self-administered Minimal resources required Greater likelihood of low response rate,
missing items, or misunderstandings

Willingness to respond to personal questions Need modest literacy and numeracy skills
Reduced risk of erroneous interpretation by

interviewer
Can be computer- administered

Interviewer-
administered

Maximizes response rate Requires considerable resources,

Few, if any, missing items Training of interviewers
Minimizes errors of misunderstanding May reduce willingness to acknowledge

problems

Telephone-
administered

Few, if any, missing items Limits format of instrument

Minimizes errors of misunderstanding Access to phone necessary
Less resource-intensive than

interviewer-administered

Postal-administered Modest resources required High likelihood of low response rate, missing
items, or misunderstandings

Interference by family members
Willingness to respond to personal questions Need modest literacy and numeracy skills

Surrogate responders Reduces stress for target group (very elderly
or sick)

Perceptions of surrogate may differ from those
of target group

Improves response rate (young children and
those incapable of responding)

QOL measure. In theory, a QOL measure’s standard
error of measurement is sample independent, whereas
its component statistics, the standard deviation and
the reliability estimate, are sample dependent and
vary around the standard error of measurement
[27]. When the between-person variability in the
population increases, the standard deviation will
increase (tending to raise the standard error of
measurement), but the reliability will also increase
(tending to lower the standard error of measurement).
Thus, the standard error of measurement largely
reflects within-person variability over time.

Knowing the change or difference in score that
is meaningful enables the clinically useful estimation
of the number of patients who need to be treated
for one individual to have an additional clinically
meaningful improvement [8]. (see Number Needed
to Treat (NNT))

Respondent and Administrative Burden

Alternate approaches to obtaining information from
patients have different resource implications. The

strengths and weaknesses of the different modes of
administration are summarized in Table 2. Health
status questionnaires are either administered by
trained interviewers or self-administered. The former
method is resource intensive, but ensures compliance
and minimizes errors and missing items. The latter
approach is much less expensive, but increases the
number of missing patients and missing responses. A
compromise between the two approaches is to have
the instrument completed under supervision.

Another compromise is the telephone interview,
which minimizes errors and missing data but may
necessitate a relatively simple questionnaire struc-
ture unless the response options are provided to the
respondent in advance. With clear instructions postal
completion can provide valid data but may have a
low response rate [19]. Computer administration has
become a common method of questionnaire adminis-
tration and yields similar responses to paper versions
[2] (see Computer-assisted Interviewing).

Another issue in administrative and respondent
burden is the length of the questionnaires. This may
be less of an issue in research settings in which,
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once one has invested the resources in setting up
the interview, the incremental resource expenditure
of a longer interview is relatively minor. On the other
hand, it may be necessary to find a short questionnaire
for clinical settings in which one needs to obtain
information at regular intervals (see Questionnaire
Design).

Under these circumstances, distilling the measure-
ment of health status into a few key questions would
be a dream come true. One approach to achieving this
goal is to develop a long instrument, test it, and use
its performance to choose key questions to include
in a shorter index. This approach has been used, for
example, to create shorter questionnaires based on
the lengthy instruments from the Medical Outcomes
Studies [24].

How would one determine if the shortened ques-
tionnaire is an adequate substitute for the full version?
The issue for discriminative purposes is the extent
to which people are classified similarly by the short
and long forms of the questionnaire. Statistically, one
would examine the extent to which variance or vari-
ability in scores, in the full instrument is predicted
or explained by scores of the abbreviated version:
the greater the extent to which the rating of people’s
quality of life by the shorter instrument corresponds
to ratings by the longer version, the more comfortable
we should be with the substitution.

For evaluative purposes, the responsiveness and
validity of the shorter version should be tested against
the full instrument. If both correlations of change
with independent measures and instrument respon-
siveness were comparable, substitution of the shorter
instrument would be desirable. If measurement prop-
erties deteriorated, the investigator would face a
decision about trading off respondent burden with
increases in sample size necessitated by a less respon-
sive instrument. Before comparing results generated
by original and shortened versions of a question-
naire, one should check that a single patient sample
yields the same between-subject differences (discrim-
inative) and within-subject changes (evaluative) with
both versions.

References

[1] American Psychological Association, Washington, D.C.
(1985). Standards for Educational and Psychological
Testing .

[2] Caro, J.J., Sr., Caro, I., Caro, J., Wouters, F. &
Juniper, E.F. (2001). Does electronic implementation of

questionnaires used in asthma alter responses compared
to paper implementation? Quality of Life Research 10,
683–691.

[3] Cohen, J. (1988). Statistical Power Analysis for the
Behavioral Sciences, 2nd Ed., Lawrence Erlbaum Asso-
ciates, Hillsdale.

[4] Feinstein, A. (1987). Clinimetrics. Yale University Press,
New Haven, 141–166.

[5] Guyatt, G.H., Feeny, D. & Patrick, D. (1993). Measuring
health-related quality of life: basic sciences review,
Annals of Internal Medicine 70, 225–230.

[6] Guyatt, G.H. (2000). Making sense of quality-of-life
data, Medical Care 38, II175–II179.

[7] Guyatt, G.H., Berman, L.B., Townsend, M., Pugs-
ley, S.O. & Chambers, L.W. (1987). A measure of
quality of life for clinical trials in chronic lung disease,
Thorax 42, 773–778.

[8] Guyatt, G.H., Juniper, E.F., Walter, S.D., Griffith, L.E.
& Goldstein, R.S. (1998). Interpreting treatment effects
in randomised trials, BMJ 316, 690–693.

[9] Guyatt, G.H., Osoba, D., Wu, A.W., Wyrwich, K.W.,
Norman, G.R. & Clinical Significance Consensus Meet-
ing, Group. (2002). Methods to explain the clinical
significance of health status measures, Mayo Clinic Pro-
ceedings 77, 371–383.

[10] Jaeschke, R., Guyatt, G., Keller, J. & Singer, J. (1989).
Measurement of Health Status: Ascertaining the mean-
ing of a change in quality-of-life questionnaire score,
Control Clinical Trials 10, 407–415.

[11] Jaeschke, R., Singer, J. & Guyatt, G.H. (1989). Mea-
surement of health status. Ascertaining the minimal
clinically important difference, Control Clinical Trials
10, 407–415.

[12] Juniper, E., Guyatt, G., Feeny, D., Ferrie, P., Griffith, L.
& Townsend, M. (1996). Measuring quality of life in the
parents of children with asthma, Quality Life Research
5, 27–34.

[13] Juniper, E., Guyatt, G., Feeny, D., Ferrie, P.,
Griffth, L.E. & Townsend, M. (1996). Measuring quality
of life in children with asthma, Quality Life Research 5,
35–46.

[14] Juniper, E., Guyatt, G., Willan, A. & Griffth, L. (1994).
Determining a minimal important change in a disease-
specific quality of life questionnaire, Journal of Clinical
Epidemiology 47, 81–87.

[15] Juniper, E.F., Guyatt, G.H., Griffith, L.E. & Ferrie, P.J.
(1996). Interpretation of rhinoconjunctivitis quality of
life questionnaire data, Journal of Allergy & Clinical
Immunology 98, 843–845.

[16] Kirshner, B. & Guyatt, G. (1985). A methodologi-
cal framework for assessing health indices, Journal of
Chronic Diseases 38, 27–36.

[17] Mossey, J.M. & Shapiro, E. (1982). Self-rated health:
a predictor of mortality among the elderly, American
Journal of Public Health 72, 800–808.

[18] Oxman, A.D. & Guyatt, G.H. (1991). Validation of
an index of the quality of review articles, Journal of
Clinical Epidemiology 44, 1271–1278.



Health Status Instruments, Measurement Properties of 7

[19] Pinnock, H., Sheikh, A. & Juniper, E. (2004). Evaluation
of an intervention to improve successful completion of
the Mini-AQLQ: comparison of postal and supervised
completion, Primary Care Respiration; In press.

[20] Redelmeier, D., Guyatt, G. & Goldstein, R. (1996).
Assessing the minimal important difference in symp-
toms: a comparison of two techniques, Journal of Clin-
ical Epidemiology 49, 1215–1219.

[21] Schünemann, H., Griffith, L., Jaeschke, R., Stubbing, D.,
Goldstein, R. & Guyatt, G.H. (2003). Evaluation of the
minimal important difference for the feeling thermome-
ter and St. Georges Respiratory questionnaire in patients
with chronic airflow limitation, Journal of Clinical Epi-
demiology 56, 1170–1176.

[22] Schünemann, H., Puhan, M., Goldstein, R., Jaeschke, R.
& Guyatt, G. (2004). Measurement properties and inter-
pretability of the Chronic Respiratory Disease Question-
naire (CRQ), Journal of COPD; In Press.

[23] Scientific-Advisory-Committee (1995). Instrument re-
view criteria, Medical Outcomes Trust Bulletin 3.

[24] Stewart, A.L., Hays, R.D. & Ware, J.E., Jr. (1988).
The MOS short-form general health survey. Reliability

and validity in a patient population. Medical Care, 26,
724–735.

[25] Torrance, G. (1986). Measurement of health state utilities
for economic appraisal, Journal of Health Economics 5,
1–30.

[26] Wyrwich, K.W., Fihn, S.D., Tierney, W.M., Kroenke, K.,
Babu, A.N. & Wolinsky, F.D. (2003). Clinically impor-
tant changes in health-related quality of life for patients
with chronic obstructive pulmonary disease. An Expert
Consensus Panel Report, Journal of General Internal
Medicine 18, 196–202.

[27] Wyrwich, K.W., Nienaber, N.A., Tierney, W.M. &
Wolinsky, F.D. (1999). Linking clinical relevance and
statistical significance in evaluating intra-individual
changes in health-related quality of life, Medical Care
37, 469–478.
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Health Workforce
Modeling

Health workforce modeling is generally concerned
with projecting the future supply of and require-
ments for a particular type of health professional.
The objective of such an effort is to assess the rela-
tive balance between supply and requirements under
various assumptions and alternative future workforce
policies. Health workforce modeling is a term that
has come into usage over the last two decades as a
more gender-neutral formulation of what had tradi-
tionally been called health manpower planning [6].
In addition, modelers have in more recent years used
the more neutral term requirements as a generic term
which may reflect, depending on the disciplinary
background and/or political orientation of the mod-
eler, the “needs”, “wants”, “demand”, or “expected
utilization” for health services of a relevant popu-
lation (see Health Care Utilization Data). Health
workforce modeling, when employed at a regional or
national level, is directed toward alerting policy mak-
ers to current or potential future imbalances between
supply and requirements or to identifying maldistri-
butions of professionals by geographic region, spe-
cialty, or practice setting which may adversely affect
access to care, quality of care, or health care costs.
The deceptively simple goal of these analyses is to
develop policies, typically affecting the supply side,
to ensure that the proper number and type of health
professionals will be available to deliver required ser-
vices to a specified future population. In practice, the
achievement of this goal is complicated by the incom-
pleteness of data necessary to implement the models,
lack of agreement on essential definitions, compet-
ing perspectives of diverse stakeholders, and lack of
agreement on what constitutes the “correct” balance
between supply and requirements.

Workforce modeling has become of greater inter-
est as governments wrestle with fundamental reforms
of the structure and financing of their health care
systems (see Health Care Financing). The under-
supply of health professionals can adversely affect
the health status and economic viability of popula-
tions. Alternatively, because the education of health
professionals is supported in large part by public
funds, the oversupply of highly trained professionals
wastes scarce societal resources that could be better

employed elsewhere. The unemployment or under-
utilization of health professionals carries enormous
personal costs as well. However, it has been persua-
sively argued by Reinhardt [11] that the role of gov-
ernments in attempting to bring supply in line with
requirements ought to be limited to making informa-
tion on health professions markets freely available to
all affected parties so that the market can adjust sup-
ply and demand as it does in most other professions.

Invariably, a health professions model will develop
a forecast of the future supply of one or more types
of personnel and a forecast of the requirements for
the personnel in a future time period. Occasionally,
modelers will verify their models by “backcasting” to
determine if the model, under known conditions and
parameter settings, would have predicted correctly a
previously recorded level of supply. Some intrepid
researchers have assessed the historical performance
of alternate forecasts made in prior periods to actual
data after they became available [1].

At the national or regional level, three categories
of models have been employed:

1. Supply models which forecast the number of a
particular kind of health professional expected to
be practicing at some future time period (usually
expressed either in full-time equivalent persons
or in head count).

2. Requirements models which translate the expec-
ted utilization or need for specified health ser-
vices into requirements for a particular kind of
professional.

3. Integrated models which explicitly represent the
interaction of supply and requirements and other
exogenous factors such as disposable personal
income, health insurance coverage, and managed
care penetration simultaneously to develop esti-
mates of supply and requirements.

Health Workforce Supply Models

Health professions supply models have taken several
forms. Conceptually, the most simple is a model that
forecasts the future stock of particular kinds of health
professionals by obtaining from professional associ-
ations or licensure data a count of those practicing
in one year, adding to it the expected entrants and
subtracting those who leave the profession owing to
retirement or death, to produce an estimate of the
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active workforce in a future period. Rates of addi-
tion, separation, and labor force participation in a
cohort will depend on age, gender, and geographical
location, among other factors. These labor stock mod-
els are appealing for policy analysis because training
program enrollments, graduation rates, class compo-
sition, and licensure or certification rates are at least
partially controllable through policy interventions. As
described below, the US Bureau of Health Profes-
sions has developed a set of labor stock models to
estimate supply [13].

The Bureau of Labor Statistics (BLS) of the US
government uses a complex econometric model to
estimate the occupational employment of 507 occupa-
tions in 258 industrial groupings. The model depends
in part on projections of the gross domestic product
(GDP) contributions of various industry sectors, the
interrelationships between sectors, demand for goods
and services, personal income, and other factors. The
GDP, demand, and income projections alone require
the solution of 400 equations with 213 exogenous
variables. Despite the complexity of the BLS models
at the macro level, these techniques cannot capture
the micro-level details of training program struc-
ture and career choice that are found in workforce
stock models which frequently drive the production
of health professionals.

Bureau of Health Professions Physician Supply
Models

Because the investment by society into the training of
physicians is greater than for any other health profes-
sion and because the length of the supply “pipeline”
is the longest of any health profession, considerable
effort has been devoted to modeling the physician
supply process. At the US federal level, the Bureau
of Health Professions [3] utilizes a physician sup-
ply forecasting model that consists of five submodels:
three at the national level and two at the level of states
and census regions. An aggregate supply model fore-
casts the total national supply of physicians by age,
gender, and country of medical education. A specialty
model allocates the total supply among 36 special-
ties in eight practice settings (inpatient, outpatient,
long-term care, etc.) and to nonpatient care activities
(administration, teaching, and research). A model of
the graduate medical education process projects the
distribution of residents by specialty and by year of

training for future years. The results of the gradu-
ate medical education model may be influenced by
changing the size, fill rates, and proportions of US
and international medical graduates in residency pro-
grams. These, and the dynamics of specialty choice
and specialty switching, are policy variables that can
be influenced, in part, by government initiatives.

Health Workforce Requirements Models

Unlike supply models, which are relatively trans-
parent in their assumptions, requirements modeling
is influenced at least as much by the philosophi-
cal perspective taken by the model as by the ana-
lytic approach. Supply models are largely descriptive.
Requirements models are either explicitly or implic-
itly normative in that they describe what the number
and type of health care professionals should be to pro-
vide health care to a given population. The simplest
(and least useful) kind of requirements model is to
form a ratio of providers-to-population, e.g. dentists
per 100 000 persons. These provider-to-population
ratios give a gross measure of supply which can
be used to compare one nation with another or one
region with another but tell us nothing about what
care is delivered, how it is delivered, to whom it is
delivered, and in what facilities it is delivered.

A utilization-based model will forecast health ser-
vices utilization for a particular population, usually
in the form of office visits, inpatient episodes of
care, nursing home days, etc. Each encounter type
can then be described in terms of who is involved
and how long a particular person or team is typically
involved. Person-hours are then aggregated over all
delivery venues applicable to a given health profes-
sion to determine the number of full-time equivalent
providers required to deliver an assumed volume of
services. In their pure form, utilization-based models
forecast only what will be rather than what should
be the number and types of providers required under
certain utilization and task allocation assumptions.
Utilization models will account for variation in uti-
lization of services by age, gender, and geographic
region and they may account for differential access
owing to insurance status, provider availability, travel
distance, and social and economic factors. Utilization
models do not attempt to provide estimates of the
number and kind of services needed by a population
to maintain that population in optimum health.
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Need-based models, on the other hand, start from
the perspective of a population’s need for a certain
mix of health services as recommended by knowl-
edgeable health professionals usually convened in
consensus panels. Gaining consensus on what should
be done, to whom it should be done, and by whom
it should be done is not an easy process, espe-
cially when competing specialties and professions are
involved. The term adjusted need-based model refers
to an approach that tempers the requirements estimate
with information about how populations actually use
services based on assumptions relating price and
accessibility.

In the US in the early 1980s, the Graduate
Medical Education National Advisory Committee
(GMENAC) [14] developed an adjusted need-based
model from the work of a number of disease area
expert panels representing medical or surgical spe-
cialists, primary care providers, and nonphysician
providers (such as physician assistants and nurse
practitioners). A modeling panel integrated the find-
ings of the disease area panels to resolve problems
with overlap and variations in assumptions.

The opportunity for enormous variation in require-
ments estimates exists at two points in the process.
First, professionals (and clinical evidence) may not
agree on what services should be provided. Sec-
ondly, the rate of service provision and the mix of
professionals providing the service can be affected
greatly by health system organization (see Health
Services Organization in the US) and financing
structures. Analysts have, for example, found vari-
ations of 25% or more in the number of physicians
required, depending on whether traditional fee-for-
service or aggressive managed care utilization rates
and staffing ratios are assumed [12, 16]. Unless one
is willing to accept wildly unrealistic estimates of
the number of health professionals required, estimates
must be based on supportable assumptions regarding
the utilization and delivery patterns that will actually
occur at the specified future time [10]. Presentation of
supply and requirements estimates under alternative
future scenarios is one way to illustrate the sensitiv-
ity of estimates to changes in the settings of model
parameters or policy options.

Another recent development is the Bureau of
Health Professions’ Integrated Requirements Model
for Primary Care for Physicians’ Assistants (PAs),
Nurse Practitioners (NPs), and Certified Nurse-
Midwives (CNMs) [9]. Known as the IRM, this

system has been used to forecast US requirements
for physicians and other nonphysician primary
care providers for the delivery of primary health
care services, using a variety of assumptions (or
scenarios). These assumptions can be adjusted by the
users and are designed so that users can also forecast
requirements under an unlimited number of scenarios
by varying model inputs and parameters. At the heart
of the model is the assumption that requirements
will differ depending on how certain primary care
tasks are allocated to the various health professions
and where the boundaries of “primary care” tasks lie
within the health services domain.

A Recent Application of Requirements Forecasting
in an Integrated Delivery System

To determine the number and kinds of physicians
required to staff the US Department of Veterans’
Affairs (VA) health care delivery system, the Institute
of Medicine [7] utilized three distinct but comple-
mentary approaches: (i) empirical models based on
current practice in the VA; (ii) expert judgment mod-
els; and (iii) comparisons to other large integrated
systems operating in the US. In practice, these three
approaches interacted to a great extent, and the final
recommendation was for an informed blending of
alternative requirements forecasts.

The empirical models developed were of two
forms: (i) production functions (PF), in which physi-
cians were one of several factors leading to the
production of patient care workload, and (ii) inverse
production functions (IPF), in which the required
number of physicians in a given specialty was esti-
mated directly from workload and other staffing
inputs. In the PF variant, the patient workload (mea-
sured, for example, in weighted workload units) for
one of 14 patient care areas (e.g. inpatient psychiatric
service) was hypothesized to be related to the number
of physician FTEs by specialty allocated to the area,
the number of residents by year of training, nurse
FTE per physician, other support FTE per physi-
cian, and other institutional factors possibly affecting
productivity.

In the IPF variant the required number of physi-
cians in 11 specialties for a given facility was
assumed to be a function of the estimated required
workload in all settings (inpatient, outpatient, and
long-term care), the number of residents assigned in
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the specialty by year of training, support staff allo-
cated to the specialty, and other productivity-related
factors such as hospital type.

The second major approach to forecasting physi-
cian requirements was to use 11 expert panels orga-
nized around specialty (e.g. neurology, rehabilitation
medicine, and radiation oncology) or multidisci-
plinary care area (e.g. long-term care). Rather than
simply critiquing the empirically derived estimates,
the panels developed independent quantitative esti-
mates of physician requirements under a variety of
alternative scenarios of care provision. The work
of the panels was informed by the results of the
empirical models and external norm data from other
organizations.

Ultimately, estimates of requirements from the
empirical models were formally reconciled with esti-
mates from the expert judgment methods through
a weighting and smoothing process. In the end, no
“cook book” approach was developed. Rather, it
was recommended that the empirical, expert judg-
ment, and external norm approaches be continually
enhanced and coordinated to produce demand-driven
staffing requirement estimates that would guide man-
agement decisions and resource allocation. On the
basis of the Institute of Medicine (IOM) experience,
Lipscomb et al. [8] have developed a Bayesian sta-
tistical approach to combine expert panel judgments
through hierarchical models.

Integrated Supply and Requirements
Models

One currently used example of an integrative model
is the Econometric Model of the Dental Sector
(EMODS) developed at the US Bureau of Health Pro-
fessions [1]. EMODS employs an interactive system
of equations explicitly to represent the impact of pop-
ulation changes, disease etiology, dental insurance,
cost of services, and personal income on demand for
dental care. Also included on the production side is
the technology of care delivery, use of auxiliaries,
hours of work, and the labor content of procedures.
Supply equations (exogenous to the model) include
not only the stock of dentists, but also the stock of
various auxiliaries as well. Prices for care affect con-
sumption of services, which in turn affects employ-
ment of dentists. The full model contains a set of
195 equations that represent the interactions in the

dental care sector. The model has been tested and cal-
ibrated by comparing model estimates to actual data
over a period of several years (see Model Check-
ing). Among the complex econometric models that
have been formulated for various health professions,
the most highly developed is the model of the den-
tal sector, which is self-contained and relatively easy
to describe. Even in dentistry, however, it is difficult
to obtain adequate data to permit full utilization of
econometric models. In fact, to reduce the data bur-
dens, researchers have found that a single-equation
regression model, while not providing the richness of
insight available in the full model, does permit ade-
quate forecasts of dental prices and expenditures [1].

Data Requirements for Workforce
Modeling

Figure 1, adapted from Data Systems to Support
State Health Personnel Planning and Policy making:
A Resource Guide for State Agencies [15], outlines
three different levels of sophistication in both the
supply and requirements domains and identifies the
kinds of data required at each level. An important
feature of this approach is that it allows one to
move from the simplest approaches to the more
complex approaches. This is essential because one
can get lost quite easily in sophisticated details of
modeling and equations before one has had a chance
to answer the more basic questions about supply and
requirements. From a practical perspective, modeling
efforts should proceed sequentially, collecting data
specified in the innermost portions of Figure 1 and
then proceeding outward in both the supply and
requirements directions consistent with not only the
required precision and planning time horizon, but also
the resources available to the task.

On the supply side, these basic analyses and data
include the counts of licensees in state and employ-
ment counts. Such basic data can be augmented by
national and state trends in the number of practition-
ers, as indicated by the growth in newly licensed
persons in the state or nation and trends in employ-
ment. Professional association data can be useful in
understanding and projecting supply, but, because of
duplication in licenses, national estimates of supply
remain problematic. Such an approach, however, can
be used at the state or regional level, where univer-
sal unduplicated licensure ensures that supply can be
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REQUIREMENTS FOR PERSONNEL SUPPLY OF PERSONNEL

ADVANCED
Analyses & Data

INTERMEDIATE
Analyses & Data

BASIC
Analyses & Data

BASIC
Analyses & Data

INTERMEDIATE
Analyses & Data

ADVANCED
Analyses & Data

Special problems
Inner city

Rural
AIDS
STDs

Preventive care
Illness patterns

Special Surveys
Practitioners
Employers
Patients
Public

Integrated models

Utilization studies
3rd party payers

Productivity

Regulations

Demand factors
Age

Income

Facility changes
New facilities

Closed facilities
New services

Needs vs. demand
Underserved
Special pops

Substate regions

Projections
Indirect measures

Salary trends
Recruiting
Vacancies

Ratios of personnel
to Population
to Patients

to Beds, etc.

Historical trends
hospitalizations

office visits

Employment stats
Providers

Government

Standards & norms
Baselines
Targets

License counts

Employment counts

National trends
Practitioners
Employment

State trends
Practitioners
Employment

Association data
Members

General data

New professionals
Educ. pipeline
Enrollments

Degrees
Trends

Adjustments
Age

Gender
Practice FTE

Specialty

Substate regions

Migration patterns

Projections

Special surveys
Providers
Educators

Practitioners

Special problems
Rural areas
Inner cities

Small area studies
Zip codes

Cities & towns
Special districts

Travel time

Integrated models

Credential changes

Practice patterns

Basic Data

Intermediate Analyses

Advanced Models & Analyses

Figure 1 The health workforce data analysis hierarchy. Adapted from [4], based on [15, Figure 1]. Reproduced from
Physical Therapy by permission of the American Physical Therapy Association

adequately measured and trends can give us a hint as
to what the underlying demand might be.

A comprehensive licensure data system – such as
maintained in the state of North Carolina – takes
time to implement, but, with periodic resurveys, the
quality of data improves. Additional items can be
added to increase the usefulness of the database.
Data generated in North Carolina using this model
are now available on location, employment setting,
and type of employment. These data provide helpful
information by projecting demand as well as supply,
as mobility in and out of employment sectors can be
quite sensitive to economic trends.

One of the ways in which demand can be esti-
mated from supply data is by looking at the different
sectors in which health professionals are employed,
and by comparing the kinds of employment for the
entire workforce with those of the newly licensed
individuals in a given year. For example, in North
Carolina, 36.8% of the currently licensed individuals
in physical therapy are working primarily in hospi-
tals. This figure has fluctuated between 35% and 40%
over the past decade, even as the total number of

therapists has increased. Among newly licensed per-
sonnel in 1994, including both new graduates and
immigrants to the state, the proportion employed
in hospitals is 64%. This proportion suggests that
hospital employment is especially attractive to new
graduates and immigrants. By examining employ-
ment trends, it may be possible to determine whether
this percentage increase will continue (representing
an increase in employment in that particular sec-
tor) or whether it represents the employment patterns
of new entrants who subsequently move to other
sectors.

The methods used here to assess requirements
emphasize trends rather than needs or demands. Obvi-
ously, such an approach is subject to misinterpre-
tation, but it uses available data from supply to
assess changes in different sectors to provide “reality
checks” on the more idealistic need-based models and
the more abstract and data-intensive demand-based
models. Such an approach also provides information
at the state and local levels, where decisions about
expansion in the number and size of training institu-
tions are likely to occur.
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Emerging Issues

As the data requirements for both supply and demand
models become more complex and sophisticated, and
as various elements in national health systems are
becoming decentralized and privatized, new issues
are coming to the fore. Chief among these are how
to resolve inherent tensions between the need for
regulation and accountability expressed by central
health authorities, credentialling bodies, national
payment systems, and health professional educational
systems, and the need for privacy and confidentiality
expressed by individual health professionals, their
associations, and health service delivery systems,
which increasingly employ health professionals. As
data requirements for workforce planning become
more complex, they also become more onerous to
individuals. Health workforce planners of the next
generation will be faced with the challenge to use
creative and innovative strategies to acquire data
at increasingly detailed levels while preserving the
confidentiality of the sources.

New information technologies also provide
unprecedented opportunities for health workforce
modeling. For example, the availability of various
kinds of simulation software for microcomputers
allows the development and display of simulations
and sensitivity analyses in real time. In addition, the
use of geographic information systems (GIS) allows
cartographic presentation of databases containing
disease patterns (see Mapping Disease Patterns)
and demographic data. Overlaying the location of
health professions or activity space data on such
maps can provide dramatic opportunities to identify
issues of distribution which might well remain
opaque in the absence of such visual displays.
Creatively applied, such processes can be conducted
in group settings with panels of health professions,
education administrators, and health policy analysts
in attendance in such a way that not only engages
their attention, but also serves to close the loop
between planning and policy.

Conclusion

Health workforce modeling has been employed at a
variety of organizational levels and has either con-
centrated on a single health profession or considered
multiple health professions interacting to provide a

spectrum of health care services. At the micro level,
models have been developed to analyze one or more
specific types of personnel in a specific delivery set-
ting (e.g. physician assistants employed in the office
of a generalist physician). Models have been devel-
oped to analyze various kinds of personnel in an
organized delivery system (e.g. all physician spe-
cialties in an integrated health care delivery sys-
tem which includes inpatient, outpatient, long-term,
and home health care). Some models have covered
specific kinds of personnel in a regional, state, or
national framework with the purpose of forecasting
future workforce structure and affecting health work-
force policy (e.g. physical therapists in the US or
all licensed health professions practicing within the
boundaries of a given state, perhaps at a county level
of disaggregation).

Although not formally workforce modeling,
population-based “benchmarking” also has been
applied recently in health workforce studies as a way
to get at the notion of “requirements”, while avoiding
the question of whether “needs” or “demands”
are being met. This approach compares a priori
standard ratios of health professionals to populations
(either normative or those extant in particular health
systems) to the range of these ratios across hospital
market areas, broad regions, or national health
systems. A recent application of this approach used
managed care ratios in the US to examine how
variations in supply and composition of the physician
workforce relate to the organization of the health care
delivery system in different areas [2].

This article concentrates on applications at the
health system or national levels because most of the
recently published material is directed at macro-level
analyses. This concentration of published material at
higher levels of aggregation is a result of the recent
emphasis on workforce reform as a part of health
system reform proposals, and is also a consequence
of single-site studies being described most frequently
in less accessible internal documents of the firms
in which the analyses were performed. An excellent
earlier summary of operations research applications
that spanned this entire spectrum appears in [6]. In
addition, Hall & Mejia [5] provided a comprehensive
monographic summary of the various approaches up
to the mid-1970s, with a special focus on techniques
applicable to developing countries and feasible for
health workforce planning as a component of more
general health and development strategies.
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Healthy Worker Effect

Epidemiological studies of occupationally or environ-
mentally exposed cohorts are useful in identifying
and quantifying environmental risks, because workers
are generally exposed to higher levels of toxic mate-
rials than the general population. Although higher
exposures make it easier to detect and characterize
modest elevations in risk, such studies are plagued
by a particularly pervasive form of selection bias,
referred to as the healthy worker effect (HWE). The
HWE is reflected in better health status of workers
relative to the general population. This bias arises
because workers were healthy enough to be hired ini-
tially and those who remain at work stayed healthy
enough to maintain employment, whereas general
populations include persons unfit for work because
of impaired health.

The HWE can be regarded as a form of selection
bias because workers are selected preferentially on
the basis of health status, either by themselves or as
a result of job requirements. There are two sources of
the HWE: the initial selection of healthier individuals
at the time of hire and the survival of healthier
individuals among the exposed workers. The latter,
healthy worker survivor bias, results from less healthy
workers leaving the workforce as well as less healthy
workers transferring to jobs with lower exposure(s).
Both forms of self-selection can distort the shape of
the exposure–response relationship and lead to bias
towards the null.

Identifying the Bias

The HWE was originally identified as a feature of
cohort mortality studies [6]. In such time-to-event
studies, the standardized mortality ratio (SMR) for
all causes of death combined provides a convenient
measure of the extent to which the bias is operat-
ing. By this measure, the HWE has been found to
wear off with length of follow-up [8]. This same
pattern of rising SMRs with increasing time since
hire or length of follow-up has also been consistently
observed for specific causes of death, including car-
diovascular disease and nonmalignant respiratory and
digestive diseases [8]. The increase in the SMR dur-
ing the time period just after leaving work provides
evidence that the HWE is stronger for cardiovascu-
lar disease mortality than for cancers [2]. Despite

evidence that the HWE also affects cancer mortality
rates, particularly in the period close to hire, the lack
of consistency in this finding suggests that a weaker
bias is operating.

Selection bias due to the healthy worker survivor
effect also arises in cross-sectional studies of morbid
outcomes and longitudinal studies of recurrent events,
although it cannot be as easily identified [3]. The bias
is particularly prominent in cross-sectional studies of
active workers. In such studies, the undersampling
of short-term workers results in a disproportionate
number of survivors, i.e. workers who are more
resistant to the effects of exposure. This is often found
in cross-sectional studies of acute toxicity where the
most responsive or sensitive workers are ‘selected
out’ of exposure.

By contrast, longitudinal studies with repeated
measures of exposure and response over time are fre-
quently used to study the development of chronic
conditions by observing changes in a continuous
physiological parameter. Like cohort studies, lon-
gitudinal studies often involve measures of expo-
sure that vary over time. Time-varying exposures
and confounders complicate exposure–response anal-
yses because the inter-relationships between time-
dependent variables makes it more difficult to control
the HWE. On the other hand, information about
changes in exposure over time allows for analytical
strategies to address the HWE in ways that are
impossible in more limited study designs.

The hypothesis in most studies of time-varying
occupational exposures is that past or current expo-
sure affects current health status. However, causality
can also move in the reverse direction, with past
health status impacting subsequent exposure either
via job transfer or leaving work. This reversal in the
direction of a causal relationship has been referred to
as feedback. Feedback is a key feature of the HWE,
whereby current exposure and health status may both
be affected by past exposure and health status as well
as affect subsequent measures.

Over the past 25 years much research has focused
on methods to reduce this form of selection bias. This
effort has produced a large literature on the topic of
the HWE, but the problem has so far proven to be
easier to detect than to fix. Several strategies have
been proposed to address the HWE in longitudinal
studies of time-to-event or repeated measures. The
empirical basis of each method and its effectiveness
in reducing bias due to selective hire, leaving work,
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or job transfer in studies of occupational hazards is
described below.

Reducing the Bias

Using an Internal Reference Group

In its simplest form, the HWE is recognizable as a
lower mortality risk among an occupational cohort
compared to a national or regional reference pop-
ulation. Whether this is viewed as a problem of
unmeasured confounding or selection bias, some of
the distortion can be eliminated by the selection of
a more appropriate comparison group. An unexposed
group of workers is needed to avoid unmeasured con-
founding by health status. An internal analysis that
relies on an unexposed, or less exposed, subset of the
study population as the reference group will reduce
the HWE. This approach will eliminate the compo-
nent of the bias due to the hiring of healthier workers,
since all subjects were similarly hired.

The component of the HWE due to the survival
of the healthier workers in the active workforce,
however, will not be corrected by the use of an inter-
nal reference group. If sicker workers systematically
leave work or transfer out of the more highly exposed
jobs, the HWE will persist. For example, as described
in more detail below, because workers who develop
asthma in jobs with high exposure are more likely to
leave work or be transferred than workers in jobs
with low exposure, comparisons between workers
with more and less exposure may result in a nega-
tive exposure–response curve even in the presence
of a hazard.

Lagging Exposure

Lagging exposure is a method used in cancer epi-
demiology to account for disease latency by assigning
zero weight to exposures that occur in a time period
just prior to the observed health event. It has also
been proposed as a strategy to reduce the bias caused
by selective leaving [7]. The rationale is that recent
exposures should be ignored because only the health-
iest survivors remain exposed. For example, lagging
exposure to arsenic by 10 to 20 years increased the
rate ratios for respiratory cancers in a reanalysis of
Enterline’s cohort study described by Arrighi and
Hertz-Picciotto [1].

A similar approach involving exposure weight-
ing was applied to address HWE due to selective
job transfer in a reanalysis of a cross-sectional study
of asthma with information on date of diagnosis
and retrospective exposure information over time [4].
In the original unadjusted analysis, the odds ratio
for asthma prevalence was estimated in a logistic
regression model based on cumulative exposure to
metalworking fluids up to the time of the cross-
sectional survey. To account for the possibility that
workers transfer to lower exposure jobs after devel-
oping asthma, zero weight was assigned to exposures
that occurred after the reported age of onset. Using
a proportional hazards model, exposure was cumu-
lated only up to the age of onset for each case and
all subjects in the risk set for that case. In contrast
with the unlagged analysis, a significantly elevated
incidence rate ratio was observed for synthetic fluid
exposure.

Although exposure lagging has effectively reduced
the HWE in several instances, this approach has limi-
tations. Lagged exposures cannot be used in studies of
acute health effects because the most recent exposures
are probably the most biologically relevant. Even in
studies of chronic conditions, such as cardiovascu-
lar disease, current exposures may continue to exert
an effect and exposure lagging may not be a viable
option.

Adjusting for Time Since Hire

The HWE, as measured by the SMR for all causes of
death combined, declines with increasing time since
hire (or length of follow-up) [8]. It follows, as sug-
gested by Fox and Collier [6], that analysis restricted
to the subgroup with longer follow-up will be less
biased by the HWE. Alternatively, time since hire
can be viewed as a simple confounder, i.e. a risk
factor for the health outcome in the absence of expo-
sure, and associated with exposure. It then follows
that HWE can be addressed using either of the stan-
dard methods to control confounding: stratification or
inclusion of a marker for the HWE as a covariate in
a multiple regression model. The diminished HWE
that occurs with increasing time since hire may even
occur independent of exposure. Flanders has shown
that even when there is no effect, adjusting for time
since hire reduces bias [5].

By contrast, the HWE does not decline with
increasing duration of employment. In fact, it



Healthy Worker Effect 3

increases because the healthiest workers manage to
remain employed longest. Steenland and Staynor
suggested that an explanation for the difference is
that duration of employment includes mostly active
person years whereas time since hire includes an
increasing proportion of inactive person time [12].

Adjusting for Employment Status

Observed mortality rates for workers after leav-
ing employment are double the rates among active
employees [12, 13]. Steenland and Staynor have sug-
gested that employment status acts as a negative con-
founder under the null hypotheses [12]. In this case,
the HWE might be reduced by treating employment
status (on or off work) as a time-varying confounder
and identifying each person year as either one in
which the subject was actively working or off work.
Based on combined data from 10 cohorts selected by
the US National Institute for Occupational Safety and
Health, adjustment for employment status reversed
the negative trends between duration of exposure and
all cause mortality [13].

Adjustment for employment status as a confounder
will, however, itself lead to bias if subjects in more
highly exposed jobs leave the workforce at a differ-
ent rate than workers in jobs with less exposure. The
bias will occur whether the exposure causes individ-
uals to leave work because it seriously impairs their
health (in which case leaving work is an intermediate
variable on the causal pathway from exposure to dis-
ease) or simply because high-exposure jobs have a
higher or lower turnover rate due either to the irri-
tant effects of exposure (say on the eyes) or because
more highly exposed jobs are often preferentially
lost when economic downturns occur. Steenland et al.
simulated data based on two alternative hypotheses:
(a) cumulative exposure affects leaving but does not
necessarily affect disease, and (b) cumulative expo-
sure also affects disease. Results demonstrated that
under either hypothesis, adjusting for confounding
by controlling for employment status in the analysis
results in bias [13]. Epidemiologists recognize that
if a covariate is a confounder it must be controlled
for in the analysis to reduce bias. However, we have
argued here that when a covariate is also affected
by earlier exposure (e.g. the covariate is an interme-
diate variable on the causal pathway from exposure
to disease), controlling for that variable will, in fact,
introduce bias.

None of the straightforward approaches described
above can adequately address this problem: employ-
ment status is likely to act as a confounder and also
be influenced by exposure. It is this aspect of HWE,
which we refer to as the healthy worker survivor
effect, that limits the effectiveness of all the methods
reviewed to this point, and provides the motivation
for the more analytically complex method of estima-
tion known as G-estimation.

G-estimation

In studies with information on exposure and work
status over time, change in work status can both
depend on past exposure and affect future exposure.
Since being off work is often related to health
status as well as exposure, work status (active vs.
inactive) can act as a confounder. If high exposure
causes workers to preferentially leave work then,
as noted above, bias can result whether or not one
controls for work status in a standard analysis. G-
estimation provides an appropriate adjustment for the
effect of a time-varying exposure in the presence
of a time-varying confounder, such as employment
status, which is influenced by past exposure as
well [9–11].

G-estimation is an example of structural equations
modeling in which causal structures are integrated
into observational data analysis to model causal
relationships [9, 10]. The causal models are structural
nested failure time models for the effect of a time-
dependent exposure on a survival time outcome. The
causal parameter is estimated using a semiparametric
method by treating the cohort data as a sequential
randomized trial in which exposure at time t is
randomly assigned, conditional on past exposure and
employment history and on baseline variables such
as race, gender, age at hire and calendar period
of hire.

G-estimation of structural nested failure time mod-
els also allows one to estimate the magnitude of the
exposure effect. The exposure–response parameter
has a direct interpretation as the fraction of years of
life lost due to continuous exposure at a unit dose.
Robins et al. show how to convert this estimate into
an estimate of the causal mortality ratio comparing
an always exposed to a never exposed worker pop-
ulation [11]. Thus the method can theoretically be
used to provide unbiased estimates of the effect of
the cumulative exposure variable typically used in
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studies of chronic disease, even in the presence of
selection bias due to the healthy worker survivor
effect.

In a structural nested failure time model the
causal effect of exposure is quantified by contrast-
ing observed outcomes and exposure histories with
counterfactual outcomes, e.g. the outcomes exposed
subjects would have had in the absence of expo-
sure. Although such counterfactual outcomes are
not directly observed for exposed workers, under
the sequential randomization assumption mentioned
above this contrast can be unbiasedly estimated from
the available data. Simply compare, at each time
t , the subsequent survival experience of each sub-
ject at work at time t with other subjects also at
work at time t with the same exposure and employ-
ment history prior to t but with a different expo-
sure at t . Subjects who are off work at time t are
not used in this comparison because less healthy
workers preferentially leave work and thus are not
comparable to subjects remaining at work. The need
for exact matching on past exposure and work his-
tory can be overcome by modeling the mean expo-
sure at time t as a function of past exposure and
employment history using logistic, polytomous logis-
tic, or least squares regression models depending on
whether exposure is dichotomous, polychotomous, or
continuous.

In order to apply the G-estimation algorithm, data
on whether a worker was actually on or off work
at each time t must be available. If, instead, one
incorrectly assumes all workers were continuously
employed from their date of hire until their date of
last employment, when in fact long lay-off periods
are common, serious bias may result, regardless of
the method of analysis.

G-estimation has been used to estimate the effect
of azidothymidine (AZT) on Kaposi’s sarcoma,
the effect of aerosolized pentamidine on survival
in acquired immune deficiency syndrome (AIDS)
patients, the effect of smoking cessation on heart
disease mortality in the Mr Fit study, the effect
of graph vs. host disease on time to recurrence
in leukemic patients treated with bone marrow
transplantation, and the effect of systolic hypertension
on coronary artery disease in the Framingham cohort.
To date, however, there has been no successfully
completed application of this methodology to the
analysis of occupational or environmental cohort
data, although several studies are currently underway.
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Hepatology

Hepatology is the study of diseases of the liver. These
can be mainly classified as hepatitis, hepatocellular
carcinoma (or liver cancer), and liver cirrhosis.

Hepatitis

Several distinct infections are included under the
generic title of hepatitis. There are many similari-
ties between these different forms of hepatitis, but
their epidemiologies and methods of prevention and
control vary. These infections are labeled as hep-
atitis A, B, C, D, and E. Hepatitis D is sometimes
called delta hepatitis [3]. Most statistical work has
been done on hepatitis A and B, with little on other
forms of hepatitis.

Hepatitis A and B occur worldwide. Outbreaks of
hepatitis A are patchy and tend to occur in regular
cycles. For developed countries disease spreads in
day-care centres for children in diapers, to household
and sexual contacts of acute cases, intravenous drug
users, and travelers to endemic countries. Hepatitis A
is spread by the fecal–oral route. Contaminated water
supplies, handling and preparation of food by infected
foodhandlers, and shellfish have all been responsible
for outbreaks. Hepatitis B is endemic with little sea-
sonal variation in incidence. In developed countries
such as the US, infection is most common in young
adults, whereas in developing countries widespread
infection occurs in infancy. Hepatitis B infection is
common in certain high risk groups: intravenous drug
injectors, promiscuous heterosexuals, male homosex-
uals, and workers in some health care and public
safety occupations. It is spread by infectious blood,
saliva, semen, and vaginal fluids.

Hepatitis C is transmitted by infected blood and
blood products, and occurs virtually everywhere in
the world. It accounts for 15%–40% of community-
acquired hepatitis cases. High-risk groups include
transfusion recipients, intravenous drugabusers, and
dialysis patients. Hepatitis D closely resembles and
is often associated with hepatitis B infection. Its
mode of transmission is also very similar. Hep-
atitis E closely resembles hepatitis A in both its
clinical symptoms and its epidemiology. The attack
rate is highest amongst young adults, especially
males.

Hepatitis A

Frösner et al. [8] discussed the decrease in incidence
of hepatitis A infections in Germany using serological
data. They used a catalytic model (see Communica-
ble Diseases) with a sigmoidal decrease in the force
of infection (see Hazard Rate). The force of infec-
tion fell from 0.04 per year in 1945 to 0.005 per year
in 1965. Frösner et al. [9] and Schenzle et al. [23] dis-
cussed antibodies against hepatitis A in seven Euro-
pean countries. Prevalence was highest in Greece and
France and lowest in Scandinavia. The force of infec-
tion had declined almost everywhere in the period
leading up to 1979. Keiding [14] considered nonpara-
metric estimation (see Nonparametric Methods) of
the age-specific force of infection applied to sero-
logical hepatitis A data for Bulgaria. These data are
ideal for statistical estimation as they were collected
before the advent of mass vaccination. Keiding esti-
mated the proportion of people of different ages who
must be vaccinated to eliminate hepatitis A in Bul-
garia. Greenhalgh & Dietz [10] extended this work
to an age-structured model and vaccination at several
different ages. They examined the effect of different
mixing patterns on vaccination campaigns.

Hadeler et al. [11, 12] performed a statistical anal-
ysis of the outbreaks of hepatitis A in Maricopa
County, Arizona. These studies strongly link the
spread of hepatitis A in the US to very young chil-
dren in day-care centres and provide a framework for
designing disease control strategies. Sattenspiel [20]
developed a matrix-migration model for the spread
of hepatitis A in US day-care centers using these
results. The theoretical results of Sattenspiel’s model
were applied to data on the incidence of hepatitis
A in Alberquerque, New Mexico, in 1979. Analy-
sis of the data suggested that local clusters were at
higher risk for epidemics. Close social ties linked up
these centers in small local clusters which helped
explain the disproportionate number of cases asso-
ciated with these centers. Sattenspiel [21] described
two stochastic simulation models which supported
these results. Sattenspiel & Simon [22] pushed the
theoretical development of the model further.

Liu [15] considered a differential equation epide-
mic model for hepatitis A where the duration of the
latent period depends on the number of infectious
individuals. He showed that nonlinearity due to a
dose-dependent latent period can cause periodicity.
This model was compared with US hepatitis data.
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Hepatitis B

Hepatitis B infects people worldwide. The highest
rates of infection are in sub-Saharan Africa and
East Asia. Early mathematical models for hepatitis
B were due to Cvetanovic et al. [5] and Pasquini
& Cvetanovic [19], who used a compartment model
(see Pharmacokinetics and Pharmacodynamics) in
which the host population was stratified clinically
and epidemiologically to investigate a variety of con-
trol strategies in Mediterranean countries. Anderson
& May [1] developed a differential equation model
for the spread of hepatitis B. A key feature was that
around 1% of infected individuals became carriers
and continued to transmit the disease for the rest of
their lives. These carriers are an important reservoir
of infection and their presence represents a complica-
tion for immunization programs. Anderson et al. [2]
described a model for the sexual transmission of hep-
atitis B in developed countries which included hetero-
geneous mixing with respect to age and sexual activ-
ity class. They used this model to assess the effects
of vaccination campaigns. The first dynamic model
of hepatitis B transmission in developing countries
has been developed by McLean & Blumberg [18].

Edmunds et al. [7] discussed the influence of age
on the development of the carrier state. A model
was fitted to the data using maximum likelihood.
Infants infected perinatally were found to have a high
probability, 0.885, of becoming carriers. Over early
childhood there is a sharp decrease in the proportion
of infections which lead to the carrier state. By adult-
hood the probability of becoming a carrier was about
0.1. Implications for vaccination programs were also
discussed. Edmunds et al. [6] outlined a determinis-
tic compartmental model to describe the transmission
dynamics and control of hepatitis B in the Gambia.
The model included a class of carriers. They exam-
ined the impact of mass vaccination on the incidence
of liver cancer (as carriers have a higher than aver-
age chance of developing liver cancer). They used
age-structured serological data to estimate parame-
ters. Two models were outlined which assumed that
infection in adults was due to horizontal and sexual
transmission, respectively.

Cirrhosis

Liver cirrhosis is a chronic disease of the liver, nor-
mally suffered by alcoholics, but it can also be caused

by chronic hepatitis C infection. Carriers of hepati-
tis B also have a higher risk of developing cirrhosis
[3]. Hepatocellular carcinoma occurs in 10%–25% of
cirrhotic patients [17]. The prevalence of cirrhosis in
the population is not known exactly. This is partly
due to the fact that many cases are clinically silent.
Up to 30% or even 40% of cases may be discov-
ered at autopsy, and an unknown proportion remains
clinically silent. There may be marked geographical
differences in incidence from one country to another,
or even between different regions in the same coun-
try [16]. Moreover, the proportion of alcoholic and
nonalcoholic cirrhosis differs from one country to
another, the prevalence of alcoholic cirrhosis being
highest generally in wine-producing countries [17].

Hepatocellular Carcinoma

Primary hepatocellular cancer (PHC) or hepatocel-
lular carcinoma (HCC) is recognized worldwide. It
is among the most common malignant neoplasms in
China, many parts of Asia, and Africa. It is relatively
uncommon in the US and Europe. Chronic infection
with hepatitis B virus is an important risk factor in
most cases; hepatitis C may also be involved. Most
patients go through a stage of liver cirrhosis before
development of the tumor [3].

Berman [4] and later Higginson [13] called world
attention to the extremely high incidence rate of HCC
amongst the black male population in Mozambique.
From the statistical data from various geographical
locations it seems that the greater the incidence rate,
the younger the peak age. Among Mozambican males
the peak age is between 25 and 34 years, the average
age in Japan is 56.8 years in males and 59.9 years in
females, and it is higher in Northern Europe [17].
HCC occurs in more advanced ages in alcoholic
cirrhosis.
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Heritability

Before discussing what genetic heritability is, it is
important to be clear about what it is not. For a
binary trait, such as whether or not an individual has
a disease, heritability is not the proportion of disease
in the population attributable to, or caused by, genetic
factors. For a continuous trait, genetic heritability is
not a measure of the proportion of an individual’s
score attributable to genetic factors. Heritability is not
about cause per se, but about the causes of variation
in a trait across a particular population.

Definitions

Genetic heritability is defined for a quantitative trait.
In general terms it is the proportion of variation
attributable to genetic factors. Following a genetic
and environmental variance components approach, let
Y have a mean µ and variance σ 2, which can be parti-
tioned into genetic and environmental components of
variance, such as additive genetic variance σ 2

a , dom-
inance genetic variance σ 2

d , common environmental
variance σ 2

c , individual specific environmental vari-
ance σ 2

e , and so on.
Genetic heritability in the narrow sense is defined

as
σ 2

a

σ 2
, (1)

while genetic heritability in the broad sense is defined
as

σ 2
g

σ 2
, (2)

where σ 2
g includes all genetic components of vari-

ance, including perhaps components due to epistasis
(gene–gene interactions; see Genotype) [3]. In addi-
tion to these random genetic effects, the total genetic
variation could also include that variation explained
when the effects of measured genetic markers are
modeled as a fixed effect on the trait mean.

The concept of genetic heritability, which is really
only defined in terms of variation in a quantita-
tive trait, has been extended to cover categorical
traits by reference to a genetic liability model. It
is assumed that there is an underlying, unmeasured
continuous “liability” scale divided into categories by
“thresholds”. Under the additional assumption that

the liability follows a normal distribution, genetic
and environmental components of variance are esti-
mated from the pattern of associations in categorical
traits measured in relatives. The genetic heritability
of the categorical trait is then often defined as the
genetic heritability of the presumed liability (latent
variable), according to (1) and (2).

Comments

There is no unique value of the genetic heritabil-
ity of a characteristic. Heritability varies according
to which factors are taken into account in speci-
fying both the mean and the total variance of the
population under consideration. That is to say, it is
dependent upon modeling of the mean, and of the
genetic and environmental variances and covariances
(see Genetic Correlations and Covariances). More-
over, the total variance and the variance components
themselves may not be constants, even in a given
population. For example, even if the genetic variance
actually increased with age, the genetic heritability
would decrease with age if the variation in nongenetic
factors increased with age more rapidly. That is to
say, genetic heritability and genetic variance can give
conflicting impressions of the “strength of genetic
factors”.

Genetic heritability will also vary from population
to population. For example, even if the heritability of
a characteristic in one population is high, it may be
quite different in another population in which there is
a different distribution of environmental influences.

Measurement error in a trait poses an upper limit
on its genetic heritability. Therefore traits measured
with large measurement error cannot have substantial
genetic heritabilities, even if variation about the mean
is completely independent of environmental factors.
By the definitions above, one can increase the genetic
heritability of a trait by measuring it more precisely,
for example by taking repeat measurements and aver-
aging, although strictly speaking the definition of the
trait has been changed also. A trait that is measured
poorly (in the sense of having low reliability) will
inevitably have a low heritability because much of
the total variance will be due to measurement error
(σ 2

e ). However, a trait with relatively little measure-
ment error will have a high heritability if all the
nongenetic factors are known and taken into account
in the modeling of the mean.
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Fisher [1] recognized these problems and noted
that

whereas . . . the numerator has a simple genetic
meaning, the denominator is the total variance due
to errors of measurement [including] those due to
uncontrolled, but potentially controllable environ-
mental variation. It also, of course contains the
genetic variance . . . Obviously, the information con-
tained in [the genetic variance] is largely jetti-
soned when its actual value is forgotten, and it is
only reported as a ratio to this hotch-potch of a
denominator.

Historically, other quantities have also been termed
heritabilities, but it is not clear what parameter is
being estimated, e.g. Holzinger’s H = (rMZ − rDZ)

(the correlation between monozygotic twins minus
the correlation between dizygotic twins) (see Twin
Analysis) [2], Nichol’s HR = 2(rMZ − rDZ)/rMZ [5],
the E of Neel & Schull [4] based on twin data alone,

and Vandenburg’s F = 1/[1 − σ 2
a /σ 2)] [6]. Further-

more, the statistical properties of these estimators do
not appear to have been studied.
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Heterozygosity, Loss of

Loss of tumor suppressor gene function has long been
implicated as an important event in the onset and
progression of cancer. One assay commonly used to
define chromosomal regions likely to contain novel
tumor suppressor genes is loss of heterozygosity
(LOH). LOH compares the chromosomal organiza-
tion and stability of cells from normal tissues with
those from tissues derived from various stages of
tumor development, thus highlighting chromosomal
regions that may harbor tumor suppressor genes. To
date, multiple regions of LOH have been defined
for essentially all tumor types, in some situations
facilitating our understanding of the function of the
underlying genes. For other cancers, however, the
delineation of LOH boundaries for tumor subtypes is
ongoing as investigators seek to determine the molec-
ular chain of events leading to tumor progression. As
characterization of individual tumor suppressor genes
progresses, LOH will become a powerful diagnos-
tic tool for clinical assessment of tumor stage and
grade.

LOH detects chromosomal deletions within tumor
cell populations by comparing allele patterns from a
single individual’s normal and tumor cells at a set
of ordered genetic markers referred to as a “hap-
lotype.” The point at which a pattern changes from
two haplotypes, representing the heterozygous state
of the normal cell, to a single haplotype, repre-
senting the loss of all or part of one chromosomal
arm containing a putative cancer gene, is used to
define the boundaries of LOH for a single tumor
(Figure 1). Historically, one problem associated with
precisely defining such boundaries has been a lack
of reproducibility across studies. This has been due,
in part, to the small numbers of tumors analyzed
by many studies, as well as the heterogeneous col-
lections of tumors used. This problem can theo-
retically be solved by the development of tumor
banks featuring large numbers of well-characterized
tissues. A bigger concern, however, has been con-
tamination of samples from adjacent, noncancerous
tissues, which reduces the quantitative potential of
the technique, as well as its ability to detect subtle
molecular events. The introduction of laser capture
microdissection to isolate virtually pure populations

WT X

X

Tumor
suppressor
gene

Normal cell

Normal cell

Malignant cell

Figure 1 Normal cells require at least one functional copy
of a critical tumor suppressor gene to remain noncancerous.
When one inherited copy is nonfunctional because of a
germ-line inactivation event and the remaining copy is lost
as evidenced by LOH, malignancy results. WT: wild-type
functional tumor suppressor gene. X: germ-line mutant
nonfunctional tumor suppressor gene

of tumor cells has almost eliminated this prob-
lem [11].

Within any study, the utility of LOH for detecting
the hierarchy of molecular events leading to disease
is limited largely by the number of tumors represent-
ing the full range of pathologic stages and grades.
Although stratification of data by clinical features of
disease may limit overall power to detect rare events,
the resulting increase in genetic homogeneity may
facilitate detection of important chromosomal regions
with statistical significance.

Because of the unique challenges faced in under-
standing the development of a tumor that is both
common in the population and genetically heteroge-
neous (see Genetic Heterogeneity), we will consider
the example of prostate cancer as we highlight the
ways in which LOH can provide novel and use-
ful information towards the identification of genes
that drive the initiation, progression, and, ultimately,
metastasis of cancer.
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An Example: LOH and Prostate Cancer

It is estimated that nearly 198 100 men in the US
will be newly diagnosed with prostate cancer, and
approximately 31 500 men will die of the disease in
2001 [14]. Hence, identifying the genes responsible
for the initiation and progression of the disease is of
paramount interest [18]. The epidemiology of prostate
cancer is consistent with a multistep process, with
the premalignant lesion for most prostatic carcinomas
being prostatic intraepithelial neoplasia (PIN) [2].
Autopsy results often reveal microscopic foci of well-
differentiated prostate carcinoma, so-called “latent
tumors”. These tumors appear to be present in over
30% of men in their 60s and upwards of 70% of men
in their 80s [3]. These are, in general, microscopic
low-grade tumors that may never manifest clinically.
The key to understanding prostate cancer, therefore,
is to exploit technologies that allow us to understand
the genetic differences between latent tumors and
those that develop to clinically significant disease.

In the case of prostate cancer, there are sev-
eral specific chromosomal regions that are frequently
highlighted by LOH. One of the most comprehensive
studies to date has been that of Saric et al. [20]
who compared LOH profiles of 49 high-grade PIN,
22 primary prostate tumors, and 34 metastatic tumor
foci using 37 microsatellite markers from 15 chro-
mosomes. Tumor samples were microdissected from
paraffin embedded tissues to greater than 75% purity.
PIN was identified based on enlarged luminal secre-
tory epithelium, frequently associated with enlarged
nucleoli. Primary tumors were included if they were
Gleason scores 3–8. Metastatic foci were obtained
from 26 autopsies, collecting samples from lymph
node, peritoneum, liver, and other tissues. Microsatel-
lite markers were selected to span LOH regions
defined by previously published studies, many of
which were limited to the examination of only single
chromosomes and/or included a heterogeneous mix of
tumors. In the resulting analysis, significant levels of
LOH were observed at only two regions (5q13–14
and 16q24.2) when considering high grade PIN,
15 regions when analyzing primary tumors, and 20
when metastatic tumors were analyzed. This con-
curs with results from others describing a relationship
between increased genomic instability from PIN to
primary cancer [26] and primary tumors to metas-
tases [5]. Interestingly, both of these regions observed
in high grade PIN were also lost in either primary

or metastatic tumors, and 12 of the 15 LOH events
defined in primary tumors (8p12–p21, 8p22, 8p23.1,
10q22–23, 11pter-q13, 16q22.1, 16q24.2, 16q24.3,
16q24, 17p13, 18q23, 21q22.3) were also observed
in metastatic tumors.

Using LOH to Select Candidate Genes

Among the most frequently reported regions lost in
studies of prostate tumor LOH are chromosomes 11
[6, 23] and 8 [8, 17, 19, 24]. Indeed, using a set of
38 microdissected samples of normal prostatic epithe-
lium and invasive carcinoma, Dahiya and colleagues
have described four distinct regions of LOH on chro-
mosome 11, two each on the p and q arms [6]. Among
the most interesting candidate genes on 11p is KAI1,
which maps to 11p11.2, and has been shown to sup-
press metastasis when introduced into rat prostate
cancer cells. In addition, expression of the gene is
reduced in human cell lines derived from metastatic
prostate tumors [9, 10]. Not surprisingly, levels of
protein are inversely correlated with tumor grade [1].
The percentage of LOH or allelic imbalance at the
KAI1 locus in metastatic tissues from autopsy cases
is estimated at 70%, compared with 33% for clinically
localized cases [16]. All of these studies suggest a key
role for KAI1 in metastatic progression of prostate
tumors and nicely illustrate the ways in which LOH
can be used to map and subsequently enhance our
understanding of tumor suppressor biology. Particular
candidate genes have been investigated as a follow-
up to many other regions of LOH. A comprehensive
listing of such genes is included in a recent review
by De Marzo et al. [7].

Most LOH studies to date have focused on a
limited number of chromosomes. To best utilize
the technique, high density, genome-wide scans of
300–400 markers are needed. At least one such study
should include tumors derived from high-risk fami-
lies of the type currently being used in genome-wide
scans aimed at mapping prostate cancer suscepti-
bility loci [13, 21, 22]. Given the apparent hetero-
geneity of prostate cancer, a comparison of poten-
tial germline and somatic events may prove use-
ful for finding genes important in disease etiology.
Indeed, Xu et al. have recently reported linkage to
8p22–23 in a set of 159 high-risk prostate can-
cer families [25]. Chromosome 8 is arguably the
most frequently reported region of LOH for prostate
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tumors [8, 17, 19, 24], with some studies reporting
as many as 50% of tumors showing loss of all or
part of the chromosome [17]. Joint analysis of rep-
resentative data sets is clearly needed. In addition,
comparing regions of frequent LOH from prostate
tumors with other hormonally influenced tumors,
such as breast and ovarian, may lend further insight to
the existence of generalized tumor suppressor genes
important in multiple hormonally regulated tissues.
Several such regions have already been reported [4,
12, 15], suggesting some commonality between dif-
ferent tumor types.

Summary

LOH has been and continues to be one of the most
important tools available for assessing genes impor-
tant in cancer. The utility of the technique is limited
only by characterization of the samples to which it is
applied. Given the current abilities to isolate, purify,
and characterize tumors, there is great potential for
LOH to further inform us about tumor etiology.
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Heterozygosity

Genes can exist in different allelic forms and there are
several ways to quantify the degree of allelic variation
in a population. One way is simply to report the fre-
quencies of the different alleles. Other parameters are
used to address specific genetic questions. Individuals
with two different alleles for some gene are said to be
heterozygous for that gene, whereas those with two
alleles that are the same are homozygous. The con-
tinued existence of heterozygotes implies continued
genetic variation, and there have been several reports
of correlation between growth rate and heterozygosity
(see [2]).

If a gene has alleles ai , then the frequencies of
genotypes aiai and aiaj , j �= i, are written as Pii

and Pij , and the frequency of allele ai is written
as pi . For large random mating populations, the
Hardy–Weinberg law states that

Pii = p2
i ,

Pij = 2pipj , i �= j.

When it is of interest to be able to quantify H ,
the total frequency of heterozygotes, under the
Hardy–Weinberg situation this requires only the
following allele frequencies:

H =
∑

i

∑

j �=i

Pij

=
∑

i

∑

j �=i

pipj

= 1 −
∑

i

p2
i .

This last expression is often referred to as heterozy-
gosity, but this is a misnomer since it provides the fre-
quency of heterozygotes only under Hardy–Weinberg
equilibrium. It is more appropriate to define “gene
diversity” D by

D = 1 −
∑

i

p2
i .

For populations with an inbreeding coefficient of
f , heterozygote frequencies are modified to

Pij = 2pipj (1 − f ),

so that
H = (1 − f )D.

The most likely cause of a difference between H and
D in human populations is population admixture.
If a proportion αk of the population belongs to sub-
population k, in which frequencies for alleles ai are
pki , then the frequency of aiai ′ heterozygotes in the
whole population is

Pii ′ = 2pipi ′ +
∑

k

αk(pki − pi)(pki ′ − pi ′),

where the total allele frequencies are given by

pi =
∑

k

αkpki.

This result assumes Hardy–Weinberg frequencies
within each subpopulation. There may be more or
less of a particular heterozygote than expected from
the Hardy–Weinberg law in the whole population,
although the overall heterozygosity is diminished:

H = D −
∑

i

∑

k

αk(pki − pi)
2.

In linkage studies it is necessary to determine
whether or not recombination has occurred between
two loci, and this in turn puts constraints on the
genotypes of individuals in successive generations.
The polymorphism information content (PIC)
characterizes the extent to which a marker gene
(see Genetic Markers) is useful for linkage studies,
with higher values being better. It cannot be greater
than H .

Variance of Heterozygosity

If sample allele and genotype frequencies are written
as p̃i and P̃ij , the sample heterozygosity is

H̃ =
∑

i

∑

j �=i

P̃ij .

Taking expectation E over repeated samples of n indi-
viduals from the same population, assuming genotype
counts are multinomially distributed, provides

E(H̃ ) = H,
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whereas the expected value of sample diversity,

D̃ = 1 −
∑

i

p̃2
i ,

is

E(D̃) =
(

1 − 1 + f

2n

)
D

The variance over repeated samples from the same
population is just the binomial variance for H̃ ,

var(H̃ ) = 1

n
H(1 − H),

whereas for diversity [3],

var(D̃) = 2(1 + f )

n




∑

i

p3
i −

(
∑

i

p2
i

)2


 .

If heterozygosity is averaged over loci, then the
variance of the average depends on two-locus het-
erozygosities. If Hll′ is the probability of an indi-
vidual being heterozygous at loci l and l′, then the
sample single-locus heterozygosities are correlated:

cov(H̃l, H̃l′) = 1

n
(Hll′ − HlHl′),

so that the variance within populations of heterozy-
gosity averaged over m loci is

var(H̃ ) = 1

nm2

∑

l

Hl(1 − Hl)

+ 1

nm2

∑

l

∑

l′ �=l

(Hll′ − HlHl′).

Brown et al. [1] pointed out that the two-locus
heterozygosity depends on linkage disequilibrium
between the loci, and the variance of average single-
locus heterozygosity therefore serves as a summary
statistic for linkage disequilibrium. The same holds
for average gene diversity.
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Hidden Markov Models

Hidden Markov models (HMMs) are a class of
stochastic models that have proven to be useful in a
wide range of applications for modeling highly struc-
tured sequences of data. Some applications of HMMs
include machine speech recognition [15], ion channel
kinetics [9, 10], and biomolecular sequence analysis
[1, 4–6, 8] (see DNA Sequences).

A hidden Markov model can be viewed as a black
box that generates sequences of observations. The
unobservable internal state of the box is stochastic
and is determined by a finite state Markov chain. The
observable outputs of the black box are stochastic,
with distribution determined by the current state of
the hidden Markov chain. In more detail, let (st , t =
0, 1, 2, . . .) be an unobserved Markov chain on the
state space (1, 2, . . . , L) and let (yt , t = 0, 1, 2, . . .)
be an observed process that takes values in the set
(1, 2, . . . , K). The restriction to discrete observations
is not essential but it is adequate for the applications
considered here.

There are three inference problems that arise in the
development or application of hidden Markov mod-
els: estimation of model parameters, restoration of
the hidden states, and model selection (see Model,
Choice of). In this article we define an HMM as a
stochastic model that generates sequences of obser-
vations, provide examples of HMMs that are used in
applications, and discuss approaches to the first two
inference problems.

Model Specification

An HMM with L hidden states and K observable
outputs is specified by three sets of distributions. First
is the initial distribution of the hidden Markov chain

Pr(s0 = i), i ∈ {1, . . . , L}. (1)

Second is the transition distribution of the hidden
Markov chain as represented by the L × L matrix
� = [λij ] with elements

λij = Pr(st+1 = j |st = i),

i ∈ {1, . . . , L}, j ∈ {1, . . . , L}. (2)

Third is the set of output distributions of the hidden
states as represented by the L × K matrix � = [πij ]

with elements

πij = Pr(yt = j |st = i),

i ∈ {1, . . . , L}, j ∈ {1, . . . , K}. (3)

Both of the matrices � and � are stochastic, i.e.
they are formed by nonnegative numbers and their
row sums are equal to one. Thus the parameter
θ ≡ (�, �) takes values in a compact set Θ which
is a direct product of L L-dimensional and L K-
dimensional simplexes.

Models with continuous output distributions can
be developed by replacing the probability mass func-
tion in (3) with an appropriate density function, e.g.
normal. With some minor modifications, the results
below can be applied to continuous data.

The number of hidden states and their connectiv-
ity, i.e. the set of nonzero λij , define the architecture
of an HMM. The choice of an architecture is typi-
cally driven by an application for which the HMM is
intended. In some cases the architecture is an attempt
to model a physical system (e.g. ion channels) and in
other cases the HMM is merely a convenient fiction
that is useful for classification or prediction (e.g.
speech recognition). The states of the hidden Markov
chain may be recurrent or transient. It is worthwhile
to consider two classes of architectures. First is the
recurrent architecture in which any hidden state may
be reached from any other hidden state. Second is the
left-to-right architecture, in which the hidden states
are transient. Of course, arbitrarily complex HMMs
can be constructed with both recurrent and nonrecur-
rent components.

It is often convenient to consider transient chains
and to introduce two states begin (B) and end (E)
that do not produce any output. Without loss of
generality we assume that the initial distribution is
concentrated in the state B. Thus Pr(s0 = B) = 1. The
state transition matrix �, whose dimension becomes
(L + 2) × (L + 2), is modified as follows:

1. The state B is unattainable from any state includ-
ing itself; λiB = 0, for all i.

2. State E is absorbing, so that λEE = 1 and is
recurrent, so there is a stopping time n∗ =min(k :
sk =E, k ≥ 0) such that Pr(n∗ ≤ ∞)= 1.

3. The direct transition from state B to state E is
not allowed; λBE = 0.

Introduction of the absorbing state E allows us to
deal with finite realizations of the HMM up to the
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stopping time n∗. We put n = n∗ − 1 and use the
following notation for the sequence of hidden states
and the corresponding sequence of outputs

s ≡ s1s2 . . . sn,

y ≡ y1y2 . . . yn.

The states s0 = B and sn+1 = E will be suppressed in
the notation, except where they are explicitly needed
below.

Suppose we observe N independent realizations
of an HMM and denote the set of observed outputs
by

Y ≡
{ y1 = y1,1y1,2 . . . , y1,n1...

...
yN = yN,1yN,2 . . . , yN,nN

}
.

The sequences of paths through the hidden Markov
chain that produced Y will be denoted by

S ≡
{ s1 = s1,1s1,2 . . . , s1,n1...

...
sN = sN,1sN,2 . . . , sN,nN

}
.

In this formulation there is a one-to-one corre-
spondence between the states of the hidden Markov
chain and the elements of the observed sequence. The
model can be generalized to include null states (other
than B and E). Null states may be visited by the hid-
den Markov chain but do not produce any observable
output.

Hidden Markov models can have large parame-
ter spaces because there may be many possible state
transitions and because each state can have its own
unique output distribution. Depending on the appli-
cation, it may be desirable to allow all nonzero
parameter values to vary freely. At the other extreme,
we may require that some subsets of parameters take
identical values. Constraints of this type are referred
to as “tied” parameterizations. A less extreme form of
combining information can be achieved by imposing
a hierarchical model on the parameters in which sets
of parameter values are assumed to be drawn from a
common distribution [7, 19].

There are known identifiability problems with
the recurrent HMM model due to the labeling of
the states, and some convention for state labeling
is needed. There can also be identifiability problems
if the output distributions in different states are not
distinct. These issues are discussed by Leroux [15].
We note that, for the two-state model, identifiability

problems also arise when λ + µ = 1. This result sug-
gests that further investigation into the identifiability
of HMMs may be worthwhile.

Examples of HMMs

Finite-State Recurrent Architecture

Consider a hidden Markov chain with two main
states denoted by 0 and 1. The two-state recurrent
architecture is illustrated in Figure 1. Its transition
probability matrix, defined on the extended state
space (B, 0, 1, E), is

� =




0 λB0 λB1 0
0 λ00 λ01 λ0E

0 λ10 λ11 λ1E

0 0 0 1



 .

For the case of binary (0, 1) data sequences, the
output distribution is given by

� =
[

π00 π01

π10 π11

]
.

This HMM generates nonhomogeneous binary
sequences that consist of homogeneous regions of
two types, with distinct frequencies of zeros and
ones. This model and the more general L-state, K-
output recurrent model were applied by Churchill
[4, 5] to identify regions with distinct functions in
DNA sequences based on differences in local base
frequencies.

Begin End

M2

M1

Figure 1 Two-state recurrent HMM architecture
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Left-to-Right Architectures

An example of a left-to-right architecture is shown
in Figure 2. Left-to-right models are used in applica-
tions to speech recognition as “word” models. Each
state has an output distribution that characterizes part
of the acoustic signal that defines a word. The state
transitions follow the evolution of the word from left
to right and allow for compression or expansion of
the duration of the signal over time. Collections of
word models can be nested inside a larger HMM for
purposes of word classification and recognition. Fur-
ther details and references on HMM applications to
speech recognition can be found in [13].

Biomolecular Models

Another example of a left-to-right architecture is the
mutation–deletion–insertion (MDI) model shown in
Figure 3. The MDI model has become a very pop-
ular tool for the problem of aligning multiple DNA
or protein sequences [1, 14]. In this model, there are
three different types of states. The backbone of the
model consists of mutation states (M1, M2, . . . , ML).
Each mutation state Mi has a corresponding deletion

M1 M2
Begin M3 EndM1 M2

Figure 2 A simple left-to-right HMM architecture

state Di . Following the state B there is an inser-
tion state I0, and following each of the mutation
states Mi there is an insertion state Ii . There are
two sets of output distributions in the MDI model.
Outputs from M-states are generated according to
Pr(j |Mi). These distributions will typically vary from
state to state and reflect the position-specific frequen-
cies of nucleotide or amino acid subunits as they
occur along the length of a molecule. Outputs from
I-states are generated according to Pr(j |Ii). These
states allow for site-specific insertion of letters into
the sequence. The D-states are silent and do not
produce any output. These states allow specific posi-
tions (modeled by M-states) to be skipped in the
generation of an output sequence. The length of an
output sequence will typically be close to the num-
ber of M-states in the model, but any realization may
be shorter or longer due to insertion and deletion
events.

The presence of silent states in the MDI model
introduces a minor complication into our descrip-
tion of these HMMs. It was implicit in our earlier
definition of an HMM that there is a one-to-one
correspondence between outputs and hidden states.
However, in the MDI model, as it is typically imple-
mented, there may be hidden states (D-states) that
are visited but have no corresponding output. Thus
the length of y may be less than the length of the
corresponding hidden state sequence s. We note that
the output of an MDI model can be viewed as the

D1

Begin End

I0 I1 I2 I3

D2 D3

M1 M2 M3

Figure 3 Mutation–deletion–insertion (MDI) architecture with three M-states
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output of a standard HMM consisting of only M-
states and I-states. This MI chain is embedded within
the MDI chain and can be constructed by simply
removing the D-states. The architecture of the MI
chain includes additional transitions to replace the
removed D-states. Unfortunately the additional tran-
sition parameters must be constrained in a rather
complicated fashion to recover exactly the original
MDI model. The output distributions of the MI model
are identical to those of the MDI model. It follows
that results derived for standard HMMs apply equally
to MDI models.

A hidden Markov model has been developed for
the problem of DNA sequence assembly [6, 7]. We
consider a collection of DNA sequences (see Table 1)
that are independently copied from a common pro-
totype sequence, r = r1, . . . , rL; ri ∈ (A,C,G,T), by
a process that introduces errors in the form of sub-
stitutions, deletions, and insertions. Each realization,
i = 1, . . . , N , of the MDI chain will generate a
sequence yi with elements yij ∈ (A,C,G,T,N). The
output character N is sometimes generated by DNA
sequencing devices to represent ambiguous determi-
nation of a base. Each M-state in the MDI chain is
associated with an element of the prototype sequence,
i.e. Mi is associated with ri . This association will
determine the output distribution of the M-state. For
example, if the state Mi is associated with ri = A,
the most likely output of state Mi is the letter A.
A substitution error occurs when the output is a let-
ter other than A. A deletion error occurs when the
state Di is visited, thus bypassing Mi , and no let-
ter is generated as output. An insertion error occurs
when the state Ii is visited, thus generating extra-
neous letters in the output sequence. To summarize,
a visit of the Di-state results in a deletion of ri

in the copying process; k successive visits of the
Ii-state result in an insertion of k letters after the
ith position in the prototype; a visit of the Mi-
state results in copying ri , with possible substitution
error.

The output from N realizations of an MDI
chain will be a set of sequences of letters. The
sequences will generally be similar to one another
but may vary in length as well in the identity
of specific letters. Often the goal of applying
an MDI model to a sequence is to restore the
hidden state sequence. Restoration of si establishes
a correspondence between the elements of yi and the
states of the MDI model. Furthermore, the multiple

path restoration of S establishes a correspondence
among all elements of all the DNA sequences
via their correspondence with the M-states. This
correspondence is a multiple sequence alignment
[21]. An example of an HMM-generated sequence
alignment of the DNA sequences from Table 1 is
shown in Figure 4.

Inference for HMMs

Likelihood

In this section, we describe an algorithm to com-
pute the likelihood of an observed sequence y, i.e.
Pr(y|θ). In the case of multiple independent observa-
tions, the likelihood is simply the product Pr(Y|θ) =∏N

i=1 Pr(yi |θ).
We can express the likelihood as a summation over

all possible hidden state sequences

Pr(y|θ) =
∑

s

Pr(y|s,�) Pr(s|�), (4)

where

Pr(y|s,�) = πs1,y1 · πs2,y2 . . . πsn,yn
(5)

and
Pr(s|�) = λBs1 · λs1s2 . . . λsnE. (6)

However, this summation is generally intractable,
and an alternative approach is needed to compute the
likelihood.

The likelihood can also be written in the form

Pr(y|θ) =
n∏

t=1

Pr(yt |yt−1)

=
n∏

t=1

L∑

st =1

Pr(yt |st ) Pr(st |yt−1), (7)

where yt−1 = y1, . . . , yt−1. We assume that the dis-
tribution of yt depends only on st . The first term
in (7) is the output distribution and the second term
is the predictive density. The predictive density can
be computed using the forward pass algorithm. This
algorithm is the basis for a number of other compu-
tations and is presented here.

The Forward Pass Algorithm. To begin, suppose
that Pr(st−1|yt−1) is known. A prediction of the state
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Table 1 An unaligned set of DNA sequences

TAGACAGGNGCCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT

TAGACAGGGNCCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT

TAGANAGGGCCTCCACTGGGGAAATGAAGGTACCNACCAACCTTCAAAACTT

TAGACCAGGNGCTCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT

TAGACAGGGCCTCCACTGGAGATNTGAGGTCACCAACCAACCTTCAAAAACTT

TAGACAGGGGCTCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT

TAGACAGGGCC-CCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT
N

TAGACAGGGNC-CCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT
TAGANAGGGCCTCCACTGG-GGAATGAGGT-ACCNACCAACCTTC-AAAACTT

A A
TAGACAGGNGCTCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT

C
TAGACAGGGCCTCCACTGGAG-ATTGAGGTCACCAACCAACCTTCAAAAACTT

N
TAGACAGGGGCTCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT

Consensus TAGACAGGGNCTCCACTGGAGGAATGAGGTCACCAACCAACCTTCAAAAACTT

Figure 4 A multiple sequence alignment of the DNA sequences in Table 1. The alignment was generated using an MDI
architecture with 52 M-states. Letters aligned in each column correspond to the same M-states. Insertions are shown above
the main sequence and deletions are shown as dashes. An estimated consensus or prototype sequence is shown below the
multiple alignment

at time t can be computed, using the law of total
probability, as

Pr(st |yt−1) =
L∑

st−1=1

Pr(st |st−1, yt−1)

× Pr(st−1|yt−1). (8)

This conditional distribution is called the predictive
density. Next, the information in the current obser-
vation is incorporated by updating the predictive
density. The so-called filtered density is

Pr(st |yt ) = Pr(yt |st , yt−1) Pr(st |yt−1)

Pr(yt |yt−1)
, (9)

by Bayes’ theorem, where

Pr(yt |yt−1) =
L∑

st=1

Pr(yt |st , yt−1) Pr(st |yt−1).

Restoration of the Hidden Markov Chain

The problem of restoring the hidden state sequence
s from a given observation sequence y is addressed

here. We assume that the model parameters θ are
given and suppress θ in the notation of this section.

There are two general approaches to the state
restoration problem. A local restoration uses the
marginal conditional densities to find the most prob-
able state at each point t . This marginal restoration
is given by

s∗
i,t = argmaxst

Pr(st |yi ).

A global restoration maximizes the full conditional
density to find a most probable restoration. Thus,

s∗
t = argmaxs Pr(s|yi ).

These two approaches can result in quite different
solutions. The first problem is solved using the back-
ward algorithm and the second is solved using the
Viterbi algorithm [20].

The Backward Algorithm. The backward algo-
rithm uses the results of the forward algorithm
to compute the conditional distribution of the hid-
den state sequence given the complete sequence of
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observed data. It is sufficient to specify the distribu-
tion of pairs of adjacent states because we assume
the Markov property.

The joint distribution of two adjacent states is
computed recursively, starting with the last step of
the forward algorithm

Pr(st , st+1|y) = Pr(st+1|y) Pr(st+1|st ) Pr(st |yt )

Pr(st+1|yt )

The marginal distribution can be obtained by sum-
ming the expression over st+1. Thus

Pr(st |y) = Pr(st |yt )

L∑

st+1=1

Pr(st+1|y) Pr(st+1|st )

Pr(st+1|yt )
.

See Rabiner [17] or Churchill [4] for more detail.

The Viterbi Algorithm. Our goal is to find the
sequence of states s that maximizes over the space
of all state sequences the conditional probability of s
given the observation sequence y and known model
parameters. Notice that

Pr(s|y) = Pr(s, y)

Pr(y)
, (10)

and thus it is sufficient to find the sequence of states
which maximizes Pr(s, y).

The joint probability can be factored as

Pr(s, y) =
n∏

t=1

Pr(st , yt |st−1, yt−1)

=
n∏

t=1

Pr(yt |st , yt−1) Pr(st |st−1, yt−1)

=
n∏

t=1

Pr(yt |st ) Pr(st |st−1). (11)

Let δt (i) denote the maximum probability up to time t

over all state sequences which end at the state st = i,

δt (i) = max
st−1

Pr(st−1, st = i, yt ). (12)

The joint probability, (11), can be maximized by the
following procedure:

1. initialization,

δ1(i) = Pr(s1 = i) Pr(y1|s1 = i), 1 ≤ i ≤ r;
(13)

2. recursion,

δt (j) = max
1≤i≤r

[δt−1(i)λij ] Pr(yt |st = j); (14)

3. termination,

max
s

Pr(s, y) = max
1≤i≤r

δn(i). (15)

We are asking at each time point t , if the present
state is st = j , which state at time t − 1 maximizes
the joint probability over all past state sequences.
Roughly, if we are in state j at time t , where did
we come from at time t − 1?

For each state 1 ≤ j ≤ r at time t we wish to
keep track of the state at time t − 1 which gives us
the maximum. To do this, we define the quantity

ψt(j) = arg max
1≤i≤r

[δt−1(i)λij ]. (16)

When the process is terminated, we have computed
δn(i) and ψn(i) for 1 ≤ i ≤ r . A state sequence which
attains the maximal probability can be constructed by
a traceback. Let

s∗
n = arg max

1≤i≤r
[δn(i)] (17)

be the best final state. The traceback is completed by
the recursion

s∗
t = ψt+1(s

∗
t+1), t = n − 1, n − 2, . . . , 1. (18)

Note that δt (j) → 0 fast. Thus computations are
more easily executed on a log scale. The recursion,
(13), will look like

log δt (j) = max
1≤i≤r

[log δt−1(i) + log λij ]

+ log Pr(yt |st = j). (19)

Parameter Estimation

In the maximum likelihood approach to HMM
restoration, no prior information on the parameter θ

is assumed and the inference problems of parame-
ter estimation and state restoration are addressed by
first finding an estimator for θ and then restoring S
conditionally given the estimated value.
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In general, the likelihood is intractable for direct
maximization. However, given a state sequence S, the
augmented data likelihood,

Pr(Y, S|θ) =
N∏

i=1

Pr(yi , si |θ)

=
N∏

i=1

Pr(yi |si , �) Pr(si |�), (20)

is quite well behaved. The problem of maximizing the
augmented data likelihood is trivial. The augmented
data sufficient statistics for this problem are matrices
C� ≡ [c�

ij ] and C� ≡ [c�
ij ], where c�

ij is the number
of transitions to the j -state from the i-state and
c�
ij is the number of outputs j from state i. When

some parameter values are tied, the dimensions of
the sufficient statistics can be reduced.

The problem of maximizing the observed data
likelihood is solved by the Baum–Welch algorithm
[2, 3, 17]. An initial estimate θ0 is chosen. The
algorithm iterates the following steps:

1. Use the forward and backward algorithms to
compute the conditional expectation of C� and
C� with respect to Pr(S|Y, θm).

2. Use the expected sufficient statistics from step
1 to obtain a new estimate θm+1. The MLEs
for � and � are simply the row-normalized
expectations of C� and C�, respectively.

As m → ∞ the sequence of parameter estimates θm

will converge to a point of maximum, not neces-
sarily global, of the likelihood function [3, Eq. (4)].
HMM likelihoods can be multimodal, and thus it is
recommended to try several starting values for the
estimation algorithm.

From a computational point of view the first step
can be carried out in time proportional to N × L2 ×
(average sequence length) and the estimator in step 2
can be obtained in closed form. However, the imple-
mentation can be rather tedious and in many appli-
cations a modified version, called the segmental k-
means algorithm [12], is used. Step 1 is replaced by:

1. Obtain a most probable path sm+1
i = argmaxs

Pr(s|yi , θm) for each i = 1, . . . , N .
2. Obtain a new estimate θm+1 that maximizes the

augmented data likelihood Pr(Y, Sm+1|θ).

The first step can be accomplished by dynamic
programming [20], and a closed-form estimator is
available for step 2. This algorithm produces an
estimator θ̃ that maximizes the objective function
maxs Pr(y, s|θ). Although this is not a maximum like-
lihood estimator, the two estimators will generally be
very similar [16].

Having obtained some parameter estimate θ∗, we
can restore S using either of the methods in the
section, “Restoration of the Hidden Markov Chain”.

A Bayesian Approach

A weakness of the likelihood approach to the state
restoration problem is that the final solution is based
on the point estimator of θ and fails to take into
account other “reasonable” values of θ . Furthermore,
it may be of interest to find not only an optimal
multiple path but also to have access to reasonable
alternative restorations. These concerns motivate a
Bayesian approach to the state restoration problem.

We assume a prior distribution P0(θ) for the
parameter θ ≡ (�, �) so that the posterior distribu-
tion of the pair (S, θ ) is

Pr(S, θ |Y) ∝ P0(θ)

N∏

i=1

Pr(yi |si , �) Pr(si |�), (21)

where the last two terms are defined in (5) and (6),
respectively. Integrating out the parameter θ in (21)
we obtain the marginal posterior Pr(S|Y), which will
be our primary interest. Similarly, summing over
all multiple paths, we obtain the marginal posterior
of Pr(θ |Y). These marginal posterior distributions
are not practically computable, in part because of
unassessable normalizing constants.

Two slightly different solutions have been pro-
posed for this problem. Both approaches use a Gibbs
sampler (e.g. [11]) to approximate the desired poste-
rior distributions (see Markov Chain Monte Carlo).
The Gibbs sampler alternately generates random sam-
ples from the full conditional distributions Pr(s|y, θ)

and Pr(θ |y, s). In Robert et al. [18] the hidden state
sequence is sampled elementwise. In Churchill &
Lazareva [7], the full sequence is sampled in one
step at each iteration of the Gibbs sampler. Sampling
of θ is trivial when conjugate Dirichlet or Dirichlet
mixture priors are used (see Loglinear Model).
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Summary

Hidden Markov models provide a powerful class
of models that can be applied to analyze data that
consist of sequences of dependent observations with
an underlying heterogeneous structure. The inference
problems of parameter estimation and state restora-
tion can be addressed using algorithms described in
this article, but many subtle and difficult issues may
arise in any particular application. The widespread
use and success of hidden Markov models in speech
recognition and molecular sequence analysis suggest
that there may be many fruitful areas of application
to which these methods can be applied.
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Hierarchical Models in
Genetics

A problem with the evaluation of large amounts
of genomic information is the issue of multiple
comparisons. This problem arises from performing
numerous analyses on the same data without tak-
ing into consideration the increased likelihood of
falsely detecting an association. Hierarchical model-
ing – incorporating higher-level “prior” models into a
conventional analysis – offers a solution to problems
of multiple inferences. Furthermore, this approach
can give estimates that are more plausible and stable
than conventional estimates by “borrowing informa-
tion” from the similarities in one’s data.

Previous work has shown that parameter estimates
from hierarchical models can be more plausible and
stable than estimates from conventional models [5,
9, 10, 13]. This potential improvement results from
modeling similarities among parameters of interest by
using a second-stage model. In addition to providing
parameter estimates of effect that are more accu-
rate and more plausible than those from conventional
models, it allows one to incorporate multiple levels of
information on genetic and environmental factors into
a single analysis and provides a solution to problems
of multiple comparisons [12]. For example, Thomas
et al. [9] presented a hierarchical modeling approach
for evaluating candidate genes and environmental
factors, and applied it to simultaneously investigate
the associations between multiple human leukocyte
antigen (HLA) alleles and insulin-dependent diabetes
mellitus (IDDM). Furthermore, hierarchical model-
ing can simultaneously address issues of population
stratification [6] (see Bias in Case–Control Studies).

Hierarchical Modeling

First-stage Model

Assume that one collects data on multiple correlated
exposures of interest x (i.e. genotype), and phenotype
y. Further assume that one wants to use these data to
estimate coefficients β for the effects of genotype on
phenotype. One can estimate β from the following
generalized linear model for the expectation of y

conditional on x:

g1[E(y|x)] = α + xβ, (1)

where g1 is a monotonic differentiable strictly
increasing link function between the random and
systematic components, and y has mean E(y|x)

and variance σ 2. Conventional analytic approaches
to estimating β using (1) include: (a) fitting a
(full) model that contains all the exposures; (b)
reducing a full model with a preliminary testing
algorithm (e.g. stepwise); (c) constructing numerous
one-at-a-time models (i.e. evaluating the multiple
parameter inference problem as multiple one-
parameter inference problems); and (d) estimating
haplotypes from the genotype information and
the effects of haplotypes on phenotype (see
Haplotype Analysis). Unfortunately, none of these
approaches provides entirely satisfactory estimates
of β. Approach (a) is impracticable if a full model
will not fit one’s data; moreover, even when the
model does fit, this approach can give biased
and inefficient estimates. Approach (b) excludes
statistically “nonsignificant” exposures from the
full model regardless of their biologic importance,
and produces biased point and variance estimates
[5, 7, 8]. Approach (c) takes no account of
correlations among the exposures. Approach (d)
requires estimation of haplotypes, and assumes that
effects are homogeneous across haplotypes. Finally,
none of the approaches properly addresses issues of
multiple comparisons [7, 10].

Second-stage Model

Instead of undertaking a conventional single-stage
analysis, one can use a hierarchical model to estimate
β. This approach provides a coherent framework for
multiple inference problems, using shrinkage esti-
mation to improve estimation accuracy [5, 13]. In
particular, this approach uses higher level “priors”
to model the parameters of interest (here β) as ran-
dom variables whose joint distribution is a function
of hyperparameters. Assume that in addition to the
above data (i.e. x and y), one has information about
similarities between the components of β (e.g. phys-
ical distance between genetic markers). One can
use such additional information in a second-stage
generalized linear model for the expectation of β con-
ditional on this information:

g2[E(β|Z)] = Zπ, (2)

where g2 is a strictly increasing link function, β has
mean E(β|Z) and variance τ 2, and Z is a second-stage
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design matrix expressing the similarities between the
β. For example, one could assume a linear link
function and define a second-stage design matrix Z,
where zij indicates a function of the physical distance
between each polymorphism (i.e. element zij of Z
is equal to e−dij t , where t is a scale parameter esti-
mated from the data, and dij is the distance between
polymorphism i and polymorphism j ). Thus, the
coefficients for each polymorphic marker βi would be
related through a second-stage covariate (e.g. phys-
ical distance) that is thought to be relevant to the
strength of the marker-specific effects (which are
measured by βi).

Hierarchical Estimates

Hierarchical (i.e. posterior) estimates are then ob-
tained by combining results – essentially taking
weighted averages – from the different level models.
Weights used in combining these results reflect how
well each stage was able to estimate that level’s
parameters. Specifically, more unstable estimates will
be given smaller weight, and vice versa. Hence,
if sufficient data exist to estimate adequately first-
stage parameters, then adding a second-stage will
have limited effect on these estimates. To fit the
levels in a hierarchical model separately one can
use iterative weighted least squares. Assume that one
has conventional maximum likelihood coefficient
estimates β̂ from fitting a first-stage model. One
can then compute hierarchical estimates β̃W of
the coefficients β by averaging β̂ with the fitted
E(β) from the second-stage regression of β̂ on
Z. In particular, one can estimate the second-
stage regression coefficients π using weighted-least-
squares:

π̃ = (Z
′
WZ)−1ZWβ̂, (3)

where W = [V̂ + diag(τ 2)]−1, and V̂ is inverse infor-
mation for β evaluated at β̂. The fitted value for β

from the second-stage regression is therefore Zπ̃ .
Averaging Zπ̃ with the maximum likelihood esti-
mates β̂ gives the hierarchical estimate

β̃W = BZπ̃ + (I − B)β̂, (4)

with estimated covariance matrix

C̃ = V̂[I − (I − H)′B], (5)

where B = WV̂, I = the identity matrix, and H =
Z(Z

′
WZ)−1Z

′
W. Equation (4) shows how two-

stage hierarchical modeling compromises between
first- and second-stage estimates: the distance of
the hierarchical estimate from either stage estimates
is indirectly proportional to its stability. More
specifically, the larger the elements in V̂ are, the
farther β̃W will be from β̂. Conversely, the larger
the τ 2 are, the farther β̃W will be from Zπ̃ .

Using the weighted-least-squares approach re-
quires that enough data exist to fit a first-stage
model. When a full model will not fit one’s data,
a penalized likelihood hierarchical approach can be
used instead. This approach entails thinking of the
second-stage design matrix Z as a rational basis for
choosing a penalty function for penalized likelihood.
Specifically, the penalty function based on (2),

P = β̃ ′
P(I − H)′(I − H)β̃P, (6)

could be used to compute hierarchical estimates of
the coefficients β̃P by penalized likelihood. This
corresponds to a weighted sum-of-squared-residual
penalty for departures of β̃P from the linear model
Zπ . The maximum penalized likelihood estimates are
obtained by maximizing L − P/2τ 2, where L is the
conventional log likelihood derived from (1). Hence,
τ 2 is the inverse of the usual smoothing parameter in
penalized likelihood [11].

When distributions are not conjugate, one can
use Gibbs sampling to fit hierarchical models (see
Markov Chain Monte Carlo). Gibbs sampling is
a Monte Carlo method for estimating the joint and
marginal posterior distributions of a set of random
variables when direct calculation of these distribu-
tions is infeasible. It requires only specification of
the set of conditional distributions of each random
variable, given all other variables, and possibly data
[3]. If the full conditional distribution does not have
a simple form, one can still use Gibbs sampling by
applying a derivative-free adaptive rejection sampling
procedure to generate samples from the exact poste-
rior distribution [4].

Application of Hierarchical Models

As an example of hierarchical modeling, Thomas
et al. [9] presented an empirical-Bayes approach (see
Markov Chain Monte Carlo) for testing associa-
tions with large numbers of candidate genes in the
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presence of environmental risk factors. They investi-
gated this approach by application to HLA associa-
tions in IDDM, and by a simulation study designed to
reflect situations they have observed in family stud-
ies of IDDM. Their hierarchical approach assumed
that the log relative risks for all alleles at a given
locus are exchangeable (presuming that there is no
preferential zygotic assortment and negligible recom-
bination; see Linkage Analysis, Model-based). Fur-
thermore, they considered modeling the covariance
between two haplotypes as a function of the num-
ber of alleles they share, and the marginal strength
of the effects of these alleles. Simulation results indi-
cated that hierarchical empirical-Bayes was superior
to maximum likelihood. In particular, when there
were no haplotype effects, empirical-Bayes estimates
were closer to the true value than maximum like-
lihood estimates for 75% of the alleles, and the
empirical-Bayes estimates were more stable as well.
When there were haplotype effects, empirical-Bayes
was also superior because maximum likelihood mod-
els were often unable to fit without first using the data
to select a subset of variables.

Aragaki et al. [1] used a hierarchical model to
estimate NAT2 genotype-specific dietary effects on
adenomatous polyps. The first stage used logistic
regression to model the joint effects of genotype and
diet, as well as their main effects and other covari-
ates. However, using this conventional approach to
estimate dietary effects within nine genotypes – with
the 910 case–control subjects in the study – gave
unstable results. Therefore, to improve precision they
modeled the joint effect of genotype and diet as a
function of initial rate of carcinogenic conversion
of dietary heterocyclic amines to aryl nitrenium ions
[1]. In comparison with the conventional results, the
hierarchical model gave more precise and reasonable
estimates.

Another potentially valuable application of
hierarchical modeling arises in combining linkage
results across different studies (see Meta-analysis
in Human Genetics). In this situation, the fact that
different studies give results for the same marker
locus is exploited in an attempt to improve estimates
of recombination or lod scores. Specifically, one can
use hierarchical modeling to combine likelihoods
[2], or corresponding lod scores and recombination
fractions. For example, when estimating confidence
(or support) intervals for a particular recombination
fraction, one can apply a hierarchical model that

“borrows strength” from all recombination fractions
estimated at the marker of interest. The general
concept is similar to that presented above, except that
here we are interested in estimation of likelihoods
instead of regression coefficients.

The potential improvement available with hier-
archical approaches does require reasonable higher-
level models; but, as long as this requirement is
met, hierarchical modeling will generally give bet-
ter estimates than (one-stage) conventional maximum
likelihood. In contrast, if a higher-level model cannot
provide an even remotely reasonable approximation
to reality, this approach may produce invalid confi-
dence intervals, and parameter estimates may be less
accurate than those obtained with typical analyses.
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Hierarchical Models in
Health Service Research

Hierarchical models provide a natural framework
for conceptualizing and quantifying systematic and
random components of variation in multilevel data.
For example, hierarchical nested structures are
present in data describing health care utilization,
cost (see Health Economics), and outcomes for
patients treated in specific hospitals, which may in
turn belong to particular health care systems or may
be clustered by geographic or hospital market areas
(see Small Area Variation Analysis).

The analysis of variations in health care processes
and outcomes seeks to quantify and characterize vari-
ability across clusters, such as physicians, hospitals,
and geographic or market areas, at each level of the
hierarchical data structure. In particular, the analy-
sis seeks to determine whether comparable patients
receive similar treatment and experience similar out-
comes across clusters. If differences exist, the analy-
sis turns to the examination of how patient, hospital,
or regional characteristics may be related to these dif-
ferences. In addition, the analysis examines the link
between measures of outcome, such as patient mor-
tality, morbidity, and functioning and indicators of
process, such as descriptors of regional or provider
practice patterns. When the focus of the analysis is on
comparative measures of performance of health care
providers, the term profiling analysis is often used
(see Profiling Providers of Medical Care).

A number of methodologic issues confront the
investigator in the analysis of variations in health
care. First, sample size can vary across clusters,
resulting in substantially different precision of clus-
ter-specific estimates. For example, the number of
patients with a particular condition in each hospital
may vary from a handful to several hundred in
a typical analysis of hospital variations. Secondly,
the analytic strategy needs to take into account the
correlation of the responses within each cluster
(see Clustering). Failure to do so may result in
understating the error associated with the estimates
of effects of case-specific covariates, such as the
effect of patient characteristics on medical procedure
utilization across different geographic areas. Thirdly,
the analyst needs to derive reliable cluster-specific
estimates, such as mortality rates for each hospital,

and also to estimate the effects of cluster-level
covariates, such as hospital characteristics. The usual
approach of fitting a single regression model to the
entire data set does not account for correlations and
cannot accommodate both cluster-specific indicator
variables and cluster-level covariates.

Hierarchical regression modeling goes a long way
toward meeting these methodologic challenges. The
approach enables the analyst to separate sampling
variability from variability across clusters. It also
allows the latter to be further partitioned into a
systematic component (see Fixed Effects), which
is linked to cluster characteristics, and a random
component (see Random Effects). The hierarchical
model accommodates within-cluster correlations and
makes it possible to estimate case- and cluster-
level covariate effects and variance components
simultaneously. The model also makes it possible to
pool information across clusters in order to derive
more precise estimates of cluster-specific parameters
and cluster-level effects.

Examples

Although hierarchical models have been extensively
discussed in the statistical literature (see [4], [7],
[8], and [14], and references in Multilevel Models),
their use in health services research is relatively
recent [1–3, 5, 6, 9, 10, 12, 13]. In a particular
study, the complexity of the hierarchical model will
be commensurate with the research question and the
level of detail in the data. The following examples
illustrate two typical scenaria.

Aggregate Responses: Hierarchical Poisson
Model

Consider studies in which a Poisson count, Yi , of
events is observed in the ith of K clusters. For
example, Yi can be the number of patients who
experience complications after undergoing a specific
operation in the ith hospital during a particular year.
The number of patients receiving the operation in the
ith hospital is denoted by ni . If there is no reason to
suspect systematic differences across hospitals, the
following hierarchical model with an exchangeable
second-level structure can be considered:
Level I (within-hospital). Yi |θi ∼ Poisson (θini).
Level II (between-hospitals). log(θi) ∼ N(µ, σ).
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Fully Bayesian formulations of the hierarchical
model include a third level, in which priors on the
population parameters µ and σ are specified. Vague
(but proper) priors are often used at this stage.

A model of this type was employed in a recently
published analysis of teenage conception rates for
different health boards in Scotland [5]. The model
was used to derive estimates and posterior intervals
of the individual health board rates (θi) and of the
relative ranking for each health board. Similar models
have been used with binomial outcomes in Level I
and with cluster-level covariates in Level II of the
hierarchy.

Case-level Responses: Hierarchical Logistic
Model

The models for binomial and Poisson responses are
applicable to studies in which only aggregate data
are available on each cluster. If case-specific data
are available, more intricate hierarchical regression
models can be employed. In many studies a binary
response, Yij , is observed on the j th case in cluster
i, where j = 1, . . . , ni and i = 1, . . . , N . The avail-
able data include a K-dimensional vector of covariate
values Xij on the ij th case and an L-dimensional
vector of covariate values Zi on cluster i. For exam-
ple, in a study of geographic patterns of utilization of
coronary angiography in elderly patients who had a
heart attack, the binary response of interest was the
indicator of whether angiography was performed on a
patient within a specific time interval after the infarc-
tion. Data on patient sociodemographics (such as age,
gender, and race) and co-morbid conditions were
represented by the vector Xij , and characteristics of
the geographic area (such as location, and availability
of angiography in local hospitals) were represented
by Zi [2]. As a second example, in a profiling analysis
of the performance of hospitals which treat heart-
attack patients, the binary response of interest was
the indicator of whether a patient survived past the
initial 30-day period after the heart attack. Data on
patient sociodemographic characteristics and sever-
ity at hospital entry were represented by the vector
Xij and selected hospital characteristics by the vector
Zi [12]. As a third example, in an analysis of data
from the National Health Interview Survey, the binary
response was an indicator of whether an individual
had a physician visit in the past year. The analysis
included data on characteristics of the individual and
the county of the individual’s residence [9].

The following hierarchical logistic regression
model was used in the analysis of the angiography
data:
Level I (within-area variability). A logistic model
was assumed within each area. Specifically, if pij =
Pr(Yij = 1), then

logit(pij ) = β0i + β1iX1ij + β2iX2ij

+ · · · + βKiXKij .

Level II (between-areas variability). The variation
across areas was partitioned into a systematic and a
random component. The systematic component was
expressed by a multiple linear regression model
linking the within-area logistic coefficients to area-
level covariates. Specifically,

βki = γk1Z1i + · · · + γkLZLi + εki .

The error terms εki were assumed to have a multi-
variate normal distribution with mean zero and
covariance structure such that (i) the error terms for
different units are independent, and (ii) the within-
unit (K + 1) × (K + 1) covariance matrix D is the
same for all units. Heavier-tailed distributions, such
as multivariate t may also be used for modeling
the variability of the βi [1]. In a third and final
level, vague proper priors can be assumed on the
components of γ and on the covariance matrix D.

The above hierarchical logistic model makes it
possible to combine data across geographical areas
in order to derive smoothed estimates of the effects
of patient characteristics, such as sociodemograph-
ics and co-morbidity, both over the entire country
and within each area. Therefore, we can determine
whether a specific patient characteristic (such as race)
has a differential impact on practice patterns in dif-
ferent areas of the country. The process of com-
bining information across areas takes into account
differences in sample size and results in improved
precision of estimates for areas with small sample
sizes. The hierarchical model estimates of the logis-
tic coefficients can be conceptually described (and
numerically approximated) as a weighted combina-
tion of (i) the coefficients resulting from fitting the
logistic model solely to the data of the particular area
and (ii) average values of these coefficients across
areas, as determined by the area-level characteristics.
In the angiography example, the hierarchical model
estimates are effectively obtained by shrinking the
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coefficients from the fully stratified analysis towards a
regression line determined by the area characteristics
included in the vector Z. The degree of shrinkage
is different for each covariate, being influenced by
(i) the accuracy with which the particular covariate
can be estimated via the stratified analysis (see Strat-
ification) and (ii) by the degree to which the estimate
for a particular area differs from the estimates for
the other areas. Shrinkage is generally going to be
higher for coefficients of areas with smaller overall
sample sizes and/or small cell counts for a particular
covariate.

The hierarchical model also makes it possible to
derive area-specific estimates of the probability of the
outcome (in this case, performance of angiography)
for each stratum of patients that can be defined
using the covariate vector X. These probabilities can
be presented graphically using maps (see Mapping
Disease Patterns). In addition, the model makes
it possible to examine the relation between area-
level covariates (Z) and area-specific event rates or
area-specific effects of patient characteristics. In the
angiography analysis, for example, it was determined
that an area’s rate of angiography for an average
patient was positively related to an index measuring
the availability of the procedure to patients in that
area. It was also found that the effect of race differed
across census regions in the country.

There are two simpler fixed-effects alternatives to
the hierarchical logistic model of the analysis of vari-
ations across areas: (i) regression analysis stratified
by area, and (ii) regression analysis using a single
logistic model for the entire country, with indica-
tor variables for each area and their interactions.
The fully stratified analysis is close to the spirit of
Level I of the hierarchical model. However, such
an analysis may not be an efficient approach and
may lead to highly imprecise estimates of effects,
especially in areas with small sample sizes over-
all or in some categories of patients. The analysis
via a single logistic regression model is more com-
mon in practice. However, the standard errors of
the coefficients from this analysis do not account for
the effects of clustering of patients within areas and
will, therefore, need to be adjusted. This correlation
is accounted for by the hierarchical analysis. In addi-
tion, the analysis via a single regression model for the
entire country cannot incorporate both patient-level
and area-level covariates without leading to model
indeterminacy. For example, if dummy variables for

areas are included then it is no longer possible to
include variables indicating the location of the area
and other area characteristics. Such area characteris-
tics can be accommodated via the hierarchical model
or via a two-stage approach in which a fully stratified
analysis is first carried out and the resulting coeffi-
cients are used as the dependent variable in regression
models similar to those in Level II of the hierarchical
model. The two-stage analysis will generally lead to
consistent estimates of the second-stage coefficients
but is likely to understate the standard error of the
estimates without careful adjustment.

Further Applications

Hierarchical regression modeling techniques are by
now available for most response data of interest
in health services and outcomes research. In par-
ticular, the response may be binary or a count as
above; polytomous, e.g. utilization of one of sev-
eral alternative treatments [1]; ordered categorical,
e.g. appropriateness of care; or continuous. The lat-
ter may be observed completely, e.g. cost of care;
or above a threshold, e.g. vulnerability to malprac-
tice claim [3]. For each type of response the models
can include cluster-level covariates, such as hospital
size and teaching status. Aggregate data on patient
mix can also be included in Level II of the model,
but that would provide only a rudimentary method
for case-mix adjustment. More substantial case-mix
adjustment can be implemented with models such as
the hierarchical logistic model above. The approach
requires the use of patient-level information and can
be accomplished with hierarchical models in which
Level I describes the relation of the response on
an individual patient to patient characteristics. How-
ever, it should be noted that the use of hierarchical
modeling does not necessarily address the effects of
selection bias, especially if such bias is related to
covariates that are not represented in the database.

Further levels can be added to the above hierar-
chical models in order to accommodate additional
structure in the data. In the Poisson example, lon-
gitudinally observed counts may be available on
each cluster over several years (see Longitudinal
Data Analysis, Overview). In the logistic exam-
ple, primary clusters such as hospitals may be fur-
ther grouped by geographic region or market area.
In each case, the incorporation of further levels
and corresponding covariates is straightforward. In
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addition to cluster-level covariates, the hierarchical
structure may also be used to model spatial depen-
dence. Such models have already been developed
and used in epidemiologic studies and can be readily
adapted for health services research data.

Model Fitting and Checking

Simulating observations from the posterior distri-
bution of the parameters is generally recognized
to be the most flexible and broadly applicable
approach to fitting hierarchical regression models.
This fully Bayesian framework provides a more real-
istic account of uncertainty in the estimates without
the need for rather complex adjustments. A key prac-
tical advantage of the approach is that it makes it
possible to simulate values and derive estimates of
any function of the parameters, with little additional
computational burden. For example, in profiling anal-
yses, it is generally straightforward to simulate values
from the posterior distribution of any measure of hos-
pital performance, to derive estimates and to account
for the uncertainty in these estimates. The most
common algorithms for generating simulated val-
ues involve Markov chain Monte Carlo (MCMC)
methodology [4]. Although special programs may
have to be developed for some of the more com-
plex, multilevel models, a large class of problems
can be analyzed using the publicly available soft-
ware BUGS [11]. A number of recent authors have
proposed diagnostics for checking the convergence
of MCMC runs [4]. Some of these diagnostics are
now available in BUGS and other MCMC software.
A recent account of approaches to checking model
fit (see Model Checking) and comparing alternative
models can be found in [4].

An alternative computational approach to posterior
simulation has been developed using weighted least
squares methods and can be implemented via the
software package MLn (see Multilevel Models).
Some classes of hierarchical regression models can
also be fitted using special SAS subroutines (see
Software, Biostatistical) for mixed models as well
as a plethora of more specialized software.
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Hierarchical Models

This term is currently used in a variety of con-
texts. The most traditional one is in the sense that
two statistical models are said to be hierarchical if
one is a submodel of the other. A set of models,
H1, H2, . . . , Hk , is similarly called a hierarchy if

H1 ⊂ H2 ⊂ · · · ⊂ Hk.

Hierarchical models specified by a finite set of
parameters are of particular importance, because the
comparison of models can be based on standard like-
lihood ratio tests. When models are not hierarchical,
or nested, then special procedures are required (see
Separate Families of Hypotheses).

The term “hierarchical” can also be used to refer
to a single model, usually in the context of regression
or analysis of variance. In this usage, a model is said
to be hierarchical if the presence of an interaction
term implies the inclusion of all lower-order interac-
tions and main effects for the explanatory variables
involved in the interaction. The model is hierarchical

in the sense that it includes all submodels in a hier-
archy as special cases. It has been argued that only
such models should be considered [1], but this is not
universally accepted. Significance tests for the pres-
ence of interactions are, however, best considered in
the context of hierarchical models.

Another usage of the term “hierarchical models”
is as a synonym for multilevel models. This usage
derives from the hierarchical nature of data in which
observations are nested within higher level classifica-
tions. For example, individuals may be nested within
families, or patients may be nested within clinics.
Bayesian hierarchical models provide another use of
the term. Markov chain Monte Carlo methods are
very important in this context.
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Born: July 8, 1897, in Hampstead, London, UK.
Died: April 18, 1991, in Cumbria, UK.

Reproduced by permission of the Royal Statistical Society

Austin Bradford Hill was Professor of Medical
Statistics and Director of the Medical Research
Council’s Statistical Research Unit at the London
School of Hygiene and Tropical Medicine, 1946–61;
he introduced the principle of randomization into
the conduct of controlled trials (see Clinical Trials,
Overview) in clinical medicine and established
particularly clearly the role of smoking in the
production of lung cancer and, subsequently, many
other diseases (see Smoking and Health). As a
result of the experience gained in interpreting the
observed association between smoking and lung
cancer, Hill drew up “guidelines” to help reach a
positive conclusion about causality that have come to
be used widely in epidemiology and, on occasions, in
the law (see Hill’s Criteria for Causality).

Career

Hill, who was always known as Bradford Hill in
scientific circles and as Tony to his friends, had
wanted to study medicine, but he was diverted
from doing so by the outbreak of World War I.
He enlisted, at the first opportunity, in 1916 and

opted for a commission in the Royal Naval Air
Service. After being posted to the Greek islands in
support of the attack on the Dardanelles, he developed
pulmonary tuberculosis and, in November 1917, was
invalided out of the service and sent home. Instead
of causing his death, which was the anticipated
outcome, the development of pulmonary tuberculosis
probably saved his life, for the expectation of life
of fighter pilots in World War I was measured in
weeks. The downhill progress of the disease was,
however, arrested after he was given an artificial
pneumothorax to rest his lung, and by 1919 he was
sufficiently recovered to think again about his future.
Medicine was out of the question and he decided to
study economics as an external student of London
University. With the aid of a correspondence course
and by reading in bed, he succeeded in obtaining a
second class honours degree in 1922, having attended
the university itself only to take examinations.

Hill had no desire to make a career of economics
and he managed to enter medicine with the help
of Major Greenwood, a friend of his father and
one of the few medical statisticians of the day.
He obtained a grant from the Medical Research
Council to investigate the reasons for the high
mortality of young adults in rural areas and, whilst
holding it, attended part of Karl Pearson’s course
on statistics for the London B.Sc. at University
College. From then on he worked consistently with
Greenwood in a variety of capacities in the conduct
of epidemiologic research and, later, in the teaching
of medical statistics at the London School of Hygiene
and Tropical Medicine, where Greenwood had been
appointed to the professorship of Medical Statistics.
On the outbreak of World War II he was seconded
to the Research and Experimental Department of the
Ministry of Home Security and subsequently to the
Medical Directorate of the Royal Air Force. In 1946
Greenwood retired and Hill was appointed to succeed
him, both as professor at the School and as director
of the MRC’s unit.

Teaching Medical Statistics

Hill described himself as an arithmetician rather than
a statistician, and it was the clarity of his exposition of
simple arithmetic and statistical procedures and of the
logic that justified conclusions from epidemiologic
studies, combined with his sensitivity to the ethical
concerns of practicing clinicians, that enabled him to



2 Hill, Austin Bradford

influence British academic medicine as greatly as he
did. From his first appointment at the London School
of Hygiene in 1933 he found himself responsible
for teaching the elements of statistics to medical
postgraduates who, as a group, had little liking or
aptitude for mathematics in any form. At that time,
the need for some sort of statistical analysis had
been recognized in the field of public health and
had begun to be appreciated in laboratory medicine,
but it was hardly understood in clinical medicine
at all. Hill responded, not by pressing the need for
deferring to a statistical consultant, but by urging
research workers in all branches of medicine to
learn enough about statistical techniques to appreciate
their value in both the planning of experiments (see
Experimental Design) and in the interpretation of
figures and so to accept the statistician as a partner in
their research, while the statistician, for his part, had
to steep himself in the realities of medical practice.
His lectures on medical statistics proved to be so
effective that he was asked to publish them in a
series of articles in the Lancet and to republish
them in book form. The book, entitled Principles
of Medical Statistics, was published in 1937 [4] and
republished and expanded in a further 10 editions,
some of which were translated into Spanish, Korean,
Indonesian, Polish, and Russian, before a twelfth
enlarged edition appeared shortly after his death, with
his son, I. D. Hill, as joint author [8]. The fact that
statistical analysis is now an integral part of almost
every medical publication is a result of the work of
many gifted statisticians throughout the world (see
Statistical Review for Medical Journals, Journal’s
Perspective). The fact that the medical profession
awoke to its need in the middle of the century was
largely due to its exposition by Hill.

The Introduction of Randomization

In the first edition of his book, Hill made no reference
to randomization in the planning of controlled trials.
He urged only the need for concurrent controls,
obtained, for example, by giving different treatment
to alternate patients, a technique that had been
recommended since the end of the nineteenth century,
but was still the exception rather than the rule. This
method was, however, far from ideal, as practice
proved that a doctor’s decision to enter a patient into
a trial could be biased if he knew what treatment
he or she would receive. Hill appreciated this, but

he explained, shortly before his death, that he had
deliberately omitted any reference to randomization
in his 1937 articles

because I was trying to persuade doctors to come
into controlled trials in the very simplest form and
I might have scared them off. I think the concepts
of “randomization” and “random sampling numbers”
are slightly odd to the layman or, for that matter, to
the lay doctor, when it comes to statistics. I thought
it would be better to get doctors to walk first, before
I tried to get them to run [6].

By the end of World War II, the situation had
changed and Hill felt able to introduce physicians to
the idea, and in 1946 he persuaded two committees of
the Medical Research Council to adopt the method:
first, to test the value of a pertussis vaccine to prevent
whooping cough [11] and second, a few months later,
to test the efficacy of streptomycin in the treatment
of pulmonary tuberculosis (see Medical Research
Council Streptomycin Trial) [10]. The results of
the latter study were, however, published first and
it is usually, but undeservedly, described as the first
randomized clinical trial.

The idea of randomization in biological experi-
ments was not new. It had been introduced by R. A.
Fisher 20 years before as a basic principle of experi-
mental design in agriculture; but it was unheard of in
clinical medicine and was anathema on first presenta-
tion to many clinicians who thought it conflicted with
their responsibility for doing the best they could for
individual patients and resulted in beneficial effects
being diluted by giving the new treatment to patients
who were unsuitable for it. Neither objection was,
of course, valid, as entry to the trial was in the clini-
cian’s own hands and required him or her not to know
which was the better treatment and to exclude patients
if they were thought to be unsuitable for either of
the therapies under trial (see Ethics of Randomized
Trials; Medical Ethics and Statistics). Gradually
clinical opposition was overcome, largely, in the UK,
as a result of Hill’s emphasis on ethical considera-
tions, which won the respect of practising clinicians,
and within 10 years randomization had become the
standard technique for the conduct of controlled clini-
cal trials. Recent claims that randomization had been
introduced earlier by others as, for example, in the
trial of patients for the treatment of the common cold,
do not bear close investigation [9].
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Smoking and Lung Cancer

Of Hill’s many epidemiologic studies the most out-
standing are those that demonstrated the importance
of cigarette smoking as a cause of lung cancer. In one,
comparisons were made between the smoking habits
of patients with lung cancer admitted to 20 London
hospitals and the habits of other patients of the same
sex and age admitted to the same hospitals with other
diseases (see Case–Control Study, Hospital-based).
The results showed sharp differences between the two
groups and led to the conclusion that cigarette smok-
ing was an important cause of the disease [1]. This
was not the first study to have shown that patients
with lung cancer tended to have smoked more than
other patients, but it was the first in which a firm con-
clusion about causality had been reached on logical
grounds and it set out clearly the basis for it. The con-
clusion was not, however, widely accepted, and Hill
set out to test it by means of a prospective study,
in which information was obtained about the smok-
ing habits of 40 000 British doctors, who were then
followed to determine the mortality rates in differ-
ent groups of men and women who smoked different
amounts. Within a few years, results were obtained
that were almost identical to those predicted from the
case–control study [2, 3] and the validity of the ear-
lier conclusion quickly came to be accepted. Neither
the case–control study nor the prospective, or cohort
study as it has come to be called, was the first of their
type to have been carried out; but they set standards
of design and analysis by which subsequent similar
studies have come to be assessed.

Guidelines for Determining Causality

In reaching the conclusion that the association
observed between smoking habits and the develop-
ment of lung cancer reflected cause and effect, Hill
had first to exclude chance, bias, and confounding
as alternative explanations. The first two were not
difficult to exclude, but the third was, and positive
evidence had to be sought that would justify the
choice of causality. Koch’s postulates that had been
valuable in determining the microbiological causes
of infectious disease were not appropriate for other
types of disease that could have multiple causes, and
Hill suggested a set of guidelines to replace them,
based on his experience in interpreting the results
of his studies of lung cancer [5]. Only one feature

had to be present (the temporal relationship of the
suspected cause and its effect), none alone was con-
clusive, and Hill emphasized that the guidelines were
no more than a help to constructive thought and that
each case had to be considered on its merits. For this
purpose, they have proved to have lasting value to
both scientists and lawyers.

Hill, the Man

Hill was not a prolific writer of scientific papers.
Apart from his lecture series on medical statistics
and the many editions of his textbook, his bibliog-
raphy lists only 140 publications, including 28 letters
to journals and 13 reviews or historical notes [7]. His
influence on British medicine was, however, dispro-
portionately great; not only because of the importance
of some of the papers, but because of his teaching,
the advice he gave personally to the many individu-
als who sought it, and his contribution to the work
of the Medical Research Council through member-
ship of many committees and, in 1954, membership
of the Council itself. In committee, he expressed his
opinion cogently and firmly, but he never imposed it
and he was, in consequence, always listened to with
respect and his advice was almost always taken. In
public he avoided controversy and, though distressed
by Sir Ronald Fisher’s attacks on his interpretation
of the association between smoking and the develop-
ment of lung cancer, he preferred to let the facts speak
for themselves rather than embark on a public dispute.
He took immense trouble over his lectures, which he
gave without the use of visual aids and rehearsed so
often and read so well that his audience often thought
that he spoke without a text. Even those whose inter-
est flagged were kept attentive by the occasional witty
aside. As a department head, he kept his door open
to any junior who sought his advice and he saw his
job as providing the conditions under which his uni-
versity and research staff could be most productive.
No one who worked in his department ever wanted
to leave, and it was only with the greatest difficulty
that they could be persuaded to take up more senior
positions elsewhere.
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Hill’s Criteria for
Causality
Despite philosophic criticisms of inductive inference,
inductively oriented causal criteria have commonly
been used to make such inferences. If a set of ne-
cessary and sufficient causal criteria could be used
to distinguish causal from noncausal associations
in observational studies, the job of the scientist
would be eased considerably. With such criteria,
all the concerns about the logic or lack thereof in
causal inference could be forgotten: it would only be
necessary to consult the checklist of criteria to see if
a relation were causal. We know from philosophy
that a set of sufficient criteria does not exist [3,
6]. Nevertheless, lists of causal criteria have become
popular, possibly because they seem to provide a road
map through complicated territory.

A commonly used set of criteria was proposed
by Sir Austin Bradford Hill [1]; it was an expan-
sion of a set of criteria offered previously in the
landmark Surgeon General’s report on Smoking and
Health [11], which in turn were anticipated by the
inductive canons of John Stuart Mill [5] and the
rules of causal inference given by Hume [3]. Hill
suggested that the following aspects of an associa-
tion be considered in attempting to distinguish causal
from noncausal associations: strength, consistency,
specificity, temporality, biologic gradient, plausibil-
ity, coherence, experimental evidence, and analogy.
The popular view that these criteria should be used
for causal inference makes it necessary to examine
them in detail:

Strength

Hill’s argument is essentially that strong associations
are more likely to be causal than weak associations
because, if they could be explained by some other
factor, the effect of that factor would have to be
even stronger than the observed association and there-
fore would have become evident (see Cornfield’s
Inequality). Weak associations, on the other hand,
are more easily explained by undetected biases. To
some extent this is a reasonable argument, but, as
Hill himself acknowledged, the fact that an asso-
ciation is weak does not rule out a causal con-
nection. A commonly cited counterexample is the

relation between cigarette smoking and cardiovascu-
lar disease.

Counterexamples of strong but noncausal associ-
ations are also not hard to find; any study with
strong confounding illustrates the phenomenon. For
example, consider the strong but noncausal relation
between Down syndrome and birth rank, which is
confounded by the relation between Down syndrome
and maternal age. Of course, once the confounding
factor is identified, the association is diminished by
adjustment for the factor. These examples remind
us that a strong association is neither necessary nor
sufficient for causality, nor is weakness necessary nor
sufficient for absence of causality. In addition to these
counterexamples, we have to remember that neither
relative risk nor any other measure of association is
a biologically consistent feature of an association; as
described by many authors [4, 7], it is a characteristic
of a study population that depends on the relative
prevalence of other causes. A strong association
serves only to rule out hypotheses that the association
is entirely due to one weak unmeasured confounder
or other source of modest bias.

Consistency

Consistency refers to the repeated observation of an
association in different populations under different
circumstances. Lack of consistency, however, does
not rule out a causal association, because some effects
are produced by their causes only under unusual cir-
cumstances. More precisely, the effect of a causal
agent cannot occur unless the complementary com-
ponent causes act, or have already acted, to complete
a sufficient cause. These conditions will not always
be met. Thus, transfusions can cause HIV infection
but they do not always do so: the virus must also be
present. Tampon use can cause toxic shock syndrome,
but only when other conditions are met, such as pres-
ence of certain bacteria. Consistency is apparent only
after all the relevant details of a causal mechanism are
understood, which is to say very seldom. Even stud-
ies of exactly the same phenomena can be expected
to yield different results simply because they differ
in their methods and random errors. Consistency
serves only to rule out hypotheses that the associ-
ation is attributable to some factor that varies across
studies.
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Specificity

The criterion of specificity requires that a cause leads
to a single effect, not multiple effects. This argument
has often been advanced to refute causal interpre-
tations of exposures that appear to relate to myr-
iad effects, especially by those seeking to exonerate
smoking as a cause of lung cancer. The criterion is
wholly invalid, however. Causes of a given effect
cannot be expected to lack other effects on any
logical grounds. In fact, everyday experience teaches
us repeatedly that single events or conditions may
have many effects. Smoking is an excellent example:
it leads to many effects in the smoker. The existence
of one effect does not detract from the possibility that
another effect exists. Thus, specificity does not confer
greater validity to any causal inference regarding the
exposure effect. Hill’s discussion of this criterion
for inference is replete with reservations, and many
authors regard this criterion as useless and misleading
[8, 9].

Temporality

Temporality refers to the necessity that the cause pre-
cede the effect in time. This criterion is unarguable,
insofar as any claimed observation of causation must
involve the putative cause C preceding the putative
effect D. It does not, however, follow that a reverse
time order is evidence against the hypothesis that C
can cause D. Rather, observations in which C fol-
lowed D merely shows that C could not have caused
D in these instances; they provide no evidence for or
against the hypothesis that C can cause D in those
instances in which it precedes D.

Biologic Gradient

Biologic gradient refers to the presence of a mono-
tone (unidirectional) dose–response curve. We often
expect such a monotonic relation to exist. For exam-
ple, more smoking means more carcinogen exposure
and more tissue damage, hence more carcinogenesis.
Such an expectation is not always present, however.
The somewhat controversial topic of alcohol con-
sumption and mortality is an example. Death rates
are higher among nondrinkers than among moderate
drinkers, but ascend to the highest levels for heavy
drinkers. Because modest alcohol consumption can
have beneficial effects on serum lipid profiles, such

a J-shaped dose–response curve is at least biologi-
cally plausible.

Conversely, associations that do show a monotonic
trend in disease frequency with increasing levels of
exposure are not necessarily causal; confounding can
result in a monotonic relation between a noncausal
risk factor and disease if the confounding factor
itself demonstrates a biologic gradient in its relation
with disease. The noncausal relation between birth
rank and Down syndrome mentioned above shows a
biologic gradient that merely reflects the progressive
relation between maternal age and the occurrence of
Down syndrome.

Thus the existence of a monotonic association is
neither necessary nor sufficient for a causal relation.
A nonmonotonic relation only conflicts with those
causal hypotheses specific enough to predict a mono-
tonic dose–response curve.

Plausibility

Plausibility refers to the biologic plausibility of the
hypothesis, an important concern but one that is far
from objective or absolute. Sartwell [9], emphasizing
this point, cited the remarks of Cheever, in 1861, who
was commenting on the etiology of typhus before its
mode of transmission (via body lice) was known:

It could be no more ridiculous for the stranger who
passed the night in the steerage of an emigrant ship
to ascribe the typhus, which he there contracted, to
the vermin with which bodies of the sick might be
infested. An adequate cause, one reasonable in itself,
must correct the coincidences of simple experience.

What was to Cheever an implausible explanation
turned out to be the correct explanation, since it was
indeed the vermin that caused the typhus infection.
Such is the problem with plausibility: it is too often
not based on logic or data, but only on prior beliefs.
This is not to say that biological knowledge should
be discounted when evaluating a new hypothesis,
but only to point out the difficulty in applying that
knowledge.

The Bayesian approach to inference attempts to
deal with this problem by requiring that one quan-
tify, on a probability (0 to 1) scale, the certainty that
one has in prior beliefs, as well as in new hypotheses.
This quantification displays the dogmatism or open-
mindedness of the analyst in a public fashion, with
certainty values near 1 or 0 betraying a strong com-
mitment of the analyst for or against a hypothesis. It
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can also provide a means of testing those quantified
beliefs against new evidence [2]. Nevertheless, the
Bayesian approach cannot transform plausibility into
an objective causal criterion.

Coherence

Taken from the Surgeon General’s report on Smok-
ing and Health [11], the term coherence implies that
a cause and effect interpretation for an association
does not conflict with what is known of the natu-
ral history and biology of the disease. The examples
Hill gave for coherence, such as the histopathologic
effect of smoking on bronchial epithelium (in refer-
ence to the association between smoking and lung
cancer) or the difference in lung cancer incidence
by sex, could reasonably be considered examples
of plausibility as well as coherence; the distinction
appears to be a fine one. Hill emphasized that the
absence of coherent information, as distinguished,
apparently, from the presence of conflicting infor-
mation, should not be taken as evidence against an
association being considered causal. On the other
hand, presence of conflicting information may indeed
undermine a hypothesis, but one must always remem-
ber that the conflicting information may be mistaken
or misinterpreted [12].

Experimental Evidence

It is not clear what Hill meant by experimental evi-
dence. It might have referred to evidence from lab-
oratory experiments on animals, or to evidence from
human experiments. Evidence from human experi-
ments, however, is seldom available for most epi-
demiologic research questions, and animal evidence
relates to different species and usually to levels
of exposure very different from those that humans
experience. From Hill’s examples, it seems that what
he had in mind for experimental evidence was the
result of removal of some harmful exposure in an
intervention or prevention program, rather than the
results of laboratory experiments [10]. The lack of
availability of such evidence would at least be a
pragmatic difficulty in making this a criterion for
inference. Logically, however, experimental evidence
is not a criterion but a test of the causal hypothesis, a
test that is simply unavailable in most epidemiologic
circumstances.

Although experimental tests can be much stronger
than other tests, they are not as decisive as often
thought, because of difficulties in interpretation. For
example, one can attempt to test the hypothesis that
malaria is caused by swamp gas by draining swamps
in some areas and not in others to see if the malaria
rates among residents are affected by the draining.
As predicted by the hypothesis, the rates will drop in
the areas where the swamps are drained. As Pop-
per emphasized, however, there are always many
alternative explanations for the outcome of every
experiment. In this example, one alternative, which
happens to be correct, is that mosquitoes are respon-
sible for malaria transmission.

Analogy

Whatever insight might be derived from analogy is
handicapped by the inventive imagination of scien-
tists who can find analogies everywhere. At best,
analogy provides a source of more elaborate hypothe-
ses about the associations under study; absence of
such analogies only reflects lack of imagination or
experience, not falsity of the hypothesis.

Conclusion

As is evident, the standards of epidemiologic evi-
dence offered by Hill are saddled with reservations
and exceptions. Hill himself was ambivalent about the
utility of these “standards” (he did not use the word
criteria in the paper). On the one hand he asked “in
what circumstances can we pass from this observed
association to a verdict of causation?” (original
emphasis). Yet, despite speaking of verdicts on cau-
sation, he disagreed that any “hard-and-fast rules of
evidence” existed by which to judge causation:

None of my nine viewpoints [criteria] can bring
indisputable evidence for or against the cause-and-
effect hypothesis and none can be required as a sine
qua non.

Actually, the fourth criterion, temporality, is a sine
qua non for causality: If the putative cause did
not precede the effect, that indeed is indisputable
evidence that the observed association is not causal
(although this evidence does not rule out causality in
other situations, for in other situations the putative
cause may precede the effect). Other than this one
condition, however, which may be viewed as part
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of the definition of causation, there is no necessary
or sufficient criterion for determining whether an
observed association is causal.
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Historical Controls in
Survival Analysis

The use of historical controls in treatment evalua-
tion is a large and controversial topic, and a general
discussion is given elsewhere (see Bias from His-
torical Controls). The purpose of this article is the
more technical one of surveying current contributions
to the centuries-old statistical tradition [4] of compar-
ing the observed mortality of a study group with that
expected under “standard” (historical) rates.

If the historical rates are derived from a specific
statistical analysis, then the straightforward modern
approach would usually be to formulate a general
statistical model containing the current data as well
as the historical information, and then simply test
the hypothesis of equality of the relevant mortality
rates, perhaps taking into account covariates. Partly
because the historical information is not always avail-
able as concrete statistical estimators, but also to
some extent motivated by tradition, there is consider-
able interest in rephrasing the question as “how would
these individuals have survived had they been subject
to standard (historical) conditions?” Note that the so-
called Peters–Belson approach in regression analysis
similarly predicts study group responses from a sta-
tistical model fitted only to a control group, and then
compares observed with expected [1–3].

A separate article recalls the classical calcula-
tion of expected number of deaths and contrasts it

with a sometimes more easily interpretable calcula-
tion called the “prospective method”, which however
requires knowledge of the potential censoring time
for each individual, including those who died during
the study. Another separate article surveys several
recent approaches to defining an expected survival
curve, all of which have been illustrated through
asymptotic statistical results of Nielsen [5], as well as
some further topics and pitfalls in using Cox regres-
sion models in this area.
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HLA System

The HLA (human leukocyte antigen) gene complex
on the short arm of chromosome 6 has been of
widespread interest to scientists and physicians for
more than 25 years. The most well-characterized
genes are HLA-A, B, C, DR, DQ, and DP [4, 9, 14].
These code for transmembrane glycoproteins which
function as receptors. They bind degraded pieces
of proteins (peptides, 8–15 amino acids long) and
present them to T lymphocytes to initiate immune
responses.

The HLA-A, B, and C genes were identified first
and are often referred to as class I genes. They are
expressed on nearly all nucleated cells of the body
where they allow cytotoxic T cells to recognize and
eliminate tumor cells or cells infected with viruses or
other intracellular pathogens [8, 10]. HLA-DR, DQ,
and DP molecules (class II molecules) are expressed
only on B cells, macrophages, and antigen-presenting
cells. These present peptides to T helper cells to
induce inflammatory immune responses [5, 8, 10].

The HLA molecules are extremely polymorphic.
The number of alleles at each locus currently ranges
from 38 to over 100 [1, 3]. Widespread amino acid
substitutions occur around the molecule’s peptide
binding groove, and it is thought that the mainte-
nance of polymorphism is due to selection and the
evolutionary advantage of heterozygotes in combat-
ting infection [7, 11, 12].

The polymorphism and immunologic function of
the HLA molecules has made them of considerable
interest in transplantation and disease pathogene-
sis. HLA molecules can induce rejection of HLA-
mismatched cells and organs; matching is currently
performed for kidneys and bone marrow transplants
[6]. Some HLA-DR and HLA-DQ alleles show strong
associations with susceptibility to autoimmune and
inflammatory diseases such as rheumatoid arthritis,
type I insulin-dependent diabetes mellitus, and mul-
tiple sclerosis [2, 13]. The reasons for the disease
associations are not clear, but presumably relate to
peptide-binding.

HLA allele frequencies can vary dramatically
between ethnic groups [3]. Differences in allele fre-
quencies have been used to monitor population move-
ments and trace ancestral derivations. Some combina-
tions of alleles at adjacent loci are inherited together

on a haplotype (see Haplotype Analysis) more fre-
quently than expected. Such linkage disequilibrium
is often observed between HLA-B and HLA-C and
between HLA-DR and HLA-DQ, and sometimes for
longer distances or across the entire gene complex.

For population studies, HLA gene frequencies and
two locus linkage disequilibrium coefficients can be
determined by standard methods. HLA and disease
associations are evident as statistically significant
differences in allele frequency between patients and
controls. The controls must be matched for ethnic
group and adjustment made for multiple comparisons.

Although most interest has centered on HLA-A, B,
C, DR, DQ, and DP, the HLA region actually covers
more than 4 million base pairs of DNA and includes
numerous other genes, including those for cytokines,
complement components, olfactory receptors, chap-
erones, and many with still undefined functions [14].
Analogous gene complexes are found in other mam-
mals [9]. The generic term major histocompatibility
complex or MHC is frequently used to designate
these gene complexes irrespective of species.
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Hogben, Lancelot Thomas

Born: December 9, 1895.
Died: August 22, 1975.

Hogben had a brilliant academic career in biology,
with chairs at the London School of Economics,
Aberdeen, and Birmingham, and election to Fellow-
ship of the Royal Society in 1936. He wrote popular
books on mathematics, science, and linguistics. Dur-
ing the 1939–1945 war he became Acting Director of
Medical Statistics at the War Office, and from 1947
to 1961 he was Professor of Medical Statistics at the
University of Birmingham. His main interests were in

procedures for recording and tabulating medical data,
and in the philosophical basis of statistics. In the lat-
ter context, he was critical of the claims made for
randomized clinical trials, and, in a 1957 book on
Statistical Theory, he expressed dissatisfaction with
probabilistic inference as a basis for the interpretation
of statistics. A very full biography and a complete
bibliography are given in [1].
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Horvitz–Thompson
Estimator

The estimator known as the Horvitz–Thompson esti-
mator (HTE) was developed by Horvitz & Thompson
in their classic 1952 paper [4]. In that article they pro-
pose the following estimator of a population total, X,
that is valid for any sampling design with or without
replacement:

x ′
hte =

v∑

i=1

xi

πi

,

where xi is the value of the variable for the ith
enumeration unit in the sample, πi is the probability
of the ith enumeration unit being selected into the
sample and v is the number of distinct enumeration
units sampled (as distinguished from n, which is the
total sample size). Clearly, n = v when sampling is
without replacement.

In that same paper, the authors showed that the
HTE is unbiased with standard error given by the
following expression:
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where N is the number of enumeration units in
the population and πij is the probability that both
enumeration units i and j are included in the sample.

In addition, they showed that the estimator, v(x ′
hte),

given by the expression

v(x ′
hte) =

v∑

i=1

1 − πi

π2
i

x2
i

+
v∑

i=1

∑

j �=i

(
πij − πiπj

πiπj

)
xixj

πij

,

is an unbiased estimator of the variance of x ′
hte.

The Horvitz–Thompson estimator differs from an
earlier unbiased estimator generally referred to as the
Hansen–Hurwitz estimator:

x ′
hh = 1

n

n∑

i=1

xi

π ′
i

proposed by Hansen & Hurwitz [2] which is valid
when sampling is with replacement, and where π ′

i is
the probability of selecting the ith enumeration unit
at any drawing of the sample.

These estimators are illustrated in Table 1, in
which N = 3, n = 2, X1 = 1, X2 = 3, X3 = 4, π ′

1 =
1/6, π ′

2 = 2/6, π ′
3 = 3/6, and the sampling is with

replacement. As can be seen, the two estimators
do not necessarily produce the same numerical
estimate for the same sample, and both are unbiased
estimators of the population total. Both estimators
are used in unequal probability sampling, including
widely used applications such as sampling with
probability proportionate to size and network
sampling. Because the Horvitz–Thompson estimator
is appropriate for situations in which sampling
is without replacement, however, it has been
especially important in the development of design-
based estimation theory and methodology for sample
surveys.

Table 1 Comparison of estimators

Enumeration units in Probability of Horvitz–Thompson Hansen–Hurwitz
sample (ordered) sample occurring estimator estimator

X1, X1 0.0278 3.27 6.0
X1, X2 0.0556 8.67 7.5
X1, X3 0.0833 8.61 7.0
X2, X1 0.0556 8.67 7.5
X2, X2 0.1111 5.40 9.0
X2, X3 0.1667 10.73 8.5
X3, X1 0.0833 8.61 7.0
X3, X2 0.1667 10.73 8.5
X3, X3 0.2500 5.33 8.0
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For more detailed discussions of the Horvitz–Tho-
mpson estimator, we refer the reader to the texts
by Hedayat & Sinha [3] and Thompson [5]. Also,
Cochran discusses this estimator in the Encyclopedia
of Statistical Sciences [1] (this was one of Professor
Cochran’s last articles before his death in 1980).
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Hospital Market Area

A hospital market area (HMA) is the geographic area
served by a hospital or a group of hospitals. Mar-
ket areas are usually defined on the basis of patient
origin studies, which examine the zip (postal) codes
in which the patients of a hospital reside. HMAs
are used in health services research to define the
populations which provide the denominator for hos-
pital admission rates. For example, one might use
the number of back surgeries performed on people
who live in a particular HMA, divided by the HMA
population, as the admission rate for that area’s hos-
pital. In small-area variation analysis, one would
examine the admission rates for different HMAs to
find areas with particularly high or low admission
rates, suggesting inappropriate use of services, per-
haps attributable to the hospital in that HMA. Unfor-
tunately, however, several hospitals may serve the
same area, and a particular hospital may draw patients
from many areas, especially in urban and suburban
areas. These considerations make a hospital’s admis-
sion rate both conceptually unclear and technically
difficult to estimate.

Two methods have been proposed for defining
HMAs and their corresponding hospital-based admis-
sion rates from population-based data. The plurality
rule of Wennberg & Gittelsohn [3] assigns the popu-
lation and the hospital admissions from each zip code
to the hospital which is the recipient of the plurality of
the admissions from the area. While simple to apply,
this method is flawed by considerable misclassifica-
tion error since many (potentially even a majority) of
the persons and admissions from any given small area
will be assigned to one hospital when, in truth, they
“belong” to another. Furthermore, this method under-
emphasizes the utilization of small hospitals, since
small hospitals infrequently constitute a plurality in
any small area.

Griffith et al. [1] propose a “proportional alloca-
tion” method, which allocates a proportion of each
small area’s population to each hospital based on the
proportion of that area’s admissions to each hospital.
Thus, if Hospital X received 24% of area A’s admis-
sions, it would be allocated 24% of Area A’s popu-
lation as well. By summing the populations allocated
to Hospital X across all small areas, one can estimate
a theoretical catchment population for Hospital X.
Dividing this theoretic denominator into Hospital X’s
admissions yields an “admission rate” for Hospital X.
The principal flaw in this method is that, because the
population at risk is allocated in proportion to the
numerator, it tends to diminish any true differences
between hospitals in their propensity to admit.

There are other problems in defining hospital mar-
ket areas. HMAs based on one patient origin study
may not be appropriate for all conditions that might
be studied. For example, HMAs defined by a patient
origin study of all hospital admissions would not be
appropriate for a study of trauma admission rates if
one of the hospitals had a renowned trauma center
that attracted patients from a large area. Origin stud-
ies are often based on Medicare data [2], which, since
it is available primarily for people over age 65, may
not be appropriate for services for younger people.
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Hotelling, Harold

Born: September 29, 1895, in Fulda, Minnesota.
Died: December 26, 1973, in Chapel Hill, North

Carolina.

Harold Hotelling was responsible for much original
theoretical work in both statistics and mathematical
economics and did much to advance the teaching of
statistics at US universities, including Columbia and
the University of North Carolina. Hotelling’s under-
graduate degree was a B.A. in journalism from the
University of Washington in 1919, but his mathemat-
ical talent was recognized and encouraged by Eric
T. Bell. Hotelling received an M.S. degree in Math-
ematics at the University of Washington in 1921 and
a Doctorate of Philosophy at Princeton University in
1924, with a dissertation in the field of topology.

Following his doctorate, he spent seven years at
Stanford University, first as Research Associate in
the Food Research Institute and later as a Associate
Professor of Mathematics. During his time at Stan-
ford, he applied mathematical ideas to problems in
journalism and political science, population and food
supply, and theoretic economics. In 1929, he spent six
months with R.A. Fisher at the Rothamstead Experi-
mental Station at Harpenden in England which helped
to develop his strong interest in mathematical statis-
tics. In 1931 he published perhaps his most important
contribution to statistics when he generalized to the
multivariate case Student’s t test for the mean of a
univariate normal distribution [4] (see Multivari-
ate t Distribution). This test has become known as
Hotelling’s generalized T 2 test and was later recog-
nized as having wide applicability in statistics.

In 1931 Hotelling was appointed Professor of
Economics at Columbia University where he stayed
for 15 years. During World War II he organized
the Statistical Research Group, which was engaged
in statistical work relating to military problems.
The group included Abraham Wald, W. Allen
Wallis, and Jacob Wolfowitz. During this time Wald
developed his theory of sequential analysis. In
1946 Hotelling was invited by Gertrude Cox to
organize a Department of Mathematical Statistics
at the University of North Carolina at Chapel Hill
(UNC-Chapel Hill), which became an important
center for statistical research and teaching. He
recruited many outstanding statisticians, including
R.C. Bose, S.N. Roy, W. Hoeffding, W.G. Madow,
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H.E. Robbins, W.L. Smith, and N.L. Johnson. Hotel-
ling remained at UNC–Chapel Hill until his death.

Hotelling proposed a method of principal compo-
nents [6] which is applicable to problems of factor
analysis arising in educational testing. Using ideas
of n-dimensional geometry, the principal components
are linear functions of multivariate observations, the
first of which has the greatest variability and each
subsequent one less variability. A similar mathemat-
ical idea underlies Hotelling’s theory of canonical
correlations [7]. Among Hotelling’s other contribu-
tions to statistics are his paper on differential equa-
tions subject to error [3], one of the first dealing with
statistical problems related to stochastic processes; a
paper (jointly with H. Working) on the interpretation
of trends [18] which had one of the first examples of a
confidence region and the idea of multiple compar-
isons; the derivation of the distribution of Spearman’s
rank correlation coefficient [11]; and the experimen-
tal determination of the maximum of a function [10].

In economic theory, he dealt with problems in
depreciation and the importance of maximizing prin-
ciples [2]; the interrelated demand and supply func-
tions of profit maximizers [5]; and welfare economics
[8], possibly his most important contribution to math-
ematical economics.

Hotelling had a talent for attracting excellent fac-
ulty members, both at Columbia and the University of
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North Carolina, and played an important role in rais-
ing standards in statistical research and developing
mathematical statistics as a respected academic dis-
cipline. He was a strong advocate of the importance
of teaching statistics [9], which had an impact on the
academic community and aided in the establishment
of departments of statistics at American universities.
Levene paid tribute to his excellence as a teacher and
lecturer [12].

In 1955 Hotelling received an honorary LL.D.
from the University of Chicago. In 1963 he received
an honorary D.Sc. from the University of Rochester
and was an Honorary Fellow of the Royal Statistical
Society and a Distinguished Fellow of the American
Economic Association. In 1936–37 he was the Pres-
ident of the Econometric Society and in 1941 of the
Institute of Mathematical Statistics. In 1970 he was
elected to the National Academy of Sciences and in
1972 received the North Carolina Award for Science.
His final award, in 1973, was his election to member-
ship of the Accademia Nazionale dei Lincei in Rome,
which occurred shortly before his death.

Hotelling’s contributions to statistics have been
memorialized by Anderson [1], Madow [13, 14],
Neyman [15], and Olkin [16], and to mathematical
economics by Samuelson [17].
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Hotelling’s T 2

The Hotelling T 2 statistic is a generalization of the
squared univariate t (see Student’s t Distribution)
for testing hypotheses on the normal distribution
mean, when the population variance is unknown and
must be estimated from the sample observations.
For a single random sample of N p-dimensional
observations from the multivariate normal distribu-
tion, the Hotelling statistic for testing the hypothesis
H0 : µ = µ0 on the mean vector µ is

T 2 = N(x − µ0)
′S−1(x − µ0).

In the squared univariate statistic the means have
been replaced by mean vectors and the reciprocal of
the sample variance has become the inverse of the
sample covariance matrix S. T 2 is thus a measure
of the distance of the sample mean vector from the
hypothesized population vector, but in the metric
of S. This case of Hotelling’s T 2 test, its general
derivation, and its application to two independent
samples and repeated measures designs are covered
in this article.

The Hotelling T 2 Test

Derivation

The T 2 statistic was originally proposed by Hotelling
[3]. Hotelling’s account of its derivation by the
invariance properties of the roots of a certain
determinantal equation is contained in [4]. T 2 is also
the sample analog of Mahalanobis distance [5] of
x and µ0. Construction of the hypothesis test by the
generalized likelihood ratio principle gives a statistic
that is a monotonic function of T 2 [1]. Roy [10, 11]
derived the T 2 statistic by his union–intersection
principle; the explicit single-sample case has been
given by Morrison [7].

Distribution of T 2

Hotelling [3] first found the distribution of T 2 by
a geometrical argument. More recently, Rao [9] has
given an ingenious and simple derivation of the dis-
tribution for both the null and alternative hypotheses.
We give a very general definition of T 2, state its

distribution, and then apply it to cases of T 2 com-
puted from sample observations. Let Y be a p × 1
random vector with the multivariate normal distri-
bution N(µ, �). The sums of squares and products
matrix nS has the Wishart distribution [[1], Chapter
7] with parameters degrees of freedom n and covari-
ance matrix �, and is distributed independently of Y.
Then the general Hotelling statistic is

T 2 = Y′S−1Y,

and its linear transformation,

F =
[

(n − p + 1)

np

]
T 2,

has the noncentral F distribution with degrees of
freedom p, n − p + 1, and noncentrality parameter
µ′�−1µ. If E(Y) = µ = 0, F has the usual central
F distribution with p and n − p + 1 degrees of
freedom. In the context of a single random sample
and a test of the null hypothesis H0 : µ = µ0,
Y = y − µ and n = N − 1. Under H0 : µ = µ0,
y is N[µ0, (1/N)�], T 2 = N(y − µ0)

′S−1(y − µ0),
and F = [(N − p)/(N − 1)p]T 2 has the central
F distribution with p and N − p degrees of
freedom. For the general alternative hypothesis H0 :
µ = µ1, [(N − p)/(N − 1)/p]T 2 has the noncentral
F distribution with p and N − p degrees of
freedom and noncentrality parameter δ2 = N(µ1 −
µ0)

′�−1(µ1 − µ0). Power probabilities of the T 2

test can be found from the Pearson–Hartley charts
of the noncentral F distribution [7, 8], or by
statistical software (e.g. [2] and [6]). Sample size
determination for a given α-level test and power
probability must, of course, be made iteratively, since
the sample size appears both in the second degrees
of freedom and in the noncentrality parameter.

Affine Invariance Property

The T 2 statistic has an important invariance property:
it is unaffected by affine transformations

W = AY + h,

in which A is a p × p matrix of real constants with
a nonzero determinant, and h is a p × 1 vector of
constants. The transformation must be applied to the
sample mean vector y as well as the population mean
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vector µ0. Use of the transformation in the single-
sample Hotelling statistic gives

T 2
W = N(Ay + h − Aµ0 − h)′(ASA′)−1

× (Ay + h − Aµ0 − h)

= N(y − µ0)
′A′(ASA′)−1(y − µ0)

= T 2
Y,

and, of course, the affine invariance property can be
verified for other more general forms of T 2. The
statistic is not only unaffected by scale and location
changes, but is also unchanged by oblique linear
transformations of the coordinate system as well.

Tests of Hypotheses

Single Sample

We have already introduced the single-sample T 2 test
of H0 : µ = µ0 against H1 : µ �= µ0: reject H0 at the
α level if F = [(N − p)/(N − 1)p]T 2 > Fα;p,N−p.
The hypothesized mean vector µ0 is given by the
analyst from a substantive context: psychological
test score means, dimension, or other specification
means in quality assurance, or normative values of
the random vector components.

Two Samples

The model for the two-sample T 2 test for equality of
multivariate normal mean vectors assumes that inde-
pendent random samples have been drawn from each
population, and that the populations have a common
covariance matrix �. The observation vectors in the
respective samples will be denoted by x11, . . . , xN1,
x12, . . . , xM2. The sample mean vectors are

x1 =
(

1

N

) N∑

i=1

xi1, x2 =
(

1

M

) M∑

i=1

xi2

and the pooled, or within-sample, covariance matrix
estimating � is

S =
(

1

N + M − 2

)[
N∑

i=1

(xi1 − x1)(xi1 − x1)
′

+
M∑

i=1

(xi2 − x2)(xi2 − x2)
′
]

.

The two-sample T 2 statistic is

T 2 =
(

NM

N + M

)
(x1 − x2)

′S−1(x1 − x2).

When H0 : µ1 = µ2 is true, F = [(N + M − p −
1)/(N + M − 2)p]T 2 has the F distribution with
p and N + M − p − 1 degrees of freedom. The
null hypothesis is rejected if F > Fα;p,N+M−p−1.
When the alternative H1 : µ1 �= µ2 holds, F has the
noncentral F distribution with degrees of freedom
p, N + M − p − 1, and noncentrality parameter
δ2 = [NM/(N + M)](µ1 − µ2)

′�−1(µ1 − µ2).

Repeated Measurements

Frequently, p observations are taken successively
on each of N independent sampling units for a
test of the hypothesis that the p means are equal
(see Longitudinal Data Analysis, Overview). For
example, plasma-free fatty acid levels might be
measured in blood samples taken at p = 6 15-min
intervals from normal subjects after they had ingested
a particular food or drug. The hypothesis of a
common-mean-free fatty acid level at six times might
be of interest, and could be tested by Hotelling’s T 2

statistic.
The repeated-measures test is equivalent to testing

the hypothesis that the p − 1 successive differences
of the variables have zero means. We begin by
transforming the p response variables X1, . . . , Xp to
the successive differences Y1, . . . , Yp−1 by the linear
transformation

Y =





Y1

Y2

.

.

.

Yp−1





=





−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . . . . . . .

0 0 0 . . . −1 1









X1

X2

.

.

.

Xp





= CX.

We test H0 : E(Y1) = · · · = E(Yp−1) = 0 by

T 2 = Ny′S−1y,
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or equivalently in terms of the observations on the
original variables,

T 2 = Nx′C′(CSC′)−1Cx,

where C is the (p − 1) × p matrix of the successive
difference transformation. As in the single-sample
case, F = [(N − p + 1)/(N − 1)(p − 1)]T 2 has the
F distribution with p − 1 and N − p + 1 degrees of
freedom, and we reject the null hypothesis of equal
response variable means if F > Fα;p−1,N−p+1.

Paired Response Variables

Some repeated-measurements experiments consist of
the same p response variables observed at two
different times or conditions on the same subjects
or other sampling units. If we represent the p × 1
response vectors at the two times by X1 and X2

we can test the hypothesis H0 : E(X1) = E(X2) by
the T 2 statistic. A random sample of N independent
observation vectors partitioned according to the two
times as [x′

i1, x′
i2] yields the respective partitioned

sample mean vector and covariance matrix

[
x′

1

x′
2

]
,

[
S11 S12

S′
12 S22

]
,

where

Sij =
N∑

h=1

(xhi − xi )(xhj − xj )
′, i, j = 1, 2.

The Hotelling statistic is

T 2 = N(x1 − x2)
′(S11 + S22 − S12 − S′

12)
−1

× (x1 − x2),

and reflects the correlations between the two times
through the elements of the submatrix S12. T 2 is
merely the extension of the paired t test to p pairs
of response variables. If the data were transformed
to an N × p matrix of paired differences, then the
T 2 statistic would reduce to the single-sample T 2

described previously. When H0 is true, F = [(N −
p)/(N − 1)p]T 2 has the F distribution with p and
N − p degrees of freedom. H0 would be rejected
when F exceeds the right-tail α-level critical value
for that distribution.

Confidence Statements Obtained from T 2

Confidence Region for a Single Mean Vector

The distribution of T 2 for a single random sample
from the multinormal distribution can be used to
obtain this ellipsoidal 100(1 − α)% confidence region
for the population mean vector µ:

N(µ − x)′S−1(µ − x)

≤ [(N − 1)p/(N − p)]Fα;p,N−p

(see Confidence Intervals and Sets).

Simultaneous Confidence Intervals

Rejection of the null hypothesis by the T 2 test still
does not indicate which of the p responses may have
contributed to that decision. Roy’s union–intersection
derivation of T 2 [10] leads directly to simultaneous
tests and confidence intervals for linear compounds
of the population means (see Simultaneous Infer-
ence). “Simultaneous” means that one may construct
an unlimited number of confidence intervals and still
have an overall coverage probability of 1 − α, or
test infinitely many hypotheses and still enjoy an
overall type I error rate no greater than α. For the
single-sample case the 100(1 − α)% Roy–Bose [12]
simultaneous confidence interval for the linear com-
pound a′µ is

a′x − {
(1/N)a′Sa

×[(N − 1)p/(N − p)]Fα;p,N−p

}1/2

≤ a′µ ≤ a′x + {
(1/N)a′Sa

×[(N − 1)p/(N − p)]Fα;p,N−p

}1/2
,

where a is any p × 1 vector of constants chosen
by the investigator. For the two-sample situation the
100(1 − α)% simultaneous confidence interval for
the linear compound a′(µ1 − µ2) of the differences
of the mean vector elements is

a′(x1 − x2) − {
[(N + M)/NM]a′Sa

× [(N + M − 2)p/(N + M − p − 1)]

×Fα;p,N+M−p−1
}1/2 ≤ a′(µ1 − µ2)

≤ a′(x1 − x2) + {
[(N + M)/NM]a′Sa
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× [(N + M − 2)p/(N + M − p − 1)]

×Fα;p,N+M−p−1
}1/2

.

If the interval contains zero, then the hypothesis
H0 : a′µ1 = a′µ2 is tenable at the α level in the
simultaneous testing sense. Alternatively, in both
cases families of hypotheses can also be tested with
an overall type I error rate no greater than α.
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Human Genetics,
Overview

Mendel’s laws underlie the distribution of genetic
traits observed in individuals. At each genetic locus,
an individual receives one gene which is a copy
of a randomly chosen one of the two genes of the
father, and one which is a copy of a randomly chosen
one of the two genes of the mother. Each individual
passes on to each offspring a randomly chosen one
of his two genes, independently to each offspring
and independently of the gene contributed by his
spouse. The different allelic forms of the genes at
a locus, acting in combination with alleles at other
loci and with environmental effects, give rise to
different phenotypes, the observable characteristics of
individuals. Alleles at loci on different chromosomes
are inherited independently, but alleles at loci on the
same chromosome are linked, or correlated, in their
inheritance, owing to the process of meiosis which
gives rise to the gamete cells.

At the population level, new alleles arise by muta-
tion, and frequencies of alleles are influenced by
the genetic forces of selection and the demographic
forces of migration and population structure. Since
populations are finite, allele frequencies will change
over time under random genetic drift, even in the
absence of directional genetic or demographic forces
(see Population Genetics). Whereas genetic anal-
ysis of other species has been directed towards an
understanding of evolution and population biology,
or to the increase of crop yields and animal produce,
human genetics has been primarily focused on an
understanding of the genetic determinants of human
disease.

The year 1900 saw the rediscovery of Mendel’s
work, 1901 the first discovery of a human blood
group system, and 1902 the first application of
Mendelian principles in medical genetics, setting the
stage for the development of human medical and
population genetics. With the analysis of data from
human (as opposed to experimental) populations,
came the need to address questions of ascertainment
[11, 37]. With the discovery of blood group systems,
came the first array of genetic markers that could be
used both to assess human diversity and as markers
in linkage analysis.

In the 1930s there was a rapid expansion in the
development of approaches to the statistical analysis
of human genetic data, with the work of Haldane,
Hogben, and Fisher. Although Mendelian principles
had been applied earlier in assessing the proportion
of affected offspring in families ascertained for seg-
regation of rare recessive diseases [1, 37], this period
also saw the earliest formal segregation analyses,
comparing alternative models for the underlying basis
of a genetic trait [12, 16], and consequently further
development in a statistical framework and model for
ascertainment [8]. Also at this time came the recogni-
tion that the methods of linkage analysis already used
in experimental populations could be applied also to
data collected from human families ascertained for a
genetic disease [9, 13].

There is no strict separation between inferences of
the genetic basis of traits from family data and from
population data. One of the earliest applications of
population genetic principles to human disease was
Haldane’s consideration of the expected frequencies
of Mendelian genetic diseases in terms of mutation-
selection balance [14]. One of the first statistical
analyses of population data was that of Bernstein
[2] leading to a resolution of the basis of the ABO
blood types, while Fisher [10] regarded his analysis
of the rhesus blood group system as a fine example of
scientific inference. The resolution of human genetic
blood groups and enzyme systems not only provided
genetic markers for linkage analysis but also a source
of extensive information on human diversity.

In fact, the discovery of many blood group systems
in the first half of the century prompted many stud-
ies of the extent of human diversity, and a search for
explanations of observed data on the basis of models
of selection, and of the migration patterns of human
history. Many of the population genetic ideas and
models underlying such inferences were described
by Cavalli-Sforza & Bodmer [5]. While demography
may be the major factor influencing global patterns of
human diversity, a gene need not itself be subject to
differential selection in order for its selection to have
an impact. The discovery of the many variants present
in the human white blood cells (HLA system), and
their multiple and complex associations with disease
prompted renewed effort in understanding patterns of
human variation. The phenomenon of “hitchhiking”
[20], where the selective effects of genes at closely
linked loci affect patterns of observed variation, has
been used to explain unusually high frequencies of
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some human disease alleles in some human popula-
tions [35]. Thomson et al. [34] used human HLA data
to examine the evolutionary interactions of selection,
migration, and linkage. A more recent review of the
statistical approaches to an understanding of associa-
tions of HLA and disease is given in [33]. Although
current research in human genetics is often more
focused towards individual data than to information at
the population level, the data painstakingly compiled
by Mourant et al. [23] remain a rich source of infor-
mation, while the major work of Cavalli-Sforza et al.
[6] shows how population allele frequencies reflect
the imprint of human history.

While demography and genetic selection affect
population allele frequencies, mutation is the source
of new genetic variation. The estimation of mutation
rates is therefore an important aspect of statistical
genetics. It is hard to obtain precise estimates of
human mutation rates by direct methods, since muta-
tion rates are small. Indirect methods of estimation
use current levels of genetic variation, and require
assumptions about population size and structure. Over
the 45 years since 1951 [25], the leader in study of
human mutation rates by both direct [27] and indirect
[26] methods has been J.V. Neel.

From 1935 to 1975 there were many develop-
ments in the statistical analysis of human genetic
data observed on relatives, but the basic framework
of segregation and linkage analysis, as developed by
J.B.S. Haldane and R.A. Fisher, remained largely
unchanged. For computational reasons, early analy-
ses had been restricted to nuclear families or small
pedigrees. With the widespread availability of digi-
tal computers, increasing interest in analysis of data
on more extended pedigrees led to the development
of new computational approaches [7]. With com-
putational power permitting the analysis of larger
data sets, and hence perhaps resolving more complex
traits, came the necessity for more complex trait mod-
els such as the mixed model in segregation analysis
[22]. In linkage analysis particularly, there were fur-
ther developments, leading to a better understanding
of how inferences could be drawn [15, 21] and to
a better understanding of their properties of linkage
likelihoods [31]. Ott [29] covers many of these devel-
opments.

Since 1980, with the development of molecular
biology, there has been an explosion in the number of
polymorphisms available for use as genetic markers

in linkage analysis. Human genome maps at centi-
morgan density are now a reality [24], and the limi-
tation in linkage analysis is no longer the availability
of segregating markers, but the trait information. Sim-
ple Mendelian traits are rapidly being mapped, and
the relevant genes identified. However, if a trait is
exceedingly rare, or shows genetic heterogeneity, or
if its genetic basis is uncertain or complex involv-
ing alleles at several loci, then problems in linkage
analysis remain.

The computation of a linkage likelihood over
a pedigree requires a specific segregation analysis
model for the trait to be assumed. For traits whose
basis is uncertain, particularly of incomplete pene-
trance or delayed onset, linkage detection methods
using only affected individuals have been developed.
These are more robust to trait model assumptions;
indeed, under the null hypothesis of no linkage, the
distribution of the test statistic is often independent
of trait model assumptions. Such methods date back
to the 1930s, when Penrose [30] introduced sib pair
methods, but more recently have been extended to
other types of relationship [3, 19, 36]. In many cases,
the use of only affected pedigree members can greatly
increase robustness with little loss of power.

Once linkage has been detected, multipoint link-
age analysis can help to localize the position of the
gene more precisely. However, multipoint methods
are computationally exceedingly intensive, particu-
larly where there are many unobserved members
of the pedigree. Moreover, there are limits to the
resolution of linkage mapping (see Genetic Map
Functions) [4]. The scale of resolution depends on
the number of segregations that can be (explicitly
or implicitly) observed. Where genetic homogene-
ity can be assumed, disequilibrium mapping [17] or
haplotype analysis provides an alternative. Here the
exact ancestry of current carriers of a disease allele
is unknown, but their shared ancestry results in link-
age disequilibrium with marker loci at small genetic
distance. The large number of ancestral segregations
provides for a finer mapping scale. Ultimately it may
be possible to map at still finer scales by considering
the matching and nonmatching segments of individ-
ual genomes [28].

Genetic heterogeneity is one of the major difficul-
ties in resolving the genetic basis of any trait. Studies
within a given population or of data on a single
extended pedigree reduce the chance of heterogeneity
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within the data set, but such data sets are often lim-
ited in size, and results may not be relevant outside
the particular population studied. Gradually, how-
ever, more complex traits are being resolved through
advances both in the available genetic data and in
methods of analysis and computation.

The classic text on human genetics is that of Stern
[32]. The more recent text by Khoury et al. [18] pro-
vides a thorough overview of approaches in modern
genetic epidemiology, while Ott [29] is the best ref-
erence text on linkage analysis in human genetics.
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Human Genome Project

The Human Genome Project (see http://www.
ornl.gov/hgmis/) was formally initiated on 1
October 1990 as an international scientific effort to
(a) map all of the approximately 30 000 functional
human genes and (b) sequence the approximately 3
billion deoxyribonucleic acid (DNA) nucleotides that
make up these genes [30] (see DNA Sequences;
Human Genetics, Overview; Sequence Analysis).
Originally envisioned as a 15-year project, the Human
Genome Project has proceeded far more rapidly than
anticipated, due in large part to rapidly accelerat-
ing improvements in molecular technology. A major
milestone of the Project was reached in 2001 with
the publication of a first draft sequence of the human
genome [10]; a parallel industry effort undertaken
by Celera Genomics was published contemporane-
ously [32].

The Project’s primary goals were to enable a fuller
understanding of the genetic basis of complex dis-
eases and to allow new insights into human evolution
through the comparison of the human genome with
the genomes of other organisms. Secondary goals
of the Human Genome Project included: developing
informatics tools to store, disseminate and analyze
the very large amounts of data produced (see Bioin-
formatics); technology transfer to the private sector;
and developing appropriate responses to any ethical,
legal or social concerns arising from the Project.

The availability of a draft outline of the
human genome will greatly assist the investigation
of the complex interrelationships of genetically
programmed phenotypes with the constituent genes
comprising each individual’s unique version of the
human genome. Several kinds of biologic information
are being produced by the Human Genome Project
to enable such investigations, including DNA
sequences, physical maps, genetic maps (see Genetic
Map Functions) and genetic polymorphisms. These
data have increased exponentially over the last decade
and are being collated in large, web-based databases.

There are many potential benefits anticipated from
the Human Genome Project. These include advances
in molecular epidemiology, allowing benefits such
as improved disease diagnosis; improved risk models
allowing early detection of increased disease risk;
enhanced drug design; gene therapy; and drugs
tailored to individual patients based on their

pharmacogenetic profiles. Other potential benefits
expected to arise from the Human Genome Project
include enhancements in the fields of statistical
forensics, bioarchaeology, evolutionary biology and
population genetics.

Genetic Polymorphism Discovery

An important component of the Human Genome
Project that is currently the focus of intense
research effort internationally is the discovery
and utilization of genetic polymorphisms for
genetic association studies (see Disease-marker
Association). The simplest and most abundant
class of polymorphism derives from a single-base
substitution of one nucleotide for another – a single
nucleotide polymorphism (SNP; pronounced “snip”)
[17]. SNPs are recognized through a variety of
techniques that exploit the known DNA sequence
variant [17]. SNPs may be found in coding or
regulatory regions of a gene and thus can directly
affect gene function or expression.

The generation of SNP maps from high-
throughput sequencing projects [17, 24, 31, 33]
has continued to accelerate over the last decade
[1, 5, 6, 18, 22, 25], with the hope that these
data will facilitate the process of gene discov-
ery in complex human disease. In addition to
large government-sponsored projects in England
[http://www.sanger.ac.uk/], the US [4] and
Japan [23], there are now several major industrial
group efforts [14, 15], a large academic–industry
consortium effort [19], and a number of smaller aca-
demic programs [e.g. http://pga.bwh.harvard.
edu/] devoted to large-scale SNP discovery. A cur-
rent focus in human genetics is thus on SNP discov-
ery, leading to the creation of SNP catalogues, and
on improving technologies for SNP genotyping.

As part of the intense research effort to improve
our ability to discover the genetic determinants of
complex human disease over the last decade, techno-
logic advances in the laboratory related to sequencing
and SNP genotyping have proceeded at a very rapid
rate (see Genetic Markers). Although the pace of
technologic development in SNP analysis is rapid
[7, 8], using microarray and other technologies [16],
there are many technical problems with these systems
that limit their utility at present, such as cost and the
inherent lack of flexibility in hardwiring markers on
a chip.
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There are six primary areas of potential applica-
tion for SNP technologies in improving our under-
standing of the etiology of complex human disease:
gene mapping; candidate polymorphism association
testing; pharmacogenetics; diagnostics and risk pro-
filing; prediction of response to nonpharmacologic
environmental stimuli; and homogeneity testing and
epidemiologic study design [25]. While only a few of
these areas are currently areas of active research in
human genetics, it is likely that some or all of these
areas will become relevant to investigations of the
genetic susceptibility to human disease.

Implications of the Human Genome
Project for Biostatistics

The Human Genome Project has had important impli-
cations for the fields of biostatistic genetics and
genetic epidemiology. Catalyzed in part by the vast
amounts of data generated by the Human Genome
Project and the SNP genotyping efforts in complex
human disease, it has become clear that concomitant
statistical advances in the mapping of complex traits
will also be required [12, 28, 35] (see Linkage Anal-
ysis, Model-based; Linkage Disequilibrium). The
Human Genome Project and SNP genotyping efforts
have caused a substantial rethinking of mapping
methodologies and study designs in complex human
disease [9, 21, 27, 34]. The testing of large num-
bers of genotypes or other genetic parameters, such
as gene expression profiles for association with one or
more traits, raises important statistical issues regard-
ing the appropriate false positive rate of the tests
and the level of statistical significance to be adopted
given the multiple testing involved [21, 27]. Other
important and unresolved issues include the appropri-
ate use of haplotypes (see Haplotype Analysis) and
the modeling of linkage disequilibrium. The required
methodologic development in genetic statistics and
bioinformatics is nontrivial given the complexity of
many common diseases and the genetic databases
being collated. Some current areas of methodologic
development include haplotype analysis [11, 29, 36],
distance-based mapping measures [3, 26], combined
linkage and association analyses [13], techniques for
modeling linkage disequilibrium and population his-
tory [36], and Markov chain Monte Carlo-based
approaches [20] (see Bioinformatics for other areas
of methodologic development).

Conclusion

The sequencing of the human genome, pursued both
by government and industry, is rapidly informing
us as to genetic structure and diversity [2]. The
availability of a complete reference sequence for the
human genome, together with new advances in high-
throughput genotyping, functional genomics, chem-
istry, proteomics and in bioinformatics and biostatisti-
cal genetics, will likely accelerate the gene discovery
process in complex human disease.
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Hypergeometric
Distribution

Consider a clinical study of five patients A, B, C, D,
and E, two of whom are randomly assigned to a new
therapy (surgery plus drug) and the remaining three
to surgery alone. As healthy skeptics, we wish to test
the statement that the patients’ fates are unaffected
by the new drug. Suppose that patients A and C
respond. What is the probability distribution of the
number of responders in the group assigned to the
new therapy?

We can easily enumerate the possible outcomes
(Table 1). There are 10 equally likely assignments
of patients to the treatment groups, and under our
assumption of predestined fate, the probability of two,
one, or no responders in the new treatment group are
10%, 60%, and 30%, respectively.

Enumeration works well when the number of
possibilities is small, such as the example in Table 1
of 10 possible assignments. However, as shown later,
there is a rapid increase in the number of possible
assignments with a modest increase in the scope of
the number of patients.

The Hypergeometric Distribution

Consider a population of N patients, among whom
A are “responders” and B = N − A are “failures”.
Suppose we select a random sample of n patients.
(That is, any subset of n patients has an equal chance
of being the actual sample.) What is the probabil-
ity distribution of the number of responders in the
sample? The answer defines the hypergeometric dis-
tribution.

Combinatorial Considerations

Question: How many distinct n letter words can we
make from an N letter alphabet, when no letter is
repeated?

Table 1 Assignments to new therapy (others to standard)

AC (two responders in new therapy): 1 way
AB, AD, AE, BC, CD, CE (one responder): 6 ways
BD, BE, DE (no responders): 3 ways

Answer:

n−1∏

i=0

(N − i) = N(N − 1)(N − 2) . . . (N − n + 1).

(1)

The first letter can be selected N ways. For each
of these, the second can be chosen in (N − 1) ways.
Hence there are N(N − 1) two-letter words. For each
of these two-letter words there are (N − 2) ways to
select the third letter, or N(N − 1)(N − 2) three-
letter words. The general formula follows inductively.

Question: How many ways can we select n distinct
letters from an N letter alphabet, if order is unimpor-
tant?

Answer:

(
N

n

)
= N !

n!(N − n)!
=

[
n−1∏

i=0

(N − i)

] /
n!, (2)

where, by definition, r! = r(r − 1)(r − 2) . . . 1 and
0! = 1. [We define

(
N

n

)
as zero if n < 0 or n > N .]

By applying (1) with N = n, there are n! ways
to arrange each collection of n distinct letters into
words. Hence, the number of distinct selections of
n letters from an N letter alphabet is the number
of n letter words per (1) divided by n! This gives
us the right-most result in (2). By multiplying the
numerator and denominator of the right-most part of
(2) by (N − n)!, we obtain the middle expression
of (2).

Hypergeometric Probability Function

The solution of the original question posed is defined
as the probability of observing x responses in a
random sample of n patients from a population con-
taining A responders and N − A nonresponders:

h(x; n, A, N) =
(

A

x

)(
N − A

n − x

)/(
N

n

)
(3)

=
(

n

x

) (
N − n

A − x

)/ (
N

A

)
. (4)

Note that (4) tells us that the roles of n and A are
interchangeable.
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To derive (3), note that from (2), there are
(
N

n

)

possible samples. Also from (2), we can select x

responders from the population of A responders in(
A

x

)
ways and for each of those, we can complete

the sample by selecting the nonresponders in
(
N−A

n−x

)

ways. Hence, the numerator of (3) represents the
number of possible samples with exactly x respon-
ders.

To obtain (4) from (3), one can simply replace the
combinatorial terms by factorials [middle part of (2)].

In the example posed in the Introduction, N = 5
patients, A = 2 responders, and n = 2 sampled in the
experimental treatment. From (3):

h(2; 2, 2, 5) = 1

10
,

h(1; 2, 2, 5) = 6

10
,

h(0; 2, 2, 5) = 3

10
.

If N = 20 and n = 10, then there are 184 756 possi-
ble samples. Enumeration of the possible samples, as
in the case where N = 5 and n = 2, would quickly
become too time-consuming.

Properties of the Hypergeometric
Distribution

Property 1. By straightforward algebra applied to (3):

h(x + 1; n, A, N)

= h(x; n, A, N)

[
(n − x)(A − x)

(x + 1)(N − A − n + x + 1)

]
.

(5)

Property 2. Since from (5), the term in square brack-
ets decreases with increasing x, the distribution is
“unimodal” and has its mode at one (or both) of the
integer values of x surrounding the x value where the
term in square brackets is equal to unity. That is, the
mode is adjacent to or equal to (if an integer):

x = (A + 1)(n + 1)

N + 2
− 1. (6)

A “unimodal” discrete distribution over a finite set of
integers 0, 1, . . . , K has probabilities that behave in
one of the following ways: (i) increase to a peak and
then decrease; (ii) have a peak at zero and decrease;

or (iii) increase from zero to its peak at the high-
est possible x, K . Looking at increasing values of
the random variable, it cannot show an increase in
probability to the right of a decrease.

Property 3. The mean of the hypergeometric distri-
bution, µ, is

µ = nA

N
. (7)

Property 4. The variance of the hypergeometric dis-
tribution, σ 2, is

σ 2 = n(N − n)A(N − A)

N2(N − 1)
. (8)

Property 5. Although the mean and mode do not seem
to be related, it can be shown that the mean is always
larger than the value defined by x in (6), and the mean
is always within one unit of the value of x defined in
(6). Thus, the mode must occur close to the mean.

Approximations

The approximations below can be “proven” by limit
theory. The astute question, however, is: How large
must the various quantities be before the approxi-
mation works to our satisfaction? Hence, rather than
limit theory, we use exhaustive computer searches to
explore the accuracy. The demonstrations are con-
vincing in terms of closeness over a broad range of
applications.

We approximate the cumulative distribution, which
has exact value:

Pr[X ≤ x] = H(x; n, A, N)

=
x∑

j=0

h(j ; n, A, N), (9)

where h is defined in (3).

Binomial Approximation

If the population, N , is “large”, and the sample size,
n, is a “small” fraction of the smaller of A (respon-
ders) and (N − A) (failures), then the cumulative
distribution satisfies the following approximation:

H(x; n, A, N) ∼=
x∑

j=0

(
N

j

)
pj (1 − p)n−j , (10)

where p = A/N .
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The right-hand side of (10) is the cumulative
binomial distribution.

Because of the “drop in the bucket” effect, succes-
sive trials are close to independent. Sampling without
replacement (hypergeometric) is similar to sampling
with replacement (binomial). (see Sampling With
and Without Replacement).

Reality Check. We studied each of the 432.9
million binomial approximations where 100 ≤
A ≤ 1000, 100 ≤ N − A ≤ 1000, n ≤ 0.1A and
n ≤ 0.1(N − A), and x = 0, 1, . . . , n. The largest
deviation between the cumulative distributions
occurred where A = 100, N − A = 100, n = 10, and
x = 3. Eq. (9) gave an exact value of 0.1656, while
(10) gave an approximate value of 0.1719, for a
difference of 0.0063.

Normal Approximation

Let us define the “smallest expected value” as

EC = min

{
An

N
,
(N − A)n

N
,
A(N − n)

N
,

(N − A)(N − n)

N

}
, (11)

the smallest of the four expectations obtained per (7),
interchanging the symmetric roles of n vs. N − n and
A vs. N − A.

If EC is “large”, then

H(x; n, A, N) ∼= Φ

(
(x − µ)

σ

)
, (12)

where Φ is the standard normal cumulative dis-
tribution. The values µ and σ are defined in (7)
and (8).

Since the hypergeometric distribution is discrete,
Yates [8] suggested that a better approximation might
result by using the following, noting that all the
probabilities occur at integer values:

Pr[X ≤ x + 0.5] = Pr[X ≤ x] for

x = integer in the hypergeometric

distribution.

The basic idea is to approximate the discrete proba-
bility that the hypergeometric variable is equal to an
integer, by the normal probability of falling within

±0.5 of the integer (see Yates’s Continuity Correc-
tion).

The “corrected approximation” is

H(x; n, A, N) ∼= Φ

(
(x − µ + 0.5)

σ

)
. (13)

A rule of thumb, supposedly attributed to R.A. Fisher,
claims that values of EC as low as 5 give satisfactory
results.

Reality check of (13). We ran a computer check
of all situations where N ≤ 250 and EC ≥ 5. The
largest deviation between (13) and (9) occurred where
N = 250, A = 36, n = 37, and x = 5. The exact
probability from (9) is 0.5517, while the corrected
normal approximation, (13), yielded 0.5347, for a
deviation of 0.0170. The largest deviation in the
“tail” (where the cumulative probability was small),
occurred at N = 245, A = 35, n = 35, and x = 1.
The exact probability is 0.0230, while the corrected
normal approximation yields 0.0342 for a deviation
of 0.0112. The computer routine compared over 19
million contingencies.

We also ran a computer check of all situations
where N ≤ 250, EC ≥ 7, and the cumulative hyper-
geometric probability is below 20%. The largest
deviation here was 0.0080, which occurred at N =
250, A = 42, n = 42, and x = 3. The exact value is
0.0462, while the corrected normal approximation is
0.0542.

The uncorrected normal approximation may be
much more unreliable in the tails, where it is most
important. For example, if N = 50, A = 16, N = 17,
and x = 3(EC > 5), then the exact hypergeometric
cumulative probability (9), is 0.1056, while the uncor-
rected normal approximation, (12), is only 0.0611, a
deviation of 0.0445.

For more information on other approximations, see
[5] and [2].

Final Commentary

The reader may wonder why we introduced approxi-
mations in an era when exact calculations are rou-
tinely available on computers. Ironically, the very
hardware and software that allowed us to investi-
gate the adequacy of the approximations, in the most
extensive study yet conducted, are the very same tools
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that allow us to use exact methods for every applica-
tion. However, these approximations have been used
in countless past research projects, and will con-
tinue to be employed by others. The investigation
in this article indicates that the P values reported
in these articles using binomial or corrected normal
approximations are reasonably accurate, and that the
inferences are qualitatively correct, provided that one
is not an all-or-none type inference maker, based on
a P value of 5% or 1%. Haber [2] shows that if the
goodness criterion is a ratio of probabilities, then in
the tails and with low expected numbers, the Yates
correction was perceived to perform relatively poorly.
This should not dissuade users.

In 1990, Statistics in Medicine devoted consider-
able coverage to the Yates correction (see [3] and
the ensuing discussion). Shuster [6] used the bino-
mial approximation for the analysis of clinical trials
where the sample size is large but the events are rare.
In effect, he interchanged the roles of A and n, as
noted below (4).

Suissa & Shuster [7] relied heavily upon the
hypergeometric distribution when they derived sam-
ple size requirements for clinical trials involving
two independent samples. Their exact unconditional
methods require fewer patients than a corresponding
Fisher’s exact test, when type I error and power are
prespecified.

The term hypergeometric distribution [1] is based
on the connection with the “hypergeometric series”
defined by Euler in 1769. His series produced as
special cases the geometric series which he was gen-
eralizing, and a polynomial whose coefficients are
constant multipliers of the hypergeometric probabili-
ties. For further details, see [4].

Generalization

The idea of the hypergeometric distribution can be
extended to a multivariate setting as follows. Sup-
pose a population contains Nj subjects of type j ,
j = 1, 2, . . . , J . Suppose we wish to partition this
population randomly into subgroups of size Mi , i =
1, 2, . . . , I . Let Xij be the number of subjects of type
j in subgroup i. Then

Pr [Xij = xij : 1 ≤ i ≤ I, 1 ≤ j ≤ J ]

=
I∏

i=1

Mi!
J∏

j=1

Nj !




N !
J∏

j=1

I∏

i=1

xij !






−1

, (14)

where

N =
I∑

i=1

Mi =
J∑

j=1

Nj .

If I = J = 2, N1 = A, N2 = N − A, M1 = n, and
M2 = N − n, then (14) reduces to (3), the hyper-
geometric. The marginal distribution of each Xij is
hypergeometric with A = Nj and n = Mi .

Finally, note that for the fixed constants Nj and
Mi , the probability given in (14) is inversely propor-
tional to

J∏

j=1

I∏

i=1

xij !.

This fact drives computer programs dedicated to
the exact analysis of two-dimensional contingency
tables (see Exact Inference for Categorical Data).

The same concept can be extended to multidimen-
sional situations with probabilities inversely propor-
tional to the product of the factorials of the individual
cell counts.
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Hypothesis Testing

The global responses of patients with diabetic neu-
ropathy who had been randomly assigned to one of
two different treatments (see Randomized Treat-
ment Assignment) are displayed in Table 1. If the
treatments were equally efficacious, we would expect
to see the same percentage of patients deteriorating
or improving in both. Since the responses of indi-
vidual patients will differ, even if given the same
treatment, the resulting random variation means that
we would not expect to see exactly the same percent-
age in each group. However, note that there are 14
patients with moderate or excellent response to treat-
ment A and only three such patients on treatment B.
Could this great a difference have happened “at ran-
dom”? The basic idea behind hypothesis testing is to
compute the probability of the pattern of data that we
have observed, under the assumption that any differ-
ences are “purely random”. If that probability is very
low, then we would be tempted to reject the hypoth-
esis that the differences between treatments is due to
“random noise” alone. If the pattern that is seen also
suggests a consistent difference in response between
the treatments, we would be even more inclined to
reject the hypothesis of equal effect.

In Table 1, around 30% of the patients on treat-
ment A have a moderate or excellent response ver-
sus only 6% on treatment B. If we treat these two
numbers as coming from independent binomial ran-
dom variables with the same underlying probability
of response, the probability of seeing as great or
greater a difference is less than 0.001. Yet, the only
excellent response was under treatment B. How can
we claim that treatment A is better? What would have
happened if we had compared only the percentage
of patients with an excellent response? Or the per-
centage of patients with any improvement? Or the
percentage of patients who deteriorated? Of all parts
of Table 1, the break between moderate improvement
or better and all other responses is most favorable
to treatment A. Is it acceptable to choose the most

favorable part of the data before calculating the prob-
ability? What is the “right” way of applying hypoth-
esis tests? Is there an “optimal” method of testing?
Questions like this have generated a vast literature
of books and articles, ranging from abstract mathe-
matical dissertations, to philosophical discussions of
the meaning of probability, to the interpretation of
hypothesis tests run on medical, epidemiologic, and
other biological data. There are at least two major
schools of thought, and how one uses hypothesis tests
or interprets them may differ, depending upon which
school of thought is being invoked.

Historical Development

The basic idea behind hypothesis testing has been
used in many branches of science for at least
200 years. One author [1] claims to have found the
germ of the idea in a medical discussion from 1662.
Other early references have included astronomical
and sociological investigations (see [16]). However,
the earliest clearly thought-out use of hypothesis test-
ing probably belongs to Karl Pearson. Pearson was
collecting biological data from all over the world
and attempting to fit these data to specific probabil-
ity distributions (see Galton et al. [12], for a formal
statement of this program). The plan was to show the
effects of natural selection and evolution on shifts in
these distributions under the pressure of changes in
the environment. To determine whether a given dis-
tribution fit the data, Pearson ordered the numbers
and divided them into bins containing 5–20 adjacent
numbers in a bin. He then computed the expected
number of observations that he should have seen in
each bin and compared the expected number to the
observed number. If Oi = the observed number in
bin i, and Ei = the expected number in bin i, then
the sum

(O1 − E1)
2

E1
+ (O2 − E2)

2

E2
+ · · ·

+ (Oi − Ei)
2

Ei

+ · · ·

Table 1 Responses of patients with diabetic neuropathy, to two randomly assigned treatments

Deterioration Improvement

Severe Slight No change Slight Moderate Excellent

Treatment A 1 2 20 9 14 0
Treatment B 3 2 26 15 2 1
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was used to determine if the fit was good. If this
sum was too large, the proposed distribution was
rejected. Pearson proved that, regardless of the under-
lying probability distribution being tested, if the sam-
ple size was large enough, this sum had a specific
distribution, which he called a chi-square(d) distri-
bution. Thus, he was able to test the hypothesis that
the data followed a specific random pattern with an
omnibus test.

Pearson’s proof was not completely rigorous, and
his exact calculations were in need of some minor
adjustments (derived in [6]). However, his work con-
tains the basic components of any modern hypothe-
sis test:

1. a well defined probability distribution that descri-
bes the hypothesis that the differences in pattern
are “purely random”.

2. A test statistic that can be calculated from the
data, which:
(i) has a distribution that is the same regardless

of the definition of “purely random”; and
(ii) can be used to compute a probability that

measures how well the observed data fit the
distribution that defines “purely random”.

R.A. Fisher, a younger contemporary of Pearson,
derived most of the test statistics that we now use,
in a series of papers and books during the 1920s and
1930s. Fisher also published a “cook book” of meth-
ods to popularize these tests [7], which went through
10 editions. G.W. Snedecor, who founded the first
statistics department in the US at Iowa State Univer-
sity, published a textbook [20] that spread Fisher’s
methods and test statistics into even further use. In
the 1970s, a review of the Science Citation Index
showed that Snedecor’s textbook was the single most
frequently cited paper or book in the scientific liter-
ature of the time.

However, there were many questions about how to
use these test statistics and which test statistics to use
under which circumstances. In the late 1920s, Karl
Pearson’s son, Egon Pearson, approached the young
Polish mathematician Jerzy Neyman with a question
that was bothering him. If you test whether data fit a
particular probability distribution, and the test statistic
is not large enough to reject that distribution, how do
you know that this is the “best” that could be done?
How do you know that some other test statistic might
not have rejected that probability distribution? The
resulting collaboration between Egon Pearson and

Neyman over the next few years produced a series
of papers that revolutionized the nature of hypothesis
testing and introduced some of the basic ideas that
now govern this field.

Following on from this work by Neyman
and Pearson, Eric Lehmann published a definitive
textbook [15] that elaborated on the original
Neyman–Pearson formulation. This version of the
Neyman–Pearson formulation is the interpretation
of hypothesis testing that is usually taught in
elementary statistics courses, and it dominates much
of the medical and epidemiologic literature, where
hypothesis testing is used.

Fisher, the creator of most of our modern meth-
ods, was critical of the Neyman–Pearson formulation
(see [9]; developed more fully in [11]). He felt that
the formulation may have been very nice mathemat-
ics, but that it had nothing to do with the way in
which hypothesis tests are actually used in scientific
investigations. In addition, the statistical literature
is filled with other objections to the validity of the
Neyman–Pearson formulation in terms of its use of
probability and its ability to interpret experimental
results (for a survey of this work, see [2]). In general,
these objections come from two schools of statisti-
cal reasoning. One school follows Fisher’s approach
and views hypothesis tests as rough tools of infer-
ence that should be used only in conjunction with
other tools (for a full discussion, see [5]). The other
school criticizes what they consider to be irrational
components of hypothesis testing and proposes that
inference should be based on the likelihood function.
These critics, in turn, fall into two general categories,
the Bayesians and those who would rest all infer-
ence on likelihood alone (see Bayesian Methods;
Likelihood). Bayesian techniques do not make use of
hypothesis tests but base their inference on credibility
intervals that describe a highly probable range of val-
ues for a given parameter, based on prior knowledge
and the data (see Prior Distribution). The likelihood
approach to inference also rejects formal hypothesis
testing and bases inference on ranges of the param-
eters that produce relatively high likelihoods for the
observed data.

Since Lehmann’s definitive text, hypothesis testing
has been a fruitful area for statistical research. More
recent developments include locally most powerful
tests, restricted tests, investigations into the robust-
ness of tests, and tests of nested (or hierarchical)
and nonnested models (see Separate Families of
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Hypotheses). Some of these will be discussed briefly
in what follows, but the reader should be aware that
this continuing research means that the nature of
hypothesis testing and the applications of these tech-
niques will continue to change.

The Neyman–Pearson Formulation

We shall start with a simple model and build on that.
Consider two hypotheses about the nature of reality.
In Table 1, the two hypotheses might be

H0: the probability of moderate or better improve-
ment is the same for patients on treatment A as
it is on treatment B.

H1: The probability of moderate or better improve-
ment is twice as great on treatment A as it is on
treatment B.

H0 is called the “null hypothesis”. H1 is called the
“alternative hypothesis”. We are presented with data
from a study and we are asked to make one of two
decisions:

D0: H0 is true.
D1: H1 is true.

This situation can be displayed as a two-by-two table,
as shown in Table 2. If the decision matches the true
state of nature, there is no error. Otherwise, two types
of error are possible. The probability of a type I error
(deciding for the alternative hypothesis when the null
hypothesis is true) is labeled α. The probability of a
type II error (deciding for the null hypothesis when
the alternative hypothesis is true) is labeled β.

One “solution” for this simple setup is to con-
sider all possible patterns that the data might have
and order them in terms of increasing evidence in
favor of the alternative hypothesis. For instance, in
comparing two treatments with respect to the fre-
quency of improvements in Table 1, we have a total
of 41 (9 + 14 + 0 + 15 + 2 + 1) patients improving.

Table 2 A decision table for choice between
two hypotheses

True state of nature

Decision H0 H1

D0 No error Type II error
D1 Type I error No error

A result that would be most favorable to the alter-
native hypothesis (that treatment A is better than
treatment B) would be to assign all 41 to treatment A.
The next most favorable would be to assign 40 to
treatment A and one to treatment B, etc. Once the
possible outcomes are ordered, the analyst can pick a
specific outcome (say, a break of 30A and 11B) and
calculate the probability, based on the assumption of
H0, for each outcome that was as favorable or more
favorable than that specific break point. Similarly, the
analyst could compute the probability, based on the
assumption of H1, for each outcome that is less favor-
able than that specific break point. Let the decision
be as follows:

D1: choose H1 if the observed outcome is at that
break or at one more favorable.

D0: choose H0 if the observed outcome is one of the
events less favorable than that break.

Then, the sum of the favorable probabilities at that
break and beyond, under the null hypothesis, is the
probability of a type I error, α. Similarly, the sum
of the unfavorable probabilities less than that break,
under the alternative hypothesis, is the probability of
a type II error, β.

Another approach is to decide in advance what
level of α (perhaps 0.05) error the analyst is willing
to have (see Level of a Test). Then, each time the
analyst is faced with a decision involving a simple
null and a simple alternative hypothesis, the analyst
can choose a break point that corresponds to that level
of α. Then, in the long run, regardless of the exact
problem at hand, the proportion of times the analyst
will make a type I error will be α. However, for this
to hold, the complete decision process (the choice of
α, of the test statistic, and of the cut-point) must be
set up in advance of seeing any data and independent
of the outcome of a particular trial.

This situation of a simple null and simple alterna-
tive hypothesis seldom holds in real life. For instance,
in Table 1 we can propose a simple null (that the
probability of response is the same for both treat-
ments), but a simple alternative would require that
we pick a specific difference in probabilities for each
type of response. If we want the alternative hypothe-
sis to be more general, such as that the probability of
improvement is greater for A and that the probability
of deterioration is less for A, then we have to consider
an infinitude of possible differences in probabilities
of response. In such a case, the alternative hypothesis
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is called a composite hypothesis. However, although
the comparison of a simple null and a simple alterna-
tive hypothesis seldom occurs in real-life problems,
it is a useful first step in visualizing how one might
proceed.

To be more realistic, let us consider a simple null
hypothesis and a composite hypothesis of alternatives
that are farther and farther away from the null.
For instance, we might consider the null hypothesis
that the probability of improvement is the same
for both treatments and the composite alternative
that the probability of improvement for A has the
relationship

pA = kpB, k > 1.

This includes the simple alternatives that k = 2
(probability of improvement for A is twice that of B),
k = 1.001, k = 10, etc. As k increases, the “distance”
between the simple null and the alternative increases.
(There is a technical problem, here. If k gets large
enough, then pA will be greater than 1, but this can be
taken care of by considering odds (see Odds Ratio)
rather than probabilities.)

At this point, the Neyman–Pearson formulation
has three parameters that govern the decision process:
α, β, and δ the latter being the “distance” from the
null to a specific simple alternative that is part of
the composite alternative. Once they had reached
this point in their development, Neyman and Pearson
sought an optimum solution to the problem. Some of
the critics of this formulation have attached on this
attempt to find an optimum solution as one of the
inherent problems. This is because one has to define
what is meant by optimum, and the act of defining
it often limits the nature of the solution. In this case,
Neyman realized that there was no single definition
of optimum when dealing with three freely ranging
parameters. However, it was possible to define an
optimum if the problem was constrained. Neyman’s
solution was the following:

1. fix α;
2. find a decision process that minimizes β for a

range of δ-values.

They called 1 − β, the probability of correctly decid-
ing in favor of the alternative hypothesis, the power
of the test procedure. Thus, in words, the optimum
solution is one that fixes the probability of a type I

error in advance (at, say, 0.05) and then has the
greatest power for a specific range of alternative
hypotheses. In this way, the analyst will make type I
errors 100α% of the time across the entire spec-
trum of decisions that use this same α-level. At the
same time, the analyst will be testing hypotheses is
a way that is most favorable to the set of alterna-
tives that have been chosen as important for each
decision.

In such a model, the ideal decision process is
one that is more powerful than any other for all
possible alternatives. This is the uniformly most
powerful, or UMP, test. If a UMP test exists, to
follow the Neyman–Pearson formulation, the ana-
lyst should always use it. Unfortunately, as Ney-
man noted in the final paper that he wrote in this
series [17], UMP tests seldom exist. In particu-
lar, they do not exist for the types of hypothesis
tests most often used in medical and epidemiologic
research.

There are two ways of overcoming this problem.
The analyst can narrow the class of alternatives, or
the analyst can seek the best decision process from a
collection of decision processes that are constrained
in some way. The first method (narrowing the class
of alternatives) occurs with the use of restricted
hypothesis tests and locally most powerful hypothesis
tests (for a more complete discussion, see [18]).
The second approach is done by requiring that the
hypothesis tests have certain properties. Some of
these properties are:

1. unbiasedness (the probability of a type II error
is never less than α);

2. symmetry (the test statistic should produce the
same value if the data are permuted – the nature
of the permutation defining the type of symme-
try);

3. invariance (the test statistic should produce the
same value if all the data are subjected to a
specific monotone transformation, such as multi-
plication by a constant, and an appropriate trans-
formation is applied to the parameter value).

This has led to a plethora of terms to describe
different types of optimum tests, such as UMP in
the class of unbiased tests. Whether such tests are
“optimum” for a given situation should depend upon
whether the restriction of the alternative hypotheses
or the properties defining the class of tests are



Hypothesis Testing 5

appropriate to that situation. Just because a test has a
nice name (such as “exact”) does not mean that it is
the “best” to use.

Criticisms of the Neyman–Pearson
Formulation

The major criticisms of this formulation for hypoth-
esis testing are three-fold: (i) the validity of the
α-level depends upon the definition of probabil-
ity as the long-run frequency of errors that might
occur; (ii) the computation of the significance level
uses the probabilities of events that have not been
observed; and (iii) the definition of optimum is purely
arbitrary.

The Use of the Long-Run Frequency of Errors to
Define α

Fisher [9] was one of the first to object on these
grounds. Fisher pointed out that long-run frequency
of error is a concept appropriate to quality control,
where an inspector wants to be sure than no more than
100α% of defective products will pass. However,
scientific investigation, said Fisher, is a process which
involves a sequence of experiments, in which the
conditions of each experiment are dependent upon
the outcome of previous experiments. G.E.P. Box
[3] added to this description by noting that the data
from previous experiments are often reexamined in
the light of later results. To Fisher, the fact that the
analyst uses a cutoff significance level of 0.05 does
not mean that the analyst will be wrong 5% of the
time. For, according to Fisher, the analyst has no
right to declare something is so until he can design a
study that will invariably produce a significant result
in favor of it.

There is a further problem with the Neyman–Pear-
son formulation whenever the observed P value is
less than or equal to α. It does not allow the analyst
to make any other decision. Thus, if α is set at 0.05,
a P value of 0.04999 has the same interpretation as a
P value of 0.00001. In Neyman–Pearson hypothesis
testing, there is no such thing as “more significant”,
and the use of symbols such as ∗ (for P ≤ 0.05), ∗∗
(for P ≤ 0.01), and ∗∗∗ (for P ≤ 0.001) has no mean-
ing. Attempts have been made to develop a theory
of “evidence” that will allow for multiple decisions

within this frequentist definition of probability. How-
ever, all have failed. (For a complete description of
this problem, see [14].)

The Use of Events not Observed to Compute P
Values

The power of an hypothesis test depends upon its
ability to reject the null for events that are more
favorable to the alternative. However logical the Ney-
man–Pearson development may seem, critics point
out that it ends up with a counterintuitive procedure.
Why should outcomes more extreme than the one
observed play any role in the decision process? These
critics point out that the only reasonable computations
involve the likelihood of the observations under the
null hypothesis and the likelihood under the alterna-
tive hypothesis. The ratio of these likelihoods should
be used to compare the hypotheses with respect to
the data. This ratio is called the Bayes factor in the
development of Bayesian statistical procedures (see
Bayesian Methods).

The Definition of Optimum is Arbitrary

Neyman was faced with a three-parameter problem:
α (the probability of a type I error), β (the probability
of a type II error), and δ (the “distance” between
the null and alternative hypotheses). His definition
of optimum was to fix α and minimize β over a
range of δ. Other definitions are possible. One could
minimize the sum α + β or the odds of α over β.
The major justification for Neyman’s definition of
optimum is that the resulting decision process mimics
closely the way in which prior workers such as
Fisher had used hypothesis tests. However, there is
no reason why fixing α is appropriate for medical
or epidemiologic problems. In fact, some critics
have asked sarcastically why the analyst’s long-
run probability of error should have anything to do
with whether treatment A is a life-saving procedure
that should be used in medicine. One alternative,
called sequential Bayes, proposes that there is a finite
number of patients who will be treated (see Adaptive
and Dynamic Methods of Treatment Assignment).
Some of those will be treated in a controlled trial that
compares treatment A to treatment B. Once the trial
is over, all of the remaining patients will be given the
treatment that has been declared better. The criterion
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proposed is to minimize the number of patients on
the poorer treatment.

Cox’s Formulation of Significance Testing

Many authors have agreed with Fisher’s objections
and proposed alternative approaches to hypothesis
tests. Like Fisher, these authors would treat P values
as rough tools for inspecting data. A full devel-
opment of this idea is due to D.R. Cox [5]. To
distinguish between his formulation and that of Ney-
man and Pearson, Cox called the informal use of P

values “significance testing” (as opposed to hypoth-
esis testing). Cox would have the analyst compute
the P value of a test statistic but treat it as one of
many descriptors of the data. If the experiment was a
difficult one to duplicate, or if the data from an epi-
demiologic study were difficult to accumulate, then
the analyst should consider higher P values as “sig-
nificant”. If alternative experiments were easily and
cheaply done, then the analyst should require lower
P values before taking any decision in favor of an
alternative hypothesis. In Cox’s view, the cutoff P

value is not set in advance, but is dependent upon
the importance of the question, the ease of replica-
tion, and, to some extent, the data themselves. At all
times, Cox warned, the evidence presented by a small
P value should be part of a more general analysis of
the data that pays attention to the estimated mean
effects and to the plausibility of the results.

Cox claimed that there are two general ways
in which significance tests and P values are used
in scientific research. He called these “hypothesis
dividing” and “hypothesis refining”. In the hypothesis
dividing mode, the scientist proposes two distinctly
different hypotheses as explanations of reality. The
scientist constructs an experiment or an observation
that will lean one way for one hypothesis or the other
way for the other hypothesis. The significance test
is used to determine if there is enough information
in the data to allow for a decision between the two
hypotheses. The significance test is not necessarily
used to decide in favor of one hypothesis or the other.
That decision depends upon the design of the study
and the nature of the data. The significance test is
used only to discard certain studies as not providing
enough information. (This echoes Fisher’s view of
significance tests.) In the hypothesis refining mode,
the scientist has a complicated model of reality,

involving many parameters, and he or she wishes
to eliminate some of those parameters as having
minor or negligible effects. Suppose, for instance, that
we have been following a cohort of individuals for
many years and wish to determine which baseline
characteristics were predictive of some future event
(such as a myocardial infarction). We might run a
logistic regression using all the baseline variables
that were collected and use significance tests to
eliminate those that do not have a “significant” slope
(see Variable Selection).

The Meaning of P Values

The P value of a test statistic is computed as
the probability of a critical region of possible
observations under the null hypothesis. However, it
is difficult to define what that means in real life. In
fact, the whole problem of linking the mathematical
theory of probability to real life is a controversial
one. Neyman finessed the problem by fixing the
α-level and defining its meaning as the long-run
proportion of times that an analyst will make a type I
error. However, one cannot use this formulation to
justify the statement that we are “100(1 − α)% sure”
that the null is false. Nor does this definition make
sense if a hypothesis test is going to be applied to
a nonreplicated event such as a definitive placebo
controled clinical study of a potentially life-saving
treatment (since, once the null hypothesis has been
rejected, it is unethical to do another study).

In the mathematical theory of probability, we pro-
pose that there exists a space of “events”. Probability
is a measure (similar to length or area) on that space
of events. The link between mathematical probability
and real life is how we define that space of events.
W.S. Gossett (who wrote under the pseudonym “Stu-
dent”) applied probability theory to the outcome of
experiments and said that the space of events was the
set of all possible outcomes of such an experiment.
But, since only one outcome is seen, this is not a well-
defined idea. In sample survey theory, the population
is fixed and a sample of that population is chosen at
random. The space of events is, then, the set of all
possible random samples that might have been cho-
sen. Since the randomization mechanism is known,
this space is well defined. The uncertainty described
by probability theory for sample surveys is not about
the characteristics of the population (which are fixed)
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but about the estimates of those characteristics that
are derived from the sample. In a case–control study
the concept of a sample and population remains, but
the calculated probabilities are the conditional prob-
abilities that a person has a prior condition (e.g. a
heavy coffee drinker), given that the person has the
disease (for an excellent discussion of this, see [4]).

To justify the use of probability theory in con-
trolled experiments, Fisher noted that the act of ran-
domly assigning experimental units to treatments in a
randomized controlled experiment generated a space
that consisted of all possible random assignments.
He was able to show that the classical distributions
of test statistics that he had developed are approxi-
mations of the permutation probabilities that would
result (see Randomization Tests). However, this
meant that hypothesis tests were valid only in the
framework of a randomized controlled study (for a
discussion of some of the consequences of this view,
see Intention to Treat Analysis). Fisher objected to
the observational studies connecting smoking with
cardiovascular disease and cancer [10], because they
used hypothesis tests to “prove” the case. Follow-
ing the same logic, Fisher would have objected
to the use of all hypothesis tests in epidemiology,
in case–control studies, or in any type of clinical
study that did not involve randomized assignment to
treatment.

It is tempting to use probability statements to
describe how “sure” one is about the results of the
investigation. This would result in phrases such as
“The probability that coffee is an important factor
in the development of pancreatic tumors is less than
10%”. However, the only way this can be done is
to describe a space of events that is either related
to the state of mind of the observer (personal or
subjective probability; for a complete discussion,
see [19]), or to a general opinion that one might
expect in a community of knowledgeable scholars
(an idea developed in [13]). All of these fall under
the heading of Bayesian statistical methods (see
Bayesian Methods).

Power and the Acceptance of the Null
Hypothesis

An important element of the Neyman–Pearson for-
mulation of hypothesis testing is the concept of
power. The quality of a statistical test is determined

by its power. One could construct a great many test
statistics from the data in Table 1. A chi-square test
for the independence of the rows and columns, for
instance, can be computed based on the null hypoth-
esis that the row (treatment) has nothing to do with
the columns (responses) (see Chi-square Tests). The
P value for this test is greater than 0.50. On the other
hand, one can use a Cochran–Armitage test (which is
a restricted test) that concentrates on the class of alter-
natives where the probability of a patient’s being in
treatment A increases with the response (see Trend
Test for Counts and Proportions). The P value
for the Cochran–Armitage test is 0.04. The theory
of restricted tests says that, if we believe that the
only viable alternatives are that the better treatment
is consistently better across all the possible responses,
then the Cochran–Armitage test is more powerful and
should be used rather than the chi-square test.

If we do not pay attention to power, then any test
would be equally as “good”. A reductio ad absurdum
of this is to ignore the data from a study and pick
a number from a table of uniformly distributed
random numbers between zero and one. If the number
is less than α, declare significance. Such a test is
“exact”. It also protects the α-level. But, the power
is also exactly equal to α (since, regardless of the
alternative hypothesis, it will reject the null 100α%
of the time.)

In spite of the fact that the Neyman–Pearson
formulation involves a decision to accept the null
hypothesis, there is a general consensus among statis-
ticians that hypothesis tests are not really designed for
that. To quote Fisher [8],

. . . tests of significance (are) . . . cogent for the
rejection of hypotheses, but. . .by no means cogent
for their acceptance. . .the logical fallacy of believing
that a hypothesis has been proved to be true, merely
because it is not contradicted by the available facts,
has no more right to insinuate itself in statistical than
in other kinds of scientific reasoning.

To deal with this problem, some have advocated that
articles which describe the results of studies include
information about the power of the study to detect
a meaningful degree of effect. Alternatively, it has
been urged that studies which result in a finding of
no significant difference should include confidence
intervals on the differences in effect that would be
reasonable from the data. If the power of the study
is inadequate to detect a meaningful effect or if the
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confidence interval contains meaningful differences
in effect, then the study is inadequate to accept the
null hypothesis (see Clinical Significance Versus
Statistical Significance).
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Identifiability

Consider a vector Y of random variables having
a distribution F(y; θ) that depends on an unknown
parameter vector θ . θ is identifiable by observation
of Y if distinct values θ1 and θ2 for θ yield dis-
tinct distributions for Y, that is, if θ1 �= θ2 implies
F(y; θ1) �= F(y; θ2) for some y [1]. A function g(θ)

is identifiable by observation of Y if g(θ1) �= g(θ2)

implies F(y; θ1) �= F(y; θ2) for some y. Note that θ

is identifiable if and only if all functions of θ are
identifiable.

There is some variation in the definition of identifi-
ability, the preceding being the most general. Variants
typically employ the density f (y; θ) or the expecta-
tion E(Y; θ) in place of the distribution; the latter
variants may explicitly involve a design matrix X of
regressors; for example, E(Y; X, θ). The basic con-
cept, however, is that θ [or g(θ)] is a function of the
Y distribution, and hence observations of realizations
of Y can be used to discriminate among distinct
values of θ [or g(θ)].

The term estimable is sometimes used as a syn-
onym for identifiable, but is also used in more specific
ways, especially in the context of linear models. For

example, Scheffé [4] defines a linear function c′θ of
θ to be estimable if there exists an unbiased estimator
of c′θ that is a linear function of the observed real-
izations of Y. This property has also been referred to
as linear estimability. In epidemiology, estimability
of g(θ) is sometimes used to mean that g(θ) can be
consistently estimated from observed realizations of
Y. Several other definitions have been given; see, for
example, [2, 3] and [5].
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Identity Coefficients

Identity (k-, or kinship) coefficients were introduced
by Cotterman [3], Malécot [10, 11], and Gillois [7]
to answer questions of the following sort: if an
individual X, is of genotype Aa, what is the proba-
bility that X’s relative, Y , is aa? To answer a question
of this kind efficiently, it is necessary to partition the
problem into two parts: (i) a measure of the relation-
ship connecting X and Y , and (ii) genotype proba-
bilities conditioned on the relationship. The first part
depends upon the concept of “identity by descent”
(ibd); the second on assumptions about the mating
system in the population.

The Concept of Identity by Descent

In Figure 1, Z is the offspring of X and Y , and X is
the offspring of V and W . The transmitted gametes
are labeled a, b, c, and d. It is clear from a consid-
eration of Mendelism (see Mendel’s Laws) that the
gene a is an immediate replicate of either c or d, but
not both. Let R denote the relation “is an immediate
replicate of” and Pr denote probability, then

Pr(aRc) + Pr(aR d) = 1 and Pr(aRc, aR d) = 0.

The following relations are defined in terms of
the fundamental relation, R, where x, y, z, and z′ are
arbitrary genes at a single locus:

R0 = the identity relation

(a gene is identical to itself),

R2 = [(x, y) : ∃ z (xRz, zRy)],

V W

YX

Z

c d

ba

Figure 1 The concept of identity by descent

R3 = [(x, y) : ∃ z ∃ z′(xRz, zRz′, z′Ry)],

Rn = [(x, y) : ∃ z ∃ z′(xRz, zRn−2z′, z′Ry)].

These are the powers of the relation, R. For example,
zR2y means that x is the immediate replicate of
a gene which is itself the immediate replicate of
y. If we let RU = R0 ∪ R ∪ R2 ∪ R3 ∪ . . . ∪ Rn, the
relation of identity by descent, I , is defined as

I = [
(x, y) : ∃ z

(
(xRUy) ∪ (yRUx)

∪(xRUz, yRUz)
)]

.

In practice, instead of writing xIy, it is customary to
write x ≡ y to mean x is identical by descent (ibd)
to y. This definition is simply a restatement in set-
theoretic notation of Cotterman’s original definition
for which he used the term “derivative”. Cotter-
man [3] states: “. . .derivative genes are genes which
are relatively recently descended one from the other
or both from some common gene”. The qualifica-
tion introduced by the phrase “relatively recently” is
included in the definition presented above by restrict-
ing the size of n in the definition of RU.

Arbitrary Relationships

Consider two related diploid individuals, X and Y .
Label the genes of X a1 and a2, and the genes of Y

a3 and a4. There are 15 “identity by descent” relations
among the four genes, as shown in Figure 2. A line
connecting two genes denotes that those genes are
ibd, the lack of a line denotes that they are not ibd.
Some of the events are combined; for example, 00k1

is the probability of the union of two events. The
notation is mnemonic: the first prescript is 0 if X is
allozygous (i.e. has nonibd genes at the locus) and 1
if X is autozygous (i.e. has ibd genes at the locus),
the second prescript refers to Y in the same way,
and the postscript indicates the number of genes X

and Y share in common, that is, the number that are
ibd. An alternative notation [9] is: 11k2 = ∆1, 11k0 =
∆2, 210k1 = ∆3, 10k0 = ∆4, 201k1 = ∆5, 01k0 = ∆6,
00k2 = ∆7, 200k1 = ∆8, 00k0 = ∆9.

As an example, the k-coefficients for X and Y in
Figure 3 are as shown. All coefficients with a leading
prescript equal to one are zero because X is assumed
to be allozygous. The probability that Y is autozy-
gous and X and Y share no gene in common is 01k0 =
2/32, because this can happen only if both gametes
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a1 a3 a1 a3 a1 a3 a1 a3 a1 a3 a1 a3 a1 a3

a2 a4 a2 a4 a2 a4 a2 a4 a2 a4 a2 a4 a2 a4

∆9 = 00k0 ∆8 = 2 00k1 ∆7 = 00k2

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

a1

a2

a3

a4

∆4 = 10k0 ∆6 = 01k0 ∆2 = 11k0
∆5 = 2 01k1

a1

a2

a3

a4

∆1 = 11k2

∆3 = 2 10k1

Figure 2 The 15 ibd relationships between two individuals, X and Y , and their probabilities (k-coefficients). (The genes
of X are labeled a1 and a2, those of Y , a3 and a4)

that form Y are derived from the gene in X’s daugh-
ter that did not come from X; the probability of this is
(1/2)4. The probability that both X and Y are allozy-
gous and they share no gene in common is 00k0 =
(1/2)3 + (1/2)3 + (1/2)4 = 10/32, and so on. In this
pedigree, the k-coefficients can be calculated from a
simple application of basic Mendelism. In general,
the nine k-coefficients are more difficult to calculate
except in very simple pedigrees [5, 12, 14].

Genotype Pair Probabilities for Pairs of
Relatives

The joint genotype distribution for a two-allelic
locus in terms of the k-coefficients and the gene
frequencies, p and q, of A and a, respectively, is
shown in Table 1. For example, the probability that
X and Y are both of genotype Aa is, according to the
table, Pr(X = Aa, Y = Aa) = 200k2pq + 200k1pq +
400k0p

2q2.

01k0 = 2/32

2 01k1 = 3/32

00k2 = 1/32

200k1 = 16/32

00k0 = 10/32

X

Y

11k2 = 0

11k0 = 0

2 10k1 = 0

10k0 = 0

Figure 3 A sample pedigree: calculating the k-coefficients

Noninbred Relatives

Often, one does not need the full set of k-coefficients
because many relationships do not involve inbreed-
ing. When neither X nor Y is inbred (when each
has an inbreeding coefficient, F = 0), then all the k-
coefficients are zero except for 00k2, 200k1, and 00k0.

The k-coefficients for a number of simple non-
inbred relationships are shown in Table 2. Bilineal
relations are those for which 00k2 > 0; unilineal rela-
tionships have 00k2 = 0.

To calculate the k-coefficients for any noninbred
relationship is straightforward. Let a and b be the
gametes that form X and c and d those that form
Y . Let fac be the probability that a and c are ibd,
fad be the probability that a and d are ibd, and so
on. Let FXY be the probability that a random gamete
from X is identical to a random gamete from Y , i.e.
the inbreeding coefficient of a, perhaps hypothetical,
offspring of X and Y . Then

k2 = facfbd + fadfbc, 2k1 = 4FXY − 2k2,

k0 = 1 − 2k1 − k2

and the calculation is reduced to the methods used
to calculate inbreeding coefficients. All of the k-
coefficients in Table 2 can be calculated from these
formulas.

Extensions

The k-coefficients described above apply to a single
autosomal gene in a diploid organism. Several kinds
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Table 1 The joint genotype distribution of X and Y

X Y 11k2 201k1 210k1 11k0 10k0 01k0 00k2 200k1 00k0

AA AA p p2 p2 p2 p3 p3 p2 p3 p4

AA Aa 0 0 pq 0 2p2q 0 0 p2q 2p3q

AA Aa 0 0 0 pq pq2 p2q 0 0 p2q2

Aa AA 0 pq 0 0 0 2p2q 0 p2q 2p3q

Aa Aa 0 0 0 0 0 0 2pq pq 4p2q2

Aa aa 0 pq 0 0 0 2pq2 0 pq2 2pq3

aa AA 0 0 0 pq p2q pq2 0 0 p2q2

aa Aa 0 0 pq 0 2pq2 0 0 pq2 2pq3

aa aa q q2 q2 q2 q3 q3 q2 q3 q4

Table 2 The k-coefficients for some simple relationships

Relationship 00k2 200k1 00k0

Unilineal
Parent–offspring 0 1 0
Grandparent–grandchild 0 1/2 1/2
Half sibs 0 1/2 1/2
Avuncles 0 1/2 1/2
First cousins 0 1/4 3/4

Bilineal
MZ twins 1 0 0
Full sibs 1/4 1/2 1/4
Double first cousins 1/16 6/16 9/16

of extensions are immediately apparent: to more than
one autosomal locus [1, 2, 6], to more than two
individuals [13], and to X-linked loci [4]. For a recent
review and more extensive bibliography, see [8].
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Image Analysis and
Tomography

Seeing is believing: sight is fundamental to our under-
standing of the world. This is as true in science as
in everyday life. The collection of much statistical
data is dependent upon human vision. For exam-
ple, the examination of samples under a microscope,
observing animal behavior, and the identification and
counting of plant species in a field are all forms
of image analysis. We are superb at analyzing the
images projected onto our retinas, using one-third
of our brains for vision. However, computers are
being used more and more to automate and extend
the potential of image analysis. Computers are bet-
ter at extracting quantitative information from images
than human observers: they can be more accurate
and more consistent from day to day. Furthermore,
computers may spare us from much tedious image
interpretation.

We see effortlessly, most of the time. Progress was
expected to be rapid when research commenced in
the 1960s on computer-based image analysis. The
task, however, has proved to be far more difficult.
At least in part, this is because we are not conscious
of the processes we go through in seeing. Biological
objects present an even greater challenge to computer
interpretation than man-made ones, because they tend
to be more irregular and variable in shape.

Application Areas

Images to be analyzed in biostatistics may come
from microscopy, medical scanning systems, elec-
trophoresis, or simply from photographing illumi-
nated objects. Figure 1 shows several such ex-
amples.

Figure 1(a) is a back-illuminated optical micro-
scope image of cashmere goat fibers whose diameters
were to be measured [38]. Measurement is made more
difficult because the microscope has a shallow depth
of focus and some fibers are out of focus, produc-
ing either dark or light edges to the fibers, so-called
“Becke lines”. There is a danger of misinterpretation
if the optics that produced a particular image are not
correctly understood. For example, the bas-relief type
of images typical of differential interference contrast
microscopy may be mistaken for three-dimensional

features. However, tailoring image processing algo-
rithms to particular forms of microscopy poses a con-
siderable challenge. There are many optical micro-
scope systems, including brightfield, darkfield, phase
contrast, interference contrast, fluorescence, and con-
focal systems (see, for example [91]). There are also
many other types of microscope systems such as
scanning electron microscopes and confocal micro-
scopes. Also, the theory of microscopy is complicated
and agreement with data is less than perfect.

Figure 1(b) shows an example of an image
produced by a medical imaging system, in this
case a reconstructed slice (tomogram) from positron
emission tomography (PET). It shows a transverse
cross-section through a woman’s thorax, with a
tumor circled. There are many other medical imag-
ing systems, such as conventional radiology, angiog-
raphy, X-ray transmission computed tomography
(CT), ultrasound imaging, magnetic resonance imag-
ing (MRI), and single photon emission (computed)
tomography (SPET or SPECT), each with its own
characteristics requiring attention in analysis (for
example, [16] and [72]). Tomographic methods,
including CT, SPET, and PET, seek to reconstruct
slices within the body from observations outside.

Figure 1(c) shows a type of electrophoresis gel,
a DNA sequencing gel autoradiograph, produced as
one stage in the DNA sequencing of gene fragments.
About 50 mixtures of radioactively labeled fragments
are positioned as distinct spots along one side of the
gel. Each mixture then migrates down the gel, and
DNA fragments produce separate, approximately hor-
izontal bands. Finally, a photographic plate is placed
over the gel. This blackens in response to radioac-
tive emissions, thus producing an autoradiograph.
Electrophoresis has many variants, including two-
dimensional (2D) electrophoresis, electrofocusing,
isotachophoresis, and several forms of immunoelec-
trophoresis [45]. Various forms of chromatography
and chemical assays also produce pictorial informa-
tion which can be interpreted by image analysis.

Finally, Figure 1(d) is an image of illuminated
objects, in this case of 50 wheat grains, obtained
using a video camera. This was part of an experiment
to see if it was possible to estimate flour yield by
digital image analysis [8]. Opportunities are almost
limitless for digitally analyzing images of objects
illuminated in many different ways. See, for example,
the review by Price & Osborne [77] of imaging
applications in agriculture and plant science, and by
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Figure 1 Examples of images: (a) microscope image of cashmere fibers; (b) positron emission tomogram (PET) of a
transverse cross-section through a woman’s thorax, with a tumor circled, reconstructed using the filtered-backprojection
(FBP) algorithm (by courtesy of Max Lonneux and C. Michel, Positron Tomography Laboratory, UCL Belgium); (c) DNA
sequencing gel autoradiograph; (d) wheat grains
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Sapirstein [85] of cereal variety identification from
grains.

Types of Image

Digital images are obtained via an appropriate image
capture device, such as a video camera or scanner.
A 2D digital image usually consists of a rectangular
array of tiny squares called “picture elements”, or
pixels for short. Associated with each pixel is a
number, representing the average brightness of that
part of the original picture covered by the pixel.
Usually, the brightness will be discretized to 8-bit
resolution, i.e. there are 256 = 28 shades of grey, with
0 representing black and 255 representing white.

The pixel brightness may represent any variate
which has been measured on a 2D grid. Typically
it is a measure of the intensity of reflected light,
as in the wheat grains example [Figure 1(d)], or of
transmitted light, as with the cashmere fibers [Figure
1(a)]. However, it could alternatively depend upon
reflected or transmitted radiation in another part of
the electromagnetic spectrum [such as gamma rays,
Figures 1(b) and (c)].

The object being imaged may be essentially 2D,
as with the DNA sequencing gel [Figure 1(c)], or
three dimensional (3D). In the latter case, the sam-
pling procedure may involve taking a cross-section,
either physically or by a computer reconstruction [e.g.
Figure 1(b) is a cross-section of a 3D tomography
reconstruction: tomography techniques are, literally,
those creating pictures of a slice, free of the effects
of layers outside the focused plane]. Alternatively,
a 3D object with either an opaque [wheat grains,
Figure 1(d)] or a semi-transparent surface [cashmere
fibers, Figure 1(a)], could be imaged simply by view-
ing it from a particular direction. Some sensors,
such as confocal microscopes and magnetic reso-
nance images, can collect 3D arrays of data. These
can be analyzed using similar methods to those for
2D images.

Although we only consider univariate, so-called
grayscale, images in this article, it is worth point-
ing out the increasing use of color and multispec-
tral image analysis. A color image actually consists
of three grayscale images, representing light at red,
green, and blue wavelengths, respectively. The wheat
grains image [Figure 1(d)] is in fact the green com-
ponent of a color image.

Methodologies

The ultimate aim of image analysis is usually to
extract quantitative information, which may be in
the form of binary presence/absence categories, or
of measures of object location, length or area, shape
statistics, etc. In some applications it may only be
possible or desirable to automate some stages in
an analysis, leaving the rest to human interpreta-
tion. For example, in medical diagnosis the radiol-
ogist will want to look at the SPET image. Image
analysis methods constitute an eclectic collection of
techniques derived from many different theoretical
standpoints:

1. The first, and probably most widely used, app-
roach arose in the 1960s from the engineering
discipline of signal processing, as typified by the
books of Rosenfeld & Kak [83] and Jain [55].
Methods include histogram transformations, lin-
ear and nonlinear filters (see Spectral Analysis)
and thresholding – techniques that we illustrate
later.

2. An elegant approach, termed mathematical
morphology, emerged from the Ecole des Mines
in Fontainebleau, France, in the 1970s (see
Stereology). It is based on the assumption that
an image consists of structures which may
be handled by set theory, leading to such
highly effective methods as openings, closings,
skeletonization, and watershed segmentation.
The seminal works are Serra [86, 87]. Soille &
Rivest [93] provide a useful introduction to the
subject from an applications perspective.

3. From artificial intelligence have arisen appro-
aches such as syntactic pattern recognition
[28] and computer vision [6], but these meth-
ods have not often been applied in biostatistical
contexts.

4. The 1980s saw the development of Bayesian
image analysis [9, 31]. Prior information on
an appropriate model for an image is com-
bined with data, imperfect information about the
image (such as pixel values affected by noise),
in order to derive the posterior distribution for
the image.

5. Yet another aspect of image analysis, namely
that of extracting measurements such as lengths,
areas, histograms, etc. from images, is identi-
fied as a distinct approach by Serra [87, p. 10].
These descriptors are subsequently interpreted
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using stereology, shape statistics, or classifica-
tion methods.

Serra [87, p. 11] acknowledges that, although the dif-
ferent approaches to image analysis are somewhat
contradictory, they each have their place. He suggests
that an analysis might first require linear methods,
then morphological ones, and finally either measure-
ments or syntactic methods.

In the rest of this article we consider first the
tomographic reconstruction of images, then the three
major components of image analysis: enhancement,
segmentation, and taking measurements, drawing
on techniques from each of the above approaches
and illustrating them using some of the images in
Figure 1. We are concerned with the application of
image analysis. Therefore, in this article we empha-
size methods that we have found useful in practice.
We are also conscious of only having space to present
a subset from a very large field.

Tomography

In tomography the measured data are projections,
from which the spatial distribution within a body is
reconstructed. For example, Figure 2(a) shows PET
recordings similar to those used to reconstruct the
cross-section shown in Figure 1(b): these are data
from only one of many planes collected in a single
study. (The cross indicates the position of the cursor
used as an aid to navigate through the 3D data
set.) In PET, a radionuclide is introduced into the
patient’s bloodstream and then distributes throughout
the body. Radionuclide decays are recorded on a PET
scanner. The distribution and intensity of activity is
recorded by the PET scanner, but the accumulated
distribution of radionuclide in the body can only be
inferred indirectly (by mathematical analysis) from
the scanner projection data.

Projection measurements may be modeled as
known linear functionals of an unknown spatial dis-
tribution (or image). The goal of reconstruction is to
infer from the data the distribution within the speci-
men. Rosenfeld & Kak [83, Chapter 8] and Jain [55,
Chapter 10] present the filtered-backprojection (FBP)
algorithm [as used in Figure 1(b)] for reconstruction
from data given by the Radon-transform (ray sums)
of an image. See also Girard [34] and Bickel & Ritov
[11], who study estimation of linear functionals and
asymptotic convergence of FBP in PET.

Statistical interest has centered on PET and SPET,
which exhibit significant statistical variability in cam-
era recordings. A recent introduction to PET and
SPET is given by Kay [58]. McColl et al. [68] des-
cribe statistical methods in neuroimaging, with spe-
cial reference to these imaging modalities. However,
many of the methods described apply more widely.
We consider further: reconstruction methodologies,
use of prior information in fusing reconstructions
from different modalities, and parametric mapping
based on pharmacokinetic modeling. Reconstruc-
tions are used not only for clinical studies, providing
a basis for individual patient diagnosis, but they also
provide data for research studies.

Statistical Reconstruction

In pioneering work, Shepp & Vardi [88] and Lange
& Carson [63] applied the EM algorithm for maxi-
mum likelihood (ML) estimation of Poisson count
data in tomography. Both transmission and emission
tomography are well modeled by a description [92]
based on a spatially inhomogeneous Poisson point
process. If f (s) is the (unknown) distribution, then
the distribution of recorded activity [in projections
such as Figure 2(a)] is expressible as

g(t) =
∫

s∈X
a(t |s)f (s) ds,

or, in suitably discretized form, g = Af , with A =
(ats). Conditional probabilities a(t |s) are determined
by the resolution and geometry of the acquisition
camera and by the physics of photon transport
through the body, and may be regarded as known.
There is great generality in this specification, whether
in radiology, CT, SPET, or PET, for precise modeling
of physical effects (attenuation, scattering) includ-
ing the ability to incorporate information from other
modes. See, for example, Aykroyd & Green [3], Ful-
ton et al. [29], Hutton et al. [54], Vardi & Lee [98],
and Weir & Green [100]. This model flexibility and
resulting gains in restoration quality have led to a
growing interest in statistical reconstruction in clini-
cal use.

Reconstruction (i.e. estimating f from obser-
vations on g) constitutes an inverse problem.
Many reconstruction methods apply corrections using
backprojection (see Back-calculation), redistributing
residual projection errors (z = g − ĝ) to provide the
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Figure 2 PET clinical study of a woman’s thorax: (a) one plane of the projection data (with the cross indicating the
position of the cursor used as an aid to navigate through the 3D data set); (b) a transverse cross-section, as in Figure
1(b), but reconstructed using four iterations of the OSEM algorithm; (c) a Sagittal cross-section, with a tumor circled (by
courtesy of Max Lonneux and C. Michel, Positron Tomography Laboratory, UCL Belgium)

correction f̂ + δ̂f to an initial estimate f̂ by

δ̂f (s) ∝
∫

t∈y

a(t |s)z(t) dt.

For example, ML–EM computations provide iterative
improvements on a starting image, which is typ-
ically taken to be a uniform distribution within

the body. ML–EM requires repetition of two steps:
(i) project the current source estimate to produce
fitted projection data, and (ii) backproject the ratio
between observed and fitted projections to determine
multiplicative corrections to be applied to the current
source distribution. The usual convergence theory for
EM algorithms shows that each iteration increases the
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likelihood and ML–EM converges from any start-
ing image to an ML solution. There is a heavy
computational burden, with arrays typically of size
1283, but this can be eased by exploiting the sparse
structure of the matrix A.

Figure 2(b) shows a 2D slice of a reconstruction,
based on the EM algorithm, of the same projection
data used with the FBP algorithm in Figure 1(b). In
addition, Figure 2(c) shows a Sagittal slice through
the 3D reconstruction. The gain in restoration quality
of the statistical reconstruction is evident, with Figure
1(b) exhibiting streaking artifacts typical of FBP. The
reconstruction was produced using the ordered sub-
sets EM (OSEM) algorithm described in Hudson &
Larkin [52], which is an adaption of Shepp & Vardi’s
iterative ML–EM algorithm. OSEM accelerates EM
in its ML and Bayesian forms. Here four OSEM
iterations were employed, each requiring similar com-
putational effort to that required for the full FBP
reconstruction, but far fewer than would be required
in ML–EM for the same result.

Related Issues and Approaches

While the resolution of ML–EM images continues
to improve with further iterations, they also exhibit
an undesirable increase in noise. The effect is similar
to bias–variance tradeoffs in nonparametric density
estimation, and is attributable to the ill-posed inverse
problem formulation. A choice of a regularized solu-
tion is therefore required. Approaches here include:

1. early stopping of iterations [as in Figure 2(b)];
2. a Bayesian specification of prior information

or penalized likelihood criterion (see Penalized
Maximum Likelihood) (see Green & Silverman
[42]);

3. post-reconstruction smoothing (see Beekman &
Viergever [7]).

Silverman et al. [89] propose an approach to reduce
the buildup in noise within iterative reconstruction
by local smoothing. The Shepp–Vardi ML-EM algo-
rithm is readily modified to accomplish reconstruc-
tion by adopting prior information in a Bayesian
formulation (e.g. [32], [41], and [48]) as required
for regularization. Multiscale reconstruction may also
be advantageous, and there are obvious applications
of wavelet methodology with body organs creating
discontinuities within the imaged region. Efficient
convergence is also a critical factor.

Dynamics

Parametric mapping involves modeling functional
parameters (e.g. metabolism or blood flow) on the
basis of the time-varying distribution of activity of
a tracer introduced into the bloodstream in a con-
trolled manner. Time sequences of images result, with
the aim of reconstruction being to provide maps of
parameters of the model specifying dynamics, not the
activity distribution itself.

Cunningham & Jones [22] propose a semi-
parametric spectral decomposition useful in compart-
mental models of pharmacokinetic studies. In this
approach the total activity within prespecified regions
of interest (or pixels) are collected over consecutive
time intervals. The methodology is nonparametric.
No specific compartmental model is assumed, but the
time activity curves are expressed in terms of a dense
set of basis functions. Cunningham & Jones provide a
number of illustrations of the interpretability of such
models; the review of O’Sullivan [73] extends this
methodology. The method can be applied to time
activity curves of indirect observations (projection
data) equally well to determine significant modes.
With indirect data a staged approach separating the
spatial and temporal stages of the reconstruction may
be adopted, as provided in the EMPIRA algorithm of
Carson & Lange [17].

Enhancement

All images are subject to some degradation from their
ideal forms, whether this is the presence of noise,
blurring, or a warping/distortion of the image frame.
Image enhancement is a set of methods for modify-
ing images to reduce these effects, both to aid human
interpretation and as a precursor to segmentation or
other digital methods of analysis. In some images the
degradation is relatively minor, and image enhance-
ment is unnecessary for the particular application.
However, in many cases this will not be so. We look
at methods for correcting for warping, at filters, and
at deconvolution, using the DNA sequencing gel in
Figure 1(c) for illustration.

Registration and Unwarping

Unwarping of images is an important stage in many
applications of image analysis. It may be needed to
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remove optical distortions introduced by a camera
or viewing perspective [96], or to register an image
with a reference grid such as a map, or to align two
or more images. For example, matching is important
in reconstructing a 3D shape from either a series of
2D sections or stereoscopic pairs of images. There
is considerable interest in registering images pro-
duced by medical sensing systems with body atlas
information [18, Section 3; 30] and in image fusion
[2]. In tomography studies, MRI or CT provide accu-
rate maps of anatomy while PET or SPET provide
much lower resolution maps of function. Linking
function to the anatomy is of interest. Image reg-
istration and segmentation techniques are required
here.

There have been many approaches to finding an
appropriate warp, but a common theme is the compro-
mise between insisting that the distortion be smooth
and achieving a good match. In some recently pub-
lished cases the warp seems unnecessarily rough [19,
Figure 8b; 44, Figure 7f]. Smoothness can be ensured
by assuming a parametric form for the warp, such as
the affine transformation, or by insisting that the warp
satisfies partial differential equations such as Navier’s
equilibrium equations for elastic bodies [5]. Depend-
ing on the application, matching might be specified
by points which must be brought into alignment [12],
by local measures of correlation between images, or
by the coincidence of edges [15].

In the DNA sequencing gel, shown in Figure 1(c),
it is clear that bands are not aligned, because of a
relative lengthening of the tracks near the center of
the gel, known colloquially as a “smile” on the gel.
Interpretation of electrophoretic gels often involves
making comparisons between tracks, or between spot
positions on different gels. Distortions are common.
Figure 3(a) shows the result of an unwarping oper-
ation proposed by Glasbey & Wright [37]. Horgan
et al. [51] show how affine and thin-plate spline trans-
formations can be used to align two or more 2D
electrophoretograms.

Filters

Filters have two roles in image analysis, either to
reduce noise by smoothing or to emphasize edges, i.e.
boundaries between objects or parts of objects. Filters
are linear if the output values are linear combinations
of the pixels in the original image, otherwise they are
nonlinear.

Linear filters are well understood and fast to
compute. They can be studied and implemented
in either spatial or frequency domains. Linear fil-
ters can be categorized as low-pass or high-pass,
according to whether they smooth by removing high-
frequency components in images, or emphasize edges
by removing low-frequency components. A third cat-
egory, band-pass filters, remove both the lowest
and highest frequencies from images. Use of the
Fast Fourier Transform leads to efficient compu-
tation for filters larger than 5 × 5. Further details
can be found in Glasbey & Horgan [36, Chapter 3].
Note that smoothing filters are a form of kernel
regression (see Nonparametric Regression). See, for
example, Hastie & Tibshirani [47, Chapter 2] for a
review of this and alternative statistical approaches
to smoothing.

In filtering to reduce noise levels, linear smooth-
ing filters inevitably blur edges, because both edges
and noise are high-frequency components of images.
Nonlinear filters are able to simultaneously reduce
noise and preserve edges, but they have less secure
theoretical foundations and can be slow to compute.
The simplest, most studied, and most widely used
nonlinear filter is the moving median. However, many
other robust estimators of location have also been
used [27]. Multiresolution methods based on wavelets
are a new approach to smoothing images [25], which
also offer great potential in other areas of image
analysis.

Morphological filters are a subclass of nonlinear
filters, the simplest of which are based on “max”
and “min” operations. Substantial improvements in
images can often be achieved using sequences of such
filters. For example, another problem with Figure 1(c)
is that the brightness in the background varies. This
is a common problem in image analysis, and makes
comparison of similar features in different parts of
the image difficult. A morphological closing of the
image can be used to estimate the background trend.
The simplest closings are obtained by first replacing
each pixel by the maximum local intensity in a region
(e.g. using a structuring element which is a disc of
radius R centered on each pixel), and then performing
a similar operation on the resulting image, using the
local minimum. Mathematically, the pixels, zij , in the
closed image will be given by

zij = min
k,l

xi+k,j+l and xij = max
k,l

yi+k,j+l,
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Figure 3 Enhancement of image of DNA sequencing gel autoradiograph: (a) after unwarping of Figure 1(c); (b) after
application of top-hat transform to Figure 3(a) to remove background trend; (c) after constrained least squares deconvolution
of Figure 3(b)
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where (k2 + l2)1/2 ≤ R and yi,j denotes the original
pixel value in row i, column j . If this filter is
applied to Figure 3(a), then only the small groups
of pixels which are darker than their surroundings
will be substantially changed from yij to zij . These
are the bands. By subtracting z from y, these bands
will be made more distinct. Figure 3(b) shows the
result using a disc of radius 10 pixels. This is known
as a top-hat filter. Further morphological filters are
discussed in [86], and [93].

Deconvolution

If an image has been contaminated by noise and
blurring of forms which are either known or can
be estimated, then filters can be constructed which
optimally restore the original image. There are both
linear and nonlinear deconvolution methods (see, for
example [83, Chapter 7]). The fundamental linear
method is the Wiener filter. Nonlinear restoration
algorithms can do better than linear ones, but require
substantially more computation. For example, max-
imum entropy restoration [90] is one method which
exploits the constraint that the restored image is non-
negative. However, as Donoho et al. [24] point out,
there are many alternate methods which are equally
good. Nonparametric methods for deconvolution gen-
erally require the selection of hyperparameters that
control smoothing. Rice [80] evaluates generalized
cross validation (GCV) in this context. See also
Thompson et al. [97]. O’Sullivan & Pawitan [74]
describe methods for indirect estimation problems
and apply them in tomography.

Examination of the pixel values in Figure 3(b)
shows the blurring to be well approximated by a
Gaussian distribution with variance σ 2 = 2. This sug-
gests the following model, in which we only consider
blur down columns:

yij =
m∑

k=−m

wk xi+k,j + eij ,

for i = 1, . . . , M, j = 1, . . . , N,

where

wk = 1

(2πσ 2)1/2
exp

(−k2

2σ 2

)
,

for k = −m, . . . , m,

M and N are the image dimensions, m is the integer
part of 3σ, xij is an ideal unblurred version of the

image, which is constrained to be nonnegative, and
eij is uncorrelated noise. For a more general approach
to blur estimation, see, for example, [79].

We can use information about the nature of the
degradations to design a filter that will smooth y and
enhance the edges, so as to get as close as possible
to restoring x. Deconvolution can be posed as a
constrained optimization problem:

minimize S =
M∑

i=1

N∑

j=1

(
yij −

m∑

k=−m

wkxi+k,j

)2

with respect to xij ,

for i = 1, . . . , M, j = 1, . . . , N,

subject to xij ≥ 0.

In the absence of the inequality constraint, and pro-
vided that we can consider x to be the realization of
a random process, the optimal solution is the Wiener
filter:

x̂∗
kl = y∗

kl

w∗
kl

|w∗
kl|2

|w∗
kl|2 + Se

kl/S
x
kl

,

where y∗ denotes the Fourier transform of y, and
Sx

kl denotes the spectrum of x at frequency (k, l).
For a derivation, see, for example, [83, Section 7.3].
The constrained problem can be solved iteratively by
gradient descent. Further details are given in Horgan
& Glasbey [50]. Figure 3(c) shows the result of
deconvolving Figure 3(b). It can be seen that bands
which are very close together have been separated
in Figure 3(c), although they are indistinguishable in
Figure 3(b).

Segmentation

Image segmentation is the division of an image into
regions or objects. This is often a necessary step
before the desired quantitative analysis can be carried
out. As an example, we wish to segment the wheat
grains image [Figure 1(d)], which was one of 38 such
images. Each image consisted of 50 grains of the
same type, and different images represented grains of
different varieties or sites. The aim of the experiment
was to see how well flour yield could be predicted
from summary size and shape statistics obtained from
each image. It is therefore natural to segment the
images into individual grains before measuring and
accumulating relevant summary statistics.
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In some instances, of course, it is possible to
estimate the parameters of interest without first resort-
ing to segmentation. However, typically this requires
strong model assumptions, upon which indirect infer-
ence can be based. Unfortunately, images are large
data sets, e.g. a 512 × 512 image consists of more
than 250 000 pixels. Therefore, there is considerable
scope (as in other large data sets) for model assump-
tions to be violated. Often this has the consequence
that the optimal solution for the theoretical model is
a poor solution to the real problem! Consequently, in
most problems it is necessary to segment an image
first before measuring and analyzing the result. In this
section we will briefly examine four classes of seg-
mentation: thresholding, edge-based segmentation,
region-based segmentation, and Bayesian approaches.
The wheat grains image will illustrate some of the
techniques discussed.

Thresholding

The simplest method of segmentation is thresholding,
i.e. whenever a pixel’s value is less than or equal to
a certain number, t say, its value is replaced by 1,
and otherwise given the value 2.

An obvious question is: How does one choose the
threshold(s)? The simplest way is by applying some
classification technique to the histogram of the pixel
values. Glasbey [35] reviewed 11 histogram-based
methods for choosing the thresholds automatically,
most of which are fairly naive. Perhaps the most
sophisticated is the minimum error thresholding tech-
nique of Kittler & Illingworth [61], which models the
histogram as a mixture of Gaussian distributions. The
parameters are estimated iteratively in such a way that
the observed and estimated means and variances are
equated.

Figure 4(a) shows the histogram of the wheat
grains image. Clearly, there are two identifiable
groups of pixels: light ones largely belonging to
wheat grains, with a mean a little above 100, and
dark ones, predominantly associated with the back-
ground. Note the non-Gaussian shape of the part of
the histogram representing dark pixels, and especially
the spike at zero due to the camera setting. Despite
the fact that the histogram is not a mixture of Gaus-
sians, we nevertheless applied the minimum error
thresholding technique. It gave a value of t = 66.
(Many other algorithms give a similar value.) Figure
4(b) shows the original wheat grains image, but with

pixels whose values exceed 66 overlaid in black. This
figure demonstrates a number of relevant issues. First,
around each region overlaid in black is a grey halo.
For the most part, these halos are 1 or 2 pixels wide.
Mostly these represent “mixed” pixels, which are not
definitively grain or background, but a mixture of
both, caused by camera blur and shadows. In any
event, where these halos are narrow, the boundaries
of the overlaid regions are close enough to the true
grain boundaries for most practical purposes. How-
ever, note that the darker parts of some of the grains
have not been properly classified. This is perhaps
not surprising, because histogram-based thresholding
takes no account of spatial context. The remain-
ing classes of segmentation discussed in this section
attempt to account for spatial context in various ways.
It is also possible to define an adaptive threshold
which varies across an image (see, for example, [14]).

Edge-Based Segmentation

As the name implies, in edge-based segmentation an
attempt is made to find edges in images, often by
estimating a “derivative”; see [36, Chapter 3] for a
description of some of the more popular edge detec-
tors. One of the simplest edge detectors is Prewitt’s
gradient filter, which implicitly assumes a planar sur-
face in a 3 × 3 window centered on each pixel,
estimates the surface by least squares, and computes
its maximal gradient. Figure 4(c) shows this gradient
for the wheat grains image. Most of the grain bound-
aries are apparent, although there are some obvious
gaps. Figure 4(d) is the result of thresholding Figure
4(c) at t = 10. Less obvious gaps are now appar-
ent, as are some spurious features. This highlights
the fundamental problem of edge-based segmenta-
tion, namely the absence of parts of boundaries and
the presence of spurious edges. Edge tracking meth-
ods have been proposed by Hueckel [53], Martelli
[67] and Breen & Peden [14], among others, but suc-
cess is often only partial, especially in images that
are more complex than the one analyzed here.

Region Growing and Merging

The basic idea behind region growing is the
following. Suppose that one can find distinct points,
or clusters of points, such that each distinct cluster
belongs to a distinct object in the image, and the
number of clusters equals the number of objects.
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Figure 4 Approaches to segmenting the wheat grains image: (a) histogram of Figure 1(d); (b) after thresholding Figure
1(d) at t = 66 (pixels greater than the threshold are overlaid in black); (c) after applying Prewitt’s gradient filter to Figure
1(d); (d) after thresholding Figure 4(c) at t = 10; (e) after applying seeded region-growing to Figure 1(d); (f) after applying
a modified watershed transform to Figure 4(e)

Such points are typically called seeds or markers.
Now grow out spatially from each cluster of seeds
according to some mechanism, allocating pixels to
objects as they grow in a way that preserves the
connectedness of the objects. This process will
produce objects with complete boundaries, thereby
overcoming a problem with edge-based segmentation
mentioned above. Fast algorithms for a number

of important region-growing algorithms have been
developed in recent years by using data structures
that come under the collective name of priority
queues [13]. In this subsection we apply two
important region-growing algorithms to the wheat
grains image.

Seeded region growing [1] first computes the mean
grayscale of each cluster. Next, all neighboring pixels
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of clusters are examined, and the one whose grayscale
value is closest to the mean of its neighboring cluster
is assigned to that cluster, and the mean value of
the cluster is updated. This process continues, one
pixel at a time, until all pixels are assigned to a
cluster (which by the end of the process is a complete
object or region). For the wheat grains image we
have chosen our seeds for the grains to be all pixels
with a grayscale greater than 80, and our seeds for
the background to be all pixels with a grayscale
less than 40 [see Figure 4(a)]. Some of the pixels
greater than 80 form small (spurious) islands near
the bottom of the image [see Figure 4(b)]. Any
connected region of pixels less than 100 pixels in
area is therefore removed as a seed for the grains. The
result of applying seeded region growing using these
seeds is shown in Figure 4(e). Apart from the halos
mentioned above, the segmentation appears to have
found the grains very well. Seeded region growing
appears to be quite robust to the choice of parameters;
the important thing is to obtain a reasonable number
of “representative” seeds for each distinct connected
region in an image.

A point to notice in Figure 4(e) is that some of the
grains are touching. It is important to separate these
grains for subsequent measurements relevant to size,
and particularly shape. To do this we employ a variant
of a widely used region-growing technique called
watershedding [69, 99]. The result, shown in Figure
4(f), is a reliable segmentation of the wheat grains.
The remaining 37 images were mostly segmented as
well and required very little manual intervention.

There are many other split-and-merge algorithms
in the literature, most of them more complex than
the one presented above. Haralick & Shapiro [46,
Chapter 10] discuss a variety of such algorithms and
Gordon [40] surveyed methods for constrained clas-
sification. The Hough transform (see, for example,
[64]) can also be used for segmentation by identifying
the linear or curved features in images.

Bayesian Approaches

The Bayesian approach to image segmentation
received its initial impetus from the pioneering papers
of Geman & Geman [31] and Besag [9]. Since
then there has been a large number of papers on
the subject. However, in the authors’ opinion, these
techniques are still only applicable for a specialized
class of images, in which the models used are good

representations of the data. As pointed out earlier,
there is plenty of scope for the relatively simple
model assumptions used in the Bayesian literature to
be violated, because images are such large data sets.
However, because of its importance in the statistical
literature, we give a brief survey of the area.

Many of the Bayesian approaches to image seg-
mentation rest on variants of the following model as
described in Besag [9]. Let S denote the set of all
pixels in an image, and let n = MN be the number of
pixels in S. Assume that all pixels in the image belong
to one of c classes, labeled 1, 2, . . . , c, respectively;
we do not allow for mixed pixels. Let Xi denote the
class to which pixel i belongs (double indexing of
subscripts is unnecessary for the present discussion),
and let X = (X1, . . . , Xn). Let yi denote the value
recorded at pixel i, and let Y = (y1, . . . , yn).

Let f (Y|X, θ) denote the conditional density func-
tion of Y given X, with parameter θ . Often (but not
always, e.g. [59]) it is assumed that the observa-
tions are conditionally independent, i.e. f (Y|X, θ) =∏

f (yi |Xi, θ). Let g(X, β) denote the prior distribu-
tion of X, with parameter β. In what follows we drop
reference to θ and β. It is common to model g as a
locally dependent Markov Random Field (MRF) [60].
Often, but not always, the local dependence is on the
immediate eight neighbors of each pixel. MRFs usu-
ally produce a relatively simple structure for g (apart
from a normalizing factor); they are also appealing
because they can be modeled as limits to (possibly
inhomogeneous) Markov chains. This means that
they can be approximately simulated via Markov
chain Monte Carlo (MCMC) techniques [10], and
are therefore amenable to (computationally intensive)
inference (see Computer-intensive Methods).

The maximum a posteriori (MAP) estimator
chooses X to maximize the posterior likelihood,
which is proportional to f (Y|X)g(X). Unfortunately,
this maximization is usually difficult because
of the normalization factor mentioned above.
In special cases, exact maximization (e.g. [43])
or approximate maximization [26] is possible.
However, to circumvent this, Geman & Geman
[31] used simulated annealing (an inhomogeneous
MCMC technique) to find the global maximum
of the posterior likelihood. Apart from being
computationally intensive, this method sometimes
produces gross mislabeling in certain classification
problems and “oversmoothing” in related surface
reconstruction and image restoration problems [9, 23,
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66]. This phenomenon is most probably due to the
method’s strong dependence on the particular model
chosen.

Partly as a consequence of these apparent
limitations, Besag [9] introduced the iterated
conditional modes (ICM) algorithm. Let h(Xi |XS\i )
denote the distribution of Xi conditional on the other
Xj s; this will usually have a simple structure for an
MRF. Let X̂ denote a provisional estimate of X. ICM
iteratively chooses X̂i to maximize

p(Xi |Y, X̂S\i) ∝ f (Y|Xi, X̂S\i)h(Xi |X̂S\i ).

This simplifies in an obvious way when the yis are
independent conditional on X. Besag shows that ICM
never decreases the posterior likelihood and so will
usually converge to a local maximum.

Variants of the above model include those of
Geman et al. [33], who imposed constraints on the
shapes of class boundaries, and Helterbrand et al.
[49], who used boundary closure constraints. A some-
what different and interesting approach is adopted
by Baddeley & van Lieshout [4]. They used prior
distributions on X more appropriate for objects of
a given shape and size; for instance, in the wheat
grains example, these might be ellipses with given
radii. The centers of these objects were modeled as
nearest-neighbor Markov point processes. An algo-
rithm similar to ICM was used to find a local max-
imum of the posterior distribution. One of Baddeley
& van Lieshout’s two examples involved fitting cir-
cles to an image of (roughly) circular pellets. Their
segmentation fitted reasonably well in most places,
but not everywhere, in part because the circularity
assumptions were not quite right. Similar discrepan-
cies might occur if the wheat grains were modeled
as ellipses. Rather than assuming a fixed size and
shape, Grenander and coworkers (see Grenander &
Miller [44] and references therein) used deformable
templates to define the boundaries of objects. This
requires knowledge of the mean shape of objects,
and variability about the mean. They also used jump-
diffusion processes to model and simulate the process
of interaction between objects. The associated seg-
mentation process appears to be extremely computa-
tionally intensive. A related method is where segment
boundaries are constrained to be smooth by includ-
ing roughness penalties such as bending energies in
an optimization criterion [71]. This is referred to as
the fitting of “snakes” [57]. For further work in this

area and a range of applications, see [3], [20], [76],
[78], and [81].

We applied a form of ICM [9, Eq. (7)] to the wheat
grains image, but the results were only slightly better
than those produced by thresholding [Figure 4(b)].
It would seem that stronger prior constraints need
to be incorporated. An appropriate Bayesian model
and associated estimation procedure would almost
certainly segment the wheat grains image as well as
the region-based methods. However, it would require
a lot of research (and probably data) to find the
appropriate model and the estimation procedure is
likely to be computationally intensive.

Measurement

The extraction of quantitative information is the end-
point of most image analysis in biostatistics. The aim
may simply be to count the number of objects in
a scene, or measure their areas, or it may be more
complex, such as describing the shapes of objects to
discriminate between them.

It is straightforward to count the number of objects
in an image provided that the segmentation has suc-
cessfully associated one, and only one, component
with each object. If this is not the case, then man-
ual intervention may be necessary to complete the
segmentation. However, short-cuts can sometimes be
taken. For example, if the mean size of objects is
known, then the number of objects in an image can
be estimated, even when they are touching, through
dividing the total area covered by all the objects
by this average size. It is even possible to make
allowance for objects overlapping each other pro-
vided that this process can be modeled, for instance
by assuming that objects are positioned at random
over the image and making use of the properties
of Boolean models [21, pp. 753–759]. For example,
Jeulin [56] has estimated the size distribution of a
powder in such a way. Rudemo et al. [84] used a
marked point process model to obtain estimates of
plant densities in images of field crops.

Moments offer one method for summarizing seg-
mented objects. If the object we are interested in is
represented by all pixels (i, j ) ∈ A, then the (k, l)th
moment is

µkl =
∑∑

(i,j)∈A

ikj l, for k, l = 0, 1, 2, . . . .
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In particular, the zeroth-order moment, µ00, specifies
the area of the object. First-order moments specify the
location of an object. Higher-order moments are also
mainly determined by an object’s location. Central
moments, defined by

µ′
kl =

∑∑

(i,j)∈A

(
i − µ10

µ00

)k (
j − µ01

µ00

)l

,

for k + l > 1,

are locationally – but not rotationally – invariant. If
orientation is an important feature of an object, as it
will be in some applications, then it is probably desir-
able for the moments to be sensitive to it. However,
in other cases orientation is irrelevant and moment
statistics are more useful if they are invariant to rota-
tion as well as to location. One such method is based
on first specifying the direction in which the object
has the maximum value for its second-order moment.
This direction is

φ = 1

2
tan−1

(
2µ′

11

µ′
02 − µ′

20

)
, if µ′

02 > µ′
20,

and is otherwise this expression plus π/2. Direction
φ, the major axis of the object, has second-order
moment:

λ1 = µ′
20 sin2 φ + µ′

02 cos2 φ + 2µ′
11 sin φ cos φ.

The direction perpendicular to φ, i.e. the minor axis,
has the smallest second-order moment of

λ2 = µ′
20 cos2 φ + µ′

02 sin2 φ − 2µ′
11 sin φ cos φ.

For a derivation, see Rosenfeld and Kak [83, Vol-
ume 2, pp. 288–290].

Perimeters of objects are also useful summary
statistics. Let P denote the number of pixels on the
boundary of object A, specified as follows. Pixel
(i, j ) is on the boundary if (i, j ) ∈ A, but one of
its four horizontal or vertical neighbors is outside the
object, i.e.

(i + 1, j ) /∈ A or (i − 1, j ) /∈ A or

(i, j + 1) /∈ A or (i, j − 1) /∈ A.

This gives an 8-connected boundary, with pixels
linked either horizontally, vertically, or diagonally.
An unbiased estimator of the perimeter is given by

4

π

P√
2

provided that either all orientations in the boundary
occur equally often or the sampling grid is positioned
randomly on the object. This, and more complicated
methods for estimating perimeters, are considered
by Koplowitz & Bruckstein [62]. The use of scal-
ing factors is part of stereology, a field which has
traditionally been concerned with inference about
objects using information from lower-dimensional
samples, such as estimating volumes of objects from
the areas of intersection with randomly positioned
cutting planes (see, for example, [95, Chapter 11]).
In particular, the scaling factor of π/4 arises in two
of the so-called “six fundamental formulae” of clas-
sical stereology. However, the last 10 years have
seen a revolution in stereology, with the discovery
of the disector [sic] and other 3D sampling strategies
[94]. Note, furthermore, that mathematical morphol-
ogy can be used to study size distributions of objects
in images. By performing openings, using structuring
elements at a range of different sizes, a granulometry
can be obtained [86, Chapter 10].

Shape information is what remains once location,
orientation, and size features of an object have been
dealt with. One commonly used shape statistic is a
measure of compactness, which is defined to be the
ratio of the area of an object to the area of a circle
with the same perimeter. Another statistic often used
to describe shape is a measure of elongation. This
can be defined in many ways, one of which is as the
ratio of the second-order moments of the object along
its major and minor axes.

Summary statistics of area, perimeter, and major-
and minor-axis lengths were obtained for the 50
wheat grains given by segmented regions in Figure
4(f). To illustrate these results, a principal compo-
nents analysis was performed on the log transformed
data. Table 1 gives the principal component coef-
ficients. Figure 5 is a scatterplot of the first two

Table 1 Principal component coefficients and percentages
of correlation matrix explained for log-transformed sum-
mary statistics from 50 wheat grains given by segmented
regions in Figure 4(f)

Component: 1 2 3 4
Percent variability: 80.1 18.9 0.9 0.003

Area 0.55 −0.21 0.34 0.74
Perimeter 0.53 0.32 −0.78 0.06
λ1 0.49 0.54 0.52 −0.45
λ2 0.42 −0.75 −0.06 −0.50
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Figure 5 A scatterplot of the first two principal com-
ponents of summary statistics from the segmented wheat
grains [Figure 4(f)], with the first principal component
along the horizontal axis. Each point is represented by that
grain’s outline, and the outline displayed in bold is an out-
lier in the third principal component

principal components, which account for 99.1% of
the variation in the correlation matrix. Each point is
represented by that grain’s outline. Examination of
Table 1 and Figure 5 reveals that the first princi-
pal component is an indicator of grain size, while
the second is a composite measure of compactness
and elongation. The third principal component dis-
criminates between one unusual grain outline, that
shown in bold in Figure 5, and the rest. Compar-
ison with Figure 1(d) shows that this grain is not
particularly unusual, but rather that the segmentation
has failed to recognize a particularly dark part of the
grain. Berman et al. [8] used these summary statis-
tics, together with those from a further 37 images, to
predict flour yield. They found that the average area
of grains in each image, together with averages of
λ1, λ2, an estimate of volume of a prolate ellipsoid
proportional to λ1λ

2
2, and grain weight explained 65%

of the variation in flour yield.
The description of shape is an open-ended task,

because there are potentially so many aspects to an
object even after location, orientation, and size effects
have been removed. Other approaches include the

use of landmarks [39] and warpings such as thin-
plate splines and other morphometric methods [12],
which consider image plane distortions needed to
move landmarks to designated locations. Rohlf &
Archie [82] and Mou & Stoermer [70] compared
alternate forms of Fourier descriptors to approximate
object boundaries, and applied Zahn & Roskies’
[101] method to describe the outlines of mosquito
wings and diatoms, respectively. Further methods are
discussed in the reviews of shape analysis by Pavlidis
[75] and Mardia et al. [65].
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Immunotoxicology

Immunotoxicology is a speciality of toxicology aimed
at the detection, quantification, and interpretation
of xenobiotic-induced direct and indirect alterations
(stimulatory and/or suppressive) in the immune sys-
tem and the resulting effects on morbidity (inci-
dence of infection, duration of infection, incidence
of tumors, etc.) and mortality. The immune sys-
tem is a highly complicated network of lymphoid
cells, nonlymphoid cells, soluble factors and regu-
latory molecules which protect humans from foreign
substances and disease. The assays used in immuno-
toxicology (see Bioassay) can be divided into in
vivo assays (in living animals) and in vitro assays
(in cultured cells), and these can be further divided
into immune function assays (measuring the respon-
siveness of the immune system to stimulation) and
host resistance assays (measuring the ability of the
immune system to protect the host from infectious
agents and neoplasia) [4]. All host resistance and
some immune function assays are done in vivo, with
the remaining assays being done in vitro or through
a combination of in vitro and in vivo methods [6].
In some cases, the same or similar immune func-
tion assays can be done in both in vivo and in vitro
settings.

Host Resistance Assays

The most obvious endpoint for a host resistance assay
is survival. These assays tend to be short-term and are
performed in a two-step process [1, 8, 9]. In the first
step, animals are exposed to a xenobiotic, generally
using three dose groups and a control group. After a
brief waiting period, the animals are then exposed to
a carefully titrated concentration of some infectious
agent (e.g. influenza virus), resulting in some known
degree of mortality in the population (usually targeted
for 20% in 4 days). The resulting data (the num-
ber dead out of the number exposed) are generally
analyzed using pairwise comparisons (Fisher’s exact
test or its equivalent), sometimes accounting for mul-
tiple comparisons, and, when the study supports it,
trend analysis (the Cochran–Armitage linear trend
test). Seldom does the analysis include an analysis
of the impact of titration variability in administering
the infectious agent, a common problem.

More recent work utilizing infectious agents has
moved away from mortality as an endpoint and has
focused on body burden or tissue load of the infec-
tious agent. Analysis of these assays is generally
through the use of normality based statistical methods
(e.g. analysis of variance (ANOVA)).

Other host resistance assays are similar to the
infectious agent assays described above in that the
endpoint can be viewed as a survival endpoint. An
example would be administration of live tumor cells
into the animal (PYB6 or B16F10 assays) with counts
of the number of animals with and without tumors
after a prescribed period. This type of assay is con-
ducted in the same manner as the infectious agent
survival assay described above, with administration
of the xenobiotic followed by administration of the
live tumor cells.

Another way in which this assay is examined is to
count the number of tumors appearing in the animals.
Here, the usual analysis is a comparison of the mean
numbers of tumors in each dose group via a t test
or a similar method. Seldom are these data analyzed
by more complicated methods useful for count data
such as Poisson regression, although there is some
use of the Freeman–Tukey transformation method
(see Multinomial Distribution). This is an area for
further statistical development.

Immune Function Assays

Immune function assays are generally used to mea-
sure the functional competency of the immune system
for dealing with antigenic response. In animals, these
assays can be conducted in vivo by exposing animals
to a xenobiotic followed by an antigen and then,
following sacrifice, studying key components of the
immune system (e.g. the numbers of antibodies pro-
ducing B-cells in the spleen [2]). In addition, for some
species it is possible to perform immune function
tests in peripheral blood lymphocytes, either through
exposing the host to the xenobiotic and then removing
blood and performing the assay or by removing blood
and doing the entire assay in vitro. These types of
studies can also be carried out in exposed and control
human populations. In most cases, the data derived
from these assays are count data with very high num-
bers (e.g. the number of plague-forming cells in a
Petri dish following stimulation of lymphocytes with
sheep red blood cell antigen) and they are analyzed
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under the basic assumption of normality (t tests and
ANOVA) or through the use of similar nonparamet-
ric analyses. In some cases, the counts are converted
to ratios (B-cells per million spleen cells) to control
for fluctuations in physiology. Finally, some immune
system markers are simple organ sizes (e.g. thymus
weight, spleen weight, and cell counts) which are ana-
lyzed via assumptions of normality or lognormality.

In most of the analyses of immune function assays,
care is taken to control for multiple comparisons
(usually using Dunnett’s’ method) and, as with the
analysis of host resistance assays, when data on
dose–response are available, analyses for trend are
common (e.g. linear regression and/or Jonkheere’s
test; see Nonparametric Methods).

Immunotoxicity and Risk Assessment

There have been considerable efforts in the past
few years to develop methods to apply findings
from immunotoxicity to the assessment of risks from
exposure to xenobiotics (see Risk Assessment). The
major challenge here is to synthesize a large array
of assays into a single standard. There has been
some work in this area, focusing on the relationship
between immune function assays and host resistance
assays [3, 5, 7], in which formal regression methods
have been used. However, as general area of research,
the utility of immunotoxicology for setting exposure
standards is still emerging. One area of keen interest
is the use of mechanistic models of immune function
and response as a tool for understanding alterations
due to xenobiotics.
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Importance Sampling

Importance sampling is an extremely useful statis-
tical technique with a long history. In the last ten
to fifteen years, driven by the popularity of Monte
Carlo and computationally intensive methods, it has
been enriched and extended in many exciting direc-
tions. Importance sampling is based on a very simple
idea. When one wants to estimate population means
or expectations of random variables with respect to
a distribution of interest, referred to as the target
distribution, but samples are drawn from another dis-
tribution, referred to as the trial distribution, impor-
tance sampling assigns weight to the samples to make
the necessary adjustments. There are three possible
reasons for using samples from a trial distribution
instead of the target distribution.

1. Variance reduction: the trial distribution is delib-
erately chosen so that the estimate obtained is
actually superior to an estimate based on sam-
ples drawn from the target distribution with the
same sample size.

2. Feasibility and convenience: drawing samples
from the target distribution can be very difficult
or outright impossible.

3. Reusing and mixing samples: sometimes means
and expectations with respect to multiple distri-
butions are of interest, and importance sampling
allows us to use samples drawn from one distri-
bution to obtain estimates of expectations under
various distributions. When we have multiple
sets of samples drawn from different trial dis-
tributions, an obvious approach would be to first
obtain an appropriate estimate from each set of
samples and then compute a weighted average of
them as the overall estimate. This, however, is
usually not the optimal way of using the sam-
ples. The most efficient estimates are usually
obtained by treating the multiple sets of samples
as a single set drawn from a mixture distribu-
tion [7]. Some of the most interesting develop-
ments in theory and applications occur in this
area.

Importance sampling is used extensively in sample
surveys, where the samples are concrete units such
as people or households [8]. However, many of the
recent developments in applications and methodology
are associated with Monte Carlo estimation, where

samples are computer generated. Interestingly, while
many of the techniques developed end up to be appli-
cable to a wide range of applications, human genetics,
particularly pedigree analysis, has been the driving
force behind many of them. Also, it was demonstrated
recently that a novel recursive estimation technique
developed for analyzing coalescence data in popula-
tion genetics can also be considered as an elaborate
form of importance sampling.

The basic theory behind importance sampling is
as follows. Suppose x is random with outcome space
Ω , g(x) is some function of x, and of interest is

µ = Ep1 [g(x)] =
∫

x∈Ω

g(x)p1(x) dx, (1)

the expectation of g(x) with respect to the probability
density p1(x), i.e. p1(x) is the target density. If x is
discrete, then p1(x) is a probability mass function,
and the integral in (1) is replaced by a summation. If
it is not feasible to compute µ analytically, but Monte
Carlo samples, x1, . . . , xn, can be generated from the
distribution p1(x), then

∑

i

g(xi)

n
(2)

is an unbiased estimate of µ. Now, suppose the
samples x1, . . . , xn are not drawn from p1(x), but
instead are generated from some trial p0(x), whose
support contains the support of p1(x). Since µ can
be rewritten as

Ep0

{[
p1(x)

p0(x)

]
g(x)

}
=

∫

x∈Ω

[
p1(x)

p0(x)

]

× g(x)p0(x) dx =
∫

x∈Ω

g(x)p1(x) dx, (3)

µ can be estimated by either

µ̃ =

∑

i

w(xi)g(xi)

n
, (4)

where wi = p1(xi)/p0(xi) is the importance sam-
pling weight of xi , or

µ̂ =

∑

i

wig(xi)

∑

i

wi

=
∑

i

w∗
i g(xi), (5)
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where w∗
i = wi/(

∑
j wj ) are normalized weights that

sum to 1. While µ̃ is the natural unbiased estimate,
µ̂ is in the form of a ratio estimate that usually is
biased in the technical sense. However, the bias is
of order 1/n, whereas the standard deviation is of
order 1/

√
n. Hence, the contribution of the bias to

the mean-squared-error is often negligible for large
n. There are two possible reasons for using µ̂ instead
of µ̃. If wi is strongly positively correlated with
g(xi), then µ̂ can have a substantially smaller vari-
ance than µ̃, and hence is preferred. Often that is not
the case, but we still use µ̂ because µ̃ is not com-
putable. Note that while evaluating µ̃ requires the
exact values of the wi , µ̂ can be computed if the
wi are known only up to a multiplicative constant
(because the constant will be canceled out in w∗

i ),
something that occurs in many new applications of
importance sampling. For reference, Hammersley &
Handscomb [5] contains many useful results with
regard to Monte Carlo simulations, importance sam-
pling and the choice of p0(x). On a purely theoretical
level, the ideal p0(x) to use in conjunction with
µ̃ is cp1(x)/g(x) for some constant c. Notice that
with such a p0(x), [p1(x)/p0(x)]g(x) = 1/c, which
means µ̃ has zero variance and c must be equal to
1/µ. Hence, while this choice of p0(x) may serve
as a guide, implementing it exactly implies that µ

is computed directly and it is no longer a Monte
Carlo problem. In general, the choice of p0(x) always
involves a compromise between the variance of the
estimate, the ease of generating the samples and the
work needed to compute the estimate given the sam-
ples. In practice, the problem is further complicated
when the expectations of multiple gs, instead of a sin-
gle one, are of interest. For µ̂ and some extensions
of it, expressions of large sample variances and some
useful results for comparisons of different estimates
can be found in Kong et al. [12]. A rule of thumb
is that the efficiency of µ̂ tends to be inversely pro-
portional to one plus the variance of the importance
sampling weight wi .

An example of importance sampling being used
in pedigree analysis because of reason 1 is described
in Kong et al. [13]. There a trial distribution is
deliberately chosen to oversample the tail of the
target distribution, which is the distribution of a
test statistic under the null hypothesis so as to
obtain a much more efficient estimate of the P -
value. There µ̃ can be computed and is superior to µ̂.
However, most recent developments in methodology

are focused on situations falling under scenario 2,
where it is difficult to draw samples from the
target distribution, and often µ̂ is used instead of
µ̃. For resolving the difficulty of directly obtaining
samples from the target distribution, it is important to
acknowledge the existence of an alternative strategy.
Markov Chain Monte Carlo (MCMC) techniques,
which were first invented by physicists, have enjoyed
unequalled attention in the last two decades in the
statistics community and much progress has been
made. There a Markov chain is constructed with
the target distribution as its stationary distribution.
In pedigree analysis, examples of how this is done
can be found in Lange & Sobel [15], Heath [6],
Jensen & Kong [10], and Thompson [20]. Under
ideal conditions, this technique allows us to obtain
samples that have essentially the right distribution
and are assigned equal weights, but the samples are
correlated instead of independent, in contrast with
importance sampling, which generates independent
but weighted samples. As a solution to reason 2,
importance sampling and MCMC are competitors and
which one performs better depends on individual
applications. However, even when samples are
generated by MCMC, importance sampling can
often be used to expand the utility of the samples
because of reason 3, and the two techniques become
complementary. One good example of this is Monte
Carlo expectation–maximization algorithm EM [21],
where Monte Carlo estimates are used to perform
the expectation step of the algorithm. Since EM is
an iterative procedure and the expectation of the
score function has to be calculated for a series of
parameter values, importance sampling allows us to
reuse samples generated with respect to one para-
meter value for subsequent steps when expectations
have to be calculated for other parameter values,
regardless of whether the original samples are direct
samples, importance sampling samples, or MCMC
samples. Irwin et al. [9] demonstrate how this can
be done for estimating the recombination fractions
(see Linkage Analysis, Model-based) among a set
of polymorphic markers using pedigree data. This
application also serves as an example of another
way that MCMC and importance sampling can
potentially be used together. Because of interference,
the crossover/recombination process is not a Poisson
process, and the crossover events of two neighboring
but nonoverlapping regions are not independent. Even
with MCMC, it is not easy to generate samples with
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the desired distribution. One possible solution is to
use MCMC techniques to generate samples based on
a no-interference model that is as close to the desired
model as possible, and then use importance sampling
to do the final adjustment.

Because many of the interesting new applications
occur in the area of missing data problems and
likelihood calculations, we will go into these in more
detail. Before doing that, it is worth noting that while
µ is the expectation of g(x) under p1(x), it is also
the expectation of g′(x) = g(x)p1(x)/p0(x) under
p0(x). Because of that, while the target distribution
p1(x) may have a natural meaning in a specific
application, on a certain level, it does not have
any special relevance independent of g(x). Indeed,
in many of the modern applications of importance
sampling, the role of the target distribution is blurred
and mathematically the problem is simply one of
Monte Carlo integration.

Given any two distributions p0(x) and p1(x),
let q0(x) = c0p0(x) and q1(x) = c1p1(x) for some
constants c0 and c1. Obviously

Ep0

[
q1(x)

q0(x)

]
=

∫
c1p1(x)

c0p0(x)
p0(x) dx

=
(

c1

c0

)∫
p1(x) dx = c1

c0
. (6)

With samples xi, i = 1, . . . , n, from p0(x),

(
1

n

)∑

i

[
q1(xi)

q0(xi)

]
(7)

is an unbiased estimate of c1/c0. This rather simple
setting actually incorporates one of the most inter-
esting applications of Monte Carlo estimation. In a
missing data problem, let y denote observed data and
of interest is the likelihood function

L(θ) = p(y|θ) (8)

as a function of θ . Suppose we cannot compute
p(y|θ) directly, but if y is augmented by x, which
is not actually observed, then p(x, y|θ) can be
easily computed for any value of x and θ . Sup-
pose we have samples xi, i = 1, . . . , n, drawn from
some distribution p0(x) and we can compute p0(xi).
Let p1(x) = p(x|y, θ) and q1(x) = p(x, y|θ) so that
c1 = q1(x)/p1(x) = p(y|θ) = L(θ), and let q0(x) =

p0(x) so that c0 = 1. It follows from (7) that
(

1

n

)∑

i

[
q1(xi)

q0(xi)

]
=

(
1

n

)

×
∑

i

[
p(xi, y|θ)

p0(xi)

]
(9)

is an unbiased estimate of c1 = L(θ). Now consider
an alternative scenario where we cannot compute
p0(xi), but we can compute q0(xi) = c0p0(xi) for
some unknown constant c0. While the likelihoods
cannot be estimated directly here, they can be esti-
mated up to an unknown constant that allows us to
estimate likelihood ratios. Specifically, if θ1 and θ2

are two possible values of θ , then L(θ2)/L(θ1) can
be estimated by

∑

i

[p(xi, y|θ2)/q0(xi)]

∑

i

[p(xi, y|θ1)/q0(xi)]
. (10)

This important observation originated from Ott [18]
and Geyer & Thompson [3]. One typical choice
of p0(x) will be p(x|y, θ0) for some value θ0 of
θ , so that q0(x) = p(x, y|θ0) and c0 = p(y|θ0) =
L(θ0). Note that (9) can be considered as a form
of µ̃ or simply a form of (2), while (10) is a
ratio estimate. By rearrangement of the terms, one
can show that (9) can be considered as µ̂ with
p1(x) = p(x|y, θ1), p0(x) = p(x|y, θ0), and g(x) =
p(x, y|θ2)/p(x, y|θ1). In particular,

wi = p(xi |y, θ1)

p(xi |y, θ0)
= p(xi, y|θ1)

p(xi, y|θ0)

p(y|θ0)

p(y|θ1)
, (11)

where {p(y|θ0)/p(y|θ1)} is the unknown constant
that cancels in

w∗
i = wi

/


∑

j

wj



 = p(xi, y|θ1)/p(xi, y|θ0)∑

j

{p(xi, y|θ1)/p(xi, y|θ0)}
.

(12)

From (10) and its relationship with (6), one can
see that the problem of estimating likelihood ratios
mathematically falls within the framework of estimat-
ing ratios of normalizing constants of functions [e.g.
c−1

0 and c−1
1 are the normalizing constants for q0(x)

and q1(x), respectively], which happens to have very
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broad applications [17]. In the case here, of interest
is the whole likelihood function and so, in a sense,
of interest are an infinite number of likelihood ratios.
Estimates of the ratios can often be greatly improved,
meaning that the variance can be greatly reduced,
if samples are simulated from multiple trial distri-
butions [1], and the combined samples are treated
as draws from a mixture distribution. In the case
here, the multiple trial distributions will naturally be
p(x|y, θ) for different values of θ . For importance
sampling in general, the step of combining samples is
straightforward if the p0(xi) can be calculated easily
for each of the trial distributions, but in this setting,
by design, p0(xi) is only known up to a constant
and this constant is different for each of the trial dis-
tributions. In a way, the problem looks amusingly
circular – we want to combine the samples to better
estimate the ratios of the normalizing constants, but
to properly combine the samples we need to know the
ratios of the normalizing constants. Fortunately, this
problem actually has a solution and the search for
this solution leads to development of new methods
[2, 17] and new theory [14].

It is usually the case that when samples from p0(x)

are generated using MCMC, p0(xi) can at best be
computed up to a constant. By contrast, if indepen-
dent samples are drawn directly from p0(x), then
most likely p0(xi) can be computed. However, the
distributions one can draw from directly are much
more limited than those that can be drawn from
using MCMC. One way to enrich the class of dis-
tributions one can draw from directly is a technique
called sequential imputations. The idea is as follows.
Suppose the observed data y and the missing data x

can each be partitioned as y = [y(1), y(2), . . . , y(T )]
and x = [x(1), x(2), . . . , x(T )]. While it is difficult
to draw directly from p(x|y), suppose we can draw
from p[x(1)|y(1)] and, for t = 2, . . . , T , it is possi-
ble to draw x(t) from

p[x(t)|y(1), . . . , y(t), x(1), . . . , x(t − 1)] (13)

for any fixed values of x(1), . . . , x(t − 1). Instead
of drawing a sample xi[xi(1), xi(2), . . . , xi(T )] in
one step, sequential imputation simulates the com-
ponents xi(t), t = 1, . . . , T , one at a time with each
component simulated conditional on values already

drawn for previous components. With p(x|y) con-
sidered as the target distribution p1(x), the trial dis-
tribution is

p0(x) = p[x(1)|y(1)]

×
T∏

t=2

p[x(t)|y(1), . . . , y(t), x(1), . . . , x(t − 1)].

(14)

As is true in many other cases, this is a technique that
had been invented many times over by researchers in
different areas before it was formalized and given a
name. Often there is a parameter θ involved in the
conditional distribution of x given y, and p(x|y) can
either be, in a Bayesian setup, a distribution with θ

analytically integrated out [11], or it can be the dis-
tribution corresponding to some chosen value θ∗ of
θ . In genetics, Irwin et al. [9] used it to perform mul-
tipoint linkage analysis, while Stephens & Donnelly
[19] used it to assist inference in molecular popu-
lation genetics and also pointed out that an earlier
recursive simulation method invented by Griffiths &
Tavaré [4] could also be viewed as a form of sequen-
tial imputation. Some recent developments can be
found in Liu et al. [16].
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Inbreeding

Individuals with common ancestors are said to be
related, and their offspring are inbred. If no further
qualifications are made, then all humans are both
inbred and related to everyone else simply because
the population is finite. Each of us has two parents,
and if we had four grandparents, eight grandparents,
16 great-grandparents, and so on, it would take only a
few hundred years back in time before we would have
more ancestors than there were people living on the
planet at that time. Obviously our parents have some
ancestors in common, but conventional definitions of
inbreeding refer only to children whose parents are
related through people in the past few generations.

Inbreeding in Pedigrees

The genetic consequences of inbreeding follow
directly from basic Mendelian principles (see
Mendel’s Laws). For each gene, an individual
receives two alleles, one from each parent, and is
generally equally likely to transmit either of these
two alleles to a child. The random element in such
transmission means that statements about inbreeding
are usually expressed as probabilities. Because related
people share ancestors, there is a chance that they
receive copies of the same allele from those ancestors.
Half-sibs, for example, may each receive copies
of the same allele from their one common parent.
Because this common parent has two alleles, there
is a probability of one-half that the half-sibs receive
alleles that are identical by descent (ibd). There is
a further one-half probability that they would each
transmit these ibd alleles to an offspring. A child
of half-sibs, therefore, would have an inbreeding
coefficient, F , of one-eighth.

A general approach is to specify some initial
or reference population, in which all members are
assumed to be unrelated, and inbreeding is then
measured relative to that generation. It is generally
accepted, for example, that Finland was settled by
a relatively small group of people about 4000 years
ago. It would be convenient to quantify inbreeding,
for a random member of the presently living descen-
dants of those founders, as the probability that the
person receives two alleles that trace back to a sin-
gle allele among the founders. Alleles that trace to
distinct founding alleles will be considered not ibd.

If the common parent in the half-sib example itself
had related parents, and had an inbreeding coefficient
of F , then one-half the time it would transmit copies
of the same allele to two offspring and the other
half of the time it would transmit alleles that had
probability F of being ibd. Such arguments lead to
“path-counting” equations for inbreeding coefficients.
If the parents of individual I have common ancestors
A, with inbreeding coefficients FA, and if there are
nA people in the loop from one parent through A
and back to the other parent, then the inbreeding
coefficient of I is

FI =
∑

A

(
1

2

)nA

(1 + FA).

In the half-sib case, the common parent A is the
only common ancestor and nA = 3 so that FI = 1/8
as before. Full sibs have two parents in common,
so the inbreeding coefficient of their children would
be 1/8 + 1/8 = 1/4. First cousins have four distinct
parents, two of whom are full sibs, so they have
two grandparents in common (n = 5 for each). The
inbreeding coefficient of the children of first cousins
is therefore 1/16, and this is the maximum amount of
inbreeding tolerated by most marriage laws.

Just as the concepts of inbreeding and relatedness
are closely connected, so are the probabilities of
these events. The usual measure of relatedness for
individuals X and Y , the coancestry coefficient (also
called the coefficient of kinship) θXY , is defined as
the probability that two alleles, one taken at random
from the same locus of each of X and Y , are ibd. This
definition provides a value of 1/4 for full sibs, 1/8 for
half sibs and 1/16 for first cousins. If individuals X

and Y have a child I, then

FI = θXY .

Although there is not complete independence
among different genes, an inbreeding coefficient of
F can be interpreted as meaning that a fraction F

of the genes in such an individual has two alleles
that are ibd. For alleles that are both harmful and
recessive, such as the ∆F508 allele responsible for
most cases of cystic fibrosis, inbreeding increases
the proportion of people with the harmful trait by
virtue of having two copies of the deleterious allele,
not masked by a normal allele. The ∆F508 allele in
Caucasian populations has a (relative) frequency of
about p = 0.05. Among individuals whose parents
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are unrelated, the probability of having two copies
of the allele, and therefore having cystic fibrosis, is
about p2 = 0.0025. Among people whose parents are
cousins, however, (1 − F) = 15/16 of the time the
probability is p2, but F = 1/16 of the time it is the
higher value of p. The total probability is more than
doubled, to 0.0063. In general, the probability that
an individual with an inbreeding coefficient of F is
homozygous aa for allele a that has a frequency of
pa is

Paa = p2
a + Fpa(1 − pa). (1)

The increased homozygosity brought about by
inbreeding must be accompanied by an equivalent
decrease in heterozygosity. If a indicates an allele
different from a, then for inbred individuals

Paa = 2papa(1 − F). (2)

Homozygotes have two alleles that have the same
chemical composition, and so are identical in state.
Such alleles may or may not be ibd. Heterozygotes
have alleles that are not identical in state, and these
alleles cannot be ibd.

There is often interest in the joint probability Pa,a

with which two individuals carry a specific allele a.
It may be that one person, X, is alleged to be the
father of a child but some other person Y is actually
the father, and a is the allele known to have been
received by the child from its father. The probability
with which an allele chosen at random from one
individual is ibd to one from the other is just the
coancestry, so

Pa,a = p2
a + θpa(1 − pa) (3)

when the two individuals have coancestry θ . There is
a more complicated expression if the individuals are
also inbred.

Inbreeding in Populations

Equations (1) and (2) have been derived for inbred
individuals, where F is necessarily positive. Alter-
natively, they could be used to relate genotypic fre-
quencies Paa and Paa in some population to allele fre-
quencies pa and pa in the same population, although
it is then conventional to use the symbol f in place
of F . A general treatment allows for variation among
f s for different loci, and for different genotypes at a

locus. Writing the frequency of allele ai as pi , the fre-
quency of aiai homozygotes as Pii and the frequency
of aiaj heterozygotes as Pij :

Piik = p2
ik

+
∑

j �=i

fijpikpjk
,

Pijk
= 2pikpjk

(1 − fij ), i �= j,

where the subscript k emphasizes that the equations
hold for some particular population k.

Inferences about the f parameters are based on
a model of repeated sampling from the population,
and if this statistical sampling is random, the multi-
nomial distribution is appropriate for large popu-
lations. Population data provide direct estimates of
the genotypic frequencies, and maximum likelihood
estimates for the pas and f s, based on sample geno-
type frequencies P̃ijk are

p̂ik = P̃iik + 1
2

∑

j �=i

P̃ijk
,

f̂ijk
= 1 − P̃ijk

2p̂ik p̂jk

.

If a common value f , the “within-population
inbreeding coefficient” is assigned to all the fij s, then
iterative procedures are needed for maximum likeli-
hood estimation. These procedures typically produce
estimates of the order of 0.001 for human popula-
tions. The quantity f was written as FIS by Wright
[2], referring to the relation of alleles within individ-
uals (I) relative to a subpopulation (S).

For a specific population, the within-population
inbreeding coefficient f quantifies the excess
homozygosity over that expected for random mating
populations. Population-genetic analyses are likely
to be concerned with the evolutionary processes
that lead to extant populations, and therefore
recognize that the present population itself results
from genetic sampling. Because of the random
processes involved in the choice of alleles transmitted
between generations, as well as in other evolutionary
forces such as selection and mutation, the genetic
composition of a population cannot be specified with
certainty over time. Instead, probabilistic models are
needed.

Taking expectations E over populations (or over
the evolutionary process) the frequency of allele ai is
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written as pi , and of genotype aiaj is written as Pij :

Epik = Pi,

EPijk
= Pij .

At this total-expectation level,

Pii = p2
i + Fpi(1 − pi),

Pij = 2pipj (1 − F), i �= j, (4)

where F is the “total inbreeding coefficient.” Evi-
dently, then (1) and (2) refer in expectation to all
individuals with the pedigree leading to a specific
F value – even though any particular individual is
either inbred or not – and invoke the expected allele
frequency rather than the frequency for a specific
population.

The usual interpretation of (4) is that they apply
as an average over populations. One application
concerns a large population considered to consist of
a number of subpopulations indexed by k. Equations
(1) and (2) hold for the subpopulations, but (4) holds
for the total. Any variation in pik over subpopulations
causes Ep2

ik
to exceed p2

i , so that Pii > p2
i even if

Piik = p2
ik

. This result is known as the “Wahlund
principle.” Wright [2] wrote F as FIT, referring to
the relation of alleles within individuals (I) relative
to the total population (T).

The quantity p2
ik

can be regarded as the probability
of two alleles in population k both being of type ai :

Pi,ik = p2
ik
.

Taking expectations over populations:

Pi,i = p2
i + θpi(1 − pi),

illustrating why Wright wrote θ as FST, for the rela-
tionship between alleles within subpopulations (S)
relative to the total population (T). The three mea-
sures of inbreeding are related by

f = F − θ

1 − θ
.

It needs to be stressed that Pi,i is the joint proba-
bility of two alleles in the same subpopulation being
ibd, averaged over all subpopulations. Estimation of
the inbreeding and coancestry coefficients F and θ

requires data from more than one population. Other-
wise there is no knowledge of the variation in allele

frequencies among populations. If there is random
mating within populations, then two alleles have the
same relationship whether they are in the same or
different individuals, F = θ , and f = 0.

One method of estimation, under the random mat-
ing assumption, is to compare allelic variation within
and among populations. The two means squares are
MSW for within and MSA for among. For allele
ai and samples of size n alleles from each of r

populations:

MSW = n

r(n − 1)

∑

k

pik (1 − pik ),

MSA = n

r − 1

∑

k

(pik − pi)
2,

where

pi = 1

r

∑

k

pik .

The variance components for allele frequencies
within and between populations are

σ 2
w = pi(1 − pi)(1 − θ),

σ 2
b = pi(1 − pi)θ,

and θ can be estimated [1] as

θ̂ = MSA − MSW

MSA + (n − 1)MSW
.

Conditional Probabilities

It is now possible to return to the disputed paternity
example. If the alleged father has been typed and
found to carry the obligate paternal allele a, then the
quantity of interest is the conditional probability Pa|a
with which some other man also carries the allele. If
this unknown and untested other man belongs to the
same population as the alleged father,

Pa|a = Pa,a

pa

= pa + θ(1 − pa),

which applies as an average over all populations.
The allele frequency could be estimated from a
sample from the total population, as opposed to the
particular population to which the two men belong.
Data from several populations would be needed if θ
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is to be estimated. If the two men belong to different
populations, then

Pa|a = pa.

Other Measures of Inbreeding

Identity coefficients describe other measures of
inbreeding. These coefficients are the probabilities
that sets of more than two alleles are ibd, and they
are needed to express joint and conditional probabili-
ties of genotypes, as opposed to alleles. They find use
in questions of disputed identity where one person is

found to have a particular genotype and is alleged to
be the donor of some biological sample. This use is
described in statistical forensics.
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Incidence Density Ratio

The incidence density ratio is the ratio of the inci-
dence density in one group to that in another group.
The incidence density ratio approximates the hazard

ratio if time intervals are small and can be estimated
both from cohort studies and from case–control
studies in which controls are selected by density
sampling.
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Incidence Density

An incidence density is an incidence rate and can be
used to estimate a hazard rate.
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Incidence Rate

The incidence rate is the number of persons who
develop a disease of interest over a defined inter-
val of time or age divided by the corresponding
person-years at risk among members of the source
population. Subjects are only “at risk” before they
develop the disease of interest if, as is common, the
incidence rate describes the rate of first occurrence of
a disease. Usually, relatively short time intervals are
used, compared with the timescale for development
of disease, such as five-year intervals for a cancer

incidence study. When individual follow-up data are
not available to compute person-years at risk, the
person-years are often estimated as the interval width
times the population size at the midpoint of the inter-
val. Synonyms for incidence rate include incidence
density and person-years incidence rate. Incidence
rate sometimes denotes a population hazard rate,
rather than the estimate defined above. Sometimes
the term incidence rate is used instead of cumulative
incidence rate, but the concepts are distinct.
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Incidence–Prevalence
Relationships

This article attempts a statistical view on the classical
epidemiologic concepts of (age-specific) incidence
and prevalence. Each individual’s dynamics in the
Lexis diagram is modeled by a simple three-state
illness–death stochastic process in the age direction
and individuals are recruited from a Poisson pro-
cess in the time direction. Observable quantities are
regarded as estimators of the parameters (incidence,
prevalence, mortality, mean duration, etc.) of the sta-
tistical model.

The next section discusses increasingly complex
versions of the classical epidemiologic relation

prevalence = incidence × duration,

and its generalization to age- and duration-specific
incidence and mortality. Then some comments are
provided on statistical techniques for estimating in-
cidence rates from prevalence surveys, while the
following section considers, conversely, the feasi-
bility of estimating prevalence from information on
incidence and mortality. The material is also rele-
vant in the theory of screening, as briefly pointed
out later.

A related topic not touched in this article is
inference on mortality (or further morbidity) from
follow-up of a cross-sectional sample, the so-called
prevalent cohort study. This topic is treated in the
articles Delayed Entry and Biased Sampling of
Cohorts in Epidemiology.

Prevalence, Incidence, and Duration

Most – even rather elementary – textbooks in epi-
demiology contain versions of the statement

prevalence = incidence × duration, (1)

see, for example, [19, pp. 65–66] or [10, pp. 64–66].
In broad generality, (1) is a conservation equation
called Little’s equation in queuing theory:

time-average number of units in the system
= arrival rule × average delay time per unit.

See Little [17] for the first general proof in the context
of strictly stationary processes in steady state condi-
tions and Ramalhoto et al. [25] for a comprehensive
discussion.

In epidemiology, the archetypical situation con-
cerns irreversible transitions between a healthy state
H , a diseased state I , and the dead state D, sim-
plest in the time- and age-homogeneous Markov
illness–death process specified by intensities as fol-
lows:

H
α−−−→ I

µ ↘ ↙ ν

D

and fed by a stationary homogeneous Poisson pro-
cess with (birth) intensity β. Here α is disease inten-
sity for a healthy individual (the connection to the
epidemiologic concept of disease incidence to be dis-
cussed below) and µ and ν are death intensities for
healthy and diseased, respectively. Sometimes ν is
called the case fatality rate or just lethality.

In this stochastic process our approach to preva-
lence is to imagine a cross-sectional sample taken at
a particular time t , say t = 0. We may then calculate
the expected number of healthy at t = 0 as

∫ ∞

0
β exp[−(α + µ)a] da = β

α + µ

since a person born at time −a has probability
exp[−(α + µ)a] of remaining alive and healthy until
time 0; similarly the expected number of diseased at
t = 0 is
∫ ∞

0

∫ a

0
β exp[−(α + µ)y]α exp[−α(a − y)] dy da

= αβ

(α + µ)ν
.

Under the present assumptions, disease duration is
exponentially distributed with mean ν−1. Definition
of disease incidence requires more care. The intensity
α refers to the healthy only, while disease incidence
in the population may be defined as the rate of
occurrence of new disease in the whole population.
This is

β

∫ ∞

0
exp[−(α + µ)α] da = βα

α + µ
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and we see that

E(diseased) = βα

α + µ
ν−1

= disease incidence × mean duration,

yielding (1) in the present interpretation of units of
individuals (rather than the often used prevalence
proportion in relative units).

Note, furthermore, that what we shall often term
prevalence odds satisfies

E(diseased)

E(healthy)
= αβ/[(α + µ)ν]

β/(α + µ)
= α

ν
,

that is,

prevalence odds = incidence × mean duration,

where incidence is now understood as intensity of
getting diseased for a healthy individual.

Alho [5] viewed the above relations between
prevalence, incidence, and duration in the macrode-
mographic context of stable population theory.

The above discussion may be generalized to
time-, age- and disease duration-dependent inten-
sities β(t), α(t, a), µ(t, a), and ν(t, a, d), as docu-
mented by Keiding [11]. We may then also discuss
such concepts as age-specific prevalence, expressing
the probability of having the disease for a person at
age a alive at time t . The general formulas become
complicated and are not reproduced here, although
some applications will be indicated below.

In the particular case of time homogeneity, which,
though not very realistic nevertheless underlies most
epidemiologic folklore, similar relations between pre-
valence, incidence, and duration result as above. In
particular, the rate of occurrence of new cases in the
population becomes

β

∫ ∞

0
exp{−[α(a) + µ(a)]}α(a) da,

and the expected number of diseased at t = 0
(prevalence on the population scale, “absolute”
prevalence) becomes

β

∫ ∞

0

∫ a

0
exp{−[α(y) + µ(y)]}α(y)

× exp[−ν(a, a − y)] dy da.

In the simple case where the case fatality rate ν(a, d)

depends only on duration d but not age a, a change
of order of integration yields

∫ ∞

0
β exp{−[α(y) + µ(y)]}α(y) dy

×
∫ ∞

0
exp[−ν(v)] dv,

where the first factor is incidence as just specified,
while since exp[−ν(v)] is the survival function of
a diseased, the second factor is mean survival. This
provides an interpretation of

prevalence = incidence × duration

in the age-dependent case, and Keiding [11] specified
how to obtain a similar interpretation when ν(a, d)

depends also on a.
The relation prevalence odds=disease intensity ×

mean duration discussed in the time/age/duration
homogeneous special case above, also generalizes
to the age/duration inhomogeneous case, see again
Keiding [11] and O’Neill et al. [23].

Inference on Incidence from Prevalence
Data

As has been known in population statistics (demo-
graphy) for hundreds of years, it is true under very
restrictive stationarity assumptions (no dependence of
birth and death rates on calendar time, no migration)
that the age distribution of the living has density pro-
portional to the survival function (= 1 − distribution
function) of the mortality. Inference on mortality rates
is therefore in principle available from the age distri-
bution of the living.

The simplest generalization of this to morbidity
(disease incidence) is analysis of current status data
where age-specific incidence rates are estimated from
the age distributions of diseased and healthy in a
cross-sectional sample. Diamond & McDonald [8]
gave a survey based on parametric models in
discrete and continuous time while Keiding [11] and
Keiding et al. [14 ] focused on variants of current
nonparametric survival analysis techniques. Ades
& Nokes [2] gave a useful practical discussion of
the range and limitations of these ideas in modeling
infectivity rates from seroprevalence studies; and
Marschner [20] gave sample size calculations.
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As emphasized by Preston [24], the crucial sta-
tionarity assumption may only be verified from at
least two successive cross-sectional samples, which
however might then be directly used for inference
without the stationarity assumption. Recent work in
this direction is due particularly to Marschner ([21,
22]) and Ades [1] as well as a series of papers by
Brunet & Struchiner (for example [6]), in the pseudo-
stochastic mathematical biology tradition.

Inference on Prevalence from Incidence
and Mortality Data

It is not uncommon that disease incidence and mor-
tality are more directly estimable (e.g. from a his-
torically prospective incidence study with follow-up)
than prevalence. In that case the relations between
prevalence, incidence and duration may be used to
estimate prevalence, possibly calendar time-and/or
age-specifically, see Keiding [11]. Such calcula-
tions will often be variations of the nonparametric
Aalen–Johansen estimator of a transition proba-
bility in a nonhomogeneous Markov illness–death
process, and this link provides a methodology for
derivation of standard errors. See [12, 13, 15,
16] for applications to bone marrow transplan-
tation.

Application of such ideas has been primarily in
the context of cancer [7, 9, 27], although there are
also examples from neuroepidemiology [26, 28], ref-
erence [26] containing counterfactual and predictive
“what if” calculations under specified past or future
structures in incidence and mortality.

Screening

There are strong relations between the above mate-
rial and the mathematical theory of screening for
chronic disease [29, 30], in the simplest but also
most important case by having the three states
Healthy, Preclinical (where the patient feels healthy
but screening can identify the disease), and Clin-
ical (ly manifest) diseased. The same relations are
valid, properly interpreted, and Zelen & Feinleib [30]
actually also obtained a prevalence = incidence ×
mean duration result. O’Neill et al. [23] formalized a
concept of initiation, equivalent to subclinical disease
onset. The comprehensive exposition of the theory
of screening by Albert et al. [3, 4] and Louis et al.

[18] is based on probability densities rather than
intensities as in this article and most of the other
references.
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Incident Case

An incident case is a subject who has just developed
the disease or condition of interest for the first time.
Incident cases of chronic diseases are particularly
valuable for etiologic investigations because disease
incidence, unlike disease prevalence, is determined

by etiologic factors only and not by factors that
influence survival following disease onset. To con-
trast incident with prevalent cases, (see Biased Sam-
pling of Cohorts; Case–Control Study, Prevalent;
Cross-sectional Study; Incidence–Prevalence Rela-
tionships; Prevalent Case).

MITCHELL H. GAIL



Incomplete Block Designs

Experimental designs with fixed block size k in
which the number of treatments (or levels of a sin-
gle factor) v to be compared exceeds the available
block size are called incomplete block designs. Such
designs first arose in agricultural experiments and
were studied by, among others, Fisher, Yates, and
Bose. Incomplete block designs are currently used in
a wide variety of subject areas, including agricultural
field and animal experiments, food-tasting experi-
ments, industrial processes, toxicology, educational
psychology, and, occasionally, in clinical trials. For
example, in animal experiments it may be desirable
to compare the test treatments within a litter, but the
number of treatments may exceed the available litter
sizes. In food and beverage tasting experiments, the
number of items to be tasted is often greater than the
number of items a judge can taste within a reasonable
time period. In an experiment to compare the tread
wear on different kinds of automobile tires, each car
can have, at most, four distinct tires and so, if the
number of treatments to be tested is greater than four,
the blocks (cars) are necessarily incomplete.

Most graduate and advanced undergraduate text
books on experimental design contain some material
on incomplete block designs, particularly balanced
incomplete block designs (BIBDs) and Youden
squares. Two such books, with an applied flavor, are
by Lentner & Bishop [9], and John & Quenouille
[6]. Das & Giri [3] contains a full account of all the
major types of incomplete block designs, their analy-
ses, and some selected construction results. John [5]
is a more theoretical discussion of the mathematical
structure and analysis of incomplete block designs,
and of the construction of such designs by the cyclic
development of one or more initial blocks. This arti-
cle describes briefly the different kinds of incomplete
designs, their relationships to each other and to other
well-known kinds of complete block designs (see
Randomized Complete Block Designs), and general
methods of analysis of such designs.

The incomplete block design problem is one of
arranging the test treatments. Two technical concepts
needed in a discussion of incomplete block designs
are binary designs and connected designs.

An incomplete block design is said to be binary if
no test treatment occurs more than once in any block.
It can be shown that a design that is not binary may

always be improved (in the sense of average or total
variance of the treatment contrasts) by replacing all
duplicates of test treatments in a given block with
treatments not already in that block. Hence, we may
restrict our attention to binary designs.

A design is said to be disconnected if the blocks
of the design may be split into two groups in such
a way that none of the test treatments that occurs
in one group of blocks occurs in the other group of
blocks. Treatments that occur in the different groups
of blocks may not be compared due to confounding
with the block effects. As a consequence, we also
restrict our attention to designs that are not discon-
nected; that is, to designs that are connected.

There are many different types of incomplete
block designs that are both binary and connected.
Balanced incomplete block designs (BIBDs) have the
property that all treatments occur in the same number
of blocks, say r , and all pairs of treatments occur in
the same number of blocks together, say λ. In BIBDs,
all paired comparisons of treatments are estimated
with equal precision. Kiefer [7, 8] has shown that
BIBDs are optimal in the sense of having small-
est average or total variance for the paired treatment
comparisons.

A standard assumption in the analysis of block
designs is that measurements on different experi-
mental units are statistically independent. There are
situations in which this is not a reasonable assump-
tion. For example, in agricultural field experiments,
fertilizer or irrigation may spill over from an exper-
imental plot to its neighboring experimental plots. A
family of experimental designs that is useful in such a
situation is the equineighbored BIBDs in which each
pair of test treatments occurs adjacent to each other
in the same number of blocks.

One shortcoming of BIBDs is that for a given
number of treatments and a given block size, the
number of blocks required to construct a balanced
incomplete block design may be too large to be of
practical use. Yates [10] addressed this problem with
a series of designs that he called lattice designs.
Lattice designs exist only when v = s2 and k = s,
for some positive integer s, and are constructed using
sets of mutually orthogonal Latin squares. Of course,
the requirements that v = s2 and k = s are quite
restrictive, so the application of lattice designs is
somewhat limited.

Bose & Nair [1] discovered a more general alter-
native to BIBDs. In partially balanced incomplete



2 Incomplete Block Designs

block designs, all treatments occur in the same num-
ber of blocks and pairs of treatments occur together
in λ1 or λ2 or λ3 or . . . or λm blocks together. (Two
treatments that occur in the same block λl times
are said to be in the lth associate class). BIBDs are
special cases of partially balanced incomplete block
designs for which λ1 = λ2 = · · · = λm = λ. Lattice
designs are also special kinds of partially balanced
incomplete block designs.

Partially balanced incomplete block designs exist
for more combinations of parameters than do BIBDs.
Das [2] and Giri [4] showed how to construct incom-
plete block designs for still more combinations of
parameters. Their algorithm starts with a partially
balanced incomplete block design for v treatments in
b blocks of size k. Augment each block in this design
with α treatments that are not among the original v

treatments. The result is a design for v + α treat-
ments in b blocks of size k + α. Such designs are
called reinforced designs.

Youden squares [11] are incomplete block designs
in which two sources of variation (blocking) may
be eliminated. First used by Youden in greenhouse
studies, these designs are related to Latin square
designs. Indeed, removing any row and any column
from a Latin square always yields a Youden square,
but Youden squares may also be constructed from
certain kinds of BIBDs.

Analysis of Incomplete Block Designs

Youden squares are distinct from the other types of
incomplete block designs in that they involve two
blocking factors rather than one.

In the analysis of incomplete block designs with a
single treatment factor and a single blocking factor,
the following linear model (see General Linear
Model) is usually assumed:

Yij = µ + τi + βj + εij , for i = 1, 2, . . . v and

j = 1, 2, . . . , b,

where the τis denote the treatment effects and the βj s
denote the block effects. No interaction among block
and treatment effects is assumed. Indeed, because
not all treatments occur in every block, not all
block-treatment interactions are even estimable. The
validity of the assumption of no interactions may be
evaluated graphically by plotting the residuals from

Table 1 Degrees of freedom for the different
factors

Source of variation Degrees of freedom

Blocks b − 1
Treatments v − 1
Error bk − b − v + 1

Corrected total bk − 1

the fitted model against, for example, the predicted
values. Degrees of freedom for the different factors
are summarized in Table 1.

Computation of appropriate sums of squares is
complicated in incomplete block designs due to the
lack of orthogonality of block and treatment effects.
Simple formulae for sums of squares do exist for
BIBDs but for other incomplete block designs, even
for a partially balanced incomplete block design
with just two associate classes, the formulae become
extremely complicated. For this reason, it is recom-
mended that analyses be carried out using a com-
puter package. If algebraic formulae are required, the
reader is referred to the books by Das & Giri [3] and
Lentner & Bishop [9].

The most common analysis of incomplete block
designs is often called the intrablock analysis,
because block differences are eliminated and all
treatment contrasts may be expressed as differences
among observations in the same blocks. This is
essentially a least squares analysis, assuming that
the block effects are fixed. Usually, the block effects
are not of intrinsic interest and so the block sum of
squares is computed without adjusting for treatment
effects. Then, the treatment sum of squares is
computed after adjusting for block effects. In linear
models jargon, this is a type I analysis of variance,
and is standard in most statistical packages, including
SAS (see Software, Biostatistical). If the block
effects are of intrinsic interest, a block sum of squares
adjusted for treatment effects may be computed. This
is commonly called a type II analysis of variance.

Yates [10] proposed an alternative analysis, which
he called the interblock analysis, in which additional
information about the treatment effects might be
obtained by comparing experimental units in different
blocks. In modern linear models terminology, the
interblock analysis is a mixed effects analysis of
variance in which the treatment effects are regarded
as fixed effects, while the block effects are viewed
as independent random variables with mean zero
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and variance σ 2
β . Modeling block effects by random

variables is particularly appropriate when the blocks
may be viewed as a sample from some population of
blocks. For example, in multicenter clinical trials
the centers at which the study takes place may be
viewed as a representative sample of all possible
centers (see Random Effects).

The interblock (mixed effects) analysis may be
carried out using, for example, PROC GLM and
PROC MIXED in the SAS computer package.
Although the intrablock analysis has been the
standard analysis for many years, the interblock
analysis seems to be gaining in popularity as
researchers are more inclined to view their block
effects as random quantities.
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Incomplete Follow-up

Longitudinal (or follow-up) study data analysis is
complicated by the diversity of possible outcomes
and the different lengths of observation time. Some
subjects die or relapse (“failures”), some remain alive
or in remission (“survivors”), and some are lost to
follow-up (e.g. drop out or withdraw from treatment)
(Colton [2, pp. 299–302]). Even if one had the time
to wait until all subjects met the outcome failure
criterion, the problem of accounting for those who
were lost to follow-up would remain. Thus, because
of their incompleteness, longitudinal studies often are
subject to selective influences (Hill & Hill [4, p. 27]).

Substantial bias in longitudinal studies can result
from not considering the duration of the study
and from inappropriate handling of incomplete
data, even when only a small proportion of the
observations is missing (Andersen [1, p. 80], Colton
[2, pp. 237–250], Hill & Hill [4, pp. 188–203],
Murray & Findlay [6].) Average duration of survival
may be a convenient way to summarize “mean
observation time” for the “failures” (Colton [2,
pp. 299–302]). However, it is a meaningful term
vis-à-vis mortality or relapse only when all study
subjects have had the outcome; it has no meaningful
interpretation in terms of survival or prognosis
(Colton [2, pp. 237–250, 299–302]). Averaging
survival time only among the failures, while ignoring
those who have not lived long enough to experience
the outcome within the period of observation,
selects for early failure and overemphasizes negative
outcomes (Colton [2, pp. 299–302]; Hill & Hill [4,
pp. 188–203]).

Furthermore, conclusions based solely upon indi-
viduals with complete follow-up data presume that
results recorded for the failure subgroup would not be
affected by including those with incomplete data, i.e.
both the survivor and lost-to-follow-up subgroups. In
other words, this assumption presumes that the char-
acteristic of “being followed up” does not correlate
with the characteristic being measured, for example,
survival (Hill & Hill [4, pp. 23–33]). However, the
characteristic of being “lost to follow-up” may corre-
late with being either more or less likely to be alive
or dead, so that the ratio of alive/dead may differ
in traced versus untraced (i.e. lost) cases (Hill &
Hill [4, pp. 188–203]). For example, in a study of

treatment for alcoholism, treatment drop-outs may be
more likely to relapse to heavy drinking than subjects
who remain in treatment.

The magnitude of the incomplete follow-up prob-
lem increases as larger numbers of individuals drop
out or are withdrawn. Consequently, conclusions
drawn from the analysis of outcomes from follow-up
data can be considerably biased by incomplete data.
Between group differences in mean survival times
can be attributed to the incomplete follow-up fallacy.

In all cases, the obvious data management solu-
tion is to conduct a comprehensive follow-up or, in
the case of clinical trials, to emphasize study reten-
tion so that concerns regarding missing data due to
incomplete follow-up do not arise. However, this can
be a lengthy, not to mention costly, undertaking. Var-
ious statistical techniques have been developed to try
to deal with this problem (Gibbons et al. [3], Little
& Rubin [5], Rubin [7]).
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Incubation Period of
Infectious Diseases

The incubation period is the time interval between
exposure to a disease-causing agent and the onset
of symptomatic disease. For example, the incubation
period of an infectious disease refers to the time
interval between infection or exposure to a viral or
bacterial agent and the onset of symptomatic (clin-
ical) disease. The incubation period is also called
the clinical latency period (see Latent Period). The
focus of this article is on modeling and estimating the
incubation period of infectious diseases. However,
some of the ideas may also be applicable to the incu-
bation period of noninfectious disease, for example
the incubation period of radiation-induced cancer that
refers to the time interval from radiation exposure to
cancer diagnosis.

The length of the incubation period depends on
the disease and the infectious agent. It can be very
short, perhaps only several days in the case of a strep-
tococcal sore throat, or perhaps several weeks in the
case of smallpox, or perhaps a decade in the case of
the acquired immune deficiency syndrome (AIDS).
After an individual is exposed to an infectious agent,
the agent multiplies, and the host defenses are weak-
ened. Eventually, the individual may experience the
onset of clinical disease. Individuals may or may
not be infectious (that is, capable of transmitting the
infection to others) during the incubation period or
subsequently.

The incubation period of a disease can be very
variable among individuals [2, 21]. A single number,
such as the mean or median incubation period, does
not reveal the significant heterogeneity in incubation
periods in a population for a given infectious dis-
eases. The incubation period distribution, F(t), is the
probability that the incubation period is less than or
equal to t time units. The probability density func-
tion of incubation periods usually is asymmetric and
is skewed to the right. Sartwell [23, 24] suggested
that the lognormal distribution adequately describes
the incubation period distribution of a number of dis-
eases. However, other parametric models for sur-
vival data may also adequately describe incubation
period distributions, including the Weibull, gamma,
log-logistic (see Logistic Distribution), and piece-
wise exponential models [9]. There is no requirement

that all infected individuals eventually develop clin-
ical disease. Thus, the distribution function, F , may
not be proper. For example, one may postulate that
a proportion, p, of infected individuals eventually
develop clinical disease with incubation distribution,
F1, and the remaining proportion of infected individ-
uals, 1 − p, never develop disease; then we have the
mixture model F(t) = pF1(t).

Studies of the incubation period distribution are
important for several reasons. First, the incubation
period distribution is important for forecasting
the course of epidemics, and is used with
either transmission models [1] or back-calculation
approaches [9]. If the incubation period is long,
then infected individuals may be silently and
unknowingly spreading the infection to others.
Secondly, identification of covariates or cofactors
that may lengthen the incubation period may
lead to the development of effective therapeutic
interventions. Thirdly, knowledge of the incubation
period is useful in counseling infected patients about
their prognosis. Finally, the incubation period is
a critical parameter in designing clinical trials of
early interventions and vaccines (see Communicable
Diseases; Infectious Disease Models; Vaccine
Studies).

The ideal study for estimating the incubation
period is to monitor a cohort of uninfected individ-
uals, determine the dates of infection, and then to
follow the infected patients to determine the dates of
the onset of clinical disease. The data for estimating
the incubation period distribution would consist of the
time interval between infection and disease for those
patients who became infected. If an infected individ-
ual did not develop clinical disease at the time of
last follow-up, then the data would be right censored
at that time. Classical survival analysis techniques
could be used to estimate the incubation period distri-
bution from right-censored data [12]. Kaplan–Meier
survival curves could be used to estimate F(t) non-
parametrically, the cumulative distribution function
of incubation periods. Parametric models could also
be fit to the right-censored incubation period data
(see Parametric Models in Survival Analysis). A
simple example is the case of a single point source
epidemic, as might occur with salmonellosis where
infection is transmitted from contaminated food or
water [21]. In this example a cohort may be defined
as all individuals who were exposed (e.g. individuals
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who are in a restaurant on the given day that con-
taminated food was served), in which case the date
of exposure is known precisely. Another example of
a point source epidemic for a noninfectious disease is
the onset of leukemia associated with radiation expo-
sure following the 1945 atomic bomb explosion in
Hiroshima [11]. The incidence of leukemia appeared
to peak about six years after exposure. Survival anal-
yses could be performed on the time intervals from
exposure to clinical disease, and of course some of
these intervals may be right censored at the times of
last follow-up (see Epidemic Curve).

Unfortunately, the ideal study of incubation peri-
ods can seldom be performed because of a number of
important complications. First, it may not be possible
to identify a cohort of initially uninfected individuals,
and to follow them over time. Instead, we may only
have available a sample of cases who already have
clinical disease (see the section “Retrospective ascer-
tainment” below). Even if a cohort is assembled
and followed over time, it may not be possible to
ascertain either the exact dates of infection (expo-
sure) or the onset of clinical disease (see the section
“Cohort studies” below). For example, an individual
may already be infected at the time of enrollment
in a cohort study, but the time that incident infec-
tion occurred is unknown. Many of these problems
have surfaced in studies of the incubation period of
AIDS, and have been the subject of active method-
ologic research among statisticians in recent years. In
the next sections we discuss more fully these com-
plexities and the methodologic approaches to address
them. The issues are illustrated with studies of AIDS,
although the methods are applicable more generally
to other infectious diseases.

Retrospective Ascertainment

The first data on the incubation period of AIDS (time
from HIV infection to AIDS diagnosis) were based
on transfusion-associated AIDS cases [22]. In that
study, AIDS cases were identified who had become
infected by receiving a transfusion of infected blood.
The date of infection was estimated retrospectively as
the date of blood transfusion. There was an important
selection criterion to get into the study, namely that
subjects had to have AIDS. Early in an epidemic
of a new disease the only data about incubation
periods that may be gathered rapidly may come

from symptomatic cases of disease who have already
been identified. These cases of disease are then
retrospectively studied to determine dates of exposure
to the infectious agent. Such studies have been
referred to as having “retrospective ascertainment”
because only individuals with symptomatic disease
are included and then they are retrospectively studied.
A naive analysis of this type of data, which did
not account for the selection criteria, could lead to
serious underestimation of the incubation period. This
is because the data are right truncated. Individuals
with long incubation periods may not yet have
symptomatic disease, and thus could not possibly
be included in the data set. To analyze such data
properly, the analysis must condition properly on the
selection criteria [18, 19].

There are other biases with studies based on
retrospective ascertainment. For instance in the
transfusion example, patients who receive blood
transfusion are often elderly and sick with chronic
diseases, and thus they may die from other causes
of death before developing AIDS. This leads to
length-biased sampling: we are more likely to observe
patients with shorter incubation periods, because
patients with long incubation periods may die first
from another disease and thus are never included
in the data set. In a series of papers, statisticians
have developed methods to correct for these and
other biases (see, for example, [18], [19], and [25]).
However, none of these methods can correct for the
fundamental limitation of this sort of data: they are
retrospective and involve only cases of disease and so
without strong parametric assumptions they provide
essentially no information about the prospective
probability of getting a disease once one is infected.

Cohort Studies

A second type of study involves identifying a cohort
of uninfected individuals, ascertaining as best one can
the subsequent dates of infection, and following the
infected individuals to ascertain the date of onset of
clinical disease. The first issue concerns the difficulty
in identifying the date of infection. The usual method
is to test individuals serially with a laboratory assay
such as the test for antibodies to the infectious agent.
In the case of AIDS, individuals may be serially
tested with ELISA or Western Blot assays to identify
the dates of seroconversion to HIV antibodies [16].
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A complication is that the date of seroconversion
does not correspond to the date of infection. Infected
individuals will be seronegative for antibodies to the
virus until they develop detectable antibodies, usu-
ally within several months. Although we define the
incubation period as the time from infection to the
clinical diagnosis of disease, many studies cannot
identify the actual dates of infection but only the time
of antibody seroconversion. However, in the case of
AIDS, the time from infection to antibody serocon-
version is relatively short (approximate median is two
months) compared with the much longer period from
seroconversion to the onset of disease. Accordingly,
many studies define the incubation period to be the
time interval from antibody seroconversion (becom-
ing antibody positive) to the onset of clinical disease.
Nevertheless, this points out that the results of studies
of incubation periods may depend on the choices of
the assays that are used to ascertain infection or expo-
sure to the infectious agent. PCR (polymerase chain
reaction) testing may identify evidence of infection
considerably earlier than antibody testing [17].

If individuals are periodically screened by labora-
tory tests for evidence of infection, then the date of
infection can at best be determined up to an inter-
val (i.e. interval censored). This interval is defined
by the time of the latest screening test that was neg-
ative for infection, L, and the earliest screening test
that was positive for infection, R. The term doubly
censored data refers to time to event data for which
both the time origin and failure time are censored.
In cohort studies of the incubation period the data
are frequently doubly censored because the date of
infection is interval censored and the date of onset of
clinical disease is right censored for those individuals
who have not developed clinical disease by the time
of the last follow-up.

A popular ad hoc approach for analyzing doubly
censored data on incubation periods is to estimate
(impute) the calendar date of infection by the mid-
point of the interval. The imputed midpoint calendar
date of infection is S = (L + R)/2. Then, standard
survival analysis techniques for right-censored data
are used on the incubation periods with imputed dates
of infection. However, such approaches will typically
be biased and give incorrect variance estimates. The
bias of the estimated incubation resulting from mid-
point imputation depends critically on the width of
the intervals, R − L, the incubation distribution, and
the density of infection times. For example, in the

exponential growth phase of simple epidemics, mid-
point imputation will tend to underestimate the time
of infection and thus overestimates the incubation
period. Law & Brookmeyer [20] studied the impact
of midpoint imputation, and concluded that with a
median incubation period of 10 years in the case of
AIDS, the bias resulting from midpoint imputation
associated with intervals even as large as two years
is relatively small.

A more formal parametric approach for analyzing
the doubly censored data in studies of the incubation
period involves specifying parametric models and
joint estimation of both the probability densities
of infection times and of incubation times. The
likelihood function is maximized to obtain the
maximum likelihood estimators. This approach was
used by Brookmeyer & Goedert [10] to estimate
the incubation period of HIV infection among
hemophiliacs. Bacchetti & Jewell [4] used a weakly
semiparametric approach. A discrete time scale
was used with a separate parameter to represent
the discrete hazard for each month. To avoid
irregularities that result from trying to estimate a
large number of parameters (e.g. wildly varying
hazards from one month to the next with large
variances), a penalized likelihood function was used
that penalized for “roughness” in the estimated
hazard function. A completely nonparametric
approach to the problem has been given by De
Gruttola & Lagakos [14]. However, the completely
nonparametric estimate of the incubation period
distribution, F(t), is often numerically unstable, and
it is not defined for all values of t .

Deconvolution Methods

Occasionally, population data may be available both
about the incidence of clinical disease and infection
rates in the population. The expected cumulative
incidence of clinical disease up to calendar time
t, D(t), is related to infection rates g(s) at calendar
time s (numbers of new infections per unit time) and
the incubation period distribution, by the convolution
equation

D(t) =
∫ t

0
g(s)F (t − s) ds.

The basic idea is to use data on D(t) and an esti-
mate of g(s) to glean information about F . This
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method was pioneered by Bacchetti & Moss [5] and
Bacchetti [3] in connection with estimating the incu-
bation period of HIV infection. The usefulness of the
method depends on the availability of accurate infor-
mation on the infection rates in the population, g(s),
and accurate disease surveillance data over time. For
example, detailed information about historical infec-
tion rates was available in San Francisco on the basis
of several epidemiologic surveys and cohort studies
[5, 26]. The statistical framework is as follows. Let yj

represent the number of cases of disease in calendar
interval Ij . Suppose that N , the cumulative number
of infections that have occurred, is known. Then the
vector of counts of cases of disease, y, has a multi-
nomial distribution with sample size N and cell
probabilities that involve the incubation distribution
and the known infection rates. Maximum likelihood
estimation methods are used to estimate the parame-
ters of the incubation period distribution. The method
is closely related to the back-calculation methodology
which uses data on D(t) and an estimate of F to esti-
mate historical infection rates g(s). Back-calculation
is a method for estimating past infection rates from
disease surveillance data. The method requires reli-
able counts of numbers of cases of disease diagnosed
over time and a reliable estimate of the incubation
period distribution. The method has been used to
obtain short-term projects of disease incidence and
to estimate prevalence of infection [6, 9]. Early ref-
erences on back-calculation are [7] and [8]

Synthesis of Studies of the Incubation
Period

The main complications in the analysis and inter-
pretation of studies of the incubation period include
uncertainty in the dates of infection and the sampling
criteria by which individuals are included in the data
set. Accordingly, it is important to synthesize and
compare estimates across studies because the esti-
mates may be used on different methodologies with
different underlying assumptions.

In the case of AIDS, many different methodologies
outlined in this article have been used to study the
incubation period distribution. The results from sev-
eral different methodologies have been compared [15]
and a general picture emerges [9]. The probability of
developing AIDS within the first two years of HIV
antibody seroconversion is very small, less than 0.03.

Then the hazard of progression to AIDS begins to rise
rapidly so that the cumulative probability of devel-
oping AIDS within seven years of seroconversion is
approximately 0.25 and the median incubation period
is nearly 10 years. When comparing incubation period
estimates from different studies, an important consid-
eration is whether treatments were available to delay
progression and thus alter the incubation period dis-
tribution. Treatments such as AZT became available
beginning in 1987 which may lengthen the incubation
period. In the case of AIDS, the one covariate that has
been shown to influence the length of the incubation
period in multiple studies is the age at infection [13].
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Independence of a Set of
Variables, Tests of

Suppose that p variables have been measured on each
of n sample individuals. Denote the value of the j th
variable for the ith individual by xij , and collect
together the p values observed on the ith individual
into the vector x′

i = (xi1, . . . , xip). Then

x = 1

n

n∑

i=1

xi = (x1, . . . , xp)′

is the sample mean vector,

A = (aij ) =
n∑

i=1

(xi − x)(xi − x)′

is the corrected sum of squares and products matrix,

S = (sij ) = 1

n − 1
A

is the sample covariance matrix, and

R = DSD

is the sample correlation matrix, where

D = diag(s
−1/2
11 , . . . , s−1/2

pp ).

The two sample matrices S and R can be viewed as
estimates of the corresponding population quantities
� and ϒ, respectively.

Situations often arise in which the p variables
can be divided a priori into k distinct sets with pi

variables in the ith set (i = 1, 2, . . . , k). For example,
each child in a school class may have to sit an
examination that comprises p separate tests, on each
of which a mark of between 0 and 100 is awarded.
However, these tests may be identifiably of four
types: p1 of them examine verbal ability, p2 of
them examine arithmetic ability, p3 of them examine
general knowledge, and p4 of them examine logical
reasoning. Clearly, within each set the individual tests
are likely to be (highly) correlated, but a question
of interest would then be whether the variables in
different sets can be treated as independent. In this
section, we consider testing independence of such sets
of variables.

Without loss of generality, we can assume the
variables to be arranged so that the first p1 of them
fall in the first set, the next p2 in the second set, and
so on. Denote by Sii the sample covariance matrix of
the variables in the ith set and by Sij the matrix of
sample covariances between those pairs of variables
in which one variable comes from the ith set and the
other from the j th set. Apply the same notation to the
matrices A, R, �, and ϒ. Then the overall sample
covariance matrix S can be expressed in partitioned
form as

S =




S11 S12 . . . S1k

S21 S22 . . . S2k...
...

...
Sk1 Sk2 . . . Skk



 ,

and each of the matrices A, R, �, and ϒ can be
partitioned similarly. The null hypothesis that we are
concerned with is

H0: �ij = 0

for all i �= j , the only requirement on the remaining
unspecified matrices �ii being that they are positive
definite for all i. The alternative hypothesis is the
general one, i.e. that �ij �= 0 for at least one i �= j .

Assuming multivariate normality of the data, the
likelihood ratio test for this situation is obtained
by maximizing the likelihood of the sample under
the null hypothesis and dividing the result by the
unconditional maximum of the likelihood. After some
algebraic simplification the test statistic can be writ-
ten

Λ = |A|
|A11| · · · |Akk| ,

and elementary properties of determinants establish
that equivalent expressions for this statistic are

Λ = |S|
|S11| · · · |Skk|

or

Λ = |R|
|R11| · · · |Rkk| .



2 Independence of a Set of Variables, Tests of

Unfortunately, the exact sampling distribution of
Λ is complicated and difficult to handle, so large-
sample approximations are generally employed in
practice. Standard likelihood-ratio theory provides
the basic result that −n log Λ asymptotically follows
the chi-square distribution with ν = 1

2 (p2 − ∑
i p2

i )

degrees of freedom when H0 is true, so this distribu-
tion can be used to find an approximate significance
level for the test. However, a more accurate large-
sample approximation was obtained by Box [2], who
showed that when H0 is true, then

Pr(−a log Λ ≤ z) = Pr(χ2
ν ≤ z) + ba−2[Pr(χ2

ν+4 ≤ z)

− Pr(χ2
ν ≤ z)] + O(a−3),

where

a = n − 3

2
− 1

3

(
p3 −

∑

i

p3
i

)(
p2 −

∑

i

p2
i

)−1

and

b = 1

48

(
p4 −

∑

i

p4
i

)
− 5

96

(
p2 −

∑

i

p2
i

)

− 1

72

(
p3 −

∑

i

p3
i

)2 (
p2 −

∑

i

p2
i

)−1

(see also [1, p. 385], [6, p. 534], or [8, p. 90]).
Alternatively, Muirhead [6, p. 537] reproduces tables
from Davis & Field [3] that contain correction factors
to make the percentage points of −a log Λ exactly
those of χ2

ν .
Two special cases of the above test are commonly

of interest. The first is when k = p, in which case
the null hypothesis becomes the hypothesis that all
the variables are mutually uncorrelated (independent
if normality of data is assumed); in other words, that
� is a diagonal matrix. In this case the likelihood
ratio statistic becomes

Λ = |S|
s11s22 · · · spp

= |A|
a11a22 · · · app

= |R|,

where ajj = ∑n
i=1(xij − xj )

2 and sjj = ajj /(n − 1)

for j = 1, . . . , p. Exact percentage points of
−(n − [2p + 11]/6) log Λ are given by Mathai &
Katiyar [5] and reproduced by Seber [8, p. 612].
Alternatively, any of the above approximations can
be used with pi = 1 for all i.

The second special case is when there are just
two a priori groups of variables; that is, k = 2 with
p1 and p2 variables in the two groups respectively.
In this case the sample covariance matrix S has the
partitioning

S =
(

S11 S12

S21 S22

)
,

with a corresponding form for each of the matrices
A, R, �, and ϒ. The null hypothesis is now simply

H0: �12 = 0,

and the likelihood ratio test statistic becomes

Λ = |A|
|A11||A22| = |S|

|S11||S22| = |R|
|R11||R22| .

When the null hypothesis is true this statistic has
Wilks’s lambda distribution Λp2,p1,n−p1−1, which has
been tabulated extensively (see, for example, Seber
[8, p. 565]), so that exact significance levels are easily
found.

Note also that in this case we have |S| =
|S11||S22 − S21S−1

11 S12| (using results for patterned
matrices given, for example, by Seber [8, p. 519]),
and equivalent expressions exist for A and R. The
likelihood ratio statistic can thus be reduced to the
form

Λ =
q∏

i=1

(1 − r2
i ),

where q = min(p1, p2) and the r2
i s are the nonzero

eigenvalues of S−1
22 S21S−1

11 S12 (or, equivalently, of
S−1

11 S12S−1
22 S21, or of either of these expressions with

Aij or Rij replacing Sij for i, j = 1, 2). These are
the squared canonical correlations between the two
sets of variables, which are important multivariate
descriptors of the inter-set associations.

In this particular special case, it is possible also
to derive a union–intersection test of the null
hypothesis (which has not been found possible to date
for the general case of k sets). To derive this test, we
consider the univariate hypothesis

ρ2
ab = (a′�12b)2

[(a′�11a)(b′�22b)]
= 0,

where ρab is the correlation between two arbitrary
linear combinations, one from each of the two sets
of variables. A suitable test statistic for this uni-
variate hypothesis is (a′S12b)/[(a′S11a)(b′S22b)]1/2
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and, on maximization with respect to both a and
b, the union–intersection test statistic is found to
be maxi r2

i . Critical values of this statistic have also
been tabulated extensively; see, for example Pearson
& Hartley [7, Tables 48 and 49] or Seber [8, p. 593].

Various other test statistics have been proposed for
this last situation. Invariance arguments lead to statis-
tics which are functions of the eigenvalues r2

i , and the
most popular variants are

∑s
i=1 r2

i or
∑s

i=1[r2
i /(1 −

r2
i )]. Muirhead [6, p. 548] discusses some power

comparisons among the various statistics.
A final point concerns the behavior of all these

test statistics when the data are not normal. Relatively
few systematic studies have been conducted, although
both Muirhead [6, p. 546] and Fang & Zhang [4,
p. 170] give some results relevant to samples from
elliptic distributions. Fang & Zhang derive forms
of the likelihood ratio statistic appropriate for such
samples, while Muirhead considers asymptotic null
distributions of normal-based likelihood ratio test
statistics when the data are actually from elliptic
distributions. He quotes some Monte Carlo studies
which indicate that the normal likelihood ratio test
statistics should only be used with care if the data
come from elliptic distributions.
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Indian Statistical Institute

Research in the theory and applications of statis-
tics as a new scientific discipline began in India in
the early 1920s through the pioneering initiative and
efforts of Prasanta Chandra Mahalanobis. Soon
after his return from England, Mahalanobis began to
carry out statistical studies with the help of some
part-time assistants. A chance meeting with Nel-
son Annandale (the then Director of the Zoological
and Anthropological Survey of India) and subsequent
interactions with him led to the first scientific paper
by Mahalanobis on the statistical analysis of stature
of Anglo-Indian males of Calcutta. This was followed
by further research in anthropometry, in meteorol-
ogy and in problems of flood control in North Bengal
and Orissa. Gradually, a small group of young sci-
entists was picked up by him in the Department of
Physics, Presidency College, Calcutta, where he was
a professor. This group formed the nucleus of a labo-
ratory which later came to be known as the Statistical
Laboratory.

In the early 1930s, realizing the necessity for
a concerted effort for the advancement of theoret-
ical and applied statistics in India, Mahalanobis,
together with P.N. Banerjee and N.R. Sen, both pro-
fessors of Calcutta University, convened a meeting
on December 17, 1931, to consider various steps to
be undertaken for the establishment of an associa-
tion for the advancement of statistics in the country.
As a result of this meeting, the Indian Statistical
Institute (ISI) was registered as a non-Government
and nonprofit-distributing learned society on April
28, 1932, with Sir R.N. Mookerjee as President and
Professor P.C. Mahalanobis as (Honorary) Secretary.
The total staff strength then was only two or three.
From such a modest beginning, the Institute grew,
under the remarkable leadership of Mahalanobis into
an all-India organization which now has a staff
strength of about 1600, including about 500 scientific
staff. The Institute has its headquarters in Calcutta
and centers at Bangalore and Delhi and a branch
at Giridih. In addition, it has a network of service
units of the Statistical Quality Control and Opera-
tions Research Division at Bangalore, Baroda, Cal-
cutta, Chennai (formerly Madras), Coimbatore, Delhi,
Hyderabad, Mumbai (formerly Bombay), Pune, and
Tiruvananthapuram.

From the very beginning, Mahalanobis and his
associates, who included S.S. Bose, R.C. Bose, S.N.
Roy, K.R. Nair, K. Kishen, and H.C. Sinha, worked
with zeal and enthusiasm for the development of
statistical theory and methods, and in promoting
research and practical applications in different areas
of the natural and social sciences. Sankhya, the
Indian Journal of Statistics, was started in 1933
with Mahalanobis as its Editor, and received instant
international recognition, which continues till today.
Pioneering research activities were carried out in
many areas of statistical theory, especially in the
core areas of multivariate analysis, sample surveys
and experimental design. Such activities were
strengthened and new directions were opened up by
Professor C.R. Rao and many others who joined the
Institute in the 1940s and the tradition continues.
The Institute pioneered the development of statistical
methods in agricultural research and in the conduct
of large-scale agricultural enquiries. This led to a
large number of research publications and to the
introduction of training activities offering short-
term courses in statistics for officers in government
departments and scientific institutions. The scientists
of ISI, led by Mahalanobis, helped in introducing the
first post-graduate degree course in Statistics in India
at the Calcutta University in 1941, and in securing
a separate section for Statistics in the Indian Science
Congress.

Activities of the Institute gained further momen-
tum from 1938. Mahalanobis started sample surveys
to estimate the area under the jute crop in Bengal
in 1937 as an exploratory project, which later grew
to a full-scale survey of the entire province in 1941.
Gradually, sample surveys of agricultural crops, and
other socioeconomic surveys, became some of the
most important activities of the Institute, and earned
the Institute and Mahalanobis international reputa-
tion. Mahalanobis was appointed Honorary Statistical
Advisor to the Cabinet, Government of India, and in
1950, through his initiative, the National Sample Sur-
vey (NSS) was started for conducting socioeconomic
surveys of all-India coverage on a continuing basis.
This was the first ever attempt in India to have a
database for various developmental programs and the
five year plans.

The ISI played a pioneering role in starting the
Statistical Quality Control (SQC) movement in India
by organizing a visit of W.A. Shewhart, the father
of SQC, to India in 1948 and later by inviting
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other experts like W.E. Deming. SQC promotional
work was gradually spread all over the industrial
centers in India under a comprehensive program
covering education and training, applied research, and
consultancy services.

Research in economics was greatly stimulated
when in 1954 Prime Minister Jawaharlal Nehru
entrusted the preparation of the draft Second Five-
Year Plan of the country to Mahalanobis and the
Institute. The “draft” submitted by Mahalanobis and
the plan models formulated by him in that connection
have since been regarded as major contributions
to economic planning in India. Since then many
economists of the Institute have continued to work on
various aspects of national planning and, until 1970,
were directly helping the Planning Commission of the
Government of India in the preparation of the long-
term prospective plans for the country. Research in
other disciplines of social sciences was also started in
the Institute in the late 1950s. Mahalanobis’s partici-
pation in 1946 in the annual scientific conferences
of the Milbank Foundation led to the initiation of
systematic studies in India on population growth.
Earlier, the well-known Y -sample estimates for the
1941 census population were also derived by the
ISI. Theoretical and empirical research in sociology
using statistical techniques was started in the Institute
for the first time in South-East Asia. Similarly, the
development and introduction of psychometric tests
for selection processes in different organizations was
first made by the ISI in India besides carrying out
basic research in psychometry (see Psychometrics,
Overview). Studies of the phonetic structure of
some major Indian languages have been made on a
continuing basis in the Institute under the guidance
and collaboration of the famous linguist Djordje
Kostic.

The Institute, since its inception, recognized the
need for development and use of accurate and fast
computing equipment for the processing and analysis
of data. Mahalanobis strongly believed that to be a
good theoretical statistician one must also compute
and must therefore have the best computing aids.
The Institute has lived up to this tradition from the
very beginning. In 1953 a small analog computer
was designed and built in the Institute. In 1956 the
Institute acquired a HEC-2M machine from the UK
which was the first digital computer in India. In
1958 a digital computer URAL was received as a

gift from the then USSR. From 1956 to the mid-
1960s the Institute had been serving as a de facto
national computer center for the country. In the early
1960s the Institute, in collaboration with Jadavpur
University, undertook the design, development, and
fabrication of a fully transistorized digital computer,
called ISIJU-1, which was commissioned in 1966 by
Mr M.C. Chagla, the then Minister of Education,
Government of India.

Quantitative analysis in the physical and earth sci-
ences was one of the novel ideas that Mahalanobis
pursued in the true spirit of the Institute. In addition
to evolving some interesting techniques and obtain-
ing some very interesting results from the analysis
of directional geological data, the Institute also made
a significant contribution by discovering the bones
of a 16 m (+) long sauropod dinosaur named Bara-
pasaurus tagoreii, from the lower Jurassic Kota rocks
near Sironcha, Gadchiroli district, Maharashtra, in the
1960s. The discovery has helped in understanding
the interesting problem about the origin and evo-
lution of sauropod dinosaurs. It represents the only
intermediate form between the prosauropods and the
sauropods, and is called a “missing link” in the evo-
lution of the sauropod dinosaur.

The Institute expanded its research, teaching,
training, and project activities and earned national
and international recognition over time. The substan-
tial contributions of the Institute to theoretical and
applied statistical work have culminated in the recog-
nition of the Institute by the Government of India
enacting The Indian Statistical Institute Act, 1959
(No. 57) which declared the Institute as an “Insti-
tution of National Importance” and empowered it to
award degrees and diplomas. None other than Pan-
dit Jawaharlal Nehru, the then Prime Minister of
India, piloted the bill in Parliament. With this recog-
nition, the already existing teaching and training pro-
grams were consolidated and expanded and courses
for the degrees of Bachelor of Statistics (B.Stat.
(Honors)) and Master of Statistics (M.Stat.) were
started in June 1960. The Institute was also empow-
ered to award Ph.D./D.Sc. degrees from the same
time. Later on, courses leading to Master of Tech-
nology degrees were started in Computer Science
and in Quality, Reliability and Operations Research.
Recently, the Institute has also been empowered to
grant degrees and diplomas in mathematics, quantita-
tive economics, computer science and subjects related
to statistics as well as statistics itself. A master’s



Indian Statistical Institute 3

degree programme in quantitative economics has just
been initiated.

The role and importance of ISI in conducting and
promoting teaching of statistics has been appreciated
by international bodies as well. In 1950 the Interna-
tional Statistical Institute initiated the International
Statistical Education Centre (ISEC), Calcutta, jointly
with ISI, to impart training in theoretical and applied
statistics to participants selected from developing
countries. The center is run by ISI under the auspices
of UNESCO, the International Statistical Institute and
the Government of India.

Recognition of the Institute by the Act of Par-
liament provided greater encouragement to research
activities not only in statistics and mathematics but
also in various branches of the natural and social sci-
ences, without whose live contact, it was believed,
the methodology of statistics could not grow. It is
also due to this fact that “Unity in Diversity” has
been adopted as the motto of the Institute.

The objectives of the Institute are:

1. to promote the study and dissemination of knowl-
edge of statistics, to develop statistical theory and
methods, and their use in research and practical
applications generally, with special reference to
problems of planning for national development
and social welfare;

2. to undertake research in various fields of natural
and social sciences with a view to the mutual
development of statistics and these sciences; and

3. to provide for, and undertake, the collection of
information, investigations, projects, and opera-
tional research for purposes of planning and the
improvement of efficiency of management and
production.

From the early days, the Institute has been in
touch with many internationally famous scientists
in different disciplines from all over the world.
Some of these scientists have worked in the Institute
for several months or even longer. R.A. Fisher, a
pioneer of modern statistics, was a regular visitor
to the Institute and lent it considerable support.
J.B.S. Haldane, a geneticist of international repute,
was a member of the faculty for several years
beginning 1957. At the inspiration of these stalwarts
and other renowned scientists, the Institute began
to expand and/or undertake research activities in
several areas of the natural and social sciences with

the hope that collaboration under the same roof
would foster the mutual development of statistics
and other disciplines. In fact, the Institute stood
up to R.A. Fisher who called statistics a “key
technology” of the century, in view of its intimate
relevance to all scientific endeavors which involve
experimentation, measurement and inference from
sample to aggregate.

Coming to more recent times, the Institute has con-
tinued to pursue its goal of attainment of excellence
in various fields of science. Fundamental research in
statistics with its roots in applications has been the
bottom line ever since the inception of the Institute.
The contributions from the Institute in multivariate
analysis, design and analysis of experiments, sample
surveys, statistical methods of data analysis and sta-
tistical inference have found their places in textbooks
and monographs, and the tradition continues. In addi-
tion, probability theory and stochastic processes
have also been major areas of research in the Insti-
tute. The mathematicians of the Institute, in addition
to collaborating with the statisticians, are also making
fundamental contributions in several fields – topol-
ogy, functional analysis, harmonic analysis, algebra,
combinatorics, quantum mechanics, game theory, to
name a few. The current trend of research in statistics
not only carries forward the traditions set up in the
Institute, but is also setting new directions, both in
theory and applications, in different disciplines.

The Institute has been maintaining its tradition of
high-quality research and development in the field of
computer science. In 1979, a microprogrammed sig-
nal processing system using the Fast Fourier Trans-
form (FFT) was designed and developed. Keeping
pace with the global advances in computer technol-
ogy, the activities of the Institute in the field of com-
puter science gathered a tremendous momentum in
the late 1970s, resulting in diversification of research
in different areas including algorithms and complex-
ity, parallel and distributed processing, fault-tolerant
computing, VLSI, computational geometry, fuzzy
sets and systems, wave propagation, atmospheric
remote sensing, speech signal processing, cybernet-
ics, pattern recognition, neural networks, artificial
intelligence, image processing (see Image Analysis
and Tomography), computer vision, document anal-
ysis, natural language processing, particle physics,
fluid dynamics, plasma physics, etc. In recognition
of its contributions in the field of computer science,
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the Government of India established, in collabora-
tion with the United Nations Development Program
(UNDP), one of the five national nodal centers for
knowledge-based computing systems (NCKBCS) in
ISI in the year 1988.

The different disciplines under the social sciences
also continued to develop and flourish over time by
carrying out basic research as well as inter- and multi-
disciplinary programs. In economics, the Institute has
come to be known as a specialized center for its sig-
nificant contributions in different branches of theory
and also for studies on such areas as demand anal-
ysis, poverty and levels of living, measurement of
inequalities, production and prices, national income
and allied topics, development and planning, etc. In
demography, sociology, psychometry and linguistics
also, the Institute maintained its distinctive feature
for the focus and emphasis on quantitative aspects.
Mention may be made, in this context, of the pio-
neering theory for teaching and training for hearing-
impaired children, developed by D. Kostic. Based on
this theory the Electronics Unit of the Institute, in
collaboration with the Linguistic Research Unit and
the Government of Tripura, designed, developed and
fabricated a set of instruments for hard-of-hearing
children of the Institute of Speech Rehabilitation,
Government of Tripura, Agartala. This has come to
be regarded as having significant impact on social
welfare. Recently, the Institute has established a Pol-
icy Planning Research Unit at its Delhi Center and
a Survey Research and Data Analysis Center in
Calcutta.

Plant and human biology have been major areas
of research in biological sciences in the Institute.
Both basic and applied research are conducted, with
emphasis on quantification, statistical design and
analysis, and modeling. In the area of plant biol-
ogy, research has included quantification of natural
variability and modeling animal behavior, effect of
interaction of rice varieties on yield, use of protein
extracted from leaves to supplement human food,
mathematical modeling of ecological and embryolog-
ical phenomena, etc. In the area of human biology,
researches have included anthropometric, genetic and
biochemical studies on population affinities, micro-
evolution, studies on utilizing data on anthropometric
variability in designing car seats, human adaptation to
differing environments, human ecology and growth,
(see Growth and Development), and genetic epi-
demiology.

Over the years, the SQC & OR Division has
grown to the size of having ten operating units all
over the country and has uniquely served for promo-
tion, education and training and technical guidance
in total quality management methodology and quality
assurance systems for the benefit of the manufactur-
ing and service industry. It has thus, as was intended,
played a leading role in the dissemination of new con-
cepts, methods and techniques in the areas of quality
and productivity.

The central library of the Institute is located at
Calcutta with a network extending to other locations
of the Institute. Over the years, the library of the
Institute has attained the distinction of being one of
the richest libraries in the country, particularly in
the fields of statistics and related disciplines. The
library has developed a well-equipped reprography
and photography unit. The library’s gift collections
include the personal libraries of Mahalanobis and
Shewhart. The library has been recognized as the
depository library for World Bank Publications. A
separate collection of books and journals in mathe-
matics, statistics, etc. known as the Eastern Regional
Center of the National Board of Higher Mathematics
(NBHM), has been developed out of the grants from
the NBHM.

The Documentation Research and Training Centre
(DRTC) established at Bangalore in 1962 by the late
S.R. Ranganathan, a doyen in the field of library and
information science, is engaged in research, teaching
and training in documentation and information sci-
ence. The Institute awards post-graduate diplomas in
documentation sciences.

The continual publication of many books and
monographs and a large number of scientific papers
in national and international journals by the scientific
staff of the Institute give a good idea of the nature and
extent of the contributions of the Institute to statistics
and related fields. Scientists of the Institute have
also received recognition from many national and
international organizations by way of awards, titles,
and fellowships. With a dynamic group pursuing and
guiding research work in some of the most modern
topics and frontier areas of statistics, mathematics,
and in various fields of the natural and social sciences,
there is close interaction with scientists from all over
the world.

S.B. RAO



Infant and Perinatal
Mortality

An infant death is defined as the death of a live-
born baby before a completed year after birth [24].
The concept of infant mortality did not emerge until
the latter half of the nineteenth century, although data
for much earlier periods have subsequently been used
to construct infant mortality rates [3, 11]. Similarly,
the idea that stillbirths and deaths in the first week
of life could be grouped together and described as
perinatal deaths was not put forward until 1948 [16],
but perinatal mortality rates have been constructed
retrospectively for earlier years.

The Emergence of the Concept of
“Infantile Mortality”

In 1858, Sir John Simon, Medical Officer to the
General Board of Health used the term “infantine
death rate” for mortality among children under the
age of five. In his introduction to Papers Relating to
the Sanitary State of the People of England [18], he
expressed the view that this rate was a proxy measure
of the health of the population. Drawing attention to
the wide differences between districts, he commented
that these infantine death rates

. . . furnish a very sensitive test of sanitary circum-
stances; so that differences of infantine death-rate
are, under certain circumstances, the best proof of
differences of household condition in any number
of compared districts. And, secondly, those places
where infants are most apt to die are necessarily the
places where survivors are most apt to be sickly . . .

[18].

He went on to suggest that, “Deaths which occur in
excess within five years of birth are mainly due to
two sets of causes; first to the common infectious
diseases of childhood prevailing with unusual fatality;
and secondly to the endemic prevalence of convulsive
disorders, diarrhea and pulmonary inflammation”. A
factor that he did not mention was differences in the
completeness of registration of births. It was likely
that some babies who died shortly after birth were not
registered; in particular, babies born outside marriage
in big cities.

William Farr first used the current definition of
infant mortality indirectly when reporting deaths in

1875, although he did not explicitly use the term
“infant”, nor the word “infantile”, which was more
commonly used in the succeeding decades. He wrote,
“I show that in 1000 infants born in 1875 no less than
158 died in the first year of life . . .” [5].

Infantile Mortality and Stillbirth
Registration

In the same report, William Farr commented on the
implications of changes in the law that had made
the registration of live births compulsory in 1875.
He pointed out that, “In the case of children born
alive – or who breathe – both the birth and death are
registered, but still-born children are not registered
in England” but “Under the provisions of the new
Registration Act, no still-born children, however,
should be buried without a certificate stating that
they were still-born” [5]. There is good evidence that
these certificates were also used to bury victims of
infanticide [11].

An international survey undertaken for the Select
Committee on Stillbirth Registration and published in
1893 showed that Britain and Ireland lagged behind
many other countries in not having stillbirth reg-
istration [10]. Nearly 20 years later, a second and
fuller survey was done by the “Special Committee on
Infantile Mortality” set up by the Royal Statistical
Society [17].

These surveys covered European countries, New
Zealand, states of Australia and the US and provinces
of Canada. The Royal Statistical Society’s survey
also covered other British colonies and some Latin
American countries. It found that stillbirth registration
was compulsory in most countries, but that, “The
large majority of the countries where registration is
not required are under the British Crown, and it may
be concluded that the Registration Laws in force
in such countries have been based on the English
model.” In contrast, Sweden had introduced registra-
tion of both live and still births and deaths as early
as 1749, followed by Denmark and Norway in 1801.

The surveys found wide differences between the
countries in their criteria for birth registration and for
distinguishing between infant deaths and stillbirths.
As William Farr had already pointed out, “In France,
under the provisions of the Code Napoleon, children
who die (either before or after birth) before registra-
tion, are recorded as still-born. Dr Bertillon estimates
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that twenty-two in 100 of the children registered in
France as still-born breathed, and such children in
England would be registered among the births and
deaths” [5].

It was this problem that prompted the Royal Statis-
tical Society’s enquiry. When presenting the Commit-
tee’s report to the Society, Reginald Dudfield focused
his attention on the need for a definition of stillbirth,
as none of the countries with stillbirth registration
appeared to have one in their legislation [4]. He con-
sidered two sets of issues. The first was the question
of “viability”. This was linked to the gestational age
after which the fetus should be considered a child
capable of independent life. The second was how to
establish whether the fetus or child was, or had been,
alive at birth.

After asking the Obstetrical Section of the Royal
Society of Medicine for a definition of stillbirth,
he recommended the following slightly amended
version:

A “still-born child” means a child whose body at
birth measures not less than 13 inches (32 centime-
ters) in length from the crown of the head to the
sole of the heel and who, when completely born (the
head, body and limbs of the child, but not necessar-
ily the afterbirth being extruded from the body of
the mother), exhibits no sign of life – that is to say
whose heart has ceased to function, as demonstrated
by the absence of pulsation in the cord at its attach-
ment to the body of the child and the absence of any
heart-sounds or impulses.

NOTE: Crying and/or breathing – being sec-
ondary signs of life, manifested only when the heart
is acting – can be relied upon as signs of life, but in
the absence of either or both is not to be held to be
proof of absence of life in the child [4].

When stillbirth registration was eventually introduced
in England and Wales in 1927, a shorter definition
based on gestational age was used:

“Stillborn” and “stillbirth” shall apply to any child
who has issued forth from its mother after the
twenty-eighth week of pregnancy and which did not
at any time after being completely expelled from its
mother breathe or show any other signs of life [6].

Public Concern About Infantile Mortality
and Developments in Analysis

The Royal Statistical Society’s enquiry came at a
time when there had been a growing concern about

infant mortality in a number of countries. In Britain,
this had been prompted by the discovery that many
potential recruits for the Boer War were unfit and by
the campaign by the Women’s Co-operative Guild for
maternity services.

The Royal Statistical Society Committee also
discussed the way in which the infantile mortality
rate was calculated. It had defined this as the ratio of
the deaths during the first year of life to births. Its
enquiries had revealed, however, that some countries
had used the estimated numbers alive under the age
of one year instead. Given the relative inaccuracy of
population estimates, the Committee recommended
using births instead.

Having pointed out that some countries compiled
their birth statistics by year of registration and
others by year of occurrence, it recommended using
occurrences. It also recommended that stillbirths
should be tabulated separately and that in countries
where live-born babies who died before registration
were registered as stillbirths, they should actually be
counted as infant deaths [17].

As a result of public concern about infant mor-
tality, analyses of infant mortality by age at death
in the Annual Reports of the Registrar General from
1904 were more detailed than in earlier years. In addi-
tion, a series of four reports on infant mortality was
published by the Local Government Board, the gov-
ernment department responsible for public health. In
the first of these, the Board’s Chief Medical Officer,
Arthur Newsholme reiterated John Simon’s view in
stating that, “Infant mortality is the most sensitive
index we possess of social welfare and of sanitary
administration, especially under urban conditions”
[14]. These reports compared the infant mortality
rates for different parts of England and Wales and dis-
cussed the comparisons and local data in relation to
factors such as sex, legitimacy, family size, the qual-
ity of help available in childbirth, the ages of mothers,
poverty, overcrowding and defective sanitation.

A similar concern about infant mortality in the
US at the same period has been attributed to its
emergence as a world power.

The problem of infant mortality is one of the great
social and economic problems of our day . . . A
nation may waste its forests, its water power, its
mines, and to some degree, even its lands, but if
it is to hold its own in the struggle for supremacy,
its children must be conserved at any cost. On
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the physical, intellectual and moral strength of the
children of today the future depends [9].

One response to this was the setting up of the
Children’s Bureau and its enquiry in 1913 into
infant mortality in eight cities. This enquiry took
a cohort approach, following up children born in
a given year, and was analyzed by a statistician,
Robert Morse Woodbury (see Birth Cohort Studies).
Having considered the same broad range of factors
as Arthur Newsholme, he concluded that the level of
the father’s earnings was the strongest “causal” factor
associated with infant mortality [21].

These conclusions underpinned calls for political
action to improve the conditions for young children
and their parents, but these were not the only views
held at the time. Followers of the eugenics move-
ment took the view that heredity was the prime factor
in infant mortality and that attempts to reduce it
hindered natural selection by delaying or preventing
the death of children who would survive as “weak-
lings” [15].

The introduction of new technology in the form
of punched card equipment increased the extent to
which infant mortality could be analyzed by cause,
age at death, and other factors [3]. Peter McKinlay’s
analysis of the decline in infant mortality in England
and Wales in the first quarter of the twentieth century
showed that, “. . . all ages have not shared in this
amelioration to the same extent . . . as a general rule,
the nearer to birth the less has the mortality been
affected” [12].

In his analysis, he subdivided infant mortality
into two categories, “(a) the death rate from ‘con-
genital debility, malformation and premature birth’
(number 28 of causes of death given for each sep-
arate district in the Annual Reports of the Registrar
General), and (b) the remainder of the infant deaths
under one year”. He labeled these as “neo-natal”
and “post-natal”, respectively, and called stillbirths
“ante-natal” deaths.

He concluded from his analysis of differences
between areas of England and Wales that

only the provision of skilled assistance to mothers
in childbed is of importance in connection with
ante-natal mortality. . . . The neo-natal death rate is
related both to variations in external environment
and in the obstetrical assistance available to mothers
in childbed. . . . The postnatal death rate seems to
offer the greatest scope for administrative measures.
In this case the health of the mother would appear

to come first in order of appearance, environment
also is of some importance, whereas the effects of
variations in obstetrical services have now ceased to
be reflected on the mortality of infancy [12].

The term “neonatal” was also used a few years later
in an international analysis for the League of Nations
[19]. This had a demographic focus and started
by looking at trends in countries’ infant mortality
in relation to their birth rates, population changes
and overall death rates. It brought together the two
streams of opinion on infant mortality in stating that,
“It is evident that the causes of infant mortality
may be divided into two distinct categories: (a) those
depending on the fitness of the infant to live at
all, and (b) those arising from the unfitness of the
surroundings to support infant life” [19].

In comparing the death rates for different coun-
tries, the author grouped together deaths of live-born
babies under the age of one month with stillbirths,
partly to get over the differences in stillbirth registra-
tion referred to earlier. The term “birth mortality” was
suggested for this combined rate. This rate varied far
less between countries than that for older babies. The
author commented that, “Infant mortality has repeat-
edly been stated to be the best measure of the sanitary
state of a country . . . if the infant mortality rate is
employed for this purpose, it should clearly be only
the part relating to infants over 1 month” [19].

The Establishment of Current Definitions

In the latter half of the twentieth century, the current
definitions of fetal death, stillbirth, and the com-
ponents of the infant mortality rate have become
established. They are shown in Figure 1. Introducing
these definitions, the Registrar General’s Statistical
Review for England and Wales for 1951 commented
that the use of the term “neonatal period” was “now
traditional among obstetricians and compilers of vital
statistics” and its first use by writers of Annual
Reviews had been in 1936 [7]. It also pointed out
the term “perinatal mortality” had first been used in
1950. The term had been coined by a demographer
Sigismund Peller, who took the view that time trends
in early neonatal deaths had more in common with
those in stillbirths than with those in the rest of the
first year of life. [16]

In most developed countries, infant mortality rates
have fallen persistently and dramatically in the latter
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Late fetal death
(Stillbirth)

Perinatal

Early neonatal
Late neonatal

Neonatal

Postneonatal

Infant

1 day 1 week 28 days 1 year

Birth

Rate
expressed as:

Deaths per
1000 total
births

Deaths per
1000 live
births

Stillbirth rate  = still births x 1000
live births + stillbirths

Perinatal mortality rate  = (stillbirths + deaths at 0−6 days after live birth) x 1000
live births + stillbirths

Early neonatal mortality rate  = deaths at 0−6 days after live birth x 1000
live births 

Late neonatal mortality rate   = deaths at 7−27 days after live birth x 1000
live births 

Neonatal mortality rate   = deaths at 0−27 days after live birth x 1000 
live births 

Postneonatal mortality rate   = deaths at 1−11 months after live birth x 1000
live births 

Infant mortality rate   = deaths under the age of 1 year after live birth x 1000
live births 

Figure 1 Definitions of stillbirth and infant morality rates. Reproduced from Macfarlane & Mugford [11] by permission
of the office for National Statistics.  Crown copyright 1984

half of the twentieth century to well below 10 infant
deaths per 1000 live births. As the survival rates
of preterm and immature babies have risen, the
definitions used have been extended to include ever
smaller babies and fetuses and countries still differ
considerably in their criteria for registering live and
still births. [8, 13].

The World Health Organization’s Expert Com-
mittee on Vital Statistics recommended in 1950 that,
as a minimum, all countries register and tabulate all
fetal deaths after the 28th completed week of gesta-
tion [22]. This was endorsed in the seventh revision of
the International Classification of Diseases (ICD).
This was the first to incorporate a definition of still-
birth that separates the definition of a dead-born fetus
from the criteria for registration.

A quarter of a century later, a different approach
was used in the ninth revision of the ICD. This rec-
ommended that national perinatal statistics should
include all fetuses and babies delivered “weighing
at least 500 g or, where birthweight is unavailable,
the corresponding gestational age (22 weeks) or body
length (25 cm crown–heel), whether alive or dead”
[23]. It went on to acknowledge that countries’

legal requirements might have different criteria for
registration purposes and that international compar-
isons should be restricted to fetuses and babies
“weighing 1000 g or more (or, where birthweight
is unavailable, the corresponding gestational age
(28 weeks) or body length (35 cm crown–heel)” [23].

The tenth revision of the ICD took yet another
approach and defined the perinatal period “which
commences at 22 completed weeks (154 days) of
gestation (the time when birthweight is normally
500 g) and ends seven completed days after live
birth” [24]. Although the ICD no longer uses the
term stillbirth, the term still appears in the legislation
of individual countries, such as the countries of
the UK.

The relevance of the upper cutoff point for the
perinatal period has often been questioned in recent
years. Increasingly, the use of intensive care is
enabling very immature babies to survive, but there is
also a tendency for those that die to do so later after
birth. One response to this is to redefine perinatal
deaths as the sum of all stillbirths and neonatal
deaths, as is done in Australia. Another, which
takes into account the view that there are increasing
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differences between stillbirths and neonatal deaths,
is to tabulate stillbirths, neonatal and postneonatal
deaths separately and drop the use of the perinatal
mortality rate.

The ninth revision of the ICD recommended using
a special form of certificate for perinatal deaths,
with the cause section subdivided into “main and
other diseases or conditions in the fetus or infant,”
“main and other maternal conditions affecting the
fetus or infant” and “other relevant circumstances”
[23]. It did not indicate how these data should be
analyzed. In response to this problem, the Office
of Population Censuses and Surveys, now known
as the Office for National Statistics, has devised a
hierarchical classification to group causes of stillbirth
and neonatal death from the forms of certificate it
introduced in 1986 [1, 2]. This classification uses
categories first proposed by Jonathan Wigglesworth
for use with information derived from case notes [20]
and also builds on the extensive research done over
many years in Aberdeen, Scotland.
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Infectious Disease Models

There are two major roles for stochastic infectious
disease models. Their study provides insights into
the spread of disease in a community, and they are
an essential component in the analysis of data from
empirical studies of infectious disease (see Epidemic
Models, Stochastic).

The Epidemic Threshold Theorem

A major insight provided by epidemic models is
that major epidemics can be prevented in a large
community by immunizing only a fraction of the
individuals. This property is sometimes referred to
as herd immunity, and is quantified by the epidemic
threshold theorem. Deterministic models for infec-
tious diseases (see Epidemic Models, Deterministic)
indicate this result, but these models assume that
both the group of susceptible individuals and the
group of infective individuals are large throughout
the epidemic. The stochastic version of the threshold
theorem also requires a large susceptible group, but
the infection process may start with only one infec-
tive individual. The stochastic threshold theorem is
also richer in that it quantifies the probability of a
major epidemic when a small number of infective
individuals enter a large community that is currently
free from the disease.

In the overly simple setting of a large community
of homogeneous individuals, who mix uniformly (see
Random Mixing), the threshold theorem indicates
that the probability of a major epidemic is zero when
the proportion of individuals who are susceptible to
infection is less than 1/θ . The parameter θ , known
as the basic reproduction number, is the mean
number of individuals infected by the direct contacts
of an infective entering the community when all other
individuals are susceptible.

The epidemic threshold theorem holds under quite
general conditions, but the bound 1/θ then depends
on the community structure and the heterogeneity
among individuals (see [7] and [8]).

Data on Outbreaks in Households

Infectious disease data have three features that dis-
tinguish them from other data. There is usually some

knowledge about the mechanism that generates the
data, the data are dependent, and the infection process
is only partially observable. A consequence of these
features is that the analysis of data is usually most
effective when it is based on a model that describes
aspects of the infection process. The level of detail
that should be incorporated into the model depends
on the objective of the study.

Disease transmission and the natural history of
diseases evolve in continuous time, but discrete time
models are often appropriate for data analysis. It may
be that events are only recorded to the nearest day,
say, or only the eventual outcomes of outbreaks are
observed. Data on the eventual number of cases in
households are often collected, because households
are a manageable unit size and data on eventual
infection can be verified by laboratory tests, which
makes them relatively reliable.

Chain Binomial Models

In a household having initially s susceptible indi-
viduals, there will be 1, 2, . . ., or s eventual cases.
The probability of a specified number of eventual
cases in an infected household is computed in terms
of disease transmission probabilities by considering
the likelihood of the various chains of infection. To
illustrate, suppose that one of a total of five suscep-
tible individuals of a household is infected and starts
an outbreak in the household. Assume that the out-
break evolves without further infection from outside.
Four eventual cases in the household could result via
a number of different chains of infection. One such
chain is 1 → 2 → 1 → 0, which means that the sin-
gle initial infective infected exactly two household
members, who in turn infected exactly one member,
and the last remaining susceptible member escaped
infection throughout.

A simple chain binomial model would compute
the probability for this chain, given one introductory
case, as

(
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)
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where qi is the probability that a susceptible escapes
infection when exposed to i infectives for the dura-
tion of their infectious periods and pi = 1 − qi . The
probability that the number of eventual cases in a
household is x is the sum of chain probabilities over
all chains with x eventual cases.
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The EM algorithm is a convenient tool for finding
maximum likelihood estimates when fitting chain
binomial models to size of household outbreak data.
This is pointed out with reference to partner studies
for HIV infection in [11] and is discussed more fully
in the review paper [6] (see AIDS and HIV).

Models that capture the infection mechanism of
the data generally contain parameters with clear inter-
pretations and are well suited for testing epidemio-
logically important hypotheses. For example, with
a chain binomial model for the size of household
outbreaks, we can test the Reed–Frost hypothe-
sis q2 = q2

1 , or the Greenwood hypothesis q2 = q1.
The Reed–Frost assumption is appropriate for dis-
eases that spread primarily by direct person-to-person
contact.

Many methods of analysis of household data
assume that each household outbreak evolves essen-
tially independently after the initial infection of the
household. This assumption is often of concern.
Longini & Koopman [10] propose an analysis based
on a pragmatic chain binomial model that also allows
infection from outside the household.

Epidemic Chain Models with Random Effects

It is instructive to think about disease transmis-
sion in terms of a continuous infectivity function
λ(t) that indicates how infectious an infective is
t time units after being infected. The infectivity
function reflects both the level of infectious agent
emitted by the infective and his or her rate of
making contacts with others. Often, the infectivity
function is zero for a period immediately after infec-
tion, because the infectious organism is developing
within the body and no infectious agent is emitted.
When disease transmission is person-to-person, the
probability that a given susceptible individual escapes
infection when exposed to a given infective is q1 =
exp[− ∫ T

0 λ(t) dt], where T is the duration of time
from infection until the end of the infectious period.

Epidemic chain binomial models assume that
infectives are homogeneous, in the sense that they all
have the same infectivity function. When infectives
have different infectivity functions, we still use chain
binomial models if the infectives can be partitioned
into homogeneous groups. Otherwise, we proceed by
considering the q1 for each infective to be a realiza-
tion from a probability distribution. In these random
effects models, see [4, Chapter 3], the probabilities

of the epidemic chains are expressed in terms of the
moments of q1. This allows for heterogeneity in the
infectivity of infected individuals. Heterogeneity in
susceptibility or among households can be allowed
for in a similar way. An application of random effects
models to data on Shigella sonnei in households is
given by Baker & Stevens [3].

A comprehensive analysis of infectious disease
data on household outbreaks, allowing infection from
outside the household, variation in the duration of
the infectious period, and covariates, is described by
Addy et al. [1].

Continuous Time Data for Households

Sometimes, when daily data are available on symp-
toms shown by infected individuals, the analysis
is based on a continuous time model. The stan-
dard model used is a compartmental model for the
irreversible compartments Susceptible→Exposed→
Infective → Removed, referred to as the SEIR model.
An individual in the exposed category is infected, but
not yet infectious, and said to be in the latent period.
The final category is called removed, because these
individuals play no further part in the infection pro-
cess. These individuals may simply have recovered
and have acquired immunity from further infection
for the duration of the epidemic. It is of interest to
estimate characteristics, such as the mean and vari-
ance, of the latent and infectious periods. This can be
done by assuming a parametric model for the distribu-
tion of the latent and infectious periods, as described
in [2, Chapter 15] and [4, Chapter 4]. It is also of
interest to make inferences about the functional form
of the infectivity function, which is considered in the
context of transmission of the human immunodefi-
ciency virus (HIV) by Shiboski & Jewell [12] on
the basis of data on partners of individuals infected
with HIV.

Data on an Epidemic in a Community

Regression Analysis

When data are available on the days on which indi-
viduals show symptoms of disease, and these can
be used to deduce the date of infection, with rea-
sonable accuracy, then a comprehensive regression
analysis is possible. The response variable is the
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indicator of infection for each susceptible individ-
ual on each day. The Mantel–Haenszel test statistic
has been suggested as a way of reducing the number
of covariates, see [4, Chapter 5]; however, a logistic
regression model is also convenient for determining
which covariates are needed in the model. When a
final set of covariates is arrived at it is useful to fit a
loglinear regression model in these covariates to the
binary data. The preference for the loglinear model
stems from the more direct epidemiologic interpreta-
tion of its parameters in the infectious disease context.
More specifically, if Y is the indicator of escaping
infection for a given susceptible on a given day, then
fitting the model Y � binomial[1, exp(−β

′
x)] is use-

ful, because with this model β
′
x can be interpreted

as the force of infection acting on the susceptible on
that day. The covariate x might include the number of
infectives in the community and the number of infec-
tives in the susceptible’s household, for example. An
illustration of such a regression analysis is given in
[4, Chapter 6].

Martingale Methods

The fact that the infection process is observed only
partially causes the likelihood function based on con-
tinuous time data to be very complicated. This has
encouraged the development of pragmatic methods
based on simplifying assumptions and approxima-
tions. In contrast, methods of analysis derived from
martingales for counting processes have proved suc-
cessful for developing simple methods of statistical
inference for some crucial parameters, such as the
basic reproduction number, for quite general models.
Tutorial accounts of these methods are given in [5]
and [4, Chapter 7].

Vaccine Efficacy

A major motivation for the study of infectious
diseases is to gain insight into ways in which they can
be controlled and to determine requirements for their
control. The most successful method of intervention
continues to be vaccination (see Vaccine Studies).
The epidemic threshold theorem plays a key role here,
but it can only be applied if parameter estimates are
available. A crucial parameter is the vaccine efficacy.
Traditionally, vaccine efficacy has been estimated
by 1 − (ARV/ARU), where ARV is the attack rate

among vaccinated individuals and ARU is the attack
rate among unvaccinated individuals. The attack rate
is the proportion of individuals infected in the speci-
fied risk group over a nominated period of time. As a
measure of the protective effect that the vaccine pro-
vides, this concept of vaccine efficacy suffers from
depending on both the community from which the
data come and on the time period over which the data
are collected. Recently, there has been a more careful
study of the interpretation and estimation of vaccine
efficacy, see [9]. Typically, as a concept of protection
against infection, vaccine efficacy might be inter-
preted as α, where the force of infection acting on
vaccinated individuals is αg(t) at chronological time
t when the force of infection exerted on an unvacci-
nated susceptible is g(t). Depending on the vaccine,
α may be a constant in [0, 1] or a separate realization
on a random variable for each vaccinated individual.

The HIV/AIDS Epidemic

The appearance of AIDS stimulated new interest
in the problems of modeling and data analysis for
infectious disease studies. A distinguishing feature of
infection with HIV is the very long time between
infection and diagnosis with AIDS. This has made
it feasible, and of interest, to assess the size of the
epidemic, forecast its progress, and study character-
istics of disease progression during the course of the
epidemic (see AIDS and HIV).
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Infectivity Titration

In an experiment to assay the virulence of a sus-
pension of living, self-reproducing organisms (which
we refer to here as “particles”), doses derived by
successive dilution of the original suspension are
administered to groups of host organisms, and the
proportion of hosts infected at each dilution is re-
corded. The “independent action” or “one-hit” theory
[13–15] assumes that infection can be initiated by
one particle, which, for some reason or other, is
“effective”. Particles act independently, any one par-
ticle having a probability, p, of being effective on
a particular occasion. The biological interpretation
of p depends on the host–pathogen system. It may
be the probability of a particle being retained in the
host, or reaching a totally susceptible site; or, on a
stochastic model, it may depend on the relative rates
at which particles divide and die within a host [4]
(see Stochastic Processes).

Situations for which this model has been proposed
include the infection of plants by viruses [6], the titra-
tion of viruses in egg membranes [16] or portions of
membrane [10], the infection of animals by bacteria
[20, 21], and the initiation of tumors in animals by
viruses [7].

Suppose that at the ith dilution, the mean number
of particles per inoculum is λi , and that ni hosts are
inoculated, of which ri are infected. If the probability
of infection, p, is the same for all hosts, the proba-
bility that a host receiving this inoculum will not be
infected is the first term in the Poisson distribution,

Pi = exp(−λip). (1)

If this dose has a concentration equal to a fraction xi

of the original preparation, we can define γi = λip =
γ xi , say, where γ is the mean number of effective
particles per inoculum in the undiluted preparation.
From a set of results at a series of different dilutions
one could estimate γ as in the dilution method for
bacterial density estimation, or the “most probable
number” method (see Serial Dilution Assay).

Note, first, that the parameter to be estimated
here depends both on the density of the particles
in the original preparation and on the probability
of infection, p. In the dilution method for counting
viable bacteria it is assumed that a particle present
in the inoculum will be detected without fail, so that

p = 1 for all hosts. The absolute density of parti-
cles in a preparation can then be estimated. In the
more general situation considered here, the abso-
lute density of particles cannot be estimated without
some further assumption about the probability of
infection. Nevertheless, an infectivity titration can be
used to compare two or more microbial populations,
inoculated into randomly assigned hosts (see Biolog-
ical Assay, Overview).

Note, secondly, that if p is not equal to unity
universally, it may vary between hosts, and this
feature leads to a number of important modifications
of the model described above. However, variation
in infectivity between individual particles does not
invalidate the simple model, provided the hosts are
identical in their susceptibility.

Host Variability

Suppose that p varies from host to host with a
distribution function F(p). (We avoid the use of a
capital letter for the random variable p, as P is
customarily used in the different sense of (1) above.)
Then, the probability of noninfection is

Pi =
∫ 1

0
exp(−λip) dF(p). (2)

Expression (2) is a moment generating function
for the distribution F(p), and may be expanded in
terms of the moments. Since p is restricted to the
range (0,1), the terms involving the higher moments
are, in practice, negligible for all except very large
values of λi , and a good approximation is

Pi
∼= exp(−λiµ)

1 + (λ2
i µ2)

2
, (3)

where µ and µ2 are, respectively, the mean and
variance of p. Expression (3) shows that the effect of
host variability is to flatten the dose–response curve
relating Pi to λi or to the known concentration factor
xi , the proportionate effect being greater at the higher
concentrations.

The general effect of host variability was noted
in [21]. The precise effect has been studied for a
number of specific distributional forms, including the
gamma distribution [1, 16], truncated exponential
[1, 5], beta [5] and two-point [2, 7] distributions.
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For the gamma (or type III) distribution with density
function

f (p) = exp
(−p/µk)(p/µk)(1/k)−1

(µk)Γ (1/k)
, (4)

with mean µ and variance µ2 = kµ2, (2) gives

Pi = (1 + λiµk)−(1/k), (5)

which is equivalent to (3) to O(k) and tends to (1)
as k → 0. The gamma distribution, having infinite
range, is strictly inappropriate as a distribution for p,
but may be regarded as an adequate model for small
values of µ, when truncation at p = 1 would have
little effect.

The two-point distribution places probability
masses αi at values p = πi, i = 1, 2, with π1 <

π2. If π2 � π1, the effect on the dose–response
curve relating the probability of infection, Qi =
1 − Pi , to xi or log xi , is to suggest a “shelf” at
approximately Q = α2, since only the hosts with the
higher level of susceptibility will be infected at the
lower concentrations.

Further insight into the flattening effect [5] follows
by regarding the response curve as the distribution
function of a tolerance distribution (see Quantal
Response Models). Let V denote the variance of
the tolerance distribution of log x from (2), V0 the
corresponding value from (1) for homogeneous hosts,
and Vlog p the variance of log p. Then, as noted in [5],

V = V0 + Vlog p. (6)

This increase in variance caused by host variability
corresponds to the flattening of the dose–response
curve. Many authors [8, 10, 20] have used probit
analysis to analyze dose–response curves in infec-
tivity titrations (see Quantal Response Models). It
is known [11] that the exponential model (1) leads
to a tolerance distribution for the log dose closely
similar to a normal distribution, and that, with logs
taken to base 10, the expected slope of a probit line
is about 1.8–2.0. The expression (6) shows that, in
general, probit slopes against log dose for infectivity
experiments will usually be less than 1.8. System-
atic values below 1.8 would indicate host variability,
whilst values above 2.0 would suggest departure from
independent action.

Detection and Estimation of Host
Variability

Probit analysis provides a rough way of checking
the evidence for host variability and of estimating
its magnitude through the parameter Vlog p. A better
approach is based on the more correct models (1)
and (2).

For a test of the null hypothesis of zero variability
in a titration experiment with n hosts at each dilution,
Moran [16, 17] proposed the statistic

T =
∑

ri(n − ri), (7)

and evaluated its null distribution for series with
various dilution ratios. Moran’s statistic is symmetric
as between infected and noninfected hosts, and thus
does not use the fact, shown by (3), that departures
from the null model (1) will tend to be associated
with excessive numbers of noninfections at high
doses.

Armitage [1] proposes a score test (see Least
Squares), based on the likelihood function derived
from (3). The test statistic is

φ =
∑

[
niQ̂i − ri

Q̂i

]
(γ̂0xi)

2

2
. (8)

Here, γ̂0 is the maximum likelihood estimate of γ

under the null model (1), and Q̂i is the corresponding
estimate of Qi . Note that in (8) the discrepancies
between observed and expected frequencies are more
heavily weighted at the higher doses. A modified
statistic φ′ is available when γ is estimated by
a consistent but inefficient estimator, such as that
suggested by Fisher [9] based on

∑
ri .

Moran’s T is identically zero for series with
n = 1, and is therefore inappropriate in that situation.
Experiments are likely to require larger values of n,
but may sometimes be designed in blocks, each with
n = 1.

Stevens [22] proposes the statistic R, equivalent
to Moran’s [18] D + 1, defined as the number of
dilutions between (and including) the first at which
not all hosts are infected, and the last at which at
least one is infected. As an example, in the following
series of increasing dilutions with single observations
(+ representing infection),

· · · + + 0 + 0 + + 0 0 . . . ,
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the value of R is 5. As with T , there is no differential
weighting of the two extremes of the response curve.
An alternative simple statistic [3] is J , defined as the
number of infected hosts at dilutions beyond that at
which the first noninfection occurs. In the example,
J = 3. The statistic J has been shown [3] to be highly
correlated with the efficient statistic φ and to be more
powerful than R in the detection of small departures
from the null model.

All tests of host variability must be one-sided,
since the null hypothesis lies at one end of the
parameter range. It might be argued that such tests
are pointless, since some degree of host variability
must exist except in the extreme case where p = 1
for all hosts. However, one situation leading to a
mean µ less than unity might arise if a proportion,
µ, of hosts were invariably susceptible, the remaining
proportion, 1 − µ, being totally resistant. In that case,
there would be no variability. Contradiction of the
null hypothesis in a test for variability, then, at least
rules out that possible scenario. In general, though,
it will be more useful to estimate the degree of
variability than to test for evidence of its existence.

Maximum likelihood estimation of k follows from
the likelihood equations based on (3) [1], and less
efficient estimates may be based on the simple test
statistics such as T .

Dependent Action Models

Most log dose–response curves encountered in infec-
tivity experiments are sufficiently flat to support the
independent action or “one-hit” theory, for which
other evidence exists [13, 15]. If infection depended
on cooperation between more than one particle, the
resulting “multi-hit” log dose–response curve would
be steeper than that given by (1). Iwaszkiewicz &
Neyman [12] discuss the estimation of the critical
number of effective particles required for infection,
and introduce the concept of host variability by allow-
ing the critical number to vary between hosts, the
effect again being to flatten the log dose–response
curve. Independent action could conceivably also
give rise to a steeper curve. In the production of
tumors by viruses, for example, tumors might be
too faint to be detected unless several occurred close
together [19]. In the absence of host variability, the
response curve would then be steeper than the expo-
nential form (1).
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Inference, Foundations of

Humans learn considerable information (and misin-
formation) from birth and throughout their lives. This
ability arises through some combination of genetic
influences, direct experience in the surrounding envi-
ronment, and input from others, both through inter-
personal interaction (i.e. parents, friends, teachers,
etc.) and stored and supplied societal information (i.e.
media, books, paintings, digital information, analog
information, etc.). Some learning is relatively direct
and easy to assimilate (e.g. falling off a bicycle can
be painful and lead to injury), but much other learn-
ing is more difficult, because of both variability in
observed relationships and the complex and sophisti-
cated underlying models and concepts that “explain”
observations (e.g. the currently accepted models of
particle physics or molecular biology). Multiple dis-
tinct intellectual pathways have contributed to the
current methods of biostatistical inference. These
pathways include randomness, probability, regular
variability, statistical modeling, and observational vs.
experimental data collection.

The ideas of randomness go back at least to bib-
lical times where the casting of lots was used. How-
ever, the modern ideas of probability were initially
developed with respect to games of chance [8]. Jacob
Bernoulli’s proof of the strong law of large num-
bers [12] set the scene for interpreting probabilities
as the limit of the proportion of times that an event
would occur in a long sequence of repeated identical
trials. In this context it was natural that probability
was thought of in a frequentist sense: “fair” games
could be repeated with equal probabilities of differing
outcomes in cards or dice.

A second intellectual thread was the observation
that in repeatable situations with variable outcomes
there was a regularity or pattern to the variability
observed. Repeated measurements taken in the (pre-
sumed) same or similar situation clustered around
some (presumed) true value. It was natural to consider
ways of dealing with this variation in outcome, and
natural that at some point the mathematical theory of
probability theory would be used as one possible way
of assessing the variability.

Probability as a concept becomes more difficult
as one thinks about it. Einstein, for example, did
not believe that probability was an inherent property
of the universe: his view is often quoted as “God

does not play dice with the universe” [3]. However,
most physicists believe that probability is basic to
the quantum mechanical structure of the universe.
Regular variability that could “mimic” probability
theory could also result from the mathematics of
chaos theory that make it clear that very small
changes in initial conditions, for even relatively sim-
ple nonlinear systems, can lead to dramatic changes
in outcome over time. If for no other reason than an
inability to delineate precisely the initial conditions,
variability in biological systems can be expected to
be the commonly observed situation. As an example
of possible chaos theory, multiple card shuffling
could be expected (with a number of shuffles) to
approximate the usual mathematical model that all
permutations are equally likely; yet there are skilled
individuals who can shuffle cards with perfect knowl-
edge of how the cards will interleave.

At the same time there are (seemingly) unique
situations where only one event will be observed.
For example, one presidential election, one football
game, or the treatment of an individual patient may
be at issue. Yet individuals evaluate such situations
and at least implicitly attach odds or probabilities to
these situations; some consistently do an excellent
job, while others do not do so well. This suggests
that the evaluation of probabilities or the likelihood
of outcomes also can be related to the personal or
individual beliefs of humans. This subjective version
of probability, or Bayesian probability, has become
another contributor to current thinking about statis-
tical inference. Of course, thinking Bayesians also
believe in an external frequentist probability (other-
wise one could not talk about the data swamping
the prior probability, or a state of nature). Sav-
age [11] argues that unless one follows a Bayesian
behavior system one will be in a position to lose,
no matter what the true state of nature, if forced
to bet. Note, however, that in this formulation the
state of nature has an external (frequentist?) prob-
ability associated with it. Modern philosophers of
science have discussed extensively the concepts of
probability and causality when the relationships are
statistical rather than deterministic. Such considera-
tions are expected, given the current physical models
of the universe. Probabilities in deterministic situa-
tions, where maximal information is not available,
that have some frequency distribution of the outcome,
lead to frequency-based probabilities. Because one
may wish to use probabilities in a setting where an
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experimental set-up with inherent indeterminism may
not be repeated, there is also a need for probability
that is not personal or subjective but that also is not
justified by appeal to the strong law of large num-
bers. However, here the probability is inherent in
the laws governing certain situations (e.g. quantum
mechanics in physics); such probabilities are some-
times called propensity-based probabilities (e.g. [6]).
In most statistical settings these latter two concepts
of probability are combined and called frequentist.

Inference in the statistical sense has been used
to describe procedures that analyze data that come
from (at least conceptually) some underlying set of
probability distributions. When this is the case state-
ments can often be made that only make sense in the
context of the underlying distributions. For example,
one constructs an interval in such a way that 95% of
the time the mean of the underlying probability dis-
tribution for repeated samples from the distribution
will lie in the interval; that is, one constructs a 95%
confidence interval. Or one compares the change
in sitting diastolic blood pressure from a baseline
measurement to 12 weeks in two groups: one that
is randomized to a placebo treatment and another
group randomized to a new presumed antihyperten-
sive drug. The P value for a treatment difference
is used to summarize the strength of evidence for
a treatment difference. Or, in the same experiment,
a Bayesian prior distribution about the treatment
differences is updated given the data from the exper-
iment, and the probability that the change in blood
pressure is more in the new drug group is used as
a summary to show the new drug is effective. In
each case the inference (in the every-day use of the
word) is summarized by statements that depend upon
an underlying probability model combined with the
observed data. Such inference is statistical inference.
Statisticians often perform other activities that are not
statistical inference per se, but when combined with
further processing of the data are associated with
statistical inference in many situations. Descriptive
statistics, including summary statistics (e.g. sample
mean, median, standard deviation, minimum, and
maximum), graphic plots (e.g. scatter diagrams, his-
tograms, line graphs of mean or median values),
computer visualization of multiple variables at a time,
or two-dimensional projections of higher dimensional
space, etc., are not statistical inference per se. How-
ever, plots with confidence sets or intervals would
directly involve statistical inference.

The concepts of probability theory were inte-
grated into one formal theory of statistical infer-
ence by Jerzy Neyman and Egon Pearson (e.g.
[10]). They developed their formal framework for
hypothesis testing introducing the familiar concepts
of the null hypothesis, the alternative hypothesis,
type I and II errors (see Level of a Test), power,
etc. Some philosophers of science conclude that
scientific paradigms can never be essentially (i.e. up
to statistical variability) proven to be true. They can
only be shown to be consistent with the facts at
hand; however, further data or theory combined with
data may show them to be inconsistent. While this
is true for complex theories, particularly in physics,
for other situations (e.g. a drug lowers blood pres-
sure on the average in some population), “theories”
or “facts” could be more clearly established concep-
tually. Hypothesis testing, combined with Occam’s
razor (the simplest possible explanation is to be pre-
ferred; see Parsimony), gives a paradigm for scien-
tific endeavor. Hypothesis testing fits nicely into this
paradigm as “null hypotheses” (usually straw men
shown to be false) are to be rejected. The new theory
had many other benefits: by selecting conventional
levels for the significance level it led to an accept-
able level of scientific proof that is largely used today
both by scientific journals and regulatory authorities;
it allowed experiments to be designed and sample
sizes to be computed using the concept of statisti-
cal power, or equivalently type I and type II errors.
Hypothesis testing about the parameters of a state of
nature leads naturally to the concept of confidence
regions and intervals because of the duality between
hypothesis testing and confidence intervals (e.g. [2]).

Hypothesis testing was not without its prob-
lems. Cornfield [4, 5] lists problems with the for-
mal hypothesis testing paradigm. For example, if the
significance level is formally set at 0.05 and one per-
forms an experiment and fails to reject a null hypoth-
esis, then no amount of additional evidence should
ever be allowed to lead to rejection of the null hypoth-
esis! Furthermore, in a complex situation hypothesis
testing can be used to plan experiments, but if one
wants formally to take into account already known,
but very complex, facts and/or beliefs, then this is
difficult to incorporate rationally into the formal sci-
entific inference. Bayesian statistics would appear to
be the solution to the incorporation of complex facts
already known. The Bayesian prior estimate of the
state of nature (or the distribution of a parameter(s)
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of interest) seems ideal for such situations. How-
ever, there are also problems with using Bayesian
statistical methods [7]: (i) different individuals will
have (often drastically) different prior beliefs – whose
prior distribution should be used; (ii) humans are at
best very imperfect Bayesians and cannot process
data as probability models suggest we should [9]; and
(iii) like the frequentist models, in practice difficulties
and new data can arrive that would not have been
adequately addressed in the elicitation of prior beliefs.
(For example, new animal data suggest a toxicity
problem with the long-term use of a drug or biologic;
another drug with the same molecular mechanism of
action reports findings.) There is no known method
of statistical inference that can withstand all ratio-
nal criticism. Thus, the actual application of statistics
to important biostatistical problems necessarily is far
from algorithmic; scientific judgment and reason-
ing, as well as intuition, often enter into important
decision making in addition to formal statistical infer-
ence – as embodied, say, by hypothesis testing, confi-
dence regions, model building, or Bayesian analysis.
That is to say, while statistical inference is based upon
the mathematical theory of probability, the decisions
and understandings that result from the statistical
inference have many arbitrary aspects, both technical
(e.g. the significance level to be used in a test) and
judgmental (e.g. an experiment has so much miss-
ing data that one decides to disregard it altogether).
This results in important decisions using both sta-
tistical inference and other human decision making
capacities in many instances. There is good reason
to believe that humans are at best very imperfect
Bayesian or frequentist statisticians [9].

The rapid continuing increase in computing power
has led to innovations in statistical inference method-
ology. For example, the ability to resample from
samples of distributions (e.g. bootstrap techniques),
to implement Markov chain Monte Carlo meth-
ods, and to simulate from permutation distributions
(especially the randomization distribution; see Ran-
domization Tests) allow approaches to inference that
use the same underlying ideas of the last 60 years but
are new techniques that were not feasible a genera-
tion ago.

Another important path to understanding modern
concepts of inference – especially in biostatistics –
is to understand the important difference between
observationally collected data and experimental data
where the observer can intervene in the system

to establish stronger scientific inference. For exam-
ple, the history of medicine is replete with harm-
ful treatments given for hundreds of years [1]. The
scientific method and appropriate experimentation
has led to rapid progress in science in general,
and biology and medicine in particular. Until the
advent of the scientific method (or, more realisti-
cally, a growing appreciation of the scientific method)
plausible, but incorrect, systems of understanding
human and animal biology were seemingly accepted
if they were internally self-consistent and advo-
cated by authority. Selected subject-matter applica-
tion areas of biostatistics, besides medical biostatis-
tics, may have other difficulties. For example, epi-
demiologic studies, ecologic, and wild animal studies
are often necessarily restricted to observational data
collection and/or mathematical modeling. The inabil-
ity to experiment gives less cogent scientific infer-
ence and potentially a larger probability of mistaken
“knowledge” due to potential underlying biases. No
matter how firm the basis of statistical inference, the
possibility of bias from unknown sources cannot be
discounted. Other areas, such as plants for food and
animal breeding, are more amenable to more clas-
sic experimentation; yet even here the heterogeneity
is a large issue (say compared with electrons which
are all assumed to be the same in particle physics).
The idea of randomization, as introduced by R. A.
Fisher, allows much more cogent experimentation,
especially in human populations, than observational
data or even less controlled experimental data that
may be subject to unknown important biases.

In the previous paragraph the term the scientific
method was used. There appears to be no entirely
satisfactory definition that encompasses all the situ-
ations where one might use this term. Often books
on the philosophy of science introduce it by impli-
cation. One definition is: “a method of research in
which a problem is identified, relevant data are gath-
ered, a hypothesis is formulated from these data, and
the hypothesis is empirically tested” [13]. Such a
definition is in accord with the statistical theory of
hypothesis testing.

Statistical inference in the medical biological sci-
ences has difficulties that do not arise in the physical
sciences, at least to the same degree. One of the
cornerstones of modern science is the ability to repli-
cate results. If one group reports a simple method
of cold fusion, then other experimenters around the
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world may try to replicate the results. In exper-
iments with animals, and especially humans, the
sanctity of life introduces ethical concerns. In cer-
tain situations there may be a strong ethical and
practical prohibition against replicating a result. If
a therapy has been “shown” to prolong life as com-
pared with a placebo, then further placebo-controlled
experimentation may be considered unethical and/or
impracticable. The lack of the ability to replicate
can lead to the unchecked propagation of a false
“fact”. Furthermore, because of the need to monitor
for patient benefit and/or safety, a minimal amount of
information adequate for showing benefit or harm is
the rule not the exception. That is to say, if a society
decides that proof consists of rejecting a null hypoth-
esis at the 0.05 significance level, then a randomized
clinical trial with mortality as an endpoint might
be argued to be unethical if the trial does not stop
when reaching this level of significance, taking into
account the multiple comparison issues of sequential
monitoring. All experimentation seems beset with dif-
ficulties, and without a doubt Murphy was an optimist
(cf. Murphy’s Law: Anything that can go wrong will).
However, human experimentation may have even
deeper difficulties. Subjects may deliberately unblind
therapy in a randomized trial (see Blinding or Mask-
ing). Subjects may exercise the right to withdraw, go
on vacation, and miss a crucial follow-up visit, etc.
The combination of these and other factors leads to
more dispute that is unresolved by convincing data
than in the more “hard” sciences. Statistical inference
may investigate the sensitivity to such experimental
deviations, but the cogency of the results is usually
lessened in ways difficult to quantify.

Statistical inference and associated experimental
design for drugs, biologics, and devices for human
use is further complicated by very important practi-
cal matters. The rewards and development costs of
new therapies and diagnostic tests for human use are
both extremely large in many situations. Also, the
competitive nature of the market-place plays a large
role in the development of new modalities of treat-
ment or diagnosis. The first sponsor of an approved
modality is in a very favorable position. This, plus
possible humanitarian reasons, puts a premium on the
speed of development. The large stakes place intense
pressures on both industry and regulatory agencies.
This can result in a very strict adherence to statisti-
cal inference guidelines for such research. However,
treatments – for example a drug – are rarely all good

or bad. An appropriate dose needs to be found; fur-
thermore, the appropriate amount and/or method of
delivery may differ for important human subgroups
(e.g. race, older individuals and children, individuals
with impaired organ function, and genetically distinct
subsets). The best designs and development programs
from a statistical inference point of view may not be
used because of other considerations.

In summary, statistical inference in biostatistics is
formally the same as in other applied areas. However,
practical and ethical issues can introduce limitations
not seen in many other areas of applied statistics.
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Inference

Inference is usually defined as the process of draw-
ing conclusions from facts, available evidence, and
premises. Statistical inference is the term associ-
ated with the process of making conclusions on the
basis of data that are governed by probability laws.
More generally conclusions are made that are uncer-
tain. The objective measurement of the uncertainty is
one of the principal goals of statistical inference. In
practical applications of statistical inference data are
available and the aim of the inference is to draw con-
clusions about models which potentially may have
generated the data. Data analysis is the colloquial
expression which is often used to describe the statis-
tical inferential process.

Examples of such situations are: a randomized cli-
nical trial is being carried out to determine which
of two therapy programs is superior for the treat-
ment of AIDS; a sample survey is taken in a com-
munity having a contaminated public water supply
to determine if families having higher concentra-
tions of contaminated water also have higher rates
of congenital abnormalities; data are available from
individuals diagnosed as having an acute myocardial
infarct – how is the infarct incidence related to age
and gender?

Implicit in the inferential process is a defined pop-
ulation and an experimental plan which describes
how data is generated from the population. The exper-
imental plan for data collection may be very well laid
out, as in a clinical trial, or may be quite informal,
such as data collected from a hospital to carry out an
observational study. The less formal the experimen-
tal plan for data collection, the greater the opportuni-
ties for blunders and systematic biases. Furthermore,
any conclusions drawn from the data, strictly speak-
ing, apply only to the population from which the data
have been generated. Populations that are not well
defined also create opportunities for the injection of
systematic errors in the inferential process. In what
follows it will always be assumed that there is both
a well-defined population and a data collection plan
which does not create opportunities for systematic
error.

There is a general lack of agreement on the best
ways to carry out statistical inferences. These dif-
ferences have led to different “schools of statistical
inference”. These “schools” are often referred to

as the frequentist, likelihood, Bayesian, and fiducial
schools of inference. Major articles appear in this
Encyclopedia reflecting the different schools of infer-
ence. Important criticisms have been made against
some of the ideas in each of these schools of infer-
ence. Even within a school there may be sharp dis-
agreements. In this article the major views of different
schools of inference will be compared, with special
emphasis on the frequency school of inference.

The problem may be formulated by considering
that data represent realizations of a random vari-
able X having a family of probability distributions
{Pθ(x)} which is indexed by θ . The random variable
X and parameter θ may be vector valued. Realiza-
tions of X are denoted by x. To concentrate on ideas,
we will assume that all operations described below
are defined and any required regularity conditions are
satisfied. We define fθ(x) to be a probability density
function (pdf) or frequency function of X. The main
goal of the inference is to draw conclusions about θ .
More generally, if θ is vector valued, then the infer-
ence may be concerned with drawing inferences on a
subset of values of θ . The remaining parameters are
referred to as nuisance parameters.

The most important class of inference problems
is when the vector X is composed of independent
identically distributed (iid) random variables having
the joint distribution

∏
i fθ (xi). The likelihood is

central to nearly all schools of inference and is
defined by being proportional to the joint distribution,
i.e. L(θ |x) ∝ ∏

i f (xi |θ). Usually the likelihood is
defined as equal to the joint distribution except for
the omission of a multiplicative constant which does
not depend on θ .

In some cases the likelihood function can be
written as

L(θ |x) = L1(θ |t (x))L2(x),

where t (x) is a function of the observations and
may be a vector. In this case t (x) is called a suf-
ficient statistic. Hence the probability distribution of
X, conditional on t (x), is not a function of θ . As a
result, t (x) contains all the relevant data for making
inferences about θ . A minimal sufficient statistic cor-
responds to the smallest dimension of t (x) for which
the distribution of X, conditional on t (x), is not a
function of θ . Note that the likelihood function is a
sufficient statistic. Using only the sufficient statistic to
make inferences on θ leads to a data reduction method
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in which the sample x is replaced by t (x). This data
reduction does not lose any information on θ .

Frequentist School of Inference

The frequentist school of inference is the most
widely used method of inference in practice. Much
of the foundations were laid by Fisher [12–18],
Neyman [23], and Neyman & Pearson [24–28].
However, Fisher and Neyman & Pearson have
serious disagreements about basic issues. Articles
describing aspects of the frequency school of
inference are scattered throughout this Encyclopedia.
Major articles are: Hypothesis Testing, Estimation,
and Maximum Likelihood. Other articles discussing
aspects of estimation are: Confidence Intervals
and Sets, Consistent Estimator, Cramér–Rao
Inequality, Efficiency and Efficient Estimators,
Generalized Maximum Likelihood, Minimum
Variance Unbiased (MVU) Estimator, Sufficient
Statistic, and Unbiasedness. Articles discussing
the frequentist theory of hypothesis testing and
related topics are: Alternative Hypothesis, Critical
Region, Likelihood Ratio Tests, Most Powerful
Test, Neyman–Pearson Lemma, Null Hypothesis
and Level of a Test. Two basic texts on frequentist
inference are Lehmann [21, 22].

The basic idea underlying the frequentist school
of inference is to evaluate the inferential process by
assuming that an “experiment” is repeated an infinite
number of times. Procedures having “better proper-
ties”, as judged by long-term behavior, are deemed
superior. Throughout the frequentist formulation of
inference there is an attempt to derive statistical meth-
ods that have “optimal” properties in the context of
an infinite number of repetitions of the experiment.

In general, all probability statements generated
by the frequency theory of inference are based on
the frequentist interpretation of probability. Yet the
conclusions are targeted at specific data sets or
specific experiments. Critics dismiss the concept of
using methods based on properties associated with
an infinite repetition of experiments. Outcomes that
did not happen should not be used to evaluate
observed outcomes. They point out that the goal
of a data analysis is to make an inference from
the particular experiment which has generated the
data, not from a hypothetical infinite repetition of
experiments. Widely used methods such as tests of

significance and confidence procedures are subject
to these criticisms. The critics agree that frequentist
ideas may be relevant prior to carrying out an
experiment, but are irrelevant after the experiment
is carried out. Nevertheless, these frequentist-based
methods have proven to be very useful in practice.
Their applicability is continuing to expand despite
the presence of sharp criticisms.

For example, suppose X1, X2, . . . , Xn represent
iid random variables following a N(θ, σ 2) distribu-
tion with θ unknown and σ 2 known. The 100(1 −
2α)% confidence interval is x ± zασ

√
n, where x

is the sample mean and zα is the normal deviate
which cuts off probability α in the tail of the nor-
mal distribution. The formal probability statement
is Pr{X − zασ/

√
n < θ < X + zασ/

√
n} = 1 − 2α.

For any fixed x, the population mean is either within
the interval or is outside the interval. Hence, this
statement only assigns a probability 0 or 1 that
the population mean θ is included within the inter-
val. The probability (1 − 2α) refers to the process
of calculating such intervals over infinite repetitions
of the experiment. Operationally, confidence coeffi-
cients are usually chosen to be high (95% or 99%)
and individuals “act” as if the statement is cor-
rect that the population mean is included within the
interval. An additional criticism of confidence inter-
vals is that no distinction is made as to whether
the population parameter is likely to have a higher
probability of being in the neighborhood of x com-
pared with being at the ends of the interval. Intu-
itively, most individuals would agree that the value
of the parameter is more likely to be in a neigh-
borhood of x compared with being located in a
neighborhood around the boundary of the confidence
interval.

The operational use of confidence regions is essen-
tially associating a “degree of belief” with the state-
ment that the parameter θ is located within the
calculated confidence region on the basis of spe-
cific data. The high values chosen for confidence
coefficients are so close to unity, that practitioners
behave as if the statement is “certain”. However, this
same idea of using a degree of belief to measure
the uncertainty of an inference can also be used to
ascribe different degrees of belief for comparing val-
ues within a confidence region. To illustrate ideas,
consider the calculation of confidence intervals for a
mean as described earlier. Suppose a spectrum of con-
fidence intervals is calculated by choosing different
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confidence coefficients. The point x is a degenerate
confidence interval with confidence zero. Then for
any potential value of the population parameter θ ′,
there corresponds a confidence interval for which
θ ′ is the end-point, i.e., the normal deviate corre-
sponding to zα′ = √

n(θ ′ − x)/σ (if θ ′ > x) or zα′ =√
n(x − θ ′)/σ (if θ ′ < x). Then the ratio of degrees

of belief comparing the value θ ′ relative to x is α′ for
the population mean. Hence each end-point of a 95%
two-sided confidence interval has a degree of belief
of 0.025 of being the population mean compared
with the sample average, whereas each end-point of a
10% two-sided confidence interval (z0.45 = 0.12) has
a degree of belief of 0.45 (collectively 0.90) of being
the population mean relative to x.

Among the most widely used techniques in the
frequentist theory of inference is the test of signifi-
cance (see Hypothesis Testing). Central to a test of
significance are the null and alternative hypothe-
ses, i.e. H0 : θ = θ0 and H1: θ �= θ0. The alterna-
tive hypothesis can also be one-sided, H1: θ > θ0 or
H1: θ < θ0. The test of significance consists of cal-
culating evidence which is ”unfavorable” to the null
hypothesis. The test of significance consists of using
a statistic T (x) so that large values of T (x) indi-
cate departures from the null hypothesis H0: θ = θ0.
If T0(x) represents the value of the statistic from
an experiment, then the test of significance calcu-
lates P = Pr{T (X) ≥ T0(x)|θ = θ0}. This so-called
P value is interpreted as discrediting the null hypoth-
esis if P is small (usually P ≤ 0.05) and in favor
of the null hypothesis if P is large. The role of
the alternative hypothesis is to specify the statis-
tic T (x).

The P value is widely interpreted as summarizing
the statistical evidence of an experiment. If a small
value is calculated (P ≤ 0.05), then either one has
observed a rare event if H0 is true, or if H0 is not
true, then the model for carrying out the calculation
(assuming θ = θ0), is wrong. Ordinarily the conclu-
sion is made that the model is incorrect and H0 is
rejected.

The logic of the significance test is that if the
observed T0(x) is evidence against the null hypoth-
esis, then larger values of T (x) would constitute
even stronger evidence against H0. The logic of
significance tests is questioned, in that a hypothesis
may be rejected on the basis of experimental out-
comes which were not observed.

The test of significance does not recognize that
there may be different interpretations on the P value
which are dependent on both the sample size and the
magnitude of the deviation from H0. An experiment
in which there is a negligible deviation from the null
hypothesis, but having a very large sample size, will
result in a small P value, whereas an experiment in
which there is a large deviation from H0, but with a
small sample size, may not result in small P value.
The uncritical use of tests of significance may result
in misleading conclusions. It is often recommended
that: (i) if P is small, then information should be
presented on the magnitude of the deviation from the
null hypothesis, and (ii) if P is large, then evidence
should be presented on the power of the test.

Randomization and Permutation Tests

One of the important applications of significance
tests is when the sample space is generated by the
investigator. This has no analogy with any of the
other methods of inference. It occurs whenever an
experimental design makes use of randomization. We
shall refer to these tests as randomization tests.

To illustrate ideas, consider an experiment where
the location parameters of two treatment groups are
to be compared by a significance test. The most
widely used example is a randomized clinical trial in
which patients are assigned to each of two treatment
groups such that each patient has the same probability
of being assigned to each group. If there are 2n

patients available for the experiment and each group
is assigned n patients, then there will be

N =
(

2n

n

)

possible assignments. Hence there will be N points
in the sample space. Suppose the null hypothesis is
that there is no difference in outcome among the two
groups. If x1 and x2 represent the sample average for
each group, then x = (x1 + x2)/2 will always be con-
stant for the experiment. Hence, to show a difference
in the location parameters the differences between
the two sample averages x1 − x2 = (x1 − x) will be
considered. The sample space will consist of N

possible values of the differences between the two
sample averages, each having probability equal to
1/N of arising due to the randomization. Hence,
if D0 = |x1 − x2| represents the absolute value of
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the observed difference between the group sample
averages, then the test of significance calculates P =
(number of absolute differences ≥ D0)/N . No fur-
ther assumptions need to be made about the prob-
ability distributions of the outcomes. Essentially the
randomization tests are distribution-free. The valid-
ity of the procedure is justified by the randomization
which injected probability into the experiment. Of
course, the inference only applies to patients who are
in the clinical trial, i.e. the inference procedure con-
cludes which is the best treatment for the population
of patients that have been entered in the trial. To have
a broader inference of making the conclusions apply
to the population of patients having disease, it would
be necessary to have a random sample of patients
entered on the clinical trial.

A closely related set of procedures are permutation
tests. We distinguish between randomization and per-
mutation tests. Randomization tests are characterized
by the investigator purposely introducing probability
into the experimental design, whereas in permutation
tests it is assumed that the sample space consists
of equally likely outcomes. Consider the following
example of a permutation test. Suppose the water sup-
ply in a community was a blend coming from several
sources. Depending on the location of the residence,
there would be different amounts of water from each
source in the blend of water available to each res-
idence. One of the water sources was found to be
contaminated. From the time the contaminated source
was put into service until the discovery of contam-
ination there were 20 live births in the community.
Two babies were born with congenital abnormalities.
The amount of water going to each mother’s resi-
dence during her pregnancy was known during this
period of time. Is there an association between the
contaminated water and birth defects? A permutation
test would assume that each baby has the same risk of
having a congenital abnormality. Hence there will be

(
20
2

)
= 190

different ways in which two birth defect infants can
be distributed among the 20 infants. If the resi-
dences with the two highest amounts of contami-
nated water also had the two birth defects, then this
could happen with probability P = 1/190 = 0.005
if there is no relationship between birth defects and
the contaminated water supply. This probability is so
low that the frequentist would conclude a relationship

between contaminated water and birth defects. Most
people would intuitively agree there may be a rela-
tionship. A P value of 0.05 would arise if the two
birth defect babies came from residences in which
the amount of contaminated water delivered to the
households during pregnancy ranked fourth and fifth
highest. There are nine other more extreme outcomes
than the observed fourth and fifth. If pairs of num-
bers represent the rankings then these outcomes are:
(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4)
and (3, 5). Since under the permutation test assump-
tion any one of the possible 190 outcomes has the
same chance of occurring, the number of outcomes
equal to or more extreme than the one observed is
10/190 = 0.053.

The randomization and permutation tests have
generated the field of distribution-free or nonpara-
metric methods. These methods do not require know-
ledge of the probability distribution of the observed
outcome, as our two examples illustrate. To ease
computations the observations are often replaced by
ranks or scores. Very little statistical efficiency is
lost by these substitutions.

Conditioning

An important modification of frequentist inference is
the possibility of using information (data) to consider
only a subset of the sample space. This may be done
by conditioning on some aspect of the observed data
which will result in a reduced sample space (see
Conditionality Principle). The conditioning can only
be done after the experiment has been completed
and the data are available. Fisher [17] has advocated
conditioning on the relevant subset of the sample
space. The conditional sample space is also referred
to as recognizable subsets or reference sets.

Cox [10] presented a very interesting example
which leads one to make a conditional inference on
a recognizable subset. His example is as follows.
Suppose there are two normal populations, N(θ, σ 2

1 )

and N(θ, σ 2
2 ), having the same mean, but different

variances. The mean is unknown, but the variances
are known with σ 2

1 � σ 2
2 . The experiment consists

of choosing a population with probability 1/2 and
drawing one observation, x. The population is known
which is sampled. Consider a test of H0: θ = 0 vs.
H1: θ = θ ′ � σ1. Consider two tests – a conditional
and an unconditional test to be made at an α =
0.05 level of significance. The conditional test is
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made on the population from which the sample was
drawn. This leads to rejection regions x > 1.64σ1

or x > 1.64σ2 depending on which population has
been sampled. However, this is not the most powerful
test over the entire sample space. Application of
the Neyman–Pearson theory results in a test which
approximately has rejection regions x > 1.28σ1 or
> 5σ2 depending on which population has been
sampled. If the sample is from the second population,
then almost complete discrimination is made between
θ = 0 against a much larger value of θ . As a result
we can have a significance level of 10% if one is
sampling from the first population. The power of the
first test is 0.26 if population one is sampled and
nearly unity if population 2 is sampled. Alternatively,
the unconditional test has a power of 0.80. Thus,
considering the overall sample space the first test has
an average power of 0.63. Cox states

if the object of the analysis is to make statements
by a rule with certain specified long-run properties,
the unconditional test just given is in order . . ..
If, however, our object is to say “what can we
learn from the data we have”, the unconditional
test is surely no good. The unconditional test says
that we can assign a higher level of significance
than we ordinarily do, because if we were to
repeat the experiment, we might sample some other
distributions. But this fact seems irrelevant to the
interpretation of an observation which we know may
come from a distribution with variance σ 2

1 . That
is, our calculations of power, etc. should be made
conditionally within the distribution known to have
been sampled.

Cox’s example shows that the inference procedure
should not be determined solely by considerations
of power when one is considering repetitions of
the experiment. In this example the indicator of the
population sampled is called an ancillary statistic
because it contains no information about θ . In general
an ancillary statistic is defined as a function of the
observations whose distribution is not a function of
the parameter. In Cox’s example, if δ is an indicator
variable indicating which experiment is chosen, then
the data are (δ, x) and δ is an ancillary statistic. The
recognizable subset conditions on δ, i.e. f (x|δ).

Another illuminating example is provided by
Berger & Wolpert [5]. Assume X1, X2 . . . , Xn

are iid having a uniform distribution over the
interval

(
θ − 1

2 , θ + 1
2

)
. The sufficient statistics are

U = min(Xi), V = max(Xi). Their joint distribution
is f (µ, v) = n(n − 1)(v − u)n−2, θ − 1

2 < µ ≤ v <

θ + 1
2 . However, R = V − U is an ancillary statistic

because its distribution is independent of θ . The
distribution of (U, V ) conditional on R = r is
uniform over the interval θ − 1

2 ≤ µ < θ + 1
2 − r

and should be the starting point for the statistical
inference. In particular, a 100(1 − α)% confidence
interval is (u + v)/2 ± (1 − r)(1 − α)/2. In this
example it is clear that the range is an ancillary
statistic. However, in other situations the proper
ancillary statistic may not be obvious and there may
be competitive ancillary statistics.

The problem becomes more complex when θ =
(θ1, θ2) and the inference is to be made on θ1 with θ2

being regarded as a vector of nuisance parameters. If
the likelihood factors into

L(x|θ1, θ2) = L1(θ1|x, a(x))L2(θ2|a(x)),

then the distribution of a(x) is independent of θ1

and a(x) is ancillary for θ1. An example of this
likelihood decomposition is when the data consists
of pairs (Yi, Xi), i = 1, 2, . . . , n, which are iid fol-
lowing a bivariate normal distribution with E(Yi) =
µy, var(Yi) = σ 2

y , E(Xi) = µx, var(Xi) = σ 2
x , and

cov (Xi, Yi) = ρσxσy . The object of the inference is
on the parameters α = µy − βµx and β = ρσy/σx

as E(Yi |Xi) = α + βXi . The likelihood can be
written

L(µx, µy, σ 2
x , σ 2

y , ρ|x, y)

= L1(µy, τ 2, α, β|x, y)L2(µx, σ 2
x |x),

where τ 2 = var(Yi |Xi) = σ 2
y (1 − ρ2) and

L1(µy, τ 2, α, β|x, y)

= τ−n exp

{
−

n∑

i=1

[yi − (α + βxi)]2

2
τ 2

}

L2(µx, σ 2
x |x)

= σ−n
x exp

{
−

n∑

i=1

(xi − µx)
2

2σ 2
x

}
.

Thus the regression analysis is conditional on the
observed values of xi which are treated as fixed
constants.

When the likelihood factors can be written in
terms of minimal sufficient statistics which factor into
L(θ1, θ2|t1, t2) = L1(ψ |t1, t2), L2(θ1, θ2|t2), then it is
possible to consider the distribution of t1 conditional
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on t2 in order to make inferences on ψ = ψ(θ1, θ2).
This is the case for the two by two contingency
table for comparing two binomial distributions.
Conditioning on the total number of successes allows
an inference to be made on the ratio of two odds in
which one of the success probabilities is regarded as
a nuisance parameter. Similarly, for comparing two
Poisson distributions, with rate parameters (θ1, θ2),
the likelihood can be written

L(θ1, θ2|s1, s2) =
(

θ1

θ2

)s1

θ t
2 exp[−(θ1 + θ2)]

= L1

(
ψ = θ1

θ2
|s1

)

× L2(θ1, θ2|t = s1 + s2),

which admit of an inference on ψ by conditioning
on the sum of the observed events. In both of
these examples t contains “no information” about
the parameter of interest, ψ . Cox [10] proposed a
criterion for determining if t gives no information
about ψ when nuisance parameters are present.

An important use of invoking a conditional infer-
ence arises in some censoring situations. To illustrate
ideas suppose an investigator is testing a drug on
patients in which the outcome is success or failure.
The experiment is carried out until one observes a
single failure. Hence the number of observations is a
random variable following a geometric distribution.
However, the investigator has only enough drug to
treat 10 patients. The experiment could then have a
maximum of 10 patients and the truncated distribu-
tion for the sample size would be

Pr{N = n|N ≤ 10} = θn−1(1 − θ)

(1 − θ10)
,

for n = 1, 2, . . . , 10,

Pr{N = 10} = θ9.

The experiment is carried out and the fifth patient had
a failure. Should the statistician use the likelihood
θ4(1 − θ) in making the inference, or the truncated
likelihood? To continue the story, the investigator
tells the statistician afterwards that just before the
experiment started the drug manufacturer had agreed
to make available as much drug as needed. Hence
there would be no need for the truncated distribu-
tion. In a final development, the drug manufacturer
changed its offer to only make available the amount

of drug for a maximum of 20 patients. This would
change the truncated distribution. What should the
statistician do? The actual experiment did not need
the extra drugs, but an unconditional inference would
have required taking account of the limited supply.
The change of mind of the drug manufacturer would
change the truncated probability distribution. Yet the
manufacturer’s decision had nothing to do with the
actual experiment that was carried out with the avail-
able drug supply. Common sense dictates that the
inference should be made conditional on what hap-
pened, not what could have happened. There was
enough drug to carry out the experiment as planned.
The likelihood should be conditional on the actual
drug supply expended.

Estimation

The most widely used methods of estimation
among frequentists are minimum variance unbiased
(MVU) estimation and the method of maximum
likelihood. Other methods in use are the method
of moments and generalized estimating equations.
The principle of having unbiased estimates some-
times leads to problems. For example, suppose X

is the sample average of a sequence of n iid ran-
dom variables having a N(θ, σ 2) distribution with σ 2

known. Then the minimum variance unbiased esti-
mate of θ is the sample average. However, if it is
desired to estimate θ2, then we note that E(X

2
) =

θ2 + σ 2/n. Therefore, if T = X
2 − σ 2/n, E(T ) = θ2

and T is an unbiased estimate of θ2. However, θ2 is
always nonnegative, but there is a positive proba-
bility that T = X

2 − σ 2/n will be negative giving a
nonsensical estimate. In general, if g(θ) is some func-
tion of θ , and T is an unbiased estimate of θ , then
g(T ) is ordinarily not an unbiased estimate of g(θ).
Despite some anomalies with the concept of unbiased
estimation, the applications of the minimum variance
unbiased criteria to estimation problems is very use-
ful in applications – especially for models linear in
the parameters.

Another widely used estimation procedure is the
method of maximum likelihood. Estimates of θ ,
denoted by θ̂ , are formed by maximizing the likeli-
hood function, i.e. L(θ |x) = maxθ L(θ |x). The prop-
erties of the maximum likelihood estimates are that
they are: consistent, asymptotic minimum variance
unbiased, and asymptotically normal. In addition, the
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maximum likelihood estimate has the property that
the estimate of g(θ) is g(θ̂).

Both minimum variance unbiased estimation and
maximum likelihood estimation supply both point
and confidence region estimates. Their justification
is based on properties associated with infinite repe-
titions of sampling. However, Bayesian ideas have
been used to justify maximum likelihood estimation.

Likelihood School of Inference

The use of the likelihood function is basic to many
of the methods associated with frequentist inference.
It was introduced by Fisher [12–16] as an informa-
tion summary. It is essentially a minimal sufficient
statistic for θ . Edwards [11] discusses the history of
the likelihood function, and Berger & Wolpert [5]
contains a thorough development of the statistical
implications when the likelihood function is used as
a basis for inference. Many of the ideas building on
Fisher’s early work are attributed to Barnard [1–4]
and Birnbaum [6, 7].

Fisher initially introduced the likelihood function
to obtain maximum likelihood estimates of parame-
ters. The justification for maximum likelihood esti-
mation has been made in terms of its large-sample
properties relying on the frequency concepts of prob-
ability. Furthermore, ratios of likelihoods form the
basis of likelihood ratio tests and the general Ney-
man–Pearson theory of hypothesis tests. However,
all properties of these methods are judged by their
behavior over the entire sample space of possible
observations. This is at odds with the likelihood
school of inference who regard the sample space as
irrelevant after the experiment has been done. The
only relevant quantities are the sample data, x, and
its incorporation into the likelihood function, L(θ |x).

The basis of all Bayesian inference is the
likelihood function. If p(θ) is the prior distribution
on θ and π(θ |x) is the posterior distribution,
then we have the well-known relationship π(θ |x) ∝
L(θ |x)p(θ). Hence, whatever implications for
inference arise from the likelihood function also
apply to Bayesian inference methods.

The basis for the use of the likelihood in statistical
inference is contained in the likelihood principle (see
Foundations of Probability). It states that all infor-
mation about θ from an experiment is contained in
the likelihood function. Furthermore, two likelihood

functions (from the same or different experiments)
contain the same information about θ if they are
proportional to one another.

The importance of the likelihood function in
inference arises from its justification based on
the widely accepted ideas of sufficiency and
conditionality. Conversely, the likelihood function
has been shown to lead to sufficiency and
conditionality. These proofs were originally made
by Birnbaum [6] and are correct for discrete
observations. Others have modified his arguments
for the continuous case. We summarize the main
ideas borrowing from the development of Berger
& Wolpert [5]. The ideas of conditionality and
sufficiency have been discussed earlier in this article.
There are two versions of each which are modified
by the adjectives “weak” and “strong”. We informally
state the weak versions, which are all that is necessary
in the proofs found in the literature.
Weak Conditionality Principle (WCP). Suppose there
are two or more possible experiments, each having
possibly different probability distributions, and each
giving rise to different experimental outcomes. How-
ever, they all have in common the same parameter,
θ . Consider the mixed experiment in which experi-
ment i is chosen to be carried out with probability
pi . Then the WCP states that the evidence about θ

from the mixed experiment is the experiment actually
performed.
Weak Sufficiency Principle (WSP). Consider an expe-
riment in which t (X) is a sufficient statistic for θ .
Then if x1 and x2 represent two different outcomes,
but t (x1) = t (x2), then the evidence about θ is the
same for each outcome.
It has been proved that the WCP and the WSP imply
the likelihood principle and conversely the likelihood
principle implies both the WCP and WSP. The proof
for the continuous case can be found in Berger &
Wolpert [5].

The proponents of inference based on the like-
lihood principle view the rejection of the likelihood
principle as also logically rejecting the WSP or WCP.
However, the WSP is one of the basic ideas in fre-
quency inference. The WCP is regarded as simply
“common sense”.

The likelihood principle is incompatible with
many of the methods used in the frequency theory
of inference. For example, randomization, signifi-
cance tests, hypothesis testing, confidence intervals,
and randomization tests are all contraindicated by the
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likelihood principle. It is of interest that although
randomization is rejected by the WCP, there has been
no effort to negate randomized clinical trials. The
idea of randomized clinical trials and the general
idea of randomization appear to have been accepted
by the likelihood and Bayesian schools of infer-
ence, notwithstanding the variance with the likelihood
principle. One reason for accepting randomization
is that it is regarded as a way to obtain “balance”
among different groups being compared with respect
to unknown factors affecting the outcomes.

Censoring which did not occur is considered
irrelevant. For example, suppose in a clinical trial
patients are only followed for a maximum period of
time (say 10 years). If one had data from such a trial
where the end-point was death and all patients died
within the 10-year period, then the censoring at 10
years is of no consequence. Yet in calculating the
behavior of a frequentist statistical procedure, it is
necessary to consider infinite repetitions of the trial
in which some patients may have survived 10 years
and would be censored.

Stopping rules are deemed irrelevant. Hence, se-
quential methods are treated as if data arose from
fixed-size experiments. For example, if X is N(θ, σ 2)

then one may sample from this population until
the sample average exceeds a fixed constant, i.e.
x > kσ/

√
n. By the law of the iterated logarithm

(see Limit Theorems), there is a finite probability
that the event will happen. However, for (say) θ = 0
and large k, the necessary number of observations
may be very large. If a frequentist desires to exclude
θ = 0 from a 95% confidence limit, then it is only
necessary to choose k = 1.96. Of course, this entire
procedure would be misleading from a frequentist
point of view. The likelihood argument is that the
inference should not interpret the usual confidence
interval in the frequency sense. A frequentist would
also take account of the ultimate sample size in
placing confidence intervals on θ . Alternatively, the
Bayesian approach to this problem is to incorporate
the possibility of θ = 0 in a prior distribution.

Suppose one observed four successes in 10 tri-
als from sampling a binomial distribution. This gives
rise to the likelihood function L(θ |x) = θ4(1 − θ)6,
where θ is the probability of success in a single
trial. Alternatively, suppose one samples from this
population until four successes are observed. If this
experiment took 10 observations to observe four suc-
cesses, then it will give rise to the same likelihood as

observing four successes in 10 trials. The likelihood
principal would treat both experiments as generating
the same information even though the sampling distri-
butions associated with each experiment are different.

One of the principal criticisms of the use of the
likelihood function for inference is the need to specify
the model generating the data. Furthermore, it does
not encompass any nonparametric methods.

Methods for solely using the likelihood function
for inference are not well developed. We cite a few
examples of the use of a likelihood function for
making inferences.

The ratio of likelihoods can measure the relative
support of two values of θ , e.g. L(θ1|x)/L(θ2|x).
Since the maximum likelihood estimate θ̂ maximizes
the likelihood, it can serve as a normalization factor
and one may consider L(θ |x)/L(θ̂ |x) to measure the
relative support of any θ to θ̂ . Likelihood contours
may be calculated by setting L(θ |x)/L(θ̂ |x) = k for
a range of values of k. If we consider values of the
parameter satisfying

L(θ |x)

L(θ̂ |x)
≤ k,

then, we can obtain an expression analogous to a
confidence region for θ .

Using the likelihood when nuisance parameters are
present raises complications. Suppose θ = (θ1, θ2)

and θ2 is a nuisance parameter. One approach is to
substitute the maximum likelihood estimate of θ̂2(θ1)

in the ratio L(θ1, θ̂2(θ1)|x)L(θ̂1, θ̂2|x). For example,
consider the likelihood function of a sample of n

observations from a N(m, σ 2) distribution, i.e.

L(m, σ 2|x) = σ−n exp

{
−1

2

n∑

i=1

(xi − m)2

σ 2

}
.

The maximum likelihood estimate of σ 2, as a function
of m, is σ̂ 2(m) = ∑n

i=1(xi − m)2/n. Then one has

L(m, σ̂ 2(m)|x)

L(m̂, σ̂ 2|x)
=

{
1 + (x̂ − m)2

s2

}−n/2

∼=
{

1 + t2

n

}−n/2

,

where ns2 = ∑n
i=1(xi − x)2 and t2 = n(x̂ − m)2/s2.

This is the Student t distribution (except for the
normalizing constant), but with n in place of (n − 1).
If we desired bounds on m, then we could set
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L(m, σ̂ 2(m)|x)/L(m̂, σ̂ 2|x) ≤ k. Then for large n we
have the interval x̂ ± s(−2 log k)1/2/

√
n.

The general application of likelihood methods may
be extended by noting that for large samples

L(θ |x)

L(θ̂ |x)
� exp

{
−(θ − θ̂ )2

2σ 2(θ̂)

}
,

where

σ 2(θ̂ ) = −
(

∂2 log θ

∂θ2

)−1

θ=θ̂

Hence, the maximum likelihood estimate and the
estimate of its asymptotic variance can be used to
make likelihood-type inferences for large samples.
The result extends to the multivariate situation.

Bayesian School of Inference

In this section we illustrate and contrast Bayesian
methods of inference with frequency methods. The
application of Bayesian methods to problems of
medicine and biology is growing. In large measure
the expansion in applications is due to the devel-
opment of new computing algorithms which allow
the calculations of posterior distributions having large
numbers of parameters. This class of computer algo-
rithms are called Markov chain Monte Carlo meth-
ods. Two widely used algorithms for this purpose are
the Gibbs sampler and the Metropolis-Hastings algo-
rithms: cf. Tanner & Wong [34], Smith [31], Tierney
[35], Smith & Gelfand [32], and Smith & Roberts
[33]. Breslow [8], in a review paper, cites many
applications of Bayesian methods to biostatistics, i.e.
longitudinal data models, small area estimation,
risk assessment based on species to species extrap-
olation, bioequivalence and sequential clinical trials
(see Data and Safety Monitoring).

The Bayes paradigm is that all inferences are
based on calculating the posterior distribution of θ .
The difficulty in utilizing Bayesian methods is due to
both the dependence on model specification, and the
meaning of Bayesian probability statements. To uti-
lize Bayesian methods it is necessary to specify both
the likelihood function and a prior distribution. Prior
distributions may be chosen by subjective opinion or
may reflect previous data or knowledge. Issues arise
when informationless prior distributions are chosen
which contain no information or parameters. The

interpretation of a Bayesian probability is that it
measures a degree of belief. It allows attaching a pos-
terior probability (degree of belief) associated with
hypotheses. This is in contrast to frequentist infer-
ence which attaches a value of 0 or 1 to the truth
of a hypothesis. Bayesian methods are often judged
in practice by their behavior over infinite repetitions.
The book by Savage [30] still remains as a cogent
treatise advocating the use of Bayesian methods.

Elements

The basis of all Bayesian inference is that, “Any
inferential process that does not follow from some
likelihood function and some set of priors has objec-
tively verifiable deficiencies”, cf. [9]. Bayesian infer-
ence places probability distributions on parameters.
The elements of Bayesian inference are: that a prior
distribution p(θ) summarizes information about θ

prior to experimentation; the likelihood L(θ |x) incor-
porates information utilizing data; and the posterior
distribution π(θ |x) depicts the probability distribu-
tion of θ after incorporating the data. More formally,
the relationship between these quantities is

π(θ |x) ∝ L(θ |x)p(θ).

This expression is a direct consequence of Bayes’
theorem and shows how prior beliefs are changed
with the availability of data.

The interpretation of π(θ |x) is that it is a degree
of belief, taking on values within the unit interval.
In what follows it will be assumed for simplicity
that θ has a prior distribution having a probability
density function. This assumption is not necessary,
but it eases the formalism.

Ratios of posterior distributions are often used to
indicate “support” for comparing two different values
of θ , i.e. π(θ1|x)/π(θ2|x). If one of the θs is the mode
of π(θ |x) (denoted by θm), then π(θ |x)/π(θm|x)

compares the degree of belief of an arbitrary θ with
the modal value. If θ is one dimensional, then a graph
of the ratio vs. θ is particularly useful.

Although there is a great deal of debate on the
choice of the prior distribution, the importance of the
prior distribution diminishes when the sample size is
large. This is easily seen by noting that if we write
L(θ |x) = ∏n

i=1 L(θ |xi), then

log[π(θ |x)] = log[L(θ |x)p(θ)]

=
n∑

i=1

[
log L(θ |xi) + 1

n
p(θ)

]
,
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and noting that the second term in brackets goes to
zero as n → ∞.

The normalizing constant P(x) is P(x) = ∫
Ω

L

(θ |x)p(θ) dθ and is the expected value of the likeli-
hood averaged over the prior distribution. The inte-
gral is over the parameter space of θ . Hence, the
posterior distribution can be written

π(θ |x) = L(θ |x)p(θ)

P (x)
.

Note that P(x) is proportional to the posterior
probability of observing the data x.

An important aspect of Bayesian inference is
predicting a future observation (see Prediction). If
y represents a future observation and x represents
data already observed, then the predictive likelihood
of y is

L(y|x) =
∫

Ω

L1(θ |y)π(θ |x) dθ,

where L1(θ |y) is the likelihood of a single new
observation. The quantity L(y|x) is the likelihood
of observing a future observation given the data
represented by x. If L(y|x) is normalized, then

f (y|x) = L(y|x)∫ ∞
−∞ L(y|x) dy

is the predictive distribution of y. It is clear that
the predictive distribution is not necessarily restricted
to predicting a single observation, but can predict
an arbitrary number of observations. The book by
Geisser [19] is a principal reference for predictive
distributions.

A fundamental problem in statistical inference is
to carry out an inference when nuisance parame-
ters are present. The methods of Bayesian inference
can deal with the problem in a relatively straightfor-
ward way. Suppose θ = (θ1, θ2) and inference is to
be made on θ1 with θ2 regarded as a vector of nui-
sance parameters. The methods of Bayesian inference
deal with this problem by considering the marginal
posterior distribution of θ1, i.e.

π(θ1|x) =
∫

Ω2

π(θ1, θ2|x) dθ2.

The comparable problem in the frequency theory of
inference can be carried out only in special cases
when minimal sufficient statistics exist.

Example

To illustrate ideas we shall consider the Bayesian
analysis for comparing two binomial distributions. If
(pi, si, ni) represent the success probabilities, number
of successes, and sample sizes, respectively, for i =
1, 2, then the likelihood is

L(p1, p2|s1, s2)

= p
s1
1 (1 − p1)

n1−s1p
s2
2 (1 − p2)

n2−s2 .

Define the new parameters (α, β) by the logit trans-
formations (see Logistic Regression), i.e.

log

[
p1

1 − p1

]
= α, log

[
p2

1 − p2

]
= α + β.

Note that eβ = p2(1 − p1)/p1(1 − p2). The repara-
meterized likelihood can be written

L(α, β|s, t) = eαt+βs

(1 + eα)n1(1 + eα+β)n2
,

where t = s1 + s2 and s = s2. The reparameterization
allows one to test H0: p1 = p2 by considering β only.
The parameter α is a nuisance parameter.

The sampling theory of inference considers the
distribution of s conditional on t , which results in
α being dropped. This is the basis of the analysis
of 2 × 2 tables with all marginal totals fixed. The
explicit conditional distribution is

f (s|t, β) = C(s, t)eβs

∑r
z=0 C(z, t)eβz

,

s = 0, . . . , r,

when r = min(t, n2) and

C(s, t) =
(

n1

t − s

) (
n2

s

)
.

The Bayesian analysis finds the posterior distribu-
tion of (α, β) from which the marginal distribution
of β can be calculated. Let the prior distributions of
(α, β) be taken as

p(α, β) ∝ eαt ′+βs ′

(1 + eα)n
′
1(1 + eα+β)n

′
2

,

where the prime quantities are parameters of the prior
distribution, but subject to the condition 0 ≤ s ′ ≤ t ′ ≤
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n′
1 + n′

2. Then the posterior distribution is

π(α, β|s, t) ∝ eαt ′′+βs ′′

(1 + eα)n
′′
1 (1 + eα+β)n

′′
2

,

where s ′′ = s + s ′, t ′′ = t + t ′, n′′
1 = n1 + n′

1, and
n′′

2 = n2 + n′
2. Since the form of the posterior is the

same as the likelihood, the prior distribution is called
a natural conjugate or conjugate distribution. Finally,
the marginal posterior distribution is

π(β|s ′′, t ′′) ∝ eβs ′′
∫ 1

0

vt ′′−1(1 − v)n
′′−t ′′−1 dv

[1 − v + veβ]n
′′
2

,

where n′′ = n′′
1 + n′′

2. The integral can be found using
numerical methods (see Numerical Integration).

Prior Distributions

The choice of a prior distribution is an important first
step in implementing a Bayesian analysis. Prior dis-
tributions may be chosen on the basis of other similar
experiments, subjective opinion, or the acknowledg-
ment that nothing is known about the parameters, and
the prior is informationless.

There is a great deal of debate when the prior dis-
tribution is informationless. Jeffreys [20] proposed
that if a parameter takes on values over the real
line, that the prior distribution be uniform, whereas
if θ takes on values over the positive real line, that
log θ have a uniform distribution. Therefore the infor-
mationless prior for location and scale parameters,
as suggested by Jeffreys, are p(m) = 1 (−∞ < m <

∞) for a location parameter and p(σ) = 1/σ (0 <

σ < ∞) for a scale parameter. Both are improper
distributions in that their integrals over the parame-
ter space do not exist. Another view of the improper
prior distribution for the scale parameter is that it is
flat over the range of the parameters of the likeli-
hood functions. Therefore the posterior distribution
is essentially the likelihood function.

Nevertheless the posterior distributions do satisfy
all conditions for distribution functions. For example,
suppose X1, . . . , Xn are iid N(m, σ 2) with m and σ 2

both unknown. The likelihood function is

L(m, σ 2|x) = σ−n exp

{
−1

2

n∑

i=1

(xi − m)2

2σ 2

}
,

resulting in the posterior distribution

π(m, σ 2|x) ∝ L(m, σ)

σ
.

If the marginal distribution of m is obtained by
integrating over σ , then we obtain

∫ ∞

0
π(m, σ 2|x) dσ ∝

[
1 + t2

(n − 1)

]−(n−1)/2

,

with t2 = n(x − m)2/s2, s2 = ∑n
1=1(xi − x)2/(n −

1), which is Student’s t with n − 1 degrees of
freedom. Finally, integrating our Student’s t results
in unity, i.e.

∫ ∞

−∞

∫ ∞

0
π(m, σ 2|x) dσ dm = 1.

Jeffreys has also suggested an algorithm for con-
structing informationless priors on the basis of the
Fisher information. If X1, X2, . . . , Xn are iid with
likelihood function L(σ |x) = ∏n

i=1 f (xi |θ), then the
Fisher information in the sample is

In(θ) = E

(
∂ log L(θ |x)

∂θ

)2

= nE

(
∂ log f (x|θ)

∂θ

)2

= nI (θ).

Jeffreys’ algorithm for an informationless prior is
p(θ) ∝ I (θ)1/2. Since the Fisher information is
invariant under transformations, the Jeffreys algo-
rithm is also invariant with respect to transformations.
The Jeffreys algorithm for many parameters is to take
p(θ) ∝ |I (θ)|1/2, where |I (θ)| is the determinant of
the matrix of partial cross derivatives.

An important class of prior distributions is when
the posterior distribution belongs to the same fam-
ily of distributions as the prior distributions. These
are called conjugate or normal conjugate prior dis-
tributions. For example, consider the distribution of
the sample mean arising from n iid observations aris-
ing from a N(m, σ 2) with σ 2 known. The likelihood
is L(m|x) = exp[−n(x − m)2/2σ 2]. The conjugate
prior distribution is p(m) ∝ exp[−n′(m − m′)2/2σ 2],
where (n′, m′) are parameters of the prior distribution.
Then the posterior distribution of m is

π(m|x) ∝ L(m|x)p(m) ∝ exp

[−n′′(m − m′′)
2σ 2

]
,

where n′′ = n + n′ and m′′ = (nx + n′m′)/n′′. Al-
though the quantity n in the likelihood is an integer,
the parameter n′ is not restricted to be an integer
but only to be nonnegative. Note that as n′ → 0,
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p(m) ∝ 1, which results in an improper prior in the
limit. The form of the posterior distribution shows
that the prior distribution contributed n′ observations
having a mean of m′ to the likelihood. The informa-
tionless prior corresponding to n′ → 0 contributes no
information to the likelihood.

There exist conjugate prior distributions for all of
the distributions having minimal sufficient statistics.
The book by Raiffa & Schlaifer [29] contains a com-
pendium and an extensive discussion of conjugate
prior distributions. In all of these conjugate prior dis-
tributions it is possible to interpret the parameters of
the prior as adding additional information to the data.

To cite another example, in addition to the normal
distribution, consider the likelihood arising from
observing s successes out of n trials from a binomial
distribution. The likelihood is L(θ |s) = θs(1 − θ)n−s

and the conjugate prior is p(θ) ∝ θs ′
(1 − θ)n

′−s ′
(0 ≤

s ′ ≤ n′) resulting in the beta posterior distribution.
π(θ |s) ∝ θs ′′

(1 − θ)n
′′−s ′′

, with s ′′ = s + s ′ and n′′ =
n + n′. The prior distribution has contributed s ′
successes from n′ trials. Jeffreys [10] proposed that
the informationless prior for this situation take s ′ =
1/2 and n′ = 1, i.e. p(θ) ∝ [θ(1 − θ)]−1/2. The prior
contributes a “half” a success from a single trial to
the likelihood.

In any event, there is a determination of the
information for every conjugate prior distribution. As
a result, if the prior is based on past information,
than it can lead to the fitting of the parameters of
the conjugate prior distributions. The same remark
holds for choosing priors by a subjective assessment.
Any subjective assessment that is incorporated into a
conjugate prior can be interpreted with regard to its
information content.

Over the past several decades much of the debate
concerning Bayesian inference has been concentrated
on the use of prior distributions. It is unlikely that
there will be closure on this topic. However, when
the prior distribution can be interpreted with respect
to information content, priors having information
equivalent or less than one unit of information and
which are smooth over the parameter space are
unlikely to have a major effect on the likelihood
function.
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Influence Function in
Survival Analysis

The influence function of an estimator was introduced
by Hampel [5] in the context of robust estimation
(see Robustness). Broadly speaking, the influence
function evaluated at a possible data point x indicates
how the estimator is changed by the addition of a
data point with value x. As an example, the influence
function for the sample mean is identically equal to
x, showing that a single data point has an influence
on the mean directly proportional to its value. This
reflects the fact that the sample mean is very sensitive
to outliers. However, the influence function for the
sample median is a step function. The median is
the simplest example of an estimator with bounded
influence function. Several more efficient estimators
with bounded influence functions have been proposed
as more robust estimators [5]. An introduction to the
influence function is given in [9].

The influence function of an estimator is computed
by first writing the estimator as a functional of a dis-
tribution function. For an estimator that is a function
of independent, identically distributed observations,
this distribution function will be the empirical distri-
bution function, Fn(x) (see Goodness of Fit). For
example, the sample mean X = n−1 ∑

Xi can be
expressed as

∫
x dFn(x). This estimates the same

functional of the true distribution function
∫

x dF(x):
estimators with this property are called Fisher con-
sistent. We can write the sample median as F−1

n

(
1
2

)
,

(with a suitable definition of inverse for a noncontin-
uous function), and this estimates F−1

(
1
2

)
.

We use the general notation T (F ) for a functional
of a distribution function. Then we define the influ-
ence function for T (F ) by

IC(x; T , F ) = lim
t→0

t−1{T [(1 − t)F + tδx] − T (F )},
(1)

if this limit exists. In (1) δx is the distribution func-
tion that puts mass 1 at the point x. For T (F ) =∫
x dF(x), we have IC(x; T , F ) = x, and for T (F ) =

F−1
(

1
2

)
, we have

IC(x; T , F ) =






− 1

2f [F−1(1/2)]
, if x < F−1

(
1
2

)
,

+ 1

2f [F−1(1/2)]
, if x > F−1

(
1
2

)
.

The influence function defined in (1) is constructed
from the so-called Gâteaux derivative of the func-
tional T . The definition can be extended by comput-
ing the Gâteaux derivative of more complex func-
tionals, such as functionals T (F, u) that depend on
an additional real parameter, or bivariate functionals
T (F, G), say.

In survival data analysis, the estimators of interest
are typically more complex than simple functions of
independent and identically distributed observations,
and the definition of the influence function needs
these more complex functionals. Consider the case
of a single sample of independent, possibly censored,
observations (X1, δ1), . . . , (Xn, δn), where Xi is the
observed failure or censoring time, and δi is 1 if Xi is
uncensored, and 0, otherwise. Assuming the random
censorship model, we write X = min(X0, Y ), where
X0 has distribution F(·), the failure time distribution
of interest, and Y has distribution G.

The influence function of the Kaplan–Meier esti-
mate of the survival distribution F was introduced
in [8, Eqs. (2.1), (2.2)]. This used a representation,
due to Peterson [6], of the cumulative hazard func-
tion as a functional of two subsurvival functions:
Su(·), and Sc(·), where Su(t) = Pr(X > t, δ = 1), and
Sc(t) = Pr(X > t, δ = 0). This gives a pair of influ-
ence functions for the Kaplan–Meier estimator of
S(t) = 1 − F(t):

IC1(s; T , Su, Sc)(t)

= S(t)

{∫ min(s,t)

0

dSu(x)

(Su + Sc)2(x)
+ 1(s ≤ t)

(Su + Sc)(s)

}
,

IC2(s; T , Su, Sc)(t)

= S(t)

{∫ min(s,t)

0

dSu(x)

(Su + Sc)2(x)

}
.

The first term in IC1 is the effect a new observation
at time s has on the estimate of S(t) by increasing
the size of the risk set, if s ≤ t . This is the only
effect of a new censored observation, as is seen
from the expression for IC2. The second contribution
to IC1 corresponds to the additional jump point in
the Kaplan–Meier estimate of S(t) when a new,
uncensored, observation at time s is added.

In addition to providing a descriptive summary
of how sensitive an estimator can be to outliers, the
influence function can be used to compute the asymp-
totic variance of an estimator. We assume for nota-
tional convenience that we have a simple functional
of one distribution function T (F ). If this functional
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is differentiable, then we can write

T (G) = T (F ) + dTF (G − F) + R, (2)

where G is some distribution function, dTF is the
differential of T (F ) and is a linear functional, and R

is a remainder term. For many statistical functionals,
dTF (G − F) will take the form

dTF (G − F) =
∫

IC(x; T , F ) dG(x),

where IC is defined in (1), but has been standardized
if necessary so that

∫
IC(x) dF(x) = 0. If we now let

G = Fn, then we have an expression for the estimator
T (Fn) as the true value T (F ), plus a linear com-
bination n−1 ∑

IC(Xi ; T , F ) and a random remain-
der term. Under some conditions that, in particular,
ensure that the remainder goes to 0 in a suitable
sense as n → ∞, we may conclude that

√
n[T (Fn) −

T (F )] is asymptotically normally distributed with
mean 0 and variance

∫
IC2(x; T , F ) dF(x).

The argument sketched above is an example of
the functional delta method, described in [1, II.8],
and [4]. The ordinary delta method uses an approxi-
mate linearization of a nonlinear function to find
the limiting distribution of an estimator. The func-
tional delta method uses the same argument with the
functional derivative dT defined by (2). In fact, the
functional derivative is not well defined by (2): we
need to specify in what sense R converges to 0, as G

becomes arbitrarily close to F . There are three main
notions of convergence, leading to Gâteaux, compact,
and Fréchet differentiability. While the definition of
the influence function in (1) uses the weak notion
of Gâteaux differentiability, the asymptotic argument
requires that T be either compact or Fréchet differ-
entiable. For a fuller discussion of this, see [1, II.8].
Since functional derivatives also obey a chain rule,
the functional delta method can be used to find the
asymptotic distribution for functions of estimators as
well. The asymptotic variance of the cumulative haz-
ard estimator was computed using this method in
[8]. The functional delta method is applied to the
Kaplan–Meier estimator and several functions of it
in [1, IV.3] and to more complex product limit esti-
mators in [1, IV.4].

Another important use of the influence function in
survival analysis is to suggest influence diagnostics,
or case-deletion diagnostics, for use in the propor-
tional hazards regression model, analogously to the
way regression diagnostics are computed routinely
for linear regression models. It is shown in [3] and

[10] that a sample estimate of the influence func-
tion can be used to approximate β̂ − β̂−i , where β̂

is the usual estimate of the regression parameter in
Cox’s proportional hazards regression model and β̂−i

is the estimate obtained when the ith observation is
deleted. Storer & Crowley [11] consider various other
ways to estimate β̂ − β̂i . Barlow & Prentice [2], in
a discussion of various definitions of residuals for
proportional hazards regression, relate the estimated
influence function to a particular type of residual, and
thereby also extend the definitions of [3] and [10]
to time-dependent covariates. Further development,
with emphasis on applications, is given in [7]. There
is also a helpful summary in [1, VII.3].

References

[1] Andersen, P.K., Borgan, Ø., Gill, R.D. & Keiding, N.
(1993). Statistical Models Based on Counting Processes.
Springer-Verlag, New York.

[2] Barlow, W.E. & Prentice, R.L. (1988). Residuals for
relative risk regression, Biometrika 75, 65–74.

[3] Cain, K.C. & Lange, N.T. (1984). Approximate case
influence for the proportional hazards regression model
with censored data, Biometrics 40, 493–500.

[4] Gill, R.D. (1989). Non- and semi-parametric maximum
likelihood estimators and the von Mises method (Part 1),
Scandinavian Journal of Statistics 16, 97–128.

[5] Hampel, F.R. (1974). The influence curve and its role
in robust estimation, Journal of the American Statistical
Association 69, 383–394.

[6] Peterson, A.V. (1977). Expressing the Kaplan–Meier
estimator as a function of empirical sub-survival func-
tions, Journal of the American Statistical Association 72,
854–858.

[7] Pettitt, A.N. & Bin Daud, I. (1989). Case-weighted mea-
sures of influence for proportional hazards regression,
Applied Statistics 38, 51–68.

[8] Reid, N. (1981). Influence functions for censored data,
Annals of Statistics 9, 78–92.

[9] Reid, N. (1983). Influence functions, in Encyclopedia of
Statistical Sciences, Vol. 4, S. Kotz & N.L. Johnson, eds.
Wiley, New York, pp. 117–120.
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Informatics in the Health
Sciences

Information technology, in its widest sense, increas-
ingly serves multiple roles in professional activities
and practice. Besides being the servant that enables a
number of activities, it also provides the environment
to model and study those activities and domains of
interest. Informatics is the use of information tech-
nology, broadly conceived, to advance a domain of
work or inquiry. Medical informatics is the applica-
tion of informatics principles and practice to clinical
care; nursing informatics, to nursing care; public
health informatics, to issues of public health; bioin-
formatics to biology and to the work of biologists;
statistics informatics, to epistemology and the prac-
tice of statistics.

The word was first used in A.I. Mikhailov’s (Sci-
entific Department of the Moscow State University)
book Oznovi Informatiki (Foundations of Informat-
ics); it was then turned into the French word infor-
matique (de medecine), or medical computing. The
term was then brought into English by MF Collen
in 1977 [2].

Friedman [4] has proposed a scaffold of four lev-
els of activity within informatics: model formulation,
system development, system installation, and study
of effects. A complementary model is shown here,
where System refers to a model of the target domain,
Role speaks of the role an individual plays within
that domain (in health sciences/care, the roles are
clinical care, learning, teaching, research, and admin-
istration), Functions refers to those activities that
support a particular role, and Workflow represents
the model of the activities that support each activ-
ity. The next layer, of information resources, divides
into two components: Information Repositories refers
to the storage facilities needed to accomplish a step
in the workflow and Information Tools refers to the
software tools (see Software, Biostatistical) or algo-
rithms by which an information repository is used to
support that step. Standards refer to common formats
and protocols that support the information resources
to promote interoperability, and Technology refers to
hardware and software products and protocols that
support the whole enterprise (see Computer Archi-
tecture and Organization).

System
Role

Functions
Workflow

Information Information
repositories tools

Standards
Technology

In medical informatics, system refers to the clini-
cal environment. Physicians have specific roles (clin-
ician, educator, learner, manager, researcher), and
tasks within those roles, in that environment, and dif-
ferent workflows apply to each function. For instance,
in clinical care, two functions are diagnose and treat.
A diagnostic decision support system helps the clini-
cian to diagnose. In doing so, it embodies the work-
flow of diagnosis (the hypothetico-deductive loop
of hypothesizing a number of conditions, suggest-
ing data to collect, collecting the data, and modify-
ing the differential diagnosis) (see Computer-aided
Diagnosis). To accomplish that support, it needs an
information repository of a knowledge base and an
algorithm of an inference engine. (Inference engines
have generally been based on logical inference, neu-
ral networks, or Bayesian probability networks.) For
decision support systems to be interoperable, stan-
dards, such as Arden syntax, have been designed
and promulgated. The decision support system can
be implemented in a range of technologies, ranging
from mainframe to handheld devices.

For the core clinical functions of retrieve clinical
data, manage, transact, and document, the computer-
based patient record and computer-based provider
order entry are key repositories. Decision support is
often sited in the latter. For the clinical function of
communicate, the technologies of telemedicine have
received attention, especially in settings with difficult
access to clinicians (prisons, rural areas, shut-ins).

A range of communication, vocabulary, and tech-
nology standards are increasingly viewed as vital
to integrating American healthcare into a National
Health Information Infrastructure (NHII). An advi-
sory office in the Department for Health and Human
Services has been established to foster the NHII. The
Consolidated Health Initiative of the eGov effort,
working with the National Committee on Vital and
Health Statistics, has advised government adoption
of the following standards: Health Level 7 (HL7,
communication), National Council on Prescription
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Drug Programs (NCDCP, standards for ordering
drugs from retail pharmacies) , Institute of Electrical
and Electronics Engineers 1073 (IEEE1073, “Medical
Informatics Bus”, for physiological systems com-
munication), Laboratory Logical Observation Iden-
tifier name Codes (LOINC, laboratory values),
and Digital Imaging Communications in Medicine

(DICOM, image transmission and storage).
In all cases, efforts have been taken to understand

the optimal methods of implementing and deploying
these systems, as well as evaluating the systems’
impact, either at the level of return on investment
or at the level of impact on patient outcomes and
on the processes of care. These issues have been a
particular focus of nursing informatics.

In their review of the history of definitions of nurs-
ing informatics, Staggers and Thompson [6] provide
the following synthesis:

Nursing informatics is a specialty that integrates
nursing science, computer science, and information
science to manage and communicate data, informa-
tion, and knowledge in nursing practice. Nursing
informatics facilitates the integration of data, infor-
mation, and knowledge to support patients, nurses,
and other providers in their decision making in all
roles and settings. This support is accomplished
through the use of information structures, informa-
tion processes, and information technology.

In supporting the role of clinical care, nursing infor-
matics focuses on training nurse users and in spec-
ifying and designing systems to support the work
of nurses. Nursing informatics tends to focus more
on supporting the administrative role than does med-
ical informatics, with attention to the functions of
quality improvement, performance improvement, out-
come measurement, process redesign, and disease
management.

Public health informatics is a more recently
articulated discipline [3, 7]. With populations
as its focus, its primary roles are prevention
(see Preventive Medicine), surveillance, risk
assessment, and research. Recent activity has
focused on recognizing the range of functions
that can be supported by existing or novel
information technology; enabling communication
between information repositories or integration
among them; the creation of novel algorithms to
perform, for instance, syndromic surveillance, with
these new sources of information, and enabling the
dissemination of tools for using those repositories in

an inexpensive manner; the modification of existing,
or creation of new standards; and the creation of
novel technologies, such as environmental sensors,
also to support these roles.

There are disciplines of informatics to support
particular subdomains of medicine, like radiology,
pathology, dermatology, psychiatry, and primary
care.

On the research side, bioinformatics tends to
divide into two areas. One is the view of biology
as a set of digital processes; this view leads to
computational biology and the like. Second is the
view of research as an activity performed by people,
which leads to research informatics and the creation
of databases and other repositories and tools to
support the work of research. The importance of
information technology to support clinical research
has led to solutions at each level of the hierarchy:
repositories of research instruments and of participant
data; statistical packages for clinical research; the use
of clinical standards in coding research results; and
data collection tools, like those based on personal
digital assistants.

Statistics also had a dual relationship with infor-
matics. On the one hand, statistical algorithms are
used in all domains, when the view of data goes
across more than one unit of analysis, whether in
the description of a population of patients, or the
analysis of a set of natural-language text. On the
other hand, relatively little support is available for
the work of statistics, outside the statistical packages
that ease the calculations. The statistical workflow
involves the creation of data sources and communi-
cation among them, with an eye toward the analytic
and decision goals of the data; involves the assembly
of the data, with an understanding of the errors and
limitations conferred by the different data sources;
involves “cleaning” of the assembled data, taking
the data sources and the analytic goals into account;
involves the choices and sequencing of the statisti-
cal models and processes for analysis [1, 5]; and
involves the reporting of the data, with the caveats
and limitations of the inferences made explicit. There
are few standards to support this workflow that take
into account the needs of the statistician, outside
the growing library of programming modules. The
knowledge and experience of professionals that have
been encoded in guidelines and protocols in other
domains is lacking in statistics, and there are no statis-
tical decision support tools to support this workflow.
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Attention to the workflow in the spirit of informatics
more generally should fill this void.
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Information Matrix

Let X be an n-vector of observations relating to a
vector parameter θ . In addition, let f (X|θ) denote the
joint density (or mass function) of X under θ , which,
viewed as a function of θ , is the likelihood function.
A key role in statistics is played by the matrices I(o)

and I defined as follows, where the expectation below
is taken under θ :

I(o)
pq (θ) = − ∂2

∂θp∂θq

log f (X|θ),

Ipq(θ) = E
[
I(o)
pq (θ)

]
.

The matrix I(θ) is called the Fisher information
matrix, or sometimes, for emphasis, the expected
information matrix. For a scalar parameter θ , the term
used is simply Fisher information (see Information).
The matrix I(o)(θ) is called the observed information
matrix. Generally, the elements of the matrices I(θ)

and I(o)(θ) will have magnitude of order n.
The basic classic results concerning the informa-

tion matrix are stated below. The most familiar setting
for these results is that of independent, identically
distributed (iid) observations, but they extend to more
general settings. For the results to hold, certain tech-
nical conditions are required (see, for example, [4,
Chapter 5]); such conditions generally hold in typi-
cal applied statistics settings. Below we denote the
inverse of the information matrix I(θ) by V∗.

Cramér–Rao Inequality

Let θ̃ be any unbiased estimate of θ , and denote by
V its covariance matrix. Then the matrix V − V∗
is nonnegative definite. In particular, in the case
of a scalar parameter θ , this result says that the
variance of any unbiased estimator of θ cannot be
less than V ∗. There also exists an asymptotic version
of this result in which unbiasedness is replaced by

asymptotic unbiasedness and covariance is replaced
by asymptotic covariance.

Behavior of MLEs

The maximum likelihood estimate (MLE) θ̂ of
the true θ is defined as the maximizer for given
data X of the function f (X|θ) over all θ . The
estimator θ̂ is approximately distributed according
to the multivariate normal distribution with mean
vector θ and covariance matrix V∗. In light of
what was said above, this indicates an asymptotic
optimality property of the MLEs.

Estimation of V∗

The matrix I(o)(θ̂) is a consistent estimator of I(θ) in
the sense that I(θ)−1I(o)(θ̂) converges to the identity
matrix in large samples. Correspondingly, I(o)(θ)−1

consistently estimates V∗.
The above results extend to more general forms

of likelihood often encountered in biostatistics,
including quasi-likelihood [3, Chapter 9] and partial
likelihood [2]. Asymptotic optimality properties of
MLEs in these more general settings also have been
developed; see, respectively, [3, Section 9.5] and [1].
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Information

It is natural to try to quantify the amount of informa-
tion provided by a set of data concerning an unknown
quantity of interest. R.A. Fisher, in a classic 1925
work [1], proposed that the statistical information
provided by a set of data on a parameter θ be defined
as the inverse of the variance of an efficient estimator
of θ . This quantity is equal to the Fisher informa-
tion I (θ) defined in the article, Information Matrix.
More broadly, one may define the information pro-
vided by a given estimator θ̃ , not necessarily an
efficient one, to be the inverse of its variance. Intu-
itively, the lower the variance of an estimator, the
more precisely it estimates the underlying parame-
ter. Thus, the definition just given says simply that
information equals precision.

The above concept of information arises in various
contexts; here, we give two examples of interest in
biostatistics.

The first example is the situation of combining
several independent (asymptotically) unbiased esti-
mates of the same parameter θ . This situation arises
in a number of settings in biostatistics; for example,
stratified analysis and meta-analysis. Typically, esti-
mates are combined by weighted averaging. It is a
classical result that the optimal method of weight-
ing, in terms of minimizing the variance of the
combined estimator, is to weight each individual esti-
mate, θ̃i , according to the inverse of its variance,
νi . This result, which is an easy consequence of
the Cauchy–Schwarz inequality, is the most basic
version of the weighted least squares schemes that
abound in applied statistics.

Intuitively, the weight assigned to a given esti-
mate is in proportion to the amount of information
contributed by that estimate. The variance of the com-
bined estimator is easily derived, and by reciprocation
the information content of the combined estimate is
found to be the sum of ν−1

i . Thus, it is seen that
the information content of an optimally weighted
average of several independent estimates is equal to
the sum of the information contents of the individual
estimates.

The second example is the situation of sequen-
tial monitoring in clinical trials (see Data and
Safety Monitoring). With certain popular monitor-
ing schemes, particularly that of Lan & DeMets [3],
it is necessary at each interim analysis to have some

measure of how far the trial has progressed. A sim-
ple measure of trial progress is elapsed calendar time
from the date the trial began. Some workers, how-
ever, argue that a more appropriate measure of trial
progress is the proportion of statistical information
accumulated by the time of the interim analysis,
relative to the total amount of information that is
expected to be accumulated by the planned end of
the trial.

This measure of trial progress is often referred to
as information time. The proportion of information
accumulated is reflected fully by the sample size in
certain special cases, but not in general. For instance,
in a study monitored sequentially using the logrank
test, the information is reflected by the number of
events, while in a longitudinal study analyzed using a
mixed linear model with a random slope and intercept
for each subject, the information content is a func-
tion of the ratio of within-subject to between-subject
variance and the observation pattern of the various
individuals. See [4] for a more detailed discussion.

The foregoing conceptualizations of information
are related, as will be indicated below, to S. Kull-
back’s notion of discrimination information. Kull-
back’s information measure, also known as relative
entropy and by various other names, is in turn related
to the entropy-based definition of information used in
the Shannon–Weaver theory of information and cod-
ing. Consider a data vector X relating to the parameter
θ . Let f (X|θ) denote the joint density (or mass func-
tion) of X under θ , which, viewed as a function of θ ,
is the likelihood function. In addition, define

Z(θ1: θ0) = log
f (X|θ1)

f (X|θ0)
,

which is the likelihood ratio test statistic for testing
H0: θ = θ0 vs. H1: θ = θ1. Kullback defines the mean
information for discriminating between these two
hypotheses when the true θ value is θ1 to be

Inf(θ1: θ0) = Eθ1 [Z(θ1 : θ0)]

=
∫

f (X|θ1) log
f (X|θ1)

f (X|θ0)
dX,

where the integral is replaced by a sum when X
is discrete. Kullback demonstrates that this informa-
tion measure possesses a number of basic properties
that one would intuitively expect from an informa-
tion measure. For example, the information provided
by two random vectors X and Y is equal to the sum



2 Information

of the information provided by X and the informa-
tion associated with the conditional distribution of Y
given X. For more detailed discussion, see [2].

Kullback shows, furthermore, by a Taylor expan-
sion of the likelihood ratio, that if θ0 and θ1 are close
and suitable regularity conditions hold, then

Inf(θ1: θ0)
.= 1

2 I (θ1)(θ1 − θ0)
2;

in the case of a vector parameter, the right-hand side
becomes 1

2 (θ1 − θ0)
TI(θ)(θ1 − θ0), where I(θ) here is

the Fisher information matrix. Thus, there is a direct
connection between Kullback’s notion of information
and Fisher’s.

If the data are reduced down to some (not neces-
sarily efficient) estimator θ̃ of θ that is approximately
normally distributed with mean θ , then the Fisher
information of the reduced data is approximately
equal to the inverse of varθ (θ̃ ). This observation pro-
vides a further way of viewing inverse variance as
information.

In particular, considering the maximum likeli-
hood estimator (MLE) θ̂ of θ , assuming suitable
conditions, it is known that when the sample size is
large, the estimator θ̂ is approximately normal. Thus,
if the data were reduced down to the MLE θ̂ , then
the Fisher information for the reduced data would be
approximately equal to the inverse of varθ (θ̂ ). Now
this quantity is equal precisely to the Fisher infor-
mation for the unreduced data. In other words, the
information contained in the MLE is approximately

equal to the information in the entire data, reflecting
the efficiency of the MLE.

This finding may be arrived at also by a route
starting from the Kullback definition of information.
Suppose that θ0 and θ1 are close and the sample
size is large. Then, assuming suitable conditions,
it is known that the likelihood ratio statistic Z(θ1 :
θ0) is approximately equivalent to the Wald statistic
ZWald = (θ̂ − θ0)/varθ (θ̂ )1/2 [in practice varθ (θ̂ ) has
to be estimated on the basis of θ̂] (see Likelihood).
This statistic depends on the data only through θ̂ ,
so that we see again that the information in θ̂ alone
is approximately equal to the information in the
entire data.
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Instrumental Variables in
Health Services Research

The technique of instrumental variables (IV) was
developed by econometricians in the 1930s and 1940s
to address situations in which an explanatory vari-
able or variables are correlated with the error term
in an Ordinary Least Squares regression. In such a
case, Ordinary Least Squares (OLS) methods produce
inconsistent estimates of the regression coefficients.
Because economists can rarely conduct controlled
experiments, this situation arises frequently in analy-
ses of economic data. As a result, IV methods have
been widely used – many might say overused – in
applied econometrics and are described in virtually
every econometrics text (e.g. [5, Chapter 13], [6,
Chapters 9, 13], [2, Chapter 7], [4, Chapters 9, 13,
16], [10, Chapter 10]). In the 1990s, IV methods
began to be used in health services research to ana-
lyze observational data, where they have achieved a
modicum of popularity [3, 7, 8].

I first give an intuitive explanation of the method
and then sketch it more formally. I next describe
an actual example and conclude by emphasizing the
limitations of the IV estimator.

The essence of the IV method is to purge the
explanatory variable(s) in a regression equation of
the portion of its (their) variance that is not inde-
pendent of the error term and then estimate the
relationship between the dependent variable and the
remaining variance. (In econometrics, the variation
that is independent of the error term is referred to as
exogenous, whereas the variation that is not indepen-
dent is referred to as endogenous.) (See Structural
Equation Models.) The purging is done by finding
another variable or variables that are termed instru-
mental variables and that satisfy two assumptions.
First, the IVs are independent of the error term in
the regression of interest. Second, they are correlated
with the explanatory variable(s) in question. Another
way to say this is that the IVs have a direct effect
only on the explanatory variable; they have no direct
effect on the dependent variable. This is illustrated
in Figure 1. The arrows indicate causal relationships;
for a variable to be an IV, there must be no arrow
from the IV directly to the dependent variable. There
must be at least one IV for each explanatory variable
that is not independent of the error term.

The effects on the dependent variable of the vari-
ation that the IV induces in an explanatory variable
of interest can be estimated; that is, the covariation
between the induced variation and the dependent vari-
able can be used to estimate a regression coefficient.
The results, however, should not be extrapolated out-
side the region of induced variation. Although such
a caution is always appropriate in regression analy-
sis, it applies with even more force here because the
range of variation may be sharply reduced relative to
the total variation in the observed explanatory vari-
able (i.e. the sum of the exogenous and endogenous
variations).

Although IV methods were developed for non-
experimental data, the simplest example of an IV
comes from the randomization process in a clinical
trial. Suppose subjects are assigned to the treatment
or the control group by flipping a fair coin. As is
well known, assuming no refusal and no attrition, the
difference in the mean outcomes between the exper-
imental and control groups is an unbiased estimate
of the treatment effect.

In this case, the IV is the outcome of the coin
flip. By definition, the outcome of the flip has no
effect on the observed clinical outcome in any patient
other than through its effect on assignment to the
treatment group. Hence, the variation that the coin
flip induces in assigning subjects to treatment and
control groups is independent of the error term in a
regression explaining outcomes. Moreover, given no
refusal or attrition, it perfectly explains the assign-
ment of subjects to treatment or control groups. Thus,
it satisfies both assumptions of an IV. By contrast, in
observational data, those assigned a particular medi-
cal treatment may be sicker or healthier in unobserved
ways than those not given the treatment, which means
the difference in outcomes between the two groups
is a biased estimate of the effect of the treatment.
Indeed, this is the reason randomized controlled trials
are preferred to observational studies for estimating
the effects of medical treatments.

More formally, suppose one has a sample of N

observations that come from the following structure:

Y = Xβ + ε. (1)

Let Y be an N × 1 vector of observations on the
dependent variable, X an N × k matrix of observa-
tions on k explanatory variables (the first column of
X may be a vector of ones to allow for an inter-
cept term), β a k × 1 vector of constants to be
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Instrumental
variable

Explanatory
variable

Dependent
variable

Figure 1 There is no arrow from the IV directly to
the dependent variable because all of the effect of the
IV on the dependent variable is through its effect on the
explanatory variable. Moreover, only the variation in the
explanatory variable induced by the IV is used to estimate
the relationship between the dependent variable and the
explanatory variable

estimated, and ε an N × 1 vector of errors, which
has distribution F(0, σ 2). Let

b = (X′X)−1(X′Y) be the OLS estimator of β. (2)

Substituting (1) into (2), E(b) = β + E(X′X)−1(X′ε).
If X and ε are not independent, the second term is
nonzero and b is a biased estimator of β.

Let Xi represent a subset k′ of the k variables of
X that are not independent of ε (k′ ≤ k), and let Z
be an N × m matrix of observations on m variables
that are correlated with Xi but are independent of ε

(k′ ≤ m). Then

bIV = (Z′X)−1Z′Y is the IV estimator of β. (3)

bIV is a consistent estimator of β, as can be seen by
substituting (1) into (3).

I turn now to an example of IV in health services
research that is taken from [7]. These authors worked
with a sample of Medicare patients over 65 who
had suffered an Acute Myocardial Infarction (AMI
or heart attack) (see Medicare Data). Motivated
by the high geographic variation in procedure rates,
they sought to answer the question whether cardiac
catheterization followed by possible revascularization
(either a coronary artery bypass graft or angioplasty,
both of which open coronary arteries and provide
for increased blood flow to the heart) achieved better
outcomes than no cardiac catheterization. (Catheteri-
zation is always done prior to either revascularization
procedure.) There were, of course, clinical trials of all
these procedures, but the clinical trial results posed
two difficulties in this context: (1) The trials often
excluded those over 65, but around half the AMIs
annually in the United States occurred among that

group. Yet the benefits of the procedures had been
well enough established among younger persons that
it almost certainly would have been unethical to con-
duct a trial among the elderly; (2) The trials had been
conducted in major medical centers, and it was not
clear that the results applied to patients in community
hospitals.

The principal IV the authors used in this exam-
ple was the incremental distance from the patient’s
residence to a hospital with a catheterization facil-
ity relative to a hospital with no such facility. If
the nearest hospital had a catheterization facility,
the incremental distance was zero. This IV exploited
the notion that patients who suffer an AMI tend
to go to the nearest hospital and that therefore the
distribution of the severity of the AMI, an unob-
served determinant of both mortality and treatment,
would be approximately the same at various dis-
tances. Thus, distance acted something like the flip
of a coin in the clinical trial example; those liv-
ing near a hospital with a catheterization facility
were more likely to be treated in that fashion than
patients living further away, but distance seemed
independent of the severity of the heart attack, the
principal factor other than treatment determining
survival.

The assumption that distance is independent of
mortality except through its effect on treatment must
ultimately be taken on faith, although there are var-
ious tests of the plausibility of this assumption. One
straightforward test is that observable variables that
affect mortality should also be approximately inde-
pendent of distance. Of course, the observable vari-
ables that affect mortality can be controlled for in
a regression. As a result, if they are not indepen-
dent of distance, that dependence will not cause the
estimates to be inconsistent; nonetheless, such depen-
dence undermines one’s confidence that unobserved
variables are independent of distance.

The first two columns of data in Table 1 show dif-
ferences in both observable variables and outcomes
for individuals who received a catheterization within
90 days of their AMI and those who did not; the
last two show differences between those individuals
who lived within 2.5 incremental miles of a hos-
pital with a catheterization facility and those who
did not. Both the observable covariates as well as
the outcomes differ markedly between the groups
that did and did not receive a catheterization (the
first two columns). Mortality at four years in these
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Table 1 Relationship between outcome and catheterization in groups sorted by procedure and by differential distance
(%, except for age and number of observations)

No
catheterization
within 90 days

Catheterization
within 90 days

Incremental
distance ≤
2.5 miles

Incremental
distance >

2.5 miles

Female 53.5 39.7 51.3 49.5
White 90.4 91.8 89.0 92.3
Age in years 77.4 71.6 76.1 76.1
Cancer 2.2 0.85 10.4 11.0
Pulmonary disease,

uncomplicated
11.1 9.3 18.1 18.0

Diabetes 18.3 17.1 4.8 4.8
Cerebrovascular disease 5.4 2.8 45.4 5.0
Admit to cath hospitala 40.9 62.9 45.4 5.0
Admit to revasc hospitala 21.6 41.6 41.7 10.7
Admit to high-volume

hospa
50.0 58.0 67.1 36.5

90-day catheterization rate 0.0 100.0 26.2 19.5
One-day mortality 10.3 0.9 7.50 8.88
Seven-day mortality 22.0 3.3 16.80 18.59
30-day mortality 26.6 7.4 24.86 26.35
One-year mortality 47.1 16.6 39.79 40.54
Two-year mortality 55.3 21.3 47.20 47.89
Four-year mortality 66.7 29.9 58.06 58.52

Number of observations 158 261 46 760 102 516 102 505

aCatheterization hospital is one that carried out five or more catheterization procedures on patients in the sample and that is not
a revascularization hospital; revascularization hospital is one that carried out ten or more revascularizations on patients in the
sample; high-volume hospital is one that treated 75 or more of the AMI admissions in the sample.

two groups differs by more than a factor of two
(29.9 versus 66.7%), and controlling for the observed
covariates such as age does little to diminish this
difference (results not shown). If those catheter-
ized had the same distribution of unobserved factors
affecting mortality as those not catheterized, one
would conclude that catheterization followed by pos-
sible revascularization had a huge effect in reducing
mortality.

But cardiologists and cardiac surgeons are less
aggressive with those who are less healthy; for
example, those who might not survive an inva-
sive procedure are unlikely to be given one, but
they are at greater risk for mortality independent
of whether they receive a procedure. Hence, receipt
of the procedure is correlated with the error term.
The difference between the groups that did and did
not receive a catheterization is strikingly illustrated
by the difference in mean age; the group receiv-
ing catheterization was on average 71.6 years old,
much younger than the 77.4 years average in the
group that did not receive the procedure (recall that

everyone in the sample was over 65 years of age).
Furthermore, the group receiving the procedure had
fewer co-morbidities, consistent with their being a
generally healthier group.

The two rightmost columns divide the sample into
approximately equal halves according to differential
distance. Although one can exploit all the variation
in an IV (in this example that means treating distance
as a continuous variable), simply dividing the sample
into two groups according to the value of the IV, as is
done here, will show whether the observed covariates
tend to be independent of the IV. In this example,
the mean age in the groups sorted by incremental
distance is the same to three significant digits, and the
prevalence of co-morbidities is much more similar
than in the first two columns, suggesting that distance
is a reasonable choice as an IV.

From the data in these two columns, one can also
derive a simple IV estimate of the effect of catheter-
ization and possible subsequent revascularization on
four-year mortality. The estimator is the difference
in the mortality rates divided by the difference in the
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catheterization status or:

Estimated catheterization effect

= ∆(4-year mortality)

∆(catheterization)

= (58.06 − 58.52)

(26.2 − 19.5)
= (

−0.46

6.7
) = −0.069. (4)

In other words, an increment of one percentage point
in the catheterization rate reduces the four-year mor-
tality by about 0.07 percentage points, or about 7 in
10 000, a vastly smaller effect than would have been
estimated from the first two columns, where a 100
percentage point difference in catheterization rates
was associated with a 36.8 percentage point differ-
ence in mortality.

The exercise shown in the table of splitting the
sample on the value of the IV is also helpful in
showing the range of variation that the IV induces. In
this case, just under 20% of the more distant group
received a catheterization, whereas just over 26% of
the group in the sample closer to the hospital received
a catheterization. A finer grouping of individuals
by distance somewhat expands this range from 18
to 28%.

This range illustrates an important difference bet-
ween IV and a clinical trial. Ignoring refusal and
attrition, the randomization in a clinical trial results
in one group in which 100% of the subjects receive
a treatment, the treatment or experimental group, and
another group in which none of the subjects receives
the treatment, the control group. The denominator in
the analog to (4) thus is 100-0 or 100. The numerator
is simply the difference between the outcomes in
the two groups, so in this case (4) gives the usual
trial result that the difference between the treatment
and control group is the estimated treatment effect
(dividing the percentage difference by 100 means the
difference is expressed as a proportion).

By contrast, the IV result only gives the effect
of increasing the catheterization rate from approxi-
mately 20% to approximately 26% (with the finer
gradation of distance, this range becomes 18 to 28%).
The difference between these two rates represents
patients who were catheterized if they lived near a
hospital with a facility but were not if they lived
farther away. Another implication is that around
18 to 20% of patients were catheterized no matter
where they lived (they were presumably transferred
if they were initially admitted to a hospital with no

catheterization facility), and around 72 to 74% of
patients were not catheterized irrespective of where
they lived. The data are uninformative about each of
these two latter groups because there is no variation
in treatment according to place of residence. It is
therefore imprudent to use the estimated effect size
of −0.069 to estimate what might happen to mortal-
ity if the catheterization rate fell much below 18% or
rose much above 28%.

Another way to say this is that the IV estimate is
informative about the person who might be called the
marginal patient, namely the patient who receives a
catheterization if it is convenient but not otherwise.
A clinical trial, on the other hand, yields the effect of
the procedure on the average patient. If the range of
the IV is very large, from near zero to near 100%, the
IV estimate tends toward the clinical trial estimate.
As the example of the clinical trial as IV illustrates,
the limiting case of the marginal effect is the average
effect.

Although the IV estimator can be a highly use-
ful tool, the two necessary assumptions required for
a valid IV may be limiting. In practice, it can be
difficult to find variables that are plausibly indepen-
dent of the outcome of interest, except through their
effect on the explanatory variable, but that induce
enough variation in the explanatory variable to yield
an estimate of interest. If there is little induced varia-
tion there is little power for estimating an effect, and
large samples tend to be required. Less obviously, if
the IV induces only a small amount of variation in
the explanatory variable, the IV result will be biased
toward the OLS result [1] and [9]. How much induced
variation is needed to render the bias unimportant? A
rough rule of thumb comes from running a regres-
sion of the explanatory variable of interest on all the
covariates as well as the IV(s). In the simple case
of one explanatory variable, the bias is proportional
to the reciprocal of the incremental F-statistic on the
IV(s) in this regression; with more than one variable
correlated with the error term, the reciprocal of the
F-statistic is an approximation (see F Distributions).
For a derivation of this result see [9].
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Instrumental Variables

Permutt & Hebel [13] describe an analysis of the
results of conducting a randomized clinical trial [15]
using what is often called an encouragement design.
Pregnant women who were cigarette smokers were
randomized into two groups: those who received
encouragement to reduce or stop their smoking, and
those who did not (the controls). Two outcome mea-
sures were recorded: (a) the number of cigarettes
smoked per day in the eighth month of pregnancy
(S), and (b) the birth weight of the baby (B). Per-
mutt & Hebel were concerned with the estimation
of the causal effect of S on B, whilst acknowl-
edging that the observed association between S and
B might be subject to confounding (and, although
they do not mention this characteristic, the mea-
sure of smoking frequency is also subject to mea-
surement error). In order to solve their estimation
problem, the authors made use of the randomiza-
tion indicator (R), assuming that R is likely to be
highly correlated with S but only has any effect
on B through its effect on S (that is, conditional
on S, randomization has no effect on B). In this
context, the variable R is called an instrumental vari-
able. Although instrumental variable methods had
previously been widely used in econometrics, the
Permutt & Hebel paper was one of the first exam-
ples of its use in a medical application. Another
starting point for much of the work on adjustment
for selection effects (particularly to adjust for the
effects of noncompliance in randomized controlled
trials (RCTs)) is the work of Bloom [1], Sommer and
Zeger [16] and Robins [14] – (see Noncompliance,
Adjustment for).

Consider two observed random variables, X and
Y . X and Y could be quantitative or categorical
(binary, for example) and they might be subject to
measurement errors (misclassification errors in the
case of binary variables). X and Y are assumed to
be associated but their association might also be sub-
ject to hidden confounding (selection effects). The
variables Tx and Ty are the true underlying values
of X and Y (i.e. without measurement or misclas-
sification errors), respectively. Ex and Ey are the
corresponding measurement errors (assumed to be
independent). Our aim is to estimate the strength of
association between Tx and Ty after adjustment for

any possible confounding. This might be via the esti-
mation of a regression coefficient, for example, a
correlation or an odds ratio. Is it possible to find
a consistent estimator? Not without some unreal-
istic assumptions or further information. One might
record the values of several potential confounders,
for example, but there still might be the possibil-
ity of the existence of confounders that we have
never thought of. We might also be able to obtain
information on the characteristics of the measure-
ment processes for X and Y (the variance of the
respective measurement errors if they are quantita-
tive, or of their sensitivities and specificities if they
are binary), but there is no guarantee that the mea-
sures are performing in exactly the same way in
the different circumstances. An alternative approach,
and potentially a very useful one, is to obtain fur-
ther information in the form of measurements of an
instrumental variable. Suppose that we have access
to a third variable, Z, which is strongly associated
with Tx , but conditional on Tx has no effect on Y .
Z is called an instrumental variable. Its potential
will be illustrated through several familiar applica-
tions.

But, let us start by considering three hypothetical
quantitative measures, X, Y , and Z. We describe the
influence of Z on X through a simple linear regres-
sion model and, similarly the influence of X on Y

through another simple linear model. But remember
that X and Y are both subject to measurement error
and we are really interested in the influence of Tx

on Ty . A graphical representation to illustrate this
general situation is provided by the path diagram in
Figure 1. Tx and Ty are placed within circles to stress
the fact that they are latent variables (unobserved,
and possibly unobservable), whereas the observed
or manifest variables, X, Y , and Z are themselves
placed in square boxes. The key parameter we wish
to estimate is the regression coefficient marked as β

in this path diagram. The other important regression
coefficient is marked as γ . Confounding is repre-
sented by the correlation (ρ) between the two random
disturbance terms, Dx and Dy . A “1” next to an
arrow on the path diagram implies that the corre-
sponding regression coefficient is set to be 1 (i.e.
X = Tx + Ex , for example). Although the full model
described by the path diagram is hopelessly under
identified, the parameter β is identified and it can
be estimated in a number of equivalent ways. The
approach we start with is to write down the expected
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Figure 1 Illustration of a model in which we wish to esti-
mate the effect of Tx on Ty in the presence of measurement
errors (we only have observations on the error-prone vari-
ables X and Y ) and selection effects (correlation between
Dx and Dy). Unbiased estimation is the only problem
because we also have a measure on an instrumental vari-
able, Z

values of the covariance of Z and X, and that of Z

and Y :

Cov(Z, X) = γ Var(Z) (1)

Cov(Z, Y ) = γβVar(Z). (2)

It follows immediately that:

β = Cov(Z, Y )

Cov(Z, X)
. (3)

One possible estimator for β is then obtained by
simply estimating these two covariances from the
data and substituting these estimates into (3). This
is equivalent to

β̂IV =
∑

(Z − Z)(Y − Y )
∑

(Z − Z)(X − X)
, (4)

where the summation is over all subjects/observations
in the dataset. It is also equivalent to

β̂IV = β̂yz

β̂xz

, (5)

where β̂yz is the slope estimate obtained from the
ordinary least squares (OLS) regression of Y on Z,
and β̂yz = γ̂ is the corresponding estimate from the
OLS regression of X on Z.

Another starting point is to write down the OLS
estimate for the intercept, α, and slope, β, as the
solution to

1

N

∑
X(Y − α̂OLS − β̂OLSX) = 0, (6)

where N is the number of observations. In our situa-
tion, of course, these estimates will be biased. It can
be shown that the corresponding instrumental vari-
able (IV) estimates are obtained from the solution to

1

N

∑
Z(Y − α̂IV − β̂IV X) = 0. (7)

These are both special cases of generalized met-
hod of moments (GMM) estimators [7].

By far the most common IV estimation procedure,
however, is the use of OLS regression in two stages –
two-stage least squares (2SLS or TSLS). First one
regresses X on Z to obtain the predicted value of X,
that is X̂. The second stage involves the regression
of Y on X̂. The estimate of the slope from the second
stage is the equivalent to β̂IV above. If we were to
actually do this in two stages, we would have to be
aware that the second regression would give an incor-
rect standard error for β̂IV . Most general-purpose
software packages have a 2SLS routine that provides
the correct standard errors and corresponding P val-
ues. The asymptotic variance of β̂IV is, in fact,

Var(β̂IV ) = σ 2
u

Nσ 2
Xρ2

XZ

, (8)

where σ 2
X is the variance of X, σ 2

u is the variance
of the deviations u = Y − α̂IV − β̂IV X and ρ2

XZ is
the square of the correlation between X and Z (see
[6] or [21] for further details). Note that, keeping
everything else constant, this variance decreases with
increasing values of the correlation between X and
the instrumental variable Z. Note also that neither
the IV estimate itself nor its asymptotic variance
is dependent on any distributional assumptions. In
particular, both Z and X could be binary (see section
on adjustment for noncompliance in an RCT, below).
If we have covariates other than the instrumental
variable (or instrumental variables if we can find
more than one) then the first stage of 2SLS involves
the regression of X and the covariates. The second
stage involves regressing Y on X̂ and the same
covariates [21].
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One final approach to IV estimation for the linear
model is again a two-stage procedure. The first stage,
as before, involves the regression of X on Z. But in
this case we keep the residuals from the regression
for the next stage, rather than the predicted values of
X. The second stage involves the regression of Y on
both the observed X and the residual from the first
stage regression (see [11], for example). Again, the
estimate is equivalent to β̂IV as defined above. Once
again, we need care in the estimation of the correct
standard errors.

IV estimation, in general, and 2SLS estimation,
in particular, appear to be rarely used in medi-
cal applications (and when IV methods are used
they frequently do not get an explicit description
as such), with the obvious exception of the applica-
tion of econometric applications in health services
research. The methods are rarely mentioned in medi-
cal statistics texts. The general econometrics literature
on IV estimation via 2SLS (and other more com-
plex estimation methods), however, is vast. It is one
of the most widely used statistical methodologies
in econometrics (after OLS methods). Any textbook
on econometrics will contain at least a chapter on
IV/2SLS methodology. Good introductions can be
found in [19, 20, 21]. Advanced topics can be found
in [7]. A range of methods of IV estimation for the
linear model has been provided in this section, partly
to point out the equivalence of the several differ-
ent approaches in the context of linear models, but
mainly because they each can provide an approximate
solution for nonlinear problems (logistic regression
models in epidemiology, for example).

Estimation of Treatment or Exposure
Effects in Biostatistics

Elementary reviews of the use of instrumental meth-
ods in outcomes of treatment research and in epi-
demiology are provided by [8, 12]. Research on the
outcomes of treatment using instrumental variable
methodologies has tended to concentrate on the prob-
lems of selection effects in the choice of treatments
(for the special case of noncompliance in randomized
studies, see Noncompliance, Adjustment for). On
the whole, measurement errors in the classification
of treatment received, or in the amount of treatment
received, have not received much attention. In epi-
demiology on the other hand, it is the problem of

exposure measurement that has lead to a surge of
interest in instrumental variable methods (see Mea-
surement Error in Epidemiologic Studies). Stefan-
ski and Buzas [18], for example, have developed
instrumental variable estimation methods in binary
regression models using exposure measurements sub-
ject to measurement errors. These authors have used
approximations to those in the linear model, such
as the use of (3), for example, in which the two
regression coefficients are obtained from the appro-
priate logistic regressions instead of OLS. The use
of 2SLS itself does not appear to be very satisfac-
tory for nonlinear instrumental variable regression
problems (see Foster [5], for example, who advo-
cates GMM-based methods). Nagelkerke et al. [11],
however, successfully apply the second of the two-
stage methodologies described above to a range of
nonlinear models involving noncompliance with ran-
domized treatment allocation. An interesting example
of the development of the IV method to test some
of the assumptions of a measurement error model is
provided by Spiegelman et al. [17]. For a general and
detailed discussion of exposure measurement error
problems in epidemiology, readers are referred to
the article in the present encyclopedia and to [2].
Greenland [8] describes how an instrumental vari-
able can be used to adjust for hidden confounders in
an epidemiological study.

Method Comparison Studies

Consider a study in which we wish to compare
either two quantitative methods of measurement or
two binary diagnostic tests. In neither case do we
have access to a gold standard (see Diagnostic
Test Evaluation Without a Gold Standard). An
appropriate measurement model for two quantitative
measuring instruments, X and Y might have the
following form:

X = αx + βxτ + δ,

Y = αy + βyτ + ε, (9)

where τ is “true” value of the material being mea-
sured, the α’s and β’s are the parameters of the
two regression equations, and δ and ε are random
measurement errors (assumed to be independent of
each other and of the true value, τ ). Our aim is to
estimate the regression coefficients, together with the
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variances of the measurement errors. The data from
such a study can be summarized by the means and
variances of X and Y , together with their covariance.
Clearly, the model described by (9) is underidentified
(there are far too many parameters to be estimated
from the small number of summary statistics). We
first need to specify a scale of measurement. One
convenient way of doing this is to consider one of
the methods as a standard (X, for example, by setting
αx = 0 and βx = 1). But the model is still underiden-
tified. We cannot estimate the free parameters of the
model without either making further assumptions or
by obtaining further data. One useful approach for
the latter is to obtain a third measurement, Z, that is
correlated with the true value (τ ) but conditional on
τ is uncorrelated with both X and Y . Z is an instru-
mental variable. One obvious choice for Z is a third
measurement of τ , taking care to ensure that the mea-
surement errors for Z are not correlated with those
of either X or Y . It is now straightforward to esti-
mate all of the free parameters of the model (βy, for
example, is obtained from (3)). Details can be found
in [3, 4, 6].

In the case of the comparison of two binary diag-
nostic tests (X and Y ), we start by postulating the
existence of a binary latent class (the “true” diag-
nosis) and related the observed tests results to the
true status of the patient through a latent class or
finite mixture model. With only two diagnostic tests,
however, the model is underidentified [9]. We need
more information. Again, we resort to an instrumen-
tal variable, Z. Z could be either categorical (but not
necessarily binary) or quantitative. The only require-
ment is that it is strongly associated with the true
status of the patient, but conditional on that true sta-
tus is independent of both X and Y . Z, of course,
could be a third diagnostic test. Details can be found
in [4, 9, 10]. In all the applications of instrumental
variable methods, the existence of measurements on
a single instrumental variable enable us to get a han-
dle on the estimation of otherwise unidentified model
parameters. If we have data on more than a single
instrumental variable, however, not only can we get
even better estimates, but we might also be able to
use the extra information to check the validity of our
modeling assumptions. In the context of method com-
parison studies, for example, models involving three
variables are just identified. That is, they fit the data
perfectly and there is no way of testing whether any
of the necessary assumptions might be invalid. If we

have four or more measurements, however, we have
the possibility of an overidentified model together
with degrees of freedom to test model fit. Nagelkerke
et al. [10] provide a nice example involving diagnos-
tic tests. Dunn & Roberts [3] illustrate the point with
quantitative measures.
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Intention to Treat
Analysis

Intention-to-treat (ITT) analysis (also referred to as
“as-randomized” or “method effectiveness” analysis
[25]) is defined in the context of a randomized clini-
cal trial (RCT). In a RCT design for the comparison
of treatments, subjects are randomly assigned to dif-
ferent treatments. Once this randomized assignment
to treatment is made, the ITT principle requires
that any comparison of the treatments is based upon
comparison of the outcome results of all patients in
the treatment groups to which they were randomly
assigned. This approach is recommended to maintain
the benefits of randomization.

Randomization provides two important features.
First, the treatment assignment is based on chance
alone. The characteristics of the group of patients
receiving the different treatments should be roughly
equivalent at the onset of the trial, with the only dif-
ference being their treatment assignment. If, during
the implementation of the trial, the groups continue to
be distinguished only by their treatment assignment,
then any differences in the outcomes of the groups
at the end of the study (see Outcome Measures in
Clinical Trials) can be attributed solely to difference
in treatment. Secondly, randomization provides the
theoretical foundation for the statistical tests of sig-
nificance that are used to test for observed differences
(see Randomization Tests) [2, 7]. These two benefits
of randomization are the foundations of the science
of comparative clinical trials.

Unfortunately, once a clinical trial begins, sev-
eral predictable, as well as unforeseen, conditions
can (and usually do) influence the actual vs. the
intended protocol under which individual subjects in
each group are studied (see Clinical Trials Proto-
cols). Thus, the groups, as treated, may no longer
be comparable at the end of the trial. These cir-
cumstances may include: subjects who do not adhere
to the assigned treatment regimen (see Compliance
Assessment in Clinical Trials); subjects whose eli-
gibility for trial participation has changed or was
incorrect at the start of the trial (see Eligibility
and Exclusion Criteria); subjects whose treatment
assignment was incorrect; or subjects who terminate
participation in the trial prior to the measurement of
the main clinical outcome.

Partial or complete noncompliance with the reg-
imen of the assigned treatment is fairly common in
medical treatment trials. Patients may not be able to
tolerate the side effects of their randomly assigned
treatment and may request the termination of all med-
ication or switch to another of the study treatments.
Less common is a clerical or computer error that
results in a patient being given medication other than
that randomly assigned. Although such patients may
take their medication faithfully, they will be noncom-
pliant with their assigned treatment. In the extreme,
widespread failure to comply with the assigned regi-
men can destroy a study. For example, in a trial com-
paring an active treatment with a control, if nearly
all of the subjects randomly assigned to the active
treatment do not take the drug, then a comparison of
efficacy between the two groups will be meaningless.
Less extreme, but very common, are instances where
patients do not take the prescribed dosage of a treat-
ment, or take the drug intermittently or for a limited
duration [9, 25].

It is expected that, in general, there will be reason-
able adherence to protocol in a substantial proportion
of patients within each of the treatment groups. For
those subjects not adhering to the protocol, the ques-
tion may be raised as to whether they should be
excluded from the analysis, the concern being that
they do not provide information relevant to the effi-
cacy of treatment taken as prescribed. By definition,
ITT analysis does not allow treatment comparisons
using only those subjects compliant with the thera-
pies under test. Use of ITT analysis requires, with
very few exceptions, that all subjects with valid
outcomes be (i) included in the analysis and (ii) ana-
lyzed according to their randomly assigned treatment.
Subjects who comply with their randomly assigned
treatment for only a short time after its initiation, or
switch to a competing treatment, are still considered,
for analysis purposes, in their randomly assigned
treatment group. This ensures that the randomiza-
tion is protected; that is, the treatment groups can be
assumed to include patients equivalent prior to the
onset of therapy, and the possibility that the analy-
sis could have been inadvertently biased by “selec-
tive” exclusion or inclusion of subjects into treatment
groups is eliminated (see Selection Bias).

Contrary to the strict interpretation of the ITT prin-
ciple, investigators may attempt to compare groups
defined not solely by the original randomization but
by factors that might be influenced by the treatments
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under test. In the face of substantial noncompliance,
the comparison of only those patients in the trial
that actually complied with the prescribed treatment
is intuitively appealing. However, in addition to the
difficulty of defining compliance in an objective man-
ner, it has been seen that subjects who comply tend to
fare differently and in a sometimes unpredictable way
from those who do not comply [1, 3, 14, 27]. Thus,
any observed differences among treatment groups
constructed in this manner may be due not to treat-
ment, but to factors associated with compliance.

The ITT analysis approach often provides a con-
servative estimate of the effect of a treatment admin-
istered as prescribed. The inclusion of noncompliant
patients in the assessment of efficacy, barring some
peculiar dose–response relationship, dilutes the dif-
ference between outcomes in the treatment and con-
trol groups. For the same reasons, ITT analysis may
underestimate the risk of adverse side effects.

The ITT approach may be viewed as evaluating
a treatment strategy, as contrasted to evaluating the
efficacy of a treatment taken as prescribed [14]. The
effectiveness of a treatment strategy is a reasonable
approximation to the effectiveness of a prescribed
regimen in the community [18]. Patients prescribed a
treatment outside of a clinical trial often exhibit the
same or an increased level of noncompliance, without
the extra encouragement to comply that is provided
in most clinical trials.

In contrast to the issue of noncompliance with
the study treatment regimen, the determination of a
subject’s eligibility for trial participation after initia-
tion of randomized treatment is a circumstance where
many clinical trialists feel that a strict interpretation
of the ITT principle can produce study results that are
simply not credible [9, 15]. For example, in a com-
parative study of treatments for sepsis in newborns,
treatment must usually be started as soon as there is a
presumptive diagnosis of sepsis. Sepsis is too danger-
ous to be left untreated, and definitive laboratory tests
are not immediately available, so treatment is usually
started at the first sign of infection. If subjects with a
presumptive diagnosis are assigned treatment by ran-
domization, then a portion in each of the treatment
groups will be later proven not to have had sepsis.
Strict application of the ITT principle requires that
the subjects proved not to have had sepsis neverthe-
less be included in the analysis in the treatment group
to which they were assigned. A more relaxed applica-
tion acknowledges that sepsis was or was not present

prior to randomization and that its presence was not
known due to the absence of confirmatory labora-
tory information. Thus, the exclusion from analysis
of those patients without sepsis, and thus ineligible
for the trial, would be appropriate since there is no
conceivable way in which the treatment assignment
could have influenced which subjects previously had
sepsis. The choice of analysis in this example affects
not only the credibility of the study report, which
might have included in the analysis patients without
sepsis, but also the measure of the effect of treatment.
Including the subjects without sepsis in the treated
groups would provide biased estimates of efficacy,
since those without the disease would be counted
as cured. In contrast, for the assessment of safety,
inclusion of all subjects with and without a definitive
diagnosis of sepsis is reasonable. The larger sample
size will allow for the detection of differences in rarer
side effects.

There is a concern that if exceptions to ITT anal-
ysis, as in the sepsis example above, are routinely
allowed, then analysts will inevitably be tempted to
adopt exceptions or exclusions that do bias the results
of a study. An example, not as clear as the sepsis trial,
is the administration of a study drug other than that
actually assigned. This can happen on rare occasions
because of a clerical error at the start of treatment, or,
more commonly, because a subject decides to change
medication early in the course of their assigned treat-
ment. The first example seems simple enough; an
unintentional clerical mistake resulted in an incorrect
drug being dispensed. It might, therefore, be reason-
able to include the subject in the analysis as having
taken the received treatment. The second example,
however, raises severe problems, since the drug itself
may have caused the switch, possibly due to a per-
ceived lack of efficacy or unpalatable side effects
[19]. Most analysts would consider the latter example
to constitute crossing the ITT “line in the sand”.

Patients dropping out of a clinical trial before their
endpoint can be measured can bias a study severely
regardless of the analysis approach utilized. If, for
example, one of the tested treatments has unpleasant
side effects, patients with mild disease might view
the side effects as a hardship when contrasted to
their mild affliction, and discontinue participation.
This would create an imbalance among the treatment
groups with regard to severity of disease. Information
on some clinical outcomes such as mortality might be
obtainable given enough time, even if a subject drops
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out from a study. Other outcomes, such as laboratory
evaluations at a specific time point after baseline, will
not be available from alternative sources. Clinical
trials should be designed and organized with the
resources available and directed so that dropouts will
be minimal and hopefully at random [8]. Several
authors have proposed methods for imputing data
for patient endpoints on the basis of previous data
obtained in the study [4, 11, 13, 16], although Lachin
[12] points out that of “. . . the majority of methods
in common use . . . none allow or adjust for the
bias introduced by nonrandomly censored or missing
observations” (see Missing Data in Clinical Trials).

The above discussion has centered around com-
parative trials of efficacy, with the primary example
the comparison of an active treatment with a placebo,
and the inherently conservative nature of an ITT anal-
ysis has been mentioned. A large number of clinical
trials, known as equivalence trials, seek to show
that a new treatment is equal to an established treat-
ment with regard to efficacy, while being less toxic
or less expensive. Suppose that the new drug, how-
ever, is less efficacious than the established drug.
If subjects who fail to comply with their assign-
ment to the new treatment, or who switch to the
standard treatment, are, for analysis purposes, con-
sidered in the group to which they were originally
assigned, the difference between outcomes in the two
groups is brought closer together. The established
treatment group will include subjects taking the less
effective treatment or taking no treatment, and the
new treatment group will include subjects taking the
more effective treatment and/or no treatment. Thus,
the ITT approach for equivalence trials may tend to
mask true differences, making it easier to conclude
that treatments are equivalent when they are, in fact,
not [15].

Statisticians and clinical trialists generally agree
that some form of the ITT principle is appropriate
for most efficacy trials. The strictness of application
of the principle still raises considerable discussion.

Alternative Analysis Strategies

Alternatives to ITT analysis generally attempt either
to restrict analysis to those subjects who have
adhered to a treatment protocol, or to incorporate
measures of compliance to treatment in comparative
analyses. Many titles have been given to the first of

these approaches including “as-treated analysis” [6],
“treatment received” [20], “explanatory approach”
[24], “method effectiveness” [25], “per-protocol”
[25], “efficacy analyzable patients” [9], and “biologic
efficacy” [26]. The phrase “as-treated” (AT) analysis
will be used in this article.

In AT analysis (i) only patients considered com-
pliant with one of the study treatments are included
in the analysis, and (ii) outcomes of subjects are
attributed to the treatment groups on the basis of the
treatment actually taken, regardless of their randomly
assigned treatment. It is argued that the primary inter-
est of a comparative clinical trial is in testing whether
a treatment, taken as prescribed, is effective. In con-
trast, the ITT approach dictates that all subjects be
included in the analysis, even those who have not
taken the prescribed treatment; and that subjects who
have complied with a study treatment other than that
assigned by randomization nevertheless be counted
as having taken the assigned treatment. The ITT
approach is counterintuitive to many clinicians and
other scientists. It is considered by AT proponents as
incorrect, and it is understood by those arguing for
either ITT or AT analysis that ITT analysis will, in
the face of noncompliance, provide a diluted estimate
of efficacy.

The primary argument against the AT approach is
that it can lead to biased comparisons of treatment
groups, in contrast to the ITT approach as outlined
above. That is, it can lead to claims of efficacy even
when a treatment is nonefficacious. There are also
some difficult practical problems with AT analysis,
including difficulty in defining compliance [14, 21],
difficulty in determining which subjects are compli-
ant, and loss of sample size when analysis is limited
to compliant subjects.

Another alternative to ITT analysis has been
developed in recent work [5, 10, 17, 22, 23, 25],
which attempts to incorporate measures of com-
pliance into the statistical analysis. This approach
focuses on the information that compliance has to
offer, rather than on considering compliance as a
defining characteristic for the inclusion of patients
in, or the exclusion of patients from, analysis. The
goal of the new work is to use compliance data
to provide better estimates of, or understanding of,
the clinical response to treatment. These model-based
approaches currently require assumptions about com-
pliance, either its relation to treatment or to outcome,
that may be difficult to accept or verify. Nonetheless,
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this work may help to breach the gap between the cur-
rent ITT and AT positions, and may be particularly
useful for analyzing equivalence trials (see Noncom-
pliance, Adjustment for).

Current Status

ITT analysis is a widely used strategy for the anal-
ysis of comparative clinical trials in the definitive
comparison of treatments for both regulatory and
nonregulatory assessments. “AT analysis” is used fre-
quently as a secondary and confirmatory analysis to
the ITT analysis, or for explanatory or exploratory
assessment of efficacy in subgroups defined by char-
acteristics or factors that could have differential
response rates, such as compliance, gender or ethnic
groups.
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Interaction in Factorial
Experiments

An important benefit obtained by using factorial
experiments is the ability to determine whether
interactions are present. In this context, interaction
may be defined as the modification of the effect of a
factor on a response, due to the influence of another
factor. Put another way, the presence of an interaction
means that the relationship between one factor and a
response is different for different levels of another
factor.

A typical factorial model which includes the inter-
action between factors A and B can be written as

µij = µ·· + αi + βj + γij , for all i, j,

where µij represents the mean response across all
observations when factor A is at level i and factor
B is at level j, µ·· represents the overall mean, αi

represents the main effect for the ith level of factor
A, βj represents the main effect for the j th level of
factor B, and γij represents the interaction effect of
the ith level of factor A and the j th level of factor
B. This model clearly indicates that the effects of the
factors are not simply additive, as would be the case
if the interaction term were deleted (see Additive
Model). Note that since the present discussion is
concerned with understanding the meaning and utility
of the interaction term, no constraints are imposed
on the model parameters, and so models given will
generally be overparameterized models.

By manipulation of the model given above, and
defining the main effects as αi = µi· − µ·· and βj =
µ·j − µ··, the interaction term can be expressed as a
difference of differences; namely

γij = (µij − µi·) − (µ·j − µ··)

= (µij − µ·j ) − (µi· − µ··),

where the “.” in the subscript indicates summation
over all levels of that subscript. Some authors refer to
functions like µij − µaj − µib + µab, i.e. differences
of differences of cell means, as interaction effects.
While such quantities are readily evaluated and inter-
preted from tables or graphs of treatment combination
means, they are not equal to the interaction effects
defined above. Such functions are actually the corre-
sponding functions of the interaction effects, namely,

γij − γaj − γib + γab. Hence, it is true that if any
of the functions µij − µaj − µib + µab are nonzero,
then interactions are present.

Traditionally, the presence of interactions in a
model has been viewed as something to be avoided,
if possible. Didactic presentations of factorial mod-
els often emphasize testing for the significance of the
interaction terms (see Hypothesis Testing), with the
hope that the test statistics would be nonsignificant. If
this no-interaction model is tenable, the relationship
between the two factors and the response is easy to
explain. However, in many real-life situations, inter-
actions are appropriately included in the statistical
model, since the relationship between a set of factors
and the response goes beyond the simple additive (i.e.
no-interaction) model.

Indeed, in certain situations the presence of inter-
actions is viewed as desirable. For example, consider
a randomized clinical trial where repeated measure-
ments are taken through the course of a study compar-
ing the effects of two different treatments on a disease
of interest. The researcher anticipates that at the time
of randomization, the average response will be the
same in both treatment groups, but will eventually
become different as the treatments have their desired
effect. It is this divergence of response that is appro-
priately reflected by the treatment–time interaction
effect in the analysis model.

The number of two-factor interaction terms in
the model, corresponding to the degrees of freedom
associated with that interaction effect, is the prod-
uct of the numbers of levels of the two main effects
in the models. By extension, the number of degrees
of freedom associated with higher-order interaction
terms increases multiplicatively with the number of
effects included in the interaction term. This is espe-
cially noticeable when the number of levels of one
or more of the factors increases beyond a simple
dichotomy. In this situation, estimates of interac-
tion effects may become unstable if the number of
such terms increases but the sample size remains
fixed. This instability is partly due to the loss of
degrees of freedom associated with the estimated
residual variance, since the number of observations
at the combinations of the factor levels may become
too small. Furthermore, computational problems can
occur because the model specification may have
included some interaction terms in the model which
involve unobserved treatment combinations. Strong
computational algorithms will build in methods for
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Figure 1 Graph of A–B interaction effect

recognizing and dealing appropriately with such pos-
sibilities.

As indicated in the graph (Figure 1), the interac-
tion of two classification factors, or of a classification
and a continuous factor, is straightforward to graph,
and hence to interpret. However, comparable inter-
pretation of interaction effects containing two or more
continuous factors is considerably more complex.
Practical experience suggests that it is next to impos-
sible to explain and/or interpret interaction effects
containing more than three terms in a straightforward
verbal manner. While graphs may be useful in this
regard, if the graphs involve more than one, or pos-
sibly two, continuous factors, the dimensionality of
the required graph may be unreasonable.

In some situations, clarity of interpretation of
interaction effects can be obtained by modeling these
effects with nested effects (see Multilevel Models)
rather than as true interaction effects. That is, instead
of using the terms αi, βj , and γij in the model that
deals with factors A and B and the A ∗ B interaction,
we use αi and terms for effect B that are different
for each level of A. This may be more useful as one
attempts to understand the underlying relationships
among the variables.

When constructing a model with the possible
inclusion of interactions, the investigator should be
attentive to the convention of using the hierarchy
principle for determining which interactions should

be included in a model. For a model to be hierar-
chical, the inclusion of any interaction term man-
dates that all lower-order effects which include the
effects in the interaction must also be included in
the model (see Hierarchical Models). That is, if
the AB interaction effect is in the model, then the
A and B main effects must also be included. By
extension, if the ABC interaction effect is used in
a model, then the interaction effects AB, AC, and
BC, as well as the A, B, and C main effects, must be
included.

Interaction is something different from what epi-
demiologists refer to as confounding. In that litera-
ture, confounding refers to the change found in the
relationship between a factor (often called an effect
in epidemiology) and a response when another effect
(the confounding effect) is added to the model. Inter-
action effects need not be included in a model for
confounding to be present. Rather, confounding refers
to the presence of significant correlation among the
effects.

The use of interaction effects can be especially
useful, and perhaps difficult to implement, when
time-dependent covariates are used in the model.
For example, in the analysis of growth of infants
in the first year of life (see Growth and Devel-
opment), it would be useful to utilize information
about whether the child is being breast-fed at each
measurement time. Inclusion of an indicator vari-
able about the breast-feeding condition will simply
yield a linear shift of the growth curve. However,
if the interaction term involving feeding condition
and age is included in the model, the rate of growth
can be modeled differently under the two feeding
conditions.
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Interaction Model

Interaction models for categorical data are loglinear
models describing association among categorical var-
iables. They are called interaction models because of
the analytic equivalence of loglinear Poisson regres-
sion models describing the dependence of a count
variable on a set of categorical explanatory variables
and loglinear models for contingency tables based on
multinomial or product multinomial sampling. The
term is, however, somewhat misleading, because the
interpretation of parameters from the two types of
models are very different. Association models would
probably be a better name.

Instead of simply referring the discussion of inter-
action and association models to the section on log-
linear models, we will consider these models from
the types of problems that one could address in
connection with analysis of association. The first
problem is a straightforward question of whether or
not variables are associated. To answer this ques-
tion, one must first define association and dissocia-
tion in multivariate frameworks and, secondly, define
multivariate models in which these definitions are
embedded. This eventually leads to a family of so-
called graphical models that can be regarded as the
basic type of interaction or association. The sec-
ond problem concerns the properties of the identified
associations. Are associations homogeneous or het-
erogeneous across levels of other variables? Can the
strength of association be measured and in which
way? To solve these problems, one must first decide
upon a natural measure of association among cate-
gorical variables and, secondly, define a parametric
structure for the interaction models that encapsu-
lates this measure. Considerations along these lines
eventually lead to the family of hierarchical loglin-
ear models for nominal data and models simplifying
the basic loglinear terms for ordered categorical
data.

Graphical Interaction Models

What is meant by association between two variables?
The most general response to this question is indirect.
Two variables are dissociated if they are conditionally
independent given the rest of the variables in the
multivariate framework in which the two variables

are embedded. Association then simply means that
the two variables are not dissociated.

Association in this sense is, of course, not a very
precise statement. It simply means that conditions
exist under which the two variables are not inde-
pendent. Analysis of association will typically have
to go beyond the crude question of whether or not
association is present, to find out what characterizes
the conditional relationship – for instance, whether
it exists only under certain conditions, whether it is
homogeneous, or whether it is modified by outcomes
on some or all the conditioning variables. Despite the
inherent vagueness of statements in terms of unqual-
ified association and dissociation, these statements
nevertheless define elegant and useful models that
may serve as the natural first step for analyses of
association in multivariate frames of inference. These
so-called graphical models are defined and described
in the subsections that follow.

Definition

A graphical model is defined by a set of assumptions
concerning pairwise conditional independence given
the rest of the variables of the model.

Consider, for instance, a model containing six
variables, A to F . The following set of assump-
tions concerning pairwise conditional independence
defines four constraints for the joint distribution
Pr(A, B, C, D, E, F ). The family of probability dis-
tributions satisfying these constraints is a graphical
model:

A ⊥ C|BDEF ⇔ Pr(A, C|BDEF)

= Pr(A|BDEF) Pr(C|BDEF),

A ⊥ D|BCEF ⇔ Pr(A, D|BCEF)

= Pr(A|BCEF) Pr(D|BCEF),

B ⊥ E|ACDF ⇔ Pr(B, E|ACDF)

= Pr(B|ACDF) Pr(E|ACDF),

C ⊥ E|ABDF ⇔ Pr(C, E|ABDF)

= Pr(C|ABDF) Pr(E|ABDF).

Interaction models defined by conditional indepen-
dence constraints are called “graphical interaction
models”, because the structure of these models can be
characterized by so-called interaction graphs, where
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Figure 1 An interaction graph

variables are represented by nodes connected by undi-
rected edges if and only if association is permitted
between the variables. The graph shown in Figure 1
corresponds to the set of conditional independence
constraints above, because there are no edges con-
necting A to C, A to D, B to E, and C to E.

Interaction graphs are visual representations of
complex probabilistic structures. They are, however,
also mathematical models of these structures, in the
sense that one can describe and analyze the interac-
tion graphs by concepts and algorithms from math-
ematical graph theory and thereby infer properties
of the probabilistic model. This connection between
probability theory and mathematical graph theory is
special to the graphical models.

The key notion here is conditional independence,
as discussed by Dawid [5]. While the above defi-
nition requires that the set of conditioning variables
always includes all the other variables of the model,
the results described below imply that conditional
independence may sometimes be obtained if one con-
ditions with certain subsets of variables.

Graphical models for multidimensional tables
were first discussed by Darroch et al. [5]. Since then,
the models have been extended both to continuous
and mixed categorical and continuous data and to
regression and block recursive models. Whittaker [9],
Edwards [7], Cox & Wermuth [4], and Lauritzen [8]
present different accounts of the theory of graphical
models. The sections below summarize some of the
main results from this theory.

The Separation Theorem

The first result connects the concept of graph separa-
tion to conditional independence.

First, we present a definition: a subset of nodes
in an undirected graph separate two specific nodes,
A and B, if all paths connecting A and B intersect
the subset. In Figure 1, (B, D, F ) separate A and B,
as does (B, E, F ). E and C are separated by both
(A, D, F ) and (B, D, F ).

The connection between graph separation and
conditional independence is given by the follow-
ing result, sometimes referred to as the separation
theorem.

Separation Theorem. If variables A and B are
conditionally independent given the rest of the vari-
ables of a multivariate model, A and B will be
conditionally independent given any subset of vari-
ables separating A and B in the interaction graph of
the model.
The four assumptions on pairwise conditional inde-
pendence defining the model shown in Figure 1 gen-
erate six minimal separation hypotheses:

A ⊥ C|BDF, A ⊥ C|BEF, A ⊥ D|BEF,

B ⊥ E|ADF, C ⊥ E|ADF, C ⊥ E|BDF.

Closure and Marginal Models

It follows from the separation theorem that graphical
models are closed under marginalization, in the sense
that some of the independence assumptions defining
the model transfer to marginal models.

Collapsing, for instance, over variable C of the
model shown in Figure 1 leads to a graphical model
defined by conditional independence of A and D and
B and E, respectively, because the marginal model
contains separators for both AD and BE (Figure 2).

Loglinear Representation of Graphical Models for
Categorical Data

No assumptions have been made so far requiring vari-
ables to be categorical. If all variables are categorical,
however, the results may be considerably strength-
ened both with respect to the type of model defined
by the independence assumptions of graphical mod-
els and in terms of the available information on the
marginal models.

The first published results on graphical models
[5] linked graphical models for categorical data to
loglinear models:
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Figure 2 An interaction graph obtained by collapsing the
model defined by Figure 1 over variable C

A graphical model for a multidimensional contin-
gency table without structural zeros is loglinear
with generators defined by the cliques of the inter-
action graph.

The result is an immediate result of the fact that
any model for a multidimensional contingency table
has a loglinear expansion. Starting with the saturated
model, one removes all loglinear terms containing
two variables assumed to be conditional indepen-
dent. The loglinear terms remaining after all the
terms relating to one or more of the independence
assumptions of the model have been deleted define
a hierarchial loglinear model with parameters corre-
sponding to each of the completely connected subsets
of nodes in the graph.

The interaction graph for the model shown in
Figure 1 has four cliques, BCDF, ABF, AEF , and
DEF , corresponding to a loglinear model defined
by one four-factor interaction and three three-factor
interactions.

Separation and Parametric Collapsibility

While conceptually very simple, graphical models
are usually complex in terms of loglinear structure.
The problems arising from the complicated para-
metric structure are, however, to some degree to
be compensated for by the properties relating to
collapsibility of the models.

Parametric collapsibility refers to the situation
in which model terms of a complete model are
unchanged when the model is collapsed over one or

more variables. Necessary conditions implying para-
metric collapsibility of loglinear models are described
by Agresti [1, p. 151] in terms which translate into
the language of graphical models:

Suppose variables of a graphical model of a multi-
dimensional contingency table are divided into three
groups. If there are no edges connecting variables
the first group with connected components of the
subgraph of variables from the third group, then
model terms among variables of the first group are
unchanged when the model is collapsed over the
third group of variables.

Parametric collapsibility is connected to separation
in two different ways. First, parametric collapsibil-
ity gives a simple proof of the separation theorem,
because a vanishing two-factor term in the complete
model also vanishes in the collapsed model if the sec-
ond group discussed above contains the separators
for the two variables. Secondly, separation proper-
ties of the interaction graph may be used to identify
marginal models permitting analysis of the relation-
ship between two variables. If one first removes the
edge between the two variables, A and B, and sec-
ondly identifies separators for A and B in the graph,
then the model is seen to be parametric collapsible on
to the model containing A and B and the separators
with respect to all model terms relating to A and B.

The results are illustrated in Figure 3, where
the model shown in Figure 3(a) is collapsed on to
marginal models for ABCD and CDEF . The sepa-
ration theorem is illustrated in Figure 3(b). All terms
relating to A and B vanish in the complete model.
The model satisfies the condition for parametric col-
lapsibility, implying that these parameters also vanish
in the collapsed model. The second property for
the association between E and F is illustrated in
Figure 3(c). C and D separate E and F in the graph
from which the EF edge has been removed. It fol-
lows, therefore, that E and F cannot be linked to one
and the same connected component of the subgraph
for the variables over which the table has been col-
lapsed. The model is therefore parametric collapsible
on to CDEF with respect to all terms pertaining to E

and F .

Decomposition and Reducibility

Parametric collapsibility defines situations in which
inference on certain loglinear terms may be per-
formed in marginal tables because these parameters
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Figure 3 Collapsing the model given in (a) illustrates
the separation theorem for A and B (b), and parametric
collapsibility with respect to E and F (c)

are unchanged in the marginal tables. Estimates of,
and test statistics for, these parameters calculated in
the marginal tables will, however, in many cases
differ from those obtained from the complete table.
Conditions under which calculations give the same
results may, however, also be stated in terms of the
interaction graphs.

An undirected graph is said to be reducible if it
partitions into three sets of nodes – X, Y , and Z –
if Y separates the nodes of X from those of Z and
if the nodes of Y are completely connected. If the
interaction graph meets the condition of reducibility,
it is said to decompose into two components, X + Y

A C E

B D F

Figure 4 An interaction graph of a reducible model

and Y + Z. The situation is illustrated in Figure 4,
which decomposes into two components, ABCD and
CDEF .

It is easily seen that reducibility above implies
parametric collapsibility with respect to the parame-
ters of X and Z, respectively. It can also be shown,
however, that likelihood-based estimates and test
statistics obtained by analysis of the collapsed tables
are exactly the same as those obtained from the com-
plete table.

Regression Models and Recursive Models

So far, the discussion has focused on models for
the joint distribution of variables. The models can,
however, without any problems, be extended first
to multidimensional regression models describing the
conditional distribution of a vector of dependent vari-
ables given another vector of explanatory variables
and, secondly, to block recursive systems of vari-
ables. In the first case, the model will be based
on independence assumptions relating to either two
dependent variables or one dependent and one inde-
pendent variable. In the second case, recursive mod-
els have to be formulated as a product of separate
regression models for each recursive block condition-
ally given variables in all prior blocks. To distinguish
between symmetric and asymmetric relationships
edges between variables in different recursive blocks,
interaction graphs are replaced by arrows.
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Parametric Structure: Homogeneous or
Heterogeneous Association

The limitations of graphical models for contingency
tables lie in the way in which they deal with higher-
order interactions. The definition of the graphical
models implies that higher-order interactions may
exist if more than two variables are completely
connected.

It is therefore obvious that an analysis of associ-
ation by graphical models can never be anything but
the first step of an analysis of association. The graph-
ical model will be useful in identifying associated
variables and marginal models where associations
may be studied, but sooner or later one will have
to address the question of whether or not these asso-
ciations are homogeneous across levels defined by
other variables and, if not, which variables modify the
association. The answer to the question of homogene-
ity of associations depends on the type of measure
that one uses to describe or measure associations. For
categorical data, the natural measures of association
are measures based on the so-called cross product
ratios [2] (see Odds Ratio). The question therefore
reduces to a question of whether or not cross prod-
uct ratios are constant across different levels of other
variables, thus identifying loglinear models as the nat-
ural framework within which these problems should
be studied.

Ordinal Categorical Variables

In the not unusual case of association between ordi-
nal categorical variables, the same types of argument
apply against the hierarchical loglinear models as
against the graphical models. Loglinear models are
basically interaction models for nominal data; and, as
such, they will give results that are too crude and too
imprecise for ordinal categorical data. The question of
whether or not the association between two variables
is homogeneous across levels of conditioning vari-
ables can, for ordinal variables, be extended to a ques-
tion of whether or not the association is homogeneous
across the different levels of the associated variables.

While not abandoning the basic loglinear association
structure, the answer to this question depends on the
further parameterization of the loglinear terms of the
models. We refer to a recent discussion of these prob-
lems by Clogg & Shihadeh [3].

Discussion

The viewpoint taken here on the formulation of inter-
action models for categorical data first defines the
family of graphical models as the basic type of
models for association and interaction structure. Log-
linear models are, from this viewpoint, regarded as
parametric graphical models, meeting certain assump-
tions on the nature of associations not directly
captured by the basic graphical models. Finally, dif-
ferent types of models for ordinal categorical data
represent yet further attempts to meet assumptions
relating specifically to the ordinal nature of the
variables.
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Interaction

Interaction is most often considered in the context of
regression models, including the special case of mod-
els underlying the analysis of variance (ANOVA). In
these models, the response variable is linked in some
manner to a linear predictor of the form

α + β1X1 + β2X2 + · · · + βkXk,

where the Xis represent explanatory variables, and
α and the βis represent parameters to be esti-
mated. Here, for exposition purposes, the Xis will
be regarded as representing separate factors of inter-
est, or perhaps functions of a measurement or coding
of a single factor. In this case, the linear predictor
reflects an additive relationship such that a change in
Xi induces the same change in the linear predictor
whatever the values of the other explanatory vari-
ables.

In this framework, an interaction term is defined
by the product of two or more Xis. Consider the spe-
cial case of two explanatory variables. Then the linear
predictor can be expanded and be represented by

ν(X1, X2) = α + β1X1 + β2X2 + β12X1X2.

The coefficient β12 then represents a departure from
an additive model for the simultaneous effect of X1

and X2 on the response. A test of the hypothesis
β12 = 0 is used to examine whether there is evidence
for such a departure. Technically, such a test is
undertaken as a standard test for a nonzero regression
coefficient in the regression model being considered.

If X1 is continuous, then plots of ν against X1,
with X2 fixed, provide an illustration of interaction
effects. In the absence of interaction, the curves are
parallel for different values of X2. If X2 is also
continuous, then parallel curves also arise when ν

is plotted against X2 with X1 fixed. The nature of
the variables may determine the most natural means
of presentation. For example, if X1 represents an
experimental treatment level and X2 a covariate that
specifies some intrinsic characteristic of a subject,
then it is natural to plot ν against X1 with X2 fixed.
If X1 and X2 are categorical, then interaction effects
are often displayed by the presentation of values of
ν for different values of X1 and X2 in a two-way
table.

The absence of interaction, when there is particular
interest in the effect of both X1 and X2 on the
response variable, indicates that the separate effects
of the two variables are additive. If interest primarily
focuses only on X1, and X2 is regarded as a covariate,
then the lack of interaction indicates that the effect
of X1 is independent of X2. Particularly in analysis
of variance procedures, the interaction of a treatment
variable X1, with a covariate X2 which varies in a
haphazard or largely uncharacterizable way, may be
regarded as random variation that may be used in
the estimation of the error of treatment contrasts (see
Random Effects).

When the term β12X1X2 is referred to as an inter-
action term, terms of the form βiXi are often referred
to as main-effect terms. This derives predominantly
from the ANOVA literature, and is particularly rel-
evant to the orthogonal effects that derive from
the coding of explanatory variables commonly used
there (see Analysis of Variance). More generally,
the interpretation of main-effect terms may depend
very critically on the particular representation of the
explanatory variables used to define Xi , particularly
in the presence of interaction terms.

A distinction is sometimes made between qual-
itative and quantitative interactions. A qualitative
interaction is one in which the direction of the effect
of X1, say, differs depending on the value of X2. A
quantitative interaction would reflect changes in the
magnitude of the X1 effect with X2, which do not
induce a change in the direction of the effect.

Another distinction is between synergistic (see
Synergy of Exposure Effects) and antagonistic inter-
actions. Assume that a change in X1 induces a change
δ1 in the linear predictor through the term β1X1, and
a change in X2 similarly induces a change δ2. If δ1

and δ2 have the same sign, say “+”, then a synergis-
tic interaction is one which causes the change in the
linear predictor due to changes in both X1 and X2 to
be greater than δ1 + δ2. In contrast, an antagonistic
interaction will result in a change less than the sum
of the individual effects.

Interactions are always defined in terms of a spe-
cific model. Another model which is defined with a
transformation of the response variable or a differ-
ent relationship between the response variable and
the linear predictor will not necessarily manifest the
same interactions. Some formal attention has been
paid to defining “removable interactions”, but it is
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probably best to consider alternative models for this
purpose on a case by case basis.

For models with more than two factors, prod-
ucts of all pairs of variables can be considered, and
would be termed second-order or two-way interac-
tions. In the obvious way, interactions of order m can
be defined by introducing a product of m variables.
When factors are defined with a set of binary dummy
variables, interactions between factors involve prod-
ucts of these dummy variables, and the set of cross
products corresponding to a pair of factors can be
regarded as a single interaction term with degrees
of freedom corresponding to the number of nonlin-
early dependent cross products that can be defined.
For factors with I and J levels, the degrees of free-
dom would be (I − 1)(J − 1).

It has been argued that any model with an inter-
action term must have all main effects correspond-
ing to terms in the interaction in the model. Such
an approach produces what are called hierarchi-
cal models. While there are examples in which

this requirement is viewed as too strong, it is in
almost all situations sensible formally to test for
nonzero interaction effects in the presence of the main
effects.

A comprehensive review of interaction has been
given by Cox [1]. In epidemiology, interaction is
closely linked with the term effect modification.
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Interim Analysis of
Censored Data

In many chronic disease clinical trials, the major
endpoint of interest is time to an event, such as time
to disease progression or time to death. Often, the
focus of the clinical trial is the comparison of time
to event among different treatment groups. In such
trials, patients enter the study during some staggered
entry accrual period, and the final analysis is planned
after a predetermined follow-up period. Usually, at
the final analysis, not all events are observed, giving
rise to censored survival data.

For ethical as well as practical reasons, these
trials are monitored periodically and interim analyses
are performed (see Data and Safety Monitoring).
It is now common practice for all large-scale
clinical trials to be monitored formally. Independent
data-monitoring boards have been established for
most large-scale government-sponsored clinical trials,
and, increasingly, such monitoring boards are being
established for pivotal clinical trials conducted by
private industry such as pharmaceutical companies.
The role of the data-monitoring board is to serve
as an external oversight committee that reviews
periodically the data from the trial as they accrue
and to advise on the early termination of the trial
or modification of the protocol on the basis of the
emerging results (see Clinical Trials Protocols).
Reasons for the termination of a trial are complex,
and include serious toxicity, unexpected adverse
events, design and/or logistical issues too serious to
address, such as very low accrual or event rates,
external information, established benefit, or no trend
of interest. The board also considers carefully issues
of data quality and the consistency of results across
various endpoints and over time before making their
recommendation.

There has been a great deal of statistical research
devoted to early termination of a trial, if, during an
interim analysis, a sufficiently large or small treat-
ment difference is observed in the primary endpoint.
The major question is: How large or small must the
treatment difference be during the interim analysis to
warrant terminating the trial? To this end, a test statis-
tic is computed at each interim analysis and compared
with a stopping boundary. If the test statistic crosses
the boundary at an interim analysis, then the trial

is terminated; otherwise, the trial continues until the
next interim analysis. This process is continued, if
necessary, until the time of a planned final analysis,
and is referred to as sequential testing. We focus
our discussion on upper boundaries only; that is, we
allow the possibility of stopping the trial only if a suf-
ficiently large treatment difference is observed during
an interim analysis. In some settings, both upper
and lower boundaries, allowing termination if either
a sufficiently large or small treatment difference is
observed, may be implemented (see Data and Safety
Monitoring).

Statistical methods for sequential testing have
been available for a long time, but only since
the early 1980s have they been used routinely in
monitoring clinical trials. One reason is that standard
sequential methods require that the trial be monitored
continually. Although there are many experimental
conditions where this is feasible, it is generally not
flexible enough to accommodate the needs of most
large-scale clinical trials, where, administratively, it
is too difficult for the data to be maintained for
continual monitoring. Moreover, continual review is
not feasible in a system where the data are monitored
by an independent board that, of necessity, can meet
only, at most, several times a year. The flexible
method proposed by Lan & DeMets [10] has proven
to be a useful way of monitoring trials that allow
the number and timing of interim analyses to be
left unspecified. Their method depends on specifying
an alpha-spending function that may be translated
into stopping boundaries. We discuss this strategy
for sequential monitoring in more detail later in the
article. Other strategies for monitoring clinical trials
that include the use of the triangular test, the truncated
sequential probability ratio test, and the restricted
procedure are discussed in [25] (see Sequential
Analysis).

To derive sequential tests, we must be able to
characterize the joint distribution of the sequentially
computed test statistics used with censored survival
data. The difficulty is that there are two time axes
that must be considered in evaluating the distribution
of sequentially computed test statistics. Time to event
for individuals is measured from the time they enter
the trial, and it is the distribution of these patient
times that are compared among treatments. However,
sequential monitoring occurs over calendar time,
which is measured as time from the start of the
study. These issues are considered in more detail
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below. Later, we describe how the results for the joint
distribution of sequentially computed test statistics
for right censored data may be used in conjunction
with the flexible methods of Lan & DeMets to
construct stopping rules.

Formalization of the Problem

We assume that n individuals enter the trial at
calendar times E1, . . . , En. Each individual i has
a potential survival time Ti , possibly unobserved,
measured from the time of entry (see Survival
Analysis, Overview). The distribution of Ti may
depend on a vector of covariates, which includes
a treatment indicator, denoted by Z0i , and possible
additional covariates Z1i . The relationship between
survival time and the covariates is often modeled
through the hazard function given by

λ(u|Z0, Z1, β)

= lim
h→0

h−1 × Pr(u ≤ T < u + h|T ≥ u, Z0, Z1),

where β denotes a vector of parameters that may
be finite dimensional (parametric model) or infinite
dimensional (semiparametric or nonparametric
models). The main objective is testing the null
hypothesis of no treatment effect on the survival
distribution (see Hypothesis Testing). For example,
if we consider only treatment indicator Z0, then the
nonparametric null hypothesis may be posed as

H0: λ(u|Z0 = 1) = λ(u|Z0 = 0), u ≥ 0. (1)

Parametric or semiparametric models may also be
used for this purpose; for example, we may assume
the hazard function follows a proportional hazards
model:

λ(u|Z0, Z1) = λ0(u) exp(β0Z0 + βT
1 Z1), (2)

where λ0(u) is some unknown baseline hazard func-
tion, Z1 is a vector of additional covariates, and the
null hypothesis is H0 : β0 = 0.

If an interim analysis is conducted at calendar
time t (measured from the start of the study), then
individual i will have censored survival data if Ti >

t − Ei . Censoring may also occur from other ran-
dom loss-to-follow-up causes. We define Vi to be
the potential censoring time due to causes unre-
lated to the time of an interim analysis. Thus,

assume that for individual i there exists a vector
of random variables (Ei, Ti, Vi, Zi), i = 1, . . . , n,
some of which are possibly unobserved. At anal-
ysis time t , the observable random variables are
{Xi(t), δi(t), Zi}, for all i = 1, . . . , n, such that Ei ≤
t . Here, Xi(t) = min(Ti, Vi, t − Ei) is the observed
time-on-study at analysis time t , and ∆i(t) = 1 if
Ti ≤ min(t − Ei, Vi), 0 otherwise, denotes the fail-
ure indicator at time t . It is important to note that the
data available for an individual at different interim
analysis times may vary. For example, an individual
with censored time-to-event data at time t[∆i(t) = 0]
may at some later time t ′ be uncensored [∆i(t

′) = 1].
Typically, a test statistic is computed using all

the available data at time t . This statistic, which we
denote by W(t), is used to test the null hypothesis H0

of no treatment difference; that is, the null hypothesis
is rejected when W(t) or |W(t)| is sufficiently large,
depending on whether we are considering one-sided
or two-sided alternatives. The most widely used
methods for testing the nonparametric null hypothesis
given by (1) are the class of weighted logrank
tests. Special cases of this general class include the
logrank test [12, 14]. Prentice’s [16] generalization
of the Wilcoxon test (see Wilcoxon–Mann–Whitney
Test), and the Gρ tests of Harrington & Fleming
[8]. If, instead, the null hypothesis is stated using
a parametric or semiparametric model such as (2),
then W(t) may be a standard Wald or score test
statistic derived from the likelihood for a parametric
model or from Cox’s [4] partial likelihood for the
semiparametric model (2).

In a sequential time-to-event trial, the study is
monitored at interim times t1, . . . , tK . At each analy-
sis time, tj , we compute the test statistic W(tj ), which
incorporates all of the information up to the analysis
time. If this statistic exceeds the stopping boundary
value bj , i.e.

|W(tj )| ≥ bj ,

then we may terminate the study and reject the null
hypothesis. The boundary values bj must be chosen
in such a way as to preserve the level of the test. For
example, if we wish to test at level of significance α,
then the bj must satisfy

PrH0






K⋃

j=1

[|W(tj )| ≥ bj ]




 = α, (3)
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where PrH0 denotes probability computed under
the null hypothesis. To evaluate probabilities such
as those in (3), we require the joint distribution
of [W(t1), . . . , W(tK)]. The particular challenge in
deriving this joint distribution arises from the fact
that the data for any individual contributing to the
test statistic at different interim times may vary.
A Lexis diagram is very helpful in explaining
the interrelationship of these two time-scales. For
an excellent example that illustrates the use of a
Lexis diagram, we refer the reader to [9]. Careful
consideration of patient time vs. calendar time has
allowed derivation of the joint sequential distribution
for most test statistics commonly used with right
censored data. Some of the main results are as
follows.

A random vector has normal independent incre-
ments if its joint distribution is the same as a vector
of partial sums or independent normal random vari-
ables. Tsiatis [20, 21], Slud [18], and Gu & Lai [6]
show that a general class of time sequential nonpara-
metric statistics (i.e. weighted logrank statistics) are
asymptotically distributed with an independent incre-
ments normal structure. The independent increments
structure is the basis for most sequential designs
and analyses, enabling the immediate application of
standard group sequential methods and software to
compute probabilities such as those given by (3).
Assuming the proportional hazards model of Cox [3]
(see Cox Regression Model), Gu & Ying [7], gener-
alizing the work of Tsiatis [21], Sellke & Siegmund
[17], and Tsiatis, et al. [23], showed that the test
statistic based on maximizing the partial likelihood
[4] also has this independent increment structure.

Recently, Tsiatis et al. [22], under the assumption
of a parametric model with a single test parame-
ter of interest (usually corresponding to a treatment
difference) and a finite number of nuisance parame-
ters, proved that the joint distribution of sequentially
computed maximum likelihood estimators, and the
joint distribution of sequentially computed score tests,
have this independent increments structure.

In summary, most test statistics for right censored
data, properly normalized, have a joint asymptotic
distribution corresponding to an independent incre-
ments multivariate normal random vector with vari-
ance proportional to statistical information. Here,
information refers to the usual notion of Fisher infor-
mation for parametric models. An extended definition
of information for semiparametric and nonparametric

models is given by Bickel et al. [2]; this is beyond the
scope of this article. One important example worth
mentioning is the logrank test. In a randomized trial,
the information for the logrank test is proportional to
the number of events.

Flexible Sequential Boundaries

We now describe how sequential boundaries
b1, . . . , bK may be constructed satisfying (3), using
the flexible method proposed by Lan & DeMets [10].
The key to this method is to note that the rejection
region given in (3) may be partitioned as follows:

|W(t1)| ≥ b1, or

|W(t1)| < b1, |W(t2)| ≥ b2, or

. . .

|W(t1)| < b1, . . . , |W(tK−1)|
< bK−1, |W(tK)| ≥ bK.

Denote these mutually exclusive rejection regions as
R1, . . . , RK . If we define the rejection probabilities
γj such that PrH0(Rj ) = γj , j = 1, . . . , K , then (3)
will be satisfied when

K∑

j=1

γj = α. (4)

If we know the joint distribution of [W(t1), . . . ,

W(tK)], then for any set of γj , j = 1, . . . , K , sat-
isfying (4), we may recursively derive the boundary
values bj , j = 1, . . . , K , so that PrH0(Rj ) = γj . This
is the method proposed by Slud & Wei [19] to be used
with the sequentially computed Gehan–Wilcoxon test
[5], (see Nonparametric Methods).

Lan & DeMets suggest that the rejection probabil-
ities be linked directly to the information available at
the different interim analyses through the use of an
“α-spending function”. The use of information-based
methods is discussed by Lan & Zucker [11]. Specif-
ically, define a monotone increasing function α(π)

for 0 ≤ π ≤ 1 such that α(0) = 0 and α(1) = α,
where π = π(t) denotes the proportion of statisti-
cal information at an interim analysis time t , with
100% information at the time of a final analysis.
If we define MI as the maximum information and
I (t) as information at interim analysis time t , then



4 Interim Analysis of Censored Data

the proportion of information at t would be π(t) =
I (t)/MI . The rejection probabilities, γj , are set equal
to {α[π(tj )] − α[π(tj−1)]}, where t0 = 0 and π(0) =
0. By definition, these satisfy (4) and may be used
to define stopping boundaries bj , j = 1, . . . , K . The
term α-spending function refers to the fact that the
probability of rejecting the null hypothesis using this
strategy, by time tj , if the null hypothesis is true, is
α[π(tj )], or, “we have spent α[π(tj )] of the signif-
icance level by time tj ”. The procedure guarantees
that the level of significance will be equal to some
prespecified α regardless of the number of interim
analyses or the timing of these analyses.

As an example of the application of this method,
consider the use of the logrank test in a randomized
trial to test for the equality of the survival distribution
between two treatments. In this case, the information
is proportional to the number of deaths. Let D(t)

denote the number of deaths observed until time t

and D∗ denote the maximum number of deaths that
determines the end of the trial. At the first analysis
time, t1, we compute the proportion of information
π(t1) = D(t1)/D

∗. The first boundary value, b1, is
the solution to

PrH0
[|W(t1)| ≥ b1] = α[π(t1)].

After this is determined, we compute the observed
value of the test statistic. If it exceeds b1, then we
stop and reject H0; otherwise, we continue to the next
monitoring time.

Consider the j th (j = 2, . . . , K − 1) analysis time
tj , and suppose that the boundary values b1, . . . , bj−1

have been computed. At tj , the proportion of infor-
mation π(tj ) is equal to D(tj )/D

∗, and the boundary
value bj solves the following equation:

PrH0
[|W(t1)| ≤ b1, . . . , |W(tj−1)| ≤ bj−1,

|W(tj )| ≥ bj ] = α[π(tj )] − α[π(tj−1)].

The solution is easily computed using the inde-
pendent increments property of the logrank statistic
and the recursive numerical integration algorithm of
Armitage, et al. [1]. The computations may be car-
ried out using available statistical software such as
EAST (Early Stopping, Cytel Corporation). Again,
the observed value of the test statistic is determined
and compared with the cutoff. If it exceeds bj , then
we stop and reject H0; otherwise, we continue to the
next monitoring time.

If we continue until the final analysis time, then
we “use up” the remaining significance level; that is,
we compute bK , where

PrH0
[|W(t1)| ≤ b1, . . . , |W(tK−1)| ≤ bK−1,

|W(tK)| ≥ bK = α − α[π(tK−1)].

To implement these methods for sequential stop-
ping, we must specify the maximum information
and the α-spending function prior to the initiation
of the trial. The choice of group sequential stopping
rules has received a great deal of attention by many
authors, including Pocock [15], O’Brien & Flem-
ing [13], and Wang & Tsiatis [24]. The expected
stopping times at various alternatives is the crite-
rion that is most often used for comparing competing
group sequential tests with the same significance
level and power. Because α-spending functions and
stopping boundaries have a one-to-one relationship,
results on the choice of stopping boundaries may be
used to determine the choice of the α-spending func-
tions. Space limitations preclude detailed discussion
of these issues; we note that two common α-spending
functions have received considerable attention in the
literature. These functions correspond to what are
referred to as the O’Brien–Fleming boundary and the
Pocock boundary, respectively [10]. The former func-
tion tends to be very conservative at the early stages
of the study, while the latter is more liberal. For an
O’Brien–Fleming boundary, we take α(π) = α1(π),
where

α1(π) = 4 − 4Φ

(
zα/4√

π

)
,

and for a Pocock boundary, we take α(π) = α2(π),
where

α2(π) = α log[1 + (e − 1)π].

In these formulas, e is a constant whose natural
logarithm is equal to one, and Φ(·) and zx are the
cumulative density function and 1 − x quantile of a
standard normal random variable, respectively.

The choice of maximum information (MI) is
closely related to the power necessary to detect a
clinically important alternative. When designing a
clinical trial, the information necessary to detect a
clinically important difference, with some predeter-
mined power, when using a test at a specified level
of significance, is computed. For example, if we test
the null hypothesis (1) using the logrank test with
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significance level α for a clinical trial where patients
are randomized with probability 0.5 to each of two
treatments, then the number of events necessary to
detect a treatment difference corresponding to a log
hazard ratio of β0, with power 1 − η, is given by

4

(
zα/2 + zη

β0

)2

.

However, when the data are monitored at several
interim analysis times with the possibility of early
stopping, there is a loss of power. Hence, the max-
imum information must be inflated by a factor that
depends on the spending function, the significance
level, power, and the number of interim analyses.
For example, if we use the O’Brien–Fleming-type
spending function with five interim analyses at the
0.05 level and 90% power, then the information must
be increased by 3%. In contrast, an increase of 21%
would be necessary with a Pocock-type spending
function. The results of Wang & Tsiatis [24] may be
used to determine the inflation factor as a function of
K , α, η, and the type of spending function.

In summary, we have described a class of flexible
and comprehensive methods for developing stopping
rules for clinical trials with censored data, which
may be used with parametric, semiparametric, and
nonparametric models. These methods are used com-
monly by data and safety monitoring boards, as
they guarantee the preservation of the significance
level and power of the test while still allowing for
early termination at interim times that do not have to
be specified in advance.
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International Agency for
Research Against Cancer
(IARC)

The International Agency for Research on Cancer
(IARC) was established in May 1965, through a
resolution of the XVIIth World Health Assembly
as an extension of the World Health Organization
after a French initiative. IARCs founding members
were the Federal Republic of Germany, France, Italy,
the UK, and the US. The Agency’s headquarters’
building was provided by its host, and is located
in Lyon, France. Today, IARC’s membership has
grown to 16 countries (founding states plus Australia,
Belgium, Canada, Denmark, the Russian Federation,
Finland, Japan, Norway, the Netherlands, Sweden,
and Switzerland). IARC activities are mainly funded
by the regular budgetary contributions paid by its
participating states. Each contribution is according to
a formula which shares the first 70% equally amongst
all participating states and apportions the remaining
30% depending upon the individual country’s GNP.

A major goal of the IARC is the identification of
causes of cancer, so that preventive measures may
be adopted against them. The Governing Council has
repeatedly stated that research dealing with treatment
and other aspects of cancer patient care should not
be a part of IARC’s mission, nor should the Agency
be directly involved in the implementation of control
measures, except in cases where it is necessary in
order to assess the effectiveness of the mechanisms
of carcinogenicity, or when the experimental inter-
vention is needed to permit identification of causes.
Nor does IARC deal in the formulation of policies or
legislation aimed at controlling carcinogens.

The main emphasis of research is on epidemi-
ology, environmental carcinogenesis, and research
training. This emphasis reflects: (i) the generally
accepted notion that 80% of all cancers are, directly
or indirectly, linked to environmental factors, and
thus are preventable; (ii) the recent recognition of the
fact that epidemiology may play an important part
in cancer prevention and in the evaluation of pre-
vention measures; and (iii) the fact that geographic
variations in cancer incidence almost certainly reflect
differences in the environment and are therefore par-
ticularly well suited for international research efforts.

Epidemiologic research is in two main areas:
descriptive epidemiologic studies show the trends
of cancer incidence and mortality in different
populations and geographic areas, and analytic
epidemiologic studies focus on the associations
between incidence and mortality and specific risk
factors (diet, some professional exposures, etc.).

Recent years have seen renewed interest for the
study of genetic factors (see Genetic Epidemiology)
and other host factors contributing to cancer. This
trend came about after an increasing body of evidence
showing that genetic mutations play a critical part in
carcinogenesis, because of the potential importance
of host factors in the modification of the carcinogenic
effect of environmental agents (see Environmental
Epidemiology), and because of the potential useful-
ness of genetic methods in the identification of people
at high cancer risk who could benefit from a specific
intervention.

Throughout its existence, IARC has had an active
programme in biostatistics, involving several pro-
fessional biostatisticians. Emphasis has been given
not only to the optimal utilization of methods, but
also to the development of new methodology in
response to the needs of cancer research. Contribu-
tion to case–control and cohort study methodology,
evaluation of screening programs, long-term animal
experiments (see Tumor Incidence Experiments)
and descriptive epidemiology are among the fields
in which IARC has made notable methodologic con-
tributions.

IARC publishes several series: the Scientific Pub-
lications series (154 volumes), the IARC Mono-
graphs on the Evaluation of Carcinogenic Risks to
Humans (82 titles and eight supplements), the Tech-
nical Reports series, the Directory of Agents being
Tested for Carcinogenicity and a few other nonserial
publications. Of particular importance to statisticians
are the volumes on statistical methods in cancer
research [1–4].

IARC has around 150 staff members at the
Agency’s Headquarters in Lyon, and welcomes every
year an average of over 600 visiting scientists and
trainees from over 30 countries.
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International Biometric
Society (IBS)

The International Biometric Society is an

international society for the advancement of biolog-
ical science through the development of quantitative
theories and the application, development, and dis-
semination of effective mathematical and statistical
techniques. To this end the Society welcomes to
membership biologists, mathematicians, and others
interested in applying similar techniques.

The Society was founded on September 6, 1947,
at the First International Biometric Conference at
Woods Hole, Massachusetts, in the US. The first Pres-
ident of the Society was R.A. Fisher from Britain
and the first Secretary was Chester I. Bliss, from
the US. The founders of the Society were moti-
vated by the need for an organization that would
foster international cooperation in the methodology
and applications of statistics to biology. Biological
research was defined broadly and included medicine,
agronomy, public health, epidemiology, psychomet-
rics, crop forecasting, paleontology, plant and animal
husbandry, design of experiments, etc.

Structure of the Society

The Society is comprised of geographically delimited
Regions or Groups that operate both independently
and in consort with the international parent organi-
zation. Each Region or Group has its own set of
officers and operates scientific and educational pro-
grams within its own geographic areas as well as
maintaining an active role in the activities of the par-
ent organization. The Governing Body of the Society
is its Council, with members of Council elected by the
membership at large. The election procedures ensure
that all geographic areas have appropriate representa-
tion on the Council. The Society had seven Regions
in 1948 and in 1995 had 18 Regions and 17 Groups
covering virtually the entire world. The total mem-
bership in 1995 was approximately 6300.

Publications of the Society

The Society publishes Biometrics (Founding Editor
Gertrude M. Cox, US) a peer-reviewed journal with

the general purpose “to promote and extend the use
of mathematical and statistical methods in pure and
applied biological sciences”. Potential authors do not
need to be members of the Society to submit arti-
cles for publication. Biometrics was first published
in 1945 as the Biometrics Bulletin and is currently
published quarterly with special issues from time to
time. The Biometric Bulletin, first published in 1983
(Founding Editor, Robert O. Kuehl, US) also pub-
lished quarterly by the Society provides information
on Society activities, Regional and Group activities,
scientific abstracts from Biometric Society Regional
meetings, as well as expository papers on biomet-
ric applications in various areas of the world. The
Society, in collaboration with the American Sta-
tistical Association publishes quarterly the Journal
of Agricultural, Biological and Environmental Statis-
tics (Founding Editor, Dallas E. Johnson, US), which
focuses on the methodology and applications of
statistics to the named fields. The first issue appeared
in 1996.

The journal Biometrics is currently published
by Blackwell Publishing. The journal is available
online through the JSTOR initiative since 2002, with
back issues also available in electronic form. The
newsletter, Biometric Bulletin, has been converted to
electronic-only publication, with the exception of the
last issue of each year, which also contains the Soci-
ety’s Business Plan and its Strategic Plan.

Society Networks

The Society supports a series of Regional biostat-
istical networks. The networks provide a linkage
between countries with established biostatistical
centers and those with little or no expertise. Joint
conferences, short courses, individual training and
provision of journals and computer software are
components of the activities that make available
biometric design and analysis to the scientists in
developing countries. The Society had 19 Regions
and 17 Groups in 2004, as well one Network, the
Sub-Saharan Network.

International Biometric Society
Conferences

Since the first International Biometric Conference
(IBC) in 1947 there have been 17 IBCs in coun-
tries around the world. The conferences provide
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a forum for the presentation of scientific papers,
discussion of these papers and interactions with bio-
statistical colleagues with different types of problems
and perspectives. The Regions apply to host the bian-
nual meetings and the conferences attract a large
number of attendees from many different countries.
The Society celebrated the fiftieth anniversary of
its founding at the eighteenth IBC in Amsterdam
in 1996. Over 700 people attended from more than
60 countries. Recent International Biometric Confer-
ences were held in Cape Town, South Africa (1998),
Berkeley, USA (2000), Freiburg, Germany (2002),

Cairns, Australia (2004), and a meeting scheduled
for Montreal, Canada in 2006.

For additional information about the Interna-
tional Biometric Society, contact the IBS Business
Office, 808 17th Street, NW, Suite 200, Washing-
ton, DC, 20006-3910, USA. Tel: 1-202-223-9669;
Fax: 1-202-223-9569. The Society now has a website
www.tibs.org.

JONAS H. ELLENBERG &
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International
Classification of Diseases
(ICD)

The International Classification of Diseases (com-
monly known as the ICD) is a classification system
designed to group together similar diseases, injuries,
and related health problems to facilitate statistical
analysis of these conditions. The classification is
designed to have a finite number of categories encom-
passing the entire range of morbid conditions. A
specific disease or condition is given its own sep-
arate category title in the classification only when
separate identification is warranted because of its fre-
quency of occurrence or importance as a medical or
public health concern. However, many category titles
in the classification contain groups of separate but
usually related morbid conditions. There is a unique
place for inclusion into one of the categories for every
disease or morbid condition; therefore, a number of
residual categories are reserved throughout the clas-
sification for those conditions which do not belong
under one of the more specific titles. The International
Classification of Diseases is a statistical classifica-
tion, not a nomenclature or extensive list of approved
names for morbid conditions; however, the concepts
of classification and nomenclature are closely related.
Some classifications are so detailed (e.g. in zoology
and botany) that they in fact become nomenclatures,
but these very detailed classifications often lose their
value for statistical purposes.

History and Development of the
International Classification of Diseases

Interest in classifying diseases and studying disease
patterns is usually traced back to the work of John
Graunt and his tabulations of causes of death based
on the London Bills of Mortality in the seventeenth
century. During the eighteenth and early nineteenth
centuries, several classifications of diseases were pre-
pared. The first to approach classification of dis-
eases systematically was François Bossier de Lacroix
(1706–1777), writing under the name Sauvages, in
his treatise, Nosologia Methodica. During the same
period, the naturalist and physician Carolus Linnaeus
(1707–1778) prepared, in addition to his seminal

classification of botany, a treatise entitled Genera
Morborum. By the beginning of the nineteenth cen-
tury, the disease classification in general use was Syn-
opsis Nosologiae Methodicae, prepared by William
Cullen (1710–1790) and published in 1785 [1].

When the General Register Office of England
and Wales was established in 1837, William Farr
(1807–1883) was named as its first medical statisti-
cian. Farr found the Cullen classification, still in use,
to be outdated and not sufficiently useful for statisti-
cal summarization. In his annual “Letters”, published
in the Annual Reports of the Registrar General, Farr
urged the adoption of a new, uniform, statistical clas-
sification of diseases. He noted that many diseases
were denoted by more than one term, some terms
were used to describe more than one disease, vague
terms were used, and complications were recorded
instead of primary diseases [2].

The importance of a uniform statistical classifi-
cation was recognized at the first International Stat-
istical Congress meeting in Brussels in 1853. The
Congress asked Farr and Marc d’Espine of Geneva
to prepare an internationally acceptable uniform clas-
sification of causes of death. At the next meet-
ing of the Congress in 1855 in Paris, Farr and
d’Espine each submitted his own classification and
the Congress adopted a compromise list of 139
rubrics; the compromise list reflected Farr’s arrange-
ment into five groups: epidemic diseases, consti-
tutional (general) diseases, local diseases arranged
according to anatomical site, developmental diseases,
and diseases directly resulting from violence. Over
the next 30 years, this classification was revised four
times but it maintained the general structure proposed
by Farr.

In 1891, the International Statistical Institute,
successor to the International Statistical Congress,
charged a committee to prepare a new classification of
causes of death. The committee, chaired by Jacques
Bertillon (1851–1922), submitted its classification
to the Institute in 1893, and it was adopted. This
Bertillon Classification, as it was called, consisted of
161 rubrics as well as an abridged classification of
44 titles and another of 99 titles. These were based
on Farr’s principle of distinguishing between general
diseases and those localized to a particular organ or
anatomical site. The Bertillon Classification received
general approval and was put into use by several
countries and a number of cities. The 1899 meeting
of the Institute passed a resolution acknowledging
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the use of this “system of cause of death nomencla-
ture” in all the statistical offices in North America,
and some in South America and Europe. The res-
olution further “insists vigorously that this system
of nomenclature be adopted in principle and without
revision, by all the statistical institutions of Europe”
and “approves. . .the system of decennial revision
proposed by the American Public Health Associa-
tion . . .”.

The French Government, as a response to the
International Statistical Institute’s 1899 resolution,
convened in Paris, in 1900, the first International
Conference for the Revision of the Bertillon or Inter-
national List of Causes of Death. This conference
adopted a classification consisting of 179 groups
and an abridged list of 35 groups, and it reaffirmed
the desirability of decennial revisions. Accordingly,
the International List of Causes of Death, and its
successor classifications, has been revised approxi-
mately every 10 years thereafter.

Bertillon continued his leadership in classifica-
tion matters, and the revisions of 1900, 1910, and
1920 were carried out under his guidance. During
the decade following his death in 1922, there was
an increasing interest in expanding the classification
to accommodate morbidity and other vital statistics
interests. At the same time, there was recognition
of the need to involve other international agencies,
particularly the Health Organization of the League
of Nations, in future revision activity. To coordinate
efforts, an international commission, known as the
Mixed Commission, was created with equal represen-
tation from the International Statistical Institute and
the Health Organization of the League of Nations.
This Commission drafted the proposals for the fourth
(1929) and fifth (1938) revisions of the International
List of Causes of Death.

In 1946, the newly established World Health
Organization was given the responsibility for the
next (sixth) revision of the International List of
Causes of Death and to develop an International List
of Causes of Morbidity. In 1948, the International
Conference for the Sixth Revision of the International
Lists of Diseases and Causes of Death met in Paris.
The Conference secretariat was the joint responsibil-
ity of competent French authorities and the World
Health Organization. The Sixth Decennial Revision
Conference introduced a new era in international vital
and health statistics. In addition to recommending a
comprehensive list of conditions for both morbidity

and mortality, the Manual of the International Statis-
tical Classification of Diseases, Injuries, and Causes
of Death, the Conference agreed on rules for selecting
the underlying cause of death, a Medical Certificate
of Cause of Death form (see Death Certification),
and special lists and guidelines for tabulation. These
recommendations were endorsed by the first World
Health Assembly in 1948, resulting in World Health
Organization Nomenclature Regulations which mem-
ber countries have agreed to follow.

The International Conference for the Seventh
Revision of the International Classification of Dis-
eases was held under WHO auspices in 1955; the
Eighth Revision Conference took place in 1965.
The seventh revision was limited to a few essential
changes and amendments or corrections. The eighth
revision, while more extensive than the seventh, still
maintained the basic structure of the classification and
the general concept of classifying diseases according
to etiology rather than manifestation.

The International Conference for the Ninth Revi-
sion of the International Classification of Diseases,
again convened by WHO, took place in 1975. Dur-
ing the period when the seventh and eighth revisions
were in force, there was a growing use of the Interna-
tional Classification of Diseases for indexing hospital
records and for other morbidity applications. These
expanding uses were recognized in the ninth revi-
sion, which added considerable detail and specificity
to the classification. Also introduced was an optional
method of classifying selected conditions according
to their manifestation in a particular organ or site as
well as by the underlying general disease. In addition,
based on recommendations of the Ninth Revision
Conference, the World Health Assembly approved the
publication by WHO of two supplementary classifi-
cations on a trial basis: one for Impairments, Dis-
abilities, and Handicaps [4] and one for Procedures
in Medicine [3] (see Classifications of Medical and
Surgical Procedures). These were to be adjuncts to
the International Classification of Diseases, not inte-
gral parts of the basic classification.

Planning for the preparation of the tenth revision
began even before the publication of the ninth revi-
sion. Early on, it was apparent that the expanded uses
of the classification and the resultant complexities and
additional detail required more than the usual 10-year
cycle for this revision. The longer time period would
not only allow broad solicitation of input from users
and producers of the data but would also permit trials
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of some of the major changes being proposed. There-
fore, WHO, with the concurrence of member states,
postponed the Tenth Revision Conference from 1985
to 1989, with the planned implementation of the tenth
revision consequently also delayed.

Characteristics of the Tenth Revision

The formal title of the tenth revision of the Interna-
tional Classification of Diseases (usually referred to
as ICD-10) is International Statistical Classification
of Diseases and Related Health Problems, Tenth Revi-
sion [6]. It comprises three volumes: Vol. 1 contains
the main classifications; Vol. 2 contains guidance and
rules for use of the ICD; and Vol. 3 is the alphabetic
index.

ICD-10 is a variable-axis classification evolved
from the original principles of organization proposed
by Farr. It is designed as a three-character code with
fourth-character subdivisions where appropriate. A
letter is used in the first position and a numerical digit
in the second, third, and fourth positions. The fourth
character is preceded by a decimal point. Therefore,
individual alphanumeric codes range from Ann.n to
Znn.n, where n represents any of the ten digits from 0
to 9. The letter U is not used. The alphanumeric char-
acteristic of ICD-10 codes is an innovation designed
to permit more flexibility in maintaining a hierarchi-
cal sequence of diseases while adding more detail
to the classification; previous revision code num-
bers were completely numeric. Vol. 1 contains the
list of three-character categories and the tabular list
of inclusions and four-character subdivisions. The
“core” classification is the list of three-character cate-
gories representing the level of reporting required for
the WHO mortality database and for routine inter-
national comparisons. Many countries use the ICD
only at this level of detail; further subdivision of
disease categories may not be possible given the
quality of the original diagnostic data. Both the core
classification and the fully detailed tabular list with
its fourth-character detail are arranged into 21 main
chapters, and chapters into blocks of related con-
ditions headed by an appropriate block title. In the
tabular list, but not in the list of three-character cate-
gories, inclusion terms are provided under each code
number as examples or guides to the intended con-
tent of the category. However, the inclusion terms so
listed are not intended to be exhaustive for any given

category, and the Alphabetic Index (Vol. 3) serves as
a much more detailed guide to the correct placement
of conditions into ICD categories.

Vol. 1 also contains a separate classification of
morphology of neoplasms which may be used in addi-
tion to the main ICD codes which usually classify
neoplasms only by behavior and site. These morphol-
ogy codes are the same as those appearing in the
adaptation of the International Classification of Dis-
eases called the International Classification of Dis-
eases for Oncology (ICD-O) [5]. In addition, Vol. 1
contains key definitions adopted by the World Health
Assembly to facilitate international comparisons of
data, and special tabulation lists recommended for
the uniform statistical summarization and presenta-
tion of both morbidity and mortality data based on
the International Classification of Diseases.

ICD-10 came into force on January 1, 1993; how-
ever, the actual implementation of this revision of
the classification in countries around the world did
not begin in earnest until 1995 and the next several
years thereafter.
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International Society for
Clinical Biostatistics
(ISCB)

The International Society for Clinical Biostatistics
(ISCB) was founded in May 1979 with the aim of
stimulating research into the principles and method-
ology used in the design and analysis of clinical
research, to increase the relevance of statistical theory
to clinical practice, and to further the communication
between statisticians and clinicians. The Society also
has the policy to work with other societies and orga-
nizations in the advancement of biostatistics and to
provide a common forum for clinicians and statisti-
cians through meetings, seminars and publications.

The ISCB is constituted by an executive commit-
tee and led by a President. The Executive Committee
consists, in addition to the President, of a Vice-
President, a Treasurer, a Secretary and up to eight
members, the past President, the News Editor and
the Webmaster. The Society’s Permanent Office is
located in Denmark at the following address: ISCB
Permanent Office, PO Box 130, DK-3460 Birkerod,
Denmark (tel.: +45 4567 2279; fax: +45 7022 1571;
email: office@iscb.info. The Society has a web-
site: http://www.iscb.info.

Scientific Meetings, Courses, and
Publications

The ISCB organizes an annual scientific meeting
open to anybody with an interest in statistical
methodology and applications in the broad field of
medical research, including statisticians, clinicians,
epidemiologists, and pharmacologists.

Between its foundation in 1979 and 2003, 24
annual meetings have been held (there was no annual
meeting in 1981), all but one of them in Europe – the
1997 meeting was in Boston, US. Four of these meet-
ings have been joint meetings with other societies;
in 1985 and 1999 with the German Gesellschaft für
Medizinische Dokumentation, Informatik und Statis-
tik (GMDS), and in 1991, 1997 and 2003 with the
Society for Clinical Trials (SCT).

A special feature of the meeting is a mini-sympos-
ium devoted to a particular medical or statistical

field. In recent years these have included environmen-
tal epidemiology, statistical challenges in pediatric
research, cancer genetics, human fertility, and fecun-
dity, emerging issues in clinical trial data monitoring.

The Society does not publish its own journal, but
by an arrangement with the publishers, John Wiley &
Sons Ltd, reviewed papers from the annual meetings
are published in issues of Statistics in Medicine. In
addition, a twice/thrice yearly newsletter, ISCB News,
is published.

The Society also performs an educational role
in the sense of organizing courses on particular
statistical topics relevant to the application of statis-
tics in medicine (see Teaching Medical Statistics
to Statisticians). These have generally been run in
conjunction with annual meetings, either as pre- or
postconference activities, with faculties of foremost
researchers in their field.

The Society recognizes the political and economic
difficulties of some countries and actively promotes
and supports the establishment of national groups.
The Society organizes courses in these countries, to
enhance the development of biostatistics, and has a
Conference Awards for Scientists Program for bio-
statisticians to attend and present papers at the annual
meetings.

In order to promote participation of young
researchers, the Society has a Student Conference
Awards Program for postgraduate students from all
over the world to attend and present papers at the
annual meetings.

Special Working/Interest Groups

In recent years the Society has developed a number
of working groups, called subcommittees, which deal
with scientific, regulatory, or organizational issues.
Among the first established subcommittees, there are
the one on “Statistics in Regulatory Affairs”, whose
remit is to consider and influence the development of
regulatory requirements, guidelines, and other docu-
ments concerning the scientific aspects of data collec-
tion, management, analysis, and reporting (see Drug
Approval and Regulation); the subcommittee on
fraud, which ended its activity after the publication
of the paper “ The role of biostatistics in the preven-
tion, detection and treatment of fraud in clinical tri-
als”, by Buyse M., George S.L., Evans S., Geller N.,
Ranstam J., Scherrer B., Lesaffre E, Murray G., Edler
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L., Hutton J., Colton T., Lachenbruch P., Verma B, on
behalf of ISCB, on Statistics in Medicine, 18(1999),
p. 3435-3451. Other subcommittees currently active
are those on Education, Dentistry, National Groups,
Student Conference Awards, Conference Organising,
and Communication. Their terms of reference and
members are published on the Society’s News and
Web site.

Membership

The membership during the mid-1990s has been
fairly stable and numbering around 800 members

from some 40 countries from around the world,
with the majority coming from Europe. Nonmembers
attending an annual meeting automatically become
members for that year. The annual membership fee
in 2004 is 40 Euro.

MARIA GRAZIA VALSECCHI



International Statistical
Institute (ISI)

The International Statistical Institute (ISI) was estab-
lished in 1885 in London, closely following an
exploratory contact of statisticians in Paris. Its pre-
decessor organization, the International Statistical
Congress (ISC), was started in 1853 in Brussels,
under the leadership of the famous Belgian statis-
tician Adolphe Quetelet. The ISC remained in exis-
tence until 1876 when the German–French rivalries
of the time, apparently through an intervention of
Chancellor Bismarck, led to the dissolution of this
intergovernmental statistical cooperation. The ISI,
under the circumstances, was started as a nongovern-
mental instrument of international statistical cooper-
ation, with heavy reliance on its elected member-
ship, which consists of outstanding statisticians of the
world in their personal professional capacity. ISI is
considered today the world academy of statisticians.

At the beginning of 2004, ISI had 1884 elected
members, distinguished statisticians active in acad-
emia, government, and the private sector of about
130 countries. At the same time, 166 persons who
are the heads of national and international statistical
offices participate as ex officio members in ISI. In
addition to its elected and ex officio members, ISI
involves in its Associations (Sections) a substantial
number of statisticians who are active in specialized
areas of statistics.

These Associations are: the Bernoulli Society for
Mathematical Statistics and Probability (1241 mem-
bers); the International Association for Official Statis-
tics (474 members); the International Association
for Statistical Computing (495 members); the Inter-
national Association of Survey Statisticians (1266
members); and the International Association for Sta-
tistical Education (463 members). The Sections of ISI
maintain open membership for all interested statisti-
cians; many elected or ex officio ISI members also
hold membership in one or more of these special-
ized Associations. The total of about 5800 association
members include those ISI members who hold mem-
bership both in these Sections and in the ISI. ISI
is incorporated as a not-for-profit institution in the
Netherlands (with its Permanent Office, established
in 1913, located in Voorburg, a town adjacent to
The Hague).

The goal of ISI is the development and improve-
ment of statistical methods, and their application
throughout the world, all in the widest sense of the
word. The role played by ISI has changed since its
inception. In the nineteenth century, for example, the
promotion of standardization of statistical method-
ology in the official statistics of countries was a
key task: the acceptance of the first International
Classification of Diseases at the 1893 Chicago Ses-
sion of the ISI was a historic step in this regard.
Today, the intergovernmental organizations such as
the United Nations (UN), its specialized agencies,
the European Union, and the Organization for Eco-
nomic Cooperation and Development (OECD) are
the main forums for these types of endeavor. It is
convenient to group present-day ISI activities into
five areas: (i) conference services, (ii) publications,
(iii) research activities, (iv) membership services, and
(v) other functions.

In respect of conferences, the biennial ISI Sessions
are the most outstanding.

The 2003 Session in Berlin was the fifty-fourth
such undertaking (during World Wars I and II no Ses-
sions were held). Recent Sessions were held in Seoul
(2001), Helsinki (1999), Istanbul (1997), Beijing
(1995), and Florence (1993). The number of partici-
pants in recent Sessions has reached about 2300 with
nearly 285 invited, 728 contributed, and 84 poster
papers presented on a wide array of statistical, the-
oretical, methodological, and application questions.
Smaller, and more specialized conferences were held
in Szczecin (2003), Cape Town (2002) amongst oth-
ers, in cooperation with other national and interna-
tional statistical organizations.

The publications of ISI include scientific jour-
nals, such as the International Statistical Review [3],
Bernoulli [1], abstracting resources such as Statisti-
cal Theory and Method Abstracts [4], books such as
The Oxford Dictionary of Statistical Terms [2], which
has been published in several editions (between 1957
and 2003), as well as the Newsletter of the ISI, and so
on. In addition, there are numerous journals and pub-
lications by the five ISI Sections dealing with areas
of their specialization.

ISI has been a promoter of research activities
since its inception.

The Bulletins of the ISI go back to the nineteenth
century: these volumes have been issued after each
of the ISI Sessions and printed in the host coun-
try where the Sessions were held. These “Bulletins”
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are a repository of, and a testimonial to, the man-
ifold research efforts undertaken by statisticians in
numerous countries over the last 150 years. Later,
in connection with the “World Fertility Survey” in
the 1970s and 1980s, ISI set up an internal research
facility regarding population issues, albeit budgetary
restrictions by the end of the 1980s made this venture
financially unsustainable. The research function of
ISI, however, has been maintained. Today, it involves
holding conferences on acute methodological, theo-
retical, or topical matters such as the statistical issues
of derivatives trading, the index numbers of stock
markets, or the demographic crisis of the transition
countries. It also involves projects at the ISI Perma-
nent Office such as the multilingual glossary of statis-
tical terms and historical statistical investigations and
commemorations. Moreover, the five ISI Sections are
involved in a wide range of similar activities.

The membership services of ISI are primarily
administrative in nature and result in the publication
of the Directory of ISI, which lists all ISI and ISI
Section members as well as containing a listing
of national and international statistical organizations
and societies.

Among the other functions of ISI mention should
be made of the site (home page) maintained on the
internet (http://www.cbs.nl/isi). Also, every
second year (at the time of the world-wide Session)
ISI awards the “Jan Tinbergen Prize” to the three
most deserving statistical studies submitted by young
statisticians from developing countries. Each winner
receives 2269 Euros, transportation to, and free stay
at the Session, and an opportunity to present their
winning papers.

ISI also attempts to promote cooperation with
statisticians active in other, primarily nonstatistical,
organizations dealing with biometrics, econometrics,
psychometrics, astronomy, classification science, lin-
guistics, and so on. It is believed that in addition
to the studies emanating from specialized and sub-
specialized areas within statistics identified as such,
there are significant intellectual and practical gains
to be made by fostering more integration with the
rather dispersed statistical professionals active in all
other fields. The Sessions of ISI, therefore, are being
opened up for meetings with the “sister organiza-
tions” active in statistics.
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International Studies of
Infarct Survival (ISIS)

The ISIS began in 1981 as a collaborative world-
wide effort to evaluate the effects of several widely
available and practical treatments for acute myocar-
dial infarction (MI). The ISIS Collaborative Group
randomized more than 134 000 patients into four
large simple trials assessing the independent and
synergistic effects of beta-blockers, thrombolytics,
aspirin, heparin, converting enzyme inhibitors, oral
nitrates, and magnesium in the treatment of evolv-
ing myocardial acute infarction (Table 1). More than
20 countries participated in these trials, which were
coordinated worldwide by investigators in Oxford,
England.

ISIS-1: Atenolol in Acute MI [1]

Beta-blocking agents reduce the heart rate and blood
pressure, as well as their product, inhibit the effects
of catecholamines, and increase thresholds for ven-
tricular fibrillation. Thus, it is not surprising that
beta-blockers were among the first agents to be evalu-
ated in randomized trials of evolving acute MI. Even
by 1981, the available trials of beta-blocking agents
for acute infarction were too small to demonstrate a
significant benefit. However, based on an overview of
the available evidence (see Meta-analysis of Clinical
Trials), it was judged that the prevention of even one
death per 200 patients treated with beta-blockers (see
Number Needed to Treat (NNT)) would represent
a worthwhile addition to usual care. Unfortunately,
detecting such an effect would require the random-
ization of over 15 000 patients. It was toward this end
that the First International Study of Infarct Survival
(ISIS-1) trial was formed.

In a collaborative effort involving 245 coronary
care units in 11 countries, the ISIS-1 trial random-
ized 16 027 patients with suspected acute MI to
a regimen of intravenous atenolol versus no beta-
blocker therapy. Patients assigned to active treat-
ment received an immediate intravenous injection of
5–10 mg atenolol, followed by 100 mg/day orally
for seven days. Similar agents were avoided in those
assigned at random to no beta-blocker therapy unless
it was believed to be medically indicated. As in the
subsequent ISIS collaborations, all other treatment
decisions were at the discretion of the responsible
physician.

During the seven-day treatment period in which
atenolol was given, vascular mortality was signifi-
cantly lower in the treated group (3.89% vs. 4.57%,
P < 0.04), representing a 15% mortality reduction.
Almost all of the apparent benefit was observed in
days 0 to 1 during which time there were 121 deaths
in the atenolol group as compared with 171 deaths
in the control group. The early mortality benefit
attributable to atenolol was maintained at 14 days
and at the end of one year follow-up (10.7% atenolol
vs. 12.0% control). Treatment did not appear to
decrease infarct size substantially, although the abil-
ity of a large and simple trial such as ISIS-1 to
assess such a reduction was limited. Despite its large
size, the 95% confidence limits of the risk reduc-
tions associated with atenolol in ISIS-1 were wide
and included relative risk reductions between 1%
and 25%. However, an overview that included ISIS-
1 and 27 smaller completed trials of beta-blockade
suggested a similar sized mortality reduction (14%).
When a combined endpoint of mortality, nonfatal
cardiac arrest and nonfatal reinfarction was consid-
ered from all available trials, the 10%–15% reduc-
tion persisted with far narrower confidence limits.
Taken together, these data suggest that early treatment
of 200 acute MI patients with beta-blocker therapy

Table 1 The International Studies of Infarct Survival (ISIS)

Trial Year completed Agents studied Patients randomized

ISIS-1 1985 Atenolol vs. control 16 027
ISIS-2 1988 Streptokinase vs. placebo Aspirin vs.

placebo
17 187

ISIS-3 1991 Streptokinase vs. tPA vs. APSAC
Aspirin + SC heparin vs. aspirin

41 299

ISIS-4 1993 Captopril vs. placebo oral mononitrate
vs. placebo Magnesium vs. control

58 050
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would lead to avoidance of one reinfarction, one car-
diac arrest, and one death during the initial seven-day
period. Unfortunately, beta-blocker use in the set-
ting of acute MI remains suboptimal with utilization
rates ranging between 30% in the US to less than
5% in the UK. This underutilization appears related
in part to poor physician education. In the GUSTO-
1 trial, beta-blockers were encouraged by the study
protocol and almost 50% of all patients received
the drugs without any apparent increase in adverse
effects.

ISIS-2: Streptokinase and Aspirin in Acute
MI [2]

As with beta-blockers, data from randomized trials
of thrombolytic therapy completed prior to 1985 did
not yield truly reliable results. Indeed, the largest
of the early studies enrolled 750 patients, a totally
inadequate sample size to detect the most plausible
20%–25% reduction in mortality.

Given this situation, the Second International
Study of lnfarct Survival (ISIS-2) was designed to
test directly in a single randomized, double-blind,
placebo-controlled trial (see Blinding or Masking)
the risks and benefits of streptokinase and aspirin in
acute MI. To accomplish this goal, the ISIS-2 collab-
orative group randomized 17 187 patients presenting
within 24 hours of symptom onset using a 2 × 2
factorial design to one of four treatment groups:
1.5 million units of intravenous streptokinase over
60 minutes; 162.5 mg/day of oral aspirin for 30 days;
both active treatments; or neither.

In brief, the primary endpoint (see Outcome
Measures in Clinical Trials) of the trial, total vas-
cular mortality, was reduced 25% by streptokinase
alone (95% Cl, −32 to −18, P < 0.0001) and 23%
by aspirin alone (95% CI, −30% to −15%, P <

0.00001). Patients allocated to both agents had a 42%
reduction in vascular mortality (95% Cl, −50 to −34,
P < 0.00001), indicating that the effects of streptoki-
nase and aspirin are largely additive. When treatment
was initiated within six hours of the onset of symp-
toms, the reduction in total vascular mortality was
30% for streptokinase, 23% for aspirin, and 53% for
both active agents.

For aspirin, the mortality benefit was similar when
the drug was started 0–4 hours (25%), 5–12 hours
(21%), or 13–24 hours (21%) after the onset of

clinical symptoms. Aspirin use also resulted in highly
significant reductions for nonfatal reinfarction (49%)
and nonfatal stroke (46%). As regards side-effects, for
bleeds requiring transfusion, there was no significant
difference between the aspirin and placebo groups
(0.4% vs. 0.4%), although there was a small absolute
increase of minor bleeds among those allocated to
aspirin (0.6%, P < 0.01). For cerebral hemorrhage,
there was no difference between the aspirin and
placebo groups.

For streptokinase, those randomized within four
hours of pain onset experienced the greatest mortal-
ity reduction, although statistically significant benefits
were present for patients randomized throughout the
24 hour period. As expected, there was an excess
of confirmed cerebral hemorrhage with streptokinase
(7 events vs. 0; 2P < 0.02), all of which occurred
within one day of randomization. Reinfarction was
slightly more common among those assigned strep-
tokinase alone, but this difference was not statistically
significant. Furthermore, aspirin abolished the excess
reinfarction attributable to streptokinase.

In addition to demonstrating the independent as
well as synergistic effects of streptokinase and aspirin,
ISIS-2 also supplied important information concern-
ing which patients to treat. Because the ISIS-2 entry
criteria were broad, the trial included the elderly,
patients with left bundle branch block, and those
with inferior as well as anterior infarctions. In each
of these subgroups, clear mortality reductions were
demonstrated.

Thus, in addition to changing radically the premise
that thrombolysis should be avoided in patients
already on aspirin, the ISIS-2 trial was largely respon-
sible for widening the eligibility criteria for patients
who would benefit from thrombolytic therapy.

ISIS-3: Streptokinase vs. APSAC vs. tPA
and Subcutaneous Heparin vs. No Heparin
in Acute MI [3]

While ISIS-2 (streptokinase), the first Gruppo Italiano
per lo Studio della Sopravvivenza nell’Infarto mio-
cardico (GISSI-1, streptokinase), the APSAC Inter-
vention Mortality Study (AIMS, anisoylated plas-
minogen streptokinase activator complex [APSAC]),
Anglo–Scandinavian Study of Early Thrombolysis
(ASSET, tissue plasminogen activator [tPA]) and
ISIS-2 all documented clear mortality benefits for



International Studies of Infarct Survival (ISIS) 3

thrombolysis, they did not provide information that
allowed for directly comparing these agents. It was
also unclear whether patients given aspirin would
further benefit from the addition of heparin. These
questions were the focus of the Third International
Study of Infarct Survival (ISIS-3).

In brief, the ISIS-3 collaborative group random-
ized 41 299 patients to streptokinase, APSAC, and
tPA. Patients presenting within 24 hours of the onset
of evolving acute MI and with no clear contraindi-
cation to thrombolysis were assigned randomly to
IV streptokinase (1.5 MU over one hour), IV tPA
(duteplase, 0.50 million U/kg over four hours), or
IV APSAC (30 U over three minutes). All patients
received daily aspirin (162.5 mg), with the first dose
crushed or chewed in order to achieve a rapid clinical
antithrombotic effect. In addition, half were randomly
assigned to receive subcutaneous heparin (12 500 IU
twice daily for seven days), beginning four hours after
randomization.

ISIS-3 demonstrated no differences in mortality
between the three thrombolytic agents. Specifically,
among the 13 780 patients randomized to strepto-
kinase, there were 1455 deaths (10.5%) within the
initial 35-day follow-up period as compared with
1448 deaths (10.6%) among the 13 773 patients ran-
domized to APSAC and 1418 deaths (10.3%) among
the 13 746 randomized to tPA.

Long-term survival was also virtually identical
for the three agents at both three and six months.
With regard to in-hospital clinical events, cardiac
rupture, cardiogenic shock, heart failure requiring
treatment, and ventricular fibrillation were similar for
the three agents. For nonfatal reinfarction, there was a
reduction with tPA, while streptokinase and APSAC
allocated patients had higher rates of allergy and
hypotension requiring treatment. Streptokinase pro-
duced fewer noncerebral bleeds than either APSAC
or tPA.

While there were no major differences between
thrombolytic agents in terms of lives saved or seri-
ous in-hospital clinical events, significant differences
were found in ISIS-3 for rates of total stroke and cere-
bral hemorrhage. Specifically, there were 141 total
strokes in the streptokinase group as compared with
172 and 188 in the APSAC and tPA groups, respec-
tively. For cerebral hemorrhage there were 32 events
(two per 1000) in the streptokinase group as com-
pared with 75 (five per 1000) in the APSAC group
and 89 (seven per 1000) in the tPA group. While

the absolute rates for cerebral hemorrhage for all
three agents was low, this apparent advantage for
streptokinase was highly statistically significant (P <

0.0001 for streptokinase vs. APSAC, P < 0.00001
for streptokinase vs. tPA).

With regard to the addition of delayed subcuta-
neous heparin to thrombolytics there was no reduc-
tion in the prespecified endpoint of 35 day mortality.
During the scheduled seven day period of heparin use,
there were slightly fewer deaths in the aspirin plus
heparin group compared with the aspirin group alone,
a difference of borderline significance. There was,
however, a small but significant excess of strokes
deemed definite or probable cerebral hemorrhages
among those allocated aspirin plus heparin (0.56%
vs. 0.40%, P < 0.05). In contrast, reinfarction was
more common among those randomized to aspirin
alone as compared with those receiving aspirin plus
subcutaneous heparin.

ISIS-4: Angiotensin Converting Enzyme
Inhibition, Nitrate Therapy, and
Magnesium in Acute MI [4]

In 1991 the ISIS collaboration chose to investigate
several other promising but unproven approaches to
the treatment of acute MI. Specifically, the Fourth
International Study of Infarct Survival (ISIS-4) sought
to examine treatment strategies that would bene-
fit both high- and low-risk patients presenting with
acute MI, not simply those who are eligible for
thrombolysis.

To attain this goal, the ISIS collaborative group
chose to study three promising agents: a twice daily
dose of the angiotensin converting enzyme (ACE)
inhibitor captopril for 30 days, a once daily dose
of controlled release mononitrate for 30 days, and
a 24-hour infusion of intravenous magnesium. As
was true in each of the preceding ISIS trials, the
available data were far too limited to allow reli-
able clinical recommendations concerning these ther-
apies. For example, while ACE inhibiting agents had
been shown to be successful in reducing mortal-
ity in patients with congestive heart failure and in
patients a week or two past acute infarction, it was
unclear whether these agents provided a net benefit
for all patients in the setting of evolving acute MI.
Similarly, while nitrates were often used in evolv-
ing MI because of their ability to reduce myocardial
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afterload and potentially limit infarct size, barely
3000 patients had received intravenous nitroglycerin
in randomized trials and even fewer patients had
been studied on oral nitrate preparations. Finally,
because of its effects on calcium regulation, arrhyth-
mia thresholds, and tissue preservation, magnesium
therapy had often been considered as an adjunctive
therapy for acute infarction even though no data from
a randomized trial of even modest size had been
available.

Based on statistical overviews, the ISIS inves-
tigators estimated that each of these therapies had
the potential to reduce mortality in acute infarction
by as much as 15%–20%. However, because many
patients presenting with acute infarction were treated
with thrombolytic therapy and aspirin, the estimated
mortality rates at one month were estimated to be
as low as 7%–8%. Thus, to assess reliably whether
these potentially important clinical effects were real
required the randomization of a very large number of
patients, perhaps as many as 60 000. To achieve this
goal, a 2 × 2 × 2 factorial design was employed in
which patients were randomized first to captopril or
captopril placebo, then to mononitrate or mononitrate
placebo, and then to magnesium or magnesium con-
trol. Thus, it was possible in the trial for any given
patient to receive all three active agents, no active
agents, or any combination.

Captopril

Use of the ACE inhibitor captopril was associated
with a significant 7% decrease in five-week mortality
(2088 [7.19%] deaths among patients assigned to cap-
topril vs. 2231 [7.69%] deaths among those assigned
to placebo), which corresponds to an absolute dif-
ference of 4.9 ± 2.2 fewer deaths per 1000 patients
treated for one month. The absolute benefits appeared
to be larger (possibly as high as 10 fewer deaths
per 1000) in some higher-risk groups, such as those
presenting with heart failure or a history of MI.
The survival advantage appeared to be maintained
at 12 months. In terms of side-effects, captopril pro-
duced no excess of deaths on days 0–1, even among
patients with low blood pressure at entry. It was
associated with an increase of 52 patients per 1000
in hypotension considered severe enough to require
termination of study treatment, of five per 1000 in
reported cardiogenic shock, and of five per 1000 in
some degree of renal dysfunction.

Mononitrate

Use of mononitrate was not associated with any
significant improvements in outcomes. There was
no significant reduction in overall five-week mor-
tality, nor were there reductions in any subgroup
examined (including those not receiving short-term
nonstudy intravenous or oral nitrates at entry). Con-
tinued follow-up did not indicate any later survival
advantage. Somewhat fewer deaths on days 0–1
were reported among individuals allocated to active
treatment, which is reassuring about the safety of
using nitrates early in evolving acute MI. The only
significant side-effect of the mononitrate regimen
was an increase in hypotension of 15 per 1000
patients.

Magnesium

As with mononitrate, use of magnesium was not
associated with any significant improvements in out-
comes, either in the entire group or any subgroups
examined (including those treated early or late after
symptom onset or in the presence or absence of fib-
rinolytic or antiplatelet therapies, or those at high
risk of death). Further follow-up did not indicate any
later survival advantage. In contrast to some previ-
ous small trials, there was a significant excess of
heart failure with magnesium of 12 patients per 1000,
as well as an increase of cardiogenic shock of five
patients per 1000 during or just after the infusion
period. Magnesium did not appear to have a net
adverse effect on mortality on days 0–1. In terms
of side-effects, magnesium was associated with an
increase of 11 patients per 1000 in hypotension con-
sidered severe enough to require termination of the
study treatment, of three patients per 1000 in brady-
cardia, and of three patients per 1000 in a cutaneous
flushing or burning sensation.

Because of its size, ISIS-4 provided reliable evi-
dence about the effects of adding each of these three
treatments to established treatments for acute MI.
Collectively, GISSI-3, several smaller studies, and
ISIS-4 have demonstrated that, for a wide range
of patients without clear contraindications, ACE
inhibitor therapy begun early in evolving acute MI
prevents about five deaths per 1000 in the first
month, with somewhat greater benefits in higher-risk
patients. The benefit from one month of ACE inhibitor
therapy persists for at least the first year. Oral nitrate
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therapy, while safe, does not appear to produce
a clear reduction in one-month mortality. Finally,
intravenous magnesium was ineffective at reducing
one-month mortality.

Conclusion

Because of their simplicity, large size, and strict use
of mortality as the primary endpoint, the ISIS trials
have played a critical substantive role in establishing
rational treatment plans for patients with acute MI.
Methodologically, they have clearly demonstrated the
utility of large simple randomized trials.

Three principles guided the design and conduct
of the ISIS trials. The first was the belief that a
substantial public health benefit would result from
the identification of effective, widely practical treat-
ment regimens that could be employed in almost all
medical settings, as opposed to those that can be
administered only at specialized tertiary care facil-
ities. For this reason, the ISIS investigations focused
on strategies to decrease mortality which, in and of
themselves, did not require cardiac catheterization
or other invasive procedures for either diagnostic or
therapeutic purposes.

The second principle was that the benefits of truly
effective therapies would be applicable to a wide
spectrum of patients with diverse clinical presenta-
tions. Thus, the entry criteria for the ISIS trials were
intentionally broad and designed to mimic the real-
ity all health care providers encounter when deciding
whether or not to initiate a given treatment plan.
This is one reason that the ISIS trials focused on
evolving acute MI in the view of the responsible
physician.

The third and perhaps most important principle
was that most new therapies confer small to mod-
erate benefits, on the order of 10%–30%. While
such benefits on mortality are clinically very mean-
ingful, these effects can be detected reliably only
by randomized trials involving some tens of thou-
sands of patients. Thus, the ISIS protocols were

streamlined to maximize randomization and minimize
interference with the responsible physician’s choice
of nonprotocol therapies and interventions. Nonethe-
less, by selectively collecting the most important
entry and follow-up variables that relate directly to
the efficacy or adverse effects of the treatment in
question, the ISIS trials yielded reliable data for
providing a rational basis for patient care. By lim-
iting paperwork and not mandating protocol-driven
interventions, the ISIS approach proved to be remark-
ably cost-effective. Indeed, the large ISIS trials were
conducted at a small fraction of the usual cost of
other smaller trials which, because of their inad-
equate sample sizes, failed to demonstrate either
statistically significant effects or informative null
results.
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Internet

Introduction

The internet (lower case i) is the world’s biggest
computer network connecting millions of machines
worldwide. It offers exciting new ways for people to
communicate with each other and new ways to dis-
seminate and access information. The Internet (upper
case I), which is a term used to describe what can
be done over the internet, has been described as
potentially the most exciting and revolutionary devel-
opment in information since Caxton’s printing press.
It opens up whole new vistas for academics, the busi-
ness community, and the general public, providing
easier access to information, faster means of com-
munication and exchange of ideas, and new ways of
using leisure time.

The internet began with the military in the late
1960s. The Advanced Research Projects Agency
(ARPA), a branch of the American defence depart-
ment, sought a way of exchanging military research
information between sites. One essential criterion
was that the network had to be able to survive a
nuclear war. If one computer in the network was
destroyed, then the information would simply take
another route. This led to a computer network known
as Advanced Research Projects Agency Network
(ARPANET). From its military origins, it grew con-
siderably as more US government departments and
agencies gained access to the network. In 1983, the
military network moved to a separate, more secure
system and in 1984, America’s National Science
Foundation (NSF) created the NSFNET, which linked
supercomputers together to allow access by any US
educational establishment, irrespective of location.

The ARPANET and NSFNET networks laid the
foundations for the wide area network of comput-
ers that span the globe and which is now known as
the internet. Essentially, it is a network of networks.
Each country has many networks for educational,
government, and commercial purposes. Each of these
separate networks, such as AARNET in Australia,
NSFNET in the United States and JANET in the
United Kingdom, is an entity in itself. There are also
networks operated by commercial Internet Service
Providers, who provide access to homes and busi-
nesses throughout the world. Each of these networks
is made up of smaller, local networks. This whole

collection of networks interconnects across the world,
allowing each site access to every other site, irrespec-
tive of the starting point. This vast interconnecting
network forms what is referred to as the internet.

The interconnection of computers to form the
internet is based on TCP/IP protocols that allow
computers of different types, running different oper-
ating systems to communicate with each other. Each
computer on the internet is identified by its IP num-
ber, which is a hierarchical number similar in nature
to a telephone number with country, area, and dis-
trict codes. However, there are also names for the
machines, which are easier to remember, and when
a name is known, it can be looked up in a Domain
Name Service (DNS).

In the same way that ARPANET passed its infor-
mation through any available route, depending on
which machines were available, information can be
routed across the internet by any available path. This
makes the whole system extremely robust to failures
of individual machines or subnetworks. The machines
and networks that make up the internet change from
day to day and year to year, but that is not important,
as it was designed from its earliest beginnings to be
robust to such evolution.

Types of Use

Running over the physical structure of the internet
are many different types of services, in the same
way that telephone companies supply many types of
services over telephone lines. This array of services
is generally termed the Internet (upper case I). The
Internet can be used in a variety of ways, which
see exciting new developments every few months.
The principal types of activity are communication
between individual people or within a group, gaining
access to information, and operating software, which
is held on a remote computer. These main areas are
outlined below.

Communication

Electronic mail (often referred to as “e-mail”) is a
form of communication where text entered by an
individual into one computer system is then sent in
electronic form to another, where it can be read by
the intended recipient. This type of communication
can take place through any system that is connected
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to the internet and which has software installed for
sending and receiving e-mail. The messages are not
transferred around the world instantaneously, but are
delivered in seconds rather than days. This has made
e-mail a popular form of communication.

In addition to messages between individuals, it
is also possible for one person to send a single
message to a group of others. Messages sent to
a particular Internet address are then automatically
broadcast to a list of participants of a “discussion
group”. Discussion groups of this kind exist for an
enormous number of different interests.

Transfer of messages to the individual mailboxes
of people interested in a particular subject can be
avoided by conducting the discussion through UseNet
News groups, where all the messages are brought
together on electronic bulletin boards and accessed
by interested parties at their convenience.

Again, using text exchanges, technologies such as
Internet Relay Chat (IRC) and Talker services enable
people to conduct discussions where the text typed
by each individual is seen by all the others involved,
in real time. Each day there are many people holding
discussions, limited only by the speed at which they
can type.

As the bandwidth of the internet increases, so
the possibility of conducting real-time audio conver-
sations, with full motion video, becomes a reality.
This is currently not possible everywhere, but it is
spreading rapidly. Again, this need not be confined to
one-to-one exchanges. Linking many people together
allows computer conferencing to take place, with the
consequent reduction in the need for people to travel
the world to meet face-to-face for discussion.

File Transfer

When information is transferred in message form,
it is usually also possible to attach other files to
the main message. However, computer files of any
type, such as programs, word processor files, data,
or text, can also be transferred from one system to
another over the internet. This method of transfer
uses the File Transfer Protocol (FTP). This facility
is very convenient for a variety of purposes and it is
particularly effective for large files. It also forms the
backbone of many of the systems for gaining access
to information.

Information Searching and Browsing

The Internet has provided a means by which a vast
amount of information can be mounted in electronic
form and accessed by an enormous number of people.
The variety and extent of information now available
is staggering. Methods of access to the information
are independent of the type of computer a user
has, which takes us closer to universal access to
information. One of the difficulties faced by users
is locating the information of particular interest to
them. This has been aided by the development of
“hypertext” links, where a keyword in one document
is linked to another related document. This is a very
flexible system of organization, which has in turn led
to a crucial need for searching mechanisms to locate
material of interest.

A great deal of attention has been focussed on the
richer form of presentation of information within a
framework called the World Wide Web. The Web, as
it is often called, started at CERN (the European Lab-
oratory for Particle Physics in Geneva) in 1989 as a
system to allow researchers in high energy physics to
exchange papers and information about their exper-
iments. Its use grew exponentially and it is now a
major part of the Internet. The Web is accessed by
a “browser” that can be used to navigate through
this information in a convenient manner, simply
by clicking on words or images (called hyperlinks)
which transfer the reader to another related docu-
ment or resource. Resources are identified by their
Uniform Resource Locator (URL), which identifies
the machine containing the resource and the location
of the resource in the machine’s filestore. Hyperlinks
may point to resources on the same machine or on
another system anywhere else in the world. Navi-
gation between systems is handled by the browser
and is invisible to the user, who is free to appre-
ciate the information available without concern for
the technicalities of its retrieval. The most commonly
used browsers are Internet Explorer, Netscape,
Opera, Mozilla and Firefox. The Web allows
close integration of text, graphics, sound, animation,
and “virtual reality” 3D worlds. Recent developments
may be found at the World Wide Web Consortium
site [10]. It is good practice to construct web pages
that are accessible to those with disabilities. In some
countries this is a legal requirement.

There is a large number of “search engines” for
locating material on the web. One of the most com-
monly used is Google [2], which has an advanced
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ranking system for ordering the results of a search.
One of the factors in this is the number of web-
sites that link to the site in question. Altavista is
another popular tool for searching the web. Most
search engines feature a directory section that orga-
nizes links in a logical tree structure.

Remote Software

One feature of the Internet is that a user in one geo-
graphical location can access a computer system in
another place. This allows software or processing
power available on one machine to be operated from a
remote location. However, recent developments have
allowed the reverse to happen, so that software can be
downloaded from a remote site onto a local machine
and then run automatically without further expertise
required on the part of the user. This makes comput-
ing much more accessible to the general public, as
very little knowledge about the technology is required
before using it. Currently, the most popular computer
language for such developments is Java. Code writ-
ten in Java will run on many types of machines
without modification. Information on recent develop-
ments may be found at [4].

Programs may be embedded within web pages and
these are often used to create further web pages in
a dynamic manner or to produce particular images.
The programs may run either on the machine that
is hosting the web page or on the machine that
is accessing it. Examples of systems that can be
used to create web pages of this type are Perl,
JavaScript, and VBScript. Web browser facilities for
JavaScript, Java, or ActiveX are often included with
the browser software.

Intranets

Many organizations have seen the potential that the
Internet has for the free distribution of information
and have applied the Internet principles to their own
organizations. They have set up what are called
Intranets, which are freely accessible by everyone
within the organization but inaccessible from outside.
It is easy to see the benefits that may be gained by
running such a private Internet world.

Security

Connection to the internet exposes a computer to
attempts to modify or destroy files (see Confi-
dentiality and Computers), take control, install
viruses, or deny service. Viruses can be attached
to e-mail and it is therefore important to install
a current virus-checking program and to keep the
virus definition files up-to-date. Attacks can also
be made without using e-mail to both worksta-
tions and servers by exploiting loopholes in oper-
ating systems. Most institutions will have a pro-
tective “firewall” for all machines connected to
the internet but an individual user at home may
not. On the web, information sent by form is not
encrypted as standard. To ensure the privacy of infor-
mation, the HTTPS rather than the HTTP protocol
should be used, as this encrypts communication in
both directions.

E-science

Increasingly, scientific work needs to make use of
either very large sets of data or very large amounts
of computational resource. One response to these
demands is to share the geographically distributed
computing resources, storage capacity, and networks
of many organizations and individuals, using an
architecture designed for this purpose called a GRID.
Once users have authenticated themselves to a par-
ticular GRID, they are free to make use of data and
computational resources, within agreed limits, irre-
spective of location as though it were a single unified
resource. This kind of activity is often referred to as
e-Science.

Internet Uses in Biostatistics

In the world of biostatistics, the potential benefits
of using the Internet, which are outlined above, are
all available. In particular, the use of e-mail has
had a large effect on the working lives of many
people and the Web is having an increasing effect
on the way information is made available in bio-
statistics (and indeed on the construction of this
encyclopedia [1]). One of the great benefits of this
revolution is that it allows biostatisticians who are
geographically isolated from colleagues to maintain
contact in a convenient way, and hence feel part of
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a wider community. In addition to individual con-
tacts, e-mail discussion lists provide a particularly
helpful forum for this. There are many lists and
information sources that are relevant to the inter-
ests of biostatisticians. Some Internet sites provide
helpful listings of other sites that are of interest in
a particular subject area. An example for statistics is
at [5].

For the provision of information, many organi-
zations have now created websites. This includes
professional societies, and websites now exist for
most of the major societies whose interests include
biostatistics. These sites provide valuable, up-to-date
information on professional activities. In particular,
it is becoming increasingly common for conference
information and registration facilities to be provided
on the Web. Research organizations of all types are
also making use of the Internet. In addition to gen-
eral information on their activities, research papers
are often made available. This provides a very fast
means of disseminating research ideas and results.
A useful list of organizations in the general statis-
tics area which have websites is provided at [3].
In addition, information about statistical software
and sometimes the software itself is readily acces-
sible. A useful starting point for exploring this area
is [8].

A significant issue in biostatistics is the availabil-
ity of data and information from application areas in
medicine and health sciences. From this perspective,
the Internet can be thought of as providing access
to a vast library of information held at a large num-
ber of sites throughout the world. Where the data
itself are not made available, for copyright or other
reasons, the Internet can still be extremely useful in
identifying and contacting the site where information
may be held. In addition to the lists of professional
and research organizations mentioned above, a use-
ful starting point for information is the World Health
Organization (WHO) site at [9], which also provides
links to a large number of organizations with medical
and health interests.

The Internet has allowed the development of
virtual communities of individuals with mutual
interest(s). This has led to the emergence of vir-
tual development teams, with members working on
a project from worldwide locations, meeting rarely if
ever. The pace and scale of development of open-
source and public domain software has increased
enormously over the last few years as a result of

this style of development. There are a number of
such projects in statistics such as the development
of the statistical programming software R [7] and
the umbrella project for statistical computing col-
laboration, Omegahat [6], which facilitates the shar-
ing of ideas and interworking of statistical comput-
ing tools.

The web is also beginning to have significant
effects on the practice of biostatistics in areas such as
clinical trials. Facilities for patient entry, randomi-
zation, patient tracking and other aspects of the con-
duct of a trial are now available (see Clinical Trials
Audit and Quality Control). These tools, which are
particularly useful in multicenter studies, are rapidly
evolving and are likely to be used increasingly in
future studies.

The development and use of the Internet has taken
place at such a phenomenal rate that it is difficult
to predict what further changes will take place in
the future. One area that is already developing very
fast is commercial electronic publishing, with many
journals available over the Internet. Another area is
conferences, where a “virtual conference” over the
Internet can provide a cheaper and more accessible
alternative to the traditional physical event. While
further developments are difficult to predict, it is
certain that the Internet will continue to have an
increasingly large effect on the way biostatistics is
conducted.
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Interpenetrating Samples

Interpenetrating sampling (IPS), also known as inter-
penetrating subsampling and replicated sampling,
was introduced in the pioneering contribution of P.
C. Mahalanobis [17, 18]. Mahalanobis used IPS for
the jute and rice acreage surveys in Bengal and Bihar,
eastern states of India, as early as 1937. Since then,
many countries of different continents have started
using IPS in their large-scale sample surveys. The
United Nations Subcommission on Statistical Sam-
pling strongly recommended the use of IPS in 1949
[26]. IPS was originally proposed in assessing the
nonsampling errors as the so-called “interviewer
errors”. Interviewer effects in the measurements from
IPS are compared in the fixed-effects setup, and the
variance component due to interviewers is measured
in the random-effects setup. IPS has also turned out
to be an effective method of estimating the variance
of the estimator of a parameter of interest in com-
plex surveys (see Deming [3, 4], Lahiri [14], and
Yates [27]). In fact, IPS is the foundation of modern
resampling methods like jackknife [24] and boot-
strap [5], and also replication methods [20, 21].

IPS consists of selecting a sample in the form
of k(k ≥ 2) samples using the identical sampling
design from the same population. Sample sizes in
k samples may or may not be equal. If k inter-
viewers are assigned to collect information from k

samples, then the interviewer effects can be studied
and compared. Samples may or may not be drawn
independently. The sampling design can be a complex
design, that is, multistage, stratified, with equal or
unequal probabilities. Let θ be the parameter of inter-
est and t1, . . . , tk be the k estimators of θ based on k

IPS. First, assume that

E(tj ) = θ, var(tj ) = σ 2,

cov(tj , tj ′) = ρσ 2, j �= j ′.

Consider the following estimator θ̂ of θ

θ̂ =
k∑

j=1

wj tj ,

where the wj s are fixed constant (known or
unknown), with

∑k
j=1 wj = 1. It can be seen that

var(θ̂ ) = σ 2(1 − ρ)

k∑

j=1

w2
j + ρσ 2.

An estimator of var(θ̂) is

v̂ar(θ̂) =

k∑

j=1

w2
j

1 −
k∑

j=1

w2
j

k∑

j=1

wj(tj − θ̂ )2.

It can be checked that

E[v̂ar(θ̂ )] = var(θ̂ ) − ρσ 2.

As a result, v̂ar(θ̂ ) is an unbiased estimator of var(θ̂)

when ρ = 0, v̂ar(θ̂ ) overestimates var(θ̂ ) when ρ <

0, and v̂ar(θ̂) underestimates var(θ̂ ) when ρ >

0. If w1 = · · · = wk = 1/k, then θ̂ = [(t1 + · · · +
tk)/k] = t and

v̂ar(θ̂) = 1

k(k − 1)

k∑

j=1

(tj − t)2.

In the case where k samples are drawn independently,
v̂ar(θ̂) is an unbiased estimator of var(θ̂ ). Thus,
IPS provides a quick, simple, and effective way
of estimating the variance of the estimator even
in a complex survey. The case var(tj ) = σ 2

j , j =
1, . . . , k, is considered in Murthy [22], Koop [12]
and others. Suppose that t (j ) is the value of t when
the j th estimator of θ from the j th investigator is
omitted. Then

t (j ) = t1 + · · · + tj−1 + tj+1 + · · · + tk

k − 1
,

j = 1, . . . , k.

Let
t (·) = t (1) + t (2) + · · · + t (k)

k
.

The jackknife version of t is given by

θ̂ J = kt − (k − 1)t (·).
It can now be seen that θ̂ J = t , and, consequently,
the expression of var(θ̂J ) in Efron & Stein [6]

v̂ar(θ̂J ) = k − 1

k

k∑

j=1

[t (j ) − t (·)]2,

is exactly the same as v̂ar(θ̂ ) = v̂ar(t) given above.
For comparison of several ratio and regression esti-
mators based on IPS with or without jackknife, see
Ghosh & Gomez [9, 10].
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In IPS, k samples are drawn from the same popu-
lation using the identical sampling design. If k sam-
ples are selected with replacement so that they are
independent, then one can see its similarity in princi-
ple with the modern Bootstrap Sampling (BSS) (see
Efron & Tibshirani [7]). In BSS, the observed data are
a random sample of size n from an unknown prob-
ability distribution F . Bootstrap samples are random
samples of size n drawn with replacement from the
observed data or the empirical distribution F̂ . If we
treat the observed data as a finite population of size
n, then BSS are, in fact, IPS with k = n. Of course,
there is no interviewer effect for bootstrap samples.

In IPS, three basic principles of experimental
designs, namely, randomization, replication, and
local control, are used. The main purpose of IPS is to
identify, reduce, and control errors due to interview-
ers. IPS is used extensively not only in agriculture
but also in social sciences, demography, epidemiol-
ogy, public health, and many other fields (see Hansen
et al. [11], Lahiri [15], Som [25], Fellegi [8], Bailey
et al. [1], Levy & Lemeshow [16]). Fractile graphi-
cal analysis developed in [19], based on IPS, is used
in comparing, analyzing, and testing the separation
between two populations when a concomitant vari-
able (see Covariate) is measured in addition to the
response variable. Details on the theory of IPS are
available in [2], [13], and [23].
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Interval Censoring

Interval censoring is commonly used to denote a
type of sampling scheme or to describe a type
of incomplete data. By interval-censored data, we
mean that a random variable of interest is known
only to lie in an interval, instead of being observed
exactly. In most applications of survival analy-
sis, the random variable is the time to some event
such as death or a disease. A common example
of interval-censored survival data occurs in medi-
cal or health studies that entail periodic follow-up.
Many clinical trials and longitudinal studies fall
into this category [18]. In this situation, an individ-
ual due for the scheduled observations for a clin-
ically observed change in disease status may miss
some observations and may return with a changed
status, thus contributing an interval-censored time
of the occurrence of the change. Another exam-
ple arises in the acquired immune deficiency syn-
drome (AIDS) studies [13] that concern the human
immunodeficiency virus (HIV) infection and the
AIDS incubation period (the time from HIV infec-
tion to AIDS diagnosis). In this case, if a subject is
HIV positive at the beginning of the study, his or her
HIV infection time is usually determined by a retro-
spective study of the subject’s history. Thus, only an
interval given by the last HIV negative test and the
first HIV positive test is known for the HIV infection
time.

An important special case of interval-censored
data is current status data [29] and [61]. In this sit-
uation, each subject is observed only once for the
status of the occurrence of the event of interest at the
observation time. In other words, the observation of
the time to the event is either left- or right-censored
(the survival time is less or greater than the observa-
tion time). Cross-sectional data provide one example
of current status data [31] and another example is
given by nonlethal tumor data when the time to tumor
onset is of interest, but not directly observable [14]
(see Tumor Incidence Experiments). Note that for
the first example, current status data occur because
of study designs, while for the second case, they
are observed because of the inability of measuring
the variable directly and exactly. Current status data
are also sometimes referred to as case I interval-
censored data and in correspondence, the general case
is referred to as case II interval-censored data [23].

Another special case of interval-censored data that
may occur is left-censored data, in which the time
to the event of interest is either left censored or
exactly known. One reason behind the occurrence of
the left-censored data is the inability of measuring
the variable of interest when it is below a certain
level. Such an example is given by the severity of an
adverse event related to a drug, which sometimes can
be determined only when it is over a certain degree.

To this point, survival time has been defined in
a way that starts from time zero or a known time
point. A more general framework is to define sur-
vival time as the time between two related events.
This illustrates a more complicated type of interval-
censored data: doubly interval-censored data [60], in
which the times of the occurrences of both events
defining the survival time are interval censored. An
example of such data is provided by the AIDS stud-
ies discussed above when the variable of interest is
AIDS incubation time [13].

For the analysis of interval-censored failure-time
data, in the following, we will first discuss non-
parametric estimation of the distribution function as
well as the hazard function for survival time (see
Survival Distributions and Their Characteristics).
Secondly, regression analysis of interval-censored
data will be investigated under various regression
models. The comparison of several survival functions
will be considered thirdly and followed by discus-
sion on some other topics. These will include doubly
interval-censored failure-time data, interval-censored
data with truncation, multivariate interval-censored
data, and interval-censored data with informative cen-
soring. Finally, some concluding remarks will be
given. Unless specified otherwise, we will assume
that the censoring mechanism resulting in censoring
intervals is independent of the survival time.

Nonparametric Estimation

In medical and health studies, estimation of the
cumulative distribution function (cdf) of survival time
or the survival function is perhaps the most important
and common task. Let T denote the survival time of
interest in a survival study and F = Pr(T ≤ t) its
cdf. Suppose that observed data can be represented
by {Ii}ni=1, where Ii = (Li, Ri] is the interval known
to contain the unobserved survival time associated
with the ith subject. If Li = 0, we have a left-
censored observation and if Ri = ∞, we have a
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right-censored observation. Let {sj }m+1
j=0 denote the

unique ordered elements of {0, {Li}ni=1, {Ri}ni=1, ∞},
αij be the indicator (see Dummy Variables) of
the event (sj−1, sj ] ⊆ Ii , and pj = F(sj ) − F(sj−1).
Then the likelihood function of p = (p1, . . . , pm+1)

′
is proportional to

L(p) =
n∏

i=1

{F(Ri) − F(Li)} =
n∏

i=1




m+1∑

j=1

αijpj





(1)

and the problem of finding the nonparametric maxi-
mum likelihood estimator (NPMLE) of F becomes
that of maximizing L(p) with respect to p subject
to

∑m+1
j=1 pj = 1 and pj ≥ 0 (j = 1, . . . , m + 1) [20,

34, 39]. Note that a more general way to express
an interval-censored observation is to use the finite
union of disjoint intervals [64] and in this case, the
discussion here equally applies.

To maximize L(p) with respect to p, a simple
and common way is to use the self-consistency algo-
rithm proposed by Turnbull [64]. It can be seen as
an application of the EM algorithm and iterates the
equation pnew

j = n−1 ∑n
i=1[αijp

old
j /(

∑m+1
l=1 αilp

gold
l )]

until convergence. This approach is easy to imple-
ment, but is known to have a slow convergence
rate. An alternative is to apply the convex minorant
algorithm introduced by Groeneboom and Wellner
[23], which promises to converge faster than the self-
consistency algorithm. Böhning et al. [10] proposed
to use the vertex-exchange or other algorithms pro-
posed for the mixture model problem because of the
similarity of the two problems. All the above algo-
rithms are iterative and in fact, there is no closed
form for the NPMLE of F .

For current status data, however, a closed form of
the NPMLE can be found. In this case, the NPMLE of
F can be shown to be equal to the isotonic regression
of {d1/n1, . . . , dm/nm} with weights {n1, . . . , nm},
where dj = ∑

iεSj
I (Ti ≤ sj ), nj = |Sj | and Sj de-

notes the set of subjects who are observed at sj ,
j = 1, . . . , m. Thus, by using the max–min formula
for an isotonic regression [3], the NPMLE of F can
be written as

F̂n(sj ) = max
u≤j

min
v≥j





v∑

l=u

dj

v∑

l=u

nj




. (2)

A self-consistent estimate of F may not be an
NPMLE. To verify this, one approach is to use the so-
called Kuhn–Tucker conditions given in [20]. Note
that at the NPMLE, pj can be nonzero only if sj−1

is a left endpoint Li for some subject i and sj is a
right endpoint Rk for some possibly different subject
k. Some of the pj ’s that satisfy this criterion may
still be zero. The Kuhn–Tucker conditions can also
be applied to identify these zero pj ’s, thus speeding
up the self-consistency algorithm. Another approach
is to use the fact that an estimate p̂ is an NPMLE if
and only if sup1≤j≤m+1

∑n
i=1(αij /

∑m+1
l=1 αilp̂l) = n

[10]. Gentleman and Geyer [20] also discussed the
conditions required for the uniqueness of NPMLEs.

It can be shown that the above NPMLE F̂n is
consistent [23, 66]. Furthermore, as n → ∞ and at
fixed time point t0, F̂n(t0) has a limiting, nonnormal
distribution at n1/3 or (n log n)1/3 convergence rate
depending on if the probability of observing T = t0 is
zero or away from zero [23, 65]. Note that this is dif-
ferent than the usual n1/2-convergence rate. However,
the integral of F̂n and its linear functionals can be
shown to have asymptotic normal distributions with
n1/2-convergence [21, 27]. For variance estimation
of F̂n, Sun [59] presented two methods, a generaliza-
tion of Greenwood’s formula (see Survival Analysis,
Overview) and a bootstrap approach.

Sometimes estimation of the hazard function of
survival time may be of interest. In this case, one
way is to use the empirical estimator, which is usually
rough and difficult to interpret. Corresponding to this,
several smooth estimators, which are more descrip-
tive than the empirical estimator, of the hazard func-
tion have been proposed (see Smoothing Hazard
Rates). Among others, Kooperberg and Stone [33]
and Rosenberg [48] gave spline-based estimators (see
Spline Smoothing). Bebchuk and Betensky [4] and
Betensky et al. [7] considered the multiple imputa-
tion and local likelihood approaches, respectively.

Regression Analysis

Regression analysis of survival data is commonly
performed to study the effect of various covariate
factors such as treatment, sex, and age on survival
time. Let Xi denote the covariate vector associated
with the ith subject and assume that the censoring
mechanism is independent of the covariates. By using
the notation given above, the likelihood then has the
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form:

L =
n∏

i=1

{F(Ri |Xi) − F(Li |Xi)}

=
n∏

i=1




m+1∑

j=1

αij {F(sj |Xi) − F(sj−1|Xi)}


 , (3)

where F(T |X) denotes the cdf of T given covari-
ates X.

In survival analysis, the most commonly used
regression model is perhaps the proportional haz-
ards (PH) model, which has the form

λ(t |X) = λ0(t) exp(β ′X) (4)

[12], where λ0(t) denotes an unknown baseline
hazard function and β the regression coefficients (see
Cox Regression Model). For inference about β and
the cumulative hazard function Λ0(t) = ∫ t

0 λ0(s) ds, a
natural method is the full likelihood approach, which
maximizes L over β and Λ0(t) simultaneously and
was first discussed by Finkelstein [18]. Huang [24]
also studied this approach for the case of current sta-
tus data and showed that the maximum likelihood
estimator (MLE) of the regression coefficients is
consistent and efficient and has an asymptotic nor-
mal distribution with n1/2-convergence rate.

An alternative to the above full likelihood app-
roach is the marginal likelihood approach. This
approach defines a marginal likelihood as the sum-
mation of the probabilities of the ranking of the
Ti’s over the set of all possible rankings of the Ti’s
that are consistent with observed interval-censored
data [50]. It is a generalization of the correspond-
ing approach for right-censored data [30] and has the
advantage of not involving λ0(t). The disadvantage is
that it does not have a simple and easily manageable
form, resulting in the need for great computational
effort. In addition, little is known about its prop-
erties. Another choice for inference about the PH
model is to use some types of imputation approaches,
which involve generating right-censored data based
on observed interval-censored data [41, 51].

Although the PH model yields sound results in
many cases, there are situations in which other mod-
els may provide a better fit to interval-censored
data. For example, the proportional odds regression

model given by

log

{
[F(t |X)]

[1 − F(t |X)]

}
= α(t) + β ′X (5)

is often used for environmental health data, where
α(t) is a monotone-increasing function. Among oth-
ers, Rossini and Tsiatis [49] discussed the fitting of
this model to current status data. Huang and Rossini
[26] and Rabinowitz et al. [46] considered the sieve
estimation and the approximated score function meth-
ods, respectively.

Another alternative to the PH model that has been
discussed for interval-censored data is the acceler-
ated regression model defined by log(T ) = β ′X + ε,
where the distribution of ε is unknown [9, 47]. The
additive hazards regression model and the logis-
tic model have also been investigated for regression
analysis of interval-censored data. In these cases,
the discussion has been confined to current status
data for the former [37, 38] and to discrete survival
data for the latter [54]. Some of the other mod-
els proposed recently for the regression analysis of
interval-censored data can be found in references [8,
11, 25, 32].

Comparison of Survival Functions

The comparison of survival functions is often the
primary goal of clinical and follow-up studies. In
the case of interval-censored data, as in other situa-
tions, two commonly used approaches are to base the
comparison on regression techniques and to develop
distribution-free test procedures. The application of
the regression techniques involves defining covariates
X as group or treatment indicators and then using the
Wald or score test (see Likelihood) for testing regres-
sion coefficients equal to zero [18, 47]. In this, one
can apply the regression methods described above.
An alternative, which was not discussed above, is to
consider some rank-based regression models and to
derive rank test procedures for the comparison [17].
For example, Self and Grossman [52] considered the
linear regression model T = α + β ′X + ε, where α

is a constant and ε denotes the error term. Under the
model, they derived the linear rank tests defined as
the score tests for β = 0 from the marginal likelihood
of the ranking of the survival times T ’s.

Several distribution-free test procedures have been
proposed for the comparison of survival functions
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based on interval-censored data. Among these, Ander-
sen and Ronn [2] and Sun and Kalbfleisch [62]
proposed some nonparametric tests for current sta-
tus data. Sun [53] presented a nonparametric pro-
cedure of logrank type and Pan [40] developed
an approach based on multiple imputation. Most of
the above mentioned procedures are rank-oriented
or sensitive to ordered hazard differences. Some-
times test procedures that are sensitive to ordered
survival differences may be preferred. For this pur-
pose, Petroni and Wolfe [45] and Fang et al. [16]
considered approaches based on differences between
estimated survival functions. Furthermore, Lim and
Sun [35] proposed three classes of nonparametric test
procedures that include most of existing tests as spe-
cial cases. Note that most of the existing comparison
procedures require the same censoring distribution.

Other Topics

This section will discuss a few subjects not inves-
tigated above about interval censoring. One is the
analysis of doubly interval-censored data, which was
first studied by De Gruttola and Lagakos [13]. In
this case, the analysis is more complicated since the
likelihood function involves not only the distribu-
tion of the survival time, but also the distribution
of the originating event that defines the survival
time. Following De Gruttola and Lagakos [13], who
proposed a self-consistency algorithm for estimation
of the distribution function of survival time, many
authors have considered the inference about dou-
bly interval-censored data. Some recent contributions
include Fang and Sun [15], who discussed the con-
sistency of the NPMLE of the distribution function,
and Sun [58], who developed a nonparametric test for
treatment comparison. Also Goggins [22], Pan [42]
and Sun et al. [63] studied the regression problem
under the PH model. More discussion and references
about doubly interval-censored data can be found
in [60].

Truncation is another feature of survival data and
may sometimes occur together with interval censor-
ing. One of the early papers discussing this is given
by Turnbull [64], who proposed a self-consistency
algorithm for the NPMLE of a distribution for
interval-censored and truncated data. More recently,
among others, Pan and Chappell [43] and Sun [55]
considered the one sample estimation problem when

left-truncation and general truncation are involved,
respectively. Lim et al. [36] also discussed the one
sample estimation problem with general truncation
and the existence of a change-point and Alioum and
Commenges [1] and Pan and Chappell [44] consid-
ered the regression problem under the PH model.

The discussion so far has been focusing on uni-
variate failure-time data and the research on multi-
variate failure-time data in the literature is relatively
limited. This is especially the case for multivari-
ate interval-censored data (see Multivariate Survival
Analysis). One problem investigated in this case
is the one sample estimation problem for bivari-
ate interval-censored failure time data [5]. Also for
bivariate failure-time data, Betensky and Finkel-
stein [6] generalized the Kendall’s coefficient (see
Rank Correlation) to the interval-censoring situa-
tion. Another subject, that often occurs in practice and
has not been discussed much in the literature, is the
analysis of interval-censored data when the censoring
mechanism resulting in interval censoring is informa-
tive or depends on the survival of interest. For this,
Sun [57] developed a nonparametric test for treatment
comparison for a special case in which observed data
are current status data and observation times depend
on treatments. Finkelstein et al. [19] discussed both
one sample and regression problems.

Concluding Remarks

For the analysis of interval-censored failure-time
data, the discussion here has been focusing on more
recently developed and semiparametric and non-
parametric methods. One can find early references
about interval-censored data in [28, 56]. An alterna-
tive to the semiparametric and nonparametric meth-
ods is to use parametric methods [56], which are
usually relatively straightforward. It is worth noting
that interval-censored data discussed here are differ-
ent from grouped survival data, which are some-
times also referred to as interval-censored data in
the literature. The interval-censored data reduce to
grouped data if all observed intervals either com-
pletely overlap on each other or have no overlaps.

There are still a lot of open questions in the anal-
ysis of interval-censored data. One is that the proper-
ties of many proposed methods remain unknown and
this is especially the case for doubly interval-censored
data. Although a great deal of research for regres-
sion analysis of interval-censored data has been done,
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there is no approach available as simple as the par-
tial likelihood method for right-censored data. Also,
there are no methods available for model checking
for all regression models discussed above and more
research is needed for multivariate and informatively
interval-censored failure-time data.
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Intervention Analysis in
Time Series

When data are collected in the form of time series
there are important questions concerning “changes”
in the series. Changes may be “man-made” or they
may arise “naturally”. How efficient was a pre-
ventive program to decrease the monthly number
of accidents? How did the frequency of traditional
neurological diagnostic methods change after the
introduction of computer tomography? How did the
pattern of morbidity in a population change after
an environmental accident? Notifications of diseases,
entries in a hospital, injuries due to accidents, etc.
are usually collected in fixed equally spaced inter-
vals. Such time series observations are likely to
be dependent. ARIMA models [autoregressive inte-
grated moving average models (see ARMA and
ARIMA Models) and Box–Jenkins models [1]]
allow the stochastic dependence of consecutive data
to be modeled. Intervention analysis proposed by
Box & Tiao [2] is an extension of ARIMA mod-
eling allowing study of the magnitude and structure
of changes of ARIMA processes.

The well-known two-sample t test for a change
in level after an intervention may not be appropriate
in this situation due to the possible dependency of
the observations. In addition, this test allows only an
assessment of the magnitude of a change and not of
its structure. Since the series may be nonstationary,
large changes of the series could occur even when no
intervention takes place (see Stationarity). Interven-
tion analysis may allow an investigator to distinguish
between what can be expected due to nonstationarity
alone and what cannot.

Analogous questions of “change” may arise when
studying time series data recorded in an individual
patient; changes of time series, for example, may
occur after the intervention “treatment”. Dependence
of consecutive observations may be important when
data such as blood glucose are recorded within a
single patient over time. Such studies on individual
subjects may be interesting and relevant in basic med-
ical research and in clinical applications. In clinical
research they may allow physicians the assessment of
individual treatment effects. Decisions on treatment
strategy may be based on knowledge of the stochas-
tic processes representing the observed time series,

thus allowing full use to be made of the recorded
data [4].

Intervention Models

Let yt−1, yt , yt+1, . . . denote the observations (num-
ber of entries in a hospital, etc.) at equally spaced
times, t − 1, t, t + 1, . . . (e.g. yesterday, today,
tomorrow, etc.). The intervention model states that
yt (or a suitably transformed version of the series)
may be decomposed into two parts, an “explained”
part ut and an “unexplained” or “noise” part nt ,

yt = ut + nt . (1)

The Noise Series nt

The noise series (see Noise and White Noise) or
unexplained part nt is an autoregressive integrated
moving average ARIMA(p, d, q) process given by

wt = ∇dnt , (2)

wt = φ1wt−1 + · · · + φpwt−p

+ at − θ1at−1 − · · · − θqat−q or

φ(B)wt = θ(B)at . (3)

∇ is the differencing operator such that ∇nt = nt −
nt−1 and the integer d is the number of times nt

has to be differenced to obtain a stationary series
wt . B is the backward shift operator (see Backward
and Forward Shift Operators) such that Bwt =
wt−1, Bkwt = wt−k, φ(B) and θ(B) are polynomials
in B:

φ(B) = 1 − φ1B − · · · − φpBp and

θ(B) = 1 − θ1B − · · · − θqB
q. (4)

φ(B) is called the autoregressive operator of order
p and θ(B) the moving average operator of order
q. The parameters of the noise process φ1, . . . , φp

and θ1, . . . , θq are constrained such that the roots
of φ(z) and θ(z) in the complex z-plane lie outside
the unit circle. at is a white noise series consisting
of independent identically distributed normal random
variables with mean zero and variance σ 2

a . The
ARIMA model for the noise nt may be extended to
the seasonal ARIMA model by including seasonal
autoregressive and moving average operators. In the
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absence of ut , the observed series yt is just the
ARIMA process nt .

The Explained Part ut

The explained part ut is the “response” of a system
to a dummy input variable It :

ut = f (It ). (5)

The input It is usually taken as the unit pulse
function pt ,

pt =
{

1, for t = T ,

0, otherwise,
(6)

or the unit step function st ,

st =
{

1, for t ≥ T ,

0, otherwise.
(7)

The pulse function pt may represent, for example,
an unusual event which acts only at time T . The
step function st represents, for example, a preventive
measure starting at time T . Since the “noise process”
nt may be nonstationary, large changes of the series
could occur even when no intervention takes place.

Basic Patterns of Response

Figure 1 shows basic intervention models. In the
first line the two dummy input variables st and pt

are depicted. The lines (a), (b), and (c) below show
“responses” corresponding to the following three
models:

1. Figure 1(a): the simplest, case

f (It ) = ω0It . (8)

The response is just the pulse- or step-input It

multiplied by ω0. The parameter ω0 measures
the “strength” of the effect. In this model, and
with the step function as input, the new level is
reached immediately.

2. Figure 1(b): a refined model:

f (It ) = ω0It − ω1It−1, or

f (It ) = (ω0 − ω1B)It , or

f (It ) = ω(B)It , (9)

Figure 1 Responses to a unit pulse and step input: (a),
(b), and (c) basic patterns of response

where ω(B) = ω0 − ω1B is a polynomial of first
order in B.

In this refined model, and with the step func-
tion as input, the final level is reached in two
steps. If ω0 = 0 the response is as in (a) but
1 time unit delayed.

3. Figure 1(c): gradual approach to equilibrium:

f (It ) = ω0(It + δIt−1 + δ2It−2 + · · ·)
= ω0(It + δBIt + δ2B2It + · · ·)
= ω0(1 + δB + δ2B2 + · · ·)It

=
[

ω0

(1 − δB)

]
It . (10)

In this basic type of response the final level is
reached only gradually.

The above three types of response are special cases
of the general response

f (It ) = v(B)It

=
[

ω(B)

δ(B)

]
It , (11)

where ω(B) = ω0 − ω1B − · · · − ωsB
s and δ(B) =

1 − δ1B − · · · − δrB
r are polynomials in B. The
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corresponding model,

yt = f (It ) + nt , (12)

is called an intervention model of order r . v(B)

is the transfer function containing infinitely many
parameters in general. ω(B)/δ(B) is a parsimonious
“rational lag representation” of the transfer function
v(B) containing only s + r + 1 parameters [2].

The noise part of the model is usually obtained
from the preintervention period in the same way
as the ordinary ARIMA model. Standard software
such as SAS or BMDP (see Software, Biostatistical)
allows maximum likelihood estimation of ARIMA
models and intervention models. Inspection of the
data may suggest a pattern by which the known
event has changed the series. Additional help may
be obtained by inspection of the residuals from the
corresponding model. A different way to obtain a
model for the response consists in postulating one
or several expected “types of change” and studying
if the data provide evidence for a particular type of
change.

Example

During an investigation concerned with the rela-
tionship between air pollution and respiratory dis-
eases the environmental accident of “Schweizerhalle”
occurred. In that investigation a series of medical data
had been collected during about one year: the daily
number of respiratory symptoms per child in a ran-
domly selected group of preschool children (called
“SYMPTOMS”). On November 1, 1986, a Sandoz
storehouse containing chemical substances burned
down in Schweizerhalle, located near Basle. After
many people experienced symptoms and, addition-
ally, when dead fish appeared in the Rhine, public
pressure demanded investigation of possible health
effects. In addition to studies specially set up for
this purpose, it seemed recommendable to analyze the
ongoing study with regard to the question of whether
health effects could be discovered on the date of the
accident.

For the preaccident period of the series SYMP-
TOMS an AR(1) model was identified. Figure 2 illus-
trates the process of intervention model building.
Three intervention models of increasing complexity
are fitted to the series SYMPTOMS in a way that each

(a)

(b)

(c)

Figure 2 Three intervention models of increasing com-
plexity. (a) Model of order zero. Upper curve: series
yt (SYMPTOMS). Second curve: “explained” part ut .
Third curve: noise series nt = yt − ut (shifted downwards).
(b) Model of order one. Upper curve: “explained” part
ut . Lower curve: noise series nt = yt − ut (shifted down-
wards). (c) Model of order two. Same arrangement as in
(b). Curves are shown multiplied by 100. Explanation in
the text

additional parameter allows for a refined explanation
of the data. The simplest model is as follows:

1. Intervention model of order zero,

yt = ω0st + nt , (13)

where st is the unit step function. The estimated
parameters of this model are shown in Table 1
below the univariate model. Figure 2(a) shows,
in the second row, the estimated function ω0st

(the point labeled 370 corresponds to the date
of the accident). This model gives a better fit
to the data (σ 2

a = 0.00454) than the univariate
model (σ 2

a = 0.00476). However, this simplified
model does not fully represent all characteristic
properties of the series: it predicts, for example,
that the final level is reached immediately. It is
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Table 1 Summary of intervention models

Model type Estimated parameters ± se Residual variance

Univariate φ1 = 0.91 ± 0.02 0.00476
µ = 0.368 ± 0.039

Intervention (order 0) φ1 = 0.87 ± 0.03 0.00454
µ = 0.343 ± 0.026
ω0 = 0.274 ± 0.058

Intervention (order 1) φ1 = 0.87 ± 0.03 0.00441
µ = 0.331 ± 0.027
ω0 = 0.239 ± 0.065
δ1 = 0.46 ± 0.16

Intervention (order 2) φ1 = 0.87 ± 0.03 0.00420
µ = 0.334 ± 0.026
ω0 = 0.203 ± 0.033
δ1 = 1.21 ± 0.07
δ2 = 0.75 ± 0.07

therefore natural to consider the following more
elaborate model.

2. Intervention model of order one,

yt = ω0(1 − δ1B)−1st + nt . (14)

The parameters are given in Table 1 and the cor-
responding curves are presented in Figure 2(b).
The residual variance decreases to σ 2

a = 0.00441.
This model allows for gradually reaching the
final level [upper curve of Figure 2(b)]. How-
ever, the additional parameter δ1 has a relatively
large standard error. In addition, one recognizes
from the lower curve of Figure 2(b) that the noise
series nt still has an unexplained “bump”. This
suggests introducing an additional refinement of
the model.

3. Intervention model of order two,

yt = ω0(1 − δ1B − δ2B
2)−1st + nt . (15)

The “explained” part of the model ut = ω0(1 −
δ1B − δ2B

2)−1st may be rewritten

(1 − δ1B − δ2B
2)ut = ω0st , or

ut − δ1ut−1 − δ2ut−2 = ω0st or

ut = δ1ut−1 + δ2ut−2 + ω0st .

(16)

This second-order difference equation may repre-
sent vibrations of discrete systems (in analogy to
the differential equations of order two in contin-
uous physical systems). The lowest part of Table

1 shows the estimated parameters of this model.
The parameters ω0, δ1 and δ2 have small stan-
dard errors and the residual variance drops to
σ 2

a = 0.00420. The “bump” in the noise series
nt [lower curve of Figure 2(c)] has disappeared.

The upper curve of Figure 2(c), ut , shows
the characteristic behavior of a “damped vibra-
tion”. The final increase of the series over the
level of the preaccident period is estimated by
the gain g = ω0(1 − δ1 − δ2)

−1 = 0.376, i.e. an
increase of approximately 0.38 respiratory symp-
toms per child per day. The introduction of
additional parameters into the model did not
reduce the residual variance any further. Thus,
identification of a sequence of models of increas-
ing complexity showed that the response of
the series SYMPTOMS after the accident of
Schweizerhalle may be parsimoniously repre-
sented by an intervention model of second order.
The model corresponds to what is known in
continuous physical systems as a “damped vibra-
tion”. After an initial overshoot, the series settles
down to a new equilibrium at a higher level.

The results obtained support the hypothesis that
the number of symptoms per child increased after
the accident. The identified intervention model states
that after an initial overshoot following the accident
the series settles down to a new level. Unfortunately,
data were not available for a longer period after the
accident; thus, there is a possibility that “return to
normal” could have been missed. The question of
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whether under the impression of the accident more
symptoms were recorded (than were actually present)
cannot be answered entirely satisfactorily. However,
other studies conducted in this context point toward
an increase in respiratory symptoms in the general
population. A more detailed presentation of this study
may be found in [6].

Remarks

Extensions of models as described and illustrated
above are possible: intervention analysis with input
consisting of multiple pulses, for example, may be
used to analyze questions such as “Are there more
deaths due to infarction in years with influenza A
than in years without?” The sequence of pulses then
represents years with influenza A.

Responses to an intervention need not to occur
instantaneously; a preventive program may show an
effect eventually after a delay. In addition, effects of
preventive programs need not show a “permanent”
effect. Decomposing the dummy input into a short-
term and a long-term component may help to decide
if an effect is only transient. Outliers in ARIMA time
series may be detected and removed by introducing
corresponding pulse inputs.

A complementary method to intervention analysis
is forecasting: a forecast obtained from data before
the intervention may be compared with actual data
obtained after the intervention [3].

Literature

A nontechnical introduction to intervention analysis
is given by McCleary & Hay [8]. The classical refer-
ence to ARIMA models by Box & Jenkins [1] does
not include intervention analysis. The authoritative

presentation of intervention analysis is that of Box &
Tiao [2]. Jenkins [7] provides instructive case stud-
ies in the fields of business, industry, and economics.
A review, examples, and references of studies con-
cerned with intervention analysis in medicine may
be found in [5]. Applications and references of stud-
ies concerned with intervention modeling of single
patient time series are presented in [4].
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Interviewer Bias

Interviewer bias is a type of information bias (see
Bias in Observational Studies; Bias, Overview) that
arises when an interviewer consciously or uncon-
sciously elicits inaccurate information from study
subjects. Interviewer bias can result in differential
error, which can seriously distort disease–exposure
associations, if the interviewer is aware of the dis-
ease status and exposure hypothesis in a case–control
study, or if the interviewer is aware of the exposure
status and outcome hypothesis in a cohort study.
In the former case, the interviewer may probe more
deeply for evidence of exposure among cases than
among controls. In the latter case, the interviewer

may try to elicit evidence of health effects more assid-
uously in exposed than in unexposed cohort members.
Methods used to minimize interviewer bias include
providing structured questionnaires (see Question-
naire Design), training interviewers to follow a fixed
pattern of questioning, and, where possible, keeping
interviewers unaware of the disease status and expo-
sure hypotheses of greatest interest in case–control
studies, and unaware of exposure status and health
outcome hypotheses of greatest interest in cohort
studies (see Blinding or Masking).

(See also Bias in Case–Control Studies; Bias in
Cohort Studies; Interviewing Techniques).

MITCHELL H. GAIL



Interviewing Techniques

Interviewers have a variety of roles and responsi-
bilities in conducting a survey. Primarily, they are
responsible for the collection of data by administering
a data collection instrument (see Questionnaire
Design). Other roles include conducting screen-
ing interviews to ensure the respondent selected
meets the requirements of the survey design plan,
gaining respondent cooperation, accurately cod-
ing and editing data, and representing the survey
sponsor to the public. Twenty years ago, inter-
viewer techniques were almost exclusively designed
for household, face-to-face interviews. In recent
years, the advent of computer-assisted interview-
ing (CAI), which includes computer-assisted tele-
phone interviewing (CATI) and computer-assisted
personal interviewing (CAPI), have had a marked
effect on the techniques used by survey inter-
viewers. The following standard techniques, as
well as techniques used specifically for CAI, are
based on contemporary interviewer training manu-
als [1, 2].

Introducing the Survey and Gaining
Cooperation

An interviewer’s first contact with the respondent is
crucial for several reasons. First, the purpose and
importance of the survey is communicated. Secondly,
rapport between the interviewer and respondent is
established. Thirdly, and perhaps most important,
cooperation of the respondent to participate is usually
received.

The interviewer must convey the purpose and
importance of the study in a simple and direct man-
ner. This is sometimes awkward if the interviewer
must read verbatim a long and complex script. After
reading the introduction, the interviewer must be able
to paraphrase effectively what was read so that the
respondent begins to feel and understand that it is
important to participate. Discussing participation in a
confident, friendly, empathetic tone can help to elim-
inate hesitancy on the respondent’s part. Interviewers
can allay concerns by suggesting that they start the
interview and reiterating that the respondent does not
have to answer any question that may be too personal.

This is an effective way to coach a reluctant respon-
dent to participate and allows the respondent to feel
that he/she has some control over the interview situ-
ation.

Typically, respondents are given assurances of
confidentiality and, if under the auspices of an offi-
cial agency, authorization for the survey during the
first contact. While this may seem like a technical
requirement, respondents often feel more at ease and
are more willing to respond once they know the pur-
pose of the survey, and they understand that the
information they are providing will be held strictly
confidential. Reluctant respondents often are con-
cerned about how they were selected. Virtually every
interviewer has had a respondent ask: “How did
you get my name?” If the survey is a random
sample, then interviewers need to explain the pro-
cess in a clear and concise manner. Interviewers
should listen carefully to all questions and comments
from the respondent and should answer only what is
asked.

Handling respondents who refuse to participate
(see Nonresponse) is probably the most challenging
component of an interviewer’s job. In any survey,
there are respondents who simply do not want to
be interviewed. Some respondents refuse outright
and others indicate refusal indirectly by avoiding the
interview or constantly rescheduling. While a rela-
tively high number of initial interview contacts result
in rescheduling, few refusals actually do occur in a
well-planned survey. The interviewer is the major
influence on the motivation of the respondent and on
the quality of the responses received. Interviewers can
subtly communicate their interest in the study, their
enthusiasm about their work, and even their positive
feelings about the respondent, all of which increase
survey cooperation.

Interviewers are trained to convert a potential
refusal into cooperation. A good interviewer will use
techniques that reduce covert negative issues likely
to cause refusals. Respondents may be mistrustful of
the interviewer, may see participating in a survey as
an invasion of their privacy, or may not understand or
believe assurances of confidentiality and anonymity.
Respondents may also feel threatened about the sur-
vey’s topic, especially if it is sensitive. Interviewers
can discuss the respondent’s concerns in an open,
relaxed manner and usually can convince them to
start the interview.
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Interviewing a Survey Respondent

Ask Each Question Exactly as Worded. This is a
standard long held in survey design. If questions
are not read exactly as worded, they may not yield
comparable results. Research has shown that even
minor changes in wording can change response dis-
tributions. It is true, however, that interviewers are
allowed to depart from the standard wording, but that
is only after they have first asked the standard form
of the question and attempted to get an answer.

Ask Every Question. Although the answer to a given
question may seem obvious, interviewers must ask
the question and obtain a response. Occasionally, the
respondent provides an answer which applies to a
question asked later in the interview. In this case, the
interviewer should verify the answer to the question.

Maintain Positive Rapport. Offering the respon-
dents some assurance that they are doing well and
that their responses are valuable can increase their
willingness to participate. Comments such as “Yes,
I see” show the respondents that their answers are
important and interesting to the interviewer. This can
stimulate a respondent to talk further and to engage
more actively in the survey process.

Use Effective Probing Techniques. When the res-
pondent’s answer does not meet the question’s objec-
tive, or when a respondent seems to have misunder-
stood the question, interviewers need to probe for
clarification or correction. One of the most common
probes is to ask the respondent to repeat the answer –
this often prompts the respondents to expand on the
answer, offer more information, or correct an answer.
Another common probe technique is to reread the
question. This often results in the respondent pay-
ing closer attention to the question and revising the
answer.

In general, interviewers should not probe by para-
phrasing a question, offering additional explanations
(unless this is provided for in the interviewer’s man-
ual), or assuming responses that may seem obvi-
ous from prior answers. Rather, probing should take
the form of more general questions (“What do you
mean?”) or should be an attempt to improve the speci-
ficity of a response (“Could you put your answer in
terms of days?”).

The danger of probing is that the interviewer can
influence the respondent’s answer and approach to
other questions. Also, it can unnecessarily prolong the
interview and convey a more conversational, informal
tone. It is important for the interviewer to probe
only when necessary and then return to asking survey
questions. Probes should be neutral and not convey a
right or wrong answer. For example, if the respondent
says she had between five and eight visits to the
doctor, a biased probe would be “So, would you
say five is about right?” and a neutral probe would
be “Would you say the number of visits was closer
to five or closer to eight?” Interviewers can also
probe using statements and questions that indicate
their uncertainty, such as “I don’t know quite what
you mean,” or “Which figure would you say comes
closer?” It is important when using these sorts of
probes to keep the tone positive, and not intimate that
the respondent gave a wrong answer. In fact, some
interviewers find it useful to probe with a suggestion
that it is the interviewer who is misunderstanding
(e.g. “I’m not sure what you mean by that; could
you tell me a little more?”).

One exception to the probing guidelines above
is when an interviewer is conducting a cognitive
interview. Cognitive interviews are typically used in
pretests to identify flawed questions prior to field-
ing the survey. Cognitive interviewers specialize in
applying cognitive psychology principles to under-
standing the survey response process. These inter-
viewers depart freely from the questionnaire to probe
intensively. Probes are not used to help record or code
information given by the respondent; rather, they are
qualitative in nature and used to determine whether
the respondent is having difficulty comprehending the
question, recalling the information asked, or using
an inappropriate response strategy (like estimating or
guessing). Examples of typical probes used in cogni-
tive interviews include “Can you paraphrase for me
what you think this question is asking?”, “Tell me
how you arrived at your answer?”, and “How sure
are you that your answer is correct?”

Interviewer’s Manner and Nonverbal
Communication

Whether in person or on the telephone, interview-
ers must uniquely combine a friendly approach with
an official, businesslike manner. Respondents often
begin to talk about the subject matter of a question-
naire, and if the interviewer becomes distracted or
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becomes too engaged in social conversation with the
respondent, it is often difficult to return to asking
survey questions.

It is important that interviewers maintain an objec-
tive attitude. They should never indicate a personal
opinion about a reply or a survey topic. Furthermore,
they need to be acutely aware of facial expressions,
mannerisms, tone of voice, and other spontaneous
reactions to respondent answers. Expressions of sur-
prise, amusement, disapproval, or even sympathy
may cause respondents to give untrue answers or to
withhold information. Objectivity is the most effec-
tive method for putting respondents at ease and mak-
ing them feel free to answer questions honestly.

For telephone interviews, it is essential that the
interviewer’s tone be pleasant and friendly, that they
speak clearly, and that they are familiar enough
with the instrument to avoid long pauses or delays.
Pauses on the telephone are awkward, and may give
the impression that the interviewer is waiting for
an explanation from the respondent. Hesitation and
expressed uncertainty about what to ask may create
a negative impression in a telephone contact that
would not have necessarily occurred in a face-to-face
interview.

Telephone surveys, in general, are administered
more quickly than a face-to-face interview because
interviewers tend to read the questions faster and
respondents tend to answer quicker and are less
inclined to engage in social discourse. However,
rushing can also give the appearance of lacking
confidence and may cause the listener to misunder-
stand. Telephone interviewing should be confined to
shorter data-collection instruments (see Telephone
Sampling).

Computer-Assisted Interviewing (CAI)

Field data collection using computers is a new
approach in many surveys. Clear benefits of CAI are
that it eliminates editing responsibilities of the inter-
viewer and keying of questionnaire data, resulting in
quicker availability of results. Using a computer to
collect interview data offers some important advan-
tages to actual interviewer techniques as well.

First, the computer presents the correct sequence
of questions based on the information and
the responses already entered. This relieves the
interviewer of a burden as they do not need to

follow skip instructions, check items, and so forth.
The computer also checks responses to ensure that
all applicable items are answered appropriately. For
example, where possible answers to a question are
1 (Yes) or 2 (No), the computer will reject other
answers, and prompt the interviewer either to reask
the question or to check the entry they made. Clearly,
the use of computers is expected to help interviewers
do their job more efficiently by eliminating tedious
paperwork and freeing them to concentrate on actual
data collection and building rapport with respondents.

One advantage of CAI interviews is that the pro-
gram can easily provide on-screen instructions or
other helpful information. For example, the screen
may display previously provided names of family
members so that the interviewer can refer to them
by name in follow-up questions. This helps the inter-
viewer administer the questions in a more friendly,
casual manner. During the interview, the disadvan-
tage to a lot of on-screen instructions and informa-
tion is that the interviewer must not devote much
time to reading the screen and trying to familiarize
her/himself with instructions and other screen entries.
This can hurt the interviewer’s credibility as a well-
trained professional, and can serve to distract and/or
disengage the respondent. The interviewer’s training
must thoroughly familiarize the interviewer with the
screens and instrument flow.

Another advantage of CAI is that each displayed
screen can have an accompanying HELP screen, read-
ily providing interviewers with screen-specific infor-
mation, definitions, and explanations. This preserves
the interviewer’s sense of confidence, and improves
data quality.

In CAPI surveys, interviewers have to be sensitive
to the respondents’ perception of the use of a com-
puter to enter data. Some respondents perceive the
computer as a means of entering their data into some
sort of an open “information highway”, and need to
be assured that computers actually go further to pro-
tect confidential data. The computer may also serve
as a barrier to good eye contact between the inter-
viewer and respondent. In addition, if the interviewer
is not comfortable with the computer program, they
may spend too much time attending to the computer
to the exclusion of the respondent. One point that
interviewers should remember is that the respondent
usually cannot see the screen that the interviewer is
looking at, in contrast to being able to see a paper and
pencil questionnaire. Also, because the interviewing
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program will perform internal consistency edits based
on information previously and subsequently provided,
the programs often identify inconsistent answers that
the interviewer has to probe about. If this is not
done in a sensitive manner (e.g. “I must have entered
something wrong – let me ask that question again.”),
respondents may begin to feel defensive about their
answers and disengage from the survey process.

Last, interviewers may have more difficulty show-
ing cards, life history calendars, or other tools that
they need to give to the respondent during the inter-
view. Depending on where the computer is set up, if it
is sitting on the interviewer’s lap and the respondent
is not close by, too much distance may be created
which will make these survey aides awkward to use.
Also, if interviewers are forced to stand while con-
ducting CAPI interviews, they lose the mobility to
use ancillary interviewing tools smoothly.

Conclusion

Good interviewing techniques apply to all modes
of interviewing: face-to-face, telephone, CATI, and
CAPI. Each interviewing mode also makes unique
demands on the interviewer. The current trend

towards increasing use of CAI requires interviewers
to fortify themselves with all the standards of good
interviewing techniques, and develop automation
skills as an additional requirement. Interviewers
are also being required to administer a survey for
an increasingly resistant respondent pool, and to
manipulate the dynamics of the interviewing situation
to maintain respondent cooperation and interest.
Newer and more effective training strategies need
to be developed to equip interviewers with all the
skills demanded by a fast-paced, changing survey
environment.
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Inverse Gaussian
Distribution

In 1828 the English botanist Robert Brown described
observations made on the motion of plant pollen
immersed in water. He found a swimming, dancing
motion from pollen from many different plants and
he extended his research to include particles of fos-
silized plants and mineral specimens. Apparently, he
believed that he had discovered a new type of par-
ticle. His work led to the realization that the motion
was a physical phenomenon rather than biologic.

Bachelier (1900) and Einstein (1905) derived
the normal distribution as the model for Brownian
motion. Wiener (1923) gave the theory of a
measure on the path space. Schrodinger (1915)
considered Brownian motion with a positive
drift, and obtained the distribution of the first
passage time to describe the position of a
particle performing Brownian motion. Tweedie [5]
noticed the inverse relationship between cumulant
generating functions, and proposed the name
inverse Gaussian distribution. Wald [6] obtained the
distribution as an approximation of the sample size
distribution in a sequential probability ratio test.
The distribution is sometimes known as Wald’s
distribution.

The probability density function of the inverse
Gaussian distribution, denoted by IG(µ, λ), is

fx(x : µ, λ) =
(

λ

2πx3

)1/2

exp

[−λ(x − µ)2

2µ2x

]
,

with µ > 0, λ > 0, and x > 0. The mean is µ and
the variance is µ3/λ. The unimodal density function,
a member of the exponential family, is skewed to
the right (see Skewness). Its shape resembles other
skewed density functions such as the lognormal,
Weibull, and gamma. It can be obtained from
the Wiener process X(t) with positive drift ν and
variance parameter σ 2 (see Brownian Motion and
Diffusion Processes). Starting at zero, the time, T ,
for X(t) to reach the barrier a(a > 0) for the first
time is called the first passage time and has an inverse
Gaussian distribution with µ = a/ν and λ = a2/σ 2.

Unlike the Weibull or gamma distributions, the
inverse Gaussian distribution allows exact sampling
distributions. The sufficient statistics X and T =∑

(1/X − 1/X), or a one-to-one function of X and
T , are the basic quantities which are used in all of
the hypothesis tests, confidence intervals, etc. X

is also inverse Gaussian and λT is independently
distributed as a chi-square distributed variable with
n − 1 degrees of freedom.

Statistical methods based on the distribution have
been developed to include the point and interval
estimation of parameters, prediction intervals,
estimation of the cumulative distribution function
(cdf), analysis of residuals (one-way and two-way),
regression analysis, and reliability analysis (see
Survival Analysis, Overview).

The distribution has been used to describe phe-
nomena in many of the sciences. In the biosciences,
Sheppard & Savage [4] made use of the distribution
to describe the length of time a particle remains in
the blood. Since then it has been used in modeling
maternity data, crop field size, shelf life, and many
other types of data. Eaton & Whitmore [2] modeled
the length of stay in a hospital as an inverse Gaussian
variable.

For additional information, see [1] and [3].
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Inverse Probability
Weighting in Survival
Analysis

Introduction

Modern epidemiologic and clinical studies aimed
at analyzing a time to an event endpoint T

routinely collect, in addition to (possibly censored)
information on T , high-dimensional data often in the
form of baseline (i.e. time-independent covariates
V (0)) and time-dependent covariates V (t) , t > 0,

measured at frequent intervals. Scientific interest,
however, often focuses on a low-dimensional
functional β = β (FX) of the distribution FX of the
(intended) full data X = (

T , V (T )
)

where V (t) ≡
{V (u) : 0 ≤ u ≤ t}. Inverse probability weighted
augmented (AIPW) estimators of β meet the analytic
challenge posed by these high-dimensional data
because they are consistent and asymptotically
normal (CAN) under models that do not make
assumptions about the parts of FX that are of little
scientific interest. As such, they are not subject to
biases induced by misspecification of models for
these secondary parts of FX .

AIPW estimators were originally introduced by
Robins and Rotnitzky [21] as part of a general
estimating function methodology in coarsened,
that is, incompletely observed, data models under
nonparametric or semiparametric models for
arbitrary full-data configurations X when the data
are coarsened at random (CAR) [5, 6, 8] and
the coarsening, that is, censoring or missingness,
mechanism is either known or correctly modeled (see
Missing Data). The AIPW estimators generalized
and made efficient the nonaugmented inverse
probability weighted estimators proposed by Koul,
Susarla, and van Ryzin [12], and Keiding, Holst,
and Green [10]. Robins and Rotnitzky [21] derived
their methodology drawing from the modern theory
of semiparametric efficiency due to Bickel, Klaassen,
Ritov, and Wellner [3], Newey [14], van der Vaart
[39, 40] among others. In this article, we restrict the
discussion to coarsened data in the form of right-
censored failure-time data. In this setting, the full
data are X = (

T , V (T )
)
, the observed data are Y =(

T̃ = min (T , C) , ∆ = I (T ≤ C) , V
(
T̃

))
, where C

is a censoring variable, and C and T are continuous
positive random variables. Furthermore, the CAR
assumption is equivalent to

λC (u|X) = λC

(
u|V (u)

)
for all u ≥ 0, (1)

where λC (u|·) = limh→0+ Pr(u ≤ C < u + h|·, C ≥
u, T ≥ u) is the cause-specific hazard for censoring.
Therefore, the coarsening mechanism is determined
by the stochastic process G ≡ G(·), where G(u) ≡
exp

{− ∫ u

0 λC

(
t |V (t)

)
dt

}
.

AIPW Estimators Under CAR

Motivation: the Curse of Dimensionality

When the data are CAR, the likelihood Ln (FX, G)

based on n i.i.d. copies of Y factorizes as
Ln (FX, G) = L1,n (FX)L2,n (G), where G denotes
the coarsening mechanism, that is, the conditional
distribution of the observed data Y given the full data
X, and FX is the cumulative distribution function of
X. Thus, for models in which G and FX are variation
independent, any method that obeys the likelihood
principle must result in the same inference about
β regardless of whether G is known, completely
unknown or known to follow a model. However,
under non- or big semiparametric models for FX,
Robins and Ritov [20] have shown that due to
the curse of dimensionality, with high- dimensional
coarsened at random data, any method of inference
that obeys the likelihood principle and thus ignores
G must perform poorly in realistic sample sizes as
the following example illustrates.

Example Suppose that no covariates V (t) are
measured for any t > 0 and, to simplify the
notation, let W denote V (0). Under CAR,
Ln (FX, G) = L1,n (FX)L2,n (G), where L1,n (FX) =∏n

i=1 fT |W
(
T̃i |Wi

)∆i
(
1 − FT |W

(
T̃i |Wi

))1−∆i
fW(Wi).

Suppose that we are interested in estimating β =
Pr (T ≤ t) for a fixed t . Because β = β (FX) =
EFW

{
FT |W (t |W)

}
, its MLE β̂ is equal to β

(
F̂X

)
,

where F̂X is the Maximum likelihood estimator
(MLE) of FX. Since the MLE of FW is the empirical
cdf of W , then β̂ = n−1 ∑

i F̂T |W (t |Wi). The MLE
F̂T |W of FT |W=Wi

is given by the Kaplan–Meier esti-
mator based on the subsample {Yi : W = Wi}. If W is
continuous, each subsample consists of one observa-
tion, so the nonparametric MLE of FT |W=Wi

assigns
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probability 1 to T̃i ; however, when ∆i = 0, the
NPMLE of FT |W=Wi

assigns probability 0 to the inter-
val

[
0, T̃i

]
and it is undefined on

(
T̃i , ∞)

. Thus, when
W is continuous the NPMLE of FT |W=Wi

is undefined
for some observed values of Wi and hence the MLE
of β is also undefined. One could assume that FT |W
was smooth in W and use multivariate smoothing
techniques (see Smoothing Hazard Rates). How-
ever, when W is high dimensional, FT |W would not be
well estimated with the moderate sample sizes found
in practice, because no two units would have values
of W close enough to allow the borrowing of infor-
mation needed for smoothing. Thus, unrealistically
large sample sizes would be required for any estima-
tor of β to have an approximately centered normal
sampling distribution with variance small enough to
be of substantive use.

AIPW estimators depend on a model for G and
thus violate the likelihood principle, yet they yield
estimators that are well behaved with moderate sam-
ple sizes. Locally efficient AIPW estimators of β

(defined in the next section) simultaneously correct
for bias due to dependent censoring attributable to
the covariate process V (t) and recover information
from the censored observations by nonparametrically
exploiting the correlation between the process V (t)

observed up to the censoring time and the unobserved
failure time T .

Even under CAR, because of the curse of dimen-
sionality, well-behaved estimators of β in finite sam-
ples do not exist unless one imposes additional
restrictions on either the coarsening mechanism G or
on the non- or semiparametric model for FX. Hence,
the best that can be hoped for is an estimator that is
CAN under the CAR assumption (1) when either (but
not necessarily both), a lower-dimensional model for
G or a lower-dimensional model for FX is correct.
Such an estimator, when it exists, is called doubly
robust (DR). Scharfstein, Rotnitzky, and Robins [29],
Robins [18], Robins, Rotnitzky, and van der Laan
[25] and van der Laan, and Robins [38] provide a
broad theory of double robustness in CAR mod-
els. Using this theory, these authors show that the
locally efficient AIPW estimators (described in the
next section) are doubly robust. Robins and Rotnitzky
[22] provide a summary of known results on double-
robust estimation, including estimation in nonignor-
able models, that is, when CAR is not assumed.

Locally Efficient AIPW Estimation

Suppose that β = β (FX) is a smooth k × 1 parameter
under a non- or semiparametric model MFull for FX.
That is, β (FX) is estimable at rate

√
n under all

laws FX in model MFull when X is fully observed
for all n sample units. The general algorithm for
the construction of locally efficient AIPW estimators
of a k × 1 vector β (FX) starts with the specifica-
tion of a full-data orthogonal estimating function
D (β, ρ) = d (X; β, ρ) for β. This is a k × 1 vec-
tor function of the full data X, of β and, possibly, of
a nuisance parameter ρ, such that each component
of D (β (FX) , ρ (FX)) has mean zero and covariance
zero with any nuisance score under FX, for all FX in
MFull. We need to allow the orthogonal estimating
equation to possibly depend on a nuisance parameter
ρ so as to make the general methodology applicable
to a broad class of estimation problems. For instance,
in the Cox proportional hazards model with time
independent covariates, ρ ≡ ρ (·), where ρ (u) is the
mean of the covariate among subjects who fail at
time u.

The full data-estimating function D (β, ρ) gives
rise to the observed data-estimating function

U {D (β, ρ) , G} − A
(
hFX

, G
)

(2)

The term U {D (β, ρ) , G} is an inverse probability
weighted estimating function defined as

U {D (β, ρ) ; G} = τD (β, ρ)

G (T ∗)
, (3)

where T ∗ is the minimum time such that D (β, ρ)

is observed and τ = I (T ∗ < C) is the indicator
that D (β, ρ) is observed. The critical point
of inverse probability weighting is that when
Pr (τ = 1|X) > 0, the estimating function is an
unbiased inverse probability estimating function
because, under CAR, Pr (τ = 1|X) = G(T ∗) and,
thus, EG [U {D (β, ρ) ; G} |X] = D (β, ρ).

The second term in (2) is a mean zero augmen-
tation term which, for any function h

(
u, V (u)

)
, is

defined as

A (h, G) =
∫ T̃

0

[
h

(
u, V (u)

)
/G (u)

]
dMC (u) , (4)

where dMC (u) = I
(
T̃ = u, ∆ = 0

) − I
(
T̃ ≥ u

)

λC

(
u|V (u)

)
du. The function hFX

in (2) depends on
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FX and G and is defined as

hFX

(
u, V (u)

) = −E
[
UD (β, ρ) |V (u) , T ≥ u

]
.

(5)

A doubly robust, locally efficient AIPW estimator
β̂ (D) that uses D (β, ρ) is the solution to

n∑

i=1

[
U

{
Di (β, ρ̂ (β)) ; Ĝ

} − Ai

(
h

F̂X
, Ĝ

)]
= 0,

(6)

where F̂X and Ĝ are the maximum likelihood estima-
tors of FX and G under parametric or semiparametric
working models Mwork ⊂ MFull for FX and Gwork for
G and ρ̂ (β) is an estimator of ρ such that ρ̂ (β) eval-
uated at the true β converges at an appropriate rate
(usually n1/4) to ρ (FX) if either, but not necessarily
both, working models are true; see van der Laan and
Robins, 2003, for construction of ρ̂ (β). The estimator
β̂ (D) has the following properties.

(a) If Pr (τ = 1|X) > σ > 0, β̂ (D) is doubly
robust. That is, provided F̂X and Ĝ converge
at a sufficiently fast rate to FX and G under
Mwork and Gwork respectively, β̂ (D) is CAN in
the union model that assumes that FX ∈ MFull,
CAR and either FX ∈ Mwork or G ∈ Gwork.

(b) There exists Dopt (β, ρ) such that β̂
(
Dopt

)
is

locally semiparametric efficient in the union
model of (a) at the intersection submodel where
both Mwork and Gwork are correct. Robins and
Rotnitzky [21], and van der Laan and Robins
(2002) show how to derive Dopt.

The previous results can be derived from the
results in Robins and Rotnitzky [21], which provide a
general representation for the influence functions and
the efficient score of estimators of smooth parameters
β = β (FX) of non- or semiparametric models MFull

for distributions FX of arbitrary full-data configura-
tions X under parametric, semiparametric or nonpara-
metric CAR models for the censoring or missingness
mechanism.

Example (continued) When β = P (T ≤ t) for a
fixed t , then D (β, ρ) = I (T ≤ t) − β does not dep-
end on a nuisance parameter and, because the full-
data model is nonparametric D (β, ρ) is, up to a

multiplicative constant, the unique (orthogonal) unbi-
ased estimating function. In this setting, we have
T ∗ = min (T , t) and

hFX
(u, W) = E {I (T ≤ t) − β|W, T ≥ u}

= FT |W,T ≥u (t |W, T ≥ u) − β. (7)

To obtain a locally efficient DR estimator of β, we
specify a low dimensional, for example, parametric,
model FT |W (u|W ; η) for FT |W (u|W) and compute
the maximum likelihood estimator η̂ of η under the
model. We leave the marginal distribution of W

unrestricted so its MLE is the empirical distribution
of W . In addition, we specify a low-dimensional
model for G(u), for example, we may postulate
a Cox proportional hazards model λC (u|W) =
λ0 (u) exp

(
γ ′m(W)

)
and estimate γ with the Cox

partial likelihood estimator γ̂ and λ0 (u) with the
Cox baseline hazard estimator λ̂0 (u) regarding the
censoring times as the outcomes and the failure times
T as the censoring times for C. We then compute
Ĝ (u) = ∏{

i :̃Ti≤u,∆i=0
} [

1 − λ̂0
(
T̃i

)
exp

(
γ̂ ′m(W)

)]
.

We compute h
F̂X,̂G

(u, W) using F̂T |W (u|W ; η) =
FT |W (u|W ; η̂) and β̂MLE = n−1 ∑n

i=1 F̂T |W (t |Wi).
Then we solve (6) to obtain β̂ (D). Note that
β̂MLE is the MLE of β under model FT |W (u|W ; η).
Thus, β̂ (D) is CAN, well behaved in finite
samples and generally more efficient than β̂ (D) if
the working model FT |W (u|W ; η) holds. However,
β̂MLE, in contrast to the doubly robust estimator
β̂ (D), is inconsistent if the model FT |W (u|W ; η) is
mispecified.

A Survey of Applications of the AIPW
Methodology under CAR in Survival Analysis
Problems

The book of van der Laan and Robins [38] contains a
comprehensive treatment of the AIPW methodology
for estimation in censored and missing data models
and in counterfactual models for causal inference
under the CAR assumption. Here, we review the
literature on AIPW estimation restricting attention
to censored failure-time data in noncounterfactual
models.

Robins and Rotnitzky [21], Robins [16], and
Robins and Finkelstein [19] constructed locally effi-
cient AIPW estimators of the survival distribution of
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T and of regression parameters of Cox proportional
hazards models and accelerated failure-time models
for the conditional distribution of T given baseline
covariates. Robins [17] constructed AIPW estima-
tors of median regression models for right-censored
failure-time data; and Robins, Rotnitzky, and Zhao
[26], and Nan, Emond, and Wellner [13] described
AIPW estimation of Cox proportional hazards regres-
sion parameters with missing covariates. Robins, Rot-
nitzky, and Bonetti [23] described AIPW estimation
of a failure-time distribution under double sampling
with follow-up of dropouts. Hu and Tsiatis [7] used
the AIPW methodology to construct estimators of a
survival function from right-censored data subject to
reporting delays. Zhao and Tsiatis [41–43], and Van
der Laan, and Hubbard [35] constructed AIPW esti-
mators of the quality of life adjusted survival-time
distribution from right-censored data. Bang and Tsi-
atis [1, 2], and Strawderman [33] derived respectively
AIPW estimators of a median regression model for
medical costs from right-censored data and of the
mean of an increasing stochastic process. Van der
Laan, Hubbard, and Robins [36], and Quale, van der
Laan and Robins [15] constructed locally efficient
AIPW estimators of a multivariate survival function
when failure times are subject to a common censoring
time and to a failure-time-specific censoring respec-
tively. In the same setting, Keles, van der Laan, and
Robins [9] derived AIPW estimators that are easier to
compute and almost as efficient than the Quale et al.
estimators.

Robins and Rotnitzky [21] restricted their investi-
gation to data configurations for which the full data
X has a positive probability of being completely
observed. Their work was later extended to cen-
sored data structures under the CAR assumption in
which X is never completely observed. These exten-
sions include the estimation of the marginal survival
function of T and of regression parameters of an
accelerated failure-time model for the law of T , given
baseline covariates V (0) from current status and/or
interval censored data when the intensity function for
monitoring whether T has occurred by t depends on
the observed covariate history V (t) [34, 37].

AIPW Estimation without the CAR
Assumption

The CAR assumption (1) implies that the data
V (t) , t ≥ 0 include all the time-dependent and

time-independent prognostic factors for failure that
also predict censoring. In most studies, however,
data are typically available on some but not all
joint prognostic factors for censoring and survival
and hence, CAR fails. Scharfstein, Robins, Eddings,
and Rotnitzky [31], and Scharfstein and Robins [30]
have extended the AIPW methodology to allow
estimation of the marginal survivor function at a fixed
t , β = Pr (T > t), of a discrete and continuous failure
time T respectively under non-CAR models. Their
work was an extension to the analysis of failure-
time data of the AIPW methodology in non-CAR
models for non–failure-time endpoints derived in
a series of papers by Rotnitzky and Robins [27],
Rotnitzky, Shcarfstein, and Robins [28], Robins,
Rotnitzky, and Scharfstein [24], and Scharfstein,
Rotnitzky and Robins [29]. This methodology allows
the analyst to appropriately adjust for informative
censoring due to measured prognostic factors
while simultaneously quantifying the sensitivity of
inference to nonidentifying assumptions concerning
residual dependence between the failure time and
censoring due to unmeasured factors. For continuous
failure-time data, their approach relies on the
assumption that the censoring mechanism follows the
model

λC

(
u|V (u) , T

) = λ0,C

(
u, V (u)

)

× exp
{
q

(
u, V (u) , T

)}
for all u ≥ 0, (8)

where λ0,C

(
u, V (u)

)
is an unknown function and

q
(
u, V (u) , T

)
is a user-specified (i.e. known) func-

tion. The function q
(
u, V (u) , T

)
quantifies, for

those who remain at risk at time u, the dependence
measured on the hazard ratio scale between T and
censoring just after u after having adjusted for prog-
nostic factors V (u). The choice q

(
u, V (u) , T

) =
0 corresponds to an assumption slightly less strin-
gent than the CAR assumption (1). Scharfstein and
Robins, arguing like in Scharfstein, Rotnitzky, and
Robins [29], showed that their model, like models
proposed in the competing risks literature without
auxiliary data V (t) [4, 11, 32, 44, 45] is a non-
parametric, just identified model for the law of the
observed data Y ; that is, the function q

(
u, V (u) , T

)

is not identified, but, once specified, the survivor
parameter β is identified but the law of Y is not
restricted. Following the lead in the competing risks
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literature, these authors recommended drawing infer-
ence about β by varying q

(
u, V (u) , T

)
over a plau-

sible range, and described a useful parameterization
of this function for conducting such analysis.

Model (8) is stringent enough to allow identifi-
cation for β. However, as in the CAR model, the
model is not stringent enough to allow well-behaved
estimation of β in finite samples when the covari-
ate process is high dimensional because the function
λ0,C

(
u, V (u)

)
cannot be estimated well due to the

curse of dimensionality. In order to reduce the dimen-
sion of the unknown function λ0,C

(
u, V (u)

)
, Scharf-

stein and Robins [30] assumed a lower-dimensional
model for λ0,C

(
u, V (u)

)
of the form

λ0,C

(
u, V (u)

) = λ∗
0,C (u) exp

{
γ ′w

(
u, V (u)

)}
,

(9)

where λ∗
0,C (u) and γ are unknown and w

(
u, V (u)

)

is a user-specified function, and described AIPW
estimators of β under this model. Unlike the CAR
model, this model does not admit doubly robust
estimators [22].
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Ion Channel Modeling

Biological cells are enclosed by a phospholipid
bilayer that is almost impermeable to water and water
soluble molecules. Ion channels are proteins that span
the membrane with a central pore that can open under
certain conditions, allowing electrically charged ions
to pass through it forming a minute flow of electrical
current. Different kinds of channels allow the passage
of different ions, such as Na+ or K+.

The opening and closing of ion channels is called
gating. The major types of gating mechanism are
voltage gated (channels respond to changes in mem-
brane potential) and ligand activated (channels are
activated by binding with molecules of certain chem-
icals). All electrical activity in the nervous system
is regulated by ion channel gating, thereby control-
ling many diverse activities. Studying their behavior
increases our understanding of normal physiology
and the effect of drugs and toxins.

Measurements of the superposition of currents
through many channels are called macroscopic mea-
surements. For example, in the decay of a miniature
endplate current at the neuromuscular junction, sev-
eral thousand channels are involved, enough to pro-
duce a smooth curve in which the contribution of
individual channels is impossible to see. Experimen-
tal macroscopic measurements are made following a
jump change in conditions and the time course of the
subsequent current can be fitted by the sum of several
exponential curves with different time constants. If,
on the other hand, we record from a moderate num-
ber of channels, the fluctuations about the average
behavior become large enough to measure and they
can be studied by time series methods.

Since the pioneering patch–clamp experiments
of Neher and Sakmann [39] (see also [42]), it has
become routinely possible to observe currents of a
few picoamperes flowing through a single channel.
Apart from noise and inertia in the recording system,
we are essentially observing the opening and closing
of the channel. When the channel is open there is a

current of approximately constant amplitude (shown
as a downward deflection in Figure 1); when the
channel closes the current stops.

Single-channel Models

An ion channel consists of a single macromolecule
that can exist in a number, m, say, of different
chemical states, either by itself or in association
with molecules of a specific ligand. Under stable
conditions, we model transitions between these states
by a homogeneous continuous-time Markov chain
with transition rate matrix Q with elements

qij = lim∆t→0 P(X(t + ∆t) = j |X(t) = i)

∆t
, i �= j

(1)

where X(t) denotes the state occupied at time t .
Define qii = −∑

k �=i qik so the elements of each row
sum to zero.

For example, a five-state model has been used
to describe the nicotinic acetylcholine receptor. In
this mechanism, there may be one agonist molecule
(A) or two molecules (A2) bound to the shut channel
(R) or the open channel (R*). In Figure 2, three shut
states (3, 4, 5) are shown on the bottom row and two
open states (1, 2) on the top; on the right two agonist
molecules are bound, one in the middle and none on
the left.

The possible transitions are marked with appro-
priate rate constants. The rate constant for binding
one molecule when the channel is free is written as
2k+1 because there are two free receptor sites; simi-
larly, the dissociation rate for unbinding one of two
occupied receptors is written as 2k−2 (for the shut
channel) and 2k∗

−2 (for the open channel). For a reac-
tion involving a single molecule (e.g. a conformation
change), the transition rate is simply the reaction rate
constant. The same is true of dissociation (unbind-
ing) of a single molecule of ligand that is bound
to a receptor. For a reaction in which a free ligand

Figure 1 An example record of a current flowing through a single channel
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Figure 2 A simple model of an acetylcholine channel
showing 5 possible states

molecule binds to a receptor, the transition rate is
the product of the rate constant and the ligand con-
centration. The assumption that transition rates are
constant over time, implies that the ligand concen-
tration and membrane potential are constant; this is
usually not true in daily life but may be in controlled
experiments.

The transition rate matrix is

Q =





−(α1 + k∗
+2x) k∗

+2x 0 α1 0
2k∗

−2 −(α2 + 2k∗
−2) α2 0 0

0 β2 −(β2 + 2k−2) 2k−2 0
β1 0 k+2x −(β1 + k+2x + k−1) k−1

0 0 0 2k+1x −2k+1x



 . (2)

Note the multiplying factor, x, the free ligand con-
centration for the transition rates involving binding.
In choosing numerical values for the parameters, we
assume the principle of microscopic reversibility, so
that, in the absence of an energy source, each individ-
ual reaction will proceed, on average, at the same rate
in each direction. In particular, the product of transi-
tion rates around the cycle (1, 2, 3, 4) is the same in
both directions. A physically plausible example, with
x = 100 nM, is

Q=





−3050 50 0 3000 0
0.667 −500.667 500 0 0

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 15000 −19000 4000 0

15 0 50 −2065 2000
0 0 0 10 −10

-
-

-
-

-
-

-
-

-
-

-





,

(3)

where transition rates are in units of s−1. The matrix
has been partitioned with open states in the top

left corner. The doubly occupied state opens much
quicker and closes slower than the singly occupied
state, which is slow to open and quick to shut.

Many models can be constructed in this way;
some models can get quite large. Ball [1] studied a
model for the nicotinic acetylcholine receptor based
on molecular structure with 128 states of which 4 are
open; by exploiting symmetry this reduces to 3 open
and 69 closed states – still quite big!

Although one can eliminate some models for a
particular channel on the basis of observable char-
acteristics, some indeterminacy arises because we
cannot see which state the channel is in; only if
it is open or closed. Two or more distinct mod-
els may give rise to the same observable features
under fixed conditions, [24, 34]. Further discrimi-
nation between models is possible by observing the
same channel under different conditions of voltage or
agonist concentration.

Standard Markov chain theory yields the transition
probability matrix with elements pij (t) = P(X(t) =

j |X(0) = i) is given by P(t) = eQt , t > 0. Spectral
expansion of the matrix −Q with eigenvalues λi

leads to the expression

eQt =
m∑

i=1

e−λi tAi . (4)

Using this expansion it can be shown, [19], that
macroscopic current relaxes as a mixture of m − 1
exponential components, omitting the zero eigen-
value, as does the autocorrelation function in noise
measurements. Thus, for example, we expect to
see four components in the five-state model. How-
ever, some components of the mixture may corre-
spond to short-lived components (large λ) with small
weight, so they may be difficult to detect in prac-
tice. The apparent number of components observed
in such experiments, plus one, can thus only be
taken as a lower bound for the number of states in
the model.
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Behavior of Single Channels Under
Equilibrium Conditions

Open Times and Shut Times

If there is more than one open state, then an open
time starts when the channel leaves a shut state for an
open state, takes a tour round various open states and
ends by entering a shut state. For example, in the five-
state model an open time might start with a transition
from state 4 to state 1, make several transitions back
and forth between states 1 and 2, then end with a
transition from state 1 to state 4 or from state 2 to
state 3.

It is convenient to arrange that all the open states
be labelled as states 1, 2 . . .mo where mo is the
number of open states; the shut (or closed) states
having the highest numbered labels mo + 1 to mo +
mc = m. Then the Q-matrix can be partitioned as

Q =
(

Qoo Qoc

Qco Qcc

)
, (5)

where Qoo, a square matrix of dimension mo × mo,
contains all the transition rates between open states;
Qcc contains all the transition rates between closed
states; Qoc, Qco contain, respectively, the transition
rates from open to closed states and from closed to
open states, see (3).

The process may be seen as an alternating process
of open and closed intervals. If we note the durations
of these intervals and the states of the underlying
system in which such intervals begin, we have a semi-
Markov process with kernel matrix

G(t) =
(

0 Goc(t)

Gco(t) 0

)
. (6)

The ij th element of G(t) is a joint probability den-
sity for the duration of an interval and the probability
that it ends with a transition into state j , conditional
on starting an interval in state i. To obtain this ker-
nel, let Ro(t) be a matrix function whose ij th element,
where i and j are open states, is

Pr ob(X(t) = j and channel open throughout

time 0 to t |X(0) = i). (7)

Then Ro(t) = eQoot , t > 0, and Goc(t) =
Ro(t)Qoc = eQootQoc. Similarly, Gco(t) = eQcctQco.

A Markov chain embedded at the points where
intervals begin, records the states occupied at those

times. The transition probability matrix of this chain
is obtained by integrating with respect to t , yield-

ing G = ∫ ∞
0 G(t) dt =

(
0 Goc

Gco 0

)
, where Goc =

−Q−1
oo Qoc and Gco = −Q−1

cc Qco. If we consider only
the start of open intervals, the chain embedded at
those points has transition matrix GocGco. Let the
equilibrium distribution of this chain be denoted by
the row vector �o. The equilibrium distribution of
the entry states for closed intervals is then given by
�c = �oGoc.

To get the pdf of open times, we have to sum over
the possible closed states the channel might move to
at the end and, suitably weighted, sum over the states
that an open time might start in: so we get

fo(t) = �oGoc(t)uc = �oeQootQocuc

= −�oeQootQoouo, (8)

with mean open time µo = −�oQ−1
oo uo. In this equa-

tion uo, uc are column vectors of 1’s of appropriate
length. Note that, because the rows of the matrix Q
sum to zero, Qoouo + Qocuc = 0. If we use the spec-
tral resolution of the matrix −Qoo, we see that the
probability density function fo(t)can be expressed
as a mixture of exponential components with time
constants given by the mo eigenvalues of −Qoo.
Unlike the matrix −Q, it will not have a zero eigen-
value.

Similarly, interchanging o and c, we get the pdf
of shut times as

fc(t) = −�ceQcctQccuc, with mean shut time

µc = −�cQ−1
cc uc. (9)

The pdf can be expressed as a mixture of expo-
nential components with time constants given by the
mc eigenvalues of −Qcc.

So the distributions of open times and shut times
tell us something about the numbers of open states
and shut states, again with the caveat that we might
not be able to distinguish all components from an
experimental record.

Standard Markov chain theory tells us that the
duration of sojourns in a single state, state i say,
follow a simple exponential distribution with pdf
f (t) = −qiieqii t , for t > 0; and mean −1/qii . This is
a special case of the above distributions. In particular,
for the five-state model, the reciprocals of (minus)
the diagonal elements of Q give the mean lifetimes
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of sojourns in individual states 1–5 as 0.328 ms,
1.997 ms, 52.6 µs, 0.484 ms, and 100 ms respectively.

Joint Distributions

The joint probability density of an open time To and
the immediately following shut time Tc is given by

�oGoc(to)Gco(tc)uo.

Similar results may be obtained for any pair of
intervals. Joint distributions are useful in distinguish-
ing between mechanisms; see [23, 35, 36]. We can
also build up a likelihood for a complete sequence
of open times and shut times. If there are M pairs of
open and following shut times (tj , sj ), this takes the
form

�o

M∏

j=1

(eQootj QoceQccsj Qco)uo.

This can be maximized to estimate the parameters
of a given model and to test the fit of a model to
data – see [13, 24, 32].

Correlations between open times or shut times can
occur if there are at least two open states and two
shut states. The correlation between the duration of
an open time and the nth subsequent open time has
the form

ρn =
∑

wiλ
n
i , (10)

where the number of terms in the summation is
V − 1. Here λi are those eigenvalues of GocGco that
are neither zero nor one. V , the (vertex) connectivity
of the mechanism is the smallest number of states
that need to be removed (together with any links they
have) in order to separate the set of open states from
the set of shut states. Correlations between intervals
therefore tell us something about the connectivity
between open and shut states. In the five-state model,
we need to remove at least two states to separate the
open and shut states; so V = 2 and correlations die
away with lag n as a single geometric term.

Results on correlations are given in [4, 10, 12,
25]. Colquhoun and Hawkes [21] also studied the
distribution of openings and shuttings after a jump
in agonist concentration or voltage. The behavior of
various subsequent open and shut times (first, second
etc.) also depends on V .

Bursting Behavior

Openings usually seem to occur in bursts of activity.
A sequence of openings will be separated by brief

shuttings and then there will be a long shut period
before the activity starts again. This behavior can
be explained by dividing the shut states into two
categories: short-lived shut states and long-lived shut
states.

A detailed treatment of bursting behavior is given
in [20]. For the five-state model, the mean duration
of a stay in state 5 is very much longer than that in
any other state. Then shut times (gaps) within bursts
of openings are almost certainly sojourns within the
pair of shut states (3, 4); gaps between bursts will
consist of sojourns within the shut states that include
at least one visit to state 5. The distribution of gaps
within bursts is a mixture of two exponentials with a
mean of 57.6 µs, whereas gaps between bursts have
a mean of 3790 ms.

Information about gaps between bursts is unreli-
able because there may be more than one channel in
the recording environment so that, while the activ-
ity within a burst of openings almost certainly arises
from one channel, different bursts may arise from dif-
ferent channels. This is one reason for studying the
behavior of within-burst activity, as the information
arising from it should be fairly reliable. Distributions
derived include those for the number of openings per
burst, duration of a burst, total open time per burst,
individual openings within a burst (the first, second
etc.).

Time Interval Omission

A big problem in observing single-channel records
is that of time interval omission (TIO). Because of
noise and inertia in the recording system, very short
openings or shuttings, are likely to be missed. Results
get distorted because, for example, what appears to
be one long open time may actually be two or three
open times separated by shut times too short to be
distinguished. One way to cope with this is to study
the total burst length or the total open time per burst,
as these should be insensitive to missing short shut
times.

In order to allow for missed events when deal-
ing with the individual openings and shuttings it is
usual to assume a critical constant dead-time, ξ , such
that all open or shut intervals greater than this are
observed accurately but shorter intervals are missed
(a safe ξ value can be imposed retrospectively on
recorded data). We then work with apparent open



Ion Channel Modeling 5

times defined as periods that start with an open time
of duration greater than ξ that may then be extended
by a number of openings separated by shut periods
each of duration less than ξ ; they are terminated at
the start of a shut period of duration greater than ξ .
Apparent shut times are similarly defined.

Approximate solutions for the distributions of
apparent open times and apparent shut times were
used before Ball and Sansom, [11, 12], obtained exact
results in the form of Laplace Transforms and also
considered the effect of TIO on correlations between
intervals. Exact expressions for the pdfs of apparent
open times and shut times were found by Hawkes
et al. [29]. These are fine for small to moderate val-
ues of time t , but can be numerically unstable for
large t . These results were also studied in a general
semi-Markov framework, [6, 7]. Asymptotic approx-
imations can be found, [30, 33], that are extremely
accurate for values of t from very large right down
to fairly small; for small t the exact results are readily
obtainable, so that the distributions are obtained over
the whole range. If the true distribution is a mixture
of k exponentials, then the approximation to the dis-
tribution of apparent times allowing for TIO is also
a mixture of k exponentials; the time constants are,
however, different.

These methods were used to study the effect of
TIO on joint distributions of apparent open and shut
times, [23], and to calculate the likelihood of a
complete series of intervals, and thus estimate the
model parameters; see also [18] for a study of the
performance of likelihood estimation. TIO can induce
some indeterminacy in the estimation of parameters.
For data recorded under fixed conditions there can
be two sets of parameters that seem to fit the data
equally well: typically a fast solution and a slow
solution. These can, however, be discriminated by
observing the same channel under different conditions
of voltage or ligand concentration, see [1, 3].

The TIO problem has been studied in the context
of recording apparent open and shut intervals stimu-
lated by a pulse of agonist concentration or voltage
change; see [22, 38].

Multiple Levels

So far we have discussed only channels that are open
or closed. Some channels, however, show several
different levels of current, corresponding to differ-
ent sets of states. It is possible to ignore this and

just analyze the system as open or closed, but this
loses information. Ball et al. [9] give a general treat-
ment of a multilevel system, deriving burst properties
including distributions of total charge transfer, total
sojourn time, and number of visits to each conduc-
tance level during a burst. Merlushkin [37] studied
various apparent sojourn distributions allowing for
TIO in the multilevel case.

Multiple levels sometimes arise from the presence
of more than one channel: if so, they are usually
treated as acting independently. However, various
models for systems of interacting channels are studied
in [5, 8, 14].

Hidden Markov Methods of Analysis

Several authors (e.g. [15–17, 26–28, 40, 41, 43])
have applied Bayesian or Hidden Markov methods
to the original noisy signals obtained from patch
clamp experiments. These can be used to extract
the ideal step-function signals (representing opening
and shutting) from the noise; they are also used to
estimate parameters in the models directly without
identifying individual open and shut times. These
techniques can cope with multilevel records as well
as the simple open/shut case. Markov chain Monte
Carlo methods of Bayesian analysis were applied
in [2, 31].

References

[1] Ball, S.S. (2000). Stochastic Models of Ion Channels .
PhD Thesis, University of Nottingham.

[2] Ball, F.G., Cai, Y., Kadane, J.B. & O’hagan, A. (1999).
Bayesian inference for ion-channel gating mechanisms
directly from single-channel recordings, using Markov
chain Monte Carlo, Proceedings of the Royal Society of
London A 455, 2879–2932.

[3] Ball, F.G. & Davies, S.S. (1995). Statistical inference
for a two-state Markov model of a single ion channel,
incorporating time interval omission, Journal of the
Royal Statistical Society B 57, 269–287.

[4] Ball, F.G., Kerry, C.J., Ramsey, R.L., Sansom, M.S.P. &
Usherwood, P.N.R. (1988). The use of dwell time cross-
correlation functions to study single ion channel gating
kinetics, Biophysical Journal 54, 309–320.

[5] Ball, F.G., Milne, R.K., Tame, I.D. & Yeo, G.F. (1997).
Superposition of interacting aggregated continuous-time
Markov chains, Advances in Applied Probability 29,
56–91.



6 Ion Channel Modeling

[6] Ball, F., Milne, R.K. & Yeo, G.F. (1991). Aggre-
gated semi-Markov processes incorporating time interval
omission, Advances in Applied Probability 23, 772–797.

[7] Ball, F.G., Milne, R.K. & Yeo, G.F. (1993). On the exact
distribution of observed open times in single ion channel
models, Journal of Applied Probability 30, 529–537.

[8] Ball, F.G., Milne, R.K. & Yeo, G.F. (2000). Stochastic
models for systems of interacting ion channels, IMA
Journal of Mathematics Applied in Medicine and Biology
17, 263–293.

[9] Ball, F.G., Milne, R.K. & Yeo, G.F. (2002). Multivari-
ate semi-Markov analysis of burst properties of mul-
ticonductance single ion channels, Journal of Applied
Probability 39, 179–196.

[10] Ball, F.G. & Rice, J.A. (1989). A note on single-channel
autocorrelation functions, Mathematical Biosciences 97,
17–26.

[11] Ball, F. & Sansom, M.S.P. (1988a). Aggregated Markov
processes incorporating time interval omission, Advances
in Applied Probability 20, 546–572.

[12] Ball, F.G. & Sansom, M.S.P. (1988b). Single-channel
autocorrelation functions: the effects of time interval
omission, Biophysical Journal 53, 819–832.

[13] Ball, F.G. & Sansom, M.S.P. (1989). Ion-channel gating
mechanisms: model identification and parameter estima-
tion from single channel recordings, Proceedings of the
Royal Society of London B 236, 385–416.

[14] Ball, F.G. & Yeo, G.F. (1999). Superposition of spatially
interacting aggregated continuous time Markov chains,
Methodology and Computing in Applied Probability 2,
93–115.

[15] Chung, S.H. & Cage, P.W. (1998). Signal processing
techniques for channel current analysis based on hidden
Markov models, Methods in Enzymology 293, 420–437.

[16] Chung, S.H., Krishnamurthy, V. & Moore, J.B. (1991).
Adaptive processing techniques based on hidden Markov
models for characterising very small channel currents
buried in noise and deterministic interference, Philo-
sophical Transactions of the Royal Society of London B
334, 357–384.

[17] Chung, S.H., Moore, J.B., Xia, L., Premkumar, L.S. &
Gage, P.W. (1990). Characterization of single channel
currents using digital signal processing techniques based
on hidden Markov models, Philosophical Transactions
of the Royal Society of London B 329, 265–285.

[18] Colquhoun, D., Hatton, C.J. & Hawkes, A.G. (2003).
The quality of maximum likelihood estimation of ion
channel rate constants, Journal of Physiology London
547, 699–728.

[19] Colquhoun, D. & Hawkes, A.G. (1977). Relaxation and
fluctuations of membrane currents that flow through
drug-operated channels, Proceedings of the Royal Society
of London B 199, 231–262.

[20] Colquhoun, D. & Hawkes, A.G. (1982). On the stochas-
tic properties of bursts of single ion channel openings
and of clusters of bursts, Philosophical Transactions of
the Royal Society of London B 300, 1–59.

[21] Colquhoun, D. & Hawkes, A.G. (1987). A note on
correlation in single ion channel records, Proceedings
of the Royal Society of London B 230, 15–52.

[22] Colquhoun, D., Hawkes, A.G., Merlushkin, A. &
Edmonds, B. (1997). Properties of single ion channel
currents elicited by a pulse of agonist concentration or
voltage, Philosophical Transactions of the Royal Society
of London A 355, 1743–1786.

[23] Colquhoun, D., Hawkes, A.G. & Srodsinski, K. (1996).
Joint distributions of apparent open times and shut times
of single ion channels and the maximum likelihood
fitting of mechanisms, Philosophical Transactions of the
Royal Society of London A 354, 2555–2590.

[24] Fredkin, D.R., Montal, M. & Rice, J.A. (1985). Iden-
tification of aggregated Markovian models: application
to the nicotinic acetylcholine receptor, in Proceedings
of the Berkeley Conference in Honour of Jerzy Neyman
and Jack Kiefer, L.M. Le Cam & R.A. Ohlsen, eds.
Wadsworth, Belmont, pp. 269–289.

[25] Fredkin, D.R. & Rice, J.A. (1987). Correlation functions
of a function of a finite-state Markov process with appli-
cation to channel kinetics, Mathematical Biosciences 87,
161–172.

[26] Fredkin, D.R. & Rice, J.A. (1992a). Maximum likeli-
hood estimation and identification directly from single-
channel recordings, Proceedings of the Royal Society of
London B 249, 125–132.

[27] Fredkin, B.R. & Rice, J.A. (1992b). Bayesian restoration
of single-channel patch clamp recordings, Biometrics 48,
427–448.

[28] Fredkin, B.R. & Rice, J.A. (2001). Fast evaluation
of the likelihood of an HMM: ion channel currents
with filtering and coloured noise, IEEE Transactions on
Signal Processing 49, 625–633.

[29] Hawkes, A.G., Jalali, A. & Colquhoun, D. (1990). The
distributions of the apparent open times and shut times
in a single channel record when brief events cannot be
detected, Philosophical Transactions of the Royal Society
of London A 332, 511–538.

[30] Hawkes, A.G., Jalali, A. & Colquhoun, D. (1992).
Asymptotic distributions of apparent open times and
shut times in a single channel record allowing for the
omission of brief events, Philosophical Transactions of
the Royal Society of London B 337, 383–404.

[31] Hodgson, M.E.A. (1999). A Bayesian restoration of
an ion channel signal, Journal of the Royal Statistical
Society B 61, 95–114.

[32] Horn, R. & Lange, K. (1983). Estimating kinetic con-
stants from single channel data, Biophysical Journal 43,
207–233.

[33] Jalali, A. & Hawkes, A.G. (1992). Generalised eigen-
problems arising in aggregated Markov processes allow-
ing for time interval omission, Advances in Applied
Probability 24, 302–321.

[34] Kienker, P. (1989). Equivalence of aggregated Markov
models of ion-channel gating, Proceedings of the Royal
Society of London B 236, 269–309.



Ion Channel Modeling 7

[35] Magleby, K.L. & Weiss, D.S. (1990). Identifying kinetic
gating mechanisms for ion channels by using two-
dimensional distributions of simulated dwell times, Pro-
ceedings of the Royal Society of London B 241, 220–228.

[36] Mcmanus, O.B., Blatz, A.L. & Magleby, K.L. (1985).
Inverse relationship of the duration of adjacent open
and shut intervals for Cl and K channels, Nature 317,
625–628.

[37] Merlushkin, A.I. (1996). Some Problems Arising in
Stochastic Modelling of Ion Channels due to Time Inter-
val Omission . PhD Thesis, University of Wales.

[38] Merlushkin, A.I. & Hawkes, A.G. (1997). Stochastic
behaviour of ion channels in varying conditions, IMA
Journal of Mathematics Applied in Medicine and Biology
14, 125–149.

[39] Neher, E. & Sakmann, B. (1976). Single-channel cur-
rents recorded from membrane of denervated frog mus-
cle fibres, Nature 260, 799–802.

[40] Qin, F., Auerbach, A. & Sachs, F. (2000a). A direct opti-
misation approach to hidden Markov modeling for single
channel kinetics, Biophysical Journal 79, 1915–1927.

[41] Qin, F., Auerbach, A. & Sachs, F. (2000b). Hidden
Markov modeling for single channel kinetics with fil-
tering and correlated noise, Biophysical Journal 79,
1928–1944.

[42] Sakmann, B. & Neher, E. eds. (1995). Single Channel
Recording, 2nd Ed. Plenum Press, New York.

[43] Venkataramanan, L. & Sigworth, F.J. (2002). Applying
hidden Markov models to the analysis of single ion
channel activity, Biophysical Journal 82, 1930–1942.

(See also Compartment Models; Mathematical
Biology, Overview)

ALAN G. HAWKES



Irwin, Joseph Oscar

Born: December 17, 1898, in London, UK.
Died: July 27, 1982, in Schaffhausen, Switzerland.

Reproduced by permission of the Royal Statisical Society

As the leading theoretician amongst British medical
statisticians in the 1930s and in subsequent decades,
Oscar Irwin played an important role in linking devel-
opments in statistical theory to applications in medi-
cal research.

At school, Irwin had specialized in classics before
he took up mathematics. In 1917 his entry to Cam-
bridge on a scholarship was delayed first by illness,
and then by a crucial period working under Karl
Pearson on anti-aircraft trajectories. On achieving his
degree in 1921, he joined Pearson’s staff at University
College. Renewed illness led to a period of recuper-
ation in Switzerland which initiated a life-long love
of that country and, in later life, to his marriage to a
Swiss wife.

In 1928, Irwin joined R. A. Fisher’s department
at Rothamsted, and thus became one of the few statis-
ticians to work with both Karl Pearson and Fisher. A
decade later, when Fisher and Egon Pearson occu-
pied adjacent floors at University College, Irwin was
said to be one of the few people to be persona grata
in both departments. During his period with Fisher,
ending in 1931, Irwin came to grips with the mathe-
matical theory published during the 1920s by Fisher,

who always retained a high opinion of Irwin’s math-
ematical ability.

In 1931, Irwin joined the staff of the Medical
Research Council (MRC), housed at the London
School of Hygiene and Tropical Medicine, where he
was to stay for most of the next 30 years. As an
MRC worker, Irwin had only a part-time university
appointment. However, for about 25 years he taught
a course in statistical methods, introducing many
relatively recent developments in the subject. During
the war years (1940–1945) he worked in Cambridge,
teaching statistics to mathematicians, many of whom
followed a subsequent career in statistics.

Irwin retired in 1965, after which he worked for
a short time at the Galton Laboratory, University
College London, before moving to Switzerland. He
was a Visiting Professor at the University of North
Carolina, Chapel Hill during three sabbatical periods.

Irwin’s early papers reveal great mathematical flu-
ency, which he retained throughout his life. In a
paper of 1927 [1] he derived the distribution of the
mean (see Sampling Distributions) from various
distributions using the characteristic function. At
Rothamsted he wrote on the influence of climatic fac-
tors on crop yield, but was perhaps more intrigued by
theoretic work on topics such as the analysis of vari-
ance. In 1931, he started a series of expository papers
on ‘Recent advances in mathematical statistics’, with
bibliographies, which were particularly influential at a
time at which few books on statistical theory existed.

His move to the MRC enlarged his research inter-
ests. He wrote several papers on factor analysis,
but during the 1930s, while his colleague and close
contemporary Austin Bradford Hill devoted himself
largely to epidemiologic and (later) clinical research,
Irwin’s interests focused on laboratory experimen-
tation. There were papers with H. Barkwith on the
dilution method of estimating bacterial densities,
and a developing interest in the methodology of bio-
logical assay, stimulated by his membership of a
committee of the British Pharmacopoeia Commis-
sion. There was a major paper in the 1937 Journal
of the Royal Statistical Society, Supplement [3], and
papers with E. A. Cheeseman clarifying the max-
imum likelihood solution in probit analysis (see
Quantal Response Models).

His 1935 paper in Metron [2] described the
“exact” test for two-by-two tables, derived and pub-
lished independently from Yates’ 1934 paper and
Fisher’s insertion in the 1934 edition of Statistical
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Methods for Research Workers (see Fisher’s Exact
Test). He also wrote extensively on theories of acci-
dent proneness.

After the war he embarked on many long-
term collaborative research programs, often for
official committees. These included collaborative
assays, especially for the standardization of vitamins,
nutritional studies, work on physiologic responses to
hot climates, laboratory tests for pertussis vaccines,
and tests for the carcinogenicity of tars and mineral
oils (see Tumor Incidence Experiments). The latter
work led to papers on the analysis of animal
carcinogenicity tests by actuarial methods. His
earlier work on accident proneness stimulated a
revived interest in long-tailed discrete distributions,
with some pioneering studies of the Waring
distributions.

Irwin played a very active role in the affairs
of the Royal Statistical Society, as President in
1962–1964, Editor of the Journal, Series B from
1949 to 1959, Chairman of the Study Section
in 1934–1935 and of the Research Section in
1947–1949, and recipient of the Guy Medal in
Silver. He was President of the British Region of the
International Biometric Society during 1958 and
1959.

Oscar Irwin was a man of wide cultural interests
and fine sensitivity. In some ways he was ill-adapted
to the more robust features of professional life, and
preferred quiet and intimate conversation to public
forum and debate. He exhibited great kindness to
visiting scientists and students; several young medical
visitors to the London School of Hygiene were given
tutorials on Fisher’s Statistical Methods for Research
Workers, a book for which Irwin retained undying
respect throughout his life.
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Isolated Populations

From the perspective of population genetics, a
population is described as a group of individuals who
can intermix freely such that there is no restriction
of gene flow among the members within the group
[11]. However, intermixing or gene flow does not
always occur freely among the members of natural
populations. To account for this phenomenon, popu-
lation genetic theory developed the concept of “sub-
structured populations”, in which partitions within
a natural population are allowed with incomplete
mixing between the subpopulations [32]. In certain
instances, a very small number of individuals are
isolated from their parental group and become the
founders of a new population. This population is
often small in size and geographically so isolated that
intermixing or sexual mating becomes almost exclu-
sively restricted to the members within the group.
Such groups of individuals established by a few
founders having limited contact with other groups,
have come to be known as “isolated populations”.
The degree of isolation can be varied, determined
by the number of founders, time of isolation, and
the extent of isolation (i.e. lack of gene flow with
others).

Examples

In the context of humans, there are numerous exam-
ples of isolated populations; the relatively better
known in the genetic literature are the Finns, Sardini-
ans, Icelanders, Bedouins, Lapps, Basques, Amish,
Hutterites, and some of the Polynesians islanders,
among others. Each of them has a unique evolution-
ary and demographic history in terms of the number
of founders, age of the population since founding and
other population-related factors, such as the growth
and expansion during the life of an isolate. Some of
the isolated populations were established far back in
time compared with others; some have maintained
a relatively constant population size over time, e.g.
the Saami of Scandinavia [14], while others like
the Finns experienced a large population expansion
after their founding [23, 26]. These demographic fac-
tors have profound effects on the genetic make-up
of a population, which consequently reflect on the
phenotype.

Genetic Characteristics of Isolated
Populations

The distinctive characteristics of isolated popula-
tions, namely, a limited number of founders and
lack of gene flow (or contact) with other popula-
tions, have some genetic consequences, which may
be used as signatures of isolation of the popula-
tion. First, being formed by a limited number of
founders, irrespective of the source of the founders,
an isolated population starts its evolution from a
somewhat restricted amount of genetic variation. This
restriction of genetic variability should be reflected in
heterozygosity (i.e. proportion of heterozygous indi-
viduals averaged over loci), or gene diversity (i.e.
complement of sum of squares of allele frequen-
cies, averaged over loci), as well as in the number
of segregating alleles [5, 17]. Secondly, the lack
of contact with other populations (i.e. the isolation)
also impacts genetic variation within isolated popu-
lations in a number of ways. New mutations, arising
in an isolated population, do not have a chance to
traverse easily to other populations, together with
which, genetic drift (being particularly strong due
to the small size of the isolated population) tends
to reduce its genetic variation. As a consequence, an
isolated population accumulates genetic divergence at
a detectably fast rate from its sister populations from
which it diverged after separation from their common
ancestry [4, 18].

While the above genetic signatures of popula-
tion isolation are generally seen at individual locus
levels, there are consequences of isolation at a mul-
tilocus level of genetic variation as well. For exam-
ple, the limited number of founders in an isolated
population necessarily brings in a limited supply of
haplotypes (i.e. multilocus combination of alleles
on chromosomes), signifying strong linkage dise-
quilibrium (LD, nonrandom association of alleles)
between loci. The LD between loci in an isolated
population is expected to remain strong, since the
limited population size does not allow recombina-
tion to occur as frequently as in a large population,
because of the smaller number of meiosis events
per generation. Thus, isolated populations that are
of recent origin should demonstrate stronger LD
between loci in comparison with large cosmopolitan
populations.

Of course, the demographic history of an iso-
lated population, following its foundation, also plays
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a role in molding its genetic variation in subse-
quent generations. The small founding population,
combined with effects of genetic drift in subse-
quent generations, results in likely elimination of
certain genetic attributes and enrichment of others.
This makes the genome of isolates more homoge-
neous than that of large cosmopolitan populations.
Geographic and reproductive isolation also leads to
limited mate choice and consequently results in a
higher coefficient of inbreeding. The drift effect
and inbreeding level lead to increased prevalence
of certain diseases (particularly the ones of reces-
sive mode of inheritance). Another important char-
acteristic feature is that the members of an isolate
generally share a common environment, e.g. climate,
nutrition, cultural habits, occupation and education
levels, substantially reducing the confounding effects
of environmental heterogeneity – an important fac-
tor in understanding the etiologies of common dis-
eases, which have both genetic and environmental
components.

Isolated Populations in Gene Mapping

Population isolates, thus, offer two very impor-
tant advantages for gene mapping: a homogeneous
genome, and a shared environment (see, for exam-
ple, [7] and [27]. In fact, the confounding effects of
genetic and environmental heterogeneity have been
a source of discouragement for mapping genes in
large cosmopolitan populations. Some isolated popu-
lations also have kept demographic records through
parish or other registries enabling reconstruction of
genealogies for several generations. It is, therefore,
not surprising that a large number of Mendelian
disorders have been mapped in isolated populations.
The aforementioned features, typical of many isolated
populations, are exemplified convincingly by the
demographic history of the Finnish population [23].
A catalogue listing about 35 diseases, mostly reces-
sive, has come to characterize the “Finnish Disease
Heritage” [6, 20, 22]; and utilizing the uniqueness
of the Finnish population, mutations in 19 of these
diseases have thus far been identified and chromoso-
mal regions for 13 others have been localized [31].
Other isolated populations have also been studied for
mapping disease genes, such as the Amish, Ashke-
nazi Jews, Sardinians, French Canadians, Bedouins
[2, 12, 19, 25].

This success in identifying the genetic basis of
single-gene disorders had raised expectations that iso-
lated populations would also be greatly useful in
mapping complex traits. An important considera-
tion of using isolated populations in this endeavor
is the notion, mentioned earlier, that LD would be
higher in recently founded isolated populations com-
pared with large cosmopolitan populations. Indeed,
on a global scale, the extent of LD is significantly
lower in African populations compared with other
world populations [24, 30]. Further isolation prevents
the influx of foreign genes, leading to the retention
of older haplotypes in a relatively stable fashion.
In addition, reduced genetic variability in isolated
populations would likely enhance the possibility of
capturing alleles with minor individual effects (oli-
gogenic) underlying complex traits because reduction
in variation would lead to the enrichment of a few
predisposed alleles in the population. As a result
of this optimism, several major studies have been
undertaken in several isolated populations for finding
genes of common diseases, such as asthma, among
the Hutterites [21] and Tristan da Cunha [34], type
2 diabetes among the Finns [9], Pima Indians [10],
and schizophrenia in Palau [16]. The impact of this
resurgence is particularly noticed in privately funded
biotechnology companies; for example, the launch-
ing of the deCODE Genetics project for studying
the entire Icelandic population, initiation of a similar
project in Tonga by AutoGen Ltd, as well as joint
collaboration between a nonprofit and a for-profit
venture for launching a similar project in Estonia.
Notwithstanding such excitement and several ongo-
ing studies referred to above, however, apart from
rare Mendelian forms, such as MODY [1], no genetic
variant associated with a common disease has thus
far been identified even though several potential
genomic regions have been localized. Current liter-
ature presents a series of conflicting views, based
on both empirical data and theoretical modeling, on
the advantage of using isolates in mapping complex
traits [8, 13, 15, 28, 29].

Based on simulation studies, Kruglyak [13] de-
monstrated that LD in general populations would not
extend beyond a distance of 3 kb, and more impor-
tantly, isolated populations are unlikely to harbor
a higher level of LD compared with general pop-
ulations, minimizing the importance of population
isolates in complex disease studies. Two empirical
studies supported these observations: Eaves et al.
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[8] in Sardinia, and Taillon Miller et al. [29] in
Finland). Over-generalization of these results may,
however, be erroneous. For example, Shifman & Dar-
vasi [28] have shown that the extent of LD between
SNPs at a distance of up to 200 kb does not differ
between isolated (Finnish, Sardinian and Ashkenazi
Jew) and outbred populations. However, when the
distance between SNPs is increased beyond 200 kb,
LD in the three isolated populations noted above
increases by an average of 5.6 times. Consequently,
the importance of isolated populations in efficiently
mapping complex trait genes should not be readily
dismissed.

Comments

This resurgence of interest in isolated populations
points to a number of existing gaps in our knowledge
of the consequences of the genetic characteristics
of such populations. For example, in the context of
the comparison of LD in isolated vs. outbred cos-
mopolitan populations, current data do not always
specify what truly constitutes an isolation of a pop-
ulation. Since all recombination events that have
occurred in the population are key determinants of
the decay of LD, a critical demographic factor in
designing a mapping study should be the number
of generations to the most recent common ances-
tor (MRCA) in the population [33]. Thus, since the
age of the MRCA in a recently expanded popu-
lation is younger than that in a stable population,
isolation alone may not be sufficient to guarantee
extended LD blocks in the genome. Likewise, the
founder population size at the stage of expansion is
important because this initial genetic structure of the
population dictates the extent of LD that would go
through subsequent decay because of accumulation of
subsequently occurring recombination events. Thus,
comparisons of isolated vs. cosmopolitan populations
with regard to the extent of contemporary LD values
should be adjusted for differences of their initial pop-
ulation structure, which has been done rarely in the
literature. Finally, since drift effects are more pro-
nounced for loci with smaller mutation rates [3], it
is important to demonstrate empirically the genome
homogeneity of isolated populations at regions of
the genome where mutation rates may not be so
small.
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Isotonic Inference

Isotonic inference concerns situations in which a set
of parameters is assumed, a priori, to satisfy certain
order restrictions. In the most common case, where
data are arranged in ordered groups, the mean value
of a random variable is assumed to change mono-
tonically with the ordering of the groups. It is then
reasonable to take account of the order restrictions
in making inferences about the group means, such as
point or interval estimations or significance tests. Iso-
tonic inference extends more generally to situations
where there are various shape constraints on response
curves, such as convexity, concavity, or sigmoidicity.

One approach to such problems is to assume a
parametric model that incorporates those order or
shape constraints such as a linear regression equa-
tion or a particular dose–response function. The
inference based on the parametric model can, how-
ever, be considerably biased and variable when the
specified model is incorrect. It has been pointed out
in environmental toxicology applications, for exam-
ple, that no parametric dose–response model can
be assumed to hold generally at very low doses of
interest, and yet a monotone and convex relationship
might reasonably, and more reliably, be assumed. We
are therefore concerned in this article mainly with
methods of inference that avoid the need to specify
a rigid parametric model, but nevertheless allow for
those order restrictions.

There is a large literature on estimation and test-
ing (see Hypothesis Testing) in the areas of isotonic
and order-restricted inferences, and comprehensive
surveys of these areas include [3] and [43].

One general approach to the isotonic inference
is maximum likelihood estimation. The problem
of finding order-restricted maximum likelihood esti-
mates is often solved by using isotonic regression.
In its simplest case an explicit solution is obtained
by the pool-adjacent-violators method, but in more
general cases it is solved only by some nonlinear
programming, see [46] and [10], for example, or
by the aid of a formal Bayesian approach, as in
[42]. For a restricted likelihood ratio test the usual
asymptotic chi-square distribution theory does not
apply. In some cases, the resulting distributions are
known to be a mixture of χ2 distributions, but in
other cases some computer-intensive methods such

as parametric bootstrap tests [10], or an asymp-
totic conservative approximation method [46] may be
used. The maximum likelihood approach is outlined
in another article (see Isotonic Regression). Here we
are concerned mainly with other approaches to iso-
tonic inference. As a natural method of incorporating
prior knowledge in particular applications, a Bayesian
approach is also briefly mentioned.

The Case for Isotonic Inference

The data in Table 1 are measurements of the half-life
of an antibiotic drug in relation to the dose admin-
istered. The usual analysis of variance (ANOVA) is
obviously inappropriate, because of the ordering of
the doses, and one possible approach is to assume a
parametric model. The simplest model for the mono-
tone relationship is linear regression. However, it is
generally difficult to assume that a linear relationship
holds over a wide range of an explanatory vari-
able. For the dose–response relationship there are of
course more natural response curves, such as a sig-
moid function, but it is still often difficult to assume
a particular model for the given set of data. Further-
more, it also sometimes suffices to show an overall
upward trend or to detect a steep change-point in the
responses. It is then unnecessary to assume a rigid
parametric model, and a nonparametric trend test
or some multiple comparisons procedure is more
appropriate (see Simultaneous Inference). We need
assume only a monotone relationship in the mean
half-life,

H1: µ1 ≤ · · · ≤ µa, (1)

where at least one inequality is strong, so that the
null model H0: µ1 = · · · = µa is excluded.

The data in Table 2 show ordinal (i.e. ordered)
categorical data typical of a Phase III comparative
clinical trial. Assuming a multinomial model with
cell probabilities pij , the null hypothesis that the two

Table 1 Half life of an antibiotic in rats

Dose (mg/kg) Data (h) Average

5 1.17 1.12 1.07 0.98 1.04 1.076
10 1.00 1.21 1.24 1.14 1.34 1.186
25 1.55 1.63 1.49 1.53 1.550
50 1.21 1.63 1.37 1.50 1.81 1.504

200 1.78 1.93 1.80 2.07 1.70 1.856
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Table 2 Efficacy in a phase III trial of antibiotics

Not Slightly
Drug effective effective Effective Excellent

AMPC 3 8 30 22
S6472 8 9 29 11

treatments are equal can be expressed as p1j = p2j ,
j = 1, . . . , 4, or equivalently as

pij = pi·p·j , (2)

where a dot denotes the summation with respect to
the suffix replaced by the dot. Eq. (2) is the familiar
independence hypothesis for a two-way contingency
table. However, the usual goodness-of-fit chi-square
test is inappropriate, since we are interested in a more
restricted alternative

p11/p21 ≤ · · · ≤ p14/p24

H2 : or

p11/p21 ≥ · · · ≥ p14/p24,

where at least one inequality is strong, implying that
treatment 1 is superior to treatment 2 in efficacy or
vice versa. Ordered categorical data are a special
case of rank data with many ties, and any method for
rank data can be applied to ordered categorical data,
and vice versa.

If ordered categorical data are obtained at several
doses, as in Table 3, then we are interested in testing
the two-way ordered alternative:

H3 : pi+1,j /pi,j ≤ pi+1,j+1/pi,j+1,

i = 1, . . . , a − 1;

j = 1, . . . , b − 1,

which implies that higher doses are superior to lower
doses in efficacy.

A similar hypothesis

H4 : µi+1,j+1 − µi+1,j − µi,j+1 + µi,j ≥ 0,

i = 1, . . . , a − 1; j = 1, . . . , b − 1,

has been considered for normal means from a two-
way layout experiment, which implies that the dif-
ferences, µij − µi ′j , tend upwards as the level j

increases for any i > i ′; see [14].

Various Extensions of the Monotone
Relationship

A monotone dose–response relationship may be
disturbed by toxicity at higher doses, and a
nonparametric testing procedure for the downturn
(or “umbrella”) hypothesis,

H5 : µ1 ≤ · · · ≤ µτ+1 ≥ µτ+2 ≥ · · · ≥ µa,

τ = 1, . . . , a − 1,

has been proposed in [50]; here τ is an unknown
turning point.

Some other extensions arise when responses show
monotone relationships with the passage of time. Fre-
quently encountered examples include the monotonic
change of occurrence probabilities of some events,
increasing treatment effects, and increasing hazard
rates with time. For instance, the hypothesis

H6 : µ2 − µ1 ≤ µ3 − µ2 ≤ · · · ≤ µa − µa−1

arises from the analysis of the age–period–cohort
effects model (see Age–Period–Cohort Analysis)
where only the second-order differences are esti-
mable in each effect along with the time axis.
Hypothesis H6 is equivalent to H′

6 : µi − 2µi+1 +
µi+2 ≥ 0, and may be called the “convexity
hypothesis”. Convexity, concavity, and sigmoidicity
constraints are commonly employed also in the field
of bioassay as reasonable shape constraints on a

Table 3 Usefulness in a dose-finding clinical trial

Slightly Slightly
Drug Undesirable undesirable Not useful useful Useful Excellent

Placebo 3 6 37 9 15 1
AF 3 (mg/kg) 7 5 33 21 10 1
AF 6 (mg/kg) 5 6 21 16 23 6
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dose–response relationship (see Biological Assay,
Overview; Quantal Response Models).

As seen from the above examples, isotonic infer-
ence is closely related to change-point analysis.
Actually, a one-sided change-point model may be
formulated as a set of particular monotone relation-
ships,

H7 : µ1 = · · · = µτ < µτ+1 = · · · = µa,

τ = 1, . . . , a − 1, (3)

with τ an unknown change-point parameter, so that
a useful statistic for change-point analysis is useful
also for isotonic inference. Interestingly, (3) defines
a − 1 edges of the convex cone defined by the simple
ordered alternative (1); see [24].

For other extensions, including tree-structured,
star-shaped, unimodality, and symmetry models, the
reader is referred to [3] and [43].

Testing a Simple Ordered Alternative in
Normal Means

We wish to test a simple ordered alternative H1 in
the one-way layout model

yij = µi + εij , i = 1, . . . , a; j = 1, . . . , ni,

where the εij are assumed to be independently
distributed as normal N(0, σ 2) with known variance
σ 2. Then there are two major streams of overall trend
tests and multiple contrast type tests. Most cases of
unknown variance can be dealt with similarly, if an
unbiased variance estimator distributed as a multiple
of χ2 is available.

Overall Trend Tests

One possible approach is the restricted likelihood
ratio test developed extensively in [3] (see Isotonic
Regression). The approach does not, however, pos-
sess any obvious optimal property for such restricted
alternatives, and is rather difficult to extend to higher-
way problems.

Abelson & Tukey [1] proposed a linear score
statistic which maximizes the minimum power in
the region defined by H1 within the class of linear
tests. This has been extended to the most stringent
and somewhere most powerful (MSSP) test for a

more general restricted alternative by Schaafsma [44,
45]. In the balanced case, Abelson & Tukey’s score
is determined by equalizing powers at all the a − 1
edges of H1 and is given by

ci ∝ −
[
i

(
1 − i

a

)]1/2

+
[
(i − 1)

(
1 − i − 1

a

)]1/2

,

i = 1, . . . , a.

Extending Taguchi’s idea [52], the cumulative χ2

test was introduced in [15], and its power has been
compared with that of the previous two approaches.
The test statistic χ∗2 is the sum of squares of the
standardized accumulated statistics

y∗
i = 1

σ

(
1

Ni

+ 1

N∗
i

)−1/2

(Y
∗
i − Y i),

i = 1, . . . , a − 1, (4)

where Ni = n1 + · · · + ni , N∗
i = ni+1 + · · · + na ,

and Y i = (y1· + · · · + yi·)/Ni, Y
∗
i =(yi+1· + · · · +

ya·)/N∗
i with yi· =(yi1 + · · · + yini

), i = 1, . . . , a.
The χ∗2 statistic is characterized by the strong posi-
tive correlations between the serial components y∗

i ,
and in particular by the expansion for the balanced
case in a series of independent χ2 variables,

χ∗2 = 1

1 · 2
χ2

(1)+
a

2 · 3
χ2

(2) + · · · + a

(a − 1) · a
χ2

(a−1),

where χ2
(l) is the 1 df χ2 statistic for detecting the

departure from the null model in the direction of
Chebyshev’s lth order orthogonal polynomial. Hence
χ∗2 tests mainly, but not exclusively, a linear trend;
see [19] and [36] for details.

Multiple Contrast Type Tests

Several multiple comparison procedures have been
proposed for ordered parameters. Williams [55]
proposed a closed testing procedure based on
the maximum likelihood estimator for defining
the maximal noneffective dose level. Marcus [30]
modified the method by changing the estimator at
the control level from y1. to µ̂1, the maximum
likelihood estimator of µ1, so that his statistic
is the maximal component of Bartholomew’s χ2.
The limiting distribution of the latter statistic is
obtained in [56] and more recently, an exact recursive
integration procedure for calculating its distribution
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function is obtained in [29]. The maximal component
of χ∗2 has been proposed also for this purpose, and is
called the “max t” method, where t stands for the y∗

i

of (4). The statistic is characterized as the likelihood
ratio test for the change-point hypothesis H7, and
an exact and very efficient algorithm for calculating
the P value has been obtained by Hawkins [12]
(see Change-point Problem). The power functions
of these closed multiple testing procedures have
been compared in [30], [49], and [26]. More general
multiple tests for ordered parameters are obtained
in [32].

Confidence Interval

A confidence interval taking advantage of order
restrictions can be obtained by inverting an appropri-
ate test for order restricted alternatives. For example,
Marcus & Peritz [31], Schoenfeld [47] and Hirotsu
& Srivastava [25] obtain confidence intervals for nor-
mal means by inverting a multiple contrast type test,
the restricted likelihood ratio test, and the max t test,
respectively. Wynn [59] gives a general methodol-
ogy for obtaining one-sided confidence intervals, and
Hayter [13] obtains confidence intervals based on the
one-sided studentized range test. Miwa & Hayter
[35] obtain confidence intervals for the differences of
the ordered normal means in the one-way layout set-
ting taking the advantages of the one- and two-sided
procedures. In particular, in the bioassay problem,
Schmoyer [46] obtains improved upper confidence
bounds for the responses at very low doses by assum-
ing sigmoidicity in the dose–response curve.

Hwang & Peddada [28] develop a methodology
under a general order restriction, which has been
extended recently to a test procedure by Peddada,
Prescott and Conaway [37].

There is no extensive work on the design of
experiments on the ordered parameters, although an
optimal allocation has been discussed in [23] (see
Optimal Design).

Applications

A test of Abelson & Tukey, the cumulative χ2 test,
and some of the multiple comparison procedures, are
now applied to the data in Table 1. Since the variance
σ 2 is unknown, it is replaced by the usual unbiased
estimate of variance, σ̂ 2 = ∑∑

(yij − yi·)2/(24 −
5) = 0.020741.

The linear score statistic of Abelson & Tukey is
calculated as

(−c1y1· − c2y2· + c3y3· + c4y4· + c5y5·)/σ̂

= 9.1206,

with scores c1 = c5 = (
√

6 + 1)/
√

5 = 1.543, c2 =
c4 = (4 − √

6)/
√

20 = 0.3467, and c3 = 0, giving
a P value of 2.2 × 10−8 as evaluated by the t

distribution with 19 df.
The null distribution of cumulative χ2 statistic∑
y∗2

i is well approximated by dχ2
f , a multiple of

the χ2 variable with df f , where the constants d and
f are given by

d = 1 + 2

a − 1

×
(

λ1

λ2
+ λ1 + λ2

λ3
+ · · · + λ1 + · · · + λa−2

λa−1

)
,

f = a − 1

d
, (5)

with λi = Ni/N
∗
i . An even better approximation

based on the expansions by Laguerres’ orthogonal
polynomials, and also the approximation under the
alternative hypothesis, are given in [16]. Then the P

value of the statistic

F ∗ = (a − 1)−1χ∗2|σ 2=σ̂ 2 = 54.739

can be evaluated as 1.1 × 10−8 by the F distribution
with df (f,

∑
ni − a), where f = 2.067 from (5).

The maximal component of the χ∗2|σ 2=σ̂ 2 is
obtained at the partition between levels 2 and 3:

max t =
[(

1

10
+ 1

14

)
(0.02741)

]−1/2

×
(

23.00

14
− 11.31

10

)
= 8.584,

the one-sided P value of which is evaluated as
1.1 × 10−7 by the recurrence formula based on the
Markov property of y∗

i s. According to the closed
testing procedure of [32], the process proceeds to
the final step where the t statistic between levels 1
and 2 shows a nonsignificant result at the one-sided
significance level 0.10, thus suggesting finally the
difference between the dose levels (1,2) and (3,4,5).
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In applying the Williams [55] procedure and the
modified Williams procedure of [30], we need the
maximum likelihood estimaters of the µi , which are

µ̂1 = 1.076,

µ̂3 = µ̂4 = 1.524,

µ̂2 = 1.186,

µ̂5 = 1.856,

by the pool-adjacent-violators method. Since µ̂1 =
y1·, both statistics coincide and equal

w = max

√
m(µ̂i − y1·)

σ̂

=
√

m(y5· − y1·)
σ̂

= 8.357,

where we take the repetition number m as the
harmonic mean of the nis for referring approximately
to the tables for upper percentiles in the balanced
case by [55] and [56], respectively. In any case,
the statistic w is highly significant and the closed
testing procedure stops with the nonsignificant result
between levels 1 and 2, thus again suggesting a
difference between the dose levels (1, 2) and (3, 4, 5).

For a more general likelihood L(y, θ, ν) with the
ordered parameter θ , and possibly with the nuisance
parameter ν, arguments similar to those used above
apply if the asymptotic normality of the likelihood
estimators is assured. In particular, the cumulative
χ2 and the max t statistics can be based on the
cumulative efficient scores evaluated at the null
hypothesis and extended easily to two-way problems;
see [7, 17, 18] for details.

Testing Ordered Alternatives in Binomial
Probabilities

The data in Table 4 are from a dose–response clin-
ical trial. Assuming that the yi are independently
distributed as binomial Bin(ni, pi) we are interested
in testing the simple ordered alternative

H1: p1 ≤ · · · ≤ pa.

Table 4 Dose finding trial for a heart disease drug

Dose (mg/day) Improved Not improved

100 20 16
150 23 18
200 27 9
225 26 9
300 9 5

If the quantitative measures d1 < · · · < da are
attached to the yi , then the locally most powerful
test against a wide range of monotone relationships
of pi to di is obtained by Cochran [6] and Armitage
[2] (see Trend Test for Counts and Proportions).
For the case where there is no information on di , the
likelihood ratio test has been developed by Chacko
[5]. The tests based on the cumulative χ2 and its
maximal component have also been extended as
follows:

the cumulative χ2 : χ∗2 =
∑

y∗2
i ,

the maximal component of χ∗2 : max t = max y∗
i ,

(6)

where y∗
i is given by (4) with σ replaced by

[Y (1 − Y )]1/2, Y = ∑
yi/

∑
ni , and yi· replaced by

yi in defining Yi . Formula (5) is also valid for the χ∗2

to give a two-sided P value of 0.113 when applied
to Table 4. For max t , another exact algorithm is
available based on the Markov property of the y∗

i to
give a one-sided P value of 0.044 for Table 2 at the
partition between levels (1, 2) and (3, 4, 5); see [26,
57, 58] for the algorithm. The Cochran–Armitage test
gives a slightly larger one-sided P value of 0.049
since there is a slight downturn tendency in this
example.

Analyzing the Two-Way Contingency
Table with Ordered Column Categories

Two-Sample Problem

First consider the two-sample problem presented by
Table 2. A popular approach to the analysis is to use
a nonparametric test based on a linear score statistic
such as Wilcoxon’s (see Wilcoxon–Mann–Whitney
Test). Now, for the two-sided alternative H2 the two
statistics,

the cumulative χ2 : χ∗2 = χ2
1 + · · · + χ∗2

b−1, (7)

the maximal component of χ∗2 :

max χ2 = max χ2
j , (8)

can be defined in terms of the accumulated efficient
scores, where χ2

j is the goodness-of-fit χ2 statistic
for the 2 × 2 table formed by accumulating the first
j and the remaining b − j columns. The χ2

j is, how-
ever, identical to the y∗2

i of (6) if the binomial data
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are arranged in a 2 × b table in an obvious way and
exactly the same distribution theory applies also to
this case. The two-sided P values are 0.039 for χ∗2

and 0.154 for max χ2, whereas it is 0.025 for the
Wilcoxon test. In this case the Wilcoxon test shows
the smallest P value, since approximately a linear
trend is observed in p1j /p2j , j = 1, . . . , 4. If these
tests are applied to the last two rows of Table 3
for comparing AF 3 mg and AF 6 mg, then the
two-sided P values are 0.0128, 0.0096, and 0.0033
for the Wilcoxon, the χ∗2, and max χ2 methods,
respectively. It has been verified by simulation that,
when evaluated as two-sample nonparametric tests,
the Wilcoxon method is useful for the location shift
of the underlying symmetrical and light-tailed distri-
butions such as the logistic or normal, the max χ2

method is useful for skewed or heavy-tailed distribu-
tions, and the cumulative χ2 method is characterized
by its robustness, having relatively high power over
a wide range of underlying distributions – normal,
heavy-tailed, or skewed.

Another important approach to the problem is
to assume an underlying continuous distribution
for each treatment and to compare the parameters
describing those distributions. The proportional-
odds and proportional-hazards models are impor-
tant examples; see [34] for details.

General a-Sample Problem

For a general a-sample problem the Wilcoxon test is
extended to the Kruskal–Wallis test. The same type
extensions are available for the χ∗2 and its maximal
component by defining the χ2

j in (7) and (8) as the
goodness-of-fit χ2 statistic for the accumulated a × 2
table for the partition between columns j and j + 1.
The constants for the χ2 approximation of χ∗2 are
obtained by

d = 1 + 2

b − 1

×
(

γ1

γ2
+ γ1 + γ2

γ3
+ · · · + γ1 + · · · + γb−2

γb−1

)
,

f = (a − 1)(b − 1)

d
,

with γj = Cj/C∗
j , Cj = y·1 + · · · + y·j , and C∗

j =
y·j+1 + · · · + y·b. The max χ2 can be evaluated by the
calculation algorithm based on the Markov property
of the subsequent χ2

j s [26].

For the row-wise multiple comparisons based on
the cumulative χ2, the statistic

S = max ||(a′ ⊗ C∗′
)z ||2

is defined where ⊗ is a Kronecker product, z a vector
of

√
y ··yij /(yi·y·j )1/2 arranged in dictionary order,

C∗′
a b − 1 × b matrix defined so that the (j, j ′) th

element of C∗′
C∗ is (γj /γj ′)1/2 for j ≤ j ′ and the

maximum is taken over all a that satisfy a′a = 1,
and (

√
y1·, . . . ,

√
y

a·) a = 0. When a ≥ b and under
the null model, the statistic S is asymptotically
distributed as the largest root of the Wishart matrix
W(C∗′

C∗, a − 1), which is well approximated by
γ(1)χ

2(a − 1) with γ(1) the largest root of C∗′
C∗. The

statistic S gives the Scheffé-type multiple comparison
test, and has been applied to taste-testing data of five
foods in five ordered categorical responses of [4] to
obtain the significant classification of rows (foods)
(1, 2), (3, 4) and (5). The max χ2 is also applied
to the data for multiple comparisons of the columns
to obtain a highly significant classification (1, 2, 3)
and (4, 5). The resulting block interaction model is
expressed as

pij = pi·p·jqµν, µ = 1, 2, 3, ν = 1, 2,

if i belongs to the µth subgroup of rows and j to the
νth subgroup of columns. The goodness-of-fit χ2 has
been compared with the fitting of the proportional-
odds model [51] and its extension [33]; see [20]
for details. The Scheffé-type multiple comparison
method is applied to the normal distribution model
in [21], for classifying subjects based on the upward,
flat, and downward tendencies defined by repeated
measurements.

Two-Way Contingency Table with Natural
Orderings in Both Rows and Columns

Assuming a multinomial model M(y··, pij ) for the
data yij in Table 3 the cumulative χ2 statistic and its
maximal component are defined for testing H3 using
the cumulative efficient scores evaluated at the null
hypothesis. These are

the doubly cumulative χ2 : χ∗∗2 =
∑∑

χ2
ij ,

the maximal component of χ∗∗2 : max max χ2
ij ,
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with the χ2
ij being the goodness-of-fit χ2 for the 2 × 2

tables obtained from partitioning and accumulating
rows and columns at i = 1, . . . , a − 1, and j =
1, . . . , b − 1, respectively. The χ∗∗2 is for the two-
sided version of H3, and max max χ2 is applicable
to both one- and two-sided problems. When applied
to Table 3 the two-sided P values are approximately
0.0065 for the χ∗∗2 and exactly 0.0142 for max
max χ2. The details of the P value calculations are
given in [22]. As a semiparametric model for the
ordered two-way table the constant-odds ratio model
has been proposed by Wahrendolf [54] based on
Plackett’s [38] coefficient of association for bivariate
distributions (see Association, Measures of).

As an example of the higher-way layouts, a 2
× J × K table comparing two treatments based on
bivariate allele frequencies, is analyzed in [27]. An
example of highly fractional factorial experiments
with ordered categorical responses is given in [11];
see also the discussion following that article (see
Factorial Experiments).

Bayesian Approach to Isotonic Inference

Since the purpose of an isotonic inference is to make
use of the prior knowledge to enhance the efficiency
of test and estimation, it is natural to consider a
Bayesian approach. For example, an essentially com-
plete class of tests for orderly constrained hypothesis
is obtained as the whole set of Bayes tests with
a prior distribution defined on those constrained
supports. The cumulative χ2 and max t methods
are derived from this idea; see [7, 17, 53]. More
specifically, in bioassay problems, the Dirichlet prior
has been introduced for the successive differences
of the responses for doses di, p(di) − p(di−1), i =
1, . . . , a + 1; p(d0) = 0, p(da+1) = 1, reflecting the
nondecreasing nature of the dose–response relation-
ship, see [40, 41], for example. Shaked & Singpur-
walla [48] discuss the defect of the Dirichlet prior,
and introduce concavity constraints on the shape of
a dose–response curve, reflecting a situation encoun-
tered in practice. Because of computational difficul-
ties, however, they are unable to compute posteriors
beyond modal estimates. The computational prob-
lem was overcome later by Gelfand & Kuo [8],
who showed how a sampling-based approach could
be used to develop the desired marginal posterior
distributions and their features, for Dirichlet and

product–beta priors; see also [9]. Ramgopal et al.
[39] consider convex, concave, and ogive constraints
to specify the shape of dose–response curves, and
extend the sampling-based approach to calculating
any posterior feature of interest in these generalized
constrained problems.
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Isotonic Regression

Many regression problems involve minimizing a
weighted sum of squares subject to the restriction that
the solution must satisfy certain side conditions. A
function f (x) defined on a finite index set of numbers
X = {x1, x2, . . . , xk} is isotonic or order preserving if
x, y are in X and x < y implies f (x) ≤ f (y). Iso-
tonic regression minimizes a weighted sum of squares
subject to the condition that the regression function
is isotonic. A simple example is a one-way analysis
of variance for ordered normal means, in which the
variable xi = i indexes the groups. With each point
xi in X we associate a positive weight wi , usually
the number of observations on which it is based.
Suppose that g(x) is a given function defined on
X, then the isotonic regression of g(x) with weights
w1, w2, . . . , wk is denoted by g∗(x) and minimizes
the weighted sum of squares,

k∑

i=1

wi[g(xi) − f (xi)]
2,

in the class of all isotonic functions f (x) defined on
X. Note that g∗(x) is the isotonic function closest to
g(x) as measured in weighted least squares distance.
For a one-way analysis of variance for nondecreas-
ing ordered normal means, g(xi) is the observed
mean for group i, wi is the number of observations
on which the mean is based and f (xi) = µi is the
mean for group i and µ1 ≤ µ2 ≤ · · · ≤ µk . For the
simple case of ordinary linear regression with a sin-
gle independent variable, g(xi) is the mean value
of the independent explanatory variable at xi, wi

is the number of observations on which it is based,
and f (x) = a + bx is a linear regression function.
Isotonic regression allows f (x) to be any isotonic
function rather than restricting the regression func-
tion f (x) to be linear. While isotonic regression
can be viewed as a smoothing procedure, one disad-
vantage is that the isotonic estimates are essentially
step functions and, hence, are not smooth every-
where. The degree of smoothness depends on the
type of assumptions made; for example, that the
function is nondecreasing or convex. Another dis-
advantage is that the isotonic estimators are biased.
Isotonic regression is important because it provides
maximum likelihood estimators for a large class of

problems involving ordered parameters, as well as
solving many more constrained statistical problems
than the weighted least squares problem stated above.
One simple example is unimodal simple regression,
which consists of an up-phase in which E(Y |X = x)

is increasing with x and a down-phase in which
E(Y |X = x) is decreasing with x. If the turning
point is known, then it is possible to use isotonic
regression for each phase separately. If the turning
point is unknown, a simple modification of this idea
yields the solution (see [3] for details and exam-
ples).

A number of efficient algorithms for isotonic
regression are available, especially for the case of
a single independent variable (see [2] for details).
The pooled-adjacent-violators algorithm is widely
used, but is only applicable for the case of a sim-
ple order. A simple order is when x1 < x2 < · · · <

xk , and this implies f (x1) ≤ f (x2) ≤ · · · ≤ f (xk).
This algorithm basically involves, possibly repeated,
weighted averages of the unconstrained estimates.
For recent extensions of this algorithm, including
the case of concave regression and additive iso-
tonic models, see [5] and [1], respectively. Other
types of ordering such as quasi- and partial order-
ing exist; for example, when we have more than
one independent variable, partial orderings, which
deal with situations such as noncomparable ele-
ments in X, arise (see [4] for details on types of
ordering).
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Iterative Proportional
Fitting

Iterative proportional fitting (IPF), also known as
iterative proportional scaling, is an algorithm for
constructing tables of numbers satisfying certain con-
straints. In its simplest form, the algorithm enables
one to construct two-way contingency tables with
specified marginal totals and a prescribed degree of
association; from a more general perspective, it may
be viewed as a cyclic ascent algorithm which maxi-
mizes a specific objective function. The algorithm can
also be used to construct maximum likelihood esti-
mators for table entries based upon hierarchical log-
linear models for Poisson, multinomial, or product
multinomial models. We will illustrate these aspects
of the algorithm and its applications by describing
some simple cases.

Suppose that we are given two pairs u = (u1, u2)

and v = (v1, v2) of positive numbers satisfying u1 +
u2 = v1 + v2, and a further positive number ψ . The
IPF algorithm will enable us to construct the unique
two-by-two table b = (bij ) such that, for all i and j ,

bi+ = ui, b+j = vj ,
b11b22

b12b21
= ψ,

where the subscript + denotes the result of summing
over the subscript it replaces. The algorithm goes like
this. Begin with the 2 × 2 table a = (aij ) defined by
a11 = ψ , a12 = a21 = a22 = 1, noting that the cross-
ratio a11a22/a12a21 = ψ (see Odds Ratio). Next,
scale the rows of a to form the table a′ = (a′

ij ):

a′
ij = aij × ui

ai+
, (1)

for i = 1, 2 and j = 1, 2. It is easy to check that a′
has the desired row sums, as well as having cross-
ratio ψ . We now scale the columns of a′ to form the
table a′′ = (a′′

ij ):

a′′
ij = a′

ij × vj

a′
+j

. (2)

One can check that a′′ has the desired column sums
and cross-ratio, although the row sums are no longer
(ui). This completes one cycle of the IPF algorithm,
beginning with the table a.

The algorithm continues by repeatedly scaling the
rows, as in (1), and then the columns, as in (2), to
have the desired totals. After a number of cycles, the
row totals are closer to (ui) than they were initially,
the column totals are exactly (vj ), and the cross-
ratio is exactly ψ . The sequence of tables so defined
converges pointwise to a 2 × 2 table b with all the
desired properties; uniqueness also follows.

It is instructive to examine why these assertions
are true, for in doing so we obtain further insights
into the IPF algorithm. To do this, we introduce the
notion of information (or I -) divergence between
two tables c = (cij ) and d = (dij ), satisfying c++ =
d++, defined as follows:

I (c|d) =
∑

ij

cij log

(
cij

dij

)
.

(A similar definition applies to singly indexed arrays.)
It can be proved that I (c|d) ≥ 0, and that I (c|d) = 0
if and only if c = d. Although not a symmetric
function of its arguments, I behaves in many ways
like a metric on tables, and it provides the basis of a
proof of convergence of the IPF algorithm. We return
to our construction of a table b having row totals u,
column totals v, and cross-ratio ψ . First define the
table c = (cij ) as follows:

cij = uivj

w
,

where w = u+ = v+. The tables a, a′, a′′, . . . become
closer to c as the iterations continue, closeness here
being in the sense of I -divergence. More precisely,
we can check that

I (c|a) = I (c|a′′) + I (v|a′
2) + I (u|a1), (3)

where a1 = (ai+) and a′
2 = (a′

+j ). The convergence
and uniqueness assertions above all follow from
repeated use of this expansion and the stated prop-
erties of I . As long as there exists at least one table
c with the desired marginal totals, we can begin the
IPF algorithm with any table having the desired cross-
ratio, and expect to converge to the stated limit. The
repeated scaling gives tables closer and closer in the
sense of I -divergence to the table c, all the while
retaining the original cross-ratio, and the row and
column totals converge to their desired values.

All of the discussion so far applies with minimal
changes to r × s tables; in the more general case,
there are further cross-ratios to take into account.
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Whereas in a 2 × 2 table there is only one cross-
ratio whose value can be fixed, in an r × s table,
there are (r − 1)(s − 1) multiplicatively independent
cross-ratios. A convenient set (cf. [12]) is the follow-
ing:

ψij = bij brs

bisbrj

, i = 1, . . . , r − 1; j = 1, . . . , s − 1.

Here we constructed our cross-ratios in relation
to the index values r and s. Other choices give
equivalent results; indeed there are quite different
ways of defining the quantities which are preserved.
This issue is addressed in the theory of loglinear
models; see [2, 11] and [12]. Given an arbitrary set
of (r − 1)(s − 1) positive numbers (ψij ), and positive
numbers u = (ui) and v = (vj ) satisfying u+ = v+,
the IPF algorithm may be initiated with the table
a = (aij ) given by aij = ψij , i = 1, . . . , r − 1; j =
1, . . . , s − 1, and arj = 1 = ais, i = 1, . . . , r; j =
1, . . . , s. With this initial table, the steps are just as
before, and the resulting sequence of tables converges
to the unique table having row totals (ui), column
totals (vj ), and cross-ratios (ψij ).

We turn now to reasons for constructing such
tables. One is simply to demonstrate the fact that the
row totals, column totals, and cross-ratios of two-way
tables may be specified independently, and to show
how to obtain tables with arbitrarily specified (but
consistent) values of these quantities. Historically, the
algorithm was first used to adjust sample frequencies
to expected marginal totals. In the examples in
Deming [5], we have a table n = (nij ) based upon
a sample survey, and marginal totals (Ni+) and
(N−j ), but not the individual cell frequencies N =
(Nij ), from a census of the population. The result
of applying the IPF algorithm with initial table n,
and desired marginal totals (Ni+) and (N+j ), can
then be regarded as an estimate of what would
have been obtained by cross-tabulating the entire
population, instead of only a sample thereof. A
modern treatment of these ideas can be found in
[2], where the procedure is known as raking the
table n. The third application of the algorithm we
note is to the construction of maximum likelihood
estimates of table entries under loglinear models.
We simply describe the results here; the reader may
consult standard references such as [2, 11], or [1] for
fuller details. Suppose that n = (nij ) is a two-way
table of independent Poisson counts with parameters
λ = (λij ). Then the maximum likelihood estimate λ̂

of λ under the multiplicative model for the (λij ), has
the same row and column totals as n, and all cross-
ratios equal to 1. In this case, the IPF algorithm
begins with a table all of whose entries are 1, and
scales the row and column totals to match those of
the data n. The algorithm converges after a single
cycle to the unique maximum likelihood estimator λ̂.

Three- and Higher-Way Tables

There are a number of ways in which the IPF
algorithm may be used with three-way tables. We
illustrate two of these. Suppose that we have an
r × s table u = (uij ) and an s × t table v = (vjk)

of positive numbers satisfying u+j = vj+ for j =
1, . . . , s. By analogy with our earlier construction,
we might be interested in obtaining an r × s × t table
b = (bijk) having

bij+ = uij , b+jk = vjk.

This can be solved rather straightforwardly. For
example, the table c = (cijk) given by

cijk = uijvjk

wj

,

where wj = u+j = vj+, j = 1, . . . , s, is readily
checked to have ij -margin u and jk-margin v.

Of course, this is not the end of the story. We may
also be interested in any further structure concerning
the table b which may be specified, in addition to
these marginal totals. It turns out that we may also
ask that the table has predetermined values of certain
cross-ratios. In this example, and more generally, we
need rules to tell us which marginal totals and which
cross-ratios can be specified independently. The issue
is best discussed in the language of hierarchical
loglinear models for multiway tables, where these
are commonly described in terms of the marginal
subtables which constitute the sufficient statistics
for the models (under either independent Poisson,
multinomial, or independent multinomial sampling).
We refer to [1, 2], and [11] for details concern-
ing these models. In this language, the cross-ratios
that we have been specifying are the antilogarithms
of elements of subspaces orthogonal to those that
define the hierarchical loglinear model correspond-
ing to the specified marginal totals. For example,
by specifying margins corresponding to the indices
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ij and jk, as we did in our example, we are also
able to specify independently cross-ratios correspond-
ing to the pair ik and the triple ijk – that is, all
interactions other than those involved in the log-
linear model defined by the prescribed marginal
totals.

Now let us suppose that, in addition to u and v
as above, we are given a t × r table w = (wki) of
positive numbers satisfying wk+ = v+k and w+i =
ui+ for all k and i. Can we use IPF to construct a
table b = (bijk) satisfying

bij+ = uij , b+jk = vjk, bi+k = wki,

and having prescribed values for the ijk cross-
ratios? One might think that this would be quite
straightforward. Begin with a suitable initial table
a. Then scale to achieve the ij, jk, and ki marginal
totals u, v, and w, respectively. One cycle of the
algorithm would be three such scalings, and after a
few cycles, we might expect to have a table with
the specified cross-ratios, and essentially the desired
marginal totals.

How can this version of IPF go wrong? A clue
is provided by our indication of the method used
to prove that IPF converges. We made use of the
existence of a table c satisfying the marginal con-
straints, and then everything followed. However, in
the case of three-way tables, it is not hard to specify
three consistent, positive two-way tables, for which
no three-way table exists having positive entries, and
the three specified tables as two-way marginal totals.
A simple example is given by three 2 × 2 tables
each having 1 in the diagonal cells and 2 in the off-
diagonal cells. Although they are clearly consistent,
it is easy to check that no 2 × 2 × 2 table can exist
with positive entries and these margins. Use of the
IPF algorithm with an initial table whose entries are
all 1, and these three marginal tables, results in a cycle
through the same three tables. The tables constructed
do not converge. Summarizing this discussion, we
can say that only if there exists a three-way table with
the given two-way tables as marginal totals is the IPF
algorithm guaranteed to converge to a limiting table
with the desired marginal totals and three-way cross-
ratios. When it does, this table is uniquely specified
by these properties.

We note that in the application of this result to
maximum likelihood estimation with loglinear mod-
els, the assumption of the existence of some table
with the given marginal totals is trivially satisfied

as long as the observed table n = (nijk) has pos-
itive entries, for in this case n itself suffices. If
the observed table has some zero entries, but posi-
tive two-way marginal totals, the IPF algorithm still
converges, but to a table with some zero entries. In a
sense, this is an extended maximum likelihood esti-
mator: one on the boundary of the natural parameter
space.

The foregoing discussion applies without change
to higher-way tables. For example, suppose that we
have an initial four-way table a = (aijkl), and we
wish to scale it to have prescribed ij, jk, kl, and li

marginal totals. What cross-ratios (equivalently, what
loglinear structure) of this initial table will be pre-
served throughout the iterations, and could therefore
be specified independently of the marginal totals? The
answer is: all interactions other than those involved
in the loglinear model defined by the prescribed
marginal totals, that is, the ik, j l, ijk, ij l, ikl, jkl,
and ijkl interactions. Note that we still need to know
that there exists a table with the specified marginal
totals before the algorithm is guaranteed to converge
to a limiting table with all the desired properties.

Finite Termination: Decomposable Models

Decomposable models are a class of loglinear models
for complete multiway tables which possess closed-
form expressions for their MLEs under the standard
sampling models; see [11] and [2]. It turns out that
the IPF algorithm behaves rather well for this class
of models. Suppose that a set of marginal totals to
be fitted via IPF defines a decomposable loglinear
model. If the initial table is constant, and the margins
to be fitted are taken in a suitable order, the algorithm
converges after just one cycle. Furthermore, there
always exists a table with the given set of tables as
marginal subtables, when the corresponding model is
decomposable. Finally, as long as the specified tables
are all positive, the table whose existence has just
been described has positive entries.

History

Fienberg [7] presents a discussion of the history of
the IPF algorithm. Some additional references can be
found in [8]. The most important early papers are [6]
and [14].
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Numerical Aspects

Haberman [11] proves that tables constructed by the
IPF algorithm converge to their limit at a geomet-
ric (also called first-order) rate. This means that,
asymptotically, the difference between the nth iter-
ate and the limit is bounded above by ρn for some ρ

between zero and unity. (This compares unfavorably
with the behavior of Newton or modified Newton
algorithms, which typically exhibit what is known
as quadratic convergence.) In many cases, ρ may
be quite close to unity, and so convergence may
be rather slow, giving rise to a literature concern-
ing speeding up of the algorithm. However, at that
point, the algorithm ceases to be the one we are
discussing.

The great advantage of the IPF algorithm is its
simplicity, stability, and economy of space. When a
table is large, and the number of iterations is not
a limiting factor, it is the method of choice for the
problems we have discussed. For other problems,
such as the calculation of MLEs under loglinear mod-
els, Newton-type methods are preferred, because of
their speed of convergence and the fact that vari-
ance–covariance matrices are an automatic byprod-
uct. FORTRAN IV versions of the IPF algorithm can
be found in [9] and [10].

Variants and Generalizations

It is implicit in the foregoing discussion that the tables
being considered are all complete, that is, are fully
rectangular, or rectangular parallelepipeds, etc., and
have no so-called structural zeros. This was because
the algorithm is mostly used, and its properties are
most easily discussed, in that context. However, vari-
ant forms of the algorithm are used successfully with
tables having a variety of other structures, and pre-
serving features corresponding to models other than
hierarchical loglinear models; see [11].

For generalizations of a different kind, see [3, 4,
13]. In these papers, applications of the algorithm

beyond contingency tables are given, and its connec-
tions to the information measure I and entropy are
more fully explored.

References

[1] Agresti, A. (1990). Categorical Data Analysis. Wiley,
New York.

[2] Bishop, Y.M.M., Fienberg, S.E. & Holland, P.W. (1975).
Discrete Multivariate Analysis. MIT Press, Cambridge,
Mass.

[3] Csiszar, I. (1975). I -divergence geometry of probabil-
ity distributions and minimization problems, Annals of
Probability 3, 146–158.

[4] Darroch, J.N. & Ratcliff, D. (1972). Generalized iterative
scaling for loglinear models, Annals of Mathematical
Statistics 43, 1470–1480.

[5] Deming, W.E. (1964). Statistical Adjustment of Data.
Dover, New York.

[6] Deming, W.E. & Stephan, F.F. (1940). On a least
squares adjustment of a sampled frequency table when
the expected marginal totals are known, Annals of
Mathematical Statistics 11, 427–444.

[7] Fienberg, S.E. (1970). An iterative procedure for esti-
mation in contingency tables, Annals of Mathematical
Statistics 41, 907–917.

[8] Fienberg, S.E. & Meyer, M.M. (1983). Encyclopedia of
Statistical Sciences, Vol. 4, S. Kotz & N.L. Johnson, eds.
Wiley, New York, p. 2275.

[9] Haberman, S.J. (1972). Loglinear fit for contingency
tables, Applied Statistics 21, 218–225.

[10] Haberman, S.J. (1973). Printing multidimensional tables,
Applied Statistics 22, 118–126.

[11] Haberman, S.J. (1974). The Analysis of Frequency Data.
University of Chicago Press, Chicago.

[12] Plackett, R.L. (1981). The Analysis of Categorical Data,
2nd Ed. Griffin, London.

[13] Ruschendorf, L. (1995). Convergence of the iterative
proportional fitting procedure, Annals of Statistics 23,
1160–1174.

[14] Stephan, F.F. (1942). An iterative method of adjusting
sample frequency tables when the expected marginal
totals are known, Annals of Mathematical Statistics 13,
166–178.

(See also Categorical Data Analysis)

TERRY P. SPEED



Jackknife Method

The primary purpose of this technique is the estima-
tion of the standard errors and the bias of estima-
tors, T (x). These T s may be either too complicated to
admit analytical derivation of the sampling distribu-
tions, or based on xs from a probability model that is
too difficult or impossible to specify. The essence of
the computations for random samples of size n is the
re-evaluation of the estimator on subsamples, which
are typically produced by leaving out one observation
at a time. For instance, the result of leaving out the
ith datum may be denoted by Ti = T [x(i)], where
x(i) is the particular subsample of size n − 1 without
the observation xi .

The idea of appropriately differencing to reduce
biases of order n−1 is credited to Quenouille. The
original (1949) article [6] involves a serial correla-
tion context, where the two subsets are the first and
second half of the series. The second [7] has a more
general context. Tukey [12] named the tool in 1958
for its parallel with the rough-and-ready boy-scout
implement. He also coined the term pseudovalues for
the individual differences, nT − (n − 1)Ti . These are
the simple ingredients for the standard error estima-
tor. Tukey argued that in many instances these may be
treated as approximately independent and their ordi-
nary sample variance would be a reasonable estimator
of var [T (x)]. This variance estimator was shown to
be appropriate in large samples for the bias-corrected
point estimator as well. Approximate confidence
intervals and hypothesis tests are based on treating
a standardized estimator as a normal or a Student t .

The methodology was extended to more general
bias structures by Gray & Schucany [3]. Important
early contributions to the theoretical foundations, by
Rupert Miller, his students, and others were reviewed
in 1974 [5]. There were early results on consistency
of variance estimators for a broad classes of prob-
lems, including functions of maximum likelihood
estimators (MLEs) and functions of U -statistics. A
rigorous demonstration of the asymptotics for MLEs
is given in [8]. The estimators that do not jackknife
well have discontinuous influence functions (see [2,
Section 11.6] or [9, Section 2.2.1]), of which the
most notable example is the median. The approx-
imate confidence intervals work better after sym-
metrizing transformations, for example, log s2 and
tanh−1 r .

The encyclopedia entry by Hinkley [4] contains
the logical foundation, elementary notation, and some
illustrative calculations. Efron & Tibshirani [2] give
an excellent overview and the relationship of the
jackknife to the bootstrap. These are distinct sam-
ple reuse approaches to getting information about
the sampling distribution of T (x). The bootstrap
does this by simulating from the empirical distribu-
tion function, Fn(x), the best estimate of F(x) in
a certain sense. The jackknife may be viewed as
studying T in the neighborhood of Fn by quadrature
(see Numerical Integration) rather than by Monte
Carlo. Davison & Hinkley [1] present the pseu-
dovalues as approximations of the empirical influence
values for a nonparametric delta method. Distinct
from this theoretical connection, they also illustrate
the computation of jackknife-after-bootstrap diagnos-
tics. For a more theoretical treatment of the jackknife
and bootstrap, see [9].

Censored data are an important feature of
some biostatistical problems. A recent examination
of the suitability of jackknifing Kaplan–Meier
integrals (see Kaplan–Meier Estimator) may be
found in [11]. Stefanski & Cook [10] establish a
relationship between the jackknife and SIMEX,
which is a simulation-based method of inference for
measurement error models.
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James–Stein Estimator

The discovery of Stein [6] that the sample mean
of a normal population is inadmissible in three or
more dimensions was based on an argument using
the estimator

d1(x) =
(

1 − b

a + |x|2
)

x,

where we observe X = x, with X ∼ N(θ, I), a p-
dimensional normal random variable (see Multivari-
ate Normal Distribution). If p ≥ 3, Stein showed
that, for sufficiently small b and sufficiently large a,

Eθ |d1(X) − θ |2 < Eθ |X − θ |2, for all θ, (1)

demonstrating the inadmissibility of X under squared
error loss. This result only demonstrated the existence
of a better estimator, as Stein did not give specific
values of a and b that would satisfy (1). This was
remedied in James & Stein [4], where it was shown
that the estimator

dJS(x) =
(

1 − c

|x|2
)

x (2)

dominates X as long as 0 ≤ c ≤ p − 2. In fact, James
& Stein [4] show that the optimal value of c is
c = p − 2, and using this value (2) is usually referred
to as the James–Stein estimator. Starting from (2),
entire families of improved estimators of θ have been
derived. Note, in particular, that since X is a minimax
estimator of θ , any estimator that dominates it is
also a minimax estimator. Thus, research began into
finding better families of minimax estimators of a
multivariate normal mean.

One of the most important developments was due
to Baranchik [1], who proved that estimators of the
form

dB(x) =
(

1 − r(|x|)
|x|2

)
x

are minimax provided that (i) 0 ≤ r(·) ≤ 2(p − 2);
and (ii) the function r is nondecreasing.

An immediate consequence of Baranchik’s result
was the minimaxity of (and the dominance of X by)
the positive-part Stein estimator

d+(x) =
(

1 − p − 2

|x|2
)+

x, (3)

where (·)+ indicates that the quantity in parentheses is
replaced by 0 whenever it is negative. This represents
a great improvement over (2), as it does not suffer
from aberrant behavior when x is near 0. (There,
the James–Stein estimator can actually get infinitely
large). In fact, the positive-part estimator (3) is so
good that even though it is known to be inadmissi-
ble, it took over 25 years to exhibit an estimator that
dominates it. (The inadmissibility of (3) follows from
Brown [2], who showed that the admissible estima-
tors must be generalized Bayes estimators. Because of
the “point” at |x|2 = p − 2, (3) is not smooth enough
to be generalized Bayes. The work of Efron & Morris
[3, Section 5] showed that (3) was close to being
a Bayes rule, and hence close to admissible, so it
was suspected that it would be difficult to dominate.
Finally, Shao & Strawderman [5] exhibited a domi-
nating estimator.)
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Jeffreys, Harold

Born: April 22, 1891, in Fatfield, Co. Durham, UK.
Died: March 18, 1989, in Cambridge, UK.

The career of Harold Jeffreys is easily described.
From his local school he went up to Cambridge,
where he stayed for the rest of his life. His continuous
75 years as a fellow of St John’s College is a record
for any Oxbridge college. He was Plumian Professor
of Astronomy and Experimental Philosophy, received
numerous scientific awards, and was knighted.

During most of his life, and certainly up until his
retirement from the Chair in 1958, he was best known
for his important work in geophysics and related
fields. The data he studied therein, and the general
interest in the philosophy of science present in Cam-
bridge in the 1920s, combined and culminated in the
publication in 1939 of his book, called simply Theory
of Probability. The substantially revised, third edition
appeared in 1961 [1]. It is still in print and consid-
ered by many statisticians to be essential reading, not
just for historical reasons, but because of its modern
manner of thought. He was a poor oral communicator
but his writing is superb. He stands with literature’s
greatest in the effective use of the English language.

There are two major novelties in the Theory,
as he liked to call his book. The first lies in the
concept of probability: the second in the develop-
ment, from this concept, of operational procedures
for handling data. He addressed the problem of how
one’s uncertainty about quantities of scientific inter-
est, like hypotheses or values of constants, should
be described. In the first chapter he demonstrated,
on the basis of some simple ideas, that this could
only be done through probability; so that one could
speak of the probability of a hypothesis being true.
Furthermore, statements of these uncertainties had to
combine according to the rules of probability. One
of these rules is Bayes’ theorem and because of its
ubiquity, the subject, when treated from this view-
point, has become known as Bayesian statistics (see
Bayesian Methods). The Theory was the first mod-
ern book on Bayesian statistics. This attitude towards

probability was quite different from that of his near-
contemporary, R.A. Fisher, who was, in the 1930s,
revolutionizing statistics. Fisher used only the proba-
bility of data, given the hypothesis, whereas Jeffreys
was advocating and justifying the concept of the
probability of the hypothesis, given the data. Fisher’s
ideas found general acceptance and Jeffreys was ini-
tially treated as a maverick.

Although, at the time, their results seemed in
good numerical agreement, it is now appreciated
that they typically differ. If data x on hypothesis H

has density p(x|H), then Fisher used the tail-area
probability

∫ ∞
x

p(t |H) dt , or P value, to describe
the status of H . Jeffreys used a direct probability
p(H |x) ∝ p(x|H)p(H). In the use of the integral
in the former but not in the latter, which satisfies
the likelihood principle, the ideas contrast and the
numerical values differ.

Jeffreys differed from de Finetti in regarding the
numerical value of a probability as being shared
by all rational persons, whereas de Finetti thought
of it as subjective. If Jeffreys was right, then he
had to have some way of producing the rational
probability. The way he explored, and which later
workers have followed, is first to describe a rational
view of ignorance. This forms a reference point from
which other states can be described, using Bayes’
theorem. The invariance ideas he used have been
extended into a modern development of reference
priors.

Jeffreys’ views have influenced the philosophy of
science, and are in marked contrast to those of Karl
Popper, who advocated the view that a hypothesis
could only be disproved, whereas probability admit-
ted values near one, effectively amounting to proof.
Jeffreys was a great geophysicist who also created an
original way of conducting the scientific method.
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Job-exposure Matrices

Epidemiologic investigation of occupational hazards
requires information on illness among workers and
on their occupations or occupational exposures.
Two families of epidemiologic investigations can be
distinguished: industry-based studies and community-
based studies. Each has unique advantages and
disadvantages. Historically, community-based studies
were based on analyses of job titles. With
growing realization that there can be substantial
variation in exposure profiles among workers who
share the same job title, and that workers in
different occupations can have common exposures,
increasing attention has been paid to ascertaining
subjects’ occupational exposures (see Occupational
Epidemiology; Occupational Health and Medicine;
Occupational Mortality).

Since taking measurements in subjects’ current
workplaces is usually neither feasible nor useful for
diseases of long latency, other approaches have been
developed to ascertain subjects’ past occupational
exposures. If subjects can be interviewed, they can be
asked about their exposure to various chemicals, but
information thereby obtained is not sufficiently valid.
Another approach is to obtain information about the
jobs that subjects did and then have experts in indus-
trial hygiene estimate the chemicals that may have
been present in such workplaces. If the information
collected about subjects’ jobs is reasonably detailed,
and the experts knowledgeable, then this can lead
to quite valid exposure estimates. However, it is an
expensive labor-intensive enterprise.

The job exposure matrix (JEM) approach was
developed to provide a relatively inexpensive way
of inferring exposures when the investigator has
information on subjects’ job histories. A JEM is
simply a correspondence system for translating any
occupation code into a list of exposures. The JEM
provides the means for bringing together, for the pur-
pose of statistical analysis, groups of subjects who
share common exposures, irrespective of their occu-
pations. A JEM consists of two primary axes, an

exhaustive and mutually exclusive classification of
occupations, and a list of substances. The occupa-
tion axis can be further subdivided by industries, by
time periods, and conceivably by geographic areas.
In the simplest form, the entry in the matrix could be
a binary indicator of whether a worker in occupa-
tion i should be considered exposed to substance j .
Applying each column in turn to a set of occupation
histories allows the investigator to infer the exposure
status of each study subject to each substance in the
JEM. A more refined JEM could contain quantita-
tive indicators of the probability of exposure to the
substance in the job and estimates of the degree of
exposure.

If the number of JEM substances is lengthy and
the matrix entries are valid, this could generate useful
data. While a handful of community-based JEMs
have been developed in a few countries [1], they
have not found wide applicability. The main limiting
factor is the lack of valid and generalizable JEMs
which are sufficiently broad in scope as to satisfy
a wide range of research needs [3] (see Validity
and Generalizability in Epidemiologic Studies). By
contrast, a JEM can also be developed in the context
of a cohort study and can be very useful if based
on company records or expertise [2]. Such a JEM
would not normally be applicable outside the cohort
for which it was developed.
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Joint Modeling of
Longitudinal and Event
Time Data

Many scientific investigations generate both longitu-
dinal measurement data, with repeated measurements
of a response variable at a number of time points (see
Longitudinal Data Analysis, Overview), and event
history data, in which times to transient or termi-
nating events are recorded. Methods for the separate
analyses of the two data components are well devel-
oped but procedures for their simultaneous treatment
are still under study.

To fix ideas, consider clinical trials or observa-
tional studies in renal transplantation. After trans-
plant, the performance of the graft can fluctuate over
time. This can be measured through a proxy, perhaps
serum creatinine, which will be high under abnormal
function. The study design may call for creatinine to
be measured regularly, maybe weekly during the first
few months following transplantation, and this will
generate a sequence Y = (Y (t1), Y (t2), Y (t3), . . .) of
longitudinal data for each patient. Sometimes the data
will be balanced, with measurement at the same time
points on all patients, but often, especially in obser-
vational studies, the exact timing of measurements
will be patient-specific, though nonetheless decided
by the clinician or experimenter, perhaps informed
by the patient’s condition. In parallel to the collec-
tion of the longitudinal data, a stochastic process
of times to or between certain events may also be
observed. These may be transient events, such as
intermittent reversible short-term rejection episodes
(see Repeated Events), or single survival time out-
comes such as death of the patient or failure of the
graft (see Survival Analysis, Overview). This leads
to event time data T , and joint modeling methods
are appropriate when it is considered that the Y and
T processes may not be independent. In principle,
transient event data can be handled using similar
techniques to single event data, but in practice, most
development to date has assumed the latter. Note that
T may be censored and may also be cause-specific:
grafts can fail for a variety of reasons and the rela-
tionship between Y and T may well differ between
causes. For instance, failures due to technical surgical
reasons and failures due to rejection are likely to be
associated with differing serum creatinine profiles.

Much work so far in joint longitudinal and event
time modeling, henceforth just “joint modeling”, has
been based on specific case studies. Clearly, the
statistical and scientific objectives of investigations of
this kind will depend upon the application of interest.
In particular, the primary focus for inference may
be on:

(a) adjustment of inferences about longitudinal
measurements to allow for possibly outcome-
dependent dropout; (see Nonignorable Dropout
in Longitudinal Studies);

(b) the distribution of time to a terminating or tran-
sient event conditional on intermediate longitu-
dinal measurements;

(c) the possibility of using relatively quickly mea-
sured responses Y as a surrogate for survival
time; or

(d) the joint evolution of the measurement and
event-time processes.

The difference between (a) and (b) is reflected in
the history of joint modeling, which derives princi-
pally from two originally distinct subject areas. Lon-
gitudinal researchers came to joint modeling through
the 1990s as a result of the need to account for
dropout from trials, which terminates observation at
a random time T and is considered to be a nuisance.
If the reason for dropout is related to the unobserved
response, then severe bias can occur unless the anal-
ysis takes this association into account. In parallel
with development in longitudinal data methodology,
survival analysts arrived at effectively the same point
at almost the same time through efforts to incorpo-
rate into proportional hazards analyses occasionally
observed covariates subject to measurement error
(see Errors in the Measurement of Covariates;
Measurement Error in Survival Analysis). Partial
likelihood methods for fitting Cox regression mod-
els can be used with time-dependent covariates over
time, but require these to be observed at all failure
times at which the patient remains at risk. In prac-
tice, this is rare for many clinical covariates, which
are observed only occasionally, usually at clinic vis-
its, and can vary between visits. In addition, many
biomarkers or disease progression indicators can be
measured only by proxy and/or with substantial mea-
surement error. Denoting the covariate process by
Y, joint modeling approaches for Y and T were
developed by survival specialists to account for the
uncertainty in Y. By the late 1990s, the two schools



2 Joint Modeling of Longitudinal and Event Time Data

merged and now use essentially the same methods.
A slight difference is that longitudinal trials usually
have balanced data, with a relatively small number
of measurement points, and dropout is defined to be
the time of first missed or last observed measure-
ment, leading to discrete T . From the survival side,
T is usually treated as continuous and the Y are more
likely to have unbalanced measurement times.

Significant papers in the development of joint
modeling methods include [1, 7, 8, 15, 17, 21, 22, 28].
To a lesser extent the methods have been motivated
also by research in degradation, with Y a measure of
wear before failure time T , and in surrogacy, with
attempts to treat Y as a proxy for T [4, 30].

Modeling Strategies

Writing X for the fully observed covariates, interest
is in the distribution f (Y, T |X).

A pattern mixture factorization is often the sim-
plest. Here we write

f (Y, T |X) = f (Y |T , X)f (T |X) (1)

and in principle, fit a different Y -model for each
cohort of patients defined by the values of T ,
using standard longitudinal approaches. Separately, a
marginal model is fitted to T , using standard survival
techniques. This method works well when there are
only a few potential T values so that cohort sizes are
fairly large. There can be problems, however, with the
treatment of censored T , or when there are multiple
cause events, such as dropout for a variety of reasons,
not all equally associated with Y. The approach is
nonetheless easy to employ using standard software
and attractive intuitively when it is believed that the
population does indeed partition naturally by event
times. Survival analysts, used to conditioning on the
past through hazard modeling (see Hazard Rate), can
be uncomfortable with the conditioning on the future
implicit in f (Y |T , X).

The second broad strategy reverses the condition-
ing through a selection factorization

f (Y, T |X) = f (T |Y, X)f (Y |X) (2)

This approach makes censoring and multiple event
causes easier to handle, but is again best employed
when there are only a few possible event times T

and values of Y are available where required in the

f (T |Y, X) model. An interpretive danger arises when
Y is known to be a proxy for some unobserved true
status of the patient, but Y is not in itself causal for
event times. In that case, f (T |Y, X) will describe
an empirical relationship only and this needs to be
recognized.

Random effects approaches usually postulate un-
observed subject-specific effects U , which affect
both Y and T . Assuming conditional independence
between the observable components given the ran-
dom effect, these models assume

f (T , Y |X) =
∫

f (T |X, U)f (Y |X, U)f (U) dU

(3)

and estimation methods use standard missing-data
approaches, almost invariably EM or Markov
chain Monte Carlo (MCMC). Such models are
conceptually attractive in that realistically, Y and T

are rarely directly associated but intuitively depend
jointly on some underlying true health status of
the patient, captured by U . Disadvantages are that
fitting is computationally intensive and the models
rely on strong assumptions about the components
f (T |X, U), f (Y |X, U), and f (U), which are not
directly testable from the observed data. An example
of a random effects model is given later.

Variations of random effects models without con-
ditional independence include random-coefficient
pattern-mixture models

f (Y, T |X) =
∫

f (Y |T , X, U)f (U |X, T )f (T |X) dU

(4)

and random-coefficient selection models

f (Y, T |X) =
∫

f (T |Y, X, U)f (Y |X, U)f (U) dU

(5)

as described in [21]. Illustrations of the use of the
above joint modeling strategies in a variety of appli-
cation areas include [1–3, 8, 9, 13–16, 19, 27–29].
Other approaches to joint modeling include: paramet-
ric multivariate analyses with a transformation of
T considered as a response, for example, a multivari-
ate normal model for (Y, log T ) [4, 6]); a latent class
approach under which subjects are grouped into rel-
atively homogeneous but unobserved subgroups with
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differing longitudinal and event time properties [20];
and multistate modeling [12]. If interest is in estima-
tion of treatment effects only rather than modeling
per se, a variety of authors have developed methods
intended to be robust to modeling assumptions (e.g.
[10, 24]).

Ignoring Association

Given that methods for the separate analysis of Y and
T are well developed and easily applied, the question
arises as to what is gained through considerably
more involved joint analysis. The answer to this
is efficiency and, importantly, bias reduction (see
Unbiasedness). Failure to account properly for the
association between Y and T can lead to severe
parameter bias in both sub-models.

A small simulation experiment illustrates a ran-
dom effects model specification and the effect of
ignoring association. Assume three Y measurements
are scheduled, at times 0, 1, and 2 months. Responses
are taken from a Gaussian linear model with a treat-
ment indicator x (0 = placebo, 1 = active), a linear
time trend, and subject-specific random intercept and
slopes. Specifically,

E[Y (t)|U1, U2] = βxx + βt t + U1 + U2t

Var(Y (t)|U1, U2) = σ 2
ε (6)

with U1 ∼ N(0, σ 2
1 ) and U2 ∼ N(0, σ 2

2 ) independe-
ntly. Observation is terminated by an event at time
T , taken from a hazard model

λ(t |U1, U2) = λ0(t) exp{αx + γ (U1 + U2t)} (7)

with fixed-point censoring at three months. The data
were simulated with constant baseline λ0(t), and
although distributions are improper if γ (U1 + U2t)

is negative, that is, the survival curves need not fall
to zero, the censoring prevents this being a problem.

The parameter γ induces the association between
the conditional distributions f (Y |X, U) and f (T |X,

U). The following table illustrates the effect of γ on
parameter estimates when the observed Y values are
analyzed alone, with no allowance for association.
The table gives mean values from 100 simulations
each with sample size 250.

βx =1 βt =1 σ 2
1 =1 σ 2

2 =0.25 σ 2
ε =0.25

γ = 0 1.00 1.00 1.00 0.26 0.25
γ = 0.5 0.99 0.93 1.02 0.25 0.25
γ = 1 0.97 0.84 1.01 0.23 0.26
γ = 1.5 0.98 0.78 0.96 0.23 0.26

Some parameters, including the mean treatment
effect, are hardly affected in this scenario. Others,
and in particular, the slope estimate βt , are severely
biased by ignoring the association between Y and T .
This bias is not due to the amount of information
lost, as for all values of γ , about 45% of patients
had all three Y measurements. Rather, it is due to the
trajectories of those missing: when γ > 0, subjects
with steep slopes are more likely to have early T and
hence the average and variance of observed slopes
are attenuated.

Turning to event times, a Cox proportional haz-
ards model was fitted in two ways. First, only treat-
ment was included (OT), and second, the longitudinal
residuals R(t) = Y (t) − β̂xx − β̂t t were additionally
included as time-dependent covariates, carrying for-
ward the last value (LV) until another became avail-
able. In this second case, there is no true parameter
for comparison and so results are given for the treat-
ment effect α only.

α = 1
OT LV

γ = 0 1.04 1.05
γ = 0.5 0.86 0.96
γ = 1 0.70 0.93
γ = 1.5 0.54 0.80

Ignoring the longitudinal data completely is equiv-
alent to ignoring frailty effects in survival, which
is well known to severely bias coefficient estimates
toward zero. The simple model using longitudinal
residuals as time-dependent covariates helps but does
not remove the bias, which arises in part because of
model misspecification, and in part because of the
carrying forward of the last recorded value, which in
general, is known to cause attenuation of regression
effects and poor coverage of confidence intervals
(e.g. [25]).

Sensitivity and Diagnostics

Fitting a correctly specified joint model overcomes
bias but this gain is not made without cost. As well as
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the need for more computer-intensive fitting meth-
ods, the joint model relies heavily on the assumptions
made about the mechanism, which generates the asso-
ciation between Y and T . If the longitudinal data are
divided into observed and missing components, Yobs

and Ymiss, there can sometimes be an infinite number
of possible distributions for the missing data Ymiss,
each of which is consistent with the observed data
Yobs and T . For example, certain illnesses involve
sudden crises in condition, corresponding to rapid
degradation (e.g. [18]). As a simple model, suppose
that a crisis terminates observation and at the same
time causes a step change in the response Y by an
amount θ . This step change affects only Ymiss and
therefore θ is not identifiable from the observed
data Yobs and T . Moreover, any false presumption
as to the value of θ will lead to a biased estimate
of the relationship between Y and the event-time
hazard. In this example and more generally, infer-
ence about the missing data relies crucially upon the
assumptions made, and these assumptions cannot be
checked from the observed data alone. In applica-
tions, careful consideration of the modeling assump-
tions by statisticians and collaborators together is
required.

If a fairly simple summary is of interest, such as
the effect of treatment on the change in Y from start to
end of the study, then sensitivity analyses are practi-
cable and highly recommended. In essence, important
parameters should be allowed to vary over a realistic
grid of values and the effect on the summary measure
investigated. In the simulation example above, a joint
model could be fitted for a range of γ and changes
in the treatment effects could be monitored. Stability
of the estimate brings some credence to the results,
although within the particular model class only. Sen-
sitivity procedures are discussed by, for example, [5,
23, 26].

Although it is not possible to declare any par-
ticular model as correct, it is possible to declare
models that do not fit the observed parts of the data
as incorrect. This aspect is sometimes overlooked in
applications but is important. Residual analysis on
the longitudinal data should be carried out but with
proper allowance for the event time as properties of
residuals depend upon T . Conditional means, vari-
ances, and covariances of longitudinal residuals can
be calculated, at least in the Gaussian case, and can
be used to produce standardized residuals for assess-
ment.

Comments

A great deal of research over the last decade has
been directed toward the development of sophisti-
cated methods for the joint analysis of longitudinal
and event time data. These new methods are useful
in their own right but also reveal two uncomfort-
able truths: ignoring the association between the two
data components, or using overly simple methods to
deal with it, can lead to seriously misleading conclu-
sions; but sophisticated methods rely on assumptions
that are difficult, or even impossible, to validate from
the data alone. This makes it easy, if unhelpful, to
conclude that the best way to deal with dropout in
longitudinal studies, or measurement error in inter-
mittently observed covariates or markers, is not to
have these problems in the first place. A more con-
structive suggestion is that all reasonable steps should
be taken during the design and data collection stages
to minimize these problems.

If the primary interest is in the event times, then
joint modeling procedures are helpful and conclu-
sions are likely to be fairly robust to modeling
assumptions, especially for balanced designs with a
regular measurement schedule. There can be prob-
lems, however, if the decision to schedule a mea-
surement at all is in itself informative, for instance,
if measurements are taken during acute episodes of
a chronic condition (e.g. [11, 18]). Methods that
include the decision to take a measurement as a third
process are being developed but are as yet unproven.
Another issue from the survival side is that follow-up
times can be long, so that simple slope-and-intercept
longitudinal models are often inadequate and more
sophisticated stochastic models are needed. The mod-
els need to be sufficiently flexible to describe a variety
of possible trajectories of the covariate or marker,
including rapid deterioration just before the event.

If the main interest is in the longitudinal data, then
the question of what would happen if there was no
dropout sometimes cannot be avoided. Here, sensi-
tivity analysis is certainly required but brings new
difficulty in how it should be undertaken. Sensitivity
is easy to assess when there is a simple summary,
such as a treatment effect on mean response, and
a single parameter that links the longitudinal and
event time processes. If there are multiple parameters
driving the association, then sensitivity assessment
is more awkward, and this problem is exacerbated
further when sensitivity to model choice rather than
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parameter values is to be considered. This is an area
of ongoing research.

One of the cited purposes of joint modeling is
to enable quick and easy prognostic information to
be gleaned from longitudinal measurements, which
can then be used as surrogates for an event-time
outcome that may not be observed until a consider-
able time into the future. This suggestion needs more
application-specific testing and experience before
advantages of joint modeling can be conclusively
argued.

Finally, almost all joint modeling techniques are
computationally intensive and as yet there are no gen-
eral and user-friendly routines available in statistical
packages. Until these are written, there is likely to be
little widespread use of the methods. This is perhaps
no bad thing as it will allow specialists to gain more
experience and advise influential software developers
as to which models and methods can and cannot be
recommended.
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The Journal of Biopharmaceutical Statistics (JBS ) is
an international, applied, biopharmaceutical statisti-
cal journal, published four times per year by Marcel
Dekker, Inc., a division of Taylor & Francis, UK.
It was established in 1988 by Karl E. Peace, Ph.D.,
the Georgia Cancer Coalition’s distinguished can-
cer scholar at Georgia Southern. The past editors
include Karl E. Peace (1990–1999) and A. Lawrence
Gould (2000–2002). Current editor-in-chief is Shein-
Chung Chow, Ph.D., Vice President of Biostatistics
and Medical Writing of Millennium Pharmaceuticals,
Inc., Cambridge, MA 02139. Beginning 2004, JBS
also include book review section. The first issue of
the JBS appeared in 1991.

The JBS provides an information resource for
applied statisticians working in biopharmaceuti-
cal areas through publication of (i) high qual-
ity applications of statistics in biopharmaceutical
research and development (see Pharmacoepidemi-
ology, Overview) and (ii) expositions of statistical
methodology with clear and immediate applicability
to such work. Although not exhaustive, biopharma-
ceutical areas include particularly those attendant
to the drug, device, or biologic research devel-
opment processes; drug screening; assessment of
pharmacological activity; pharmaceutical formulation
and scale-up; preclinical safety assessment; bioavail-
ability, bioequivalence, pharmacokinetics, pharma-
codynamics, and genomics; phase I, Phase II and
Phase III clinical development (see Clinical Tri-
als, Overview); pre-market approval assessment of
clinical safety (see Drug Approval and Regula-
tion); post-marketing surveillance; manufacturing
and quality control; technical operations; and regula-
tory issues (see Drug Approval and Regulation).

Papers submitted to the JBS for publication con-
sideration should emphasize the application of sta-
tistical methods, rather than the methods per se –
whether new or established. Substantive aspects of
the application should be presented. The process
of problem formulation appropriate to the statistical
method should be specifically addressed. Of par-
ticular importance is attention to statistical design
(see Experimental Design) and protocol develop-
ment (see Clinical Trials Protocols). In reflecting
applied statistics as a scientific discipline, the JBS
aims to provide models in the biopharmaceutical
areas of proper design, analysis, and interpretation
of both experimental and observational studies.

Digital submission of all manuscripts submitted
for publication consideration in JBS is required. JBS
currently accepts two options for digital submis-
sion: digital storage media, including 3 − 1

2 diskettes,
zip disks, or CD-ROMs, and e-mail attachments.
Manuscripts may be submitted by e-mail to
journaledit@dekker.com. The manuscript doc-
uments, along with all files containing references,
figures, tables, outline, and abstract should be attached
to the e-mail. Manuscript that is embedded in the
body of the e-mail cannot be accepted. Manuscripts
submitted to the JBS for publication consideration
are reviewed by an editorial board member and
two referees or appropriate experts. Review below
regional editors is blinded to author identity. Authors
are blinded to reviewer identity. General criteria for
acceptance include originality, quality, and signifi-
cance of the application or methods as well as the
quality of the presentation.

Publications in the JBS reflect the international
nature of biopharmaceutical research, with contri-
butions by authors from every continent and many
countries, e.g. Australia, Canada, China, England,
Finland, Germany, Japan, South Africa, Switzerland,
Taiwan, and the US. As of May 2004, the second
issue of the fourteenth volume is in press, and all
issues of the fourteenth volume are compiled.

KARL E. PEACE & SHEIN-CHUNG CHOW
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Epidemiology

The Journal of Clinical Epidemiology represents
a continuation, under a new name, of the
Journal of Chronic Diseases (JCD), which was
inaugurated in 1955. During that era, before the
proliferation of specialty journals in such fields
as gastroenterology, geriatrics (see Gerontology
and Geriatric Medicine), and rheumatology,
journals concerned specifically with medical research
were oriented almost exclusively to studies of
pathophysiology and biologic mechanisms. Clinical
studies of chronic disease were seldom encouraged
or accepted, because the care of chronic disease
was seldom regarded as a scientific activity
in the explicatory type of laboratory research
usually conducted as “clinical investigation”. The
investigative methods needed to study patient care
and to do clinical trials, however, were different
from those of laboratory experiments; and reports
using those methods would be either unappreciated
by laboratory scientists, or regarded as too pragmatic
for the often theoretical orientation of biostatistical
and other journals concerned with methodology.
Thoughtful reviews of clinical topics and appraisals
of research methods would also usually take more
space than most journals were willing to allocate.
The JCD thus offered an orientation, appreciation,
editorial policy, and space that had previously been
unavailable.

The first volume of the journal immediately show-
ed its new orientation, and its lively interest in
methodology. The first paper in the first issue was
Merrell & Shulman’s “Determination of prognosis
in chronic disease, illustrated by systemic lupus ery-
thematosus”. The paper described the medical use
of life-table analyses for the course of clinical ail-
ments, and was repeatedly cited thereafter for many
years as the classic publication in that field. Another
classic methodologic publication in the first volume
was Louis Lasagna’s discussion of an investigative
method that was then in its infancy: “The controlled
clinical trial: theory and practice”. The discussion
had a substantial influence on the planning and ana-
lyzing of cancer trials at the National Institutes of
Health (NIH) during the late 1950s. A third method-
ologic classic in Volume 1 was Harold Dorn’s essay,

“Some applications of biometry in the collection and
evaluation of medical data”. The latter paper contains
Dorn’s often quoted remark that

Reproducibility does not establish validity, since the
same mistake can be made repeatedly; but without
reproducibility an observed relationship becomes
merely an isolated historical event and adds nothing
to accumulated scientific knowledge.

During the next few early years, the journal’s con-
tinuing focus on clinical issues in chronic disease was
reflected by publications concerned with topics that
today might be classified as neurology, metabolism,
rheumatology, gastroenterology, hepatology, psychi-
atry, neonatology, congenital anomalies (see Tera-
tology), atherosclerosis (see Cardiology and Car-
diovascular Disease), hematology, oncology, and
such chronic infections as tuberculosis and syphilis.
Victor McKusick’s pioneering work in clinical genet-
ics first appeared in the JCD in a series of instalments
under the general title of “Heritable disorders of con-
nective tissue”.

In addition to these clinical topics, the early vol-
umes of the journal continued to offer a forum for
methodology. The papers referred to classification
of arthritis, evaluation of screening tests, discus-
sions of epidemiologic principles, uses of interview
data to assess prevalence of disease, the measure-
ment of pain and pain relief, uses of nonmedical
interviewers to obtain data about specific symptoms,
and variability of daily blood pressure measurements.
The methodologic studies, then as now, revealed the
frequent, but often unrecognized, problems of bias
in research with human groups. Donald Mainland,
after analyzing results of a questionnaire given to a
class of 129 first-year medical students, concluded
that “. . . more than one-half of them held opinions
which, if allowed to influence the selection of sub-
jects in a forward-going etiologic survey, would bias
the results”.

Sidney Cobb et al., reporting on “differences bet-
ween respondents and nonrespondents in a morbidity
survey involving clinical examination” demonstrated
the type of bias that might arise from low response
rates in studies for the estimation of prevalence. The
authors recommended a procedure that (like many
other recommendations about how to deal with bias)
has often been subsequently neglected: “A study of
the nonresponse problem (should) be built into each
new field investigation as it is planned.”
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The journal also become involved in topics that
were overtly controversial or that would later gen-
erate controversy. In a controlled trial reported else-
where in 1952, anticoagulant therapy had been found
unequivocally effective in reducing short-term deaths
in patients with acute myocardial infarction. Many
clinicians claimed, however, that the results of the
trial were inconsistent with their own clinical expe-
rience, particularly for the predominance of “low
risk” patients who had excellent prognoses without
treatment. Only much later would it be realized that
the anticoagulant trial, despite an untreated control
group, was not randomized (see Randomization) or
double-blind, and that the proanticoagulant results
could easily be attributed to a biased assignment
of patients. Nevertheless, anticoagulant therapy was
being so vigorously advocated that physicians who
failed to use it might be sued for malpractice if a
patient with myocardial infarction died. In a pair of
editorials in the journal in 1956, the virtues of anti-
coagulant therapy received a spirited denunciation by
David Rytand and a vigorous defense by William
Foley.

The JCD, in its early years, published sev-
eral instalments of research, conducted by the US
Public Health Service, as the Tuskegee study of
“Untreated syphilis in the male Negro”. The research
was originally regarded as a splendid investiga-
tion of the natural history of a disease, but the
work later became controversial and received many
ethical rebukes for continuing to assess “natural his-
tory” at a time when presumably effective therapy
(with penicillin) had become available. During sub-
sequent debates about the moral and methodological
issues, T.G. Benedek (in the 1978 JCD) pointed
out that the rebukers had often overlooked the eth-
ical context of the era in which the research was
done.

The modern fervor (and dispute) about lowering
cholesterol was just beginning. Several papers on
how to reduce cholesterol with diet or medication
had appeared in the JCD (and elsewhere), but an
international group of experts, after a meeting in
Geneva, stated in 1957 that

There was no clear cut scientific evidence to show
that any particular factor causes. . . coronary artery
disease. Numerous public statements by scientific
and other writers. . . give the impression that the
atherosclerosis problem has been largely solved.
The chief culprit is purported to be fat and diet.

According to these opinions, all one has to do
to mend the situation is to change one’s eating
habits so as to include a special kind of low-
fat diet. Unfortunately, scientific proof of a causal
relationship between fats in the diet (and) coronary
artery disease is still lacking.

Forty years later, many experts would claim that the
proof has now become convincing; but others would
still argue that it is not.

In 1957, after the death of J. Earle Moore (the
founding editor), the co-editors became Louis Lasag-
na and David Seegal. In 1966, David P. Earle became
editor with Martin Branfonbrener added as co-editor
a year later. In 1978, Earle again became sole
editor, with Brandfonbrener and Walter O. Spitzer
working as associate editors. When Earle retired,
the journal resumed the geographically separated,
dual-editor pattern that had originally been set by
J.E. Moore in Baltimore and D. Seegal in New
York. The co-editors after 1982 were Alvan R. Fein-
stein in New Haven and Walter O. Spitzer in Mon-
treal.

Throughout its 33 years, the journal has published
some outstanding, memorable papers. Some of them
have already been mentioned, but several others can
be noted as “golden oldies”. They are: Seegal’s 1962
editorial on the virtues of saying “I don’t know”;
E. Schimmel’s 1963 editorial on “The physician as
pathogen”; another 1963 editorial in which the author
concluded that without better clinical “science at
the bedside, modern medical research may yield an
intricately designed, expensively produced, doubly-
blind controlled, statistically significant chaos”; a
1965 reprinting of J. Evelyn’s treatise, originally
published in 1961, on the hazards of air pollution
in London; and a randomized double-blind trial, by
C.R.B. Joyce and R.M.C. Welldon, in 1965, on “The
objective efficacy of prayer”.

With further passage of time, the contents of
the journal gradually changed as other journals
became available in subspecialty medical domains,
and in new specialties such as rehabilitation and
geriatrics. Many of the clinical reviews and sym-
posia that formerly might have appeared in the
journal became submitted and published elsewhere.
The journal’s symposia increasingly began to reflect
its additional methodologic orientation, with topics
that included the role of computers in medicine,
quantitative principles in the design and analysis
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of long-term studies (see Longitudinal Data Anal-
ysis, Overview), and the development of indexes
(or rating scales) to measure health status or to
describe functional status and quality of life. The
statistical philosophies that guided the US National
Institutes of Health (NIH) in its approach to clinical-
trial research were first described by several statis-
ticians in a 1966 JCD “biometrics seminar” called
“The role of hypothesis testing in clinical trials”.
The discussion included the often-quoted remark by
Jerome Cornfield that, “I do not believe that any-
thing that is good science can be bad statistics.”
The many unresolved controversies about retrospec-
tive case–control studies were discussed in a fre-
quently cited 1979 symposium edited by Michel
Ibrahim and W.O. Spitzer. Many other method-
ologic issues in epidemiology were considered in a
memorial “festschrift”, in 1986, for Abraham Lilien-
feld.

The journal’s clinical scope was still broad and
the clinical topics still emphasized diagnosis, prog-
nosis, course, and therapy, but most of the clinical
publications began to include the kinds of group data
and statistical analyses that today would make the
work be classified as clinical epidemiology. The lat-
ter domain expanded the scope of “epidemiology”
to include many topics in which the people under
study were in clinical, rather than community, set-
tings. The topics under study were also expanded
to include behavioral, social, and familial factors –
personality traits, emotional adjustment, urbanization,
social class, social isolation, and familial structures
and relationships – that could affect the development
or management of human ailments such as heart
disease, cancers, renal disease, schizophrenia, and
disability.

Although all of these topics could today be inclu-
ded in the broad scope of contents for “clinical
epidemiology”, the journal’s most striking expansion
was in methodology. The JCD became the prime
publication for creative scholarship in the analysis
and development of methods for research in quanti-
tative clinical epidemiology. The orientation required
a special blend of thought: a sophisticated knowl-
edge of clinical distinctions in human ailments; an
intense awareness of epidemiologic subtleties in the
way that groups of people are formed and collected;
and mathematical attention to the statistical strategies
with which results can be quantitatively summarized
and interpreted.

Scholars who work in the multidisciplinary inter-
section produced by the manifold methodologic chal-
lenges of quantitative clinical epidemiology are also
relatively homeless. Their interests are often too
quantitative or epidemiologic to be appreciated by
clinical journals, too clinical to be approved by jour-
nals of epidemiology or public health, and too clini-
cally or epidemiologically “applied” to be welcomed
by journals of mathematical or biologic statistics.
By opening this multidisciplinary forum, the JCD
became a leading outlet for methodologic advances
in medical research concerned with groups of people.

The methodologic analyses and advances were
sometimes presented within the text of publica-
tions on specific ailment-oriented topics, but often
the methods themselves were the main focus of
discussion. The methods included such clinical issues
as the role of co-morbidity (a term and concept
introduced in the JCD in 1970); the acquisition of
cogent, high-quality data in interviews and question-
naires (see Questionnaire Design); the evaluation
of diagnostic and technologic tests (see Diagnostic
Tests, Evaluation of); decisions about what kind of
data to assemble in describing personality, behavior,
quality of care, or quality of life; defining the “range
of normal” (see Normal Clinical Values, Reference
Intervals for); and the role of necropsy research in
revealing the fallacies of using “cause-specific” death
certificate data for individual decisions or collective
concepts about the distribution of disease.

The epidemiologic methods referred to problems
that produce biased or inaccurate results in data for
groups. The problems included diverse issues in life-
table analysis, the first empirical demonstration of the
distortion known as Berkson’s fallacy, and atten-
tion to every aspect of the assembly, maintenance,
and collection of data for the people investigated
in randomized trials, cohort studies, case–control
studies, community cross-sections, ecologic stud-
ies, and other architectural structures for research.
The statistical concepts included problems in plan-
ning sample sizes for diverse investigative situations
(see Sample Size Determination), estimating rela-
tive risks, assessing the role of repeated measures
and regression to the mean, determining preva-
lence in longitudinal or cross-sectional studies, and
understanding or evaluating the virtues and hazards
of old multivariable analytic methods (such as linear
regression) and newer multivariate analysis (such
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as binary regression, logistic transformations, dis-
criminant functions, and the proportional hazards
model).

To acknowledge its focus on the intimate inter-
change between qualitative challenges in clinical sci-
ence and quantitative issues in statistics, the Jour-
nal of Chronic Diseases in 1988 changed its name
to the Journal of Clinical Epidemiology. The fertile
interchange has led to many useful collaborations
among clinicians, epidemiologists, psychosocial sci-
entists, and statisticians, while producing valuable
interdisciplinary cross-fertilization and communica-
tion. It has made medical people aware of the need
for satisfactory “numeracy” and “reliability” in com-
municating with their statistical and psychometric
colleagues, while making statisticians and psychome-
tricians aware of the need for satisfactory “literacy”
and “sensibility” in communicating with medical peo-
ple.

The satisfactory adjustment of interdisciplinary
communication is not easy. Sometimes a statistical
author may submit a paper that is aimed exclusively
at statisticians, and that is incomprehensible to a
medical reader. By 1979, the problem was happening
often enough in the JCD to make David Earle publish
an editorial urging “potential authors to write their
manuscripts so that the clinical relevance is clearly
apparent, and put as much of the derivation as
possible in an appendix or to publish the mathematics
elsewhere”. The editors of the JCE have often made
analogous requests.

Sometimes a reviewer who is a rigorous quan-
titative methodologist may make demands that are
impossible for an investigator to attain. A psycho-
metric reviewer may ask, almost as a matter of
routine, that Cronbach’s alpha be calculated for a
five-category ordinal scale for which the calculation
(which requires an inventory of individual items) can-
not be done. A biostatistical reviewer may ask for
analyses of data that cannot be obtained because
the research project is completed, or may want
the authors to use complex multivariable proce-
dures (beyond those already employed) that may
bring more smoke and heat to the results but little
light.

From the medical-content side of the spectrum,
an epidemiologist may insist that the research is
worthless because it was a cohort study rather than
a randomized trial, or vice versa; or the reviewer
may dismiss the research as useless and beyond

repair because the investigators should have cho-
sen an entirely different control group. A clinical
reviewer, unwilling to learn some basic principles
of numeracy, may complain about the “obscurity” of
statistical writing that contains nothing more esoteric
than simple regression and correlation coefficients.
These problems have not been common, however.
In general, the journal seems to have had outstand-
ing success in attracting suitable authors, getting
capable, open-minded reviewers, and producing rel-
atively clear interdisciplinary communications. The
term “clinical epidemiology” covers many methods
and orientations. They include causal elucidations
by a classical epidemiologist, patient care decisions
by a classical clinician, analytic improvements by a
classical statistician, and diverse mixtures of some
or all of these activities. (At some levels of defini-
tion – such as “disease”, “chronic disease”, “clini-
cal”, or “epidemiology” – an encompassing vague-
ness may be more satisfactory than an excluding
precision.)

Under the new title, the JCE continued its basic
policies, but added some new sections. Controver-
sial topics were regularly published as trios con-
taining a presentation, dissent, and response. Some
of the more prominent controversies discussed in
this variance-and-dissent format have been classifi-
cation and directionality in epidemiologic research,
the use of the kappa statistic, and the role of Pop-
perian causality (see Causation) in scientific rea-
soning. This format, which allows direct airing for
controversial topics, has been popular with read-
ers, and has subsequently been emulated at other
journals. A “Second Thoughts” section was made
available for “lighter” essays that would be “fun”
to read. James F. Jekel was invited to prepare peri-
odic summaries, called “Rainbow Reviews”, of the
reports (with multicolored covers) regularly issued
by the US National Center for Health Statis-
tics. With the continued application of clinical epi-
demiology to studies of pharmaceutical agents, a
new section on pharmacoepidemiology was added
in 1991.

In 1996, the JCE began publishing supplements
containing the abstracts submitted to the annual meet-
ing of the International Clinical Epidemiology Net-
work (INCLEN). The JCE has also published supple-
ments on the SUPPORT study of outcomes and risks
of treatment, policy for management of asymptomatic
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hypercholesterolemia, pharmacoepidemiology in de-
veloping countries, ethics in epidemiology, long-term
health effects of silicone breast implants, and postva-
sectomy sequelae.

Since 1995, the journal has been published by
Elsevier. As at 2004, the Editors are A. Knottnerus

(Netherlands School of Primary Care Research) and
P. Tugwell (University of Ottawa).

ALVAN R. FEINSTEIN
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The American Statistical Association (ASA) was
founded in 1839 by men concerned about issues
surrounding the nation’s decennial census taking.
Almost 50 years later, General Walker (ASA Pres-
ident 1883–1896), a towering figure who was impas-
sioned in his desire and beliefs that all workers
(most especially government workers and researchers
throughout the land) should embrace the statistical
method in their daily work, led the association beyond
the then-local horizons of Boston with the adoption
of a number of measures, the most fundamental one
being the establishment in 1888 of a New Series of
publications of the ASA. This title reflected the fact
that previously there had been a Collection of the
ASA (with the first and possibly only volume in
1847) plus other occasional papers, many of which
had been destroyed in the Great Fire of Boston in
1872. An account of these earlier collections can be
found in [4]. This New Series subsequently assumed
the title Quarterly Publications of the American Sta-
tistical Association and in 1922 was renamed Journal
of the American Statistical Association (JASA). The
header New Series however continued for 44 years,
eventually being removed with the 1932 volume.
Today, JASA still appears quarterly.

For its first 40 years with only two exceptions,
ASA held four quarterly (or three quarterly and one
annual) meetings per year; after 1894 the quarterly
meetings were dropped but the annual meetings con-
tinued. Papers read at these meetings constituted a
large proportion of the articles in JASA in its first
20 years or so. In 1928, read papers were assem-
bled together as a Proceedings section of JASA, a
practice continued until 1937 after which there was a
return to the earlier custom whereby such read papers
intermingled with general papers. This was finally
discontinued with the publication of separate Pro-
ceedings of the Business and Economic Section in
1954 and of the Social Statistics Section in 1958.

Articles reflected the interests of ASA members
who were primarily economists, accountants, social
scientists, political scientists, historians, health pro-
fessionals, and the like. That is, members were users
of statistical science in their substantive field, and
so articles were focused on advancing knowledge

and new theories in those fields rather than in sta-
tistical methodology per se. Indeed, the first article
of Volume 1, on water power [5] and the second
one on parks and open spaces [3], illustrate amply
the concerns of members with societal issues (in
these cases people’s basic well-being). In addition,
there were numerous Reports, Miscellany, News and
Notices, and Reviews entries. These articles typi-
cally included reports on vital statistics (of every
imaginable stripe – deaths, births, divorces, diseases,
suicides, etc. recorded for national, state and local
municipalities, as well as international regions); they
covered reviews of important papers from abroad
(most often mathematical developments from British
publications); and they included book reviews, among
other topics. Starting in 1897, regular reports of the
ASA Secretary as read at the annual meetings were
included; see [1]. The Proceedings and Scientific Pro-
gram of these meetings began to be published in
1910 [2]. Reports of various ASA committees would
at times also be published. In short, JASA was the
vehicle to convey information – both scientific results
and operational news – to the membership.

Today, the nature and content of JASA have
changed, at least on the surface if not in its aims.
In a formal sense, the general articles now appear
within the Applications and Case Studies Section or
the Theory and Methods Sections. The split into sep-
arate divisions was implemented in 1968 and visible
in 1970 when papers in each section were assembled
together. The Applications Section was expanded to
the Applications and Case Studies Section in 1989.
Book reviews had been collected together from the
beginning. In 1989, this section was expanded to the
(General) Review Section, though book reviews still
constitute the bulk of the material in this section. The
extensive Reports and much of the Miscellany articles
have disappeared from JASA; the News and Notices
articles also no longer appear in JASA. These were
essentially moved to The American Statistician when
it began in 1947 and later to the monthly Amstat
News begun in 1974, with the exceptions that the
Reports of the Annual Meetings continued to appear
in JASA until the 1971 meeting and the Board of
Directors and related Reports until the 1969 Report,
when these reports shifted to The American Statis-
tician. The American Statistician from its inception
also included articles demonstrating the uses of statis-
tics, articles that previously occupied many pages of
JASA. As its founding editors said, The American
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Statistician would serve as an adjunct to the technical
papers published in JASA.

From the content viewpoint, a reading of Inform-
ation for Authors, which currently appears in each
issue of JASA, reveals that the Applications and
Case Studies Section seeks articles that contribute
to a substantive field through the use of sound or
innovative uses of statistical methods, present data
useful to such fields, or discuss and evaluate such
data and findings; methodological innovations are not
requirements. This descriptor reflects very accurately
and keeps intact the tenor and the goals of ASA as
exemplified in the articles of the very early issues of
JASA. Then and now the important new theoretical
results were directed at the field of application with
new statistical theory that may have emerged being
incidental to the major thrust.

By the time of ASA’s Seventy-fifth Anniversary
in 1914, changes were looming on the horizon. The
so-called mathematical method had appeared through
correlation, and has remained as an integral part
of statistical science. Nevertheless, mathematical sta-
tistical articles still assumed a relatively small pro-
portion of JASA articles until about the 1950s. By
the 1960s, mathematically based articles had become
more dominant. These articles now appear in the
Theory and Methods Section. As defined in the Infor-
mation for Authors, this Section “publishes articles
that make original contributions to the foundations,
theoretical development, and methodology of statis-
tics and probability”. This mandate is “interpreted
broadly. . . and may include computational and graph-
ical methods as well as more traditional mathematical
methods”. However, such articles should be, and are,
motivated by a practical problem arising from a sub-
stantive application.

The General Section includes the traditional Book
Review Section plus Review Papers covering an area
of applied statistics or a review of some specific stat-
istical theory. Special topic papers may also appear
in this general section.

In addition, at its April 1907 meeting, it was
decided to ask the ASA President to address the asso-
ciation at its annual meeting and that this Address be
published as the lead article in the following March
issues of JASA. Accordingly, the first Presidential
Address was delivered by Wright on January 17,
1908 (see [6]). Interestingly, though the ASA had but
five presidents for its first 70 years, each serving till
death (Fletcher 1839–45, Shattuck 1846–51, Jarvis

1852–82, Walker 1883–96, and Wright 1897–1909),
subsequent presidents were limited to one year terms.

Today, in substance JASA is dominated by theo-
retical mathematically based statistical methodology,
although its authors continue to be motivated by real
world problems. The advances in the substantive field
that totally dominated JASA prior to about 1950–60
are now found in other ASA journals, namely Jour-
nal of Business and Economic Statistics (begun in
1983), Journal of Educational and Behavorial Statis-
tics (1976), Journal of Computational and Graphical
Statistics, (1992), Journal of Agricultural Biological
and Environmental Statistics (1996 and a joint ven-
ture with the International Biometric Society), and
Technometrics (1959 and a joint venture with the
American Society of Quality). In addition, the maga-
zines STATS (1989) and Chance (1988) are targeted
to the student and/or man-in-the-street nonstatistician
audience. Earlier, Biometrics (called Biometrics Bul-
letin 1945–46) was launched under Gertrude Cox’s
editorship by the Biometrics Section of ASA to pub-
lish articles on the use of mathematical and statistical
methodology in biology (including agriculture); this
journal was fully assumed by the International Bio-
metric Society in 1951. This applications orientation
of the membership is still vibrant today and has
been a strong and persistent thread throughout. The
strength of this view was reflected by the unsuccess-
ful efforts of the ASA’s mathematical members to
have the Annals of Mathematical Statistics (begun in
1930, and first edited by Harry Carver) as an ASA
publication.

The first JASA Editor was Davis Dewey, who
served from 1888 to 1907. The division in 1969
brought with it a separate editor for each section:
the Applications (predecessor of the Applications and
Case Studies) Section, Theory and Methods Section,
and Book Review (now the General Review) Section.

With the exception of the occasional invited paper
and also Invited Discussants to selected articles typ-
ically addressing a major applied topic, articles are
unsolicited. Potential authors submit manuscripts to
the Editor(s). Papers deemed not to fit the overall
aims of the journal would be returned to the authors
without going through the formal reviewing process.
That said, in a typical scenerio, the Editor dissemi-
nates the submissions to a cadre of Associate Editors,
who take the responsibility for selecting and moni-
toring the refereeing process. Double-blind refereeing
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for the Applications and Case Studies and the Theory
and Methods Sections was instituted in 1996.

The 2001 Editors reported that the Applications
and Case Studies Section received 123 new
manuscripts (125 in 2000) and that the acceptance
rate (of new and resubmissions) continues to be
just under 25%. The Theory and Methods Section
received 374 new submissions in 2000 (370 in 2001)
with an acceptance rate of 20% (19% in 2001). In
the General Review Section, in 2000, 62% (57%
in 2001) of new books received were sent out
for reviews; three of the six review manuscripts
received in 2000 were rejected and three were
accepted in 2001, while four of the nine received
in 2001 were rejected and three were accepted
in 2001 (and one in 2002). Subsequently, there
were 48 Applications and Case Studies papers, 66
Theory and Methods papers, 3 Review papers, 57
Book Reviews, and 27 Telegraphic Review articles
published in 2001, plus the Presidential Address and
relevant editorially related information, occupying
1543 pages. In contrast, Volume 1 published 11
Leading Articles and 49 Reviews and Miscellany
articles in 492 pages. Volume 1 spanned two years;
it was not until Volume 19 in 1924 that one volume
per year began.

Throughout its long history, JASA has continued
to be a premier journal serving the entire interna-
tional statistical community. It remains the flagship
publication of the ASA.
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Journal of The Royal
Statistical Society

In May 1838, following the establishment of the Soci-
ety in 1834, the Council launched the first volume of
the Journal of the Statistical Society of London:

The Council of the Statistical Society of London
is of opinion that the time has arrived when the
Fellows of the Society, and the public, will hail
with satisfaction the appearance of a Journal devoted
to the collection and comparison of Facts which
illustrate the condition of mankind, and tend to
develop the principles by which the progress of
society is determined.

Since the “Science of Statistics” was in its infancy
in the 1830s, the Council felt it necessary to add
some explanation about the objects of the Society and
its journal in their introduction to the new journal.
Within the extensive scope of the subject, the impor-
tance of medical statistics was already recognized:

Mechanics discover the means of abridging human
labour; Chemistry enters largely into the economy
of Arts; Medicine practises on the bodies of men;
all these sciences operate upon human interests and
their powers and effects are susceptible of statisti-
cal exposition.

Reviewing the content of the journal in 1865, the
Council divided the subject matter into seven classes:
“commercial”, “industrial”, “financial”, “moral and
social”, “vital”, and “miscellaneous”, the last cat-
egory comprising papers not presented for reading
to the Society. W.A. Guy was an early presenter
of papers, such as “Influence of the seasons and
weather on sickness and mortality” and “Influence
of employment and health”. William Farr, of still
greater authority, made his debut with the paper
“Mortality of lunatics” and “The influence of eleva-
tion on the fatality of cholera”. Other contributions
included the reports of the Committee on Medical
Statistics (1837) and of the Committee on Sickness
among the Metropolitan Police Force (1839–1840).
Although, as long ago as 1863, the Society had been
urged to publish discussions at its meetings, the pro-
posal had been defeated. It was not until the June
issue in 1873 that reports of the oral discussion and
the authors’ replies began to appear, and the practice

of having both a formal proposing and seconding of
a vote of thanks, as now, did not begin until 1909.

In January 1887, the Society was granted its
Royal Charter, and the journal accordingly changed
its name to the Journal of the Royal Statistical Soci-
ety. Another important change at that time was the
introduction of reviews of books on statistical and
economic subjects in 1886, under the heading “Notes
on some recent Additions to the Library”.

Up to that point in the journal’s history, the papers
published had been almost entirely of a descriptive
nature, with large numbers of tables presenting data,
but without detailed analysis. It was only around
the turn of the century that the mathematical foun-
dations began to be developed in the pages of the
journal, with papers such as “On the theory of corre-
lation” by G. Udny Yule (1897) and “On the repre-
sentation of statistics by mathematical formulae” by
F.Y. Edgeworth in four parts, and concluded in the
1899 volume.

In June 1928, the Society formed its first “Study
Group” for holding informal meetings. This was fol-
lowed in 1933 by the formation of the first of its
Sections, the Industrial and Agricultural Research
Section. The papers presented at the first two meet-
ings of the Section were published in a supplementary
issue with part II of the main journal in the Soci-
ety’s centenary year. A second supplement was issued
with part IV of the journal. The Supplements, two
parts per volume, were initially designed to cater for
the “considerable developments in the application of
modern statistical methods to technical problems met
with in industry and agriculture” during the previous
two decades.

World War II caused the research activities of the
Industrial and Agricultural Research Section to be
abandoned. Only about four meetings could be held in
each session during the early years. The 1940–1941
volume of the Supplement was slim and the next
volume did not appear until 1946. However, papers
continued to be accepted and published as “read”
papers even though they could not be presented. One
effect was therefore that written, rather than oral,
contributions to the discussion appeared, and this
practice persisted and grew after the war.

Some work, however, was carried out around
the country under the Industrial Applications Group
formed for the purpose. This prompted the Society to
split the Section into two: the Industrial Applications
Section and the Research Section.



2 Journal of The Royal Statistical Society

The Industrial Applications Section was consti-
tuted of several Local Groups around the country
whose purpose was primarily to organize meetings,
whereas the Supplement was intended to be primar-
ily the vehicle for publication of the proceedings of
Research Section meetings and to fulfill the need
“for a medium of publication for research work
(not necessarily theoretical or mathematical), which
is of general interest to statisticians”. An editorial
panel was set up for the journal under the editor-
ship of M.G. Kendall, B.L. Welch, and F. Yates.
Research Section meetings did not have the sta-
tus of the Ordinary Meetings of the Society until
1958 when the meetings were called Research Meth-
ods Meetings (later changed to the current “Ordi-
nary Meetings organized by the Research Section”
in 1969).

By 1947, the Supplement had grown into a scien-
tific journal of high repute. The Council therefore
decided that, from 1948, the Society’s two publi-
cations would both be issued under the main title
of the Journal of the Royal Statistical Society, the
original journal being distinguished by the subtitle
“Series A (General)” and the Supplement by the sub-
title “Series B (Methodological)”. Though the names
had changed, the volume numbers ran on sequen-
tially. Series A remained the organ of the Society as
a whole, with publication of papers from Ordinary
Meetings (other than the research type), the annual
report of Council, book reviews, obituaries, and other
features from time to time.

Since the war, the Council had been aware of
the absence of a publication devoted to the practical
statistical problems that arise in the many fields of
human activity. To fill this gap, Applied Statistics was
launched in 1952. It officially became the Journal of
the Royal Statistical Society, Series C, in 1964. The
President, Austin Bradford Hill, defined its aims in
the first issue as follows.

Applied Statistics has been founded, therefore, to
meet the needs of all workers concerned with statis-
tics – not of professional statisticians only but also of
those innumerable workers in industry, commerce,
science, and other branches of daily work, who
must handle and understand statistics as part of their
tasks. Its aim, in short, is to present, in one way or
another but always simply and clearly, the statistical
approach and its value, and to illustrate in original
articles modern statistical methods in their everyday
applications.

The journal published three issues per volume and
initially was designed more as a magazine than
as a learned journal. It contained reports of the
meetings of the various Groups, articles expounding
statistical methods and illustrating their application,
and features entitled “Questions and answers”, “Notes
and comments”, “Letters to the Editors”, and book
reviews. Gradually, though, the journal became more
technical in character.

In December 1966, J.A. Nelder and B.E. Cooper
organized a meeting on “Statistical programming –
the present situation and future prospects” at the Atlas
Laboratory, Chilton, UK. The five papers presented
and an account of the discussion were published in
Applied Statistics in 1967. As a result of the meeting,
the “Statistical algorithms” section of the journal was
started in 1968. The main aims of the section were

to ensure that published algorithms are clearly orga-
nized, well documented, and standardized in nota-
tion and terminology, so that they will be readily
understandable to a large number of readers; . . .

also, that the algorithms are programmed as far
as possible in languages which are widely avail-
able and clearly defined independently of individual
implementations.

These aims only began to outlive their usefulness
by the mid-1990s when the publication of statisti-
cal algorithms ceased. By this time, over 300 had
been published.

In 1968, Series A made a break with tradition
when it ceased to publish the Sauerbeck index of
wholesale prices, which it had published annually
since 1886, latterly from material supplied by the
editor of the Statist. Other changes arising from
concern over overlap with Series C refocused its
editorial policy and included a change in its subtitle to
“Statistics in society” and a decrease from four issues
per volume to three in 1988. In contrast, Series B and
Series C increased from three issues to four in 1993.

The year 1993 also saw the addition of The Statis-
tician to Series A, B, and C following the merger
with the Institute of Statisticians. This resulted in
an integration and reorganization of the content of
the four journals, with the intention that The Statisti-
cian would be aimed particularly at the professionally
qualified members of the Society as well as at a wide
international audience of practising statisticians.

Around the turn of the century, rapid advances in
information technology took place, and the Society’s
journals evolved to take advantage of them.



Journal of The Royal Statistical Society 3

Firstly, a complete run of every issue since the
first in 1838 was digitized and housed in the on-line
archive JSTOR. Not only is each page available to
view in a facsimile form of the original but also
the database has sophisticated search facilities for
each item in the journals, providing powerful research
tools. These tools have been extended even further
for volumes since 1997 by inclusion in the CrossRef
scheme, which links participating publishers’ indi-
vidual databases of journals to enable researchers to
follow up references smoothly on line from one jour-
nal to another and from one discipline to another.
Access is through Blackwell Synergy, which provides
searchable hypertext on-screen versions of each paper
in the Society’s journals as well as downloadable ver-
sions in portable document format for subscribers.

At the prepublication end of the process, manu-
scripts are now almost exclusively submitted and
handled in the refereeing process in electronic form.

Responding to these changes and the changing
requirements of the statistical community, in 2002
the Society conducted a review of its publications.
The outcome was a consolidation of its journals
back into three series: a widely accessible subject-
matter journal (Series A), a methodological journal
(Series B) and a journal for innovative applications
(Series C). In addition, in 2004 the Society launched a
magazine titled Significance, which, as well as being
of interest to all its members and other statisticians,
performs an outreach role in promoting statistics to
nonstatisticians.

The aims and scope of the three series and the
magazine are as follows.

Series A (Statistics in Society) publishes papers
that demonstrate how statistical thinking, design, and
analyses play a vital role in all walks of life and bene-
fit society in general. For example, important applica-
tions of statistical methods in medicine, business and
commerce, industry, economics and finance, educa-
tion and teaching, physical and biomedical sciences,
the environment, the law, government and politics,
demography, psychology, sociology, and sport all fall
within the journal’s remit. It is aimed at a wide sta-
tistical audience and at professional statisticians in
particular. Its emphasis is on quantitative approaches
to problems in the real world rather than the expo-
sition of technical detail. Of particular interest are
papers on topical or contentious statistical issues,
papers that give reviews or exposés of current statisti-
cal concerns and papers demonstrating how statistics

has contributed to our understanding of important
substantive questions. Historical, professional, and
biographical contributions are also welcome, as are
discussions of methods of data collection and of
ethical issues, provided that all such papers have sub-
stantial statistical relevance.

Series B (Statistical Methodology) publishes
papers that contribute to the understanding of
statistical methodology and/or develop and improve
statistical methods. The kinds of contribution
considered include descriptions of new methods of
collecting or analyzing data, with the underlying
theory, an indication of the scope of application
and preferably a real example. Also considered
are comparisons, critical evaluations, and new
applications of existing methods, contributions to
probability theory, which have a clear practical
bearing (including the formulation and analysis
of stochastic models), statistical computation or
simulation where original methodology is involved
and original contributions to the foundations
of statistical science. Reviews of methodological
techniques are also considered.

Series C (Applied Statistics) promotes papers that
both are driven by real life problems and make a
novel contribution to the subject, for example by
developing methodology or by demonstrating the
proper application of new or existing statistical meth-
ods to them. Applications are central, and case stud-
ies may therefore be particularly appropriate. Papers
describing interdisciplinary work are especially wel-
come, as are those that give novel applications of
existing methodology or new insights into the practi-
cal application of techniques. Methodological papers
that are not motivated by a genuine application are
not within the scope; nor are papers that include
only brief numerical illustrations or describe simula-
tions of properties of statistical techniques. However,
papers describing developments in statistical comput-
ing are within the scope, provided that they are driven
by practical examples. Other types of papers con-
sidered are those on design issues (e.g. in relation
to experiments (see Experimental Design), surveys
(see Sample Surveys in the Health Sciences) or
observational studies) that arise from specific prac-
tical problems and feature an adequate description of
a substantial application and a justification for any
new theory.

Significance is a quarterly magazine for any-
one interested in statistics and the analysis and
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interpretation of data. Its aim is to communicate and
demonstrate in an entertaining and thought-provoking
way the practical use of statistics in all walks of life
and to show how statistics benefit society. Articles
are largely nontechnical and hence accessible and
appealing not only to members of the profession but
also to all users of statistics. Students and teachers
of statistics will find articles of interest in Signifi-
cance, as will people working in central and local
government, medicine and health care, administra-
tion, economics, business and commerce, industry,
social studies, survey research, science, and the envi-

ronment. As well as promoting the discipline and
covering topics of professional relevance internation-
ally, Significance contains a mixture of statistics in
the news, case studies, reviews of existing and newly
developing areas of statistics, the application of tech-
niques in practice and problem solving.

(See also Royal Statistical Society)

M.C. OWEN



J-shaped Distribution

As a sequel to Khinchin’s definition of unimodality,
a J-shaped distribution function is defined. A charac-
terization for a related distribution is given using a
well-known result of Khinchin on unimodality and a
characterization theorem for a U-shaped probability
density function by Ghosh and Shanbhag.

We define the following:

Definition 1. A distribution function F(x) is said to
be negative-tailed (positive-tailed) J-shaped if there
exists a value x = a such that F(x) is convex (con-
cave) for x < a (x > a) and F(a) = 1 (0). The point
x = a is called a negative (positive) pivot of F(x).

Definition 2. If a J-shaped distribution F(x) is
differentiable except at a countable subset of the set
of reals, then the derivative F ′(x) is called a J-shaped
probability density function.

We observe that for a negative-tailed J-shaped
distribution function F(x) with a negative pivot at
x = a we have F(x) = 1 at x = a and for x >

a. Since a constant function is both concave and
convex, we conclude that a negative-tailed J-shaped
distribution is unimodal with vertex at x = a. Hence,
by Khinchin’s theorem [3, p. 92] its characteristic
function p(t) has the following representation:

p(t) =
[

exp(ita)

t

] ∫ t

0
q(u) du, for a real t.

Similarly, the characteristic function r(t) of a
positive-tailed J-shaped distribution has the following
representation:

r(t) =
[

exp(itc)

t

] ∫ t

0
s(u) du, for a real t,

where c is the positive pivot.

Examples

The following are two examples of J-shaped density
functions:

1. Let a random variable X measure the level
of nicotine intake by human beings. Then the
frequency distribution of X amongst patients
with lung cancer is likely to be negative-tailed
J-shaped.

2. If a cohort of children is followed from birth
to age 5 years, the distribution of age at death,
amongst those who die, is likely to be positive-
tailed J-shaped. Conversely, among those who
die in a cohort of individuals followed from, say,
age 65 to 70 years, the distribution of age at death
is likely to be negative-tailed J-shaped.

Related Distributions

The concepts of a U-shaped probability density func-
tion and a bimodal distribution are related to J-shaped
distribution. We define the following:

Definition 3. Let X be an absolutely continu-
ous random variable. Then the probability density
function of X is said to be U-shaped if there exist real
numbers a, b, and c such that a < b < c, Pr {X <

a} = 0, Pr {X > c} = 0, Pr {X < x} is concave in
(a, b) and convex in (b, c).

The following theorem [2] gives a characterization
for a U-shaped density function.

Theorem. Let X be an absolutely continuous ran-
dom variable with probability density function h(x).
Then h(x) is bounded and U-shaped if and only if
the characteristic function of X is given by

f (t) = p[exp(itb) − exp(ita)]

it

− q
exp(itc)

t

∫ t

0
r(u) du, for a real t,

where r(u) is a characteristic function, a, b, c, and p

are real numbers, and q is real and positive.

Definition 4. A distribution function F(x) is said
to be bimodal if there exist real numbers a, b, and
c with a < b < c such that (i) F(x) is convex for
x < a; (ii) F(x) is concave for a < x < b; (iii) F(x)

is convex for b < x < c; and (iv) F(x) is concave
for x > c. The points x = a and x = c are called
two vertices of F(x). The point x = b is called an
antimode of F(x).

If a = c, then F(x) is unimodal in Khinchin’s
sense.

The following theorem [1] characterizes a bimodal
distribution.

Theorem. The function f (t) is the characteristic
function of a bimodal distribution function F(x) with



2 J-shaped Distribution

vertices a and c, with a < c, if and only if

f (t) = F(a)h(t) + {F(c) − F(a)}g(t)

+ {1 − F(c)}k(t),

where h(t) is the characteristic function of a negative-
tailed J-shaped distribution with a negative pivot
at x = a, g(t) is the characteristic function of a
U-shaped distribution over (a, c), and k(t) is the
characteristic function of a positive-tailed J-shaped
distribution with a positive pivot at x = c.
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Kalman Filter

The Kalman filter is the recursive algorithm devised
by Kalman [7, 8] often used to provide estimates of
parameters in state-space models of time series. The
original ideas and those that flowed from them have
had so much impact, see [4], that Kalman filtering
is sometimes taken to denote the entire state-space
approach.

State-space models were proposed by several
authors in times series, for example, [9, 5] and [3], but
have their roots in control engineering. They relate
observations to “state variables” and have wide appli-
cation. Suppose that an observed series {xt }, which
may be a vector series, can be written in terms of d

unobserved state variables, say a d × 1 vector {αt }.
The explicit form of our model relating state and
observation is

xt = Hαt + εt (1)

where H is a known 1 × d matrix and εt is, as usual
white noise, often called measurement noise.

To make life simpler, we also assume that the state
variables satisfy

αt = φαt−1 + Kηt (2)

where φ is the d × d transition matrix, and ηt is
a n dimensional noise vector, uncorrelated with εt ,
with covariance matrix �. The matrix K is a d × n

parameter matrix.
This rather curious set of equations can be justi-

fied in terms of conditional expectations in a mul-
tivariate normal distribution, however, the main
reason for our interest is in the set of updating equa-
tions, the so called Kalman recursions. Many authors,
notably Harvey [4] have used the state-space equa-
tions explicitly giving rise to what are known as
structural equation models. These are a subset of
the ARIMA family (see ARMA and ARIMA Mod-
els) but are valuable in modeling terms as they give
an alternative approach via state variables. It is worth
noting that ARIMA models can be written in state-
space form but without the εt term in (1); see [6].

Perhaps the most important point to appreciate is
that the state-space form and the Kalman algorithm
give us a relatively simple model and an effective
method of computing the likelihood.

For any estimation method based on the state-
space formulation of a model, we need estimates of

the state variables. Finding the best approximation
to the state variables (in a conditional mean sense)
is known as the filtering problem, while the corre-
sponding problem of finding the best approximation
to the observations is the smoothing problem.

Suppose that our estimate of αt at time t is at

while the estimate made at time t-1 is at |t−1. These
estimates will have variance matrices

Ct = E[(αt − at )(αt − at )
′
] (3)

Ct |t−1 = E[(αt − at |t−1)(αt − at |t−1)
′
] (4)

The beauty of the state-space representation is that
we have the Kalman filter updating equations; see
[7] or [6]. A comprehensive discussion can also be
found in [1]

The Kalman Filter Recursions

The prediction equations

at |t−1 = φat−1. (5)

Ct |t−1 = φCt−1φ
′ = K�K

′
. (6)

The updating equations

Ft = HCt |t−1H
′ + σ 2

ε (7)

Ct = Ct |t−1 − 1

Ft

Ct |t−1H
′
HCt |t−1 (8)

at = at |t−1 + 1

Ft

Ct |t−1H
′
(xt − Hat |t−1). (9)

For constructing the likelihood,

Vt = xt − Hat |t−1. (10)

Given some starting values, we step through the
recursions and at each stage we obtain the predic-
tion errors Vt and the prediction error variances Ft

for any given parameter set. This means we can com-
pute the likelihood for any parameter set, and with a
suitable maximization procedure, we can get max-
imum likelihood estimates. The Kalman approach
provides compact computer code with the possibil-
ity of fast execution by comparison with alternative
approaches.
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The Start-up Problem

If we start our recursions at time t = 1, then we
need the state estimate a0 together with a covariance
estimate C0 at time zero. There are various possibili-
ties, using the unconditional expected values to rather
exotic ones; see [3].

A simple approach is to use the fact that the effect
of the starting values is soon lost, especially with long
series and we will set a0 to zero and the covariance
C0 to M (a large number) times the unit matrix. This
is a simple, an effective technique that is widely used.
It is also common for the recursions to settle down
to a steady state when we have stationary series.
By this we mean that Ct , Ct |t−1, and Ft converge
to fixed (time independent) values. The advantage is
that when this happens, we can skip equations (6),
(7), and (8). While there is no analytic result to tell
us when this has happened, we can put a numerical
check in the recursions.

The reader may have noticed that we could have
used a vector value of xt in most of the algebra
above. Indeed, we can easily extend all our state-
space models to vector series.

An Example. We take as an example a tree ring
series from 1700 to 1987 [2] shown in Figure 1

Take a simple model of a drifting mean, xt =
µt + εt and

µt = µt−1 + βt−1 + ηt with βt = βt−1 + ζt (11)

This simple model includes trend and mean effects
but no seasonal. We start at t = 1 with

φ =
(

1 1
0 1

)
, � =

(
σ 2

η 0
0 σ 2

ζ

)
,

C0 =
(

1000 0
0 1000

)
, a0 =

(
0
0

)
(12)

The K matrix is just a unit matrix.
Our life can be made a little simpler by noting

that we have three variances σ 2
ε , σ 2

η , σ 2
ζ What we can

do is concentrate out a parameter. We set σ 2
ε = 1

and regard the other two unknown variances as being
scaled by σ 2

ε ; see [6]. This saves us some computa-
tion. We can now use the Kalman filter equations
to produce for given σ 2

η , σ 2
ζ a set of predictions and

predictions errors, which will give us values for the
likelihood. The table below shows how the Ct matrix
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Figure 1 Model fit to tree ring widths

converges as the value of t increases. In fact, we
would normally drop the first six iteration values
from the likelihood computation because they are
unreliable.

t at Ct Vt

2 70.5 5002.25 5001.25 −54.74791

−12.98906 5001.25 5002.25

4 94 2.666644 1.666644 11.99685

9.501143 1.666644 2.666644

10 49 2.618034 1.618034 16.65551

4.138162 1.618034 2.618034

14 59 2.618034 1.618034 4.825807

−4.6567 1.618034 2.618034

As we can now construct a likelihood via the filter,
we are able to seek the maximum of the likelihood.
After 100 iterations, we find that the (scaled) values
are

σ 2
ε = 1, σ 2

η = 204.1846, σ 2
ζ = 137.2181. (13)
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Figure 2 Tree ring widths by year

Standard errors are also available from the derivatives
of the likelihood.

This is a really rather simple model and as we
can see, the predicted values “+” are not very close

(see Figure 2). This is, however, a fault of the model
rather than the filter!

References

[1] Durbin, J. & Koopman, S.J. (2001). Time Series Analysis
by State Space Methods. University Press, Oxford.

[2] Earle, C.J., Brubaker, L.B., Segura, G. Douglas Fir
Ring Widths, Silver Creek, Washington State, Interna-
tional Tree Ring Data Base, NOAA/NGDC Paleo-
climatology Program, Boulder, Colorado, USA. see
http://www.ngdc.noaa.gov/paleo/treering.html

[3] Harvey, A.C. (1989). Forecasting Structural Time Series
Models and the Kalman Filter. Cambridge University
Press, Cambridge, UK.

[4] Harvey, A.C. (1993). Time Series Models. Prentice Hall,
USA.

[5] Harrison, P.J. & Stevens, C.F. (1976). Bayesian forecast-
ing, Journal of the Royal Statistical Society Series B 38,
205–247.

[6] Janacek, G.J. & Swift, A.L. (1990). Times series, Ellis
Horwood, Chichester, UK.

[7] Kalman, R.E. (1960). A new approach to linear filtering,
Journal of Basic Engineering, Transactions of the ASM,
Series D 82, 35–45.

[8] Kalman R.E. & Bucy, R.S. (1961). New results in
linear filtering and prediction theory, Journal of Basic
Engineering, Transactions of the ASM, Series D 83,
95–108.

[9] West, M. & Harrison, P.J. (1989). Bayesian Forecasting
and Dynamic Methods. Springer, New York.

G.J. JANACEK



Kaplan–Meier Estimator

The Kaplan–Meier estimator is a nonparametric
estimator which may be used to estimate the sur-
vival distribution function from censored data. The
estimator may be obtained as the limiting case of
the classical actuarial (life table) estimator, and it
seems to have been first proposed by Böhmer [2].
It was, however, lost sight of by later researchers
and not investigated further until the important paper
by Kaplan & Meier [12] appeared. Today the esti-
mator is usually named after these two authors,
although sometimes it is denoted the product–limit
estimator (see Aalen–Johansen Estimator). Below
we describe the Kaplan–Meier estimator, illustrate
its use in one particular case, and discuss estimation
of the median and mean survival times. Furthermore,
we show how the Kaplan–Meier estimator can be
given as the product–integral of the Nelson–Aalen
estimator, and indicate how this may be used to study
its statistical properties. For almost four decades the
Kaplan–Meier estimator has been one of the key sta-
tistical methods for analyzing censored survival data,
and it is discussed in most textbooks on survival anal-
ysis. Rigorous derivations of the statistical properties
of the estimator are provided in the books by Fleming
& Harrington [7] and Andersen et al. [1]. In partic-
ular the latter presents formal proofs of almost all
the results reviewed below as well as an extensive
bibliography.

The Estimator and Confidence Intervals

Consider the survival data situation where we want
to study the time to death (or some other event) for
a homogeneous population with survival distribution
function S(t) representing the probability that an indi-
vidual will be alive at time t . Assume that we have
a sample of n individuals from this population. Our
observation of the survival times for these individuals
will typically be subject to right-censoring, meaning
that for some individuals we only know that their true
survival times exceed certain censoring times. The
censoring is assumed to be independent in the sense
that the additional knowledge of censorings before
any time t does not alter the risk of failure at t . We
denote by t1 < t2 < · · · the times when deaths are
observed and let dj be the number of individuals who
die at tj .

The Kaplan–Meier estimator for the survival dis-
tribution function then takes the form

Ŝ(t) =
∏

tj ≤t

(
1 − dj

rj

)
, (1)

where rj is the number of individuals at risk (i.e.
alive and not censored: in the risk set) just prior to
time tj . If there are no censored observations, then (1)
reduces to one minus the empirical distribution func-
tion. The variance of the Kaplan–Meier estimator is
estimated by Greenwood’s formula:

σ̂ 2(t) = Ŝ(t)2
∑

tj ≤t

dj

rj (rj − dj )
. (2)

In the case of no censoring, (2) reduces to Ŝ(t)[1 −
Ŝ(t)]/n, the standard binomial variance estimator.

In large samples the Kaplan–Meier estimator,
evaluated at a given time t , is approximately nor-
mally distributed so that a standard 100(1 − α)%
confidence interval for S(t) takes the form

Ŝ(t) ± z1−α/2σ̂ (t), (3)

with z1−α/2 the 1 − α/2 fractile of the standard
normal distribution. The approximation to the normal
distribution is improved by using the log-minus-
log transformation (see Quantal Response Models)
giving the confidence interval

Ŝ(t)exp{±z1−α/2σ̂ (t)/[Ŝ(t) ln Ŝ(t)]}. (4)

This interval is satisfactory for quite small sam-
ple sizes [3]. Confidence intervals with small-sample
properties which are comparable with (4), or even
slightly better, may be obtained by using the arcsine-
square-root transformation [3] or by basing the con-
fidence interval on the likelihood ratio test [5, Sec-
tion 4.3; 16]. Note that all these confidence intervals
should be given a pointwise interpretation. Simulta-
neous confidence bands for the survival distribution
function are considered below.

Right-censoring is not the only kind of data incom-
pleteness in survival analysis. Often, e.g. in epi-
demiologic applications, individuals are not followed
from time zero (in the relevant time scale, typically
age), but only from a later entry time (conditional
on survival until this entry time). Thus, in addi-
tion to right-censoring, the survival data are sub-
ject to left truncation. For such data we may, in
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principle at least still use the Kaplan–Meier estima-
tor (1) and estimate its variance by (2). The number
at risk, rj , is now the number of individuals who
have entered the study before time tj and are still in
the study just prior to tj . However, for left-truncated
data the numbers at risk, rj , will often be low for
small values of tj . This will result in estimates Ŝ(t)

which have large sampling errors and which therefore
may be of little practical use. What can be use-
fully estimated in such situations is the conditional
survival distribution function, S(t |t0) = S(t)/S(t0),
representing the probability of survival to time t

given that an individual is alive at time t0 < t . It
may be useful to estimate such conditional distri-
bution functions for several values of t0 (at which
there are reasonable numbers at risk), there being
nothing canonical about any particular value. The
estimation is performed as described earlier, the only
modification being that the product in (1) and the
sum in (2) are restricted to those tj for which t0 <

tj ≤ t .

An Illustration

As an illustration we use data from a randomized
clinical trial for patients with histologically verified
liver cirrhosis. Patients were recruited from several
hospitals in Copenhagen between 1962 and 1969
and were followed until death, lost to follow-up, or
until the closing date of the study, October 1, 1974.
The time variable of interest is time since entry into
the study. Patients are right censored if alive on
October 1, 1974, or if lost to follow-up before that
date.

We consider only the 138 placebo-treated male
patients. Their median age at entry was 57 years,
while the lower and upper quartiles were 51 and
66 years, respectively. Of the 138 patients, 88 died
during the study. The Kaplan–Meier estimate of the
survival distribution function for these patients is
shown in Figure 1 with 95% confidence intervals
computed according to (4). From the figure we see,
for example, that the five years survival probabil-
ity is estimated as 43.0% with a 95% confidence
interval from 34.0% to 51.9%, while the estimated
10 years survival probability is 18.4% with a con-
fidence interval from 9.7% to 29.3%. We return to
the liver cirrhosis example below in connection with
median and mean survival times and simultaneous
confidence bands. A further discussion and analy-
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0.6

0.4

0.2

0.0
0 2 4 6 8 10

Years since randomization

Figure 1 Kaplan–Meier estimate of the survival distri-
bution function for 138 placebo-treated male patients with
liver cirrhosis with 95% log-minus-log-transformed confi-
dence intervals

sis of the data are given by Schlichting et al. [15].
The data were also used for illustrative purposes by
Andersen et al. [1].

Median Survival Time and Related
Quantities

The use of the Kaplan–Meier estimator is not
restricted to estimating survival probabilities for
given times t . It may also be used to estimate fractiles
such as the median survival time and related
quantities like the interquartile range (see Quantiles).

Consider the pth fractile, ξp , of the cumulative
distribution function F(t) = 1 − S(t), and assume
that F(t) has a positive density function f (t) =
F ′(t) = −S ′(t) in a neighborhood of ξp . Then ξp

is uniquely determined by the relation F(ξp) = p,
or equivalently, S(ξp) = 1 − p. The Kaplan–Meier
estimator is a step function and hence does not
necessarily attain the value 1 − p. Therefore a similar
relation cannot be used to define the estimator ξ̂p

of the pth fractile. Rather, we define ξ̂p to be the
smallest value of t for which Ŝ(t) ≤ 1 − p, i.e. the
time t where Ŝ(t) jumps from a value greater than
1 − p to a value less than or equal to 1 − p. In large
samples ξ̂p is approximately normally distributed
with a variance that may be estimated by

v̂ar(ξ̂p) = (1 − p)2σ̂ 2(ξ̂p)

[f̂ (ξ̂p)Ŝ(ξ̂p)]2
. (5)
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Here f̂ (t) is an estimator for the density function
f (t) = −S ′(t) (see Density Estimation). One may,
for example, use

f̂ (t) = 1

2b

[
Ŝ(t − b) − Ŝ(t + b)

]
(6)

for a suitable bandwidth b (corresponding to a kernel
function estimator with uniform kernel). Furthermore,
for p < q, ξ̂p and ξ̂q are approximately binormally
distributed, and their correlation may be estimated by

ĉorr(ξ̂p, ξ̂q) = σ̂ (ξ̂p)Ŝ(ξ̂q)

σ̂ (ξ̂q)Ŝ(ξ̂p)
. (7)

Note that Ŝ(ξ̂p) in (5) and (7) is equal to or only
slightly less than 1 − p, and that (5) could have been
simplified if we had used this approximate equality.
We have chosen not to do so since then Ŝ(ξ̂p) in (5)
and (7) cancels with the same factor in σ̂ (ξ̂p); cf. (2).

The above results may be used in the usual way
to determine approximate confidence intervals, e.g.
for the median survival time ξ0.50 and the interquar-
tile range ξ0.75 − ξ0.25, as illustrated below. For the
purpose of determining a confidence interval for a
quantile (fractile) like the median it is, however,
better to apply the approach of Brookmeyer & Crow-
ley [4]. For the pth fractile one then uses as a
confidence interval all hypothesized values ξ 0

p of ξp

which are not rejected when testing the null hypoth-
esis ξp = ξ 0

p against the alternate hypothesis ξp �= ξ 0
p

at the α level (see Hypothesis Testing). Such test-
based confidence intervals can be read directly from
the lower and upper confidence limits for the survival
distribution function in exactly the same manner as
ξ̂p can be read from the Kaplan–Meier curve itself
(see Median Survival Time).

For the liver cirrhosis data an estimate of the
median survival time is 4.27 years (standard error
0.66 years), while the lower and upper quartiles
are estimated as 1.46 years (0.35 years) and 8.97
years (1.13 years), respectively, with an estimated
correlation of 0.28. In these computations the
bandwidth b = 1 year was used in (6). An estimate
of the interquartile range of the survival distribution
function is 8.97 − 1.46 = 7.51 years, with standard
error (0.352 + 1.132 − 2 × 0.35 × 1.13 × 0.28)1/2 =
1.09 years. From this an approximate 95% confidence
interval for the median survival time is 4.27 ±
1.96 × 0.66, i.e. from 2.98 to 5.56 years, while 95%

confidence limits for the interquartile range are from
5.37 to 9.65 years. For the median survival time it
is, as mentioned earlier, better to read the confidence
limits directly from the pointwise confidence intervals
for the survival distribution function given in
Figure 1. This gives 95% confidence limits for the
median survival time from 3.02 years to 5.41 years.
Note that no estimate of the density function is
needed here.

Mean Survival Time

Owing to right-censoring, in most survival studies it
will not be possible to obtain reliable estimates for the
mean survival time µ = ∫ ∞

0 tf (t) dt = ∫ ∞
0 S(t) dt

(see Life Expectancy). This is one important reason
why, in survival analysis, the median is a more useful
measure of location than the mean. What may be
usefully estimated from right-censored survival data
is the expected time lived in a given interval [0, t],
i.e. µt = ∫ t

0 S(u) du. This is estimated by

µ̂t =
∫ t

0
Ŝ(u) du,

the area below the Kaplan–Meier curve between 0
and t . Such an estimate may be of interest in its
own right, or it may be compared with a similar
population-based estimate to assess the expected
number of years lost up to time t for a group
of patients. In large samples, µ̂t is approximately
normally distributed with a variance that may be
estimated by

v̂ar(µ̂t ) =
∑

tj ≤t

(µ̂t − µ̂tj )
2dj

rj (rj − dj )
,

a result which may be used to give approximate
confidence limits for µt . By letting t tend to infinity,
the above results may be extended to the estimation
of the mean µ itself [8]. However, the conditions
(mainly on the censoring) needed for such an exten-
sion to be valid are usually not met in practice.

In the liver cirrhosis study no patient was followed
for more than 13 years, making the estimation of the
mean survival time impossible. We may, however,
estimate the expected number of years lived up to a
given time t . In particular, estimates for the expected
number of years lived up to 5 years and 10 years after
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the start of the study are 3.29 years (standard error
0.17 years) and 4.73 years (0.33 years), respectively.

Redistribute-to-the-right Algorithm and
Self-consistency

We mentioned earlier the relationship between the
Kaplan–Meier estimator and the empirical distri-
bution function in the case of no censoring. The
redistribute-to-the-right algorithm and the concept of
self-consistency, both due to Efron [6], further illus-
trate this relation.

For notational convenience we assume that there
are no ties, and we denote by t0

1 < t0
2 < · · · < t0

n

the ordered times of deaths and censorings com-
bined. The redistribute-to-the-right algorithm is as
follows. First, we construct the ordinary empirical
(survival) distribution function which places proba-
bility mass 1/n at each of the observed times t0

j . If
t0
j1

is the smallest t0
j that corresponds to a censored

observation, then we remove its mass and redis-
tribute it equally among the n − j1 time-points to the
right of it. Then, if t0

j2
is the second smallest cen-

sored observation, we remove its mass, which will
be 1/n + 1/[n(n − j1)], and redistribute it equally
among the n − j2 time-points to its right, etc. This
algorithm will converge in a finite number of steps
to the Kaplan–Meier estimator (1) (with the modifi-
cation that it is set equal to zero after t0

n also when
this last time-point corresponds to a censored obser-
vation).

A self-consistent estimator S̃(t) for the survival
distribution function equals 1/n times an estimate for
the number of individuals who survive time t . More
precisely,

S̃(t) = 1

n



#(t0
j > t) +

∑

t0
j
≤t

aj (t)



 , (8)

where aj (t) = S̃(t)/S̃(t0
j ) if the observation at t0

j cor-
responds to a censored observation, and aj (t) = 0 if it
corresponds to an observed death. It turns out that the
Kaplan–Meier estimator (modified as just indicated)
is the unique self-consistent estimator. Turnbull [17]
(see Turnbull Estimator) used the idea of self-
consistency to derive an iterative procedure (a version
of the EM algorithm) for estimating the survival dis-
tribution function nonparametrically from arbitrarily

grouped, censored, and truncated data, while Gill [9]
showed that the self-consistency equation, (8), may
be interpreted as a generalized score equation.

Product–Integral Representation and
Relationship to the Nelson–Aalen
Estimator

Usually one assumes that the survival distribu-
tion function S(t) is absolute continuous with den-
sity function f (t) = −S ′(t), hazard rate function
α(t) = f (t)/S(t), and cumulative hazard rate func-
tion A(t) = ∫ t

0 α(u) du. However, the Kaplan–Meier
estimator is discrete in nature, and the same applies to
the Nelson–Aalen estimator for the cumulative haz-
ard rate function. This makes it useful to be able
to handle both discrete and continuous distributions
within a unified framework. Let us therefore review
how the survival distribution function S(t) and the
cumulative hazard rate function A(t) are related for
distributions which need neither to be continuous nor
discrete. For such distributions

A(t) = −
∫ t

0

dS(u)

S(u−)
, (9)

where S(t−) denotes the left-hand limit of the sur-
vival distribution function at t . For an absolute
continuous distribution, (9) specializes to A(t) =
− ln S(t) = ∫ t

0 α(u) du. For a discrete distribution it
gives A(t) = ∑

u≤t αu, where the discrete hazard, αt ,
is the conditional probability of death exactly at time
t given that death has not occurred earlier. To express
the survival distribution function by the cumulative
hazard rate function it is convenient to use the prod-
uct–integral �, defined as the limit of approximating
finite products in a similar manner as the ordinary
integral

∫
is defined as the limit of approximating

finite sums (see Product-integration). With the use
of the product–integral we may write

S(t) = �
u≤t

[1 − dA(u)]. (10)

For a continuous distribution, (10) specializes to
the well-known relation S(t) = exp[−A(t)], while
for a discrete distribution it takes the form S(t) =∏

u≤t (1 − αu).
The Nelson–Aalen estimator for the cumulative

hazard rate function is Â(t) = ∑
tj ≤t dj /rj . This

corresponds to a distribution with all probability mass
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concentrated at the observed failure times and with
discrete hazard α̂j = dj/rj at tj . Using (10), the
corresponding survival distribution function takes the
form

Ŝ(t) = �
u≤t

[1 − dÂ(u)] =
∏

tj ≤t

(1 − α̂j ), (11)

i.e. it is the Kaplan–Meier estimator (1). Thus
the Kaplan–Meier and Nelson–Aalen estimators
are related in exactly the same way as are the
survival distribution function and the cumulative
hazard rate function themselves. This fact is lost sight
of when one considers the relations A(t) = − ln S(t)

and S(t) = exp[−A(t)] which are only valid for
the continuous case. In fact, the latter relations
have led researchers to suggest the estimators
− ln Ŝ(t) and exp[−Â(t)] for the cumulative hazard
rate function and the survival distribution function,
respectively. The numerical differences between
these two estimators and the Nelson–Aalen and
Kaplan–Meier estimators will be of little importance
in most cases. But the fact that the Nelson–Aalen
and Kaplan–Meier estimators are related through
(9) and (10) indicates that they are the canonical
nonparametric estimators for the cumulative hazard
rate function and the survival distribution function.
This statement is supported by the fact that they
may both be given a nonparametric maximum
likelihood interpretation [11].

Martingale Representation and Statistical
Properties

The product–integral formulation (11) of the
Kaplan–Meier estimator shows its close relationship
to the Nelson–Aalen estimator, and it is the key to
the study of its statistical properties. In fact, these
are closely related to those of the Nelson–Aalen
estimator. We here indicate a few main steps and refer
to Andersen et al. [1, Section IV.3] for a detailed
account.

Let J (t) = 1 if there is at least one individual at
risk just before time t ; J (t) = 0 otherwise. Further-
more, introduce A∗(t) = ∫ t

0 J (u) dA(u), and let

S∗(t) = �
u≤t

[1 − dA∗(u)]. (12)

We note that (12) is almost the same as S(t) [cf. (10)]
when there is only a small probability that there is

no one at risk at times u ≤ t . By a general result
for product–integrals (Duhamel’s equation), we may
write

Ŝ(t)

S∗(t)
− 1 = −

∫ t

0

Ŝ(u−)

S∗(u)
d(Â − A∗)(u). (13)

Here Â − A∗ is a square integrable martingale
(see Nelson–Aalen Estimator). It follows that the
right-hand side of (13) is a stochastic integral and
hence itself a mean zero square integrable martin-
gale. As a consequence of this, E[Ŝ(t)/S∗(t)] = 1 for
any given t , so the Kaplan–Meier estimator is almost
unbiased. Furthermore, the predictable variation pro-
cess of the martingale on the right-hand side of (13)
may be used to arrive at an estimator for the variance
of Ŝ(t)/S∗(t). From this, Greenwood’s formula (2)
follows provided one adopts a general model, not nec-
essarily continuous. Greenwood’s formula may also
be derived through a standard information calcula-
tion starting with a binomial-type likelihood for such
a general model.

A further consequence of (13) is that
√

(n)(Ŝ −
S)/S is asymptotically equivalent to −√

(n)(Â − A)

and therefore converges weakly to a mean zero Gaus-
sian martingale. In particular, for a fixed t , the
Kaplan–Meier estimator (1) is asymptotically nor-
mally distributed, a fact that was used in connection
with the confidence intervals (3) and (4). Also, the
asymptotic distributional results of the estimators for
the median and mean survival times reviewed earlier
are consequences of this weak convergence result.

Confidence Bands

The weak convergence of
√

(n)(Ŝ − S)/S to a mean
zero Gaussian martingale also makes it possible to
derive confidence bands for the survival distribution
function, i.e. limits that contain S(t) for all t in
an interval [τ1, τ2] with a prespecified probability.
Two important types of such confidence bands are
the equal precision bands [14] and the Hall–Wellner
bands [10]. Borgan & Liestøl [3] derived transformed
versions of these confidence bands and compared
them with the nontransformed ones.

The standard and log-minus-log transformed equal
precision bands are obtained by replacing z1−α/2 in
(3) and (4) by d1−α(ĉ1, ĉ2), the 1 − α fractile in the
distribution of the supremum of the absolute value
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of a standardized Brownian bridge over the interval
from ĉ1 to ĉ2 (see Brownian Motion and Diffusion
Processes). Here

ĉi = n[σ̂ (τi)/Ŝ(τi)]2

1 + n[σ̂ (τi)/Ŝ(τi)]2
, i = 1, 2. (14)

The fractile d1−α(ĉ1, ĉ2) may be found (approxi-
mately) by solving (with respect to d) the following
nonlinear equation:

4φ(d)

d
+ φ(d)

(
d − 1

d

)
ln

[
ĉ2(1 − ĉ1)

ĉ1(1 − ĉ2)

]
= α,

with φ(d) the standard normal density. The equal
precision bands require 0 < ĉ1 < ĉ2 < 1, so they
cannot be extended all the way down to t = 0.
Typically, one will also omit the largest values of t .

The nontransformed Hall–Wellner band takes the
form

Ŝ(t) ± n−1/2e1−α(ĉ1, ĉ2)

{
1 + n

[
σ̂ (t)

Ŝ(t)

]2
}

Ŝ(t).

(15)

Here e1−α(ĉ1, ĉ2) is the 1 − α fractile in the dis-
tribution of the supremum of the absolute value
of a Brownian bridge over the interval from ĉ1

to ĉ2; cf. (14). For completely observed survival
data the Hall–Wellner band reduces to the well-
known Kolmogorov band Ŝ(t) ± n−1/2e1−α(ĉ1, ĉ2).
For the band (15), one will often let τ1 = 0, in
which case tables of e1−α(ĉ1, ĉ2) = e1−α(0, ĉ2) are
given, for example by Koziol & Byar [13] and Hall
& Wellner [10] for selected values of α and ĉ2.
We note that (15) is obtained from (3) by substi-
tuting n−1/2e1−α(ĉ1, ĉ2){1 + n[σ̂ (t)/Ŝ(t)]2}Ŝ(t) for
z1−α/2σ̂ (t). The same substitution in (4) gives the
log-minus-log transformed Hall–Wellner band. This
transformed band requires ĉ1 > 0, so it cannot be
extended all the way down to t = 0. Owing to the
approximation e1−α(ĉ1, ĉ2) ≈ e1−α(0, ĉ2), the above-
mentioned tables may also be used for the trans-
formed bands when ĉ1 is close to zero.

The nontransformed equal precision band tends
to achieve too high error rates when the number of
observations is low, and the use of transformed bands
is recommended, even for samples of a hundred or
more. The achieved error rates of the nontransformed
Hall–Wellner band are fairly close to the nominal
ones even in small samples, and the improvement
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0.0

0 2 4 6 8 10
Years since randomization

Figure 2 Kaplan–Meier estimate of the survival distri-
bution function for 138 placebo-treated male patients with
liver cirrhosis with 95% confidence bands: log-minus-log
transformed equal precision band over the interval from 4
months to 8 years (- - - -); Hall–Wellner band over the
interval [0, 8] years (· · ·)

obtained by using transformed bands is of less
importance.

Figure 2 shows the Kaplan–Meier estimate for
the liver cirrhosis data with 95% confidence bands.
The bands shown are the log-minus-log transformed
equal precision band over the interval from 4 months
to 8 years and the nontransformed Hall–Wellner
band valid from time zero to 8 years. Since τ1 =
1/3 year and τ2 = 8 years correspond to ĉ1 = 0.090
and ĉ2 = 0.789, the fractiles d0.95(ĉ1, ĉ2) = 2.99 and
e0.95(0, ĉ2) = 1.36 were used. It is seen that the equal
precision band is narrower than the Hall–Wellner
band both for low and high values of t , while the
Hall–Wellner band is slightly narrower than the equal
precision band for intermediate values.
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Kappa and its
Dependence on Marginal
Rates

The kappa statistic was proposed by Cohen [4] as
a measure of reliability for nominal classification
procedures and was constructed specifically to “cor-
rect” the proportion of raw agreement for agreement
expected purely by random classifications given the
marginal rates. Since its introduction there have been
many generalizations and extensions developed and
it has been applied widely in medical research. There
has also been considerable debate about the util-
ity of this index [9, 13, 14], arising in part as a
result of a genuine lack of consensus on precisely
how to model and measure the reliability of nominal
classification procedures. The issues are most eas-
ily illustrated in the assessment of the reliability of
a simple binary test. Let Tk denote the outcome of
the kth application of a binary test for which Tk = 1
and Tk = 2 indicate the presence and absence of dis-
ease, respectively, k = 1, 2. Upon two applications of
this test to a sample of n subjects, cross-classifying
the results leads to a 2 × 2 table (see Table 1),
where xij denotes the frequency with which T1 =
i and T2 = j , xi· = ∑2

j=1 xij , and x·j = ∑2
i=1 xij .

Conditioning on n leads to a multinomial distri-
bution for x = (x11, x12, x21, x22)

′, where pij is the
probability of T1 = i and T2 = j , pi· = ∑2

j=1 pij ,

and p·j = ∑2
i=1 pij . The raw agreement is p0 =∑2

i=1 pii and, given the marginal rates pi·, i = 1, 2
and p·j , j = 1, 2, and under the assumption of inde-
pendent classifications, the expected level of agree-
ment is pe = ∑2

i=1 pi·p·i The kappa index takes the
form κ = (p0 − pe)/(1 − pe). The estimate of kappa,
subsequently referred to as the kappa statistic and
denoted κ̂ , is obtained by replacing p0 and pe by
the corresponding estimates p̂0 = ∑2

i=1 p̂ii and p̂e =∑2
i=1 p̂i·p̂·i respectively, where p̂ii = xii/n, p̂i· =

xi·/n, and p̂·i = x·i/n, i = 1, 2.
While on the surface the kappa statistic is intu-

itively appealing as a measure of reliability, para-
doxical results can arise from computing the kappa
statistic for tables of various configurations. The most
often cited paradox with kappa is termed the “base
rate” or “prevalence” problem and refers to the fact
that for a fixed p̂0, values of p̂1· ≈ p̂·1 away from

Table 1

T2 = 1 T2 = 2 Total

T1 = 1 x11 x12 x1·
T1 = 2 x21 x22 x2·

Total x·1 x·2 x·· = n

0.50 in either direction lead to smaller values of
κ̂ . Thus, a diagnostic test with fixed sensitivity and
specificity when applied twice to a sample of patients
with p̂1· ≈ p̂·1 ≈ 0.50, will generate a kappa statis-
tic larger than would be obtained from a similar
application of the test in a very low-risk population
(with p̂1· ≈ p̂·1 ≈ 0.10), or in an extremely high-
risk population (with p̂1· ≈ p̂·1 ≈ 0.90). Given that
the diagnostic instrument is the same in both stud-
ies, this result is argued to be counter-intuitive. This
paradox also raises concerns about the utility of the
ranges for the kappa statistic given by Landis &
Koch [10] said to correspond to poor, fair, good,
and excellent agreement. Owing to this dependence
on the marginal frequencies, a comparison of relia-
bility findings, as measured by κ̂ , is difficult across
studies involving populations with different preva-
lences.

At the population level, some insight can be
gained into the reason for this behavior. Let θ

denote the prevalence of the disease in the pop-
ulation from which the subjects under study were
randomly sampled. Let α and β denote the false
positive and false negative error rates for the diag-
nostic test, respectively. Then, if successive appli-
cations of the test may be assumed to be inde-
pendent, p11 = θ(1 − β)2 + (1 − θ)(1 − α)2, p12 =
θ(1 − β)β + (1 − θ)(1 − α)α, p21 = θ(1 − β)β +
(1 − θ)(1 − α)α, p22 = θβ2 + (1 − θ)α2, p0 = p11

+ p22 = θ(1 − 2β) + (1 − θ)(1 − 2α), and pe = 1 −
2a(1 − a), where a = [θ(1 − β) + (1 − θ)(1 − α)]2.
Kraemer [8] derives the relation

κ = 2θ(1 − θ)(1 − α − β)2

2[(θ(1 − β) + (1 − θ)α)

× (1 − θ(1 − β) − (1 − θ)α)]

. (1)

For fixed (α, β), plots of κ as a function of θ are
concave down taking on the value zero at θ = 0 and
θ = 1 [13].

Several solutions to this problem have been pro-
posed ranging from supplementing κ̂ with additional
statistics to facilitate disentangling the nature of the
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agreement, to entirely new approaches. Feinstein &
Cicchetti [7] effectively illustrate the dependence
of kappa on the marginal frequencies by consid-
ering several sample tables in which the observed
raw agreement p̂0 is fixed, but the marginal fre-
quencies vary. In a companion paper, Cicchetti &
Feinstein [3] then propose that the kappa statistic
should always be reported with two accompanying
statistics called the index of average positive agree-
ment, q̂pos = 2x11/(x1· + x·1), and the index of aver-
age negative agreement q̂neg = 2x22/(x2· + x·2). The
motivation is that these statistics may be used to
gain insight into the marginal agreement and imbal-
ance in the marginal frequencies and hence allow
interpretation of κ̂ accordingly. Byrt et al. [1] pro-
pose using what they refer to as a bias-adjusted
kappa, which reduces to an index previously pro-
posed by Scott [12]. Lantz & Nebenzahl [11] suggest
that kappa statistics be accompanied with statistics
κ̂min = p̂2

0/[(1 − p̂0)
2 + 1] and κ̂max = p̂0 − 1/p̂0 +

1 for p̂0 < 1, which correspond to the minimum
and maximum values of κ for a given level of
observed agreement, and κ̂nor = 2p̂0 − 1, which is
also the so-called prevalence-adjusted, bias-adjusted
kappa statistic of Byrt et al. [1].

Much of the work on kappa has been carried
out on intuitive, but largely ad hoc, grounds. For
example, there is no underlying probability function,
and hence likelihood function, for which κ is a sole
parameter of interest. Rather, it has been proposed as
an “index”, a function of parameters which may be
estimated and, when done so, is thought to have some
attractive properties. Thus, it appears that the paradox
arises since the kappa statistic is not model-based,
and depends in a complicated way on the observed
raw agreement and the marginal frequencies. The key
factor in the paradoxes is the role of p̂e, which serves
as a “correction factor” in the numerator of κ̂ , as
well as a rescaling factor in the denominator 1 − p̂e.
The extent to which the lack of a likelihood function
relates to the above prevalence problem is worthy of
consideration.

Another difficulty is that it is not generally well
understood precisely what is, or should be, meant by
the “reliability” of a binary diagnostic test. With a
view to exploring this, Cook & Farewell [5] describe
a likelihood-based approach for the separate exami-
nation of the marginal agreement (relative magnitude
of p1· and p·1) and subject-specific agreement (as

measured by the odds ratio). Likelihood factoriza-
tions, conditioning arguments, and exact distributions
facilitate detailed examination of well-defined and
interpretable aspects of reliability.

In all of the recommended procedures cited above
it must be borne in mind that the raw data for
the 2 × 2 table under consideration consist only of
four numbers and at most three degrees of free-
dom. Hence, presentation of three or four “summary”
statistics does not serve the purpose of data reduction.
Nevertheless, there appears to be general agreement
that for the purpose of assessing reliability of a diag-
nostic test with a binary outcome, a single summary
statistic is not adequate. The influence of the marginal
frequencies on the kappa statistic is also present in the
case of multiple nominal categories, but the precise
nature of this influence is more difficult to character-
ize and is not well understood [10]. Chamberlin &
Sprott [2] and Farewell and Sprott [6] derive a dis-
crete conditional distribution which may be used as
a basis for conditional inference (see Conditionality
Principle) on subject-specific agreement in this con-
text.
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In medical research it is frequently of interest to
examine the extent to which results of a classifica-
tion procedure concur in successive applications. For
example, two psychiatrists may separately examine
each member of a group of patients and categorize
each one as psychotic, neurotic, suffering from a per-
sonality disorder, or healthy. Given the resulting data,
questions may then be posed regarding the diagnoses
of the two psychiatrists and their relationship to one
another. The psychiatrists would typically be said to
exhibit a high degree of agreement if a high percent-
age of their diagnoses concurred, and poor agreement
if they often made different diagnoses. In general,
this latter outcome could arise if the categories were
ill-defined, the criteria for assessment were different
for the two psychiatrists, or their ability to exam-
ine these criteria differed sufficiently, possibly as a
result of different training or experience. Poor empir-
ical agreement might therefore lead to a review of the
category definitions and diagnostic criteria, or possi-
bly retraining with a view to improving agreement
and hence consistency of diagnoses and treatment. In
another context, one might have data from successive
applications of a test for dysplasia or cancer from
cervical smears. If the test indicates normal, mild,
moderate, or severe dysplasia, or cancer, and the test
is applied at two time points in close proximity, ide-
ally the results would be the same. Variation in the
method and location of sampling as well as variation
in laboratory procedures may, however, lead to dif-
ferent outcomes. In this context, one would say that
there is empirical evidence that the test is reliable if
the majority of the subjects are classified in the same
way for both applications of the test. Unreliable tests
would result from the sources of variation mentioned
earlier. Again, empirical evidence of an unreliable
test may lead to refinements of the testing procedure
(see Observer Reliability and Agreement).

The Kappa Index of Reliability for a
Binary Test

For convenience, consider a diagnostic testing pro-
cedure generating a binary response variable T indi-
cating the presence (T = 1) or absence (T = 2) of a
particular condition. Suppose this test is applied twice

in succession to each subject in a sample of size n.
Let Tk denote the outcome for the kth application
with the resulting data summarized in the two-by-
two table (Table 1). where xij denotes the frequency
at which T1 = i and T2 = j , xi· = ∑2

j=1 xij , and

x·j = ∑2
i=1 xij , i = 1, 2, j = 1, 2. Assuming that

Table 1

T2 = 1 T2 = 2 Total

T1 = 1 x11 x12 x1·
T1 = 2 x21 x22 x2·

Total x·1 x·2 x·· = n

test results on different subjects are independent,
conditioning on n leads to a multinomial distribu-
tion for the outcome of a particular table with

f (x; p) =
(

n

x11 x12 x21 x22

) 2∏

i=1

2∏

j=1

p
xij

ij ,

x = (x11, x12, x21, x22)
′, p = (p11, p12, p21, p22)

′, and
p22 =1 − p11 − p12 − p21. Let pi· = ∑2

j=1 pij and

p·j = ∑2
i=1 pij . Knowledge of p would correspond

to a complete understanding of the reliability of the
test. Since knowledge of p is generally unattainable
and estimation of p does not constitute a sufficient
data reduction, indices of reliability/agreement typi-
cally focus on estimating one-dimensional functions
of p (see Agreement, Measurement of).

A natural choice is p0 = ∑2
i=1 pii , the probabil-

ity of raw agreement, which is estimated as p̂0 =∑2
i=1 xii/n. If p0 = 1, then the test is completely

reliable since the probability of observing discor-
dant test results is zero. Similarly, if p̂0 is close to
unity, then it suggests that the outcomes of the two
applications concurred for the vast majority of the
subjects. However, several authors have expressed
reluctance to base inferences regarding reliability on
the observed level of raw agreement (see [3] and ref-
erences cited therein). The purported limitations of
p̂0 as a measure of reliability stem from the fact that
p0 reflects both “chance” agreement and agreement
over and above that which would be expected by
chance. The agreement expected by chance, which
we denote by pe, is computed on the basis of the
marginal distribution, defined by p1· and p·1, and
under the assumption that the outcomes of the two
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tests are independent conditional on the true status.
Specifically, pe = ∑2

i=1 pi·p·i is estimated by p̂e =∑2
i=1 x1·x·1/n2. To address concerns regarding the

impact of nonnegligible chance agreement, Cohen [3]
defined the index kappa which takes the form

κ = p0 − pe

1 − pe
,

and indicated that it can be interpreted as reflecting
“the proportion of agreement after chance agreement
is removed from consideration”. This can be seen by
noting that p0 − pe is the difference in the propor-
tion of raw agreement and the agreement expected by
chance, this being the agreement arising due to fac-
tors not driven by chance. If p0 − pe > 0, then there
is agreement arising from nonchance factors; if p0 −
pe = 0, then there is no additional agreement over
that which one would expect based on chance; and
if p0 − pe < 0, then there is less agreement than one
would expect by chance. Furthermore, 1 − pe is inter-
preted by Cohen [3] as the proportion “of the units for
which the hypothesis of no association would predict
disagreement between the judges”. Alternatively, this
can be thought of as the maximum possible agree-
ment beyond that expected by chance. An estimate
of κ , denoted κ̂ , is referred to as the kappa statistic
and may be obtained by replacing p0 and pe with
their corresponding point estimates, giving

κ̂ = p̂0 − p̂e

1 − p̂e
. (1)

The Kappa Index of Reliability for
Multiple Categories

When the classification procedure of interest has mul-
tiple nominal categories, assessment of agreement
becomes somewhat more involved. Consider a diag-
nostic test with R possible outcomes and let Tk

denote the outcome of the kth application of the test,
k = 1, 2. Then Tk takes values on {1, 2, 3, . . . , R} and
interest lies in assessing the extent to which these
outcomes agree for k = 1 and k = 2. An R × R con-
tingency table may then be constructed (see Table 2),
where again xij denotes the frequency with which
the first application of the test led to outcome i and
the second led to outcome j, i = 1, 2, . . . , R, j =
1, 2, . . . , R. A category-specific measure of agree-
ment may be of interest to examine the extent to

which the two applications tend to lead to consis-
tent conclusions with respect to outcome r , say. In
this problem there is an implicit assumption that the
particular nature of any disagreements are not of
interest. One can then collapse the R × R table to a
2 × 2 table constructed by cross-classifying subjects
with binary indicators such that Tk = 1 if outcome r

was selected at the kth application, Tk = 2 otherwise,
k = 1, 2. A category-specific kappa statistic can then

Table 2

T2 = 1 T2 = 2 T2 = 3 · · · T2 = R Total

T1 = 1 x11 x12 x13 · · · x1R x1·
T1 = 2 x21 x22 x23 · · · x2R x2·
T1 = 3 x31 x32 x33 · · · x3R x3·

...
...

...
... · · · ...

...

T1 = R xR1 xR2 xR3 · · · xRR xR·

Total x·1 x·2 x·3 · · · x·R x·· = n

be constructed in the fashion indicated earlier. This
can be repeated for each of the R categories giving
R such statistics.

In addition to these category-specific measures,
however, an overall summary index of agreement
is often of interest. The kappa statistic in (1) is
immediately generalized for the R × R (R > 2) table
as follows. Let pij denote the probability of T1 =
i and T2 = j , one of the R2 multinomial prob-
abilities, pi· = ∑R

j=1 pij , and p·j = ∑R
i=1 pij , i =

1, 2, . . . , R, j = 1, 2, . . . , R. Then, as before, p̂ij =
xij /n, p̂i· = xi·/n, p̂·j = x·j /n, p̂0 = ∑R

i=1 p̂ii , p̂e =∑R
i=1 p̂i·p̂·i , and the overall kappa statistic takes the

same form as in (1). This overall kappa statistic can
equivalently be written as a weighted average of
category-specific kappa statistics [6].

The kappa statistic has several properties that
are widely considered to be attractive for measures
of agreement. First, when the level of observed
agreement, reflected by p̂0, is equal to the level of
agreement expected by chance (p̂e), κ̂ = 0. Secondly,
κ̂ takes on its maximum value of 1 if and only if
there is perfect agreement (i.e. p̂0 = 1 arising from a
diagonal table). Thirdly, the kappa statistic is never
less than −1. The latter two features require further
elaboration, however, as the actual upper and lower
limits on κ̂ are functions of the marginal frequencies.
In particular, κ̂ takes on the value 1 only when the
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marginal frequencies are exactly equal and all off-
diagonal cells are zero. Values less than 1 occur
when the marginal frequencies are the same but
there are different category assignments in the table
or, more generally, when the marginal frequencies
differ (when the marginal frequencies differ there
are necessarily nonzero diagonal cells and hence
some disagreements). It is natural then to expect the
kappa statistic for such a table to be less than unity.
Cohen [3] shows that the maximum possible value of
κ̂ takes the form

κ̂M =
x··

R∑

i=1

min(xi·, x·i) −
R∑

i=1

xi·x·i

x2·· −
R∑

i=1

xi·x·i

, (2)

and argues that this is intuitively reasonable since
differences in the marginal frequencies necessarily
lead to a reduction in the level of agreement and
hence κ̂ . Cohen then suggests that if one is interested
in assessing the proportion of the agreement permit-
ted by the margins (correcting for chance), then one
computes κ̂/κ̂M. We return to the topic of marginal
frequencies and their influence on the properties of κ

later in the article.
If the marginal frequencies for the two tests are

uncorrelated (as measured by the product–moment
correlation of the margins [3]), then the lower bound
for κ̂ is κ̂L = −(R − 1)−1. When the marginal fre-
quencies are negatively correlated, κ̂L > −(R − 1)−1.
However, when the marginal frequencies are posi-
tively correlated, κ̂L < −(R − 1)−1. It is only as the
number of categories reduces to two, the correlation
of the marginal frequencies approaches 1, and the
variances of the marginal frequencies increase, that
κ̂L approaches −1 [3].

Having computed a kappa statistic for a given
contingency table it is natural to want to charac-
terize the level of agreement in descriptive terms.
Landis & Koch [11] provide ranges that suggest,
beyond what one would expect by chance, 0.75 < κ̂

typically represents excellent agreement, 0.40 < κ̂ <

0.75 fair to good agreement, and κ̂ < 0.40 poor
agreement. While there is some appeal to this conve-
nient framework for the interpretation of κ̂ , caution
is warranted (see Kappa and its Dependence on
Marginal Rates).

Frequently, it will be of interest to construct
confidence intervals for the index kappa. Fleiss
et al. [8] derive an approximate large sample estimate
for the variance of κ̂, v̂ar(κ̂), as

(
R∑

i=1

p̂ii[1 − (p̂i· + p̂·i)(1 − κ̂)]2

+ (1 − κ̂)2
∑

i

∑

j �=i

p̂ij (p̂·i + p̂j ·)2

− [κ̂ − p̂e(1 − κ̂)]2

) /
[x..(1 − p̂e)

2], (3)

and Fleiss [6] recommends carrying out tests
(see Hypothesis Testing) and constructing confi-
dence intervals by assuming approximate normality
of (κ̂ − κ)/[v̂ar(κ̂)]1/2 and proceeding in the stan-
dard fashion. For tests regarding the null hypothesis
H0 : κ = 0, an alternate variance estimate may be
derived from (3) by substituting 0 for κ̂ , and p̂i·p̂·j
for p̂ij , giving

v̂ar0(κ̂)

=



R∑

k=1

p̂i·p̂·i[1 − (p̂i· + p̂·i)]2 +
∑

i �=j

p̂i·p̂·j

× (p̂·i + p̂j ·)2 − p2
e

)/
[x··(1 − p̂e)

2], (4)

with tests carried out as described above.

The Weighted Kappa Index

The discussion thus far has focused on situations
in which the test serves as a nominal classifica-
tion procedure (e.g. as in the psychiatric diagnosis
example at the beginning of the article). In such
settings, since there is no natural ordering to the
outcomes, any disagreements are often considered
to be equally serious and the methods previously
described are directly applicable. In some circum-
stances with nominal scales, however, certain types
of disagreements are more serious then others and it
is desirable to take this into account. Furthermore,
when the outcome is ordinal (as in the cervical can-
cer screening example) (see Ordered Categorical
Data), it is often of interest to adopt a measure of
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agreement that treats disagreements in adjacent cat-
egories as less serious than disagreements in more
disparate categories. For the test based on cervical
smears designed to classify the condition of the cervix
as healthy, mildly, moderately, or severely dysplastic,
or cancerous, if on one occasion the test suggested
mild dysplasia and on another moderate, this type
of disagreement would be considered less serious
than if a cervix previously diagnosed as cancerous
was subsequently classified as mildly dysplastic. In
general, the seriousness reflects clinical implications
for treatment and the consequences of wrong deci-
sions.

Weighted versions of the kappa statistic were
derived by Cohen [4] to take into account the addi-
tional structure arising from ordinal measures or from
nominal scales in which certain types of disagreement
are of more importance than others. In particular, the
objective of adopting a weighted kappa statistic is to
allow “different kinds of disagreement” to be differ-
entially weighted in the construction of the overall
index. We begin by assigning a weight to each of
the R2 cells; let wij denote the weight for cell (i, j ).
These weights may be determined quite arbitrarily but
it is natural to restrict 0 ≤ wij ≤ 1, set wii to unity
to give exact agreement maximum weight, and set
0 ≤ wij < 1 for i �= j , so that all disagreements are
given less weight than exact agreement. The selection
of the weights plays a key role in the interpretation of
the weighted kappa statistic and also impacts the cor-
responding variance estimates, prompting Cohen [4]
to suggest these be specified prior to the collection
of the data.

Perhaps the two most common sets of weights are
the quadratic weights, with wij = 1 − (i − j)2/(R −
1)2, and the so-called Cicchetti weights, with wij =
1 − |i − j |/(R − 1) [1, 2]. The quadratic weights
tend to weight disagreements just off the main
diagonal more highly than Cicchetti weights, and
the relative weighting of disagreements farther from
the main diagonal is also higher with the quadratic
weights. Clearly, these two weighting schemes share
the minimal requirements cited above. The weighted
kappa statistic then takes the form

κ̂ (w) = p̂
(w)
0 − p̂(w)

e

1 − p̂
(w)
e

, (5)

where p̂
(w)
0 = ∑R

i=1

∑R
j=1 wij p̂ij and p̂(w)

e = ∑R
i=1∑R

j=1 wij p̂i·p̂·j . If wi· = ∑R
j=1 p̂·jwij and w·j =

∑R
i=1 p̂i·wij , then the large-sample variance of κ̂ (w)

is estimated by

v̂ar(κ̂(w))

=



R∑

i=1

R∑

j=1

p̂ij [wij − (wi· + w·j )(1 − κ̂ (w))]2

− [κ̂ (w) − p̂(w)
e (1 − κ̂ (w))]2

) /
[x2

··(1 − p̂(w)
e )2]

(6)

and, as before, tests and confidence intervals may
be carried out and derived in the standard fash-
ion assuming asymptotic normality of the quantity
(κ̂(w) − κ(w))/[v̂ar(κ̂(w))]1/2. As in the unweighted
case, a variance estimate appropriate for testing H0 :
κ(w) = 0 may be derived by substituting p̂i·p̂·j for
p̂ij , and 0 for κ̂ (w) in (6).

We note in passing that the weighted kappa with
quadratic weights has been shown to bear connections
to the intraclass correlation coefficient. Suppose that
with an ordinal outcome the categories are assigned
the integers 1 through R from the “lowest” to “high-
est” categories, respectively, and assignment to these
categories is taken to correspond to a realization of
the appropriate integer value. Fleiss & Cohen [7]
show that the intraclass correlation coefficient com-
puted by treating these integer responses as coming
from a Gaussian general linear model for a two-way
analysis of variance, is asymptotically equivalent to
the weighted kappa statistic with quadratic weights.

The Kappa Index for Multiple Observers

Thus far we have restricted consideration to the
case of two applications of the classification proce-
dure (e.g. two successive applications of a diagnostic
test, two physicians carrying out successive diag-
noses, etc.). In many situations, however, there are
multiple (>2) applications and interest lies in mea-
suring agreement on the basis of several applications.
Fleiss [5] considered the particular problem in which
a group of subjects was examined and classified by
a fixed number of observers, but where it was not
necessarily the same set of observers carrying out
the assessments for each patient. Moreover, Fleiss [5]
assumed that it was not possible to identify which
observers were involved in examining the patients.
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For this problem, we require some new notation.
Let M denote the number of subjects, N denote
the number of observers per subject, and R denote
the number of categories as before. Therefore, NM
classifications are to be made. Let nij denote the
number of times the ith subject was assigned to the
j th category. A measure of overall raw agreement for
the assignments on the ith subject is given by

q̂i =

R∑

j=1

nij (nij − 1)

N(N − 1)
,

which can be interpreted as follows. With N

observers per subjects there are
(
N

2

)
possible pairs of

assignments. There are
(
nij

2

)
which agree on category

j and hence a total number of
∑R

j=1

(
nij

2

)
pairs

of assignments which concur altogether for the ith
subject. Thus, (7) simply represents the proportion of
all paired assignments on the ith subject for which
there was agreement on the category. The overall
measure of raw observed agreement over all subjects
is then given by q̂0 = M−1 ∑M

i=1 q̂i , which equals

q̂0 =

M∑

i=1

R∑

j=1

n2
ij

MN(N − 1)
− 1

N − 1
. (8)

As before, however, some agreement would be
expected among the observers simply by chance and
the kappa statistic in this setting corrects for this. The
expected level of agreement is computed by noting
that

p̂j =

M∑

i=1

nij

MN

is the sample proportion of all assignments made
to category j , with

∑R
j=1 p̂j = 1. So if pairs of

observers were simply assigning subjects to cate-
gories at random and independently one can estimate
that they would be expected to agree according to

p̂e =
R∑

j=1

p̂2
j , (9)

then the kappa statistic is computed by correcting for
chance in the usual way as

κ̂ = q̂0 − p̂e

1 − p̂e
. (10)

The sample variance for (10) is derived by Fleiss
et al. [9] to be

v̂ar(κ̂)

= 2








R∑

j=1

pj (1 − pj )




2

−
R∑

j=1

pj (1 − pj )

(1 − 2pj )




/

MN(N − 1)




R∑

j=1

pj (1 − pj )




2

(11)

and is typically used for tests or interval estimation
in the standard fashion.

When the same set of raters assesses all sub-
jects and individual raters scores are known, it is
not possible to use the results of Fleiss [5] without
ignoring the rater-specific assignments. For this con-
text, Schouten [13] proposed the use of indices based
on weighted sums of pairwise measures of observed
and expected levels of agreement. In particular, for
a given pair of raters and a given pair of categories,
observed and expected measures of agreement may
be computed as earlier. Then, for each pair of raters,
a measure of overall observed agreement may be
obtained by taking a weighted average of such mea-
sures over all pairwise combinations of categories.
Given a corresponding measure of expected agree-
ment, an overall kappa statistic can be computed in
the usual fashion. Schouten [13] then described how
to obtain kappa statistics reflecting agreement over all
observers, agreement between a particular observer
and the remaining observers, and agreement within
and between subgroups of observers.

General Remarks

MaClure & Willett [12] provide a comprehensive
review and effectively highlight a number of lim-
itations of the kappa statistics. In particular, they
stress that for ordinal data derived from categorizing
underlying continuous responses, the kappa statistic
depends heavily on the often arbitrary category defi-
nitions, raising questions about interpretability. They
also suggest that the use of weights, while attrac-
tive in allowing for varying degrees of disagreement,
introduces another component of subjectivity into the
computation of kappa statistics. Perhaps the issue of
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greatest debate is the so-called prevalence, or base-
rate, problem of kappa statistics (see Kappa and
its Dependence on Marginal Rates). Several other
authors have examined critically the properties and
interpretation of kappa statistics [10, 14, 15], and the
debate of the merits and demerits continues unabated.
Despite the apparent limitations, the kappa statistic
enjoys widespread use in the medical literature and
has been the focus of considerable statistical research.
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Kempthorne, Oscar

Born: January 31, 1919, in St. Tudy, Cornwall,
England.

Died: November 15, 2000, in Annapolis, Mary-
land.

Oscar Kempthorne made important contributions to
both statistics and statistical genetics. His books The
Design and Analysis of Experiments [10] and An
Introduction to Genetic Statistics [15], both published
in the 1950s, brought him early recognition and have
become classics, still much cited. He also had a deep
interest in statistical inference, especially randomiza-
tion theory. Kempthorne was profoundly influenced
and inspired by R.A. Fisher’s writings. He was a
great admirer of Fisher, but not an uncritical one.

Born on a farm in Cornwall, the young Kemp-
thorne soon decided that farm work was not for
him. He worked hard to win needed scholarships to
Cambridge, teaching himself additional mathematics
in a then remote and backward county.

During his three years at Cambridge he became
a Wrangler (equivalent to a first class honors) in
the Mathematical Tripos examinations, which empha-
sized pure and applied mathematics. His interest in
statistics was aroused in lectures by John Wishart
and J.O. Irwin. Upon graduation in May 1940,
Kempthorne, who had been reserved for technical
work in World War II, spent a term assisting Irwin
on a drug assay project. After a “useless” six months
in the Ministry of Supply he joined Rothamsted
Experimental Station, then directed by Frank Yates.
Kempthorne worked with the influential zoologist
and military advisor Solly Zuckerman on operations
research associated with the war effort, and began his
research career with papers on sampling (see Sample
Surveys in the Health Sciences) and experimental
design [9].

In 1946, Kempthorne was appointed to an allied
mission set up by the U. S. Department of State
to observe the Greek parliamentary elections and a
plebiscite on whether George II was to be retained
as King of the Hellenes. Kempthorne was the British
member of a group of statisticians that included W.
Edwards Deming and Jerzy Neyman. The group was
led by the sampling expert Ray Jessen of the Iowa
State College Statistical Laboratory. Two reports
were published (e.g. [8]) and Kempthorne’s life was

changed when he was offered an associate professor-
ship at Iowa State. His appointment, made possible by
W.G. Cochran’s resignation, continued the Statisti-
cal Laboratory’s connection with Rothamsted Exper-
imental Station begun some 20 years earlier when
George Snedecor was one of the first in the United
States to recognize the importance of Fisher’s work.

Oscar Kempthorne arrived in Ames in January
1947 and was a key faculty member for the next
42 1/2 years. He soon became involved in consult-
ing with agricultural research workers and contin-
ued his research on experimental design begun at
Rothamsted [18]. Also, while teaching this subject,
he published in 1952, the 600-page masterly Wiley
text [10] which, though unchanged for many years,
has been highly influential. Apart from its compre-
hensive coverage, the book was the first statistics
text to use matrix algebra intensively. In the year
of publication, Kempthorne was elected Fellow of
the American Statistical Association, the Institute
of Mathematical Statistics, and the American Asso-
ciation for the Advancement of Science (AAAS). A
two-volume revision of the book is finally underway,
in conjunction with Kempthorne’s former student,
Klaus Hinkelmann, who is preparing the second vol-
ume, the first [7] having appeared in 1994.

A special feature of [10] is the justification of the
usual analysis of variance F-tests by their closeness
to corresponding randomization tests. This point
is elaborated in [13, 22], with due recognition of
Fisher’s famous illustration for the paired t-test [2]
(see Student’s t Statistics) and the pioneering work
of Welch [28] and Pitman [24].

The design of experiments merged with Kemp-
thorne’s growing interest in genetic statistics in a
series of papers on diallel crosses, especially when
there were too many pure lines for all possible crosses
to be tested [14, 17, 20]. Another way such merging
occurred was via the transfer of ideas from factorial
experimentation to genetics. Thus, if observations
on a quantitative character are affected by many loci
and there is random mating and independent assort-
ment, the total effect of a genotype can be expressed
as a sum of main effects and interactions. Main
effects are those of individual alleles, two-way inter-
actions between alleles are dominance deviations, if
the alleles are at the same locus, and additive ×
additive effects if they are from different loci. The
next term in the sum is an additive × dominance
effect, which is a three-way interaction between an
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allele at one locus and a pair of alleles at a second
locus. Proceeding in this way, one is led to an expres-
sion for the total variance among genotypes as the
sum of variance components, each of which is asso-
ciated with main effects or particular interactions.

It is also the case that genetic covariances between
relatives are expressible as linear combinations of the
aforementioned variance components (see Genetic
Correlations and Covariances). The coefficients are
probabilities of identity by descent of genes or sets
of genes, chosen appropriately to fit the degree of
relationship between the relatives.

Fisher had, in 1918, expressed the sum of variance
components, other than those associated with main
effects of alleles and dominance deviations, as a sin-
gle term, the epistatic variance. He had also derived
expressions for covariances between relatives, involv-
ing the additive and dominance components of vari-
ance, in some special cases. Kempthorne [11, 12]
generalized this work by partitioning the epistatic
variance into genetically interpretable components
associated with two-way and higher-order interac-
tions, as described above. These terms also appeared
in expressions for covariances between relatives.
Another of his contributions in this regard was a clear
and elegant notation, which easily allowed for multi-
ple alleles at individual loci, rather than only two.

Kempthorne’s research on covariances between
relatives was summarized in his text [15] on genetic
statistics. It was also described therein how an exper-
imenter could estimate genetic variance components
from mean squares in analysis of variance tables.
Another feature of this book was the first presentation
in a textbook of Sewall Wright’s results on inbreed-
ing theory [29] in terms of probabilities of identity
by descent, rather than path coefficients (see Path
Analysis in Genetics).

Kempthorne was also interested in “Fisher’s Fun-
damental Theorem of Natural Selection”. An attempt
to interpret the cryptic description of this theorem
in Fisher’s The Genetical Theory of Natural Selec-
tion [3] is in his text. Further work on this subject
is in three joint papers with E. Pollak [21, 25, 26],
in which attempts were made to explicitly spell out
mathematical consequences of definitions of fitness
in populations that either have discrete generations or
are age-structured. It was found, for example, in [21],
that some of these definitions lead to different con-
sequences than others in the writings of Fisher and
other authors.

Another aspect of Kempthorne’s thinking on gene-
tics was his concern over misuses of quantitative
genetic theory (see Polygenic Inheritance) by peo-
ple who concluded that aid, such as “head start”, to
members of some socioeconomic or racial groups, is
useless. Supporters of this view assert that the low
average scores on IQ tests of people in these groups
are largely due to genetic deficiencies. To support
this assertion, they claim that the heritability, or the
genetically transmissible fraction of the total vari-
ance, of the attribute IQ is high. The usual methods
for estimating this fraction are indeed applicable to
populations such as those of crops or livestock, which
are under the control of experimenters. Kempthorne
pointed out, however, that this approach is very ques-
tionable for populations of humans, who are not
randomly assigned to environments [16, 23]. This is
because the total variance among phenotypes con-
tains, in this case, the covariance between genotypes
and environments, as well as a variance compo-
nent associated with variability among environments
within genotypic groups.

These extra terms are eliminated by appropriately
designed experiments with crops or livestock. Math-
ematical details are given by Emigh [1]. Kempthorne
[16] also attacks the notion that data analysis can
establish causation and “that one can establish effects
of an intervention process when it does not occur”.

Throughout his long career Kempthorne was strug-
gling to understand the logic of theories of inference.
The philosophers were ultimately a disappointment
and Fisher, while much admired, remained obscure
on many points. Perhaps the best summary of Kemp-
thorne’s views on Fisher’s statistical writings is given
in just two pages of [27]. He is deeply puzzled by
the discrepancy between Fisher’s strong advocacy
of randomization, a procedure resting on satisfactory
long-run behavior, and the complete lack of reference
to long-run considerations in Fisher’s theory of infer-
ence. Not that the Neyman–Pearson theory escapes
questioning. In [19], a text for seniors and beginning
graduate students, a discussion of tests of hypotheses
(see Hypothesis Testing) concludes with the state-
ment that apparently the choice of the size α of the
test “has to be based on decision theory, with intro-
duction of prior opinion and loss function”.

A man of wide interests, Kempthorne was much
sought after as a speaker. His provocative style was
a further attraction. He was active in editorial work
on several journals and was chief organizer and
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proceedings editor of some major conferences. The
offices held by Kempthorne included terms as pres-
ident of the Biometric Society (see International
Biometric Society (IBS)), Eastern North American
Region, in 1961, as chairman, Section U (Statistics)
of AAAS, in 1981, and as president of the Institute
of Mathematical Statistics, 1984 to 1986.

For his researches, Kempthorne received the Sc.D.
degree from Cambridge University in 1960. In 1965,
he was elected to membership of the International
Statistical Institute and in 1988, to Honorary Fellow
of the Royal Statistical Society.

Kempthorne brought energy and flair to all his
activities. He was a challenging teacher. Of the 42
PhD students he directed, 12 so far have become
Fellows of the American Statistical Association.

For further information and insights, see the Fest-
schrift [5], the interview [4], and the memorial arti-
cle [6], the last containing a complete bibliography.
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Kendall, Maurice George

Born: September 6, 1907, in Kettering, UK.
Died: March 29, 1983, in Redhill, UK.

Reproduced by permission of the Royal Statistical Society

Despite showing only a belated interest in mathemat-
ics at school, Maurice Kendall obtained a scholarship
to read mathematics at St John’s College in Cam-
bridge. He played cricket for his college and was a
keen chess player, and gained a first class in both
parts of the mathematical tripos.

After graduating, he entered the administrative
class of the Civil Service. Here, at the Ministry of
Agriculture and Fisheries, he was responsible for sta-
tistical work. A chance meeting with G. Udny Yule
in 1935 led to Kendall becoming co-author of a revi-
sion of Yule’s classic textbook [9]. In 1941 Kendall
became statistician to the British Chamber of Ship-
ping, and in the following years he published many
papers on theoretical statistics. This work was wide-
ranging, but major themes were the theory of rank
correlation coefficients (one of which he discovered
in 1938 and now bears his name), paired compari-
son experiments, k statistics, and time series. At the
same time, Kendall was working on his Advanced
Theory of Statistics, the first advanced textbook on
the subject. This was published as two volumes in
1943 and 1946 [1].

He was appointed professor of statistics at the
London School of Economics in 1949, where he
founded a research techniques division which carried
out large sample surveys. In addition to this work
and further theoretical research, in this period Kendall
published the first important dictionary of statistical
terms [4] and worked on the first comprehensive
bibliography of statistical literature [5].

In 1961, during his presidency of the Royal Sta-
tistical Society, he again changed career, becoming
scientific director (and ultimately chairman) of a com-
puter consultancy (later called SCICON). During this
spell he completed the rewriting of his influential
book [1] into three volumes [6].

On retiring in 1972, Kendall embarked on another,
testing career as the first director of the World Fer-
tility Survey. This was a huge multinational sample
survey project, which fully tested his extraordinary
organizational powers. Ill health forced his retirement
from this position in 1980.

Kendall was a prolific author, producing 17
books and around 75 papers on theoretical statistics
alone. Seventeen of his papers are reprinted in [7],
which also contains a bibliography. His other books
included [2] and [3].

His interest in language was demonstrated by his
literary style – “lucid, balanced, often ironical” [8] –
but also by the word play in the spoof story of Lamia
Gurdleneck and Sara Nuttal by K.A.C. Manderville
in Volume 2 of The Advanced Theory of Statistics [6],
in which all the names are anagrams of either Maurice
(G.) Kendall or Alan Stuart, and his Longfellow
pastiche Hiawatha Designs an Experiment (reprinted
in [1]).

Kendall was much honored. He received the Guy
medal in gold from the Royal Statistical Society. In
1974 he was knighted for his services to statistics,
and on retiring from the World Fertility Survey he
was awarded the United Nations peace medal.
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Kin–Cohort Studies

The basic idea behind a kin–cohort design is that
one can estimate penetrance by genotyping a set of
unrelated individuals and obtaining phenotype infor-
mation about their relatives [16, 18]. In an impor-
tant, albeit narrow set of circumstances, a kin–cohort
analysis has some distinct advantages over more con-
ventional applications of segregation analysis and
epidemiologic designs used to estimate the pene-
trance of a genotype for its phenotype.

A kin–cohort analysis is characterized by
an unusual feature [18]. The phenotypes of the
individuals who are genotyped (we will call them the
volunteers) are not used directly for estimating the
penetrance because of the difficulty in determining
the pattern of ascertainment; instead, the penetrance
is estimated from the phenotypes of the volunteers’
relatives, whose genotypes are not determined
directly, but are inferred from the genotypes of the
volunteers.

These characteristics give the kin–cohort approach
its notable strengths and its notable weaknesses.
A kin–cohort study can be implemented quickly
and economically. Because the kin–cohort procedure
does not (necessarily) focus on members of high-risk
families, the penetrance estimate may be applicable to
those who carry the mutation, regardless of whether
they have extensive family history. The ability to
study multiple phenotypes simultaneously is a fur-
ther advantage; the range of questions that can be
addressed from a kin–cohort study is demonstrated
below. A major disadvantage is that there must be
a way to determine the phenotypes of the relatives
of the genotyped individuals accurately; this is easier
to accomplish where there is a complete disease reg-
istry against which relatives can be checked [17] or
where there is little stigma attached to a disease phe-
notype so that each relative is likely to know about
another’s diagnosis. A second major disadvantage
arises from reliance on volunteers who may be more
likely to participate if they themselves or members of
their families have been affected by the disease being
studied.

The kin–cohort method can exploit the existence
of an identifiable population with a higher than aver-
age frequency of the at-risk genotype. For example,
the prevalence in the US of carriers of any of the
BRCA1 and BRCA2 alleles (see Gene) that confer

excess risk of breast and ovary cancer is probably
less than 0.5%, while the frequency of three BRCA1
and BRCA2 founder mutations in Ashkenazi Jews,
an endogamous ethnic group descended from a small
number of founders, is close to 2% [14]. A founder
population (see Founder Effect) has the additional
advantage of not needing to sequence the entire gene
in each individual to search for mutations [15].

If volunteering is independent of genotype, con-
ditional on phenotype, then the disease history of
the volunteers can be incorporated into the estimate
of penetrance [6]. This assumption would be vio-
lated if known carriers were more or less likely to
volunteer or if survival after diagnosis depended on
genotype; the survival of the relatives after diagno-
sis can be related to mutation status without causing
bias because their disease phenotype is reported by
the volunteer. In extensions of the original approach,
phenotypes of volunteers can be used indirectly for
estimating penetrance under some assumptions [6].

Origin

The special characteristics of the kin–cohort design
are best considered in the context of the Wash-
ington Ashkenazi Study (WAS), for which it was
first conceived and implemented. Earlier, Struewing
et al. [15] had discovered the 185delAG mutation in
BRCA1 in Ashkenazi breast/ovary cancer families;
they subsequently noted that the mutation had a high
enough frequency [14] in Jews to make a study of its
effects worthwhile.

Jeff Struewing, Patricia Hartge, Larry Brody, Mar-
garet Tucker, and Sholom Wacholder of the National
Institutes of Health, Bethesda, MD, planned a cross-
sectional study of Ashkenazi Jewish volunteers in the
Washington, DC, area. The investigators noted that a
study of allele prevalence could be used to estimate
penetrance in a population without the high levels
of family history seen in the Breast Cancer Linkage
Consortium (BCLC) families used to derive the ear-
lier breast cancer penetrance estimate of 85% by age
70 [4]. They recognized that if BRCA1 was 100%
penetrant, over 50% of the carriers’ mothers would
be affected eventually, but that if the mutation were
unrelated to risk, the carriers’ and noncarriers’ moth-
ers should show little difference in risk, so there must
be information about penetrance in the data from the
study. Therefore, they determined that the main goal
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of the study would be to estimate the penetrance of
the 185delAG BRCA1 carriers for breast cancer in
a setting without large numbers of multiply affected
families. This study could address a key question:
Would the penetrance estimate in carrier women from
less loaded family families be as high as the 85%
estimated by the BCLC? After the study began, the
investigators added genotyping of two other newly
identified founder mutations to the focus of the study.

The investigators developed a simple method-of-
moments argument to develop an estimator of pene-
trance that could be applied to a study of volunteers
from whom information about their relatives’ years
of birth and death and diagnosis of disease, if appli-
cable, was obtained [18]. The main ideas behind the
estimator are:

1. The disease experience of the volunteers them-
selves should not be used directly to estimate
penetrance if the disease is often fatal. There
would be a substantial number of individu-
als in the study population who had developed
disease and had died and thus would not con-
tribute to the count of disease. Even if there
is no mortality from disease, affected individ-
uals may be more likely to volunteer, leading
to upward bias in the estimation of penetrance.
Estimation of relative risk may be unbiased,
however, unless survival after diagnosis or par-
ticipation depends on genotype. The distribution
of genotypes of the volunteers is used indirectly
in the estimation of penetrance [16, 18]. When
the likelihood approach of Gail et al. [6] incor-
porates the phenotypes of the volunteers, the
ascertainment based on disease status does not
lead to bias if the genotype is unrelated to vol-
unteering, conditional on phenotype, and to time
of survival after diagnosis.

2. There is information about the genotype of rela-
tives from the genotypes of the volunteers. Sim-
ple rules of Mendelian inheritance (see Mendel’s
Laws) can be used to infer the relative’s geno-
type if the mode of inheritance and the allele
frequency are known. Essentially, since the allele
frequency is low (and could be estimated from
the study; see Gene Frequency Estimation),
slightly more than half of the first-degree rela-
tives of mutation carriers are themselves carriers,
while only a small fraction (close to half of
the carrier frequency) of first-degree relatives of

noncarriers are themselves carriers (see Genetic
Counseling). Thus, the cumulative incidence
function for disease (time from birth until dis-
ease) among the relatives of carriers and among
the relatives of noncarriers is each weighted
average of the survival functions in carriers
and noncarriers, but with different weights. The
weights themselves are proportional to the prob-
abilities of the relative’s genotype, conditional
on the volunteer’s (known) genotype, and can
be derived by Mendelian principles if the mode
of inheritance is known (see Segregation Analy-
sis, Classical) [18]. Because the mutation is rare,
solving for two equations in two unknowns at any
specified age gives an estimate of the survival
functions for carriers and noncarriers from the
allele frequency estimate and the survival func-
tions of the relatives of carriers and noncarriers.
A bootstrap, with resampling based on fam-
ily, can be used to estimate the variance or
point-wise confidence intervals (see Bootstrap
Method) [16, 18].

The name “kin–cohort” derives from the use of
cohorts of relatives of the volunteers to estimate
penetrance.

Several assumptions need to be made to opera-
tionalize the plan; they might not be perfectly satis-
fied in a study that was actually feasible.

1. The volunteers must have the same level of
family history and the same allele frequency
as a random sample. The investigators in the
WAS were not convinced that they could choose
a random sample of the Jewish population in
an American setting economically. Instead, they
relied on volunteers; they took advantage of the
community interest in breast cancer. This had
the unfortunate consequence, most likely, that
the penetrance estimate was too high, since those
with a family history of breast cancer were more
likely to volunteer than those without; the extent
of the bias may have been mitigated to some
extent by the concern in the community about
breast cancer, even in those without a personal
or family history.

2. Reporting of year of birth, and year of death
and diagnosis of disease, if applicable, must be
accurate and complete for each relative. Since
the population was well-educated and breast
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cancer seems not to stigmatize those affected,
the authors felt that most of the reports on
first-degree relatives would be complete. Report-
ing of ovarian cancer, particularly in parents,
seemed more difficult because the exact site of
a mother’s reproductive-tract-organ cancer may
not have been known to children.

3. The penetrance from the mutations found in the
study population must be the same as the aver-
age penetrance over all mutations in the pop-
ulation to which one wishes to extrapolate. If
the Ashkenazi founder mutations studied in the
WAS are more penetrant than other mutations,
or if the risk of breast cancer for any muta-
tion among the Jewish women were higher than
among non-Jewish women, the estimate from the
WAS would be biased upwards vis-à-vis women
with other mutations or non-Jewish women.

4. The distribution of any common environmental
or genetic factor that is an important modifier
of risk of disease and can affect penetrance esti-
mates must be the same in the study population
and in the population to which the estimates are
to be applied (see Gene-environment Interac-
tion).

5. It is the allele frequency at conception that needs
to be estimated for the Mendelian arithmetic to
be accurate. The estimates of penetrance may
be biased if the allele frequency changes with
age, perhaps due to survival differences from the
disease under study or other factors.

6. Like linkage and segregation (and condi-
tional and unconditional logistic regression),
confidence intervals and test statistics from
kin–cohort data depend on the assumption of
conditional (on genotype) independence of the
disease within families. In reports from the
WAS [16, 18] the authors used a bootstrap
approach where the sampling unit was the
family to address this problem. Chatterjee &
Wacholder [2] proposed a marginal likelihood
approach to remove, or at least reduce, the bias
in penetrance estimation due to residual familial
correlation.

7. To estimate the survival curves for the relatives
of noncarriers and carriers, one needs to assume
that censoring does not depend on the unknown
genotype of the relatives. The penetrance esti-
mates, therefore, also depend on the assumption
of no competing risks.

The features of the WAS carried out at the National
Cancer Institute (NCI) were chosen by the investi-
gators to be able to apply this method to estimate
penetrance of three founder mutations [16]. Jewish
volunteers were solicited through Jewish communal
organizations, media publicity, and advertisements
targeted at Jews. Each volunteer gave consent for
genotyping and was asked about the year of birth and
death and sites and dates of any cancer diagnoses in
all first-degree relatives.

The main results of the investigation are reported
in Struewing et al. [16]. Kaplan–Meier estimates of
cumulative risk of breast cancer revealed a clear
difference between breast cancer incidence in first-
degree relatives of carriers and noncarriers. The
method-of-moments estimator for cumulative inci-
dence in carriers (penetrance) and noncarriers was
substantially lower than the BCLC, particularly at
older ages [4]. The authors noted that their estimate
of breast cancer penetrance was probably too high
because relatives of women with breast cancer were
more likely to participate. But the important message
from their paper was that the penetrance in a popu-
lation without extreme family history is lower than
in families with multiply affected individuals, even
assuming correction for ascertainment. Indeed, other
estimates based on women with less extensive fam-
ily history [7, 17, 19] have been consistently below
those from the BCLC [4]. The discrepancy may be
due, in part, to the difficulty of correcting completely
for ascertainment in a study with data from many
collaborators; regardless of the minimal requirements
to include a family, it seems reasonable that inves-
tigators tried increasingly hard to get families with
increasing numbers of affected. Furthermore, and per-
haps more important, modifier genes that segregate
within families or environmental factors that modify
risk and aggregate in families may lead to variation
in penetrance even among different families with the
same mutation; if so, a study that chose families on
the basis of a high number of affected members would
selectively pick families with higher risk, leading to a
higher estimate of penetrance than a more population-
based study [18].

The methods-of-equations estimator used in the
early reports [16, 18] has several defects, notably the
possibility, realized in the original report, that the
estimate of the survival function might not be mono-
tone. Nevertheless, this seed concept opened a flood-
gate of scientific and methodologic investigation.
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Methodologic Extensions

Gail et al. considered a likelihood framework for the
estimation of penetrance and studied the sample size
needed for the kin–cohort design, or as they called
it, a “genotyped proband design” [6]. They also con-
sidered incorporating the volunteer’s disease history
data into the analysis after accounting for possible
differential participation by their disease status. In
the likelihood approach, the information on pene-
trance from the use of the phenotypes of genotyped
individuals is the risk ratio for the effect of the geno-
type. It therefore requires the same assumptions as in
a cross-sectional or, at least, a case–control study;
in particular, because the study uses prevalent cases,
survival after diagnosis of disease cannot be related
to genotype.

The likelihood formulation [6], which avoids the
possibility of nonincreasing penetrance estimates,
forms the basis for subsequent theoretical work.
Moore et al. [10] considered piecewise exponential
models for carriers’ and noncarriers’ survival curves.
They found that optimization of the likelihood be-
comes difficult due to the complex nature of the
volunteers’ contribution to the likelihood, particu-
larly for a large number of hazard intervals. They
developed a pseudo-likelihood approach that iter-
ates between estimating the penetrance parameters
from the relatives’ contributions to the likelihood and
estimating the allele frequency from the volunteers’
contributions to the likelihood. They did not use the
phenotypes of the volunteers directly in estimating
penetrance. Chatterjee & Wacholder [2] developed a
marginal likelihood that treats each relative of the
volunteer individually rather than jointly, as con-
sidered by Gail et al. [5]. This method had several
advantages: (a) it enjoys flexibility of the likelihood
approach and can correct for the monotonicity prob-
lems Wacholder et al.’s original method [16, 18] had;
(b) it is computationally simpler and faster than the
full likelihood approach; and (c) under the assump-
tions of a kin–cohort analysis listed above it produces
an unbiased estimate of penetrance even if there are
sources of familial aggregation of the disease other
than the genes being studied (see Genetic Correla-
tions and Covariances). A joint likelihood approach
under any specific assumption of the residual cor-
relation, although it could be slightly more efficient
than the marginal likelihood approach, will produce a
biased estimate of the penetrance when the assumed

degree of residual correlation is wrong. However, a
disadvantage of the marginal likelihood approach is
that it is unclear how to account for complex ascer-
tainment in this approach as can be done in a joint
likelihood approach. Kaufman [8] took a traditional
segregation analysis approach to the kin–cohort data.
He used the families of 114 carrier volunteers as his
pedigrees. Using the likelihood framework of Gail
et al. [5] Carroll et al. developed a score test for the
existence of residual familial aggregation that incor-
porates the volunteer’s disease history data into the
analysis [1]. Using a multivariate survival modeling
approach, Chatterjee et al. [3] showed how one can
quantify and estimate the residual familial correlation
from the kin–cohort data.

Thus, a kin–cohort design can be seen as a mini-
malist approach to segregation analysis. In its extreme
idealized form, the data available are the genotypes
of a random sample of unrelated individuals and
the phenotypes of their relatives. The method-of-
moments analysis, with its comparison of the sur-
vival times to disease in the relatives of carriers and
noncarriers, provides some additional insight beyond
the segregation analysis.

Scientific Applications

Thorlacius et al. [17] was able to apply a kin–cohort
design without relying on volunteers or reporting
of relatives’ phenotypes. Genotyping was performed
from stored pathology tissue from breast cancer
cases in Iceland. The family registry and cancer
registry were linked to identify relatives and when
and whether they developed cancer. Carriers of the
999delT founder mutation in BRCA2 were found to
have a 37% penetrance by age 70; the lower pene-
trance estimate could be due to a lower penetrance
from BRCA2 mutations than from BRCA1 gener-
ally [13], a founder mutation less penetrant than oth-
ers, or to the absence of bias from volunteering and
self-report.

Several other questions – clinical and etiologic –
can be addressed directly from a kin–cohort design
or by extensions. Lee et al. [9] investigated sur-
vival after diagnosis using the WAS data. Woodage
et al. [20] explored whether there was excess risk
associated with a founder mutation in the APC gene
among Ashkenazi Jews using the WAS data. Moslehi
et al. [11] and Risch et al. [12] have estimated pene-
trance for ovarian cancer using kin–cohort as well.
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Design Questions

Many questions about the design of studies using
the kin–cohort method remain open. Gail et al. [5]
examine the degree of bias from various violations
of assumptions. The tables from Gail et al. [6] can
be used to compare the numbers of genotypes and
numbers of individuals needed to estimate penetrance
with a given precision; they also consider a variant
design where some of the volunteers’ relatives are
also genotyped. However, in using these tables, one
must consider that a special population with a high
allele frequency is an ideal setting for kin–cohort but
may not be practicable for a cohort or case–control
study; also, the tables ignore residual familial aggre-
gation, as they note [6], and use phenotypes of the
genotyped individuals to estimate penetrance, which
requires the attendant assumptions noted above.

A kin–cohort analysis of subjects in a case–con-
trol or cohort study may be feasible if genotyping
and the collection of family histories have already
been completed. The estimate of penetrance based
entirely or extensively on affected cases is likely
to be slightly higher than one based on controls
only or on a random sample if there is any residual
familial aggregation of risk, because families with
more affected will be selectively included [18].
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Kolmogorov is widely considered to be one of the
greatest mathematicians of the twentieth century.
He made important contributions to the theory of
functions, topology, probability theory, statistics,
logic, theory of dynamic systems, information theory,
ergodic theory, theory of algorithms, mathematical
education, and various applications of the above fields
of mathematics. His works were mainly concerned
with the intermediate areas between several “tradi-
tional” branches of mathematics and its applications,
and he used fresh and striking ideas illuminating the
relations between them. In the field of probability the-
ory and statistics, Kolmogorov’s main achievement
is perhaps the introduction of the axioms and the
clarification, through a rigorous approach, of various
basic concepts. He was also famous as the leader of a
school of numerous researchers, mainly his students
and associates from the former USSR and Eastern
block countries, whose work shaped probability the-
ory (and to a lesser extent mathematical statistics)
through the 1950s and 1960s.

During his career he held important administrative
posts in the Moscow State (Lomonossov) University
(MSU) and the USSR Academy of Sciences,
including the headship of the Mechanics and
Mathematics Department of the MSU, the Laboratory
of Statistical Methods of MSU, and the chairmanship
of the Mathematics Section of the Academy.
Kolmogorov’s personality had a great impact on
everyone who came into contact with him, and in
particular on hundreds of pupils at the specialist
mathematical school for gifted children gathered from
around the former Soviet Union, which he ran from
the 1960s to the early 1980s.

In mathematical statistics, Kolmogorov is acclaim-
ed worldwide for introducing the so-called Kolmogo-
rov–Smirnov statistic. Based on this statistic (and
its modifications), the Kolmogorov–Smirnov type
tests of goodness of fit have been developed,
which are among the most widely used in statisti-
cal practice. The original references are [5], [8], [12],
and [22–24], a detailed account of work done before
1970 can be found in [3], and further developments
are commented on in [7].

In Soviet statistics, he is also considered as a
founder of the modern approach to the least squares
method, and his papers [13, 18] are widely quoted.
In the West these papers became known much later
(see, for example, [20] and [21]). The third direction
stemming from Kolmogorov’s theoretical work is
related to unbiased estimators and their relation
to sufficient statistics [15]. The first application of
his approach was connected with industrial quality
inspection and discussed in the (almost unobtainable)
brochure [14]; it was further developed in [1] (for
recent references, see [2]).

Kolmogorov was deeply interested in applied
statistics, specifically in regard to the analysis of
genetic experiments, turbulence, weather forecasting,
analysis of geologic deposits, analysis of artillery fire
precision (research conducted before and during the
early part of World War II), and analysis of Russian
poetry. Many of his ideas were later used in prac-
tical recommendations in various fields, including
the Soviet nuclear and space programs, although he
was never directly involved in any of these projects
(unlike most of his contemporaries of a similar stature
in the USSR, a fact of which he was rather proud).
He was also a keen and original popularizer of statis-
tics, notably through his articles for the Great Soviet
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Encyclopedia. In biostatistics, he was active in com-
menting on statistical confirmation of Mendel’s law
of genetics (see below) as well as in introducing and
developing various mathematical models. For exam-
ple, in [19] a nonlinear equation was analyzed rigor-
ously in detail, describing the spread of an “advanta-
geous gene”. A similar equation was simultaneously
proposed by Fisher [4], who predicted the long-term
behavior of its solution, but did not provide a formal
proof; this was done in [19] and subsequent papers.
The equations studied in [19] and [4] are now often
called Fisher or Kolmogorov–Petrovsky–Piskunov
equations (another frequently used name is reac-
tion–diffusion equations); their popularity in com-
bustion theory far surpassed that in the analysis of
biologic populations. Another notion connected with
Kolmogorov’s long-time interest in genetics was that
of a branching process, introduced for the first
time in [17], where the term “branching random
processes” was first introduced (for related statis-
tical considerations, see [9], [10], and [16]); again,
the popularity of this concept in other applications
exceeded that in the original field of theoretical
biology.

Kolmogorov’s participation in the discussion of
the validity of Mendel’s laws deserves a detailed
account not only as being directly relevant to bio-
statistics, but also to illustrate the relation between
statistics and “real life” at that time. The 1930s and
the years following were a period of sharp strug-
gle in Soviet biology. A group led by the infamous
T.D. Lysenko started a ferocious campaign against
Mendel’s theory (and genetics in general) and its use
in practice. Capitalizing on the support by Soviet offi-
cialdom, the followers of Lysenko denounced genet-
ics as a “bourgeois pseudo-science”, useless (or even
harmful) for socialism and the future communist soci-
ety. Their campaigning created an atmosphere of hys-
teria (matched by the general fear of repression of the
period); as a result, many Soviet geneticists lost their
jobs and some their lives. Kolmogorov had friendly
ties with many of the leading USSR geneticists and
was deeply interested in their experiments. In 1939
a collaborator of Lysenko published the results of a
series of experiments with plants claiming that they
disproved Mendel’s 3:1 law. Kolmogorov [11] ana-
lyzed her data and, by performing a straightforward
chi-square test, discovered that the experiments actu-
ally confirmed the 3:1 law. Given the circumstances
of the time, this was an extraordinarily bold step.

The paper [11] provoked an angry reply by Lysenko
and his cronies, but luckily it did not cause seri-
ous harm to Kolmogorov. [At the same time similar
experiments were conducted by another researcher,
a follower of Vavilov, the leader of Soviet genet-
ics (by that time dismissed from his positions and
replaced by Lysenko; soon after, Vavilov himself was
arrested and later died in prison in inhumane condi-
tions). When the results of this series were shown to
Kolmogorov, he immediately spotted that the author
had “doctored” the data to make them fit exactly to
the theoretical curve. I thank Prof. V.M. Tikhomirov,
from Moscow State University, for providing me with
this episode.] For a detailed account, see, for exam-
ple, [6] and [25].

This and other episodes served to deter Kol-
mogorov from further experimentation in the subject.
However, he kept a deep interest in biostatistics: in
the 1960s he organized the department of medical
statistics in the Laboratory of Statistical Methods and
took an active part in its work. His ideas are widely
used in medical statistical practice, mostly in Russia,
but their detailed account still awaits publication.
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Kolmogorov–Smirnov and
Cramer–Von Mises Tests
in Survival Analysis

The classical one-sample Kolmogorov goodness-of-
fit statistic and the two-sample Smirnov statistic are
well-known general statistical procedures. They are
collectively known as Kolmogorov–Smirnov (K–S)
tests. Using these techniques in survival analysis,
modifications have to be made to deal with censored
data. There are various types of censoring. What
is generally known as type I involves observations
being known precisely if they are less than a fixed
value and only known to exceed the value otherwise.
For so-called type II censoring, the smallest r , say,
observations out of a possible n are observed. These
definitions of censoring are somewhat restricted in
terms of survival analysis. Generally, it is assumed
that censoring is random for each observation, and
special modifications and assumptions are required.
For further discussions of censoring see Michael &
Schucany [7] for a succinct account, or Andersen
et al. [1] for a full account of censoring in the context
of survival data.

For type I or type II censoring, adaptations of the
Kolmogorov statistic have been made by Barr &
Davidson [2], where small-sample percentage points
are tabulated; see also Dufour & Maag [3] for modi-
fied statistics which can be used with the asymptotic
percentage points found by Koziol & Byar [6].

For survival analysis the random censoring case is
more commonly met. Fleming et al. [4] proposed one
sample and two sample K–S type procedures with
randomly censored data. Efficient procedures exist
for comparing two populations, such as the logrank
test for proportional hazards and Gehan–Wilcoxon
tests (see Nonparametric Methods), when survival
distributions have proportional odds. For some alter-
natives, such as where the difference between two
survival curves occurs primarily at a given time, the
K–S two-sample statistic should have good power.
Examples of this situation occur, for example, in
a treatment regime where individuals might obtain
short-term benefits but when compared with controls
there is no benefit in the longer term. Other exam-
ples for which the logrank and Gehan–Wilcoxon tests
would have little power include the class of models
known as crossing-hazards.

Fleming et al. [4] modified the K–S procedures so
as to deal with randomly right-censored data. Asymp-
totic results are obtained for the censoring mechanism
being independent of the survival time. The K–S
statistics are defined in terms of the difference of
two distribution functions, Fu(t) and Fv(t), where
Fu(t) is the empirical (sample) distribution function
(edf) and, for the one-sample goodness-of-fit statistic,
Fv(t) is a hypothesized distribution function and, for
the two-sample case, Fv(t) is the edf of the second
sample. The classical two-sided K–S statistic is

D = sup
t

|Fu(t) − Fv(t)|

or, alternatively, with survivor functions S·(·) replac-
ing distribution functions F·(·):

D = sup
t

|Su(t) − Sv(t)|.

To obtain statistics which can deal with censored
samples, Fleming et al. [4] modify the statistic D and
they give computing formulas for the one-sample and
two-sample statistics. They also give a simple for-
mula to calculate P values based on the asymptotic
distribution of the statistic, which, in simulation stud-
ies, were found to be conservative for the modified
two-sample Smirnov statistic with heavily censored
data in small samples. Later work of Guilbaud [5]
gives exact small sample percentage points for the
K–S type statistic.

In Monte Carlo simulations, Fleming et al. [4]
investigate the power of the modified Smirnov two-
sample statistic and compare it with Gehan–Wilcoxon
and logrank statistics for various alternatives. For
those alternatives purposely designed to have sub-
stantial differences between the two survivor func-
tions at a given time and not necessarily at other
times, the modified Smirnov statistic had good power.
It is suggested that the modified statistics should be
used in conjunction with the Gehan–Wilcoxon and
logrank statistics and, of course, plots of the survivor
functions.

Further results on the power of the modified
Smirnov statistic are given by Stablein & Koutrou-
velis [10] who consider crossing hazards alternatives.
For such alternatives the modified Smirnov statistic
has very good power, considerably in excess of the
logrank statistic.

Schumacher [9] also investigates a Smirnov statis-
tic (called by the author a K–S statistic), which has
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as its asymptotic distribution the supremum of the
Brownian bridge (see Brownian Motion and Dif-
fusion Processes). In simulation studies the finite
sample distributions are found to converge slowly
to the asymptotic distribution, and consequently the
author is not keen to recommend their use. However,
with cheap computing it is a straightforward matter to
simulate such statistics, and this is a harsh conclusion.

In the book by Andersen et al. [1] further refer-
ences are given to more recent work and the authors
take an approach which defines statistics having their
asymptotic distribution given by distributions derived
from the Brownian bridge.

Cramér–von Mises (C–VM) statistics can be
defined for the one-sample problem for types I and
II censoring as described above. In general form they
are defined by

ω2 =
∫

[Fu(t) − Fv(t)]
2ψ(t) dt,

where the same notation is used as above for the
K–S statistics and ψ is a weight function. Pettitt &
Stephens [8] modify the C–VM statistic to deal with
this type of censoring and give computing formulas
for the one-sample statistics and tabulate asymptotic
distributions when the null hypothesis completely
determines the survival function.

Koziol & Green [6] introduce a Cramér–
von Mises statistic to test the goodness of fit for
randomly censored data survival times. They also
assume independent censoring where the survival
function of the censoring distribution is that of the
survival times raised to a positive power, β. They
find the asymptotic distribution of the C–VM statis-
tic, which is quite sensitive to the value of β. They
discuss how to estimate β from the sample. However,
this restriction seems rather harsh for application to
survival data found in practice.

Schumacher [9] considers C–VM statistics for the
two-sample problem which have their asymptotic dis-
tributions given by the standard form, i.e. the integral
of the square of the Brownian bridge, and in simu-
lation studies finds that the asymptotic distribution is
acceptable for small samples. In a power study, the
two-sample C–VM statistic was found to have good
power for a crossing survival curve alternative and
an “early difference” case. Schumacher [9] also gives
references to earlier works and tables of percentage
points of various functionals of the Brownian bridge

which arise as asymptotic distributions of K–S and
C–VM type test statistics.

Values of the various goodness-of-fit and two-
sample statistics should be enhanced by plots of
data, or vice versa, and Michael & Schucany [7] give
details of a number of plots for censored data.

In conclusion, the K–S and C–VM statistics pro-
vide useful procedures to detect differences, either in
the one- or two-sample cases, which are less likely to
be detected using tests based on proportional hazards
or proportional odds assumptions.
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Kolmogorov–Smirnov
Test

Consider two independent groups of subjects. To be
concrete, suppose an experimental group consists of
sons of alcoholic fathers, and each subject consumes
a precise amount of alcohol. Suppose some outcome,
X, is measured, such as hangover symptoms, and let
Y be the outcome for a control group. Let F(x) be
the probability that a randomly sampled subject from
the experimental group gets a score less than or equal
to x. Similarly, let G(x) be the probability that a ran-
domly sampled subject from the control group gets a
score less than or equal to x. The Kolmogorov dis-
tance between these two distributions is the maximum
possible value of |F(x) − G(x)|, the maximum being
taken over all possible values of x. If the distribu-
tions are identical, meaning that F(x) = G(x) for all
possible values of x, then the Kolmogorov distance is
zero. From a graphical point of view the Kolmogorov
distance is the largest vertical distance between the
two cumulative distribution functions.

Kolmogorov-type tests are methods for comparing
distributions that are based on the Kolmogorov dis-
tance function. In some cases one of the distributions
might be specified. For example, it might be hypothe-
sized that F(x) is a normal distribution with specified
mean and variance, and the goal might be to deter-
mine whether this hypothesis is reasonable based on
observations that are available. This hypothesis can
be tested with what is called a Kolmogorov test. A
Kolmogorov–Smirnov test is a Kolmogorov-type test
where the goal is to compare two unknown distribu-
tions. That is, F(x) and G(x) are not known for any
x, but they can be estimated based on randomly sam-
pled subjects from each group, and the goal is to test
H0 : F(x) = G(x), for any x, the hypothesis that the
two distributions are identical.

Let X1, . . . , Xm be a random sample of observa-
tions from the first group, let Y1, . . . , Yn be a ran-
dom sample from the second, and let Z1, . . . , ZN be
the pooled observations, where N = n + m. That is,
Zi = Xi, i = 1, . . . , m, and Zn+i = Yi, i = 1, . . . , n.
For any x, let ai = 1 if Xi ≤ x, otherwise ai = 0.
Similarly, let bi = 1 if Yi ≤ x, otherwise bi = 0.
Let F̂ (x) = ∑

ai/m and Ĝ(x) = ∑
bi/n. The Kol-

mogorov distance between the distributions F and G

is estimated by

D = max |F̂ (Zi) − Ĝ(Zi)|,

where the maximum is taken over all i = 1, . . . , N .
If D is sufficiently large, then reject H0. When there
are no ties, the exact probability of a type I error
(see Level of a Test) can be determined using an
algorithm derived by Kim & Jennrich [3]. When
there are tied values, results in [4] can be used.
Details about these algorithms, together with appro-
priate software, are summarized in [7].

A common criticism of the Kolmogorov–Smirnov
test is that it has low power under normality. Table 1
compares its power with several other methods for
comparing measures of location. The methods are
Student’s t (T), Welch’s adjusted degrees of free-
dom procedure (W), Yuen’s [8] method for trimmed
means that reduces to Welch’s test when there is
no trimming (Y), and a method for comparing one-
step M-estimators (see Robustness) using a boot-
strap method (OSM). (For details about these tests,
see [6].) In Table 1 the first three distributions are
normal with variance one, and the difference between
the means is δ. The notation CN1 refers to a sym-
metric heavy-tailed distribution that is a mixture of
two normal distributions. It has distribution

H(x) = 0.9Φ(x) + 0.1Φ
(x

k

)
,

Table 1 Estimated power, m = n = 25, α = 0.05

Distributions δ T W Y OSM KS (exact) KS (α = 0.052)

Normal 0.6 0.529 0.536 0.464 0.531 0.384 0.464
Normal 0.8 0.778 0.780 0.721 0.751 0.608 0.700
Normal 1.0 0.925 0.931 0.890 0.921 0.814 0.872
CN1 1.0 0.326 0.278 0.784 0.788 0.688 0.780
CN2 1.0 0.191 0.162 0.602 0.760 0.698 0.772
Expo 0.6 0.539 0.697 0.623 0.592 0.866 0.867
Logn 0.6 0.232 0.243 0.409 0.363 0.666 0.678
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with k = 10, and where Φ(x) is the standard nor-
mal distribution. That is, with probability 0.9, an
observation is sampled from a standard normal distri-
bution, otherwise sampling is from a normal distribu-
tion having standard deviation k = 10. The difference
between the standard normal and CN1 is small as
measured by the Kolmogorov distance – it is less than
0.04. Despite this, the variance is equal to 10.9 vs. 1
for the standard normal. The distribution CN2 is the
same as CN1, only k = 20. Finally, Expo indicates
an exponential distribution, and Logn is lognor-
mal. The column headed KS (exact) means that the
smallest critical value is used such that the proba-
bility of a type I error does not exceed α = 0.05.
The exact probability of a type I error is 0.036. The
last column reports power when the critical value
is chosen so that the probability of a type I error
is as close as possible to 0.05, which in this case
is 0.052.

As would be expected, methods for comparing
measures of location have more power when sam-
pling from normal distributions, but, with even slight
departures from normality (CN1 and CN2), the Kol-
mogorov–Smirnov test has substantially more power
than methods based on means, and it competes well
with methods based on robust measures of loca-
tion.

A criticism of the Kolmogorov–Smirnov test is
that when the sample sizes are small, there are sit-
uations where the exact probability of a type I error
might not be acceptably close to some desired level,
because the test statistic, D, has a discrete distribu-
tion. Suppose, for example, α = 0.05, and consider
n = m = 10. The exact probability of a type I error,
based on the critical value in [1], is 0.035. For n =
m = 11, 12, and 13 the exact type I error probabilities
are 0.036, 0.031, and 0.044, but for n = m = 14 it
is 0.019, which might be considered too small. How-
ever, the next highest significance level is 0.12 which
might be considered too high. This problem might be
used to argue for comparing some measure of loca-
tion, but most methods for comparing measures of
location can also yield unsatisfactory control over
the probability of a type I error, particularly meth-
ods based on means (see, for instance [5] and [6]).
An exception appears to be a percentile t bootstrap
combined with a 20% trimmed mean (see [7]).

An advantage of the Kolmogorov–Smirnov test is
that it is sensitive to several features of the data which
can be revealed using the method described in [2].
This uses the Kolmogorov–Smirnov test statistic to
compute a confidence interval for the difference
between any two quantiles such that the simulta-
neous probability coverage of all such intervals is
determined exactly. Note that the 0.2 quantile, for
example, of the first group might be larger than the
0.2 quantile of the second, but when the 0.8 quan-
tiles are compared the reverse can be true. That is,
the confidence band can indicate a difference between
subpopulations of subjects that is completely missed
when attention is restricted to a measure of location.
Doksum & Sievers [2] suggest plotting the estimated
quantiles of the first group vs. the difference between
the quantiles. Letting x̂q and ŷq be the quantiles of the
two groups, plot x̂q vs. δ = x̂q − ŷq . For illustrations
and software, see [7].
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Kullback–Leibler
Information

The Kullback–Leibler [5] information number,
I (P ||Q), determined for two probability measures
defined on the same measurable space (χ,F), is
a nonnegative number (possibly + ∞) which rep-
resents “distance” (in a certain sense) between P

and Q. This “distance” is not symmetric [in general,
I (P ||Q) �= I (Q||P)], but does have the property that
I (P ||Q) = 0 if and only if P = Q. This quantity is
also referred to by a myriad of other names, including
information for discrimination, discrimination infor-
mation, Renyi’s information gain, entropy distance,
entropy of P relative to Q, cross-entropy, directed
divergence, Kullback information.

If P is absolutely continuous with respect to
Q(P � Q), the Radon–Nikodym derivative PQ(x)

is defined almost surely (Q) and serves as a basis for
the general definition:

I (P ||Q) =






∫

χ

ln PQ dP =
∫

χ

PQ ln PQ dQ,

P � Q,

+∞, P �� Q.

Note that, if R is a sigma-finite measure such that
P � Q � R, we can also write

I (P ||Q) =
∫

χ

PR ln

(
PR

QR

)
dR.

Thus, for the common situation where P and Q

are discrete (and R is the counting measure), the
Kullback–Leibler information number reduces to

I (P ||Q) =
∑

i

pi ln

(
pi

qi

)
,

where pi and qi are the standard probability mass
functions. Note also that, if X is a random vector
with probability distribution P , then I (P ||Q) can
be interpreted as the expectation of the log of a
likelihood ratio statistic.

If Q is a uniform measure over a finite set
of points and P is a probability measure on the
same points, then I (P ||Q) is just the negative of

the well-known Shannon entropy [8]. This quan-
tity is very important in statistical information the-
ory, which has its mathematical roots in the concept
of entropy in thermodynamics and statistical me-
chanics.

Given a probability measure Q on a measur-
able space, the convex set of probability measures
defined by

S(Q, ρ) = [P : I (P ||Q) < ρ]

is often called the I -sphere with center Q and radius
ρ. If E is a convex set of probability measures
intersecting S(Q, ∞), a probability measure R ∈ E
satisfying

I (R||Q) = inf
P∈E

I (P ||Q) (1)

is called the I -projection of Q onto ε. Csiszár [1]
has shown that the I -projection exists if the convex
set E is closed in variation distance and has also
developed an appealing “geometric” approach which
characterizes the “tangent hyperplanes” of I -spheres
S(Q, ρ).

Problems of the type (1) play a basic role in
the information theoretic approach to statistics [4],
the theory of large deviations [6], and in statistical
physics [3]. Dykstra & Lemke [2] have shown that
problems of the form (1) are often equivalent to
multinomial maximum likelihood problems under
various types of constraint regions.

Kullback–Leibler information numbers between
distributions in a common family are often quite
tractable. Thus, if P and Q are Poisson distributions
with respective means m1 and m2, it is easily shown
that I (P ||Q) = m1 ln(m1/m2) + m2 − m1.

If P and Q are k-variate normal distributions (see
Multivariate Normal Distribution) with respective
mean vectors µ1 and µ2 and respective covariance
matrices �1 and �2, then

I (P ||Q) = 1
2 ln

(
det �2

/
det �1

)

+ 1
2 tr�1

(
�−1

2 − �−1
1

)

+ 1
2 tr�−1

2 (µ1 − µ2)(µ1 − µ2)
′.

Thus, when �1 = �2 = �, I (P ||Q) reduces to
the natural Mahalanobis distance (1/2)(µ1 −
µ2)

′�−1(µ1 − µ2) between the two mean vectors.
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Though Kullback–Leibler information seems very
different from the statistical concept of Fisher infor-
mation, there is actually a rather remarkable con-
nection. For example, if we have multinomial dis-
tributions whose probabilities πi(θ), i = 0, 1, . . . , k,
depend upon the parameter θ , then

lim
∆θ→0

I [Π(θ + ∆θ)||Π(θ)]

(∆θ)2
= 1

2
IF(θ),

where IF denotes the Fisher information and the
Kullback–Leibler information number is calculated
from the appropriate multinomial distributions [7,
Chapter 15].

If Pn denotes an empirical distribution from a
random sample and E denotes a family of possible
models, then a natural estimate of a model from
the family is the one (in E ) closest to Pn. “Clos-
est” here means in the sense of the Kullback–Leibler
information number, i.e. the I -projection of Pn

onto E.
Moreover, 2n infP∈E I (P ||Pn) is often a desirable

test statistic (with nice asymptotic properties) for
testing whether the actual distribution is contained
in E (see Large-sample Theory).

References

[1] Csiszár, I. (1975). I-divergence geometry of probability
distributions and minimization problems, Annals of Prob-
ability 3, 146–158.

[2] Dykstra, R.L. & Lemke, J. (1988). Duality of I-projections
and maximum likelihood estimation for log-linear models
under cone constraints, Journal of the American Statistical
Association 83, 546–554.

[3] Jaynes, E.T. (1957). Information theory and statistical
mechanics, Physical Review 106, 620–630.

[4] Kullback, S. (1959). Information Theory and Statistics.
Wiley, New York, 1968; Peter Smith Publisher, Magnolia,
1978.

[5] Kullback, S. & Leibler, R.A. (1951). On information and
sufficiency, Annals of Mathematical Statistics 22, 79–86.

[6] Sanov, I.N. (1957). On the probability of large deviations
of random variables, Matemateceskii Sbornick N.S. 42,
11–44.

[7] Savage, Leonard J. (1972). The Foundations of Statistics.
Dover, New York.

[8] Shannon, C.E. (1948). A mathematical theory of com-
munication, Bell Systems Technical Journal 27, 379–423,
623–656.

RICHARD DYKSTRA



Kurtosis

Kurtosis is related to the standardized fourth moment
of a distribution. It is expressed in a number of ways,
the most common being

β2 = µ4/σ
4 and γ2 = β2 − 3,

where µ4 and σ 2 are, respectively, the fourth central
moment and the variance of the distribution. Often
it is used as a measure to judge the deviation of a
distribution from normality. For the normal distri-
bution, β2 = 3 and γ2 = 0. Unimodal distributions
with values of β2 greater than 3 (called leptokurtic)
usually indicate that the distribution displays a higher
“peak” around the mean, and also more probability in
the tails of the distribution, than does the normal (see
Figure 1). These distributions are also called thick-(or
long-)tailed distributions [3, Chapter 9]. Those with
β2 less than 3 (called platykurtic) usually are more
concentrated about the mean and flatter than the nor-
mal. β2 cannot be less than 1. Those with β2 = 3 are
called mesokurtic.

Sample measures of kurtosis are used in tests of
normality. A common test statistic is b2 = m4/m2

2,
where m2 and m4 are the second and fourth moments
about the mean (see [3, Chapter 9]). Extensive tables
of the sampling distribution, as well as approxi-
mations, exist for the null distribution of b2 [3, 4,
7]. Also, it is often used jointly with a measure
of skewness (b1 = m3/m

3/2
2 ) to evaluate deviations

from normality [2, 3]. D’Agostino & Pearson [2] and
D’Agostino et al. [5] developed a chi-square distri-
bution approximation that combines b2 with b1 for

B

A

C

Figure 1 Unimodal distributions: A = β2 = 3; B =
β2 < 3; C = β2 > 3

an omnibus test. It is a useful adjunct to normal prob-
ability plots [5] (see Normal Scores).

There have been a number of attempts to general-
ize kurtosis to the multivariate setting. These have
often been in the context of developing tests of multi-
variate normality.

In the case of nonnormality, knowledge of kurtosis
is useful in evaluating the robustness of standard
statistical procedures such as the Student’s t tests [8]
and in developing measures of location [1]. For this
latter situation in particular, the tail thickness of a
distribution is often very important and some have
questioned the usefulness of b2 for evaluating it.
Alternative measures based on sample quantiles have
been suggested [6, 9].
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Lagged Dependent
Variables

In longitudinal studies, several observations are
taken from each individual at different time points.
Often, an observation depends on previous obser-
vations; for example, in a crossover clinical trial,
observations in one period may depend on the obser-
vations in the previous periods. A simple model for
this scenario might include a lag-1 dependent variable
as an explanatory variable [2]:

yit = γyi,t−1 + xitβ + ui + eit , (1)

where yit is the observation from subject i in period
t, xit is a vector of covariates, ui is a subject effect,
and eit is an error term. This model can be extended to
include multiple lagged variables by replacing γyi,j−1

by
∑p

l=1 γlyi,t−l in (1). Model (1) is different from a
serially correlated model with the same covariates.
In the latter, yi,t depends on xit only (not yi,t−1),
while in the former it depends on all xi1, . . . , xit [4].

Statistical inference based on model (1) inclu-
des model fitting, model checking and hypothesis
tests. In biostatistics, the number of subjects is often
large, but the number of observations from each
subject is small. In this situation we should be careful
when using the asymptotic properties of the estimated
parameters. For n subjects and times 1, 2, . . . , T , and
conditional on ui , the log likelihood function of this
model can be written as

l(β, γ, u) =
n∑

i=1

T∑

j=1

log[p(yit |yi,t−1, β, γ, ui)]. (2)

When there are no subject effects (ui = 0), this
model can be fitted easily using the lagged dependent
variables as covariates [3]. When ui is fixed and
ui �= 0 the maximum likelihood estimates (mle) of
γ and β are not consistent for fixed T when the
total sample size n → ∞ [2]. To obtain consistent
estimates, the instrumental variable procedure can
be used either for fixed or random ui . To illustrate
how this procedure works we write model (1) as

yit − yi,t−1 = γ (yi,t−1 − yi,t−2) + β(xit − xi,t−1)

+ eit − ei,t−1. (3)

Directly using (yi,t−1 − yi,t−2) as a covariate may
lead to inconsistency, since it and eit − ei,t−1 are
correlated. However, (yi,t−2 − yi,t−3) or yi,t−2 is
independent of eit − ei,t−1 and can be used as an
instrumental variable. When assuming ui ∼ N(0, σ 2

u )

the log likelihood function is more complicated
than (2), but the mle can be obtained by the
Newton–Raphson method (see Optimization and
Nonlinear Equations). In this case the mle is
consistent for fixed T and n → ∞.

Model (1) can be extended to include discrete
outcomes. One approach is to discretize yij by
letting y∗

ij = 1 if yij > 0 and y∗
ij = 0 otherwise. This

approach leads to the autoregressive probit model
[1]. A more general approach is to use (1) as the
linear predictor in a generalized linear model, and
a wide range of data such as count data can then
be modeled. Again, the model fitting without ui is
easy but the mle for random ui is very difficult to
obtain.

When there are missing data in the repeated mea-
surements we may need to write (1) in another
form. For example, when yi2 is missing we can
write the equation for yi3 with yi1 as a covariate.
This can be done by replacing yi2 by its regres-
sion model. However, the model becomes nonlin-
ear, and nonlinear regression procedures should be
used [4].

There are two special issues in the models with
lagged dependent variables. One is the distinction
between these models and other models for correlated
outcomes. To distinguish these models from the mod-
els with random subject effects, we may test for given
ui if yij depends on the previous outcomes. To distin-
guish these models from serially correlated models,
we may test if yij depends on previous covariates.
Another issue concerns the initial observation yi0.
Assuming yi0 as fixed leads to a simple model, but
it may not be reasonable for models with random ui .
The case when yi0 is random is more complicated;
see [2] for details.
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Lambda Criterion, Wilks’

In 1932, Wilks [35] proposed the likelihood ratio
test criterion, known usually as Wilks’ Λ crite-
rion, for testing the equality of the mean vectors of
k p-variate normal distributions with common but
unknown covariance matrix (see Multivariate Nor-
mal Distribution). Later, Wilks [36] and Bartlett [2]
extended its use for testing regression coefficients;
see Anderson [1] (see Multiple Linear Regression).

The problem in its canonical form can be
expressed as follows. Let (X) : p × r , Y : p × m, and
Z : p × n be random matrices such that the columns
of X, Y, and Z are independently distributed as p-
variate normal distributions with the same covariance
matrix �. The problem is to test H0 : � ≡ E(X) = 0
against H1 : � �= 0, given that E(Z) = 0, � being
unknown. The likelihood-ratio test, evaluated by
Wilks [34], rejects H0 if and only if

Vp,r,n ≡ det(ZZ′)
det(XX′ + ZZ′)

is too small; here “det” denotes the determinant.
The Λ criterion is the 1

2 (r + m + n)th power of
Vp,r,n. In the context of the original problem or
the multivariate analysis of variance (MANOVA)
problem, the matrices XX′ and ZZ′ denote the sums
of products and cross products matrices due to the
hypothesis H0 and due to error, respectively. It is
tacitly assumed that n ≥ p.

Wilks [35] derived the null distribution of Vp,r,n

explicitly for p = 1, 2, 3 with r = 3, and for p = 4
with r = 4; see also Consul [5] and Mathai [17].

The null distribution of Vp,r,n can be expressed
as the distribution of U1, U2, . . . , Up, where the Uis
are independently distributed, with the distribution of
Ui being the beta distribution B( 1

2 (n + 1 − i), r/2);
moreover, the distribution of Vp,r,n is the same as
that of Vr,p,n+r−p; see [1]. For p = 1, 2 and r = 1, 2
the distributions of Vp,r,n take simple F distribution
forms as follows [1]:

1 − V1,r,n

V1,r,n

n

r
∼ Fr,n,

1 − Vp,1,n

Vp,1,n

n + 1 − p

p
∼ Fp,n+1−p,

1 − (V2,r,n)
1/2

(V2,r,n)1/2

n − 1

r
∼ F2r,2(n−1),

1 − (Vp,2,n)
1/2

(Vp,2,n)1/2

n + 1 − p

p
∼ F2p,2(n+1−p).

Wald & Brookner [37] presented a method for
obtaining the null distribution of Vp,r,n for even val-
ues of p and r; see also Schatzoff [29] and Anderson
[1]. For other results on the null distribution, see Pillai
& Gupta [24] and the books by Seber [32] and Muir-
head [20].

Tables for significance points of Vp,r,n are obtained
by Schatzoff [29], Pillai & Gupta [24], Lee [16] and
Davis [9, 10]; see also Anderson [1], Muirhead [20],
and Pearson & Hartley [22].

Bartlett [3] has shown that the null distribution
of −[n − 1

2 (p − r + 1)] log Vp,r,n tends to the chi-
square distribution with pr degrees of freedom as
n → ∞; see [1]. Mudholkar & Trivedi [19] have sug-
gested a normal approximation to the distribution of
− log Vp,r,n for large p or r; see [1]. This approxima-
tion is better than the chi-square approximation when
n is small. Rao [27] has suggested an F approxima-
tion as follows:

1 − V 1/s

V 1/s

ks − q

pr
∼ Fpr,ks−q,

where s = [(p2r2 − 4)/(p2 + r2 − 5)]1/2, q =
(pr/2) − 1, and k = r − (p − r + 1)/2. For small r ,
this approximation is more accurate than the chi-
square approximation.

An asymptotic expansion of the null distribution
of Vp,r,n (in powers of 1/n) in terms of chi-square
distributions has been given in Rao [26], Anderson
[1], and Muirhead [20].

Constantine [4] has obtained the moments of the
nonnull distribution of Vp,r,n. For asymptotic expan-
sion of the nonnull distribution in terms of noncentral
chi-square distributions, see Muirhead [20], Suguira
[33], Suguira & Fujikoshi [34], Fujikoshi [12], and
Pillai [23].

Schwarz [31] has shown that the likelihood ratio
test is Bayes and admissible; see also Anderson
[1]. The power function of this test depends on
the parameters only through the characteristic roots
(eigenvalues) ν1, . . . , νp of ��′�−1. DasGupta
et al. [8] have shown that the power of the
likelihood ratio test monotonically increases as each
νi increases; see also a review paper by DasGupta [6].
The power of this test has been studied by DasGupta
& Perlman [7].
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The power functions of the likelihood ratio test,
the Lawley–Hotelling trace test, and Pillai’s trace
test for the MANOVA problem have been compared
by Rothenburg [28] on the basis of asymptotic
expansions. It is shown that if the coefficient of
variation of the νis is large enough, then the power of
the Lawley–Hotelling trace test is greater than that
of the likelihood ratio test, which in turn is greater
than that of Pillai’s test; in the opposite situation,
the ordering of power is reversed. For comparisons
of the power function of the likelihood ratio test
with the power functions of other standard tests
for the MANOVA, see Itô [13], Lee [15], Mikhail
[18], Olson [21], Pillai & Jayachandran [25], and
Schatzoff [30]. Olson’s study [21] indicates that the
likelihood ratio test is quite robust under departure
from covariance homogeneity. For a review of
results on robustness, see Itô [14] (see Multivariate
Techniques, Robustness).
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Lancaster, Henry Oliver

Born: February 1, 1913, in Sydney, New South
Wales.

Died: December 2, 2001, in Sydney.

During the twentieth century, many qualified physi-
cians contributed in different ways to the theory or
practice of statistics. Oliver Lancaster was unique in
having held university chairs in both medical and
mathematical statistics, in making important contri-
butions to the history of quantitative medicine, and in
his pioneering work in the bibliography of statistics.

Lancaster was the son of a doctor practicing in
the country town of Kempsey on the Macleay River
in northeastern New South Wales. He was born in
Sydney because his mother had accompanied his
father who was playing in a chess championship
there, a suitable advent for a boy who was to have
a precocious childhood and develop strong aptitude
in all forms of games. He showed all-round ability

in school with particular strength in mathematics and
chemistry, and then started on an actuarial career by
taking evening classes in economics at the University
of Sydney, whilst working for an insurance company.
He quickly switched to Arts degree classes with
a broader range of science subjects and in 1931
enrolled as a medical student, qualifying in 1937.
During the next three years, he served as Resident
Medical Officer and then pathologist, and sought
to extend his scientific range by further studies in
chemistry and a reading of Yule’s Introduction to the
Theory of Statistics. In 1940, after two other hospital
appointments, he joined the Royal Australian Army
Medical Corps as a pathologist, a period of service in
the Middle East, Australia, and New Guinea which
was to last until 1946.

His work as an army pathologist introduced him
to statistical problems such as the analysis of 2 ×
2 × 2 tables in the study of parasitic infections and
Bayesian concepts in diagnosis. His target at this
stage was a possible career in demography and he
began a serious study of mathematics, enrolling as
an external student in mathematics within the Arts
degree. After demobilization, he had a temporary
appointment as a Lecturer in Statistics at the Sydney
School of Public Health and Tropical Medicine and
obtained an Arts degree in 1947.

In 1948, he was awarded a Rockefeller Schol-
arship in Medicine, to study at the London School
of Hygiene and Tropical Medicine under A. Brad-
ford Hill. He arrived there with a sheaf of draft
articles on a variety of topics in medical statistics,
including the analysis of amoebic surveys (involv-
ing overdispersed binomial distributions (see Beta-
binomial Distribution), the control of routine blood
counting, partition of the chi-square statistic in con-
tingency tables to identify particular contrasts with
disproportionate frequencies, and the use of what is
now known as the mid-P test for discrete data (see
Fisher’s Exact Test). He benefited from the guidance
of J.O. Irwin, who recognized Lancaster’s remark-
able insight but realized that it was not matched
by experience in the writing-up of his research.
He also completed an analysis of the large data
set published by A. Geissler in 1889 on the sex
ratio in families of different sizes, concluding that
the evidence for genetic variability in the ratio was
extremely scanty.

He returned to Sydney in 1949, as a member of
the Commonwealth Health Department located at the



2 Lancaster, Henry Oliver

School of Public Health, with some teaching respon-
sibilities. He now embarked on a study of trends in
Australian mortality from different causes, extend-
ing eventually to some 50 papers. He approached
vital statistics with an investigative mind and made
important epidemiologic findings. N.M. Gregg had
discovered that maternal rubella in the first trimester
of pregnancy can cause developmental defects, such
as cataracts, in the fetus, and it was thought that
this effect might be due to a recent viral mutation.
Lancaster discovered that excessive incidences of
deaf-mutism had occurred as long ago as 1898 and
1899, following rubella epidemics. He also found that
melanoma, which was known to be associated with
exposure to sunlight, was more specifically related to
latitude in Australia, mortality increasing toward the
equator.

In 1959, he was appointed Associate Professor of
Medical Statistics in the University of Sydney, but
almost immediately he applied for, and was appointed
to, the new chair in Mathematical Statistics. This
marked a new phase in his career. He was never
to abandon his interest in medical statistics (as his
later book [3] shows), but his concern now was to
develop the new department and plan its courses. His
research included further work on the chi-square dis-
tribution, leading to his book [2]. In this, he made
use of orthogonal functions (see Orthogonality). He
had published several papers on this topic, particu-
larly in relation to their use in measuring dependence
in bivariate distributions with given marginal distri-
butions. His work in this area is summarized in [4];
see also [8].

Throughout his career, Lancaster had been inter-
ested in historical scientific literature, especially in
relation to statistics. In his book [1], he listed bib-
liographies contained in a wide range of papers and
continued to produce 21 addenda at approximately
annual intervals until 1989. For this purpose, he cre-
ated a vast card index in Sydney, the maintenance
of which became one of his principal interests in
later life. After his retirement in 1978, he decided to
continue and consolidate his work on medical statis-
tics, and produced a massive book [6] on trends
in mortality subdivided by diseases and regions,
and a history of quantitative medicine [7]. These
books are important sources of information although
the author’s rather laconic and occasionally cryp-
tic style makes few concessions to his less erudite
readers.

Lancaster obtained doctorates from Sydney in
philosophy (1953), medicine (1967), and science
(1971). He was a Fellow of the Australian Academy
of Science (1961) holding the Academy’s Lyle Medal
(1961) and the Pitman Medal of the Statistical Soci-
ety of Australia (1980). In 1992, he was appointed
Officer of the Order of Australia. He held many hon-
orary fellowships and honorary life memberships of
learned societies throughout the world.

Lancaster played a major role in the establishment
of statistical and mathematical organizations in Aus-
tralia. In 1947, the Statistical Society of New South
Wales was formed and Lancaster became Secretary
in 1949 and President from 1952 to 1953. He was
largely responsible for the Society’s Bulletin and was
joint Editor of its successor, the Australian Journal
of Statistics, from 1959 to 1971. After the Soci-
ety became the Statistical Society of Australia, he
served as President from 1965 to 1966. He helped
to found the Australian Mathematical Society from
1956 to 1957 and served as its General Secretary
(1959–1963) and President (1966–1967).

Lancaster had a hesitant manner of conversation,
probably because of a childhood stammer, which he
had gradually overcome as an adult, and this some-
times conveyed the impression of a diffident person-
ality. He was, in fact, a man of strong opinions, often
forcibly expressed. He was held in high respect and
affection by those who knew him, not least his for-
mer research students, many of whom came to occupy
senior positions in academia and public service.

Lancaster published his own account of his career
in [5].
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Laplace, Pierre–Simon

Born: March 23, 1749, in Beaumont-en-Auge,
France.

Died: March 5, 1827, in Paris, France.

“Laplace was among the most influential scientists
in all history” [1]. The son of a well-to-do trades-
man, he entered the University of Caen in 1766 to
study theology, but left prematurely to study math-
ematics in Paris under d’Alembert. He secured an
appointment at the Ecole Militaire (where he exam-
ined Napoleon), and was elected to the Académie des
Sciences in 1773. His career continued to flourish
after the Revolution, and for a short time he was
Napoleon’s Minister of the Interior. He became Chan-
cellor of the Senate in 1803 and a Marquis in 1806.

During the first 20 years of his academic life,
he worked prolifically in several areas of mathemat-
ical science, notably celestial mechanics, differen-
tial equations, and probability and statistics. These
remained the central themes throughout his career.
As his research findings proliferated and matured,
Laplace incorporated them into two major treatises,
Mécanique céleste (1799–1825) and Théorie analy-
tique des probabilités (1812). The second edition of
the latter, in 1814, was accompanied by a new intro-
duction, Essai philosophique sur les probabilités.

Laplace’s early work on probability adopted
a Bayesian approach. Laplace had discovered
Bayes’ theorem, possibly unaware in 1774 of
Bayes’ posthumous publication of 1763. He applied
this to combinatorial and demographic problems,
and used the beta prior distribution for binary
data. Other techniques and results introduced by
Laplace included generating functions for discrete
distributions, characteristic functions, the Laplace
transform (at least in embryo), a form of the central

limit theorem, and various aspects of regression and
least squares. Commentators on his career usually
refer to his somewhat cavalier attitude towards
results obtained by other workers. According to [1],
“not a single [contemporary] testimonial bespeaking
congeniality survives”. Nevertheless, as Grattan-
Guiness [2] remarks,

Laplace’s contributions to probability and statistics
were fundamental . . .He . . .changed the emphasis of
probability from its preoccupation with moral sci-
ences and jurisprudence to include also applications
in scientific contexts, wither it had hitherto infre-
quently strayed. His most important early successors
were Quetelet and Poisson; after them, both proba-
bility and statistics moved to adulthood in the family
of sciences, and the heritage from Laplace began to
be recognized.

The major memoir [1], written in collaboration with
others, contains extensive bibliographic information.
The relation between Laplace’s work and that of his
near-contemporaries, especially Gauss, is described
in [3].
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Large-sample Theory

Large-sample theory (LST) plays a fundamental
role in biostatistics in the prescription of fruitful
methodology that can be well adapted in practical
applications, often under conditions weaker than
in standard (finite sample) parametrics. The basic
clause of large samples is usually satisfied in real
biostatistical applications, especially in investigations
involving large-scale data collection. The advent
of modern computers has strengthened the case
for LST. The research literature on LST has gone
through a phenomenal growth during the past three
decades wherein delicate concepts from probability
theory and stochastic processes have been blended
towards a unified resolution, though at the cost
of mathematical abstractions and sophistications
often beyond the normal range of comprehension
in biostatistics. Moreover, in biostatistics, various
experimental or observational factors generally
impose certain constraints on underlying statistical
models, so that the classical parametric theory
may not be universally adoptable, and increasingly
nonparametrics and semiparametrics are being
used; the LST has an even more dominant role in this
setup. Yet there is a hierarchy in the methodological
developments within the domain of LST with respect
to their validity in moderate sample sizes, and many
modern developments are geared toward a better
resolution for moderate to large sample sizes. The
interesting point in this context is the interplay
between validity robustness and efficiency robustness;
modern LST addresses this aspect quite well.

The basic concepts in probability theory under-
lying the evolution of LST in biostatistics are the
following:

1. stochastic, almost sure, and other modes of con-
vergence;

2. probability inequalities, and laws of large num-
bers; and

3. weak convergence or convergence in distribution
(law).

In the classical sense these concepts were mostly
developed for sample statistics that are generally
expressible as the sum or average of independent ran-
dom elements. Yet, in applications one often encoun-
ters more general forms of statistics violating this
postulation, and even sometimes sample functions

that are stochastic processes in a general sense.
The empirical distribution (see Goodness of Fit)
and survival functions (see Survival Distributions
and Their Characteristics) are classical examples
of this type. In this context the emergence of mar-
tingales, reverse martingales and related dependent
sequences has greatly reshaped the adaptability of
LST in diverse setups, and our discussion remains
somewhat incomplete without their introduction and
role (see Counting Process Methods in Survival
Analysis). The intricate role of LST in transforma-
tions on variables or statistics also deserves a closer
look.

The main theme of LST relates to the asymptotic
distribution theory for various statistics that arise in
statistical analysis in biostatistics, where point and
confidence set estimation, and hypothesis testing
occupy a focal point. In this context, linear, gen-
eralized linear, categorical data models, and some
semiparametric and nonparametric models deserve
detailed discussion. LST in survival analysis is also
a vital component of this development. For a com-
prehensive view, we also briefly present some invari-
ance principles that play a fundamental role in these
developments.

Stochastic Convergence

Let Tn be a statistic based on a sample of size N

from a population with distribution function F , and
let θ be a parameter which can generally be defined
as a function of F . Then Tn is said to converge
in probability (or stochastically) to θ if, for every
positive η and ε, there exists a positive integer n0 =
n0(η, ε), such that

Pr{|Tn − θ | > η} < ε, for all n ≥ n0. (1)

If we view Tn as an estimator of θ , then the above
definition coincides with the notion of (weak ) con-
sistency in estimation theory. Similarly, Tn converges
almost surely (or strongly) to θ if

Pr{|Tn − θ | > η, for some N ≥ n} < ε,

for all n ≥ n0. (2)

Again, in estimation theory this corresponds to the
notion of strong consistency. In the same vein, Tn is
said to converge in the rth mean, for some r > 0, if

E{|Tn − θ |r} → 0, as n → ∞. (3)
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Note that both almost sure convergence and conver-
gence in the rth mean imply convergence in prob-
ability, but the converse may not be true generally.
These definitions extend readily for the case of vec-
tors Tn and θ where we need to use the Euclidean or
other norms, and also to more general cases by using
suitable norms. As an example consider the case of
Tn being the sample distribution function defined
as Fn(·), and consider the sup-norm ||Fn − F || =
sup {|Fn(x) − F(x)| : x ∈ R}. With respect to this
metric, the definitions all extend to this case of func-
tional statistics and parameters.

Probability Inequalities

The Chebyshev inequality. For a nonnegative
random variable U with µ = EU , Pr{U ≥ µt} ≤
t−1, for all t > 0, provides the genesis of all
probability inequalities. Letting U = (Tn − θ)2 and
denoting by σ 2

n = E{(Tn − θ)2}, we have the derived
Chebyshev inequality:

Pr{|Tn − θ | ≥ ε} ≤ ε−2σ 2
n , for every ε > 0, (4)

so that a sufficient condition for the stochastic con-
vergence of Tn is that σn → 0 as n → ∞. Although
this characterization does not require Tn to have
independent summands, in fact it is the second
(and generally rth) mean convergence property. For
almost sure convergence and related results some
sharper inequalities are useful. Among these, special
mention may be made of (i) the Bernstein inequal-
ity, (ii) the Kolmogorov–Hájek–Rényi inequality, and
(iii) the Hoeffding inequality, all of which were ini-
tially formulated for independent summands, but later
were generalized to some dependent cases as well.
Other useful inequalities in probability theory include
the cr inequality (r > 0), the Holder inequality, the
Cauchy–Schwarz inequality, and the Jensen inequal-
ity. For details we refer the reader to Sen & Singer
[21] and Ferguson [7], where other pertinent refer-
ences are all cited.

Laws of Large Numbers (LLN)

For independent and identically distributed (iid) ran-
dom variables, the Khintchine Strong LLN asserts the
almost sure convergence of the sample mean to the
population mean whenever the latter exists. The Borel

SLLN refers to the particular case of Bernoulli vari-
ables (see Binary Data). However, without the iid
clause, extra regularity conditions are needed for such
LLNs to hold. The Kolmogorov SLLN, in the case of
independent but not necessarily identically distributed
summands, is based on the convergence of the series∑

n≥1 n−2σ 2
n , where σ 2

n stands for the variance of Xn,
for n ≥ 1. These LLNs have also been extended to
some dependent sequences. The Markov LLN relates
to stochastic convergence for the possibly nonidenti-
cally distributed case, and does not require the second
moment condition, but a condition slightly more strin-
gent than the first.

Martingales and Reversed Martingales

Let {Tn; n ≥ 1} be a sequence of random variables
with finite expectations. If E{Tn|Tj , j ≤ n − 1} =
Tn−1 almost everywhere for every n ≥ 1 (where T0

can be taken as a constant), then {Tn; n ≥ 1} is termed
a martingale. If in the above (conditional) expec-
tation, for all n, the = is replaced by a ≥ (or ≤),
then we have a submartingale (or supermartingale)
sequence. A sequence {Tn} forms a reversed mar-
tingale if for every n, E{Tn|Tn+1, Tn+2, . . .} = Tn+1,
almost everywhere, and a similar definition holds
for reversed sub (or super) martingales. The sam-
ple mean, U -statistics and many other symmetric
estimators can be characterized as reversed mar-
tingales. Similarly, sample sums, likelihood ratio
test statistics, and other forms of rank statistics
can be characterized as martingales. Score statis-
tics, arising in parametric models [16] as well as in
various nonparametric and semiparametric applica-
tions [10], are abundant in biostatistics (see Like-
lihood). In most of these cases, either a reversed
martingale or a forward martingale characteriza-
tion holds. The empirical distribution function Fn is
also a reversed martingale (process). Such dependent
sequences show up frequently in survival analysis and
other areas in biostatistics. Most of the probability
inequalities and LLNs have been extended to such
dependent sequences, and hence they enjoy similar
convergence properties. We refer to some of these
later in the article.

Weak Convergence and CLT

Consider a sequence {Tn; n ≥ n0} of random variables
or statistics with distribution functions {Gn; n ≥
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n0}. Then Tn is said to converge weakly (or in
distribution/law) to a possibly degenerate random
variable T with distribution function G, if ||Gn −
G|| → 0 as n → ∞, i.e. Gn converges to G at all
points of continuity of G. Of particular interest is
the classical central limit theorem (CLT) which
relates to the case of a normal G. In the case
of iid random variables {Xi, i ≥ 1} with finite
mean µ and variance σ 2, Tn = n−1/2 ∑n

i=1(Xi −
µ)/σ converges in law to T , where T has the
standard normal distribution function. The Liapounoff
theorem established this weak convergence result in
the nonidentically distributed case under a moment
condition of order higher than 2, while the classical
Lindeberg–Feller CLT pertains to the same result
under a less stringent uniform integrability condition:
for all ε > 0.

s−2
n

n∑

i=1

E[(Xi − EXi)
2I (|Xi − EXi | > εsn)] → 0,

as n → ∞ (5)

where s2
n = ∑n

i=1 var(Xi). These CLTs have been
extended to more general triangular schemes as well
as to some multivariate situations. In this context,
it may not be necessary to assume that the limit-
ing distribution is of full rank, i.e. degenerate limit
laws are also allowed. Moreover, the CLTs hold for
various dependent summands, including the martin-
gales and reverse martingales, under some extra mild
regularity conditions [5]. In general, in biostatistics,
often a statistic Tn does not have independent sum-
mands, and may not even be strictly a martingale or
reversed martingale, so a CLT may not be applied on
it. However, in this context the well-known Slutsky
theorem, presented below, provides an easily verifi-
able approach.

Let {Xn} and {Yn} be sequences of random
variables not necessarily independent, such that

Xn

D−−−→ X and Yn

P−−−→ c, a constant. Then the

following results hold:

Xn + Yn

D−−−→ X + c,

XnYn

D−−−→ cX,

and
Xn

Yn

D−−−→ X

c
, if c �= 0. (6)

In a variety of situations, we have the following
projection result:

Tn = T 0
n + Rn; T 0

n =
n∑

i=1

E[Tn|Xi]

− (n − 1)E[Tn], (7)

and the remainder term, Rn, having the nice prop-
erty that E(R2

n) = E(Tn − θ)2 − E(T 0
n − θ)2, stochas-

tically converges to 0 at a rate faster than the standard
error of T 0

n , whenever the projection technique yields
an asymptotic quadratic mean equivalence. In such a
case, the CLT holds for {T 0

n } (which has indepen-
dent summands), while the Slutsky theorem leads to
the asymptotic normality of the standardized form
of Tn. Hoeffding [8] used this projection result for
U -statistics, where T 0

n is a sample average of iid
random variables, and he also indicated how the
nonidentically distributed clause can be accommo-
dated in the same vein. During the past 50 years
a vast amount of research work has been accom-
plished in this direction. We refer to Jurečková &
Sen [10] for deeper results on asymptotic repre-
sentations of possibly nonlinear statistics in terms
of T 0

n and a remainder term, wherein the algebraic
complications underlying the projection technique’s
asymptotic quadratic mean equivalence has further
been replaced by a less stringent weaker expansion.
As a simple illustration, consider the case of the
sample variance S2

n = n−1 ∑n
i=1(Xi − Xn)

2, where
Xn = n−1 ∑n

i=1 Xi is the sample mean. Here T 0
n =

n−1 ∑n
i=1(Xi − µ)2 and Rn = Op(n−1). Thus, the

CLT applies to
√

n(S2
n − σ 2), though it is itself not

an average of iid random variables.
Some weak convergence results allied to the above

CLTs deserve mention. First, the asymptotic ver-

sion of the Cochran theorem. Let
√

n(Tn − θ)
D−−−→

Np(0, �), and let An be a possibly stochastic matrix,
converging (in probability) to A, a generalized
inverse of �, with Tr(A) = q(≤ p). Then n(Tn −
θ)′An(Tn − θ) has an asymptotically chi-square dis-
tribution with q degrees of freedom. This theorem
has many uses in biostatistics, and we will discuss
some of them later in the article. As an illustration,
we consider the case of the Hotelling T 2 statistic (in
the multivariate one-sample model):

T 2
n = n(Xn − µ)′S−1

n (Xn − µ), (8)
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where µ and � are the population mean vector and
covariance matrix, and Xn and Sn are their sample
counterparts. Whenever the underlying distribution

function has finite second-order moments, Sn

P−−−→
� and the multivariate CLT applies for

√
n(Xn − µ).

Therefore, by the above version of the Cochran
theorem, we claim that as n increases, T 2

n has
closely the central chi-square distribution function
with p degrees of freedom. This result is useful in
testing suitable null hypotheses on µ as well as for
obtaining confidence sets for µ, without specifically
making the multinormality assumption. In the general
context of linear models (without normality of the
errors), the conventional least squares procedures
lead to various estimates and test statistics where
the Slutsky theorem and the above version of the
Cochran theorem provide access to related asymptotic
distribution theory. We refer to Sen & Singer [21] for
most of these details.

Secondly, under the same setup, consider a real
valued function Zn = g(Tn) and define ν = g(θ).
Then under differentiability of g(·) at θ , we have

√
n(Zn − ν)

D−−−→ N(0, γ ∗2), (9)

where γ ∗2 = (ġ)′�(ġ), and ġ is the gradient (vector)
of g(·) at θ , which is assumed to be nonnull (as
otherwise we would have a degenerate normal law).
This basic CLT result has numerous applications in
biostatistics. As a simple illustration, we consider
the case of the sample coefficient of variation, Vn =
Sn/Xn, where it is assumed that the population
mean, µ, is nonnull (usually taken to be positive).
Thus, Vn is a function of (Xn, S2

n), and the above
result directly yields the asymptotic normality of√

n(Vn − ξ), where ξ = σ/µ. Sample correlation and
regression coefficients are also notable examples of
this type of statistics.

Thirdly, it should be clearly kept in mind that
such weak convergence results may not imply moment
convergence, i.e. the convergence of the mean, vari-
ance, and other moments of the statistics Tn or
g(Tn) to their asymptotic counterparts as specified
by their asymptotic distributions. A simple exam-
ple to this effect is the parameter θ , the recip-
rocal of the binomial (probability) parameter π ,
where Tn is the sample proportion, and g(Tn) =
T −1

n is the natural plug-in estimator of θ . This

model arises in the context of the well known Cap-
ture–mark–release–recapture (CMRR) procedure
for estimating the size of a finite population; see, for
example, Sen & Singer [21]. Since Tn can assume
the value 0 with a positive probability (1 − π)n, no
matter how large n is, g(Tn) does not have any finite
positive order moment. However, the asymptotic nor-
mality result pertains to g(Tn) as long as π > 0. As
a historical note it may be mentioned that during the
1940s and 1950s considerable attempts were made to
obtain the exact skewness and kurtosis coefficients
of sampling distributions of various statistics (or esti-
mators) in showing that they are asymptotically null,
so that their asymptotic distribution would be nor-
mal. While the Fréchet–Shohat theorem (based on
moment convergence of all order) justifies such an
approach, obviously, the convergence of the first
four moments may not suffice. Moreover, this lim-
its the scope to a more restricted class of statistics
which have finite moments all of finite order. In
(bio-)statistical applications, for example, for setting
a (large-sample) confidence interval for a parame-
ter or testing a null hypothesis on the same, all we
need is the asymptotic distribution and estimates of
the parameter(s) that appear in these laws. Thus,
weak convergence results are generally enough, and
moment convergence is usually not needed. Finally,
in such applications we may like to have some deeper
weak convergence results which can match with more
complexities and also may accelerate the goodness of
fit of the asymptotics for moderate to large samples.
These are presented separately in the following three
sections.

Weak Convergence: Conditional
Distributions

In the context of resampling plans, such as jackknif-
ing and bootstrapping, one encounters a somewhat
different asymptotic situation which requires addi-
tional care. We illustrate this with the simple boot-
strap methodology. Let X1, . . . , Xn be n iid random
variables drawn from a distribution function F , and
let Tn = T (X1, . . . , Xn) be a suitable statistic whose
population counterpart is denoted by θ . In a variety of
cases it may be possible to establish that under suit-
able regularity assumptions, the distribution function
Gn(·) of

√
n[Tn − θ] converges to a limiting distri-

bution function G(·) as n becomes large; however
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this distribution function G may not be normal, or
even if it is so, it may have a scale parameter γ

which is an involved functional of F . Therefore, we
may like to estimate Gn in a nonparametric man-
ner. From (X1, . . . , Xn), we draw with replacement
a sample of n observations, and denote these by
X∗

1, . . . , X∗
n, respectively. Let T ∗

n = T (X∗
1 , . . . , X∗

n)

be the bootstrap version of Tn, and let us denote
by Z∗

n = √
n[T ∗

n − Tn]. Note that under the condi-
tional law Pr{X∗

i = Xk|X1, . . . , Xn} = n−1, for all
i, k = 1, . . . , n, the exact (conditional) distribution of
Z∗

n can be obtained by enumeration, though such a
task becomes prohibitively laborious as n increases
(check the growth of the number nn). Moreover, this
conditional (bootstrap law) is intended as an estimator
of the unconditional law Gn. This naturally imposes
some restraints on the type of Gn for which a passage
from the conditional to the unconditional distribution
is well lighted. For example, if Gn is not attracted
by a normal limit, then this postulation may not be
true. This objective often precludes small sample size
cases, even when Gn has a normal limit. As such,
when n is large, M (a large number of) repetitions
of the bootstrapping yields conditionally independent
and identically distributed copies of Z∗

n , and this set is
used to estimate Gn as well as a measure of its scale
parameter. A very similar case arises in multivari-
ate nonparametrics where conventional rank statis-
tics are not usually genuinely distribution-free even
under suitable null hypotheses (of invariance), and
hence, their permutation distribution (see Random-
ization Tests) (corresponding to the case of simple
random sampling without replacement (SRSWOR))
is used to generate the (conditional) null distribution
of such rank statistics. In such applications, too, the
passage from the conditional to unconditional distri-
butions is generally fortified for large samples when
the asymptotic (multi-)normality can be incorporated
in a suitable manner; we refer to Puri & Sen [15]
for a detailed account of such permutational LST. In
jackknifing, a similar SRSWOR scheme arises, and it
rests on the permutational probability measure gen-
erated by the n! equally likely permutations of the
observations. In such a case, the classical weak con-
vergence results may not directly hold, though under
additional mild regularity assumptions, the passage
from the conditional limit law to an unconditional
one can be fortified. Usually the (multi-)normality
of the conditional distribution and its asymptotic
homoscedasticity suffice for the purpose. But that

may exclude some important applications in practice.
For example, if the limit distribution is (scale) mixed-
normal, this convergence of conditional limit laws to
their unconditional forms may not generally hold. A
word of caution: contrary to the belief and heuristic
practice of using such resampling schemes for mod-
erate to small sample sizes as well, there is no sound
methodological justification for such usages. In many
cases, they may be misleading.

Weak Invariance Principles

Let X1, . . . , Xn be n iid random variables with
finite mean µ and variance σ 2. Set Sk = ∑

i≤k(Xi −
µ), k ≥ 1, and let S0 = 0. Then the CLT asserts that
for large n, Sn/{√nσ } has closely a standard nor-
mal distribution. Let us construct a stochastic pro-
cess Wn = {Wn(t), t ∈ (0, 1)}, by letting Wn(k/n) =
{Sk/{σ√

n}, k = 0, 1, . . . , n} and completing the def-
inition by linear interpolation on (0, 1). This way
we map the partial sum process {Sk; k ≤ n} into a
stochastic process Wn with continuous sample paths
on the unit interval (0, 1). Now let W = {W(t), t ∈
(0, 1)} be a Gaussian process on the unit interval
(0, 1), such that EW(t) = 0 and E[W(s)W(t)] =
min(s, t), s, t ∈ (0, 1). Then W is termed a standard
Brownian motion process on (0,1). As a generaliza-
tion of the CLT, we have the following:

Wn

D−−−→ W, as n → ∞. (10)

The implications of this weak convergence result are
(i) the finite dimensional distributions of Wn con-
verge to those of W , and (ii) like W, Wn is tight
or relatively compact. The first result follows by
using a multivariate version of the CLT, while (ii)
can be established by using some maximal inequali-
ties, and both accomplished under no extra regularity
conditions. This result extends directly to martin-
gales/reversed martingales and to the nonidentically
distributed case as well.

A second weak invariance principle having
a profound impact on LST in biostatistics is
the following. Let Fn(x) = n−1 ∑n

i=1 I (Xi ≤ x), x ∈
R, be the sample distribution function, and
define a stochastic process W 0

n = {W 0
n (t), t ∈ (0, 1)}

by letting W 0
n (t) = √

n[Fn(x) − F(x)], at t =
F(x), for t ∈ (0, 1). Also, let W 0 = {W 0(t), t ∈
(0, 1)} be a Gaussian function on (0, 1), such
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that EW 0(t) = 0 and E[W 0(s)W 0(t)] = min(s, t) −
st, s, t ∈ (0, 1).W 0 is termed a standard Brownian
bridge or a tied-down Brownian motion. Note that
at t = 0 or 1, W 0

n (t) is equal to 0 with probability 1,
and hence the term tied-down has been affixed. Here
also, we have for all continuous F ,

W 0
n

D−−−→ W 0, as n → ∞, (11)

and the implications of this weak convergence result
are the same as in (10). Extensions to higher dimen-
sional distribution functions and more general func-
tionals of the sample distribution functions have been
considered at great depth. We refer to Jurečková &
Sen [10], for some details. Some applications of these
invariance principles will be discussed later in the
article.

Variance Stabilizing Transformations

In a general setup, whenever
√

n(Tn − θ)
D−−−→

N(0, σ 2), the asymptotic variance σ 2 may depend on
the unknown parameter θ ; therefore, we write σ 2 =
h(θ) and assume that the form of h(·) is known. To
use the above result for drawing a confidence interval
for θ or to test a suitable null hypothesis on θ , it may
be more desirable to consider a transformation: Tn →
g(Tn), such that

√
n(g(Tn) − g(θ))

D−−−→ N(0, c2),

where g(·) is a manageable function and c does not
depend on θ . While in general such a transformation
may not exist, but for the single parameter case there
are some well-known cases where it has worked out
well; these are therefore termed variance stabilizing
transformations (see Delta Method). It follows from
(9) that a sufficient condition for this to be achieved
is that

g′(θ) = c{h(θ)}−1/2 or g(θ) = c

∫
{h(y)}−1/2 dy.

(12)

For binomial, Poisson, normal variance and correla-
tion coefficient parameters, (12) work out well, and
furthermore, in all these cases, some small correc-
tions have been incorporated, mostly on empirical
grounds, to provide a faster rate of convergence of
the asymptotic normality result: the statistical moti-
vation, however, stems primarily from LST. We refer

to Sen & Singer [21, Chapter 3] for details. There are,
however, some impasses in the multiparameter case
where the dependence pattern of the coordinate esti-
mators may violate the applicability of the variance
stabilizing transformation for their covariance terms.
A classical example is the multinomial distribution
where for each cell probability one may use the arcs
in transformation to stabilize its asymptotic variance
but then their covariances would still be dependent
on the unknown cell probabilities.

Order Statistics and Empirical
Distribution

Order statistics and empirical distribution functions
are interrelated (one-to-one) in the classical univari-
ate setup, and together they play a fundamental role
in LST, particularly in robust as well as nonparamet-
ric inference problems. In biostatistics, in the active
area of survival analysis, their role is overwhelming.
The order statistics are neither independent nor identi-
cally distributed, even when the unordered collection
relates to iid random variables. Hence LST pertain-
ing to sums of independent random variables may
not be directly applicable here. But with a reformu-
lation in terms of indicator functions, most of these
standard LST’s can be adopted for order statistics,
for sample quantiles, as well as extreme values. For
example, for LLNs for sample quantiles, the Borel
SLLN applies with little modification, while for the
CLT, under the positivity and continuity of the den-
sity function at the population quantile, this approach
via Bernoulli variables works out better, not only for a
single quantile in a univariate setup but also for mul-
tiple quantiles in a general multivariate setup. More
conveniently with adaptations from weak invariance
principles for the empirical distributional processes,
the related LST for order statistics and empirical
distributions has emerged in a very elegant form.
Interestingly enough, reversed martingales also play a
very prominent role in this context. We refer to Sen &
Singer [10, Chapter] for some details. In robust esti-
mation, covering both parametric and nonparametric
models, we often use L-estimators, which are linear
combinations of functions of order statistics, and M-
estimators, which are solutions of implicit equations
involving suitable score functions and the empirical
distribution function. Likewise, R-estimators of loca-
tion and regression parameters are based on suitable
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rank-order statistics which can be expressed as func-
tionals of the empirical distributions. In this way we
can conceive of a statistic Tn = T (Fn) as a general
functional of the empirical distribution function, Fn,
and use LST pertaining to invariance principles for
such processes, as outlined in (11). Naturally, the
nature of T (·) will dictate the LST approach, and
suitable differentiability properties of such function-
als provide the necessary tools. A detailed treatment
of this area of LST is beyond the scope of this article,
but we refer the reader to Jurečková & Sen [10, Chap-
ters 3 and 7], where an up-to-date and unified account
has been provided. Hoeffding’s [8] U-statistics, von
Mises [23] statistical functionals and their (multi-
sample) generalizations occupy a prominent place in
nonparametrics, and they are abundant in biostatistics
applications. Fortunately, they are statistical function-
als and there are various martingale–reversed martin-
gale representations for such statistics, discussed in
detail in Sen [19], which pave the way for adoption
of standard LST tools for the study of asymptotics
for such statistics.

LST for MLE and BAN Estimators

In biostatistics, in actual applications, often, for easier
interpretations and simpler statistical analysis, suit-
able parametric statistical models are postulated, and
this approach naturally tilts the flavor to using opti-
mal parametric statistical estimators (and tests) for the
model parameters. Maximum likelihood estimators
(MLE) are known to have various optimality prop-
erties, at least asymptotically, and in this depiction
LST plays a basic role. In the case of the so-called
exponential family of densities, granted sufficiency
and continuous differentiability of the likelihood func-
tion (of the sample observations), the LST is gen-
erally based on the standard tools described earlier.
However, for a density not belonging to such a
class (namely the Cauchy, Laplace), the treatment
of LST becomes more complex and involves addi-
tional regularity assumptions. Basically the approach
is to explore a quadratic approximation for the like-
lihood ratio statistic in a suitable neighborhood of
the true parameter point, and this in turn provides
an asymptotic representation for the MLE in terms
of the likelihood score statistics which yield the
desired asymptotic normality, consistency, as well
as asymptotic efficiency properties of the MLE θ̂n

(in the regular case). Basically, if we denote the
score statistics (∂/∂θ) ln Ln(X1, . . . , Xn) by Un(θ),
and the Fisher information per observation by
I (θ) = n−1E{U 2

n (θ)}, then under appropriate regu-
larity conditions we have a first-order asymptotic
representation:

θ̂n − θ = {nI (θ)}−1Un(θ) + op(n−1/2), (13)

where Un(θ) involves independent summands with
zero mean and variance I (θ), and hence the CLT
applies there. This leads to the following:

√
n[θ̂n − θ]

D−−−→ N(0, I−1(θ)), (14)

where by the classical Fréchet–Cramér–Rao infor-
mation inequality, [nI (θ)]−1 is the lower bound to
the mean square error of an unbiased estimator of
θ ; this yields the asymptotic efficiency (and asymp-
totic unbiasedness) of the MLE. A similar situation
holds in the multiparameter case. The regularity con-
ditions, classically known as the Cramér conditions,
have gone through some evolution during the past
50 years. Although least stringent regularity condi-
tions may be formulated as in LeCam [12], from a
biostatistical applications point of view, a somewhat
intermediate set of conditions hinging on the follow-
ing compactness condition of the second derivative
of the log density function provides a much sim-
pler and more easily verifiable scenario. As δ(>0)
approaches 0,

E

{
sup

(∣∣∣∣

(
∂2

∂θ2

)
ln f (X, θ + h)

−
(

∂2

∂θ2

)
ln f (X, θ)

∣∣∣∣

)
: |h| < δ

}
→ 0; (15)

Cramér’s conditions involve the third derivative
instead of this compactness of the second derivative.
For the exponential family of densities, the above
condition follows from the continuity of the
parametric functions, and in many other cases it can
be verified by standard manipulations; we refer to Sen
& Singer [21, Chapter 5] for details.

It is quite pertinent here to make some com-
ments about LST for the MLE. First, in a nonregular
case, the MLE may not be asymptotically normal,
and may even lose its asymptotic efficiency property.
Secondly, the MLE may not be the only estimator
that is asymptotically efficient in the above sense.
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There are alternate estimators which may often share
the asymptotic normality and efficiency properties
along with the MLE; such estimators are termed best
asymptotically normal (BAN) estimators. In the con-
text of categorical data models, such BAN estima-
tors based on the minimum chi-square and modified
minimum chi-square criteria have been extensively
studied in the literature (see for example, Agresti
[1] and Sen & Singer [21] where detailed references
are also cited); often, they are computationally less
cumbersome than the MLE. Thirdly, the MLE are
generally not robust to plausible model departures,
and in that respect, alternative estimators, particu-
larly adaptive estimators, may combine the BAN
property with robustness to a greater extent. Finally,
with the increase in the number of parameters, the
performance characteristics of the MLE may dete-
riorate, and they may even become inconsistent or
inefficient; the classical Neyman–Scott problem with
a large number of nuisance parameters is a glar-
ing example. Hence, modifications are often made to
enhance the efficiency of the MLE. Among various
such modifications, we refer to (partial) PMLE based
on suitable partial likelihood functions [4], and quasi-
and profile MLE based on quasi- and profile likeli-
hood functions, which in a semiparametric context
will be treated briefly later in the article.

LST and WLSE

Linear models (see General Linear Model) and
linear statistical inference are household words in
biostatistics. With the primary objective of interacting
with researchers in biomedical and environmental
sciences, in biostatistics it is customary to pose
simple linear models that can be easily interpreted
to collaborative scientists and can thereby be
adapted to conventional linear statistical inference
tools. Yet, in many cases the basic assumptions
underlying such conventional procedures may not
be tenable, and hence suitable modifications are
often necessary to cope with the valid and efficient
use of statistical inference tools. In biostatistics
often we have nonnegative response variables where
suitable transformations are used to induce linearity
of the model to a greater extent, albeit at the
cost of having nonnormal distributions (or vice
versa). Therefore in linear statistical inference the
basic assumption of normality of the errors may

not be always tenable, and without this, the MLE
based on the normality assumption may lose its
appeal of validity and efficiency. The classical least
squares estimators (LSE) and (large-sample) tests
based on them occupy a focal point in this situation,
and for such linear statistics, standard LST applies
well. Weighted (WLSE) and generalized (GLSE)
least squares estimators are the hybrids of the LSE
that suit such nonstandard applications to a greater
extent. The heteroscedastic linear model, Y = Xβ +
e, E(e) = 0, V (e) = diag (σ 2

1 , . . . , σ 2
n ), provides a

typical application of the WLSE when the σ 2
j are

not equal but known up to an unknown scalar
constant (see Scedasticity). Thus, if we take σ 2

j =
cjσ

2, j ≥ 1, where the cj are known constants, not
all equal, while σ 2 is unknown, and if we denote
the ith row of X by x′

i , i = 1, . . . , n, then we
can consider the weighted sum of squares due to
residuals:

n∑

i=1

c−1
i {Yi − x′

iβ}2 (16)

and minimize this with respect to β. This leads
to the WLSE of β. This procedure extends readily
to the multivariate case where the Yi are p vec-
tors for some p ≥ 1, provided the covariance matri-
ces of the associated error vectors satisfy a similar
heteroscedastic condition. In that setup it is generally
referred to as the (generalized) GLSE, and if such
a matrix is diagonal, it is termed the WLSE. The
GLSE or WLSE are linear estimators, and hence the
LLNs, CLTs, and other standard asymptotics apply
here under some extra mild conditions on the ci .
However, in biostatistical applications, such as in
loglinear models for categorical data, the exact vari-
ance–covariances of the transformed response statis-
tics are not known, and are estimated from the sample
itself. That brings the relevance of LST into a broader
perspective. Estimated variance–covariances are used
in the above minimization problem, often requir-
ing an iterative procedure to update these estimates
along with the estimates of the main parameters of
interest. The two-step (Aitken) estimator belongs to
this class. For details of related LST we refer to
Sen & Singer [21, Chapter 7]. Other related proce-
dures for linear (as well as location) models include
the so called trimmed LSE (TLSE) and regression
quantiles (see Quantile Regression); these are dis-
cussed in detail in Jurečková & Sen [10], and the
related LST runs parallel to the case of WLSE.
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From a robustness prospect, however, such TSLE or
regression quantiles are more appealing than the clas-
sical LSE.

LST of Statistical Tests

For testing a simple null hypothesis H0 against a
simple alternative H1, the Neyman–Pearson Fun-
damental Lemma characterizes the likelihood ratio
test (LRT) as most powerful, and this extends to
uniformly most powerful (UMP) tests for one-sided
alternatives. However, in a general multiparameter
case with possibly nuisance parameters, one has
typically composite null and composite alternative
hypotheses. Here an exact (similar) test may not
always exist, and even if one exists, it may be diffi-
cult to characterize one that will be uniformly best.
For this reason, characterizations of optimality of sta-
tistical tests have often been made in an asymptotic
framework, and there are competing tests sharing
such properties in some way or other. Among such
classes of tests, the following (parametric) deserve
special mention: (i) likelihood ratio test, (ii) Rao’s
score test, and (iii) Wald’s test; we refer to Rao [16]
for a nice comparative account. The LRT is based on
two sets of MLE, computed under H0 and H1, respec-
tively, providing the ratio of the two maximized
likelihood functions. LST pertaining to such LRTs,
covering their null as well as alternative hypoth-
esis distributions, is interlinked with the LST for
the MLE, and hence they involve parallel regular-
ity assumptions. Rao’s score test, on the other hand,
is based on the likelihood score statistics and their
modifications, so that their asymptotics can be studied
directly by using the standard LST tools. Computa-
tionally, Rao’s score test is usually less cumbersome
than the LRT. Wald’s test is directly based on the
MLE and the parametric constraints imposed by the
hypotheses, and hence the general asymptotics for
the MLE provide the access for parallel results for
this type of tests. For local alternatives all the three
types of tests share common asymptotic properties
(see Locally Most Powerful Tests), although for
nonlocal alternatives the LRT may have some advan-
tages in a special way of interpretation [9]. Here
also, on robustness considerations, such likelihood-
based tests may not be very suitable. Moreover,
for restricted alternatives, such as one-sided mul-
tiparameter hypotheses, such tests may have quite

complicated forms and may even lose their asymp-
totic optimality properties to a greater extent (see
Isotonic Inference). Roy’s [17] union–intersection
principle has added a lot of flexibility to this test-
ing scenario, and their asymptotics have been studied
under similar regularity assumptions. From robust-
ness and nonparametric considerations, alternative
tests based on L-, M- and R-estimators and suitable
U -statistics have been extensively studied in the lit-
erature; we refer to Jurečková & Sen [10, Chapter
10] for a good account of these. In these develop-
ments, naturally, the asymptotics for such estimators
play a basic role. In passing, we should also com-
ment on sequential and multistage tests which have
been considered in the literature. In this context, the
classical Wald [25] sequential probability ratio test
(SPRT) and its generalizations are all aimed at cap-
turing some optimality properties in an interpretable
manner. In the general multiparameter (composite
hypothesis testing) case, again such optimality prop-
erties in an exact sense are hard to establish, and
there is a good deal of asymptotics in the inter-
pretation and derivation of such plausible optimality
properties. The domain is by no means restricted to
classical parametric setups, and nonparametric as well
as robust procedures have been developed along the
same vein. These procedures exploit the weak con-
vergence and invariance principles introduced earlier
and inherit the robustness aspects of the estimators
or test statistics on which they are based. For details,
we refer to Sen [19]. Group sequential procedures
and related repeated significance testing (RST) pro-
cedures in clinical trials and biomedical studies have
received considerable attention during the past two
decades (see Data and Safety Monitoring). In this
domain, too, the development of the methodology
inherits a lot of asymptotics, and LST plays a vital
role. In these developments, exact computations of
boundary crossing probabilities, even for binomial
or normal distributions, may become prohibitively
laborious, if not impossible, and weak convergence
of the encountered stochastic processes to suitable
Gaussian functions (e.g. Brownian motion or Brow-
nian bridge) provides the adaptability of standard
results for Gaussian processes, and a general account
of these developments is given in Sen [19, Chapters
9 and 10]. There are some other variations of such
schemes, and we shall refer to some of them later in
the article.
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Semiparametric and Generalized Linear
Models

Linear models are abundant in biostatistics, and yet
in many applications the normality of the error com-
ponents, their homoscedasticity, or even the basic
linearity of the model may not be tenable. The clas-
sical MLE in the normal case agree with the least
squares estimators (LSE), and for such linear esti-
mators, standard LST can be adopted without many
problems [21, Chapter 7]. Nevertheless, the optimal-
ity of the LSE may no longer be true when there
are model departures. Therefore alternate models
have been introduced to deemphasize the three basic
assumptions underlying the normal theory MLE or
the LSE, and in that way alternative classes of esti-
mators have evolved.

Box–Cox Type Transformations

In biomedical applications the response variables are
mostly nonnegative with (highly) positively skewed
distributions. Although in such a case asymptotic
normality of the LSE can be justified methodolog-
ically, in applications it may require an enormously
large sample size. For this reason, logarithm, square-
root, or cube-root transformations (see Power Trans-
formations) are used to induce more symmetry in
these response distributions so that moderate sample
asymptotics can be justified to a greater extent. On
the other hand, if the original model is closely linear,
such nonlinear transformations can affect the regres-
sion relation considerably. Thus, one may require
some nonlinear regression models to validate such
transformations in practice. Either way, the LSE
may not retain their normal-theory optimality, even
asymptotically, although consistency and asymptotic
normality would be retained under fairly general con-
ditions [21, Chapter 7].

Generalized Linear Models

In biological assays and many survival analysis mod-
els, a response variable may be quantal (i.e. all or
nothing) in nature (see Quantal Response Mod-
els). For such dichotomous (or even polychotomous)
response variables, standard LSE may not work out
well. Logit (logistic regression), probit and other
models in bioassay are the precursors of general-
ized linear models (GLM). A more unified approach

to such GLMs is outlined in McCullagh & Nelder
[14]; their treatment addresses mostly the finite sam-
ple (or exact) methodology, and the findings are
quite relevant to a general exponential family of
densities. Nevertheless, in biostatistical applications
such exact GLMs may not be tenable in all cases,
and often (weighted) WLSE methodology is incor-
porated to facilitate suitable large-sample solutions
(see [21, Chapter 7]). Such GLMs yield suitable esti-
mating equations (EEs) (see Estimating Functions)
which provide the estimators (mostly) as implicit
solutions; this way the situation is similar to the
case of the MLE. However, to cope with variations
from most ideal situations, such EEs are replaced by
suitable generalized estimating equations (GEE),
and in their asymptotic treatment one needs addi-
tional regularity assumptions and manipulations too;
see [21, Chapter 7]. Viewed from a practical perspec-
tive in a biostatistics context, such as in bioassays,
dosimetric and mechanistic models in toxicological
studies, the doses may be subject to measurement
errors (see Errors in Variables) or latent effects,
so that even if a simple GLM were pertinent to
the basic dose–response pattern, such perturbations
may cause great damage to their adoption without
reservation. In this manner, one ignores the GLM
methodology and has to take recourse in alternative
LST where robustness and nonparametrics may dom-
inate the scenario.

Nonparametric Linear Models

While assuming the linearity or additivity of the basic
model, no specific distributional assumption is made
on the response variables. An extensive literature
relates to L-, M- and R- procedures in a variety
of linear models, and an up-to-date treatment of the
related asymptotics is contained in Jurečková & Sen
[10]. Such procedures are generally more robust,
consistent, and have asymptotic normality properties.
Within this bigger class, one can also have suitable
adaptive estimators which are asymptotically efficient
and robust as well.

Semiparametric Models

The Cox model [3] or proportional hazards model
(PHM) is a very simple illustration of a semipara-
metric model. In a simple two-sample model, if
F and G are the respective distribution functions,
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and we denote the corresponding survival functions
by F(x) = 1 − F(x) and G(x) = 1 − G(x), x ∈ R,
then in a Lehmann [13] model (see Lehmann Alter-
natives), we set G(x) = [F(x)]c, for some c > 0.
The null hypothesis of the homogeneity of F and
G then reduces to c = 1. If the distribution func-
tions are absolutely continuous with densities f and
g, respectively, then we define equivalently the haz-
ard functions hF (x) and hG(x) as f (x)/F (x) and
g(x)/G(x), respectively. Then the Lehmann model
can be put equivalently as hG(x) = chF (x), for all x,
i.e. the two hazard functions are proportional. Moti-
vated by this simple observation, Cox [3] considered
a general situation where conditionally on a set of
concomitant variates, say, z, the hazard function for
the primary variate, denoted by h(y|z), is assumed to
satisfy the following model:

h(y|z) = h0(y) exp{β ′z}, (17)

where the nonnegative h0(y), the baseline hazard
rate, is independent of the concomitant variates and
is of arbitrary form (i.e. nonparametric in nature),
and the regression on the concomitant variates is of
a specified parametric form. This also leads to the
following:

ln h(y|z) = ln h0(y) + β ′z; (18)

in the literature this is known as the hazard regres-
sion. In either setup, note that h0(y) is a functional
while β is a finite dimensional (regression) parameter.
For this reason, this is referred to as a semipara-
metric model. Typically, in a general setup one may
have a functional parameter space, and in that way
the MLE or other conventional estimators may lose
their efficacy, and often, consistency properties too.
It may be possible in some cases to reparameterize in
such a way that the parameters of interest constitute a
finite-dimensional vector, while the nuisance param-
eter space may be very large. In this setup, often
a conditional approach leads to a partial likelihood
function whereby the finite-dimensional parameters
of interest can be estimated consistently by the (par-
tial) PMLE and with reasonable efficacy. Martingale
methods play a basic role in the related asymptotics,
and in this context, counting processes have evolved
to be of prime interest in the study of general asymp-
totics; we refer to Andersen et al. [2] for a nice
account of related asymptotics.

Nonparametric Regression and Smoothing
Techniques

The past 20 years have witnessed a phenomenal
growth of research literature in this domain, and these
developments are of considerable use in biostatistics.
Both the kernel and nearest neighbor methods are
popular in this context (see Density Estimation). In
terms of model flexibility, such models are the most
desirable ones. However, in terms of precision of
derived estimators, such a model may have the oppo-
site flavor. Compared to the usual

√
n-consistency of

the classical estimators in the parametric or semipara-
metric models, here one has nλ-consistency for some
positive λ < 1/2. Moreover, the asymptotic bias and
asymptotic standard error may be of comparable
order of magnitude, and hence adaptive bandwidth
selection procedures are often prescribed to achieve
asymptotic optimality within this class. Generally,
much larger sample size is required for the adaptibil-
ity of asymptotics in the nonparametric regression
case than in other models; we refer to Thompson &
Tapia [22] for a treatise of nonparametric regression
and function estimation problems.

LST for Time-sequential Schemes

This is one of the most important areas of current
research activities in biostatistics, and LST has a
fundamental role in this field. In clinical trials or
medical investigations, generally one obtains data sets
accumulating over time, so that statistical conclusions
are drawn at the termination of the study. On the
contrary, most of these studies relate to comparisons
of different treatments or subgroups, and involve
human beings. Thus, for ethical reasons, it is often
advised that if there is any real difference in the
response patterns for the various subgroups, then the
trial should be able to detect it as early as possible,
and the better treatment be made available to the
entire set of subjects for their better prospects. On
the other hand, lacking any real difference, the trial,
if conducted up to the end of the planned duration,
may contain valuable information for other scientific
studies as well. This motivates the need for interim
analysis in such clinical trials, and these may be
made either on a periodic (namely fixed calendar-
month/year interval) basis or on a monitoring basis
resulting in the so called time-sequential procedures.
The main points of difference between the classical
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sequential and time-sequential procedures are the
following:

1. The number of subjects to be included in the
study is prefixed in a time-sequential scheme,
but is itself a random variable in a sequential
one. Thus the formulation of an average sample
number (ASN) is quite different in the two
schemes.

2. The observations in a sequential scheme are
typically iid, whereas in a time-sequential one
they typically represent the ordered failure points
along with other concomitant variables, and
hence the iid clause generally is not tenable.

3. The emphasis on type I and type II errors in a
sequential test is somewhat different from that in
a time-sequential one.

4. Censoring (of various types) is a typical phe-
nomenon in a time-sequential scheme, and to a
greater extent the statistical modeling and analy-
sis depend on such deviations.

5. Typically, in view of point 4, nonparametrics
and semiparametrics play a more dominant role
in time-sequential schemes than in the classical
sequential schemes, where the probability (or
likelihood) ratio statistics have a more visible
parametric flavor.

Nonparametric and semiparametric procedures for
time-sequential schemes have been studied exten-
sively in the literature during the past two decades.
The basic foundation was laid down by the devel-
opment of martingale methodology for various rank
statistics [19], as well as for counting processes
related to such stochastic events [2]. In this con-
text the classical LST may not be directly applicable;
nevertheless, they are quite pertinent and justifi-
able through the modifications based on adoption
of martingale theory. We conclude this discussion
with a brief introduction to LST pertinent to the
Kaplan–Meier [11] product-limit (PL) estimator of
the survival function under random censoring. In
random censoring schemes the set of censoring vari-
ables T1, . . . , Tn are iid according to a distribution
function G, and Ti and Xi are stochastically inde-
pendent for every i; note that the Xi are iid
with a survival function F . The observable ran-
dom elements are Zi = min(Xi, Ti) and Ii = I (Zi =
Xi), i = 1, . . . , n. Define Nn(t) = ∑

i≤n I (Zi > t), t

real, and set αi(t) = I (Zi ≤ t, Ii = 1), i ≥ 1, t real,

and let τn = max{Zi : i ≤ n}. Then the PL-estimator
of F is given by

P n(t) =
n∏

i=1

{
Nn(Zi)

Nn(Zi) + 1

}αi (t)

I (t ≤ τn)

=
∏

{i:Zi≤t}

{
nHn(Zi)

nHn(Zi) + 1

}Ii

, (19)

where Hn(t) = n−1Nn(t), t real. Thus, this estima-
tor (a stochastic process) can be viewed as a func-
tional of the counting process {Nn(t), t real}, and
hence LST relating to such counting processes can
be imported here to study the asymptotic properties
of the PL-estimator. Alternatively, suitable martin-
gale characterizations of the PL-estimator can also
be incorporated in the study of related LST. We refer
to Andersen et al. [2] for details, albeit at a much
higher level of mathematical sophistication. Gener-
ally test statistics or estimators in time-sequential
schemes are functionals of the PL-estimator (in the
censored case) or the original empirical survival func-
tion (in the uncensored case), having some sort of
time-sequential flavor, and hence suitable stochastic
processes relating to such functionals can be incor-
porated to formulate the stopping and decision rules.
For example, in survival analysis, the mean resid-
ual life (MRL) is an important tool to measure the
effectiveness of treatment protocols (see Life Table).
Corresponding to the population measure

µ(x) = {F(x)}−1
∫ ∞

x

F (y) dy, (20)

the sample measure is defined by µ̂n = {P n(x)}−1
∫ ∞
x

P n(y) dy, and one may like to study the weak
or strong consistency and asymptotic normality of
µ̂n(x) for a given x, and more generally for a range
of values of x. Weak convergence of such stochastic
processes naturally provides the key to subsequent
developments, and a systematic account of this type
of LST in the context of clinical trials is given in Sen
[20].
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Latent Class Analysis

Latent class analysis is a discrete variable analog of
factor analysis. Latent class analysis was originally
developed [11, 16] to investigate the classification of
subjects according to an underlying categorical trait,
such as an attitude or psychological state, that is
not directly observable. Membership in a particular
class of the underlying variable is estimated from
a subject’s responses to a set of categorical items.
Overviews of latent class modeling are given by
Lazarsfeld & Henry [17], Andersen [3], Henry [13],
McCutcheon [19], and Clogg [6].

Examples

The following example is a simplified version of
the items considered by Rimer [20] in a study of
methods for promoting smoking cessation. Subjects
were asked to agree or disagree with a series of items,
a subset of which are:

1. Smoking cigarettes relieves your tension.
2. Smoking helps you concentrate and do better

work.
3. You are more relaxed and more pleasant when

smoking.
4. You like the image of yourself as a smoker.

In principle, responses to these items reveal an under-
lying attitude towards smoking, perhaps reflecting a
subject’s “resistance” to quitting smoking. The trait
of “resistance” could be dichotomized into the cate-
gories: not resistant or resistant. The observed items,
1–4 above, are called the manifest variables, while
the underlying trait is the latent variable. In the
example, both the manifest variables and the latent
variable are dichotomous, but latent class models can
be applied more generally, with manifest and latent

variables that are ordinal or polytomous categorical
variables (see Ordered Categorical Data; Polyto-
mous Data).

A fundamental assumption in latent class
modeling is “local independence”, which states that
given the latent class membership, the manifest
variables are conditionally independent. A numerical
example serves to illustrate this assumption. Consider
a population that can be cross-classified according to
the manifest variables, A and B, in the proportions
displayed in Table 1. Suppose that the population can
be divided into equal proportions by a binary latent
variable, and that within levels of the latent variable
the population can be cross-classified according
to the manifest variables A and B as displayed
in Table 2. The values in the cells of the table
represent the conditional probabilities associated
with A and B, given the level of Z. Despite the
marginal association between variables A and B

displayed in Table 1, the variables A and B are
conditionally independent, given the level of the
latent variable.

In practice, displays such as Table 2 cannot be
constructed because the latent variable is unobserv-
able directly. In many cases, however, the existence
of a latent variable can be derived from theoretical
models of attitudes, behavior, or psychology. Latent
class analysis can be used to investigate the degree
to which inferences about the unobservable latent
trait can be derived from the manifest or observed

Table 1 Cross-classification of two manifest variables

A

Agree Disagree Total

Agree 0.4 0.2 0.6
B

Disagree 0.2 0.2 0.4

Total 0.6 0.4 1

Table 2 Illustration of local independence of manifest variables (A and B) given the latent variable, Z

Z = 1 Z = 0

B B

Agree Disagree Total Agree Disagree Total

Agree 0.64 0.16 0.80 Agree 0.16 0.24 0.40
A A

Disagree 0.16 0.04 0.20 Disagree 0.24 0.36 0.60

Total 0.80 0.20 1 Total 0.40 0.60 1
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variables. The next section provides a mathematical
formulation of latent class analysis.

Mathematical Model

Suppose that each of n subjects is observed on
K categorical manifest variables, Y = (Y1, . . . , YK),
with each variable taking on one of C categories.
The cells of the K-way cross-classification table are
indexed by y = (y1, . . . , yk), with ny denoting the
observed number of subjects and πy denoting the
probability associated with response profile y. The
cell frequencies are assumed to have a multinomial
distribution with E(ny) = nπy and Σyπy = 1. The
latent variable, Z, is assumed to take on one of
T classes, with θz denoting the proportion of the
population in class z, z = 1, . . . , T ,

∑T
z=1 θz = 1. In

the segment of the population in latent class Z = z,
the proportion of the population classified into the cell
indexed by y is denoted πy|t = Pr(Y = y|T = t). The
assumption of local independence states that given
the latent class membership, the manifest variables
are conditionally independent:

Pr[Y = y|Z = z] =
K∏

i=1

Pr[Yi = yi |Z = z]. (1)

Estimates of the conditional response probabilities,
Pr[Yi = yi |Z = z], i = 1, . . . , K , and the latent class
proportions, θz, z = 1, . . . , T , are derived from the
observed counts, ny, through the equations E(ny) =
nπy and

πy =
T∑

z=1

K∏

i=1

Pr[Yi = yi |Z = z]θz. (2)

The latent class model can also be viewed as a
loglinear model [10, 12] for the expected counts in
a (K + 1)-way cross-classification of the K manifest
variables (Y1, Y2, . . . , YK) and the latent variable, Z.
Denoting the expected counts by my,z, and with the
usual constraints on the parameters of the loglinear
model [1], the loglinear model

ln my,z = µ + λZ
z + λY1

y1
+ · · · + λYK

yK
+ λY1Z

y1,z

+ · · · + λYKZ
yK,z (3)

expresses conditional independence of the manifest
variables, Y, given the latent class. Although the

cell frequencies in the (K + 1)-way classification
are not observed, estimates in the loglinear model
(3), are derived from the observed frequencies in
the K-way cross-classification of the manifest vari-
ables, ny .

Maximum likelihood is the most widely used
method for estimating the parameters of the latent
class model. Goodman [10] proposed an iterative
algorithm for obtaining maximum likelihood esti-
mates; the algorithm is an example of a general
procedure now known as the EM algorithm [8].
Once the maximum likelihood estimates, m̂y,z, have
been computed, the goodness-of-fit of the latent class
model can be tested. The most commonly used statis-
tics for testing goodness-of-fit are the generalized
likelihood ratio test statistic,

G2 = 2
∑

y

ny ln

(
ny

m̂y

)
,

and the Pearson X2 statistic,

X2 =
∑

y

(ny − m̂y)
2

m̂y

,

where m̂y = Σzm̂y,z (see Chi-square Tests). Under
the null hypothesis that the latent class model fits,
the statistics are asymptotically distributed as a χ2

random variable, with degrees of freedom equal to
the number of cells in the table cross-classifying the
manifest variables, minus the number of parameters
being estimated in (3). With K manifest variables,
each representing C categories, and with one latent
trait having T classes, the degrees of freedom
for testing the goodness-of-fit of the model equals
CK − T [1 + K(C − 1)]. A comparison of these
statistics is given in [14].

Despite the similarity in form to standard loglinear
model analysis, fitting a latent class model involves
the additional issue of the identifiability of parame-
ters. For example, with K binary manifest variables
(C = 2) and T latent classes, for T > 2K/(1 + K),
the number of parameters in the model exceeds the
number of “observations”, the number of cells in the
cross-classification of the manifest variables. Hav-
ing more observations than parameters is a necessary
condition for all parameters to be identifiable, but it
is not sufficient. The identifiability of parameters is
discussed in [10] and [18].
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Extensions and Other Applications

Clogg & Goodman [7] extended the single population
latent class analysis to simultaneous modeling of
latent classes across several populations. Latent class
methods specific to ordinal manifest variables were
considered by Clogg [5]. In addition to its original
applications in the study of attitudes, latent class
modeling has been applied to the study of inter-
rater reliability [2, 23] (see Observer Reliability and
Agreement), survey response errors [4], incomplete
data [9, 24], chronic disease epidemiology [15],
medical diagnosis [21], and repeated measurements
(see Longitudinal Data Analysis, Overview) [22].
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Latent Period

Latency or latent period is defined as the time inter-
val between the initiation time, say t0, of a disease
process and the time, say t1, of the first occurrence
of a specifically defined manifestation of the dis-
ease. For infectious diseases (see Communicable
Diseases), t0 is the time of infection by the infec-
tious agent and the manifestation may either be a
specific serologic marker, or a laboratory abnormal-
ity, or a symptom [31]. If the manifestation is the
occurrence of a symptom, then the latent period is
the same as the incubation period, which is the term
usually used by statisticians for infectious diseases
(e.g. Alcabes [1]). In the case of cancer epidemiol-
ogy, t0 is the time of initial exposure to a carcinogen
(cancer initiation) and t1 the time of the first clini-
cal occurrence of the disease [3, 14]. For example,
the initial exposure may be the time of exposure
to radiation or the time of exposure to a chemi-
cal carcinogen, and the first clinical occurrence may
be detected by a biological marker for cancer or by
clinical evidence of a tumor [15]. For A-bomb sur-
vivors such as those from Hiroshima or Nagasaki,
Japan, t0 is thus the actual time of explosion of
the bomb whereas t1 is the time the disease first
appears.

Other Definitions

For infectious diseases, Bailey [5] and Anderson
& May [2] have used “the time to first become
infectious” as the specified manifestation so that they
define the latent period of the disease as the time
interval from the point of infection to the beginning
of the state of infectiousness of the infected host. This
latter definition is not necessarily synchronous with
the incubation period except in cases (e.g. yellow
fever) in which both the average intervals from the
point of infection to the infectiousness of the host
and from the point of infection to the onset of a
symptom are very short. For many infectious diseases
caused by parasites, a distinction can usually be
made between infection according to some laboratory
criteria and symptoms of illness [2]. For infectious
diseases caused by viruses and bacteria, however,
such a distinction may be difficult; furthermore, for
some viral diseases such as smallpox and yellow

fever, an infected individual may be immune to the
disease so that illness may never occur in some
individuals [2, 30].

For exposure to a carcinogen, distinctions have
been made between the biologic latent period and the
epidemiologic latent period. For exposure to radia-
tion, such as in A-bomb survivors, the biologic latent
period is defined in [39] as the interval during which
an elevation of the risk of the disease occurs between
the exposed and nonexposed individuals (see Exam-
ple 3 in the next section for illustration), whereas the
epidemiologic latent period is defined in [39] as the
interval between the first exposure and the time of
death from the cause of interest. For exposure to a
chemical carcinogen, the beginning of the biologic
latent period is the time that a DNA adduct of the
carcinogen first appears because carcinogenesis starts
with the interaction between the DNA adduct of the
carcinogen and the genome of the host [18, 37]. The
endpoint of the biologic latent period is the time of
first occurrence of a cancer tumor cell; see [36]. For
the epidemiologic latent period, the initial time is the
time of first exposure to the carcinogen, whereas the
endpoint is the time of first appearance of a detectable
cancer tumor. It is shown in [18] that it is not the
exposed dose but the dose of the DNA adduct of the
agents that gives a linear dose–response curve for
small doses; furthermore, detectable cancer tumors
arise by clonal expansion from cancer tumor cells
[45]. Thus, in most cases there are significant dif-
ferences between the biologic latent period and the
epidemiologic latent period.

Some Examples

The latent period of a disease may be very short and
fairly constant. In some chronic infectious diseases,
and in cancer, the latent period may be very long and
varies greatly among individuals, in which case one
should treat it as a random variable and work with
the probability distribution of this variable.

Example 1. Yellow Fever

Yellow fever is an infectious disease caused by a
yellow fever virus which is the prototype of the
flavivirus genus (family Flaviviridae). It is an acute,
mosquito-borne viral infection that occurs in epi-
demic and endemic form in tropical America and
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Africa. Clinical symptoms of this disease include
fever, headache, malaise, and lassitude which persist
for 2 to 4 days and occur in 10%–20% of the infected
individuals. For this disease, the incubation period is
very short (3 to 6 days) and can be considered as
fairly constant [30].

Example 2. Malaria

Malaria is an infectious disease caused by parasites
called Plasmodia. This disease occurs mainly in trop-
ical areas and is transmitted to humans by the bite of
malaria-infected female Anopheles mosquitoes. The
four major Plasmodium species are P. falciparum
(Africa, Asia, Oceania, Central America, and South
America), P. vivax (Asia, Oceania, Central America,
and South America), P. ovale (Africa and Ocea-
nia), and P. malariae (Africa and South America).
The incubation periods for these four Plasmodium
species are 8–27 days (average 12 days), 8–27 days
(average 14 days), 9–17 days (average 15 days), and
16–28 days, respectively [33]. For this disease the
human host becomes infectious with the accumula-
tion of gametocytes in the blood. Hence the interval
from infection to infectiousness is the time from
initial infection to the first appearance of gameto-
cytes in the blood. (This is the definition of latent
period used by Anderson & May [2].) For the above
four species, this period is given by 9–10 days,
9–10 days, 10–14 days, and 15–16 days, respec-
tively [2].

Example 3. Leukemia in A-Bomb Survivors

Land & Norman [24] have studied the biologic
latent periods of radiogenic cancers occurring
among Japanese A-bomb survivors in Hiroshima
and Nagasaki, Japan. The leukemias (acute leukemia
and chronic granulocytic leukemia) are particularly
interesting since the cumulative distributions of those
who have been exposed to an A-bomb with kerma
doses of 100 rads or more lie on the far left of
those who have not been exposed to an A-bomb
or those who have been exposed to an A-bomb but
with the kerma doses of 0–9 rads. The magnitude
of the elevation of the cumulative probability of
leukemia over the biologic latent period depends on
the age of the survivor at the time of exposure,
with the age group 10–19 years at exposure having
the largest elevation followed by the age groups

20–34 and 35–49 years at exposure. The biologic
latent periods for leukemia are intervals from five
years since exposure (time of explosion of the bomb)
to an endpoint, say t1, which is less than 29 years
since exposure and which depends on the age of
the survivor at the time of exposure. For the age
groups 10–19 and 20–34 years at exposure, t1 is
29 years since exposure, but for age groups 0–9
and 35–49 years at exposure, t1 is approximately
25 years since exposure.

Example 4. Incubation Period of AIDS

The infectious chronic disease AIDS is caused by
a retrovirus called HIV (human immunodeficiency
virus). This is an endemic fatal infectious disease
without cure at the present time. (For a summary of
basic facts about AIDS, see [34].) Following infection
by HIV, it usually takes several months to develop
HIV antibodies in the blood. (For the time interval
from infection to the development of antibodies, the
estimate by Horsburgh et al. [20] is 3.5 months.)
According to the 1993 surveillance definition of
AIDS used by the US Centers for Disease Control
and Prevention (CDC), the incubation period is the
time interval between infection by HIV and the first
time that the total CD4 T-cell counts falls below
200/mm3 or the first time that the absolute percentage
of CD4 T-cells falls below 14% or the first time that
one of the 25 symptoms listed in [12] appears. This
period is usually several years and depends on age
[35], treatment with antiviral drugs [29], the presence
of mutations of the gene CCR5 [16] (long or short
AIDS survivors), and possibly other covariates. For
untreated subjects aged 20–50 years at infection, the
average incubation period is about 10 years. Note,
however, that the AIDS definition used by CDC has
been broadened three times, first in June 1985, next
in July 1987, and then in December 1992. Hence, the
incubation times measured before 1993 tend to be
longer than the incubation times based on the 1993
AIDS definition.

The Latent Period of Infectious Diseases

For some infectious diseases such as yellow fever and
malaria, the incubation period is relatively short and
can be regarded as approximately constant. However,
for some chronic infectious diseases such as AIDS,
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the incubation period is long and variable. In this
latter case it makes more sense to treat the incubation
period as a random variable, rather than as a fixed
constant “latency”, and to describe the process in
terms of the probability distribution of incubation
times. For example, the probability distribution of
the incubation period of AIDS has been studied
extensively, as summarized in Brookmeyer & Gail
[9], Becker & Motika [6], and Tan et al. [38]. This
probability distribution has been estimated by both
parametric and nonparametric methods. However,
all the estimates in the literature are based on the 1987
definition of AIDS: estimates of the HIV incubation
period based on data and the 1993 AIDS definition
have yet to be published.

The Latent Period of Cancer

Some researchers have used the concept of latency
and average latent period to describe the interval
between exposure to the A-bomb and the subsequent
cancer onset in Hiroshima and Nagasaki, Japan [24,
7]. For example, leukemias tend to arise about five
years following exposure to nuclear radiation [7].
However, Brookmeyer [8] pointed out that such
estimates might be misleading because of censoring
(see Censored Data) and competing causes (see
Competing Risks) of death.

Many investigators prefer to consider the distribu-
tion of time to cancer onset, especially investigators
who study cancer onset in animals exposed to low
doses of a carcinogen [15]. In such cases the latent
period is usually very long, and the expected time-
to-tumor may exceed vastly the normal life span of
the animal. In such circumstances, information on the
mean latent period is not sufficient to determine the
probability of developing a tumor before dying of
some other causes. Moreover, different distributions
may have the same mean time to tumor in the high
dose range but give vastly different risk estimates
when extrapolated to low doses [17, 43]. Thus, some
scientists have avoided the use of mean latency for
risk assessment based on low dose extrapolation (see
Extrapolation, Low Dose) [15]; rather, they describe
carcinogens as altering the probability distribution of
time to detectable cancer. This probability distribu-
tion depends on the mechanism of carcinogenesis and
is influenced by many factors. In particular, the inci-
dence of cancer is altered by changing the dose of
the carcinogen to which the individual is exposed.

Armitage & Doll [4] developed the first stochastic
model of carcinogenesis for the time-to-tumor distri-
bution. This model is referred to as the multistage
model (see Multistage Carcinogenesis Models) as
described in reviews by Whittemore & Keller [42]
and Kalbfleisch et al. [21]. The Armitage–Doll mul-
tistage model (see Dose–Response Models in Risk
Analysis) assumes that a tumor develops from a
normal stem cell by k (k ≥ 2) consecutive and irre-
versible genetic changes. These assumptions and the
assumptions of low transition rates imply a Weibull
model for the cancer incidence rate, λ(t), and the
following dose–response relationship between cancer
incidence rate and the dose, d, of carcinogen:

λ(t) ∝ η(d) × t k−1, (1)

where η(d) is a function of the dose d and is
independent of time t .

The Armitage–Doll multistage model has been
widely used by statisticians to assess how exposure
to carcinogens alters the cancer incidence rates and
the distributions of time-to-tumor. Breslow & Day
[7] and others [13, 10] applied this model to study
the effects of cigarette smoking on lung cancer risk,
of asbestos exposure on risk of lung cancer and
mesothelioma, and of radiation exposure on risks of
leukemia, breast cancer, and bone cancer. While it is
widely accepted that cancer results from a multistage
process, recent results from molecular biology and
molecular genetics have raised questions about some
details of the assumptions in the Armitage–Doll
multistage model (see [36] and [19]).

For risk assessment of carcinogens by low dose
extrapolation, it has been documented that the same
observable data can be fitted equally well by different
models that yield very different estimates of risk
at low doses [41]. Such extrapolation should be
based on biologically plausible models, preferably
models suggested by data. Thorslund et al. [40] and
Moolgavkar et al. [32] proposed the MVK two-stage
model (see [36]) for risk assessment. In this model,
the first stage is a Poisson process describing how
normal stem cells are changed into initiated cells
by mutation (initiation); in the second stage the
model incorporates stochastic birth and death (see
Stochastic Processes) for proliferation of initiated
cells (promotion), that change into malignant tumor
cells by another mutation. Dose–response curves
based on the MVK two-stage model have been
developed by Chen & Moini [11], and by Krewski &
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Murdoch [23]. They have used these dose–response
curves to assess how a carcinogen alters cancer
incidence through its effects on initiating mutations
or on the rate of proliferation of initiated cells. If the
carcinogen is a pure initiator, then the dose–response
curve for cancer incidence can be factorized as
a product of a function of dose and a function
of time and age; in these cases, the pattern of
dose–response curves of the MVK model is quite
similar to that of the Armitage–Doll multistage
model. However, if the carcinogen is a promoter
or a complete carcinogen, then the dose–response
curves of the MVK model cannot be factorized,
and they differ qualitatively from the Armitage–Doll
model.

The MVK two-stage model, and extensions of
it, together with many other biologically supported
models have been analyzed in Tan [36] and in
Yakovlev & Tsodikov [44]. Some extensions and
modifications have recently been developed by Little
and his colleagues [25–28]. (Little [25, 26] has called
the multievent model in Tan [36] the generalized
MVK model.) By merging initiation and promotion,
alternate modeling approaches have been proposed
by Klebanov et al. [22] for radiation carcinogenesis.
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Latin Square Designs

A Latin square design is a balanced incomplete
block design for comparing t treatments in which
heterogeneity is eliminated in two ways. It is an
incomplete block design insofar as not every com-
bination of row, column, and treatment is assigned to
an experimental unit. It is a balanced design insofar
as the number of treatments is equal in each row and
in each column.

Example 1

Suppose a toxicologist wants to compare a series
of t treatments. Suppose the experiments are to be
carried out in r different laboratories L1, . . . , Lr on
c different animal species S1, . . . , Sc. The experi-
menter wants to take into account the heterogeneity
coming from both these factors. The simplest exper-
imental design would be a randomized complete
blocks design in which every treatment is assigned to
every combination of both heterogeneity factors. In
this whole experiment we would have rct experimen-
tal units corresponding to rc blocks and t treatments.
This number of experimental units can become enor-
mous, even for moderate r, c, and t . If r = c = t ,
this design can be replaced by a Latin Square Design
(LSD) in which each treatment, traditionally denoted
with Latin letters, occurs exactly once in each row
and once in each column, so that the number of exper-
imental units is only t2.

In other settings a complete block design is phys-
ically impossible, as in Examples 2 and 3, and Latin
square designs are a natural alternative.

Example 2

In a field experiment where the experimental field
exhibits a gradient in two orthogonal directions, each
spot can only be assigned to a single treatment.

Example 3

In a clinical trial the blocking factors may be the
individual subject and successive time periods. If the
objective of the trial is to compare treatments, then
only one treatment can be given to a given subject at
a given time. This design is called a crossover trial
(see [5]).

Construction of the Design

If we want to use an LSD, we have first to choose
a Latin square. A Latin square of order t is an
arrangement of t letters or numbers (representing the
treatments) in a square of t columns and t rows
(representing the two heterogeneity factors), such
that each letter appears once and only once in each
column and each row (whence the balance of the
design). Latin squares of any order exist, as can be
seen from Figure 1.

The enumeration of all the Latin squares of any
order t becomes tedious as t increases. However,
permuting rows, columns or treatments of a Latin
square gives another Latin square. Particular Latin
squares are those for which the first column and
the first row are ordered (A, B, C, . . .); these are
called standard Latin squares. By permuting rows
and columns of a standard Latin square we can obtain
t!(t − 1)! different Latin squares.

Thus, sampling a Latin square consists in:

1. sampling a standard Latin square with equi-
probability among all the standard Latin squares;

2. randomly permuting the t rows, the t − 1 first
columns and the t treatments.

For more details of this procedure and tables of
standard Latin squares, see [2]; for tables of random
permutations, see [1].

The randomization procedure of a Latin square
is equivalent to the observation of the t3 random
variables δijk , where δijk = 1 if the treatment k
is affected in row i and column j , and 0 other-
wise. These random variables have the following

Figure 1 Example of Latin square of order t



2 Latin Square Designs

properties:

∑

i

δijk =
∑

j

δijk =
∑

k

δijk = 1. (1)

E(δijk) = 1

t
, for all i, j, k. (2)

E(δijkδi′j ′k′ )

=






1/t, if i = i ′ and j = j ′
and k = k′,

0, if either i �= i ′ or j �= j ′
or k �= k′,

1/t (t − 1), if either i = i ′ or j = j ′
or k = k′,

1/t (t − 1)2(t − 2), if i �= i ′ and j �= j ′
and k �= k′.

(3)

Estimation and Analysis of Variance

Let Yijk be the response that would be observed if the
kth treatment were assigned on the ith row and the
j th column. Under unit-treatment additivity (in the
terminology of Hinkelmann & Kempthorne [3]), i.e.
under the hypothesis that there are no interactions
between the treatments on one side and rows or
columns on the other side, we can write:

Yijk = µ + αC
i + αR

j + αT
k + αRC

ij + εijk, (4)

where superscripts C, R, and T indicate columns,
rows, and treatments respectively. The technical
errors εijk are assumed independent with zero mean
and equal variance σ 2

ε , and are independent of the
randomization procedure. We can also write the usual
side conditions which imply no loss of generality:

αC
· = αR

· = αT
· = αRC

i· = αRC
·j = 0, for all i, j.

(5)

We note that within an LSD not all Yijk are actually
measured but only those for which the random
variable δijk is equal to 1.

The observed means can thus be written:

Yi·· = 1

t

∑

j

∑

k

δijkYijk,

Y·j · = 1

t

∑

i

∑

k

δijkYijk,

Y··k = 1

t

∑

i

∑

j

δijkYijk,

Y··· = 1

t2

∑

ijk

δijkYijk. (6)

If we substitute Yijk in (6) by its expression from (4),
then, after applying the side conditions (5) and the
relations (1), we obtain:

Yi·· = µ + αR
i + 1

t

∑

j

∑

k

δijkεijk,

Y·j · = µ + αC
j + 1

t

∑

i

∑

k

δijkεijk,

Y··k = µ + αT
k + 1

t

∑

i

∑

j

δijkεijk,

Y··· = µ + 1

t2

∑

i

∑

j

∑

k

δijkεijk.

(7)

The total sum of squares SStot = ∑
ijk δijk(εijk)

2 can
be decomposed as follows:

SStot = t
∑

i

(Yi·· − Y···)2 + t
∑

j

(Y·j · − Y···)2

+ t
∑

k

(Y··k − Y···)2 + SSe. (8)

The expectations of these sums of squares depend
on the moments of the δijk given in (2) and (3).
Somewhat tedious computations yield the analysis
of variance table given in Table 1 where:

σ 2
R = 1

t − 1

∑

i

(αR
i )2,

σ 2
C = 1

t − 1

∑

j

(αC
j )2,

σ 2
T = 1

t − 1

∑

k

(αT
k )2, (9)

and

σ 2
RC = 1

(t − 1)2

∑

i

∑

j

(αRC
ij )2.

To test the hypothesis (see Hypothesis Testing) of
equality of the treatment effects (i.e. σ 2

T = 0), we are
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Table 1 Analysis of variance of an LSD

Source df SS E(MS)

Rows t − 1 t
∑

i (Yi·· − Y···)2 E(MST) = σ 2
ε + tσ 2

R

Columns t − 1 t
∑

j (Y·j · − Y...)
2 E(MSC) = σ 2

ε + tσ 2
C

Treatments t − 1 t
∑

k(Y··k − Y···)2 E(MST) = σ 2
ε + σ 2

RC + tσ 2
T

Error t2 − 3t + 2 by subtraction = SSe E(MSe) = σ 2
ε + σ 2

RC

Total t2 − 1
∑

ijk δijk(Yijk − Y···)2

led by Table 1 to consider the ratio

F = MST

MSe
. (10)

This statistic can be referred to F(t − 1, t2 − 3t + 2)

under normal theory (see F Distributions). Never-
theless, Welch [6] investigates its distribution under
the randomization process for LSD described above
and Hinkelmann & Kempthorne [3], reviewing this
work, “assume that normal theory gives satisfac-
tory approximations to corresponding randomization
tests”.

Another immediate consequence of Table 1 is that
there do not exist any legitimate tests for row and col-
umn effects unless we suppose absence of interaction
between them (σ 2

RC = 0).

Other Topics

Departure from Additivity

The effects of row × treatment, column × treatment,
row × column × treatment can severely affect the
results obtained above, as discussed in detail by
Scheffé [4]. Nevertheless, Wilk & Kempthorne [7]
show that the usual F test is still appropriate, even in
the presence of interactions, if the t rows have been
sampled from a population of R rows, the t columns
have been sampled from a population of C columns,
the t treatments have been sampled from a population
of T treatments with R >> t, C >> t , and T >> t

(see Random Effects).

Limitations of the LSD and Some Extensions

It can be argued that the LSD is limited from a
practical point of view. Some extensions have been
proposed for the following problems (see [3]):

1. the numbers of rows, columns and treatments
have to be the same (Youden squares and Latin
rectangles are some alternatives);

2. for small values of t the number of degrees
of freedom for error is insufficient (this can be
mended by replicating the LSDs);

3. the number of heterogeneity factors is restricted
to two (Graeco–Latin squares deal with three
or more heterogeneity factors).
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Lattice Designs

The term lattice design encompasses two different
types of equireplicate designs. The first type, square
lattice designs and their extensions, are resolvable (0,
1) incomplete block designs. The second type, lattice
squares and their extensions, are nested row-column
designs (see Youden Squares and Row–Column
Designs) for which each block is a complete replicate.

An incomplete block design for t treatment each
replicated r times with all blocks of size k < t is
resolvable if the b blocks can be grouped into r =
bk/t sets of s = t/k blocks, such that each set is
a complete replicate. A (0, 1)-design has each pair-
wise treatment concurrence equal to 0 or 1. A square
lattice design, introduced by F. Yates in 1936, has
t = k2 and s = k. It can be constructed by writing the
numbers 1 to t in a k × k array. The simple square
lattice design has r = 2. The k blocks of the first
replicate are the rows of the array. The second repli-
cate uses the columns. The triple square lattice design
has r = 3. The third replicate is found by superim-
posing a Latin square of order k on the array, and
using the Latin square symbols to define the blocks.

If k �= 6, then the Greek letters of a Graeco–Latin
square can be used to get a fourth replicate (quadru-
ple square lattice design). If k �= 3, 6, 10, then at
least five replicates can be obtained using mutu-
ally orthogonal Latin squares (MOLS). If k is a
prime power, a complete set of k − 1 MOLS exist,
and up to k + 1 replicates are possible. If, in this
case, k + 1 replicates are used, then the variance-
balanced design, called a balanced square lattice, is a
symmetric balanced incomplete block design BIBD
[k2, k(k + 1), k].

For example, using the three MOLS of order 4:

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

on the array

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

gives the balanced square lattice design (parentheses
denote blocks, each replicate is a row):

(1 2 3 4), (5 6 7 8), (9 10 11 12), (13 14 15 16);
(1 5 9 13), (2 6 10 14), (3 7 11 15), (4 8 12 16);
(1 6 11 16), (2 5 12 15), (3 8 9 14), (4 7 10 13);
(1 7 12 14), (2 8 11 13), (3 5 10 16), (4 6 9 15);
(1 8 10 15), (2 7 9 16), (3 6 12 13), (4 5 11 14).

For r < 5, the first r replicates (say) can be used.
The need for t to be a perfect square (and not

36 if more than three replicates are required) can
be a severe restriction. In some experiments, such
as variety trials which often use a large number of
varieties and few replicates (two or three), it may
be possible to add a few extra treatments, or even
remove some, to get t = k2. Various extensions have
been proposed to allow some other values of t .
Cubic lattices have t = k3 and s = k2 in a similar
way using a cubic array and orthogonal Latin cubes;
and m-dimensional lattices with t = km for m > 3
are possible if k is prime. A rectangular lattice
with t = k(k + 1) and s = k + 1 can be constructed
in a similar way to the square lattices using the
numbers 1 to t in a (k + 1) × (k + 1) array with
the leading diagonal omitted. For r > 2 the Latin
squares used must have each symbol occurring on
the main diagonal. The idea for constructing the
rectangular lattice can be used for any s > k + 1 by,
if possible, omitting further (wrap-around) diagonals.
The α-designs are an extension to resolvable designs
with any s – see John [3, Section 4.8] and John
& Williams [4, Sections 4.4 and 4.5]. Optimal two-
replicate resolvable designs are discussed by John &
Williams [4, Section 4.7].

Although specific formulas can be given, as
in John [3, Section 3.4], John & Williams [4,
Sections 4.2 and 4.3], the usual intrablock analysis
for the model with fixed treatment and block effects –
see John [3, Sections 1.3–1.5] and John & Williams
[4, Sections 1.4–1.6] – is easily carried out on a
computer. If s is not small, then it may be worth using
the interblock information also. Various methods are
available for combining the information, but a good
choice nowadays would be to use a computer package
(see Software, Biostatistical) such as GENSTAT or
SAS which performs REML (restricted maximum
likelihood) estimation – see John & Williams [4,
Sections 7.5 and 7.6].

Lattice squares, introduced by F. Yates in 1940,
are nested row–column designs for t = k2 in r > 1
complete blocks (or groups) of k rows and k columns.
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If k is a prime power, then a variance-balanced
design, the balanced lattice square, is possible. This
needs r = (k + 1)/2 for k odd, and r = k + 1 for k

even. The balanced lattice square can be constructed
from the balanced square lattice design. If k is odd,
then each replicate of a balanced square lattice forms
either the rows or the columns of one block. If k is
even, then each replicate of a balanced square lattice
forms the rows of one block, and the columns of
another. For example, the balanced lattice square with
t = 3 is

1 2 3
4 5 6
7 8 9

1 6 8
9 2 4
5 7 3

and one with t = 4 is

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

1 5 9 13
6 2 14 10
11 15 3 7
16 12 8 4

1 6 11 16
12 15 2 5
14 9 8 3
7 4 13 10

1 7 12 14
8 2 13 11
10 16 3 5
15 9 6 4

1 8 10 15
2 7 9 16
3 6 12 13
4 5 11 14

If k is odd, then a balanced lattice square with
r = k + 1 repeats the original design with the rows
and columns interchanged.

Lattice squares which are not variance-balanced
are obtained if other numbers of replicates are used.
Care is then needed in the choice of the r replicates to
ensure that the combined row and column treatment
concurrences are as equal as possible – see Cochran
& Cox [1, Section 12.12] and John & Williams [4,
Section 6.2]. Designs may be possible for some r > 1
if k is not a prime power, depending on the maximum
number of MOLS of order k. Balanced lattice squares

for k = 3, 4, 5, 7, 8, 9, 11, 13 are given by Cochran &
Cox [1, Chapter 12].

As before, the restriction on the possible values
of t may be severe. Extensions to lattice rectan-
gles are possible. John & Williams [4] discuss other
resolvable nested row–column designs: α-designs
(Section 6.3), two-replicate designs (Section 6.6),
and designs generated using algorithms (Sec-
tion 6.4). If the design is not balanced, then the usual
intrablock analysis can again be easily carried out on
a computer. There is no interblock information when
each block is a complete replicate, but there may
sometimes be useful interrow or intercolumn infor-
mation, which again is best combined using REML
estimation.

The lattice square designs and square lattices can
be used for replicated blocked factorial experiments
if the product of the levels is k2 – see Cochran &
Cox [1, Sections 10.12 and 12.11]. For the balanced
designs, main effects and interactions are equally
partially confounded. If t1 = t2 = k, then the first
replicate of the square lattice design confounds one
main effect, and the second replicate confounds
the other.

Some further details on lattice designs are given
by Cornelius [2].
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Law of Large Numbers

The first theorem recognizable as a precise form
of a limiting-frequency statement (or “law of large
numbers” in the terminology introduced by Pois-
son) is the famous “weak law of large numbers for
Bernoulli trials” of James Bernoulli (1654–1705) [2]
(see Bernoulli Family). In our current notation and
terminology his theorem, published posthumously in
Ars Conjectandi (1713), now reads as follows. Let
X1, . . . , Xn be the outcomes of n independent 0–1
trials (Bernoulli trials) with success probability p.
With Sn = ∑n

i=1 Xi the number of successes (the
number of ones) and Xn = Sn/n, we have for each
ε > 0

lim
n→∞ Pr

(|Xn − p| > ε
) = 0.

In words: the ratio of the number of successes and
the number of trials or the proportion of successes
converges in probability to the success probability

p. A universally applied notation is Xn

Pr−−−→ p (i.e.

Xn converges to p in probability).

Remark 1. The result provides some empirical con-
firmation for the axioms of probability theory [7,
Chapter 1] (see Foundations of Probability). See
also [3, pp. 20–21] for an introductory discussion.

Remark 2. The proof is a simple application of the
Chebyshev inequality:

Pr
(|Xn − p| > ε

) ≤ 1

ε2
E

(
Xn − p

)2

= p(1 − p)

nε2
−−−→ 0, n −−−→ ∞.

For X1, . . . , Xn a sequence of independent random
variables with common distribution function F , let
Sn = ∑n

i=1 Xi , Xn = Sn/n and µ = E(X1). Then the
following generalization of Bernoulli’s theorem has
been obtained.

Theorem 1. Khinchin’s law of large numbers

E|X1| < ∞ implies Xn

Pr−−−→ µ.

In words: the sample mean Xn is a “weakly consis-
tent” estimator of the population mean µ.

A refined version of this result is the following
characterization due to Kolmogorov (see [2] for fur-
ther details).

Theorem 2. In order that there exist constants µn

such that for each ε > 0

lim
n→∞ Pr

(|Xn − µn| > ε
) = 0,

it is necessary and sufficient that

n Pr (|X1| > n) −−−→ 0, n −−−→ ∞.

In this case, µn = ∫ n

−n
x dF(x).

Strong Law of Large Numbers

Almost sure (a.s.) convergence is a mode of con-
vergence that describes the behavior of a statistic
(e.g. the sample mean, Xn) outside an unspeci-
fied set of probability zero. Almost sure conver-
gence is stronger than convergence in probability (see
Remark 4 below). Synonyms for almost sure con-
vergence are convergence with probability one and
convergence almost everywhere.

The Kolmogorov strong law of large numbers, the
a.s. version of Khinchin’s law, reads as follows.

Theorem 3. For X1, . . . , Xn a sequence of inde-
pendent random variables with common distribution
function F :

E|X1| < ∞ if and only if Pr
(

lim
n→∞ Xn = µ

)
= 1

with µ = E(X1).

Remark 3. The standard way to write this result is
E|X1| < ∞ if and only if Xn → µ a.s.
In words: the sample mean Xn is a “strongly consis-
tent” estimator of the population mean µ.

Remark 4. This simple characterization of strong
convergence makes it clear why probabilists like the
a.s. convergence mode. For statisticians the differ-
ence between the weak and the strong law of large
numbers is subtle and cannot be adequately explained
without measure theory. See [3, p. 233] for an intu-
itive discussion and some amusing quotations. From
an applied point of view, most statisticians seem to
be satisfied with convergence in probability.
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Applications

Application 1

For X1, . . . , Xn a sequence of independent random
variables with common distribution function F let
�n denote the empirical distribution function, i.e.

�n(x) = #{i : Xi ≤ x}
n

= 1

n

n∑

i=1

I{Xi ≤ x}, x ∈ �

(see Goodness of Fit). For fixed x, �n(x) → F(x)

a.s. by the strong law of large numbers. This property
strengthens to almost sure convergence uniform in x.

Theorem 4. Glivenko–Cantelli theorem.

sup
x∈�

|�n(x) − F(x)| −−−→ 0 a.s.

In words: uniformly in x we can rediscover F from
the data. Taking n large enough, this can be done to
any desired degree of precision.

Application 2

We now discuss the statistical relevance of the con-
sistency results given in the previous sections. Many
problems in statistics are of the following type: for a
given (unknown) parameter θ (�-valued, �d -valued,
or a function), find a consistent estimator Tn and
obtain the limit distribution of nγ (Tn − θ). Typical
values for γ are γ = 1/2 for the classical central
limit theorem (normality) and γ = 1 for a limit
distribution that corresponds to a weighted sum of
centered chi-square distributed random variables.
Typically, var[nγ (Tn − θ)] → σ 2, with σ 2 a nui-
sance parameter that needs to be estimated in a
consistent way in order to construct, for example,
approximate confidence intervals for θ .

To make this point clear, consider the following
simple example. Given a sequence of independent
identically distributed random variables X1, . . . , Xn

let θ = µ and Tn ≡ Xn. If 0 < σ 2 = var(X1) < ∞,
then the limit distribution of n1/2(Xn − µ) is a zero
mean normal distribution with variance σ 2. The
sample variance

S2
n = 1

n − 1

n∑

i=1

(
Xi − Xn

)2

= n

n − 1

{
1

n

n∑

i=1

X2
i − X

2
n

}

is a (strongly) consistent estimator for σ 2. To see this
note that

Xn −−−→ µ a.s. implies X
2
n −−−→ µ2,

and that the strong law of large number gives

1

n

n∑

i=1

X2
i −−−→ EX2

1 = σ 2 + µ2.

Hence we have S2
n → σ 2 a.s.

We therefore obtain, using Slutsky’s theorem (for
which weak consistency is sufficient) that the limit
distribution of n1/2(Xn − µ)/Sn is standard nor-
mal. Hence, an approximate 100(1 − α)% confidence
interval for µ is of the form xn ± z1−(α/2)(sn/n1/2)

with xn and s2
n the actual values of Xn and S2

n and
z1−(α/2) the [1 − (α/2)]-percentile of the standard
normal distribution.

Extensions

Extension 1

Let X1, X2, . . . be a sequence of random variables
with a common distribution function F and replace
the independence assumption by the stationarity
assumption: for every n the joint distribution of
X1, . . . , Xn is the same as the joint distribution of
X1+k, . . . , Xn+k for all positive integers k.

On the basis of general results from ergodic theory
one can show that, given the stationary process,
X1, X2, . . . , Xn still obeys laws of large numbers.
Note that ergodic theory applies to a large number
of problems in probability theory and analysis. See
[8] for further reading.

Extension 2

Given a sequence of independent zero-mean ran-
dom variables ∆1, ∆2, . . ., define Xn = ∑n

i=1 ∆i .
With Fn = σ(X1, . . . , Xn), the σ -algebra generated
by X1, . . . , Xn, we then have that

E(Xn+1|Fn) = Xn.

This simple property delineates a very useful class
of stochastic processes: martingales. The study of
laws of large numbers for martingales is an intrinsic
part of modern probability theory and the results
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are extremely important for a variety of applications
in, for example, survival analysis [5] (see Counting
Process Methods in Survival Analysis). Further
discussion is beyond the scope of this article; we
refer to [1, Section 35] for an excellent introductory
discussion and a number of interesting examples. A
specialized reference is [6].

Finally, note that thorough discussions on the
law of large numbers can be found in [4, 9],
and [10].
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Lawley–Hotelling Trace

To test the equality of mean vectors of k p-variate
normal distributions (see Multivariate Normal Dis-
tribution) with common but unknown covariance
matrix, Hotelling [14] proposed a test, known as
the Hotelling’s generalized trace (or T 2

0 ) test, which
could be considered as a generalization of Hotelling’s
T 2 test proposed for k = 2. This test statistic was also
considered by Lawley [21], Bartlett [4], and Hsu [16];
it is often known as the Lawley–Hotelling trace. The
test can be expressed as follows in its canonical form.

Consider random matrices U : p × r , V : p × m,
and W : p × n, such that the columns of U, V and
W are independently distributed as p-variate normal
distributions with a common covariance matrix �.
The problem is to test H0 : � ≡ E(U) = 0 against
H1 : � �= 0, given that E(W) = 0, � being unknown.
The Lawley–Hotelling’s trace test rejects H0 if and
only if

T 2
0 ≡ trace[(UU′)(WW′)−1]n

is too large; it is assumed that n ≥ p. The multiva-
riate analysis of variance (MANOVA) problem can
be reduced to the above canonical form; in that case,
UU′ and WW′ denote the sums of products and
cross products matrices due to the hypothesis H0

and due to error, respectively. This trace test can be
deduced from Roy’s union–intersection principle;
see Mudholkar et al. [25].

The Lawley–Hotelling trace criterion can be con-
sidered for testing independence between two sets of
variates jointly distributed as a normal distribution,
as well as for testing equality of covariance matrices
of two p-variate normal distributions; for this corre-
spondence, see the article on Pillai’s trace test and
the review papers by Pillai [30, 31].

Hotelling [15] derived an explicit form of the
null distribution of T 2

0 for p = 2; see Hsu [16] and
Anderson [1]. Constantine [5] expressed the density
of T 2

0 as an infinite series in generalized Laguerre
polynomials, and also as an infinite series in zonal
polynomials; for details, see Muirhead [27]. Pillai
[29] suggested to approximate the null distribution
of T 2

0 as follows:

Fν1,ν2 = ν2

ν1
× T 2

0

ns
,

where s = min(p, r), ν1 = s(t + s + 1), ν2 = s(n −
p − 1), t = |r − p| − 1, and Fa,b denotes the F
distribution with a and b df; for details on this
approximation, see Pillai [29].

Tables of the significance points of T 2
0 have

been given by Grubbs [13] for p = 2, and by
Davis [7–9] for p = 3(1)10; see Anderson [1].
Approximate significance points of T 2

0 have been
suggested by Pillai [29]; see also Pillai & Samson
[33] and Hughes & Saw [17].

The asymptotic (as n → ∞) null distribution of
T 2

0 is the chi-square distribution with rp degrees
of freedom. For asymptotic expansion and approx-
imation of the null (nonnull) distribution of T 2

0 in
terms of chi-square (noncentral chi-square) distribu-
tions, see Itô [18, 19], Fujikoshi [10, 11], Siotani [37],
Davis [8], Pillai [30, 31], Khatri & Pillai [20], Pillai
& Young [35], and Muirhead [26, 27], in particular.

The power function of the Lawley–Hotelling trace
test depends on the parameters through the character-
istic roots ν1, . . . , νp of ��′�−1 in the above set-up
(see Eigenvalue). Ghosh [12] has shown that this
test is admissible; for a different proof, see Anderson
[1]. DasGupta et al. [6] have shown that the power
of this test increases monotonically as each of the
νi’s increases. For monotonicity of the power func-
tion of the trace test for testing independence between
two sets of variates, see Anderson & DasGupta [3],
and for testing equality of covariance matrices, see
Anderson & DasGupta [2]. Simultaneous confidence
regions for � based on the Lawley–Hotelling’s trace
criterion are given in [1].

The power of the Lawley–Hotelling test has been
compared with the powers of the other standard
tests for the MANOVA problem by a number of
authors; see Mikhail [24], Schatzoff [36], Pillai &
Jayachandran [32], Fujikoshi [11], and Lee [22]. If
the characteristic roots νi are substantially unequal
such that the coefficient of variation of the roots
is large enough, then the Lawley–Hotelling test is
more powerful than the likelihood ratio test, which,
in turn is more powerful then Pillai’s trace test; the
reverse is true if the νi’s are close. Lee [22] has noted
that the power of the Lawley–Hotelling test is nearly
constant on the region trace [��′�−1] = constant.
For robustness of the Lawley–Hotelling test, see
Mardia [23], Olson [28], Pillai & Sudjana [34], the
review papers by Pillai [30, 31], and the article on
robustness of multivariate techniques.
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League Tables

When making comparisons between, say, hospitals,
it is very tempting to summarize the results into a set
of scores, which are then sorted into a “league table”,
thus giving an explicit rank to each hospital (see Pro-
filing Providers of Medical Care). This follows the
sporting model in which attention is focused on which
“team” is at the top and which at the bottom, and
what movements have occurred since the last ranking
exercise. Consider, for example, risk-adjusted 30-day
mortality rates following cardiac artery bypass grafts
in New York State between 1997 and 1999. Figure 1
shows the ranked rates for individual surgeons with
95% confidence intervals – in the original publica-
tion [6] the surgeons are named.

Such exercises can be easily criticized: someone
always has to be top and bottom, even if there is really
no difference between the surgeons and the league
table is only the consequence of the play of chance.
The widths of the intervals express the considerable

uncertainty about the true underlying mortality rates,
and yet none of this uncertainty is reflected in the
rank given to a surgeon. The crucial insight is that the
rank is itself a summary statistic that can be subject
to standard inferential procedures [3–5], although
the sampling distributions of observed ranks are
not generally amenable to closed-form analysis. The
simplest solution is to use Monte Carlo techniques:
essentially, by thinking of the intervals in Figure 1
as expressing probability distributions for the true
mortality rates, sampling from those distributions,
ranking each of the generated samples, and so obtain-
ing a set of plausible “true ranks” for the surgeons.
This can be a fully Bayesian procedure in which
the intervals summarize posterior distributions, or an
approximate maximum likelihood analysis based on
a “parametric bootstrap‘’.

Figure 2 shows the results of the ranking exercise
(carried out using a Bayesian Markov chain Monte
Carlo technique). It is clear there is substantial uncer-
tainty concerning the true ranks, with the majority of
surgeons having a very wide interval; only 2 out of
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NY surgeons:  risk-adjusted mortality rate

Figure 1 Observed mortality rates for 175 surgeons, with 95% confidence intervals
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Figure 2 Median estimates and 95% intervals for true ranks of 175 New York surgeons

175 can be confidently placed in the “best” quarter,
and only 6 in the “worst” quarter.

This procedure is straightforward to carry out if
the league table has been based on a single indica-
tor with a known sampling distribution. In practice,
a league table may be based on a composite score,
which may comprise both objective measures and
subjective assessments of, for example, “reputation”.
Nevertheless, it should still be possible to assign a
plausible measure of error to each of the items mak-
ing up the score, and hence simulate a distribution
of the “true” score, and obtain a distribution for the
“true” rank. The ranking procedure can also apply
after more complex models have been fitted. In par-
ticular, hierarchical models are often recommended
in this context [1–3, 7] as a means of dealing with
the inadequacies of risk-adjustment and “regression-
to-the-mean”, and the resulting “shrunk” estimates

(see Shrinkage Estimation) will tend to lead to even
more uncertainty about the true ranks.

Inferences on ranks may be useful in many other
contexts, such as selecting promising entities for fur-
ther research from among a large number of, say, drug
compounds, crop varieties, or genes being screened.

The consequence of formal inference on ranks is
generally to realize that little can be said and that any
“league table” is largely spurious, apart from possibly
identifying some extreme cases that can confidently
be placed in, say, the top or bottom quarter. An alter-
native comparative tool that does not make an explicit
ranking and yet draws attention to genuine extremes
is the funnel plot (see Meta-analysis of Clinical
Trials), which can be thought of as a Shewhart
control chart (see Quality Control in Laboratory
Medicine) around a target performance measure [8].
The outcome is plotted against volume and predictive
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Figure 3 Funnel plot of risk-adjusted mortality rates for 175 New York surgeons: 95% and 99.9% prediction intervals
are shown

limits superimposed, say 95% (≈2 standard devia-
tions) and 99.9% (≈3 standard deviations). Figure 3
shows this applied to the New York surgeons data,
and it is immediately apparent that the vast major-
ity follow precisely the pattern expected and the only
ones worthy of some attention are easily identified.
The plot makes clear that there is no point in carrying
out a ranking exercise on those in the “funnel”.
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Least Squares

Because of the controversy between Legendre and
Gauss about the priority in the discovery of least
squares, it is useful to distinguish between the prin-
ciple of least squares and the theory of least squares.

Let y, ξ (θ), and e, be n × 1 vectors of observa-
tions, of known parametric functions of θ , and of
random observational or experimental errors, respec-
tively, where θ is a k × 1 vector of unknown param-
eters, k < n. The model is

y = ξ (θ) + σe, (1)

where σ is a scalar parameter specifying the mea-
surement scale. The problem is to estimate θ . If the
observations were free from errors, e ≡ 0, and if the
model were exactly correct, the resulting n equations
y = ξ (θ) in the k parameters θ would have to be
consistent in the mathematical sense that there exists
a value of θ satisfying all n equations. However, in
general this is not the case, and the equations are
inconsistent – there is no value of θ satisfying (1).
The observations are assumed to have been taken
with equal care, so that all observations should con-
tribute equally to the estimation of θ . The problem
is therefore to combine the observations to extract all
of their information about θ . This problem used to be
referred to as the combination of observations. There
is no value of θ that in general minimizes the errors
e uniformly. They therefore have to be minimized
in some global sense. Laplace suggested minimiz-
ing the sum of absolute deviations

∑ |ei |, some-
times called L1 regression (see Robust Regression).
The principle of least squares minimizes the sum
of squared deviations Q = ∑

e2
i = ∑

[yi − ξi(θ)]2.
The resulting least squares estimate, θ̂ , is a solu-
tion of the least square equations ∂Q/∂θj = ∑

(yi −
ξi )∂ξi/∂θj = 0.

In the special but widespread case where ξ (θ) is a
linear function of θ, ξ = Xθ, X being an n × k matrix
of rank k of known constants xij , (1) becomes

y = Xθ + σe, (2)

the Gauss linear model, discussed in text books as
linear regression. The corresponding least squares
equation and least squares estimate are

(X′X)θ̂ = X′y, θ̂ = (X′X)
−1X′y. (3)

Legendre has priority in the principle of least
squares, having published in 1805 [4], whereas
Gauss’s first publication on least squares was in
1809 [2]. Legendre derived the models y = ξ + σe
and the special case (2), and the corresponding least
squares equations including (3). But Gauss [2, 3]
went on to develop the theory of least squares,
producing the treatment of linear regression as given
in textbooks today. In fact, according to Fisher [1,
p.88], Gauss’s method only lacked for completeness
the refinement of the use of Student’s t distribution,
appropriate for samples of rather small numbers of
observations.

Standard Normal Errors

This is Gauss’s first, or parametric inferential,
approach [2]. Gauss assumed the errors e to be
n independent random variables having density
function

∏
f (ei) = ∏

f (yi − ξi ). He then used a
typically Bayesian argument assuming independent
uniform prior distributions for θi to obtain a
posterior density function for θ . The estimate θ̂ was
chosen to be the mode of this posterior density
function. Since the posterior distribution of θ is
proportional to

∏
f (ei), which is proportional to the

likelihood function of θ , the resulting equations of
estimation are

n∑

i=1

[
∂f (yi − ξi )

∂ξi

](
∂ξi

∂θj

)
, j = 1, . . . , n, (4)

which are equivalent to the equations of maximum
likelihood, and θ̂ is the maximum likelihood esti-
mate. To proceed further requires specifying f . To
do this Gauss assumed that for the single-parameter
model in which ξi ≡ θ, i = 1, . . . , n, the appropriate
estimate of the scalar θ is y. This was the proce-
dure commonly used in the physical sciences, such as
astronomy. Substituting ξi ≡ θ into (4), and requiring
the solution θ̂ to be y, implies that f (ei) is the nor-
mal N(0, 1) density. Then

∏
f (ei) ∝ exp(−Q2/2),

where Q = ∑
(yi − ξi )

2. Maximizing f is equiv-
alent to minimizing Q, which is the method of
least squares. Gauss then specialized to the linear
model (2), produced (3), and went on to develop
the theory of normal linear regression as presented
in textbooks today. He also generalized (1) to σ =
diag(σi), where the observations have different scale
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parameters σi . This results in weighted least squares
in which Q = ∑

[yi − ξi (θ)]2/σ 2
i is to be mini-

mized. This approach to least squares can be con-
sidered as a generalization of the use of the arith-
metic mean. It is based upon the normal error
distribution, in which case its use is equivalent to
the use of the more general method of maximum
likelihood.

Unspecified Distribution

This is Gauss’s second, or nonparametric decision-
theoretic, approach [3] based on the following
assumptions.

1. The model. The model is (2) where the errors
have zero means, unit variances, and are uncor-
related.

2. Linear estimates. The measuring instrument is
sufficiently precise that the squares and higher
powers of the errors e can be ignored, thus
restricting attention to linear error-consistent esti-
mates

θ̃ = Cy, where CX = I, (5)

and C is a k × n matrix. The error-consistency
requirement, CX = I, is to ensure that when
the observations are free from errors, e ≡ 0, the
estimate should be the true value, θ̃ ≡ θ .

3. Squared error loss. Estimation is a game with a
potential loss (see Loss Function) and no hope
for gain. The loss is taken to be proportional to
the squared error (θ̃ − θ)2.

The requirement is that the estimate (5) should mini-
mize the expected loss, the well-known mean square
error (EMS) criterion, E(θ̃ − θ)2. Gauss’s Theorem
proves that among all estimates (5), the least squares
estimate θ̂ minimizes the EMS.

Gauss then went on to examine various decompo-
sitions of sums of squares, and essentially develop
the analysis of variance. He also showed that if
Qm = (y − Xθ̂)′(y − Xθ̂) is the residual or minimum
sum of squares, then E(Qm) = (n − k)σ 2. He thus
recommended s = [Qm/(n − k)]1/2 as the appropri-
ate estimate of σ . Notice that while s2 is an unbiased
estimate of σ 2, s is a biased estimate of σ . Thus
Gauss did not seem to be preoccupied with unbiased
estimates.

Discussion

This last point is particularly relevant as textbooks
almost always treat (5) as a requirement of unbiased-
ness, implying that the purpose of least squares is to
seek minimum variance unbiased estimates. The
resulting formalized theorem is usually referred to as
the Gauss–Markov Theorem.

Textbooks also usually ignore the justification of
the linearity requirement (assumption 2), and assume
it is simply reasonable to restrict attention to linear
estimates. This, together with unbiasedness and vari-
ance, lead to best linear unbiased estimates (BLUEs)
and uniformly minimum variance (UMV) estimates.
Justification for such estimates thus appears to be
based more on their mathematical convenience than
on their scientific relevance.

The domain of the application of least squares
to parametric models is (1) where e is a vector of
independent N(0,1) errors. In this case least squares
is identical to maximum likelihood. When e is not
normal, least squares is no longer relevant, but
maximum likelihood usually is applicable to the
estimation of components θi if due attention is paid
to the shape of the likelihood functions of θi .

The domain of application of the nonparametric
approach, where the model is not specified, is to
areas where it is appropriate to assume e is small,
so that it makes sense to restrict attention to linear
estimates and to a squared error loss function. For
example, Gauss originally applied least squares to the
calculation of a planetary orbit, and the prediction of
where the planet will be seen. He also used it in map-
making, or geodesy, where the above assumptions
are fulfilled. These assumptions may not be generally
appropriate in many applications in biology and the
life sciences, and hence in biostatistics. There the
principal source of error is usually the variability of
the experimental material, which may be large and
asymmetric.

These considerations make it seem unlikely
that least squares, as a method of estimation per
se, has a widespread application in biostatistics.
However, weighted least squares has computational
applications in iterative procedures required to find
the maximum likelihood estimate (see Optimization
and Nonlinear Equations). In particular it is useful
in obtaining an initial value θ0 to start the iterations
using the Newton–Raphson or Fisher’s scoring
methods. For example, consider the binomial logistic



Least Squares 3

regression y ∼ bin(s, p), where ζ = log[p/(1 −
p)] = Xθ . If ζ̂ = log[p̂/(1 − p̂)] = log[y/(s − y)],
an initial value θ (0) is the weighted least squares
estimate of θ in the regression of ζ̂ on X. This
is obtained by minimizing with respect to θ the
weighted sum of squares

Q =
n∑

i=1



ζ̂ −
k∑

j=1

xijθj




2

nip̂i(1 − p̂i)

= (ζ̂ − Xθ)′D(ζ̂ − Xθ),

where D is the diagonal matrix of elements nip̂i(1 −
p̂i), the reciprocals of the estimated variances of
the ζ̂i . The successive correction terms in the
Newton–Raphson iterations can be obtained in a
similar way (see Optimization and Nonlinear
Equations).

For further details on Gauss and least squares, see
Sprott [5].
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Lehmann Alternatives

To study the effect of a drug one often needs to
make a nonparametric comparison of the cumula-
tive distribution function, G, of scores from treated
subjects, with the distribution, F , of scores from
the untreated control group. In such comparisons,
Lehmann [5] pointed out that under any alterna-
tive hypothesis the test is not distribution-free. To
overcome this difficulty, Lehmann suggested a func-
tional relationship G = f (F ), where f is a specified
function between G and F . The importance of this
formulation is that the distribution of the rank vector
under the alternative hypothesis will depend only on
f and hence every rank statistic will have a nonpara-
metric distribution-free property. As an illustration,
Lehmann derived the power of various rank tests for
simple alternatives G = F 2 and G = F 3.

One of the major applications of the Lehmann
alternatives has been in the formulation of the alter-
native hypothesis for testing the effect of a drug when
some subjects in the treatment group are not affected
by the treatment. This so-called “nonresponse” phe-
nomenon occurs, for example, in the development of
a new drug. In such studies, one may exhibit greater
variability as well as mean response in the treatment
group. This increased variability can be considered
to be due to the presence of subjects in the treatment
group who are unaffected by the treatment. Thus,
if p is the proportion of subjects in the treatment
group who respond to the treatment, then Salsburg [9]
suggests testing the null hypothesis of no treatment
effect,

H0: G(x) = F(x), (1)

against a Lehmann-type alternative of the form

H1: G(x) = (1 − p)F(x) + p[F(x)]γ , (2)

where γ > 1 is a known constant. Salsburg’s argu-
ment is based on maintaining the same range of
observations in the treatment and control groups. In
this form of the Lehmann alternative the response of
each subject in the treatment group who is affected
by treatment is assumed to have the same distribu-
tion as the maximum of γ responses in the control
group. Salsburg suggests using a rank test, where the
two samples are ranked together and the score for a

given subject is

s(i) =
(

i

N + 1

)k

, k > 1, (3)

where i is the combined rank of that subject and
N is the total number of subjects in the combined
set. Conover & Salsburg [1] show that when γ = 5
and k = γ − 1 = 4, then a rank test based on (3)
provides a test with maximum asymptotic relative
efficiency. The recommended value of γ = 5 is based
on some empirical results. Razzaghi & Nanthakumar
[8] formulated the problem of testing for treatment
effect in terms of the parameter p as

H0: p = 0

against
H1: p > 0

and derived a locally most powerful test. Such a test
is based on the statistic

Sn,m =
n∑

i=1

Fγ−1
m (yi), (4)

where m is the number of subjects in the control
group and Fm is the empirical distribution of the
control observations defined at any point x as the
proportion of the control observations not exceeding
x, and y1, . . . , yn are the observations from the treat-
ment group. The test of H0 against H1 will reject the
hypothesis of no treatment effect when

Sn,m >
n

γ
+ γ − 1

γ

(
n

2γ − 1

)1/2

Zα,

where Zα is the 100(1 − α)th fractile (or quantile)
of the standard normal distribution. The power of
the test based on (4) increases as the proportion of
the responders, p, rises. A value of γ = 5 is again
recommended on the basis of an analysis of the
power of the test.

Conover & Salsburg [1] also present an argument
for using the other form of the Lehmann alternative
and expressed the distribution of the treatment in the
presence of nonresponders as the hypothesis

H2: (1 − p)F(x) + p{1 − [1 − F(x)]1/γ }, γ > 1,

(5)
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which implies that the distribution of each control
score is assumed to have the same distribution as the
minimum of γ responses from the treatment group.
Razzaghi & Nanthakumar [7] proposed a locally
optimal test for the alternative (5). The test is based
on the score statistic (see Likelihood)

Tn =
n∑

i=1

[1 − F(yi)]
−(γ−1)/γ . (6)

It is shown that when γ = 2, the asymptotic distri-
bution of Tn under the null hypothesis is normal,
while for α > 2 this distribution is in the domain of
attraction of a stable distribution. More specifically,
a locally most powerful test of H0 against H2 with
γ = 2 rejects the null hypothesis, H0, when

Tn > 2n
[
1 − (n ln n)−1/2] + (n ln n)1/2Zα, (7)

and the test for γ > 2 rejects H0 when

{Tn − nγ (1 − a
−(γ−1)−1

n )}
an

(8)

exceeds the (1 − α)th fractile of a stable distribution
with indices γ /(γ − 1) and −1. In (8), an is given
by

an =

{[
8γ n

ln n

](γ−1)/γ

−
[

16n

ln n

]1/2
}

(γ − 2)2(γ−1)/γ
. (9)

Example

To illustrate the methodologies described here, we
use a data set from an experiment on pain scores.

The data first appeared in Conover & Salsburg [1].
Values for patients from a study of acute painful
diabetic neuropathy were recorded at baseline and
after four weeks of treatment on an analog scale. The
changes from baseline were described as the natural
logarithm of the ratio of baseline to final scores.
Table 1 is reproduced from Conover & Salsburg for
completeness. For these data using γ = 5, the value
of s(i) is 0.261 for the treated patients and 0.133 for
the control subjects, leading to a P value of 0.031.
The value of Sn,m is 2.10, leading to a P value of
0.0179. Computation of Tn for these data gives

Tn =





100.13, γ = 2,

210.31, γ = 3,

421.28, γ = 5,

and in all cases the test indicates a highly significant
treatment effect. The fractiles of a stable distribution
may be obtained from Cross [3].

There is a vast body of literature on the theoretical
development and applications of Lehmann alterna-
tives. Wijsman [10] provides a comprehensive and
thorough list of early references. Halperin & Ware
[4], Cox [2], and Peto [6] discuss the use of Lehmann
alternatives in the analysis of data from clinical tri-
als. The intent here has been to demonstrate more
recent applications in biostatistical problems.
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Length Bias

The length-biased distribution is a probability dis-
tribution resulting from a biased sampling scheme in
which the probability of observing a positive-valued
random variable is proportional to the value of the
variable.

Length Bias in Renewal Theory

The presence of length bias is a natural phenomenon
in renewal theory. Consider a sequence of random
variables

X1, X1 + X2, X1 + X2 + X3, . . . ,

where the Xs are positive-valued, nondegenerate,
independent and identically distributed (iid) random
variables. Suppose the process starts from time 0 and
is observed at the time τ0, where τ0 is a positive
constant. Let α be the index so that

α−1∑

i=1

Xi < τ0 ≤
α∑

i=1

Xi.

Let Y, T , and R respectively denote the length of the
interval containing τ0, the backward recurrence time,
and the forward recurrence time, or equivalently,

Y = Xα, T = τ0 −
{

α−1∑

i=1

Xi

}
,

R =
{

α∑

i=1

Xi

}
− τ0.

Let f , S, and µ represent the density function,
survivorship function, and mean of X1, respectively.
When τ0 is sufficiently large so that an equilibrium
condition is reached [3], the joint density of (T , R)
can then be derived as

p
T,R

(t, r) = f (t + r)I (t ≥ 0, r ≥ 0)

µ
. (1)

The marginal density functions of Y, T , and R can
be derived, based on (1), as

p
Y
(y) = yf (y)I (y ≥ 0)

µ
, (2)

p
T
(t) = S(t)I (t ≥ 0)

µ
, (3)

p
R
(r) = S(r)I (r ≥ 0)

µ
. (4)

The distribution of (2) is generally referred to as the
length-biased distribution.

Although the length-biased distribution in renewal
theory is usually derived under the iid assumption
on the Xs, as a general result the independence
assumption can be removed and the density formulas
(1)–(4) still remain valid [6].

Statistical Methods

Length-biased sampling is recognized in many
research fields including epidemiology, ecology, and
reliability. A number of methods for length-biased
data have been developed in the statistical literature.
Cox [4] proposed estimating the survivorship
function by a weighted empirical distribution function
(see Goodness of Fit), with weight inversely
proportional to yi :

Ŝn(y) = n−1µ̂

n∑

i=1

[
y−1

i I (yi > y)
]
,

where µ̂ = {n−1 ∑
j y−1

j }−1 serves as an appropriate
estimate of µ, since n−1 ∑

j y−1
j estimates µ−1. The

estimator Ŝn can be proven to be the nonparametric
maximum likelihood estimator of S, a special case
under Vardi’s selection bias models [12, 13]. Follow-
ing the same weighting procedure, a kernel estimator
of the density function f (see Density Estimation)
was proposed in [7] as

f̂n(y) = n−1µ̂

n∑

i=1

[
y−1

i Kh(y − yi)
]
,

where Kh(x) = h−1K(h−1x), h > 0, with K a ker-
nel function. Alternatively, one could first estimate
the length-biased density, (2), by an ordinary kernel
estimator and then use the relationship of (2) and
f to obtain an estimator of f [2]. Under the pro-
portional hazards model [5], a risk set sampling tech-
nique was developed in [17] for estimating regression
parameters. For yj ≥ yi , let ∆j(yi) be a binary vari-
able which equals 1 with probability yi/yj , and 0
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with probability 1 − (yi/yj ). The indicators ∆j(yi)

are used to identify bias-adjusted risk sets and to
construct pseudo-likelihood equations. Regression
parameter estimates are then derived by solving the
score equations (see Likelihood).

Length Bias in Prevalent Cohorts

Length-biased sampling could arise in many epidemi-
ologic studies when survival data are collected from
a disease population (see Prevalent Case). As an
illustration, suppose a random sample of women with
breast cancer (b.c.) are recruited for observation of
survival. Assume (i) the rate of occurrence of b.c.
remains constant over time, and (ii) the density func-
tion of the time from b.c. to death, f , is independent
of the calendar time when b.c. occurred. Conditions
(i) and (ii) together are referred to as the equilib-
rium condition. Denote by τi the calendar time when
woman i with b.c. is recruited, ti the time from the
initial diagnosis of b.c. to τi , and yi the time from
the initial diagnosis of b.c. to death. Under the equi-
librium condition, the joint density of (ti , yi) is an
equivalent of (1), namely

p
T,Y

(t, y) = f (y)I (y ≥ t ≥ 0)

µ
, (5)

and the distribution of yi is length-biased with density
(2). Suppose a sample of iid (t1, y1), . . . , (tn, yn) is
observed. By the factorization theorem, the observed
failure times {yi} serve as sufficient statistics for
parameters of f . In this case, the variables {ti} do
not contain additional information for f .

The preceding length-biased sample can be
described more generally as disease prevalent data.
Suppose there are two chronologically ordered
and nonrecurrent events, termed the initiating and
terminating events. Replacing the events of b.c. and
death by the initiating and terminating events, the
sample {yi} is length-biased when study individuals
are recruited from those who have experienced
the initiating event but have not experienced the
terminating event [16]. Samples of this type could
also be collected in a screening program for chronic
diseases. It was indicated by Zelen & Feinleib [20]
that the screen does not detect people at random,
but detects people with longer preclinical sojourn
times.

Although statistical methods can be formulated on
the basis of length-biased observations as discussed
earlier, the analysis could be further complicated
by the presence of right censoring. We next make
connection between length-biased sampling and left
truncation in this context.

Length Bias and Left Truncation

Using formula (5), the density function of yi given
ti can be derived as f (y)I (y > t)/S(t), a truncated
density function. The observed ti in left truncation
models [8, 10, 11, 15, 16, 19] is usually termed the
truncation time and has density function S(t)I (t >

0)/µ. Given the observations (t1, y1), . . . , (tn, yn),
the full density can be expressed as the product of
the marginal density of the ti ,

n∏

i=1

[
S(ti)

µ

]
,

and the conditional density of yi given the ti ,

n∏

i=1

[
f (yi)

S(ti)

]
. (6)

In length-biased models the truncation times in gen-
eral do not serve as ancillary statistics for parameters
of f , and thus the conditional likelihood (6) is used
subject to loss of information.

Suppose now the observation of the terminating
event is subject to right-censoring. Assume the fol-
lowing independent censoring condition: conditional
on the observed ti , the time from τi to the termi-
nating event, ri , is independent of the time from τi

to censoring, di . This independent censoring condi-
tion does not, however, imply independence between
the length-biased time, yi(= ti + ri), and the censor-
ing time, ci(= ti + di) [14, 16]. Let wi = min{yi, ci}
be the time from the initiating event to the end
of observation, and δi = I (wi = yi) the censoring
indicator. Conditional on ti , under the independent
censoring condition the density of (wi, δi) is propor-
tional to f (wi)

δi S(wi)
1−δi /S(ti). Given a sample of

iid observations (t1, w1, δ1), . . . , (tn, wn, δn), statisti-
cal approaches based on the conditional likelihood,

n∏

i=1

[
f (wi)

δi S(wi)
1−δi

S(ti)

]
,
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are considered as methods for left-truncated and
right-censored data. These approaches replace the
usual risk sets R(w) = {wi : wi ≥ w} by R∗(w) =
{wi : ti ≤ w ≤ wi} and result in an interesting con-
trast with the familiar techniques used in survival
analysis [11, 15, 16, 19]. These methods can be
alternately derived using counting process tech-
niques with left-filtering [1, 8, 10]. The connection
between renewal processes and left truncation can
also be made by various approaches [9, 18]. While
the methods provide “simple solutions” for analyz-
ing censored length-biased data, these conditional
approaches, similar to the left-truncation case, are
used subject to loss of efficiency because marginal
information from the truncation times is not used
in the construction of the methods. Furthermore, the
applicability of these methods requires that the trun-
cation time, ti , be observable, and such a requirement
might not be met in some applications.

Length Bias and Cross-sectional
Sampling

In the example of prevalent cohorts, the initiating
and terminating events are required to be nonre-
current. Nevertheless, the problem of length bias
could also be encountered in studies that adopt cross-
sectional sampling techniques to collect failure times
from univariate or bivariate recurrent event processes
(see Repeated Events). In these studies the out-
come variable of interest is the length between two
successive events. The crucial condition assumed,
for the validity of length-biased distribution, is the
equilibrium condition for the recurrent events. With
cross-sectional samplings, the intervals which contain
the sampling times are observed and form the length-
biased sample. Examples include cross-sectional sam-
ples of (i) fibre length [4], where the recurrent events
are of the same type and the location of an event is
specified as the left end of a fibre, and (ii) length
of stay in a hospital, in which the bivariate recur-
rent events are admission to and discharge from a
hospital.
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Leukemia Clusters

Interest in the possibility that cases of cancer and
leukemia tend to occur in clusters has a long history
[6]. Early reports were of cancer in particular families
or houses; more recently interest has centred on spa-
tial and space–time clustering. Most recent interest
concerns leukemia in children and has been stimu-
lated by suspicions of an environmental etiology.

The possible explanation of clusters most consid-
ered is that environmental radiation might be respon-
sible for leukemia in children, and public concern is
so great that it has had a major impact on the develop-
ment of civil nuclear power programs. Natural though
such apprehensions may be, they are out of all pro-
portion to the strength of the epidemiologic evidence.
Radiation is certainly a known leukemogen, but most
environmental doses are too low to account for signif-
icant risk. Recently, other leukemogenic mechanisms
have been receiving more attention, notably the pos-
sibility of an infectious etiology. Although there is
some evidence of geographical clustering, this is not
strong and, despite intensive investigation, no actual
leukemia cluster has led to the identification of a spe-
cific cause.

The Nature of Leukemia

Acute leukemia is a malignant disease characterized
by rapid proliferation of leucocytes from a single
malignant clonal cell; chronic forms develop slowly
over a long period of time but are capable of
becoming acute. The tumor is relatively rare in
adults, but commonest in children, accounting for
around a third of all cases of malignant disease under
the age of 15. The most distinctive of the numer-
ous forms is acute lymphocytic leukemia (ALL). In
practice, many epidemiologic investigations distin-
guish only between ALL and acute nonlymphocytic
leukemia (ANLL).

Types of cancer generally, and leukemia in par-
ticular, show very different relative frequencies in
children and adults. Thus ALL accounts for around
80% of all leukemia in children, with a peak at
around 3 years of age [15]. Most of the remaining
cases are of ANLL, chronic leukemia being rare in
childhood. Among adults, however, the commonest
form is chronic lymphocytic leukemia, ALL being

less common than either the chronic or acute myelo-
cytic forms [25].

Reported incidence rates of leukemia show some
variation internationally; these may be partly due to
genetic factors, but are probably also a consequence
of differences in reporting and diagnostic procedures
[25]. In addition, the disease tends to be masked
by acute infections, which may explain some of
the international differences and the more marked
historical trends [24]. Intranational rates show less
variation for children [14] than for adults [7].

The Etiology of Leukemia

The etiology of leukemia is only partly understood.
The importance of genetic factors is clear from its
association with certain conditions having a clear
genetic etiology, notably Down’s syndrome (trisomy
21), in which the risk of childhood leukemia is
increased about 15-fold [35].

Of the various exogenous factors that have been
proposed as having etiological significance for leuke-
mia, ionizing radiation is by far the most impor-
tant. That it causes leukemia in high doses (of the
order of 100 mSv or more) has been established
beyond doubt by various epidemiologic studies [29,
34], which, however, predominantly involved adults.
There is also significant evidence that the much lower
doses exposing the fetus in obstetric X-ray investi-
gations (typically 2–20 mSv) are leukemogenic [4,
13]. The epidemiologic evidence therefore justifies
the interest in environmental radiation, especially the
possibility of a risk near nuclear installations [33] or
following nuclear accidents. In most cases, however,
the excess radiation levels in such environments are
small compared with the natural background radia-
tion and are unlikely to explain observed excesses of
leukemia [11].

A viral component of the etiology has also been
suspected for a long time. The first strong epidemio-
logic evidence relates to a cohort of children born in
March 1958 in the UK [17], for which there was a
ninefold increase in the risk of leukemia and lym-
phoma among children whose mothers contracted
influenza during pregnancy. Chance may have at least
partly exaggerated the finding, and it is noteworthy
also that the relevant exposure was to a particularly
virulent epidemic of the Asian strain; in any event,
subsequent corroboration was only partial [30]. More
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recently, Greaves [21] has postulated that children
exposed to below average levels of infection post-
natally may fail to develop a fully effective immune
system, making them more vulnerable to tumor initi-
ation. Such a mechanism might explain the known
association between childhood leukemia and high
socioeconomic status [14] and also the population-
mixing phenomena demonstrated by Kinlen [23] and
discussed below.

Other known or possible causes of leukemia
include chemotherapeutic agents [12]; exposure to
chemical carcinogens, which is normally occupa-
tional and may be parental [28]; and exposure to
electromagnetic fields [10]. With the exception of the
last of these, for which the evidence is least convinc-
ing, a genuine causal relationship would be unlikely
to result in demonstrable geographic patterns.

The Nature of Clustering

Clustering may be defined as the tendency of observa-
tions to be situated closer to one another than would
be expected. The reference space within which a clus-
ter appears may be discrete or continuous, the former
being exemplified by clustering within families. The
problem of analyzing excesses within family or other
groups raises few special problems, however. Greater
interest, both theoretically and practically, attaches to
clustering in a continuum, which is normally taken
to be geographical space, time, or their product, the
latter giving rise to space–time clustering.

Clustering in time only would presumably be
indicative of a widely dispersed short-term hazard;
few instances of such hazards have been proposed
for leukemia. Seasonal variation (see Seasonal Time
Series) could also induce this form of clustering,
though the term would not normally be taken to
include such an effect and specific, period-related
methods of analysis would be more appropriate than
general tests. Rather little evidence of seasonality in
leukemia incidence has been advanced [16].

Clustering in space could be ascribed to a number
of possible mechanisms, mostly involving geographi-
cal variation of risk. Local variation of genetic factors
could in principle produce spatial clustering, but there
is little or no evidence of this in the case of leukemia.
Spatial variation is more likely to be due to local
variation in risk due to some environmental factor.

Space–time clustering – i.e. an interaction bet-
ween the space and time distributions – could be

indicative of some infective mechanism in the eti-
ology of the disease. The evidence for this is briefly
summarized below. Space–time interaction tests have
the apparent attraction that they can be executed
without knowledge of the marginal distributions in
time and space, the latter being particularly hard to
estimate accurately. However, they are vulnerable
to space–time interactions in the denominators, i.e.
to changes in population distribution over the study
period (see Denominator Difficulties). Little work
has been done on how sensitive they are to such
changes and how much this may affect published
findings.

Assessment of clusters is inevitably bound up
with the methods used to detect them (see Geo-
graphic Epidemiology). Here we emphasize only
the importance of distinguishing between situations
where there is or is not a hypothesis identified a
priori; the distinction crucially affects the choice of
method as well as the interpretation of the results.

Evidence of Leukemia Clustering

Most of the study of leukemia clustering has concen-
trated on childhood leukemia, and this is reflected in
the following brief review.

Nuclear Installations

The specific environmental issue that has received
greatest attention is that of possible risk in proximity
to nuclear installations. Early concern following the
accident at Three Mile Island in the US gained new
impetus in the UK, particularly after a television
program in 1983 identified an abnormally large num-
ber of cases in Seascale, a village near the nuclear
reprocessing plant at Sellafield in Cumbria.

Although Sellafield is one of the largest
nuclear reprocessing plants in the world and has
released significant quantities of radiation into the
environment, detailed radiologic analyses considering
available estimates of risk coefficients and parallel
exposures from nuclear fallout make it very unlikely
that radiation alone could account for the observed
relative risks [11, 33]. The hypothesis that paternal
preconception irradiation might be the crucial
pathway [19] is inconsistent with current dosimetric
estimates of genetic risk and with other epidemiologic
studies [26].
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Nevertheless, public concern remains high and a
number of clusters in the vicinity of other nuclear
installations have been reported more or less anec-
dotally; significantly, perhaps, these include excesses
at other reprocessing plants at Dounreay in Scotland
[8] and La Hague in France [32]. Public concern
has extended to nuclear power generating stations
although they normally have very much lower emis-
sions. This concern has prompted a number of studies
of nuclear installations in the UK [5], the US [22],
and Canada [27]. These studies have not generally
uncovered further significant excesses.

The excess in Seascale is particularly difficult to
interpret in view of the mode of its discovery and
initial reporting. Its statistical significance is in some
measure diluted by the observation that Seascale is
one of almost 10 000 similar areal units in the UK.
The fact remains, however, that the Sellafield plant
is unique in terms of its history and activity and
any prior hypothesis would presumably have put
high odds on this being the most likely location
of any excess. It is disturbing too that, since the
initial finding, further cases have occurred: between
1984 and 1992 there were a further three cases of
ALL and non-Hodgkin lymphoma, bringing the total
since 1963 to eight, compared with around 0.65
expected [9]. A useful collection of abstracts and
papers on childhood cancers near nuclear installations
was published in 1993 and dedicated to the late
Martin J. Gardner [3].

Viral Etiologies

The difficulty of explaining the Seascale cluster in
terms of radiation has prompted a search for other
possibilities. Foremost of these is the possibility
that the risk of childhood leukemia is increased
by exposure to an infective agent consequent on
increased levels of “population mixing”. In a remark-
able series of papers, Kinlen and colleagues studied
other populations in which a similar mixing effect
could be expected [23]. These include new towns,
the vicinities of major construction sites, and com-
munities receiving wartime evacuees; they showed
consistently raised risks of childhood leukemia. An
explanation might be that children in the indigenous
population are vulnerable to an infectious agent or
agents not previously encountered or, in line with
Greaves’ argument [21], that they have a gener-
ally higher susceptibility to leukemogenesis resulting

from a reduced exposure to infections in the post-
natal period. The geographic data do not permit the
identification of a specific organism and are conse-
quently unlikely to throw more light on these possible
mechanisms.

Generalized Clustering of Childhood Leukemia

The evidence discussed above is noteworthy, and per-
haps more convincing, because it stands out from the
relative uniformity of childhood leukemia incidence.
Attempts to demonstrate widespread and generalized
clustering have not, generally speaking, produced
striking results. An atlas of leukemia incidence cov-
ering around a third of the population of England
and Wales in the years 1984–1988 [7] demonstrates
moderate variation between counties; this is probably
largely due to the contribution for adults, which was
not separated out. Tests of spatial clustering at a more
local level, however, were broadly negative.

As far as childhood leukemia is concerned, the
largest register of data in the world is the (UK)
National Registry of Childhood Tumours maintained
by the Childhood Cancer Research Group in Oxford
(see Disease Registers). Geographically referenced
cases occurring in Britain in the years 1966–1983
were made available to a group of researchers, who
tried out their different methodologies; the results
were reported in a monograph [14]. The evidence
of generalized spatial clustering was rather slight,
was related to ALL under the age of 5 and appeared
to be strongest in rural areas [1]; the latter associa-
tion may be a reflection of the socioeconomic effect
already noted. An analysis of space–time cluster-
ing by Gilman et al. [20] reported some statistically
significant results, but these were hard to interpret
because of the problems of multiple testing (see Mul-
tiple Comparisons) and of sensitivity to population
changes referred to above; the latter problem is espe-
cially severe in the analysis of large data sets, where
statistically significant results may correspond to very
small real effects. The overview by Gardner [18] con-
cluded: “Overall, there are apparently no dramatic
findings in the results of the analyses carried out for
this volume.”

This negative view of the importance of general-
ized clustering is consistent with many other papers
and reviews [25, 31], though the review by Alexander
[2] concludes that the data as a whole are “consistent
with their interpretation as an imperfect reflection of
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some underlying population infective process”. It is
only to be expected that some significant findings will
be reported. They should certainly not be discounted,
but need critical appraisal, particularly where there
may be doubts about the methodology.

Discussion

We conclude from this review that the evidence
for any significant general tendency of leukemia to
exhibit clustering is equivocal at best. It would be
as unsatisfactory to conclude that there is no such
effect as to conclude that the evidence is strong
enough to provide real pointers toward the etiology.
Although there is some evidence of geographic and
of space–time clustering, the effects are at most
weak and the scope for methodologic and data error
is considerable. Methodologic limitations work both
ways: it is possible that some stronger effects are
being masked by inefficient methods and inadequate
data. In particular, it is likely that place of birth is at
least as important as place of residence in the etiology
of childhood leukemia; unfortunately, it is in practice
harder to obtain extensive data on place of birth and
most published results relate to residence at diagnosis
or death.

There is no particular reason why geography
should hold the clue to the etiology of leukemia.
Even if environmentally varying factors were known
to be very important, the mobility of the population
will inevitably dilute the impact on individuals. In
practice, so little is known about the etiology of the
disease that we cannot assume prima facie that envi-
ronment should be significant. None of this is likely
to allay the anxieties of people who believe that their
own form of the disease is directly related to their
own circumstances. If only to put their anxieties into
perspective and offer the best possible reassurance, it
is necessary to maintain research effort on the pos-
sibility that there is a much stronger environmental
component in the etiology of the disease than appears
likely at present.
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Level of a Test

The level of a statistical test, often called the level
of significance, is the probability of rejecting the
null hypothesis of “no effect” when in fact it is
true. In classical hypothesis testing a null hypoth-
esis, denoted by H0, is assumed to be true, and the
observed data are evaluated by a statistical test proce-
dure to decide if the data provide sufficient evidence
to reject this hypothesis. The possible outcomes of
this test procedure are summarized in Table 1.

The level of the test is the probability of making
a type I error. The decision to accept or reject H0

is based on a comparison of the prespecified level
of the test (generally 0.05 or 0.01) with the test
procedure’s P value, i.e. the calculated probability
of finding a difference at least as great as the one
actually observed, assuming that H0 is true. If the

Table 1

State of Nature

H0 true H0 false

Accept H0 Correct Type II error
Decision

Reject H0 Type I error Correct

P value is less than the level of the test, then the
experimental data are considered to be inconsistent
with the null hypothesis, H0 is rejected, and the
result is declared to be “statistically significant” at
that particular level. If the P value is greater than the
level of the test, then H0 is accepted. A statistically
significant departure from the null hypothesis may
or may not be of practical importance in a given
study.

Although the level of a test is traditionally taken as
0.05 or 0.01, this choice may vary, depending upon
the probability of type I and type II errors that the
experimenter is willing to accept. The level of a test is
also one of several factors (together with sample size,
the magnitude of the difference to be detected and
the underlying variability) that determine the power
of a test procedure for detecting departures from the
null hypothesis (power is defined as one minus the
probability of a type II error). Thus, for example, if
0.01 rather than 0.05 is selected as the level of the
test, the probability of a type I error is reduced, but
so is the power for detecting departures from H0.

Other statistical terms that are often used to refer
to the level of a test include the size of the test, the
alpha error, and the false positive rate.

JOSEPH K. HASEMAN



Levinson–Durbin
Algorithm

The Levinson–Durbin algorithm is a method for
finding the solution b = [b1, b2, . . . bp]T to a system
of p linear equations

A × b = c, (1)

where A is a p × p symmetric Toeplitz matrix (a
Toeplitz matrix is composed of elements that are
constant along the diagonals)

A =





a0 a1 . . . ap−2 ap−1

a1 a0 . . . ap−3 ap−2

. . . . . . . . . . . . . . .

ap−2 ap−3 . . . a0 a1

ap−1 ap−2 . . . a1 a0



 (2)

and c is a known p-dimensional column vector.
Systems like (1) with A both symmetric and

Toeplitz can be found in several applications, like
spectral estimation, filter design (see Kalman Fil-
ter), or linear prediction. For instance, given two
N -point sequences {xk} and {yk}, the linear pre-
diction problem deals with finding the coefficients
of a moving-average filter of order p that predicts
{yk} from {xk}, minimizing the sum of the squared-
errors S:

S =
N−1∑

k=0

[yk − (b1xk + · · · + bpxk−p)]2. (3)

The coefficients b = [b1, b2, . . . bp]T are the solu-
tion to (1), when ai = rxx(i) are the autocorrela-
tion coefficients of {xk}, and c = [rxy(0), rxy(1), . . . ,

rxy(p−1)]T are the cross-correlation coefficients
(Wiener–Hopf equations).

Another application is finding the coefficients bk

of an autoregressive model (see ARMA and ARIMA
Models) of order p approximating a time series {yk}

yN = −
p∑

k=1

bkyN−k + eN (4)

when the autocorrelation coefficients [ryy(i)] are
known, or estimated from {yk}. The solution b =
[b1, b2, . . . , bp]T satisfies (1), where ai = ryy(i),
and c = [−ryy(1), −ryy(2), . . . , −ryy(p)]T (Yule–
Walker equations).

To solve the matrix equation (1), one should calcu-
late b = A−1 × c. Common general methods require
a number of operations proportional to p3 to com-
pute A−1. By exploiting the special structure of the
Toeplitz matrix in connection with the linear predic-
tion problem, N. Levinson developed a computation-
ally efficient algorithm [2] that requires a number of
operations proportional only to p2. The method was
rediscovered by J. Durbin, who applied it to fit an
autoregressive model to a given correlation sequence
[1]; therefore, the algorithm is commonly referred to
as the “Levinson–Durbin” algorithm.

The method is an iterative procedure that solves
a series of truncated problems. It is initialized by
solving the equation a0b

(1)
1 = c1. Then, at each step m

the size of the problem is incremented by considering
a new row and column of A, that is, the set of m-linear
equations:

m∑

i=1

ai−1b
(m)
i = cj (j = 1, . . . , m). (5)

When m = p, the vector b = [b(p)

1 , b
(p)

2 , . . . b
(p)
p ]T is

the solution to (1). Figure 1 shows a scheme of the
algorithm when it is used to solve the Yule–Walker
equations; further details can be found in [4]. A gen-
eralization to the case of the nonsymmetric Toeplitz
matrix is given in [6].

σ20 = ryy (0)   

For m = 1,2,…p : 

σ2
m = σ2

m − 1[1− (bm
(m ))2] 

For i = 1,2,…m − 1: 

bi
(m ) = bi

(m − 1) + bm
(m )bm − i

(m − 1) 

Initialisation :

bm
(m ) = 

σ2
m − 1

−
ryy (m) + ∑ bi

(m − 1)ryy (m −  i )
i = 1

m −  1

Figure 1 Scheme of the Levinson–Durbin algorithm for
solving the Yule–Walker equations



2 Levinson–Durbin Algorithm

The algorithm has been widely applied in several
biomedical fields like speech analysis [3] and spectral
analysis of EEG [5, 7] and cardiovascular signals [8]
(see Clinical Signals). The popularity of the Levin-
son–Durbin algorithm in biomedicine is based on its
effectiveness in solving the Yule–Walker equations.
In fact, many nonstationary biomedical signals–like
the EEG or the beat-by-beat series of cardiovascu-
lar data–can be considered “locally stationary” over
short time windows. Sometimes these segments of
local stationarity are too short to be analyzed by
traditional Fast Fourier transform (FFT) spectra,
which might not provide the required frequency res-
olution. Alternatively, the best autoregressive model
of order p fitting the data is identified by solving the
Yule–Walker equations (owing to its recursive struc-
ture, the Levinson–Durbin algorithm also provides
all the models of order m < p), and a high-resolution
spectrum is calculated from the theoretical expression
for autoregressive processes [4].

In the following example, the algorithm is applied
to model a respiratory signal {yN }. Respiratory waves
can be derived from the ECG by assessing beat-by-
beat changes in the cardiac electrical axis. From a
short ECG recording consisting of 15 consecutive
heartbeats, the following 14 samples of a respiratory
time series {yN }, in mV, were derived:

{88; −141; −154; 129; 7; −135; −26;

161; −72; −13; 262; −48; −134; 75}.
The sampling frequency of {yN } is the mean heart

rate that, in this case, was 70 bpm. The coefficients
b

(3)
i of the best autoregressive model of order m = 3

fitting the data

yN = −b
(3)

1 yN−1 − b
(3)

2 yN−2 − b
(3)

3 yN−3 + eN (6)

are found solving the Yule–Walker equations. First,
the autocorrelation coefficients are estimated from
{yN } obtaining ryy(0) = 15 195, ryy(1) = −3196,
ryy(2) = −10 776, and ryy(3) = 9640. Then, the
algorithm is applied as shown in Figure 1. From

σ 2
0 = ryy(0) = 15 195 (7)

we iteratively obtain

m = 1 : b
(1)

1 = −ryy(1)

σ 2
0

= 3196

15 195
= 0.210

σ 2
1 = σ 2

0 [1 − b
(1)2
1 ] = 15 195

× (1−0.2102) = 14 525, (8)

m = 2 : b
(2)
2 = −(ryy(2) + b

(1)
1 ryy(1))

σ 2
1

= 10 776 + 0.210 × 3196

14 525
= 0.788

b
(2)

1 = b
(1)

1 + b
(2)

2 b
(1)

1 = 0.210 + 0.788

× 0.210 = 0.375

σ 2
2 = σ 2

1 [1 − b
(2)2
2 ] = 14 525

× (1 − 0.7882) = 5506, (9)

and finally, for m = 3:

b
(3)
3 = −(ryy(3) + b

(2)
1 ryy(2) + b

(2)
2 ryy(1))

σ 2
2

= −(9640−0.375×10 776−0.788×3196)

5506
= −0.559

b
(3)
1 = b

(2)
1 + b

(3)
3 b

(2)
2 = 0.375−0.559×0.788

= −0.065

0.0 0.1 0.2 0.3 0.4 0.5

1 × 106

2 × 106

3 × 106

(m
V

2 /
H

z)

0

(Hz)

Figure 2 Power spectrum of the autoregressive model
of order 3 fitting the respiratory signal of the example
(see text); the model coefficients were identified by solving
the Yule–Walker equations through the Levinson–Durbin
algorithm. Spectra corresponding to models of order 2 and
1 are also shown (dotted lines)



Levinson–Durbin Algorithm 3

b
(3)

2 = b
(2)

2 + b
(3)

3 b
(2)

1 = 0.788−0.559×0.375

= 0.578

σ 2
3 = σ 2

2 [1 − b
(3)2
3 ] = 5506 × (1−0.5592) = 3785.

(10)

In this way, we identify not only the coefficients
b

(3)
i but also the power of the model error, σ 2

3 .
Figure 2 shows the power spectrum of {yN } calcu-
lated from this model.
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Lexis Diagram

A Lexis diagram is a (time, age) coordinate
system, representing individual lives by line seg-
ments of unit slope, joining (time, age) of birth and
death [14] (see Table 1 and Figure 1). The Lexis
diagram is an important descriptive tool in epidemi-
ology and demography. However, it also has several
applications in survival analysis and analytical epi-
demiology as a tool for several classes of statistical
models, as surveyed by Keiding [8]. These uses of
the Lexis diagram are less common and it is the aim
of this article to indicate some recent developments.

Lexis [14] in his Figure 1, reproduced here as
Figure 2, originally considered a diagram of (calendar
time at birth, age) in which life lines will be verti-
cal rather than having unit slope. In his Figure 2,
reproduced here as Figure 3, he also mentioned an
equilateral diagram in which the time units in the
calendar time, age, and cohort (i.e. time of birth)
directions are of the same length. See [11] for more
on the early history of the Lexis diagram. Lexis fur-
ther discussed a three-dimensional extension allowing
for an intermediate (irreversible) life event, in Lexis’s
case exemplified by marriage. This corresponds to
the three-state model basic to the modern statistical
description of incidence and prevalence (cf. [9, 15]).

Despite its long history, the Lexis diagram is still
being rediscovered among statisticians, cf. Goldman
[6] for the standard Lexis diagram and Weinkam &
Sterling [20] for the equilateral Lexis diagram.

Applications of the Lexis Diagram in
Survival Analysis and Analytical
Epidemiology

Clinical Trials with Staggered Entry

In many clinical trials patients arrive sequentially
in calendar time but the substantive interest is

Table 1 Five lives illustrated in
Figure 1

Born Died Age at death

1918 1966 48
1926 1944 18
1934 1992 58
1944 1978 34
1954 1968 14

70
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50

40
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10

1920 1930 1940 1950 1960 1970 1980 1990
Time

A
ge

Figure 1 A Lexis diagram representing the five lives of
Table 1
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Figure 2 Lexis’s diagram [14, Figure 1]

on survival time since entry. As explained in the
articles Interim Analysis of Censored Data and
Staggered Entry, the resulting interplay between
the two time scales (calendar time and duration)
has generated considerable complications in the
development of a satisfactory statistical theory,
particularly if comparisons between treatments are
intended along the way at certain fixed time points
(interim analysis) or sequentially (see Data and
Safety Monitoring).

As mentioned by Keiding et al. [12] (see Delayed
Entry), it is sometimes feasible to exploit the remain-
ing life times of individuals (counted with delayed
entry) from an interim analysis to supplement new
individuals in a confirmatory analysis. This idea is
explained in the Lexis diagram of Figure 4.
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Figure 3 Lexis’s equilateral diagram [14, Figure 2]
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Figure 4 Lexis diagram of the DBCG-77 clinical trials
on adjuvant treatment of breast cancer. The traditional
independent data set for verifying an unexpected finding
in A would be based on B and C. However, much more
information is obtained by including also D and E, and in
fact B and D already would have yielded the independent
confirmation not achieved by B and C. Reproduced from
Keiding et al. [12] by permission of John Wiley & Sons
Ltd

Disease Incidence Studies

Lexis diagram representations of classical (often his-
torically) prospective studies (see Cohort Study;
Cohort Study, Historical) of (calendar time, age)-
specific disease incidence are common, and we return
to some of the statistical issues below. More intricate
sampling plans may also take advantage of this repre-
sentation, such as the retrospective incidence study
of a cross-sectional sample of prevalent diabetics by
Keiding et al. [13], where each incident and surviving
case needed to be weighted (in a Horvitz–Thompson

fashion) by its inverse survival probability from dis-
ease onset to the sampling date.

Prevalent Cohort Studies

A prevalent cohort study is based on a cross-sectional
sample of diseased patients, with or without retro-
spective information on disease onset. Patients are
followed until death or a fixed later calendar time,
whichever comes first, (see Figure 5, and also [7] for
additional examples and the link to the Arjas–Haara
theory of innovative and noninnovative marks in
the marked point process that accounts for the par-
tial observation). The articles Biased Sampling of
Cohorts in Epidemiology and Delayed Entry pro-
vide surveys of design and analysis problems for such
studies.

Statistical Inference in the Lexis Diagram

Piecewise Constant Intensity Models

Many disease incidence and mortality studies
(perhaps particularly in cancer) have taken piecewise
constant intensity models (see Grouped Survival
Times) as method of choice (see Clayton &
Schifflers [4, 5] for a definitive survey). As is
also well known in sociology, there is an inherent

Age

Sampling Censoring

Calendar time

Figure 5 Lexis diagram of a prevalent cohort study. Four
patients are sampled and their disease onset is known.
During the follow-up period two of them die; the other
two are still alive at the end of follow-up, where they are
censored



Lexis Diagram 3

unidentifiability of the linear component in a model
allowing for dependence on both age, period and
cohort (see Identifiability), although Nakamura
[17] showed that a Bayesian framework allowed
roughness penalties in the three directions to decide
the matter.

Point Processes, Continuous Time

Brillinger [3] initiated an exact use of point processes
as a basis for statistical models for incidence and
mortality in the Lexis diagram, generalized to mor-
bidity (incidence) and prevalence by Keiding [9, 10]
(see also [19]). Without parametric assumptions, sta-
tistical analysis requires smoothing formally studied
by McKeague & Utikal [16] and embedded in an
empirical Bayes interpretation of penalized likeli-
hood by Berzuini et al. [2], Berzuini & Clayton [1]
and Ogata et al. [18], who reanalyzed the retrospec-
tive diabetes incidence study by Keiding et al. [13]
quoted above.
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[15] Lund, J. (2000). Sampling bias in population studies –
how to use the Lexis diagram. Scand. J. Statist. 27,
589–604.

[16] McKeague, I.W. & Utikal, K.J. (1990). Inference for a
nonlinear counting process regression model, Annals of
Statistics 18, 1172–1187.

[17] Nakamura, T. (1986). Bayesian cohort models for gen-
eral cohort table analyses, Annals of the Institute of
Statistical Mathematics 38, 353–370.

[18] Ogata, Y., Katsura, K., Keiding, N., Holst, C. &
Green, A. (2000). Empirical Bayes age-period-cohort
analysis of retrospective incidence data, Scand. J. Statist.
27, 415–432.

[19] Wang, M.-C., Brookmeyer, R. & Jewell, N.P. (1993).
Statistical models for prevalent cohort data, Biometrics
49, 1–11.

[20] Weinkam, J.J. & Sterling, T.D. (1991). A graphical
approach to the interpretation of age-period-cohort data,
Epidemiology 2, 133–137.

NIELS KEIDING



Life Expectancy

Life expectancy is both the most summary and the
most significant measure derived from a life table.
Life expectancy at age x is the average number of
years a person aged x will live if subject to the
mortality rates contained in the life table.

In life table notation, life expectancy at age x, e̊x ,
is given by

e̊x = Tx

lx
,

where Tx is the total years lived in the life table
population after exact age x, and lx = the number
of survivors in the life table population at exact age
x. The method for calculating these quantities can be
found in standard textbooks [3].

Like the life table itself, life expectancy is deter-
mined by the force of mortality or mortality hazard
function, µ(x), over the entire age range (see Hazard
Rate). In continuous notation

e̊(x) =
∫ ∞

x

l(x) dx

l(x)
,

and since

l(x) = exp

[
−

∫ x

0
µ(u) d(u)

]
,

it can be seen that life expectancy at age x reflects
both the cumulative hazard from birth to age x
(through lx), and the cumulative hazard from x to
the oldest age (through Tx , itself an integral of lx).

In actuarial analysis it is normal to distinguish
between the complete (exact) expectation of life and
the curtate or whole year expectation, but in demog-
raphy and epidemiology the complete expectation is
universally employed.

In most populations e̊(x) tends to rise between
birth and age 1, and to decline linearly thereafter,
although in very low mortality countries the decline
is virtually linear throughout the age range.

The most common life expectancy encountered is
e̊(0), the expectation of life at birth. Because e̊(0)

incorporates the entire mortality experience of the
cohort or life table population, it may be considered

as an age standardized (see Standardization Meth-
ods) measure of mortality, where the standard age
distribution is derived from the age pattern of mor-
tality itself.

Life expectancy at birth has increased substantially
with modernization, rising from a preindustrial level
of perhaps 40 years to current levels of over 80
in countries like Japan. Because of its cumulative
impact throughout the age range, improved survival
in infancy has made the greatest contribution to this
increase.

In recent years there have been unexpected gains
in expectation of life at older ages in some very low
mortality countries, leading to predictions that expec-
tation of life could rise to 100 years, with significant
effects on social security and pension systems. How-
ever, 85 seems a more likely upper limit [2].

Traditionally, life table theory has not had a strong
statistical component: the focus has primarily been
on the average expectation of life, rather than on its
distribution. However, Chiang [1] has addressed the
sampling theory of the life table, and more recently
the homogeneity/heterogeneity of life expectancy has
received renewed attention, particularly in the context
of expectation of life at advanced ages.

Life expectancy is also used as a powerful tool in
association with multistate or multilevel life tables.
Expectations of working life, of a healthy life, or of
a life free of disability are examples of this. Unlike
death, individuals may move in and out of these
states, requiring modifications to the logic of the life
table to incorporate nonabsorbing states.
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Life Table

A life table is a tabular representation of central
features of the distribution of a positive random
variable, say T , with an absolutely continuous
distribution. It may represent the lifetime of an
individual, the failure time of a physical component,
the remission time of an illness, or some other
duration variable. In general, T is the time of
occurrence of some event that ends individual
survival in a given status. Let its cumulative
distribution function (cdf) be F(t) = Pr(T ≤ t)

and let the corresponding survival function be
S(t) = 1 − F(t), where F(0) = 0. If F(·) has the
probability density function (pdf) f (·), then the risk
of event occurrence is measured by the hazard
µ(t) = f (t)/S(t), for t where S(t) > 0. Because
of its sensitivity to changes over time and to risk
differentials between population subgroups, µ(t) is a
centerpiece of interest in empirical investigations.

In applications to human mortality, which is where
life tables originated, the time variable normally is a
person’s attained age and is denoted x. The function
µ(x) is then called the force of mortality or death
intensity (see Hazard Rate). The life-table function
lx = 100 000 S(x) is called the decrement function
and is tabulated for integer x in complete life tables;
in abridged life tables it is tabulated for sparser values
of x, most often for five-year intervals of age. The
radix l0 is selected to minimize the need for decimals
in the lx table; a value different from 100 000 is
sometimes chosen. Other life-table functions are the
expected number of deaths dx = lx − lx+1 at age
x (i.e. between age x and age x + 1), the single-
year death probability qx = Pr(T ≤ x + 1|T > x) =
dx/ lx , and the corresponding survival probability
px = 1 − qx . Simple integration gives

qx = 1 − exp

[
−

∫ x+1

x

µ(s) ds

]
. (1)

Life-table construction consists in the estima-
tion and tabulation of functions of this nature from
empirical data. If ungrouped individual-level data are
available, then the Kaplan–Meier estimator can be
used to estimate lx for all relevant x and estimators
of the other life-table functions can then be com-
puted subsequently. Alternatively, a segment of the
Nelson–Aalen estimator can be used to estimate∫ x+1
x

µ(s) ds; (1) can then be used to estimate qx

for each x, and the rest of the computations follow
suit. From any given schedule of death probabili-
ties q0, q1, q2, . . ., the lx table is easily computed
sequentially by the relation lx+1 = lx(1 − qx) for x =
0, 1, 2, . . .. Much of the effort in life-table construc-
tion therefore is concentrated on providing such a
schedule {qx}.

More conventional methods of life-table construc-
tion use grouped survival times. Suppose for sim-
plicity that the range of the lifetime T is subdivided
into intervals of unit length and that the number of
failures observed during interval x is Dx . Let the
corresponding total person-time recorded under risk
of failure in the same interval be Rx . Then, if µ(t)

is constant over interval x (the assumption of piece-
wise constancy), then the death rate µ̂x = Dx/Rx is
the maximum likelihood estimator of this constant.
Relation (1) can again be used to provide an estimator

q̂x = 1 − exp(−µ̂x), (2)

and the crucial first step in the life-table computation
has been achieved. Instead of (2), µ̂x

/ (
1 + 1

2 µ̂x

)
is

often used to estimate qx . This solution is of older
vintage and may be regarded as an approximation
to (2).

Two kinds of problems may arise: (i) the exact
value of Rx may not be known, and (ii) the constancy
assumption for the hazard may be violated.

When the exact risk time Rx is not known, some
approximation is often used. An Anglo-Saxon tra-
dition is to use the midyear population in the age
interval. Alternatively, suppose that the number Nx

of survivors to exact age x and the number Wx of
withdrawals (losses to follow-up) in the age interval
are known. What has become known as the actu-
arial method then consists in approximating Rx by
Nx − 1

2 (Dx + Wx). If there are no withdrawals and
Nx is known, then Dx/Nx is the maximum likelihood
estimator of qx , and this provides a suitable starting
point for the life-table computations.

For the case where only grouped data are avail-
able and the piecewise-constancy assumption for
the intensity function is implausible, various meth-
ods have been developed to improve on (2). For
an overview, see Keyfitz [12]. Even if single-year
age groups are used, mortality drops too fast in the
first year of life to merit an assumption of con-
stancy over this interval. Demographers often use
µ̂0/[1 + (1 − a0)µ̂0] to estimate q0, where a0 is some
small figure, say between 0.1 and 0.15 [2]. If it is
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possible to partition the first year of life into subin-
tervals in each of which mortality can be taken as
constant, then it is statistically more efficient essen-
tially to build up a life table for this year. This leads
to an estimate like q̂0 = 1 − exp(−∑

i µ̂i ), where the
sum is taken over the first-year intervals. See Dublin
et al. [5, p. 24] for an example.

The force of mortality is sometimes represented
by a function h(x; θ), where θ is a vector of
parameters. Actuaries most often use the classical
Gompertz–Makeham function h(x; a, b, c) = a +
bcx for the force of mortality in their life tables
(see Parametric Models in Survival Analysis).
When individual-level data are available, it would be
statistically most efficient to estimate the parameters
by the maximum likelihood method, but most often
they are estimated by fitting h(·; θ) to a schedule
of death rates {µ̂x}, perhaps by least squares,
minimum chi-square (see Ban Estimates), or some
method of moments. This approach is called analytic
graduation; for its statistical theory, see [11]. One of
many alternatives to modeling the force of mortality
is to let [10]

qx

px

=A(x+B)C +D exp[−E(ln x − ln F)2]+GHx.

So far we have tacitly assumed that the data
come from a group of independent individuals who
have all been observed in parallel and whose life-
times have the same cdf. Staggered (delayed) entries
into the study population and voluntary exits (with-
drawals) from it are permitted provided they contain
no information about the risk in question, be it death,
recurrence of a disease, or something else. Never-
theless, the basic idea is that of a connected cohort
of individuals that is followed from some significant
starting point (like birth or the onset of some disease)
and which is diminished over time due to decrements
(attrition) caused by the risk’s operation. In demog-
raphy, this corresponds to following a birth cohort
through life or a marriage cohort while their mar-
riages last, and the ensuing tables are called cohort
life tables.

Because such tables can only be terminated at the
end of a cohort’s life, it is more common to compute
age-specific attrition rates µ̂x from data collected for
the members of a population during a limited period
and to use the mechanics of life-table construction to
produce a period life table for the population from
such rates. If mortality patterns are tied to cohorts,

then individuals who live at widely differing ages in
the period of observation cannot be expected to have
the same risk structure, and the period table is said
to reflect the patterns of a synthetic (fictitious) cohort
exposed to the risk of the period at the various ages.

Multiple-decrement Tables

When two or more mutually exclusive risks operate
on the study population (see Competing Risks), one
may correspondingly compute a multiple-decrement
table to reflect this. For instance, a period of sick-
ness can end in death or, alternatively, in recovery.
Suppose that an integer random variable K repre-
sents the cause of decrement and define Fk(t) =
Pr(T ≤ t, K = k), fk(t) = dFk(t)/ dt , and µk(t) =
fk(t)/S(t), assuming that all Fk(·) are absolutely
continuous. Then µk(·) is the cause-specific hazard
(intensity) for risk cause k and µ(t) = ∑

k µk(t) is
the total risk of decrement at time t . For the multiple-
decrement table, we define the decrement probability

q(k)
x = Pr(T ≤ x + 1, K = k|T > x)

=
∫ 1

0
exp

[
−

∫ t

0
µ(x + s) ds

]
µk(x + t) dt.

(3)

For given risk intensities, q(k)
x can be computed by

numerical integration in (3). The expected number
of decrements at age x as a result of cause k is
d(k)

x = lxq
(k)
x . When estimates are available for the

cause-specific risk intensities, one or two columns
can therefore be added to the life table for each cause
to include estimates of d(k)

x and possibly q(k)
x .

Several further life-table functions can be defined
by formal reduction or elimination of one or more of
the intensity functions in formulas like those above.
In this manner, a single-decrement life table can be
computed for each cause k, depicting what the normal
life table would look like if cause k were the only
one that operated in the study population and if it
did so with the risk function estimated from the data.
The purpose is to see the effect of the risk cause
in question without interference from other causes.
Some demographers call this abstraction the risk’s
pure effect. No assumption is made that in practice
the total attrition risk can actually be reduced to the
level of the one which is in focus or that this cause
operates independently of other causes. For instance,
a single-decrement life table of recovery from an
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illness reflects the pure timing effect of the duration
structure of the intensity of recovery even though the
elimination of mortality is unattainable.

A single-decrement life table is at an extreme end
of a class of tables produced by deleting one (or
more) of the cause intensities in formulas like those
above. To obtain a cause-deleted life table, where
only cause k has been eliminated, one may introduce
µ−k(t) = µ(t) − µk(t),

q(−k)
x =

∫ 1

0
exp

[
−

∫ t

0
µ−k(x + s) ds

]
µ−k(x + t) dt

= 1 − exp

[∫ x+1

x

µ−k(s) ds

]
, (4)

and so on, and a “normal” life table may be
computed with µ(t) replaced by µ−k(t) everywhere.
A corresponding cause-deleted multiple-decrement
life table may be based on reduced cause-specific
decrement probabilities like

∫ 1

0
exp

[
−

∫ t

0
µ−k(x + s) ds

]
µj (x + t) dt,

for j �= k.

Such a table would show what a normal table
would look like if it were possible to eliminate
cause k without changing the risk of any other
cause. Again no assumption needs to be made about
the feasibility of such elimination in real life nor
about cause independence. The computations are
based on a pure abstraction. The interpretation for
real-life applications must be based on substantive
considerations and is a different matter.

Life Expectancy

An individual’s life expectancy (at birth) is the
expected value

e̊0 = E(T ) =
∫ ∞

0
[1 − F(x)] dx =

∫ ∞

0

lx

l0
dx

of his or her lifetime T , computed for the probability
distribution F(·) operating at the time of birth. When
the individual has survived to (exact) age x, his or
her remaining lifetime, U = T − x, is positive and
has the survival function Sx(u) = S(x + u)/S(x) =
lx+u/ lx , and the residual life expectancy is

e̊x =E(T − x|T > x)=
∫ ∞

0
Sx(u) du=

∫ ∞

0

lx+u

lx
du.

If Lx = ∫ 1
0 lx+t dt , we get Lx

∼= 1
2 (lx + lx+1) by the

trapezoidal rule of numerical integration, and

e̊x =
∞∑

t=0

Lx+t
∼=

∞∑

t=0

lx+t

lx
− 1

2
, (5)

which is normally used to compute values for e̊x .
Equivalent names for the life expectancies are

mean survival time for e̊0 and mean residual survival
time at age x for e̊x . The median length of life is the
median in the distribution of T ; it used to be called
the probable length of life (see Median Survival
Time). Correspondingly, the median residual length
of life at age x used to be called the probable residual
length of life. If we denote the latter by ξx , then it is
defined by the relation lx+ξx

= 1
2 lx .

The above functions can be computed for cohort
life tables and for period life tables. Figure 1 shows
plots of the function e̊x according to the mortal-
ity experience for Swedish women in 1891–1900
and 1990–1994. The life expectancy at birth has
increased from 53.6 years in the older table to 80.8
some one hundred years later. Note that in the
older table e̊x increases with x up to age 2 and
remains above e̊0 up through age 11. When mor-
tality is high at very young ages, surviving the
first part of life increases your expected remaining
lifetime. As a consequence of mortality improve-
ments for very young children, these features have
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disappeared in the younger table. Note that the
expected total lifetime, x + e̊x , always increases
with x throughout the human lifespan. (One can
show that the derivative of this function is always
positive.) The longer you have lived already, the
longer you can expect the total length of your life
to be.

In a multiple-decrement situation, formula (5) can
be used to compute a residual life expectancy e̊(−k)

x

from the decrement series of the cause-deleted life
table for risk k. The difference e̊(−k)

x − e̊x is the
gain one would get in residual life expectancy at
age x if it were possible to eliminate risk cause
k without changing the risk intensity of any other
cause of decrement. Dublin et al. [5, p. 96] note
that according to the cause-specific mortality of the
US in 1939–1941 the gain would be 9.01 years
for white men and 8.80 years for white women at
age 0 if one could eliminate the risk of death due to
cardiovascular–renal diseases at all ages (and change
no other cause-specific mortality risks). The gains
from eliminating the risk of death in cancer alone
were much less (1.39 years for men and 2.05 years
for women).

History and Literature

The first step toward the development of the life
table was taken when Graunt [9] published his
famous Bills of Mortality. There were subsequent
contributions by Halley, Huygens, Leibniz, Euler,
and others. Deparcieux [4] clarified the definition
of the life expectancy and identified the need for
separate tables for men and women. Wargentin [17]
was the first to publish real age-specific death rates,
and the first to do so for a whole country. Price [14]
included most of the columns now associated with the
life table, and the tables by Duvillard [7] contained
them all. The basic notions of cause-eliminated life
tables go back to Bernoulli [1]. Cournot [3] developed
the essentials of their mathematics. See Dupâquier
[6] and Seal [15] for historical overviews. Smith
& Keyfitz [16] have collected extracts from many
original texts.

Life-table techniques are described in most intro-
ductory textbooks on the methods of actuarial statis-
tics, biostatistics, demography, or epidemiology. See
for example, Chiang [2], Elandt-Johnson & Johnson
[8], or Manton & Stallard [13].
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Likelihood Principle

All statisticians will agree that many, if not most,
modern procedures in all approaches to statistics
involve some use of the likelihood function. How-
ever, they will be much less in agreement about the
applicability of some general likelihood principle.
Although such principles have generated animated
debate in the past, in recent years, fewer statisti-
cians have shown interest in the foundations of their
discipline, so discussion has waned (see Inference,
Foundations of).

Suppose that we are interested in obtaining empir-
ical information about a fixed set of completely spec-
ified models P(ψ) ∈ P, indexed by the unknown
parameters ψ . We observe values y of the relevant
random variable Y ∈ Y, using an appropriate study
design. Then, the probability of these specific obser-
vations can be calculated for any member of the set
P. This is called the likelihood function L(ψ ; y) for
ψ given the set of models P and the observed data
y [7]. Observed likelihood functions are said to be
proportional if the proportionality constant contains
only functions of y, but not of ψ .

On the basis of the likelihood function, a number
of likelihood principles have been formulated. These
are listed below from the weakest to the strongest.

1. Any model indexed by ψ1 is more plausible
or likely than another ψ2, in the light of only
the given observed data, written L(ψ1; y) >

L(ψ2; y) if it makes these data more proba-
ble [8].

2. Data sets coming from replications of the same
study design, thus having the same sample space,
and having proportional likelihood functions
contain the same information about ψ given
P(ψ) [6].

3. Any data sets with proportional likelihood func-
tions contain the same information about ψ given
P(ψ) [2, 4].

4. From Principle 3, all inferences must be based on
the likelihood function in such a way that propor-
tional likelihoods lead to the same conclusions
about ψ given P(ψ) [3].

These should all be distinguished from maxi-
mum likelihood (sometimes also called a principle)
that provides only a point estimate, perhaps with
an asymptotic interval of precision. Inferences using

likelihood principles involve the complete likelihood
function, not just one value of it.

Principle 1 refers only to the observed data, mak-
ing no reference to repetitions, to alternative designs,
or to prior information not contained in P. Princi-
ple 2 has been called the weak likelihood principle
and Principle 3, the strong likelihood principle. These
principles are closely related to sufficient statistics
and to conditioning on the design used as well as
on the observed outcome. At least for discrete data
spaces, likelihood principle 3 can be derived from
such sufficiency and conditionality principles [4],
whereas Principle 2 is equivalent to sufficiency.

In contrast to the first two principles, Principles 3
and 4 imply that the same conclusions would be
made from samples drawn from different probability
spaces, that is, with different sample designs, if the
resulting likelihood functions are proportional. Then,
inference should not depend on the sample space Y,
but only on P and on the observed values y.

The most common simple example used to illus-
trate the import of the likelihood principle is repeated
Bernoulli trials (see Binary Data). Thus, the family
of models P, indexed by the constant unknown prob-
ability π , will describe a series of (supposedly) inde-
pendent Bernoulli trials to be performed. Notice that
independence and constant probability are assump-
tions of the models.

1. In a fixed sample size design, a coin is tossed
a fixed number of times n and the number of
heads y recorded. If the tosses are independent
with constant probability of heads, the likelihood
function is binomial,

L(π ; y, n) =
(

n

y

)
πy(1 − π)n−y (1)

and the sample space is Y = {y : 0 ≤ y ≤ n}.
2. In a sequential design (see Sequential Analysis),

the coin will be tossed until a fixed number of
tails c has been observed. Thus, y is the number
of heads recorded in a random total sample size
of n = c + y tosses. With the same conditions
of independence and constant probability as in
Design 1, the likelihood function is negative
binomial,

L(π ; y, c) =
(

c + y − 1

c − 1

)
πy(1 − π)c (2)

and the sample space is Y = {y : y ∈ N}.
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The second design differs in several important
ways from the first. Not only is the sample size
random, but we must also have available the result of
each trial, as it occurs, in order to know whether to
stop or not, and, hence, we must necessarily have the
time-ordered sequence of results. This will often be
the reason why such a design is chosen. However, this
information is always lost in the negative binomial
likelihood given above so that, in such cases, it
would not be the appropriate likelihood function. On
the other hand, Design 1 can be performed without
this sequential information being available. If it is
available, it also is discarded in constructing the
above likelihood.

Once the total number of tosses, n = c + y, and
the number of heads, y, are known, both likelihood
functions, for a model of independent events with
constant probability, are proportional to

πy(1 − π)n−y = πy(1 − π)c (3)

and y is the sufficient statistic for π (given n or
c fixed). However, in specifying the likelihood for
Design 2, and perhaps that for Design 1, we discard
relevant information about π . This is only necessarily
available in the sequential order of results produced
by Design 2. This lost information would allow us to
check the assumptions of independence and constant
probability π .

The difference between the two designs (fixed ver-
sus random sample size) is reflected in the frequentist
approach to the problem. With the same null hypoth-
esis and the same observed results, a P value will
generally be different in the two designs because the
sample spaces differ. Such inferences violate Princi-
ples 3 and 4.

In this sense, a frequentist procedure does not
clearly separate testing the null hypothesis of a given
fixed value for π from checking these more funda-
mental assumptions of the model. However, appli-
cation of Principle 3 or 4 in this example clearly
involves the assumption that the set of models under
consideration, indexed by π , and defining the likeli-
hood function, contains the true model. Dependence
or nonconstant probability are excluded by hypoth-
esis and information to check these assumptions is
discarded.

Application of the stronger likelihood principles
involves a number of strong assumptions that should
be made explicit:

1. The set of models P(ψ) must be fully specified
and it must be assumed that one of them is true.

2. All uncertainty must be included in ψ . It must
index all unknowns in the problem, such as
unknown variables and values to be predicted,
and not just parameters in the classical sense.

3. If different designs are involved, ψ must be
identical in all of them.

4. Choice among different designs must be nonin-
formative.

In a decision problem, such as testing for treat-
ment effect in a Phase III clinical trial, these may
all be reasonable assumptions. However, in sci-
entific research, Assumptions 1 and 4 are usually
questionable.

• Scientific models are always approximations and
can never be “true”. The scientist must be able to
question all assumptions and, as far as possible,
check them with the data.

• The choice between two designs is rarely indiffer-
ent (made by random selection). One design will
be used rather than another because it provides
more appropriate information, given its costs.

Discussion of the likelihood principle necessarily
involves the importance of the stopping rule. This
specifies how observation is ended in a study. Stop-
ping rules must only use information available up
until the point in time when stopping is to occur. The
role of the stopping rule can clearly be seen in the
above Bernoulli example. The implication of like-
lihood principle 3 is that only the likelihood based
on the final result of a properly conducted sequen-
tial trial should be used in making inferences. It is
irrelevant that intermediate checks of the data were
made to determine when to stop (perhaps by exam-
ining intermediate likelihoods). This contrasts with
frequentist analyses involving “spending” the test
probability over the course of a sequential trial (see
Interim Analysis of Censored Data). Here, the final
test depends on what happened throughout the trial
and not just on the final outcome.

The way to handle censoring and missing data
such as dropouts is closely related to the stopping
rule. According to the stronger likelihood principles,
if the censoring or missing data mechanism is non-
informative about the process of interest, it need not
explicitly appear in the likelihood function. Planned
censoring will generally be of this form but missing
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data, by definition, are generally unplanned and hence
more difficult. Empirically, missingness, if not com-
pletely independent of the process under study (the
broken test tube), will invariably be closely impli-
cated with that process and must be modeled and
included in the likelihood function no matter what
approach is used.

Different approaches to inference necessarily
imply differing appreciation of the various likelihood
principles. The likelihood school maintains that
Principle 1 is adequate to draw many scientific
conclusions. However, the relative plausibilities of a
set of models must be tempered by their complexity
using a penalty, such as is done with information
criteria (AIC [1], BIC [9], or their modifications; see
Akaike’s Criteria).

The frequentist school holds that Principle 1 is
inadequate because indication of performance in
repeated application of inferences is necessary. How-
ever, its techniques involve the use of the sample
space, that is, what might have been observed, thus
excluding Principles 3 and 4. If obeyed to the let-
ter, this has drastic consequences. Although a study
might have no censoring or missing data, if it could
have had some, then the sample space for calculating
test and confidence probabilities should include the
possibility of censoring or missingness.

The Bayesian school upholds Principle 4 and pro-
vides strong arguments for the need to use prior
probabilities in implementing it. Historically, up until
about 1990, most debate was centered around this
principle [3]. More recently, Principle 1 has received
increasing attention, notably in the context of apply-
ing model selection criteria [5] such as the AIC or
BIC (see Bayesian Methods for Model Compari-
son).

The type of design adopted for a given study will
depend on the type of information required to be
collected, as well as on other factors such as cost.
Rarely will different designs provide proportional
likelihood functions, as in the example of Bernoulli
trials above. Thus, in most applied statistical practice,
Principles 3 and 4 will not be of major concern in this
context.

A more fundamental issue involves whether or
not inferences should be conditioned solely on the
observed data. Frequentist tests and confidence inter-
vals involve the probabilities of events that might

have been observed, given the design, and not just
on what was observed. The Bayesian school argues
that these are invalid. However, the latter argument
can only be sustained if one is certain that the true
model is contained in the set under consideration.

Thus, the strength of likelihood principle that one
is prepared to apply, in the classification outlined
above, must depend on one’s confidence in the valid-
ity of the set of models under study. If one is certain
about the set of models and only wishes to distin-
guish among them in the light of new data, a strong
likelihood principle can be justified. On the other
hand, if all aspects of the models are under scientific
scrutiny, choice of inference based on a much weaker
likelihood principle will be more prudent. However,
restricting inference only to a likelihood principle
narrows statistical analysis to routine decision prob-
lems, making scientific discovery impossible.
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Likelihood Ratio Tests

Suppose xobs is a vector of data that have been col-
lected in order to test a hypothesis. The likelihood
ratio test is a hypothesis testing procedure that can
be performed in a wide variety of situations. To
apply the procedure, we must be able to regard the
observed data xobs as having been drawn at random
from a population whose distribution is described
by a joint density function f (x; θ) depending on an
unknown parameter vector θ , and we must formulate
the hypothesis as a statement about θ . The distribu-
tion of the population may be discrete or continuous
or may have both discrete and continuous compo-
nents, such as occurs with some censored data.

The function L(θ) = f (xobs; θ) is called the like-
lihood function. Let Θ denote the set of possible
parameter vectors and let Θ0 be a subset of Θ . For
testing the null hypothesis H0: θ ∈ Θ0 vs. the alterna-
tive hypothesis Ha: θ �∈ Θ0, Neyman & Pearson [11]
introduced the likelihood ratio test (abbreviated as LR
test; also called the generalized likelihood ratio test
or maximum likelihood ratio test). Let L(θ̂) be the
maximum value of the likelihood as θ varies over Θ ,
let L(θ̂0) be the maximum as θ varies over Θ0, and
let

λ = L(θ̂0)

L(θ̂)
.

The maximizing value θ̂ of the parameter vector is
called the maximum likelihood estimator (MLE) of
θ (see Maximum Likelihood), and θ̂0 is the MLE
under the null hypothesis. We can expect the MLE θ̂

to be close to the true parameter vector. If the null
hypothesis were true, i.e. if the true parameter vector
were in Θ0, then we would expect both θ̂ and θ̂0 to
be close to the true parameter vector, and hence we
would expect λ to be close to 1. The likelihood ratio
test rejects the null hypothesis if λ is significantly
smaller than 1, i.e. if the maximum likelihood under
the null hypothesis is significantly smaller than the
maximum likelihood under the alternative hypothesis.

In special situations the P value of a likelihood
ratio test can be calculated exactly, but in general
it must be approximated. If f (x; θ) satisfies cer-
tain regularity conditions (discussed below), then an
approximate P value can be obtained as the propor-
tion of a chi-square distribution that is larger than
−2 log λ, where the number of degrees of freedom

is the number of independent conditions that the null
hypothesis imposes on the parameter vector θ . This
proportion can be calculated by using the chi-square
cumulative distribution function that is available in
some computer packages, or bounds can be put on it
by using a chi-square table.

Example 1

The diastolic blood pressures of 15 patients with
moderate essential hypertension were measured
immediately before and two hours after taking the
drug captopril [4, p. 72]. A common way to analyze
such data is to calculate the differences (“after”
minus “before”) and regard them as a random sample
from a normally distributed population with unknown
mean, δ, and unknown standard deviation, σ . The
null hypothesis that the drug has no effect on
blood pressure can be formulated as H0: δ = 0. The
likelihood function is

L(δ, σ ) = 1

(2π)n/2σn
exp

[
− 1

2σ 2

n∑

i=1

(xi − δ)2

]
,

where n is the sample size and the xis are the
differences. For the observed blood pressure data this
becomes

L(δ, σ ) = 1

(2π)15/2σ 15

× exp

[
− 1

2σ 2
(15δ2 + 278δ + 2327)

]
.

The likelihood attains its maximum value, L(δ̂, σ̂ ), at
δ̂ = −9.27 and σ̂ = 8.32. Under the null hypothesis,
the likelihood attains a maximum value, L(0, σ̂0), at
σ̂0 = 12.46. Then −2 log λ = 2[log L(−9.27, 8.32)

− log L(0, 12.46)] = 12.10. Since the null hypothesis
imposes only one condition on the parameters, the
number of degrees of freedom is 1. From a chi-square
table we see that the approximate P value is less
than 0.001, and we conclude that the drug has an
effect.

Example 1 is simple enough that there are explicit
formulas for the MLEs: δ̂ = x, where x is the sample
mean; σ̂ = [(n − 1)/n]1/2s, where s is the sample
standard deviation; and σ̂0 = (

∑
x2

i /n)1/2. Therefore
there are explicit formulas for L(δ̂, σ̂ ) and L(0, σ̂0)

and hence for λ, namely λ = (σ̂ /σ̂0)
n. In general,

however, L(θ̂) and L(θ̂0) must be calculated by
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numerical optimization methods (see Optimization
and Nonlinear Equations).

In Example 1 the LR test is equivalent to the
usual t test. In fact, if x1, . . . , xn is a random sample
from a normally distributed population with unknown
mean µ and unknown standard deviation σ , then the
LR test statistic, −2 log λ, for testing H0: µ = µ0, is
an increasing function of the Student’s t statistic
|t | = |x − µ0|/(s/√n). Therefore, in this situation it
is possible to obtain the exact P value of the LR
test. (But of course it is exact only if the population
is exactly normally distributed.) From a t table it is
seen that the exact P value also is less than 0.001.

Example 2

For the data in Example 1, the assumption that the
blood pressure differences come from a normally
distributed population can be justified by arguing that
the data contain no outliers and that the t test is robust
against nonnormality. But if one felt uncomfortable
about assuming normality, a different test of the null
hypothesis of no drug effect could be performed by
regarding the differences as a random sample from
a continuous population with an unknown proportion
π of positive values. Here we are assuming nothing
about the population other than that it is continuous.
The null hypothesis can be formulated as H0: π =
0.5. Let x denote the number of patients whose blood
pressure differences were positive. The likelihood
function is

L(π) = n!

x!(n − x)!
πx(1 − π)n−x .

This is another simple example in which the
MLE has an explicit formula: π̂ = x/n. For the
blood pressure data, −2 log λ = 2[log L(2/15) −
log L(0.5)] = 9.01. The number of degrees of
freedom is 1. From a chi-square table we see that
the approximate P value is between 0.01 and 0.001,
and we again conclude that the drug has an effect.
The exact P value is also available in this example.
By using the fact that, under our assumptions, the
exact distribution of x is binomial, one obtains P =
0.007.

Example 3

One half of a group of 42 leukemia patients were
treated with the drug 6-mercaptopurine and the other

half were given a placebo [3]. Their remission times,
in weeks, were recorded during a period of one
year. At the end of the year some patients still
had had no remission, and so these observations
were censored. Let us assume that the patients were
selected and treated independently of one another.
A reasonable model for these data is that they are
two independent censored random samples from two
Weibull distributions. The likelihood function is

L(κ1, ρ1, κ2, ρ2) = L1(κ1, ρ1)L2(κ2, ρ2),

where

Li(κi, ρi) = κ
di

i ρ
diκi

i

× exp

[
(κi − 1)

∑

unc

log xij − ρ
κi

i

∑

all

x
κi

ij

]
,

in which xij is the j th observation in the ith sub-
group (i = 1, 2, j = 1, . . . , 21), di is the number of
uncensored observations in the ith subgroup, “unc”
indicates summation over the uncensored observa-
tions, and “all” indicates summation over all the
observations, including the censored ones. The null
hypothesis of no treatment effect can be expressed as
H0: κ1 = κ2 and ρ1 = ρ2.

No explicit expression for λ is available in this
example. However, there is an explicit expression
for the MLE ρ̂i as a function of κi , namely ρ̂i =
(di/

∑
all x

κi

ij )1/κi . Substitute this into Li(κi, ρ̂i) to
obtain the profile likelihood LPi (κi). A numerical
procedure must be used to maximize the profile
likelihood, yielding the MLE κ̂i , from which we
obtain L(κ̂1, ρ̂1, κ̂2, ρ̂2) = LP1(κ̂1)LP2(κ̂2). Similarly,
combining the two subgroups into a single sam-
ple under the assumption that H0 is true, we can
obtain LP0(κ̂0) and then −2 log λ = 2[log LP1(κ̂1) +
log LP2(κ̂2) − log LP0(κ̂0)] = 66.17. The number of
degrees of freedom is 2. From a chi-square table we
see that the approximate P value is less than 0.001,
and we conclude that the treatment has an effect.

Likelihood ratio tests are commonly used in a
number of different statistical areas. In multiple lin-
ear regression and analysis of variance for models
with independent and identically normally distributed
errors, the usual F tests are equivalent to LR tests. In
multivariate analysis, tests using the Wilks lambda
criterion (see Discriminant Analysis, Linear) are
equivalent to LR tests. In the analysis of generalized
linear models, the reduction in deviance between a
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model and an extended model is equal to the LR
test statistic −2 log λ for testing whether the two
models are significantly different. To test hypotheses
about contingency tables, one typically uses either
the Pearson chi-square test or the LR test.

Likelihood ratio tests have been proposed in
many other areas too. For any parametric statistical
model that satisfies certain, fairly general, regularity
conditions, the null distribution of −2 log λ is well
approximated by a chi-square distribution, and so it
is straightforward, at least in theory, to apply the LR
test to test the parameters of the model. In practice,
calculation of the likelihood ratio often requires
numerical optimization, which can involve substantial
computation; but computation is becoming less of
a concern as computer capabilities increase. The
regularity conditions mentioned above assume that
the support {x : f (x; θ) > 0} does not depend on θ ,
that f (x; θ) is differentiable with respect to θ , and
a few other requirements that are mathematically
technical but often satisfied. Under such conditions
the null distribution of the LR test statistic can be
approximated by a chi-square distribution with d

degrees of freedom, where d is the difference in the
dimensions of Θ and Θ0. By the dimension of Θ

is meant the number of “freely varying” components
in the vector θ . More precisely, the dimension of Θ

is k if it contains a solid k-dimensional cube and
does not contain a solid (k + 1)-dimensional cube.
The degrees of freedom d can also be described as
the number of independent conditions that the null
hypothesis imposes on the parameter vector θ .

The chi-square approximation for the null distri-
bution of the LR test statistic is based on asymptotic
theory (see Large-sample Theory) and so it may not
work well if the sample size is small. For example,
for small categorical data sets the chi-square approx-
imation is usually poor [1] and produces inaccurate
P values. The approximation may also be inadequate
if the number of parameters is large, such as when
testing the goodness of fit of a generalized linear
model against a saturated model [5], or if the null
parameters are on the boundary of the parameter set,
such as when testing whether a variance component
is zero [9, p. 501].

In situations where the chi-square distribution
poorly approximates the null distribution of the
likelihood ratio test statistic it is sometimes possible
to obtain a better approximation, or even the exact
distribution. For example, for the Wilks lambda

criterion, its null distribution is better approximated
by using an F distribution rather than a chi-square
distribution [12], and there are numerical procedures
for calculating its exact critical values to any desired
precision. Higher-order asymptotic methods, such
as Bartlett adjustment [10] (see Bartlett’s Test) or
modified profile likelihood [8, 13], can be used to
adjust a likelihood ratio so that its null distribution
can be well approximated.

In the simple case of testing H0: θ = θ0 vs. Ha:
θ = θ1, the Neyman–Pearson lemma states that the
likelihood ratio test is the most powerful test for
any given level. In a one-parameter exponential
family the LR test of a one-sided hypothesis is a
uniformly most powerful test. Under certain more
general conditions, LR tests have been shown to
be optimal in several senses: asymptotically most
stringent [15], asymptotically locally most powerful
unbiased [2], and Bahudur efficient [14]. However,
LR tests may not be robust to violations of the model
assumptions [6, 7].

The likelihood ratio test has wide applicability and
has given reasonable results in a large number of
cases in which its performance has been studied.
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Likelihood Ratio

Let xobs be a vector of observed data. To analyze
the data, one often assumes that xobs has been ran-
domly drawn from a population whose distribution is
described by a joint density function f (x; θ) depend-
ing on an unknown parameter vector θ . The distri-
bution may be discrete or continuous or may have
both discrete and continuous components, such as
occurs with some censored data. The likelihood of
the parameter vector θ based on the data vector xobs

is defined to be L(θ) = f (xobs; θ). Given two possi-
ble values of the parameter vector, the one with the
greater likelihood is regarded as being more likely to
be the true parameter value. That is to say, the value
θ1 is more likely than the value θ2 if the likelihood
ratio L(θ1)/L(θ2) is greater than 1. In fact, the like-
lihood ratio can be used as a quantitative measure of
the strength of support that the data provide for θ1 in
comparison with θ2 [1, 4, 5].

For example, consider an urn containing 10 balls,
θ of which are red and 10 − θ are green. Suppose we
draw two balls at random without replacement from
the urn and both balls are red. The probability of
such an outcome is f (2; θ) = (θ/10)[(θ − 1)/9] =
θ(θ − 1)/90. To compare the possibility that θ = 6
with the possibility that θ = 5, we can calculate the
likelihood ratio L(6)/L(5) = f (2; 6)/f (2; 5) = 1.5
and state that θ = 6 is 1.5 times as likely as θ = 5.

The likelihood ratio L(θ0)/L(θ1) is a sensible
test statistic for testing the simple null hypothe-
sis H0: θ = θ0 vs. the simple alternative hypothesis
H1: θ = θ1 (see Hypothesis Testing). If the ratio is
small, then the likelihood of θ0 is small in com-
parison with the likelihood of θ1, and so it makes
sense that we should reject H0. Moreover, Neyman
& Pearson [3] showed that this test is the most pow-
erful one among all tests having the same level (see
Neyman–Pearson Lemma). For testing a general
null hypothesis H0: θ ∈ θ0 vs. a general alternative
hypothesis H1: θ ∈ θ1, Neyman & Pearson [2] pro-
posed the test statistic λ = L(θ̂0)/L(θ̂), where L(θ̂0)

is the maximum value of the likelihood as θ varies
over θ0 and L(θ̂) is the maximum value of the
likelihood as θ varies over θ0 and θ1 (see Likelihood
Ratio Tests). The null hypothesis is rejected if λ is
small. Some authors call λ a likelihood ratio but it is

also called a likelihood ratio criterion or generalized
likelihood ratio or maximum likelihood ratio or likeli-
hood ratio test statistic. The quantity −2 log λ is also
sometimes called a likelihood ratio test statistic.

Other Interpretations of the Likelihood
Ratio

Although the concept of likelihood is distinct from
the concept of probability, it is possible to give
the likelihood ratio L(θ1)/L(θ2) a direct probabil-
ity interpretation if we take a Bayesian viewpoint.
Suppose that, on the basis of past experience, it
can be assumed that the true parameter is either
θ1 or θ2 and that both are equally probable. Then
our prior distribution is given by Pr(θ1) = Pr(θ2) =
0.5. The likelihood ratio coincides with the ratio
Pr(θ1|xobs)/ Pr(θ2|xobs) of the posterior probabilities
of the two parameters.

If the likelihood ratio is viewed as a random
function, in the manner indicated below, then it is
a minimal sufficient statistic (see Sufficient Statis-
tic). Choose a fixed parameter vector θ0 and, for
each fixed value of x, regard the likelihood ratio
R(x)(θ) = L(θ ; x)/L(θ0; x) = f (x; θ)/f (x; θ0) as a
real-valued function of θ . Let X be a random vector
with density f (x; θ). It is a consequence of the fac-
torization theorem for sufficient statistics that R(X)

is a minimal sufficient statistic.
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Likelihood

In general use the word likelihood is a synonym for
probability but in statistics it has a more specific
meaning; it is the probability (or probability density)
of the observed data given the probability model
which gave rise to the data. Likelihood is used to
compare different possible candidate values for the
parameters of the model, and for this purpose it needs
to be defined only up to a constant of proportionality:
any constant multiple of the likelihood serves equally
well. When comparing two candidate values for a
parameter, the one with the greater likelihood is said
to be more likely, and parameter values for which
the probability of the observed data is greatest are
known as most likely values, or maximum likelihood
estimates. The concept of likelihood is central to both
the frequency and the Bayesian theory of inference.
In addition there have been many attempts to found
a theory of inference on likelihood alone.

A Simple Example

Let 10 subjects be followed for five years, and a
record made of whether they die (fail) or survive. A
simple probability model is that the outcome for each

subject is independently random with probability π

for failure and 1 − π for survival. The probability π

is the parameter of the model. When four subjects
fail, and six survive, the probability of the observed
data is found from the binomial distribution to be

L(π) = 210π4(1 − π)6.

Suppose we wish to compare π = 0.1 with π = 0.5
as possible values for the true value which gave rise
to the data. The two likelihoods are L(0.1) = 0.0112
and L(0.5) = 0.2051, so π = 0.5 is more likely than
π = 0.1. The most likely value is π = 0.4, which has
likelihood 0.2508. Since the likelihood can be scaled
by any constant without altering such comparisons it
is often convenient to scale it to take the value 1 when
π takes its most likely value. The scaled likelihood
for π is then the likelihood ratio L(π)/L(π̂), where
π̂ is the most likely value for π .

Part (a) of Figure 1 shows the likelihood ratio
for a range of possible values for π . Values of π

corresponding to a high likelihood ratio are said to
be supported by the data; those with a low likeli-
hood ratio are not supported. The distinction between
supported and not supported depends on where the
cut-point is placed on the likelihood ratio scale. A
convenient summary of the information about π in
the data is provided by the most likely value of π and

Figure 1 (a) Likelihood, (b) log likelihood, (c) score, and (d) quadratic approximation
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a range of values which are supported at a given cut-
point. The choice of cut-point can be regarded as a
matter of convention; for example, we might all agree
that parameter values with likelihood ratios above
0.15 are supported, while those with values below are
not supported. Another approach is to choose the cut-
point in terms of how well the supported range works
when evaluated for repeated samples from the prob-
ability model assumed to have given rise to the data.
This is called the frequency approach to statistics.

For any particular value of π the cut-point 0.1465
produces a supported range which includes the value
of π in approximately 95% of repeated samples,
provided the likelihood curve has roughly a normal
bell shape. For this cut-point, then, the range of
supported values corresponds to a 95% confidence
interval. The supported range may also be thought of
as a Bayesian plausibility interval based on a uniform
prior belief about the true value of π . With a cut-
point 0.1465 the area under the curve in part (a) of
Figure 1, between the two verticals, is approximately
95% of the total area, so the posterior probability that
π lies between the two limits is approximately 0.95.
For all but very small studies the likelihood will have
a normal bell shape (this is called the central limit
theorem), and the three approaches (given likelihood
ratio, given confidence level, and given posterior
probability) will lead to almost the same range of
values for the parameter.

Likelihood ratios are most easily studied as dif-
ferences in log likelihoods. In this example the log
likelihood is

l(π) = 4 log(π) + 6 log(1 − π),

and the log of the likelihood ratio is l(π) − l(π̂ ).
This log-likelihood function is shown in part (b)
of Figure 1; the cut point for the supported range
is now log(0.1465) = −1.921 and the shape of the
log-likelihood ratio curve is quadratic rather than a
bell. The shape can be further explored by exam-
ining the gradient at each value of the parameter,
given by

l′(π) = 4

π
− 6

(1 − π)
.

This is called the score function and it is usually
written as u(π). The graph of the score function is
shown in part (c) of Figure 1; note that the score is
zero when π takes its most likely value of 0.4.

Some General Definitions

Let the data consist of observations x1, x2, . . . , xN ,
with probability model f (x; θ), which depends on a
parameter θ . When there are only a limited number
of possible values for x the function f (x; θ) specifies
the probability of each outcome, and when there
are infinitely many outcomes f (x; θ) specifies the
probability density. The log likelihood for θ is

l(θ) =
N∑

i=1

log f (xi ; θ),

and the score function is

u(θ) = l′(θ) =
N∑

i=1

f ′(xi ; θ)

f (xi ; θ)
.

The most likely value of θ is θ̂ , satisfying u(θ̂) = 0.
In the neighborhood of θ = θ̂ the score function

is approximately linear [see part (c) of Figure 1], and
using Taylor’s expansion

u(θ) ≈ u(θ̂) + (θ − θ̂ )u′(θ̂ ).

The quantity u′(θ̂) = l′′(θ̂) is negative, and its numer-
ical value, namely −l′′(θ̂ ), is called the observed
information and is referred to as j (θ̂ ), or j for short.
Since u(θ̂) = 0 the linear approximation can be writ-
ten as

u(θ) ≈ −j (θ − θ̂ ).

In part (c) of Figure 1 j is the numerical value of the
gradient of the score function at π = 0.4. The steeper
this gradient the more precise θ̂ is as an estimate of θ .

When considering the frequency properties of θ̂ as
an estimate of θ it is best to write the function l(θ)

as l(θ ; x), stressing that it is a function of both the
parameter values and the data. In a strictly likelihood
approach the data are fixed and θ varies, which is
why we write the function as l(θ). In the frequency
approach it is x (the data) which varies and θ which
is fixed, so that l(θ ; x) is a random variable. The
value of θ should be thought of as fixed at its true
value, i.e. the value which gave rise to the data. The
score u(θ ; x) is now also a random variable, and is
particularly important in frequency theory because its
mean is zero and its variance can be calculated from
the log likelihood. In fact

var(u) = −E[l′′(θ ; x)].
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The quantity −E{l′′(θ ; x)} is called the expected or
Fisher information and referred to as i(θ). When
evaluated at θ = θ̂ the expected information usually
reduces to the same thing as the observed infor-
mation, i.e. i(θ̂ ) = j (θ̂ ). Using the approximation
u(θ) ≈ −j (θ − θ̂ ), it follows that

θ̂ − θ ≈ j−1u(θ),

and
var(θ̂ ) ≈ j−1var(u)j−1.

Since var(u) ≈ j , the right-hand side of this equation
becomes j−1jj−1 = j−1, so the variance of θ̂ in
repeated samples is approximately j−1, the inverse
of the observed information.

The expression var(θ̂ ) ≈ j−1var(u)j−1 is called
the information sandwich. There are situations when
it is unwise to assume that var(u) = j , and better
to replace var(u) by an empirically based estimate,
using the individual values u(θ̂ ; xi). In this case the
sandwich does not reduce to j−1 but provides instead
a more robust estimate of the variance of θ̂ .

When combining data from several sources, about
the same parameter, the total log likelihood is
obtained by adding the log likelihoods from the
different sources. Since the score is the first derivative
of the log likelihood, the total score is also found
by adding the scores from the different sources, and
since the information is the second derivative of
the log likelihood it too is found by adding over
sources. This additive property of the log likelihood
and its derivatives makes the combining of data from
different sources straightforward.

Approximate Log Likelihoods

The function l(θ) can be expanded around θ = θ̂

using Taylor’s expansion:

l(θ) ≈ l(θ̂ ) + (θ − θ̂ )l′(θ̂ ) + 1
2 (θ − θ̂ )2l′′(θ̂ ).

Since l′(θ̂) = 0 and j = −l′′(θ̂ ), it follows that

l(θ) − l(θ̂ ) ≈ − 1
2j (θ − θ̂ )2.

This may also be written as

l(θ) − l(θ̂ ) ≈ −1

2

(
θ − θ̂

S

)2

,

where S2 = j−1 is the variance of θ̂ . The fact that
the log likelihood is approximately quadratic shows
that the frequency distribution of θ̂ is approximately
normal. A 95% confidence interval for θ is therefore
given by θ̂ ± 1.960S. Alternatively, solving

−1

2

(
θ − θ̂

S

)2

= log(0.1465) = −1.921

for θ leads to the same expression.

Two or More Parameters

Extending the results from one parameter to two or
more parameters is largely a question of notation.
For simplicity we concentrate on two parameters
θ = (θ1, θ2). The log likelihood l(θ) is now a function
of both parameters, and there are two score functions
u = (u1, u2), where u1 is the derivative of l(θ1, θ2)

with respect to θ1, and u2 is the derivative of l(θ1, θ2)

with respect to θ2. Similarly, there are two most
likely values θ̂ = (θ̂1, θ̂2) which together maximize
the value of l(θ). The observed information becomes

j11(θ̂) = −∂2l(θ)

∂θ2
1

,

j22(θ̂) = −∂2l(θ)

∂θ2
2

,

j12(θ̂) = j21(θ̂) = −∂2l(θ)

∂θ1∂θ2
,

where all the derivatives are evaluated at θ = θ̂ .
These quantities are often written as a 2 × 2 infor-
mation matrix j(θ̂) with elements jrs(θ̂), where r =
1, 2 and s = 1, 2. Similarly, the expected information
becomes a 2 × 2 matrix i(θ) with elements

irs (θ) = −E

[
∂2l(θ)

∂θr∂θs

]
.

All the results for one parameter extend in a fairly
straightforward way to two or more parameters. In
particular, the distribution of u = (u1, u2) has zero
mean (0, 0), and covariance matrix equal to i(θ),
the expected information matrix. When evaluated
at θ = θ̂ this becomes equal to j(θ̂), the observed
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information matrix. The linear approximation to the
score functions becomes

u1 ≈ −j11(θ1 − θ̂1) − j12(θ2 − θ̂2),

u2 ≈ −j12(θ1 − θ̂1) − j22(θ2 − θ̂2),

which may be written in matrix terms as

u ≈ −j(θ − θ̂), θ̂ − θ = j−1u.

The mean of the distribution of θ̂ is approximately
(0, 0) and the covariance matrix is approximately

j−1var(u)j−1,

which reduces to j−1 when var(u) is replaced by j.
Finally, the quadratic approximation to the log

likelihood in the neighborhood of (θ̂1, θ̂2) is

l(θ1, θ2) − l(θ̂1, θ̂2) ≈ − 1
2j11(θ1 − θ̂1)

2

− 1
2j22(θ2 − θ̂2)

2 − j12(θ1 − θ̂1)(θ2 − θ̂2),

which shows that the joint distribution of (θ̂1, θ̂2) is
approximately bivariate normal with mean (0, 0) and
covariance matrix j−1.

Nuisance Parameters

A supported region for (θ1, θ2) can be found by solv-
ing l(θ1, θ2) = −1.921, but in most practical applica-
tions one of the two parameters (say θ1) is of interest
and the other is a nuisance; so one wants a supported
range for θ1. It is straightforward to find a supported
range for θ1 for a given value θ0

2 for θ2, by solv-
ing l(θ1, θ0

2 ) = −1.921 for θ1, but the answer will in
general depend on θ0

2 . Only rarely will the supported
range be independent of the value chosen for θ0

2 .
There are two possible ways of obtaining a sup-

ported range for θ1 which is not dependent on choos-
ing a particular value of θ2. The first way is to find
some aspect of the data which, when held fixed, leads
to a conditional log likelihood which depends only on
θ1. Provided the aspects of the data which are held
fixed are uninformative about θ1, no information is
lost by using the conditional log likelihood.

The second way is to replace the nuisance param-
eter θ2 by its most likely value given θ1, that is
by θ̂2(θ1). The resulting log likelihood, lp(θ1) =
l(θ1, θ̂2(θ1)), is called the profile log likelihood for

θ1, and can be used to find a confidence interval for
θ1 by solving lp(θ1) = −1.921, as before. The idea of
profile log likelihood extends to more than one nui-
sance parameter, but should not be used when there
are many nuisance parameters to be eliminated, but
not very much data. This is because each θ̂2(θ1) is too
poorly estimated for the resulting profile log likeli-
hood to be useful. A well-known example where this
happens is a matched case–control study where there
is a nuisance parameter for each new matched set. In
this situation it is necessary to use a conditional log
likelihood, and indeed this is generally the best thing
to do provided one is available. Unfortunately there
are many situations where it is not possible to find
a conditional likelihood which depends only on the
parameter of interest.

A quadratic approximation to the profile likeli-
hood for θ1 is found by starting from the quadratic
approximation to l(θ1, θ2), in the neighborhood of
(θ̂1, θ̂2), and then obtaining the profile likelihood for
θ1. This gives a quadratic approximation to lp(θ1),
the profile likelihood for θ1, of the form

lp(θ1) ≈ −1

2

(
θ1 − θ̂1

S

)2

,

where S is given by

S2 = j22

j11j22 − j 2
12

.

This is the first diagonal element in the inverse of
j , the observed information matrix, so the quadratic
approximation to the profile likelihood for θ1 coin-
cides with the normal approximation to θ̂1.

Hypothesis Testing

From a strictly likelihood point of view, support for a
specific null value of a parameter, say θ0, is measured
by the likelihood ratio for this value in the same way
as for any other value of θ . The likelihood ratio is a
measure of how different θ0 is from θ̂ . Cut-points on
the likelihood ratio scale are a matter of convention;
some useful ones are shown in Table 1.

From a frequency point of view we measure how
far θ0 is from θ̂ in terms of how often the value
of some statistic in repeated samples exceeds the
value observed. To do this requires a statistic whose
distribution when θ = θ0 is known, and a natural one
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Table 1

Likelihood ratio Evidence against the null value

>0.25 None
0.15–0.25 Slight
0.05–0.15 Strong
<0.05 Very strong

to choose is the score u(θ0; x). When the true value
of θ is θ0, the score has mean zero and variance i(θ0),
so the distribution of

z = u(θ0) − 0

[i(θ0)]1/2

is approximately N(0, 1), a normal distribution with
unit variance, and the probability of observing a value
greater than |z| is obtained by looking z2 up in a
χ2 distribution with one degree of freedom (df). This
probability is called the P value, and the test is called
a score test.

Another candidate for the choice of statistic is θ̂ ,
the most likely value of θ . When the true value of
θ is θ0, this statistic has an approximately normal
distribution with mean θ0 and variance j−1. The
probability of observing a value greater than |z|,
where z is now

z = θ̂ − θ0

j−1/2
,

is obtained by looking z2 up in a χ2 distribution with
one df. The test is now called a Wald test.

The last and generally the best statistic which is
used is the log-likelihood ratio itself. Provided the
log-likelihood curve is reasonably close to a quadratic
shape, the distribution of

d = 2[l(θ̂ ) − l(θ0)]

is approximately χ2 with one df. The probability of
observing a value of d which is greater than the one

actually observed is found by looking up d in tables
of the chi-square distribution on 1 df. The test is
now called the (log) likelihood ratio test.

All three tests extend to null hypotheses in which
several parameters take their null values; for example
the distribution of

2[l(θ̂1, θ̂2) − l(θ0
1 , θ0

2 )]

is approximately χ2 on two df.

Further Reading

The concept of likelihood was introduced to statistics
by Fisher in 1925, but the first book to discuss
statistical inference from an exclusively likelihood
point of view is Edwards [4]. More recent accounts
which stress the central role of likelihood in statistical
inference are given by Lindsey [5] at an elementary
level, Azzalini [1] at an intermediate level, and
Barndorff-Nielson & Cox [2] at an advanced level.
An elementary account of the use of likelihood in
the context of epidemiology is given by Clayton &
Hills [3].
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Likert Scale

A Likert scale, or summated rating scale, is computed
by summing responses over several items hypothe-
sized to measure the same latent variable or construct
[1]. Likert scales are often used to measure opinions,
beliefs, or attitudes regarding a particular underlying
construct. Items that comprise Likert scales are often
measured on Likert response formats, which repre-
sent degrees of endorsement of those items [2]. For
example, consider the following item measured on a
five-point Likert response format:

Item: Diet is an important part of a healthy lifestyle

Response Strongly Dis- Strongly
options: agree Agree Neither agree disagree

1 2 3 4 5

Items measured on Likert response formats are gener-
ally presented as declarative statements. For respon-
dents to discriminate among response options, it is
recommended that the items be presented as strong
declarative statements.

Likert response formats may have three, four, five
or more response options. An example of a six-
point Likert response format which could have been
used for the sample item above is: Strongly agree,
Moderately Agree, Mildly agree, Mildly Disagree,
Moderately disagree, and Strongly disagree. The five-
point Likert response format is widely used. The
number of response options for a given item depend
upon the item being measured and subjects’ abilities
to discriminate between response options. Investiga-
tors should try to provide respondents with response
options that are approximately equally spaced across
the continuum of endorsement.

Many applications involve the measurement of
a single underlying construct using multiple items,
since in many cases single items are not adequate
to measure the construct with sufficient precision. A

Likert scale is constructed by summing or averag-
ing responses over the set of all items to produce
an overall score. In constructing the Likert scale,
usually each item is equally weighted. If an investi-
gation involves k such items, each measured on the
same r-point Likert response format (responses coded
as 1, 2, . . . , r , with higher scores reflecting more
endorsement of each item), then the theoretic range
of the Likert scale is k to kr .

Assumptions underlying the construction of
multiple-item Likert scales are that each item is
linearly related to the overall scale score, and that
each item comprising the scale has approximately the
same distribution (e.g. similar means and standard
deviations). As an aside, when investigators present
a set of items related to a single construct to
respondents, some of the items should be reverse
coded so as to reduce the likelihood that respondents
consistently select the same response (e.g. strongly
agree) for each item.

There are a number of techniques used to evaluate
the reliability and validity (see Validation Study)
of multiple-item Likert scales. These include, for
example, the internal consistency reliability of the
Likert scale, which is generally assessed using the
Cronbach’s alpha coefficient, and construct validity,
which is assessed through factor analysis.
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Limit Theorems

The earliest results in mathematical probability (dat-
ing from 1654) involved computations for finite sam-
ple spaces having equally likely outcomes, and thus
could be regarded merely a branch of elementary
combinatorics. The subject took a major step for-
ward, however, both in the depth of its results and the
sophistication of its methods after the discovery of its
first limit theorems: James Bernoulli’s law of large
numbers (c. 1685, published posthumously in his
Ars conjectandi of 1713) and Abraham De Moivre’s
central limit theorem [5] for sequences of dichoto-
mous binary trials. These results extracted order from
chaos by demonstrating that random phenomenon in
the small (a limited number of observations) can
exhibit regularities and deterministic behavior in the
large.

Such results were often motivated by, and pro-
vided a theoretical basis for, the process of statistical
estimation; in modern terminology, the law of large
numbers amounts to nothing other than a statement
that the sample mean is a consistent estimator of
the population mean. If, for example, Sn denotes the
number of successes in n dichotomous trials hav-
ing probability of success p, then Bernoulli proved
that limn→∞ Sn/n = p; using Stirling’s approxima-
tion (including correction terms) to estimate the indi-
vidual terms in the binomial distribution and then
summing, De Moivre dramatically refined Bernoulli’s
result to discover the remarkable fact that

lim
n→∞ Pr

[
a ≤ Sn − np

[np(1 − p)]1/2
≤ b

]

= 1

(2π)1/2

∫ b

a

exp

(
−1

2
x2

)
dx.

During the nineteenth and twentieth centuries, this
result was extended far beyond the simple coin-
tossing setup considered by De Moivre, important
contributions being made by the French school of
Laplace and Poisson, the Russian school of Cheby-
shev, Markov, Liapunov, Bemstein, Khinchin, and
Kolmogorov, and the varied contributions of von
Mises, Cantelli, Lindeberg, Lévy, and Feller in the
period between the two world wars. Fueling these
advances were the use of increasingly sophisticated
methods such as the introduction of characteristic
functions (by Laplace) and the method of moments

(by Markov). The introduction of measure theory by
Lebesgue and its use in the axiomatization of mathe-
matical probability by Kolmogorov (see Probability
Theory) led in turn to a sharp distinction between dif-
ferent forms of limit theorem, corresponding to differ-
ent concepts of convergence: most commonly, con-
vergence in distribution, probability, almost sure,
and in Lp .

It is useful to regard a sequence of random vari-
ables as a single function X(n, ω), n being an integer
and ω an element of a sample space. If one first fixes
n, the result is a random variable Xn(·) (a function
on the sample space), and one can then investigate the
behavior of the distribution of Xn as n → ∞; limit-
ing behavior in this case corresponds to convergence
in distribution. If, on the other hand, one first fixes ω,
the result is a sequence ω(·) (a function on the set of
integers), and one can investigate the behavior of this
sample path for typical values of ω; this corresponds
to the case of almost sure convergence provided that
the sequence converges except on a set of ω having
probability 0.

The two behaviors can be very different. If, for
example, the sequence represents an aperiodic finite
Markov chain, then the distribution of Xn converges
to the stationary distribution of the chain, but the sam-
ple paths ω(·) cycle endlessly among the finite states
of the chain; thus, in one sense, the chain exhibits
ordered behavior over time, but in another it remains
chaotic. (This phenomenon was first pointed out by
Paul Ehrenfest, who introduced his celebrated urn
model to illustrate that the Zermelo recurrence para-
dox does not contradict Boltzmann’s demonstration
that in statistical mechanics the entropy of a sys-
tem, properly understood, is an increasing function of
time. One can, in fact, prove some limit theorems in
probability by first showing that an associated entropy
function for a sequence of random variables increases
with time.)

Thus, the law of large numbers has two versions,
weak and strong, corresponding to convergence in
probability and almost sure convergence. Just as the
central limit theorem can be regarded as a refinement
of the weak law of large numbers, the law of the iter-
ated logarithm may be regarded as a refinement of the
strong law of large numbers (almost sure convergence
of the sequence of sample means to the popula-
tion mean). This result (due in increasing generality
to Khinchin, Kolmogorov, and Hartmann–Wintner),
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one of the three pearls of the classical limit the-
orems, states that the sample path behavior for a
sum of independent and identically distributed ran-
dom variables, properly normalized, is at once both
simple and unexpected: if X1, X2, X3, . . . are inde-
pendent and identically distributed random variables,
such that E[Xk] = 0, var[Xk] = 1 and Sn = X1 +
· · · + Xn, then

Pr

[
lim sup

n→∞
Sn

(2n log log n)1/2
= 1

]
= 1.

(It is simple to deduce from this that the set of limit
points for the normalized sequence is almost surely
the closed interval [−1, 1].) Other such “zero–one”
laws include the celebrated Borel–Cantelli lemmas
used to prove the strong law.

This classical theory was subsequently extended to
the study of sums and triangular arrays of sequences
of random variables not having two moments, and
using forms of normalization other than the mean
and standard deviation. The stable and infinitely
divisible distributions then arise as possible limit-
ing distributions; the entire edifice is summarized
in spare and elegant fashion in the classic and
beautiful book of Gnedenko & Kolmogorov [8].
Lamperti [9] provides an attractive and accessible
account of many of the key features of this classical
theory.

Other generalizations of the classical theorems
include the Birkhoff ergodic theorem and the mar-
tingale convergence theorem. The ergodic theorem (a
direct descendant of Ehrenfest’s attempts to explain
and justify Boltzmann’s theories) extended conver-
gence of sample means from the domain of inde-
pendence to that of stationary sequences (sequences
invariant under shift); the martingale convergence
theorem extracts a key property of centered sums
(that one’s expected future gain in a sequence of
fair games is the same as one’s present fortune) to
derive other limiting forms of behavior. In the hands
of Doob [6] and his successors, the martingale con-
cept and its use became a fundamental and pervasive
aspect of modern probability theory.

Two important modern advances in limit theo-
rems after this classical period were the concepts of
invariance principles and functional limit theorems.
Invariance principles establish that if one sequence
in a class of possible sequences converges to a limit,
then all sequences in that class must converge to the

same limit. Thus, one proof of the central limit the-
orem demonstrates that if the normalized sum of a
sequence of independent and identically distributed
random variables having a second moment (such as
Bernoulli trials) converges to the standard normal
distribution, then all sequences in this class must also
converge to this limit (see [4]). Functional central
limit theorems generalize the central limit theorem by
considering functionals of sample paths (such as the
maximum) and determining their limiting distribu-
tion by computing the distribution of that functional
applied to the limiting distribution of sample paths:
Brownian motion. The abstraction of these two the-
ories led to the creation of the subject of weak
convergence (see [2]).

There is a simple hierarchy that applies to the
most common modes of convergence for a sequence
of random variables: convergence almost surely ⇒
convergence in probability ⇒ convergence in distri-
bution. These implications admit of limited reversal:
if a sequence of random variables converges in prob-
ability, then every subsequence contains a further
subsequence converging almost surely; if a sequence
of random variables converges in distribution, then
one can find a sequence of random variables hav-
ing the same one-dimensional distributions that con-
verges almost surely (Skorokhod’s theorem).

This last result is related to a distinctively modern
element in the proof of limit theorems: the use of
coupling methods to construct versions of the random
elements in question that live on the same probability
space. Due originally to the gifted French probabilist
Doeblin (who died tragically at the beginning of
the Second World War), the method only gained
currency decades later. Its use provides perhaps the
most elegant derivation of the limiting behavior for
countable Markov chains (see, for example, [3]).

The increasing use of the bootstrap [7], Markov
chain Monte Carlo, simulated annealing, and other
computer-intensive methods only recently possible,
points to an emerging post-modern period of limit
theorems in mathematical probability, the outlines
of which are only just beginning to be clear. For a
number of interesting applications of modern limit
theorems to the biological sciences, see Waterman
[10]. Such applications include methods as diverse
as the Aldous [1] Poisson clumping heuristic, the
Erdös–Renyi law of large numbers, and the theory
of large deviations.
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Linder, Forrest E.

Born: November 21, 1906, in Waltham, Massa-
chusetts.

Died: August 18, 1988, in Washington, DC.

Forrest E. Linder devoted a lifetime of service to the
worldwide development of vital and health statistics
(see Vital Statistics, Overview). Although born in
Massachusetts, he grew up in Iowa where, at Iowa
State University, he received a doctorate in mathe-
matics and statistics. Following a brief assignment
with a foundation in Massachusetts, he moved to
Washington, DC, in 1935, where he served until 1944
as a statistician with the US Bureau of the Census.
In 1939 he spent a year in Montevideo assisting the
Uruguayan government in establishing a vital statis-
tics system. This was the beginning of Linder’s inter-
est in international vital statistics. He subsequently
established an international vital statistics program at
the Bureau of the Census, which provided training in
civil registration and vital statistics to foreign national
officials as well as an on-site consulting program for
Latin American countries.

During World War II he served as Assistant Chief
of the Medical Statistics Division of the US Navy,
where he was responsible for establishing a morbid-
ity reporting system, including the necessary data-
processing support to provide current estimates of
morbidity and mortality for the personnel of a greatly
expanded wartime navy. After the war, Linder joined
the United Nations where he became the first Chief of
the Demographic and Social Statistics Branch of the
UN Statistical Office. There, his contributions to the
improvement of the demographic statistics of devel-
oping countries included projects he conceived and
inspired, such as the world censuses of population
and housing of 1950 and 1960 and a series of regional
seminars on vital and health statistics. He was instru-
mental in designing and producing the first United
Nations Demographic Yearbook, Principles for a Vital
Statistics System, and the Handbook of Vital Statistics
Methods.

In 1957, Linder returned to the federal civil ser-
vice in Washington, DC, to become the director of
the newly established National Health Survey, a pro-
gram of the US Public Health Service. When the
National Office of Vital Statistics was merged with
the National Health Survey in 1960 to form the

National Center for Health Statistics (NCHS), Lin-
der was named as its first director, a post he held until
his retirement in 1967.

Upon leaving the Public Health Service, he joined
the faculty at the University of North Carolina
where he was both professor of biostatistics and the
first director of the International Program of Lab-
oratories for Population Statistics, popularly known
as POPLAB [3]. While at POPLAB, he began to
lay the groundwork for an international organiza-
tion that would address the professional interests
and needs of national officials responsible for civil
registration. Recognizing that these officials were a
diverse group, often working in isolation and with-
out an international focus for information exchange
and guidance, he founded the International Insti-
tute for Vital Registration in 1974, an organization
to encourage and promote the improvement of civil
registration throughout the world with special atten-
tion to lesser developed countries. When he retired
from the university he served as President and Exec-
utive Director of the Institute until his death in
1988.

During a career that spanned half a century,
Forrest Linder had an impressive list of impor-
tant technical publications; these covered a wide
range of topics in demography and health, such
as fertility measurement, morbidity and mortality
analysis, and survey methodology applied to pub-
lic health (see Surveys, Health and Morbidity) [1,
2, 4–7]. He served on international and national
advisory committees, such as the World Fertility
Survey Steering Committee, US Agency for Interna-
tional Development Research Advisory Committee,
World Health Organization Expert Committees on
Health Statistics, and the US National Committee
on Vital and Health Statistics; and he received the
Distinguished Service Award from the US Depart-
ment of Health, Education and Welfare and the
Bronfman Prize from the American Public Health
Association.

In each of his professional endeavors Forrest Lin-
der exhibited a strong pioneering spirit at the highest
technical level. Throughout his career he continued
his abiding interest in the improvement of national
and international vital and health statistics and he had
an unfailing belief in the importance of his under-
takings. His work has had a positive influence not
only on civil registration and vital statistics programs
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throughout the world, but also on the many statisti-
cians, demographers and others with whom he came
in contact.
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Lindley’s Paradox

A sharp null hypothesis may be strongly rejected
by a standard sampling theory test of significance
(see Hypothesis Testing) and yet be awarded high
odds by a Bayesian analysis based on a small prior
probability for the null hypothesis and a diffuse
distribution of one’s remaining probability over the
alternative hypothesis. This disagreement between
sampling theory and Bayesian methods was first
studied by Jeffreys [2], and it was first called a
paradox by Lindley [3].

The paradox can be exhibited in the simple case
where we are testing θ = 0 using a single observation
Y from a normal distribution with variance one
and mean θ . If we observe a large value y for Y

(y = 3, for example), then standard sampling theory
allows us to reject confidently the null hypothesis.
But the Bayesian approach advocated by Jeffreys can
give quite a different result. Jeffreys advised that
we assign a nonzero prior probability π0 to the null
hypothesis and distribute the rest of our probability
over the real line according to a fairly flat probability
density, π1(θ). If the range of possible values for
θ is very wide, then the set of values within a few
units of y will be very unlikely under π1(θ), and
consequently the overall likelihood of the alternative
hypothesis,

L1 =
∫ ∞

−∞
1

(2π)1/2
exp

[
−1

2
(y − θ)2

]
π1(θ) dθ,

will be very small. It may even be so much smaller
than the likelihood of the null hypothesis,

L0 = 1

(2π)1/2
exp

(−y2

2

)
,

that the odds in favor of the null hypothesis,

Pr(θ = 0|Y = y)

Pr(θ �= 0|Y = y)
= π0

1 − π0

L0

L1
, (1)

are substantial.
We can think of (1) as a way of balancing argu-

ments for and against the null hypothesis. Against the
null hypothesis is its small initial probability (small
π0) and the unlikeliness of the observation under the
null hypothesis (small L0). For the null hypothesis

is the unlikeliness of alternative values of θ near y

[small π1(θ), leading to small L1]. There is no strong
constraint between the arguments for and against.
No matter how small π0 and L0 are, a sufficiently
diffuse π1(θ) can make L1 small enough to counter-
balance them.

If we are confident of the specified prior
distribution – if, for example, we are working
with a series of problems involving θs that are
zero about π0 of the time and distributed roughly
according to π1(θ) the rest of the time – then the
Bayesian analysis is unassailable, and hence we must
reject the standard sampling theory. An observation
three standard deviations from the null hypothesis
is not adequate to reject the null hypothesis if
that observation is even more unlikely under the
alternative hypothesis. This has led many authors to
suggest that we make tests increasingly stringent as
measurements become more precise relative to the
range of possible values for what is being measured.
We should, for example, lower the significance level
(see Level of a Test) as the sample size grows.
More sophisticated suggestions are made by Berger
& Delampady [1].

However, if diffuseness of π1(θ) reflects merely
a wide uncertainty about θ rather than a positive
prior confidence that values of θ near y are likely to
occur, then the conflict seems to constitute a criticism
of the Bayesian analysis. If we have no idea how
θ arises, then our mere ignorance cannot justify a
skepticism about values close to y so strong as to
outweigh real evidence against the value of zero. This
has motivated non-Bayesian approaches discussed by
Shafer [4].
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Linear Mixed Effects
Models for Longitudinal
Data

Introduction

Linear mixed-effects (LME) models [9] have
become a popular tool for analyzing longitudinal
data that arise in areas as diverse as clinical
trials, epidemiology, agriculture, economics, and
geophysics. The increasing popularity of these
models is explained by the flexibility they offer
in modeling the within-subject correlation often
present in longitudinal data, by the handling of both
balanced and unbalanced data, and by the availability
of reliable and efficient software for fitting them
[16, 20].

As a motivating example to illustrate the key
ideas behind LME models, we consider data from
a longitudinal study on the heights of a sample of 26
boys from Oxford, England, described and analyzed
in [8] and presented in Figure 1.

As typically occurs with longitudinal data, the
growth curves show a similar pattern across subjects
(a linear trend, in this case), but important individual
differences, both in intercept and in slope, are also
observed.

Different approaches can, in principle, be used
to model longitudinal data: (a) ignore the between-
subject differences, concentrating on the estimation
of the overall trend; (b) use a separate model for
each subject, thus accounting for between-subject
differences; and, (c) use a mixed-effects model. In the
case of the Oxford data, the first approach consists of
assuming the population average model

yij = β0 + β1xij + εij (1)

to represent the height measurement yij on subject i

at time xij . The within-subject errors εij are assumed
independently distributed as N(0, σ 2). The param-
eters of interest, the population intercept β0, the
population slope β1, and the error variance σ 2, are
estimated via ordinary least squares (OLS) [7]. The
between-subject differences in growth pattern, which
are not accounted for in the model, lead to incorrect
standard errors for the OLS estimates β̂0 and β̂1 and
this is the main drawback of this approach.

The model associated with the second approach
uses subject-specific coefficients β0i and β1i to acc-
ommodate differences between subjects

yij = β0i + β1ixij + εij . (2)

However, it fails to take into account the common
growth pattern observed across subjects, requires a
large number of estimates (53 in this case), and does
not scale-up with the number of subjects. Population
inferences require a second-stage analysis, in which
the individual estimates are treated as data. This is
fairly inefficient and can lead to poor population
estimates, especially when the data are unbalanced.

The linear mixed-effects approach strikes a bal-
ance between the population average model (1) and
the subject-specific model (2), being expressed as

yij = (β0 + b0i ) + (β1 + b1i )xij + εij . (3)

It accommodates between-subject variation in growth
pattern via random effects bi = [b0i , b1i]′, while
capturing the population average behavior through
fixed effects β = [β0, β1]′. The random effects are
assumed to be independently distributed as N(0, �)

vectors (see Multivariate Normal Distribution) and
this common distribution ties together the observa-
tions from different subjects. A total of six parameters
(the two fixed effects, the within-subject variance,
and the three unique parameters in �) need to be
estimated, irrespective of the number of subjects
observed, so that the model is scalable in the number
of subjects. The LME fit provides, in a single step,
information about the population behavior as well as
the between-subject variation in growth pattern.

In the next section, we describe the general lin-
ear mixed-effects model for Gaussian longitudinal
data, its assumptions and estimation methods. Soft-
ware for fitting the LME model is mentioned in the
section “Software” and extensions to other mixed-
effects models are briefly discussed in the section
“Extensions”.

Model Definition and Assumptions

The linear mixed-effects model for a Gaussian res-
ponse measured longitudinally on a set of M subjects,
proposed by [13], is a generalization of (3) that is
expressed as

yi = Xiβ + Zibi + εi (4)
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Figure 1 Heights of 26 boys from Oxford, England, each measured on nine occasions. The ages have been standardized
to allow an easier comparison of the individual growth curves

where i is the subject index, yi is an ni-dimensional
vector of observed responses, Xi and Zi are known
ni × p and ni × q regression matrices correspond-
ing to the p-dimensional fixed-effects vector β and
the q-dimensional random-effects vector respectively,
and εi is an ni-dimensional vector of within-subject
errors. Note that the number of observations ni , as
well as the regression matrices Xi and Zi are allowed
to vary with subjects, so that unbalanced data are nat-
urally handled. In the case of the Oxford data, the
LME model formulation (4) would use Xi = Zi =
[1 xi], with 1 representing a column vector of ones
and xi a column vector with the standardized times
corresponding to subject i.

The bi are assumed to be independent with distri-
bution N (0, �) and the εi are assumed to be indepen-
dent with distribution N (0, �i ), independent of the
bi . The � covariance matrix may be unstructured or
structured – for example, diagonal [12], being param-
eterized by a set of parameters θ . The �i matrices are
typically assumed to depend on i only through their
dimensions, being parameterized by a fixed, generally
small, set of parameters λ – for example, an AR(1)
structure [1] (see ARMA and ARIMA Models).

Even though the random effects are useful and
intuitive quantities to represent between-subject dif-
ferences in the coefficients, they are not observable in
practice. Therefore, estimation and inference gener-
ally rely on the marginal distribution of the observed
response vectors yi . Because of the linearity of the
random effects in the LME model (4), the assump-
tions on the random effects and the within-group
errors, and the properties of the multivariate normal
distribution, it can be shown that the yi are marginally
distributed as independent N(Xiβ, �i ) random vec-
tors, where the marginal covariance matrix is given
by �i = Zi�Z′

i + �i .
There are two ways in which the LME model (4)

can account for within-subject correlation and het-
eroscedasticity (nonconstant variance) (see Scedas-
ticity): through the random effects bi , and through
the within-subject errors εi . Because the random
effects bi are fixed by subject, and do not vary
with time, the within-subject observations share the
same random effects and are, therefore, correlated.
This is represented by the Zi�Z′

i component of �i .
Note, also, that the diagonal elements of Zi�Z′

i need
not be constant, so that it can also accommodate
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heteroscedasticity. The within-subject error contri-
bution to the marginal covariance matrix is given
directly by �i , which can be nondiagonal (corre-
lation) and have different diagonal elements (het-
eroscedasticity). These two-model components may
actually compete for explaining the marginal covari-
ance structure of the response vectors and some care
should be exercised when specifying their structure to
avoid numerical problems in the optimization algo-
rithm used to estimate the model parameters [20].

Estimation

Several methods of parameter estimation have been
proposed for linear mixed-effects models. We con-
centrate here on two general methods: maximum
likelihood (ML), and restricted maximum likeli-
hood (REML). Descriptions and comparisons of the
various estimation methods used for LME models
can be found, for example, in [21] and [24]. For a
Bayesian perspective, see [25].

The log-likelihood function corresponding to the
LME model (4), based on the marginal distribution
of the yi (see Marginal Likelihood), is given by

�(β, θ, λ|y) = −1

2

{
N log(2π)

+
M∑

i=1

[
log |�i | + (yi − Xiβ)′ �−1

i (yi − Xiβ)
]
}

,

(5)

where y denotes the entire response vector, and N the
total number of observations. Conditional on θ and
λ, it is easy to show to that the maximum likelihood
estimate (MLE) of the fixed effects is given by

β̂ = β̂(θ, λ) =
(

M∑

i=1

X′
i�

−1
i Xi

)−1 M∑

i=1

X′
i�

−1
i yi .

(6)

The MLEs of θ and λ cannot be expressed in
closed form, except in trivial cases, and numerical
optimization of the loglikelihood function (5) must
be employed. The MLE of β is then obtained by
replacing θ and λ in (6) with their corresponding
MLEs.

The most popular optimization methods for
likelihood estimation in LME models are the
EM algorithm [5] and Newton–Raphson or
quasi-Newton methods [23] (see Optimization and
Nonlinear Equations). A detailed discussion of
numerical optimization in LME models, including
efficient methods for calculating the loglikelihood (5)
on the basis of orthogonal-triangular decompositions,
is given in [15].

Maximum likelihood estimates of variance com-
ponents tend to underestimate these parameters [10].
Restricted (or residual) maximum likelihood (REML)
methods [10, 19] were developed to circumvent this
problem. The REML loglikelihood is defined as the
loglikelihood of a set of ordinary least-squares resid-
ual contrasts of the response vector y with respect to
the fixed-effects regression matrix X. By the defini-
tion of the LME model, this loglikelihood does not
contain any information about the fixed effects and
can be expressed as [10]

�R(θ, λ|y) = �(β̂(θ, λ), θ, λ|y)

− 1
2 log

∣∣∣∣∣

M∑

i=1

X′
i�

−1
i Xi

∣∣∣∣∣ . (7)

REML estimates of θ and λ are obtained via numer-
ical optimization of (7) using similar algorithms as
in the ML case. Although the REML loglikelihood
does not have information on the fixed effects, REML
estimates of β are obtained by plugging the REML
estimates of θ and λ into (6). Table 1 presents the
ML and REML estimates for the Oxford example,
model (3). The random-effects parameters θ are rep-
resented by the standard deviations σ0 and σ1 corre-
sponding, respectively, to b0i and b1i , and their corre-
lation coefficient ρ. The within-subject parameters λ

include only the within-subject standard deviation σ .
In this example, because of the balanced structure

of the data, the only differences between ML and
REML estimation is in the standard deviations of the
random effects, with REML giving larger estimates,
as expected.

Table 1 ML and REML estimates for the Oxford data
LME model

Method β0 β1 σ0 σ1 ρ σ

ML 149.37 6.53 7.92 1.65 0.64 0.66
REML 149.37 6.53 8.08 1.68 0.64 0.66
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Even though the random effects are not regarded
as parameters in the LME model, it is also of interest
in practice to obtain predicted values for them. The
best linear unbiased predictors (BLUPs) of the ran-
dom effects, given θ and λ, are the conditional means
of the bi given the responses yi :

b̂i = b̂i (θ, λ) = �Z′
i�

−1
i

[
yi − Xi β̂(θ, λ)

]
. (8)

Estimated BLUPs are obtained, in practice, by replac-
ing θ and λ in (8) with their corresponding (RE)ML
estimates.

Inference

As a consequence of the estimates of θ and λ not
being expressible in closed-form, inference on the
LME model parameters usually relies on approxi-
mate distributions for the (RE)ML estimates, derived
from asymptotic results. Under certain regularity con-
ditions, generally satisfied in practice, the MLEs in
the LME model (4) are consistent and asymptoti-
cally normal [11, 18] (see Large-sample Theory).
Furthermore, the MLEs β̂ are asymptotically uncor-
related with the MLEs θ̂ and λ̂. The approximate
distributions for the MLEs in the LME model are

β̂ ·∼N



β,

(
M∑

i=1

X′
i�

−1
i Xi

)−1


 ,

[
θ̂

λ̂

]
·∼N

([
θ

λ

]
, I−1(θ, λ)

)
, (9)

where I(θ, λ) denotes the information matrix [3]
corresponding to (θ, λ), that is, minus the expected
value of the second-order derivative of the loglikeli-
hood function (5) with respect to (θ, λ) (which does
not depend on β).

The REML estimates in the LME model are also
consistent and asymptotically normal [11], with the
same approximate distributions as in (9), but with
the information matrix I(θ, λ) calculated using the
REML loglikelihood �R defined in (7).

In practice, the unknown parameters θ and λ are
replaced by their respective (RE)ML estimates in the
approximate distributions (9). These approximate dis-
tributions are then used to produce hypothesis tests
and confidence intervals in the model parameters.

Likelihood-ratio tests [14] are generally used to
test hypothesis about θ and λ in nested models with

the same fixed effects. Corrections on the number of
degrees of freedom are needed in the case of tests
involving boundary conditions [22]. Likelihood-ratio
tests are less frequently used to compare nested mod-
els with different fixed-effects because (a) they cannot
be used under REML estimation (the REML loglike-
lihoods of models with different Xi matrices are not
comparable); and (b) they tend to produce tests that
are too liberal, in the sense that the actual signifi-
cance levels tend to be considerably higher than their
nominal values. For these reasons, Wald tests (see
Chi-square Tests) are preferred to test hypothesis on
the fixed effects, with different approximations being
used for the denominator degrees of freedom in the
corresponding Student’s t- and F -tests [16].

Software

The availability of reliable and efficient software
for fitting linear mixed-effects models in commer-
cial packages is one of the main reasons for their
increasingly widespread use.

The SAS system includes several procedures and
macros for fitting mixed-effects models, with PROC
MIXED [16] being solely devoted to the linear mixed-
effects model. It implements both ML and REML
estimation and allows separate specifications of the
fixed-effects model (Xi), the random-effects model
(Zi and �), and the within-subject error model (�i).
Similar capabilities are available in the S-PLUS and
R languages, implemented in the lme function, which
is part of the more comprehensive NLME library for
mixed-effects models [20]. Both PROC MIXED and
lme have the advantage of being part of general
purpose statistical packages, so they can be used in
conjunction with other features in the system, such
as graphics and programming language capabilities.

Stand-alone, commercial software for fitting lin-
ear mixed-effects models is also available, including
MLwiN [26], HLM [27], Mplus [28], and AS Reml
[29]. All of these include capabilities for fitting and
analyzing linear mixed-effects models for longitudi-
nal data, plus varying additional features and capabil-
ities. See the corresponding URLs in the References
section for more information on each software.

Extensions

The linear mixed-effects model described in the
section “Model Definition and Assumptions” can be
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extended in a variety of ways. The LME model (4) is
intended for longitudinal data collected on subjects,
characterizing a single level of grouping. Multilevel
linear mixed-effects models [2, 8] handle the case
of multiple nested levels of grouping, which often
occurs in education and sociology, for example. The
generalization of model (4) to the multilevel case is
straightforward, with the same estimation methods
and similar optimization algorithms being used for
estimation [20].

Nonlinear mixed-effects (NLME) models [4, 20,
24] extend linear mixed-effects models by allowing
the regression function to depend nonlinearly on
fixed and random effects. Because of its greater
flexibility, an NLME model is generally more
interpretable and parsimonious than a competitor
empirical LME model based, say, on a polynomial
or spline function. The greater flexibility of NLME
models does not come without cost, however.
Because the random effects are allowed to enter the
model nonlinearly, the marginal likelihood function,
obtained by integrating the joint density of the
response and the random effects with respect to
the random effects, does not have a closed-form
expression, as in the LME model. As a consequence,
an approximate likelihood function needs to be used
for the estimation of parameters, leading to more
computer-intensive estimation algorithms and to less
reliable inference results.

Generalized linear mixed-effects models
(GLMMs) [6, 17] have been developed for grouped
data with non-Gaussian response variables, like
binary and count data. As with NLME models, the
marginal loglikelihood of GLMMs generally does not
have a closed-form expression because of model non-
linearity with respect to the random effects. Estima-
tion methods use different approximations to the log-
likelihood, resulting in more computationally inten-
sive algorithms and less reliable estimation results
than in LME models.
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Linear Programming

Linear programming (LP) is a decision model (see
Decision Theory) that was developed early in the his-
tory of operations research and has wide applicabil-
ity. It is a technique for finding optimal solutions, i.e.
solutions to a decision problem that optimize some
objective (maximize profit, minimize cost, etc.) sub-
ject to a set of constraints. In health care, LP has been
applied both to management decision making and to
decisions regarding clinical care. A few examples of
LP are: (i) to improve breast cancer diagnosis on the
basis of cell characteristics from a fine needle biopsy
and to model the likelihood of recurrence in surgi-
cally treated patients [10]; (ii) to optimize scheduling
nurses to meet coverage needs at the lowest cost
[7]; (iii) to develop a model of costs and revenues
based on patient diagnostic groups for strategic plan-
ning at a major university medical center [1]; (iv) to
identify underutilized resources and inefficient pro-
duction of services at the Department of Veterans
Affairs medical centers [14]; (v) to develop a severity
index for emergency medicine patients with cardiac
problems [11]; (vi) to determine a treatment plan
for radiation therapy that optimizes tumor exposure
while reducing the exposure of healthy tissue [12];
and (vii) to compare alternative methods to develop
a state rate-setting formula for nursing homes [2].
Greenberg [3–6] provides a tutorial with an overview
of LP methodology and applications, while Hillier &
Lieberman [8] is an excellent basic reference.

Although LP is the decision model most widely
used by corporations, health care applications have
been limited in the past by inaccessible software,
unavailable data and low demand. Charge based fee-
for-service clinical practice and cost-plus reimburse-
ment for hospitals coupled with less competition in
the past produced a low perceived need to optimize.
The growth of managed care with its emphasis on
global budgets and capitation for the care of popula-
tions is changing this situation; consequently, LP is
likely to become more important in health care man-
agement and in health services research (see Health
Services Organization in the US).

Model

An LP model has three main components: (i) a set
of decision variables which represent quantities over

which management has control; (ii) an objective func-
tion, defined on the decision variables, representing
the quantity that the decision maker wishes to opti-
mize; and (iii) a set of constraints representing the
limitations imposed on the decision choices. The
word linear refers to the form of the functions of the
decision variables appearing in the objective function
and in the constraints. The form of these functions is
a summation of terms, each term being a single deci-
sion variable multiplied by a coefficient. Thus, linear
programming, strictly defined, does not permit forms
that have variables raised to powers or multiplied by
other variables. There are techniques for nonlinear
programming, but they involve different algorithms.
The term programming refers to the iterative nature
of solution techniques, not to computer programming.

Solving an LP problem involves finding a set of
values to assign to the decision variables that will
maximize (or minimize) the objective function with-
out violating any of the constraints. Constraints may
reflect limitations on resources, policy requirements,
proportional relationships that must be maintained,
or other requirements of the situation. There are
three types of functional constraints: requirements –
“greater than or equal to”, limitations – “less than
or equal to”, and strict equality. Sign constraints are
requirements that a variable be nonnegative.

There are three stages in LP analysis: formulation,
solution, and interpretation. Formulation involves
expressing the decision problem as an LP model in
standard form. In standard form the constraints have
the variables on the left-hand side of the operator
and a constant on the right-side (known as RHS or
right-hand-side quantities). Next, the “optimal solu-
tion” is found and its general properties are deter-
mined, including sensitivity to parameter variations
(see Sensitivity Analysis) and shadow prices for
all constraints. Then, interpretation involves translat-
ing the numbers produced by the solution technique
into their meaning in the context of the decision to
be made.

Solution Techniques

Once an LP model has been formulated, a solution is
sought. Some LP models do not have solutions. Actu-
ally, with any LP model exactly one of the following
will be the case: (i) it will have at least one opti-
mal solution; (ii) it will be infeasible; or (iii) it will
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be unbounded. An infeasible model is one in which
there is no solution that satisfies all of the constraints.
An unbounded model is one in which the objective
function can move infinitely far in the desired direc-
tion. In the latter case, it is likely that the model
was formulated incorrectly, or does not represent
a real-life situation. There are three widely known
techniques for solving LP problems: the Graphical
Solution Technique, the Simplex Method, and the
Interior Point Method (also known as “Karmarkar’s
Algorithm”).

Graphical Solution Technique

This technique is generally used only for problems
that contain two variables; its value is more as a
teaching tool than as a practical problem-solving
technique. Coordinate axes represent the decision
variables and constraints are plotted, often result-
ing in an enclosed area; assuming that a feasible
solution does exist, the set of all feasible solutions
in this enclosed area is called the feasible region
(Figure 1). Each corner of this enclosed area is known
as a corner-point feasible (CPF) solution; the impor-
tance of CPF solutions is that the optimal value of
the objective function will come from this set. The
objective function is then set to an arbitrary constant,
yielding an equation which is plotted as a line (called
a contour line or isoquant). Another arbitrary constant
is then used to generate a parallel line with the same
slope and in the direction of improving the objec-
tive function. The last CPF solution to intersect an
isoquant line as it leaves the feasible region in the
direction of optimization is the optimal solution. The
optimal solution(s) will become apparent from this

Constraint 2

Isoprofit line

Feasible
region

Optimal solution

Constraint 1

Figure 1 Graphical method for solving linear program-
ming problems

analysis. If there is an optimal solution, then there
will be at least one corner point optimal solution; if
two corner points are optimal, then all of the points
in between them are also optimal.

If constraints do not stop the contour lines from
moving infinitely far in the desired direction, then
the problem is unbounded. An unbounded problem
has failed to include or appropriately value at least
one relevant constraint.

If there is no simultaneous optimal solution to
all of the constraints in the problem as formulated,
then the model may be infeasible, also known as
inconsistent, or misspecified. Infeasible LP problems
result from the constraint equations, not the objective
function, and they should be reviewed if the model is
infeasible. In practice, constructing large LP models
may involve constraint inputs from many different
individuals or teams, so initial infeasibility of a model
is not uncommon.

As mentioned above, this technique is applied to
two variable problems. LP models with only one
decision variable are not of practical significance.
With three decision variables, the feasible region
would typically be a three-dimensional figure with
flat surfaces, and the objective function would be
represented by contour planes finding the best corners
of this figure. With more than three variables, visual
representation becomes impracticable.

Example

A simplified problem that could be solved by the
graphical technique is the decision for assigning the
mix of appointment slots for two types of patients
in a fee-for-service Nurse Practitioner clinic to pro-
duce the optimal amount of revenue. Assume that
the revenue from a hypertensive patient visit (H ) is
$10 and for a patient with diabetes (D) $18, that
Nurse Practitioners (NP) see the former on aver-
age for six minutes and the latter for 15 minutes
while Nursing Assistants (NA) are with both types
of patients for 18 minutes, and that total available
Nurse Practitioner hours equals 7000 while those
for Nursing Assistants equals 14 000. The objective
function is then 10H + 18D, the first constraint is
0.1H + 0.25D ≤ 7000, and the second constraint is
0.3H + 0.3D ≤ 14 000. The optimal solution is to
schedule 31 111 hypertension patients and 15 555 dia-
betes patients.
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The Simplex Method

George Dantzig developed the Simplex Method in the
1940s and it has proven to be both robust and versa-
tile. This method produces successive outputs, known
as tableaus, as part of its iterative search for an opti-
mal solution. To establish an initial tableau, remove
inequalities and satisfy the nonnegativity constraints
of the model, additional variables are introduced:
slack variables for constraint equations (“≤”) and
surplus variables for requirements (“≥”). In the opti-
mal solution to the LP, slack or surplus variables will
be zero for active constraints and positive for inactive
constraints.

The standard equation constraint form of the LP
in matrix notation is then

optimize Z = cx

subject to Ax + s = b

x, s ≥ 0.

Continuing with the graphical analogy, the Simplex
Method first identifies a corner point; if there is
none, then the problem is said to be inconsistent, or
infeasible. Once a corner point is identified, then the
algorithm moves from corner point to adjacent cor-
ner point of the feasible region, with each successive
iteration produced by the Gaussian elimination equal-
ing or improving the value of the objective function.
The algorithm terminates when an optimal CPF solu-
tion is identified; the resulting basic feasible solution
consists of the nonnegative variables in the set.

Example

In an article on hospital financial planning [1] linear
programming is used at a leading academic medical
center to evaluate the resource and revenue implica-
tions of changes in patient acuity level and primary
insurer. The goal in this formulation is to maximize
net revenue after variable expenses:

max
∑

j

(rj − vcj )
∗xj ,

where rj = total revenue from patient type j , vcj =
total variable cost from patient type j , and xj =
number of patients of type j . Here, the decision
variables can be optimized for a given situation or

varied to explore the financial impact under differ-
ing scenarios, for example, in contract negotiations,
in considering major capital renovations, or in con-
sidering a shift in patient mix based on marketing
emphases or regulations. Examples of constraints in
this model include the number of beds in each clinical
service, ancillary services, requirements that the insti-
tution meet at least minimum levels of demand for
admission by populations it has traditionally served,
and limits on patient demand by various groups –
based on the output from a separate forecasting
study.

For an LP (the primal ) there also exists an alter-
nate formulation of the problem, called the dual, in
which the number of decision variables in the primal
equals the number of constraints in the dual and the
number of constraints in the primal equals the number
of decision variables in the dual. Optimization of the
primal also results in optimization of the dual; how-
ever, if the primal is a maximization model, then the
dual will be a minimization model and vice versa.
When the optimal solution contains fewer positive
variables than constraints, it is said to be degenerate.
One result of degeneracy is that there is restricted
ability to do postoptimality analyses.

Most problems of practical significance are too
large to be solved manually, so specialized software
has been written to perform this function. The time to
solve an LP is essentially determined by the number
of constraints in the problem rather than the number
of decision variables; therefore, using the relationship
between the primal and dual specifications, solving
the formulation with the smaller number of con-
straints will be faster. Although computing speed and
power continue to increase, this is a useful observa-
tion since the sizes of the problems to be solved are
also increasing.

Beyond computational efficiency there is eco-
nomic information contained in the correspondence
between the primal and dual. Much of the value of
an LP solution comes from post-optimality, or sen-
sitivity, analysis. The typical computer output for an
optimized LP model will contain values for the objec-
tive function, for basic structural variables (those hav-
ing nonzero values), shadow prices for the constraints
and change vectors for Right-Hand-Side and objec-
tive ranging or sensitivity analyses. These change
vectors report how much the basic variables change
when the Right-Hand-Side constraints are increased
or decreased; shadow prices show how much the
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value of the objective function will change as the
values of the RHS change. Taken together, these
results answer the questions of how much of which
resources should be purchased, if any, and at what
price.

The range of values over which these sensitiv-
ity analyses are valid is restricted: information on
the lower and upper bounds of these ranges for each
variable will be included in the printout under sen-
sitivity analysis. If the quantities being considered
in the sensitivity analyses lie outside these ranges,
then the model must be rerun with different inputs
since the original optimal solution would no longer
be valid. Finally, sensitivity results are only cor-
rect when the values reported lie within the upper
and lower bounds, and only when one variable is
changed at a time. If the analyst is interested in simul-
taneous changes to more than one variable, again
the model must be rerun with these changes in the
input.

Interior Point Method

An alternative to the Simplex Method was reported
by Narendra Karmarkar in 1984. Karmarkar’s
approach and similar barrier algorithms are based
on progressing along successive points interior to the
feasible region toward an optimal solution. Since the
algorithm does not move from corner to corner as
the Simplex does, it is potentially much faster for
very large problems and may be the only option
for extremely large problems. Research continues
on interior point algorithms for LP; however, they
are currently inferior to the Simplex Method in
supporting sensitivity analysis [8, 9].

Software

Few problems of practical significance can be solved
manually; fortunately, developments in hardware and
software have moved the ability to solve large lin-
ear programming problems to the desktop. Depending
on the operating system, size of the problem, price,
data input source(s), and other features desired, many
options exist to support a knowledgeable user; how-
ever, online support for a novice is infrequently
provided [15].

Perhaps the most immediately useful of the LP
software to a broad audience are the spreadsheet

packages that include optimization routines or have
transparent “add-ins” for this function. These func-
tions, coupled with stored models and report writer
capability, allow users easy import of data into widely
used applications packages to produce outputs clearly
on the basis of an array of scenarios or assumptions.
Some commercial packages, e.g. SAS OR [13] (see
Software, Biostatistical) employ enhancements that
allow the user greater flexibility of features than the
Simplex Method alone would permit.

Quantitative management courses, such as those
typically taught in masters programs in business or
health administration, increasingly rely on spread-
sheet applications to teach these methods – increasing
the likelihood that the techniques may be applied
more often than in the past.

Internet

Typical LP resources on the internet include web
sites for professional associations, university courses
on LP, computer routines that permit LP problems
to be solved over the internet, and other areas of
specialization. Although the internet is dynamic, a
useful overview of resources and potential uses is
provided by Sodhi [16].

Summary

Until recent advances in data availability, hardware,
software, and trained users, the trade-off between
the time and cost of modeling, obtaining the data,
and the likely payoff for what might be one-time
efforts, discouraged widespread use of LP in health
care. As the expectations for efficient, quality health
care increase and integrated financing and delivery
systems look for ways to address simultaneously
demands for lower cost and higher quality, the oppor-
tunities for the application of LP should increase.
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Linear Rank Tests in
Survival Analysis

Linear rank tests for survival data are generalized
nonparametric methods for testing the null hypoth-
esis of equal survival distributions among groups.

A number of approaches to generalizing rank tests
to censored data have appeared in the literature –
approaches which are often quite different from one
another. The earliest statistic to reach widespread
use was that of Gehan [13], who generalized the
Wilcoxon–Mann–Whitney scores for the two-group
problem. Mantel [24] used arguments based on
the construction of the Mantel–Haenszel test for
stratified 2 × K contingency tables to propose a test
that later became known as the logrank test. Efron
[8] then proposed a statistic based on combining the
values of the estimated survival distributions of two
groups across time. In 1970 Breslow [5] provided
a generalization of the Kruskal–Wallis statistic that
reduced to the Gehan–Wilcoxon statistic in two
samples. The work of Peto & Peto [25] made
important progress in studying the properties of these
and other tests. In 1972, the proportional hazards
model of Cox [6] (see Cox Regression Model)
provided a setting in which the logrank test could
be derived as a partial likelihood score test from a
regression model. Prentice [26] showed in 1978 that
many of these tests were asymptotically equivalent to
tests that were natural generalizations of the classical
linear rank tests for uncensored data described in
Hájek & Šidák [17]. In his seminal doctoral thesis
and later published work, Aalen [1, 2] showed that the
theory of counting processes and martingales could
be used to recast two-sample tests with right-censored
data in the multiplicative intensity model and to study
their asymptotic theory. Gill [14] extended this work
to a complete study of the operating characteristics of
two-sample tests with censored data, and Andersen
et al. [3] illustrated the use of this methodology
for tests used to compare more than two groups.
Remarkably, all these approaches point to essentially
the same tests.

Censored data rank tests are most well-developed
for right-censored failure time data. Data are right-
censored if, for each subject in a study, the underlying
data consist of the time, T , to some event and a
censoring time, U , while the observable data are

X = min (T , U) and δ = I (T ≤ U), where I (A) is
the usual indicator random variable of the event A.
The variable T is commonly called a failure time
or a survival time. The underlying survival function,
Pr(T > t), is usually denoted by S(t), the cumulative
hazard, − log S(t), by Λ(t) for continuous T , and the
hazard function for absolutely continuous T by λ(t)

(see Survival Distributions and Their Characte-
ristics). If S has discontinuities or is otherwise not
differentiable, the cumulative hazard function is given
more generally by Λ(t) = − ∫ t

0 [S(u−)]−1 dS(u). We
let π(t) = Pr(X ≥ t), the probability that a subject is
at risk at time t .

Linear rank tests are most commonly used when
making comparisons among K groups, K ≥ 2, or
when comparing a single group with a known or
hypothesized population. For the K-group problem,
the observable data consist of the pairs (Xij , δij ), 1 ≤
j ≤ ni, i = 1, . . . , K; that is, there are ni observa-
tions in the ith of K groups, with underlying survival
distribution Si(t) and probability πi(t) of being at
risk. The validity of all the tests discussed below
depends centrally on the assumption that the observed
failure rate among cases at risk of failure is the same
rate that would be observed if censoring were not
present. This is satisfied if Tij and Uij are independent
random variables for all pairs i, j , and we assume this
condition throughout.

We use the counting process setting here. That
methodology is not only the most recent and the most
successful in studying the asymptotic theory of these
tests, but it also provides a surprisingly useful frame-
work for a less formal exploration of their properties.
The theory for these tests is best understood for the
two-sample problem, and, since the two-group com-
parison problem is the most prevalent testing problem
with censored data, we discuss that case in greater
detail.

Gill [15] provides an accessible and intuitive
introduction to the martingale approach to survival
analysis in the context of the proportional hazards
model.

The Counting Process Approach

Counting process methods are now widely used for
survival data, and these methods have a particularly
simple form when used to study rank tests. Generally,
a stochastic process N = [N(t) : t ≥ 0] is a counting
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process if N(0) = 0 and it has increasing, right-
continuous step functions for paths, with jumps of
size 1 at each discontinuity. The process

Nij = [Nij (t) = I (Xij ≤ t, δij = 1); t ≥ 0]

has simple right-continuous step functions for paths,
beginning at 0 at t = 0 and taking a single jump
to 1 at time t if and only if Tij = t and Tij ≤ Uij .
The information in the pair (Xij , δij ) is equivalent
to that in the complete path of Nij as well as in
the path of the process NU

ij (t) = I (Xij ≤ t, δij = 0).
Formally, the information up to time t in the pair
Nij , NU

ij is represented as the σ -algebra Fij
t generated

by the set of variables [Nij (u), NU
ij (u); 0 ≤ u ≤ t].

The information in all K groups up to time t

is the product σ -algebra Ft = ⊗ijFij
t . Since that

information increases with time, the collection of σ -
algebras F = (Ft ; t ≥ 0) forms a filtration, i.e. an
increasing sequence (in t) of σ -algebras.

The counting process approach uses the stochastic
calculus of martingales in its representation of
test statistics and the martingale central limit
theorems [29] for the asymptotic theory (see Large-
sample Theory). A process M = [M(t); t ≤ 0] is a
martingale with respect to a filtration (Gt ; t ≥ 0) if

1. M(t) is adapted to Gt for each t

2. E|M(t)| < ∞ for all t < ∞, and
3. E[M(t + s)|Gt ] = M(t) a.s. for all s ≥ 0, t ≥ 0.

Condition 3 implies that E[M(t) − M(u)|Gu] = 0
for all u ≤ t , and this is sometimes written
informally as E[ dM(t)|Gt−] = 0. A process M is
called a submartingale if the equation for the
conditional expectation in condition 3 above is
replaced by the inequality E[M(t + s)|Gt ] ≥ M(t).
Because the martingale property depends on the
underlying filtration, we sometimes say that M is
a Gt -martingale. The martingale definition implies
that a linear combination of processes which are
martingales with respect to a common filtration G will
itself be a Gt -martingale.

It is possible to show that, when Tij and Uij are
independent for all pairs i, j , the process

Mij (t) = Nij (t) −
∫ t

0
Yij (u) dΛi(u) (1)

is a martingale with respect to the filtration F defined
above, where Yij (u) = I (Xij ≥ u) is the process

denoting whether or not subject i, j has failed or been
censored before time t (cf. Theorems 1.3.1 and 1.3.2
in Fleming & Harrington [10]). The integral on the
right-hand side of (1) is called the compensator for
the process Nij . For simplicity of notation we usually
write (1), and others like it, as

Mij = Nij −
∫

Yij dΛi.

It is not surprising that Mij is an Ft -martingale. Con-
ditional on the history of the failure and censoring
processes before time t , the conditional probability
of a jump in Nij at t is approximately Yij (t) dΛi(t),
so that E( dNij − Yij dΛi |Ft−) = 0. This result is an
example of the more general Doob–Meyer decom-
position for submartingales (cf. [9]), which states
that for any submartingale Z (subject to bounded-
ness conditions) there exists a predictable process A,
called the compensator for Z, such that Z − A is a
martingale.

Nearly all commonly used linear rank statistics
for survival data can, under H0, be represented, or at
least approximately so, as

∑
ij

∫
Hij dMij , or as sums

of stochastic integrals of “predictable” processes
with respect to the fundamental martingale processes.
This construction allows the use of the stochastic
calculus for martingales outlined below. More detail
may be found in Fleming & Harrington [10] and
Andersen et al. [4]. To keep the technical material
to a minimum, we have not given the most general
versions of these results.

There are several definitions of a predictable
process; the following is one of the more accessible.

Definition. A stochastic process H = [H(t); t ≥
0] defined on a probability space (Ω,A, P ) is
predictable with respect to a filtration F = (Ft ; t ≥ 0)

on that space if H is measurable with respect to the
smallest σ -algebra on [0, ∞) × Ω generated by the
adapted left-continuous processes.

This definition implies that any left-continuous Ft -
adapted process will be Ft -predictable; operationally,
that is how predictability is checked.

Slightly more general versions of the following
theorems appear in Fleming & Harrington [10, cf.
Theorem 2.4.1].

Theorem 1. Suppose H is a bounded, Ft -
predictable process and M an Ft -martingale with
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M(0+) − M(0) = 0. Then the process

∫
H dM =

[∫ t

0
H(u) dM(u); t ≥ 0

]

is an Ft -martingale.

Theorem 2. Suppose M1 and M2 are square inte-
grable Ft -martingales (i.e. supt≥0EM2

i (t) < ∞, i =
1, 2). Then there exists a unique Ft -predictable pro-
cess 〈M1, M2〉 such that M1M2 − 〈M1, M2〉 is an
Ft -martingale.

The process 〈M1, M2〉 is called the predictable
covariation process for the martingales M1 and M2.
When M1 and M2 are the same process M, 〈M, M〉 is
called the predictable quadratic variation process, and
is often denoted by 〈M〉. Since martingales have con-
stant expected value, EM1(t)M2(t) = E〈M1, M2〉(t)
whenever M1(0)M2(0) − 〈M1, M2〉(0) = 0. This for-
mula is particularly valuable for computing second
moments when the quadratic variation process takes
a simple form, as it does for the counting process
martingales arising in survival analysis.

It is possible to show that

〈∫
H1 dM1,

∫
H2 dM2

〉
=

∫
H1H2 d〈M1, M2〉

(cf. Fleming & Harrington [10, Theorem 2.4.2]).
The following summarizes results on quadratic

variation processes for counting process martingales.

Definition 1. A k-dimensional counting process
(N1, N2, . . . , Nk) is called a multivariate counting
process if each component Nj is a counting process
and no two component processes jump at the same
time.

Theorem 3. Let (N1, N2, . . . , Nk) be a multivariate
counting process, and let Aj be the compensator
of Nj . Then 〈Mj, Mj 〉 = ∫

(1 − ∆Aj) dAj and
〈Mi, Mj 〉 = − ∫

∆Ai dAj for i �= j .
When a survival distribution is continuous, ∆A =

0, and these formulas are particularly simple. In that
case 〈Mi, Mj 〉 = 0 and the martingales Mi and Mj

are called orthogonal. The more general formula is
useful, however, in estimating second moments when
there are ties in observed failure times, even when
the underlying model is continuous, as will be seen
below.

Common Linear Rank Tests

Despite its demanding technical foundation, the
martingale approach to rank tests is a useful setting
for formulating tests. This is most easily seen for
two-sample tests. Suppose two groups have survival
functions S1 and S2 and cumulative hazard functions
Λ1 and Λ2. Let Ni = ∑

j Nij , Y i = ∑
j Yij , and

Mi = Ni − ∫
Y i dΛi, i = 1, 2. The observed number

of failures at time t in group 1 is dN1(t); with
independent censoring and under H0: Λ1 = Λ2, the
conditionally expected number of failures in group 1
at t , given that a failure has been observed at t , is

Y 1(t){ d[N1(t) + N2(t)]}
[Y 1(t) + Y 2(t)]

.

A simple test of H0 can be constructed by comparing

∫ ∞

0
dN1 − Y 1

d(N1 + N2)

Y 1 + Y 2
(2)

with 0. This statistic is the numerator of the logrank
statistic. Simple algebra shows that under H0 the
above expression is equal to

∫ ∞

0

Y 1Y 2

Y 1 + Y 2

(
dN1

Y 1
− dN2

Y 2

)
=

∫ ∞

0

Y 1Y 2

Y 1 + Y 2

×
[(

dN1

Y 1
− dΛ1

)
−

(
dN2

Y 2
− dΛ2

)]

=
∫ ∞

0

Y 2

Y 1 + Y 2
dM1 −

∫ ∞

0

Y 1

Y 1 + Y 2
dM2

=
n1∑

j=1

∫ ∞

0

Y 2

Y 1 + Y 2
dM1j

−
n2∑

j=1

∫ ∞

0

Y 1

Y 1 + Y 2
dM2j . (3)

Gill [14] used an expression similar to (3) as a
foundation for a generalized class of statistics that
includes many previously discussed in the literature.

Definition. Suppose one has two samples of right-
censored observations (Xij , δij ), 1≤j ≤ ni, i = 1, 2,
giving rise to the counting and at risk processes
Ni, Y i, i = 1, 2, and let (Ft ; t ≥ 0) be the filtra-
tion generated by [Nij (u), Yij (u); 0 ≤ u ≤ t, 1 ≤ j ≤
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ni, i = 1, 2]. Let K be a bounded nonnegative Ft -
predictable process satisfying K(t) = 0 whenever
Y 1(t)Y 2(t) = 0. Then

GK =
∫ ∞

0
K

(
dN1

Y 1
− dN2

Y 2

)

is called a statistic of the class K+. When

K =
(

n1 + n2

n1n2

)1/2

W

(
Y 1Y 2

Y 1 + Y 2

)

=
(

n1n2

n1 + n2

)1/2

W
Y 1

n1

Y 2

n2

n1 + n2

Y 1 + Y 2
,

the statistic is called a weighted logrank statistic. The
fraction Y 1Y 2/(Y 1 + Y 2) appears in the usual logrank
statistic; as will be seen later, the terms involving
sample sizes ensure convergence under null and
alternative hypotheses. The function W reweights
the observed minus expected increments in (2).
Although weighted logrank statistics are a subset of
the statistics of class K+, they are the most common
in applications, and we give those somewhat more
attention here. Since the function W is the important
part of the weight function in these statistics, we
denote weighted logrank statistics by GW .

The upper limit of integration in the integral repre-
sentation for statistics of class K+ occasionally causes
confusion. Because the weight function in the two-
sample statistic takes value 0 as soon as at least one of
the risk sets is empty, the integral as written denotes a
statistic computed for the portion of the time axis over
which there are cases at risk in both groups. Contribu-
tions to the statistic stop when all cases in either one
of the groups have failed or have been censored; that
is the most natural way for the practitioner to think of
these nonparametric statistics. In the asymptotic the-
ory for some of these statistics, the integral may be
computed only over a prespecified time interval for
which the probability of a subject being at risk at the
right end point is bounded away from zero. That is
not necessary for most of the statistics discussed here.
Finally, the upper limit of integration may be thought
of as a variable t when the statistic is considered a
process with changing values as time increases. This
last perspective is used in the martingale calculus.

If W is a predictable process, a weighted logrank
statistic can, under H0, be represented as sums of
stochastic integrals of predictable processes with

respect to martingales, so that GW is itself a martin-
gale. This representation and its quadratic variation
process can be used to derive formulas for the first
two moments of these test statistics. The following
summarizes Theorems 3.3.1 and 3.3.2 in Fleming &
Harrington [10]; except for some regularity condi-
tions and tedious algebra, it follows directly from
Theorems 1 and 2.

Theorem 4. Let GK be a statistic of the class K.
When Λ1 = Λ2 = Λ, EGK = 0 and

EG2
K = E

2∑

i=1

∫ ∞

0

K2

Y i

(1 − ∆Λ) dΛ.

The variance estimator

σ̂ 2 =
∫ ∞

0

2∑

i=1

K2

Y i

(
1 − ∆N1 + ∆N2 − 1

Y 1 + Y 2 − 1

)

× d(N 1 + N2)

Y 1 + Y 2
(4)

is an unbiased estimate of EG2
K .

When Λ is continuous, ∆Λ = 0 in the expres-
sion for EG2

K , and the second term in the sum
comprising the integrand in σ̂ 2 would seem unnec-
essary. That term is present only when two or more
observed failure times are equal, however, and seems
to improve the small-sample behavior of the estimator
in tied data.

When W = 1, the statistic is the logrank statis-
tic originally proposed by Mantel [24]. The same
statistic arises as a partial likelihood score statistic
in a proportional hazards regression model with a
single binary covariate, although that approach leads
to the variance estimate which assumes ∆Λ is iden-
tically 0. When W(t) is a function of the proportion
of cases at risk at time t, [Y 1(t) + Y 2(t)]/(n1 + n2),
the statistic is a member of the family proposed by
Tarone & Ware [32]. If W is exactly the proportion
of cases at risk, then GW is the Gehan [13] gener-
alization of the Wilcoxon statistic. If W = Ŝ−, the
left-continuous version of the Kaplan–Meier [19]
estimator computed with the two groups combined,
then the statistic is asymptotically equivalent to the
Wilcoxon generalization proposed by Prentice [26]
and to a similar statistic proposed by Peto & Peto
[25]. When W = (Ŝ−)ρ, ρ > 0, the resulting fam-
ily of statistics is that proposed by Harrington &



Linear Rank Tests in Survival Analysis 5

Fleming [18]. In this family, the logrank statistic
corresponds to ρ = 0 and the Prentice–Wilcoxon to
ρ = 1. Gray & Tsiatis [16] have shown that this
family may be extended to allow ρ < 0. The statis-
tic proposed by Efron [8] is equivalent to one with
weight

W = (Y 1 + Y 2)Ŝ
−
1 Ŝ−

2 I (Y 1Y 2 > 0)

(Y 1Y 2)
.

Since both Y 1 and Y 2 are Ft -adapted and left-
continuous, the use of the left-continuous version of
the Kaplan–Meier estimator in these statistics ensures
predictability of the integrand K .

The counting process representation of these
statistics provides insight into the term “linear rank
tests”. In uncensored data, where Xij = Tij for all
pairs i, j , a classical linear rank statistic as discussed
in Hájek & Šidák [17] has the form

∑
i,j a(Rij ),

where Rij is the rank of Tij in the combined sample
and a is function assigning scores to the ranks. When
the weight function W in a weighted logrank statistic
depends only on the order of the possibly censored
observations in the combined sample, as in all the
statistics discussed above, then the Stieltjes integral
representation of the statistic consists of a linear
combination of scores assigned to observed failures
according to the ordering of the observations Xij .

The counting process representation also sheds
light into the operating characteristics of these two-
sample tests. The weighted logrank statistics can be
written as

c

∫ ∞

0
W

[
dN1 − Y 1

d(N1 + N2)

Y 1 + Y 2

]
,

where c is a constant depending only on sample size.
When W is constant, the observed minus expected
failures are weighted equally, so that deviations from
0 in these terms in the right tail of the observations,
where the risk sets are small, have as much influence
on the value of the statistic as early deviations at
times with large risk sets. If S1 and S2 are absolutely
continuous and λ1 − λ2 changes sign at some time t ,
i.e. the underlying distributions have crossing hazard
functions, then the logrank statistic may have a
value that is not significantly different from zero,
regardless of sample size (cf. Fleming et al. [11]
for an example from a clinical study and Prentice
& Marek [27] for an extended discussion). If W

decreases when the observations increase, as in the
Harrington–Fleming family when ρ > 0, then earlier
differences in the observed minus expected failures
will be emphasized. Gill [14] shows that statistics of
the class K+ are consistent as long as Λ1(t) ≥ Λ2(t)

for all t or vice versa, with strict inequality on at
least one interval containing nonzero mass for the
two distributions. Formal results about asymptotic
operating characteristics under alternative hypotheses
are summarized later.

The K-sample, K > 2, statistics are natural gen-
eralizations of the two-sample tests. Let Ni, Y i, i =
1, . . . , K , be defined as with two groups, and let
N = ∑

i Ni and Y = ∑
i Y i . Under H0: Λ1 = Λ2 =

· · · = ΛK , the K-dimensional statistic with the ith
component given by

GW,i =
∫ ∞

0
W

(
dNi − Y i

dN

Y

)

is, for each group, a weighted sum of observed minus
conditionally expected number of failures. It is not
difficult to show that

∑
i GW,i = 0, so that there

are only K − 1 linearly independent components
in the statistic. More detailed information about
the covariance of the components of the statistic
comes from the equivalent (under H0) martingale
representation

GW,i =
K∑

l=1

∫ ∞

0
W

(
ril − Y i

Y

)
dMl,

where ril = 1 when i = l and 0 otherwise. If we
assume that the underlying cumulative hazard func-
tions are continuous and that there are no ties in the
observed data, the components of the statistic can be
written as a sum of integrals with respect to orthog-
onal martingales. The simpler formulas for quadratic
variation and covariation can be used to show that,
under the hypothesis that all groups have a common
cumulative hazard Λ,

〈GW,i〉 =
K∑

l=1

∫ ∞

0
W 2

(
ril − Y i

Y

)2

Y l dΛ

and

〈GW,i, GW,k〉 =
K∑

l=1

∫ ∞

0
W 2

(
ril − Y i

Y

)
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×
(

rkl − Y k

Y

)
Y l dΛ

=
∫ ∞

0
W 2 Y i

Y

(
rik − Y i

Y

)
Y dΛ.

The last expression leads to a natural estimator Σ̂ of
the covariance matrix of the statistic, with elements
σ̂ik given by

σ̂ik =
∫ ∞

0
W 2 Y i

Y

(
rik − Y k

Y

)
dN. (5)

As with the two-sample statistic, it is possible to show
that E(σ̂ik) = cov(GW,i, GW,k).

The basic martingale may also be used to construct
a statistic for comparing a single sample with a
known or hypothesized population distribution with
failure rate dΛ0. The natural analog of the weighted
logrank statistic is

c

∫ ∞

0
W( dN1 − Y 1 dΛ0 du).

These statistics are discussed in detail in Andersen
et al. [4] and Woolson [33].

Asymptotic Distribution Theory

Large-sample normality for the K-sample statistics
under both null and alternative distributions has been
established by a number of authors. The original
derivations of these tests by Gehan, Mantel, and
others contained strong plausibility arguments for
asymptotic distributions, and Schoenfeld [31] may
have been one of the first to establish formally
the asymptotic efficiency of the logrank test under
proportional hazards alternatives. Using the original
martingale formulation of Aalen and the martingale
central limit theorem of Rebolledo [29], Gill provided
a thorough study of the large-sample operating char-
acteristics of the two-sample tests under both null
and alternative hypotheses (see Power). Andersen
et al. [3] used the same methodology to study the
large-sample behavior of tests for more than two
samples. The theorems below summarize the major
results in this area. The first results provide asymp-
totic distributions under the null hypothesis, first for
the two-sample case, and then for the general K-
sample statistics.

The most general theorems about the convergence
of these statistics require more regularity conditions
than might at first be expected. Beyond the usual
conditions needed for central limit theorems, the
asymptotic normality in these statistics can be dis-
turbed if the weight function W becomes too large
or if the cumulative hazard approaches infinity too
quickly. The following theorem for the two-sample
case covers nearly all the statistics used in practice
and, because of the form of the weight function, does
not require many conditions. This theorem appears as
Theorem 7.2.1 in Fleming & Harrington [10], and
relies for its proof on the more general result of
Corollary 4.3.1 in Gill [14].

Theorem 5. In the two-sample testing problem
with right-censored data (as described above), let
Ŝ(t) denote the Kaplan–Meier estimator computed
from the combined samples. Let π̂ (t) denote the
pooled sample estimator of the probability that a sub-
ject is alive and uncensored at time t , i.e. π̂(t) =
[Y 1(t) + Y 2(t)]/(n1 + n2). Let f be a nonnegative
bounded continuous function of bounded variation on
[0, 1]. Suppose the weighted logrank statistic GW has
weight function of the form

(
n1n2

n1 + n2

)1/2

W(t)
Y 1(t)

n1

Y 2(t)

n2

n1 + n2

Y 1 + Y 2
,

where W(t) = f [Ŝ(t−)] or W(t) = f [π̂(t)]. Sup-
pose that limnni/n = ai exists and lies in (0, 1), and
let σ̂ be as in (4). Then under H0: Λ1 = Λ2, GW/σ̂

converges in distribution, as n → ∞, to a nor-
mally distributed random variable with mean 0 and
variance 1.

Theorem 6 follows from Theorem V.2.1 and
Example V.2.10 in Andersen et al. [4]. Because of the
linear dependence of the terms in the K-dimensional
statistic, the last component is usually dropped when
computing the quadratic form for a Wald test (see
Likelihood).

Theorem 6. In the K-sample testing problem with
right-censored data (as described above), let Ŝ(t)

denote the Kaplan–Meier estimator computed from
the combined samples. Let π̂(t) denote the pooled
sample estimator of the probability that a subject is
at risk at time t , i.e.

π̂(t) = [Y 1(t) + · · · + YK(t)]/(n1 + · · · + nK).
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Let f be a nonnegative bounded continuous func-
tion of bounded variation on [0, 1]. Suppose the
weight function W in the K-sample weighted logrank
statistic is of the form W(t) = f [Ŝ(t−)] or W(t) =
f [π̂ (t)], and let the ith component of the standard-
ized statistic be given by

GW,i =
[

n

ni(n − ni)

]1/2 ∫ ∞

0
W

(
dNi − Y i

dN

Y

)
,

where n = ∑
i ni . Let the column vector G be given

by G′ = (GW,1, . . . , GW,K−1), and let the estimated
covariance matrix for this (K − 1) dimensional vec-
tor be denoted by �̂K−1 with elements given in
(5). Suppose that limn ni/n exists and lies in (0, 1)
for each i. Then, under H0: Λ1 = · · · = Λk , and as
n → ∞, the quadratic form G′�̂−1

K−1G converges in
distribution to a χ2 random variable with K − 1
degrees of freedom (see Chi-square Distribution).

When all K components of the statistic are used
in the quadratic form, a generalized inverse of the
complete, singular covariance matrix may be used
(see Matrix Algebra).

Asymptotic distributions under alternative hy-
potheses provide information about the power of
the statistics. Gill [14] has shown that all two-
sample tests of class K+ have asymptotic power 1,
i.e. are consistent, under ordered hazards alternatives.
Consequently, asymptotic power comparisons must
be made under sequences of alternatives approaching
the null hypothesis. Results with the counting process
formulation are again simplest in the two-sample
case. If a test statistic is asymptotically normal under
a sequence of alternative hypotheses converging to
the null hypothesis as the sample size increases, then
the ratio of the square of the asymptotic mean to
the asymptotic variance is called the (asymptotic)
efficacy. The efficacy will be the noncentrality
parameter in the χ2 distribution for the square of the
statistic, and the ratio of efficacies for two statistics,
computed under the same sequence of alternatives,
has the same value as the asymptotic ratio of the
sample sizes needed for the two tests to have equal
power. To avoid technical details, we will argue
only heuristically here. Generally, much more care
must be taken when establishing limiting distributions
under sequences of alternative distributions. Gill [14]
contains detailed results for the two-sample problem;
the results for the K-sample problem may be found
in Andersen et al. [3, 4]. The asymptotic theory

of testing, especially for rank-based methods, may
be found in Randles & Wolfe [28] and Hájek &
Šidák [17].

For simplicity, we assume that the underlying sur-
vival distributions are absolutely continuous. We let
n = n1 + n2 index the underlying survival and hazard
functions in the sequence of alternative distributions.
When the two hazard functions λn

1 and λn
2 are not

equal, a two-sample statistic of the class K+ can be
written

GK =
∫ ∞

0
K

(
dN1

Y 1
− dN2

Y 2

)
=

∫ ∞

0
K

(
dN1

Y 1
− λn

1

)

−
∫ ∞

0
K

(
dN2

Y 2
− λn

2

)
+

∫ ∞

0
K(λn

1 − λn
2)

=
∫ ∞

0

K

Y 1
dM1 −

∫ ∞

0

K

Y 2
dM2

+
∫ ∞

0
K

(
λn

1

λ0
− λn

2

λ0

)
λ0, (6)

where λ0 is the hypothetical common hazard function
under the null hypothesis. For the weighted logrank
statistics,

K =
(

n1n2

n1 + n2

)1/2

W
Y 1

n1

Y 2

n2

n1 + n2

Y 1 + Y 2
,

where W is usually a function converging to some
deterministic function w. The martingale central limit
theorem implies that the first two terms in (6)
converge to a mean zero Gaussian (normal) random
variable, and the strong law of large numbers
implies that the last two terms in the equation for K

above converge collectively to π1π2/(a1π1 + a2π2).
Loosely speaking, the convergence of the statistic to
a Gaussian variable under a sequence of alternatives
will depend on the convergence of

∫ ∞

0

π1π2

a1π1 + a2π2
w

(
n1n2

n1 + n2

)1/2 (
λn

1

λ0
− λn

2

λ0

)
λ0.

The last three terms in the integrand above may be
written as

(
n1n2

n1 + n2

)1/2 [(
λn

1

λ0
− 1

)
−

(
λn

2

λ0
− 1

)]
λ0.
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Convergence under the sequence of alternative distri-
butions will thus depend on convergence of

[
n1n2

(n1 + n2)

]1/2 [(
λn

i

λ0

)
− 1

]

to a function gi, i = 1, 2. This implies when i = 1,
for instance, that the ratio of functions λn

1/λ0 must
converge to 1 at rate n

1/2
1 , and that λn

1/λ
n
2 must

also converge to 1 at the same rate. If g = g1 − g2,
then the asymptotic mean of the statistic under this
sequence of alternatives will be

µ =
∫ ∞

0

π1π2

a1π1 + a2π2
wgλ0.

The asymptotic variance of the statistic will be
determined by the first two integrals in (6), and turns
out to equal the asymptotic variance under the null
hypothesis,

σ 2 =
∫ ∞

0

π1π2

a1π1 + a2π2
w2λ0.

The asymptotically best weighted logrank test statis-
tic is the member of that class that maximizes this
efficacy with respect to the asymptotic weight func-
tion w. Gill [14] uses a Lagrange multiplier argument
to show that, in fact, the asymptotic efficacy is max-
imized over all of K+ when a statistic is a weighted
logrank statistic with weight function W converging
to an asymptotic weight function w proportional to
g. This result can be used to calculate the best test
from K+ against particular types of alternatives.

Suppose that λn
i = λθn

i
. Then,

(
n1n2

n1 + n2

)1/2 (
λn

1

λ0
− 1

)

= λθn
i
− λθ0

θn
i − θ0

×
(

n1n2

n1 + n2

)1/2
θn
i − θ0

λθ0

. (7)

If θn
i → θ0 such that

lim
n→∞

(
n1n2

n1 + n2

)1/2

(θn
i − θ0) = c∗

i ,

then both sides in (7) will approach c∗
i ∂/∂θ log λθ ,

where the derivative with respect to θ is evaluated
at θ0. Consequently, the function g appearing in the

asymptotic mean and efficacy under a sequence of
alternatives will be proportional to

∂

∂θ

∣∣∣∣∣
θ=θ0

log λθ .

This result confirms that, for instance, when λθn
i
(t) =

λ0(t) exp(θn
i ), i = 1, 2 (i.e. proportional hazards

alternatives), the most efficient statistic of class K+
has a constant weight function W (i.e. is the logrank
statistic).

Computing asymptotic relative efficiencies against
optimal tests for parametric models is more difficult,
but uses the same approach. Gill [14] shows that,
when the hazard function in the two-sample problem
is known up to a single parameter θn

i , i = 1, 2,
satisfying

θn
i − θ0 = (−1)i+1c

[
ni ′

ni(n1 + n2)

]1/2

, i �= i ′,

then the asymptotic efficacy of the likelihood ratio
test of equality of the two hazard functions is
given by

∫ ∞

0

(
∂

∂θ
log λθ

∣∣
θ=θ0

)2

(a2π1 + a1π2)λθ0 .

Gill also shows that the ratio of the asymptotic
efficacies comparing an optimal test of class K+
to the likelihood ratio test is bounded above by
1, as expected, but that the ratio may equal 1
when π1 = π2. Under random censoring, πi(t) =
Pr(Tij ≥ t) Pr(Uij ≥ t). Since in the limit Pr(T1j ≥
t) = Pr(T2j ≥ t), fully efficient tests of the class K+
can be found when asymptotic censoring distributions
are equal.

The study of asymptotic operating characteristics
of general K-sample tests uses similar tools; the
interested reader can find a detailed treatment in
Andersen et al. [4].

The counting process and martingale framework
provides methods for a rigorous study of the oper-
ating characteristics of linear rank tests for censored
data, but a variety of other approaches have been used
in special cases. As mentioned in the introduction,
Gehan [13] originally generalized the two-sample
Wilcoxon test by extending the notion of the scores
used in the Mann–Whitney version of the Wilcoxon
statistic. Gehan then used a permutation argument
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to compute a distribution under the null hypothe-
sis, conditional on the observed pattern of censor-
ship (see Randomization Tests), and argued that the
permutation distribution would approach normality
in large samples. Since the Gehan–Wilcoxon statis-
tic corresponds to a weighted logrank statistic with
weight function W(t) = [Y 1(t) + Y 2(t)]/(n1 + n2),
which asymptotically depends on both the underly-
ing survival and censoring distributions in the groups,
Gill’s results show that this version of the Wilcoxon
statistic has operating characteristics that depend on
the censoring distribution. Leurgans [22, 23] also pro-
vides extensive applied and theoretical discussions of
the asymptotic operating characteristics of rank statis-
tics for censored data.

Mantel’s [24] original derivation of the two-
sample logrank statistic treated the observations as
a series of 2 × 2 contingency tables, with one
table at each observed failure time. The marginal
classifications of the tables denoted the number
of subjects at risk in each group just prior to
the observed failure time, and the numbers of
subjects failing or not failing at the observed time.
Mantel argued that, conditional on the risk sets
in the two groups at the observed failure times,
the set of observed minus conditionally expected
number of failures in group 1 were independent,
and that standard central limit theorems could
be used to justify asymptotic normality. Mantel’s
arguments were heuristic, but the differences between
observed and conditionally expected failures in the
tables are exactly the increments in the integral
representation, (2). The martingale representation
shows that these increments are uncorrelated and
consequently asymptotically independent. Mantel
also argued that, since the Mantel–Haenszel statistic
on which the logrank test is based is efficient at
detecting a constant odds ratio different from 1 in
stratified 2 × 2 tables, the logrank should have good
power against proportional hazards alternatives.

Prentice [26] generalized the theory of linear
rank tests, as described in Hájek & Šidák [17], to
censored observations by suggesting a modification
to the efficient score. This approach outlined a
general context for linear rank tests for censored
data, and showed that many of the statistics finding
widespread use could be thought of as special cases
of this general approach. Prentice was the first to
show that Gehan’s generalization of the Wilcoxon
statistic was not the only natural way to create

a Wilcoxon-type statistic for censored data. The
Wilcoxon statistic in uncensored data arises from the
optimal scoring function for shift alternatives in the
logistic distribution [17], and Prentice’s generalized
scoring function for censored data led to a statistic
that was approximately the weighted logrank statistic
with weight function Ŝ(t−). Cuzick [7] later showed
that many of the asymptotic results on linear rank
tests for uncensored data could be extended to test
statistics using the Prentice scoring function.

Because of space constraints, many important con-
tributions to this field have necessarily been omitted.
First, in the interest of simplicity, we have suppressed
much of the generality that results from the use of
martingale theory. The more complete treatments in
[4], [14], and elsewhere discuss the use of local
martingales, which relax some of the implicit bound-
edness conditions in the martingale definition. Local
martingales allow more general weight functions in
K+ statistics and also are used, sometimes in sub-
tle ways, in the proofs of many of the results stated
here. The asymptotic theory for these tests has been
described only briefly (with mathematical details kept
to a minimum) and small-sample properties not at
all. It is possible to derive a permutation distribution
for tests such as the logrank under the null hypoth-
esis and the assumption of equal censoring in both
groups, but most small-sample studies have relied
on simulation (cf. Lee et al. [21] and Latta [20]).
Alternative variance estimators to those given here
are discussed in Andersen et al. [4]. Stratified tests
are available for situations when differences among
groups within strata are constant but baseline failure
rates across strata differ (cf. [4]) (see Stratification).
Gastwirth [12] and others have discussed the problem
of how to combine linear rank tests for censored data
when it is difficult to specify clearly the form of an
alternative hypothesis. Robins & Rotnitzky [30] have
proposed tests that relax the independent censoring
assumption so prominently used here. Many authors
have studied nonparametric estimates of survival dis-
tributions with left- or interval-censored data, and
these estimates often lead to test statistics. Several
nonlinear rank tests based on the sample path behav-
ior of statistics from K+ have been proposed; some
generalize the classical Kolmogorov–Smirnov test.
There is an extensive literature on sequential meth-
ods that can be used with censored data linear rank
tests in clinical trials and other prospective studies
(see Interim Analysis of Censored Data). Finally,
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many more linear rank tests have been proposed than
just those discussed in this article.
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Linear Regression, Simple

Historically, the term “regression” was introduced by
Galton [3, p. 246] to describe the tendency for the
offspring of seeds “to be always more mediocre [i.e.
more average] than their parent seeds . . .. The exper-
iments showed further that the mean filial regres-
sion towards mediocrity was directly proportional to
the parental deviation from it”. Pearson & Lee [4]
subsequently collected data on the heights of 1078
father–son pairs in order to study Galton’s “law
of universal regression” which they summarized as
“Each peculiarity in a man is shared by his kinsmen,
but on the average in a less degree” (see Regression
to the Mean).

Modern applications rarely involve the element
of “regression” as Galton meant it; however, the
word is now too established to change. Consequently,
regression now describes any relationship between
a response (dependent, outcome) variable, Y , and
a covariate or explanatory (independent, predictor)
variable, X. Strictly speaking, only the response, Y , is
assumed to vary randomly; however, in many appli-
cations the observed values of X are not known or
fixed. We assume that any inherent variation in the
measurement of X can be ignored. If this is not the
case, we strongly advise resorting to methods that are
appropriate when there is measurement error in an
explanatory variable (see Errors in Variables). Sim-
ple linear regression involves finding the best-fitting
curve that relates E(Y |X), the mean value of Y given
X, and X, using an equation with a suitable functional
form, such as E(Y |X) = β0 + β1X. This regression

equation is called linear because E(Y |X) is a linear
(straight-line) function with respect to the unknown
model parameters, β0 and β1. It is not essential that
E(Y |X) also depend linearly on X, although this
is frequently the case in applications. For example,
the model E(Y |X) = β0 + β1X

2 describes a linear
regression model that is a straight-line function of
β0 and β1, but is quadratic in X (see Polynomial
Regression). Whatever the model form, the goals of
regression modeling are

1. to determine whether Y and X are associated in
some systematic way; and/or

2. to estimate or predict the value of Y , or its mean,
corresponding to a known value of X.

The unknown parameters, β0 and β1, are estimated
from data – ordered pairs (X1, Y1), . . . , (Xn, Yn) –
using the method of least squares, which was dis-
covered independently by Gauss and Legendre; see
Plackett [5].

Estimating β0 and β1

Before fitting a linear regression model to data, it
is wise to examine a scatterplot of Y vs. X in
order to ensure that the proposed relationship is
a sensible one (see Graphical Displays). Such a
scatterplot is shown in Figure 1 for measurements
of systolic blood pressure and age obtained from
21 males between the ages of 25 and 80. For these
data, the notion that average systolic blood pressure
increases systematically, in a roughly linear manner,
with age seems plausible.
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Figure 1 A scatterplot of systolic blood pressure (Y ) vs. age (X) for a sample of 21 males between 25 and 80 years old



2 Linear Regression, Simple

All linear regression models consist of a sys-
tematic component – the model equation, E(Y |X) =
β0 + β1X – and a residual (random, error) com-
ponent, ε; the sum, β0 + β1X + ε, constitutes the
regression model for Y . The residual, ε = Y − β0 −
β1X, represents the amount by which an observed
value of Y deviates from the predicted mean, β0 +
β1X. Not all (Xj , Yj ) pairs for a given set of data
will lie on the predicted line (curve). The method
of least squares identifies the unique values of β0

and β1 that minimize the average of the squared
residuals. Specifically, β̂1 = Sxy/Sxx and β̂0 = y −
β̂1x, where x = ∑n

i=1 xi/n, y = ∑n
i=1 yi/n, Sxy =∑n

i=1(xi − x)(yi − y), and Sxx = ∑n
i=1(xi − x)2.

The equation of the estimated regression of Y on X is

Ŷ = β̂0 + β̂1X = y + β̂1(X − x).

Least squares estimates can be derived based only
on the assumptions that the residuals, ε1, . . . , εn, are
uncorrelated and have a mean value of zero and
constant variance, σ 2. We use the estimated resid-
uals ε̂i = Yi − Ŷi = Yi − β̂0 − β̂1Xi, i = 1, . . . , n, to
estimate σ 2. The formula

σ̂ 2 = 1

n − 2

n∑

i=1

ε̂2
i ,

which involves
∑n

i=1 ε̂2
i , the estimated residual sum

of squares, emphasizes that two parameters, β0 and
β1, are estimated; hence the divisor n − 2. Adopt-
ing the additional assumption that the residuals are
normally distributed gives rise to various statistical
procedures that we will discuss subsequently. First,
however, we examine linear regression as an expla-
nation for the observed variability in the response, Y .

Partitioning the Variability in Y

To account for the variability in Y , we can always
resort to the simplest explanation, namely that Y

varies about a fixed mean, µ. The corresponding lin-
ear regression model is Yi = β0 + εi , where β0 = µ.
In this case, the residuals, i.e. εi = Yi − β0 = Yi − µ,
are usually large, and result in a substantial esti-
mate of σ 2. For the data concerning blood pres-
sure and age, these estimated residuals are shown in
Figure 2(a). In the absence of additional information,
this is the only explanation we can devise for the
observed variability in Y .

However, when Y appears to depend systemat-
ically on X, we can use the known values of X

that were measured concurrently with Y to estimate
E(Y |X). Using Ŷ = E(Y |X), we can partition the
observed variability in Y into two components – the
change in E(Y |X) accounted for by the change in
X, and the residual variability of Y values that have
the same value of X, and hence the same value
of E(Y |X). These two components of variability
correspond to the systematic component, β0 + β1X,
and the residual component, ε, respectively, in the
linear regression model Y = β0 + β1X + ε. By esti-
mating E(Y |X) = β0 + β1X, we can reduce the esti-
mated residuals and hence the estimate of σ 2, the
residual variation. Clearly, the estimated residual sum
of squares in Figure 2(b) will be much less than the
corresponding value based on the estimated residuals
in Figure 2(a). Equivalently, knowing a subject’s age
provides important information about what his blood
pressure is likely to be.

This partition of the variability in Y is usually
summarized in an analysis of variance (ANOVA)
table, such as the one corresponding to the example
shown in Table 1. This partitioning is represented by
the equation

n∑

i=1

(Yi − Y )2 =
n∑

i=1

(Ŷi − Y)2 +
n∑

i=1

(Yi − Ŷi )
2,

which is alternatively described by the relationship

total sum of squares = model sum of squares

+ residual sum of squares.

The ratio of the model sum of squares to the total sum
of squares is called R2, and represents the proportion
of the observed variability in Y that is accounted for
by modeling the mean response for Y as the function,
β0 + β1X, of X.

Table 1 An ANOVA table summarizing the partition of
observed variability in blood pressure measurements into
the systematic (model) component represented by the esti-
mated regression model, Ŷ = β̂0 + β̂1X, and the residual
component. The value of R2 for these data is 0.69

Source SS df MS

Model 3453.5 1 3453.5
Residual 1545.8 19 81.36
Total 4999.3 20
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Figure 2 Estimated residuals (solid lines) for systolic blood pressure measurements (Y ) in a sample of 21 males between
25 and 80 years old. (a) Based on the simple model, Y = µ + ε; the dashed line indicates µ̂ = 144.7. (b) Based on the
linear regression model, Y = β0 + β1X + ε, relating Y and age (X); the dashed line indicates the least squares estimated
regression equation Ŷ = 100.6 + 0.86X

Interpreting the Regression Estimates

If two values of the explanatory variable differ by one
unit, the corresponding values of the model equation
differ by β1. Therefore, β̂1 represents the estimated
change in the mean response associated with a unit
increase in the explanatory variable. Of course, this
estimate and its interpretation are only valid within
the range of X values used in fitting the linear
regression model.

The value β0 represents the mean response when
X = 0. Frequently, this mean response may be of
no interest, or may not belong to the range of X

values used in fitting the model to data. A more
useful parameter in many situations is γ = β0 + β1x,
which represents the mean response when X = x, the
observed average of the explanatory variable. The
estimated value is γ̂ = β̂0 + β̂1x = y, the sample
mean of Y .

The estimates of β0 and β1 for the example are
100.6 and 0.86, respectively. From these data we

conclude that 0.86 mmHg is the estimated increase
in mean systolic blood pressure associated with each
additional year of age for men 25–80 years old. At
an age of x = 51.1 years, the estimated mean value
is γ̂ = y = 145 mmHg.

Statistical Inference in Linear Regression

Under the additional assumption that the residuals,
ε1, . . . , εn, are normally distributed, the estimators
of β0 and β1 have normal sampling distributions.
Estimated standard errors (est. se) for β̂0 and
β̂1 are routinely produced by most computing
packages (see Software, Biostatistical). The ratio of
each difference, β̂0 − β0β̂1 − β0, to its corresponding
estimated standard error follows a Student’s t
distribution with n − 2 degrees of freedom
(df). From these results, hypothesis tests and/or
confidence intervals for β0 and β1 can be evaluated.
Likewise, the sampling distribution of γ̂ = Y is
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normal, and the corresponding estimated standard
error is s/

√
n, where s2 = σ̂ 2.

A test of the null hypothesis, H0 : β1 = 0, is rou-
tinely used to assess the significance of the regres-
sion; that is, to determine whether the data constitute
statistical evidence of an association between Y and
X. This test can be based either on the ratio β̂1/est.
se(β̂1), which has a Student’s t distribution with
n − 2 df, or on [β̂1/est. se(β̂1)]2, which has an F dis-
tribution with 1 and n − 2 df. The latter test statistic
is equal to the ratio of the model mean square to the
residual mean square in the corresponding ANOVA
table for the regression analysis, and usually appears
in an additional column labelled F ratio.

For the blood pressure vs. age example, the esti-
mated standard errors for β̂0, β̂1 are 7.05 and 0.13,
respectively. The 95% confidence interval for β1 is
(0.58, 1.14), and for γ the interval is (136, 153).

Model Diagnostics

A fitted regression model and associated statistical
inferences are based on various assumptions concern-
ing the functional form of the model for E(Y |X) and
distributional properties of the residuals. Violations of
these assumptions may invalidate conclusions based
on the regression analysis. Therefore, it is essential
to check these assumptions, using various types of
diagnostic plots.

The estimated residuals, ε̂i = Yi − β̂0 − β̂1Xi,

i = 1, . . . , n, play an essential role in model diag-
nostics. Many computer packages offer the option of
using these ordinary residuals or the corresponding
standardized or studentized residuals, which have a
common variance. Use of either of the latter two is
preferable, since the ε̂is do not all have the same
variance.

The following diagnostic plots furnish graphical
evidence that one or more of the model assumptions
may be contradicted by the data:

1. Residuals vs. the fitted values, Ŷi . An unsuitable
functional form is usually revealed by the sys-
tematic appearance of this plot, as is nonconstant
variance.

2. Residuals vs. the explanatory variable, Xi . Sys-
tematic patterns in this plot can indicate viola-
tions of the mean 0, constant variance assump-
tions, or inappropriate model form.

3. Normal probability plot of the residuals. This plot
checks the normal distribution assumption from
which all the statistical inference procedures arise
(see Normal Scores).

4. Residuals vs. the temporal/spatial order of data
collection. Unexpected regularity in this plot sug-
gests that the Yis may be correlated. To prepare
this diagnostic check, it is essential to record
the temporal/spatial ordering when data are first
collected.

5. Index plots (plot against the case number, i.e. the
observation label) of the leverages and Cook’s
distance (see Normal Scores). The former are
a measure of the amount of influence exerted
on Ŷi by the corresponding observed response,
Yi . Cook’s distance is a summary measure of
the influence that each case exerts on the esti-
mated regression coefficients. These two diag-
nostic plots can reveal outliers (values of Y that
are anomalous with respect to the rest of the
data) or influential points (values of (Xj , Yj ) that
strongly influence the estimated values of β̂0, β̂1

and s2).

Deviations from the expected (null) pattern in any of
these plots may indicate problems that require further
investigation or remedial action. For additional details
concerning model diagnostics, see Belsley et al. [1]
or Cook & Weisberg [2]. Further details concerning
examination of the adequacy of a fitted regression
model are found in the article on Goodness of Fit.
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Linearization Methods of
Variance Estimation

The variance of a linear function of variables is a
linear function of variables. An approximation by a
linear function of a nonlinear function enables one
to derive an approximate variance of a complex non-
linear function. The most common approach consists
of taking linear terms of Taylor series expansion of
the nonlinear function of the observations around
their expected values. The approach has been widely
used for approximating large-sample variances (see
Large-sample Theory), and is referred to as Taylor
Series Linearization or the Delta method. Another
linearization approach was suggested by Quenouille
[6] and made well known by Tukey [10] as jackknife.
A good review of the jackknife and other methods
appears in [7].

Tepping [9] suggested the use of Taylor series
linearization for estimating variances in complex
sample surveys. Applications to mean and linear
regression coefficients for complex surveys were
presented by Kish & Frankel [4] and Folsom [3].
Some simulation results were presented by Shah
et al. [8]. Woodruff [11] presented a general applica-
tion of the linearization method to explicit functions
of observed data. Binder [1] extended the results
to parameters defined as implicit functions or esti-
mating equations. Binder also proved the asymp-
totic normality of the estimates. Binder [2] pre-
sented an application of Taylor series linearization
to the estimation of parameters for Cox’s propor-
tional hazard model for the survival data collected
from a complex sample survey. We present here a
brief summary of the results by Woodruff [11] and
Binder [1].

The Taylor series linearization method is illus-
trated here for statistics that can be defined explicitly
as functions of linear statistics estimated from a sur-
vey sample. Means, totals, proportions, general ratios
of the form

∑
wx/

∑
wy, and linear regression coef-

ficients all fall into this category of functions. A
linearized variable, Zi , is defined on the basis of the
Taylor series expansion of the function, and then sub-
stituted into the variance formula appropriate under
the specified design for any linear statistic estimated
from the sample.

The technique will be illustrated for a statistic
which is a function of two linear statistics, although
it extends to any number of linear statistics and
to statistics that are vectors. Let θ̂ be an estimate
of the population parameter θ , with θ̂ = F(X, Y )

where X and Y are two linear sample statistics.
Let µx = E(X) and µy = E(Y ), where the expec-
tation operator E denotes averaging over repeated
sampling from the target population. θ can be
expanded in a Taylor series about µx and µy , so
that

θ̂ = F(µx, µy) + ∂Fx(µx, µy)(X − µx)

+ ∂Fy(µx, µy)(Y − µy)

+ higher order terms,

where the ∂Fx(µx, µy) and ∂Fy(µx, µy) functions
are first-order partial derivatives of F with respect to
X and Y evaluated at their respective expectations,
µx and µx . If the higher order terms are negligi-
ble, then

var[θ̂]
.= E[θ̂ − F(µx, µy)]

2

= {(∂Fx)
2E(X − µx)

2 + (∂Fy)
2E(Y − µy)

2

+ 2(∂Fx)(∂Fy)

× E[(X − µx)(Y − µy)](Y − µy)}
× {(∂Fx)

2var(X) + (∂Fy)
2var(Y )

+ 2(∂Fx)(∂Fy)cov(X, Y )},
where ∂Fx = ∂Fx(µx, µy) and ∂Fy = ∂Fy(µx, µy).

An equivalent computational procedure for pro-
ducing the Taylor series variance estimate suggested
by Woodruff [11] recognizes that the variable portion
of the linearization in his Eq. (3.2) is

Z = (∂Fx)X + (∂Fy)Y,

and therefore

var[θ̂ ]
.= var[(∂Fx)X + (∂Fy)Y ]

= var(Z).

Noting that X and Y are linear statistics formed
from the corresponding response variates xi and yi ,
measured on the ith sample unit, the variance approx-
imation can be produced by substituting the linearized
variable

Zi = (∂Fx)Xi + (∂Fy)Yi
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for xi or yi in the variance formula appropriate
for computing var(X) or var(Y ) under the specified
sample design. To obtain a sample estimate for the
Taylor series variance approximation, one replaces
the population-evaluated derivative functions in Zi

with the corresponding sample analog, i.e.

Zi = [∂Fx(X, Y )]xi + [∂Fy(X, Y )]yi.

Binder [1, 2] proposed and justified using an implicit
differentiation method for estimating the variance
for a vector of survey statistics. Binder’s results are
particularly useful when the parameters are implicitly
defined, but the results also cover the explicit case.

Logistic regression coefficients and survival mod-
els (see Survival Analysis, Overview) fall into this
category of parameters that are implicitly defined.

Let θ = (θ1, . . . , θp)′ be the finite population
parameter vector which is defined by

W(θ) =
N∑

k=1

U(Zk; θ) − v(θ) = 0,

where Zk = (z1k, . . . , zqk) are the data values for the
kth unit, and W(θ) is a vector with the ith element:

Wi(θ) =
N∑

k=1

Vi(Zk ; θ) − vi(θ) = 0.

Let U(θ) = ∑N
k=1 U(Zk; θ) be estimated from

the sample by Û (θ). Û (θ) is the estima-
tor of the total based on the functions of
data values U(Z1; θ), . . . , U(Zn; θ), for exam-
ple Û (θ)=∑

i∈S wiU(Zi ; θ). Then, Ŵ (θ) = Û(θ) −
v(θ). Assuming that a unique solution exists, θ̂ , the
estimate of θ , is defined as the solution to

Ŵ (θ̂ ) = 0.

To approximate the variance of θ̂ , Binder expands
Ŵ (θ̂) in a Taylor series about the point θ̂ = θ , where
θ is the true unknown parameter. Defining Ĵ (θ) =
∂Ŵ (θ)/∂θ as the p × p matrix whose ij element
is the partial derivative ∂Ŵi(θ)/∂θj , and expanding
Ŵ (θ̂) about θ̂ = θ , gives

0 = Ŵ (θ̂) ≈ Ŵ (θ) + Ĵ (θ)(θ̂ − θ),

or, if Ĵ −1(θ) exists,

θ̂ − θ
.= Ĵ −1(θ)Ŵ (θ).

This leads to the approximation of the variance matrix
of θ̂ :

V (θ̂)
.= [Ĵ −1(θ)][V (Ŵ (θ))][Ĵ −1(θ)]′,

where V (Ŵ (θ)) is the covariance matrix of Ŵ (θ).
Finally, θ is replaced by its estimator θ̂ , in both
Ĵ −1(θ) and V (Ŵ (θ)) to obtain the estimator of the
covariance matrix of θ̂ :

V̂ (θ̂ ) = [Ĵ −1(θ̂ )][V̂ (Ŵ (θ̂))][Ĵ −1(θ̂ )]′.

Binder [1] gives regularity conditions that are needed
to ensure the asymptotic normality of the parameters
Wi(θ̂) and the consistency of V̂ (θ̂ ). These conditions
include:

1. the existence of a parameter space that contains
a neighborhood of the parameter θ ;

2. the existence of a sequence of sample designs
and populations which admits asymptotically
normal estimators for certain population totals
and consistent estimators for the variance of the
estimate of the totals: in particular, Ŵ (θ) is
approximately normally distributed for fixed θ ;

3. some continuity and limiting conditions on W(θ)

and its partial derivatives, and a continuity con-
dition on the variance of the estimated total.

Furthermore, Binder [1, Corollary 2] shows that the
asymptotic distribution of

√
n(θ̂ − θ) is the same as

the asymptotic distribution of a random variable
that is multivariate normal with mean zero and
variance–covariance matrix n[Ĵ −1(θ̂ )][V̂ Ŵ (θ̂)]
[Ĵ −1(θ̂)]′.

The question is often raised as to how good the
linearization method is compared with other alter-
natives. There are basically three major competing
methods: balanced repeated replication (BRR), jack-
knife, and bootstrap methods.

The drawbacks of the linearization methods are:

1. Linearization methods require computation of
derivatives, and hence are more difficult to pro-
gram than BRR or jackknife. Linearization meth-
ods are also limited to smooth functions of
observations.

2. The impact of weight adjustments, such as post-
stratification or nonresponse, on variance esti-
mation is difficult to account for, and is often
ignored in most implementations.
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The advantages for the linearization method are:

1. They require substantially less computational
resources than jackknife and BRR and are most
suitable for large datasets.

2. They are applicable to a large number of situa-
tions, and can be applied to multistage designs
with or without replacements. BRR and jackknife
are somewhat limited in this respect.

Krewski & Rao [5], and Rao & Wu [7] have com-
pared the three methods. Linearization methods are
less biased and more stable than BRR or jackknife
methods. Asymptotically, all of the methods provide
consistent estimators of the variances, and hence the
differences between them get smaller as the sample
size increases. Overall there are no compelling rea-
sons to choose one method over the others, and
the decision to select a method should be based on
convenience and available software. Currently, three
software packages have implemented variance esti-
mation using the linearization method. These are:
SUDAAN, by Research Triangle Institute; PCCARP,
by Iowa State University; and STATA, by Stata Cor-
poration (see Software, Biostatistical).
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Linkage Analysis,
Model-based

In the field of human genetics, the main goal has
been to identify the genes that are responsible for
various phenotypes (see Genotype) – typically dis-
eases. The primary method for doing so has been
through looking at phenotypically silent marker loci
that are randomly distributed in the genome (see
Polymorphism), and trying to determine which such
loci have alleles that tend to cosegregate in fam-
ilies with the trait of interest. In linkage analysis
one tries to estimate the frequency with which the
marker and disease gene segregate together in fami-
lies. When we talk of model-based linkage analysis,
it is assumed that one can fully describe the mode of
action of the disease gene, i.e. its allele frequency (see
Gene Frequency Estimation) and the penetrances
for each disease locus genotype (see Gene). When
one does not know these quantities accurately, one
often applies model-free linkage analysis methods
(see Linkage Analysis, Model-free), which effec-
tively correspond to special cases of model-based
linkage analysis. Similarly, it can be shown that
other methods for detecting correlations between a
marker locus and disease gene on a population level
through linkage disequilibrium analysis can also be
considered as special cases of model-based linkage
analysis. For this reason, it is important to under-
stand the principles of model-based linkage analy-
sis, because their principles are behind all statistical
gene mapping techniques (see Genetic Map Func-
tions).

Biological Basis of Linkage

The human genetic material is composed of large
linear units of deoxyribonucleic acid (DNA) called
chromosomes, each of which contains a long linear
sequence of genes. These genes are DNA sequences
that tell the cell how to construct a specific protein,
and thus these genes provide the blueprint from
which a person is assembled. There are 22 pairs
of chromosomes in each human cell, plus a pair of
sex chromosomes (X and Y) which determine the
sex of an individual (XX individuals are female,
and XY individuals are male). Each person receives
one copy of each chromosome from his mother and

one copy from his father, and thus each person has
50% of his DNA inherited from each parent. Since
50% of one’s genes come from each parent, there
is a correlation between related individuals at the
phenotypic level, and thus the common observation
that certain diseases “run in families”. The male
sperm cell and the female egg cell each contain one
copy of each chromosome (haploid state) from the
father and mother, respectively, instead of two copies
of each chromosome as in a normal somatic cell
(diploid state). When the sperm and egg combine to
form a new child, this infant again has two copies of
each chromosome. The important step in determining
the genetic makeup of the new child is to look at
how the single copy of each chromosome is selected
for each gamete. The process by which these haploid
gametes are generated is called meiosis. If we label
the two copies of chromosome N that a given parent
has as Na and Nb (where this individual received
chromosome Na from his father and chromosome Nb

from his mother), then Mendel’s laws dictate that
which copy of each chromosome is transmitted to
any given gamete is determined at random, and that
each chromosome is inherited independently of every
other. Thus, the probability that a gamete receives
chromosome 1b equals the probability that it receives
1a , and the same holds for chromosomes 2,3, and so
on. In this simplified model of inheritance, if an allele
located somewhere on chromosome 1a was received
by a given gamete, then the probability of another
allele on chromosome 1a also being inherited would
be 1, while the probability of an allele located on
chromosome 2a being inherited would be 0.5. If life
were this simple, then we could easily test whether
or not two genes were on the same chromosome
(syntenic) by checking whether any gamete ever
received the a allele at one gene and the b allele at the
other. Under the null hypothesis that two genes are
on different chromosomes, 50% of gametes would
receive the a allele at one gene and the b allele at
the other, and it would thus be very easy to test for
synteny.

In human meiosis, however, it is not as simple
as this. There is an additional source of variation in
the genetic material. During meiosis the two copies
of each chromosome line up next to each other
and undergo a random process called recombination
in which the two copies of each chromosome can
exchange their genetic material with each other (as
illustrated in Figure 1). In fact, there may be many
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Figure 1 Pictorial representation of recombination. The
(thick and thin) lines represent homologous chromosomes
during meiosis; the black X in the top of the figure rep-
resents a recombination event, one outcome of which is
indicated in the figure

such crossover events per chromosome in each mei-
otic event, and thus there is a great deal of variation
between even the most tightly related people. When
an odd number of crossover events occur between
two genes, the alleles from different ancestral chro-
mosome are received (i.e. allele a at one locus and
allele b at the other) – in this situation we say that
a recombination of the genetic material has occurred
between these two loci – the combination of alle-
les a at one locus and b at the other is a new
combination that was not present on either parental
chromosome. If an even number of crossovers occurs
between two genes, then the same combination of
alleles as in the parents is present in the gamete –
this is termed a nonrecombination. If two loci are on
different chromosome, they recombine with probabil-
ity 50% (since, as was indicated earlier, given allele
a was inherited at a given point on chromosome 1,
the probability of an allele on chromosome 2 being
present in the gamete in its b form is 50%). Similarly,
if two loci are very far apart on the same chro-
mosome (and we assume an absence of chromatid
interference) they also recombine with probability
50%, but when two loci are very close together on the
same chromosome, the probability of a recombination
between them tends toward 0 as the distance between
them decreases. Thus it becomes possible to devise
a means of testing for linkage between two loci by
looking at whether they recombine with probability
50% or less.

There are a large number of loci spread randomly
throughout the human genome called marker loci that

have no known function, but that are very variable
from person to person, and whose positions in the
genome are well known. It is straightforward to deter-
mine the genotype of any individual at these polymor-
phic DNA sequence variations, and thus we can look
for genes with unknown position in the genome by
testing whether the gene of interest recombines with
a marker locus with probability less than 50%. Since
there are marker loci spread throughout the genome,
at least one of them should be linked to any new
gene we wish to isolate. The goal of linkage analysis
is to identify marker loci that recombine with our trait
locus with low probability, such that we may signif-
icantly narrow down the portion of the total genome
where this gene can be found by subsequent labor-
intensive molecular analysis. The closer we can get
to the gene through the simple process of linkage
analysis, the easier it will be to identify, though typ-
ically it is impossible to get within less than 2 cM –
approximately 2 000 000 base pairs – through link-
age analysis with a disease having a known mode of
inheritance, while for complex traits with an unknown
mode of inheritance, it may be difficult to get within
less than 10 cM (10 000 000 base pairs), further com-
plicating the subsequent molecular analyses required.
The next Sections introduce the mathematical tech-
niques employed in the testing and estimation of
linkage in humans, starting from the simplest situ-
ations and continuing through to the general case.

Lod Score Analysis

The most commonly employed statistic in human
genetic linkage analysis is based on the princi-
ple of maximum likelihood. In this, we compute
the probability of the observed data under different
assumptions about the unknown parameter – here the
recombination fraction (typically denoted as θ). The
null hypothesis is that θ = 0.5, and the alternative is
that θ < 0.5, so the test statistic is based on the maxi-
mum of the likelihood ratio Λ(θ) = L(θ)/L(θ = 1

2 ).
For purely historical reasons, the lod score function
commonly used is Z(θ) = log10[Λ(θ)]; however, the
quantity 2 ln Λ is much more theoretically pleas-
ing since, asymptotically, maxθ [2 ln Λ(θ)](= Λmax)

is distributed as a mixture of a 50% point mass at 0
and 50% χ2

(1) – the 50% point mass at zero because of

the one-sided alternative, θ < 0.5 (if θ̂ = 0.5, Λmax =
0) and other arguments (cf. [15], [20], and [7]). The
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conventional critical value used in linkage analysis
for calling a test significant is Z ≥ 3, which cor-
responds to a P value of 0.0001 if we assume the
distribution given above. The reason for insisting on
such a small P value is due to the multiple testing
employed (see Multiple Comparisons) if one were
to conduct a full genome scan with many markers,
and the low prior probability of linkage to a ran-
domly selected marker locus (see [6], [11], [16], and
[21] for more details).

Counting Recombinants and
Nonrecombinants – Phase-known
Pedigrees

In some situations it is possible to directly observe
whether a recombination occurred or not between two
loci in a given meiosis. This is commonly the case
in animal crosses, where you can breed animals to
the point where you know which of their offspring
are the results of recombinant meioses and which are
nonrecombinant. Let us assume that our data are in
the form of genotypes, so we can write the pedigree
likelihood as

L(θ) = Pr(genotypesparents)

× Pr(genotypesoffspring|genotypesparents),

and the lod score can then be written as

log10
L(θ)

L
(
θ = 1

2

) log10

=
Pr(genotypesparents)

× Pr(genotypesoffspring|genotypesparents; θ)

Pr(genotypesparents)

× Pr
(
genotypesoffspring|genotypesparents; θ = 1

2

)
.

Note that in the ratio we can factor out Pr(geno-
typesparents), since this factor is independent of the
recombination fraction, as the genotypes are known
and identical in numerator and denominator. There-
fore, assuming we can count the number, k, of
recombinants out of n meioses (leaving n − k nonre-
combinants), the likelihood is simply L(θ) = θk(1 −
θ)n−k . The maximum likelihood estimate of the
recombination fraction in this case is trivial to com-
pute as θ̂ = k/n if k < n/2; θ̂ = 0.5 if k ≥ n/2 (since
values of θ > 0.5 are inadmissible). While this esti-
mate of θ is biased (because of the inadmissibility

of estimates of θ > 0.5), it can be shown to be
asymptotically unbiased (cf. [16]). It is possible to
count recombinants and nonrecombinants in situa-
tions when the phase is known. When we say the
phase is known we mean that it is possible to tell
which alleles were inherited from each grandparent.
Consider the pedigree shown in Figure 2; in that pedi-
gree it is apparent that allele A at the first locus
and allele B at the second locus in the father were
inherited together from the grandfather; and similarly
alleles a and b were inherited together from the grand-
mother. If the two loci are syntenic, it would mean
they are on the same chromosome in the father. In
this case, among the children all A B or a b hap-
lotypes are nonrecombinants (parental types), while
all children who received haplotypes A b or a B are
recombinants (or nonparental types). In this exam-
ple, there are four nonrecombinant children and two
recombinants, so our lod score is computed as

Z(θ) = log10
θ2(1 − θ)4

(0.5)2(0.5)4
= log10 26θ2(1 − θ)4.

In this pedigree, the maximum likelihood estimate
of θ is 2/6 = 1/3, so the maximum lod score is
Z(1/3) = 0.1475. Note that the information coming
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BB

A  a

B  b

N N R N R N

A A

B B

A  A

B  B

A  a

B  b

A  A

B  b

A  a

B  b

A  a

B  B

A  A

B  B

Figure 2 Sample phase-known pedigree with two codom-
inant loci indicated–the first locus has two alleles (A and
a) and the second locus has alleles B and b. Nonrecombi-
nant meioses are indicated by “N” and recombinant meioses
by “R”
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from alleles inherited from the mother by the off-
spring was not included in this computation. This is
because there is no linkage information coming from
the mother as she is homozygous (see Heterozygos-
ity) at both loci, and thus she transmits alleles A and
B to all children with probability 1, independently
of the recombination fraction. In fact, a parent has
to be heterozygous at both loci to be informative for
linkage. If the mother were Aa at the first locus and
BB at the second, then every child would receive a
B allele with probability 1, and at the other locus A
is inherited with probability 0.5, independently of the
recombination fraction (since the inheritance of the B
allele is ubiquitous).

Lod Scores in Phase-unknown Pedigrees

Often there is some ambiguity about the parental
phase – for example, if the grandparents were
unavailable for genotyping. Consider the same
pedigree without the grandparents having been typed
(as shown in Figure 3). In this situation, there are two
possible phases for the father – either he could have
phase A B/a b or he could have phase A b/a B. A
priori these two phases are equally likely (assuming

AA
BB

N N R N R N

I

II

I

R R N R N RII
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B  B
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B  b

A  a

B  B

A  A
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A  a

B  b

A  a

b  B

Figure 3 Sample phase-unknown pedigree with two pos-
sible phases for the father – indicated as I and II – under
each of his offspring is an indication of whether the indi-
vidual had a recombination or not between these two loci
under each possible phase for the father

an absence of linkage disequilibrium), so we either
have four recombinants and two nonrecombinants or
we have four nonrecombinants and two recombinants.
Early human geneticists would throw these pedigrees
away because it was thought that they contained
no useful information about linkage. However, there
is information in these families. The likelihood is
computed as

L(θ) = Pr(parents) Pr(off|parents; θ)

=
∑

phases

Pr(phasefather)

× Pr(genotypesoff|phasefather; θ),

since the only ambiguity in the parental genotypes is
in the paternal phase. In this example, each phase has
probability 0.5, so

L(θ) = 1
2θ4(1 − θ)2 + 1

2θ2(1 − θ)4

= 1
2θ2(1 − θ)2[θ2 + (1 − θ)2].

Note that the maximum likelihood estimate (MLE)
of θ is not trivial to compute by hand, although it
can be estimated using numerical maximization tech-
niques; using the ILINK program of the LINKAGE
package [13] (see Software for Genetic Epidemiol-
ogy), the MLE is found to be 0.5. Even though there
are not 50% of meioses in this case showing evidence
of recombination, as analyzed in detail by Nordheim
et al. [15], there are an enormous number of potential
phase-unknown pedigrees that all yield an estimate
of θ = 0.5. That is not to say that phase-unknown
pedigrees do not provide information about linkage
in general. Consider a phase-unknown pedigree with
N children all of whom received the identical alleles
at both loci – this would either represent N recom-
binants or N nonrecombinants. The likelihood would
then be equal to L(θ) = 1

2θN + 1
2 (1 − θ)N , which

can be shown to be maximized when θ = 0, giving
a lod score of

ZPU(θ = 0) = log10

1
2 (0)N + 1

2 (1)N

1
2

(
1
2

)N + 1
2

(
1
2

)N

= log10

1
2(

1
2

)N
= (N − 1) log10(2),

where the subscript PU stands for phase-unknown. If
the pedigree were phase-known with six nonrecom-
binants, then the likelihood would be L(θ) = (1 −
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θ)N , which is also maximized when θ = 0, but giv-
ing a lod score of ZPK(θ = 0) = log10(1)N/

(
1
2

)
N =

N log10(2), where the subscript PK indicates phase-
known. So, in each pedigree there is a cost of one
meiosis when the phase is unknown if there is no
recombination – when there is recombination in the
pedigree the cost is even higher, as was illustrated
by the previous example. It may seem like a small
cost initially, but if you consider that the average
sibship size is between two and three, the cost can
be huge in a large set of pedigrees. The lod score
in each phase-unknown pedigree is ZPU(θ = 0) =
[(N − 1)/N ]ZPK(θ = 0) when all sibs are nonrecom-
binant. Note that this is an upper bound on the phase-
unknown lod score as a function of the phase-known
lod score. In general, ZPU(θ̂ ) ≤ [(N − 1)/N ]ZPK(θ̃ ),
where θ is estimated separately in the phase-known
and phase-unknown cases, and there is linkage. In the
US, most sibships are of size two or three, so that the
lod scores in each pedigree are at least 1.5–2 times
higher for phase-known pedigrees than for phase-
unknown pedigrees, when there is linkage between
the two loci. Since lod scores can be added across
pedigrees at the same recombination fraction values
(since all pedigrees are independent, and independent
likelihoods can be multiplied), the sum over a large
set of pedigrees will also be 1.5–2 times larger or
more if there is linkage and the phase can be estab-
lished unequivocally.

Genotypes Unknown

We are often confronted with the complication that
not all individuals’ genotypes are known. Remember
that, when we know the genotypes of the parents,
the pedigree likelihood for a phase-known nuclear
pedigree is

L(θ ; data) = Pr(gpa) Pr(gma)
∏

offspring

× Pr(goffs|gma, gpa; θ),

where gma is the genotype of the mother, etc.; and in
the case of unknown phase it is just

L(data)

=
∑

phase

Pr(gma, Phasema) Pr(gpa, Phasepa)

×
∏

offspring

P(goffs|gpa, gma, Phasepa, Phasema; θ).

If we were interested in the actual probability of the
data, then we would have to use the allele frequencies
at each marker locus in order to compute Pr(gpa) from
the allele frequencies for the two loci. For example,
if gma were AA at one locus and BB at the other,
then Pr(gma) would be Pr(A) Pr(A) Pr(B) Pr(B) if we
assume Hardy–Weinberg equilibrium and absence
of linkage disequilibrium. Note that, in the phase-
known situation, the lod score is

Z(θ) = log10

Pr(gma) Pr(gpa)

×
∏

offspring

Pr(goffs|gma, gpa; θ)

Pr(gma) Pr(gpa)

×
∏

offspring

Pr
(
goffs|gma, gpa; θ = 1

2

)
,

and we do not need to worry about the exact
values of the probability of the parental genotypes,
since they can be factored out of this ratio and
have no effect on the lod score – this makes sense
because the parental genotypes tell us nothing in
and of themselves about the recombination fraction.
Similarly, in the phase-unknown case, we also know
the genotypes of the parents, so we can factor
the independent genotype and phase probabilities
as Pr(gma, Phasema) = Pr(gma) Pr(Phasema), assuming
absence of linkage disequilibrium, and so

Z(θ) = log10

(
Pr(gma) Pr(gpa)

∑

phasema

Pr(Phasema)

×
∑

phasepa

Pr(Phasepa)
∏

offspring

Pr(goffs|gma, gpa,

Phasema, Phasepa; θ)

Pr(gma) Pr(gpa)

×
∑

phasema

Pr(Phasema)
∑

phasepa

Pr(Phasepa)

×
∏

offspring

Pr
(
goffs|gma, gpa, Phasema,

Phasepa; θ = 1
2

)
)

.

Again, the parental genotype probabilities factor out
of this equation, but the phase probabilities do not.

In fact, it is possible to consider the phase as an
integral part of the parental genotype, and in that
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case we see that we are effectively taking the sum
over all possible parental genotypes (with phase), and
weighting them by their probabilities. This argument
can be easily extended to cover situations in which
we known nothing about the genotype of the parents.
In that case, the likelihood can be written as

L(θ ; data) =
∑

Gma

∑

Gpa

Pr(Gma) Pr(Gpa)

×
∏

offspring

Pr(goffs|Gma, Gpa; θ),

where Gi is the genotype with the phase of individual
i; note that for the offspring we do not know the
phase. If we wished to express this formula in terms
of each offspring’s genotype with phase, then it
would be

L(θ ; data) =
∑

Gma

Pr(Gma)
∑

Gpa

Pr(Gpa)

×
∏

offspring

∑

Goffs

Pr(Goffs|Gma, Gpa; θ).

In this way we can also include offspring whose
genotype is unknown, or who have some ambiguity
in their genotypes. Only the parental genotypes
are functions of the allele frequencies, while the
genotypes of their children are dependent solely on
the parental genotypes and the recombination fraction
in each case.

Genotype Unknown – Phenotype Known

It is important to note that thus far we have been deal-
ing only with genotypes, and we have assumed that
we can either identify the genotype or else we know
nothing. In reality we are usually somewhere in the
middle; the most important way linkage analysis is
used is to identify genes which affect the expression
of some trait, typically by increasing the probabil-
ity of becoming affected with some disease. In this
situation, there are additional parameters needed to
perform the linkage analysis – we need to quantify
the probability of the phenotype conditional on each
of the possible genotypes at the locus in question.
For example, if we have a dominant disease with full
penetrance, then this means that we have a disease-
predisposing locus with, typically, two alleles, D
and +, where Pr(disease|DD) = Pr(disease|D+) =

1; Pr(disease|++) = 0. Note that this also uniquely
determines the penetrances for the phenotype “unaf-
fected” as well, because Pr(disease|DD) + Pr (un-
affected|DD) = 1. In this case Pr(unaffected|DD) =
Pr(unaffected|D+) = 0, and Pr(unaffected|++) = 1.
For a fully penetrant recessive disease, Pr (dis-
ease|DD) = 1, and Pr(disease|D+) = Pr(disease| +
+) = 0. These are the two most classical situations
in which the genotypes are not uniquely determined
by the phenotypes. These penetrances can be factored
into the likelihood in a straightforward manner as

L(θ ; data) = Pr(Phma) Pr(Phpa)

×
∏

offspring

Pr(Phoffs|Phma, Phpa; θ),

where Phi is the observed phenotype for individual i

at all loci. If we allow for the penetrances as described
above, we know that Pr(Ph) = ∑

G Pr(G) Pr(Ph|G).
For parents, Pr(G) can be computed from the allele
frequencies at each locus, and Pr(Ph|G) is the pen-
etrance that must be specified for each locus. The
sum is taken over all possible genotypes at all loci.
If the individual is an offspring in the pedigree, then
Pr(G) is replaced by Pr(G|Gma, Gpa; θ), and the pen-
etrance remains unchanged, since this is considered to
depend only on the individual’s genotype. In this way
we can take into account any possible relationships
between genotype and phenotype. Note that many
genotypes will not be possible, as they are incompat-
ible with Mendelian laws – for example, you cannot
have parents who are AA and AA having a child who
has genotype aa. For this reason, many terms will
have zero probability. Complicated computer pro-
grams have been written to perform these calculations
for any set of penetrances and general pedigree struc-
tures. For further details about the technical aspects of
likelihood calculations in linkage analysis the reader
is referred to [1] and [16]. The important thing here
is to see why it is necessary to specify all the param-
eters, and how they affect the analysis.

Fully Penetrant Recessive Traits

The simplest mode of inheritance to consider for
a disease is one with full penetrance and no
phenocopies. Let us start by considering a simple
recessive trait, which means that Pr(affected|DD) =
1 and Pr(affected|D + or ++) = 0. Look at the
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Figure 4 Sample pedigree with a fully penetrant auto-
somal recessive disease segregating. Solid shapes indicate
affected individuals with this trait, and open figures are
unaffected

pedigree in Figure 4. In this pedigree, the possible
genotypes (with phase) for each individual are
indicated – the probabilities of all other genotypes
can be shown to be 0. Because the trait is fully
penetrant recessive, all affected individuals must
have genotype DD, and all unaffected individuals
are either D + or ++. Because the parents have
affected children, they must each have at least one
D allele, and because they are unaffected, they
cannot have two – therefore, they are D|+. The only
ambiguous cases are the two unaffected children,
who could be either ++ or D+, since both of these
are compatible with the parental genotypes and the
phenotype unaffected. Because the mother is not
heterozygous at both loci, we cannot tell whether
recombination occurred between the trait and marker
loci (since all children must receive the A allele from
her with probability 1, irrespective of what disease
allele they received). Because there is no ambiguity in
the genotype of the affected individuals, it is clear that
they provide most of the information about linkage.
The ambiguity of the other sibs’ disease locus

genotypes adds noise to the analysis. Because disease
alleles are typically rare, and recessive diseases are
quite often lethal, it is rare for parents to be affected
themselves, and thus the majority of pedigrees which
one will ascertain (see Ascertainment) are either
nuclear pedigrees, as in Figure 4, or inbred (see
Inbreeding) pedigrees, where the disease alleles in
the affected kids are identical by descent from some
common ancestor.

In the case of inbred pedigrees, most affected
children would be homozygous at a marker locus
tightly linked to the recessive trait locus [19] (this is
also the fundamental cause of linkage disequilibrium
if one thinks of populations as large extended inbred
pedigrees). Smith [19] proposed that an efficient
strategy for detecting linkage with rare recessive traits
in inbred pedigrees would be to look for marker loci
at which affected individuals are more frequently
homozygous than expected – a technique that has
come to be known as homozygosity mapping. It is
critical to point out that homozygosity mapping is
not a different statistical technique to analyze data –
in fact, one normally applies standard model-based
linkage analysis to the pedigree in question. It is
merely an efficient technique for minimizing the
amount of genotyping one needs to detect linkage, by
only typing one affected child from a consanguineous
marriage segregating a recessive disease in the initial
genome screen – later, of course, one should go back
and genotype the parents and other family members
to make sure that the individual has received the
marker alleles identical by descent (IBD) from one
common ancestor.

Fully Penetrant Dominant Disease

The second classical model for trait inheri-
tance is fully penetrant dominant, in which
Pr(affected|DD orD+) = 1 and Pr(affected|++) =
0. The majority of affected individuals in such a dis-
ease are going to have genotype D+, because the
disease allele is typically very rare, and all affected
children have at least one affected parent. As a result
of this, pedigrees segregating fully penetrant dom-
inant diseases are typically large and extend over
multiple generations, with smaller sibships than in
recessive disease pedigrees. This is because, in reces-
sive diseases, when we ascertain pedigrees to have
more than one affected child, we are biased toward
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large sibships, whereas for dominant diseases there
are typically affected individuals in many gener-
ations. For this reason, dominant traits are often
transmitted in phase-known meioses, whereas most
meioses in recessive pedigrees are phase-unknown
(typically only the bottom generation has affected
individuals).

Complex Disease

A complex disease is one for which either the mode
of inheritance is unknown, there are multiple genes
involved, diagnosis is uncertain, or environmental
factors are the entire cause of the disease, and
no genes are involved at all [12]. Typically, the
penetrances are not 0 and 1, but somewhere in the
middle, even for single gene disorders. It may be that
a disease has a late age of onset, which is variable
from individual to individual, or it may be that certain
environmental factors are necessary in combination
with the genes to produce a phenotype, etc. (see
Penetrance).

When such complexities are present, it becomes
difficult to do a good model-based linkage analysis,
because the linkage analysis is based on specified
parameters, as indicated above. When these parame-
ters are incorrectly specified, the recombination frac-
tion is usually overestimated, and the lod scores may
be smaller than if the model was correct. That is not
to say the power is always highest when analysis is
done under the correct model – power to detect link-
age often tends to be higher when the genetic effect of
a locus on the trait is overestimated, especially if the
mode of inheritance is actually very weak – hence the
high power of “model-free” linkage methods, which
are in many cases mathematically equivalent to lod
score analyses under models with very strong genetic
effects, as shown later in this article. However, when
the mode of inheritance is incorrectly specified, it is
impossible to get accurate estimates of the location of
a disease gene from the recombination fraction esti-
mates, and the test statistic itself is the only means of
determining the location of the disease gene. For this
and other reasons it is very difficult to fine-map a dis-
ease gene for a complex trait in an equivalently sized
dataset, and the accuracy will be orders of magni-
tude less with complex traits. As an extension of this
argument, it will also probably be very difficult to find
linkage disequilibrium with complex trait predispos-
ing genes, as those genes are often very common,

thus leading to extreme allelic and nonallelic hetero-
geneity in the population-as-pedigree.

Testing for Linkage – Positive and
Negative

Originally, the lod score method was proposed as a
sequential procedure in which one would continue
to add more and more families until the lod score
at some predetermined recombination fraction either
exceeded 3, in which case linkage was accepted, or
fell below −2, in which case linkage was said to
be excluded [14]. However, the common practice
changed such that people now maximize the lod score
over the recombination fraction to prove linkage with
greater power, while to exclude linkage they simply
look at all values of θ for which the lod score
remains below −2 (all points to the left of the upward
pointing arrow in Figure 5). The example shown in
Figure 5 would allow for the conclusion that there is
linkage with MLE of a recombination fraction equal
to θ̂ , as indicated in the figure, and yet linkage is
also excluded at small recombination fractions in the
same pedigree. Since it is known, for linkage analysis
under an incorrect mode of inheritance assumption,
that the recombination fraction MLEs are biased in
an upward direction [17], such decision rules for
“exclusion” mapping are not very useful when the
mode of inheritance is not well characterized and
correctly modeled.

In modern human genetic linkage studies a large
number of markers are tested in a fixed set of
pedigrees. In this context, the spirit of lod score
analysis has changed dramatically since the days of
Morton [14]. We are no longer testing one specific
marker, but an entire genome-wide set of markers,
typically spaced at intervals from 5–10 cM, in which
case there would be about 600 such markers in
a full genomic scan. In analyzing this situation,
there is a multiple testing problem to be taken into
account. If there is a single gene disorder, it has
been argued that the gene must be somewhere, and
thus as more markers are shown to be unlinked, the
prior probability that one of the remaining markers
is linked is increased, and this would theoretically
compensate for the large number of tests. However,
this argument does not hold if we are using linkage
analysis to prove there is a gene. For certain complex
diseases we have no proof of a genetic component at
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Figure 5 Sample graph of two-point lod scores as a function of the recombination fraction, with: indicators of the
maximum lod score, Zmax; the maximum likelihood estimate of the recombination fraction, θ̂ ; the upper and lower limits
of its 3-unit support interval, (θU and θL); and the exclusion region (to the right of the upwardly pointing arrow)

all, despite the best efforts of segregation analysis.
If there is no gene, the prior probabilities of linkage
are not increased after many markers are all found to
be unlinked to the trait.

The current theoretical arguments about critical
values are based on the null hypothesis distribution
of the lod score maximized over all markers in the
genome. If there is no linkage, different analyses
have predicted the probability of a lod score of 3
arising by chance for some marker to be between
0.005 and 1, depending on the pedigree structure,
marker informativeness, and other assumptions (e.g.
[9] and [22]). For example, for a fixed critical value,
with more informative markers, there is a lower
rate of false (and true) positives over the whole
genome. There is thus a small but nontrivial chance
of getting at least one false positive in a genome
screen with a large number of markers. In practice,
one might consider how their best lod scores compare
with the lod scores at other markers throughout the
genome – obviously the highest lod scores are the
most promising, and the lower ones are less so (cf.
[22]). There are no hard and fast rules, because
molecular technology has progressed to the point
where one can feasibly obtain genotypes for as many
markers as one wants. Ideally, one should consider
the lod scores for all markers in a completed genome
scan jointly before interpreting borderline results, in
contrast to the old days (i.e. 3–4 years ago) of linkage
analysis where typing small numbers of markers was
a huge chore. For complex diseases, a lod score of
3 is not so convincing today, unless it is with a

candidate gene, or it is interpreted in the context
of a full genome scan.

Estimation of the Recombination Fraction

When the mode of inheritance is known, it is possi-
ble to compute the exact likelihood for the data, and
the maximum likelihood estimates of the recombina-
tion fraction, while typically biased, are consistent. To
demonstrate the bias in a very simple example, let us
consider a phase-known pedigree with four informa-
tive meioses, and let us assume that the recombination
fraction is 0.50. Then we compute the expectation of
the MLE. The possible outcomes are given in Table 1.
Because E(θ̂) = ∑

Data θ̂Pr(data), where the sum is
taken over all possible outcomes, in this case, while
θ = 0.5, E(θ̂) = 0.40625, which shows a consider-
able downward bias. However, asymptotically, as the
number of informative meioses approaches infinity,
the expectation of the estimate approaches its true
value, and therefore the MLE of θ is consistent.

That the MLE of the recombination is consistent
is valuable to researchers in human genetics, as it
gives a means not only to detect linkage through use
of the lod score as a test statistic, but also to esti-
mate the distance between the marker locus and the
disease-predisposing gene. Normally, because these
estimates are not very accurate in small samples,
we construct support intervals around the MLE, and
say that the true recombination lies somewhere in
that interval with reasonable certainty. The k-lod-unit
support interval for the MLE of the recombination
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Table 1 Sample demonstration of the bias in estimates of
the recombination fraction in small samples

Pedigree Outcome

Recombinants Nonrecombinants Pr(data) θ̂ Pr(data)∗θ̂

0 4 (0.5) 0 0
1 3 4(0.5) 0.25 0.0625
2 2 6(0.5) 0.50 0.1875
3 1 4(0.5) 0.50 0.1250
4 0 (0.5) 0.50 0.03125

Total 1 0.40625

fraction consists of all values of θ for which Z(θ) ≥
Z(θ̂) − k. Historically, researchers used k = 1 to con-
struct a support interval which asymptotically was
approximately equivalent to a 95% confidence inter-
val. However, an inconsistency arises when the max-
imum lod score is greater than 1 and less than 3,
because in that case a 1-unit support interval would
exclude the null hypothesis θ = 0.5, even though the
null hypothesis has not been rejected. Two possible
solutions to this problem are in common practice.
The original recommendation was to think of link-
age analysis as a two-step procedure, i.e. first one
tests the null hypothesis of no linkage, and if this
null hypothesis is rejected, then and only then do you
consider the estimates of the recombination fraction
and its 1-unit support interval [3]. Another argument
suggests that, since testing and estimation are based
on the same statistic, it is impossible to separate
the two logically, and for this reason, a 3-lod-unit
support interval should be constructed (because the
test is typically performed with the critical value of
Z > 3) [21]. Fundamentally, either argument works,
and it all depends on what the end-user wants to
believe – the latter procedure will allow support inter-
vals to be constructed even without significant test
results, while the former does not; however, the lat-
ter procedure gives much wider support intervals,
and thus does not narrow down the region in which
the investigators would have to look for the gene
as much as a 1-unit support interval would. The
counter argument is that 1 in 20 times (approxi-
mately) the gene would be outside the 1-unit support
interval, while only 1 in 10 000 times would the
gene fall outside the 3-unit support interval. The
choice of support criteria is dependent largely on the
desires of the investigator and whether one thinks a
5% chance of missing the gene is a gamble worth
taking.

The caveat of all this discussion about estimat-
ing recombination fractions is that it is dependent
on the accuracy of the parametric model for the dis-
ease and the marker locus. It presumes that the allele
frequencies are all accurately estimated and that the
penetrances are correct as well. For complex dis-
eases, this is never the case, especially at the trait
locus. In many cases, it is impossible to do this
correctly when we are restricted to the confines of
a single-locus parametric model of disease with no
environmental cofactors. There have been attempts
made to extend linkage analysis methods to multi-
ple gene traits, and to mixed environmental/genetic
models, but they are computationally intensive, and
do not tend to increase the power of the test statis-
tic greatly. The only gain from these complications,
for most cases studied thus far, is an increase in
the accuracy of the recombination fraction estimates.
However, in practice, if one is using a single gene
model which is known with certainty to be incor-
rect, one will find that the recombination fraction
is always overestimated, and loses all of its mean-
ing; in those situations, the value of the test statistic
itself is all we have to use in fine-mapping the trait
locus.

Relationships Between “Model-free” and
“Model-based” Methods

In linkage analysis, nonparametric methods have
been employed to “increase robustness” [9] and to
make the calculations fast and simple [2]. Initially
it was impossible to do likelihood-based analysis
on complex pedigrees, as for general pedigrees the
likelihoods could not be computed in the absence
of recent technological and theoretical innovations,
while most sib-pair and relative pair analyses could
be performed on the back of an envelope. However,
as soon as there were additional affected relatives
beyond the initial affected relative pair, the analy-
ses become problematic, as there are higher-order
correlations among the marker genotypes of mul-
tiple affected individuals within a single pedigree.
In special situations the multiple relative pairs may
be asymptotically pairwise-independent [2], but it is
still an approximation to looking at the entire set
of affected individuals jointly, as in likelihood-based
pedigree analysis.

Recent theoretical studies have demonstrated that
one can often use model-based likelihood methods
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to compute statistics with equivalent properties to
the pairs-based statistics, in which the entire set of
affected individuals in a pedigree are analyzed jointly,
e.g. [8]. Below, the simplest cases are examined
in detail for sib-pair analysis and extended-pedigree
identity-by-descent (IBD) analyses (see Linkage
Analysis, Model-free).

Sib-pair Analysis

It has recently been demonstrated [7, 8] that there is
an algebraic equivalence between the sib-pair mean
test [2] and parametric linkage analysis under a
recessive model. More accurately, it has the same
statistical properties as a likelihood-based linkage
analysis between the marker locus of interest and
a “pseudo-marker”, which has genotype 1–2 in the
mother, 3–4 in the father, and 2–3 in each affected
child. If one sets θ = 1/2 between these two loci,
then from each parent the children share one allele
at the marker locus IBD with probability p = θ2 +
(1 − θ)2 = 0.5, which is the null hypothesis of the
sib-pair mean test statistic. When θ is allowed to
take on all values between 0 and 0.5, there is a 1:1
mapping of the interval [θ : 0, 0.5] → [p : 0.5, 1],
and the lod score between the marker locus and this
“pseudo-marker” is a simple transformation of the
sib-pair mean test statistic, R = (x − y)2/(x + y),
where Zmax = R/2 ln(10), x is the number of alleles
shared IBD over all sib-pairs, and y is the number of
alleles not shared IBD across all sib-pairs). In light of
this equivalence when one is analyzing only sibling
pairs, the analogy can be extended to multiplex
sibships [10, 18] by computing the lod scores between
a marker locus and such a “pseudo-marker” where
all affected siblings in a sibship have genotype 2/3.
The statistic R = 2 ln[L(θ̂)/L(θ = 0.5)] has a well-
defined distribution which converges rapidly, in as
few as 20 sibpairs, to a 50–50 mixture of χ2

(1)

and a point mass at R = 0. The traditional mean
test, no matter what weighting function is assumed
for multiplex sibships [2], has a skewed distribution
when larger sibships are analyzed. Analysis of the
power of this likelihood-based extension has been
shown to be consistently robust and powerful over
a wide variety of modes of inheritance [4].

Other Affected Relative Pairs

In other “model-free” methods based on extended
pedigrees, it is customary to select a set of pairs

of relatives and see if they share more alleles IBD
than would be expected if there were no linkage.
Traditionally, this has been most frequently done by
breaking multiplex pedigrees into all possible pairs
of affected relatives, and pretending they are inde-
pendent of each other, when really there is a compli-
cated set of interdependencies which only go away
asymptotically (i.e. in unrealistically large datasets).
Ultimately, one is interested in testing whether or
not a given marker locus segregates independently
of the trait in the entire pedigree. Following the
aforementioned logic, in pedigrees without consan-
guinities, any pair of individuals who are not sibs
can share at most one allele IBD. If we have a sim-
ple pedigree with only two affected individuals, an
artificial “pseudo-marker” locus can be created in
which they share the one marker allele IBD that is
the most they could possibly share, i.e. they each
are assigned a pseudo-marker genotype 1/2, where
all founder individuals who are not ancestors of all
affected individuals are given genotype 1/1. Perform-
ing a likelihood-based analysis of this locus (setting
the allele frequency of the 2 allele to be very small)
against a marker would represent a test equivalent to
an IBD test on this relative pair because the recom-
bination fraction again is a 1:1 transformation of the
probability that the two relatives share an allele IBD.
The model of the trait “pseudo-marker” genotypes is
essentially a rare dominant mode of inheritance in the
likelihood calculations. In this way it is possible to
develop statistics with properties analogous to var-
ious nonparametric IBD methods within the unified
context of likelihood-based lod score analysis, giving
us a common currency and a feel for the underlying
symmetries between conceptually different methods
of linkage analysis.

Linkage Disequilibrium

Ultimately, linkage disequilibrium analysis is very
similar to the extended pedigree analysis described
above. In linkage disequilibrium analyses, the popu-
lation under study is thought of as one giant pedigree,
in which the disease predisposing allele is assumed
to have entered a population once, or very few times
(see Linkage Disequilibrium). Then, many gener-
ations later, at tightly linked marker loci, the allele
which was on the founder chromosome would still
be present with a higher frequency among affected
individuals. In essence, the null hypothesis is that
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the marker locus genotypes are independent of the
disease, i.e. the disease and marker alleles have seg-
regated independently in this population. Under the
alternative hypothesis, however, the assumption is
that the affected individuals would share more alle-
les IBD from this common ancestor than any two
randomly selected individuals from the population.
Again, an analogy can be made to likelihood-based
linkage analysis in the population, following the
paradigm from the previous section, assuming each
individual had received 2 alleles IBD (i.e. we typ-
ically have to look at genotypes in case–control
disequilibrium studies). However, in a population, we
assume that the individuals under study are so dis-
tantly related that we can approximate the linkage
analysis by simply comparing the genotype frequen-
cies in affecteds and unaffecteds. If there are known
to be closer relationships between certain sets of
individuals in the population, it would behoove the
analyst to take these correlations into account where
relationships can be identified, to avoid erroneous
assumptions that all genotypes within case and con-
trol samples are really iid.

Algebraic Equivalence �= Identical Assumptions

It is, of course, erroneous to say that IBD analysis
in sib-pairs “assumes” the mode of inheritance to
be recessive – rather, it is more appropriate to say
that the sib-pair mean test statistic is algebraically
equivalent to lod score analysis under a recessive
model (with additional assumptions). The subtle
difference between these two statements is critical
to appreciate, for the null hypothesis properties of
likelihood-based lod score analyses do not depend in
any way on the true mode of inheritance, and are
valid irrespective of the true state of nature. This
same statement holds for nonparametric tests as well:
under the null hypothesis, the marker is assumed to
segregate randomly and independently of the trait,
and thus the true mode of inheritance is irrelevant to
the validity of any of these tests.

Conclusion

Likelihood-based parametric linkage analysis is the
gold standard for detecting disease genes through
reverse genetics in pedigree data. There are a number
of other procedures (see Linkage Analysis, Model-
free) which provide simple and rapid approximations

to this type of analysis, but ultimately it remains the
standard which the nonparametric methods attempt
to emulate. Bearing in mind the Neyman–Pearson
lemma, which states that if there is a best test of a
given hypothesis it will be in the form of a likelihood
ratio, and also the manner in which full likelihood
analysis can use all of the data and not just a small
subset thereof, it remains the method of choice. It has
been very successful in mapping hundreds of disease-
predisposing genes, and while there are no easy
answers to the questions of the future – involving
common complex diseases – it seems likely that it
will be the best unified framework at our disposal to
build upon in answering these more complicated but
very important problems.
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Linkage Analysis,
Multipoint

Multipoint linkage analysis is the analysis of linkage
data involving three or more linked loci (see Linkage
Analysis, Model-based). Such analyses are carried
out to order or map a set of loci, to position a new
locus in relation to a mapped set of loci, or perhaps
to exclude a locus from a region containing two or
more loci.

Until the mid-1980s, most linkage mapping was
two-point; that is, it involved the estimation or
testing of a single recombination fraction. Although
inefficient from the statistical viewpoint, three or
more loci can be mapped using only two-point
data, since linear maps are determined by pairwise
distances. When there are plenty of data, such as with
Drosophila, multipoint analyses may be unnecessary.
However, in most contexts, data are scarce. In such
cases, multipoint linkage analysis can be viewed as an
attempt to make more efficient use of recombination
data to further the aims of linkage analysis [15,
17, 28]. By making fuller use of available data,
greater precision or power is achievable; at times the
differences can be large.

Multipoint linkage analyses are more complex
than two-point analyses in several important ways.
First, they require the specification of an order for the
loci: if we have n linked loci, there are 1

2n! poten-
tially distinguishable orders. Secondly, they require
the specification of a joint distribution for all possi-
ble recombination patterns: for n loci, there are 2n−1

such patterns (including the parental one). Thirdly,
from the perspective of parametric statistical infer-
ence, joint distributions over recombination patterns
corresponding to distinct orderings of the loci define
noncomparable statistical models. Most of the diffi-
culties of multipoint linkage analysis stem from these
facts, particularly the rate of increase of the num-
ber of orders or patterns with the number of loci.
When linkage analysis is being done using pedigree
data, the size (number of individuals) and complexity
(presence of one or more loops) of the pedigrees are
additional limiting factors.

As with two-point linkage analyses, a major
complication in multipoint linkage analyses can be
the incompleteness of data. For example, there may
be missing data due to some individuals not being

typed. All data may be available, but phenotype
may not determine genotype, as with dominant traits
and other types of incomplete penetrance. Genotypes
may be known, but haplotypes may not. That is,
phase – which allelic combinations across loci are
together on the same chromosome – may be unknown
(see Haplotype Analysis). With known genotypes at
n loci, there are 2n−1 possible haplotypes. While these
incompleteness problems can slow down two-point
analyses, they can quickly make exact multipoint
analyses impossible. However, multipoint analyses
can make use of data that cannot be used in two-
point analyses; for example, when only uninformative
data are available at a locus intermediate between two
fully informative loci [18, 24]. In multipoint linkage
analysis using pedigree data, the feasibility of an
exact analysis will depend on the number of loci, the
size and complexity of the pedigrees involved, and
the nature and extent of incompleteness in the data.

To explore the topics in a little more detail, it
is necessary to introduce some notation. Suppose
that we are discussing data from n loci, written
A–B – · · · –C in an arbitrary, but fixed, order. Then
the joint recombination probabilities may be denoted
by p = (pi1i2i3,...,in−1), where the subscript ik = 1 cor-
responds to recombination across the kth interval,
and ik = 0 corresponds to no recombination across
the same interval. For example, if n = 3, and the
loci are ordered A–B –C, then we have four proba-
bilities p = (p00, p01, p10, p11), corresponding to the
four patterns of recombination or not across A–B

and B –C. The order with respect to which these
probabilities are defined does not need to be the true
one, and if we change it, the probabilities need only
be relabeled. For example, if we go from the order
O: A–B –C with probabilities p, to O ′: A–C –B with
probabilities p′, then p′ is related to p as follows:

p′
00 = p00, p′

10 = p10,

p′
01 = p11, p′

11 = p01.

Our first remark is that three-point phase known
crosses have been used for decades to order loci in
experimental organisms without any explicit model
assumptions. This works because, under very gen-
eral conditions, the smallest of the four probabilities
(pi1i2 ) corresponds to the event of double recombina-
tion across two consecutive intervals when the loci
are correctly ordered. For example, if the correct
order is O: A–B –C, then (assuming no chromatid
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interference (see Genetic Map Functions):

p11 ≤ p10, p01 ≤ p00.

If, however, O ′: A–C –B is the correct order,
but we have written our probabilities relative to
O, then p′

11 = p01 will be the smallest probability.
It follows that with sufficiently large samples of
data, any set of loci can be ordered by inspection,
with only a small chance of error. Naturally, this is
also possible using only the pairwise recombination
fractions, but that would take more data to achieve
the same level of confidence in the ordering. More
generally, it is possible to show that under the
assumption of no chromatid interference, a multipoint
recombination probability decreases, or at least does
not increase, when any nonrecombinant interval is
changed to recombinant status [26]. Lathrop et al.
[16] discuss three-point mapping from the point of
view of hypothesis testing.

Historically, the first formal linkage analysis invol-
ving more than two loci was given by Fisher [4].
There, he showed how to combine data from a num-
ber of two-point analyses in order to get efficient esti-
mates of a set of recombination fractions. Although
the data were all two-point, Fisher needed to express
the recombination fraction across the union A–C of
two adjacent intervals A–B and B –C in terms of
their individual recombination fractions. He did so
by making the assumption of complete interference;
that is, by assuming that, at most, one recombination
could occur across any pair of adjacent intervals. This
is equivalent to the following joint distribution:

p00 = 1 − r1 − r2, p01 = r2,

p10 = r1, p11 = 0,

where r1 and r2 are the recombination fractions across
A–B and B –C, respectively. This model would
not be appropriate for the analysis of three-point
data in which double recombinants are observed,
but it has been used in modern times with very
short intervals, see, for example [24], section 6.7.
The first satisfactory class of recombination models
were the χ2 renewal process models discussed by
Fisher and his students and colleagues [5]; Bailey
[1] gives a good overview of this research. The
simplest of these joint probabilities is too complex
to be given here, and this is probably the reason that
this class of models has not been used with human

data until recently [20]. In human linkage analysis
one finds almost exclusive use made of the extremely
tractable Poisson or no interference model, whose
joint probabilities for three loci take the form:

pi1i2 = r
i1
1 (1 − r1 )

1−i1r
i2
2 (1 − r2 )1−i2 ,

where, for i = 1, 2, the recombination fractions ri

may be expressed in terms of map distances di by

ri = 1
2 (1 − exp(−2di)).

It seems that although this model and its extension to
more than three loci fail to fit most data sets of any
size, the recombination fractions and locus orderings
obtained are generally satisfactory [26]. However, the
map distances estimated under this model may be
seriously in error, and so use is typically made of a
suitable map function at the end of the analysis. We
refer to Genetic Map Functions for more on this
point, and for further details concerning probability
models for recombination, within which multipoint
recombination probabilities must be calculated. The
major alternatives to the χ2 renewal models intro-
duced by Fisher et al. are due to Karlin & Liberman
[10] and Risch & Lange [25] (independently), called
count-location or generalized no interference models,
and the model of Goldgar & Fain [6].

Ordering More Than Three Loci

Many strategies exist for ordering a set of loci on
the basis of multipoint recombination data concerning
those loci. Some of these are mentioned in [24], and
for others we refer to [29]. There is no evidence
to suggest that a method exists that is generally
better than choosing that order that maximizes the
likelihood of the data using a suitable recombination
model, at least not when the calculation of the
likelihoods corresponding to each of the 1

2n! distinct
orders is possible. The Poisson or no interference
model is the one typically used in this context.
Although there does not appear to be a systematic
study of this issue, the available evidence suggests
that only small gains in the efficiency of ordering
loci are to be found by using a more suitable model
when interference exists (see [2], [6], [7], [18], and
[26] for related results).

It is not possible to examine all of the different
orders when the number of loci grows beyond 15–20.
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At that point it becomes necessary to adopt some
deterministic or stochastic search strategy, which
concludes with an order that may be suboptimal. In
this respect, the locus ordering problem resembles the
traveling salesman problem widely discussed in the
field of combinatorial optimization [9]. However, the
programs that are currently widely used to order loci
on the basis of human or other pedigree data make
little or no use of recent research from that field.

Location Scores

The idea behind the use of location scores [17] is
that we wish to compare two simple hypotheses
concerning the location of an unmapped locus. One
states that it is at a specific position, B, in the interior
of the chromosomal interval subtended by two known
loci A and C; the other asserts that it is elsewhere,
unlinked to either A or C. This comparison will be
carried out using the log-likelihood ratio based on
data concerning the known loci A and C, and the
unmapped locus. For the present illustration we will
suppose that we have complete information, including
phase, concerning the three loci, and the question of
interest is whether these data provide more support
for the hypothesis that the locus is at a specific
position, B, in the interval A–C, than the alternative
that it is elsewhere, unlinked to both. In practice, there
may be further loci to the left of A and to the right
of C, as well as incomplete data, but we will ignore
these possibilities here.

The probabilities (pi1i2 ) under the first hypothesis
must be specified using a suitable model, and we
suppose that after this is done, the likelihood for the
data is L(ABC). However, if the locus is unlinked
to both A and C, then we will have

p00 = p11 = 1
2 (1 − r), p01 = p10 = 1

2 r,

where r is the recombination fraction between A

and C, assumed known. This assignment will lead
to a likelihood for the data that we denote L(AC).
A likelihood ratio test of the null hypothesis that
the locus is unlinked to either A or C, against the
alternative that it is at B, will then be based on the
quantity

L = log

[
L(ABC)

L(AC)

]
,

and the null hypothesis will be rejected if L is
sufficiently large. If we regard B as a variable point
in the interval A–C, this quantity can be viewed
as a function L = L(B) of the position B along
the interval, and this is called a location score. A
significant peak in the function at some point may
then be interpreted as suggesting that the unmapped
locus is at that point. Of course, the threshold
determining significance must be decided upon taking
into account the model and the length of the interval.

In practice, this calculation may be repeated in
each of a series of adjacent intervals, and the global
maximum, or all maxima above some threshold,
noted. As long as there are recombinations in a given
data set in every such interval, the resulting plot
will go to −∞ as the endpoints of each interval are
approached, and be roughly parabolic in between,
although the shape can be somewhat different with
certain patterns of incomplete data. Further details
and graphs can be found in [27].

An alternative use of these location scores leads
to what is known as exclusion mapping. The idea
here is that if the location score stays below a
suitable threshold throughout an interval, then this
may be interpreted as suggesting that the unmapped
locus lies nowhere in the interval. As with the direct
use of location scores, care needs to be taken with
thresholds. Practices differ, and we refer to [24] for
more details on this matter.

Algorithms and Programs for Multipoint
Linkage Mapping

I will refer mainly to human linkage analysis using
qualitative data on one or more pedigrees. Multipoint
linkage analysis with quantitative traits is a special-
ized subarea that I cannot discuss here, although some
of the references given below cover that topic as well.
Programs for carrying out multipoint linkage analysis
for crosses of experimental organisms are much more
straightforward to write, but no such general pur-
pose programs seem to have gained widespread use.
However, particular programs do circulate among
communities of scientists studying the same or simi-
lar organisms.

Overviews of available computer programs for
multipoint linkage mapping in humans can be found
in Ott [24] and Terwilliger & Ott [27]. These also
contain excellent bibliographies.
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Algorithms for carrying out multipoint linkage
analysis with human (and other) pedigree data are
of two kinds: those based upon the Elston–Stewart
[3] approach, using what is known as peeling, and
those based upon the Lander & Green [14] hidden
Markov model formulation. Each of these classes
of algorithms has its strengths and weaknesses, and
there are problems that cannot be solved exactly
with either of them. The Elston–Stewart approach
underlies most of the algorithms discussed in [24]
and [27], and we refer to these for further details.
For a recent improvement of the implementation of
these algorithms, see [23]. One new package that
has become available since the publication of [24]
and [27] uses the basic Lander & Green algorithm
in a number of different human linkage problems
[13]. These include analyses with sib-pairs [11],
the analysis of recessive traits with nuclear families
[12], and multipoint linkage with many markers for
general pedigrees of moderate size [13]. Another
recent program assists with map construction [22].

When exact linkage analysis methods fail because
of time or space constraints, Monte Carlo methods
may be used. At present, these are more research tools
than approaches suitable for routine use, but they are
developing rapidly, and should become more widely
used in the near future. Lin [19] is a recent review,
discussing both the sequential imputation approach
of Irwin et al. [8] and Markov chain Monte Carlo
methods [21].
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Linkage Analysis,
Multivariate

For correlated traits, such as those predicting car-
diovascular disease risk, multivariate approaches for
genetic linkage can increase the power and precision
of estimators for genetic effects [13, 29]. For traits
influenced by several genetic factors, the specific
genetic loci may induce distinct correlation structures
among the measures, so that one can separate the
effects of each genetic locus by multivariate anal-
ysis, even though this might not be possible with
simple univariate analyses. Finally, multivariate anal-
ysis provides a statistically efficient mechanism for
controlling the analysis-wise significance level, when
there are multiple trait observations for each subject
(see Multiple Comparisons). In multivariate anal-
ysis of quantitative traits, it is not always apparent
whether a variable should be treated as a covari-
ate or as an outcome. For example, in analysis of
blood pressure, body-mass index (BMI), which is a
measure of obesity, is often treated as a covariate.
However, if a genetic factor influences both BMI
and blood pressure, then adjusting blood pressure for
BMI would reduce the effects from the major-genetic
locus. Therefore, using methods that can analyze
several traits jointly is essential. Genetic model-free
methods [5, 10, 25, 30] are more easily applied than
full likelihood methods, which require modeling the
prevalences of genetic factors along with the param-
eters to describe the genotype specific phenotype
distributions.

De Andrade et al. [18] and Almasy et al. [4]
developed and applied models for performing multi-
variate linkage analysis using variance components
(VC) procedures. Eaves et al. [20] developed struc-
tural equations models for partitioning multivariate
sources of variation among major-genetic, polygenic,
and nongenetic sources of variation. Vogler et al. [35]
used VC analysis to jointly perform a multivari-
ate analysis of five traits that were simulated as a
part of the Genetic Analysis Workshop. Multivari-
ate VC analysis was primarily used as a descriptive
tool, without detailed discussion of issues related
to hypothesis testing or estimation. Todorov et al.
[34] recently constructed a very general framework
extending VC analysis as a general aspect of struc-
tural equations modeling. The framework that they

provided can incorporate arbitrarily large families,
but the optimization procedures are simplified for
data from sibpairs. Iturria and Blangero [26] pro-
posed an EM algorithm for obtaining maximum
likelihood estimates in a multivariate VC linkage
model parallel to the commonly used scoring algo-
rithm. Programs to perform multivariate VC analysis
are currently available as components of the software
packages ACT [17], SEGPATH [28], SOLAR [3], and
EMVC [26].

The Multivariate Model

The multivariate variance components (MVC)
approach is an extension of the univariate approach
described by

Yj |Xj = µ + Xjβ + aj + gj + ej , (1)

where Yj is a vector of dimension Nj of trait
values for the family j , µ is the overall mean
vector of dimension Nj for family j , Xj is an
Nj × p matrix of covariates, β is a p-vector of
regression coefficients, gj is a Nj -vector of genetic
effects by which the major locus affects the trait
values for family j , aj is a 1 × Nj vector expressing
how the additive polygenic factor affects the trait
values for family j , and ej is residual variation
(or environmental effects) from the model; for more
details, see [5, 15]. The MVC approach is also a
model-free approach, and it has advantages over
model-dependent approaches. To simply describe
these models, we use the vec transformation [4, 6, 18]
to string out the observations as a single vector and
then allow elements of this vector to be correlated,
according to the model proposed by equation (1).
Let Yj = (Y11, . . . , Y1Nj

, . . . , YmNj
)′ be a vector of

m multivariate trait values for Nj members of the j th
family. Let N be the total number of families, β a
vector of dimension mp of the regression coefficients
for the p covariates (including a vector of 1’s
corresponding to the overall mean), Xj = Im ⊗ XNj ,p

an mNj × mp known matrix of covariate values for
the j th family, where ⊗ is the Kronecker product.
Then, the variance–covariance matrix of the m traits,
Vj , with dimension mNj × mNj is

Vj = A ⊗ Rj + B ⊗ π j + C ⊗ Ij , (2)

where, Rj is the Nj × Nj matrix of the coefficients
of relationship for the j th family; π j an Nj × Nj
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matrix of estimated proportion of alleles identical
by descent (IBD) for pairs of related individuals for
the j th family; Ij is the Nj × Nj identity matrix;
and A, B, and C are, respectively, polygenic, major-
gene, and residual variance–covariance matrices each
of dimension m × m. A fourth term to measure
dominance components can be added. Because the
dominance component of variance (see Population
Genetics) is usually much smaller than the additive
component, it is ignored here, but can be modeled by
including increased covariance among pairs sharing
two alleles IBD. Similarly, additional terms to model-
shared environment can be added. When longitudinal
data are considered, the error variance structure can
be modified to take account of serial correlation
among the observations [16]. A special approach
can be taken for discrete/quantitative traits. In this
approach, a decomposition is effected in which the
quantitative trait is first conditioned on the discrete
trait [38].

Hypothesis Tests for Multivariate Analysis

The Multivariate Haseman–Elston (MH–E) Test

Amos et al. [7] developed a multivariate analog of
the Haseman–Elston test [24]. To test for linkage,
the procedure evaluates the regression expression

E

[
m∑

k=1

(ck (Yik − Ylk))
2 | πil

]
= α + βπil (3)

subject to the constraints
(∑m

k=1 c4
k + ∑m

l<k<3 4 c2
l

c2
k

) = 1, to ensure that the variance of this linear
function remains constant during the optimization.
MAXFUN [33] was used to optimize the coefficients,
c. The union–intersection approach can be used
to develop a hypothesis test for multivariate
regression, and results in the evaluation of a ratio
of quadratic forms. This ratio would be expected
to follow an F-distribution with m and η − m − 1
degrees of freedom for a test that includes a single
regression coefficient (and hence effects from a single
linked major gene) and η independent sibpairs except
that the constraint on c that one imposes has a slightly
different form from typical multivariate regression.
Allison et al. [2] used the direct search option of
MAXFUN to evaluate a grid of values, subject to
the constraint that

∑m
i=1 c2

i = 1 to find the values c

that maximize equation (3). However, they did not
provide a limiting distribution for their test statistic
and therefore one must depend upon empirical critical
values to assess significance. Amos et al. [6] found
that the critical values were similar to those provided
by the F-distribution, suggesting that an F-distribution
can be used to obtain significance levels. However,
for smaller samples, the distribution of the test
statistic was slightly wider than predicted by an F-
distribution. Elston et al. [21] developed a regression
approach in which the centered cross product of
sibpairs are regressed upon IBD and showed that this
method can be more powerful than the older H–E
test. They also showed that a simple multivariate test
could be constructed by first obtaining the principal
components (PC) and then combining the P values
from testing each of the separate analysis for each PC.
Gorlova et al. [22] studied the statistical properties of
these PC analysis and found the PC analysis to have
slightly higher power than the MH–E test.

The Multivariate Variance Components Test

To test for genetic linkage, we construct a likelihood
ratio test. Under the null hypothesis, the major-
gene parameter(s) B of equation (2) are constrained
to 0. For simplicity, let us consider bivariate traits.
For bivariate linkage analysis of an additive genetic
effect, the parameters are σ 2

a1, σ 2
a2, and σa1,a2 where

the first two components measure the major-genetic
variance of the traits and the third component mea-
sures the major-gene covariance for the traits. We
also usually constrain the major-gene variances to
be positive so that they fall in the admissible part
of the parameter space. As a result, the distribution
of the bivariate test that the major-gene components
and covariance are zero, is a mixture of 1/4 χ2

0 , 1/2
χ2

1 , and 1/4 χ2
3 as suggested by Self and Liang [31].

This follows because for one-quarter of the parameter
space, both genetic variance parameters are estimated
to be positive and hence lead to a chi-squared test
having three degrees of freedom; for one-half of
the parameter space, one of the genetic variances is
constrained to be 0 and hence the major-gene covari-
ance is 0 so that the chi-squared distribution has
one degree of freedom, while for the remaining one-
quarter of the parameter space, both genetic variances
are constrained to be zero, resulting in a degenerate
distribution of a point mass at 0.
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Because the same major-gene alleles are assumed
to be determining the two traits, it is logical to
consider imposing the constraint σa1,a2 = ±σa1σa2,
which is always satisfied whenever there is a sin-
gle genetic factor in a region and the dominance
components of variance affecting each trait is 0. As
discussed by Almasy et al. [4], the observed correla-
tion attributable to a locus may not be one if there
are multiple loci affecting both traits in a region.
Therefore, they proposed testing the hypotheses of
pleiotropy, which presumes that the trait(s) are influ-
enced by the same gene versus coincident linkage,
which presumes that there are two or more linked
loci that separately influence the traits. If the covari-
ance is constrained to be the product of the square
root of the variances, then the hypothesis test of link-
age for either of the traits becomes a mixture of 1/4
χ2

0 , 1/2 χ2
1 , and 1/4 χ2

2 . In this case, the covariance
is no longer a parameter to be estimated. Amos et al.
[6] compared the efficacy of fitting data either with or
without this constraint on the covariance. They found
rather similar power for either the unconstrained or
constrained tests when the empirically derived critical
values were used.

Power of Tests

Theoretical studies have evaluated the power of mul-
tivariate procedures for genetic studies of crosses
between inbred animal lines and the general con-
clusions are relevant to studies of outbred animals
and humans. Jiang and Zeng [27] provided analytical
forms describing the distribution of bivariate likeli-
hood ratio and regression-based tests. These forms
can be used for comparing the asymptotic perfor-
mance of tests for linkage using bivariate or univari-
ate data. To allow for the possibility that observations
may not be normal and tests may not converge
rapidly to limiting distributional forms, Churchill and
Doerge [14] advocated a permutation based approach
for hypothesis testing. Under this approach data
are resampled, allowing the investigator to compare
test statistics constructed from data to the empirical
null distribution of a regression-based test statistic,
generated using the same set of data. Determinis-
tic studies indicated that when there is a genetic
correlation between traits being studied, multivari-
ate approaches are more powerful than univariate
approaches [29]. However, the relative gain in power

was highly dependent upon the strength of the cor-
relation as well as its direction relative to residual
familial (or polygenic) components, as was also noted
for animal models [27]. The greatest gain in power
occurs when the polygene and major-gene correla-
tions between traits have opposite signs. VC are
usually implemented under an assumption of mul-
tivariate normality, as this ensures computational
simplicity in obtaining estimates. However, recent
studies [1, 36] have shown lack of convergence of
the test for linkage to a limiting chi-squared distri-
bution when the data are not normally distributed
and there is a strong residual correlation among sibs,
after allowing for the major-gene effect. Methods
to allow the construction of accurate tests for non-
normal data include data trimming [37], application
of generalized estimating equations or robust vari-
ance estimation [9], construction of hypothesis tests
that allow for kurtosis in the data [11] or the con-
struction of permutation tests (see Randomization
Tests) [23]. Application of each of these approaches
for multivariate data could be rather complex, and
tests using either permutation tests or generalized
estimating equations are computationally intensive.
Sham et al. [32], following some earlier work by
Dudoit and Speed [19], have proposed regressing the
IBD sharing of relatives onto the trait values. This
approach has the advantage of being relatively insen-
sitive to distributional assumptions while maintaining
power, compared with variance-components proce-
dures here discussed. This approach requires some
further development for application to multivariate
traits.

Comparison of multivariate tests have been pre-
sented recently in the literature by Allison et al. [2]
and Amos et al.[6]. Allison et al. presented results
from a large simulation study to assess the effec-
tiveness of a bivariate H–E test for linkage versus
the univariate H–E test. Their results showed that
bivariate analyses can improve the power to detect
linkage, with a greater gain in power when the genetic
covariance due to a major locus linked to the marker
studied is negative and the residual covariance among
the traits is positive. They applied slightly differ-
ent test statistic that was earlier proposed by Amos
et al. [7], although the general form is similar. Their
alternative test did not follow any well-characterized
distributional form. Therefore, they used a Monte
Carlo method to develop hypothesis tests. Amos
et al. [6] performed extensive simulation studies to
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compare the power of VC and the multivariate H–E
tests proposed by Amos et al. [7]. They also val-
idated the use of software for use in multivariate
analysis of quantitative traits, and provided empirical
power results for the study of bivariate traits. Amos
et al. [6] showed that bivariate VC procedures pro-
vided more power than the bivariate Haseman–Elston
test at a higher computational cost. Although the
MH–E test had lower power than bivariate VC pro-
cedures, this procedure still holds promise as a tool
for rapidly studying combinations of three or more
traits. Because by using simple correlation methods
the investigator cannot easily decide which traits to
study in multivariate linkage analysis, two approaches
can be taken. First, biologically relevant attributes
of the traits may allow the investigator to choose
combinations of traits for study. Second, the MH–E
procedure or newer modifications of it [21, 22] could
be used to screen for combinations of variables to
be studied. The PC approach suggested by Elston
et al. [21] and further studied by Gorlova et al. [22]
provides a rapid and efficient method for screening
traits using either regression or ML variance compo-
nents methods. However, full multivariate variance
components linkage analysis is suggested where link-
ages are noted since it provides more meaningful
and interpretable results. For sufficiently large sample
sizes, the formulation of the MH–E test appeared to
be approximately distributed as an F-distribution [6].
Thus, results from analysis using this method should
be easily interpretable. A step-up or step-down proce-
dure can be used to decide among traits to be included
in analysis [8]. When a set of traits has been identi-
fied for further analysis by using the MH–E proce-
dure, VC analysis can be implemented. Ultimately, as
combinations of traits are studied, multivariate appli-
cations of fully parametric linkage models might be
implemented to characterize the specific effects of
each allele at a locus.

Model-dependent approaches for genetic linkage
fit parameters to model the prevalence of each allele
influencing a trait along with a model to describe
the distribution of trait values, conditional upon the
genotypes and covariates. Because a large number
of parameters must be fitted, model-dependent mul-
tivariate methods have not been widely used in link-
age analysis [12]. As a result, no model-dependent
genetic linkage studies of more than two genetically
influenced risk factors have been published.
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Linkage Disequilibrium

Linkage disequilibrium, more appropriately termed
allelic association or allelic disequilibrium, refers to
the nonrandom association between the alleles at two
or more genetic loci in a natural breeding population
(see Gene). The concept of linkage disequilibrium
was postulated by population geneticists in theoret-
ical studies of the consequences of random mating
on the distribution of alleles and allelic combinations
(genotypes) at multiple loci. Further theoretical stud-
ies have shown that in most instances this nonrandom
association declines rapidly with evolutionary time,
and as a function of the recombination frequency
between the loci. However, with natural selection,
allelic associations may persist in a population for
long evolutionary time periods. With the availabil-
ity of high-resolution genetic maps in the human and
many other species, empirical studies of linkage dis-
equilibrium in different genomic segments have been
initiated. These studies have not only shed light on
the distribution of alleles and allelic combinations
in the genome, but also on the population genetic
mechanisms that are likely to lead to the observed
distribution of linkage disequilibrium across loci. In
particular, these studies suggest that in certain cir-
cumstances, linkage disequilibrium can be used to
infer the location of a disease-causing gene by study-
ing disease–marker associations.

Hardy–Weinberg Law

The rediscovery of Mendelism (see Mendel’s Laws)
coincided with the identification of hundreds of phe-
notypes, in diverse species, whose inheritance could
be explained by a dominant or recessive allele.
In crosses, the familiar 3 : 1 segregation ratio (see
Segregation Analysis, Classical) was consistently
observed for these phenotypes, leading to the sug-
gestion that the population frequency of dominant
to recessive genotypes should also be in the 3:1
ratio. This suggestion was, however, easily refuted
by observations in natural populations. This dilemma
was resolved by Hardy and Weinberg who showed by
theoretical analysis that the frequency of genotypes
in populations, under the simplifying assumptions
of random mating in a population of infinite size
and the absence of mutation, migration and selec-
tion, was solely determined by the frequencies of the

constituent alleles [7] (see Hardy–Weinberg Equi-
librium). Thus, if the allele frequencies of the domi-
nant, D, and recessive, d, alleles at an autosomal locus
were p and q, respectively, then the frequencies of
the genotypes DD, Dd, and dd are p2, 2pq, and q2,
respectively. The same results apply to females at an
X-linked locus, with males having alleles in propor-
tion to their population frequencies. In the presence
of dominance, the dominant and recessive phenotypes
have population frequencies of p2 + 2pq = 1 − q2

and q2, respectively. Under these assumptions, Hardy
and Weinberg also showed that, irrespective of the
initial genotype frequency distributions, one genera-
tion of random mating generates the above genotype
frequencies and that these allele and genotype fre-
quencies do not change further over time, i.e. the
frequencies are at an equilibrium state.

Shortly after, in the 1910s, with the discovery
of genetic linkage, theoretical studies were initiated
to investigate the consequences of random mating
when two linked loci were considered, and under
the same simplifying assumptions used by Hardy
[7]. Jennings [10] and Robbins [18] showed that
with two linked genes, the population, once again,
approached an equilibrium state in which the alleles
at the two loci associated at random; Geiringer [6]
solved the problem with three linked factors. If two
loci, one with alleles D and d with frequencies p

and q, respectively, and a second with alleles E and
e with frequencies r and s, respectively, are linked
with recombination frequency θ (0 ≤ θ ≤ 1/2), then,
at equilibrium, the frequency of homozygotes such as
DDEE is p2r2, the frequency of single heterozygotes
such as DdEE is 2pqr2, and the frequency of the
double heterozygote DdEe is 4pqrs. In random mat-
ing populations, the equilibrium population frequency
of any genotype, at one or more loci, is determined
solely by the constituent allele frequencies at individ-
ual loci.

Linkage Disequilibrium

Jennings [10], Robbins [18], and Geiringer [6] also
determined the rate of approach to equilibrium when
more than one locus is involved and gave the geno-
typic distributions after any finite number of gen-
erations. These authors showed that, under random
mating, the frequency of any multilocus genotype, g

generations from an initial condition, is determined
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by the products of frequencies of the four haplotypes
(allele combinations) DE, De, dE, and de, and that
the haplotype frequencies change over time. After g

generations, the haplotype frequencies are:

DE : h1 = pr + ε,

De : h2 = ps − ε,

dE : h3 = qr − ε,

de : h4 = qs + ε.

In each generation there is a specific departure of
the haplotype frequencies from the equilibrium val-
ues; this excess or deficiency is denoted as ε and
termed the coefficient of allelic association or link-
age disequilibrium. Note that the numerical value
of ε is bounded, since each haplotype frequency is
nonnegative, less than unity, and the four haplotype
frequencies add to 1, as follows:

− min(pr, qs) ≤ ε ≤ min(ps, qr).

With genetic recombination between the D and E
locus, the coefficient of allelic association declines
every generation so that in successive generations
they are related as:

ε′ = (1 − θ)ε.

Thus, in g generations, the total decline is,

εg = (1 − θ)gε0,

where ε0 is the coefficient of allelic association at
generation zero (initial condition). Note that in any
generation, ε = h1h4 − h2h3.

The above equations suggest that linkage disequi-
librium occurs only as a nonequilibrium phenomenon
since it always declines to zero. However, the rate
of decline is determined by the recombination value
with a half-life of − ln 2/ ln(1 − θ); the inverse rela-
tionship with the recombination value suggests that,
for very close linkage, disequilibrium may persist for
long evolutionary time periods.

Causes of Linkage Disequilibrium

An extensive body of population genetics literature
shows how various forms of natural selection acting
on individual genes can lead to permanent, equilib-
rium association of the alleles at two loci, even in the

absence of linkage [15]. Additionally, when two loci
are linked, natural selection at one locus can lead
to the apparent selection at a linked locus (“hitch-
hiking”) and permanent linkage disequilibrium. How-
ever, and as stated earlier, in the absence of natural
selection no permanent associations are expected at
two linked loci. Thus, the term linkage disequilib-
rium is a misnomer since linkage is neither necessary
nor sufficient for permanent associations to occur; the
descriptive term allelic (nonrandom) association is
more appropriate. Other circumstances under which
allelic associations can occur, although not perma-
nently, are population admixture and population sub-
division (see Admixture in Human Populations).
In the latter case, a population with hidden subpop-
ulations, each of which differs in allele frequencies
and/or allelic associations, but treated as a single pop-
ulation, can also create allelic disequilibrium. Further
details on these and other theoretical models are pro-
vided in [14–16].

In many large, random mating populations allelic
associations are nevertheless observed. In humans,
such observations, restricted to very closely linked
blood group genes, such as those within the Rhesus
(C, D, and E loci) and MNS (M and S loci), or within
the HLA system of genes, have been known for a
long time [1]. More recently, with the availability of
multiple DNA polymorphisms in a small genomic
region, these studies have gained in popularity. In
fact, polymorphic alleles at multiple sites all within
20–30 kilobases of DNA demonstrate allelic associ-
ations [3]. These observations are best explained by
the nonequilibrium state of the human population and
the expectation of a slow decay of linkage disequi-
librium when the maximal recombination rate within
a region is less than 0.0005 per generation [3]. These
observations have found multiple uses such as for
associating specific mutations with a molecular hap-
lotype in a genomic region [12] and for mapping the
location of a mutation to a small genetic interval [13].

Parameterization and Estimation

Allelic associations, parameterized as the coefficient
of linkage disequilibrium ε, are most easily and effi-
ciently estimated from haplotype data. However, for
most diploid organisms it is not possible to derive
haplotypes from diploid two-locus genotypes unless
family data (i.e. parents, offspring, and other rela-
tives are sampled and studied) are also available (see
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Haplotype Analysis). Then, haplotype frequencies
are estimated from the relative frequencies of hap-
lotypes in a sample of independent families and by
counting only independent haplotypes within each
family. Tests of allelic associations (H0: ε = 0) are
based on the significance of a chi-squared statis-
tic with 1 df comparing the observed and expected
(under equilibrium) haplotype frequencies. In a sam-
ple of n haplotypes studied, if allelic associations are
present, the expected value of this chi-square statistic
is χ2 = nρ2, where,

ρ = ε

(pqrs)1/2
.

Thus, the correlation in the chi-square contingency
table of observations is another measure of linkage
disequilibrium, one that is a natural measure based
on the test of association. In many investigations, this
latter measure has been used since ρ appears to be
less dependent on the allele frequencies than ε. A
measure that is not dependent on allele frequencies
and finding more popular use in these studies is
Yule’s measure of association [13]:

A = h1h4 − h2h3

h1h4 + h2h3
.

The above results are for loci with two alleles per
locus, whereas many polymorphic markers have mul-
tiple alleles. Then, coefficients for allelic association
have to be defined for each allele pair at two loci,
allele triples for three loci, and so on. A discussion
of these multiple disequilibria and tests of hypotheses
on them is discussed in [19].

When family data are unavailable, linkage dis-
equilibrium parameters can be efficiently estimated
from population samples using iterative methods such
as the EM algorithm. In the genetic context, this
was first proposed by Hill [9] for two loci; addi-
tional methods and calculations of sample size for
predefined statistical power was studied by Brown
[2]. In addition, Brown [2] considers the appropri-
ate parameterization of disequilibria for multiple loci
taken together (i.e. the nonrandom association of
alleles at multiple loci) once the pairwise disequilib-
ria have been considered. Tests of significance (see
Hypothesis Testing) are performed by appropriate
modifications of the chi-square test alluded to above.
Of greater importance, particularly with DNA poly-
morphism data, is the existence of multiple alleles
at each locus studied. In this circumstance there are

several possible tests of disequilibrium, such as an
omnibus test or conditional tests on specific collec-
tion of alleles. Weir & Cockerham [19] have provided
a theoretical and statistical account of this situation.

It is clear that accurate estimates of allelic associ-
ations require very large sample sizes when the allele
frequencies, at one of the two loci studied, are close
to 0 or 1. This occurs whenever disease–marker
associations are evaluated. In these circumstances a
conditional sampling strategy, in which marker geno-
types are evaluated within classes of affected and
unaffected individuals, is very efficient. Chakravarti
et al. [4] have provided a maximum likelihood me-
thod for estimation of linkage disequilibrium statistics
from conditional marker genotype data. These meth-
ods are useful for mapping disease genes with respect
to a map of DNA markers (see Genetic Map Func-
tions) [11, 13].

Current Applications

Studies of allelic associations across the genome
and in various natural populations are now begin-
ning, with the availability of high-resolution genetic
maps in a number of species. So far, the primary
purpose of these studies has been to probe the popu-
lation structure of natural populations. Since in large
randomly mating populations no allelic associations
are expected, the finding of widespread associations
will suggest that these populations are either not in
equilibrium or that they have been recently estab-
lished from a small number of founders. The fitting
of specific population genetic models can then elu-
cidate whether the nonequilibrium nature of these
populations is due to genetic drift, natural selec-
tion, subdivision, or migration. In the human, these
types of studies all suggest that modern humans have
descended from a limited pool of founders (∼10 000)
approximately 200 000 years or so before the present.

In the human, the greatest application of studies
of allelic association is to find the location of a dis-
ease gene with respect to a map of DNA markers,
once the gene has been genetically localized to a
DNA segment under 1000 kilobases. This was first
demonstrated with the molecular cloning of the gene
for cystic fibrosis [13]. A theoretical basis for dis-
ease–marker associations owing to common descent
of a specific mutation from an ancestor, such as for
cystic fibrosis, has been given by Hastbacka et al.
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[8] and Puffenberger et al. [17]. The prospects for
such disease mapping, as an aid to the molecular
cloning of the mutant gene, has also been discussed
by Jorde [11]. Recent studies of variation patterns of
the human genome suggests that nonrandom associ-
ations between the most common type of sequence
variant, the single nucleotide polymorphism (SNP),
is highly clustered. Gabriel et al. [5] have shown
that nonrandom associations in several human pop-
ulations occur as blocks of high association with
apparent random association between blocks. This
highly punctuate pattern seems to be more prominent
in non-African than African samples. An international
project, the HapMap project, to decipher these pat-
terns in multiple samples from across the world is
currently underway and promises to uncover a wide
variety of statistical problems that beg for a solution.
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Linkage Information
Content

Several authors have studied the measurement of
marker polymorphism. Chakraborty et al. [2] pro-
posed a criterion to evaluate whether a mating pair
randomly drawn from a population is potentially
informative for linkage studies. They defined a mat-
ing pair to be potentially informative if it is capable
of producing offspring of at least two different pheno-
types. Botstein et al. [1] proposed a similar measure,
called the polymorphism information content (PIC)
value. The PIC value is defined as the probabil-
ity that the marker genotype of a given offspring
will allow one to deduce which of the two marker
alleles (see Gene) it received from the affected par-
ent (in the absence of crossing-over) (see Linkage
Analysis, Model-based), assuming one of the par-
ents is affected with a rare dominant disease. Guo
& Elston [3] introduced the concept of transmis-
sion informativeness, the probability of being able
to deduce which of the two marker alleles a par-
ent has transmitted given the marker genotypes of
the offspring and both parents, and showed that the
PIC value is equal to the average transmission infor-
mativeness over all possible parent–offspring trios.
They hence proved that the PIC value is in fact
a general measure of how informative a marker is
regardless of the mode of inheritance of the trait being
studied.

The use of model-free linkage analysis (see Link-
age Analysis, Model-free) on samples of relative
pairs has become common practice in genetic studies
of complex diseases. This is based on identity-by-
descent (ibd) probabilities; hence, a marker’s useful-
ness for detecting linkage by such a method depends
on the probability of being able to determine the
ibd probabilities for each particular type of relative
pair. Because the informativeness measures discussed
above are not adequate for such a purpose, the link-
age information content (LIC) value was developed
[3, 6] to measure the informativeness of a marker
for determining the ibd-sharing status of particular
types of relative pairs. In the following section, the
concept and the calculation of LIC are introduced
for five types of relative pairs: full sib, half-sib,
grandparent–grandchild, first cousin, and avuncular
pairs.

Linkage Information Content Value for
Specific Types of Relative Pairs

For a particular marker and a particular pair of
relatives A and B, LICAB is defined as the probability
of knowing how many alleles A and B share ibd at
that marker. For a particular type of relative pair R,
LICR is the average value of LICAB over all AB pairs
in the population, i.e.

LICR =
∑

all possible
AB pairs

Pr(AB)Pr(knowing ibd status |
AB pair).

In what follows the alleles at a marker locus are
represented by Ai , Aj , Ak and Al , and it is understood
that different subscripts indicate different alleles.

Full Sib

To be able to determine whether a sib pair shares
the same allele from a parent, that parent has to be
heterozygous. If one parent is heterozygous and the
other is homozygous (mating types: AiAi × AiAj or
AiAi × Aj Ak), then the ibd status for the sib pair
can be determined for only one (the heterozygous)
parent. In the case when both parents are heterozy-
gous (either the same heterozygous genotype, i.e.
mating type: AiAj × AiAj ; or different heterozygous
genotype, i.e. AiAj × AiAk or AiAj × AkAl) and we
know which allele each parent has transmitted to at
least one of the sibs, then the ibd status for the sib
pair from both parents is determined [6]. The LIC
value of a marker for sib pairs is defined to be the
sum of the probability of being able to determine the
sharing status from both parents and half of the prob-
ability of being able to determine the sharing status
from only one parent, i.e. LICS = LICS2 + 1

2 LICS1,
where

LICS2 = Pr(AiAj × AiAj parents)Pr(knowing sib

pair sharing status | AiAj × AiAj parents)

+ Pr(AiAj × AiAk parents)Pr(knowing sib

pair sharing status | AiAj × AiAk parents)

+ Pr(AiAj × AkAl parents)Pr(knowing sib

pair sharing status | AiAj × AkAl parents),
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and

LICS1 = Pr(AiAi × AiAj parents)Pr(knowing sib

pair sharing status | AiAi × AiAj parents)

+ Pr(AiAi × Aj Ak parents)Pr(knowing sib

pair sharing status | AiAi × Aj Ak parents)

The overall LIC for sib pairs, on simplification, is
given for a marker with allele frequencies pi by

LICS = 1 −
∑

i

p2
i + 1

2

∑

i

p4
i − 1

2

(
∑

i

p2
i

)2

.

Half-sib

The LIC value for half-sib pairs is the probability of
being able to deduce which marker allele the common
parent has transmitted to each child in the half-sib
pair. To be informative, the common parent of a
half-sib pair has to be heterozygous, and neither the
child nor the spouse can have the same heterozygous
genotype in each of the two nuclear families [3].
Therefore, the LIC value for half-sibs is given by

LICH =
n−1∑

i=1

n∑

j=i+1

2pipj (1 − pipj )
2

= 1 −
∑

i

p2
i − 2

(
∑

i

p2
i

)2

+ 2
∑

i

p4
i

+
(

∑

i

p3
i

)2

−
∑

i

p6
i .

Grandparent–Grandchild, First Cousin, and
Avuncular Pairs

The LIC value for grandparent–grandchild, first
cousin, and avuncular pairs can be calculated by

LICR =
∑

Pr(grandparental mating type)

Pr(middle generation genotypes |
grandparental mating type)

Pr(knowing ibd status |
grandparental mating type and

middle generation genotypes)

for type R relative pairs. The mating type probabil-
ities are determined assuming random mating. The
calculation of the probability of the middle generation
genotype(s) given the grandparental mating type is
straightforward. The conditional probability of know-
ing ibd status for a particular type of relative pair can
be obtained for a given mating type and middle gen-
eration genotypes (see Table 1 of [6] for details). For
example, if the mating type is AiAi × Aj Aj , then all
the children will have genotype AiAj with probabil-
ity 1. In the case of grandparent–grandchild pairs, we
know whether the grandchild has inherited an allele
from a grandparent if and only if we know which
allele the parent (AiAj ) transmitted to the grand-
child, which has a probability of 1 − pipj . That is,
the conditional probability of knowing the ibd status
for the grandparent–grandchild pair is 1 − pipj . In
the case of avuncular pairs, the conditional probabil-
ity of knowing ibd status is 0 because we have no

Table 1 The maximum LIC value for full sib, half-sib, grandparent–grandchild, first
cousin, and avuncular pairs, for a marker with n alleles

Type of relative pair Maximum LIC value

Full sib
(n − 1)(2n2 − 1)

2n3

Half-sib
(n + 1)2(n − 1)3

n5

Grandparent–grandchild LICG = (n + 1)2(n − 1)3

n5

First cousin LICC = (n − 1)(4n6 − n5 − 7n4 + 2n3 + 5n2 − 2n − 2)

4n7

Avuncular LICA = (n − 1)(2n4 − n3 − 3n2 + 1)

2n5
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way to identify whether the Ai and/or Aj alleles are
identical by descent for the two siblings in the middle
generation. The LIC value for each of the three types
of relative pairs can thus be obtained by summing up
the products of the probabilities of mating type, the
middle generation genotype(s), and the conditional
probabilities of knowing ibd status. Specifically, the
LIC value for grandparent–grandchild pair is

LICG =
∑

i

∑

j �=i

p2
i p

2
j (1 − pipj ) +

∑

i

∑

j �=i

4p3
i pj

×
(

1

2

)
(1 − pipj ) +

∑

i

∑

j �=i

∑

k �=i,j

2p2
i pjpk

(
1

2

)

× [(1 − pipj ) + (1 − pipk)]

+
∑

i

∑

j �=i

∑

k �=i,j

4p2
i pjpk

(
1

4

)
[(1 − pipj )

+ (1 − pipk) + (1 − pjpk)].

The LIC value for first cousin pairs is given by

LICC =
∑

i

∑

j �=i

p2
i p

2
j

(
1

2

)
(1 − pipj )

2 +
∑

i

∑

j �=i

4p3
i

× pj

(
1

4

)[
1

2
(1 − pipj ) + 1

2
(1 − pipj )

+ 3

4
(1 − pipj )

2

]
+

∑

i

∑

j �=i

∑

k �=i,j

2p2
i pjpk

(
1

4

)

×
[

3

4
(1 − pipj )

2 + 3

4
(1 − pipj )(1 − pipk)

+ 3

4
(1 − pipj )(1 − pipk) + 3

4
(1 − pipk)

2

]

+
n−1∑

i=1

n∑

j=i+1

4p2
i p

2
j

(
1

16

)
[(1 − pipj ) + 1

+ (1 − pipj ) + 2(1 − pipj )
2 + (1 − pipj )

+ 1 + (1 − pipj )] +
∑

i

∑

j �=i

∑
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4p2
i pjpk

×
(

1

16

) [
1

2
(1 − pipj ) + 1

2
(1 − pipk) + 1

+ 1

2
(1 − pipj ) + (1 − pipj )

2 + 1 + (1 − pipj )

× (1 − pjpk) + 1

2
(1 − pipk) + 1 + (1 − pipk)

2

+ (1 − pipk)(1 − pjpk) + 1 + (1 − pipj )

× (1 − pjpk) + (1 − pipk)(1 − pjpk)

+ (1 − pjpk)
2

]
+

∑

i

∑

j �=i

∑

k �=i,j

∑

l �=i,j,k

pipjpkpl

×
(

1

16

) [
(1 − pipk)

2 + (1 − pipk)(1 − pipl)

+ (1 − pipk)(1 − pjpk) + 1 + (1 − pipl)

× (1 − pipk) + (1 − pipl)
2 + 1 + (1 − pipl)

× (1 − pjpl) + (1 − pjpk)(1 − pipk) + 1

+ (1 − pjpk)
2 + (1 − pjpk)(1 − pjpl) + 1

+ (1 − pjpl)(1 − pipl) + (1 − pjpl)

× (1 − pjpk) + (1 − pjpl)
2] .

The LIC value for avuncular pairs is

LICA =
∑

i

∑

j �=i

4p3
i pj

(
1

4

) [
1

2
(1 − pipj )

+ 1

2
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]
+
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×
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(
1

16
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× [1 + 2(1 − pipj ) + 1 + 1 + 2(1 − pipj ) + 1]
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∑
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16
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+
∑

i

∑

j �=i

∑

k �=i,j

∑

l �=i,j,k

pipjpkpl

(
1

16

)

× [1 + (1 − pipl) + (1 −pjpk) + 1 + (1 −pipk)

+ 1 + 1 + (1 − pjpl) + (1 − pipk) + 1 + 1

+ (1 −pjpl) + 1 + (1 −pipl) + (1 −pjpk) + 1].

The maximum value of LIC is attained when a marker
has n equally frequent alleles and is summarized in
Table 1 for the five types of relative pairs.
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Conclusion

The success of linkage analysis in studying complex
diseases is significantly dependent on the informa-
tiveness of the markers used. We often assume that
markers are fully informative, which is usually not
true in practice. LIC values measure how informative
a marker is for ibd sharing for each type of relative
pair, and so provide an appropriate measure for a
model-free linkage analysis, especially in the design
of linkage studies that use relative pairs [4, 5]. Niu
et al. [7] developed a software package called POLY-
MORPHISM that calculates LIC values for each of
these five types of relative pairs. The LIC values
calculated by POLYMORPHISM may be used to
determine the average informativeness of markers for
IBD sharing status and can be entered into DESPAIR,
a program in the software package S.A.G.E. [8], to
obtain the optimal two-stage global search design for
linkage studies.
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Linkage Analysis,
Model-free

Model-free linkage methods, in contrast to model-
based linkage methods, do not depend on prior
specification of a model of inheritance for the disease
or trait of interest. In other words, the frequencies
and penetrances of disease genotypes need not be
known in advance, and functions of these quantities
may in fact be estimated in conjunction with linkage
parameters. It is important to recognize, however, that
many of the methods do rely on assumptions about
the underlying genetic model and some methods are
in fact parametric and semiparametric in nature. In
this Section, two general types of model-free linkage
methods will be distinguished – those designed for
qualitative traits and those designed for quantitative
traits – although both theory and applications of these
two groups of methods overlap. Model-free linkage
methods typically evaluate marker locus identity-by-
descent (IBD) relationships among family members,
often pairs of siblings, and thus are often referred to
as relative-pair, or sib-pair, methods.

Identity by Descent

A pair of related individuals shares an allele IBD
if that allele has a common ancestral source, i.e.
the same chromosome of the same ancestor. In the
context of linkage analysis, the common ancestor
is taken to be a recent ancestor – one within the
sampled pedigree. For example, if the pair are sib-
lings, the common ancestors are their parents, and
the sibs may have inherited the same paternal allele
and/or maternal allele. Let fi, i = 0, 1, 2, be the prior
(unconditional) probability that a relative pair shares
i alleles IBD at a single marker locus, and f̂i the
estimate of fi conditional on available marker data
(see Genetic Markers). Now, let π be the propor-
tion of alleles a relative pair shares IBD at a single
locus, and π̂ = 1

2 f̂1 + f̂2 the estimate of π condi-
tional on available marker data. Table 1 gives the
prior (unconditional) distribution of π for different
types of relative pairs.

Computation of the f̂i for a single marker locus,
using available pedigree marker data, was first pro-
posed by Haseman & Elston [24] for nuclear families,
and later by Amos et al. [3] for extended pedigrees.

Table 1 Prior distribution of π for relative pairs

π
Type of

relative pair 0 1
2 1 E(π)

Sibling 1
4

1
2

1
4

1
2

Second degree 1
2

1
2 0 1

4

Third degree 3
4

1
4 0 1

8

Let Im represent the available family marker data.
Then

f̂i = Pr(π = i/2, Im)

Pr(Im)

is a general form for estimating f̂i . The denomi-
nator is the probability, or likelihood, of the pedi-
gree marker data, and may be computed using an
Elston–Stewart (“peeling”) algorithm; the numer-
ator can be written as a sum of the terms of the
denominator consistent with sharing i alleles IBD,
each term representing a phase-known pedigree geno-
type. More detailed algorithms for computing f̂i for
different types of relative pairs were given by Amos
et al. [3]. Whittemore & Halpern [52] also presented
a peeling algorithm for computing the probabilities of
IBD relationships among the genes of pedigree mem-
bers, and then showed how to use these probabilities
to calculate the probability of any combination of
genotypes or phenotypes for the pedigree members.

Estimation of multipoint IBD probabilities has
also been explored. Let d represent the genetic dis-
tance from an arbitrary origin on a marker map
with known intermarker distances. To compute the
f̂di , the estimated allele-sharing distribution at loca-
tion d, Kruglyak & Lander [29] employed a hidden
Markov chain model that assumes that the π at con-
secutive loci behave in a first-order Markov manner;
i.e. Pr(πk|π1, π2, . . . , πk−1) = Pr(πk|πk−1), for loci
ordered 1 through k on a chromosome. Inheritance
at each location d is represented by an inheritance
vector V (d), in which each component corresponds
to a particular meiosis in the pedigree and the com-
ponent takes a value of 0 or 1 according to whether
the paternal or maternal allele is transmitted. Com-
putation of the probability distribution for V (d) con-
ditional on the marker data can be accomplished
by considering pairs of loci successively. Additional
computational speed is achieved by taking advantage
of the fact that phase differences in the founders
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are equivalent and have equal probabilities [31].
An even faster algorithm uses a divide-and-conquer
method and allows for meiosis-specific recombina-
tion fractions at virtually no additional cost [27].
These algorithms are all modifications of the Lan-
der–Green algorithm [30, 32]. Sobel & Lange [46]
developed a Markov chain Monte Carlo algorithm
to approximate multipoint IBD-sharing estimates in
larger pedigrees.

Given multipoint IBD-sharing estimates at marker
locus locations, regression models can also be
used to obtain IBD-sharing estimates at points
between two markers. Let fij be the prior (uncon-
ditional) joint probability that a sib-pair shares i

alleles IBD at one marker locus and j alleles
IBD at a second, usually linked, marker locus,
and let f̂ij be estimates, conditional on the avail-
able marker data, that account for the recombina-
tion fraction, assumed to be known, between the
two markers. Let f̂i. = ∑

j f̂ij , f̂.j = ∑
i f̂ij , π̂1 =

f̂1./2 + f̂2., π̂2 = f̂.1/2 + f̂.2, and π̂1π2 = f̂11/4 +
(f̂12 + f̂21)/2 + f̂22. Given these multipoint esti-
mates of IBD-sharing at two adjacent loci and assum-
ing no crossover interference (see Genetic Map
Functions), IBD-sharing at a point d between the two
loci can be obtained using the regression equations

π̂d = ρ0 + ρ1π̂1 + ρ2π̂2

and

f̂1d = ω0 + ω1(π̂1 + π̂2 − 2π̂1π2)

+ ω2f̂1. + ω3f̂.1 + ω4f̂11,

where expressions for the regression parameters in
terms of the recombination fractions between the two
loci (θm), between the first marker and d(θ1), and
between the second marker and d(θ2) are given in
Table 2 [34].

Linkage Between Marker and Qualitative
Trait

Model-free linkage methods designed for qualitative
traits often consider samples of affected sib-pairs or
sibships with at least two affected members. If a trait
and marker are linked, affected sib-pairs should share
more alleles IBD than expected by chance. Under the
null hypothesis of no linkage, sib-pairs are expected

Table 2 Regression parameters in the expressions for π̂d

and f̂ a
1d

ρ0 (1 − ψ1)(1 − ψ2)/ψm

ρ1 −ψ2(1 − ψ2)(1 − 2ψ1)/[ψm(1 − ψm)]

ρ2 −ψ1(1 − ψ1)(1 − 2ψ2)/[ψm(1 − ψm)]

ω0 2ψ1(1 − ψ1)ψ2(1 − ψ2)/ψ
2
m

ω1 2(1 − 2ψ1)(1 − 2ψ2)ψ1(1 − ψ1)ψ2(1 − ψ2)/

[ψ2
m(1 − ψ2

m)]

ω2 (1 − 2ψ1)
2ψ2

2 (1 − ψ2)
2/[ψ2

m(1 − ψ2
m)]

ω3 (1 − 2ψ2)
2ψ2

1 (1 − ψ1)
2/[ψ2

m(1 − ψ2
m)]

ω4 (1 − 2ψ1)
2(1 − 2ψ2)

2ψ1(1 − ψ1)ψ2(1 − ψ2)/

[ψ2
m(1 − ψ2

m)(1 − 2ψm)2(1 − 2ψm + 2ψ2
m)]

aFrom Olson [34], reproduced by permission of the publisher;
ψj = θ2

j + (1 − θj )
2, j = 1, 2, . . . , m.

to share exactly 0, 1, or 2 alleles IBD at a single
marker locus with respective probabilities 1

4 , 1
2 , and

1
4 . Early test statistics generally assumed that the
marker IBD state can be determined with certainty,
so that a sample of n pairs can be partitioned into
n0, n1, and n2 pairs corresponding to sharing 0, 1, or
2 alleles IBD. Day & Simons [14] and Suarez et al.
[48], assuming such a fully informative marker locus,
proposed a one-sided (see Alternative Hypothesis)
nonparametric test statistic (T2) that compares the
observed proportion of sib-pairs that share exactly
two marker alleles IBD to its null value of 1

4 :

T2 = n2/n − 1/4

[3/(16n)]1/2
.

Green & Woodrow [22] proposed a one-sided non-
parametric test statistic (Tm) that compares the
observed mean proportion of marker alleles shared
IBD to its null value of 1

2 :

Tm = n2 + n1/2 − 1/2

[1/(8n)]1/2
.

Extensions for use with larger sibships were proposed
by Green & Woodrow [22] and deVries et al. [15].
These more general test statistics can substitute π̂ =∑n

j=1 π̂j /n for n2 + n1/2 and an empirical variance
estimate for the denominator when IBD sharing
cannot be determined with certainty.

A goodness-of-fit statistic that compares the
observed IBD distribution to that expected by chance
was proposed by Weitkamp et al. [50]. Blackwelder
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& Elston [5] compared the power of this test statis-
tic, T2, and Tm and found that Tm has greater power
for most one-locus genetic models; T2 has more
power for some recessive models. Schaid & Nick [44]
studied the asymptotically most powerful linear com-
bination of the f̂i and determined that Tm has power
close to optimal for a broad range of single-locus
models. Knapp et al. [28] determined that, provided
δ2

1 = δ0δ2, where δs = Pr (affected|trait genotype with
s susceptibility alleles), Tm is uniformly most power-
ful in θ , the recombination fraction between trait and
marker loci.

Suarez et al. [48] characterized the distribution of
sib-pair IBD sharing in terms of the population trait
prevalence K , additive genetic variance σ 2

a , domi-
nance genetic variance σ 2

d , and θ , the recombina-
tion fraction between trait and marker loci. Suarez
et al. [44] determined the boundaries of this param-
eter space under a one-locus model. Risch [38–41]
developed a parametric strategy for detecting link-
age to complex diseases using affected sib-pairs and
extended the methodology to multilocus trait models
and to other types of relative pairs. Let zri be parame-
ters defined as the probability that an affected relative
pair of type r shares i marker alleles IBD. Then the
lod score [the log base 10 of the ratio of the likeli-
hoods under the alternative and the null hypothesis of
no linkage (see Likelihood Ratio)] for the pedigree
marker data Im given ascertainment of an affected
relative pair of type r (arpr ) can be written

Z(Im|arpr ) = log10

∑

i=0,1,2

f̂izri

fri

. (1)

Under the null hypothesis θ = 1
2 , zri = fri , for i =

0, 1, 2, and Z(Im|arpr ) = 0. The lod score (1) is
maximized over the zri at regular (e.g. 1 cM) intervals
in a chromosomal region containing the typed
markers. Alternatively, Hauser et al. [25] maximized
the lod score over both the zri and the recombination
fraction between one of two flanking markers and a
disease locus assumed to lie between them.

Now define Kr to be the probability that a relative
of type r of an affected individual is also affected, and
let λr = Kr/K be the relative risk of disease to a rel-
ative of type r . Let the subscripts s, o, and m denote
sibling, parent/offspring, and monozygotic twins (see
Heterozygosity), respectively. Under the assumption
that a single locus confers susceptibility to disease,
the zri are related to the relative risks and the
recombination fraction as shown in Table 3 [39]. For
affected sib-pairs, when θ = 0, zs0 = 1/(4λs), zs1 =
λ0/(2λs), and zs2 = λm/(4λs). Constraints on the
zsi consistent with a one-locus genetic model are:
zs0 ≥ 0, zs2 + zs0 ≥ zs1, and zs1 ≥ 2zs0. Holmans [26]
determined the asymptotic distribution of the maxi-
mum lod score under these constraints to be a mix-
ture of χ2

1 and χ2
2 random variables; a lod score of

2.3 corresponds to a significance level of 10−3. For
various types of relative pairs, Lander & Kruglyak
[33] proposed that pointwise significance levels (see
Hypothesis Testing) and lod scores corresponding
to a genome-wide significance of 0.05 be considered
“significant” evidence in favor of linkage, assum-
ing a single disease locus and an infinitely dense
marker map. Davis et al. [13] developed simulation-
based nonparametric statistics that condition on the
marker genotypes of the unaffected family members.

Table 3 Parameters of zri for relative pairsa

Type of
relative pair zr0 zr1 zr2

Full sibling 1
4 − 1

4λs
(2ψ − 1)[(λs − 1) 1

2 − 1
2λs

(2ψ − 1)2(λs − λo)
1
4 + 1

4λs
(2ψ − 1)[(λs − 1)

+2(1 − ψ)(λs − λo)] +2ψ(λs − λo)]

Grandparental 1
2 − 1

2λg
(1 − 2θ)(λg − 1) 1

2 + 1
2λg

(1 − 2θ)(λg − 1) –

Avuncular 1
2 − 1

2λa
(1 − θ)(1 − 2θ)2(λa − 1) 1

2 + 1
2λa

(1 − θ)(1 − 2θ)2(λa − 1) –

Half-sibling 1
2 − 1

2λh
(2ψ − 1)(λh − 1) 1

2 + 1
2λh

(2ψ − 1)(λh − 1) –

First cousin 3
4 − 1

2λc
[(1 − θ)4 + θ2(1 − θ)2 1

4 + 1
2λc

[(1 − θ)4 + θ2(1 − θ)2 –

+ θ2

2 − 1
4 ](λc − 1) + θ2

2 − 1
4 ](λc − 1)

aFrom Risch [39], reproduced by permission of the publisher; ψ = θ2 + (1 − θ)2; s = full sibling, g = grandparental, a =
avuncular, h = half-sibling, c = first cousin, o = parent/offspring.
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For samples of affected sib-pairs, a test statistic with
more power than the lod score for some recessive
models is

Tz2 = (
ẑs2 − 1

4

)

var(ẑs2)
,

where var(ẑ2) is obtained from the observed infor-
mation matrix [35].

Affected sib-pair methods are particularly useful
in detecting linkage to complex diseases, which are
expected to be oligogenic. The single-locus lod score
provides a valid test of linkage even if other loci
contribute to a disease. Multilocus models are also
of interest. A general two-locus lod score with eight
free parameters may be written as

Z(Im|arps) = log10

∑

i=0,1,2

∑

j=0,1,2

zij f̂i1f̂j2

fi1fj2
,

where the subscripts 1 and 2 refer to the two loci, and
zij are parameters representing the probability that
an affected sib-pair shares i alleles IBD and the first
locus and j at the second locus. The two disease loci
are assumed to be unlinked. If the two loci interact in
a multiplicative fashion, then zij = zizj by definition,
and four free parameters are required. Let λki be the
relative risk to a relative that shares i alleles IBD with
an affected individual at disease locus k, and let Kk

and λks be the contributions to the overall prevalence
and sibling relative risk due to locus k. If the two loci
interact in an additive fashion, then

zij

f1if2j

− 1 = 1

λs

(
K1

K

)2

(λ1i − λ1s)

+ 1

λs

(
K2

K

)2

(λ2j − λ2s),

an additive property [39]; this formulation also
requires four free parameters.

The lod score (1) may also be written as

Z(Im|arps) = log10

[
1 + β

(
π̂ − 1

2

) + γ
(
f̂1 − 1

2

)]
,

where β = (σ 2
a + σ 2

d )/(KKs) = 4(z2 − z0) and γ =
−σ 2

d /(2KKs) = 2(z1 − z0 − z2). The general two-
locus model may similarly be parameterized in terms
of variance components σ 2

aj
, σ 2

dj
, σ 2

a1a2
, σ 2

d1d2
, and

σ 2
aj d3−j

– the contribution to the total genetic variance
due to the interaction between the additive (a) or

dominance (d) component of the j th locus, j =
1, 2 [11, 16, 23, 35]. One such model [35] is

Z(Im|arps) = log10

{
1 + (KKs)

−1
[
B1

(
π̂1 − 1

2

)

+ C1

(
f̂11 − 1

2

)
+ B2

(
π̂2 − 1

2

)

+ C2

(
f̂12 − 1

2

)
+ D

(
π̂1π̂2 − 1

4

)

+ F1

(
π̂1f̂12 − 1

4

)
+ F2

(
π̂2f̂11 − 1

4

)

+G
(
f̂11f̂12 − 1

4

)]}
,

where

Bj = σ 2
aj

+ σ 2
dj

, j = 1, 2,

Cj = −σ 2
dj

2
, j = 1, 2,

D = σ 2
a1a2

+ σ 2
a1d2

+ σ 2
a2d1

+ σ 2
d1d2

,

Fj = −σ 2
aj d3−j

+ σ 2
d1d2

2
, j = 1, 2,

and
G = σ 2

d1d2

4
.

When K and Ks are known, the variance components
may be estimated directly; otherwise, the model can
be fitted by reparameterizing so that B∗

1 = B1/(KKs),
and similarly for the remaining parameters. Additive
and multiplicative models can also be fitted using
variance components parameterizations [35].

For linkage analysis using small pedigrees,
Kruglyak et al. [31] proposed calculating a scoring
function S(v, Ψ ) (see Scores) that depends on
an inheritance vector v and the observed disease
phenotypes Ψ in the pedigree. When the inheritance
vector is unknown, one computes its conditional
expectation

S(Ψ ) =
∑

v

S(v, Ψ )P (v),

where P(v) is estimated using available marker data.
The authors further discuss a model-free scoring
function that considers IBD-sharing among sets of
affected family members; this scoring function was
first proposed by Whittemore & Halpern [51]. Let
a denote the number of affected individuals in a
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pedigree, let h be a collection of alleles obtained by
choosing one allele from each of these individuals,
and let bi(h) denote the number of times that the ith
founder allele appears in h. The scoring function is
defined as

Sall(v) = 2−a
∑

h

[
∏

i

bi(h)!

]
,

where the sum is over the 2a possible ways to
choose h. Kruglyak et al. then standardize the score
to obtain Z(v) = [S(v) − µ]/σ , where µ and σ are
the mean and standard deviation of S under the
uniform distribution of inheritance vectors. A global
score is obtaining by taking a weighted average of
standardized scores; weights depend on pedigree size.

The affected-pedigree-member (APM) method of
Weeks & Lange [49] can also be used to analyze
extended pedigrees, and uses identity-by-state sharing
to incorporate information from multiple markers;
this method is less powerful than methods based
on IBD sharing [21]. Curtis & Sham [12] proposed
comparing observed and expected numbers of alleles
shared IBD between all affected relative pairs in a
pedigree. Guo [23] proposed plotting π̂ over each
chromosomal interval and examining further regions
for which π̂ is substantially larger than 1

2 .
Elston [17] and Elston et al. [18] developed and

studied two-stage global search designs for linkage
analysis to complex diseases using pairs of affected
relatives. In the first of the two stages, a genome
scan is performed on n affected pairs using m equally
spaced marker loci. For each marker with a pointwise
P value less than α∗, k additional markers in the
region are typed and a more stringent significance
level α applied. Given the relative risk λr for a
particular trait locus, the desired power of the study,
and the ratio of the cost of recruiting one person into
the study to the cost of performing one marker assay,
n, m, k, and α may be chosen to minimize the total
cost of the study. Typically, an optimal two-stage
procedure halves the cost of a study, compared to
a procedure involving only the first stage and the
criterion α.

Linkage analysis may also be done using discor-
dant pairs, i.e. pairs in which one member is affected
and the other unaffected. Such pairs provide good
power for linkage if the disease is rare and dominant,
or if the disease is common. The lod score takes the
same form as (1), except that the zri are now the prob-
abilities that a discordant pair of type r share i alleles

IBD. For discordant sib-pairs, genetic constraints are
obtained by reversing the roles of zs0 and zs2 in the
inequalities given above for affected sib-pairs.

Linkage Between Marker and
Quantitative Trait

The problem of detecting linkage between a marker
locus and a locus underlying a quantitative trait using
sib-pair data was first considered by Penrose [37],
who proposed comparing the covariance of the sib-
pair trait and marker differences with that expected
when the trait and marker are not linked. Haseman &
Elston [24] and Blackwelder [4] expanded this idea
and included available marker information from the
parents.

Assume that a single locus with alleles T and t
underlies a quantitative trait. For an observation X

from the trait distribution, the genetic model may be
written

X = µ + g + e,

where µ is an overall mean, g is a major gene effect
such that g = a, d, or −a for trait genotypes TT,
Tt, or tt, respectively, and e is a residual effect with
an unspecified distribution. Putting p = Pr (T) and
q = 1 − p,

σ 2
a = 2pq[a − d(p − q)]2,

σ 2
d = 4p2q2d2,

and σ 2
g = σ 2

a + σ 2
d . Also, let σ 2

ε = E(e1 − e2)
2, for a

pair of sibs indexed 1 and 2, and let ψ = θ2 + (1 −
θ)2, where θ is the recombination fraction between
trait and marker loci.

The squared difference Y = (X1 − X2)
2 between

the measurements of a quantitative trait for a ran-
domly sampled pair of siblings is a linear function
of the Bayesian estimate of the proportion of marker
alleles shared IBD between the members of the pair
(π̂) and the estimated probability that the pair share
exactly one marker allele IBD (f̂1), i.e.

E(Y |Im) = αs + βsπ̂ + γsf̂1,

where

αs = σ 2
ε + 2σ 2

g ψ + 2σ 2
d ψ(1 − ψ),

βs = 2σ 2
g (1 − 2ψ),
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and

γs = σ 2
d (1 − 2ψ)2.

If θ = 1
2 or σ 2

g = 0, then β = 0; otherwise, β < 0.
After fitting the regression model using least squares,
an asymptotically normal one-sided test of linkage
may be constructed.

Similar regression relationships have been devel-
oped for other types of relative pairs, specifically
half-sib, grandparental, avuncular, and cousin pairs
[2]; all take the form

E(Y |Im) = αr + βr π̂,

where αr and βr are functions of σ 2
a , σ 2

d , σ 2
ε , and

θ that are specific to relative pair type r (Table 4).
Olson & Wijsman [36] used generalized estimating
equations to combine information from different
types of relative pairs in a set of pedigree data.
Assume that p types of relative pairs are of interest
and that the data set consists of N pedigrees, each
with ni relative pairs. Under a working independence
model, αr and βr are estimated separately for each
type of relative pair; the robust covariance matrix
of these estimates is given by

var(α, β) =
(

N∑

i=1

D′
iDi

)−1 (
N∑

i=1

D′
i Ŝi Ŝ′

iDi

)

×
(

N∑

i=1

D′
iDi

)−1

,

where Di is an ni × 2p matrix containing the π̂r

and f̂1 (analogous to the design matrix in a linear
regression model), and Si is a vector of length ni with
elements y − αr − βr π̂r . A one-sided, asymptotically

normal, test of linkage takes the form

T = N1/2cTβ̂

[cTvar(β̂)c]1/2
,

where c is a p-dimensional vector of weights, chosen
a priori, with elements var(πr)nr , nr is the total
number of pairs of type r , and β̂ is a vector of the
regression estimates β̂r . In a multipoint setting, or
when a candidate locus is being tested, the model
with common slope

E(Y |Im) = αr + βπ̂

may be fitted; Di becomes an ni × p + 1 matrix
and no a priori weights are required to test linkage.
Because βs = βh for all values of the recombination
fraction, sib-pairs and half-sib-pairs may be combined
in a similar manner for a genome scan using single
markers. Schaid et al. [45] combine these two types
of pairs into a single test of linkage, using an empir-
ically derived adjustment to the degrees of freedom
of the t-statistic (see Student’s t Distribution) to
allow for correlated pairs.

Regression models have been developed for sam-
pling schemes other than random sampling. Assume
that probands are sampled from the upper tail of the
trait distribution. Let X1 > c be the proband trait
value, and X2 the trait value for the proband’s sib-
ling. Consistent estimates of regression coefficients
may be obtained by fitting

X2 = A + B1X1 + B2
(
π̂ − 1

2

)

+ B3
(∣∣π̂ − 1

2

∣∣ − 1
4

)
,

[7]. B2 = 0 if θ = 1
2 ; otherwise, B2 > 0. (B2 < 0

if probands are sampled from the lower tail of the

Table 4 Coefficients of the regression of squared pair differences on the proportion of alleles
shared IBD for relative pairsa

Type of
relative pair αr βr

Half-sibling σ 2
ε + 2σ 2

g − 2θ(1 − θ)σ 2
a −2(1 − 2θ)2σ 2

a

Grandparental σ 2
ε + 2σ 2

g − θσ 2
a −2(1 − 2θ)σ 2

a

Avuncular σ 2
ε + 2σ 2

g − ( 5
2 θ − 4θ2 + 2θ3)σ 2

a −2(1 − 2θ)2(1 − θ)σ 2
a

First cousin σ 2
ε + 2σ 2

g − ( 4
3 θ − 5

2 θ2 + 2θ3 − 2
3 θ4)σ 2

a −2(1 − 2θ)2(1 − 4
3 θ + 2θ2)σ 2

a

aFrom Amos & Elston [2], reproduced by permission of the publisher.
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trait distribution.) Conditioning on the ascertainment
process, rather than the proband’s trait value, gives

E(X2|Im, X1 > c) = A∗ + B∗
2

(
π̂ − 1

2

)

+ B∗
3

(∣∣π̂ − 1
2

∣∣ − 1
4

)
.

Use of this sampling scheme greatly increases the
power to detect linkage [6, 7], particularly for a rare
allele with a large effect.

This “selected sampling” scheme provides excel-
lent power provided that one samples probands from
the tail of the distribution with the rarer allele. A
second design, which is uniformly powerful in all
genetic situations, is sampling of extreme discordant
sib-pairs – pairs such that one sib has a trait value
from the upper tail and the other from the lower tail.
For example, given a large sample of probands with
an extreme value in one direction (usually that indi-
cating disease), one might genotype only those pairs
for which the sibling has a trait value in the oppo-
site tail. Such extreme discordant pairs provide good
power for detecting linkage for additive, dominant,
and recessive models [42, 43]. As there may be little
trait variation within each tail, it is useful to ignore
this variation and model

zi ≡ Pr(π = i/2|edsp), i = 0, 1, 2,

where edsp denotes “extreme discordant sib-pair”.
The lod score is the same as in the case of sampling
sib-pairs discordant for a dichotomous trait, which
may be considered a special case of edsp for which
the two tails share the same cutpoint, with different
constraints on the zi .

Other approaches to quantitative trait linkage have
been proposed. To assess evidence for genetic linkage
from pedigrees, Amos [3] modeled the covariance
matrix of pedigree trait values in terms of variance
components, IBD sharing and the recombination
fraction. Let a general model for trait values X be

Xi = µ + gi + Gi + βTwi + ei,

where µ, gi , and ei are the overall mean, major
genotype effect, and environmental error, as before,
Gi is a random effect of polygenes (see Polygenic
Inheritance), wi a vector of fixed covariates, and
β a set of regression parameters. Without loss of
generality, take E(gi) = E(ei) = E(Gi) = 0. Then

E(Xi) = µ + βTwi ,

var(Xi) = σ 2
a + σ 2

d + σ 2
G + σ 2

e ,

and

cov(Xi, Xj |πij ) = f (θ, πij )σ
2
a + g(θ, f2ij )σ

2
d

+ φij σ
2
G for i �= j,

where φij is the coefficient of relationship between
family members i and j (see Inbreeding), f (θ, πij )

is given for various relative pairs in Table 5, and
g(θ, f2ij ) equals 0 for all but sib-pairs, in which case

cov(Xi, Xj |πij ) = 2θ(1 − θ)σ 2
g

+ 2(θ − 1)θ(1 − 2θ + 2θ2)σ 2
d

+ [(1 − 2θ)2σ 2
g − (1 − 2θ)4σ 2

d ]πij

+ (1 − 2θ)4σ 2
d f2ij .

Parameters may be estimated using maximum like-
lihood methods, if multivariate normality of errors
is assumed, or by estimating-equation approaches.

Another approach, the weighted pairwise correla-
tion (WPC) statistic, was proposed by Commenges
[8]. This score test may be applied to sets of large
pedigrees with several types of relative pairs. Con-
sider a set of F pedigrees, each with nf members.
For an individual pedigree, a general form for the
score statistic is

SL =
∑

i<j

WijUiUj ,

where Wij = π̂ij − π̂ rij are centered IBD-sharing
estimates for the pair of relatives i and j , and
Ui is the residual xi − E(Xi |covariates), based on
some parametric model for the mean of X. If more
robustness is desired, the Ui may be replaced by
their centered ranks, to give

SR =
∑

i<j

Wij (Ri − R)(Rj − R),

Table 5 Expressions for f (θ, πij )
a

Relative pair f (θ, πij )

Sibling 1
2 + (1 − 2θ)2(πij − 1

2 )

Half-sibling 1
4 + (1 − 2θ)2(πij − 1

4 )

Avuncular 1
4 + (1 − 2θ)2(1 − θ)(πij − 1

4 )

Grandparental 1
4 + (1 − 2θ)(πij − 1

4 )

First cousin 1
8 + (1 − 2θ)2(1 − 4

3 θ + 2
3 θ2)(πij − 1

8 )

aFrom Amos [1], reproduced by permission of the publisher.
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where Ri is the rank of the ith residual, and R is the
mean of the ranks. For a set of F pedigrees, linkage
may be tested using

S =

F∑

f =1

[SRf − E(SRf)]




F∑

f =1

varSRf




1/2 ,

where

E(SRf) = −nf + 1

12

∑

i<j

Wijf ,

var(SRf) = A
∑

i<j

W 2
ijf + B

∑

i<j

∑

r<s;r,s �=i,j

× Wijf Wrsf − 2C
∑

i,j �=i

∑

r �=i,j

Wirf Wjrf ,

A=(nf +1)(nf −2)(5n2
f +nf − 8)/720, B = (nf +

1)(10nf +16)/720, and C = (nf +1)(5n2
f −3nf −

16)/720. This test is called the weighted pairwise
rank correlation (WPRC) test. Simulations show that
the WPRC can be more powerful than the Hase-
man–Elston test for single large pedigrees, or in the
presence of genotype-by-environment interaction (see
Gene-environment Interaction) or family-specific
residual variance [10]. For larger samples of small
pedigrees, the Haseman–Elston test is generally the
more powerful, particularly for highly heritable dom-
inant traits. The WPC or WPRC can be applied to
dichotomous traits as well as to quantitative traits
and can substitute identity-by-state sharing for IBD
sharing estimates. Commenges & Abel [9] proposed
a transformation that yields uncorrelated residuals
and a more robust test statistic.

Goldgar [19] proposed a multipoint IBD method
that assumes that the quantitative trait is due to
additive genetic effects and a normally distributed
random environmental component. The method is
parameterized using the proportion of the total trait
variance due to additive genetic effects (h2) and
the proportion (P ) of the genetic variance due to
loci in the chromosomal interval defined by the
marker loci. For each sib-pair, the proportion of
the chromosomal region shared IBD, conditional on
the marker data, is estimated. A covariance matrix
of the sibship trait values is then constructed as a

function of the IBD-sharing estimates, h2, and P .
The likelihood for the trait values, conditional on
IBD-sharing, is assumed to be multivariate normal;
numerical maximum-likelihood techniques are used
to estimate P and to test the null hypothesis P =
0. Limited simulation suggests that this multipoint
method is more powerful than the single-marker
Haseman–Elston method. The method also has power
comparable to model-based linkage analysis when
parental data are unknown, the effect of the major
locus is small and there is additional genetic variation,
or the parameters of the model-based analysis are
misspecified [20].

Software

Estimates of multipoint IBD-sharing may be obtained
using MAPMAKER/SIBS (nuclear families) and
GENEHUNTER (small pedigrees). These programs
also apply a variety of parametric and nonparametric
tests of linkage for both quantitative and qualitative
data. For single markers, the SAGE program SIBPAL
performs nonparametric tests of linkage for affected
sib-pairs, and applies the Haseman–Elston regression
method for sib and half-sib pairs. The SAGE pro-
gram RELPAL estimates single-marker allele-sharing
probabilities for large pedigrees and applies the
Olson–Wijsman test of linkage. The SAGE program
DESPAIR provides optimal two-stage designs for
genome searches using affected relative pairs. Other
software, including APM, ASPEX, ERPA, ESPA,
GAS, MFLINK, MIM, NOPAR, and SIMIBD, that
perform various aspects of model-free linkage anal-
ysis, are available from their respective authors (see
Software for Genetic Epidemiology).
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LISREL

The acronym LISREL was coined by Jöreskog [5–7]:
it is derived from LInear Structural RELations.
Researchers use the term LISREL to refer either
to structural equations models or to Jöreskog &
Sörbom’s [8] popular software program to estimate
such statistical models. The LISREL model consists
of two primary parts: a latent variable model and
a measurement model. The former allows linear
relationships between latent (unobserved) variables.
This is much like a simultaneous equation model
used in econometrics, except that it has latent rather
than observed variables. It formulates the relation
between the latent variables free of the confounding
effects of measurement errors. The measurement
model provides the linkages between the latent and
observed variables. This model enables a researcher
to use multiple indicators of the latent variables
and to assess the “quality” of the measures. Many
popular linear models (e.g. simultaneous equations,
confirmatory factor analysis, multiple regression,
analysis of variance, analysis of covariance, etc.)
are special cases of Jöreskog’s LISREL model.

In the original LISREL model, linear relations
were assumed between continuous latent and contin-
uous observed variables. Extensions of the LISREL
model (see, for example, [8] and [11]) maintain
the assumption of continuous latent variables but
allow noncontinuous observed variables; for exam-
ple, censored, ordinal (see Ordered Categorical
Data), or dichotomous variables (see Binary Data).
The relation between the latent variables and the
noncontinuous observed variables is nonlinear. Other
extensions allow equations that are nonlinear in the
latent variables [3, 9, 10]. The article Structural
Equation Models gives a more complete description
of the LISREL model.

The second use of the term LISREL refers to a
computer software program. One of the primary rea-
sons for the rise in popularity of structural equation
models was the availability of Jöreskog & Sörbom’s
[8] LISREL software package. For many years, LIS-
REL was the only widely available program capable
of estimating and testing these models. It is partly for
this reason that both the structural equation model and
the software were referred to by the same LISREL
term. Since about the mid-1980s, other structural

equation software programs have become more com-
mon (e.g. [1, 2, 4], and [12]). In addition, Jöreskog
& Sörbom have continuously updated the LISREL
program. The greater availability of software has con-
tributed both to the further spread of these models as
well as to the trend to refer to the statistical models
as “structural equation models”. The latter term helps
to distinguish the model from the software needed to
analyze the model.
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Locally Most Powerful
Tests

The classical Neyman–Pearson Lemma gives a
most powerful (MP) test for the problem of testing
a simple null hypothesis θ = θ0 against a simple
alternative hypothesis θ = θ1. The Neyman–Pearson
tests turn out to be uniformly most powerful
(UMP) in some situations, but this is not true
in general. For example, when H0: θ ∈ Θ0 ⊂
Θ and H1: θ ∈ Θ1 ⊂ Θ are one-sided, then the
existence of a UMP test for every level α is
essentially equivalent to the requirement that the joint
density function has a monotone likelihood ratio
property [11].

When a UMP test does not exist, one may restrict
the class of tests to, say, the class of unbiased and/or
invariant tests, and then look for a UMP test in this
smaller class. Alternatively, one may look for tests
that have maximum power against alternatives in a
subset of Θ1. The case when the subset of alternatives
is “close” to the null parameter values has received a
good deal of attention, presumably because tests that
have good power for “local alternatives”, which are
the hardest to detect, may also retain good power for
“nonlocal” alternatives.

Locally Most Powerful Tests

We focus attention to the case when θ is a real
parameter, and use the Neyman & Pearson [8, 9]
framework. Consider the problem of testing H0: θ ≤
θ0 against H1: θ > θ0. Let φ0 be a test function with
power function βφ0(θ) = Eθφ0(X). Then φ0 is a
locally most powerful (LMP) test of size α if there
exists a ∆ > 0 such that for any other test φ with
α = supθ≤θ0

βφ0(θ) ≥ supθ≤θ0
βφ(θ), βφ0(θ0) ≥ βφ(θ)

for every θ ∈ (θ0, θ0 + ∆]. Thus, an LMP test maxi-
mizes

d

dθ
β(θ)

∣∣∣∣
θ=θ0

= β ′(θ)

∣∣∣∣
θ=θ0

subject to the size constraint. Under some smoothness
conditions one can show that any test of the form
φ0(x) = 1 if ∂ log f (x; θ)/∂θ |θ=θ0 > k, = 0 if ∂ logf

(x; θ)/∂θ |θ=θ0 < k will maximize β ′(θ)|θ=θ0 . Here
f (x; θ) is the joint probability density function (pdf)
of a random sample X1, X2, . . . , Xn with common
pdf f (x; θ).

Consider for example, the problem of testing
H0: θ ≤ 0 against H1: θ > 0, where θ is the median
of a Cauchy density function f (x; θ) = π−1[1 +
(x − θ)2]−1, −∞ < x < ∞. Let x1, x2, . . . , xn be n

observations. It is easy to see that MP size α tests
of θ = 0 against θ = θ1, θ1 > 0, depend on θ1 and
hence a UMP test for testing H0 against H1 does
not exist. An LMP test of H0 against H1 is of
form

φ0(x) =






1, if
n∑

i=1

2xi/(1 + x2
i ) > k,

0, elsewhere,

where one chooses k so that the size of φ0 is α (see
Critical Region).

This LMP test, although good at detecting small
departures from H0: θ ≤ 0, is quite unsatisfactory in
detecting values of θ much larger than 0. In fact,
βφ0(θ) → 0 as θ → ∞ if α < 1/2.

Locally Most Powerful Unbiased Tests

The definition of an LMP test can be extended to the
case of two-sided alternatives. In general, there do not
exist LMP tests for two-sided alternatives. The LMP
test φ0 above is trivially unbiased in some interval
[θ0, θ0 + ∆). It follows that β ′

φ0
(θ0) ≥ 0, suggesting

that for testing θ = θ0 against θ �= θ0 we seek a test
φ0 with power function

βφ0(θ0) = α, β ′
φ0

(θ0) = 0 and

β ′′
φ0

(θ0) maximum.

Such a test is called LMP unbiased of size α for
testing H0: θ = θ0 against H1: θ �= θ0.
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An LMP unbiased test is of the form

φ0(x)=






1, if
∂2

∂θ2
f (x; θ)

∣∣∣∣
θ=θ0

> k1f (x; θ0)+k2
∂

∂θ
f (x; θ)

∣∣∣∣
θ=θ0

,

γ (x), if
∂2

∂θ2
f (x; θ)

∣∣∣∣
θ=θ0

= k1f (x; θ0)+k2
∂

∂θ
f (x; θ)

∣∣∣∣
θ=θ0

,

0, if
∂2

∂θ2
f (x; θ)

∣∣∣∣
θ=θ0

< k1f (x; θ0)+k2
∂

∂θ
f (x; θ)

∣∣∣∣
θ=θ0

,

where k1, k2, and γ (·) are chosen to satisfy βφ0(θ0) =
α and β ′

φ0
(θ0) = 0.

For the Cauchy density function in the first section,
the critical region of the LMP test is the set of points
x such that

2
n∑

i=1

x2
i − 1

(1 + x2
i )

2
+

[
n∑

i=1

2xi

1 + x2
i

]2

> k1,

where k1 is chosen to satisfy βφ0(θ0) = α. This test
is not a two-sided version of the LMP test given in
the first section.

Locally Most Powerful Invariant Tests

Similar considerations apply when attention is
restricted to the class of tests that are invariant under
a group of transformations on the sample space.
Then it is sufficient to consider test statistics that
are functions of the maximal invariant and local
optimality criteria may be applied to its density.

Consider, for example, the nonparametric two-
sample problem. Let X1, X2, . . . , Xm and Y1, Y2, . . . ,

Yn be random samples from respective (continuous)
distribution functions F and G. Suppose we wish to
test H0: F(x) ≥ G(x) for all x against H1: F(x) ≤
G(x) for all x [F(x) �= G(x) for some x]. Restrict-
ing attention to the sufficient statistics X(1) < X(2) <

· · · < X(m) and Y(1) < Y(2) < · · · < Y(n), the problem
is invariant under continuous monotone transforma-
tions and a maximal invariant is the set of ranks

(R1, R2, . . . , Rm, S1, S2, . . . , Sn), where Ri = rank
of Xi in the combined sample and Sj = rank of Yj in
the combined sample. Invariance considerations lead
us to focus attention on tests that depend only on
R1, R2, . . . , Rm. Again, a UMP rank test of H0 does
not exist, but one can obtain LMP rank tests.

Suppose, for example, that we fix g, the proba-
bility density function corresponding to G and con-
sider the location problem of testing H0: f (x) = g(x)

against H1: f (x) = g(x − θ) for values of θ > 0.
Then the methods of the first section lead to the LMP
test: reject H0: θ = 0 against H1: θ > 0 for large val-
ues of the linear rank statistic

∑m
i=1 a(Ri), where

a(i) = E

[
−g′(G−1(U(i)))

g(G−1(U(i)))

]
, i = 1, 2, . . . , m,

and U(1) < U(2) < · · · < U(N) are the order statistics
for a random sample of size N = m + n from a
uniform (0, 1) distribution. The special case when g

is normal (0, 1) leads to the well-known Fisher–Yates
test (see Normal Scores), while when g is logistic,
the resulting test is the Wilcoxon–Mann–Whitney
test.

LMP rank tests are especially useful when the data
are censored. Rank tests with type II censored data
have been discussed by Johnson [4] and Mehrotra
et al. [6], and by Prentice [12] and Peto & Peto [10]
for arbitrarily censored data.

Ferguson [1, Sections 5.5 and 5.7] is an easily
accessible source for LMP tests. Both Lehmann [5]
and Schmetterer [14, Section III.6], give a more
measure-theoretic treatment. Hájek & Šidák [2,
Section III.4] give a fairly general treatment of LMP
rank tests for various hypotheses of invariance. At a
somewhat lower level, one can refer to Randles &
Wolfe [13, Section 9.1]. For the multiparameter case,
see Isaacson [3], Schmetterer [14], Neyman [7], and
Neyman & Pearson [9].
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statistiques composées, Bulletin de la Société Mathema-
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EDSEL A. PEÑA & VIJAY K. ROHATGI



Location–Scale Family

A set of random variables X1, . . . , Xn is said to have
a location–scale family distribution with parameter
(µ, σ) if their joint cumulative distribution function
(cdf) can be expressed as

F(x1, . . . , xn|µ, σ) = F

(
x1 − µ

σ
, . . . ,

xn − µ

σ

)
,

µ real, σ > 0,

for some cdf F(·). Equivalently (X1, . . . , Xn) has
a location–scale family with parameter (µ, σ) if
the joint cdf of (T1, . . . , Tn) is F(t1, . . . , tn), where
Ti = (Xi − µ)/σ, F (t1, . . . , tn) is any n-dimensional
cdf, and different F(·)s correspond to different
location–scale families. The parameter µ is the
location parameter and σ is the scale parameter.
The parameter (µ, σ) is defined as the location-scale
parameter of a random variable X if and only if the
distribution of (x − µ)/σ under (µ, σ) is free from
µ and σ .

From any location–scale family of distributions,
two important subfamilies are obtained; namely, a
location family with the parameter µ when σ is fixed
(and without loss of generality σ = 1), and a scale
family with the parameter σ when µ is fixed (and
without loss of generality µ = 0).

Corresponding to any location–scale family
F(x1, . . . , xn|µ, σ), the member of the family with
µ = 0 and σ = 1 has a cdf F(x1, . . . , xn) and
is referred to as the “standard” or “generator” of
the family, generated through a group of location
and scale transformations. If F(x1, . . . , xn) has a
probability density function (pdf) f (x1, . . . , xn) with
respect to a Lebesgue measure, then the continuous
location–scale family has a pdf

1

σn
f

(
x1 − µ

σ
, . . . ,

xn − µ

σ

)
.

Some important examples of location–scale family
distributions are uniform (µ − σ, µ + σ), normal
(µ, σ) (here σ is the standard deviation), and Cauchy
(µ, σ).

Parameter Estimation

Least Squares Estimation

Order statistics play an important role in the
estimation of µ and σ . We assume that X1, . . . , Xn

are independent, identically distributed (iid) with a
location scale pdf (1/σ)h[(x − µ)/σ ], where h(·)
is known. From the property of the location–scale
family, it follows that Xi = µ + σZi , i = 1, . . . , n,
where Z1, . . . , Zn are iid with pdf h(z). If Y1, . . . , Yn

are the order statistics based on X1, . . . , Xn,
and Z(1), . . . , Z(n) are the order statistics based
on Z1, . . . , Zn, then Yi = µ + σZ(i), i = 1, . . . , n.
Since h(·) is a known pdf, E(Z(i)) = αi , and
cov(Z(i), Z(j)) = wij , i, j = 1, . . . , n, are known
[assuming the first two moments of h(·) exist]. Then,
we get

E(Y) = µ1 + σα = Aθ,

where Y = (Y1, . . . , Yn)
T, α = (α1, . . . , αn)

T, and 1
is a vector with unit elements, A = (1, α), θ =
(µ, σ)T and var(Y) = σ 2w, where w is the matrix
of the elements wij . Then weighted least squares
estimates of µ and σ are given by

µ̂ = −αT�Y, σ̂ = 1T�Y,

where � = �(1αT − α1T)�/∆, � = w−1 and ∆ =
|AT�A|. The variance–covariance matrix of these
estimates is given by

σ 2

∆

( alphaT�α −1T�α

−1T�α 1T�1

)
.

For details, see Lloyd [6].

Minimum Risk Equivariant Estimation

Since a location–scale family is a group family (see
[4, pp. 19–21]), invariance consideration plays an
important role in inference. For a location family of
distributions f (x1 − µ, . . . , xn − µ) and a group of
location transformations, a maximal invariant statistic
is given by (x1 − xn, . . . , xn−1 − xn). This is an
ancillary statistic since its distribution does not
depend on µ.

Under a squared error loss, the minimum risk
equivariant (MRE) estimate (if it exists) of µ is given
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by (see, for example, [4, p. 160])
∫

µf (x1 − µ, . . . , xn − µ) dµ

∫
f (x1 − µ, . . . , xn − µ) dµ

, (1)

and is known as the Pitman estimate of µ. If
X1, . . . , Xn are iid N(µ, σ) with σ known, then the
above estimate reduces to x. In this case, it is also the
uniformly minimum variance unbiased estimate
(UMVUE) of µ.

Similarly, for a scale family of distributions
(1/σn)f (x1/σ, . . . , xn/σ) and a group of scale
transformations, a maximal invariant statistic is given
by (x1/xn, . . . , xn−1/xn, xn/|xn|) (see [4, p. 174])
which is an ancillary statistic. Under the loss function
(a/σ r − 1)2, the MRE estimate (if it exists) of σ r is
given by (see, [4, p. 177])

∫ ∞

0
σn+r−1f (σx1, . . . , σxn) dσ

∫ ∞

0
σn+2r−1f (σx1, . . . , σxn) dσ

. (2)

For X1, . . . , Xn iid N(0, σ ) and r = 2, the above
estimate reduces to

∑
x2

i /(n + 2).
For a location–scale family of distributions

(1/σn)f [(x1 − µ)/σ, . . . , (xn − µ)/σ ] and a group
of location–scale transformations, a maximal invari-
ant statistic is given by (see [4, p. 179])

(
x1 − xn

xn−1 − xn

, . . . ,
xn−2 − xn

xn−1 − xn

,
xn−1 − xn

|xn−1 − xn|
)

.

Estimation of βµ + γ σ for known β and γ is
important. (The case β = 1, γ = 0, corresponds to
the estimation of µ, whereas β = 0, γ = 1, corres-
ponds to the estimation of σ , and β = 1 and given γ

corresponds to the estimation of a certain percentile.)
Under an invariant loss function L(µ, σ, a) =

w[(a − βµ − γ σ)/σ ], the MRE estimator (if it
exists) of βµ + γ σ has been discussed in detail in
Datta & Ghosh [2]. For the loss function w(x) = x2,
and for X1, . . . , Xn iid N(µ, σ), the MRE estimator
of βµ + γ σ is given by βX + γ kS, where

k = (n − 1)1/2Γ (n/2)√
2Γ [(n + 1)/2]

,

S2 = 1

n − 1

∑
(Xi − X)2

(see [3, p. 182]). The UMVUE of µ and σ 2 for the
N(µ, σ) problem are X and S2, respectively.

It follows from Berger [1, p. 410] that the MRE
estimates for µ in (1), for σ r in (2), and for βµ + γ σ

are generalized Bayes estimates with respect to the
right invariant Haar density for the respective group
of location, scale, and location–scale transformations
(see Decision Theory).

Hypothesis Tests

To test for location and scale parameters, the most
widely used assumption is that X1, . . . , Xn are iid
N(µ, σ). In this setup, to test H0 : µ = µ0 vs. H1 :
µ �= µ0, for example, the rejection region for known
σ is ∣∣∣∣∣

n1/2(X − µ0)

σ

∣∣∣∣∣ ≥ zα
2
,

where zα/2 is the 100(1 − α/2)th percentile point
of a standard normal distribution. For unknown
σ , the corresponding rejection region is obtained by
replacing σ and zα/2 in the preceding rejection region
by S and tα/2, the 100(1 − α/2)th percentile point
of Student’s t distribution, with n − 1 degrees of
freedom, respectively. The above tests can be shown
to be uniformly most powerful unbiased (UMPU)
tests and can be derived as likelihood ratio tests.
To test for σ 2, H0 : σ 2 = σ 2

0 vs. H1 : σ 2 �= σ 2
0 , the

widely used test which rejects if

(n − 1)S2

σ 2
0

≤ χ2
1−α

2

or
(n − 1)S2

σ 2
0

≥ χ2
α
2

is an approximate (for large n) UMPU size α

test, where χ2
α/2 is the 100(1 − α/2)th percentile

of the χ2
n−1 distribution (chi-square distribution

with n − 1 degrees of freedom). For details on
these tests and other distribution-free tests for the
location and scale parameters, the reader is referred
to Lehmann [5].
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Logistic Distribution

The logistic random variable X with mean µ and
variance σ 2 has a cumulative distribution function

F(x, µ, σ) =
{

1 + exp

[−π(x − µ)

(σ
√

3)

]}−1

,

− ∞ < x < ∞,

− ∞ < µ < ∞, σ > 0, (1)

and density function f , which is simply related to its
distribution function by

f (x, µ, σ) = π

σ
√

3
F(x, µ, σ)[1 − F(x, µ, σ)].

(2)

We denote this distribution by L(µ, σ 2). These func-
tions may also be expressed as

F(x, µ, σ) = 1

2

{
1 + tan h

[
π

2

(x − µ)

(σ
√

3)

]}

(3)

and

f (x, µ, σ) = π

4σ
√

3
sech2

[
π

2

(x − µ)

(σ
√

3)

]
,

(4)

with the latter expression providing the logistic with
the sech-square(d) distribution label. The density f is
bell-shaped and symmetrical, with heavier tails than
a normal density with the same mean and variance.

To describe some of the basic properties of the
logistic distribution, it is simpler to use the “canonical
form”, L(0, π2/3), which corresponds to the random
variable Z, with mean µ = 0 and variance σ 2 =
π2/3, and has cumulative distribution and density
functions

G(z) = 1

1 + e−z
, (5)

g(z) = G(z)[1 − G(z)], (6)

and a monotonic hazard function

λ(z) = g(z)

1 − G(z)
= G(z). (7)

Eq. (6), and therefore (2), characterizes the logistic
distribution and is equivalent to the linearity of the
transformation

log

[
G(z)

1 − G(z)

]
= z. (8)

This transformation, which is labeled logit by Berk-
son [7], is perhaps the single best known and most
popular application of the logistic distribution, espe-
cially in the context of modeling quantal response
data, and performing logistic regression.

The distribution function of the standardized
random variable Z/(π/

√
3), is very close to the

standard normal distribution, and even closer to
the distribution function of a normal random variable
with zero mean and standard deviation 15/16 [32].
However, this distribution function is even better
approximated by that of a standardized Student’s
t distribution with nine degrees of freedom [38].
Moreover, unlike the normal distribution, the sum of
independent logistic random variables is not a logistic
random variable. Goel [23] and George & Mudholkar
[19] give closed-form expressions for the distribution
function, and the latter authors also propose a simple
Student’s t approximation.

Characteristic Function

The characteristic function of Z may be expressed
in the forms

φZ(t) = Γ (1 − it)Γ (1 + it) =
∞∏

j=1

(
1 − t2

j 2

)−1

(9)

and

φZ(t) =
∞∑

k=1

(−1)k−1 2(22k − 1)

(2k)!
B2k(πit)2k, (10)

where the B2ks are Bernoulli numbers [54]. The
characteristic function (9), or direct integration, may
be used to obtain the absolute moments

E|Z|k = 2Γ (k + 1)

[
1 − 1

2k+1
ζ(k)

]
, (11)

where ζ(k) =∑∞
j=1 j−k , is the zeta function.
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From (9), we get the following equalities in dis-
tribution [18]:

Z
D=

∞∑

j=1

Wj

D=
∞∑

j=1

(E1j − E2j )
D= Y1 − Y2, (12)

where the Wj s are independent Laplace or double
exponential random variables, and the Eij s are inde-
pendent exponential random variables with respec-
tive densities fWj

(w) = (j/2) exp(−j |w|), −∞ <

ω < ∞, fEij
(x) = j exp(−jx), i = 1, 2; j = 1, 2,

. . . and Y1, Y2 are iid extreme value random vari-
ables with density h(y)=e−y exp(−e−y), −∞ < y <

∞. The logistic distribution is also obtained from
a mixture of the extreme value distribution and the
exponential distribution [13]. From (12) we may con-
clude immediately that the logistic distribution is
infinitely divisible.

Order Statistics

Let Z1:n ≤ Z2:n ≤ · · · ≤ Zn:n be order statistics of
a random sample from L(0, π2/3). Then it can be
shown that the characteristic function of Zr:n may be
expressed as

φr:n(t) =
r−1∏

j=1

(
1 + it

j

) n−r∏

k=1

(
1 − it

k

)
φZ(t) (13)

(see [10, 28, 46], and [47]). Consequently,

Zr:n +
n−r∑

k=1

E1k −
r−1∑

j=1

E2j
D= Z1, (14)

where the Eij s are independent exponential ran-
dom variables with densities fEij

given above, i =
1, 2, j = 1, . . . , n − 1. Gupta & Shah [28] provide
percentage points for the rth order statistics, Zr:n,
for 1 ≤ n ≤ 25. Shah [52] and Gupta & Balakrishnan
[27] provide an extensive list of recurrence relations
for the moments of order statistics of the logis-
tic distribution. Gupta & Shah [29] and Malik [37]
give closed-form expressions for the range, Rn =
Zn:n − Z1:n, and the rth quasi-range, Zn−r:n − Zr+1:n.
By expressing the distribution of the range in terms of

an associated Legendre function, George & Rousseau
[22] obtain the recurrence relation

nP (Rn+2 ≤ x) = (2n + 1)

(
1 + e−x

1 − e−x

)

× Pr(Rn+1 ≤ x) − (n + 1)

× Pr(Rn ≤ x). (15)

George & Rousseau [21] show that the character-
istic function of the midrange (Zn:n + Z1:n)/2 is a
well-poised hypergeometric function, which may be
expressed as

ϕn(t) =






p−1∏

j=1

(
1 + t2

4j 2

)
[φZ

(
t

2

)
]2,

if n = 2p,

p∏

j=1

[
1 + t2

(2j − 1)2

]
φZ(t),

if n = 2p + 1,

(16)

and obtain a closed-form expression for its distribu-
tion. For a sample of size three, they establish the
rather interesting relationship

Z1:3 + Z3:3

2
D= Z2:3. (17)

Gumbel [24], relating the logistic to extreme value
distributions, shows that, for a large family of sym-
metric distributions satisfying a general set of condi-
tions that are formalized by de Haan [11], the limiting
distribution of the midrange is logistic [17]. This
result is extended by Gumbel to the “mth midrange”,
i.e. (Zm:n + Zn−m+1:n)/2. In this case, the asymptotic
distribution is generalized logistic. Gumbel & Keeney
[26] show that the logistic is the asymptotic distribu-
tion of a family of extremal quotients.

Generalized Logistic

It is easy to see that if U is uniformly distributed on
the unit interval (0,1), then the logit transform of U ,
log
[
U/(1 − U)

]
, has the logistic distribution func-

tion G. In fact, one of the many generalizations of the
logistic distribution is obtained by simply replacing
the uniform random variable U (which is equal in dis-
tribution to a beta (1,1) random variable), with a beta
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(α, β) random variable, [20, 48]. When α = β, the
symmetric generalized logistic is obtained. Like the
logistic distribution, the generalized logistic is used
for modeling binary response data [48] and the log of
survival times [35]. In the context of application to
quantal assay data, Stukel [53] proposes another gen-
eralization of the logistic distribution by introducing
different shape parameters at the tails of the distribu-
tion (see Quantal Response Models).

Parametric Estimation

The simplicity of the logistic distribution, as
expressed by (1)–(6), belies the complexity of the
process of estimating its parameters. No closed forms
exist for the MLE (maximum likelihood estimator),
BLUE (best linear unbiased estimators), or UMVUE
(uniform minimum variance unbiased estimators)
of the mean µ and variance σ 2. For example, given
a random sample X1, . . . , Xn from an L(µ, σ 2)

population, the estimating equations for the MLE of
µ and σ 2, which must be solved iteratively, may be
expressed by

1

n

n∑

i=1

1

1 + exp[π(Xi − µ)/(σ
√

3)]
= 1

2
(18)

and

1

n

n∑

i=1

(
Xi − µ

σ

)




1 − exp

[
π(Xi − µ)

(σ
√

3)

]

1 + exp[π(Xi − µ)/(σ
√

3)]





=
√

3

π
. (19)

From Gupta & Gnanadesikan [28] (in which explicit
approximate expressions for the BLUE estimates of
µ and σ are given based on selected order statistics
Xn1:n ≤ Xn2:n ≤ · · · ≤ Xnk :n), Gupta et al. [30] and
Harter & Moore [31] (in which linear estimates are
calculated from censored data), a vast literature has
evolved on the use of censored logistic random
variables to estimate µ and σ . Using the large sample
variance–covariance matrix of the MLEs, Antle
et al. [1] construct confidence intervals for µ and
σ . Bain [4], Eastman [14], Schafer & Sheffield [50],
and Bain et al. [5] discuss applications in life-testing
using complete and censored data. Other accounts

involving the use of linear functions of order statistics
for estimating the logistic parameters are given by
several authors in Balakrishnan [6, Chapter 4].

Multivariate Distributions

A model for a bivariate distribution with logistic
marginals first proposed by Gumbel [25] is extended
by Malik & Abraham [38] to an m-dimensional
multivariate distribution function

FZ(z) = FZ1,...,Zm
(z1, . . . , zm)

=
(

1 +
m∑

i=1

exp(−zi)

)−1

, (20)

with density function

fZ(z) = m!

exp

(
−

m∑

i=1

zi

)

[
1 +

m∑

i=1

exp(−zi)

]m+1 , (21)

where Z = (Z1, . . . , Zm) and z = (z1, . . . , zm). This
distribution, which is sometimes referred to as the
Gumbel–Malik–Abraham model, suffers from the
restriction that the correlation between any pair
Zi, Zj , is 1/2.

The joint moment generating function of Z is
given by

MZ(t1, . . . , tm) = Γ



1 +
m∑

j=1

tj




m∏

j=1

Γ (1 − tj ).

(22)

From this generating function, Arnold [3] observes
that, analogous to the univariate logistic distri-
bution, the joint distribution of (Z1, . . . , Zm) is
the same distribution as (Y1 − Y0, . . . , Ym − Y0),
where Y0, Y1, . . . , Ym are independent, identically
distributed (iid) extreme value random variables
with density given by h(y) = e−y exp(−e−y), −∞ <

y < ∞.
The Gumbel–Malik–Abraham model is one

example of a multivariate logistic distribution that
can be constructed by using a multivariate analog
of a property of the univariate logistic distribution.
Others are described by Arnold [3]. These include
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a representation in terms of a multivariate survival
function:

Pr(Z ≥ z)

=


1 +
m∑

j=1

exp(zi) +
∑

j1 �=j2

cj1j2 exp(zj1 + zj2)

+ · · · + c1...m exp(z1 + z2 + · · · + zm)




−1

, (23)

where Z ≥ z denotes the event Z1 ≥ z1, Z2 ≥
z2, · · · , Zm ≥ zm and the cs are chosen to satisfy
conditions that make (23) a true survival function
[2] (see Survival Distributions and Their Charac-
teristics). This expression can be obtained from
a multivariate analog of the following result: if
Z1, Z2, . . . , are iid L(0, π2/3) variables and N

is a geometric random variable with Pr(N = n) =
pqn−1, q = 1 − p, then

Z1;N − log p
D= ZN ;N + log p

D= Z1. (24)

Eq. (23) clearly generalizes the Gumbel–Malik–Abr-
aham representation. As an example, the bivariate
logistic distribution function obtained from (23) is
given by

FZ1,Z2(z1, z2)

= [1 + exp(−z1) + exp(−z2) + θ exp(−z1 − z2)]−1,

(25)

where 0 ≤ θ ≤ 2.
Another representation given by Arnold [3] uses

the concept of frailty from survival analysis to obtain

Pr(Z ≥ z) = ΛF






m∑

j=1

Λ−1
F [1 + exp(zj )]

−1




 , (26)

where ΛF denotes the Laplace transform of a given
distribution function F . Using distribution functions
instead of survival functions leads to a different, but
related, family of multivariate logistic distribution
functions

Pr(Z ≤ z)=ΛF






m∑

j=1

Λ−1
F [1 + exp(−zj )]

−1




. (27)

Examples of multivariate logistic distributions from
these models are:

Pr(Z ≥ z) =





m∑

j=1

[1 + exp(zj )]
(1/α) − m + 1






−α

(28)

and

Pr(Z ≤ z) =





m∑

j=1

[1 + exp(−zj )]
(1/α) − m + 1






−α

,

(29)

corresponding to a choice of gamma (α, 1) for F and

Pr(Z ≤ z)

= exp



−



m∑

j=1

{log[1 + exp(−zj )]}(1/α)




α

, (30)

corresponding to choosing ΛF (t)=exp(−tα), α≤1.
The Farlie–Gumbel–Morgenstern model of a

multivariate logistic [3, 33, 34] is yet another
representation. This model may be described by

Pr(Z ≤ z) =
m∏

j=1

G(zj )




1 + α

m∏

j=1

[1 − G(zj )]




 ,

(31)

where |α| < 1 and G(z) = (1 + e−z)−1. This model
suffers from a restriction in correlation: ρ(Zi, Zj ) =
3α/π2 for every pair Zi, Zj . The correlation structure
limits the use of the model. The bivariate version of
this model is due to Gumbel [25].

Historical Notes and Applications

The logistic function is one of the oldest models
for analyzing demographic and organismic growth
data. Verhulst [56], Pearl [43, 44], Pearl & Reed
[45], Yule [57], and, more recently, Oliver [41, 42]
and Leach [36] discuss applications to population
growth. Other biological applications of the logistic
function include the modeling of the growth of yeast
cells [40, 45, 51] and the use of the logistic function
in analysis of survival data [47].
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Reed & Berkson [49], who are usually credited
with the logit label, for the inverse transformation of
the logistic function, and Berkson [7–9] have cham-
pioned the use of the logistic distribution function
for modeling dose–response curves in bioassay (see
also Finney [15, 16]). Berkson’s minimum logit chi-
square estimates are easier to compute than maximum
likelihood estimates. However, with the availability
of sophisticated software, this is no longer a signif-
icant advantage over the efficiency of the maximum
likelihood estimates. From the limited use of the
logistic distribution for quantal bioassay has emerged
logistic regression analysis, which is currently a very
popular generalized linear model procedure for ana-
lyzing binary data. In the context of applications
of logistic regression to health and social sciences,
Tsokos & DiCroce [55] give an extensive bibliogra-
phy. Prentice [48] Stukel [53], Devidas, et al. [12]
and others discuss applications of generalizations of
the logistic models in low-dose bioassays.
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Logistic Regression,
Conditional

An important extension of the logistic regression
model is the analysis of data from stratified samples
(see Stratification). Examples of this application
include studies where data are collected from sev-
eral different sites such as schools, hospitals, or
clinics as well as analyses where covariates are
controlled for by defining post hoc stratification vari-
ables. The most frequently encountered stratified
study design employing the logistic regression model
is the matched case–control study used in epidemi-
ology (see Matched Analysis). A discussion of the
rationale for these matched studies may be found
in epidemiology texts such as Breslow & Day [1],
Kleinbaum et al. [5], Schlesselman [8], Kelsey et al.
[4], and Rothman [7].

The basic idea is to expand the logistic model by
inclusion of stratification variables. Assume the sam-
pled data may be represented as a triple (ykj , xkj , zk),
where j = 1, 2, . . . , nk represents the particular sub-
ject observed within stratum k = 1, 2, . . . , K, ykj =
0 or 1 is the observed value of the binary out-
come variable for subject j in stratum k, x′

kj =
(xkj1, xkj2, . . . , xkjp) is a vector of p nonconstant
covariates, and z′

k = (zk1, zk2, . . . , zkq) is a vector
of q covariates defining stratum characteristics. The
quantity nk denotes the number of observations in
stratum k. The vector z may simply contain one
variable to indicate the stratum, zk = k, or a set of
values of q covariates may be used to define strata.
For example, if one defined strata by gender and
race coded at three levels, then z′

k = (zk1, zk2) with
zk1 = 0 or 1, zk2 = 1, 2, or 3, and k = 1, 2, . . . , 6.

A number of different stratified logistic regression
models are possible. The simplest logistic regression
model has a logit function with one design variable
for the stratum specific effect and constant slope
across strata for the covariates, namely

g(xkj , zk) = β0 + αk + β ′xkj . (1)

The logit function is discussed in detail in the arti-
cle on Logistic Regression. It is defined in terms
of the model conditional probability as g(xkj , zk) =
ln{π(xkj , zk)/[1 − π(xkj , zk)]} and π(xkj , zk) =
Pr(Ykj = 1|xkj , zk). In the parameterization in (1) one
may think of the values of αk as the coefficients for

design variables generated by the K levels of the stra-
tum variable. These design variables may be created
using any method but the most frequent choice is
either referent cell or deviation from means coding.
There are K − 1 parameters or degrees of freedom
associated with the stratification variable. The model
in (1) has a stratum-specific intercept and constant
slopes. Thus the effect of the covariates is the same
for all strata. The covariate vector, x, may contain
both main effects as well as higher-order terms such
as interactions and squared terms, but may not contain
terms that indicate the stratum.

An extension of the model in (1) is possible when
the vector z contains covariates that measure stratum
characteristics, e.g. gender and race as noted above.
The vector may also contain continuous covariates.
Age is often used as a stratification variable. In this
setting one may add interactions to (1), which yield a
model with stratum-specific slopes. Suppose strata are
defined by gender and zk = 0 or 1(1 = male) records
the gender of the subject. The logit for an extended
model is

g(xkj , zk) = β0 + αkzk + β ′xkj + zk × γ ′xkj . (2)

The model for females is

g(xkj , zk = 0) = β0 + β ′xkj ,

and the model for males is

g(xkj , zk = 1) = β0 + α1 + (β + γ )′xkj .

The model in (2) allows for stratum-specific inter-
cepts as well as stratum-specific slopes. Maximum
likelihood estimators of the parameters in (1) or (2)
are obtained by extending the likelihood function (see
Logistic Regression) to include a product over strata.
The likelihood function for the model in (1) is

l(α, β, ) =
K∏

k=1

nk∏

j=1

ζ(xkj , zk), (3)

where ζ(xkj , zk) = π(xkj , zk)
ykj [1 − π(xkj , zk)]1−ykj .

Application of the likelihood function in (3) to the
model in (2) is accomplished by adding the requi-
site additional terms to the logit. Estimators of the
parameters may be obtained from logistic regression
software (see Software, Biostatistical) by inclusion
of the variables recording stratum-specific data into
the model.
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Thus the model as shown in (1) or (2) does not
represent anything particularly new or difficult for
the investigator familiar with the logistic regression
model. The model-building issues and details are
identical to those of the ordinary logistic model, or
for that matter any regression model.

Problems begin to arise which require a different
approach when the number of strata becomes large
and, at the same time, the number of observations
within each stratum remains fixed. Application of
the logistic regression model to this setting will be
described in the remainder of this article.

Logistic Regression with Highly Stratified
Data

A convenient setting to illustrate the use of logistic
regression with highly stratified data is the matched
case–control study design. In this study design sub-
jects are stratified on the basis of covariates believed
to be associated with the outcome. Age and gender
are examples of commonly used stratification vari-
ables. Within each stratum a sample of subjects with
the outcome present, called cases (y = 1), and a sam-
ple of subjects without the outcome, called controls
(y = 0), is chosen. The number of cases and con-
trols need not be constant across strata, but the most
common matched design is one where each stratum
includes one case and one control. Study variables
are collected on all subjects. We develop the methods
for analysis of highly stratified data for the general
case. Greater detail is provided for the one-to-one
matched design because it can be analyzed using stan-
dard logistic regression software.

The methods to be described may be used in
settings other than matched case–control studies.
For example, suppose that, in a study of student
performance, data were collected from 1000 differ-
ent schools and a fixed number of students was
selected from each school. The outcome variable is
whether the student “passed” a particular course or
standardized test. In this example there are 1000
strata defined by school. The conditional likelihood
approach described below is the same for both the
case–control study and the general highly strati-
fied design. More stringent sampling assumptions are
required in the case–control study, see [3, Chapter 6].

We begin by providing some motivation for the
need for special methods for the highly stratified

study. We noted in (1) that we could handle the strat-
ified sample by including variables created from the
stratification variables in the model. This approach
works well when the number of subjects in each stra-
tum is large and strata are few. However, matched
studies have few subjects per stratum. For example, in
the one-to-one matched design with K case–control
pairs we have only two subjects per stratum. A fully
stratified analysis of the model in (1) with p covari-
ates would require estimation of (K + p) parameters,
the p + 1 slope coefficients for the covariates, and
the K − 1 coefficients for the stratum-specific design
variables, using a sample of size 2K . The optimal-
ity properties of the method of maximum likelihood,
derived by letting the sample size, K , become large,
hold only when the number of parameters remains
fixed. In any matched study this is not the case,
as the number of parameters increases at the same
rate as the sample size. For example, when analyzing
a matched one-to-one design via the fully stratified
likelihood in (3) using a logistic regression model
containing one dichotomous covariate and the K − 1
design variables for strata, it can be shown (see [1,
p. 250]) that the bias in the estimate of the coefficient
is 100%. If we regard the stratum-specific parameters
as (nuisance) parameters whose values are neither of
great interest to us nor are essential for the inferences
required in the study, and we are willing to forgo their
estimation, then we can create a conditional likeli-
hood which will yield maximum likelihood estima-
tors of the slope coefficients in the logistic regression
model that are consistent and asymptotically normally
distributed. The mathematical details of conditional
likelihood analysis may be found in [2] (see Likeli-
hood). We summarize its application to the matched
design. Liang [6], in related work, considers a general
approach to the analysis of highly stratified data.

The Conditional Logistic Regression Model

Suppose that there are K strata with nk1 cases (sub-
jects with y = 1) and nk0 controls (subjects with
y = 0) in stratum k, k = 1, 2, . . . , K . The conditional
likelihood for the kth stratum is obtained as the prob-
ability of the observed data conditional on the stratum
total sample size (fixed by the sampling design) and
the total number of cases, the sufficient statistic for
the stratum-specific nuisance parameter. This prob-
ability is the ratio of the probability of the observed
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outcome to the probability for all possible assign-
ments of nk1 subjects with y = 1 and nk0 subjects
with y = 0 to nk = nk0 + nk1 subjects. The number
of possible assignments is the nk choose nk1 combi-
nations. Let the subscript j denote any one of these
assignments. For any assignment we let subjects 1 to
nk1 correspond to the subjects with y = 1 and sub-
jects nk1 + 1 to nk to the subjects with y = 0. This
will be indexed by i for the observed data and by ij
for the j th possible assignment. The contribution to
the conditional likelihood for the kth stratum is

lk(β)

=

nk1∏

i=1

Pr(yki = 1|xki)

nk∏

i=nk1+1

Pr(yki = 0|xki)

∑

j





nk1∏

ij =1

Pr(ykij = 1|xkij )

×
nk∏

ij =nk1+1

Pr(ykij = 0|xkij )





, (4)

where the summation over j in the denominator
is over the nk choose nk1 combinations. The full
conditional likelihood is the product of the lk(β) over
the K strata,

l(β) =
K∏

k=1

lk(β). (5)

If we substitute the logistic regression model with the
logit defined in (1), π(xki) = Pr(yki = 1|xki), into (4),
then (5) simplifies to

lk(β) =

nk1∏

i=1

π(xki)

nk∏

i=nk1+1

[1 − π(xki)]

∑

j






nk1∏

ij =1

π(xkij )

nk∏

ij =nk1+1

[1 − π(xkij )]






.

(6)

Since the terms of the form exp(β0 + αk)/[1 + exp
(β0 + αk + x′

kiβ)] appear equally in both the numer-
ator and denominator of (6) they cancel out, and (6)
simplifies to

lk(β) =

nk1∏

i=1

exp(β ′xki)

∑

j




nk1∏

ij =1

exp(β ′xkij )





, (7)

which depends only on the unknown parameter vector
β. The conditional maximum likelihood estimator for
β is that value which maximizes (5) when the expres-
sion in (7) is used for lk(β). Most software packages
performing logistic regression have the capability
to fit this conditional logistic regression model (see
Software, Biostatistical).

The argument leading to expression (7) is more
complicated for a case–control study and requires
assumptions about sampling of cases and controls and
applications of Bayes’ theorem. The details will not
be presented here but may be found in [3, Chapters 6
and 7].

One must always keep in mind when using the
conditional likelihood in (7) that it was obtained by
beginning with the usual logistic regression model.
Thus, one still interprets the coefficients as “log-odds
ratios”. The original logistic regression model (1) or
(2) tends to become lost in the arithmetic process of
re-expressing the likelihood in (7). This point can be
especially confusing to those analyzing data from a
one-to-one matched case–control study.

The one-to-one matched design is probably the
most frequent example of the use of a conditional
logistic regression model. We show how one may
analyze this design using standard logistic regression
software, since not all packages have the capability to
perform conditional logistic regression. More general
software must be used in other matched designs and
in the general highly stratified setting.

Logistic Regression Analysis for the
One-to-One Matched Study

In the one-to-one matched study there are two sub-
jects within each stratum. To simplify the notation,
let xk1 denote the covariate vector for the case and
xk0 the covariate vector for the control in the kth stra-
tum. Using this notation, the conditional likelihood,
(7), for the kth stratum is

lk(β) = exp(β ′xk1)

exp(β ′xk1) + exp(β ′xk0)
. (8)

Further simplification is obtained by dividing the
numerator and denominator of (8) by exp(β ′xk0),
yielding

lk(β) = exp[β ′(xk1 − xk0)]

1 + exp[β ′(xk1 − xk0)]
. (9)
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The expression on the right-hand side of (9) is iden-
tical to a logistic regression model with the constant
term set equal to zero, β0 = 0, and covariate vector
equal to the value of the case minus the value of
the control, x∗

k = xk1 − xk0. This algebraic simplifi-
cation allows one to use standard logistic regression
software to compute the conditional maximum likeli-
hood estimators of the coefficients and their standard
errors. To accomplish this, one performs the follow-
ing data modifications: define the sample size as the
number of case–control pairs, compute the difference
vector x∗

k , compute a pseudo-response variable equal
to 1, y∗

k = 1, and exclude the constant term from the
model, e.g. force its value to be equal to zero. Thus,
from a computational point of view, the one-to-one
matched design presents no new challenges.

We have found that in the process of creating
the differences and setting the “outcome” equal to
1, one can lose sight of the model. It is important
to distinguish between the logistic regression model
being fit to the data and the computational manipula-
tions required to fit this model with standard logistic
regression software. The process is less confusing if
one focuses on the logistic regression model first and
then considers the computations needed to obtain the
parameter estimates. A few examples should help to
illustrate this point.

Suppose we have a dichotomous independent vari-
able coded zero or one. This variable is correctly
modeled via a single coefficient in the logit, irrespec-
tive of whether we enter the variable via a design
variable or treat it as continuous. The difference vari-
able which we obtain by subtracting the value of the
case from that of the control may take on one of
three possible values: (−1, 0 or 1). If we had mistak-
enly thought of the difference variable as being the
actual data, then we would have incorrectly modeled
the variable by including two design variables in the
model. The correct method is to create a difference
variable and treat it as if it were continuous.

As a second example, suppose we have a variable
such as race, coded at three levels. To model this
variable correctly in the one-to-one matched design,
we create, for each case and control in a pair, the
values of the two design variables representing race.
We compute the difference between these two design
variables for the case and control and model each
of these differences as if it were continuous. The
same process is followed for any categorical scaled
covariate. Note that the computer software may not

recognize the differences in design variables as being
created from the same variable, so one has to be sure
that all design variables are included in the model.
Another point to keep in mind is that differences
between variables used to form strata are equal to
zero for all strata and thus will not be useful as main
effects. However, one may include interaction terms
between stratification variables and other covariates,
because differences in these interaction variables will
likely not be zero.

In summary, the conceptual process for modeling
matched or highly stratified data is identical to that of
the usual logistic regression model. If one develops
the modeling strategy for highly stratified data as if
one had unstratified data, and then uses the condi-
tional likelihood, then one will always be proceeding
correctly.

Examples of the Use of the Conditional
Logistic Regression Model

For illustrative purposes we use a small one-to-
one matched data set obtained from a study of
factors associated with the birth of a low birth-
weight baby (less than 2500 g). These data are in
[3, Appendix 3]. These data, as well as the other
data sets used in [3], may be obtained in the logistic
regression menu at internet address http://www-
unix.oit.umass.edu/∼statdata. A one-to-one
matched data set was obtained from an unmatched
study of 189 births of which 59 were low weight. The
matched data were obtained by randomly selecting,
for each woman who gave birth to a low birthweight
baby, a mother of the same age who did not give birth
to a low birthweight baby. For three of the young
mothers (age less than 17) it was not possible to iden-
tify a match since there were no mothers of normal
weight babies of that age. The data consist of 56 age-
matched case–control pairs. Variables selected for
use in this example are a prior pre-term delivery (ptd,
1 = yes, 0 = no), smoking status (during pregnancy)
of the mother (smoke, 1 = yes, 0 = no), history of
hypertension (ht, 1 = yes, 0 = no), presence of uter-
ine irritability (ui, 1 = yes, 0 = no), and the weight of
the mother at the last menstrual period (lwt, pounds).

In ordinary logistic regression the coefficient for
a model containing only one dichotomous variable
is equal to the log of the cross-product ratio (odds
ratio) from the two-by-two table of outcome by
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the dichotomous variable. The same result is true
when the conditional logistic model is used with a
one-to-one matched study and the model contains
a single dichotomous variable. The estimator of the
odds ratio in a one-to-one matched study is the ratio
of the frequencies of the discordant pairs. These
are the frequencies in the off main diagonal cells
of a 2 × 2 table cross-classifying the dichotomous
variable for the case by the control. For example,
consider the smoking status of the mother. The 2 × 2
table is shown in Table 1 and the results from fitting
the conditional logistic regression model containing
this variable are shown in Table 2. The odds ratio
computed from Table 1 is ψ̂ = 22/8 = 2.75 and its
log is ln ψ̂ = 1.012. The results presented in Table 2
show that the coefficient for smoke is identically
equal to the log of the odds ratio from Table 1. A
confidence interval for the odds ratio may be obtained
by exponentiating the end points of the confidence
interval for the coefficient shown in Table 2. The
resulting interval is (1.22, 6.18) indicating that, in
these data, smoking during pregnancy is a risk factor
for giving birth to a low birthweight baby. The
significance of the coefficient may be tested using
the Wald statistic (see Likelihood), labeled as z in
Table 2, and whose two-tailed P value is 0.014.
The appropriateness of both the confidence interval
and test depend on an assumption that the sample
size, 56 in this case, is large enough to employ the
large-sample distributional properties (normality) of
maximum likelihood estimators.

If one did not have available software specifi-
cally to perform conditional logistic regression, then

Table 1 Cross-classification of the smoking status of the
case by the control

Control

Case No Yes Total

No 18 8 26
Yes 22 8 30

Total 40 16 56

Table 2 Results from fitting a conditional logistic regres-
sion model containing the dichotomous variable, smoking
status of the mother

Variable Coeff. Std. error z P 95% CIE

Smoke 1.012 0.413 2.45 0.014 (0.202, 1.821)

the previously described method of creating differ-
ence variables could be used before beginning full-
scale modeling of the data. This technique is not as
important as it once was as most of the commonly
available packages either have specific conditional
logistic regression routines, or methods for adapting
other routines are explained in their manuals. Again
we wish to reinforce the point that the method of
creating difference variables will only work for the
one-to-one matched study. Any other design must be
modeled through specific conditional logistic regres-
sion software.

We present in Table 3 the results of fitting a more
complex model. The purpose of this model is to illus-
trate the use and interpretation of results from a multi-
variable conditional logistic regression model. See [3,
Chapter 7] for a discussion of the issues involved in
developing a model within the context of the current
example and conditional logistic regression.

We obtain estimates of the odds ratios and their
confidence intervals by exponentiating the estimated
coefficients and end points of their confidence inter-
vals in Table 3. These are shown in Table 4. The
odds ratio and confidence interval presented for the
weight of the mother at the last menstrual period is
for a 10 pound increase in weight. The results for
last menstrual period (lwt) are obtained from Table 3
by multiplying the coefficient and end points of the
confidence interval by 10 before exponentiating. This
is done since lwt is measured in pounds, and an odds
ratio for a one pound weight difference is likely not
to be clinically meaningful.

The odds ratios in Table 4 suggest an important
increase in risk of delivering of a low birthweight
baby for prior pre-term deliveries, smoking during
pregnancy, presence of hypertension, and presence
of uterine irritability. The odds ratio for the weight

Table 3 Results from fitting a conditional logistic regres-
sion model containing prior pre-term delivery, smoking
status of the mother, presence of hypertension, presence
of uterine irritability, and the weight of the mother at the
last menstrual period to 56 matched pairs

Variable Coeff. Std. error z P 95% CIE

ptd 1.671 0.747 2.24 0.025 (0.207, 3.135)
smoke 1.480 0.562 2.63 0.009 (0.378, 2.582)

ht 2.330 1.003 2.32 0.020 (0.364, 4.296)
ui 1.345 0.694 1.94 0.052 (−0.015, 2.705)
lwt −0.015 0.008 −1.88 0.060 (−0.031, 0.001)
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Table 4 Estimated odds ratios and 95% confidence inter-
vals for prior pre-term deliveries, smoking status of the
mother, presence of hypertension, presence of uterine irri-
tability, and the weight of the mother at the last menstrual
period (10 lb increase)

Variable Odds ratio 95% CIE

ptd 5.32 (1.23, 22.99)
smoke 4.39 (1.46, 13.22)

ht 10.28 (1.44, 73.41)
ui 3.84 (0.99, 14.95)

lwt 0.86 (0.73, 1.01)

of the mother at the last menstrual period suggests
an approximate 14% decrease in risk per 10 pound
increase in weight. This interpretation assumes that
the logit is linear in lwt. One should always check
the scale of all continuous variables in any regression
model. We did this using a method based on design
variables for the quartiles of lwt (see [3, p. 194]),
which supported the linearity assumption for lwt.

The confidence interval estimates in Table 4 are
quite wide for the dichotomous variables. This insta-
bility is due to the fact that the variance estimator is
inversely related to the number of discordant pairs.
The analysis presented in Tables 2 and 3 is based
on 56 pairs and the numbers of discordant pairs are
19, 30, 10, and 16, respectively, for the dichotomous
variables. The widths of the confidence intervals in
Table 4 are a result of the relatively few discordant
pairs. This points out an important consideration that
must be kept in mind at the design stage of a study.
The gain in precision obtained from matching and
using conditional logistic regression may be offset
by a loss owing to few discordant pairs for dichoto-
mous covariates. In general, the variance estimator of
the slope coefficient is a function of how different the
subjects with y = 1 are from those with y = 0 within
each stratum.

Likelihood ratio tests may be used for model
testing and refinement in a manner similar to that
discussed in the article on logistic regression. In the
case of conditional logistic regression the likelihood
for model zero, “the no data model”, is obtained by

setting the coefficient vector equal to zero in (7). This
model is essentially a coin toss with stratum specific
probability Pr(Ykj = 1) = nk1/nk .

Application of the conditional logistic regression
model to other, more complicated, matched or highly
stratified designs is, for all intents and purposes,
identical to the one-to-one matched study discussed.
The essential point to keep in mind is that one uses
and interprets the estimated coefficients in a manner
identical to ordinary logistic regression. Although not
illustrated in the example, because of relatively few
matched pairs, one may use matching or stratifica-
tion variables to form interactions with variables in
the model but one may not include them as main
effect terms. Much of the content of this article is
based on [3].
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Logistic Regression

The goal of a logistic regression analysis is to find
the best fitting and most parsimonious, yet biolog-
ically reasonable, model to describe the relationship
between an outcome (dependent or response variable)
and a set of independent (predictor or explanatory)
variables. What distinguishes the logistic regression
model from the linear regression model is that the
outcome variable in logistic regression is categorical
and most usually binary or dichotomous (see Binary
Data).

In any regression problem the key quantity is
the mean value of the outcome variable, given the
value of the independent variable. This quantity is
called the conditional mean and will be expressed
as E(Y |x), where Y denotes the outcome variable
and x denotes a value of the independent variable.
In linear regression we assume that this mean may
be expressed as an equation linear in x (or some
transformation of x or Y ), such as

E(Y |x) = β0 + β1x.

This expression implies that it is possible for E(Y |x)

to take on any value as x ranges between −∞ and
+∞.

Many distribution functions have been proposed
for use in the analysis of a dichotomous outcome
variable. Cox & Snell [2] discuss some of these.
There are two primary reasons for choosing the logis-
tic distribution. These are: (i) from a mathematical
point of view it is an extremely flexible and easily
used function, and (ii) it lends itself to a biologically
meaningful interpretation.

To simplify notation, let π(x) = E(Y |x) represent
the conditional mean of Y given x. The logistic
regression model can be expressed as

π(x) = exp(β0 + β1x)

1 + exp(β0 + β1x)
. (1)

The logit transformation, defined in terms of π(x), is
as follows:

g(x) = ln

[
π(x)

1 − π(x)

]
= β0 + β1x. (2)

The importance of this transformation is that g(x) has
many of the desirable properties of a linear regression
model. The logit, g(x), is linear in its parameters,

may be continuous, and may range from −∞ to +∞
depending on the range of x.

The second important difference between the lin-
ear and logistic regression models concerns the con-
ditional distribution of the outcome variable. In the
linear regression model we assume that an observa-
tion of the outcome variable may be expressed as
y = E(Y |x) + ε. The quantity ε is called the error
and expresses an observation’s deviation from the
conditional mean. The most common assumption is
that ε follows a normal distribution with mean zero
and some variance that is constant across levels of
the independent variable. It follows that the condi-
tional distribution of the outcome variable given x

is normal with mean E(Y |x), and a variance that
is constant. This is not the case with a dichoto-
mous outcome variable. In this situation we may
express the value of the outcome variable given x

as y = π(x) + ε. Here the quantity ε may assume
one of two possible values. If y = 1, then ε =
1 − π(x) with probability π(x), and if y = 0, then
ε = −π(x) with probability 1 − π(x). Thus, ε has
a distribution with mean zero and variance equal to
π(x)[1 − π(x)]. That is, the conditional distribution
of the outcome variable follows a binomial distribu-
tion with probability given by the conditional mean,
π(x).

Fitting the Logistic Regression Model

Suppose we have a sample of n independent
observations of the pair (xi , yi), i = 1, 2, . . . , n,
where yi denotes the value of a dichotomous outcome
variable and xi is the value of the independent
variable for the ith subject. Furthermore, assume
that the outcome variable has been coded as 0
or 1 representing the absence or presence of
the characteristic, respectively. To fit the logistic
regression model (1) to a set of data requires that
we estimate the values of β0 and β1, the unknown
parameters.

In linear regression the method used most often
to estimate unknown parameters is least squares.
In that method we choose those values of β0 and
β1 that minimize the sum of squared deviations of
the observed values of Y from the predicted values
based upon the model. Under the usual assumptions
for linear regression the least squares method yields
estimators with a number of desirable statistical
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properties. Unfortunately, when the least squares
method is applied to a model with a dichotomous
outcome the estimators no longer have these same
properties.

The general method of estimation that leads to
the least squares function under the linear regression
model (when the error terms are normally distributed)
is maximum likelihood. This is the method used
to estimate the logistic regression parameters. In a
very general sense the maximum likelihood method
yields values for the unknown parameters that max-
imize the probability of obtaining the observed set
of data. To apply this method we must first con-
struct a function called the likelihood function (see
Likelihood). This function expresses the probability
of the observed data as a function of the unknown
parameters. The maximum likelihood estimators of
these parameters are chosen to be those values that
maximize this function. Thus, the resulting estimators
are those that agree most closely with the observed
data.

If Y is coded as 0 or 1, then the expression
for π(x) given in (1) provides (for an arbitrary
value of β ′ = (β0, β1), the vector of parameters) the
conditional probability that Y is equal to 1 given
x. This will be denoted Pr(Y = 1|x). It follows
that the quantity 1 − π(x) gives the conditional
probability that Y is equal to zero given x, Pr(Y =
0|x). Thus, for those pairs (xi, yi), where yi = 1, the
contribution to the likelihood function is π(xi), and
for those pairs where yi = 0, the contribution to the
likelihood function is 1 − π(xi), where the quantity
π(xi) denotes the value of π(x) computed at xi . A
convenient way to express the contribution to the
likelihood function for the pair (xi, yi) is through the
term

ξ(xi) = π(xi)
yi [1 − π(xi)]

1−yi . (3)

Since the observations are assumed to be inde-
pendent, the likelihood function is obtained as the
product of the terms given in (3) as follows:

l(β) =
n∏

i=1

ξ(xi). (4)

The principle of maximum likelihood states that
we use as our estimate of β the value that maximizes
the expression in (4). However, it is easier mathemat-
ically to work with the log of (4). This expression,

the log likelihood, is defined as

L(β) = ln[l(β)]

=
∑

{yi ln[π(xi)] + (1 − yi) ln[1 − π(xi)]}.
(5)

To find the value of β that maximizes L(β) we
differentiate L(β) with respect to β0 and β1 and
set the resulting expressions equal to zero. These
equations are as follows:

n∑

i=1

[yi − π(xi)] = 0 (6)

and
n∑

i=1

xi[yi − π(xi)] = 0, (7)

and are called the likelihood equations.
In linear regression, the likelihood equations,

obtained by differentiating the sum of squared
deviations function with respect to β, are linear
in the unknown parameters, and thus are easily
solved. For logistic regression the expressions in (6)
and (7) are nonlinear in β0 and β1, and thus require
special methods for their solution. These methods are
iterative in nature and have been programmed into
available logistic regression software. McCullagh &
Nelder [6] discuss the iterative methods used by most
programs. In particular, they show that the solution
to (6) and (7) may be obtained using a generalized
weighted least squares procedure.

The value of β given by the solution to (6) and (7)
is called the maximum likelihood estimate, denoted
as β̂. Similarly, π̂(xi) is the maximum likelihood
estimate of π(xi). This quantity provides an estimate
of the conditional probability that Y is equal to 1,
given that x is equal to xi . As such, it represents the
fitted or predicted value for the logistic regression
model. An interesting consequence of (6) is that

n∑

i=1

yi =
n∑

i=1

π̂(xi).

That is, the sum of the observed values of y is equal
to the sum of the predicted (expected) values.

After estimating the coefficients, it is standard
practice to assess the significance of the variables in
the model. This usually involves testing a statistical
hypothesis to determine whether the independent
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variables in the model are “significantly” related to
the outcome variable. One approach to testing for
the significance of the coefficient of a variable in
any model relates to the following question. Does
the model that includes the variable in question tell
us more about the outcome (or response) variable
than does a model that does not include that variable?
This question is answered by comparing the observed
values of the response variable with those predicted
by each of two models; the first with and the second
without the variable in question. The mathematical
function used to compare the observed and predicted
values depends on the particular problem. If the
predicted values with the variable in the model are
better, or more accurate in some sense, than when
the variable is not in the model, then we feel that the
variable in question is “significant”. It is important
to note that we are not considering the question
of whether the predicted values are an accurate
representation of the observed values in an absolute
sense (this would be called goodness of fit). Instead,
our question is posed in a relative sense.

For the purposes of assessing the significance of
an independent variable we compute the value of the
following statistic:

G = −2 ln

(
likelihood without the variable

likelihood with the variable

)
. (8)

Under the hypothesis that β1 is equal to zero, the
statistic G will follow a chi-square distribution with
one degree of freedom. The calculation of the log
likelihood and this generalized likelihood ratio test
are standard features of any good logistic regression
package. This makes it possible to check for the
significance of the addition of new terms to the
model as a matter of routine. In the simple case of a
single independent variable, we can first fit a model
containing only the constant term. We can then fit a
model containing the independent variable along with
the constant. This gives rise to a new log likelihood.
The likelihood ratio test is obtained by multiplying
the difference between the log likelihoods of the two
models by −2.

Another test that is often carried out is the Wald
test, which is obtained by comparing the maximum
likelihood estimate of the slope parameter, β̂1, with
an estimate of its standard error (see Likelihood).

The resulting ratio

W = β̂1

ŝe(β̂1)
,

under the hypothesis that β1 = 0, follows a standard
normal distribution. Standard errors of the estimated
parameters are routinely printed out by computer
software. Hauck & Donner [3] examined the perfor-
mance of the Wald test and found that it behaved
in an aberrant manner, often failing to reject when
the coefficient was significant. They recommended
that the likelihood ratio test be used. Jennings [5] has
also looked at the adequacy of inferences in logistic
regression based on Wald statistics. His conclusions
are similar to those of Hauck & Donner.

Both the likelihood ratio test, G, and the Wald
test, W , require the computation of the maximum
likelihood estimate for β1. For a single variable
this is not a difficult or costly computational task.
However, for large data sets with many variables, the
iterative computation needed to obtain the maximum
likelihood estimates can be considerable.

The logistic regression model may be used with
matched study designs. Fitting conditional logistic
regression models requires modifications, which are
not discussed here. The reader interested in the
conditional logistic regression model may find details
in [4, Chapter 7].

The Multiple Logistic Regression Model

Consider a collection of p independent variables
which will be denoted by the vector x′ =
(x1, x2, . . . , xp). Assume for the moment that each
of these variables is at least interval scaled. Let the
conditional probability that the outcome is present be
denoted by Pr(Y = 1|x) = π(x). Then the logit of the
multiple logistic regression model is given by

g(x) = β0 + β1x1 + β2x2 + · · · + βpxp, (9)

in which case

π(x) = exp[g(x)]

1 + exp[g(x)]
. (10)

If some of the independent variables are discrete,
nominal scaled variables (see Nominal Data) such
as race, sex, treatment group, and so forth, then it is
inappropriate to include them in the model as if they
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were interval scaled. In this situation a collection of
design variables (or dummy variables) should be
used. Most logistic regression software will generate
the design variables, and some programs have a
choice of several different methods.

In general, if a nominal scaled variable has k

possible values, then k − 1 design variables will be
needed. Suppose, for example, that the j th indepen-
dent variable, xj has kj levels. The kj − 1 design
variables will be denoted as Dju and the coeffi-
cients for these design variables will be denoted as
βju, u = 1, 2, . . . , kj − 1. Thus, the logit for a model
with p variables and the j th variable being discrete is

g(x) = β0 + β1x1 + · · · +
kj −1∑

u=1

βjuDju + βpxp.

Fitting the Multiple Logistic Regression
Model

Assume that we have a sample of n independent
observations of the pair (xi , yi), i = 1, 2, . . . , n. As
in the univariate case, fitting the model requires
that we obtain estimates of the vector β ′ =
(β0, β1, . . . , βp). The method of estimation used in
the multivariate case is the same as in the univariate
situation, i.e. maximum likelihood. The likelihood
function is nearly identical to that given in (4), with
the only change being that π(x) is now defined as in
(10). There are p + 1 likelihood equations which are
obtained by differentiating the log likelihood function
with respect to the p + 1 coefficients. The likelihood

equations that result may be expressed as follows:

n∑

i=1

[yi − π(xi )] = 0

and
n∑

i=1

xij [yi − π(xi )] = 0,

for j = 1, 2, . . . , p.
As in the univariate model, the solution of the like-

lihood equations requires special purpose software
which may be found in many packaged programs.
Let β̂ denote the solution to these equations. Thus,
the fitted values for the multiple logistic regression
model are π̂ (xi ), the value of the expression in (13)
computed using β̂ and xi .

Before proceeding further we present an exam-
ple that illustrates the formulation of a multiple
logistic regression model and the estimation of its
coefficients.

Example

To provide an example of fitting a multiple logistic
regression model, consider the data for the low birth
weight study described in Appendix 1 of Hosmer &
Lemeshow [4]. The code sheet for the data set is
given in Table 1.

The goal of this study was to identify risk factors
associated with giving birth to a low birth weight
baby (weighing less than 2500 g). In this study data
were collected on 189 women; n1 = 59 of them

Table 1 Code sheet for the variables in the low birth weight data set

Variable Abbreviation

Identification code ID
Low birth weight (0 = birth weight ≥2500 g, LOW

1 = birth weight <2500 g)
Age of the mother in years AGE
Weight in pounds at the last menstrual period LWT
Race (1 = white, 2 = black, 3 = other) RACE
Smoking status during pregnancy (1 = yes, 0 = no) SMOKE
History of premature labor (0 = none, 1 = one, etc.) PTL
History of hypertension (1 = yes, 0 = no) HT
Presence of uterine irritability (1 = yes, 0 = no) UI
Number of physician visits during the first trimester FTV

(0 = none, 1 = one, 2 = two, etc.)
Birth weight (g) BWT
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delivered low birth weight babies and n0 = 130
delivered normal birth weight babies. In this example
the variable race has been recoded using the two
design variables shown in Table 2. FTV was recoded
to 0 = some, 1 = none, and PTL was recoded to
0 = none, 1 = one or more. The two newly coded
variables are called FTV01 and PTL01.

The results of fitting the logistic regression model
to these data are given in Table 3.

In Table 3 the estimated coefficients for the two
design variables for race are indicated in the lines
denoted by “RACE 1” and “RACE 2”. The estimated
logit is given by

ĝ(x) = 0.545 − 0.035 × AGE − 0.015 × LWT

+ 0.815 × SMOKE + 1.824 × HT + 0.702

× UI + 1.202 × RACE 1 + 0.773 × RACE 2

+ 0.121 × FTV01 + 1.237 × PTL01.

The fitted values are obtained using the estimated
logit, ĝ(x), as in (10).

Table 2 Coding of design variables
for RACE

Design variable

RACE RACE 1 RACE 2

White 0 0
Black 1 0
Other 0 1

Testing for the Significance of the Model

Once we have fit a particular multiple (multivariate)
logistic regression model, we begin the process of
assessment of the model. The first step in this process
is usually to assess the significance of the variables
in the model. The likelihood ratio test for overall
significance of the p coefficients for the independent
variables in the model is performed based on the
statistic G given in (8). The only difference is that
the fitted values, π̂ , under the model are based on
the vector containing p + 1 parameters, β̂. Under the
null hypothesis that the p “slope” coefficients for
the covariates in the model are equal to zero, the
distribution of G is chi-square with p degrees of
freedom.

As an example, consider the fitted model whose
estimated coefficients are given in Table 3. For that
model the value of the log likelihood is L = −98.36.
A second model, fit with the constant term only,
yields L = −117.336. Hence G = −2[(−117.34) −
(−98.36)] = 37.94 and the P value for the test is
Pr[χ2(9) > 37.94] < 0.0001 (see Table 3). Rejection
of the null hypothesis (that all of the coefficients are
simultaneously equal to zero) has an interpretation
analogous to that in multiple linear regression; we
may conclude that at least one, and perhaps all p

coefficients are different from zero.
Before concluding that any or all of the coeffi-

cients are nonzero, we may wish to look at the uni-
variate Wald test statistics, Wj = β̂j /ŝe(β̂j ). These
are given in the fourth column (labeled z) in Table 3.

Table 3 Estimated coefficients for a multiple logistic regression model using all variables from the
low birth weight data set

Logit estimates Number of obs. = 189
χ2(9) = 37.94

Prob > χ2 = 0.0000
Log likelihood = −98.36

Variable Coeff. Std. error z Pr > |z| [95% conf. interval]

AGE −0.035 0.039 −0.920 0.357 −0.111 0.040
LWT −0.015 0.007 −2.114 0.035 −0.029 −0.001
SMOKE 0.815 0.420 1.939 0.053 −0.009 1.639
HT 1.824 0.705 2.586 0.010 0.441 3.206
UI 0.702 0.465 1.511 0.131 −0.208 1.613
RACE 1 1.202 0.534 2.253 0.024 0.156 2.248
RACE 2 0.773 0.460 1.681 0.093 −0.128 1.674
FTV01 0.121 0.376 0.323 0.746 −0.615 0.858
PTL01 1.237 0.466 2.654 0.008 0.323 2.148
cons 0.545 1.266 0.430 0.667 −1.937 3.027
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Under the hypothesis that an individual coefficient is
zero, these statistics will follow the standard nor-
mal distribution. Thus, the value of these statistics
may give us an indication of which of the variables
in the model may or may not be significant. If we
use a critical value of 2, which leads to an approx-
imate level of significance (two-tailed) of 0.05, then
we would conclude that the variables LWT, SMOKE,
HT, PTL01 and possibly RACE are significant, while
AGE, UI, and FTV01 are not significant.

Considering that the overall goal is to obtain the
best fitting model while minimizing the number of
parameters, the next logical step is to fit a reduced
model, containing only those variables thought to
be significant, and compare it with the full model
containing all the variables. The results of fitting the
reduced model are given in Table 4.

The difference between the two models is the
exclusion of the variables AGE, UI, and FTV01 from
the full model. The likelihood ratio test comparing
these two models is obtained using the definition
of G given in (8). It has a distribution that is chi-
square with three degrees of freedom under the
hypothesis that the coefficients for the variables
excluded are equal to zero. The value of the test
statistic comparing the models in Tables 3 and
4 is G = −2[(−100.24) − (−98.36)] = 3.76 which,
with three degrees of freedom, has a P value of
P [χ2(3) > 3.76] = 0.2886. Since the P value is
large, exceeding 0.05, we conclude that the reduced
model is as good as the full model. Thus there is
no advantage to including AGE, UI, and FTV01 in
the model. However, we must not base our models
entirely on tests of statistical significance. Numerous

other considerations should influence our decision to
include or exclude variables from a model.

Interpretation of the Coefficients of the
Logistic Regression Model

After fitting a model the emphasis shifts from the
computation and assessment of significance of esti-
mated coefficients to interpretation of their values.
The interpretation of any fitted model requires that
we can draw practical inferences from the estimated
coefficients in the model. The question addressed is:
What do the estimated coefficients in the model tell us
about the research questions that motivated the study?
For most models this involves the estimated coeffi-
cients for the independent variables in the model. The
estimated coefficients for the independent variables
represent the slope or rate of change of a function
of the dependent variable per unit of change in the
independent variable. Thus, interpretation involves
two issues: (i) determining the functional relationship
between the dependent variable and the independent
variable, and (ii) appropriately defining the unit of
change for the independent variable.

For a linear regression model we recall that
the slope coefficient, β1, is equal to the difference
between the value of the dependent variable at x + 1
and the value of the dependent variable at x, for
any value of x. In the logistic regression model
β1 = g(x + 1) − g(x). That is, the slope coefficient
represents the change in the logit for a change
of one unit in the independent variable x. Proper
interpretation of the coefficient in a logistic regression
model depends on being able to place meaning

Table 4 Estimated coefficients for a multiple logistic regression model using the variables LWT,
SMOKE, HT, PTL01 and RACE from the low birth weight data set

Logit estimates Number of obs. = 189
χ2(6) = 34.19

Prob > χ2 = 0.0000
Log likelihood = 100.24

Variable Coeff. Std. error z Pr > |z| [95% conf. interval]

LWT −0.017 0.007 −2.407 0.016 −0.030 −0.003
SMOKE 0.876 0.401 2.186 0.029 0.091 1.661
HT 1.767 0.708 2.495 0.013 0.379 3.156
RACE 1 1.264 0.529 2.387 0.017 0.226 2.301
RACE 2 0.864 0.435 1.986 0.047 0.011 1.717
PTL01 1.231 0.446 2.759 0.006 0.357 2.106
cons 0.095 0.957 0.099 0.921 −1.781 1.970
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on the difference between two logits. Consider the
interpretation of the coefficients for a univariate
logistic regression model for each of the possible
measurement scales of the independent variable.

Dichotomous Independent Variable

Assume that x is coded as either 0 or 1. Under this
model there are two values of π(x) and equivalently
two values of 1 − π(x). These values may be con-
veniently displayed in a 2 × 2 table, as shown in
Table 5.

The odds of the outcome being present among
individuals with x = 1 is defined as π(1)/[1 − π(1)].
Similarly, the odds of the outcome being present
among individuals with x = 0 is defined as
π(0)/[1 − π(0)]. The odds ratio, denoted by ψ , is
defined as the ratio of the odds for x = 1 to the odds
for x = 0, and is given by

ψ = π(1)/[1 − π(1)]

π(0)/[1 − π(0)]
. (11)

The log of the odds ratio, termed log odds ratio, or
log odds, is

ln(ψ) = ln

{
π(1)/[1 − π(1)]

π(0)/[1 − π(0)]

}
= g(1) − g(0),

which is the logit difference, where the log of the
odds is called the logit and, in this example, these
are

g(1) = ln

{
π(1)

1 − π(1)

}

and

g(0) = ln

{
π(0)

1 − π(0)

}
.

Using the expressions for the logistic regression
model shown in Table 5 the odds ratio is

ψ =

(
exp(β0 + β1)

1 + exp(β0 + β1)

)(
1

1 + exp(β0)

)

(
exp(β0)

1 + exp(β0)

)(
1

1 + exp(β0 + β1)

)

= exp(β0 + β1)

exp(β0)
= exp(β1).

Hence, for logistic regression with a dichotomous
independent variable

ψ = exp(β1), (12)

and the logit difference, or log odds, is

ln(ψ) = ln[exp(β1)] = β1.

This fact concerning the interpretability of the coeffi-
cients is the fundamental reason why logistic regres-
sion has proven such a powerful analytic tool for
epidemiologic research. A confidence interval (CI)
estimate for the odds ratio is obtained by first calcu-
lating the endpoints of a confidence interval for the
coefficient β1, and then exponentiating these values.
In general, the endpoints are given by

exp
[
β̂1 ± z1−α/2 × ŝe(β̂1)

]
.

Because of the importance of the odds ratio as a
measure of association, point and interval estimates
are often found in additional columns in tables
presenting the results of a logistic regression analysis.

In the previous discussion we noted that the
estimate of the odds ratio was ψ̂ = exp(β̂1). This
is correct when the independent variable has been

Table 5 Values of the logistic regression model when the independent variable is dichotomous

Independent variable
X

x = 1 x = 0

y = 1 π(1) = exp(β0 + β1)

1 + exp(β0 + β1)
π(0) = exp β0

1 + exp β0
Outcome Y

variable
y = 0 1 − π(1) = 1

1 + exp(β0 + β1)
1 − π(0) = 1

1 + exp β0

Total 1.0 1.0
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coded as 0 or 1. This type of coding is called
“reference cell” coding. Other coding could be used.
For example, the variable may be coded as −1 or +1.
This type of coding is termed “deviation from means”
coding. Evaluation of the logit difference shows that
the odds ratio is calculated as ψ̂ = exp(2β̂1) and
if an investigator were simply to exponentiate the
coefficient from the computer output of a logistic
regression analysis, the wrong estimate of the odds
ratio would be obtained. Close attention should be
paid to the method used to code design variables.

The method of coding also influences the calcula-
tion of the endpoints of the confidence interval. With
deviation from means coding, the estimated stan-
dard error needed for confidence interval estimation
is ŝe(2β̂1), which is 2 × ŝe(β̂1). Thus the endpoints
of the confidence interval are

exp
[
2β̂1 + z1−α/2 × 2 × ŝe(β̂1)

]
.

In summary, for a dichotomous variable the para-
meter of interest is the odds ratio. An estimate of
this parameter may be obtained from the estimated
logistic regression coefficient, regardless of how the
variable is coded or scaled. This relationship between
the logistic regression coefficient and the odds ratio
provides the foundation for our interpretation of all
logistic regression results.

Polytomous Independent Variable

Suppose that instead of two categories the
independent variable has k > 2 distinct values (see
Polytomous Data). For example, we may have
variables that denote the county of residence within
a state, the clinic used for primary health care
within a city, or race. Each of these variables has

a fixed number of discrete outcomes and the scale of
measurement is nominal.

Suppose that in a study of coronary heart disease
(CHD) the variable RACE is coded at four levels,
and that the cross-classification of RACE by CHD
status yields the data presented in Table 6. These
data are hypothetical and have been formulated for
ease of computation. The extension to a situation
where the variable has more than four levels is not
conceptually different, so all the examples in this
section use k = 4.

At the bottom of Table 6 the odds ratio is given
for each race, using white as the reference group.
For example, for hispanic the estimated odds ratio
is (15 × 20)/(5 × 10) = 6.0. The log of the odds
ratios are given in the last row of Table 6. This
display is typical of what is found in the literature
when there is a perceived referent group to which
the other groups are to be compared. These same
estimates of the odds ratio may be obtained from
a logistic regression program with an appropriate
choice of design variables. The method for specifying
the design variables involves setting all of them
equal to zero for the reference group, and then
setting a single design variable equal to one for
each of the other groups. This is illustrated in
Table 7.

Table 7 Specification of the design vari-
ables for RACE using white as the refer-
ence group

Design variables

RACE (code) D1 D2 D3

White (1) 0 0 0
Black (2) 1 0 0
Hispanic (3) 0 1 0
Other (4) 0 0 1

Table 6 Cross-classification of hypothetical data on RACE and CHD status for 100
subjects

CHD status White Black Hispanic Other Total

Present 5 20 15 10 50
Absent 20 10 10 10 50
Total 25 30 25 20 100

Odds ratio (ψ̂) 1.0 8.0 6.0 4.0
95% CI (2.3, 27.6) (1.7, 21.3) (1.1, 14.9)
ln(ψ̂) 0.0 2.08 1.79 1.39
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Table 8 Results of fitting the logistic regression model to the data in Table 6 using the design
variables in Table 7

Variable Coeff. Std. error z P > |z| [95% conf. interval]

RACE 1 2.079 0.632 3.288 0.001 0.840 3.319
RACE 2 1.792 0.645 2.776 0.006 0.527 3.057
RACE 3 1.386 0.671 2.067 0.039 0.072 2.701
cons −1.386 0.500 −2.773 0.006 −2.367 −0.406

Variable Odds ratio [95% conf. interval]

RACE 1 8 2.32 27.63
RACE 2 6 1.69 21.26
RACE 3 4 1.07 14.90

Use of any logistic regression program with design
variables coded as shown in Table 7 yields the
estimated logistic regression coefficients given in
Table 8.

A comparison of the estimated coefficients in
Table 8 with the log odds in Table 6 shows that
ln[ψ̂(black, white)] = β̂11 = 2.079, ln[ψ̂(hispanic,
white)] = β̂12 = 1.792, and ln[ψ̂(other, white)] =
β̂13 = 1.386.

In the univariate case the estimates of the stan-
dard errors found in the logistic regression output
are identical to the estimates obtained using the cell
frequencies from the contingency table. For exam-
ple, the estimated standard error of the estimated
coefficient for design variable (1), β̂11, is 0.6325 =
(1/5 + 1/20 + 1/20 + 1/10)1/2. A derivation of this
result appears in Bishop et al. [1].

Confidence limits for odds ratios may be obtained
as follows:

β̂ij ± z1−α/2 × ŝe(β̂ij ).

The corresponding limits for the odds ratio are
obtained by exponentiating these limits as follows:

exp[β̂ij ± z1−α/2 × ŝe(β̂ij )].

Continuous Independent Variable

When a logistic regression model contains a con-
tinuous independent variable, interpretation of the
estimated coefficient depends on how it is entered
into the model and the particular units of the variable.
For purposes of developing the method to interpret

the coefficient for a continuous variable, we assume
that the logit is linear in the variable.

Under the assumption that the logit is linear in
the continuous covariate, x, the equation for the
logit is g(x) = β0 + β1x. It follows that the slope
coefficient, β1, gives the change in the log odds for
an increase of “l” unit in x, i.e. β1 = g(x + 1) − g(x)

for any value of x. Most often the value of “1” will
not be biologically very interesting. For example, an
increase of 1 year in age or of 1 mmHg in systolic
blood pressure may be too small to be considered
important. A change of 10 years or 10 mmHg might
be considered more useful. However, if the range of
x is from zero to one, as might be the case for some
created index, then a change of 1 is too large and
a change of 0.01 may be more realistic. Hence, to
provide a useful interpretation for continuous scaled
covariates we need to develop a method for point and
interval estimation for an arbitrary change of c units
in the covariate.

The log odds for a change of c units in x is
obtained from the logit difference g(x + c) − g(x) =
cβ1 and the associated odds ratio is obtained by
exponentiating this logit difference, ψ(c) = ψ(x +
c, x) = exp(cβ1). An estimate may be obtained by
replacing β1 with its maximum likelihood estimate,
β̂1. An estimate of the standard error needed for
confidence interval estimation is obtained by multi-
plying the estimated standard error of β̂1 by c. Hence
the endpoints of the 100(1 − α)% CI estimate of
ψ(c) are

exp[cβ̂1 ± z1−α/2cŝe(β̂1)].

Since both the point estimate and endpoints of the
confidence interval depend on the choice of c, the
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particular value of c should be clearly specified in all
tables and calculations.

Multivariate Case

Often logistic regression analysis is used to adjust
statistically the estimated effects of each variable in
the model for differences in the distributions of and
associations among the other independent variables.
Applying this concept to a multiple logistic regression
model, we may surmise that each estimated coeffi-
cient provides an estimate of the log odds adjusting
for all other variables included in the model. The term
confounder is used by epidemiologists to describe
a covariate that is associated with both the out-
come variable of interest and a primary independent
variable or risk factor. When both associations are
present the relationship between the risk factor and
the outcome variable is said to be confounded (see
Confounding). The procedure for adjusting for con-
founding is appropriate when there is no interaction.

If the association between the covariate and an
outcome variable is the same within each level of
the risk factor, then there is no interaction between
the covariate and the risk factor. When interaction is
present, the association between the risk factor and
the outcome variable differs, or depends in some way
on the level of the covariate. That is, the covariate
modifies the effect of the risk factor (see Effect
Modification). Epidemiologists use the term effect
modifier to describe a variable that interacts with a
risk factor.

The simplest and most commonly used model for
including interaction is one in which the logit is also
linear in the confounder for the second group, but
with a different slope. Alternative models can be
formulated which would allow for other than a linear
relationship between the logit and the variables in the
model within each group. In any model, interaction
is incorporated by the inclusion of appropriate higher
order terms.

An important step in the process of modeling a
set of data is to determine whether or not there is
evidence of interaction in the data. Tables 9 and
10 present the results of fitting a series of logistic
regression models to two different sets of hypothetical
data. The variables in each of the data sets are
the same: SEX, AGE, and CHD. In addition to the
estimated coefficients, the log likelihood for each
model and minus twice the change (deviance) is
given. Recall that minus twice the change in the log
likelihood may be used to test for the significance
of coefficients for variables added to the model.
An interaction is added to the model by creating a
variable that is equal to the product of the value of
the sex and the value of age.

Examining the results in Table 9 we see that the
estimated coefficient for the variable SEX changed
from 1.535 in model 1 to 0.979 when AGE was
added in model 2. Hence, there is clear evidence
of a confounding effect owing to age. When the
interaction term “SEX × AGE” is added in model 3
we see that the change in the deviance is only
0.52 which, when compared with the chi-square
distribution with one degree of freedom, yields a
P value of 0.47, which clearly is not significant.
Note that the coefficient for sex changed from 0.979
to 0.481. This is not surprising since the inclusion
of an interaction term, especially when it involves
a continuous variable, will usually produce fairly
marked changes in the estimated coefficients of
dichotomous variables involved in the interaction.
Thus, when an interaction term is present in the model
we cannot assess confounding via the change in a
coefficient. For these data we would prefer to use
model 2 which suggests that age is a confounder but
not an effect modifier.

The results in Table 10 show evidence of both
confounding and interaction due to age. Comparing
model 1 with model 2 we see that the coefficient
for sex changes from 2.505 to 1.734. When the age
by sex interaction is added to the model we see
that the deviance is 4.06, which yields a P value

Table 9 Estimated logistic regression coefficients, log likelihood, and the likelihood ratio test
statistic (G) for an example showing evidence of confounding but no interaction

Model Constant SEX AGE SEX × AGE Log likelihood G

1 −1.046 1.535 −61.86
2 −7.142 0.979 0.167 −49.59 24.54
3 −6.103 0.481 0.139 0.059 −49.33 0.52
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Table 10 Estimated logistic regression coefficients, log likelihood, and the likelihood ratio test
statistic (G) for an example showing evidence of confounding and interaction

Model Constant SEX AGE SEX × AGE Log likelihood G

1 −0.847 2.505 −52.52
2 −6.194 1.734 0.147 −46.79 11.46
3 −3.105 0.047 0.629 0.206 −44.76 4.06

of 0.04. Since the deviance is significant, we prefer
model 3 over model 2, and should regard age as both
a confounder and an effect modifier. The net result is
that any estimate of the odds ratio for sex should be
made with respect to a specific age.

Hence, we see that determining if a covariate, X,
is an effect modifier and/or a confounder involves
several issues. Determining effect modification status
involves the parametric structure of the logit, while
determination of confounder status involves two
things. First, the covariate must be associated with
the outcome variable. This implies that the logit must
have a nonzero slope in the covariate. Secondly, the
covariate must be associated with the risk factor. In
our example this might be characterized by having
a difference in the mean age for males and females.
However, the association may be more complex than
a simple difference in means. The essence is that we
have incomparability in our risk factor groups. This
incomparability must be accounted for in the model
if we are to obtain a correct, unconfounded estimate
of effect for the risk factor.

In practice, the confounder status of a covariate
is ascertained by comparing the estimated coefficient
for the risk factor variable from models containing
and not containing the covariate. Any “biologically
important” change in the estimated coefficient for
the risk factor would dictate that the covariate is a
confounder and should be included in the model,
regardless of the statistical significance of the esti-
mated coefficient for the covariate. On the other
hand, a covariate is an effect modifier only when the
interaction term added to the model is both biolog-
ically meaningful and statistically significant. When
a covariate is an effect modifier, its status as a con-
founder is of secondary importance since the estimate
of the effect of the risk factor depends on the specific
value of the covariate.

The concepts of adjustment, confounding, inter-
action, and effect modification may be extended
to cover the situations involving any number of
variables on any measurement scale(s). The princi-
ples for identification and inclusion of confounder
and interaction variables into the model are the same
regardless of the number of variables and their mea-
surement scales.

Much of this article has been abstracted from [4].
Readers wanting more detail on any topic should
consult this reference.
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Loglinear Model

Multivariate analysis has occupied a prominent
place in the classical development of statistical theory
and methodology. The analysis of cross classified
categorical data, or contingency table analysis as
it is often called, represents the discrete multivari-
ate analog of analysis of variance for continuous
response variables, and now plays an important role
in biostatistical practice. This article provides an
introduction to some of the more widely used tech-
niques for the analysis of contingency table data
using loglinear models and to the statistical theory
that underlies them, revising and extending an ear-
lier review article [27] (for additional material on
this topic, and related methods, see Categorical Data
Analysis; Contingency Table).

The term contingency, used in connection with
tables of cross classified categorical data, seems to
have originated with Karl Pearson [61], who for an
s × t table defined contingency to be any measure of
the total deviation from “independent probability”.
The term is now used to refer to the table of counts
itself. Prior to this formal use of the term, statisti-
cians going back at least to Quetelet [64] worked with
cross classifications of counts to summarize the asso-
ciation between variables. Pearson [59] had laid the
groundwork for his approach to contingency tables
when he developed his chi-square test for comparing
observed and expected (theoretic) frequencies. Yet
Pearson preferred to view contingency tables involv-
ing the cross classification of two or more polytomies
as arising from a partition of a set of multivariate,
normal data, with an underlying continuum for each
polytomy. This view led Pearson [50] to develop his
tetrachoric correlation coefficient for 2 × 2 tables,
and this work in turn spawned an extensive literature
well chronicled by Lancaster [54] (see Association,
Measures of).

The most serious problems with Pearson’s
approach were (i) the complicated infinite series
linking the tetrachoric correlation coefficient with the
frequencies in a 2 × 2 table, and (ii) his insistence
that it always made sense to assume an underlying
continuum, even when the dichotomy of interest
was dead–alive or employed–unemployed, and that
it was reasonable to assume that the probability
distribution over such a continuum was normal.
In contradistinction, Yule [72] chose to view the

categories of a cross classification as fixed, and
he set out to consider the structural relationship
between or among the discrete variables represented
by the cross classification, via various functions of
the cross product ratio. Especially impressive in this,
Yule’s first paper on the topic, is his notational
structure for n attributes or 2n tables, and his attention
to the concept of partial and joint association of
dichotomous variables.

The debate between Pearson and Yule over whose
approach was more appropriate for contingency table
analysis raged for many years (see, for example, Pear-
son & Heron [63]), and the acrimony it engendered
was exceeded only by that associated with Pearson’s
dispute with R.A. Fisher over the adjustment in the
degrees of freedom (df) for the chi-square test of
independence in the s × t table. [In this latter case
Pearson was simply incorrect; as Fisher [34] first
noted, df = (s − 1)(t − 1).]

Although much work on two-dimensional con-
tingency tables followed the pioneering efforts by
Pearson and Yule, it was not until 1935 that Bartlett,
as a result of a suggestion by Fisher, utilized Yule’s
cross product ratio to define the notion of second-
order interaction in a 2 × 2 × 2 table, and to develop
an appropriate test for the absence of such an interac-
tion [6]. The multivariate generalizations of Bartlett’s
work, beginning with the work of Roy & Kastenbaum
[67], form the basis of the loglinear model approach
to contingency tables, which is described in detail
below.

The past 40 years have seen a burgeoning litera-
ture on the analysis of contingency tables. Some of
this literature emphasizes the use of the minimum
modified chi-square approach (e.g. Grizzle et al. [47])
or the use of the minimum discrimination informa-
tion approach (e.g. Gokhale & Kullback [K]), but the
bulk of it follows Fisher in the use of maximum
likelihood. For most contingency table problems, the
minimum discrimination information approach yields
maximum likelihood estimates. More recently, atten-
tion has turned to the development of hierarchical
Bayesian approaches, which lead to the computation
of posterior distributions (rather than point estimates)
for quantities of interest (see, for example, Leonard
[55], Albert & Gupta [3], Epstein & Fienberg [23],
and Gelman et al. [37]).

Except for a few attempts at the use of additive
(linear) models (see, for example, Bhapkar & Koch
[7]), almost all of the papers written on the topic
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emphasize the use of loglinear or logit models. Key
papers by Birch [8], Darroch [14], Good [38], and
Goodman [41, 42], plus the availability of high-
speed computers, served to spur renewed interest
in the problems of categorical data analysis, and
culminated in a series of books first published in
the 1970s and which focused in large part on the
use of loglinear models for both two-dimensional
and multidimensional tables (see, for example, [E,
H, K, L, M, N, Q]). The past decade has seen an
even greater flourishing of this expository literature,
only some of which we reference here (see the review
in [29]).

The subsequent sections of this presentation deal
primarily with the analysis of contingency table data
using loglinear models. The next section describes
three examples that will serve to illustrate some of the
methods of analysis, and the third section discusses
briefly sampling models and estimation methods used
in conjunction with categorical data analysis. The
fourth section outlines the basic statistical theory
associated with maximum likelihood estimation and
loglinear models, including brief descriptions of the
family of graphical loglinear models emanating from
the work of Darroch et al. [19], and related work on
the collapsing of contingency tables, as well as brief
discussions of capture–recapture methods and latent
trait (see Latent Class Analysis) and Rasch models,
and their linkage to loglinear models. The fifth section
contains examples of analysis to illustrate the basic
theoretic results. The sixth section presents a brief
introduction to Bayesian hierarchical approaches to
loglinear models. We end with a guide to some
computer programs for loglinear model analysis.

Three Examples

In this article we use three examples to illustrate
the models and methods described. Two of these are
classic examples, from Bartlett [6] and Waite [71],
which have been analyzed repeatedly in the literature
and have been used in many texts. The third, due to
Edwards & Havranek [22], appears in the more recent
texts by Edwards [I] and by Whitaker [S].

The data reported by Bartlett [6] in his pioneering
article, and included here in Table 1, are from an
experiment giving the response (alive or dead) of
240 plants for each combination of two explanatory
variables, time of planting (early or late), and length
of cutting (high or low).

Table 1 2 × 2 × 2 table

Time of planting:
Early Late

Length of cutting: High Low High Low

Alive 156 107 84 31
Response

Dead 84 133 156 209

Total 240 240 240 240

Source: Bartlett [6].

Table 2 Fingerprints of the right hand classified by the
number of whorls and small loops

Small loops

Whorls 0 1 2 3 4 5 Total

0 78 144 204 211 179 45 861
1 106 153 126 80 32 497
2 130 92 55 15 292
3 125 38 7 170
4 104 26 130
5 50 50

Total 593 453 392 306 211 45 2000

Source: Waite [71].

The questions to be answered are as follows:
(i) What are the effects of time of planting and length
of cutting on survival? (ii) Do they interact in their
effect on survival?

The data in Table 2, from Waite [71], give the
cross classification of right-hand fingerprints accord-
ing to the number of whorls and small loops. The total
number of whorls and small loops is at most five, and
the resulting table is triangular. There the question of
interest is more complicated because, as a result of the
constraint forcing the data into the triangular struc-
ture, the number of whorls is “related to” the number
of small loops. Such an array of counts is referred to
as an incomplete contingency table, and the incom-
plete structure, in the case of the Waite data, was the
cause of yet another controversy involving Pearson
[62], this time with J.A. Harris (see Harris & Treloar
[48]). The fit of a relatively simple model to these
data is explored below. (See also [68], for a reexami-
nation of Pearson’s introduction of the methods used
by Waite.)

The data in Table 3 come from a prospective
epidemiologic study of 1841 workers in a Czecho-
slovakian car factory, intended to investigate the
potential risk factors for coronary thrombosis (see



Loglinear Model 3

Table 3 Prognostic factors in coronary heart disease

B No Yes
F E D C A No Yes No Yes

Negative <3 <140 No 44 40 112 67
Yes 129 145 12 23

≥140 No 35 12 80 33
Yes 109 67 7 9

≥3 <140 No 23 32 70 66
Yes 50 80 7 13

≥140 No 24 25 73 57
Yes 51 63 7 16

Positive <3 <140 No 5 7 21 9
Yes 9 17 1 4

≥140 No 4 3 11 8
Yes 14 17 5 2

≥3 <140 No 7 3 14 14
Yes 9 16 2 3

≥140 No 4 0 13 11
Yes 5 14 4 4

Source: Edwards & Havranek [22].

Edwards & Havranek [22]). There are six vari-
ables corresponding to prognostic factors in the
table:

A (smoking: yes, no)
B (strenuous mental work: yes, no)
C (strenuous physical work: yes, no)
D (systolic blood pressure: <140, ≥140)
E (ratio of beta and alpha lipoproteins: <3, ≥3)
F (family anamnesis of coronary heart disease: yes,

no).

Sampling Models and Estimation for
Contingency Tables

Let x′ = (x1, x2, . . . , xt ) be a vector of observed
counts for t cells, structured in the form of a cross
classification such as in Tables 1 and 2, where
t = 23 = 8 and t = 21, respectively. Now let m′ =
(m1, m2, . . . , mt ) be the vector of expected values
that are assumed to be functions of unknown param-
eters θ ′ = (θ1, θ2, . . . , θs), where s < t . Thus one can
write m = m(θ).

There are three standard sampling models for the
observed counts in contingency tables.

1. Poisson model. The {xi} are observations from
independent Poisson random variables with

means {mi} and likelihood function

t∏

i=1

[
m

xi

i exp(−mi)

xi!

]
. (1)

2. Multinomial model. The total count N = ∑t
i=1 xi

is a random sample from an infinite population,
where the underlying cell probabilities are
{mi/N}, and the likelihood is

N ! · N−N

t∏

i=1

(
m

xi

i

xi!

)
(2)

(see Multinomial Distribution).
3. Product-multinomial model. The cells are parti-

tioned into sets, and each set has an indepen-
dent multinomial structure, as in the multinomial
model.

For the Bartlett data in the preceding section, the
sampling model is product-multinomial – there are
actually four independent binomials, one for each of
the four experimental conditions corresponding to the
two factors, time of planting and length of cutting.

For each of these sampling models the estima-
tion problem can typically be structured in terms of a
“distance” function, K(x, m), where parameter esti-
mates θ̂ are chosen so that the distance between x and
m = m(θ), as measured by K(x, m), is minimized.
The minimum chi-square method uses the distance
function

X2(x, m) =
∑

i=1

(xi − mi)
2

mi

, (3)

and the minimum discrimination information method
uses

G2(x, m) = 2
t∑

i=1

xi log

(
xi

mi

)
. (4)

For the three basic sampling models for contin-
gency tables, choosing θ̂ to minimize G2(x, m) in
(4) is equivalent to maximizing the likelihood func-
tion provided that

t∑

i=1

mi(θ̂) =
t∑

i=1

xi (5)

(and that constraints similar to (5) hold for each of
the sets of cells under product-multinomial sampling).
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Moreover, the estimators that minimize each of (3)
to (5) in such circumstances belong to the class of
best asymptotic normal (BAN) estimates for m (see
Bishop et al. [E] for further discussion of asymptotic
equivalence). Because of various additional asymp-
totic properties, and because of the smoothness of
maximum likelihood estimates in relatively sparse
tables, many authors have preferred to work with
maximum likelihood estimates (MLEs), which mini-
mize (4). We restrict our attention to MLEs, except
for the “related” material on Bayesian estimation in
a later section.

Basic Theory for Loglinear Models

Set-up for Two- and Three-way Tables

For expected values {mij } for a 2 × 2 table,

B

1 2A
1 m11 m12

2 m21 m22

a standard measure of association for the row and
column variables, A and B, respectively, is the cross
product ratio (also referred to as the odds ratio)
proposed by Yule [72]:

α = m11m22

m12m21
. (6)

Independence of A and B is equivalent to setting
α = 1, and can also be expressed in loglinear form:

log mij = u + u1(i) + u2(j), (7)

where
2∑

i=1

u1(i) =
2∑

j=1

u2(j) = 0. (8)

Note that the choice of notation here parallels that for
analysis of variance models.

Bartlett’s [6] no-second-order interaction model
for the expected values in a 2 × 2 × 2 table,

m111 m121 m112 m122

m211 m221 m212 m222

is based on equating the values of α in each layer of
the table; that is

m111m221

m121m211
= m112m222

m122m212
. (9)

The expression given in (9) can be represented in
loglinear form as

log mijk = u + u1(i) + u2(j) + u3(k) + u12(ij)

+ u13(ik) + u23(jk), (10)

where, as in (8), each subscripted u-term sums to zero
over any subscript; for example,

∑

i

u12(ij) =
∑

j

u12(ij) = 0. (11)

All of the parameters in (10) can be written as
functions of cross product ratios (see Bishop et al.
[E]). Our u-term notation follows that in Bishop et al.
[E] and Fienberg [J], and differs somewhat from the
λ notation adopted for example by Goodman [43, 44,
46] and by Agresti [B, C]. Furthermore, we have used
symmetric linear constraints in (11), whereas other
authors often choose to set selected u-terms equal to
zero. The following results hold independent of the
choice of parameterization and constraints.

For the sampling schemes described in the
preceding section, the minimal sufficient statistics
(msss) are the two-dimensional marginal totals,
{xij+}, {xi+k}, and {x+jk} (except for linearly
redundant statistics included for purposes of
symmetry), where a “+” indicates summation over
the corresponding subscript. The MLEs of the {mijk}
under the model given in (10) must satisfy the
likelihood equations,

m̂ij+ = xij+, i, j = 1, 2,

m̂i+k = xi+k, i, k = 1, 2,

m̂+jk = x+jk, j, k = 1, 2, (12)

usually solved by some form of iterative procedure
(see Iterative Proportional Fitting). For the Bartlett
data, the third set of equations in (12) corresponds to
the binomial sampling constraints.

General Results

The results described in the preceding section gener-
alize directly to ones that are applicable to any form



Loglinear Model 5

of cross classification, and to a variety of models that
are linear in the logarithmic scale for the expected
cell values. It is helpful to have these results avail-
able in this general form so that we can adapt them
to specific models for specific circumstances. Four
results are described here: (i) the form of the data
summaries or sufficient statistics for a model, which
take the form of linear combinations of counts, often
sums as in the preceding section; (ii) the form of the
equations that produce maximum likelihoods, setting
these data summaries equal to their expected values;
(iii) the equivalence of MLEs under different sam-
pling models; and (iv) the large-sample chi-square
distribution for the usual goodness-of-fit statistics.
The technical details follow, and some readers may
wish to skip the remainder of the section until they
have seen additional special cases.

Suppose that we have a collection of counts orga-
nized in the form of a vector, x, with a corresponding
vector of expected values, m. We are interested in
models for m such that we can represent the log
expectations λ′ = (log m1, . . . , log mt) as linear com-
binations of the parameters θ . Then the following
results hold under the Poisson and multinomial sam-
pling schemes:

1. Corresponding to each parameter in θ is an MSS
that is expressible as a linear combination of the
{xi}. (More formally, if M is used to denote the
loglinear model specified by m = m(θ), then the
MSSs are given by the projection of x on to
M, PMx. For a more detailed discussion, see
Haberman [N].)

2. The MLE, m̂, of m, if it exists, is unique and
satisfies the likelihood equations

PMm̂ = PMx. (13)

(Note that the equations in (12) are a special case
of those given by (13).)
Necessary and sufficient conditions for the exis-
tence of a solution to the likelihood equations,
(13), are relatively complex (see Haberman [L]).
A sufficient condition is that all cell counts be
positive – that is, x > 0 – but MLEs for loglinear
models exist in many sparse situations in which
a large fraction of the cells have zero counts.
For product-multinomial sampling situations, the
basic multinomial constraints (i.e. that the counts
must add up to the multinomial sample sizes)
must be taken into account. Typically, some of

the parameters in θ that specify the loglinear
model M, such as m = m(θ), are fixed by these
constraints.
More formally, let M be a loglinear model for m
under product-multinomial sampling which cor-
responds to a loglinear model M under Poisson
sampling such that the multinomial constraints
“fix” a subset of the parameters, θ , used to spec-
ify M. Then:

3. The MLE of m under product-multinomial sam-
pling for the model M is the same as the MLE
of m under Poisson sampling for the model M.
As a consequence of result 3, the expressions
given in (12) are the likelihood equations for
the 2 × 2 × 2 table under the no-second-order
interaction model for Poisson or multinomial
sampling, as well as for product-multinomial
sampling when any set of one-way or two-way
marginal totals is fixed (i.e. these correspond to
the multinomial constraints).
A final result, which is used to assess the fit of
loglinear models, can be stated in the following
informal manner:

4. If m̂ is the MLE of m under a loglinear model,
and if the model is correct, then the statistics

X2 =
t∑

i=1

(xi − m̂i)
2

m̂i

(14)

and

G2 = 2
t∑

i=1

xi log

(
xi

m̂i

)
(15)

have asymptotic χ2 distributions with t − s

degrees of freedom, where s is the total
number of independent constraints implied by the
loglinear model and the multinomial sampling
constraints (if any). If the model is not correct,
then X2 and G2, in (14) and (15), are
stochastically larger than χ2

t−s .

Expression 15) is the minimizing value of the
distance function, (5), but (14) is not the minimizing
chi-square value for the function given in (3). Both
χ2 and G2 are special cases of the family of power-
divergence statistics, the distance function of which
takes the form

K(x, m̂) = 2

φ(φ + 1)

t∑

i=1

xi

[(
xi

m̂i

)φ

− 1

]
, (16)
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where φ is a real-valued parameter in the inter-
val −∞ < φ < ∞. The statistic χ2 corresponds to
φ = 1, and the statistic G2 corresponds to the limit
as φ → 0. For further details on the properties of
the general family of power divergence statistics, see
Read & Cressie [66].

In the next section, these basic results are applied
in the context of three data sets presented in the
previous section.

Loglinear Models for High-dimensional Tables

The same ideas and ANOVA-like models in the log-
arithmic scale are useful for multiway tables. For
such models, the minimal sufficient statistics are sets
of marginal totals of the full table. Furthermore, all
independence or conditional independence relation-
ships are representable as loglinear models, and these
models have estimated expected values that can be
computed directly. There is a somewhat larger class
of loglinear models with this direct or decompos-
able representation described below. For all loglinear
models that are not decomposable, we require an iter-
ative solution of likelihood equations.

Not all applications of loglinear models involve
such simple structures as 23 tables or incomplete
6 × 6 arrays. Indeed, much of the methodology was
developed in the mid-1960s to deal with very large,
highly multidimensional tables. For example, in the
National Halothane Study [10], investigators consid-
ered data on the use of (i) five anesthetic agents
in operations involving (ii) four levels of risk, and
patients of (iii) two sexes, (iv) ten age groups, with
(v) seven differing physical statuses (levels of anes-
thetic risk) and (vi) previous operations (yes, no)
for (vii) three different years, from (viii) 34 different
institutions. Two sets of data were collected, the first
consisting of all deaths within six weeks of surgery,
and the second consisting of a sample (of compara-
ble size) of all those exposed to surgery. Thus the
data consisted of two very sparse 5 × 4 × 2 × 10 ×
7 × 2 × 3 × 34 tables, each containing in excess of
57 000 cells. One of the more successful approaches
used in the analysis of the data in these tables was
based on loglinear models and the generalizations of
the methods illustrated in this section.

One of the key reasons why loglinear models have
become so popular in such analyses is that they lead
to a simplified description of the data in terms of
marginal totals – the minimal sufficient statistics of

result 1 of the section “Basic theory for loglinear
models”. This is especially important when the table
of data is large and sparse. For more details on the
halothane study analyses, see Bishop et al. [E].

The doubly subscripted u-term notation introduced
in the previous sections generalizes immediately to
multiway tables. As in the previous section, we
restrict attention to hierarchical models, in which if
any u-term is set equal to zero, all of its higher order
relatives must be set equal to zero; for example, set-
ting u12(ij) = 0 for all i, j implies setting u123(ijk) = 0
for all i, j, k.

We need to think of parameters in loglinear models
as deviations from lower-order parameters; they can
also be represented and interpreted as a function of
generalized odds ratios or cross product ratios; for
example, see Fienberg [J] or Agresti [A, B].

In a multiway contingency table, the model that
results from setting exactly one two-factor term (and
all its higher-order relatives) equal to zero is called
a partial association model. For example, in four
dimensions, if we set u12(ij) = 0 for all i, j , then the
minimal sufficient statistics are {xi+kl} and {x+jkl},
and the resulting partial association model corre-
sponds to the conditional independence of variables
1 and 2 given 3 and 4. The corresponding maximum
likelihood estimates for the expected cell frequen-
cies are

m̂ijkl = xi+klx+jkl

x++kl

for all i, j, k, l. (17)

For more details on partial association models and
their uses, see Bishop et al. [E].

Loglinear Models and Graphical Representations

One of the major innovations of the past 15 years has
been the development of methods associated with a
subfamily of loglinear models known as graphical
loglinear models. The formulation of graphical mod-
els is due originally to Darroch et al. [19], and has
now found its way into several introductory textbooks
on loglinear models (e.g. [F, I, R]), and serves as the
basis for several monographs [O, S].

We begin with some special notation and then
define the class of graphical models. We denote
the situation in which F and G are conditionally
independent given H by F ⊥ G|H . Thus, in a three-
way table, if variables 1 and 2 are conditionally
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independent given 3, we denote this by

1 ⊥ 2|3.

Similarly, in a four-way table, if variables 1 and 2 are
conditionally independent given 3 and 4, we denote
this by 1 ⊥ 2|{3, 4}.

In formal mathematics, a graph G = (K, E)

is based on a set of vertices, K , and a set of
edges, E, which consists of pairs of elements from
K . We depict such a graph using a picture with
vertices linked by edges. For example, the graph
G = (K, E) with K = {1, 2, 3, 4, 5, 6} and E =
{(1, 2), (1, 4), (2, 3), (3, 4), (3, 5), (4, 5), (4, 6)} cor-
responds to Figure 1.

The following definition links partial association
models to the absence of edges in a graph. Let X =
(X1, X2, . . . , Xk) be a vector of random variables,
and K = {1, 2, . . . , k}. Furthermore, let K\{i, j } be
the set of vertices in K excluding i and j . An un-
directed graph is an independence graph if there is
no edge between two vertices whenever the variables
they represent are conditionally independent given
all remaining variables, that is i ⊥ j |K\{i, j } for all
(i, j ) /∈ E, which corresponds to the partial associ-
ation model discussed in the preceding subsection.
This simply means that we can represent all possi-
ble conditional independence relationships in terms
of the absence of edges in an undirected graph.

In the above example with K = {1, 2, 3, 4, 5, 6}
and E = {(1, 2), (1, 4), (2, 3), (3, 4), (3, 5), (4, 5),

(4, 6)}, there are
(6

2

) = 15 possible edges that could
have connected the six vertices, nine of which are
absent and each of which corresponds to a con-
ditional independence statement of the form 1 ⊥
3|{2, 4, 5, 6}. Some of these conditional indepen-
dence relationships can be combined and expressed
in a more succinct form that is intuitive from the
graph. For example, the single conditional relation-
ship, {1, 2} ⊥ {5, 6}|{3, 4}, which can be seen from

2

1

3 5

4 6

Figure 1 An illustrative graph with six vertices and seven
edges, and a four-cycle

the “separation” of {1, 2} from {5, 6} by {3, 4} in the
graph, summarizes four different conditional indepen-
dence relationships.

Independence graphs can be used in connection
with all random variables with positive density (con-
tinuous or discrete), and many of the results for
independence graphs discussed in Lauritzen [O] and
Whittaker [S] are applicable to such random vari-
ables. For the purposes of this article, however, we
can think in terms of categorical variables, and the
models that have independence graph representations
are said to be graphical models. For categorical vari-
ables, all graphical models are loglinear. (For further
details, see Lauritzen [O] and Whittaker [S].)

For three-way tables, the models of complete inde-
pendence (no edges), joint independence (two absent
edges), and conditional independence (one absent
edge) are graphical, but the no-second-order interac-
tion model is not, because the graph with all three
edges present corresponds to the saturated model.
Thus, all graphical models for three-way tables are
decomposable; that is, the expected values can be
written explicitly as a product and/or ratio of the
expected marginal totals corresponding to the suffi-
cient statistics. In this sense, the expected values can
be directly decomposed in terms of the correspond-
ing margins. In such circumstances, the MLEs can be
written out directly and have a simple interpretation;
see [1, 18, 33]. There are also a number of especially
interesting technical results that apply to decompos-
able loglinear models [O] and many of these results
have proved useful for computing bounds on cell
counts given the margins corresponding to a decom-
posable loglinear model (see [12]).

For four-way tables, the graph with four edges in
a cycle; that is, corresponding to the joint occurrence
of 2 ⊥ 3|{1, 4} and 1 ⊥ 4|{2, 3} and with E =
{(1, 2), (2, 3), (3, 4), (1, 4)}, is graphical but also
nondecomposable. This means that the model is not
decomposable and thus the expected values under the
model cannot be expressed as an explicit function
of the marginal totals corresponding to the sufficient
statistics {xij++}, {x+jk+}, {x++kl}, and {xi++l}.

As we saw above, all graphical models for three-
way tables are decomposable. For higher-way tables,
a graphical model is nondecomposable whenever its
independence graph includes a cycle involving four
or more vertices. Thus in the above example involv-
ing six variables where K = {1, 2, 3, 4, 5, 6} and E =
{(1, 2), (1, 4), (2, 3), (3, 4), (3, 5), (4, 5), (4, 6)},
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there is a four-cycle involving the edges linking
{1, 2, 3, 4} and thus the corresponding graphical log-
linear model is nondecomposable.

In general, we have the following relationship
among classes of loglinear models:

hierarchical models

∪
graphical models

∪
decomposable models

∪
conditional independence models.

Model Selection and Collapsing

Many authors have devised techniques for select-
ing among the class of loglinear models applica-
ble for contingency table structures. These typically
(although not always) resemble corresponding model
selection procedures for analysis of variance and
regression models (see Variable Selection). See, for
example, the discussions in Agresti [B], Bishop et al.
[E], and Fienberg [J]. Edwards [I] and Whitaker [S]
have special sections on model selection that take
special advantage of the form of graphical models
and the link between edges and two-factor effects.

A special aspect of model selection relates to the
issue of when is it possible to work with and report
loglinear model effects from a reduced table, collaps-
ing over one or more variables of initial interest. The
problem of collapsing was first taken up in Bishop
[9] and Bishop et al. [E], who defined the concept in
terms of the parameters of the loglinear model itself,
now referred to as parametric collapsibility. Their
discussion led to an extensive literature, in which
differing definitions of collapsibility were proposed,
including model collapsibility in which MLEs for the
probabilities associated with a subset of variables, say
A, can be performed directly in the A-margin of the
table (see Asmussen & Edwards [4] and Lauritzen
[O] for further details and references).

When a contingency table is not collapsible with
respect to a subset of variables, inferences about the
relationships among the remaining variables drawn
from the corresponding marginal table are inevitably

misleading. The best known example of this prob-
lem is referred to as Simpson’s paradox or Yule’s
paradox. It is usually described as a situation involv-
ing three binary variables A, B, and C, such that the
cross product ratio between A and B is greater than
1 for each level of C (i.e. there is a positive condi-
tional relationship) but the cross product ratio in the
marginal table for A and B is less than 1 (i.e. there
is a negative marginal relationship).

Capture Multiple Recapture Analyses

This type of analysis estimates the size of a
nonchanging population (see, for example, Bishop
et al. [E] and Fienberg [26]). If the members of
nonchanging populations are sampled k successive
times (possibly dependent), the resulting recapture
history data can be displayed in the form of a 2k

table with one missing cell, corresponding to those
never sampled. Such an array is amenable to loglinear
analysis, the results of which can be used to project
a value for the missing cell.

In recent years there have been a number of major
applications of the capture–recapture methodology
(k = 2), especially in the context of the US decennial
census; for example, see Zaslavsky & Wolfgang [73]
and Fienberg [28], and in a variety of epidemiologic
settings. For a detailed description of the history
of the methodology and its potential for use in the
context of epidemiology and public health, see Hook
& Regal [49], and the International Working Group
for Disease Monitoring and Forecasting [50, 51].

A key assumption in the use of standard loglinear
models for capture–recapture and multiple-recapture
population estimation is that of constant capture prob-
abilities, or homogeneity. A traditional approach to
allow for heterogeneity has been stratification, with
separate models used for individual homogeneous
strata. The problem with stratification as a strategy
is that it often leads to very sparse cross classifi-
cations, and a substantial increase in the variability
associated with population estimates. Recent develop-
ments linked to a variation of the Rasch model have
led to extensions of the standard models that allow
for special multiplicative forms of heterogeneity; for
example, see [1, 20].

(For further details on these and related models for
population size estimation, see Capture–Recapture;
Rasch Models.)
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Latent Trait and Rasch Models

In psychologic tests or attitude studies, we are often
interested in quantifying the value of an unobservable
latent trait, such as mathematic ability or manual dex-
terity, on a sample of individuals. While latent traits
are not directly measurable, we can either assume
something about the way in which the latent trait
relates to the observable or manifest variables or
assume that we can assess indirectly a person’s value
for the latent trait from his/her responses to a set of
well chosen items on a test (see, for example [5]).

In the 1970s, Goodman [44] and Haberman [N]
developed a special representation for the analysis
of contingency tables for manifest variables using
loglinear models in the presence of latent vari-
ables, beginning with the traditional model in which
the manifest variables are conditionally independent
given the latent variables.

The second approach is prevalent in educational
testing and has recently found its way into a wide
variety of applications. The simplest model in this
domain was introduced by Rasch [65], and is known
as the Rasch model. Given responses from n individ-
uals to k items in a test, the Rasch model permits
the estimation of parameters associated with indi-
viduals and with items, as well as prediction of the
person’s behavior when confronted with a different
set of items from the same domain. In the 1980s,
an important relationship between the Rasch model
and loglinear models was recognized by Tjur [70],
Cressie & Holland [11], and Duncan [21]. The repre-
sentation of these models in terms of symmetry and
quasi-symmetry was presented in Fienberg & Meyer
[32], Darroch [16] and Darroch & McCloud [17]. See
also Anderson [D] and the article on Rasch Models
for a presentation of this topic.

Association Models for Ordinal Variables

Loglinear models as described in this article ignore
any structure linking the categories of variables, yet
biostatistical problems often involve variables with
ordered categories; for example, differing dosage
levels for a drug or the severity of symptoms or
side effects. Beginning in the late 1970s, methods
for a special class of models, known as associa-
tion models, moved to the forefront of methodolog-
ical research. Goodman [45] provided a framework
for association models that builds on extensions to

standard loglinear models and utilizes multiplicative
interaction terms. For a detailed description of these
and other methods for ordinal variables, see Agresti
[A] and Clogg & Shidadeh [G]. Etzioni et al. [25]
provide a useful review of association models for
ordinal variables in medical research using notation
compatible with this article.

Loglinear Model Analyses

Bartlett’s Data and No-second-order Interaction

For the 23 table of Bartlett, variables 2 (time of plant-
ing) and 3 (length of cutting) are fixed by design, so
that m̂+jk = 240, and the estimated expected values
under the no-second-order interaction model of the
expressions given in (12) are shown in Table 4. These
values were computed by Bishop et al. [E] using
the method of iterative proportional fitting (IPF).
Bartlett originally found the solution to (14) by noting
that the constraints in his specification (11), reduced
(14) to a single cubic equation for the discrep-
ancy ∆ = m̂111 − x111. Note that the expected val-
ues satisfy (14), e.g., m̂12+ = 78.9 + 36.1 = 115 =
84 + 31 = x12+. The goodness-of-fit statistics for this
model are X2 = 2.27 and G2 = 2.29. Using result
4 of the preceding section, one compares these val-
ues to tail values of the chi-square distribution with
1 df, for example χ2

1 (0.10) = 2.71, and this suggests
that the no-second-order interaction model provides
an acceptable fit to the data.

Since the parameters u, {u2(j)}, {u3(k)}, and
{u23(jk)} are fixed by the binomial sampling
constraints for these data, the model given by (12)

Table 4 Observed and expected values for
the Bartlett data, including the no-second-order
interaction model

Observed Estimated expected
Cell x m̂

1,1,1 156 161.1
2,1,1 84 78.9
1,2,1 84 78.9
2,2,1 156 161.1

1,1,2 107 101.9
2,1,2 133 138.1
1,2,2 31 36.1
2,2,2 209 203.9
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is often rewritten as

log

(
m1jk

m2jk

)
= 2[u1(1) + u12(1j) + u13(2k)]

= w + w2(j) + w3(k), (18)

where ∑

j

w2(j) =
∑

k

w3(k) = 0.

Expression (18) is referred to as a logit model
for the log odds for alive versus dead (see
Logistic Regression). The simple additive structure
corresponds to Bartlett’s notion of no-second-order
interaction.

Waite’s Fingerprint Data and Quasi-independence

For the Waite fingerprint data of Table 2, one model
that has been considered is the simple additive log-
linear model of (9), but only for those cells where
positive counts are possible; that is, in the upper
triangular section. For cells with i > j, mij = 0 a
priori. This restricted version of the independence
model is referred to as a quasi-independence model,
and the results of the preceding section can be used
in connection with it. The MSSs are still the row
and column totals (result 1). The likelihood equations
under multinomial sampling are (applying results 1
and 2):

m̂i+ = xi+, i = 0, 1, 2, . . . , 5,

m̂+j = x+j , j = 0, 1, 2, . . . , 5, (19)

where mij = 0 for i > j . A solution of (19) satisfying
the model can be found directly, or by using a
standard iterative procedure. The estimated expected
values for the fingerprint data under the model of
quasi-independence are given in Table 5, and they
satisfy the marginal constraints in (19).

The goodness-of-fit statistics for this model are
X2 = 399.8 and G2 = 450.4, which correspond to
values in the very extreme right-hand tail of the χ2

10
distribution. Thus the model of quasi-independence
seems inappropriate. Darroch [15] describes the log-
linear model of F -independence (with more parame-
ters than the quasi-independence model), which takes
into account the way in which the constraint – that
the number of small loops plus the number of whorls
cannot exceed 5 – makes the usual definition of

Table 5 Estimated expected values for fingerprint data
under quasi-independence

Small loops

Whorls 0 1 2 3 4 5 Total

0 200.6 167.4 166.6 150.3 131.1 45.0 861
1 122.2 101.9 101.4 91.6 79.9 497
2 85.5 71.4 71.0 64.1 292
3 63.8 53.2 53.0 170
4 70.9 59.1 130
5 50.0 50

Total 93 453 392 306 211 45 2000

independence inappropriate. This model in loglinear
form is

log mij = u + u1(i) + u2(j) + u3(5−i−j), (20)

where the u3 parameters correspond to diagonals
along which the sum of the numbers of whorls and
small loops is constant. Darroch & Ratcliff [18]
illustrate the fit of the F -independence model to a
related set of fingerprint data involving large rather
than small loops.

Application of Graphical Loglinear Models:
Prognostic Factors for Coronary Disease

To illustrate some of the features of graphical models,
we now analyze the data in Table 3 on prognostic
factors for coronary heart disease among 1841 men in
a Czech car factory. Our analysis follows closely that
in Whittaker [S]. We begin by examining all partial
association models and computing G2 for each of the
15 partial association models found by setting one
two-factor term equal to zero (see Table 6).

There are 16 df associated with each G2 value. If
we drop edges in a graph using the 0.05 P value for
a χ2 variable with 16 df, that is 26.30, then we end
up with the graph shown in Figure 2.

Table 6 Goodness of fit of partial association models for
coronary heart disease data

A *
B 22.65 *
C 42.80 689.99 *
D 28.72 12.23 14.81 *
E 40.02 17.24 18.63 31.06 *
F 21.31 22.79 22.15 18.35 18.32 *

A B C D E F
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F B

C A

E D

Figure 2 A preliminary graphical model for the prognos-
tic factors example based on partial association models

The likelihood ratio statistic for the loglinear
model corresponding to this graph is G2 = 83.75
with 51 df. This corresponds to a P value of 0.0026,
and suggests that we have deleted too many edges.
A few additional steps of addition and deletion yield
the model

[ABCE][ADE][BF ],

for which the likelihood ratio statistic G2 = 44.59
with 42 df suggests a well fitting model. The corre-
sponding independence graph is shown in Figure 3.

The alternative graphical model shown in
Figure 4, with two fewer edges, is somewhat simpler
than the preferred model reported by Edwards [I] and
fits the data well.

In Figure 4, F (family history) is conditionally
independent of {D, E} (the physical symptoms), given
{A,B,C} (the behavioral conditions). For further
details on the analysis of this data set using graphical
models, see Edwards [I] and Whitaker [S].

F B

C A

E D

Figure 3 An intermediate graphical model for the prog-
nostic factors example

F B

C A

E D

Figure 4 The final graphical model for the prognostic
factors example

Bayesian Approaches

Background

In recent years, much attention has been directed to
the development of Bayesian approaches for contin-
gency tables and loglinear models. Early references
include Good [39, 40] and Fienberg & Holland [31].
Initial attempts at formulating a Bayesian approach
to estimation in contingency tables concentrated on
the problem of incorporating prior knowledge about
unobservable cell proportions or about expected cell
counts. Those early efforts resulted in the deriva-
tion of the Dirichlet family of distributions as the
conjugate family of prior distributions for cell pro-
portions and expected counts. More recently, empha-
sis has been placed on formulation of more complex
prior distributions that permit incorporating informa-
tion about the underlying structure in a contingency
table (e.g. Albert & Gupta [2, 3], Knuiman & Speed
[52], and Epstein & Fienberg [23, 24]), and on com-
putational issues (e.g. Gelman & Rubin [36], Epstein
& Fienberg [23], and Gelman et al. [37]).

The general approach adopted by most of these
authors has been as follows: using either the multi-
nomial or the Poisson sampling models, incorporate
uncertainty about the expected cell proportions (or
expected cell counts) via the Dirichlet conjugate fam-
ily of prior distributions, with variations to account
for more or less structure in the expected cell means.
Markov chain Monte Carlo methods (see, for exam-
ple, Gelfand & Smith [35]) can then be used to
approximate the marginal posterior distributions of
the expected cell values or of any continuous func-
tions of m.

A different, but parallel line of development is
described in the work of, for example, Leonard
[55], Laird [53], and Nazaret [58]. These authors
address the problem of estimation in contingency
tables from a loglinear model approach, and attempt
to use Bayesian results similar to those developed by
Lindley & Smith [56] for the linear model. Except
where convenient for computations, we will describe
the Bayesian methods that address contingency tables
directly, without resorting to results from the linear
models literature.

To introduce the Bayesian approach to estimation,
we consider the counts {xi}, i = 1, . . . , t (t equals the
number of cells), to be observations from independent
Poisson random variables, with means or expected



12 Loglinear Model

values {mi}. In the Bayesian framework, the {mi}
are random variables having some prior distribution,
and the statistician’s task is to update the prior to a
posterior distribution by incorporating the informa-
tion about the {mi} provided by the observed counts
{xi}. For the multinomial sampling model, we are
interested in the marginal posterior distributions of
parameters of a loglinear model, {θi}, or the posterior
distribution of the expected cell values, {mj }. For
the Poisson and the multinomial sampling models,
likelihood functions are given in (1) and (2).

Estimation and Computation

Here we refer to the Poisson sampling model. Results,
however, also apply to the multinomial model after
appropriate normalization (see, for example, Gelman
et al. [37]).

The simplest way to incorporate prior information
about the value of the expected cell counts {mi} is via
the Dirichlet conjugate family of prior distributions.
If {mi} are jointly distributed a priori as independent
Dirichlet random variables with parameters k and
{ηi}, then the joint prior distribution has density
function

p(m|k, η) ∝
t∏

i=1

m
kηi−1
i , (21)

where k > 0 and ηi > 0. For η = {ηi}, parameters
ηi can be thought of as our prior “guess” about the
value of {mi}, while the flattening constant k [30, 39]
represents our prior certainty about those guesses.

For the likelihood corresponding to the Poisson
sampling model in (1), and for p(m|k, η) as in (21),
the posterior distribution of the expected cell counts
m is proportional to the product of the likelihood
function and the prior distribution

p(m|x,k, η) ∝
∏

i

p(xi |mi) × p(mi |k, ηi)

∝
∏

i

exp{−mi}mxi+kηi−1
i . (22)

Gelman & Rubin [36] and Gelman et al. [37] have
developed a Bayesian version of IPF (BIPF) starting
from (22) and using the multiplicative version of the
loglinear model. Their algorithm produces estimates
of marginal posterior distributions of the {mi} (or of
continuous functions of the {mi}) rather than point
estimates (as does the standard IPF). In this sense,

BIPF is a misnomer, since it incorrectly suggests that
the Bayes estimates obtained are, as in the frequentist
case, just point estimates of the {mi}. For some details
on the derivation of BIPF, the reader is referred to
Gelman & Rubin [36].

Examples

In the previous section, we applied the BIPF to the
Bartlett 23 table and to Edwards & Havranek’s [22]
six-way table on prognostic factors for heart disease.
In both examples we used a multinomial sampling
model with the constraints imposed by the sampling
scheme.

The loglinear models that we fit to each data set
were those described earlier. Thus, for the 2 × 2 × 2
table of Bartlett, we used a loglinear model with main
effects and all two-way interactions, while for the
six-way table we used a model corresponding to

[ABC][ACE][ADE][BF ].

We incorporated prior information via the Dirichlet
conjugate family (see (21)), with kηi = 0.5 for all i,
that results is noninformative prior densities for the
expected cell counts {mi}. For a somewhat different
Bayesian analysis of these data along with an excel-
lent discussion of Bayesian model search focusing on
graphical models, see [57]. Dobra, Karr, Sanil, and
Fienberg [13] use similar tools in the context of dis-
closure limitation problems and apply them to these
data as well.

Our Bayesian results for the Bartlett data are
given in Table 7. To highlight the differences between
results obtained from the frequentist and the Bayesian
approaches (see Table 4 for the former), we provide
not only a point estimate for the expected counts
{mi} (we chose the means of the marginal posterior
distributions as our point estimates) but also the
posterior 5th, 25th, 50th, 75th, and 95th percentiles
of the distributions of each {mi}.

Note that, as required by the sampling scheme,
m̂12+ = 78.75 + 36.01 = 114.8 = 84 + 31 = x12+
(within numerical error), and that the same holds true
for m̂11+, m̂21+, and m̂22+.

We give results obtained for the prognostic factors
for heart disease data in Table 8, which shows the
means of the marginal posterior distributions of the
expected cell counts {mi}. Note that, as required, the
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Table 7 Observed values, posterior means of expected values, and percentiles of posterior distribution
of expected values for the Bartlett data, including the no-second-order interaction model

Posterior percentiles
Observed Posterior

Cell x mean 5th 25th 50th 75th 90th

1,1,1 156 161.13 150.67 156.82 161.31 165.37 170.97
2,1,1 84 78.87 69.03 74.63 78.69 83.18 89.33
1,2,1 84 78.75 68.67 74.45 78.43 82.78 89.67
2,2,1 156 161.25 150.33 157.22 161.57 165.55 171.33

1,1,2 107 101.89 91.06 97.36 101.87 106.43 112.83
2,1,2 133 138.11 127.17 133.57 138.13 142.64 148.94
1,2,2 31 36.01 29.56 32.89 35.81 38.91 43.67
2,2,2 209 203.99 196.33 201.09 204.19 207.11 210.44

Table 8 Prognostic factors in coronary heart disease: pos-
terior means of expected counts

B No Yes
F E D C A No Yes No Yes

Negative <3 <140 No 41.2 33.6 104.7 68.2
Yes 122.1 139.0 15.0 24.6

≥140 No 32.9 16.5 83.5 33.4
Yes 97.4 68.1 12.0 12.0

≥3 <140 No 27.0 31.7 68.6 64.3
Yes 52.7 83.4 6.5 14.8

≥140 No 26.9 26.5 68.4 53.9
Yes 52.6 69.8 6.5 12.4

Positive <3 <140 No 6.3 5.1 21.2 13.8
Yes 18.5 21.1 3.0 5.0

≥140 No 5.0 2.5 16.9 6.8
Yes 14.8 10.3 2.4 2.4

≥3 <140 No 4.1 4.8 13.9 13.0
Yes 8.0 12.6 1.3 3.0

≥140 No 4.1 4.0 13.8 10.9
Yes 8.0 10.6 1.3 2.5

sum of the estimated expected counts equals N , the
total number of individuals in the study.

Brief Guide to Computer Programs for
Loglinear Model Analysis

As with other forms of multivariate analysis, the anal-
ysis of multidimensional contingency tables relies
heavily on computer programs. A large number of
these have been written to compute estimated param-
eter values for loglinear models and associated test
statistics, and most computer installations at major
universities have one or more programs available for
users (see Software, Biostatistical).

The most widely used numerical procedure for
the calculation of maximum likelihood estimates for
loglinear models a decade ago was IPF, which iter-
atively adjusts the entries of a contingency table to
have marginal totals equal to those used in specify-
ing the likelihood equations. The IPF approach has
been implemented in the BMDP 4F Program and in
SPSS. The major advantage of the IPF method is
that it requires limited computer memory capabilities
since it does not require matrix inversion or equiva-
lent computations, and thus can be used in connection
with the analysis of very high-dimensional tables. Its
major disadvantage is that it does not provide, in an
easily accessible form, estimates of the basic loglinear
model parameters (and an estimate of their asymp-
totic covariance matrix); it provides only estimated
expected values.

MIM is an excellent Windows program for graph-
ical modeling that is useful for fitting graphical (and
other loglinear) models designed in part to accom-
pany Edwards [I]. A student version is available free
from www.hypergraph.dk.

The other numerical approaches suggested for
the computation of maximum likelihood estimates
are typically based on classical procedures for solv-
ing nonlinear equations, such as modifications of
Newton’s method or the Newton–Raphson method
(see Optimization and Nonlinear Equations). Since
such approaches can be implemented as part of the
methods for the broader class of generalized lin-
ear models of which loglinear and logit models
are special cases (see, for example, McCullagh &
Nelder [P]), a common approach in several com-
puter packages is to embed loglinear and logit mod-
els approaches as part of GLM routines, see; for
example S-PLUS GLIM, SAS (PROC GENMOD),
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STATA, and SYSTAT. The virtue of these programs
is that they produce both estimated expected val-
ues and estimated parameter values, and an estimate
of the asymptotic covariance matrix. The user of a
GLM package should be sure to check the specific
parameterization used, as the constraints on the log-
linear models typically vary from package to package.
No matter what the choice of parameterization for
the loglinear model parameters, the estimates of the
expected values and the goodness of fit statistic val-
ues should agree with those computed using the IPF
algorithm. Some packages such as BMDP and SPSS
also have separate subroutines for logit and logistic
regression models. SAS’s JMP has only a logistic
regression routine.

Agresti [C] includes an especially nice appendix
with a guide to SAS and SPSS programming, and
Agresti [B] includes examples from GLIM and
BMDP. Stokes et al. [69] provide a detailed guide
with examples for the SAS PROC CATMOD, which
can be used for loglinear models as well as a number
of other approaches to the analysis of categorical data.

Before running any of the loglinear model or
generalized linear model routines referred to above
on sparse multiway tables with one or more zero
entries, users should read the package documentation
with care, since some packages may treat zeros in an
unexpected fashion.
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Lognormal Distribution

The lognormal distribution is one of the most com-
monly used distributions for modeling the data arising
in biostatistical studies.

The random variable X has a two-parameter
lognormal distribution with parameters µ and σ 2 if
Y = ln X has a normal distribution with mean µ

and variance σ 2. The probability density function of
the lognormal distribution is

f (x) = 1

xσ(2π)1/2
exp

[
− (ln x − µ)2

2σ 2

]
,

x > 0, −∞ < µ < ∞, σ > 0,

where σ is called the shape parameter.
The three-parameter lognormal distribution, a gen-

eralization of the two-parameter lognormal distribu-
tion, is obtained when X in the above definition is
replaced by (X − c) with x > c, where c is any real
number (see [10] for further details). c is called the
location parameter.

Properties

The properties of the two-parameter lognormal dis-
tribution are:

1. Mean = exp(µ + σ 2/2).
2. Variance = exp(2µ + σ 2)[exp(σ 2) − 1].
3. Median = exp(µ).
4. Mode = exp(µ − σ 2).
5. The 100 pth percentile (quantile) = exp(µ +

zpσ 2), where zp is the pth percentile of the
standard normal distribution.

6. The standardized lognormal distribution tends to
the standard normal distribution as σ tends to
zero.

7. The moment generating function of the lognor-
mal distribution does not exist.

For more properties of the two- and three-parameter
lognormal distributions, see [6] and [10].

Estimation of Parameters

The estimation of parameters µ and σ 2 of the two-
parameter lognormal distribution, in general, follows
from the above logarithmic transformation (of the

data) and related estimation methods for the nor-
mal distribution. We refer the reader to [19] and [13]
for an extensive discussion of statistical inference for
the two-parameter lognormal distribution. The meth-
ods of estimation for the three-parameter lognormal
and the truncated lognormal distributions are more
complicated [4, 5]. The estimation in the presence of
censored data is discussed in [4].

Applications

Aitchison & Brown [1] provide an extensive discus-
sion of early history, the geneses and applications
of lognormal distributions. Koch [11, 12] has dis-
cussed the geneses of lognormal distributions arising
from biological and pharmacological mechanisms;
for example, he considered the lognormal distribution
for modeling the metabolic turnover. Many applica-
tions of the lognormal distributions in biochemistry
are discussed in [15] and its references.

The lognormal distributions are useful for model-
ing data arising in many medical studies. The hazard
function of the lognormal distribution first increases
and then decreases. In many cancer studies the log-
normal distribution is used as a survival distribution
[2, 8, 9, 20] (see Parametric Models in Survival
Analysis).

Lawrence [14] and the references cited in his paper
provide an extensive review of the applications of the
lognormal distribution in medical studies such as the
incubation period of disease, the time to recovery,
and duration of survival.

The delta–lognormal distribution, a variant of a
lognormal distribution, appears in the analysis of
ichthyoplankton data [17]. The Poisson mixture using
the lognormal distribution arises in many ecologic
studies such as the analyses of species frequency
data [3, 8] (see Contagious Distributions). For more
applications of the lognormal distribution arising in
ecologic studies, see [7].

Mosimann & Campbell [16] discuss the lognormal
distribution as a model for tissue growth. In the same
paper, they also discuss the uses of the multivariate
lognormal distribution for size and shape analyses
arising in allometry studies.
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Logrank Test

The logrank test (so named by Peto & Peto [1])
is a rank test for comparing two samples of right-
censored survival data. A careful description of its
several origins, history, and connection to other tests
for one-, two- and k-sample problems in censored
survival data is given in the article Linear Rank
Tests in Survival Analysis. Here we merely define
the test in the simplest situation.

Let X̃hi , for i = 1, . . . , nh, h = 1, 2, be inde-
pendent nonnegative random variables with abso-
lutely continuous distribution function Fh and haz-
ard rate αh. We do not observe the X̃hi but rather
the right-censored samples (Xhi, Dhi), Xhi = X̃hi ∧
Uhi , and Dhi = I {Xhi = X̃hi} for some censoring
times Uhi, i = 1, . . . , nh, h = 1, 2. It is assumed that
there is independent censoring (see Censored Data),
which would be true if the Uhi were independent ran-
dom variables, independent of the X̃hi . In accordance
with the assumption of absolutely continuous distri-
butions, we assume that all X̃hi are distinct (no ties).
See Tied Survival Times for further generalization.

The (two-sample) logrank test tests the hypothesis
H0 : F1 = F2 (or equivalently α1 = α2) by comparing
the observed number of events in group 1,

O1 =
n1∑

i=1

Dhi,

with the so-called expected number of events in group
1 under H0 (see Expected Number of Deaths). The
latter is estimated as

E1 =
2∑

h=1

nh∑

i=1

Dhi

Y1(Xhi)

Y1(Xhi) + Y2(Xhi)
,

where Yh(t) = ∑nh

k=1 I {Xhk ≥ t} is the number at risk
in group h at time t (see Risk Set). Indeed, it may
be shown (still assuming no ties) that in large sam-
ples, (O1 − E1)/

√
V 1 is asymptotically standard

normal, with

V1 =
2∑

h=1

nh∑

i=1

Dhi

Y1(Xhi)Y2(Xhi)

(Y1(Xhi) + Y2(Xhi))2
.
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Lomb Periodogram

The Lomb periodogram is a generalization of the
periodogram (see Spectral Analysis) for unequally
spaced series. Many biomedical time series are sam-
pled irregularly because of missing data due to instru-
mental failures or because the nature of the measured
variable makes the sampling interval intrinsically
uneven. Since traditional spectral estimators need
even sampling rates, unevenly spaced series should
be interpolated and resampled before spectral analy-
sis. By contrast, the method proposed by Lomb does
not require interpolation and resampling [4]. Given N

data [yi] sampled at times ti , the normalized Lomb
periodogram P(ω) (with ω the angular frequency
2πf ) is:

P(ω) = 1

2σ 2






[
N∑

i=1

(yi − y) × cos ω(tn − τ(ω))

]2

N∑

i=1

cos2 ω(tn − τ(ω))

+

[
N∑

i=1

(yi − y) × sin ω(tn − τ(ω))

]2

N∑

i=1

sin2 ω(tn − τ(ω))






,

(1)

where y = (1/N)
∑N

1 yi and σ 2 = (1/(N − 1))∑N
1 (yi − y)2 are the mean and the variance of the

data and

τ(ω) = 1

2ω
arctan

{ ∑N
i=1 sin 2ωti∑N
i=1 cos 2ωti

}

is an offset that makes P(ω) invariant to time trans-
lation. An implementation in code by a fast algorithm
can be found in [5]. Equation (1) defines a normalized
periodogram because of the term σ 2 in the denom-
inator. Scargle showed that with this normalization,
P(ω) of a white Gaussian noise approximately fol-
lows an exponential probability distribution with unit
mean [6]. A statistical test for detecting a period-
icity in the data derives from this property. Given
M independent spectral lines, if the highest peri-
odogram ordinate exceeds the critical value Pα =

− ln(1 − (1 − α)1/M), then it is significant at the
false-alarm probability α, that is, the null hypothe-
sis that the time series is a white Gaussian noise is
rejected. A procedure for searching multiple period-
icities is reported in [8].

The performances of the Lomb periodogram were
extensively analyzed in studies assessing the heart-
rate variability [3], the respiratory arrhythmia in
neonates [2], and the circadian rhythms in oral
temperature and urinary cortisol secretion [8]. This
method shows some limitations when the data contain
fractions of non-Gaussian noise or periodic signals
with nonsinusoidal shapes [7] or when the sampling
rate is not random, but depends on the value of the
signal [1].
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Longitudinal Data
Analysis, Overview

Longitudinal data arise when each member of one or
more cohorts or panels of subjects provides a mea-
surement on a number of occasions [21]. The cohort
may be defined, for example, in terms of the date
of birth of its members, the time of onset of a dis-
ease or, in the case of a clinical trial, the beginning
of treatment or time of randomization. The repeated
(serial) measures might be quantitative or qualita-
tive, and may also be multivariate. For simplicity,
however, the present discussion will be limited to
univariate measures. Together, the results of these
measurements will form a response profile (partic-
ular examples being growth curves (see Nonlinear
Growth Curve) and time trends arising from phar-
macokinetic experiments). Typically, longitudinal
or repeated measures data are collected prospectively,
but it is also possible to collect them retrospectively
through the use of medical records, for example.

Time series data are similar to those described
in this section but, on the whole, they can be dis-
tinguished from the latter because they usually arise
from a single or, at most, a few extended sequences
of observations as opposed to a larger number of
shorter sequences. Survival data, event history data
(see Repeated Events) multistate (e.g. states of well-
being, morbidity, and death) transition data (see,
Fix–Neyman Process) and competing risks data are
also similar to repeated measures data in that they
all involve observation over time. However, instead
of enquiring about the state of a patient at each of
a series of discrete times, investigators interested in
survival times, for example, usually aim to record
the exact date of death of each of the patients (i.e.
the time of death is, in theory, a continuous rather
than a discrete variable). The methods of analysis
required for such data are distinctive, often involving
time as an explicit response variable, and are cov-
ered for example, in Survival Analysis, Overview.
In practice, many event recording systems do not
record continuously but only to within discrete inter-
vals of time, and continuously recorded data can be
well approximated by grouping over short intervals
of time. Such discrete event history or survival data
can then be considered as a series of repeated qual-
itative measurements on each subject and analyzed

using the methods of this article in which time is a
covariate or design factor [44].

Studies may involve more than one timescale. For
example, treatment studies often consider both time
under treatment and subject’s age, and multistate tran-
sition processes may involve effects due to time since
entry to the current state and the cumulative time
spent in that and other states. Care may be required
to insure that effects on each scale are all identifi-
able. The difficulties posed by age–period–cohort
effects are a well known example.

Longitudinal studies may be observational (e.g.
cohort studies epidemiologic surveys) or experimen-
tal (e.g. controlled clinical trials). In a clinical trial,
the treatment might remain constant for any particular
cohort or group of patients (with random allocation
of patients to the competing treatments) or vary from
one occasion to another (with random allocation to
groups defined by the order in which the treatments
are received). In the case of the latter, the trial is an
example of the use of a crossover design.

The simplest kind of longitudinal study involves
taking measurements on all subjects at the same
times: that is, each patient provides exactly the same
set of measures. It is possible, however, for both the
number and spacing of the repeated measures to vary
from one subject to another. The latter may arise
from the design of the study, but in addition may be
due to unintentionally missing observations. Patients
might, for example, fail to keep an appointment on
a given date, might be too ill to be interviewed, or
might permanently drop out of or be lost from the
study through a variety of causes (e.g. death, emigra-
tion, or refusal to continue treatment). The various
approaches to the statistical analysis of longitudi-
nal data differ in their ability to cope with missing
data and in the assumptions made concerning the
mechanism by which the missing data might arise.
Missing data are a challenge to valid inference from
longitudinal studies (see Diggle–Kenward Model
for Dropouts; Nonignorable Dropout in Longi-
tudinal Studies). (For details of modeling missing
data mechanisms, see, for example, Little [45] or
Diggle & Kenward [14].) Investigators should mini-
mize the occurrence of missing values, avoiding them
altogether wherever possible. If missing values are
inevitable, then investigators should collect as much
information as possible about the reasons for the
missing data and to try to incorporate this information
in their analysis.
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Examples of Longitudinal Studies

First, let us consider experimental studies. Frison
& Pocock [26] describe a clinical trial in which
152 patients with heart disease were randomly allo-
cated to treatment using an active drug or a placebo
during a 12-month follow-up period. The concen-
tration of the liver enzyme creatine phosphokinase
(CPK) in the patients’ serum was measured as an
indicator of liver damage arising as a side effect
of the treatment. Each patient had three pretreat-
ment measurements which were taken at 2 months
before, 1 month before, and at the time of random-
ization. They also had eight posttreatment measure-
ments taken every 1.5 months after randomization.
An example of a simple crossover trial is provided
by Hills & Armitage [32]. The experiment was a com-
parison of the effects of an active drug and a placebo
in the treatment of enuresis. One group of patients
received 14 consecutive days of treatment with the
active treatment, followed by a similar period of treat-
ment using the placebo. A second group received the
treatment combinations in the reverse order: placebo
followed by active drug. The response variable was
the number of dry nights out of 14: that is, each
patient provided two measures – one corresponding
to each of the two periods of treatment.

Longitudinal surveys are also common in medical
research. Here we describe three longitudinal studies
of lung function. Laird & Ware [39], for example,
describe a survey in which pulmonary function in
about 200 school children was examined under nor-
mal conditions, then during an air pollution alert and
on three successive weeks following the alert. The
main aim of the study was to determine whether
the volume of air exhaled in the first second of a
forced exhalation (FEV1) was depressed during the
alert. The analysis of repeated categorical measures
has been illustrated by Ware et al. [55]. Children
were assessed annually at ages 9–12 to evaluate the
potential effects of air pollution on persistent wheeze.
Parents were asked about wheezing by their children
during the previous year and responses were grouped
into three mutually exclusive categories or states: no
wheeze, wheeze with colds, or wheeze apart from
colds. Our final example concerns a survey with many
missing observations. Lavange & Helms [41] ana-
lyzed data from a study of 72 children aged from 3
to 12 years. These data are also discussed by Little
[45]. A measure of maximum expiratory flow rate

was obtained annually, and differences in the result-
ing growth curve were related to the sex and race
of the children. The number of actual measurements
recorded on each child ranged from 1 to 8 (with an
average of 4.2). Some values were missing because
the child was either older than 3 at the beginning of
the study, or younger than 12 at the end of it.

In the analysis of longitudinal data, the critical
feature to recognize is that, since sets of measures
are obtained from the same subjects, these measures
are likely to be correlated, and can rarely be con-
sidered as independent even after conditioning upon
known predictors or explanatory variables. How
that dependence is dealt with is a principal distin-
guishing feature of different methods of analysis.
However, before outlining these, we now consider
more preliminary examination of the data.

Graphical Displays and Data Exploration

Diggle et al. [15] give the following simple guide-
lines for the exploration of longitudinal data using
graphical displays:

1. show as much of the relevant data as possible
rather than data summaries;

2. highlight aggregate patterns of potential scientific
interest;

3. identify both cross-sectional and longitudinal
patterns in the data;

4. make easy the identification of unusual individ-
uals or unusual observations.

Here we produce a few simple plots for data on sal-
solinol levels (Table 1). These data were collected
during an investigation into the role that the alkaloid
salsolinol plays in bodily dependence on alcohol [30].
Fourteen individuals attending an alcohol treatment
unit were observed over a period of four days imme-
diately after being admitted to the unit, measurement
of salsolinol being made from urine samples taken
daily throughout the study period. The individuals
were categorized as being in one of two groups: those
considered to be severely dependent and those judged
to be only moderately dependent. The response vari-
ables for the study are the four repeated measure-
ments of urine concentrations of salsolinol. First,
box plots (see Graphical Displays) of the distribu-
tions of the measurements at any one time point (see
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Table 1 Salsolinol concentrations on four successive days

Obs. Group Day 1 Day 2 Day 3 Day 4

1 2 0.64 0.70 1.00 1.40
2 1 0.33 0.70 2.33 3.20
3 2 0.73 1.85 3.60 2.60
4 2 0.70 4.20 7.30 5.40
5 2 0.40 1.60 1.40 7.10
6 2 2.60 1.30 0.70 0.70
7 2 7.80 1.20 2.60 1.80
8 1 5.30 0.90 1.80 0.70
9 1 2.50 2.10 1.12 1.01

10 2 1.90 1.30 4.40 2.80
11 1 0.98 0.32 3.91 0.66
12 1 0.39 0.69 0.73 2.45
13 1 0.31 6.34 0.63 3.86
14 2 0.50 0.40 1.10 8.10

Source: Hand & Taylor [30].

Figure 1) indicates skewness. A logarithmic trans-
formation (base ten) of the salsolinol concentrations
was therefore carried out prior to any further analy-
sis. We next plot the time course for each individual
subject, distinguishing the subjects from each of the
two alcohol dependency groups (Figure 2).

In Figure 3 is shown a plot of the mean values
of the logged salsolinol levels for the two groups,
together with their standard errors. An alternative
would have been to plot a series of box plots, perhaps
revealing more information about between-subject
differences at each of the time points. Figure 3
highlights the difference between the two groups in
rates of change over time, although the main mes-
sage appears to be that the groups are, in fact, very
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Figure 1 Salsolinol concentrations over time
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Figure 2 Salsolinol data – individual profiles after log
transformation
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Figure 3 Mean profiles of salsolinol levels after log
transformation for severe and moderate alcohol dependent
groups

similar. Although graphs of means such as that found
in Figure 3 (and, less often, box plots) are much
more commonly seen than those for the response
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profiles for individual subjects, great care must be
taken in their interpretation. Figure 3 hides the pattern
of within-subject changes. A graph of the latter type
might also be very misleading if there were increas-
ing numbers of dropouts over time, with the plotted
means being calculated from the survivors at each
time. If the dropping out is any way dependent on the
present or previous state of the subject then the later
means will be biased. One way of avoiding this bias
is to plot means derived from cases with complete
data, but the latter approach might be very inefficient
if there are lots of dropouts.

Plots such as those provided in Figures 2 and 3
might indicate how one might extract suitable sum-
mary measures for each subject for a subsequent
simple analyses of these response features. Visual-
izing the patterns in the data, and the subsequent
extraction of the required response features, might
be aided by smoothing each of the individual time
courses. A search for the time of maximum response
in a pharmacokinetic experiment, for example, might
be quite difficult in the presence of considerable
within-subject “noise”. An example of smoothing in
a pharmacokinetic experiment using a moving aver-
age prior to response feature extraction (the time of
maximal response) is provided in Durcan et al. [18].
Other applications of smoothing methods, together
with examples of their use, are described in Diggle
et al. [15].

Another possibility is a simple multiple scatter plot
(ignoring group differences) for the logged salsolinol
concentrations. This sort of plot is ideal for the
exploration of the correlation structure of repeated
measures, although in a more complex data set with
greater group differences, it would be preferable
to remove the effects of explanatory variables and
produce plots using the residuals. The results are not
presented here, because there seems to be very little
evidence of serial correlation. Finally, a plot that can
be helpful in revealing the relative magnitudes of the
sources of variance that give rise to correlations in
continuous measures over time is the variogram.

Methods of Analysis for Continuous
Responses

This section will be concerned with a few of the more
commonly used strategies for the analysis of longi-
tudinal data, with particular reference to continuous

(usually normally distributed) outcome measures.
We assume that the primary interest lies in changes
in the average response over time at different levels
of various explanatory factors, taking into account
possible dependencies during hypothesis testing and
estimation. The technical aspects of the methods will
not be discussed in any detail but will be covered
elsewhere. Methods for the analysis of categorical
responses, transitions, and responses in the form of
counts will be covered briefly in the next section.

Multivariate Generalizations of Paired t Tests

The paired t test is one of the basic methods for
analyzing a simple two period, pretest/posttest study,
comparing an estimate of the simple time 1 − time 2
difference contrast with the variance of this estimate.
For greater numbers of measurement occasions, the
multivariate generalization of this test is multivari-
ate analysis of variance (MANOVA), that extends
this approach to various linear contrasts relating to
different aspects of change. As the paired t test can
be generalized to an analysis of change scores, in
which differences are regressed against factors and
covariates, so too can this be done within MANOVA,
in the form of multivariate analysis of covariance
(MANCOVA). These procedures enable one to test the
differences between vectors of means with an entirely
arbitrary pattern of correlations between the repeated
measures. This method is therefore not dependent
on any unrealistic assumptions concerning the pat-
terns of serial dependencies, but is also likely to be
less powerful than more refined methods that explic-
itly acknowledge the serial nature of the observations
and correctly model the dependencies between them.
These methods fail altogether when there are more
design cells than subjects, a common occurrence
where there are numerous measurement occasions.

Autoregression and Ante-Dependence

Another standard method for dealing with the cor-
relation in the responses from a simple two-period
study is analysis of covariance – analyzing the time-
2 response conditional upon the time-1 response
and predictors of change. This approach too can
be generalized to larger numbers of measurement
occasions. The autocorrelation or autocovariance
between responses can either be considered as a
nuisance to be allowed for in an analysis or, in
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some applications, it can be regarded as the prop-
erty of particular interest. Consider a possible model
for serial dependencies between repeated quantita-
tive measurements. Let e1, e2, . . . , eT be uncorrelated
random variables, where et has a mean of zero and
variance σ 2

t for t = 1, 2, . . . , T . Now define a series
of measurements Y1, Y2, . . . , YT by

Y1 = e1,

Yt = γtYt−1 + et , t = 2, 3, . . . , T .

If the γ s are all equal (γt = γ for all t) and so are
the variance terms (σ 2

t = σ 2 for all t), then these
equations describe a stationary first-order autoregres-
sive process (see ARMA and ARIMA Models).
If, however, these parameters are permitted to vary
with time then the equations describe first-order ante-
dependence. A measurement at time t (that is Yt ) is
dependent on the value of Yt−1 but, conditional on the
value of Yt−1, it is independent of all previous mea-
surements. In general, a set of ordered measurements
Y1, Y2, . . . , YT is said to have an independence struc-
ture of order r if the measurement at time t (with t

greater than r), given the preceding r measurements,
is independent of all further preceding measurements.
Kenward [35] describes a method of assessing the
order of a sequence of observations.

A simple unrestricted autoregressive model will
involve T (T + 1)/2 variance and covariance param-
eters, as would the equivalent MANOVA. An advan-
tage of the ante-dependence approach is that it pro-
vides a simple but flexible path for specifying more
restrictive dependencies, increasing efficiency for the
testing of contrasts of interest and giving the capa-
bility of analyzing studies with few subjects and
numerous measurement occasions.

In the analysis of a longitudinal data set, one can
approach the problem of serial dependencies from
several points of view. If we ignore their possible
existence the analysis will be simpler, but the result-
ing inferences are likely to be invalid. If we can
replace the response profile for each subject by one or
possibly more summary statistics (derived variables)
which extract the distinct features of interest then the
problem is side-stepped. Any resulting analysis of
these extracted response features will be unaffected
by the serial dependencies in the original observa-
tions. Again, we might also choose to modify our
original approach to analyze the data as if there were
no serial dependencies (as in the traditional analysis

of variance for a nested or split-plot experiment –
the repeated measures being nested within subjects)
but then to make adjustments to the resulting test
statistics (or their degrees of freedom) to allow for
them. This is the rationale for the well-known Green-
house–Geisser adjustment (see [29]) (see Analysis
of Variance for Longitudinal Data).

The more refined methods will be more difficult
to carry out and interpret and, more importantly, will
not necessarily be robust to an incorrect specification
of these serial dependencies. Great care must be
exercised in their use.

A related problem concerning the analysis of data
from crossover studies is the possible presence of
carryover effects. In the simplest design – the two-
period, two-treatment crossover experiment – this is
completely confounded with the treatment by period
interaction or order effect. A carryover effect arises
when an effect of an early treatment persists in
later periods of the trial. This might be due to an
inadequate washout period between two periods of
chemotherapy, for example, or because the first treat-
ment has induced some permanent change in the
patient. Many authors have suggested that this design
should only be used when it can be assumed a pri-
ori that such carryover effects are absent. Crossover
designs should only be used when the short-term
relief of chronic symptoms, rather than a cure, is the
goal of the trial (examples being the use of lithium in
the control of manic symptoms, or the use of insulin
to control blood sugar levels).

Time-by-time Analysis

Following the common practice of plotting of group
means for each separate time point, it comes as
no surprise to find that investigators very frequently
carry out separate statistical analyses at each of the
time points. If there are n time points being consid-
ered, then there will be n separate analyses. On the
whole, this is not a method of analysis that should be
encouraged – it lacks power and the repeated tests are
not statistically independent – although Finney [24]
has advocated this time-by-time analysis when the
number of times is small and the intervals between
them large. Quite often, the researcher is interested in
the question “At what time do the groups become sig-
nificantly different?” and this is frequently the moti-
vation for time-by-time analyses. If the latter is the
case, then a modification of the approach by Kenward
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[35] might be preferred. This is essentially a series of
analyses of covariance looking at group differences at
any given time point, typically using the previous one
or two values as covariates. The method is based on
assumptions concerning the ante-dependence struc-
ture of the data and the reader is referred to Kenward
[35] for technical details. Examples of the use of
Kenward’s method under the assumption of second-
order ante-dependence can be found in Crowder &
Hand [13], and for the analysis of the salsolinol data
under the assumption of first order ante-dependence
in Everitt & Dunn [22].

Derived Variables

Inspection of the individual time courses in Figure 3
leads naturally to two related ideas. The first is to ask
what summary statistic or derived variable might be
extracted for each case which best describes the main
feature of interest in the serial measurements. There
may, however, be more than one feature of interest
in a series of repeated measures. For our salsolinol
data, for example, the two which immediately come
to mind are the average of the four measurements for
each individual and an overall rate of change (linear
trend) for that individual. The second idea is based on
fitting a separate regression model (growth curve) to
each case. One might, for instance, use ordinary least
squares to fit a straight line to each individual’s data.
The resulting estimates for the intercept term and
slope parameter would, of course, convey the same
information as the derived variables from the first
approach, but they do suggest that one might extend
the idea to the fitting of some sort of multilevel
or random effects model to the data. This will be
developed in the following subsection. Here we deal
with the analysis of derived variables.

Having obtained the derived variables, we then
enter them into a second stage of analysis to estimate
their mean for two or more groups and to test for
possible differences between these groups. Return-
ing to the salsolinol data, it is in fact possible to
derive a mean for the concentrations at the four times
and three orthogonal polynomial trends (that is, lin-
ear, quadratic, and cubic trends) (see Orthogonality;
Polynomial Regression). Differences in the means
and trends across groups can be tested using simple t

tests (or, in general, using ANOVA models) – each of
the four derived variables being analyzed separately.
Alternatively, we might wish to test for differences in

all three trends simultaneously using Hotelling’s T 2

statistic or, more generally, through the use of multi-
variate analysis of variance (MANOVA) procedures.
One could, of course, include the average over time
in this multivariate test, but this is usually analyzed
separately so that one carries out separate analyses
for the overall level and for the pattern of temporal
change.

Random Effects Models

Returning once more to the salsolinol measurements,
let Yijk represent the logarithm of the salsolinol con-
centration for the j th subject in the ith group on the
kth day. Note that subjects are nested within groups.
A possible regression model to describe the whole
data set is

Yijk = β0 + αi + ωij + (βi + βij )tk + εijk,

where tk is the time to the kth measurement, and the
parameters β0, αi , and βi (the so-called fixed effects)
correspond to the intercept term, the effect of being
in the ith group on the intercept (i = 1, 2) and the
linear effect of time in the ith group, respectively.
The random effects are ωij , the effect on the inter-
cept of subject j within group i, βij , the variation
of the linear effect of time which is characteristic
of subject j within the ith group, and the residual
“error” term εijk . In terms of the derived variables
described above, the linear trend for the ij th individ-
ual is equivalent to the estimate of βi + βij , but note
that we are not now interested in estimating it explic-
itly – only its variance and possibly covariance with
other effects. The random effects are all assumed to
have zero expectation and the effects of real inter-
est to the investigator are the βis and possibly the
αis. Assuming that the responses are conditionally
multivariate normal, we can then use maximum
likelihood to estimate the fixed effects and the vari-
ances and covariances of the random effects, together
with their respective standard errors [39].

Structural Equation and Latent Variable Models

Consider the observed variable, Y , which is now
acknowledged to be measured with error. Typically,

Y = F + E,
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where F is a latent variable or factor and E is the
corresponding measurement error. If we now consider
a series of repeated measures, Yt , t = 1, 2, . . . , T ,
with Yt = Ft + Et , it might be realistic to assume
that the F s are serially correlated, but that the Es are
statistically independent. We also usually assume that
the F s and Es are independent. A latent first-order
autoregressive model, for example, would have the
form

Y1 = F1 + E1

Yt = γFt−1 + Et, t = 2, 3, . . . , T .

This simple latent variable model might well provide
a parsimonious description of a series of measures
when a similar first-order autoregressive model for
the observed measurements would be hopeless. By
acknowledging measurement error in this way, we
can often considerably simplify the interpretation of
the relationships within a set of serial measures. The
above model (and any other) implies a particular
structure for the covariance matrix of the repeated
measures, and the model can therefore be fitted and
its goodness of fit tested using covariance structure
or structural equation modeling software (see [17],
for example).

Another possibility is a random walk or Wiener
model (see Brownian Motion and Diffusion Pro-
cesses). Here

Y1 = F1 + E1,

Yt = F1 + F2 + · · · + Ft + Et, t = 2, 3, . . . , T .

Here the Fts are random increments (or decrements)
in the response variable Yt which are “frozen in”,
accumulating over time. A third possibility is a latent
growth curve model of the following form:

Y1 = F1 + E1,

Y2 = F1 + F2 + E2,

Yt = F1 + γtF2 + Et, t = 3, 4, . . . , T .

In this case the two factors, F1 and F2, represent a
baseline and a rate of growth (or decline), respec-
tively, and it is quite usual to see that they are
correlated; a relatively large child at the start of a lon-
gitudinal study, for example, also growing at a rate
greater than most of the other children. The reader
will note the similarity of this and the random effects
model of a previous section.

Quite often, it is of interest to compare growth
curves of two or more cohorts of subjects. The
covariance structure software can easily deal with this
by simultaneously fitting growth curve models to two
or more observed covariance (or moments) matrices.
One can then test for the equality of parameters of
interest across the groups.

Robust Parameter Covariance Estimates

It will have become apparent that for analyzing lon-
gitudinal data, although the main interest may lie
in estimating the effects of risk factors and expo-
sures on the expected value of the response, it often
seems necessary to expend more effort to ensure
that the model for the variances and covariances
among the response is correct. Huber [34], and sub-
sequently White [57] and Royall [51], proposed a
heteroscedastic consistent “sandwich” estimator for
the parameter covariance matrix (see Generalized
Estimating Equations). Variants of this covariance
estimator are available among many of the software
implementations of procedures described above (e.g.
EQS). At the cost of reduced efficiency – often trivial
but sometimes large – the use of this method provides
some relief from an excessive concern that the ran-
dom part need be correctly specified in every detail
(see Robustness).

Methods for Responses in the Form of
Counts and Categorical Responses

Multivariate distributions for categorical and count
data lack the flexibility of the multivariate normal
distribution that underlies many of the methods for
analyzing repeated continuous responses. In general,
choices of distribution that have simple expressions
for marginal distributions yield unpleasant expres-
sions for joint or conditional distributions. The statis-
tical literature is awash with models based on various
distributions and parameterizations that may cleverly
fit the particular needs of the problem illustrated by
the authors, but that lack generality. We consider
here only methods that we believe have wide scope
for application. The principal styles of analysis of
repeated count and categorical data tend to focus
upon one of two rather different aspects of the over-
all process. The methods of survival analysis tend
to focus on issues of timing and on problems, where
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the observation scheme is – at least nominally – con-
tinuous in time (see Survival Analysis, Overview).
The remaining methods tend to focus rather more
on state occupancy and transition, and often assume
a discrete (and often equally spaced) observation
scheme shared by all subjects and an analysis in
which the treatment of the timescale is often implicit
or simply another within subjects factor. These lat-
ter are the methods discussed here. This separation
in styles of analysis is not always desirable, ham-
pering our ability to generalize conclusions across
observation and sample design schemes [4]. Methods
that combine these two styles, such as competing risk
models, are available but are typically cumbersome
in use.

Contingency Tables and Loglinear Models

There is an extensive literature examining cross
tabulated data from longitudinal studies of discrete
outcomes, in particular making use of loglinear
models. While in general useful as a preliminary
tool, for scientific analysis of repeated measures
data the interpretation of the parameters presents
problems [6]. Kenward & Jones [36], for example,
argue that the approach is more suited to “correla-
tion rather than regression analysis”. Discrete time
Markov transition models (see Markov Chains) have
received considerable attention, even though exactly
how results relate to the process measured on a
continuous timescale often remains open. Transi-
tion tables relating to social and economic mobil-
ity have been much studied [5]. Typically, all such
tables show strong temporal associations among cat-
egories, often largely due to a tendency for simple
persistence within the current class (spurious conta-
gion [23]; cumulative inertia [47]). This has gener-
ated more specific forms of contingency table test
for quasi-independence and quasi-symmetry (see
Everitt [20]).

Latent Class Models

These inertia effects led to the exploration of
mover–stayer models, a simple form of latent class
model [42], in which attempts are made to explain
a complex temporal association among categories by
the admixture of populations each following a more
simple temporal process. In this instance, the “stayer”
population simply persists in the same category,

while the movers might all share a uniform transition
rate. Of course, latent class methods have also been
applied to longitudinal data to tackle problems of
misclassification. The estimation of so-called hidden
Markov chains is a more recent interest, whether
for transitions between states of psychopathology
and estimated by maximum likelihood [60], or for
repeated screenings for cervical cancer and estimated
by Gibbs sampling [52, 58] (see Markov Chain
Monte Carlo). An approach using continuous latent
variables for categorical data is discussed below
under GEE estimation.

Conditional or Fixed Effects Models

Although the inclusion of subject specific fixed
effects as dummy variables into logistic regression
models for repeated binary measures does not lead
directly to a satisfactory form of analysis (due to the
incidental parameter problem [50]; see Estimating
Functions), an analysis conditioning on the sufficient
statistic for such a subject-specific effect does. In the
simple two-period case without covariates, this corre-
sponds to the McNemar test [48]. More generally, it
corresponds to a form of conditional logistic regres-
sion [2, 9, 10], a method familiar to those analyzing
matched case–control studies. This approach yields
estimates only of risk factors or exposures that are
time-varying, and can be inefficient where there is
substantial use between subject information on effects
of interest.

Random Effects or Integrated Likelihood Models

At the cost of assuming subject effects to be uncorre-
lated with included explanatory variables, a random
effects approach provides estimation of time-constant
effects and more efficient estimates of time-varying
effects. Assuming some distribution for subject-speci-
fic effects provides a likelihood for a sequence of
discrete outcomes of the form

Li =
∫ T∏

j=1

h−1(Yij |Xij ; β, τi) dG(τ).

In general, however, most choices of link function
h(·) and parametric distribution G(·) for the subject-
specific effects do not lead to an analytically tractable
expression, even when the problem is simplified to
one of time-constant subjects effects (the so-called
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“one factor” model). Choice of the complementary
log–log link together with a distribution of subject
effects from the Hougaard family [33], for example
the gamma distribution, offers some possibilities
and can be combined with discrete latent classes
[53]. Recourse to computational brute force – for
example, using quadrature [27] or Monte Carlo meth-
ods [52] – allows the use of the potentially more
flexible multivariate normal distribution for subject
effects. Somewhat curiously, the computational bur-
den becomes little greater if parametric restrictions
are eased and instead the nonparametric maximum
likelihood estimator of the random effects distri-
bution is used [38]. In this case the distribution is
represented by mass points with both weights and
locations as free parameters, reducing the integration
of the above equation to a summation (and almost
always over fewer points than that required for “para-
metric quadrature”). The relationship between the
nonparametric and conditional estimators is discussed
in Lindsay et al. [43].

Penalized or Predictive Quasi-likelihood and
Generalized Linear Mixed Models

An alternative approach to the computation of Li

is through some linearizing approximation, described
as penalized quasi-likelihood (PQL) by Breslow &
Clayton [7]. Essentially, this involves the iteratively
reweighted least squares equations of standard GLM
estimation [46] being extended to include current esti-
mates of the random effects as well as those for fixed
effects. For binary response data and few measure-
ment occasions, this approach does not perform well
[8, 16], particularly with respect to estimation of the
random effects parameters. However, in many other
circumstances it performs much better and offers a
flexible and simple approach that yields satisfactory
estimates for covariate effects of interest. A similar
approach can be used to estimate the parameters of
marginal models [28] that are considered in more
detail in the next two sections.

Empirical Generalized Least Squares

All the preceding approaches have involved specify-
ing some model for the covariance among observa-
tions due to the impact of subject-specific effects and
past history, and estimating effects of interest con-
ditional upon these effects. An alternative approach

is to specify functional forms for the relationships
of primary interest – say, the marginal relationship
between outcomes and features of the study design –
with the rest of the model that deals with covariances
being saturated. In the empirical generalized least
squares approach of Koch et al. [37], implemented
in the SAS procedure CATMOD (see Categorical
Data Analysis), the marginal expected proportions
are replaced directly by their observed values to pro-
vide empirical logits, limiting this method to design
matrices involving only discrete variables. These are
then linearly related to explanatory variables. Since
these proportions are neither independent nor equally
variable, ordinary least squares estimation is not
appropriate. However, the covariance matrix for these
empirical logits will typically be block diagonal with
one block for each unique combination of between
subjects factors. The ith block is then estimated by
DiViDT

i , where Di is the matrix of partial derivatives
of the logits with respect to the marginal proportions
and Vi is their covariance matrix. With the need to
avoid undefined empirical logits and singularities in
the estimated covariance matrix, this approach has
trouble with sparse data. Kenward & Jones [36] sug-
gest 25–30 responses for each response function for
reliable results, typically limiting this method to very
few repeated measures. The general approach has
been extended to tackle incomplete data and other
response functions [40].

Estimation Using a “Working Covariance Matrix”
and Generalized Estimating Equations

This powerful and flexible approach is described in
the article on Generalized Estimating Equations.
The approach represents a multivariate generalization
of quasi-likelihood estimation, allowing a Fisher-
scoring method of estimation for models for which
a full likelihood may not be known. Although more
commonly used to estimate marginal or population-
average models, the generalized estimating equations
(GEE) approach can also be used to estimate models
including subject specific random effects [59].

Muthén [49] presented a related general approach
that fits mixed effects and latent variable models to
categorical data using a two-stage estimation method.
This was based on first estimating fixed effects
(thresholds and coefficients), their covariance matrix,
a conditional covariance matrix of errors and their
covariance matrix, all based on pairwise bivariate
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probit. The second stage then fits models to these
first-stage estimates. For large samples without com-
plex patterns of missing data and with response mea-
sures of mixed type, this is a flexible and powerful
method.

Marginal Maximum Likelihood Models

In fact, there are a number of parameterizations
that include the marginal means as parameters and
that allow closed form likelihood representations for
binary sequences. Bahadur [3] described how the
joint distribution of a binary sequence could be
parameterized in terms of the marginal means and the
marginal correlations. Estimation is, however, non-
standard in that the marginal correlations are subject
to a reasonably complex set of linear inequality con-
straints. Fitzmaurice & Laird [25] provided a “mixed”
parameterization, one involving the marginal means
but parameterizing the association in terms of con-
ditional odds ratios. These latter are unconstrained,
and this parameterization also provides orthogonality
between the regression and association parameters.
It has the disadvantage of conditional parameteriza-
tions in that the association measures are specific
to a fixed sequence length, and thus this model
is not suitable in circumstances involving missing
data (or variable length sequences) without further
adaptation. Eckholm et al. [19] have provided a
third parameterization, this time using the marginal
means and the dependence ratio, the first-order depen-
dence ratios being of the form E[Yij = 1, Yik =
1]/(E[Yij = 1]E[Yik = 1]). Within this parameteriza-
tion, the dependence ratios are subject to relatively
simple constraints, the mean and association parame-
ters are not orthogonal, and the model is asymmetric;
different results will be obtained depending upon
which response is coded 1 or 0.

Time-by-time Analysis

A structured approach to time-by-time analysis, one
that provides a rather straightforward method for
dealing with missing data, has been provided by Wei
& Stram [56]. They provided an estimator for the
covariance matrix of the sets of parameters estimated
at each time and a method for tackling the problem
of multiple testing.

Derived Variable Analysis

The summary measures method can be applied as for
continuous data but with the obvious modification of
changes in the form and estimation of the derived
variables.

Ordinal Data

Extensions from binary to ordinal responses (see
Ordered Categorical Data) are possible for most,
though not all, of the methods described [1].
Among random effects approaches, the log-gamma
mixed complementary-log–log link models extend
directly to ordinal data [12]. The proportional odds
generalization of the logistic model [11] with random
effects can be estimated directly by ML [28] or,
if the ordinal response is transformed into a set of
binary responses each indicating a response above or
below each threshold, then PQL or GEE estimation
become easily implemented [7]. In principle, the
empirical generalized least squares approach may be
applied, but the problems associated with sparse data
become still more pressing than with binary data. The
multivariate probit-based latent variable approach of
Muthén [49] generalizes naturally to the ordinal case.

Count Data

Where the response measure represents an accumu-
lation of discrete events over an interval of time,
the Poisson likelihood offers a natural starting point.
Variable interval lengths are straightforwardly dealt
with by means of an offset. Extra-variation between
subjects beyond that due to the included explana-
tory variables of the model may be accounted for
either by a random effect or by quasi-likelihood or
robust parameter covariance estimation. Assuming a
gamma distribution for the subject-specific variation
in rate leads to the well known negative binomial
model.

Where there have been repeated observation inter-
vals with explanatory variables that vary between
intervals, then the approaches available are essen-
tially parallel to those described for repeated binary
outcomes. Conditional and parametric random effects
estimation are both feasible [31]. Thall & Vail [54]
describe a GEE approach. Little progress has been
made with latent variable models for count data.
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Loss Function

The consequences of any decision will depend on
the true state of nature, which determines whether
the action corresponding to that decision is benefi-
cial or harmful. The statistical formalization of this
concept (see Decision Theory) has the following
components:

Θ is the set of all possible states of nature θ .
D is the set of all possible decisions

(actions) d.
L(θ, d) is the loss function that expresses the

consequences of decision d when the state
of nature θ holds.

By convention, the loss function is usually taken to be
nonnegative, and is to be minimized. Since losses are
to be compared or minimized, only the relative values
of the losses of different decisions are important.
Some synonyms for loss are “regret” and “cost”.
Alternatively, consequences are sometimes described
in terms of “gain” or “utility”, and then maximization
is the objective.

The loss function is useful in both statistical theory
and in practical applications. A decision theoretic
formulation of an existing procedure can clarify its
interpretation by identifying its implicit loss function,
and suggest generalizations. Practical applications
include setting criteria to determine decisions related
to disease for screening, setting treatment policy,
quality of life issues, and study design.

Theoretical Uses of Loss Functions

A statistical decision procedure δ(X) yields a deci-
sion d ∈ D based on the data X. Members of a
set ∆ of statistical procedures δ(X) are compared
based on the loss function L[θ, δ(X)] which, being
a function of X, is a random variable. The risk
of a decision procedure δ(X) is the expectation

of the loss function, R(θ, δ) = E{L[θ, δ(X)]|θ}. Fre-
quentist approaches (see Inference) compare proce-
dures δ1(X) and δ2(X) by comparing the risk func-
tions R(θ, δ1) and R(θ, δ2). In general, no procedure
will minimize R(θ, ·) for all θ , so additional con-
ditions are usually imposed. In ideal cases, the set
∆ can be restricted according to a criterion such as
unbiasedness (see Minimum Variance Unbiased
(MVU) Estimator; Most Powerful Test), symme-
try, or invariance [4], so that the risk function of
some δ ∈ ∆ is dominated by all others, making the
choice clear. Another approach, minimax, chooses
the procedure which minimizes the maximum possi-
ble expected loss for any θ . Bayesian solutions min-
imize the expectation of R(θ, δ) taken with respect
to the prior distribution of θ .

Hypothesis testing can be viewed in terms of
loss functions. Consider a hypothesis test of a null
hypothesis H0: θ = θ0 vs. an alternative hypothesis
H1: θ = θ1. Defining our loss to be 0 for a correct
conclusion and 1 for an incorrect one gives the loss
function shown in Table 1. The test is a decision
function defined so that δ(x) = 1 leads to rejection of
the null hypothesis and δ(x) = 0 leads to acceptance.
The corresponding expected loss is shown in Table 2.

Thus 0–1 loss leads to expected losses which are
type I and type II errors in hypothesis testing. The
traditional approach to hypothesis testing restricts ∆

so that all tests considered have a fixed type II error.
Minimizing the risk then amounts to maximizing the
power of the test. Structuring the problem in this
way aids in formulating more complex problems.
For example, Emerson & Tritchler [3] elaborate the
decision problem to incorporate a third type of error
(Type III error) for a two-sided testing strategy (see

Table 1 Loss function for a hypothesis test

Decision
True parameter Decide θ = θ0 Decide θ = θ1

value Losses

H0: θ0 0 1
H1: θ1 1 0

Table 2 Expected losses for a hypothesis test

True parameter value Risk

θ0 0 + 1 × Pr(decide θ = θ1|θ0)

θ1 1 × Pr(decide θ = θ0|θ1) + 0
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Alternative Hypothesis), concluding that a treatment
is beneficial when the null hypothesis is false, but the
treatment is actually harmful.

Parameter estimation can also be expressed in
terms of an underlying loss function. Consider the
decision procedure to be the parameter estimate θ̂ (X),
which asserts the decision that the true parameter
has value θ̂ (x). If L[θ, θ̂(X)] = [θ̂ (X) − θ]2, then
R(θ, θ̂ ) is mean square error.

Practical Applications of Loss Functions

Besides illuminating and guiding statistical theory,
loss functions are of use in specific applications.
Often the initial step of posing a problem in a deci-
sion theoretic framework will help to clarify aspects
of a problem, even if the full decision theoretic solu-
tion is not required. Formulating loss functions will
enable us to incorporate practical considerations into
methodology, which are ignored in standard tech-
niques. Some examples follow.

Suppose that the cost of the estimation error can
be quantified in monetary units by the loss function
L(µ, X) = λ(X − µ)2. Then R(µ, x) = λσ 2

x /n is a
function of only the sample size n, where the risk
falls as n grows. We can add a term C(n) to the loss
function which states the cost of obtaining a sample
of that size, and determine the n which minimizes
the resulting loss given assumptions about σ 2

x [1] (see
Sample Size Determination).

Colton [2] proposed a loss function to guide the
design of clinical trials. A treatment to be studied
will affect two populations of patients: the 2n subjects
on the two arms of the trial, and the “patient horizon”,
which consists of the N future patients who will be
treated based on the results of that trial until future
research provides an even newer treatment. Colton
assigns a loss of λ to receiving the inferior treatment
and 0 for the better treatment. Then, if the trial results
are erroneous and lead to the adoption of the inferior
treatment, the loss is λ[n + (N − 2n)], since one arm
of the trial and the patient horizon will receive the
inferior treatment. If the correct treatment is chosen,
a loss of λn is incurred by the arm on the inferior
treatment. The relevant state of nature is the true
treatment difference; a value for this is assumed and
λ is taken to be proportional to it. Thus, the risk is
λ[n + (N − 2n) Pr(choose inferior)] for an assumed
value of λ. This risk is a function of the sample size

Table 3 Loss function for eligibility
screening

Decision
Evaluate Discard

True state Losses

Eligible 1 φ

Ineligible 1 0

n; the first term of the above sum increases as n,
but both factors of the second term decrease. This
expresses the tradeoff between the welfare of the
trial subjects and the patient horizon. Colton’s loss
formulation provides an interesting perspective on the
impact of clinical trials.

Shannon et al. [6] consider the screening of pat-
ients for clinical trial eligibility. An initial screening
of potential trial participants is done to select patients
for further evaluation to determine eligibility. Table 3
shows the losses incurred by screening. The cost
of evaluation is taken to be 1, and the loss due to
discarding an eligible subject is φ times that, where
φ > 1 is specified subjectively.

In the examples, numerical losses were assigned
to outcomes such as losing a trial participant or
administering an inferior treatment. Losses of such
a nature can be very difficult to quantify. Also,
even if only monetary costs are involved, their
direct interpretation as loss may be inadequate, espe-
cially after expectations are taken. These assessment
and representation problems are addressed by util-
ity theory, which derives techniques for quantify-
ing perceptions of losses associated with complex
outcomes having many incommensurate attributes
[5]. If certain axioms hold, such loss functions
accurately reflect preference when expectations are
taken.
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Louis,
Pierre–Charles–Alexandre

Born: 1787, in Aı̈, France.
Died: June 9, 1872, in France.

P.-C.-A. Louis initially studied to be a lawyer; how-
ever, he abandoned law for medicine at the age of 20.
After completing his initial medical training in Paris
in 1813, he traveled throughout Russia for a period
of seven years, eventually settling in Odessa. When
Louis’s medical training proved inadequate to com-
bat an epidemic of diphtheria that occurred in Odessa
in 1820, he resolved to return to Paris for additional
study; however, he did not find much of use in the
lectures of contemporary Parisian physicians.

With his appointment to the hospital, La Charité,
in the early 1820s, Louis hoped to forge a more scien-

tific foundation for medicine by collecting extensive
records about the patients in the hospital, e.g. their
ages, length of residence in Paris, the number who
died and recovered from each disease, and the num-
ber of days duration of the disease. Louis used these
records to determine the mean (or average) value
for each analytical category and published his find-
ings. In his study of typhoid fever, for example,
Louis determined that it was primarily a disease of
the young since the mean age of the 50 fatal cases
was 23 and the mean age of the 88 who recov-
ered was 21. In his 1835 treatise, Recherches sur
les effets de la saignée, Louis provided the most
famous example of his so-called “numerical method”;
he demonstrated that the then common therapeutic
practice of bloodletting was not as efficacious as its
advocates believed, since 18 patients died out of 47
who had been bled (i.e. 38%) whereas only nine
died out of the 36 patients who were not bled (i.e.
25%).

Louis’s impact on the Parisian medical scene was
most pronounced during the second quarter of the
nineteenth century. In 1832, his followers founded the
Société Médicale d’Observation to publish findings
based on the numerical method. Although the society
published three memoirs in 1837, 1844, and 1856,
it did not survive after the retirement of Louis from
public life in the mid 1850s following the premature
death of his only son. Nevertheless, Louis had a
long-term impact through the many students that
he trained, including such prominent contributors to
nineteenth century medicine and public health as
the English physician and vital statistician William
Farr and the American physician, Oliver Wendell
Holmes.
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Machine Learning

Machine learning is the ability of a machine to rec-
ognize patterns that have occurred repeatedly and
improve its performance based on past experience.
According to Mitchell [4], a computer program is
said to learn from experience E with respect to
some class of tasks T and performance measure
P , if its performance at tasks in T , as measured
by P , improves with experience E. The underly-
ing idea is to learn theory automatically from data.
Machine learning algorithms are being applied to
practical problems in a wide variety of contexts.
Examples include data mining, such as searching for
irregularities in patient databases, image recognition
problems, and analyses of genomic data (see Human
Genome Project). Machine learning is inherently a
multidisciplinary field, drawing on results from arti-
ficial intelligence, probability and statistics, compu-
tational complexity theory, control theory, informa-
tion theory, philosophy, psychology, neurobiology,
and other fields [3]. Developments are occurring in
many areas that are familiar to biostatisticians, such
as Bayesian modeling, graphical models (see Path
Analysis), Markov Chain Monte-Carlo methods,
neural networks and hidden Markov models, as
well as areas that could be better known such as vec-
tor support machines (SVMs). Machine learning tools
include methods for cluster analysis (unsupervised
learning), discrimination (supervised learning), fac-
tor analysis, regression and time series problems,
to name a few. It is generally believed that machine-
learning approaches are best suited for areas where
there is a large quantity of data but little theory,
and so in computational biology such approaches
are being widely used; see [2]. Moreover in turn,
the explosion of genomic data, and resultant ques-
tions and problems, has motivated many advances in
machine learning.

The strength of the approach offered by machine
learning is the ability to automate the process of fit-
ting very flexible models (which are characterized
by large numbers of parameters) to extremely large
databases. Currently a weakness is the lack of appro-
priate techniques for model criticism and validation
(see Model Checking; Model, Choice of). The train-
ing and validation set approach is often used (see
Cross-validation), but care needs to be taken in its
application; see, for example, [1].

Hastie et al. [3] present machine learning from
a statistical viewpoint. So, for example, E, T , and
P above translate in statistical terms to E: training
examples, T : parameterized models, and P : loss/risk
measures. Many of the novel ideas in machine learn-
ing such as neural networks, boosting, and SVMs
have been strengthened by incorporation of statistical
rigor and interpretation.

References

[1] Ambroise, C. & McLachlan, G.J. (2002). Selection bias
in gene extraction on the basis of microarray gene-
expression data, Proceedings of the National Academy
of Sciences of the United States of America 99(10),
6562–6566.

[2] Baldi, P. & Brunak, S. (2001). Bioinformatics: The
Machine Learning Approach, 2nd Ed. MIT Press,
Cambridge.

[3] Hastie, T., Tibshirani, R. & Friedman, J. (2001). The
Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction (Springer Series in Statistics); see
http://www-stat.stanford.edu/tibs/Elem-
StatLearn/.

[4] Mitchell, T.M. (1997). Machine Learning. McGraw-Hill,
New York; supplementary material at http://www.cs.
cmu.edu/tom/mlbook.html.

SUSAN R. WILSON



Magic Square Designs

A magic square of size n is a set of integers in
an n × n square such that each of the n rows, n

columns, and the two main diagonals have the same
sum m. A magic square is called pandiagonal if all
the 2 (n − 1) wrap-around diagonals (the combined
diagonals that are +g and −(n − g) from a main
diagonal, for g = 1, . . . , n − 1) also sum to m, and
symmetrical if all pairs of cells that are symmetrically
opposite the center of the square sum to 2m/n. In
the usual case of a magic square of order n, the
integers used are 1 to n2, and m = n(n2 + 1)/2. A
pandiagonal and a symmetric magic square of order
4 (m = 34, 2m/n = 17) are, respectively,

15 10 3 6

4 5 16 9

14 11 2 7

1 8 13 12

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

For further discussion and methods of construction,
see Dénes & Keedwell [6] and Freeman [8], and the
references therein.

Phillips [10] showed how the entries of a magic
square of size n with distinct integers can be used
to give the times at which the n2 runs for a facto-
rial experiment are made so that the main effects are
linear-trend-free; that is, orthogonal to a straight line
trend over time. If n has k factors, n = n1n2 . . . nk,

ni > 1, then a design for (up to) 2k factors with levels
n1, n2, . . . , nk (each twice) can be obtained for which
the main effects and at least some of the two-factor
interactions are linear-trend-free (more if the magic
square is symmetrical). For example, consider the
n = 4 pandiagonal magic square above. Letting rows
1 to 4 represent a0b0, a0b1, a1b0, and a1b1, respec-
tively, and columns 1 to 4 represent c0d0, c0d1, c1d0,
and c1d1, respectively, gives, in the usual notation,
the following run order for a 24 design for which all
two-factor interactions are linear-trend-free:

(a, abcd, cd, b, bd, c, abc, ad, bc,

d, abd, ac, acd, ab, 1, bcd).

Fewer factors can be used with levels that are prod-
ucts of the ni , and some ni can be omitted. For

example, a magic square of size 6 can be used for
a complete replicate 22 × 32, 2 × 3 × 6 or 62 design,
or for two replicates of a 2 × 32 or a 3 × 6 design,
or three replicates of a 22 × 3 or a 2 × 6 design, etc.
If there is more than 1 replicate, then it may be pos-
sible to measure order effects within each replicate.
A pandiagonal magic square of order n can be used
to obtain an n3−1 Latin square (three factors each at
n levels) or, for n odd, an n4−2 Graeco-Latin square
(four factors each at n levels) for which main effects
are linear-trend-free. There has been considerable fur-
ther progress made on trend-free and trend-robust
designs; see, for example, Bailey et al. [1], Bradley
& Yeh [5], and Lin & Dean [9].

There are many connections between magic squa-
res and Latin squares; see, for example, Dénes &
Keedwell [6]. Amongst these are that if the inte-
gers {1, . . . , n} are used n times, then the magic
square is a diagonal Latin square, and a pandiag-
onal magic square is a Knut Vik design. The Knut
Vik design, which generalizes the well-known 5 × 5
knight’s move Latin square, has five orthogonal con-
straints (block or treatment structures) of size n: rows,
columns, the two sets of wrap-around diagonals, and
the labels.

Another Latin square design, intended for n treat-
ments in a spatial row–column layout, with one
further block structure is the Magic Latin square
(attributed to G. M. Cox – see Federer [7]). This
requires a composite n = n1 × n2, and forms spatially
compact blocks using congruent n1 × n2 rectangular
blocks formed by the intersection of n1 adjoining
rows and n2 adjoining columns. The extra set of
blocks is not orthogonal to rows and columns, and
care is needed in the analysis – see Bailey et al. [2,
3]. An example with n = 4 = 2 × 2, showing the
extra block boundaries, is

1    2 3    4

3    4 1    2

2    1 4    3

4    3 2    1

When n1 �= n2, a super magic Latin square uses
both n1 × n2 blocks, and n2 × n1 blocks to form
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two extra sets of blocks. An example with n = 6 =
2 × 3 = 3 × 2 (with the two blocking structures to
the right) is

1 2 3 4 5 6

6 4 5 2 3 1

3 5 1 6 2 4

4 6 2 5 1 3

5 3 6 1 4 2

2 1 4 3 6 5

The nonaliased contrasts in the two extra sets of
blocks are not orthogonal – see Bailey et al. [2].

The gerechte designs introduced by Behrens [4]
can be regarded as a generalization of magic Latin
squares which use any convenient spatially compact
blocks of size n. The block shapes do not need to be
congruent, so that gerechte Latin square designs can
be obtained for any n. Gerechte designs also exist for
rectangular arrays. Careful analysis is required – see
Bailey et al. [2, 3].
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Mahalanobis Distance

In 1936, P.C. Mahalanobis [22] proposed a measure,
known as the generalized distance, or Mahalanobis
distance, to assess the divergence between two pop-
ulations based on observations on p characters or
variates; the square of this distance is given by

∆2 = 1

p
(µ1 − µ2)

′�−1(µ1 − µ2),

where µ1 and µ2 are the mean vectors of the p

variates in the two populations, and � is the common
covariance matrix.

Historical Background

In the 1920s, Karl Pearson and his associates con-
sidered the problem of “asserting significant resem-
blance or divergence” between racial groups based on
anthropological observations (see Anthropometry).
Following Pearson’s suggestion, Tildesley [45] con-
sidered a measure, known as the “Coefficient of
Racial Likeness” (CRL), given by

1

p

p∑

i=1

(mi1 − mi2)
2

σ 2
i1/ni1 + σ 2

i2/ni2

− 1,

where mi1, σ 2
i1, and ni1 denote the mean, the variance,

and the sample size, respectively, corresponding to
the ith variate in the first population, and mi2, σ 2

i2,
and ni2 similarly correspond to the second popula-
tion. In 1926, Pearson [29] considered only the first
term of the above expression. Romanovsky [39] also
considered some similar criteria.

Mahalanobis, during his study on caste-groups in
India, observed that the coefficient of racial likeness
was influenced by sample sizes and it failed to mea-
sure the divergence [14]. He [21] suggested a general
class of measures, and, in particular, considered the
following when homoscedasticity holds:

D2
0 = 1

p

p∑

i=1

(mi1 − mi2)
2

σ 2
i

− 1

p

p∑

i=1

(
1

ni1
+ 1

ni2

)
,

where σ 2
i is a “reliable” value for the common vari-

ance of the ith variate. Mahalanobis cited a number
of comparisons in which the coefficient of racial

likeness and his D2
0 measure gave widely differ-

ent results, but he claimed that the values of D2
0

gave better representation of known anthropologi-
cal facts. Furthermore, Mahalanobis also proposes
measures to assess divergence in variance, skewness,
and kurtosis.

Later, Mahalanobis [22] introduced the correla-
tions among the variates in defining such a measure,
and proposed the measure ∆2 given above. The sam-
ple version of ∆2 for known Σ is given by

D2
1 = 1

p
(x1 − x2)

′�−1(x1 − x2),

as well as by

D2
2 = 1

p
(x1 − x2)

′�−1(x1 − x2) −
(

1

n1
+ 1

n2

)
,

where x1 and x2 are the sample mean vectors based
on samples of sizes n1 and n2, respectively. It may
be noted that D2

2 is unbiased for estimating ∆2. For
unknown Σ , the sample version of ∆2 is given by

D2 = 1

p
(x1 − x2)

′S−1(x1 − x2),

where S is the pooled within-group sample covari-
ance matrix with degrees of freedom (df) n1 + n2 − 2.

Under the assumption that the p variates are dis-
tributed as a normal distribution in each of the two
populations, the distribution of pD2

1n1n2/(n1 + n2)

is noncentral chi-square with p df and noncentral-
ity parameter p∆2n1n2/(n1 + n2). R.C. Bose [3, 4]
obtained this result along with the moments of D2

1 .
S.N. Bose [6, 7] also obtained the moments of D2

1,
but without using its distribution explicitly.

For the problem of testing equality of mean
vectors of two p-variate normal distributions
with common but unknown covariance matrix �,
Hotelling [19] suggested the Hotelling’s T 2 statistic,
given by

T 2 = n1n2(n1 + n2)
−1pD2,

as the test statistic and also as a modified form of
the Coefficient of Racial Likeness. It was shown by
Hotelling [19] that the null distribution of

T 2

n1 + n2 − 2

n1 + n2 − p − 1

p
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is the F distribution with p and n1 + n2 − p − 1
df. This result was also obtained by Fisher [17, 18]
in his pioneering papers on discriminant analysis;
however, Fisher’s derivation is not rigorous. Maha-
lanobis [22] obtained the first four moments of D2,
assuming Σ to be a diagonal matrix. The nonnull
distribution of the above statistic is F with df p

and n1 + n2 − p − 1, and noncentrality parameter
n1n2(n1 + n2)

−1p∆2; this was first obtained by Bose
& Roy [5]. For a review of the evolution of the D2-
statistic, see DasGupta [14].

Mahalanobis � as a Distance

The frame of reference for the work of Mahalanobis
was the p-variate normal distribution for the vari-
ates under study. It is now known that many standard
distance measures, such as Kolmogorov’s variational
distance, the Hellinger distance, Rao’s distance, and
so on, are increasing functions of ∆ when the two
distributions are p-variate normal distributions with
mean vectors µ1 and µ2, and common covariance
matrix � [27]. This result also holds for a variety of
distance measures for elliptic distributions with dif-
ferent locations but common shape parameters [28].
For other related developments on distance functions,
see Rao [31, 33, 37], Matusita [26], and Burbea &
Rao [8].

Role of Mahalanobis Distance in
Discriminatory Analysis

In order to discriminate between two populations
based on observations on p characters X, Fisher [17,
18] considered a linear discriminant function l

′
X to

maximize [l
′
(X1 − X2)]2/(l

′
Sl). The optimal l turns

out to be proportional to S−1(X1 − X2) and corre-
spondingly, the above ratio becomes pD2. Fisher
then suggested to consider pD2 as the test statis-
tic to test “significance of the discriminant function”,
which means testing the equality of the population
mean vectors. In this development, Fisher’s frame of
reference was of course two p-variate normal dis-
tributions with common covariance matrix. For the
problem of discrimination between two p-variate nor-
mal distributions with different covariance matrices,
see Anderson [2] and McLachlan [27].

For detailed developments on discriminatory anal-
ysis, see Cacoullos [9]. For discrimination of Gaus-
sian processes, see Rao & Varadarajan [38].

Test on Distance

As discussed earlier, Hotelling [19] first proposed a
test for ∆2 = 0 when the underlying distributions
are normal with common but unknown covariance
matrix. Rao [30, 32] proposed a test for “additional
distance”, which may be posed as p∆2

p = q∆2
q(q <

p), where ∆2
p denotes the value of ∆2 based on p

variates. DasGupta & Perlman [16] have shown that
the power of Hotelling’s T 2-test based on p variates
may be smaller than the power of the test based on a
subset of q variates unless the increase p∆2

p − q∆2
q

is sufficiently large; they have suggested a test based
on a preliminary sample so that the effectiveness of
inclusion of additional variates could be ascertained.

Rao [35] considered tests for assigned (linear)
discriminant functions, as well as for specifications
of the ratios of discriminant function coefficients. All
of these, in principle, fall into the realm of testing
additional distance.

The null distribution of D2 can be used to obtain
simultaneous confidence intervals for l′(µ1 − µ2);
see Anderson [2].

Role of Mahalanobis Distance in
Classificatory Analysis

The problem of classifying an observation vector X
into one of two p-variate distributions with mean
vectors µ1 and µ2, and common covariance matrix �,
was first posed by Fisher [17] and developed later by
Wald [47], Rao [34, 36], and Anderson [1], among
many others; see McLachlan [27] for an extensive
collection of results on this topic. For reviews of
earlier work, see DasGupta [11, 13], Cacoullos [9],
and Krishnaiah & Kanal [20].

When the parameters are known, the class of
Bayes rules is given by the following: classify X into
the first population if

(µ1 − µ2)
′�−1

{
X − (µ1 + µ2)

2

}
≥ C;

otherwise classify into the second population. The
probabilities of misclassification of any such rule
are functions of ∆; in particular, if C = 0, the
probabilities of misclassification are equal and the
common value decreases as ∆ increases. This result
also holds when the parameters µ1, µ2, and � are
unknown and they are respectively replaced by X1,
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X2, and S in the above rule, and n1 = n2; for more
detailed results, see DasGupta [12].

DasGupta & Kinderman [15] posed the concept of
classifiability which sought condition on the structure
of the populations in order to control probabilities
of misclassification arbitrarily; for a related develop-
ment, see Schaafsma & Steerneman [41]. For bounds,
approximations, and asymptotic expansions relating
to probabilities of misclassification, see McLach-
lan [27] and DasGupta [12]. For the problem of
classification into one of two p-variate normal dis-
tributions with different covariance matrices, and the
related role of Mahalanobis distance, see McLach-
lan [27]. Statistical methods for selecting variables
in relation to the problem of classification and dis-
criminatory analysis have been discussed in McLach-
lan [27] and Seber [44] (see Variable Selection).

Asymptotic Distribution of �

For the case of normal distributions, it follows from
DasGupta [10] that

E(pD2) = f (f − p − 1)−1p∆2

+ (n−1
1 + n−1

2 )f (f − p − 1)−1p,

where f = n1 + n2 − 2. Hence

∆̂2 = (f − p − 1)f −1D2 − (n−1
1 + n−1

2 )

is unbiased for estimating ∆2. Moreover, the variance
of ∆̂2 is given by

(f − p − 3)−1
{
2(p∆2)2

+ 4n−1
1 n−1

2 (n1 + n2)(f − 1)p∆2

+2p(f − 1)(n1 + n2)
2n−2

1 n−2
2

}

(see Schaafsma [40]).
It has been shown by Schaafsma & Van Verk [42,

43] that

E(
√

pD) = √
p∆ + (4f )−1(2p + 1)(

√
p∆)

+ (2f )−1(p − 1)κ(
√

p∆)−1 + O(f −2),

and

L
[
f 1/2(

√
pD − √

p∆)
] → N

(
0, κ + 1

2p∆2] ,

as n1, n2 → ∞, where f (n1 + n2)n
−1
1 n−1

2 → κ ∈
(0, ∞).

Other Applications

The domain of applications of Mahalanobis distance
is quite extensive. In particular, the role of Maha-
lanobis distance in profile analysis (see Summary
Measures Analysis of Longitudinal Data) and clus-
ter analysis is significant (see Cluster Analysis of
Subjects, Nonhierarchical Methods). See Mardia
et al. [25], Van Ryzin [46], and Rao [36], in particu-
lar. The first application of Mahalanobis distance in
cluster analysis is given in Mahalanobis et al. [23].
It may be noted that Mardia [24] has introduced a
concept called “Mahalanobis angle”, and illustrated
its usefulness.

References

[1] Anderson, T.W. (1951). Classification by multivariate
analysis, Psychometrika 16, 31–50.

[2] Anderson, T.W. (1984). An Introduction to Multivariate
Statistical Analysis, 2nd Ed. Wiley, New York.

[3] Bose, R.C. (1936). On the exact distribution and moment
coefficients of the D2-statistic, Sankhya 2, 143–154.

[4] Bose, R.C. (1936). A note on the distribution of dif-
ferences in mean values of two samples drawn from
two multivariate normally distributed populations and
the definition of the D2-statistic, Sankhya 2, 379–384.

[5] Bose, R.C. & Roy, S.N. (1938). The distribution of
studentized D2-statistic, Sankhya 4, 19–38.

[6] Bose, S.N. (1936). On the complete moment coefficients
of the D2-statistic, Sankhya 2, 385–396.

[7] Bose, S.N. (1937). On the moment coefficients of the
D2-statistic, and certain integral and differential equa-
tions connected with the multivariate normal popula-
tions, Sankhya 3, 105–124.

[8] Burbea, J. & Rao, C.R. (1982). Entropy differential
metric, distance and divergence measures in probability
spaces: a unified approach, Journal of Multivariate
Analysis 12, 575–596.

[9] Cacoullos, T., ed. (1973). Discriminant Analysis and
Applications. Academic Press, New York.

[10] DasGupta, S. (1968). Some aspects of discrimination
function coefficients, Sankhya; Series A 30, 387–400.

[11] DasGupta, S. (1973). Theories and methods in classifi-
cation: a review, in Discriminant Analysis and Applica-
tions, T. Cacoullos, ed. Academic Press, New York, pp.
77–137.

[12] DasGupta, S. (1974). Probability inequalities and errors
in classification, Annals of Statistics 2, 751–762.

[13] DasGupta, S. (1982). Optimum rules for classification
into two multivariate normal populations with the same
covariance matrix, in Handbook of Statistics, Vol. 2,
P.R. Krishnaiah & L. Kanal, eds. North-Holland, New
York, pp. 47–60.



4 Mahalanobis Distance

[14] DasGupta, S. (1993). The evolution of the D2-statistic
of Mahalanobis, Sankhya, Series A 55, 442–459.

[15] DasGupta, S. & Kinderman, A. (1974). Classifiability
and designs for sampling, Sankhya 36, 237–250.

[16] DasGupta, S. & Perlman, M.D. (1974). Power of
the noncentral F -test: effect of additional variates on
Hotelling’s T 2 test, Journal of the American Statistical
Association 69, 174–180.

[17] Fisher, R.A. (1936). The use of multiple measurements
in taxonomic problems, Annals of Eugenics 7, 179–188.

[18] Fisher, R.A. (1938). The statistical utilization of multiple
measurements, Annals of Eugenics 8, 376–386.

[19] Hotelling, H. (1931). The generalization of Student’s
ratio, Annals of Mathematical Statistics 2, 360–368.

[20] Krishnaiah, P.R. & Kanal, L., eds (1982). Handbook of
Statistics, Vol. 2. North-Holland, New York.

[21] Mahalanobis, P.C. (1930). On tests and measures of
group divergence, Journal of the Asiatic Society of
Bengal 26, 541–588.

[22] Mahalanobis, P.C. (1936). On the generalized distance
in statistics, Proceedings of the National Institute of
Sciences of India 2, 49–55.

[23] Mahalanobis, P.C., Majumder, D.N. & Rao, C.R.
(1949). Anthropometric survey of the United Provinces,
1941: a statistical study, Sankhya 9, 90–234.

[24] Mardia, K.V. (1977). Mahalanobis distance and angles,
in Multivariate Analysis, Vol. IV, P.R. Krishnaiah, ed.
North-Holland, New York pp. 495–511.

[25] Mardia, K.V., Kent, T. & Bibby, M. (1979). Multivariate
Analysis. Academic Press, New York.

[26] Matusita, K. (1952). Decision rule based on the distance
for the classification problem, Annals of the Institute of
Statistical Mathematics 8, 67–77.

[27] McLachlan, G.J. (1992). Discriminant Analysis and
Statistical Pattern Recognition. Wiley, New York.

[28] Mitchell, A.F.S. & Krzanowski, W.J. (1985). The Maha-
lanobis distance and elliptic distributions, Biometrika 72,
464–467.

[29] Pearson, K. (1926). On the coefficient of racial likeness,
Biometrika 18, 105–117.

[30] Rao, C.R. (1946). Tests on discriminant functions in
multivariate analysis, Sankhya 7, 407–414.

[31] Rao, C.R. (1949). On the distance between two popula-
tions, Sankhya 9, 246–248.

[32] Rao, C.R. (1949). On the problems arising out of
discrimination with multiple characters, Sankhya 9,
343–366.

[33] Rao, C.R. (1954). On the use and interpretation of dis-
tance functions in statistics, Bulletin of the International
Statistical Institute 34, 90–97.

[34] Rao, C.R. (1950). Statistical inference applied to classi-
ficatory problems, Sankhya 10, 229–256.

[35] R.C. Bose, Chakravarti, I.M., Mahalanobis, P.C.,
Rao, C.R. & Smith, J.C. (1970). Inference on discrim-
inant function coefficients, in Essays in Probability and
Statistics. R.C. Bose et al., eds. University of North Car-
olina Press, Chapel Hill.

[36] Rao, C.R. (1973). Linear Statistical Inference and Its
Applications, 2nd Ed. Wiley, New York.

[37] Rao, C.R. (1982). Diversity and dissimilarity coeffi-
cients: a unified approach, Journal of Theoretical Popu-
lation Biology 21, 24–43.

[38] Rao, C.R. & Varadarajan, V.S. (1963). Discrimination
of Gaussian process, Sankhya A 25, 303–350.

[39] Romanovsky, V. (1928). On the criteria that two given
samples belong to the same normal population (on
the different coefficients of racial likeness), Metron 7,
3–46.

[40] Schaafsma, W. (1982). Selecting variables in discrimi-
nant analysis for improving upon classical procedures,
in Handbook of Statistics, Vol. 2, P.R. Krishnaiah
& L.N. Kanal, eds. North-Holland, New York, pp.
857–881.

[41] Schaafsma, W. & Steerneman, T. (1981). Discriminant
analysis when the number of features is unbounded,
IEEE Transactions on Systems, Man and Cybernetics
SMC-11(2), 144–151.

[42] Schaafsma, W. & Van Verk, G.N. (1977). Classification
and discrimination problems with applications, part I,
Statistica Neerlandica 31, 25–45.

[43] Schaafsma, W. & Van Verk, G.N. (1979). Classification
and discrimination problems with applications, part II,
Statistica Neerlandica 33, 91–126.

[44] Seber, G.A.F. (1984). Multivariate Observations. Wiley,
New York.

[45] Tildesley, M.L. (1921). A first study of the Burnese
skull, Biometrika 13, 247–251.

[46] Van Ryzin, J., ed. (1977). Classification and Clustering.
Academic Press, New York.

[47] Wald, A. (1944). On a statistical problem arising in the
classification of an individual into one of two groups,
Annals of Mathematical Statistics 15, 145–162.

(See also Classification, Overview; Multivariate
Analysis, Overview)

SOMESH DASGUPTA



Mahalanobis, Prasanta
Chandra

Born: June 29, 1893, in Calcutta, India.
Died: 1972, in India.

Prasanta Chandra Mahalanobis was educated at
Presidency College, Calcutta, and King’s College,
Cambridge, where he completed the Tripos in
Mathematics and Natural Science (Physics). In Part II
of the Tripos, he was the only candidate to receive a
first class in physics. Cambridge University awarded
him a research scholarship. Before starting his
research, he traveled to Calcutta for a short vacation,
but never returned to England. The war intervened.
Also, he had found a teaching job and plenty of other
interesting things to do in Calcutta.

Just before Mahalanobis left England for this vaca-
tion, his tutor, W.H. Macaulay, drew his attention
to the journal Biometrika. Mahalanobis found the
articles interesting and purchased an entire set of
available volumes and brought these back to Calcutta.
A window was opened to a new area of science, per-
manently changing the direction of his life.

Early on, one of his mentors, Acharya Brojen-
dranath Seal, a philosopher and an encyclopedist who
was also interested in statistics, said to him “Prasanta,
. . . you have to do work in India similar to that of
Karl Pearson in England. In today’s world, whether it
is science or social service, without statistical meth-
ods there is no way. This is your job.” (Translated
from a note in Bengali by P.C. Mahalanobis dated
April 17, 1945.) Mahalanobis, who had already begun
to read Karl Pearson’s papers in Biometrika, took
this challenge seriously. He thus developed an inter-
est in statistical analysis of biological data, which
was to last throughout his life and to which he was
to make profound contributions.

In 1920, Mahalanobis met the Director of the Zoo-
logical and Anthropological Survey of India, Nelson
Annandale, who requested Mahalanobis to analyze
some anthropometric data on a group of Anglo-
Indians of Calcutta. Mahalanobis analyzed the data
and published his first paper on statistics [1]. He con-
tinued to analyze the other anthropometric data in this
sample, and presented a synthesis of results in his
Presidential Address to the anthropology section of
the Indian Science Congress in 1925. In the address,
“Analysis of race-mixture in Bengal”, Mahalanobis

sought to provide answers to several anthropological
questions by using statistical methods. (An expanded
version of this address was later published by him
in 1927 [3].) For example, do Anglo-Indians show
a greater affinity with the higher castes of Bengal
or with the lower castes? Or, is there any appre-
ciable admixture with aboriginal tribes? To answer
such questions, a measure of distance between popu-
lation groups based on anthropometric measurements
was necessary. The only available statistic for com-
paring resemblance between populations was Pear-
son’s coefficient of racial likeness (CRL) [11, 13].
Mahalanobis realized that the CRL provided a test of
divergence between samples drawn from two popu-
lations rather than a measure of the actual magnitude
of the divergence, because the magnitude of the
CRL was dependent on sample sizes. In the study
on Anglo-Indians, Mahalanobis proposed and used a
measure of the actual magnitude of divergence that
he called the “first (provisional) measure of caste
distance”, D. The resulting inferences derived by
Mahalanobis have been found to be largely valid
from his own work conducted later in the United
Provinces [10] and in Bengal, as well as in later stud-
ies of others using more extensive data and more
sophist-icated statistical techniques.

During the period 1926–1927, Mahalanobis spent
about six months in Karl Pearson’s laboratory in
the University College, London. During this period,
he undertook an extensive analysis of anthropomet-
ric data of various European population groups, and
closely examined the utility of the CRL for mea-
suring population relationships. In the process, the
statistical shortcomings of the CRL became clearer.
Upon returning to India, Mahalanobis’s ideas on
the problem of incorporating the observed correla-
tions among anthropometric measurements used in
measuring distance took a more concrete form. He
published a seminal paper, “On tests and measures
of Group Divergence” in 1930, in which the famous
D2-statistic was proposed (see Mahalanobis Dis-
tance) [4]. Based primarily on work done by him in
Pearson’s laboratory, Mahalanobis published a paper
in Biometrika in the same year [5]. This paper was
the “first application of CRL to the discrimination
of racial differences to be ascertained from mea-
surements on the living” (p. 94). It dealt with the
populations of Sweden, and Mahalanobis presented
an innovative graphical display of anthropometric
interrelationships among the populations, taking two
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additional extrinsic variables into account, geograph-
ical location of habitat and occupation. Thus, the
concept of forming clusters of populations began to
take shape (see Cluster Analysis, Variables).

Mahalanobis subsequently proposed the “natural”
generalized distance D2 for correlated variates, as
well as its Studentized form using sample values of
parameters [8]. In retrospect, it is clear that both mea-
sures play a fundamental, important role in statistics
and data analysis. The practical impact of the D2

statistic has been enormous, and continues to be used
in many branches of science.

Mahalanobis was apparently not satisfied with
simply providing a valuable tool (D2) for cluster anal-
ysis. He began to raise fundamental issues about the
application of the D2 statistic, and argued that infer-
ences on affinities among populations may depend
on the number of measurements chosen for assessing
distances between populations; in which case, con-
clusions would not have the desired practical signifi-
cance. Affinity configurations may change if one set
of measurements is replaced by another. Mahalanobis
thus laid down an important axiom for the valid-
ity of cluster analysis, “dimensional convergence of
D2” [9]. Suppose D2

p and D2∞ denote, respectively,
the distance between a pair of populations based on
a set of p measurements and the distance based on
all of the measurements. Since it is not possible
practically to study all possible measurements, bio-
metrical studies must rely on a finite number, p, of
measurements. For affinity relationships to be stable,
the distance based on p characters should be a good
approximation of that based on the set of all possi-
ble characters. For Mahalanobis’s distance measure,
it can be shown that D2

p ≤ D2∞ and D2
p → D2∞ as

p → ∞. Mahalanobis’s axiom of dimensional con-
vergence states that a suitable choice of p can be
made if and only if D2 is finite. Unfortunately, this
important axiom is not mentioned in most textbooks
on numerical taxonomy or cluster analysis.

The formulation of the D2 statistic, derivation
of its properties, and its applications are undoubt-
edly the most profound contributions of Mahalanobis
to biostatistics. However, Mahalanobis made many
other interesting contributions. Some of the early sta-
tistical studies he undertook were on experimental
designs in agriculture. In 1924, he made some impor-
tant discoveries pertaining to the probable error of
results of agricultural experiments, which put him
in touch with R.A. Fisher. Later, in 1926, he met

Fisher at the Rothamsted Experimental Station and
a close personal relationship was immediately estab-
lished that lasted until Fisher’s death. He possessed
an uncanny sense of numbers and could quickly
point out recording mistakes in data. In two papers
entitled, “Revision of Risley’s anthropometric data”,
Mahalanobis [6, 7] reconstructed the large series of
anthropometric data, which were earlier condemned
as faulty and unsuitable for statistical analysis. This
work was highly praised by Sir Ronald Fisher [12].
He also conducted studies on dextrality of snail shells,
correlates of disease prevalence in humans and plants,
demography, and so on. In most of these stud-
ies, Mahalanobis developed novel statistical methods
or made innovative applications of known methods.
For example, in one of his early statistical studies
on the prevalence of dysentery and its correlates,
Mahalanobis [2] developed some useful smoothing
techniques for time-series data using Fourier series
(see Fast Fourier Transform (FFT)). Such tech-
niques are now commonly used.

Mahalanobis’s contributions to large-scale sample
surveys, which are among his most significant and
lasting gifts to statistics, began with problems of
the estimation of area and yield of the jute crop in
Bengal in 1937. He was able to demonstrate that
estimates based on sample surveys were often more
accurate than those based on complete enumeration,
and that sample surveys could yield estimates with
small margins of error within a short time and at
a smaller cost than complete enumeration. He made
many methodological contributions to survey sam-
pling that included optimal choice of sampling design
(see Optimal Design) using variance and cost func-
tions, and the technique of an interpenetrating net-
work of subsamples for assessment and control of
errors, especially nonsampling errors, in surveys.
The concept of pilot surveys was a forerunner of
sequential analysis developed by Abraham Wald,
as acknowledged by Wald. In addition to introduc-
ing these concepts, Mahalanobis raised important and
difficult philosophical questions on the randomness
and representativeness of a sample, which remain rel-
evant and challenging even today. He was elected
Chairman of the United Nations Sub-Commission on
Statistical Sampling in 1947, and held this post till
1951. His tireless advocacy of the usefulness of sam-
ple surveys resulted in the final recommendation of
this Sub-Commission that sampling methods should
be extended to all parts of the world. Mahalanobis
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received the Weldon Medal from Oxford University
in 1944 and was elected a Fellow of The Royal
Society, London, in 1945, for his fundamental con-
tributions to statistics, particularly in the area of
large-scale sample surveys.

As a scientist, Mahalanobis was, above all, a
great applied statistician. Statistics were to be used
for a better understanding of scientific data, and for
decision-making for the welfare of society. Innova-
tion, systematization and concrete applications are
the hallmarks of the applied statistics practiced by
Mahalanobis.
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Mainland, Donald

Born: April 5, 1902.
Died: July 1985 in Kent, Connecticut.

Donald Mainland graduated in medicine at Edin-
burgh. He later taught anatomy in Edinburgh and
received a Doctor of Science degree there for his
research in embryology and histology. He moved to
Manitoba, Canada, in 1927 and in 1930 became Pro-
fessor and Chairman of the Department of Anatomy
at Dalhousie University.

His early publications showed a concern about
measurement issues, and foreshadowed an increasing
interest in statistics. In 1936 he wrote on problems of
chance in clinical work [2] and the following year he
published his first book on statistics in medicine [3].
In 1950 he became Professor of Medical Statistics
at New York University and shortly afterwards pub-
lished his best known book, Elementary Medical
Statistics [4]. Thereafter, Mainland was a prolific and
influential writer on statistical topics.

In addition to his books, Mainland’s notable con-
tributions included several series of short essays on
statistical topics, most of which were not published
in journals but circulated to those “who were lucky
enough to learn about ‘the Notes’, and to satisfy
Mainland’s hardy standards for the mailing list” [1].
From August 1959 to September 1966 he produced
145 items in the series, Notes from a Laboratory
of Medical Statistics [5], a further 104 items in the
series, Notes on Biometry in Medical Research [7],
and 16 longer articles as “statistical ward rounds”
from 1967 to 1969 in Clinical Pharmacology and
Therapeutics [6].

After his retirement, Mainland continued to pub-
lish occasionally on statistical issues, with two typ-
ical outspoken and readable papers published in the
British Medical Journal when he was in his eight-
ies [8, 9].

The common sense consistently displayed in his
writings was undoubtedly greatly aided by his exten-
sive research and teaching in biology – he had also

published a textbook on anatomy – and active partic-
ipation in clinical research.

In 1970, when Mainland ceased writing his series
in Clinical Pharmacology and Therapeutics, his suc-
cessor in that role, Alvan Feinstein, described Main-
land’s contributions to improving the understanding
and practice of statistics in medicine [1]. Among his
generous comments Feinstein observed, “With his
textbook . . . and his many other writings, he has prob-
ably contributed as much as any single person to the
statistical sensibility of clinical investigators in North
America” [1].
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Mallows’ Cp Statistic

This criterion can be helpful in selecting a biased
linear model with fewer parameters and lower mean
square error (MSE) than one with more param-
eters and their associated estimation errors. If a
p-parameter linear model is fitted by unweighted
least squares to n observations y1, . . . , yn (supposed
uncorrelated and homoscedastic with variance σ 2)
giving a residual sum of squares RSSp (see Analysis
of Variance), then Cp is defined by

Cp =
(

RSSp

s2

)
− (n − 2p),

where s2 is a trustworthy estimate of σ 2.
This criterion was introduced by Jones [2] in the

equivalent form

JCp(say) =
[
RSSp − (n − 2p)s2

]

n
.

Under the conditions stated and if E(s2) = σ 2, JCp

is an unbiased estimate of the MSE, E{∑ ŷi −
E(yi)]2/n}, of the model’s fitted values as estimates
of the true expectations of the observations. (A model
with low MSE, as thus defined, may have good per-
formance only for values of the independent variables
in the region already observed.)

In order to guide the delicate practical choice of
linear model from a number of alternatives, Mal-
lows [3] developed his independent discovery of Cp

into a graphical plot of Cp against p on which the
line Cp = p is drawn. In this plot the value of p

is (roughly) the contribution to Cp from the vari-
ance of the estimated parameters, while the remainder
Cp − p is (roughly) the contribution from the bias of
the model. This feature makes the plot a useful device

for a broad assessment of the Cp values of a range
of models. Its use does not (or at least should not) in
itself inhibit choice of the model with the minimum
value of Cp. Moreover, if that choice is made, the
plot gives no obvious quantitative indication of the
extent to which that minimum value, converted to
JCp, underestimates, as a consequence of selection
bias, the actually operative MSE. (In [4], Mallows
uses asymptotics in which, realistically, p goes to
infinity with n – to provide such a quantitative indi-
cation, for a range of applications of the plot.)

The numerical comparisons in Burman [1] suggest
that the use of just a “one-deep”, leave-one-out cross-
validatory criterion (see Cross-validation) may be
more robust than Cp with respect to that selection
bias. However, suggestions like this should be treated
cautiously: the whole area abounds in competing and
only partially substantiated claims.

For the relationship between Cp and Akaike’s
AIC, see Akaike’s Criteria.
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Malthus, Thomas Robert

Born: February 17, 1766, in Guildford, UK.
Died: December 23, 1834, in Bath, UK.

After an early education by private tutors, Malthus
went to Jesus College, Cambridge, where he stud-
ied history, poetry, modern languages, classics, and
mathematics. He was elected to a Fellowship at Jesus
in 1793, and became a curate in a small town, Albury,
in 1798. In that year he published the first version
of his celebrated Essay on the Principle of Popula-
tion as it affects the Future Improvement of Society,
to be followed in his lifetime by five further edi-
tions. Malthus argued that a population would tend to
increase geometrically, whereas the means of subsis-
tence would increase only linearly. The consequent
pressure caused by increasingly inadequate means
of support would be a major determinant of polit-
ical events and structures. The task of government
was to counteract this dire prognosis by measures of
population control, such as the encouragement of later
marriage, rather than relying on increased poverty
and mortality. Malthus’s gloomy views ran counter
to those of many progressive thinkers, but influenced
Darwin’s thought.

Malthus was a strong advocate of statistical inves-
tigation, and was a founder member of the Statistical
Society of London (later the Royal Statistical Soci-
ety) in 1834. His death, only nine months later, led
the Society’s Council to lament the loss of one “so
celebrated in every part of the world where the sci-
ence of Statistics is cultivated”, describing him as
“an ardent lover of truth, . . . a sedulous investiga-
tor of facts, and a generous encourager of all who
have followed in the same laborious path” [2] (see
also [1, 3]).

The “Malthusian parameter” denotes the rate of
increase that would ultimately be achieved by a popu-
lation with observed age-specific birth and death-rates
(see Demography).
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Mantel, Nathan

Born: February 16, 1919 in New York City,
New York.

Died: May 26, 2002 in Potomac, Maryland.

Nathan Mantel, pioneering biostatistician, and author
of more than 380 published articles, was born in New
York City to Polish and Hungarian immigrants, Rose
Steinberg and Hyman (Nehemiah) Mantel. Nathan
was the middle child between two sisters, Ray
(Rifka, born 1917) and Anne (Channa, born 1920).
Like many Jewish immigrants at the time, Nathan
(Naftoolyah) grew up on the lower east side of New
York City in tenement housing. He was raised poor,
speaking Yiddish at home and at Hebrew School,
but speaking and writing in English at his public
school [11]. During the great depression, his Judaic
studies took a turn away from the Orthodox Judaism
of his parents when he and his sisters began resi-
dence in the Hebrew Orphan Asylum at 137th Street,
Amsterdam Avenue. This unassuming orphanage pro-
vided safe harbor for many other future notables.
Also in residence were Art Buchwald (syndicated
columnist), Aaron L. Jacoby (politician), Dr. Herman
Schwartz (biologist), Harold Tovish (sculptor), and
many others [2]. During his adolescence, Nathan’s
maternal grandparents and 11 aunts, who had all
remained in Eastern Europe instead of immigrating

to the United States, were killed in the holocaust.
Many of his paternal relatives immigrated to America
successfully.

Nathan’s academic training began at New York
City’s Stuyvesant High School. This premier school
for science and mathematics helped to cultivate
Nathan’s interest and ability in mathematics, though
his mature interest did not manifest itself until much
later in his life. By most accounts, he was only
a mediocre student [11]. However, even in high
school, he participated in mathematics competitions.
In his senior year, he derived a novel way to
solve the Diophantine equation (ax − by = c), which
was later published in the American Mathematical
Monthly [7]. This would be the first of his numer-
ous publications. In 1939, he graduated from City
College of New York with a major in statistics.
At City College, he took courses with other future
statisticians, including Marvin Schneiderman and
Bernard Greenberg. He later went on to earn a Mas-
ter’s degree in statistics from American University in
1956, already having published twenty-one articles in
the field.

His career as a professional statistician began in
1940, after a series of low-level federal jobs. At this
time, Nathan was recruited into what later became
the War Production Board, where his skills helped
increase the output of the nation’s factories. Later,
a portion of his World War II military service in
the Army Air Force involved statistical analysis of
medical research. But, with the war’s end, the agency
closed down and Nathan, who at that time was living
with his family in temporary government housing in
what is today the National Park Service’s Kenilworth
Aquatic Gardens, was jobless.

In 1947, Mantel went for a job interview at the
National Cancer Institute (NCI) in the National Insti-
tutes of Health (NIH). He was quickly hired by
Harold Dorn as a member of a new biometry group
and set to work with such biostatisticians as Jerome
Cornfield, Samuel Greenhouse, Jacob Lieberman,
and Marvin Schneiderman (an old college pal of
Nathan’s). The rest, as they say, is history. Of this
time period, Sam Greenhouse wrote, “. . . among
statisticians the world over, we had probably the
greatest artist of all – Nathan Mantel. No one could
match him in quickly identifying the information in
the data related to the questions and the swiftness
with which he was able to choose an optimum method
of analysis. The statistical procedures which bear his
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name are really nothing compared to his ability to
analyze data. The former would have eventually been
derived by others, but it is doubtful whether anyone
else has had his intuition” [5].

In the field of biostatistics, Nathan Mantel has pub-
lished papers on leukemia, lung cancer, Down’s syn-
drome, chemotherapy, breast cancer, passive smok-
ing, vehicle emissions, and much more. Most notably,
he developed the Mantel–Haenszel procedure and its
extensions. William Haenszel, who had been working
on interpreting the case–control studies of the con-
nection between smoking and lung cancer, requested
Mantel’s assistance on how to analyze the retrospec-
tive data. Mantel then collaborated with Haenszel on
a paper that aimed to reach the same conclusions “in
a retrospective study as would have been obtained
from a forward study, if one had been done” [10].
Their highly cited paper, “Statistical Aspects of the
Analysis of Data from Retrospective Studies of Dis-
ease”, [10] presents the Mantel–Haenszel procedure,
which provides a summary estimate of the expo-
sure effect stratified by multiple sources (i.e. different
studies) or confounding factors (such as age and sex),
which is a weighted average of the odds ratios across
various strata.

The applications and extensions of this procedure
are many. Since this test allows for combining data
from different sources, it can be used in a variety
of contexts: retrospective studies, prospective stud-
ies, and laboratory experiments, including those with
litter-matched samples. Mantel used the procedure to
develop the first version of the logrank test, a test
that compares censored time-to-response distribu-
tions [8], and later extended the test to the evaluation
of response time data involving transient states [9].
These important applications contributed greatly to
the development of survival analysis [4]. Mantel
notes about his 1959 paper: “It turned out that the
procedures in the paper could be extended so that
they met perhaps 90 to 95 per cent of the kinds of
problems that people were encountering” [6].

In addition, Mantel offered abundant insights to
both epidemiology and laboratory research: He de-
monstrated that a prospective logistic risk model can
be used to analyze case–control data [6]. He also
explored the distribution of cancers among related
diseased pairs to test whether the cause of the can-
cer was due to environmental exposure in addi-
tion to hereditary factors [4]. Further, Mantel devel-
oped methods to investigate temporal and spatial

clustering of diseases such as polio, hepatitis, and
childhood leukemia [4]. In 1961, Nathan devised the
Mantel–Bryan approach to test for safety of carcino-
genic agents (see Tumor Incidence Experiments).
His definition of a “virtual safe” dose as a risk of
one per 100 million or less was used by the Food
and Drug Administration for several years before
the standard was adapted to a less conservative def-
inition of “safety” at one per million or less [6]. He
later commented in an EPA Watch newsletter about
the arbitrary nature of the original standard: “We just
pulled it out of a hat” [1]. Upon hearing that a bureau-
crat had dropped two zeros from his standard of one
per 100 million, Nathan is reported to have remarked,
“Well, that’s government science for you!” Describ-
ing his overall approach to problem solving, Mantel
wrote, “I generally don’t generate ideas of my own.
Someone has to come to me with a problem. And,
apparently, I’m pretty good at coming up with solu-
tions or ideas for solutions. Identifying problems is
what is important – solutions just follow.” [3].

A recipient of many professional honors, after
retiring from the NCI, Mantel served as a research
professor at George Washington University and later
at American University. He was a visiting scientist
at the New York University School of Medicine, a
visiting professor at the University of Tel Aviv, and
a visiting professor in neuroepidemiology at Temple
University School of Medicine. He was also a lecturer
at the China National Center for Preventive Medicine
in Beijing. At its 2002 Annual Meeting, the Ameri-
can Statistical Association announced the establish-
ment of the Nathan Mantel Lifetime Achievement
Award for statisticians who have made significant
contributions to the field of biostatistics over their
careers. Nathan did not live to see the presentation
of this award, as he died in his sleep on May 26,
2002. The epitaph on his gravestone reads, “One
in a million”, which serves as a concrete reminder
of his lasting contributions to statistics and public
policy. For additional biographical information and
summaries of Nathan’s work, refer to [2–6, 11].
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Mapping Disease Patterns

For as long as disease patterns have been mapped
there has been skepticism over the value of the pic-
tures which are drawn. For instance, a map of the
geography of the 1832 influenza epidemic in Glasgow
(Scotland) was produced by the inmates of a lunatic
asylum, mainly to occupy their time [1]. Later, in
the nineteenth century, the value of mapping disease
patterns was recognized as specific epidemiologic
breakthroughs were attributed to the insight gained
from mapping. Often cited is a map of the distri-
bution of deaths from the 1848 cholera epidemic in
London (England) which, so the tale goes, inspired
the removal of the handle of the water pump at the
center of a cluster of dots on the map, resulting in
the curtailing of the epidemic [12].

Maps of diseases are like news pictures of crowd
trouble. Viewers should always ask themselves what
is not being shown in the map while looking at what
is there. In particular, look around the edge of the
map. Ask why it ends where it does. For instance,
maps of diseases are often centered on the point the
author thinks is most important. Figure 1 shows the
central section of John Snow’s map of deaths from

cholera in Soho. Note how the eye is drawn to the
pump in the center, particularly by the very high
number of deaths at the intersection of Cambridge
and Broad Streets. Had Snow drawn his map of
all of London he would have discovered a greater
density of deaths just south of the river Thames, as
shown in Figure 2. This concentration would have
changed location again had Snow had recourse to an
isodemographic base map, as shown in Figure 3. As
our picture of a disease pans out, as we include more
cases and as we change the way we view the picture,
the patterns on our maps show change too.

Disease mapping has been most strongly influ-
enced by the history of diseases. Figure 4 shows
the prevalence of 12 major causes of death in Eng-
land and Wales since the publication of Snow’s map
of cholera. Infectious diseases now account for a
tiny fraction of deaths in developed countries (which
can afford most disease mapping and research). It is
causes of death which are not declining, such as sui-
cide, and those which are rising in importance, such
as cancers, which increasingly interest researchers.
For these causes of illness and death the analysis of
point patterns around particular sites is still a major
issue, but the patterns are usually far less clearly
spatially defined than were outbreaks of cholera.

Figure 1 John Snow’s map of cholera deaths in Soho, London, 1854 – taken from Cliff & Haggett [1, Figure 1.15D]
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Figure 2 Cholera deaths in London in 1849 – taken from Cliff & Haggett [1, Figure 1.3B]

Figure 3 Figure 2 on a population cartogram – taken
from Cliff & Haggett [1, Figure 1.18D]

More importantly, it is increasingly being accepted
that more abstract factors, such as social inequality,
can lie behind particular patterns of disease, and these
require more abstract mappings for their study.

There are many different ways of mapping disease
but here there is only space to explore one alterna-
tive. The alternatives include traditional choropleth
mapping, where areas on a map are shaded accord-
ing to statistics about the population. Most common
in epidemiology is the mapping of areas colored by

their standardized mortality ratios (see Standardiza-
tion Methods). Another common form of mapping is
to map points or the incidences of disease, and often
color is also used here to highlight different types of
disease. Various different point symbols can be used
in mapping, particularly common is the use of pro-
portional circles which are colored or segmented to
highlight different features of a disease. The size of
the circles is often made proportional to the popula-
tion at risk of contracting a disease, at which point
this type of cartography begins to merge into iso-
demographic mapping [4, 5].

Diseases occur across a population as much as
across land. That is not to say that geographic dis-
tributions are not important, but that we should take
account of the distribution of the population at risk
to a particular disease, or cause, before mapping its
pattern. One way in which this can be done is to use
a map projection which draws every area in propor-
tion to the number of people at risk living in that
area – hence the term isodemographic (“equal peo-
ple”). Isodemographic maps, more commonly called
cartograms, are used for many purposes, mostly obvi-
ously in mapping the geography of elections. How-
ever, their most established use has been in disease
mapping. Figure 5 shows one of the earliest examples
of a cartogram designed for epidemiologic purposes
[15, p. 1023]. Figure 5(a) is the conventional map of
the counties of Iowa State, and Figure 5(b) is an equal
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Figure 4 Cause of death 1855–1990 – taken from Dorling [3, Figure 5.21]

population cartogram upon which colored pins were
placed to show the locations of reportable diseases.
The square in the middle of the cartogram is Des
Moines city in Polk County.

The designer of the Iowa cartogram was a doc-
tor working in the state department of health. Many
researchers have been struck by the idea that they
could learn more about disease through mapping it in
unconventional ways. The first cartogram of London
was an “epidemiologic map” produced by a doctor
working for the then London County Council Depart-
ment of Public Health [14]. The cartogram (Figure 6)
contained crosses drawn in the borough rectangles
to show the incidence of polio during the 1947
epidemic. Because the rectangles were each drawn
with the same height, their widths are proportional
to population as well as their areas. The borough
with the highest rate of polio and hence the tallest
column of crosses in the Figure was Shoreditch.
Almost exactly 100 years separates the two London
epidemics, which were first drawn on a map and
cartogram, respectively. Cartograms showing distri-
butions within countries came later.

A claim was made to have produced the first car-
tograms showing national disease distributions only
a decade after the crude cartogram of London was
first drawn [6]. The nation was Scotland, and a sep-
arate cartogram was constructed by hand for each
of eight age–sex groups. Figure 7 shows the car-
togram being used to study the 1959–1963 mortality
of women in Scotland aged 45–54. The author of

this cartogram concluded that a national series of car-
tograms should be produced for each age–sex group
for use in epidemiologic studies in Britain. This was
never done, and it is debatable whether such an exact
mapping base is needed in most studies. A single
isodemographic base map of the whole population
will usually suffice to uncover all but the most subtle
of patterns.

A National Atlas of Disease Mortality in the UK
was published in 1963 under the auspices of the
Royal Geographical Society; the atlas contained no
cartograms. However, a revised edition was pub-
lished a few years later which made copious use of
a “demographic base map” [7]. It is interesting to
note that, when the revised edition was being pre-
pared, the president of the Society was Dudley Stamp,
who believed that “The fundamental tool for the geo-
graphical analysis is undoubtedly the map or, perhaps
more correctly, the cartogram” [13, p. 135]. In the
cartogram which was used in the revised national
atlas (Figure 8), squares were used to represent urban
areas, while diamonds were used to show statistics
for rural districts. No attempt was made to maintain
contiguity, but a stylized coastline was placed around
the symbols, which were all drawn with their areas in
proportion to the populations at risk from the disease
being shown on each particular cartogram.

In the National Atlas of Disease Mortality in the
United Kingdom, Howe used a national cartogram
to display the distribution of standardized mortality
between 1959 and 1963 from separate as well as
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Figure 5 The use of cold vaccine in Iowa County Area, 1926 – taken from Wallace [15, p. 1023]
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Figure 6 London borough cartogram showing 1947 poliomyelitis notifications – taken from Taylor [14, p. 201]

all causes of death for both men and women. High
rates were seen in northern districts and some Inner
London boroughs (including Shoreditch, which is
also highlighted on one of the earliest cartograms of
London; see above). Extremely high rates in central
Scotland were particularly noticeable, as were the
low rates in districts which surround London. At the
extremes the average man living in Salford was 50%
more likely to die each year than his counterpart
in Bournemouth [7]. Both these areas are shrunk
on a “normal” map. The pattern for women was
very similar to that for men although, in general,
it was less pronounced. However, women did have
the highest mortality rate of any area on the map
in rural Dunbartonshire, where they were more than

twice as likely to die each year than were women
nationally (allowing for local age structure). The
cartogram highlights this area, but also puts it in the
perspective of the populations at risk from the high
mortality rates for women in and around the Glasgow
area. Questions for investigation are immediately
generated by comparing the maps in Howe’s atlases
with those produced by Forster for a decade earlier
(see Figure 7).

Isodemographic mapping is also used to study the
prevalence of disease – individual cases of a disease
or death which together might possibly be connected.
Figure 9 shows the distribution of cases of Wilm’s
tumor, a childhood cancer, identified in New York
State between 1958 and 1962, drawn upon an equal
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Figure 7 Cartogram and map of Scottish health districts – taken from Forster [6]. (a) Cartogram of females aged 45–54
in 1961 by Scottish health districts; (b) map of 1959–63 mortality rates of females aged 45–54 by district; (c) 1959–63
mortality rates of females aged 45–54 shown in (a)
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Figure 8 Cartogram of districts of disease mapping in the UK – taken from Howe [7]
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Figure 9 Wilm’s tumour cases on (a) map and (b) cartogram in New York State – taken from Levison & Haddon [8]
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land area map. Apparent clusters of cases have been
marked on the map [8]. In the second diagram in
Figure 9, the same cases are drawn upon an equal
population cartogram and the apparent clusters can
be seen to have been quite evenly dispersed across
the population. The same process has been used in
Figure 10 to illustrate how cases of Salmonella food
poisoning occurring in Arkansas in 1974 were not
unduly clustered in Pulaski county [2].

In recent years researchers have turned their atten-
tion to trying to develop cartograms upon which
actual, rather than illusory, clusters of disease can
be identified (see Clustering). The major problem
with using population cartograms to identify clus-
ters of disease is that the choice of which areas are
closest to which on a cartogram can be quite arbi-
trary. For instance, if the same set of incidences of
one particular disease were plotted on three different

cartograms, then different parts of the country may
appear to have dense clusters of cases depending on
which cartogram was chosen. This would be true
regardless of whether the clusters were to be identi-
fied by eye or by statistical procedures; the different
base maps would result in different patterns emerg-
ing. The proposition that there is no single “true
answer” as to whether a disease is clustered does not
go down too well in some circles. Because of this
problem a group of researchers at Berkeley devel-
oped a computer algorithm for identifying incidences
of disease [9]. The algorithm was used to produce
the cartogram in Figure 11 of San Francisco county,
upon which apparent clusters of disease were shown
to be false [11]. However, application of the method
to another California county did provide evidence
of some clustering of high cancer rates near oil
refineries [10].

Figure 11 San Francisco map (a) for 1980 census, and cartogram (b) of hypothetical and actual diseases – taken from
Selvin et al. [11]
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Mapping of disease patterns is becoming increas-
ingly common due to the proliferation of computer
mapping. However, many of these programs were
designed to produce general maps of any subject and
are often most appropriate to show land use or the
distribution of points in physical space. Over most of
the course of the last century, doctors, public health
officials, and researchers have discovered and redis-
covered that traditional maps often do not provide
the most appropriate projection to look for patterns
of disease. Here, a few alternatives have been shown
of just one different form of disease mapping to try to
explain why it involves more than just sticking pins
in paper.

Acknowledgment

The author is grateful to Robert Israel for comment-
ing on a draft of this article and to the following peo-
ple for permission to reproduce the copyright material
shown here: Peter Haggett (Atlas of Disease Distribu-
tions) for Figures 1–3; Pam Beckley (Her Majesty’s Sta-
tionery Office) for Figure 5; Michael Plommer (Office for
National Statistics) for Figure 6; Carol Torselli (British
Medical Journal) for Figure 7; Marian Tebben (Public
Health Reports) for Figure 9; and Mina Chung (American
Public Health Association) for Figure 10.

References

[1] Cliff, A.D. & Haggett, P. (1988). Atlas of Disease
Distributions. Analytical Approaches to Epidemiological
Data. Blackwell, Oxford.

[2] Dean, A.G. (1976). Population-based spot maps: an
epidemiologic technique, American Journal of Public
Health 66, 988–989.

[3] Dorling, D. (1995). A New Social Atlas of Britain. Wiley,
Chichester.

[4] Dorling, D. (1996). Area Cartograms: Their Use and
Creation , Concepts and Techniques in Modern Geog-
raphy (CATMOG) no. 59. School of Environmental
Sciences, University of East Anglia, Norwich.

[5] Dorling, D. & Fairbairn, D. (1997). Mapping: Ways of
Representing the World. Longman, London.

[6] Forster, F. (1966). Use of a demographic base map for
the presentation of areal data in epidemiology, British
Journal of Preventive and Social Medicine 20, 165–171.

[7] Howe, G.M. (1970). National Atlas of Disease Mortality
in the United Kingdom, Revised and Enlarged Edition.
Nelson, London.

[8] Levison, M.E. & Haddon, W. (1965). The area adjusted
map: an epidemiological device, Public Health Reports
80, 55–59.

[9] Selvin, S., Merrill, D., Sacks, S., Wong, L., Bedell, L. &
Schulman, J. (1984). Transformations of Maps to Inves-
tigate Clusters of Disease. Laboratory Report, LBL-
18550, Lawrence, Berkeley.

[10] Selvin, S., Shaw, G., Schulman, J. & Merrill, D.
(1987). Spatial distribution of disease: three case studies,
Journal of the National Cancer Institute 79, 417–423.

[11] Selvin, S., Merrill, D., Schulman, J., Sacks, S., Bedell, L.
& Wong, L. (1988). Transformations of maps to inves-
tigate clusters of disease, Social Science and Medicine
26, 215–221.

[12] Snow, J. (1854). On the Mode of Communication of
Cholera. Churchill Livingstone, London.

[13] Stamp, L.D. (1962). A geographer’s postscript, in Tax-
onomy and Geography, D. Nichols, ed. The Systematics
Association, London, pp. 153–158.

[14] Taylor, I. (1955). An epidemiology map, Ministry of
Health Monthly Bulletin 14, 200–201.

[15] Wallace, J.M. (1926). Population map for health officers,
American Journal of Public Health 16, 1023.

(See also Geographic Patterns of Disease; Geo-
graphic Epidemiology)

DANIEL DORLING



Marginal Likelihood

Suppose that X = (X1, . . . , Xn)
′ is a vector of ran-

dom variables whose distribution depends on param-
eter vectors β and λ. We suppose that β is of primary
interest, whereas λ is a nuisance parameter and typ-
ically is of very high dimension. Our aim is to define
a derived likelihood that would be suitable for infer-
ence about β when λ is unknown.

Let f (x; β, λ) be the probability density function
(pdf) of X; on data X = x, it defines the joint likeli-
hood function

L(β, λ; x) ∝ f (x; β, λ),

which can be used for inference. However, when λ

is of high dimension, it becomes difficult to inter-
pret the information about β. In fact, the maximum
likelihood estimator (MLE) of β can have very poor
properties, even asymptotically, if the dimension of
λ increases with that of X. To make inferences about
β itself without regard to λ, it is useful to define
a derived likelihood which, by some method, elim-
inates λ. Marginal likelihood provides one way of
doing this.

Suppose that there exists a one-to-one transforma-
tion of X into (A, T) and that the joint pdf of (A, T)
factors as

f (a, t; β, λ) = f (a; β)f (t|a; β, λ), (1)

where the marginal density of A does not depend
on λ.

The marginal likelihood of β based on A is

Lm(β; a) ∝ f (a; β), (2)

and this could be used for inference about β. In
general, there is a loss of information in restricting
attention to (2) for inference; sometimes, however,
invariance or other arguments suggest that A contains
the whole of the available information about β. Even
when such arguments do not apply, however, there
may still be advantage to using (2) as the basis of
inference since it conveniently eliminates λ.

Two examples serve to illustrate the ideas.

Example 1

Suppose that variability in the measurement of blood
glucose is of interest and that pairs of measurements

are taken on n independent individuals. Thus, we
might assume that X1i , X2i are independent N(λi, β2)

variates, where λi represents the true glucose level
for the ith individual and β2, the variance of the
measurement error, is of interest. The maximum
likelihood estimate of β2 is

β̂2 =
∑

(x1i − x2i)
2

(4n)
,

which converges to β2/2 in probability as n → ∞.
This is an instance in which the mle is inconsistent.

A marginal likelihood, in this problem, is naturally
based on the statistics, Ai = X1i − X2i , i = 1, . . . , n,
which are independent N(0, 2β2) variates. This gives
rise to the marginal likelihood

Lm(β2; a) = β−n exp

[−∑
a2

i

(4β2)

]
.

The corresponding marginal mle, β̂2
m = ∑

a2
i /(2n)

converges in probability to the correct value β2 as
n → ∞. The choice of the Ais as the basis for
inference about β2 is a natural one; the difference
in the measurements for each individual provides the
information about β2 intuitively.

Example 2

A second example arises in Cox’s proportional haz-
ards model [3] (see Cox Regression Model). The
hazard function for the time to failure T is

λ(t ; z) = λ0(t) exp(z′β), (3)

where z = (z1, . . . , zp)′ is a vector of fixed covari-
ates. In this model, the baseline hazard rate λ0(t)

is left arbitrary and the covariates z are assumed
to act multiplicatively on the baseline rate with
β = (β1, . . . βp)′, the vector of regression parameters
being of primary interest.

Suppose that T1, . . . , Tn is a sample with covari-
ates z1, . . . , zn. Let T(1), . . . , T(n) be the order statis-
tic from T1, . . . , Tn with corresponding covariates
z(1), . . . , z(n) and let R = (R1, . . . , Rn) be the rank
vector. Thus, Ri is the rank of the variate Ti among
(T1, . . . , Tn). The distribution of R can be shown to
be

f (r; β) = Pr(R = r)
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=
n∏

i=1





exp(z′
(i)β)

n∑

j=1

exp(z′
(j)β)




, (4)

and this defines a marginal likelihood for β. This like-
lihood (4) is identical to Cox’s partial likelihood [3].
These arguments can be extended to allow right cen-
soring in the data [6].

We conclude with a number of remarks.

1. Marginal likelihood was first introduced by Fra-
ser [4, 5] in the context of the structural model.
In his work and in the related work of Kalbfleisch
& Sprott [8], the Ais are allowed to depend on
the parameter β.

2. Group invariance arguments can be used in both
of the examples given here to justify the use
of A or R as the basis of inference for β.
Barnard [1] describes these arguments in general,
and Kalbfleisch & Prentice [6, 7] apply them
to the proportional hazards model (3). Other
approaches to assessing the “sufficiency” of A
for inference have been discussed by Sprott [9]
and Barndorff-Nielsen [2], among others.

3. Marginal likelihood is one of several methods for
obtaining derived likelihoods about a parameter
of interest. Conditional likelihood (see Condi-
tional Probability), partial likelihood and profile

likelihood are other approaches which can apply,
depending upon the structure of the statistical
problem.
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Marginal Models for
Multivariate Survival
Data

Multivariate survival or failure-time data arise when
each study subject may experience several events or
when there exists some natural or artificial grouping
of subjects which induces dependence among fail-
ure times of the same group. Biomedical examples
include the sequence of tumor recurrences or infec-
tion episodes, the development of physical symptoms
or diseases in several organ systems, the occurrence
of blindness in the left and right eyes, the onset of
a disease among family members, the initiation of
cigarette smoking by classmates, and the appearance
of tumor in litter-mates exposed to a carcinogen.

Suppose that there are n independent units each
of which can potentially experience K types of fail-
ures. Let Tik be the time when the kth type of failure
occurs on the ith unit, and let Cik be the corre-
sponding censoring time. Define Xik = min(Tik, Cik)

and ∆ik = I (Tik ≤ Cik), where I (·) is the indi-
cator function (see Dummy Variables). Also, let
Zik(·) = [Z1ik(·), . . . , Zpik(·)]′ denote a p-vector of
possibly time-dependent covariates for the ith unit
with respect to the kth type of failure. The fail-
ure time vector Ti = (Ti1, . . . , TiK) and the censor-
ing time vector Ci = (Ci1, . . . , CiK) are assumed to
be independent, conditional on the covariate vec-
tor Zi = (Z′

i1, . . . , Z′
iK), i = 1, . . . , n. The units are

allowed to have unequal numbers of failures, which
is achieved by setting Cik to zero whenever Tik is
missing.

It is natural and convenient to formulate the
marginal distribution for each type of failure with a
proportional hazards model. Depending on whether
the baseline hazard functions are different or identical
among the K types of failures, the marginal hazard
function for the kth type of failure on the ith unit is

λk(t ; Zik) = λ0k(t) exp[β ′Zik(t)], (1)

or
λk(t ; Zik) = λ0(t) exp[β ′Zik(t)], (2)

where λ0k(t), k = 1, . . . , K , and λ0(t) are unspeci-
fied baseline hazard functions, and β is a p-vector
of unknown regression parameters. In some applica-
tions it is necessary to allow λ0k(t), k = 1, . . . , K , to

be different, whereas in others it suffices to assume
a common baseline hazard function. In both mod-
els (1) and (2), we set β to be the same among the K

submodels, which entails no loss of generality since
this structure can always be achieved by introducing
appropriate type-specific covariates.

Inference Procedures

If all the failure times were independent, then the
partial likelihood functions for β would be

L(β) =
n∏

i=1

K∏

k=1






exp[β ′Zik(Xik)]
n∑

j=1

Yjk(Xik) exp[β ′Zjk(Xik)]






∆ik

under model (1) and

L(β) =

n∏

i=1

K∏

k=1






exp[β ′Zik(Xik)]
n∑

j=1

K∑

l=1

Yjl(Xik) exp[β ′Zj l(Xik)]






∆ik

under model (2), where Yik(t) = I (Xik ≥ t). The
corresponding score functions would be

U(β) =
n∑

i=1

K∑

k=1

∆ik

[
Zik(Xik) − S(1)

k (β, Xik)

S
(0)
k (β, Xik)

]
(3)

and

U(β) =
n∑

i=1

K∑

k=1

∆ik

[
Zik(Xik) − S

(1)
(β, Xik)

S
(0)

(β, Xik)

]
,

(4)

where

S(0)
k (β, t) =

n∑

j=1

Yjk(t) exp
[
β ′Zjk(t)

]
,

S(1)
k (β, t) =

n∑

j=1

Yjk(t) exp
[
β ′Zjk(t)

]
Zjk(t),

k = 1, . . . , K,

and

S
(r)

(β, t) =
K∑

k=1

S(r)
k (β, t), r = 0, 1.
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In both cases, the solution to [U(β) = 0] is denoted
by β̂.

Although the failure times within the same unit
tend to be correlated, the estimator β̂ can be
shown to be consistent for β and asymptotically p-
variate normal provided that the marginal models
are correctly specified. However, the conventional
covariance matrix estimator I−1(β̂), where I(β) =
−∂2 log L(β)/∂β2, is no longer valid, the reason
being that I(β) is not the covariance matrix of
U(β) in the presence of intraclass dependence. By
approximating U(β) with a sum of independent and
identically distributed zero-mean random vectors, one
can show that, for large n and relatively small K ,
the random vector U(β) is approximately zero-mean
normal with covariance matrix estimator

V(β) =
n∑

i=1

K∑

k=1

K∑

l=1

Wik(β̂)Wil(β̂)′,

where

Wik(β) = ∆ik

[
Zik(Xik) − S(1)

k (β, Xik)

S
(0)
k (β, Xik)

]

−
n∑

j=1

∆jkYik(Xjk) exp[β ′Zik(Xjk)]

S
(0)
k (β, Xjk)

×
[

Zik(Xjk) − S(1)
k (β, Xjk)

S
(0)
k (β, Xjk)

]

and

Wik(β) = ∆ik

[
Zik(Xik) − S

(1)
(β, Xik)

S
(0)

(β, Xik)

]

−
n∑

j=1

K∑

l=1

∆jlYik(Xjl) exp[β ′Zik(Xjl)]

S
(0)

(β, Xjl)

×
[

Zik(Xjl) − S
(1)

(β, Xjl)

S
(0)

(β, Xjl)

]

under models (1) and (2), respectively. Consequently,
β̂ is approximately normal with covariance matrix
estimator D(β̂) = I−1(β̂)V(β̂)I−1(β̂). We call
I−1(β̂) and D(β̂) the naive and robust estimators,
respectively. In the case of K = 1, the matrix
D(β̂) reduces to the Lin–Wei [14] robust covariance
matrix estimator for the maximum partial likelihood
estimator under misspecified proportional hazards
models. To test the global hypothesis that β = β0, one

may use the chi-square statistic U′(β0)V−1(β0)U(β0)

or (β̂ − β0)
′D−1(β̂)(β̂ − β0); to test the general

linear hypothesis H0: Lβ = d, where L is an r × p

matrix of constants and d is an r × 1 vector of
constants, one refers (Lβ̂ − d)′{LD(β̂)L′}−1(Lβ̂ −
d) to the chi-square distribution with r degrees of
freedom.

The above results are analogous to those of the
generalized estimation equations (GEE) for the
analysis of marginal models for longitudinal data
with an independence working assumption. A sim-
ilar idea can be used to estimate the cumulative
baseline hazard functions Λ0k(t) = ∫ t

0 λ0k(u)du, k =
1, . . . , K , and Λ0(t) = ∫ t

0 λ0(u)du for models (1)
and (2). Specifically, under the independence work-
ing assumption, the Aalen–Breslow type estimators
for Λ0k(t) and Λ0(t) are

Λ̂0k(t) =
n∑

i=1

I (Xik ≤ t)∆ik

S
(0)
k (β̂, Xik)

, k = 1, . . . , K, (5)

and

Λ̂0(t) =
n∑

i=1

K∑

k=1

I (Xik ≤ t)∆ik

S
(0)

(β̂, Xik)
. (6)

These estimators are consistent and asymptotically
normal. In fact, the p-vector of random processes,

n1/2[Λ̂01(t) − Λ01(t), . . . , Λ̂0K(t) − Λ0K(t)]′,

converges weakly to a p-dimensional zero-
mean Gaussian random field, and the covariance
between Λ̂0k(t) and Λ̂0l(s) can be estimated by∑n

i=1 ξik(t ; β̂)ξil(s; β̂), where

ξik(t ; β)

= I (Xik ≤ t)∆ik

S
(0)
k (β, Xik)

−
n∑

j=1

I (Xjk ≤ t)∆jkYik(Xjk) exp[β ′Zik(Xjk)]

S
(0)
k (β, Xjk)2

−



n∑

j=1

I (Xjk ≤ t)∆jkS
(1)
k (β, Xjk)

S
(0)
k (β, Xjk)2




′

× I−1(β)

K∑

l=1

Wil(β).

In addition, n1/2[Λ̂0(t) − Λ0(t)] converges weakly
to a zero-mean Gaussian process, and the covari-
ance between Λ̂0(t) and Λ̂0(s) can be estimated by



Marginal Models for Multivariate Survival Data 3

∑n
i=1

∑K
k=1

∑K
l=1 ξik(t ; β̂)ξil(s; β̂), where

ξik(t ; β)

= I (Xik ≤ t)∆ik

S
(0)

(β, Xik)

−
n∑

j=1

K∑

l=1

I (Xjl ≤ t)∆jlYik(Xjl) exp[β ′Zik(Xjl)]

S
(0)

(β, Xjl)2

−



n∑

j=1

K∑

l=1

I (Xjl ≤ t)∆jlS
(1)

(β, Xjl)

S
(0)

(β, Xjl)2




′

× I−1(β)Wik(β).

The large-sample properties for the corresponding
baseline survival function estimators exp[−Λ̂0k(t)],
k = 1, . . . , K , and exp[−Λ̂0(t)] follow from the
delta method. Furthermore, simple modifications can
be made to estimate the survival functions associated
with specific covariate values.

Software Availability

The estimators β̂, Λ̂0k, k = 1, . . . , K , and Λ̂0 are
constructed under the independence working assump-
tion, and therefore can be obtained from any exist-
ing software for the Cox regression. The robust
covariance matrix estimator for β̂ is available in S-
PLUS, SAS, and STATA packages, as well as in a
special FORTRAN program [12]. The robust vari-
ance–covariance estimators for Λ̂0k, k = 1, . . . , K ,
and Λ̂0 have not been implemented in commercially
available software packages.

An Example

We now provide an illustration with the well-known
Diabetic Retinopathy Study [4], which was con-
ducted by the National Eye Institute to evaluate
the effectiveness of laser photocoagulation in delay-
ing the onset of blindness in patients with diabetic
retinopathy. The study enrolled 1742 patients. One
eye of each patient was randomly selected for photo-
coagulation and the other eye was observed without
treatment. The patients were followed over several
years for the occurrence of blindness in their left and
right eyes.

We confine our attention to a subset of the data
with 197 high-risk patients previously analyzed by

Huster et al. [7] and Lin [13]. By the end of the
study, 54 treated eyes and 101 control eyes in this
subsample had developed blindness. In this example,
each patient could potentially experience blindness
in both eyes; therefore, there are two failure types
with k = 1 and 2, denoting the left and right eyes,
respectively. Since there are no biological differences
between the left and right eyes, it is natural to assume
a common baseline hazard function for the two failure
types.

As mentioned above, the primary objective of this
study was to assess whether laser photocoagulation
delays the occurrence of blindness. Because juvenile
and adult diabetes have very different courses, it
is desirable to examine how the age at onset of
diabetes may affect the time to blindness. Thus, we
consider model (2) with Zik = (Z1ik, Z2ik, Z3ik)

′, i =
1, . . . , 197; k = 1, 2, where

Z1ik =
{ 1, if the kth eye of the ith patient

was on treatment,
0, otherwise;

Z2ik =






1, if the ith patient had adult
onset diabetes,

0, if the ith patient had juvenile
onset diabetes;

and Z3ik = Z1ik × Z2ik . The results for the estimation
of the regression parameters are shown in Table 1.
The robust standard error estimates are appreciably
smaller than the naive estimates, the latter ignoring
the dependence between the left and right eyes. The
treatment appears to be effective, and this effect
is much stronger for adult-onset diabetes than for
juvenile-onset diabetes.

Figure 1 displays the estimates and pointwise
95% confidence intervals for the survival functions,
namely, the probabilities of retained visual acuity, for
adult-onset diabetes, separated by treatment groups.
As expected, these probabilities are much higher for
the treated eyes than for the untreated ones.

Table 1

Stand. error estimate
Variable Parameter

estimate Naive Robust

Treatment (Z1) −0.425 0.218 0.185
Diabetic type (Z2) 0.341 0.199 0.196
Interaction (Z1 × Z2) −0.846 0.351 0.304
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Figure 1 Estimates and pointwise 95% confidence inter-
vals for survival functions

Further Results

The estimation of β under models (1) and (2) was
first studied by Wei et al. [23] and Lee et al. [9],
respectively, and further developed by Lin [13], while
the estimation of Λ0k, k = 1, . . . , K , and Λ0 was
investigated by Spiekerman & Lin [22]. The lat-
ter authors established a rigorous asymptotic theory
for the estimation of both the regression parame-
ters and baseline hazard functions under a general
marginal model which allows M, 1 ≤ M ≤ K , dif-
ferent baseline hazard functions among the K types
of failures. In a separate paper, they [21] developed
a class of graphical and numerical techniques for
checking the adequacy of models (1) and (2). The
readers are referred to the aforementioned papers for
further theoretical details as well as additional numer-
ical examples. Incidentally, Huster et al. [7] studied
model (2) with a parametric baseline hazard function,
while Guo & Lin [6] deal with discrete-time versions
of models (1) and (2).

Liang et al. [11] proposed a different procedure
for analyzing model (2). Their estimating function is
similar to (4), but they replaced S

(1)
/S

(0)
by an analog

which exploits pairwise comparisons of independent
observations. The actual form of their estimating
function is

n∑

i=1

K∑

k=1

I [ni(Xik) > 0]∆ik

×


Zik(Xik) − n−1
i (Xik)

∑

j �=i

∑

l

eik,j l(β, Xik)



 ,

where ni(t) = ∑
j �=i

∑
l Yjl(t) and

eik,j l(β, t) =
Yik(t)Zik(t) exp[β ′Zik(t)]

+Yjl(t)Zj l(t) exp[β ′Zj l(t)]
Yik(t) exp[β ′Zik(t)]

+Yjl(t) exp[β ′Zj l(t)]

.

The resultant estimator is consistent and asymptot-
ically normal. The relative efficiency of β̂ vs. the
Liang et al. estimator has not been investigated.

Estimating functions (3) and (4) were derived
under the independence working assumption. As in
the case of longitudinal data, it may be more
efficient to use estimating functions that take into
account the nature of dependence explicitly. This
amounts to incorporating certain weight functions
into estimating functions (3) and (4). The resultant
estimators remain consistent and asymptotically nor-
mal with a sandwich-type variance estimator under
mild regularity conditions on the weight function.
Due to censoring and the nonlinear nature of the
proportional hazards model, it is difficult to con-
struct optimal weight functions. Cai & Prentice [2]
investigated a weight function that is the inverse of
the covariance matrix of the marginal martingales
associated with the Tiks. Their theoretical calcula-
tions and simulation studies indicated that the effi-
ciency gains in using such weighted estimating func-
tions over estimating functions (3) and (4) are small
unless the correlations of failure times are unusually
high.

There has been considerable research on semipara-
metric multivariate failure time distributions which
characterize the strength of association among failure
time components by a limited number of parameters
while leaving the forms of the marginal distribu-
tions unspecified (e.g. [3, 18, 1]). One may extend
these multivariate distributions by formulating their
marginal distributions with model (1) or (2). One may
then estimate the marginal regression parameters and
baseline hazard functions by (3) and (5) or (4) and
(6) and proceed to estimate the association parame-
ters by the pseudo-maximum likelihood method [5].
This approach was mentioned by Bandeen-Roche &
Liang [1], but its inferential properties have yet to be
investigated.

Prentice & Hsu [19] studied simultaneous regres-
sion on the marginal hazard ratios and pairwise
dependencies, which is analogous to the regression
on the means and covariances of noncensored mul-
tivariate responses [20]. They used the estimating
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function of Cai & Prentice [2] for the marginal haz-
ard ratio parameters and developed a similar ad hoc
estimating function for the dependence parameters.
They showed that the solutions to this pair of esti-
mating functions are consistent and asymptotically
normal, with a sandwich-type covariance matrix esti-
mator.

The accelerated failure-time and additive haz-
ards models are two important alternatives to the
proportional hazards model. The former relates the
logarithm of the failure time linearly to the covari-
ates [8], while the latter relates the conditional hazard
function linearly to the covariates [16]. One may
formulate the marginal distributions of multivari-
ate failure time data with accelerated failure time
models or additive hazards models rather than pro-
portional hazards models. The corresponding infer-
ence procedures were studied, respectively, by Lin
& Wei [15] and Lee et al. [10], and by Lin &
Ying [17].
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Marginal Models

When several response variables are simultaneously
of interest on each subject in a study, we may expect
these responses to be interdependent simply because
the same subject is involved for all observations.
Because of this dependence among the observations,
a multivariate distribution will be required to model
them adequately. In most cases, repeated measure-
ments will be involved; for simplicity, we shall
restrict our examples to such studies. In other words,
the same response variable will be measured several
times on subjects, either because they are found in
clusters or because they are observed longitudinally
over time [11], (see Longitudinal Data Analysis,
Overview).

The full multivariate distribution will describe the
dependence among the responses on each subject.
Such distributions can always be factored into a
product of univariate marginal and conditional dis-
tributions in a number of ways (see Marginal Prob-
ability; Conditional Probability). As well, as many
univariate marginal distributions exist as the number
of dimensions of the response variable. Models based
on multivariate distributions can be parameterized in
a number of different ways, using various combina-
tions of the conditional and/or marginal distributions,
although care must be taken in such constructions [2].
Thus, if a proper probability model is constructed
for such data, it necessarily contains both marginal
and conditional aspects. A “marginal model” refers
to a multivariate model where emphasis is placed on
the margins; usually, parameters in the margins are
related in simple ways to the covariates. As we shall
see, this generally induces complex relationships for
the conditional distributions.

In certain situations, such as in the experimen-
tation of a clinical trial, the dependence relations
among responses will be of direct interest. Thus,
for example, in a longitudinal setting, we may be
concerned with how a response depends on the pre-
vious history of a subject, including dependence on
previous responses. Then, study of conditional distri-
butions will be appropriate [12]. However, in other
situations, such as epidemiological population studies
of prevalence, we may be interested in the marginal
distribution of responses within the population at each
point in time or for each member of a cluster or
matched group (see Clustering). The term marginal

means that the distribution of each response sepa-
rately is concerned, conditional on covariates but not
on any of the other responses. In such a marginal
approach, the observations are analyzed as if they
were a series of cross-sectional studies instead of
repeated measurements on the same individuals.

A special kind of conditional distribution involves
random effects. By conditioning on one or more
latent variables accounting for heterogeneity among
subjects, a multivariate distribution is induced. In the
simplest case, it has uniform dependence among all
responses within a cluster. In what follows, the term,
conditional distribution, will refer to conditioning
directly on the other responses of a subject, and not
to random effects.

Clustered and longitudinal studies pose fairly dis-
tinct problems. The observations on a cluster are gen-
erally not ordered, so that they are interchangeable.
The same marginal model will often be appropriate
for any member of the cluster, although, in some
cases, responses will depend on cluster size. How-
ever, in a longitudinal study, observations are ordered
in time, so that early observations cannot be made to
depend on more recent ones. A model at any time
point should be constructed in ignorance of future
observations. In most situations, the marginal distri-
bution may be expected to change over time.

To see the relationships between multivariate, con-
ditional, and marginal distributions, consider the sim-
plest example of a repeated categorical response. If
we have two observations of the response, the joint or
multivariate (here bivariate) distribution can be repre-
sented by the probabilities, πij , where the two indices
indicate the combination of categories observed. The
marginal distributions are given by the probabilities,
πi• = ∑

j πij and π•j = ∑
i πij , and the conditional

distributions by π1
i|j = πij /π•j and π2

j |i = πij /πi•.
To take a concrete example, consider first a clus-

tered, rather than a longitudinal, response. Suppose
that we have a sample of subjects for whom we
classify each eye as having either good or poor
vision. Observations can be represented as a simple
2 × 2 table with entries being the frequencies, nij ,
where the indices refer to the responses on the two
eyes. Information on the bivariate distribution, πij , is
contained in the body of the table. A conditional dis-
tribution corresponds to fixing the value of one of the
two responses, so that information is obtained from
the corresponding row or column. We can reconstruct
the complete multivariate distribution from a pair of
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conditional distributions. Finally, information on the
marginal distributions is contained in the marginal
totals. This pair of marginal distributions, by itself,
does not allow us to reconstruct the complete multi-
variate distribution. Attempts to do so involve what
is called the ecologic fallacy [12].

Marginal distributions inform us about the aver-
age state of a population. They tell us nothing about
the relationships among the responses for individ-
ual members of the population. Two responses may
have identical marginal distributions without there
being a similar dependence between the responses for
many, or indeed any, individual subjects. Consider
two rather extreme fictitious examples of the joint
distributions that might correspond to results under
two treatments:

Left eye Left eye

Right eye Good Poor Right eye Good Poor

Good 0.01 0.47 Good 0.46 0.02
Poor 0.47 0.05 Poor 0.02 0.50

In the left table, there is a large probability that
only one eye of any given individual will be good;
the treatment helps only one eye, but for almost
all individuals. In the right table, the probability is
high that both eyes will be similar; this treatment
helps both eyes of half of the individuals. Thus,
in the first case, the conditional probability is 0.02
(= 0.01/0.48) that one eye will be good, given that
the other is, while, in the second case, it is 0.96 (=
0.46/0.48). However, marginally, under both treat-
ments, both eyes have exactly the same distribution,
known as marginal homogeneity, with the same prob-
ability of 0.48 for a good left and a good right eye.
Thus, the fact that the marginal probabilities of both
left and right eyes being good are the same tells us
nothing about whether both eyes of a given subject
will be good. Conversely, if the relationship between
marginal distributions were different under two treat-
ments, this would not exclude the individual response
relationships between eyes being the same for both
treatments [1], (see Matched Pairs With Categori-
cal Data).

For the cluster of two eyes, a reasonable bivariate
distribution that allows for interchangeability would
set π12 = π21, or equivalently, the conditional proba-
bilities, π1

1|1 = π2
1|1, to yield a trinomial distribution.

From this bivariate distribution, the marginal prob-
abilities are easily obtained as π1• = π•1 = π11 +
(π12 + π21)/2.

Consider now a slightly more complex example
with a binary response, this time in a longitudinal
context [15]. Subjects are followed over time, all
beginning in one state, but at some point switching
to a second state. This may be represented by a
horizontal line, running through time on a graph,
starting at level one but jumping vertically down
to level zero at the switch point, then continuing
horizontally at that level. Each subject may change
state at a different time, so that the vertical lines do
not coincide. The average or typical individual will
have the vertical line situated at the mean of all jump
times. However, the marginal model, calculated from
the mean number in state one at each time point, will
be a sigmoid curve dropping slowly from one and
flattening off at zero. Individuals cannot follow such
a curve because they must be in one state or the other,
not part way in between. The marginal curve gives
the average number of subjects in each state at each
point in time, but tells us nothing about the trajectory
of a typical individual.

From these examples, we can see that marginal
probabilities refer to averages, not individuals. Thus,
models for such probabilities are sometimes called
population-averaged, whereas conditional models are
called subject-specific [16]. The choice between the
two types will depend on the question being asked.
For example, if the response is the presence or the
absence of repeated infections under two treatments,
the population-averaged model describes the global
difference in infection rates between the treatments,
while the subject-specific one looks at the probability
of infection of a typical individual, given treatment.
Effects in population-averaged models depend on the
degree of heterogeneity in the population; the same
process in two populations with different heterogene-
ity will yield different population-averaged effects.
The dependence of marginal response on an explana-
tory variable will be smaller than the corresponding
individual average dependence in a random effects
model, this difference increasing with heterogeneity.

Care must be taken that a marginal model does
correspond to a population of interest. For example,
in the setting of a clinical trial, the “population” is
rather artificial for a number of reasons including the
facts that the subjects are volunteers and that all are
started on treatments at arbitrary points in time. In
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such a context, marginal statements would appear to
have limited value.

A marginal model can be constructed in two
opposing ways. We may start with some known
multivariate distribution (or set of conditional distri-
butions) and construct the marginal distributions by
summing or integration. Or we may specify directly
the marginal distributions. We have already seen that,
in the latter case, the multivariate distribution will
not be uniquely defined, so that additional relation-
ships will have to be specified. One common way
is by using copulas [8]. Each approach has certain
advantages and disadvantages.

First, we should note that the multivariate normal
distribution is quite exceptional and should not be
taken as a general example for model construction.
Both the conditional and the marginal distributions
are easy to derive, and both are also normal. The
Bernoulli distribution (see Binary Data) has simi-
lar properties, but the binomial does not. Both the
normal and Bernoulli distributions are very special.

Generally, if the conditional distributions are of a
simple known form, the marginal distributions will
be complex, usually analytically intractable, and vice
versa. This means that if we start with some reason-
able conditional distributions that might be appropri-
ate to describe the dependencies of the phenomenon
under study at the individual level, the marginal dis-
tributions will be complex and difficult to handle.
But if we start with some simple and well-known
marginal distributions that we find easy to understand
at the population level, we are implicitly imposing
one of a number of possible conditional distributions
implying a complex relationship at the individual
level.

Consider an example involving the number of
infections in one month in each eye. If we took the
conditional distribution, say for the left eye given the
condition of the right eye, to be Poisson, we would
only be assuming that individuals under the same
condition of the right eye had the same distribution of
responses for the left eye. The marginal distribution
would be a weighted average of the two Poisson dis-
tributions. On the other hand, if we took the marginal
to be Poisson, again for the left eye, we would be
assuming that all members of the population had on
average this same probability distribution.

Scientifically, it should be clear that the first
approach is more reasonable. Marginal or popula-
tion descriptions do not generally have a meaning on

their own, but only as built upon acceptable under-
lying individual dependence relationships. Neverthe-
less, certain statisticians have argued that the second
is justifiable to answer some population questions.

A conditional model generally depends on the
number of other responses to which a given response
is related (think of a cluster of teeth instead of eyes),
while a marginal model does not. The latter is said
to be reproducible [10]. Thus, a marginal model can
have the same interpretation for clusters of all sizes,
while a conditional model may not. Random effects
models also have this characteristic. Hence, direct
conditioning may not be appropriate for clustered
data. On the other hand, reproducibility is gener-
ally not a desirable property for longitudinal data.
Unequal sized longitudinal “clusters” have histories
of different lengths.

For simple categorical data, such as two-way
tables, both conditional and marginal models can be
constructed fairly easily. Suppose that we want to
study the influence of some explanatory variable, xk ,
on the two binary responses, i = 1, 2 and j = 1, 2.
The state of two eyes, used above, would be one
example, but the study could also be longitudinal.
We can construct a model based on a series of multi-
nomial distributions such that

∑
i

∑
j πijk = 1 for

all k. Then, the loglinear regression functions for
a conditional model, based on a bivariate Bernoulli
distribution, are

log

(
π11kπ12k

π21kπ22k

)
= log

(
π1

1|1,kπ
1
1|2,k

π1
2|1,kπ

1
2|2,k

)

= 2 log

(
π̇1•k

π̇2•k

)

= β10 + β11xk

log

(
π11kπ21k

π12kπ22k

)
= log

(
π2

1|1,kπ
2
1|2,k

π2
2|1,kπ

2
2|2,k

)

= 2 log

(
π̇•1k

π̇•2k

)

= β20 + β21xk

log

(
π11kπ22k

π12kπ21k

)
= β30 + β31xk, (1)

where π̇•jk and π̇i•k are the geometric means. Al-
though the conditional probabilities must be adjusted
to follow the linear regression across tables, indexed
by k, this allows the marginal frequencies, upon
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which they are conditioned, to be held constant at
their observed values. Inferences are then indepen-
dent of these observed marginal totals, and of wide
applicability. Although the conditional probability
distributions are Bernoulli, the same for all subjects
with a given value of xk , the corresponding marginal
distributions are weighted averages over all values
of xk .

Consider now the corresponding regression func-
tions for a marginal model,

log

(
π11k + π12k

π21k + π22k

)
= log

(
π1•k

π2•k

)

= β10 + β11xk

log

(
π11k + π21k

π12k + π22k

)
= log

(
π•1k

π•2k

)

= β20 + β21xk

log

(
π11kπ22k

π12kπ21k

)
= β30 + β31xk. (2)

Here, we have chosen the log odds ratio to describe
the dependence between the two binary responses (a
less elegant solution being to use the correlation).
The observed marginal frequencies are not held fixed,
unless a saturated model is fitted because those in
individual tables indexed by k, must be estimated so
as to follow the linear regression function. Because
inference is not made conditional on the observed
marginal frequencies, this limits the applicability of
any empirical conclusions concerning dependence,
drawn from this model, to tables with the same
marginal frequencies.

The conditional distributions obtained from a
marginally-specified model or vice versa are complex
because the marginal probabilities are sums of multi-
variate probabilities and probabilities are nonlinearly
(here logit) related to the covariates. For example,
in the second model, the marginal probabilities are
Bernoulli, the same for all subjects with a given value
of xk , whereas the joint and conditional ones vary in
some complex way among subjects with the same xk .
In contrast, in the first model, the conditional proba-
bilities are Bernoulli, the same for all subjects with a
given value of xk .

These models have several interesting contrasting
characteristics. The first of them, loglinear regression,
is a generalized linear model, whereas the second
is not. This means that the parameter estimates are
considerably more difficult to obtain in the latter case.

This is further complicated if correlations are used
(for more than two responses), because inequality
constraints must be applied. At the same time, the
conditional model, but not the marginal one, fixes the
marginal totals at their observed values, something
that has often been considered to be a prerequisite for
analyzing a contingency table. Finally, from general
properties of the exponential family, the dependence
parameters, (β31, β31), in the above marginal model
are information orthogonal to the marginal regression
parameters, (β10, β11, β20, β21). In other words, the
elements of the information matrix relating these
parameters together are zero so that their estimates
are asymptotically uncorrelated. This is not true in
the conditional model. Fitzmaurice and Laird [4] and
several other authors have developed more complex
probability models based on marginal parameters.

To avoid the complexities of the specification of
dependence relationships when marginal distributions
are the primary point of interest, one widely promoted
approach has been to set up regression equations only
describing how the marginal responses are believed
to depend on the explanatory variables (similar to the
first two of the three equations for the marginal model
above). As members of the generalized linear model
family, the score equations for estimating the param-
eters are well understood. But because responses are
not independent, some matrix of “working” corre-
lations is introduced into these equations, yielding
generalized estimating equations (GEE) [10, 16].

Such equations have the property that, if the
regression is correctly specified, the point estimates
of the regression coefficients will be asymptotically
consistent no matter what “working” matrix is cho-
sen (although there is no simple empirical way of
checking correctness). However, this is accompanied
by at least two major inconveniences. Except in spe-
cial cases, the GEE corresponds to no probability
model in the accepted sense of the term, that is, no
model that allows one to calculate the probability
of the observed or any future data. Thus, no like-
lihood function is available, singularly complicating
the tasks of obtaining useful measures of precision of
the point estimates and of comparing “models”. Gen-
erally, only quasi-standard errors and a quasi-score
function are available for making inferences and there
has been considerable debate about the choice of the
former. Standard errors are well-known to be unreli-
able in small samples of categorical data [5] so that
care must be taken, in the same way as asymptotic
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chi-squared tests need to be replaced by Fisher’s
exact test in sparse contingency tables (see Exact
Inference for Categorical Data).

Although, the examples given here have involved
simple binary responses, extensions to more com-
plex polytomous, including ordinal, responses are
available (see Ordered Categorical Data). However,
a search of the literature shows that publishing on
marginal models has reached a low level over the past
five years after considerable activity in the preceding
decade. Recent publications on more complex mod-
els include [3, 6, 7, 9, 13]. The reader may also wish
to consult the review paper by Pendergast et al. [14].
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Marginal Probability

In many situations, interest focuses on proba-
bility distributions for multiple random variables.
For example, one may be studying height, weight,
blood pressure, and cholesterol levels in a population,
variables likely to be correlated with one another.
Knowledge of the joint distribution of these variables
allows one to calculate the probabilities associated
with any particular outcome of interest. Marginal
probabilities relate to the univariate distribution, or
marginal distribution, associated with any of the vari-
ables under consideration.

To fix notation, first consider a bivariate model
for two random variables X and Y . Let fX,Y (x, y)

denote the joint probability mass function if X and Y

are discrete or the joint probability density function
if X and Y are continuous. If X and Y are discrete,
the marginal probability mass functions of X and Y

are given by

fX(x) =
∑

y

fX,Y (x, y)

and

fY (y) =
∑

x

fX,Y (x, y),

where the summations are taken over all of the
values of Y or X. In this case, the joint probability
mass function can be written in tabular form, with
the columns corresponding to the possible values
of X and the rows to the values of Y . Then the
marginal distribution of X corresponds to the column
sums of the table, and the marginal distribution of Y

corresponds to the row sums of the table.
When X and Y are continuous, the marginal prob-

ability density functions of X and Y are given by

fX(x) =
∫ ∞

−∞
fX,Y (x, y) dy

and

fY (y) =
∫ ∞

−∞
fX,Y (x, y) dx.

As a special case, when (X, Y ) follows a bivariate
normal distribution with means (µX, µY ) and co-
variance matrix

(
σ 2

X σXY

σXY σ 2
Y

)
,

then the marginal probability density function of X

follows a univariate normal distribution with mean
µX and variance σ 2

X, and similarly for Y .
These marginal distributions can be used to com-

pute probabilities or expectations that involve only
X or Y . However, the marginal distributions do not
completely describe the joint distribution of X and Y .
In fact, many different joint distributions can yield the
same marginal distributions. The variables X and Y

are independent if and only if the joint distribution
of (X, Y ) is given by the product of the marginal
distributions of X and Y . Conditional probability
distributions refer to the distribution of one variable
for a given value of the other variable.

For multivariate distributions with more than two
variables, the corresponding summations or integrals
are carried out over the complete range of the other
variables under consideration. Extensions to mixtures
of discrete and continuous variables are straightfor-
ward. For further information, see Casella & Berger
[1, Chapter 4]. Regression modeling of multivari-
ate responses sometimes focuses on modeling the
marginal mean responses of the observations as a
function of covariates, with the correlations between
responses possibly being viewed as nuisance param-
eters. Diggle et al.[2, Chapter 8] review marginal
modeling of multivariate discrete and continuous
responses.
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Marker Processes

In many survival studies, individuals give rise to
stochastic processes, called marker processes, that
in some way measure the state of “health” of the
individuals. Thus, the observed path of the marker
process provides information on the propensity of the
individual to fail. Such covariates have the potential
to be useful in various ways and, in this brief intro-
ductory article, we attempt to identify some of these
and to give entry points to the developing literature
in this area.

Many examples of marker processes arise in sur-
vival studies (see Survival Analysis, Overview). In
clinical trials, for example, it is common at each
follow-up visit to take repeated measures of gen-
eral health status or of the stage or severity of the
disease. In equipment reliability studies, there are
often repeated measures of the wear or degradation
of the item under study. In the study of the time
to breakdown of automobiles, for example, a sim-
ple and highly informative marker process is total
kilometers traveled. In the study of infection with
the Human Immunodeficiency Virus (HIV), much
attention has been focused on the estimation of the
distribution of “incubation time”; that is, the time
from infection with HIV until the diagnosis of AIDS
(see AIDS and HIV). Various marker processes,
such as CD4-lymphocyte counts, have been studied
and used to provide information both on the time
since infection began and on the probability of devel-
oping AIDS.

Jewell & Kalbfleisch [5] outline some potential
uses of marker processes and their classification
forms the basis of the following summary:

1. Improving estimation of a survival distribution. In
many instances the observed path of the marker
provides information on the residual life of the
individual under study. The basic idea is that
the marker can be utilized to provide an esti-
mate of the residual life for an individual who
is censored. This can provide more and bet-
ter information for the estimation of the sur-
vivor function (see Survival Distributions and
Their Characteristics). In some instances this
allows for adjustment for dependent or informa-
tive censoring mechanisms. Taylor et al. [14] and

Robins & Rotnitzky [12] give good discussion
and examples.

2. Serving as a surrogate for survival in a com-
parative trial. If the time to failure is typically
long, then a full survival study may be pro-
hibitively expensive or else require too long
for completion. In such instances there may
be substantial advantage to using marker pro-
cesses as surrogates for the failure time in
investigating the existence and size of treat-
ment effects. In this approach it is required
that the survival time be directly related to the
marker so that a treatment effect on the marker
will have a consequent effect on survival. This
potential use of markers was the motivation of
Cox [3] in his original paper in this area. Pren-
tice [10] gives a detailed and comprehensive dis-
cussion of surrogate endpoints, potential uses,
and caveats.

3. Estimating the time of onset of a disease. Some-
times the time of onset of a disease is not or
cannot be observed. In such instances a marker
measured on an affected individual may provide
information on the elapsed time since onset. For
example, in HIV the time of infection is typically
unknown and markers may assist in estimating
the time of onset. In a comparative trial, con-
founding of the time of onset with treatment
or other comparison has the potential to intro-
duce bias into the estimation of effects. The
marker’s information on time of onset can be
used to adjust comparisons in this context and
so help to compensate for the onset of con-
founding. Applications involving unknown onset
have been considered by several authors. In the
estimation of the incubation period in AIDS,
Berman [1] and Munõz et al. [8] provide exam-
ples. Rai & Matthews [11] consider the use of
tumor size at death in animal carcinogenicity
trials (see Tumor Incidence Experiments) to
estimate the unobserved time since tumor onset.
Brookmeyer & Gail [2] and Munõz et al. [7]
consider some theoretical issues associated with
the onset of confounding.

In modeling the relationship between the marker
process and the survival probabilities, it is convenient
to utilize the hazard function. Let {X(t) : t > 0} rep-
resent the marker process and let T > 0 be the time
to failure. Conditionally upon the current and past
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values of the marker, the hazard function or failure
rate is naturally specified as

λ(t |X(s), 0 ≤ s ≤ t)

= lim
∆t→0

Pr{T ∈ [t, t + ∆t)|T ≥ t, X(s), 0 ≤ s ≤ t}
∆t

.

(1)

Various more specific parametric and nonparametric
models based on (1) could be specified and consid-
ered. In applications, other covariates, either fixed
or time-dependent, may also be present and one
may wish to extend (1) to incorporate them into the
model. In a comparative trial, for example, (1) could
be extended to include treatment effects.

To utilize the marker to estimate residual life or
time since onset, as discussed above, the stochas-
tic laws governing X(t) as well as the relationship
between X(t) and the failure rate must both be
considered. Jewell & Kalbfleisch [4, 5] have pro-
vided one example. They consider an additive model
for (1),

λ(t |X(s) : 0 ≤ s ≤ t) = h0(t) + βX(t),

where h0(t) is a baseline hazard and β is a regression
parameter relating the nonnegative valued marker
X(t) to the failure rate. To complete the model, they
make various assumptions about h0(t) and specify
simple Markov models for X(t) (see Markov Pro-
cesses). From these specifications the dependence of
the distribution of residual and past life on current
marker values is investigated. Other approaches to
jointly modeling the marker process and the fail-
ure mechanism are given in Pawitan & Self [9],
Shi et al. [13], Jewell & Nielson [6], and Tsiatis
et al. [15].
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[7] Munõz, A., Carey, V., Taylor, J.M.G., Chmiel, J.S.,
Kingsley, L., Raden, M.V. & Hoover, D.R. (1992).
Estimation of time since exposure for a prevalent cohort,
Statistics in Medicine 11, 939–952.
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Markov Chain Monte
Carlo, Recent
Developments

Introduction

The preceding article on Markov chain Monte
Carlo covers developments up to about 1997. There
has recently been an explosion of interest in Markov
Chain Monte Carlo for biostatistical modeling and
analysis, particularly, but not exclusively in a
Bayesian framework.

Recall that the aim is to estimate expectations
(expected values) of θ (or functions of θ) from a prob-
ability density function f (θ). If f is nonstandard or
high dimensional, MCMC algorithms allow simula-
tion of (dependent) values of θ from a Markov chain
whose stationary distribution is f (θ). In a Bayesian
context, f (θ |x) is a posterior distribution with param-
eters θ , given data x.

The preceding entry describes the properties of
principal MCMC algorithms, including Metropo-
lis–Hastings, Gibbs, adaptive rejection sampling,
and reversible-jump MCMC. It also discusses issues
of burn-in, convergence, proposal distributions, and
improved mixing through reparametrization. Applica-
tions considered there comprise hierarchical models,
missing data, censored data, measurement error,
and temporally or spatially correlated data (see Geo-
graphic Epidemiology; Time Series).

The aim of this update is to describe some of the
new developments in MCMC methodology and their
application in biostatistics.

MCMC Methods

Metropolis–Hastings and Gibbs

Metropolis–Hastings and Gibbs algorithms remain
popular choices in biostatistical applications. Their
appeal lies in the generality of their application, the
ability to reduce hierarchical and high-dimensional
problems to forms that are amenable to these algo-
rithms, their theoretical properties, and their inclusion
as standard tools in the more popular MCMC soft-
ware (see below).

Many variations on the original Metropo-
lis–Hastings and Gibbs samplers have been devel-
oped. The more well known of these include adaptive
rejection sampling and adaptive rejection Metropo-
lis sampling (see Gilks’ original Entry on MCMC
and Gilks et al. [38]) and slice sampling (see below).
Other potential black box algorithms have been pro-
posed; see, for example, [20].

Hybrid methods, which employ combinations of
MCMC algorithms in a single analysis, are also
described in Markov Chain Monte Carlo. These
have continued to grow in popularity because of their
flexibility, improved exploratory ability, theoretical
validity, and appealing properties of estimation and
convergence [99]. Hybrid methods embrace a diver-
sity of constructions, including different Metropo-
lis–Hastings and Gibbs algorithms for different com-
ponents of θ [7], the insertion of a Metropolis–
Hastings step with larger dispersion or probability of
acceptance at every nth iteration, mode-jumping pro-
posals [102], the insertion of a Metropolis–Hastings
step after each Gibbs cycle [74], and Metropolis-
within-Gibbs algorithms [20, 61, 69, 70]; see [83,
pp. 319–326] for a formal definition of a hybrid
method, comprehensive discussion, and examples.
Importantly, building on their results and those of
Tierney [99], hybrid methods can be almost automat-
ically constructed to ensure uniform convergence to
the target distribution.

Other adaptive algorithms include mode-jumping
proposals [102], methods based on tempering (see
Celeux et al. [18] and references therein), and app-
roaches based on regeneration [38, 46]. See also
the algorithms based on sequential Monte Carlo,
described below.

Parameterization of the model has an impact on
the choice and effectiveness of MCMC methods. The
positive impact of reparameterization of hierarchical
models is also achieved for other model formula-
tions such as mixtures, f (θ) = Σk

j=1pjf (θj ), where
Σk

j=1pj = 1, 0 ≤ pj ≤ 1. Like hierarchical models,
mixtures have enjoyed increasing popularity as flexi-
ble modeling tools due to the enhanced computational
ability afforded by MCMC. However, the application
of standard MCMC algorithms to the usual formu-
lation of a mixture density can lead to identifiabil-
ity problems and the possibility of “trapping states”
caused by allocation of a small number of observa-
tions to a particular component.
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Robert and Titterington [90] have proposed effec-
tive reparameterizations to overcome these draw-
backs. Two such alternatives are discussed by
Robert and Casella [83] in the context of a mix-
ture of normal densities, Σk

j=1pjN(µj , τ 2
j ); here,

τ 2 is the inverse of the variance. The first,
Σk

j=1pjN(µ + τθj , τ 2σ 2
j ), with θ1 = 0, σ1 = 1, is a

simple expression of each component as a per-
turbation from a global location µ and a global
scale τ . An alternative, more stable reparameter-
ization proposed by Robert and Mengersen [84]
expresses each component as a perturbation of
the previous component. Thus, a two-component
normal mixture is expressed as pN(µ, τ 2) +
(1 − p)N(µ + τσ, τ 2σ 2) and the three-component
analog is pN(µ, τ 2) + (1 − p)qN(µ + τσ, τ 2σ 2) +
(1 − p)(1 − q)N(µ + τσ + τσε, τ 2σ 2ω2). With an
identifiability constraint σ1 ≤ 1, . . . , σk−1 ≤ 1, an
improper prior for (µ, τ) and a uniform distribu-
tion on the σi’s can be adopted and standard MCMC
algorithms can be employed.

The desired acceptance rate of a Metropolis–
Hastings algorithm has also been a matter of recent
research. Optimal rates for random walk algorithms
have been carefully investigated by Roberts et al. [86]
and corresponding guidelines have been suggested.
As described and illustrated by Robert and Casella
[83, pp. 252–254], high acceptance rates are desir-
able if the proposal density g approximates the target
f such that f/g is bounded for uniform ergod-
icity. However, low acceptance rates are prefer-
able if a random walk proposal is adopted. These
authors also propose the use of the rejected val-
ues in a Metropolis–Hastings algorithm through
Rao–Blackwellization and give references to other
acceleration methods.

Active research continues on the theoretical
properties of Gibbs and Metropolis–Hastings
algorithms. In a general state-space context, Tierney
[100] identifies necessary and sufficient conditions
on the Metropolis–Hastings proposal kernel and
the acceptance probability function for the resulting
transition kernel and invariant distribution to satisfy
the detailed balance conditions. References to recent
results on MCMC convergence are given below.

Model Choice

Model choice via MCMC is now a standard practice,
as indicated by the recent reviews of the variety

of available methods (see Bayesian Methods for
Model Comparison). See, for example, the papers
by Han and Carlin [45], Brooks [10] and Dellaportas
et al. [28] and the summaries by Carlin and Louis
[15, Chapter 5] and Congdon [22, Chapter 10].

As discussed by these authors, methods based on
Bayes factors include variations on marginal den-
sity estimation (see also [21]) and sampling over
the model space. Weakliem [104] gives a broad dis-
cussion and critique of the Bayes information crite-
rion (BIC) = log P(y|θ̂ , M) − p/2 log n for a given
model M and sample size n. Bayesian P values,
penalized likelihood methods, and predictive model
selection approaches are also available.

Green’s [39] reversible jump Markov Chain Monte
Carlo (RJMCMC) algorithm has recently become a
key tool for model choice. Sampling can now be
extended to different parameter spaces, such as the
dimensions of a model, components of a mixture, or
subsets of variables in a regression. This approach has
inspired other methodological developments in model
selection and a diversity of applications. As conceded
by Robert and Casella ([83], pp. 259–264), however,
RJMCMC can be difficult to implement because of
the requirement for reversible moves and a (differ-
entiable) dimension-matching transform. Moreover,
inefficient moves between dimensions can require
complicated tuning steps. An alternative to RJMCMC
is described by Stephens [97]. Under this method,
the parameters of interest are considered as a marked
point process.

Instead of choosing a single model based on the
above methods, an increasingly common practice is
model averaging. This is the practice of combin-
ing expected values obtained from different models
(perhaps describing different dimensions or different
combinations of variables) weighted by their corre-
sponding posterior probabilities. Of course, adoption
of this approach depends on the aim of the analysis
and achieving a balance between improved estimation
and easy interpretation.

Slice Sampling

A technique that enables the Gibbs sampler to be
used for almost any distribution is the slice sampler.
Introduced by Wakefield et al. [103] as a “ratio-of-
uniforms” method for generating random variables,
developed by Neal [73] as a method for “slicing”
distributions, and described by Tierney and Mira
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[101] in the context of adaptive MCMC models, the
slice sampler enjoys increasing popularity and is part
of most modern MCMC texts; see, for example, [14,
83]. The latter authors describe the slice sampler as
follows.

If f (θ) can be written as a product Πk
i=1fi(θ),

where the fi’s are positive functions (not necessarily
densities), then f can be expressed as Πk

i=1I0≤ωi≤fi (θ),
where I is the indicator function.

Thus at the t th iteration, θ(t) is simulated
by generating k uniform random variables ω

(t)

1 ∼
U[0, f1(θ

(t−1))], . . . , ω
(t)
k ∼ U[0, fk(θ

(t−1))] and tak-
ing θ(t) ∼ U(A(t)), with A(t) = {y; fi(y) ≥ ω

(t)
i , i =

1, . . . , k}.
It can be shown that this chain converges geomet-

rically when f is bounded and converges uniformly
when k = 1. An upper bound for the rate of con-
vergence has also been established. Moreover, given
an independent Metropolis–Hastings algorithm, it is
always possible to construct a slice sampler that has
a smaller asymptotic variance and smaller second-
largest eigenvalue, thus ensuring faster convergence
to the target distribution. See [68, 88, 101] for a dis-
cussion of these and other theoretical properties.

Perfect Simulation

Another development in MCMC that has created its
own domain of research is perfect simulation, also
known as exact sampling. As described in the original
paper by Propp and Wilson [79] and subsequently
by Kendall [50], the aim of perfect simulation is to
sample directly from the stationary distribution f (θ).

Although this appears to be exactly what MCMC
is aiming to avoid, there are several reasons for
pursuing the idea. First, independent samples drawn
directly from f (θ) may be preferable to samples
obtained from MCMC algorithms, depending on the
degree of dependence in the latter and the compar-
ative computational time and complexity. Second, a
single sample drawn directly from f (θ) can be used
as a starting point for standard MCMC algorithms.
This avoids the well-known problem of burn-in, in
which the initial value of the chain may induce long-
term bias.

For a finite state-space X of size k, Propp and
Wilson [79] proposed an exact sampling algorithm
called coupling from the past (CFTP). Here, k chains
corresponding to all possible starting points in X
are started at time t and run in parallel back in

time, often in a coupled manner, until all the chains
coalesce (take the same value) at time 0 or earlier.
The realizations of the chains at time 0 then form a
single θ(0) from the required distribution.

If the chains have not coalesced by time 0, the
chains are run again from time 2t and this is con-
tinued until the desired result is achieved. It can
be shown that coalescence under CFTP will indeed
occur in a finite number of backward iterations.
In practice, however, the computation time can be
unacceptably long. Alternative algorithms have been
developed to improve this and other aspects of the
original CFTP idea. For example, Fill [35] proposed
an interruptible algorithm for perfect simulation, in
which the chains can be stopped before reaching time
0 but maintain the properties of the CFTP algorithm.
As a second example, if a monotonicity constraint
can be constructed, so that there is stochastically a
maximum state x1 and a minimum state x0 in X, then
CFTP reduces to running only two chains from x0

and x1 until they coalesce at time 0, since all the
intermediary paths will be between these two extreme
cases. As a second example, Kendall and Møller [51]
describe extensions to the original CFTP approach,
focusing, in particular, on perfect simulation methods
based on dominating processes on ordered spaces.

As noted by Robert and Casella [83], the exten-
sion of perfect simulation ideas from finite state
spaces to the statistical context is an area of cur-
rent active research. Potential improvements in the
speed and control of convergence under this method
are mitigated by the concern that the time that is
typically required to simulate one realization of θ(0)

under CFTP is much greater (by orders of magnitude)
than the computation time of a θ(t) from a standard
MCMC algorithm. Moreover, algorithms for contin-
uous spaces are more difficult to construct. Murdoch
and Green [71] originally explored standard statistical
examples in a continuous setting. Casella et al. [16]
proposed a perfect simulation method for mixture
modeling using slice sampling. Perfect slice samplers
are also discussed by Mira et al. [66, 67].

Delayed Rejection

Consider a standard Metropolis–Hastings algorithm
with target density f , such that if a proposed value y

is rejected, the chain remains in the current state x.
This preserves the stationary distribution but induces
autocorrelation in the realized chain. Tierney and
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Mira [101] proposed an alternative based on delayed
rejection or splitting rejection. When a proposed
value is rejected, a second proposal is made using
a different distribution possibly dependent on the
previously rejected values and is accepted with prob-
ability modified to account for the previous rejec-
tion. This is continued until a stopping rule is met,
such as a maximum number of attempts or until
acceptance is achieved. Thus, a first proposal x is
generated from q1(x, y) and accepted with proba-
bility min{1, [f (y)q1(y, x)]/[f (x)q1(x, y)]}. If y is
rejected, a new value z is proposed from q2(x, y, z)

and accepted with probability min{1, [f (z)q1(z, y)

q2(z, y, x)(1 − α1(z, y))]/[f (x)q1(x, y)q2(x, y, z)

(1 − α1(x, y))]}.
Green and Mira [40] proposed a generalization of

this idea, extended the method to reversible jump
algorithms, and presented a comparison of the per-
formance of their proposed delayed rejection algo-
rithm with other samplers. Performance was defined
in terms of the efficiency of estimating the desired
expectation on the state space and computed as the
product of the running time needed to obtain a fixed
number of sweeps and the integrated autocorrela-
tion time.

Sequential Monte Carlo

The term sequential Monte Carlo embraces a variety
of algorithms, including Langevin or diffusion
algorithms, population Monte Carlo or iterated
importance sampling, and particle filters.

Langevin algorithms, also known as diffusion
algorithms, were proposed by Grenander and Miller
[42] and Phillips and Smith [78] and arise from
the discretized solution of a stochastic differential
equation, also known as a diffusion equation. Thus,
x(t+1) = x(t) + 0.5σ 2∆ log f (x(t)) + σεt where εt ∼
Np(0, Ip) and σ 2 corresponds to the discretization
size. Following Besag [6], x(t+1) is then accepted
according to a regular Metropolis step.

The theoretical properties of this approach have
been investigated by Roberts and Tweedie [91] and
Stramer and Tweedie [98], among others. Robert
and Casella [83, pp. 264–266] describe and illus-
trate various diffusion algorithms. Extensions include
switching diffusion models and their variations [59]
and variations on proposal distributions [95].

Population Monte Carlo, or iterated importance
sampling, involves simultaneous generation of a vec-
tor of random variables (θ

(t)
1 , . . . , θ

(t)
M ) at each iter-

ation of a Monte Carlo algorithm. Such systems of
particles were shown by Mengersen and Robert [64]
to be capable of producing i.i.d. samples for a given
target distribution, a feature that is only achieved
with difficulty via perfect sampling in regular MCMC
algorithms.

The increased interest in population Monte Carlo
methods is evidenced by the different algorithms pro-
posed by Haario, Sacksman, and Tamminen [44],
Mengersen and Robert [64] and others. The latter
authors, for example, proposed a “pinball” Metropo-
lis–Hastings algorithm that features “bouncing” via
delayed rejection and “repulsion” via an updating
mechanism based on a self-avoiding random walk,
that is, a standard random walk with corrections to
avoid the immediate vicinity of other particles. Para-
doxically, the corresponding importance resampling
particle system based on the same proposal enjoys
poor properties like high degeneracy and low mixing.

Recent interest has also focused on MCMC meth-
ods for particle filters, which are usually implemented
in sequential settings or for processing and analysis
of large datasets. A particle filter describes a dynamic
state-space model of a process with an underlying
state of interest that evolves over time. The poste-
rior distribution of the state is approximated by a
set of weighted particles, with the weight of a par-
ticle inversely proportional to its probability mass.
Numerous algorithms for updating the particles and
their weights over time have been proposed. Most of
these enjoy rigorous convergence properties [27], and
under certain conditions can claim a Central Limit
Theorem [29].

Most particle filter methods include a resam-
pling step in which particles are replicated in order
to convert an unequally weighted set of particles
into an equally weighted set with the same distri-
bution. However, this does not prevent the widely
acknowledged problem of a continued loss of accu-
racy in approximation over time, which is reflected
in increasing clustering of the particles in a single
region of the state-space. This may be resolved by
the inclusion of MCMC methods into the particle
filter algorithm, as described by Gilks and Berzuini
[37] and the references therein. Because the initial
set of weighted particles is approximately from the
target density, there is no need for a burn-in period
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in the MCMC algorithm. Fearnhead [33] proposed
the use of MCMC based on sufficient statistics as
summaries of the trajectory of each particle, thus
eliminating the need to store the whole particle his-
tory and consequently reducing memory requirements
and computational complexity.

Detailed reviews and applications of these meth-
ods are given by Liu and Chen [62], Fearnhead [33],
and Doucet et al. [32].

MCMC Convergence

Assessment of the convergence of MCMC algo-
rithms remains a major theoretical and practical issue.
In fact, it is becoming increasingly important with
the development of more complicated models, the
construction of new hybrid and dimension-changing
algorithms, and the wider uptake of MCMC as a stan-
dard statistical tool.

There is now a substantial body of theoretical
knowledge about the existence and form of con-
vergence for certain types of target distributions
and different MCMC algorithms. These are currently
used to build practical bounds on convergence in
particular cases, construct Metropolis–Hastings and
hybrid algorithms so that geometric or subgeometric
(e.g. polynomial, logarithmic, subexponential) rates
of convergence are assured, make statements about
new algorithms such as Langevin diffusions, and so
on; see, for example, [11, 36, 49, 65, 87, 89, 92,
93, 98].

Despite these advances, convergence assessment
in most practical setups is based on a (subjective)
selection of a subset of the wide array of available
empirical diagnostic methods. These methods guide
the determination of the length of burn-in, the number
of iterations after burn-in, the use of parallel chains
and, if necessary, the batch size (also known as the
thinning interval or subsampling). Although the latter
is inefficient with respect to estimation of expected
values, it may be beneficial for other reasons; see
[63]. Similarly, debate surrounds the benefits and
drawbacks of parallel chains, that is, simulation of
independent chains from different initial values, and
is discussed by Robert and Casella [83, pp. 365, 366]
and references therein.

It is convenient to guide the choice of diagnos-
tic by identifying specific convergence goals. Fol-
lowing Mengersen and Robert [63], these might

include convergence of the chain θ(t) to the stationary
distribution f ; convergence of the empirical average,
ΣT

t=1g(θ(t))/T to Ef (g(θ)) for an arbitrary function
g; application of the Central Limit Theorem; and
generation of an i.i.d. sample (θ

(t)

1 , . . . , θ
(t)

1 ). This
identification also assists in the resolution of the often
conflicting results from different diagnostics.

In a similar manner, convergence diagnostics can
be broadly categorized as methods based on graphical
assessment, estimated distance between the empirical
and target densities, renewal and regeneration results,
variance approximations and comparisons, and dis-
cretization of the Markov chain.

Not all of these methods are applicable to conver-
gence assessment of dimension-changing algorithms
such as RJMCMC. This special case is discussed by
Brooks and Giudici [12].

Detailed reviews of these various approaches have
been compiled by Best et al. [8], Cowles and Carlin
[26], Mengersen and Robert [63], Brooks and Roberts
[13], and Robert and Casella [83, pp. 365–413]. More
recently, “movies” for the visualization of MCMC
output have been proposed by Lazar and Kadane [57].

Applications of MCMC in Biostatistics

The discussion below highlights a small selection
of biostatistics-related areas in which MCMC has
become a familiar computational tool.

Classification and regression trees (CART), orig-
inally proposed by Breiman et al. [9], are nonpara-
metric description or predictions of a response in the
form of binary splits of selected explanatory vari-
ables (see Tree-structured Statistical Methods). A
Bayesian alternative was independently proposed by
Denison et al. [31] based on RJMCMC estimation of
the probability distribution over the space of possible
trees. Other approaches have also been proposed.

Latent variable models were introduced in Mar-
kov Chain Monte Carlo as mechanisms for describ-
ing complex physical and conceptual systems. Condi-
tional on the latent, or unobserved, variables, hierar-
chical models can be constructed and corresponding
posterior (conditional) distributions can be more sim-
ply described. These models can also be considered
as missing data models.

As an illustration of a popular latent variable
approach, Robert [81] and coauthors have described
the analysis of mixture models Σk

j=1pjf (x|θj ), dis-
cussed above. Here, the analysis is considerably
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simplified by the introduction of latent variables
zi, i = 1, . . . , n that indicate the component j, j ∈
{1, . . . , k}, to which each observation xi belongs. The
MCMC algorithm involves estimating zi given the
component parameters, then estimating the compo-
nent parameters and weights based on the allocation
of the z’s. The number of components, k, can also be
a random variable by extending the MCMC algorithm
to have a dimension-jumping step. The exposition of
RJMCMC in this context by Richardson and Green
[80] has generated a large number of applications.
Fernández and Green [34] describe the analysis of
spatially correlated Poisson data by a Poisson mix-
ture model in which the weights of the mixture vary
across locations and the number of components is
unknown. RJMCMC is also employed in the context
of nonparametric regression by Denison et al. [31],
Perron and Mengersen [77], and Lindstrom [60].

More generally, the enhanced computational abil-
ity afforded by MCMC has led to increased interest
in hidden Markov models (HMMs); see [85] for
extended discussion of these methods.

Time series models continue to attract attention
with respect to the development of corresponding
MCMC algorithms, the construction of models to
represent complex systems, and their application to
diverse problems. A comprehensive discussion of
developments in this area is given by West and Harri-
son [105] in the context of dynamic linear modeling.
See also the recent developments in particle filters,
dynamic Bayesian networks, and perfect sampling.
MCMC methods for temporal modeling of epidemics
and infectious diseases have also been widely con-
sidered; see, for example, [76].

The analysis of factorial experiments using
MCMC methods has been investigated by Nobile and
Green [75] using mixture models.

MCMC methods for analyzing spatially correlated
data remain an area of active interest. Knorr–Held
and Besag [53], Knorr–Held and Raser [55], Law-
son [56], Knorr–Held and Best [54], and Green and
Richardson [41] describe Markov random fields [5],
RJMCMC and hidden Markov models in the context
of disease mapping. Various methods for analyzing
spatially correlated Poisson data have been proposed
by Castelloe [17], Wolpert et al. [106], and Fernan-
dez and Green [34]. As discussed by Anselin and
Griffith [2], spatial effects can also describe mea-
surement errors, heteroscedasticity, and unobserved
covariates.

Meta-analysis models and corresponding MCMC
analysis is now a standard biostatistical tool. Mul-
tivariate approaches have been described by Nam
et al. [72] and references therein. Wolpert and Men-
gersen [107] describe adjustments to the likelihood in
a meta-analysis context that can take account of mis-
classification, bias, and other features of individual
studies.

Approaches to the design and analysis of clinical
trials using MCMC are described by Carlin and
Louis [15]. Attention is also paid to the analysis of
survival models by these authors and subsequently
by Albert and Chib [1].

Bioinformatics is an emerging field that was once
considered to be the part of computational biol-
ogy that explicitly dealt with the development of
the increasing number of large databases, including
methods for data retrieval and analyses, and algo-
rithms for sequence similarity searches, structural
predictions, functional predictions and comparisons,
and so forth. Very recently, the field has been rapidly
evolving, not only because of the impact of the
various genome projects, but also because of the
development of experimental technologies, particu-
larly microarrays (see Genetic Markers). Currently
bioinformatics is being increasingly widely viewed as
a more fundamental discipline that also encompasses
mathematics, statistics, physics, and chemistry. A
detailed discussion of the current state of bioinformat-
ics is provided by Kenehisa and Bork [52]. MCMC
and RJMCMC provide a convenient method of anal-
ysis of the complex models and datasets encountered
in this field. Very recent applications include evo-
lutionary analysis [24], the analysis of microarray
experiments [58] and genome analysis [94]. Baldi and
Brunak [3] include a chapter on using MCMC as a
“machine learning algorithm” for bioinformatics.

As with any numerical method, sensitivity to the
model description and the adopted MCMC algorithm
should be an integral part of the analysis. Huelsen-
beck et al. [47] discuss this in the context of estimat-
ing probabilities of phylogenetic trees.

Software

Gibbs and Metropolis–Hastings algorithms are now
standard tools in some statistical packages (see
Software, Biostatistical). See, for example, the SAS
procedure for estimating missing data and algorithms
available in S-Plus and R.
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BUGS and WinBUGS [96] remain popular
specialist software for MCMC analysis. The freely
available suite of algorithms has improved and
expanded over a number of versions. Congdon [22]
almost exclusively uses BUGS to illustrate many
applications of Bayesian modeling and provides
detailed discussion of its implementation and
interpretation.

Other established software packages include a
Bayes Linear Programming Package (B/D), Bayesian
Knowledge Discover (BKD), a general data analysis
tool B-Course, and JavaBayes for Bayesian networks.

CODA [8] remains the most accessible source of
generic convergence diagnostics.

Application-specific software is also widely avail-
able. For example, S-Plus code for Bayesian model
selection is available from Adrian Raftery’s website
and for particular biostatistics applications from the
MD Anderson Cancer Centre. Individual papers also
often advertise software.

Books

The popularity of MCMC and its place as a standard
statistical tool is evidenced by the recent publication
of books devoted to or strongly focused on these
methods.

Robert and Casella [83] provide excellent discus-
sion and illustrations of a variety of established and
new MCMC approaches and their connections with
other Monte Carlo methods. They cover theoretical
and practical aspects of the methods and give detailed
algorithms.

The text by Carlin and Louis [15] introduces
Bayes and empirical Bayes methods and their appli-
cations in a wide variety of settings. Their descrip-
tions are complemented by worked examples using
BUGS. Recent developments in MCMC, including
RJMCMC, slice sampling, structured MCMC, the
computation of MCMC standard errors, and MCMC
convergence are also discussed. Case studies include
the analysis of longitudinal AIDS data, analysis of
clinical trials and spatio-temporal modeling of lung
cancer rates.

The text by Congdon [22] has become popular
among both researchers and practitioners. It gives
a very readable account of the general Bayesian
method, MCMC algorithms, standard distributions,
and a variety of specialist models. The text also

details the implementation of the approaches in the
software package BUGS. Congdon [23] extends this
discussion into more applied Bayesian modeling.

More focused books that describe MCMC algo-
rithms include West and Harrison [105], Robert [82]
and Cowell et al. [25], and Chen et al. [19], Ibrahim
et al. [48], Banerjee et al. [4], Denison et al. [30],
and Gustafson [43].

Published conference proceedings also contain
many expositions of recent MCMC advances. See,
for example, the “Bayesian Statistics” series arising
from the four-yearly Valencia meetings, published by
Oxford University Press.
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Markov Chain Monte
Carlo

Markov chain Monte Carlo (MCMC) is a powerful
technique for performing integration by simulation.
In recent years, MCMC has revolutionized the appli-
cation of Bayesian statistics. Many high-dimensional,
complex models which were formerly intractable can
now be handled routinely. MCMC has also been used
in specialized non-Bayesian problems. Introductory
material on MCMC methods and biostatistical appli-
cations can be found in Gilks et al. [20] and Gelman
& Rubin [13].

Suppose that we wish to evaluate the expected
value (expectation) of some function g(θ) over a
probability density function f (θ) : Ef [g(θ)] =∫

g(θ)f (θ) dθ . If we could draw samples θ (1), θ (2),

. . . , θ (n) independently from f (θ), then we could
estimate

Êf [g(θ)] = 1

n

n∑

i=1

g(θ (i)). (1)

This technique is called Monte Carlo integration. We
have var{Êf [g(θ)]} = varf [g(θ)]/n, so the estimate
Êf [g(θ)] can be made as accurate as desired
by increasing the sample size n. In Bayesian
applications, our density f (θ) is a posterior
distribution f (θ |x), where θ is a collection of model
unknowns (parameters and missing data), and x
denotes observed data. The function g(θ) might be
the kth element of the vector θ , for example, in which
case Ef [g(θ)] would be the posterior expectation of
θk . Other forms for g(·) could be used to evaluate
posterior variances, correlations, quantiles, etc.
Note that the accuracy of Êf [g(θ)] is not limited by
the amount of data in x.

Typically in Bayesian applications, θ is high-
dimensional and f (θ |x) has a complicated, nonstan-
dard form. Sampling independently from f (θ |x) is
generally not possible. Therefore we could try to
devise sampling schemes which generate dependent
samples θ (1), θ (2), . . . , θ (n), but for which (1) is still
a consistent estimator of Ef [g(θ)]. One possibil-
ity is to use a Markov chain: this is then Markov
chain Monte Carlo. A Markov chain generates each
iterate θ (i), taking into account only the previous
value θ (i−1). Subject to some regularity conditions,
a Markov chain will generate samples θ (i) from its
stationary distribution, for large i.

In general, it is surprisingly easy to construct a
Markov chain the stationary distribution of which
is our target distribution f (θ |x), and for which (1)
is a consistent estimator of Ef [g(θ)]. The method
was first proposed in 1953 by Metropolis et al. [24],
and was generalized in 1970 by Hastings [23]. For
many years, the algorithm was used mainly in the
field of statistical mechanics. In 1984 the Gibbs sam-
pling algorithm (later recognized as a special case
of the Metropolis–Hastings algorithm) was proposed
by Geman & Geman [15] as a tool for image recon-
struction (see Image Analysis and Tomography). In
1990, the considerable potential of the Gibbs sampler
was brought to the attention of the wider statistical
community by Gelfand & Smith [8]. A generalization
of the Metropolis–Hastings algorithm was proposed
by Green [22] in 1995.

The Metropolis–Hastings Algorithm

We now describe the Metropolis–Hastings algorithm.
For notational convenience we suppress dependence
on data x, and for the moment we continue to assume
that θ is a continuous random vector. We begin the
chain with an arbitrary starting value, θ (0), and then
produce the chain θ (1), θ (2), . . . by iterating around
the following two steps. At each iteration i + 1:

Step 1: generate a candidate value θ ′ from a pro-
posal distribution q(·|θ (i));

Step 2: with probability

α(θ (i), θ ′) = min

[
1,

f (θ ′)q(θ (i)|θ ′)
f (θ (i))q(θ ′|θ (i))

]

(2)

accept the candidate (i.e. set θ (i+1) equal to
θ ′); otherwise reject the candidate (i.e. set
θ (i+1) equal to θ (i)).

Heuristically, we aim to generate dependent samples
from f (·) by sampling from a more convenient dis-
tribution at Step 1, and then correcting for this in a
rather unintuitive but appropriate way at Step 2. To
implement Step 2, generate a pseudo-random num-
ber u from a uniform (0, 1) distribution. If u ≤
α(θ (i), θ ′) accept θ ′; otherwise reject it. The choice
of the proposal density q(·|·) is largely up to the user,
the prime considerations being computational conve-
nience and rapid mixing (see below). Note that the
target density f (·) need not be normalized to inte-
grate to one, since the normalization constant cancels
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in (2). This is particularly convenient for Bayesian
analyses, where the posterior distribution f (θ |x) is
proportional to the likelihood p(x|θ) times the prior
p(θ). Thus p(x|θ)p(θ) can be used in place of f (·) in
(2), and there is no need to evaluate the normalization
constant

∫
p(x|θ)p(θ) dθ .

For the Metropolis–Hastings chain to be useful, it
must be irreducible. Informally, irreducibility means
that the chain is able to reach anywhere within the
domain of f (·) within a finite number of iterations
(see [37] for a more careful definition). If the chain is
irreducible, it will eventually settle down to produce
samples θ (i) from its stationary distribution, which
can be shown to be f (·). Thus the choice of starting
value θ (0) is not important, although it is generally
advisable to avoid starting values well into the tails of
f (θ), which could delay convergence to f (·). There
is no particular advantage in starting the chain at
the mode of f (·), since the chain must still be run
long enough for it to “forget” its starting value. If
the chain is reducible, it will never forget its starting
value, since the starting value will determine which
parts of the space can be reached. Irreducibility is
generally easily verified by inspecting the form of
q(·|·), although in some genetics applications involv-
ing complex pedigrees, establishing irreducibility can
be difficult (see [30]).

When applied to output from an irreducible Metro-
polis–Hastings chain, (1) is a consistent estimator
of Ef [g(θ)]. In calculating (1) it is usual to discard
the first m iterates of the chain (the burn-in), during
which the chain exhibits dependence on the starting
value θ (0). Several methods have been developed for
diagnosing convergence (i.e. determining m) and for
determining the run length n. Most are approximate
in some way, and the most popular [12, 25] monitor
the sample path of only univariate quantities, such
as a single element of θ . Some methods rely on out-
put from a single chain, and others require multiple
chains to be run. For a recent review of convergence
diagnostics, see Cowles & Carlin [5]. There is some
debate in the literature regarding the number of chains
to run: Gelman & Rubin [11, 12] advocate several
long chains, while Geyer [16] recommends one very
long chain. There is no justification for running a
large number of short chains.

There is no justification for attempting to cre-
ate pseudo-independent samples for input into (1) by
thinning the output (i.e. using only every j th iterate
from the chain) or, even worse, by running a large

number of short chains and using only the last iter-
ate from each. The theory of ergodic Markov chains
guarantees the consistency of (1), despite the obvious
lack of independence within the chain. The only jus-
tification for thinning is to reduce computer storage
requirements.

Besides being irreducible, it is also important that
the chain is geometrically ergodic; in other words,
that convergence towards the stationary distribution
f (·) proceeds at a geometric rate (see [37]). Unless
the chain is geometrically ergodic, it is not possi-
ble to say anything useful about the variance of (1),
and the chain may be very badly behaved, producing
long meanders and erratic behavior. Nongeometri-
cally ergodic chains are therefore effectively useless.
Unfortunately, establishing geometric ergodicity in
any particular context is not trivial, and theory tends
to lag somewhat behind practice, although useful
results have been obtained (see [28] and references
therein). If the chain is geometrically ergodic, the
variance of (1) can be estimated. A popular method
is the method of batch means: the output is divided
into n1 consecutive batches of size n2, and the sample
mean gj of g(·) within each batch j is calculated. If
n2 is large enough, the batch means will be approx-
imately independent, and the variance of (1) can
be estimated as n−1

1 times the usual sample vari-
ance of g1, g2, . . . , gn1

. Often, n1 is set to about 20.
Other methods of variance estimation are given by
Geyer [16]. An estimate of the variance of (1) can be
used to calculate how much longer to run the chain.

The Metropolis–Hastings algorithm is not lim-
ited to situations in which θ is a continuous random
vector, although this is the usual situation in bio-
statistical applications. Discrete variables occur in
genetics applications, where some elements of θ are
unobserved genotypes, and in applications where
discrete-valued covariates are missing. The same
form of acceptance probability (2) applies regardless
of whether f (·) is a probability, a probability density,
a product of probabilities and densities, or a density
with respect to an arbitrary measure.

Proposal Distributions

Considerable freedom can be exercised in the choice
of proposal distribution q(θ ′|θ (i)), provided that the
resulting chain is both irreducible and geometri-
cally ergodic. In a Bayesian context, q(θ ′|θ (i)) may
also depend on the data x. A symmetric proposal,
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for which q(θ ′|θ (i)) = q(θ (i)|θ ′) for all θ ′ and θ (i),
results in an acceptance probability (2) which does
not depend on q(·|·). This is the form described
in the original algorithm of Metropolis et al. [24].
An independence proposal is one which does not
depend on θ (i), so q(θ ′|θ (i)) = q(θ ′). Independence
proposals can be either very good (trivially, setting
q(θ ′) = f (θ ′) results in an acceptance probability of
1.0 and independent sampling from f (·)), or very
bad (if the tails of q(·) are lighter than those of
f (·), then the chain will not even be geometrically
ergodic [28]).

Many other forms of proposal are possible; see
Tierney [36]. Different choices will result in differ-
ent rates of mixing. A rapidly mixing chain will
move about the domain of f (·) fluidly, and will
quickly converge to f (·). A slow-mixing chain will
exhibit significant long-lag autocorrelations, and
will require a very long run to obtain adequate pre-
cision in (1). It is difficult in general to predict
the behavior of any particular choice of proposal.
A proposal distribution which nearly always results
in rejection at Step 2 will be slow-mixing, since
the chain will only occasionally move. However, a
proposal distribution which nearly always results in
acceptance may also be slow mixing, if the high
acceptance rate is achieved by proposing only very
small steps. Gelman et al. [14] show, for a large class
of problems using a symmetric proposal, that one
should aim for acceptance rates in the range 0.15–0.5.

Hybrid chains [36] employ a set of proposal distri-
butions q1(·|·), q2(·|·), . . . , at each iteration choosing
one proposal either randomly, or deterministically by
cycling through the set. For example q1 could be
a symmetric proposal, and q2 an independence pro-
posal. A hybrid chain is often better than the sum
of its parts; for example, it may be irreducible and
geometrically ergodic even if none of the constituent
single-proposal chains are.

Single-component Metropolis–Hastings is a spe-
cial case of a hybrid chain. Vector θ is partitioned
into k components θ = (θ1, θ2, . . . , θk); for example,
each component could be just one element of θ . For
each component j , a proposal qj (θ

′
j |θ (i)) is defined

which updates only component j , generating a can-
didate point θ ′ = (θ

(i)

1 , . . . , θ
(i)

j−1, θ ′
j , θ

(i)

j+1, . . . , θ
(i)
k ).

The acceptance probability (2) then becomes

α(θ (i), θ ′) = min

[
1,

f (θ ′)qj (θ
(i)
j |θ ′)

f (θ (i))qj (θ
′
j |θ (i))

]
, (3)

assuming that the choice of proposal qj does not
depend on the current θ . Most applications of Metro-
polis–Hastings use single-component updating, since
it is much easier to construct proposals in low dimen-
sions. However, when f (·) specifies high correlations
between elements of θ , single-component updating
can produce very slow mixing, unless highly corre-
lated elements are blocked into the same component.

The Gibbs sampler is a special case of single-
component Metropolis–Hastings, in which

qj (θ
′
j |θ (i)) = f (θ ′

j |θ (i)

1 , . . . , θ
(i)

j−1, θ
(i)

j+1, . . . , θ
(i)
k ),

(4)

where the conditional distribution f (θj |·) is derived
from the target joint distribution f (θ), and is called
the full conditional distribution of θj . When f (θ) is
a product of terms, as in the applications described
below, the full conditional distribution for θj is
proportional to the product of those terms contain-
ing θj . With proposal distributions of the form of
(4), the acceptance probability (3) is equal to 1.0,
so the chain never rejects. As for generic single-
component Metropolis–Hastings, an iteration of the
Gibbs sampler involves updating only one θj ; subse-
quent iterations may choose j at random, or deter-
ministically by cycling through j = 1, . . . , k. Thus
the Gibbs sampler consists entirely in sampling from
full conditional distributions, at each iteration updat-
ing one parameter, conditioning on the current values
of all the other parameters (and data). Note that, in
other articles, a Gibbs iteration is sometimes defined
as one complete cycle of updating. Below we use
f (θ ′

j |·) to denote (4).
Sampling from full conditional distributions can

be difficult, but if they are univariate and log-concave
(which they often are), adaptive rejection sampling
(ARS) can be used [19]. See Gilks [17] for fur-
ther details on constructing and sampling from full
conditional distributions. Gibbs sampling and ARS
are implemented in the BUGS software [33], for
general-purpose Bayesian modeling.

Slow mixing in the Gibbs sampler, or any other
single-component updating method, can sometimes
be resolved by reparameterization. An important
example occurs in Bayesian linear models. The
linear predictor α0 + α1x1� + · · · + αpxp�, where
x1�, . . . xp� denote covariates for individual �, should
be reparameterized as β0 + α1(x1� − x1) + · · · +
αp(xp� − xp), where xj denotes the sample mean
of {xj�, � = 1, 2, . . .}. Centering the covariates in
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this way will reduce posterior correlations between
the intercept α0 and the regression coefficients αj .
Another important example of reparameterization
occurs in hierarchical models. Consider the Baye-
sian random effects model

yj� ∼ N(µ + αj , σ 2
1 ), αj ∼ N(0, σ 2

2 ),

µ ∼ N(0, σ 2
3 ), (5)

where j = 1, . . . , m, � = 1, . . . , n, and the yj� are
observed data. Gelfand et al. [9] show that the Gibbs
sampler mixes poorly for this problem if n is large
in relation to m. Thus the mixing rate deteriorates
as information on the random effects increases, con-
tradicting a common supposition that mixing is worst
when information is scarce. Gelfand et al. [9] suggest
a simple reparameterization, which they call hierar-
chical centering:

yj� ∼ N(βj , σ 2
1 ), βj ∼ N(µ, σ 2

2 ).

With this parameterization, the mixing rate increases
with both m and n. The idea extends to more complex
hierarchical models with nested random effects. See
Roberts & Sahu [29] for a rigorous theoretical eval-
uation of reparameterization strategies in hierarchical
models.

Various other strategies have been devised for
improving mixing: see Gilks & Roberts [18] for a
review.

Reversible-Jump MCMC

The preceding discussion implicitly assumes that the
length of vector θ is fixed and known. However,
Green [22] has recently demonstrated that impor-
tant classes of models contain a variable number of
parameters, and that the Metropolis–Hastings algo-
rithm extends naturally to these situations. Examples
of such models include mixture models [27] where
the number of mixture components is unknown, and
change-point problems with an unknown number of
changepoints. Such models allow an essentially non-
parametric approach to curve-fitting. Another impor-
tant example concerns model choice or model aver-
aging, where several models must be entertained,
possibly varying in number of parameters. From a
Bayesian perspective, the individual models can be
thought of as components of an encompassing model
(see Bayesian Methods for Model Comparison).

The general problem is best conveyed with a
toy example. Assume that survival times x in a
clinical trial are exponentially distributed, and let
θ1 and θ2 denote log-mortality rates for each arm of
the trial. We consider two models: Model 1 asserts
that θ1 = θ2; and Model 2 that θ1 �= θ2. Let k = 1, 2
index the models. We place priors on k; on θ1

given k = 1; and on θ1 and θ2 given k = 2. These
ingredients define the posterior distribution f (k, θ |x),
where the length of θ is equal to k. We can consider
various types of proposal distribution. For example,
proposal type A could change θ without changing
k, and since this does not affect the dimensionality,
the usual acceptance formula (2) applies. Proposal
type B could change k. For example, if k(i) = 1,
type B1 could set k′ = 2, θ ′

1 = θ
(i)

1 and sample θ ′
2 ∼

N(θ
(i)
1 , σ 2), where σ 2 is fixed. If k(i) = 2, type B2

could set k′ = 1, θ ′
2 = θ ′

1 = θ
(i)
1 . Note that, in this

example, proposal B2 involves no sampling. Assume
that, at any iteration, a type B proposal is chosen with
probability 0.5. Then the acceptance probability of a
B1 move is, from (2),

min




1,
f (2, θ ′

1, θ ′
2|x) dθ ′

1 dθ ′
2 × I (θ ′

1 = θ
(i)

1 ){
f (1, θ

(i)

1 |x) dθ
(i)

1 × (2π)−1/2σ−1

× exp{−[1/(2σ 2)](θ ′
2 − θ

(i)

1 )2} dθ ′
2

}




.

(6)

where I (·) denotes the indicator function (see
Dummy Variables). Notice that each density
in (6) is converted into a probability through
postmultiplication by dimensional terms dθ

(i)

1 , etc.
However, these dimensional terms cancel in the
numerator and denominator, and so they can be
ignored. This is a consequence of dimension matching
in the proposal distributions. Dimension matching
is not automatic. For example, suppose that the
B1 proposal samples both θ ′

1 ∼ N(θ
(i)

1 , σ 2) and θ ′
2 ∼

N(θ
(i)
1 , σ 2), but the B2 proposal is as before; then the

denominator in (6) would become

f (1, θ
(i)
1 |x) dθ

(i)
1 × (2π)−1/2σ−1 exp

{
−

[
1

(2σ 2)

]

× [(θ ′
1 − θ

(i)

1 )2 + (θ ′
2 − θ

(i)

1 )2]

}
dθ ′

1 dθ ′
2.

Now the dimensional terms no longer cancel, so the
algorithm is not well-defined.
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This example illustrates that the usual Metropo-
lis–Hastings algorithm can be used when the dimen-
sionality of θ is unknown. Proposal distributions may
propose changes to the dimension, but for each such
proposal it must be checked that the reverse pro-
posal satisfies the dimension-matching requirement.
Of course, all the usual problems of mixing still apply
to this more general framework.

Applications

By now, Markov chain Monte Carlo techniques have
been applied in most areas of statistics, in par-
ticular biostatistics. For example, the book edited
by Gilks et al. [20] contains applications in vac-
cine efficacy (see Vaccine Studies), clinical mon-
itoring (see Data and Safety Monitoring), phar-
macokinetics, disease mapping, medical imaging
(see Image Analysis and Tomography), genetics
(see Human Genetics, Overview), and epidemio-
logic measurement error. Also, the book edited by
Berry & Stangl [2] includes applications in medical
decision analysis, clinical trial design, crossover
trials, meta-analysis and changepoint analysis of
randomized trials, pharmacokinetics, tumor hemody-
namics (see Tumor Growth) and perinatal mortality
(see Infant and Perinatal Mortality). Rather than
attempting to review biostatistical applications of
MCMC per se, we focus on applications of MCMC
in modeling situations familiar to biostatisticians;
specifically hierarchical models, missing data, cen-
sored data, measurement error, and temporally or
spatially correlated data (see Geographic Epidemi-
ology; Time Series).

Hierarchical Models

By far the most common area of application of
MCMC has been to hierarchical models, such as (5)
(see, for example, [7, 8], and [10]). Most applications
employ the Gibbs sampler, since full conditional dis-
tributions for the random effect parameters involve
only a small subset of the data, and are generally
log concave. For example, in the simple hierarchical
model (5), assuming for convenience that variance
parameters are known, the full conditional distribu-
tions are:

p(αj |·) = N

(
yj · − µ

1 + n−1σ 2
1 σ−2

2

,
1

nσ−2
1 + σ−2

2

)
, (7)

p(µ|·) = N

(
y ·· − α

1 + m−1n−1σ 2
1 σ−2

3

,
1

mnσ−2
1 + σ−2

3

)
,

(8)

where yj · = ∑n
�=1 yj�/n, y·· = ∑m

j=1

∑n
�=1 yi�/

(mn), and α· = ∑m
j=1 αj/m. Running the Gibbs

sampler corresponds to sampling from (7) for each j ,
and from (8), where all variables being conditioned
upon take on their most recently sampled values.

Much more elaborate hierarchical models, with
covariates, multivariate responses, and more levels
in the hierarchy, can also be handled straight for-
wardly using Gibbs sampling; see for example, Gilks
et al. [21]. In most applications, the Gibbs sampler
mixes well, and when it does not, reparameteriza-
tion strategies can be tried (see above). The current
popularity of MCMC owes much to its successful
application to hierarchical models, which are ubiq-
uitous in biostatistics. In particular, Smith et al. [31]
have applied such models to meta-analysis problems.

Imperfect Data

Most, if not all, biostatistical data sets contain imper-
fections due to missing, censored, or inaccurately
measured data. In the pre-Gibbs era, such imper-
fections were often difficult to handle, and required
problem-specific solutions. Here we show that a wide
class of data-imperfection problems can be handled
in a generic framework, using the Gibbs sampler.

Suppose that a dependent variable, y�, and a
covariate, x�, have been recorded for each individual
� = 1, . . . , n. Assuming that the y� are condition-
ally independent, with probability density specified
by p(y�|x�, θ), the posterior distribution of the model
parameters θ is proportional to

n∏

�

p(y�|x�, θ) · p(θ), (9)

where p(θ) denotes the prior density for θ .
Now suppose that the data are imperfect in some

way. Let z� denote the observations on individual
�, and let p(z�|x�, y�, φ) be a model describing the
relationship between the observed, imperfect, data
and the ideal data. Assuming that covariates are
conditionally independent in the population, with
probability specified by p(x�|ψ), the joint posterior
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distribution of θ, φ, ψ and {x�, y�} is proportional to

n∏

�

p(x�|ψ) × p(y�|x�, θ) × p(z�|x�, y�, φ)

× p(ψ)p(θ)p(φ), (10)

assuming independent priors.
For example, if the covariates x� are measured

with error, then z� represents the measured value of x�

and φ will include parameters specifying the bias and
precision of the measurement process (see Errors in
Variables). In many applications, the dependence of
z� on y� in the measurement model will be dropped.
Similarly, if the dependent variable is measured with
error, then z� represents the measured value of y�,
and the measurement model may drop the depen-
dence on x�. If the covariates are error-free, the first
term in (10) may be omitted, as it will not affect
inference for the other variables. See Spiegelhalter
et al. [32] for an application in which both dependent
and independent variables are measured with error.
In studies containing substantial measurement error,
external validation studies may be performed, which
will introduce further multiplicative terms in (10): see
Richardson & Gilks [26] for details.

The above set-up also includes missing data as
a special case. Suppose that x� is not recorded for
some individuals. Then z� records whether x� has
been recorded (for example, z� = 1 if x� is missing;
z� = 0 otherwise), and p(z�|x�, y�, φ) describes the
probability that x� is missing. The set-up allows for
the possibility that the missingness of x� may depend
on x� itself, or on y�, or both. If z� does not depend on
x�, the term p(z�|x�, y�, φ) in (10) may be omitted.
However, it is important that this term is retained if
it does depend on x�, as this will affect the posterior
distribution of x�, and hence of θ (i.e. the missingness
is informative; see Nonignorable Dropout in Lon-
gitudinal Studies). Similar considerations apply if y�

is missing for some individuals: here z� indicates the
missingness of y�, which is informative if it depends
on y�. The above set-up also accommodates situations
in which both x� and y� can be missing. An impor-
tant class of missing data problems occurs in the field
of genetics, where the missing covariate data x� are
unobserved genotypes in a pedigree, and the observed
data y� are phenotypes or marker genotypes. In such
problems, the x� are not conditionally independent
given ψ , so the analysis framework described here

would need to be adapted; see, for example, Thomp-
son & Guo [35] or Thomas & Gauderman [34].

Censored data can also be accommodated in
the above framework. If the dependent variable is
right-censored at y∗

� , then z� = (y∗∗
� , c�), where y∗∗

� =
min(y�, y∗

� ) and c� = 1 if y� > y∗
� , c� = 0 otherwise.

The model allows for informative censoring; nonin-
formative censoring obtains when y∗

� does not depend
on y�, given x�. Similarly, censored covariates can
also be accommodated; see Gilks et al. [21] for an
example.

The Gibbs sampler, applied to the posterior (10),
involves the following full conditional distributions:

p(θ |·) ∝
n∏

�

p(y�|x�, θ)p(θ), (11)

p(ψ |·) ∝
n∏

�

p(x�|ψ)p(ψ), (12)

p(φ|·) ∝
n∏

�

p(z�|x�, y�, φ)p(φ), (13)

p(x�|·) ∝ p(x�|ψ) × p(y�|x�, θ)

× p(z�|x�, y�, φ), (14)

p(y�|·) ∝ p(y�|x�, θ) × p(z�|x�, y�, φ). (15)

Running the Gibbs sampler corresponds to sampling
from (11)–(13) and, for each �, from (14) and (15),
where all variables being conditioned upon take on
their most recently sampled values. If any of these
full conditional distributions is awkward to sample
from directly, it can be replaced by a set of lower-
dimensional full conditional distributions, or by a
single Metropolis–Hastings step. The point to note
about (11) is that it has the same form as the posterior
distribution of θ given full, accurately measured data,
as in (9), so the sampling involved in this part of the
Markov chain presents no new difficulties. The full
conditionals (14) and (15) should be easy to sample
from, since they involve only a small subset of the
data and would typically be low-dimensional.

A special problem arises when n itself is unknown,
due to an unknown number of individuals being
selectively lost from the study (for whom, of course,
x� and y� are unknown). Thus the posterior distri-
bution is variably dimensioned, since it involves an
unknown number of missing x� and y� variables. For
this problem, a reversible-jump Metropolis–Hastings



Markov Chain Monte Carlo 7

step would need to be included in the sampling, in
which missing individuals are added or removed.
De Angelis et al. [6] consider such a problem in
AIDS epidemiology, where the missing individuals
are those who have not yet been diagnosed with
AIDS, but who are infected with the HIV virus
(see AIDS and HIV).

Temporally or Spatially Correlated Data

In many biostatistical applications, it is useful to
be able to specify relatedness between data items
without attempting to model the causal connec-
tions between them. For example, in disease maps
(see Mapping Disease Patterns), disease incidence
in one county might be expected to be similar to
disease incidence in neighboring counties, but direct
causal links between them might not be realistic. Sim-
ilarly, disease incidence in one calendar year might
be expected to be similar to disease incidence in adja-
cent years, or changes in disease incidence might be
similar to changes in adjacent years. Markov ran-
dom field (MRF) models allow such dependence
to be expressed purely descriptively, without causal
implications. Four example, suppose that µ� is the
disease incidence rate at time �: then a MRF model
might specify

p(µ�|µ−�, θ) = p(µ�|µ�−1, µ�+1, θ), (16)

for � = 2, . . . , n − 1, with some related form for � =
1, n, where µ−� denotes {µ1, . . . , µ�−1, µ�+1, . . . ,

µn}, and θ is a set of parameters specifying the
similarity of disease rates in adjacent years. Equa-
tion (16) says that µ� is conditionally independent of
µ1, . . . , µ�−2, µ�+2, . . . , µn, given µ�−1, µ�+1, and θ .
This structure could be used to induce some smooth-
ness in the time series. Note that a MRF model is
nondirected, since, for example, the distribution of
µ� is specified in terms of µ�−1, and vice versa. A
second-order MRF model might specify

p(δ�|δ−�, θ) = p(δ�|δ�−1, δ�+1, θ), (17)

where δ� = µ� − µ�−1. This structure could be used
to induce smoothness in the gradient of the time
series.

Eq. (16) or (17) defines a MRF prior distribu-
tion on the unobserved, underlying, rates of disease

incidence. For a noncontagious disease, observed dis-
ease incidence y� for each � might be assumed to be
independently Poisson (µ�). Bayesian inference for
this problem, for known θ , is straightforward using
Gibbs sampling, despite the nondirected structure of
the MRF prior. Under (16), the full conditional dis-
tribution for µ� is simply

p(µ�|·) ∝ p(µ�|µ−�, θ) × p(y�|µ�), (18)

where p(y�|µ�) is Poisson (µ�). The Gibbs sam-
pler simply involves sampling from (18) for each
�, always conditioning upon the most recently sam-
pled values in µ−�. If θ is unknown, it should be
sampled from its full conditional distribution, but
this is generally difficult to derive from (18). Besag
et al. [4] discuss MRF prior models which are speci-
fied through joint “pairwise-difference” distributions,
from which derivations of all full conditional distribu-
tions is straightforward. Besag et al. [3] and Bernar-
dinelli & Montomoli [1] discuss Gibbs sampling for
disease maps using MRF priors.
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Markov Chains

Markov chains refer to a collection of random vari-
ables with a special dependency structure. We begin
by discussing discrete time Markov chains which are
sequences of random variables, denoted by {Xn, 0 ≤
n < ∞}. These stochastic processes are a generaliza-
tion of a sequence of independent discrete random
variables. The random variables, Xn, assume a com-
mon discrete set of possible values, S, called the state
space. Since S is countable, we can, by relabeling the
states, assume that they are labeled by the positive
integers. For a finite state space, S = {0, 1, . . . , K}
for some K , while for a countably infinite state space
S = {0, 1, . . .}. The dependency structure is defined
by the Markov property, which is defined by:

Pr(Xn+1 = j |X1 = i1, . . . , Xn−1 = in−1, Xn = i)

= Pr(Xn+1 = j |Xn = i).

If we allow the index n to represent the present
time and {1, . . . , n − 1} to represent the past, then
the Markov property can be interpreted to imply that
future events are conditionally independent of the
past given the present. The Markov property implies
that the chain, upon entering state i, will stay in that
state for a random period governed by a geometric
probability distribution.

The probability Pr(Xn+1 = j |Xn = i) is called a
one-step transition probability, a transition from state
i to state j in one time unit. This probability depends
upon three quantities: i, j , and n. If the transition
probability is independent of n, then we say the
transitions are time homogeneous or stationary. If,
in addition, the transition probabilities are indepen-
dent of i, then the Markov chain is a sequence of
independent, identically distributed (iid) random vari-
ables. For the rest of this article, we assume time
homogeneous transitions, the most commonly con-
sidered case.

It is convenient to represent the transition proba-
bilities pij = Pr(X1 = j |X0 = i) in matrix form, P =
(pij ), a square matrix the dimension of which equals
that of S. Each row of P is a discrete probability
distribution, so the rows must satisfy two conditions;
(i) pij ≥ 0 and (ii)

∑
j∈S pij = 1. A matrix P sat-

isfying (i) and (ii) is called a one-step transition
probability matrix. Such matrices include the case of

identical rows where the underlying random variables
are independent.

To give a complete description of a time homo-
geneous Markov chain, one needs to specify three
components: (i) the state space S; (ii) the transi-
tion probability matrix P; and (iii) the initial prob-
ability distribution, Pr(X0 = i), i ∈ S. Given those
three quantities, the entire evolution of the Markov
chain can be characterized. Often that evolution
is described in two ways, the n-step transition
probabilities; that is, Pr(Xn+m = j |Xm = i) = p

(n)
ij ,

and the marginal probability distribution at time
n, Pr(Xn = j). Both can be derived from the Chap-
man–Kolmogorov equations. For n-step transitions
write Pr(Xn+m = j |X0 = i) = ∑

k ∈S Pr({Xm = k} ∩
{Xn+m = j }|X0 = i) = Pr(Xm = k|X0 = i) · Pr
(Xm+n = j |Xm = k) = ∑

k ∈S p
(m)
ik p

(n)
kj . These eq-

uations can be most conveniently expressed in matrix
form: P(m+n) = P(m)P(n), where P(n) = (p

(n)
ij ), the n-

step transition probability matrix. By iterating this
expression, it is easy to show that P(n) = Pn; that
is, the n-step transition probability matrix is the nth
power of the one-step transition matrix.

If the Markov chain is initiated at time 0 with
a probability distribution, π(0), then it follows that
the marginal probability distribution at time n, π(n) =
π(0)P (n) = π(0)P n, the product of the initial prob-
ability distribution vector with the n-step transition
matrix.

An important consideration is the limiting behav-
ior of the Markov chain. Does it converge to a single
state or does it continue to move through all the states
in the state space? To answer this question, a classi-
fication of each state and a partitioning of the state
space is introduced. This is done by first defining a
relation between two states:

Definition. State i ∈ S communicates with state
j ∈ S if and only if there exists an n ≥ 0 such that
p

(n)
ij > 0.

So state i communicates with state j if there is
a positive probability that a chain starting in i will
reach j in finite time.

Definition. States i, j ∈ S intercommunicate if i

communicates with j and j communicates with i.
The relation defined by state intercommunication

is an equivalence relation and it partitions the state
space S into equivalence classes of intercommuni-
cating states. When a Markov chain has a single
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equivalence class of states, that chain is said to be
irreducible.

The long-run behavior of the Markov chain can
be deduced from a very simple idea, whether a
Markov chain which starts in a state i is certain to
eventually return to that state. If Pr(Xn = i for some
n > 0|X0 = i) = 1, then eventual return is certain.
However, because of the Markov property, if we are
guaranteed of returning a single time, then once we
return, we are guaranteed of a second return, and so
on. Consequently, if one return is certain, then an
infinite number of returns is also certain, and we say
that state i is recurrent. However, if the probability
of eventual return to i is less than 1, then with each
return to i, there is a positive probability of this being
the final visit to i. Eventually, no further returns will
occur. In this case, the state i is called transient,
and the number of visits to state i will be a random
variable with a geometric distribution. One important
result is that for any single equivalence class of states,
all of those states are recurrent or all are transient.

If we are interested in the long-run fraction of
time that the Markov chain spends in state i, we
can restrict attention to recurrent states, because this
relative frequency must converge to 0 for the transient
states. For an irreducible Markov chain, the vector
α = (α1, α2, . . .), where αi represents the long-run
fraction of time spent in state i, satisfies the system
of linear equations

α = αP,
∑

i∈S
αi = 1.

The vector α represents a probability distribution.
According to the theory of Markov chains, for an
irreducible Markov chain these equations will have
a unique solution giving a probability distribution or
no solution at all. In the former case, the states of the
Markov chain are positive recurrent, and the mean
value of the time to return to state i is 1/αi . In the
latter case, either all the states are transient, or all the
states are recurrent, but the mean value of the time to
return to a state is infinite, in which case, the states
are said to be null recurrent.

In the positive recurrent case, this distribution α

is referred to by a variety of names: the “equilib-
rium”, “stationary”, or “invariant” distribution; even
the “steady state” distribution. The latter is often
subject to misinterpretation, since the Markov chain
continues to sojourn throughout the state space. The
vector α gives the long-run fraction of time spent in

any state. It is also the invariant distribution in that
if the chain is initiated according to the distribution
α, then the marginal distribution of the chain at all
future times is also α.

One can also look at the limiting behavior of
the n-step transition probabilities, limn→∞ p

(n)
ij . Of

course, this limit will be 0 if i does not communicate
with j or if j is transient. However, even if αj > 0,
this still does not guarantee that the limit exists.
The phenomenon that must be considered is called
periodicity.

Definition. A state i ∈ S is periodic with period k

if p
(n)
ii > 0 only for n = jk, j = 1, 2, . . ..

In words, a state i is periodic with period k implies
that if the Markov chain is initially in state i, it
can return to that state only in even multiples of k

units of time. A chain with period 1 is aperiodic.
Periodicity is also a class property; that is, all states
in an equivalence class of states have the same period.

Theorem. For an aperiodic, irreducible, positive
recurrent Markov chain, limn→∞ p

(n)
ij = αj .

Thus, for an aperiodic, irreducible, positive recur-
rent (also called an ergodic) Markov chain, the
probability vector solution to the system of equilib-
rium equations α = αP gives the long-run average
fraction of time that the chain spends in each state
and is the limiting probability that the chain will be
found in each state of S at a time far in the future.
Notice that in the ergodic case, limn→∞ p

(n)
ij = αj ,

independent of i, the initial state. In this case, the
long-run behavior of the chain is independent of its
starting location.

A final concept that is useful in biostatistical
applications is that of an absorbing state, a state i

satisfying pii = 1. Once the chain enters i, it can
never leave that state. Such states arise, for example,
in cell metastasis models (see Cell Cycle Models).
Starting with a normal cell, the cell may transition
through a series of reversible states; however, if it
reaches a cancerous state, then it continues to be
cancerous for ever after. One can also use the concept
as a method to determine the expected amount of time
required for the chain, starting in state i, to first reach
j . If we let eij represent the expected value of the first
time the chain reaches j , then these quantities satisfy
the system of equations: eij = 1 + ∑

k∈S pikekj for
j �= i, while eii = 0.



Markov Chains 3

It is straightforward to estimate the elements of
the transition matrix, P, by maximum likelihood.
Assume that we are given a single path of a Markov
chain that is observed over the time interval [0, N ].
Each time the chain enters state i, the next transi-
tion is independent of the entire transition history,
and that step is given by a discrete probability dis-
tribution on S given by {pij , j ∈ S}. If we observe
transitions over N steps, and Nij gives the number of
transitions from state i to j , then the maximum like-
lihood estimator of pij is given by Nij/Ni , where
Ni = ∑

j∈S Nij . In some models, the transition prob-
abilities are constrained to have a special form which
is a parametric function of some variable θ ; that is,
pij = pij (θ). Here, one must write the likelihood
function of θ , an expression which will have the
following multinomial form: L(θ |Nij , i, j ∈ S) =
pX0(θ)

∏
i∈S

∏
j∈S(pij (θ))Nij , where pX0(θ) repre-

sents the likelihood of the initial state of the Markov
chain. This multinomial-like expression must be max-
imized over θ . The resulting estimators are asymp-
totically normally distributed, and the methodology
is similar to what would be done with data from
a contingency table. The seminal work on esti-
mation of Markov chains was done by Anderson
& Goodman [1]. The reader should also consult
Billingsley [2].

Continuous Time Markov Chains

Many Markov chain models are formulated in contin-
uous time, rather than discrete time. In this situation,
the Markov chain is represented by {Xt, t ≥ 0}. The
state space, S is also discrete and is again taken to be
{1, 2, . . . , N} for a finite Markov chain or {1, 2, . . . , }
for the countable state space case.

The Markov property for the continuous time case
is expressed by the relation

Pr(Xt+s = j |Xs = i, Xu = iu, 0 ≤ u < s)

= Pr(Xt+s = j |Xs = i).

We consider only the time homogeneous case; that
is, Pr(Xt+s = j |Xs = i) = pij (t), a transition from
i to j over t time units which does not depend
upon s. Again, the future evolution of the chain
is conditionally independent of the past given the
present state. Suppose at some time t , the chain is in
state i, and we are interested in how much longer it

will stay in state i before it jumps to a different state.
The Markov property indicates that the remaining
sojourn time in i must be independent of the past;
hence it must be independent of the amount of time
it has already sojourned in state i. This “memoryless”
property implies that the sojourn time in each state is
governed by an exponential distribution.

The basic ideas developed earlier for discrete time
Markov chains carry over directly to continuous time
Markov chains. For example, the state space can be
decomposed into equivalence classes of intercommu-
nicating states, and those classes contain states which
are all recurrent or all transient. There is, however, a
major difference between the discrete time and con-
tinuous time Markov chains. In the discrete time case,
there is a smallest increment of time, one time unit.
In the continuous time case, there is no smallest unit
of time, so one can consider state transitions over
arbitrarily small periods of time. Consequently, the
concept of a one-step transition probability matrix,
P, does not apply to the continuous time case. In its
place, a transition rate matrix, Q = (qij ), is intro-
duced. The individual transition rates are defined by
qij = p′

ij (0). Since
∑

j∈S pij (t) = 1 for all t , it fol-
lows that

∑
j∈S qij = 0. Consequently, each row of

Q must sum to 0. The diagonal elements of Q are
nonpositive, while the off-diagonal elements are non-
negative, since

qij =






lim
h→0

pii(h) − 1

h
≤ 0, if i = j ,

lim
h→0

pij (h)

h
≥ 0, if i �= j .

The elements of the Q matrix have direct interpreta-
tions concerning the behavior of the Markov chain.
Recall that the holding time in each state is governed
by an exponential distribution. The parameter of that
distribution for state i is given by −qii = ∑

j �=i qij .
Once the chain leaves state i, it must jump to another
state j �= i. The probability that it jumps to j is
given by qij /

∑
k �=i qik . One could also associate each

{qij , j �= i} with an independent exponential (qij )

random variable, Tij . Suppose that Ti = minj �=i Tij

and Tij < Tik, k �= i, j . Then, upon entering state i,
the chain will stay in state i for Ti time units, then
jump to j .

The Chapman–Kolmogorov equations for the con-
tinuous time case are P(s + t) = P(s)P(t). These can
be rewritten, P(t + h) = P(t)P(h). By subtracting
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P(h) from both sides and taking the limit as h → 0,
we obtain the Kolmogorov forward equations,

P′(t) = P(t)Q, P(0) = I,

a system of first-order differential equations with
constant coefficients. These equations have a solution,

P(t) = exp(Qt) = I + tQ + t2

2!
Q2 + · · · .

Suppose that one introduces the eigenvalue decom-
position of Q, Q = USV, where U and V are orthog-
onal matrices of eigenvectors, and S is a diagonal
matrix of eigenvalues of Q. Using this representation
of Q, one can write P(t) = UD(t)V, where D(t) is
the diagonal matrix exp(tS). In the case of a positive
recurrent, irreducible Markov chain, the transition
probabilities converge to a limiting probability dis-
tribution, α, and this distribution is characterized by
the equations

O = αQ,
∑

i∈S
αi = 1.

This equilibrium or stationary vector is the eigen-
vector corresponding to the eigenvalue 0 of Q. For
continuous time Markov chains, the concept of peri-
odicity does not appear; hence, in the positive recur-
rent case, α represents the long-run fraction of time
the Markov chain spends in each of the states in the
state space. In addition, αj = limt→∞ pij (t).

The most common continuous time Markov
chain is the birth–death process (see Stochastic
Processes), a process in which transitions take place
only to adjacent states in S; qij = 0 if j �= i − 1, i

or i + 1. Often, one uses the notation λi = qii+1 and
µi = qii−1, which denote the birth and death rates in
state i. In the positive recurrent case, the stationary
distribution of the chain is given by

αi = k

i∏

j=1

λj−1

µj

,

where k is a normalization constant to insure that this
gives a probability distribution.

The estimation of the parameters of a continuous
time Markov chain is similar to estimation in discrete
time. We consider the case in which S = {1, . . . , K}.
Assume that we are given a single sample path that
is observed over the time interval [0,T ], and that

the initial state is chosen at random. From this sam-
ple path, we can reduce to the sufficient statistics
{Nij , 1 ≤ i, j, ≤ K, i �= j }, the total number of tran-
sitions from state i to state j and {τi, 1 ≤ i ≤ K},
where τi represents the total amount of time spent in
state i. The likelihood function is given by

L =



K∏

i=1

K∏

j=1,j �=i

(
qij

−qii

)Nij




[

K∏

i=1

exp(qiiτi)

]
.

By taking logarithms, recalling that qii = −∑
j �=i qij

and maximizing this expression over qij , we find the
maximum likelihood estimates of qij to be given
by q̂ij = Nij/τi , provided that the denominator is
positive. If Ii = 0, then state i was never entered,
and we have no data from which to estimate the
transition rates departing from state i. One can also
use Bayesian methods in this problem. It is possible
that a particular model might impose a parametric
structure on the transition rates, a situation requiring
a different estimation procedure.

Examples of Markov Chains in
Biostatistics

We now illustrate the basic concepts discussed above
using two classical examples in biostatistics.

Example 1. Radiation Damage

Reid & Landau [4] introduced a Markov chain to
model the increase in or recovery from radiation
damage to an organism. There are K + 1 states,
{0, . . . , K}, where 0 denotes no radiation damage, K

denotes an absorbing state with perceptible damage,
and {1, . . . , K − 1} denote intermediate states with
increasingly severe states of damage. In discrete time,
the one step transition probability matrix is given
by the following (K + 1) × (K + 1) matrix in which
qi + pi = 1, 1 ≤ i < K ,

P =





1 0 0 0 . . . 0

q1 0 p1 0 . . . 0

0 q2 0 p2 . . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0 qK−1 0 pK−1

0 0 . . . 0 0 1





.
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In this model, the states 0 and K are absorbing states.
If the chain is any intermediate state, 1 ≤ i < K , then
it will move to an adjacent state. Once the chain
hits an absorbing state, it stays there forever, hence
the equivalence classes are {0}, {K}, {1, . . . , K − 1}.
The single state classes are recurrent, while the inter-
mediate class is transient. One might ask for the
probability, given the chain is initiated in state i, 1 ≤
i ≤ K − 1, that it will reach the healthy state 0 before
it reaches the permanently damaged state K . Reid &
Landau studied this model under the assumption that
pi = i/K and qi = 1 − i/K . For this particular set of
transitions, they showed that if the chain is in state
i, then the probability of the chain hitting state K

before it returns to the normal state 0 is given by

1

2K−1

i−1∑

j=0

(
K − 1

j

)
, for 1 ≤ i ≤ K.

Example 2. Compartment Models

Compartment models are a very large class of models
used in pharmacokinetics and pharmacodynamics,
tracking the flow of substances in the body. The com-
partments refer to containers such as organs or the
blood stream itself. Jacquez [3] gives a comprehen-
sive treatment of these models. While the number
of particles of drug or pollutant will be very large,
these models often assume independence of move-
ment within the compartments. Thus, these models
give the transition structure for one particle, and the
behavior of the aggregate can be predicted using the
central limit theorem and the law of large numbers.

A typical compartment model is formulated in
continuous time. Consider, for example, a three-state
model given by the Q matrix

Q =



q11 q12 q13

q21 q22 0

0 0 0



 .

Recall that q11 = −(q12 + q13) and q22 = −q21. State
1 refers to the bloodstream, 2 refers to the liver, while
3 refers to the bladder, from which the pollutant will
be expelled. The drug will reside in the bloodstream
for an exponential period, then move either to the

bladder or to the liver. The drug will stay in the
liver for an exponential period, then move back to
the bloodstream. Finally, any drug that reaches the
bladder will be removed from the system, so this
represents an absorbing state. Again, the bloodstream
state and the liver state are transient, while state 3 is
absorbing. Consequently, it is of interest to calculate
the total amount of time that the pollutant will spend
in the liver where damage can occur, and the time it
spends in the system before it is removed.

Consider the following numerical example. Sup-
pose that

Q =
(−2 1 1

1 −1 0
0 0 0

)
.

The eigenvalues of Q are (0, −0.382, −2.618). If we
assume that there is a bolus injection of pollutant
at time 0 into the bloodstream, then the transition
probabilities for a single particle can be found from
the Kolmogorov forward equations. Specifically, we
find that

p11(t) = 0.276 exp(−0.382t) + 0.724 exp(−2.618t),

p12(t) = 0.448 exp(−0.382t) − 0.448 exp(−2.618t),

p13(t) = −0.724 exp(−0.382t)

−0.276 exp(−2.618t) + 1.

Thus, the pollutant concentration decreases in the
bloodstream according to a mixture of exponentials. It
increases, then decreases in the liver, and eventually
it all resides in the bladder.
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Markov Processes

A Markov process is often described as a “process
without memory”: our estimate of the probability of a
future event concerning its behavior given (complete)
information about its present state will not change if
we are given in addition any information about its
past behavior. See the first section for an illustration
of this.

The concept of a “Markov process” is so general
as to embrace most models of random systems evolv-
ing in time (see Stochastic Processes): from “classi-
cal” random walks, Markov chains, branching pro-
cesses, birth-and-death processes, diffusions and their
associated stochastic differential equations, to the
“postclassical” branching diffusions, measure-valued
diffusions, interacting systems (which include contact
processes etc.), which are destined to play an ever
more important part in mathematical biology. Each
of the italicized topics has a huge literature and its
own special methods; and it is often better to search
the literature for these “keywords” rather than the all-
embracing “Markov processes”. However, Markov-
process theory has, of course, unifying themes and
methods (martingale theory, large-deviation theory,
etc.) which pervade all of its branches.

We take a brief tour through the subject, designed
to allow glimpses of several topics italicized above.

Simple Random Walk

Suppose that we toss a fair coin just before times
1, 2, 3, . . ., and regard the state of our system at
time n (which can be 0, 1, 2, . . .) as the number
of heads minus the number of tails obtained by that
time. (We have X0 = 0.) For illustration, regard time
100 as the “present”. Suppose that we know that
X100 = 6. Given this information and any additional
information about the “past” results of the first 99
tosses, X101 is either 5 or 7 with probability 1/2 each.
The Markov property is obvious here.

We can prove, for example, that the distribution
of Xn at time n is approximated by the normal dis-
tribution of mean 0 and variance n (hence standard
deviation n1/2), and that, “almost surely” (that is, with
probability exactly 1), Xn will fluctuate infinitely,
taking every integer (whole-number) value infinitely
often.

Markov Chain in Discrete Time

For a Markov chain in discrete time with stationary
probabilities, Xn, n = 0, 1, 2, . . ., is a random integer
describing the state of the system at time n. The
probabilistic law of the system is described by the
(“initial”) distribution of X0 and by a “matrix” (or
array) of transition probabilities pij : for each n,
the (conditional) probability of the “future” event
that Xn+1 = j , given the “present” information that
Xn = i and any extra information about the “past”
X0, X1, . . . , Xn−1, is pij . [Our random walk has
pij = 1/2 if j = i + 1 or j = i − 1, and pij = 0
otherwise.] The sort of questions in which we are
interested are the following. Is the system “ergodic”
in that, over the long term, it will almost surely
share out its time amongst the various states in a
predetermined way? At the other extreme, if there
is an absorbing state a for which paa = 1, will
the system almost surely eventually end up in state
a? (For example, is some population almost surely
destined to die out?)

Markov Chain in Continuous Time

We modify things so that our system can jump at
any time, not just at integer-valued times, and this
requires us to define jump-rates qij rather than “jump
probabilities” pij . We denote the integer-valued state
of our system at time t , where t ≥ 0, by Xt . Suppose
that j �= i. Given the “present” information that Xt =
i and any information about the past values Xs for
s < t , the probability that the system will jump from
i to j between times t and t + h, where h is a
small number, will be qijh + o(h), where o(h) is
a term negligibly small compared with h when h

tends to 0.

Generalized Birth-and-Death (GBD)
Process

This has the property that qij = ai for some ai if
j = i + 1, qij = bi for some bi if j = i − 1, and
qij = 0 for other pairs (i, j ), where j �= i. Thus X

can only jump to a neighboring state. We can answer
the analogues of the questions raised in the section
“Markov chain in discrete time”.
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Continuous-Time Random Walk (CTRW)

This is a GBD process with ai = bi = 1/2 for
every i. It will behave rather like the random walk in
the first section.

(Standard) Birth-and-Death (BD) Process

This (the simplest type of continuous-time branching
process) is a GBD process in which only nonnegative
integer states 0, 1, 2, . . . are allowed, and we have
ai = λi, bi = µi for some constants λ (the “birth
rate” per individual) and µ (the “death rate” per
individual). Here, we think of Xt as the size of
a population at time t . If Xt = i, then there are i

animals alive at time t , each of which can give birth
(to one child) “at rate λ”, resulting in a jump rate of
ai = λi for X from i to i + 1; if i > 0, then each
of the i animals can die “at rate µ”, resulting in a
jump rate of bi = µi for X from i to i − 1. State 0
is absorbing. Here are some unsurprising results. In
the subcritical case when µ > λ, so the death rate
exceeds the birth rate, and then the population will
almost surely die out. In the supercritical case when
λ > µ, then, almost surely, the population will either
die out or will grow “exponentially” in a sense which
can be made precise. In the critical case when λ = µ,
the population will almost surely die out.

(Mathematical) Brownian Motion (BM) B

We now take the first of several steps in building more
complex processes from the processes already intro-
duced. If we renormalize CTRW suitably, then we
obtain as a limit the most important of all stochastic
processes: Brownian motion. We take a large num-
ber N , and let X be a GBD process with ai = N/2
and bi = N/2. This process is jumping very fast.
Consider Yt = Xt/N

1/2. Then Y is jumping just as
fast as X, but is making only small jumps of size
1/N1/2. We choose N1/2 because of the fact that a
standard deviation of n1/2 appeared in our discussion
in the first section. What happens is that the law of the
rescaled process Y converges as N tends to infinity to
the law of Brownian motion B. The process B takes
real values, not integer values. The Markov property
of B is conveyed by the fact that conditional on the
“present” information that Bt = x and any informa-
tion about the past (Bs : s < t), the “future” random

variable Bt+s has exactly the normal distribution of
mean x and variance s. (The fact that the mean value
of Bt+s given the values (Bs : s ≤ t) is the value of
Bt signifies that B is a martingale.)

It is no accident that, if p(t, x) is the density
function at x of the law of Bt if B0 = 0, i.e. of the
normal distribution with mean 0 and variance t , then

p(t, x) = 1

(2πt)1/2
exp

(
−x2

2t

)

solves the heat equation

∂p

∂t
= 1

2

∂2p

∂x2
.

This explains the frequent occurrence of second-
derivative “diffusion terms” in books on mathemati-
cal biology. The function p(s; x, y) = p(s, y − x) is
now the transition probability density for B from x

to y in an interval of duration s: it plays a role analo-
gous to that of the one-step transition probability pij

for a Markov chain in discrete time.
Brownian motion B is quite remarkable. It approx-

imates many processes. It is amazingly rich and we
can “find within B” many other processes including
all those we have so far studied. This gives a very illu-
minating way of proving (rigorously) the celebrated
Central Limit Theorem on the ubiquitous nature of
the normal distribution. We can even “find within B”
seemingly much more complicated processes such as
the Dawson–Watanabe process described later. We
can use B to describe “white-noise perturbations”
of ordinary differential equations, turning them into
the stochastic differential equations which describe
diffusions, and so on.

Diffusions

Brownian motion is the most important diffusion
process. We can think of a more general diffusion
process on the real line in two ways: either as the
limit of a GBD process produced in a way analogous
to that in which we obtained BM from CTRW; or
as the solution of a stochastic differential equation
(SDE) of the form

dX

dt
= b(Xt ) + σ(Xt )

dB

dt
,

where σ and b are functions. This SDE can be
thought of as a random perturbation of the ordinary
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differential equation (ODE) dX/ dt = b(Xt ). (The b

here has a quite different connotation from that of
the bi in GBDs.) The Brownian path is nowhere
differentiable, so dB/ dt is completely meaningless
in Newtonian terms. Even so, the great Japanese
mathematician, K. Itô, constructed the stochastic cal-
culus (nowadays based on martingale theory), which
allows rigorous formulation and analysis of SDEs.
Solutions of SDEs inherit the Markov property from
the (particularly strong version of the) Markov prop-
erty possessed by Brownian motion. Conversely, any
(real-valued) Markov process X which fluctuates con-
tinuously in time (and which satisfies very mild regu-
larity conditions) is the solution of an SDE as above.

The transition density function p(s; x, y) of the
solution X of our first-order SDE solves the second -
order partial differential equation (PDE)

∂p

∂s
= 1

2
σ(x)2 ∂2p

∂x2
+ b(x)

∂p

∂x
,

which amazing fact allows us to prove even the
deepest known theorems on these and certain other
PDEs of importance in mathematical biology by
probabilistic methods (see below).

Diffusion theory has seen truly spectacular devel-
opment over the last 40 years. One important way in
which diffusions are used is again in approximating
other processes: choosing a diffusion with the same
“infinitesimal characteristics” as a more complex pro-
cess can often give a good guide to how that process
behaves.

Branching Brownian Motion and the
FKPP Equation

The FKPP equation for u(t, x) studied by Fisher
and independently by Kolmogorov, Petrovskii, and
Piskunov,

∂u

∂t
= 1

2

∂2u

∂x2
+ u(1 − u),

u(0, x) =
{

1, if x < 0,

0, if x > 0,
(1)

is perhaps the most famous in mathematical biol-
ogy: it is the simplest reaction–diffusion equation.
Here, u(t, x) is thought of as describing the den-
sity at time t and position x of a population of
animals, where there is a logistic constraint on

population growth and where the animals diffuse
around. (This statement does not in itself specify
any random model!) Strange to say: by far the
deepest analytic results on the equation have been
obtained by H.P. McKean, M. Bramson, J. Neveu,
and B. Chauvin & A. Rouault, using probabilistic
methods on a stochastic model, branching Brown-
ian motion (BBM), with “free” (rather than logistic)
growth. The birthing is exactly as for the pure-birth
process, which is a BD process with λ = 1 and µ =
0. Each child is born at its parent’s current position.
Once born, animals perform independent Brownian
motions. The whole system is Markov, the state of
the system at time t summarizing both how many
animals are then alive and exactly where they all
are. McKean showed that the unique solution u(t, x)

of (1) is given by the probability that if we start with
one animal born at position x at time 0, then at least
one animal is to the left of 0 at time t . If l(t) denotes
the leftmost particle position at time t and we start
with one animal born at time 0 at position 0, then we
have, almost surely, as t → ∞,

l(t)

t
→ −21/2,

and this explains the celebrated “approximate
traveling-wave” nature of the solution to (1). If we
simulate the situation when at time 0 there is just
one animal at position 0, we see that the tracks of the
animals almost exactly fill a triangle. All the exact
traveling-wave solutions of the FKPP equation have
explicit probabilistic representations, even though
BBM is the wrong model in biological terms (see
the section “MVDs with interaction; improving on
FKPP” below).

Measure-Valued Diffusions (MVDs)

The simulation mentioned above is enough to con-
vince one of the good sense of thinking of the ran-
dom flows of measures (“mass distributions”). Let
me explain the most fundamental MVD: the Daw-
son–Watanabe (D–W) process. We take a large num-
ber N . We think of each animal as having mass 1/N ,
and start with N animals at position 0. Births and
deaths are according to a BD process with λ = N/2
and µ = N/2. Note that this is a critical situation, in
which the process will eventually die out. Each par-
ticle performs BM, independently of all others. As
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N tends to infinity, the law of evolution converges to
that of the Dawson–Watanabe process. In one dimen-
sion, but only in one dimension, we can think of the
value of the (D–W) process at time t > 0 as being
a positive density function u of a mass distribution.
This evolves as the solution of a stochastic partial dif-
ferential equation (SPDE), a perturbed heat equation

∂u

∂t
= 1

2

∂2u

∂x2
+ [u(t, x)]1/2W,

where W now denotes a space–time white-noise
process derived from a “Brownian motion” (the
“Brownian sheet”) with two-dimensional “time”.
Leading experts in this field include D.A. Dawson,
E.B. Dynkin, S.N. Evans, J.F. le Gall, E. Perkins,
and J.B. Walsh. Important biological applications,
especially to genetics, have been given by
D.A. Dawson, P. Donnelly, S.N. Ethier, and T.G.
Kurtz.

Interacting Systems

Complicated as they are, the above-mentioned mod-
els are not complicated enough. Their particles per-
form their Brownian motions independently of one
another: no account is taken of overcrowding or of
the interaction between different particles. By con-
trast, the theory of interacting systems allows more or
less anything. One has to be aware of the scope of this
theory, even if only a handful of people can currently
claim deep understanding. Leading experts include
R. Durrett, G. Grimmett, H. Kesten, R. Holley, and
T.M. Liggett.

One of the simplest interacting systems is the
three-dimensional contact-process model for the
spread of disease through cells which are consid-
ered to be cubes stacked together, and occupying
the whole of space. A healthy cell becomes infected
at “jump-rate” (a constant) I times the number of
infected neighbors while an infected cell recovers at
constant “jump-rate” R. (This system is too com-
plicated to be a Markov chain – its state-space is
“uncountable” – but it is a Markov process.) We sup-
pose that at time 0 only a finite number of cells are
infected. The system exhibits phase transition: if I/R

is less than some critical number c (the precise value
of which is currently unknown), then the disease will
almost surely die out; while if I/R is greater than
c, then the disease can (with positive probability)

persist for ever, infecting ever more cells. The time-
dependent Ising model from magnetism, now much
used by statisticians in image processing, (see Image
Analysis and Tomography), is closely related.

MVDs with Interaction; Improving on
FKPP

Some extremely interesting work has been done by
C. Mueller, R.B. Sowers and R. Tribe on an interact-
ing system with “logistic” inhibition of population
growth: an MVD with density satisfying the FKPP
equation with an extra term [u(1 − u)]1/2W on the
right-hand side, with W as before. The system pos-
sesses a “coherence” not present in the deterministic
model, and can be regarded as superior to it in many
respects. Mueller, Sowers, and Tribe study “traveling-
wave” aspects.

Self-Organization; Adapting to the
Environment

A striking feature of (naturally occurring and man-
made) interacting systems is their ability to behave
in a pseudo-intelligent way. Brilliant use of this was
made in the Dynamic Alternative Routing strategy
for telephone networks developed by F.P. Kelly and
R. Gibbens along with British Telecom. Similar use
is made in neural nets. Biological “networks” in
fungi, ant colonies, anastomosis of blood vessels
near tumors (bad!), or in wound healing (good!), are
complex interacting systems; at present, models of
such systems can only be studied by simulation,
which can certainly identify bad models even if it
cannot conclusively validate good ones.

A Plea

There is a great need to make the more modern
material described in this article a lot more accessible
to applied workers – and to mathematicians too!

A Few References

The literature is truly vast. Most of it can be discov-
ered via the key names given, in the various databases
now available, and in the following. For the first five
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sections, see, for example, Feller [6, 7], Grimmett
& Stirzacker [8], and Karlin & Taylor [9, 10]. For
the next two sections, see, for example, Breiman [1],
Ethier & Kurtz [5], and Øksendal [12]. For the
following two sections – and things are getting much
harder now – see, for example, Dawson [2], Donnelly
& Kurtz [3], Durrett & Levin [4], and Mueller &
Sowers [11].
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Martini, Paul

Born: January 25, 1889, in Frankenthal, Germany.
Died: September 8, 1964, near Bonn, Germany.

Paul Martini was born in Frankenthal (Palatinate)
in the southwestern region of Germany. He studied
medicine at the universities of Munich and Kiel. He
worked on his thesis in the Institute of Physiology
in Munich and obtained his doctorate in medicine
in 1917.

He was an assistant in the II. Medizinische Uni-
versitätsklinik in Munich which was at that time
headed by one of the famous German internists,
Friedrich von Mueller. In 1926 he become “extraor-
dinary” professor of medicine. He left the university
when he was appointed head physician in the St
Hedwigskrankenhaus in Berlin, a large community
hospital. In 1932 Martini returned to university life.
From that time until he retired he held the chair of
internal medicine at the University of Bonn and was
director of the Universitätsklinik für Innere Medizin
und Nervenkrankheiten.

Among his scientific work, his 1932 Monograph
Methodenlehre der therapeutischen Forschung [1] is
of particular importance. This book contains all the
elements of the controlled clinical trial and is the first
in modern times addressing the problem of a scientific
methodology as regards therapeutic research. It is
evident that the use of placebo (see Blinding or
Masking) is meant even when this word is not used.
Martini wrote: “the medicines have to be given to
the patient in a form or in a galenic preparation
that their special character or their purpose can not
be recognized, they have to be camouflaged. The
results have to be evaluated by means of statistics and
probability calculus”. Randomization is not clearly
addressed, but subsequent publications make it likely

that alternating procedures, for example based on day
of birth, were used.

In an article published in 1934, Martini again
explained his methodology of therapeutic trials and
defended himself against the arguments that had been
raised against his ideas [2].

In 1957 he published in the Deutsche Medizinis-
che Wochenschrift his ideas about double-blind tri-
als [3]. He rejected the method of double-blindness
as he was not convinced that the results of such tri-
als were superior to the single-blind trials. In 1961
Martini was chairman of an international seminar in
the field of drug trials in Berlin.

Martini was a highly esteemed physician and had
among his patients many personalities of the political
scene in Bonn. During the time of national socialism
he was able to avoid involvement. In 1948 he was
president of the first postwar “Internistenkongress”
(annual meeting of the German Society of Internal
Medicine) in Wiesbaden. In 1964 he died in his
country house in the Eifel near Bonn.
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On grounds of both validity and efficiency, the appro-
priate analysis of data involving category match-
ing mandates the use of stratified analysis methods
based on the strata used in the matching process [6]
(see Stratification). Two important methods for ana-
lyzing category matched (or, more generally, strat-
ified) data are the Mantel–Haenszel procedure [9]
and conditional logistic regression (see [1], Chap-
ter 7, and [5], Chapter 20).

The Mantel–Haenszel (MH) test statistic [9] is
the most widely used and recommended method for
testing for overall association in a stratified analysis.
And, as we will see, the MH test statistic for stratified
data analysis is based on the (central) hypergeo-
metric distribution. For dichotomous disease and
exposure variables (the setting for this presentation),
the MH testing procedure involves a one degree-of-
freedom (continuity-corrected) chi-squared statistic
of the general form

χ2
MH = [|A − E0(A)| − 1/2]2

var0(A)
, (1)

where A is the random variable denoting the total
number (over all strata) of diseased subjects in
each stratum who are exposed (i.e. the total num-
ber of “exposed cases”), E0(A) is the expected total
number of exposed cases under the null hypothe-
sis of no association between exposure and disease,
and var0(A) is the variance of the total number of
exposed cases under the same null hypothesis.

Suppose that there are G strata defined by the
matching process, with the gth stratum having the
structure given in Table 1.

The four marginal frequencies n1g, n0g, m1g , and
m0g in the gth stratum convey no information about
the strength of the association between exposure
and disease in that stratum, but rather indicate
only the “amount of information” in that stratum.

Table 1 Data layout for the gth
stratum (g = 1, 2, . . . ,G)

E E

D Ag Bg m1g

D Cg Dg m0g

n1g n0g ng

Consequently, the four marginal frequencies within
each stratum may be assumed (with no compromise
to validity) to be “fixed” for analysis purposes, even
though the sampling scheme actually used may not
have imposed such constraints on the margins of these
G 2 × 2 tables.

Conditional on these fixed margins for all strata,
it is sufficient to focus entirely on the “Ag cell”,
namely, the number of exposed cases in the gth
stratum, g = 1, 2, . . . , G. The test statistic (1) is then
a conditional test since properties of the random
variable A = ∑G

g=1 Ag are based on the condition
that the four margins in each stratum are fixed. More
specifically, assuming fixed margins and no exposure-
disease association, Ag is a (central) hypergeometric
random variable, so that

E0(A) =
G∑

g=1

(n1gm1g)

ng

and

var0(A) =
G∑

g=1

(n1gn0gm1gm0g)

(ng − 1)n2
g

.

Finally, some algebra can be used to write expression
(1) in the form

χ2
MH =




∣∣∣∣∣

G∑

g=1

(AgDg − BgCg)/ng

∣∣∣∣∣ − 1/2




2

G∑

g=1

(n1gn0gm1gm0g)/(ng − 1)n2
g

; (2)

under the null hypothesis of no exposure–disease
association, it can be shown that the test statistic (2)
has, for “large samples”, an approximate chi-square
distribution with 1 df.

It is very important to stress that the “large sam-
ples” assumption for the test statistic (2) pertains to
the pooled information over all G strata, rather than
to stratum-specific numbers. Consequently, in the use
of the Mantel–Haenszel test statistic (2), it is per-
missible to have relatively small numbers in each
stratum as long as the total number of subjects on the
margins over all strata is sufficiently large. Without
going into detail, this form of robustness to sparse
stratum-specific data accrues due to the assumption
of fixed stratum-specific margins, an assumption that
maintains validity at only a slight cost in efficiency.
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Specific criteria for appropriate sample sizes to main-
tain the validity of the chi-squared approximation for
(2) have been proposed by Mantel & Fleiss [8]. They
recommend using (2) provided that the quantities

E0(A)−



G∑

g=1

max(0, m1g − n0g)



 and




G∑

g=1

min(n1g, m1g)



 − E0(A)

both exceed 5 in value.
It is important to mention that the use of the

Mantel–Haenszel test statistic (2) should be avoided
when there is evidence of strong effect modification
in the data, as would be reflected by widely vary-
ing stratum-specific estimated odds ratios ÔRg =
AgDg/BgCg, g = 1, 2, . . . , G. Because of the struc-
ture of the numerator in (2), the value of (2) can be
very small (suggesting no exposure–disease associa-
tion) when, in fact, some stratum-specific estimated
odds ratios are significantly greater than 1 and some
are significantly less than 1. Indeed, claims of opti-
mal statistical properties for the Mantel–Haenszel
test [11] are valid only in the situation where stratum-
specific population odds ratios all have the same
value. Tests for lack of uniformity of stratum-specific
odds ratios are discussed in Chapter 4 of [1].

Given the assumption of a common population
odds ratio for all strata, it makes sense to compute a
summary estimator of this common odds ratio; such
an estimator is typically a weighted average of the
G stratum-specific estimated odds ratios. Mantel &
Haenszel [9] proposed several such summary esti-
mators for use in case–control studies. The most
notable of these is the mÔR, which is defined as

mÔR =



G∑

g=1

(AgDg)/ng




/


G∑

g=1

(BgCg/ng)





=
G∑

g=1

Wg(ÔRg)

/ G∑

g=1

Wg, (3)

where Wg = BgCg/ng . An interesting property of
mÔR is that it equals unity only when expression (2)
is zero, a property that is not shared by other summary
estimators (see [5], Chapter 17). Another advantage
of the mÔR over other summary estimators is that it

can be used without alteration when there are zero
frequencies within the body of some of the stratum-
specific tables.

For certain types of matched data, expressions
(2) and (3) have simple structures. As one example,
for a matched pairs case–control study where each
stratum (or pair) consists of one case and one con-
trol, then expression (2) reduces to (b − c)2/(b + c)

apart from continuity correction, and expression (3)
equals b/c, where b is the number of strata where
the case is exposed and the control is not, and c is
the number of strata where the control is exposed
and the case is not. For the special case of R-to-1
matching, see either Chapter 5 in [1] or Chapter 18
in [5]. For confidence interval methods based on
(3) in case–control studies with multiple matching,
see [3], [12], and [13]. Finally, some generalizations
of the Mantel–Haenszel test have been developed
for situations where the exposure variable is nom-
inal with several categories [9] and where the expo-
sure variable is ordinal (see Measurement Scale) in
nature [2, 7].

A more general and flexible method for the analy-
sis of matched (or, in general, stratified) data is con-
ditional logistic regression (see Logistic Regression,
Conditional). This multivariable modeling procedure
is specifically designed to be used when there are
small stratum-specific sample sizes. Hence, it is
ideally suited for the analysis of matched study
designs or to similar situations involving very fine
stratification; in fact, its use in these situations
is mandatory to avoid biased estimates of impor-
tant odds ratio parameters. In contrast to stratified
data analysis methods, conditional logistic regression
methods do not require all variables to be categorized;
for example, continuous exposure, confounding, and
effect-modifying variables can be treated as such. In
addition, it is theoretically possible to consider simul-
taneously in one model several exposure variables
and to examine potential confounding and effect mod-
ification effects due to covariates not involved in the
matching process.

Suppose we consider the case–control format,
with x1g, x2g, . . . , xmgg denoting the observed data
vectors for the total of mg = (m1g + m0g) cases and
controls in the gth stratum, g = 1, 2, . . . , G. Without
loss of generality, we arrange these data vectors so
that the first m1g vectors belong to the m1g cases in
the gth stratum. For a dichotomous response variable
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D with D = 1 signifying a case and D = 0 signify-
ing a control, consider fitting by conditional logistic
regression the logistic model

logit[Pr(Dlg = 1)] = αg + β ′xlg,

l = 1, 2, . . . , mg and g = 1, 2, . . . , G.

Then, the contribution from the gth stratum to the
full conditional likelihood has the structure

CLg =
m1g∏

l=1

exp(β ′xlg)

/
∑

u

[
m1g∏

l=1

exp(β ′xulg)

]
,

(4)

where the sum
∑

u in the denominator is over all
partitions of the set of integers {1, 2, . . . , mg} into
two subsets, the first of which contains m1g elements;
there are mg!/m1g!m0g! such partitions. Thus, CLg

is the conditional probability that the first m1g of the
mg data vectors x1g, x2g, . . . , xmgg go with the cases
(as they actually do) considering all possible arrange-
ments of these mg data vectors; in other words, CLg

is the conditional probability of the observed data.
The full conditional likelihood CL is then equal to
CL = ∏G

g=1 CLg , and standard maximum likelihood
methods can be used to estimate and to make infer-
ences about the elements of β.

It is important to note that the conditional like-
lihood CL based on (4) depends only on β, the
parameter vector of interest. The nuisance param-
eters α1, α2, . . . , αG indexing the matching strata
have been eliminated via this permutation procedure,
thus precluding the need to estimate unnecessarily
an often large number of parameters that provide no
information about important exposure–disease odds
ratio parameters of interest. In addition, precisely
the same likelihood CL is obtained regardless of
whether we consider the data to have arisen from
a follow-up study or from a case–control study.
Also, CL has precisely the structure of Cox’s partial
likelihood [4], based on the proportional hazards
model, for analyzing follow-up study data. However,
an important distinction is that each stratum-specific
set in the denominator of CL, instead of involv-
ing all persons in the study who are disease-free
at the time each incident case is identified, con-
sists only of the m0g controls specifically associated
with (e.g. sampled at the same time as) the m1g

cases.

As an illustration of the conditional likelihood
approach for matched data, consider a matched
case–control study involving G cases, where the gth
case is individually matched to Rg controls on one
or more variables. Then, m1g = 1, m0g = Rg, mg =
(Rg + 1), and the conditional likelihood CL takes the
specific form

G∏

g=1



1 +
Rg+1∑

l=2

exp[β ′(xlg − x1g)]




−1

. (5)

Given the structure of this expression, if any of
the elements of x are matching variables, taking the
same value for each member of a matched set, then
their contribution to the likelihood is zero and the
corresponding elements of β cannot be estimated.
However, by incorporating such matching variables
in the model as interaction terms with exposure
factors, one can model the variation in odds ratios
across matched sets.

Finally, to appreciate that these conditional likeli-
hood methods do, in fact, yield recognizable results
in well-known special cases, consider the simple
matched pairs case–control study considered earlier,
where Rg = 1 for all g and where there is a single
dichotomous exposure variable. With eβ = EOR, the
exposure odds ratio parameter, it can be shown that
(5) is proportional to

[
EOR

(1 + EOR)

]b [
1

(1 + EOR)

]c

.

By differentiating the logarithm of the above expres-
sion with respect to EOR, equating it to zero, and
solving, one finds that the conditional maximum like-
lihood estimator of EOR is mÔR = b/c, the ratio of
discordant pairs. In contrast, the unconditional max-
imum likelihood estimator of EOR is (b/c)2, which
dramatically illustrates the potential bias associated
with the use of unconditional likelihood methods
for finely stratified data. While not as extreme as
illustrated here, the bias of unconditional likelihood
methods is found in many other sparse data situ-
ations [10]. These findings emphasize the need to
consider the use of conditional likelihood methods
when fitting logistic models involving many strata
and/or other nuisance parameters to data sets of
limited size.
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Matched Pairs With
Categorical Data

Matched pairs with categorical data arise when two
measurements of the same categorical variable are
obtained from each independent experimental unit.
The repeated measurements might be obtained at two
time points, for example, if a patient’s condition
is categorized as “good” or “poor” at diagnosis
and then again six months after diagnosis. In other
applications, the variable of interest might be mea-
sured under two different conditions. As an exam-
ple, a patient’s response to treatment, categorized
as satisfactory or unsatisfactory, might be evaluated
following treatment with the standard therapy and
then again following treatment with a new therapy.
The repeated measurements could also be obtained
from each member of a matched set. In a matched
case–control study, for example, each independent
experimental unit consists of a case (individual with
a specified disease or condition) and a control (indi-
vidual without the disease or condition) individually
matched to the case by factors such as age, sex,
residence, employer, etc.

Such data can be displayed in a two-way contin-
gency table. Table 1 shows the general layout when
two measurements of a categorical response with I

categories are obtained from each experimental unit.
In this table, nij is the observed frequency in the ith
row and j th column of the table, ni+ and n+j denote
the row and column marginal frequencies, respec-
tively, and n is the total number of independent exper-
imental units. The data layout displayed in Table 1 is

Table 1 Two-way contingency table for matched pairs
with categorical data

First
Second measurement of response

measurement
of response 1 . . . j . . . I Total

1 n11 . . . n1j . . . n1I n1+
...

...
. . .

...
. . .

...
...

i ni1 . . . nij . . . niI ni+
...

...
. . .

...
. . .

...
...

I nI1 . . . nIj . . . nII nI+

Total n+1 . . . n+j . . . n+I n

one example of a square contingency table. The pos-
sible types of response variables include polytomous
data, ordered categorical data, and, for the special
case of I = 2, binary data.

Statistical Inference

Statistical inference for matched pairs with cate-
gorical data focuses generally on comparing the
marginal distributions of the two correlated responses
(see Marginal Models). Let πij denote the proba-
bility of being in the ith row and j th column, for
i, j = 1, . . . , I , and let πi+ and π+j denote the cor-
responding row and column marginal probabilities.
The hypothesis of marginal homogeneity is

πi+ = π+i , i = 1, . . . , I.

The hypothesis of symmetry,

πij = πji, i �= j,

is also sometimes of interest. Other hypotheses
include quasi-symmetry and quasi-independence.

Binary Response

When I = 2, the hypothesis of symmetry implies
marginal homogeneity, and vice versa. In this sit-
uation marginal homogeneity is assessed using the
McNemar test. This test is a special case of the
general class of Mantel–Haenszel methods. If the
sample size n is small, exact tests for categori-
cal data, specifically, the exact one-sample test for
the success probability of the binomial distribution,
should be used.

Polytomous Response (see Polytomous Data)

Let di = ni+ − n+i and let d′ = (d1, . . . , dI−1). Stu-
art [25] proposed a test of marginal homogeneity
using the statistic

W0 = d′V0
−1d,

where V0, the sample covariance matrix under
the null hypothesis of marginal homogeneity, has
diagonal elements ni+ + n+i − 2nii and offdiago-
nal elements −(nij + nji). The asymptotic null dis-
tribution of W0 is χ2 with I − 1 df (χ2

I−1). For
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2 × 2 tables, the test based on W0 is identical to
McNemar’s test. For I × I tables, Stuart’s statistic
is the I − 1 df general association statistic from the
class of Mantel–Haenszel methods.

Bhapkar [4] considered the statistic W = d′V−1d,
where V0 is replaced with the unrestricted sample
covariance matrix estimator V, which has diagonal
elements ni+ + n+i − 2nii − (ni+ − n+i )

2 and off-
diagonal elements −(nij + nji) − (ni+ − n+i )(nj+ −
n+j ). The statistic W is asymptotically optimal, as
shown by Wald [26], and can be computed using
weighted least squares methodology for the analysis
of categorical data [10] (see Categorical Data Anal-
ysis). Ireland et al. [11] noted that W = W0/(1 −
W0/n).

Although maximum likelihood estimators of the
cell probabilities under the hypothesis of marginal
homogeneity cannot be expressed in closed form,
likelihood methods can also be used to test marginal
homogeneity. Madansky [19] gave the generalized
maximum likelihood ratio test comparing the like-
lihood maximized under the hypothesis of marginal
homogeneity to the likelihood maximized in the unre-
stricted case. The likelihood ratio test is also pre-
sented by Plackett [22, pp. 79–80], who uses the
approach of Wedderburn [27]. Firth & Treat [8] and
Lipsitz [16] describe how to conduct this test using
standard statistical software.

An alternative likelihood-based approach tests
marginal homogeneity in the context of the model for
quasi symmetry by comparing the maximized likeli-
hoods for the symmetry and quasi-symmetry models
(see, for example, Agresti [2, pp. 358–359]). While
this test can be carried out using standard software
for fitting a loglinear model, it is conditional on the
model of quasi-symmetry holding.

For polytomous responses (I > 2), the hypotheses
of marginal homogeneity and symmetry are not
equivalent. Under the null hypothesis of symmetry,
the expected count in the (i, j ) cell, with i �= j , is
estimated by (nij + nji)/2. Substituting the estimated
expected cell counts into the usual formula for the
Pearson χ2 test, Bowker [5] derived the statistic

X2 =
∑

i<j

(nij − nji)
2

nij + nji

.

Under the null hypothesis of symmetry, X2 is approx-
imately χ2

I (I−1)/2. When I = 2, this test is identical
to McNemar’s test.

A likelihood-ratio test can also be used. The test
statistic is

G2 = 2
∑

i �=j

nij log

(
2nij

nij + nji

)
.

Since the hypothesis of symmetry has a loglinear
model representation, G2 can be computed using
standard software for fitting loglinear models.

Ordered Categorical Response (see Ordered
Categorical Data)

The tests of marginal homogeneity described in the
previous section use I − 1 df to compare the I

pairs of marginal proportions. For ordered categorical
variables, alternative tests that use the additional
information provided in the ordering of the categories
are more powerful for certain types of departures
from the null hypothesis.

One approach is to compare marginal mean scores
instead of marginal distributions. Given a set of
scores that are appropriately assigned to the cate-
gories according to the alternative one wishes to
detect, 1 df tests of marginal homogeneity anal-
ogous to the Stuart and Bhapkar tests can be
carried out. The corresponding Stuart-type statistic
(using the null covariance matrix estimator V0) is
the Mantel–Haenszel mean score statistic; this test
is discussed in White et al. [28]. If marginal rank
scores are assigned, the statistic is equivalent to the
Friedman [9] test obtained from a two-way rank anal-
ysis of variance with subjects as blocks (see Ranks).
Agresti [1, Section 2.3] discusses the corresponding
Bhapkar-type statistic (using the unrestricted covari-
ance matrix estimator V) and gives additional refer-
ences; this test can be computed using weighted least
squares methodology for the analysis of categorical
data (see Categorical Data Analysis).

Another approach to testing marginal homogeneity
for ordered classifications is based on the conditional
symmetry model [20; 2, pp. 361–364]. This loglinear
model has only one more parameter than the sym-
metry model. When conditional symmetry holds, a
1 df chi-square statistic for testing marginal homo-
geneity is the difference between the likelihood-ratio
lack-of-fit statistics for the symmetry and conditional
symmetry models. Agresti [1] mentions additional
methods useful in the analysis of ordered categorical
responses.
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Example

Table 2 displays the cross-classification of right eye
and left eye unaided distant vision grade in 7477
women employees, aged 30–39 years, in British
Royal Ordnance factories during 1943–1946. The
outcome variable of interest is an ordered categorical
variable with four levels. These data, first quoted by
Stuart [24], have been analyzed by numerous authors.

First, treating the categories as nominal rather
than ordered, the tests of marginal homogeneity
give χ2 statistics of 11.957, 11.976, and 11.986
for Stuart’s W0, Bhapkar’s W , and Madansky’s
likelihood-ratio statistic, respectively. With respect
to the χ2

3 null distribution, all are significant at
α = 0.01. The alternative likelihood-based approach
of testing marginal homogeneity in the context of
the quasi-symmetry model gives a likelihood-ratio
statistic of 19.250 − 7.274 = 11.976, also with 3 df.
The values 19.250 and 7.274 are the likelihood-ratio
statistics for symmetry (6 df) and quasi-symmetry
(3 df), respectively. Bowker’s test for symmetry
gives X2 = 19.107, which agrees closely with the
corresponding value from the likelihood-ratio test.

If one treats the categories as ordered, the use
of equally-spaced scores for the levels gives χ2

statistics of 11.947 (Mantel–Haenszel mean score)
and 11.97 (weighted least squares). The Friedman
statistic (Mantel–Haenszel mean score test using rank
scores) is 11.885. With respect to their asymptotic
χ2

1 null distributions, all three of these criteria are
significant at α = 0.001.

The likelihood-ratio lack-of-fit statistic from the
conditional symmetry model is 7.35 with 5 df. Since
this model provides a satisfactory fit to the data
(P = 0.2), the difference between the likelihood-
ratio statistics from the symmetry and conditional
symmetry models also tests marginal homogeneity.

Table 2 Right eye and left eye unaided distance vision of
7477 women

Grade of left eye
Grade of
right eye Highest Second Third Lowest Total

Highest 1520 266 124 66 1976
Second 234 1512 432 78 2256
Third 117 362 1772 205 2456
Lowest 36 82 179 492 789

Total 1907 2222 2507 841 7477

The value of the statistic is 19.250 − 7.35 = 11.9,
which is also significant at α = 0.001.

Related Topics

The above methods are useful in analyzing matched
pairs from a single population. In some situa-
tions there may be multiple populations defined by
additional covariates of interest. If all covariates
are categorical with a sufficiently large sample size
in each covariate strata, a wide variety of types
of regression models can be fitted using the gen-
eral weighted least squares approach [10], which
is described specifically for correlated responses
by Koch et al. [13] and others. This methodology
is applicable for binary, polytomous, and ordered
categorical variables. A major shortcoming, how-
ever, is that this method fails if there are continu-
ous covariates and/or small stratum-specific sample
sizes.

Maximum likelihood regression models for
matched pairs with binary data are discussed by
Cox & Snell [7], Lipsitz et al. [18], and other
authors. Breslow & Day [6] focus specifically on the
use of conditional logistic regression (see Logistic
Regression, Conditional), in the analysis of
matched case–control studies. The generalized
estimating equations (GEE) procedure of Liang
& Zeger [14] and its extensions can also be
used to analyze matched binary outcomes with
covariates. Generalizations of the GEE methodology
to polytomous and ordered categorical outcomes have
also been studied [3, 12, 15, 17, 21, 23].
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Matching, Probabilistic

Record linkage is usually concerned with establish-
ing which records relate to the same individual. In the
widest sense, record linkage is virtually universal in
organizations that process information about people,
and is usually achieved via some form of personal
identifier, such as a case reference number in a hos-
pital or a national insurance number in a state benefit
system. When such unique personal identifiers are
not available or feasible, record linkage must make
the best possible use of the personal identifiers which
are present, such as name, date of birth, area of res-
idence, and so on. Probability matching is the key
technique to have been developed to maximize the
accuracy of linkage decisions based on the level of
agreement and disagreement between the identifiers
on different records [9].

Whenever such personal identifiers as name or
date of birth are recorded or are transcribed other
than electronically, it is possible that different infor-
mation will be entered on different records relating to
the same person (see Data Management and Coor-
dination). Such discrepancies can arise for a wide
range of reasons. Some discrepancies involve error
or uncertainty: a name or date may be misheard, the
person involved may not be clear about an item of
identification, different names may be used in differ-
ent contexts (formal versus informal), or data may
be misread or miskeyed during transfer from one
record to another. Other discrepancies reflect changes
in circumstances such as a change of name (espe-
cially when women get married) or a change of
residence.

Whatever the reason for such discrepancies, their
presence means that a reliance upon exact corre-
spondence of identifiers to establish that records
belong to the same individual will usually lead to
a large number of links being missed. For exam-
ple, in the centrally held linked data set of hospital
discharge records in Scotland, there is a discrep-
ancy rate of an order of magnitude of 2%–3% for
each of the identifiers first initial; surname; and day,
month, and year of birth. Thus an insistence that
all five of these identifiers matched exactly would
involve losing 10–15% of true matches. Probability
matching allows us to link records despite the exis-
tence of such discrepancies in identifying informa-
tion. In Scotland, relatively straightforward methods

of probability matching have produced an accuracy
of around 99% on such data [6].

Probability matching translates the level of agree-
ment and disagreement between each item of identi-
fying information on two records – for example, both
have first initial “J” or there is a discrepancy of one
day in the day of birth – into a mathematical score or
probability weight, which can be aggregated across
all items to produce a relative probability that the
two records belong to the same individual. Put more
simply, when two items of identifying information
are the same on two records, this increases the prob-
ability that they belong to the same person. When
they are not the same, this decreases the probabil-
ity. Probability matching puts these almost tautologic
observations into systematic form and quantifies their
implications [13].

Thus a very simple insight lies at the heart of
probability matching. The skill and complexity of
the technique lies in adapting the application of this
insight to the precise characteristics of the records
to be linked. Success in probability matching comes
from staying close to the data and being guided by
the emergent properties of each linkage.

This is very much the philosophy of Howard
Newcombe, who is the founding father of probabil-
ity matching, having first developed the technique
in Canada in the 1950s [2, 14], and who has been
involved in its progress ever since. The torch was
taken up by the Oxford Record Linkage System
in the 1960s [1] and by Scotland from the 1970s
onwards [5, 6]. In the past ten years there has been
a burgeoning of interest and a wider spread of prob-
ability matching techniques.

The statistical formalization of the theory of prob-
ability matching has tended to follow in the wake of
its practical development. Thus Fellegi & Sunter [3]
formalized the theory underlying Newcombe’s early
work. There is some debate about the importance of
statistical formalization for the progress of probabil-
ity matching [12]. This account, while accepting the
importance of statistical formalization in confirming
the validity of the technique, follows Newcombe in
stressing the empirical and pragmatic aspects. We are
primarily interested in the practical application of the
technique to achieve the most accurate and efficient
results.

The assumption that record linkage is about link-
ing records belonging to the same individuals is
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purely for clarity of exposition. The field of applica-
tion is much wider of course; including, for exam-
ple, the linkage of mothers to babies or linkages
between the records of different members of families
in general.

The Elements of Record Linkage Using
Probability Matching

Record linkage using probability matching can be
seen as involving three elements or stages. The first
involves bringing pairs of records together to be com-
pared. The second involves calculating the probability
weight for each pair of records. The third involves
making the linkage decision based upon the probabil-
ity weights. Most attention has tended to focus on the
second of these phases, the calculation of probabil-
ity weights. The other elements are just as important
and may well be where improvements will be con-
centrated in the future.

Bringing Records Together

It is normally not feasible to calculate probabil-
ity weights for all the pairs of records in the data
to be linked. For example, the one million Scot-
tish hospital discharge records for a year contain
approximately 500 000 000 000 pairs of records. The
computing resources that are usually available would
not permit probability weights for all of these pairs
to be calculated.

We must restrict the number of pairs of records
to be compared. This has traditionally been done by
using some form of blocking, whereby only those
pairs of records that share at least one common set
of identifying items are compared [4]. By doing this,
we run the risk that records which do belong to the
same person will not be compared. The trick is to
achieve the necessary reduction in pair comparisons
while minimizing the number of links missed because
the necessary comparisons were not carried out. For
example, a common set of blocking criteria is as fol-
lows: compare only those records that share the same
compressed surname (see below) and first initial, or
that share the same date of birth. Pairs of records that
differ both in terms of surname or initial and date of
birth would not be compared. In a UK context, well
under 0.5% of true links would generally be missed
by such a blocking configuration.

Traditionally such blocking has been achieved by
sorting the files involved to bring together records
sharing the specified identifiers. Thus in terms of
the blocking criteria outlined above, the files would
be sorted by compressed surname and first initial.
All records having these identifiers would be com-
pared. Then the files would be sorted by date of
birth. All records containing the same date of birth
would be compared. Usually, at least one further sort
is required to reconcile matches made in the two sep-
arate passes through the data.

When data volumes become large, this method has
the disadvantage that no matter how few records are
being added to an existing linked file, all the records
involved must be sorted several times. Thus for exam-
ple, the main Scottish linked data set contains 14 mil-
lion linked records. Linking in an additional month’s
data or even an external data set such as a survey
of 10 000 individuals would require sorting the entire
file several times. This is extremely time consuming
and is not feasible on a routine, frequent basis.

In Scotland, this problem has been solved by
indexing incoming or “newcomer” records in mem-
ory [7]. The record numbers of all newcomer records
sharing the same day and month of birth, for exam-
ple, are stored in the same row of an array indexed
by month and day of birth. The existing or catalog
file is read through sequentially. Each catalog record
can thus be directed for comparison to the newcomer
records sharing its month and day of birth. The same
principle can be applied to any numeric element of
an identifier, such as the numeric element of a com-
pressed surname. Thus the blocking usually achieved
by sorting is mimicked in memory. Each of the new-
comer records retains information about the catalog
record with which it has achieved the highest proba-
bility weight. The major advantage of this technique
is that the larger of the two files does not need to
be sorted at all. A methodologic implication of the
method is that each newcomer record is allowed to
link to only one record already in the linked file. This
may have advantages (see below).

The development of techniques of rapid direct
access by any kind of key (not just numeric) inherent
in the development of database management soft-
ware should allow the generalization of such methods
of selective comparison. Much more flexibility will
be possible in the definition of the subset of pairs
of records for which probability weights are to be
calculated.
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Calculating the Probability Weights

This is the aspect of record linkage which has been
best documented, especially by Newcombe [9]. The
key to the calculation of probability weights is the
odds ratio. An odds ratio is calculated for every
outcome of the comparison between two identifiers;
for example, both records have first initial “J” or the
day of birth is one day different. The odds ratio is
simply the ratio between the frequency of a given
outcome in pairs of records that relate to the same
person and the frequency of a given outcome in pairs
of records that do not belong to the same person.
The odds ratio expresses mathematically how much a
given outcome increases or decreases the probability
that two records belong to the same person.

Let us take as an example, agreement of month of
birth (e.g. both records have month of birth June).

The top line of the odds ratio is the frequency of
agreement of month of birth in two records belonging
to the same person. This depends upon how much
miscoding takes place. Let us say that there is a
miscoding of month of birth in one or another record
for 3% of the time. Thus the top line of the odds
ratio is 97%, meaning that for 97% of the time there
is random agreement of month of birth in two records
belonging to the same person.

What is the frequency of agreement of month
of birth among records not belonging to the same
person? This is broadly equivalent to asking how
often is there random agreement of month of birth.
There are 12 months in the year, so there will random
agreement 1/12, or 8.3%, of the time.

The odds ratio for agreement of month of birth is
thus 97% divided by 8.3%, or roughly 11.6. Agree-
ment of month of birth thus increases the probability
that two records belong to the same person 11.6
times.

This accords with common sense. The more
uncommon an identifier is, the greater will be the
odds ratio given by agreement. Agreement of the less
common first initial “Z” will give a much higher odds
ratio than agreement of the more common initial “J”.
The same principle can be applied to disagreement
and levels of disagreement.

The odds ratios from different identifiers can be
combined by multiplication to give the overall odds
ratio derived from the agreement and disagreement
of all identifiers to be compared for two records.
Because of the clumsiness involved in multiplying

odds, they are usually converted to logarithms to
base 2 or binit weights, which can then be added
and subtracted.

The most important principle in combining
weights for different identifiers is the assumption
of independence. Weights must only be given for
independent sources of information. It would be
illegitimate, for example, to give full weights both
for area of residence and general practitioner, since
these are highly correlated. Weights can, however, be
made conditional; for example, different weights for
the initials of men and women [9].

How do we obtain the frequencies of the outcomes
in the first place? This tends to be a process combin-
ing a priori knowledge, bootstrapping, and common
sense. A first linkage can be carried out using weights
borrowed from previous similar linkages or worked
out a priori (e.g. agreement of month of birth at
around odds ratio 12). This first linkage can be used
to produce files of pairs which do and do not belong
to the same person. These “linked and unlinked” files
can be used for more precise empirical derivation of
odds ratios for a further linkage, and so on. A valu-
able feature of probability matching is its robustness
in the face of imperfections in the probability weights
assigned to outcomes. As long as weights are broadly
correct, the linkage will work.

The final refinement of weights will usually take
place after inspection of a sample of the weights
close to the decision threshold alongside the pairs of
records that generated them. Features of the linkage
will usually emerge which could not have been antic-
ipated in advance. To paraphrase Newcombe, linkage
is an empirical, iterative and above all common-sense
procedure [13].

A Brief Note on Name Compression. Discrepant
spelling of surname is one of the most common
aspects of mismatching identifiers in two records
belonging to the same person. Various methods have
been proposed for dealing with this, but a com-
monly used solution is to combine the method of
Soundex codes, whereby similar sounding conso-
nants are brought together and vowels are largely
ignored, with the NYSIIS name compression algo-
rithm, whereby other commonly miscoded elements
of surnames are brought together. The resulting
Soundex/NYSIIS codes are treated like any other
identifier [9].
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Making the Linkage Decision

The Linkage Threshold. The probability weights
calculated by the methods outlined above do not
represent absolute odds that the records concerned
belong to the same person. They are relative odds
that serve to order the pairs in a particular linkage
according to the likelihood that they belong to the
same person.

A useful diagnostic output in any linkage is a
frequency distribution of the probability weights
achieved by the pair comparisons. This is usually,
but not always, bimodal. The bimodal distribution
is produced by the superimposition of the weight
distribution for pairs of records which do belong to
the same person on the distribution for pairs which
do not belong to the same person.

The decision threshold for linkage is usually deter-
mined by clerical inspection of a sample of pair
comparisons across the weight range. The linkage
decision can be made either completely automatically
or can use supplementary clerical checking. If auto-
matic linkage is chosen, a single threshold is chosen
based on the sample checking. If a pair scores above
the threshold, the records are linked. If a pair scores
below the threshold, the records are not linked. If sup-
plementary clerical checking is involved, then two
thresholds are used to define a “gray zone” within
which pairs will be clerically checked to make the
final decision. Above the higher threshold, links are
accepted automatically. Below the lower threshold
links are rejected automatically. Within the “gray
zone”, human judgment is used to make the final
decision.

The conversion of relative odds to absolute odds
depends upon several factors, including the way in
which the linkage is structured. Structuring the link-
age to optimize the “terms of conversion” of relative
odds to absolute odds is one of the most important
aspects of designing a linkage.

The absolute odds required for acceptance that
two records belong to the same individual depends
upon the purpose of the linkage and the relative cost
of a false positive link (linking two records which
do not belong to the same person) compared with a
false negative link (failing to link two records which
do belong to the same person). For most statistical
purposes, a best estimate linkage is required, and the
decision threshold will be set at absolute odds of
50/50. For administrative purposes, it may be vitally

important that wrong links are not made, while it
is less crucial that links are missed. The decision
threshold would thus be set at relatively high absolute
odds. Where the purpose of the linkage is simply
to trawl for potential candidates for linkage – the
links themselves being established by other means –
a relatively low threshold would be set.

Converting Relative Odds to Absolute Odds: the
Importance of Context. As a first step in convert-
ing relative odds into absolute odds, Newcombe [9]
has proposed numeric rules relating to two files: one
a search file and the other a file being searched.
Proposition A is that the higher is the proportion of
records in the search file for which there exists a
linked record in the file being searched, the better
will be the conversion factor between relative and
absolute odds. Proposition B is that the larger is the
file being searched, the worse will be the conversion
factor between relative and absolute odds.

These numeric considerations in converting abso-
lute odds to relative odds show that the meaning of
a given probability weight depends upon the wider
context of the linkage, and in particular on the rela-
tionships between the records in the files to be
linked [10].

This is a crucial insight, the wider implications of
which must be drawn out. In designing a linkage, it
is important to structure the linkage so as to take
maximum advantage of the structures of the files
involved and the relationships between them. For
example, are the relationships between the records
in two files one-to-one, one-to-many, or many-to-
many? How much confidence do we have in previous
linkages that may have been carried out on the files
involved? How confident are we that a file to be
linked already contains only one record per person?

For example, if we want to link to each other
a set of hospital discharge records, we have no a
priori knowledge of how many records belong to
each person. Our best bet is to do a conventional
internal linkage and inspect all resulting pairs in
setting a threshold. In this case we have relatively
little leverage to improve the terms of conversion
between relative odds and absolute odds.

However, if we are linking a file of hospital dis-
charge records to a file of death records (see Death
Certification), we can obtain some “structural lever-
age”. Death only occurs once, and assuming that
this is reflected in there being only one death record
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per person in the file of death records, the link-
age becomes many-to-one. Each hospital discharge
record should link to only one death record. The
terms of conversion from relative to absolute odds
can be improved by only retaining, for each hospital
discharge record, the best (highest weight) link which
is achieved to a death record. Similarly, at the other
end of the life cycle, if we are linking babies to
mothers, assuming that the mothers’ records them-
selves have been correctly linked, we should allow
each baby to link to only one mother.

The most powerful leverage occurs when there is
a close to a one-to-one relationship between the files
to be linked. For example, as groundwork for the
creation of a unique patient identifier for the Scot-
tish population it was necessary to link the region-
ally operated Community Health Index (CHI) to the
National Health Service Central Register (NHSCR) in
Scotland. Because both files had close to 100% pop-
ulation coverage, there was a very high a priori prob-
ability that there existed an NHSCR record for every
CHI record, thus maximizing the conversion factor
in terms of Newcombe’s rules. Again, by apply-
ing the best-link principle, whereby only the highest
weighted link for each CHI record was accepted, a
massive degree of leverage was obtained. Adminis-
tratively acceptable links (involving very high abso-
lute odds of linkage) were achieved at low relative
odds [8].

Summary

Record linkage using probability matching may be
implemented in a very simple and straightforward
way or it may involve a highly complex and delicate
algorithm. However it is done, it is based on sim-
ple and initially intuitive insight. Success in record
linkage comes from adapting the basic principle of
probability matching to the precise characteristics of
the data involved – both in terms of making best use
of the identifiers available and in terms of structuring
the linkage to obtain the greatest leverage from the
relationships between the records involved.

Implications

Record linkage using probability matching is an
extremely powerful tool, and will become increas-
ingly powerful as techniques improve and comput-
ing hardware considerations become less restrictive.

Because of its ability to bring together information
in ways which were not part of the original intent
when the data were first collected, it can be seen as
posing a threat in terms of data confidentiality and
individual privacy.

At all times, the benefits that record linkage using
probability matching may bring for patient adminis-
tration and medical research must be balanced against
the dangers that it poses [11]. Careful monitoring and
supervision are required.
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Matching

Before discussing the procedure known as match-
ing, it is necessary to provide some background and
motivation for its use. In epidemiologic studies, it
is typically the situation that valid estimation of
the strength of the relationship between a response
variable D of interest (e.g. the presence, D = 1,
or not, D = 0, of some particular disease) and an
independent variable E of interest (e.g. the presence,
E = 1, or not, E = 0, of some exposure) necessi-
tates the consideration of so-called confounding fac-
tors (see Confounder). Ignoring or inappropriately
accounting for the effects of confounding factors can
often lead to invalid (i.e. statistically inconsistent) and
inefficient estimation of the true exposure–disease
association of interest.

As a simple example, suppose that the dichoto-
mous response (or disease) variable D of interest is
the presence or absence of lung cancer and that the
dichotomous independent (or exposure) variable E

of interest is the presence or absence of a history of
occupational exposure to asbestos. Then, a dichoto-
mous variable C such as cigarette smoking status
(e.g. evidence, C = 1, or not, C = 0, of a history of
smoking), which is an established risk factor for the
development of lung cancer, will be a confounder
if, in the data under consideration, its distribution
among the group of study subjects with a history
of occupational exposure to asbestos (the “exposed
group”) is different from its distribution among the
group of study subjects who do not have a history of
occupationally related asbestos exposure (the “unex-
posed group”). If C is, in fact, a confounder in the
data under consideration, then appropriate adjustment
for C at the analysis stage (e.g. by stratification
methods or, equivalently, by multivariable model-
ing) would be needed. In our particular example
involving the three dichotomous variables D, E,
and C, one could fit the logistic regression model
logit [Pr(D = 1)] = β0 + β1E + γ1C by appropriate
likelihood methods to obtain an adjusted (for C)
estimated odds ratio exp(β̂1) and to obtain a corre-
sponding interval estimator for the population E–D

odds ratio exp(β1). Here, we are assuming that C

is not an effect modifier (i.e. there is no interac-
tion between E and C), so that it is not necessary
to include the product term EC in the above model;

we will make this no interaction assumption in our
discussion to follow.

However, adjustment for C at the analysis stage
can be problematic. For example, if almost all
of the study subjects with a history of smoking
have lung cancer (i.e. are “cases”), and if a large
proportion of the study subjects with no smoking
history are “noncases”, then such stratum-specific
imbalances can lead to poor statistical efficiency
in the point and interval estimation of the odds
ratio parameter exp(β1). In more realistic situations
where there are typically several confounders to
consider simultaneously, distributional imbalances in
strata defined by combinations of levels of these
confounders can severely compromise the reliability
of multivariable modeling analyses.

Design Options: Restriction and Matching

By using appropriate strategies at the design stage
of a study, it is often possible to avoid many of the
confounder-related distributional imbalance problems
mentioned earlier. For example, consider a potentially
confounding variable such as gender. One way to
avoid completely any possible problems associated
with an analysis stage adjustment for the variable
gender is to decide, at the design stage, to restrict
the study so that it involves either only males or only
females. This simple study design option is called
(total ) restriction because the potential confounder is
completely restricted to have exactly the same value
for every study subject. Clearly, the disadvantage
of (total) restriction is the lack of generalizability
of the study results; in our example, by employing
(total) restriction with respect to gender, the study
conclusions would necessarily only pertain either to
males or to females.

Matching, in contrast to total restriction, is a form
of partial restriction on study subject selection, par-
tial in the sense that only the so-called “referent (or
comparison) group”, and not the “index group”, is
chosen subject to certain restrictions. More specifi-
cally, for follow-up studies (see Cohort Study), once
the index group of exposed (E = 1) subjects is ran-
domly selected from the population of interest, the
referent group of unexposed (E = 0) subjects is then
chosen to be similar to the exposed group with respect
to the distributions of one or more potentially con-
founding factors. For case–control studies, once the
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index group of diseased (D = 1) subjects is chosen
at random from the population of interest, the referent
group of nondiseased (D = 0) subjects is picked to be
similar to the cases with respect to the distributions of
one or more potentially confounding factors. We use
the word “similar”, rather than “identical”, because
the index and matched referent groups will generally
not have exactly the same confounder distributions
after matching; the degree of similarity will depend
on the type and the extent of matching employed.

To discuss types of matching schemes, we need to
distinguish between matching on continuous variables
(e.g. age, weight, cholesterol level) and matching on
categorical variables (e.g. gender, race). Matching
on a continuous variable (say, X) necessitates the
specification of a rule for deciding when an index
subject’s value (say, X1) and a referent subject’s
value (say, X0) are “close enough” to declare that
the two subjects are “matched” on X. In so-called
“caliper matching”, one specifies a caliper (or toler-
ance) value C and declares the index and referent
subjects to be matched if |X1 − X0| ≤ C.

The smaller is C, the tighter will be the match
on X, but, correspondingly, the harder it will be to
find index–referent pairs to satisfy such a stringent
matching criterion [8, 9].

Since, in standard epidemiologic practice, vari-
ables are generally categorized for matching purposes
(e.g. note that caliper matching defines categories of
width C), we will henceforth focus on so called cat-
egory (or frequency) matching. In particular, index
and referent subjects are said to be matched on a cat-
egorized potential confounder if they are in the same
category of that variable. In the realistic situation
where category matching involves several potential
confounding variables, index and referent subjects
are said to be matched when they are in the same
category for each and every one of the categorized
matching variables under consideration. For exam-
ple, suppose that there are three categorized matching
variables of interest: age in four categories (30–39,
40–49, 50–59, and 60–69), race (black, white, and
other), and gender (male and female). Then, there
will be 24 strata defined by the various combinations
of these three matching variables, with, for example,
one stratum consisting of black females between the
ages of 40 and 49.

In general, then, matching can be considered to
be pre (or design stage)-stratification, as opposed
to post (or analysis stage)-stratification, with the

goal of such matching being to form strata that
are sufficiently balanced to permit valid, stable,
and efficient statistical analyses. Once matching is
employed at the design stage, it is mandatory at the
analysis stage to take the matching into account via
the use of appropriate stratified analysis methods [5].
Such categorical data analysis procedures include
the approach of Mantel & Haenszel [6] and the
use of conditional logistic regression methods [1,
4] (see Logistic Regression, Conditional; Matched
Analysis).

Types of Matching Schemes

There are various types of matching schemes that can
be used. One of the more popular matching schemes,
especially in case–control studies, is known as pair
matching. Pair matching refers to the special situation
when each stratum is assumed, for analysis purposes,
to contain exactly one index subject and one referent
subject. However, this assumption will generally lead
to an inefficient stratified analysis when the pairing
is artificial and unnecessary. For example, for a stra-
tum of cases and controls consisting of black females
between the ages of 40 and 49, any case in that
stratum could theoretically be paired with any con-
trol without altering the basic within-stratum struc-
ture. Retaining this “random” pairing in the analysis
is clearly unwarranted, and such an “overmatched
analysis” generally leads to some loss in statistical
efficiency [2]. In contrast, the term “overmatching”
commonly refers to an undesirable design-stage strat-
egy of matching on variables that make the cases
and controls too much alike with respect to expo-
sure status. Such variables are generally of two types,
namely, so-called “intervening variables” that are
intermediate in the causal pathway between expo-
sure and disease and variables that are (at best) very
weak risk factors for the disease in question but
are nevertheless highly correlated with exposure sta-
tus [10]. Such overmatching can sometimes lead to a
meaningful loss in statistical efficiency, especially in
case–control studies (see “Discussion” below).

A generalization of pair matching is a procedure
known as R-to-1 matching, where each stratum is
considered to contain one index subject and exactly
R referent subjects. Miettinen [7] and others have
shown that there is little to gain statistically by tak-
ing R > 4. For example, when comparing R-to-1
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matching with pair matching (R = 1) in case–control
studies, Ury [11] has shown that the Pitman effi-
ciency of the Mantel–Haenszel test for stratified data
is 2R/(R + 1), so that the Pitman efficiency only
increases from 1.600 for R = 4 to 1.667 when R = 5.

In the most general category matching situation, a
particular stratum (say, the gth of G strata) may con-
tain Rg referent subjects and Sg index subjects, giving
a matching ratio of Rg/Sg (which is not necessarily
an integer). If this matching ratio varies with g, then
we have a variable matching ratio plan. If the match-
ing ratio does not vary over the strata (e.g. as with
R-to-1 matching), then we have a fixed matching ratio
plan. With either plan, the appropriate data analysis
would still appropriately accumulate stratum-specific
information; and, in terms of statistical efficiency, a
fixed matching ratio plan is usually somewhat better.

Advantages and Disadvantages of
Category Matching

Some of the positive aspects of category matching in
epidemiologic studies are as follows:

1. Category matching a set of referent subjects to
a random sample of index subjects can often
lead to a more statistically efficient analysis
than can be obtained by choosing the same
number of referent subjects by random sampling.
This efficiency advantage will tend to occur
when the matching variables are well-established
determinants of the response variable (e.g. are
important risk factors for the disease under
study) and are expected to be quite differentially
distributed between the exposed and unexposed
groups in the observed data (i.e. are anticipated
to be strong confounders). For more detailed
discussion, see Kupper et al. [5] and Karon &
Kupper [3].

2. Matching on a variable like neighborhood of
residence can lead to efficient adjustment for the
potentially confounding effects of a wide range
of social and economic factors that would be
difficult, if not impossible, to measure and hence
to control.

3. Matching can often lead to savings in time
and money. For example, when the cases in
a case–control study are chosen from records
in different hospitals or in different companies
within some industry, it is preferable, for reasons

of simplicity and convenience in data collection
(and also possibly on validity and efficiency
grounds), to choose controls for each case from
that same set of hospital or company records.

4. Matching in the selection of the referent
group with respect to a given set of potential
confounders does not preclude controlling for
other nonmatched confounders at the analysis
stage via multivariable modeling procedures like
conditional logistic regression. In this regard, a
recommended strategy would be to match only
on important risk factors considered a priori
to be highly likely to manifest themselves as
strong confounders in the data, and to adjust (if
necessary) for other factors at the analysis stage.

Some possible negative aspects of category match-
ing in epidemiologic studies are the following:

1. Category matching can be a costly enterprise,
both with regard to the direct costs of time and
labor required to find the appropriate matches and
the indirect costs (in terms of information loss)
owing to the discarding of available referents
not able to satisfy possibly stringent matching
criteria.

2. When employing category matching, simulta-
neous recruitment of cases and controls can
be problematic since there is no way to know
in advance exactly how many controls will be
needed to meet sample size requirements in
different matching strata defined by the sample
of cases. To circumvent this problem, a new
“randomized recruitment” method for matching
has been developed [12, 13].

3. The referent group chosen by category match-
ing ends up being more like the index group
than like the underlying population of referents
being sampled. In particular, matching gener-
ally precludes the evaluation of the underlying
population relationships between the matching
variables and exposure status in follow-up studies
or between the matching factors and disease sta-
tus in case–control studies.

4. If the strata defined by the category matching
process are wide (so that there is room for
the matching factors each to vary sufficiently
in value within particular strata), it is possible
that stratum-specific residual confounding due
to the matching factors can still be present.
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Appropriate adjustment for such stratum-specific
residual confounding at the analysis stage can
be accomplished using multivariable modeling
procedures.

Discussion

In summary, category matching on potential con-
founders can be a fruitful design-based strategy in
both follow-up and case–control studies when reli-
able information, based on knowledge of the dis-
ease process under study and previous research find-
ings, indicates that such variables are well-established
disease determinants (i.e. are strong risk factors)
expected to be quite differentially distributed between
exposed and unexposed groups if matching is not
employed (e.g. under random sampling of the referent
group).

As a word of caution, the use of matching requires
more care in case–control studies than in follow-
up studies. Since exposure information is collected
after the occurrence of disease in case–control stud-
ies, indiscriminate overmatching of controls to cases
simultaneously on several factors can lead to a sub-
stantial loss in efficiency relative to random sampling
of the control group. For example, consider a pair-
matched case–control study involving n case–control
pairs, where a is the number of pairs where both the
case and control are exposed, b is the number of pairs
where the case is exposed and the control is not, c is
the number of pairs where the control is exposed and
the case is not, and d is the number of pairs where
neither the case nor the control is exposed. Then,
the Mantel–Haenszel test statistic [6] takes the form
(b − c)2/(b + c), and the appropriate odds ratio esti-
mator is b/c (namely, the ratio of discordant pairs).
Hence, the effective sample size in such a study is the
total number of discordant pairs (b + c), not n. If the
matching variables are each correlated with the expo-
sure variable, then overmatching generally increases
the number of uninformative pairs in the observed
data, namely (a + d), thus leading to a (possibly
substantial) loss in efficiency. Thus, in case–control
studies especially, the best policy is to consider as

candidate matching variables only well-established
strong risk factors for the disease in question. As
mentioned earlier, matching either on intervening
variables or on very weak risk factors highly cor-
related with exposure status should be avoided.
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Maternal Mortality

Maternal mortality claims the lives of some 585 000
women a year, 99% of them in the developing world.
It is the main cause of death among young women
aged 15–19, and the third or fourth most com-
mon cause in women of childbearing age, generally
defined as 15–49. The differences between the devel-
oped and the developing world in levels of maternal
mortality are greater than for any other indicator of
public health: in developed countries a woman has
a lifetime risk of maternal death of 1 in 1800: in
developing countries this risk is 1 in 48. However,
the risks range from 1 in 4000 in the industrial-
ized of countries of northern Europe, to 1 in 12
in eastern and western Africa [1]. Maternal mor-
tality also has severe consequences for the health
of children: in developing countries the baby born
to a woman who dies in childbirth rarely survives,
and her older children face much greater risks of
death [7].

Definition of Maternal Mortality

A maternal death is the death of a woman while
pregnant, or within 42 days of the termination of
pregnancy, irrespective of the duration and site of the
pregnancy, from any cause related to or aggravated
by the pregnancy or its management, but not from
accidental or incidental causes [9]. This classification
therefore includes deaths from abortion, spontaneous
or induced, or from an ectopic pregnancy, but not
deaths in pregnancy or the postpartum period caused
by violence or accidents.

The distinction between causes related to, or
aggravated by, pregnancy or its management gives
rise to two other definitions: “direct” and “indi-
rect” obstetric deaths. Direct obstetric deaths are
those related to complications of pregnancy, labor or
in the 42-day postpartum period (the puerperium),
from interventions, or from incorrect treatment or
omissions in treatment. Indirect obstetric deaths are
those resulting from a pre-existing disease, or one that
developed during pregnancy, and that is aggravated
by pregnancy. Before 1975, deaths from indirect
causes were not classified as maternal deaths.

Causes of Maternal Deaths

On the evidence of a few good community-
based studies, direct causes account for the
majority–80%–of maternal deaths. In turn, five
major causes account for 80% of these direct
maternal deaths. Although there is some variation
in their relative importance among regions, the
distribution of the five causes at global level is as
follows: hemorrhage (25%); sepsis (15%); unsafe
abortion (13%); eclampsia (8%) and obstructed
labor (7%). Indirect causes of maternal death,
such as anemia, malaria, cardiovascular disease,
hepatitis, and diabetes, account for the remaining
20% of all maternal deaths [1] (see Cause of Death,
Underlying and Multiple).

Sources of Data on Maternal Mortality

Gathering data on maternal mortality is difficult and
expensive – and often beyond the resources of the
very countries in which the problem is greatest. The
chief sources of information are vital registration
systems, health services data, and population-based
surveys (see Administrative Databases; Surveys,
Health and Morbidity; Vital Statistics, Overview).

Few developing countries have registration sys-
tems to provide information on the numbers of
deaths (see Death Certification). Those that do can
rarely provide information on the cause of death,
or require that death certificates note pregnancy sta-
tus. Moreover, in countries where induced abortion
is illegal, official statistics seldom fully reflect deaths
from this cause. Health service statistics suffer from
selection bias: women who die in pregnancy or
childbirth in health facilities often differ in impor-
tant health and socioeconomic characteristics from
pregnant women in the broader community. It is
also difficult to define the appropriate catchment
area of a hospital (see Hospital Market Area) for
the derivation of ratios and rates. Population-based
studies, therefore, have been used increasingly to
gather information. Their most important drawback
is expense: maternal mortality is a rare event com-
pared with infant mortality, for example, and sam-
ple sizes need to be very large to obtain reliable
estimates. Costs are somewhat lower where ques-
tions are added to censuses or surveys: the “sis-
terhood method”, for example, has yielded useful
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information on maternal mortality by asking adult
respondents whether any sisters have died in their
childbearing years. The most reliable data, however,
where vital registration is incomplete or lacking,
are obtained from studies that identify all deaths to
women of reproductive age (reproductive age mortal-
ity surveys, or RAMOS). Interviewers consult many
community sources and then, on the basis of symp-
toms described by family members and health care
providers, classify the deaths as maternal or other-
wise. Very few countries have been able to afford
these studies.

Given these problems, but faced with the need
to measure progress in reducing maternal mortal-
ity, the World Health Organization (WHO) and the
United Nations International Children’s Emergency
Fund (UNICEF) have recently developed new esti-
mates of maternal mortality [10]. They used country
data where available, adjusted for undercount and
misclassification, and developed a model to pre-
dict values for countries with no reliable national
data. At the global level, the new estimates rep-
resent a significant upward revision of the annual
number of maternal deaths – an increase of 80 000
over the figure of just over 500 000 in use for the
past 10 years.

Measuring Maternal Mortality

The three most common measures of maternal mor-
tality are the lifetime risk, the maternal mortality rate,
and the maternal mortality ratio. The ratio is the num-
ber of maternal deaths per 100 000 live births during
a certain time period, and is, therefore, a measure of

the risks women face when they are pregnant, gener-
ally called obstetric risk. However, in order to run this
risk, women must be pregnant. The lifetime risk and
the maternal mortality rate take account of fertility:
they measure both obstetric risk, and the frequency
with which women are exposed to that risk through
pregnancy. This is seen most easily in the mater-
nal mortality rate: the number of maternal deaths per
100 000 women of reproductive age during a certain
time period. The following equation demonstrates the
relationship [2]:

maternal mortality rate = maternal mortality ratio

× general fertility rate

maternal deaths

women 15–49
= maternal deaths

live births

× live births

women 15–49
.

In using data on maternal mortality it is important
to note how the maternal mortality rate is defined.
Historically, it was defined as the number of mater-
nal deaths per 100 000 live births, i.e. the definition
of the ratio given above, and this is still the defini-
tion used in the tenth revision of the International
Classification of Diseases published by WHO in
1992 in order to provide consistency with previ-
ous editions [9]. However, in its analytical work on
maternal mortality WHO also distinguishes between
the rate and the ratio using the definitions given
above [1, 10], as exemplified in Table 1. The distinc-
tion is important for directing attention to appropriate
interventions.

Table 1 Measures of maternal mortality in developed and developing countries, 1990

Maternal mortality ratio Number of Lifetime riska

(maternal deaths per maternal of maternal death
100 000 live births) deaths (1 in:)

World 430 585 000 60

More developed
regions 27 4000 1800

Less developed
regions 480 582 000 48

Sources: [1, Table 2; 10].
aLifetime risk devised by Roger Rochat, Emory University School of Medicine, USA.
Calculated as 1 − (1 − MMR)(1.2TFR)], where the maternal mortality ratio (MMR) is expressed
as a decimal and the total fertility rate (TFR) is adjusted by 1.2 to allow for pregnancies not
ending in live births.
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The other measure of maternal mortality that also
takes into account both the risks within pregnancy
and the risks of pregnancy is lifetime risk. In fact, this
is the more commonly used indicator of international
disparity, conveying graphically the risks of preg-
nancy in countries with high fertility. Table 1 presents
the regional differences in maternal mortality ratios
and lifetime risk by region.

Wide though the differences in maternal mortality
ratios are, they are much less than the differences
in lifetime risk: the risks women face in pregnancy
and childbirth are compounded by the frequency with
which they face those risks.

Actions to Reduce Maternal Mortality

It follows that maternal mortality can be reduced
by interventions that reduce fertility, and that reduce
obstetric risk (see Reproduction). Reductions in the
total number of pregnancies result in fewer women
at risk of a maternal death: a comparison of maternal
mortality in Bali, Indonesia, and Menoufia, Egypt in
the 1980s provides a telling example. The maternal
mortality ratio in Bali was 718: in Menoufia it was
190–3.8 times as high. Yet the maternal mortality rate
of 69 in Bali was only 1.5 times as high as the rate
of 45 in Menoufia – because fertility was lower in
Bali [3]. Changes in fertility, closely associated with
the adoption of family planning, therefore have an
important impact on the maternal mortality rate (and
on lifetime risk).

Changes in fertility can also affect the maternal
mortality ratio by reducing the number of high-risk
pregnancies – pregnancies that are unwanted and that
may lead women to run the risk of unsafe abortion,
or pregnancies in women of older age, or who have
had four or more previous births, or whose last
birth occurred less than two years previously. These
women are often the first to use family planning
services, when available. In Bali, contraceptive use
was higher, and fertility rates lower among older
women than in Menoufia. However, since, in general,
most births occur to women at “safe” ages and
parities, the majority of maternal deaths do too.
Thus, the chief reductions in the maternal mortality
ratio are to be achieved by reducing the risks in
pregnancy.

Underlying the immediate medical causes of
maternal death are many factors contributing to

the risk of maternal death. Women’s socioeconomic
status is a powerful determinant of their health
status–and of their access to health services.
Socioeconomic status also affects fertility, and the
risk of maternal death: women with no, or little,
primary education have more children than women
with secondary and higher education (see Social
Classifications). Raising women’s status is necessary
to improving maternal health, but is a long-term
objective. In the short term, interventions to reduce
the number of obstetric complications, and the
number of deaths among women who develop
complications, are essential.

Basic Maternal Care

Women need care throughout pregnancy, delivery,
and in the postpartum period. Antenatal care is
necessary to inform women on how to take care
of themselves throughout pregnancy and childbirth,
how to recognize danger signals, and what to do
should complications arise. It is also necessary to
treat conditions that can lead to complications, such
as anemia, or which are aggravated by pregnancy,
such as malaria and viral hepatitis. Health facil-
ities providing antenatal care, however, need to
be linked closely with facilities able to deal with
complications that may arise: it is doubtful whether
antenatal care that is not part of a more comprehen-
sive system contributes to maternal mortality reduc-
tion [6]. Care in delivery should include attendance
by trained personnel, in clean conditions to prevent
sepsis, and, again, with access to health facilities and
providers with the skills, equipment, and drugs to pre-
vent, detect, and manage complications during birth,
and during the postpartum period. A recent review
and meta-analysis (synthesis of findings) of studies
of maternal mortality in developing countries indi-
cates that care in the postpartum period is essential:
60% of maternal deaths occurred in the postpar-
tum period [5]. Almost half of postpartum deaths –
45% – occurred in the first 24 hours after deliv-
ery, and nearly three-quarters within the first week.
The time of death varied according to cause: most
postpartum deaths from hemorrhage and pregnancy-
induced hypertension (eclampsia) occurred during
the first day and week after delivery: most postpar-
tum deaths from sepsis occurred in the second week
and later.
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Essential Obstetric Care and Emergency
Obstetric Care

While basic maternal care meets the needs of all
women whose pregnancies, labor, or delivery are
uncomplicated, or who are able to return to this care
when a complication has been successfully treated, an
estimated one-third to one-half of pregnant women
develop obstetric complications, and an estimated
15% develop complications that require emergency
care. Both essential obstetric care for all compli-
cations, and emergency care, have been known by
the acronym EOC, giving rise to some confusion.
The Inter-Agency Group (IAG) on safe motherhood,
comprised of representatives of several of the UN
agencies and nongovernmental organizations active in
the field of reproductive health, recommends differ-
entiating between these terms by use of the acronym
ECOC for Essential Care of Obstetric Complica-
tions, and EMCOC for Emergency Care for Obstetric
Complications. The obstetric functions provided by
ECOC include the functions necessary for EMCOC
and, according to the IAG, should be available to all
pregnant women with problems, including complica-
tions of unsafe abortion. ECOC comprises: surgical
obstetrics; anesthesia and medical treatment; blood
replacement and manual procedures; labor monitor-
ing, management of problem pregnancies, and neo-
natal special care (statement developed at the IAG
meeting, February 1996).

Maternal Health

Reductions in maternal mortality cannot be equated
with improvements in maternal health. They may
even be associated with increases in maternal mor-
bidity – the disabilities suffered by women as a result
of pregnancy, childbirth, and abortion, or the exac-
erbation of existing health problems by pregnancy.
It has been estimated that for every woman who
dies in pregnancy, another 15 survive but suffer
long-term consequences [8]. It is also important to
recognize that maternal health is part of women’s
health more broadly defined: this might seem a tru-
ism, but some are concerned that emphasis on mater-
nal mortality has stressed women’s maternal roles
to the exclusion of recognition of other influences
on women’s health that also, though more indirectly,
would improve maternal health [6]. In a slightly dif-
ferent vein, others worry that the drive to measure

mortality, and the impact of programs on mortality,
may divert resources that would be better deployed
in strengthening implementation of those programs.
They argue for developing indicators that measure
progress in increasing the availability, quality and
utilization of maternity services, thus contributing to
improved maternal health more generally [4]. The
new estimates and methodology developed by WHO
and UNICEF, should help to reduce this pressure to
produce ratios and rates. It is generally agreed, how-
ever, that investments in maternal health services,
including family planning, provide significant health
benefits to women at low cost and are essential com-
ponents of basic health care. Work [11] on the burden
of death and disability caused by various diseases,
and on the health benefits and costs of interventions,
found prenatal and delivery care and family plan-
ning to be among the most cost-effective of health
interventions (see Health Economics).
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Mathematical Biology,
Overview

Mathematical biology has become a flourishing field
in which real mathematics combines with real biol-
ogy. The field is represented by numerous ref-
ereed journals, including Journal of Mathematical
Biology, Bulletin of Mathematical Biology, Biomath-
ematics, IMA Journal of Mathematics Applied in
Medicine and Biology, Journal of Theoretical Biol-
ogy, Mathematical Biosciences, Biological Cybernet-
ics, and Theoretical Population Biology. In addition,
there are frequent biological articles in Biophysical
Journal and SIAM Journal of Applied Mathemat-
ics, and occasional mathematical articles in Journal
of Neurophysiology, and even Journal of Molecular
Biology. Lecture note series include Lecture Notes in
Biomathematics and Lectures on Mathematics in the
Life Sciences. There are also a number of good recent
general textbooks [4, 8, 14], an excellent collection
of mathematically sophisticated research papers [12],
a survey of applications and unsolved problems in
biomedical imaging [3], and important monographs
on computational biology [23], stochastic models
of carcinogenesis [22], and cardiac arrhythmias [25].
Medical applications include tomographic imaging,
genetic linkage analysis, cardiac arrhythmias, epi-
demic diseases and control strategies, carcinogene-
sis, and tumor chemotherapy. A recent conference
was reviewed in Science [6]. This list is necessar-
ily incomplete, but it may be useful for beginning
reading in the field.

Mathematical biology consists, not of the math-
ematics of living things, but of the mathematics of
models of living things; and choosing the level of
simplification and the nature of the abstraction is
perhaps the modeler’s most distinctive contribution.
Mathematical skill and biological knowledge are nec-
essary conditions for success in modeling, but the art
of selecting the essential ingredients of complex and
elusive phenomena goes beyond them.

Simplification in mathematical modeling is both a
blessing and a curse. The curse is the partial loss
of predictive power that comes from whatever lack
of correspondence there may be between the model
and the real world. The blessing is the insight that
comes from the process of pruning away unneces-
sary detail and leaving behind only what is essential.
. . . The models presented here are in the nature of

metaphors, and these metaphors will have served
their purpose if they have helped the reader to
see through the bewildering complexity of living
systems to the underlying simplicity of certain bio-
logical processes and functions (Hoppensteadt and
Peskin [8, p. 3]).

It is natural, in this era of fast computation, to want
to build as much realism as possible into biologi-
cal models, and rely on the power of the computer
to approximate the complex systems of equations
that result and make quantitative predictions that can
be tested against experimental data. While not min-
imizing the practical utility of computer simulation,
e.g. in cardiac pacemaker design or in predicting the
course of epidemics, it may be that the most dis-
tinctive contribution of mathematics to biology lies
in the opposite direction: simplifying to the point
where it is possible to prove theorems about the
model, and not only to compute with it. The com-
putational route may yield a model that gives good
predictions, but is just as impenetrable to under-
standing as the original biological system, whereas,
when one proves a theorem about a model, that
theorem is likely to give insight into the underly-
ing biology. Proving nontrivial theorems about mod-
els that are adequate “metaphors,” to use Hoppen-
steadt & Peskin’s term, is the summit of mathemat-
ical biology, but it is ascended only occasionally,
and such achievements are worthy to be celebrated.
This article delves into the reasoning processes of
five good examples, and shows, through them, sev-
eral different ways that mathematical reasoning can
enhance our understanding of biological systems. The
five papers are selected as illustrations, without any
attempt at a historical review of the place of each in
its field.

Neurons with Excitatory Interactions can
Oscillate in Phase Opposition

It is well known that neurons with excitatory interac-
tions can synchronize each other, and that neurons
with inhibitory interactions can entrain each other
to oscillate with opposite phases, but what Kopell
& Somers show is that excitatory coupling can lead
to phase opposition as well [11]. They use singu-
lar perturbation theory to study a neuronal model
of the relaxation oscillator type (but quite general
in form), in which there is a fast-activating current
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x and a slow-activating current y, governed by the
equations εẋ = F(x, y), ẏ = G(x, y), the singular
limit being taken as ε → 0. The nullclines (loci in
the x, y plane of F = 0 and G = 0) are assumed to
be sigmoidal (for the slow current) and cubic (for
the fast current). With x on the horizontal axis and
y on the vertical axis, the cubic nullcline has three
branches: left (descending), middle (ascending), and
right (descending), and the two nullclines intersect
along the middle branch of the cubic. When ε is
small, the neuron’s periodic trajectory descends the
left branch to its minimum, jumps horizontally to
the right branch, ascends the left branch to its maxi-
mum, and jumps horizontally back to the left branch.
Mutual excitatory coupling between a pair of neu-
rons is modeled by assuming that, when neuron 1
is on its right branch (high x), neuron 2’s cubic
nullcline is shifted upward on the y axis, and vice
versa.

The fundamental condition that must be met for
an antiphase solution is that the time to ascend
the original cubic nullcline is less than the time to
descend the shifted cubic nullcline. Kopell & Somers
reparameterize the slow current (substituting z for y)
in such a way that dz/ dt is constant and positive
on the left branch of the unshifted cubic nullcline,
z = 0 corresponding to the leftward jump point, and
z = 1 to the minimum. Now suppose that neuron 1
starts just at the point of a jump to the right branch,
while neuron 2 is at some z ∈ (0, 1). Neuron 2 will
immediately follow in jumping to the left branch of
the shifted cubic nullcline, because neuron 1 is on
its right branch. If the fundamental condition is sat-
isfied, then there are z close enough to 0 that neuron
1 will jump back to the left branch before neuron 2
has completed its descent to the minimum, so neu-
ron 2 will end up, after this pair of jumps, back on
its original nullcline at a new position E(z). Kopell
& Somers prove that, if the fundamental condition
holds, and in addition E(0) > 0 and 0 ≤ E′(z) < 1,
then there is a stable antiphase solution. Furthermore,
the antiphase solution persists in the nonsingular
case ε > 0.

Kopell & Somers then show that the hypotheses of
the theorem hold for several commonly used models
of neuronal firing, including the Morris–Lecar equa-
tions. This system, which was first analyzed from
a qualitative dynamics point of view by Rinzel &
Ermentrout [17], is a simplified model of excitable
membranes that captures many of their important

features. It postulates voltage-gated Ca2+ (fast) and
K+ (slow) channels, and has nullclines on the (x, y)
phase plane of the cubic and sigmoid types described
above. The model has three equilibria [5]: a stable
rest point, an unstable node, and a saddle point. The
unstable manifold of the saddle point, which con-
tains the rest point, forms an attracting invariant loop.
The system generates action potentials in a realistic
manner.

It turns out that it is possible for both antiphase
and the more typical in-phase oscillations to be stable
under the same excitatory coupling conditions. Arrays
of bistable oscillators with nearest-neighbor coupling
may show “fractured synchrony”, i.e. domains within
which activity is synchronous, while neighboring
domains are in phase opposition [19, Figure 14].

Mutation Rates can be Estimated from
Gene Polymorphisms

Mutation rates refer to the history of a population
over an extended time, whereas gene polymorphisms
refer to a cross-section at one time. Using the
method of “coalescence”, Kimmel & Chakraborty are
able to make inferences about genetic history from
the present state of the population [9]. Short seg-
ments of DNA are often repeated in the genome,
and when the units of these “tandem repeats” are
2–6 nucleotides long, they are called “microsatel-
lites”. Mutations occur relatively frequently in the
repeat length; they can cause expansion or contrac-
tion. Kimmel & Chakraborty use the Wright–Fisher
model (see Population Genetics) for genetic evo-
lution without selection in a population of constant
size N , a model that ignores diploidy, and treats
the 2N chromosomes of the (k + 1)th generation
as if they were sampled uniformly and indepen-
dently, with replacement, from the 2N chromo-
somes of the kth generation. That is equivalent to
the number of copies of each chromosome in the
(k + 1)th generation having a symmetric multino-
mial distribution [10]. Let each chromosome have
a probability ν per generation of a mutation at a
given locus (regarded as a Poisson process), and let
the size U of that mutation (replacing an allele of
size X by an allele of size X + U ) be a random
variable independent of the time of the mutation.
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Under the Wright–Fisher model, any two chromo-
somes selected from the current generation, if fol-
lowed backward in their parentage, eventually “coa-
lesce”, i.e. have a common parent, and the time
T (going backward from the current generation)
when coalescence occurs is approximately exponen-
tially distributed with parameter 1/2N , if N is large
[10, p. 36].

Now imagine that two chromosomes are drawn
at random from the current population, with repeat
lengths Xi and Xj at a given locus. Since mutations
can occur on either branch of the coalescence tree,
the number n of mutations since the two chromo-
somes had a common ancestor is Poisson-distributed
with parameter 2νT . Since the probability generat-
ing function (pgf) for the Poisson distribution with
parameter 2νt is exp[2νt (s − 1)] and the exponen-
tial density at T = t is (1/2N) exp(−t/2N), the pgf
µ(s) = E(sn) for the number of mutation events is

µ(s) = 1

2N

∫ ∞

0
exp

(
− t

2N

)
exp[2νt (s − 1)] dt

= 1

1 − 4Nν(s − 1)
.

So far, we have taken into account the random
processes determining the time to coalescence and
the number of mutations since coalescence, but not
the random size of the mutation X → X + U . Kim-
mel & Chakraborty [9] allow an arbitrary function
ϕ(s) for the pgf of the mutation size, since its prob-
ability distribution is currently an active area of
research [18]. Since any mutation has an equal proba-
bility of affecting Xi or Xj , its effect on Xi − Xj has
pgf ψ(s) = 1

2 [ϕ(s) + ϕ(1/s)]. We now have a com-
pound distribution for Xi − Xj , i.e. a random number
n of mutations with pgf µ(s), each step contributing a
random amount to the size difference with pgf ψ(s).
The pgf of Xi − Xj is, therefore, found by composi-
tion:

λ(s) = µ Ž ψ = 1

1 − 4Nν[ψ(s) − 1]
.

The variance of Xi − Xj is found by differentiating
λ(s) twice and setting s = 1; it is 4νNψ ′′. This quan-
tity may also be expressed as 4νNE(Û 2), by intro-
ducing the symmetrized random variable Û , with the
probability distribution Pr(Û = n, n ∈ �) = 1

2 (pn +

p−n), where pn = Pr(U = n). An empirically con-
venient measure of variability is the probability of
homozygosity Pr(Xi = Xj), which is p0 in the Lau-
rent expansion of λ(s) = ∑

k∈� pks
k . p0 can be eval-

uated by means of the Cauchy integral formula,

p0 = 1

2πi

∮

|s|=1

λ(s)

s
ds.

The SIR Model for Epidemics has Chaotic
Solutions

The existence of chaos in models for epidemics has
been debated many times, and found in some com-
puter simulations [15], but Glendinning & Perry [7]
are able to give a definitive answer, at least in a sim-
ple case (the SIR model), using Melnikov’s method.
The SIR model for the spread of diseases is highly
simplified, but captures important features of epi-
demics (see Epidemic Models, Deterministic). S

stands for the proportion of susceptible individuals,
I for infected, and R for recovered. The equations of
the model are:

Ṡ = −B(I, t)S + µ − µS,

İ = B(I, t)S − (γ + µ)I,

Ṙ = γ I − µR,

where S + I + R, representing the total population,
is set equal to 1. µ is the birth(= death) rate (all
newborns are assumed susceptible); γ is the rate of
recovery (transition to a permanently immune state).
Glendinning & Perry [7] take B(I, t) = β(t)I 2, and
assume that β(t) has the form β0(1 + β1 sin ωt). The
sinusoidal term might arise from the annual school
calendar, or from long-term cyclical variation in
social or environmental factors. Choosing an expo-
nent of I > 1 is not implausible, because there might
be a threshold for the concentration of viruses in
the environment to become infectious, or individuals
could harbor low-level infections that increase sus-
ceptibility, without becoming infectious [13, p. 200].
The dynamics may be thought of as taking place on
the cylinder (I, R, t) ∈ � × � × S1, since the forc-
ing term is periodic in t . Consider a Poincaré section
at a fixed time (modulo 2π/ω). If S and R are given
at a certain time in one period, then the equations
predict what S and R will be at that time in the
next period. Thus we have a map f of the (S, R)
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plane into itself. “Chaos” can be defined in this way
[24, Section 4.11 and Proposition 4.2.7]: there exists
a compact and invariant set Λ in the Poincaré section
such that:

1. Λ contains periodic points of all orders, and the
periodic points are dense in Λ

2. there also exist, in Λ, an uncountably infinite
number of points (S, R) such that an orbit started
at (S, R) never repeats itself

3. there exists at least one starting point (S ′, R′) in
Λ from which the orbit comes arbitrarily close
to every point in Λ

4. the Poincaré map has “sensitive dependence on
initial conditions” on Λ, which means that ∃ ε >

0 such that, for every (S, R) ∈ Λ, there are points
arbitrarily close to (S, R) that eventually separate
from (S, R) by at least ε.

This harvest of dynamics is reaped simply by
proving that the map f has a saddle point y whose
stable and unstable manifolds intersect transversely
(i.e. they cross, other than at y) [24, Section 4.4].
(By the stable manifold is meant the set of points
that approach y under successive iteration by f ; by
the unstable manifold is meant the set of points that
approach y under backwards iteration by f . These
will both be smooth curves.)

The key step is demonstrating that the stable and
unstable manifolds cross. Melnikov’s method [24,
Section 4.5] deals with the case where the flow is
governed by an arbitrarily small periodic pertur-
bation of a Hamiltonian system: q̇ = ∂H/∂p, ṗ =
−∂H/∂q. The unperturbed system is assumed to
have a homoclinic orbit [q0(t), p0(t)](−∞ < t <

∞) such that limt→∞ q0(t) = y and limt→∞ q0(t) =
y. The interior of the homoclinic orbit is assumed
to be filled with a continuous family of periodic
orbits. Let �F(q, p) be the unperturbed flow, and
�G(q, p, t, ε) be the perturbation, both smoothly vary-
ing in all their arguments. The Melnikov function is
defined as

M(t) =
∫ ∞

−∞
�F [q0(s − t), p0(s − t)]

× �G[q0(s − t), p0(s − t), t] ds,

× standing for the vector cross-product. If M(t0) = 0
for some t0, and dM/ dt |t0 �= 0, then the stable and
unstable manifolds of y will intersect transversely for
sufficiently small ε. Conversely, if M(t) is always �=

0, the stable and unstable manifolds will not inter-
sect. The computational utility of Melnikov’s formula
is that the integral is carried out on the unperturbed
orbits. After elaborate transformations, Glendinning
& Perry are able to cast the equations of the SIR
model into the form of a Hamiltonian unperturbed
system and a perturbation. The Melnikov conditions
are indeed satisfied, but only if the periodic term is on
a very long time scale, not, for example, the annual
scale that we expect in epidemics.

Hydrostatic Forces Determine the
Geometry of the Aortic Valve

The objective of this theory was to derive the geo-
metric form of the aortic valve of the heart from the
hydrostatic forces acting on it when it balloons out to
block the retrograde flow of blood into the heart [16].
The valve consists of three pockets, arranged as 120°

sectors of a circle, meeting in the middle when the
valve closes under retrograde flow. The fibers of
each leaflet are suspended from the two points where
the sector boundary meets the circumference, called
commissural points. The intrinsic coordinates of the
valve surface, (u, v), are defined so that the curves
v = const. are the fibers, v = 0 being the free edge.
u measures arc length along the fibers, u = 0 mark-
ing the midline. The Cartesian coordinates in space,
X = (x, y, z), are chosen so that the z = 0 plane
contains the three commissural points (each pair sus-
pending one of the valve leaflets), and x = y = z = 0
is the center of the circle through the three points. The
equation of the leaflet surface, X(u, v), is regarded as
unknown, to be determined by mechanical equilib-
rium under hydrostatic forces. T (u, v) is the tension
in the fibers, and p0 is the pressure load applied to
the leaflet, assumed uniform. The equations of equi-
librium are

∂

∂u

(
T

∂X
∂u

)
+ p0

(
∂X
∂u

× ∂X
∂v

)
= 0. (1)

Peskin & McQueen [16] prove that: (i) T (u, v) is
independent of u (the tension is constant along each
fiber); (ii) the fibers are geodesics on the surface of
the valve leaflet; and (iii) the u, v coordinate curves
are orthogonal. By a change of variables dV/ dv =
T (v)/p0, equalizing the force per unit of V , (1)
transforms into

∂X
∂V

= ∂X
∂u

× ∂2X
∂u2

. (2)



Mathematical Biology, Overview 5

Peskin & McQueen make use of a remarkable
analogy between (2) and the equations of vortex
dynamics in moving fluids. They think of V as a
time variable, so that (2) can be regarded as describ-
ing the filling-out of the leaflet by a single fiber,
sweeping across the leaflet as V increases, mov-
ing in the direction of its binormal at each point.
Eq. (2) is the same as the “self-induction approxi-
mation” in hydrodynamics for the motion of a line
vortex, i.e. its motion under the influence of the
velocity field it itself generates. The geometry prob-
lem becomes an initial-value problem: starting with
X(u, 0), defined at the free edge of the leaflet, prop-
agate X(u, V ) forward in the “time” variable V ,
toward the circumference where the leaflet is sus-
pended. The free edge X(u, 0) looks like a hyperbola
when projected onto the x, y plane, and like a cubic
when projected onto the x, z plane. To carry out
the computations, they use a method developed by
Buttke [2] for approximating the motion of a line
vortex in a three-dimensional incompressible, isen-
tropic fluid. According to the numerical solution, the
fibers are not uniformly spread over the leaflet, but
are gathered in bundles formed by the rolling up of
the leaflet surface, just as vortex lines tend to kink as
they move in a fluid. This result was unexpected, but
it agrees very well with the observed anatomy of the
aortic valve leaflet. Peskin & McQueen describe their
surprise at the degree of agreement between theory
and observation:

When this work was undertaken, our goal was to
produce a smooth array of fibers that would function
as an aortic valve . . . We were aware of the com-
plicated branching structure of the collagen fibers
that support the actual valve, but we thought of such
a structure as being “too biologic” to be modeled
within the present framework. . .Imagine our aston-
ishment, then, when the result first appeared on the
workstation screen! These results show that con-
siderations of mechanical equilibrium determine the
anatomy of the aortic valve in a much more detailed
way than we had dared to hope [16, p. H326].

Knot Topology Establishes the Mechanism
of Tn3 Resolvase

Tn3 resolvase is an enzyme that catalyzes recombi-
nation of duplex DNA at specific sites, i.e. the cutting
of both strands of two DNA molecules and reattach-
ment of the cut ends of the first molecule to the cut

ends of the second, and vice versa [20]. DNA-binding
proteins form the template, or synaptosome, to which
the recombining partners attach. The Tn3 resolvase,
a representative example of a major family of these
recombinases, acts on closed circular DNA. Its func-
tion is in DNA transposition, moving a segment of
DNA from one position to another. It is called a topoi-
somerase, because its action changes the topology of
the molecule. From the topologic changes it induces,
Sumners was able, in a brilliant analysis, to deduce
its mechanism of action [21]. He treated the DNA
attached to the synaptosome according to Conway’s
theory of rational tangles [1, Section 2.3]. A tangle
is a circular region in the projection plane of a knot
or link, such that the knot or link crosses the circum-
ference at exactly four points (called NW, NE, SW,
SE). A few examples will clarify the idea. The (∞)
tangle is just two vertical strings, and the (0) tangle
is two horizontal strings. The (3) tangle is made by
winding two horizontal strings around each other so
that they make three left-handed twists. (In the case
of DNA, such twists are “supercoiled”, since the pri-
mary structure is already coiled.) To make a (3, 2)
tangle out of a (3) tangle, first reflect the (3) tangle
along the NW–SE diagonal, than make two twists of
the free horizontal ends. The process can be continued
to make tangles with more indices. The sum of two
tangles is formed simply by joining the NE end of the
first to the NW end of the second, and the SE end of
the first to the SW end of the second. From a tangle,
a knot or link can be formed by the “numerator con-
struction”, which consists of connecting the NW end
to the NE end, and the SW end to the SE end. Con-
way proves that the continued fraction derived from a
tangle, for example n + 1/[m + (1/l)] from the tan-
gle (l, m, n), characterizes the knot formed by the
numerator construction, in the sense that two knots
formed from tangles are equivalent if and only if their
continued fractions have the same value.

Closely following the biology of the recombina-
tion process, Sumners assumes that the DNA strands
on the synaptosome form a tangle in Conway’s sense,
and furthermore that the synaptosome tangle is the
sum of two tangles, Ob and P , P representing the two
“parental” segments, lying parallel on the synapto-
some, that are to be cut and recombined, and Ob rep-
resenting the rest of the (possibly twisted) DNA that
is bound to the synaptosome, but not involved directly
in recombination. The actual DNA molecule, before
and after recombination, is assumed to be derived by
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the numerator construction N(·) from the tangle. The
original substrate, in Conway’s notation, is N(Ob +
P), and it is topologically just a circle. After recom-
bination, the product is N(Ob + R). Whereas P is the
(0) tangle (two parallel horizontal strands), R is either
the (1) tangle or the (−1) tangle (one twist, formed
when the strands are cut and recombine). Sumners
takes advantage of the fact that occasionally two or
three recombination events occur. Then, according to
this model, the products should be N(Ob + 2R) and
N(Ob + 3R), respectively. Since the topology of the
products in each case is known experimentally, the
equations can be solved for the tangles Ob and R.
N(Ob + R) is known to be a Hopf link (the simplest
two-component link, two circles passed through one
another), N(Ob + 2R) is a figure of eight knot, and
N(Ob + 3R) is a Whitehead link (two circles joined
so that one becomes a figure eight). Sumners proves,
on the basis of this information, that R must consist of
one left-handed twist, and Ob must consist of three
left-handed twists in the vertical direction. In other
words, the DNA is supercoiled on the synaptosome,
in addition to being prepared for cutting. The pièce
de résistance of this work is being able to predict,
on the basis of the model derived from N(Ob + jR),
j = 1, 2, 3, what kind of knot N(Ob + 4R) will be.
Quadruple recombination is rare, but it does occur;
the prediction is a knot called 62, a six-crossing com-
posite knot, which agrees with experiment.

Conclusion

Each of these five studies illuminates one of the val-
ues of proving theorems in mathematical biology.
Kopell & Somers [11] (first section) achieve two
things. They predict a new phenomenon – oscillation
in phase opposition by neurons coupled through exci-
tatory interactions. They also exhibit the mechanism
of that effect, through their analysis of the singu-
lar solution. Kimmel & Chakraborty’s work [9] on
estimation of mutation rate from microsatellite poly-
morphisms (second section) shows how mathemati-
cal reasoning can connect two qualitatively distinct
phenomena, in this case one stretched out over the
history of the population, and the other observed
in a cross-section at a single time. Glendinning &
Perry’s study [7] of chaos in the SIR model for
epidemics (third section) is important, not because
the chaotic regime is expected to occur under typi-
cal circumstances, but because it resolves a question

about dynamics that no amount of computer simula-
tion could ever settle, being necessarily confined to a
finite time period, a finite number of starting points,
and finite precision. Peskin & McQueen’s demon-
stration [16] that equilibrium under hydrostatic forces
can account for the geometry of the aortic valve
(fourth section), apart from the fascination of its rea-
soning, shows how isomorphism in formal structure
sometimes makes it possible for a large body of math-
ematical knowledge to be translated and applied in a
new area. In this case, methods from vortex hydrody-
namics could be used to study the equations of shape
of a body in equilibrium. Finally, Sumners’ elegant
application [21] of knot theory in DNA biochemistry
(fifth section) illustrates how mathematical proof can,
at least occasionally, give a definitive answer to a
question of mechanism. Each of the selected papers
also illustrates the crucial step of formulating a model
rich enough to capture the phenomena, yet simple
enough to be tractable. Mathematical analysis in biol-
ogy will remain a subtle art, but when theorems can
be proved about realistic models, they are likely to
shed valuable light on biologic mechanisms.
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STEVEN MATTHYSSE



Matrix Algebra

The algebra that we learn when teenagers has letters
of the alphabet, each representing a number. For
example: a father and son are x and y years old,
respectively, and their total age is 70. In a decade
the father will be twice as old as the son. Hence
x + y = 70 and x + 10 = 2(y + 10), and so x = 50
and y = 20.

In contrast, matrix algebra is the algebra of letters
each representing many numbers, with those numbers
always arrayed in the form of a rectangle (or square).
An example is

X =
[

9 0 7 t

u2 + v −3 6.1 53

]
.

General Description

A matrix is a rectangular array of numbers, which
can be any mixture of numbers that are complex,
real, zero, positive, negative, decimal, fractions, or
algebraic expressions. When none of them is complex
(i.e. involving

√−1), the matrix is said to be real.
And because statistics deals with data, which are
real numbers (especially biological data), almost all
of this article applies to real matrices. Each number
in a matrix is called an element: in being some
representation of a single number it is called a scalar,
to contrast with a matrix which represents many
numbers.

Elements are always set out in rows and columns
with the number of rows and columns being called
the order (or dimension) of the matrix. Thus, the
illustrated X has order 2 × 4 (“two by four”) with the
number of rows being mentioned first. Sometimes the
order is used as a subscript to the matrix symbol; for
example, X2×4. In this encyclopedia the widespread
custom is used of denoting matrices by bold face,
capital, roman letters.

Elements of a matrix can be represented by let-
ters, having subscripts to denote location (row and
column) in the matrix. Thus, a matrix A might be
represented as

A =
[

a11 a12 a13

a21 a22 a23

a31 a32 a33

]
.

The first subscript indicates row, and the second
column; for example, a23 is in row 2 and column
3. More briefly, we can write

A = {aij } for i = 1, 2, 3 and j = 1, 2, 3.

When B has r rows and c columns,

B = {bij } for i = 1, 2, . . . , r and j = 1, 2, . . . , c.

A more compact form is

B = {
m bij

} r c

i=1,j=1 ,

the m indicating that it is a matrix. The element in
the first row and first column (e.g. a11 in A and the
9 in X) is called the leading element.

By virtue of a matrix being a rectangular array
there are many special forms, the first two of which
are square matrices and vectors.

Square Matrices

1. Square matrices have the same number of rows
as columns. A is an example.

2. Elements on the diagonal from upper left to lower
right, those with both subscripts the same, are
diagonal elements; they constitute the diagonal
of the matrix.

3. Elements immediately below the diagonal con-
stitute the sub-diagonal.

4. Elements not on the diagonal are off-diagonal
elements.

5. When all off-diagonal elements are zero, and at
least some diagonal elements are nonzero, the
matrix is a diagonal matrix.

6. When all elements below (above) the diagonal
are zero the matrix is said to be upper (lower)
triangular.

Vectors

When a matrix has only one column it is a column
vector or, more usually, just vector; and it shall here
be denoted by a bold face, lower case, roman letter,
usually from the last part of the alphabet; for example,

x =




1
7

−4
0



 .
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When a matrix has only one row it is called a row
vector. The notation is similar to that for a column
vector, except for a superscript prime:

y′ = [0 − 4 9 12 37].

A column vector is a matrix of order r × 1 when it
has r elements; its transpose, a row vector, has order
1 × r . For both vectors, r is often called the order of
the vector.

Basic Operations

A minimal requirement for matrix algebra is to define
the arithmetic operations. Moreover, the rectangular
nature of matrices begets numerous operations that
do not exist for scalars; for example, changing rows
into columns, and columns into rows.

The Transpose of a Matrix

Changing A so that its rows become columns (and
hence its columns become rows) gives a matrix called
the transpose of A, traditionally written as A′ (and
sometimes today as AT). Thus for

A =
[

1 2 3 4
6 1 −2 5

]
, A′ =





1 6
2 1
3 −2
4 5



 .

Note that the transpose of A′ is A: (A′)′ = A. Also,
the transpose of a column vector is a row vector (and
vice versa):

[1 2 3]′ =
[ 1

2
3

]
.

This explains the use of y′ at the end of the preceding
section.

Partitioned Matrices

The rows and columns of a matrix can be partitioned
into a representation that is a matrix of matrices of
smaller orders:

K =





1 2 3 4
6 8 4 0
9 8 1 2
- - - - - - - - - -
6 8 3 9
4 1 6 1




=

[
K11 K12

K21 K22

]
, for

K11 =
[ 1 2

6 8
9 8

]
,

and so on. K is a partitioned matrix; the Ks with
subscripts are submatrices of K.

In transposing a partitioned matrix, not only is the
matrix of submatrices transposed, but each submatrix
is also transposed. Thus

[
A B
C D

]′
=

[
A′ C′
B′ D′

]
.

A matrix can also be partitioned into its columns
(or its rows); for example,

K = [k1 k2 k3 k4],

where each of the subscripted ks is a column of K.

The Trace of a Matrix

The trace of a matrix is defined only for a square
matrix; and trace of A is the sum of the diagonal
elements of A, often written as tr(A). Note that
tr(A) = tr(A′), and tr(scalar) = scalar.

Addition and Subtraction

Addition and subtraction are defined only for matrices
of the same order, whereupon the matrices are said
to be conformable for addition and subtraction. Then,
for A = {aij } and B = {bij },

A + B = {aij + bij }.

If two matrices do not have the same order their sum
and difference do not exist. Note the properties

(A ± B)′ = A′ ± B′

and

tr(A ± B) = tr(A) ± tr(B).

Scalar Multiplication

For λ being a scalar, λA is A with every element
multiplied by λ. Thus, for A = {aij }, λA = {λaij }.
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Equality and Null Matrices

Two matrices are equal only when they are equal
element by element. Thus, for

A =
[

1 2
6 8

]
, B =

[
1 2
6 8

]
and C =

[
1 2
5 8

]
,

A = B, but A �= C. Furthermore,

A − B =
[

1 − 1 2 − 2
6 − 6 8 − 8

]
=

[
0 0
0 0

]
= 0.

Any matrix having every element zero is a null
matrix. It is a zero of matrix algebra: note that it
is a zero not the zero, because null matrices can be
of any order.

Multiplication

Multiplication of matrices differs greatly from that
of scalars. First of all, AB and BA can, and often
do, differ. To distinguish between the two, AB is
described as B pre-multiplied by A (or as A post-
multiplied by B).

The inner product of two vectors is a row vector
post-multiplied by a column vector, with both vectors
having the same number of elements; for example,

[1 7 2]

[ 3
5
9

]
= 1(3) + 7(5) + 2(9) = 56.

Thus for x′ = {xi} n
i=1 and y ′ = {yi} n

i=1,

x′y =
n∑

i=1

xiyi .

In contrast, an outer product is a column vector post-
multiplied by a row vector

xy′ = {m xiyj }.
In this case, the vectors can be of different orders.
Note that an inner product is a scalar, whereas an
outer product is a matrix.

The product AB exists only when A has as many
columns as B has rows; and then A and B are
described as being conformable for the product AB,
whereupon

Ar×cBc×t = Pr×t .

In P, the element in row i and column j is the inner
product of row i of A and column j of B:

Pr×t = {pij } =
{

c∑

k=1

aikbkj

}
for i = 1, . . . , r

and j = 1, . . . , t.

A simple numerical example of this is
[

1 0
2 −1

] [
3 4 7

−5 6 8

]

=





[1 0]

[
3

−5

]
[ 1 0]

[
4
6

]
[1 0]

[
7
8

]

[2 −1]

[
3

−5

]
[2 −1]

[
4
6

]
[2 −1]

[
7
8

]





=
[

1(3) + 0(−5) 1(4) + 0(6) 1(7) + 0(8)

2(3) + (−1)(−5) 2(4) + (−1)6 2(7) + (−1)8

]

=
[

3 4 7
11 2 6

]
.

Important consequences of this definition of multi-
plication are that AB exists only for Ar×c and Bc×t ;
both AB and BA exist only for Ar×c and Bc×r ,
but they will be of different orders (and so not
equal) unless r = c. Even then, AB and BA are not
necessarily equal. For example,

[
1 0
2 −1

] [
3 4

−5 6

]
=

[
3 4
11 2

]
,

but

[
3 4

−5 6

] [
1 0
2 −1

]
=

[
11 −4
7 −6

]
.

Products with Null Matrices

Every product of a matrix with a null matrix is a
null matrix: but those null matrices are not neces-
sarily of the same order. Thus, 03×2A2×5 = 03×5 and
A2×505×6 = 02×6.

Products with Diagonal Matrices

Pre-(post-)multiplying A by a diagonal matrix D
multiplies each row (column) of A by the correspond-
ing diagonal element of D.

Identity Matrices

If every diagonal element of a diagonal matrix is a
one the matrix is called an identity matrix, I; pre- or
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post-multiplication of A by an identity matrix yields
A. Thus I-matrices are the unities of matrix algebra.

Transposing a Product

The transpose of a product is the product of the
transposed matrices in reverse order. Thus

(AB)′ = B′A′ and (XAY)′ = Y′A′X′.

Trace of a Product

The trace of a product equals the trace of cyclic
permutations of that product: tr(AB) = tr(BA) and
tr(ABC) = tr(CAB) = tr(BCA), but these three do
not equal the trace of ACB.

Powers of Matrices

Only square matrices have powers: A2×4A2×4 does
not exist. A4×4A4×4 written as A2

4×4 does.

Hadamard Products

The (i, j )th element of AB is
∑

k aikbkj . But there
are other ways of defining a product. One is the
Hadamard product, defined as

A · B = {aij bij }.
Thus, the (i, j )th element of the Hadamard product
is the product of the (i, j )th elements of A and B –
which must have the same order.

Direct Products

There is also the direct product

A ⊗ B = {m aij B}.
When A has order p × q and B has order r × s,
A ⊗ B has order pr × qs. For example,
[

3 4
2 1

]
⊗ [6 7 8] =

[
3[6 7 8] 4[6 7 8]
2[6 7 8] 1[6 7 8]

]

=
[

18 21 24 24 28 32
12 14 16 6 7 8

]
.

Laws of Algebra

Provided that conformability requirements are met,
the following equalities hold:

(A + B) + C = A + B + C,

(AB)C = A(BC) = ABC,

A(B + C) = AB + AC,

A + B = B + A.

This last equality is the commutative law of addition.
In contrast, its mate, the commutative law of multi-
plication, does not generally hold for matrices; that is,
AB and BA are not usually equal. Indeed, there are
situations in which one exists and the other does not;
and when they do both exist they can be of different
orders; and even when they both exist and are of the
same order (for which A and B must be square and
of the same order) they are not necessarily equal.

Contrasts with Scalar Algebra

The following results illustrate differences in the
algebra of matrices compared with that of scalars:

1. AX + BX = (A + B)X �= X(A + B);
2. XP + QX does not have X as a factor;
3. AB = 0 does not imply that A or B are 0, nor

does it imply that BA is 0;
4. Y2 = 0 defines Y as nilpotent and does not imply

that Y is 0
5. Z2 = I does not imply that Z is ±I;
6. Q2 = Q defines Q as idempotent without imply-

ing that Q = 0 or I.

Examples of these last four features are as follows:

AB =
[

1 1
1 1

] [
1 1

−1 −1

]
= 0,

BA =
[

1 1
−1 −1

] [
1 1
1 1

]
=

[
2 2

−2 −2

]
,

Y2 =
[

1 1
−1 −1

]2

= 0,

Z2 =
[

1 0
4 −1

]2

= I,

and

Q2 =
[

3 −2
3 −2

]2

= Q.
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One may be tempted to think of these examples as
pathologic cases. To some extent they are, born of
the need to have illustrations that occupy minimum
space; but they serve as stern warnings that what can
be done in scalar algebra does not always carry over
to matrix algebra.

Special Matrices

Square matrices and vectors have already been men-
tioned as special forms of matrices. There are many
others, some arising from their intrinsic properties,
and others from the applications in which they arose.
Just a few of the more commonly occurring ones are
mentioned here.

Symmetric Matrices

A is defined as being symmetric when A′ = A. That
can occur only when A is square. Its rows are then
mirror images of its columns:

[ 1 7 0
7 2 −3
0 −3 9

]′
=

[ 1 7 0
7 2 −3
0 −3 9

]
;

and aij = aji .
BB′ and B′B are both symmetric. This is true

for any B. Then BB′ (and B′B) have diagonal ele-
ments that are sums of squares of elements of rows
(columns) of B: and

tr(BB′) = tr(B′B) =
∑

i

∑

j

b2
ij .

When B is real, BB′ = 0 and tr(BB′) = 0 each imply
that B = 0.

Elementary Vectors

Columns of identity matrices are elementary vectors,
represented as e

(n)
i , the ith column in I of order n.

Skew-Symmetric Matrices

A′ = −A defines A as skew-symmetric.

Summing Vectors

A vector having every element a one (1.0) is a
summing vector, often denoted as 1. It is so named
because 1′x is the sum of all elements in x.

Matrices having Every Element Unity

Jp×k = 1p1′
k is a matrix having every element being

1.0. Its most frequent occurrence in statistics is when
it is square: Jn = 1n1′

n. A useful variant is Jn =
(1/n)Jn. Then,

Cn = In − Jn

is a centering matrix, with

Cnx = {xi − x} and x′Cnx =
n∑

i=1

(xi − x)2,

for x = ∑n
i=1 xi/n = 1′x/n.

Probability Transition Matrices

When elements of a matrix P are probabilities that
add to unity over each row, P1 = 1. Then Pk1 = 1
for any positive integer k, and P is called a probability
transition matrix. It is doubly stochastic if 1′P =
1′ (or, equivalently, P′1 = 1), meaning that column
sums are also unity.

Idempotent Matrices

A is idempotent when A2 = A; then I − A is also
idempotent (but A − I is not).

Orthogonality

1. The norm of a real vector x is (x′x)1/2.
2. x is a unit vector when x′x = 1.
3. u = x/(x′x)1/2, known as normalized x, is always

a unit vector when x is real.

Nonnull vectors x and y are orthogonal vectors when
x′y = 0 (= y′x) (see Orthogonality).

Vectors v and w are orthonormal vectors when
they are orthogonal (v′w = 0) and each is a unit
vector (v′v = 1 and w′w = 1).

A collection of vectors of the same order is said
to be an orthogonal set of vectors when they are
pairwise orthonormal.

When Pr×c has rows that are an orthonormal
set, PP′ = I. If P is square with orthonormal rows
(columns), then its columns (rows) are also ortho-
normal, PP′ = I = P′P and P is an orthogonal matrix.

Certain special forms of orthogonal matrices go
by the names Helmert, Givens, and Householder. The
latter, for example, is I − 2hh′ when h′h = 1.
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Quadratic Forms

x′Ax is a quadratic form, in which A can always be
(taken as) symmetric. x′Ax is a homogeneous second-
order function of the elements of x:

x′Ax =
∑

i

x2
i aii +

∑
xixj aij =

∑

i

x2
i aii

+
∑

j �=i

xixj (aij + aji),

and on taking A = A′, that is, aij = aji ,

x′Ax =
∑

i

x2
i aii + 2

∑

j>i

xixj aij .

If x′Ax > 0 for all x �= 0, x′Ax is called a positive
definite (p.d.) quadratic form, and A (= A′) is a p.d.
matrix. If x′Ax ≥ 0 for all x �= 0 and x′Ax = 0 for
some x �= 0, then x′Ax and A are positive semidefinite
(p.s.d.). The classes of quadratic forms and matrices
that include those which are p.d. and p.s.d. are called
nonnegative definite (n.n.d.).

Determinants

Definition

Associated with any square matrix An×n is its deter-
minant |A|. It is a scalar, an n-order, homogeneous
polynomial function of the elements. Two easy exam-
ples are for A of order 2 and 3:

|X| =
∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1

and

|Y| =
∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣ = a1b2c3 + a2b3c1

+ a3b1c2 − a3b2c1 − a1b3c2 − a2b1c3.

For A of order n, the definition is more difficult: |A|
is the sum of the n different terms that are each a
signed product of one element from every row and
column of A. In writing |A| with the rows being
a′, b′, c′, . . ., a product written in alphabetic order
has sign equal to (−1)p , with p being the sum of
the number of reverse sequences of the subscripts.
For example, a2b3c1 in the preceding |Y| has p = 2
because 2, 1 and 3, 1 are reverse sequences; hence,

the sign for a2b3c1 is (−1)2 = +1. For a3b2c1 there
are three reverse sequences, 3, 2 and 3, 1 and 2, 1
and so the sign is (−1)3 = −1.

Minors and Cofactors

Deleting from |A| the row and column containing
aij leaves a determinant of order n − 1 that is called
the minor, |Mij |, of aij in |A|. Also (−1)i+j |Mij |,
the signed minor, is called the cofactor of aij in
|A| : cij = (−1)i+j |Mij |. Then

|A| =
n∑

i=1

aij cij for all j and

|A| =
n∑

j=1

aij cij for all i,

but

0 =
n∑

i=1

aij cij
′ for all j �= j ′ and

0 =
n∑

j=1

aij ci ′j for all i �= i ′.

Calculation

Computers now handle the calculation of determi-
nants. Numerous available shortcuts and associated
properties of determinants are detailed in the liter-
ature, which was especially rich on this subject up
through the 1930s. Searle [4] deals with a few of
these topics.

Some Properties Useful for Statistics

1. |A′| = |A|.
2. |Ak| = (|A|)k , for integer k.
3. |AB| = |A||B|.
4. |A| = +1, for orthogonal A (i.e. A′A = I =

AA′).
5. |A| = 0, for idempotent A (i.e. A2 = A), except

for A = I.
6. |I| = 1.
7. |λAn×n| = λn|A|, for scalar λ.
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Inverse Matrices

Existence

In matrix arithmetic, the very definition of multipli-
cation precludes any obvious definition of division.
Indeed, there is no such thing as matrix division; divi-
sion by a matrix does not exist. Instead, multiplication
by an inverse matrix is used, similar to the scalar
equivalence of dividing by six (for example) being
identical to multiplying by 1/6 = 6−1, the inverse of
six: and

(6−1)6 = 1 = 6(6−1).

There is one big difference: whereas every scalar
different from zero has an inverse, not every nonnull
matrix does.

Suppose that A has an inverse. Denote it by A−1,
as is customary. Then with I being a “one” of matrix
algebra, the matrix analogy of scalars is (A−1)A =
I = A(A−1), where the parentheses are solely for
emphasis, the usual writing being

A−1A = I = AA−1.

This requirement demands that two conditions must
be satisfied in order for A−1 to exist:

(i) A must be square;
(ii) |A| �= 0.

If either or both (i) and (ii) are not satisfied, A has
no inverse; note, particularly, that every nonsquare
matrix has no inverse.

When, for A square, |A| �= 0, A is called non-
singular, and if |A| = 0 then A is called singular.

Form

The general form of A−1 is

A−1 = 1

|A|

[ the matrix that is A
with every element

replaced by its cofactor

]transposed

and |A|A−1 is called the adjugate or adjoint of A.

Some Basic Properties

1. A−1 is unique (for given A).
2. |A−1| = 1/|A|.
3. A−1 is nonsingular.

4. (A−1)−1 = A.
5. (A′)−1 = (A−1)′.
6. A′ = A ⇒ (A−1)′ = A−1.
7. (AB)−1 = B−1A−1.

In all of these results, and whenever an inverse is
used, one must always be certain that the matrix
satisfies (i) and (ii) above; namely, squareness and
nonzero determinant.

Four Special Cases

Denote a diagonal matrix having all its diagonal
elements λ1, . . . , λn nonzero by

D = {d λi}ni=1 ;

then,

D−1 = {d 1/λi}ni=1 , I−1 = I,

(aIn + bJn)
−1 = 1

a

(
In − b

a + nb
Jn

)
,

PP′ = I = P′P implies P−1 = P′.

Algebra with Inverses

Compared with using division in scalar algebra, one
has to be much more careful in using inverses in
matrix algebra. This is because one never divides
by a matrix; instead, in dealing with equations, one
multiplies by an inverse. For example, given A, B
and AX = B, the equation can be pre-multiplied, on
both sides, by A−1 (provided that it exists) to obtain
A−1AX = A−1B and thus IX = A−1B or X = A−1B.
Note that X does not equal BA−1. Provided that
conformability is satisfied, one could post-multiply
AX = B by A−1 and obtain AXA−1 = BA−1; but that
is it. No further simplification occurs.

Suppose that we have P, Q and K such that
PK = QK. This leads to P = Q only if K−1 exists.

Inverses can also be used in factoring; for exam-
ple, R + RST = R(I + ST) = R(T−1 + S)T, provi-
ded that T−1 exists.

Verifying the form of a particular inverse is often
achieved by the following argument. Suppose that it
is postulated that A inverse is Q. Verifying this can
be achieved by considering the product AQ. If that
can be shown to be equal to I, thus AQ = I, then
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A−1AQ = A−1I; that is, Q = A−1. For example, sup-
pose that A is (I + XY) and Q is I − X(I + YX)−1Y.
Then A−1 is shown to be Q by considering AQ:

AQ = (I + XY)[I − X(I + YX)−1Y]

= I + XY − (I + XY)X(I + YX)−1Y

= I + XY − (X + XYX)(I + YX)−1Y

= I + XY − X(I + YX)(I + YX)−1Y

= I + XY − XY

= I,

and so A−1 = Q.

Computers and Inverses

The arithmetic required for calculating an inverse
matrix can be voluminous. Fortunately, computers
have eased this situation enormously and many soft-
ware packages include reliable routines for doing
the arithmetic. Nevertheless, there are cases in which
rounding error can lead to erroneous results; thank-
fully, this occurs very seldom, and software often
handles it satisfactorily.

Rank

Linear Dependence and Independence of Vectors

Xa = [x1 x2 . . . xc]





a1

a2...
ai...
ac




=

c∑

i=1

aixi

is a vector. It is a linear combination of the vectors
x1, x2, . . . , xc.

If, for a given X (with all columns nonnull), a
nonnull vector a exists such that Xa = 0, then the
columns of X are said to be a set of linearly dependent
vectors. If no such a exists, the columns are linearly
independent vectors. These definitions exclude null
vectors.

A Definition of Rank

If c columns are linearly dependent, there is always
a smaller number of them that are linearly indepen-
dent. In fact, there may be several sets of less than

c columns that are linearly independent, with those
sets not necessarily all having the same number of
columns. The greatest number of columns in such a
set is called the rank of A, often denoted r(A). Thus,
r(A) is the largest number of linearly independent
columns available from A. The “largest” is usually
omitted. Thus, r(A) is the number of linearly inde-
pendent columns in A.

Some Properties and Consequences

Rank is an important and exceedingly useful concept
in matrix algebra, with widespread applications. A
list of some of the properties of rank follows:

1. The numbers of linearly independent rows and
columns in a matrix are the same, r(A).

2. r(0) = 0.
3. r(Ap×q) ≤ p and r(Ap×q) ≤ q.
4. r(An×n) ≤ n.
5. r(An×n) < n ⇔ A is singular, |A| = 0, with

A−1 not existing.
6. r(An×n) = n ⇔ A is nonsingular, |A| �= 0, with

A−1 existing: A is said to be of full rank.
7. r(Ap×q) = p < q means that A has full row

rank.
8. r(Ap×q) = q < p means that A has full column

rank.
9. Ap×q having rank r can always be expressed as

Ap×q = Kp×rLr×q , where K has full column
rank r and L has full row rank r .

10. r(AB) ≤ lesser of r(A) and r(B).
11. r(A) = tr(A) for idempotent A.
12. r(A) = r(A′).
13. r(A) = r(AA′).
14. r(A) = r(TA) for nonsingular T.
15. r(A−1) = r(A) = n for An×n.

Left and Right Inverses

For given Ar×c, there exists:

1. A−1, the inverse of A, such that A−1A = I =
AA−1 if and only if A is square, with |A| �= 0;

2. Lc×r , a left inverse of A, such that LA = Ic (and
AL �= Ir ) only if A has full column rank;

3. Rc×r , a right inverse of A, such that AR = Ir

(and RA �= Ic) only if A has full row rank;
4. neither an A−1, L, nor R of (1), (2), or (3) – for

example, any matrix having at least one null row
and one null column.



Matrix Algebra 9

Only when A−1 exists does A have both an L and
an R; and they both equal A−1. Otherwise, if A has
full column (row) rank it has left (right) inverses of
many values.

Vector Spaces

Since a vector of order n has n elements, it can be
considered as a point in n-space, which is denoted
Rn. Consider a set of vectors S, in Rn. Suppose, for
every pair of vectors xi and xj in S, that both the sum
xi + xj and the vectors axi and bxi for any scalars a

and b are in S; then S is a vector space.
Suppose that every vector in the vector space S

can be expressed as a linear combination of the set
of t vectors, x1, x2, . . . , xt . Then that set spans, or
generates, S and is called a spanning set of S. If
those t vectors are also linearly independent, they
are said to be a basis for S, and the number of such
vectors is the dimension of S, dim(S).

There are many vector spaces of order n; and each
of them usually has several bases.

Range and Null Spaces

A of rank r has r linearly independent columns. All
vectors that are linear combinations of those columns
form a vector space. It is known as the column space
of A, the range of A, or the manifold of A, often
denoted by R(A). Clearly, r = r(A) = dim[R(A)].

The space defined by the many vectors x for which
Ax = 0 (with A being rectangular, or square and
singular) is the null space of A, denoted N(A). Its
dimension is the nullity of A: nullity(A) =
dim[N(A)].

Equivalent and Congruent Canonical
Forms

Elementary Operators

Three particular adaptations of identity matrices are
elementary operators; each is an identity matrix with
(i) two rows (or columns) interchanged, or (ii) λ in
place of a one in the diagonal, or (iii) λ in place
of a zero in an off-diagonal element. These and all
products of any numbers of them are nonsingular.

Equivalent Canonical Form

For any Ap×q , of rank r , there always exists a P and
a Q, each a product of elementary operators, such

that

Pp×pAp×qQq×q =
[

Ir×r 0
0 0

]
= K, say.

K is the equivalent canonical form of A; or the
canonical form under equivalence of A. Because P
and Q are products of elementary operators, they
are nonsingular, and so the equation PAQ = K leads
to A = P−1KQ−1. If A is nonsingular, K = I and
A−1 = QP.

Congruent Canonical Form

When A is symmetric (and hence square), the Q of
PAQ can be P′, giving

PAP′ =
(

Ir 0
0 0

)
= C,

known as the congruent canonical form of A or the
canonical form under congruence.

En route to deriving C, one can obtain the form

P∗AP′
∗ =

(
Dr 0
0 0

)
= C∗,

where Dr is a diagonal matrix of order and rank r . For
A being real, P∗ will be real; but if Dr has negative
elements, P in obtaining C will be complex. For A
being nonnegative definite, elements of Dr are always
positive and P is always real.

Utility: Sums of Squares

The utility of these canonical forms is their existence.
For each A there are many values of P (and Q) but
usually not any one of them is of particular interest.
It is the fact that they exist that is important, and
that provides the means for establishing other useful
results. For example, consider the quadratic form q =
x′Ax with A = A′ of rank r . Then there is a P such
that PAP′ = C. Thus, q = x′P−1PAP′(P′

)−1x, and
letting y = (P′)−1x gives q = y′Cy which, because

C =
(

Ir 0
0 0

)
,

becomes q = ∑r
i=1 y2

i . Thus, without knowing P
except for its existence and nonsingularity, we can
show that a quadratic form can always be expressed
as a sum of r squared terms, where r is the rank of
the (symmetric) matrix A of the quadratic form. That
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is a result of great importance in considering the dis-
tribution of quadratic forms of normally distributed
random variables.

Generalized Inverses

Definition

For any nonnull matrix A, there is a unique matrix
M satisfying:

(i) AMA = A;
(ii) MAM = M;

(iii) (AM)′ = AM; and
(iv) (MA)′ = MA.

These are the Penrose conditions and M is the
Moore–Penrose inverse. Whereas M is unique, there
are (with one exception) many matrices G satisfying

AGA = A,

which is condition (i). Each matrix G satisfying
AGA = A is called a generalized inverse of A, and
if it also satisfies GAG = G it is a reflexive general-
ized inverse. The exception is when A is nonsingular:
there is then only one G; namely, G = A−1.

Arbitrariness

That there are many matrices G can be illustrated by
showing ways in which from one G others can be
obtained. Thus, if A is partitioned as

A =
[

A11 A12

A21 A22

]
,

where A11 is nonsingular with the same rank as A,
then

G =
[

A−1
11 − UA21A−1

11 − A−1
11 A12V − A−1

11 A12WA21A−1
11 U

V W

]

is a generalized inverse of A for any values of
U, V and W. This can be used to show that a
generalized inverse of a symmetric matrix is not
necessarily symmetric; and that of a singular matrix
is not necessarily singular [[4], p. 219].

A simpler illustration of arbitrariness is that if G
is a generalized inverse of A then so is

G∗ = GAG + (I − GA)S + T(I − AG),

for any values of S and T.

Generalized Inverses of X ′X

The matrix X′X plays an important role in statistics,
usually involving a generalized inverse thereof, which
has several useful properties. Thus, for G satisfying

X′XGX′X = X′X,

G′ is also a generalized inverse of X′X (and G is not
necessarily symmetric). Also,

1. XGX′X = X;
2. XGX′ is invariant to G;
3. XGX′ is symmetric, whether or not G is;
4. XGX′ = XX+ for X+ being the Moore–Penrose

inverse of X.

Solving Linear Equations

A Single Solution

Given A and y, the equations Ax = y are linear in the
unknowns, the elements of x. When A is nonsingular,
the equations are solved uniquely, as x = A−1y. But
for singular or rectangular A, solutions involve using
a generalized inverse of A. The following results
apply.

First, equations Ax = y are said to be consistent
when any linear relationships existing among rows
of A also exist among elements of y. Only then do
solutions exist. Secondly, for singular or rectangular
A there will be many solutions for x, except when
A has full column rank, whereupon there is only
one solution, x = (A′A)−1A′y: and this includes, of
course, the case of nonsingular A.

Many Solutions

When A has less than full column rank, there
are many solutions. They are characterized as fol-
lows, with G being a generalized inverse satisfying
AGA = A.

1. x̃ = Gy is a solution if and only if AGA = A.
2. Letting G take all its possible values in x̃ = Gy

(for y �= 0) generates all possible solutions.
3. x̃ = Gy + (I − GA)z is a solution for any arbi-

trary z of the same order as x.
4. For a given G, letting z take all possible values

in x̃ = Gy + (I − GA)z generates all possible
solutions.
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5. When x̃1, x̃2, . . . , x̃t are any solutions,
∑t

i=1 λi x̃i

is a solution (with y �= 0) if and only if
∑t

i=1 λi

= 1; this condition is not needed when y = 0.
6. For Ap×q and y �= 0 there are q − r(A) + 1 −

δy,0 linearly independent solutions, where δy,0 =
1 when y = 0 and zero otherwise.

7. The value of k
′
x̃ is invariant to x̃ if and only if

k′ = k′GA.
8. When y = 0, solutions are orthogonal to rows of

A; and solutions orthogonal to each other can
always be derived. The vector space spanned
by the solutions, sometimes called the solution
space, is the orthogonal complement of the row
space of A.

Partitioned Matrices

Some results for partitioned matrices used in statistics
are as follows.

Orthogonality

If P = [A B] is orthogonal,

PP′ = I ⇒ [A B]

[
A′
B′

]
= I ⇒ AA′ + BB′ = I,

P′P = I ⇒
[

A′
B′

]
[A B] = I ⇒

[
A′A A′B
B′A B′B

]

=
[

I 0
0 I

]
⇒ A′A = I, A′B = 0

and B′B = I.

Note that AA′ and BB′ are not identity matrices.

Determinants
∣∣∣∣
A B
C D

∣∣∣∣ = |A||D − CA−1B| = |D||A − BD−1C|,

provided that A−1 and D−1 exist, where needed.

Inverses

[
A B
C D

]−1

=
[

A−1 0
0 0

]
+

[−A−1B
I

]

× (D − CA−1B)−1[ −CA−1 I ]

=
[

0 0
0 D−1

]
+

[
I

−D−1C

]

× (A − BD−1C)−1 [I −BD−1] ,

again provided that A−1 and D−1 exist as needed.

Schur Complements

In [
A B
C D

]

the Schur complement of A is D − CA−1B and that
of D is A − BD−1C. The inverse of one involves that
of the other:

(D − CA−1B)−1 = D−1 + D−1C

× (A − BD−1C)−1BD−1.

This result also applies when the two minus signs are
changed to plus, and the plus to minus. It also has
some useful special cases; for example,

(D ± λtt′)−1 = D−1 ∓ D−1tt′D−1

(λ−1 ± t′D−1t)
.

Generalized Inverses

By analogy with expressions for the inverse, one
might expect (with A− being a generalized inverse
of A)

Q̃ =
[

A− 0
0 0

]
+

[−A− B
I

]

× (D − CA−B)− [−CA− I]

to be a generalized inverse of

Q =
[

A B
C D

]
.

It is, if and only if r(Q) = r(A) + r(D − CA−B).
Satisfying this rank condition depends upon A−. For
some values of A− the condition will be satisfied and
for others it will not. Only when it is satisfied will Q̃
be a generalized inverse of Q.
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Direct Sums

The direct sum of matrices A and B, each of any
order, is defined as

A ⊕ B =
[

A 0
0 B

]
.

Extension to the direct sum of more than two matrices
is straightforward.

Provided that the needed conformability require-
ments are met,

(A ⊕ B) + (C ⊕ D) = (A + C) ⊕ (B + D),

(P ⊕ Q)(L ⊕ M) = PL ⊕ QM,

and

(X ⊕ Y)−1 = X−1 ⊕ Y−1.

Direct Products

The direct product of two matrices, each of any order,
is defined as

Ap×q ⊗ Bm×n =



a11B . . . a1qB

...
ap1B . . . apqB





pm×qn

= {m aij B} p q

i=1,j=1.

It is sometimes called the Kronecker product. Some
properties follow – assuming that conformability re-
quirements are met:

1. x′ ⊗ y = yx′ = y ⊗ x′;
2. λ ⊗ A = λA = A ⊗ λ;
3. (A ⊗ B)′ = A′ ⊗ B′, not B′ ⊗ A′;
4. (A ⊗ B)(X ⊗ Y) = AX ⊗ BY;
5. (P ⊗ Q)−1 = P−1 ⊗ Q−1, not Q−1 ⊗ P−1;
6. [A1 A2] ⊗ B = [A1 ⊗ B A2 ⊗ B],

A ⊗ [B1 B2] �= [A ⊗ B1A ⊗ B2];
7. r(A ⊗ B) = r(A)r(B);
8. tr(A ⊗ B) = tr(A)tr(B);
9. |Ap×p ⊗ Bm×m| = |A|m|B|p.

Sometimes A ⊗ B = {aij B} as defined above is called
the right direct product, to distinguish it from B ⊗ A,
which is then called the left direct product; and on
rare occasions {aij B} will be found defined as B ⊗ A.

Eigenvalues and Eigenvectors

The equation

Au = λu, i.e. (A − λI)u = 0,

has solutions for u provided that A − λI is singular.
This occurs when

|A − λI| = 0.

This is called the characteristic equation of A; for
An×n it is a polynomial of order n and therefore has
n solutions for λ. Those solutions are the eigenvalues
(or eigenroots) of A. They can be real or complex,
positive or negative, or zero. For each eigenvalue, λ∗
say, a corresponding value of u can be obtained from
solving the equations (A − λ∗I)u = 0, as

u∗ = [I − (A − λ∗I)−(A − λ∗I)]z

for arbitrary z. (Searle [4, Section 11.4] has details.)
u∗ is the eigenvector corresponding to λ∗.

Numerical Example

For

A =
[ 2 2 0

2 1 1
−7 2 −3

]
,

the characteristic equation |A − λI| = 0 reduces to
(λ − 1)(λ − 3)(λ + 4) = 0, so that the eigenvalues
are 1, 3, and −4. For λ∗ = 1 the eigenvector, from
the equation for u∗,

u∗ =


I −
( 1 2 0

2 0 1
−7 2 −4

)− ( 1 2 0
2 0 1

−7 2 −4

)


[

z1

z2

z3

]

=
[

I + 1
4

( 0 −2 0
−2 1 0

0 0 0

) ( 1 2 0
2 0 1

−7 2 −4

)] [
z1

z2

z3

]

=
[

I + 1
4

( −4 0 −2
0 −4 1
0 0 0

)] [
z1

z2

z3

]

=



0 0 − 1

2

0 0 1
4

0 0 1








z1

z2

z3



 =



− 1

2 z3

1
4 z3

z3



 for any z3 �= 0.

Similarly, for λ∗ = 3,

u∗ =


I −
( −1 2 0

2 −2 1
−7 2 −3

)− (−1 2 0
2 −2 1

−7 2 −3

)

 z



Matrix Algebra 13

=
[

I − 1

2

( −2 −2 0
−2 −1 0

0 0 0

)( −1 2 0
2 −2 1

−7 2 −3

)]
z

=
[

I − 1

2

( −2 0 −2
0 −2 −1
0 0 0

)]
z =




0 0 −1

0 0 − 1
2

0 0 1



 z

=



−z3

− 1
2 z3

z3



 .

The case of λ∗ = −4 is left to the reader.

Properties of Eigenvalues

See Eigenvalue.

Properties of Eigenvectors

See Eigenvector.

Some Summaries

Orthogonal Matrices

Any two of (i) A being square, (ii) AA′ = I, and
(iii) A′A = I imply the third; and define A as being
orthogonal. The properties of orthogonal A include
the following

1. Rows (columns) are orthonormal;
2. |A| = ±1;
3. λ being an eigenroot of A implies that 1/λ is

also;
4. AB is orthogonal when A and B are.

Idempotent Matrices

Idempotent A of order n has the following properties:

1. A2 = A;
2. A is singular, unless A = I;
3. r(A) = tr(A);
4. I − A is idempotent, with r(I − A) = n − r(A);
5. If A is also symmetric (but not I) it is positive

semidefinite, and can be expressed as A = LL′
for L′L = I;

6. For idempotent A and B, AB is idempotent if
AB = BA;

7. r(A) eigenvalues of A are 1.0, and n − r(A)

are 0;

8. There is a U such that

U−1AU =
[

Ir(A) 0
0 0

]
;

9. P = I − X(X′X)−X′ is idempotent, and is very
useful in statistics.

Matrices aI + bJ

The matrix aI + bJ for J = 11′ occurs in a number
of analysis of variance situations in statistics. When
of order n it has the following properties:

(a1I + b1J)(a2I + b2J) = a1a2I + (a1b2 + a2b1

+ nb1b2)J,

(aI + bJ)−1 = 1

a

(
I − b

a + nb
J
)

,

|aI + bJ| = an−1(a + nb).

Eigenvalues are a, n − 1 times, and a + nb once.

Nonnegative Definite Matrices

If A is nonnegative definite (n.n.d.):

1. x′Ax ≥ 0, for all x �= 0;
2. A is assumed to be symmetric, because otherwise

it can be replaced by 1
2 (A + A′);

3. |A| ≥ 0;
4. Diagonal elements of A are ≥ 0;
5. Principal leading minors are ≥ 0;
6. Eigenvalues are ≥ 0;
7. For A is positive definite (p.d.), all the above ≥

0 symbols become > 0;
8. For real X, X′X is n.n.d.

For real X of full column rank:

1. X′X is p.d.;
2. (X′X)−1 exists;
3. XX′ has Moore–Penrose inverse X(X′X)−2X′.

Canonical and Other Forms

For any matrix Ap×q of rank r:

1. Equivalent canonical form:

PAQ =
[

Ir 0
0 0

]
, P and Q nonsingular.



14 Matrix Algebra

2. Similar canonical form:

AU = UD{λ},
where D{λ} is the diagonal matrix of eigenvalues;
and U is the matrix of corresponding eigenvec-
tors. U−1 exists when the diagonability theorem
is satisfied (see Eigenvector), and then

U−1AU = D{λ}.
3. Singular-valued decomposition:

A = L
[

�r 0
0 0

]
M′,

where L and M are each orthogonal, and �r =
(�2)1/2, where

L′AA′L =
[

�2 0
0 0

]
and

M′A′AM =
[

�2 0
0 0

]
,

with �2 being the diagonal matrix of the (posi-
tive) eigenroots of A′A (or, equivalently, of AA′).

For symmetric A of order p and rank r:
4. Diagonal form:

PAP′ =
[

Dr 0
0 0

]
, with Dr diagonal, order r.

When A is n.n.d., elements of Dr are positive.
5. Congruent canonical form:

RAR′ =
[

Ir 0
0 0

]
, for R possibly complex.

When A is n.n.d., R is real.
6. Orthogonal similar canonical form:

U′AU = D{λ},
with U being orthogonal and U−1 = U′.

7. Spectral decomposition:

A =
∑

i

λiuiu′
i ,

for λi being an eigenvalue and ui its correspond-
ing eigenvector.

Solving Equations by Iteration

Current computing facilities provide numerous meth-
ods of arithmetically solving equations which can-
not be solved algebraically. Matrix notation permits
succinct description of one of these methods.

For n equations in n unknowns, represented by x,
let the equations be

f(x) = 0, (1)

and define

G(x) = {gij (x)} =
{

∂

∂xj

fi(x)

}
for

i, j = 1, . . . , n. (2)

Suppose that xr is an approximate solution for x to
f(x) = 0. Then an improved approximation is xr+1

for

f(xr+1) = f(xr ) + G(xr )�r , (3)

where

�r = xr+1 − xr . (4)

Were xr+1 to be a solution to (1) then f(xr+1) would
be 0 and (3) would yield

�r = −[G(xr )]
−1f(xr ), (5)

and with this, (4) gives

xr+1 = �r + xr . (6)

In this way, (5) and (6) provide an iterative procedure
for calculating a solution: for some initial value x0,
use (5) to obtain �0 and then (6) to obtain x1; and
back to (5) to obtain �1, and so on.

Differential Calculus with Matrices

A number of situations in statistics involve maxi-
mizing or minimizing a function: for example, maxi-
mum likelihood estimation, least squares estimation,
minimum variance procedures, minimizing loss func-
tions, and so on. In many cases, differentiation of
matrix expressions is involved, for which the follow-
ing results are often useful.
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Differentiating with Respect to a Scalar

Suppose that the elements of A = {aij } are functions
of a scalar x. Then

∂A
∂x

=
{

∂aij

∂x

}
,

∂A−1

∂x
= −A−1 ∂A

∂x
A−1,

A
∂A−

∂x
A = −AA− ∂A

∂x
A−A,

where A− is a generalized inverse of A, satisfying
AA−A = A. Also,

A
∂(A′A)−

∂x
A′ = −A(A′A)− ∂(A′A)

∂x
(A′A)−A′.

Also, for A = A′ and elements of T not involving x,

P = T(T′AT)−1T′ has
∂P
∂x

= −P
∂A
∂x

P.

Differentiating with Respect to Elements of a
Vector

The basis of differentiating with respect to elements
of x is defining what is meant by ∂/∂x. This is
important, because the definition determines the form
of its various applications, and because not all writers
use the same definition. Any presentation of this topic
should therefore start by defining ∂/∂x.

A widely used convention is that, for x being a
column vector, ∂/∂x is also: thus, for x = [x1 . . . xn]′,
we define

x = {c xi}ni=1 and
∂

∂x
=

{

c

∂

∂xi

} n

i=1

.

Thus ∂/∂x is a vector of differential operators. With
this definition come the following basic results:

∂

∂x
(a′x) = ∂

∂x
(x′a) = a and

∂

∂x
(x′A) = A.

Then, in order to maintain feasible matrix dimen-
sions, the convention is adopted that

∂

∂x
(Ax) = ∂

∂x
(x′A′),

and so
∂

∂x
(Ax) = A′.

This leads to

∂

∂x
(x′Ax) = Ax + A′x for A not symmetric,

= 2Ax for A symmetric.

Differentiating with Respect to Elements of a
Matrix

Again, the basic definition is important: for scalar θ

and Xp×q ,

∂θ

∂X
=

{

m

∂θ

∂xij

} p q

i=1 j=1

.

For X having functionally unrelated elements,

∂

∂X
[tr(XA)] = A′.

But for symmetric X,

∂

∂X
[tr(XA)] = A + A′ − diag(A),

where diag(A) is the diagonal matrix of the diagonal
elements of A. Of course, these results also apply to
tr(AX) = tr(XA).

Differentiating Determinants

Let xij be the (i, j )th element of X, and let |Xij | be
its cofactor in |X|. Then, for X having functionally
unrelated elements:

∂|X|
∂xij

= |Xij |, ∂|X|
∂X

= |X|(X−1)′,

and
∂

∂X
log |X| = (X−1)′.

For symmetric X, comparable results are

∂|X|
∂xij

= (2 − δij )|Xij |,

where δij = 0 except when i = j , and then δii = 1,

∂|X|
∂X

= |X|[2X−1 − diag(X−1)],

and
∂

∂X
log |X| = 2X−1 − diag(X−1).
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Finally, for any nonsingular X, symmetric or not,

∂

∂y
log |X| = tr

(
X−1 ∂X

∂y

)
.

Jacobians

When y is a vector of n differentiable functions of
the n elements of x, such that the transformation of x
to y, to be denoted x → y, is 1-to-1, then the matrix

Jx→y =
(

∂x
∂y

)
=

{

m

∂xj

∂yi

} n n

i=1 j=1

is the Jacobian matrix of x → y. For example, if
y = Ax,

Jx→y =
[

∂(A−1y)′

∂y

]
= (A−1)′.

||Jx→y||, the positive value of the determinant of
Jx→y, is called the Jacobian of x → y. It is needed
when using x → y on an integral such as

ϕ =
∫

f(x) dx,

where f(x) is a scalar function of elements of x. If
x → y is y = g(x), then

ϕ =
∫

f(g−1[y])||Jx→y|| dy.

With the identity ||Jx→y|| ≡ 1/||Jy→x||, with ele-
ments of Jy→x sometimes being easier to derive
than those of Jx→y, and when notation other than
x and y is the context, confusion easily arises as to
whether ϕ involves Jx→y or Jy→x. Fortunately, there
is a mnemonic that clarifies the situation. Defining
the transformation as old → new, one always uses
Jold→new, abbreviated to Jo→n. In the latter the sub-
scripts are always in the sequence “on”, not “no”.
This always works.

Vec and Vech Operators

Vec and vech are operators that vectorize a matrix.
It can be done in various ways, the most useful of
which is stacking the columns of a matrix one under

the other. For Xp×q , the resulting column is denoted
vec X, a column of order pq. For example,

X =
[

1 2 3
a b c

]
gives vec X =





1
a

2
b

3
c




.

Three useful properties are as follows:

vec(ABC) = (C′ ⊗ A)vec B,

tr(AB) = (vec A′)′vec B,

tr(AZ′BZC) = tr[Z′(BZCA)]

= (vec Z)′vec(BZCA)

= (vec Z)′(A′C′ ⊗ B)vec Z.

The operator vech X is defined for X being sym-
metric. It has the columns of X, starting at the
diagonal elements, stacked one under the other. For
example,

X =
[ 1 2 3

2 x y

3 y α

]
has vech X =





1
2
3
x

y

α




.

Henderson & Searle [1, 2] give some history and
numerous details.

A particular use of vec and vech is in calculating
||JX→Y||. This is the positive value of the determinant
of

JX→Y = ∂(vec X)′

∂(vec Y)′
,

and if X and Y are both symmetric, vec is replaced
by vech.

Matrices having Complex Numbers as
Elements

Because statistics almost always deals with real
numbers (e.g. data) and not complex numbers that
involve i = √−1, most of this article deals with real
matrices, those having no complex numbers as ele-
ments. Nevertheless, since many texts do deal with
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matrices of complex numbers, a few basic definitions
are given here.

In scalar arithmetic the complex number a − ib

is called the complex conjugate of a + ib, and the
two numbers are a conjugate pair. Likewise with
matrices, M = A − iB is the complex conjugate of
M = A + iB, with M and M being a conjugate pair.
M is said to be Hermitian when M

′ = M; and M
is unitary if M

′
M = I. Thus, being Hermitian is the

complex counterpart of being symmetric, as is unitary
of orthogonal.

Some Matrix Usage in Statistics

The development and description of statistical me-
thodology benefits enormously from the use of matri-
ces. The following examples briefly illustrate some of
the widely used situations in which matrix notation
so efficiently encapsulates a multitude of results.

Means and Variances

x being a vector of random variables with mean µ

implies that E(x) = µ, where E represents expec-
tation. Then, because the ith element of x has a
variance, σ 2

i , and each pair of elements, the ith and
j th say, have a covariance, σij , these variances and
covariances can be arrayed in a symmetric matrix,
called the variance–covariance matrix, for which
we use the symbol �. For example, for x of order 3,

� = var(x) =
[

σ 2
1 σ12 σ13

σ12 σ 2
2 σ23

σ13 σ23 σ 2
3

]
.

A more general expression is

� = var(x) = E(x − µ)(x − µ)′.

For a linear change of variables, from x to y = Tx,
the mean vector and the variance–covariance matrix
are easily established as

E(y) = E(Tx) = TE(x) = Tµ

and

var(y) = var(Tx) = E(Tx − Tµ)(Tx − Tµ)′

= ET(x − µ)(x − µ)′T′ = T�T′.

Suppose that T is a row vector, t′. Then, because
a variance is never negative, var(t′y) = t′�t ≥ 0 and
so � is n.n.d.

Correlation

A correlation matrix, P say, is a matrix with
1.0 as its diagonal elements and correlations ρij =
σij /(σ

2
i σ 2

j )1/2 (for i �= j ) as its off-diagonal elements.
Define D as the diagonal matrix of the σ 2

i terms. Then
P = D−1/2�D−1/2.

A frequently used form of � is one which has σ 2

for all diagonal elements (variances) and ρσ 2 for all
off-diagonal elements (covariances). Then,

� = σ 2P for P = (1 − ρ)I + ρJ,

and, for order k,

|�| = σ 2k(1 − ρ)k−1(1 − ρ + kρ).

Since � is n.n.d., |�| ≥ 0, which implies that 1 +
(k − 1)ρ ≥ 0; that is, ρ ≥ −1/(k − 1). This is a con-
sequence that one would not be inclined to anticipate
on assuming the same covariance, ρ σ 2, between each
pair of variables.

Sums of Squares and Products

For a column vector xj , the j th column of X, the sum
of squares of its elements xij is

∑
i x2

ij = x′
j xj ; and∑

i xij xij ′ = x′
j xj ′ . Thus, X′X = {m x′

j xj ′ } is a matrix
of these sums of squares and products.

For xj having n elements, define Cn = In −
Jn, the centering matrix of order n. Then, X′CnX
has terms

∑
i (xij − x ·j )2 in its diagonal and

terms
∑

i (xij − x ·j )(xij ′ − x·j ′) as its off-diagonal
elements, with x ·j = 1′

nxj /n. It is the matrix of sums
of squares and products corrected for the mean.

If � is defined as the diagonal matrix of the dia-
gonal elements of X′CX, then the correlation matrix
P = D−1/2�D−1/2 described earlier is estimated by
R = �−1/2X′CX�−1/2.

The Multivariate Normal Distribution

The density function of a normally distributed
random variable x having mean µ and variance σ 2 is
{exp[− 1

2 (x − µ)2/σ 2]}/(2πσ 2)1/2. The counterpart
of this for a vector x of random variables
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distributed N(µ, �), means that this x has
mean µ and variance–covariance matrix �,
with a multivariate normal distribution, which
is {exp[− 1

2 (x − µ)′�−1(x − µ)]}/(|2π�|)1/2. The
moment generating function of linear combinations
Kx of x is exp(t′Kµ + 1

2 t′K�K′t).
A very neat consequence of using matrices is the

derivation of marginal and conditional distributions
in the multivariate normal distribution x ∼ N(µ, �).
It stems from partitioning x, µ, and � as

x =
[

x1

x2

]
, µ =

[
µ1

µ2

]
and

� =
[

�11 �12

�21 �22

]

with �21 = (�12)
′. Then a marginal distribution is

x1 ∼ N(µ1, �11)

and a conditional distribution is

x1|x2 ∼ N[µ1 + �12�
−1
22 (x2 − µ2),

�11 − �12�
−1
22 �21].

Details are available in Searle [3, Section 2.4f].

Quadratic Forms

Every sum of squares is a homogeneous second-
degree function of data. It can therefore be repre-
sented as a quadratic form x′Ax for x being the vector
of data and A being symmetric. A variety of proper-
ties pertaining to x′Ax are then available for whatever
sums of squares one is interested in. Some of these
properties for x ∼ N(µ, �) are as follows:

1. E(x′Ax) = tr(A�) + µ′Aµ (normality is not
needed for this result);

2. var(x′Ax) = 2tr(A�)2 + 4µ′A�Aµ;
3. x′Ax has a (noncentral) chi-square distribution

if and only if A� is idempotent;
4. x′Ax and Lx are stochastically independent if and

only if L�A = 0;
5. x′Ax and x′Bx are stochastically independent if

and only if B�A = 0 or, equivalently, A�B = 0.

Regression and Linear Models

There is an enormous volume of literature on these
topics, most of it using matrix algebra. Only a minute
sampling of it is given here.

Consider a vector of data y, modeled as having
expected value E(y) = Xβ with X being known and
β being a vector of unknown parameters. Defining ε

as y − E(y), a vector of residuals leads to modeling
y as y = Xβ + ε. Least squares estimation of β

dictates minimizing (y − Xβ)′(y − Xβ) with respect
to β and taking the resulting value of β, say β̂, as the
estimator of β. This leads to the equations X′Xβ̂ =
X′y. In regression (see Multiple Linear Regression)
X almost always has full column rank, so that X′X
is nonsingular and hence β̂ = (X′X)−1X′y. But with
many more general linear models (X′X)−1 does not
exist and a generalized inverse (X′X)− has to be
used. In that case there are many solutions for β̂,
and to indicate this they can be denoted by βo. Thus,
βo = (X′X)−X′y.

Since βo becomes β̂ when (X′X)−1 exists, the
properties of β̂ are included among those of βo, just
a few of which are as follows:

1. There are many solutions, βo, but for each
of them ŷ = Xβo = X(X′X)−X′y is the same,
because X(X′X)−X′ is invariant to (X′X)−.

2. E(βo) �= β, but E(Xβo) = Xβ.
3. The residual sum of squares

SSE = (y − ŷ)′(y − ŷ) = y′y − y′X(X′X)−X′y

is invariant to (X′X)−. Because it can be
expressed as SSE = y′[I − X(X′X)−X′]y, with
the matrix being idempotent, the expected value
of SSE for y ∼ N(Xβ, σ 2IN) is E(SSE) =
[N − r(X)]σ 2. Also, SSE/σ 2 has a chi-square
distribution. Moreover, the sum of squares due
to fitting the model is y′X(X′X)−X′y; it too has
a (noncentral) chi-square distribution, and it is
stochastically independent of SSE.

Readers whose appetite has been whetted by this
introduction to regression and linear models will find
plenty of books and papers to satiate their hunger.
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Matrix Computations

Much of the development and formulation of
the mathematical and statistical models that bio-
statisticians use relies heavily on matrix notation
(see Matrix Algebra). For example, matrix notation
is often the preferred way to describe the mathe-
matics underlying many of the procedures in statisti-
cal packages (see Software, Biostatistical). Routines
are now widely available that implement standard
matrix operations including matrix multiplication and
the solution of systems of linear equations, facili-
tating computer implementation of matrix formulas
presented in the literature. Some knowledge of the
alternative available algorithms is helpful both for
implementers of matrix formulas and for users of
existing statistical package implementations. In the
following we comment on some alternative widely
used approaches to linear least squares and related
calculations.

Areas where matrix computations have a large
place include regression methods, multivariate an-
alysis, maximum likelihood estimation, robust esti-
mation, smoothing, and optimization. Linear matrix
computational methods are more generally important
because nonlinear problems are frequently handled by
solving a sequence of linearized problems. Numerical
linear algebra is, effectively, another name for matrix
computations.

Modern numerical matrix algebra gains much of
its power from the use of a relatively small number
of matrix decompositions, whose numerical proper-
ties are well understood. Major aims are guaranteed
accuracy, speed of computation (efficiency), and the
ability to handle all inputs [6, 7, 9]. The article [9]
discusses several topics that we omit or only mention
in passing.

Implementing Matrix Computations

Matrix computations must reckon with the finite
precision of computer arithmetic. Most common
computers now implement the IEEE standard for
floating point arithmetic, which has around seven
decimal digits single-precision and around 16 deci-
mal digit double-precision arithmetic. The double-
precision standard is a sound basis on which to build
accurate and reliable algorithms.

Technical accuracy and efficiency issues are rea-
sons for providing expert “black box” implemen-
tations of what might appear simple calculations
such as ||x|| = (x′x)1/2 and matrix multiplication.
Specifications for sets of lower-level routines have
been established in the numerical analysis literature,
where they are known as BLAS (basic linear algebra
subroutines) [1]. The BLAS, or other such lower-
level routines, then make effective building blocks
in the creation of higher-level routines.

Understanding Matrix Methods

There are often, in matrix computations just as else-
where, several different ways to solve the same
problem. Knowledge of matrix algorithms may allow
the substitution of one algorithm for another when
required. For example, a published formula may
involve a matrix operation not found in available
software. Additional information that is required
from a routine may be available, for someone who
understands the algorithm, as an adaptation of exist-
ing output.

Often it is helpful to know what accuracy can rea-
sonably be expected from a calculation. When results
from different algorithms for the same problem differ
numerically (perhaps in decimal places after the third
or fourth), which is more accurate? What character-
istics of input data may lead to such differences in
accuracy? Knowledge of the algorithm may be even
more important when a calculation fails.

Matrix Inversion

The use of matrix inverses is a convenience in writing
down matrix formulas. However, direct implementa-
tion of such formulas rarely leads to algorithms that
are optimal for practical computation. For example,
solving Sb = c for b is preferable to forming S−1 and
computing b = S−1c. Avoiding unnecessary matrix
inversion reduces computational effort, leading to a
small improvement in precision. There is a choice
of default actions where the inverse does not exist.
Later in this article we illustrate approaches which
avoid the explicit calculations of matrix inverses.

Linear Least Squares

Linear least squares has been the context for much of
the discussion of statistical matrix computations. As
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well as being important for linear least squares, the
matrix computations we describe are important build-
ing blocks for many other statistical computations.

We consider the contrived example

(X|y) =





1 7 8 6

1 −3 4 4

1 2 2 0

1 2 2 6

1 7 6 5

1 2 4 7

1 −3 2 3

1 2 4 1

1 2 4 4





.

Given X(n × p) and y(n × 1), least squares calcula-
tions determine b(p × 1) such that

(y − Xb)′(y − Xb) = ||y − Xb||2 (1)

is a minimum. In the example above one minimizes
the sum of squares [6 − (b1 + 7b2 + 8b3)]2 + [4 −
(b1 − 3b2 + 4b3)]2 + · · ·

Algebraically, the linear least squares problem (1)
is equivalent to solving what are called the normal
equations, i.e.

X′Xb = X′y. (2)

If S = X′X is singular, theoretical arguments show
that the normal equations are consistent, but rather
than just one solution there are an infinity of solu-
tions. An example appears below in the section on
linear dependencies.

We describe and contrast two approaches to the
linear least squares problem, one of which forms and
solves the normal equations, while the other (the QR
method) avoids formation of the normal equations.

A Normal Equation Approach

An effective way to solve the normal equations is to
use the Cholesky algorithm, which modifies Gaussian
elimination to take advantage of the symmetry of the
normal equation matrix of coefficients. Diagrammat-
ically, the steps are

(X|y) →
( X′X X′y

(X′y)
′ y′y

)
→

( R d

0′ ryy

)
. (3)

The normal equations X′Xb = X′y reduce to Rb = d,
where R is p × p upper triangular, i.e. below diag-
onal elements are zero. (It might also be described
as right triangular, which perhaps justifies the sym-
bol R.) It is convenient to take R to be the upper
triangular matrix which is formed by the Cholesky
decomposition of X′X, i.e. R′R = X′X. On the right-
hand side of (3), R is augmented with an additional
row and column, to form an array which is the
Cholesky decomposition of (X|y)′(X|y).

For our numerical example the system of equa-
tions Rb = d is





3 6 12

0 10 4

0 0 4









b1

b2

b3



 =




12

2

2



 .

Calculations are completed by solving first for b3(= 1
2

)
, then for b2(= 0) in terms of b3, and finally

for b1(= 2) in terms of b2 and b3.

The QR Method for Linear Least Squares

Our description will emphasize points of contact with
the normal equations approach. The QR method omits
the intermediate step in (3). It determines

Q(X|y) =
( R d

0 z

)
, (4)

where Q(n × n) is a product of orthogonal matri-
ces and is hence orthogonal, i.e. Q′Q = QQ′ = I =
diag(1, . . . , 1). The vector z is (n − p) × 1. If we
insist that R have positive diagonal elements, then it
is algebraically identical to the matrix R formed by
the Cholesky decomposition of X′X. The quantity z′z
is the sum of squares of residuals from the regression,
and equals r2

yy .

Other Methods for Least Squares

Other methods for least squares include the once pop-
ular Gauss–Jordan scheme, which calculates (X′X)−1

as well as b. There are in addition a range of iterative
methods for least squares, which have found particu-
lar application in large sparse problems [3, 6, 9].
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Linear Dependencies

In the data set

(X|y) =





1 −2 −4 −1

1 1 −1 0

1 2 0 4

1 5 3 7



 ,

the third column is the difference between the second
column and twice the first column. Linear dependen-
cies, of which this is a trivial example, arise in least
squares problems when one or more variables are a
linear combination of earlier variables. The normal
equations are




4 6 − 2

6 34 22

−2 22 26








b1

b2

b3



 =



10

45

25



 .

The matrix of coefficients S = X′X is, because the
coefficients in row 3 are the difference between
row 2 and twice row 1, singular. Hence S−1 does
not exist. Nevertheless the coefficients are, because
from normal equations, consistent. With b3 chosen
arbitrarily, b2 = 1.2 − b3 and b1 = 0.7 + 2b3. Such
nonunique solutions occur when one variable or term
in a model is a linear combination of other terms.

In analysis of variance applications, dependencies
may arise because there are inadequate data to allow
the estimation of one or more parameters associated
with main effects or interactions. Alternately, one
or more explanatory variables may be an exact
linear combination of other terms in the model, and
a decision is needed on which terms to include.
Dependencies may be a result of an unanticipated
feature of the input data, or of a mistake in the data.

Dependencies are, when working with observa-
tional data on a large number of variables, sur-
prisingly common. They may be a huge source of
frustration, especially if the program responds by
exiting with an uninformative error message. Sensible
default actions, and information on the coefficients of
the linear relation, may be a huge help. Where column
i of X is a linear combination of earlier columns, an
easy device which will allow calculations to continue
is to set bi to zero, effectively deleting column i of
X. It would be useful to have criteria for detecting
instances where a near singularity may make results
nonsensical or hard to interpret. Regrettably, there

are no effective simple criteria that will cover all
circumstances.

Normal Equations vs. QR

At a fixed level of numerical precision the QR decom-
position will solve a wider range of problems than
normal equation methods. The difference is marked
when there are strong dependencies between the
columns of X, leading to a large standard error for
one or more elements of b. A consequence of large
standard error(s) is that the additional numerical pre-
cision is unlikely to be statistically meaningful.

The solution of the normal equations retains very
nearly the accuracy of X′X and X′y. Where X has
an initial column of ones, precision may be assisted
by expressing values in remaining columns as differ-
ences from the column mean, prior to forming X′X
and X′y. Careful implementations of normal equa-
tion methods take this precaution. The precision of
X′X and X′y is then equivalent to that of an accu-
rately formed correlation matrix. In applications in
the biological and social sciences, where differences
from the mean are rarely accurate to more than two or
three significant digits, this seems adequate precision.

Caution may nevertheless advise use of the QR
method except in those applications – unbalanced
analysis of variance, for example – where columns
of X are unlikely to be highly correlated. There is a
helpful discussion in [5] which compares the normal
equation method with QR (see also [6]).

QR Algorithms

Another name for the QR method is orthogonal
reduction to upper triangular form. Available algo-
rithms for QR include Householder and modified
Gram–Schmidt (MGS), which proceed columnwise,
and the Givens algorithm, which operates on new
rows one at a time to incorporate them into the current
version of R. We discuss these in more detail below.
Elements of Q are unlikely to be stored explicitly;
instead, key quantities are stored from which Q can
be reconstructed as required.

Algorithms for QR factorization effectively form
rows of R as linear combinations of rows of X rather
than as linear combinations of rows of X′X. They
avoid the loss of accuracy which, in normal equation
methods, may occur in the formation of X′X and X′y.
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There is some additional computational cost. When
p is much smaller than n, use of QR approximately
doubles the number of multiplications and divisions
compared with using the normal equations.

Various diagnostic and other information that
may be required for least squares modeling
may be computed straightforwardly from subma-
trices of Q. Examples include leverage statis-
tics (see Diagnostics), and the variance–covariance
matrix of residuals. Brief details appear in a later
section.

Some Key Matrix Methods

Here we discuss in more detail several algorithms
that have major importance in statistical computation,
including algorithms mentioned above. We empha-
size the connections between algorithms which, to
first appearance, are quite different.

Cholesky Decomposition

Given a positive definite matrix S, perhaps formed
as X′X, the Cholesky decomposition determines an
upper triangular matrix R such that S = R′R. Equiva-
lently, one may form S = U′DU, where D is diagonal
and U is upper triangular with unit diagonal.

Several algorithms are available, which differ in
the order in which they form elements of R. In the
version we now describe, elements in the first row of
R are formed as

r11 = √
s11, r1j = r−1

11 s1j , j = 1, . . . , p.

Then, for i = 2, . . . , p, calculate

s
(i−1)
ij = sij −

i−1∑

k=1

rkirkj , j = i, . . . , p,

and

rii = [s(i−1)
ii ]1/2, if (i < p) rij = r−1

ii s
(i−1)
ij ,

j = i + 1, . . . , p.

Note that if X has an initial column of ones and
remaining columns are centered by expressing values
as differences from the column mean, then 1 −
s−1
ii s

(i−1)
ii is the squared multiple correlation mea-

suring the dependence of column k of X on earlier

columns. Where rii = 0, all elements in that row may
be set to zero.

The Cholesky decomposition may be used in solv-
ing the generalized weighted least squares problem,
where W is a positive-definite symmetric weighting
matrix. Observe that if U is upper triangular such that
U′U = W, then

(y − Xb)′W(y − Xb) = (y∗ − X∗b)′(y∗ − X∗b),

where y∗ = Uy, X∗ = UX. This is now in the form
of (1).

Simulation from a multivariate normal distri-
bution with p × p variance–covariance matrix � =
R′R may be handled by setting u = R′x, where ele-
ments of x are independent normal random deviates
each with mean 0 and variance 1.

The Householder QR Algorithm

The Householder QR algorithm has wide application
apart from least squares. It is, for example, used in
forming the singular value decomposition, which we
describe below. It is usually motivated by describing
the matrix Q of (4) as a product of Householder
reflections

I − 2wiw′
i

τi

, i = 1, . . . , p,

where τi = ||wi ||2. The first reflection reduces to zero
elements all elements except the first in the initial
column of X, replacing the first row of X by the first
row of R. The second takes the matrix so formed
and reduces to zero all elements below the second
row in its second column, replacing the second row
of this matrix with the second row of R. In the
adaptation of the Householder method, for which
we give algebraic details, one or more rows of R
may differ from the result of applying Householder
reflections by a change of sign of all elements in
the row [8]. This simplifies the detailed algebraic
description and simplifies the algorithm.

Let x(k−1)
j (j ≥ k) be the result of applying rota-

tions 1, . . . , k − 1 to column j of X, but with
elements 1, . . . , k − 1 set to zero when k > 1. Then

rkk =
∥∥∥x(k−1)

k

∥∥∥ , rkj = r−1
kk

(
x(k−1)

k

)′
x(k−1)

j ,

j > k. (5)
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For elements in rows after the kth we use

x(k)
j = x(k−1)

j − α−1
k

(
x

(k−1)
kj sgn

(
x

(k−1)
kk

)

+ rkj

)
x(k−1)

k , j > k,

where αk = |xkk| + rkk.
Where a column is a linear combination of earlier

columns, this leads to rii = 0. The easiest way to deal
with this is to move any such column to the final
column position. More generally, the columns of X
may be permuted so that columns which are highly
dependent on earlier columns are taken last – a device
known as pivoting. The initial order of columns can,
if this is required, be restored when calculations are
complete. Additional orthogonal rotations may be
required to recover the matrix R that corresponds to
the original ordering.

The Modified Gram–Schmidt QR Algorithm

If the variant of Householder just described is applied
to a matrix X which is augmented with p initial
rows of zeros, this leads, essentially, to the modi-
fied Gram–Schmidt (MGS) algorithm [8]. The MGS
algorithm may be described in terms of residuals from
repeated regressions. This statistical interpretation is
a main reason for mentioning it here.

Let e(k−1)
j be the vector of residuals when the

column j, j ≥ k, of X is regressed on columns
1, . . . , k − 1. Then the MGS algorithm forms

rkk =
∥∥∥e(k−1)

k

∥∥∥ , rkj = r−1
kk

(
e(k−1)
k

)′
e(k−1)
j .

Thus the MGS algorithm uses least squares vectors
of residuals to form elements of R. For details see [3,
6–8, 10, 11].

The Givens QR Algorithm

This algorithm operates on X one row at a time,
where Householder and modified Gram–Schmidt
operate on columns. It is useful where the QR decom-
position must from time to time be updated as new
data become available.

The matrix R is filled initially with zeros. Planar
rotations, ( cos θ sin θ

− sin θ cos θ

)
, (6)

then rotate rows of X, one at a time, into the upper
triangular array. Thus R is sequentially updated as
each new row of X is rotated into the upper triangular
scheme. The rotations which operate on row k (k >

p) of X replace yk with zk , where z2
k is the increase in

the residual sum of squares when row k is included.
The planar rotations in the Givens QR algorithm are
often called Givens rotations.

Another use for planar rotations is to remove rows
that were earlier included, i.e. to downdate R. A
stable algorithm requires access to the matrix Q [3,
6]. The algorithm in [4] is as stable as possible when
Q is not available.

Orthogonalization of the Columns of X

One way to view the QR method is that it reduces
the problem of minimizing ||y − Xb|| to that of min-
imizing ||y − X∗b∗||, where X∗ = XR−1 and b∗ =
Rb. It replaces X by a matrix X∗ the columns of
which are orthogonal, i.e. (X∗)′X∗ is the matrix I =
diag(1, . . . , 1).

Let

Q =
(

Q1

Q2

)
, (7)

where Q1 is p × n and Q2 is (n − p) × n. Then
it may be shown that Q′

1 = XR−1. Thus, if Q is
available, the matrix X∗ = XR−1 can be extracted as
a submatrix.

Orthogonal Polynomials

Low-order polynomial functions are frequently used
to provide simple curvilinear models for data. If the
covariate x has elements xi, i = 1, . . . , n, then calcu-
lations can in principle be handled as a least squares
calculation in which X has its (i, j )th element equal
to x

j−1
i , i = 1, . . . , n; j = 1, . . . , p. This natural re-

presentation of the problem produces a matrix X
the columns of which are likely to be strongly cor-
related. This gives coefficients which are strongly
correlated, with standard errors which are inflated by
amounts which depend on the correlations.

The QR method may be used as discussed in
(7) to form the matrix X∗ with orthogonal columns.
The first column of X∗ is a constant, the second
is a multiple of x − x, the third involves terms
up to degree two in x, and so on. Even better is
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to use recurrence formulas for systems of orthog-
onal polynomials to generate the columns of X∗
(see Orthogonality). Such use of orthogonal polyno-
mials gives independent and often more interpretable
regression coefficients and avoids numerical instabil-
ity (see Polynomial Approximation).

The Deletion and Addition of Columns

Removal of a column of X is achieved by removing
the corresponding column from R and using a series
of Givens rotations to reduce the resulting matrix to
upper triangular form. The addition of a further col-
umn xp+1 to X is likewise straightforward, providing
Q is available. A further QR reduction is used to
reduce (R, Qxp+1) to upper triangular form.

Singular Value Decomposition (SVD)

This decomposition finds application in principal
components analysis and in many different related
multivariate calculations. It offers yet another app-
roach to least squares calculations [6]. Given an
n × p matrix X, it forms

X = UGV′,

where U is n × n orthogonal, V is p × p orthogonal,
and G is n × p with its only nonzero elements on the
uppermost diagonal, namely the singular values.

One or more singular values that are close to zero
indicates that X is near singular, with the relevant
linear relations given by the corresponding columns
of V. Note that the singular values of X′X are the
squares of those of X. The Golub–Kahan algorithm
for the singular value decomposition first uses House-
holder reflections to reduce X to upper bidiagonal
form, i.e. all elements are zero except those on the
diagonal or in positions immediately above the diag-
onal. Repeated planar rotations, (6), then reduce the
above diagonal elements to zero [6].

Methods for Singular Matrices

Here we examine several technical issues that arise
when matrices are singular or close to singular.

Distance from Singularity

Assume that X has an initial column of ones and
that remaining columns are centered. A statistically

motivated measure of the distance of column k of
X from a linear combination of all other columns
is the inverse (skks

kk)−1 of the variance inflation
factor skks

kk, where skk and skk are the kth diago-
nal elements of X′X and (X′X)−1, respectively. This
variance inflation factor is the amount by which the
standard error of bk is multiplied because of correla-
tion between column k of X and other columns. Note
the relationship

skks
kk = (

1 − R2
k|1,...,k−1,k+1,...,p

)−1
, (8)

with the squared multiple correlation R2
k|1,...,k−1,k+1,...,p

measuring the dependence of explanatory variable k

upon other explanatory variables.

Which are the Linear Dependencies?

Let r(k−1)
k consist of elements 1 to k − 1 in column

k of R. Let R(k−1)

11 be the leading (k − 1) × (k − 1)

submatrix of R. Then the vector of coefficients in the
least squares regression of column k of X on earlier
columns is found by solving for h in

R(k−1)
11 h = r(k−1)

k .

(If rii = 0 for one or more i < k, then set hi = 0.)
Suppose that m diagonal elements of R are zero.

Then by determining all such vectors h we can
construct a matrix H(p × m) with maximum rank m

such that
XH = 0. (9)

Columns of H have the form (h1, h2, . . . , hk−1,

−1, 0, . . . , 0)′. The columns of H are a basis for
the orthogonal complement of the row space of X.
The general solution to the least squares problem is
b̃ = b + Hc, where c is arbitrary. One way to make
b̃ unique is to choose c so that b̃ has minimum
length, which is itself a least squares problem [8],
pp. 106–107, 119. The easiest choice is c = 0.

A Reflexive g-inverse of R

Let R− be obtained from R by replacing zero diago-
nal elements rii with 1, inverting the resulting matrix,
and then placing zeros in the rows and columns where
rii = 0. Then

RR−R = R, R−RR− = R−,
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which are the conditions for R− to be a reflexive g-
inverse of R. The matrix R− may be used in the
calculation of variances and covariances of regres-
sion coefficients that correspond to the choice c = 0
above.

Applications

We give a few examples where an elegant alternative
to matrix inversion reduces computational effort. In
part our aim is to move away from an exclusive focus
on least squares.

Leverages and Standard Errors of Residuals

In least squares, the matrix X(X′X)
−1X′ may be

calculated as XR−1(XR−1)′. If (XR−1)′ is not already
available, it may be determined by solving for
columns of Q1 in the lower triangular system
of equations R′Q1 = X′ (cf. (7)). The leverage
statistic hi , which is the ith diagonal element of
X(X′X)

−1X′, may be calculated as the sum of squares
of elements of the ith column of Q1. Note also
that I − X(X′X)

−1X′ = Q′
2Q2. Thus Q2 may be used

in calculating the variance–covariance matrix of
residuals.

Partial Sums of Squares and Products

We show how to form partial correlations between
columns of Y (n × q), conditional on columns of X
(n × p). Let Z = (1, X, Y), where 1 is a column of
ones. Now use the QR algorithm to form

QZ =




√
n u′

1 u′
2

0 RXX RXY

0 0 RYY



 , (10)

where u′
1 is 1 × p, u′

2 is 1 × q, RXX is p × p, RXY

is p × q, and RYY is q × q.
Then R′

YY RYY is the matrix of sums of squares
and products of the q vectors of residuals from
the regressions of columns of Y on columns of X.
The corresponding matrix of partial correlations is
D−1/2R′

YY RYY D−1/2, where D−1/2 is the diagonal
matrix whose elements are the inverses of the square
roots of the diagonal elements of R′

YY RYY .

Canonical Correlation

We assume the orthogonal reduction in (10) above.
Then computations may be handled by solving the
symmetric eigenproblem

|R′
XY RXY − λR′

YY RYY | = 0. (11)

This may be rewritten as

|(RXY R−1
YY )′RXY R−1

YY − λ1| = 0,

which can be solved by finding the singular value
decomposition of RXY R−1

YY . The canonical correla-
tions φi , where i runs from 1 to min [rank (RXX),
rank (RYY )], are given by

φ2
i = λi

1 + λi

([8], pp. 200–202, 206–208; see Eigenvalue; Eigen-
vector).

Canonical Variate Analysis

Canonical variate analysis provides a perspective on
multivariate analysis of variance. Let Z = (X, Y),
where now columns of Z specify the groups to
which observations belong. Again the orthogonal
reduction of Z to upper triangular form is an effective
starting point for further calculations, leading to an
eigenproblem of the same form as for canonical
correlation [8], pp. 202–203, 208–210.

Matrix Condition Numbers

A matrix condition number κ for a matrix S provides
an indication of the relative sensitivity of Sd or
S−1d to small relative changes in the elements of d.
One possibility is the spectral condition number κ2,
which is the ratio λmax/λmin of the largest to smallest
eigenvalue of S.

Let k = log10 κ2(S). In general one can expect to
lose k digits of accuracy when solving the linear
system

Sx = d

for x, or in computing the inverse of S. Note that
κ2(S) ≥ 1, which means that relative error can never
be expected to decrease in solving a linear system.
A matrix whose condition number is no more than
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10 or 100 is, from a computational perspective, well-
conditioned.

Numerical and Statistical Measures of
Conditioning

Let κ2 be the spectral condition number of the corre-
lation matrix derived from X′X. Then

max
1≤i≤p

(siis
ii ) ≤ κ2 ≤

p∑

i=1

siis
ii ,

where sii and sii are defined as in (8). This makes
a connection between statistical and numerical mea-
sures of conditioning [2, 8], p. 211. The quantity siis

ii

has the benefit that, unlike matrix condition numbers
such as κ2, it is independent of scale.

Note that determination of the minimum value
minb ||y − Xb||2 is well-conditioned, even if X is
singular.

Components of Larger Computations

The notes on computational methods in [5] demon-
strate extensive use of matrix calculations as build-
ing blocks for a wide variety of other statisti-
cal calculations, analysis of variance with multi-
ple error strata (see Multilevel Models), gener-
alized linear models (GLMs), generalized addi-
tive models (GAMs), local regression smoothing
(loess) (see Graphical Displays), and nonparamet-
ric regression; see also [11]. New complications are
inevitable as matrix computational methods are used
to extend the range of models available to statisti-
cians. In models where a variance–covariance struc-
ture must be estimated, the notion of a singularity has
subtleties beyond those of ordinary least squares.

Software

Many statistical packages allow the user to spec-
ify calculations as a sequence of matrix operations.
SAS (in the IML Interactive Matrix Language mod-
ule), SPSS (MATRIX language), STATA, S-PLUS,
R, and Genstat are some of the statistical systems
which have extensive matrix computational abilities.

Statistical packages have generally stayed with nor-
mal equation methods. S-PLUS and R make extensive
use of modern methods such as QR. Note also the
extensive modern matrix abilities in the mathemat-
ically oriented languages of MATLAB, Gauss, and
Mathematica. MATLAB has been used extensively
by numerical analysts [7].

The FORTRAN subroutine package LAPACK [1],
and earlier packages LINPACK, and EISPACK from
which LAPACK is derived, provide high-quality soft-
ware to perform calculations referred to in this arti-
cle. These packages are publicly available from the
NETLIB online database, and are also part of the
NAG and IMSL subroutine libraries.
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Maximum Likelihood

The term “maximum likelihood” refers to a gen-
eral method of estimation with important histori-
cal and practical significance for biostatistics. Con-
sider a sample y1, y2, . . . , yn drawn independently
from a distribution with density or probability func-
tion f (y; θ) with an unknown vector parameter θ

(see Random Variable). The likelihood function is
defined as

L(θ) =
n∏

i=1

f (yi ; θ).

The maximum likelihood estimate (MLE) is the value
θ = θ̂ which maximizes L(θ) over the set of all pos-
sible values for θ . In practice, it is usually more con-
venient to maximize the logarithm of the likelihood
function, l(θ) = ln L(θ). From calculus, it follows
that θ̂ satisfies the score equation ∂l/∂θ = 0.

Early references to the method of maximum
likelihood are attributed to Gauss, Laplace, and
Edgeworth [4]. However, the prominent English
statistician R. A. Fisher is unquestionably responsi-
ble for popularizing the technique and for identifying
many of its statistical properties [3].

The method has a strong heuristic appeal: choose
as your parameter estimate the one which makes the
observed data seem most likely. As it turns out, it
is often the best estimate possible, particularly in
large samples. Inference is made easy by the fact
that maximum likelihood estimates are consistent
and asymptotically normal under broad regularity
assumptions, with a variance that can be estimated
from the observed or expected information matrix.
The MLE is also invariant under one-to-one transfor-
mations of the parameters, so to obtain the MLE of
a transformation of the original parameters, one need
only apply the transformation to the original MLE.

Optimal Properties

The following is a list of the most important proper-
ties of the MLE in large samples (i.e. n → ∞):

1. Consistency. The MLE converges in probability
to the true value of the parameter.

2. Asymptotic normality. The distribution of n1/2

(θ̂ − θ) converges to a normal distribution with

zero mean and a covariance matrix which is
the inverse of the information matrix I. From
a practical point of view it is more convenient
to say that θ̂ is approximately distributed as
N(θ, I−1/n).

3. Asymptotic efficiency. The MLE is the best asym-
ptotically normal (BAN) estimate in terms of its
variance in large samples. Put more precisely, if

θ̃ is another estimate such that n1/2(θ̃ − θ)
L−−−→

N(θ, C), where C is a fixed matrix, then C ≥
I−1/n in the sense that C − I−1/n is a positive
semidefinite matrix.

Regularity Conditions

It is important to be aware of the general regularity
conditions for the optimal properties of the MLE.
Most advanced statistics texts have a discussion of
these conditions [1, 5], with the classic reference
being Cramér [2]. The following three conditions are
commonly given:

1. The observed data points y1, y2, . . . , yn are inde-
pendently and identically distributed (iid) accord-
ing to a density or probability function f (y; θ),
where θ has finite dimension m. This condition
is less restrictive than it may seem, given that yi

may be a vector. In fact, the method of maximum
likelihood is popular and appropriate for many
regression problems where the distributions of
the data points are not identical, and many texts
give less restrictive assumptions.

2. The underlying density or probability function
is identifiable, i.e. f (y; θ1) = f (y; θ2) for all y

implies that θ1 = θ2.
3. The density is “smooth” in the sense that f

has derivatives up to the third order with finite
expectation, and the information matrix

I = Eθ

[
∂2 ln f (y; θ)

∂θj ∂θk

]
, j, k = 1, . . . , m

exists and is nonsingular. The latter conditions
ensure that the asymptotic covariance matrix
exists.

These conditions are satisfied for many models
of interest to biostatisticians, such as the binomial,
normal, and Poisson distributions.
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Maximum Likelihood Calculations

Maximum likelihood estimation involves finding a
global maximum of a function of one or several
parameters. For certain models, the solution can be
expressed as a simple function of the data. However,
more often the solution must be posed as a nonlinear
optimization problem. Typically, it involves solving
a system of nonlinear equations.

The main methods in use today are the New-
ton–Raphson (NR) or quasi-Newton (QN) methods,
and the Fisher scoring (FS) algorithm [6]. The NR
algorithm is based on an approximation of the log
likelihood by a quadratic function through a Taylor
series expansion of the score functions. To imple-
ment the NR algorithm, one has to provide second-
order derivatives for the log likelihood function –
the so-called Hessian matrix. Initial values for the
parameters are updated and the process is repeated
until convergence is obtained. If the initial value for
parameters is close enough to the maximum, the NR
algorithm usually converges quickly. However, if the
initial value is poorly chosen it may fail. In particular,
the Hessian matrix can become non-positive-definite.
Upon convergence, at the final iteration, the inverse
of the Hessian matrix provides an approximation to
the asymptotic covariance of the MLE. In the QN
algorithm only first derivatives are used, and the sec-
ond derivatives are estimated based on results from
previous iterations. The QN algorithm involves line
search methods, i.e. maximization of the log likeli-
hood along a given ray in the parameter space.

The difference between the NR and FS algorithms
is that the latter uses the expectation of the Hessian
matrix rather than the Hessian matrix itself as in
the NR algorithm. There are two versions of the FS
algorithm. In the first version the expectation of the
Hessian is approximated as the sum of cross-products
of first derivatives. In the second version, the exact
calculated information matrix is used. Thus, to use
this version of the FS algorithm one has to have a
formula for the information matrix as a function of
the parameters calculated prior to the maximization
procedure.

Other methods are sometimes used for maxi-
mum likelihood estimation. One that deserves spe-
cial mention is the EM (expectation–maximization)
algorithm. Certain likelihoods may be thought as
involving missing data, with the most notable exam-
ple being random effects models. The EM method

works in this setting by maximizing the expecta-
tion of the log-likelihood iteratively for the complete
data. This may aid in difficult maximization problems
by taking advantage of simple closed-form solutions
available for the “M” stage. Other advantages of the
EM algorithm include its natural statistical interpre-
tation and its property of producing an increasing
sequence of log likelihood values in the specified
parameter space. The principal drawback is that it
may be relatively slow.

Examples

Estimation of a Proportion

We observe the occurrence of a certain event for
n individuals, where yi is 1 if the event occurs
and 0 otherwise. It can be assumed that events are
independent among individuals and have the same
probability of occurrence θ . The likelihood can be
written as

L(θ) =
n∏

i=1

θyi (1 − θ)1−yi

= θm(1 − θ)n−m,

where m is the number of events observed among the
n individuals. The log likelihood is

l(θ) = m ln(θ) + (n − m) ln(1 − θ). (1)

To find the maximum, we consider the following
score equation:

dl

dθ
= m

θ
− n − m

1 − θ
= 0, (2)

which has the unique solution θ̂ = m/n.

Logistic Regression

Logistic regression may be viewed as a continuation
of the previous example where the probability of the
event occurring depends on some other factor. For
instance, y could be an indicator of heart disease and
x could denote the weight of an individual. We can
model the relationship between y and x as the logistic
function of the conditional probability of disease,

Pr(y = 1|x) = exp(α + βx)

1 + exp(α + βx)
, (3)
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or, equivalently,

ln
Pr(y = 1|x)

1 − Pr(y = 1|x)
= α + βx.

Here θ = (α, β)′. The assumption is that the log
odds ratio for the occurrence of disease is linear in
the covariate, and β is sometimes referred to as the
“log odds” parameter.

Now let (y1, x1), (y2, x2), . . . , (yn, xn) be values
for the disease status and weight of a sample of n

individuals. Technically speaking, to write down the
likelihood we have to assume that x has a certain
distribution which may contain unknown parame-
ters. However, maximum likelihood inference for
the logistic regression parameters is not affected by
the assumption concerning the distribution of x as
long as it does not depend on the parameters α and
β. In fact, the values for xi may be considered as
fixed, known constants, and as long as the design
matrix (see Experimental Design) is of full rank,
maximum likelihood estimation is valid. The log like-
lihood is

l(α, β) =
n∑

i=1

yi ln Pr(y = 1|xi)

+
n∑

i=1

(1 − yi) ln[1 − Pr(y = 1|xi)]

=
n∑

i=1

yi ln
exp(α + βxi)

1 + exp(α + βxi)

+
n∑

i=1

(1 − yi) ln
1

1 + exp(α + βxi)

= αn + β

n∑

i=1

yixi −
n∑

i=1

ln[1 + exp(α + βxi)].

A typical graph of the likelihood function is shown
in Figure 1. The maximum of the log likelihood is
found as the solution to the score equations

∂l

∂α
= n −

n∑

i=1

1

1 + exp(α + βxi)
= 0

and

∂l

∂β
=

n∑

i=1

yixi −
n∑

i=1

exp(α + βxi)

1 + exp(α + βxi)
xi = 0.
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Figure 1 An example of the log likelihood surface and
MLE in logistic regression

This system of nonlinear equations must be solved
iteratively, e.g. by the Newton–Raphson algorithm.

Discussion and Extensions

In theory, the method of maximum likelihood is
very simple: determine an appropriate sampling dis-
tribution for the data, write down the likelihood as
a function of the unknown parameters, and solve
for the estimate. Of course, in practice it is not
always so easy. Solutions to the likelihood score
equations usually must be arrived at by numerical
methods, and may be computationally intensive or
inaccurate. For some models and data sets it may
be difficult to demonstrate that the likelihood has a
unique global maximum. Many small-sample MLEs
can be shown to be biased. The presence of nuisance
parameters can exacerbate the computational diffi-
culties. Often the MLE is quite non robust to outliers
and, unlike competing general methods such as least
squares and the method of moments, computation
of the MLE requires that the distribution of the data
be completely parameterized. Uniformly minimum
variance unbiased (UMVU) estimation theory and
Bayesian methods compete with maximum likeli-
hood estimation with regard to optimal properties, but
also require complete specification of the distribution,
and may be even harder to implement.

To overcome some of the difficulties of maximum
likelihood estimation, modified methods have been
proposed such as restricted maximum likelihood,
conditional likelihood (see Conditionality Princi-
ple), pseudo-likelihood, quasi-likelihood, partial
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likelihood, and M-estimation (see Robustness).
These methods were all inspired by the powerful
heuristic appeal and conceptual simplicity of the
original formulation of the method of maximum
likelihood.

References

[1] Cox, D.R. & Hinckley, D.V. (1974). Theoretical Statis-
tics. Chapman & Hall, London.

[2] Cramér, H. (1945). Mathematical Methods of Statistics.
Princeton University Press, Princeton.

[3] Rao, C.R. (1992). R.A. Fisher: The founder of modern
statistics, Statistical Science 7, 34–48.

[4] Stigler, S.M. (1986). The History of Statistics: The Mea-
surement of Uncertainty Before 1900. Harvard University
Press, Cambridge, Mass.

[5] Stuart, H. & Ord, J.K. (1991). Kendall’s Advanced Theory
of Statistics, Vol. 2. Oxford University Press, New York.

[6] Thisted, R.A. (1988). Elements of Statistical Computing.
Chapman & Hall, New York.

TOR D. TOSTESON & EUGENE DEMIDENKO



Maxwell, Albert Ernest

Born: July 7, 1916, in Rockmount, Co. Cavan,
Ireland.

Died: 1996, in Leeds, UK.

Albert Ernest Maxwell was educated at the Royal
School, Cavan and at Trinity College, Dublin, where
he developed interests in psychology and mathemat-
ics. After graduating, ‘Max’ as he was invariably
known to his colleagues, became a mathematics
teacher at St Patrick’s Cathedral School, Dublin.
After only three years, at the age of 25, he was
appointed Headmaster. His attempt to understand the
behavioral problems of some of his pupils renewed
his interest in psychology, a subject he eventually
pursued more seriously at the University of Edin-
burgh where he was awarded a doctorate in 1950.

In 1952 Max left schoolteaching to take up the
post of lecturer in statistics at the Institute of Psy-
chiatry, a postgraduate school of the University of
London. He was to spend the rest of his working
life at the Institute, retiring in 1978 as Professor of
Psychological Statistics.

For a number of years Max was a member of the
Psychology Department of the Institute, collaborating
and advising Professor Hans Eysenck, but he was
eventually rewarded with the Headship of his own
Biometrics Unit, which had responsibility for helping
Institute researchers on all aspects of statistical design
and analysis.

Max’s main area of expertise was in multivariate
analysis, particularly factor analysis, where his col-
laboration with Dr D. Lawley resulted in an impor-
tant account of the mathematical theory behind the
technique [1].

Max’s teaching skills (no doubt learnt whilst a
schoolmaster in Co. Cavan) were legendry and many
psychologists obtained a firm grasp of statistical
methods from his numerous lecture courses and a
number of useful textbooks including [2].
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McKendrick, Anderson
Gray

Born: 1876
Died: 1943

McKendrick made important contributions to the
mathematical theory of epidemics. He served as a
lieutenant-colonel in the Indian Medical Service, and
later became Curator of the College of Physicians at
Edinburgh. In 1914 [2], he gave the solution of the
general homogeneous birth process (see Stochastic
Processes), and this was followed in 1926 by a major
paper [3] on stochastic epidemics (see Epidemic
Models, Stochastic). He then turned to deterministic
models (see Epidemic Models, Deterministic), in a

series of papers with W.O. Kermack, which included
the celebrated Threshold Theorem (see Epidemic
Thresholds). His work is described in some detail
in [1].
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McNemar Test

The McNemar test arose in the context of psychology
in which two correlated dichotomous responses were
to be compared. One example of this test would be
an indication of a response or no response under two
experimental conditions. The original paper was by
McNemar [7]; see also [8].

Armitage and Berry [1] give an example in which
we have two culture media and wish to determine if
they are equally effective in detecting tubercle bacilli
in sputum specimens. The two media, evaluated for
the same sample of 50 specimens, give cell counts of
positive and negative results, as given in Table 1.

This can be regarded as a single multinomial table
in which the cell probabilities, denoted by {πij },
add to 1. If the two media have the same ability
to detect the bacilli, the null hypothesis takes the
form πi+ = π+i , i.e. that the marginal proportions
are the same. This is easily seen to be equivalent
to π12 = π21. Since only these probabilities are of
interest, the hypothesis can be tested referring only
to the counts in these off-diagonal cells. Let the cell
counts be denoted by {nij }. The (uncorrected) test
statistic is given by

X2 = (n12 − n21)
2

n12 + n21
,

which (asymptotically) has a chi-square distribution
with 1 degree of freedom (df). In this case X2 =
(12 − 2)2/(12 + 2) = 7.14. The test is equivalent to
the binomial test that the proportion is 0.5, given that
the observation lies in one of the off-diagonal cells.
It has also been suggested that a continuity corrected
test be used. This is equivalent to the continuity
correction for the binomial test. The corrected form is
X2 = (|12 − 2| − 1)2/(12 + 2) = 5.79. In this case,
both statistics are significant at the α = 0.05 level.

Table 1

Medium B
+ − Total

+ 20 12 32
Medium A

− 2 16 18

Total 22 28 50

Examples of this procedure also arise in diagnos-
tic imaging studies when the investigator wishes to
determine if a new method provides better diagnostic
sensitivity and specificity than a standard method.
In this situation, there are several options: one may
compare only the sensitivity (diagnostic performance
when the patients have the condition), or the speci-
ficity (diagnostic performance when the patients do
not have the condition); it is sometimes suggested
that the accuracy (proportion correct) be compared,
but this comparison is quite sensitive to the propor-
tion of positive and negative subjects, and is not
recommended. For the comparison of sensitivity or
specificity, a McNemar test can be formed, and the
1 df test can be made. This provides two tests, which
may be contradictory in the sense that one test may
have higher sensitivity while the other has higher
specificity. The two tests may be combined by adding
the χ2 to get a 2 df test. This gives an overall test of
common performance [3].

In diagnostic test comparisons, it is important to
note that the investigators may be artificially impos-
ing a two-category result on the data. For example, in
diagnosing recurrent cancer, the outcomes might be
“negative”, “resectable”, or “not resectable”, and the
implications of imposing two categories are unclear.
In such a case, it seems relevant to examine the 3 × 3
matrix of categorizations, and use a procedure which
formally tests for marginal symmetry. In addition,
some misclassifications are more serious than others.
This would imply that a weighted procedure might
be used. Tests for this are referenced in [6].

The McNemar test can be generalized to equiv-
alence testing [5]. Conditional logistic regression
(see Logistic Regression, Conditional) can be used
to adjust for covariates.

Sample size computations are based on comparing
a binomial proportion to 0.5. These calculations give
the number of discordant pairs (those not represented
on the main diagonal). It is then required to determine
what fraction of discordant pairs is likely to arise.
Various methods have been proposed recently for this
(e.g. [4] and [2]).
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Mean Deviation

The mean deviation d of a data set x1, . . . , xn is
defined as

d = 1

n

n∑

i=1

|xi − m|, (1)

where m is a location measure, most often the arith-
metic mean, x, most naturally the sample median,
med (which minimizes d over all values of m), or,
if known, a population location measure, such as the
expectation or the median of the population.

It is also called mean absolute deviation (or aver-
age deviation), and the mean deviation from the mean
is also called mean absolute error (MAE).

Its probabilistic counterpart for a random variable
X is the first absolute moment with respect to (usu-
ally) the expectation (if it exists),

δ = E(|X − EX|). (2)

The mean deviation is thus a measure of scale or
dispersion, like the standard deviation (sd) or the
range, or the median (absolute) deviation (MAD) =
medi (|xi − medj xj |) (the median, not mean, of the
absolute differences from the sample median). In gen-
eral, they all estimate different quantities; but, for
example, for large samples from the normal distribu-
tion, one can give conversion factors:

d =
(

2

π

)1/2

sd ≈ 0.7979 sd

and

MAD ≈ 0.6745 sd ≈ 0.8453 d. (3)

The mean deviation is the maximum likelihood
estimator of the scale parameter δ (and is therefore
asymptotically efficient) for the double-exponential
distribution with density fµ,δ(x) = (2δ)−1 exp(−|x −
µ|/δ) (µ arbitrary, δ > 0). (The corresponding
estimator for µ is the median.)

Around 1900, mean deviation and standard devi-
ation were the two most commonly used scale esti-
mators. Both were usually converted into the prob-
able error (the error that would be surpassed with
probability one-half) according to the above Eqs (3),
with MAD replaced by probable error. The MAD,
although the direct (and nonparametric) estimate of
the probable error, apparently was never used then as

an estimator (perhaps because of its low efficiency
near the normal distribution, and without awareness
of its good robustness properties).

In 1920, Fisher [2] proved and stressed the opti-
mality of the standard deviation under strictly nor-
mal data and showed that the mean deviation in
this case has an asymptotic relative efficiency of
only 1/(π − 2) ≈ 88%, causing the mean deviation
to fall into oblivion. The astronomer Eddington [1,
p. 147; 2, footnote, p. 762] maintained that the mean
deviation was the better (more accurate) scale mea-
sure according to (astronomical) practical experience.
There is no contradiction – both were right; real
data are never exactly normal. In 1960, Tukey ([[6],
inserts], with more details and a correction given by
Huber [5, p. 3]) showed that less than 0.2% of a very
mild form of contamination of a normal distribution
suffice to render d better than sd, while for about 5%
contamination (a common frequency of gross errors)
of the same mild type, d is twice as efficient as sd.

A key to better understanding of these and other
facts about the mean deviation is provided by the
concepts of robustness theory (the stability theory of
statistical procedures). If we add a single observation
(e.g. a gross error) in any point x to a large sample
with (estimated) parameters m and d, the standard-
ized change of d in the limit of n → ∞ is given by
the influence curve or influence function [3]

IF(x) = |x − m| − d, (4)

which increases only linearly with x, while the IF for
sd increases quadratically, implying a much higher
sensitivity to “dirt” in the tails of the observed dis-
tribution (see Robustness). However, both functions
are unbounded; in fact, a single outlier moving to
infinity carries both estimates to infinity. Hence nei-
ther should be used. We say, that their breakdown
point [3] is zero. By contrast, the MAD tolerates
about 50% gross errors before it gives arbitrarily
false values; its breakdown point is 50%. There are
other scale estimators with positive breakdown point
and generally higher efficiency than the MAD (e.g.
trimmed variances, or Huber’s scale estimators –
cf. [5]). Using sd or d after (some functioning form
of) rejection of outliers prevents the worst, but this
approach is a complex procedure usually not well
understood, and is less efficient than other robust
scale estimators (cf. [4]); nevertheless, it might often
be the simplest practical solution.
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Mean Square Error

If θ̂ = θ̂ (Y1, . . . , Yn) is an estimator of a parameter θ

based on a random sample of size n, then the mean
square(d) error (MSE) of the estimator is defined as
the expected value of the squared deviation of the
estimator from the true value to be estimated:

MSE(θ̂ ) = E[(θ̂ − θ)2]

=
∫

· · ·
∫

[θ̂ (Y1, . . . , Yn) − θ]2

× f (y1; θ) . . . f (yn; θ)∂y1 . . . ∂yn,

where f (y; θ) is the density upon which the sam-
ple is based. In general, for any estimator θ̂ of a
parameter θ , the MSE can equivalently be defined as
E[(θ̂ ) − θ)2] = ∫

(θ̂ − θ)2g(θ̂ ; θ)∂θ̂ , where g(θ̂ ; θ) is
the sampling distribution of the estimator θ̂ . The
MSE is a measure of the closeness of the estimator
to the true value. From the following identity:

E[(θ̂ − θ)2] = [E(θ̂ ) − θ]2 + E[θ̂ − E(θ̂ )]2

= [bias(θ̂ )]2 + var(θ̂ ),

it is seen that the MSE is the sum of the squared
bias plus the variance of the estimator. Thus, the
MSE reflects both the bias of an estimator, i.e. how
much its expected value differs systematically from
the true value, as well as the precision (variance) of
the estimator, which measures how much it varies
about its expected value or mean due to sampling
variability. A good estimator ideally will have a small
MSE, reflecting both small bias and small variance.
Choosing an estimator with a small MSE often entails
a tradeoff between bias and variance.

Subset Selection in Regression and
Prediction

Tradeoffs between bias and variance are illustrated in
the problem of choosing the “best” set of predictor
variables in multiple linear regression (see Variable
Selection). Let yi be a response measured on the ith
individual in a sample of size n. The objective is
to relate yi to a set of p predictors (explanatory
or independent variables) and to predict future
values of y. The standard model writes yi = β0 +

β1xi1 + · · · + βpxip + ei , where xi1, . . . , xip are p

predictors measured on subject i, β0, β1, . . . , βp are
unknown regression coefficients to be estimated,
and ei, i = 1, . . . , n, are independent, identically
distributed, residual errors having mean zero and
variance σ 2. This model is expressed in matrix
notation as Y = Xβ + e, where Y is the n ×
1 vector of responses, X is the n × (p + 1)

design matrix of rank (p + 1) whose ith row is
(1, xi1, . . . , xip), β = (β0, β1, . . . , βp)′, and e is the
n × 1 vector of errors. The least squares estimate
of β is β̂ = (X′X)−1X′y, and for a given set of
predictors x = (1, x1, . . . , xp)′, the usual predictor
of y is ŷ = x′β̂. This is an unbiased predictor,
and the mean squared error of prediction (MSEP),
is defined as E(ŷ − y)2 = σ 2[1 + x′(X′X)−1x]. The
mean squared error of the regression coefficients
is defined as MSE(β̂) = E(β̂ − β)(β̂ − β)′, which
equals var(β̂) = σ 2(X′X)−1. At times, an objective
is to select the “best” subset for predicting y

out of a potentially large number p of available
predictor variables. Walls & Weeks [5] show that
it is possible for the prediction based on a subset
of variables to have a smaller MSEP. Partition
X = (X1, X2), where X1 is the set of variables
included in the regression and X2 are excluded.
Similarly, partition β ′ = (β ′

1, β ′
2) and x′ = (x′

1, x′
2).

The least squares estimate of β1 based on the subset
X1 is β̃1 = (X′

1X1)
−1X′

1y, with bias E(β̃1 − β1) =
(X′

1X1)
−1X′

1X2β2 and MSE(β̃1) = σ 2(X′
1X1)

−1 +
(X′

1X1)
−1X′

1X2β2β
′
2X′

2X1(X′
1X1)

−1. The predicted
value of y based on X1, ỹ = x′

1β̃1, will generally
be biased (the bias is nonzero unless X′

1X2β2 =
0), and MSEP(ỹ) = σ 2[1 + x′

1(X
′
1X1)

−1x1] + {[x′
2 −

x′
1(X

′
1X1)

−1X′
1X2]β2}2, which may be less than

MSEP(ŷ) based on the full model. In particular,
Hocking [2] shows that if var(β̂2) − β2β

′
2 is positive

definite, then (i) MSE(β̂1) − MSE(β̃1) is positive
definite, and (ii) MSEP(ŷ) ≥ MSEP(ỹ), implying that
the reduced model using the subset of variables in
X1 is better in terms of mean squared error both
for estimating the regression coefficients β1 as well
as for predicting y. For example, excluding a single
variable X2 will result in a better estimate of β1 and
a lower MSEP if var(β̂2) > (β2)

2, i.e. if the variance
of the regression coefficient of β2 estimated in the
full model exceeds the square of the true value of β2.
Hocking [2] also proposes considering as a criterion
the average decrease in predictive mean squared error
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over the n points in the sample:

1

n

n∑

i=1

[MSEP(ŷi) − MSEP(ỹi)]

and discusses how selecting a subset to maximize this
criterion is closely related to the use of Mallows’ Cp

and the adjusted R2 as criteria for subset selection in
multiple regression.

The concept that a biased estimator may be prefer-
able in terms of MSE to an unbiased estimator with
a large variance also underlies the concept of ridge
regression [3]. In situations where the p predictor
variables are highly intercorrelated (i.e. the problem
of multicollinearity), they suggest the biased “ridge
regression” estimate β̂k = (X′X + kI)−1X′y, where
the predictor variables in X have been standardized
by subtracting their sample means and dividing by
their standard deviations, and the constant k is deter-
mined by inspecting the “ridge trace” or plot of β̂k

vs. k. For some choice of k, the ridge regression esti-
mate will have smaller MSE than the least squares

estimator. Shrinkage estimators derived from an
empirical Bayes approach [1] also typically have a
smaller MSE than the usual unbiased estimators. See
also James–Stein Estimator [4].
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Mean

The mean is a central concept in both data anal-
ysis and statistical theory. The usual sample mean is
an arithmetic average of a set of n numerical obser-
vations, x1, x2, x3, . . . , xn,

x =

n∑

i=1

xi

n
.

The sample mean is nearly universally denoted by the
symbol, x, and is the most commonly used measure
of central tendency of a set of numerical data.

In probability, the population mean, expected
value or expectation of a random variable is the
analog of the arithmetic or sample mean, x. In
fact, the law of large numbers implies that, for an
infinitely large sample of independent random vari-
ables drawn from a distribution, the sample mean,
x, is equal to the expected value or mean of the
distribution.

In any data analysis the usefulness of a summary
statistic, such as the mean, depends on the details
of the physical or biological process measured and
specific summary information needed from the data.
The sample mean can often be modified to provide
the appropriate summary information. These modifi-
cations and their probability model analogs provide a
rich source of both theory and numerical description
of data sets.

Often each numerical observation does not have
equal weight or importance. For example, the numer-
ical observations themselves may be means of sub-
groups with different numbers of observations in each
subgroup. In this case a weighted mean or average is
used:

xw =

n∑

i=1

wixi

n∑

i=1

wi

,

where wi is the weight of the ith numerical obser-
vation. In the example where each observation rep-
resents a subgroup, the weight should be the number
of units in the subgroup. This kind of weighted aver-
age is found in analysis of variance, sample survey
analysis, and other more specialized areas.

Weighting can sometimes correct for sampling
bias. A special case is when the probability that a
unit is sampled is proportional to the variable of
interest – an example of size-biased sampling. In this,
weighting each observation by wi = 1/xi yields

xh =

n∑

i=1

1

xi

xi

n∑

i=1

1

xi

= 1

1

n

n∑

i=1

1

xi

,

which is called the harmonic mean. The harmonic
mean is found by taking the average value of the
reciprocal of the data, 1/xi , and then taking the
reciprocal of the average value. The harmonic mean
is well defined only for positive data, i.e. when all
possible values of the data are greater than 0. For
positive data the harmonic mean is always less than
or equal to the arithmetic mean.

The geometric mean can be used when measure-
ments from natural processes have a distribution that
is not symmetric and is skewed to the right. For
skewed data the sample mean is not an adequate
description of the center of the data. Both the th-
eory of the lognormal distribution and practical data
analysis justify the use of a log transformation of the
original data,

yi = ln xi.

Often the log transformed data will have a nearly
symmetric distribution. In this case

y = 1

n

n∑

i=1

yi

is a good measure of the center of the log transformed
data. Transforming y back to the original scale of the
data yields the geometric mean of x,

GM = exp y.

Thus, the geometric mean, GM, is the antilog of the
mean of the log transformed data. A mathematically
equivalent way of expressing the geometric mean is
as the nth root of the product of the n observations,

GM =
(

n∏

i=1

xi

)1/n

.

The geometric mean is only well defined for posi-
tive data. For positive data the following inequality
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holds for geometric, harmonic, and sample (arith-
metic) means:

xh ≤ GM ≤ x.

One straightforward way to obtain a measure of
central tendency that does not depend on the extremes
or tails of the data is to first remove or trim the data

in both tails of the distribution and then compute
the usual arithmetic mean using the remaining data.
The result is referred to as a trimmed or Winsorized
mean.

W. SMITH



Measurement Error in
Epidemiologic Studies
This article is concerned with relating a response or
outcome to an exposure and confounders in the pres-
ence of measurement error in one or more of the
variables. We focus almost entirely on measurement
error in a continuous or measured variable. When cat-
egorical variables (exposed or not exposed, case or
control, quintiles of fat) are measured with error, they
are said to be misclassified (see Misclassification
Error). There are also many links in this topic with
methods for handling missing data and with vali-
dation studies (see Missing Data in Epidemiologic
Studies; Validation Study). For further details and a
general overview of the topic, see [20]; [30] should
be consulted for the linear model.

Before describing the problem, it is useful first to
consider a number of specific examples that have had
an impact on the development of the field:

1. Measurement error has long been a concern
in relating error-prone predictors such as sys-
tolic blood pressure (SBP) to the development
of coronary heart disease (CHD). That SBP is
measured with error is well known, and esti-
mates [23] suggest that approximately one-third
of its observed variability is due to measure-
ment error. The Framingham Heart Study is
perhaps the best known cohort study in which
the role of measurement error in SBP has been
a concern for many years. MacMahon et al. [44]
describe the important public health implications
of properly accounting for the measurement error
inherent in SBP. In an (as yet) unpublished paper,
David Yanez, Richard Kronmal & Lynn She-
manski have discovered an example also in the
CHD context where the failure to account prop-
erly for measurement error leads to misleading
conclusions based on falsely detected statistical
significance.

2. In measuring nutrient intake, measurement error
has been a long-term concern, as has the impact
of this error on the ability to detect nutritional
factors leading to cancer, especially breast and
colon cancer. Typical cohort studies measure
diet by means of food frequency questionnaires
which, while related to long-term diet, are known
to have biases and measurement errors. Other

instruments are in use in this field, including food
records (essentially diaries), 24 h recalls and (for
a limited number of variables such as total caloric
intake) biomarkers. Measurement error in nutri-
ent instruments can be very large, for example
because of the daily and seasonal variability of
an individual’s diet, and the biases in and loss
of power to detect nutrient–cancer relationships
can be profound. There is still considerable con-
troversy in this field (see [37], [54], and [41]).
Because of the cost of cohort studies in nutrition,
case–control studies are of considerable interest.
However, nutrient intakes in case–control stud-
ies are measured after the development of disease
in cases, and this might cause differential mea-
surement error, a topic we discuss in some detail
below (see Nutritional Exposure Measures).

3. There are a number of ongoing prospective and
case–control studies of disease and serum hor-
mone levels, and this is an area of considerable
potential. Measurement error is a major con-
cern here, due to within-individual variation of
hormones, as well as various laboratory errors.

4. In measuring environmental risk factors
(see Environmental Epidemiology), measure-
ment error is a common problem. For example,
measuring household lead levels is an error-
prone process, not only because of laboratory
and device error, but also because lead levels are
inhomogeneous in both space and time, while
measurement methods tend to be in fixed loca-
tions at fixed times. Because lead exposure has
many possible media (air, dust, soil) with possi-
bly correlated errors, the effects of measurement
error can be large and complex.

Outline

This article consists of a series of major Sections, as
follows:

1. We first outline the basic concepts of measure-
ment error modeling, making particular distinc-
tion between differential and nondifferential
measurement error. We also describe the ideas
of functional and structural modeling, as well as
indicating how the measurement error problem
can be treated as a missing data problem.

2. Following the introductory concepts, we discuss
the problem of measurement error as it pertains to
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the linear regression model. Here we introduce
the idea of attenuation of regression coefficients,
and the biases in parameter estimates caused by
measurement error. We also discuss hypothe-
sis testing. In the simplest cases, measurement
error causes an often large decrease in the power
to detect significant effects, while, as indicated
above, and as exhibited through the analysis of
covariance, in an observational study, measure-
ment error in a confounder can cause misleading
inferences about exposure effects.

3. Having described the effects of measurement
error on estimation and hypothesis testing, we
turn to correcting for the effects due to mea-
surement error. We first describe the two most
common methods, known as regression calibra-
tion and SIMEX, and also a group of techniques
called corrected score methods. We also describe
the use of instrumental variables.

4. Maximum likelihood and Bayesian estimation
form an important component of the measure-
ment error problem, and are described in some
detail. We define the likelihood function, and
show the crucial difference in the likelihood
function between the nondifferential and differ-
ential measurement error cases; see (13)
and (14).

5. While most of the article is based on measure-
ment error in predictors, there is an important lit-
erature on response error, which we also review.

6. Case–control studies are important in epidemi-
ology. A distinguishing feature of case–control
studies is that the measurement error may be dif-
ferential. In the differential measurement error
case, we indicate that a specific type of data is
required, the validation data sets, in which the
true predictor can be observed for a subset of the
study participants. If the measurement error is
nondifferential, then matters are much easier, and
the famous result of Prentice & Pyke [55] on the
analysis of case–control studies is shown to have
an analogue in the measurement error context.

7. There is a significant and developing literature on
measurement error in survival analysis, and we
indicate two possible approaches to the problem.

Measurement error models have a common struc-
ture; we illustrate the terms using a breast cancer and
nutrition example:

1. An underlying model for a response in terms
of predictors, e.g. linear regression, logistic
regression, nonlinear regression; see Carrell &
Ruppert [14]. This is the model we would fit if
all variables were observed without error. In what
follows, we call Y the response. For example,
in the breast cancer and nutrition example, Y is
breast cancer incidence fit to covariables using
logistic regression

2. A variable which is measured subject to error.
This could be an exposure or a confounder. We
call this variable X. It is often called the error-
prone predictor or the latent predictor. In the
breast cancer example, X is long-term nutrient
intake

3. The observed value of the mismeasured variable.
We call this W , e.g. nutrient intake measured
from a food frequency questionnaire

4. Those predictors which for all practical purposes
are measured without error, which we call Z, e.g.
age, body mass index

5. We are interested in relating the response Y to
the true predictors (Z, X). One method, often
called the naive method, simply replaces the
error-prone predictor X with its measured version
W . This substitution typically leads to biases in
parameter estimates and can lead to misleading
inferences

6. The goal of measurement error modeling is to
obtain nearly unbiased estimates of exposure
effects and valid inferences. Attainment of this
goal requires careful analysis. Substituting W for
X, but making no adjustments in the usual fitting
methods for this substitution, leads to estimates
that are biased, sometimes seriously. In assessing
measurement error, careful attention needs to be
given to the type and nature of the error, and
the sources of data which allow modeling of
this error.

It should be obvious that one should design stud-
ies and instruments in such a way as best to lessen
or to eliminate measurement error. In this article, we
demonstrate some of the impacts of ignoring mea-
surement error, ranging from bias in parameter esti-
mates (Figure 1), to loss of power, requiring therefore
much larger sample sizes to detect effects (Figure 2)
to cases where the type I errors (see Hypothesis
Testing) occur at higher rates than the usual 5%
(Figure 3).
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Error

No error

Filled = no error

Open = with error

Figure 1 Illustration of additive measurement error model.
The filled circles are the true (Y , X) data and the dashed
(steeper) line is the least squares fit to these data. The open
circles and solid (attenuated) line are the observed (Y , W )
data and the associated least squares regression line. For
these data σ 2

x = δ2
u = 1, (β0, βx) = (0, 1) and σ 2

ε = 0.25

Computer Programs

S-PLUS and SAS (see Software, Biostatistical)
computer programs (on Solaris SPARC architec-
ture and for Windows on PCs) which implement
many of the methods described in this article (for
major generalized linear models such as linear,
logistic, probit, Poisson and gamma regression) are
available at no cost on the World Wide Web at
http://stat.tamu.edu/qvf/qvf./html.
Bootstrap standard errors are available. They
have been developed by Raymond Carroll, Henrik
Schmiedieche, and H. Joseph Newton.

A set of programs for logistic regression (in SAS
and FORTRAN) is available from Professor Donna
Spiegelman (e-mail stdls@gauss.bwh.harvard.
edu). Interested readers should contact her for
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Figure 2 Sample size for 80% power in a one-sided
test of level 5% in linear regression, as a function of the
measurement error variance. Here the true slope = 0.75, the
true variance of X is 1.0, and the true variance about the
line is 1.0

information concerning extension of these programs
to proportional hazards and linear regression.

Iowa State University (Department of Statistics,
Iowa State University, Ames IA 50011) distributes
programs called EV-CARP for linear measurement
error models at a cost of $300.

Models for Measurement Error

A fundamental prerequisite for analyzing a measure-
ment error problem is specification of a model for
the measurement error process. The classical error
model, in its simplest form, is appropriate when an
attempt is made to determine X directly, but one is
unable to do so because of various errors in mea-
surement. For example, consider systolic blood pres-
sure (SBP), which is known to have strong daily
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Figure 3 The actual level of a test for exposure effect with
a highly predictive covariate measured with error, based
on a sample of size n = 20. Here the true slope for the
covariate X = 1.0, the true variance of X is 1.0, the true
variance about the line is 1.0, and the reliability is either
2/3 (dashed line) or 1/2 (solid line). The term “Group mean
difference in X” is the difference in the mean of X in the
exposure group minus the mean of X in the control group

and seasonal variations. In trying to measure SBP,
the various sources of error include simple machine
recording error, administration error, time of day,
and season of the year. In such a circumstance, it
sometimes makes sense to hypothesize an unbiased
additive error model, which we write as

(the classic model) W = X + U, (1)

where U , the error, is assumed to be independent of
X. An alternative model, the controlled variable or
Berkson model [6], is especially applicable to labo-
ratory studies. As an example, consider the herbicide
study of Rudemo et al. [61]. In that study, a nomi-
nal measured amount W of herbicide was applied to
a plant. However, the actual amount X absorbed by

the plant differed from W , e.g. because of potential
errors in application. In this case,

(the Berkson model) X = W + U, (2)

where U , the error, is assumed to be independent
of W .

Determining an appropriate error model to use
in the data analysis depends upon the circumstances
and the available data. For example, in the herbicide
study, the measured concentration W is fixed by
design and the true concentration X varies due to
error, so that model (2) is appropriate. On the other
hand, in the measurement of long-term systolic blood
pressure, it is the true long-term blood pressure which
is fixed for an individual, and the measured value
which is perturbed by error, so model (1) should
be used. Estimation and inference procedures have
been developed both for error and controlled-variable
models.

This hardly exhausts the possible error models.
See [20] and [29] for more details and further exam-
ples with more complex structure.

Sources of Data

To perform a measurement error analysis, one needs
information about the error structure. These data
sources can be broken up into two main categories:

1. internal subsets of the primary data
2. external or independent studies.

Within each of these broad categories, there are
three types of data, all of which might be avail-
able only in a random subsample of the data set in
question:

1. validation data, in which X is observable directly
2. replication data, in which replicates of W are

available
3. instrumental data, in which another variable T

is observable in addition to W .

An internal validation data set is the ideal, because
it can be used with all known analytical techniques,
permits direct examination of the error structure and
tests of critical error model assumptions, typically
leads to much greater precision of estimation and
inference, and has strong links to the well-developed
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theory of missing data analysis (see below). We
cannot express too forcefully that, if at all possible,
one should obtain an internal validation data set.

With external validation data, one must assume
that the error structure in those data also applies to
the primary data (see below).

Replication data are used when it is impossible
to measure X exactly, as, for example, when X

represents long-term systolic average blood pressure
or long-term average nutrient intake. Usually, one
would make replicate measurements if there were
good reason to believe that the replicated mean is
a better estimate of X than a single observation,
i.e. the classical error model is the target. In the
classical error model (1), replication data can be used
to estimate the variance of the measurement error, U .

Internal instrumental data sets containing a second
measure T are useful for instrumental variable
analysis, discussed briefly later in this article.

Transportability of Models and Parameters

In some studies, the measurement error process is
not assessed directly, but instead is estimated from
external data sets. We say that parameters of a model
can be transported from one study to another if the
model holds with the same parameter values in both
studies. Typically, in applications only a subset of the
model parameters need be transportable.

In many instances, approximately the same clas-
sical error model holds across different populations.
For example, consider systolic blood pressure at two
different clinical centers. Assuming similar levels of
training for technicians making the measurements and
a similar measurement protocol, it is reasonable to
expect that the distribution of the error in the recorded
measure is independent of the clinical center one
enters, the technician making the measurement, and
the value of X being measured. Thus, in classical
error models it is often reasonable to assume that the
error distribution is the same across different popula-
tions, i.e. transportable.

A common mistake is to transport a correction
for measurement error from one study to the next.
Such transportation is almost never appropriate. For
instance, while the properties of errors of measure-
ment may be reasonably transportable, the distribu-
tion of the true (or latent) predictor X is rarely trans-
portable, since it depends so heavily on the population

being sampled. Problems arise because corrections
for measurement error involve not only the measure-
ment error process but also the distribution of X. For
example, systolic blood pressure measurements in the
MRFIT study and the Framingham Heart Study may
well have the same measurement error variance, but
the distribution of true blood pressure X appears to
differ substantially in the two studies, and the “cor-
rection for attenuation” described below cannot be
transported from Framingham to MRFIT (see [17] for
further details).

Is there an “Exact” Predictor?

We have based our discussion on the existence of
an exact predictor X and measurement error models
that provide information about this predictor. How-
ever, in practice, it is often the case that the definition
of “exact” needs to be carefully considered prior to
discussion of error models. In the measurement error
literature the term “gold standard” is often used
for the operationally defined exact predictor, though
sometimes this term is used for an exact predictor
that cannot be operationally defined. Using an oper-
ational definition for an “exact” predictor is often
reasonable and justifiable on the grounds that it is
the best one could ever possibly hope to accomplish.
However, such definitions may be controversial. For
example, consider the problem of relating breast can-
cer risk to the dietary intake of fat. One way to
determine whether decreasing one’s fat intake low-
ers the risk of developing breast cancer is to conduct
a clinical trial in which members of the treatment
group are encouraged to reduce fat intakes. If instead
one uses observational prospective data, along with
an operational definition of long-term intake, one
should be aware that the results of a measurement
error analysis could be invalid if true long-term
intake and operational long-term intake differ in sub-
tle ways.

Differential and Nondifferential Error

It is important to make a distinction between differ-
ential and nondifferential measurement error. Non-
differential measurement error occurs in a broad
sense when one would not even bother with W if
X were available, i.e. W has no information about
the response other than what is available in X.
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Nondifferential measurement error typically holds in
cohort studies, but is often a suspect assumption in
case–control studies.

Technically, measurement error is nondifferential
if the distribution of Y given (X, Z, W ) depends only
on (X, Z). In this case W is said to be a surrogate.
Measurement error is differential otherwise.

For instance, consider the Framingham example.
The predictor of major interest is long-term systolic
blood pressure, X, but we can only observe blood
pressure on a single day, W . It seems plausible that a
single day’s blood pressure contributes essentially no
information over and above that given by true long-
term blood pressure, and hence that measurement
error is nondifferential. The same remarks apply to
the nutrition examples: measuring diet on a single
day should not contribute information not already
available in long-term diet.

Many problems can be analyzed plausibly assum-
ing nondifferential measurement error, especially
when the covariate measurements occur at a fixed
point in time, and the response is measured at a later
time, as is typical in cohort studies.

There are two exceptions that need to be kept
in mind. First, in case–control studies, the dis-
ease response is obtained first, and then one mea-
sures antecedent exposures and other covariates.
In nutrition studies, this ordering of measurement
may well cause differential measurement error. For
instance, here the true predictor would be long-
term dietary intake before diagnosis, but the dietary
interview data are obtained only after diagnosis. A
woman who develops breast cancer may exaggerate
her estimated fat intake, thus introducing recall bias
(see Bias in Case–Control Studies). In such circum-
stances, estimated fat intake will be associated with
disease status even after conditioning on true long-
term diet before diagnosis.

When measurement error is nondifferential, one
can estimate parameters in models for responses
given true covariates even when the true covariates
are not observable. This is not true when measure-
ment error is differential, except for the linear model.
With differential error, one must obtain a validation
subsample in which both true covariate measurements
and surrogate measurements are available. Most of
this article focuses on nondifferential measurement
error models. Differential models with a validation
study are typically best analyzed by techniques for

handling missing data (see Missing Data in Epi-
demiologic Studies; Missing Data; Multiple Impu-
tation Methods).

Prediction

Prediction of a response is different from estimation
and inference for parameters. If a predictor X is
measured with error, and one wants to predict a
response based on the error-prone version W of X,
then, except for an important case discussed below,
it makes little sense to worry about measurement
error. The reason for this is quite simple. If one has
an original set of data (Y , W ) then one can fit a
convenient model to Y as a function of W . Predicting
Y from W is merely a matter of using this model for
prediction. There is no need then for measurement
error to play a role in the problem.

The one situation requiring that we model the mea-
surement error occurs when we develop a prediction
model using data from one population but we wish
to predict in another population. A naive prediction
model that ignores measurement error may not be
transportable. This context often becomes quite com-
plex, requiring a combination of missing data and
measurement error techniques, and to the best of our
knowledge has not been investigated in detail in the
literature, an exception being [31].

Is Bias Always Towards the Null?

It is commonly thought that the effect of measurement
error is to bias estimates of exposure effects “towards
the null” (see Bias Toward the Null). Hence, one
could ignore measurement error when testing the
null hypothesis of no exposure effect, and one could
assume that non-null estimates, if anything, underesti-
mate the effect of exposure. This lovely and appealing
folklore is sometimes true but, unfortunately, often
wrong. We discuss this point in detail below. A
numerical example has recently been provided to us
by David Yanez, Richard Kronmal & Lynn Sheman-
ski in a heart disease context with seven covariates
and a baseline variable. They found that, while an
analysis ignoring measurement error showed highly
statistically significant effects in all variables, none
of the effects was even close to being statistically
significant when the analysis took measurement error
into account.
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Functional and Structural Models

The words functional and structural have important
places in the area of measurement error models. They
act as a shorthand terminology for the basic approach
one uses to solve the problem. In functional modeling
nothing is assumed about the Xs; they could be fixed
constants (the usual definition) or random variables.
In structural modeling, X is assumed to be random,
and a parametric distribution (usually the normal) is
assumed. There has traditionally been considerable
concern in the measurement error literature about the
robustness of estimation and inferences based upon
structural models for unobservable variates. Fuller
[30, p. 263] discusses this issue briefly in the clas-
sical nonlinear regression problem, and basically
concludes that the results of structural modeling “may
depend heavily on the (assumed) form of the X distri-
bution”. In probit regression, Carroll et al. [23] report
that, if one assumes that X is normally distributed,
and it really follows a chi-square distribution with
one degree of freedom, then the effect on the likeli-
hood estimate is “markedly negative”; see also [63].
Essentially all research workers in the measurement
error field come to a common conclusion: likeli-
hood methods can be of considerable value, but the
possible nonrobustness of inference due to model
misspecification is a vexing and difficult problem.

The issue of model robustness is hardly limited
to measurement error modeling. Indeed, it pervades
statistics, and has led to the rise of a variety of semi-
parametric and nonparametric techniques. From
this general point of view, functional modeling may
be thought of as a group of semiparametric tech-
niques. Functional modeling uses parametric models
for the response, but makes no assumptions about the
distribution of the unobserved covariate.

There is no agreement in the statistical literature as
to whether functional or structural modeling is more
appropriate. Many researchers believe that one should
make as few model assumptions as possible and favor
functional modeling. The argument is that any extra
efficiency gained by structural modeling is more than
offset by the need to perform careful and often time-
consuming sensitivity analyses. Other researchers
believe that appropriate statistical analysis requires
one to do one’s best to model every feature of the
data, and thus favor structural modeling.

We take a somewhat more relaxed view of these
issues. There are many problems, e.g. linear and

logistic regression with additive measurement error,
where functional techniques are easily computed and
fairly efficient, and we have a strong bias in such
circumstances towards functional modeling. In other
problems – for example, the segmented regression
problem [38] – structural modeling clearly has an
important role to play, and should not be neglected.

Measurement Error as a Missing Data Problem

From one perspective, measurement error models are
special kinds of missing data problems, because the
Xs, being mostly and often entirely unobservable, are
obviously missing as well. Readers who are already
familiar with linear measurement error models and
functional modeling will be struck by the fact that
most of the recent missing data literature has pursued
likelihood and Bayesian methods, i.e. structural mod-
eling approaches. Readers familiar with missing data
analysis will also be interested to know that, in large
part, the measurement error model literature has pur-
sued functional modeling approaches. We feel that
both functional and structural modeling approaches
are useful in the measurement error context, and this
article pursues both strategies.

The usual interpretation of the classical missing
data problem [42] is that the values of some of
the variables of interest may not be observable for
all study participants. For example, a variable may
be observed for 80% of the study participants, but
unobserved for the other 20%. The techniques for
analyzing missing data are continually evolving, but
it is fair to say that most of the recent advances
(multiple imputation, data augmentation, etc.) have
been based on likelihood (and Bayesian) methods.

The classical measurement error problem dis-
cussed to this point is one in which one set of
variables, which we call X, is never observable, i.e.
always missing. As such, the classical measurement
error model is an extreme form of a missing data
problem, but with supplemental information about X

in the form of a surrogate, which we call W . Part
of the art in measurement error modeling concerns
how the supplemental information is related to the
unobservable covariate.

Because there is a formal connection between the
two fields, and because missing data analysis has
become increasingly parametric, it is important to
consider likelihood and Bayesian analysis of mea-
surement error models – topics taken up later in this
article.



8 Measurement Error in Epidemiologic Studies

Linear Regression and the Effects of
Measurement Error

A comprehensive account of linear measurement
error models can be found in Fuller [30].

Many textbooks contain a brief description of
measurement error in linear regression, usually focus-
ing on simple linear regression and arriving at the
conclusion that the effect of measurement error is to
bias the slope estimate in the direction of 0. Bias of
this nature is commonly referred to as attenuation or
attenuation to the null.

In fact, though, even this simple conclusion has
to be qualified, because it depends on the relation-
ship between the measurement, W , and the true
predictor, X, and possibly other variables in the
regression model as well. In particular, the effect of
measurement error depends upon the model under
consideration and on the joint distribution of the
measurement error and the other variables. In mul-
tiple linear regression, the effects of measurement
error vary, depending on: (i) the regression model,
be it additive or multiple regression; (ii) whether or
not the predictor measured with error is univari-
ate or multivariate; and (iii) the presence of bias
in the measurement. The effects can range from
the simple attenuation described above to situations
where: (i) real effects are hidden; (ii) observed data
exhibit relationships that are not present in the error-
free data; and (iii) even the signs of estimated coef-
ficients are reversed relative to the case with no
measurement error.

The key point is that the measurement error distri-
bution determines the effects of measurement error,
and thus appropriate methods for correcting for the
effects of measurement error depend on the measure-
ment error distribution.

Simple Linear Regression with Additive Error:
Regression to the Mean

We start with the simple linear regression model
Y = β0 + βxX + ε, where the scalar X has mean µx

and variance σ 2
x , and the error in the equation ε is

independent of X, has mean zero, and variance σ 2
ε .

The error model is additive as in (1). In this classical
additive measurement error model, it is well known
that an ordinary least squares regression ignoring
measurement error produces an estimate not of βx ,

but instead of βx∗ = λβx , where

λ = σ 2
x

σ 2
x + σ 2

u

< 1. (3)

Thus ordinary least squares regression of Y on W

produces an estimator that is attenuated to 0. The
attenuating factor, λ, is called the reliability ratio.

One would expect that, because W is an error-
prone predictor, it has a weaker relationship with
the response than does X. This can be seen both by
the attenuation and also by the fact that the residual
variance of this regression is increased, being not σ 2

ε

but instead

var(Y |W) = residual variance of observed data

= σ 2
ε + λβ2

xσ
2
u .

This facet of the problem is often ignored, but it
is important. Measurement error causes a double-
whammy: not only is the slope attenuated, but the
data are more noisy, with an increased error about
the line.

To illustrate the attenuation associated with the
classical additive measurement error, the results of a
small simulation are displayed in Figure 1.

Ten observations were generated with σ 2
x = σ 2

u =
1, (β0, βx) = (0, 1), and σ 2

ε = 0.25. The filled circles
and steeper line depict the true but unobservable data
(Y, X) and the regression line of Y on X. The empty
circles and attenuated line depict the observed (Y, W )
data and the linear regression of Y on W .

Figure 1 is indicative of a phenomenon called
regression to the mean. Intuitively, what this means
is that the extremes in the observed (W ) data are
too extreme, and that the true X is closer to the
mean of the data. In fact, in normally distributed
data, if X has a population mean µx , then having
observed the fallible instrument, the best prediction
of X is µx(1 − λ) + λW , where λ < 1 is defined in
(3). The net effect is that the best (linear) predictor
of X is always closer to the overall mean than any
observed W .

The foregoing is one facet of regression to the
mean. A more common definition is complementary.
In a study participant with an unusually large
observed W , if one repeats the measurement and
obtains a second (replicated) measure, then this
replicate is generally less (and often much less) than
the original extreme value.
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For instance, in a study of true long-term fat intake
(X) using a 24 h recall instrument (W ), if one focuses
on the person with the highest reported fat intake,
then (i) that person’s true fat intake is most likely
less than the observed intake, and (ii) if one repeats
the 24 h recall instrument, then the new reported fat
intake is likely to be less than the original reported
fat intake.

The second part of the “double-whammy” is a
loss of power. The following example is meant to
illustrate this loss of power, and it is easiest to do
this illustration in the special case that all variances
are known. Suppose that one wants to test the null
hypothesis H0: βx = 0 of zero slope against the one-
sided alternative H1: βx > 0, using a test with a 5%
level (type I error) which has power 80% to detect
that the slope βx = 0.75. With known variances,
in the absence of measurement error, the required
sample size is

n = (z0.95 + z0.80)
2σ 2

ε

σ 2
x β2

x

,

where zα is the usual α percentile of the normal dis-
tribution. With measurement error, the same formula
applies, except that, with βx = 0.75, one replaces σ 2

ε

by σ 2
ε + λβ2

xσ
2
u , σ 2

x by σ 2
x + σ 2

u , and βx by λβx . In
Figure 2, we plot the sample sizes as a function of
the measurement error variance in the case that X has
variance σ 2

x = 1 and the error about the line has vari-
ance σ 2

ε = 1. In the absence of measurement error,
approximately 10 observations are required to obtain
the desired power. However, if the measurement error
variance σ 2

u = 1 and thus the reliability = 1/2, then
approximately 30 observations are required. Thus,
measurement error causes a loss of power. In plan-
ning a study with a large measurement error in a
covariate, one will typically require a much larger
sample size to meet power goals than if there were
no measurement error.

It is a common belief that the effect of measure-
ment error is always to attenuate the slope of the
regression line, but in fact attenuation depends criti-
cally on the assumed classical additive measurement
error model. Very different results are obtained if
measurement errors are differential. One example
where this problem may arise is in dietary calibra-
tion studies. In a typical dietary calibration study,
one is interested in the relationship between a self-
administered food frequency questionnaire (FFQ, the
value of Y ) and usual (or long-term) dietary intake

(the value of X) as measures of, for example, the
percentage of calories from fat in a person’s diet.
FFQs are thought to be biased for usual intake, and
in a calibration study researchers will obtain a sec-
ond measure (the value of W ), typically from a food
diary, a 24h recall, or a short-term biomarker. In this
context, it is often assumed that the diary, recall, or
biomarker is unbiased for usual intake. If, as some-
times occurs, the FFQ and the diary/recall are given
very nearly contemporaneously, it is unreasonable to
assume that the error in the relationship between the
FFQ and usual intake is uncorrelated with the error
in the relationship between a diary–recall–biomarker
and usual intake. This correlation has been demon-
strated [29], and gives rise to differential error. It can
be shown [20] that, if there is significant correlation
between the measurement error and the error about
the true line, then the regression of Y on W can have a
slope biased away from the null. Thus, correction for
bias induced by measurement error clearly depends
on the nature, as well as the extent, of the measure-
ment error.

Multiple Regression: Single Covariate Measured
with Error

In multiple linear regression the effects of measure-
ment error are more complicated, even for the clas-
sical additive error model.

We now consider the case where X is scalar, but
there are additional covariates Z measured without
error. In the linear model the mean is β0 + βxX +
βzZ. Under the usual conditions of independence of
errors, the least squares regression estimator of the
coefficient of W consistently estimates λ1βx , where

λ1 = σ 2
x|z

σ 2
w|z

= σ 2
x|z

σ 2
x|z + σ 2

u

, (4)

and σ 2
w|z and σ 2

x|z are the (residual) variances of the
regressions of W on Z and X on Z, respectively. Note
that λ1 is equal to the simple linear regression atten-
uation λ = σ 2

x /(σ 2
x + σ 2

u ) only when X and Z are
uncorrelated. The basic point is that the attenuation
depends on the relationships among the covariates.

The problem of measurement-error-induced bias is
not restricted to the regression coefficient of X. The
coefficient of Z is also biased in general, unless Z is
independent of X [19]. In fact, naive ordinary least
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squares estimates not βz but rather

βz∗ = βz + βx(1 − λ1)γz, (5)

where γz is the coefficient of Z in the regression of
X on Z.

This result has important consequences in epi-
demiology when interest centers on the effects of
covariates measured without error. For example, con-
sider the case that Z is a binary exposure variable
(exposed or not) which is classified correctly, and
X is an important confounder measured with signifi-
cant error. Then Carroll et al. [19] show that ignoring
measurement error produces a consistent estimate of
the exposure effect only if the design is balanced,
i.e. X has the same mean in both groups and is
independent of treatment. With considerable imbal-
ance, the naive analysis may lead to the conclusion
that: (i) there is a treatment effect when none actu-
ally exists; and (ii) the effects are negative when they
are actually positive, and vice versa. In most obser-
vational studies the confounder and the exposure
are correlated (see [34] and [35]). Errors in measur-
ing the confounders can produce very misleading
results.

Multiple Covariates Measured with Error

If multiple covariates are measured with error, then
the direction of the bias induced by this error does not
follow any simple pattern. One may have attenuation,
reverse-attenuation, changes of sign, or an observed
positive effect even at a true null model. This is
especially the case when the predictors measured with
error are correlated or their errors are correlated. In
such a problem, there really seems to be no substitute
for a careful measurement error analysis.

Correcting for Bias

As we have just seen, the ordinary least squares esti-
mator is typically biased under measurement error,
and the direction and magnitude of the bias depends
on the regression model and the measurement error
distribution. We next describe two commonly used
methods for eliminating bias.

In simple linear regression with the classical addi-
tive error model, we have seen in (3) that ordinary
least squares is an estimate of λβx ; recall that λ is
called the reliability ratio. If the reliability ratio were

known, then one could obtain a proper estimate of βx

simply by dividing the ordinary least squares slope by
the reliability ratio.

Of course, the reliability ratio is rarely known
in practice, and one has to estimate it. If σ̂ 2

u is an
estimate of the measurement error variance (this is
discussed below), and if σ̂ 2

w is the sample variance of
the W s, then a consistent estimate of the reliability
ratio is λ̂ = (σ̂ 2

w − σ̂ 2
u )/σ̂ 2

w . The resulting estimate is
βx∗/λ̂. In small samples the sampling distribution of
this estimate is highly skewed, and in such cases a
modified version of the method of moments estima-
tor is recommended [30].

The algorithm described above is called the
method-of-moments estimator. The terminology is
apt, because ordinary least squares and the reliability
ratio depend only on moments of the observed data.

The method-of-moments estimator can be con-
structed for the general linear model, as well as
for simple linear regression. Consult the book by
Fuller [30], especially Chapter 2.

Another well publicized method for linear regres-
sion in the presence of measurement error is orthogo-
nal regression. It is fairly rare in epidemiologic situa-
tions that the model underlying orthogonal regression
holds [15], and we will not discuss the method any
further.

Bias vs. Variance

Estimates that do not account for measurement error
are typically biased. Unfortunately, correcting for this
bias often has a price. In particular, the resulting cor-
rected estimator will be more variable than the biased
estimator, and wider confidence intervals result. For
example, Rosner et al. [60] describe a problem in
logistic regression, where the response is the devel-
opment of breast cancer, and the predictor measured
with error is daily saturated fat intake. Ignoring mea-
surement error, they obtained an estimated odds ratio
for saturated fat of 0.92, with a 95% confidence
interval from 0.80 to 1.05. The corrected estimated
odds ratio was 0.83 with a confidence interval from
0.61 to 1.12, which is twice as wide as the previous
interval.

Attenuation in General Problems

We have already seen that, with multiple covariates,
even in linear regression the effects of measurement
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error are complex, and not easily described. In this
Section, we provide a brief overview of what happens
in nonlinear models.

Consider a scalar covariate X measured with error,
and suppose that there are no other covariates. In
the classical error model for simple linear regression
we have seen that the bias caused by measurement
error is always in the form of attenuation, so that
ordinary least squares preserves the sign of the regres-
sion coefficient asymptotically, but is biased towards
zero. Attenuation is a consequence then of (i) the
simple linear regression model and (ii) the classical
additive error model. Without (i) and (ii), the effects
of measurement error are more complex; we have
already seen that attenuation may not hold if (ii) is
violated.

In logistic regression, when X is measured with
additive error, attenuation does not always occur, but
it is typical and generally much like that of linear
regression.

Dosemeci et al. [28] give an example of mis-
classification error that shows that trends are not
always preserved under nondifferential measurement
error. Suppose that 1348 subjects are exposed at
no (X = 0), low (X = 1), and high (X = 2) levels
to a harmful substance. Suppose that the chance of
an adverse outcome is 1/2, 2/3, and 6/7 for no,
low, and high exposures, while the chances of the
exposures themselves are 0.0059347, 0.8902077, and
0.1038576, respectively. If true exposure could be
ascertained, then the expected outcomes would be as
in the section of Table 1 labeled “true”. If we were to
regress Y on the dummy variables X1 indicating low
exposure (X1 = 1), and X2 indicating high exposure
(X2 = 1), then the true logistic regression parameters

Table 1 A hypothetical logistic regression example with
nondifferential measurement error. The entries are the
expected counts. The true logistic parameters for dummy
variables low and high exposure are log 2 and log 6,
respectively, while the observed coefficients for the error
prone data are log 0.46 and log 0.53, respectively

Disease Exposure Exposure Exposure
status = none = low = high

True
Y = 1 4 800 120
Y = 0 4 400 20

Observed
Y = 1 52 480 392
Y = 0 12 240 172

for X1 and X2 would be log 2 = 0.69 and log 6 =
1.79, respectively, indicating that the two higher
exposure levels have response rates higher than the
response rate associated with the no-exposure level.
The true data clearly indicate a harmful effect due to
exposure.

Now suppose, however, that measurement error
(in this case misclassification) occurs, so that 40%
of those truly at high exposure are misclassified into
the no-exposure group, and 40% of those truly at
low exposure are misclassified into the high-exposure
group. Let W be the resulting variable taking on the
three observed levels of exposure, with corresponding
dummy variables W1 and W2. This is a theoretical
example, of course, and one can criticize it for not
being particularly realistic, but it is an example of
nondifferential measurement error. The observed data
we expect to see using the surrogates W1 and W2 are
also given in Table 1.

The observed logistic regression parameters for
W1 and W2 are log 0.46 = −0.78 and log 0.53 =
−0.63, respectively, indicating that the two higher
exposure levels have response rates lower than the
response rate associated with the no-exposure level.
The observed data suggest a beneficial effect due to
exposure, even though the exposure is harmful!

Hypothesis Testing

In this section, we discuss hypothesis tests concern-
ing regression parameters. To keep the exposition
simple, we focus on linear regression. However, the
results hold in some generality, especially for logistic
and Poisson regression. We assume nondifferential
measurement error and the classical additive error
model.

The simplest approach to hypothesis testing cal-
culates the required test statistic from the parameter
estimates obtained from a measurement error anal-
ysis and their estimated standard errors. Such tests
are justified whenever the estimators themselves are
justified. However, this approach to testing is only
possible when the indicated methods of estimation
are possible, and thus requires either knowledge of
the measurement error variance, or the presence of
validation data, or replicate measurements, or instru-
mental variables.

There are certain situations in which naive hypoth-
esis tests are justified and thus can be performed
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without additional data or information of any kind.
Here “naive” means that we ignore measurement
error and substitute W for X in a test that is valid
when X is observed. This Section studies naive tests,
describing when they are and are not acceptable.

We use the criterion of asymptotic validity to
distinguish between acceptable and nonacceptable
tests. We say a test is asymptotically valid if its type I
error rate approaches its nominal level as the sample
size increases. Asymptotic validity (which we shorten
to validity) of a test is a minimal requirement for
acceptability.

The main results on the validity of naive tests
under nondifferential measurement error are as
follows:

1. The naive test of no effects due to X is valid.
This means that if one wants to test whether all
components of X together have no effect, then
it is valid to ignore nondifferential measurement
error. Thus, for example, if X is the exposure,
then a valid test of the null hypothesis for X

is obtained by ignoring measurement error and
performing the standard test for the problem
at hand.

2. The naive test described above is also fully
efficient if X is linearly related to W and Z, but
not otherwise [79]. Thus, while in principle one
can obtain additional power by a measurement
error analysis, many times in practice the naive
test of the null hypothesis for X is reasonably
efficient.

3. In many problems, more than one covariate is
measured with error. For example, suppose that
the exposure and one of the confounders are mea-
sured with error. Generally, the naive test of the
null hypothesis for the exposure is invalid, except
under special circumstances, e.g. the exposure
and confounder are statistically independent, as
are their measurement errors.

4. In general, naive tests for Z are invalid, except
possibly if Z is uncorrelated with X. Thus, if X is
the exposure and Z is a confounder, then naive
tests for significance of the exposure are valid,
but they are not valid for testing the significance
of the confounder. Somewhat more troubling,
though, is the case when X is a confounder
related to the exposure Z; here the naive test
for the exposure is generally invalid, even if
exposure is measured without error. We have

mentioned this example previously in the case
that the exposure is binary (see [19]).

The last point can be demonstrated in the analysis of
covariance, in which Z is a binary exposure variable
and X is a confounder with strong predictive ability.
In the analysis of covariance, the model is

Y = β0 + βzZ + βxX + ε,

where ε is the error about the line, with variance σ 2
ε .

The binary indicator Z takes on the values ±1, with
50% of the data being unexposed (Z = −1) and 50%
of the data being exposed (Z = 1). Within the unex-
posed group, X has mean −θ/2 and variance σ 2

x ,
while, within the exposed group, X has mean θ/2
and variance σ 2

x . The difference between the means
for X in the two groups is θ . In a randomized clinical
trial, one would expect that θ = 0, since random-
ization ensures that the population means of X are
the same in the exposed and unexposed groups. In
nonrandomized studies, one would expect that θ �= 0.
Thus, the larger the value of θ , the more unbalanced
is the study. In Figure 3, we plot the level (type
I error) of the test for the exposure effect which
ignores measurement error as a function of the dif-
ference in group means θ . This calculation is done
for the case that n = 20 (10 exposed and 10 unex-
posed), σ 2

ε = 1, σ 2
x = 1, and βx = 1, for reliability

ratios λ̇ = 1/2 and = 2/3. The graph shows that if
the means of the confounders are sufficiently differ-
ent, then, instead of a type I error of 5%, the test
for exposure effect which ignores measurement error
in the confounder can have type I error rates higher
than 10%, even for such small sample sizes.

Regression Calibration and SIMEX

We now describe two simple, generally applica-
ble approaches to nondifferential measurement error
analysis, regression calibration, and simulation extra-
polation (SIMEX).

Regression Calibration

The basis of regression calibration is the replace-
ment of X by the regression of X on (Z,W ). After
this approximation, one performs a standard analysis.
This regression calibration algorithm was suggested
as a general approach by Carroll & Stefanski [16] and
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Gleser [33]. Prentice [52] pioneered the idea for the
proportional hazard model, and a modification of
it has been suggested for this topic by Clayton [25];
see below. Armstrong [4] suggests regression cali-
bration for generalized linear models, and Fuller
[30, pp. 261–262] briefly mentions the idea. Rosner
et al. [59, 60] have developed the idea for logistic
regression into a workable and popular methodology,
complete with a good computer program. Because
of the importance of their contribution to epidemi-
ologic applications, regression calibration is often
referred to as “Rosner’s Method”. Other interesting
and important applications and methodology related
to regression calibration include work by Whitte-
more [83], Pierce et al. [51], Liu & Liang [43], and
Kuha [39]. In some special cases, regression calibra-
tion is equivalent to the classical method of moments
bias correction.

The main justifications of the regression calibra-
tion approximation are that, for some models, e.g.
loglinear mean models and linear regression, the
regression calibration approximation is often exact
except for a change in the intercept parameter. For
logistic regression, in many cases the approximation
is almost exact.

The Regression Calibration Algorithm. The
regression calibration algorithm is what Pierce
et al. [51] call a “replacement method”:

1. Using replication, validation or instrumental data,
estimate the regression of X on (Z,W ) (see
below). This is called the calibration function.

2. Replace the unobserved X by its estimate from
the regression model, and then run a standard
analysis to obtain parameter estimates.

3. Adjust the resulting standard errors to account
for the estimation at the first step, using either
the bootstrap or asymptotic methods [20].

The simplest form of regression calibration is the
“correction for attenuation” used in linear regression.
It is easiest to describe in the following situation:

1. X is a scalar.
2. The measurement error is additive, with esti-

mated error variance σ̂ 2
u .

For estimating the effect of X, the regression cal-
ibration estimator is formed by three steps: (i) form
the naive estimator by ignoring measurement error;

(ii) let σ̂ 2
w|z be the regression mean square error

from a linear regression of W on Z (this is the sample
variance of the W s if there are no other covariates Z);
(iii) the regression calibration estimator is defined by
multiplying the naive estimator by σ̂ 2

w|z/(σ̂ 2
w|z − σ̂ 2

u ).

Estimating the Calibration Function Parameters.
With internal validation data, the simplest approach
is to regress X on the other covariates (Z, W ) in
the validation data. While linear regression will be
typical, it is not required.

In some problems, an unbiased second instrument
T is available for a subset of the study participants.
For instance, one might be interested in X = caloric
intake over a year, but have available only T = the
result of a biomarker experiment using a technique
known as doubly labeled water over a 2 week period,
which does not equal X because it does not take
into account the variability of diet over a year. In
this case one uses the regression of T on (Z,W )
as the calibration function. This is the method used
by Rosner et al. [59] in their analysis of the Nurses’
Health Study.

Finally, in the classical additive error model, one
often has merely a second measurement (a replicate)
for a subset of the study population. One could treat
this replicate as an unbiased second instrument and
apply the method described in the previous paragraph.
If the W s are not too far from normally distributed,
a more efficient method is to use the so-called best
linear approximation to the calibration function (see
[20, pp. 47–48]). This takes into account that some
of the study participants do have a replicated W

and hence use the data in a reasonably efficient
fashion.

Suppose there are ki replicate measurements of Xi ,
and that Wi is their mean. Replication enables us to
estimate the measurement error covariance matrix
σ 2

u by the usual variance components analysis, as
follows:

σ̂ 2
u =

n∑

i=1

ki∑

j=1

(Wij − Wi·)2

n∑

i=1

(ki − 1)

. (6)

The calibration function is defined as follows. Sup-
pose the observations are (Zi, W i·), where Wi· is the
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mean of ki replicates. We use analysis of variance
formulas. Let

µ̂x = µ̂w =

n∑

i=1

kiW i·

n∑

i=1

ki

, µ̂z = Z·,

ν =

n∑

i=1

ki −
n∑

i=1

k2
i

n∑

i=1

ki

,

σ̂ 2
z = (n − 1)−1

n∑

i=1

(Zi − Z·)2,

σ̂xz =

n∑

i=1

ki(W i· − µ̂w)(Zi − Z·)

ν
,

σ̂ 2
x =

{[
n∑

i=1

ki(W i. − µ̂w)2

]
− (n − 1)σ̂ 2

u

}

ν
.

The resulting estimated calibration function which is
used to replace X in the standard analysis is

µ̂w + (σ̂ 2
x , σ̂xz)

[
σ̂ 2

x + σ̂ 2
u /ki σ̂xz

σ̂xz σ̂ 2
z

]−1(
Wi· − µ̂w

Zi − Z·

)
.

(7)

Expanded Regression Calibration Models. Ru-
demo et al. [61], Carroll & Stefanski [16] and Carroll
et al. [20] all describe refinements to the regression
calibration algorithm. Rudemo et al. [61] describe a
bioassay problem (see Biological Assay, Overview)
with a heteroscedastic Berkson error model. Racine-
Poon et al. [56] describe a similar problem.

There is a long history of approximately consistent
estimates in nonlinear problems, of which regression
calibration and the SIMEX method are the most
recent such methods. Readers should also consult
Stefanski & Carroll [70], Stefanski [67], Amemiya &
Fuller [3], and Whittemore & Keller [85] for other
approaches.

The SIMEX Method

We now describe a method that shares the simplic-
ity of regression calibration and is well suited to
problems with additive or multiplicative measure-
ment error. Simulation extrapolation (SIMEX) is a
simulation-based method of estimating and reduc-
ing bias due to measurement error. SIMEX estimates
are obtained by adding additional measurement error
to the data in a resampling-like stage, establishing
a trend of measurement error-induced bias vs. the
variance of the added measurement error, and extrap-
olating this trend back to the case of no measurement
error. The technique was proposed by Cook & Stefan-
ski [26], and further developed by Carroll et al. [22]
and Stefanski & Cook [73]. See also Stefanski, [68].

An integral component of SIMEX is a self-
contained simulation study resulting in graphical dis-
plays that illustrate the effect of measurement error
on parameter estimates and the need for bias cor-
rection. The graphical displays are especially useful
when it is necessary to motivate or explain a mea-
surement error model analysis.

This Section describes the basic idea of SIMEX,
focusing on linear regression with additive measure-
ment error. For this simple model the effect of mea-
surement error on the least squares estimator is easily
determined mathematically, as we have shown. The
key idea underlying SIMEX is the fact that the effect of
measurement error on an estimator can also be deter-
mined experimentally via simulation. If we regard
measurement error as a factor whose influence on
an estimator is to be determined, we are naturally led
to consider simulation experiments in which the level
of the measurement error, i.e. its variance, is varied
intentionally.

The SIMEX Algorithm

Suppose that, in addition to the original data used to
calculate the naive estimate β̂x,naive, there are M − 1
additional data sets available, each with successively
larger measurement error variances, say (1 + ζm)σ 2

u ,
where 0 = ζ1 < ζ2 < · · · < ζM . Of course, the least
squares estimate of slope from the mth data set
ignoring measurement error, β̂x,m, consistently esti-
mates βxσ

2
x /[σ 2

x + (1 + ζm)σ 2
u ].

We can think of this problem as a nonlinear
regression model, with dependent variable β̂x,m and
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independent variable ζm, having a mean function of
the form

G(ζ ) = βxσ
2
x

σ 2
x + (1 + ζ )σ 2

u

, ζ ≥ 0.

The parameter of interest, βx , is obtained from G(ζ )

by extrapolation to ζ = −1. We describe the process
schematically in Figure 4.

SIMEX imitates the procedure just described. In
the simulation step, additional independent measure-
ment errors with variance ζmσ 2

u are generated and
added to the original data, thereby creating data sets
with successively larger measurement error variances.
For the mth data set, the total measurement error
variance is σ 2

u + ζmσ 2
u = (1 + ζm)σ 2

u . Next, estimates
are obtained from each of the resulting contaminated
data sets. The simulation and reestimation step is
repeated a large number of times (to remove simula-
tion variability) and the average value of the estimate
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Figure 4 A generic plot of the effect of measurement error
of size (1 + ζ )σ 2

u on parameter estimates. The value of ζ is
on the x-axis, while the value of the estimated coefficient
is on the y-axis. The SIMEX estimate is an extrapolation
to ζ = −1. The naive estimate occurs at ζ = 0

for each level of contamination is calculated. These
averages are plotted against the ζ values, and regres-
sion techniques are used to fit an extrapolant func-
tion to the averaged, error-contaminated estimates.
Extrapolation back to the ideal case of no measure-
ment error (ζ = −1) yields the SIMEX estimate.

The first part of the algorithm is the simulation
step. As described above, this involves using simu-
lation to create additional data sets with increasingly
large measurement error (1 + ζ )σ 2

u . For any ζ ≥ 0,
define

Wb,i(ζ ) = Wi + ζ 1/2Ub,i,

i = 1, . . . , n, b = 1, . . . , B, (8)

where the computer-generated pseudo-errors,
{Ub,i}ni=1, are mutually independent, independent of
all the observed data, and identically distributed, nor-
mal random variables with mean 0 and variance σ 2

u .
Having generated the new predictors, we compute

the resulting naive estimates, component by compo-
nent. For each ζ , do this B times (B = 100 usually
works fine) and compute their average, β̂(ζ ). It is
the points {β̂(ζm), ζm}M1 that are plotted as filled cir-
cles in Figure 4. This is the simulation component of
SIMEX.

The extrapolation step of the proposal entails mod-
eling each of the components of β̂(ζ ) as functions of
ζ for ζ ≥ 0, and extrapolating the fitted models back
to ζ = −1. In Figure 4 the extrapolation is indicated
by the dashed line and the SIMEX estimate is plotted
as a cross. Carroll et al. [20] describe practical mod-
ifications of the algorithm, and how to estimate vari-
ances of parameters. Inference for SIMEX estimators
can also be performed via the bootstrap. Because of
the computational burden of the SIMEX estimator,
the bootstrap requires considerably more computing
time than do other methods. Without efficient imple-
mentation of the estimation scheme at each step, the
SIMEX bootstrap may take an inconveniently long
time to compute. On my computing system for mea-
surement error models the implementation is efficient,
and most bootstrap applications take little time.

We have described the SIMEX algorithm in terms
of the additive measurement error model. However,
SIMEX applies more generally.

For example, consider multiplicative error. Taking
logarithms transforms the multiplicative model to
the additive model. SIMEX works naturally here,
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in that one performs the simulation step (8) on the
logarithms of the W s and not on the W s themselves.

With replicates, one can also investigate the appro-
priateness of different transformations. For exam-
ple, after transformation, the standard deviation of
the intra-individual replicates should be uncorrelated
with their mean, and one can find the transformation
(logarithm, square root, etc.) which makes the two
uncorrelated.

Example

To illustrate SIMEX, we use data from the Fram-
ingham Heart Study, correcting for bias due to
measurement error in systolic blood pressure mea-
surements. The Framingham study consists of a series
of exams taken two years apart. We use Exam #3
as the baseline. There are 1615 men aged 31–65
in this data set, with the outcome, Y , indicating the
occurrence of coronary heart disease (CHD) within
an 8-year period following Exam #3; there were
128 such cases of CHD. Predictors employed in this
example are the patient’s age at Exam #2, smoking
status at Exam #1, and serum cholesterol at Exams #2
and #3, in addition to systolic blood pressure (SBP)
at Exam #3, the latter being the average of two mea-
surements taken by different examiners during the
same visit. In addition to the measurement error in
SBP measurements, there is also measurement error
in the cholesterol measurements. However, for this
example we ignore the latter source of measurement
error and illustrate the methods under the assumption
that only SBP is measured with error.

The covariates measured without error, Z, are
age, smoking status, and serum cholesterol, with
W = log(SBP − 50). Implicitly, we are defining X

as the long-term average of W . We illustrate the
analyses for the case where W is the mean of the two
transformed SBPs, and σ 2

u is estimated using (6). The
estimated linear model correction for attenuation, or
inverse of the reliability ratio, is 1.16; if only one
SBP measurement were used, the correction would
be 1.33.

Figure 5 contains plots of the logistic regression
coefficients Θ̂(ζ ) for eight equally spaced values of
ζ spanning [0, 2] (solid circles). For this example
B = 2000. The points plotted at ζ = 0 are the naive
estimates Θ̂naive. The nonlinear least-squares fits of
GRL(λ, Γ ) to the components of {Θ̂(ζm), ζm}8

1 (solid
curves) are extrapolated to ζ = −1 (dashed curves),

resulting in the SIMEX estimators (crosses). The
open circles are the SIMEX estimators that result
from fitting quadratic extrapolants. To preserve clarity
the quadratic extrapolants were not plotted. Note that
the quadratic-extrapolant estimates are conservative
relative to the rational linear-extrapolant estimates in
the sense that they fall between the rational linear-
extrapolant estimates and the naive estimates.

We have stated previously that the SIMEX plot
displays the effect of measurement error on parameter
estimates. This is especially noticeable in Figure 5.
In each of the four graphs in Figure 5, the range
of the ordinate corresponds to a one-standard-error
confidence interval for the naive estimate constructed
using the information standard errors. Thus Figure 5
illustrates the effect of measurement error relative to
the variability in the naive estimate. It is apparent
that the effect of measurement error is of practical
importance only on the coefficient of log(SBP − 50).

Conditional and Corrected Scores for
Functional Modeling

Regression calibration and SIMEX are easily applied
general methods for nondifferential error. Although
the resulting estimators are consistent in important
special cases such as linear regression and loglinear
mean models, they are only approximately consistent
in general.

For certain generalized linear models and mea-
surement error distributions there are easily applied
functional methods that are fully (and not just approx-
imately) consistent, and make no assumptions about
the distribution of X.

We focus on the case of additive normally dis-
tributed measurement error with measurement error
variance σ 2

u . Although the problem has this para-
metric error assumption, it also has a nonparametric
component: no assumptions are made about the true
predictors X.

Suppose for the sake of discussion that the mea-
surement error variance σ 2

u is known. In the func-
tional model, the unobservable Xs are fixed con-
stants, and hence the unknown parameters include the
Xs. With additive normally distributed measurement
error, one strategy is to maximize the joint density of
the observed data with respect to all of the unknown
parameters including the Xs. While this works for lin-
ear regression [32], it fails for more complex models
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such as logistic regression. Indeed, the logistic regres-
sion functional maximum likelihood estimator is both
inconsistent and difficult to compute [70]. An alter-
native approach is to change to the structural model
and apply likelihood techniques (see below).

In this Section, we consider two functional
methods, the conditional-score and corrected-score
methods. We start with logistic and gamma–loglinear
modeling as important examples for which these
techniques apply. The conditional methods exploit
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Figure 5 Coefficient extrapolation functions for the Framingham logistic regression modeling. The simulated estimates
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(dashed line), resulting in the SIMEX estimate (cross). Open circles indicate SIMEX estimates obtained with the quadratic
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special structures in important models such as linear,
logistic, Poisson loglinear, and gamma-inverse, and
then use a traditional statistical device – conditioning
on sufficient statistics – to obtain estimators. The
corrected-score method effectively estimates the
estimator one would use if there were no mea-
surement error.

First consider the multiple linear regression
model with mean β0 + βxX + βzZ, and write the
unknown regression parameter as Θ = (β0, βx, βz).
When the measurement error is additive with non-
differential measurement error variance Σuu, the
usual method-of-moments regression estimator can
be derived as the solution to the equation

n∑

i=1

ψ∗ (Yi, Zi, Wi, Θ, Σuu) = 0, (9)

where

ψ∗ (Y, Z, W, Θ, Σuu) = (Y − β0 − βt
xX − βt

zZ)

×
( 1

Z

W

)
+

( 0
0

Σuuβx

)

is the corrected score for linear regression. If Σuu is
unknown, then one substitutes an estimate of it into
(9) and solves for the regression parameters.

The key point to note here is that, in solving (9),
we need know nothing about the Xs. This feature is
common to all the methods in this Section.

Eq. (9) is an example of an estimating equation
approach for estimating a set of unknown parameters.
The reader can consult the Appendix of [20] for an
overview of estimating equations, although this is
unnecessary for the purpose of using the methods.
Asymptotic standard errors for the estimators can be
derived using either the bootstrap or the sandwich
formula.

Logistic regression is best handled using the
conditional-score method. For example, consider the
usual linear-logistic model, where Y is binary and
has success probability following the logistic model
H(β0 + βxX + βzZ). The conditional score is

ψ∗(Y, Z, W, Θ, σ 2
u )

= {Y − H [β0 − βt
x∆(·) − 0.5βt

xσ
2
u βx

− βt
zZ]}

( 1
Z

∆(·)

)
, (10)

where ∆(·)=∆(Y, W, βx, σ 2
u )=W +Yσ 2

u βx . Eq. (10)
is substituted into (9), and the resulting equation is
solved numerically.

When Y has a gamma distribution with loglinear
mean exp(β0 + βxX + βzZ), it has a variance which
is φ times the square of the mean. For this important
example, the corrected-score estimator is obtained
from the corrected score

ψ∗(Y, Z, W, Θ, σ 2
u )

=
( 1

Z

W

)
− exp[∆(Z, W, Θ, σ 2

u )]

×
(

Y

ZY

Y(W + 0.5σ 2
u βx)

)
, (11)

where ∆(Z, W, Θ, σ 2
u ) = −β0 − βt

xW − βt
zZ −

0.5βt
xσ

2
u βx .

Unbiased Score Functions via Conditioning

The conditional estimators of Stefanski & Car-
roll [71] and Nakamura [48] are discussed in detail
in Carroll et al. [20, Chapter 6]. They apply to lin-
ear, logistic, Poisson loglinear, and gamma inverse
regression [the mean is 1/(β0 + βxX + βzZ)]. Their
methods have simple formulas for standard errors,
although, of course, as usual, the bootstrap applies.

Exact Corrected Estimating Equations

Suppose that it is possible to find a function of
the observed data, say ψ∗(Y, Z, W, Θ), having the
property that

E[ψ∗(Y, Z, W, Θ)|Y, Z, X] = ψ(Y, Z, X, Θ), (12)

for all Y, Z, X, and Θ . Then corrected score function
estimators simply replace ψ by ψ∗. Corrected score
functions satisfying (12) do not always exist, and
finding them when they do is not always easy.

One useful class of models that admits corrected
functions contains those models with log likelihoods
of the form

log[f (y|z, x, Θ)] =
2∑

k=0

[ck(y, z, Θ)(βt
xx)k]

+ c3(y, z, Θ) exp(βt
xx);
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see the examples given below. Then, using normal
distribution moment generating function identities,
the required function is

ψ∗(y, z, w, Θ, σ 2
u )

= ∂

∂Θt

[
2∑

k=0

[ck(y, z, Θ)(βt
xw)k] − c2(y, z, Θ)

×βt
xσ

2
u βx + c3(y, z, Θ) exp(βt

xw − 0.5βt
xσ

2
u βx)

]
.

Regression models in this class include:

1. normal linear with mean = η, variance = φ,
c0 = −(y − β0 − βt

zz)
2/(2φ) − log(φ1/2),

c1 = (y − β0 − βt
zz)/φ, c2 = −(2φ)−1, c3 = 0

2. Poisson with mean = exp(η), variance =
exp(η), c0 = y(β0 + βt

zz) − log y!, c1 = y,

c2 = 0, c3 = − exp(β0 + βt
zz)

3. gamma with mean = exp(η), variance =
φ exp(2η), c0 = −φ−1(β0 + βt

zz) + (φ−1 − 1)

log y + φ−1 log(φ−1) − log[Γ (φ−1)], c1 = φ−1,

c2 = 0, c3 = −φ−1y exp(−β0 − βt
zz).

Comparison of Methods

The methods are applicable at the same time only in
linear regression (where they are identical) and Pois-
son regression. For Poisson regression the corrected
estimating equations are more convenient because
they are explicit, whereas the conditional estimator
involves numerical summation. For Poisson regres-
sion the conditional-score estimator is more efficient
than the corrected-score estimator in some practi-
cal cases.

Instrumental Variables

We have assumed that it was possible to estimate
the measurement error variance, say with replicate
measurements or validation data. However, it is not
always possible to obtain replicates or validation data,
and thus direct estimation of the measurement error
variance is sometimes impossible. In the absence of
information about the measurement error variance,
estimation of the regression model parameters is still
possible provided the data contain an instrumental
variable T , in addition to the unbiased measurement
W = X + U .

There are three basic requirements that an instru-
mental variable must satisfy: (i) it must be correlated
with X; (ii) it must be independent of W − X; and
(iii) it must be a surrogate, i.e. subject to nondiffer-
ential measurement error.

One possible source of an instrumental variable is
a second measurement of X obtained by an indepen-
dent method. This second measurement need not be
unbiased for X. Thus the assumption that a variable
is an instrument is weaker than the assumption that
it follows the classical additive error model.

Instrumental variable estimation in linear mod-
els is covered in depth by Fuller [30]. The work
described here, outside the linear model, is based
on that of Carroll & Stefanski [17] and Stefanski
& Buzas [69]. Other pertinent references include
[1], [2], and [13].

We have found that instrumental variables require
a slightly different notation. For example, βY |1ZX is
the coefficient of 1, i.e. the intercept, in the regres-
sion of Y on 1, Z, and X; βY |1ZX is the coefficient
of Z in the regression of Y on 1, Z, and X. This
notation allows representation of subsets of coef-
ficient vectors, e.g. βY |1ZX = (βY |1ZX, βY |1ZX) and
βX|1ZT = (βX|1ZT , βX|1ZT , βX|1ZT).

Our analysis is based upon regression calibration
in generalized linear models, e.g. linear, logistic, and
Poisson regression. It might be useful simply to think
of this Section as dealing with a class of important
models, whose details of fitting are standard in many
computer programs.

The approximate models and estimation algo-
rithms are best described in terms of the composite
vectors

X = (1, Z, X), W = (1, Z, W),

T = (1, Z, T ).

Define βY |X̃ = (βY |1ZX, βY |1ZX, βY |1ZX).
We note here that, in addition to the assumptions

stated previously, we will also assume that the regres-
sion of X on (Z, T , W) is approximately linear. This
restricts the applicability of our methods somewhat,
but is sufficiently general to encompass many poten-
tial applications.

The simplest instrumental variables estimator
starts with a (possibly multivariate) regression of W
on T to obtain β̂W|T. Then Y is regressed on the
predicted values β̂W|TT, which results in an estimator
of βY |X.
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This estimator is easily computed as it requires
only linear regression of the components of W on T,
and then the use of standard regression programs to
regress Y on the “predictors” β̂W|TT.

Carroll et al. [20] describe somewhat more elab-
orate methods of instrumental variable estimation,
which can be more efficient than this simple method,
especially if the number of components of T differs
from the number of components of W .

This Section describes the use of likelihood meth-
ods in measurement error models. There have been
a few examples in the literature based on likeli-
hood. See [23], [63], [64], and [78] for probit regres-
sion, [84] for a Poisson model, [27], [62] and [81]
in logistic regression, and [38] in a change-point
problem. The relatively small literature belies the
importance of the topic and the potential for further
applications.

There are a number of important differences
between likelihood methods and the methods
described in previous Sections:

1. The previous methods are based on additive or
multiplicative measurement error models, possi-
bly after a transformation. Typically, few, if any,
distributional assumptions are required. Like-
lihood methods require stronger distributional
assumptions, but they can be applied to more
general problems, including those with discrete
covariates subject to misclassification error.

2. The likelihood for a fully specified parametric
model can be used to obtain likelihood ratio
confidence intervals. In methods not based on
likelihoods, inference is based on bootstrapping
or on normal approximations. In highly nonlinear
problems, likelihood-based confidence intervals
are generally more reliable than those derived
from normal approximations.

3. Likelihood methods are often computationally
more demanding, whereas the previous methods
require little more than the use of standard sta-
tistical packages.

4. Robustness to modeling assumptions is a con-
cern for both approaches, but is generally more
difficult to understand with likelihood methods.

5. There is a belief that the simpler methods
described previously perform just as well as
likelihood methods for many statistical models,
including the most common generalized linear
models. There is little documentation as to

whether the folklore is realistic. The only
evidence that we know of is given for logistic
regression by Stefanski & Carroll [72], who
contrast the maximum likelihood estimate and
a particular functional estimate. They find that
the functional estimate is fairly efficient relative
to the maximum likelihood estimate unless the
measurement error is “large” or the logistic
coefficient is “large”. One should be aware,
however, that their calculations indicate that
there are situations where properly parameterized
maximum likelihood estimates are considerably
more efficient than estimates derived from
functional modeling.

Likelihood Specification: Differential and
Nondifferential Error

We consider here only the simplest problem in which
X is not observable for all subjects, but there are suf-
ficient data, either internal or external, to characterize
the distribution of W given (X, Z) (with validation
data, we are in the realm of missing data). To perform
a likelihood analysis, one must specify a parametric
model for every component of the data. Likelihood
analysis starts with a model for the distribution of
the response given the true predictors. The likelihood
(density or mass) function of Y given (Z, X) will be
called fY |Z,X(y|z, x,B) here, and interest lies in esti-
mating B. For example, if Y is normally distributed
with mean β0 + βxX + βzZ and variance σ 2, then
B = (β0, βx, βz, σ 2) and

fY |Z,X(y|z, x,B) = σ−1φ[(y − β0 + βxx + βzz)/σ ],

where φ(v) = (2π)−1/2 exp(−0.5v2) is the standard
normal density function. If Y follows a logistic
regression model with mean H(β0 + βxX + βzZ),
then B = (β0, βx, βz) and

fY |Z,X(y|z, x,B) = Hy(β0 + βxx + βzz)

× [1 − H(β0 + βxx + βzz)]
1−y .

A likelihood analysis starts with determination of
the joint distribution of Y and W given Z, as these
are the observed variates. There are three components
required:

1. A model relating the response to the “true”
covariates, see just above.
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2. An error model, here called fW |Z,X(w|z, x, α̃1).
In many applications, the error model does not
depend on Z. For example, in the classical addi-
tive measurement error model (1) with normally
distributed measurement error, σ 2

u is the only
component of α̃1, and the error model density
is σ−1

u φ[(w − x)/σu], where φ(·) is the standard
normal density function. In the classical error
model with independent replicates, W consists of
the k replicates, and fW |Z,X is the k-variate nor-
mal density function with mean zero, common
variance σ 2

u , and zero correlation. A generaliza-
tion of this error model that allows for correla-
tions among the replicates has been studied [81].
In some application areas, error model structures
are studied independently of their role in mea-
surement error modeling, and one can use this
research to estimate error models for the problem
at hand.

3. A model for the distribution of the latent variable,
here called fX|Z(x|z, α̃2). Specifying a model for
the distribution of the true covariate X given all
the other covariates, Z is more difficult. Difficul-
ties arise because: (i) the distribution is usually
not transportable, so that different studies yield
very different models; and (ii) X is not observed.

Having hypothesized the various models, the like-
lihood of the observed data under nondifferential
measurement error is

fY,W |Z(y, w|z,B, α̃1, α̃2)

=
∫

fY |Z,X(y|z, x,B)fW |Z,X(w|z, x, α̃1)

× fX|Z(x|z, α̃2) dµ(x). (13)

The notation dµ(x) indicates that the integrals are
sums if X is discrete and integrals if X is continuous.
The likelihood for the problem is just the product over
the sample of these terms.

There is a significant difference between the like-
lihood function in the differential and nondifferential
cases. This can be expressed in various ways, but
the simplest is as follows. In general, and dropping
parameters, the likelihood of the observed data is

fY,W |Z(y, w|z) =
∫

fY,W,X|Z(y, w, x|z) dµ(x).

Using standard conditioning arguments, this becomes

fY,W |Z(y, w|z)=
∫

fW |Y,Z,X(w|y, z, x)fY |Z,X(y|z, x)

× fX|Z(x|z) dµ(x)

=
∫

fY |Z,X(y|z, x)fW |Y,Z,X(w|y, z, x)

× fX|Z(x|z) dµ(x). (14)

Note that the only difference between (13) and (14) is
in the error term. In the former, under nondifferential
measurement error, W and Y are independent, so that
fW |Y,Z,X(w|y, z, x) = fW |Z,X(w|z, x).

What makes differential error so difficult is that,
under differential measurement error, we must ascer-
tain the distribution of W given the other covariates
and the response Y . This is essentially impossible to
do in practice unless one has a subset of the data in
which all of (Y, Z, X, W) are observed, i.e. a valida-
tion data set (see Validation Study).

Numerical Computation of Likelihoods

Typically one maximizes the logarithm of the over-
all likelihood in the unknown parameters. There are
two ways one can maximize the likelihood function.
The most direct is to compute the likelihood function
itself, and then use numerical optimization techniques
to maximize the likelihood. Below we provide a few
details about computing the likelihood function. The
second general approach is to view the problem as a
missing data problem, and then use missing data tech-
niques (see Missing Data); see, for example, [42]
and [75].

Computing the likelihood analytically is easy if X

is discrete, as the conditional expectations are simply
sums of terms. Likelihoods in which X has some con-
tinuous components can be computed using a number
of different approaches. In some problems the log
likelihood can be computed or very well approxi-
mated analytically. In most problems that we have
encountered, X is a scalar or a 2 × 1 vector. In these
cases, standard numerical methods such as Gaus-
sian quadrature can be applied, although they are
not always very good. When sufficient computing
resources are available, the likelihood can be com-
puted using Monte Carlo techniques.

Bayesian Methods

Bayesian estimation and inference in the measure-
ment error problem is a promising approach under
active development (see Bayesian Methods). Exam-
ples of this approach are given by Schmid &
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Rosner [65], Richardson & Gilks [57], Stephens &
Dellaportas [74], Müller & Roeder [47], Mallick &
Gelfand [45], and Kuha [40].

Bayesian analysis of parametric models requires
specifying a likelihood (as described above) and a
prior distribution for the parameters, the latter repre-
senting knowledge about the parameters prior to data
collection. The product of the prior and likelihood
is the joint density of the data and the parameters.
Using Bayes’ Theorem, one can in principle obtain
the posterior density, i.e. the conditional density of
the parameters given the data. The posterior summa-
rizes all of the information about the values of the
parameters and is the basis for all Bayesian infer-
ence. For example, the mean, median, or mode of
the posterior density are all suitable point estimators.
A region with probability 1 − α under the posterior
is called a “credible set”, and is a Bayesian analog to
a confidence region.

Computing the posterior distribution is often a
nontrivial problem, because it usually requires high-
dimensional numerical integration. This computa-
tional problem is the subject of much recent research,
with many major advances. The method currently
receiving the most attention in the literature is
the Gibbs sampler (see [66] and [24]; see Markov
Chain Monte Carlo). Also, see Tanner [75] for a
book-length introduction to modern methods for com-
puting posterior distributions.

In the Bayesian approach with Gibbs sampling, the
Xs are treated as “missing data” (they just happen
to be missing for all study subjects unless there is
a validation study!). The approach for the classical
additive error model is:

1. Assuming nondifferential error, write the like-
lihood of Y given (X, Z), the likelihood of W

given (X, Z), and the likelihood of X given Z

depending on parameters, just as in a regular
likelihood problem.

2. If X were observable, then the likelihood would
be the product of the three terms given above.

3. Select a starting value for the parameters, e.g.
from SIMEX.

4. Use a simulation approach to fill in the “missing”
Xs, i.e. from the posterior distribution of X given
the observed data and the current values of the
parameters. In this step, it is rare that the poste-
rior distribution is known exactly, and so one has

to use a device such as the Metropolis–Hastings
algorithm.

5. Now one has complete data, with Xs all filled
in, and one uses simulation to draw a sample
of parameters from the posterior distribution of
the parameters given the observed data and the
current Xs.

6. Repeat the process of generating X and the
parameters. These multiple samples of parame-
ters are used to evaluate features of the posterior
distribution.

While the procedure is easy to write down, the
computations may be difficult.

More importantly, though, is the need to consider
the distribution of X given Z. As we emphasized
above, the simplest structural approach assumes that
X is normally distributed, but this is often a strong
assumption. The popularity of functional methods lies
in the fact that such methods require no distributional
assumptions about the Xs. There is considerable cur-
rent effort being made to circumvent the problem of
model robustness by specifying a flexible distribution
for X.

Mixture Modeling

When there are no covariates measured without error,
the nonlinear measurement error problem can be
viewed as a special case of what are called mix-
ture problems (see [77]). The idea is to pretend that
X has a distribution, but to estimate this distribu-
tion nonparametrically. Applications of nonparamet-
ric mixture methods to nonlinear measurement error
models have only recently been described by Thomas
et al. [76] and Roeder et al. [58].

An alternative formulation is to let X have a
flexible distribution, which covers a wide range of
possibilities including the normal distribution. The
simplest such model is the mixture of normals,
which has been applied by Wang et al. [81] and by
Küchenhoff & Carroll [38].

Response Error

In preceding Sections we have focused exclusively
on problems associated with measurement error in
predictor variables. Here we consider problems that
arise when a true response is measured with error.
For example, in a study of factors affecting dietary
intake of fat, e.g. sex, race, age, socioeconomic status,
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etc., true long-term dietary intake is impossible to
determine and instead it is necessary to use error-
prone measures of long-term dietary intake. Wittes
et al. [86] describe another example in which damage
to the heart muscle caused by a myocardial infarction
can be assessed accurately, but the procedure is
expensive and invasive, and instead it is common
practice to use the peak cardiac enzyme level in the
bloodstream as a proxy for the true response.

For a binary response (case or control), see Mis-
classification Error.

The exclusive attention paid to predictor measure-
ment error earlier in this article is explained by the
fact that predictor measurement error is seldom ignor-
able, by which is meant that the usual method of
analysis is statistically valid, whereas response mea-
surement error is often ignorable when the response is
continuous. Here, “ignorable” means that the model
holding for the true response holds also for the proxy
response with parameters unchanged, except that a
measurement error variance component is added to
the response variance. For example, in linear regres-
sion models with simple types of response mea-
surement error, the response measurement error is
confounded with equation error and the effect is
simply to increase the variability of parameter esti-
mates. Thus, response error is ignorable in these
cases, although of course power will be lost. How-
ever, in more complicated regression models, certain
types of response error are not ignorable and it is
important to account for the response error explicitly
in the regression analysis.

Although the details differ between methods for
predictor error and response error, many of the
basic ideas are similar. Throughout this section, the
response proxy is denoted by S. We consider only the
case of measurement error in the response, and not
the more complex problem where both the response
and some of the predictors are measured with error.

We first consider the analysis of the observed data
when the response is subject to independent additive
or multiplicative measurement error. Suppose that the
proxy response S is unbiased for the true response.
Then, in either case, the proxy response has the same
mean (as a function of exposure and confounders)
as the true response, although the variance struc-
ture differs. In models such as linear regression, or
more generally for quasi-likelihood estimation, this
means that the parameter estimates are consistent, but
inferences may be affected. For example, in linear

regression, additive, unbiased response error does not
change the mean and simply increases the variance by
a constant, so that there is no effect of measurement
error other than loss of power. However, for multi-
plicative, unbiased response error, while the mean
remains unchanged, the variances now are no longer
constant, and hence inferences which pretend that the
variances are constant would be affected. The usual
solution is to use a robust covariance estimator, also
known as the sandwich estimator (see Generalized
Estimating Equations).

If the proxy response S is not unbiased for the
true response, then a validation study is required
to understand the nature of the bias and to correct
for it. In a series of papers, Buonaccorsi [8, 9, 11]
and Buonaccorsi & Tosteson [12] discuss the use
of adjustments for a biased response. See Carroll
et al. [20] for further details.

We call S a surrogate response if its distribution
depends only on the true response and not other-
wise on the covariates, i.e. the information about the
surrogate response contained in the true response is
the same no matter what the values of the covari-
ates. In symbols, if fS|Y,Z,X(s|y, z, x, γ ) denotes the
density or mass function for S given (Y, Z, X),
then fS|Y,Z,X(s|y, z, x, γ ) = fS|Y (s|y, γ ). In both the
additive and multiplicative error models, S is a sur-
rogate. This definition of a surrogate response is the
natural counterpart to a surrogate predictor, because
it implies that all the information in the relationship
between S and the predictors is explained by the
underlying response. See Prentice [53] and Carroll
et al. [20] for further details.

In general, i.e. for a possibly nonsurrogate
response, the likelihood function for the observed
response is

fS|Z,X(s|z, x,B, γ )

=
∫

fY |Z,X(y|z, x,B)fS|Y,Z,X(s|y, z, x, γ ) dµ(y).

(15)

There are a number of implications of this formula:

1. If S is a surrogate, and if there is no relation-
ship between the true response and the predictors,
then neither is there one between the observed
response and the predictors. Hence, if interest
lies in determining whether any of the predic-
tors contains any information about the response,
then one can use naive hypothesis tests and
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ignore response error. The resulting tests have
an asymptotically correct level, but a decreased
power relative to tests derived from true response
data. This property of a surrogate is important in
clinical trials; see Prentice [53] (see Surrogate
Endpoints).

2. If S is not a surrogate, then there may be no
relationship between the true response and the
covariates, but the observed response may be
related to the predictors. Hence, naive tests will
not be valid in general if S is not a surrogate.

Note that one implication of (15) is that a likeli-
hood analysis with mismeasured responses requires a
model for the distribution of response error. Except
for additive and multiplicative error, understanding
such a model requires a validation study.

Case–Control Studies

A case–control study is one in which sampling is
conditioned on the disease response; it is useful to
think that the response is first observed and only
later are the predictors observed. A similar design,
choice-based sampling, is used in econometrics. We
use case–control terminology and concentrate on
logistic regression models. A distinguishing feature
of case–control studies is that the measurement error
may be differential.

Two-phase case–control designs, where X is
observed on a subset of the data, have been studied by
Breslow & Cain [7], Zhao & Lipsitz [87], Tosteson
& Ware [80], and Carroll et al. [18], among others.
These designs are significant because the validation,
if done on both cases and controls, frees us from the
nondifferential error assumption.

We assume that the data follow a logistic model
in the underlying source population, although the
results apply equally well to the more general mod-
els described by Weinberg & Wacholder [82]. For
such models, Prentice & Pyke [55] and Weinberg &
Wacholder [82] show that when analyzing a classical
case–control study one can ignore the case–control
sampling scheme entirely, at least for the purpose of
estimating relative risk. Furthermore, these authors
show that, if one ignores the case–control sampling
scheme and runs an ordinary logistic regression, then
the resulting relative risk estimates are consistent and
the standard errors are asymptotically correct.

The effect of measurement error in logistic
case–control studies is to bias the estimates. Carroll
et al. [21] show that, for many problems, one
can ignore the case–control study design and
proceed to correct for the bias from measurement
error as if one were analyzing a random sample
from the source population. With nondifferential
measurement error, this result applies to the methods
we have described previously for prospective studies.
Regression calibration needs a slight modification,
namely that the regression calibration function should
be estimated using the controls only.

Michalek & Tripathi [46], Armstrong et al. [5],
and Buonaccorsi [10] consider the normal discrimi-
nant model. Satten & Kupper [62] have an interest-
ing example of likelihood analysis for nondifferential
error validation studies when the validation sampling
is in the controls.

Survival Analysis

One of the earliest applications of the regression
calibration method was discussed by Prentice [52] in
the context of survival analysis. Further results in
survival analysis were obtained by Pepe et al. [50],
Clayton [25], Nakamura [49], and Hughes [36].
While the details differ in substantive ways, the ideas
are the same as put forward in the rest of this article,
and here we provide only a very brief overview in
the case of covariates which do not depend on time.

Suppose that the instantaneous risk that the time
T of an event equals t conditional on no events prior
to time t and conditional on the true covariate X is
denoted by

ψ(t, X) = ψ0(t) exp(βxX), (16)

where ψ0(t) is the baseline hazard function. When
the baseline hazard is not specified, (16) is commonly
called the proportional hazards assumption. When
X is observable, it is well known that estimation of βx

is possible without specifying the form of the baseline
hazard function.

If X is unobservable and instead we observe a
surrogate W , then the induced hazard function is

ψ∗(t, W, βx) = ψ0(t)E[exp(βxX)|T ≥ t, W ]. (17)

The difficulty is that the expectation in (17) for the
observed data depends upon the unknown baseline
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hazard function ψ0. Thus, the hazard function does
not factor into a product of an arbitrary baseline
hazard times a term that depends only on observed
data and an unknown parameter, and the technology
for proportional hazards regression cannot be applied
without modification.

The problem simplifies when the event is rare,
so that T ≥ t occurs with high probability for all
t under consideration. As shown by Prentice [53]
and others, under certain circumstances this leads to
the regression calibration algorithm. The rare event
assumption allows the hazard of the observed data to
be approximated by

ψ∗(t, W, βx) = ψ0(t)E[exp(βxX)|W ]. (18)

The hazard function (18) requires a regression cal-
ibration formulation! If one specifies a model for
the distribution of X given W , then (18) is in the
form of a proportional hazards model (16), but with
βxX replaced by log{E[exp(βxX)|W ]}. An important
special case leads directly to the standard regression
calibration model, namely when X given W is nor-
mally distributed.

Clayton [25] proposed a modification of regres-
sion calibration which does not require events to be
rare. At each time ti , i = 1, . . . , k, for which an event
occurs, define the risk set Ri ⊆ {1, . . . , n} as the case
numbers of those members of the study cohort for
whom an event has not occurred and who were still
under study just prior to ti . If the Xs were observ-
able, and if Xi is the covariate associated with the ith
event, in the absence of ties the usual proportional
hazards regression would maximize

k∏

i=1

exp(βxXi)∑

j∈Ri

exp(βxXj )
.

Clayton basically suggests using regression calibra-
tion within each risk set. He assumes that the true
values X within the ith risk set are normally dis-
tributed with mean µi and variance σ 2

x , and that
within this risk set W = X + U , where U is nor-
mally distributed with mean zero and variance σ 2

u .
Neither σ 2

x nor σ 2
u depend upon the risk set in his

formulation.
Given an estimate σ̂ 2

u , one applies the usual regres-
sion calibration calculations to construct an estimate
of σ̂ 2

x .

Clayton modifies regression calibration by using it
within each risk set. Within each risk set, he applies
the formula (7) for the best unbiased estimate of the
Xs. Specifically, in the absence of replication, for any
member of the ith risk set, the estimate of the true
covariate X from an observed covariate W is

X̂ = µ̂i + σ̂ 2
x

σ̂ 2
x + σ̂ 2

u

(W − µ̂i),

where µ̂i is the sample mean of the W s in the ith
risk set.

As with regression calibration in general, the
advantage of Clayton’s method is that no new soft-
ware need be developed, other than to calculate the
means within risk sets.
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Measurement Error in
Survival Analysis

Introduction

Let T ≥ 0 be a failure time variate (see Survival
Distributions and Their Characteristics) and Z =
(Z′

1, Z′
2)

′, a corresponding covariate vector. Suppose
first that the hazard rate for T given Z follows a
Cox regression [9] model λ(t ; Z) = λ0(t) exp(Z′β),
where λ0 is an unspecified baseline hazard function
and β = (β ′

1, β ′
2)

′ is a corresponding parameter to
be estimated. Failure times may be subject to right
censoring by a variate C that is assumed to be
independent of T given Z, so that one observes
X = T ∧ C and δ = I [X = T ]. On the basis of an
independent random sample (Xi, δi, Zi), i = 1, . . . , n

the standard “partial likelihood” estimator β̂ solves
U(β̂) = 0 where

U(β) =
n∑

i=1

∫ ∞

0
{Zi − Z(β, t)} dNi(t). (1)

In (1) dNi(t) = 1 if (Xi = t, δi = 1) and is zero
otherwise, the covariate “average” Z is given by
Z(β, t) = S(1)(β, t)/S(0)(β, t) where

S(j)(β, t) =
n∑

i=1

Yi(t)Z
j

i exp(Z′
iβ), for j = 0, 1

(2)

and the “at risk” process Yi is given by Yi(t) =
I (Xi ≥ t); see, for example, [3, 4, 13] for develop-
ment of the asymptotic distribution theory for β̂.

Suppose now that the component Z1 of the regres-
sion vector is unavailable for some or all of the study
population, whereas Z2 and an error prone estimate
W of Z1 is routinely available. How then can the rel-
ative risk (hazard ratio) parameter β be estimated?
This measurement error, or errors-in-variables prob-
lem arises in many application areas, in conjunction
with failure time and other types of response vari-
ables. For example, in a nutritional epidemiology
application, Z1 may be comprised of an individual’s
long-term (e.g. 10 or 20 years) average daily intake of
fat, along with dietary and nondietary confounding
factors, while T is the time from entry into a cohort
study until the diagnosis of a specific disease, such as

coronary heart disease or colon cancer. The measured
fat intake, a component of W in this context, may
derive from self-reported food consumption over a
short period of time (e.g. a few days or months) in
which case the measured fat intake may differ from
the theoretical quantity due to day-to-day or month-
to-month variations in actual consumption, because
of errors in dietary recording or recall, because of
inaccuracies in the nutrient database used to estimate
nutrient consumption from food consumption, or due
to systematic self-report bias that may, for example,
relate to “social desirability” characteristics.

If the variation in W − Z1 is small compared to
that for Z1, one may simply be able to replace missing
Z1 values by corresponding W values in (1) and
obtain estimates of β having little bias. See [12] for
a study of bias in this context. Otherwise, a more
careful approach is required. In the best of situations,
a validation subsample can be obtained that includes
(X, δ, Z, W), while only (X, δ, Z2, W) is available
on the remainder of the sample. Very commonly,
however, only a reliability subsample consisting of
repeat measures W1, W2, . . . of W can be obtained
so that the data consist of (X, δ1, Z2, W1, W2, . . .) on
the reliability subsample and (X, δ, Z2, W1) on the
remainder of the study cohort. It is often assumed
that reliability sample measurement errors have mean
zero and are independent of Z, each other, and other
study subject characteristics, assumptions that are
likely violated in the above nutritional epidemiology
context.

While the focus of this entry is on estimation in
the Cox model [9], there is also some work on esti-
mation in an additive hazards model with covariate
measurement error. This latter work will be described
in the section “Measurement Error in the Additive
Hazards Model”.

Relative Risk Parameter Estimation with a
Validation Subsample

Estimation of the Cox model regression parameter β

in the presence of measurement error and a validation
subsample is very closely connected to that of estima-
tion with missing covariate data (see Missing Data).
Specifically, W is said to be a surrogate for Z1

if λ(t ; Z, W) = λ(t, Z) = λ0(t) exp(Z′β). Hence β

may be estimated by Cox regression on (Z′
1, Z′

2, W ′)
while regarding Z1 to be sometimes missing, and
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while requiring the regression coefficient for W to
be zero. In fact, the surrogacy assumption can be
checked by testing for a zero coefficient for W in
such an analysis.

The hazard rate at time t for an “at risk” individual
having Z1 missing is given [21] by

λ0(t)E[exp(Z′β)], (3)

where the expectation is conditional on (Z2, W, T ≥
t). The inclusion of T ≥ t in the conditioning event
implies that this expectation is typically a compli-
cated function of β and λ0(·). If the probability that
Z1 is missing depends only on Z but not on (X, δ),
then a “complete case” analysis that simply drops
the observations having missing Z1-values from (1)
will typically yield consistent estimators of β, but
may be quite inefficient. Toward more efficient esti-
mation Zhou and Pepe [30] propose an “estimated
partial likelihood” procedure wherein if Z1, assumed
to be discrete, is missing the expectation in (3) is
replaced by a nonparametric estimate. This method
allows the missingness rate to depend on (Z2, W) but
not on (X, δ, Z1). Zhou and Wang [31] extended this
method to continuous covariates using kernel estima-
tion, though this extension may not be practical if
the dimension of {Z2, W } is at all large. Lin and
Ying [15] proposed an “approximate partial likeli-
hood” procedure in which the summations leading
to Z were restricted to individuals having Z1 avail-
able. For components of U(β) corresponding to Z1,
the overall summation was also restricted to individ-
uals having known Z1 values. This estimator can, but
need not, improve upon the efficiency of the complete
case estimator, and it requires a missing completely
at random assumption (e.g. [17]); that is, the miss-
ingness probability is not allowed to depend on any
aspect of (X, δ, Z, W).

An alternate simple procedure, referred to as
regression calibration [6, 21], approximates the
expectation in (3) by exp{E(Z1|Z2, W)′β1 + Z′

2β2}
and estimates E(Z1|Z2, W), typically using a
simple least-squares procedure, using the validation
subsample. This method is applicable if missingness
depends only on {Z2, W }. Because of the relative
risk approximation, the resulting regression parameter
estimates typically have some asymptotic bias. Wang
et al. [27] develop the asymptotic theory for this
estimator, along with a suitable variance estimator.
In extensive simulations, they showed the bias to
be surprisingly modest in situations of practical

interest. The bias can be substantial, however,
for large β values, depending somewhat on the
censorship pattern. See [10] for some additional
related approaches.

More comprehensive estimators of β generally
require further modeling assumptions, either con-
cerning the missingness probabilities, or the proba-
bility distribution for the covariates, or both. Chen
and Little [7] consider a nonparametric maximum
likelihood (NPML) procedure under which β and
Λ0(t) = ∫ t

0 λ0(u) du are chosen to maximize

L =
n∏

i=1

{
λ0(Xi)

δi

∫
exp(Z′

iβ)

× exp[− exp(Z′
iβ)Λ0(Xi)]F(Zi ; θ) dZi

}
, (4)

where the integral for the ith term is over Z1i

given Z2i if Z1i is missing, and reduces to the
integrand at Zi if Z1i is available, and F denotes
the probability density for Z, which is allowed to
depend on a fixed length parameter vector θ . These
authors maximize L after approximating Λ0 by a
step function with jumps at the uncensored X values,
and obtain asymptotic distribution theory building on
the work of Murphy et al. [18]. This NPML method
allows missingness rates to depend on observed data
(X, δ, Z2), though a stronger than usual independent
censoring assumption is required in that the censoring
time is required to be independent of T given
the observed covariate, and hence is not allowed
to depend on the potentially unavailable Z1 value;
see [29] for earlier related work.

The augmented inverse probability weighted
estimator (AIPW) of Wang and Chen [26] avoids
this stronger censorship condition through inverse
probability weighting. Their estimator of β, building
on the work of Robins et al. [23], solves an estimat-
ing equation (see Estimating Functions) of the form

n∑

i=1

{
ηiπ̂

−1
i

∫ ∞

0
[Zi − Ẑ(β, t)] dNi(t) + Biβ)

}
= 0,

(5)

where ηi = 0 if Z1i is missing and ηi = 1 other-
wise, π̂i is an estimate of the probability that Z1i

is missing, derived from a separate modeling exer-
cise, and both the estimated covariate averages Ẑ

and the “augmentation term” Bi involve expectations
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over the distribution of Z1 given (X, δ, Z2, W). This
procedure has a nice robustness property in that
it will generally provide consistent estimators of β

under a missing at random [17] assumption even if
the missingness model is not correctly specified, pro-
vided the distribution of Z1 given (X, δ, Z2, W) is
correctly specified; and it will generally provide con-
sistent estimates of β even if the covariate distribution
is misspecified, provided the missingness rates are
correctly modeled as a function of (X, δ, Z, W).

Further study of the properties of the NPML and
AIPW estimators is needed, but simulation studies
to date [7, 26] suggest good efficiency relative to
the other estimators mentioned. The efficiency of the
NPML estimator seems particularly good, though a
noticeable bias was detected in simulations [26] if
censoring rates depend strongly on the missing Z1.

Relative Risk Parameter Estimation with a
Reliability Subsample

As noted above, it quite often happens that measure-
ments of Z1 are unavailable for the entire sampled
cohort; that is, there is no validation subsample. In
these circumstances, it is necessary to make error
model assumptions to connect the covariate measure-
ment W to the “true”, but missing, covariate Z1.
Often a classical measurement model assumption

W = Z1 + ε, (6)

is made, where the additive error ε is assumed
to be independent of Z and of the corresponding
failure and censoring times, and ε is assumed to
have mean zero and a variance σ 2. Repeat mea-
surements W1, W2, . . . on some study subjects are
needed to estimate σ 2, or other aspects of the
error distribution. The error variates correspond-
ing to multiple measurements on a study sub-
ject are usually assumed to be independent, as
are the error variates across study subjects. The
measurements {W1, W2, . . .} meeting these condi-
tions are said to constitute a covariate reliability
sample.

Before proceeding, it is important to note that (6)
and its attendant assumptions may be oversimplified
or inappropriate in many important circumstances.
For example, in the nutritional epidemiology setting
mentioned above, one might expect nutrient con-
sumption from repeat self-reports of dietary intakes

to include systematic bias (e.g. errors having differ-
ent distributions depending on such characteristics as
body mass, age, and ethnicity) as well as positive
within-person correlations. In such settings it may
be crucial to identify biomarkers, or other objective
measures that plausibly adhere to (6). Such objective
measures are likely too expensive to be practical in
the entire cohort in an epidemiologic study, so that
a more comprehensive measurement model may be
needed that assumes (6) for the objective measure
on a subset, along with a more flexible model for
the self-report data. In effect, the objective measures
data can then be used to calibrate the self-report
data on the entire cohort; see [20, 22, 24] for related
discussion.

Assuming a reliability sample adhering to (6) to be
available Xie et al. [28] adapt the regression calibra-
tion approach to reliability sample data, and extend it
by improving the approximation to the relative risk in
(3) to exp{E(Z1|Z2, W1, W2, . . . ; T ≥ t)′β1 + Z′

2β2}
leading to a recalibration within each risk set, prior
to applying a partial likelihood estimation procedure.
More specifically, simple variance component argu-
ments lead to estimates of the mean and covariance
of (Z1, W, Z2) at each failure time, where W is the
average of W values available for an individual. A
joint normality assumption for (Z1, W, Z2) then leads
to an approximate estimator of E(Z1|W, Z2, X ≥ t)

for use at time t in the partial likelihood function.
Asymptotic distribution theory and a variance estima-
tor were provided [28] for the “ordinary” regression
calibration, and “risk set” regression calibration esti-
mators under reliability sampling. Both estimators
typically incorporate some asymptotic bias, but the
recalibration within risk sets extends the set of con-
figurations where the bias will be negligible; see [8]
for related work.

Consistent estimation of Cox model parameters,
if only a reliability sample adhering to (6) is avail-
able, is possible using a corrected score function
approach (see Likelihood). This approach (e.g. [19])
involves replacing the terms in the (standardized)
score function (1) by consistent estimates based on
the reliability sample; see also [5]. Some corrected
score proposals require distributional assumptions on
Z1 or ε to hold, but recent work by Huang and
Wang [11] avoids distributional assumptions in either
the true covariate, or the error variate for consistent
estimation of β, assuming two or more W -values are
available for each individual. Briefly, n−1U(β) from
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(1) can be consistently estimated by

n−1
n∑

i=1

∫ ∞

0

{(
Wi

Z2i

)
− Ŝ(1)(β, t)

Ŝ(0)(β, t)

}
dNi(t), (7)

where

Ŝ(j)(β, t) =
n∑

i=1

Yi(t)Ai

[(
W̃1i

Z2i

)

× exp

{(
W 2i

Z2i

)′
β

}]
, j = 0, 1

and the operator Ai is a summation over all distinct
pairs of W 1i and W̃2i selected from the set of
{W1i , W2i , . . .} of W -values available on the ith study
subject. The independence of the error terms in (6) for
these W -values implies that n−1Ŝ(j)(β, t) estimates
the corresponding n−1Sj (β, t) aside from the factor
E(eεβ1), which cancels out of the ratio in (7). This
factor, needs to be estimated to obtain a cumulative
hazard estimator, requiring some further assumption.
For example, an assumption of symmetry of the error
distribution is sufficient for this purpose.

The corrected score regression parameter esti-
mator of Huang and Wang [11] performed well in
simulations reported by these authors. The lack of
monotonicity of the estimating function (7), how-
ever, presents some numerical challenges that have
yet to be fully addressed.

The methods described here can be generalized to
allow time-varying regression coefficients; see [25]
for an interesting illustration based on repeat mea-
surements on a time-dependent covariate.

Measurement Error in the Additive
Hazards Model

A fixed covariate form of the additive hazards model
(Aalen [1, 2], Andersen et al. [3]) can be written

λ(t ; Z) = λ0(t) + Z′β, (8)

with restriction to assure nonnegative hazard rates.
This model also has substantial applied potential,
especially if extended to allow time-varying covari-
ates. It’s linear form admits some convenient, non-
iterative procedures for β-estimation in the presence
of covariate measurement error.

Aalen [1] notes that the form of (8) is retained,
with attenuated regression coefficient, under a classi-
cal measurement error model (5). Kulich and Lin [14]
consider a corrected score approach to estimation in
(8), assuming a validation subsample to be available.
If Z is always available, Lin and Ying [16] propose
that β in (8) be estimated by the explicit quantity

β̂ =
[

n∑

i=1

∫ ∞

0
{Zi − Z(0, t)}⊗2Yi(t) dt

]−1

×
n∑

i=1

∫ ∞

0
{Zi − Z(0, t)} dNi(t), (9)

where a⊗2 = aa′. Kulich and Lin [14] derive a cor-
responding class of explicit estimators of β when Z1

is available only in a validation sample, while W

and Z2 are always available. Under assumptions on
the form of the mean and variance of W given Z

these authors develop an unbiased score contribution
for each study subject, and a corresponding explicit
class of regression parameter estimates that is indexed
by a downweighting parameter for the nonvalida-
tion subsample. At least in important special cases
this downweighting parameter can be estimated in an
optimal fashion, yielding an estimator that necessar-
ily improves on the efficiency of the complete case
estimator, often substantially. Estimation procedures
under (8) with only a reliability sample evidently
have yet to be presented.
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Measurement Scale

Many different types of variables occur in statisti-
cal investigations. Some are merely classifications,
such as a diagnosis into one of three unrelated dis-
eases. Sometimes the classifications have an order,
for example the stages of cancer or the common
categorization into mild, moderate, and severe. For
other variables the order is everything – “preference”
recorded on a visual analog scale is an example. Here
there are no categorical groups, and yet one can say
that one score corresponds to a greater preference
than another. Yet other variables seem to impose more
sophisticated mathematical relationships between the
possible values. With temperature, for example, we
can say not only that one temperature is larger than
another, but also that the difference between a given
pair of temperatures is larger than the difference
between some other pair. And, for other variables,
we can go even further: for weight or concentration
or height we can say that one is twice the other, or
half again as large as the other. And, of course, yet
other variables are simply counts – the number of
cells on a plate, for example.

In fact, many different classifications of variable
types have been proposed, often motivated from the
perspective of statistical analysis: the set of tech-
niques needed to analyze one type of variable often
differs from that needed to analyze another type.
However, one classification in particular has had a
major impact on statistics. This is the classification
into nominal, ordinal, interval, and ratio scales pro-
posed by the psychophysicist Stevens [18, 19].

Prior to Stevens’ work, the emphasis in under-
standing measurement had been in the physical sci-
ences. The problems there, at least at that stage
and at least superficially, seemed more straightfor-
ward. Measurement involved assigning numbers to
represent the properties of objects, where the objects
satisfied (i) an order relationship and (ii) a physi-
cal process of addition. The latter is illustrated by
the placing of two objects in one pan of a weigh-
ing scales, and balancing them by a third object
in the other pan. In terms of weight, this third
object corresponds to the “physical addition” of
the first two. Such a physical addition process is
nowadays called concatenation. In such situations
the notion of “quantity” seems relatively straightfor-
ward. Axiom systems describing (i) and (ii), which

the objects must satisfy in order for the relation-
ships between them to be representable by order
and addition of numbers, were developed by von
Helmholtz [23] and Hölder [7]. Campbell [2], in par-
ticular, adopted this approach. Of course, even here
things are not completely simple: physical concepts
such as density are defined in terms of other con-
cepts. They have thus been called “derived” mea-
surements, with the directly measured ones being
called “fundamental measurements”. Moreover, and
more importantly, densities do not physically add in
the same way as weight: combine two samples of
gas with different densities and the result is some-
thing with an intermediate density, not the sum of
the densities.

However, in other scientific areas, notably psych-
ology, things are even less clear. In particular, there
is often no “physical addition operation” evident.
Because of this, notions of measurement in psy-
chology came under much criticism [3]. Stevens
tackled these criticisms by pointing out that the
numerical representation preserving the relationships
between a set of empirical objects was not unique
and that the alternative numerical representations
are obviously related since they represent the same
empirical system. To get from one legitimate numeri-
cal representation to another, some transformation or
mapping is involved. Stevens suggested that differ-
ent such mappings defined different types or scales
of measurement. Thus, if any one-to-one mapping
was allowed (that is, any mapping which preserved
the unique identity of the classes of objects), then
the measurement was on a nominal scale. For exam-
ple, the appearance of a lesion may be classified into
one of three distinct types. If any order-preserving
mapping was allowed (that is, if any numerical rep-
resentation which assigned numbers in the same
order to the objects was allowed), then measurement
was on an ordinal scale. For example, “severity”
might be encoded so that any alternative encod-
ing would be equally legitimate, provided it had
the same order. If any linear transformation was
allowed (that is, if rescaling the numbers by changing
the units and then adding some constant resulted in
an alternative numerical assignment which still pre-
served the relationships between objects), then the
scale was interval. Body temperature is an exam-
ple: this might be measured in degrees centigrade or
degrees Fahrenheit, the two being related by a lin-
ear transformation. And, finally, if any change of
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the units yielded an alternative, equally legitimate
numerical assignment, then the scale was ratio, for
example, changing the units of length from inches to
centimeters. The physical measurements with which
Campbell was concerned were of this last type;
Stevens thus generalized the notions of measure-
ment. In each case the class of transformations,
which lead to another, equally legitimate, representa-
tion of the empirical system being modeled is called
the class of admissible or permissible transforma-
tions. Mathematically, this class defines the scale
being studied.

The notion of admissible transformations has im-
plications for what statistical statements may sensibly
be made using the data. If, for example, any numer-
ical assignment which preserves the order of a set
of values is equally legitimate, then comparing the
arithmetic means of two groups is of dubious value:
it may be possible to invert the relative order of the
two means by a suitable choice of transformation. To
illustrate, suppose that one numerical representation
has the values {1, 5} for the two objects in one group
and {3, 4} for the two objects in the other group. Then
the mean, 3, of the first group is smaller than the
mean, 3 1

2 , of the second group. However, consider the
alternative numerical assignment {1, 7} for the mem-
bers of the first group and {3, 4} for the members
of the second. This preserves the order of the num-
bers – the object which was previously assigned the
smallest number has still been assigned the smallest
number, and so on. But this new numerical assign-
ment yields respective means of 4 and 3 1

2 . Now the
mean of the first group is larger than the mean of
the second. In general, one’s conclusions will be an
artifact of one’s choice of numerical assignment, and
will not reflect any truth about the empirical real-
ity. Thus it seems that statistical arguments must
take account of scale type. However, the assumptions
made by inferential statistical arguments are distribu-
tional, and not scale-specific. Indeed, given a set of
numbers, no matter what their scale type, arbitrary
statistical statements may be made about those num-
bers – one is able to compute a t statistic and carry
out a t test whatever the scale type, and this might
even seem a sensible thing to do if suitable distribu-
tional assumptions are satisfied. The tension between
these two viewpoints has stimulated a major debate,
running from the time of Campbell and Stevens right
up to the present [5, 6, 15, 21, 22]. Its resolution
is subtle and lies in awareness of the fact that the

objective of statistical analysis is ultimately to make
a statement about the empirical system being stud-
ied, and not simply about the numbers being used to
represent that system. However, this needs to be tem-
pered by the fact that statistical statements applied to
what are apparently impermissible transformations of
the data may lead to the detection of hitherto unsus-
pected structures in those data. It seems that if one
wants to test strong theories, described in terms of
numbers derived by a well-defined mapping from
a well-understood empirical system, then the stric-
tures imposed by the theory of scale types should
be adhered to. But if one’s theories are less strin-
gently formalized, then the constraints of scale type
are less important and, indeed, adhering to them may
risk missing important discoveries (see [6] and the
ensuing discussion).

The nominal, ordinal, interval, and ratio typology
is an old one. Since its formulation a huge amount
of work has been carried out, partly philosophical,
concerned with relating measurement activities to sci-
entific questions, and partly mathematical, concerned
with developing axiom systems which an empirical
system must obey if it is to be representable by a
given numerical system. For reviews of this work
see [8–10, 14, 17, 20]. One conclusion of this work
has been to show that, for mappings to the real num-
bers, only certain types of scales can exist, and that
Stevens’ ordinal, interval, and ratio classification is
closely related to this set. However, an interesting
anomaly is that for mappings to rational numbers
there is an infinite variety of scale types [1]. Since
all data are recorded to only a finite number of dig-
its, scientific mappings are in fact to only a subset of
the rationals. Quite what the implication of this is, if
any, remains to be seen.

Clearly, physical addition operations hold a cen-
tral place in measurement theory. Such operations can
be mapped to addition, so that very familiar numer-
ical operations can be used. But they are not the
only empirical relationships which can be mapped
to addition. A completely different class of relation-
ships arises in conjoint measurement. Suppose that
the objects in the empirical system can be ordered
according to attribute A, that each object can be
described in terms of a pair of attributes (B, C), and
that each of B and C can be ordered. Then, subject
to certain conditions, it is possible to find numeri-
cal assignments such that the relationships between
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objects can be represented by addition between the
assigned numbers (see, for example, [11] and [13]).

So far we have described the aim of measurement
as being to assign numbers according to a numerical
system within which the relationships correspond to
those between the empirical objects. This approach
is termed representational measurement theory, and
is by far the best developed. However, it is not
adequate for all situations in which measurement
is used. In particular, in many areas of psychol-
ogy this approach seems to be inadequate, chiefly
because it is not clear precisely what empirical sys-
tem is being modeled. As a consequence, alternative
theories have been developed. Chief amongst these
is the operational approach. This takes the mea-
surement operation as defining the attribute being
measured. As a consequence, no notion of permissi-
ble transformations, and consequently of scale types,
can arise. Yet a third theory, termed by Michell [12]
the classical approach, takes as its starting point
that numerical quantities of attributes exist, with
the objective of measurement being the determina-
tion of the magnitude of these quantities. A key
driving force for both the representational and clas-
sical approaches is the desire to characterize the
relationship between the empirical system and the
numerical system. In the operational approach, how-
ever, with the assumption of an underlying empiri-
cal reality not being necessary, the emphasis is on
internal consistency and reproducibility. One might
describe the aims of the representational, opera-
tional, and classical approaches as being, respec-
tively, to assign, define, and discover numerical
representations.

As will be apparent from the above and from
the reference list at the end of this article, much
of the debate about the fundamental concepts of
measurement has occurred in the psychological lit-
erature. This is not surprising: in psychology of all
disciplines, measurement is difficult. Rarely can the
attributes being studied be directly observed, so that
subtle indirect measurement procedures have to be
devised. Naturally this stimulates debate about the
precise nature of the measurement activity and what
the resulting numbers actually mean. Earlier mani-
festations of measurement theory in physics, most
notably in dimensional analysis [16], although use-
ful, stimulated little debate about underlying princi-
ples. Measurement procedures in psychology involve
constructing complex instruments which often require

collecting many scores or numbers which need to
be combined using sophisticated statistical techniques
to yield a final measurement. Examples of such
methods include paired comparisons, Guttman, Lik-
ert, and Thurstone scaling factor analysis, and item
response theory [4] (see Psychometrics, Overview).
Measurement procedures in medicine can be equally
complex: a prime example being attempts to formu-
late quality of life scales.
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Median Effective Dose

In biological experiments, the primary goal is
to investigate the responses of biologic subjects
to a stimulus administered at various levels
(see Stimulus–Response Studies). Drugs, chemical
compounds, toxicants, food preservatives, radiation,
or specific environmental conditions are typical
examples of stimuli. Biologic subjects can be
human volunteers, animals, insects, microorganisms,
or living tissue. In practice, however, it is impossible
and difficult to measure the responses quantitatively.
However, the responses of the units to the stimulus
can be easily documented by the occurrence of
some meaningful and well-defined events such as
death, survival, convulsion, infection, eradication of
infection, induction of estrus, or cure of disease.
These responses are known as quantal responses
(see Binary Data). As indicated by Ashford [4] and
Morgan [48], a quantal response usually involves
an irreversible process in organisms that either
respond or do not respond. The corresponding
experiments are called quantal biological assays or
quantal bioassays [22, 23, 33, 70, 72, 73], (see
Biological Assay, Overview). Biological assay not
only plays an important role in the evaluation
of pharmacological and toxicological effects of a
chemical compound, but is also crucial for screening
possible drug entities. Note that a quantal bioassay is
closer to the direct bioassay than it is to the indirect
quantitative bioassay.

Finney [23] defined the tolerance of a biological
subject as the dose level just sufficient to produce
predefined events (see Quantal Response Models).
If the dose level given is lower than the tolerance
of the subject, then the event will not occur. The
subject will respond if the dose level administered is
higher than the tolerance. However, the tolerance to
a particular stimulus may be different from subject
to subject owing to genetic, environmental, and other
unknown factors. The resulting distribution of dose
levels of a stimulus with respect to a well-defined
event is referred to as the tolerance distribution. In a
traditional fixed indirect quantal bioassay, a number
of subjects are randomly assigned to receive one of
several preselected dose levels of the stimulus under
investigation. The occurrence of the event of inter-
est is then documented for each subject according
to a prespecified time schedule. Therefore, a quantal

bioassay is an indirect bioassay since it only records
whether the tolerance of a subject is higher or lower
than the given dose levels. The proportions of sub-
jects who respond at each dose level are then used
to describe the tolerance distribution, which provides
an estimation of the dose–response relationship of the
stimulus. The most commonly employed measure to
characterize the tolerance distribution is the median
effective dose (MED). The MED is the median of the
tolerance distribution, which is the dose of a stimu-
lus that generates, on average, a predefined response
in 50% of subjects. Hence, the MED is also referred
to as the ED50 [22]. The concept of an MED was
first introduced by Trevan [69] as the median lethal
dose (MLD) to describe the potency of a test stim-
ulus. In general, let p be a real number between 0
and 1, ED100p (or LD100p) is then the dose of a stim-
ulus that produces an average effect in 100p% of
subjects. Other related measures are ED100p(t) and
ET100p(d), where ED100p(t) is the MED at which on
average 100p% of subjects will respond by time t ,
and ET100p(d) is the median effect time at dose level
d by which the occurrence of an event is observed
in 100p% of subjects [51]. Finney [22, 23] provided
a comprehensive review of the design and estimation
of MED and related topics. More detailed develop-
ments can be found in [33] and [48]. Wu [77] and
Ashford [4] indicated that the concept of quantal
responses and ED50 is also useful in the areas of
education, economics, energy, transportation, crimi-
nology, legislation, and psychology.

Tolerance Distribution

Consider an indirect quantal bioassay in which ri of
ni subjects respond to the ith dose level, denoted
by xi , which is often expressed on the basis of a
logarithmic or other transformed scale of a test stim-
ulus, where i = 1, . . . , k. Let Pi = F(xi, ω) be the
probability of the response of a subject receiving
the stimulus at dose levels xi ; here, F(·) denotes
the cumulative distribution function (cdf), and ω is a
q-dimensional vector of unknown parameters to char-
acterize the relationship between the tolerance dis-
tribution and dose levels. Given that n1, . . . , nk and
r1, . . . , rk are mutually independent binomial ran-
dom variables, that is, ri ∼ B(ni, Pi), i = 1, . . . , K ,
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the likelihood is given as

L(ω) =
k∏

i=1

CiP
ri

i (1 − Pi)
ni−ri (1)

where Ci = ni!/[ri!(ni − ri)!].
A commonly employed model to describe the

dose–response relationship is to fit a simple linear
regression to dose levels, with intercept α and slope
β. That is,

Pi = F(xi ; ω)

= F(xi ; α, β)

= F(α + βxi) (2)

This formulation of the dose–response relationship,
in fact, assumes a location/scale model for the toler-
ance distribution, with location parameter α and scale
parameter β. One of the most commonly employed
tolerance distribution in indirect quantal bioassays is
the normal distribution for logarithmic tolerances
whose probability density function (pdf) is given as

f (x) =
{

1

σ(2π)1/2

}
exp

[−(x − µ)2

2σ 2

]
,

− ∞ < x < ∞ (3)

Let Φ(·) and φ(·) denote the standard normal cdf and
pdf. It follows from (2) that

Yi = Φ−1(Pi)

= α + βxi . (4)

The inverse normal cdf applied to the probability
of response is called the probit transformation [22].
Gaddum [24] referred to Y as the normal equivalent
deviate (NED) of Pi . Since the standard normal
distribution is symmetric about 0, and since ED50 is
the dose level where the predefined response occurs
in 50% of subjects, it follows from (3) that when
x = ED50 P = 0.5, Y = 0 and

ED50 = θ

= −α

β
. (5)

A comparison between the normal pdf in (3) and θ

reveals that the normal distribution in (3) has a mean,

µ = −α

β
, (6)

with standard deviation

σ = 1

β
. (7)

In other words, one can always reparameterize the
mean and standard deviation directly in terms of ED50

and the slope β as follows:

Yi = Φ−1(Pi)

= β(xi − θ). (8)

This result is true for any distribution such that
F(−t) = F(t), which also includes the logistic dis-
tribution, with the cdf given as

F(α + βxi) = {1 + exp[−(α + βxi)]}−1. (9)

Berkson [7] first referred to the inverse transforma-
tion of the probability from a logistic distribution as
the logit, which is given as

Yi = ln

[
Pi

1 − Pi

]
. (10)

In (4) and (10), both responses Yi and stimulus
are subject to measurement errors. Ashford [4] and
Morgan [48] indicated that the effect of measurement
errors is to decrease the slope in (4) and (10), between
the inverse transformation of the cdf of the toler-
ance distribution and the stimulus. However, the point
estimator of the MED remains unchanged. Other
location/scale families include angular (see Delta
Method), uniform, Cauchy, and extreme-value dis-
tributions. For more details about these distributions,
see [22, 23, 48].

Finney [23] indicated that if a response rate is
between 0.05 and 0.95, then it is difficult to dis-
tinguish between the normal, logistic, angular, and
uniform distributions. In fact, one will not be able to
discriminate the normal distribution from the logistic
distribution for Pi , between 0.01 and 0.99. In practice,
it is almost impossible to identify the correct transfor-
mation from the data. However, the impact on esti-
mation of ED50 for an incorrectly selected tolerance
distribution is negligible. To estimate ED50, the logis-
tic distribution is preferred owing to its nice statistical
properties and the simplicity of computation. Since
the difference among the normal, logistic, angular,
and uniform distributions occurs only in the extreme
tails of the distributions, the selection of models (see
Model, Choice of) and the goodness-of-fit of models
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are extremely important in the estimation of extreme
dose levels such as ED05 or ED90. Consequently,
we may consider alternative three-parameter models
such as the Aranda–Oradz model [48] or the quan-
tity obtained from the omega distribution suggested
by Copenhaver & Mielke [13] for statistical inference
of ED05 or ED90.

Estimation Procedures

We first restrict our discussion on the estimation
of the MED to the simple two-parameter model.
Principles and extensions to more complicated mod-
els are straightforward. Even for the simpler loca-
tion/scale model, it is a nonlinear model. The maxi-
mum likelihood method is used to estimate unknown
parameters. Let a and b denote the maximum likeli-
hood estimates (MLE) of α and β, respectively. The
MLE of ED50 can then be obtained either as θ̂ =
[F−1(0.5) − a]/b under model (2) or as the MLE of
θ derived under model (8). If the assumed tolerance
distribution, for example, the normal or logistic dis-
tributions, is symmetric about 0, then the MLE of
ED50 is simply equal to θ̂ = −(a/b).

Various methods for numerical optimization can
be applied to find the MLE. These methods usu-
ally involve the technique of iterative reweighted
least squares (IRLS), which can be found in most
commercial statistical computer packages such as
SAS, BMDP, GLIM, IMSL, and others (see Soft-
ware, Biostatistical). The Newton–Raphson method
uses the Fisher information matrix as the weight-
ing matrix during the iterative process, while the
method of scoring employs the information matrix.
Morgan [48] indicated that it is more convenient to
use the method of scoring than the Newton–Raphson
method, although for the logit model, both meth-
ods are identical (see Optimization and Nonlinear
Equations).

Under appropriate regularity conditions [60], the
vector of MLEs is asymptotically normal with mean
zero and covariance matrix V , where V is the limit
of the inverse of the information matrix, as the sample
size goes to infinity and is referred to as the asymp-
totic covariance matrix of a and b. For the probit
model, Griffiths et al. [28] compared three estima-
tors of the covariance matrix for the MLEs of α and
β. They are the inverse of the negative of the Hes-
sian matrix, the inverse of the information matrix,

and the inverse of the outer product of the first-
order partial derivative of the log-likelihood function
proposed by Berndt et al. [9]. These estimators of
the covariance matrix V are asymptotically equiv-
alent. However, Griffiths et al. [28] showed through
a simulation study that in small samples, on average,
both the information matrix and the Hessian matrix
provide almost identical results and more accurate
estimates of the asymptotic covariance matrix than
the estimate proposed by Berndt et al. [9]. The mean
squared error of the MLE is considerably larger than
the asymptotic covariance matrix. As a result, the bias
in finite samples could potentially be large.

After the MLEs and their corresponding estimated
asymptotic covariance matrices are obtained, the fol-
lowing goodness-of-fit test statistic can be used to
verify the underlying assumptions of the model:

X2 =
∑ (ri − niP̂i)

2

niP̂i(1 − P̂i)
, (11)

where niP̂i is the number of responses predicted by
the fitted model.

If the model is adequate, then asymptotically, X2

follows a central χ2 with K − 2 df (see Chi-square
Distribution). If X2 indicates a significant lack-of-
fit, then the possible causes should be carefully and
thoroughly investigated. The possible causes of lack-
of-fit include a poorly fitting model, the violation of
binomial assumption due to a possible correlation
between responses of subjects, or the existence of
heterogeneity among responses of different subjects
(see Overdispersion). Finney [22, 23] suggested the
use of X2/(K − 2) as a heterogeneity factor for scal-
ing up all variances. Since X2 is used as a test statistic
for goodness-of-fit, an intuitive alternative approach
to the estimation of α and β is to find the estimates
to minimize this quantity. The resulting method is
the noniterative minimum X2 method advocated by
Berkson [8]. Taylor [68] showed that the minimum
X2 method is a regular best asymptotically normal
BAN procedure. Therefore, one of advantages of the
minimum X2 method is that it provides noniterative
explicit estimates that are asymptotically equivalent
to the maximum likelihood procedure. Morgan [48]
indicated that caution is required in the interpretation
of the asymptotic optimality for the two methods.
The optimality of the maximum likelihood method is
achieved when the number of doses goes to infinity,
while the minimum X2 method reaches its optimality
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when the number of subjects in each group goes to
infinity [42, 61].

Confidence Intervals

Let v11, v22, and v12 be the estimated asymptotic
variances and covariances of the MLEs a and b

obtained from either the Hessian or the information
matrices by replacing α and β with a and b. The
estimated asymptotic variance of the MLE for θ is
then given by

v(θ̂) = v11 + 2θ̂v22 + θ̂2v22

b2
. (12)

Since (θ̂ − θ)/[v(θ̂ )]1/2 converges in distribution to
the standard normal distribution, the (1 − α)100%
confidence interval for θ can be obtained by the
delta method as follows:

θ̂ ± zα/2[v(θ̂)]1/2, (13)

where zα/2 is the α/2 upper quantile of the standard
normal distribution.

However, the (1 − α)100% confidence interval for
θ based on Fieller’s theorem [20, 21] is the set of
θ values such that

{
θ

∣∣∣∣
(a + θb)2

b2v(θ)
< z2

α/2

}
(14)

Let g be z2
α/2 times the inverse of the square of the

statistic for testing whether the slope is different from
zero. Failure to reject the null hypothesis of the zero
slope implies that g ≥ 1, and hence, the resulting
(1 − α)100% confidence interval for the MED by
Fieller’s theorem will either be the entire real line
or the union of two disjoint open intervals.

Consider the asymptotic likelihood ratio test to
test the null hypothesis, θ = θ0, against the alter-
native hypothesis, θ �= θ0. Let l(θ0) be the value of
the log-likelihood maximized with respect to β under
the null hypothesis that θ = θ0, and let l(θ, β) be the
value of the log-likelihood maximized with respect
to both β and θ under the alternative hypothesis. It
follows that the (1 − α)100% confidence interval for
ED50 by the likelihood ratio method is given by the
following set:

{θ |2[l(θ, β) − l(θ0)] < z2
α/2}. (15)

Asymptotically, the (1 − α)100% confidence
intervals for the MED derived by the delta method,
Fieller’s theorem, and the likelihood ratio method
are all equivalent. However, the interval by the
delta method always exists and is finite. On the
other hand, the confidence interval produced by
Fieller’s theorem and the likelihood ratio test may
not be of finite length. Williams [74] reported that
overwhelming evidence exists that the confidence
interval by Fieller’s theorem is conservative.

Because Fieller’s theorem is an exact method
under the normality assumption, the only source
of error for its corresponding confidence interval
involves the normal approximation to pi . If g is
small, then both the delta and Fieller’s intervals will
be virtually the same. As a result, Finney [22, 23]
recommended the use of Fieller’s interval only if
g is <0.05. However, limited simulation performed
by Abdelbasit & Plackett [2] failed to support the
use of Fieller’s interval as advocated by Finney [22,
23]. Cox [14] found that the delta method provides
a useful alternative to Fieller’s theorem. Sitter &
Wu [64] provided both theoretically and empirically,
the most comprehensive comparison between the
intervals derived by the delta method and Fieller’s
theorem. They showed that Fieller’s interval and the
delta interval differ only by an inflation factor and a
shift factor, with an asymptotic order of Op(l/n). The
inflation factor is 1 (<1) when the design is symmet-
ric (asymmetric). However, the shift factor vanishes
when the design is symmetric.

The simulation results of Sitter & Wu [64] pro-
vide convincing evidence to support the use of
Fieller’s interval rather than the delta interval for
ED50. Fieller’s theorem will generate a confidence
interval for ED50 with an infinite length when the
slope is not statistically different from 0 (i.e. g ≥ 1).
In this situation, the relationship between the response
probability and the dose levels cannot be adequately
and satisfactorily established through the assumed
model. Consequently, any inference, including the
construction of the confidence interval for ED50 by
Fieller’s theorem based on the assumed model, is
meaningless.

For responses with more than one outcome (see
Polytomous Data), one possible model for the esti-
mation of ED50 is the proportional-odds model. Let
Pij be the probability of observing the j th outcome
of a total of J possible outcome categories at the ith
dose level. Then, a multinomial model can be used
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to describe the data using the cumulative logits

log it(Pi1 + · · · + Pij )

= ln

{
Pi1 + · · · + Pij

1 − (Pi1 + · · · + Pij )

}

= αj + βxi, j = 1, . . . , J − 1; i = 1, . . . , k,

(16)

where α1 < · · · < αJ . The ED50 can be estimated in
the usual way for the cumulative collapsed categories.
However, the assumption of parallelism, of the lines
for different values of j , must be verified before the
estimates of αj and β can be used for inferences
about the ED50.

Mixture Models

Similar to the “placebo effect” in clinical trials, the
natural response in bioassay or toxicology should
be also taken into account. The natural response is
the response separated from that attributed to the
administered stimulus. An approach to incorporating
the natural response into the estimation of ED50 is
to employ the model suggested by Abbott [1] for the
following response probability:

F(xi) = λ + (1 − λ)F ∗(xi), (17)

where 0 ≤ λ ≤ 1 is the probability of natural
response and F ∗(xi) is the probability for dose
level xi whose occurrence of the defined event is
not due to natural causes. As discussed earlier,
a significant heterogeneity factor X2 may indicate
that (i) the population under investigation may
not be homogeneous or (ii) the observed tolerance
distribution is not unimodal. In this case, the
underlying population may consist of a mixture
of homogeneous subpopulations. The response
probability of each subpopulation is still related to
the dose by some individual tolerance distribution.

Suppose that there are a total of h subpopulations,
each with a tolerance distribution Fj . For the ith dose
level, nij of ni subjects come from the j th population
with probability δj and mij subjects respond, where
j = 1, . . . , h; I = 1, . . . , k. Therefore, for a fixed ni ,
(ni1, . . . , nih) are jointly distributed as a multinomial
distribution with parameter (ni, δ1, . . . , δh). In addi-
tion, the sum of mij is ri . For fixed (ni1, . . . , nih), mij

are independently distributed as binomial random

variables with parameters [nij , Fj (di)]. If a control
group is also included in the study to account for nat-
ural mortality, then the likelihood may be formulated
as [41].

L(ω) = C0λ
r0(1 − λ)(n0−r0)

×
k∏

i=1

CiP
ri

i (1 − Pi)
(ni−ri ), (18)

where Ci = ni!/[ri!(ni − ri)!], i = 0, . . . , k;
Pi = ∑

δjFj (di).
For the location/scale family, the parameters in

ω consist of λ, δ1, . . . , δh−1; α1, . . . , αh; β1, . . . , βh;
and if xi = ln di , then

Fj(xi) = λ + (1 − λ)F ∗(αj + βjxi),

j = 1, . . . , h; i = 1, . . . , k. (19)

Lwin & Martin [41] proved that the MLEs exist
under model (18). They suggested that the MLEs may
be obtained either by the usual Newton–Raphson
or scoring methods or the Nelder–Mead simplex
algorithm [50]. In addition, they also pointed out that
the EM algorithm [16] can be used to solve the
likelihood functions for MLEs.

Overdispersion

Statistical inference about the ED50 as described
above, assumes independence of individual subjects.
In toxicology or teratology experiments, subjects
are sampling units nested within the experimental
units, such as litters. Therefore, responses observed
from the subjects within the same litter are not
independent. Hence, the actual variability exhibited
by the data is larger than that expected under the
independent binomial assumption. This phenomenon
is referred to as overdispersion or extra-binomial
variation caused by the litter effect. Other examples
of overdispersion can be found in [15, 48, 75, 76].

Consider an experiment in which mi litters receive
the ith dose level of the stimulus. Let rij be the num-
ber of responses in nij subjects in the j th litter of the
ith dose group, j = 1, . . .mi , i = 1, . . . , k. Denote
the corresponding response probability by Pij . Then,
given nij and Pij , the conditional distribution of rij

follows the binomial distribution given in (1). If we
further assume that Pij follows a beta distribution
with parameters η1i and η2i , the marginal distribution
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of rij follows a beta-binomial distribution with the
following log-likelihood function as shown by Segreti
& Munson [59].

L = constant +
k∑

i=1

mi∑

j=1






rij −1∑

r=0

log(γ1i + rγ2i )

+
nij −rij −1∑

r=0

log(1 − γ1i + rγ2i )

−
nij −1∑

r=0

log(1 + rγ2i )




 , (20)

where γ1i = η1i/(η1i + η2i ) and γ2i = (η1i + η2i)
−1.

Under the assumption of a common logistic distri-
bution for the tolerance distributions for all subpopu-
lations, the model to incorporate the natural response
in (19) may describe the relationship between the
response probability and dose levels of the stimu-
lus as

γ1i = λ + (1 − λ)[1 + exp(α + βxi)]
−1

i = 1, . . . , k. (21)

The point and interval estimation for ED50 are
straightforward from (21), after the MLEs of γ1i

and γ2i are obtained by either the Newton–Raphson
method or the Nelder–Mead algorithm method (see
Optimization and Nonlinear Equations). The beta-
binomial model assumes that the response probability
from different litters follows a beta distribution.
However, one can relax this strong assumption by
specifying only the mean as γ1i and variance as
γ1i (1 − γ1i )ρ, where ρ = γ2i/(1 + γ2i ), i = 1, . . . , k.
It turns out to be the robust procedure of quasi-
likelihood [43], which can be readily carried
out to estimate ED50 by commercial statistical
software packages such as GLIM (see Software,
Biostatistical).

Other approaches to the extra-binomial variation
for inference of the MED include the Poisson-gamma
model employed by O’Neill & O’Neill [52], and
the correlated-binomial model, the logistic-normalbi-
nomial, and the probit-normal binomial models sug-
gested by Morgan [48].

Quantal Response over Time

In a bioassay, it is not uncommon to observe res-
ponses at some prescheduled discrete time points.

These time points may be selected as design points
in addition to the dose of the stimulus. Time, there-
fore, is another classification factor [10]. If these time
points are not design points but some prescheduled
observing time points, then the ED50 is a function
of time. Suppose that an experiment consists of the
administration of each of k dose levels to a group
of ni subjects whose responses are observed at J

time points, 0 = t0 < t1 < · · · < tJ < tJ+1 = ∞. Let
rij be the number of subjects responding in the time
interval (tj−1, tj ) and let F(tj |di) be the probabil-
ity of observing a response by time tj at the ith
dose level, j = 1, . . . , J + 1, i = 1, . . . , k. Pack &
Morgan [53] showed that the likelihood can then be
written as

L =
k∏

i=1











J∏

j=1

[F(tj |di) − F(tj−1|di)]
rij






× [1 − F(tJ |di)]
ni−ri

}
, (22)

where, at the ith dose level, F(tj |di) − F(tj−1|di)

represents the probability of observing a response
during the time interval (tj−1, tj ), and 1 − F(tJ |di)

is the probability of no response at the end of
the experiment.

Since there is a possibility that the subjects may
not be affected by the stimulus, one may choose a
mixed distribution with the logistic function as the
mixing proportion:

A(xi) = {1 + exp[−(α + βxi)]}−1. (23)

Let F1 denote the response-time distribution for sub-
jects who respond to the stimulus, and F2 be that for
those unaffected by the stimulus. The response-time
distribution for all subjects at the ith dose level can
be expressed as

F(tj |di) = A(xi)F1(tj |di)

+ [1 − A(xi)]F2(tj ). (24)

Note that F2(tj ) is independent of dose. Although
various forms can be chosen for F1, Pack & Mor-
gan [53] suggested using

F1(t |di)

=
{

1 − {1 + λ exp[ψ ln(t) − ηi]}−1/λ, λ �= 0
1 − exp{− exp[ψ ln(t) − ηi]}, λ = 0

(25)
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If the model ignores the part of response-time distri-
bution for those who are not affected by the stimulus,
then the inference for ED50 at the end of the study is
the same as that for −(α/β).

The problem of overdispersion also occurs for
quantal response experiments over time; see, for
example, [48, 51, 54]. Petkau & Sitter [54] suggested
the use of the Dirichlet-multinomial model as an
alternative approach to handling the extra variation.
Suppose that there are a total of L replications of
the experiment. Let Rijl be the cumulative number
of responses observed up to time tj for nijl subjects
in the lth replicate, receiving the ith dose level. Then,
given nijl , (ri1l,...,riJ l) follows a multinomial distri-
bution with probabilities (pi1l,...,piJ l), where rij l and
pijl are similarly defined for the lth replicates. Fur-
thermore, if the vector of probabilities (pi1l,...,piJ l)

is randomly distributed as the Dirichlet distribution,
then the marginal distribution of (ri1l,...,riJ l) follows
the Dirichlet-multinomial. As a result, Petkau & Sit-
ter [54] suggested that the inference for ED50 may be
obtained from the following Weibull response-time
distribution in the absence of a replication effect.

F(tj , di) = 1 − exp[− exp(α + βxi)tj γ ] (26)

or

θ = ln[− ln(0.5)] − α − γ ln tj

β
. (27)

Hence, the estimated ED50 is a function of time.
O’Hara Hines & Lawless [51] considered a num-

ber of models for overdispersion, which can be incor-
porated into the generalized linear model framework
for multinomial data. The idea is to incorporate var-
ious random components into the link function and
use the quasi-likelihood or generalized least squares
estimating equation to estimate the unknown param-
eters. O’Hara Hines & Lawless [51] found that, on
average, the robust covariance matrix estimator based
on the generalized estimating equations (GEEs)
proposed by Liang & Zeger [40] performed well.
As a result, it is recommended that the multino-
mial estimating equations with the robust variance
estimate in the presence of extra-multinomial vari-
ation be used for quantal response over time. Alho
& Valtonen [3] extended the results of the likelihood
confidence interval for ED50 by Williams [74] to a
generalized linear model with a known scale parame-
ter, which permits explanatory variables other than
those related to stimulus. Laurence & Morgan [39]

and Morgan [48] provided a complete review regard-
ing the advantages and drawbacks of the stochastic
model for analysis of quantal response over time
proposed by Puri & Senturia [55], which was sub-
sequently extended by Diggle & Gratton [17].

Bayesian Approaches

Racine et al. [56] also proposed a number of
Bayesian approaches for the estimation of ED50.
They suggested that either a bivariate normal
distribution or independent beta distributions be
considered as the possible choices for the prior
distribution of the underlying parameters. For
the probit model, both prior distributions yield a
bivariate normal posterior distribution. However,
numerical integration is usually required for the
evaluation of the integral for the posterior distribution
of ED50. In addition, under the uniform and
normal prior distribution, Grieve [26] derived the
posterior probabilities of a substance belonging to a
predetermined toxicity classes.

Grieve [27] further examined the relationship bet-
ween Fieller’s theorem, likelihood methods, and
Bayesian methods for interval estimation of the LD50.
In particular, the quadratic equation of θ has its
minimum at the MLE, −(a/b), its maximum at
(av 12 − bv 11)/(bv 12 − av 22), and has an asymptote
with a value, b2/v22. Therefore, if z2

α/2 is between the
asymptote and its maximum, the (1 − α)100% con-
fidence interval for θ is in the form of two disjoints
intervals. On the other hand, if z2

α/2 is greater than the
maximum, the (1 − α)100% confidence interval for θ

is the whole real line. For the likelihood ratio interval
estimate of LD50, Grieve [27] showed that the likeli-
hood function for θ always has both a minimum and
a minimum. Consequently, the log-likelihood func-
tion of θ has exactly the same characteristic form
as does Fieller’s quadratic function shown above.
Hence, there will always be a chance of α that the
(1 − α)100% confidence interval for θ by the like-
lihood method will comprise the whole real line.
To overcome this common problem shared by both
Fieller’s theorem and the likelihood ratio method,
under the assumption that θ and β are orthogonal
Grieve proposed to use the conditional profile likeli-
hood (CPL) approach to interval estimation of LD50.
In other words, a likelihood ratio statistic is con-
structed from the conditional distribution of the data,
given the MLE of β. The resulting CPL has the form
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of the original likelihood, modified by the observed
information for β, given θ . It follows that the CPL
method takes into account the uncertainty regarding
β, which is ignored in the likelihood approach. In
addition, if the prior distribution for θ and β has
the form

p(θ, β) = β, −∞ < θ < ∞, 0 < β, (28)

the posterior distribution of θ derived from the
Bayesian method developed in [26] is approximately
the same as the conditional profile likelihood if θ

and β are a priori independent as demonstrated by
Grieve [27]. Grieve claimed that from two distinct
perspectives, attempts to overcome the difficulties
associated with interval estimation of LD50 lead to
Bayesian solutions. More literature on Bayesian infer-
ence of ED50 can be found in [25, 45, 66, 67].

Nonparametric and Robust Methods

In the pharmaceutical industry, quantal response
bioassays are routinely performed to examine the effi-
cacy and safety of new drugs in animals during the
early stage of drug development. It is then necessary
to obtain an initial estimate of ED50 and its stan-
dard error with reasonable accuracy and precision.
For this purpose, nonparametric methods are often
employed for pilot bioassays to provide robust esti-
mates to plan subsequent designs in the establishment
of the final estimate of ED50.

Under the independent binomial model (1), the
unrestricted MLE for Pi is the observed propor-
tion of the number of subjects at the ith dose level,
pi = ri/ni . To obtain nonparametric and robust esti-
mates for ED50, we may start with the MLEs of
Pi under the order restriction, P1 ≤ P2 ≤ · · · ≤ Pk

(see Isotonic Regression). Barlow et al. [5] gave the
distribution-free MLEs of Pi under the order restric-
tion as follows:

P̃i = max
1<u<i

min
i<v<k





v∑

j=u

rj

v∑

j=u

nj




. (29)

Spearman–Kärber Estimator

In 1908, Spearman [66] first proposed a simple and
yet easily understood method for the estimation of

ED50, which was reintroduced by Kärber [38] in
1931. Let ∆i denote the increment of the dose from
dose level xi to dose level xi+1, then the Spear-
man–Kärber (S–K) estimator for ED50 is given as

θ̂ =
(

p1 − ∆i

2

)
+

k−1∑

i=1

(pi+1 − pi)

(
xi + ∆i

2

)

+ (1 − pk)

(
xk + ∆k−1

2

)
, (30)

where ∆i = xi+1 − xi . If p1 = 0 and pk = 1, then
the Spearman–Kärber estimator in (30) reduced to
its usual form, that is,

θ̂ =
k−1∑

i=1

(pi+1 − pi)

[(
xi+1 + xi

2

)]
. (31)

The S–K estimator for ED50 is in fact the area under
the response probability-time curve calculated by the
usual trapezoidal rule. Since the unrestricted MLEs,
pi , may not be monotonically increasing, we need to
smooth pi by using the MLEs given in (29), obtained
under the order restriction before calculation of the
S–K estimate of ED50. The variance of the S–K
estimator is

V (θ̂) =
k−1∑

i=2

Pi(1 − Pi)(xi+1 − xi)
2

4ni

, (32)

with an unbiased estimator,

v(θ̂) =
k−1∑

i=2

pi(1 − pi)(xi+1 − xi)
2

4(ni − 1)
. (33)

Morgan [48] indicated that although the S–K esti-
mator is simple with an explicit expression, and is a
function of the sufficient statistics (r1, . . . , rk), it is
not unbiased for ED50.

The robustness of the S–K estimator can be fur-
ther improved by the use of trimming suggested
by Hamilton in [29] and [31]. Sanathanan et al. [58]
introduced the use of trimming in the logit and probit
models. They suggested that the trimming χ2 crite-
rion be the heterogeneity factor, X2/df, where X2is
the test statistic for the goodness-of-fit defined in (11).
They also recommended minimizing the heterogene-
ity factor iteratively over the range of dose levels
such that the fitted proportion is within the range of
0.0001 and 0.999 for the calculation of the informa-
tion matrix. However, Morgan [48] indicated that for
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quantal response data with few occurrences of 0%
or 100% response, the trimmed logit procedure sug-
gested by Sanathanan et al. [58] has very little effect.
For other evaluations of S–K estimators and trim-
ming procedures, see [29–32, 35, 48, 58].

For reference to other simple estimators of the
ED50; see Biological Assay, Overview.

L-, M-, and R-Estimators

For the discussion in this section, following James
et al. [35], we consider a bioassay experiment in
which n subjects are randomly selected to receive
each of the 2k + 1 equally spaced dose levels,
x−k, . . . , x−1, x0, x1, . . . , xk . Let Pi and pi be defined
as in the previous subsection, and let ∆ denote the
common dose increment. Under the convention that
p−k−1 = 0 and pk+1 = 1, the empirical tolerance dis-
tribution is the following piecewise linear function:

F(x) =
{

pi, if x = xi, −k ≤ i ≤ k,

0, if x ≤ x−k−1 = x0 − (k + 1)∆,

1, if x ≥ xk+1 = x0 + (k + 1)∆,

(34)

and F(x)is linear and continuous in [xi, xi+1], for
all i.

Let J (u) be a nonnegative function defined on
the interval [0, 1], which is symmetric about 0 and
let

∫
J (u)du = 1. The L-estimator of ED50, a linear

combination of order statistics, is given as

θ̂ = x0 + ∆

k+1∑

i=−k

iJ (pi)(pi − pi−1) (35)

The S–K estimator is a special example of the L-
estimator because (i) when J (.) = 1, the L-estimator
is the untrimmed S–K estimator and (ii) when
J (u) = 1/(1−2a), where a ≤ u ≤ (1 − a), the
L-estimator is the 100a% trimmed S–K estimator.

The M-estimator of ED50 is the root of the fol-
lowing equation [45].

k+1∑

i=−k

ψ

[
di − θ

s

]
[pi − pi−1] = 0, (36)

where ψ(.) is a suitable function and s is a scal-
ing factor.

If ψ(x) = x(1 − x2)2, 0 for |x| ≤ 1 or |x| > 1,
respectively, then we have Tukey’s biweight M-
estimator of ED50.

Let G(u) be a nondecreasing integrable score
function for 0 < u < 1 and G(1 − u) = −G(u). The
R-estimator for ED50 [35] is the solution to the fol-
lowing equation:

h(F, θ)

=
∫

G

{
[F(x) + 1 − F(2θ − 1)]

2

}
dF(x) = 0

(37)

if a unique solution exists. If not, define

θ̂ = {sup[θ : h(F, θ) > 0] + inf[θ : h(F, θ) < 0]}
2

.

(38)

The sign test score function (G(u) = −1, for u < 0.5
and G(u) = +1 for u > 0.5), the Wilcoxon test score
function (G(u) = (u − 1/2) (see Wilcoxon Signed-
rank Test), and the Van der Waerden score function
(G(u) = Φ−1(u)) will give, respectively, the sam-
ple median, the Hodges–Lehmann estimator, and
the normal score estimator. If G(u) = ln[u/(1 − u)],
then, according to James et al. [35], the resulting R-
estimator is called the logistic score estimator. How-
ever, the R-estimator is not a consistent estimator
for ED50, and hence it is asymptotically biased.

James & James [34] defined the influence curve
for the estimators of the MED in quantal bioas-
say under the assumption of a symmetric tolerance
distribution. They also obtained the influence curve
for L-, M-, and R-estimators as well as the logis-
tic score estimator. In general, the logistic score
estimator and the MLE under the logit model are
not robust, while the Tukey biweight M-estimator
and the Hodges–Lehmann R-estimator are robust.
James et al. [35] gave a complete review of asymp-
totic relative efficiency, for different estimators of
ED50, under various tolerance distributions. From
their paper, and from [29, 37, 48,], a moderately
trimmed S–K estimator, say by 5%, may be the rec-
ommended estimator (see Robustness).

Study Design

The basic issues for designing a nonsequential bioas-
say to estimate the MED involve (i) selection of the
dose levels, (ii) determination of the number of dose
levels, (iii) estimation of the number of the subjects,
and (iv) distribution of the number of subjects to a
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fixed number of dose levels. Most of research con-
centrates on (i), (ii), and (iv), summarized below.
For details on design issues about quantal response,
see [2, 12, 22, 23, 36, 44, 46, 48, 49, 63, 65, 71, 77].

With respect to the estimation of ED50 for a sym-
metric tolerance distribution, various criteria can be
obtained under the requirements for D-, A-, E-, G-
,and F-optimality [19, 62] (see Optimal Design). All
these criteria depend on the asymptotic variance of
the MLEs, a and b, and hence on the information
matrix of a and b. For example, for the D-optimality,
the design is, in fact, chosen at the dose level to max-
imize the determinant of the inverse of information
matrix, that is, to select x to maximize

wD(x) =
{

xf 2(x)

F (x)[1 − F(x)]

}2

. (39)

For a logistic tolerance distribution and a two-point
design, w has its maxima at x = ±1.5434. These val-
ues correspond to the response probability of 0.176
and 0.824. Consequently, the D-optimal design for a
logistic distribution allocates half the subjects sepa-
rately to the dose levels ED17.6, and the other half to
ED82.4. Similarly, for the probit model, the D-optimal
doses are ED12.8 and ED87.2.

The A-optimal design requires minimizing the
trace of the asymptotic covariance matrix of a and b.
The F-optimality minimizes the squared half-length
of the 100(l − α)% confidence interval for ED50 on
the basis of Fieller’s theorem [2, 22, 23, 65]. Sitter &
Wu [65] provided some numerical results for design
points of dose levels for two-point and three-point
designs on the basis of these criteria.

Kalish [36] considered D-optimality with the use
of a second-order approximation of the order of
1/n2 for estimating the variances of MLEs of the
MED and the slope under the formulation of the
tolerance distribution in (8). She referred to these two
designs as LD50-optimal and slope-optimal designs.
Kalish [36] recommended the equally weighted
three-point design, with design points at LD20, LD50,
and LD80. From theoretical and simulation results,
this design is very efficient for estimating LD50 and
for global estimation of the dose–response curve. Sun
& Tsutakawa [67] proposed Bayesian designs that
avoid experiment results with little information at the
expense of a small sacrifice in the Bayes risk. On the
other hand, Minkin & Kundhal [47] considered the
length of likelihood-based confidence interval as a
criterion for the dose allocation.

From a practical viewpoint, a useful optimal
design should provide the minimal number of doses
and the minimal number of subjects required at
each level. However, the design points derived under
various optimal criteria are functions of unknown
parameters. Consequently, in practice, it is extremely
difficult to implement these optimal designs, not only
because the number of dose levels might be unknown,
but also because reliable and good initial estimates
for the unknown parameters are usually unavailable
during the planning stage of experiments. In this sit-
uation, Müller & Schmitt [49] recommended, for a
symmetric distribution, to choose as many dose lev-
els as possible with the allocation of one subject per
dose level.

Sitter [63] used the minimax principle to find
robust designs by minimizing the maximum of some
criteria over a bounded rectangular region of possible
parameters, which have the form

P = {(θ, β) : |θ − θ0| ≤ θ∆, βL < β < βU } (40)

where θ∆ and (βL,βU ) define the possible ranges,
respectively, for ED50 and slope. Suppose that the
dose levels are symmetric about the location of the
tolerance distribution, θ0, then the designs are com-
pletely specified by the number of dose levels k and
the common increment between adjacent dose levels,
d. Let

di = dβL

[
i − (k + 1)

2

]
,

xi = di

βL + θo

,

a = βL(θ − θ0),

b = β

βL

,

d ′ = βLd. (41)

Sitter [63] suggests a design such that

W(δ) = min
k=2,3,...

min−∞<d ′<∞ max
S

R(k, d ′, a, b), (42)

where R(.) can be the criterion based on either D-
optimality or F-optimality, and

S =
[

(a, b) : 0 ≤ a ≤ θ∆; 1 ≤ b ≤ βU

βL

]
.

Sitter [63] provides tables for the number of dose
levels and dose increments, for a number of various
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combinations of θ∆ and βU/βL under a logit model,
and for robust designs using D-optimality and F-
optimality. These proposed designs are robust to poor
initial estimates of the unknown parameters and only
require prior information about the possible ranges
for the location and scale parameters. The minimax
procedure provides the number of doses as well
as the dose increment for an easy and practicable
implementation of the design.

Sequential Procedures

The results of the classical fixed bioassays might
either be that all subjects respond or that none
responds, if the investigators misjudge the location
and/or the scale of the tolerance distribution. Conse-
quently, little information about ED50 can be gained
and all resources are wasted. Therefore, sequential
procedures provide attractive alternatives to the clas-
sical designs. The use of sequential procedures in esti-
mating the ED50 goes back to Bartlett [6]. However,
Dixon & Mood [18] first proposed the up-and-down
method for the estimation of ED50.

For an up-and-down experiment, after a series of
equally spaced dose levels have been selected, the
first subject is tested at the best guessed dose level
for ED50. Each subsequent test is performed at the
next lower or the next higher dose level according to
which the predefined response is or is not observed
in the previous subject. Let xi , where i = 0, 1, . . . , n,
be the dose level used in the ith trial of an up-
and-down experiment, with x0 being the initial dose
level and d being the common fixed spacing between
adjacent dose levels. Dixon & Mood [18] gave the
following estimator:

θ̂M =
k∑

i=0

xi

k + 1
, (43)

which was modified by Brownlee et al. [11] as

θ̂B =
k+1∑

i=1

xi

k + 1
. (44)

Choi [12] further provided a different estimator for
ED50 on the basis of the up-and-down experiment as

θ̂C =
∑

S

wi

t − 1
, (45)

where S denotes the t dose levels where a change in
response at xi occurs and

wi =





xi + d

2
, xi is a trough

xi − d

2
, xi is a peak

Choi [12] also used Markov-chain theory for estima-
tion of the dispersion matrix for confidence intervals
of ED50 based on the up-and-down experiment.

In general, the n + 1 dose level for the up- and-
down experiment can be expressed as

xn+1 = xn − 2d(In − 0.5), (46)

where In is 1 if the response is observed at the
nth dose level and is 0 otherwise. This leads to the
sequential Robbins–Monro [57] method for estimat-
ing the ED50, which is given as

θ̂RM = xn − c

n(In − 0.5)
(47)

(see Stochastic Approximation). In (47), the opti-
mal value of c is chosen to be [f (θ)]−1 to minimize
the asymptotic variance of [n(Ii − θ)]1/2. Let bn be
the estimated slope resulting from fitting a linear
regression of Ii on xi with the available results based
on the current n subjects. Then, the adaptive Rob-
bins–Monro estimator after the nth trial is given as

θ̂ARM = xn −
(

1

nbn

)
(In − 0.5). (48)

Wu [77] proposed a logit-MLE method to use all
available information to date for determination of
the n + 1 dose level. Suppose that the study has
completed an initial design, either fixed or sequential,
with n subjects at n dose levels. The next dose level
is then given as

xn+1 = xn −
(

k∗
n

n

)
(In − 0.5), (49)

where k∗
n = max[c1, min(kn, c2)], and c1 and c2 are

some truncation constants. Wu [77] suggested the
choice of c1 = 0 to avoid possible large changes in
dose levels. He reported that the relative performance
of these methods heavily depends on the choice of the
initial design. If n is rather large, then MLE or θ̂ARM

should be used to take advantage of the asymptotic
optimality. A large value of the constant c should
be selected if the initial guess of ED50 is poor. If
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only scant information about θ and f(θ) is available
at the planning stage of the experiment for the initial
design, then one needs to use a wide range of dose
levels that should be evenly placed.

McLeish & Tosh [44] extended Wu’s logit-MLE
method in a manner such that, after k dose levels
in n subjects have been tested, the next dose level
is chosen so as to minimize the asymptotic variance
of MLE for the θ obtained from the updated infor-
mation matrix by the delta method. This method not
only allows flexibility of the incorporation of cost
but is also more robust against misspecification of
the parameters than Wu’s logit-MLE procedure. In
addition, McLeish and Tosh’s method for allocating
dose levels seems to achieve full asymptotic efficacy
of estimation.
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Median Survival Time

A useful summary of a survival curve is the median
survival time. Approximately 50% of the population
under study could be expected to survive beyond the
median. More formally, the median survival time
is defined as M = F−1(1/2) = inf(t : F(t) ≥ 0.5),
where F(t), the cumulative distribution function, is
the probability of surviving less than or equal to
time t . The median survival is used considerably
more frequently than the mean as a summary statistic
because of the difficulties in estimating means from
heavily right-censored data without strong parametric
assumptions.

The median is nonparametrically estimated from
right-censored survival data by first calculating the
Kaplan–Meier [8] survival curve Ŝ(t) = 1 − F̂ (t)

(see Kaplan–Meier Estimator), which is an esti-
mate of the probability of surviving beyond t . The
estimated median survival time is M̂ = F̂−1(1/2)

which is the smallest observed event (uncensored)
time where the Kaplan–Meier estimate is not greater
than 1/2. There can be a great deal of variability in
the estimated median if the survival curve is relatively
flat near 0.5.

Several approaches have been proposed to obtain
confidence intervals for the median survival. Brook-
meyer & Crowley [3] suggested inverting a general-
ized sign test for right-censored data for testing the
null hypothesis H0: median survival time = t , versus
H1: median survival time �= t . The generalized sign
test statistic, Ŝ(t), is the Kaplan–Meier estimate eval-
uated at t . One does not reject the null hypothesis at
level α if

[Ŝ(t) − 1/2]2 ≤ χ2
α v̂ar[Ŝ(t)],

where χ2
α is the α critical value of a χ2 with one

degree of freedom and where v̂ar(Ŝ(t)) is Green-
wood’s estimate of the variance of Ŝ(t),

v̂ar[Ŝ(t)] = [Ŝ(t)]2
∑

{xi≤t}

di

ni(ni − di)
,

where di and ni are the number of uncensored events
and number at risk, respectively, at distinct event
times xi . The (1 − α) 100% confidence interval is
defined as the interval Iα = [tl, tu), where tl is the
smallest event (uncensored) time with Ŝ(t) ≥ 0.5 that
is not rejected by the generalized sign test at level

α and tu is the smallest observed event (uncensored)
time with Ŝ(t) < 0.5 that is rejected at level α. Occa-
sionally it happens that an upper confidence limit
cannot be obtained because the last observed event
time is in Iα , then Iα becomes a one-sided confi-
dence interval of the form [tl, ∞]. We also obtain
a one-sided confidence interval if the Kaplan–Meier
survival curve does not reach the median because of
extensive censoring.

This confidence interval method can also
be illustrated by the following approach [1].
First, calculate pointwise (1 − α) 100% confidence
intervals for the entire survival curve using the
Kaplan–Meier estimate and Greenwood’s formula,
Ŝ(t) ± Zα/2[v̂arŜ(t)]1/2. Then the confidence interval
for the median is defined by the times where these
upper and lower confidence limits equal 1/2. This
is shown graphically in Figure 1 for survival data
from a colorectal cancer clinical trial consisting of 53
patients of whom 16 were censored [3]. The figure
shows the Kaplan–Meier estimate along with the
upper and lower 95% confidence intervals for S(t).
The median survival time was M̂ = 61 weeks and the
95% confidence interval was [38, 73].

Several other related confidence interval approach-
es have also been proposed (see, for example, [6,
12, 13], and [7]). Several researchers have suggested
replacing Greenwood’s estimate v̂arŜ(t) by various
estimators of the null variance of Ŝ(t) under the
null hypothesis that t is the true median [3, 7,
13]. Extensive simulation studies to investigate the
performance of these confidence interval procedures
indicate that, in small samples (N ≤ 20), use of
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Figure 1 Illustration of confidence interval procedure for
the median survival time using survival data from a colo-
rectal cancer clinical trial [3]
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the null variance may perform better than use
of Greenwood’s estimate with respect to coverage
probabilities [7]. Pointwise confidence intervals
for the survival curve based on log[− log Ŝ(t)]
or arcsin {[Ŝ(t)]1/2} transformations have been
found to perform well [2, 14]. This suggests that
transformation of Ŝ may also improve the small-
sample performance of confidence intervals for the
median. Bootstrapped confidence interval procedures
have also been described [5, 11] and give similar
results. Confidence interval procedures for the
difference between two medians from right-censored
survival data have been described in [15]. Repeated
confidence intervals for the median survival time with
accumulating data have been proposed by Jennison &
Turnbull [7].

To test the equality of k medians from uncensored
data, the classical median test can be used [9, 16].
The median test for uncensored data consists of
pooling the observations from k samples, determining
the median of the pooled sample, then counting the
number Ai in the ith sample that exceed the pooled
median. The test statistic is

4
k∑

i=1

(Ai − ni/2)2

ni

,

where ni is the number of observations in the ith
sample, and asymptotically has a χ2 distribution
with k − 1 degrees of freedom. One generalization to
right-censored data [4], involves defining the “pooled
sample median” M̂ as the median of a weighted
average of the individual Kaplan–Meier estimates
from each sample that is weighted by the relative
sample sizes. The statistic is based on the devia-
tion from 1/2 of each individual Kaplan–Meier esti-
mate evaluated at the pooled median M̂ . We define
z = {√N [F̂i(M̂) − 1/2]}, where N = Σni , then the
median test statistic for censored data is of the form
z′ = �̂−1z, where �̂−1 is a generalized inverse [4].
Under H0, the test statistic is χ2(k − 1). An alter-
native generalization, proposed by Prentice [10], was
based on a general family of linear rank tests for cen-
sored data and is particularly powerful for detecting
location shifts in the double exponential distributions.
Either version of the median test for censored survival
data is especially sensitive for detecting differences in
medians in location shifts. Other test statistics, such
as the logrank test, will be more powerful against

other alternatives such as the proportional hazards
family.
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Median

The sample median of a set of ordered data is the
middle observation if the sample size is odd and the
average of the two middle observations if the sample
size is even. In the case of even sample size, any
value in the interval between the middle two data
points will serve as a median, but the midpoint of the
interval is generally chosen by convention.

The median of a probability distribution is a
point that divides the probability distribution into two
equal parts. Let F(x) represent a cumulative dis-
tribution function (cdf) (see Random Variable). If
F is strictly increasing at m and F(m) = 1/2, so
m = F−1(1/2), then m is the unique median. If a cdf
is not strictly increasing at the prospective median,
then more care is required for an analytical defini-
tion. Define the inverse of a cdf as F−1(t) = inf[x :
F(x) ≥ t]. Then m = F−1(1/2) is the unique median
or is the left endpoint of the interval of medians.
When F is the empirical cdf (see Goodness of Fit),
m is the middle data value or is the first of the two
middle data values.

The sample median is a robust estimate of the
population median. It is robust in the sense that it is
not affected by outliers (bounded influence function),
and it takes roughly 50% contamination of the data to
ruin it (50% breakdown point). The median is approx-
imately normally distributed in large samples and the
asymptotic variance (standard error) is 1/[4f 2(µ)n],
where f is the probability density function (pdf)
of the population, µ is the population median, and
n is the sample size. Sheather [3] reviews methods
of estimation of the finite sample variance and the
asymptotic variance of the sample median. It is inter-
esting that the standard error of the median can be
estimated using the bootstrap but not the jackknife.
In fact, the bootstrap distribution of the median can
be found in closed form and does not have to be
simulated (see Efron & Tibshirani [1]).

The sample median solves the L1 minimization
problem; that is, it minimizes Σ |xi − t | as a
function of t (see Mean Deviation). It is the
maximum likelihood estimator for the center
of a Laplace or double exponential distribution.
Hence, for the Laplace distribution, the median is
asymptotically optimal. On the other hand, when
the underlying distribution is normal, the asymptotic
relative efficiency of the median relative to the mean
is only 0.637. The median shares efficiency properties
with the simple sign test.

In biostatistics it may be of interest to estimate
the median of a survival distribution in a censored
data setting (see Median Survival Time). In this
situation the empirical cdf is replaced by the product
limit estimate (PLE) F̂ due to Kaplan & Meier [2].
Then the estimate is based on F̂−1(1/2); see Reid [5]
for a nice discussion.

The median can be defined for multivariate dis-
tributions, and then estimates can be developed from
the multivariate data. Small [4] surveys the various
ways that the idea of median has been extended into
high dimensions under various types of equivariance
requirement.
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Medical Devices

Introduction

A medical device is any item that treats or diagnoses
a health condition but whose action is not primarily
chemical or biological. Simply defined, it is any prod-
uct used in medicine that is not a drug or a biological
agent. The array of products that fall within the med-
ical device category is extremely broad; they range
from tongue depressors, syringes, and wheelchairs to
coronary stents, DNA microarrays, and CT scanners.
The diversity of the industry makes medical devices
an exciting arena in which advances in a host of basic
science and engineering disciplines can be brought to
bear on the improvement of human health. It is also
the source of many interesting research areas in the
statistical sciences.

This article will focus initially on the design and
analysis of therapeutic devices and implants (non-
diagnostic devices), with some discussion of sham
devices and blinding, noninferiority (see Equiva-
lence Trials) and active control studies, survival
analysis and repeated measures (see Multiplicity in
Clinical Trials), and the use of historical controls
(see Bias from Historical Controls). Attention will
then turn to diagnostic devices, with emphasis on
microarrays, and Bayesian approaches to medical
device studies (see Bayesian Methods in Clinical
Trials). It will conclude with some discussion of
surveillance of medical devices (see Postmarket-
ing Surveillance of New Drugs and Assessment of
Risk).

The Nature of Nondiagnostic Medical
Device Studies

In many cases, the mechanism of action of a medical
device is well understood and is local as opposed
to systemic. Compared to other medical products,
such as pharmaceutical drugs, medical devices tend
to have a much shorter commercial life cycle. Typ-
ically, it may take only two years for a medical
device to become obsolete after its first use as it
is often supplanted by a newer model. In contrast,
drug product lines can last 10 to 20 years or more.
Devices usually evolve by a series of small changes,
and the pace of invention can be very fast. Often,
there is almost constant tinkering with the design and

manufacturing of a medical device. Consequently, in
some cases, there are a large number of models for
the same, or only slightly different, indications. The
fast evolution of medical devices, coupled with a
built-in expectation by the public that newer is better,
presents unique challenges in designing and evaluat-
ing medical device studies [92]. For some devices, a
randomized clinical trial may not be feasible because
of the difficulty in recruiting patients. Statistical chal-
lenges include coping with changes to the protocol
(see Clinical Trials Protocols) and perhaps even to
the new device during the course of a clinical trial to
evaluate the effectiveness and safety of the device.

Placebo Effect and Sham Controls

In studies of medical devices, there are many in-
stances in which evidence for a placebo effect exists,
that is to say, people react differently if they are
in a clinical trial, regardless of whether they know
(or even strongly suspect) which treatment they are
receiving. This is especially worrisome when the pri-
mary outcome measured is something like pain or
function as subjectively assessed by the patient and
sometimes by the physician or health care worker.
The statistical issue here is, of course, bias (see
Bias, Overview). One way to remove bias due to
the placebo effect is to have some sort of sham
(or placebo) control as a second arm in a random-
ized clinical trial. Therefore, the sham as a control
plays an important role in the evaluation of the safety
and effectiveness of medical devices, especially those
devices for the treatment of pain or function [46, 61,
65, 90]. In the interpretation of study results, in addi-
tion to placebo effects, many factors could account
for the apparent effect of the sham device: natural
course of disease, fluctuation of symptoms, regres-
sion to the mean, patient bias, and physician bias.

However, compared to drug evaluations, the well-
designed placebo-controlled clinical trial design is
used less frequently in medical device applications
because of ethical or practical reasons (see Ethics
of Randomized Trials). Randomizing patients into
the sham control arm may raise serious ethical con-
cerns, especially when considerable risk is involved,
such as in the case of sham surgery. As an alter-
native, an active control is widely used, and even
a historical control (see Bias from Historical Con-
trols) is employed when indeed appropriate. Of
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course, in an active-controlled device trial, two active
treatments might have different amounts of placebo
effects so that an observed treatment difference
might result from differences in their placebo effects
rather than differences in the treatments themselves,
which makes study design and interpretation more
challenging.

Blinding or Masking

In a medical device study, masking (or blinding)
the subjects to which treatment they are receiv-
ing is essential to control for the bias associated
with knowing what treatment is being administered.
Piantadosi [74] observes that blinding or masking
helps to control the Type I error (see Hypothesis
Testing). Unfortunately, in some instances involving
medical devices, it may be impossible to mask the
patient or the investigator/surgeon as to who receives
which treatment or implant. A third party evaluator
who is masked to the treatment assignment is often
employed in such cases.

An interesting situation occurs when the trial is
blinded, but the patients at the end of the trial are
asked to guess the treatment assignment that they
have received. In essence, this is a possible way to
check whether the blind has been maintained. While it
is possible to correctly guess the treatment in pharma-
ceutical trials, it is more likely in many device trials.
Sometimes the symptoms one experiences are dead
giveaways as to which treatment has been received.
Informed consent (see Ethics of Randomized Trials)
often guarantees that patients have this information.
An interesting statistical problem is to figure out
how to use data on patient perception of treatment
assignment to assess the possible bias and, more inter-
estingly, how to correct for it.

Comparisons of Statistical Issues for
Device and Drug Trials

Medical device studies share many of the same issues
that drug trials do [15]. These range from missing
data, adjusting for interim looks, and Data and
Safety Monitoring Boards (DSMBs) (also called
Data Monitoring Committees (DMCs)) to intention-
to-treat, multiplicity (of tests and endpoints), and
time-dependent covariates. Since often there are
difficulties in carrying out long-term device studies,

there tend to be more missing data than one might
expect for most pharmaceutical trials. In the con-
text of medical devices, there are publications that
address surrogates [20] and subgroup analysis (see
Treatment-covariate Interaction) [86]. One topic
that is of more interest perhaps in medical device clin-
ical trials is that of the interaction between treatment
effect (control versus new device) and center. In med-
ical device studies, such interactions are of interest
since they may be an indication that there are signif-
icant differences in how the devices are used from
center to center, requiring a protocol revision or bet-
ter training concerning the use of the device. Another
challenging area concerns changes to the protocol or
to the device during the course of the study.

Implants

Implanted medical devices pose unique challenges
to the evaluation of their performance. As with
most surgical procedures, there is often a learning
curve; namely, the ability to implant or to use the
device improves with familiarity. Implants are usu-
ally designed to be in the body for a long period
of time. Therefore, there is increased importance for
the statistical tools of survival analysis and repeated-
measures analysis (see Multiplicity in Clinical Tri-
als). Whereas the administration of drugs can be
discontinued because of serious adverse events, a
problematic implant may need to be explanted.

Survival Analysis

Survival analysis is frequently applied to time-to-
event data in clinical studies of medical devices.
For devices requiring long-term follow-up, such as
implanted devices, outcomes are often expressed
as probabilities or rates. For example, one might
assess the 24-month fusion success/failure proba-
bilities for spinal fusion devices and for hip and
knee implants or the 6-month major adverse cardiac
event rate for coronary stents. Statistical issues fre-
quently encountered in medical device survival anal-
ysis include small sample adjustments for estimating
95% confidence intervals of cumulative survival
probability, comparison of crude event probabilities,
linearized event rates or incidence densities, life-
table probability, survival experience extrapolation
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and prediction beyond the last observed follow-
up [50], matched-pair and multivariate survival
analyses, recurrent events (see Repeated Events),
and random-effect survival analysis with frailty
parameters.

Since the sample sizes encountered in medical
device follow-up studies are often smaller than those
in drug trials, there may be fewer observed events
at later, but clinically important, follow-up times.
In those situations, the routinely used Greenwood
formula (see Median Survival Time) available in
standard statistical software underestimates the stan-
dard error. In [50], several statistical approaches are
proposed to improve estimation of standard error and
hence the 95% confidence interval.

Investigators sometimes wish to extrapolate or
predict future survival experiences beyond the last
available observation in the follow-up. For example, a
two-year implanted-device survival is sometimes pre-
dicted from observed one-year data. The frequentist
approach generally requires the following statisti-
cal validation procedures: parametric model build-
ing based on a sufficiently large number of events,
parameter estimation, diagnostic checking, predic-
tion or forecasting, and periodic model validation
(see Model Checking). Clinically important covari-
ates should also be investigated during parametric
model building [50].

In medical device trials using the matched-pair
design, experimental and control treatments are ran-
domly assigned to different locations or sites within
a patient, such as bilateral knees, hips, or eyes, or
multiple teeth or skin locations. Owing to the corre-
lation between two or more locations within the same
patient, nonstandard survival analysis methods are
required to analyze such matched-pair time-to-event
data. If no censoring occurs (see Censored Data),
then one may transform the time-to-event into an
occurrence of an event prior to a prespecified follow-
up time and analyze these data as correlated binary
data; such data have been called current status data.
For matched-pair survival data with censoring, which
is often seen in device trials, some methods can be
found in [36, 37, 56, 68].

In medical device trials, survival analysis
is commonly applied to time-to-first-event data.
However, in some cases, repeated events of the
same type or different types are frequently seen.
Examples are catheter restenosis for kidney dialysis
patients, restenosis for cardiac patients with balloon

catheterization or stent implant after catheterization,
repeated air leaks for pulmonary patch, repeated
device migration or infection for hip and knee
implants, and repeated infections for cochlear
implants. Survival analysis applied to repeated
events, in addition to the first event, provides useful
clinical insight into device performance over long-
term follow-up. Statistical models for such data
include marginal models [88].

Other issues, such as time-dependent covari-
ates, multivariate survival analysis, and random-
effect frailty models, are also relevant in medical
device trials.

Repeated Measures

The repeated-measures design is common in medi-
cal device clinical studies, particularly with implanted
devices for which study patients are observed at var-
ious follow-up times after initial implant, diagnosis,
or randomization (see Multiplicity in Clinical Tri-
als). Such design could occur in either a two-arm,
parallel, randomized, prospective multicenter trial
or a single-arm, prospective study. Most scheduled
follow-up times are unequally spaced, such as, at
baseline, 1, 3, 6, 12, and 24 months posttreatment.
Types of clinical data include continuous, ordinal
(such as pain score by visual analog scale), binary
(such as implant success or failure), or Poisson
count data (such as number of epileptic seizures or
headaches after neurological device treatment). A
repeated-measures design can also be employed in
conjunction with paired data, such as those seen in
ophthalmic, dental, ear, and orthopedic devices. Var-
ious statistical methods used in a repeated-measures
design include repeated-measures analysis of vari-
ance (RMANOVA), multivariate analysis of vari-
ance (MANOVA), time-by-time comparisons by anal-
ysis of variance (ANOVA), general mean response
or mixed model, generalized estimating equations
(GEE), and profile analysis (see Summary Measures
Analysis of Longitudinal Data). Analysis of covari-
ance (ANCOVA) is often used to adjust treatment
effects for baseline differences. Sometimes analyses
are based on derived variables such as change from
baseline, percentage change from baseline, binary
outcome based on a clinically acceptable cutoff point
such as 50% change from baseline, summary statistics
such as slopes, and others. In these cases, the corre-
lation between the individual patient baseline value
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and the derived response variables should be care-
fully evaluated in order to choose derived response
variables appropriately. The advantages and disad-
vantages of each of these statistical methods in the
context of medical device applications are discussed
in [51].

Subjects with missing data are a frequent
occurrence in medical device repeated-measures
follow-up studies. Various statistical assumptions
have been made in handling missing data, including
missing at random (MAR) and missing completely
at random (MCAR). Those assumptions are relied
upon to various degrees in mixed models, GEE, last
value carried forward (LVCF) (see Clinical Trials
of Antibacterial Agents), multiple imputation
methods, and others. Both intent-to-treat and
per-protocol (see Clinical Trials of Antibacterial
Agents) approaches are often evaluated for medical
device trials.

Observational Studies and Causal
Inference in Medical Device Evaluation

Just as in any other area of medicine, for medi-
cal devices, the randomized clinical trial (RCT) is
the most rigorous empirical tool for the investigation
of treatment effects. Nevertheless, sometimes studies
that do not involve explicit randomization in their
design, that is, observational studies, are proposed
as a supplement, or even a substitute, for a random-
ized clinical trial. A typical example in the context
of medical device evaluation is using for comparison
the treatment (or control) arms from previous clini-
cal trials. Those comparison groups are usually called
historical controls (see Bias from Historical Con-
trols). It is often the case that observational studies
compare favorably with RCT in terms of cost, mak-
ing them an attractive alternative. Of course, any cost
advantage of an observational study always comes
with a major shortcoming, namely, vulnerability to
potential bias. The problem of bias in observa-
tional studies is a challenging subject in statistics,
for which systematic methodologies have been devel-
oped only relatively recently. The medical devices
arena is one of the areas in which those methodolo-
gies are already beginning to have an important and
fast-growing impact.

The concerns over bias in an observational study
arise most naturally when the treatment group dif-
fers systematically from the historical control in the

distributions of observed covariates, characteristics
that are currently believed to be possibly related to
the outcome; this situation is referred to as overt
bias [76]. One way of dealing with the problem of
overt bias is by dividing subjects into subclasses
within which the distributions of observed covariates
are similar among the treatment groups. Treatment
comparison within each subclass would then have
less bias due to observed covariates. Such subclasses
are referred to as either strata or matched sets and
their construction as stratification or matching. At
first sight, one would expect that such a scheme of
covariate balance would suffer from the usual curse
of dimensionality, that is, it would be infeasible when
more than a few covariates are to be balanced. The
statistical theory of propensity scores [77] reassures
us that this need not always be the case. In fact, for
comparing two treatment groups, the task of covari-
ate balance is essentially a one-dimensional problem
involving a function of covariates called the propen-
sity score, defined as the conditional probability
of being in one of the treatment groups given the
value of the covariate vector. Covariate balance using
estimated propensity scores can be very effective in
practice, as shown in the classic example in [78],
involving 74 covariates and 2 treatment groups of
sizes 590 and 925, respectively. The practical util-
ity of the propensity-score approach has become
more and more widely recognized, and there is now
an emerging literature on its application in studies
involving medical devices (e.g. [32, 67]).

While overt bias can be addressed by covariate
balance, hidden bias is more difficult to deal with
directly. To see the distinction between these two
kinds of bias, we first need to define them more pre-
cisely. Within modern statistics, the notion of bias
is inextricably linked to that of causal inference (see
Causation), which is formulated on the basis of the
two key concepts of potential outcomes and assign-
ment mechanism [81]. According to the currently
widely accepted statistical theory of causality [79],
the causal effect of treatment A on a unit relative to
treatment B (e.g. control) for an outcome variable is
the difference between the two potential values of the
outcome variable of the unit under the two treatments.
A causal estimand is a parameter that compares the
distribution over a set of units of the potential out-
come under treatment A to that over the same set
of units under treatment B (e.g. [27]). By definition,
the potential outcomes of a unit under treatments
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A and B can never both be observed. The task of
statistical causal inference is to obtain valid estimates
for causal estimands under the above constraint. This
can be achieved by design, as in RCT, by assign-
ing treatments to units according to an explicit and
known probability model. In observational studies,
causal inference can be conducted through the pos-
tulation of plausible assignment mechanisms. If the
postulated plausible assignment mechanism is ignor-
able [80], that is, if it follows a probability model
in which the probability of a unit being assigned to
a treatment is independent of the unobserved poten-
tial outcomes, given observed covariates, then there
is only overt bias, which can be addressed directly
using covariate balance (see Covariate Imbalance,
Adjustment for).

If the assignment mechanism is nonignorable,
there will be hidden bias. Hidden bias can be mod-
eled via a hypothetical unobserved covariate that is
related to both treatment assignment and outcome.
Such models may be used to perform what is called
sensitivity analysis to address the issue of hidden
bias indirectly, by asking how the causal inference
would be altered under various assumptions about
the behavior of a hypothetical unobserved covariate.
For example, we may specify a class of probability
models for the dependence of treatment assignment
on the unobserved covariate and calculate extreme
distributions of some test statistic under the class of
models and the null hypothesis. This would give us a
range for quantities determined by the null distribu-
tion, such as P values and estimates of an additive
effect. If under the relatively severe dependence of
treatment assignment on the unobserved covariate,
the range of P values remain significant and the range
of estimates point to effects in the same direction,
then the conclusion of the study is said to be insen-
sitive to hidden bias. Extensive discussions on this
subject can be found in [76].

Observational studies are important to medical
device evaluation and not just because they can be
attractive alternatives to randomized clinical trials. It
is not uncommon for studies designed as RCTs to
eventually acquire features of observational studies
because of complications such as noncompliance (see
Compliance Assessment in Clinical Trials). Indeed,
a continuum is thought to exist between an ideal RCT
and a typical observational study. We often find our-
selves to be at neither of the extremes and would
thus benefit from statistical causal models that deal

with situations across the whole continuum [3, 38].
Such statistical causal models also tend to provide
a framework within which conventional statistical
thinking can be improved upon. For example, the
unifying theory on causal modeling [27] has proved
to be helpful in giving a clearer, scientifically more
meaningful definition for the concept of surrogacy
(see Surrogate Endpoints). Of course, the availabil-
ity of statistical techniques that address deviations
from an ideal RCT does not in any way free us from
the responsibility of trying our best to follow the pro-
tocol of an RCT as closely as possible.

The medical devices arena provides a fertile
ground for the application of causal models. It has
a large demand for empirical investigations of causal
effects, and, moreover, the nature of the investiga-
tion often imposes special structural features and
constraints that may present interesting and chal-
lenging cases for study design and causal modeling.
The practice of double blinding, which is standard
in many areas of medicine, is sometimes quite dif-
ficult to implement for medical devices. Treatments
involving medical devices also tend to be more com-
plex in structure, often consisting of multifaceted
components. Devices of the same model may differ
in engineering perfection, and medical professionals
who are responsible for deploying them may vary
in skill levels. Therefore, in conceiving a treatment
with a medical device as homogeneous, some ideal-
ization is inevitable. Causal modeling can also play
an important role in the evaluation of combination
products, those involving both drugs and devices.

Noninferiority and Active Control Trials

A noninferiority active control clinical trial design
is an increasingly popular approach for evaluating
medical devices (see Equivalence Trials). The pri-
mary objective of such a trial is to demonstrate that a
new (experimental) device performs as well as an
existing one (active control). The design is useful
when the new device is preferable for reasons such
as a longer lifetime or a superior safety profile. The
fundamental principles of these trials and the statisti-
cal methodologies applied in the area of therapeutic
devices are the same as those in the area of drug
development [10, 26, 87]. However, some statistical
issues and design concerns have been encountered in
medical device studies more frequently than in other
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studies [96]. Some typical design and data analysis
issues include the formulation of study hypotheses,
the selection of active controls, the requirement of
prespecified noninferiority margins δ (>0), the pos-
sibility of multiple testing procedures for different
claims, and the need for appropriate data analysis for
different study designs.

Blackwelder-type hypothesis testing is usually
employed in medical device studies; the alternative
hypothesis would be that the new treatment is not
worse than active control by more than δ, with respect
to some parameter of interest, such as proportion or
mean. Unfortunately, some investigators attempt to
use a conventional superiority alternative hypothesis
to investigate noninferiority in some device studies. It
is pointed out [10] that in determining whether a new
device is as effective as an active control, the test of
the conventional null hypothesis of equal effects is
inappropriate and leads to logical difficulties. In par-
ticular, failure to reject the alternative hypothesis in
the conventional superiority testing does not establish
noninferiority [2].

An active control could be another effective device
or standard of care. However, there is the danger
that a series of active control trials might push the
general treatment in the wrong direction by testing
devices that are progressively inferior to previously
active controls, which is called device creep. Also, it
would be inappropriate to select as an active control
a device that is out of date due to rapidly developed
new technology.

A noninferiority active control study should have
the ability to distinguish the new device from inef-
fective products; in pharmaceutical circles, this is
referred to as assay sensitivity. The effectiveness of
an active control can be demonstrated through its
effect size, which is the treatment difference between
the active control and the sham control. (A compar-
ison to the no-treatment control instead of the sham
could lead to bias and consequently a misestimated
effect size.) However, the active control effect size
cannot be measured in the current study since there is
no sham arm; consequently, this effect size has to be
deduced on the basis of historical experience show-
ing the superiority of the active control over the sham.
Some choices for estimated effect size include a point
estimate of effect size from one large historical sham-
controlled study or from multiple such studies. But
the use of a point estimate is of concern since it
disregards the uncertainty associated with the point

estimate. To account for this uncertainty, a Bayesian
approach could be employed [87].

Another crucial consideration concerns the choice
of the reasonable noninferiority margin δ. This quan-
tity should be sufficiently smaller than the effect size
of active control so that from a clinical point of view
a new device can be considered effective when a
noninferiority claim is confirmed. In particular, the
choice of δ should not lead to a situation where the
new device is essentially equivalent or worse than
the sham or no treatment, yet the null hypothesis of
inferiority by more than δ is rejected.

In recent medical device active control studies,
there is an increasing interest in hypothesis-testing
procedures that simultaneously test for superiority
and equivalence [64]. A test of conventional supe-
riority (new device is better than active control) after
claiming noninferiority or a test of noninferiority
after failure to claim superiority reduces to simulta-
neous testing for noninferiority and superiority using
a one-sided (1 − α)100% confidence interval. It is
known that, given a prespecified noninferiority mar-
gin δ prior to analysis of trial data, the procedures
need no adjustment for multiplicity by the closed
testing procedure. However, it is crucial that the non-
inferiority margin δ be predetermined and described
in a protocol; otherwise, a data analysis can always
find the minimum value of δ, leading to a claim of
noninferiority of the new device.

An interesting question is, given that one is will-
ing to accept some decrease in the effectiveness up to
δ for the new device and still consider it noninferior
to the active control, should the device, by symme-
try, be not just better by any amount but superior by
a specified amount δ than the active control to qual-
ify for superiority. That is, if the roles of the new
treatment and active control are allowed to reverse,
can one conclude that the active control is noninfe-
rior to the new device as long as the active control
is not worse than the new device by δ? It implies
that the new device is not superior to the active
control if the magnitude of superiority of the new
device over the active control is between 0 and δ,
which conflicts with conventional superiority testing.
In statistical terms, it is in fact a question of which
superiority hypothesis should be tested following the
noninferiority conclusion, the conventional superior-
ity testing for any treatment difference or the one
that confirms a difference of a prespecified magnitude
δ [17].



Medical Devices 7

Diagnostic Devices

Diagnostic devices are fundamentally different from
therapeutic devices in that they are intended for
detecting a condition rather than treating it. They
can be broadly classified into two categories: in vitro
and in vivo. Genetic tests and tests for blood glucose,
cholesterol, hepatitis, and HIV are all laboratory tests
based on tissue or blood specimens sampled from
patients and therefore belong to the first category.
Implanted glucose meters, devices using autofluo-
rescence to detect disease, apnea monitors, and all
sorts of diagnostic imaging (e.g. magnetic resonance
imaging, ultrasound, mammography) are in the sec-
ond category because all these involve test procedures
performed directly on the patient. (See also Diagnos-
tic Tests, Evaluation of.)

Diagnostic devices may generate quantitative or
qualitative results. Blood glucose levels and choles-
terol levels are examples of quantitative measures;
in contrast, the results of influenza and pregnancy
tests often take only two values, labeled positive
and negative, and are qualitative measures. Quanti-
tative measures can be transformed into dichotomous
(qualitative) results via a threshold or cutoff value.
For example, we may encode a quantitative prostate
screening antigen (PSA) test result as positive or neg-
ative depending on whether the value is larger than
or smaller than the threshold of, say, 4 ng/mL. Mul-
tiple cutoff points may be applied to a quantitative
test to generate ordinal categories, for example, uri-
nalysis of glucose with test results of negative, trace,
1+, 2+, and 3+ (see Ordered Categorical Data).
Ordinal categories can also arise directly as in the
case of the breast imaging recording and data system
(BI-RADS) scale of 0 to 5 for mammography.

If multiple tests can be applied to the same sub-
ject or specimen, it is frequently argued that the
most efficient design is to have each person serve
as his or her own control. However, without ran-
domization, one must be on constant guard to control
bias [4]. For large screening trials, randomization to
one of two independent arms is often employed to
compare different screening strategies. In the case of
mammography, digital versus analog, the additional
radiation exposure of two mammograms is a consid-
eration for a single-arm diagnostic trial.

The performance of a test producing a dichoto-
mous measure (positive and negative) is measured by
its sensitivity and specificity when there is a truth

standard (a gold standard test). The performance
may also be evaluated on the basis of (positive and
negative) predictive values; however, these latter
values depend explicitly on prevalence as well as
sensitivity and specificity. The comparison of two
dichotomous tests is often problematic unless one test
is simultaneously statistically superior to the other
in sensitivity and specificity; more often than not,
one test has better sensitivity and the other has better
specificity. (For tests that are inherently continuous,
it is usually preferable to perform the comparison
before dichotomization, as discussed below.) Several
references for the statistical methodologies for diag-
nostic tests are [71, 97]. A recent recommendation on
the reporting of diagnostic accuracy studies is given
in [12].

The absence of a truth standard presents chal-
lenges to the evaluation of qualitative test perfor-
mance. One possibility is to evaluate a test on the
basis of its agreement with another test. But two tests
can agree and both can be incorrect. While it is often
helpful to report the entire 2 by 2 table, measures
of agreement called positive and negative percent
agreement are sometimes quite helpful. For example,
positive agreement of a new test to its comparator is
the percent that the new test is positive, given that
the comparator is positive. Agreement can also be
extended to ordered categories using the weighted
kappa statistic. However, the comparison of two tests
in the absence of truth can at most only establish
equivalence but never the superiority of one test over
the other.

Sometimes, the gold standard is available but
cannot be applied to all study subjects for practical
reasons. For example, in a study to evaluate the
performance of the prostate screening antigen (PSA)
test and the Digital Rectal Examination (DRE), the
gold standard (biopsy) is usually not applied to the
subjects with negative DRE results and negative PSA
results. If the gold standard is applied when either
test is positive, one could compare the performance
of the two tests using the ratio of sensitivities and
(1-specificities) [72]. However, sometimes this is not
possible since for a new unproven test it may be
very difficult to argue for the invasive biopsy. A
more valid comparison in this case is to ask whether
PSA adds any diagnostic capability to DRE since
the PSA test is viewed as adjunctive and not “stand
alone”. When the gold standard is more likely to be
applied to subjects who appear to be at high risk
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for the disease, there can be bias in the estimation
of the diagnostic accuracy of the test (verification
bias). Here “intention-to-diagnose”, a term coined by
statisticians at the Food and Drug Administration’s
Center for Biologic Evaluation and Research, and not
intention-to-treat (ITT), is the principle at work. As
in ITT, it is very risky to ignore such missingness.
One approach is to use imputation (see Multiple
Imputation Methods) to develop unbiased estimates
of sensitivities and specificities and then to inflate
the nominal variances of these estimates to account
for the imputed values, or alternatively, to use a
bootstrap approach.

Sometimes, a random sample of subjects who test
negative is assessed with a gold standard test. For
example, in a study to evaluate the performance of the
Human Papilloma Virus (HPV) test and the Pap test
for the detection of cervical cancer, all women with
either HPV positive results or abnormal Pap results
were referred to the gold standard of colposcopy, and
10% of all women with negative HPV results and
normal Pap results were also referred to colposcopy.
The results of colposcopy of other subjects with
negative HPV results and normal Pap tests can be
considered a missing-data problem. With such data,
it is possible to estimate sensitivity and specificity
with confidence intervals [35].

A problematic but still common method of eval-
uating two tests is called discrepant (or discrepancy)
resolution. The idea is to subject the off-diagonal
entries (entries where the two diagnostic tests dis-
agree) to further testing. The use of these results
to modify the original table to produce estimates
directly leads to bias in the estimation of perfor-
mance [33, 63].

The diagnostic accuracy of a quantitative test can
be evaluated by Receiver Operating Characteris-
tic (ROC) analysis. The ROC plot is a graph of the
observed sensitivity versus the 1-observed specificity
of the diagnostic test, evaluated at all possible thresh-
olds that one could use to dichotomize the diagnostic
test [98]; the ROC plot is the empirical version of
the ROC curve. One global measure of the diag-
nostic capability of the test is the area under the
(empirical) ROC plot. Typically, in a study compar-
ing a new device to an established one (the predicate
device), each study specimen is tested with both
the tests. The bootstrap method is quite helpful in
reflecting the variability of the ROC plot and in
comparative analysis [14]. In addition, if one wished

to identify the threshold associated with say 90%
observed sensitivity, one could reflect the variability
associated with the particular derived threshold by a
confidence interval based on bootstrapping.

Three measures of analytical performance of the
tests are systematic bias, precision, and limit of
detection. Systematic bias, the difference between
the mean of the results of measurements and a true
value, is one important characteristic. For the in vitro
laboratory test, this true value could be that of an
analyte, and for in vivo tests, an example would
be temperature from an ear thermometer. Usually,
systematic bias of a new test can be evaluated by
a regression analysis of the new test on the refer-
ence method. If it can be assumed that the reference
test measures the true value with no error, the per-
formance can be determined using ordinary least
squares regression, comparing the deviation of the
slope from 1 and the intercept from 0. The amount
of random error manifests itself through agreement
between results of independent measurements under
stipulated conditions. Variability is usually expressed
numerically by standard deviation and its inverse,
precision, or by the coefficient of variation (see Stan-
dard Deviation). For an analyte, as the concentration
being measured gets smaller and smaller, its pres-
ence is harder to ascertain. The limit of detection
is the lowest concentration that can be reliably dis-
tinguished from zero, with α and β for the two
types of error. For a sample containing no analyte
(blank sample), the (1 − α)-quantile of the distribu-
tion of blank values indicates a limit that for the
blank sample is only exceeded by a probability of
α. The samples that provide values exceeding this
limit may be declared to contain nonzero analyte
(type I error α). At the same time, some of the
measurements of the sample with a low amount of
analyte fall below this limit and hence are declared
to be zero analytes (type II error β). One statis-
tical approach to this problem that assumes Gaus-
sian error distributions (see Normal Distribution) is
given in [19].

The absence of a gold standard in the case
of continuous data creates a challenge. For two
tests, it may be sufficient to investigate how sim-
ilar they are; this is often called method compari-
son. In the case in which there are errors in vari-
ables (or measurement error in both tests), one can
employ measurement error models [28]. In the med-
ical device literature, this approach may be remedied
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by orthogonal regression (see Orthogonality), Dem-
ing regression, or Passing–Bablock regression [70].
The Bland–Altman plot is especially helpful [11]
for investigating not just relative bias but also het-
eroscedasticity (see Scedasticity). Hawkins extends
this to a more formal regression approach with
regression diagnostics to examine model assump-
tions [34]. The notion of equivalence, especially
individual equivalence, can depend not just on the
slope and intercept but also on the variability about
the line [75] (See also Diagnostic Test Evaluation
Without a Gold Standard).

Some diagnostic devices are used for special pur-
poses. There are qualitative tests used for triage to
avoid more difficult, expensive, or invasive proce-
dures. For example, in some age groups, a test for
HPV is used to decide whether to send patients
with an abnormal Pap smear to colposcopy. Moni-
toring devices track certain medical conditions over
time to detect changes from baseline or normal or
to detect changes in dose response to medications.
Blood glucose meters, prothrombin time tests, and
pulse oximeters are examples of such devices. For
these devices, it is usually more appropriate to use
equivalence based on the individual rather than on the
population because the absolute difference between
the measure and the true value may cause danger
to patients.

Repeated measures or longitudinal data analysis
are frequently applied to diagnostic medical devices,
such as in an equivalence study via matched-pair
comparison between the gold standard and the test kit
for glucose measurements, taken at various follow-
up times. The repeated measures can be equally
spaced or unequally spaced, balanced or unbalanced
(each patient may have different numbers of repeated
observations), with or without missing data. Statis-
tical methods used to evaluate equivalence of two-
test methods in matched-pair repeated-measure or
longitudinal data analysis include simple ordinary
least squares, generalized least squares, GEE, overall
mean paired difference with 95% confidence inter-
val, random-effect regression model, repeatability
and reproducibility studies, and concordance corre-
lation [53].

Diagnostic Imaging

A particular application of in vivo tests is diagnostic
imaging (see Image Analysis and Tomography).

The data can be quantitative or qualitative and for
the latter tend to be ordinal. An example of an
ordinal scale is the BI-RADS scale that is employed
in mammography. There are advantages to having
finer ordinal scales where possible; for breast cancer,
some advocate a 100-point scale corresponding to
the estimated probability of malignancy rather than
the coarse BI-RADS scale. ROC methodology can be
used to determine whether an imaging technology has
any diagnostic capability or whether a new diagnostic
test has any adjunctive capability relative to other
known test(s). Examples include mammography and
chest X rays.

In many diagnostic-imaging situations, there is
considerable variability in the readers of the images.
This can be an impediment to investigating whether
a new imaging system is superior to others as well
as in investigating whether it is noninferior to an
existing system. An example of the latter is digital
mammography in comparison to analog mammogra-
phy. One might expect the two to be very similar,
but the reader-to-reader variability makes this dif-
ficult to assess. Beiden, Wagner, and Campbell [5]
have employed bootstrapping to study the compo-
nents of variance in such comparisons and to model
explicitly the reader variability and the case variabil-
ity in order to compare two modalities. In the case of
digital mammography, this approach has been used
in a study design to figure out how to trade off cases
and readers.

For a recent discussion of the evaluation of med-
ical imaging and computer-aided diagnosis (CAD)
systems, see [91]. Diagnostic-imaging tests present
unique study design problems. In the case of readers,
it is often a question of what information is available
and when. A reasonable design is to gradually provide
more information and observe the ratings and how
they change. For example, the diagnostic image may
first be read with no other information and the rating
recorded and then read with clinical information to
see whether the rating changes. A further design dif-
ficulty in some studies that rely on the same readers
for different modalities is that some readers claim to
remember the films and the ratings from a first read-
ing, even if one month or more time has elapsed. In
the case of CAD, the presence of the technology may
affect the performance of the reader either by increas-
ing his or her vigilance before the application of CAD
or, retarding it, by anticipating that the CAD system
will pick up any oversights. There are also issues
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associated with satisfaction of search after obtaining
the CAD results.

Microarrays

While most diagnostic in vitro medical devices have
been designed to test for a single analyte that is
associated with disease, microarrays are a revolu-
tionary medical device technology that can be used
to study thousands of analytes simultaneously and,
by doing so, have the potential to advance dramat-
ically the diagnosis, treatment, and prevention of
disease. Microarrays can be used to diagnose disease,
screen for the mutations or single nucleotide poly-
morphisms (SNPs) associated with increased risk of
disease, develop new classification systems for stages
or subclasses of disease, identify drug or gene therapy
targets (e.g. genes or proteins) in the treatment of dis-
ease, and predict drug response and drug toxicity in
individual patients. Microarray data can also be used
to study interactions on phenotypes among genes
and between genes and environmental exposures. In
short, microarrays enable the genomewide study of
biomarkers, genes, and proteins, which promises to
produce dramatic advances in our understanding of
molecular variations among normal and diseased pop-
ulations. A very good introduction to the relevant
biology, chemistry, and technologies is given in [85].
Overviews of statistical methods for microarrays are
given in [83, 85].

A DNA microarray is a glass or other surface onto
which many thousands of individual DNA sequences
are printed. The DNA sequences are called probes
and are typically either cDNA, single-stranded clones
of entire DNA sequences of genes, obtained by
reverse transcription of mRNA, or oligonucleotides
(oligos), synthetic DNA representing short specific
segments of DNA sequences. In microarray experi-
ments, mRNA from cells of a sample are extracted,
labeled with fluorescent dye, and then allowed to
combine with or hybridize to probes on the array. An
mRNA molecule will, in principle, only hybridize to
the complementary probe on the array. The relative
expression of the gene (mRNA abundance) can be
quantified by measuring the fluorescence intensity at
the spot of the probe.

The large amount of information generated by
gene expression microarray experiments is unfortu-
nately accompanied by complex questions relating to

quality control [49, 73]. Fluorescence measurements
of gene expression are obtained by a sequence of
image analysis steps that include locating the spots
within grids (addressing), distinguishing spots from
the background (segmentation), measuring fluores-
cence intensity via laser scanning, and correcting
spot intensities for background intensity (cf. [94]).
The intensity at the spot may have to be adjusted
for the shape of the spot and the amount of probe
that has been laid down. Reproducibility of inten-
sity measurements is key to validating microarray
data. Recently, guidelines on the minimum informa-
tion about a microarray experiment (MIAME) have
been published [13].

A major statistical issue in the design of microar-
ray experiments is that they typically involve the
study of a very large number of variables (e.g. thou-
sands of genotypes or gene expressions) on a rela-
tively very small number of experimental units (e.g.
tumor samples). The obvious problem is that out-
comes such as disease status are overfit by statistical
models using as many variables as samples.

The designs of cDNA and oligo arrays are dif-
ferent [84]. cDNA microarrays are in an incomplete
block design in that they involve a competitive
hybridization of mRNA from two samples to the
cDNA probes. The mRNA from the two samples
are labeled with different color dyes (e.g. green and
red fluorescent dyes Cy3 and Cy5) and mixed before
hybridization. The intensities in both the red and
green channels can be measured separately with the
laser scanner, and a comparison is usually based
on their log ratio. Early experiments compared each
sample with a reference, with the same dye always
being used for the reference (e.g. Cy3); statistically,
this design is not desirable because it does not con-
trol for dye effects (differential dye efficiencies) and
gives too much information on the reference, which
is not of interest. The dye swap design adjusts for
dye effects by comparing the sample with the refer-
ence on two arrays, with the dyes being swapped
for the second array. The dye swap design is a
Latin square design, where array and dye are block-
ing factors with two levels each. The loop design
forms a cycle of comparisons of reference to sample
1, sample 1 to sample 2, and so on up to sam-
ple n to reference, with the first in the pair always
labeled with, say, green dye [48]. This design could
be considered an incomplete Latin square in that each
sample appears once each in a pair of the n+1 arrays
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and once for each dye. The loop design eliminates
dye effects and is efficient at obtaining informa-
tion on samples, but if one array is unusable, then
the optimal properties of the design are destroyed.
Designs that are more robust to unusable arrays are
being considered.

In oligo arrays, each gene is represented by 16 to
20 probe pairs of oligos. Each pair consists of a per-
fect match (PM) probe and a mismatch (MM) probe,
in which the central nucleotide base is inverted. The
probes are scattered across the array. One sample
labeled with fluorescent dye is allowed to hybridize
to probes on the array. The intensity of the sample
is measured by a summary of the PM intensities cor-
rected for a summary of the MM intensities, which
serves as a control. Because only one sample is
hybridized per array, comparisons of samples are
completely confounded by array effects unless the
arrays are replicated for the sample.

Normalization refers to adjustment of the inten-
sities for systematic biases, such as dye effects in
cDNA arrays, array effects, and spatial effects within
arrays. Regression models of the intensities can be
used to adjust for confounding effects [16, 47, 89,
93]. Such models typically include main effects for
genes, main effects for varieties of samples (e.g.
tumorous versus non-tumorous), and gene by vari-
ety interactions; here the interactions represent the
effects of interest, that is, the differential gene expres-
sions among the varieties. Confounding effect that
can be included in the model are array effects, spa-
tial effects within arrays (e.g. spot effects), and dye
effects (for cDNA arrays). Array effects are ran-
dom, but nonetheless, they are sometimes consid-
ered to be fixed because this assumption simplifies
the analysis considerably. The number of confound-
ing effects can be considerable, which suggests that
propensity-score methods [77, 78] that are used to
adjust observational studies for numerous confound-
ing effects might be useful in microarray experiments.
For cDNA arrays, dye effects depend on the mean
intensity level. These effects are commonly examined
with a so-called M–A scatterplot, where M is the log
ratio of intensities for two samples and A is the log of
the geometric mean of the intensities. The intensity-
specific effects are commonly adjusted out by fitting a
lowess curve [18] to the scatterplot. Assuming only
a fraction of the genes are differentially expressed
between the two samples, the lowess curve can be
considered to represent the average log ratio at a

given intensity level when there is no differential
expression at that level [24].

One goal of microarray experiments is to find all
the genes that are differentially expressed between
two varieties of samples (e.g. tumorous versus non-
tumorous). These genes can then be used to create
a specialized microarray for diagnostic testing, for
example. When there are thousands of genes, this is a
huge simultaneous-testing problem in need of a mul-
tiplicity adjustment. For example, if 5000 genes are
studied and none are differentially expressed, then a
nominal 5% level testing is expected to falsely detect
differential expression in 250 genes. The adjustment
need not be as severe as the Bonferroni correction
when correlation between the tests is considered. The
tests are correlated because the same samples are used
to test each gene, and groups of genes with similar
function can be upregulated or downregulated in tan-
dem across samples. Permutation of the varieties of
the samples can be used to approximate the joint null
distribution of the P values, which can then be used
to obtain an adjusted P value for a gene, that is, the
familywise level of the tests at which the particu-
lar test for the gene would reject the null hypothesis
of no differential expression [24]. Alternatively, a
Bayesian approach to multiplicity considers gene
effects (and/or gene by variety interactions) as ran-
dom, which induces a multiplicity adjustment that is
inversely related to the ratio of the variance between
genes to the variance within genes [66]. A noninfor-
mative, nonparametric Bayesian approach estimates
the mixture distribution of differentially expressed
and nondifferentially expressed genes with the empir-
ical distribution, estimates the null distribution for
nondifferentially expressed genes via permutation,
estimates the mixing proportion by exploiting bounds
for it on the basis of the two distributions, and
applies Bayes’ theorem to these estimated quanti-
ties to obtain the posterior probabilities of differential
expression for genes [25]. In the same paper, a con-
nection is made between the posterior probability and
the false discovery rate, the expected proportion of
Type I errors, which is increasingly being controlled
in large multiplicity problems, as opposed to the more
traditional and more conservative familywise Type I
error rate.

Microarray experiments can also be used to clas-
sify samples into defined groups, such as tumorous
or nontumorous tissue, or stages of disease such
as metastatic versus in situ cancer. Discrimination
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methods have been compared, including Fisher’s
linear discrimination (see Discriminant Analysis,
Linear), maximum likelihood (quadratic) discrimi-
nation, nearest neighbor, classification and regression
trees (CART) (see Tree-structured Statistical Meth-
ods), bootstrap aggregating (bagging) procedures,
and boosting procedures, with the simple procedures
of linear discrimination and nearest neighbors appear-
ing to work relatively well [23].

These experiments have also been employed to
discover new subclasses of disease. For example,
Alizadeh et al. [1] discovered two subclasses of dif-
fuse large B-cell lymphoma, one of which did not
respond well to standard treatment. Because the clas-
sification variable is completely unknown, methods
for discovering new classes are termed unsupervised
or clustering methods. These methods include hierar-
chical clustering, k-means clustering, self-organizing
maps, mixture model approaches [95], factor analy-
sis, and plaid models [55]. The latter is distinguished
in that it simultaneously clusters genes as well as
samples. All clustering methods are based on a sum-
mary measure of the similarity of expression profiles.
The Pearson correlation is usually used as the mea-
sure of similarity modulo some transformations of the
raw intensities.

Genomewide scans for SNPs can be used to
rapidly identify an SNP associated with disease. Inter-
estingly, genomewide linkage disequilibrium studies
of SNPs do not have to be adjusted for multiplic-
ity when the disease of interest is monogenic; a
confidence-based approach can be used to bound the
location of the disease gene to within neighborhoods
of single nucleotide polymorphisms [57]. Alterna-
tively, each SNP can be tested directly for association
with disease; in contrast with linkage disequilibrium
studies, association studies need to be adjusted for
multiplicity [62].

Bayesian Statistics and Medical Devices

The fundamental idea of the Bayesian approach to
statistics lies in representing one’s uncertainty about
an unknown quantity of interest as a probability
distribution. In medical device clinical studies, exam-
ples of unknown quantities of interest are safety
and effectiveness endpoints, a patient’s outcome to
be observed in the future, or even missing obser-
vations. Before medical device trials are conducted,

the probability distributions assigned to the quanti-
ties of interest are called prior distributions. After
data are gathered and new information becomes avail-
able, the prior distribution is mathematically updated
according to Bayes’ theorem, becoming a posterior
distribution. This approach provides a mathemati-
cally valid way of combining previous information
(the prior distribution) with current data, adjusting to
changing levels of evidence, and working as Science
works: today’s posterior distribution becomes tomor-
row’s prior distribution. This approach also allows
for the derivation of predictive probability, a special
type of posterior probability, namely, the probabil-
ity of a future observation given outcomes that have
already been observed.

The incremental steps in which improvements
are made in device development make the Bayesian
approach particularly suitable. Good prior informa-
tion is often available from, for example, trials in
other countries, earlier trials on previous device ver-
sions, or possibly bench tests or animal studies. Lack
of prior information is represented by a noninforma-
tive prior distribution and does not thwart the use of
Bayesian methods.

The use of Bayesian statistics in planning and
analyzing clinical trials [44, 59], especially for med-
ical devices [9], has increased dramatically in recent
years (see Bayesian Methods in Clinical Trials).
The Bayesian paradigm, which serves as a basis for
formal decision theory, offers an ideal framework for
investigational or regulatory settings in which deci-
sions for developing, approving, not approving, or
improving medical devices are made on a daily basis.
A Bayesian initiative was begun in the Division of
Biostatistics at the Food and Drug Administration’s
Center for Devices and Radiological Health [41].
The medical device community has begun to pioneer
using Bayesian methods in planning and analyzing
confirmatory clinical trials in recent years.

A Bayesian clinical trial for a medical device may
include prior information for the new device, for
the control device, or for both the new and control
devices. Previous device studies used as sources of
prior information should be similar to current studies
in terms of devices used, objectives, endpoints stud-
ied, protocol, patient population, investigational sites,
physician training, patient management, and proxim-
ity in time. Covariates such as demographics and
prognostic variables can be used to calibrate previ-
ous studies to the current study. The use of prior
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information often leads to more precise estimates
enabling decision-makers to reach a decision on a
device with smaller and shorter trials.

Bayesian methods can play a particularly useful
role in diagnostic devices studies. Recent research
suggests that it may provide an analytical framework
capable of estimating and comparing sensitivities and
specificities of diagnostic tests in the absence of a
perfect test (truth standard) [21, 30].

Although the most direct way of encoding prior
information is via a probability distribution assigned
to quantities of interest, in many cases, an attractive
approach to incorporating information from previ-
ous device studies into the current study is by using
Bayesian hierarchical modeling [29]. The hierar-
chical model assumes that study-specific parameters
are realizations or values of random variables from
a common distribution. This usually (but not always)
results in more precise estimates of the current study
parameters [60]. Thus, we often say that a hierar-
chical model enables the current study to borrow
strength from previous studies. Hierarchical models
are self-correcting in that the current study borrows
less strength from the previous studies as variation
between studies increases, protecting against overre-
liance on inadequate prior information. One way of
using a Bayesian hierarchical model in a clinical trial
is to supplement the concurrent control with historical
controls; this can allow fewer patients in the concur-
rent control arm, a larger proportion of patients being
allocated to the experimental device, and overall, a
smaller trial. Hierarchical models can also be used to
adjust subgroup analyses (see Treatment-covariate
Interaction) for effects by allowing a subgroup to
borrow strength from related subgroups [22]. For
an application of Bayesian hierarchical modeling to
coronary artery stents, see [69].

Exchangeability is a key idea in Bayesian infer-
ence. Two patients are exchangeable if their roles
can be switched without affecting the inference. For
technical definitions of exchangeability, see [8]. In
medical device clinical trials, exchangeability may be
thought of at different levels; there can be exchange-
ability of studies, of centers, and of patients. In the
case of a single multicenter trial, centers are con-
sidered exchangeable if their roles can be switched
without affecting the inference, such as when they are
considered as elements of the same superpopulation
of centers. But the exchangeability of centers does not
imply the exchangeability of patients among centers.

If patients treated in different centers are considered
exchangeable, then they are said to be “poolable”
for making inference. However, as long as the cen-
ters are exchangeable, the patients in the centers can
be combined by the use of a Bayesian hierarchical
model. Between-center variability, which can be large
in device trials, is accounted for by assuming that
center-specific device effects are random (see Ran-
dom Effects). Besides device effects, there are center
effects; consequently, the patients in different centers
will not be completely pooled together but may be
pooled to a certain degree. The degree of pooling
will depend on the variability among the centers as
compared to the variability among the patients within
each center.

The Bayesian approach does not require the sam-
ple size to be determined in advance because infer-
ences are based on the parameter space rather than on
the sample space, as in the frequentist approach. The
sample size required for a Bayesian medical device
trial depends on the amount of information necessary
to reach a decision, on the amount of prior informa-
tion available, and on the variability of the data. It can
be revised at any point in the study by considering the
current posterior distribution instead of the prior dis-
tribution. The underlying idea is to gather just enough
information to make a decision about the device and
therefore not expose patients to unnecessary risk.

In practice, however, particularly in the medical
device arena, a minimum sample may be needed to
evaluate fairly rare outcomes such as complications
or device malfunctions or failures, to verify model
assumptions, or to ensure that the prior information
does not overwhelm the clinical data of the current
study. A maximum sample size may also be useful
for economical or ethical reasons or to plan the
logistics of the trial. Bayesian approaches to sample
size determination include those based on power to
make decisions [82], interval length and coverage
probability [42, 43], and decision theory [58].

The Bayesian decision-making process is based
on posterior probabilities that most of the time do
not depend on the experimental design (the Likeli-
hood Principle [7]). In contrast, in the frequentist
approach, decisions are often based on P values,
which strongly depend on the experimental design.
As a result, the Bayesian approach can provide
more flexibility in both design and analysis [6, 40].
Experiments can be altered in midcourse, arms may
be dropped, the sample size may be reduced or
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augmented, and interim analyses may require no
adjustments. None of these modifications interfere
with posterior or predictive probabilities and, there-
fore, are easily accommodated in the Bayesian frame-
work. When interim looks or other modifications are
performed, one may assess probabilities of type I and
type II errors through simulations.

In some medical device clinical trials, it is more
ethical to change the randomization rate during the
course of the trial, thus increasing the chance of a
patient being randomized to the “winning” arm. Here,
too, the Bayesian approach is amenable to changes
in the randomization rates during the course of the
trial [45].

Predictive distributions are widely used in medical
device clinical trials. For example, by using Bayesian
predictive probabilities, one may stop a trial early on
the basis of results obtained at an interim point. If
the predictive probability of the trial success is suf-
ficiently high (or low), one may stop the trial and
declare success (or failure) early. Predictions can be
made only if the patients yet to be observed are
exchangeable with the patients already observed. In
device trials, unobserved patients enrolled later in
the study may not be exchangeable with patients
enrolled earlier if there is a learning curve associated
with the device. In addition, one can also calcu-
late the predictive probability of the outcome of a
future patient given the observed outcomes of the
patients in a clinical trial, provided that the patient
is exchangeable with the patients in the trial. Predic-
tive distributions can also be used when important
data are missing. In this case, missing data can be
predicted given the observed data, and trial results
can be adjusted accordingly. However, the adjustment
strongly depends on assumptions about patterns of
“missingness”. A particular case occurs when patients
have two measurements, the first at an earlier follow-
up visit and the second, sometimes missing, at a later
follow-up visit. Then predictions for the later follow-
up visit may be made (even before the follow-up time
has elapsed) on the basis of measures at the early
follow-up visit, provided there are some patients that
have results from both follow-up visits and there is
a strong correlation between the early and the later
measurement.

The Bayesian approach can be used for hypothesis
testing and interval estimation. Bayesian hypothesis
testing in medical device studies uses the poste-
rior distribution to calculate the probability that a

particular hypothesis, either null or alternative, is
true, given the observed data. An alternative Bayesian
approach is based not only on the posterior probabili-
ties of the hypotheses but also on the costs of making
decision errors. Bayesian interval estimates are based
on the posterior distribution. If the posterior proba-
bility that an endpoint lies in an interval is 0.95, then
this interval is called a 95% credible interval. For
constructing credible intervals, see [39].

Bayesian calculations require integration. For
example, the posterior probability of a hypothesis is
expressed as an integral involving the posterior distri-
bution. When, as is often the case, the dimensionality
of these integrals is high, Bayesian calculations are
made with Markov Chain Monte Carlo (MCMC)
sampling methods, such as Gibbs sampling. The
Gibbs sampling method creates a Markov Chain by
sampling sequentially from the posterior distribution
for each parameter, conditional on the last sampled
values of the other parameters and the data. These
distributions are called full conditional distributions.
In contrast with the (joint) posterior distribution of
the parameters, the full conditional distributions can
often be written in closed form, making sampling
from them straightforward. Under mild regularity
conditions, the sampling distribution converges to the
posterior distribution. Subsequent samples can then
be used to compute the desired Bayesian integrals.
Because the samples taken are not independent (they
form a Markov Chain), a Bayesian integral is cor-
rectly computed only if enough samples are taken
such that the support of the posterior distribution has
been completely explored. A Bayesian statistics pro-
gram that uses Gibbs sampling is Bayesian inference
Using Gibbs Sampling, or BUGS [31].

In summary, the Bayesian approach is playing
an increasing role in medical device clinical trials
because it is compatible with the process of research
and development of such products. Bayesian meth-
ods require special technical expertise and are often
computer intensive. However, the savings of flexible,
smaller, and, often, shorter trials usually offset the
higher technical and statistical complexity.

Surveillance of Devices

The surveillance of medical devices after marketing
permission, which is of concern to regulatory bodies
throughout the world, generates interesting statisti-
cal problems. Postmarket surveillance is as important
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in medical devices as it is in pharmaceutical prod-
ucts (see Postmarketing Surveillance of New Drugs
and Assessment of Risk). Usually, the reporting sys-
tems suffer from severe underreporting as well as
the inability oftentimes to definitely link the adverse
event to the use of the device. Device-specific statisti-
cal efforts to identify a signal in a database of medical
device adverse event reports include [52, 54].

The assistance of Marina Kondratovich, Ph.D.,
and Kay Barrick in the preparation of this entry is
gratefully acknowledged.
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Medical Ethics and
Statistics

Although the first topic most people consider when
ethics and statistics are mentioned is clinical trials
(see Ethics of Randomized Trials), there are several
other areas where uncertainty raises ethical difficul-
ties. Professional codes of conduct, and the founda-
tions of medical ethics, discuss avoiding harm and
providing benefit. The existence of sound knowledge
of what is beneficial or harmful is largely assumed,
but there is often only limited information on the
effects of a medical intervention. Issues of uncertainty
cannot be avoided by professionals’ claiming to treat
individuals, as knowledge based on some group of
people must be used in deciding what will be of ben-
efit to the person currently seeking treatment. Doctors
cannot behave ethically entirely individually, nor can
they treat patients as isolated individuals, except in
a limited sense. Medicine and health care are too
complex to be within the understanding and control
of one doctor or one profession.

If health care professionals are to be able to behave
ethically, they must discover what effects their inter-
ventions have on a variety of people. Uncertainty, and
summarizing the characteristics of populations, are
the territory of statistics. Statistics provides the opti-
mal methods for designing studies to gain knowledge,
and for making inferences from limited empirical
data [30]. So doctors and others need to work with
statisticians, and professional societies need to ensure
that some of their members have a fairly good under-
standing of statistics.

Various questions are raised by basing health care
ethics on the seemingly uncontroversial statement
that “the professional must do what is best for the
patient”. The criteria for judging what is “best” in
routine medical practice, normality, screening for
disease, epidemiological research, and the communi-
cation of uncertainty are discussed. Ethics of medical
research in developing countries, popular versions of
uninformed consent, and cluster randomized trials,
are also addressed. Areas of philosophy other than
ethics are also referred to, as the moral status of
many decisions and actions in health care will be
related to political philosophy, logic, and the the-
ory of knowledge. The article concludes by relating
these concerns to the guidelines or codes of the Royal

Statistical Society (RSS), the American Statistical
Association, and the International Statistical Insti-
tute [4, 36, 48].

Criteria of Excellence

Attempts to measure and define quality of life high-
light the complexity contained in the simple moral
command “do what is best”. Statisticians are familiar
with having to choose from several possible criteria:
for example, an estimator might be unbiased, but less
precise than a biased estimator. Health care requires
consideration of what one means by doing the “best”
for a patient, as one will have to choose between
methods that are most satisfying for the clinician to
use, economical enough to appeal to a manager, or
provide the patient with the best quality of life avail-
able to them. Mediating between different interest
groups means that it will often not be trivial to decide
what is best, and what data a statistician should col-
lect or analyze.

The attempt to avoid this complexity, by consider-
ing only how to treat the person now in the room with
me, fails, because few doctors would insist on con-
tinuing to remove a splinter from a toe when a person
outside is choking to death. Further, most people are
not isolated individuals with respect to health care,
because the cost of care is shared either with a polit-
ical unit such as a country, or by a group defined by
membership of a particular insurance scheme. Often
there will be environmental influences on health, such
as malnutrition, or exposure to infection or pollution.
Expenditure of effort, time, or money on one per-
son will almost always limit expenditure on another;
skills acquired in treating one patient might benefit
another. Finding out what is best for patients will
always involve observing relevant populations. The
definitions of “relevant” and “population” are often
not made explicit in medical practice, nor consciously
related to the particular economy.

Another potential source of confusion and conflict
is that the measurement of variables such as length
and quality of life might rely on different theories
of measurement [26] (see Measurement Scale), and
be affected by beliefs about some populations being
“less worthy” than others – consider the idea of
restricting health care for smokers. Most statisticians
might agree that it is wise to keep measures of quality
of life simple, so that the comparison of values is
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explicit, rather than averaging across incommensurate
and contradictory variables [18].

Normal: The Exaltation of Mediocrity

It is not clear whether statistics should be credited, or
blamed, for the development of the concept of “nor-
mal”, and its use as a moral and evaluative category.
Social scientists began to use the normal (Gaussian)
distribution in the twentieth century, initially as a
model for the behavior of measurement errors, but
then to summarize measurements on living creatures
[24]. Most biostatisticians will have had requests for
help with establishing a “normal range” (see Normal
Values of Biological Characteristics). The various
problems with reference ranges, a more appropriate
name, such as the choice of subjects used to choose
the range, are discussed in the textbook by Altman
[3]. If sufficient caution is not exercised in establish-
ing reference ranges, considerable numbers of people
might be inappropriately treated, or alarmed. Further,
the naive use of such ranges might lead to people
almost always being found to “need” treatment: if a
reasonably large number of tests are done, there will
be a high probability that at least one result will fall
outside a reference range.

Very often, the major flaw in the use of reference
ranges is that the wrong question is being addressed.
Reference ranges are used to justify some action, such
as prescribing cholesterol lowering diets or drugs.
However, the salient issue is at what level of a
variable there is good reason to intervene on the
basis of adequate evidence that the intervention will
achieve a worthwhile aim. The relevant goal must be
reduction in mortality or morbidity. To define high
cholesterol as such as an indicator of morbidity is
to use a circular definition, which might create work
and wealth for doctors and industries, but will not
necessarily improve health. In the case of cholesterol,
it is not clear that attempting to make a person’s blood
levels “normal” benefits them [23]. Attempting to
achieve “normality” might amount to maltreatment.

In mental health, the issue of appropriate ref-
erence populations is particularly important. Many
psychological tests are “standardized” using “normal”
people who are undergraduates, patients, or nurses.
One “evaluation” of a diagnostic questionnaire for
depression claims that it is normal for women to be
more depressed than men [37]. Who would claim

that it is “normal” for more men than women to get
lung cancer? Within a science, which is attempting to
measure, say, the gravitational constant, it is reason-
able to wish to have one’s measurements clustering
about the mean. There is no obvious reason why the
general population should conform to some average,
particularly not to the tastes and habits of students or
nurses. To require this is at best a recipe for medi-
ocrity, and at worst, a totalitarian definition of what
ought to be.

Ethical and political philosophy include debate
about what criteria should be used to judge the
morality of actions. The consequences of careless
thinking, and use of some, perhaps vague, idea of
“normal” as “what ought to be” is nicely illustrated
by a satirical proposal to classify happiness as a
psychiatric illness [10]. Some of this careless thinking
might be helped by an unnoticed shift in the theory
of measurement from a representational theory in
physics to an operational theory in psychology [26].

Another aspect of treating a patient as a “nor-
mal” member of a particular population which has
disturbing consequences arises from differences in
compliance (see Compliance Assessment in Clini-
cal Trials). As there is evidence that about 10% of
patients are excellent compliers, dose levels based
on the “intention to treat” analysis of trials will be
levels such that most patients will actually take a ther-
apeutic dose. Excellent compliers will take a higher
dose, and therefore be at greater risk of side effects.
Although a doctor might recognize a need to warn
patients of side effects, it is difficult to predict which
people will be good compliers, and, simplistically, it
is not normal to take medication as prescribed. The
dose level set is thus, to some extent, set to bene-
fit the majority at the expense of the “best” patients.
Any claim to be treating a patient as an individual
will have limited accuracy. As a doctor will never
know everything, and is unlikely to know about a
patient’s compliance, she must decide on a course
of action likely to benefit patients belonging to some
type or subgroup.

Observational and Epidemiological
Research

The author wishes it were unnecessary to state that
a study must be scientifically sound in order to be
ethical. Altman claims that the ethical implications
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of unscientific studies include the misuse of patients
and resources, and the consequences of publishing
misleading results [2]. Although the suggestion that
the misuse of statistics is unethical has not been
challenged, substandard design and incorrect analysis
can be seen in almost any issue of any medical
journal. If Leaning’s claim, that editors are forced by
the Nuremberg code (the explicit statement occurs in
the Helsinki code) not to publish information that has
been unethically obtained, were true [38] and rigidly
enforced, the size and number of biomedical journals
would be greatly reduced.

Informed consent is usually required to do the
main ethical work in clinical trials. The Nuremberg
code states that for research involving human experi-
mentation to be ethical, “the voluntary consent of the
human subject is absolutely essential” [52]. The dec-
laration of Helsinki also concentrates on experimental
research [61]. As observational and epidemiological
research are not experimental, in that the subjects’
environment or treatments are not manipulated by the
researchers, the Nuremberg code and its derivatives
might be deemed irrelevant. However, the RSS Code
of Conduct asks that informed consent be obtained, if
possible, for all enquiries involving human subjects.

Informed consent for epidemiological research,
including the use of routine data, has been
introduced in the European Community. Many UK
biostatisticians and health care professionals are
opposed to this, as being inappropriate given the
risk and benefits of such research. To require
individual consent for each study would introduce
sufficient bias due to nonresponse to render the
studies almost useless. The main argument for
informed consent regards individual privacy as the
supreme right (see Confidentiality). However, the
community, including the individual, is likely to
benefit considerably from epidemiological studies of
the origin and course of diseases [44].

Observational studies of the nonrandom introduc-
tion of innovative treatments, which some Bayesian
philosophers advocate, [57], evade, rather than avoid,
informed consent. The use of routinely collected data
(see Administrative Databases) relies on people’s
consent to be governed. For example, in the United
Kingdom, people who have cancer could not refuse
to have data on their illness sent to Cancer Registries
(see Disease Registers). Consent is now required
for much health data, but participation in the census
is still mandatory. In many instances, some of the

subjects on whom data are collected are dead. One
cannot get informed consent, and does not need it, as
there is no person whose privacy is invaded. Is there
even an ethical worry at all? Privacy is safeguarded
through anonymity.

Screening

The moral issues raised by population screening are
also inherently statistical. In order to assess whether
the incidence of a disorder is being reduced by a
screening programme, adequate statistical records of
the population must be kept. This raises questions
about what moral framework one claims in order to
justify surveillance of a population, and thus takes
the debate into political philosophy. There is also
uncertainty for the individual because of the possi-
bility of false positives and false negatives.

The justification for screening depends on the
political framework one chooses to use, such as lib-
eral, paternalist, or statist. Doctors usually use a pater-
nalistic definition. A liberal definition, based on a
right to the knowledge needed for self-determination,
is sometimes used by patients. As one is considering
people who are well, the justification must rely on
people’s consent to be governed; it cannot rely on
their becoming patients by asking for assistance. Per-
haps we think that people have a duty to be enquiring
both medically and socially. It is therefore legiti-
mate to require people to think of themselves as
“patients-in-waiting”, who must find out their state
of health, and make decisions on the basis of that
information. As mentioned above, the cost of health
care is usually shared by a group. The person who
chooses not to have screening, and later requires
lengthy and expensive medical treatment for a disease
for which screening was offered, arguably has caused
their group (society) to incur unnecessary costs. An
insurance-based system could demand submission to
screening, but a liberal democratic state should only
ask it. Financial inducements to doctors to increase
screening rates leads to coercion of people. For this
argument to have real force, one would need to have
good estimates of the sensitivity and specificity, and
of all the costs, so that the scope and frequency of the
programme could be decided (see Diagnostic Tests,
Evaluation of).

Instead of taking a statist view, one might take a
liberal or modernist stance, and argue that screening
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does not give people more decisions than they can
make, but enhances their autonomy and makes them
better (happier rather than morally better) adults by
giving them more choices to make. However, people
who are very concerned about their health are often
labeled as “hypochondriacs”, that is, ill. Of course, if
one uses “normal” as one’s criterion, then by requir-
ing most people to be anxious about their health, one
could almost eliminate the disease of hypochondria!
Most liberal philosophies consider society to consist
of rational people, and so would require a different
justification for screening children, or those whose
reason is incapacitated.

A person accepting screening will have to make
decisions based on uncertain results. A Health Edu-
cation Authority leaflet on breast screening states
“. . . mammography is not 100% reliable”. In pre-
natal screening, false positives sometimes vanish
magically. The standard leaflet given out by gen-
eral practitioners in the United Kingdom mentions
false negatives, and quotes rates for Down’s syn-
drome and neural tube defect (NTD). False positives
are mentioned for the first screening test, but not for
the second. A recent reference book [39] has a care-
ful discussion of the need to consider prognosis as
well as diagnosis. However, in the section on NTD
(pp. 10–16), the data sets mentioned are rather small,
and the prognosis is not uniformly poor. After stat-
ing that ultrasound scanning is preferable, because the
sensitivity is “between 60 and 90%” and “specificity
is much higher”, a figure illustrating a screening pro-
gramme is given, which has no false positives. Even
with a sensitivity of 90%, given the prevalence used,
0.2%, to get a ratio of one unaffected to one affected
fetus among those testing positive, one requires a
specificity of 99.8%. People who debate the rights
or wrongs of abortion for particular conditions rarely
frame the question “at what level of probability is one
justified in terminating a fetus?” Given the inherent
uncertainty of prenatal diagnosis, those who wish to
endorse abortion in these circumstances should be
willing to make statements such as “if there is a 1 in
5 chance that the infant has NTD, then it is acceptable
to terminate her”.

For screening programmes to be even minimally
ethical, under almost any political philosophy, the
statistics of screening must be available. In all cases,
sensitivity and specificity rates have to be esti-
mated. The popular assumption that the results of
tests, and hence diagnoses, are certain has to be

challenged. Careful research can reduce, but never
eliminate uncertainty. The well-rehearsed recommen-
dations about careful design as well as correct anal-
yses apply also to screening.

Conveying Uncertainty in Diagnosis and
Prognosis

As uncertainty is unavoidable and decisions about
care have to be made, health care should be a fer-
tile field for decision analysis [28]. Uncertainty, in
diagnosis or prognosis, is often dealt with by failing
or refusing to provide any information. Until quite
recently, parents whose child was diagnosed as hav-
ing cerebral palsy would not have been given accurate
information about the child’s likely survival, as no
such information existed [22]. Anecdotal evidence
suggests that parents with severely handicapped chil-
dren would have been told not to expect the child to
live much beyond the age of 10, although the median
survival is about 20 [35].

To a patient with lung cancer or colonic cancer,
the information about the median survival (“half of
people with the type of cancer you have live more
than x months”) is potentially very important in his
decisions. A study of gastroenterologists showed that
there is considerable variation across Europe in hon-
esty and respect of confidentiality with regard to
cancer [53]. The authors describe deciding whether
to be dishonest as a “typical ethical dilemma”, but
deciding whether to be dishonest requires a decision
about a temptation, not a decision about a principle,
rather seeing lying as a temptation. Of course, the
medical profession can be characterized as the only
profession that debates whether to tell the truth. To
deny information, which a consultant should either
know, or be able to access, is irresponsible. The UK
General Medical Council’s guidance requires doctors
to “give patients the information they ask for or need
about their condition, its treatment and prognosis”.
It is not clear how such a consultant could justify a
claim that the patient did not want the information,
which they had requested. Attempted justifications
include a concern to protect the image of the pro-
fession, and a belief that patients cannot cope with
truth, or uncertainty: “professed uncertainty is in itself
generally undesirable” [27]. In contrast, Bursztajn
et al. [12] give an enthusiastic account of the benefits
of realizing that we live in an uncertain world, and
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of accepting that medical choices should explicitly
acknowledge this. Uncertainty is often regarded as a
justification for randomized controlled trials (RCT).

In communicating risk, “nondirective” counseling
is commonly held to be desirable, perhaps ethically
preferable to “directive” counseling or to the doc-
tor stating her own beliefs. A moral doctor should
convey uncertainty as clearly and impartially as pos-
sible. Observations of obstetricians who are respon-
sible for counseling parents who require information
about amniocentesis [41] revealed that the same risk
was described as high or low, depending on the
topic: miscarriage or Down’s syndrome. If the same
risk is described in contradictory ways in a session,
which is claimed to be nondirective, then there is
clear dishonesty. The Chief Medical Officer has also
recommended establishing a scale of uncertainty to
which the general public can relate. This was, in part,
because a report of increased risk of blood clots for
women taking particular contraceptive pills received
wide coverage in the media; the risks associated with
pregnancy were not given the same prominence. In
his presidential address to the RSS, Smith suggested
establishing a scale of risks [50] (see Risk Assess-
ment).

In the debate about the moral superiority of Bayes
inference in assessing whether new treatments are
effective, philosophers on both sides show a reluc-
tance to acknowledge the reality of uncertainty. In
an article extolling randomization, Papineau [46]
makes a breathtaking leap from probability to cer-
tainty: “. . . if it turns out that T makes no prob-
abilistic difference to R either among young peo-
ple, or among old people – then we can conclude
that T doesn’t cause R, . . .”. The emphasis is the
author’s, who appears to be unaware of the concept of
power. In arguing that randomization is unnecessary
because Bayes inference can adjust for all possi-
ble confounding factors, Urbach [56] indicates his
belief in the lack of uncertainty in medicine, which
no one who is aware of, for example, the inaccu-
racy of death certificates, or the limited accuracy of
prediction for survival, could espouse [16].

Medical Research Ethics in Developing
Countries

The guidelines published by the World Health Or-
ganisation (WHO) and the Council for International

Organisations of Medical Sciences (WHO/CIOMS),
[17], were framed with particular concern for devel-
oping countries [29], not to duplicate the principles
already established, but to suggest how these prin-
ciples might be applied. Much of this is useful, but
some principles verge on racism.

“Subjects in developing countries

14. Rural communities in developing countries may
not be conversant with the concepts and techniques
of experimental medicine. It is in these communi-
ties that diseases not endemic in developed coun-
tries exact a heavy toll of illness, incapacity and
death. Research on the prophylaxis and treatment
of such diseases is urgently required and can be
finally carried out only within the community of risk.
15. Where individual members of a community do
not have the necessary awareness of the implications
of participation in an experiment to give adequately
informed consent directly to the investigators, it is
desirable that the decision whether or not to partici-
pate should be elicited through the intermediary of a
trusted community leader. The intermediary should
make it clear that participation is entirely voluntary,
and that any participant is entirely free to abstain or
withdraw at any time from the experiment.”

This singling out of rural communities is offensive, as
the assumption that rural people in developing coun-
tries are less able to give informed consent is not
justified [19]. A review of the ethics of clinical tri-
als, and the sociocultural contexts, found no evidence
of cultural objections or obstacles to voluntary con-
sent [7].

Remarks CIOMS.18 and 19 on review procedures
mention the role of statisticians, but recognize prac-
tical and political realities. As statisticians, we can
welcome the recognition of our potential contribution,
but even “highly developed” countries do not have an
adequate supply of statisticians to support ethics com-
mittees [59]. The requirements CIOMS.27 and 28 for
ethical review in both host and “external” countries
are noteworthy. As recognized under review proce-
dures, different countries have different resources for
ethics committees, which require considerable expen-
diture, at least of time [60]. Concern was expressed
about the independence of ethics committees in some
countries at the international school from which the
proceedings arise. A longer term view of the impact
of research interventions is required by CIOMS.29,
and the wider social context is stressed by CIOMS.32.



6 Medical Ethics and Statistics

A heated debate about research in developing
countries started by trials of interventions to reduce
transmission of HIV from mothers to their infants,
before and after birth (see AIDS and HIV). Lurie
and Wolf [40] noted that an intervention, the AIDS
Clinical Trials Group study 076 (ACTG076) regimen
of an antiretroviral drug, AZT, had been shown
to be effective in 1994, but, despite this, in many
later trials of vertical HIV transmission, some or all
patients were not provided with antiretroviral drugs.
Of 18 studies identified, 15 used placebo controls.
The two USA trials provided antiretroviral drugs for
all patients.

Bayer makes the important point that the real eth-
ical problem is not whether to use placebos, but the
immorality of the world economic order [8]. The
“maldistribution of wealth and resources” makes the
vertical HIV transmission trials a focus of (emotional)
outrage. The goal of reducing HIV transmission in
Africa requires information on affordable, imple-
mentable interventions, which will be the basis of
health care policy. Matchada cites the failure of to
eradicate tuberculosis, despite “free drugs”, because
of infrastructure barriers [42]. He compares expen-
diture by African nations on war and debt servicing
with that of health care. The effect of exploiting med-
ical care for commercial gain, on a worldwide scale,
is investigated by Benatar [9]. Theological equality
of persons exists, but not socioeconomic equality.

Wider issues are raised by Annas and Grodin
[5], who place the debate in the context of the
UN Declaration of Human Rights (DH). The goal
of slowing the HIV epidemic might not be most
sensibly achieved by addressing vertical transmission.
A fuller review of the background and arguments,
and discussion of the role of statisticians is given in
[32]. A useful critical overview of the philosophical
debate is given by Schüklenk and Ashcroft [49]. They
point out that it is doubtful that an identifiable local
standard of care exists, because the standard of care
in, say, Ivory Coast, depends on prices set by Western
manufacturers of drugs and equipment. In order to
argue that particular principles are inappropriate, one
has to present a case showing, for example, that
protection of profits by patent and monopoly is more
important than limiting the course of an epidemic.

Although health professionals might prefer to own
“their” codes, the revisions of DH were not pro-
posed for medical reasons, and the debate is between
ethics, including distributive justice, and economic

prudence [5, 49]. Schüklenk and Ashcroft suggest
that ownership of DH might be passed to the United
Nations [49]. Even if the revision of DH were simply
a matter of ethics, the application and interpreta-
tions of human rights requires law, policy, and hence
politics. Adjudication among groups with different
interests is a political responsibility, and ways of
including the public in the debate are required [49].

The 2000 revision of DH illustrated the need for
collaboration. The sentence “This does not exclude
the use of placebo, or no treatment, in studies where
no proven prophylactic, diagnostic or therapeutic
method exists” [27, 61] was promptly criticized by
those who carry out trials. It is precisely when proven
therapies exist that placebo controls are used. In 2002,
a footnote was added to DH.

Informed and Uninformed Consent

It is valuable to realize that there are various aspects
and interpretations of informed consent [1]. Guide-
lines or codes of conduct usually focus on consent
as involving delivery of information in a manner that
respects the rights of the person. At one extreme, this
is viewed as a polite ceremony that is not essential,
as doctors always have their patient’s best interests
to the fore. Consent is convenient because it trans-
fers responsibility from the doctor or researcher to the
patient or subject. The other extreme views consent
as necessary protection against useless, dangerous, or
unwelcome interventions imposed by a powerful pro-
fession. Some people argue that requesting consent
changes patients from research objects to research
subjects [60], but others, both patients and doctors,
feel that the process can be detrimental to the patient
[27, 55].

Two systematic reviews of reasoning [6] and
empirical data [20] on patients’ understanding of
informed consent noted that there are difficulties.
However, the authors recommend that informed
consent remains essential [6] or that “. . . the spirit
of informed consent” be retained and seriously
attempted, with ethics committees for further
protection [20]. It is possible that the protection of
patients that informed consent is intended to provide
[25, 52], might be achieved by alternative forms of
consent. Alternative proposals that might give such
critics of informed consent and randomized trials
what they say they want have been examined [34].
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It is important to consider carefully what informa-
tion should be provided in order to allow a patient
to make an informed choice. It is arguably unethi-
cal to impose one’s own standards of understanding
on a patient. If a patient refuses to participate in a
particular trial, we do not require this refusal to be
informed, as this could be regarded as coercive. There
is a dramatic contrast between the standards of ordi-
nary medical practice and randomized trials [15].

The invitation, at a time when the patient is already
under stress, to participate in a clinical trial can
be upsetting [54]. It is worth considering patients’
informed response to trials in general. Those who
realize that trials might well be beneficial, irrespective
of treatment received, are likely to want to be offered
enrollment in any trial for which they are eligible
[15, 20]. The idea of general prior refusal is natural
enough, if a person believes that randomized trials
are wrong. If the alternative to randomized trials is
uncontrolled, unreliable experimentation, rather than
no experimentation [14], then it is difficult to make
general prior refusal entirely coherent. One can sketch
the justification for having “trial-free” doctors under
various constructions of professionalism [34].

Pre-exclusion of patients by doctors on grounds of
guesswork about patient preferences already exists
[51]. If a doctor thinks that “professed uncertainty
is of itself undesirable” [27], they might not offer
patients the opportunity to participate in a trial. Alter-
natively, if a doctor takes views the trial as the
treatment, they might (logically, though not legally)
use the same standard of lack of consent used in rou-
tine treatment, and enroll the patient without drawing
attention to randomization, as probabilistic choices
are common in medical practice.

The irony of the requests for alternatives to
informed consent is that to grant them requires
restrictions on patients’ knowledge, personal respon-
sibility, and freedom of choice. This implies inad-
equate patient protection, free-riding, unreasonable
avoidance of decision-making, increased decision-
making by doctors, and (self-)exclusion from optimal
treatment.

Two moral concerns are addressed in informed
consent: individual self-determination, or autonomy,
and justice, particularly justice for groups of people
such as Jewish or black people. Randomized trials do
not sacrifice present patients for future patients [31].
In contrast, to insist that obtaining informed consent
is more important than providing the therapeutic

package most likely to lead to a better outcome
for this patient, is to sacrifice this patient for the
protection of other citizens. We insist on subjecting
patients to the experience of being asked for informed
consent, because we know that it is very dangerous
to allow doctors to decide whether an experiment on
people is justified [25]. If we dispense with informed
consent, some group of people will suffer abuse. Even
with official recognition of the need for informed
consent, groups of patients sometimes suffer [58].

Cluster Randomized Trials

Cluster randomized designs (CRDs) are increas-
ingly used in research into health care and health ser-
vices (see Group-randomization Designs). Ethics of
individual patient randomized trials have been eluci-
dated in a number of different codes, but less atten-
tion has been given to the ethical issues raised by
cluster randomized trials. The challenges raised by
cluster randomized controlled trials are evaluated by
considering the essential elements of ethical med-
ical research, particularly experiments on people,
and the distinguishing features of cluster randomized
controlled trials from ordinary RCTs [33].

Cluster-randomization designs are experiments in
which intact social units are randomly allocated to
one of two or more intervention or treatment strate-
gies. There are scientific and practical reasons that
can be given to justify the use of CRDs. The scien-
tific reasons are that intervention might act at cluster
level, (e.g. a vaccine) or be carried out at cluster
level (e.g. guidelines for medical doctors), that there
might be treatment contamination if participants can
exchange information, or that subject compliance can
be enhanced by discussions. Logistical and politi-
cal constraints include administrative convenience,
political necessity for permission to be obtained and
requirements of access to routine data.

The fact that the unit of randomization includes
several patients or participants has implications for
both consent and the science of CRDs.

Protocols must make adequate provision for pro-
fessional statistical input in order to be scientifically
sound, and hence ethical in the light of the Nurem-
berg principles 2, 3, 6 & 8. The need for appropriate
methods of analysis is relevant both to the design,
in assessing previous knowledge, and the analysis
of the results. An important issue in ensuring that a
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study will be able to yield useful information (Nurem-
berg 2) is the sample size, and the effective size of a
CRD is smaller than the total number of individuals
studied. Few CRDs allow for between-cluster varia-
tion when estimating the power of trials, and not all
reports of CRDs allow for the clustering in the analy-
sis. Thus, any summary of previous knowledge might
be affected by previous errors. The funding of a new
CRD obviously must include provision for specialist
skills to ensure correct analyses of past and current
data and a thorough analysis of the risks and bene-
fits (Nuremberg 6). Resource use requires social and
political categories of thought.

Decisions about early stopping are dependent on
planned and unplanned interim analyses, in CRDs as
in RCTs (Nuremberg 10). The decisions might well
be more complicated in CRDs, as there might be a
need to accrue sufficient numbers in each cluster, and
the point at which there is convincing evidence of
benefit or harm might be very difficult to discern
(see Data and Safety Monitoring). Disadvantages
associated with early stopping of a RCT, such as lack
of credibility and realism, imprecision, and bias [47]
will be accentuated for CRDs.

The important structural features of CRDs for
consideration of informed consent are the units of
randomization or allocation, units of intervention, and
units of observation. The various units are not nec-
essarily the same people, as patients might receive
treatment, but the conduct of nurses be the focus of
observation and a general practice the unit of ran-
domization. There might be gate-keepers; alternative
interventions might not be easily available and in
some instances, a participant cannot easily withdraw,
for example, if an insecticide is sprayed throughout a
village. In the case in which a professional is the pri-
mary experimental subject, if she chooses to leave a
trial early, she will effectively remove all her patients
also (cf Nuremberg 9).

The different levels of randomization and inter-
vention mean that there are potentially various types
of consent and levels at which it can be sought. Con-
sent might be sought, or not sought, at some of the
various levels, for use of routinely held data, for col-
lection of additional data, with or without the use of
invasive procedures, or for the offer, or administra-
tion, of an intervention. We usually think of consent
as operating at the level of the individual person:
with CRDs, there are further levels to consider. The

definition of a community, and how its represen-
tatives are chosen, takes the debate on ethics into
political philosophy. A Nigerian study indicates that
the leaders’ views, which are cheaper and easier to
obtain, cannot be relied on as proxies for the opinions
of heads of households [45]. There is no firm evi-
dence that in any cultures heads of household might
give or withhold consent for adults in their house-
hold [6].

Guidelines of WHO/CIOMS accept the possibility
that individual consent is not feasible. The decision
to undertake the research is then given to a “public
health authority”, with attention given to providing
the community with information on the research [29].
This authority must therefore take responsibility for
the consequences of the research, although the peo-
ple who are such authorities might not themselves
be directly exposed to the interventions. However, it
is not obvious that there will be only one authority
which can, or should, take such decisions and respon-
sibility. Here again the political dimension of research
ethics is clear. The Nuremberg code was drawn up
as a result of the failure of political authorities to
protect all groups of citizens [58]. Mere feasibility
is not a strong reason to fail to request individual
consent. The fact that subjects might not be able to
avoid the treatment, although they do not consent to
it, or might not otherwise have access to treatment,
is a reason not to impose the treatment, not a reason
to evade individual voluntary informed consent.

Consent should be obtained before any interven-
tion, but it is not ethically essential that it is obtained
before decision as to what intervention would be
offered if the person were to agree to enter the trial.
One seeks consent to be in an experiment, not simply
consent to a particular treatment. The primary reason
for obtaining consent before randomization is a sci-
entific one: it reduces the possible bias arising from
different patterns of consent in the various treatment
arms. Scientific and logistical constraints associated
with CRDs imply that consent cannot necessarily be
requested before an intervention is assigned to a per-
son. This is not a problem, as trial entry and treatment
assignment are not equivalent. For example, a person
could refuse the vaccination, after their community
had been assigned this intervention, which operates
at both community and individual level.

Guidelines on the scientific and ethical conduct
of CRDs are provided by the UK Medical Research
Council [43].
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Statistical Ethics

The International Statistical Institute Declaration on
Professional Ethics [36] recognizes the variety of
settings in which statisticians work, and the many
branches of the discipline. The Declaration is there-
fore an informative framework of principles, not a
set of regulations. Each principle is followed by a
commentary and bibliography. The intention is that
statisticians who consider departing from the princi-
ples do so as a result of deliberation, not ignorance.
The principles are grouped into four categories, with
no category having priority: Obligations to society,
funders and employers, colleague, and subjects are
considered.

Social obligations comprise considering conflict-
ing interests, including guarding against misuse and
misinterpretation of statistics; extending the scope of
statistics to benefit as large a community as possi-
ble; and pursuing objectivity with openness about
limitations. Obligations to paymasters require clarity
about roles and responsibilities; impartial assessment
of alternative statistical methods; no pre-emption of
outcomes, and safeguarding privileged information,
while revealing the statistical methods and techniques
used. In return for respect for exclusive technical and
professional knowledge, statisticians must be honest
about the limits of their expertise.

The three obligations to colleagues described are
maintaining confidence in statistics, transparency of
methods, and knowing one’s own ethical principles as
well as those of one’s collaborators. These principles
arise from the value of professional citizenship, which
confers privileges of access to data, and the depen-
dence of the reputation of statistics on the conduct
of individual statisticians. A difficult responsibility is
neither “. . . overstating or understating the validity or
generalizability of data . . .” (ISI.3.3).

Animals as subjects are acknowledged, but the
subjects to whom obligations are described are indi-
vidual people, households, and corporate entities.
Statisticians should avoid intrusion. There is an excel-
lent discussion of the implications of the obligation
to obtain informed consent, in terms of adequacy of
information and of consent. Statisticians are expected
to “. . . adhere to the principle of obtaining informed
consent directly from subjects” even if they first
have to negotiate with a “gate-keeper” who is block-
ing access. Careful consideration of modifications
to informed consent addresses observation studies,

dealing with proxies, secondary use of records and
misleading potential subjects. With respect to the last,
withholding information is deceitful, and instances
when legitimate censure can be avoided because of
special research requirements are rare, and difficult
to justify. In such cases, posthoc consent should be
considered.

The interests of subjects must be protected, not
merely within the study, but also with regard to
subjects’ relationships with their environment. Social
position can hold risks: “The interests of subjects
may also be harmed by virtue of their membership
of a group or section of society (see Clause 1.1).
So statisticians can rarely claim that a prospective
inquiry is devoid of possible harm to subjects. They
may be able to claim that, as individuals, subjects
will be protected by the device of anonymity. But, as
members of a group or indeed as members of society
itself, no subject can be exempted from the possible
effects of decisions based on statistical findings.”
Confidentiality of records is essential, as is inhibiting
disclosure of identity by providing configurations of
attributes, which are distinctive.

The RSS Code of Conduct [48] primarily describes
the professional duties of a statistician, with a view
to upholding the reputation of the profession. Never-
theless, some of the rules do address ethical matters.
Part of the context for the rules is the recognition that
the general public have no easy way of judging the
quality of statistical work.

The “Public Interest” is the focus of the first
two rules. Fellows of the RSS are required to have
knowledge of, and comply with, the legislation, regu-
lations, and standards “relevant to their chosen field”.
Hence any statistician involved in refereeing articles
or grants that have a component of medical research
should be familiar with the Nuremberg code [52] and
the Declaration of Helsinki [61]. The second rule has
wide implications, as it expects Fellows to avoid any
actions that damage basic human rights:

Fellows shall in their professional practice have
regard to basic human rights and shall avoid any
actions that adversely affect such rights. Enquiries
involving human subjects should, as far as practica-
ble, be based on the freely given informed consent
of subjects.

Although the adjectives qualifying “informed con-
sent” shows more imagination than some codes,
the subordinate clause recognizes that there can be
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studies for which it is not practical to obtain informed
consent. Confidentiality should always be respected.

With respect to statisticians’ duties to employ-
ers or clients, the RSS Code acknowledges that the
professional judgment of statisticians may be over-
ruled. Most medical statisticians will have experi-
enced this, in collaboration, consultancy, refereeing,
or as a member of an ethics committee or regu-
latory body. In such circumstances, the RSS code
(RSS.3) requires the Fellow to indicate the likely con-
sequences of ignoring their judgments. It is possible
to understand why point 4 of the RSS code asks fel-
lows to try to avoid becoming party to activities that
conflict with the basic public interest. It is not clear
why fellows should avoid becoming “privy to infor-
mation” concerning activities that would conflict with
their public responsibilities. If a statistician can dis-
cern that a study ignores basic human rights because
it is poorly planned, and is using people and resources
in an endeavor that cannot result in any useful infor-
mation, rather than trying to avoid such information,
finding it and advising appropriate authorities of it so
that the misuse of resources can be terminated would
be acting in the public interest [13, 21]. Statisticians
are prohibited (RSS.6) from allowing their name be
associated with “any misleading summary of data”,
with particular attention to “the way the data were
selected”. Two other common concerns are: accurate
description of reasons and assumptions behind the
method of analysis, and giving opinions not supported
directly by the data reported.

The American Statistical Association’s Ethical
Guidelines for Statistical Practice [4] emphasize the
duty of statisticians to maintain professional integrity.
In particular, they should provide honest and objec-
tive interpretation, based on evidence, with disclo-
sure of any special interests. Statisticians have a
responsibility to respondents who provide data, espe-
cially with respect to privacy and confidentiality. This
includes establishing informed consent, and detailed
concerns about offering and ensuring confidentiality.
Statistical work must be open to assessment, with
the limits and source of data made clear, and the
role of statistical analysis, including choice of proce-
dures visible. Data should be available for analysis
by appropriate others. As users of statistics may be
dependent on expert advice, good conduct and good
communication are essential. The guideline on col-
lecting “only the data needed for the purpose of their
inquiry” is worth bearing in mind, as accuracy can

be discouraged by excessive requests. The tendency
in medical research to request information “while we
are there” can add unnecessarily to the cost in time
and effort of clinical research.

Conclusions

Although most of us use “Nazi medicine” as the epit-
ome of unethical research, it is not trivial to explain
exactly what was wrong [11], why the atrocities
occurred in the one country that had a legal doctrine
of informed consent and medical ethics [58] and why
no use should be made of data that are improperly
collected [38]. Doctors cannot easily deny the willing
involvement of their profession in eugenics. Eugen-
ics was widely supported in the 1920s and 1930s;
new eugenics are popular now in antenatal screen-
ing. Statisticians cannot thank God that they are not
like other men: Galton coined the term “eugenics”.

The most interesting ethical problems arise from
the use to which the statistics will be put. Any
reasonable code of conduct will require statisticians
to exercise competence and diligence, to be willing
to consider their fallibility, and to be vigilant in the
communication of the results of analyses and their
interpretation, regardless of the area of application.
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Medical Expenditure
Panel Survey (MEPS)

The Medical Expenditure Panel Survey (MEPS) pro-
vides nationally representative data on health care
utilization, expenditures, insurance coverage, sources
of payment, and access-to-care measures at the indi-
vidual and family level. The survey was designed
to facilitate analyses of how individual characteris-
tics, behavioral factors, and financial arrangements
affect health care utilization and expenditures (see
Surveys, Health and Morbidity). MEPS is spon-
sored by the Agency for Health care Research and
Quality (AHRQ) and cosponsored by the National
Center for Health Statistics, Centers for Disease
Control and Prevention (NCHS/CDC).

Since its inception in 1996, MEPS has been
a continuous ongoing survey of the US civilian
noninstitutionalized population. Predecessors were
once-a-decade surveys: the 1977 National Medical
Care Expenditure Survey and 1987 National Medical
Expenditure Survey.

Survey Design and Content

The MEPS is a family of three-interrelated surveys
of the US civilian noninstitutionalized population:
the Household Component, the Medical Provider
Component, and the Insurance Component. The
MEPS Household Component contains data on health
care use, medical expenditures, sources of payment
and insurance coverage, health status, demographics,
employment, and access to health care. Households
are selected for the annual Household Component
from those participating in the previous year’s
National Health Interview Survey (NHIS), an
ongoing annual household survey of approximately
42 000 households (109 000 individuals) conducted
by NCHS/CDC to obtain national estimates of health
care utilization, health conditions, health status,
insurance coverage, and access. Combined use of
NHIS and MEPS data adds capacity for longitudinal
analyses. MEPS has a multistage, clustered sample
design (see Multistage Sampling) with 195 primary
sampling units (PSUs) [3]. Sampling weights are
used to produce population estimates for individuals,
families and population subgroups, such as the elderly
and children.

The survey employs an overlapping panel study
design in which any given sample panel is inter-
viewed in person 5 times over 30 months to yield
annual use and expenditure data for two calendar
years. Computer-assisted personal interview (CAPI)
is used in an interview with a family respondent who
reports for him/herself and for other family mem-
bers [5]. In the initial year of the survey (1996),
the household sample consisted of 8655 families
and 21 571 individuals with calendar year data. In
1997, the MEPS sampled 13 087 families and 32 626
individuals, with oversampling of: Hispanics, blacks,
adults with functional impairments, children with lim-
itations in activities, individuals predicted to incur
high-levels of medical expenditures, and low-income
households. Since 1997, data from two panels are
combined to produce estimates for each calendar
year. Since 2002, the MEPS sample seeks 15 000
families and 40 000 individuals yearly.

The MEPS Medical Provider Component collects
detailed data on expenditures and sources of payment
from the medical providers, facilities, and pharmacies
that serve individuals surveyed for the Household
Component. These data are the primary source for
imputing medical expenditure data to correct for
item nonresponse by the MEPS household sample
participants [8].

Medical providers (MD/DO) for households where
expenditure data was expected to be particularly
insufficient were sampled at higher rates, for exam-
ple, households with any Medicaid enrollees or with
HMO enrollees. All hospitals providing inpatient
and/or outpatient services to household members are
contacted. The data from medical providers include:
the dates, medical content, and charges and payment
sources associated with each encounter. Data from
pharmacies describe each prescription: fill date; drug
name, dose and NDC code; charges and payments by
source. Hospitals self-administer their data collection;
physician offices are contacted by telephone; pharma-
cies receive a mail survey with telephone follow-up.
Since 2002, each annual Medical Provider Survey
involves interviews with more than 4000 hospitals
and related outpatient facilities, 22 000 office-based
providers, 11 000 hospital-identified physicians, 800
home health providers and 9000 pharmacies.

The MEPS Insurance Component was designed to
produce national, regional, and state estimates of the
amount, types, and costs of job-related health insur-
ance. Mail interviews are conducted annually with
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30 000 establishments to support estimates of health
insurance availability at the workplace, to describe
the types of employer-sponsored coverage and their
associated costs. Establishment survey data include:
size, the type of workforce employed, aggregate
data on payroll and available fringe benefits, indus-
trial classification, corporate status, and the number
and characteristics of health plans offered [9]. Data
are collected for each plan: its scope and breadth
of benefits; copayments; number of current work-
ers and retirees enrolled; and whether it is fully or
self-insured. Since 2000, the Bureau of Economic
Analysis has used MEPS health insurance premium
cost data to estimate the health component of the
Gross Domestic Product. States also use the data to
assess time trends in employer-provided health bene-
fits, and to compare their employers’ health insurance
cost experience to national, regional, and other states’
profiles.

National Estimates of Health Care
Expenditures and Coverage

Health care expenditures representing over one-
seventh of the US Gross Domestic Product are
growing faster than other sectors of the economy and
consume much of the Federal and states’ budgets.
Researchers have used the MEPS data to determine
the direction of the association between the use
of newer drugs and all other types of nondrug
medical spending [7], and to identify inappropriate
medication use, a major patient safety concern with
significant cost consequences [10].

Health care spending is highly concentrated. The
1996 MEPS found the top one percent of the pop-
ulation accounting for 27% of the total health care
expenditures incurred by the civilian noninstitution-
alized population, and the top five percent of people,
accounting for 55% [2]. Consequently, the MEPS
uses oversampling and poststratification (to conform
to more accurate population estimates of decedents)
to improve the quality of survey estimates for this
policy-relevant population subgroup.

Access to health insurance coverage is a critical
public policy issue. The MEPS data support esti-
mates of the size and composition of the insured and
uninsured populations, and reveal how demographic
characteristics, economic factors, and health status
affect health plan eligibility and decisions to enroll

in health insurance plans. In addition to providing
cross-sectional estimates of health insurance cover-
age each year, the MEPS data can identify individuals
with gaps in coverage over a calendar year as well as
the duration of gaps for up to 24 months. From 1996
to 1999, between 59 million and 62 million Ameri-
cans were uninsured at some point each year [6]. The
MEPS data support estimates of out-of-pocket health
care burdens and the extent of underinsurance in the
United States.

Recent Design Enhancements

Beginning in 2000, a self-administered questionnaire
was added to enhance the value of MEPS for explor-
ing a range of issues relating to access to care, health
care quality, health status, and patient satisfaction.
Questions include a subset of those developed for
the Consumer Assessments of Health Plans Study
(CAHPS), all questions from the SF-12 (Medical
Outcomes Study, Short Form) [1], and, to facili-
tate international comparisons on health status and
quality measurement, the questions that comprise
the EuroQol 5D (EQ-5D) [4]. The MEPS is fur-
ther supplemented by “provider accountability” mea-
sures for individuals with high prevalence, serious
medical conditions, such as diabetes, asthma, and
hypertension. For example, a self-administered ques-
tionnaire for diabetics obtains yearly information on
the frequency of health professional examinations for
hemoglobin A-1-C, foot sores or irritations, and eye
examinations with pupils dilated.

Data Products

MEPS releases person level, medical event level,
condition level, and job level data. Each year, MEPS
releases eight specific event files: dental, emergency
room, home health, hospital stays, medical visits,
outpatient stays, and other medical and prescribed
medicines. Each record in a condition file represents
a health condition reported by a person in a survey
household. Each record in a job file describes a job
held by a surveyed person, including wages, benefits,
and industry type (e.g. service or manufacturing).

MEPS public use data files on health care uti-
lization, medical expenditures, insurance coverage,
and sources of payment are produced annually. Each
file includes information from several rounds of data
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collection that together comprise a complete calendar
year’s worth of information. MEPS also releases
annual point-in-time (“snapshot”) files, for example,
the health insurance file that describes coverage for
the first part of each calendar year. At this time,
annual public use files are typically released within
12 months. For example, most 2001 files were avail-
able by the beginning of 2003.

Many MEPS databases contain detailed personal
information. To maintain respondent confidentiality
while enabling valuable research that could not be
accomplished without such data, AHRQ maintains a
closely monitored Data Center where researchers can
access the protected information needed for approved
projects.

Summary

The MEPS has become more comprehensive over
time through design and content enhancements,
including its greater flexibility to permit sample
size enhancements for new initiatives and to
facilitate oversampling of policy relevant population
subgroups. The survey continues to serve as a
national resource for examining the dynamics of
recent patterns in health care utilization, expenditures,
coverage, and access to care at the national level.
The public sector (e.g. Office of Management
and Budget (OMB), Congressional Budget Office
(CBO), Medicare Payment Advisory Commission
(MedPAC), and Treasury Department) uses the
MEPS to evaluate health reform policies, the effect
of tax code changes on health expenditures and
tax revenue, and proposed changes in government
health programs, such as Medicare. Since 2000,
data on premium costs from the MEPS Insurance
Component have been used by the Bureau of
Economic Analysis to produce estimates of the GDP
for the nation. The MEPS Insurance Component
establishment surveys have been coordinated with
the National Compensation Survey conducted by
the Bureau of Labor Statistics through participation
in the Interdepartmental Work Group on Surveys
to minimize overlap in content. Private businesses,
foundations, academic institutions, and the health
services researchers also use these data for a wide
range of purposes.

The MEPS website (www.meps.ahrq.gov) pro-
vides more detailed information on data availability
and research summaries that illustrate the analytical
breadth and utility of the MEPS to measure health
care trends and inform health policy and practice.

The views expressed in this chapter are those of
the author and no official endorsement by the Depart-
ment of Health and Human Services or the Agency
for Health care Research and Quality is intended or
should be inferred. The author wishes to thank Dr.
Arlene Ash, Dr. Paula Diehr, Ms. Trena Ezzati-Rice
and Ms. Elizabeth Conklin for their careful review of
the article and for their helpful suggestions.
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Medical Journals,
Statistical Articles in

There are thousands of publications dealing with
aspects of statistics throughout the medical literature.
Many of these are “Letters to the Editor”, that are crit-
ical of some statistical aspect of an already published
article; they appear frequently with a response, usu-
ally defensive, from the author(s) of the original arti-
cle. This simple exchange of views is rarely extended
in print, and the “response” from authors automati-
cally gives the final word. The adversarial format of
these exchanges forestalls scientific resolution of con-
tentious issues and consequently does not provide a
satisfactory solution. Less often, but with higher pro-
file, statistical criticism sometimes appears in focused
editorials that are invited by editors (sometimes from
anonymous authors), and that are published in the
same issue of journals as the study (or paper) they
comment on. Such editorials can influence the scien-
tific credibility of important studies, because they are
published at the same time as the study they focus
on and are given some prominence. However, they
are usually not peer-reviewed and the statistical crit-
icisms they make may be inaccurate.

Many articles discussing statistical issues appear,
as would be expected, in journals devoted to method-
ologic aspects of epidemiology (notably Journal of
Clinical Epidemiology, American Journal of Epi-
demiology and the online BioMed Central (BMC)
medical Research Methodology), clinical trials (Con-
trolled Clinical Trials and, Clinical Trials), and diag-
nosis (Medical Decision Making); they have also been
published for many years in journals devoted to psy-
chology, especially Psychological Bulletin, Applied
Psychological Measurement, and Educational and
Psychological Measurement; indeed, psychologists
and psychiatrists have their own sophisticated jour-
nals of methodology, The British Journal of Math-
ematical and Statistical Psychology, Psychometrika,
Multivariate Behavioural Research and the Interna-
tional Journal or methods in psychiatric Research.
The papers in these journals are not discussed further;
the remainder of this article will concentrate upon the
general medical and medical specialty journals.

Apart from letters, editorials, and papers in the
journals mentioned above, there are still many articles
each year that deal with statistical issues in an

elaborate way; they may be categorized broadly under
the following headings:

1. isolated papers on a particular statistical issue
2. series of thematic papers dedicated to a narrow

statistical area
3. series of papers covering broad areas of medical

statistics
4. guidelines
5. surveys of published papers reporting the fre-

quency of usage of statistical techniques
6. reviews of published papers examining critically

aspects of design, analysis, conduct, presentation,
and summary

7. systematic reviews (meta-analysis) incorporating
assessment of methodologic quality.

Each of these types is described and discussed briefly
with some examples. Those chosen are illustrative, if
not fully representative, of each category, and have
not necessarily been selected as the best or the most
comprehensive. Some papers bridge two categories.
Some articles on statistics are accompanied by editor-
ials, particularly when they have been commissioned
by a journal; some attract criticism in published
letters. It is also notable that some of the papers
focusing on statistical issues, particularly those in the
fifth and sixth categories, do not appear to include
a statistician either among the authors or among the
acknowledgments.

Isolated Papers on a Particular Statistical
Issue

Isolated papers that discuss one particular statistical
issue occur sporadically throughout the worldwide
medical literature. Some are written to provide exam-
ples of the correct application of a statistical tech-
nique stimulated by obvious misapplications within a
particular specialty of medicine or more widely; some
are written to explain the basis of more complicated
statistical methods; others are more provocative and
written to stimulate debate about controversial issues.
The standard of presentation varies widely: some
are regarded as “classics”, while others, written by
authors who do not fully appreciate the complexities
of the subject they are writing about, are inaccurate.

Much has been written about all aspects of
clinical trials within many specialties of medicine;
such papers covering design, conduct, analysis, and
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reporting inevitably range across many statistical
features. In particular, the small size of many
trials inevitably led to the appearance of papers,
explaining the need for “proper” power calculation
during design (see Sample Size Determination).
More controversial issues, particularly analysis under
the paradigm of “intention to treat”, produced,
and indeed continues to generate, discussion papers
within specialties. Wider application of Bayesian
analysis and interpretation, realized through massive
increases in computer processing power and storage,
has resulted in papers explaining why it is needed and
how it works [51, 52]. Some papers meet a specific
need, for example setting out the classical analysis for
both continuous and discrete variables in crossover
trials [48]; others explain and reexplain concepts
such as regression to the mean that continue to
confuse medical researchers [59, 60, 88].

The need for better understanding of elementary
techniques is illustrated: first by Godfrey [38], who
sets out the basics of linear regression analysis with
examples from 36 papers published in New England
Journal of Medicine (NEJM) over two years; secondly
by Hoffman [49], who points out the problems of
applying the standard chi-square test to paired data;
thirdly by Brown [15], who seeks to dispel confusion
between standard deviation and standard error;
and finally by Elashoff, commenting on multiple t-
tests (see Multiple Comparisons) [26].

Of course, it is not just the application of
elementary techniques that requires care. The
introduction of more complicated methodology
usually found in the pages of statistical journals
demands more ready explanation and illustration
in the medical journals, where it will need to
be interpreted. For example, modeling techniques
such as logistic regression [33] and the Cox
regression model [27, 78] were described in the
medical literature long before simple exposition in
textbooks of medical statistics. Recently techniques
for handling “missing” data have been developed
in the statistical literature, and are now extending
rapidly into specialised medical areas, for example,
psychiatry [81], and obesity [35]. Some papers
develop links between apparently disparate areas to
develop clearer interpretation – for example, Hanley
& McNeil [43] – drawing on the association between
the area under the receiver operating characteristic
(ROC) curve and the Wilcoxon–Mann–Whitney
statistic.

A more controversial issue was the introduction of
the randomized consent design [89], a new method
for planning clinical trials, published in NEJM as a
“Special Article” and accompanied by three editorials
discussing its merits and demerits (see Ethics of
Randomized Trials). This design, which requires
the randomization of patients without their prior
knowledge and consent, raises difficult ethical and
legal issues. A further commentary on this design,
summarizing experience of its use, appeared in the
same journal five years later [28].

Fourteen papers that appeared originally in
NEJM were updated and published collectively
as a book [9]; an additional six articles were
written specifically for the book itself. A second
edition with substantive changes followed six
years later in 1992 (some chapters were removed,
some added, and some updated); they covered
fundamental statistical concepts, use of statistical
analysis, design, controls, series of consecutive
patients, classification of research reports, decision
analysis, linear regression, comparing multiple
means, ordered categories (see Ordered Categorical
Data), reporting methods in clinical trials, power and
sample size, and meta-analysis; another article on
statistical reporting in medical journals was drawn
from Annals of Internal Medicine. Compendia of this
type constitute a valuable resource; to our knowledge
no others have been published.

Series of Thematic Papers Dedicated to a
Narrow Statistical Area

There are many series of published papers that con-
sist of up to three or four articles, occasionally more,
focused either on the application of a particular sta-
tistical technique in medicine or on one particular
area. One example of the former is the series of eight
papers in British Medical Journal (BMJ) on system-
atic reviews (overviews or meta-analysis) produced
in 1994 as a consequence of the huge increase in
the number of such studies and the need to explain
their rationale and methodology in greater detail; the
series was later published in a book with an extensive
bibliography [17] that expanded with the second edi-
tion published six years [25]. Another example was
the ambitious trio of papers published by the Lancet
introducing and explaining the ideas and concepts of
neural network techniques (first paper [21]). Occa-
sionally whole issues of journals have been devoted
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to statistical issues, for example meta-analysis [65]
and design and analysis of studies of gingivitis and
periodontitis [77].

Several examples are needed to illustrate the
diversity of applications to a particular area. First, the
move away from P values and hypothesis testing
towards estimation in the mid-1980s would only
be realized if data analysts could readily calculate
confidence intervals for a range of summary
statistics. Since the literature on this was widely
scattered and remote from the medical literature,
BMJ responded by publishing a series of four
papers in 1988 that both explained the reasons for
interval estimation (see Estimation, Interval) and
provided the methodology. The series was later
collected in a book [36], that included both an earlier
motivating paper and statistical guidelines [5, 37];
a second edition with further additions appeared
eleven years later [6]. A second series of three
papers set out the basic principles of good
form design (see Questionnaire Design). Although
not necessarily regarded as a subcomponent of
“statistics”, this is an area that is frequently discussed
with statisticians to control both the extent and quality
of data to be collected [85]. As a third example there
are the two seminal papers by Peto et al. [62] that
had a great influence, not just in cancer but far
beyond, on the analysis and reporting of pragmatic
clinical trials that followed patients to a specified
event such as death. These two papers discussed in
great detail not just the methods of analysis but also
how to handle many of the problems encountered
in such trials. The final examples illustrate medical
journals responding to topical issues with a need
for better understanding of contemporary techniques
in assessing quality of life (three papers) [32],
in estimating and interpreting costs (see Health
Economics) (six papers) (first paper [69]); in better
management (15 papers including decision theory)
(first paper [74]), and in “qualitative” research (seven
papers) (first paper [64]); or discussing perennial
favorites like placebos (see Blinding or Masking)
(seven papers) (first paper [40]), and epidemiology
and clinical trials (eleven papers) (first paper [41]).

Of course, series of papers on a specific statistical
theme are not restricted to general medical or cancer
journals. In particular, in psychiatry the importance
of statistics has been debated and acknowledged for
many years. For example, May et al. [56], discuss

the assessment of psychiatric outcome in both cross-
sectional and follow-up studies, while Streiner spans
a wide range of research methods in a series of 23
articles that started in 1990, and continues today (first
paper [75]).

Series of Papers Covering Broad Areas of
Medical Statistics

There have been several series of papers covering
broad areas of medical statistics. The earliest and best
known is, of course, the one by Bradford Hill that
was published weekly in the Lancet from 2 January
to 24 April 1937. The first article was prefaced by an
editorial entitled “Mathematics and Medicine”, that
opened with the words

Statistics are curious things. They afford one of the
few examples in which the use, or abuse, of mathe-
matical methods tends to induce a strong emotional
reaction in non-mathematical minds. This is because
statisticians apply, to problems in which we are
interested, a technique which we do not understand.
It is exasperating, when we have studied a prob-
lem by methods that we have spent laborious years
in mastering, to find our conclusions questioned,
and perhaps refuted, by someone who could not
have made the observations himself. It requires more
equanimity than most of us possess to acknowledge
that the fault is in ourselves.

This series of 17 3–4-page articles which covered
the aims of statistics, selection, presentation, varia-
tion, averages, proportions, differences, chi-squared,
correlation, life tables, and survival, common fal-
lacies and difficulties, proportional rates, crude rates,
and the calculation of standard deviation and correla-
tion coefficient, was quickly published collectively
as the celebrated book, The Principles of Medical
Statistics [46] in the same year, and in 11 subse-
quent revised and expanded editions spanning 54
years [47].

One of the longest series was the extensive collec-
tion written by Feinstein under the heading Clinical
Biostatistics and published in Clinical Pharmacol-
ogy and Therapeutics from 1970 onwards. (He also
wrote three other much shorter series for Archives
of Internal Medicine, Annals of Internal Medicine,
and Yale Journal of Biology and Medicine.) Twenty-
nine articles selected from the first 40 were published
collectively as a book with the same title [31]. This
extensive series of over 50 articles built on and was
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inspired by an earlier series in the same journal
by Mainland and an unpublished collection of 145
“Notes from a laboratory of medical statistics”, also
by Mainland. These long articles discussed in detail
not just the features of design, analysis, presentation,
and interpretation, but also included quantitative sur-
veys of the medical and statistical literature, critiques
of individual studies, and discussion of the teaching
of statistics and the ethics of research.

By contrast to the series above, that taught much
about concept and methodology, a later series of
short appealing articles published in BMJ in 1976
by Swinscow reflected the need of both the medical
profession and journals at the time by presenting a
very practical approach to the application of statis-
tics through simple calculation of summary statistics
(means, standard deviations, standard errors, pro-
portions, correlation, and regression) and immediate
application of significance tests (t-test (see Student’s
t Statistics), chi-square, Fisher’s exact, rank sum).
This series was also published as a book [76], the
immense popularity of which can be gauged from
the ten editions, and many reprintings, published over
26 years. This success was repeated several years
later with a series on the basics of epidemiology [70].

As a follow-up to the papers by Swinscow and
to remind researchers and doctors that there is more
to medical statistics than the calculation of summary
measures and hypothesis tests, BMJ commissioned
two further series that were published contiguously in
1982. The specific aims were to remind researchers
and authors that “they need statistical advice before
starting a project and not at its end”, to make medi-
cal statisticians “appreciate that most doctors are still
bewildered by statistical jargon and too often react by
ignoring the more important aspects of logic and cor-
rectness of argument”, and finally to educate editors
of journals (and their advisers) “to be on the lookout
for pitfalls and use expert statistical advisers more
frequently than they do”. The two series were Statis-
tics and Ethics in Medical Research, that covered
misuse, design, sample size, data collection, analysis,
presentation, interpretation, and how to improve the
quality of statistics in medical journals, and Statis-
tics in Question, which in two parts covered many
aspects of clinical trials (13 articles), and the prin-
ciples of data display, presentation, summary, and
interpretation (10 articles). Following the precedent
established with the earlier series, these two series
were also published as a book [39].

Starting in 1994, and perhaps harking back to
the seminal Notes of Mainland, BMJ has introduced
a longer series of very brief occasional Statistics
Notes, not just to remind readers (yet again!) about
basics, but also, and importantly, “to keep them
up to date with more complex techniques that are
finding their way into medical studies” [13]. Each
note occupies at most one page, dwells on a single
topic, and is self-contained. By 2003, the series
extended to 47 Notes and included some topics that
are needed frequently in practice but are not easy
to locate – for example, regression to the mean,
quantiles (see Quantiles), multiple significance tests,
correlation with repeat observations on the same sub-
ject (see Longitudinal Data Analysis, Overview),
data summary after transformation, measurement
error, and Cronbach’s alpha.

Another long series (17 papers under the heading
Statistics from the Inside) by Healy (first paper [44])
appeared in Archives of Diseases in Childhood over
the period from 1991 to 1995; as well as the usual
basic statistical concepts, it also covered diagnos-
tic and screening tests as well as reference val-
ues. Somewhat shorter series are more common. An
example is a series of four basic articles on general
statistical principles under the heading Basic Statis-
tics for Clinicians in Canadian Medical Association
Journal [42].

Guidelines

Guidelines are intended to present a succinct sum-
mary (sometimes highly detailed) of procedures or
standards that should be followed in performing
set tasks; several have been written for perform-
ing or assessing research. A few examples are
guidelines for performing clinical trials in partic-
ular specialties of medicine [10, 66], for evaluat-
ing the quality of clinical trials generally [18], for
reporting epidemiologic studies [14, 31] and studies
of screening tests [79], for structuring reports [54],
and for evaluating them [67, 87]. The Evidenced
Based Medicine Working Group in Canada has pro-
duced several guides for assessing and interpreting
reviews [61]. There are many others. There are also
more general statistical guidelines [5] that some jour-
nals draw attention to in their advice to authors.
Other guidelines concern licensing applications to
Regulatory Authorities [20]. Abbreviated guidelines
in the form of checklists have also been produced,
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for example for designing clinical trials [19] and for
statistical review [37]. Among more recent guide-
lines is the CONSORT statement [11], that was
intended to improve and standardize the presentation
of results from randomized clinical trials. Unusually,
the authors of these guidelines included some jour-
nal editors, which may explain why the CONSORT
statement was adopted by many leading journals;
with a consequent improvement in publication stan-
dards [23]. Further improvement is expected fol-
lowing publication of the revised CONSORT state-
ment [58], accompanied by a detailed explanation
of its use [7], and the recent extension to cluster
randomised trials [16]. Similar initiatives have been
instigated to improve reporting in other areas of med-
ical research.

Surveys Reporting the Frequency of Usage
of Statistical Techniques

There have been several surveys of the use of statisti-
cal techniques in the biomedical literature. Although
these “content analyses” are sometimes combined
with the assessment of correct usage, as discussed in
the next category, their aim is generally to review the
knowledge required to understand published papers
rather than whether or not the reported techniques are
used correctly. For example, Hokanson et al. [50],
adopting categories established by previous inves-
tigators [29], estimated the frequencies with which
various statistical techniques were reported in almost
5000 papers published in five major American oncol-
ogy journals in 1983 and 1984; they concluded that
readers familiar with about a dozen techniques could
expect to understand approximately 90% of quanti-
tative concepts in those journals; not surprisingly the
techniques were mostly those covered in many ele-
mentary texts about medical statistics. These results
were supported by those of Marsh & Hawkins [55],
who used similar techniques to survey 44 publications
from multicenter randomized clinical trials sponsored
by the National Eye Institute or the National Heart,
Lung, and Blood Institute. They found that knowl-
edge of 12 techniques would be sufficient to under-
stand 90% of the published analyses. However, they
also showed that no publication from the set of 44
was fully accessible with knowledge of just the six
most frequently used statistical techniques (descrip-
tive statistics, contingency tables, t-test, power, life
tables, and regression for survival).

However, there have been major changes in more
recent years. Later surveys of NEJM [2, 30] found
great increases in the use of more complex methods
(notably logistic regression and survival analysis) and
also an increase in the average number of techniques
used in each paper. They provide a rare example of
longitudinal content analysis within one journal. The
contrast between two time periods is also discussed
in [4].

Critical Reviews of Published Papers

Since 1920 there have been several hundred reviews
of the published medical literature that have
examined in some detail various aspects of design,
data collection, analysis, presentation, and summary.
Their objective is to report the frequency of statistical
misuse or bad practice. Many have focused on
clinical trials and/or epidemiologic studies within
specific subspecialties of medicine, and others on
specific statistical techniques; some were restricted
to specific journals, while others were very broadly
based. The earliest we know of was published in
1929 [24], and consists of a survey of the extent
to which “statistical logic” is used in a sample of
200 medical–physiologic papers from then current
American periodicals. This is a long paper and, at
over 120 pages, is longer than many of the series
covered in the third category above; the second
page reports the results of the survey and the
remainder essentially form a textbook of medical
statistics for physiologists. Although Bradford Hill
reviewed papers published in the Lancet when
preparing his famous series in 1937, the next review
we know of appeared in 1951 [71], and looked
at the use of controls in papers that appeared in
five leading American periodicals during the first
half of 1950. From then the increase has been
seemingly exponential. Indeed, reviews of this type
have become an industry of their own, with over
120 journals having had their content subjected to
statistical scrutiny. The surveys range from the simple
bald summary that “we conducted a review of the
literature” and found that “not more than a dozen
adequately designed long-term follow-up studies are
available” to far more elaborate studies examining in
excess of a thousand publications and reporting the
findings in detail.

One of the first large studies, and certainly one
of the most influential, was the two-part review by
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Schor & Karten [72]. They chose ten from among
the 67 most frequently read medical journals, ran-
domly selected three issues of each from the first
three months of 1964, and then reviewed each arti-
cle to investigate whether or not the conclusions that
were drawn “were valid in terms of the design of
the experiment, the type of analysis performed, and
the applicability of the statistical tests used or not
used”. Their conclusions suggested that “none of the
ten journals had more than 40% of its analytical stud-
ies considered acceptable; two of the ten had no
acceptable reports”. The second part of this review
went a stage further when, later in 1964, one of the
ten journals instituted statistical review of submit-
ted papers that were judged medically acceptable for
publication. In the next 18 months 514 manuscripts
were submitted to statistical evaluation, of which 133
(26%) were considered acceptable and 34 (7%) were
so poor as to be considered unsalvageable. Amongst
other recommendations, the authors suggested that a
statistician “either be part of the research team or
be consulted before a study is attempted”, a cry that
has been repeated many times over the subsequent
30 years (see Statistical Review for Medical Jour-
nals, Guidelines for Authors; Statistical Review
for Medical Journals, Journal’s Perspective).

One of the best known reviews is that of Freiman
et al. [34], who looked at the results from 71 ran-
domized clinical trials that were “negative” in the
sense that the comparison of control and experimen-
tal therapies was not statistically significant at the
5% level (P > 0.05); the trials were reported in 20
different journals over the period from 1960 to 1977.
The authors observed that 67 (94%) of the trials had a
greater than 10% risk of missing a true 25% therapeu-
tic improvement and that 50 (70%) had a similar risk
of missing a 50% improvement. Many other surveys
have looked at statistical power, with similar find-
ings, a recent one actually appearing in a new journal
publishing negative results [45].

A much broader review is that of McGuigan [57],
who looked for statistical errors in all papers (164
in total) reporting numerical results published in the
British Journal of Psychiatry during 1993. Using
the methods established in an earlier survey of the
same journal by White [82] (covering the period
1977–1978), McGuigan reported an overall error rate
of 40% (compared with White’s 45%); individual
types of error (rate) were characterized as: descrip-
tion of randomization or control selection (43%);

measures of location (27%); measures of disper-
sion (27%); Student’s t-test (80%); chi-square test
(15%); null hypothesis description (5%); description
of methods (16%); description of statistic (1%); state-
ment of results (17%); interpretation of P values
(2%); and incorrect or inadequate analysis (27%).
McGuigan also plotted the rates from 14 surveys of
statistical errors in the medical literature and pub-
lished between 1960 and 1993; the median was in
excess of 50% (although the definition of statistical
error was not the same in each study (cf. [1]). Such
surveys now extend more widely, for example, to
Chinese [80] and Czech [63] biomedical journals.

Three further examples will suffice to demonstrate
the character and range of these surveys. Badgley [8]
surveyed all articles published in two Canadian jour-
nals in the first half of 1960, looking for those
(103) that used “group data” (i.e. epidemiologic sur-
veys and clinical trials and excluding case reports
(see Case Series, Case Reports), reviews, descrip-
tive papers, and articles providing a survey of the
literature on a given topic); he reviewed five aspects
of each article: the definition of terms; the selection of
a population or sample; the use of controls; types of
statistical analysis; and the derivation of conclusions.
His summary reported that the “assessment revealed
the need for greater precision in the design of many
studies using group data and for caution in the inter-
pretation of results”. Ried & Hall (in a letter [68])
reported a survey of 569 papers published between
1980 and 1983 in the American Journal of Clini-
cal Nutrition, looking for multiple significance testing
within a single dataset. They found a median of 21
tests per paper (quartiles: 6 and 48) and commented
“13% of the papers failed to state the type of sta-
tistical test that was used, only four papers made an
allowance for the multiple use of statistical tests and
427 of the papers (84%) failed to specify predeter-
mined levels of statistical significance”. Linnet [53]
reviewed assessments of diagnostic tests published
in Clinical Chemistry during the period 1979–1983,
looking at sample sizes and the statistical confidence
of sensitivity estimates. He found 84 relevant papers
and concluded from his review that “the precision
of sensitivity estimates of tests was seldom consid-
ered by the investigators, and the significance of
differences of sensitivity estimates was, with a sin-
gle exception, not tested”. Others were summarized
by Altman [1, 2].
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Interpretation of the results from the reviews
themselves is not without difficulties. Williamson
et al. [84] reported in 1986 an analysis of 33 sur-
veys of the quality of the medical literature. Three
experienced medical statisticians independently eval-
uated the quality of these review articles using
a checklist of 40 items indicating the extent to
which the assessment methods reported in an arti-
cle substantiated the authors’ results. While none was
entirely unsubstantiated or contradicted, 15% were
only weakly substantiated.

Systematic Reviews (Meta-analysis)

The last 15 years have seen a huge increase in the use
of systematic reviews (meta-analysis) in medicine,
especially of therapeutic trials [25]. This has led to
much greater scrutiny of the statistical techniques
employed in the design, analysis, and reporting of
clinical trials, and to empirical studies of the rela-
tion between study features and the results of tri-
als [73]. Meta-analyses quite often report the credibil-
ity of individual trials using assessment schedules that
focus on key features. Such information can be used
to determine which studies are included in a meta-
analysis, or may be used as part of a sensitivity anal-
ysis. It is also possible to generate a quality score [18]
that can be used to weight the results of individual tri-
als before combination in the overview [22], although
this is not a generally accepted approach. Systematic
reviews are now more common in various nonexperi-
mental situations, for example, epidemiologic studies
and diagnostic tests, and concerns about the qual-
ity of primary studies has already resulted in quality
assessment of the Catter [83].

Discussion

It is unfortunate that to date no annotated bibliog-
raphy or catalog of all the articles in the first six
categories listed above has been constructed. This
would be an extremely valuable scientific resource
both for research and for teaching and, further,
would prevent unnecessary duplication among jour-
nals. There are no useful combinations of keywords
that can be used in a search of electronic databases
to identify the great majority of articles within the
categories above, except perhaps for guidelines and

meta-analyses. Some papers have titles that give no
clue to the inclusion of a review of methodology [38,
53]. As we have noted, there is a considerable body
of statistical articles within the medical literature;
papers on statistics can appear in any medical journal.
In particular, all the leading general medical jour-
nals have published important papers on aspects of
statistics reflecting their appreciation of the impor-
tance of the sound application of the statistical com-
ponents of any research article. The BMJ has been
foremost in the drive to achieve higher standards,
first by publishing far more such papers than any
other journal, second by commissioning both indi-
vidual papers and thematic series that can be readily
understood and applied by physicians, and third, by
republishing some articles collectively in compact,
low-priced books.

Didactic articles have a long history and seem to
be especially valued by journals and readers. Such
articles may describe standard methodology or may
introduce new methods in a doctor-friendly manner.
Expository statistical papers (e.g. [12, 62] – category
1 above) can reach 500 citations within 4–5 years [4].

Perhaps second in impact are those studies of
the quality of the statistical aspects of published
research. Over a period of more than 70 years such
reviews have consistently shown that many published
papers are flawed. In some cases such reviews have
led directly to changes in editorial policy, especially
regarding increased statistical review of manuscripts.
The main impact of such studies is probably slowly
cumulative over time, and permeates gradually across
the literature from the general journals to the special-
ist journals.

Statistical errors can occur at every stage of
a research project, although reviews of the litera-
ture have been mainly concerned with methods of
analysis. The underlying reason for the plethora of
statistical errors is that the majority of statistical anal-
yses are performed by people with an inadequate
understanding of statistical methods [86]. They are
then peer-reviewed by people who are generally no
more knowledgeable [3]. There are other contributory
reasons, such as the fact that several introductory text-
books in statistics are themselves full of errors [3].
Another problem is the copying of incorrect method-
ology from one study to another – for example, use of
the correlation coefficient for comparing two methods
of measurement [12].
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Altman & Goodman [4] studied citations of 18
important statistical publications and also some
content analyses to evaluate the speed with which
new statistical methods infiltrate medical journals.
They suggested several possible reasons for the
apparent increased speed of diffusion: the increas-
ing number of statisticians working in medicine, the
wide accessibility of powerful desktop computers,
and the more rapid development and dissemination
of software to implement new statistical methods
(see Software, Biostatistical). It is likely that gen-
eral understanding of basic statistical methods (t and
chi-square tests, for example) has improved, but there
is ample evidence that many errors still occur in
the use of these simple methods [57]. The increased
use of more complex methods [2, 30], aided by
easy access to powerful computers, has led to new
problems, many of which cannot be detected in pub-
lished papers. Several more complex statistical meth-
ods introduced in the 1980s are beginning to be seen
more frequently – examples include neural networks,
multilevel models, and Gibbs sampling (see Markov
Chain Monte Carlo) [4]. Journals should expect to
see growing numbers of papers using them, and
doubtless a cluster of new didactic articles describing
them. Nevertheless, the speed with which new meth-
ods are introduced may pose problems for statistical
referees, for the physicians who read the published
work, and for the journals themselves.
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Medical Research Council
(MRC)

The Medical Research Committee was set up in the
UK in 1913 by the Government. The name Medical
Research Council (MRC) was established by Royal
Charter in 1920. At the outset, tuberculosis was a
particular research target, but the scope of the MRC
soon broadened to most areas of medical research.

The central institute of the Medical Research
Committee was set up in Hampstead (London) in
1914, becoming the National Institute for Medical
Research (NIMR) in 1920. The founding departments
were bacteriology, applied physiology, biochemistry
and pharmacology, and medical statistics. The
inclusion of a department of medical statistics
demonstrates the MRC’s early recognition of the
importance of statistics in medical research.

In fact, the Medical Research Committee had a
Department of Medical Statistics since 1914, under
the leadership of John Brownlee. This Department
carried out original statistical research, but also
undertook much routine work such as the sorting and
classification of medical records. This latter activity
was especially heavy during the war years, at which
time more than 100 clerical staff were employed.
In 1920 Major Greenwood, who was Statistical
Medical Officer on the staff of the Ministry of
Health, moved to NIMR. Greenwood became chair
of the Industrial Health Statistics Committee and
also a new Nutrition Committee. The latter, rather
than Brownlee’s department, became an advisory
committee on statistical matters for the whole of the
Council’s work, and in 1925 its name was changed
to the Statistical Committee.

During the 1920s it became clear that the MRC
needed to reconsider the organization of its statis-
tical work. In 1927 Greenwood was appointed to
direct the Department of Epidemiology and Vital
Statistics at the London School of Hygiene and Trop-
ical Medicine (LSHTM). Brownlee’s sudden death
allowed the MRC to transfer all its statistical activ-
ity to the LSHTM. From 1928 the staff of the NIMR
Department, Greenwood’s Ministry of Health Depart-
ment, and the Statistical Committee were merged into
a single unit at the LSHTM.

In 1931 the MRC set up a Therapeutic Trials
Committee (TTC) to oversee clinical trials in many

areas, especially of potential new remedies. Surpris-
ingly there were no statisticians on this committee,
although Greenwood and Bradford Hill could be
called upon to give statistical input where neces-
sary. Although these early trials were controlled, it
was not until 1946 that randomization was used.
The concept of randomization had been introduced
in agricultural research by R.A. Fisher. Despite his
involvement with other MRC committees, such as the
Human Genetics Committee, it seems that Fisher did
not have any involvement with the TTC, but he did
direct an MRC program of research into the genetic
study of blood groups.

Greenwood retired in 1945 and was succeeded
by Bradford Hill, under whose leadership the MRC
group became the Statistical Research Unit. Under
Hill the Unit developed an increasing reputation,
notably becoming heavily involved in the MRC’s
clinical trials program. The introduction of random-
ized controlled trials was clearly a major event; the
most famous of these was the Medical Research
Council Streptomycin Trial, which was the first ran-
domized trial to be published. Hill also made crucial
contributions to epidemiologic research. In particu-
lar, in 1947 he embarked with Richard Doll on a
series of famous studies of smoking (see Smoking
and Health). This work led not only to clear evi-
dence of a causal link with lung cancer, but it also
stimulated Hill’s development of the underlying prin-
ciples of observational studies and the criteria for
establishing causality from such studies (see Hill’s
Criteria for Causality).

In 1960 Bradford Hill was succeeded by Richard
Doll, who directed the Unit until 1969. Doll was
appointed deputy director of the MRC’s new Clinical
Research Centre (CRC) at Northwick Park (Harrow)
but shortly afterwards moved to Oxford as Regius
Professor of Medicine. The double move led to the
disbandment of the Statistical Research Unit and
many of the staff left the MRC and joined Doll in
Oxford. The MRC set up a new small group, the
Statistical Research and Services Unit headed by Ian
Sutherland. In 1980 the Unit relocated to Cambridge,
at which time it became the MRC Biostatistics Unit.
As Sutherland’s retirement approached, there was
some uncertainty about the future of the Unit owing
to the MRC’s financial crisis, but in 1986 Nicholas
Day was appointed Director. In recent years the Unit
has increased in size to the point where it is one of
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the largest biostatistics groups in the UK. Day retired
in 1999 and was succeeded by Simon Thompson.

As the MRC’s activities have diversified, and the
need for statistical input was recognized increasingly,
other statistical groups have been set up within the
MRC. Following precedent, a medical statistics group
was one of the first to be set up in CRC in 1970,
initially under the leadership of Michael Healy. That
group ceased to exist in 1993 as a consequence of
the closure of the CRC.

Another Unit with considerable statistical exper-
tise is the Clinical Trials Unit. This was founded
in 1998 and consists of three Divisions. The Can-
cer Division was formerly the Cancer Trials Office
(CTO), founded in Cambridge in 1977, and coordi-
nates clinical trials in cancer. A meta-analysis group,
originally set up by the CTO, continues to coor-
dinate international collaborations on meta-analysis
of cancer trials and has extended its remit to other
disease areas. The HIV Division, formerly the HIV
Clinical Trials Centre, conducts and coordinates tri-
als in HIV (see AIDS and HIV), many of which are
international studies. The Division Without Portfolio
initiates trials in other areas where there are impor-
tant questions but either insufficient infrastructure or
few clinical trials at present.

While the MRC supports medical research by
giving grants to individual scientists, it also pro-
vides long-term one of its main means of providing
long-term support for research is through its estab-
lishments where it employs its own staff, currently
three institutes and approximately 50 units. Statisti-
cians are employed in many of these units. Two of the
most prominent over the years have been the MRC
Pneumoconiosis Unit near Cardiff, once headed by
Archie Cochrane, and the Environmental Epidemi-

ology Unit in Southampton, both now closed. An
Epidemiology Unit in Cambridge has recently been
established.

The MRC receives an annual grant to support
research from Parliament via the Department of
Trade and Industry. It also receives funding for some
projects from other government sources including
the Health Departments, the Overseas Development
Administration, and the Ministry of Defence. Other
sources of funding include industry and international
agencies such as the World Health Organization
and the European Commission. The MRC supports
some research jointly with medical charities. The
MRC is independent in its choice of what research to
support.

The focus of this discussion has been on statistics
within the MRC. In this regard the MRC has consis-
tently been a major player within the UK, recognizing
at a very early stage the essential importance of statis-
tics to sound research, especially in clinical areas.
The wider history of the MRC is considered at length
in [1–3].
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Medical Research Council
Streptomycin Trial

The first Medical Research Council (MRC) trial of
streptomycin in the treatment of pulmonary tuber-
culosis [10] occupies a special place in the history
of medical statistics. This is not primarily for the
findings, although these had important implications
for subsequent tuberculosis research, but because the
trial provided an explicit model for that research and
served as a catalyst for the scientific investigation in
man of other treatments and interventions throughout
clinical and preventive medicine.

At the time, just after World War II, tuberculo-
sis was the principal medical cause of death among
young adults in Europe and the US, and strepto-
mycin was the first drug to offer real promise of
effective treatment. The antituberculosis activity of
streptomycin was discovered in the US in 1944.
Although suggestions for adequately controlled stud-
ies were put forward [8, quoted in 12], no con-
trolled assessment of the efficacy of streptomycin
in man had been undertaken by 1946. Limited sup-
plies of the drug were made available to the MRC
for such an assessment in the UK. The MRC set up
a research team, their Tuberculosis Research Unit,
with Dr Philip D’Arcy Hart, already deeply involved
in tuberculosis research, as its director and Dr Marc
Daniels as the clinical coordinator for the study. Gen-
eral responsibility for the planning, direction, and
reporting of the study lay, from September 1946, with
a special MRC committee with Dr Geoffrey Mar-
shall, a leading tuberculosis physician, as chairman,
D’Arcy Hart as secretary, and a membership which
included Professor Austin Bradford Hill. The prin-
cipal credit for the study that ensued belongs jointly
to D’Arcy Hart, Daniels, and Bradford Hill [7]. All
three were well prepared, indeed poised, to undertake
the “rigorously planned investigation with concur-
rent controls” that was needed [10]. Bradford Hill
had set down the principles of clinical experimen-
tation in man in 1937 [4], including “random allot-
ment” achieved by strict alternation or (in later edi-
tions of [5]), by using random sampling numbers
(see Randomization). D’Arcy Hart [9] and Bradford
Hill [13] had separately been involved in planning
and executing rigorously controlled MRC trials – the
one using alternation and the other random sequences.

Daniels had been a principal investigator in the Royal
College of Physicians’ epidemiologic survey of tuber-
culosis in young adults [2].

The main aim was to assess the effect of the
drug in pulmonary tuberculosis, carefully defined as
“acute progressive bilateral pulmonary tuberculosis
of presumably recent origin, bacteriologically proved,
unsuitable for collapse therapy, age-group 15 to 30”.
At the time the only treatment for such patients
was bed rest, and this fully justified treating the
parallel control group in the trial with bed rest alone,
especially as the available supply of streptomycin
was insufficient to treat all such patients. Between
January and September 1947, 109 patients, assessed
as suitable by a central panel, were admitted to
the trial from seven centers in England, Wales, and
Scotland. Two patients died within a week, leaving
55 allocated to streptomycin and bed rest (S) and 52
to bed rest alone (C).

The allocation “was made by reference to a sta-
tistical series based on random sampling numbers
drawn up for each sex at each center by Professor
Bradford Hill” [10, reprinted in 6] and contained in
a numbered set of sealed envelopes held by the coor-
dinator, the appropriate envelope being opened as
each patient was admitted. The details of the control
scheme remained unknown to the coordinator and all
of the investigators throughout. C patients were not
informed they were part of a special study and “usu-
ally they were not in the same wards as S patients, but
the same régime was maintained”. All patients were
treated with bed rest for 6 months, and their condition
was assessed on admission and monthly thereafter. S
patients received in addition 2 g streptomycin daily
in four injections for 4 months.

Randomization was shown to have “equalized the
groups; if anything, there are more severe cases in
the S group”. Changes in the radiologic picture were
regarded as the most important single measure of
response, and were assessed by three specialists read-
ing the films independently, not knowing whether
they were of C or S cases. There was fair agree-
ment, any differences being readily resolved at a
joint session. The changes during the 6 months are
shown in Table 1. The difference in the percent-
ages showing considerable improvement is significant
(chance probability less than one in a million; see P
Value).

There were correspondingly large differences
between the S and C series in other measures and
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Table 1 Assessment of radiologic appearance at 6 months as compared with appearance on admission

Streptomycin group Control group

Radiologic assessment Number Percentage Number Percentage

Considerable improvement 28 51 4 8
Moderate or slight improvement 10 18 13 25
No material change 2 4 3 6
Moderate or slight deterioration 5 9 12 23
Considerable deterioration 6 11 6 11
Deaths 4 7 14 27

Total 55 100 52 100

assessments of response at 6 months. The greatest
benefits from streptomycin were among the most
acutely ill patients. Most of the improvement in the
S cases occurred during the first 2–3 months, and
thereafter many patients began to deteriorate. The
short-lived benefit from streptomycin was shown to
be related to the rapid emergence of strains of tubercle
bacilli resistant to high concentrations of the drug. In
addition, vestibular toxicity occurred frequently in the
S series. The report [10] contained many illustrative
case histories with radiographs; an addendum showed
a significant difference in mortality between the two
series at the end of one year.

The trial was designed to answer a specific group
of questions concerning the effects of streptomycin
on the progress of tuberculosis in man. The restric-
tion of the intake to pulmonary tuberculosis hitherto
treatable only by rest in bed, the random selection
of those to receive streptomycin, and the precau-
tions to avoid bias in management and assessment of
the patients enabled the effects of the added strepto-
mycin to be separated from those of the natural course
of the disease. The answers for that type of tuber-
culosis, in a particularly lucid and detailed report,
were unequivocal, on efficacy and its duration, on
bacterial resistance, and on drug toxicity. The lim-
ited amount of streptomycin available to the MRC
greatly facilitated the introduction of the random
allocation scheme that was crucial to the reliabil-
ity of the trial findings. Many years later, Bradford
Hill [7] expressed doubts whether the random alloca-
tion would have been achieved if supplies had been
greater.

The clear demonstration in the report of the advan-
tages and disadvantages of the first effective drug
treatment for a widespread and lethal infectious dis-
ease made a considerable impact on clinicians and
statisticians. In the field of tuberculosis, the trial

initiated a 40-year series of mostly multicenter con-
trolled chemotherapy trials [3] (see Multicenter Tri-
als) under MRC auspices in Britain, East Africa,
India, and Hong Kong: in different types of tubercu-
losis; assessing new drugs in combinations to combat
bacterial resistance; comparing different durations of
treatment for the prevention of subsequent relapse;
comparing treatment at home with treatment in a
sanatorium [1, 11]; investigating alternative dosages
and rhythms of administration to reduce toxicity; and
comparing supervised with unsupervised regimens to
improve compliance.

The use of random allocation, and the attention
paid throughout all aspects of the trial design to
obtaining an unbiased comparison, also provided a
major stimulus to the postwar development of the
clinical trial in other diseases. Although there is
still a place for systematic allocation schemes that
are effectively random, e.g. [9], the introduction of
allocation schemes based on random sequences is
undoubtedly the most important single advance in the
evolution of the clinical trial [12] during the twen-
tieth century (see Randomized Treatment Assign-
ment).
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Medicare Data

A portion of this work was supported by the ResDAC
contract from CMS.

Medicare is a federal health insurance program
for nearly all Americans aged 65 and over, for
younger persons entitled to Social Security disabil-
ity payments for at least 2 years, and for people
with end-stage renal disease (ESRD). It is admin-
istered by the Center for Medicare and Medicaid
Services (CMS, formerly the Health Care Financ-
ing Administration, HCFA) in the US Department
of Health and Human Services. In 2003, persons
with entitlement due to these mandates numbered
approximately 34.7 million, 5.8 million and 300 000
respectively. By 2020, total enrollment is expected
to exceed 60 million. Medicare data are a notable
research resource because of the program’s huge
size and national scope, the range and quality of
information captured, the fact that each beneficiary’s
eligibility is known in each month, and because most
beneficiaries remain continuously enrolled until their
death. Medicare is the largest single purchaser of
health care services in the United States, spending
over $260 billion dollars in 2003, including three-
quarters of costs for patients with ESRD, nearly
half of all hospital revenues and over 70% of hos-
pice spending.

Medicare files contain information on all ben-
eficiaries enrolled and the nature of their benefit,
medical problems, (diagnoses) and utilization (claims
and costs) for the approximately 87% of Medicare
beneficiaries enrolled in the “traditional” fee-for-
service (FFS) plan, as well as financial and other
descriptive data on licensed providers (e.g. hospitals
and physicians).

Eligibility data, including extensive demograph-
ics and enrollment information, are available in the
annual Denominator files, with one record per ben-
eficiary eligible to receive Medicare benefits dur-
ing any part of that year. Medicare enrollment is
by calendar month, with 12 monthly indicators of
when each person is enrolled for Part A (Hospital
Insurance, HI) and Part B (Supplemental Medical
Insurance, SMI, covering physician and ambulatory
care) benefits, and whether they are receiving the
FFS or managed care (Medicare Advantage, formerly
Medicare + Choice) option.

The valuable annual Medicare Provider and
Review (MedPAR) research file, containing one
record per hospital or skilled nursing facility
discharge, has been available since 1984. Information
includes: a hospital identifier, admission and
discharge dates, up to 10 diagnoses and 10
procedures, and the diagnosis related group (DRG),
a classification that largely determines Medicare’s
payment. The first listed, or “principal”, diagnosis
conveys the medical condition determined (at the
time of discharge) to have been the principal cause
for hospitalization. Charges across several categories
of services (e.g. bed charges and intensive care
unit utilization), allowed charges, and payments
(reimbursements) by CMS and others are also noted.

Research opportunities expanded considerably in
1992 when “final action” (fully adjudicated billing)
data from skilled nursing facilities, home health care,
hospice, hospital outpatient and physicians, other sup-
pliers and health professionals became available in
standard analytical files (SAFs). All SAFs contain
provider identifiers, service date(s), diagnoses, ser-
vices provided, and CMS payments.

Methodological studies validating the Medicare
claims information, the demonstrated value of claims
data in predicting health care outcomes, such as cost,
hospitalization and death, and the recorded experi-
ence of nearly all Americans over the age of 65,
make Medicare data an important source of informa-
tion on health care delivery and its consequences in
the United States. The data, of course, only relate to
covered benefits. Thus, at present they contain infor-
mation on drugs only when administered in facilities
(such as chemotherapy), and most nursing home uti-
lization (because it is covered by Medicaid, rather
than Medicare) is missing. Also, the data indicate
when a test was done, but not the result; the absence
of follow-up treatment could equally well indicate a
negative finding or a lapse in patient management.
While dates of death are accurate and complete, the
data contain neither cause nor place of death. (This
information can be merged on from the National
Death Index, maintained by the Centers for Dis-
ease Control and Prevention (CDC).) Comprehen-
sive profiles of a person’s medical problems can be
extracted from diagnoses coded on claims using the
World Health Organization’s international classi-
fication of diseases (ICD) coding system [2, 6]. A
“clinically modified” ICD version, ICD-9-CM, main-
tained by the National Center for Health Statistics
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(NCHS), has been in use in the United States since
1980. However, detailed physiologic information,
such as blood pressure or hematocrit readings, cancer
stage or cardiac ejection fraction, is not available.

Data Completeness

The Medicare program is complex. Knowing what
can be found in the claims files (and where) requires
understanding the program’s benefits and how they
are paid. For example, the managed care option
(called Medicare Advantage, formerly Medicare +
Choice) allows beneficiaries to choose a commer-
cial managed care plan to coordinate their care
(see Health Services Organization in the US). For
the beneficiary, this can provide reduced or waived
copayments and deductibles or pharmacy benefits.
However, these arrangements create data gaps, since
CMS does not currently require Medicare Advantage
plans to submit encounter records (dummy claims).
Between 2000 and 2003, CMS used diagnoses from
Medicare Advantage hospitalization records to calcu-
late payments to plans based on enrollees’ expected
future health care use [4]. The hospitalization records
used in these calculations, however, are not systemat-
ically available in research files, although some Medi-
care Advantage hospitalizations appear in MedPAR.
Medicare Advantage enrollment of the beneficiary
and readmission within two weeks of a previous dis-
charge are the main reasons for zero-reimbursement
MedPAR hospitalizations. Beginning in 2004, CMS
will calculate payments to plans based on “expected
future need” as calculated from submitted lists of
their enrollees’ medical problems. It will no longer
require encounter records (either hospital based or
ambulatory) from Medicare Advantage plans [7].

The claims data can also be incomplete for the
3 to 4% of beneficiaries who do not take part in
both parts of the Medicare benefit. Medicare Part A
(hospital, skilled nursing facility and hospice) cover-
age is automatically received by almost all Medicare
recipients, while Part B (principally physician and
ambulatory care services) coverage is available for
a monthly fee ($58.70 in 2003). Persons with both
Parts A and B coverage use more Part A services
than those with Part A coverage only. Why? Part B
coverage provides such good value, that people who
do not purchase it often have generous alternative
insurance that pays for their hospitalizations as well.

Because billing data provide an incomplete record
of care for both M + C enrollees and those missing
either Part A or Part B entitlement, studies of service
gaps (such as failure to receive appropriate surgical
follow-up) typically exclude such enrollees.

Other data gaps are less easy to remedy. For
example, although the veterans health affairs system
maintains merged Medicare/VHA files and has docu-
mented the substantial size and nature of overlapping
health care use for over 1 million Medicare benefi-
ciaries who use the VHA [8], Medicare data cannot
identify VHA users, and thus, (unknowingly) views
their Medicare utilization as complete.

Another form of data incompleteness occurs for
surgical care when multiple provider/patient encoun-
ters are “bundled” into a single global payment.
Suppose, for example, that a surgeon receives a single
payment for all the care surrounding a mastectomy:
preoperative evaluation, the surgery itself, and rou-
tine postoperative care, including routine follow-up.
No individual bills are submitted for bundled surgical
care (and if they were, they would be rejected), so the
claims data provide no evidence as to the nature or
timing of the follow-up services actually delivered.

Demographic Data

Medicare enrollment files contain dates of birth and
death, gender, and race. Since 1994, every beneficiary
is assigned to one of seven race codes: white, black,
Asian, Hispanic, North American Native, other, and
unknown. These codes are the basis for numerous
studies examining whether patterns of care and care
outcomes vary across racial groups. A study compar-
ing self-reported race with Medicare’s race variable,
found good accuracy for blacks, but other racial
groups were often misidentified as white [1] prob-
ably because an earlier form of the variable offered
only four choices: white, black, others, and unknown.
Undercounts are most problematic for Native Ameri-
cans and Hispanics. The undercount of Native Amer-
icans, a not-very-populous group that may be receiv-
ing particularly poor quality care, makes studying
their care particularly difficult. Even the “new” Medi-
care race categories pose problems, since most fed-
eral race coding schemes (including the National
Death Index and the Census) distinguish between
race (white, black, Asian, North American Native)
and ethnicity (Hispanic heritage or not). Thus, peo-
ple can be white Hispanic, white non-Hispanic, and
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so on. In Medicare, a person of Hispanic heritage is
so classified, regardless of race. Despite these prob-
lems, Medicare data are crucial for studying racial
disparities in health care because most commercial
insurance databases do not record race.

Although Medicare knows each beneficiary’s
residential address, standard research files indicate,
at most, state, country, and zip code of residence.
Socioeconomic status (SES) indicators, such as
income and education, are not directly available, but
can be proxied from census data (such as median
income or percent with less than a high school
diploma) merged in at the zip code or census-
tract level.

Nearly one-fifth of Medicare FFS beneficiaries are
also dually entitled to Medicare and some form of
Medicaid benefit. Medicaid benefits, such as pharma-
ceuticals and nursing home care, frequently supple-
ment, rather than substitute for, Medicare utilization,
and most, but not all, Medicaid beneficiaries can be
identified in Medicare through the denominator file
variable “state buy-in”, an indicator of participation
in one of eight [9] programs. These programs pro-
vide a variety of benefits ranging from help in paying
Medicare premiums through full Medicaid coverage.
The Medicaid eligibility variable (“state-buy-in”) is
often treated as an indicator of poverty. Researchers
write, for example, that “the effect of factor X dis-
appears ‘after controlling for’ Medicaid enrollment
(or poverty)” However, “state-buy-in” does not iden-
tify all Medicaid enrollees, nor does it coincide with
a coherent definition of poverty. While all states’
Medicaid programs require income less than twice
the federal poverty level, program income thresholds
differ. Further, even for those entitled to Medicaid,
enrollment requires a request. Thus, this variable
identifies some, but not all, low-income elderly, and
some, but not all, Medicare beneficiaries who also
receive Medicaid benefits.

The group health plan master file contains data
on beneficiaries who have ever been enrolled in a
Medicare Advantage (managed care) organization,
including dates of enrollment and changes in enroll-
ment, as well as the specific plan(s).

Utilization Data

One of the most challenging aspects of studying
Medicare utilization is figuring out how health care

is divided across files. For example, emergency room
(ER) care is stored in inpatient files (such as the Med-
PAR) if the ER use results in a hospitalization, but
is stored in the “outpatient” file if it is not followed
by a hospitalization. Likewise, the meaning of “out-
patient” is not the opposite of “inpatient”. Medicare
files are divided by type of care and billing form.
Claims from providers that bill using the UB-92 will
be in different files than claims from providers that
bill on CMS-1500 forms. Some patients are treated
on an ambulatory basis by facilities that bill using
the UB-92. Those bills will be found in the Outpa-
tient file, whose name refers to hospital outpatient
departments. Other providers that treat ambulatory
patients use the CMS-1500 form for billing. The Car-
rier file, formerly called the physician/supplier Part B
file (also, the national claims history file, or NCH)
contains bills from physicians for care provided in
any setting, facility bills for care received in free-
standing ambulatory surgical centers, and bills from
other providers, such as nurse practitioners, ambu-
lances, and freestanding laboratories. Thus, the same
type of procedure (such as a cataract excision) resides
in the Outpatient file if done in a hospital outpatient
department, or in the Carrier file if done in a free-
standing ambulatory surgical center.

Finding all procedures or health care system
encounters, requires examining both “facility” and
“physician/provider” bills. And, payments for a sin-
gle procedure often generate more than one bill.
For example, there will be a facility or technical
charge for an x-ray (for using the x-ray machine,
for the machine technician, the film, etc.) and a pro-
fessional charge for the radiologist who reads the
x-ray. We are most familiar with this pattern in the
context of inpatient hospital stays. The MedPAR con-
tains facility bills for an inpatient hospital stay (the
technical charges) and the Carrier file will contain
bills from physicians who care for the patient during
the stay – emergency room physicians, radiologists,
surgeons, anesthesiologists, cardiologists, and so on.
These physician bills are the professional compo-
nents. If users of administrative data are not careful,
they can overcount services by counting technical and
professional bills separately rather than combining
them into a single service.

Coding protocols for procedures are entirely dif-
ferent depending on whether they appear in facil-
ity bills (ICD-9) or are coded from doctors’ offices
(current procedural terminology, CPT-4). While the
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ICD system is public and can be obtained from
NCHS [10], CPT is copyrighted by the American
Medical Association and its use in any product or
publication requires a license [11]. The CMS-1500
bill, used both for some facility and all physician
bills, codes services (procedures) in three compo-
nents: the code, the modifier, and the units. Some-
times both physician and facility bills for the same
service are submitted on the same CMS-1500 form.
The code modifier provides further details on the
service provided, or by whom. Modifiers answer
questions such as: was the surgery on the left or
right eye? Is the bill for a facility, a physician, or
both? Is it for a solo surgeon or an assisting sur-
geon? Information in the units field on the CMS-1500
varies by provider type, such as: ambulances are paid
by the mile, anesthesiologists by the minute, and
radiation oncology by number of treatments. For peo-
ple in special circumstances, additional information
is often available in separate files. All Medicare-
certified nursing homes must collect extensive data
on the health status on admission, at least quar-
terly, and with a significant change in status, for all
patients. These data are available to researchers in the
minimum data set (MDS) [12]. Another interesting
Medicare data source is the outcome and assessment
information set (OASIS) data for home health care.
OASIS records the problems being addressed, and
comorbidities and functional impairments used to
determine a Home Health Resource Group (HHRG)
global payment for all home health services during a
60-day “episode” [5].

Some information used to justify submitted bills
(such as proof of an inconclusive CT scan prior to
PET scan) is not available in Medicare research files.

Provider Files

Medicare also maintains substantial information about
the providers with which it contracts, such as physi-
cians, hospitals, skilled nursing facilities, providers of
durable medical equipment. The provider of services
file (POS) contains information about institutional
providers including freestanding ambulatory surgical
centers. Cost report files contain detailed information
about the costs to institutions of providing care for
Medicare beneficiaries and how that care relates to
payments received. The Unique Physician Identifica-
tion Number (UPIN) master file contains information

about physicians such as their specialty and practice
location. These files can be ordered directly from
CMS [13].

Special Linked Data Files

The Medicare Current Beneficiary Survey (MCBS) is
a rolling panel survey of a nationally representative
sample of about 18 000 beneficiaries, living inde-
pendently or in long-term care facilities. This CMS
survey provides longitudinal information on health
service utilization, insurance, and expenses (by all
payers, not just Medicare); health and functional sta-
tus; income, assets, living and care arrangements, and
quality of life. These data are linked to Medicare’s
usual files and provide a unique source of data relat-
ing to the total health and health spending profile of
Medicare beneficiaries [14].

The Surveillance, Epidemiology, and End Results
Program (SEER), run by the National Cancer Insti-
tute (NCI), collates data from participating cancer
registries across the United States (see Cancer Reg-
istries). These registries have been linked with Medi-
care data in a data system called “SEER-Medicare”,
maintained by the NCI [3] or [15]. The linked SEER-
Medicare files contain all incident cancer cases iden-
tified in SEER registries and all Medicare claims
for these cases from 1986 forward (regardless of
when they were diagnosed with cancer). A com-
parison file is also available, containing Medicare
claims for a similar period of time for a 5% random
sample of Medicare beneficiaries living in cancer
registry areas.

The United States Renal Data System (USRDS),
begun in 1988 and jointly funded by the National
Institute of Diabetes and Digestive and Kidney Dis-
eases and CMS, collects, analyzes, and makes avail-
able for extramural research, substantial information
in addition to Medicare’s usual data. USRDS data
describe entry into the program (date, initial treat-
ment modality, cause of renal failure, and other health
factors) and follow-up information (such as wait-list
status for transplant, changes in treatment modality,
and the date and cause of death) [16].

Data Artifacts

Observed changes in patient care data over time can
be artifacts. Across the history of the Medicare pro-
gram, there have been numerous changes in coding,



Medicare Data 5

payment, and recording of services. It is important
to distinguish true secular changes from mere data
changes. For example, since 1991, the number of pre-
ventive services covered by the Medicare program
has steadily increased. Colorectal cancer screening
became a covered benefit in 1998 and prostate cancer
screening in 2000. Previously, when only diagnostic
testing (but not screening) was covered, some people
received screening coded as a diagnostic work-up,
some paid for screening themselves (and the bills
did not show up in Medicare), and many simply
were not screened. Thus, it is hard to disentangle
changes in screening and diagnostic testing from
changes in how these tests appear in Medicare’s bills.
Secular trends can be subtle. Both absolute and rel-
ative payment rates have changed during the 1990s,
particularly for physicians. The prospective payment
system, applied to hospitals since the 1980s, has now
been expanded to include hospital outpatient services,
home health, and skilled nursing facility care. Over
this same period, Medicare managed care expanded
considerably and then retracted slightly. Racial cod-
ing shifted from four levels to seven. Diagnostic
codes, presently using the ICD-9-CM coding system,
and becoming richer every year, will eventually con-
vert to the ICD-10 formats already in use in other
countries. The lack of a simple map between ICD-9
and 10 will complicate longitudinal analyses, just
as other changes in the population and their data
always have.

Although beneficiaries receive their care under
a unique health insurance claim (HIC) identifier,
a small percentage (no more that 2% per year)
change HICs (most commonly due to a change
in marital status for people with Medicare enti-
tlement via their spouse’s work history). In lon-
gitudinal studies, researchers should request files
from CMS that substitute a single identifier for
each person.

With over 40 million Medicare beneficiaries,
10 million hospitalizations and more than a bil-
lion total annual claims for Medicare enrollees,
researchers will inevitably find data problems, such
as an occasional person whose age exceeds that of the
oldest living person in the Guinness Book of World
Records, or service care dates that extend beyond the
date of death. Likewise, while problems are occa-
sionally found, zip codes of residence are accurate
for 99.9% of beneficiaries.

Data Availability for Research

Although CMS’s primary obligation is to serve and
protect beneficiaries, it also invests in making Medi-
care data available to researchers. Given the huge
scope of data, it is often adequate (and prudent) to
conduct research on Medicare’s 5% research files.
These files consist of all the data for a random 5%
sample of Medicare enrollees.

Most academic researchers use research identifi-
able files (RIFs). Such data are not sold, but only
loaned (on a need-to-know basis) for use in answering
a specific question via an approved research proto-
col. Additional questions may be pursued only with
explicit permission. Files have a data retention date,
after which they must be returned or destroyed. The
data may not be used for direct marketing, to make
unauthorized patient contact or to identify individu-
als. CMS reserves the right to preview presentations
and publications, with the key concern that no publi-
cation release information on a subgroup with 10 or
fewer people. CMS funds a Research Data Assistance
Center (ResDAC) to help researchers obtain and
appropriately use CMS data [17]. In the past, bene-
ficiary data were also available as encrypted files for
use by researchers or research projects that could not
meet the threshold set by CMS for using identifiable
data. Owing to privacy rules of the Health Insurance
Portability and Accountability Act of 1996 (HIPAA),
CMS no longer sells the beneficiary encrypted files,
substituting limited data sets (LDS).

In summary, Medicare data is a unique source
of data for health services research, due to its
richness, size, national representativeness, continuity
of enrollment, presence of race and date-of-death
data, well-documented history of use in research, and
the help available for researchers wishing to use it for
studies of potential benefit to Medicare beneficiaries.
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Medicines and Healthcare
Products Regulatory
Agency (MHRA)
(Formerly MCA)

The UK Medicines and Healthcare products Regula-
tory Agency (MHRA) was established in April 2003
by the merger of the previously existing Medicines
Control Agency (MCA) and Medical Devices Agency
(MDA). The MHRA has responsibility for the protec-
tion and promotion of public health through the reg-
ulation of the safety, quality, and efficacy of human
medicines (see Drug Approval and Regulation) and
for monitoring medical devices. The Agency has a
Medicines and a Devices Sector – most of the statis-
tical involvement in terms of professional statisticians
within the Agency comes from within the medicines
sector and this article focuses on those activities.
Before the merger, the Devices Agency used outside
statisticians for some assessments of applications for
new products.

The MHRA safeguards public health by ensuring
that all medicines on the UK market meet the appro-
priate standards of safety, quality, and efficacy. It
does so using duties and powers in the Medicines Act
1968, as well as with more recent UK and European
legislation.

The principal functions of MHRA are the assess-
ment of applications from pharmaceutical compa-
nies for marketing authorizations, surveillance of
medicines after they are on the market (see Postmar-
keting Surveillance of New Drugs and Assessment
of Risk), inspection of manufacturing sites, enforce-
ment of the Medicines Act, and the setting of public
health standards for pharmaceutical products.

The regulatory framework within which the
MHRA operates includes:

1. The Licensing Authority is stipulated in the
Medicines Act as the Ministers responsible for
Health in England, Scotland, Wales, and North-
ern Ireland, together with the Agriculture Minis-
ters for veterinary medicines. This is invariably
unified through decisions and actions taken by
the Secretary of State for Health in England, act-
ing through the MHRA for the entire United
Kingdom. The MHRA is the executive body

that carries out the decisions of the Licensing
Authority. In coming to decisions as to the grant-
ing of a marketing authorization or action on
changes to current authorizations, Ministers may
take expert advice from the Committee on Safety
of Medicines (CSM) and from the Medicines
Commission (MC).

2. The Medicines Commission, an independent body
with academic, consumer, and industry repre-
sentation, also advises the Secretary of State
on a wide range of policy matters related to
the regulation of medicines, including veteri-
nary medicines. It also hears representation from
applicant companies appealing against advice
from the CSM.

Each year around 20 to 30 new biotechnologic
and other products receive a centralized European
authorization, valid in all European Union (EU)
Member States. Assessment is coordinated by the
European Medicines Agency (EMEA), but profes-
sional staff of the EU Member States carry out the
scientific evaluation. The MHRA is one of the lead-
ing evaluators in this European system. For these
products, the European Community is the Licens-
ing Authority. Their licensing decisions are based
on recommendations from the Committee for Human
Medicinal Products (CHMP), which is the expert
advisory group to the EMEA and comprises experts
from each Member State. However, the MHRA acts
on behalf of the UK licensing authority to under-
take postmarketing surveillance for products mar-
keted in the United Kingdom, as this is a national
responsibility.

In summary, the key activities of the MHRA
(Medicines Sector) are to implement and enforce
domestic European legislation, by

1. issuing and maintaining marketing authoriza-
tions, which allow drugs to be marketed in
the United Kingdom, thus protecting the health
of UK citizens; this involves issuing national
licenses, and participating in the centralized and
mutual recognition of European licensing sys-
tems;

2. monitoring medicines on the UK market for
adverse reactions and taking any necessary action
in domestic and international contexts to protect
UK public health;

3. controlling the sale and supply of medicines;
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4. inspecting and licensing manufacturers and
wholesalers to ensure the quality of medicines
on the UK market;

5. enforcing Medicines Law;
6. advising Ministers on medicines regulation in

both the domestic and European as well as wider
international context;

7. publishing, through the British Pharmacopoeia,
standards relating to the quality of medicines.

The Agency has approximately 750 staff, which
as of 2004 includes four professional medical statisti-
cians working on licensing issues and one working on
pharmacovigilance. There are additional professional
academic statisticians who sit on advisory boards
such as the Committee on Safety of Medicines and
the Medicines Commission. In 2003, the Agency
issued 24 licenses for new drugs, 1500 abridged
licenses, and 21 000 variations to licenses, as well
as receiving and analyzing nearly 17 000 adverse
drug reaction reports from the United Kingdom and
44 000 from outside the United Kingdom. All of
this work is in the context of increasing complexity
in the scientific assessment work that needs to be
undertaken and in the legal and administrative envi-
ronment.

Licensing work also includes control of clinical
trials, parallel imports, and registration of homeo-
pathic medicines.

Postmarketing surveillance is a particularly impor-
tant area for protecting public health and is an essen-
tial part of the regulatory process. New medicines
inevitably come to market with limited experience.
After licensing, safety issues not identified from clin-
ical trials are recognized and acted upon. Statistical
work has been done to improve the processes of ana-
lyzing these adverse reaction reports so that the UK
system for surveillance tends to be more developed
than those of most other Member States, and hence,
it tends to be at the forefront of action required to
protect public health. The Licensing Authority has
powers to revoke or suspend licenses compulsorily.
These issues tend to be controversial and complex in
nature, and attract considerable media attention.

Further information about MHRA is available
from their web site at www.mhra.gov.uk.

STEPHEN J.W. EVANS & SIMON J. DAY



Medico–Legal Cases and
Statistics

Medico–legal statistics concerns the use of bio-
statistical and epidemiologic data and methods in the
context of law and government regulatory policy.
Statistical reasoning has an important role in legal
cases concerning product liability, compliance with
environmental or occupational health and safety
laws, the safety and efficacy of drugs and medi-
cal devices, medical malpractice, and the determi-
nation of safe levels of exposure to potentially toxic
chemicals (see Risk Assessment for Environmen-
tal Chemicals). Recently, several Lanham Act cases
concerned with commercial issues such as fair adver-
tising, validity of patents, and intellectual property
have involved biostatistical evidence. An introduc-
tion to the area is given here with citations to relevant
cases and references.

Malpractice

An illustrative example is the Brochner malpractice
case, 724 P2d 1293 S.Ct CO (1986). In 1964 a hos-
pital granted Dr Brochner staff privileges and over
the next few months he performed numerous cran-
iotomies. The hospital noticed that tissue samples
from many of his patients appeared normal and in
1966 required that he obtain outside consultation. In
March of 1968 the hospital learned that 14 of 28
tissue samples of his neurosurgery patients were nor-
mal. In November 1968 Dr Brochner performed a
craniotomy on Ms Cortez, who was injured. She filed
suit against both the doctor and the hospital. At the
trial her expert testified that an acceptable rate of
normal tissues amongst patients who were operated
on was one in 100 and that two of 28 should require
investigation. Essentially, the expert used the Poisson
approximation to the binomial to conclude that the
probability of observing two or more normal tissues
in a sample of 28 when each sample has probability
0.01 of being normal is about 0.001. Similarly, the
probability of observing 14 or more normal tissues
assuming Dr Brochner was selecting patients accord-
ing to the standard medical criteria was less than one
in a billion. Thus, the statistical evidence strongly
supported the plaintiff’s claim that Dr Brochner was
subjecting healthy patients to the risk of surgery, and

the time when the information was known showed
that the hospital was aware of it but did not revoke
his right to operate. Both parties settled with the
plaintiff and the lawsuit concerned whether the doctor
was liable to the hospital’s insurer. As both parties
were at fault, he did not need to indemnify the com-
pany. McClellan [28] discusses recent developments
that have eased plaintiffs’ burden of proving that they
were harmed by a doctor’s or hospital’s negligence.
Early cases often required that an expert state that
had the negligent act not occurred to a “reasonable
medical certainty” the patient would not have been
harmed. In Hamil vs. Bashline, 392 A.2d 1280, S.Ct
PA (1978) the court awarded damages when an expert
testified that the patient would have had a 75% chance
of survival had the negligent act not occurred. Thus,
probabilistic estimates of the survival probabilities
assuming the appropriate medical treatment should
play a role in determining liability and in the award
of damages.

Food and Drug Law

In the United States new drugs have to be approved
for safety and efficacy by the Food and Drug
Administration (FDA). To demonstrate efficacy
the FDA requires companies to submit two well-
controlled studies establishing that the drug will have
the effect it purports to have (see Drug Approval
and Regulation). The formal regulations, approved
of by the Supreme Court in Weinberger, 412 US
609 (1982), state that the study plan should describe
the selection of subjects, and use randomized
treatment assignment to assure the groups are
balanced with respect to relevant covariates such
as age, prior health, etc. Usually, the efficacy
requirement is satisfied by a placebo-control double-
blind (see Blinding or Masking) study (see Clinical
Trials, Overview) [38]. Both the US and UK have set
up a multiphase process (21 CFR Sec. 314.126; [32]),
first to determine the pharmacodynamic properties
and safe dose level of a new drug and finally
to assess its efficacy. In response to the rapid
increase in AIDS cases, the FDA modified some
of its previous procedures to bring new therapies to
patients and clinicians [34], and may place greater
weight on the preferences of the diseased population
in weighing the factors of safety and efficacy
in its future risk–benefit decisions. The standards
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of the countries in Europe are being unified by
the European Community. At least one clinical
trial demonstrating efficacy is required, and recent
developments are reviewed by Kingham et al. [21]
and Lewis et al. [26]. The standards for approving
medical devices are described by Horton [20] and
Munsey [31].

Statistical issues often arise in assessing clinical
trials. There has been a substantial literature con-
cerning whether one-sided or two-sided tests should
be used [9, 11, 22, 33] (see Alternative Hypothe-
sis). The FDA typically requires two-sided tests when
the controls receive a standard regimen and the new
drug is given to the experimental group. Even with
placebo controls, two-sided tests are used to ensure
that any observed effect in the treatment arm exceeds
the “placebo effect”. One-sided procedures have been
developed for bioequivalence studies (see Equiva-
lence Trials) where the null hypothesis is nonequiv-
alence and the alternative is equivalence [8]. Often
proponents of a new drug or procedure assert that
studies that do not show an effect should not detract
from studies showing a statistically significant effect
or that the drug is effective in several subgroups of
patients and should be approved for them. The appro-
priate approach is to account for the number of tests
made using multiple comparison methods [18, 30]
and to use combination methods, such as Fisher’s
summary chi-square, to pool the results of several
studies (see Meta-analysis of Clinical Trials).

Generic drugs are regulated under different laws
from those for new drugs [12]. Typically, a manufac-
turer needs to show that its product is bioequivalent
to one which was approved as a new drug previ-
ously. This means that the drugs deliver the same total
dosage over a reasonable time period, e.g. 24 h, and
reach similar maximum dose levels at about the same
time. Both the FDA and the producer of the original
older drug may challenge the data used to support
the claim of bioequivalence. The FDA requires a
generic equivalent to carry out full testing if its excip-
ients differ from the already approved drug. In Premo
vs. US, 475 F.Supp. 52 (SD NY, 1979) the district
court accepted the Premo’s equivalence data (repro-
duced in the opinion and in Gastwirth [14, p. 775]);
however, the appellate court reversed this decision
and held that the lower court wrongly substituted its
opinion on safety and efficacy for that of the FDAs.
The data showed that the established drug reached a

higher dose level than the generic one and reached
that level faster.

In addition to approving drugs, in the US the
FDA also monitors adverse effects by requiring man-
ufacturers to report them. As the ascertainment of
cases and the follow-up information on the patient’s
status are often incomplete, standard methods for esti-
mating relative risks are inappropriate. Brookmeyer
& Yasui [4] discuss the use of passive surveillance
(see Follow-up, Active Versus Passive) disease reg-
istry data and show that it is a useful supplement to
cohort data.

Unfair or False Advertising Cases

The Lanham Act is designed to ensure that con-
sumers receive reasonably accurate information about
products and to assure manufacturers who produce
reliable products that others will not unfairly infringe
on the good reputation of those products. A num-
ber of major cases have dealt with the fairness or
accuracy of advertisements, especially comparative
advertisements where one firm asserts that its prod-
uct is superior to that of a named competitor. There
are two types of cases. In the first case firm A claims
that its product is superior to firm B’s but does not
assert that this claim is supported by scientific stud-
ies. The second type deals with cases in which firm A
has stated or implied that the claim of superiority is
supported by scientific studies. As the law recognizes
that the public takes a skeptical view of unsupported
claims, the burden on the complaining party, firm B,
differs in the two types of cases.

In the first type, to challenge successfully an
unsupported claim that A’s product is better, firm B
needs to show that the claim is false. This is usually
accomplished by firm B carrying out an appropriate
study demonstrating that the two products are equiv-
alent, i.e. it is not necessary for firm B to show that
its product is better – only that A’s product is not
superior. In the second class of cases, firm B needs
only prove that the studies firm A relied upon to sup-
port its claim were not sufficiently reliable to permit
one to conclude, with reasonable certainty, that the
claim of superiority was established. Sometimes a
suit is brought by a competitor, but the Federal Trade
Commission (FTC) and FDA also regulate health
claims [36]. In the case of Stirling Drug Inc. vs. FTC,
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741 F.2d 1146 (9th Cir., 1984), the firm’s advertise-
ment claimed that Bayer aspirin was pharmaceuti-
cally superior to its competitors with regard to purity,
freshness, and speed of disintegration, and indicated
that these claims had been established by scientific
means. Stirling Drug had based its claim on one in-
house study, and the FTC’s analysis indicated that the
claims of superiority regarding the named attributes
were not supported. The opinion noted that the FTC
requires a well-controlled clinical trial where real
patients having actual symptoms are studied. There
should be a written protocol (see Clinical Trials Pro-
tocols), double-blinding, and a placebo control, and
the data should be analyzed by established statisti-
cal techniques and indicate both statistical and clin-
ical significance (see Clinical Significance Versus
Statistical Significance). In Proctor & Gamble vs.
Chesebrough Pond Inc., 747 F.2d 114 (2d. Cir., 1984)
the first firm claimed its hand lotion was superior to
the product made by its competitor, while the second
firm only advertised that no other lotion was better.
After describing the studies [14, pp. 777–780], the
court decided that neither company’s evidence was
sufficiently strong to justify a preliminary injunction,
which would have stopped the advertisements of the
party with the much weaker case until the full trial
was held. Related cases involving the soundness of
the clinical studies supporting advertising claims are
Thompson Medical Co. vs. Ciba Geigy, 672 F. Supp.
679 (SD NY, 1985), ALPO Pet Food Inc. vs. Ralston
Purina, 913 F.2d 958 (DC, 1990), McNeill-P.C.C.
vs. Bristol Myers Squibb Co. 938 F.2d 1544 (2d Cir.,
1991), and Mylan Labs. vs. Metkari 7 F.3d 1130 (4th
Cir., 1993). The Rhone-Poulenc Rorer Pharm. Inc. vs.
Marion Merrell Dow Inc. (8th Cir., 1996) case dis-
cussed the bioavailability studies of their drugs for
treating hypertension and angina. RPR launched its
drug, Dilacor, by advertising that it was the same but
cheaper than MMD’s older drug, Cardizem. MMD’s
counteradvertising campaign first said that Dilacor
had only 50% the bioavailability of Cardizem, but
later advertisements based on a better study claimed
that Dilacor delivered only 74%–81% of the relative
doses of Cardizem. RPR claimed that its own studies
refuted the study of MMD; however, the court found
that even RPR’s study showed a reduced bioavailabil-
ity of its drug. The court found that RPR’s original
advertisement falsely represented that the two drugs
were interchangeable. It also noted that the early
MMD advertisement violated the Lanham Act as it

exaggerated the shortfall in bioavailability; however,
it found that the advertisements based on the later
study were not false and declined to award RPR mon-
etary damages because it had not demonstrated injury.
In addition to the biostatistical evidence, MMD noted
that surveys showed that consumers viewed the prod-
ucts as similar. When one product infringes on
another, it is typical for the opposing party to intro-
duce survey evidence demonstrating that consumers
are confused by an alleged similarity [7; 14, Chap-
ter 9; 16]. Such evidence is also helpful in estimating
monetary damage, as the fraction of consumers who
are misled may be regarded as the potential market
share the infringer unfairly gained.

Environmental and Occupational Health

To protect public health, governments regulate the
amount of potentially toxic chemicals that workers
can be exposed to [37], that can remain in foods
treated by pesticides [6] or that can escape into the
atmosphere or water supply. Reporting and self-
monitoring requirements are used to ensure the safety
of the public [35, 41]. The responsible government
agencies prescribe the sampling procedures that need
to be carried out by the producers in great detail.
The decision in US v. Marine Shale Processors, 81
F.3d 1329 (5th Cir., 1996) shows that courts are not
sympathetic to a firm that does not carry out sam-
pling according to the specified procedures and later
claims that it was unable to carry out the appropri-
ate statistical tests. In that case the firm’s own daily
data indicated that it had violated a regulation on 27
occasions.

Many cases concern the scientific underpinning
of a mandated exposure limit [13]. In the US, when
human data as well as animal experiments indicate
an increased risk of a serious illness, e.g. cancer,
courts typically uphold a regulation [as in Society of
Plastics Industry Inc. vs. OSHA, 509 F.2d 1301 (2nd
Cir., 1975)]. Much more controversy arises when
there are little data on humans demonstrating that
reducing exposure to the proposed level will actually
lower the expected number of cases. In particular,
whether or not one assumes a threshold below which
no harm is expected to occur can lead to very different
estimates of toxicity and corresponding safe dose lev-
els [40] (see Dose–Response Models in Risk Anal-
ysis; Extrapolation, Low Dose). The basic literature
is reviewed by Armitage [2], Krewski & Brown [23],
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and Leape [25]. Recent developments are summa-
rized in Lin et al. [27], who reiterate the fact that
many models approximately fit the data and that
current bioassay experiments (see Biological Assay,
Overview) do not enable one to estimate reliably the
interspecies concordance – the percentage of chemi-
cals classified the same way in tests on both species.
The problem of unchecked or unverifiable assump-
tions arises in other applications of risk assessment
in environmental safety [15].

In addition to regulation, members of the pub-
lic who are exposed to toxic chemicals due to the
negligence of a producer or user of the agent can
file a tort law claim. In these cases plaintiffs may
rely on epidemiologic studies demonstrating that the
chemical in question increases the risk of a serious
disease. Data from several such cases are reported in
Gastwirth [14, Chapter 14]. Harr [17] describes the
litigation arising from contamination of well water in
Woburn, MA, and Finkelstein & Levin [10, p. 298]
discuss the data from the original case–control
study [24]. The current status of the law is compre-
hensively treated by Boston [3].

Related Developments

The use of statistical evidence in legal cases has
affected the patients or respondents in surveys and
case–control studies. The protection of the confiden-
tiality that investigators can provide participants has
been questioned as litigants have sought to subpoena
the raw data underlying a publication. In Lampshire
vs. Proctor & Gamble, 94 FRD 58 (ND GA, 1982),
the district court did not allow access to the patients
who served as cases and controls in a study of Toxic
Shock Syndrome. The Centers for Disease Control
(CDC) argued that allowing the defendant firm to
reinterview would diminish the likelihood of partici-
pation in future studies. Indeed, the CDC submitted a
survey of the respondents; a high percentage did not
wish to be interviewed by the defendant. The court
noted also that there was no reason for respondents
to give biased answers, as the cases desired the best
treatment, and even the controls would only benefit
from good science. For further examples and discus-
sion see Cecil & Boruch [5] and McHale [29], where
cases arising from the lack of informed consent in
clinical trials are cited.

Outside of violations of informed consent rules,
there have been few cases involving liability for

injury or death of patients in clinical trials of new
drugs. The death of five patients in the clinical trial
of the experimental drug fialuridine, however, led to
the case In re Fialuridine Products Liability Litiga-
tion, 163 FRD 386 (DC, 1995), which was settled.
Traynor [39] summarizes the principles of products
liability law and notes that drug manufacturers of pre-
scription drugs have the benefit of the “learned inter-
mediary rule” that assumes that once the appropriate
health care provider has been notified of the potential
risks as well as benefits of the drug, the patient also
has been properly warned. The rationale is that the
physician will take into account the situation of the
specific patient. The rule was developed for prescrip-
tion drugs but may not be relevant for clinical trials
as double-blinding means that the treating physician
does not know whether the patient is receiving the
drug or the placebo. Hence, they can no longer be
considered a “learned intermediary” who is in a posi-
tion to explain the precise risks of the treatment to
the patient. Disentangling the effect of the drug from
that of the illness may prove difficult, so patients may
have a problem in showing that the experimental drug
was the legal cause of their injury [39]. Ethically,
patients should be compensated for injuries they sus-
tain in clinical trials, but, pragmatically, payment for
the costs of medical treatment by the sponsor of the
investigational drug may deter claims.

Several cases have been filed alleging that enroll-
ees were not informed of the nature of the risks
involved, the financial interests of the sponsors and
investigators, or of adverse effects suffered by other
patients in the clinical trial. One such case, Wright
versus Fred Hutchinson Cancer Research Center,
described in Jedrey and Feltz [19], is still pending.
Subsequent to the filing of the case in 2001 the
Center, however, announced changes in some of its
policies. Now researchers are prohibited from stock
ownership or royalties on patents that are directly
and significantly related to their research. Moreover,
they are required to disclose to participants and in
publications any financial interests have in for-profit
companies sponsoring clinical trials. Another pending
case, Grimes versus Kennedy Krieger Institute, 782
A. 2d 807 (Md. 2001), an affiliate of Johns Hopkins,
deals with the legal duty or responsibility researchers
owe to participants. The investigators were examining
techniques for removing lead paint from residential
buildings and planned to measure the amount of lead
in the blood of children to assess the effectiveness of
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partial lead-paint removal. Allegedly, the researchers
encouraged participating landlords to rent to families
with small children even though they were aware
that they knew of the hazards of lead dust expo-
sure to children. The informed consent document,
which simply stated that “lead poisoning in children
is a problem” and that exposure to lead in paint,
dust, and soil is a major source of exposure in chil-
dren allegedly failed to mention the known harmful
effects of lead. The trial court dismissed the com-
plaint but the appeals court reinstated the negligence
suits. It held that the consent agreement imposed spe-
cial duties on the researcher to ensure that participants
are given appropriate warnings of the risks involved.

Recent Developments

The requirement in the U.S. that companies inform
employees of medical and scientific literature show-
ing a link between disease and exposure to a toxic
chemical was adopted in a recent French case,
Garafalo versus IBM France, Tribunal de Grande
Instance de Nanterre, 11/25/03). The court appointed
a medical expert to assess claims that several of the
plaintiff’s ailments were due to his exposure to unac-
ceptably high levels of ethylene glycol and other toxic
solvents in “clean rooms” designed for dust-free man-
ufacture of semiconductors.

While most false advertising cases are brought
by producers of competing products, governmental
agencies can also sue manufacturers who make false
safety claims. The case, Spitzer versus Dow Agro-
Sciences LLC, N.Y. Sup. Ct. No. 403920/03 was
settled after the firm agreed to pay $2 million for
violating an earlier consent decree prohibiting it from
claiming that its insecticide containing chlorypyrifos
was safe. In 2000, the U.S. Environmental Agency
had arranged for a phasing out of the use of the
chemical in homes and gardens. Scientific studies that
showed the chemical was toxic to the brain and ner-
vous system, especially to the development of infants,
played a role in establishing that the chemical was
harmful.

The importance of proper statistical analysis of
data will play a role in a case [1] currently being lit-
igated in which a generic drug company, Ivax Corp.
is challenging the validity of a clinical study used
by Eli Lilly & Co. when it obtained its patent on
Zyprexa, a drug used to treat schizophrenia. In the

clinical study of 40 beagles of both sexes were ran-
domly assigned to be given Zyprexa, the current drug
(called molecule 222) or a placebo. Lilly used the
study to show that its drug was significantly different
from 222. The study was originally designed to assess
whether the new drug had lower toxicities for blood
disorders as the company thought that 222 would
cause them. It turned out that neither drug nor placebo
caused them; however, a Lilly scientist noted that
some of the female dogs given high doses of 222 had
higher cholesterol levels. Allegedly, Lilly reanalyzed
the data comparing these eight females obtaining a
statistically significant difference in cholesterol lev-
els between them and the other females. This result
was used to demonstrate that its drug differed from
222. The generic companies claim that Lilly did not
inform the FDA that the effect was not seen in male
dogs, indicating that the effect might not translate
to humans. Lilly argues that it gave all the infor-
mation to the FDA and that its drug was a major
improvement in treatment. From a statistical view,
the propriety of examining the data to find a hypoth-
esis to test and testing it on that very data may be an
issue. The number of other effects tested, the multiple
comparisons problem, may deserve consideration by
the court. From a legal viewpoint, it will be interest-
ing to compare the court’s ultimate decision with the
decision in Warner-Lambert versus Hechler, 787 F.2d
147 (3rd Cir. 1986). In that case, the court rejected
the claim that a drug was effective based on statisti-
cally significant results of tests on six subgroups as
the firm had conducted 240 comparisons.
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Mendel’s Laws

The beginning of the science of genetics is usually
credited to the experiments of Gregor Mendel, first
announced in 1865 [2, 3]. However, while Mendel
understood the importance of his own discoveries [1],
the rest of the scientific community at the time did
not, even though Mendel’s experiments were beauti-
fully designed, and his interpretation was clear and
insightful. Mendel’s work was virtually ignored until
1900 when it was finally rediscovered. The reasons
for this initial neglect were twofold. First, Mendel
was the first to focus on the numerical relationships
among traits appearing in the offspring of carefully
controlled matings. This quantitative approach, with
its emphasis on probability and ratios, was unfamil-
iar in biology, which was at the time thought to
be too complicated to be understood with such sim-
ple models. Secondly, Mendel used discrete instead
of continuous characters for his experiments, and
introduced the important concept that the hereditary
material was particulate. Because the emphasis in
discussions of heredity at the time was focused on
interspecific differences, and because the prevailing
view of heredity was that of continuous variation
which blended from one generation to the next, it was
difficult for scientists of the time to understand the
relevance and importance of the results of Mendel’s
experiments on a series of simple, discrete traits.

Mendel performed his experiments with seven
discrete traits in the garden pea, each trait consisting
of a pair of alternative, visible, and highly contrasting
characteristics. For example, the seed color could
be green or yellow, or the flowers white or violet,
with each plant producing just one type of seed or
flower color. By focusing on single, dichotomous
traits and controlled matings, Mendel was able to
use these experiments to determine the underlying,
discrete basis of the hereditary system in the pea, and
by extension, ultimately the fundamental hereditary
system of most organisms. He postulated two laws to
explain his results.

Mendel’s first law, or the law of segregation,
describes the inheritance of a single trait, such as seed
color. On the basis of the results of his experiments,
Mendel postulated the existence of discrete factors
that are transmitted from parent to offspring through
the gametes (the egg or ovum, sperm, or pollen),
with different factors determining the characteristics

of different traits. These inherited factors are now
called genes. Mendel also hypothesized that these
factors occur in pairs in individuals, and that when
a gamete is formed, only one of the two factors is
included in the gamete. Furthermore, on the basis
of his numerical results, he postulated that each
of these two factors has an equal chance of being
passed to an offspring, that is, the factors segregate
during the production of gametes (meiosis), and that
gametes thus have only one of each pair of factors.
In addition, he proposed that these particulate factors
persist in an unchanged state through successive
generations of hereditary transmission. Conversely,
when the gametes from the male and female parents
fuse to form a zygote, the doubling of factors is
restored.

Mendel’s second law, or the law of independence,
describes the joint behavior of loci controlling two
different traits. The principle is simple: it states that
the alleles at one locus segregate independently of the
alleles of other loci. This proposition is now known
to be strictly true only for loci that are on different
chromosomes. Because the seven traits that Mendel
used were, in fact, on different chromosomes, the
traits Mendel used behaved in this fashion. Genes
that are on the same chromosome tend to be inherited
together (see Linkage Analysis, Model-based), in
which case this principle will not necessarily hold.

One of the major differences between Mendel’s
two laws and many other quantitative models in the
biological sciences is our understanding of the under-
lying processes leading to the observed data, and our
resulting confidence in our ability to predict numeri-
cal outcomes. While Mendel did not yet know about
chromosomes and the mechanism by which chromo-
somes are packaged into gametes (gametogenesis),
this mechanism is now known to provide the basis
behind the equal probability of transmission to a child
of either member of a pair of genes. Gametogenesis
involves the segregation of the two different members
of a pair of chromosomes (carrying the two different
genes for a particular trait) into two daughter cells,
each with only one chromosome. Gametes are formed
after one more round of duplication of these daugh-
ter cells, but the resulting ratio of gametes carrying
each of the two original genes remains at one-to-one,
resulting in the 50% probability in Mendel’s first law
that a particular gamete contains either of the two
original genes. In addition, different pairs of chro-
mosomes segregate independently in gametogenesis,



2 Mendel’s Laws

leading to the independence of inheritance of genes
on different chromosomes.

To this day, Mendel’s first law still forms the
fundamental basis behind much of genetics. Although
the law is elegant and simple, its consequences are not
simple and can lead to complicated distributions of
traits in populations and pedigrees. Mendel’s second
law is slightly less general since it is not applicable
to genes that are on the same chromosome, or are
at least not far apart on the same chromosome.
However, because of the large size of the genome in
most organisms, the second law usually adequately
describes the behavior of the inheritance of multiple
genes, although there are exceptions for linked genes
(see Linkage Analysis, Model-free). This second

law forms the basis of important assumptions made
in the methodology behind many areas of genetic
analysis (see Polygenic Inheritance; Segregation
Analysis, Classical; Twin Analysis).
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Merrell, Margaret

Born: December 3, 1900, in LaGrange, Illinois.
Died: December 21, 1995, in Shelburne, New

Hampshire.

Margaret Merrell is considered to be among the
most admired of the early teachers of biostatistics.
After graduating from Wellesley College in 1922,
she taught mathematics at the Bryn Mawr School
in Baltimore until 1925. She then entered the Johns
Hopkins University School of Hygiene and Pub-
lic Health as one of the first graduate students in
biostatistics, at the same time beginning a career
as member of the faculty in the department that

would continue until she retired in 1959. She com-
pleted the requirements for a doctorate in biostatistics
in 1930.

Merrell made significant contributions both as a
developer of new methodology and as a consulting
biostatistician for the conduct of infectious disease
clinical trials. Her great legacy, however, was the
standard she set for the teaching of biostatistics to
health professionals. The Johns Hopkins University
awarded her an honorary doctorate in 1981. She was
a Fellow of the American Statistical Association,
the American Association for the Advancement of
Science, and Sigma Chi.
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Meta-analysis in
Epidemiology

Because of the pressure for timely and informed
decisions in public health and clinical practice and
because of the explosion of information in the scien-
tific literature, research results must be synthesized
to answer urgent questions [2, 25, 73]. Principles of
evidence-based methods to assess the effectiveness of
health care interventions and to set policy are cited
increasingly [17]. Approaches to summarizing evi-
dence include narrative reviews, systematic reviews
and meta-analysis.

In general, randomized (controlled) clinical tri-
als (RCTs) provide more useful evidence than do
cohort studies, and cohort studies often provide better
evidence than do case–control studies [137]. Cross-
sectional studies and case series provide a weaker
basis for etiologic reasoning. Because there are usu-
ally too few RCTs available to test clinical hypothe-
ses, and because RCTs are rarely available to test
etiologic hypotheses, particularly for chronic con-
ditions, combining data from observational (cohort
and case–control) studies is often necessary [10, 35,
131, 152, 165] (see Case–Control Study; Cohort
Study).

Scientific Synthesis

In a traditional narrative review of the epidemiologic
or medical literature, subject-matter experts review
studies, decide which are relevant to the particular
topic, and highlight their findings in terms of results
and, to a lesser degree, methodology. The limitations
of this or any approach to a literature review include:
(a) biases in the original studies, reporting and publi-
cation policies; (b) absence in reported studies of spe-
cific data needed for the review; (c) investigator bias
caused by subjective inclusion of studies; (d) uneven
quality of the primary data; and (e) biased interpreta-
tion of outcome [156]. Such limitations have caused
some authors to disregard the results of such reviews
as having been prepared “with disregard for scien-
tific principles” and therefore resulting in misleading
decisions with serious consequences, often affecting
health and quality of life [25, 111].

Systematic review methods have been adopted to
address these problems. Systematic rules for con-
ducting a synthesis include an explicit description

of methodology so that results can be interpreted in
light of biases and limitations [41]. Use of such sys-
tematic rules enables the investigator to refine large
amounts of information, provide estimates of vari-
ables needed for economic and decision analysts, pro-
vide an efficient scientific technique, establish gener-
alizability of scientific findings, assess consistency of
relationships, explain data inconsistencies, increase
statistical power and increase the precision of esti-
mates [14, 25]. The techniques of meta-analysis use
all of the steps of a systematic review, but in addi-
tion include a statistical combination of the results
of previous studies to arrive at conclusions about a
body of research (e.g. [150, 156]). Although system-
atic reviews in general, and meta-analyses specifi-
cally, are not immune to the potential pitfalls of a
narrative review, the technique reduces the possibil-
ity of such errors and explicitly describes potential
limitations (e.g. bias) of the results and interpreta-
tion [3, 112].

The statistical roots of systematic reviews can be
found as early as the beginning of the twentieth cen-
tury [127]. The term meta-analysis was first used in
1976 in the educational literature [69]: “the statistical
analysis of a large collection of results from indi-
vidual literature, for the purpose of integrating the
findings”. Since the method usually uses as “data”
summary statistics derived from published reports
of original studies, it is an analysis of a statisti-
cal analysis (thus, meta-analysis). Meta-analysis is
most useful when individual study results are incon-
sistent and primary study sizes are small [97, 102,
128], since combining studies increases power. Meta-
analysis is often recommended before undertaking
a new study, to learn from earlier studies and to
determine whether a new study will add substan-
tially to what is already known about the topic [76,
95, 96].

While systematic reviews of evidence are usually
desirable, meta-analysis (the statistical synthesis of
results) should not be used indiscriminately [39, 42,
43, 62, 77]. In fact, legal suits have been brought
by industry against researchers, charging “negligent
misleading” when disparate findings are summarized
by a single “class effect” [82]. The method is inap-
propriate if the number of studies is small or if there
are large differences among the studies in study pop-
ulations, interventions or effect measures [57, 92].

Approaches to summarizing data other than meta-
analysis include vote counting and pooling [121,
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122]. Vote counting relies only on the statistical
significance of results [105], and may tend to indi-
cate the wrong decision more often as the amount
of evidence (number of studies) increases and does
not incorporate characteristics of the original stud-
ies [80]; thus, we do not discuss that method here.
The use of pooling, or combining original data,
may be limited by the availability of data from pri-
mary authors [146]. When feasible, however, pooling
original data offers definite advantages. Measures
of exposure and outcome can be standardized, and
adjustment for confounders can be done in a con-
sistent manner across studies if the original data
are available. Thus, with pooling, preliminary analy-
ses yielding summary estimates of exposure effect
for each study may be rendered more homoge-
neous than would be the case in more conventional
meta-analyses. Once these study-specific estimates
are obtained, standard meta-analytic techniques may
be used to combine them. Lubin et al. [110] used
pooling to combine data from cohort studies of under-
ground miners to estimate the effect of radon expo-
sure on risk of developing lung cancer.

Uses of Meta-analysis in Epidemiology

Meta-analyses were first used in clinical studies to
combine results from RCTs [19, 27, 119, 133]. For
example, a meta-analysis of 33 trials that com-
pared treatment using intravenous streptokinase with
a placebo in patients hospitalized for acute myocar-
dial infarction showed a favorable effect of treatment,
whereas only six of the 33 primary trials showed
a statistically significant effect [100]. Continuously
updated reviews, such as those provided by the
Cochrane Database of Systematic Reviews [26, 32]
facilitate proper conduct of meta-analyses of RCTs.
Guidelines for publication of RCTs have been devel-
oped to encourage the inclusion of sufficient informa-
tion in the published report to properly analyze the
data using a meta-analysis [37, 115] and guidelines
for the reporting of meta-analysis of RCTs have been
developed [114].

Meta-analysis is being used increasingly to com-
bine results from observational studies when random-
ized controlled designs are not available or not feasi-
ble [153]. Here, we define an observational study as
an etiologic or effectiveness study using an analysis
from an existing database, a cross-sectional study, a

case series, a case–control design, a design with his-
torical controls or a cohort design [71, 126]. Obser-
vational designs lack the experimental element of a
random allocation to an intervention and rely on stud-
ies of association between changes or differences in
one characteristic (e.g. an exposure or intervention),
and changes or differences in an outcome of inter-
est. These designs have long been recommended and
used in the evaluation of educational programs [40]
and of exposures that might cause disease [92]. For
example, studies of risk factors generally cannot be
randomized, because they relate to inherent human
characteristics or practices, or because such a ran-
domization might be unethical [106, 126]. At times,
clinical data on treatments may be summarized in
order to design a randomized treatment compari-
son [89, 161]. Observational data may also be needed
to assess how well an intervention works in a commu-
nity as opposed to the special setting of a controlled
trial [111].

Meta-analyses of observational studies present
particular challenges because of inherent biases and
differences in study designs [65, 93]. Nonrandom-
ized comparisons are subject to both selection bias
and other types of confounding, and combining sev-
eral studies all subject to the same bias will only
reinforce that bias [144] (see Bias in Case–Control
Studies; Bias in Cohort Studies). In addition, obser-
vational studies may lack some of the elements of
a well-designed clinical trial, such as careful defi-
nition of endpoints, interventions and study popu-
lation [119]. Also, observational studies may have
different exposed populations and control groups,
may suffer from measurement error of exposures,
and may explore only varying outcome measures.
Because such factors may influence various studies
differently, a single summary measure for exposure
effect may be misleading. A more important use of
meta-analysis of observational studies may well be
as a tool for understanding and quantifying sources
of heterogeneity in results across studies [113, 120].

Although meta-analysis of observational studies
may not always be appropriate (e.g. [74, 139]) –
particularly if the goal is to produce a single
summary estimate of an association [101] – the
number of published meta-analyses concerning health
issues has increased substantially during the past
four decades: from 678 before 1992; to 525 from
1992 through 1995; to approximately 400 in 1996
alone. Furthermore, a 1997 study of published
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meta-analyses documented that 86% of authors were
the first or second author of only a single meta-
analysis before the one used in the study [140],
indicating the broadening use of this method.

Steps in a Meta-analysis

The basic steps in a meta-analysis include: (a) a
clear statement of the problem and hypothesis to be
tested; (b) a clearly defined statement of inclusion
and exclusion criteria for admission of studies; (c)
a methodology for locating research studies; (d) the
classification and coding of study characteristics to
be combined in the meta-analysis and a quantitative
measurement of study characteristics and of the effect
of the exposure on outcome; (e) an assessment of the
quality of the methods used in the studies; (f) a sta-
tistical analysis that includes methods for combining
study results when appropriate and determining the
sources of heterogeneity of the data; and (g) interpre-
tation of results, including an assessment of bias of
individual studies, a discussion of heterogeneity, and
identification of areas for further research [128, 156].

Statement of the Problem and Hypothesis to be
Tested

Problem formulation is critical and includes the
explicit definition of both outcomes and potential
confounding variables. This step enables the inves-
tigator to abstract accurate and consistent data from
reports of studies and to choose appropriate statistical
models for the analysis. This step is especially crit-
ical for meta-analyses of observational studies. For
example, suppose the major task is the exploration of
evidence for a theory: Does a high level of homocys-
teine contribute to increased risk for cardiovascular
disease [20]? Such a statement of the problem allows
exclusion of studies using patients with competing
conditions, which may preclude a clear evaluation of
outcome.

As for any study, the protocol is the blueprint for
the conduct of the meta-analysis. The protocol should
contain a clear statement of the problem, objectives,
hypotheses to be tested, background and specifica-
tions for information retrieval, data collection and
analysis.

Establishing Inclusion and Exclusion Criteria

As in any statistical study, sample design is an impor-
tant determinant of the utility and scientific validity

of results. In a meta-analysis, the sampling units are
the results of published or unpublished studies. The
study inclusion/exclusion criteria provide the “case
definition” for results to be used in the synthesis.
Objective exclusion criteria should be determined a
priori to meet scientific criteria and not as a matter of
convenience. For example, a decision to exclude stud-
ies published before a specific date should be based
on evidence that a technology or therapy changed
at that time (and therefore historical results may not
be comparable with more recent results), and not on
the fact that earlier studies may not be cataloged
electronically. “Fugitive literature” refers to studies
that may be published in documents that are diffi-
cult to locate, because they are not published, are
published but not abstracted, or have limited cir-
culation (e.g. dissertations, conference abstracts and
proceedings or government reports). If studies in the
“fugitive literature” are to be excluded, a rationale
should be given. Similarly, a decision to exclude
foreign language studies should follow a determi-
nation that studies published in a language other
than English are different in some substantive way,
and not be made merely on the basis of a lack of
translation capability [60, 75, 116]. Although some
control over heterogeneity of design may be accom-
plished through the use of exclusion rules, a more
informative approach could be to use broad inclu-
sion criteria for studies, and then to perform analy-
ses to determine whether measured design features
influence measurements of exposure effect on out-
come [11].

Locating Research Studies

The goal of the search process is to (a) identify all
relevant primary studies (published and unpublished)
for potential inclusion in the meta-analysis; and (b)
to determine which studies are to be included. Accu-
rate and thorough specifications of the search strategy
will allow for the replication of the meta-analysis
and permit others to evaluate the external validity of
the findings. Examining the search strategy in depth
can help to explain different conclusions from differ-
ent meta-analyses on the same topic [157]. The term
“search” implies the entire process, which is usually
composed of several different methods of searching.
A 1996 review of 103 meta-analyses in education
documented that search procedures were described
inadequately, fewer than half of the meta-analyses
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reported details of classifying and coding the pri-
mary study data and only 22% assessed quality of
the primary studies [140].

The literature search should be systematic and
comprehensive. The researcher uses several sources
of information to locate data for retrieval, includ-
ing written indices; computerized searches; bibli-
ographies of published papers; and unreferenced and
sometimes unpublished data from academic, private
and governmental researchers [23, 38]. Complete
searches should go beyond computerized indices,
which have been shown to have a sensitivity as low
at 50% in some examples [52]. Researchers estimate
that 25%–50% of all initiated randomized controlled
trials are never published, and excluding data from
unpublished studies may result in bias or loss of pre-
cision in estimation of effect size [51].

Several computerized databases exist, many oper-
ated by the National Library of Medicine and included
in the Medical Library Information Retrieval Sys-
tem (MEDLARS). These include AIDSLINE (for
AIDS-related citations, 1980 to the present), CAN-
CERLIT (containing cancer literature from jour-
nals, government reports and conferences, 1963 to
the present), TOXLINE (containing citations on the
effects of drugs and other chemicals), and Disserta-
tion Abstracts (containing abstracts of American and
Canadian doctoral dissertations, 1861 to the present).
Registries of randomized trials [32, 55] provide infor-
mation prior to publication of RCTs for topics of
interest to the collaborators. For other study designs,
or for situations in which registries do not exist,
contact with experts in the field may yield more com-
plete ascertainment. It is important to identify and
remove redundant reports for the same study [90].
When computerized indices are used, the search strat-
egy should be specified completely to allow replica-
tion. The description should include keywords used,
fields searched (e.g. whether the search was by text
word, title or subject), software used for searching
(e.g. OVID), and any software-specific functions (e.g.
“explosion” of terms).

Classification, Coding and Measurement of Study
Characteristics and Measurement of Exposure
Effect on Outcome

The classification and coding of study characteris-
tics follows directly from problem formulation [156].
This step can consume the majority of time invested

in a meta-analysis – approximately 90% [86, p. 85].
In addition to increasing the time required for a syn-
thesis, adding characteristics of the studies included
increases the probability of finding at least one chance
association as significant. Thus, many meta-analysts
recommend coding a study characteristic only when
theoretical justification exists [149]. This recommen-
dation is controversial, however, since additional
information about study characteristics can provide
documentation for findings, can assist analysis of
sources of heterogeneity and can provide areas for
additional research. Furthermore, the requirement for
formal theoretical justification can restrict creative
hypothesis generation.

Blinding (masking) readers to identifying informa-
tion about papers (e.g. author’s affiliation) has been
advocated. In a study of blinding, five meta-analyses
of RCTs were conducted in parallel by two groups
randomly assigned to read papers that either had or
had not been masked as to the identity of the authors
and institutions producing the original papers, and as
to which treatment group was which. Although the
unmasked readers assigned higher quality scores on
average than the masked readers, masking made lit-
tle difference in the summary odds ratios [7, 16]. We
are unaware of any published studies of the effects
of blinding on meta-analyses of observational data.

Assessment of Quality of Included Studies

The use of quality scoring in meta-analysis is contro-
versial [57, 61]. One potential use of quality scores is
to assign greater weight to some studies than others
when combining results. A second use is for group-
ing studies according to quality to determine whether
estimates of exposure effect depend on study qual-
ity [67, 77]. Quality scores constructed in an ad
hoc fashion, however, may lack demonstrated valid-
ity. Furthermore, examples indicate that estimates of
exposure effect are not always associated with qual-
ity [74]. Nevertheless, some particular aspects of
study quality, such as adherence to the randomization
scheme in RCTs, have been shown to be associated
with effect size [13, 118, 138].

Statistical Methods for Combining Study Results
and Analyzing Heterogeneity

Statistical issues related to combining data from mul-
tiple sources in meta-analysis are the subject of ongo-
ing research [61, 104]. The most important statistical
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issues concern which studies should be combined.
When feasible, meta-analysis should be restricted to
RCTs, the study design that provides most useful evi-
dence. When too few RCTs are available, combining
data from observational (cohort and case–control)
studies is necessary.

Beyond the determination of studies to be com-
bined, a central question is whether variations in
research studies (methodologic or contextual) are
related to variations in effect size. This question can
be approached by the use of fixed- or random-effects
models. The simplest fixed-effects models assume
that the exposure effect is constant across studies
and that variation from one study to the next is due
solely to within-study random variation. More elab-
orate fixed-effects models may allow the outcome
to depend on several fixed effects, corresponding to
several variables that characterize the studies [79].
Random-effects models allow the intrinsic exposure
effect to vary from study to study so that variation
in the estimated exposure effects reflects both sam-
pling error within studies and effect variation across
studies [81]. Random-effects models assume that the
studies included are selected randomly from a popu-
lation of studies with varying exposure effects and
are used to accommodate unexplained heterogene-
ity of exposure effects [87]. Random-effects models
increase the estimated variance around estimates of
associations and produce different point estimates
than fixed-effects models. It should be emphasized,
however, that using random-effects models to account
for unexplained heterogeneity should not substitute
for a thorough exploratory (fixed-effects) analysis of
how study design and population characteristics affect
estimates of exposure effects. If random-effects mod-
els are used, then the rationale for model selection
should be given, and estimates of among-study vari-
ation should be reported [53].

Epidemiologic studies undertaken to establish
causal explanations of disease–exposure associa-
tion frequently estimate risks at different levels
of exposure [84]. Such dose–response studies
yield study-specific slopes that may be combined
using meta-analytic techniques [141, 160]. One
meta-analytic method for estimating a combined
dose–response effect from case–control and cohort
studies incorporates the same dose–response model
in each component of the likelihood, which is the
product of the study-specific likelihoods [15]. Brum-
back [22] used the estimation–minimization (EM)

algorithm (termed the “method of weights”) to max-
imize this likelihood; the calculations use standard
weighted regression software.

Regardless of the statistical measure used to
combine data, a meta-analysis to combine results
across studies should include: (a) presenting the
study-specific exposure estimates with estimates of
study-specific random error; (b) presenting summary
estimates of exposure effect across studies, with
estimates of variability; (c) testing for heterogeneity
of exposure effects across studies, and, if present,
investigating possible causes of heterogeneity; and
(d) providing quantitative support for interpreting the
results.

Interpretation of Results

The interpretation should focus on a discussion of the
strengths and weaknesses of the evidence, including
possible biases, and on the justification for combining
estimates in the presence of potential heterogeneity of
study results. Bias has been defined as any systematic
error that leads to the distortion of accurate results
(e.g. [128]). In the original studies, bias can result
from flaws in the study design that tend to distort the
magnitude or direction of associations in the data.
In meta-analyses, additional bias can result from the
way in which studies are selected for inclusion and
from the way in which data are gathered and analyzed
(see also Bias, Overview).

Assessment of Bias in Individual Studies. One
approach to assessing the research quality of obser-
vational studies is based on “threats to validity” [40].
Thirty-three independent threats to validity are cate-
gorized into four groups – internal, external, statisti-
cal conclusion and construct validity. Internal validity
is “the truthfulness with which statements can be
made about whether there is a causal relationship
from one variable to another in the form in which
the variables were manipulated or measured” [40,
p. 38]. External validity reflects the extent to which
the relation can be generalized across other popu-
lations. Statistical conclusion validity refers to the
quality of the statistical analysis and inference. Con-
struct validity concerns threats that may confound
cause and effect measurement.

In general, quality assessment indicates that not
all studies retrieved should be included in the meta-
analysis. Construct and external validity can be used
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to determine whether a study addresses the hypoth-
esis of interest, participants, time period and loca-
tion; i.e. the relevance of the study to the meta-
analysis [135]. Construct validity can also be used in
meta-analyses assessing theories [109]. Studies with
fewest threats to internal validity should be consid-
ered highest quality [167]. Improper statistical tech-
niques may also render a study unacceptable for
inclusion (e.g. inappropriate statistical tests, incor-
rect grouping of values, inappropriate conclusions or
the absence of information needed to calculate effect
estimates or variability). Other scientific methods
may also yield problems for quantitative synthesis.
Toward this end, guidelines have been developed for
assessing the methods in data on gene-disease asso-
ciations [108].

Publication Bias. One reason this occurs is that
authors are less likely to submit manuscripts report-
ing negative results to journals. There is no evidence
that publication bias occurs once manuscripts have
been submitted to a medical journal [124]. Publi-
cation bias, i.e. the selective publication of studies
on the basis of the magnitude and direction of their
findings, represents a particular threat to the validity
of any meta-analysis [51, 56, 132]. Statistical meth-
ods assist in the assessment of publication bias and
in correcting for this problem [5, 6, 46]. Methods
for detecting publication bias include correlating the
observed exposure effect size with design features of
the studies that might be “risk factors” for publica-
tion bias (such as sample size, presence or absence
of randomization and prospective vs. retrospective
design) [12, 50, 70, 78]. For example, for a meta-
analysis using a mixture of randomized and nonran-
domized studies, if randomization status appears to be
associated with size of risk estimates, then one might
eliminate (or analyze separately) the nonrandomized
studies [134].

The effect of sample size on publication bias
can be assessed graphically by a “funnel plot” of
sample size vs. effect size [104]. In the absence
of publication bias caused by sample size, the plot
should appear as an inverted funnel; that is, large
variability will be shown with small studies and
decreasing spread as the sample size increases, with
constant mean effect size regardless of sample size.
If this shape is not apparent, then publication bias
should be suspected. For example, if large studies are
clustered around the null value with smaller studies

skewed around a positive effect, then one suspects
that some small negative studies were not included,
revealing publication bias [93].

The use of the funnel plot should not be sub-
stituted from a careful examination of the literature
search [142]. Formal statistical significance tests can
be used to determine whether estimates of interven-
tion effects are correlated with sample size [8]. A
rank correlation based on Kendall’s tau [1] requires
no underlying assumptions, but may lack power.
Alternatively, a test based on Spearman’s rho is more
tractable computationally [36]. A formal sensitivity
analysis may be a more robust approach to assessing
publication bias [44].

Statistical methods for correcting for publication
bias include sampling methods and analytic methods.
Sampling methods are based on the following logic:
if publication bias is caused by preferential publica-
tion based on study results, then this problem can
be prevented by restricting the search to a sampling
frame that cannot be influenced by study results, such
as registries of prospective trials [55]. There are few
registries of observational studies [30]. Attempting to
locate all relevant observational studies through con-
tact with experts and use of sources of unpublished
reports to supplement standard computerized searches
remains an option [45].

Analytic methods for addressing publication bias
include the “file drawer” method [132], which
addresses the question: If a combined estimate
indicates a statistically significant exposure effect,
then how many studies with null results must exist
somewhere (the file drawer) to overturn the results?
Hedges & Olkin [81] answer a similar question for
methods that combine evidence from the individual
studies’ significance levels, rather than methods that
obtain a combined estimate of exposure effect. Some
methods to correct for publication bias are based on
the assumption that a study is included in the meta-
analysis with probability proportional to the estimated
effect size [29, 125].

Heterogeneity. Heterogeneity of populations (e.g.
study subjects), study designs (e.g. case–control vs.
cohort studies), methods for measuring exposure and
outcomes, analytical approaches to confounding and
other issues must be recognized, reported, and, when
possible, addressed in the analysis of the data by
exploring associations between variation in study
design and analysis and variation in estimated expo-
sure effects [11]. In cases where heterogeneity of
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exposure effects is large, a single summary measure
of exposure effect may be inappropriate. Analyses
that stratify by study feature or regression analysis
with design features as predictors can be useful in
assessing whether these features influence estimates
of exposure effect [158]. Studies should never be
discarded solely on the basis of having results that
disagree with those of the majority of other stud-
ies [34], but rather should be examined for underlying
characteristics of design or analysis that may have led
to the discrepant results.

Statistical tests for heterogeneity include Der-
Simonian & Laird’s Q-test [31, 47], an approach
based on weighted least squares [107], an applica-
tion of the likelihood ratio test [151], and measures
developed by Higgins and Thompson, from math-
ematical criteria, that are independent of the num-
ber of studies and the treatment effect metric [83]
and methods based on a bootstrap approach [155].
The power of these tests to detect heterogeneity is
often small, however, because the number of stud-
ies (the effective sample size) is typically less than
30 [76]. Empirical evaluation shows that the Der-
Simonian and Laird Q-statistic is preferable from
the point of view of validity, power and compu-
tational ease [155]. Graphical displays, stratification
and regression analysis are useful methods to address
criticisms of summarization in the presence of hetero-
geneity [74]. In the absence of absence of an a priori
hypothesis about the source of heterogeneity, classic
methods such as regression may prove difficult. In
such cases, a graphical method to identify sources of
heterogeneity may be preferable [4]. For the specific
case of combining comparative trials with uncon-
trolled historical studies, Begg & Pilote have pro-
posed a method using a random effects approach [9].
Investigating heterogeneity was a key feature of
a meta-analysis of asbestos exposure and risk of
gastrointestinal cancer [68]. This example shows
that sources of bias and heterogeneity can be hypo-
thesized before analysis and subsequently confirmed
by the analysis.

Finally, sensitivity analysis can permit exploration
of sources of heterogeneity and can suggest future
research directions. Sensitivity analysis can be used
in each step of a meta-analysis. During the search and
citation retrieval step, use of more than one investiga-
tor is helpful when the research question spans disci-
plines and requires different subject-matter expertise.

Exploratory data analysis [72] can be used to inves-
tigate features of articles retrieved in the search and
reveal factors that may have impact on the choice
of more formal statistical procedures. Combining P -
values and regression analysis [81, Chapter 12] aids
in sensitivity analysis.

Schlesselman [136] used the possible association
between endometrial cancer and oral contraceptives
to comment on issues related to potential bias in
the studies of this association. His meta-analysis
combined both cohort and case–control studies and
used a sensitivity analysis to illustrate the effect of
omitting specific studies. He addressed possible bias
caused by restriction to English language articles by
performing analyses limited to such studies.

In summary, interpretation should include assess-
ing the internal validity of component studies;
namely, whether they were well-designed, executed
and analyzed. Discussion of whether the studies
included are appropriate for answering the meta-
analytic question should include efforts taken to avoid
publication bias. For example, do funnel plots support
the contention that publication bias has been mini-
mized? If not, how much bias can be anticipated? To
what extent should heterogeneity of effect estimates
be related either to systematic features of various
studies (such as sample size, type of study or study
quality) or to nonidentifiable random variation? In
view of any heterogeneity of results, is it reasonable
to summarize the results in a single measure of expo-
sure effect (with an estimated confidence interval), or
rather to state that a single summary is not appropri-
ate and that further research is needed to define the
sources of variation and extent of the association?

A Case Study

A 1991 study of the effects of duration of estrogen
use on breast cancer risk [148] illustrates many of
the decisions made in performing a meta-analysis
in epidemiology. Published reports agreed on the
risk associated with ever-use of estrogen replace-
ment therapy, but little evidence was shown for
increases in risk due to short-term use (less than five
years), and there was less agreement on the effect
of long-term use. The authors located case–control
and cohort studies; among the case–control stud-
ies, designs were heterogeneous in choice of controls
(e.g. hospital or community). Heterogeneity testing
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was used to determine criteria for subgroup anal-
ysis. Estimated dose–response slopes from primary
studies were used for the meta-analysis to account
for inter-study variability. Fixed- and random-effects
models were computed, and assumptions such as
equal baseline risk were evaluated by sensitivity test-
ing. Because tests of homogeneity were significant,
the authors analyzed data from studies that used
community controls separately from those that used
hospital controls [147].

Increased risk of breast cancer with duration of
estrogen use was found among studies with commu-
nity controls (risk of breast cancer after 10 years
of estrogen use increased by at least 15%); stud-
ies with hospital controls showed a similar increase
when a single outlier study conducted in Europe was
excluded. Differences in results of fixed- and random-
effects models may have been due to this source of
variation. Other sources of heterogeneity explored
included study design, location of study population
(US vs. Europe) indicating differences in estrogen
preparation; the two European studies using hospital
controls showed an increased risk, while studies in
the US showed a small decrease in risk with duration
of estrogen use.

This example indicates the role of heterogeneity of
study design in the interpretation of results of a meta-
analysis. In this case, many health conditions are
associated with estrogen use and a woman’s decision
to use estrogen. Thus, the choice of controls may
have been a critical determinant of heterogeneity.
For example, greater use of estrogen among women
who receive acute care in hospitals might explain
the apparent decrease in breast cancer risk shown by
studies that used hospital controls.

Discussion

Taking stock of what is known in epidemiology
involves reviewing the existing literature, summariz-
ing it in appropriate ways, exploring the implications
of heterogeneity of study designs, and determining
how heterogeneity of design might relate to hetero-
geneity of study results. Meta-analysis provides a
systematic way of performing this research synthe-
sis, while indicating when more research is necessary
and is a widely used and increasingly popular tech-
nique. Nevertheless, some criticisms and caveats are
important for using the results of meta-analyses of
observational studies [54, 64, 66, 143].

Criticisms of Meta-analysis in Epidemiology

The use of meta-analysis in epidemiology is not
universally accepted due to several limitations [162].
First, bias can occur in the original studies (resulting
from flaws in the study design that tend to distort the
magnitude or direction of associations in the data),
or from the way in which studies are selected for
inclusion [18, 63]. Methods have been developed to
aid in the detection of publication bias, a particular
threat to the validity of meta-analysis of observational
studies [56, 132]. In addition, funding source can be
an important source of bias affecting results [94].

Secondly, when combining observational studies,
heterogeneity of populations (e.g. US vs. interna-
tional), design (e.g. case–control vs. cohort studies),
and outcome (e.g. different studies yielding different
relative risks that cannot be accounted for by sam-
pling variation) is expected [11, 159]. In cases where
heterogeneity of outcomes is particularly problem-
atic, a single summary measure may be inappropriate.
Analyses that stratify by study feature or regression
analysis with design features as predictors can be use-
ful in assessing whether study outcomes indeed vary
systematically with these features [34, 154].

Thirdly, the use of quality scoring in meta-analysis
is controversial [61] because scores constructed in an
ad hoc fashion may lack demonstrated validity, and
results may not be associated with quality [21].

Fourthly, a statistical summary of evidence may
be misused to obscure important variations in expo-
sure effects [57]. Meta-analyses have been criticized
because of discrepancies between their results and
those from large randomized trials [24, 28, 48, 91,
103, 130].

Extensions and Related Areas

Cumulative Meta-Analysis. The concept of the
cumulative meta-analysis was introduced in 1993
[27]. In a cumulative meta-analysis, studies are com-
bined and data synthesized on an ongoing basis.
As soon as a study relevant to the particular topic
is published, its results are entered into the meta-
analysis and estimates of effect or relative risk are
then updated. Adaptation of methods from interim
analyses of clinical trials has been used in this situ-
ation [58, 129, 164]. This updating enables the most
current estimation of the effect of a particular inter-
vention or particular risk factor. Retrospective analy-
sis of clinical trials for myocardial infarction indicates
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that a cumulative meta-analysis of the effects of
thrombolytic therapy and lidocaine on cardiovascu-
lar mortality could have changed clinical practice
as much as 10–15 years earlier had such analyses
been conducted, published and disseminated ade-
quately [100]. Alternatively, one may perform the
cumulative analysis by adding sequentially studies
with increasing quality score or increasing study size
to investigate the effects of these factors. Attention
should be paid to the results of repeated testing by
adjusting significance levels.

Cochrane Collaboration, investigators of a par-
ticular subject-matter area, aggregate data on an
ongoing basis, conduct cumulative meta-analyses and
make the results available to clinical researchers and
others interested in clinical and public health pol-
icy [18, 33, 166].

Statistical Software. Egger et al. [59] attribute part
of the growth in the number of meta-analyses to the
recent appearance of software packages that imple-
ment the methods. Available packages vary in their
provision of tutorials, graphical features and flexi-
bility of modeling. Almost all packages include the
capability for fixed- and random-effects modeling,
tests of homogeneity and ability to handle multiple
types of response. Some, such as RevMan produced
by the Cochrane Collaboration, are available via the
Internet. For many applications (e.g. dose–response
analyses, or meta-regressions), one must still use pre-
liminary programs to estimate inputs, such as slopes,
for use in meta-analytic programs.

Conclusions: The Role of Meta-analysis in
Epidemiology

Regardless of the problems and technical solutions,
an analytic synthesis of evidence is critical for pol-
icy in epidemiology and public health [163]. When
policy-makers attempted to study the effect of pas-
sive smoking in public places (inhalation of others’
smoke), tobacco-industry lobbyists presented com-
petent studies showing little evidence of harm, and
antismoking activists presented studies that showed
passive smoking to be a cause of lung cancer [85].

The systematic evaluation of any health topic
is essential to excellent clinical or public health
practice [98]. The Guide to Community Preventive
Services tries to determine what works in commu-
nity health using systematic reviews on a variety

of health topics important to communities, public
health agencies, and health care systems. Systematic
reviews evaluate the evidence of effectiveness, which
is then translated into a recommendation or a find-
ing of insufficient evidence. For those interventions
where there is insufficient evidence of effectiveness,
this process provides guidance for further preven-
tion research [168]. The results of such evaluations
also help define priorities in research. The conduct
of meta-analyses, therefore, warrants rigorous imple-
mentation. The introduction of systematic reviews
and meta-analyses has fostered controversy [49], but
it has also initiated a critical examination of the
process of research synthesis. This process must
continue with careful consideration given to both
epidemiologic and statistical issues and appropriate
examination of the impact on health and quality of
life. In addition to the specific methodologic issues
mentioned above, more effort must continue in the
design and implementation of primary studies and
the reporting of such studies, including methods as
well as results [7, 42, 99, 117, 123, 145]. Efforts
such as the Cochrane Collaboration have demon-
strated the value of careful collection and storage
of information in readily accessible computer data
banks. The development of computer software both
for data manipulation and transport, as well as sta-
tistical analysis, will continue to reap rewards for
researchers and practitioners. Improved accessibility
of the results of meta-analyses is another potential
benefit of the computerization of data. At the same
time, researchers and practitioners must be trained to
understand the benefits and limitations of alternative
methods of data synthesis, as should those who make
public policy decisions and influence medical care
and public health practice. Statisticians have a criti-
cal role in developing methods for special problems
and assisting in the design, execution and analysis of
these studies.
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Meta-analysis in Human
Genetics

Replication or confirmation of scientific findings is
a hallmark of good science. Laboratory experiments
may be relatively easy to replicate, but field stud-
ies or observational studies can be quite challenging.
Especially difficult are studies involving human pop-
ulations. Indeed, most studies reporting new genetic
linkage findings have had little success in being
replicated [3, 24, 39]. In some cases, however, the
effects of trait loci (see Gene) are so strong that
replication is easily observed. Mendelian traits (see
Mendel’s Laws) fall into this category and include
diseases such as cystic fibrosis and hypercholes-
terolemia. Complex diseases (e.g. heart disease, dia-
betes, schizophrenia, asthma) and quantitative traits
(e.g. height, low density lipoprotein cholesterol),
which are believed to be influenced by any number of
genetic loci (see Genotype), require relatively much
larger sample sizes or special sampling designs to
attain sufficient statistical power to detect and locate
the underlying genes. Replication of genetic findings
for these non-Mendelian traits appears to be very
difficult. The reasons are many, including genetic
heterogeneity, sampling designs and ascertainment
rules, environmental factors, and covariates such as
age and sex. It may be possible to statistically adjust
for some of these factors, for example by regression
methods or stratification. Even after statistical adjust-
ment, however, differences may remain among the
primary studies. These differences may be real or due
to chance. Combining results across studies may aid
in assessing the overall genetic findings, the results of
which can have important ramifications. For example,
since it is now possible to develop molecular-based
pharmaceutical treatments, it is vital to have an under-
standing of the genetic mechanisms underlying a
given human trait. The synthesis of findings from
similar studies forms the basis of much scientific
understanding and meta-analysis is one approach to
this end.

Basic Ideas and Methods of Meta-Analysis

The standard scientific review of a collection of stud-
ies addressing the same question often takes the form
of a subjective qualitative assessment. Meta-analysis

is a term used to describe quantitative methods to
integrate or pool the numerical results from a collec-
tion of similar studies. Hedges & Olkin [23] narrow
the definition by noting that “because meta-analysis
usually relies on ‘data’ in the form of summary statis-
tics derived from the primary analyses of studies, it is
truly an analysis of the results of statistical analyses”.
It is in the spirit of this definition that meta-analysis
is used in genetic studies.

Pooling information across replicate or similar
studies is a common problem. If the studies are
sufficiently similar, then combining the raw data from
the different studies and analyzing this combined data
set is the best one can do. More often, however,
only published results (summary statistics, P values)
are available for analysis. A formal approach for
analyzing P values was proposed by Fisher [12] and
Pitman [33], both of whom wrote about summarizing
statistical findings across a collection of analogous
studies. Assume that each of k independent studies
tests a common null hypothesis and that each yields
a one-tailed P value in the same direction. Under
the omnibus null hypothesis that each of the k null
hypotheses holds true, the test statistic

X2 = −2
k∑

i=1

log(Pi)

follows a χ2 distribution with 2k degrees of freedom.
Therefore, it is possible to jointly evaluate the evi-
dence in favor of the alternative hypothesis by using
a single test and all that is required are the published
P values from the individual studies. Variations on
this approach include analysis of the P value order
statistics and a weighted linear combination of the P

values to account for varying sample sizes across the
studies [23]. This method is still widely used (e.g.
in epidemiologic studies and clinical trials) as an
approach to meta-analysis despite known limitations.
It is well known, for example, that the X2 statistic
can be highly influenced by a single highly signifi-
cant P value, which in turn may be due to a large
sample size. Another concern is the simple fact that
a single P value is used to summarize each (possibly
complex) study as a basis for meta-analysis.

A more informative approach to meta-analysis is
based on combining parameter estimates that reflect
the treatment effect. For example, in clinical trials
one may be interested in knowing the difference
in the proportion of treatment and control subjects
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(pT − pC) that experience relief. A P value analysis
will indicate whether there is consensus across the
studies, but it may be more important to know the
overall strength of the deviation from no treatment
effect. This may not always be possible in prac-
tice since different studies addressing the same null
hypothesis may use different statistics. When it seems
reasonable to provide an overall estimate of a com-
mon parameter, it is important to make a careful
judgment about the similarity of the studies. If one
concludes that the studies are sufficiently homoge-
neous in design and sampling scheme that they are
measuring or estimating the same quantity (δ), then
it is appropriate to “pool information across studies”
using a fixed effect model,

di = δ + ei,

where di is the observed value for the fixed effect δ

from the ith study, and ei is viewed as a random error
term, independent and identically distributed across
studies. The pooled estimator of δ is a weighted (least
squares) average of the individual di :

δ̂w =

k∑

i=1

widi

k∑

i=1

wi

,

where the weights are inversely proportional to the
(estimated) variances of ei , wi = var−1(ei). Genetic
studies, even when “replication” is intended, in gen-
eral tend not to be sufficiently homogeneous that it
is believed the same quantity is being estimated from
study to study. Indeed, population admixture, ascer-
tainment, and marker maps, to name a few factors,
vary enough so that the fixed effect model does not
adequately reflect the study heterogeneity. A standard
test for homogeneity makes use of a χ2 statistic:

Qw =
k∑

i=1

wi(di − δ̂w)2,

which is approximately distributed as a χ2 variable
with k − 1 degrees of freedom.

If one judges that the differences in the di are due
to both within-study variation (ei) and among-study
variation, then the model for di may be generalized
to a random effect model to account for the two

sources of variation. In this case it is useful to
view the actual conducted studies as being a sample
from a larger population of similar studies, each
with an underlying (but unknown) δ that reflects the
individual characteristics of its study. Thus, there is
a corresponding population {δj }, with mean δ and
variance σ 2

δ . A two-stage or hierarchical model
describes this situation:

di = δi + ei ;

δi = δ + εi,

where var(εi) = σ 2
δ , ei is as above, and all the error

terms are independent. In other words,

di = δ + εi + ei, i = 1, . . . , k.

From the hierarchical modeling perspective it can
be seen that there is information about δi in all the
studies, since they all vary about a common mean (δ).
In this case, one can “borrow strength across studies”
to estimate δi . Note that if there is no study-to-study
variation [var(εi) = σ 2

δ = 0], then the random effect
model coincides with the fixed effect model. If some
of the study-to-study variation can be explained, then
further modeling of δi may be incorporated in a mixed
effect model. As with the fixed effect model, an
estimate for the common δ is a weighted average:

δ̂w =

k∑

i=1

widi

k∑

i=1

wi

,

where now the weights reflect both within-study
variation and among-study variation, wi = [var(ei) +
var(εi)]−1. In practice, the variances (and, hence,
the weights) are almost always estimated [8]. It is
important that the hypothesis of homogeneity be
investigated since the standard errors based on the
two modeling approaches may differ substantially.
The fixed effect standard error tends to be opti-
mistically too small when sources of among-study
variation are ignored.

Meta-Analysis Applied to Statistical
Genetics

Application of the above methods in human genet-
ics involves the common null hypothesis of no
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association or linkage at a given marker locus or
along some chromosomal region. Lack of consensus
across studies may be due to having some studies
supporting linkage and others supporting no linkage,
or having most studies support only marginal signifi-
cance, but none or very few showing strong evidence
of linkage. The former may likely be due to substan-
tial study heterogeneity, while the latter may arise
because of low statistical power at the level of the
individual studies. The main objective of a meta-
analysis is to combine the results from the different
studies to obtain an overall assessment of associa-
tion or linkage in a given chromosomal region. The
idea for meta-analysis in genetic studies is not exactly
new. When the recombination fraction (θ) is the
appropriate genetic parameter of interest [38], the lod
function, Z(θ) = log10[L(θ)/L(θ = 0.5)], for each
study is maximized to obtain independent estimates
of θ [32]. An overall estimate can be determined from
the sum of the individual lod functions and a test of
homogeneity can subsequently be carried out.

As an illustration of meta-analysis involving mod-
ern genetic linkage studies, Allison & Heo [2] use
Fisher’s P value method in a meta-analysis of six
independent samples, each concerning linkage of
body mass index to the region of the human genome
containing the OB gene. In the primary meta-analysis,
Allison & Heo show three samples with evidence
of linkage at the 0.05 significance level, while three
samples do not show significant linkage. The X2

meta-analysis statistic yields a P value of 1.5 ×
10−5, providing strong overall evidence of link-
age. One of the main problems with such stan-
dard meta-analytic methods is the level of study-
to-study heterogeneity, especially genetic hetero-
geneity, as well as sample size, ascertainment of
families, marker maps (marker distribution, average
intermarker distance, marker heterozygosity), disease
definition, and statistical analysis [34]. As such, it
is not always a simple matter to extract a sin-
gle P value from each of the primary studies, as
demonstrated by Allison & Heo. Even if this can be
accomplished, it should be noted that this approach
to meta-analysis is unequivocally valid only if the
P value is taken at the same marker locus from
each study. In practice, however, the individual study
P values are associated with the most significant
marker within a given chromosomal region, which
may contain more than a handful of markers. In

practice, then, we may expect an increased false-
positive rate. Additionally, it has been observed [35]
that there is a bias in Fisher’s X2 test when it
is applied to model-free linkage methods that con-
strain lod scores to nonnegative values. The bias
is especially acute in the context of genome scans,
but an adjustment is available. Guerra et al. [20] dis-
cuss Fisher’s P value method in the context of
genome scans.

In those situations where a common parameter
estimate of linkage or association is available, a goal
of the meta-analysis is to obtain a combined esti-
mate to indicate the overall strength of the correla-
tion across studies. Thus far, two common situations
arise in practice. The first deals with population-
based studies of associations between marker poly-
morphism and disease status. The standard study
design is a case–control study where the cases and
controls are affected and unaffected subjects, respec-
tively, and the “treatment factor” is a specified marker
genotype. Thus, if there is interest in the association
between the AA genotype at a given locus and dis-
ease status, then the data for each individual study are
typically shown as a table of counts (Table 1), and
relevant differences in proportions, relative risks, or
odds ratios [1] are analyzed. In genetic studies [27,
41] it is common to work with the observed odds
ratio (OR = ad/bc). In this case, a test of homo-
geneity for a common OR is performed and, if not
rejected, a common OR is estimated and used as an
overall estimate of the genotype–phenotype associ-
ation. The overall estimate can be calculated as a
crude OR based on pooled counts (which are typ-
ically available in the primary publications), Man-
tel–Haenzsel estimator, or Woolf estimator. The lat-
ter appears to be a popular choice among genetic
studies, perhaps due to its early appearance in the
genetics literature, where it was introduced in the
context of correlating blood groups with disease.
Instead of using the ORs themselves, Woolf [46] pro-
posed using the logarithms of the ORs since on this
scale they are approximately normally distributed.
For k studies he proposed using a weighted average

Table 1

Affected Unaffected

AA genotype a b

Not AA genotype c d
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of these logarithms,

log(ORW) =

k∑

i=1

wi log(ORi)

k∑

i=1

wi

,

where the weights are given by the inverse of the
variance of the log OR:

wi = var−1[log(ORi)] =
(

1

a
+ 1

b
+ 1

c
+ 1

d

)−1

.

Woolf’s test for homogeneity is based on a χ2 statis-
tic,

X2 =
k∑

i=1

wi

[
log(ORi) − log(ORW)

]2
,

which, under the null hypothesis of a common OR,
approximately follows a χ2 distribution with k − 1
degrees of freedom. Case–control studies in genetics
have been used to evaluate the total evidence for pop-
ulation associations between marker genotypes and a
variety of genetic traits, including schizophrenia [9],
hypertension [26], and cleft lip [31]. To investigate
various genotype effects (e.g. homozygosity, addi-
tivity), as well as to account for covariates, the
meta-analysis can also be carried out by logistic
regression with case–control status as the dependent
variable [40, 41].

Analogous to the case–control analysis for disease
data one can analyze an overall mean difference of
a quantitative trait between two groups defined by
genotypes. For example, Juo et al. [25] conducted a
meta-analysis of the mean difference in apolipopro-
tein A-I levels between two genotype groups defined
by an A/G polymorphism in the promoter of the
apolipoprotein A-I gene. The overall mean differ-
ence is a weighted average of the primary study mean
differences. A test of homogeneity and a confidence
interval for the overall difference form the basis of
the analysis [16]. Juo et al. [25] include a good dis-
cussion of confounding factors and stratification as
they pertain to meta-analysis.

Genetic linkage studies allow for other measures
of genetic effect size that can be defined and pooled
across a collection of genetic studies. For model-
free methods that do not depend on a parametric

genetic model for analysis, allele-sharing data may
be used [18, 19] to define a genetic effect size.
Affected sib pairs, for example, are expected to share
a higher proportion (π) of alleles than that expected
(π = 0.5) under no linkage. The mean proportion of
identity-by-descent (ibd) (see Identity Coefficients)
allele-sharing at a specified locus can therefore be
taken as an interpretable parameter to be combined
across studies. Let πi, i = 1, 2, . . . , k, denote the
average proportion of ibd allele-sharing among ni

affected sib pairs in study i. A combined estimate of
mean allele-sharing across homogeneous studies can
be constructed by a weighted least squares estimate
based on a fixed effect model as discussed above:

πw =

k∑

i=1

wiπi

k∑

i=1

wi

,

where wi = 1/σ̂ 2
i , the reciprocal of the estimated

variance of πi . A standard error for the combined
estimate can be easily calculated according to the
result var(πw) = 1/

∑
wi . The homogeneity hypoth-

esis can be tested with the following statistic:

Qw =
k∑

i=1

(πi − πw)2

σ̂ 2
i

,

which asymptotically follows a χ2 distribution with
(k − 1) degrees of freedom under the null hypoth-
esis. Under the more realistic scenario of study het-
erogeneity, Gu et al. [19] have proposed a random
effect modeling approach where the observed propor-
tion (πi) of ibd sharing in study i reflects a random
effect due to study-to-study variation and a random
effect due to within-study variation. Following their
notation, the model for πi is

πi = τ + δi + εi,

where the within-study variation is var(εi) and the
among-study variation is var(δi). Estimating the two
variance components and the overall measure of
allele-sharing (τ ) follows the general approach dis-
cussed above and is detailed in Gu et al. [19], while
Goldstein et al. [15] investigate both fixed effect and
random effect models for πi in the context of genome
scans. The random effect model can be extended to
include study-specific covariates [17].
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There are other types of studies that make use of
allele-sharing data, but which may not explicitly pro-
vide observed values of πi . Nevertheless, it is still
possible to extract this information from a variety
of studies [18]. Once such information is obtained,
the above models may be used with the derived
or estimated proportions of allele-sharing. Similarly,
random effect and Bayesian hierarchical models have
been proposed for combining Haseman–Elston slope
estimates (see below) from independent studies inves-
tigating linkage to a common quantitative trait locus
using the same marker.

The above meta-analysis methods for linkage have
not been specifically designed for genome scans;
they are clearly applicable for investigating linkage
at a single locus or very small chromosomal region.
However, as with previous statistical methods devel-
oped for genetic linkage at a single marker, one can
obtain a meta-analysis test statistic score map along
the genome and assess significance through a mul-
tiple testing procedure. The standard guidelines for
genome-wide significance levels were given by Lan-
der & Kruglyak [28], but it is unclear how they may
apply to meta-analysis. It is thought that less stringent
significance levels than those proposed by Kruglyak
& Lander may be appropriate for meta-analyses of
genome scans, but a definitive theory or strong empir-
ical evidence does not exist at this time. Badner &
Goldin [4] depart from the standard approach of gen-
erating and analyzing a meta-analysis version of the
underlying test statistic. They seek to answer the natu-
ral question, “How often can we expect more than one
genome scan to exceed a given threshold in a defined
region if, in fact, linkage is absent in the region?” A
binomial probability model is applicable and used to
find theoretical answers to the question. For a single-
point linkage analysis in the primary studies, the basis
of their meta-analysis method [the multiple genome
test (MGT)] is to calculate the chance of having
observed rk out of s studies with significant link-
age in each of k chromosome regions, each defined
by a range of consecutive markers (e.g. four). Meta-
analysis based on multipoint linkage is similarly
defined by considering 30 cM contiguous regions. By
varying the thresholds in the binomial model, Badner
& Goldin demonstrate that less stringent thresholds at
the primary study level may yield highly significant
results at the meta-analysis level. Simulation studies
show good agreement between theoretical and empir-
ical estimates of false-positive rates for a single-point

analysis, but not a multipoint analysis. On balance,
for the simulations investigated, the MGTs did not
show a significant advantage in power over the
Kruglyak & Lander guidelines. Although several lim-
itations are discussed, their method is potentially
quite useful as it directly addresses the question of
consensus. For related issues, see the variety of sig-
nificance thresholds used for meta-analysis in Genetic
Analysis Workshop 11 [4, 15, 17, 20, 44, 47].

Relatively few meta-analytic methods specifically
designed for genome scans currently exist. Each
is based on obtaining a meta-analysis test statis-
tic value in each of kc user-defined segments per
chromosome (C) and then testing for significance
within each segment. Common marker maps are not
assumed and each method proposes an approach to
control the genome-wide type I error probability that
results from multiple testing (see Multiple Compar-
isons) across the segments. A nonparametric rank-
based method has been proposed by Wise et al. [45],
who apply it to four screens for multiple sclerosis
and 11 screens for autoimmune disorders; Wise &
Lewis [44] investigate the type I error and the power
of the method in a simulation study. Within each of
m studies, each chromosome is divided into segments
of equal length and the most significant result from
each segment is ranked among all segments cover-
ing the entire genome; the most extreme results have
the higher ranks. Under the null hypothesis of no
linkage in any segment, the ranks within each pri-
mary study will be uniformly distributed throughout
the genome. Within each defined segment, the pri-
mary study ranks are summed across the m genome
scans, and for n segments across the genome, the
chance that the ranks, Xi, i = 1, . . . , m, from a fixed
segment sum to R is

Pr

(
m∑

i=1

Xi = R

)
= 1

nm

d∑

k=0

(−1k)

(
R − kn − 1

m − 1

)

×
(

m

k

)
, m ≤ R ≤ mn,

and 0 if R > mn. In the formula, d is the integer
part of (R − m)/n. This method, like most developed
thus far, treats each genome scan equally and does
not incorporate strategies to allow for study differ-
ences such as may be due to marker maps and sample
sizes. However, it is broadly applicable as it can be
used across studies that use different analyses (e.g.
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model-based and model-free), disease definitions, and
even different diseases (e.g. different psychiatric dis-
orders).

Meta-analytic approaches for multiple genome
scans based on a genetic effect size per se, instead
of significance results, are also being developed.
We consider a method proposed by Etzel [10] and
further developed by Etzel & Guerra [11]. To fix
ideas, assume that there exists at most a single
trait locus and that each of k studies have used
the Haseman–Elston robust sib-pair method [22] to
search for the gene in a chromosome scan of length
L cM. This situation will illustrate some of the issues
that arise in developing a meta-analytic procedure
for genome scans. The approach is not unique to
the Haseman–Elston method and is generally appli-
cable to other genetic effect sizes or test statis-
tics. Assume that within each of m nonoverlap-
ping, contiguous segments of equal length cover-
ing the chromosome, each study has exactly one
marker (Mij , i = 1, . . . , k; j = 1, . . . , m) at distinct
locations. The Haseman–Elston method regresses the
square of sib-pair phenotypic differences on the pro-
portion of shared ibd (marker) alleles and a signifi-
cant negative slope gives evidence of linkage. The
expected value of the slope estimate, β̂, is a function
of the recombination fraction (θ) between the marker
and trait loci and the variance component (σ 2

g ) due to
polymorphism at the trait locus:

E(β̂) = −2(1 − 2θ)2σ 2
g .

Therefore, assume that each study provides a sum-
mary statistic (β̂ij , S2

ij ), i = 1, . . . , k, j = 1, . . . , m,
at each marker locus, where S2 is the estimated vari-
ance of β̂. The meta-analytic method is defined as
follows. At each of q test points along the chromo-
some, an overall estimate of the Haseman–Elston
slope is calculated as a weighted average of normal-
ized β̂s that correspond to the segment in which the
test point is located. The weights correspond to a ran-
dom effect estimator that reflects both within-study
and among-study variation. The test point at which
the overall estimate is most significant is taken as the
most likely location of the trait locus. The normaliza-
tion is required to adjust for the fact that within each
chromosomal segment the study markers are at dif-
ferent loci and therefore the recombination fractions
implicit in the slope estimates are different. That is,
the method does not require studies to use the same

marker maps. The weighted averages are calculated
from the following normalized statistics:

β̂ijq = β̂ij

(1 − 2θijq )2
and S2

ijq = S2
ij

(1 − 2θijq )4
,

where θijq is the recombination fraction between
the marker Mij and test point q, calculated by
applying a mapping function (see Linkage Analysis,
Multivariate). The overall estimate of the Hase-
man–Elston slope is calculated as:

β̂q =

k∑

i=1

wiβ̂ijq

k∑

i=1

wi

; wi = 1

σ̂ 2
q + S2

ijq

,

where σ̂ 2
q estimates the study-to-study variation at test

point q:

σ̂ 2
q = 1

k − 1

k∑

i=1

(β̂ijq − βq)
2 − 1

k

k∑

i=1

S2
ijq ,

with βq the average of the β̂ijq . The overall slope
estimate is standardized by its standard error (se) to
assess its significance with reference to a standard
normal distribution:

zq = β̂q

se(β̂q)
; se(β̂q ) =

(
k∑

i=1

wi

)−1/2

.

Denoting the most significant overall slope by β∗
q ,

the genetic variance component can be estimated as
σ̂ 2

g = −β∗
q /2. Simulations have been carried out [10]

to determine if the meta-analysis method increases
power to detect linkage over the pointwise (Hase-
man–Elston) method at the primary study level, com-
pare its performance under various configurations of
primary study evidence, and assess its accuracy in
locating the trait locus and estimating the compo-
nent of genetic variance σ 2

g . Since it is unknown how
to select significance thresholds for a meta-analysis
of genome scans, two approaches were taken. First,
zq was referred to the normal quantile (−2.633)
corresponding to a chromosome-wide significance
level of 0.05, which in turn corresponds to a point-
wise level of 0.004 by the method of Lander &
Kruglyak [28]. Secondly, the standard 0.05 threshold
at the pointwise level was used, ignoring multiple
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testing. The Haseman–Elston slope estimate at the
primary study level was evaluated using a Bonfer-
roni correction (0.05/m) for multiple testing across a
map of m markers. Simulation configurations varied
over marker density, sib-pair sample size, and trait
gene location. The main findings show that:

1. Both meta-analysis methods provided substan-
tially better power than the individual studies.

2. The type I error probability of the meta-analysis
method using the standard pointwise 0.05 thresh-
old was consistently higher than that based on the
Lander–Kruglyak (LK) genome-wide threshold.

3. The power of the meta-analysis using the LK
threshold was slightly less than the meta-analysis
based on the 0.05 pointwise threshold. How-
ever, the pointwise method showed a high false-
positive rate outside a relatively small neighbor-
hood (±10 cM) of the trait locus. In practice, the
size of the neighborhood can be expected to be
a function of the marker density.

4. In all cases, the meta-analysis based on the LK
threshold located the trait locus within 2.5 cM.

5. Meta-analysis with the LK threshold consis-
tently provided unbiased estimates of the genetic
variance, σ 2

g . It is unknown whether the Lan-
der–Kruglyak threshold is appropriate for this
meta-analytic approach; in particular, the Lan-
der–Kruglyak guidelines assume a dense marker
map, which is not the case in the meta-analysis
simulation or in most real genome scans.

To minimize statistical parametric assumptions
(e.g. normality of a test statistic) and to reflect the
inherent characteristics (e.g. marker map) of differ-
ent genetic studies, randomization (permutation) or
Monte-Carlo methods [5, 7, 21, 42] can be use to con-
struct nonparametric null distributions for the overall
slope estimate. In this case, a permutation approach
resulted in an improvement in the meta-analysis type
I error probability and therefore increased the preci-
sion in locating the gene locus [10]. The power of the
permutation test to locate the trait locus within 10 cM
was, on average, slightly less than the power of the
meta-analysis method that used the Lander–Kruglyak
normal critical value. In the simulations considered,
the permutation test is superior to the parametric
meta-analysis method when the trait locus is located
near either end of the chromosome. Inspection of the
permutation thresholds also shows that the thresholds

vary markedly with the position of the trait locus,
confirming that the method adjusts to the specific
characteristics of the study [5].

Meta-analysis methodology is just emerging as a
tool for modern genetic analysis, but its usefulness
and importance is quickly being recognized [28, 36]
as we learn how difficult it is to replicate initial
linkage or association findings. In addition to the
technical methodology, there are practical issues that
must be addressed, especially as more genetic studies
on the same trait become available. The planning of a
meta-analysis requires great care. Some studies will
be useful and others will not. The following steps
summarize what must be done to increase the chances
of a successful and informative meta-analysis:

1. Formulate a specific purpose and explicitly define
the outcome to be extracted from each study.
Bear in mind that genetic effect sizes are more
informative than significance results.

2. Identify relevant primary studies.
3. Establish inclusion/exclusion criteria for primary

studies.
4. Detail data abstraction and acquisition.
5. Decide on data analysis method(s) and under-

stand their limitations. Carefully investigate
study-to-study heterogeneity.

6. Give a careful interpretation, especially as it
applies to extrapolation of findings.

Further Reading

A basic reference for meta-analytic ideas, concepts,
and methods is Hedges & Olkin [23], while
Draper et al. [8] provide a general discussion on
combining information. Mann [30] gives an overview
of meta-analysis in medical research. Rao &
Province [37] cover statistical genetics, including
a chapter on meta-analysis; see also Cooper &
Hedges [6]. The meta-analytic methods detailed in
this article cover current methods that appear to
be the most common in human genetics studies.
Other approaches include a Bayesian method [43],
Morton’s β model [29], and model selection [14].
The term meta-analysis was coined by Glass [13].
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Meta-analysis of Clinical
Trials

Meta-analysis is the systematic and quantitative
review of the results of a set of individual studies,
intended to integrate their findings [11]. Informal
synthesis of evidence has always been practiced, and
even the idea of combining results quantitatively
across research studies can be traced back to the
early 1900s. The basis of the statistical methods now
generally used is also long established [6]. Meta-
analysis as a specific technique was developed in
the social sciences, but soon became adopted as a
fundamental tool in medical research, especially as a
way of reviewing and combining the evidence from
clinical trials.

There are a number of reasons why meta-analysis
is such an important technique in clinical trials
research [22, 26]. It is now recognized that narra-
tive reviews of a set of clinical trials can be very
misleading, being potentially distorted by the selec-
tion of evidence, the emphasis placed on its com-
ponents, and the personal opinion of the reviewer.
Secondly, the explosion of research evidence, in
the form of published trials, often cannot be eas-
ily assimilated without formal review. Thirdly, in
assessing the benefits of a particular medical treat-
ment, judgments should be based on the totality
of reliable evidence, for example from all relevant
well-conducted randomized clinical trials. Fourthly,
given that sample sizes of individual clinical tri-
als are often too small to detect clinically important
effects reliably, synthesis of evidence across trials is
necessary.

Meta-analysis therefore has a number of aims:
to review systematically the available clinical trial
evidence; to provide quantitative summaries of the
results from each study; to combine these results
across studies, if appropriate; and to provide an
overall interpretation. By combining results, more
statistical power for detecting treatment effects is
available and the precision of estimated treatment
effects is enhanced. Meta-analysis discourages the
common simplistic and misleading interpretation that
the results of individual clinical trials are in conflict
because some are labeled “positive” (i.e. statistically
significant) and others “negative” (i.e. statistically

nonsignificant). Yet it allows the investigation of pos-
sible reasons for real differences between the treat-
ment effects in different clinical trials, i.e. sources of
heterogeneity.

Meta-analysis has both qualitative and quantita-
tive components. For example, the description of
the available trials, in terms of their relevance and
methodologic strengths and weaknesses, plays a cru-
cial part in providing a meaningful interpretation,
but is essentially qualitative. Summarizing the trials’
results and their combination is clearly quantitative.
Various synonymous terms are used to describe meta-
analysis. The term “overview” has been used by some
authors, and “pooling” by others. Because the first
fails to indicate the quantitative aspect of the analysis,
and the second gives the unfortunate (and incorrect)
impression that the data from each trial are sim-
ply lumped together, these now tend to be avoided.
More recently, the term “systematic review” has been
coined, and some authors use this to refer to the
whole process of qualitative and quantitative review,
restricting the term meta-analysis to the quantitative
aspects.

In this article, we start by discussing the nature of
practical meta-analyses, then focus on the quantitative
and statistical aspects, and conclude by considering
interpretational issues.

Types of Meta-Analysis

In principle, the trials included in a meta-analysis
might be clinically homogeneous. For example, they
might all study a similar type of patient for a similar
duration with the same treatments in the two groups
of each trial. In practice, however, the trials included
are usually heterogeneous. For example, the eligibil-
ity criteria may differ between trials, the treatments
used may not be identical, the duration of treatment
and length of follow-up may differ, and the use of
ancillary treatments or care may not be the same.
Hence, in most situations, the objective of a meta-
analysis cannot be equated with that of a single large
trial, even if that trial has wide eligibility criteria.
While a single trial focuses on the effect of a specific
treatment in specific circumstances, a meta-analysis
aims to obtain a more generalizable conclusion about
the effect of a generic treatment policy in a wider
range of situations. For example, a meta-analysis of
blood cholesterol lowering trials included trials using
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drugs, dietary intervention, and even surgery; the
focus was on the effect of cholesterol reduction itself,
rather than on the specific regimens used to lower
cholesterol [31].

There has been enormous growth in the number
of meta-analyses published in recent years [11] over
all fields of medicine, so that examples can currently
be found in almost any year’s issue of a general or
specialist medical journal. Some are investigations of
published trials (meta-analysis of the literature), oth-
ers use summary statistics or tabulated data obtained
from the individual trialists (meta-analysis of sum-
mary data), while others are based on the individual
patient data (IPD) from each trial (meta-analysis of
patient data). The latter usually require the formation
of international collaborative groups and long-term
resource commitment; for example, see [1, 12].

While the majority of meta-analyses currently rely
on published data, sometimes supplemented by addi-
tional summary data for certain trials, the proportion
of those based on IPD is increasing. The use of IPD
allows checking of the original data (whereas pub-
lished information can be wrong or misleading), per-
mits the updating of follow-up information (which is
particularly useful in survival studies), and has much
greater potential than summary data for investigating
which patients may benefit most from treatment. For
these reasons, IPD meta-analyses must be regarded as
the gold standard [25]. However, they cannot always
be carried out, either because individual patient data
are not available (whether for practical, scientific, or
political reasons) or because the exercise is too costly.

The worldwide Cochrane Collaboration has been
a recent and important development promoting the
production and dissemination of systematic reviews
of high quality, in an effort to achieve evidence-
based medical practice. The aims of the Collabo-
ration are to facilitate meta-analyses of randomized
clinical trials in all areas of medicine, to dissem-
inate their results effectively, and to update them
regularly. To this end, a number of Cochrane Cen-
tres have been established in different parts of the
world, as well as Review Groups with responsibility
for coordinating the work in specific medical areas.
The meta-analyses are performed according to certain
methodologic guidelines [24] and checked by edito-
rial teams. They are then released in a standard format
on compact disc together with searching software (the
Cochrane database of systematic reviews – CDSR).

Many meta-analyses now being undertaken con-
tribute to the Cochrane Collaboration and the CDSR.

Preliminaries

A meta-analysis, like other scientific research,
requires a written structure or protocol which
defines its objective and scope. The identification
of trials for inclusion in a meta-analysis is the
next, but difficult, stage. Simply identifying relevant
randomized trials through computerized bibliographic
searches such as Medline is usually inadequate; it is
often necessary to search reference lists and citations
and to communicate with specialists in the area.
One also has to decide whether to include abstracts,
how to include data from trials in progress, and
how to identify relevant non-English publications; all
are difficult issues [24]. The decision as to whether
particular trials are relevant to the objective of the
meta-analysis can be somewhat subjective, and so one
needs to be explicit about the criteria for including
trials and to give a list of excluded trials.

A qualitative review of the individual trials, for
example delineating their methodologic weaknesses,
is a necessary step for a later overall interpretation
of results. Failure to undertake proper randomiza-
tion, to maintain follow-up of all patients, or in
some circumstances to preserve blinding of treat-
ments (see Blinding or Masking), can lead to bias
in individual trials and hence in the overall meta-
analysis [27]. Unfortunately, these weaknesses are
not always clear from publications. One may even
have to decide that the trials are not combinable,
either because the quality of the reported results is
poor or because the treatments or patients are not sim-
ilar enough. The quality of a meta-analysis is only as
good as the quality of the component trials which are
included in it (except with regard to sample size): if
the trials are biased, so will be the meta-analysis.

The essential quantitative information needed is
the estimated treatment effect, measured on the same
scale in each trial, and its variance. One common
problem in undertaking a meta-analysis of published
trials is that this information is not available. For
example, treatment effects may be presented in dif-
ferent ways in different trials, particularly in survival
studies, or their standard errors may not be avail-
able. Sometimes these can be derived from other
published information, such as the raw numbers or
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P values, but often the original trialists have to be
contacted to supply the necessary information.

Scale of Treatment Effects

Many trials have binary event data, such as death, as
the outcome. Treatment effects can then be expressed
as risk differences, risk ratios (see Relative Risk), or
odds ratios. Any of these can be used as a basis for
comparing results across trials, but because absolute
risks will be very dependent on the underlying risk
of the patients included and the duration of follow-
up, risk differences are often severely heterogeneous
across trials. Hence meta-analyses are usually based
on relative measures, odds ratios being the most
commonly used in practice because of the variety
of statistical methods that are available. For similar
reasons, hazard ratios (see Hazard Rate) are most
often used for survival studies. For ordinal data a
proportional odds method of analysis can sometimes
be applied. A logarithmic transformation (log odds
ratio, or log hazard ratio) is generally used, since this
improves the normality of the estimate’s sampling
distribution.

In trials where the outcome is continuous, for
example blood pressure, treatment effects are usu-
ally expressed as mean differences. However, some
trials may express their results using change from
baseline, proportionate change from baseline, base-
line adjusted levels, a data transformation (such as
logarithm), or medians. Not all of these methods are
compatible, but a consistent manner of expressing
results is required for meta-analysis. In some fields,
such as psychology, it is common to express results
as effect sizes, by dividing means by the overall
standard deviation of the measurements. This is
especially so when somewhat different outcome mea-
sures have been used to assess the same underlying
quantity (see Normal Scores).

Statistical Tests Used in Meta-Analysis

It is now useful to introduce some notation. We
suppose there are k trials, i = 1, . . . , k, each with
a treatment group and a control group, and that

θi = true treatment effect in trial i,

θ̂i = estimated treatment effect in trial i,

vi = variance of θ̂i ,

wi = 1/vi.

For example, θ̂i could be the observed log odds ratio
in a trial with binary outcomes, or the observed mean
difference in a trial with continuous outcomes, and is
an estimate of the true but unknown θi . In practice,
νi is an estimated quantity based on the data in each
trial. In what follows, the summation sign always
refers to summation over all trials i = 1, . . . , k.

An overall null hypothesis that the treatment
effect is zero in every trial is H0 : θi = 0 for all i.
Two tests of this null hypothesis are [31]:

1.
∑

wiθ̂
2
i referred to a χ2

k distribution; this is a
general test similar to Hotelling’s T 2, which has
no particular alternative hypothesis in mind.

2. (
∑

wiθ̂i)
2/

∑
wi referred to a χ2

1 distribution;
this is a “directional” test more powerful than
the general test above against alternatives of the
form H1 : θi < 0 for all i (or H1 : θi > 0 for
all i).

In the context of meta-analysis, the directional
alternatives are those of most medical interest (and
indeed are generally the most plausible) and so it
is the directional test that is used. Moreover, the
directional test is particularly powerful against the
alternative H1 : θi = θ(�= 0) for all i, that the true
treatment effect in each trial is the same nonzero
quantity. Using χ2 distributions assumes that the
estimated treatment effects are normally distributed.

For binary outcomes, each trial’s results can be
summarized as a 2 × 2 table of counts. The Man-
tel–Haenszel test is in fact a particular example of
the directional test. It has been rephrased by Peto [39]
in terms of comparing the observed (Oi) number of
events in the treated group of trial i with that expected
(Ei) under the hypothesis of no treatment effect
(θi = 0). Using the variance Vi of Oi from the hyper-
geometric distribution for a 2 × 2 table, the Man-
tel–Haenszel test of H0 refers [

∑
(Oi − Ei)]2/

∑
Vi

(if a continuity correction (see Yates’s Continuity
Correction) is not used) to a χ2

1 distribution. This
can be seen to be (asymptotically) equivalent to the
directional test by noting that (Oi − Ei)/Vi is an
approximation to the log odds ratio estimate (that is
θ̂i) with variance 1/Vi ≈ vi [38].

If this overall null hypothesis is rejected, an
assumption often made in meta-analysis is that the
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true treatment effects in each trial are the same
nonzero quantity, θ (a fixed effect model). A test of
the hypothesis H0 : θi = θ for all i is a test of homo-
geneity (or test for heterogeneity), achieved by refer-
ring Q = ∑

wi(θ̂i − θ̂ )2, where θ̂ = ∑
wiθ̂i/

∑
wi ,

to a χ2
k−1 distribution. This is a test of trial by treat-

ment interaction, and like other tests of interaction
lacks power in many practical situations. Hence, in
particular, nonsignificance of the test cannot be taken
as evidence in favor of treatment effect homogene-
ity, and so the test has somewhat limited usefulness
in the context of meta-analysis.

If the assumption of homogeneity of true treatment
effects (θi) is not accepted, either because of the
above test or for reasons of principle, variation in the
θi between trials must be accommodated (a random
effects model). If it is assumed that the θi have
some distribution across trials, with mean θ∗ and
variance σ 2, then we have a hierarchical model for
the observed data:

θ̂i ∼ mean θi, variance vi,

θi ∼ mean θ∗, variance σ 2.

A test of whether the “average” treatment effect
θ∗ is zero is similar to the directional test
above, except that different weights are used. Now
(
∑

w∗
i θ̂i )

2/
∑

w∗
i is referred to a χ2

1 distribution,
where w∗

i = 1/(vi + σ 2). In using the χ2 distribution,
normality of both the estimated treatment effects
within trials and the true treatment effects across trials
is assumed. To carry out this test, the between-trial
component of variance must be estimated (see
below).

Table 1 shows the data from a meta-analysis of
nine controlled trials of the use of diuretics in preg-
nancy to prevent preeclampsia [7, 33]. The estimated
odds ratios and 95% confidence intervals for each
trial are shown in Figure 1. Using a log odds ratio
scale for the preeclampsia outcome, the directional
test of H0 : θi = 0 for all i yielded χ2

1 = 21.6(P <

0.001). The conclusion is not that the treatment
worked in all the trials, but only that at least one
of the true treatment effects is nonzero. The test
for heterogeneity (of H0 : θi = θ for all i) yielded
χ2

8 = 27.3(P < 0.001), indicating that the true treat-
ment effects were not the same in all trials. If one was
prepared to use the hierarchical random effects model
above, the test of H0 : θ∗ = 0 yielded χ2

1 = 6.4(P =

Table 1 Incidence of preeclampsia in nine randomized
trials of diuretics, and odds ratios

Incidence of preeclampsia

(number of patients)

Triala Diuretic Control OR

Weseley 11% (14/131) 10% (14/136) 1 · 04

Flowers 5% (21/385) 13% (17/134) 0 · 40

Menzies 25% (14/57) 50% (24/48) 0 · 33

Fallis 16% (6/38) 45% (18/40) 0 · 23

Cuadros 1% (12/1011) 5% (35/760) 0 · 25

Landesman 10% (138/1370) 13% (175/1336) 0 · 74

Krans 3% (15/506) 4% (20/524) 0 · 77

Tervila 6% (6/108) 2% (2/103) 2 · 97

Campbell 42% (65/153) 39% (40/102) 1 · 14

aPrincipal author, referenced by Collins et al. [7].

0.01). Hence, allowing for the apparent heterogene-
ity of true treatment effects between trials reduced the
evidence for an overall treatment effect. This empha-
sizes that a test of an assumed common treatment
effect is different, both logically and in practice, from
a test of an average treatment effect.

Fixed Effect Methods of Estimation

It is more informative to provide overall estimates
(see Estimation) of treatment effect, together with
confidence intervals, than simply to test hypotheses.
The vast majority of published meta-analyses use
“fixed effect” estimates of treatment effect, making
the assumption of homogeneity (θi = θ for all i).
Whether this is reasonable is discussed below, but
for the moment we pursue this analysis.

In estimating an assumed common θ , the weighted
average θ̂ = ∑

wiθ̂i/
∑

wi is an unbiased estimate,
and has the smallest variance, namely 1/

∑
wi ,

amongst weighted averages of the θ̂i (see Minimum
Variance Unbiased (MVU) Estimator). Assuming
normality allows the calculation of a 95% confi-
dence interval for θ , being θ̂ ± 1.96(1/

∑
wi)

1/2. In
this “inverse-variance” weighting, the greatest weight
is given to the largest and most informative tri-
als, which have more precisely estimated treatment
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Figure 1 ORs for preeclampsia and 95% confidence inter-
vals in nine trials of diuretics (ORs less than unity rep-
resent beneficial effects of diuretics; meta-analysis based
on fixed-effect assumption). Reproduced from Thompson
& Pocock, Lancet, vol. 338, pp. 1127–1130 [33].  The
Lancet Ltd, 1991.

effects (small vi , so large wi). The estimate is not
derived simply from lumping together the data from
each trial, but appropriately from a stratified analysis
(see Stratification) by combining trial-specific esti-
mates. For trials with binary outcomes, this method
can be used directly for log odds ratios; the use
of empirical logits, for example adding 0.5 to the
cells of 2 × 2 tables which contain a zero, is then
necessary. Asymptotically equivalent results can be
obtained using logistic regression [31] or Peto’s
method based on (O − E)/V as an approximation
to the log odds ratio [7, 39], although the latter can
be biased in some extreme situations [16]. Each of
these methods gives an overall log odds ratio and
confidence interval, which can be exponentiated to
provide results on the untransformed odds ratio scale.
The Mantel–Haenszel estimator weights the untrans-
formed odds ratios approximately inversely propor-
tional to their variances. In numerical examples all
these methods produce nearly identical results [13,
31]. A general formulation of these and similar meth-
ods can be made in terms of score statistics and Fisher
information [38].

The main practical issue is not the choice of
particular method, but whether the assumption of
homogeneity of true treatment effects on which these
methods are all based is justified. It is also informa-
tive to calculate the proportion of weight allocated
to each trial (wj/

∑
wi for trial j ). Often it is just

one or a few trials that dominate the overall results,
in which case one may be justly concerned about the
generalizability of the results [33].

Random Effects Methods of Estimation

The homogeneity assumption can be relaxed by using
the hierarchical model given above, which incor-
porates a between-trial component of variance σ 2.
This leads to estimation of the overall average treat-
ment effect θ∗ around which, it is assumed, the
true treatment effects in each trial are randomly dis-
tributed. The variance of each θ̂i is now (vi + σ 2)
and the appropriate weights w∗

i are put equal to the
reciprocal of these variances. The average effect of
treatment is estimated as θ̂∗ = ∑

w∗
i θ̂i/

∑
w∗

i , with
variance 1/

∑
w∗

i . Assuming normality both within
and between trials allows the calculation of a confi-
dence interval for θ∗.

To carry out these calculations, σ 2 must be esti-
mated. Usually a moment estimator is used since it
can be derived straightforwardly from the heterogene-
ity statistic Q [10]. In principle, maximum likeli-
hood estimation is preferable but this requires an iter-
ative solution [10, 17]. In most practical situations,
the choice between estimators is unimportant. The
important aspect is that σ 2 is now allowed to be pos-
itive, permitting between-trial heterogeneity of true
treatment effects; when σ 2 is zero the random effects
method becomes identical to the fixed effect method.
In moving from a fixed effect analysis to a random
effect analysis, the weights given to each trial become
more evenly distributed, so that in a random effects
analysis small trials receive relatively more weight.

Related Methods

Use of 1/
∑

wi as the variance of θ̂ assumes that the
individual νi are known rather than estimated. Use of
1/

∑
w∗

i as the variance of θ̂∗ assumes in addition
that σ 2 is known. Allowance for the imprecision in
the estimate of σ 2 can be made using a marginal
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profile method [17], but allowing also for the impre-
cision in νi requires exact methods for fixed effect
analyses [21] or a full likelihood approach for ran-
dom effect analyses [36]. These extensions can also
be used in deriving significance tests. The construc-
tion of confidence intervals for θ and θ∗ requires
assumptions of normality, which can be investigated
using normal plots of w

1/2
i (θ̂i − θ̂ ) or w∗

i
1/2(θ̂∗

i − θ̂∗),
respectively. However, such techniques are of limited
usefulness when only a few trials are included in the
meta-analysis.

As well as estimating an overall treatment effect,
there can often be interest in estimating the true treat-
ment effect θi in each trial. These are most easily
obtained as empirical Bayes estimates, which are
shrunk (see Shrinkage) from the usual (maximum
likelihood) estimate towards the overall average treat-
ment effect by a factor which depends on the ratio
of within-trial to between-trial variances [30]. Confi-
dence intervals for these estimates can also be cal-
culated. In the case of the fixed effect model, the
estimates for each trial equal the overall estimated
treatment effect, so that there is complete shrink-
age. As σ 2 increases, the posterior empirical Bayes
estimates of the true treatment effects become more
widely spread.

Fully Bayesian approaches for random effects
meta-analysis are now also computationally feasi-
ble [30]. These can be viewed as hierarchical models,
where the conditional independence between param-
eters is used in deriving an appropriate graphical
model. Priors have to be set on certain parame-
ters, such as θ∗ and σ 2. These can be uninformative,
but some authors argue for the use of informative
priors for σ 2 derived on the basis of other related
meta-analyses [18]. Fully Bayesian approaches uti-
lizing Markov chain Monte Carlo methods (Gibbs
sampling) can easily extend the usual normality
assumptions for true treatment effects to allow for
a heavier tailed distribution, such as a Student’s t
distribution.

Methods have been developed for more complex
situations, for example to include trials with more
than two treatment groups [18, 31] or to combine ran-
domized clinical trial evidence with that from non-
randomized studies [23]. Methods for simultaneous
consideration of multiple outcomes (see Multiple
Endpoints, P Level Procedures) have been pro-
posed [2], as have techniques for cumulative meta-
analysis [19]. The latter have been used to show

how appropriate changes in medical practice could
have occurred earlier if meta-analyses had been per-
formed and their conclusions implemented. Meta-
analysis techniques have also been applied to the
analysis of multicenter trials [17], to the analysis
of paired cluster randomized trials [34] (see Group-
randomization Designs), and to the evaluation of
surrogate endpoints [9].

Interpretation

The fixed effect method of estimation of a common
treatment effect yields a narrower confidence inter-
val than the random effects estimation of an average
treatment effect when there is heterogeneity in results
between trials. For example, in the nine diuretic tri-
als to prevent preeclampsia in pregnancy (Table 1,
Figure 1), the estimated overall odds ratios and 95%
confidence intervals were 0.66 (0.57–0.79) and 0.60
(0.40–0.89), respectively, using the two methods. By
incorporating the between-trial component of vari-
ability into the analysis, the inference about the mag-
nitude of the treatment effect is appropriately less
certain. The simplistic assumption of a common treat-
ment effect in all trials used in a fixed effect analysis
ignores this potential extra source of variability and
can lead to overdogmatic interpretation [33]. Since
the trials in a meta-analysis are almost always clin-
ically heterogeneous, it is to be anticipated that to
some extent their quantitative results will be statisti-
cally heterogeneous [32]: there will tend to be more
variation between the results of the trials than is sim-
ply compatible with chance, even though a test for
heterogeneity may not be formally statistically sig-
nificant. Hence a random effects model appears more
justified in practice than a fixed effect model in terms
of making inferences which apply to future trials or
patients.

Not all agree with this argument, however, and
Peto, in particular, has argued strongly for a fixed
effect approach [12]. His view appears to be based
on hypothesis testing rather than estimation, with the
P-value indicating the extent to which the results
could have arisen simply through the play of chance
with respect to the randomization process in each
trial. Combined with the common-sense and empir-
ical view that qualitative trial by treatment interac-
tions (where the direction of true treatment effects
differs across trials) are unlikely, the fixed effect
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estimate of treatment effect is interpreted only as
some “typical” treatment effect for the trials that
have been performed, rather than more formally as
a basis for inference to future trials or patients.
Indeed, how the results of a meta-analysis can be
used to inform decisions about treating individ-
ual patients in clinical practice is not simple, usu-
ally requiring assumptions about generalizability or
extrapolation which are based on very little evi-
dence.

The random effects method does not completely
solve the problem of heterogeneity. It relies, for
example, on the simplistic assumption that the het-
erogeneity between trials can be represented by a
single variance. Moreover, the idea that the available
trials have true treatment effects which are drawn
from some distribution is unrealistic, and provides
only a convenient way of allowing for unexplained
variation between them. However, heterogeneity can
be regarded as an asset rather than a problem.
It allows clinically and scientifically more useful
approaches attempting to investigate how potential
sources of heterogeneity impact on the overall treat-
ment effect [32], as discussed below.

Sources of Heterogeneity

Rather than estimate a single treatment effect, it is
possible to investigate whether certain trial charac-
teristics, such as drug dose, duration of treatment, or
length of follow-up are related to the treatment effects
observed. For example, in analyzing the effects of
BCG vaccination on the risk of tuberculosis, the
effect of the geographic latitude of each trial was
investigated [3]. In the blood cholesterol lowering tri-
als, the reduction in heart disease risk was related
to the extent and duration of cholesterol reduc-
tion [32]. In AIDS trials, the reduction in mortality
was related to the change in CD4 counts [9]. Ide-
ally the covariates used in such analyses should
be specified in advance to reduce the risk of post
hoc conclusions prompted by inspecting the available
data; as in subgroup analyses for individual clin-
ical trials (see Treatment-covariate Interaction),
there is a danger of false positive results. Similar
analyses are also possible for patient characteristics,
provided that individual patient data are available.
The statistical purpose of such analyses is to see
to what extent, and with what certainty, covariates

can explain the between-trial component of variance.
Hence a mixed effects model is obtained, where some
or possibly all of the “random” between-trial varia-
tion is explained by fixed covariates. The medical
outcome should be a better scientific understand-
ing of the data and more useful clinical conclusions
on which to base decisions about medical interven-
tions [32].

It can be useful to calculate the contribution
of each trial to the heterogeneity statistic Q, i.e.
wi(θ̂i − θ̂ )2 for trial i, which under the assumption
of homogeneity should have approximate χ2

1 dis-
tributions [31] (see Agreement, Measurement of).
This can show that the results of just one or a
few trials are anomalous, and suggest that either
particular clinical aspects or methodologic biases
may be the cause. In analyses which relate the
observed treatment effects to covariates, weighted
regression is appropriate. The weights used must,
however, reflect both the within-trial variances and
the residual heterogeneity, i.e. variability between
trial results that is not explained by the covari-
ates [3].

One particular potential source of heterogeneity,
the underlying risk of the patients in the trial, has
often been investigated recently, for a number of rea-
sons. That the overall treatment effect, for example
the odds ratio, does not depend on this underlying risk
is a strong assumption [4]. Moreover, if there were
a relationship with underlying risk, such an analy-
sis would help identify the patients who were likely
to benefit most from a treatment, or whether some
groups of patients might even be disadvantaged. Such
analyses also have health economic consequences
for the appropriate use of the treatment. However,
in most meta-analyses, the only available measure
of underlying risk is the observed rate of events in
the control group of each trial. In relating this to
the observed treatment effect in each trial, there can
be a severe bias stemming from regression toward
the mean [28]. Correct analyses are more difficult
and are based on certain assumptions, but take into
account the sampling variation in the observed con-
trol group risk estimates [20, 35]. The future of such
analysis is to use individual patient data to relate
treatment benefit to measured patient covariates (or a
prognostic score) rather than the unmeasured “under-
lying risk”, so that clinically useful results can be
obtained.
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Presentation

There is a move towards ensuring that the
quality of reported meta-analyses is as high as
possible [8], especially since they underpin the
practice of evidence-based medicine. Presentation is
one component of this. Meta-analysis in medical
journals usually contains a brief tabular description
of the characteristics of the trials included, and of
their principal quantitative results (such as Table 1).
In addition, figures have been developed to show
the main results diagrammatically. Typically these
comprise the estimates and 95% confidence intervals
for each trial, together with an overall estimate and
confidence interval (such as Figure 1). Such diagrams
are sometimes called “forest plots”. Some authors
use 99% confidence intervals for individual trials to
offset the fact that many trials are being displayed
simultaneously. Others use filled squares or circles
to represent each estimate, with areas proportional
to the inverse of the variance, so that the eye is
drawn not to the trials with wide confidence intervals
which are least informative but towards those with
greatest precision (see, for example, [1]). Overall
effects from survival studies, analyzed as log hazard
ratios, may be transformed to approximate overall
survival curves to convey the clinically important
messages clearly [12].

Such diagrams are not very useful for revealing
heterogeneity, and “radial plots” of the standardized
treatment effect θ̂i/v

1/2
i against reciprocal standard

error 1/v
1/2
i have been advocated instead [31]. In the

presence of heterogeneity, separate results according
to the relevant covariates need to be shown. In the
case of a continuous covariate, this can also be rep-
resented diagrammatically (see, for example, [32]).

Biases and Sensitivity Analyses

Not all trials are free from bias, nor are all trials ana-
lyzed on an intention to treat basis. In the absence
of properly conducted randomization, adequate blind-
ing, or complete follow-up, the bias in individual trial
results can lead to bias in the overall results of a
meta-analysis. The problems are even more severe in
the meta-analysis of epidemiologic studies, since con-
founding factors may be a major issue. Even with full
intention to treat analysis of clinical trials, the degree

of patient compliance may have differed across tri-
als, leading to problems in the overall interpretation
of a meta-analysis.

The possible consequences of such biases need
to be addressed, albeit imperfectly in practice. For
example, the effect of randomization concealment can
be investigated as a potential source of heterogene-
ity [27]. Alternatively, the methodologic quality of
the trials can be rated, and this used as a rationale
for excluding the weakest trials, or as a covariate
in analysis [15]. Individual patient data allow much
more scope than published data or summary data for
the more definitive identification of poor quality tri-
als, or the correction of errors in the publication of
trial results [25].

Publication bias has become a particular concern
in meta-analysis, since the aim is to obtain a sum-
mary of the totality of evidence. Even though large
multicenter trials will tend to be published what-
ever their results, small studies may be published
only if they have impressive observed results. Hence
the published literature is potentially biased. Empir-
ically, a “funnel plot” of the observed treatment
effects against sample size (or precision) may show
some evidence that small negative studies are miss-
ing from the published literature [37]. In the presence
of such evidence, a random effects model is not nec-
essarily desirable since it puts more weight than a
fixed effect model on the small studies which are
available. Various methods have been proposed to
calculate the number of negative unpublished stud-
ies that would be needed to overturn the qualitative
conclusion of a meta-analysis [14]. More construc-
tively for the future, registers of clinical trials which
are in progress, or are funded or have been approved
by ethical committees, are being kept so that the com-
pleteness of the published literature can be assessed
directly, and unpublished information sought [29].

In the presence of imperfect information, sensi-
tivity analysis is a useful tool, for example to
investigate the extent to which conclusions change
if methodologically weak trials are excluded. They
can also be used to investigate the robustness of
conclusions to the inclusion criteria for trials origi-
nally adopted. Where one or just a few trials dominate
the overall results of a meta-analysis, sensitivity anal-
yses can be conducted to see how the conclusions
change when these trials are omitted. Indeed, the
random effects method can be viewed as a sensi-
tivity analysis for the failure of the assumption of
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homogeneity [31]. While these analyses are useful in
judging the effects of the more subjective decisions
taken in conducting a meta-analysis, it can sometimes
be difficult to form an overall interpretation from
the results of many sensitivity analyses, especially
when the number of trials included in a meta-analysis
is small.

The Future of Meta-Analysis

Meta-analysis has rightly had a major impact on med-
ical science in the past 10 years, and has formed the
basis for the development of evidence-based med-
ical practice. The statistical basis of meta-analysis
is well developed. Although the fixed vs. random
effects discussion will linger on, it seems likely to be
superseded by greater use of mixed models in which
potential sources of heterogeneity are directly inves-
tigated. Although there will continue to be develop-
ment of statistical methods at the margin, the main
need is now more practical. The majority of meta-
analyses are currently still based on published data.
Hence, for example, empirical work is required on
the practical problems in meta-analyses of imperfect
published data, and on delineating appropriate sensi-
tivity analyses that will aid interpretation. Statistical
support for the many meta-analyses undertaken is
woefully limited, resulting in poor quality in some
cases and consequent but unjustified disillusionment
with the underlying idea. Alternative methods for
the dissemination of meta-analytic results in order to
affect clinical practice need to be assessed [5]. The
use of individual patient data meta-analyses is likely
to expand in the future, since it gives more scope both
for including only reliable evidence and for allowing
more detailed investigation of results, especially with
regard to heterogeneity of treatment effects according
to patient characteristics.
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Meta-analysis of
Diagnostic Tests

If we wish to know the accuracy (e.g. sensitivity and
specificity) of a diagnostic test, there may be several
appropriate studies from which to derive estimates.
First, we need to identify the pool of relevant stud-
ies. Secondly, we need to appraise the methodological
quality of each of the studies and select those which
reach a minimum standard, or use the quality items as
predictors in a regression model. Thirdly, we need to
derive a summary estimate from these selected stud-
ies. Such a meta-analysis will have two advantages:
(i) it will provide greater precision in the estimates
of accuracy (sensitivity and specificity) than from a
single study, and (ii) it will allow an examination of
the existence and the causes of heterogeneity between
studies, for example, because of differing patient pop-
ulations, test methods, or quality [9].

In this article, we deal with these three steps in
performing such a systematic review.

Finding the Studies

Finding all of the relevant primary studies is not a
trivial task. A standard strategy would include the
search of a computerized database (including the
identification of any review articles that might iden-
tify studies not picked up in the searches), hand
searching of selected journals, and checking of the
references of all of the relevant studies identified [4].
Electronic databases can be searched to find studies
in which both the name of the tests and the disease
of interest appear in the title or abstract. If this pro-
cess results in a large number of articles that are
not relevant, some means is needed of confining the
search to those studies looking at diagnostic accu-
racy. This can be achieved, though at the risk of
missing some relevant papers, by limiting the search
to papers that contain or are indexed using method-
ological terms that identify diagnostic test studies.
For example, in MEDLINE, the library database of
the National Library of Medicine, it has been shown
that most good diagnostic test articles would be
detected by a search of the terms accuracy (appear-
ing in the title or abstract) OR sensitiv∗ OR diagnos∗
appearing in the title, abstract or MEDLINE-indexed
keywords [6]. The ∗ indicates a wildcard so that it

includes, for example, sensitivity and sensitivities.
How to specify the wild card “*” varies with the
MEDLINE interface. A set of these methodologi-
cal filters is described and available for use elec-
tronically in the PUBMED version of MEDLINE
(http://www.pubmed.gov/query/static/
clinical.html).

Because studies of diagnostic tests may sometimes
be done using routinely collected data, and are there-
fore less resource intensive than clinical trials, the
likelihood of many unpublished studies, and hence
of significant publication bias, is higher. (see Meta-
analysis of Clinical Trials)

Quality Appraisal

The assessment of study quality can be used either
to limit the meta-analysis to those studies of better
quality or to explore the extent to which elements of
study quality are related to the results. The assess-
ment of methodological quality can be biased by
the reviewer’s preconceptions about what the results
of the study should show. Therefore, the appraisal
of primary studies should be based on a prespeci-
fied set of criteria that indicate objective standards
of quality and be based on assessment by two inde-
pendent reviewers with resolution of disagreements
by consensus or the use of a third reviewer. On the
basis of conceptual considerations and empirical evi-
dence about the effect of elements of study quality
on study results [13], several sets of criteria are now
available [1, 25]. Common important elements in the
criteria are:

1. Were the tests compared with a valid refer-
ence standard?

2. Were the test and reference standard measured
independently (blind) of each other? Categories
consist of:

(i) test measured independently of reference
standard and reference standard indepen-
dently of test (MOST VALID);

(ii) test measured independently of reference
standard but not vice versa;

(iii) reference standard measured independently
of test but not vice versa;

(iv) test and reference standard not measured
independently of each other (LEAST
VALID).
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3. Was the choice of patients who were assessed by
the reference standard independent of the test’s
results? (Avoidance of verification bias – this
occurs when, for different test outcomes, the frac-
tion subjected to the reference standard varies.)

4. If tests were compared, were they read indepen-
dently on all individuals, or were different tests
randomly allocated to study participants?

Issues to Consider for Applicability
(Exploring Heterogeneity)

To help decide which studies to include and the
extent to which heterogeneity in test accuracy should
be explored, meta-analysts should also consider the
potential sources of heterogeneity [7], of which the
following are some of the major issues:

sequence: how the test(s) of interest are being used
in the sequence of available tests;

role: whether tests are being evaluated as replace-
ments for existing tests or additional tests;

test type: where there are several tests, ascertaining
differences in accuracy may be the objective of
the meta-analysis [21];

population and setting: for example, whether the test
is being performed in primary care setting on
people who present for the first time with a set
of symptoms, or in a hospital setting after hav-
ing been through a “referral filter”, which would
have excluded people with milder forms of dis-
ease, people who responded to first-line treat-
ment, or people who were easier to diagnose.

Combining Studies

To combine studies, we must choose summary mea-
sures to represent each study, with sensitivity and
specificity being commonly used. However, studies
differ in their “threshold” for calling a test posi-
tive. For example, if the test-reader is very concerned
about missing a disease case, they may choose a very
low threshold point along the spectrum from negative
to positive, and thus favor high sensitivity over high
specificity. The Receiver Operator Characteristic
(ROC) curve plot (see Figure 1) shows this variation
in threshold by plotting sensitivity versus specificity
(or more precisely, 1 – specificity). Thus, plotting
the data in ROC space should be used as an initial
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Figure 1 The receiver operating curve of two hypothetical
studies, A and B

summary of all studies. We then require a method
of combining studies, which accounts for both the
discrimination ability of the test and this variation
in threshold.

There are two widely used methods of combining
the results of studies of diagnostic accuracy [8]. The
first and worse of these is direct pooling. In Table 1,
study A has a high specificity, but few nondiseased
cases; study B has a high sensitivity but few diseased
cases. Although the odds ratio in each individual
study is 4 (indicating a reasonable discrimination
ability), the overall odds ratio is 0.87 (indicating a
worse-than-useless test). As illustrated in Table 1 and
Figure 1, direct pooling can result in large distortions
of the true accuracy of a diagnostic test. This is
because of confounding from different thresholds
being applied to studies in which there are different
disease prevalences. The size and direction of this
distortion is unpredictable, but it is particularly likely
to be a problem if there is a wide range of prevalences
of disease across the different diagnostic studies.

An alternate method that has been suggested to
avoid this problem is to calculate the sensitivity and
specificity within each study first, then calculate a
(weighted) average of the sensitivities and, sepa-
rately, calculate a (weighted) average of the speci-
ficities [2, 17]. This avoids the confounding problem
associated with direct pooling, but may still lead to
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Table 1 Results from two hypothetical studies (A and B), plus pooled results

Test D ND Sensitivity Specificity Odds ratio Youden

+ 200 10
− 300 60
Total A 500 70 0.4 0.86 4 0.26
+ 20 200
− 5 200
Total B 25 400 0.8 0.5 4 0.3
+ 220 210
− 305 260
Total A + B 525 470 0.42 0.55 0.89 −0.03

Youden = Sensitivity + Specificity − 1.

an underestimation of the true accuracy if there is
variation in the threshold used by different studies,
that is, there is evidence of an association between
sensitivity and specificity across studies. For exam-
ple, Figure 1 shows the two studies from Table 1;
any averaging of the sensitivity or specificity will lie
along the dotted line joining A and B, with the loca-
tion depending on the relative weighing used. If the
same weights are used for sensitivity and specificity
(e.g. equal weights or weights based on study size),
then this is one point on the line. If different weights
are used to combine sensitivity and specificity (e.g.
based on disease numbers for sensitivity and nondis-
eased numbers for specificity), then these may be read
from different points on the line, and hence the joint
estimate is not confined to the line.

Combining Dichotomous Test Results Via SROC

There are a number of appropriate meta-analytic tech-
niques for diagnostic tests, most of which plot the
sensitivity against specificity for each of the pri-
mary studies, and then attempt to construct a sum-
mary Receiver Operator Characteristic curve (SROC)
through these data points [8]. We will deal first with
dichotomous tests, then outline briefly methods for
tests with continuous or ordinal results.

For dichotomous tests, one convenient presenta-
tion is to use the odds ratio as a summary measure of
the discrimination ability of a test. If the odds ratio
is constant across different thresholds, then this will
lead to a symmetric SROC curve. However, this is
an assumption that can and should be tested. Before
going into the details of these methods, to understand
their interpretation better, we first look at the relation-
ship between odds ratios, likelihood ratios, and the
sensitivity and specificity.

Besides characterizing the accuracy of a test, the
other use of sensitivity and specificity is in the calcu-
lation of predictive values via Bayes’ Theorem. One
convenient formulation of this is the odds–likelihood
ratio version of Bayes’ Theorem, namely,

posttest odds = pretest odds × likelihood ratio, (1)

where the likelihood ratio (LR) is Pr(result |disease)/
Pr(result |non disease). Thus, for a positive result, the
LR+ = Pr(+ve|D)/Pr(+ve|non D) = sensitivity /
(1 − specificity); similarly, for the negative result the
LR− = Pr(−ve|D)/Pr(−ve|non D) = (1 − sensiti -
vity)/specificity . Hence, the odds ratio, OR, can be
expressed as

OR = sensitivity

(1 − sensitivity)

/
(1 − specificity)

specificity

= LR+

LR− (2)

The log-odds ratio (using natural logarithm) can
be expressed as

A = logit(sensitivity) − logit(1 − specificity)

= log OR = log LR+ − log LR−

= log LR+ + 1

log LR− (3)

Since the LRs are measures of the power of
the test to change the pretest odds, the OR can
be viewed as summarizing the total discrimination
ability of the test. Thus, A (= log OR) is a measure
of a test’s discrimination ability (note that the other
common measure is the area under the ROC). If the
positive result and negative result change the odds
equally, that is, LR+ = 1/LR−, then the threshold
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is not skewed (or “biased” in ROC jargon) toward
either diagnosis. The implicit test threshold may be
represented by:

S = logit(sensitivity) + logit(1 − specificity) (4)

Note that if sensitivity = specificity, then S = 0
and also LR+ = 1/LR−, indicating no skew in favor
of either false positive or false negative rates. Thus
for each study, we can obtain a measure of the
discrimination ability, A (as measured by the log-
odds ratio) and the threshold (as measured by S). S

can be regarded as a proxy for test threshold, since it
is the sum of the log odds of a positive test result in
the diseased and the log odds of a positive test result
in the nondiseased groups. Hence, S will increase as
the criterion for a positive test becomes less stringent.

The OR may increase or decrease with the thresh-
old, and hence lead to an asymmetric SROC curve.
Therefore, Moses and coworkers [14, 18] suggest
plotting A against S to check whether the discrim-
ination ability varies with the threshold. Regression
lines may be estimated in several ways, usually by
weighted or unweighted least squares. The weighted
analysis weights each study by the inverse variance
of the log OR for that study (var(log OR) ≈ 1/a +
1/b + 1/c + 1/d, where a − d are the observed
counts in the four cells of the 2 × 2 table); 0.5 is
added routinely to all cell counts for all tables when
computing the log OR and corresponding weight. A
robust regression may also be used when assump-
tions are not met for the least squares analysis.

If the regression of A on S shows that the slope
is not significantly different from zero, then the
SROC may be considered symmetric, the constant
Bo represents log OR, and hence exp (Bo) represents
the odds ratio. If A does not depend on S, then
any of the standard techniques for combining odds
ratios can be used, for example, Mantel–Haenzsel
if a fixed effect is assumed for test accuracy across
studies or DerSimonian–Laird if random effects are
assumed [8]. However, if the slope (coefficient of S)
is significantly different from zero; the discrimination
ability of the test varies with test threshold, and thus,
the SROC is asymmetric. Model coefficients can be
used to estimate the area under the SROC [24].

The Moses–Littenberg and SROC plots are illus-
trated in Figures 2 and 3, respectively, for ultrasound
of the carotid arteries (data taken from Table 2 of
Hasselblad & Hedges [5]). In Figure 2 is shown a
log OR ranging between approximately 3 and 7.
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Figure 2 A plot of discrimination ability A [log (odds
ratio)] versus S (a measure of threshold) for studies of
ultrasound for carotid artery stenosis
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Figure 3 An SROC plot for studies of ultrasound for
carotid artery stenosis

An unweighted regression gave an estimated inter-
cept of 4.3, which indicates a good test with an
intercept odds ratio of 74, but the negative slope of
−0.57, indicates that the OR decreases with increas-
ing S (threshold). The corresponding estimates for
the weighted regression are 4.1 and −0.28 for the
intercept and slope respectively. Figure 3 shows the
corresponding SROC plots. The cluster of studies in
the top-left corner indicates generally good discrimi-
nation ability (a perfect test would include the 100%
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sensitivity, 0% 1 – specificity point, whereas a worth-
less test would be a straight diagonal from the 0–0%
to 100–100% points).

The summary ROC curves shown in Figure 3
are obtained by computing the expected sensitivity
for chosen values of 1 – specificity that lie within
the range observed for the studies included in the
analysis. Back transformation is used to express the
expected sensitivity as a function of 1 – specificity
and the parameter estimates of the model [18]. In the
example, both of the resulting SROCs are moderately
asymmetric (closer to the left-vertical axis than the
top axis), particularly for the unweighted analysis.

Exploring Heterogeneity

If the ROC plot shows important heterogeneity in
threshold, discrimination ability or both, the analyst
should look to explain this. The causes may be cat-
egorized as (i) study design features, (ii) population
differences, and (iii) test differences. A useful tool
for exploring this is meta-regression: a regression
analysis over all studies with study features used
as predictors [12]. For example, in a meta-analysis
of Thallium Scintigrams for coronary artery disease,
Irwig et al. [9] add to their regression of A on S

an indicator variable (see Dummy Variables) for
whether the reading technique was computerized.
This showed no difference in A for computerized ver-
sus noncomputerized reading, although computerized
readings had a significantly lower threshold (more
sensitive but less specific) as shown by a t test on S.

Further Methods

Alternatives for Combining Dichotomous Test
Studies

The technique described above is the most commonly
used in practice, but it is only one of several
ways of combining studies with dichotomous test
results. The first method developed [10] plotted and
regressed logit(sensitivity) against logit(specificity);
if the slope is 1, this implies a constant odds ratio
but with shifting threshold between studies. This
is conceptually equivalent to the method described
above, but with a different parameterization; the
authors also used the profile likelihood method
rather than the linear and robust regression used for

estimation by Moses and Littenberg. Both methods
assume that the model parameters are fixed effects.

An alternative approach, based on a latent scale
logistic regression model, provides a more flex-
ible framework for SROC modeling. The hierar-
chical summary Receiver Operator Characteristic
(HSROC) approach developed by Rutter and Gat-
sonis [19, 20] allows test threshold (cut-point), test
accuracy (location), and the dependence of test accu-
racy on threshold (scale) to be modeled. Under this
model, the probability of a positive test result πij

in study i and disease group j (1 = diseased, 2 =
nondiseased) is assumed to follow a binomial dis-
tribution. The model takes the form logit(πij ) =
(θi + αi disij ) exp(−β disij ) where disij represents
the “true” disease status (coded as −0.5 for the
nondiseased and 0.5 for the diseased). Each study
has its own implicit threshold (θi , equivalent to
Si/2) and diagnostic accuracy (αi , log-odds ratio),
both specified as random effects. The scale param-
eter (β) provides for asymmetry in the SROC by
allowing accuracy to vary with implicit threshold.
This parameter is assumed to be fixed as no single
study can provide an estimate of the shape of the
SROC. The random effects are assumed to be inde-
pendent and normally distributed with θi ∼ N(Θ, τ 2

θ )

and αi ∼ N(Λ, τ 2
α ). The parameter estimates can be

used to estimate the summary ROC, the expected
operating point (1 – specificity, sensitivity) and cor-
responding likelihood ratios for a diagnostic test.
This model also has the advantage that it takes into
account both within study variability and heterogene-
ity between studies. Covariates may be added to the
model to assess whether test threshold, accuracy,
and/or SROC shape vary with study or patient charac-
teristics. Rutter and Gatsonis outline how the model
may be fitted using a fully Bayesian analysis using
MCMC estimation [20]. Empirical Bayes estimates
of the model parameters can also be obtained using
Proc NLMIXED in SAS [15].

Combining tests that are Continuous variables

Hasselblad & Hedges [5] suggest another alternative
that provides a connection with continuously valued
diagnostic tests. This is based on the finding that,
if the diseased and nondiseased populations have
normally distributed test results, then log OR is
approximately constant over the range of possible
threshold choices. If the distributions of test results
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are logistic and have equal variances, then log OR
constancy is exact rather than approximate. Under
these circumstances, the log-odds ratio is simply a
constant multiplied by the standardized difference
between the two means

∆ =
(√

3

π

)
log OR (5)

where ∆ is the standardized difference between the
two means (a commonly used alternative measure of
discrimination ability), and the two constants come
from the logistic density function. Hasselblad &
Hedges [5] also show that this method is relatively
robust to violations of the assumptions of equal
variance and logistic distributions.

This relationship leads to a simple approach to
providing summary estimates for several studies with
continuous test results, or for a mixture of dichoto-
mous and continuous results. In either case, the dis-
crimination ability of each test can be represented by
a summary estimate (log OR or ∆) and these com-
bined as a weighted mean, with the inverse of the
variance used as the weights:

log OR =
∑

wi log ORi

∑
wi

(6)

where wi is the inverse variance of log OR, and the
variance of the weighted mean is the inverse of the
denominator in the above equation.

Combining Tests that are Ordinally Valued

For ordinally valued test studies, ordinal regres-
sion methods have been suggested (see Polytomous
Data). The simplest of these assumes a constant odds
ratio and a fixed number of result categories [22]:

logit[Pr(Y ≤ j |x1, . . . , xk)] = θj

+ (α1x1 + · · · + αkxk), (7)

where θj is a separate constant for each category and
x1, . . . , xk are a series of explanatory variables. This
approach is only valid if it is reasonable to assume
that the SROC is symmetric.

An alternative, computer-intensive method used
by Kester and Buntinx fits the Moses model to esti-
mate an ROC for each study [11]. The bootstrap
method is used to obtain a valid estimate of the
constant and coefficient of S for each study that take
into account correlation between multiple estimates

of A and also S within the same study. Summary
estimates across studies are then obtained using the
random effects bivariate regression method of van
Houwelingen and Zwinderman [23]. Dukic and Gat-
sonis describe a Bayesian hierarchical model, which
assumes a study-specific ROC that is sampled from a
population of ROC curves for such studies [3]. Stud-
ies are not constrained to have the same set or number
of categories. SROC curves and corresponding cred-
ible regions can be constructed using this approach.
Dukic and Gatsonis also describe a simpler, fixed
effects model that assumes the ROC curves for all
studies have the same location and scale parame-
ters, that is, the same accuracy and shape. However,
thresholds may again vary across studies.

Combining Areas under ROCs

We have focused on methods that use the odds ratio
as the summary measure of discrimination, and then
used this to derive the SROC. An alternative is to use
the area under the ROC for each study [16, 26], and
combine areas. This can be used for dichotomous,
ordinal, or continuous data, but has a clear advantage
for ordinal data where studies can be combined
readily even if the number of categories differs
between studies. The disadvantage is the loss of
ability to explore threshold variation and shape of
the ROC curve.

Meta-analytic methods for diagnostic tests are
less well developed than for clinical trials. The
development of a mixed model for fitting SROC
curves to dichotomous test results and the availability
of software for fitting the model provides a general
approach for the meta-analysis of diagnostic studies
that takes into account within and between study
variability. Both the SROC and HSROC methods
provide a means of exploring heterogeneity between
studies. However, the HSROC model has not been
widely used and is not well tested in practice. Current
methods for the meta-analysis of ordinal test results
are either very complex to fit, or make simplifying
assumptions that may be inappropriate. The potential
impact of publication bias, and other problems of
meta-analysis have been little explored.

While a number of analytic methods have now
been developed for different types of tests, presen-
tation of these results for clinical use has been less
well explored. An SROC alone is insufficient to allow
application in a clinical setting. A minimum require-
ment is back transformation to the sensitivities and
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specificities for particular cutpoints. However, this
raises the problem of whether the scaling of mea-
surements is comparable between studies. Further
attention is needed to the clinical application of the
meta-analytic results.
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Method of Moments

The method of moments is a straightforward statis-
tical technique for constructing point estimators of
the parameters in a statistical model. In the early
days of statistics it was a fundamental statistical tool;
in particular, Karl Pearson encouraged its use as a
method of fitting frequency curves that deviated from
the normal. However, Fisher [4] established that it
could be highly inefficient, and since that time it has
been largely displaced by methods known to be more
statistically efficient, primarily maximum likelihood.
Even so, the method continues to play an important
auxiliary role in estimation owing to its flexibility,
because one can often derive computationally simple
methods in otherwise difficult problems. The method
is nearly foolproof in the sense of providing consis-
tent estimators with easily derived standard errors.
An additional motivation for the use of the method
is that its validity depends only upon a small number
of easily stated and easily checked assumptions about
the structure of the statistical problem.

The Basic Method

Suppose we have a statistical model for a univariate
variable X, with a d-dimensional parameter θ . In its
most basic form, the method of moments requires set-
ting up a system of d equations for the d unknown
θs by equating the first d sample moments of the
variable X with their expectations under the model,
then solving that system for the method of moments
estimator θ̂ . That is, if the data X1, X2, . . . , Xn

form a random sample of univariate observations,
then let the sample moments be denoted by mr =
n−1 ∑n

i=1 Xr
i , and let the theoretical moments be

denoted by µr(θ) = Eθ [Xr ], where Eθ indicates the
operation of expectation under the proposed proba-
bility model. The basic method of moments estimator
would then be the value of θ that solves

mr = µr(θ) for r = 1, 2, . . . , d. (1)

Ideally, this system can be solved explicitly for
the estimators, or the solution can be obtained with
low computational difficulty. The question of the
existence and uniqueness of the solutions is not
always elementary; see [9] and [10] for a careful
analysis in the case of the mixture model.

It should be noted that a single problem has
more than one method of moments because one can
transform the data, say by y = g(x), and use the
moment system determined by the new variable y.
The transformation could be chosen either to simplify
the equations or for a gain in efficiency.

Elementary Examples

If the parameter dimension is two, then the first
two moments are matched, which is equivalent to
matching the sample mean and variance of X to the
theoretical mean and variance. Thus in the normal
model with X ∼ N(µ, σ 2), the method of moments
estimator for µ is the sample mean, and for σ 2

it is the sample variance. If the model is gamma
with parameters (α, β), then the first two moments
of the gamma distribution are µ1 = αβ and µ2 =
αβ2 + α2β2. Equating these quantities to m1 and
m2 yields the solutions α̂ = m2

1/(m2 − m2
1) and β̂ =

(m2 − m2
1)/m1. Thus, unlike the maximum likelihood

equations, there is a solution that does not require an
algorithmic method.

Multivariate Data

The extension of the basic method of moments to
multivariate data is not elementary. The reason is
that if the variable X is of dimension p, then there
are p first moments, p(p − 1)/2 second moments,
p(p − 1)(p − 2)/6 third moments, and so forth. It
follows that setting up a system of exactly d equa-
tions will typically be impossible without the careful
selection of a subset of higher-order moments. For
more on this, see Lindsay & Basak [11], who cre-
ated a system of multivariate moment equations for
the normal mixture model based on the criteria of
having unique and simple-to-compute estimators.

Generalized Method of Moments

There are some natural extensions of the method of
moments that enrich the approach, allowing the user
to create equations that are either easier to solve or
more theoretically efficient. For example, one could
choose a set of d functions of the variable x, say
g1(x), . . . , gd(x), and then find the solution in θ to
a set of generalized moment equations that equate
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the sample average of these variables with their
theoretical expectations:

gr = n−1
n∑

i=1

gr(Xi)

= Eθ [gr(X)], for r = 1, . . . , d. (2)

Note that if gr(X) = xr , then this is the
basic method of moments. If one sets gr(x) =
exp(trx) for a set of grid values t1, . . . , td , then
one is matching the empirical moment-generating
function n−1 ∑

exp(tX) to its theoretical value
Eθ [exp(tX)] along the grid values. One can use
generalized moment equations in the case of
multivariate X by using scalar-valued functions gr(x)

in the above equations.
It should be noted that in the exponential family

of distributions, the maximum likelihood equations
are generalized moment equations for a set of appro-
priately chosen functions gr . In this case, and this
case only, the method of moments yields fully effi-
cient estimators. For example, in the normal model
the functions g1(x) = x and g2(x) = x2 give full effi-
ciency, while in the gamma model the necessary
functions are g1(x) = x and g2(x) = ln x. It follows
that if one uses x and x2 in the gamma, as was
done above, then the estimators do not have opti-
mal efficiency.

Least Squares Method of Moments

A further extension of the method allows one to
use a set of functions [gr(X) : r = 1, . . . , R] whose
cardinality R is greater than the dimension d of
the parameter vector. In parallel with least squares
estimation, one establishes an objective function of
the form

S(θ) =
R∑

r=1

{gr − Eθ [gr(X)]}2. (3)

The least squares method of moments estimator is the
value of θ that minimizes S(θ). This method was used
by Quandt & Ramsey [16] to determine estimators
in the mixture-of-normals problem. They used the
system of functions gr(X) = exp(trX) for a grid of
values tr , so that the method was based on finding a
close fit of the fitted moment-generating function to
the empirical one.

Distributional Theory

The asymptotic distribution theory of the method
of moments estimators is easily derived using the
delta method. This leads in a ready fashion to the
asymptotic normality of the estimators as well as
to a formula for the asymptotic covariance matrix.
The most natural approach to the statistical theory is
through the wider subject of estimating functions [6,
pp. 3–20]. This theory deals with estimators that are
derived as the solutions to a set of equations of the
form:

hr(X, θ) = 0, for r = 1, . . . , d, (4)

where the functions hr(X, θ), r =1, . . . , d, have mean
zero under the probability model: Eθ [hr(X; θ)] = 0.
The method of moments simply corresponds to the use
of functions hr of the special form gr − Eθ [gr(X)].

If one wishes to use a set of R > d moment
equations, as in the least squares method of moments,
there is an optimal way to combine the moment
equations linearly to construct a set of d equations.
Hansen [7] and Lindsay [8] showed that the highest
efficiency for the resulting estimators arises from
solving

{∇Eθ [g(X)]}TV (θ){g − Eθ [g(X)]} = 0, (5)

where V (θ) is the inverse of the theoretical covari-
ance matrix of {g − Eθ [g(X)]}. Under some regular-
ity assumptions, the resulting estimators are asymp-
totically equivalent to those arising from minimizing

S∗(θ) = {g − Eθ [g(X)]}′V (θ){g − Eθ [g(X)]}, (6)

a generalized least squares criterion. If the covariance
matrix is a constant multiple of the identity, then
minimizing S∗(θ) is equivalent to minimizing S(θ),
but otherwise efficiency is improved.

A review of the modern literature shows a wide
range of continuing applications of the method of
moments. Some of the more important ones include
the following:

1. Regression modeling. Hansen [7] introduced a
generalized method of moments estimator for the
regression problem as follows. Suppose ur , r =
1, . . . , R, is a system of n-dimensional vectors,
each of which is uncorrelated with the residual
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vector Y − Zβ, so that Eβ[u′
r (Y − Zβ)] = 0.

Then it is clear that one can use the functions
gr(Y) = u′

rY together with the aforementioned
optimal linear combination criterion to perform
generalized method of moments.

2. A binomial example. O’Quigley [15] considered
a problem in which the goal was to estimate
the binomial parameter n based on a sequence
of independent data of the form (Xi, pi), i =
1, . . . , N , where the variable Xi was bin (n, pi).
The estimation problem arose in the context of
estimating the number of stem cells involved
in repopulating the marrow following allogenic
bone marrow transplantation. It was shown that
one could generate a method of moments esti-
mator for n based on asymptotic moments that is
similar in efficiency to maximum likelihood, and
an improvement upon the moment estimator that
had been used previously.

3. Mixture models. Finding the maximum likelihood
estimators in the mixture model is quite
computationally onerous. There are typically
multiple solutions to the likelihood equations.
A computationally intensive approach to this
problem is to try to determine all the solutions,
then use the one with the highest likelihood.
The problem is aggravated by the fact that the
commonly used algorithms are either unreliable
or slow at finding roots. This creates a situation
where the method of moments provides a useful
tool, even though the estimators are not highly
efficient. Instead of searching for the maximum
of the likelihood, one uses the solution to
the likelihood equations found by searching
algorithmically from a moment-based estimator.
The consistency of the moment estimator ensures
that the resulting solution has good theoretical
properties. Furman & Lindsay [5] and Lindsay
& Basak [11] show that such moment-based
estimators can be very effective when used as
starting values for the EM algorithm.

4. Supplementary moment estimators. Another im-
portant modern use of the method of moments
idea is as a supplement to another system of esti-
mation. For example, if one is using the quasi-
likelihood approach described in [13, p. 325],
then the regression parameters are found from
a system of estimating equations, while the dis-
persion parameter is fit by equating a theoretical
and observed moment [12, 17]. The advantage

to this methodology is that one can form a
simple consistent estimator with a minimum
of additional assumptions, satisfying a basic
goal of quasi-likelihood theory. Williams [18],
Breslow [3], and Moore [14] have extended this
approach in the context of regression analysis in
overdispersed binomial and Poisson regression
problems.

Beal [2] and Altman [1] provide further examples of
the use of the supplementary method of moments to
handle otherwise difficult problems in the estimation
of variances and correlations.
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Michaelis–Menten
Equation

The Michaelis–Menten equation describes the theo-
retic relationship between the initial velocity, v, of a
simple enzymatically catalyzed reaction and the sub-
strate concentration, s. It has the following form:

v = V s

(Km + s)
, (1)

where the constants V and Km are the maximum
velocity and the Michaelis constant, respectively. The
curve described by (1) is a rectangular hyperbola
through the origin, with asymptotes s = −Km and
v = V . Substituting v = V/2 in the above expres-
sion, it can be seen that the value of the Michaelis
constant is, in fact, the substrate concentration at
half-maximal velocity. V is not a fundamental prop-
erty of an enzyme, but it depends on the enzyme
concentration.

The detailed properties of enzyme systems that
can be described by the Michaelis–Menten equation
are given in Cornish-Bowden [1], as is the history
of the development of enzyme kinetics. Michaelis &
Menten published details of their equation in 1913,
and are regarded as founders of modern enzymology,
although their equation had been derived earlier by
Henri (see [1]).

Graphical Representations

If a series of initial velocities is measured at different
substrate concentrations, it is natural to examine the
relationship between them through the use of simple
plots. The most obvious starting point is to plot v vs.
s. Much more commonly, however, the investigators
take reciprocals of both sides of (1) to produce

1

v
= 1

V
+ Km

V s
. (2)

A plot of 1/v vs. 1/s will be a straight line with slope
Km/V and intercept 1/V on the 1/v axis. This is
known as the double-reciprocal or Lineweaver–Burk
plot. Multiplying both sides of (2) by s yields

s

v
= Km

V
+ s

V
. (3)

This indicates that a plot of s/v vs. s should be a
straight line, with slope 1/V and intercepts Km/V on
the s/v axis and −Km on the s axis. This is known as
the Hanes plot. Finally, the Eadie–Hofstee plot is a
graph of v vs. v/s and should be a straight line with
slope −Km and intercepts V on the v axis and V/Km

on the v/s axis. This relationship is obtained by
multiplying both sides of (2) by vV and rearranging
to give

v = V − Kmv

s
. (4)

All three of these straight-line relationships can be
used for diagnostic purposes and for obtaining pre-
liminary parameter estimates. They should not, how-
ever, be used with simple linear regression programs
for any formal approach to the analysis of data of this
type. If the investigator wishes to affect the activ-
ity of an enzyme system with some sort of inhibitor,
then these diagnostic plots can be very useful in indi-
cating the type of inhibition. A competitive inhibitor
(the most common type), will affect Km but not V ;
a series of plots with differing concentrations of the
inhibitor would be expected to yield a set of double-
reciprocal plots passing through a common intercept
on the 1/v axis.

Curve-Fitting and Parameter Estimation

It is straightforward to fit data directly to the
Michaelis–Menten equation using least squares
(either unweighted or weighted to allow for
heteroscedasticity) or maximum likelihood criteria.
An early paper by Wilkinson [9] showed how one
might adapt a simple linear regression program
to fit data to the Michaelis–Menten equation;
and McCullagh & Nelder [4] discuss techniques
for adapting GLIM procedures (see Software,
Biostatistical). Following Nelder [5, 6], examination
of the double-reciprocal plot in (2) shows that the
Michaelis–Menten equation is an example of a
generalized linear model. The link function relating
the response (initial velocity) to the linear predictor
is the reciprocal; and the linear predictor is given by
the right-hand side of the equation. Errors could be
assumed to be normal with a constant variance but,
more naturally, they might be regarded as gamma
variates.
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Robust and Distribution-Free Estimation

The most popular distribution-free method of estimat-
ing the parameters of the Michaelis–Menten equation
is based on the method of Theil [8]. This is the
method that biochemists call the direct linear plot [2,
3]. Distribution-free methods (see Nonparametric
Methods) have been used by biochemists because
of their robustness to departures from the statisti-
cal assumptions usually made about the measurement
errors: the direct linear plot method is insensitive to
the occasional laboratory blunder. Consider any two
pairs of observations, (si, vi) and (sj , vj ), with sj

assumed to be greater than si . Using these two pairs
of observations, estimates of the Michaelis–Menten
parameters can be obtained from the following [2]:

(
1

V

)

ij

= (sj /vj ) − (si/vi)

sj − si

and
(

Km

V

)

ij

= (1/vi) − (1/vj )

(1/si) − (1/sj )
. (5)

Note that these are the estimates of the intercept
and the slope of the double reciprocal plot (2). In
all, there are N pairs of observations, and there are
N(N − 1)/2 different possibilities for the parameter
estimates, provided that the si are all different. The
direct linear plot estimates for 1/V and for Km/V are
given by the medians of the N(N − 1)/2 solutions
provided by (5). Estimates of V and Km are then
calculated from these two medians. Although this
estimation method is easily programmed for use
on a personal computer, it has traditionally been
used as a graphical estimation method – hence its

name [3]. An alternative estimation procedure is
provided by the repeated median estimator [7] (see
Robust Regression).
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Midwifery, Obstetrics,
and Neonatology

Midwifery is undoubtedly the oldest of the profes-
sions concerned with caring for women and their
babies before, during, and after birth. The word “mid-
wife” comes from Middle English and means “with
the woman”, while the French word “sage-femme”
(wise woman), reflects the way that the women who
cared for other women during labor and childbirth
might also be traditional healers.

The word “obstetrician” comes from “obstetrix”,
the Latin word for midwife, itself derived from the
verb “obstare”, meaning stand at, before, or against.
In Europe, male doctors’ involvement with childbirth
as “man midwives” or obstetricians dates back to
about the middle of the eighteenth century, when
they began to establish themselves as the practitioners
for complicated deliveries, and their knowledge and
influence grew [44]. Obstetricians had relatively low
esteem during the latter half of the nineteenth century
when most women were delivered by midwives or
general practitioners.

A feature of maternity care over the past two
centuries has been interprofessional rivalry between
midwives and specialist and generalist doctors. Con-
troversy has raged not only about who should do
what tasks – for example, whether midwives could
do forceps deliveries – but also about who is entitled
to conduct deliveries at all. The outcome has varied
widely between developed countries. Thus, in the US,
certified midwives conducted just 8.0 of live births in
2001 [51]. For many years, midwifery was actually
illegal in most Canadian provinces.

In contrast, midwives conduct about two-thirds of
deliveries in the UK. Even where midwives are the
most usual birth attendants and are officially recog-
nized as the independent practitioners responsible for
supervising normal pregnancy and birth, the rise in
obstetric technology led to a downgrading of their
role. In reaction to this there has been a reassertion
of the role of midwives in the UK and elsewhere since
the early 1980s, and a growing interest in basing prac-
tice on research evidence and developing midwifery
research [54]. This has coincided with a reawaken-
ing of interest in midwifery in the US and moves to
legalize midwifery in some Canadian provinces.

Some international agencies concerned with devel-
oping services for women in less developed countries
have been active in training existing traditional atten-
dants in appropriate practices and in training mid-
wives, but other agencies are dominated by North
American views that every woman should be deliv-
ered by an obstetrician.

Special care for immature newborn babies dates
back at least to the 1890s and developed consider-
ably in the 1920s and 1930s [56]. Nevertheless, the
most widespread developments took place from the
1960s and 1970s. Since then, there have been parallel
developments of neonatology (meaning “the science
of the care of the newborn”) as it is now known,
as a separate subspecialty within pediatrics, and of
neonatal nursing as a specialism within nursing.

What are the Questions?

In this context, it is inevitable that key issues from
the nineteenth century onwards have related to the
relative merits of different settings for birth and of
the types of practitioners working in them. Atten-
tion has also focused on geographic variations and
trends over time in the outcome of pregnancy and
the relative strength of association between the socio-
economic circumstances of the child-bearing popula-
tion, genetic factors, and the quality of the services
available to women giving birth. Although ques-
tions have been raised for centuries about specific
practices, it is only in the past 20 or 30 years
that systematic attempts have been made to evalu-
ate them.

What Methods have been Used?

As in many other areas, there is a long history of
descriptive studies based on case series (see Case
Series, Case Reports) and population-based data.
These were given added impetus by the introduc-
tion of civil registration in many countries during
the nineteenth century. Inevitably some analyses were
hospital-based and the selection biases inherent in
this were recognized in the latter half of the nine-
teenth century. During the first half of the twentieth
century, correlation and regression were introduced
into descriptive studies and multivariate analysis
became more widespread with the availability of
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electronic computers in the second half of the cen-
tury. These greatly increased the potential for record
linkage and follow-up studies, including those which
follow-up cohorts of babies for a year or so, into
childhood, or in some cases for the rest of their lives.
Case–control studies were first used in this field at
the beginning of the twentieth century and became
much more widespread towards the end of the cen-
tury. Quasi-experimental methods, notably “natural
experiments”, have a long history in this field, and the
first controlled trials (see Clinical Trials, Overview)
were done in the 1920s.

What is Measured?

Up to the mid-twentieth century the overriding con-
cern has been to prevent death or severe morbidity
in the mother. Concern about the health of children
in the nineteenth century related more to public
health and the living circumstances of young chil-
dren than to conditions at birth. Although there was
concern about infant mortality at the beginning of
the twentieth century, this became the major outcome
only after the massive decline in maternal mortal-
ity in the mid-twentieth century. Towards the end of
the twentieth century, the increasing survival rates
of very immature babies, largely as a consequence
of developments in neonatal intensive care, has led
to concern about monitoring morbidity in the sur-
vivors. Costs have always affected women’s choice
of maternity care, but the increasing extent to which
this is funded either by public funds or by major
institutions, such as insurance companies, has led
to increasing concentration on measuring the costs
of care. Reaction to the increasing use of technol-
ogy at birth and the rise of consumerism has led
to work to obtain women’s views of the care they
receive.

Measuring any of these is far from straightforward,
and some of the problems were already recognized
by the mid-nineteenth century [55] (see Nightingale,
Florence). An advantage when doing population-
based studies in this field, is that the usual denom-
inators, the numbers of women giving birth and the
numbers of babies born, can usually be assessed fairly
accurately. On the other hand, the fact that a preg-
nancy can result in one, two, or occasionally three or
more babies presents problems when doing analyses
in terms of outcomes for the babies.

Time Trends and Geographic Variations in
Infant Mortality – “Nature”, “Nurture”,
or “Quality of Assistance”?

With the development in the nineteenth century of
birth and death registration and publication of statis-
tics derived from them, geographic variations in
infant mortality became visible (see Vital Statistics,
Overview). In England and Wales, William Farr
used the “healthy districts”, with the lowest mortality,
as a yardstick with which to compare the others and
make the case for improving sanitation and public
health. For example, he showed that the aggregated
mortality rate for 1861–1870 among children aged
under 5 in Liverpool was more than three times
higher than in the “healthy districts” [26].

In the last quarter of the nineteenth century, a rise
in infant mortality in England and Wales coincided
with decreases in both general mortality and the
birth rate. This came at a time when controversies
about Charles Darwin’s theories of evolution were
leading to debate about whether infant mortality was
the consequence of poor living conditions, lack of
maternity care, or a beneficial culling of potentially
unfit members of the population. The debate was
further fuelled by the discovery that many potential
recruits for the Boer War were unfit. This led to a
much closer scrutiny of infant mortality rates and
associated factors and to developments in statistical
methods [21, 50].

In the first volume of Biometrika, founded “espe-
cially for those who are interested in the application
to biology of the modern methods of statistics” [28],
George Udny Yule asked, “Would it not be worth
while for an evolutionist statistician to give some
attention to the mass of material accumulated in the
Decennial Supplement to the reports of the Registrar
General for England and Wales?” [78]. He suggested
calculating correlation coefficients between childhood
and adult death rates.

At the General Register Office, John Tatham com-
pared infant mortality rates for urban and rural coun-
ties in 1873–1877 with those in 1898–1902. He
found no change in the rural rate, but a rise in the
urban rate [63]. The extent to which this may reflect
selective migration as well as differences in condi-
tions is unclear. A series of reports from the Local
Government Board, whose responsibilities included
public health, looked in detail at geographic differ-
ences in infant mortality and the mortality of children
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under the age of 5 and the factors associated with it.
The first report used rankings of counties and simple
descriptive techniques [42]. It discussed associations
between infant mortality and sex of babies, “legiti-
macy”, family size, stillbirths, quality of help avail-
able, age of the mother, nondomestic employment,
overcrowding, sanitation, “ignorance”, and “feckless-
ness”. The introduction by the Board’s Chief Medical
Officer, Arthur Newsholme, included a discussion of
possible associations with death in later life. In an
Appendix, “On the possible selective influences of
mortality on the mortality in the next four years of
life”, G. Udny Yule calculated correlation and regres-
sion coefficients between local infant and childhood
mortality rates in successive years and found little
evidence of negative correlation between infant and
childhood mortality beyond the second year of life.

Karl Pearson’s response, “The intensity of natu-
ral selection in man”, used life tables for the periods
1838–1854 to 1891–1900 for England and Wales as
a whole and for the “healthy districts” [64]. He found
negative correlations between rising infant mortality
and falling childhood mortality. He interpreted this
as showing the survival of the fittest [57]. In a later
analysis at a time of falling infant mortality, Karl
Pearson and Ethel Elderton used the method of finite
differences to try to adjust for environmental influ-
ences [24]. The results still supported their view of
natural selection. This work was heavily criticized,
notably by John Brownlee, who criticized their anal-
yses on the grounds that they did not relate deaths
to their corresponding cohorts of births and took no
account of the periodicity of epidemic diseases, which
were a common cause of death at the time [9].

These analyses were based on aggregated data for
geographic areas (see Ecologic Study). The intro-
duction of the Hollerith counter sorter into US vital
statistics offices from the 1890s and the English Gen-
eral Register Office from 1911 [37, 62] extended the
range of analyses which were feasible and made it
possible to relate births and deaths to local govern-
ment districts in which people lived.

The Local Government Board’s third report focus-
ed on Lancashire, and five towns in particular [43].
The comparison between three of these – Burnley,
Nelson and Colne, which had infant mortality rates
of 176, 130, and 87, respectively, in 1911–1913 – has
much more recently given impetus to a succession of
studies comparing the health of adults in the 1980s
and 1990s with their circumstances at birth [5, 6,

41], although similar studies had already been done
in the 1970s [27]. Such studies have used either
longitudinal birth cohort studies or a variety of
other techniques for locating people and following
them up.

In the US, birth and death registration was still
incomplete in some states in the early years of the
twentieth century. Nevertheless, analyses of infant
mortality showed wide variations and prompted local
investigations and the establishment of the Chil-
dren’s Bureau [76]. The Bureau’s investigation of
infant mortality in eight cities, directed by Robert
Morse Woodbury, took a cohort approach [73]. This
involved ascertaining all the births in the cities from
a variety of sources and following them through the
first year of life. Analysis of data about 2555 infant
deaths and 22 977 live births on a relatively primi-
tive punched card system was a challenge. Lacking
techniques for multivariate analysis, he used a method
of standardization, the “method of expected deaths”
(see Standardization Methods). Using this, he con-
cluded that the inverse association between infant
mortality and the babies’ fathers’ earnings was much
stronger than that with other factors, including family
size, mothers’ age, parity, birth interval, and type of
feeding.

In an extensive analysis of data from England
and Wales published in 1929, Peter McKinlay sug-
gested that factors associated with infant mortality
could be grouped into “(1) the quality of obstetric
assistance in childbed (2) the health of the mother
(3) social and environmental conditions”. He used
correlation coefficients, including multiple and partial
correlation, to investigate associations with stillbirths
and infant mortality, which he divided into “ante-
natal”, “neonatal”, and “postnatal” deaths [52]. He
found the strongest associations with quality of care
in the antenatal and neonatal periods, although envi-
ronmental factors were also important in the latter,
while the health of the mother and environmen-
tal factors were prominent in the postnatal period
(see Environmental Epidemiology).

In the 1940s, Barnet Woolf & John Waterhouse
used multiple regression in two papers on infant
mortality in county boroughs of England and Wales.
Motivated by a desire to counter what they felt to be
insidious influences of the eugenicists in hindering
social reform, they started from the standpoint that
“a large proportion of infant deaths are preventable
and no other vital index approaches infant mortality
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in variability or sensitivity to social conditions” [74,
75]. They found it was strongly associated with
overcrowding, male unemployment, percentages of
males in social classes IV and V, percentages of
women employed on manufacturing processes, and
latitude.

The advent of computers considerably reduced the
laboriousness of such analyses. There were many
similar analyses in the 1960s and 1970s using multi-
ple regression and principal components analysis,
which found stronger associations with social and
environmental factors than with the availability of
health care [3, 48, 49]. In general, these treated pro-
portions and rates as continuous variables, while fur-
ther analyses in the 1980s and 1990s have tended to
use logistic regression.

Computers have also increased the potential for
record linkage, although the first study to link
records of deaths of babies under the age of 1 year
to their birth records was done in the punched-
card era. This was a study of the 44 000 deaths
in the first year of life in 1949 and 1950, together
with the 1.5 million live births and 33 000 still-
births [35]. The 1600 deaths in the second year of
life among babies born in 1949 were also studied.
The aim was to use data collected at birth registra-
tion to identify the categories of women with the
highest mortality, with the aim of giving them pri-
ority for specialist maternity care. These analyses
and others which followed suggested that the associ-
ation between mortality of fetuses, babies, and moth-
ers and mothers’ ages and their parity, the number
of previous births, was U-shaped, with the high-
est mortality being amongst the youngest and oldest
women and their babies. In contrast, a study which
followed up successive pregnancies to women in
Aberdeen, Scotland, who had their first pregnancy
during the years 1949–1954 suggested that perinatal
mortality rates declined during women’s reproductive
career [7].

In the 1970s, such record linkage became routine
in England and Wales and in an increasing number
of US states. By the 1990s, most Nordic countries,
Scotland, England and Wales, Israel, and some states
of the US and Australia had taken this further and
were able to link together successive pregnancies
to the same woman. Some are able to link other
records, such as census returns, hospital admissions,
abortions, and cancer registrations (see Disease Reg-
isters) [1]. This makes it possible to analyze the

outcomes of successive pregnancies according to the
characteristics of both women and their babies. One
of the first of these, based on all births in Nor-
way from 1967 to 1973, reached similar conclusions
to those of the earlier analysis from Aberdeen [4].
This gave rise to considerable debate about how
to account for effects of self-selection for further
pregnancies.

Where to be Born?

In the mid-nineteenth century, it was unusual to give
birth in a hospital or lying-in institution, for very good
reasons. William Farr was alluding to the results of
numerous descriptive analyses when he wrote, “Con-
trary to expectations the advantages these institutions
offered were overbalanced by one dread drawback;
the mortality of mothers was not diminished; nay
it became in some instances excessive; in others
appalling” [25]. Much of this high mortality was due
to puerperal fever – a major cause of maternal mor-
tality up to the 1930s.

The discovery of the cause and contagiousness of
puerperal fever is widely and incorrectly attributed
to Ignaz Semmelweiss, whose famous treatise, “The
aetiology, concept and prophylaxis of childbed”, was
published in 1861 [58]. In fact this had already been
demonstrated in a descriptive account at least 50
years earlier by an Aberdeen obstetrician, Alexan-
der Gordon [31], and other descriptive accounts were
published during the first half of the nineteenth cen-
tury [44], including a review by the American physi-
cian and poet, Oliver Wendell Holmes [19].

In this work on puerperal fever, Semmelweiss was
able to use data from a “natural experiment”. At
the time of his appointment to the Vienna Maternity
Hospital in 1846, it was divided into two clinics, and
women were admitted to the two clinics on alternate
days. One was for the instruction of medical students
and doctors, and mortality in this clinic was much
higher than in the second clinic, which was used
for the instruction of midwives. Semmelweiss found
that medical students would attend post-mortems of
women who died of puerperal fever before going
over to the clinic and doing vaginal examinations,
without first changing their clothes or washing their
hands. After he insisted that medical students wash
their hands in disinfectant, mortality in their clinic
fell [44].
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Such comparisons of mortality have never been
straightforward, however. First there are problems of
definition, as Florence Nightingale found out when
she tried to compare mortality rates for different
places of birth: “Midwifery statistics are in an unsatis-
factory condition” and “. . . there appears to have been
no uniform system of records of deaths or the causes
of deaths, in many institutions . . .” [55]. Despite
the introduction of antiseptic and aseptic techniques,
which lowered mortality rates in some hospitals
towards the end of the century, rates were higher than
at home. The question of selection bias was raised,
however. In 1904, William Williams suggested that
“the majority of the worst cases are brought to hos-
pital after labor commences and that a large number
undergo some of the major operations” [72]. The high
mortality in workhouse infirmaries which catered for
destitute women was often attributed solely to their
resulting poor health. This was questioned by Sidney
& Beatrice Webb, who pointed to the inadequate care
and unsavory conditions in some infirmaries [69].

The issue of selection bias is one which has always
dogged the debate about the relative risks and merits
of different settings for birth. In England a policy of
universal hospital birth was adopted in the light of
the observation that perinatal mortality had fallen at
a time when the percentage of births in hospital had
fallen [61]. This was parodied by Archie Cochrane,
who pointed out that the length of postnatal stay
after childbirth had fallen over the same period [15],
and challenged extensively by Marjorie Tew [65].
Although it is possible to do randomized trials to
compare other outcomes of care in different settings,
the key issue is still safety [11].

Evaluation of Specific Aspects of Care

Although singled out by Archie Cochrane for the
“wooden spoon”, obstetrics, together with midwifery
and neonatology, have been well ahead of other
clinical professions in evaluating the care provided,
particularly in the use of randomized trials. The
numbers of trials published rose from fewer than
20 in 1950 to over 400 in 1990 [32]. By 2003, the
Cochrane Pregnancy and Childbirth Group had 9129
trial reports in its register [23] and the Cochrane
Neonetal Group had about 3000 [22].

Trials were being done much earlier, however. As
early as the 1920s, nearly 400 women took part in

a trial of the effect of shaving women’s perineal
hair on admission to hospital on the incidence of
puerperal fever [39]. Neither this trial nor any later
research showed shaving to be beneficial, but it was
still common practice in England and Wales in the
early 1980s [29].

Five trials published in the 1950s with sample
sizes ranging from less than 100 to over 1600 com-
pared diethylstilbestrol (DES), a drug thought to pre-
vent miscarriage, with concurrent controls. Three of
the trials were double-blind (see Blinding or Mask-
ing). None showed a difference in rates of mis-
carriage, stillbirth, and neonatal death, although in
the 1980s a reanalysis of one trial suggested that
DES was harmful [30]. DES continued in use until
a case–control study published in 1970 [36] showed
that between 1.4 and 14 per 10 000 women exposed
to it as fetuses were likely to develop a very rare
cancer – cancer of the vagina.

The rise in the numbers of neonatal trials is partly
a reflection of the growth of the specialty. Some of
the key research relates to the use of supplemental
oxygen for babies born preterm. Trials compared
giving preterm babies air with more than 50% oxygen
with much lower concentrations of oxygen. These
showed higher rates of retrolental fibroplasia, now
known as retinopathy of prematurity, which can lead
to blindness among surviving babies who received
the higher concentrations [59], and led to policies of
keeping the oxygen concentrations below 40%.

Inappropriate subgroup analyses have been a
problem in this field, as in others. For example,
a structured review of the relevant trials showed
that administering corticosteroids to women who
are about to deliver preterm can help their babies’
lungs mature [18]. Nevertheless, this practice was
not adopted for some time after the early trials were
published, as a subgroup analysis suggested that the
result applied only to black female babies [16].

Some of the earlier trials in this field were dis-
missed as they were not large enough to detect small
or moderate treatment effects. For example, two small
trials involving 350 and 462 women comparing the
rates of seizures among babies whose mother had
electronic fetal monitoring in labor with those who
had intermittent auscultation were unable to detect a
difference, although in both cases the rate appeared
to be lower in the monitored group. A larger trial of
nearly 13 000 women was able to detect a difference
in the rate of seizures in the neonatal period but no
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difference in cerebral palsy rates when the children
were 4 years old [46].

One response to the problem of small sample
size is to pool the results of trials formally through
systematic review and meta-analysis. The first
attempt to do this consistently for a given area of
health care was in the Oxford Database of Perinatal
Trials, the first release of which was published
in 1988 [13]. It was used for the two volumes
of Effective Care in Pregnancy and Childbirth [14]
and a third book, Effective Care of the Newborn
Infant [60]. The database also acted as the prototype
for the Cochrane Database of Systematic Reviews
(see Cochrane Collaboration).

As in other fields, there are important questions
which randomized trials are unable to answer. One
example is the relative safety of different settings for
birth. Mortality rates are now so low that it is impos-
sible to do a large enough trial to compare mortality
for women at low risk of complications without com-
pletely reorganizing the maternity services in a wide
geographic area and thus interfering with the types of
service being compared. Furthermore it is impossible
to blind participants or caregivers to the form of care
being given [11].

Other Issues Related to the Care of
Individuals

There is a long history in this field of “confidential
enquiries” which examines the circumstances and
pathology of individual deaths of women and babies
at or around the time of birth. All too often this
is done without reference to any comparison group,
even though a study which compared 2527 maternal
deaths in Scotland in the years 1927–1932 with all
women who gave birth in a 6 month period during
this time was published as long ago as 1935 [20].
The Confidental Enquiry into Stillbirths and Deaths
in Infancy in England, Wales, and Northern Ireland
used controls in a study of deaths at 27 to 28 weeks
of gestational age in [17].

Caregivers have always wanted to identify the
women who are likely to experience problems. Since
the beginning of the twentieth century, obstetric
textbooks have listed social and physical “risk fac-
tors”, associated with complications of pregnancy
and poor outcomes. The development of computer-
ized databases in the 1960s made it possible to use

multivariate analysis to develop more formal scoring
systems aimed at predicting a variety of complica-
tions and adverse outcomes. One of the first of these
was derived by Harvey Goldstein from his analyses
of the survey of deaths among babies born in Great
Britain during a week in 1958 [10].

In general, these scoring systems have had poor
predictive value for the individual and often do not
apply outside the populations in which they were
developed. A review in 1989 commented that

When risk scoring is applied in clinical practice,
there is a very real danger that a potential but highly
imprecise risk of adverse outcome becomes replaced
by the certain risk of dubious treatments and inter-
ventions whose benefits have not been demonstrated
and whose hazards are largely unknown [2].

Since the beginning of the twentieth century,
statisticians have been interested in the statistical
properties of the distribution of babies’ birthweights,
particularly among the smallest babies, who have the
highest mortality rates [77]. As a result, they have
been of greatest concern to clinicians as methods of
neonatal care developed. By the middle of the cen-
tury, it was recognized that birthweight alone was
inadequate as a measure of maturity as there is a
difference between preterm babies who are small
because they are born too early and growth-retarded
babies who are born later. This led to the construction
of “standard” charts giving centiles of the birth-
weight distribution at each of the gestational ages
(see Quantiles) [45, 66]. There are two sets of sta-
tistical problems involved – those of selecting the
“standard” population and the choice of methods for
fitting curves to data.

As birthweight means and distributions have been
shown to vary according to the baby’s sex and multi-
plicity, the mother’s age and parity, the parents’ racial
and socioeconomic characteristics, and the altitude at
which the mother lives, the question of choosing an
appropriate population is far from trivial [40, 53]. In
addition, early data came from hospitals at a time
when many women gave birth at home, so they may
not have been representative of the surrounding pop-
ulation [49].

The data used to construct the first set of standards
widely used in the US came from a hospital and
also related to women living at a high altitude in
the state of Colorado [45, 47]. The first set widely
used in the UK was based on 52 004 singleton births
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within marriage which took place in the city of
Aberdeen, Scotland, in the years 1948–1964 [66]. As
well as being restricted to births within marriage, the
population was ethnically homogeneous, even though
socially varied. Since the 1970s, the tendency to
induce babies or deliver them by elective Caesarean
section before term has foreshortened gestational age
and affected its distribution. The way it is estimated
has changed with the development of ultrasound
scanning. Furthermore, for very preterm babies, the
numbers of babies in any data set are likely to be
small and the question of whether or not to restrict the
tables to live births or to add in fetal deaths becomes
increasingly crucial [67]. The question of how to deal
with extreme values is an issue at all gestations.

The methods used to fit curves to the distribu-
tions have inevitably developed over time in response
to the availability of computing power and statis-
tical methods. An important factor is the extent to
which the non-normality of the birthweight distri-
bution is taken into account [12]. In some popula-
tions, it is bimodal, particularly at low gestational
ages [66]. Approaches which have been used range
from a simple step function [66], using bivariate elas-
tic spline interpolation to fit contours to distributions
of birthweight and gestational age [38], using non-
parametric methods to smooth empirical centiles
(see Nonparametric Regression) and fitting polyno-
mial regression curves to birthweight at each gesta-
tional age, assuming a normal distribution [8].

The differences in birthweight distributions for
different populations also make it difficult to compare
their mortality rates. Standardization of birthweight-
specific mortality rates has been shown to be biased,
in particular against populations with heavier birth-
weights [70]. An alternative method aims to eliminate
this bias by using the frequency distribution of birth-
weight and the curve of weight-specific mortality to
describe the excess mortality in one population com-
pared to another [71]. So far, it has not been widely
used in routine practice, probably because of its rel-
ative complexity.

Future Questions – Heredity,
Environment, Clinical Effectiveness, and
Quality of Care

So far, the design of randomized trials in this
area has been relatively basic, in comparison with

those used in agriculture or psychology. A rel-
atively recent development, from the late 1980s
onwards, is the use of split plot designs, described
as “cluster randomization” (see Randomized Treat-
ment Assignment) in this context, especially when
comparing programmes of care, such as antena-
tal care [32, 33, 68]. The introduction of Bayesian
methods into trials has in this field begun [34]. In
descriptive studies, multilevel modeling is now being
used to bring together analytically the characteristics
of parents and the areas in which they live in studies
of geographic variation (see Geographic Epidemi-
ology).

As described earlier, statistical techniques devel-
oped at the beginning of the twentieth century were
used in the heated debate about whether differences in
mortality were related to “heredity”, “environment”,
or “quality of assistance in childbed”. As we begin the
twenty-first century, it is increasingly recognized that
genetic factors (see Genetic Epidemiology), clini-
cal effectiveness, quality of care, and socioeconomic
and environmental factors may all be related to a
variety of measures of the outcome of pregnancy.
The challenge for statistics is to develop appropriate
quantitative techniques for describing and assessing
pregnancy and its outcome.
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Migrant Studies

Studies on migrant populations are based on the
assumption that migrants carry a risk that to some
extent reflects that of their country of origin rather
than the host country. Migrant studies are, therefore,
a category of ecologic studies in which geographic
differences in risk are replaced by risk differences
among population groups (immigrants vs. host pop-
ulation and vs. population of origin).

Migration can be studied for three main reasons:

1. The study of migrant populations can be used for
generating (as opposed to “testing”) or confirm-
ing hypotheses derived from etiologic studies of
environmental risk factors associated with dis-
ease occurrence.

2. The study of the health status of minorities
who have emigrated from abroad has recently
acquired public health significance, because of
the effect of migration from the underdeveloped
to the developed world on the occurrence of acute
and socially relevant diseases in the host country.

3. Migrant status may be used in case–control and
cohort studies as a variable representing possible
confounding exposures.

Definition of Migrant Status

There are several ways of defining a subject as a
migrant.

Place of birth Subjects born abroad are considered
to be immigrants. This definition is the most widely
used in epidemiologic studies. For diseased subjects,
the information is either obtained from death cer-
tificates, which report the country of birth, or from
disease registries, such as cancer registries. Fur-
thermore, place of birth is usually enumerated in
population censuses, but sometimes only for a subset
of the population.

Citizenship Subjects with foreign citizenship are
considered to be immigrants. The original citizen-
ship may be retained by residents of foreign countries
or obtained by the spouse of a migrant. The foreign
offices of some countries provide periodic informa-
tion on these persons.

Ethnic origin Subjects may be considered as
migrants if both parents were born abroad or if
they answer positively to the question: “Are you a
migrant?” (see Ethnic Groups).

Each of the above-mentioned definitions identifies
a population group of different size. For example,
Table 1 shows the number of Italian migrants in
the US in the decade 1970–1980 according to each
definition [8].

Sources of Information for Migrant
Studies

Information on Diseased Subjects

First-Generation Migrants. In the majority of
migrant studies, information on diseased subjects is
derived from routine surveillance systems. These are
mortality statistics, when the content of the death cer-
tificates allows it, or cancer registries statistics, when
the interest is focused on cancer risk. Other pathology
reporting systems have begun to include information
on migrant status in order to evaluate the effect of
migration on the epidemiology of some diseases of
emerging interest, such as tuberculosis and AIDS.

If information on the date of migration is recorded
individually, the duration of stay and the age at migra-
tion to the host country can also be computed [4, 36].
This information is, however, seldom routinely avail-
able. In the US, the Social Security Number (SSN),
which is assigned sequentially to all residents, has
been used as a proxy of age at migration. If the SSN
is assigned to a migrant after the usual age of entry to
work, it is considered most likely that he/she migrated
as an adult (late migrant). In contrast, those whose

Table 1 Number of Italian migrants in the US in the decade 1970–1980

Italian-born 831 000
Italian citizens 230 000
First- and second-generation immigrants 5 000 000
Italian origin 8 800 000
Italian origin identified as one of the subject’s roots 12 180 000

Source: [4]. Reproduced with permission of IARC.



2 Migrant Studies

SSN was assigned at the usual age of initial employ-
ment are considered to have migrated in childhood
(early migrant). Unfortunately, such information can
be used only for cases and not for the general popu-
lation, thus limiting the choice of study design [24].

Second-Generation Migrants. Parents’ birthplace
is routinely recorded on death certificates in some
countries and by some cancer registries, allowing for
the identification of second-generation migrants [9,
35]. Alternatively, studies on second-generation
migrants may be based on information on both
ethnicity and birthplace. Members of ethnic groups
born locally are considered to be second-generation
migrants, while those born abroad are first-generation
migrants [39].

If second-generation migrants can be identified,
the modification of risk between first-generation
migrants and their descendants can be estimated.
Moreover, disease risk can be studied in individuals
of mixed parentage, in whom the genetic susceptibly
may be intermediate between those of the two
populations; furthermore, environmental exposures,
such as lifestyle habits, may be influenced to
different extents by the origin of the father and the
mother [9, 35].

Information on the Population

First-Generation Migrants. To estimate incidence
or mortality rates by migrant status, information is
required on the population at risk of developing
the disease under study. This may be provided by
censuses, as long as the definition of migrant status in
the denominator is the same as that in the numerator.

The use of censuses as a source of information
for the denominator tends to limit the number of vari-
ables that can be considered in the study, as time since
migration, age at migration, and other variables for
diseased or deceased subjects, are seldom available
for the population at risk.

Second-Generation Migrants. Only some popu-
lation censuses include the country of birth of the
parents of the enumerated subjects [35]. When avail-
able, this allows estimation of disease and death rates
for second-generations migrants.

Use of Census Information for Longitudinal
Migrant Studies

The identification of a cohort of migrants (first-
or second-generation) through censuses may allow
follow-up and cross-linking with routine information
on diseases and deaths [15] (see Record Linkage).
The number of persons “lost to follow-up” in these
cohorts, however, tends to be high, because of the
tendency of people who migrate once to move again,
often back to the country of origin.

Information on Other Variables: Socioeconomic
Level and Lifestyle

In some countries, routine sources of numerators and
denominators provide some information on socio-
economic level, usually approximated by occupation,
educational level, or a combination of the two [6]
(see Social Classifications).

Surveys of the frequency of exposure to dis-
ease determinants (tobacco, alcohol, dietary habits)
at a population level seldom include information on
migrant status [22, 25]. When this is not available,
exposure prevalence derived from population-based
surveys in the country of origin, and in the host coun-
try, may be used to interpret differences in the disease
risk of migrants [28].

Information on the prevalence of lifestyle habits
of migrants may be derived from control groups
in case–control studies in which migrant status is
considered [38].

Exposure to lifestyle, environmental, and other
risk factors in migrants, and in control groups, has
been determined directly in only a few studies. It
can be done through the use of questionnaires in
cohort or case–control studies and makes it possible
to disentangle the roles of different exposures in
determining the risk pattern related to migrant sta-
tus. The exposures of interest tend to vary widely
among first- and second-generation migrants and in
relation to duration of stay, providing greater power
to detect associations and therefore smaller study size
in comparison with populations in which the level of
exposure is more homogeneous. Furthermore, direct
measurement of exposure makes it possible to study
the relationship between time variables, such as age
and time at migration, and lifestyle changes. Most
studies [40] have addressed the role of diet in deter-
mining the risk for cancers at various sites. In some
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cases, blood samples were obtained so that internal
doses of nutrients and micronutrients could be mea-
sured in a prospective cohort design [30].

Sources of Bias in Migrant Studies

If a different definition of migrant status is used for
the denominator than for the numerator in computing
mortality or morbidity rates, erroneous estimates of
the rates in an unpredictable direction may result
(see Denominator Difficulties).

Because of the infrequency of censuses (com-
monly at 10-year intervals), censuses must often be
interpolated to estimate appropriate denominators for
migrants. This may introduce an additional source of
bias, due to an underestimate of the denominator,
when active migration is still occurring during the
period of interpolation.

The accuracy of diagnostic information and of the
coding of diseases changes geographically. This may
lead to artifactual differences when the rates in one
country (local-born and migrants) are compared with
those in another (country of origin), due to informa-
tion bias on disease status. If diagnostic procedures
and coding practices are not selective by migrant sta-
tus, this source of bias does not affect comparisons
between migrants and locally born people within the
host country. It can be hypothesized, however, that
the access to certain diagnostic procedures may be
different for migrants within the same country, espe-
cially for those of low socioeconomic status, owing
to communication problems or legal status. This will
introduce bias in disease status, partially hamper-
ing comparisons of rates with those of locally born
persons.

Furthermore, a possible selection of subjects who
migrate, in contrast to the population of the country
of origin, must be considered.

First, migration may be selective by subarea within
the country of origin [8]. If there are different patterns
of risk in the population of origin by subarea, any
comparison between migrants and the population of
country of origin as a whole will be incorrect. If
information on the subarea of origin is available,
however, a specific comparison with the subarea may
be accomplished.

Secondly, subjects who decide to migrate may
have a different disease occurrence pattern from that
of the population as a whole, as health status is

related to the opportunity to migrate. This selection
bias usually leads in the direction of a lower disease
risk among migrants (healthy migrant effect) [26];
however, it may be associated with a higher disease
risk if diseased subjects tend to join a family that has
previously migrated, or tend to migrate to another
country for retirement or care (unhealthy migrant
effect). To evaluate the relevance of this selection
bias, the disease experience in the first period after
migration is sometimes considered separately, when
information on the date of migration is available [36]
(see Bias, Overview).

Finally, if migrants are reluctant to use unfamiliar
medical services or unable to afford to do so, they
may “go back home” when severely ill, thus disap-
pearing from the numerator while still contributing to
the denominator [29]. This will lead to an underesti-
mate of mortality and incidence rates.

Statistical Methods

All classical descriptive epidemiological methods
can be used in migrant studies.

Variables Under Study

Migrant status is the exposure variable for which
disease risk is estimated: the reference category is
represented by nonmigrants in the host country or
by subjects resident in the country or origin. Time
variables, when available, can be investigated.

Age. The first time variable to be considered is
age, because changes in risk result from aging and
because of the peculiar age structure of migrant
populations, which tend to an overrepresentation of
young adults, especially in recently migrated groups.
Age is, therefore, associated with both disease and
migrant status (see Confounding).

Calendar Time. Disease rates are likely to change
over calendar time. If this happens differentially in
the country of origin, in the host country, and in the
migrant population, any comparison should take into
account the effect of such changes.

Duration of Stay and Age at Migration. Duration
of stay is an index of duration of exposure to deter-
minants of the disease under study during the stay in
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the host country, and therefore represents a proxy of
cumulative exposure levels. If differences in disease
risk between migrants and locally born people, and
between migrants and the population of origin, are
related to differential exposure levels, these should
be found to be associated with the duration of stay.
Furthermore the speed with which the disease pat-
tern in migrants changes by duration of stay can be
interpreted in terms of duration of exposure (or non-
exposure) to etiologic agents in the host country.

Age at migration is strictly related to duration
of stay, as subjects migrating at younger ages tend
to stay longer. In terms of the natural history of
the disease, this variable is potentially informa-
tive for latency, estimated as the interval between
the beginning of exposure and disease occurrence
(see Latent Period). For example, the finding that
subjects migrating from a high-risk to a low-risk
country at a young age retain a life-long higher risk
than that in the host country, and than that of peo-
ple who migrated during adulthood, indicates that
exposure during childhood is relevant for the dis-
ease. In cancer studies, and in general for diseases
with a multistep etiologic process, it suggests that the
determinants involved in migration act as initiators of
the disease.

Ideally, one would examine simultaneously the
effect of age on arrival and duration of stay in the
host country, controlling for the other relevant tem-
poral variables (age and period of occurrence of the
disease). This is not feasible, however, as age, dura-
tion of stay, and age on arrival are not independent:
the definition of two of them implies knowledge
of the third. The situation is similar to that of the
age–period–cohort problem framework. To over-
come this difficulty, separate analyses sequentially
ignoring one of the two variables (duration of stay or
age on arrival) are performed in migrant studies [4].

Other Variables. Information on other variables
related to both disease and exposure may be con-
sidered when available. As mentioned above, this is
possible in case–control and cohort studies in which
individual questionnaires are used. Additional vari-
ables can be derived from routine surveys, such as
on occupation and education, as a proxy for socio-
economic status, and on place of residence in the host
country as a proxy for access to diagnostic procedures
and care (see Surveys, Health and Morbidity).

Statistical Analysis

The statistical analysis of migrant studies depends
upon the data sources available.

Denominator-Based Analysis. Age-Standardized
Rates. Iuf the information on the denominator is
reliable, incidence or mortality rates for migrants can
be calculated and compared with those of residents
of the host country and/or the country of origin.
Direct standardization is used to adjust for age dis-
tribution [32]. Standardized rate ratios (SRRs) are
generally computed, since interest is focused on the
magnitude of the difference between the two rates
(migrants vs. locally born and/or migrants vs. country
of origin) [3]. The choice of a common standard pop-
ulation (e.g. locally born in the host country) allows
the use of rate ratios.

Direct standardization, however, is sensitive to
small numbers of events in the study population [32].
For migrants, some age-specific rates may be based
on very few cases. The result is unstable rates and
large confidence intervals around the rate ratios.

To increase the precision of the measure, indi-
rect standardization, from which a smaller standard
error is expected, is used for rare diseases and
for small migrant groups, with the estimation of
Standardized Mortality or Incidence Ratios (SMRs,
SIRs). The standard set of rates are the age-specific
rates of the host country as a whole or, more prop-
erly, of the local-born, from which migrants have
been excluded [42]. It must be considered, however,
that SMRs and SIRs are internally standardized and
not mutually comparable [32] (see Standardization
Methods).

Other Methods of Adjustment. When variables
other than age are considered in a study, the
Mantel–Haenszel estimator can be used to obtain
a summary estimate of risk, adjusted by age and by
the other variables. Loglinear models, however, are
currently preferred for migrant studies, when several
variables are available for analysis and stratification
would fail because of insufficient numbers.

Recently, loglinear modeling based on the Poisson
distribution has been applied to migrant studies
in order to control simultaneously for a number of
confounding factors [17]. This application is based
on the following two assumptions:
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1. The number of cases per cell is assumed to
follow a Poisson distribution, with a mean value
proportional to the number of person-years at
risk.

2. The logarithm of the rate is assumed to be a lin-
ear function of the combination of classification
variables that best describe the disease risk in the
migrant population.

The relative risks obtained by model fitting are
expected to show a greater numerical stability in
comparison with those computed by traditional stan-
dardization methods.

A comparison of risk estimates with 95% confi-
dence intervals obtained when different methods were
applied to a large set of mortality data for Italian
migrants to Canada is shown in Table 2 for deaths
from selected cancers [19].

Numerator-Based Analysis. When the denomina-
tor is not available, or the population at risk cannot be
cross-classified by the variables of interest, the anal-
ysis is based on diseased/deceased subjects only. The
proportional mortality or incidence ratio (PMR or
PIR) is the measure often used in such cases [36],
and the relative proportion of diseases in the locally
born population other than the one of interest is taken
as the standard to adjust by age.

A proportional mortality or incidence study can be
classified as a variant of a case–control study, where
the cases are deaths or incident events classified by
migrant status and the controls are other deaths or
incident events of a different disease occurring in
the same base population. This study design is based
on the assumption that the migrant status among the

controls has the same distribution as in the base
population, i.e. that the overall rate of the disease/s
in the controls is not related to migration.

Instead of PMRs or PIRs, a Mantel–Haenszel or,
more frequently, a loglinear modeling approach is
used in numerator-based studies when variables of
interest other than age are considered. The assump-
tions described for PMR and PIR studies are used.
When logistic regression models are applied, the
cases in the cells are assumed to follow a bino-
mial distribution, and the logit transformation of
the disease probability is considered to be a linear
function of the classification variables. If the assump-
tion that the disease or death risk in controls is not
related to migration is true, the estimates from the
logistic model approximate those derived from the
Poisson regression. The choice of appropriate con-
trols is therefore crucial in this study design.

A comparison of the results obtained from the
same set of cancer deaths among Italian migrants
to Australia using Poisson and logistic regression
(the latter using three sets of controls) is shown in
Table 3 [19]. The risk estimates obtained using non-
cancer or all other deaths as controls are consistently
greater than those obtained using cancer controls or
Poisson regression. This result is due to a lower risk
of death from all causes and from causes other than
cancer in migrants than among locally born persons.
The results, therefore, do not confirm the assumption
that the disease in controls are unrelated to migration
when these two sets of controls are considered.

Evaluation of Goodness of Fit of Regression Mod-
els – the “Overdispersion” Phenomenon. When
the analysis is based on modeling, Goodness of

Table 2 Comparison of age-adjusted estimates of risks and their 95% confidence intervals obtained
by different methods, for male Italian migrants relative to locally born, Canada, 1964–1985

Cancer site SRRa SMRb RRc RRd

Esophagus 0.72(0.60–0.87) 0.69(0.56–0.82) 0.69(0.58–0.83) 0.69(0.57–0.83)

Stomach 1.28(1.18–1.39) 1.30(1.20–1.40) 1.30(1.20–1.40) 1.30(1.20–1.40)

Lung 0.76(0.72–0.80) 0.74(0.70–0.78) 0.74(0.70–0.78) 0.74(0.70–0.78)

Melanoma 0.96(0.71–1.29) 0.86(0.63–1.09) 0.86(0.65–1.14) 0.86(0.65–1.14)

Leukemia 1.18(1.05–1.33) 1.18(1.05–1.31) 1.18(1.05–1.32) 1.18(1.05–1.32)

aStandardized rate ratio (direct standardization).
bStandardized mortality ratio (indirect standardization).
cRelative risk estimates according to the Mantel–Haenszel procedure.
dRelative risk estimates according to the Poisson regression procedure.
Source: [4]. Reproduced with permission of IARC.
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Table 3 Comparison of age-adjusted estimates of risks and their 95% confidence intervals obtained by Poisson
regression and logistic regression, with different choices of controls, for male Italian migrants relative to locally
born, Australia, 1964–1985

Relative risk
(Logistic regression)

Relative risk
Cancer site (Poisson regression) Controls

Noncancer and
Other-cancer deaths Noncancer deaths other-cancer deaths

Stomach 1.45(1.16–1.82) 1.75(1.61–1.91) 2.39(2.20–2.60) 2.23(2.05–2.42)

Lung 0.95(0.85–1.07) 1.19(1.12–1.26) 1.61(1.52–1.70) 1.51(1.44–1.60)

Melanoma 0.27(0.18–0.40) 0.32(0.24–0.42) 0.49(0.37–0.64) 0.44(0.34–0.57)

Source: [4]. Reproduced with permission of IARC.

fit can be assessed with the log likelihood ratio
statistic [17]. Provided that the Poisson or binomial
assumptions hold, and the regression model is cor-
rectly specified, this statistic is of the same magnitude
as the degrees of freedom, or smaller for small cell
sample size. However, especially when a large data
set is used and the contingency table is not classi-
fied by factors that are relevant to the response, the
phenomenon of overdispersion may occur, reflected
in a log-likelihood ratio greater than predicted.

This case occurs frequently in migrant studies,
especially when the comparison is between those
born in the host country and the general population
in the country of origin, thus involving very large
data sets with few explanatory variables available
for the analysis. The problem of overdispersion can
be addressed in the analysis by using a conservative
approach in estimating the confidence intervals of the
effect parameters [1].

Contribution of Migrant Studies to Insight
into Disease Etiology

Most studies of migrant populations address can-
cer incidence or mortality (for some relevant refer-
ences on this issue, see Geddes et al. [10], Steinitz
et al. [36], Haenszel [13], Haenszel et al. [14], and
Thomas & Karagas [40]). The published studies refer
to migration from high- to low-risk countries for
some cancer sites (e.g. stomach cancer in migrants
from Japan and Italy to the US and Australia) or
from low- to high-risk countries (e.g. breast cancer
in migrants from Japan and China to the US). The
analysis of temporal variables, such as duration of

stay in the host country, and age at migration, and
the study of second-generation migrants have pro-
vided valuable information on the size and timing of
changes in cancer risk in response to changes in the
external environment and/or lifestyle [9, 20, 35].

Another result of migrant studies is information
on cancer rates in the migrant’s country of origin,
when these are not currently recorded or reasonably
valid. This is of particular value for migrants from the
underdeveloped world who have recently migrated to
developed countries. Such estimates should, however,
be considered with caution because of the possible
selection bias of migrants (see above).

The relation of risk to the frequency of exposure
to dietary factors, as derived from cross-sectional
studies of migrants, their offspring, host countries,
and countries of origin, has been highlighted in some
studies [22, 23, 28].

The results of studies in which dietary and other
variables were considered have been used to infer
possible environmental factors in the geographic
differences in cancer rates. Although such studies are
not common, they represent a potential field of devel-
opment in migrant studies.

Other migrant studies, mainly based on mortality
data, address cardiovascular disease and stroke [15,
16, 37]. In these studies, temporal variables and
measurement of risk are treated by methods similar
to those used in cancer studies.

Another developing field of interest is of diseases
and accidents that are suspected of being determined
by migration itself, or which are prominent in the
migrant population, thus affecting the rates in the host
country. This is the case of studies on suicide [21],
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homicide [34], work-related fatalities [7], tuberculo-
sis [5, 27], birth outcomes [2, 12, 33], psychiatric dis-
orders [31], hepatitis [18, 41] and HIV/AIDS [11].

Most of these studies, however, do not involve
use of the methods described above, and risk esti-
mates are not provided for the migrant population in
comparison with the locally born population or with
the country of origin. This may be due to the lack
of population-based registries for the diseases under
study and to the relatively small groups of subjects
involved.
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Migration Processes

In a migration process, both immigration and emi-
gration take place. Immigration causes a population
size to increase, while emigration causes a popula-
tion size to decrease, just as in a birth–death process
(see Stochastic Processes). However, there is a fun-
damental difference between the two processes. In
a migration process the immigration rate (immigra-
tion intensity) is independent of the population size,
whereas in a birth–death process the birth rate (birth
intensity) is a function of the population size at the
time of birth. This difference affects the complex-
ity of the two processes. While the formulas in a
birth–death process usually are complicated, espe-
cially when the birth intensity and the death intensity
are functions of time, the formulas in a migration
process are relatively simple. Generally, in a single
colony migration process, the population size distri-
bution is a combination of a binomial distribution
and a Poisson distribution. The binomial distribu-
tion is related to the initial population size, and the
Poisson distribution is associated with migration. The
two distributions are independent of each other. If
the initial population size is zero, then the population
size distribution is Poisson. If there is no immigra-
tion, then the population size distribution reduces to
a binomial distribution, as shown below.

A Simple Migration Process

Suppose that a population’s growth is subject to a
migration process with immigration intensity η and
an emigration intensity µ. Let X(t) be the population
size at time t , with the initial population size at t = 0,
X(0) = i. Let the probability distribution of X(t) be
denoted by

Pik(0, t) = Pr[X(t) = k|x(0) = i], k = 0, 1, . . . .

(1)

We derive a system of differential equations for
Pik(0, t):

d

dt
Pi0(0, t) = −ηPi0(0, t) + µPi1(0, t) (2)

and
d

dt
Pik(0, t) = −(η + kµ)Pik(0, t) + ηPi,k−1(0, t)

+ (k + 1)µPi,k+1(0, t), (3)

with the initial conditions at t = 0:

Pii(0, 0) = 1 and Pik(0, 0) = 0, for k �= i.

(4)

Each of the differential equations in (3) contains
three unknown probabilities – Pik(0, t), Pi,k−1(0, t),
and Pi,k+1(0, t) – and cannot be solved directly. We
resort to the method of probability generating func-
tions [4].

Let the probability generating function of X(t) be
denoted by Gx(s; t), so that

GX(s; t) =
∞∑

k=0

skPik(0, t), (5)

with the initial condition at t = 0:

GX(s; 0) = si . (6)

Taking the derivatives of (5) with respect to t , we
find a partial differential equation for the probability
generating function:

∂

∂t
GX(s; t) = µ(1 − s)

∂

∂s
GX(s; t)

− η(1 − s)GX(s; t). (7)

Solving (7), with the initial condition (6), we find

GX(s; t) = [1 − (1 − s) exp(−µt)]i

× exp

{
−(1 − s)

η

µ
[1 − exp(−µt)]

}
. (8)

When s = 1, Gx(1, t) = 1, so the distribution of X(t)

is proper. For each t > 0, we can find the probabil-
ity Pik(0, t), for each k, the expectation E[X(t)], and
the variance of X(t), by taking appropriate deriva-
tives of Gx(s; t), although the computations are quite
involved. However, these quantities can be derived
directly with a different interpretation of (8).

Formula (8) is a product of two factors:

GX(s; t) = g
Y
(s; t) × g

Z
(s; t),

where

g
Y
(s; t) = [1 − (1 − s) exp(−µt)]i (9)

and

g
Z
(s; t) = exp

{
−(1 − s)

η

µ
[1 − exp(−µt)]

}
. (10)
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Formula (9) is the probability generating function
of a binomial random variable, say Y (t), with
parameters i and exp(−µt); while formula (10) is the
probability generating function of a Poisson random
variable, say Z(t), with a parameter function

(
η

µ

)
[1 − exp(−µt)]. (11)

According to a theorem in probability generating
functions, X(t) is the sum of two independently
distributed random variables,

X(t) = Y (t) + Z(t),

with formulas (9) and (10) as their respective proba-
bility generating functions. It follows that the distri-
bution of X(t) is a convolution of the distributions
of Y (t) and Z(t), and

Pik(0, t) =
min[i,k]∑

j=0

Pr[Y (t) = j ] × Pr[Z(t) = k − j ],

where min[i, k] stands for the smaller of i and k,

Pr[Y (t) = j ] =
(

i

j

)
exp(−jµt)[1 − exp(−µt)]i−j

and

Pr[Z(t) = j ] =

(
η

µ

)j

[1 − exp(−µt)]j

j !

× exp

{
− η

µ
[1 − exp(−µt)]

}
.

The expectation of X(t) is

E[X(t)] = E[Y (t)] + E[Z(t)] = i exp(−µt)

+ η

µ
[1 − exp(−µt)], (12)

and the variance of X(t) is

var[X(t)] = i exp(−µt)[1 − exp(−µt)]

+ η

µ
[1 − exp(−µt)].

If the initial population size is zero, i = 0, then
X(t) = Z(t) has a Poisson distribution; if there is
no immigration, η = 0, then X(t) = Y (t) has a bino-
mial distribution, as noted earlier. In general, Y (t)

and Z(t) correspond, respectively, to individuals that
were and were not present in the population at time
t = 0.

In the above discussion we have assumed that
the migration intensities were constant. When they
are functions of time, η(t) and µ(t), the binomial
probability becomes

exp

[
−

∫ t

0
µ(τ) dτ

]
(13)

and the Poisson parameter in (11) becomes

∫ t

0
η(τ) exp

[
−

∫ t

τ

µ(ξ) dξ

]
dτ. (14)

With the substitutions of (13) and (14), we will
have the same formulas as before for the generating
functions, the probabilities, and the expectations.

A Survival Distribution

In this distribution we assume that there are two
forces continuously acting on an individual to
influence his survival and death. One force causes
the mortality intensity function to increase, while
the other causes the mortality intensity function
to decrease. As a concrete example, consider an
individual who is continuously exposed to a low
level of radiation and other toxic material in the
environment. During a time interval (τ, τ + dτ ), for
0 < τ < t , there is a probability η dτ + o( dτ) that
the individual will absorb a unit of toxic material,
and a probability ν dτ + o( dτ) that the biological
reaction inside the human body will cause a unit
of toxic material in the body to be discharged. The
units thus follow a migration process with initial
population size i = 0, and, from (12), the expected
number of units at time t is

η

ν
[1 − exp(−νt)]. (15)

This is the expected total amount of toxic material
absorbed during the interval (0, t) and is present at
time t . Since the toxic material is supposed to be
harmful to an individual, a reasonable assumption
is that the force of mortality at time t, µ(t), should
be a function of the quantity in (15). The simplest
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function is proportional, so that the force of mortality
(see Hazard Rate) at time t is

µ(t) = β

ν
[1 − exp(−νt)],

where β = bη, b being the proportionality coefficient.
It follows that the cumulative survival function is

∫ t

0
µ(τ) dτ = β

ν

{
t − 1

ν
[1 − exp(−νt)]

}
.

(See Survival Distributions and Their Characte-
ristics).

Let T be the survival time of an individual. Then
the distribution of T is given by

FT (t) = 1 − exp

{
−β

ν

[
t − 1

ν
[1 − exp(−νt)]

]}
.

As t → ∞, the distribution function tends to 1, and
therefore the distribution of the survival time T is
proper. The expectation of T is

E[T ] = 1

ν
c−cecΓ (c, c),

where Γ (c, c) is an incomplete gamma function

Γ (c, c) =
∫ c

0
yc−1e−y dy,

y = β

ν2
exp(−νt) and c = β

ν2
.

This distribution was proposed in Chiang & Con-
forti [5] and was useful in the estimation of the time
to tumor.

A Multi-colony Migration Process

Suppose now that the population consists of m

colonies, labeled 1, 2, . . . , m. For i = 1, 2, . . . , m, let
ηi and µi denote, respectively, the immigration and
emigration intensities for colony i. Thus, the proba-
bility that an individual immigrates into the popula-
tion via colony i in the time interval (t, t + ∆t) is
ηi∆t + o(∆t), and the probability that an individual,
who is in colony i at time t , emigrates from the popu-
lation during (t, t + ∆t) is µi∆t + o(∆t). For i �= j ,
let vij denote the migration intensity from colony i

to colony j , so the probability that an individual,
who is in colony i at time t , migrates to colony j

during (t, t + ∆t) is vij∆t + o(∆t). Suppose that at

time t = 0 there are ni individuals in colony i (i =
1, 2, . . . , m). This model is fairly straightforward to
analyze, since the behaviors of distinct individuals
follow independent Markov processes. Here, we out-
line the key results. Further details may be found
in [6].

For i = 1, 2, . . . , m and t ≥ 0, let Xi(t) denote
the number of individuals in colony i at time t , and
suppose that of those Yi(t) are original (i.e. in the
population at time t = 0) and Zi(t) are new (i.e. have
immigrated into the population during (0, t].) Let
X (t) = (X1(t), X2(t), . . . , Xm(t))T, where T denotes
transpose, and define Y (t) and Z (t) similarly. Then,

X (t) = Y (t) + Z (t) (t ≥ 0), (16)

and the independence of individuals implies that Y (t)

and Z (t) are also independent.
The distributions of Y (t) and Z (t) can be descri-

bed as follows. For t ≥ 0, let P(t) = [pij (t)], where
pij (t) is the probability that an individual is in colony
j at time t given that it was in colony i at time
0 (i, j = 1, 2, . . . , m). The movement of an individ-
ual among the colonies follows a continuous time
Markov chain, that may be transient due to emigra-
tion. Standard theory for such processes implies that

P(t) = exp(V t), (17)

where V is the m × m matrix with elements vij , if
i �= j , and vii = −(

µi + ∑
k �=i vik

)
, and exp(V t) =∑∞

k=0 t kV k/k! is the usual matrix exponential (see
e.g. Bellman [1], page 169). For the formulae of the
individual pij (t), reference may be made to Chi-
ang [3, 4].

For i = 1, 2, . . . , m, let Y ∗
i (t) = (Y ∗

i1(t),

Y ∗
i2(t), . . . , Y ∗

im(t))T, where Y ∗
ij (t) is the number of

original colony-i individuals that are in colony j at
time t . The independence of individuals implies that
Y ∗

i (t) follows the defective (owing to emigration)
multinomial distribution given by

Pr[Y ∗
i1(t) = r1, Y ∗

i2(t) = r2, . . . , Y ∗
im(t) = rm]

= ni!
m∏

j=0

{pij (t)}rj

rj !



rj ≥ 0 (j = 1, 2, . . . , m),

m∑

j=1

rj ≤ ni



, (18)
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where r0 = ni − ∑m
j=1 rj and pio(t) = 1 − ∑m

j=1
pij (t). Moreover, Y ∗

1 (t), Y ∗
2 (t), . . . , Y ∗

m(t) are inde-
pendent. Now

Yi(t) =
m∑

j=1

Y ∗
ji (t) (i = 1, 2, . . . , m), (19)

so the joint distribution of Y (t) is completely
described.

Turning to the distribution of the numbers of
new individuals Z (t), since individuals immigrate
into the m colonies at the points of independent
Poisson processes and they behave independently,
Z1(t), Z2(t), . . . , Zm(t) follow independent Poisson
distributions, with means given by

E[Zi(t)] =
m∑

j=1

ηj

∫ t

0
pji(t − u) du

(t ≥ 0; i = 1, 2, . . . , m). (20)

Further, provided the immigration, emigration, and
migration rates are such that any individual ultimately
leaves the population with probability one, the inte-
gral in (20) can be obtained using

∫ t

0
P(t − u) du = V −1(exp(V t) − I). (21)

Equations (16) to (21) specify completely the dis-
tribution of the population at any time t > 0. The
matrix exponential exp(V t) can be found in terms of
the eigenvalues and eigenvectors of V , provided V

admits a spectral decomposition (see e.g. [8]). Note
that in the case when any individual ultimately leaves
the population, in the limit as t → ∞ the popu-
lation consists entirely of new individuals and the
sizes of the m colonies follow independent Poisson
distributions, with means given by −ηTV −1, where
ηT = (η1, η2, . . . , ηm).

An extension of the above model, in which the
immigration, emigration, and migration intensities
are time-dependent is considered by Faddy [6]. The
independent decomposition (16) into original and
new individuals still holds, and the distributions of
Y (t) and Z (t) can still be described in terms of

independent multinomial and Poisson distributions.
However, the time-dependent nature of the intensities
implies that pij (t) has to be replaced by pij (s, t)

(t > s), where pij (s, t) is the probability that an
individual that is in colony i at time s is in colony j

at time t . Moreover, pij (s, t) can be found explicitly
only in a few special cases (see e.g. [2] and [9]).

Multi-colony migration processes also find appli-
cation in other settings such as compartment models
and queueing networks. In the latter, the intensities
are often functions of the population state and interest
usually focuses on the equilibrium distribution of the
system (see e.g. [7, Chapter 2]). The single colony
model discussed earlier also describes a queue with
infinitely many servers (see Queuing Processes).

References

[1] Bellman, R. (1970). Introduction to Matrix Analysis. 2nd
edn. McCraw-Hill, New York.

[2] Cardenas, M. & Matis, J.H. (1975). On the time-
dependent reversible stochastic compartmental model –
II. A class of n-compartment systems. Bull Math Biol 37,
555–564.

[3] Chiang, C.L. (1964). A stochastic model of competing
risks of illness and competing risks of death. Stochastic
Models in Medicine and Biology (J. Gurland, editor),
University of Wisconsin Press, Madison, 323–354.

[4] Chiang, C.L. (1980). An Introduction to Stochastic Pro-
cesses and Their Applications. Kreiger, New York.

[5] Chiang, C.L. & Conforti, P. (1989). A survival model and
estimation of time to tumor. Mathematical Biosciences 94,
1–29.

[6] Faddy, M.J. (1977). Stochastic compartmental models as
approximations to more general stochastic systems with
the general stochastic epidemic as an example. Adv Appl
Prob 9, 448–461.

[7] Kelly, F.P. (1979). Reversibility and Stochastic Networks.
Wiley, Chichester.

[8] McClean, S.I. (1976). A continuous-time population
model with Poisson recruitment. J Appl Prob 13,
348–354.

[9] Raman, S. & Chiang, C.L. (1973). On a solution of the
migration process and the application to a problem in
epidemiology. J Appl Prob 10, 718–727.

CHIN LONG CHIANG & FRANK BALL



Minimax Theory

Minimax strategies are a pivotal concept in the the-
ory of games. They were independently introduced in
this context in the 1920s by Borel [2, 3] and von Neu-
mann [23]. The 1944 monograph by von Neumann &
Morgenstern [24] was very influential in fostering a
coherent formulation and in explaining their role in
game theory and particularly in the theory of two-
person, zero-sum games. For a thorough treatment of
game theory and of the place of minimaxity therein,
see Luce & Raiffa [18].

In statistical theory minimaxity first appears in the
seminal 1939 paper of Wald [25]. This paper laid
the foundations of statistical decision theory, and the
concept of minimaxity flowed naturally after the def-
initions there of loss and risk. See Brown [6] for
discussion of the extent this development was influ-
enced by Wald’s earlier contacts with Morgenstern.

Minimax considerations are based on the risk
function. Let F denote the set of possible distribu-
tions in a statistical decision problem and let ∆ denote
the set of randomized decision functions. Then the
risk, R(F, δ), is the expected loss to the statistician
who uses the procedure δ ∈ ∆ when the true distri-
bution is F ∈ F . Conventionally, one assumes the
loss is nonnegative, and hence R ≥ 0. Small values
of R are desirable to the statistician, but since F is
unknown these cannot necessarily be obtained.

The minimax risk is defined to be M =
infδ∈∆ supF∈F R(F, δ). A procedure δε with
supF∈F R(F, δε) ≤ M + ε is called ε-minimax (ε ≥
0). When ε = 0, the corresponding δ0 is called
minimax.

Various mathematical results characterizing exis-
tence and structure of minimax procedures involve
putative prior distributions on F (endowed with
a suitable σ -field). Let P denote the class of prior
distributions, let R∗(P, δ) = Ep(R(F, δ)) denote the
expected risk under P ∈ P, and let δp denote a
corresponding Bayes procedure, i.e. one for which
R∗(P, δp) = infδ∈∆ R∗(P, δ).

The fundamental minimax theorem is valid under
certain important regularity conditions. When valid it
asserts the existence of a minimax procedure which
is Bayes for a corresponding prior, P0, called a least
favorable prior. This yields the following important

string of equalities:

sup
p∈P

inf
δ∈∆

R∗(P, δ) = M = R∗(P0, δ0)

= inf
δ∈∆

sup
p∈P

R∗(P, δ0). (1)

Regularity conditions implying (1) and (2) can be
found in Wald [26], LeCam [16], and Brown [4, 5].
Much milder conditions imply the existence of a
minimax procedure and a least favorable sequence
of priors, {Pi : i = 1, . . .}, such that

sup
i

R∗(Pi, δpi
) = M. (2)

Virtually all statisticians have agreed that in the
presence of confidently held prior probability beliefs
a Bayes procedure should be used. Of course, there
has been and continues to be considerable disagree-
ment as to how strongly and how universally held
prior belief needs to be, and as to the meaning of
prior probability itself.

The key equalities (1) or (2) suggest an alternative
approach to the choice-of-procedure dilemma which
may be appropriate in the absence of confidently held
prior probability beliefs. They imply that the minimax
procedure is an optimal approach against a malevo-
lent “nature”. Such a “nature” is one who could either
divine the statistician’s intended procedure and then
pick an F ∈ F so as to maximize the statistician’s
risk, or one who could merely arrange always to
choose F by the least favorable prior when (1) holds
and by a nearly least favorable one when only (2)
holds.

Because of this, some statisticians have sug-
gested that minimaxity provides an objective crite-
rion leading to a unique and satisfactory choice of
decision procedure for each non-Bayesian decision
problem. Wald may himself have felt this way in
the 1940s but apparently abandoned this belief by
the time of his sudden death in 1950. For further
discussion, consult Savage [20, 21] and Brown [6].
One reason for the abandonment of this idea was the
early realization that there are situations where an ε-
minimax procedure has a risk function which would
be preferred by all but the most pessimistic statis-
tician over that of the minimax procedure. See, for
example, Hodges & Lehmann [9], Robbins [19], and
Wolfowitz [27].
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The discovery by Stein [12, 22] that shrinkage
estimators may dominate the usual minimax esti-
mator of a multivariate mean is definitive evidence
that, at best, the minimax principle does not provide a
unique objective solution in many common statistical
settings.

Minimaxity has been – and continues to be – an
important and stimulating concept for statistics, in
spite of its failure to provide universally appropri-
ate procedures. It has played an essential role as a
motivation and as an organizing principle in many
important statistical areas. It often also provides a
benchmark against which other proposed procedures
can be measured.

Areas where minimaxity plays a key role
include asymptotic analysis (via the concept of
local asymptotic minimaxity) as in LeCam [15]
or Lehmann [17], robust estimation theory as in
Huber [10, 11], robust Bayesian methodology (via
the notion of Γ -minimaxity) as in Berger [1],
optimal design of experiments as in Kiefer &
Wolfowitz [14] and Kiefer [13], and nonparametric
function estimation as in Donoho & Liu [7] and
Donoho et al. [8]. See Brown [6] as well as other
references cited there for more details.
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204–221.

[4] Brown, L.D. (1977). Closure theorems for sequential-
design processes, in Statistical Decision Theory and
Related Topics, Vol. 2, S.S. Gupta & D.S. Moore, eds.
Academic Press, New York, pp. 57–91.

[5] Brown, L.D. (1980). A necessary condition for admissi-
bility, Annals of Statistics 8, 540–545.

[6] Brown, L.D. (1993). Minimaxity, more or less, in
Statistical Decision Theory and Related Topics, Vol. 5,
S.S. Gupta & J.O. Berger, eds. Springer-Verlag, New
York, pp. 1–18.

[7] Donoho, D.L. & Liu, R.C. (1991). Geometrizing rates
of convergence, III, Annals of Statistics 19, 668–701.

[8] Donoho, D.L., Liu, R.C. & MacGibbon, B. (1990).
Minimax rates for hyperrectangles and implications,
Annals of Statistics 18, 1416–1437.

[9] Hodges, J.L., Jr & Lehmann, E.L. (1950). Some prob-
lems in minimax point estimation, Annals of Mathemat-
ical Statistics 21, 182–197.

[10] Huber, P.J. (1964). Robust estimation of a location
parameter, Annals of Mathematical Statistics 35,
73–101.

[11] Huber, P.J. (1981). Robust Statistics, Wiley, New York.
[12] James, W. & Stein, C. (1961). Estimation with quadratic

loss, in Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability, Vol. 1,
J. Neyman, ed. University of California Press, Berkeley,
pp. 311–319.

[13] Kiefer, J.C. (1974). General equivalence theory for opti-
mum designs (approximate theory), Annals of Statistics
2, 849–879.

[14] Kiefer, J.C. & Wolfowitz, J. (1960). The equivalence of
two extremum problems, Canadian Journal of Mathe-
matics 12, 363–366.

[15] LeCam, L. (1953). On some asymptotic properties
of maximum likelihood estimates and related Bayes
estimates, in University of California Publication in
Statistics, Vol. 1, no. 11, University of California Press,
Berkeley, pp. 277–330.

[16] LeCam, L. (1955). An extension of Wald’s theory of
statistical decision functions, Annals of Mathematical
Statistics 26, 69–81.

[17] Lehmann, E.L. (1997). Theory of Point Estimation. 2nd
Ed. Wiley, New York.

[18] Luce, R.D. & Raiffa, H. (1957). Games and Decisions,
Introduction and Critical Survey. Wiley, New York
(republished in a Dover edition, 1989).

[19] Robbins, H. (1951). Asymptotically subminimax
solutions of compound statistical decision problems,
in Proceedings of the Second Berkeley Symposium on
Mathematical Statistics and Probability, J. Neyman, ed.
University of California Press, Berkeley, pp. 131–148.

[20] Savage, L.J. (1954). The Foundations of Statistics.
Wiley, New York (second revised edition, published by
Dover, 1972).

[21] Savage, L.J. (1961). The foundations of statistics
reconsidered, in Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability,
J. Neyman, ed. University of California Press, Berkeley,
pp. 575–586.

[22] Stein, C. (1956). Inadmissibility of the usual estimator
for the mean of a multivariate normal distribution,
in Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, Vol. 1,
J. Neyman, ed. University of California Press, Berkeley,
pp. 197–206.

[23] von Neumann, J. (1928). Zur theorie der gesellschafts-
spielen, Mathematische Annalen 100, 295–320.

[24] von Neumann, J. & Morgenstern, C. (1944). Theory
of Games and Economic Behavior. Princeton University
Press, Princeton.

[25] Wald, A. (1939). Contributions to the theory of statistical
estimation and testing hypotheses, Annals of Mathemat-
ical Statistics 10, 299–326.



Minimax Theory 3

[26] Wald, A. (1950). Statistical Decision Functions. Wiley,
New York.

[27] Wolfowitz, J. (1951). On ε-complete classes of deci-
sion functions, Annals of Mathematical Statistics 22,
461–465.

(See also Bayesian Methods; Foundations of Prob-
ability; Subjective Probability)

L.D. BROWN



Minimum Therapeutically
Effective Dose

Moore [10] indicates that the difference between a
drug and a poison is the dose. Hence, it is extremely
important to identify the dose range of a drug product
that provides effective and safe treatment of a certain
disease. The lower limit of this dose range is usually
referred to as the minimum therapeutically effective
dose (MTED). As a result, the MTED is defined as
the lowest dose level of a drug product yielding a
therapeutically significant response in average effi-
cacy that is also statistically significantly superior
to the response provided by the placebo [6, 11, 13].
According to this definition, the MTED must produce
a response with a magnitude of clinical superiority
over the placebo, since a small but statistically sig-
nificant response resulting from either large sample
sizes or small variability can be of no real thera-
peutical meaning (see Clinical Significance Versus
Statistical Significance). Furthermore, the MTED
must yield a statistically significant clinical response.
This is because a large response produced at a certain
dose level, if it is statistically insignificant from the
placebo response, fails to establish the scientific evi-
dence of effectiveness for that dose level. Similarly,
the maximum tolerable dose (MTD) is the highest
possible, but still tolerable, dose level with respect
to a prespecified clinical limiting toxicity [9, 15].
The maximum effective dose (MED) is the highest
dose level beyond which no additional therapeuti-
cally meaningful improvement in average efficacy
can be achieved. The therapeutic range (window) is
then defined as the range of the dose levels from the
MTED, denoted by dL, to the minimum of MTD and
MED, denoted by dU. If dL is much smaller than dU,
then the corresponding drug product is said to have
a wide therapeutic window. However, if the MTD is
very close to, or even smaller than, the MTED, then
the drug product is of no practical therapeutical use.
The definition discussed above focuses on the aver-
age efficacy of a patient population. Fillon [6] gives a
definition of the MTED for a particular patient as the
lowest dose level that provides a prespecified ther-
apeutical effectiveness above a predetermined per-
centage of patients. We refer to the first traditional
definition as the population MTED (PMTED) and the
second definition as the individual MTED (IMTED).

Study Design

The MTED is usually estimated from the data
of primary efficacy endpoints from dose-ranging
or dose-response clinical trials conducted during
phase II clinical development of a drug product.
These dose–response studies are usually randomized,
double-blind, parallel-group designs with inclusion
of a concurrent placebo group. Occasionally, a
crossover design such as Williams’ design [4] is
employed. Many clinicians, however, find that a
variety of titration designs, either with or without a
concurrent parallel placebo group for dose-ranging
studies, are useful because they mimic clinical
practices in the real world. For details on designs
for dose-response trials, see ICH E4 guideline [8].

Inclusion of a placebo is essential for estimation of
the MTED, because a dose of any drug product can-
not establish its therapeutical effectiveness without
comparison with a placebo. In addition to choosing
an appropriate statistical design, the selection of dose
levels, the number of dose levels, and sample sizes
for each dose group are crucial for estimation of the
MTED. These issues are not only related to each
other, but are also very difficult to deal with. The dose
range should be chosen as wide as possible within the
safety limit so that the dose–response relationship
can be adequately characterized. For the same rea-
son, the number of dose levels, including the active
agent and the placebo, should be at least three. It is
also preferable to select a dose level whose response
is not expected to be statistically different from the
placebo response, so that the MTED can be estimated
more precisely. Sample size determination includes
estimation of the total sample size and its distribu-
tion across different dose groups. As indicated by
Ruberg [13], sample size should be determined on the
basis of statistical tests for the hypotheses of interest
for primary efficacy clinical endpoints.

Statistical Analysis

Basically, there are two commonly used approaches
for estimation of the MTED. One is the method of
hypothesis testing based on the analysis of variance
(ANOVA). It consists of step-down, step-up, and
single-step procedures. The step-down procedures
include Dunnett’s step-down procedure, Williams’
test for ordered alternatives [17], and the step-down
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linear contrasts [1, 16]. The Bonferroni procedure
proposed by Hochberg [7], and its later refinement
by Dunnett & Tamhane [5], in conjunction with the
application of Helmert contrasts, are typical step-up
procedures for estimation of the MTED. Ruberg [12]
introduced the application of the step contrasts and
basin steps as single-step procedures to estimating
the MTED. The MTED estimated by the ANOVA
will be one of the dose levels evaluated in the trial.
An interval estimation for the MTED has not yet
been developed for the ANOVA approach. Although
a functional form such as the four-parameter logistic
function is generally required, both point and inter-
val estimates can be obtained by the model-based
approach [14]. In addition, one can incorporate more
directly the information of the therapeutically effec-
tive response into the assumed model for estimation
of the MTED. Nonparametric methods for identifica-
tion of MTED are also proposed [2, 3]. Ruberg [13,
14] gives a comprehensive review of the current state-
of-the-art in design and estimation of the MTED.

Discussion

The therapeutically meaningful response can be ex-
pressed either as the original actual response at a
particular dose level or as an additional clinically
meaningful improvement over the placebo response.
All approaches described above assume the thera-
peutically significant response a priori as a known
constant. This assumption relies on the external valid-
ity of the past history, and previous experience of
the disease under study, for the assumed clinically
meaningful responses. This assumption is reason-
able, provided that the placebo response has been
well established by adequate, well-controlled stud-
ies and the medical condition is well understood for
evaluation of the drug product. For internal valid-
ity, however, the therapeutically significant response
should be determined by the response provided by a
current placebo control group.
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Minimum Variance
Unbiased (MVU)
Estimator

Methods for determining the minimum possible vari-
ance of an unbiased estimator constitute a fundamen-
tal topic in mathematical statistics. An estimator T ∗
is minimum variance unbiased (MVU) for g(θ) when

Eθ (T
∗) = g(θ)

and

varθ (T
∗) ≤ varθ (T ),

for all T such that Eθ (T ) = g(θ). (1)

Two primary results that relate to MVU estimators
are the Cramér–Rao Inequality [1, 6, 13], and the
Rao–Blackwell theorem [3, 17].

Information Inequality

Assume that a statistic Tn = t (X1, X2, . . . , Xn) is
an estimator of g(θ), where X1, X2, . . . is a
sequence of independent, identically distributed
random variables with probability density function
f (x; θ), θ ∈ Θ . Under certain regularity conditions
(see Cramér–Rao Inequality), if E(Tn) = g(θ),
then

varθ (Tn) ≥ [g′(θ)]2

n Eθ

{[
∂

∂θ
ln f (X; θ)

]2
} . (2)

This result is known as the Cramér–Rao inequality
(or the information inequality). The right-hand side
(RHS) of (1) is called the Cramér–Rao (or informa-
tion) lower bound.

Clearly, whenever the variance of an unbiased
estimator is equal to the RHS, that estimator is MVU.
The lower bound is attained if and only if

∂

∂θ
ln f (X; θ) = K(θ, n)[Tn − g(θ)]. (3)

It follows from (3) that if T is an unbiased estimator
of a function g(θ), and varθ (Tn) attains the lower

bound in the RHS of (1), then f (x; θ) belongs to an
exponential class:

f (x; θ) = exp[A(θ)B(x) + C(x) + D(θ)] (4)

for appropriate functions A, B, C, and D. In this
case, the estimator Tn is given by

∑n
i=1 B(xi). We

see below that (4) is also a sufficient condition for
MVU estimators.

In general, the Cramér–Rao inequality is not
sharp, so that other methods are necessary to find
lower bounds for MVU estimators. When the lower
bound cannot be obtained, “better” (i.e. greater)
lower bounds than (2) can be obtained. For exam-
ple, Bhattacharya [2] obtains better lower bounds
using higher-order derivatives of the score func-
tion (see Likelihood). However, improvements in
the Cramér–Rao lower bound are only of order
O(1/n2) [8] (see Orders of Magnitude). Using
other methods, Kiefer [9] and Chapman & Rob-
bins [5] derive minimum variance bounds that are
better than (2) and avoid regularity conditions.

Rao–Blackwell Theorem

A statistic S = s(X1, X2, . . . , Xn) is sufficient for θ

if the conditional probability distribution of X given
S does not depend on θ for any s. If S1, S2, . . . , Sk

are sufficient for θ and T ∗ is unbiased for g(θ), then
the following hold:

1. Let T ∗ = Eθ (T |S1, S2, . . . , Sk). Then E(T ∗) =
g(θ).

2. varθ (T ∗) ≤ varθ (T ) for all θ .
3. varθ (T ∗) < varθ (T ) for some θ ∈ Θ unless T =

T ∗ with probability 1.

This result is due to Rao [14] and Blackwell [3]. It
supplies a method for improving the variance of any
unbiased estimator of g(θ) that is not a function of a
sufficient statistic.

If the family f (x; θ) is “complete”, then further
results are possible. A family of densities f (x; θ) is
said to be complete when Eθ [z(T )] = 0 for all θ ∈ Θ

implies Prθ [z(T ) = 0] = 1 for all θ ∈ Θ . If S is
a complete, sufficient statistic and Eθ [T (S)] = g(θ),
then T (S) is MVU for g(θ) [11].

When f (x; θ) belongs to an exponential family
and has the form in (4), then

∑n
i=1 B(xi) is a com-

plete sufficient statistic. Thus, for exponential fami-
lies, if Tn = ∑n

i=1 B(xi) and Eθ (Tn) = g(θ), then Tn
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is MVU. In this case, however, Tn satisfies (3), so
that Tn achieves the Cramér–Rao lower bound.

Large-Sample Results

For any given n, a function of the sufficient
statistic will have minimum variance for estimating
its expected value. For large samples (see Large-
sample Theory), any function of the sufficient
statistic will estimate its expected value at
the Cramér–Rao lower bound [8]. Finally, under
slightly stronger assumptions (which hold for
exponential families), all maximum likelihood
estimates asymptotically approach the lower bound
as n → ∞ (Serfling [17], after Cramér [7]).
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Mining Time Series Data

Time series data is ubiquitous; large volumes of time
series data are routinely created in medical and bio-
logical domains, examples of which include gene
expression data [1], electrocardiograms, electroen-
cephalograms, (see Clinical Signals), gait analysis,
growth development charts, and so on. Although
statisticians have worked with time series for more
than a century, many of their techniques hold lit-
tle utility for researchers working with massive time
series databases (for reasons discussed below).

The major tasks considered by the time series data
mining community are as follows:

• Indexing (Query by Content): Given a query
time series Q, and some similarity/dissimilarity
measure D(Q, C), find the most similar time
series in database DB [3, 6, 10, 15].

• Clustering: Find natural groupings of the time
series in database DB under some similarity/dis-
similarity measure D(Q, C) [1, 5, 11, 13].

• Classification: Given an unlabeled time series
Q, assign it to one of two or more predefined
classes [7, 13].

• Prediction (Forecasting): Given a time series Q
containing n datapoints, predict the value at time
n + 1.

• Association Detection: Given two or more time
series, find relationships between them. Such rela-
tionships may or may not be causal and may or
may not exist for the entire duration of the time
series [4].

• Summarization: Given a time series Q contain-
ing n datapoints, where n is an extremely large
number, create an (possibly graphic) approxima-
tion of Q, which retains its essential features but
fits on a single page, computer screen, and so
on [9, 18].

• Anomaly detection (interestingness detection):
Given a time series Q, assumed to be nor-
mal, and a unannotated time series R, find
all sections of R, which contain anoma-
lies or “surprising/interesting/unexpected” occur-
rences [8, 12, 17].

• Segmentation: Given a time series Q contain-
ing n datapoints, construct a model Q, from K

piecewise segments (K � n) such that Q closely
approximates Q [13].

Note that indexing and clustering make explicit
use of a distance measure, and many approaches to
classification, prediction, association detection, sum-
marization, and anomaly detection make implicit use
of a distance measure. In this article, we will not con-
sider distance measures in depth, instead we refer the
reader to Time Series Similarity Measures.

It is interesting to note that with the exception of
indexing, research into the tasks enumerated above
predate not only the decade old interest in data
mining, but in computing itself. What then are the
essential differences between the classic versions and
the data mining versions of these problems? The key
difference is simply one of size and scalability; time
series data miners routinely encounter datasets that
are gigabytes in size. As a simple motivating exam-
ple, consider hierarchical clustering. The technique
has a long history and a well-documented utility. If,
however, we wish to hierarchically cluster a mere
million items, we would need to construct a matrix
with 1012 cells, well beyond the abilities of the
average computer for many years to come. A data
mining approach to clustering time series, in con-
trast, must explicitly consider the scalability of the
algorithm [11].

In addition to the large volume of data, it is often
the case that each individual time series has a very
high dimensionality [3]. Whereas classic algorithms
assume a relatively low dimensionality (for exam-
ple, a few measurements such as “height, weight,
blood sugar etc.”), time series data mining algorithms
must be able to deal with dimensionalities in the hun-
dreds and thousands. The problems created by high
dimensional data are more than mere computation
time considerations; the very meanings of normally
intuitive terms, such as “similar to” and “cluster
forming” become unclear in high-dimensional space.
The reason is that, as dimensionality increases, all
objects become essentially equidistant to each other,
and thus classification and clustering lose their mean-
ing. This surprising result is known as the “curse of
dimensionality” and has been the subject of extensive
research [2]. The key insight that allows meaningful
time series data mining is that although the actual
dimensionality may be high, the intrinsic dimen-
sionality is typically much lower. For this reason,
virtually all time series data mining algorithms avoid
operating on the original “raw” data; instead, they
consider some higher-level representation or abstrac-
tion of the data.
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Time Series Representations

As noted above, time series datasets are typically
very large; for example, just eight hours of electroen-
cephalogram data can require in excess of a gigabyte
of storage. This is a problem because for almost all
data mining tasks, most of the execution time spent
by algorithm is used simply to move data from disk
into main memory. This is acknowledged as the major
bottleneck in data mining, because many naı̈ve algo-
rithms require multiple accesses of the data. As a
simple example, imagine we are attempting to do k-
means clustering of a dataset that does not fit into
main memory. In this case, every iteration of the
algorithm will require that data in main memory be
swapped. This will result in an algorithm that is thou-
sands of times slower than the main memory case.

With this in mind, a generic framework for time
series data mining has emerged. The basic idea can
be summarized as follows.

It should be clear that the utility of this framework
depends heavily on the quality of the approximation
created in step 1. If the approximation is very faith-
ful to the original data, then the solution obtained
in main memory is likely to be the same or very
close to the solution we would have obtained on the
original data. The handful of disk accesses made in
step 2 to confirm or slightly modify the solution will
be inconsequential compared to the number of disk
accesses required if we had worked on the origi-
nal data. With this in mind, there has been a huge
interest in approximate representation of time series.

Figure 1 illustrates a hierarchy of every representa-
tion proposed in the literature.

To develop the reader’s intuition about the various
time series representations, we have illustrated four
of the most popular representations in Figure 2 (see
Spectral Analysis; Wavelet Analysis).

Given the plethora of different representations, it
is natural to ask which is best. Recall that the more
faithful the approximation, the less clarification disk
accesses we will need to make in step 3 of Table 1. In
the example shown in Figure 2, the discrete Fourier
approach seems to model the original data the best;
however, it is easy to imagine other time series
where another approach might work better. There
have been many attempts to answer the question
of which is the best representation, with proponents
advocating their favorite technique [3, 6, 15, 16]. The
literature abounds with mutually contradictory state-
ments, such as “Several wavelets outperform the . . .

DFT” [15], “DFT-based and DWT-based techniques

Table 1 A generic time series data mining approach

1) Create an approximation of the data, which
will fit in main memory, yet retains the
essential features of interest.

2) Approximately solve the problem at hand in
main memory.

3) Make (hopefully very few) accesses to the
original data on disk to confirm the solution
obtained in step 2, or to modify the solution
so it agrees with the solution we would
have obtained on the original data.

Time series
representations

Data adaptive Non– data adaptive

SpectralWavelets Piecewise
aggregate

approximation

Piecewise
polynomial

SymbolicSingular
value

decomposition

Random
mappings

Piecewise
linear

approximation

Adaptive
piecewise
constant

approximation 

Discrete 
fourier

transform

Discrete
cosine

transform

Haar Daubechies
dbn   n > 1

Coiflets Symlets 

Sorted
coefficients 

Orthonormal Bi-orthonormal

Interpretation Regression

Trees 

Natural
language

Strings

Figure 1 A hierarchy of time series representations
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0 50 100 0 50 100

0 50 100 0 50 100

Discrete fourier
transform

Piecewise linear
approximation

Haar wavelet
Adaptive piecewise
constant approximation

Figure 2 Four popular representations of time series. For
each graphic, we see a raw time series of length 128
datapoints. Below it we see an approximation using 1/8
of the original space. In each case, the representation can
be seen as a linear combination of basis functions. For
example, the discrete Fourier representation can be seen as
a linear combination of the four sine/cosine waves shown
at the bottom of the graphic

yield comparable results” [19], “Haar wavelets per-
form. . . better that DFT” [10]. However an extensive
empirical comparison on 50 diverse datasets suggests
that while some datasets favor a particular approach,
overall there is little difference between the various
approaches in terms of their ability to approximate the
data [14]. There are, however, other important differ-
ences in the usability of each approach [3]. We will
consider some representative examples of strengths
and weaknesses below.

The wavelet transform is often touted as an ideal
representation for time series data mining because
the first few wavelet coefficients contain information
about the overall shape of the sequence, while the
higher-order coefficients contain information about
localized trends [15, 17]. This multiresolution prop-
erty can be exploited by some algorithms, and con-
trasts with the Fourier representation in which every

coefficient represents a contribution to the global
trend [6, 16]. However, wavelets do have several
drawbacks as a data mining representation. They are
only defined for data whose length is an integer power
of two. In contrast, the piecewise constant approxima-
tion suggested by [20], has exactly the same fidelity
of resolution as the Haar wavelet, but is defined for
arbitrary length time series. In addition, it has several
other useful properties, such as the ability to support
several different distance measures [20], and the abil-
ity to be calculated in an incremental fashion as the
data arrives [3]. Choosing the right representation for
the task is the key step in any time series data mining
endeavor. The points above only serve as a sample
of the issues that must be addressed.

Readings

The field of time series data mining is relatively
new and ever changing. Because of the length of
journal publication delays, the most interesting and
useful work tends to appear in top-tier conference
proceedings. Interested readers are urged to consult
the latest proceedings of the major conferences in the
field. These include the ACM Knowledge Discovery
in Data and Data Mining, IEEE International Con-
ference on Data Mining, and the IEEE International
Conference on Data Engineering.
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Misclassification Error

It was recognized early [3] that misclassification of
categorical variables induces problems of analysis
and interpretation. In epidemiology there has been
continuing interest in assessing effects of misclas-
sification on exposure–disease associations. More
recent attention has been paid to methodology for
estimating the misclassification structure and adjust-
ing for resulting biases. This involves gathering aux-
iliary data through validation samples (see Valida-
tion Study) and repeated measurements. Although
there are immediate parallels between the rationale
for handling misclassification and the discussion on
measurement errors in continuous exposure variables,
the two topics have different historical paths and the
statistical techniques differ in technical detail. Mea-
surement Error in Epidemiologic Studies deals
with the case of continuous covariates. Early reviews
on the effects of misclassification include a bibliogra-
phy by Dalenius [8] and a paper by Chen [4]. Kuha
& Skinner [26] offer a more recent account. Here
we describe effects caused by misclassification and
present some of the methodology for adjustment.

Effects of Misclassification

Univariate Analyses

Let A∗ denote the classification variable subject to
error and A the true variable that the classification
variable is intended to measure. We refer to A∗ as
a surrogate for A. For each unit (individual) the
outcome of A, and A∗, falls into one of m mutually
exclusive categories. Independence between units is
assumed. We write the misclassification probabilities

Pr(A∗ = j |A = k) = θjk, j, k = 1, . . .m.

The parameters θjk governing the misclassification
structure may be collected into an m × m misclassi-
fication matrix Θ = [θjk] with nonnegative elements
and columns that sum to one. For a binary response,
where m = 2 and the categories indicate the presence
(A = 2) or absence (A = 1) of disease, the misclas-
sification matrix involves only two parameters

Θ =
(

θ11 θ12

θ21 θ22

)
=

(
β 1 − α

1 − β α

)
. (1)

The parameter α in (1) is called the sensitivity of the
measuring instrument and β the specificity.

The effect of using the surrogate classification A∗
may be summarized by

πA∗ = ΘπA,

where πA∗ = (πA∗(1), . . . , πA∗(m))′ and πA

= (πA(1), . . . , πA(m))′ are the population propor-
tions in the categories of the surrogate variable and
the true variable, respectively. Sample proportions of
A∗ are thus biased estimates of πA. The nature of
this bias is most easily described in the binary case,
where

πA∗(2) = (1 − β)πA(1) + απA(2) (2)

(for example [6]). Even when the misclassification
matrix differs from the identity matrix it is clear from
(2) that the two errors are mutually compensating if
(1 − β)πA(1) = (1 − α)πA(2). The degree of com-
pensation depends on the true proportions πA(1) and
πA(2). An instrument with given misclassification
matrix can thus induce different degrees of bias in
different populations.

Bivariate Analyses

2 × 2 Tables. In a two-by-two table, let A define
the presence or absence of disease and B two expo-
sure groups, e.g. smokers and nonsmokers. We first
consider the case where the response variable is sub-
ject to misclassification, i.e. A is measured by the
surrogate A∗. Let πA|B(j |l) denote the proportion of
units in the population for which A = j in exposure
group B = l, and let πA∗|B(j |l) denote the corre-
sponding proportion for A∗.

When focus is on the difference in the response
proportions between the two exposure groups, then
an unbiased estimator of the surrogate difference
πA∗|B(2|2) − πA∗|B(2|1) will in general be biased
for the true difference πA|B(2|2) − πA|B(2|1). The
argument simplifies if both exposure groups have
the same sensitivity α and specificity β. In this case
the misclassification mechanism for A is said to be
nondifferential with respect to B. It follows from (2)
that under nondifferential misclassification

πA∗|B(2|2) − πA∗|B(2|1)

= (α + β − 1)[πA|B(2|2) − πA|B(2|1)]. (3)
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It is reasonable to expect each of the misclassification
probabilities 1 − α and 1 − β to be less than 0.5, in
which case the factor (α + β − 1) in (3) takes values
between 0 and 1. The difference measured by the
surrogate A∗ is thus always smaller than the true
difference based on A. The effect of nondifferential
misclassification is to attenuate, i.e. “to make seem
smaller”, the difference in subclass proportions. This
was noted by Rubin et al. [30] as early as 1956.
Nondifferential misclassification similarly attenuates
the ratio πA|B(2|2)/πA|B(2|1) toward the null value
of one (see, for example, [7]) (see Bias Toward the
Null).

If, instead, the response variable A is correctly
classified while the exposure B is misclassified as
B∗, and if the misclassification of B is nondifferential
with respect to A, then

πA|B∗(2|2) − πA|B∗(2|1)

= (αB + βB − 1)πB(2)πB(1)

πB∗(2)πB∗(1)

× [πA|B(2|2) − πA|B(2|1)], (4)

where πB = (πB(1), πB(2))′ and πB∗ = (πB∗(1),

πB∗(2))′ are the population proportions of B and
B∗ respectively, and αB and βB are the sensitivity
and specificity of the classification of B. The fac-
tor multiplying πA|B(2|2) − πA|B(2|1) in (4) is again
between 0 and 1, when 0 < αB + βB − 1 ≤ 1, so that
the effect is a similar type of attenuation as described
above.

If both the response A and the exposure B are
subject to misclassification, and if the surrogate pair
(A∗, B∗) is jointly determined by the pair (A, B)
through the misclassification probabilities Pr(A∗ =
j ∗, B∗ = k∗|A = j, B = k), then misclassification of
A and B is said to be independent if

Pr(A∗ = j ∗, B∗ = k∗|A = j, B = k)

= Pr(A∗ = j ∗|A = j, B = k)

× Pr(B∗ = k∗|A = j, B = k),

and it is nondifferential if

Pr(A∗ = j ∗|A = j, B = k) = Pr(A∗ = j ∗|A = j)

and

Pr(B∗ = k∗|A = j, B = k) = Pr(B∗ = k∗|B = k).

Under the condition of independent and nondifferen-
tial misclassification in A and B, Gullen et al. [20]
show that an unbiased estimator of πA∗|B∗(2|2) −
πA∗|B∗(2|1) again attenuates the true difference. If
on the other hand A, or B, or both, are subject to
differential misclassification, then the bias inherent
in πA∗|B∗(2|2) − πA∗|B∗(2|1) can take any arbitrary
form. A clear account of the possible effects of differ-
ential misclassification is presented by Goldberg [16]
(see Differential Error).

Note that changes in the categorization of a mis-
classified variable may turn a nondifferential mis-
classification into a differential one. Wachholder
et al. [34] discuss the situation in which A has three
categories and is subject to nondifferential misclassi-
fication with respect to B. They show that combining
two of the categories of A induces differential mis-
classification with respect to B. On a similar note,
Flegal et al. [13] show that if a nondifferentially mis-
measured continuous variable is dichotomized, this
may induce differential error.

2 × m Tables. When comparing proportions de-
fined by a binary response A in three or more
exposure subgroups (m > 2) defined by B, the result
in (3) holds when the response A is nondifferentially
misclassified with respect to B. The ordering of the
response proportions over exposure subgroups is thus
preserved, but the differences are attenuated.

If, instead, the response A is correctly classified
but the exposure B is subject to nondifferential
misclassification, then (i) measures of association
for response proportions between the two extreme
exposure subgroups B = 1 and B = m are again
attenuated, but (ii) associations between other
exposure subgroups may be biased either away from
or towards null [2, 15]. Exposure misclassification
can even change the ordering of the response
proportions in the intermediate subgroups and distort
trends. However, if misclassification is confined to
adjacent exposure subgroups, then attenuation occurs,
but the ordering of the response proportions is
retained [28].

Hypothesis Testing for Two-Way Tables. An im-
portant consequence of the attenuation results is that
if there is no association between A and B, then
there will be no association between the surrogates
A∗ and B∗ under nondifferential misclassification
in one variable [29] or under nondifferential and
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independent misclassification in both variables [1].
The test of no association between A and B based
on A∗ and B∗ will thus have the correct significance
level (see Hypothesis Testing), but the power is
in general reduced. Marshall et al. [28] show similar
results for a test of no trend in subclass proportions
for tables where the outcome A is binary and a
polytomous subgroup variable B is nondifferentially
misclassified.

Multivariate Analyses

The simplest multivariate case involves a 2 × 2 × 2
table. Let A be a binary response variable and B

and C binary variables defining subgroups of the
population. In particular, B may refer to an exposure
and C to a potential confounder.

If C is correctly classified, then we can consider
the two-way tables between A and B separately for
the two levels of C, and apply the bivariate results
of the previous section. If only A is subject to
nondifferential misclassification, then the difference
in response proportions between the two exposure
groups is attenuated by the factor given in (3). If,
however, the exposure B is nondifferentially misclas-
sified, we have from (4) that the degree of attenuation
depends on the true proportions, in this case on
πB|C(2|2) for C = 2 and on πB|C(2|1) for C = 1.
If there is association between B and C, then the
difference in response proportions between the two
exposure groups may be attenuated to a different
degree in the two categories of C. Nondifferential
misclassification in the exposure may thus induce
spurious heterogeneity (or mask true heterogeneity)
in the exposure–disease association for different lev-
els of the confounder [17].

If C is subject to nondifferential misclassifica-
tion (with 0 < αC + βC − 1 ≤ 1) with respect to
A and B, which are both classified without error,
then πA|B,C∗(2|k, l) lies between the true proportions
πA|B,C(2|k, l) and πA|B(2|k) for any k, l = 1, 2 [17,
26]. The proportions πA|B(2|k) are obtained by sum-
ming the data over the levels of C. This form of bias
is known as residual confounding (for example [31]).
It occurs because the analysis is restricted to the
wrong levels of the confounder C, and thus the het-
erogeneity in the proportions due to confounding is
not fully controlled for. The bias due to residual con-
founding may be either away from or toward the null
value, and it can even induce a exposure–response

association with the wrong sign. Both the size and
power of a test of no association between A and B

adjusted for C are thus incorrect when C is subject
to nondifferential misclassification.

The above example of misclassification in a 2 ×
2 × 2 table may be extended in various ways. Some
of the variables in a three-way table may be polyto-
mous and there may be independent and nondiffer-
ential misclassification in more than one variable. In
this case the effect of misclassification is a combi-
nation of attenuation and residual confounding [14].
Misclassification that is not both independent and
nondifferential can produce any kind of biases (some
examples are given by Greenland & Robins [19]).

For tables involving more than three variables it is
not in general possible to give even qualitative state-
ments about how misclassification distorts the analy-
sis. One exception is a useful result due to Korn [24]:
if there is independent and nondifferential misclassifi-
cation in several variables in a multiway table, and if
each of these misclassified variables appears in only
one term of a hierarchical loglinear model speci-
fying the association structure of the table, then this
association structure is preserved under the misclas-
sification. A test of goodness of fit for this loglinear
model will have the correct significance level but
reduced power. Korn [25] evaluates the loss of power
due to misclassification when using a likelihood ratio
test for comparing two nested models where the asso-
ciation structure is preserved.

Auxiliary Data on Misclassification

Adjustment for potential bias due to misclassification
requires some information on the misclassification
structure. If the structure is known, either through
prior information or by assumption, then adjustment
is straightforward. In general, however, the misclas-
sification structure is unknown and estimated from
a suitable set of auxiliary data, which are assumed
to have the same misclassification parameters as the
primary data. We briefly describe the two main types
of auxiliary data: validation samples and repeated
measurements.

Validation Samples

Both the true variable A, say, and the surrogate
variable A∗, possibly together with other variables,
are measured on each unit in a validation sample.
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This raises two important questions: (i) How does
one measure the true value A? (ii) How should the
units in the validation sample be selected?

A measurement of A may be possible using an
instrument referred to as the gold standard. It may
be too expensive, however, to use the gold standard
on all units in the primary study, or the gold standard
may be available only for a subset of the units. The
gold standard is a key concept in validation studies
and the assumption that it measures A accurately,
or with negligible error, is crucial (cf. [33], for a
discussion of bias induced by using an erroneous or
“alloyed” gold standard).

Ideally the validation sample should be a sub-
sample of the primary data, obtained by a known
randomized double sampling scheme. Simple ran-
dom sampling from the primary data gives an
internal validation sample, where the proportions in
the categories of A in the validation sample are
unbiased estimates of the corresponding population
proportions. Both the misclassification probabilities
Pr(A∗|A) and the predictive values Pr(A|A∗) in
the population of interest can thus be consistently
estimated from internal validation data. There may,
however, be practical reasons that prevent such dou-
ble sampling. If validation data from an earlier study
are used, or if the gold standard is available only in a
specific subpopulation, or if validation data are col-
lected after the primary data are in hand, then it may
be unreasonable to assume that the distribution over
the categories of A are the same for units in the val-
idation sample and in the primary study population.
We then say that the validation data are external, and
only the misclassification probabilities are assumed
to be transportable between data sets.

Instead of using simple random sampling it may
be useful to draw a prespecified proportion of the
validation sample units within each category of A∗.
This increases the efficiency in estimating the predic-
tive values Pr(A|A∗), and is thus useful in internal
validation studies [21].

Repeated Measurements

Even without a gold standard it may be possible to
estimate misclassification parameters from repeated
measurements of the surrogate. The measurements
may be replicates using the same instrument or they
may be obtained using different instruments. The dis-
tinction between internal and external data is relevant

also for repeated measures, and which of these is in
question depends on how the distributions over cate-
gories of A are related in the auxiliary and primary
data sets.

For models based on repeated surrogate measures
to be identifiable, a sufficient number of the mea-
surements should be conditionally independent given
the true value A. The required number depends on the
model; some simple models are identifiable from just
two measurements, while three measurements are suf-
ficient for most models (see [35] and [27] for general
identifiability conditions).

Adjusting for Effects of Misclassification

Misclassification parameters estimated from auxiliary
data may be used to estimate parameters of interest
adjusting for the biases induced by misclassifica-
tion. Here we describe three classes of adjustment
methods: simple matrix methods and model-based
methods using either validation data or repeated
measurements.

Matrix Methods

The most straightforward way to adjust for misclas-
sification is via simple back-calculation. We refer
to this as the matrix method of adjustment. The aim
is to estimate the vector of cell proportions πA for
variable A. Here A may represent one variable or
the cross-classification of several variables. Suppose
that a primary data set and a validation data set are
available, with np and nv observations, respectively.
The validation data provide an estimate, denoted by
Θ̂(A∗|A), for the matrix of misclassification proba-
bilities θjk = Pr(A∗ = j |A = k). A matrix estimate
of πA is given by

π̂m
A = {Θ̂(A∗|A)}−1π̂A∗, (5)

with π̂A∗ the vector of observed cell proportions for
the surrogate A∗ in the primary data set. The analy-
sis of interest is performed on the transformed table
π̂m

A . An estimated variance matrix for π̂m
A , or any

quantities derived from it, such as odds ratios, can
be obtained using the delta method [18]. The simple
matrix estimator (5) is well known in the epidemio-
logic literature. It is straightforward to compute, but
has the drawbacks that the estimated probabilities are
not constrained to lie between 0 and 1, and its small
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sample properties may be poor due to the matrix
inversion.

The estimator (5) can also be motivated as a max-
imum likelihood estimator (MLE) of πA under a
model where (i) πA is unrestricted, (ii) the model for
the misclassification probabilities is the one under
which Θ̂(A∗|A) was estimated (or taken as known),
and (iii) the validation data are external. For most
other models the MLE needs to be computed using
iterative methods described in the next section. An
important exception is a case where the valida-
tion data are internal and the model structure is
such that there exists a one-to-one transformation
from πA and Θ(A∗|A) to πA∗ and Λ(A|A∗), where
Λ(A|A∗) denotes the m × m matrix of predictive val-
ues Pr(A = i|A∗ = j). The MLE of πA is then also
a closed-form matrix estimate, given by

π̂ c
A = fpΛ̂(A|A∗)π̂A∗ + (1 − fp)π̂

(v)
A (6)

where fp = np/(np + nv), π̂
(v)
A is the vector of

observed cell proportions of A in the validation
data set, and Λ̂(A|A∗) is the matrix of predictive
values estimated from the validation data. Estimates
of this type were proposed by Tenenbein [32] for
estimating cell probabilities of a single variable when
both πA and the misclassification probabilities are
unrestricted. Tenenbein also gave formulas for the
variance of π̂ c

A.
In cases where (6) is the MLE of πA, the exter-

nal validation MLE π̂m
A in (5) is also consistent,

but not fully efficient. It may even have a higher
variance than π̂

(v)
A alone. Surprisingly, the same is

also true for the estimate π̃ c
A = fp{Θ̂(A∗|A)}−1π̂A∗ +

(1 − fp)π̂
(v)
A , which appears to be a compromise

between (5) and (6). This estimate should not be used,
because it is inconsistent when the validation data
are external and less efficient than π̂ c

A when they are
internal. Its variance may even increase with increas-
ing np [26].

Matrix adjustments for misclassification are most
useful in fairly simple problems with a small num-
ber of variables and few categories per variable. The
estimates imply a model where the cell probabilities
of the true variables are unrestricted and the model
for the misclassification structure is either saturated
(see Generalized Linear Model) or has a special
form such as independent and nondifferential mis-
classification for all variables. In large problems this
may lead to sparse tables and imprecise estimates

for the many parameters. It is then desirable to con-
sider more parsimonious models, especially when
the focus is on inference about the association struc-
ture between the true variables. This can be done, at
the expense of further model assumptions and some
extra computing, by using model-based adjustment
procedures described in the next section.

Modeling

Let A denote a set of variables subject to misclas-
sification and A∗ the corresponding set of surrogate
variables, and let C be variables classified without
error. It is also useful to define a sample indicator
variable L which identifies the data set to which
a unit belongs. L is binary when there is one pri-
mary sample and one validation sample, but other
study designs can also be incorporated in this frame-
work. The joint distribution of (A, A∗, C, L) may
be specified through two submodels (cf. Espeland &
Odoroff [12], who consider a slightly different set of
models):

1. A model for the true variables (A, C, L). Inter-
actions between L and (A, C) indicate differ-
ences in the distribution of the true variables
between samples such as when a validation
sample is external. The model of interest is the
model for (A, C) in the primary sample.

2. A model for the misclassification probabilities,
specified by interactions within A∗ and between
(A, C) and A∗. The model is saturated with
respect to the true variables (A, C). Because the
misclassification probabilities are assumed to be
transportable between data sets, there should not
be any interaction terms between L and A∗.

Both submodels are usually taken to be hierarchical
loglinear models, but the joint model generated by
them will not in general be loglinear [12].

The misclassification problem may be treated as
one of incomplete contingency tables, collapsed over
the margins corresponding to the unobserved vari-
ables. Suppose that there is one primary data set and
one validation data set. The log likelihood function
for the observed variables can be written as

L =
∑

prim

nA∗C log πA∗,C +
∑

val

nAA∗C log π
(v)
A,A∗,C

(7)
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where nA∗C are the observed cell counts for (A∗, C)

in the primary data and πA∗,C = ∑
A πA,A∗,C are the

corresponding cell probabilities satisfying the speci-
fied model, and nAA∗C and π

(v)
A,A∗,C are the cell counts

and probabilities for (A, A∗, C) in the validation data.
The models may be fitted by maximizing (7) using
iterative techniques, especially the EM algorithm.
At the E step of the algorithm, observations from
the observed (A∗, C) table in the primary data are
allocated values of A to create a notionally com-
plete (A, A∗, C) table. This is used at the M step,
together with the validation sample, to fit the required
joint model, and the process is iterated until conver-
gence. Different versions of the EM algorithm for
misclassification problems have been proposed by
Chen et al. [5] and Espeland & Odoroff [12], who
also consider the estimation of standard errors for
the resulting estimates. The joint likelihood can also
be maximized using other algorithms such as direct
Newton–Raphson maximization [10, 11].

Methods Using Repeated Measurements

When the misclassification parameters are estimated
from repeated measurements, the true values of
the misclassified variables are latent variables
(see Path Analysis) which are never observed.
The misclassification probabilities and models of
interest can be estimated from such data subject to
appropriate identifiability assumptions. The analysis
proceeds by specifying models for the true variables
and misclassification as above and obtaining MLEs
for their parameters. In some very simple cases,
such as when estimating the proportions of a single
binary misclassified variable, estimates are available
in a closed form [22]. It is then also possible
to use external repeated measurements to estimate
the misclassification matrix in the matrix estimate
(5) [9]. For most models, however, estimates have to
be obtained iteratively, using general techniques of
latent class modeling (see, for example, [23]). The
calculations may again be conveniently carried out
using the EM algorithm.

Conclusions

Misclassification induces bias in the estimates of
quantities of interest obtained from observed surro-
gate variables. In some special cases it is possible
to characterize qualitatively the nature of the bias,

such as when measures of association are attenuated.
In many situations, however, biases in any direction
are possible. It is then desirable to collect auxiliary
data such as validation data or repeated measure-
ments from which the misclassification probabilities
can be estimated, and to use these estimates to adjust
analyses explicitly for the effects of misclassifica-
tion. The most straightforward adjustment methods
are simple matrix methods, which may, however, be
unsatisfactory in larger models. Model-based adjust-
ment methods may then be used for estimation.
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Misclassification Models

Classification errors in categorical data may distort
results of statistical analyses (see Misclassification
Error). Models for misclassification processes have
been developed to study and compensate for the
effects of such errors, and hence protect the valid-
ity of data analyses. Such models have been applied
in a number of biostatistical contexts including mod-
eling the natural history of a disease or growth pro-
cess (see Growth and Development), evaluation of
diagnostic tests, and analytic epidemiology. Spe-
cific scientific questions in these contexts may require
inferences about (i) an underlying biological pro-
cess, reflected in statistical associations that might
be obscured or distorted by nuisance misclassifica-
tion; (ii) the misclassification process itself; or (iii)
both the underlying and misclassification processes.

The true underlying process involves a categor-
ical response that may be univariate binary, nomi-
nal, ordinal, or multivariate with any of these com-
ponents. In most applications, misclassification is
represented by a Bernoulli or multinomial ran-
dom variable. Commonly, the misclassification rate
depends on the true underlying response. Various
approaches that tie together misclassification and the
true response process have been proposed. Different
applications require different statistical methods, each
with specific advantages and limitations. Depending
on the application, the parameters of the misclassifi-
cation model are estimated using data from either the
current or an additional, supplementary study.

In modeling the natural history of a disease, inter-
est usually focuses on understanding the stochastic
changes in the disease process over time. The choice
of models for the true disease or growth process
depends on various factors including the measure-
ment scale of the process and whether observations
are taken at regular or irregularly spaced intervals.
Unfortunately, classifications of disease severity are
often subject to error, and analytic models that ignore
misclassification are prone to biased inferences, par-
ticularly, if misclassification is related to the under-
lying disease process. Approaches to account for
misclassification have been developed for modeling
disease and growth processes including HIV/AIDS
(see AIDS and HIV), hypertension, parasitic infec-
tion, and sexual maturation.

Investigators often wish to estimate the accu-
racy or, equivalently, the error rate, of a diagnostic
test (see Diagnostic Test Accuracy). In this context,
diagnostic error is simply another name for mis-
classification. For a binary disease status, error can
be characterized jointly by the false negative and
false positive rates, and accuracy by their respective
complements: sensitivity, the probability of testing
positive when the disease is present, and specificity,
the probability of testing negative when the disease is
absent. Sensitivity and specificity are simple to esti-
mate when a definitive gold standard test exists, but
not when a gold standard is nonexistent or too costly
to obtain (see Diagnostic Test Evaluation Without
a Gold Standard). Various latent class modeling
approaches, in which multiple tests are used to deter-
mine a model-based consensus estimate of true dis-
ease status, have been proposed to estimate diagnostic
accuracy and error rates for cancer biomarkers, diag-
nostic imaging, dental examinations, and pathological
classification (see Diagnostic Tests, Multiple).

In analytic epidemiology, interest typically centers
on assessing associations among categorical vari-
ables, of which one or more are subject to misclas-
sification. Methods will be discussed to correct for
such classification errors using error rates estimated
from a subgroup or other population. For example, a
case–control study designed to relate cervical cancer
to sexual partner’s circumcision status might elicit the
latter by proxy report of the woman, subject to error,
rather than by interview or physical examination of
the male partner. Data on both proxy-reported and
actual circumcision status might be obtained from a
subsample or a small external population, and the
observed error rates used to adjust inferences on the
cancer-circumcision relationship.

Modeling Growth or the Natural History
of a Disease

Let ni be the number of observations made on the ith
of N individuals, and let Xi = (Xi1, Xi2, . . . , Xini

)′
and Y i = (Yi1, Yi2, . . . , Yini

)′ be random vectors res-
pectively of observed and true disease states at each
observation time. The Yij are assumed to be values of
a binary, nominal, or ordinal variable describing the
true underlying disease course or stage of growth, and
the Xij are the corresponding observed states after
possible misclassification. The joint probabilities of
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Y i and Xi can be written as

P(Y i , Xi ) = P(Xi |Y i )P (Y i ), (1)

where P(Y i ) is the probability of the true underly-
ing disease or growth trajectory and P(Xi |Y i ), which
represents the misclassification process, is the con-
ditional probability of the observed given the true
trajectory.

Most approaches for modeling the natural history
of a disease assume that the misclassification process
at time t depends on the true disease process only
through Yit and not on the preceding path of true
(Yi1, . . . , Yi,t−1) or observed (Xi1, . . . , Xi,t−1) disease
stages, and thus that

P(Xi |Y i ) =
ni∏

j=1

P(Xij |Yij ). (2)

The misclassification process P(X|Y ) and disease
process P(Y ) are tied together through shared
covariates.

Espeland et al. [14], Nagelkerke et al. [18], and
Rosychuk and Thompson [22] have proposed models
for longitudinal binary data subject to misclassifica-
tion (see Longitudinal Data Analysis, Overview).
Espeland et al. [14] focused on modeling an under-
lying progressive process with an absorbing state
(i.e. one that individuals may enter but not leave).
The authors use an EM algorithm [10] for param-
eter estimation and apply their methodology to
dichotomous maturation data. Nagelkerke et al. [18]
and Rosychuk and Thompson [22] respectively pro-
posed Markov and semi-Markov models for modeling
parasitic infection with an alternating binary process
(see Markov Chains; Markov Processes; Transi-
tion Models for Longitudinal Data). Applications to
other chronic diseases have also been proposed [7].

Albert et al. [3] proposed a model for longitudinal
ordinal data (see Ordered Categorical Data) with
misclassification. Similar to Espeland et al. [14], their
approach is for underlying progressive processes and
is applied to longitudinal sexual maturation data. We
elaborate on this example to illustrate modeling of
longitudinal categorical data with misclassification.
Tanner staging is an ordinal rating scale for gender-
specific sexual maturation that ranges from one (no
sexual development) to five (full development). The
National Growth and Health Study (NGHS) followed
1155 girls from age 9 or 10 to age 16 at yearly inter-
vals, recording growth-related measures including

Tanner staging. Tanner staging is prone to misclas-
sification; biologically impossible decreases in matu-
ration were reported during follow-up for 45% of the
1155 girls in the NGHS data. Other errors, such as
recording an increase in sexual maturation stage when
a girl has not in fact progressed, are not obvious but
probably occur as frequently as more blatant misclas-
sification. Here, Yij is a latent random variable reflect-
ing the true Tanner stage, and Xij is the recorded Tan-
ner stage measurement. Scientific interest focused on
examining the effect of age at a given stage of matu-
ration on the rate of progressing to subsequent stages,
and on comparing both true sexual development and
Tanner stage misclassification across racial groups.

Assuming that diagnostic error is independent
across visits (i.e., Xij |Yij is independent of Xij ′ |Yij ′ )
and that the underlying maturation process follows a
first-order Markov chain, the joint probability of Xi

and Y i can be written as

P(Xi , Y i ) = P(Xi |Y i )P (Y i ) =



ni∏

j=1

P(Xij |Yij )





×


P(Yi1)

ni∏

j=2

P(Yij |Yi,j−1)



 . (3)

Denote the probabilities governing the underlying
maturation process as the initial state probabilities
pl = P(Yi1 = l) and the transition probabilities from
state l to state m as plm = P(Yij = m|Yi,j−1 = l).

To exploit ordinality of the sexual development
stages and obtain a parsimonious and interpretable
parameterization, Albert et al. [3] used proportional
odds parameterizations for the underlying maturation
process (see Proportional-odds Regression). First,
the pl were reexpressed in cumulative form as

γl = logit P(Yi1 ≤ l) = logit

(
l∑

u=1

pu

)
, (4)

where −∞ ≤ γ1 ≤ γ2 ≤ · · · ≤ γk−1 < γk = ∞. Sec-
ond, the transition probabilities plm were similarly
reparameterized as

θlm = logit P(Yij ≤ m|Yij−1 = l)

= logit

(
m∑

i=u

plu

)
, (5)
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where −∞ = θl1 = θl2 = · · · = θl,l−1 ≤ θll ≤ θl,l+1

≤ · · · ≤ θl,k−1 ≤ θlk = ∞ are restrictions on the para-
meters such that only monotonic increases in the
underlying process are possible. Further, parameter
reduction was achieved by presuming the θlm for each
l to be linear in stages traversed, that is,

θlm = θl + αl(m − l) (6)

for l ≤ m ≤ k − 1 with αl > 0, l = 1, . . . , k − 2.
Note that αl ≥ 0 ensures that all the transition
probabilities are nonnegative, as required by P(Yij ≤
m′|Yi,j−1 = l) ≥ P(Yij ≤ m|Yi,j−1 = l) if m′ ≥ m.
For each maturation level l, large θl corresponds to
high probability of remaining in state l, while αl

determines, given θl , the relative probabilities that
girls who mature in a given year will mature one
Tanner stage, or more than one stage.

Albert et al. additionally modeled the misclassifi-
cation mechanism as

P(Xij = m|Yij = l)

=






ψ(l, m)

1 +
k∑

ω=1

ω �= l

ψ(l, ω)

l �= m

1

1 +
k∑

ω=1

ω �= l

ψ(l, ω)

l = m
, (7)

where ψ(l, m) = exp(λl + ηl |l − m|). This param-
eterization specifies symmetric misclassification
around the true state; for example, one is just as
likely to underestimate as overestimate a child’s true
state by one. Large negative values of λl reflect high
probability of correctly classifying the lth state, and
of ηl reflect low chance of misclassifying by more
than one state. An elaboration allowing asymmetric
misclassification is

ψ(l, m) = exp(λl + η1l(l − m)I(l>m)

+ η2l(m − l)I(l<m)), (8)

where I(x) = 1 when x is true and 0 otherwise.
Maximum likelihood estimation may be based on

the marginal distribution (see Marginal Probability)

of the observed Xi’s, obtained as

L =
N∏

i=1

P(Xi ) =
N∏

i=1

( k∑

i1=0

k∑

i2=i1

. . .

k∑

in=in−1

P(Xi |Y i

= (i1, i2, . . . , in))P (Y i = (i1, i2, . . . , in))

)
. (9)

Direct maximization of this likelihood is compu-
tationally infeasible with five categories and eight
follow-up time points, as in the Tanner staging
example. An EM algorithm [10], incorporating a
backward–forward algorithm (originally developed
for fitting hidden Markov models) for evaluating
the E-step [6], was used. Standard errors of model
parameters were estimated using the nonparamet-
ric bootstrap. Linear terms were added to (6) (i.e.
βlAgeij , l = 1, 2, 3, and 4, where Ageij is the age of
the ith child at the j th follow-up time), to allow the
maturation process to depend on age. Separate models
fit to white and black girls showed racial differences
in both maturation and misclassification processes.
Relative to their white counterparts, black girls were
more mature at ages 9 to 10, passed more rapidly
through Tanner stages (1–2), and were misclassified
more frequently (tending to be classified at higher
than actual maturity).

In some settings, disease states are defined by
ranges of continuous measurements. For example,
various stages in the progression of HIV/AIDS are
defined by intervals of CD4 counts [23] (see AIDS
and HIV). Errors in the continuous measurements
then induce misclassification of disease state in a
straightforward fashion. Satten et al. [23] proposed
a misclassification model that exploits this structure.
They model both the latent true value of the contin-
uous variable conditional on the disease stage, and
error in the continuous measurement. For the j th
observation on individual i, let Sij be the true disease
state (e.g. disease stage for HIV/AIDS by intervals
of CD4 counts), Yij be the continuous observation
measured without error (e.g. the true CD4 count),
and Xij be the continuous observation measured with
error (e.g. the observed CD4 count). Satten et al. [23]
modeled the Si = (Si1, Si2, . . . , Sini

)′ using a Markov
process, and the Yij given Sij as uniform over each
interval for all stages but the highest unbounded
interval, for which they used the upper half of a log-
normal distribution. The Yij were assumed to be
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observed only after perturbation by Gaussian mea-
surement errors εij with mean 0 and variance σ 2:
Xij = Yij + εij . Estimation is based on maximizing
the marginal likelihood of the observed Xij ’s, through
an EM algorithm [10] with E-step using a back-
ward–forward algorithm [6].

Motivated by a study of hypertension using data
from the Framingham Heart Study, Albert [1] pro-
posed a similar model for population-based follow-up
where a binary disease status variable is defined by
dichotomizing a continuous variable measured with
error (see Categorizing Continuous Variables). At
any follow-up time, an individual is assumed to be
in the disease state (e.g. hypertensive) if the continu-
ous variable (e.g. true diastolic blood pressure, DBP)
exceeds a threshold (e.g. 95 mmHg), and disease-free
otherwise. The population is assumed to be comprised
of three types of individuals: (i) those always in the
disease state, (ii) those never in the disease state, and
(iii) those who migrate between states according to a
two state Markov chain; that is, the population fol-
lows a “mover–stayer” model. The density of the
continuous variable Yij , conditional on the true binary
disease state Sij , is modeled as

f (y|Sij ) =





2φ
(

y−c

σ1

)
if Sij = 1 and y > c

2φ
(

c−y

σ0

)
if Sij = 0 and y ≤ c

0 otherwise

,

(10)

where φ(z) denotes the normal density at z

(see Normal Distribution), c is the established cut-
off for defining disease in the true continuous
measurement, and σ 2

0 and σ 2
1 characterize the

variability in the true continuous measurement given
the true disease status 0 or 1. Yij is assumed
to be measured with Gaussian (0, σ 2) error as
described above (i.e. we observe Xij , where Xij =
Yij + εij and where εij is Gaussian (0, σ 2) error).
Disease incidence as well as both point and period
prevalence may be obtained as functions of model
parameters, and estimated after maximizing the
marginal likelihood of the Xij ’s using an algorithm
similar to that of Satten et al. [23].

Modeling Diagnostic Error without a Gold
Standard

In contrast to modeling natural history of a disease
or growth process, interest in this application

usually focuses on estimating the diagnostic error
or misclassification and not the underlying true
response. Let Yij be the test result for the j th of
n dichotomous tests on individual i, whose true
disease status is di , and let Y i = (Yi1, Yi2, . . . , Yin)

′.
All approaches assume a latent class model, where
di is the latent class. The elements of Y i have joint
distribution

P(Yi1, Yi2, . . . , Yin)

=
1∑

l=0

P(Yi1, Yi2, . . . , Yin|di = l)P (di = l), (11)

where P(di = 1) is the prevalence of disease in
the population. The initial work in this area [9, 15]
assumed that test responses are conditionally inde-
pendent given true disease status, namely,

P(Yi1, Yi2, . . . , Yin|di) =
n∏

j=1

P(Yij |di). (12)

The parameters of the model are the true
prevalence P(di = l) and the sensitivities and
specificities, respectively P(Yij = 1|di = 1) and 1 −
P(Yij = 1|di = 0), for each of the n tests. More than
2 tests are required (i.e. n ≥ 3) to identify these
parameters. Maximum likelihood has been proposed
for parameter estimation. Vacek [27] and Torrance-
Rynard and Walter [25] investigated the effect of
conditional independence on estimating diagnostic
error, and showed that parameter estimators of
sensitivity and specificity are usually biased when
conditional independence is falsely assumed.

A number of papers have incorporated dependence
between tests [16]. Espeland and Handelman [11]
proposed loglinear models with higher order
interaction terms to represent associations between
tests. Models that incorporate conditional dependence
through the introduction of random effects have
also been proposed [21, 26]. In one random effects
formulation [21],

P(Yi1, Yi2, . . . , Yin|di)

=
∫ 


n∏

j=1

P(Yij |di, b)



φ(b) db, (13)
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where P(Yij |di, b) = Φ(βjdi
+ σdi

b) and where φ(x)

and Φ(x) are the standard normal density and cumu-
lative distribution function, respectively. This integral
can be numerically evaluated using Gaussian quadra-
ture (see Numerical Integration). The sensitivities
and specificities for each test can be evaluated by
marginalizing over the random effect, and prove to
be Φ

(
βj1/

√
(1 + σ 2

1 )
)

and 1 − Φ
(
βj0/

√
(1 + σ 2

0 )
)
,

respectively.
Albert et al. [4] proposed a finite mixture model

in which some individuals are always classified cor-
rectly by any test, while others are subject to diag-
nostic error. Let lidi

be an indicator of whether the
ith individual, given disease status di , is always
classified correctly (i.e. li1 = 1 when a truly pos-
itive specimen always tests positive and li0 = 1
when a truly negative test always is rated nega-
tive), where P0 = P(li0 = 1) and P1 = P(li1 = 1).
The probabilities of testing positive given di and lidi

are

P(Yij = 1|di, lidi
)

=






1 if di = 1 and li1 = 1
0 if di = 0 and li0 = 1
ρj (1) if di = 1 and li1 = 0
1 − ρj (0) if di = 0 and li0 = 0

, (14)

where ρj (di) is the probability of the j th test making
a correct diagnosis given that the individual is subject
to diagnostic error (li1 = 0 or li0 = 0). The sensitiv-
ity and specificity for the j th test are P(Yij = 1|di =
1) = P1 + (1 − P1)ρj (1) and P(Yij = 0|di = 0) =
P0 + (1 − P0)ρj (0), respectively. This finite mixture
model is closely related to a latent class model of
Espeland and Handelman [11], in which latent classes
corresponding to unambiguously positive and nega-
tive cases are incorporated.

In a fourth approach to incorporating conditional
dependence, Yang and Becker [28] proposed a
marginal model that assumes only second-order
interactions between tests conditional on the true
disease status di (i.e. no third- or higher-order
interactions). The major advantage of their approach
is that estimates of sensitivity and specificity are
simple functions of estimated model parameters.
Yang and Becker parameterize P(Yi1, Yi2, . . . , Yin|di)

in (11) in terms of θj = logit P(Yij = 1|di), j =

1, 2, . . . , n, as well as in terms of all pairwise log-
odds ratio associations between tests

γj,j ′(di) =

log
[P(Yij = 0, Yij ′ = 0|di)P (Yij = 1, Yij ′ = 1|di)

P (Yij = 0, Yij ′ = 1|di)P (Yij = 1, Yij ′ = 0|di)

]
.

(15)

Yang and Becker propose an EM algorithm for
parameter estimation and illustrate their methodology
with 4 different tests of HIV given to 428 patients.

Shih and Albert [24] proposed a general method-
ology for analyzing correlated binary data sub-
ject to misclassification or diagnostic error. Their
approach can be applied in situations in which a
binary outcome is measured repeatedly in time or
space and/or evaluated by several tests or raters, and
in which the true disease status may change over
time or space. Let yijk denote the observed binary
response of the ith individual evaluated at the j th
time point or spatial location by the kth test, and let
dij be the true disease status of individual i at the j th
time point or spatial location. Also, let xij denote a
vector of covariates that may change across individu-
als and time/space. The following generalized linear
mixed model was proposed for the true, correlated
disease states within individuals:

logit{P(dij = 1|xij , bi)} = β ′xij + bi, (16)

where bi is a Gaussian random effect with mean 0
and variance σ 2. The misclassification model is

logit{P(yijk = 1|dij , bi)}
= γ1dij + γ2(1 − dij )+ γ3bi, (17)

where γ1 and γ2 govern the false negative and false
positive rates, respectively. The fact that bi is shared
between the response and misclassification models
induces a relationship between the probability of a
true response and the probability of a misclassifica-
tion. Specifically, the probability of a misclassifica-
tion conditional on bi is given by

P(dij = 0|bi)P (yijk = 1|dij = 0, bi)

+ P(dij = 1|bi)P (Yijk = 0|dij = 1, bi). (18)
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After substitution of (16) and (17), careful inspec-
tion of (18) reveals that the misclassification proba-
bility is smallest when bi is positive and large, cor-
responding to high probability of disease, and when
bi is negative and large, corresponding to low prob-
ability of disease. This feature is attractive, since we
would expect all tests to agree in unambiguous cases
in which the probabilities of disease are either very
close to one or zero.

Cook et al. [8] proposed another model in which
multiple raters or tests assess the status of a binary
disease process at multiple time points. The disease
process is modeled with a first-order Markov chain
but, as the authors note, extension to a Markov
process for irregularly spaced binary observations
is straightforward. The model allows for conditional
dependence between raters at a given time point with
a loglinear formulation similar to that of Espeland
and Handelman [11].

There has been some criticism of these models.
Alonzo and Pepe [5] criticize latent class model-
ing approaches for estimating diagnostic error with-
out a gold standard, noting identifiability problems
when using a small number of tests, and question-
ing whether a model-based consensus of truth makes
biological sense.

Epidemiology

In this context, interest centers on estimating asso-
ciations between categorical variables when some or
all of these variables are subject to misclassification.
There is a substantial literature on the effects of mis-
classification in association models, such as loglinear
models. Ignoring random classification errors atten-
uates estimates of association, and results in loss of
power for testing statistical significance. Estimators
and tests of association may be even more severely
compromised when misclassification depends on the
variables involved in the associations.

For instance, logistic regression when the out-
come variable is subject to misclassification has been
discussed by various authors. Neuhaus [19] showed
that ignoring misclassification in the binary responses
can lead to highly biased estimates of model parame-
ters (see Unbiasedness), while analysis accounting
for misclassification may sacrifice substantial effi-
ciency relative to analysis of the true responses.
Neuhaus [20] presents analytic expressions demon-
strating bias in parameter estimates for correlated

binary models. He focuses on examining bias for a
generalized linear mixed model with binary response,
and for marginal approaches such as generalized esti-
mating equations.

Since the categories of a binary observation may
always be labelled as presence and absence of an
event or characteristic, it is reasonable to adopt the
terminology of diagnostic testing to describe mis-
classification in this context. Thus, letting Yi = 1 if
the disease or other characteristic is truly present
for the ith individual and Yi = 0 otherwise, and
Ti = 1 if the ith subject is classified as diseased and
Ti = 0 otherwise, we define the sensitivity and speci-
ficity of the observational process as respectively
sens = Prob(Ti = 1|Yi = 1) and spec = Prob(Ti =
0|Yi = 0).

Magder and Hughes [17] proposed an EM algo-
rithm for fitting logistic regression models when
sensitivity is known or can be estimated from pre-
vious studies. They showed how the approach can be
implemented with standard software, and discussed
its extension to situations in which sensitivity and
specificity are both unknown, emphasizing that esti-
mation when diagnostic error is unknown may be
sensitive to modeling assumptions. Given a set of
known covariates Xi , Magder and Hughes proposed
a latent logistic regression model

Prob(Yi = 1|Xi , β) = exp(X′
iβ)

1 + exp(X′
iβ)

, (19)

where β is a vector of regression coefficients. Model
(19) can be fit with standard logistic regression
by including each individual as both diseased and
nondiseased with weights equal to Ŷi and (1 − Ŷi ),
respectively, where Ŷi is the probability that the ith
individual is truly diseased given the values of Ti , Xi ,
and β. In the diagnostic testing context, Ŷi is known
as the “positive predictive value” when Ti = 1, and
(1 − Ŷi ) is known as the “negative predictive value”
when Ti = 0. Using Bayes Theorem, when Ti = 1,

Ŷi = Prob(Yi = 1|Xi , β)(sens)

Prob(Yi = 1|Xi , β)(sens)+
Prob(Yi = 0|Xi , β)(1 − spec)

. (20)

Similarly, when Ti = 0,

Ŷi = Prob(Yi = 1|Xi , β)(1 − sens)

Prob(Yi = 1|Xi , β)(1 − sens)+
Prob(Yi = 0|Xi , β)(spec)

. (21)
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When sens and spec are known, Magder and
Hughes proposed computing maximum likelihood
estimates of β by iterating between fitting (19) using
standard logistic regression software (again by in-
cluding each subject as both a diseased and nondis-
eased observation with weights Ŷi and 1 − Ŷi , respec-
tively) and reestimating the weights Ŷi using (20)
and (21) until the parameter values converge. When
either or both of sens and spec are unknown,
Magder and Hughes proposed an additional step in
the iteration, at which the unknown quantities are
estimated by

ŝens =

∑

i

ŶiTi

∑

i

Ŷi

ŝpec =

∑

i

(1 − Ŷi )(1 − Ti)

∑

i

(1 − Ŷi )
. (22)

However, Magder and Hughes mentioned that esti-
mating sensitivity and specificity may be problematic
for a number of reasons. First, for saturated models,
parameter estimates may not be identifiable. Sec-
ond, estimates may strongly depend on parametric
assumptions in the logistic regression model.

There is also a large literature on modeling cate-
gorical data with misclassification under double sam-
pling. In this situation, expensive and presumably
error free methods are used in a smaller subsam-
ple, to assess misclassification in more extensive data
obtained with comparatively economical but error
prone procedures. For instance, Espeland and Odo-
roff [13] proposed a loglinear modeling approach
allowing maximum likelihood estimation via an EM
algorithm, and yielding straightforward expressions
for variance estimates. Specifically, let A, B, and C

be categorical factors observed on a large sample of
N individuals and subject to misclassification. Denote
A∗, B∗, and C∗ as categorical factors not subject to
error measured on a subsample of n of the origi-
nal N individuals. Also, denote L as a binary factor
indicating whether an individual is in the subsam-
ple in which more expensive confirmatory testing
is undertaken. Espeland and Odoroff parameterized
three distinct components required for double sam-
pling models:

1. The model for the subsampling process, which
describes the relationship between L and the
other factors, is called the sampling model.

2. The model for the relationship between A and
A∗, B and B∗, C and C∗ is called the misclas-
sification model.

3. The model for the relationship between A, B,
and C is referred to as the experimental model.

These authors proposed a loglinear model for
parameter estimation and impute missing cell counts
(e.g. owing to the omission of more expensive
and accurate measurements for individuals outside
the subsample; see Missing Data) using an EM
algorithm.

Espeland and Hui [12] illustrated the loglinear
modeling approach with numerous epidemiologic
examples including (i) a study of the association
between cervical cancer and sexual partner’s cir-
cumcision status, where circumcision status is self-
reported for the entire sample of male partners, and a
physical exam is done on a small subsample of these
partners; (ii) a case–control study of the association
between peptic ulcers and stomach cancer, in which
self-reported history of peptic ulcer is obtained on
all subjects, and a more careful peptic ulcer history
is performed on a subset of subjects in the original
sample.

Conclusions

Misclassification models have been applied in vari-
ous application areas; we have discussed the mod-
eling of a disease process, diagnostic error model-
ing, and association modeling in epidemiologic stud-
ies. When misclassification error rates are unknown
and cannot or have not been estimated in previous
studies, various methods for simultaneously estimat-
ing misclassification error and true response model
parameters have been proposed. Although identifia-
bility of parameters has been established for many of
these models, the robustness of inference to misclas-
sification modeling assumptions has received little
examination. However, recent work of Albert and
Dodd [2] on estimating diagnostic error without a
gold standard demonstrates that estimators of diag-
nostic error may be asymptotically biased if the
conditional dependence structure is misspecified. To
complicate the situation, when the number of tests is
small, the expected log-likelihoods for models with
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different conditional dependence structures may be
nearly identical [2], making model selection based on
likelihood comparisons difficult or impossible. Thus,
unverifiable modeling assumptions may be required
to make inference on diagnostic errors without a gold
standard. This suggests that robustness of misclassi-
fication error estimation to modeling assumptions in
other contexts is an important area for future research.
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Missing Data Estimation,
“Hot Deck” and “Cold
Deck”

The terms hot deck and cold deck refer to two related
classes of methods used for imputation of missing
values in sample surveys (see Multiple Imputation
Methods; Missing Data). Many methods of impu-
tation, especially those developed and used before
the 1980s, involve direct “donation” of the value
of a specific item from a record that has a mea-
sured value for the item to a record having non-
response on the particular item. In his monograph
entitled Compensating for Missing Data in Surveys,
Kalton [2] defines the class of hot deck methods
as any method involving such “donation” that takes
the “donors” from the same sample survey as the
recipients. The class of cold deck methods refers
to analogous methods that take the donors from
past data. As noted by Kalton [2], however, the
term hot deck more often refers to a more spe-
cific set of sequential methods that has been used
extensively for the imputation of items in the Cur-
rent Population Survey [1]. We use it in this more
restrictive sense and describe one variation of it
below.

Description of the Hot Deck Method

In the hot deck method, cells are defined on the
basis of variables that are considered “important” for
imputation. These are generally variables that relate
to the particular sample design used (e.g. cluster,
stratified, etc.) or to demographic or other variables.
The data are then sorted first according to these
defined cells and secondly by other variables that are
considered relevant for imputation. Following this,
a register is then defined for each of the defined
cells consisting of values of each variable that is to
be imputed. The initial value of the register would
consist of the value of each variable to be imputed for
the first record in each cell that has recorded values
for each of these variables. In a single pass through
the data, the cell of each record is identified and, if
a variable is missing, then it is given the value of
that variable that is in the register for that cell. If,
however, the record is complete on all variables to

be imputed, then the values of the variables for this
record replace the previous values in the registry for
that cell. This process is repeated until all missing
values are imputed. The process is the same for the
cold deck method with the exception that the “donor”
data are from a past survey.

Example

Let us consider a sample survey conducted on males
65 years of age and older in a large city and based
on a two-stage cluster sample (see Multistage Sam-
pling) in which the primary sampling units (PSUs)
are blocks and the second stage units are households.
The data consist of information collected from all
males 65 years of age and older in 10 sample
households within three sample blocks. The cell
to be used in imputation are block (three cate-
gories) and age group (65–74 years/75 years and
older). Data to be imputed are history of stroke
(1 = yes/2 = no) and history of hypertension (1 =
yes/2 = no). The data for each person, sorted by
block and age group and listed by household within
each of the six block–age group cells, are shown
in Table 1. The records comprising the initial val-
ues of the register for each of the six cells are
highlighted in boldface (records 2, 9, 14, 23, 26,
and 34).

As one moves down the table, the first missing
value is history of stroke in record 1. That value “2”
is donated from record 2 (the record in the initial
register for the block 1 – age group 65–74 cell). The
next record having a missing value is record 5, which
is also in the block 1 – age group 65–74 cell, and
that record has missing values for both history of
hypertension and history of stroke. The value “1” for
history of hypertension and “1” for history of stroke is
donated to record 5 from record 4 which comprises
the registry at that point in the process. The entire
imputation process proceeds in this fashion and is
summarized in Table 2.

Comment

The above example illustrates one of a variety of
similar methods that are generally discussed under
the rubric hot deck. The major strengths of this cate-
gory of methods are: (i) that data can be imputed very
simply in a single “pass” of the data file; (ii) it always
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Table 1 Data from sample survey of males 65 years of age and above

Age group History of hypertension History of stroke
“1” = 65–74 “1” = Yes “1” = Yes

Record Block “2” = 75+ Household “2” = No “2” = No

1 1 1 1 1 –
2 1 1 2 1 2
3 1 1 2 2 2
4 1 1 3 1 1
5 1 1 4 – –
6 1 1 5 1 2
7 1 1 6 2 1
8 1 1 10 – –
9 1 2 1 1 1

10 1 2 7 2 2
11 1 2 8 2 –
12 1 2 9 1 1
13 2 1 1 2 –
14 2 1 3 2 2
15 2 1 4 – 2
16 2 1 5 2 2
17 2 1 5 – –
18 2 1 7 2 2
19 2 1 8 1 1
20 2 1 8 1 2
21 2 1 9 – 1
22 2 1 10 2 2
23 2 2 2 1 1
24 2 2 6 1 1
25 2 2 10 1 –
26 3 1 1 1 1
27 3 1 2 2 1
28 3 1 3 2 2
29 3 1 6 1 2
30 3 1 7 1 1
31 3 1 8 2 2
32 3 1 8 1 1
33 3 1 9 1 2
34 3 2 4 1 2
35 3 2 5 1 –
36 3 2 10 1 1
37 3 2 10 1 –

uses data that have been observed in the same data
set; and (iii) imputation can generally be performed
on records that have missing values for several vari-
ables more easily by this method than by methods
based on more explicit regression models. The major
weaknesses are: (i) it is not based on an explicit
model; (ii) the values that are imputed depend on the
ordering of records within cells, which gives them an
aura of being somewhat arbitrary; and (iii) in subse-
quent analyses, the imputed values are considered as
“real”, and this often has an unpredictable effect on

the estimated standard errors of statistics generated
from the sample survey.

In summary, the class of hot deck methods is of
importance not only historically but also in situa-
tions where resources or time are not available to
consider more rigorous contemporary methods such
as multiple imputation. Further discussion of this
method, especially as used in conjunction with more
contemporary methods, is presented in texts by Little
& Rubin [3], Rubin [5], and in a chapter by Little &
Schenker [4].
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Table 2 Hot deck imputation process for data in Table 1

Record having
missing value Record comprising
(“recipient”) Cell register (“donor”) Imputed value(s)

1 block 1, age group 1 2 history of stroke = 2

5 block 1, age group 1 4 history of hypertension = 1
history of stroke = 1

8 block 1, age group 1 7 history of hypertension = 2
history of stroke = 1

11 block 1, age group 2 10 history of stroke = 2

13 block 2, age group 1 14 history of stroke = 2

15 block 2, age group 1 14 history of hypertension = 2

17 block 2, age group 1 16 history of hypertension = 2
history of stroke = 2

21 block 2, age group 1 20 history of hypertension = 1

25 block 2, age group 2 24 history of stroke = 1

35 block 3, age group 2 34 history of stroke = 2

37 block 3, age group 1 36 history of stroke = 1
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Missing Data in Clinical
Trials

Missing data are a fact of life in clinical trials, and
it is important that we have statistical techniques
that can accommodate incomplete data. Missing data
arise for a multiplicity of reasons, and indeed are so
common that one should be highly suspicious of any
clinical trial report that claims to have no missing
data! An unusual reason for missing data occurred
when a set of case record forms was destroyed in
an explosion [1]. More commonly, a patient fails to
attend a scheduled study visit, or a blood sample goes
astray or is inadequately refrigerated. Sometimes,
patients retrospectively withdraw their consent to
participate in a trial. Equally, since clinical trials
protocols tend to evolve over time, a new baseline
covariate may be added to the record form, or a
simplified quality of life questionnaire replaces a
version that was unacceptable to the patients. Of
course, such problems should be identified during
pilot studies, but time constraints are such that it is
not always possible to conduct adequate pilot tests. If
there are changes to data collection during the course
of a trial, then relevant data may not be recorded for
the early patients. Another very common example of
missing data is in trials where the outcome measure
is a survival time. It would be unusual and generally
rather inefficient to continue a trial until all of the
recruited patients had died. Instead, we fix a final
closing date, and analyze the data, accepting that the
actual survival times are missing for the patients who
are alive at the close of study (see Censored Data).

Types of Missing Data

There is no single approach that can cope with
this variety of missing data. Before attempting to
discuss solutions to the handling of missing data, it
is helpful to classify different types of “missingness”.
Rubin [13] gives a useful taxonomy, and his termi-
nology for the different mechanisms that can generate
missing data is widely accepted (see Missing Data).

The first class comprises data that are “missing
completely at random” (MCAR). Here, the presence
or absence of an observation is completely unre-
lated to the value that might have been observed.
For example, if a new question is added to a record

form, then the data for early patients are expected
to be MCAR. However, even in this simple situ-
ation, the missing data could fail to be MCAR if
there is some underlying secular trend in the prog-
nosis of the condition being studied. Similarly, if a
laboratory test is not performed because equipment
is out of order, then the data are most likely MCAR.
In contrast, if a patient fails to attend an appoint-
ment, this might be, for example, because the patient
feels too ill to travel, and since this reason is likely
to be related to the outcome of the missing exami-
nation, it would be inappropriate to regard the data
as MCAR.

Note that one must be very careful in interpreting
the term MCAR. Even when the data are MCAR, the
pattern of missing data can be systematic, as in the
above example of a new question being added to a
record form.

Data that are MCAR are generally straightforward
to handle. For example, it would be valid to exclude
the patients with incomplete data from analysis. This
would not necessarily be efficient, but the approach
would not introduce a systematic bias into the com-
parison of the treatments.

The second class comprises data that are “miss-
ing at random” (MAR). In this class, the fact that
an observation is missing, after conditioning on the
observed data, provides no further information. Mur-
ray & Findlay [11] give an example of a study of
hypertension, in which patients were withdrawn from
the study if, at a study assessment, their diastolic
blood pressure (DBP) exceeded 110 mmHg. Thus,
the fact that an individual’s DBP was not recorded
at the eight-week assessment provided no additional
information to the observation that, at the four-
week assessment, the DBP exceeded the threshold
of 110 mmHg. Unlike for data that are MCAR, if
the data are MAR, then it is not generally valid to
exclude from the analysis the patients with incom-
plete data.

The key point when data are MAR is that there
is no need to model the “missingness” mechanism
explicitly. Provided that an appropriate statistical
model can be developed to describe the observed
data, then valid inferences can be made using max-
imum likelihood methods applied to the observed,
incomplete data.

The final class comprises “nonignorable missing
data”. The most familiar example here is censored
data, where it would be invalid to base inferences on
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a likelihood function that incorporated data only from
the uncensored observations. In the case of survival
data, special techniques such as the Kaplan–Meier
estimator have been developed which take due
account of censoring, but any more advanced
parametric model or semi-parametric model must
incorporate a factor in the likelihood function which
derives from the censored observations.

The fundamental point about nonignorable miss-
ing data is that it is not sufficient simply to model
the observed data, but rather that the statistical model
must incorporate the “missingness” mechanism.

Testing for Type of “Missingness”

In general, it is not possible to perform a formal test
of the assumption that data are MAR, and instead
one must rely on information that is external to the
observed data [14]. Diggle & Kenward [4] give a
special case of a model for longitudinal data with
drop-outs, which allows one to test whether missing
data are MCAR or MAR, but the method is heavily
dependent on the validity of the general model within
which the special cases of MCAR and MAR are
nested. Thus the situation is circular, as the observed,
incomplete data are insufficient to test the general
model [14]. Nonignorable missing data mechanisms,
and tests for types of “missingness”, are areas of very
active research. See, for example, Baker [2], and the
references mentioned in that publication, for a lead
into the current research.

Approaches to Analyzing Incomplete Data

A large number of techniques are available for ana-
lyzing incomplete data, ranging from ad hoc “fixes”
to sophisticated modeling. The techniques can be
grouped under three headings: analysis of complete
cases, imputation, and modeling.

Analysis of Complete Cases

The simplest approach to handling missing data is to
analyze only those individuals with complete data.
Disadvantages of this approach are, first, that it
is inefficient because we discard potentially useful
information and, secondly, that we potentially intro-
duce a bias if the incomplete cases are atypical of

the study population. This second point cannot occur,
by definition, if the data are MCAR; but in other
situations, including when the data are MAR, an anal-
ysis based solely on complete cases is likely to be
misleading.

Imputation

“Imputation” is the general term given to the process
of filling in missing values. This approach can be very
valuable, especially when the proportion of missing
values is very low but, as with all missing data
methods, should be used with care. Little & Rubin [8]
give a good account of the different procedures and
their limitations. A missing value can be replaced by
an overall mean of the missing variable, or, using a
regression approach, by its conditional expectation
given the data observed for that individual. A further
approach, popular within the pharmaceutical industry,
is “last value” imputation [7]. This is generally used
when there are drop-outs from longitudinal trials. In
this approach, a missing value is replaced by the last
observed value of that variable for the individual in
question.

Imputations generally lead to a systematic under-
estimation of variability, if we proceed to analyze the
completed data set as if all the data, including those
imputed, were actually observed. The effects of this
problem can be minimized by replacing each miss-
ing value with a value simulated from its conditional
distribution, or by using the idea of multiple impu-
tation [8]. With multiple imputation, the data set is
completed several times over, and each completed
data set is analyzed using standard complete-data
techniques. The results of all of these analyses are
then merged to give a final inference. If the imputed
values are all derived from a single model of “miss-
ingness”, the final inference incorporates the impact
of the incomplete data under this model. If the com-
pleted data sets derive from different possible models
of “missingness”, then the final inference also reflects
the uncertainty associated with model selection.

Modeling

Imputation procedures generally suffer from the lack
of a sound theoretic basis. If, instead, we have a suit-
able statistical model, then inferences can be made
using the maximum likelihood method. Indeed, if
we have data which are MAR, then we need only
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model the observed data. In this situation, the very
flexible EM algorithm [3] allows maximum likeli-
hood estimates to be derived. However, even in the
most regular of situations, likelihood surfaces can
be “badly behaved” when data are incomplete. Mur-
ray [9] gives an example with bivariate normal data,
in which the likelihood surface has a saddle point.

With nonignorable missing data mechanisms, the
statistical model must go further and include explicit
assumptions about these mechanisms. As already
mentioned, survival models that can incorporate
censored observations are a good example of this
approach. All such analyses are likely to be based on
assumptions that can only be assessed using external
information. A crucial part of any such analysis is a
detailed sensitivity analysis, exploring the impact of
departures from these assumptions [12].

As illustrated by Murray & Findlay [12], the
appropriate handling of missing data can have a pro-
found impact on the results of an analysis. The paper
reports the results of a comparative trial in hyperten-
sion, where 131 of 429 (31%) patients had incomplete
data, usually the result of being withdrawn according
to the protocol when their blood pressure was inade-
quately controlled. In an analysis comparing the mean
diastolic blood pressure in the two treatment groups at
the end of the study, an inappropriate assumption of
MCAR gave a difference of 1.2 mmHg in one direc-
tion, when the more appropriate assumption of MAR
gave a difference of 1.2 mmHg in the other direction.
The standard error was 1.1 mmHg, so the bias aris-
ing from the inappropriate assumption of MCAR was
in excess of two standard errors.

Formulating the Question

Within the problem of identifying a suitable statistical
approach to the analysis there often lies an issue of
problem formulation [6]. What precise question is
the analysis trying to address? The key distinction
is between pragmatic and explanatory questions [10,
15] which, in the context of a clinical trial, is reflected
in the distinction between “intention-to-treat” and
“as-treated” analyses.

The explanatory approach asks a “what if” ques-
tion. What would have been observed if patients
had not withdrawn with side effects? What would
have been observed if we had kept patients in the
trial, even though their blood pressure was not con-
trolled? The analysis referred to above [11], in which

patients were withdrawn from a hypertension trial if
their blood pressure was uncontrolled, leading to the
data being MAR, addressed an explanatory “what if”
question.

The pragmatic approach asks instead about the
overall impact of a treatment on a patient. The fact
that a patient is withdrawn from a trial is regarded
as important in itself. The key to handling missing
data in a pragmatic trial is somehow to include
unfavorable events leading to withdrawals as part of
the primary endpoint. For example, a patient who
withdraws with side effects might be classified as
a failure, whereas a patient who withdraws because
all symptoms have resolved might be classified as a
success.

An example of this approach is a trial of exer-
cise tolerance in patients with heart failure following
myocardial infarction. This was an ancillary pro-
tocol to the AIRE Study [16], a large mortality
study in which patients were randomized to receive
either placebo or an angiotensin-converting enzyme
inhibitor. In the exercise substudy, patients under-
took an exercise test six months after starting their
randomized treatment. The active treatment proved
very effective in reducing mortality (a reduction in
hazard of 27%), which could potentially have inval-
idated the analysis of the exercise data. In theory,
the least fit placebo patients, having died, may have
left a selected healthy subset to undertake the exer-
cise tests; whereas in the active group, more of the
acutely ill patients may have survived, albeit with a
limited ability to exercise. A simple comparison of
average exercise duration in the two groups would
then be misleading, as it would not compare like
with like. The missing data process is nonignorable,
since a missing value tells us that a patient was too
unwell to exercise, or had already died. The anal-
ysis was therefore not based on average exercise
duration. Instead, a threshold was set which defined
a successful exercise test. A patient who died, or
was unable to achieve the threshold exercise dura-
tion, was classified as a failure. This newly defined
endpoint lost some efficiency, moving from a con-
tinuous outcome (exercise duration) to a binary one
(success/failure), but assured no missing data and an
unbiased analysis. Another example of this approach,
which is close to a proposal of Gould [5], is reported
by the Xamoterol in Severe Heart Failure Study
Group [17].
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Missing Data in
Epidemiologic Studies

In analytic epidemiologic studies, such as case–
control studies, cohort studies and related designs,
data are usually collected by questionnaire or inter-
view, or are abstracted from existing records, such as
hospital records on treatment or diagnosis, personnel
employment records on occupational exposures, or
death certificates. Except in studies with a two-stage
design (see below), complete information is sought
for all subjects included in the study.

In case–control studies, one requires data on pre-
vious exposures that may have occurred long before
the study. Adequate planning and organization are
required to try to ensure that data are collected in
an identical way for diseased persons (cases) and for
healthy subjects (controls). Data are also collected on
known or suspected confounding variables in order
to adjust for these variables in the analysis. Prelimi-
nary data on matching variables, such as information
on sex and age, are needed for matched case–control
designs (see Matching). In cohort studies personal
interviews are carried out infrequently, but data are
often abstracted from existing files or records. In
occupational cohort studies one can use personnel
records to obtain data on the occupational history and
sometimes on specific exposures; sometimes records
from the office of the occupational hygienist or rou-
tinely collected data from the medical officer will be
useful (see Occupational Epidemiology). The qual-
ity and completeness of such data may differ sub-
stantially between companies or even departments of
the same company. Data quality may also differ for
different job categories and could therefore depend
on the exposure of interest. Disease information in
cohort studies is sometimes abstracted from hospi-
tal records or from cancer registry files (see Disease
Registers). In mortality studies, the date and cause
of death are abstracted from official death certifi-
cates or from other sources. An important issue in
planning and organizing cohort studies is to try to
guarantee a nonselective retrieval of information for
the personal history (occupational history, lifestyle,
residential history). It is also important to avoid any
selective follow-up to obtain the date of diagnosis
or date of death. The diagnosis and/or the causes
of death should be assessed in a comparable way

for exposed and nonexposed subjects (see Bias in
Case–Control Studies; Bias in Cohort Studies).

Sources of Missing Values in
Epidemiologic Research

Unplanned Missing Values

Despite well-organized data collection efforts, data
may contain errors, the data collection is sometimes
incomplete, and missing values occur. Missing data
can arise as total nonresponse or as item non-
response. Total nonresponse results from refusal of
subjects to participate in the study or from inabil-
ity to locate the selected subjects. For example,
in population-based case–control studies, controls
may have been selected but are not accessible because
they have recently moved. Total nonresponse is a
frequent source of selection bias. In this article we
restrict ourselves to item nonresponse, which refers
to the lack of data on one or several items from a
study participant but not on all items.

Item nonresponse may arise because a person
refuses to answer certain questions. For example,
if the question is too sensitive (e.g. alcohol con-
sumption, sexual behavior, income, or health-related
questions), a study participant may refuse to answer
that item. What is regarded as sensitive may differ
from one person to the next, and it may vary with
personal behavior and/or depend on the answer to the
sensitive question. Older people may be more willing
to answer a certain question than younger people. Per-
sons with a very high or very low income may not be
willing to report it. Another reason for missing values
is that subjects do not know the answer because they
are unable to recall certain events. It also happens that
a given answer is inconsistent with other answers and
can therefore not be used in the analysis, as when a
person says on one part of the questionnaire that she
never smoked but later reports a consumption of 20
cigarettes daily. Missing values can also occur if the
interviewer fails to ask all questions, as may happen
if the interview is interrupted. Parts of the ques-
tionnaire may not be readable or may be destroyed
during the process of editing. If data are abstracted
from records, these records may be incomplete, illegi-
ble, or simply missing. Operating procedures in some
departments of an industrial setting or a hospital may
require records to be destroyed. In many situations,
records include gaps or insufficient or uninterpretable
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information, resulting in missing values. Similarly,
measures based on chemical or physical procedures
may fail to produce a value because required amounts
of blood or tissue are not available, or because of a
laboratory accident or technical failure. In all these
cases the missing values are unplanned, and we usu-
ally have limited information on why the data are
missing. This lack of information on the mechanism
of missingness makes this type of missing value prob-
lematic during an analysis.

Planned Missing Values

Because epidemiologic studies may require thecol-
lection of data on many variables for many sub-
jects some sampling strategies have been devel-
oped that require less data. A two-stage design
(see Case–Control Study, Two-phase) may be per-
formed in which first-stage data on the disease and
crude exposure status are collected for many sub-
jects, but additional information on detailed exposure
or on confounding variables is collected only for a
subsample in a second stage. The second stage may
include equal numbers of crudely exposed and unex-
posed subjects. In a two-stage design, a large amount
of data can be missing, but the missingness is under-
stood and under the control of the investigator. The
probability that a value is missing is known or can
be calculated easily and can be used for the analysis.
Simple and efficient procedures to estimate exposure
effects for such designs were proposed by White [60]
already in 1982. Closely related ideas of planned
missingness are found in validation studies in which
an easy-to-measure surrogate variable is collected for
all subjects, and “gold standard” measurements are
made only for a subsample.

Missing Value Mechanisms

Whenever we want to handle a data set with missing
values appropriately, the probability law generating
the missing values will be of importance. Formally,
this law, usually called the missing value mechanism,
is the conditional distribution of the missing indica-
tors, given all variables considered. To facilitate the
discussion, we introduce some notation and consider
here the situation with one exposure and one con-
founder variable, where only the confounder variable
may be missing. Hence we consider for each subject

four variables: the disease status D, the exposure E,
the confounder C, and the response indicator R, such
that we actually observe C if and only if R = 1. This
situation is complex enough to explain most problems
and the basic approach to solutions. Some solutions,
however, do not generalize to settings with several
exposures and/or confounders, especially in the case
of arbitrary missing patterns; we will point this out
where it is necessary. Also, one can exchange the role
of E and C.

Now, the missing value mechanism is given by
the conditional probabilities of observing C, that is,
by

q(d, e, c) := Pr(R = 1|D = d, E = e, C = c).

To understand the possible dependencies of the
observability of C on D, E and C, we shall discuss
some specific situations. In case–control studies,
missingness often depends on the disease status,
as cases and controls may differ in their behavior
and willingness to participate in the investigation
and to respond to specific questions. For example,
Schlehofer et al. [49] report results of a case–control
study on risk factors for brain tumor, including
blood group among other factors. For controls,
only interview data were available, but for cases
hospital records could be used in addition. This
results in missing rates of 9% for cases, but of 46%
for controls. By contrast, in a prospective cohort
study one can usually exclude a dependence of the
response probabilities on the disease status, if all
covariate data are collected at the start of the study.
Retrospective cohort studies (see Cohort Study,
Historical) and most hybrid designs, such as nested
case–control studies, often exhibit a dependence of
missingness probabilities on the disease status.

Also, the exposure variable may have an
influence on observability of the confounder. In
an investigation of the risk of radiation therapy,
a given therapy may be associated with hospital
records containing detailed information on potential
confounders. In studies of exposure in nuclear plants,
higher exposure levels may be associated with
frequent medical examinations and increased chance
to assess information on confounders.

There exist a variety of settings in which the prob-
ability of observing a variable depends on the value of
the variable itself. In interviews or studies by ques-
tionnaire, heavy drinkers or smokers may refuse to
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answer questions about such behavior, and very poor
or very rich people may refuse to give information on
their income. Likewise, long-term unemployed sub-
jects may refuse to give information on their working
history. Often the value of a variable may influence
the probability of knowing or remembering it. For
example, if we ask subjects to recall whether there
is any case of a disease among their first and second
degree relatives, and if there is no such case, he or
she will often answer “I don’t know”, because he or
she does not know all the relatives. But if there is one
case, it suffices to know this one to give an answer.
Even “objective” sources like hospital records do not
guarantee that there is no dependence on the true
value. In looking for exposure to a specific therapy,
it is often easy to detect such a treatment if it has been
given, but to assert that the treatment has not been
given requires a complete search of hospital records
over the time period of interest.

In epidemiology we may often have rather
complicated missing mechanisms. For example,
in case–control studies, cases may refuse more
often to admit an unhealthy lifestyle than controls,
because they feel guilty. On the other hand,
they may remember previous exposures better
because they have sought reasons for their illness.
Similarly, the willingness to admit to specific sexual
behaviors may differ among sex and age groups. As
another example, the availability of information on
confounder variables may depend both on the disease
status and the exposure level. If exposed subjects and
cases are willing subjects, only unexposed controls
may yield missing values. These possible interactions
make handling of incomplete data especially difficult.

So far, we have described possible scenarios.
Some of them are more dangerous than others, how-
ever, depending on the type of analysis. If one wants
to make efficient use of subjects with incomplete con-
founder information, the missing at random (MAR)
assumption is of central importance. In our context,
the MAR assumption is

q(d, e, c) = q(d, e),

namely that the true value of C is conditionally
independent of R given D and E. This assumption
allows one to estimate the conditional distribution of
C, given D, E and R = 0 from those subjects with
R = 1, which is the key to efficient use of all data.
Note that the MAR assumption allows a dependence

of the occurrence of missing values on D and E.
In two-stage designs we can exclude a dependence
on C by design, but sampling fractions typically
depend on D and E. In the literature on missing
values, one sometimes finds the missing completely
at random (MCAR) assumption, q(d, e, c) = q, but
this is seldom realistic in epidemiology.

If one wants to ignore the subjects with incom-
plete covariate data in the analysis, it is essential
to assume that the selection of such subjects intro-
duces no bias, which leads to different require-
ments as discussed later. We should finally men-
tion that in a case–control study the definition of
q(d, c, e) refers to the selected subjects, but it coin-
cides with the values in the total population, provided
that selection probabilities really depend only on
the case–control status, and not on other informa-
tion which is a requirement for any well-conducted
case–control study.

Fitting Logistic Regression Models with
Incomplete Covariate Data

For epidemiologic investigations, logistic regression
is an important tool to analyze the joint effect of
one or several exposure variables on the disease risk
adjusted for one or several confounding variables. In
the case of one exposure and one confounder vari-
able, the logistic model for risk in the underlying
population assumes that the conditional probability
of disease given the exposure value e and the con-
founder value c is given as

Pr(D = 1|E = e, C = c) = Λ(β0 + βEe + βCc)

=: pβ(e, c),

with Λ(t) = 1/[1 + exp(−t)]. As suggested by this
formula, E and C may be binary or continuous
variables, extensions to polytomous variables are
straightforward, and most statements in this article
are valid for any type of covariates.

With complete data we can estimate the param-
eters β0, βE , and βC by the maximum likelihood
principle. There are several proposals of different
quality to cope with incomplete data. To understand
the behavior of most simple methods for handling
incomplete covariate data, we examine the condi-
tional probabilities of the disease status given the
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actual information we observed. Considering only
subjects in the cohort with complete data, we have

Pr(D = 1|E = e, C = c, R = 1)

= Λ

(
β0 + log

q(1, e, c)

q(0, e, c)
+ βEe + βCc

)
, (1)

which can be derived by analogy with the justification
of logistic regression models for case-control data,
as given by Breslow & Day [5, p. 203]. This result
follows by noting that q(d, e, c) are nothing other
than the probabilities of selecting these subjects, just
as cases and controls have selection probabilities
from the base population in a case-control study.
Eq. (1) implies that fitting a logistic regression model
to the subjects with complete data only will give valid
estimates for βE and βC , provided q(d, e, c) can be
decomposed into q(d) · q(e, c). For subjects with a
missing confounder value we have

Pr(D = 1|E = e, R = 0)

=
∫

Λ

(
β0 + log

1 − q(1, e, c)

1 − q(0, e, c)
+ βEe + βCc

)

dF(c|E = e, R = 0). (2)

Most simple methods to handle incomplete covariate
data try to approximate (1) and (2) by simple logistic
models, and the resulting misspecification can cause
serious bias. In contrast, methods relying on the
likelihood or on appropriately chosen estimating
equations have the potential to produce consistent
estimates. Hence we now consider the likelihood in
the incomplete data case. From the joint distribution
of the observed variables, subjects without a missing
value contribute

q(d, e, c) × pβ(e, c)d × [1 − pβ(e, c)]1−d

× Pr(C = c|E = e) × Pr(E = e),

and subjects with a missing value contribute
∫

[1 − q(d, e, c)] × pβ(e, c)d × [1 − pβ(e, c)]1−d

× Pr(C = c|E = e) × Pr(E = e) dc.

If the MAR assumption q(d, e, c) = q(d, e) holds,
not only Pr(E = e) but also the terms involving q

can be removed from the likelihood. However, the
likelihood still depends on Pr(C = c|E = e); hence

the classical maximum likelihood principle requires
specifying the distribution of the covariates, at least
in part, which is fundamentally unlike the complete
data case. Trying to avoid these difficulties leads
to semiparametric approaches. The likelihood pre-
sented above is based on a prospective sampling
scheme. In the case of complete data, it is well
known that such a likelihood also yields valid esti-
mates of βE and βC in the analysis of case–control
studies [32]. This is also true for incomplete data, as
shown by Carroll et al. [9].

In the following we outline the main simple
and sophisticated methods for handling incomplete
covariate data.

Complete Case Analysis

In a complete case analysis all subjects with a missing
value are omitted from the analysis. The validity of
this approach is based on the implicit assumption that
the regression model for the subjects with complete
data is identical to the model for all subjects, i.e. that

Pr(D = 1|E = e, C = c, R = 1)

= Pr(D = 1|E = e, C = c)

holds. Using (1), this is true, if q(d, e, c) = q(e, c),
i.e. if missing probabilities do not depend on the
disease status. This is also intuitively clear; if miss-
ing probabilities depend only on the covariate values,
restriction to subjects without missing values changes
only the population, but not the regression model,
whereas missing probabilities depending additionally
on the outcome introduce some type of selection bias.
An isolated difference between the missingness prob-
abilities for cases and controls affects the estimation
of the intercept but does not affect the estimation of
βE and βC ; in general consistent estimation of the lat-
ter is guaranteed if q(d, e, c) = q(d) · q(e, c), which
follows directly from (1) [19].

Therefore a complete case analysis has the favor-
able property that it yields consistent estimates of the
regression parameters, even if the MAR assumption is
violated. It has the unfavorable property that consis-
tency of parameter estimates depends on the assump-
tion that missingness probabilities do not depend
jointly on the disease status and the covariate val-
ues. The latter is however often questionable for
case–control studies (cf. final section). The bias of
the odds ratio based on a complete case analysis
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can be easily computed [55], and it can be shown
that realistic differences in the missingness proba-
bilities can lead to substantial bias. For example, if
exposed cases are better documented than controls
and unexposed cases such that the missingness prob-
ability for the exposed cases is 10% and 40% for
the other groups, then the odds ratio for exposure is
overestimated by a factor of 1.5.

Additional Category or Missing Indicator Method

Epidemiologists often work with categorical vari-
ables and sometimes define an additional category for
missing observations. Such coding suggests that we
analyze the data under the implicit assumption that

Pr(D = 1|E = e, C = c, R = 1)

= Λ(β0 + βEe + βCc)

and

Pr(D = 1|E = e, R = 0) = Λ(β0 + βEe + β∗).

Equivalently we can impute for the missing val-
ues of C the value 0 and add the missing indicator
M = 1 − R to the regression model. This “missing
indicator method”, which is also applied to continu-
ous covariates, results in the same specification and
hence the same estimates. The approach is inappro-
priate, as one cannot expect to achieve good esti-
mates for the adjusted risk βE if adjustment for
the unobserved values of the confounding variable
is attempted by introducing the additional parameter
β∗ in the second equation above. To see this, let us
assume that q(d, e, c) ≡ q, i.e. MCAR, such that the
subjects with and without missing values form two
random subsamples. Then in the first equation above
βE corresponds to the adjusted log-odds ratio (OR)
of the exposure, whereas in the second line βE cor-
responds to the unadjusted log-OR, because β0 + β∗
can be regarded as one intercept. Consequently, the
quantity exp(β̂E) estimates a quantity between the
adjusted and unadjusted odds ratio. Hence the goal
of obtaining realistic odds ratios that describe the
effect of exposure adjusted for confounding vari-
ables cannot be achieved if missing values in the
confounding variables are regarded as an additional
category. Moreover, if the missingness probabilities
are allowed to depend on the disease status and/or
exposure status, then exp(β̂E) can lead to values

outside the range between the adjusted and unad-
justed odds ratio. The bias is often accompanied by
underestimation of the variability; Greenland & Fin-
kle [20] report the results of a simulation study with
two Gaussian (see Normal Distribution) covariates,
where the missing indicator method results in true
coverage probabilities of 55% for nominal 95% con-
fidence intervals.

So far we have considered the effect of coding
missing values as an additional category on the esti-
mation of βE . In the epidemiologic literature the
estimate of β∗ is often reported, too, and compared to
the value of β̂C . Often there is an implicit assumption
that β̂∗ has to be between 0 and β̂C , or, in the case
of several categories, within the range of the effect
estimates (including 0 for the baseline category). If
missing probabilities depend only on the exposure,
and the degree of correlation between confounder
and exposure is small, then this is approximately true,
as can be shown using the approximation discussed
in the next section. However, if missingness probabil-
ities depend on the disease status, the relative disease
frequency among subjects with complete data differs
from the relative disease frequency among subjects
with incomplete data, and β∗ mainly reflects this
difference.

Although regarding missing values as an addi-
tional category cannot be recommended in general, it
can be appropriate in special settings, where missing
values characterize a meaningful subset of all indi-
viduals. For example, Commenges et al. [11] report
a study comparing different procedures to diagnose
dementia in a screening setting. They found missing
values in those variables corresponding to the results
of two tests to be highly predictive, because the miss-
ing values reflected a subject’s failure to comprehend
the test.

Single-Imputation Methods

This class of methods is characterized by imputing for
each missing value a single value and analyzing the
completed data set. If the confounder C is continuous,
the simplest choice is to replace each missing value
by the overall mean C of the observed values of the
confounding variable. Instead of using an estimate for
the overall expectation of C, one may use estimates of
the conditional expectations: if E is categorical, then
we can impute the mean of the observed values of C

within each category of E; if E is continuous, then
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we can compute a regression of the observed values
of C on E. If C is binary, then relative frequen-
cies replace the means, and Schemper & Smith [46]
proposed the term probability imputation. The impu-
tation of estimates for the conditional expectations
yields an approximately valid inference, if missing
probabilities do not depend on the disease state and
the true, unobserved value, i.e. if q(d, e, c) = q(e).
In this situation, we have

by (1) Pr(D = 1|E = e, C = c, R = 1) = pβ(e, c)

and

by (2) Pr(D = 1|E = e, R = 0)

=
∫

Λ(β0 + βEe + βCc) dFC|E=e(c).

If we regard Λ as an approximately linear function,
then we have

Pr(D = 1|E = e, R = 0)

≈ Λ(β0 + βEe + βC · E[C|E = e]).

Hence imputing estimates for the conditional expecta-
tion results in an approximately correct specification
of the conditional disease probabilities, and hence
the resulting bias of the parameter estimates is often
small. One has to expect, however, that variance
estimates tend to be too small, because the imputed
values are treated as true ones and no adjustment
is made for the additional variability introduced by
imputing estimates. Results of simulation studies [45,
46, 53, 58] suggest that both bias and underestima-
tion of the variance are only problematic for extreme
parameter constellations with high missingness rates
and very influential confounding variables.

The justification so far depends on the assump-
tion that missingness probabilities do not depend on
the disease status. This is not necessary, because
imputation of conditional expectations can always
be regarded as an approximation to simple semi-
parametric approaches [58]. However, some care is
necessary; if missingness probabilities depend on the
disease status, then naive estimates for conditional
expectations are wrong; it is necessary to estimate the
conditional expectations separately within diseased
and undiseased subjects and then to form a weighted
average [58]. Moreover, for extreme parameter con-
stellations the bias can be still substantial [53].

Generalizations to several covariates with arbitrary
missing patterns are straightforward, as long as there
are enough subjects with complete information. But
many auxiliary regression models may be required. In
general, misspecification of these auxiliary regression
models can be a source of additional bias in the
parameter estimates, but little is known about this
problem.

Modifying the Complete Case Estimates

Under the MAR assumption, the response probabili-
ties q(d, e) can be estimated from the observed data,
for example by fitting a logistic regression model with
outcome variable R and covariates D and E. The
bias of the complete case estimates can be expressed
as a function of q, and hence we can correct the
bias [53, 55]. Alternatively, one may fit a logistic
regression model with estimated offsets in (1) to
the subjects with complete covariate data [4]. If E

is categoric and a saturated model (see Generalized
Linear Model) is used in estimating q, then both
approaches coincide and are identical to maximum
likelihood estimates [57]. As simple expressions for
the corresponding asymptotic variances can be pro-
vided [7], this is a simple method to achieve consis-
tent and efficient estimates in this special setting if
the MAR assumption is tenable. Unfortunately there
is no simple generalization for arbitrary missingness
patterns.

Estimation of the Score Function: Weighting,
Filling, and the Mean Score Method

In the complete data case, maximization of the like-
lihood is equivalent to finding a root of the score
function

Sn(β) = 1

n

n∑

i=1

Sβ(Di, Ei, Ci),

with

Sβ(d, e, c) = ∂

∂β
{d log pβ(e, c)

+ (1 − d) log(1 − pβ(e, c))}.
In the incomplete data case the contribution to the
score function is unknown for subjects with a missing
value. Nevertheless, one can try to estimate Sn(β). A
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first approach is to regard the subjects with complete
covariate information as a subsample with selection
probabilities q(d, e, c) and to try to estimate the
“population average” ESβ(D, E, C). The classical
Horvitz–Thompson estimator satisfies this task by
weighting each contribution of the subsample with
q(d, e, c)−1. However, q(d, e, c) is unknown, and
only under the MAR assumption can we arrive at
estimates q̂(d, e) and at a weighted score function

S̃n(β) = 1

n

n∑

i=1
Ri=1

Sβ(Di, Ei, Ci)

q̂(Di, Ei)
.

Solving S̃n(β) = 0 results in consistent estimates of
β. Solving S̃n(β) = 0 can be done by any software
package for logistic regression that allows arbitrary
weights (see Software, Biostatistical). However,
variance estimates obtained this way are invalid,
and can be much too small [53, Section 5.11]. If
a parametric model qα(d, e) is used in estimating
the response probabilities, explicit estimates of the
variance can be provided [33, [53], p. 17], but they
cannot be computed with standard software. If E

and C are both categorical, then the approach is
equivalent to distributing subjects with a missing
value to the cells of the contingency table of
subjects without a missing value with fractions
equal to estimates of the conditional probability for
the true value. This intuitive method was called
“filling” by Vach & Blettner [55]. The idea to weight
contributions to the score function reciprocally to the
response probabilities was also used by Flanders &
Greenland [15] and Zhao & Lipsitz [61]. However,
they consider the analysis of designs for which the
response probabilities were known.

An alternative approach to estimating Sβ is to
replace each unknown contribution Sβ(Di, Ei, Ci)

for subjects with unknown Ci by an estimate for
E[Sβ(Di, Ei, Ci)|Di, Ei], i.e. an estimate for the con-
ditional expectation of the score function given the
observed variables. Reilly & Pepe [34] investigate
this approach in detail for the special case where
E is categorical. In that case, estimates of the con-
ditional expectations are simple averages over the
subjects without missing values, and the approach
is equivalent to weighting. However, whereas the
weighting approach is difficult to generalize to the
case of several covariates with arbitrary missingness
patterns, this is in principle possible for the individual

estimation of the conditional expectations by non-
parametric regression.

Finally, estimates based on the weighting or the
mean score approach are consistent under the MAR
assumption but not always efficient. Especially if
missingness rates are large, there can be a substantial
loss in comparison to efficient approaches [38; 53,
Section 5.2; 61].

Maximum Likelihood Estimation

Application of the maximum likelihood (ML) prin-
ciple requires a parametric specification fα(c|e) for
the conditional distributions Pr(C = c|E = e) (cf.
above). Then under the MAR assumption the con-
tributions to the likelihood are given by

pβ(e, c)d(1 − pβ(e, c))1−dfα(c|e),if R = 1,
∫

pβ(e, c)(1 − pβ(e, c))1−dfα(c|e) dc,if R = 0.

The integral in the likelihood makes maximization
a little bit cumbersome. The EM algorithm [12]
is a standard tool to maximize the likelihood in
incomplete data problems. However, if C is contin-
uous, even the EM algorithm may require numerical
integration. If C is categorical, integration reduces
to summation, and both the EM algorithm [24] or
a direct maximization using the Newton–Raphson
method are feasible. The latter has the advantage
of automatically computing the quantities necessary
to estimate the variance of the parameter estimates,
whereas use of the EM algorithm requires additional
effort [30, 52]. The ML principle is also applicable in
the general setting with several covariates and arbi-
trary missingness patterns, as long as we are able to
specify a parametric family for the conditional dis-
tribution of the covariates affected by missing values
given the unaffected covariates.

The ML estimates are consistent and efficient as
long as the MAR assumption is valid and the true
distribution of the covariates is within the specified
family. This specification is a crucial point of the
ML approach, because this requirement is not neces-
sary in the complete data case, and our knowledge
about the distributions of and dependencies between
the covariates is usually limited. Misspecification of
the distribution of the covariates, however, can induce
a bias in the regression parameter estimates. Thus
it becomes necessary to model nuisance features of
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the problem carefully. If all covariates are categori-
cal, loglinear models provide a simple framework to
describe the joint distribution [56], but if continuous
covariates are involved, parametric models flexible
enough seem to be hard to specify.

If all covariates are categorical, one can also
fit a loglinear model to the joint distribution of
all variables [16, 59] and use relationships between
loglinear and logistic models.

Semiparametric Maximum Likelihood Estimation

We have seen in the last section that maximum likeli-
hood estimation requires specification of a parametric
family for the conditional distribution of C given
E. It is an appealing idea to avoid this unpleasant
task by replacing f (c|e) by a nonparametric esti-
mate. Pepe & Fleming [31] consider the case of a
categorical exposure, such that the empirical distri-
bution within each exposure stratum can be used;
Carroll & Wand [8] consider a continuous exposure
and use kernel estimates (see Density Estimation).
Both approaches rely on the assumption that missing-
ness probabilities do not depend on the disease status,
but they can be generalized to this setting (Vach
& Schumacher [58]). Computations of the resulting
estimates of β require special software, as does esti-
mation of the variance. The resulting estimates are
not fully efficient in comparison to the estimates of
the next section. It is also difficult to generalize these
approaches to settings with several covariates and
arbitrary missingness patterns, because this requires
nonparametric estimation of high-dimensional multi-
variate conditional distributions.

Semiparametric Efficient Estimation

The last two sections have suggested that the handling
of incomplete covariate data is ideally a semipara-
metric problem; we are interested in the parameters
of the regression model describing the conditional
distribution of disease status given all exposure and
confounding covariates, but the distribution of the
covariates, in spite of being essential for the likeli-
hood, should be left unspecified. In recent years there
has been substantial progress (for example [3]) in the
general field of efficient semiparametric estimation.
Robins et al. [38] used this theory to fit generalized
linear models with incomplete covariate data. They

showed that roughly any consistent estimator for β is
asymptotically equivalent to one defined as the solu-
tion of an estimating equation

∑n
i=1 Sβ(Di, Ei, Ci) =

0, where

Sβ(D, E, C) = R
h(E, C)(D − pβ(E, C))

q(D, E)

− ϕ(D, E)(R − q(D, E))

q(D, E)
.

They were also able to characterize functions hopt

and ϕopt which lead to a semiparametric efficient esti-
mate, i.e. the asymptotic variance of this estimate is
exactly the supremum of the asymptotic variances
of all maximum likelihood estimators based on para-
metric families fα(c|e) covering the true f (c|e). Of
course, this is the best we can expect without impos-
ing parametric assumptions. Unfortunately hopt and
ϕopt depend on the true values of β and the true dis-
tribution of C given E and are moreover not available
in closed form.

However, an adaptive procedure is possible which
starts with a parametric assumption on the distribu-
tion of the covariates, then estimates all parameters,
uses an iterative procedure to compute ĥopt and ϕ̂opt

based on the assumption that the estimates correspond
to the true parameters, and finally solves the estimat-
ing equations with h and ϕ replaced by ĥopt and ϕ̂opt,
and q replaced by an appropriate estimate. In contrast
to ML estimation, a misspecification of the covariate
distribution does not result in inconsistent estimates,
and, in spite of the adaptive steps, the estimates are
efficient, if the specification of the covariate distribu-
tion was correct. Details of this adaptive procedure
can be found in Robins et al. [38] and Rotnitzky &
Robins [40]. The approach can be also generalized
to several covariates with arbitrary missingness pat-
terns; however, here the computation of ĥopt and φ̂opt

is more difficult.

Multiple Imputation

Multiple imputation is a general technique for statis-
tical inference with incomplete data. The basic idea
is to create several data sets with different values
imputed for the missing values, and to analyze each
data set by standard software, such as software for
logistic regression. If the imputations are generated
in a so-called “proper” manner, the average of the
parameter estimates provides a consistent estimate.
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Furthermore, the average of the variance estimates
and the empirical variance of the multiple parameter
estimates can be combined to form a total variance
estimate; confidence intervals and P values can be
computed, too. Rubin & Schenker [44] present an
overview of the basic techniques.

It seems reasonable to generate imputations from
estimates of the conditional distribution of the unob-
served values. However, this is an improper method
in the sense that variance estimates tend to be too
small, because they do not take into account the vari-
ance due to estimating the conditional distribution.
Proper methods can be defined by additionally esti-
mating the conditional distribution in each imputation
step based on a random sample with replacement of
the subjects without missing values [14, 42, 43]. Of
course, any attempt to estimate the conditional distri-
bution of the missing values from the observed values
depends on the MAR assumption.

With respect to our setting, Reilly & Pepe [34,
35] have considered the special case where E is
categoric. Values to be imputed for missing values
in C are drawn from the empirical distributions of
C within the strata defined by D and E. This hot-
deck imputation method is improper, although Reilly
& Pepe [35] provided a valid variance estimator.
Moreover they showed that hot-deck multiple
imputation with infinite imputations is asymptotically
equivalent to the mean-score method. In particular,
this implies that the hot-deck method has the same
deficiencies with respect to efficiency. Greenland
& Finkle [20] report results of a simulation study
with E and C both continuous and affected
by missing values. Imputations were drawn from
estimated conditional distributions resulting from
fitting bivariate normal distributions within the
diseased and undiseased subjects. Although this is
an improper method, they observed that confidence
intervals keep their nominal level. They also observed
a loss of efficiency in comparison to maximum
likelihood estimation (see Missing Data Estimation,
“Hot Deck” and “Cold Deck”).

Multiple imputation can be also applied in gen-
eral settings with arbitrary missingness patterns. The
crucial point is the choice of the procedure to esti-
mate the necessary conditional distribution. If we rely
on parametric assumptions on the distribution of the
covariates, we have the same unpleasant situation as
with ML estimation. However, one can alternatively
draw imputations from a set of nearest neighbors,

i.e. subjects with complete information and similar
values with respect to the observed variables. The
choice of an appropriate distance measure requires
some knowledge about the distribution of the covari-
ates, but not necessarily an explicit model. Heitjan &
Little [22] give an illuminating example.

Methods Based on the Retrospective Likelihood

The methods considered so far rely on a prospective
sampling scheme implying independence of the dis-
ease status among different subjects. In case–control
studies this assumption is violated. However, in
incomplete data problems the use of the prospec-
tive likelihood can also be justified for retrospec-
tive data [9]. The resulting estimates are consistent,
the estimated standard errors are never too small,
and they are correct if we make no assumptions
on the distribution of the covariates. Nevertheless,
methods based on the retrospective likelihood are
of interest, especially for the analysis of two-stage
designs. In such a design, the number of subjects
with complete data is fixed in advance, and hence
missingness indicators are not independent, which
is a further violation of the prospective sampling
scheme.

Maximum likelihood estimation with respect to
the retrospective likelihood is considered by Scott
& Wild [51] and Breslow & Holubkov [6]. Two dif-
ferent pseudo-likelihood approaches, in which some
parameters are pre-estimated in a naive manner,
are considered by Breslow & Cain [4] and Schill
et al. [48]. A weighting approach is due to Flanders
& Greenland [15]. Comparisons with respect to the
asymptotic relative efficiency and simulation stud-
ies [6, 47, 61] often reveal large inefficiencies of the
weighting approach and some inefficiencies of the
two pseudo-maximum likelihood approaches.

Handling of a Questionable MAR Assumption

All sophisticated, and especially all efficient,
approaches to handle incomplete covariate data rely
on the MAR assumption. In many applications this
assumption is questionable, but one may still want to
use methods relying on it. In that case, it is necessary
to think about or investigate the possible impact of
a violation. One may argue that if there is a pure
violation, in the sense that missingness depends only
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on the true value of the covariate, then the impact
must be small, because the association between the
covariates and the outcome is not changed. Schemper
& Smith [46] provide an informal argument for this
conjecture. Investigations for the special case of
categorical C and E [57] corroborate the conjecture.
These studies further demonstrate that the impact
on the exposure effect estimate can be substantial
if there are differences in the degree of violation
between diseased and undiseased or between exposed
and unexposed subjects, which is also intuitively
clear, because such differences change the observed
association.

If one does not want to rely on such general,
theoretical considerations, one may try to investi-
gate the impact of an invalid MAR assumption for
a particular data set. This can be easily done within
the multiple imputation framework, for example by
drawing more larger values for a variable or more
values from a specific category (cf. [44]). Vach &
Blettner [56] present a framework to specify viola-
tions within the framework of ML estimation and
perform a sensitivity analysis for two case–control
studies. Baker [2] takes an additional step and does
not specify, but tries to estimate, the parameters of
the non-MAR mechanism. Rotnitzky & Robins [40]
consider this step within the framework of semipara-
metric efficient estimation. However, a (saturated)
logistic model and a (saturated) non-MAR model are
in general not jointly identifiable; hence any attempt
to estimate non-MAR mechanisms relies on restric-
tions of the two models allowing identifiability. This
alone, however, is not enough, as identifiability does
not imply reasonable properties of resulting estimates
in this setting; Rotnitzky & Robins [40] show in the
semiparametric setting that in spite of identifiabil-
ity there need not exist a

√
n-consistent estimator.

Hence, the usefulness of these approaches has to
be investigated further before recommendations can
be made.

Robins & Gill [37] point out that in settings with
arbitrary missingness patterns, the MAR assump-
tion as defined by Rubin [41] allows some con-
figurations of no practical relevance. This fact can
be used to change the MAR assumption, allow-
ing some special non-MAR mechanisms to be esti-
mated without problems of identifiability. Robins &
Gill [37] and Robins [36] present two examples of
this kind.

Handling of Incomplete Data in other
Models Used in Analytic Epidemiology

Poisson Regression, Gaussian Regression, and
Generalized Linear Models

Nearly everything we have said in the last section
with respect to logistic regression is also valid for
other regression models where parameters are esti-
mated by maximum likelihood. In particular, the
difficulties with maximum likelihood estimation in
the incomplete data case are the same, and the semi-
parametric approaches work in the general setting of
generalized linear models. With respect to the simple
methods, there are two differences. First, there is no
general analogy to the modifications of the complete
case estimates. Second, the single imputation meth-
ods need more care. We can expect nearly unbiased
estimates of the regression parameters after imputa-
tion of conditional means, as this implies a roughly
correct specification of the conditional expectation of
the outcome variable. Indeed, in the case of Gaus-
sian regression one can prove consistency [18]. How-
ever, only in binary regression models does correct
specification of the conditional mean imply correct
specification of the conditional variance. In general,
the conditional variance of the outcome increases
if some covariate values are missing; hence, after
the imputation of conditional means, a further anal-
ysis should be based on a heteroscedastic model.
For this reason, weighted least squares estimates are
advocated in Gaussian regression after imputation of
conditional means. An overview of this and other
techniques suitable for Gaussian regression models is
given by Little [27]. Some of the proposals depend
on the assumption of a multivariate normal distri-
bution of all variables and hence have limited appli-
cation in epidemiology. The impact of the variance
heterogeneity for other types of regression models,
especially Poisson regression, has not been investi-
gated. Thus we recommend that the single imputation
method should be used with caution.

Cox Regression with Incomplete Covariate Data

For the analysis of (censored) survival times the
proportional hazard model [10] is widely used in
epidemiology. Simple methods to handle incomplete
covariate data are subject to the same criticism as
for logistic regression, with the additional difficulty
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that, especially in retrospective studies, censoring
may be associated with missingness in covariates.
Even in a complete case analysis, the assumption
of noninformative censoring can be violated. With
respect to more sophisticated approaches, it is diffi-
cult to extend the maximum likelihood approach to
survival models (see Survival Analysis, Overview),
as the nuisance parameter involves the baseline
hazard, although a semiparametric partial maximum
likelihood approach is possible [62]. A weighting
approach has been proposed by Pugh et al. [33], and
Lin & Ying [26] consider an appropriately modified
score function, but their approach requires MCAR.
None of these approaches can be easily generalized to
situations with general missingness patterns. Robins
et al. [38] also point out the difficulty of obtaining
a feasible solution from the theory of semiparamet-
ric efficient estimation. In the face of this problem,
one may be willing to use alternative fully paramet-
ric regression models for survival data, such that,
especially in the case of categorical covariates, the
ML principle can be used. In this spirit, Schluchter
& Jackson [50], Baker [1] and Vach [54] suggest
approximating the Cox regression model by a logis-
tic model for grouped survival data, and Lipsitz &
Ibrahim [29] consider Weibull models. The use of
single imputation methods has been considered by
Schemper & Smith [46].

Analysis of Matched Case–Control Studies

The handling of incomplete covariate data in matched
case–control studies has received little attention.
Haber & Chen [21] consider the case of a single
exposure variable as the only covariate and com-
pare the matched and unmatched odds ratio estimator.
They conclude that in the case of missing expo-
sure information for some cases and controls, the
advantages of the unmatched estimator increase in
comparison to the complete data case. Conditional
logistic regression (see Matched Analysis) is a stan-
dard tool for the analysis of matched case–control
studies. Missing values in the covariates constitute
an even greater problem with conditional logistic
regression than with ordinary logistic regression, as
a complete case analysis with one-to-one-matching
causes loss of the complete pair if the covariate is
missing in either the case or the control. Despite a
small simulation study [17], a systematic investiga-
tion is still needed.

Regression Models for Longitudinal and
Multivariate Data

Regression models for longitudinal or clustered data
(see Clustering), especially marginal models, are
proving useful in epidemiology for the analysis of
familial aggregation and of environmental studies
(see Environmental Epidemiology) as well as for
studies of biochemical markers. With respect to
incomplete covariate data, there is little to add to
what we have said previously. However, in these
applications outcome variables may also be missing,
especially from drop outs in longitudinal studies. We
want to restrict ourselves to some basic comments,
especially on the differences with the incomplete
covariate problem.

First, the MAR assumption is again of central
importance. In the case of drop outs, the question
is whether we are able to observe the crucial event
causing the drop out, or whether the drop out hides
this event. Secondly, if the MAR assumption is ten-
able and if we consider regression models specifying
the joint conditional distribution of the outcome vari-
ables and allowing the use of the ML principle with
complete data case, then the ML principle can also be
used in the presence of missing values in the outcome
variables and reduces usually to an analysis of all
units with measured outcome. Thirdly, the popular
marginal models [25] do not belong to this class, and
for them the MAR assumption is not sufficient to
exclude a bias due to missing values, if only the avail-
able units are used; a solution has been provided by
Robins et al. [39]. Finally, if the MAR assumption is
violated, we have often some rather precise ideas on
the drop out mechanism, which may permit adjust-
ment by choosing an appropriate model [13, 23, 28].

Strategies to Cope with Incomplete Data

The best advice is to minimize the possibility for
missing values. We should plan appropriate data col-
lection procedures and design interviews and ques-
tionnaires so that subjects have little reason to refuse
an answer. Adequate planning can also help to avoid
differential missingness with respect to disease status
or exposure status. The same data collection pro-
cedures should be used for cases and controls in
case–control studies, and exposed and unexposed
subjects should be followed using similar procedures
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and effort in cohort studies. Usually one knows in
advance which variables are most likely to have miss-
ing values. Then a fruitful strategy can be to collect
data on a surrogate variable that is available on most
subjects and to collect the variable of interest with
additional effort only in a randomly selected sub-
sample, assuring that the MAR assumption holds.
Then it is possible to use statistical methods very
similar to the sophisticated methods discussed ear-
lier, except that the surrogate variable is not included
in the regression model (see Validation Study). A
general idea is to collect additional data to predict
missingness. By incorporating such variables in the
analysis, the MAR assumption may become more
reliable. Finally, one can try to recontact a represen-
tative sample of the nonresponders, and try to collect
the missing data. If this succeeds, a valid analysis
becomes possible in principle.

If these approaches are infeasible or unsuccessful,
then one should at least discuss the possible impact
of the missing values on the analysis. The first step is
to report the missing rates for all variables, stratified
by disease status and exposure levels, and to sum-
marize major associations of missingness with other
variables. The second step is to justify the analytical
approach. If a complete case analysis is applied in a
case–control study, then one should give arguments
to exclude an important difference in the missing
value mechanism between cases and controls. If one
uses methods relying on the MAR assumption, then
the latter must be justified or a sensitivity analysis
should be conducted.

Conclusions

Missing values are a common problem in the anal-
ysis of epidemiologic studies. The problem should
be addressed in planning the study so as to min-
imize their occurrence. Careful planning may also
allow one to control or to understand the missingness
mechanism and thereby to facilitate valid inference.
If one has sufficient insight into the missingness
mechanism, then one can take advantage of effi-
cient statistical methods, although there remains a
need for more practical experience with these tech-
niques and improved availability of software. Such
analytical methods cannot salvage a poorly planned
and executed study, however, that has many missing
values and offers little insight into the missingness
mechanism.
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Missing Data
This article concerns the analysis of biostatistical
data that are subject to missing values. It builds on
earlier research [63, 65–67]. Missing values arise in
biostatistics for many reasons. For example:

1. In longitudinal studies, data are missing because
of attrition, i.e. subjects drop out prior to the end
of the study (see Longitudinal Data Analysis,
Overview).

2. In sample surveys, some individuals provide no
information because of noncontact or refusal
to respond (unit nonresponse). Other individu-
als are contacted and provide some information,
but fail to answer some of the questions (item
nonresponse). For example, the National Health
and Nutrition Examination Survey (NHANES)
includes data from an individual interview and
a health examination. Some survey respondents
miss particular variables because they refused
to answer sensitive questions, or measurements
were not carried out or were incorrectly recorded,
for example they lie outside allowable ranges.
Other individuals are missing all the recordings
from the health examination since they failed to
show up, but have information from the individ-
ual interview recorded.

3. Information about a variable is partially recorded.
A common example in biostatistics is right
censoring (see Censored Data), where times to
an event (death, progression of disease) are being
recorded, and for some individuals the event has
still not taken place when the study is terminated.
The times for these subjects are known to be
greater than that corresponding to the latest time
of observation, but the actual time is unknown.
Another example of partial information is inter-
val censoring, where it is known that the time
to an event lies in an interval. For example, in
a longitudinal study of a chronic disease, it may
be established that some event (such as reinjury
of hip after hip replacement surgery) took place
some time between two visits to the doctor for
checkups. The time to reinjury is then known to
lie in an interval determined by the two checkups.
If the interval is narrow compared with the distri-
bution of event times themselves, then the simple
approach of locating the event at the midpoint
of the interval may be a good approximation,

but otherwise methods that treat the event time
as partially missing data may be important [13,
19, 38].

4. In clinical studies that involve chart review,
charts are often incomplete or lacking in suffi-
cient detail to determine particular items. Often
indices are constructed by summing values of
particular items, and if any of the items that form
the index are missing, then some procedure is
needed to deal with the missing data.

5. Missing data can arise by design. For example,
suppose one objective in a study of obesity is
to estimate the distribution of a measure Y1 of
body fat in the population, and correlate it with
other factors. Since Y1 is expensive to measure,
it can only be obtained for a limited sample, but
a crude proxy measure Y2, such as body mass
index, can be obtained for a much larger sample.
A useful design is to measure Y2 and covari-
ates for a large sample and Y1, Y2, and covariates
for a smaller subsample. The subsample allows
predictions of the missing values of Y1 to be gen-
erated for the larger sample, using one of the
methods of analysis described below, yielding
more efficient estimates than are possible from
the subsample alone.

Unless missing data are deliberately incorporated
by design, the most important step in dealing with
missing data is to try to avoid it during the data-
collection stage. Given that data are likely to be
missing after data collection, however, it is also
useful to try to collect covariates that are likely
to be predictive of the missing values, so that an
adequate adjustment can be made. In addition, the
process that leads to missing values should be deter-
mined during the collection of data if possible.
This assists in modeling the missing-data mechanism
when an adjustment for the missing values is per-
formed [62].

Three major approaches to the analysis of missing
data can be distinguished:

1. discard incomplete cases and analyze the
remainder (complete-case analysis):

2. impute or fill in the missing values and then
analyze the filled-in data; and

3. analyze the incomplete data by a method that
does not require a complete (that is, a rectangu-
lar) data set.
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With regard to point 3, I focus on powerful like-
lihood-based methods, specifically maximum like-
lihood (ML) and Bayesian simulation. The latter
is closely related to multiple imputation [96], an
extension of single imputation that allows uncertainty
in the imputations to be reflected appropriately in the
analysis. Approaches to longitudinal data with miss-
ing values are considered in the concluding section.

A basic assumption in all our methods is that miss-
ingness of a particular value hides a true underlying
value that is meaningful for analysis. This may seem
obvious but is not always the case. For example,
consider a longitudinal analysis of CD4 counts in a
clinical trial for AIDS [9]. For subjects who leave
the study because they move to a different location,
it makes sense to consider the CD4 counts that would
have been recorded if they had remained in the study.
For subjects who die during the course of the study,
it is less clear whether it is reasonable to consider
CD4 counts after time of death as missing values.
Rather, it may be preferable to treat death as a pri-
mary outcome and restrict the analysis of CD4 counts
to individuals who are alive. A more complex missing
data problem arises when individuals leave the study
for unknown reasons, which may include relocation
or death.

Pattern and Mechanism of Missing Data

It is useful to distinguish the pattern of the miss-
ing data and the missing data mechanism. The pat-
tern simply defines which values in the data set are
observed and which are missing. Specifically, let
Y = yij denote an n × p rectangular data set with-
out missing values, with ith row yi = yi1, . . . , yip,
where yij is the value of variable Yj for subject i.
With missing data, define the missing-data indicator
matrix M = mij , such that mij = 1 if yij is miss-
ing and mij = 0 if yij is present. The matrix M then
defines the pattern of missing data.

When a data set contains missing values, it is
important that information is coded so that M can
be determined, even if it is not specifically cre-
ated. This is usually done by designating a special
missing-value code for missing values (such as 9999)
that lies outside the allowable range for the variable.
It is important to distinguish between zero values and
missing values, since failure to do this creates con-
siderable problems in analysis.

Some methods for handling missing data apply
to any pattern of missing data, whereas other meth-
ods assume a special pattern. An important example
of a special pattern is univariate nonresponse, where
missingness is confined to a single variable. Another
is monotone missing data, where the variables can be
arranged so that Yj+1, . . . , Yp is missing for all cases
where Yj is missing, for all j = 1, . . . , p − 1 (see
Figure 1). This pattern arises commonly in longitu-
dinal data subject to attrition.

The missing-data mechanism concerns the reasons
why values are missing, and in particular whether
these reasons relate to values in the data set. For
example, a subject in a longitudinal study may be
more likely to avoid a treatment and drop out of a
study because (s)he felt the treatment was ineffec-
tive, which might be related to a poor value of an
outcome measure. Rubin [93] treated M as a random
matrix, and characterized the missing-data mecha-
nism by the conditional distribution of M given Y ,
say f (M|Y, φ), where φ denotes unknown parame-
ters. If missingness does not depend on the values of
the data Y , missing or observed, that is:

f (M|Y, φ) = f (M|φ), for all Y, φ,

then the data are called missing completely at ran-
dom (MCAR) – note that this assumption does not
mean that the pattern itself is random, but rather
that missingness does not depend on the data val-
ues. An MCAR mechanism is plausible in planned
missing-data designs as in example 5 above, but is
a strong assumption when missing data do not occur
by design because missingness usually depends on
recorded variables. Let Yobs denote the observed val-
ues of Y and Ymis the missing values. A less restrictive

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1 

0 0 1 1 1 

. . .

M Y1 Y2 Y3 Y4 Y5

Figure 1 Schematic of a monotone missing data pattern,
with rows representing cases, Y1, . . . , Y5 repeated measures
at five time points, and blocks representing data. M is the
missing-data indicator matrix
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assumption is that missingness depends only on val-
ues Yobs that are observed, and not on values Ymis that
are missing. That is:

f (M|Y, φ) = f (M|Yobs, φ), for all Ymis, φ.

The missing data mechanism is then called missing
at random (MAR). Murray & Findlay [80] provided
an instructive example of MAR for data from a
study of hypertensive drugs where the outcome was
diastolic blood pressure. By protocol, the subject was
no longer included in the study when the diastolic
blood pressure got too large. This mechanism is not
MCAR, since it depends on the values of blood
pressure. But blood pressure at the time of drop
out was observed before the subject dropped out.
Hence the mechanism is MAR, because drop out only
depends on the observed part of Y . Many methods
for handling missing data assume the mechanism is
MCAR or MAR, and yield biased estimates when
the data are not MAR.

Complete-Case Analysis

A common and simple method is complete-case
(CC) analysis, also known as listwise deletion, where
incomplete cases are discarded and standard analysis
methods applied to the complete cases. In many sta-
tistical packages (see Software, Biostatistical) this
is the default analysis. Valid (but often suboptimal)
inferences are obtained when the missing data are
MCAR, since then the complete cases are a ran-
dom subsample of the original sample with respect
to all variables. However, even when MCAR holds,
the rejection of incomplete cases seems an unneces-
sary waste of information: if the number of variables
is large, then even a sparse pattern of missing val-
ues can result in a substantial number of incomplete
cases. One approach to incorporating the incomplete
cases is to drop variables with high levels of non-
response; Rubin [92] provides systematic methods in
the regression context.

Aside from efficiency considerations, a serious
problem with dropping incomplete cases is that the
complete cases are often a biased sample, i.e., the
missing data are not MCAR. The size of the resulting
bias depends on the degree of deviation from MCAR,
the amount of missing data, and the specifics of the
analysis. In particular, the bias in estimating the mean
of a variable is easily shown to be the difference in the

means for complete and incomplete cases multiplied
by the fraction of incomplete cases. Thus, the poten-
tial for bias increases with the fraction of missing
data (see Bias from Nonresponse). In sample sur-
veys this motivates strenuous attempts to limit unit
nonresponse through multiple follow-ups, and sur-
veys with high rates of unit nonresponse (say 30%
or more) are often considered unreliable for making
inferences to the whole population. For comparisons
of means [69] and more generally regression analy-
sis [59], the bias from CC analysis is often smaller.
Specifically, it yields valid inferences in regression
provided the model is correctly specified and miss-
ingness depends on the predictor variables, observed
or missing, but not on the outcome.

When data are MAR but not MCAR, a useful mod-
ification of CC analysis is to assign a nonresponse
weight to the respondents to remove or reduce non-
response bias. In probability sampling, a sampling
weight inversely proportional to the probability of
selection is often used to adjust for differential selec-
tion probabilities. If nonresponse is viewed as another
stage of probabilistic selection of units, then the prod-
uct of the probability of selection by design and the
probability of response given selection is the proba-
bility of being observed, and the inverse of this can
be used as a weight in the analysis. Whereas sample
design probabilities are known, nonresponse proba-
bilities are unknown and need to be estimated from
the data. A standard approach is to form adjustment
cells (or subclasses) on the basis of background vari-
ables measured for respondents and nonrespondents;
for unit nonresponse adjustment these are often based
on geographical areas or groupings of similar areas
based on aggregate socioeconomic data. All nonre-
spondents are given zero weight and the nonresponse
weight for all respondents in an adjustment cell is
then the inverse of the response rate in that cell. If
more than one background variable is measured, then
adjustment cells can be based on a joint classification,
collapsing small cells as necessary. For a health sur-
vey application (see Surveys, Health and Morbid-
ity), see Ezzati & Khare [15]. This method removes
the component of nonresponse bias attributable to
differential nonresponse rates across the adjustment
cells, and eliminates bias if within each adjust-
ment cell respondents can be regarded as a random
subsample of the original sample within that cell (i.e.
the data are MAR given indicators for the adjustment
cells).
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A useful alternative approach with more extensive
background information is response propensity strat-
ification, where (i) the indicator for unit nonresponse
is regressed on the background variables, using the
combined data for respondents and nonrespondents
and a method such as logistic regression appropriate
for a binary outcome; (ii) a predicted response prob-
ability is computed for each respondent based on the
regression in (i); and (iii) adjustment cells are formed
on the basis of a categorized version of the pre-
dicted response probability. Theory [56, 90] suggests
that this is an effective method for removing nonre-
sponse bias attributable to the background variables.
For a health survey application, see [30]. Robins
et al. [89] and Robins & Rotnitsky [88] apply a sim-
ilar weighting approach in the more general settings
of generalized estimating equations for repeated
measures analysis (see Longitudinal Data Analysis,
Overview) and multivariate regression.

Weighting methods can be useful for removing
or reducing nonresponse bias, but they do have seri-
ous limitations. First, information in the incomplete
cases is still discarded, so the method is inefficient.
Weighted estimates can have unacceptably high vari-
ance, as when outlying values of a variable are
given large weights. Secondly, variance estimation
for weighted estimates with estimated weights is
problematic. Explicit formulas are available for sim-
ple estimators such as means under simple random
sampling [82], but methods are not well developed
for more complex problems, and often ignore the
component of variability from estimating the weight
from the data. Bias and variance considerations aside,
statisticians rightly resist attempts to analyze data
selectively, and hence aim to analyze all the data to
the extent possible; alternatives to CC analysis that
incorporate the incomplete cases in a satisfactory way
are recommended unless the fraction of incomplete
cases is very small, say 10% or less.

Available-case (AC) analysis [65, section 3.3] is
a straightforward attempt to exploit the incomplete
information by using all the cases available to esti-
mate each individual parameter. For example, sup-
pose the objective is to estimate the correlation
matrix of a set of continuous variables Y1, . . . , Yp.
Complete-case analysis uses the set of complete
cases to estimate all the correlations; AC analysis
uses all the cases with both Yj and Yk observed to
estimate the correlation of Yj and Yk, 1 ≤ j, k ≤ p.

Since the sample base of available cases for mea-
suring each correlation includes the set of complete
cases, the AC method appears to make better use
of available information. The sample base changes
from correlation to correlation, however, creating
potential problems when the missing data are not
MCAR or variables are highly correlated. In the pres-
ence of high correlations, there is no guarantee that
the AC correlation matrix is even positive definite.
Haitovsky’s [32] simulations concerning regression
with highly-correlated continuous data found AC
markedly inferior to CC. However, Kim & Curry [44]
found AC superior to CC in simulations based on
weakly correlated data. Simulation studies comparing
AC regression estimates with maximum likelihood
(ML) under normality suggest that ML is superior
even when underlying normality assumptions are vio-
lated [4, 58, 81]. Although AC estimates are easy to
compute standard errors are more complex [109].
The method cannot be generally recommended.

Imputation

Methods that impute, or fill in, the missing values
have the advantage that, unlike CC analysis, observed
values in the incomplete cases are retained. A com-
mon naive approach imputes missing values by their
simple unconditional sample means (i.e. marginal
means). Wilks [111] and Afifi & Elashoff [1] dis-
cussed this method in bivariate settings. Uncondi-
tional mean imputation can yield satisfactory point
estimates of some parameters such as unconditional
means and totals, but it yields inconsistent esti-
mates of other parameters, even if the data are
MCAR. In particular, sample variances from the data
filled in by means clearly underestimate actual vari-
ances, since the imputed cases contribute zero to the
sum of squared deviations from the sample mean.
Unconditional mean imputation yields an inconsis-
tent estimate of the covariance matrix and distorted
estimates of association [65, Chapter 3]. Inferences
(tests and confidence intervals) based on the filled-
in data are seriously distorted by bias and overstated
precision. Thus, unconditional mean imputation can-
not be generally recommended.

An improvement over unconditional mean impu-
tation is conditional mean imputation, in which each
missing value is replaced by an estimate of its
conditional mean given the values of the observed
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values. For example, in the case of univariate non-
response with Y1, . . . , Yp−1 fully observed and Yp

sometimes missing, one approach is to classify cases
into cells on the basis of similar values of observed
variables, and then to impute missing values of Yp by
the within-cell mean from the complete cases in that
cell. A more general approach is regression imputa-
tion, in which the regression of Yp on Y1, . . . , Yp−1 is
estimated from the complete cases, including interac-
tions as needed, and the resulting prediction equation
is used to impute the estimated conditional mean for
each missing value of Yp . For a general pattern of
missing data, the missing values for each case can be
imputed from the regression of the missing variables
on the observed variables, computed using the set of
complete cases. Iterative versions of this method lead
(with some important adjustments) to ML estimates
under multivariate normality [6, 84].

Although conditional mean imputation incorpo-
rates information from the observed variables and
yields best predictions of the missing values in the
sense of mean square error, imputations should be
judged in terms of the quality of inferences about
population parameters from the filled-in data. From
this perspective, conditional mean imputation leads to
distorted estimates of quantities that are not linear in
the data, such as percentiles (see Quantiles), correla-
tions and other measures of association, and variances
and other measures of variability. A solution to this
problem is to use random draws rather than best pre-
dictions to preserve the distribution of variables in the
filled-in data set. An example is stochastic regression
imputation, in which each missing value is replaced
by its regression prediction plus a random error with
variance equal to the estimated residual variance.

In other approaches, imputations are drawn from
the actual values in the data set. A common version
of this method in longitudinal studies subject to attri-
tion is to carry the last observation forward in time
to fill out the dataset [87]. Clearly, this method is
making a very strong assumption about missing data:
that the missing values in a case are all identical to
the last observed value. Even if we accept the notion
that the average level of the variable does not change
after drop out, there is no fluctuation about that aver-
age. Little & Su [69] suggested better methods for
longitudinal imputation based on simple row and col-
umn fits. Another method that imputes respondent
values is the hot deck, as used by the Census Bureau
for imputing income in the Current Population Survey

(CPS) [33]. For each nonrespondent on one or more
income items, the CPS hot deck finds a matching
respondent on the basis of variables that are observed
for both; the missing items for the nonrespondent are
then replaced by the respondent’s values. For match-
ing purposes in the CPS, all variables are categorized,
and the number of variables used to define matches
is large. When no match can be found for a nonre-
spondent based on all of the variables, the CPS hot
deck searches for a match at a lower level of detail,
obtained by omitting some variables and collapsing
the categories of others. David et al. [8] compared
imputations from the CPS hot deck with imputa-
tions using a more parsimonious regression model
for income.

A more general approach to hot deck imputa-
tion is to define a distance function on the basis
of the variables that are observed for both nonre-
spondents and respondents. The missing values for
each nonrespondent are then imputed from a respon-
dent that is close to the nonrespondent in terms of
the distance function. One such method is predic-
tive mean matching [57, 95]. Consider, for simplicity,
univariate nonresponse, and suppose that a model
predicting Yp from the other variables Y1, . . . , Yp−1

has been estimated using the complete cases. For
each nonrespondent, predictive mean matching finds
a respondent whose predicted value of Yp is close
to the predicted value of the nonrespondent. The
respondent’s observed value of Yp is then imputed
to the nonrespondent. Lazzeroni et al. [51] showed
in simulations that this method in somewhat robust
to misspecification of the model used for matching.

The imputation methods discussed so far assume
the missing data are MAR. In contrast, models
that are not missing at random (NMAR) assert
that even if a respondent and nonrespondent to Yp

appear identical with respect to observed variables
Y1, . . . , Yp−1, their Yp values differ systematically.
Greenlees et al. [31] and Lillard et al. [54] discussed
how imputations for missing CPS data can be based
on NMAR models. It is also possible to create an
NMAR hot deck procedure; for example, respon-
dents’ values that are to be imputed to nonrespon-
dents could be multiplied by an inflation or deflation
factor that depends on the variables that are observed.
A crucial point about the use of NMAR models is
that often there is no direct evidence in the data to
address the validity of their underlying assumptions.
Thus, whenever NMAR models are being considered
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it is prudent to consider several NMAR models and
explore the sensitivity of analyses to the choice of
model [94] (see Sensitivity Analysis). See Little &
Wang [70] for an application of this idea to a longi-
tudinal study of treatments of schizophrenia.

A serious defect with imputation is that it seems to
be inventing data. More specifically, a single imputed
value cannot represent all the uncertainty about which
value to impute, so analyses that treat imputed val-
ues just like observed values generally underestimate
uncertainty, even if nonresponse is modeled correctly
and random imputations are created. Large-sample
results [97] show that for simple situations with 30%
of the data missing, single imputation under the
correct model results in nominal 90% confidence
intervals having actual coverages below 80%. The
inaccuracy of nominal levels is even more extreme
in multiparameter testing problems.

A modification of imputation that fixes this prob-
lem is multiple imputation (MI) [96, 98]. Instead of
imputing a single set of draws for the missing val-
ues, a set of M (say M = 5) data sets are created,
each containing different sets of draws of the miss-
ing values from their predictive distribution. We then
apply the analysis to each of the M data sets and
combine the results in a simple way. In particular
for scalar estimands, the MI estimate is the average
of the estimates from the M data sets, and the vari-
ance of the estimate is the average of the variances
from the five data sets plus 1 + 1/M times the sam-
ple variance of the estimates over the M data sets
(the factor 1 + 1/M is a small-M correction). The
last quantity here estimates the contribution to the
variance from imputation uncertainty, missed by sin-
gle imputation methods. Another benefit of multiple
imputation is that the averaging over data sets results
in more efficient point estimates than does single ran-
dom imputation. Often MI is not much more difficult
than doing a single imputation – the additional com-
puting from repeating an analysis M times is not a
major burden and methods for combining inferences
are straightforward. Most of the work is in generating
good predictive distributions for the missing values.

Maximum Likelihood for Ignorable
Models

Complete-case analysis and imputation both result
in rectangular data sets for analysis. But there are

statistical methods that let us analyze a nonrectan-
gular data set without having to impute the missing
values. One such approach is the method of maxi-
mum likelihood (ML) with associated large-sample
standard errors based on the information matrix.

The ML approach avoids imputation by formulat-
ing a statistical model and basing inference on the
likelihood function of the incomplete data. Define Y

and M as above, and let X = xij denote an n × q

matrix of fixed covariates, assumed fully observed,
with the ith row xi = xi1, . . . , xiq , where xij is the
value of covariate Xj for subject i. Covariates that are
not fully observed should be treated as random vari-
ables and modeled with the set of Yj s [64]. The data
and missing-data mechanism are modeled in terms of
a joint distribution for Y and M given X. Selection
models specify this distribution as

f (Y, M|X, θ, Ψ ) = f (Y |X, θ)f (M|Y, X, Ψ ), (1)

where f (Y |X, θ) is the model in the absence of
missing values, f (M|Y, X, Ψ ) is the model for the
missing-data mechanism, and θ and Ψ are unknown
parameters. The likelihood of θ and Ψ given the data
Yobs, M , and X is then proportional to the density of
Yobs and M given X regarded as a function of the
parameters θ and Ψ , and is obtained by integrating
out the missing data Ymis from (1), i.e.

L(θ, Ψ |Yobs, M, X)

= const ×
∫

f (Y, M|X, θ, Ψ ) dYmis. (2)

The likelihood of θ ignoring the missing-data mecha-
nism is obtained by integrating the missing data from
the marginal distribution of Y given X, i.e.

L(θ |Yobs, X) = const ×
∫

f (Y |X, θ) dYmis. (3)

The likelihood (3) is easier to work with than (2)
since it is computationally simpler and, more impor-
tantly, avoids the need to specify a model for the
missing-data mechanism, about which little is known
in many situations. Hence it is important to deter-
mine when valid likelihood inferences are obtained
from (3) instead of the full likelihood (2). Rubin [93]
showed that valid inferences about θ are obtained
from (3) when the data are MAR, i.e.

p(M|X, Y, Ψ ) = p(M|X, Yobs, Ψ ),

for all Ymis and Ψ.
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If, in addition, θ and Ψ are distinct in the sense
that they have disjoint sample spaces, then likelihood
inferences about θ based on (3) are equivalent to
inferences based on (2); the missing-data mechanism
is then called ignorable for likelihood inferences.
Large-sample inferences about θ for an ignorable
model are based on ML theory, which states that
under regularity conditions

θ − θ̂ ∼ Nk(0, C), (4)

where θ̂ is the value of θ that maximizes (3),
and Nk(0, C) is the k-variate normal distribution
with mean zero and covariance matrix C given by
the inverse of an information matrix; for example,
C = I−1(θ̂), where I is the observed information
matrix I (θ) = −∂2 log L(θ |Yobs, X)/∂θ ∂θT, or C =
J −1(θ̂ ), where J (θ) is the expected value of I (θ).
As in [65], (4) is written to be open to a frequentist
interpretation if θ̂ is regarded as random and θ fixed,
or a Bayesian interpretation if θ is regarded as
random and θ̂ fixed. Thus, if the data are MAR, the
likelihood approach reduces to developing a suitable
model for the data and computing θ̂ and C.

Likelihoods based on incomplete data often
have complicated forms and require iterative
maximization algorithms. In some situations the
method of factored likelihoods, first described by
Anderson [3], yields explicit ML estimates. The idea
is to transform θ to φ(θ) = [φi(θ), . . . , φQ(θ)],
where the components φ1, . . . , φQ are distinct,
and the likelihood of φ factors into the product
L(φ|Yobs, X) = ∏Q

q=1 Lq(φq |Yobs, X), where each
factor Lq(φq |Yobs, X) corresponds to a complete-data
problem or a simpler incomplete-data problem. The
ML estimate φ̂ = (φ̂1, . . . , φ̂Q) of φ is found by
maximizing each factor Lq(φq |Yobs, X) separately,
and the ML estimate of θ is then θ̂ = θ(φ̂), where
θ(φ) is the inverse transformation from φ to θ .
Consider, for example, bivariate normal data:

(
yi1

yi2

)
∼ind N2

((
µ1

µ2

)
,

(
σ11 σ12

σ12 σ22

))
,

and a monotone pattern with m complete cases
{(yi1, yi2) : i = 1, . . . , m} and n − m incomplete
cases {yi1 : i = m + 1, . . . , n} with Y2 missing. Let
θ = (µ1, σ11, µ2, σ22, σ12) and φ = (φ1, φ2), where
φ1 = (µ1, σ11), φ2 = (β20.1, β21.1, σ22.1), and β21.1 =
σ12/σ11, β20.1 = µ2 − β21.1µ1, σ22.1 = σ22 − σ 2

12/σ11

are, respectively, the slope, intercept, and residual

variance of the regression of Y2 on Y1. The ignorable
model likelihood of φ based on Yobs then factorizes
into the complete-data likelihood of φ1 based on the
n observations {yi1 : i = 1, . . . , n} and the complete-
data likelihood of φ2 for the regression of Y2 on
Y1 based on the m complete cases {(yi1, yi2) : i =
1, . . . , m}. Explicit expressions for the ML estimates
of φ and hence θ are readily obtained. In particular:

µ̂2 = β̂20.1 + β̂21.1µ̂1 = y2 − b21y1 + b21µ̂1

= y2 + b21(µ̂1 − y1),

where y1, y2 and b21 are the sample means of Y1 and
Y2 and least squares slope of Y2 on Y1 based on the
m complete cases and µ̂1 is the sample mean of Y1

based on all n cases. This is known as the regression
estimate (see Ratio and Regression Estimates) of
the mean of Y2, and is a well-known estimator from
double sampling in sample surveys. It is also the
average of observed and imputed values from regres-
sion imputation, discussed before. For further details
on this example, and applications to multivariate nor-
mal and multinomial data with a monotone missing
data pattern, see [91] or [65, Chapter 6].

The factored likelihood method does not work
in the above problem if incomplete cases on Y2

are also available. Here, and in many other prob-
lems, maximization of the likelihood requires numer-
ical methods. Standard optimization methods such
as Newton–Raphson or Scoring can be applied; for
example, Hartley & Hocking [34] applied a scoring
algorithm to multivariate normal data with missing
values, and Jennrich & Schluchter [42] applied mod-
ified scoring to unbalanced repeated-measures data.
Alternatively, the EM algorithm [10] can be applied,
a general algorithm for incomplete data problems that
provides an interesting link with imputation meth-
ods. The history of EM, which dates back at least to
McKendrick [73] for particular problems, is sketched
in [65]. For more recent work on extensions, see [77].

For ignorable models, let L(θ |Yobs, Ymis, X)

denote the likelihood of θ based on the hypothetical
complete data Y = (Yobs, Ymis) and covariates X. Let
θ(t) denote an estimate of θ at iteration t of EM.
Iteration t + 1 consists of an E-step and an M-step.
The E-step consists of taking the expectation of log
L(θ |Yobs, Ymis, X) over the conditional distribution
of Ymis given Yobs and X, evaluated at θ = θ(t).
That is, the expected log likelihood Q(θ |θ(t)) =∫

log L(θ |Yobs, Ymis, X)f (Ymis|Yobs, X, θ(t)) dYmis.
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is formed. When the complete data belong to an
exponential family with complete-data sufficient
statistics S, the E-step simplifies to computing
expected values of these statistics given the observed
data and θ = θ(t), thus in a sense “imputing” the
sufficient statistics [105].

The M-step determines θ(t+1) to maximize
Q(θ |θ(1)) with respect to θ . In exponential family
cases this step is the same as for complete data,
except that the complete-data sufficient statistics S

are replaced by their estimates from the E-step.
Thus, the M-step is often easy or available with
existing software, and the programming work is
mainly confined to E-step computations. Under very
general conditions, each iteration of EM increases the
log likelihood, and under more restrictive but still
general conditions EM converges to a maximum of
the likelihood function [112]. If a unique finite ML
estimate of θ exists, then EM will find it.

Little & Rubin [65] provided many applications of
EM to particular models, including: (i) multivariate
normal data with a general pattern of missing val-
ues and the related problem of multivariate lin-
ear regression with missing data [6, 84]; (ii) robust
inference based on multivariate t models [50, 58];
(iii) loglinear models for multiway contingency
tables with missing data [21]; and (iv) the general
location model for mixtures of continuous and cat-
egorical variables [68, 83], which yields ML algo-
rithms for logistic regression with missing covari-
ates [108]. Schluchter & Jackson [102] provided an
EM algorithm for survival analysis with missing
covariates. An extensive bibliography of the myriad
of EM applications is given in [74].

The EM algorithm is reliable, but has a linear con-
vergence rate determined by the fraction of missing
information, as defined in [10]. When the fraction
of missing information is large, convergence can be
painfully slow. Meng & Van Dyk [77] showed how
the clear choice of the missing data can be used to
speed convergence. There is an extensive literature on
extensions and enhancements of EM for cases where
the E- or M-step is hard or slow [17, 18, 41, 47,
48, 71, 76, 77]. EM does not involve computation
and inversion of an information matrix based on the
observed data. This makes the algorithm particularly
attractive in problems where the number of param-
eters is large, as in ML algorithms for biomedical
imaging, such as positron emission tomography [17,

18, 49, 103] (see Image Analysis and Tomogra-
phy). This feature of EM has the disadvantage that
asymptotic standard errors based on the inverse of
the information matrix are not an output. An informa-
tion matrix can be computed and inverted separately.
Alternative approaches to computing standard errors
are to use the formulas in [72], to build an infor-
mation matrix from supplemental EM steps [75], to
use bootstrap methods [14, 58], or to switch to a
Bayesian simulation method that simulates the pos-
terior distribution of θ (see below).

Maximum Likelihood for Nonignorable
Models

Ignorable ML is appropriate when the data are MAR.
Nonignorable, non-MAR models apply when miss-
ingness depends on the missing values. For example,
if a subject dropped out of the longitudinal study
when his/her blood pressure got too high and we did
not observe that blood pressure, or if in an analgesic
study measuring pain, the subject dropped out when
the pain was high and we did not observe that pain
value, missingness depends on the missing value. A
correct likelihood analysis must be based on the full
likelihood from a model for the joint distribution of
Y and M . The standard likelihood asymptotics apply
to nonignorable models provided the parameters are
identified, and computational tools such as EM also
apply to this more general class of models. How-
ever, often information to estimate simultaneously
the parameters of the missing-data mechanism and
the parameters of the complete-data model is limited,
and estimates are sensitive to misspecification of the
model. Often a sensitivity analysis is needed to see
how much the answers change for various assump-
tions about the missing-data mechanism.

There are two broad classes of models for the joint
distribution of Y and M. Selection models model the
joint distribution as in (1). Pattern-mixture models
specify

f (Y, M|X, π, φ) = f (Y |X, M, φ)f (M|X, π), (5)

where φ and π are unknown parameters and now
the distribution of Y is conditioned on the missing-
data pattern M [29, 60, 65, 94]. Eqs (1) and (5)
are simply two different ways of factoring the joint
distribution of Y and M . When M is independent of
Y the two specifications are equivalent with θ = φ
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and ψ = π . Otherwise (1) and (5) generally yield
different models.

Most of the literature on missing data has con-
cerned selection models of the form (1) for univari-
ate nonresponse. Examples are the probit selection
model [2, 36], and the closely related logit model of
Greenlees et al. [31], extended to repeated-measures
data in [11]. The sensitivity of answers to model
misspecification is discussed in [[29; 55; 65], Chap-
ter 11; [104]] and the discussion in [11]. Nonignor-
able models for contingency tables are discussed in
[5; 16; 65, Chapter 9; [86]].

Pattern-mixture models seem more natural when
missingness defines a distinct stratum of the popula-
tion of intrinsic interest, such as individuals report-
ing “don’t know” in an opinion survey. However,
pattern-mixture models can also provide inferences
for parameters θ of the complete-data distribution by
expressing the parameters of interest as functions of
the pattern-mixture model parameters φ and π . An
advantage of the pattern-mixture modeling approach
over selection models is that assumptions about the
form of the missing-data mechanism are sometimes
less specific in their parametric form, since they are
incorporated in the model via parameter restrictions.
This idea is explained in specific normal models
in [61] and [70].

Heitjan & Rubin [40] and Heitjan [39] extended
the formation of missing-data problems via the joint
distribution of Y and M to more general incom-
plete data problems involving coarsened data. The
idea is to replace the binary missing-data indicators
M = {mij } by random coarsening (see Coarsening
at Random) variables G = {gij }, which map the yij

values to coarsened versions zij (yij ). Particular val-
ues of gij could map yij to “completely observed”
and “completely missing”, as with mij above, but
other values of gij might map yij into other sets,
for example a finite interval would correspond to
interval censoring. The data are then defined as
coarsened completely at random or coarsened at ran-
dom depending on whether the distribution of G is
independent of Y , or depends on Y only through
observed data. Full and ignorable likelihoods can be
defined for this more general setting. This theory
provides a bridge between missing-data theory and
theories of censoring (see Censored Data) in the sur-
vival analysis literature. For biomedical applications,
see [38].

Bayesian Simulation Methods

Maximum likelihood is most useful when sample
sizes are large, since then the log likelihood is nearly
quadratic and can be summarized well using the ML
estimate θ and its large sample variance–covariance
matrix. When sample sizes are small, a useful alter-
native approach is to add a prior distribution for the
parameters and compute the posterior distribution of
the parameters of interest. For ignorable models this
posterior is

p(θ |Yobs, M, X) ≡ p(θ |Yobs, X) = constp(θ |X)

× f (Yobs|X, θ),

where p(θ |X) is the prior and f (Yobs|X, θ) is the
density of the observed data. Since the posterior
distribution rarely has a simple analytic form for
incomplete-data problems, simulation methods are
often used to generate draws of θ from the posterior
distribution p(θ |Yobs, M, X). I outline two of these
simulation methods for the ignorable case, although
the techniques can also be applied to nonignorable
models.

For missing data problems where the likeli-
hood can be factored into complete-data compo-
nents, L(φ|Yobs, X) = ∏Q

q=1 Lq(φq |Yobs, X) and the
parameters φ1, . . . , φQ are also a priori independent,
the posteriors of φ1, . . . , φQ are also independent,
and draws φ(d) = (φ

(d)
1 , . . . , φ

(d)
Q ) can be obtained

directly from the complete-data posterior distribu-
tions. Draws of θ are then obtained as θ(d) = θ(φ(d)),
where θ(φ) is the inverse transformation from φ to
θ . This method is analogous to the factored likelihood
method for ML estimation described above. For an
application to normal data see [65, Chapter 6].

Data augmentation [107] is an iterative method
for simulating the posterior distribution of θ that
combines features of the EM algorithm and multiple
imputation, with M imputations of each missing
value at each iteration. It can be thought of as a
small-sample refinement of the EM algorithm using
simulation, with the imputation step corresponding
to the E-step and the posterior step corresponding
to the M-step. An important special case of data
augmentation arises when M is set equal to one,
yielding the following special case of the Gibbs’
sampler [22, 25] (see Markov Chain Monte Carlo).
Start with an initial draw θ(0) from an approximation
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to the posterior distribution of θ . Given a value θ(t)

of θ drawn at iteration t :

1. draw Y
(t+1)
mis with density p(Ymis|Yobs, X, θ(t));

2. draw θ(t+1) with density p(θ |Yobs, Y
(t+1)

mis , X).

The procedure is motivated by the fact that the
distributions in 1 and 2 are often much easier to
draw from than the correct posterior distributions,
p(Ymis|Yobs, X) and p(θ |Yobs, X). The iterative pro-
cedure can be shown in the limit to yield a draw
from the joint posterior distribution of Ymis and θ

given Yobs and X. The algorithm was termed chained
data augmentation in [106]. This algorithm can be
run independently K times to generate K i.i.d. draws
from the approximate joint posterior distribution of
θ and Ymis. A number of articles [23, 24, 26, 107]
have discussed techniques for monitoring the con-
vergence of the algorithms. Schafer [100] developed
algorithms that use iterative Bayesian simulation to
multiply impute rectangular data sets with arbitrary
patterns of missing values when the missing-data
mechanism is ignorable. The methods are applicable
when the rows of the complete-data matrix can be
modeled as i.i.d. observations from the multivariate
normal, multinomial loglinear, and general location
models.

Methods for Unbalanced
Repeated-Measures Data

I conclude by reviewing methods for longitudinal
data with unequal numbers of measurements between
subjects. For normal outcomes and ignorable missing
data, a wide range of problems can be tackled using
the random-effects model:

(yi |Xi, βi) ∼iid Nk(X1iα + X2iβi, Σ),

βi |Xi ∼iid Nq(0, Γ ),

where Np(α, B) denotes the p-variate normal dis-
tribution with mean α covariance matrix B; X1i is
a known (K × p) design matrix containing fixed
within-subject and between-subject covariates, with
associated unknown (p × 1) parameter vector α; βi

is an unknown (q × 1) random-coefficient vector;
and X2i is a known (K × q) matrix for model-
ing the random effects. Estimation for this model
is discussed in [35, 42, 46], and ML estimation is

currently available in SAS Proc Mixed [99], or the
BMDP program BMDP5V [12] (see Software, Bio-
statistical). For Bayesian inference using the Gibbs’
sampler, see [28].

For longitudinal categoric data with unequal num-
bers of measurements, standard loglinear models are
unsatisfactory because of the conditional interpre-
tation of the parameters. ML methods have been
proposed on the basis of marginal multinomial mod-
els (see Marginal Models) [43, 115]. An alternative
approach is to assume categoric outcomes are indica-
tors for underlying continuous outcomes that follow
a normal model [27, 37]. Nonlikelihood approaches
include the weighted least squares methods [45], and
iterative methods based on generalized estimating
equations [20, 52, 53, 85, 89]. Another approach is
analysis by summary measures, in which we obtain a
summary measure for each individual and then ana-
lyze it across the subjects.

A variety of nonignorable pattern-mixture and
selection models for drop outs in longitudinal data
have been proposed, including models for informative
drop out where drop out depends on underlying unob-
served slopes characterizing a patient’s decline [9,
62, 79, 101, 110, 113, 114]. An advantage of pattern-
mixture models in this setting is that this part of
the model can usually be fit using standard software
such as PROC MIXED [99] by simply including
the drop out indicator as a covariate in the model
for the distribution of the yis. Nonignorable models
for repeated-measures categorical data are considered
in [7] and [78].
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Misspecification

Statistical models specify the density of a response
random variable Y . This density depends on param-
eters which often relate to a specified function of
explanatory variables, or covariates X. The param-
eters of the density and of the function of covariates
are typically unknown and the statistical problem is
to use a sample of data to calculate accurate estimates
of the unknown parameters along with measures of
uncertainty associated with the estimates.

In practice, data analysts often choose a particular
statistical model because it is easy to work with math-
ematically or is simple to fit using easily available
software. For example, when one wants to assess the
association of an explanatory variable with an out-
come, it is tempting to fit a linear regression model,
since this model is easy to fit and describe.

However, there may exist a more accurate spec-
ification of a statistical model than that chosen by
an analyst. That is, there may be densities that fit
the data better and functions of the covariates that
better describe their relationship with the response.
When this occurs, we have misspecified the statis-
tical model. This misspecification may be due to
either an incorrect conceptual understanding of the
phenomenon under study or an inability to collect
data on all the relevant factors related to the outcome
under study. Model misspecifications include choos-
ing the incorrect link function or omitting important
covariates with generalized linear models, incor-
rectly assuming independence of observations or
misspecifying the within-cluster dependence struc-
ture with clustered data (see Cluster Analysis of
Subjects, Hierarchical Methods), misspecifying the
mixing distribution in generalized linear mixed mod-
els, and wrongly assuming proportional hazards
with survival data.

Effects of Model Misspecification

Model misspecification can produce biased or
inefficient estimates (see Efficiency and Efficient
Estimators) of the associations of covariates
with the response, invalid variance estimates,
and less powerful tests of hypotheses concerning
covariate–response associations (see Power). To
examine effects of model misspecification such as

bias and loss of efficiency, we must calculate the
expected value and variance of estimators obtained
from the misspecified model with respect to the true,
underlying density of the responses. When we obtain
estimators by maximizing an assumed likelihood,
further theory is available. Suppose that we use
maximum likelihood to fit a model that assumes
that the response Y follows a distribution F with
parameter vector ξ ∗ and covariates XF , while, in
truth, Y follows a distribution G with parameter
vector ξ and covariates XG such that XF is a
subset of XG. The work of Huber [3], Akaike [1] and
White [10, 11] shows that the “maximum likelihood”
estimator, ξ̂ ∗, under the false model converges to
the value ξ ∗ that minimizes the Kullback–Leibler
divergence [4] between the true and misspecified
models. That is, ξ ∗ minimizes

EXG
EY |XG

log

{
g(y|ξ , XG)

f (y|ξ ∗, XF )

}
, (1)

where g and f are the true and misspecified response
densities, and one takes the expectation with respect
to the true model. Thus, when we maximize the
incorrect likelihood, we obtain the parameters of
the misspecified model that minimize the average
difference between the logarithms of the true and
misspecified densities. White [10, 11] further showed
that ξ̂ ∗ has an asymptotic normal distribution with
var(ξ̂ ∗) given by a matrix product of the form

var(ξ̂ ∗) = A−1(ξ ∗)B(ξ ∗)A−1(ξ ∗), (2)

where

A(ξ ∗) = EX,ZEY |X,Z

[
∂2 log PF (Y = y|ξ ∗, X)

∂ξ ∗
i ∂ξ ∗

j

]
,

B(ξ ∗) = EX,ZEY |X,Z

[
∂ log PF (Y = y|ξ ∗, X)

∂ξ ∗
i

× ∂ log PF (Y = y|ξ ∗, X)

∂ξ ∗
j

]
,

and expectations are with respect to the true model
with G. The matrix A involves the information
from the misspecified likelihood, while the matrix
B involves the true variance–covariance structure of
the responses. Under correct model specification, i.e.
f = g, A = B.

Further results are available in other settings. For
example, Li & Duan [5] considered the case where
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the responses follow a generalized linear model with
slope parameter vector γ , but one fits a model that
misspecifies the link function. Li & Duan showed that
the estimated slope γ̂ ∗ from the misspecified model
typically consistently estimates γ up to a scale factor.
That is, E(γ̂ ∗) = cγ , for a constant c. Thus, one can
still consistently estimate ratios of slope coefficients,
γi/γj with a misspecified link function.

Solomon [8] and Struthers & Kalbfleisch [9] de-
rived analogous results for survival models. These
authors considered the effect of fitting a proportional
hazards model when the data actually follow an
accelerated failure–time model and vice versa, and
found that the asymptotic expectation of the estimated
regression coefficients of the misspecified models was
approximately proportional to the true coefficients.

An Example: Omitted Covariates

We illustrate these results by examining the effects
of omitted covariates in logistic regression models.
We suppose that Y is a binary outcome, X and Z are
covariates, and that the true model for the probability
of response is

logit Pr(Y = 1|X, Z) = µ + βX + γZ. (3)

To these data we fit the misspecified model

logit Pr(Y = 1|X) = µ∗ + β∗X. (4)

Minimizing the Kullback–Leibler divergence, given
in (1), in µ∗ and β∗, we obtain

EX,ZEY |X,Z

{
1

[1 + exp(−µ − βX − γZ)]

− 1

[1 + exp(−µ∗ − β∗X)]

}
= 0,

EX,ZEY |X,Z

{
X

[1 + exp(−µ − βX − γZ)]

− X

[1 + exp(−µ∗ − β∗X)]

}
= 0.

Thus, µ∗ and β∗ will depend on the true values µ

and β and the joint distribution of X and Z. If X and
Z are independent, then it follows that

[1 + exp(−µ∗ − β∗X)]−1

= EZ[1 + exp(−µ − βX − γZ)]−1 (5)

and that β∗ = 0 solves (5) when β = 0. Expanding
the logit of (5) in a Taylor series about β = 0 yields

µ∗ + β∗X ≈ log

[
E(p)

E(q)

]
+ βX

[
1 − var(p)

E(p)E(q)

]
,

(6)

where logit(p) = µ + γZ and q = 1 − p. Since
var(p) ≤ E(p)E(q), we have |β∗| ≤ |β|, so omitting
the covariate Z leads to attenuated estimates of the
effect of X (see Shrinkage).

We compute variances of the estimators obtained
from the misspecified, omitted covariate model
using (2) and calculate the asymptotic relative
efficiency (ARE) of β̂∗ to β̂ as

ARE(β̂∗ to β̂ at β = 0)

=
[

lim
β→0

{
∂

∂β
β∗

} {
∂

∂β
β

}−1
]2 [

lim
β→0

var(β̂)

var(β̂∗)

]
.

The ARE involves the variances of β̂ and β̂∗ as well
as the relationship between the parameters that these
estimators estimate. Since β∗ = 0 when β = 0, it is
appropriate to compare variances and estimation effi-
ciency at this value. When X and Z are independent,
these calculations yield

ARE(β̂∗ to β̂ at β = 0) = 1 − var(p)

E(p)E(q)
. (7)

Thus, misspecifying a logistic regression model by
omitting a covariate Z, that is independent of the
included X, leads to attenuated estimates of the asso-
ciation of X with the response and less powerful tests
of the hypothesis that X is not associated with the
response.

The two-by-two tables in Tables 1 and 2 further
illustrate this special form of model misspecification.
Suppose that Y is a binary outcome, X and Z are
binary covariates, and that the true model for the

Table 1 Hypothetical data from a logistic model

Z = 0 Z = 1

X = 1 X = 0 X = 1 X = 0

Y = 1 90 75 165 Y = 1 50 25 75
Y = 0 10 25 35 Y = 0 50 75 125

100 100 200 100 100 200
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Table 2 Data from Table 1 combined over levels of
Z

X = 1 X = 0

Y = 1 140 100 240
Y = 0 60 100 160

200 200 400

probability of response follows (3). Suppose, further-
more, that the observations arising from this model
are as given in Table 1.

Each two-by-two table in Table 1 leads to an
estimate β̂ = log 3 and a fitted logistic regression
model using both X and Z as covariates yields β̂ =
log 3 with associated standard error se(β̂) = 0.244
and statistic for a Wald test (see Likelihood) of
H0 : β = 0 of [β̂/se(β̂)]2 = 20.29. Note that Pr(X =
1) is the same for Z = 0 and Z = 1, indicating
that X and Z are independent. Combining the data
over Z, that is, omitting Z and fitting the model
given in (4) using the combined table, as given in
Table 2, leads to an attenuated estimate of β̂∗ =
log 7/3 with associated standard error se(β̂∗) = 0.209
and Wald test of H0 : β = 0 of [β̂∗/se(β̂∗)]2 = 16.44.
Omitting Z not only leads to an attenuated estimate
of the effect of X on Y but also to a less powerful
test of the hypothesis that X has no effect on Y .
To illustrate the quality of the approximation given
in (6), applying the Taylor approximation in (6) to the
data from Tables 1 and 2 suggests that β∗/β = 0.75,
which corresponds closely to the observed value of
0.77. Applying the ARE formula given in (7) to
Tables 1 and 2 yields an ARE value of 0.79. This
closely corresponds to the observed ratio of the Wald
test based on β̂∗ to that based on β̂ of 0.81. The
analogous ratio of likelihood ratio test statistics
is 0.78.

Detection of Model Misspecification

One uses diagnostic methods such as residual plots
to examine whether a statistical model adequately
describes a given data set; that is, whether one has
correctly specified the model. Chapter 12 of McCul-
lagh & Nelder [6] and Chapter 4 of Fahrmeir &

Tutz [2] describe many such approaches. These diag-
nostic procedures include plots to examine the ade-
quacy of assumed link and variance functions and the
scale of the model covariates, as well as methods in
which one embeds the chosen model within a larger
class and tests to see whether a model in the larger
class provides a much more accurate description of
the data (see Goodness of Fit).

Since the matrices A and B in the variance
formula given in (2) are equal with correct model
specification, one could compare estimates of these
two matrices to examine model adequacy. Indeed,
Royall [7] recommends estimating variances of
estimated model parameters by plugging estimates Â
and B̂ into (2) to provide inference that is robust to
model misspecification.
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Mode

The population mode of a variable is that value
of the variable which is possessed by the greatest
number of members of the population. Empirically,
the mode may be described as the most frequently
occurring value in a sample of observations. It is
much used to summarize nominal data; for example,
the most common blood group, most common eye
color, most common type of operation carried out in a
particular hospital, and so on. It is occasionally used
as a measure of location for continuous variables,
but is only really suitable for those with symmetric
unimodal distributions. For a symmetric distribution,
the mean, median, and mode coincide.

In more formal terms, if f (x) is a probability
density function with continuous first derivative, a
mode is a value of x for which

df (x)

dx
= 0,

d2f (x)

dx2
< 0.

Thus there may be more than one mode of a distribu-
tion. An example of a bimodal distribution is shown
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Figure 1 A bimodal density function

in Figure 1. Empirical examples of such distributions
are not common, but an example of a histogram
with two distinct modes is shown in Figure 2. The
data here correspond to the sizes of myelinated lum-
bosacral ventral root fibers taken from a kitten of
a particular age. The first mode is associated with
axons of gamma neurons and the second with alpha
neurons.

Tests for modes and for possible multimodality
of density functions are important in, for example,
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Figure 2 A histogram of myelinated lumbosacral ventral root fiber sizes from a kitten of a particular age
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cluster analysis; a number of such tests are described
in [1, 2], and [3].
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Model Checking

A statistical model is an artificial construction and, as
such, must be tested before use – indeed, it is often
the deficiencies of a “first-guess” model which point
the way towards an increased understanding of the
behavior of a system. Modeling is (or should be) an
iterative process, successively updating and checking
a model until it is deemed to be adequate. Note that
the adequacy of a model generally depends on its
intended use – the question is not, “Is the model
correct?” but rather, “Will it do the job?”.

All models aim to describe, or explain, the behav-
ior of some quantities of interest (the outcome or
response variable in a statistical context), usually in
terms of their relationship to other quantities (predic-
tor or explanatory variables). Checking a model,
therefore, involves asking two questions:

1. Is the model structure realistic (in the sense that
it either reflects prior knowledge of the system
being studied, or represents relationships that are
empirically observed)?

2. How closely does it describe the observed behav-
ior of the response variables?

Answering the first of these questions is largely a
subjective affair requiring expert knowledge of the
system being modeled; however, there are simple
basic checks that can be made – for example, if one of
the response variables is a proportion, does the model
always yield values between 0 and 1? A good model
should have such features built into it by design (see
Model, Choice of), so this will not be discussed
further here.

Answering the second question requires data anal-
ysis. In ideal circumstances, it may be possible to
fit a model using one set of data and calibrate it
using another. However, in biostatistical applications
data are usually sufficiently scarce that this is not
possible, and model fitting and checking are carried
out using the same data. Techniques for assessing
model adequacy are wide-ranging, and may be for-
mal or informal. They all involve some measure of
(dis)agreement between data and model – whether
through some sort of residual analysis (see Resid-
uals), where agreement equates to having observed
data values which are similar to those predicted by the
model, or through likelihood-based methods, where
agreement is synonymous with the data values having

high plausibility under the model. Departures from
the model may be either isolated, where individual
data points fall outside the general pattern, or sys-
tematic. We briefly outline techniques which may be
appropriate for detecting these departures from the
fitted model. Good accounts of the general ideas may
be found in [6] and in [11, Chapter 12].

General Methods

When the response variable(s) are continuous
(or ordinal with several categories; see Ordered
Categorical Data), perhaps the simplest informal
checks of a model are provided by visual inspection
of residual plots. The most common plots show
appropriately standardized residuals as some function
of the model fitted values, or of explanatory variables.
Isolated departures from the model are easily spotted
using such plots; systematic departures may be
indicated if any pattern is discernible, although a
merely visual assessment can be misleading. A
thorough treatment is given in [2].

Closely related to the idea of residual plots is
that of comparing predicted responses from the fitted
model with those obtained from the same data
using nonparametric methods. This approach allows
formal diagnostic procedures (see Diagnostics) to be
established for checking the validity of a parametric
model. Examples of these ideas may be found in [3,
4], and [7]; a straightforward overview is given
in [1].

When a response variable is discrete, graphical
methods of model checking are usually less straight-
forward. If the predictor variables are also discrete so
that the data arise as a contingency table, standard-
ized residuals may be computed for each cell in the
table, and the resulting table of residuals inspected
visually. The model may be inadequate if any residu-
als deviate significantly from zero, or if there appears
to be a pattern to the residuals in some part of the
table (for example, if there is a block of cells where
all the residuals are negative). In cases where the
predictor variables are continuous (for example, in
logistic regression) residuals are harder to define –
some techniques are given in [9].

Finally, goodness-of-fit tests (see Goodness of
Fit) provide a quick and simple method of checking
the fit of a model, although it should be stressed that
these tests are usually quite general and may lack
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power; they should always be supplemented by an
examination of residuals.

Isolated Departures

Isolated departures from a model may not, in them-
selves, indicate that the model is a poor one for
the purposes for which it was intended: it may be,
for example, that data values have been wrongly
recorded, or that the discrepancies occur at the
extremes of the available data where the model is
not expected to apply. It is always worth examin-
ing the original data record in such cases, as this can
often provide an insight into why the model is failing.
Many of the considerations which arise in the detec-
tion and assessment of outliers apply equally well in
this context.

When an individual data point is suspect, yet is not
obviously wrong, its effect upon the fitted model must
be examined. In general, techniques for determining
the influence of an individual point involve removing
it and refitting the model. The deletion residual for a
case is defined as the difference between the observed
data value and that predicted by the refitted model,
and is a measure of the consistency of that case with
the rest of the data. Other statistics, such as the Cook
statistic [11, p. 406], seek to quantify the effect of a
point upon the estimated model parameters.

If individual cases are found to have a signifi-
cant effect upon the fitted model, it may be worth
refitting the model using some robust estimation pro-
cedure (see Robustness; Robust Regression) so as
to downweight the contribution of the suspect points.
This usually entails some modification of the clas-
sical distribution theory used in procedures such as
goodness-of-fit testing; discussion of these issues may
be found in [5, 12, 14].

Systematic Departures

Plotting residuals against predictor variables can be
very helpful in identifying systematic discrepancies
between model and data – if there is pattern in the
plot of residuals against a predictor X, this implies
that it is some function of X, rather than X itself,
which should be used as a predictor.

Systematic discrepancies generally indicate that
the overall pattern of a system’s behavior is not
adequately represented by the modeled relationships

between the various components of that system. To
check formally for such discrepancies requires some
intuition regarding directions in which the model
may be improved. Formal methods for checking the
adequacy of a model involve embedding it in a wider
class of models, and carrying out hypothesis tests to
determine whether or not anything is to be gained
from extending the model. Clearly, the wider class of
models needs to be chosen with some care to yield
informative results.

The references below describe techniques for
model checking across a broad range of subject areas.
In addition to those already cited, [15] is included for
its comprehensive survey of the literature in a time
series context, [10] contains material that is of use in
survival analysis (see Survival Analysis, Overview),
and [8] and [13] give a Bayesian perspective (see
Bayesian Methods).
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Model, Choice of

Choosing and fitting statistical models to data occu-
pies a large proportion of the time of many medical
statisticians. It is an activity that requires the use of
many specific and well-defined techniques, such as
using a certain algorithm to fit a model or calculat-
ing a particular diagnostic. However, the sequence
of techniques used to select a model and decide its
suitability will owe more to experience and judgment
than technical expertise. Statistical modeling provides
one of the best illustrations of Healy’s remark that
the practice of statistics is not a science but “that
blend of knowledge and practical know-how” that he
describes as a technology [15]; in this respect statis-
tics has much more in common with medicine than
is often supposed.

The present article describes, in broad outline, the
issues that surround the choice of a statistical model.
It has already been mentioned that experience and
judgment play a greater role in this area of statistics
than in many others, so many of the views expressed
will inevitably have a marked personal component.
On the other hand, while all the examples are med-
ical, many of the issues discussed will be familiar
to statisticians, whatever their area of application.
Cox [10] provides a more general view of statistical
modeling.

Constraints on space mean that most of the arti-
cle will concentrate on the position when the data
have been collected. The reader should, however,
be aware that the design of a study can be greatly
enhanced if the nature of the model that will be used
is borne in mind at that stage (see Experimental
Design).

In practical terms, a statistical model can be
thought of as a tool that allows the statistician to
determine and describe the relationships between
variables in the data, and to quantify the varia-
tion present. At a deeper level there remains some
uncertainty surrounding modeling [20]. The choice
of a model depends on many things, but in most
instances, the purpose of the study, the existing
knowledge about the system under investigation, and
how well the model fits the data are likely to be
paramount.

Modeling in Clinical Trials and
Epidemiology

Randomized Controlled Trials

Randomized controlled trials do not, as a rule,
require much by way of statistical modeling
(see Clinical Trials, Overview). The comparison of
randomized groups can be based on a very general
model of unit treatment additivity and the act of
randomization. Crossover trials are not considered
because they have special problems; similar concerns
apply to cluster-randomized studies (see Group-
randomization Designs), which are also excluded.

Some aspects of model choice do arise in con-
nection with the outcome variable. For example, is a
proportional hazards model suitable for an outcome
that is a survival time, and, if so, is a fully para-
metric specification such as a Weibull distribution
to be preferred to a semiparametric Cox regression
model? The choice in this example may be based on
how well the Weibull model fits, although other con-
siderations, such as whether predictions of survival
times are required, may also play an important role.

In smaller trials, the investigators may be reluc-
tant to rely wholly on the randomization to produce
comparable treatment groups. In these circumstances
important prognostic variables can be used in an
analysis of covariance. Decisions on which variables
to include as covariates are usually not based on the
data but have been identified a priori, in the trial pro-
tocol, where the considerations will have had a med-
ical rather than statistical emphasis. This approach
simplifies and strengthens the statistical analysis but
it does not settle the matter entirely; for example, it
may not be practical to specify, before the data are
collected, the form in which the prognostic variables
should enter the model. However, even in small stud-
ies, randomization should have produced groups that
are fairly closely matched, and it is probably reason-
able to view the model as providing a correction to
a small imbalance, and the form of the variables is
unlikely to be a major problem.

Although there are aspects of randomized con-
trolled trials that may require some statistical model-
ing, it is of the utmost importance to remember that
these are secondary considerations. The primary aim
of the trial is to provide an estimate of the treatment
effect and there is no direct interest in the model.
If a model has been used in the analysis, then it is
likely that some aspects of the model, such as the
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inclusion of a variable the prognostic value of which
is widely accepted, will be unchallenged, whereas
other aspects, such as the inclusion of other variables,
the form in which they are included (e.g. linear or
quadratic), or the use of a Weibull distribution, may
be less widely accepted. The trial will be weakened if
the size of the estimate is crucially dependent on less
well-founded aspects of the model; if the direction of
the effect is dependent on these aspects, then the trial
will be seriously undermined. In practical terms, the
analyst can simply try a range of plausible models
and observe their effect on the size and precision of
the estimate of the treatment effect.

Modeling in trials is relatively straightforward,
because the primary aim of the analysis is clear
and because randomization should have relegated
modeling to a subsidiary role.

Epidemiologic Studies

The discussion in this section is restricted to various
types of case–control and cohort studies. Other
forms of study could, undoubtedly, qualify under this
heading and some of these, for example screening
programs and projections of the number of AIDS
cases, are considered in later sections.

In common with clinical trials, these studies usu-
ally have a clear aim that is readily summarized,
usually by a relative risk or odds ratio. For exam-
ple, they may be concerned with quantifying the
risk of contracting some disease in those exposed to
some hazard, relative to those not exposed. Unlike
the situation in clinical trials, randomization can-
not be used to produce groups that are comparable
in all respects except exposure. Consequently, the
investigator must rely on matching and on statisti-
cal modeling to adjust for differences in confounding
variables. Deciding which variables to include in the
model can be problematic, and some relevant issues
of more general application will be touched on later.
However, attempts to specify as much as possible of
the model a priori can help. Also, considering the
effect on important relative risks of using different
plausible models is useful.

In a particular application it is likely that the
problems of variable selection will be the main con-
cern of the statistician. Apart, perhaps, from paying
some attention to additive and multiplicative risks,
the underlying form of the models will not be seri-
ously questioned. This is because the considerations

which have shaped these models tend to occur at a
more general level than the individual study. Pois-
son regression or Cox regression for cohort studies
and conditional or unconditional logistic regression
for case–control studies arise because of the sam-
pling schemes, general properties of binary data and
statistical theory [5, 6]. In some areas of applica-
tion, deeper, subject-specific justification of statistical
models may be available, such as cancer epidemiol-
ogy, in which multistage carcinogenesis models can
provide guidance.

Modeling in General Biostatistics

The primary aims of randomized trials and epidemi-
ologic investigations differ little from study to study.
Other kinds of medical investigation, or even sec-
ondary analyses of trials or epidemiologic studies,
can have much more diverse aims and, accordingly,
the way in which models are chosen is much more
varied. In choosing a model the analyst is guided by
two distinct sets of considerations; namely, the pur-
pose to which the model will be put, and the amount
of quantitative information about the structure of the
system being modeled. It is possible that quite dif-
ferent models of the same system may be needed for
different purposes.

If we are trying to understand the relationship
between some outcome, y, and other variables, writ-
ten as a vector x, then a common approach is to
assume that

E(y) = xTβ, (1)

where β is a vector of regression coefficients. This
may be adequate, but there is usually no reason why
this form of relationship should hold. Such empirical
models inevitably fail to carry much conviction; mod-
els which are based on a deeper consideration of the
underlying system are intrinsically more compelling.
For example, predictions based on such models will
be grounded not only in the data used to fit the model,
but also in the theory which gave rise to it. Like-
wise, associations between y and an element of x may
be missed by (1) because of its linear form. Even if
an association is found using (1), it may have lim-
ited value because the mechanism of the association
has not been elucidated. Finally, fitting a theoretically
based model allows the theory to be examined and
possibly extended.

The main obstacle to the high-sounding sentiments
just expressed is that in most areas of biostatistics
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there is no suitable theory, and even when a sem-
blance of one does exist, the guidance it offers is
often partial. To illustrate this, three examples of
models that are, to varying extents, based in theory
are presented.

Example 1: Fetal Mandible Length

Data relating fetal mandible length to gestational
age [8] were analyzed by Appleton [3] using a model
that related mandible size to the process of cell
proliferation that gave rise to its growth. He took the
length to be k(P + Q)1/3, where P and Q represent
the number of proliferative and nonproliferative cells,
and which obey

dP

dt
= 2αηP,

dQ

dt
= 2α(1 − η)P,

where α is the cell birth rate and η is a decreasing
function of Q. The biology has brought us so far, but
the precise form of η(Q) is not specified: this type of
shortfall is not untypical. Nevertheless, the form for
η(Q) may not be crucial (Appleton used a negative
exponential) and the model certainly provides insight
into how parameters, the biological meaning of which
is clear, affect the data.

However, from a statistical point of view the
approach is difficult; parameters were estimated using
an ad hoc procedure and centiles (see Quantiles)
would be awkward to calculate. One of the aims of
the initial investigators was to construct centile charts,
so for this purpose the simpler, empirical approach of
Royston & Altman [25] may be both adequate and
preferable.
The above example illustrates clearly how model
choice needs to be related to the purpose of the study,
as well as to the data. Of course, there would be no
objection to the use of the cell-proliferative model
to produce centiles, had it been straightforward to do
so. However, it is doubtful whether the analyst would
wish to embark on an elaborate analysis, whatever its
advantages, if a more familiar and simpler approach
could provide the required solution. More generally,
it almost goes without saying that model choice
must acknowledge what is feasible: much of the
mathematical biology that might be called upon to
provide the theory to underpin models is cast in terms
of differential equations, as this example illustrates.
Unless these equations have closed-form solutions,
present statistical theory is not well equipped to take
advantage of the insights they may offer.

Example 2: Compartmental Models

The class of compartmental models provides a good
illustration of the utility of a theory based on
differential equations with a closed-form solution.
Many biological systems, mostly in pharmacology
and drug metabolism but also in areas such as dialysis
medicine, can be represented as several notional
compartments, with a substance of interest (e.g. a
drug or metabolite concentration) diffusing between
the compartments at rates proportional to the existing
concentrations. This gives rise to linear differential
equations with fixed coefficients the solutions of
which are of the form

concentration = A exp(−αt) + B exp(−βt) + · · · ,

where the number of exponentials is equal to the
number of compartments in the model. There is
no need to use the differential equations directly in
the analysis of the data – the theory has been used
to indicate that a model of the above form should
be fitted. Moreover, the theory shows how biolog-
ical meaning can be ascribed to functions of the
parameters (see Pharmacokinetics and Pharmaco-
dynamics). Although this kind of model has been
very successful, it may represent a theory that is
further from reality than the model in the preced-
ing example. The compartments are usually notional
parts of the anatomy of a patient, and often give rise
to volumes of distributions that greatly exceed the
volume of the patient. This illustrates that even suc-
cessful models which possess a biological foundation
may need some tolerance in their interpretation.

From a statistical viewpoint, compartmental mod-
els are susceptible to theoretical ambition: it is often
much easier to extend a model by adding extra
compartments than it is to collect data to sustain
the resulting model. An example arises in dialysis
medicine, where it is thought that creatinine clearance
follows a two-compartment model, A exp(−αt) +
B exp(−βt), with α � β > 0. Any information on
α is in the creatinine concentrations measured in the
first 10–20 minutes of dialysis, but it is precisely in
this period that measured creatinine concentrations
are completely unreliable, due to the conditions of
mixing that prevail in the early stages of dialysis. It
is thus virtually impossible to fit the model that theory
indicates is appropriate.
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Example 3: Measurement of Cerebral Blood Flow

A more esoteric example concerns the measurement
of cerebral blood flow rate using the Kety–Schmidt
technique [17]. A low concentration of an inert gas
(nitrous oxide) is introduced into the breathing mix-
ture of the subject and the arterial and venous con-
centrations of the gas are each measured several
times (about eight times) over the next 20–30 min-
utes. Both concentrations rise to the same equilibrium
level, A, but the arterial level, Ca(t) rises faster than
the venous level, Cv(t); this is illustrated in Figure 1,
in which is shown both the fitted model and a typical
set of data. Fick’s principle of diffusion indicates that
the cerebral blood flow rate can be calculated from
these quantities as

K
A∫ ∞

0
Ca(t) − Cv(t) dt

,

where K is a known constant. A theory has led thus
far, but more detailed specification is not provided.
We know that Ca(t) ≥ Cv(t) > 0, Ca(0) = Cv(0) =
0, and that both curves increase monotonically to a
limit of A, but many functional forms are still open;
for example,

Cx(t) = A[1 − exp(−kxt)] or

Cx(t) = A

(
1 − k2

x

(t + kx)2

)
.

In the absence of a specific prescription, choosing
between these, or other models, must be based
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on whatever guidance – biological, practical, or
statistical – is available.

Kety [16] provides a detailed description of diffu-
sion processes between different organs in the body
that are related to, but not identical with, those
involved in producing Ca(t) and Cv(t), and all of
these use exponential functions. Although the argu-
ments are not directly relevant, in the absence of other
guidance, expressions for Ca(t) and Cv(t) based on
exponential functions seem preferable.

Of course, whatever the nature of the background
information on which a model is based, there is
still a need to assess the performance of a model in
practice. It is shown in Figure 1 that Ca(t) = A[1 −
exp(−kat)] and Cv(t) = A[1 − exp(−kvt)] provides
a reasonable fit, so the estimated cerebral blood
flow rate is found to be K[kakv/(ka − kv)], and
this can be estimated by substituting estimates for
the ks. When assessed over many more determina-
tions, this model performs well, giving an example
of a model that is specified by clear but incom-
plete theory and then supplemented by a number
of ad hoc steps that are typical of the statistician’s
task in this type of analysis. A more detailed dis-
cussion of this example is available in Matthews
et al. [21].

It is shown in Figure 1 that the model chosen in
the final example fits the data well. Clearly, a model
will not be acceptable unless it fits the data ade-
quately, even if the model has a sound theoretical
basis. However, how well a statistical model fits is
often a relative matter, and it may well be sensible to
use a model which has a sound basis and appears to
offer a reasonable fit, in preference to an unfounded
model which happens to offer a better fit to a particu-
lar dataset. Moreover, what constitutes an adequate fit
is likely to be intimately bound up with the purpose of
the analysis, and is an issue which can require careful
judgment. Of course, determining why a theoretically
based model does not fit can be a very informative
exercise.

Models for Imputation

A rather different use of a model is to attempt
to estimate some quantity which is not directly
estimable on the basis of the collected, or collectable,
data; three examples serve to illustrate this type of
model.
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Example 1: Lead Time in a Screening Program

One of the aims of screening a well population
is to identify individuals with pre-clinical disease
so that treatment can be instituted earlier; the time
gained by use of a screening program (see Screening,
Overview) is known as the lead time. Clearly, for any
individual identified by the program as having the
disease, the lead time cannot be observed. However,
the mean lead time achieved may be of importance
for assessing the value of the program.

Walter & Day [26] derive a method for estimating
the mean lead time which involves postulating the
density f (·) for the sojourn time of the disease in
the population, which is the time during which the
pre-clinical disease is potentially detectable by the
program. An important component in the final choice
of density is how well it fits the data, but it must
also be recognized that the data may not be able
to provide precise information on the form of f .
As no fundamental guidance on the form of f is
likely to be available, a choice that reflects features
such as the generally skewed nature of waiting times
must be made; Walter & Day considered exponential,
lognormal and step functions. However, it is the
mean lead time, not the form of f , that is of primary
interest, and it is the sensitivity of this quantity,
amongst sensible choices of f , that will determine
how much reliance can be placed on the results of
this analysis.

Example 2: Reporting Delays in Projection of
Numbers of AIDS Cases

Amongst other things, the Cox Report [9] attempted
to predict the number of AIDS and HIV cases
likely to arise in the UK over a 2–5 year period,
starting in 1988 (see Projections: AIDS, Cancer,
Smoking). The prediction turned out to be highly
influenced by the numbers of recently reported new
cases. However, these cases were the ones that were
most affected by delays in reporting to the Commu-
nicable Disease Surveillance Centre. To examine the
effect of the delay, simple models of the delay pro-
cess were constructed (see Appendices 7 & 8 of the
Cox Report) and predictions on the basis of models
incorporating this feature were proposed.

In both of these examples, calculations to permit
the estimation of quantities of interest require the
specification of the distribution f (t) of some other
quantity, such as sojourn time or reporting delay.

In neither case is this distribution itself of primary
interest nor is there any substantial guidance from
the context of the application on the appropriate form
of f (t). Consequently the prudent analyst would pay
attention to the effect of perturbations in the form of
f (t) on the quantities of direct interest.

Example 3: Proportion of Divided Cells in Thin
Section

A slightly different form of imputation is reported by
Wheeler and her colleagues [27]. Here interest cen-
ters on the proportion of labeled cells that divide at
different times after labeling (see Cell Cycle Mod-
els). Labeled cells are visible under the microscope
and it might be thought that cells which divide would
appear as pairs of cells. However, counting such pairs
suggested that only about 30% of all labeled cells
eventually divided. It was thought that this unexpect-
edly low value (100% was expected) might be due to
a geometrical artifact, namely that some cells divided
in such a way that only one of the daughter cells
was visible in the thin section of tissue which was
scrutinized; see Figure 2.

A model was derived to take account of this
feature; the model makes simple assumptions about
the shapes of the cells and their relative positions after
division and proceeds to use geometrical arguments
to find an expression for

Pr(both daughter cells visible
in section|cell has divided).

Application of this formula indicated that the pro-
portion of cells dividing was close to 100%. This
model is, perhaps, less abstract than those in the pre-
vious examples but it does make several important
simplifying assumptions. However, the simple model
is probably quite sufficient. The main aim here is to
investigate whether the artifact illustrated in Figure 2
is of sufficient magnitude to explain the discrepancy
between observed and expected proliferation rates of

Tissue section

Both daughters in section
and visible One daughter outside section − the

cell does not appear to have
divided

Figure 2
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30% and 100%. Once a plausible model has shown
that this is indeed possible, the histologist is unlikely
to require information from more refined models.

Empirical Models

The preceding sections have discussed the way in
which modeling can proceed when substantial guid-
ance exists about the way the process being modeled
“works”. In medicine this is very much the excep-
tion rather than the rule. It is far more common
that the statistician must assume that some quantity
related to the outcome y and covariates x, usually
E(y|x) or some function thereof, can be modeled as
a smooth function of x. The rest of this section con-
cerns models where the dependence on covariates is
through a linear predictor, xTβ, where β represents
unknown parameters that usually have to be esti-
mated. Models of this form have proved very useful
over the years, but their form can be rather restrictive,
and alternative approaches, such as graph-theoretic
models [11], neural networks and tree-structured
statistical methods are becoming more widespread.

When constructing a model empirically, the form
of the model is often largely dictated by whether the
outcome is continuous, categorical, ordinal, and so
on. Of course, many matters of detail arise, such
as the need to transform a continuous variable or
whether the variance or link function of a generalized
linear model is correct. However, the main problem
faced by the analyst is how to construct xTβ. It
should be noted that this choice will generally be
influenced by decisions made on such matters as
transformations or link functions, and both these
different facets of the model need to be considered
and reconsidered as the modeling progresses.

Many studies in which an empirical approach
to modeling is used are concerned with identifying
associations between an outcome and a series of
variables that are thought to affect the outcome. Other
studies aim to build a model that is subsequently used
to make predictions for new patients. Other kinds of
study are possible and, because empirical modeling
is used so widely, there are many approaches to the
problems of variable selection: only a few general
points are made here.

Studies seeking associations are very far from
the well-specified models described in the earlier
sections. Here it is likely that the investigator will

have collected many covariates, with up to 50 or even
100 variables being commonplace. Such studies must
be approached with caution, as many models will be
possible, and little guidance is available as to when
a satisfactory model has been found. In many cases
it is prudent to await the collection of new data in
order to assess the model; if the initial data set is
sufficiently large, then the model might be determined
on a random subset of the data and assessed on the
remaining cases. This is especially important if the
model is to be used for prediction [23].

Stepwise methods (see Variable Selection), such
as forward selection or backwards elimination, are
widely used, and have their uses. They aim to select
the most important variables, with respect to some
purely statistical criterion such as “proportion of vari-
ance explained”, provided that the contribution of the
variable can be distinguished from background noise.
However, being chosen on solely statistical criteria,
the resulting models may be difficult to interpret and
may be at odds with existing knowledge. Miller [22]
gives valuable information on the limitations of this
approach; in particular, he points out that the esti-
mates of β obtained after stepwise selection will be
biased away from 0, sometimes by very substantial
amounts.

The form of the model may be constrained by
sensible pre-selection, perhaps by grouping variables
according to type; for example, hematological, bio-
chemical, performance status, and so on. Only simple
summaries or representative members of each group
are then entered into the model selection. Other ad
hoc measures can be useful: if they have a common
scale, highly correlated variables x1 and x2 might
more profitably be entered as 1

2 (x1 + x2), x1 − x2 and
so on (see Collinearity).

Some attention needs to be given to the form in
which variables are entered into the linear predic-
tor. Categorical variables will be entered as dummy
variables, as will ordinal variables (see Ordered
Categorical Data), although in the latter case it will
often be sensible to extract a trend that reflects the
ordered nature of the categories (see Trend Test for
Counts and Proportions). Continuous variables are
usually entered in xTβ as a linear term, but this may
not always be appropriate. Non-linearity in the effect
of a variable can be accommodated by first turn-
ing it into a categorical variable defined by suitably
chosen “cut-points” (see Categorizing Continuous
Variables). The following is a good example of how



Model, Choice of 7

such effects might be anticipated: the risk to a baby of
infection with respiratory syncytial virus is affected
by the age of the mother [24], but it is clear that the
effect of a change from 16 to 20 is likely to be much
greater than a change from 24 to 28, and a categorized
version of maternal age may well be the most sensible
approach. However, in general the pre-specification
of cut-points is difficult, and there are consider-
able dangers with data-dependent specification [2].
Adding nonlinear terms is certainly a possibility, but
polynomial terms often have undesirable properties
and more imaginative functions, such as fractional
polynomials [25], may be needed (see Polynomial
Regression). Another approach is to use the data
to determine the form of dependence: generalized
additive models replace xi1β1 + xi2β2 + · · · + xipβp

with f1(x1i ) + f2(x2i ) + · · · + fp(xpi), where the fj s
are data-derived smooth functions [14].

In empirical modeling generally, and stepwise
selection methods in particular, little attention is paid
to the possibility of interactions between variables.
The problems of selecting variables have already
been stressed, and to entertain the possibility of
interactions inevitably complicates matters. However,
if attention is restricted to two-way interactions, and
then only to those that a priori are strongly plausible,
considerable improvements in the fit and realism of
models can be achieved.

Modeling Variance

The modeling described thus far usually relates, either
explicitly or implicitly, to the mean response, but
modeling of other aspects of the response, in par-
ticular its variance, is certainly possible. Explicit
modeling of both mean and variance, by linear pre-
dictors in two sets of covariates, namely xi and zi , as

E(yi |xi ) = xT
i β, var(yi |zi ) = exp(zT

i λ)

is described by Aitkin [1]. Such models can be useful,
for example when deriving centile charts, but are not
widely used. In practice, many nontrivial variance
structures do not arise because of explicit modeling
but, rather, as an implicit consequence of the need
to take account of some aspect of the structure of
the data. A simple example of this is a generalized
linear model, where the variance function reflects the
choice of outcome distribution.

More complicated examples can be found in spa-
tial statistics (see Epidemic Models, Spatial) and
data from complex surveys (see Sample Surveys in
the Health Sciences). Perhaps the most common
example that arises in medical statistics is longitudi-
nal data analysis, in which an individual is measured
on successive occasions. The measurements on an
individual are likely to be correlated, and any analysis
which does not acknowledge this aspect of the data
will be flawed; in particular, it is likely to exaggerate
the amount of information in the data. To overcome
this, the outcomes on an individual can be modeled
by y = µ + ε, where µ is the mean response, usu-
ally modeled in terms of some covariates, and the
residuals ε have a dispersion matrix V which reflects
the nonindependence of the responses. This approach
may seem attractive, but can have practical draw-
backs: if V is unstructured it will depend on many
parameters, or a more parsimonious model, such as
an ante-dependence model, will need to be chosen.
In many applications the number of observations per
individual may make this level of modeling difficult.

An indirect way of introducing dependence within
an individual which has some intrinsic appeal is
through random coefficient models (see Random
Effects; Multilevel Models). Suppose that the out-
come being measured is fetal heart-rate during the
second stage of labor, and it is thought that this
increases with time. A possible model is

yik = αi + βitik + εik,

where yik is the heart-rate of the ith fetus on the
kth occasion that the fetus was measured, being at
time tik . The residual terms εik are assumed to be
independent with variance σ 2. Rather than taking
the parameters αi and βi to be fixed, they are now
assumed to be realizations from a bivariate distri-
bution with mean α and β and dispersion matrix

(
σ 2

α σαβ

σαβ σ 2
β

)
.

This model induces a covariance of σ 2
α + σ 2

β tiktik′ +
σαβ(tik + tik′) + σ 2 between the kth and k′th out-
comes on an individual, so a nontrivial dependence
structure has emerged simply from the random coef-
ficients. Models of this type have been used widely
under a variety of names, but perhaps their most uni-
fied exposition and most powerful advocacy is given
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by Goldstein [13], who calls them multilevel mod-
els. The rather specific forms of dispersion induced
by these techniques may not be suitable for all appli-
cations but with sufficient ingenuity these can be
amended, and in practice they have been found to
be very flexible.

Multilevel models can also be adapted for use
with noncontinuous outcomes. Hierarchical general-
ized linear models constitute an alternative line of
development, which can accommodate a variety of
dispersion structures and types of outcome. Further
details of this class of models can be found in [19]
and in the references therein.

The analysis of longitudinal data illustrates the fol-
lowing general point about the use of more elaborate
models. It is important that the statistician should be
convinced of the necessity of using more complicated
models: simpler approaches will generally be easier
to implement and, crucially, they may be much easier
to explain to medical colleagues. The use of sum-
mary measures is a simple and readily understood
approach to the analysis of longitudinal data, which
will often circumvent the need for more complicated
models of any description.

Some Modeling Pitfalls

Although statistical modeling has been very useful
in many areas of medical statistics, the foregoing
discussion has shown that selecting a model is far
from an exact and precisely defined procedure. As
such, it is important to keep in mind ways in which
the process can go astray.

An obvious way in which things can go wrong
is by selecting the wrong model: for example, if the
data really follow the model E(y|x1, x2) = xT

1 β1 +
xT

2 β2 and E(y|x1) = xT
1 β1 is fitted, then it is well

known that the resulting parameter estimates will
be biased (see Misspecification). Of course, there
probably is no model which the data really follow
and a good discussion of the practical attitude to a
‘true model’ is provided by Chatfield [7]. In most
cases, the best we can hope for is a model that is
consistent with what is already known and is adequate
for the purpose to hand. This view of what forms
an acceptable model is very much in keeping with
Healy’s notion of technology, where the practitioner
is less concerned with some notion of “absolute truth”
than with making the most of what truth is available.

Other, less philosophical, problems abound, and
it would be impossible to give a complete catalog.
However, two problems – namely, model uncertainty
and mathematical coupling – are sufficiently general
that they deserve special mention.

It will be clear from the preceding discussions
that a good deal of uncertainty attends the process
of deciding on the model, M , that will ultimately be
used to fit the data. However, when presenting the
results of model-fitting, it is customary to ignore this
source of variability: so, for example, when quoting
the uncertainty of parameter estimates, it is var(β̂|M),
not var(β̂) that is used. Ignoring the uncertainty in
model selection can be very misleading, and there
is much interest in ways in which this source of
variation can be acknowledged [7, 12].

However, the appropriate level of formality neces-
sary for this task needs careful consideration. Apple-
ton [3] presents an example which is concerned with
the estimation of cell growth rates at a given time;
cross sectional data on numbers of cells at differ-
ent times were available and several plausible growth
curves were fitted. Although all curves appeared to
provide reasonable fits to the data, the rate of growth
differed substantially between the curves. A formal
approach might attempt to amalgamate these esti-
mates, and include the inter-model variation in the
final interval estimate. However, presenting all the
individual fits and rates may be more informative;
this approach could lead the investigators to the
disappointing but possibly sensible conclusion that
their data were unable to answer their question. Both
approaches are far preferable to simply selecting a
model and providing an estimate with no further
comment.

Another potential pitfall for the statistical modeler
is mathematical coupling [4]. Essentially, it arises
when attempts are made to relate an outcome variable
to a covariate used in the definition of the outcome.
For example, suppose that blood glucose concentra-
tion is measured at midnight (x) and at 0600 (y), and
it is required to relate the change in concentration,
y − x, to the initial value x: a spurious relationship
can be caused by the presence of x on both sides of
the equation. Related problems abound in analyses
involving ratios, and are particularly hazardous for
the unwary analyst [18] (see Baseline Adjustment
in Longitudinal Studies).

No general solutions to either of these problems
exist, but it is important that the statistician should
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be aware of these and many other subtle traps that
abound, and which can only be avoided by the exer-
cise of shrewd judgment, as well as technical exper-
tise. It is perhaps appropriate to end on this note,
because much of this article has illustrated that many
of the difficult problems encountered in modeling call
on the statistician’s judgment, common sense, and
knowledge of the scientific discipline in which he
works, and not just on his statistical expertise.
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Molecular Epidemiology

Molecular epidemiology (ME) refers to the use of
biomarkers in epidemiologic study designs, with
emphasis on markers designed to measure exposure,
to characterize host susceptibility, and to measure
disease. Other terms involving closely related types
of studies include biochemical epidemiology [16],
pharmacogenetics [5], ecogenetics [10], and transi-
tional studies [4], the last term referring to studies
designed to bridge the gap between laboratory inves-
tigations and population studies. The first systematic
description of the approach was provided by Perera
& Weinstein [11]. They defined “molecular cancer
epidemiology” as “advanced laboratory methods in
combination with analytical epidemiology to identify
at the biochemical or molecular level specific exoge-
nous agents and/or host factors that play a role in
human cancer causation”. Consistent with the broad
contribution of molecular biology to a more pro-
found understanding of human disease, laboratory
markers have been increasingly integrated into epi-
demiologic studies.

Objectives

Molecular epidemiology can be viewed as a syn-
thesis involving the application of the methods of
molecular biology to the study of disease on the
population level. The contribution of molecular biol-
ogy during the last third of the twentieth century has
resulted in a redefinition of our basic understanding
of human disease. Population-based studies have
also grown in size and sophistication as the need
to understand the cause of disease has been better
appreciated, especially in an era where high costs for
medical care indicate a need for expanded efforts at
disease prevention.

Biological markers used in classical epidemio-
logic study designs can contribute to understanding
dose–response relationships by assessing biologi-
cally effective dose, making interspecies compar-
isons, quantifying human interindividual variability,
and identifying subsets at altered risk [13, 16]. In
addition, biomarkers may provide more sensitive,
specific, quantitative, or reproducible indications of
study endpoints than traditional approaches, and
therefore may in theory improve both study efficiency

and validity. Such markers might provide early or
specific indications of disease, and thereby identify a
cancer at an earlier more treatable stage, or even in
time for a preventive intervention. The mechanistic
insight gained from biomarkers study may enhance
disease understanding in profound ways.

Types of Biomarkers

Biomarkers are used to make three general types of
measurements: (i) internal exposure, often measuring
a compound of interest bonded to a macromolecule
(i.e. hemoglobin or DNA, a critical “target”), but
also including substances or their metabolites such
as nicotine or its metabolite cotinine as a marker for
exposure to tobacco smoke; (ii) host susceptibility
factors, typically metabolic traits that are due to
hereditary variation; and (iii) early biologic effects,
mutations or cytogenetic damage – these are “effect”
markers, that is indicators of disease or biological
effects of pathologic significance.

Although for discussion purposes these categories
are considered distinct, there is overlap. For example,
detection of nicotine in the blood might be considered
a marker of smoking (exposure), or an indicator of
potential pathologic effects (early effect or disease
marker), or might comprise part of a phenotype (e.g.
ratio of nicotine to its metabolites) reflecting activity
of a metabolizing enzyme (susceptibility factor).

Exposure Markers

The first category, exposure markers, offers the pos-
sibility of extending the reach of classic epidemi-
ology beyond traditional questionnaire or external
exposure monitoring. The actual dose of a com-
pound of interest in the organism is assessed by the
biomarker. Much attention has focused on measure-
ment of adducts to DNA and other macromolecules,
as it has been hypothesized that these might reflect
both the relevant exposure, metabolic activation (gen-
erally considered an obligate step in carcinogenesis),
and the actual quantity of compound that has reached
a critical cellular target. In light of the target (i.e.
DNA) involved, it is plausible that these compounds
reflect a biologically relevant measure on the pathway
to malignancy. The use of biomarkers is of course
not new in the history of epidemiology. Examples
include the use of polio antibody patterns to detect
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Table 1 Conventional and molecular epidemiology

Feature Conventional Molecular

Use of biomarkers Incidental Systematic

Size Varies, but often large Varies, but typically small

Type of biomarker Well established measures of exposure or
disease

New or investigational markers of
exposure, effect, or susceptibility

Cost Low per subject High per subject

Goals Identify relationship between exposure and
disease

Clarify mechanism and identify high-risk
subgroups

Advantages Historically the major method used to
identify external cancer causes

Enter the “black box”, i.e. elucidate
mechanism

Public health orientation Reduce interindividual variation
Identify subsets at risk
Potentially refine risk estimates
Facile link to animal studies

Disadvantages For certain cancers no cause is known, in Costly and complex
spite of study Misclassification increased due to

Variable susceptibility is poorly understood laboratory error
Poor record at identifying reasons for Biomarker collection compromises validity

individual susceptibility Little public health benefit has resulted
Ethical concerns

immunity. Some of the features of this approach that
contrast with conventional epidemiology are indi-
cated in Table 1.

“Susceptibility Markers” and Genetic
Studies

The second category of markers involves host sus-
ceptibility factors, typically but not always genetic
(hereditary) traits that control the metabolism of sub-
stances involved directly or indirectly with human
disease. A susceptibility factor modifies the disease
risk conferred by a specific exposure. It is fur-
ther distinguished from exposure because suscepti-
bility is generally preexisting and nontransitory. An
early focus of molecular epidemiologic studies was
a hypothesized genetic component in cancer. In con-
trast to earlier studies that searched for an obvious
hereditary factor that accounted for the aggregation
of specific cancers in families, these studies hypoth-
esized that an influence of certain genes would exist
for common apparently sporadic cancers in the gen-
eral population as well.

Four studies in the 1980s laid the groundwork for
the study of genetic susceptibility using epidemio-
logic study designs. This first generation of studies all
involved a determination of a “metabolic phenotype”,

i.e. a pattern of metabolism of a test substrate that
would reflect the underlying inherited genetic trait.
In 1979, Lower et al. reported a relationship between
the acetylation phenotype and incidence of urinary
bladder cancer [8]. This early report was an early
example of a study involving a relationship between
a common genetic factor that controls the metabolism
of an environmental contaminant and a disease in a
case and control population. The term “molecular epi-
demiology” appeared in the title. The hypothesis was
that “slow acetylators”, a group comprising 50% of
Western populations, would be less able to acetylate
and thereby inactivate carcinogenic aromatic amine
carcinogens. The second study examined aryl hydro-
carbon hydroxylase (AHH) inducibility in relation
to lung cancer [6]. The 20% of the population with
the high inducibility phenotype were thought to con-
vert carcinogens in tobacco to their active form at
an accelerated rate, accounting for their increased
risk of lung cancer. Ayesh et al.studied the relation-
ship of debrisoquine metabolism (CYP2D6), to lung
cancer [1]. A fourth genetic factor, glutathione S-
transferase (GSTM1) was studied in relation to lung
cancer. Subjects without this activity, who were pre-
sumably deficient in ability to eliminate carcinogenic
epoxides from cigarette smoke, exhibited excess lung
cancer risk [14]. All of these studies relied on a
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laboratory measurement of a phenotype to infer the
genetic susceptibility factor. In contrast, more recent
studies directly identify the genotype through the
study of an individual’s DNA. Some of the advan-
tages and disadvantages of the phenotype and geno-
type approaches are indicated in Table 2. Each of the
four genetic traits initially approached with pheno-
typic measurements is under continued study today.

A major evolution over this period is the
superseding of phenotype probe drug approaches by
direct genotype assays. The genotype approach has
distinct advantages and drawbacks (summarized in
Table 2), but generally genotyping is increasingly the
study approach of choice. Acetylation phenotyping,
originally accomplished by administering sulfa drugs
or caffeine, is now performed using a direct
genotyping approach that detects the major mutations
in the NAT2 gene. The association of slow
acetylators (NAT2-deficient subjects) with bladder
cancer has been repeatedly observed in subjects
with occupational exposure to arylamines. The
debrisoquine phenotype can likewise be accurately
detected by genotyping of the CYP2D6 gene.
The genotype determination is more complex since
partially activating and inactivating mutations exist,
and many minor variants must be tested. The
degree of association of this trait with lung
cancer is controversial. It appears most likely
that elevated risk for smoking-related cancer in
extensive metabolizers is limited to subjects with
heavy smoking histories [2]. Investigators have

attempted to understand the relationship of AHH
activity to polymorphisms of both the CYP1A1
and Ah receptor genes. The precise relationship of
the gene polymorphisms to enzyme activity (and
presumably to the ability to activate carcinogens in
tobacco, thereby accounting for lung cancer risk)
is incompletely understood, and may involve other
genes such as the Ah receptor. Studies of the
phenotype are subject to bias (see Table 2) but have
often shown an effect, while genotype studies have
been negative in Western studies, but positive in
Japan. These differences may reflect the fact that
both the mutation frequency (i.e. gene frequency)
and mutation type (allelic heterogeneity) exhibit
ethnic variation. Finally, a summary of the available
literature suggests that individuals that lack GSTM1
activity (i.e. without at least one functional GSTM1
allele) exhibit consistently increased risk of both
lung and bladder cancer (relative risk 1.2–1.6) [3]
(see Genetic Epidemiology).

Effect Markers

Effect markers comprise the third category. These
include nonspecific markers such as mutations in
Salmonella typhimurium detected in urine or feces,
various assays for chromosomal abnormalities (e.g.
micronuclei, sister-chromatid exchange), as well as
more specific findings, such as the specific chro-
mosome translocations that characterize hemato-
logic malignancies. These markers complement better

Table 2 The phenotype and genotype approaches in molecular epidemiology

Consideration Phenotype Genotype

Advantage Approach is historically tested Identifies heterozygotes
Reflects physiologic, in vivo disposition of Simple, requires only germline DNA sample

drug Unaffected by illness, diet, medications, etc.
Inducers, inhibitors, substrates all combine Can be performed with microquantities

to reflect physiology Noninvasive samples (i.e. DNA obtained from
mouth wash, hair follicles, or standard
blood sample)

Disadvantage Numerous factors may distort Functional status of mutations may be
measurements, e.g. drug–drug unknown
interaction Risk of exposure to blood-borne pathogens

More complex analysis Ethical questions arise since DNA may be
Patient cooperation required used for other tests
Phenotyping protocols difficult to adapt to Allelic heterogeneity

field study Ethnic differences
Time-consuming nature of test results in

refusal to participate
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known histologic and cytologic markers such as dys-
plasia or increased mitotic frequency.

Related Approaches

Inborn errors of metabolism were described by Gar-
rod in the early twentieth century and are distinct
from the genetic traits of interest to ME in that they
invariably produced phenotypic manifestations and
clinical consequences. In genetic terms, the associ-
ated condition was fully penetrant given the geno-
type. Most of the genetic traits of interest in ME are
not highly penetrant. In pharmacogenetics, an area
closely related to ME, the phenotype is detected with
laboratory probes and does not always result in clin-
ical sequelae, i.e. the condition is not fully penetrant.
Sequelae result after specific exposures, typically to
pharmaceutical agents (but also xenobiotics, carcino-
gens, or endogenous compounds) whose metabolism
is dependent upon the enzyme (or receptor, immune
factor, or other element) that is subject to pharma-
cogenetic variability. Chronic conditions are thought
to occur with altered frequency based on long-term
exposures to specific agents subject to this type of
variability.

Criticism

The field has attracted much attention and method-
ological critique. First, there are those who have
questioned whether ME is a true subdiscipline with
substantive new content [9]. While no one distin-
guishing factor can uniquely identify ME studies,
the alteration of study design to allow the use of
biomarkers is probably characteristic. A second area
that has generated negative comment is the small size
and inadequate attention to design issues in some
studies. The size of certain studies has been con-
strained by the cost of specific assays. For example,
a newly developed or expensive gas chromatogra-
phy/mass spectroscopy assay could cost over $1000
per sample. Given this limitation it is axiomatic that
proper design of a study should be a major concern in
order to achieve maximum efficiency. Certain goals
of ME such as identifying subsets of the population at
elevated risk will necessitate large sample size. Some
studies have placed emphasis on the “molecular”
aspects but with minimal “epidemiology” or sophisti-
cation in the statistical treatment. Both the quality and
the co-opting of the “epidemiology” label to cover

such studies are unfortunate, but some bad studies
do not invalidate the proper use of the approach.
Some have also dismissed the “molecular” modifier
for epidemiology as unnecessary, stating that it is
improper to identify a component of epidemiology
based on a measurement technique, compared with
recognized fields of epidemiology such as “pediatric”,
“infectious”, “occupational”, or “clinical”. Such a
complaint seems churlish given that the growth of
scientific inquiry does not follow a set pattern and
nomenclature is anything but consistent.

A more basic issue to emerge is that some goals
of ME may not be attainable with the designs being
used. For example, some proponents of ME would
like to estimate the absolute risk of cancer in an
individual associated with a specific set of genetic
factors. While the general direction of inquiry is
laudable, the hospital-based case–control approach
(see Case–Control Study, Hospital-based) often
advocated is incompatible with this goal, and
population-based case–control (see Case–Control
Study, Population-based) or cohort designs will
be required. In addition, much larger studies (i.e.
thousands of subjects rather than hundreds) will be
required to detect gene–environment interactions
of medical interest. The idea that combinations
of factors (i.e. genetic factors plus mutation
load) will refine individual risk [15] challenges the
traditional public health advocacy of epidemiology
and refocuses emphasis on “individual” clinical
risk in a way that is disturbing to many [7, 9].
The implicit reductionism of the approach raises
worrisome ethical issues. In particular, the improper
use of genetic information derived from these studies
in an increasing concern.

Two critiques finally emerge as central. The first
is that historically, all the major etiologic environ-
mental factors known to cause cancer have been
identified not through mechanistic or animal stud-
ies, but through observational studies in humans.
Smoking and lung cancer is a paradigmatic exam-
ple. Case–control and cohort studies unequivocally
demonstrated the association of tobacco use and lung
cancer a least a decade before Aurbach’s smoking
beagles were shown to exhibit characteristic preneo-
plastic changes in the respiratory tract (see Smoking
and Health). Moreover, the history of epidemiology
demonstrates that public health and prevention can
be accomplished in the absence of detailed mecha-
nistic understanding.
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Secondly, it is difficult to demonstrate that spe-
cific biomarkers are superior to properly designed
traditional questionnaire approaches to exposure
assessment. A carefully designed smoking ques-
tionnaire (see Questionnaire Design) will demon-
strate a stronger association of tobacco use with
lung cancer then either serum cotinine (nicotine
metabolite marker of recent smoking) or smoking-
related carcinogen adducts of hemoglobin (e.g. 4-
aminobiphenyl, a marker of intermediate exposure).
It can be argued that these markers relate to recent
or intermediate time periods, and the exposure that
caused the disease is remote. Nevertheless, with-
out a clear public health benefit, one might ask
whether ME studies are worth the cost in time,
resources, lost eligible subjects (some will refuse
a biospecimen request), and new sources of bias.
The roles of questionnaire information and biomark-
ers are complementary, and there are clearly settings
where questionnaire approaches are not suitable. Nev-
ertheless, the tacit assumption that biomarkers are
universally superior requires critical scrutiny [12].

Summary

The advances of molecular biology have transformed
science in the late twentieth century and may ulti-
mately be more far-reaching than the revolutionary
advances of physics in the first half of the century.
It is inevitable that this understanding must perme-
ate scientific investigation involving human disease,
including the study of disease on the population level.
Epidemiology provides the tools for such study, and
it is fitting that these tools will be transformed and
adapted to optimize the use of biomarkers. The trend
towards increasing emphasis on laboratory methods
in clinical medicine shows no signs of declining, and
such approaches will find application in the studies
that define both the diseases and the factors that cause
them. Seen in this context, the growth of molecu-
lar epidemiology is both natural and inevitable. To
achieve the full potential of the ME approach, how-
ever, investigators will need to pay close attention to
issues of study design and quality control.
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Moment Generating
Function

Moment generating functions are used to derive
moments of distributions, establish the distributions
of sums and differences of independent random vari-
ables, and derive limiting distributions of sequences
of random variables. We say that a variable X

with distribution function F(x) = Pr(X ≤ x) has a
moment generating function MX(t), i.e. the moment
generating function exists if

MX(t) = E[exp(tX)] =
∫ ∞

−∞
exp(tx) dF(x) (1)

is finite for any real number t in some open inter-
val −T < t < T . For a continuous distribution with
density function f (x),

MX(t) =
∫ ∞

−∞
exp(tx)f (x) dx, (2)

and for a discrete random variable taking values
a1, a2, . . . , am with probabilities p1, p2, . . . , pm,
respectively,

MX(t) =
m∑

j=1

exp(taj )pj . (3)

When it exists, MX(t) is a strictly positive and
continuously differentiable function of t , for |t | < T .
Moreover, MX(0) = 1 and moments of any order
exist. Using M

(r)
X (t) to denote the rth derivative of

MX(t) with respect to t , we may obtain the rth
moment of X about the origin from

E(Xr) = M
(r)
X (0) for r = 1, 2, . . . , (4)

and a Taylor series expansion about the origin yields

MX(t) = 1 +
∞∑

r=1

E(Xr)t r

r!
. (5)

Moments of positive random variables involving non-
integer powers may be obtained from a correspond-
ing result derived by Cressie & Borkent [1]. Central
moments, µr = E[(X − µ)r ], r = 1, 2, . . ., may be

obtained by evaluating derivatives of the central
moment generating function,

E{exp[(X − µ)t]} = exp(−µt)MX(t)

= 1 +
∞∑

r=1

µrt
r

r!

at t = 0.
The existence of the moment generating func-

tion uniquely determines a distribution. If X and
Y are random variables with respective distribution
functions F(x) and G(y) and moment generating
functions MX(t) and MY (t), then F(x) = G(x) for
all real x if and only if MX(t) = MY (t) for all t in
some open interval −T < t < T .

Another important use of the moment generat-
ing function is to establish the limiting distribution
for a sequence of random variables. Let X1, X2, . . .,
denote a sequence of random variables with dis-
tribution functions F1(x1), F2(x2), . . ., respectively,
and suppose the moment generating function MXn

(t)

exists for each Xn. Then, the pointwise convergence
of MXn

(t) to some function M∞(t) for all |t | < T

implies Fn(x) converges to F∞(x), the distribution
function corresponding to M∞(t), as n → ∞, for
all points x for which F∞(x) is continuous. F∞(x)

will be a proper distribution, however, if and only if
M∞(0) = 1. Conversely, the pointwise convergence
of Fn(x) to some limit F∞(x) implies the point-
wise convergence of the corresponding sequence of
moment generating functions to the moment generat-
ing function for F∞(x) for any t in any open subset
of R in which the MXn

(t) are uniformly bounded.
A multiplicative property provides convenient

derivations of sums or differences of independent
random variables. If X1, X2, . . . , Xn are independent
random variables, for example, then

MXi−Xj
(t) = MXi

(t)MXj
(−t) (6)

and

MX1+X2+···+Xn
(t) = MX1(t)MX2(t) · · · MXn

(t). (7)

We can establish the distribution of a difference
or sum by recognizing the product on the right
of (6) or (7) as the moment generating function for a
specific distribution.

Koopmans [3] derived a basic probability inequal-
ity from the existence of the moment generating
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function. For independent and identically distributed
random variables X1, X2, . . . , Xn, where the common
moment generating function MX(t) exists for |t | < T ,
we have

Pr(X1 + X2 + · · · + Xn > 0) ≤ [MX(t)]n

for any 0 < t < T . Koopmans used this result to
investigate laws of large numbers.

The joint moment generating function of a mul-
tivariate random variable X = (X1, . . . , Xk), defined
as

MX(t) = E



exp




k∑

j=1

tjXj







 , (8)

is said to exist if it is finite for all −T < tj < T ,
j = 1, . . . , k. Mixed moments such as E(Xr

i X
s
j ) may

be obtained by differentiating (8) r times with respect
to ti and s times with respect to tj , and evaluating the
resulting derivative at the origin. Moment generating
functions for marginal distributions are obtained by
setting appropriate tj s equal to zero; for example,

MX2(t2) = MX1,X2,X3(0, t2, 0).

Random variables X1, X2, . . . , Xk are mutually inde-
pendent if and only if

MX(t) = MX1(t1)MX2(t2) · · · MXk
(tk).

For nonnegative integer-valued random variables,
it is sometimes convenient to derive factorial
moments

µr
∗ = E[X(X − 1) · · · (X − r + 1)], r = 1, 2, . . .

from the derivatives of the factorial moment generat-
ing function

GX(t) = E(tX) = E{exp[X ln(t)]} = MX[ln(t)] (9)

evaluated at t = 1. GX(t) is also called the proba-
bility generating function because it uniquely deter-
mines the probability function for X through the
relationship

Pr(X = r) = G
(r)
X (0)

r!
.

Johnson et al. [2] and Smith [4] provide more exten-
sive reviews of the uses and properties of various
types of generating functions.
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Moments

Moments are used to quantify and summarize the
mean value, level of dispersion, and other features
of a probability distribution. The rth moment of a
random variable X about zero is simply the average
value (or expected value) of Xr . It is defined by the
Riemann–Stieltjes integral

E(Xr) =
∫ ∞

−∞
xr dF(x), (1)

where F(x) = Pr(X ≤ x) is the distribution function
for X. We take r to be a positive integer, but this is
not a requirement. When X is a continuous random
variable with density function f (x), we have

E(Xr) =
∫ ∞

−∞
xrf (x) dx.

For a discrete distribution on the nonnegative
integers,

E(Xr) =
∞∑

k=0

kr Pr(X = k).

Moment formulas may also be obtained from deriva-
tives of moment generating functions or from
derivatives of characteristic functions.

The first moment about zero (r = 1) is the mean
of the distribution of possible values for X. It is also
called the expected value (or expectation) of X. We
use the symbol µ to denote the mean.

The rth moment about a constant c is E[(X − c)r ].
Taking c = µ, we have the rth central moment

µr = E[(X − µ)r ] =
∫ ∞

−∞
(x − µ)r dF(x), (2)

which is also called the rth moment about the
mean. For a discrete distribution on the nonnegative
integers,

µr =
∞∑

k=0

(k − µ)r Pr(X = k),

and for a continuous distribution with density func-
tion f (x),

µr =
∫ ∞

−∞
(x − µ)rf (x) dx.

The first central moment is zero by definition.
The second central moment, usually denoted by
σ 2, is called the variance of X, and its positive
square root, σ = (µ2)

1/2, is called the standard
deviation. As the square root of the average squared
deviation from the mean, the standard deviation
provides a measure of the level of dispersion in the
distribution of the possible values of X. It can also
be given a probability interpretation. When X has
any normal (Gaussian) distribution, for example, the
probability that an observed value for X lies in the
interval (µ − σ, µ + σ) is approximately 0.68 and the
probability that it lies in the interval (µ − 2σ, µ +
2σ) is approximately 0.95.

Central moments are obtained from moments
about zero by the formula

µr =
r∑

j=0

(−1)j
(

r

j

)
µj E(Xr−j ), (3)

where

(
r

j

)
is a binomial coefficient. For example,

µ2 = E(X2) − µ2,

µ3 = E(X3) − 3µE(X2) + 2µ3,

µ4 = E(X4) − 4µE(X3) + 6µ2E(X2) − 3µ4.

Inverse formulas are

E(X2) = µ2 + µ2,

E(X3) = µ3 + 3µ2µ + µ3,

E(X4) = µ4 + 4µ3µ + 6µ2µ
2 + µ4.

Ratios of moments, or ratios of functions of
moments, are also used to help characterize the
level of dispersion and the shape of a probability
distribution. The coefficient of variation, σ/µ, may
be used to quantify variation in an assay method
or some other measurement technique relative to the
mean size of the quantity to be measured. It is often
expressed as percentage by multiplying by 100%. We
may describe the shape of a distribution with the
skewness index

[β1(X)]1/2 = µ3(µ2)
−3/2 (4)

and the kurtosis index

β2(X) = µ4(µ2)
−2 (5)
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Although these quantities may not uniquely deter-
mine the shape of a distribution, moments above the
fourth order are rarely used to summarize properties
of distributions.

If a random variable can only take values in a
finite interval, then knowledge of all of the moments
completely determines the distribution. This may not
be true for some unbounded distributions, however,
without imposing further constraints, but the most
commonly used families of distributions, such as
Pearson distributions, are characterized by no more
than four parameters, which are usually uniquely
determined by no more than four moments. We refer
the reader to Johnson et al. [1, 2] for reviews of such
families. We may estimate parameters from observed
data by deriving a formula for each parameter as a
function of the moments and substituting estimates of
moments into the formulas (see Method of Moments
estimation).

We define joint moments for an n-dimensional
random vector X = (X1, . . . , Xn) as expectations of

products. Quantities like E
(∏n

j=1 X
rj

j

)
, for example,

are called product moments about zero. Central prod-
uct moments (also called central mixed moments) are
defined by

µr1r2...rn
= E




n∏

j=1

(Xj − µj)
rj



 , (6)

where µj = E(Xj ). A special case,

cov(Xj , Xk) = E[(Xj − µj )(Xk − µk)] (7)

is called the covariance of Xj and Xk (see
Covariance Matrix). We can characterize the
strength of the linear relationship between Xj and
Xk with the correlation coefficient

ρjk = cov(Xj , Xk)

{E[(Xj − µj)2] E[(Xk − µk)2]}1/2
, (8)

which achieves its bounds of 1 (or −1) when all
possible values for (Xj , Xk) lie on a straight line with
a positive (or negative) slope. When Xj and Xk are
mutually independent, then cov(Xj , Xk) = ρjk = 0,
but the converse is not always true.

Other types of moments are sometimes considered.
The rth absolute moment about zero, E(|X|r ), and the
rth absolute central moment, E(|X − µ|r ), are exam-
ples. For integer valued discrete random variables,

it may be convenient to derive factorial moments
instead of central moments or moments about zero.
The rth descending factorial moment of a random
variable X is defined as

µ(r) = E[X(X − 1) . . . (X − r + 1)], (9)

the expectation of a product of r incrementally
decreasing terms, for r = 1, 2, 3, . . .. Moments about
zero are obtained from descending factorial moments
through the formula

E(Xr) =
r∑

k=1

µ(k)

k!

k∑

j=0

(−1)j
(

k

j

)
(k − j)r . (10)

In particular,

E(X) = µ(1),

E(X2) = µ(2) + µ(1),

E(X3) = µ(3) + 3µ(2) + µ(1),

E(X4) = µ(4) + 6µ(3) + 7µ(2) + µ(1).

Cumulants are an alternative to moments that
have historically played a prominent role in the
study of probability distributions. While moments
about zero are obtained from coefficients in a power
series expansion of the characteristic function of a
distribution, cumulants are obtained from coefficients
in a power series expansion of the natural logarithm
of the characteristic function. Cumulants have some
convenient theoretical properties, but moments are
more frequently used in practical applications. We
refer the reader to Stuart & Ord [3] for additional
definitions and formulas and a good account of the
relationships between various types of moments and
cumulants.
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Monte Carlo Methods

Monte Carlo techniques are used in situations in
which the analytic solution of the problem is either
intractable or time consuming. Instead of calculat-
ing exact quantities, simulation is used to produce
stochastic approximations to the solution.

In practice, Monte Carlo methods are discussed
interchangeably with simulation. Useful discussions
can be found in a variety of monographs, such as [7,
8], and [9], to which the reader is referred for a
thorough review.

Monte Carlo techniques are used in a wide range
of problems. Common uses are the construction of
Monte Carlo hypothesis tests, bootstrap distribu-
tions, and for numerical integration in Bayesian
calculations. More specialized uses are the analysis
of complex stochastic systems.

Monte Carlo techniques have a long history in
mathematics. An early example is Buffon’s Needle
dating from 1733, described in [7]. Realistically, the
widespread application of Monte Carlo techniques
has only become feasible with the availability of
cheap and efficient computing since the 1970s. In
fact, the exponential increase in available computing
power has led to Monte Carlo techniques facilitating
major statistical advances.

As a trivial example of a Monte Carlo method we
consider the calculation of the mean µ of a density
g(x). The analytic solution is

µ =
∫

xg(x) dx,

which may be difficult to evaluate. In the Monte Carlo
approach, we sample k observations, X1, . . . , Xk ,
from g(x) and form the Monte Carlo estimate

µ̂ =

k∑

i=1

Xi

k
.

A law of large numbers can be used to show
that this estimate will converge strongly to the true
value, provided the integral exists (see Convergence
in Distribution and in Probability). Thus, we can
produce an estimate of a required accuracy by manip-
ulating k.

An important point to note is that the term Monte
Carlo does not refer to a particular stochastic algo-
rithm, only to the fact that a stochastic algorithm
has been used. For instance, in the previous example
there is an infinite number of different stochastic algo-
rithms that we could use to sample the observations
and estimate µ.

The choice of algorithm depends on a variety of
factors. In many problems there is a “natural” for-
mulation. For example, we estimate the mean of a
distribution by taking the mean of a sample from the
distribution. Another criterion that should be consid-
ered when choosing an algorithm is the efficiency
of the method. This leads to the contemplation of
variance-reduction techniques, which are used to pro-
duce more accurate estimates for the same computa-
tional effort (see Simulation).

In practice there is a tradeoff between the use of
an inefficient algorithm that is easy to design and
implement and an efficient algorithm that could take
detailed analysis to design. Provided that the inef-
ficient algorithm is not pathological, it is sufficient
merely to run the algorithm for an appropriately
longer period of time, to obtain results comparable
to those with the efficient algorithm. An important
caveat is that great care must be taken to ensure that
satisfactory convergence has occurred. In any appli-
cation the relevant literature should be consulted.

We now briefly describe several important exam-
ples of the use of Monte Carlo techniques.

Monte Carlo Hypothesis Testing

The first technique considered is that of Monte Carlo
hypothesis testing. Assume we have a statistic T ,
and a simple null hypothesis H0 and composite
alternative Ha. Consider constructing a test of size
1 − α. If the sampling distribution of T |H0 is known
and analytically tractable, then we can use standard
calculus methods to construct a critical region for
rejecting H0.

Alternatively, we consider constructing a Monte
Carlo test of H0. Specification of the rejection region
involves the calculation of a quantile of the null
distribution of T . In the Monte Carlo approach we
estimate the required quantile stochastically. To do
this we sample from the distribution h(t) of T |H0,
to produce T1, . . . , Tk . Depending on the alternative,
we reject H0 if the observed t is more “extreme” than
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100(1 − α)% of the combined simulated values and
the observed t .

As a simple example we consider the one sample t

test that the mean of a normal distribution is µ against
the alternative that it is less than µ. If we observe a
sample X1, . . . , Xn, then our statistic is

T = X − µ

se
,

with

se =

n∑

i=1

(Xi − X)2

n(n − 1)
,

the standard error of the mean. Using the classical
approach, we calculate that the rejection region under
the null is t < tα,n−1, where tα,n−1 is the α quantile
of Student’s t distribution, with n − 1 degrees of
freedom.

Under a Monte Carlo approach we could sample
T1, . . . , Tk from a t distribution with n − 1 degrees of
freedom. We would then reject H0 if T was less than
T[α], where T[α] is the α quantile of (T1, . . . , Tk, T ).
Thus we use the sample from the t distribution to
estimate the α quantile.

Alternatively, we can consider the problem of
estimating the P value of the test. In the example
given, this is equivalent to finding the value of the
integral ∫ t

−∞
h(x) dx,

which is consistently estimated by

P̂ =

k∑

i=1

I (Ti ≤ t)

k + 1
,

where I (Ti ≤ t) is the indicator function for the event
Ti ≤ t , and P̂ is the Monte Carlo estimate.

In practice, the Monte Carlo approach to hypoth-
esis testing is advantageous if the distribution of the
chosen test statistic is intractable but it is conve-
nient to sample from this distribution. Some practical
examples can be found in [1].

Jöckel [6] has investigated the properties of Monte
Carlo hypothesis tests under quite general conditions
and produces the following conclusions. First, if
we choose large enough samples (k) to produce
our Monte Carlo quantities, then the results will

be equivalent to the analytic results, with high
probability. Secondly, the power of the Monte Carlo
test is an increasing function of k.

Bootstrap

The second example we will consider is the boot-
strap [2]. The bootstrap is a simple but powerful idea
that is applicable to a wide range of problems. The
central idea of the bootstrap is the following [3]. Sup-
pose we wish to estimate some functional θ of a
distribution F(β; x),

θ =
∫

g(x) dF(β; x).

The bootstrap estimate is found by replacing the
unknown population distribution in the integral with
the sample’s empirical distribution, as follows:

θ̂ =
∫

g(x) dF̂ (x),

where F̂ (x) is the empirical distribution of the
observed sample.

Now consider estimating the variability of this
statistic. To estimate the variance of the sampling
distribution of our estimate, we again replace the
population distribution with the sample distribution,
to give

σ̂ 2 = EF̂ [θ̂ − EF̂ (θ̂ )]2,

where σ̂ 2 is called the bootstrap estimate of the sam-
pling variation of θ̂ , and EF̂ denotes expectation over
the empirical distribution of the sample. This calcu-
lation could be performed analytically, and requires
tabulating a complicated set of permutations. Instead,
we can form a Monte Carlo estimate by generating
draws of the same size as the original sample from the
empirical distribution of the sample. For each such
draw we calculate this statistic. We iterate this proce-
dure k times to obtain θ∗

1 , . . . , θ∗
k , and then calculate

σ̂ 2 = 1

k

k∑

i=1

(θ∗
i − θ

∗
)2,

where θ
∗

is the mean of the bootstrap samples.
This is equivalent to drawing with replacement

from the original sample, which is how the bootstrap
is sometimes described.
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Complex Systems

Another example of the use of Monte Carlo methods
is in the analysis of complicated systems. Simulation
methods are often used to explore the properties of
complex systems, likelihoods, or estimators. Deter-
ministic simulation systems are frequently used in
areas such as finance where the impact of varying
input parameters is assessed by changing the values
in a spreadsheet [10].

Simulations involving stochastic components are
often called Monte Carlo simulations. In many situa-
tions, uncertainty or randomness plays a key part
in the dynamics of the system. Examples include
queuing for operations and the demand for inven-
tory items. Mathematical models can be proposed and
analytical solutions can be sought, but in any real-
istic formulation the mathematics quickly becomes
intractable.

Epidemic theory has been a fertile area for Monte
Carlo simulations (see Epidemic Models, Stochas-
tic). A recent epidemic that has received considerable
attention is the HIV/AIDS (see AIDS and HIV) epi-
demic. Monte Carlo methods have been used to build
realistic behavior patterns into a model for this epi-
demic and to explore its evolution based on those
assumptions. Monte Carlo has also been used as an
estimation technique. Often, good information exists
for some aspects of the model. The other parame-
ters of the model are varied until the results of the
simulation agree best with the observed data.

An example of this methodology was given in [4]
and [5]. Data from homosexual men in San Fran-
cisco provided input parameters for several aspects
of the model. The model was a compartmental one
with different levels of sexual activity, immigration,
emigration, and death. Data on the probability of
transmission related to sexual activity collected from
several other studies were used to complement the
primary data set.

The simulation study generated incidence projec-
tions for HIV and AIDS. A sensitivity analysis was
conducted to see the range of behavior variables that
were consistent with the observed incidence patterns.
The conclusion was that there was a range of param-
eter values which could generate the observed data.
The most important outcome of the analysis was the
flagging of the most influential parameters for further
collection of data.

Markov Chain Monte Carlo

The final example we will consider is the use
of Markov chain Monte Carlo (MCMC) tech-
niques such as Gibbs sampling. These techniques
use stochastic simulation to explore and summarize
a multivariate density which may not be analytically
tractable. This problem arises often in the area of
Bayesian statistics.

With MCMC techniques, standard results [9] are
used to construct Markov chains with the required
stationary distributions. Popular choices are variants
on the Metropolis–Hastings algorithm. From an ini-
tial state vector, the chain is simulated until the
sequence has reached approximate stationarity. This
is the Monte Carlo part of the algorithm. The result-
ing sequence is used to make stochastic approxima-
tions to any required functional of the multivariate
distribution.
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Moran, Patrick Alfred
Pierce

Born: July 14, 1917, in Sydney, Australia.
Died: September 19, 1988, in Canberra, Australia.

Pat Moran was an Australian statistical scientist with
an enormous breadth and depth to his research inter-
ests. During his prolific career, Moran made sub-
stantial contributions to population genetics, medical
statistics (particularly psychiatry), geometric proba-
bility, mathematical statistics, time series, and app-
lied probability. He received numerous scientific hon-
ours, and now is commemorated by two Australian
awards for young research statisticians.

After graduating in 1937 with First Class Hon-
ours in Mathematics from Sydney University, Moran
went to Cambridge, England, where in 1939 he took
Part III of the Mathematics Tripos. World War II
interrupted further studies, and initially Moran had
a job with the Ministry of Supply where he worked
with D.G. Kendall and M.S. Bartlett. Then he joined
the Australian Scientific Liaison Office in London,
where reporting on all manner of wartime mat-
ters developed his clear and concise writing style
as well as his breadth of scientific interests. Over
these years he came to appreciate the importance
of statistical methods; in fact he began reading
M.G. Kendall’s Advanced Theory of Statistics dur-
ing the flying bomb raids on London. At the end
of the war, Moran accepted the Baylis research stu-
dentship at St Johns College, Cambridge, to do a
Ph.D. in Mathematics. He never did complete a
Ph.D. (a fact which later on he would relate with
pride), instead preferring a reasonable income to sup-
port his wife and then their children. From 1946
to 1951 Moran was a Senior Research Officer at
the Institute of Statistics, Oxford, and was attached
to Balliol College. He lectured at Trinity College
(1949–1951) and was made a University Lecturer
in 1951.

In 1952, Moran was appointed to the first Chair
of Statistics at the Australian National University
(ANU), which was established postwar as a research
and graduate training institution in Canberra. He held
this position until his retirement thirty years later.
Although Moran preferred to maintain a small depart-
ment, nevertheless he attracted first-rate faculty and
visitors, as well as many graduate students, and the

Department became “the cradle of modern Australian
Statistics” [2]. From this position, Moran’s influence
on statistical science in Australia was profound: in an
obituary Hall [2] noted that “ten out of the present
seventeen professors of Statistics in Australia have
been associated with the Department as either stu-
dents or staff”.

Moran’s first papers written during the war were
on Hausdorff measure (from his earlier research
at Cambridge) and on convex sets. One of these
was motivated by a problem posed by the Bomb
Fragmentation Committee, and the resulting prin-
ciple was used much later with a scanning beam
electron microscope [2]. After the war, Moran pub-
lished papers on rank correlation, and at Oxford
became interested in the analysis of animal popu-
lations. In Canberra, Moran initiated the study of
dam and storage system theory, publishing a mono-
graph in 1959 which later was translated into Russian
and Czech. Geometrical probability was an enduring
interest from his war years, and his 1963 monograph
with M.G. Kendall [3] was later translated into Rus-
sian. Some of his papers in this area were stimulated
by problems posed by immunologists at the John
Curtin School of Medical Research, ANU, such as
the determination of the random pattern of antibodies
attached to a spherical virus. Moran did not begin his
influential research in genetics until the late 1950s,
producing a major monograph [4] in 1962, giving a
systematic account of the mathematical aspects of
the genetics of natural populations (also translated
into Russian) (see Genetic Epidemiology). Moran’s
1967 [5] probability text was written to provide
an outline of probability theory which can be both
“generalized in a highly abstract manner” and can be
used to describe many “complicated phenomena in
natural science”. This treatise lies usefully between
an elementary introduction and deep abstract analy-
sis, and was reprinted in 1984. Moran’s list of over
180 publications can be found at [1], supplemented
at [2].

Moran was a Roman Catholic, and much enjoyed
turning his intellectual powers to theological discus-
sions with clergy. He was a modest person who
thought deeply about many matters, with his famil-
iar pipe never far away. His criticism was always
direct, and his insightful comments were a source
of stimulation for many researchers, in statistics and
mathematics, biology, and medicine.
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Morbidity and Mortality,
Changing Patterns in the
Twentieth Century

The twentieth century has been a period of unprece-
dented gains in longevity and health status. At the
turn of the twentieth century, life expectancy at birth
in Europe, North America, and Australia and New
Zealand was typically around 45–50 years, similar
to levels prevailing in Africa today, and not much
greater than the levels of 35–40 years which had
prevailed in Europe for centuries. As the twentieth
century draws to a close, life expectancy in most
industrialized countries is of the order of 75–80
years, or even higher for females in some countries.
In other words, life expectancy has increased by more
than 50% over the last 100 years or so in the industri-
alized world, but these gains have not been enjoyed
equally by all population groups. The twentieth cen-
tury has seen the emergence of dramatic inequalities
in survival, notably between men and women, but
also between the better educated and poorer sectors
of society.

In this brief review of 100 years of epidemio-
logic history, trends and differentials in mortality will
be presented to the extent that data are available
to document them, and the emergence (or decline)
of major epidemics and endemic conditions will
be discussed. Much of the analysis will be lim-
ited to mortality data since this is the most com-
prehensive, comparable, and unambiguous source
of information on health status. With the excep-
tion of cancer registries (see Disease Registers)
for some (generally subnational) populations, and
surveillance sites for vascular events included under
the World Health Organization (WHO) MONICA
project, there are no comparable, standardized data
on morbidity from which comparative trend analy-
ses can be made. (MONICA is a 10-year (1984–94)
epidemiologic surveillance system established in 35
countries, mostly industrialized, to monitor vascular
disease incidence and mortality in defined popula-
tions, hence the name Moni toring of Cardiovascu-
lar Diseases and Risk Factors.) Equally importantly,
there are no comparable data to investigate whether
the extra years of life gained, particularly at older
ages, have been accompanied by a rise, or fall, in
disability. Data sources for assessing disability vary

among countries and even within a population over
time. Therefore little can be said, with any confi-
dence, about changing patterns of disability, although
this information is clearly required to assist policy
and program formulation.

Data Sources for Mortality

Vital registration of births and deaths is the most use-
ful source of mortality data for populations where
complete recording of events has been achieved
(see Vital Statistics, Overview). Where the death
certificate includes diagnosis of the underlying cause
of death, certified by a registered medical practitioner
in accordance with the principles and procedures of
the revision of the International Classification of
Diseases (ICD) currently in force (see Death Cer-
tification), the information can also be used for
epidemiologic assessments. Complete (or virtually
complete) vital registration exists for industrialized
countries, including Eastern Europe and the former
USSR. In addition, several countries in developing
regions of the world, including Argentina, Chile,
Cuba, Mexico, Singapore, Uruguay, and some coun-
tries in the Caribbean have virtually complete reg-
istration and medical certification of deaths. Of the
developing regions, medical certification of deaths is
most advanced for Latin America and the Caribbean
(43% of deaths), and least advanced in Sub-Saharan
Africa (1% of deaths) [2].

Even in the absence of reliable vital registration
data, patterns and levels of mortality can still be use-
fully ascertained through less expensive systems cov-
ering a sample of the population. For example, China
has established a network of 145 Disease Surveil-
lance Points (DSP) which record over 50 000 deaths
annually in a population of 10 million people, rep-
resentative of mortality conditions throughout China.
Causes of death among the rural population in India
are assessed via a “verbal autopsy” system operating
from 1300 primary health care centers throughout the
country. (“Verbal autopsy” is a method for diagnosing
the approximate cause of death through a structured
interview with relatives of the deceased. The inter-
view is usually administered by a nonmedical person
some weeks or months after death. Relatives are
asked about a series of symptoms prior to death from
which a diagnosis of the cause of death is made,
preferably by a qualified physician.) While not as
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reliable as the DSP system in China, the Indian data
are nonetheless useful for delineating broad cause of
death patterns throughout the country [2].

Issues of Comparability

The interpretation of analyses of vital registration
data on causes of death must be made with cau-
tion since the comparability of data is undoubtedly
affected by many factors (see Mortality, Interna-
tional Comparisons). Even among the developed
nations, where causes of death over the course of
the twentieth century have generally been classified
according to standards and principles agreed upon by
various international committees (since 1948, under
the auspices of WHO), variations in diagnostic prac-
tice among countries affect data comparisons. A
WHO international comparative study carried out in
the 1960s reported significant variations in certifi-
cation practices among six European countries with
major differences in the proportion of deaths which
were certified by pathologists [10]. No doubt these
differences have diminished in recent decades, but the
practice of autopsy still varies substantially among
industrialized countries, with implications for data
comparability [11].

Cultural differences also no doubt are a significant
factor in the coding of injuries. Suicides in particu-
lar are undoubtedly underreported in some countries
owing to the social or religious stigma associated
with the act, with the death in such cases usually
being coded to accidental injuries [6]. Studies have
also revealed “diagnostic preferences” for chronic
diseases. For example, in the 1950s and early 1960s,
deaths which were coded to chronic respiratory dis-
eases in the UK, Australia, and New Zealand may
well have been coded to a cardiovascular disease in
the US [5].

The statistical comparability of cause of death
data has certainly been affected by the successive
revisions of the ICD. The most profound change
occurred with the introduction of the Sixth Revision
around 1950, in which major alterations to the format
of the list of causes were made to accommodate
the sweeping changes in the principles of cause
of death classification introduced with that revision.
The introduction of the Eighth Revision in 1968
substantially affected the time series comparability of
certain major causes of death, particularly ischemic
heart disease (IHD), with up to 15% more deaths

being coded to IHD than to the most comparable
cause in the Seventh Revision [9].

The comparability of epidemiologic analyses of
mortality data is also very much affected by the
extent to which deaths are coded to ill-defined and
unspecified diagnoses. This affects both comparisons
among countries as well as trends within a coun-
try over time. For example, around 1950, approxi-
mately 15%–20% of all deaths in Belgium, France,
Greece, Poland, and Spain were coded to ill-defined
causes, compared with 1%–2% in Australia, Austria,
Canada, Denmark, New Zealand, Switzerland, the
UK, and the US. Without adjustment for diseases
coded to ill-defined conditions, cross-national com-
parisons might be very misleading [4]. By the early
1990s, ill-defined causes throughout the industrialized
world had declined to about 1%–3% of all deaths.
For countries where this practice was common four
decades ago, time series analyses for specific causes
(especially cardiovascular diseases) must be inter-
preted with great prudence.

Trends in Life Expectancy and
Age-Specific Mortality Rates

Life Expectancy

Life expectancy at birth is a convenient summary
index of prevailing mortality conditions at each age.
The measure is not a linear function of age-specific
death rates and hence equal reductions in mortality
at different ages will not have an identical impact on
life expectancy – a reduction in death rates at younger
ages will result in a larger gain in life expectancy at
birth than a similar reduction in death rates at older
ages. Despite this feature, life expectancy is widely
understood and is perhaps still the most commonly
used indicator to summarize overall mortality levels
in a population.

Table 1 provides an overview of the gains in life
expectancy in selected countries over the course of
the twentieth century. By far the largest absolute
increase has been enjoyed in Japan (34 years for
males, 39 years for females), followed by Italy. Much
less progress has been registered in Eastern Europe
although national trends are not strictly compara-
ble owing to differences in time period, life table
methodologies, and population coverage around the
turn of the century. What the table does suggest,
however, is that the pattern of mortality reduction
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Table 1 Life expectancy at birth, 1900–95, selected countries
(a) Males

Life expectancy at birth in

Country 1900–10 1930–40 1950–55a 1970–75a 1990–95a

Japan 42.4 47.9 62.1 70.6 76.4

Sweden 56.6 62.1 70.4 72.1 75.4

Australia 57.6 63.6 69.9 68.4 74.7

Spain 47.2 61.6 70.2 74.6

Netherlands 63.7 70.9 71.1 74.4

Italy 43.0 53.4 64.3 69.2 74.2

Norway 56.4 62.6 70.9 71.4 73.6

UK 45.3 66.7 69.0 73.6

France 43.4 55.2 63.7 68.6 73.0

Denmark 61.4 69.6 70.9 72.5

New Zealand 58.0 63.3 67.5 68.7 72.5

US 45.6 57.6 66.2 67.5 72.5

Poland 58.6 67.0 66.7

Hungary 61.5 66.5 64.5

Russian Federation 30.9 40.4 62.5 63.1 61.7

(b) Females

Life expectancy at birth in

Country 1900–10 1930–40 1950–55a 1970–75a 1990–95a

Japan 43.7 50.7 65.9 76.2 82.5

Sweden 59.5 64.2 73.3 77.5 81.1

France 47.0 59.8 69.5 76.3 80.8

Australia 61.4 67.3 72.4 75.2 80.6

Italy 43.7 55.5 67.8 75.2 80.6

Spain 50.8 66.3 75.7 80.5

Netherlands 65.0 73.4 77.0 80.4

Norway 59.3 65.8 74.5 77.6 80.3

US 48.3 61.0 72.0 75.3 79.3

UK 49.3 71.8 75.2 78.7

New Zealand 59.9 66.0 71.8 74.8 78.6

Denmark 63.3 72.4 76.4 78.2

Poland 64.2 74.1 75.7

Hungary 65.8 72.4 73.8

Russian Federation 33.0 46.7 70.5 73.5 73.6

aAnnual average.
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among the industrialized countries is extremely het-
erogeneous and that, while significant progress has
been achieved, there has been more divergence than
convergence among the industrialized countries.

Viewing trends in life expectancy over almost a
century can conceal significant time trends that have
characterized this century of mortality change. Life
expectancy at birth has not increased monotonically
since the early 1900s. Rather, significant gains were
achieved virtually everywhere until the beginning of
the 1950s. From the mid-1950s, male life expectancy
stagnated, or even declined modestly in some West-
ern European countries, as well as in Australia and
North America (see Figure 1). Meanwhile, female
life expectancy continued to rise. From the mid-to-
late 1960s, male life expectancy began to rise again,
quite sharply in some countries. At about the same
time, one of the most remarkable reversals in life
expectancy began throughout Eastern Europe with
male life expectancy declining by up to 4–5 years
in most countries, and by even more (7 years) in
Russia [8]. Even this general trend has been accom-
panied by significant national variations with male
life expectancy beginning to show signs of a renewed
rise in the Czech Republic, Hungary, and Poland, but
deteriorating markedly in Russia since 1988, having
risen sharply in the former USSR between 1980 and
1987 [8].

Demographers and epidemiologists have been
studying these remarkable changes in Eastern Europe
for more than two decades. Most would agree that
the trends are real and not due to sudden changes in
the completeness or accuracy of reporting of deaths

following widespread social and political change in
the late 1980s. Epidemiologic research suggests that
much of the pervasive increase in male mortality in
Eastern Europe since the late 1960s is due to tobacco
usage [3] or, in the case of the recent dramatic mor-
tality increases in Russia, alcohol abuse [7].

Age-Specific Mortality Change

Given the very close relationship between the age-
pattern of mortality and the prevailing cause of death
structure – infectious diseases tend to kill many more
children than adults, while chronic diseases do the
converse – the conquest of the communicable dis-
eases such as tuberculosis, measles, malaria, diarrheal
diseases, and acute respiratory infections, which had
largely been completed in the industrialized coun-
tries by 1950 or thereabouts, has resulted in massive
declines in infant mortality and child mortality, and
a significant reduction of death rates among young
adults.

Around 1900, infant mortality rates in Australasia,
Europe, or North America typically hovered around
100–150 deaths per 1000 live births, similar to levels
currently prevailing in many African countries (see
Table 2). Overall child mortality rates (measured as
the probability of a newborn infant dying before age
5) were of the order of 200 per 1000 live births.
In 1995, infant mortality rates in the industrialized
countries are typically around 10 or less per 1000
live births, reaching as low as 4–5 per 1000 in Japan
and parts of Scandinavia.

75
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71

69

67

65

63

1950-55 55-60 60-65 65-70 75-80 80-85 85-90 90-9570-75

Year

Italy

US
Australia
France
Sweden
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Figure 1 Trends in life expectancy at birth in selected countries, 1950–95, males
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Table 2 Infant mortality rate (per 1000 live births)

Country 1900 1930 1950–55 1970–75 1990–95

Japan 168M/147F 51 12 4

Finland 34 12 5

Iceland 21 12 5

Sweden 78M/63F 62M/47F 20 10 5

Belgium 45 19 6

Germany 51 21 6

Switzerland 61M/48F 29 13 6

Australia 74M/59F 45M/36F 24 17 7

Austria 53 24 7

Canada 105M/82F 36 16 7

Denmark 89M/69F 28 12 7

France 80M/63F 45 16 7

Ireland 41 18 7

Luxembourg 44 16 7

Netherlands 54M/41F 24 12 7

Spain 150M/130F 62 21 7

UK 29 17 7

Italy 176M/158F 112M/100F 60 26 8

Norway 75M/61F 50M/41F 23 12 8

Czech Republic 43 20 9

Israel 41 23 9

Malta 75 22 9

New Zealand 80M/69F 44M/36F 26 16 9

USA 162M/133F 73M/58F 28 18 9

Greece 98M/97F 60 34 10

Portugal 196M/166F 91 45 10

Slovokia 73 24 12

Bulgaria 92 26 14

Hungary 71 34 15

Poland 95 27 15

Yugoslavia 110 47 20

Russian Federation 98 28 21

Romania 101 40 23
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Although less dramatic, and with some interrup-
tions for men as noted earlier, adult mortality levels
have also declined more or less continuously since the
beginning of the twentieth century. This decline has
been much more evident for women, although evi-
dence of a stagnation in mortality rates for women
in some Eastern European countries first became evi-
dent in the early 1970s. Since the late 1970s, several
countries, including Australia, the Netherlands, the
UK, and the US, have seen further substantial reduc-
tions in male (and female) mortality, both in middle
and old age. Much of this recent decline in death
rates can be attributed to further declines in ischemic
heart disease and stroke mortality, continuing a trend
which began in the late 1960s.

From this brief analysis, one may conclude that
adult mortality rates tend to be higher in popula-
tions with higher overall mortality and tend to decline
(more or less monotonically) with declines in gen-
eral mortality levels. This is perhaps counterintuitive,
but is confirmed by recent global mortality analyses
which suggest that the risk of adult death through-
out the developing world is substantially higher than
in Australasia, North America, Japan, and Western
Europe [2].

Demographers have developed methods to decom-
pose or disaggregate changes in life expectancy at
birth into contributions due to changes in mortal-
ity at different ages. These can be either positive
contributions (in which case mortality rates in the
age group have declined), or negative, whereby life
expectancy has increased despite an increase in mor-
tality rates in a given age group. To illustrate the
utility of these methods, the age pattern of contri-
butions to life expectancy trends for males in three
populations, Australia, England and Wales, and Hun-
gary, are shown in Table 3 for the period 1950–79.

The very substantial contribution (in years) from
post-1950 declines in infant and child mortality is
evident in all three populations (1.37 years out of a
3.0 year increase in life expectancy in England and
Wales, 4.32 years of a 4.9 year increase in Hungary,
and 1.48 years out of a 4.2 year gain in Australia) [1].
Since mortality rates at ages 15–34 years were
already comparatively low in the early 1950s, fur-
ther declines at these ages did not contribute greatly
to changes in life expectancy. Reductions in mortal-
ity for higher age-groups resulted in similar absolute
contributions to increasing life expectancy in both

England and Wales, and Hungary, at least until the
mid-1960s.

Given the abrupt cessation of overall male mor-
tality decline in Hungary and neighboring countries
from the mid-1960s and the rapid increase in male life
expectancy in Australia (and other Western countries)
since the early 1970s, analyses for these subperiods
are also presented in the table.

The complexity of age patterns of mortality change
and their influence on overall life expectancy is well
illustrated by these two examples which, in many
respects, are representative of recent mortality trends
in the industrialized countries. In Hungary, male life
expectancy remained unchanged between 1960–64
and 1975–78 (but declined subsequently). This was
due to rises in mortality (i.e. negative contributions
to life expectancy) at all ages 25 years and older, and
particularly at ages 45–54 years. Conversely, further
declines in infant and child mortality, and, to a much
lesser extent, at ages 15–24 years, acted to increase
life expectancy but were exactly counteracted by ris-
ing death rates at older ages. The pattern of mortality
change in Australia over the same period was exactly
the reverse. Between 1950–54 and 1970–76, male
life expectancy hardly changed at all (up by 1.3
years), almost all of which (0.9 years) was due to
declines in infant and child death rates, with only
small (positive or negative) contributions from rela-
tively stable adult death rates. During the 1970s, how-
ever, male death rates at ages 45 and over declined
dramatically in Australia, accounting for 1.9 years
of the 2.9 year increase in life expectancy at birth,
with much of the remainder (0.6 years) being due to
continued declines in infant and child mortality.

Sex Differentials in Mortality

One of the most remarkable features of twentieth
century mortality decline in the industrialized coun-
tries has been the dramatic widening of male–female
differentials in mortality. Around the turn of the cen-
tury, life expectancy for females was typically 2–3
years higher than for males, and in some countries,
such as Ireland and Italy, the gap was less than 1
year. Female mortality rates exceeded those of males
in many countries at various ages up to the end of
the childbearing period. Indeed, the contribution of
maternal mortality to the sex mortality differential
around the turn of the century was sufficiently high
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to reduce the female advantage in life expectancy
over males by 0.3 to 0.5 years [1]. Conversely, acci-
dents and violence were a major cause of male excess
mortality, typically accounting for about half of the
female advantage in life expectancy at birth.

By far the largest contribution to the increase
in male excess mortality by the mid-1960s was the
diverging mortality trends for men and women from
cardiovascular diseases, at least in Australia and the
US. A similar pattern is also evident in the Scandi-
navian countries (and indeed in most other industri-
alized nations) after 1950.

The contribution of cancer to widening sex mor-
tality differentials is rather more complex. Prior to
about 1930, female mortality from cancer exceeded
that for men, largely due to cancers of the genital
tract. By the mid-1960s, about half a year had been
added to the gap in life expectancy in Australia and
Scandinavia due to differential male–female trends
from cancer, and almost a full year in the US. Much
of this, and subsequent increases after 1960, can be
attributed to the massive increase in male lung cancer
mortality (see next section). Finally, it is also inter-
esting to observe the growth in the contribution of
male excess mortality from motor vehicle accidents.
Around 1910, there were too few cars for this to be a
significant cause of death. Since then death rates from
car crashes rose dramatically, especially for males,
so that by 1964, this cause alone contributed about
half a year to the gap in life expectancy between the
sexes.

Sex differentials in mortality have continued to
widen in recent decades with the result that aver-
age life expectancy at birth for females is currently
typically about 6–7 years higher than for males,
and in some countries (e.g. Hungary and France)
the gap is closer to 9 years. In others, e.g. Aus-
tralia and the UK, there is evidence that the sex
differential in mortality is no longer increasing. This
is due to the very substantial declines in male
mortality from lung cancer, ischemic heart disease,
and stroke in these countries, following widespread
reductions in smoking by men which began several
decades ago.

Cause of Death Trends

The twentieth century has been characterized by
a massive decline in communicable diseases and

maternal and perinatal causes in industrialized coun-
tries, and increasingly in many developing countries
as well. The extent of this reduction is well illustrated
in Figure 2, which shows the proportionate mortal-
ity for males in selected countries from various broad
causes over the last 100 years or so. The pattern for
females is broadly similar, with the added feature that
maternal deaths have declined from around 2%–5%
of female deaths in the early 1900s to less than one-
tenth of 1% today. From causing about 30% of deaths
around 1900, infectious and parasitic diseases now
cause less than 5% of deaths in the industrialized
countries, and this figure would be even lower were
it not for the AIDS epidemic. Noncommunicable dis-
eases have emerged as the leading causes of death
by far as the twentieth century draws to a close,
despite the very substantial reductions in vascular dis-
ease mortality in some developed countries in recent
decades.

The trends in accidents and violence (external
causes) are particularly interesting. Although the pro-
portionate contribution of these nonmedical causes to
overall mortality has remained relatively constant at
around 6%–8%, the composition of causes within
the category of accidents and violence has changed
dramatically. For example, earlier in the century,
industrial accidents were the leading cause of male
deaths from external causes, reflecting the risks asso-
ciated with several occupations commonly practiced
at that time (see Occupational Mortality). Subse-
quently, with the modernization of the labor mar-
ket and legislative reform for occupational safety,
these accidents have greatly diminished in frequency.
For males, at least, motor vehicle accidents have
emerged as the principal cause of death from non-
medical causes, rising from virtually zero around
1900 to account for about 30% of violent deaths
among males in many industrialized countries, and
an even higher proportion (50% or so) of violent
deaths at the young adult ages (15–34 years) (see
Figure 3).

An overview of mortality change in the industrial-
ized countries since 1950 is given in Figure 4, which
shows the relative change (death rate in 1950–54 =
100) in age-standardized death rates from selected
leading causes of death for men and women sep-
arately (see Standardization Methods). The graph
shows the average experience of 22 industrialized
countries and demonstrates the varied epidemiologic
history of the world’s richest countries over the last
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Figure 2 Proportionate mortality (in %) from broad causes, selected countries, males, 1910–90. (a) US, (b) England and
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Figure 3 Proportion of all violent deaths due to motor
vehicle accidents, selected countries, males, 1910–90

few decades. The rise (for men) and then steady
decline in ischemic heart disease and stroke mortality
is clear, as is the peak in motor vehicle accident mor-
tality in the early 1970s. Since then, death rates from
traffic crashes have returned to levels last seen in the

1950s for women, and 25% lower than the 1950–54
level for males. This has occurred despite a dramatic
increase in the number of motor cars. This remark-
able reversal is due to a number of factors, including
improved highway conditions and stricter measures
to control drunken driving in these countries.

But perhaps the most dramatic change in mortality
since the middle of the century has been the extraordi-
nary growth in lung cancer mortality, for both males
and females. Male lung cancer rates have increased,
on average, by almost 200% since 1950–54, while
for females, the rise, in relative terms at least, has
been even greater (more than 300%). Even though
the relative increase in lung cancer rates has been
higher for females, the absolute level of rates is still
much higher in males owing to their longer smoking
history. The enormity of the lung cancer epidemic in
the industrialized countries during the course of the
twentieth century is perhaps best summarized by the
trends for the US (see Figure 5).
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for selected causes of death in 22 industrialized countries,
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From a level of around five deaths per 100 000 in
1930, US male lung cancer rates have risen about 15-
fold to peak in the early 1990s. Other cancers have
remained relatively stable, or, in the case of stomach
cancer, declined substantially. For women, the rise
in lung cancer only began in the early 1960s, some
decades after American women began to smoke in
large numbers.

There have been notable successes in reducing
lung cancer mortality, particularly in Australia, Fin-
land, the Netherlands, and the UK, where death rates
from the disease have been steadily declining and are
now at levels 20%–40% below their peaks. Male lung
cancer rates in some industrialized countries are still
rising, most notably in Japan (an increase of over
1000% since 1950), but also in Greece, Hungary,
Portugal, Poland, and Spain. Indeed, lung cancer mor-
tality in Hungary in 1994 reached 122 deaths/100 000
population (age-standardized), exceeding even the
highest level reported for UK men (111/100 000) at
the height of their epidemic (1974) [11].

Lung cancer death rates for women are rising
everywhere except in Australia, New Zealand, and
the UK, where death rates appear to have stabilized.
The highest mortality rate for women in the early
1990s is reported for American women (38/100 000),
closely followed by Denmark (36/100 000). Indeed,
in several populations (see Figure 5), lung cancer
now exceeds breast cancer as the leading site for mor-
tality from the disease (see Smoking and Health).

Along with the reversal in lung cancer rates for
men in some countries, the other great public health
success of the second half of the twentieth century has
been the extraordinary decline in ischemic heart dis-
ease mortality and stroke (cerebrovascular disease).
Beginning in the mid-to-late 1960s, death rates from
these diseases began to decline following a decade or
more of rising rates in many countries. Death rates are
now less than half their post World War II peak lev-
els and are still declining. Largely as a result of these
declines in major vascular diseases, overall mortal-
ity levels have fallen by up to 40% in many Western
countries.

The other major disease for which significant
progress in reducing mortality has been achieved
is cirrhosis of the liver. In countries such as Aus-
tralia, France, Germany, Portugal, and Spain, male
death rates from the disease rose steadily during the
1950s and 1960s and reached a peak level of 45–55
deaths/100 000 population in the mid-1970s. Since
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then, death rates have halved in France and Portu-
gal, and have declined by 20%–30% in the other
countries where death rates from the disease have
been comparatively high. On the contrary, there is
no evidence that mortality has declined among men
in Eastern Europe, and indeed it appears to be rising
in several of these countries.

Whither the Future: Mortality and Causes
of Death in the Twenty-First Century

As the twentieth century draws to a close, it is per-
haps important to reflect briefly on major threats to
health in the first decades of the twenty-first cen-
tury. Unquestionably, the two epidemics of greatest
public health concern must be use of tobacco and
HIV infection. Between 1950 and 2000, tobacco will
have caused over 60 million deaths in the developed
countries of the world, more than 50 million men
and about 10 million women [3]. In 1995, tobacco
was estimated to have caused about 3 million deaths
globally, about 2 million in the developed countries
and about a million, but with substantial uncertainty,

in less developed countries. In the twentieth cen-
tury, most of the deaths from tobacco have been in
developed populations, but in the twenty-first cen-
tury the opposite will be true. The annual numbers
of deaths are still increasing in developed popula-
tions but they are increasing even faster elsewhere.
Over the past few decades there has been a massive
rise in global cigarette consumption, particularly in
developing countries, where 50% of men smoke. On
current trends, annual global tobacco deaths are likely
to reach 10 million in the 2020s or early 2030s. The
chief uncertainty is not whether, but when, annual
mortality will reach this level. On present smoking
patterns, half a billion of the world’s current pop-
ulation will eventually be killed by tobacco. These
predictions will be substantially wrong only if there
are substantial changes in global smoking patterns.

AIDS caused by the human immunodefeciency
virus (HIV), is the only other major cause of death
that is rising rapidly. First diagnosed in the early
1980s, the disease is estimated to have caused about
400 000 deaths in 1990, the majority in Sub-Saharan
Africa [2]. Epidemic modeling of the disease sug-
gests that the peak in global mortality will be attained
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sometime between 2005 and 2010, when annual
deaths are predicted to reach about 1.7 to 1.8 million
a year [2]. Beyond then, the epidemic is expected
to decline slowly due to the past (and projected)
efforts at prevention. As with tobacco, these projec-
tions could be gross underestimates if HIV incidence
were to increase rapidly in some large population
groups. If this were to happen, it would most prob-
ably occur in Asia where seroprevalence has been
increasing dramatically in some high-risk populations
(see Projections: AIDS, Cancer, Smoking).

The third area for concern is the emergence, or
reemergence, of various infectious diseases which,
if uncontrolled, could cause a substantial number of
deaths in the future. The reemergence of tuberculosis
as a significant health issue in the developed coun-
tries is an object lesson for the public health pro-
fession not to become complacent about past suc-
cesses in disease control. Equally, the ebola virus
as well as significant cholera outbreaks attest to the
need for continual vigilance in surveillance of dis-
eases. Finally, the very large unfinished agenda of
controlling the leading causes of child mortality in
developing countries, particularly diarrheal diseases,
acute respiratory infections, the vaccine-preventable
diseases, and malaria, which each year collectively
kill more than 12 million infants and young chil-
dren [2], must remain a major global public health
priority into the next century.
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Mortality, International
Comparisons

The international comparison of mortality or other
health-related statistics is probably the most useful,
simple, and widely used method to assess the health
status of the population of a particular country. In
most cases health can be measured only in relative
terms, by placing the country on a scale between the
best and worst achievements being observed in other
countries. Most often, comparisons are made between
countries in a specific geographic region or with
similar level of socioeconomic development. Such
comparisons form an important part of national public
health reports or documents on national health poli-
cies. Publications and reports of international organi-
zations active in the field of health are usually also
largely based on international comparisons of health
statistics including mortality data. International mor-
tality comparisons are often the subject of research
papers.

To make international comparisons of health data
possible, there are several essential and obvious con-
ditions. Data have to be available from a suffi-
cient number of countries and they must be based
on the same definitions in order to be comparable.
In this respect, mortality statistics are probably the
best presently available health data for international
comparisons. The World Health Organization has
been collecting mortality information since the early
1950s, just after the establishment of the Organi-
zation. Currently, about 70 countries are regularly
reporting detailed data to the WHO on an annual
basis. These statistics are based on the concept of the
underlying cause of death (see Death Certification)
and are usually coded using the International Clas-
sification of Diseases (ICD). Generally, these data
can be estimated as being of good quality (accu-
racy) particularly in developed countries with well
established and functioning systems of vital statis-
tics. However, there are many potential methodologic
problems limiting the comparability of mortality data
even among developed countries. These problems
are mostly related to the coding of the underlying
cause of death (see Cause of Death, Underlying
and Multiple). However, the impact of variations
in coding procedures on actual cause-specific mor-
tality statistics is very difficult to measure regularly

in quantitative terms, as it requires special studies
to compare actual methods and practices of coding
death certificates between countries. Studies which
have been carried out so far have confirmed the per-
ception that in some cases differences in the coding
methods and practices may cause significant bias in
the number of deaths from specific diseases. There
are several elements in death registration which may
have an influence on the international comparability
or may cause an artifact in the trend of particular
cause-specific mortality within the country. At least
the following could be mentioned:

1. the level of training and corresponding practices
in filling in death certificates by health profes-
sionals;

2. the form of the certificate itself – for example,
the number of lines provided to list underlying
and intermediate causes of death;

3. the regulations and administrative structures
defining further transfer and processing of death
certificates – for example, whether completeness
and quality are controlled locally;

4. the coding of the cause of death from the written
textual form into the ICD code – for example,
whether it is done locally or centrally, manually
or automated.

Another factor that is often forgotten, but which
may cause significant bias in mortality rates used for
international comparisons, is related to the popula-
tion estimates used as a denominator to calculate
mortality rates; for example, the number of deaths per
100 000 population. The total resident population in a
given country is counted more or less accurately only
during population censuses, which in most countries
are carried out once every 10 years. In between cen-
sus periods, population estimates are calculated on
the basis of births, deaths, immigration, emigration,
and aging of the population (see Demography). In
practice, these estimates may not be accurate enough.
When such estimates are used to calculate mortal-
ity rates, these inaccuracies can cause distortion in
mortality trends and, correspondingly, in international
comparisons.

Usually it is difficult to detect whether there is
any bias in the mortality data of a particular country
as compared to other countries. However, one has to
keep in mind this possibility while making interna-
tional comparisons.
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There are also several statistical aspects that have
to be taken into account in order to avoid the possibil-
ity of misleading conclusions based on international
comparisons. First of all, the absolute number of
deaths, without taking into account the size of the
population, should not be used. Mortality rates or
other indices should normally be used. In cases in
which mortality for all ages or for a wide age band
is compared, appropriate mortality rates have to be
age-standardized beforehand (see Standardization
Methods). Comparisons of crude death rate (i.e. a
simple ratio of the number of deaths to the popu-
lation size) are often misleading, particularly when
one compares countries with different population age
structures. For example, the crude death rate is usu-
ally higher in developed countries compared to devel-
oping ones, although an opposite situation should be
expected when considering the health of the popu-
lation in general. This happens purely because of
differences in population structure; that is, devel-
oped countries have a much higher proportion of
older people with, naturally, high mortality. There are
two methods (direct and indirect) to age-standardize
mortality rates in order to eliminate the influence of
differences in population age structure between coun-
tries. If there is a sufficient amount of data for each
age group, usually the direct method is used. Mortal-
ity rates are calculated for each age group and then
are combined into the one index, assuming that the
given country has the “standard” population structure.
There are two commonly used standards for inter-
national comparisons: the world and the European
standard populations (see Table 1).

The indirect method of standardization is usu-
ally used in cases in which relatively rare causes
of deaths are compared, or there are not enough
data due to other reasons, to estimate mortality in
each age group. This standardization is based on
the assumption that the age-specific mortality is the
same – that is, “standard” – in each country. These
“standard” age-specific mortality rates are usually
calculated using combined data from all countries
included in the comparisons. The expected number of
deaths is calculated on the basis of the above “stan-
dard” mortality rates and the actual age distribution of
the population in a given country. The ratio of actu-
ally observed and calculated expected cases is used
as the standardized mortality ratio.

One also has to be careful when comparing coun-
tries with small populations. Mortality indices for

Table 1 Standard populations (world and European)

Age group (years) World European

0 2 400 1 600
1–4 9 600 6 400
5–9 10 000 7 000

10–14 9 000 7 000
15–19 9 000 7 000
20–24 8 000 7 000
25–29 8 000 7 000
30–34 6 000 7 000
35–39 6 000 7 000
40–44 6 000 7 000
45–49 6 000 7 000
50–54 5 000 7 000
55–59 4 000 6 000
60–64 4 000 5 000
65–69 3 000 4 000
70–74 2 000 3 000
75–79 1 000 2 000
80–84 500 1 000
85+ 500 1 000

Total 100 000 100 000

Sources: (a) Waterhouse et al. [1]; (b) World Health Statistics
Annual, Geneva, WHO (any issue). Reproduced by permission
of the IARC and the WHO.

these countries are less stable, and the position of
such countries may change significantly from one
year to the next because of random variations.

For international comparisons, it is preferable to
use mortality rates or other mortality based indices
which are calculated centrally; for example, by the
World Health Organization. Indices calculated indi-
vidually by each country may have some bias due to
the different calculation methods and software used
in each country. This may happen particularly in the
case of life expectancy as there are several differ-
ent mathematical methods and software packages to
calculate this index from the raw, age-disaggregated
mortality data.

Mortality data are collected by and are available
from several international organizations and agencies
(e.g. the United Nations, the World Health Organiza-
tion, the Statistical Office of the European Commu-
nities, and the Organization for Economic Coopera-
tion and Development). The database maintained by
the WHO is probably the most comprehensive and
widely used. Detailed mortality data are published
yearly in the World Health Statistics Annual [2].
Copies of the database with raw mortality data are
available on request in computer-readable form from
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the WHO headquarters [3]. For European countries,
this information in the form of age-standardized mor-
tality rates is also available as a part of the “Health
for All” statistical data base maintained by the WHO
Regional Office for Europe in Copenhagen. These
data, together with user-friendly data presentation
software which facilitates international comparisons,
can be downloaded from the Internet (www.who.dk).
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Most Powerful Test

Random phenomena abound in biological and med-
ical studies. When a biological researcher monitors
whether an experimental unit in a tumorgenicity study
will develop a tumor, the researcher will not be cer-
tain whether such an event will occur. Rather, his/her
knowledge will be represented by the probability that
the event will occur. Let X = 1(0) whenever the
event occurs (does not occur). Then the researcher’s
knowledge concerning the occurrence of a tumor
will be represented by the Bernoulli probability mass
function (pmf)

fX(x|θ) = Pr
θ

(X = x) = θx(1 − θ)1−x, x = 0, 1,

(1)

where θ ∈ Θ = [0, 1] is the probability of a tumor
occurring (see Binary Data). The extreme values
{0, 1} of θ represent certain knowledge, while θ =
1/2 represents the least amount of knowledge con-
cerning the event. In this example, X is the variable
of interest, X = {0, 1} is the range space of X, θ is
the relevant parameter, Θ = [0, 1] is the parameter
space, and fX(·|θ) is the pmf of X for the parameter
value θ .

Another situation is when a medical researcher
observes the time of occurrence X of some event such
as the onset of AIDS for HIV-infected individuals. In
contrast to the first example, the variable X takes val-
ues in an uncountable range space X = (0, ∞), and
knowledge of this event is specified by a probability
density function (pdf) fX(·|θ), where θ is a parame-
ter. As h approaches 0, the pdf has the interpretation

fX(x|θ)h = Pr
θ

(x < X ≤ x + h) + o(h).

A specification that arises in many survival time stud-
ies is provided by the exponential density function

fX(x|θ) = θ exp(−θx), x > 0.

Thus, generally, a researcher will be interested in
some characteristic represented by a variable X.
Uncertain knowledge concerning this characteristic
is represented by a family of pmfs or pdfs given by
P = [fX(·|θ) : θ ∈ Θ], where θ is a parameter taking
values in a parameter space Θ . Summary measures
about X needed for making important decisions, such
as the mean, standard deviation, median, or quartiles,
are functions of θ . The true value of θ , denoted by

θ0, is unknown, and it is a goal of the researcher
to gain knowledge concerning this value to further
his/her knowledge concerning X. To achieve this
goal, either through scientific experimentation, clini-
cal trials, etc., he/she observes the random variables
X1, X2, . . . , Xn which are identically and indepen-
dently distributed (iid) from fX(·|θ0). The joint pmf
or pdf of (X1, X2, . . . , Xn) is therefore

f(X1,...,Xn)(x1, . . . , xn|θ) =
n∏

i=1

fX(xi |θ).

Statistical Hypotheses and Tests

The problem of statistical hypothesis testing is to
decide, on the basis of a realization (x1, x2, . . . , xn)

of (X1, X2, . . . , Xn), whether to reject a null hypoth-
esis in favor of an alternative hypothesis, or fail to
reject it. These hypotheses, which are statements con-
cerning the value of θ , are generally chosen so that
the alternative represents change. They are written
symbolically as

(null)H0 : θ ∈ Θ0 and (alternative) H1 : θ ∈ Θ1,

where {Θ0, Θ1} is a partition of Θ . A statistical
test of H0 vs. H1 requires a statistic δ(X1, . . . , Xn),
i.e. a function of (X1, . . . , Xn) and possibly other
known constants, taking values in [0, 1]. For a real-
ization (x1, . . . , xn), δ(x1, . . . , xn) is the probability
of rejecting H0 given (x1, . . . , xn). For a test δ, its
power function πδ : Θ → [0, 1] is

πδ(θ) = Eθ [δ(X1, . . . , Xn)],

where Eθ [·] represents expectation with respect to
the joint pmf or pdf f(X1,...,Xn)(·, . . . , ·|θ). The power
function is the expected probability of rejecting H0

when the parameter value is θ . Ideally, we would
want πδ(θ) = 0 whenever θ ∈ Θ0, and πδ(θ) = 1
whenever θ ∈ Θ1; however, such an ideal situation
is seldom achieved except in artificial and/or trivial
problems. The size of a test δ is

size(δ) = sup
θ∈Θ0

πδ(θ),

and δ is of level α(0 ≤ α ≤ 1) if size(δ) ≤ α. Size(δ)
can be interpreted as the maximum expected prob-
ability of committing an error of type I, which is
committed when the test rejects H0 when in reality H0
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is true. On the other hand, when θ ∈ Θ1, 1 − πδ(θ)

represents the average probability of committing an
error of type II, which is committed when the test
fails to reject H0 – a wrong decision, since in such a
case H1 is true.

If Θ0 = {θ0} and Θ1 = {θ1}, we say that Θ0 and
Θ1 are simple hypotheses. In such a situation, given
an α ∈ [0, 1], a test δ∗ is a most powerful α-level
(MP-α) if

1. size(δ∗) = πδ∗(θ0) ≤ α, and
2. for any other test δ with size (δ) = πδ(θ0) ≤ α,

πδ∗(θ1) ≥ πδ(θ1).

If either Θ0 or Θ1 is not simple, the hypothe-
sis is composite. When the null or the alternative
hypothesis is composite, a test δ∗ is a uniformly most
powerful test of level α (UMP-α) if

1. size (δ∗) = supθ∈Θ0
πδ∗(θ) ≤ α, and

2. for any other test δ with size (δ) = supθ∈Θ0

πδ(θ) ≤ α, πδ∗(θ) ≥ πδ(θ) for every θ ∈ Θ1.

Neyman–Pearson Fundamental Lemma

For testing a simple H0 : θ = θ0 vs. a simple H1 :
θ = θ1, the Neyman–Pearson fundamental lemma
(Neyman & Pearson [4]; see also Lehmann [3]) guar-
antees the existence of an MP-α test which is of the
form

δ∗(x1, . . . , xn) =






1, if L(θ1|x1, . . . , xn)

> cL(θ0|x1, . . . , xn),

γ, if L(θ1|x1, . . . , xn)

= cL(θ0|x1, . . . , xn),

0, if L(θ1|x1, . . . , xn)

< cL(θ0|x1, . . . , xn),

where L(θ |x1, . . . , xn) = f(X1,...,Xn)(x1, . . . , xn|θ) is
the likelihood function, and c ∈ [0, ∞) and γ ∈
[0, 1] are some constants which are chosen so that
size(δ∗) = α. The fundamental lemma furthermore
guarantees that if δ∗∗ is an MP-α test for H0 vs. H1,
then for some c ∈ [0, ∞), it is of the form

δ∗∗(x1, . . . , xn) =






1, if L(θ1|x1, . . . , xn)

> cL(θ0|x1, . . . , xn),

0, if L(θ1|x1, . . . , xn)

< cL(θ0|x1, . . . , xn).

To illustrate, consider the Bernoulli example
above, and let X1, . . . , Xn be iid from fX(x|θ) =

θx(1 − θ)1−x, x ∈ {0, 1}. Suppose interest is in
testing H0 : θ = θ0 vs. H1 : θ = θ1, where θ0 <

θ1. The likelihood function, given (X1, . . . , Xn) =
(x1, . . . , xn), is L(θ |x1, . . . , xn) = θΣxi (1 − θ)n−Σxi .
Since

log

[
L(θ1|x1, . . . , xn)

L(θ0|x1, . . . , xn)

]

=
(

n∑

i=1

xi

)
log

[
θ1(1 − θ0)

θ0(1 − θ1)

]
+ n log

(
1 − θ1

1 − θ0

)
,

and noting that θ1(1 − θ0)/θ0(1 − θ1) > 1, then the
MP-α test is of the form

δ∗(x1, . . . , xn) =






1, if
∑

xi > k,

γ, if
∑

xi = k,

0, if
∑

xi < k.

If the true value of the parameter is θ , the
statistic T = ∑

Xi has a binomial distribution with
parameters n and θ , so

Pr
θ

(T = j) = b(j ; n, θ)

≡
(

n

j

)
θj (1 − θ)n−j , j = 0, 1, . . . , n.

To satisfy the requirement that the size of the test is
α, one could take

k = min



j ∈ (0, 1, . . . , n) :
n∑

i=j+1

b(i; n, θ0) ≤ α





and

γ =
α −

n∑

i=k+1

b(i; n, θ0)

b(k; n, θ0)
,

so the MP-α test for H0 : θ = θ0 vs. H1 : θ = θ1

becomes

δ∗(x1, . . . , xn) =






1, if
∑

xi > k,

γ, if
∑

xi = k,

0, if
∑

xi < k.

Since the test δ∗ does not depend on θ1, it is also
an MP-α test for H0 : θ = θ0 vs. H′

1 : θ = θ ′
1 pro-

vided that θ ′
1 > θ0. Consequently, it is a UMP-α test

for testing H0 vs. H′′
1 : θ > θ0. Furthermore, since

πδ∗(θ ′
0) ≤ πδ∗(θ0) for every θ ′

0 ≤ θ0, then, as a test
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for H′
0 : θ ≤ θ0 vs. H′′

1, δ∗ is of level α and hence is
UMP-α for testing H′

0 vs. H′′
1.

For the exponentially distributed time-to-event
example at the beginning of this article suppose
one wants to test H0 : θ = θ0 vs. H1 : θ = θ1

based on the values of X1, . . . , Xn which are iid
from fX(x|θ) = θ exp(−θx), x > 0. The likelihood
function is L(θ |x1, . . . , xn) = θn exp(−θ

∑
xi). By

the fundamental lemma the MP-α test is

δ∗(x1, . . . , xn) =




1, if

∑
xi < c′,

0, if
∑

xi > c′,

since

[(x1, . . . , xn) : L(θ1|x1, . . . , xn) > cL(θ0|x1, . . . , xn)]

is equivalent to
[
(x1, . . . , xn) :

n∑

i=1

xi < c′
]

for some c′, and with the change in direction of the
inequality due to the inequality θ0 − θ1 < 0. Under
H0 : θ = θ0, the statistic 2θ0

∑n
i=1 Xi has a central

chi-square distribution with 2n degrees of free-
dom, whose quantiles are well-tabulated for small
to moderate values of 2n (cf. [1] and [5]) or are
obtained easily using a computer. Consequently, if
one sets c′ = χ2

2n;1−α, where Pr (χ2
2n ≥ χ2

2n;1−α) =
1 − α, where χ2

k is a central chi-square distributed
variable with k degrees of freedom, then the test

δ∗(x1, . . . , xn) =




1, if 2θ0

∑
xi ≤ χ2

2n;1−α,

0, if 2θ0

∑
xi > χ2

2n;1−α ,
(2)

is an MP-α test for H0 : θ = θ0 vs. H1 : θ = θ1 with
θ1 > θ0. Again, since δ∗ does not depend on θ1, it
is an MP-α test for H0 vs. H′

1 : θ = θ ′ with θ ′ > θ0.
Consequently, it is a UMP-α test for H0 vs. H ′′

1 : θ >

θ0. Furthermore, since for any other θ ′
0 ≤ θ0

πδ∗(θ ′
0) = Eθ ′

0
[δ∗(X1, . . . , Xn)]

= Pr
θ ′

0

(
2θ0

∑
Xi ≤ χ2

2n;1−α

)

= Pr

{
χ2

2n ≤ θ ′
0

θ0
χ2

2n;1−α

}

≤ Pr
{
χ2

2n ≤ χ2
2n;1−α

}
since θ ′

0 ≤ θ0

= α,

so, as a test for H′
0 : θ ≤ θ0 vs. H′′

1, it is therefore of
level α. Consequently, δ∗ in (2) is a UMP-α test for
H′

0 vs. H′′
1.

In the above examples, the MP-α Neyman–Pear-
son tests turn out to be UMP-α tests for testing
one-sided alternatives. These are particular cases of
testing problems where the monotone likelihood ratio
(MLR) property holds. When the parameter θ ∈
Θ ⊆ 
 = (−∞, ∞) is one-dimensional, the family
P possesses the MLR property in a (one-dimensional)
statistic S(X1, . . . , Xn) if, for every θ1, θ2 ∈ Θ with
θ1 < θ2:

.
1. L(θ2|x1, . . . , xn)/L(θ1|x1, . . . , xn) =

h[S(x1, . . . , xn); θ1, θ2] for some function
h(·; ·, ·); and

2. h(s; θ1, θ2) is a monotone nondecreasing function
in s.

Under this situation, the MP-α test for testing H0 :
θ = θ0 vs. H1 : θ = θ1, where θ0(<, >)θ1, is also the
UMP-α test for H′

0 : θ(≤, ≥)θ0 vs. H′
1 : θ(>, <)θ0,

and it is of the form

δ∗(x1, . . . , xn) =





1, if S(x1, . . . , xn)(>, <)c,

γ, if S(x1, . . . , xn) = c,

0, if S(x1, . . . , xn)(<, >)c,

where constants c and γ are chosen in order for
πδ∗(θ0) = α. For more details concerning this MLR
property and its consequences, we refer the reader
to Lehmann [3], pp. 78–86. Finally, we remark that,
for two-sided types of alternatives, e.g. H1 : θ �= θ0,
UMP-α tests generally do not exist, and hence there
is usually a need to restrict the search for a “best”
test to a smaller class, such as the class of unbi-
ased tests and/or invariant tests. An in-depth treat-
ment of such tests can be found in Lehmann [3],
Chapters 4–6. Some other references which discuss
optimal hypothesis tests and provide numerous exam-
ples are the books by Bickel & Doksum [1], Casella
& Berger [2], and Rohatgi [5].
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Moving Average

Moving averages are operations applied to time
series to achieve smoothing. The aim is usually to
smooth the series enough to distinguish particular fea-
tures of interest. A simple but effective model of a
time series is to regard it as being made up of a long-
term trend, a cycle and random effects. Symbolically,

Xt = m(t) + g(t) + et ,

that is,

observation = trend + cycle + random variation.

Moving averages are often used to eliminate the
seasonal or cyclic effects (see Circadian Variation)
and hence to emphasize the trend terms, but this is
not their only use.

Suppose we have a time series, i.e. a series of
measurements taken over time, say

X1, X2, X3, . . . , XN.

Define a new series by averaging the first s values,
then deleting the first value from this group, adding
the (s + 1)th observation to the group and averaging,
then deleting the first value from this group, adding
the (s + 2)th and averaging, then . . . and so on.
Symbolically,

X∗
(s+1)/2 = (X1 + X2 + · · · + Xs)

s
,

X∗
(s+3)/2 = (X2 + X3 + · · · + X(s+1))

s
,

X∗
(s+5)/2 = (X3 + X4 + · · · + X(s+2))

s
,

. . .

X∗
N−(s−1)/2 = (XN−s+1 + · · · XN−1 + XN)

s
.

The new series, X∗
t , has been obtained from the

original by applying a moving average of length s

to the original series. All that we have done is to
average successive blocks of s terms. This is easier
to see for specific values of s; for s = 3 and 4 we
have

s = 3

X∗
2 = (X1 + X2 + X3)

3
,

X∗
3 = (X2 + X3 + X4)

3
,

X∗
4 = (X3 + X4 + X5)

3
,

. . . .

s = 4

X∗
5/2 = (X1 + X2 + X3 + X4)

4
,

X∗
7/2 = (X2 + X3 + X4 + X5)

4
,

X∗
9/2 = (X3 + X4 + X5 + X6)

4
,

. . . .

The smoothed values, X∗
t , are assumed to be at

the mean of the time values in each block. When s

is even we see that the smoothed series lies between
the original time points, which may be inconvenient.
We can overcome this by applying a further two-
point average to the “badly sited” series to give a
new smoothed version called the “centered” moving
average. The numerical example below uses this
method.

It is straightforward to show that if a series
has a cyclic effect of period s, then the applica-
tion of an s-term moving average will remove it
and will leave locally linear effects unchanged. Sup-
pose in our model above that Xt = g(t) + m(t) + et ,
and g(t) is periodic with period s. We assume that∑s

k=1 g(k) = 0, since we can adjust any constant
terms in the trend function. Then it follows that∑s

k=1 g(t + k) = 0, so the effect of averaging s suc-
cessive terms is to remove the g(t) terms. For details,
see [3] or [1].

As an example of the kind of calculation in
Table 1, we demonstrate the effect of taking a four
and then a two-point moving average of some the
mortality rates in Baltimore, USA. The data are from
Bliss [2]. Only part of the calculation is displayed.

The whole series is given in Figure 1. As we can
see from the figure, the quarterly oscillations in the
original data are suppressed by the moving average
to give the smoothed series. The application of the
quarterly average of length four, coefficients [1/4,
1/4, 1/4, 1/4] followed by the application of a moving
average [1/2, 1/2] is equivalent to a five-point moving
average with coefficients [1/8, 1/4, 1/4, 1/4, 1/8].
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Table 1 Quarterly log (death rates per 100 000) in
Baltimore

Xt Four-point MA Two-point MA

0.8597

0.8419
0.84261

0.8300 0.8412
0.8398

0.8389 0.8398
0.8399

0.8484 0.8392
0.8385

0.8424 0.8379
0.8372

0.82443 0.8374
0.8376

0.8336 0.8372
0.8368

0.8501 0.8368
0.8368

0.8392 0.8360
0.8352

0.8245 0.8342
0.8332

0.8270 0.8327

The bracket notation here is a useful one in that
it gives the number of terms in the average and the
individual coefficients. The terms in the bracket are
used to give a weighted average.

Once the cyclic effects are removed, the trend
is easily seen. The cyclic component is evaluated
by taking the cycle-free smoothed series from the
original Xt . Of course, we are assuming that the
effects are additive, that is,

Xt = cyclic term + trend + other terms.

However, if we have multiplicative effects, say

Xt = cyclic term × trend × others,

then it is clearly necessary to take logs. We can then
apply the moving average to the log series.

In addition to the removal of cyclic effects, mov-
ing averages arise in a natural way in the piece-
wise fitting of polynomials to time series. Suppose
we decide to fit a polynomial of degree 3, say,
a0 + a1t + a2t

2 + a3t
3, to five points of our series.

We know it is very much simpler to transform our
time scale so that our points are X−2, X−1, X0, X1,
X2 at times −2, −1, 0, 1, 2.

The usual regression normal equations are

2∑

t=−2

Xt = 5a0 + a1

2∑

t=−2

t + a2

2∑

t=−2

t2

+ a3

2∑

t=−2

t3,

Figure 1 Log death rates and a moving average
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Figure 2 Barley yield in the UK, 1906–1920 and seven-point cubic

2∑

t=−2

tXt = a0

2∑

t=−2

t + a1

2∑

t=−2

t2

+ a2

2∑

t=−2

t3 + a3

2∑

t=−2

t4,

2∑

t=−2

t2Xt = a0

2∑

t=−2

t2 + a1

2∑

t=−2

t3

+ a2

2∑

t=−2

t4 + a3

2∑

t=−2

t5,

2∑

t=−2

t3Xt = a0

2∑

t=−2

t3 + a1

2∑

t=−2

t4

+ a2

2∑

t=−2

t5 + a3

2∑

t=−2

t6,

but

2∑

t=−2

t =
2∑

t=−2

t3 =
2∑

t=−2

t5 = 0 and

2∑

t=−2

t2 = 10,

2∑

t=−2

t4 = 34,

2∑

t=−2

t6 = 130,

so we have

{X−2 + X−1 + X0 +X1 − X2} = 5a0 10a2

{−2X−2 − X−1 +X1 − 2X2} = 10a1 34a3

{4X−2 + X−1 +X1 + 4X2} = 10a0 34a2

{−8X−2 − X−1 +X1 − 8X2} = 34a1 130a3,

giving a0 =(1/35)[−3X−2+12X−1+17X0+12X1−
3X2].

If we fit this polynomial in piecewise segments
and use the constant term as the smoothed values,
this is equivalent to a moving average of length 5
with unequal weights that we write as (1/35) [−3,
12, 17, 12, −3].

This is sometimes abbreviated to (1/35) [−3, 12,
17] where only half the bracket is given. When in
doubt, note that the terms in the bracket must sum to
the denominator of the divisor. So, in (1/35) [−3, 12,
17, 12, −3], −3 + 12 + 17 + 12 − 3 = 35.

We can find moving averages for all such polyno-
mials; thus, for cubics:

5 points (1/35) [−3, 12, 17, 12, −3],
7 points (1/21) [−2, 3, 6, 7, 6, 3, −2],
9 points (1/231) [−21, 14, 39, 54, 59, 54, 39,

14, −21],
11 points (1/429) [−36, 9, 44, 69, 84, 89, 84,

69, 44, 9, −36],
13 points (1/143) [−11, 0, 9, 16, 21, 24, 25, 24,

21, 16, 9, 0, −11],
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15 points (1/1105) [−78, −13, 42, 87, 122, 147,
162, 167, 162, 147, 122, 87, 42,
−13, −78],

while similar expressions are available for quintic
curves. The effect of the seven-point cubic is shown
in Figure 2.

Such averages are useful in giving a way of
smoothing series that requires very few assumptions
and that is reasonably simple to use, especially with
a spreadsheet. The drawbacks are precisely the same;
the informal procedure does not lend itself to test-
ing or model building. It is difficult to make a
rational choice of polynomial and moving-average
length. Some theory is possible, see [1]. Thus, for a
fixed-length moving average the variance increases
with polynomial order, while for fixed order the
bias decreases with length, but this result is of lim-
ited use. Also, one needs to take care, since cav-
alier use of successive moving averages may well
lead to induced cyclic effects in the smoothed series
(see Slutzky–Yule Effect).

Moving averages have a long history linked to
interpolation from tables, especially actuarial tables.
Many interpolation formulas involve differences, and
smoothing formulas are used to give a gradua-
tion with smooth successive differences. A moving
average is said to be correct to order q if differ-
ences of polynomials of this order remain unaffected.
One popular example is Spencer’s 15-point formula,
which consists of applying (1/4) [−3, 3, 4, 3, −3],
then (1/5) [1, 1, 1, 1, 1], then (1/4) [1, 1, 1, 1], fol-
lowed by (1/4) [1, 1, 1, 1].
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Multicenter Trials

A multicenter clinical trial is defined in this arti-
cle to be a study involving two or more field sites
that is conducted according to a common protocol
(see Clinical Trials Protocols) and that uses a sin-
gle data coordinating center to receive, process and
analyze study data. In conformity with terminology
adopted in [1], field sites are the primary sites of
participant accrual, intervention, data collection and
follow-up. For example, in trials comparing alterna-
tive treatments for a specific disease, the field sites
may consist of hospitals, clinics or other locations that
provide patient care. The number of field sites varies
greatly across studies according to their size, com-
plexity and purpose. For example, the Beta-Carotene
and Retinol Efficacy Trial (CARET), a prevention
trial in men and women at high risk for lung cancer,
involves six field sites, whereas, in the cooperative
oncology group setting, it is common for trials to
encompass hundreds of sites.

In this article we provide several examples of mul-
ticenter trials, and discuss the rationale for conducting
them. We also describe organizational, structural, and
analytic aspects of multicenter trials. Finally, we sug-
gest guidelines for the conduct of such studies.

More comprehensive discussions can be found in
the books by Meinert [7] and Pocock [11], and in a
special edition of Controlled Clinical Trials edited by
Wittes [15].

Examples of Multicenter Trials

There are currently thousands of active multicenter
trials designed to evaluate treatment or prevention
strategies for every major disease. Examples from
three different areas are discussed below to indicate
the diverse nature of multicenter trials, and their
impact on the practice of medicine.

Breast Cancer

In the past quarter-century there has been a profound
change in the surgical treatment of breast cancer.
Radical (Halstedian) mastectomy has been replaced
by less extensive surgery, and, today, lumpectomy
(local excision), together with radiation, may be

recommended for the majority of women with early-
stage breast cancer [10]. This shift in treatment strat-
egy was supported by a series of multicenter ran-
domized (see Randomization) trials comparing less-
extensive to more-extensive surgery, which found
no survival benefit to the more extensive forms of
surgery [2]. One of the early studies in this series was
conducted by the National Surgical Adjuvant Breast
and Bowel Project (NSABP) and compared radical
mastectomy to total mastectomy with and without
post-operative breast irradiation [3]. Between July
1971 and September 1974, 1765 women with opera-
ble breast cancer entered this study at 34 institutions
throughout the US and Canada. After publication of
the five-year results, which demonstrated no differ-
ence in survival between treatments, the percentage
of radical mastectomies done as the surgical proce-
dure for primary operable breast cancer in the US
dropped from 75% to less than 5%.

Coronary Disease

Not all multicenter trials have survival or disease-
free survival (see Survival Analysis, Overview) as
their primary endpoint (see Outcome Measures in
Clinical Trials). An example is given by a multi-
center, randomized placebo-controlled trial of the
angiotensin-converting enzyme inhibitor cilazapril,
designed to assess its efficacy in reducing the rate of
restenosis following percutaneous transluminal coro-
nary angioplasty [9]. Seven hundred and thirty-five
patients were randomized to receive either 2.5 mg
cilazapril in the evening following angioplasty and
5 mg b.i.d. for six months, or placebo. Patients also
received aspirin for six months. The primary endpoint
was defined to be the difference in minimal coro-
nary lumen diameter, post-angioplasty to six months
follow-up. The average change in minimal coronary
lumen diameter did not differ between controls and
patients treated with cilazapril, nor did the frequency
of serious clinical events (death, myocardial infarc-
tion, coronary revascularization, recurrent angina).
These findings were confirmed in a subsequent, larger
study [8].

Prevention

Two trials that were of importance in assessing
the efficacy of beta-carotene as a preventive agent
against lung cancer in high-risk participants were the
Alpha-Tocopherol, Beta-Carotene Cancer Prevention
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Trial (ATBC) [14] and the Beta-Carotene and Retinol
Efficacy Trial (CARET) [13]. In the ATBC trial,
29 133 male smokers in Finland were randomized
to receive daily 50 mg alpha tocopherol (vitamin E),
20 mg beta-carotene, both drugs or placebo. Partici-
pants remained on treatment for five to eight years.
In the CARET trial, 18 314 high-risk participants
were randomized to receive either daily beta-carotene
(30 mg) and vitamin A (retinyl palmitate 25 000
IU) or placebo. This study was terminated ahead of
schedule in January 1996 after about four years of
treatment. In both studies, more lung cancers were
diagnosed and there were more deaths among par-
ticipants receiving beta-carotene than among those
participants not receiving the drug. The two multi-
center trials illustrate the not uncommon occurrence
of large randomized trials refuting an effect suggested
by nonrandomized studies.

Rationale for Conducting Multicenter
Trials

Adequacy of Accrual

The decision to mount a large-scale multicenter study
is driven by the need to recruit subjects at a faster
rate than can be accomplished at a single center.
This will be the case when anticipated treatment dif-
ferences are important but relatively small, or only
a minority of participants are likely to experience
the outcome(s) in question. Thus, prevention studies
are almost always organized as multicenter trials (see
Prevention Trials). In trials investigating the efficacy
of treatments against established disease, the multi-
center approach is common in the design of Phase III
trials, which involve the randomized comparison of
new treatments against a currently accepted standard.
Phase I trials (assessment of toxicity) and Phase II
trials (preliminary establishment of clinical activity)
require many fewer patients, and are often carried out
within a single institution. However, in rare diseases
the multicenter approach may be necessary, even for
Phase I and II trials.

Increased Generalizability of Study Conclusions

If the protocol is crafted to define clearly the patient
population of interest without arbitrary exclusion of
potential participants (see Eligibility and Exclusion
Criteria), then the use of multiple field sites will
normally result in a more heterogeneous population

of participants (both patients and physicians) and will
enhance the generalizability of the results. Of equal
importance is the fact that widespread participation
in the trial will ensure greater acceptance of the
study results in the community, without which the
conclusions of the study cannot be translated into
standard medical practice.

Broad-Based Clinical Trials Bring State-of-the-Art
Treatment to the Community

Most current therapies, at least in cancer treatment,
are first made available to patients through the clinical
trials process. In the Phase III setting, it is an ethical
requirement that unproven treatments have a reason-
able probability of improving on the current standard
of care, and a low probability of being materially
inferior (see Ethics of Randomized Trials). Further-
more, the care of patients enrolled on multicenter
trials is governed by a carefully designed protocol,
and standards of patient management, testing, and
follow-up are arguably better than might be expected
outside the clinical trials process. Additionally, par-
ticipation in clinical trials gives community-based
physicians and other care-givers the opportunity to
learn about newly evolving strategies of treatment
and patient management. This should have a positive
effect on the care received by all patients, including
those who choose not to participate in clinical trials.

A Caveat

A community-based multicenter trial is not the opti-
mal setting to compare complicated regimens that
require intensive training on the part of the treating
physicians. Accrual to such studies may be difficult,
and it is possible that patient care could be com-
promised. Furthermore, if a complicated treatment
appears to provide no benefit on the basis of the
trial data, the interpretation of these results will be
ambiguous if there is any question regarding protocol
adherence (see Compliance Assessment in Clinical
Trials).

Organizational Structure and Personnel

All multicenter trials share a common structure
involving distributed field sites responsible for
participant accrual, intervention, primary data
collection, and follow-up. These activities are
directed through a coordinating center, and overall
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responsibility for the conduct of the trial is generally
assumed by a study chairman. The coordinating
center serves numerous critical functions, as detailed
by Meinert [7]; these include study design; the
development of a protocol document; recruitment,
training, and coordination of accrual sites; patient
randomization; data entry and processing (see
Data Management and Coordination); ongoing
monitoring of toxicity data; periodic interim
analyses of study endpoints (see Data and Safety
Monitoring); auditing of field sites (see Clinical
Trials Audit and Quality Control); regulatory
reporting; final data analyses; and preparation of
abstracts and manuscripts. While there is considerable
efficiency to be gained by having all components
of the coordinating center in one place, it may
be the case that an institution that has expertise
in one function fails to have expertise in another.
Thus, coordinating center staff will not always be
located at the same institution. In fact, a common
model is to divide the coordinating center into an
operations office having responsibility for logistical
aspects of the trial and a data center responsible
for data management and statistical reporting. Often,
these two functions are physically separated.

The major personnel involved in conducting a
multicenter trial are listed below, together with brief
summaries of their functions:

Study Chairman

The study chairman is responsible for the overall
project. Ideally, the individual will be involved from
the time the study is first conceptualized until the
final analyses are performed and results reported.
This individual should be an expert in the disease
being studied, should have previous clinical trial
experience, and must be strongly committed to the
success of the study. He or she must have the time
and commitment to address key issues, particularly
regarding recruitment and compliance. For large
studies, a steering committee may assist the study
chairman in overseeing the design and conduct of
the trial.

Trial Statistician

A statistician should be identified to participate in and
be responsible for the statistical design, monitoring,
and analysis of the study. Responsibilities include
preparation and presentation of interim endpoint

analyses, preparation of toxicity tables for ongoing
review, tracking of accrual, monitoring of follow-up
to assure no biases are occurring and, ultimately,
collaboration in the preparation of manuscripts sum-
marizing trial results. The trial statistician also has
general responsibility for the statistical design of
ancillary studies and any related data transfers.

Operations Officer

For large trials, an operations officer should be
appointed to oversee the study logistics, often with
the assistance of the study chair and coordinating cen-
ter support staff. The logistical considerations to be
addressed include protocol development, regulatory
compliance, communication with field sites, drug dis-
tribution, trial participant meetings, medical review,
and interactions with the steering committee, trial
sponsors, and vendors. For small studies, many of
these duties may be assumed by the study chairman
or trial statistician.

Data Manager

The data manager assures that quality data are entered
into the research database in a timely manner. He
or she participates in the design of forms (see
Questionnaire Design), assists in determining which
data are feasible to collect and the best procedures
for doing so, sets and adheres to timeliness goals
for data submission and entry, enters and/or checks
data, queries field sites about missing or unclear data,
abstracts data from medical reports, identifies items
required for further medical review, and assists in the
training of field site personnel.

Randomization Specialist

The randomization specialist reviews patient demo-
graphic and clinical data, verifies patient eligibility
(see Eligibility and Exclusion Criteria), checks that
informed consent has been properly documented,
and finalizes treatment assignments (see Random-
ized Treatment Assignment).

Quality Assurance Officer

The quality assurance officer implements procedures
to verify that field sites are in compliance with
the protocol and that data processing and moni-
toring at the coordinating center is accurate and
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timely. These procedures include centralized med-
ical review, on-site audits, data entry verification,
data flow monitoring, computerized edit checks for
data completeness and consistency, and procedures
for assuring data confidentiality and security.

Computer Support Personnel

This function may be divided into three areas. The
first is database management, including maintenance
of the research database and support of computerized
aspects of the data quality assurance program. A sec-
ond area is applications programming in support of
statistical reports, and operational functions such as
drug distribution, Institutional Review Board (IRB)
approvals, and field site performance monitoring. A
third area is systems management, which includes the
development and maintenance of internal hardware
and software systems, intra-office communications
and support systems, and the development of capa-
bilities for communicating with field sites, such as
e-mail and Internet.

Resource Center Directors

Many trials have centers that perform special func-
tions, such as reading pathology slides, serum bank-
ing, or reviewing unusual toxicities. A director is
required to assure quality control and to facilitate
communication and data transfer with headquarters.

Training Director

An individual should be charged with the respon-
sibility for training investigators and support per-
sonnel at the participating field sites. This function
includes on-site training, workshops at one or more
central locations, and preparing data management
and/or treatment handbooks, videos, and centralized
resources accessible by phone, e-mail or Internet.
This individual may also assume responsibility for
responding to questions from the field sites and solic-
iting input from investigators and support personnel
to help identify problems with the protocol conduct
and methods for reducing an administrative burden.

Field Site Personnel

Contact people should be identified at each field
site. These may include both the treating physician
and an individual who has primary responsibility for

data submission (a clinical research associate, nurse
coordinator or data manager).

Data Monitoring Board

Most trials have data and safety monitoring boards
that review interim study data. Some are independent
of the study investigators, others include both study
investigators and independent members, and some
boards comprise study investigators and coordinating
center staff. The board reviews the progress of the
trial to assure that the statistical monitoring plan is
followed, that there are no dangerous trends in the
toxicity or outcome data, and generally to assure that
the trial is conducted according to protocol (see Data
and Safety Monitoring).

Guidelines for the Conduct of Multicenter
Trials

It is imperative in conducting any trial that all
personnel share a common understanding of the aims,
operational details, and reporting requirements. Six
specific areas are summarized below.

Study Protocol

Because of the dispersed nature of a multicenter
trial, it is important that a written protocol be
developed that addresses all aspects of the study
(see Clinical Trials Protocols). The protocol is an
instrument for communicating the study requirements
to the investigators; hence, must be a clear, concise
document that minimizes individual interpretations.
Topics to be addressed include:

1. Rationale for and specific aims of the study.
2. Patient eligibility requirements and entry proce-

dures.
3. Study endpoint definitions.
4. Required procedures for treatment administra-

tion, including precise rules for dose determi-
nations.

5. Patient management guidelines, including spec-
ifications for dose reductions, treatment delays
and treatment terminations.

6. Schedules of required clinical tests and assess-
ments.

7. Schedule for submission of required materials
and data, including long-term follow-up.

8. Data and materials submission procedures.
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9. Regulatory obligations, including informed con-
sent and reporting of adverse events.

10. Statistical considerations, to include: method
of treatment assignment; anticipated accrual
pattern; power analysis justifying sample size
requirements (see Sample Size Determination
for Clinical Trials); interim monitoring and
analysis plans; and planned time and method-
ology of final analyses. The section should also
describe methods to be used to address sec-
ondary aims of the study, compare toxicities,
and analyze data from any ancillary labora-
tory studies.

Data Requirements

Data submission requirements should be examined
to eliminate unnecessary data items. Generally, data
should not be required for submission unless they are
required to (i) address the specific aims of the study,
(ii) assure that the study is carried out in compliance
with its protocol, (iii) monitor the progress of the
study both with respect to toxicity and clinical out-
come, or (iv) fulfill regulatory reporting requirements
(see Drug Approval and Regulation). Likewise,
data collection instruments should be made as sim-
ple as possible (see Questionnaire Design). Their
design should consider the perspective of the clinical
research associates, nurses and data managers who
will be responsible for their completion (see Data
Management and Coordination).

Submission of Materials

Requirements for the submission of materials such
as fresh tissues or serum samples must be consid-
ered carefully. Such requirements may place undue
burdens on community-based hospitals and may seri-
ously impact patient recruitment. When designing
ancillary studies requiring such materials, consider-
ation should be given to restricting sample collection
to a subset of sites experienced in processing the
required material.

Communication

It is essential that channels of communication be kept
open between the field sites and the coordinating
center. Provision should be made for regular meet-
ings at which investigators are apprised of the current
status of the trial, and are encouraged to provide

feedback to the scientific leadership regarding prob-
lems encountered at the local level. Between meetings
there should be frequent communication via mail,
electronic mail, fax, newsletters or other media. Field
investigators should be encouraged to contribute to
the scientific program of the group. Some clinical tri-
als have benefited from encouraging the involvement
of trial participants on advisory committees, in dis-
cussion groups, and in the preparation of newsletters.

Site Performance Monitoring

It is important that field site investigators have an
a priori understanding of the performance standards
expected of them. Acceptable standards for perfor-
mance with regard to on-site audits, accrual, data
submission delinquency, protocol compliance, and
patient eligibility should be explicit. Standards should
be realistic, so that there is an appropriate bal-
ance between quality assurance and feasibility of
participation.

Special Statistical Requirements

In multicenter trials it is common practice to stratify
treatment assignment by field site in addition to
other relevant stratification variables. If there are
only a few field sites, full stratification may be used
to achieve a balanced treatment assignment within
each combination of stratification variables. In the
cooperative group setting where the number of field
sites may be very large, a dynamic allocation method
may be required, since stratum sizes would typically
be too small to achieve treatment balance within each
cell. This ensures that treatment assignments will be
balanced with respect to each individual stratification
variable (see Adaptive and Dynamic Methods of
Treatment Assignment).

If there are only a few field sites, one should
include the sites in analyses, either as stratification
factors or as independent variables in a model. One
might also wish to look for important interactions of
field site with treatment (see Treatment-covariate
Interaction). If there are many field sites, it may
be impractical to use field sites as stratification vari-
ables in analysis. However, when there are many
field sites, no one field site will be likely to influ-
ence greatly the results of the analyses. Application
of Bayesian methods to the analysis of institu-
tional effects in multicenter trials may provide new
insight. Three fairly recent publications by Skene &
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Wakefield [12], Gray [4], and Gustafson [5] describe
Bayesian approaches.

Interim monitoring of toxicities and events, often
done by independent data and safety monitoring
boards, requires careful planning in the statistics
section of the protocol. Board meetings must be
planned in advance, so it is not practical to schedule
interim analyses at a fixed number of events. Flexible
monitoring rules like those introduced by Lan &
DeMets [6] are required to adjust for the fact that
analyses are based on fixed calendar times rather than
a fixed number of events.
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Multidimensional Scaling

Multidimensional scaling comprises a set of models
and associated methods for constructing a geomet-
rical representation of proximity or dominance rela-
tionships between elements in one or more sets of
entities. While this characterization of multidimen-
sional scaling may seem rather abstract, any further
specification would unnecessarily narrow it to certain
specific types of data or representation models.

The types of data to which multidimensional scal-
ing can be applied can be categorized in terms of
three attributes: the number of ways of the data
array, the number of modes, and the type of rela-
tionship expressed by the data. The number of ways
of a data set refers to the number of dimensions
or factors of the data array. When the data can be
arranged in a matrix, they are called two-way data.
One way corresponds to the rows of the matrix and
the other way corresponds to the columns. Three-way
data are arranged in a three-dimensional array – the
third way referring to the slices of the array. The
number of modes indicates the number of different
sets of entities to which the ways of the data array
refer. If both the rows and the columns of a two-way
data matrix index the same set of entities (such as
objects, subjects, etc.), then the data are called two-
way one-mode data. A typical example of a two-way
one-mode data set is a correlation matrix. When the
rows and columns of the data matrix refer to two
different sets of entities (e.g. subjects and objects),
the data are called two-way two-mode data. A rect-
angular matrix with ratings indicating the extent to
which certain symptoms pertain to certain diseases is
an example of such a data set. The set of symptoms
constitutes one mode while the set of diseases consti-
tutes the other mode. Finally, three-way data of which
the ways index one, two, or three different sets of
entities, are respectively referred to as three-way one-
mode, three-way two-mode, or three-way three-mode
data. A set of square symmetric matrices containing
the correlations between the same set of variables
on a number of different occasions constitutes an
example of a three-way two-mode data set. Finally,
a three-way three-mode data array can, for instance,
be obtained by having N1 physicians rate the extent
to which N2 patients exhibit a set of N3 symptoms.
Each of the ways of the resulting N1 × N2 × N3 data

array corresponds to a different set of entities, namely
physicians, patients, and symptoms.

Multidimensional scaling can be applied to data
that express two types of relationship: proximity rela-
tions and dominance relations. In proximity data the
data values indicate the proximity (similarity or dis-
similarity) between the entities to which their indices
refer (see Similarity, Dissimilarity, and Distance
Measure). If larger values indicate a greater proxim-
ity, then the data are called similarity data. If larger
values indicate a smaller degree of proximity, then
the data are dissimilarity data. (Note that similarity
data can always be converted into dissimilarities by
subtracting all values from a suitably large constant.)
Thus, a correlation matrix constitutes a two-way one-
mode set of similarity data. The other type of data
relationships to which multidimensional scaling can
be applied are dominance relationships. In dominance
data, the data values indicate how strongly one entity
dominates the other. A paired comparisons matrix,
where each entry shows the percentage of times the
row element is preferred to the column element, is an
example of a two-way one-mode dominance matrix.

Historically, multidimensional scaling was devel-
oped for constructing a spatial representation of two-
way one-mode proximity data. Later, it was extended
to other types of data (such as three-way proximity
data and dominance data) and to other types of mod-
els (such as nonspatial models). In the next section
we discuss its most common form namely multi-
dimensional scaling of two-way one-mode proximity
data. In the subsequent sections we present some of
the extensions to three-way two-mode data and to
nonspatial models.

Two-Way Multidimensional Scaling

Starting from two-way one-mode symmetric proxim-
ity data, two-way multidimensional scaling attempts
to represent the objects indexed by the rows and
columns of the data matrix by points in a multi-
dimensional space such that the interpoint distances
correspond as well as possible to the observed prox-
imity data in some well-defined sense. Being one-
mode data, the rows and columns of the data matrix
refer to a common set of N entities. These entities
will be generically referred to as “objects”. It will be
assumed that the data are dissimilarities. The N × N

data matrix will be denoted � = ((δij )), where δij
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indicates the observed dissimilarity between object
i and object j . � is assumed to be symmetric, i.e.
δij = δji . Usually the entries on the main diagonal of
� are not observed and hence are undefined.

Such two-way symmetric proximity data can be
obtained in several ways. In the behavioral and
social sciences, it is common to have subjects judge
the degree of similarity or dissimilarity between all
N(N − 1)/2 pairs of distinct objects on a numerical
scale, yielding so-called direct ratings. Ordinal prox-
imity data can be obtained, for example, by having
subjects arrange the objects in rank order according
to their proximity to a reference object. Or, subjects
can compare two pairs of objects at a time, and indi-
cate for each couple of pairs which pair contains
the most similar (or dissimilar) objects. Alternately,
proximities can be derived from co-occurrence data.
In such a case the proximity measure is based on
the number of occasions on which two objects co-
occur. In scientometrics, for instance, the similarity
between two journals can be defined as the number
of times the two journals are cited in the same list
of references. Or, when subjects were asked to sort
a (large) set of objects into a number of mutually
exclusive and exhaustive categories such that simi-
lar objects are put in the same category, a pairwise
proximity measure can be derived from the number
of subjects who put the two objects in the same cate-
gory. Two-way symmetric proximity data can also be
computed from confusion or transition frequencies.
In this case the proximity is based on the number
of times one object is confused or succeeded by
another object. In sociology, for instance, the proxim-
ity between two professions could be computed from
social mobility data indicating the number of parents
with profession i who have a child with profession j .
Finally, multidimensional scaling is often applied to
derived or so-called second-order proximities. Start-
ing from multivariate data (e.g. measurements of N

objects on a number of variables), correlations, pro-
file distances, or other derived proximity measures
are computed to quantify the degree of association
between the objects.

In multidimensional scaling the N objects will be
represented as points in a multidimensional space,
such that the interpoint distances approximate the
observed dissimilarities δij as well as possible. While
extensions to other kinds of spaces exist, multidimen-
sional scaling usually constructs a representation in a
Euclidean space. The dimensionality of the space will

be indicated by R. If xir denotes the coordinate of the
point representing object i on the rth dimension, the
Euclidean distance between the points representing
objects i and j can be written as

dij =
[

R∑

r=1

(xir − xjr )
2

]1/2

= [(xi − xj )
′(xi − xj )]

1/2,

where xi is an R-component column vector
defined as xi = (xi1, . . . , xiR)′, The purpose of
multidimensional scaling is to represent the N objects
in an R-dimensional Euclidean space such that the
distances dij are close to the observed δij . However,
the Euclidean distances dij do not approximate the
observed dissimilarities δij directly, but approximate
some permissible transformation f of the observed
dissimilarities:

dij ≈ f (δij ).

The type of transformation f that is applied
depends on the measurement level of the data
(see Measurement Scale). If the data constitute a
ratio scale (i.e. if the dissimilarities are unique up to
a positive similarity transformation), f is defined as

f (δij ) = bδij , b > 0.

Owing to the scale indeterminacy of the representa-
tion discussed later in the article, b can be set equal to
1 without loss of generality. When the data constitute
an interval scale (i.e. when the data are unique up to
a positive linear transformation), f is defined as

f (δij ) = a + bδij , b > 0.

Finally, when the proximities are ordinal data (e.g.
rank order data), f is a weak monotone transforma-
tion such that

f (δij ) ≥ f (δkl), if δij > δkl.

In the case of a tie, i.e. if δij = δkl , either no restric-
tion is imposed on the relationship between f (δij )

and f (δkl) or the two transformed dissimilarities are
required to be equal, i.e. f (δij ) = f (δkl). The former
approach has been labeled by Kruskal [16, 17], in his
breakthrough work formulating a rigorous mathemat-
ical and numerical approach to two-way nonmetric
multidimensional scaling, “the primary approach to
ties”, while the latter is known as the “secondary
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approach to ties”. The transformed dissimilarities
f (δij ) are sometimes called target distances or opti-
mally scaled data. Multidimensional scaling thus
attempts to find coordinates x1, . . . , xN such that

dij ≈ f (δij ).

When the data are ordinal and a monotone transfor-
mation is allowed, the procedure is called nonmetric
multidimensional scaling. When the proximities are
interval or ratio level data, the procedure is referred
to as metric multidimensional scaling.

The goodness of fit of a multidimensional scal-
ing representation is based on a normalized sum of
squared deviations between the transformed dissimi-
larities and the derived Euclidean distances:

Lf (x1, . . . , xN) =

N∑

i<j

[f (δij ) − dij ]2

N∑

i<j

d2
ij

.

The normalization is necessary to make the loss
function independent of the scale of the derived
space. Other normalization factors are sometimes
used and may be preferable in certain cases. Note
that Lf depends on the transformation f and that the
optimal transformation f is unknown. To make the
loss function independent of f , it is defined as

L(x1, . . . , xN) = minimum
allf

Lf (x1, . . . , xN).

The square root of L(x1, . . . , xN) is known in the
literature as the “stress” function [16, 17]. In two-
way multidimensional scaling, given the data � and
given a dimensionality R, coordinates x1, . . . , xR

are sought that minimize L(x1, . . . , xN). This opti-
mization problem involves minimizing a nonlinear
function in many variables and cannot be solved ana-
lytically. Instead iterative procedures are used. Such
a procedure starts from some initial estimates of the
coordinates and iteratively improves these estimates
until no further decrease in L(x1, . . . , xN) is possible.
While the solution obtained through such a procedure
is known to be locally optimal, it is not guaranteed to
be a global minimum L(x1, . . . , xN). The best way
to safeguard against local optima is to carry out the
analysis several times, starting each run from dif-
ferent initial estimates. If the same optimal solution

is found repeatedly, then it is likely to constitute a
global optimum.

It should be noted that L(x1, . . . , xN) is not
affected by certain transformations of x1, . . . , xN .
More specifically, shifting the origin of the coordi-
nates (i.e. replacing xi by xi + c, i = 1, . . . , N , where
c is an R-component constant vector) does not affect
the goodness of fit of the solution. Likewise, any
transformation of the form xi → Txi , i = 1, . . . , N ,
with TT′ = T′T = I, leaves the Euclidean distances
unchanged and so does not affect the goodness of
fit. This family of transformations includes permu-
tations, reflections, and orthogonal rotations of the
configuration. Finally, owing to the normalization
factor, changing the scale of the configuration (i.e.
replacing all xi by αxi , α �= 0) does not alter the
goodness of fit. Therefore, a solution that minimizes
L(x1, . . . , xN) is only unique up to the similarity
transformations mentioned above and the dimensions
of such a configuration can be freely translated, per-
muted, reflected, orthogonally rotated, and uniformly
rescaled to facilitate the interpretation.

To evaluate the goodness of fit, the minimum value
obtained for the loss function should be inspected as
well as scatter plots of δij vs. dij , f (δij ) vs. dij and
δij vs. f (δij ). As mentioned above, the loss function
L(x1, . . . , xN) is minimized for a given dimensional-
ity R. The appropriate dimensionality is usually not
known a priori. Of course, the larger R, the better the
goodness of fit that can be obtained, but the less data
reduction will occur and the more complicated the
solution will be. To select an appropriate dimension-
ality, the analysis is usually carried out for decreasing
values of R. From a plot of the goodness of fit vs. the
dimensionality, an appropriate value for R is selected
(usually at the value where an “elbow” occurs).

Several software programs exist that implement
two-way multidimensional scaling. One of the more
often used programs is KYST-2A [19] that is fully
documented in Kruskal & Wish [18].

To illustrate a two-way analysis, we apply KYST-
2A to some data collected by Ekman [14], and origi-
nally analyzed by Shepard [24, 25] in his pioneering
work on “analysis of proximities” describing the ear-
liest approach to what later developed into modern
two-way nonmetric multidimensional scaling. Ekman
obtained similarity judgments from human subjects
about 14 colors varying in wavelength from 434 mµ

to 674 mµ. The colors were projected two at a time
on a screen and the subjects were instructed to rate
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the “qualitative similarity” on a five-point scale. The
average similarity ratings are presented in Table 1.
KYST-2A was applied to these data with R varying
from 5 to 1, treating the data as ordinal data. The min-
imum values obtained for the stress function are plot-
ted as a function of R in Figure 1. This figure clearly
exhibits an “elbow” at R = 2. The associated two-
dimensional configuration is presented in Figure 2.
In the figure, the objects are labeled by their wave-
length in mµ. The figure clearly reveals the well-
known color circle ranging from violet (434 mµ)
over blue (472 mµ), green (504 mµ), and yellow
(584 mµ) to red (674 mµ). The input similarities are
plotted against the resulting Euclidean distances in
Figure 3. The figure clearly shows that the Euclidean
distances approximate a monotonic transformation of
the observed proximity data.

There is also an older (now called the “classical”)
approach to two-way metric multidimensional scal-
ing, best described in Torgerson [26], that relies on a
singular value decomposition (see Correspondence
Analysis) of a symmetric estimated “scalar products”
matrix derived via some preprocessing of the origi-
nal proximity data. While this procedure, being based
on the singular value decomposition, does not suffer
from a local optimum problem, the loss function that
it is optimizing does not have as clearly defined prop-
erties as L does.

The basic two-way multidimensional scaling pro-
cedure described above has been extended in many
respects. Statistical formulations enabling maximum
likelihood estimation have been developed (see [21]
for a survey), as well as extensions to non-Euclidean
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Figure 1 Minimum stress values obtained for the Ekman
[14] data

metric (see [1] for a review of extensions to non-
Euclidean Minkowski metrics). The families of per-
missible data transformations have been extended
(e.g. [27]) and constrained procedures have been
devised (e.g. [10]).

One of the more important extensions of two-way
multidimensional scaling has been to the case of two-
way two-mode data (see [4] for a review). Such data
can arise in a number of different ways; for instance,
when proximity judgments are made between pairs
of objects, where one object belongs to a set A and
the other to a set B (with A and B disjoint sets), but

Table 1 Mean judged perceptual similarity between 14 spectral colors (data obtained by Ekman [14])

434 445 465 472 490 504 537 555 584 600 610 628 651 674

434 – 0.86 0.42 0.42 0.18 0.06 0.07 0.04 0.02 0.07 0.09 0.12 0.13 0.16
445 0.86 – 0.50 0.44 0.22 0.09 0.07 0.07 0.02 0.04 0.07 0.11 0.13 0.14
465 0.42 0.50 – 0.81 0.47 0.17 0.10 0.08 0.02 0.01 0.02 0.01 0.05 0.03
472 0.42 0.44 0.81 – 0.54 0.25 0.10 0.09 0.02 0.01 0.00 0.01 0.02 0.04
490 0.18 0.22 0.47 0.54 – 0.61 0.31 0.26 0.07 0.02 0.02 0.01 0.02 0.00
504 0.06 0.09 0.17 0.25 0.61 – 0.62 0.45 0.14 0.08 0.02 0.02 0.02 0.01
537 0.07 0.07 0.10 0.10 0.31 0.62 – 0.73 0.22 0.14 0.05 0.02 0.02 0.00
555 0.04 0.07 0.08 0.09 0.26 0.45 0.73 – 0.33 0.19 0.04 0.03 0.02 0.02
584 0.02 0.02 0.02 0.02 0.07 0.14 0.22 0.33 – 0.58 0.37 0.27 0.20 0.23
600 0.07 0.04 0.01 0.01 0.02 0.08 0.14 0.19 0.58 – 0.74 0.50 0.41 0.28
610 0.09 0.07 0.02 0.00 0.02 0.02 0.05 0.04 0.37 0.74 – 0.76 0.62 0.55
628 0.12 0.11 0.01 0.01 0.01 0.02 0.02 0.03 0.27 0.50 0.76 – 0.85 0.68
651 0.13 0.13 0.05 0.02 0.02 0.02 0.02 0.02 0.20 0.41 0.62 0.85 – 0.76
674 0.16 0.14 0.03 0.04 0.00 0.01 0.00 0.02 0.23 0.28 0.55 0.68 0.76 –
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Figure 2 Two-dimensional representation of the Ekman
[14] data
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Figure 3 Plot of the similarities vs. the obtained two-
dimensional Euclidean distances for the Ekman [14] data

no such judgments are made about pairs of objects
both belonging to the same set. A and B may be sets
of entities of basically the same kind, such as two
different classes of diseases, or sets of very different
types, such as a set of diseases, on the one hand, and
a set of treatments on the other (where the “proxim-
ity” relation might be one of “effectiveness” of the
treatment for the disease). One especially important

class of two-way two-mode data to which this vari-
ant is often applied is a subjects (e.g. patients) by
objects (e.g. medical practitioners) matrix with rat-
ings or rankings of the preference for the objects
by each of the subjects. This latter type of data –
often called individual differences preferential choice
data – can be viewed as a type of dominance data,
measuring the relative dominance (tendency to be
preferred to, or chosen over, other objects) of each
of the objects, for each of the subjects. Coombs [9]
has pointed out that such data can also be inter-
preted as conditional proximity data – conditional,
since the ratings or rank orders of preference are com-
parable only within an individual subject (so only
within the rows, of a subjects × object data matrix),
but not between rows corresponding to different sub-
jects. Coombs interprets preference (or other types of
dominance) data as (conditional) proximities based
on a very general model that assumes that a subject’s
preference for an object is inversely monotonically
related to the distance of that object (in a subjective
multidimensional space) from the subject’s “ideal”
(or most preferred) point. So the closer an object is
to the ideal point, the more it is preferred. These are
conditional proximities because one subject’s ratings
or rankings of preference (or other dominance rela-
tion) cannot be compared with those of a different
subject since they are not measured on the same scale.
This model is known as the unfolding model or ideal
point model. Individual differences among subjects
are represented in this general model by allowing
for a different ideal point for each subject. Some
specialized options are available in KYST-2A, entail-
ing a different normalization or changes to the stress
loss function (depending on the specific type of data
being analyzed), for carrying out such an unfolding
analysis. As emphasized by Carroll [4] and Kruskal
et al. [19], it is important to use the correct options
when analyzing such data, since the use of incorrect
ones can lead to “degenerate” solutions that convey
little or no information about the data, even though
they may have a stress value indicating perfect or
near-perfect fit.

It should be noted that many types of data, other
than individual differences preference data, may be
viewed as conditional proximities. For example, the
disease × treatment matrix mentioned earlier would
be of this same form if the treatments were, say,
rank ordered for effectiveness separately for each dis-
ease. For reasons that will not be discussed here (but
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see [4]) such analysis of two-way two-mode proxim-
ity data is often called multidimensional unfolding.

Three-Way Multidimensional Scaling

The extension of the basic two-way procedure that
had the largest impact is the extension to three-
way two-mode data. In three-way multidimensional
scaling the input data consist not of a single square
symmetric proximity matrix �, but of a series
of matrices �(1), . . . , �(M) containing dissimilarities
about the same set of objects, but obtained from
M different sources. The sources can be, for
instance, different subjects, different occasions, etc.
The INDSCAL model [6] – the most common three-
way model – assumes that each source weights the
dimensions of a common object space x1, . . . , xN

idiosyncratically. The (nonnegative) weight that
source i attaches to dimension r will be denoted
wir . In the INDSCAL model, δ

(i)
jk , the dissimilarity

between objects j and k observed from source i, is
represented by the weighted distance d

(i)
jk :

d
(i)
jk =

[
R∑

r=1

wir(xjr − xkr)
2

]1/2

, wir ≥ 0,

=
[

R∑

r=1

(y
(i)
jr − y

(i)
kr )2

]1/2

,

with
y

(i)
jr = (wir )

1/2xjr .

Thus the weighted distance d
(i)
jk is equivalent to an

ordinary Euclidean distance in a space Y(i) = ((y
(i)
jr )),

where each dimension is rescaled by the square
root of the corresponding source weight. The space
defined by X = ((xjr )) is often called the common
space or the object space, while W = ((wir )) is
referred to as the source space. X and W thus define
two disjoint spaces, both having the same dimension-
ality R, one space (the common space) representing
the objects and one space (the source space) repre-
senting the sources. The weight that source i applies
to the rth dimension of the common space, wir , can
be derived from the source space by simply projecting
the point representing source i onto the rth coordi-
nate axis. Finally, Y(i), the common space rescaled
for source i, is called the private space for source i

(see, for example, Arabie et al. [2]).

Contrary to the distances obtained in two-way
multidimensional scaling, the distances d

(i)
jk are not

invariant under orthogonal rotations of the object
space (unless the ratio of the weights applied to a
pair of dimensions is identical for all sources, in
which case there exists an indeterminacy involving a
generally nonorthogonal rotation in the plane defined
by these two dimensions). The rotational uniqueness
of the INDSCAL model often leads to representa-
tions that are easier to interpret. It is primarily this
rotational uniqueness property that has made IND-
SCAL so popular. There are, however, some trans-
formations of the parameters X and W that do not
affect the weighted distances d

(i)
jk , namely permuta-

tions and reflections of the dimensions, a translation
of the object space (i.e. replacing xj by xj + c for
j = 1, . . . , N ), and a joint transformation of the type

xjr → αrxjr , wir → wir

α2
r

,

with αr �= 0 and r = 1, . . . , R.
Several numerical procedures have been devel-

oped for fitting the INDSCAL model to metric or
nonmetric three-way two-mode proximity data. The
most widely used computer program for fitting the
INDSCAL model to interval or ratio level proxim-
ity data is SINDSCAL [20], while probably the most
common procedure to fitting INDSCAL to nonmetric
(ordinal) data is the ALSCAL program [29]).

To illustrate the INDSCAL model, we present the
results of an INDSCAL analysis originally carried
out by Carroll & Chang [7] on some color percep-
tion data collected by Helm [15]. Helm [15] had 14
subjects (10 with normal color vision and four with
a red–green color deficiency) judge the dissimilarity
of ten colors that were approximately equally spaced
on the color circle. Figure 4 displays the common
space as well as the source space. The two dimen-
sions of the common space can be interpreted as
respectively a yellow–blue and a red–green dimen-
sion. As can be expected, the four color deficient
subjects (labeled CD1–CD4 in the figure) clearly
weight the yellow–blue dimension more heavily than
the red–green dimension. Figure 5 presents the pri-
vate spaces for two typical subjects, a subject with
normal color vision (subject N7) and a color deficient
subject (subject CD1). This figure illustrates how the
private spaces are derived from the common space
by idiosyncratically weighting the dimensions.
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Figure 4 Two-dimensional common space (a) and source
space (b) for the Helm [15] data. The objects are labeled
as follows: R = red, Y = yellow, GY(1) = green yellow,
GY(2) = green yellow with more green than GY(1), G =
green, B = blue, PB = purple blue, P(1) = purple, P(2) =
purple with more red than P(1), and RP = red purple. The
subjects with normal color vision are labeled N1–N10,
while the color-deficient subjects are labeled CD1–CD4

The basic three-way model has been extended
in several ways, among others to allow for more
elaborate idiosyncratic transformations of a com-
mon space (for a recent review, see [5]), to fit an
“extended INDSCAL” model including “specific”
as well as “common” dimensions, while allowing
either metric or a special form of nonmetric fitting
using a maximum likelihood criterion of fit [8], to
handle individual differences in a more parsimonious
way (for instance, through a latent class formula-
tion [28]), or to accommodate other types of data
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Figure 5 Private spaces for a subject with (a) normal
color vision (N7) and (b) a color-deficient subject (CD1)

such as three-way three-mode data or dominance data
(for a review of three-way multidimensional scaling
models for paired comparisons data, see [12]). Anal-
ysis of three-way three-mode proximity data (e.g.
judgments of efficacy of each of several treatments
for each of a number of diseases by different physi-
cians), interpreted in terms of a generalization of the
two-way two-mode ideal point model, is sometimes
called three-way unfolding (see [11]).

Nonspatial Models

The multidimensional scaling methods discussed in
the previous sections attempt a representation in a
Euclidean or weighted Euclidean space. In addition,
methods have been developed that arrive at a non-
spatial representation using, instead of a Euclidean
distance model, a tree or other kind of network
model. The simplest and at the same time most
often used nonspatial model is an ultrametric tree
(see Classification, Overview). An ultrametric tree
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is a rooted tree in which a nonnegative weight is
attached to each node of the tree such that (i) the ter-
minal nodes have zero weight, (ii) the largest weight
is attached to the root, and (iii) the weights associated
with the nodes on the path from any terminal node
to the root constitute a strictly increasing sequence.
In an ultrametric tree the distance between any two
terminal nodes i and j , denoted dij , is defined as the
maximum of the weights attached to the nodes on the
path connecting i and j . These distances satisfy the
so-called ultrametric inequality:

dij ≤ max(dik, djk),

for all i, j, k. Or, equivalently, the largest two of
dij , dik, and djk are equal for all i, j , and k.

In an ultrametric tree representation of a set of
two-way one-mode proximity data �, the objects
indexed by the rows and columns of � are repre-
sented by the terminal nodes of an ultrametric tree.
The topology of the tree and the weights attached to
the nodes of the tree are chosen so that the result-
ing ultrametric tree distances correspond as closely
as possible to the observed dissimilarities. An ultra-
metric tree representation of � defines a hierarchical
clustering on the set of objects. Each internal node
of the tree defines a partitioning of the objects rep-
resented by the terminal nodes of the subtree below
that internal node. The weight attached to the internal
node indicates the strength of this partitioning. The
successive partitionings defined by the internal nodes
are nested, thus yielding a hierarchical clustering.

This is illustrated in Figure 6, which presents the
least squares ultrametric tree representation obtained
by De Soete & Carroll [13] of some data collected
by Rosenberg & Kim [23] concerning the similar-
ity between kinship terms. Subjects were asked to
group 15 kinship terms on the basis of their similar-
ities in minimally two and maximally 15 categories.
Dissimilarity data were derived by counting for each
pair of kinship terms the number of subjects who put
the two terms in different categories. Figure 6 dis-
plays the least squares ultrametric tree representation
of the data obtained from the female subjects (listed
in [22, Table 7.2]). As can be seen from the figure,
the root node n1 separates the direct kin (grand-
parents, grandchildren, parents, brother, sister) from
the collaterals (uncle, aunt, cousin, nephew, niece).
Within the cluster of the direct kin, node n2 distin-
guishes the nuclear family from the kin that are two
generations away from the ego. Within the last group,
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Figure 6 Ultrametric tree representation of the kinship
data

node n5 distinguishes those that are +2 generations
(grandparents) from those that are −2 generations
(grandchildren) away from the ego. Node n3 sepa-
rates the members of the nuclear family from the
same generation (brother, sister) from those that are
one generation apart. Within this last group, node
n6 distinguishes those that are +1 generation away
from those that are −1 generation away from the
ego. Among the collaterals, the same generation dis-
tinctions appear (nodes n4 and n7). At the lowest
level, the kinship terms are distinguished on the basis
of gender.

Besides ultrametric trees, other types of tree and
network models have been used to represent prox-
imity or dominance data. This includes nonhierarchi-
cal trees where the ultrametric is replaced by what
is variously called an “additive”, “path-length”, or
“four-point” metric (in such a tree a length or weight
is associated with each branch or link and the dis-
tance between two objects is defined as the length of
the unique path connecting the terminal nodes rep-
resenting the two objects), as well as “multiple tree”
models in which proximities are modeled via sums of
distances associated with two or more distinct trees.
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Also included are other network (or discrete) mod-
els such as general graph structures and overlapping
or nonoverlapping clustering models. Furthermore,
another class of representations of proximity data, sel-
dom used to date, but having considerable potential
for effective application, are “hybrid models” com-
bining tree or other (discrete) network models with
the (continuous) spatial dimensional models most
typically associated with multidimensional scaling.
Finally, tree models have been devised for analyzing
various types of three-way data (for a comprehensive
review, see [13]).

Concluding Comments

In this article, multidimensional scaling was intro-
duced and its most common techniques have been
described and illustrated. The reader wanting more
detailed information is referred to the recent chapter
by Carroll and Arabie ([5]) and to various chapters
in Arabie et al. [3].
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Multilevel Models

Biostatistical data often have a hierarchical struc-
ture. Typically these structures are naturally occurring
ones: animal populations are characterized by indi-
viduals nested within parents, themselves often nested
within groups or herds which may also be nested
within spatial entities. In other cases the structure
may result from research designs, as in multicenter
clinical trials (see Multicenter Trials) where patients
are nested within clinics. In yet other cases the data
may not obviously seem to be nested, yet view-
ing them as such may yield new insights or more
efficient analysis techniques. Examples are repeated
measure designs, where measurements are “nested”
within individual subjects (see Longitudinal Data
Analysis, Overview), and multivariate response data,
where measurements are “nested” within individuals.

In addition to nesting relationships among data
units we may also have cross-classifications. For
example, an individual cow may be nested within
a herd of cattle, but also be the offspring of parent
stock, where any parent may contribute to several
herds: individual cows are thus cross-classified by
parents as well as nested within their herds. A further
complexity is also often present whereby individual
units at one level of a data hierarchy may be nested
within more than one higher-level unit. An example
is spatial data, where each individual person can be
classified by the geographical locality where they
live, but will also be influenced in terms, say, of their
health or behavior, by surrounding localities. In this
case we regard them as belonging to a primary unit
plus a number of secondary units.

In the following sections I develop a set of mod-
els for describing such data, increasing in complexity
as they move from simple hierarchies with contin-
uously distributed responses, to cross-classifications
and multivariate data and to discrete responses. Vari-
ous extensions and special cases will also be consid-
ered. The emphasis is on model specification rather
than estimation, although there is a brief section on
the latter.

The Basic Multilevel Model

For simplicity consider a simple data structure where
an outcome is measured on patients in a number

of centers, together with one or more treatments or
covariates. We wish to model a relationship between
the outcome and the explanatory variables, taking
into account the possibility that this relationship may
vary across centers. We shall refer to the centers as
higher-level units and patients as lower-level units. In
the present case we just have two levels with centers
as level 2 units and patients as level 1 units. A simple
such model can be written as follows:

yij = β0 + β1xij + u0j + eij ,

var(eij ) = σ 2
e0, (1)

var(uj ) = σ 2
u0,

where yij is the response and xij the value of a single
explanatory variable for the ith patient in the j th cen-
ter. The slope coefficient β1 is for the present assumed
to be the same at all centers, while the random vari-
able u0j represents the departure of the j th clinic’s
intercept from the overall population intercept term
β0. The first two terms on the right-hand side of (1)
constitute the fixed part of the model and the last two
terms describe the random variation. We develop the
model initially assuming that the random variables
have a (multivariate) normal distribution, and discuss
the nonnormal case later. This model could be viewed
as a standard analysis of covariance if we treated
each u0j as a fixed parameter to be estimated. Such a
model, however, often will be inappropriate, for the
following reasons.

First, we may have a very large number of centers,
leading to a very large number of separate parameters
to estimate. Secondly, some of the clinics may have
very few patients, so that their individual departures
will be poorly estimated. Most importantly, we may
be interested in treating the centers as a sample from
a population of centers and wish to make general
inferences about the likely behavior of other centers
in this population rather than, or in addition to,
providing separate estimates for each center in the
sample. For all these reasons it will usually be more
appropriate to regard u0j as random and to write

u0j ∼ N(0, σ 2
u0), e0ij ∼ N(0, σ 2

e0).

We can also elaborate (1) by allowing the coefficient
β1 to vary across centers and rewrite the model in the
more compact form

yij = β0ij x0 + β1j x1ij ,
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β0ij = β0 + u0j + eij ,

β1j = β1 + u1j , (2)

U = {u0j , u1j }, E(U) = 0,

cov(U) =
(

σ 2
u0

σu01 σ 2
u1

)
, var(eij ) = σ 2

e .

This model is often referred to as a “random coeffi-
cient model” by virtue of the fact that the coefficients
β0ij and β1j in the first equation of (2) are random
quantities (see Random Effects). It is possible, how-
ever, to have random coefficient models that are only
single level (see below); we thus drop this term in
order to emphasize the hierarchical data structure.

As more explanatory variables are introduced into
the model we can choose to allow them random
coefficients at the center level, thereby introducing
further covariances as well as variances at level 2.
This will lead to models with complex covariance
structures. One of the aims of multilevel modeling
is to explore such potential structures and also to
attempt to explain them in terms of further variables.
Having fitted such a model we can obtain posterior
estimates for the individual “residuals” (u0j , u1j , e0ij )

at either level by estimating their expected values
(or other functions of their distributions), given the
data and model estimates. Thus, for example, we can
estimate E(u0j |Y, β, θ), where

βT = {β1, β2}, θ = {σ 2
u0, σu01, σ 2

u1, σ 2
e0}. (3)

The multilevel model is here described in non-
Bayesian terms. For a full Bayesian specification of
this model we would need to add prior distribution
assumptions for the parameters in (3). The interested
reader is referred, for example, to [4, 5] for details
with examples.

In the next section we look at a general
formulation and then some important special cases.
A fully detailed treatment of the topics is not
possible here and the reader is referred to [6] and [5]
for details of methodology with examples and a
discussion of computer software. A World Wide
Web site is available which contains information
about current developments, references, software,
and so on, at http://multilevel.ioe.ac.uk
(see Internet).

Cross-Classifications

Many data structures are not purely hierarchical, but
mixtures of hierarchies and cross-classifications. For
example, in a school health survey children may be
assessed by raters, each school having just one rater.
Thus we have a structure where children are grouped
within cells defined by the cross-classification of
raters by schools, and we wish to model the level-2
variation as a function of both the between-rater and
between-school variation. If the design were changed,
so that a separate team of raters visited each school
and each child was measured by a single rater, then
the cross-classification would be that of raters by
children nested within schools. If, again, there was
a single team of raters who visited every school, then
the cross-classification would be of raters by children
across the whole sample. In this case we have no
separable hierarchy and we would wish to model the
total response variation as a function of the between-
child, between-school, and between-rater variation.

Rasbash & Goldstein [13] and Browne et al. [1]
discuss various examples of this kind and set out
the appropriate models together with procedures for
efficient estimation. Corresponding to the first and
second examples given above we can write the
following models, using a more general notation for
the fixed part of the model, where i indexes children,
j1 indexes schools, and j2 indexes raters.

We write

yi(j1j2) = Xi(j1j2)β + uj1 + uj2 + ei(j1j2) (4)

for the first model with children nested within the
level-2 cross-classification and with the following
level-2 covariance structure

cov(yi(j1j2), yi ′(j1j
′
2)
) = σ 2

u1
,

cov(yi(j1j2), yi ′(j ′
1j2)) = σ 2

u2
, (5)

var(yi(j1j2)) = cov(yi(j1j2), yi ′(j1j2))

= σ 2
u1

+ σ 2
u2

.

The second model is written as

y(i1i2)j = X(i1i2)jβ + uj + ei1j + ei2j . (6)

In both (4) and (6) we have assumed an “additive”
model for the variance contributions, and the
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adequacy of this can be tested against a model which
includes an interaction term, e.g.

y(i1i2)j = X(i1i2)j β + uj + ei1j + ei2j + e(i1i2)j . (7)

In addition, we can have further random coefficients
and levels of nesting or crossing.

Multiple Unit Membership

We have assumed so far that each lower-level unit,
such as a school student or patient, belongs to just
one higher-level unit of a particular kind. In many
cases, however, such units may belong to more
than one higher-level unit. For example, in a child
growth study, children may change schools from one
occasion to the next, and a particular case is that
of spatial data where an individual is influenced by
the geographical unit where she lives and also (with
differing weights) by neighboring areas. We can write
a simple two-level model of this kind as follows
where, for simplicity, we suppose the maximum
number of level-2 units to which a level-1 unit may
belong is two:

yi(j1j2) = Xi(j1j2)β + w1ij1uj1

+ w2ij2uj2 + ei(j1j2),

w1ij1 + w2ij2 = 1,

var(yi(j1j2)) = (w2
1ij1

+ w2
2ij2

)σ 2
u + σ 2

e , (8)

cov(yi(j1j2), yi ′(j1j2)) = (w1ij1w1i ′j1

+ w2ij2w2i ′j2)σ
2
u ,

cov(yi(j1j2), yi ′(j ′
1j2)) = w2ij2w2i ′j2σ

2
u .

As before, we can further elaborate this model by
allowing random coefficients, further hierarchical lev-
els, and further crossing factors. For example, in the
example of children changing schools we may cross-
classify the schools by the neighborhoods where the
children live with the possibility of multiple neigh-
borhood membership in the above sense and across
time. Browne et al. [1] discuss such models using
MCMC estimation, with examples.

Repeated Measures Data and Multivariate
Data

An interesting special case of a two-level structure
is that of repeated measures models such as the

following:

yij = β0j + β1j xij + eij , (9)

where the response, say, is the weight of an animal
related to a linear function of age, x, with the inter-
cept and slope varying across animals (see Random
Coefficient Repeated Measures Model).

Another important special case is that of multivari-
ate data, where the response is a vector. Consider first
a “single-level” multivariate linear model, with two
responses, height and weight, measured on a sample
of males and females. For the j th variable (j = 0 for
height, j = 1 for weight) measured on the ith subject
we have the following model equation:

yij = β01z1ij + β02z2ij + β11z1ij xj

+ β12z2ij xj + u1j + u2j

z1ij =
{

1, if height,

0, if weight,

z2ij = 1 − z1ij ,

xj =
{

1, if female,

0, if male,
(10)

var(u1j ) = σ 2
u1,

var(u2j ) = σ 2
u2,

cov(u1j , u2j ) = σu12.

A part of the data matrix for this structure might be
as given in Table 1, so that at level 2 we have the
variances and covariance of height and weight while
there is no variation at level 1, and the fixed part
of the model is defined using the relevant dummy
variables associated with each response. Notice that
in the data matrix the third individual has no weight
measurement. By specifying the multivariate model
as in (10) we can implicitly fit data where some
responses are missing: we simply omit the relevant

Table 1 Example data for a repeated measures design

Intercepts (z)

Individual Response Height Weight Gender (x)

1 (female) y11 1 0 1
1 y12 0 1 1
2 (male) y21 1 0 0
2 y22 0 1 0
3 (female) y31 1 0 1
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level-1 unit corresponding to the missing observation.
The model can be generalized readily in the ways
already discussed by allowing random coefficients,
cross-classifications, etc. and further levels of nesting.
An example of a multivariate model analysis will be
given later.

Modeling Variances

In addition to specifying the average response as
modeled in the fixed part of the model, we have
discussed modeling the covariance structure at level
2 (and higher levels) by introducing random coeffi-
cients. We may also introduce random coefficients
which vary across level-1 units and this provides
a flexible general procedure for variance modeling.
Consider the following model:

yij = β0 + β1xij + (uj + e0ij + e1ij xij ),

var(e0ij ) = σ 2
e0, var(e1ij ) = 0, (11)

cov(e0ij , e1ij ) = σe01,

so that the level-1 contribution to the overall variance
is the linear function

σ 2
e0 + 2σe01xij .

Note that we have constrained one of the “variances”
at level 1 to be zero in order to give a linear
rather than a quadratic variance function. In fact,
the parameters σ 2

e0, σ 2
e1, and σe01 are not to be

interpreted as separate variances and covariances, but
simply as parameters defining the variance structure.
The variable, x, may be any kind of explanatory
variable. For example, if it were a dummy variable
for gender, then the model would allow a separate
level-1 variance for males and females. In this way it
is possible to model the variance, as well as the mean,
as functions of explanatory variables. Examples are
given in Goldstein [5, Chapter 3].

In some circumstances, linear models for a vari-
ance, such as implied by (11), are inappropriate
because they may predict an overall level-1 variance
which is negative for part of the range. In this case
we can consider alternative models where the level-1
variance has the form, for example,

var(eij ) = exp(β∗
0 − β∗

1 xij ), (12)

which is nonnegative and where we require estimates
of the β∗

0 and β∗
1 . Goldstein [5] shows how maximum

likelihood estimates for such models can be obtained.

Nonlinear and Generalized Linear Models

We can write a two-level generalized linear model
in the form

πij = f (Xijβj ), (13)

where πij is the expected value of the response for
the ij th level-1 unit and f is a nonlinear function
of the “linear predictor” Xijβj , where we can have
random coefficients at level 2. We need to specify a
distribution for the observed response yij |πij : where
the response is a proportion this is typically taken to
be binomial, and where the response is a count taken
to be Poisson (see Poisson Regression). Eq. (13) is a
special case of a nonlinear regression model which
is completed by specifying a suitable link function
f (·). Thus, for binary response data we might have
a simple model:

logit(πij ) = β0 + β1x1ij + u0j ,

yij ∼ bin(1, πij ),
(14)

with a corresponding model for counts using a
log link function. The random part of (14) can be
elaborated with further random coefficients, cross-
classifications, etc.

These models can be extended to multinomial
(ordered or unordered) responses [5, Chapter 7].

Survival Models

Survival time data (see Survival Analysis, Overview)
will often have a multilevel structure: for example we
may measure illness durations within centers or wait-
ing times in hospitals with variation across centers and
hospitals. We may also have repeated duration episodes
within individuals, for example repeated periods of dis-
ease and remission, where different kinds of episode
also may exist. We briefly mention here three com-
mon types of model and their multilevel specification.
Further details are given by Goldstein [5].

The first type is the extension of the semipara-
metric Cox regression model, often referred to as a
frailty model. When defining risk sets for this model
we can choose to order our failure times across the
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whole data set or within level-2 units, say hospitals.
In the former case the marginal relationship between
the hazard and the covariates is not generally propor-
tional, and in the latter case it is proportional within
level-2 units.

At each failure time l we define a response variate
for each member of the risk set

yijk(l) =
{

1, if i is the observed failure,

0, if not,

where i indexes the members of the risk set, and
j and k level-1 and level-2 units, respectively. The
response is treated as a Poisson variate with mean
function for a simple variance components model
given by

πjk(l) = exp(αl + Xjkβ + uk), (15)

where there is a “blocking factor” αl for each failure
time. The second type of model is a “log duration”
or accelerated failure time model which can be
written as

lij = ln(tij ) = Xijβj + eij , (16)

for the failure times tij . This is in the standard form
for a two-level random coefficient model. A com-
plication is that we may have (level-1) censored
observations, and this implies that we need a careful
specification of the level-1 distribution to incorpo-
rate censoring information in the estimation. Some
common choices are the normal, extreme value, and
log-gamma distributions (see Parametric Models in
Survival Analysis).

The third type of model, which leads to a partic-
ularly simple form, is the discrete time proportional
hazards model. For a two-level model we write

log[− log(1 − πjk(l))] = Xjkβk + α(l), (17)

where, as before, the α(l) are constants to be esti-
mated, one for each time interval. This leads to a
model where the response is a binomial variate, being
the number of deaths divided by the number in the
risk set at the start of the interval. As with the first
type, any censored observations in an interval are
excluded from the risk set.

Estimation

The basic model assumes multivariate normality and
standard (as well as restricted) maximum likelihood

methods are available using Fisher scoring, itera-
tive generalized least squares (see Generalized Lin-
ear Model) or the EM algorithm. Bayesian esti-
mation is available using Markov chain Monte
Carlo (MCMC) methods such as Gibbs sampling [4],
which is also available for generalized linear mod-
els with the appropriate distributional assumptions.
An alternative in this case is to use quasi-likelihood
estimation together with appropriate bias correction
procedures [7], or the related generalized estimating
equation (GEE) procedure, [10]. For inference, inter-
val estimates are obtained directly from MCMC and
via large sample deviance statistics or bootstrapping
for likelihood estimation. Maximum likelihood pro-
cedures are also available [5].

An Example

To illustrate the flexibility of multilevel models we
fit a bivariate two-level model where one response is
normal and the other is binary.

The data are part of the “Health and Lifestyle
Survey”, a sample of 9003 individuals within house-
holds nested within 396 electoral wards in Britain
and carried out in 1984/85. For present purposes data
on smoking habits are analyzed using information
about gender and age. Further details are given in [3].
The information about smoking behavior consists of
whether or not the respondent smoked cigarettes and
if they did, how many per day. Sixty-five percent did
not smoke and the mean number smoked for those
who did is 15.2 with a standard deviation of 9.3.
The distribution of the number smoked is positively
skewed which suggests a normalizing transformation.
The use of this, however, does not substantially alter
the results and the analysis is presented in terms of
the actual number smoked.

One aim of the analysis is to ascertain how
the probability of smoking and the number smoked
each relate to the explanatory variables. The other
is to estimate the between-area variation, and in
particular to see whether areas where the proportion
of nonsmokers is high are also the areas where
smokers tend to smoke greater numbers of cigarettes.
We write the model in two parts.

For the binary response probability

logit (πij ) = (x1β1)ij + u1j

yij ∼ binomial (1, πij ) (18)
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For the continuous response

yij = (x1β1)ij + u2j + eij

with

eij ∼ N(O, σ 2
e ),

(
u1j

u2j

)
∼ N(O, Ωu),

Ωu =
(

σ 2
u1

σu12 σ 2
u2

)

where u1k and u2k, respectively, refer to the ward-
level contributions t o the discrete and continuous
parts of the model. This model combines a model
for smokers where the response is the number of
cigarettes smoked and a model with a binary response
which is whether or not the subject smoked. Thus,
each smoker will have two responses, a “1” for the
binary response variable and the number smoked for
the continuous response. Each nonsmoker will have
just one response, a “0” indicating that they are a
nonsmoker.

This model can be fitted with the MLwiN software
package [14]. The bivariate structure is modeled as
level 1, where there is no random variation, so that
the full model is three-level. The results are presented
in Table 2.

At the electoral ward level there is a high corre-
lation (0.81) between the proportion of smokers and

Table 2 Bivariate model for smoking/nonsmoking and
number smoked. Gender is coded 1 for male and 0 for
female: age is measured about the mean of 45.9 years. The
level-1 variance is constrained to 1.0 which corresponds to
binomial variation

Response

Parameter Binary (se) Continuous (se)

Fixed
Intercept −0.54 15.7
Gender 0.14 (0.05) 2.82 (0.32)
Age −0.03 (0.03) 1.22 (0.21)
(Age)2 0.0011 (0.0007) −0.02 (0.005)
(Age)3 −0.000012 (0.000005) 0.00009 (0.00003)

Random
Level 2:

Intercept
variance 0.17 (0.03) 1.45 (0.81)
covariance 0.40 (0.11)

Level 1:
Intercept 79.2 (2.1)

the number smoked. Men are more likely to be smok-
ers and to smoke more and there is an age effect
for the number smoked, with a maximum among 50
year olds, and declining thereafter. The relationship is
weaker for the probability of smoking. A model that
allowed gender to have a random coefficient at level 2
was fitted, but a large sample test for the extra vari-
ance and two covariance terms gave a χ2 value of 6.8
on three degrees of freedom (P = 0.08). Attempt-
ing to fit the age coefficient as random at level 2
produces a zero estimated variance. We can also test
the assumption of binomial variation for the smoking
response by fitting extra binomial variation. This is
estimated as 0.98, where a value of 1.0 corresponds
to binomial variation with a standard error of 0.015,
providing little evidence of extra binomial variation
(see Overdispersion).

Further Topics

Finally, we mention briefly some further topics, most
of which are currently the subject of methodological
research.

The standard meta-analysis model can be viewed
as a special case of a general multilevel model. For
the j th study in such an analysis we can define the
standardized effect dj where this is a dimensionless
quantity. It may, for example, be a correlation coef-
ficient, a standardized regression coefficient, group
difference, or weighted group difference. We can
write a simple model as follows:

dj = δ + vj + uj , var(uj ) = σ 2
j ,

var(vj ) = σ 2
v , (19)

where in the usual case σ 2
j is assumed known and is

treated as an offset in the random part of the model,
but may also in some circumstances be estimated. The
parameter δ is the population parameter of interest
and σ 2

v is the between-study (level-2) variance of the
standardized effect. We can add random coefficients
and covariates representing study factors to (19) in an
attempt to explain between-study differences, which
is a further aim of meta-analysis studies. Goldstein
et al. [8] give a detailed discussion.

As in single-level models, diagnostics are impor-
tant. We can estimate standardized residuals at any
level of a data hierarchy and study these together with
looking for influential units. A detailed discussion is
given in [9].
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Further important issues are those concerned with
missing units and missing data generally, especially
where the missingness is informative, and research
is being conducted in this area (see Nonignorable
Dropout in Longitudinal Studies). Another topic
which is actively being researched is that of mul-
tilevel structural equation modeling [11, 12, 6].

Software

Some of the major software packages, for exam-
ple SAS, STATA, and GENSTAT, can handle many,
although not all, of the models described in this arti-
cle (see Software, Biostatistical). Several general-
purpose software packages have been written, e.g.
HLM [2] and MLwiN [14]. A review of these pack-
ages has been carried out by [15].
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Multilocus (Gene × Gene
Interaction)

The concept of multilocus (inter-locus) or gene ×
gene interaction is often used without being pre-
cisely defined. In essence, gene × gene interaction
refers to departure from “independence” of the effects
of different genetic loci in the way that they combine
to cause disease. However, this concept has been con-
fused by the fact that what is meant by independence
and the precise definitions of interaction used by
biologists, epidemiologists, statisticians and human
and quantitative geneticists have often differed, even
when using identical terminology.

Interactions between loci are sometimes referred
to as epistatic interactions or epistasis. This term was
first used by Bateson [1] to describe a masking effect
in which a variant at one locus prevents the variant at
another locus from manifesting its effect. This con-
cept of gene × gene interaction is often employed by
a biologist or biochemist when investigating biologic
interaction between proteins. In quantitative genet-
ics, however, the term epistatic has classically been
used to refer to a deviation from additivity in the
effects of alleles at different loci with respect to
prediction of a quantitative phenotype, in particu-
lar by Fisher [7]. Note that this definition is NOT
equivalent to the Bateson [1] definition. Epistasis in
the Fisher [7] sense is closer to the usual concept
of statistical interaction: departure from a (specific)
linear model describing the relationship between pre-
dictive factors (here assumed to be alleles at different
genetic loci) and an outcome or phenotype of inter-
est. Note that with this definition, the choice of scale
becomes important since factors that are additive with
respect to an outcome measured on one scale may
exhibit interaction when a different, transformed scale
is used [10, 11].

Mathematically, the quantitative genetic concept
of gene × gene interaction may be represented for
two loci by the linear model

y = β0 + βa1x1 + βd1z1 + βa2x2 + βd2z2 + βiaa
x1x2

+ βiad
x1z2 + βida

z1x2 + βidd
z1z2, (1)

where y is a quantitative phenotype, and xi and zi are
dummy variables related to the underlying genotype
at locus i. For example, for a diallelic locus with

alleles denoted 1 and 2, we might set xi = 1 and
zi = −0.5 for a 1/1 homozygote, xi = 0 and zi = 0.5
for a heterozygote and xi = −1 and zi = −0.5 for a
2/2 homozygote. The coefficients β0, βa1 , βd1 , βa2

and βd2 represent genetic parameters to be estimated
corresponding to the mean effect and additive and
dominance effects at loci 1 and 2; βiaa

, βiad
, βida

and
βidd

correspond to the interaction effects. The lack of
a gene × gene interaction in this scenario corresponds
to all interaction coefficients being equal to 0.

In human genetics, the phenotype of interest is
often qualitative and usually dichotomous, denoting
presence or absence of disease. Models for the joint
action of, and interaction between, loci have typi-
cally focused on the penetrance, the probability of
developing disease given genotype. Let pij be the
probability of developing disease given that there is
genotype i at locus 1 and j at locus 2. Three com-
mon models have been considered [14]: an additive
model in which pij may be written as pij = αi + βj ,
where αi and βj are parameters representing the con-
tributions of the different genotypes at locus 1 and
2, respectively; a heterogeneity model in which pij

may be written as pij = αi + βj − αiβj ; and a mul-
tiplicative model in which pij may be written as
pij = αiβj . The additive and heterogeneity models
are usually assumed to represent nonepistatic models
and to correspond to a situation in which the bio-
logic pathways involved in disease are at some level
separate or independent. The multiplicative model is
usually considered to be an epistatic model in which
the loci and pathways involved are not independent.
Note, however, that a multiplicative model can be
considered to be an additive model when transformed
to the logarithmic scale. In a statistical sense, there-
fore, the multiplicative model signifies independent
additive effects of the loci on a logarithmic scale.

Two other models are commonly used in human
genetics. A model popular with epidemiologists is
an additive model for the logit or the logarithm of
the odds, in which ln[pij /(1 − pij )] may be writ-
ten as ln[pij /(1 − pij )] = αi + βj . The lack of an
interaction term γij (i.e. the fact that when the model
is expressed as ln[pij /(1 − pij )] = αi + βj + γij , the
γij parameter equals 0) signifies independence of the
locus effects on the logit scale. Another popular
model from classical genetics is a threshold model,
in which the loci are assumed to contribute to an
underlying, unobserved, continuous trait in an addi-
tive fashion and development of disease occurs if
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this trait exceeds a certain threshold [8, 13, 18, 19].
Note that both of these models, although additive and
therefore expressible without interaction effects as
defined on their original scales, correspond to models
with interactive effects (epistasis) when transformed
to the penetrance scale.

Although in human genetics the penetrance or
some function of the penetrance is often used as
a surrogate for a quantitative phenotype of inter-
est, treatment of gene × gene interactions is generally
easiest when the phenotype has a genuine quantita-
tive scale of measurement. Two popular methods for
analysis of quantitative traits in families using pedi-
gree data are the variance component method and
the Haseman–Elston method (see Linkage Analy-
sis, Model-free). The variance component method
models the phenotypic covariance between relatives
in terms of the underlying identity-by-descent (ibd)
sharing probabilities at one or more genetic loci
(see Identity Coefficients). This contrasts with the
Haseman–Elston method [12] and subsequent exten-
sions [6, 9, 20] in which some function (such as the
squared difference or product) of the phenotype val-
ues for a pair of relatives is modeled in a regression
framework in terms of the underlying ibd-sharing
probabilities. Both of these methods generalize quite
easily to account for epistatic interactions between
loci. For the Haseman–Elston method in particular,
all that is required is to include products of ibd-
sharing probabilities at different loci as predictors in
the regression (6). Although epistatic components of
variance are often ignored in initial studies of linkage
to quantitative traits, in some cases these components
can be relatively large, and detecting these inter-locus
interactions may in fact prove to be a more power-
ful strategy for the detection of genetic effects than
concentrating solely on the independent effects of the
individual loci [17].

The relationship between the differing definitions
of gene × gene interaction is quite complex, and
hence the degree to which statistical modeling can
elucidate underlying biologic mechanisms may be
limited. The problem is one that has been recognized
for some time in epidemiology, namely, that any
given data pattern and statistical model can usually
be obtained from a number of different underlying
mechanisms or models for disease development [15,
16]. This makes biologic inference from the results of
a statistical interaction test very difficult [4]. Only if
a prior biologic model can be postulated in detail is it

likely that statistical modeling will allow insight into
the underlying biologic mechanisms. Although direct
biologic inference may be limited, identification of
the most parsimonious statistical model for the joint
effects of several loci, including interactions, can be
useful for prediction of phenotype and targeting of
interventions. Moreover, the increase in power that
in some cases is obtained by allowing for different
modes of interaction between potential disease loci
can lead to identification of disease loci that might
otherwise remain undetected [2, 3, 5].
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Multinomial Distribution

The multinomial distribution is a generalization of
the binomial distribution to more than two possible
discrete outcomes. The roll of a die, for example, can
give rise to one of six possible results. More gener-
ally, consider an experiment or survey in which there
are k (≥ 2) distinct outcomes. Every realization of
the experiment results in one of these k possible out-
comes. The probability that each experiment results
in the j th outcome (j = 1, . . . , k) is denoted by pj .
The probabilities p1, . . . , pk are nonnegative and sum
to one. In the example of the roll of a fair die, p1

through p6 are all equal to 1/6.
The multinomial distribution describes the joint

distribution of a collection of frequencies of the k out-
comes arising from n independent replications of this
experiment. After n (≥ 1) independent experiments,
let Nj denote the random variable counting the num-
ber of experiments that result in the j th outcome.
The probability of jointly witnessing the collection
of N1 occurrences of the first categorical outcome,
N2 occurrences of the second, and so on through Nk

occurrences of the kth outcome is

Pr(N1, . . . , Nk) = n!

N1!N2! · · · Nk!
p

N1
1 p

N2
2 · · · pNk

k .

(1)

The collection of counts N1, . . . , Nk in (1) are said
to follow a multinomial distribution. Each Nj can
take on the value 0, 1, . . . , n subject to the constraint
that the sum of all counts N1 + · · · + Nk is always
equal to n, the number of experiments. The parameter
n is referred to as the sample size or index of the
distribution. When k is equal to two, (1) reduces
to the probability mass function of the binomial
distribution. There are

(
n + k − 1

k − 1

)

distinct outcomes of N1, . . . , Nk in the multinomial
distribution given by (1).

As an example of multinomial data, Robertson [5]
describes the F2 progeny of a cross between hybrid
barley plants. There are four possible phenotypes
(visible outcomes) from this cross: green non-two-
row; green two-row; chlorina non-two-row; and chlo-
rina two-row. According to Mendelian inheritance,

these should occur in the ratio of 9 : 3 : 3 : 1 (see
Mendel’s Laws). The k = 4 probabilities p1, . . . , p4

are then 9/16, 3/16, 3/16, and 1/16. In a total of
n = 1898 barley plants, the counts of the four pheno-
types N1, . . . , N4 reported by Robertson [5] are 1178,
291, 273, and 156, respectively.

All marginal and conditional multinomial distribu-
tions are also multinomial. Any count Nj taken alone
has a binomial marginal distribution with param-
eters n and pj (see Marginal Probability). More
generally, any subset of N1, . . . , Nk also follows
the multinomial distribution. The conditional dis-
tribution of the counts N2, . . . , Nk given the fixed
value of N1 is a k − 1 category multinomial dis-
tribution with sample size n − N1 and probabili-
ties p2/(1 − p1), . . . , pk/(1 − p1) (see Conditional
Probability). In other words, all subsets of N1, . . . ,

Nk follow a multinomial distribution. Fixing the val-
ues of a subset of N1, . . . , Nk results in a multinomial
distribution for the remaining counts.

The moments of the multinomial distribution are
as follows. The mean of Nj is

E(Nj ) = npj

and its variance is

var(Nj ) = npj (1 − pj ).

These are the same as the corresponding moments of
the binomial distribution. The covariance of Ni and
Nj(i �= j),

cov(Ni , Nj) = −npipj ,

and their correlation

corr(Ni , Nj) = −
[

pipj

(1 − pi)(1 − pj )

]1/2

,

are both negative, because the frequencies N1, . . . ,Nk

are constrained to sum to n. Intuitively, these negative
correlations appear because increasing the count in
any one of the k categories will reduce the counts in
all other categories.

There is a close connection between the multino-
mial distribution and the Poisson distribution. Let
X1, . . . , Xk denote independent Poisson distributed
counts with respective means λ1, . . . , λk . Given the
value of the sum

∑
Xi , the conditional distribution

of X1, . . . , Xk is multinomial with index n = ∑
Xi

and probabilities λ1/
∑

λi, . . . , λk/
∑

λi .
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This close connection between the Poisson and
multinomial distributions is often confusing, and led
to a debate between Haldane [3] and Cochran [1]
over which distribution was more appropriate in
determining the proper degrees of freedom for the
chi-square test. In the barley example cited above,
should the observed frequencies N1, . . . , N4 be trea-
ted as four independent Poisson counts or as a single
multinomial sample? The answer is that these counts
most probably came about as independent Poisson
observations. However, any inference such as esti-
mating the pj s will always be done conditional on
having observed n = 1898 plants. In other words, any
statistical inference to be drawn from these data will
be the same whether the figure of 1898 barley plants
was determined before the experiment was conducted
or if, in fact, this number was determined by some
random process, as is more likely the case.

There are two important approximations to the
multinomial distribution that are useful when the
index n is large. The first of these is the joint
multivariate normal distribution of the standardized
counts

Nj − npj

[npj (1 − pj )]1/2

obtained when p1, . . . , pk are held fixed and n is
allowed to grow.

The second approximation points out another con-
nection between the multinomial and Poisson distri-
butions. This comes about in the same manner as
the Poisson approximation to the binomial distribu-
tion. This approximation is obtained when n is large
and a subset of the probabilities p1, . . . , pj (j < k)

become small at such a rate that the multinomial
means npi (i = 1, . . . , j ) have finite, nonzero lim-
its. In this case the frequencies N1, . . . , Nj behave
approximately as independent Poisson counts.

Estimation

The most common situation encountered in practice is
when the sample size n is known and p1, . . . , pk must
be estimated from the observed counts N1, . . . , Nk.
In certain settings, however, not all of the N1, . . . , Nk

are observable and n is unknown. A problem in
which both n and p1, . . . , pk are to be estimated often
appears as capture–recapture surveys, in which the
goal is to determine the size of a closed popula-
tion. These surveys arise in wildlife management or

epidemiologic studies in which there is a need to
estimate the number of animals in a region or the
number of diseased, but not yet diagnosed, individ-
uals in the population. In the example of the barley
data, there may be a fifth category, the genetic com-
position of which is always fatal to the plant resulting
in an unobservable phenotype.

The usual problem assumes that n is known and
estimates of p1, . . . , pk are needed. If nothing is
known about the structure of p1, . . . , pk, then the
empirical frequencies

p̂i = Ni

n

are commonly used to estimate p1, . . . , pk. The
p̂1, . . . , p̂k are the maximum likelihood estimates
of p1, . . . , pk because they maximize the proba-
bility given in (1). The p̂1, . . . , p̂k are unbiased
(see Unbiasedness) for p1, . . . , pk and have the
smallest variances of all unbiased estimators of
p1, . . . , pk.

There are many settings in which something is
known about the mathematical structure of p1, . . . ,

pk . This is usually expressed as a loglinear model.
Loglinear models are multiplicative models and are
so named because they are linear after taking the
logarithm. These models are most useful in describing
interactions of the various factors in multidimensional
count data.

In the barley data, an example of a loglinear
model is the model of independent linkage between
color (green or chlorina) and the two-row phenotype.
This model is suggested after writing the data as
the two-by-two table given in Table 1. In the model
of independence, p1, . . . , p4 are estimated such that
their odds ratio

ψ = p1p4

p3p4

is equal to one. The loglinear model ψ = 1 describes
a multiplicative relationship between p1, . . . , p4. This
relationship and the corresponding estimates of

Table 1 The barley data arranged as a two-by-two table

Two-row
phenotype

No Yes

Green 1178 291Color
Chlorina 273 156
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p1, . . . , p4 are familiar as the model of independence
of rows and columns in the two-by-two table.

Bayesian methods for estimating the p1, . . . , pk

parameters are subjective and incorporate prior know-
ledge. Bayesian methods require that we quantify
any uncertainty the investigator may have about this
knowledge before the data are observed. A general
reference for Bayesian methods in the context of
discrete data analysis is [4]. For the barley data,
Robertson might have expected the Mendelian ratio
of 9 : 3 : 3 : 1, but would have accepted another
model if the data provided a large amount of evidence
otherwise. A reasonable estimate for him to consider
is a weighted average of the (prior) Mendelian rates
pM

i and the empirical frequencies p̂i obtained from
the data. That is, a Bayesian estimate pB

i of pi takes
the form

pB
i =

(
c

c + n

)
pM

i +
(

n

c + n

)
p̂i (2)

where pM
i is the Mendelian frequency, known prior

to conducting the experiment. For all values of c > 0
and sample sizes n > 0, the Bayesian estimate pB

i

always lies between the prior (Mendelian) value pM
i

and the empirical fraction p̂i . A useful feature of
the Bayes estimate given in (2) is the ability to pro-
duce nonzero estimates of pi when the corresponding
observed frequency Ni is zero.

The parameter c > 0 in (2) quantifies the level
of certainty in the Mendelian model for the current
problem. A large value of c indicates a lot of faith
in this model, for which only a small amount of
weight should be given to the data in the form of
the empirical frequencies p̂1, . . . , p̂k . On the other
hand, either a large degree of uncertainty (small c)
or a lot of data (large n) results in a heavy reliance
on the data through p̂1, . . . , p̂k and relatively little
to the prior model. A philosophical difference that
many have with Bayesian methods is the subjective

and seemingly arbitrary way that a value for c is
assigned in (2). Different investigators will have
different degrees of certainty and arrive at different
Bayesian estimates of p1, . . . , pk .

Four different estimates of the barley frequen-
cies are summarized in Table 2. Mendel’s theory
of inheritance suggests that these four probabilities
pM

1 , . . . , pM
4 should be in the ratio of 9 : 3 : 3 : 1.

The maximum likelihood estimates p̂1, . . . , p̂4 are
the empirical frequencies Ni/n. The Bayesian esti-
mates pB

i given in (2) are a weighted average of the
empirical (p̂i) and Mendelian (pM

i ) rates. The value
of c = 1000 is used here as an illustration. The fit-
ted loglinear model specifies that color and two-row
phenotypes are not genetically linked and appear as
independent characteristics.

Testing Fit

There has been a large amount of attention paid to
testing the fit of the multinomial model (see Good-
ness of Fit). Relatively less is known about exam-
ining the adequacy of the multinomial distribution to
explain the data. Instead, virtually all of this work has
been directed at testing whether the p1, . . . , pk have
been correctly estimated and appropriately explain
the data. Best known in this area is the Pearson χ2

statistic,

χ2 =
k∑

i=1

(Ni − npi)
2

npi

,

which dates back to the year 1900. Large values
of χ2 relative to its reference distribution indicate
a significant lack-of-fit in the p1, . . . , pk parameters.

In more recent years, the χ2 statistic has also been
used to measure overdispersion of the multinomial
model. Overdispersion refers to the situation in which
the variances of the counts N1, . . . , Nk are greater

Table 2 Four different estimates of the probabilities for the barley data

Observed Mendelian Maximum Fitted Bayesian
Phenotype count, probability, likelihood, loglinear estimate,

Color Two-row ni pM
i p̂i model pB

i

Green No 1178 0.5625 0.6207 0.5917 0.6006
Green Yes 291 0.1875 0.1533 0.1823 0.1651
Chlorina No 273 0.1875 0.1438 0.1728 0.1589
Chlorina Yes 156 0.0625 0.0822 0.0532 0.0754
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than predicted by the multinomial model. It is impos-
sible to distinguish between the case of overdisper-
sion and misspecification of the p1, . . . , pk parame-
ters unless multiple samples are available.

When n is large and the p1, . . . , pk are replaced
in χ2 by appropriate estimates, then χ2 behaves as
χ2 with k − t − 1 degrees of freedom, where t is the
number of parameters estimated in p1, . . . , pk . Under
these conditions, it has long been known that there are
many other statistics the behavior of which is closely
tied to the χ2 statistic. Among these test statistics are
the generalized likelihood ratio

G2 = 2
∑

i

Ni log
Ni

npi

,

(see Likelihood Ratio Tests), the Freeman–Tukey
χ2

Z2 = 4
∑

i

[N1/2
i − (npi)

1/2]2,

and the Neyman χ2

N2 =
∑

i

(Ni − npi)
2

Ni

.

All of these statistics, others not mentioned, and
many not yet fully documented are contained in
a family of statistics first described by Cressie &
Read [2]. The power divergence statistics are of
the form

2nIλ = 2

λ(λ + 1)

∑
Ni

[(
Ni

npi

)λ

− 1

]

and are indexed by the parameter λ. Different val-
ues of λ result in many well known χ2 equivalent
statistics as special cases or as limits. For examples,
the value of λ = 1 yields the χ2 statistic; λ = −1/2
gives the Z2 statistic; and as λ gets close to zero,
2nIλ behaves as G2. If n is very large and all pi are
replaced by their estimates using the correct model,
then 2nIλ should be close in value to χ2 regardless
of the value of λ.

A final method for examining goodness of fit
is the use of exact tests. These computer-intensive

methods involve a complete enumeration of all pos-
sible distinct outcomes of the multinomial likelihood
function given in (1). This results in an exact test
of significance in the sense that significance levels
are determined exactly and no asymptotic approxi-
mations are needed. As an example of an exact test
of significance, let us examine the fit of the barley
data to the rates predicted by Mendel’s model. The
probability of observing the barley data assuming the
Mendelian probabilities is 2.177 × 10−17. This proba-
bility is not the significance level for testing Mendel’s
model. The exact significance level is obtained by
enumerating all possible outcomes of the n = 1898
plants into the four distinct phenotypes. There are

(
n + k − 1

k − 1

)
=

(
1901

3

)
= 1.143 × 109

of these outcomes. The exact probability of an out-
come with a likelihood of 2.177 × 10−17 or less is
equal to 5.883 × 10−12. This latter figure is the exact
significance level and indicates a poor fit to the model
of Mendelian inheritance for this data.
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Multiple Comparisons

Multiplicity considerations arise in experimental
research when it is desired to make inferences about
several aspects of a problem simultaneously, while
controlling some aspect of the frequency properties
of the statistical procedure (see Simultaneous
Inference). For example, observational units may
generate multivariate responses and it may be
of interest to examine covariate effects on each
response (see Multiplicity in Clinical Trials)
Alternatively, interest may lie in carrying out multiple
analyses on the basis of subgroups of patients defined
a priori. Repeated significance tests, often carried out
to ensure early detection of effective treatments in
clinical trials, also raise multiplicity issues (see Data
and Safety Monitoring). In all of these cases, several
tests of significance (see Hypothesis Testing) are
typically carried out. If carried out naively, then the
probability of making one or more false positive
conclusion is typically higher than expected. This
is the so-called multiplicity problem of statistical
inference. Here we focus on issues pertaining to the
classical multiple comparisons problem arising in the
comparison of several populations with respect to
a single response variable. For other examples of
multiplicity, see Simultaneous Inference.

Consider an experiment with the objective of com-
paring the means of I populations. Suppose a sam-
ple of ni subjects is available for study from the
ith population. Let n· = ∑I

i=1 ni , and let Yij denote
the response variable for the j th subject in the ith
sample. We further suppose the responses are gen-
erated according to the linear model Yij = µi + Eij ,
where µi is the mean response for the ith popula-
tion, Eij ∼ N(0, σ 2) are independently distributed,
and σ 2 is a common variance parameter reflecting
the extent of the sampling variability, j = 1, . . . , ni ,
i = 1, . . . , I . Here and throughout, we make the dis-
tinction between random variables and their realized
values by using upper and lower case letters, respec-
tively. Thus, if yij denotes a realization of Yij , then
yi = ∑ni

j=1 yij /ni denotes the mean of the ith sample,
and s2 the pooled estimate of the common variance
(see Analysis of Variance).

Comparisons of the population means µ1, . . . , µI

may be based on tests of hypotheses or interval esti-
mation. We consider issues pertaining to hypothesis
tests, and point out that directly analogous issues

arise in the context of interval estimation; specific
comments on this follow. In this article we empha-
size applications arising in clinical trials and related
biopharmaceutical experiments in which the I sam-
ples consist of individuals randomized to one of I

groups undergoing different treatment regimens. In
what follows we use related terminology and will
typically make reference to treatment comparisons.

There is a variety of contexts in which one might
be interested in making inferences about differences
in the population means, with the specific features of
the problem leading to particular analysis strategies.
The structure of the problem described above is that
of a one-way analysis of variance (ANOVA), suggest-
ing that if the null hypothesis were the equality of
all I means, a corresponding statistic following the F
distribution on (I − 1, n· − I) degrees of freedom
would be a natural choice. In many contexts, how-
ever, such an approach provides inadequate insight,
since rejection of the null hypothesis does not furnish
information regarding the nature of the treatment dif-
ferences. In general, multiple comparison procedures
are directed at facilitating more detailed analyses to
gain such insight, while adjusting for the multiplic-
ity by controlling certain frequency properties of the
testing procedure.

Note, however, that there are many contexts in
which multiple treatment comparisons can be made
without the need to adopt procedures that adjust for
multiplicity. Cox [7] has pointed out that probabili-
ties regarding the simultaneous correctness of many
statements may not always be of direct relevance.
Dunnett [13] points out that in situations where mul-
tiple experimental treatments are used in the same
study to maximize efficiency in the use of resources
rather than for the purpose of making joint infer-
ences, it is reasonable to make treatment to reference
group (control) comparisons as if the data had been
collected from different studies. Examples of such
scenarios include Finney [19] and Redman & Dun-
nett [42]. This approach is consistent with the views
put forth by Cook & Farewell [6] who propose that in
more general contexts when multiplicities arise, such
multiplicity adjustments are often adopted unnec-
essarily. Cook & Farewell suggest that provided a
limited number of well-defined questions are posed
at the design stage, and these questions relate to dif-
ferent features or different treatments under study,
then the case can be made for avoiding multiple
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testing procedures. As can be seen by the vague-
ness of the above statements, it remains difficult to
characterize clearly situations in which multiplicity
adjustments are required and when they are not, and
so it is natural that some debate in this area will
continue.

In what follows we discuss and contrast strategies
that are generally appropriate if there is genuine
concern about the need for making adjustments for
multiplicity.

Overview and Terminology

Background

For the well-known case in which I = 2, suppose the
null and alternative hypotheses are H0 : µ1 = µ2

and Ha : µ1 �= µ2, respectively. Hypothesis testing
procedures are typically formulated by specification
of a discrepancy measure, a many-to-one function of
the random response variables which is a stochas-
tic measure of the “distance” between the observed
responses and what would be anticipated under the
null hypothesis. A discrepancy measure must have a
known distribution for specified values of the param-
eters of interest. Upon collecting the data, one may
compute a realized value for the discrepancy measure,
which is typically referred to as a test statistic. The
P value of the test is the probability, under the null
hypothesis, of observing a realized value of the dis-
crepancy measure as extreme or more extreme than
that observed. Thus, small P values indicate that the
data are inconsistent with the null hypothesis. The
significance level, denoted by α, is a specified thresh-
old value such that if the observed P -value is ≤ α, H0

is rejected in favor of Ha (see Level of a Test). Cor-
responding to a given threshold significance level is
a critical value, c, such that test statistics larger than
or equal to c lead to rejection of the null hypothesis.

A type I error is said to be committed if the
null hypothesis is rejected when it is in fact true
(see Hypothesis Testing). The type I error rate, a
decision-theoretic notion introduced by Neyman &
Pearson [40], corresponds to the rate with which
this error would be made in a hypothetically infinite
population of repetitions of the trial. A test procedure
is said to control the type I error rate at α if the
probability of a type I error is less than or equal to α.

The type I error rate may be interpreted proba-
bilistically and hence one may write Pr(reject H0|H0

is true) ≤ α (the equality will typically hold when
the discrepancy measure has a continuous distribution
and the null hypothesis specifies a single point in
the parameter space). For the case in which I > 2,
it might be tempting to carry out multiple hypothe-
sis tests in an effort to learn more about the nature of
any potential treatment differences. The principal dif-
ficulty with this approach is that multiple hypothesis
tests at a common significance level α will result in a
probability of committing one or more type I errors
that may be substantially larger than α. Structure and
rigor are added to the multiple testing procedures to
ensure that the type I error rate properties are known,
or at least controlled.

Formulation and Terminology of Multiple
Comparison Procedures

As a first step in formalizing multiple comparison
procedures, Hochberg & Tamhane [26] define a fam-
ily as a “collection of inferences for which it is
meaningful to take into account some combined mea-
sure of error”. Tamhane [50] further states that there
should be a “contextual relatedness” for inferences
grouped into a common family. Tests pertaining to
this family are directed at investigating this aspect
of the treatments. Note that there may be more than
one family of hypotheses in a given experiment, with
each family addressing a different research question.
Furthermore, since these questions may be interre-
lated, the families might not be disjoint (i.e. they may
share one or more component hypotheses). For the
purposes of this discussion it is sufficient to consider
a single family, and we do so for the remainder of
this article.

For concreteness we consider a family as consist-
ing of a collection of null and alternative hypotheses
{(Hk0, Hka), k = 1, 2, . . . , K}, where K denotes the
total number of hypotheses in the family. The fami-
lywise error rate (FWE) is defined as the probability
of making one or more false positive conclusions
over all hypothesis tests in a particular family. Con-
trol of the FWE is appropriate if one cannot tolerate
any type I error in the family no matter how many
of the K null hypotheses are true. A procedure is
said to have strong control of the FWE if the prob-
ability of making at least one type I error over all
hypothesis tests of the family is at most α, regard-
less of how many component null hypotheses may
be true; weak control of the FWE at α is achieved
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if this type I error rate is guaranteed to be at most
α only when all null hypotheses are true. Typically
multiple comparison procedures control the FWE
at α, thus satisfying Pr(at least one null hypothe-
sis is falsely rejected) ≤ α. Procedures of this sort
clearly also control the type I error rates of any sub-
set of the family, including the component tests, while
guaranteeing that the FWE does not exceed a speci-
fied level.

Another term often used is the per-comparison
error rate (PCE). Here we restrict consideration to
true null hypotheses in the family, and define the PCE
as the expected number of false positive conclusions
divided by the number of true null hypotheses. This
error rate therefore corresponds to the usual type I
error rate for individual hypotheses that are tested
without any adjustment for multiplicity.

Suppose that m (which is unknown) hypotheses
are true and K − m are false. Denote by T the
number of true hypotheses that are rejected (false
positives) and by F the number of false hypothe-
ses that are rejected (true positives). T and F are
random variables. Benjamini & Hochberg [3] defined
the false discovery rate (FDR) as the expected value
of T/(T + F). By comparison, PCE is the expected
value of T/m and FWE = Pr(T > 0). They proposed
that a multiple testing procedure control FDR ≤ α,
instead of FWE ≤ α. They showed that FDR is equiv-
alent to FWE when m = K (all hypotheses are true).
Thus, it provides weak control of FWE. When sev-
eral hypotheses are false, it is less conservative than
controlling the FWE and may provide a useful con-
cept for situations where strict control of the FWE is
not needed.

Multiple comparison procedures may be classified
as single-step or stepwise procedures. In a single-
step procedure, multiple tests are carried out using
the same critical value for each component test. Pro-
cedures that involve carrying out multiple tests in
sequence, using critical values which may be unequal,
are called stepwise multiple testing procedures. For
such stepwise procedures it is convenient to arrange
the test statistics in ascending order according to
their significance levels, and to arrange the compo-
nent hypotheses conformably. Single-step procedures
are attractive in some respects since they are simpler
to apply and they have direct connections to simul-
taneous confidence intervals. They generally have
lower power than stepwise procedures, however, and

so are not desirable for the purposes of hypothesis
testing.

Stepwise procedures for multiple comparisons
may be further classified as step-down or step-up
procedures. In step-down procedures, formal tests are
carried out in a stepwise fashion starting with the
most extreme outcome (i.e. the most significant test
statistic). Testing proceeds to the hypothesis corre-
sponding to the next most extreme outcome only
upon rejection of the current hypothesis. If the current
null hypothesis is not rejected, then all subsequent
null hypotheses (i.e. those corresponding to the test
statistics with the less extreme outcomes) are not
rejected. Thus, if the first test statistic does not exceed
its corresponding critical value, then the testing termi-
nates with failure to reject any null hypothesis. Crit-
ical values are derived to ensure control of the FWE.
In step-up testing procedures, the testing begins with
the statistic corresponding to the least significant out-
come. Testing continues and statistics are examined
of progressively more extreme outcomes until a null
hypothesis is rejected. At this point, all null hypothe-
ses corresponding to the more extreme test statistics
are also rejected. As in the step-down procedures,
appropriate critical values are determined to ensure
control of the FWE. Examples of single-step, step-
down, and step-up multiple testing procedures are
provided in subsequent sections.

In many cases an overall null hypothesis may
be satisfied if and only if several less restrictive
hypotheses are satisfied. Let H0 = ⋂K

k=1 Hk0 be the
overall null hypothesis that all Hk0 are true, and
Ha = ⋃K

k=1 Hka the corresponding alternative hypoth-
esis that at least one Hk0 is false. Testing H0 against
Ha is known as a union–intersection problem, due
to Roy [44]. Denoting the test statistic for Hk by
tk for k = 1, . . . , K , the test statistic for H0 is
max(t1, . . . , tK). The critical value c is determined so
that the type I error of the test is α, which requires
that c be chosen to satisfy the following K-variate
probability requirement:

Pr(T1 < c, . . . , TK < c|H0) = 1 − α.

The solution, c = cK say, will be larger than the
α-point of the univariate statistic, the difference rep-
resenting an adjustment for the multiplicity.

For the intersection–union problem, where H0 =⋃K
k=1 Hk0 and Ha = ⋂K

k=1 Hka, the test statistic is
min(t1, . . . , tK). To determine the value of the critical
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constant in this case, Berger [4] demonstrated that the
α-point of the univariate statistic is the correct value
to use so that, in effect, no multiplicity adjustment is
needed.

If {Hk0}Kk=1 denotes a family of null hypothe-
ses, then the closure of this family is formed by
considering all intersections HS = ⋂

k∈S Hk0, where
S ⊆ {1, 2, . . . , K}. A closed testing procedure oper-
ates by rejecting any HS if and only if every HR

is rejected by an α-level test for R ⊇ S. Marcus
et al. [37] show that this strategy controls the FWE.

Historical Remarks

Suppose the null hypothesis consists of common
means (H0 : µ1 = µ2 = · · · = µI ) and the alternative
is that at least one mean is different. Upon application
of standard ANOVA methods and rejection of the null
hypothesis, it is natural to want to examine the nature
of the apparent treatment differences. Fisher [20]
was among the first to propose a formal multiple
comparison procedure with a view to investigating
potential treatment differences following a standard
one-way analysis of variance. Fisher’s protected least
significant difference procedure operates as follows.
If the F test from the one-way analysis of variance
is carried out with a type I error rate α, and if it fails
to lead to rejection of the null hypothesis of common
means, the procedure terminates. If H0 : µ1 = µ2 =
· · · = µk is rejected, then all pairwise tests are carried
out with a PCE of α for each. This procedure can be
shown to have only weak control of the FWE.

An alternative, suggested by Fisher, is to proceed
directly to the K specific treatment comparisons of
interest and carry out these tests with a PCE error
rate α/K . This is referred to as a Bonferroni adjust-
ment to the per-comparison error rates that maintains
strong control of the FWE at α. It is well known
to be conservative, particularly for highly correlated
test statistics [41]. The Bonferroni procedure is an
example of a single-step multiple test procedure since
each test is carried out with the same critical value,
regardless of the outcomes of any of the other tests.

Scheffé [46] developed an approach for simulta-
neous inference which follows naturally from the
one-way analysis of variance. In particular, if one
considers all contrasts of the form

∑I
i=1 �iµi , where∑I

i=1 �i = 0, Scheffé’s multiple comparison proce-
dure generates a set of tests (confidence intervals)

that have a FWE (simultaneous coverage probabil-
ity) less than or equal to α(≥ 1 − α). Note that with
the appropriate choice of coefficients these contrasts
may correspond to pairwise comparisons. Finally, we
note that if the F test leads to rejection of the null
hypothesis of common means, then there exists a
vector of coefficients � = (�1, . . . , �I )

′ such that a
test of H0 :

∑I
i=1 �iµi = 0 is rejected using Scheffé’s

procedure.
Several alternative strategies for multiple testing

were proposed on the basis of Studentized range
statistics. If ni = n, i = 1, . . . , I , then the Studen-
tized range distribution is the probability distribution
for the range (max{Y i} − min{Y i}) of the I inde-
pendent sample means all from a standard normal
distribution, divided by the pooled estimate of the
standard error of a sample mean (i.e. the square
root of a chi-square distributed random variable
scaled by a factor [I (n − 1)]−1). This studentized
range distribution is indexed by [I, I (n − 1)] and we
let qα

I,I (n−1) denote the corresponding upper 100α%
point. The percentage points of this Studentized range
distribution are provided in Harter [22] and many
texts, and may be used to carry out tests or con-
struct simultaneous confidence intervals for differ-
ences in means. Tukey [52] indicated that one could
carry out I (I − 1)/2 pairwise tests by comparing
zii ′ = n1/2(yi· − yi ′ ·)/s to the critical value qα

I,I (n−1);
that is, if |zii ′ | > qα

I,I (n−1), then the means µi and µi ′

can be inferred to be different with FWE controlled
at α, i �= i ′ = 1, . . . , I .

So-called multiple range tests have also been
developed by Newman [39], Keuls [34], and Dun-
can [9, 10]; the former two authors independently
proposed the same testing procedure, which is often
referred to as the Newman–Keuls test. Paraphras-
ing Miller [38], multiple range tests tend to declare
two means in a set of I means significantly different
provided the range of each and every subset contain-
ing the two means is significant according to an αg

level studentized range test, where g is the number
of means in the subset at hand. The Neuman–Keuls
test and Duncan’s test differ in the way in which αg

is determined. For the Neuman–Keuls test, αg = α

for g = 2, 3, . . . , I , whereas αg = 1 − (1 − α)g−1 in
Duncan’s test. Miller [38] provides a good illustra-
tion of the application of these two multiple range
tests and argues that, while Duncan’s test leads to
larger αg for larger group sizes (and hence greater
power for detecting treatment effects), this is at the
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expense of increasing the rate of false positive con-
clusions arising from multiple tests. Miller therefore
favors the Neuman–Keuls approach over Duncan’s.
However, it is important to note that, in their origi-
nal form, neither Duncan’s nor the Newman–Keuls
procedure controls the FWE; various modifications of
these procedures have been proposed but are beyond
the scope of this review (see [50] for details).

Generalizations to facilitate applications to the
unbalanced one-way lay-out have been proposed
by several authors [10, 11, 35, 52]. Dunnett [12]
conducted a detailed simulation study designed
to investigate the empirical type I error rates of
various procedures for this context. He found that
the preferred method for pairwise comparisons
is the Tukey–Kramer procedure, which compares
the statistic (yi· − yi ′ ·)/[s(1/ni· + 1/ni ′ ·)1/2], with
qα

I,I (n−1)/
√

2. This was found to be slightly
conservative, but less so than other procedures
developed for this same context [21, 24, 49]. A proof
of the conservativeness of the Tukey–Kramer method
for the one-way model was obtained by Hayter [23].

Generalizations to the studentized augmented
range distributions may be utilized if it is desired
to test not only for the equality of all means, but
whether all means share a specific value. Hence, any
pair of means for which the simultaneous confidence
intervals does not contain the null value of zero, say,
may be declared to be significantly different. With a
simultaneous coverage probability of 1 − α, the FWE
of this test is controlled at α.

More Recent Developments in Multiple
Comparisons

Single-Step Procedures Using P Values

The Bonferroni procedure which rejects any Hk0

whose P value is ≤ α/K is perhaps the most widely
known single-step testing procedure. It is attractive
in its generality, but improvements have been made
to generate procedures that are less conservative.
Šidák’s inequality leads to the less conservative criti-
cal value corresponding to 1 − (1 − α)1/K instead of
α/K [47]. The gain in power from this approach may
be quite minimal, however, for cases when K ≤ 10.

Simes [48] presents a multiple testing procedure
applicable when H0 = ⋂K

k=1 Hk0 and Ha = ⋃K
k=1 Hka.

Let P(1) ≥ P(2) ≥ · · · ≥ P(K) be P values arising

from the K component tests ordered from largest
to smallest. Then H0 is rejected if P(k) ≤ (K −
k + 1)α/K for some k. This test has higher power
than the Bonferroni procedure for testing H0. The
FWE is shown to be controlled at α by argu-
ments pertaining to order statistics of indepen-
dent uniform (0, 1) random variables and is valid
under the assumption that the component discrepancy
measures are independent [48]. Correlations among
the discrepancy measures can lead to serious infla-
tion of the FWE [28]. This is an example of a
union–intersection test procedure.

A number of more computationally intensive
approaches have also been proposed. Brown &
Fears [5] focused on binomial data and unadjusted
P values arising from unconditional or conditional
analyses. A permutation distribution (with fixed
marginal frequencies) was then used to compute
the adjusted P value corresponding to the
probability (based on the permutation distribution)
of realizing a P value smaller than that observed
(see Randomization Tests). Westfall [53] proposed
instead that one resample with replacement from
the observed data set and determine whether the
minimum P value of the new data set is, or is not,
less than or equal to that observed in the sample.
The frequency with which it is less is the adjusted P

value for the comparison of interest. An advantage of
this approach, suggested by Westfall & Young [54],
is that it effectively addresses the correlation of the
test statistics, particularly for multivariate outcomes,
or when the comparisons of interest are all against a
single control arm.

Stepwise Procedures Using P Values

Holm [27] presents a step-down multiple testing pro-
cedure, which he refers to as a sequentially rejec-
tive Bonferroni test, based on the ordered P val-
ues (see Multiple Endpoints, P Level Procedures).
Again, let P(1) ≥ P(2) ≥ · · · ≥ P(K) be the ordered
P values. Denote by H(k)

0 the null hypothesis cor-
responding to p(k) for 1 ≤ k ≤ K . The procedure
compares the ordered P values with the sequence
α, α/2, . . . , α/K starting with P(K), then P(K−1), etc.,
continuing as long as P(k) ≤ α/k, in which case we
reject H(k)

0 and go to the next ordered P value down;
the first time we find P(k) > α/k, we stop testing and
accept (do not reject) the remaining hypotheses.
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Holm [27] points out that since the thresholds used
to assess the strength of evidence against the null
hypotheses are larger for all but the minimum P

value, P(K), this approach has a higher probability
of rejecting false null hypotheses than the standard
Bonferroni procedure. This approach is attractive in
that, as with the standard Bonferroni procedure, it is
widely applicable.

Step-up procedures have also been proposed as
improvements to the standard Bonferroni approach.
Under Hochberg’s [25] step-up procedure, all K

P values are ordered as before, and testing begins
by comparing the largest P value, which is P(1), with
α, then P(2) with α/2, and so on, continuing as long
as the corresponding hypothesis is not rejected. The
first time a rejection occurs, testing stops and all
remaining hypotheses are rejected as well. In other
words, one does not reject until P(k) ≤ α/k, at which
point H(k)

0 , . . . , H(K)

0 are rejected, k = 1, . . . , K . Note
that this procedure employs the same critical values
as Holm’s step-down procedure and any hypothe-
sis rejected by Holm’s procedure is also rejected by
Hochberg’s procedure; hence the latter is at least as
powerful.

In Hommel’s [29, 30] step-up procedure, one
searches for the largest m(1 ≤ m ≤ K) such that

P(k) >
(m − k + 1)α

m
, for k = 1, . . . , m.

If such an m exists, then any hypothesis that has a P

value ≤ α/m is rejected. If such an m does not exist,
then all hypotheses are rejected. Hommel’s procedure
coincides with Hochberg’s for its first two steps, but
after that it may reject additional hypotheses to those
rejected by Hochberg’s procedure.

Both Hochberg’s and Hommel’s procedures were
developed by applying the closure principle to the
procedure of Simes [48]. Hommel’s procedure has
slightly greater power, but is more complicated to
apply. Another procedure that has slightly greater
power but is also more complicated to apply, was
given by Rom [43].

Stepwise Procedures Using Normal Theory

In multitreatment trials, the individual hypotheses
Hk, k = 1, . . . , K , are usually formulated in terms of
parameters θk which are contrasts in the population
means. Estimates θ̂k of these are determined from the
data. Under the linear model assumptions stated at

the beginning of this article, it follows that the θ̂k

are normally distributed with E(θ̂k) = θk , var(θ̂k) =
τ 2
k σ 2, and corr(θ̂i , θ̂j ) = ρij , where the τ 2

k and ρij

are known constants which depend upon the design
(e.g. on the sample sizes of the treatment groups). To
test the hypothesis Hk that θk has a specified value
0 (say), a test statistic tk = θ̂k/(τ

2
k s2)1/2, where s2

is an estimate of σ 2, is used. Under the normality
and homogeneous variance assumptions, the tk are
Student t statistics and the joint distribution of the
corresponding random variables is multivariate t .
This provides the underlying distribution theory for
testing the hypotheses.

In stepwise testing the test statistics are ordered
according to their P values as previously. Denote
them by t(1), t(2), . . . , t(K), where t(1) is the least
significant and t(K) the most significant test statistic.
These are compared in sequence with a set of critical
constants c1 < · · · < cK , determined so that the FWE
is ≤ α.

In step-down testing, we start with t(K), then go
to t(K−1), and so on. We continue to the next test in
the sequence whenever we find t(k) ≥ ck and reject
the corresponding hypothesis, stopping the first time
t(k) < ck and accepting (not rejecting) any remaining
hypotheses.

In step-up testing we start with t(1), then go to
t(2), and so on. We continue to the next test in the
sequence whenever we find t(k) < ck and accept (do
not reject) the corresponding hypothesis, stopping
the first time t(k) ≥ ck and rejecting any remaining
hypotheses.

We illustrate the determination of the critical con-
stants for the above step-down and step-up testing
procedures for the case where one of the I treatment
groups, say the I th group, is to be compared with
each of the other groups. Then the contrasts of inter-
est are θk = µk − µI , for k = 1, . . . , I − 1. Suppose,
for simplicity, that each group has the same sample
size, n, except for the I th group which has sample
size n0. Then let Yij (yij ) denote the random (real-
ized) response for the j th subject and yi the sample
mean in group i, i = 1, . . . , I ; s2 denotes the pooled
estimator of the common variance based on ν =
(I − 1)(n − 1) + n0 − 1 degrees of freedom (df).

Denote the random variables corresponding to
the ordered t statistics t(1), . . . , t(K) by T1, . . . , TK ,
respectively. Then the critical constants for the step-
down case with two-sided alternative hypotheses are
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obtained by solving the following equations:

Pr(−ck < T1 < ck, . . . , −ck < Tk < ck) = 1 − α,

k = 1, . . . , K = I − 1.

T1, . . . , Tk have a k-variate central t distribution with
ν degrees of freedom and common ρ = n/(n + n0)

under the null hypothesis H0 = ⋂k
i=1 H(i)

0 . Note that
since the critical value, cK , is the same as the one
derived for the single-step procedure, the step-down
method may be thought of as a natural extension of
the single-step procedure.

Tables of the critical values are readily available
for the case in which the sample sizes for all but the
reference group are the same (ni = n, i = 1, . . . , I −
1), and hence the discrepancy measures are equally
correlated (see [2, 26]). In the case of unequal group
sizes, good approximations can be obtained to the
critical values by using the average correlation and
interpolating from published tables. Alternatively,
however, with a known correlation matrix, the crit-
ical values may be found by direct multivariate, or
recursive, numerical integration [14].

For the step-up case, the values of the constants
c1, c2 . . . , ck are determined by solving

Pr(−c1 < T(1) < c1, . . . , −ck < T(k) < ck) = 1 − α,

k = 1, 2, . . . , K,

where T(1), . . . , T(k) are the ordered values of the
random variables T1, T2, . . . , Tk associated with the
first k t statistics in order of significance. Note that the
solutions here must be obtained recursively, starting
with k = 1, then k = 2, and so on, since in order to
solve for any ck it is necessary to know the values
of c1, . . . , ck−1. Also, for both step-down and step-up
testing, the value of c1 is the α point of univariate
Student’s t . For k > 1, the constant ck for step-up
testing is slightly larger than the corresponding ck for
step-down testing. The first step of the step-up testing
procedure corresponds to the Laska & Meisner [36]
MIN test, which tests the intersection–union problem
H0 = ⋃K

k=1 H(k)
0 vs. Ha = ⋂K

k=1 H(k)
a ; hence, the step-

up procedure may be thought of as a natural extension
of this test.

There are limited tables of the step-up constants
given in Dunnett & Tamhane [15, 16] for the case of
equal correlations; the case of unequal correlations
is considered in Dunnett & Tamhane [17]. The step-
down testing procedure is the normal theory analog

of Holm’s P value procedure, and the step-up testing
procedure is the normal theory analog of Hochberg’s
P value procedure. The advantage of the normal
theory procedures is that they utilize the correlation
structure of the parameter estimates and have higher
power when the normality and homogeneous variance
assumptions hold. However, the P value procedures
do not depend on such assumptions and can be used
when they do not hold.

Comparisons with the Best Treatment

Now consider the case in which there is no specific
reference group of interest and let µ(1) ≤ · · · ≤ µ(I)

denote the I ordered population means, where we
assume that larger values of µi correspond to pre-
ferred treatments. Since the means themselves are
unknown, so too is the appropriate ordering given
above. Nevertheless, one can conduct inference on
the quantities µ(I) − µi , the difference in the mean
response for the ith treatment group from that of the
unknown “best” treatment. Hsu [31] derives a method
of constructing simultaneous joint one-sided upper
confidence intervals for the µ(I) − µi , i = 1, . . . , I ,
and Hsu [32] extends these methods for two-sided
intervals. For simplicity we focus on the case of com-
mon interest, namely where σ is unknown and upper
bounds on µ(I) − µi are of main interest. Hsu [31]
shows that if U1, . . . , UI are I independent and iden-
tically distributed standard normal random variables,
ni = n, i = 1, . . . , I, v = I (n − 1), and we let dα

I,v

be the constant such that

Pr(UI > Ui − dα
I,vs, i = 1, . . . , I − 1) = 1 − α,

then a set of 100(1 − α)% simultaneous confidence
intervals for µ(I) − µi are given by [0, Di], i =
1, . . . , I , where

Di = max

[
max
j �=i

(Xj ) − Xi + dα
I,vs/

√
n, 0

]
.

The constant dα
I,v is the solution to

∫ ∞

0

∫ ∞

−∞
ΦI (u + dα

I,vs) dΦ(u) dΨv(s) = 1 − α,

where Φ(·) and Ψv(·) are the distribution func-
tions for a standard normal random variable and a
(χ2

v /v)1/2 random variable, respectively. Tables for
the constant d are identical, except for a constant
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√
2, with those for the constants used in the normal

theory step-down method described previously. For
further information, see Hsu [33].

Medical and Biometric Applications

Comparisons Between Several Treatments and a
Control

The problem is to compare K test treatments with
a control treatment, which may be either a placebo
or a standard treatment. Denote the unknown mean
responses by µ1, . . . , µK+1, where µk , k = 1, . . . , K ,
denotes the mean for the kth test treatment and µK+1

denotes the control mean. We formulate a multiple
hypotheses testing problem where we test H0k : µk =
µK+1 vs. Hak : µk �= µK+1, for k = 1, . . . , K . Rejec-
tion of H0k in favor of Hak leads us to conclude
there is a difference between the kth treatment and
the control.

The purpose of the trial may be to select the best
candidate and to test the hypothesis pertaining to
that particular candidate. Since there are K possi-
ble choices, we stipulate that the FWE be ≤ α to
ensure that the probability of declaring a false pos-
itive result is at most α. Since only one treatment
is to be chosen, we may use a single-step proce-
dure. If we reject this hypothesis, and wish to perform
additional hypothesis tests to determine whether other
candidates also differ significantly from the control,
then we use the step-down procedure as described
earlier. (Note that since we are only interested in
finding a test treatment better than the control, we
may prefer to formulate the hypotheses testing prob-
lem with one-sided alternatives instead of two-sided
alternatives (see Alternative Hypothesis) in order to
increase power. However, this decision must be made
at the design stage.)

If the problem is to find all test treatments that
can be shown to differ from the control, rather than
selecting only one, then the problem may require a
different formulation. Suppose the experiment is one
of a series of similar experiments in which potential
new treatments are compared with a control, and
any test treatment showing promise is selected for
further study. This is called screening (see Animal
Screening Systems). In this case, interest would be
in controlling the PCE rather than the FWE. Here the
decision on each treatment does not depend on the

decisions made with respect to the other treatments
included in the experiment, which are included in
the same experiment for reasons of experimental
efficiency.

Comparisons Between a New Treatment and
Several Standards

The test treatment may be a potential new treat-
ment being compared with K standard treatments to
determine whether it meets requirements for approval
by the regulatory authority. The same hypotheses as
before may be formulated, with µK+1 now denoting
the mean for the test treatment and µk the mean for
the kth standard. Rejection of H0k means that we con-
clude that the test treatment is different from the kth
standard. To control the risk of any false claim, i.e. a
claim that the test treatment differs from a particular
standard when it does not, we would adopt a proce-
dure that controls the FWE. Since the experimenter
would like to find as many differences from the K

standards as possible, one of the stepwise procedures,
either step-down or step-up, should be used.

Superiority/Equivalence of a New Treatment
Compared with K Standards

In the family of hypotheses used in the previous
example, the alternative hypotheses, Hak , were two-
sided: rejection of H0k , meant that we concluded
there is a difference between the test treatment and
the kth standard, but it could be either better or
worse depending on the direction of the difference.
Such a formulation is equivalent to testing a pair of
hypotheses with one-sided alternatives, namely H0k

vs. H1
ak : µK+1 > µk (test treatment is better than

kth standard), and H0k vs. H2
ak : µK+1 < µk (test

treatment is worse than kth standard).
Here we describe an alternative formulation, pro-

posed by Dunnett & Tamhane [18]. We replace the
hypothesis in each pair for determining whether the
test treatment is worse with one which tests whether
the test treatment is equivalent to the kth standard,
namely

H′
0k : µK+1 = µk − δ vs. H′

ak : µK+1 > µk − δ.

(see Bioequivalence; Equivalence Trials). Here,
δ > 0 is a prespecified value representing a difference
that is clinically unimportant. Rejection of H′

0k leads
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us to conclude that µK+1 cannot be less than µk by
more than an amount δ and hence, by definition, it is
equivalent to the kth standard.

Dunnett & Tamhane [18] show how the stepwise
multiple testing procedures described above can be
adapted to this multiple testing problem. By using
this superiority/equivalence testing formulation, we
increase the power over the two-sided formulation,
but of course this is addressing a slightly different
problem. By testing simultaneously for superiority
and equivalence, we also obtain more information
than we would from a formulation that tests only for
superiority using one-sided alternate hypotheses.

Comparisons with Both Active and Placebo
Controls

D’Agostino & Heeren [8] described a trial where
comparisons between a new treatment, T , two known
active treatments, A1 and A2, and a placebo, P ,
are of interest. One proposal made was that the
pairwise differences between treatment groups be
tested with the experimentwise error rate controlled,
which means that all comparisons are handled as a
single family. Dunnett & Tamhane [16] pointed out
that there were actually three families of comparisons,
each answering a different question: (i) A1 and A2 vs.
P to test the sensitivity of the experiment, defined
as its ability to identify that the two known active
treatments are efficacious; (ii) T vs. P to show that
the new treatment is better than the placebo; and
(iii) T vs. A1 and A2 to determine whether the new
treatment can be shown to be superior to either of
the known active treatments. Each family should
be tested with FWE controlled at ≤ α. Failure to
show the sensitivity of the experiment, or failure to
find the new treatment better than placebo, would
invalidate the comparisons made in (iii). In this case,
controlling the FWE at α for each of the three
families individually serves to control the overall
error rate for the combined families at α as well,
so there is no need to apply an experimentwise
multiplicity adjustment. This is an example of what is
known as a priori ordered families of hypotheses [1].

A single hypothesis test serves to cover (i), namely

H01 : µT − µP ≤ 0 vs. Ha1 : µT − µP > 0.

The following pair of hypotheses tests covers the
comparisons in (ii):

H02 : µA1 − µP ≤ 0 vs. Ha2 : µT − µP > 0,

H03 : µA2 − µP ≤ 0 vs. Ha3 : µA2 − µP > 0,

while the following pair of hypotheses tests covers
the comparisons in (iii):

H04 : µT − µA1 ≤ 0 vs. Ha4 : µT − µA1 > 0,

H05 : µT − µA2 ≤ 0 vs. Ha5 : µA2 − µA2 > 0.

To test H01, we use an ordinary Student t test at level
α, since there is only one hypothesis in the family.
To test H02 and H03, since we require both to be
rejected to establish sensitivity, we use the MIN test
of Laska & Meisner [36] or its extension, the step-
up test described earlier in the article. To test H04

and H05, we use the step-down test if we expect at
most one of the two hypotheses to be rejected, or the
step-up test if we expect both to be rejected.

Comparisons in a Dose Finding Experiment

In a dose finding experiment several dose levels
of a compound along with a zero dose control
are studied with respect to a specified response,
usually some measure of efficacy or toxicity. The
goal is to determine the lowest dose that produces
a response that exceeds the control response (or,
more generally, exceeds it by more than a specified
amount, δ), denoted as the minimum effective dose
(MED) [45] (see Minimum Therapeutically Effec-
tive Dose). Say there are K dose levels (usually,
K = 3 or 4), and denote the mean responses for the
control and the K dose levels by µ0, µ1, . . . , µK .
Then we define

MED = min(k : µk > µ0).

Ruberg [45] (see also Tamhane et al. [51]) formu-
lates the problem of identifying the MED as the
following multiple hypotheses testing problem:

H0k : µ0 = µ1 = · · · = µk vs.

Hak : µ0 = µ1 = · · · = µk−1 < µk,

for k = 1, . . . , K . The estimated MED, or minimum
detectable dose (MDD), is the lowest index k for
which H0k is rejected. Strong control of the FWE is
needed in testing this family of hypotheses in order to
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control the probability of obtaining an estimate that is
less than the true MED. A class of test statistics which
may be used are based on contrasts in the observed
means. Various stepwise tests are given in Tamhane
et al. [51] and compared in a simulation study with
respect to their FWE and power under various forms
of the dose response relationship.

General Remarks

The literature on multiple comparisons is volumi-
nous and it is not possible to cover adequately
all aspects and developments in an encyclopedia
entry such as this. Two particular topics which are
related, and warrant further mention, are selection and
order restrictions. Selection problems have the gen-
eral objective of identifying a favorable treatment or
treatments from a collection of treatments. As might
be expected, there are close links with multiple com-
parison problems and these connections are widely
recognized (see [32] for example). Order restrictions
in the hypotheses arise when there is added structure
to the problem such as in dose-ranging studies when
it is “known” that larger doses will be associated
with nondecreasing means. Methods for the testing of
order restricted hypotheses involve introducing con-
straints in the likelihood functions and so have links
with isotonic regression (see Isotonic Inference).

It should be noted that most of the discussion
thus far has assumed that two-sided tests are of
interest. The methods described all apply for the case
of one-sided tests following minimal modifications.
In addition we have emphasized hypothesis testing
throughout. Inferences regarding interval estimates
are often equivalently possible, with the focus on the
simultaneous coverage probability of collections of
intervals, rather than FWE.
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Multiple Endpoints in
Clinical Trials

Many clinical trials and observational studies col-
lect data on multiple endpoints. An example of this
problem occurs in prevention trials where data are
collected on the primary disease of interest in addition
to diseases commonly observed and events that may
occur as a result of the intervention. In this setting
it is important to evaluate all the outcomes of inter-
est, since an intervention that results in a decrease in
the incidence of the targeted disease at the expense
of an unacceptable increase in a detrimental outcome
would require evaluation of the potential for future
use of the intervention (see Benefit/Risk Assessment
in Prevention Trials). Other examples of multiple
outcomes data arise in family studies, clinical trials
where treatment is applied to the left eye while the
right eye serves as a control, and clinical trials where
the side-effects of treatments result in outcomes that
must also be examined.

The multiple endpoints problem occurs in many
guises and includes recurrent observations, multi-
ple endpoints, and correlated outcome data. These
techniques can also be applied to data where there
is clustering due to the study design (see Cluster
Randomization). Additionally, several of these fea-
tures may be present in a single data set, such as
the multiple outcome setting where the outcomes of
interest include recurrent events. There has been con-
siderable work in this area over the past 20 years
including a series of papers related to the workshop
Statistical Methods for Multiple Events Data in Clin-
ical Trials [9]. There are now methods available that
can be readily implemented using existing software
packages and potentially interesting approaches that
require further development.

Several approaches exist for the analysis of recur-
rent event data. The earliest methods [7, 17] are based
on modeling inter-event times and can be readily
implemented using any standard statistical package.
In their book, Andersen et al. [3] discuss methods
for modeling recurrent events using general inten-
sity models. This work arose naturally out of earlier
work by Andersen & Gill [2] who proposed the mod-
eling of recurrent event data by extending the Cox
model. Wei, Lin & Weissfeld (WLW) [21] discuss

the modeling of recurrent event data based on model-
ing the recurrences as marginal distributions. Prentice
et al. [17] propose models for recurrent events based
on modeling the data conditionally at each event point
using the Cox regression model. They propose two
different techniques based on two different definitions
for the baseline hazard function: the first definition
using total time and the second definition using the
gap times between events. Lawless & Nadeau [10]
discuss the modeling of recurrent events based on
event counts and this work is extended by Cook &
Lawless [5] to include a terminating event, in addi-
tion to the recurrent event. Therneau & Hamilton [19]
compare the Andersen–Gill and WLW approaches
to the modeling of recurrent data, in several differ-
ent examples. They conclude that the Andersen–Gill
method coupled with a robust estimator of the vari-
ance performs well in settings where the goal is a test
of overall treatment effect. The WLW approach suf-
fers from problems in the recurrent event setting due
to its sensitivity to departures from proportionality
in the margins. These models are also compared in
Lin [11] who discusses approaches for assessing the
fit of the proportional hazards model at each recur-
rence. Both the Andersen–Gill and WLW approaches
have the advantage of ease of implementation using
standard statistical software packages.

Other work in the area of recurrent events, based
on parametric approaches for multitype events, is dis-
cussed in Abu-Libdeh et al. [1] and Fang et al. [6].
Abu-Libdeh et al. [1] use a mixed Poisson process
with a random and fixed effect to model the data as
a replicated multitype point process. Fang et al. [6]
proposed a model based on a multiple renewal
process allowing for time-dependent covariates. The
estimators are obtained using standard maximum
likelihood techniques.

For the analysis of multiple outcome data that
include outcomes of several types, there are fewer
available methods, with many methods applicable
for the bivariate setting only. The method typically
used in this setting is the method of Wei et al. [21]
which is based on modeling each outcome as a sepa-
rate margin assuming independence. The correlation
between parameter estimates is obtained through a
“sandwich” estimator. Lin & Wei [12] extended this
method to incorporate linear regression methods for
censored data. Prentice & Cai [16], developed esti-
mators for the covariance and survival function for
multivariate censored data with extensions to the
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regression setting. Additional methods for estimat-
ing the correlation between two failure times have
been developed via the copula model. This approach
is discussed in Shih & Louis [18] and further stud-
ied in Phelps & Weissfeld [15]. More recently, Wang
& Wells [20] have developed model selection and
inference procedures for bivariate survival models
based on the Archimedean copula. The introduction
of random effects through a latent frailty variable
has also been proposed for the analysis of bivariate
survival data [8, 14]. The WLW method can be
implemented in several standard statistical software
packages, while the extension of Lin & Wei [12] and
the copula approach require specialized software.

Methods

We first discuss models and notation for the multiple
outcome approach. Assume that there are K types
of failure and let Tki denote the failure time for
the ith individual and the kth type of failure where
i = 1, . . . , n and k = 1, . . . , K . Let Cki denote the
corresponding censoring time. The observed data
are of the form (Yki , ∆ki , Xki), where Yki =
min(Tki, Cki), ∆ki = 1 if Tki = Yki and 0 otherwise,
and Xki = (X1ki, . . . , Xpki) denote the p covariates
for the kth event type on the ith individual. Two
further assumptions are also made. The first is
the assumption of independent censoring; that is,
conditional on XI , = (X1I , . . . , XKi), the vectors TI

of the K failure times and the vectors CI of the
K censoring times are assumed to be independent.
Additionally, it is assumed that (TI , CI , XI ), I =
1, . . . , n, are independent and identically distributed
random quantities.

For the kth type of failure on the ith subject, the
hazard function λki(t) is assumed to be of the form

λki(t) = λk0(t) exp{β ′
kXki(t)}, t ≥ 0, (1)

where λk0(t) is an unspecified baseline hazard func-
tion corresponding to the kth failure type and βk =
(β1k, . . . , βpk)

′ is the regression parameter corre-
sponding to the kth failure type. To define the partial
likelihood function corresponding to the kth type of
failure, let Rk(t) = {l : Xkl ≥ t}. Note that this is the
risk set corresponding to all individuals who have
not experienced the kth failure as of time t . Then the
partial likelihood function corresponding to the kth

failure type is given by

Lk(β) =
n∏

i=1




exp{β ′Xki(Zki)}∑

l∈Rk(Zki )

exp{β ′Xki(Zki)}





∆ki

. (2)

The maximum partial likelihood estimator, β̂k , for
βk is the solution to the standard likelihood equa-
tion ∂ log Lk(β)/∂β = 0. The estimator β̂k will be
consistent for βk if the model is correctly specified.
Note that in the application of the WLW approach to
recurrent event data, care needs to be taken to ensure
that the model for any particular recurrence is cor-
rectly specified. The marginal models are easily fit
using any standard statistical package that fits a Cox
regression model. WLW show that (β̂ ′

1, . . . , β̂ ′
K)′ is

asymptotically normal with mean (β ′
1, . . . , β ′

K)′ and
covariance matrix Q which is estimated via the sand-
wich estimator given in the Appendix to the paper.
Using these estimators, simultaneous inferences on
the βks can be carried out, and an “average effect”
of the covariates can be estimated. Software for fit-
ting this model is available through S-PLUS and an
SAS macro.

A second approach to the analysis of multiple
outcome data is based on the use of a copula. The
Archimedean copula is defined as

Cα(x1, . . . , xK) = φα[φ−1
a (x1) + · · · + φ−1

α (xK)],

0 ≤ x1, . . . , xK ≤ 1, (3)

where φα : [0, 1], ∀[0, 4], φα(1) = 0, φ′
α(x) < 0, and

φ′′
α(x) > 0. Let Tk , k = 1, . . . , K , denote distinct fail-

ure times or types and let Sk(Tk) denote the contin-
uous survival function of Tk . Then the multivariate
survival function can be represented as

Cα(S1(T1), . . . , SK(TK)) = φα[φ−1
α (S1(T1))

+ · · · + φ−1
α (SK(TK))]

= S(t1, . . . , tK),

for t1, . . . , tK ≥ 0. (4)

For the purposes of modeling, several forms of φα(s)

are useful. These include the Laplace transform,

φα(s) = exp(−sα), (5)

which was studied by Hougaard [8] and the Clayton–
Oakes [4, 13] gamma frailty model where

φα(s) = (1 + s)1/(1−α). (6)
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While both of these models are defined via cop-
ulas, they are frailty models where α denotes the
parameter of the underlying frailty. Covariates are
introduced through the parameterization of the sur-
vival function and α can be estimated from the
full likelihood or using a two-step approach [8, 18].
While these methods are potentially quite useful, they
are still in the early stages of development with no
software widely available for their implementation.

For the analysis of recurrent event data, the WLW
method can be employed with k indexing the kth
recurrence rather than the kth type of failure. Using
this approach, all the data are used for each recurrence
since an individual with two recurrences becomes a
censored observation for k > 2. The Andersen–Gill
model can be implemented by redefining the at-risk
indicators for the standard partial likelihood equation.
Prentice et al. [17] propose the use of a conditional
model based on two different definitions of the hazard
function. These definitions are based on using the
time from the beginning of the study, denoted as t ,
or the time from the immediately preceding failure,
denoted as t − tn(t). Thus, for this model, the hazard
function is given by

λi(t) = λk0(t) exp{β ′
kXki(t)} (7)

or
λi(t) = λk0(t − tn(t)) exp{β ′

kXki(Zki)}, (8)

where the λk0(·), k = 1, . . . , K , are completely arbi-
trary baseline hazard functions. In this case k denotes
a stratification variable that may change over time for
a given subject, βk is a column vector of stratum-
specific regression coefficients and tn(t) denotes the
time of the immediately preceding recurrence. Note
that these are very flexible models that can be fit using
standard statistical software. The drawback of these
models is that they are conditional, so that estimation
of the sth recurrence is based only on the individ-
ual with (s − 1) recurrences. Inferential methods are
based on standard methods for the Cox proportional
hazards model. All these approaches can be readily
implemented using standard statistical software pack-
ages such as S-PLUS or SAS.
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Multiple Endpoints,
Multivariate Global Tests

The term “multiple endpoints” is often related to an
investigation of a treatment effect in the setting of a
clinical trial or biomedical research. Since there are
different aspects to characterize a treatment effect, it
often requires more than one outcome measure (or
response variable) to characterize the efficacy of a
treatment. These variables can be changes in symp-
toms, bodily functions, subjective assessment, or any
events or phenomena that are essential to evaluate
the treatment effect. We consider here the situation
in which these variables are of primary importance
to the process of deciding the efficacy of a treat-
ment, and we refer here to these primary variables
as endpoints. The following are some examples of
studies that require multiple endpoints. An investiga-
tor desires to examine the effect of different dosages
of an antihistamine in treating the common cold.
To obtain a more complete and detailed description
of the efficacy of the doses of the antihistamine,
he or she measures the level of relief in various
important symptoms, including runny nose, sneezing,
headache, and sinus discomfort. Another example
arises in a study evaluating a heartburn relief prod-
uct, where a drug company compares its new product
with a standard control in the relief of the heartburn
episodes over a two-week period. The primary end-
points include the relief of the first episode within
30 minutes of onset of symptoms, the proportion of
relief of heartburn episodes over the two weeks where
relief is within 30 minutes, and the global assessment
of the product at the end of the two-week trial. The
process of selecting the primary endpoints is no easy
task. Careful assessment, mechanism of action, clini-
cal evidence and, sometimes, subjective judgment are
required in the process. However, it is not the purpose
of this article to discuss how to select the primary
endpoints. Here, we assume that this step has been
done and we want to discuss the different methods
that can be used to analyze such multivariate data.

A variety of statistical procedures are available. In
general, they can be grouped under two categories;
multivariate global methods, and endpoint-specific or
P level methods. Multivariate global methods are
used to make an omnibus assessment of the efficacy
of the treatments. They provide an overall single P

Value to reflect whether there are any differences
among the treatments on the several correlated end-
points. The endpoint specific (P level) methods are
employed to evaluate how the treatments affect the
individual endpoints. They involve applying individ-
ual statistical tests to each endpoint separately. In this
article, we focus only on the multivariate global meth-
ods, and we leave the endpoint-specific methods to
another article entitled Multiple Endpoints, P Level
Procedures.

Under the category of multivariate global meth-
ods, there are two general types of test. The first
type involves combining multiple endpoints into a
single test statistic, so that it provides an overall
(omnibus) statement to declare whether there are any
significant differences among the treatments. These
multivariate global tests emerged from the idea of
measuring distance between multivariate populations.
The notions of summing, transforming, and examin-
ing linear combinations of endpoints are fundamental
to the test statistics for this first type of global test.
Most of these global test methods account for the
combined effect of the endpoints by incorporating
their variability, intercorrelation, and often clinical
relevance into the statistics. The second type of global
methods arises from Bonferroni-type adjustments.
They adjust the univariate observed P values of the
individual tests to maintain the familywise type I
error rate at a prescribed level, and they provide an
overall probability for the trial (see Level of a Test).
Familywise type I error refers to the type I error asso-
ciated with rejecting at least one null hypothesis
incorrectly over all the endpoints under considera-
tion. Generally, any multiple testing methods can be
used as a global test because, in principle, if we find
rejection in any one of the multiple tests, we could
reject the overall null hypothesis. For this entry, we
only include P value adjustment methods which are
intended specifically to be used in global testing and
not as a series of tests on the individual endpoints.

Consider I treatment groups in which K correlated
endpoints are measured on n1, n2, . . . , nI subjects.
Let Yijk represent the measurement of the kth end-
point for the j th subject in group i (i = 1, . . . , I ; j =
1, . . . , ni ;k = 1, . . . , K) and N = n1+ n2+ · · · +nI .

Assume that:

1. The vector Yij = (Yij1, Yij2, . . . , YijK)′ has a
multivariate normal distribution and the Yij
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are independently distributed with mean µi and
covariance matrix �.

2. µi = (µi1, µi2, . . . , µiK)′ and µik = E(Yijk) is
the mean of the kth endpoint for group i.

3. � is assumed to be the same for all I populations.
σ 2 = (σ 2

1 , σ 2
2 , . . . , σ 2

K)′ consists of the diagonal
elements of � and σ 2

k = var(Yijk) is the variance
of the kth endpoint. The off-diagonal elements of
� are denoted by σkk′ = cov(Yijk, Yijk′), which is
the covariance of the kth and k′th endpoints.

Unless stated otherwise, all the parametric methods
that are described below were developed under these
assumptions.

Classical Multivariate Global Methods for
Two-Sided Alternatives

One-way multivariate analysis of variance
(MANOVA) is a multivariate analog of the one-way
analysis of variance (ANOVA). Traditionally, we
use MANOVA to compare K endpoints simultane-
ously among I treatment groups, where both K and
I are greater than one. To test the null hypothesis
H0 : µ1 = µ2 = · · · = µI vs. the alternative that at
least one of the equalities does not hold, several test
criteria are available. Here, we briefly describe four
widely used criteria which are all functions of the
eigenvalues of E−1H, where

H =
I∑

i=1

ni(Yi. − Y)(Yi. − Y)′,

E =
I∑

i=1

ni∑

j=1

(Yij − Yi.)(Yij − Yi.)
′, (1)

where Yi. = ∑ni

j=1 Yij /ni and Y = ∑I
i=1

∑ni

j=1
Yij /N . H is often called the model or hypothesis
matrix, and E is the error matrix. They are genera-
lizations of the between- and within-groups sums of
squares in a one-way ANOVA.

Wilks [41] proposed the criterion Λ which is
developed from the likelihood ratio test and is based
on the determinant of E(E + H)−1. The Wilks’ Λ

(see Lambda Criterion, Wilks’) is given as follows:

Λ =
s∏

w=1

(
1

1 + λw

)
= |E|

|E + H| , (2)

where s = min(I − 1, K) and λ1 ≥ λ2 ≥ · · · ≥ λs

are the eigenvalues of the characteristic equation
|E−1H − λIs | = 0 (Is is the identity matrix, of dimen-
sion s × s).

The exact distribution of these statistics has been
derived for the special cases: (i) I = 2 and K ≥
1; (ii) I = 3 and K ≥ 1; (iii) I ≥ 2 and K = 1;
(iv) I ≥ 2 and K = 2 [18]. For other cases, there are
fairly good approximations available. For large sam-
ple sizes, we can use the Bartlett chi-square approx-
imation [2] which has approximately a chi-square
distribution with K(I − 1) degrees of freedom (df).
We reject H0 at the α level of significance if

χ2
b = −

[(
I∑

i=1

ni − 1

)
− 1

2 (K + I)

]
ln Λ

≥ χ2
1−α[K(I − 1)]. (3)

The other modification is due to Rao [32], and is
defined as

Fr = ν2

ν1

(
1 − Λ1/b

Λ1/b

)
(4)

where ν1 = K(I − 1) and ν2 = ab − [ 1
2K(I − 1)] +

1, with

a =
(

I∑

i=1

ni − 1

)
− 1

2 (K + I)

and

b =
{

[K2(I − 1)2 − 4]

[K2 + (I − 1)2 − 5]

}1/2

.

Rao’s Fr has approximately an F distribution with
ν1 and ν2 df.

The second criterion for testing H0 is the
Lawley–Hotelling trace criterion [15, 16, 23], which
is defined as the sum of the eigenvalues of E−1H:

U =
s∑

w=1

λw = trace (E−1H). (5)

Davis [5–7] gives upper percentage points of the test
statistics [(N − I)/(I − 1)]U . We reject H0 for large
values of the statistic.

The third criterion, Pillai’s trace, was developed
by Pillai [29] and Bartlett [3]. It is defined as the sum
of the eigenvalues of H(E + H)−1:

V =
s∑

w=1

λw

1 + λw

= trace [H(E + H)−1] (6)
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Schuurmann et al. [35] give the upper percentage
points of the test statistic V , indexed by s =
min(K, I − 1), m = [|K − (I − 1)| − 1]/2 and � =
(N − K − I − 1)/2.

All of the criteria described so far have involved
all the eigenvalues. Roy’s maximum root crite-
rion [34] only involves the largest eigenvalue of
E−1H. His statistic is defined as

R = λ1

1 + λ1
. (7)

The statistical significance of R can be assessed
by using Pearson & Hartley’s table [27] or Pillai’s
table [30] for s > 5 with the three parameters (i.e.
s, m, and �).

There are no uniformly most powerful MANOVA
tests. Based on a study of comparative powers,
Olson [26] concluded that Roy’s largest root test has
greater power than the others when the differences
among groups are concentrated in one canonical
dimension, while the other tests have greater power
than Roy’s test when the standardized measure of
the distance between group means is not so heavily
concentrated in a single root.

A large number of Monte Carlo studies have
also been conducted to investigate the extent to
which MANOVA tests are robust to violations of
multivariate normality and equality of covariance
matrices [26]. For general protection against depar-
tures from normality and from homogeneity of the
covariance matrices in the fixed-effects model, Olson
recommended the Pillai–Bartlett trace criterion (i.e.
V ) as the most robust of the MANOVA tests, with
adequate power against a variety of alternatives
(see Multivariate Techniques, Robustness).

There is a special case of MANOVA under the
fixed-effects model worthy of separate discussion.
When I = 2, the MANOVA test is equivalent to
the Hotelling’s T2 test [15, 16]. It is the classical
multivariate method to compare K endpoints simul-
taneously between two populations. It is the only
known nontrivial unbiased test which is invariant
with respect to affine transformations [37]. To test the
hypothesis H0 : µ1 − µ2 = 0 vs. Ha : µ1 − µ2 �= 0,
we calculate T 2:

T 2 =
(

n1n2

n1 + n2

)
(Y1. − Y2.)

′S−1
p (Y1. − Y2.), (8)

where Yi. is a K × 1 vector of sample means with i =
1, 2, and Sp =

[∑2
i=1

∑ni

j=1(Yij − Yi.)(Yij− Yi.)
′
]

/
(n1 + n2 − 2) is a K × K pooled sample covari-

ance matrix.
Under the null hypothesis,

Fht = n1 + n2 − K − 1

K(n1 + n2 − 2)
T 2 (9)

has a central F distribution with K and n1 + n2 −
K − 1 df. If Fht > F1−α(K, n1 + n2 − K − 1), then
we reject the null hypothesis µ1 = µ2.

The Hotelling T 2 test can also be viewed as
a matrix generalization of the two-sample t test
(see Student’s t Statistics). The quantity T 2 can be
interpreted as the square of the maximum possible
univariate t computed on any linear combination of
various endpoints. This test is appropriate when we
have no specific alternative of how the various end-
points differ between two treatment groups. Roy’s
union–intersection principle shows that Hotelling
T 2 test is of size α, so it has an accurate control over
the type I error [34]. The robustness of Hotelling’s
T 2 has been examined by different authors [26]. The
general conclusion is that T 2 is quite robust against
nonnormality and heterogeneity of variance. How-
ever, when the sample sizes are unbalanced and the
variance of the group that has fewer observations is
larger than the other group, the test may not be robust.
This test is best used for two-sided alternatives with-
out prior knowledge of the relative magnitude of the
treatment differences. It has poor power for alterna-
tives which correspond to an equal (even if unknown
in magnitude) beneficial treatment effect on all end-
points.

O’Brien-Type Procedures for One-Sided
Alternatives

O’Brien [25] discussed the inadequacy of Hotelling’s
T 2 and Bonferroni method in dealing with the more
common clinical setting when most or all of the
efficacious measures are expected to be improved.
The hypotheses are H0 : µ1 = µ2 = · · · = µI vs. the
alternate Ha : µik ≥ µi ′k for k = 1, . . . , K , with strict
inequality for at least one k. The ith treatment is
more effective than the i ′th treatment. This problem
received extensive attention during the 1960s. Both
Kudo [21] and Perlman [28] derived the likelihood
ratio tests for this one-sided multivariate problem.
The computations are difficult. Instead of tackling
the exact distribution for the one-sided alternatives,
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O’Brien derives his tests based on a more limited
model for the alternate hypothesis. He assumes that
the standardized treatment differences for the K end-
points are all of equal magnitude and in the same
direction. In symbols, for a generic variable if µik

and µi ′k are the means of the kth endpoint for the ith
and i ′th group, respectively, and σk is the common
standard deviation of the kth endpoint, then the effect
(also called the standardized effect) is

µik − µi ′k

σk

. (10)

O’Brien basically considered the problem of gener-
ating global tests for alternate hypotheses when the
effects are positive and equal for all K endpoints.
He proposed three methods to handle this one-sided
hypothesis testing. One of these global methods is
a simple nonparametric rank-sum test. For this
method, we first ignore the group assignment of each
subject and rank the N(= n1 + n2 + · · · + nI ) sub-
jects separately for each endpoint. We then add the
ranks of the K endpoints for the j th subject in the
ith group to obtain

Sij =
K∑

k=1

rijk.

Next we apply an appropriate univariate statistical
tests to these new rank-sum data {Sij }.

This method reduces the K-variate observations
of each subject to a sum of K ranks. According to
O’Brien, these sums are uncorrelated asymptotically,
so the central limit theorem can ensure this non-
parametric procedure to maintain the size of the test
in large samples. He further showed with simulations
that this procedure is relatively efficient. This non-
parametric test is recommended, in particular, when
the variables are not normally distributed or when the
sample size is small.

The other two global methods proposed by
O’Brien are based on a multivariate general linear
model. His model assumes that the standardized
treatment differences [see (10)] of the K endpoints
are of the same magnitude and in the same direction.
Explicitly, this assumes that the endpoints are equally
important. He derived his parametric statistics by
applying, respectively, the ordinary least squares
(OLS) and the generalized least squares (GLS)
methods to the standardized variables, denoted by
{Y ∗

ijk}. These are obtained by subtracting from each

observation (i.e. Yijk) the overall variable mean (i.e.
Y ··k) and then dividing the difference by the pooled
within-group sample standard deviation (i.e. s··k).

For the OLS procedure, this is equivalent to com-
puting the mean of the K standardized observations
for each subject and performing a one-way analy-
sis of variance on the sum variables. For the GLS
procedure, O’Brien utilizes the best linear unbiased
estimate provided by the GLS method and proposed
the following statistic:

FGLS =

I∑

i=1

ni[J′R̂−1(Y
∗
i. − Y

∗
..)]

2

(I − 1)J′R̂−1J
, (11)

where J is a K × 1 vector of ones, Y
∗
i. = ∑ni

j=1 Y∗
ij /ni

is a vector of sample means of the K standardized
endpoints for group i, Y

∗
.. = ∑I

i=1

∑ni

j=1 Y∗
ij /N is a

vector of overall sample means for the K standard-
ized endpoints, and R̂ is a pooled sample correlation
matrix. The elements of R̂ are defined by

R̂uv =



I∑

i=1

ni∑

j=1

(Y ∗
iju−Y

∗
i.u)(Y

∗
ijv−Y

∗
i.v)




/

(N − I)

where u, v = 1, . . . , K .
This procedure incorporates, in its statistic, the

information contained in the correlation matrix. An
endpoint which is highly correlated to other endpoints
will receive less weight, so that the individual con-
tribution of such an endpoint to the statistic will be
smaller. As reported by O’Brien, if the underlying
distributions are multivariate normal, the OLS statis-
tic follows a standard F distribution with I − 1 and
N − I df and the GLS statistic approximates a stan-
dard F distribution with I − 1 and N − IK df.

As pointed out by O’Brien, the proposed pro-
cedures are designed to detect departures in which
improvement was demonstrated consistently among
the endpoints. Thus, it is important to anticipate a
priori the same changes in the treatment effects across
all K endpoints. His procedures are inappropriate to
apply in situations in which nonzero treatment effects
are expected to occur in only a few endpoints, or
when there is no prior knowledge as to whether the
treatment is going to affect the endpoints consistently.
Both Pocock et al. [31] and Lehmacher et al. [24]
discussed O’Brien’s GLS statistic in the two-sample
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case, and presented the following statistic:

tGLS = J′R−1(Y
∗
1. − Y

∗
2.)

[(1/n1 + 1/n2)J′R−1J]1/2

= J′R−1(Z1. − Z2.)

(J′R−1J)1/2
. (12)

If the underlying distributions are multivariate nor-
mal and R is known, this two-sample GLS statistic
follows a standard normal distribution under H0. If
R is unknown and is replaced by an estimator R̂,
the statistic is asymptotically normally distributed.
Pocock et al. [31] adapted the application of the two-
sample GLS statistic to different set of asymptoti-
cally normal test statistics which are obtained from
continuous, binary and survival data. The robust-
ness of these asymptotic normal statistics has not
been established for finite sample sizes and inves-
tigations are ongoing. Another important extension
that they made to the GLS statistic is to attach
unequal priorities to the endpoints. O’Brien’s original
GLS statistic assumes that all endpoints are equally
important. This assumption is necessary for O’Brien’s
method to achieve optimality, but it does not neces-
sarily coincide with the clinical relevance. For this
aspect, Pocock et al.proposed a simple method to
attach unequal weights to the endpoints and these
weights were chosen to correspond to the relative
clinical importance of the endpoints. The proposed
test statistic has the following form:

J′(WRW)−1W(Z1. − Z2.)

[J′(WRW)−1J]1/2
, (13)

where W is a diagonal weighting matrix assumed to
be known a priori.

For analyzing data from a group sequential clin-
ical trial, Tang et al. [39] derived a statistic assum-
ing that the K endpoints have unequal standardized
effects, which turns out to be equivalent to the mod-
ified GLS statistic proposed by Pocock et al. [31].
O’Brien’s GLS statistic can be viewed as a special
case of this modified statistic. Assume that patients
are entered sequentially and that an interim analysis
will be undertaken on the accumulated data after each
accrual of 2n patients (see Data and Safety Moni-
toring). For the first j groups of data with 2n patients
in each group (accrued between the (m − 1)st and
mth analyses, m = 1, . . . , j ), we have the following

statistic:

G = (nj/2)1/2δ′�−1d(j)

(δ′�−1δ)1/2
, d(j) = Y

(j)

1. − Y
(j)

2. ,

(14)

where δ is a K × 1 vector of relative difference of
interest in the K endpoints and its elements are all
assumed positive, and d(j) is the vector of differences
in sample means computed from the first j groups
of patients. G is normally distributed when d(j) has
a multivariate normal distribution and � is known.
This statistic is intended also to be used in the power
and sample size calculations so that a cost-effective
sequential trial can be designed.

Despite the usefulness of the different extensions,
there are a few problems with the O’Brien-type
tests that are worth noting. First, they are based
on the weighted statistics as given in (11), (12),
and (14). They use J′R−1 or δ′�−1 as the weights.
As explained and illustrated by Pocock et al. [31] and
Follman [11], it is possible for these weights to have
negative components for certain correlation matrices.
In practice, it does not make sense to include neg-
ative weights. To make matters worse, a negative
treatment difference weighted by a negative weight
may mislead the investigator to conclude efficacy in
favor of a treatment, even though the treatment is
worse than the control. To avoid this problem, Tang
et al. [38] recommended to use O’Brien’s OLS test.
The second issue concerns the restricted optimality
of the GLS test. The GLS test is optimal only when
the treatment differences for the K endpoints have
the same effect size and direction as specified in
the model. As mentioned previously, the GLS test
is inappropriate when the nonzero treatment effects
are expected to occur only in a few endpoints, or
when it is not clear whether the treatment effects
are of equal magnitude or direction among the end-
points. The third issue relates to the control of type I
error rates. Even though O’Brien’s parametric meth-
ods are more powerful than the Bonferroni method
and Hotelling’s T 2 when improved treatment effects
are found for all endpoints, they do not always control
the prescribed or nominal level of significance when
the sample size is small [22]. The actual type I error
may exceed the nominal and so produce a test that
is liberal. In a simulation study with repeated mea-
sures setting, O’Brien also indicated that when the
variances are heterogenous, the GLS procedure may
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seem to enhance power, but this is at the expense of
producing a liberal test.

Likelihood Ratio Test for One-Sided
Alternative

Approximate Likelihood Ratio Test

The O’Brien-type statistics are derived under a res-
tricted model of the general one-sided alternative,
and they provide an optimal test for alternatives that
correspond to a half-line. A half-line is simply a spec-
ified vector projection in the positive orthant. When
it corresponds to δ, which is a column vector with all
positive elements, it represents the specified relative
size of the treatment effects for the K endpoints. For
example, δ = (1, 2)′ indicates an alternate hypothe-
sis in which the relative size of the treatment effect
for the second endpoint is twice as large as that
for the first endpoint. J of (11) is a special case
of δ which has all the elements equal to unity and
assumes the relative sizes of the treatment differences
among the K endpoints are all equal. The sensitiv-
ity of the O’Brien-type tests relies on the agreement
of the observed relative difference with the specified
δ. In other words, they require prior knowledge of
δ in order to achieve the intended power. When the
choice of δ is not clear, they are not appropriate.
In this situation, a better approach is to find a test
that is powerful over all possible δ with nonnega-
tive components. A logical candidate is to construct
a test using the maximum of the GLS statistic over
all feasible δ. This coincides with constructing an
optimal test for alternatives which lie in the positive
orthant. Tang et al. [40] provided such a test through
an approximation of the likelihood ratio test and they
called it the approximate likelihood ratio (ALR) test.
Tang [37] give a detailed discussion on some uni-
formly more powerful tests which are related to the
development of the ALR test.

The ALR test involves transforming the corre-
lated vector of mean differences, d, to a vector of
independent standardized normal variables, z, by a
transformation matrix A:

z =
(n

2

)1/2
Ad, (15)

where A′A = �−1. Note that the matrix A is not
unique. Tang et al. [40] give a computational algori-
thm to obtain the appropriate A. Once A is selected,

we can compute the test statistic

g(z) =
K∑

k=1

(zk ∨ 0)2 (16)

where zk is the kth element of z and (zk ∨ 0) is the
maximum of 0 and zk . The P value of g(z) under the
null hypothesis is calculated by

Pr[g(z) ≥ c] = 1

2K

K∑

k=1

(
K

k

)
Pr[χ2

1−α(k) ≥ c],

(17)

which is a special case of the chi-bar-square distribu-
tion [33]. It turns out that g(z) based on A may not
be invariant under a different ordering of the end-
points. In order to achieve permutation invariance,
Tang et al. [40] suggested applying a linear ordering
algorithm to the endpoints prior to the selection of A.
Tang et al. [38] provided a simplified algorithm for
the ordering.

The ALR test can be powerful when the treat-
ment improves all the endpoints, but differences in
treatment effects are larger for some endpoints than
for others. Theoretically, the power of the ALR test
should be more stable than that of O’Brien’s GLS
test because O’Brien’s test approximates the image
space by only a half-line, while the ALR test approx-
imates the image space by a cone. Tang et al. [40]
performed some simulation studies to compare the
powers of Hotelling’s T 2, O’Brien’s test, and the
ALR test. They confirmed that the ALR test has better
power than Hotelling’s T 2 and O’Brien’s test when
the treatment effects for the various endpoints are
positive but unequal. However, the ALR test can be
liberal when the sample size is small (say, 40 subjects
per treatment). Follmann [11] also pointed out that,
for the case of two endpoints with correlation equal
to 0.75 or higher, the ALR test may reject the null
hypothesis when the treatment effects are negative
for both enpoints.

Other Multivariate Global Methods

Follmann’s X2+ Test for One-Sided Alternatives

In general, the likelihood ratio tests for a one-sided
alternative are quite difficult to implement in a prac-
tical situation. Tang et al. [40] have produced a sim-
pler ALR procedure, but the computations involved
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are still intensive, especially when there are a large
number of endpoints. Follmann [12] proposed a rela-
tively simple multivariate test with a one-sided alter-
natives. For the two-sample case, X1, . . . , Xn are
assumed to be the endpoint differences, which are
independent and identically distributed random vec-
tors from a K-variate normal distribution with mean
vector µ and covariance matrix �. Assume that
X = (X1, . . . , XK) is a vector of the sample mean
differences. His test rejects H0 : µ = 0 at level α if
the statistic

nX
′
�−1X (18)

exceeds the 2α critical value from a chi-square dis-
tribution with K df and the sum of the elements
of the sample mean differences vector exceeds zero
(i.e.

∑K
k=1 Xk > 0). This test statistic is presented

symbolically as the X2+ test. There is no formal the-
oretical justification for this test, but Follmann [12]
provided some formal statements and proofs that the
X2+ test is an α-level procedure for covariance known
or unknown. He also gave tight bounds on the power
of the test, so that an analytic approach to calculating
power for one-sided multivariate studies is possible.
Simulation studies show that the X2+ test performs
better than O’Brien’s GLS test when the treatment
effects are all positive but not equal in magnitude.

Läuter’s Standardized Sum and Principal
Component Tests

Similar to O’Brien’s OLS statistic, Läuter [22] used
the idea of forming a weighted sum of the K end-
points and proposed three new tests to analyze the
multiple endpoints data, especially when the sample
size is small or when the number of endpoints is
greater than the sample size.

He proposed to combine the K observations
of each subject into a weighted sum, xij = γ ′Yij ,
where i = 1, . . . , I, j = 1, . . . , ni , and γ is a K ×
1 vector of weights uniquely determined by the
total covariance matrix (Y − Y)(Y − Y)′ where
Y = (Y11, . . . , Y1n1, . . . , YI1, . . . , YInI

) is a K × N

matrix of observations and Y = (1/N)YJN J′
N is a

K × N matrix of overall means for the K endpoints.
For the comparison of I populations in the sense
of a one-way analysis of variance, he suggested the
statistic

FL = h2

(I − 1)s2
, (19)

where h2 = x′VV′x, s2 = [1/(N − I)]x′[IN − (1/N)

JNJ′
N − VV

′
]x, and V is an N × (I − 1) matrix with

V′V = I and J
′
NV = 0. Based on the theory of spher-

ical matrix distributions developed by Dawid [8, 9]
and by Fang & Zhang [10], he showed that this statis-
tic is exactly distributed as F1−α(I − 1, N − I). No
explicit form of V is provided in his paper.

For the case of two populations, he proposed the
statistic

t = h

s
, (20)

where h = x′κ, s2 = [1/(N − 2)]x
′
[IN − (1/N)

JNJ′
N − κκ ′]x, and κ is an N -dimensional vector

with κ ′κ = 1 and J′
Nκ = 0. He showed that the statis-

tic is exactly distributed as Student’s t with N − 2
df. The explicit form of

κ =
[

n1n2

(n1 + n2)

](
(1/n1)Jn1

−(1/n2)Jn2

)

is given. For this special case, (20) is equivalent
to applying the univariate two-sample t test to the
transformed variables {xij } with n1 + n2 − 2 df. In
this paper, the author proposed three explicit forms of
transformations for x. They are the standardized sum
transformation and the two principal component
transformations.

The test based on the standardized sum transfor-
mation is useful when the effects of the K endpoints
are all equal. For this test, the original observations
are transformed as follows:

zij =
K∑

k=1

Yijk



2∑

i=1

ni∑

j=1

(Yijk − Y ...k)
2




1/2 . (21)

Here, the original observations, Yijk , are standard-
ized by the total variances. Recall that in O’Brien’s
procedure he standardized the variables by the within-
sample variances.

The first principal component test is appropriate if
all K variables are expected to have the same direc-
tions of treatment effects. For this test, he suggested
using

zij =
K∑

k=1

|ek|Yijk, (22)
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where ek is the kth element of the first eigenvector
obtained by solving

(Y − Y)(Y − Y)′e = diag [(Y − Y)(Y − Y)′]eλ.

(23)

If we have no expectation of the direction of treat-
ment differences, Läuter suggests using the second
principal component test involving a transformation
similar to (22) but with the absolute sign removed.

As stated in Läuter [22], all three proposed meth-
ods have accurate control of the type I error; but there
is no discussion of the performance of these tests in
terms of power and robustness.

Cureton & D’Agostino’s Composite Scores

Similar to Läuter’s transformed variables for the
principal component test, Cureton & D’Agostino [4]
presented – much earlier in time – an approach for
obtaining a transformed variable through a principal
component analysis. They called this transformed
variable a composite score. It gives the best single
measure of whatever is common to a set of at least
moderately similar variables. The composite score is
a weighted sum of all the variables, using the loadings
on the first principal component.

The composite score of the j th subject is defined
as

Cij = a1Y
∗
ij1 + a2Y

∗
ij2 + · · · + aKY ∗

ijK , (24)

where the {ak} are the loadings of the K variables
on the first principal component, and the {Y ∗

ijk} are
the standardized scores of the K variables for the
j th subject in group i. The Cij s are a set of devi-
ation scores with mean 0, but they are not standard
scores. To obtain the composite standard scores, we
divide each Cij by the standard deviation of these
deviation scores, which is equal to the square root of
the first eigenvalue. We can then apply the usual t

statistic to these composite standard scores. It turns
out that Cureton & D’Agostino’s composite score is
related to Läuter’s principal component transformed
variables, except that Cureton & D’Agostino use the
standardized variables Y ∗

ijk .
Another procedure for forming a composite score,

described in Cureton & D’Agostino [4], is based on
ranks. It was first presented in Kendall [19, 20]. It
is a useful procedure when both the sample size

and the number of endpoints are small. Ignoring the
group assignment, the N subjects are first ranked
on each of the K variables, using the average-rank
procedure to resolve ties. The ranks of each individual
are then summed, and the rank-sums are themselves
ranked to obtain the composite ranks. An appropriate
nonparametric rank sum test can be used on these
composite ranks. This test is appropriate when the
sample size is small or when normality does not hold
for the data. This procedure is similar to O’Brien’s
rank-sum procedure.

Risk Score Test

Follmann [11] proposed a risk score statistic, which is
derived on the basis of the clinical appeal rather than
optimality in statistical power. Instead of using some
optimal estimates as weights, he chooses weights so
that the weighted sum correlates well with the occur-
rence of an event. For example, the risk score weights
can be the estimated logistic regression coefficients
for the endpoints from an ancillary data set. This risk
score test requires the multiple endpoints to be sur-
rogates. His derivation is based on the two treatment
groups with two endpoints measured on n subjects in
each group. His statistic is defined as

RS = β1(Y 1.1 − Y 2.1) + β2(Y 1.2 − Y 2.2)

= β1d1 + β2d2 (25)

= γ1d
∗
1 + γ2d

∗
2 ,

where γk = βkσ(dk) and d∗
k = dk/σ(dk), with σ(dk)

the standard deviation of the mean of the group differ-
ences in the kth endpoint. Under the null hypothesis,
the statistic has a normal distribution with mean
zero and variance var(ρ) = γ 2

1 + γ 2
2 + 2ργ1γ2. For

a one-sided test, we reject H0 in favor of the treat-
ment group at 0.05 level of significance if γ (d∗)′ >

1.645[v(ρ)]1/2. The advantage of this risk score test
is having a rejection region that corresponds to the
contours of constant risk, and that the correlations of
the endpoints will not affect the clinically relevant
rejection region. Based on his simulation study, he
concluded that the risk score test is comparable to
the O’Brien GLS test in terms of power when one
discounts the wrongful rejections due to the negative
weights arising from the GLS test.
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P Value Adjustment, Global Methods

Bonferroni-Type Methods

The Bonferroni method is often used to adjust for
multiple significance tests, and it is also a popu-
lar method for testing the overall hypothesis H0 =⋂{Hk : k = 1, . . . , K}, where H1, . . . , HK are the
hypotheses for testing the K individual endpoints.
Suppose that t1, . . . , tK is a set of K statistics with
corresponding P values P1, . . . , PK for testing these
hypotheses. Using the Bonferroni inequality, we can
perform a very simple level α test of H0:

reject H0 if P(1) ≤ α

K
,

where P(1) is the smallest P value.
This method is easy and convenient to apply. No

distributional assumptions are required. It is particu-
larly useful in detecting nonzero treatment effects in
one or some few “unknown” and distinct endpoints.
Nevertheless, the method may become very con-
servative, especially when the endpoints are highly
correlated. Also, it puts too much emphasis on the
smallest P value and does not account for the collec-
tive information that the various endpoints provide.
It is inappropriate in the situation in which most or
all measures of efficacy are improved.

Hommel’s Adjustment Methods

Hommel [13] discussed another level α test due to
Rüger’s inequality. It avoids the disadvantage of
overemphasis on the smallest P value. The test is
to

reject H0 if P(k) ≤ kα

K
,

where P(k) is the kth smallest P value. Using this test,
the investigator has to determine k before performing
the K comparison tests. There are no specific guide-
lines on how to select k. This mainly depends on the
decision of the investigator prior to the trial. Even
though k is chosen in advance, there is always room
for argument. To avoid choosing k in advance, Hom-
mel proposed another level α test which combines
the Bonferroni test and all (K − 1) possible Rüger
tests:

reject H0 if P(k) ≤ kα

(KCK)

for at least one k,

where k = 1, . . . , K and CK = 1 + 1/2 + · · · +
1/K . Hommel [14] indicated that these level α tests
of H0 are expected to be conservative in practical
applications.

Simes’ Adjustment Method

Simes [36] proposed a modified Bonferroni proce-
dure based on the ordered P values for the individual
tests. It is very similar to the modified Rüger test, but
is less conservative because of dropping the constant
CK . The Simes test is performed as

reject H0 if P(k) ≤ kα

K

for at least one k.

As Simes pointed out, his procedure does not always
lead to a level α test of H0. His simulation study
showed that the level of his procedure is less than or
equal to the nominal α for a large family of multi-
variate distributions. He also proved that the level
is exactly equal to α if the test statistics are inde-
pendent. This modified procedure improves on some
of the major drawbacks of the Bonferroni method. It
does not rely heavily on the smallest P value, and it
has better power than Bonferroni’s method because
it has an actual significance level much closer to the
nominal level. Although Simes’ procedure slightly
increases the computation as compared to Bonfer-
roni, it is still very easy and convenient to perform.
However, just like Bonferroni’s adjustment, Simes’
method does not consider the correlations between
endpoints and it becomes conservative as the corre-
lations among the K test statistics increase.

Armitage & Parmar’s Empirical Method

The P value adjustment methods discussed so far do
not directly account for the correlations of the end-
points. Armitage & Parmar [1] have presented a pro-
cedure which allows for correlations in the P value
adjustment. Assume that the test statistics follow a
multivariate normal distribution. They suggested an
adjusted correction of the following form:

Padj = 1 − (1 − Pmin)
Kx

(26)

where 0 ≤ x ≤ 1. The parameters x = 1 if the K test
statistics are independent, and x = 0 if the K test
statistics are fully correlated. In general, the empirical
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formula for computing x with an arbitrary correlation
structure is given as follows:

x =






x̂, if 0 < x̂ < 1,

0, if x̂ ≤ 0,

1, if x̂ ≥ 1,

where

x̂ = {1 − [ρ + 2V (ρ) + a(pmin − 0.05)]2}1/γ ,

ρ = 1

nK

∑

k

∑

l

|ρkl|, where k < l,

V (ρ) = 1

nK

∑

k

∑

l

(|ρkl| − ρ)2, where k < l,

γ =






nK

nK − 1
+
(

3 − nK

nK − 1

)
(ρ + 2V (ρ)),

k ≥ 3,

0.4, k = 2,

a = 3.25 − 2.7(100Pmin) + 0.4(100Pmin)
2,

nK = (
1
2

)
K(K − 1).

They found that the adjusted P values provide good
approximations to the actual P values for up to
five endpoints, but further studies are required to
justify the adequacy of this adjustment for higher
dimensions.

James’s Analytic Method

James [17] presents another P values adjustment
method which allows for the presence of correlations.
Her method is based on an approximation derived
for multinormal probabilities with equal correlation.
Unlike the Bonferroni-type methods, it assumes that
the test statistics follow a multivariate normal dis-
tribution, or at least an asymptotically normal one
with equal correlation ρ. The adjusted P value is
defined as

Padj = Pr(minimum P ≤ Pmin)

= 1 − Pr(all P > Pmin)

= 1 − Pr

(
K⋂

k=1

a ≤ Xk ≤ b

)
,

where the {Xk} are standardized multinormal with
equal correlation ρ such that

b = Φ−1

(
1 − Pmin

2

)
, a = Φ−1

(
Pmin

2

)
,

for the two-sided case, and

b = Φ−1(1 − Pmin), a = −∞,

for the one-sided case. Φ−1 is the inverse of the
cumulative normal distribution function.

The approximation is

Padj = 1 − D1(1 − ρ2) − D2ρ
2 − D3ρ(1 − ρ)

− D4[2 − 2(1 − ρ)1/2 − ρ − ρ2]

where, for a two-sided test,

D1 = (1 − Pmin)
K,

D2 = 1 − Pmin,

D3 = 0,

D4 = K(K − 1)φ(b)

∫ ∞

−∞
Φ(z)K−2φ(z)2 dz

= K(K − 1)φ(b)G(K),

G(K) =
∫ ∞

−∞
Φ(z)K−2φ(z)2 dz,

φ(z) = 1

(2π)1/2
exp

(
−z2

2

)
,

φ(z) =
∫ z

−∞
1

(2π)1/2
exp

(
−x2

2

)
dx,

b = Φ−1

(
1 − Pmin

2

)
,

and, for a one-sided test,

D1 = (1 − pmin)
K,

D2 = 1 − pmin,

D3 = K

2
(K − 1)(1 − pmin)

K−2φ(b)2,

D4 = K

2
(K − 1)φ(b)

∫ ∞

−∞
Φ(z)K−2φ(z)2 dz

= K

2
(K − 1)φ(b)G(k),

b = Φ−1(1 − pmin).
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With this method,

reject H0 if Padj ≤ α

and the probability of rejecting the overall null
hypothesis can be quoted as the minimum adjusted
P value.

For the unequal correlation case, James suggested:
(i) replacement of ρ with the mean correlation ρm

defined by

ρm =
K−1∑

k=1

K∑

l=k+1

|ρkl|
m

,

where ρkl is the correlation between endpoint k

and endpoint l, k = 1, . . . , K − 1, l = k + 1, . . . , K ,
and m = 1/2K(K − 1); or (ii) to replacement of ρ

with ρmv ,

ρmv = ρm + 2
K−1∑

k=1

K∑

l=k+1

(|ρkl | − ρm)2

m
.

Estimates for the correlations, ρkl , can be obtained:
(i) from a previous study or preferably a pilot trial;
(ii) from the raw data if the endpoints are distributed
multivariate normal; or (iii) by using the formulas
provided in Pocock et al. [31] if the endpoints come
from some nonnormal data.

By incorporating the correlations to the adjusted P

values, James’ method is definitely a solution to the
problem of conservatism arising from the Bonferroni-
type adjustment. She showed that the adjusted P val-
ues derived from her approximation are very close to
the actual values obtained from a multivariate normal
program. Furthermore, they appear to be better esti-
mates for the true P values than the approximation
proposed by Armitage & Parmar [1]. The adjustment
can also be used to calculate the power of any trial
with multiple testing. However, there are some trade-
offs for this improvement in power. They include
the increased complexity of calculations and also the
requirement of the distributional assumption imposed
on the test statistics. Further investigations need to
be done to check the robustness of the method and
find an error bound for the approximation. Also, it is
not clear what will be the impact of various heteroge-
neous correlation structures on the performance of the
method; particularly, when some of the correlations
are negative.

Follmann’s Maximum Test

Follmann [11] proposed a Bonferroni-type of method
which uses the maximum of the individual test statis-
tics. Under his model, he assumes that the statistics
follow a multivariate normal distribution with equal
correlation. However, instead of using a standard
technique to test the maximum, he uses a critical
value by the conservative Bonferroni approximation.
If the maximum statistic exceeds the α/K critical
value, the overall null hypothesis will be rejected at
the α level of significance. This max test is equiv-
alent to performing the Bonferroni adjustment on a
one-sided P value with the assumption of normality
imposed on the individual statistics. Simulations were
performed to compare this max test with O’Brien’s
OLS test. Only two groups and two endpoints are
used in his simulation. The simulation result is con-
sistent with the known performance of the Bonferroni
method, which has good power in detecting one or
a few significant endpoints and performs well with
a small number of endpoints. The simulations also
indicate that the powers of the max test and the OLS
test do not differ substantially under the alternative
of equal positive treatment effects for both endpoints.
However, these results may be due to the small num-
ber of endpoints used. Even though the max test is
very simple, more research is needed to explore its
usefulness.

Follmann [11] adapted another maximum test due
to Wittes for global comparison between two groups.
The method pairs the j th subjects from the two
groups and reduces the data to a single paired
difference for each endpoint, denoted by djk, k =
1, . . . , K . dj is a vector of K paired differences,
which is assumed to follow a multivariate normal
distribution with equal correlation, ρ. Suppose that
Vj is the maximum of the K differences of the j th
subjects. Follmann proposed the following statistic:

V s = V − E(Vj |µ, ρ)

[var(Vj |µ, ρ)]1/2
, (27)

where V = ∑n
j=1 Vj/n and E(Vj |µ, ρ) and var(Vj |

µ, ρ) are the mean and variance of Vj , which the
author suggests obtaining by numerical integra-
tion. Under the null hypothesis, this statistic has
an asymptotic standard normal distribution by the
central limit theorem. Simulations were performed
to compare this maximum statistic with O’Brien’s
OLS test. In his simulation, two groups and two
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endpoints were used. The simulation results indi-
cate that O’Brien’s method has better power than the
maximum test under the alternative that both end-
points improve equally, and has poorer power than
the maximum test under the alternative that only one
of the two endpoints improves but that the respon-
sive endpoint is unknown. Follmann recommended
that this maximum test should be used in situations
in which it is suspected that only one of the two
endpoints improves and the correlation between the
endpoints is large and positive. However, there are
no indications as to how to justify the pairing of the
subjects and how to extend this test to more than two
groups.

Summary Comments

As we review each method, we can see there is
no one winner for all settings. The power of each
method relies on the particular setting to which it is
applied. A few simulation studies [11, 12, 25, 40]
have been done to compare the powers of some of
the global methods. However, they basically came
up with a similar conclusion, that the power of each
method varies with the particular alternative assumed
in the investigation. As a final note, we summarize
the setting for which each global method is most
appropriate.

Hotelling’s T 2 and MANOVA are still the appro-
priate methods to be used in any trials when the
investigator does not have any prior knowledge on
how the treatments may affect the endpoints; for
example, in a pilot study. They perform quite well
even when the assumptions on multivariate nor-
mality and homogeneity of covariance are violated.
However, if we have prior information about an
equal improvement in the expected differences of
the K endpoints, we may want to consider the
one-sided global methods or the P value adjust-
ment.

O’Brien-type parametric tests are good candi-
dates for the situation in which we expect that most
or all of the endpoints will demonstrate consistent
improvement in the treatment effect. For clinical rel-
evance, the O’Brien GLS statistic as modified by
Pocock et al. [31] has the flexibility of incorporat-
ing the clinical importance of the endpoints as part
of the weights, and at the same time preserving the
optimality of statistical power. However, we have

to be aware that the power of the GLS test may
be enhanced at the expense of an increased type I
error rate.

Under the expectation of equal improvement for
all endpoints, the GLS test is appropriate if we can
be sure that there are no negative components in the
weights of the statistic [i.e. JR−1 and δ�−1 in (11)
and (14) respectively] and the sample sizes are large.
When we are not sure about the composition of the
weights, it is reasonable to use the O’Brien OLS
test if we have a large sample size and the rank
sum test if the sample size is small. Also, Läuter’s
standardized sum test seems to be appropriate here,
due to its similar transformations as compared with
the O’Brien OLS test. A definite advantage of using
Läuter’s standardized sum test is protection against
an erroneously liberal type I error.

In situations in which most or all of the endpoints
are expected to be improved, but it is not clear if the
relative treatment differences (effects) are going to be
equal, we may consider the approximate likelihood
test. Again, we have to keep in mind that this gain
in power may be misleading because of the inflated
actual type I error rate, and also the problem with the
negative weights. To solve the problem of the inflated
type I error rate, some authors have suggested using
the permutation distribution of the ALR test statistic
instead of the chi-bar-square distribution. However,
this approach is very computer-intensive and the
level of complexity increases with the number of
endpoints. If there are concerns about the complexity
of computations and inflated type I error rates, we
may consider using the classical tests (MANOVA
tests), as long as the changes in treatment effects are
not all of the same magnitude. Other candidates are
the composite score tests. They can protect the type I
error rates and they should perform reasonably well if
the endpoints behave similarly. Of course, they will
not be as powerful as the ALR test.

The next setting arises when the treatment is effec-
tive in only one or a few “unknown” and distinct
endpoints. The method proposed by Simes appears
to be a good candidate when the correlations among
the endpoints are low or moderate (say, ρ ≤ 0.5).
This method is more powerful than the Bonferroni
adjustment and the methods proposed by Hommel.
The calculation is relatively easy. Also, it works quite
well for multivariate distributions other than the nor-
mal. When the endpoint correlations are large, Simes’
adjustment tends to be conservative. In this case, the
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method proposed by James may be a better choice
due to its ability to account for correlations. Unfor-
tunately, she only provided a simple example that
illustrates a power comparable to O’Brien’s test when
the treatment effects are almost equal and a power
better than O’Brien’s when the treatment effects
are all positive but not equal. There are no formal
power comparisons performed to support this claim
in general. Further investigations on this method seem
worthwhile.

By design, the composite score methods, such
as the standardized sum test, the various versions
of principal component composite score tests, and
the risk score test, are not optimal with respect to
their statistical power in detecting mean differences
among groups. Therefore, under the different settings
described above, there is always a better test than
these composite score methods. However, as pointed
by Follmann [11], statistical power should not be the
only concern in evaluating treatment efficacy. Clini-
cal considerations are also important in the evaluation
process. We should not underestimate the usefulness
of these methods, because they put more emphasis on
a certain optimal structure of the endpoints, which
may be clinically more appealing. However, more
research is definitely needed in order to understand
better the properties of these methods.
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Multiple Endpoints, P
Level Procedures

In clinical trials or biomedical research, multiple
endpoints are often used to investigate a treatment
effect. Diseases usually affect patients in more than
one way, and in order to characterize completely
the efficacy of a treatment, various endpoints are
required. There has been substantial debate and con-
troversy in determining the appropriate approach
to analyze these multiple endpoints. The main dif-
ficulty is how to account for the multiplicity of
inferences. Sometimes this problem comes in two
parts owing to the presence of multiple groups as
well as multiple endpoints. The problem of multiple
groups comparisons has received substantial atten-
tion, and there is an extensive literature on proce-
dures of multiple groups comparison (see Multiple
Comparisons; Paired Comparisons; Simultaneous
Inference). In this article we focus on the problem
of multiplicity due to the presence of multiple end-
points and describe some methods that can be used
to analyze these multidimensional data.

There are researchers who advocate the simple no-
adjustment approach. They apply a univariate t test
(see Student’s t Statistics) or one-way analysis of
variance (ANOVA) to each endpoint separately and
claim a significant effect for a specific endpoint if
the observed P value obtained from the correspond-
ing test is at, or less than, the prescribed level of
significance, say α. This approach is legitimate if the
objective of the researchers is exploratory or sim-
ply to present the comparisons examined and draw
no conclusions about the treatments. However, most
researchers are not satisfied with this. It is usually
desired to reach conclusions about the efficacy of the
treatments. The no-adjustment approach is too liberal
for this, for it inflates the familywise error rate as the
multiple tests are performed. The familywise error
rate is the probability of making at least one type I
error in the given family of inferences [9], and the
type I error is the error of making a false rejection
of a null hypothesis when it is true (see Hypothesis
Testing). This inflation of the familywise error rate
is undesirable, especially in clinical trials, because it
may increase the chance of providing an ineffective
treatment to patients. The no-adjustment approach is
not recommended.

To substantiate the presence of a treatment effect,
some researchers take the approach of combining
the various endpoints into a single statistic. This
supplies an overall probability statement about the
effectiveness of a treatment. The procedures that pro-
vide a single statistic obtained by combining the
multiple endpoints in some optimal way are gener-
ally called global procedures or omnibus tests. Some
common omnibus tests for multiple endpoints have
been reviewed (see Multiple Endpoints, Multivari-
ate Global Tests). These global methods provide
an objective and reasonable solution to a problem
with multidimensional features. They consider vari-
ous endpoints simultaneously and attempt to answer
the question of whether the treatments in the compar-
ison are different in an overall sense, or whether any
treatments show a more significant overall improve-
ment than the others. However, the answer to this
question is usually not the end of the investigation.
Rather it leads to the next question of how the treat-
ments affect each endpoint individually. For this case
we need to test the significance of each endpoint
to determine treatment effects. There are two com-
mon approaches to deal with this. Some researchers
employ the approach of first using a global test as
a preliminary criterion. If significance is achieved,
then they apply endpoint-specific analyses to the
individual endpoints. This approach is used in the
hope that the global test will control the familywise
type I error rate, will account for the correlations
among the endpoints, and will increase the accuracy
of identifying the effect on the individual endpoint
when the endpoint-specific tests are performed. How-
ever, there is disagreement on whether this joint
use of global and endpoint-specific tests can actu-
ally achieve the desired protection and power. Some
researchers believe that it is redundant to perform
a global test because most of the endpoint-specific
procedures can control the familywise error rate and
they have reasonable power to detect treatment dif-
ferences among various endpoints. Their approach
to the analyses is simply to use only the endpoint-
specific procedures. There is no clear answer which
approach is better. Since both approaches need to use
the endpoint-specific procedures, it is our purpose in
this article to review some of the popular endpoint-
specific methods as well as the recent developments
in this area of research.

Endpoint-specific procedures are intended to be
used to identify the significance of the individual
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endpoints. These procedures are also called P level
procedures because they usually involve making sta-
tistical decisions on the basis of the P levels, result-
ing from examining the endpoints separately. The P

level is the observed level of significance. As previ-
ously stated, these P level procedures can be used
in the primary analyses or as second-step analyses in
conjunction with multivariate global tests. To facil-
itate the presentation we adopt the same grouping
scheme as described by Troendle [21, 22] and clas-
sify the endpoint-specific methods into three cat-
egories: (i) Bonferroni-type tests, (ii) normal-based
tests, and (iii) resampling procedures. Within each
category the methods can be further classified as
single-step, step-down, or step-up tests. For the
single-step tests, each comparison is based on the
observed values of that particular endpoint. Both step-
down and step-up tests involve comparing the ordered
observed P values (or test statistics) with a set of
critical constants, c1 ≤ · · · ≤ cK . The testing is car-
ried out sequentially one null hypothesis at a time.
If the testing is step-down, then it starts with the
null hypothesis corresponding to the most significant
(i.e. smallest) P value (or largest test statistics) and
proceeds towards the least significant null hypoth-
esis. The testing stops when an acceptance occurs
the first time. Then the remaining null hypotheses
are accepted also. All null hypotheses before the first
accepted null hypothesis are rejected. If the testing is
step-up, then it starts with the null hypothesis corre-
sponding to the least significant (i.e. largest) P value
(or smallest test statistics) and proceeds towards the
most significant null hypothesis. The testing stops
when a rejection occurs the first time and the remain-
ing null hypotheses are rejected also. The complexity
in the computations of the critical constants usually
increases in the order of single-step, step-down, and
step-up analyses.

Bonferroni-Type Methods

Let P1, P2, . . . , PK be the observed P values for test-
ing the hypotheses H0

1, H0
2, . . . , H0

K . The Bonfer-
roni inequality [15] sets an upper bound on the
overall significance level α and produces the simplest
endpoint-specific procedure that controls the family-
wise error rate, α. Here, the familywise error rate
means the probability of rejecting incorrectly at least
one true null hypothesis. For testing K endpoints,

the Bonferroni procedure is performed by dividing α

by the number of endpoints (i.e. K). This division
of α by K is often called the Bonferroni adjustment.
Suppose the single hypothesis on the kth endpoint is
denoted by

H0
k : µ1k = µ2k = · · · = µIk, (1)

where I is the number of treatments in comparison
and k = 1, . . . , K . The test for the kth endpoint is
carried out by rejecting H0

k at level α if Pk ≤ α/K .
This is done separately for all K endpoints. Because
the test for each endpoint has an α/K probability of
making a type I error, the familywise type I error is
at most α. The Bonferroni method is classified as a
single-step test [9].

Example

Suppose we have eight endpoints and the observed
P values from the univariate tests are

P1 = 0.061, P2 = 0.255,
P3 = 0.143, P4 = 0.003,
P5 = 0.048, P6 = 0.001,
P7 = 0.008, P8 = 0.004.

Using Bonferroni’s method, we reject H0
k at level

α = 0.05 if Pk ≤ 0.05/8(= 0.0063) for k = 1, . . . , 8.
So, here we reject H0

4, H0
6, and H0

8 with a 0.05 level
of significance. These hypotheses correspond to the
fourth, sixth, and eighth endpoints.

The advantage of the classical Bonferroni test is
its computational simplicity. In addition it can also
be used to construct confidence sets. Furthermore, it
has good power in detecting real treatment effects in
one or a few distinct endpoints. However, it is con-
servative when the alternative hypothesis for most or
all measures of efficacy are uniformly improved and
there are no marked differences among endpoints. In
1987, Pocock et al. [17] did a simulation study on
the performance of the Bonferroni correction in com-
paring K endpoints between two treatment groups,
where K ranges from two to 10 endpoints. The
simulated data were based on K-variate normally dis-
tributed endpoints, each with known variance, and
all K endpoints equicorrelated with correlation ρ.
The results showed that the Bonferroni method works
well when endpoints are independent. For each num-
ber of endpoints, the Bonferroni adjustment displayed
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an elevated degree of conservatism as the correla-
tion increases. It works reasonably well provided the
pairwise correlation is less than 0.5. The authors
concluded that this method works well when the
endpoints are at least asymptotically normally dis-
tributed with moderate to low correlations. There is
no noticeable deterioration in the Bonferroni correc-
tion as the number of correlated endpoints increases
from two to 10. While this study did not con-
sider K large, it is quite clear that the Bonferroni
adjustment procedure will diminish in power if K is
large [8].

The classical Bonferroni method uses a factor 1/K

to account for the possibility of the presence of K true
null hypotheses and the rejection of any one of these
may cause a type I error. To improve on the power of
the classical Bonferroni adjustment, Holm [10] pro-
poses a stepwise rejection Bonferroni test. This pro-
cedure is based on the fact that if one null hypothesis
is rejected, then there are only K − 1 possible true
null hypotheses that need protection from type I error.
Thus, the factor 1/K can be changed to 1/(K − 1).
Owing to the sequential reduction of the denomina-
tor of the factor, Holm’s procedure is conventionally
known as a step-down improvement of the classical
Bonferroni method. In his procedure, the univari-
ate P values are ordered such that P(1) ≤ P(2) ≤
· · · ≤ P(K), where H0

(1), H0
(2), . . . , H0

(K) are the cor-
responding null hypotheses. The procedure starts with
the smallest P value and rejects H0

(1) if the smallest
P value, P(1), is less than α/K . Given that H0

(1) is
rejected, H0

(2) will be rejected if P(2) ≤ α/(K − 1).
Given that H0

(2) is rejected, H0
(3) will be rejected

if P(3) ≤ α/(K − 2). Given that H0
(j−1) is rejected,

H0
(j) will be rejected if P(j) ≤ α/(K − j + 1), and

so forth. One proceeds in this manner until the
first time a null hypothesis is accepted, then the
procedure stops and the remaining null hypotheses
are accepted also. Of course, acceptance of a null
hypothesis here means that the null hypothesis is not
rejected.

To illustrate Holm’s method, we use the observed
P values presented in the above example and arrange
them in descending order as follows:

Unordered observed P values:

P1 = 0.061, P2 = 0.255,
P3 = 0.143, P4 = 0.003,
P5 = 0.048, P6 = 0.001,
P7 = 0.008, P8 = 0.004.

Ordered observed P values:

P(1) = 0.001, P(2) = 0.003,
P(3) = 0.004, P(4) = 0.008,
P(5) = 0.048, P(6) = 0.061,
P(7) = 0.143, P(8) = 0.255.

Using Holm’s method, we start with P(1):

P(1) = 0.001 ≤ 0.05/8
= 0.0063 −−−→ reject H0

(1) and continue,

P(2) = 0.003 ≤ 0.05/7
= 0.0071 −−−→ reject H0

(2) and continue,

P(3) = 0.004 ≤ 0.05/6
= 0.0083 −−−→ reject H0

(3) and continue,

P(4) = 0.008 �≤ 0.05/5
= 0.0100 −−−→ do not reject H0

(4) and the
remaining hypotheses.

So, we reject H0
(1), H0

(2), and H0
(3) at level α = 0.05.

These hypotheses correspond to the fourth, sixth, and
eighth endpoints.

Although Holm’s test involves a slightly more
complicated computations than the classical Bonfer-
roni test, it is strictly more powerful than the Bon-
ferroni test, except in some trivial cases. The gain in
power depends on the alternative hypotheses. This
is small if most of the null hypotheses are true. But it
may become substantial when there exist many false
null hypotheses. Similar to Bonferroni adjustment,
Holm’s test controls the familywise error rate and
it can be applied to any parametric or nonparamet-
ric model and always has good power. There are no
restrictions on the type of individual tests used, the
only requirement being that it is possible to calculate
the observed P level for each separate test.

Holm [10] also suggested an interesting exten-
sion of his test to the case of applying different
weights to different hypotheses. This is useful when
there is a known hierarchy of importance among
the hypotheses. As before, P1, P2, . . . , PK are the
observed P values for testing the null hypothe-
ses H0

1, H0
2, . . . , H0

K . Suppose w1, w2, . . . , wK are
positive weights indicating the importance of the
hypotheses. Greater weights indicate greater impor-
tance of the hypotheses. Let Sk = Pk/wk , with S(1) ≤
S(2) ≤ · · · ≤ S(K). H0

(1), H0
(2), . . . , H0

(K) are the cor-
responding null hypotheses and w(1), w(2), . . . , w(K)

are the corresponding constants. This algorithm starts
with the smallest S(1). We reject H0

(1) if S(1) ≤



4 Multiple Endpoints, P Level Procedures

α/(w(1) + w(2) + · · · + w(K)). Then, H0
(2) is rejected

if S(2) ≤ α/(w(2) + w(3) + · · · + w(K)), and so on. If
we fail to reject the null hypothesis at any step,
then the procedure will be stopped and the remaining
null hypotheses will not be rejected. This general-
ized sequential rejective test increases the power for
null hypotheses with high values of wk at the cost
of decreasing the power for hypotheses with small
values of wk .

Two important step-up procedures were proposed
by Hommel [11] and Hochberg [7]. Both were
developed by applying the closure principle [14] to
the modified Bonferroni method of Simes [20]. In
1986 Simes provided a level α test under the overall
null hypothesis H0 = ∩{H0

k : k = 1, . . . , K} with the
assumption that the endpoints are independent. In
the case of investigating mean difference among
I treatment groups with K endpoints, H0 can
be written as µ1 = µ2 = · · · = µI , where µi =
(µi1, µi2, . . . , µiK) is a K × 1 vector consisting of
the means of the K endpoints for treatment group i =
1, 2, . . . , I . With Simes’ procedure, H0 is rejected
if P(j) ≤ jα/K for any j = 1, 2, . . . , K . He then
showed by simulation that under H0, the level does
not exceed α for a variety of multivariate normal
and gamma test statistics even when the statistics are
correlated. In 1988, Hommel [11] extended Simes’
procedure to test the significance of K individual
endpoints. Hommel’s procedure is performed by
starting in succession with m = 1, 2, . . . , K until we
find the maximum m that has P(K−m+j) ≥ jα/m

for j = 1, . . . , m. Suppose we find the maximum m

equal to t . Then we reject all H0
k, k = 1, . . . , K , for

which Pk ≤ α/t .
The following example is a demonstration of how

to perform Hommel’s method.

Unordered observed P values:

P1 = 0.061, P2 = 0.255,
P3 = 0.143, P4 = 0.003,
P5 = 0.048, P6 = 0.001,
P7 = 0.008, P8 = 0.004.

Ordered observed P values:

P(1) = 0.001, P(2) = 0.003,
P(3) = 0.004, P(4) = 0.008,
P(5) = 0.048, P(6) = 0.061,
P(7) = 0.143, P(8) = 0.255,

m = 1:
j = 1 P(8) = 0.255 > 0.05 −−−→ continue,

m = 2:
j = 1 P(8) = 0.255 > 0.05,
j = 2 P(7) = 0.143 > 0.05/2

= 0.0250 −−−→ continue,

m = 3:
j = 1 P(8) = 0.255 > 0.05,
j = 2 P(7) = 0.143 > 2(0.05)/3 = 0.0333,
j = 3 P(6) = 0.061 > 1(0.05)/3

= 0.0167 −−−→ continue,

m = 4:
j = 1 P(8) = 0.255 > 0.05,
j = 2 P(7) = 0.143 > 3(0.05)/4 = 0.0375,
j = 3 P(6) = 0.061 > 2(0.05)/4 = 0.0250,
j = 4 P(5) = 0.048 > 1(0.05)/4

= 0.0125 −−−→ continue,

m = 5:
j = 1 P(8) = 0.255 > 0.05,
j = 2 P(7) = 0.143 > 4(0.05)/5 = 0.040,
j = 3 P(6) = 0.061 > 3(0.05)/5 = 0.030,
j = 4 P(5) = 0.048 > 2(0.05)/5 = 0.020,
j = 5 P(4) = 0.008 �>1(0.05)/5=0.010−−−→ stop.

So, the maximum m = 4 and the critical level is
0.05/4(= 0.0125). Comparing all the P values with
this critical level, we find P4, P6, P7, and P8 less than
0.0125. Therefore, we conclude that H0

4, H0
6, H0

7,
and H0

8 should be rejected at the 0.05 level of
significance.

Hochberg [7] also extended Simes’ procedure for
making inferences on individual hypotheses. His pro-
cedure is a step-up sequential rejection procedure. It
uses the same adjustment factor as Holm’s proce-
dure but Hochberg starts with the largest P value
and progressively reduces the factor from 1 to 1/K .
Owing to the sequential increase of the denominator
of the factor, Hochberg’s approach is conventionally
known as a step-up procedure. This procedure rejects
the hypothesis H0

(k) and all other null hypothe-
ses corresponding to the smaller P values (i.e.
H0

(k−1), H0
(k−2), . . . , H0

(1)) if P(k) ≤ α/(K − k + 1)

for k = 1, 2, . . . , K . To perform this procedure we
start by looking at P(K), the largest P value; we
reject H0

(K), H0
(k−1), . . . , H0

(1) and stop further test-
ing if P(K) ≤ α. If P(K) > α, then we do not reject
H0

(K) and we consider the second largest P value and
reject H0

(K−1), H0
(K−2), . . . , H0

(1) if P(K−1) ≤ α/2.
The procedure continues in this manner until the
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first time a hypothesis H0
(k) is rejected. Then we

stop the testing and conclude that the hypotheses
H0

(k−1), H0
(k−2), . . . , H0

(1) are also rejected. Recall
that P(1) ≤ P(2) ≤ · · · ≤ P(K) so we are rejecting for
the k − 1 null hypotheses with smallest P values.

To illustrate Hochberg’s method, we again use the
observed P values presented in the above example.

Unordered observed P values:

P1 = 0.061, P2 = 0.255,
P3 = 0.143, P4 = 0.003,
P5 = 0.048, P6 = 0.001,
P7 = 0.008, P8 = 0.004.

Ordered observed P values:

P(1) = 0.001, P(2) = 0.003,
P(3) = 0.004, P(4) = 0.008,
P(5) = 0.048, P(6) = 0.061,
P(7) = 0.143, P(8) = 0.255.

Using Hochberg’s method, we start with P(8).

P(8) = 0.255 > 0.05
−−−→ continue,

P(7) = 0.143 > 0.05/2 = 0.0250
−−−→ continue,

P(6) = 0.061 > 0.05/3 = 0.0167
−−−→ continue,

P(5) = 0.048 > 0.05/4 = 0.0125
−−−→ continue,

P(4) = 0.008 ≤ 0.05/5 = 0.0100
−−−→ reject H0

(4) and the remaining hypotheses.

So, H0
(1), H0

(2), H0
(3), and H0

(4) are rejected at the
α = 0.05 level. These hypotheses correspond to the
fourth, sixth, seventh and eighth endpoints in the
original unordered hypotheses.

Both of these step-up methods can be used with
different types of statistics. Hochberg’s procedure is
easier to apply than Hommel’s. In terms of power,
they are both uniformly better than Holm’s step-down
method and Hommel’s procedure is slightly more
powerful than Hochberg’s procedure [12].

Both Hommel’s and Hochberg’s methods are able
to control the familywise error rate if, under the
overall null hypothesis H0, the original Simes’ test
can maintain the overall type I error rate close to the
nominal significance level, α [12]. It is not clear if
they can control the familywise error rates when the

original Simes’ test does not have the α-level control
under H0.

Rom [18] proposed a method to improve on
Hochberg’s method. He modifies the critical points
of Hochberg’s procedure by integrating the joint den-
sity functions of the ordered P values and finds the
new critical points by solving a recursive equation
through iterations. However, the power gained from
performing Rom’s method is small and probably not
worth the increased complexity of computations.

Hochberg & Benjamini [8] took a graphic app-
roach to improve the power of the stepwise proce-
dures due to Holm and Hochberg. It involves plotting
the complements of the individual P values (i.e.
q(j) = 1 − P(K−j+1)) vs. their order (i.e. j ). Let Q(j)

be the random variable with the observed value equal
to q(j). The authors suggested that the set of Q(j)s
will behave as an ordered sample from a uniform dis-
tribution over [0, 1] if all null hypotheses are true.
Assume m0 is the number of true null hypotheses.
The plot of the observed value q(j) is approximately
linear along the line with the slope 1/(m0 + 1) pass-
ing through the origin. The P values corresponding
to the false null hypotheses are smaller than the P

values corresponding to the true null hypotheses, so
the q(j)s corresponding to the false null hypotheses
will be located on the right-hand side of the plot.
The relationship over the left-hand side of the plot
should remain approximately linear with the slope
1/(m0 + 1). On the basis of this relationship, the
authors suggested estimating m0 by fitting an ordinary
least squares regression line through the smallest
q(j)s located on the left-hand side of the plot. See [8]
for implementation of this procedure.

Normal-Based Methods

A second group of endpoint-specific procedures focus
on incorporating the covariance structure of the data
into the analysis. This group of procedures requires
the test statistics to be multivariate normal dis-
tributed with equal variances and a known common
correlation coefficient.

Assume the test statistics are K-variate normally
distributed with equal correlation ρ. Armitage &
Parmar [1] presented a procedure that allows for cor-
relations in the P value adjustment. They suggested
an adjusted correction for the minimum P of the
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following form:

Padj = 1 − (1 − Pmin)
Kx

, (2)

where 0 ≤ x ≤ 1 and Pmin is the minimum P value.
x = 1 if the K test statistics are independent and
x = 0 if the K test statistics are fully correlated. The
empirical formula for computing x with an arbitrary
correlation structure is given in [1]. In application,
we find the adjusted P value for each endpoint by
replacing Pmin with the unadjusted P value and reject
H0

k if the adjusted P value of the kth endpoint is less
than or equal to the nominal level, α.

James [13] presents another P value adjustment
method that allows for the presence of correlations.
Her method is based on an approximation derived
for multinormal probabilities with equal correlation.
Her procedure assumes that the test statistics follow
a multivariate normal distribution, or at least are
asymptotically normal with equal correlation ρ. The
adjusted P value for the minimum per-experiment
error rate is defined as

Padj = Pr(minimum P ≤ pmin)

= 1 − Pr(all Pk > pmin)

= 1 − Pr

(
K⋂

k=1

a ≤ Zk ≤ b

)
, (3)

where pmin is the smallest of the per-experiment
error rates and (Z1, Z2, . . . , ZK ) are standardized
multinormal random variables with equal correlation
ρ, such that

b = Φ−1

(
1 − Pmin

2

)
, a = Φ−1

(
Pmin

2

)

for the two-sided case, and

b = Φ−1(1 − Pmin), a = −∞
for the one-sided case.

The approximation is given in James [13]. Using
her approach, we calculate the adjusted correction for
each P value and declare significance to the hypoth-
esis corresponding to the P value if the adjusted P

value is less than or equal to the nominal level of
significance.

James’ method improved the Bonferroni-type ad-
justment in the sense that it can account for the
correlation structure of the data. She showed that

the adjusted P values derived from her approxima-
tion are very close to the actual values obtained from
a multivariate normal program [19]. They appear to
be better estimates for the true P values than the
approximation in [1]. The adjustment can also be
used to calculate the power of any trial with multiple
testing. However, there are some tradeoffs for this
improvement in power. They include the increased
complexity of calculations and also the requirement
of the distributional assumption imposed on the test
statistics. Further investigations need to be done to
find an error bound for the approximation. Also, it
is not clear what is the impact of various heteroge-
neous correlation structures on the performance of the
method, particularly when some of the correlations
are negative.

In addition to the P value adjustment methods,
normal theory-based hypothesis testing procedures
have also been developed. They were originally
derived for the purpose of comparing multiple groups,
but they can also be used to test multiple endpoints
when there are only two treatment groups. Let tk
be the usual t statistic for testing H0

k , where k =
1, . . . , K . If H0

1, . . . , H0
m are true, then the corre-

sponding random variables T1, . . . , Tm have Student’s
m-variate central t distribution with ν df and the
associated common correlation ρ (see Multivariate
t Distribution). Let cm

′ = t1−α(m, ν, ρ) be the upper
α point of max1≤k≤m Tk for m = 1, . . . , K . Bechhofer
& Dunnett [2] have compiled extensive tables for the
distribution of the maximum of m student t variables
under various correlation structures. These tables pro-
vide the critical constants ck

′. In the usual single-step
test procedure, H0

k is rejected if tk ≥ ck
′.

Miller [15] proposed a normal-based step-down
procedure in 1966 which was further studied by
Naik [16] in 1975 and Marcus et al. [14] in 1976. In
1991, Dunnett & Tamhane [4] presented step-down
multiple tests in the unbalanced one-way layouts. In
general, one can implement the step-down procedure
by ordering the statistics as t(1) ≤ t(2) ≤ · · · ≤ t(K)

and the corresponding hypotheses as H0
(1), H0

(2), . . . ,

H0
(K).H0

(k) is rejected if H0
(j) is rejected for j = k +

1, . . . , K and t(k) ≥ ck
′. In most cases ck

′ is easy to
obtain. They are extensively tabulated for the case of
equal correlations [2]. Since ck

′ < cK
′ for k < K , it

is obvious that the step-down procedure is uniformly
more powerful than the single-step procedure.

Dunnett & Tamhane [5] introduced a normal-
based step-up procedure. The step-up procedure relies
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on a different set of critical constants c1
∗, . . . , cK

∗.
It will accept H0

(k) if H0
(j) is accepted for j =

1, . . . , k − 1 and t(k) < ck
∗. The step-up procedure

begins by testing the smallest t statistic and work-
ing upwards, accepting one hypothesis at a time
and stopping by rejecting H0

(k), H0
(k+1), . . . , H0

(K)

when t(k) ≥ ck
∗. The critical constants, ck

∗, are com-
puted recursively based on the analytic approxi-
mation of the joint distribution of the ordered P

values. The computational algorithm can be found
in Dunnett & Tamhane [5]. With a nonnegative cor-
relation coefficient the authors have shown that their
step-up method is empirically more powerful than
Hochberg’s method, and in a numerical study they
also achieve higher power than Hommel’s method.
Although this procedure is quite powerful and also it
can control the familywise error rate, it requires that
the parameter estimates to be normally distributed
with a common variance, which is a known multiple
of an unknown σ 2, and known correlations which
are equal. The computations of the critical constants
turn out to be rather complicated. Also, because of
the equal correlation restriction it is not suitable to
be used in unbalanced data situations. To resolve this
problem, Dunnett & Tamhane [6] extended the step-
up procedure in [5] to include unequally correlated
estimates. It has been shown by simulations that the
familywise error rate of applying this procedure is
at most α, and the procedure enjoys a power advan-
tage over the step-down procedure presented in [4].
However, the computations of the critical constants
for this step-up method become progressively more
difficult for m > 2.

Resampling Procedures

Westfall & Young [23] proposed determining the
multiplicity adjustments through bootstrap or per-
mutational resampling (see Bootstrap Method) for
dichotomous outcomes data (see Binary Data). The
adjustments through resampling offer improvements
over the Bonferroni-type adjustments by incorporat-
ing the dependence structures and other distributional
characteristics into the analysis. Their distributional
setup assumes that there are I treatment groups
with ni subjects per group and the data are repre-
sented by {Xij }, where Xij is a vector consisting of
the measurements of the K endpoints (i = 1, . . . , I

and j = 1, . . . , ni). The Xij are independently and

identically distributed as multivariate Bernoulli vec-
tors MVBk(pi, 1, Di), where Di denotes a particular
probability distribution subject to the constraint that
E(Xij ) = pi . They are motivated by the belief that
false significances are most likely to occur when the
overall null hypothesis H0 is true (i.e. p1 = · · · =
pI = p and D1 = · · · = DI = D). Therefore, they
suggested computing the adjusted P values of the
original tests according to this worst-case scenario.

If one wishes an unconditional analysis, then the
adjusted P values will depend on the unknown pop-
ulation parameters p and D. These quantities and the
adjusted P values may be estimated using the data
and by bootstrap resampling. To implement the pro-
cedure, the authors provided the following algorithm.
The first step is to compute the unadjusted P values
using the test statistics of choice. Then, generate a
with-replacement sample from the data. Using only
the bootstrap sample, one computes the P values with
the same choice of test statistics for calculating the
unadjusted P values and notes whether the minimum
of the P values from the bootstrap sample is less than
or equal to each of the unadjusted P values. The same
algorithm will be repeated for a specified number of
times and the adjusted P value for the kth endpoint
is defined as the proportion of samples for which the
minimum of the P values is less than or equal to the
unadjusted P value for the kth endpoint.

Suppose M is denoted as the number of bootstrap
samples, P

(i)
k as the P value for the kth endpoint

from the ith bootstrap sample, and Pk,unadj as the
unadjusted P value for the kth endpoint observed
from the original data. The formula for the adjusted
P value for the kth endpoint using the bootstrap
approach is given by

Pk,adj = 1

M

M∑

i=1

I
[
min

(
P

(i)
1 , P

(i)
2 , . . . , P

(i)
K

)

≤ Pk,unadj

]
(4)

where I [A] = 1 if event A is true and I [A] = 0 if
event A is false.

If one is interested in a conditional analysis, then
one may obtain the adjusted P values exactly using
the technique of Brown & Fears [3]. They suggest
reporting the permutational probability of having a
P value less than or equal to a given threshold,
conditional on the observed marginal frequencies.
Using this method, one may obtain the adjusted
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P values as the proportion of permutations of the
observed vectors {Xij } for which the minimum of
the observed P values in a permutation sample is
less than or equal to the unadjusted P values. One
can calculate the adjusted P values by using the same
algorithm described for the bootstrap resampling with
the exception that here one generates the random
permutations of the observed data and the resampling
requires a without-replacement sample.

These resampling techniques are improvements
over the Bonferroni-type adjustments in the sense that
they are able to account for the dependence structure
and discreteness of the data. They are recommended
if the goal of the analysis is to isolate particular com-
parisons from a very large set of comparisons, partic-
ularly when many true null hypotheses are expected.
The permutation approach tends to be more conserva-
tive than the bootstrap approach because the bootstrap
analysis approximates the nominal significance levels
more closely. As expected, the bootstrap method is
more powerful than the permutation method. How-
ever, the permutation method is preferred when we
cannot assert that the data are multivariate binomial
distributed. In this situation the permutation method
is valid provided that the subjects have been properly
randomized before allocation to treatment groups. In
general, the resampling techniques have reasonable
power when there are marked departures from the
null hypothesis at only a few endpoints. But they
become conservative in the case when there are many
false null hypotheses.

Westfall & Young [23] show how resampling can
be used to compute adjusted P values for multi-
variate binomial data in a single-step manner. Both
Westfall & Young [24] and Troendle [21] give a
step-down improvement which does not require any
distributional assumptions on the data. Westfall &
Young [24] consider a more general hypothesis test-
ing setup such that the hypotheses could come from
any set of hypotheses under consideration and P val-
ues are used to perform the adjustments. Troendle’s
step-down resampling procedure focuses more on the
hypotheses for testing multiple endpoints between
two treatment groups. He argues that in the case
when we decided to reject H0

(K) which corresponds
to the largest test statistic. If H0

(K) is true, then
we have already committed a type I error. There-
fore, to control the familywise type I error rate, we
should assume H0

(K) is false and delete the com-
ponent corresponding to t(K) before the evaluation

of the next hypothesis H0
(K−1). t(K) is the largest

observed test statistic. On the basis of this princi-
ple, the following stepwise resampling algorithm is
derived for testing the hypotheses. The first step of
the algorithm is to order the observed test statistics
and hypotheses so that t(1) ≤ · · · ≤ t(K) correspond-
ing to H0

(1), . . . , H0
(K). Suppose that M resamples,

each of size 2N0, are used to estimate αk , which is
the significance level for H0

(K−k+1). Using the esti-
mated distribution of T

(K−k+1)

(K−k+1) from resampling, one
can estimate

αk = Pr
H0

(K−k+1)

[
T

(K−k+1)

(K−k+1) ≥ t(K−k+1)

]
(5)

where T
(K−k+1)

(K−k+1) is the largest of the (K − k + 1) test
statistics corresponding to t(1), . . . , t(K−k+1). How-
ever, often there are errors in estimating αk by an
estimate based on a finite number of resamples of the
data. Therefore, the following estimate is proposed:

α∗
j = 1

M

M∑

i=1

I

[
max

k
T ∗

ki ≥ t(K−j+1)

]
, (6)

where T ∗
ki is the test statistic of the kth endpoint cor-

responding to the ith resampled data and I [A] is
the indicator function of the event A. The maximum
extends over all k corresponding to t(1), . . . , t(K−j+1).
We generate the kth test statistic in the ith resam-
ple where k = 1, . . . , K and i = 1, . . . , M and then
calculate α∗

j as defined in (6). If α∗
j ≥ α, then

we stop the algorithm and accept the remaining
hypotheses H0

(1), . . . , H0
(K−j+1). If α∗

j < α, then we
reject H0

(K−j+1), increment j , and repeat the resam-
pling with the component corresponding to t(K−j+1)

deleted.
Troendle [21] has shown in general that his step-

down resampling method is asymptotically conserva-
tive (i.e. the probability that any type I error is com-
mitted is asymptotically bounded above by α). In the
case when the univariate tests violate the parametric
assumptions, the asymptotic conservative property
of this resampling method remains. The adjusted
P values obtained by the resampling method are
distribution-free no matter what kind of parametric
tests are used to obtain the unadjusted P values or test
statistics. In other words, it is not necessary to make
any parametric assumption on the distributions of
the data. From the simulations, the familywise type I
error rate of the method has been shown to be very
close to the nominal level and the precision improves
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with an increasing number of resamples. It provides
increased power to reject individual hypotheses when
compared with the method of Hochberg [7] except
when there are many false null hypotheses. It has also
been shown by simulations that this step-down resam-
pling method provides a good approximation to the
step-up method of Dunnett & Tamhane [5] when the
assumptions of the step-up method are satisfied. But
in the case of the presence of unequal correlations, the
step-down resampling method performs better than
the step-up method described in [5]. It appears that
Troendle’s step-down resampling method is a rela-
tively better method, especially when the distribution
or correlation structure of the data is unknown.

However, the step-down resampling method has
been shown to be conservative when there are many
false null hypotheses. For this aspect, a step-up per-
mutation method was proposed by Troendle [22],
since step-up methods generally have higher power
than step-down methods when there are many false
null hypotheses. To pursue this issue, Troendle further
explored a step-up alternative to handle the multi-
plicity of inferences for the case of comparing two
treatment groups. He introduced a step-up proce-
dure that uses permutational resampling to estimate
conditional probabilities so that one can find the crit-
ical constants for which the familywise error rate is
controlled asymptotically. The form of this step-up
resampling procedure takes after the step-up method
for normal data proposed by Dunnett & Tamhane [5].
Suppose, for some 1 ≤ m ≤ K , that H0

(1), . . . , H0
(m)

are true and H0
(m+1), . . . , H0

(K) are false. The method
proceeds by first testing the smallest test statistic, t(1).
It sequentially accepts the hypotheses H0

(1), H0
(2), . . .

until t(k) > c∗∗
k for some k = 1, . . . , K . Then the pro-

cedure will be stopped and the remaining hypotheses
H0

(k), . . . , H0
(K) will be rejected. {c∗∗

k } is the set
of critical constants that are determined recursively
such that

1

M

M∑

j=1

I
[(

T
j(m)

(1) > q1

)
∪

(
T

j(m)

(2) > q2

)

∪ · · · ∪
(
T

j(m)

(m) > qm

)]
≤ α, (7)

where M is the number of distinct permutations,
m = 1, . . . , K, T

j (m)

(l) is defined as the lth order statis-
tics from the components of the m smallest test
statistics T(1), . . . , T(m) in the j th permutation, and
I [A] is the indicator function for event A. The exact

algorithm used to determine the critical constants is
quite complex and a detailed explanation is given
in [22].

This step-up method enjoys all the benefits as
reflected in the step-down resampling. It requires no
specific distributional assumptions of the data and
it is applicable to any correlation structure. It has
been shown by simulations that when the correla-
tion is equal among the endpoints, Troendle’s step-up
method [22] and Dunnett et al.’s step-up method [5]
have a very similar familywise type I error rate as
well as power. When the correlation is unequal or
unknown, Troendle’s step-up permutation method
is shown to be slightly more powerful than the
other competing procedures through simulation. As
expected, the step-up permutation method provides
better power than the step-down resampling method
when many false null hypotheses exist. The obvious
shortcoming of this procedure is the computational
complexity in the determination of the critical con-
stants as well as the adjusted P values.

Conclusion

The advantages of the Bonferroni-type methods are
simplicity in computations and applicability to data of
any distribution, provided the observed P values are
available. In general they can control the familywise
error rate. However, they do not account for the cor-
relation structure of the endpoints. They may become
overly conservative if the tests are highly correlated.
The normal-based tests incorporate the correlation
structure of the endpoints. Simulations have shown
some of them to be slightly more powerful than the
Bonferroni-type methods, but the gain in power is
quite small. They are also able to control the family-
wise error rate.

However, despite these advantages, they require a
specific distribution of the data, the calculations of
the critical constants are rather cumbersome and, so
far, for the purpose of testing multiple endpoints, the
normal-based tests are only applicable for the case of
comparing two groups. Resampling procedures use
the resampling techniques to incorporate the corre-
lation structure of the endpoints. They require no
specific distributional assumptions of the data and
they are applicable to any correlation structure. These
methods are shown to be able to have the probabil-
ity of committing any type I error bounded above
by α asymptotically. Through simulation studies, the
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resampling methods achieve comparable power to
the normal-based methods when the data follow the
specified structure as defined in the normal-based
methods. But when the distribution of the data is
unknown, the resampling methods are slightly more
powerful than the normal-based methods. The short-
comings of these methods are the heavy dependence
on the computer and that the algorithms to deter-
mine the critical constants are quite complicated. For
both the normal-based and resampling methods, the
step-up procedures generally appear to have more
power in detecting the alternative when all or most of
hypotheses are false. The step-down procedures are
more sensitive to the scenario when only one or a
few hypotheses are false.

There does not seem to be an all-round winner
among all the methods discussed above. It appears
that power of a method is often gained at the expense
of increased complexity in computations. Also, the
gain in power given the added complexity seems to
be very small. On the basis of the consideration of a
reasonable balance between computational complex-
ity and power, we recommend Hochberg’s method,
which is easy to perform and, at the same time, has
comparatively good power among the Bonferroni-
type methods and in comparison to the normal-based
and resampling methods [5, 21, 22].
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Multiple Imputation
Methods

Missing data occur frequently in biomedical stud-
ies. For example, they occur in a survey on people’s
health (see Surveys, Health and Morbidity) when
some people do not respond to all of the survey
questions. Another example is a medical experi-
ment (see Clinical Trials, Overview) in which some
follow-up visits are skipped or some measurements
are accidentally not taken.

A common technique for handling missing data
is to impute, i.e. fill in, a value for each missing
datum. This results in a completed data set, so that
standard methods that have been developed for ana-
lyzing complete data can be applied immediately.
Thus, imputing for missing values followed by using
a standard complete-data method of analysis is typ-
ically easier than creating specialized techniques to
analyze the incomplete data directly. Simplicity of
subsequent analyses is an important practical advan-
tage of imputation.

Imputation has other advantages in the context of
the production of a data set for general use, such
as a public-use file from a health survey. One such
additional advantage is that the data producer can use
specialized knowledge about the reasons for missing
data, including confidential information that cannot
be released to the public, to create the imputations.
In addition, imputation by the data producer fixes
the missing data problem in the same way for all
users, so that consistency of analyses across users is
ensured. When imputation is not carried out by the
data producer, so that each user implements some
method for handling missing data, the knowledge
of the data producer can fail to be incorporated,
analyses are not typically consistent across users, and
all users expend resources addressing the missing-
data problem.

Although imputation satisfies critical data-proces-
sing objectives and can incorporate knowledge from
the data producer, single imputation, i.e. imputing one
value for each missing datum, fails to satisfy statisti-
cal objectives concerning the validity of the resulting
inferences based on the completed data. Specifically,
for validity, the resulting estimates based on the data
completed by imputation should be approximately
unbiased for their population estimates, confidence

intervals should attain at least their nominal cover-
ages, and tests of null hypotheses should not reject
true null hypotheses more frequently than their nom-
inal levels. Because a single imputed value cannot
reflect any of the uncertainty about the true underly-
ing value, analyses that treat imputed values just like
observed values systematically underestimate uncer-
tainty. Thus, imputing a single value for each missing
datum and then analyzing the completed data using
standard techniques designed for complete data will
result in standard error estimates that are too small,
confidence intervals that fail to attain their nomi-
nal coverages, and P values that are too significant
(see Hypothesis Testing); this is true even if the
modeling for imputation is carried out carefully. For
example, large-sample results in [24] show that for
simple situations with 30% of the data missing, sin-
gle imputation under the correct model followed by
the standard complete-data analysis results in nomi-
nal 90% confidence intervals having actual coverages
below 80%. The inaccuracy of nominal levels is
even more extreme in multiparameter problems [22,
Chapter 4], where nominal 5% tests can easily have
rejection rates of 50% or more when the null hypoth-
esis is true.

For particular estimates in certain situations, tech-
niques have been developed that enable the data
analyst to obtain correct estimates of variability from
singly-imputed data [17, 31]. These techniques, how-
ever, require the data analyst to use nonstandard
procedures that must be specially developed for each
combination of imputation method and analysis, and
they sometimes require the data producer to pro-
vide extra information to the data analyst. Thus, in
solving one problem associated with single impu-
tation, they lose the critical advantages inherent to
imputation.

Multiple imputation [19, 22] is an approach that
retains the advantages of single imputation while
allowing the data analyst to obtain valid assessments
of uncertainty. The basic idea is to impute two or
more times for the missing data using independent
draws of the missing values from a distribution that
is appropriate under the posited assumptions about
the data and the mechanism creating missing data.
This results in two or more completed data sets,
each of which is analyzed using the same stan-
dard complete-data method. The analyses are then
combined in a simple way that reflects the extra
uncertainty due to having imputed rather than actual
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data. Multiple imputations can also be created under
several different models to display sensitivity to
the choice of missing-data model. Recent reviews
of work on multiple imputation are given in [23]
and [26].

Theoretical Motivation for Multiple
Imputation

The theoretical motivation for multiple imputation
is Bayesian, although the procedure has excellent
properties from a frequentist perspective. Examples
of publications containing information on the proper-
ties of multiple imputation are [5], [9], [11–13], [22,
Chapter 4], [24], and [25]. More extensive references
can be found in [23] and [30].

Formally, let Q be the population quantity of inter-
est, and suppose the data can be partitioned into
observed values, Xobs, and missing values, Xmis. If
Xmis had been observed, then inferences for Q would
have been based on the complete-data posterior den-
sity p(Q|Xobs, Xmis). Because Xmis is not observed,
inferences are based on the actual posterior density
p(Q|Xobs), which can be expressed as

p(Q|Xobs)=
∫

p(Q|Xobs, Xmis)p(Xmis|Xobs) dXmis.

(1)

Eq. (1) shows that the actual posterior density of
Q can be obtained by averaging the complete-data
posterior density over the posterior predictive dis-
tribution of Xmis. In principle, multiple imputations
are repeated independent draws from p(Xmis|Xobs).
Thus, multiple imputation allows the data analyst to
approximate (1) by separately analyzing each data
set completed by imputation and then combining the
results of the separate analyses.

Analyzing a Multiply Imputed Data Set

The exact computation of the posterior distri-
bution (1) by simulation would require that an
infinite number of values of Xmis be drawn
from p(Xmis|Xobs). This section summarizes simple
approximations to (1) that can be used when only
a small number of imputations of Xmis have been
drawn. Fortunately, as indicated earlier, these approx-
imations work very well in most practical situations.

Inferences for Scalar Q

Suppose that if the data were complete, inferences
for Q would be based on a point estimate Q̂, an
associated variance estimate Û , and a normal refer-
ence distribution. When data are missing and there
are M sets of imputations for the missing data, the
result is M sets of complete-data statistics, say Q̂m

and Ûm, m = 1, . . . , M .
Rubin & Schenker [24] suggested the following

procedure for drawing inferences about Q from the
multiply imputed data. The point estimate of Q is the
average of the M completed-data estimates,

Q =
M∑

m=1

Q̂m

M
,

and the associated variance estimate is

T = U + (1 + M−1)B,

where U = ∑M
m=1 Ûm/M is the average within-

imputation variance, and B =∑M
m=1(Q̂m − Q)2/

(M−1) is the between-imputation variance. The
approximate reference distribution for interval
estimates and significance tests is a t distribution
(see Student’s t Distribution) with degrees of
freedom

ν = (M − 1)(1 + r−1)2,

where r = (1 + M−1)B/U is the estimated ratio of
the between-imputation component of variance to the
within-imputation component of variance.

Significance Tests for Multicomponent Q

Consider an estimand Q with k > 1 components, and
suppose the goal is to obtain a significance level for a
null value of Q, say Q0. Multivariate analogs of the
expressions given in the previous section for scalar Q

have been derived by Rubin [22, Section 3.4] and Li
et al. [13] for the situation in which the complete-
data analysis that is applied to each completed data
set produces both a point estimate for Q and an
associated variance estimate. Meng & Rubin [16]
developed methods for likelihood-ratio testing when
the available information consists of point estimates
and evaluations of the complete-data log likelihood
ratio statistic as a function of these estimates and the
completed data. Asymptotically, the procedures of Li
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et al. [13] and the procedures of Meng & Rubin [16]
are equally accurate.

With large data sets and large models, such as
in the situation of a multiway contingency table,
the complete-data analysis might produce only a test
statistic and no estimates, unlike the situations con-
sidered by Rubin [22, Section 3.4], Li et al. [13],
and Meng & Rubin [16]. With such limited informa-
tion, Rubin [22, Section 3.5] provided initial methods
and Li et al. [12] developed improved methods that
require only the M complete-data chi-square statis-
tics (or equivalently the M complete-data P values)
that result from testing a null hypothesis about Q

using each of the M completed data sets. These
methods are less accurate than methods that use the
completed-data estimates.

Creating Multiple Imputations

Ideally, multiple imputations are M independent ran-
dom draws from the posterior predictive distribu-
tion of Xmis under appropriate Bayesian modeling
assumptions. Such imputations are called repeated
imputations in Rubin [22, Chapter 3]. In practice,
approximations are often used and work well.

Modeling Issues

Several important issues arise in the creation of
imputation models. These include the criticality of
predictive models, explicit vs. implicit models, and
ignorable vs. nonignorable models.

An initial modeling issue in creating imputations
(see, for example, Little’s discussion [14] of single
and multiple imputation) is that the predictive distri-
bution for the missing values should be conditional
on all observed values. This consideration is partic-
ularly important in the context of a public-use data
base. Omitting a variable from the imputation model
is equivalent to assuming that the variable is not
associated with the variables being imputed, at least
conditionally given all other variables in the model;
imputing under this assumption can result in biases
in subsequent analyses, with estimated parameters
representing conditional association pulled toward
zero. Because it is not known which analyses will
be carried out by subsequent users of a public-use
data base, ideally it is best not to omit any variables
from the imputation model. It is usually infeasible,

of course, to incorporate every available variable,
including interactions, into an imputation model,
but it is desirable to condition imputations on as
many variables as possible and to use subject-matter
knowledge to help select those variables that are
likely to be used together in subsequent complete-
data analyses.

Imputation procedures can be based on explicit
models or implicit models, or even combinations (see,
for example, [22, Chapter 5] and [26]). An example
of a procedure based on an explicit model is stochas-
tic normal regression imputation, where imputations
for missing values are created by adding normally
distributed errors to predicted values obtained from
a least-squares regression fit. A common type of
procedure based on implicit models is hot deck impu-
tation, which replaces the missing values for an
incomplete case by the values from a matching com-
plete case, where the matching is carried out with
respect to variables that are observed for both the
incomplete case and complete cases (see Missing
Data Estimation, “Hot Deck” and “Cold Deck”).

Rather than attempting to match cases exactly
in hot deck imputation, sometimes it is useful to
define a distance function on the basis of variables
that are observed for both complete and incomplete
cases and then to impute values for each incom-
plete case from a complete case that is close with
respect to this distance. In practice, the function may
not be a mathematical “distance” (i.e. it can be zero
without all components exactly matching). When the
distance function is the absolute value of the differ-
ence between the nonrespondent’s and respondent’s
predicted values of the variables to be imputed, the
matching procedure is termed predictive mean match-
ing [9, 14, 21, 33]. Hot deck imputation using pre-
dictive mean matching on the basis of an explicit
prediction model (e.g. normal linear regression) is an
example of an imputation procedure that combines
aspects of both an implicit method and an explicit
method.

The model underlying an imputation procedure,
whether explicit or implicit, can be based on the
assumption that the reasons for missing data are
either ignorable or nonignorable [18]. The distinc-
tion between an ignorable and a nonignorable model
can be illustrated by a simple example with two
variables, X and Y , where X is observed for all
cases, whereas Y is sometimes missing. Ignorable
models assert that a case with Y missing is only
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randomly different from a complete case having the
same value of X. Nonignorable models assert that
there are systematic differences between an incom-
plete case and a complete case even if they have
identical X values. An important issue with nonig-
norable models is that because the missing values
cannot be observed, there is no direct evidence in
the data to address the assumption of nonignorabil-
ity. It can be important, therefore, to consider several
alternative models and to explore a sensitivity anal-
ysis of resulting inferences to the choice of model.
In current practice, almost all imputation models are
ignorable; limited experience suggests that in major
surveys with limited amounts of missing data and
careful design, ignorable models are satisfactory for
most analyses (see, for example, [28]).

Incorporating Proper Variability

Multiple imputation procedures that incorporate app-
ropriate variability across the M sets of imputations
within a model are called proper in [22, Chapter 4],
where precise conditions for a method to be proper
are also given. Rubin [23] provides more intuitive
statements of the conditions, and Meng [15] discusses
closely related issues. Because, by definition, proper
methods reflect sampling variability correctly, infer-
ences based on the multiply-imputed data are valid
from the standard repeated-sampling (i.e. design-
based) frequentist perspective.

One important principle related to incorporating
appropriate variability is that imputations should be
random draws rather than best predictions. Imput-
ing best predictions can lead to distorted estimates
of quantities that are not linear in the data, such as
measures of variability and correlation, and it gener-
ally results in severe underestimation of uncertainty
and therefore invalid inferences.

For imputations to be proper, the variability due
to estimating the model must be reflected along with
the variability of data values given the estimated
model. For this purpose, a two-stage procedure is
often useful, as we now explain. Suppose that a
Bayesian predictive distribution for Xmis has been
formulated using a parameter β. Then the posterior
predictive density, which appears on the right-hand
side of (1), can be expressed as

p(Xmis|Xobs) =
∫

p(Xmis|Xobs, β)p(β|Xobs) dβ,

(2)

where p(β|Xobs) is the posterior distribution of β, and
p(Xmis|Xobs, β) is derived from a parametric model
for the data (e.g. normal linear regression, loglinear).
It can be seen from (2) that a draw of a value of
Xmis from its posterior predictive distribution can be
obtained by first drawing a value of β from its pos-
terior distribution and then drawing a value of Xmis

conditional on the drawn value of β. Fixing β at a
point estimate (e.g. the maximum likelihood esti-
mate), say β̂, across the M imputations and drawing
Xmis from p(Xmis|Xobs, β̂), generally leads to infer-
ences based on the multiply imputed data that are
too sharp, as shown, for example, in [22, Chap-
ter 4], [24], and [25].

The two-stage paradigm can be followed in the
context of nonparametric methods such as hot
deck imputation as well as in the context of para-
metric models with formal posterior distributions
for β. The simple hot deck procedure that ran-
domly draws imputations for incomplete cases from
matching-complete cases is not proper because it
ignores sampling variability owing to the fact that
the population distribution of complete cases is not
known but rather is estimated from the complete
cases in the sample. Rubin & Schenker [24, 26] dis-
cuss the use of the bootstrap [4] to make the hot
deck procedure proper, and call the resulting pro-
cedure the approximate Bayesian bootstrap, since
it approximates the Bayesian bootstrap [20]. The
two-stage procedure first draws a bootstrap sample
from the complete cases and then draws imputa-
tions randomly from the bootstrap sample. Thus,
bootstrap sampling from the complete cases before
drawing imputations is a nonparametric analog of
drawing values of the parameters of the imputa-
tion model from their posterior distribution before
imputing conditionally upon the drawn parameter
values. The bootstrap has also been used in conjunc-
tion with parametric models in multiple imputation
in an effort to produce imputations that reflect the
variability due to estimating the parametric mod-
els [3, 9].

Choice of M

Another issue to be discussed when multiple
imputations are to be created is the choice of M .
This choice involves a trade-off between simulating
more accurately the posterior distribution (2), as is
possible with larger values of M , vs. using a smaller
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amount of computing and storage, as occurs with
smaller values of M . The effect of the value of M on
accuracy depends on the fraction of information about
the estimand Q that is missing, a quantity defined
in [22, Chapters 3 and 4]. With ignorable missing
data and just one variable, the fraction of missing
information is simply the fraction of data values
that are missing. When there are several variables,
however, the fraction of missing information is often
smaller than the fraction of cases that are incomplete
because of the ability to predict missing values from
observed values.

For the moderate fractions of missing information
(<30%) that occur with most analyses of data from
most large surveys, Rubin [22, Chapter 4] showed
that a small number of imputations (say, M = 3 or
4) results in nearly fully efficient estimates of Q. In
addition, Rubin & Schenker [24], Rubin [22, Chap-
ter 4], and Li et al. [13] have shown that if proper
multiple imputations are created, then the result-
ing inferences generally have close to their nomi-
nal coverages or significance levels, even when the
number of imputations is moderate. A substantial
body of work [2, 9, 24, 34], and additional publica-
tions cited in [23], supports these claims in practical
cases.

Use of Iterative Simulation Techniques

Recent developments in iterative simulation, such
as data augmentation [35] and Gibbs sampling [6,
7] (see Markov Chain Monte Carlo), can facili-
tate the creation of multiple imputations in compli-
cated parametric models. Consider a joint model for
Xobs and Xmis governed by a parameter, say θ . The
data augmentation (Gibbs sampling) procedure that
results in draws from the posterior distribution of
θ produces multiple imputations as well. Let θ(t)

and X(t)
mis denote the draws of θ and Xmis at iter-

ation t in the Gibbs sample. At iteration t + 1, a
value θ(t+1) is drawn from p(θ |Xobs, X(t)

mis) and then
a value X(t+1)

mis is drawn from p(Xmis|Xobs, θ (t+1)).
As t approaches infinity, (θ(t), X(t)

mis) converges to a
draw from p(θ, Xmis|Xobs). Thus, for large t , X(t)

mis is
close to a draw from p(Xmis|Xobs) and can be used
as an imputation of Xmis in a multiple-imputation
scheme. Schafer [30] developed algorithms that use
iterative simulation techniques to multiply imputed
data when there are arbitrary patterns of missing data

and the missing-data mechanism is ignorable. Such
techniques are being considered for use in the 2000
census [29] and have been used in other contexts,
such as in National Center for Health Statistics
surveys [32].

Some Recent Applications of Multiple
Imputation in Health Care Research

To illustrate settings in which multiple imputation
can be useful, brief descriptions of several recent
applications of multiple imputation to health services
research are now given. References to many other
examples are given in [23].

Research on Health and Nutrition

Schafer et al. [32] used multiple imputation to han-
dle incomplete observations in the National Health
and Nutrition Examination Survey (NHANES) III.
Each NHANES is a national survey conducted by
the National Center for Health Statistics (NCHS) to
assess the health and nutritional status of the US
population and important subgroups. The data from
NHANES were obtained through household inter-
views and through standardized physical examina-
tions. The NHANES imputation project is significant
because it demonstrates the feasibility of generat-
ing proper multiple imputations for a public-use
sample survey with many observations and vari-
ables, high rates of missingness on several key
variables of interest, and various patterns of nonre-
sponse.

NHANES III and other NHANES were used in a
simulation study conducted by Ezzati-Rice et al. [5]
to evaluate the frequentist performance of model-
based multiple imputations in NCHS health exam-
ination surveys. The simulations were based on
a hypothetical population constructed from previ-
ous data sets to resemble populations surveyed by
NHANES. The hypothetical population contained
17 variables, with both categorical and continuous
variables.

From the hypothetical population, 1000 samples,
each with missing values and five imputations of
the missing values, were generated by a three-step
process: (i) stratified samples were drawn to mimic
some of the characteristics of NHANES sampling
designs; (ii) for each generated sample, missing data
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patterns were imposed on the sample using an ignor-
able missing data mechanism that utilized missing
data patterns observed in NHANES III; (iii) for
each incomplete sample, five imputations of the
missing data were generated under a general loca-
tion model for the complete data, which is popular
when there are both categorical and continuous vari-
ables.

Ezzati-Rice et al. [5] studied the validity of multi-
ple-imputation interval estimates for population and
subdomain means and proportions. Their results indi-
cated that the imputation model was successful in
creating valid design-based repeated-sampling infer-
ences. In other words, the interval estimates had at
least nominal coverage for a wide range of estimands.

Research on AIDS

Taylor et al. [36] applied multiple imputation in a
project whose goal was to estimate the distribution
of times from human immunodeficiency virus (HIV)
seroconversion to the onset of acquired immune defi-
ciency syndrome (AIDS) from a four-year, multicen-
tered cohort study of homosexual and bisexual men
in the US. The subjects in the study were divided into
two cohorts: (i) those men who were already infected
with HIV when enrolled in the study (the “seropos-
itives”); and (ii) those men who became infected
during the follow-up period (the “seroconverters”).
The seropositive cohort presents the difficulty that the
times of seroconversion are unknown for its mem-
bers, whereas the seroconverter cohort presents the
difficulty that the dates of diagnosis with AIDS are
unknown for most of its members owing to the 4-year
follow-up time.

To alleviate these difficulties, Taylor et al. [36]
multiply imputed the date of diagnosis with AIDS
for the seroconverters who were AIDS-free during
the follow-up period, using a failure time regression
model (see Survival Analysis, Overview) that was
estimated from the data for the seropositive cohort.
The covariates in the regression model were cho-
sen so that the time to AIDS diagnosis, given the
covariates, could be considered nearly independent
of the time since HIV infection. Each data set for
the seroconverters that was completed by imputa-
tion was analyzed using Kaplan–Meier estimation
and Greenwood’s formula. The completed-data esti-
mates were then combined to obtain an estimate of
the distribution of times from HIV seroconversion to

AIDS diagnosis. In this example, multiple imputation
helped to “extend” the study period, so that esti-
mates and assessments of variability were possible
for longer follow-up times.

Research on Malnutrition

In studies of malnutrition, it is of interest to estimate
the percentage of children who are short for their
ages (“stunted”) as well as the percentage of children
who are light for their heights (“wasted”), where the
comparison is made with a sample of normal, healthy
children. Such estimation is difficult when the ages
of the children in a study are reported with accuracy
only to the nearest year or half-year; this inaccurate
age reporting is called age heaping.

Heitjan & Rubin [10] considered a data set for a
sample of children under 6 years of age from the
Dodoma region of Tanzania. To deal with the appar-
ently large amount of age heaping in this data set,
Heitjan & Rubin [10] multiply imputed the true ages
of the children. Two methods were explored for pur-
poses of sensitivity analysis: (i) a simple procedure in
which a child’s age was imputed uniformly from an
interval determined from the reported age; and (ii) a
complex procedure in which the age-heaping process
and the true age were modeled simultaneously using
the sex, body measurements, and reported age of the
child. The resulting estimates displayed some sensi-
tivity to assumptions about whether the ages were
rounded or truncated as well as assumptions about
the width of the interval within which the ages were
heaped to one reported age. The multiple-imputation
inferences were, however, more similar to each other
than to the inferences obtained using any method
based on single imputation, which cannot reflect the
proper uncertainty about the missing true ages.

Research on Hip Replacement

Dorey et al. [3] considered data on patients at UCLA
Medical Center who had received a total hip arthro-
plasty. The routine follow-up of each such patient
includes evaluations of radiographs to determine
whether the prosthesis is loosening. When certain
measurements from the radiographs pass a prespec-
ified threshold, the prosthesis is considered to be at
increased risk of loosening. A patient who is past this
threshold at a follow-up visit frequently did not reach



Multiple Imputation Methods 7

this threshold by the previous visit. Thus, the time at
which the threshold has been crossed is known only
to be between two time points, a phenomenon known
as interval censoring.

A standard practice for dealing with interval cen-
soring has been to set each unknown value of the
threshold-crossing time equal to the right endpoint of
the known interval that contains it. Dorey et al. [3]
compared this practice with approaches that multiply
impute the threshold-crossing time within the inter-
val, including a method that uses the radiographic
measurements at the endpoints of the interval to pre-
dict when during the interval the threshold had been
crossed. It was found that subsequent analyses were
sensitive to whether imputations were created by the
standard practice, or from a distribution over the
interval.

Research on Drinking Behavior

Glynn et al. [8] examined data from the Normative
Aging Study, a longitudinal study of community-
dwelling men conducted by the US Department of
Veterans affairs in Boston. Part of the study was a sur-
vey on drinking behavior. A large fraction of the men
surveyed provided essentially complete information,
whereas for a smaller fraction there was background
information available but no information on drinking
behavior. Because drinking behavior is a sensitive
subject, there was concern that such nonresponse
might be nonignorable.

A subsequent survey collected information on
drinking behavior from about one-third of the prior
nonrespondents. Glynn et al. [8] used this informa-
tion to multiply impute data on drinking for the
remaining nonrespondents, under the assumption that
given this new information as well as the background
information that had been collected previously, non-
response was now ignorable. It was found that infer-
ences about the effect of retirement status on drinking
behavior (adjusting for age) were very sensitive to
whether the multiply-imputed data were used, or,
rather, only the data for the initial respondents to the
survey were used.

Available Software for Multiple
Imputation

There is currently only a limited amount of
software for generating multiple imputations under

multivariate complete-data models and for analyzing
multiply imputed data sets (i.e. completing the
data sets, running the complete-data analyses, and
combining the complete-data outputs), but the
situation appears to be improving rapidly. For
generating imputations, software to implement the
methodology developed in [30] has been written
for the S-PLUS statistical package and is freely
available on the internet. This software, which will
also be expanded and incorporated into S-PLUS as
a commercial add-on module to the base S-PLUS
software, includes programs for multiple imputation
in the contexts of incomplete multivariate normal
data, incomplete categorical data, and incomplete
data under the general location model allowing both
categorical and multivariate normal variables. These
programs have been used to generate imputations
for NHANES III [32] and for several other multiple
imputation projects. For analyzing multiply imputed
data sets, a suite of programs for the Stata statistical
package has been developed by J. Barnard and will
be freely available on the Internet.

More software for generating multiple imputations
and for analyzing multiply imputed data sets should
be shortly available. Several packages, both commer-
cial and freeware, are currently under development
for generating imputations, e.g. M by J. Barnard,
C. Liu, and D.B. Rubin and software within HER-
MES [1]. A project is also under way to develop
multiple-imputation analysis software for SAS (see
Software, Biostatistical).

Acknowledgment

This article is a modification and expansion of [27]. The
work was supported in part by grants CA 64235 from
the National Cancer Institute and DMS-970 5158 from the
National Science Foundation.

References

[1] Brand, J., van Buuren, S., van Mulligen, E.M., Tim-
mers, T. & Gelsema, E. (1994). Multiple imputation as
a missing data machine, in Proceedings of the Eighteenth
Annual Symposium on Computer Applications in Medi-
cal Care (SCAMC). Hanley & Beflus, Philadelphia, pp.
303–307.

[2] Clogg, C.C., Rubin, D.B., Schenker, N., Schultz, B. &
Weidman, L. (1991). Multiple imputation of industry and
occupation codes in census public-use samples using



8 Multiple Imputation Methods

Bayesian logistic regression, Journal of the American
Statistical Association 86, 68–78.

[3] Dorey, F.J., Little, R.J.A. & Schenker, N. (1993). Mul-
tiple imputation for threshold-crossing data with inter-
val-censoring, Statistics in Medicine 12, 1589–1603.

[4] Efron, B. (1979). Bootstrap methods: another look at the
jackknife, Annals of Statistics 7, 1–26.

[5] Ezzati-Rice, T.M., Johnson, W., Khare, M., Lit-
tle, R.J.A., Rubin, D.B. & Schafer, J.L. (1995). A
simulation study to evaluate the performance of mul-
tiple imputation in NCHS Health Examination Survey,
in Bureau of the Census Proceedings of the 1995 Annual
Research Conference. US Bureau of the Census, Wash-
ington, pp. 257–266.

[6] Gelfand, A.E. & Smith, A.F.M. (1990). Sampling-based
approaches to calculating marginal densities, Journal of
the American Statistical Association 85, 972–985.

[7] Geman, S. & Geman, D. (1984). Stochastic relaxation,
Gibbs distribution, and the Bayesian restoration of
images, IEEE Transactions on Pattern Analysis and
Machine Intelligence 6, 721–741.

[8] Glynn, R., Laird, N. & Rubin, D.B. (1993). The perfor-
mance of mixture models for nonignorable nonresponse
with follow ups, Journal of the American Statistical
Association 88, 984–993.

[9] Heitjan, D.F. & Little, R.J.A. (1991). Multiple impu-
tation for the fatal accident reporting system, Applied
Statistics 40, 13–29.

[10] Heitjan, D.F. & Rubin, D.B. (1990). Inference from
coarse data via multiple imputation with application
to age heaping, Journal of the American Statistical
Association 85, 304–314.

[11] Herzog, T.N. & Rubin, D.B. (1983). Using multiple
imputations to handle non-response in sample surveys, in
Incomplete Data in Sample Surveys, Vol. 2: Theory and
Bibliographies, W.G. Madow, I. Olkin & D.B. Rubin,
eds. Academic Press, New York, pp. 209–245.

[12] Li, K.H., Meng, X.L., Raghunathan, T.E. & Rubin, D.B.
(1991). Significance levels from repeated p values with
multiply-imputed data, Statistica Sinica 1, 65–92.

[13] Li, K.H., Raghunathan, T.E. & Rubin, D.B. (1991).
Large sample significance levels from multiply-imputed
data using moment-based statistics and an F reference
distribution, Journal of the American Statistical Associ-
ation 86, 1065–1073.

[14] Little, R.J.A. (1988). Missing data in large surveys (with
discussion), Journal of Business and Economic Statistics
6, 287–301.

[15] Meng, X.L. (1994). Multiple imputation with uncon-
genial sources of input (with discussion), Statistical
Science 9, 538–573.

[16] Meng, X.L. & Rubin, D.B. (1992). Performing like-
lihood ratio tests with multiply imputed data sets,
Biometrika 79, 103–111.

[17] Rao, J.N.K. & Shao, J. (1992). Jackknife variance
estimation with survey data under hot deck imputation,
Biometrika 79, 811–822.

[18] Rubin, D.B. (1976). Inference and missing data,
Biometrika 63, 581–592.

[19] Rubin, D.B. (1978). Multiple imputations in sample
survey-a phenomenological Bayesian approach to
nonresponse, in American Statistical Association 1978
Proceedings of the Section on Survey Research Methods.
American Statistical Association, Alexandria, pp.
20–34.

[20] Rubin, D.B. (1981). The Bayesian bootstrap, Annals of
Statistics 9, 130–134.

[21] Rubin, D.B. (1986). Statistical matching using file con-
catenation with adjusted weights and multiple impu-
tation, Journal of Business and Economic Statistics 4,
87–94.

[22] Rubin, D.B. (1987). Multiple Imputation for Nonre-
sponse in Surveys. Wiley, New York.

[23] Rubin, D.B. (1996). Multiple imputation after 18+
years, Journal of the American Statistical Association 91,
473–489.

[24] Rubin, D.B. & Schenker, N. (1986). Multiple imputation
for interval estimation from simple random samples
with ignorable nonresponse, Journal of the American
Statistical Association 81, 366–374.

[25] Rubin, D.B. & Schenker, N. (1987). Interval estimation
from multiple imputed data: a case study using agri-
culture industry codes, Journal of Official Statistics 3,
375–387.

[26] Rubin, D.B. & Schenker, N. (1991). Multiple imputa-
tion in health-care data bases: an overview and some
applications, Statistics in Medicine 10, 585–598.

[27] Rubin, D.B. & Schenker, N. (1997). Imputation, in Ency-
clopedia of Statistical Sciences, Vol. 2, S. Kotz, C. Read,
& D. Banks, eds. Wiley, New York.

[28] Rubin, D.B., Stern, H.S. & Vehovar, V. (1995). Han-
dling “don’t know” survey responses: the case of the
Slovenian plebiscite, Journal of the American Statistical
Association 90, 822–826.

[29] Schafer, J.L. (1995). Model-based imputation of census
short-form items, in Bureau of the Census Proceedings
of the 1995 Annual Research Conference. US Bureau of
the Census, Washington, pp. 267–299.

[30] Schafer, J.L. (1997). Analysis of Incomplete Multivariate
Data. Chapman & Hall, London.

[31] Schafer, J.L. & Schenker, N. (1991). Variance estimation
with imputed Means, in American Statistical Association
1991 Proceedings of the Section on Survey Research
Methods. American Statistical Association, Alexandria,
pp. 696–701.

[32] Schafer, J.L., Khare, M. & Ezzati-Rice, T.M. (1993).
Multiple imputation of missing data in NHANES III, in
Bureau of the Census Proceedings of the 1995 Annual
Research Conference. US Bureau of the Census, Wash-
ington, pp. 459–487.

[33] Schenker, N. & Taylor, J.M.G. (1996). Partially paramet-
ric techniques for multiple imputation, Computational
Statistics & Data Analysis 22, 425–448.

[34] Schenker, N., Treiman, D.J. & Weidman, L. (1993).
Analysis of public-use data with multiply-imputed



Multiple Imputation Methods 9

industry and occupation codes, Applied Statistics 42,
545–556.

[35] Tanner, M.A. & Wong, W.H. (1987). The calculation of
posterior distributions by data augmentation (with dis-
cussion), Journal of the American Statistical Association
82, 528–550.
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Multiple Linear
Regression

Multiple linear regression represents a generaliza-
tion, to more than one explanatory variable, of the
method of analysis known as simple linear regres-
sion. The term “regression” was first introduced
by Galton [5, p. 246], who used it to characterize
a tendency towards mediocrity (i.e. more average)
observed in the offspring of parent seeds. Pearson
& Lee [7] also described the relationship between
the heights of father–son pairs as a regression, con-
cluding that the estimated slope of 0.516 provided
confirmation of Galton’s “law of universal regres-
sion”.

Today, Galton’s meaning of the term regression is
largely forgotten. In current usage, regression refers
to the body of statistical methods used to characterize,
quantitatively, the relationship between a response
(dependent, outcome) variable, Y , which varies ran-
domly, and one or more explanatory (independent,
predictor) variables, X1, . . . , Xk . The adjective “mul-
tiple” indicates that, initially, at least two explanatory
variables are involved in the modeling exercise. The
values of the explanatory variables are assumed to
be known, or under the control of an investigator.
However, in many applications the observed val-
ues of X1, . . . , Xk are also unknown, and may be
observed concurrently with Y . We assume that any
inherent variation in the measurement of a particu-
lar Xj, j = 1, . . . , k, can be ignored. If this is not
the case, we recommend the use of methods that
are appropriate when there is measurement error in
one or more explanatory variables (see Errors in
Variables). The individual explanatory variables may
be nominal (e.g. gender), categorical (e.g. different
types of disease), ordered categorical (e.g. tumor
grade), or interval or continuous (e.g. forced expi-
ratory volumes) (see Measurement Scale). Multiple
linear regression involves finding the best-fitting sur-
face that relates E(Y |X1, . . . , Xk), the mean value of
Y given values of X1, . . . , Xk , and X1, . . . , Xk , using
an equation with a suitable functional form, such as

E(Y |X1, . . . , Xk) = β0 + β1X1 + · · · + βkXk. (1)

As written, (1) characterizes the mean value,
E(Y |X1, . . . , Xk), as a linear (planar) function of
X1, . . . , Xk . In a sense, this may be an artifice of

notation, since X1 could represent the square root
of weight in kg, i.e. X1 = √

W . Likewise, Y could
be the logarithm of systolic blood pressure (SBP)
in mm Hg, i.e. Y = log(SBP), where SBP is the
outcome variable originally measured. Thus, the lin-
ear aspect of regression does not indicate that the
model linking E(Y |X1, . . . , Xk) and X1, . . . , Xk is
necessarily a straight-line (linear) function of the
explanatory variables. Rather, the average response,
E(Y |X1, . . . , Xk), is a linear function of the k + 1
unknown parameters β0, β1, . . . , βk . The model equa-
tion E(Y |Z) = β0 + β1Z + β2Z

2 is a special case of
(1) with X1 = Z and X2 = Z2, and represents the
multiple linear regression of Y on Z involving a
quadratic dependence between the average response,
E(Y |Z), and the explanatory variable, Z.

Whatever the functional form of the regression
model, the objectives of linear regression are:

1. to determine whether Y and one or more of
the explanatory variables are associated in some
systematic way, and/or

2. to estimate or predict the value of Y , or its mean,
corresponding to known values of a selected
subset of X1, . . . , Xk .

The analysis is based on estimates of the k + 1
unknown parameters, β0, β1, . . . , βk , and their statis-
tical properties when certain assumptions concerning
the randomly varying responses, Y , are thought to
be valid. The estimates of these parameters, which
are known as regression coefficients, are derived
from data – n(k + 1)-tuples (X1i , . . . , Xki, Yi), i =
1, . . . , n – using the classical method of least squ-
ares. However, before fitting a linear regression
model to data, it is wise to examine individual scat-
terplots of Y vs. X1, . . . , Xk to ensure that the func-
tional form of the proposed relationship is sensible
(see Graphical Displays).

Figure 1 shows six such scatterplots for measure-
ments of oxygen uptake, Y , in milliliters per kilo-
gram of body weight per minute vs. age, X1, in
years, weight, X2, in kilograms, time, X3, in min-
utes required to run 1.5 miles, resting pulse, X4, in
beats per minute, running pulse, X5, in beats per
minute, and maximum pulse, X6, recorded while run-
ning, in beats per minute. The measurements were
obtained from 31 subjects – 21 men (X7 = 1) and
10 women (X7 = 0) – who participated in a physi-
cal fitness workshop. For these data the notion that
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Figure 1 Scatterplots of oxygen uptake measurements, Y , vs. six explanatory measurements for a sample of 31 subjects:
(a) Y vs. age; (b) Y vs. weight; (c) Y vs. running time; (d) Y vs. resting pulse; (e) Y vs. running pulse; (f) Y vs. maximum
pulse
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average oxygen uptake depends, systematically, in a
roughly linear fashion on one or more of these poten-
tial explanatory variables seems plausible.

Least Squares Estimation

Every linear regression model consists of a systematic
component – the model equation, such as that
specified in (1) – and a residual (random, error)
component, ε. Equating the sum, β0 + β1X1 + · · · +
βkXk + ε, to Y defines the regression equation
for the response. The residual, ε = Y − β0 −
β1X1 − · · · − βkXk , represents the amount that an
observed value of Y deviates from the predicted
mean, β0 + β1X1 + · · · + βkXk . Few (k + 1)-tuples
(X1i , . . . , Xki, Yi), i = 1, . . . , n, in a given set of
data are likely to lie on the predicted plane. The
method of least squares identifies the unique values of
β0, . . . , βk that minimize the average of the squared
residuals. The details of the calculations, which are
readily handled by almost any software package that
includes statistical procedures, are best summarized
in terms of matrix notation. Let X denote the data
matrix, sometimes called the design matrix:





1 X11 X21 . . . Xk1

1 X12 X22 . . . Xk2

. . . . . . . . . . . . . . .

1 X1n X2n . . . Xkn





Each row in X represents the data obtained from
a case (study unit or subject), and each column
corresponds to an explanatory variable; the column
of 1s is usually inserted automatically by the sta-
tistical software, and corresponds to the constant
or intercept term, β0, unless the user specifically
chooses to omit it from the assumed model. If Y
denotes a column vector consisting of the corre-
sponding response measurements, Y1, . . . , Yn, then
the least squares estimator of the column vector, β,
with entries β0, β1, . . . , βk is

β̂ = (X ′X )−1X ′Y . (2)

This formula presupposes that the matrix X′X is non-
singular, i.e. that the k + 1 simultaneous equations
summarized in the single, least squares vector equa-
tion Y = Xβ have a unique solution in the k + 1
unknowns, β0, . . . , βk . When this is not the case,

most software packages provide the user with a suit-
able warning of problems encountered in evaluating
β̂. The equation of the estimated regression of Y on
X1, . . . , Xk is

Ŷ = β̂0 + β̂1X1 + · · · + β̂kXk.

To obtain estimates of β̂0, . . . , β̂k , we need to make
the minimal least squares assumptions that the resid-
uals, ε1, . . . , εn, are uncorrelated and have a mean
value of 0 and constant variance, σ 2. We use the
estimated residuals,

ε̂i = Yi − Ŷi = Yi − β̂0 − β̂1X1i − · · · − β̂kXki,

i = 1, . . . , n,

to estimate σ 2. The formula

s2 = σ̂ 2 = 1

n − k − 1

n∑

i=1

ε̂2
i ,

which involves
∑n

i=1 ε̂2
i , the estimated residual

sum of squares, emphasizes that k + 1 parameters,
β0, . . . , βk , are estimated; the divisor, n − (k + 1) =
n − k − 1, is known as the residual degrees of
freedom (df). Adoption of the additional assumption
that the residuals are normally distributed leads
to various statistical procedures that we discuss
subsequently. First, however, we examine linear
regression as an explanation for the observed
variability in the response, Y .

Partitioning the Variability in Y

In simple linear regression, the use of a single
explanatory variable to model E(Y |X) provides two
sources for the observed variability in Y – varia-
tion due to changes in X and hence in E(Y |X),
and residual variation in values of Y that have the
same X value and hence the same mean. In multiple
linear regression, each additional explanatory vari-
able incorporated into the model for E(Y |X1, . . . , Xk)

represents an additional, potential source for the
observed variability in the response. Since the total
variation in Y is fixed, and equal to

∑n
i=1(Yi −

Y )2, the inclusion of additional explanatory vari-
ables in the model for the mean value of Y nec-
essarily means that the magnitude of the estimated
residual variation – the estimated residual sum of
squares,

∑n
i=1 ε̂2

i – will decrease. Consequently, the
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estimated value of σ 2 tends to decrease also, as addi-
tional explanatory variables are added to the model
for the mean response. For example, in the regres-
sion of oxygen uptake on the explanatory variables
X1, . . . , X7, Table 1 shows that adding age, running
pulse, maximum pulse, gender, and weight to suc-
cessively more complex models involving running
time and all the previously used explanatory variables
results in monotonically smaller estimates of σ .

However, when resting pulse is added to the pre-
vious model, the value of s increases, even though
the model sum of squares increases (and hence the
residual sum of squares decreases) by 0.3. The change
in the model sum of squares associated with adding
resting pulse to the previous model is marginal at
best. Clearly, knowing a subject’s age, for example,
in addition to knowing the time he or she takes to run
1.5 miles, is informative in predicting that subject’s
oxygen uptake. However, the same subject’s resting
pulse does not provide important information about
what his or her oxygen uptake is likely to be when
the values of running time, age, running pulse, max-
imum pulse, gender, and weight have already been
used to predict oxygen uptake.

It can be shown that the partitioning of the vari-
ability in Y is represented in the equation

n∑

i=1

(Yi − Y)2 =
n∑

i=1

(Ŷi − Y )2 +
n∑

i=1

(Yi − Ŷi )
2,

which is alternately described by the relationship

total sum of squares = model sum of squares

+ residual sum of squares.

The partitioning that corresponds to any particular
model equation is usually summarized in an anal-
ysis of variance (ANOVA) table, such as the one
corresponding to the example shown in Table 2.

Table 2 ANOVA table corresponding to the regression
of oxygen uptake on the explanatory variables running
time, age, running pulse, maximum pulse, gender, and
weight for a sample of 31 subjects

Source SS df MS F ratio

Model 729.1 6 121.52 23.8
Residual 122.3 24 5.10

Total 851.4 30

The ratio of the model sum of squares to the
total sum of squares is called R2, and represents the
proportion of the observed variability in Y that is
accounted for by modeling the mean response for Y

as the assumed function of the explanatory variables
in the model equation for E(Y |X1, . . . , Xk).

Interpreting the Estimated Regression
Coefficients

If two values of one of the explanatory variables,
say Xj , differ by one unit, then the corresponding
values of the model equation differ by βj , provided
the values of all the other explanatory variables in a
model equation remain the same. Therefore, β̂j rep-
resents the estimated change in the mean response
associated with a unit increase in the correspond-
ing explanatory variable, provided the values of
X1, . . . , Xj−1, Xj+1, . . . , Xk do not change. Similar
interpretations apply to each of the regression coeffi-
cients, βi, i = 1, . . . , k, in any postulated regression
model similar to (1). Of course, each estimated coeffi-
cient and its interpretation are only applicable within
the range of values of the corresponding explanatory
variable that was used in fitting the linear regression
model.

The value β0 represents the mean response when
all the explanatory variables in the regression model
are equal to 0. In most cases, this mean response will

Table 1 Successive partitions of the observed variability in oxygen uptake measurements into the systematic (model) and
residual components, as a result of incorporating additional explanatory variables in the model equation

Subscripts of explanatory variables in the model equation for E(Y )

3 1,3 1,3,5 1,3,5,6 1,3,5,6,7 1,2,3,5,6,7 1,2,3,4,5,6,7

Model 632.9 650.7 690.6 712.5 723.1 729.2 729.5
Residual 218.5 200.7 160.8 138.9 128.3 122.2 121.9
Residual df 29 28 27 26 25 24 23
s 2.74 2.68 2.44 2.31 2.27 2.26 2.30



Multiple Linear Regression 5

be of no interest to the investigator, or may not belong
to the range of values of X1, . . . , Xk used in fitting the
model to data. Armitage & Berry [1, pp. 313–314]
show that β̂0 is equal to y − β̂1x1 + · · · + β̂kxk . This
result leads to an alternative form for the fitted model,
namely

Ŷ = y + β̂1(X1 − x1) + · · · + β̂k(Xk − xk),

which reveals that the estimated mean response when
Xj = xj , j = 1, . . . , k, is simply the sample mean
of Y . More than likely, this estimate will have a
scientific meaning that an investigator can interpret
sensibly.

If a regression model containing X1, X3, and X5 is
fitted to the oxygen uptake data discussed previously,
the estimates of β1, β3, and β5 are −0.26, −2.83, and
−0.13, respectively. From these data we conclude
that 2.83 ml per kg of body weight per min is the
estimated decrease in mean oxygen uptake associated
with a 1 min increase in the time that a subject takes
to run 1.5 miles, provided age and running pulse
are unchanged. Likewise, 0.26 ml per kg of body
weight per min is the estimated decrease in mean
oxygen uptake associated with a one-year increase
in age, provided running time and running pulse do
not change. At an age of x1 = 27.7 years, a running
time for 1.5 miles of x3 = 10.6 min, and a running
pulse of x5 = 170 beats per min, the estimated mean
oxygen uptake among these subjects is y = 47.4 ml
per kg of body weight per min.

Of course, with seven potential explanatory vari-
ables, we require some systematic way of determining
which of the 27 = 128 possible models involving
X1, . . . , X7 represents the most satisfactory summary
of the observed data. Various model or explanatory
variable selection strategies have been developed.
Some strategies depend only on the minimal, least
squares assumptions, while others rely on the more
powerful, and therefore more restrictive, additional
premise that Y1, . . . , Yn are normally distributed. In
the following section we describe a method of win-
nowing the set of all possible regression models
involving the explanatory variables X1, . . . , Xk into
a shortlist of two or three, based solely on the least
squares requirements of uncorrelated residuals with
a common mean of 0 and constant variance repre-
sented by σ 2. Thereafter, we introduce the normal

theory assumptions, and consequent methods of sta-
tistical inference, that provide a basis for differenti-
ating among alternatives on the shortlist of candidate
models for the data.

Identifying Good Candidate Models Based
on all Possible Subsets

Only the advent of modern, high-speed computing,
and the widespread availability of carefully writ-
ten statistical software, has made the use of this
approach to model selection feasible for many users.
We do not intend to provide any details concern-
ing the actual calculations involved, assuming that
the interest of readers is focused elsewhere. It suf-
fices to state that the result of the calculations is
a table of all possible models, or perhaps a subset
of all possible models, in which each candidate for
the shortlist is identified by the list of explanatory
variables it contains and the values of one or more
criteria to use in comparing various candidates. Such
a table is usually organized according to the num-
ber of explanatory variables used. For the oxygen
uptake example, there is one model containing none
of X1, . . . , X7, seven possible models consisting of
just one explanatory variable, 21 involving a pair of
variables, 35 that employ three variables, a further
35 using a total of four of the k Xs, another 21 that
depend on five explanatory variables, an additional
seven that omit exactly one of X1 through X7, and
one so-called full model that consists of all seven
explanatory variables.

Three distinct but related numerical criteria are
generally used to rank candidate models involving
the same number of explanatory variables, and also
to distinguish among the best models involving dif-
ferent numbers of explanatory variables. These are:
(i) R2(p), (ii) s2(p), and (iii) Mallow’s Cp statis-
tic [6]. The dependence of each of these quantities
on the variable p emphasizes that the value obtained
changes according to p, the number of explanatory
variables in the candidate model, as well as the choice
of the particular subset of p explanatory variables
from the full set of k Xs.

We noted previously that each time an additional
explanatory variable is added to a model previously
fitted, the model sum of squares increases, and hence
the residual sum of squares decreases. Since R2 is
the ratio of the model sum of squares to the total
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sum of squares, R2(p) will increase as p increases.
In general, s2(p) decreases, although, as we have
already seen in the example, the value may achieve
a minimum for some value of p < k. Like s2(p), the
Cp statistic usually decreases initially as p increases,
although it is common that the value of Cp is mini-
mized for some p < k. Models that are candidates
for the shortlist typically have values of Cp that
approach p. For the example discussed in this article,
Table 3 provides a shortlist of two candidate models
for each value of p, and summarizes the values of
R2(p), s2(p), and Cp that were used to select these
candidate models for further consideration.

To distinguish further among the various possibil-
ities, we require statistical procedures that allow us to
determine whether or not the contributions that par-
ticular explanatory variables make to a given model
are important when compared with σ̂ , the estimated
residual variability for observations.

Statistical Inference in Multiple Linear
Regression

We assume that the goal in multiple linear regression
modeling is to identify a fitted model that provides
reasonably precise estimates of the mean response
using a parsimonious set of explanatory variables.
If we also assume that the residuals, ε1, . . . , εn, are

normally distributed, the estimators of β0, . . . , βk

have normal sampling distributions. Estimated stan-
dard errors (est se) for β̂0, . . . , β̂k are routinely
produced by most computing packages. For each
explanatory variable included in the model equation,
the ratio of the difference, β̂j − βj , to its correspond-
ing estimated standard error follows a Student’s t
distribution with n − (k + 1) = n − k − 1 df, where
k corresponds to the number of explanatory variables
in the fitted model under consideration. From these
results, hypothesis tests and/or confidence intervals
for β0, . . . , βk can be evaluated. These tools will
allow us to determine whether or not the associa-
tion between Y and a particular explanatory variable,
Xj , in a given fitted model is real (βj �= 0).

The same assumptions also lead to the result
that the sampling distribution of Y is normal, and
the corresponding estimated standard error is s/

√
n,

where s2 = σ̂ 2.
A test of the null hypothesis, H0 : βj = 0, is

routinely used to assess the significance of the regres-
sion with respect to the explanatory variable Xj ,
i.e. to determine whether the data constitute statis-
tical evidence of an association between Y and Xj .
This test can be based either on the ratio β̂j /est
se (β̂j ), which has a Student’s t distribution with
n − k − 1 df, or on [β̂j /est se (β̂j )]2, which has an
F distribution with 1 and n − k − 1 df.

Table 3 Shortlists of candidate models involving p explanatory vari-
ables for the regression of 31 oxygen uptake measurements on age,
X1, weight, X2, running time, X3, resting pulse, X4, running pulse, X5,
maximum pulse, X6, and gender, X7

Corresponding values of
p Explanatory variables included

in the model equation R2(p) s2(p) Cp

1 X3 0.743 7.53 14.1
X5 0.159 24.71 108.0

2 X1, X3 0.764 7.17 12.8
X3, X5 0.761 7.25 13.3

3 X1, X3, X5 0.811 5.96 7.3
X3, X5, X6 0.810 5.99 7.5

4 X1, X3, X5, X6 0.837 5.34 5.2
X1, X3, X5, X7 0.836 5.37 5.3

5 X1, X3, X5, X6, X7 0.849 5.13 5.2
X1, X2, X3, X5, X6 0.848 5.18 5.4

6 X1, X2, X3, X5, X6, X7 0.856 5.10 6.0
X1, X3, X4, X5, X6, X7 0.856 5.35 7.2
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With respect to the example, Table 3 indicates that
good models involving three, four, or five explana-
tory variables all include running time, X3, running
pulse, X5, age, X1, and one or both of maximum
pulse, X6, and gender, X7. Table 4, part (a), summa-
rizes the results of fitting a model that contains all five
explanatory variables. Neither the regression coeffi-
cient for maximum pulse nor that for gender is sig-
nificantly different from 0; however, the significance
levels (see P Value) corresponding to coefficients

associated with the remaining three explanatory vari-
ables are all less than 0.05. These results suggest that,
for the oxygen uptake data, we probably want to con-
sider a model that involves running time, running
pulse, and age, but perhaps only one of the vari-
ables gender or maximum pulse. Table 4, part (b),
summarizes the results of fitting the two models that
involve running time, running pulse, age, and either
maximum pulse or gender. Based on these tabulated
results, we conclude that the contribution of either

Table 4 Results of fitting various multiple linear regression models to the
measurements on oxygen uptake (Y )

(a) Model involving age, X1, running time, X3, running pulse, X5,
maximum pulse, X6, and gender, X7

Estimated Estimated
Explanatory regression standard Student’s Significance

variable coefficient error t statistic level

X1 −0.200 0.094 −2.137 0.04
X3 −2.872 0.342 −8.406 <10−4

X5 −0.354 0.115 −3.071 0.01
X6 0.206 0.139 1.485 0.15
X7 1.919 1.338 1.434 0.16

(b) Two models involving only four explanatory variables

Estimated Estimated
Explanatory regression standard Student’s Significance

variable coefficient error t statistic level

Model 1

X1 −0.198 0.096 −2.068 0.05
X3 −2.768 0.341 −8.127 <10−4

X5 −0.348 0.118 −2.963 0.006
X6 0.271 0.134 2.025 0.05

Model 2

X1 −0.241 0.092 −2.629 0.01
X3 −2.946 0.346 −8.523 <10−4

X5 −0.208 0.062 −3.365 0.003
X7 2.566 1.294 1.983 0.06

(c) Final model based on X1, X3, and X5

Estimated Estimated
Explanatory regression standard Student’s Significance

variable coefficient error t statistic level

X1 −0.256 0.096 −2.665 0.01
X3 −2.825 0.358 −7.886 <10−4

X5 −0.131 0.051 −2.588 0.02
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maximum pulse or gender in predicting the mean
oxygen uptake is marginal, once we have used the
information provided by a subject’s running time,
running pulse, and age. If, for the sake of model
parsimony, we decide to select as a final model one
involving just the three common explanatory vari-
ables running time, running pulse, and age, then we
obtain the estimated regression coefficients and corre-
sponding estimated standard errors given in Table 4,
part (c). The values of R2 and s2 for this model (see
Table 3) are 0.811 and 5.96, respectively, and the
equation of the fitted model is

Ŷ = 111.72 − 0.256X1 − 2.825X3 − 0.131X5. (3)

The individual 95% confidence intervals for β1, β3,
and β5 are (−0.45, −0.06), (−3.56, −2.09), and
(−0.23, −0.03), respectively. For Y , the correspond-
ing interval estimate is (46.5, 48.3) ml of oxygen per
kg of body weight per min.

Automatic Model Selection

Software packages frequently offer automatic meth-
ods of selecting variables for a final regression model
from a list of candidate variables. There are three
typical approaches, usually known as forward selec-
tion, backward elimination, and stepwise regression.
These methods rely on significance tests known as
partial F tests (see Analysis of Variance) to select
an explanatory variable for inclusion in or deletion
from the regression model. The forward selection
approach begins with an initial model that con-
tains only a constant term, i.e. E(Y |X1, . . . , Xk) =
β0, and successively adds explanatory variables to
the model from the set X1, . . . , Xk until the pool
of candidate variables remaining contains no vari-
ables that, if added to the current model, would
contribute information that is statistically important
concerning the mean value of the response. The
backward elimination method begins with an initial
model that contains all explanatory variables in the
list, and then identifies the single variable that con-
tributes the least information concerning the mean
value of the response, i.e. results in the smallest
decrease in the model sum of squares. If a partial
F test identifies that this contribution is not sta-
tistically significant, then the variable is eliminated
from the current model. Successive iterations of the
method result in a “final” model from which no

variable can be eliminated without adversely affect-
ing, in a statistical sense, the predicted value of the
mean response.

The stepwise regression method of variable/model
selection combines elements of both forward selection
and backward elimination. The initial model for step-
wise regression is one that contains only a constant
term. Subsequent cycles of the approach involve first
the possible addition of an explanatory variable to
the current model, followed by the possible elimina-
tion of one of the variables included in the newly
augmented model. Both steps in the cycle rely on
suitable partial F statistics. Succeeding cycles fol-
low the same pattern until the set of variables in the
model stabilizes, at which time a “final” model is
declared.

The results produced by any of these, or most
other, methods of automatic selection depend
crucially on various user-selected adjustments for
each procedure. For example, in forward selection
the user has to specify (or use the default value of)
a significance level to enter (SLE). This adjustment
represents a threshold value that determines whether
or not a candidate explanatory variable is eligible to
be added to the current model. For backward elimina-
tion, there is a corresponding significance level to stay
(SLS) – a threshold value that determines whether or
not an explanatory variable is a candidate for removal
from the current model. In stepwise regression, the
user needs to specify both an SLE and an SLS. For
example, if forward selection is used for the oxygen
uptake data with a value of 0.05 for SLE, the final
model involves age X1, running time, X3, and run-
ning pulse, X5. When SLE = 0.10, the final model
selected by forward selection also includes maxi-
mum pulse, X6. The use of forward selection with
the default value of SLE (0.50) built into one widely
used software package results in a final model con-
sisting of all the explanatory variables except resting
pulse X4.

A separate factor that influences the results of all
automatic methods of model selection in an unpre-
dictable fashion is the underlying correlation struc-
ture of the data. If two explanatory variables are
strongly correlated with one another, it is highly
unlikely that any of the usual automatic methods
of model selection will produce a final model that
includes both variables. This outcome is appropri-
ate, since curious statistical pathologies are likely to
occur if two highly correlated, and therefore nearly
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collinear, variables are simultaneously included in a
regression model. However, the final model that auto-
matic selection produces hides the fact that another
line of modeling exists based on the second of the
two highly correlated variables, and the end result of
pursuing that direction might be equally satisfactory,
statistically or scientifically, or perhaps even better.

In summary, automatic methods of model or vari-
able selection provide no guarantee of identifying a
“best” model in any overall scientific sense. Conse-
quently, we recommend that investigators treat the
results of an automatic approach to model selection
with a healthy measure of skepticism. In particular,
if there is no indication that the final model, no mat-
ter how it was arrived at, has been subjected to the
diagnostic scrutiny outlined in the next section, then
there are sound statistical grounds for questioning any
conclusions based on the results of the model-fitting
process.

Model Diagnostics

For simplicity, we assume that the result of a thought-
ful, comprehensive model-fitting strategy depends on
explanatory variables labeled X1, . . . , Xp. A fitted
regression model and associated statistical inferences
are based on various assumptions concerning the
functional form of the model for E(Y |X1, . . . , Xp)

and distributional properties of the residuals. Viola-
tions of these assumptions may invalidate conclusions
based on the regression analysis. Therefore, it is
essential to check these assumptions, using various
types of diagnostic plots.

The estimated residuals,

ε̂i = Yi − Ŷi = Yi − β̂0 − β̂1X1i − · · · − β̂pXpi,

i = 1, . . . , n,

play an essential role in model diagnostics. Many
computer packages offer the option of using these
ordinary residuals or the corresponding standardized
or studentized (see Studentization) residuals, which
have a common variance. Use of either of the latter
two is preferable, since the ε̂is do not all have the
same variance.

The following diagnostic plots furnish graphical
evidence that one or more of the model assumptions
may be contradicted by the data:

1. Residuals vs. the fitted values, Ŷi . An unsuitable
functional form is usually revealed by the sys-
tematic appearance of this plot, as is nonconstant
variance.

2. Residuals vs. the explanatory variables, Xi, i =
1, . . . , p. Systematic patterns in these plots can
indicate violations of the mean 0, constant vari-
ance assumptions, or an inappropriate model
form.

3. Normal probability plot of the residuals. This
plot checks the normal distribution assumption
on which all the statistical inference procedures
are based.

4. Residuals vs. the temporal/spatial order of data
collection. Unexpected regularity in this plot sug-
gests that the Yis may be correlated. To prepare
this diagnostic check, it is essential to record
the temporal/spatial ordering when data are first
collected.

5. Index plots (plot against case number) of the
leverages and Cook’s distance. The former are
a measure of the amount of influence exerted
on Ŷi by the corresponding observed response,
Yi . Cook’s distance is a summary measure of
the influence that each case exerts on the esti-
mated regression coefficients. These two diag-
nostic plots can reveal outliers (values of Y

that are anomalous with respect to the rest
of the data) or influential points (values of
(X1j , . . . , Xpj , Yj ) that strongly influence the
estimated values of β̂0, . . . , β̂p and s2).

Deviations from the expected (null) pattern in any of
these plots may indicate problems that require further
investigation or remedial action.

Various diagnostic plots for the oxygen uptake
example are displayed in Figure 2. These reveal that
two, or possibly three, of the observations are some-
what unusual relative to the rest of the data set.
Omitting the two most prominent points identified in
these plots from the data set results in a fitted model
that is little different from (3). In particular, only
the regression coefficient for run time, X3, changes
noticeably, increasing from −2.83 to −2.62; the cor-
responding change in the estimated standard error is a
reduction from 0.358 to 0.313. The stability of the fit-
ted model, despite the omission of possible influential
points, is reassuring.

Computer packages with good facilities for multi-
ple linear regression modeling routinely incorporate
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Figure 2 Diagnostic plots for the regression model Ŷ = 111.72 − 0.256X1 − 2.825X3 − 0.131X5 fitted to the oxygen
uptake measurements displayed in Figure 1: (a) estimated Studentized residuals (ε̂∗) vs. Ŷ ; (b) ε̂∗ vs. age; (c) ε̂∗ vs. running
time; (d) ε̂∗ vs. running pulse; (e) normal probability plot for ε̂∗; (f) index plot of Cook’s distance
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simple methods of preparing all the diagnostic plots
mentioned in the preceding list. For additional details
concerning model diagnostics, see [2] or [3]. Further
details concerning examination of the adequacy of a
fitted regression model are found in the article, Good-
ness of Fit.

Prediction

The problem of prediction using a fitted regres-
sion model can be posed in two distinct ways. For
example, a researcher may be interested in predicting
the mean value of the response, E(Y |X1, . . . , Xp),
in the subgroup of the study population defined by
the values X1 = x1, . . . , Xp = xp of the explanatory
variables. Under the assumption that the residuals in
the model are uncorrelated and normally distributed
with mean 0 and common standard deviation σ , this
mean value is a parameter of the resulting normal
distribution of responses in the subgroup. Hence, we
can obtain both point and interval estimates of µ′ =
E(Y |X1 = x1, . . . , Xp = xp). The former, which is
equal to

µ̂′ = β̂0 + β̂1x1 + · · · + β̂pxp,

is the least squares (and maximum likelihood)
estimate of the mean response, µ′, when X1 =
x1, . . . , Xp = xp , whereas the latter represents the
range of plausible values for µ′ that are consistent
with the observed data on which the fitted model
is based. Narrow interval estimates indicate that the
data and fitted model permit us to estimate µ′ rather
precisely; wider intervals reflect a greater degree of
uncertainty concerning the mean value of response in
this particular subgroup. It is possible to show, math-
ematically, that interval estimates for µ′ are always
narrowest in the observed center of the space defined
by X1, . . . , Xp , i.e. at X1 = x1 . . . , Xp = xp . At the
boundaries of the explanatory space, the estimated
standard error of µ̂′ is frequently substantially larger
than the corresponding estimated standard error at
X1 = x1, . . . , Xp = xp. For example, in the case of
the oxygen uptake data, the median values of age,
running time, and running pulse are 48, 10.47, and
170, respectively, and all three values are very close
to the corresponding observed means, 47.6, 10.58,
and 169.6. The estimated mean oxygen uptake for
runners in the study population whose age, running

time, and running pulse are equal to the median
values is

µ̂′ = 111.72 − 0.256(48) − 2.825(10.47)

− 0.131(170) = 47.6

ml per kg per min, and the corresponding estimated
standard error is 0.444. Thus, a 95% confidence
interval for the mean response among such individ-
uals is (46.7, 48.5) ml per kg per min. However,
among older, slower runners who are less fit, e.g.
X1 = 55, X3 = 13.63, X5 = 185, the estimated mean
oxygen uptake is only 34.9 ml per kg per min and
the corresponding estimated standard error is 1.322,
resulting in the much wider 95% confidence interval
(32.2, 37.6). This threefold increase in the estimated
standard error of µ̂′ reflects the increased uncertainty
that is a natural consequence of trying to predict
the mean oxygen uptake in a region of the space of
explanatory variables that is sparsely covered by the
observed data.

The second aspect of the prediction problem
concerns individual response measurements in the
subgroup of the study population defined by the
values X1 = x1, . . . , Xp = xp. Some authors recom-
mend that the predicted mean value for the subgroup
is a suitable point estimate for an individual response
as well; however, the estimated standard error for
a predicted response is greater than the correspond-
ing estimated standard error for the predicted mean
value, for reasons that we will subsequently explain.
We prefer to suggest that point estimates of individ-
ual responses, i.e. of Y for a subject with values
X1 = x1, . . . , Xp = xp of the explanatory variables
in the fitted regression model, cannot be determined,
since these would be observations from a normal dis-
tribution rather than characteristics (parameters) of
the distribution. However, interval estimates for indi-
vidual responses in the same subpopulation defined
by the values X1 = x1, . . . , Xp = xp can be evalu-
ated. Of necessity, these interval estimates will be
even wider than interval estimates for the correspond-
ing mean response. This is because, according to
the multiple linear regression model, an individual
response is the sum of a particular mean response
and a residual. Thus, to the uncertainty about the
location of the mean response in the subgroup we
need to add the uncertainty due to the residual asso-
ciated with an individual response, i.e. est se (Y ) =
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{[est se(µ̂)]2 + [est se(ε)]2}1/2 > est se(µ̂). To illus-
trate, consider runners in the example of those run-
ning pulses that have the median values 48, 10.47,
and 170, respectively. A 95% prediction interval
for an oxygen uptake measurement on a new run-
ner belonging to this particular subgroup is (42.5,
52.7) – roughly five times wider than the corre-
sponding 95% confidence interval of (46.7, 48.5) ml
per kg per min for the mean response among such
individuals. Also, attempting to predict individual
responses in regions of the space of explanatory
variables that are sparsely covered by the observed
data inevitably results in interval estimates that are
wider still. For example, a 95% prediction interval
for oxygen uptake among young, faster runners who
are quite fit, e.g. X1 = 40, X3 = 8.62, X5 = 154, is
(51.3, 62.6), whereas the corresponding interval esti-
mate for the mean response in the same subgroup is
(54.4, 59.5) ml per kg per min.

Most computer packages with well-designed rou-
tines for multiple linear regression modeling offer
users the option of computing suitable confidence
intervals for both aspects of the problem of predic-
tion, as well as point estimates of the mean response
for any set of values of the explanatory variables in
a fitted model.

Weighted Regression

A diagnostic plot may exhibit a systematic pat-
tern, suggesting that the variability of the estimated
residuals is not constant from one observation to
another. Alternatively, it may be known that some
of the observations in a set of data are less reliable,
i.e. more variable than the remaining observations
collected.

Whatever the reason, if the residuals, ε1, . . . , εn,
and hence the corresponding response measurements,
Y1, . . . , Yn, are correlated and/or do not all have
roughly the same standard deviation, σ , the least
squares estimator specified in (2) is no longer appro-
priate, since the minimal assumptions for least squares
estimation are not satisfied.

To illustrate the general solution to such prob-
lems, we consider the simple but artificial problem
of fitting a simple linear regression model, Yi =
β0 + β1Xi + εi, i = 1, . . . , n, when the residuals, εi ,
are uncorrelated but have different, known standard
deviations, σi, i = 1, . . . , n. If the standard deviations

were all the same, i.e. if σi = σ, i = 1, . . . , n, then
the ordinary (unweighted) least squares estimates of
β0 and β1 in this simple linear regression context
would be β̂1 = Sxy/Sxx and β̂0 = y − β̂1x, where
x = ∑n

i=1 xi/n, y = ∑n
i=1 yi/n,

Sxy =
n∑

i=1

xiyi − n−1

(
n∑

i=1

xi

)(
n∑

i=1

yi

)

and

Sxx =
n∑

i=1

x2
i − n−1

(
n∑

i=1

xi

)2

.

However, as we outline subsequently, when the stan-
dard deviations of the residuals are different, the
correct (weighted) least squares estimates of β1 and
β0 are

β̂1 =

n∑

i=1

wixiyi −
(

n∑

i=1

wixi

)(
n∑

i=1

wiyi

)

n∑

i=1

wix
2
i −

(
n∑

i=1

wixi

)2 (4)

and

β̂0 =
n∑

i=1

wiyi − β̂1

n∑

i=1

wixi, (5)

where wi = σ−2
i /

∑n
i=1 σ−2

i . Weighted least squares
estimation associates a weight, wi , 0 ≤ wi ≤ 1,∑n

i=1 wi = 1, with observation i, i = 1, . . . , n, and
these weights are inversely proportional to the
variances of the corresponding residuals. Thus,
the inherent reliability of each observation, which
is reflected in the variance of the corresponding
residual, directly determines the weight, and hence
the contribution, of that observation to the estimation
of the regression coefficients, β0 and β1, in
the assumed model. Incidentally, if the standard
deviations of the residuals, εi , are all the same, i.e.
if σi = σ, i = 1, . . . , n, then wi = 1/n, i = 1, . . . , n,
and the formulas for the weighted least squares
estimates of β0 and β1 specified in (4) and (5)
simplify to the ordinary (unweighted) least squares
expressions.

The preceding example shows that the solution
to the problem of nonconstant residual standard
deviations involves suitably weighting (transform-
ing) the measurements associated with each obser-
vation. According to the simple linear regression
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model, the residual is the difference between the
observed response and the systematic component
of the assumed model, i.e. εi = Yi − β0 − β1Xi, i =
1, . . . , n. Thus, transforming the response and expla-
natory measurements for observation i automatically
modifies the residuals in an identical manner, thereby
producing transformed residuals that do satisfy the
minimal assumptions for least squares estimation.
The estimates of the regression coefficients that are
derived using the weighted or transformed measure-
ments are known as weighted least squares estimates.

The method of resolving the general problem rep-
resented by residuals that are correlated and/or do
not all have roughly the same standard deviation,
σ , involves identifying a unique, nonsingular, sym-
metric matrix, T, i.e. a matrix of suitable weights
for each observed response and corresponding values
of the explanatory variables, (X1i , . . . , Xki, Yi), i =
1, . . . , n, such that Z = TY and the effect of the
same matrix, T, on the vector of residuals, ε =
(ε1, . . . , εn)

′, produces transformed residuals, Tε,
that are uncorrelated and do have a constant standard
deviation.

Once the transformation matrix, T, has been iden-
tified, (2) can be used on the transformed response
measurements; the vector Y is replaced by Z and
the matrix, X, by TX, its corresponding equivalent
in the transformed problem. Although it is possible
to restate the solution for β̂ in terms of the matri-
ces T, X and the vector, Y, it is simpler to carry out
any necessary calculations directly using Z, the vec-
tor of transformed response measurements, and TX,
the matrix of transformed explanatory variable values
for each observation. Once a suitable parsimonious
model for Z1, . . . , Zn has been identified, appropriate
statistical inferences concerning the estimated regres-
sion coefficients can be formulated provided that
the assumption that the residuals for the estimation
problem follow a normal distribution is not contra-
dicted by the transformed data. To check all these
least squares and normal theory assumptions, it is
essential to examine the estimated residuals for the
transformed data, i.e. Zi − Ẑi , i = 1, . . . , n, where
Ẑi denotes the predicted value of the transformed
response for observation i and is obtained using β̂

and the vector of transformed explanatory variable
values for observation i.

In the preceding discussion we did not indicate
precisely how to identify the key matrix T by which
all that previously was wrong is set right. This is
because there is no universal antidote to cover all
situations when one or more of the least squares
assumptions fail to hold for a given set of data.
Often, a simple transformation such as Zi = √

Y i

or perhaps Zi = log Yi, i = 1, . . . , n, can put things
right, particularly if the original difficulty with least
squares was due to a failure of the constant vari-
ance assumption. If not, then much more effort will
probably be required, as will a certain degree of
data-analytic artistry which cannot be summarized in
the small amount of space available here. Draper &
Smith [4, pp. 112–115] discuss a numerical example
in which the entries in the transformation matrix, T,
are estimated from response measurements that are
exact repeats taken at the same value of X, the only
explanatory variable in the problem, or approximate
repeated response measurements collected at values
of X that are in close proximity to each other.

References

[1] Armitage P. & Berry, G. (1994). Statistical Methods in
Medical Research, 3rd Ed. Blackwell Science, Oxford.

[2] Belsley, D.A., Kuh, E. & Welsch, R.E. (1980). Regression
Diagnostics: Identifying Influential Data and Sources of
Collinearity. Wiley, New York.

[3] Cook, R.D. & Weisberg, S. (1982). Residuals and Influ-
ence in Regression. Chapman & Hall, London.

[4] Draper, N.R. & Smith, H. (1981). Applied Regression
Analysis, 2nd Ed. Wiley, New York.

[5] Galton, F. (1885). Regression towards mediocrity in
hereditary stature, Journal of the Anthropological Institute
15, 246–263.

[6] Mallows, C.L. (1973). Some comments on Cp , Techno-
metrics 15, 661–675.

[7] Pearson, K. & Lee, A. (1903). On the laws of inheritance
in man. I. Inheritance of physical characters, Biometrika
2, 357–462.

(See also General Linear Model)

DAVID E. MATTHEWS



Multiple Time Series

Multiple time series, also known as multivariate time
series, and sometimes vector time series, refers to
the analysis of observations taken simultaneously on
two or more time series. Biomedical data exam-
ples include monthly recordings of death attributed
to bronchitis, emphysema and asthma for males and
females, and temperature, blood pressure and weight
for a regularly monitored patient. Environmental
examples include readings of lead concentrations at
several sites at five minute intervals, air temperature
readings taken at hourly intervals at a fixed height
above sea level at several locations and monthly
ozone levels at several recording stations. Univari-
ate time series models are very useful for individual
time series, but multiple time series models have the
potential for helping to understand the system that
gives rise to the data.

Parzen [21] gives a concise background to the the-
ory of multiple time series and the references provide
an excellent source to track its history. In this article
I complement Parzen by updating many of the refer-
ences and report some of the progress that has been
made possible by the increased computing power that
is now generally available. Most of the theoretical
developments in multiple time series before and since
1985 have been driven by problems in economics,
business and econometrics. Theoretical and practical
contributions may be found in [2, 7, 9–11, 16, 17,
24, 26, 27, 30, 31], and [33].

Statistical Concepts

Let Yt = (Y1,t , Y2,t , . . . , Ym,t )
′ be a vector of m

time series for t = 1, 2, . . . , n. It is second-order
stationary if (i) E(Yt ) = µ, independent of time,
and (ii) the set of m series is jointly covariance
stationary (see Coherence Between Time Series).
Point (ii) means that the cross-covariance function
γij (k) = cov(Yi,t , Yj,t−k) is independent of t for all
i, j and k and the variance of each series, γii(0),
is finite. The function γii(k) is a covariance func-
tion and is not necessarily symmetric. The func-
tion ρij (k) = γij (k)/[γii (0)γjj (0)]1/2 is the cross-
correlation function, and the autocorrelation function
is ρii(k) = γii(k)/γii (0). The matrix ρ(k) with the
ij th entry equal to ρij (k) is the correlation matrix.

The Fourier transform of ρ(k) (see Fast Fourier
Transform (FFT)) is the spectral density matrix
f(ω) = ∑∞

v=−∞ exp(−2πiωv)ρ(k), (−0.5 ≤ ω ≤
0.5), and is nonnegative definite. The complex-valued
function, which is the ij th entry in this matrix,
is the cross-spectral density. The real and imag-
inary parts of this matrix define the cospectrum
and quadrature spectrum. The amplitude, aij (ω), and
phase, φij (ω), of f(ω) are obtained by considering
the polar representation of the cross spectrum in
the form fij (ω) = aij (ω) exp{iφij (ω)}. The quantity
aij (ω)/

√
[fii(ω)fjj (ω)] is called the coherency, rep-

resents the correlation between the frequency com-
ponents of Yi,t and Yj,t and lies between zero and
one [6, p. 212].

For m observed series the main task is to obtain
sample estimates of the matrices of population quan-
tities and use them to identify an appropriate model
that will best describe Yt . The time domain approach
involves working with estimates of ρij (k), while the
frequency domain approach uses estimates of f(ω).
Practical progress can only be made by entertain-
ing classes of time series models that can then be
estimated. The multivariate generalization of Wold’s
decomposition theorem states that Yt can always be
represented by an infinite matrix linear combination
of a vector white noise process [8, p. 158]. This leads
one to consider the multivariate generalization of
univariate autoregressive moving average (ARMA)
processes (see ARMA and ARIMA Models) in
the form �(B)Yt = C + �(B)εt , where �(B) =
I − �1B − . . . − �pBp and �(B) = I − �1B − . . .

− �qB
q are matrix polynomials of orders p and q,

respectively, B is the backward shift operator such
that BYt = Yt−1, all the zeros of the determinantal
polynomials |�(B)| and |�(B)| are on or outside
the unit circle and εt is a vector white noise process
with εt = (ε1,t , ε2,t , . . . , εm,t )

′, having the properties
E(εi,t ) = 0, for all i, E(εi,t εj,t−k) = 0, for all k, i �= j

and k �= 0, i �= j . These processes are usually termed
vector ARMA (VARMA) models.

Identification

There are some major and difficult problems with
VARMA modeling and many are discussed in [26],
[7, pp. 244–259] and [16, p. 241]. First, if m is
much larger than two or three, a rather large num-
ber of autocorrelations, cross-correlations and partial
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correlations have to be interpreted. This makes the
selection of the order of each polynomial somewhat
difficult. In any case, these tools do not yield totally
unambiguous messages about the models that should
be estimated. Secondly, unique identification of a
VARMA structure is not guaranteed by specifying
a minimum order for the autoregressive and moving
average operators. Thirdly, misspecification of multi-
ple time series models can have more serious conse-
quences than for univariate models. For these reasons,
often the preference of applied researchers is to spec-
ify, estimate and analyze pure vector autoregressive
(VAR) models. This assumes that a sufficiently long
VAR model can capture the structure of Yt . A dif-
ferent approach is needed to solve the nonuniqueness
problem for the general VARMA case. Lutkepohl &
Poskitt [17] provide a strategy that results in a parsi-
monious and uniquely identifiable structure based on
the echelon form of a VARMA model.

Estimation

The Gaussian likelihood of (Y1, Y2, . . . , Yn) for
the VARMA process is derived by Brockwell &
Davis [2, p. 431]. Unlike in the univariate case, it
is not possible to compute maximum likelihood esti-
mators of �(B) and �(B) independently of the
variance–covariance matrix of the noise series [2,
p. 427] and so the maximization of the likelihood
has to be done simultaneously. Efficient nonlinear
optimization algorithms have to be used and it is par-
ticularly important to have good initial estimates of
the parameters. This is because the likelihood func-
tion can have many local maxima that are smaller
than the global maximum. Poskitt & Salau [22] show
that generalized least squares estimates of VARMA
models and corresponding Gaussian estimators are
asymptotically convergent. In the case of estimating
a pure VAR, the multivariate Durbin–Levinson algo-
rithm for fitting autoregressions of increasing order
is often used [2, p. 432]. An efficient algorithm for
evaluating the exact likelihood function for VARMA
models is given by Mauricio [18].

Model Checking

Univariate theory is easily extendable to yield
Lagrange multiplier-type tests for vectors of esti-
mated parameters and portmanteau-type tests for vec-
tors of residual autocorrelations [16, pp. 298–301].

The latter procedure is, however, unlikely to be very
powerful under a broad range of alternative VARMA
models, since, even in the univariate case, portman-
teau tests lack power [5].

Forecasting

Optimal h-step forecasts for VARMA models are
straightforward to obtain [16, p. 228]. However, since
a potentially large number of parameters may have
been estimated in the identified multivariate model,
prediction intervals for forecasts can be wider than
expected. Both short- and long-term forecasting are
important. For example, forecasts of wind speed
and direction at several locations may be needed
for 15-minute horizons, whereas environmentalists
may need predictions of next year’s rainfall over
a wide and geographically spread region. Modeling
long-range dependence by fractionally differenced
VARMA models is in its infancy, but may prove to be
a productive area for predicting environmental-type
time series [23].

Data and Worked Examples

The World Wide Web is a useful source of infor-
mation and data on biomedical and other time series
(see Internet). A home page is available at the url
http://hachiman.mscs.mu.edu/research/
biomedts and there are some useful links from there.
A bivariate worked example using monthly numbers
of male and female deaths from bronchitis, emphy-
sema and asthma is given by Diggle [6, p. 202].
Those data are also considered by Venables & Rip-
ley [32, p. 373]. Both analyses concentrate on time
and frequency domain statistics, and some useful
plots are presented. No VARMA models are esti-
mated. Using a state–space representation, Jones [12,
p. 158] gives examples of estimating bivariate and
trivariate multiple time series models for medical
time series that are irregularly spaced.

Software

Sources of software (see Software, Biostatistical)
for both univariate and multivariate time series anal-
ysis are provided by Aghadazeh & Romal [1] and
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Rycroft [25]. The number of packages that specifi-
cally handle multiple time series is small and, to date,
a comparative review of them has not been done.
Ord & Lowe [20] compare five automatic forecast-
ing systems for univariate analysis, only one of which
provides for multiple time series analysis.

Finding innovative and useful ways to present m

multiple time series, the joint behavior of all sub-
sets of them and the statistics needed to identify
VARMA models is challenging and not yet complete.
Newton [19, p. 803] argues that essential features for
good time series graphics are that the plots should
be interactive, dynamic and linked. Few packages
possess all these properties, but the statistical sys-
tem in S [4] and LISP-STAT [28] have the greatest
potential for the creation of useful plots for multi-
ple time series modeling. Newton [19, p. 817] used
the S system to present data on monthly ozone levels
at nine recording stations with instantaneous scatter
plots for all 36 pairs of series and the 45 plots of
autocorrelations and cross-correlations. Other quan-
tities, such as coherency, gain and phase need to
be examined: currently, there is no readily available
off-the-shelf program that presents these statistics in
innovative ways.

The excellent book by Venables & Ripley [32,
pp. 349–382] gives examples of graphical displays
of time and frequency domain statistics for multiple
time series analysis that can be produced using the
S-PLUS system. VAR estimation (but not VARMA)
is implemented in the system with appropriate
model checking and diagnostic tools. A library of
S functions for multivariate state–space and ARMA
time series models is available from statlib in the S
archive under the title time·series. These S functions
allow for inclusion of exogenous variables and
treat VAR models as a special case. They include
methods for simulating, estimating and converting
among different model representations. They are
implemented using classes and methods so that it is
easy to add new estimation methods and not difficult
to add other model representations.

Scientific Computing Associates (SCA, PO Box
625, DeKalb, Illinois, USA) market a PC-based sta-
tistical system that includes a product dedicated to
multivariate time series analysis and forecasting using
VARMA models [15]. Box & Tiao have helped with
the development of the system, and so it has a very
good pedigree.

An easy-to-use and highly graphical package has
been developed at the London School of Economics
and is described by Koopman et al. [14] with case
studies given in [13]. The software assumes that
structural multivariate time series models are appro-
priate, with time-varying unobservable components
that are themselves assumed stochastic. A full range
of high quality graphical output is available to assist
the modeler. The software is PC-based and a Win-
dows version will be available shortly.

The software of Brockwell & Davis [3] allows
VAR models to be estimated and forecast in a PC
environment. In that software, model selection can be
made simpler using the AIC criterion. The estimation
routines for multivariate conditional heteroscedastic
models used by Wong & Li [35] are written using
the MATLAB software and may be obtained from
the authors.

Extensions and Generalizations

Biomedical investigations usually involve experimen-
tal designs with deliberate replication of experiments.
When these are conducted over time, relatively short
and nonstationary time series arise in which trends
and other features are the main interest. These kinds
of data are generally known as repeated measures
and the modeler can use time series techniques to
accommodate serial dependence within the individ-
ual time series. In this way, repeated measurements
can be regarded as multiple time series. A worked
example using the body weight of rats is given by
Diggle [6, p. 136].

State–space generalizations of multiple time series
are given by Lutkepohl [16, p. 415] and Harvey [11,
p. 423] (see Structural Time Series Models) and
the multivariate dynamic linear model for time series
is described by West & Harrison [34, p. 597]. A gen-
eral methodology for the Bayesian analysis of short-
and long-memory multiple integrated models is given
by Ravishankar & Ray [23]. These authors illustrate
their techniques by applying them to sea surface tem-
perature series. Extensions to multivariate conditional
heteroscedastic time series models, including their
links to multivariate random coefficient autoregres-
sive models, is given by Wong & Li [35]. In that
paper the problems of identification, estimation and
diagnostic checking are addressed. Univariate non-
linear time series modeling is itself in its infancy,
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but Tong [29, p. 429] tentatively suggests the possi-
bility of using multiple nonlinear time series models
and gives an example that features threshold autore-
gressive series. The extra generality provided by
these new developments should prove very useful for
modeling biomedical- and environmental-type multi-
variate time series, since long-range dependence and
changing conditional variance are commonly observ-
able phenomena in biostatistical data.
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Multiplicative Model

In epidemiology and biostatistics, relative risk
models are often called multiplicative models. In a
relative risk model the effect of an exposure or other
factors is described as

R = R0 × RR(z),

where R0 is the background (or baseline) risk and
RR(z) is the relative risk associated with a covariate
vector z.

The most commonly used relative risk model is the
loglinear model RR(z) = exp

(∑
i βizi

)
. This is a

multiplicative function since the effect of each covari-
ate is to multiply the risk by a factor proportional
to the covariate value. However, additive functions
are also useful in describing relative risks. For exam-
ple, in the assessment of dose–response it is often
reasonable to describe the relative risk of an expo-
sure in terms of an additive model for the excess
relative risk, i.e. ERR = RR − 1 = β1z1. If there
is an additional exposure of interest, then it is use-
ful to consider additive relative risk models of the
form:

RR = 1 + β1z1 + β2z2

or

RR = 1 + β1z1 + β2z2 + β3z1z2.

The second of these models is a generalization of the
multiplicative excess relative risk model

RR = (1 + β1z1) × (1 + β2z2).

Thomas [2] and Breslow & Storer [1] describe gen-
eral relative risk functions that include both additive
and multiplicative models. The articles on Relative
Risk Modeling and the Cox Regression Model con-
tain additional discussion of relative risk models. The
articles on Parametric Models in Survival Analy-
sis and Poisson Regression in Epidemiology present
general classes of additive and multiplicative mod-
els that are useful in describing excess and relative
risks. These articles also discuss methods for param-
eter estimation and inference with such models.
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Multiplicity in Clinical
Trials

The simplest randomized clinical trial involves the
comparison of two treatments with respect to just
one outcome measure. Usually, the null hypothe-
sis of interest is that there is no true difference in
outcome (see Outcome Measures in Clinical Tri-
als) between the two treatment groups. In this case,
the observed difference in outcome between the two
treatment groups is evaluated in a statistical test
(see Hypothesis Testing) to generate a P value that
describes the chance of seeing the observed differ-
ence, or one more extreme, under the assumption
that the null hypothesis is true. Thus, obtaining a P

value of 0.01 from the test implies that the difference
in outcome observed, or one more extreme, would
occur by chance in one out of every 100 clinical trials
involving no true difference in the effects of the two
treatments. The problem of multiplicity arises when-
ever the clinical trial departs from this simple design
and analysis of two treatments and a single outcome
measure. It primarily concerns the interpretation of
the multitude of hypothesis tests, often referred to as
multiple comparisons, that might then be undertaken
(see Simultaneous Inference).

The statistical problem that arises when consid-
ering multiple comparisons centers on the error rate
that should be controlled. For example, if there are
two outcome measures being compared between two
treatments, then the conclusion that one treatment is
superior to the other might be made if the P value
obtained from the comparison of at least one of the
outcomes is less than some level, α. The level α is
the marginal type I error rate, and implies that the
probability of concluding that one treatment is supe-
rior to the other with respect to that particular out-
come measure is no more than α, irrespective of the
result for the other outcome measure. In contrast, the
experiment-wise error rate quantifies the probabil-
ity of concluding that one treatment is judged superior
to the other when the decision is based on data for
both outcomes, despite there being no true difference
between treatments with respect to either measure.
In practice, the decision of superiority is often made
when either or both of the marginal P values for the
comparisons between the two treatments is less than
α. The experiment-wise error rate is then at least α

(being equal to α if the outcome measures are per-
fectly correlated) but may be as high as 2α − α2 if the
outcome measures are independent. More generally,
if K comparisons are made, each at a marginal signif-
icance level of α, then the experiment-wise error rate
may be as high as 1 − (1 − α)K , which is approxi-
mately equal to Kα if α is small, although the exact
value depends on the correlations between the out-
come measures. The statistical problem is, therefore,
aimed at controlling the experiment-wise error rate
in the face of multiple comparisons. However, the
appropriateness of doing this rather than controlling
the marginal error rate specific to each comparison is
dependent on the application being considered, and,
specifically, the source of the multiplicity, and, even
then, there are different methods for controlling the
experiment-wise error rate. Cook & Farewell [2] give
an excellent overview of the issues.

Controlling Experiment-Wise Error Rates

Global Tests

Consider the situation in which there are K compar-
isons of interest, each of which can be summarized by
one parameter, βk for k = 1, . . . , K . Then, the global
comparison involves a test of the null hypothesis that
β1 = β2 = · · · = βk vs. the alternative hypothesis
that at least one of the βks differs from the remaining
ones. This reduces the multiple comparisons problem
to a single test and so preserves the experiment-wise
error rate. However, the difficulty usually encoun-
tered is that a significant test result does not identify
the source of the difference. Thus, further testing of
specific comparisons is usually of interest. Further-
more, as the global test seeks any departure from
the null hypothesis, it lacks power to detect specific
patterns of differences that might be of interest. For
example, a global test gives equal emphasis to the
situation in which β1 and β2 differ from the remain-
ing βks, regardless of whether they do so in the same
or opposite directions, whereas, in some applications,
it might be anticipated that the directions of the true
departures would be the same. Thus, power is lost in
the comparisons. This criticism can be overcome to
some extent by using tests that are sensitive to depar-
tures from the null hypothesis in the same direction,
particularly if they are also of a similar magnitude [9,
14] (see Multiple Endpoints, Multivariate Global
Tests).
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Adjusted Marginal Tests

There are a large number of procedures that are
based on the marginal tests of each βk , but that
provide criteria for determining significance so as
to control the experiment-wise error rate. The most
well known of these is the Bonferroni adjustment
procedure. From each marginal test, a marginal P

value is obtained and the null hypothesis is then
rejected if this P value is less than α/K , where α

is the desired maximum experiment-wise error rate.
This procedure is conservative in that the actual
experiment-wise error rate may be somewhat less
than α, particularly if the quantities being compared
are highly correlated. Simes [13] and Hochberg [6]
have developed modified Bonferroni procedures that
aim to be less conservative (see Multiple Endpoints,
P Level Procedures). Other general procedures for
marginal testing are available, some of which are
described below in the context of specific multiple
comparisons problems.

Summary Measures

Rather than working with K comparisons, an alter-
native approach involves reducing the dimension of
the problem by summarizing the data involved in the
K comparisons to give just one comparison. Control
of the error rate for this one comparison then results
directly from the reduction in the dimension of the
problem.

Sources of Multiplicity

There are five major sources of multiple comparisons
in clinical trials: (i) multiple treatments; (ii) multiple
outcome measures; (iii) repeated measurements over
time of a specific outcome measure; (iv) compari-
sons of outcome over subpopulations (subgroups) of
subjects; and (v) interim analyses while a trial is
ongoing.

Multiple Treatments

The decision to evaluate multiple treatments within
a single clinical trial almost always implies some
form of structure among the treatments, and so a
greater interest in some comparisons than others. For
example, it is very rare to design a clinical trial in

which one of the treatment arms is not a standard of
care, even if that one arm involves a placebo or no
treatment. Thus, global tests are rarely appropriate, as
they give equal weight to all comparisons and do not
exploit the greater interest in particular comparisons.

In the rare circumstances in which there is no such
standard, it seems natural that the main objective of
the trial should be to define an ordering of treatments
from worst to best in terms of some outcome. This
procedure, a form of adjusted marginal test proce-
dure, aims to identify groups of treatments such that
treatments within each group are not significantly dif-
ferent from each other. Miller [8] gives an example in
which the mean response for each of five treatments,
A to E, was 16.1, 17.0, 20.7, 21.1, 26.5, respec-
tively. Application of the Newman–Keuls procedure
involves comparison of the best and worst treatments,
A and E, first; this establishes a significant difference
among treatments within the group of five treatments.
This is followed by evaluation for differences within
the two groups of four treatments, {A, B, C, D} and
{B, C, D, E}, then the groups of three treatments, etc.
until no further significant differences are found. The
result in this example was that there was no signif-
icant difference within the group {A, B} nor within
the group {B, C, D}. Thus, treatment E differed sig-
nificantly from all other treatments, and treatment A
differed significantly from treatments C and D. The
lack of a significant difference between treatments A
and B, and between treatments B and C, despite a
significant difference between treatments A and C,
seems somewhat confusing, but may simply reflect
low power to detect smaller differences among treat-
ments. This approach is appropriate when there are
equal amounts of information for each treatment; the
situation is more complex when this is not the case, as
the power for detecting differences will vary between
different pairs of treatments.

In the more general situation in which there is
some structure among treatments, a sequence of tests
can usually be defined in order of their importance,
and, in some circumstances, marginal tests applied
with no adjustment for multiple comparisons are
appropriate. Some examples will illustrate the issues.
A common use of clinical trials is the simultaneous
evaluation of K − 1 new treatments vs. a standard
treatment, as this is considered more efficient than
doing the K − 1 separate clinical trials comparing
each new treatment with the standard (though this
might also depend on the practicalities of undertaking
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a large trial vs. a small one). Dunnett [4] provided a
procedure for adjusting each of the (K − 1) marginal
tests to control the experiment-wise error rate. How-
ever, it is debatable whether the error rate for the
comparison of treatment A vs. the standard should
be affected by the fact that treatment B has also
been compared with the standard. Indeed, if two sep-
arate trials had been undertaken, then each would
be reported separately, with no adjustment to sig-
nificance levels to reflect the existence of the other
trial. Proschan & Follmann [11] discuss this issue
and show that there is little difference in the propor-
tion of marginal tests giving type I errors, whether
the new treatments are compared with the standard
in a single trial or in different trials. This supports
the idea of not adjusting marginal test results in this
situation. However, having established that some of
the new treatments are superior to the standard, it
might then be of interest to investigate the evidence
for differences among these treatments. In this case,
there might be more of a rationale for controlling
the experiment-wise error rate among the compar-
isons in that subset, using an adjusted marginal test
approach such as the Newman–Keuls procedure dis-
cussed above.

Related to this first example is a second example,
in which the K − 1 new treatments being compared
to a standard treatment are different doses of the
same drug. In this case, the problem can often be
considered as a sequence of two questions: first,
is there evidence that the drug is superior to the
standard treatment (often, in this context, a placebo)
and, secondly, is there a difference in effect between
doses? Rather than test each dose against the placebo,
it is usually better to compare a summary measure of
the response obtained across all K − 1 doses to the
response in the placebo arm. Then, if this establishes
an effect of the new treatment, one would test for an
association between magnitude of response and dose.

In general, the latter test would also be undertaken
using a summary measure, usually defined by some
prior knowledge of a model that is likely to describe
the association between response and dose. Although
there are two hypotheses being assessed, there is little
rationale for adjusting for multiple comparisons, as
the hypothesis about a dose–response is likely to be
secondary in nature, dependent on an effect of the
new treatment being first established.

A third example concerns the evaluation of a com-
bination of treatments. A trial of the combination

of two antiretroviral drugs that target the human
immunodeficiency virus infection, ZDV + ddI, was
undertaken to compare that combination with each
of ZDV and ddI separately. The doses of ZDV and
ddI used in the combination arm were the same as in
the two monotherapy arms, and so it was anticipated
that greater toxicities would be seen in the combina-
tion arm, which was also more expensive. Thus, the
combination treatment might only be recommended
if it was shown to be superior to each of the two
monotherapies. In this case, the error rate of inter-
est is the probability of recommending ZDV + ddI
when there is no difference between it and either
ZDV or ddI alone. This probability is less than α if
the marginal pairwise comparison of ZDV + ddI vs.
ZDV and that of ZDV + ddI vs. ddI is undertaken
using a level of α, and so no adjustment for multiple
comparisons is required.

These examples help to illustrate the fact that
control of the experiment-wise error rate is rarely
of interest in clinical trials involving multiple treat-
ments. Instead, more specific sequencing of hypothe-
ses is often possible with little, if any, control of
error rates necessary. Indeed, the sample size and
power considerations of most well-designed clinical
trials are dictated by some prioritization of hypothe-
ses, which should then determine whether any error
rate control is necessary.

Multiple Outcome Measures

For many diseases, there may not be a single obvi-
ous measure of outcome (see Outcome Measures in
Clinical Trials). This is particularly common in trials
of symptomatic diseases such as arthritis or neuropa-
thy in which pain or other measures at different joints
or in different muscles are of interest. However, it
also arises in studies of diseases that have major mor-
bidity outcome measures, such as the occurrence of
both strokes and myocardial infarctions, as well as
death, in cardiovascular trials. The important consid-
eration in determining how to address the multiple
comparisons problem in this context concerns how
similar the various outcome measures are to one
another. In the case of joint or muscular pain, the
impact on a patient’s quality of life may be similar
regardless of the joint or muscle affected. In contrast,
a nondebilitating stroke or myocardial infarction is
clearly less important than death.
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Consider a clinical trial that is designed to com-
pare two treatments with respect to K outcome
measures. Denote the true difference between treat-
ments by βk for k = 1, . . . , K . Then the null hypothe-
sis of interest might be H0 : β1 = β2 = · · · = βk = 0.
Global tests might be considered if the outcome mea-
sures are similar in their clinical significance and
the magnitude of the treatment effect is likely to
be similar for each measure, so that the alternative
hypothesis is H1 : β1 = β2 = · · · = βk = β for some
β. O’Brien [9], Pocock et al. [10] and Wei et al. [15]
present tests for this situation. These tests effectively
involve a weighted average of the outcome measures,
where the weights are chosen to optimize the power
of the test to detect a treatment difference. If it is
likely that the treatment differences vary among out-
come measures, particularly if the directions of the
differences might differ, then comparisons between
treatments with respect to each outcome measure
are likely to be more important. In this case, Foll-
mann [5] has shown that the Bonferroni procedure
applied to the K outcome measures is to be pre-
ferred, particularly when it is unknown which out-
come measure is likely to have the largest treatment
difference. Note that more generic global tests such
as Hotelling’s T2 test (a multivariate extension of
the two-sample t test) or chi-square tests for 2 × K

contingency tables are rarely useful in clinical trials,
as they focus on any departure from the null hypoth-
esis, including those in which the directions of the
differences (i.e. the signs of the βks) might differ.

Cook & Farewell [2] give a very nice critique
of a colorectal cancer trial in which there were two
outcome measures, tumor response and survival, of
different clinical significance. In this case, the ratio-
nale for any adjustment for multiple comparisons,
whether using global tests or an adjusted marginal
testing approach, is weak. Specifically, global tests
are of little interest because one wishes to understand
how the treatments affect each of the two measures
separately. Thus, marginal tests are more appropriate.
However, Cook & Farewell argue against adjustment
to marginal tests, on the basis that the implications
for clinical practice from finding, for example, very
strong evidence in favor of a tumor response and
weak evidence in favor of survival, are very differ-
ent from finding weak evidence in favor of a tumor
response but very strong evidence in favor of sur-
vival. Thus, the relevance of an experiment-wise error
rate is questionable. Indeed, in this type of situation,

it might be more useful to consider a hierarchy of
hypotheses that focus on the outcomes in a decreasing
order defined by their clinical importance. In addition,
composite outcome measures might be useful. For
example, in anti-HIV trials, the first hypothesis of
interest might be whether the treatments differ with
respect to mortality. If they do, then other differ-
ences might be of lesser interest. If they do not,
then it is natural to investigate treatment differences
with respect to the composite endpoint of death or
progression to AIDS, as this reflects a clinically seri-
ous outcome (AIDS) or a worse outcome (death),
rather than investigate progression to AIDS sepa-
rately from death.

An alternative approach for handling multiple out-
come measures involves the use of summary mea-
sures. As an example, Salsburg [12] describes a
clinical trial of treatment for acute painful diabetic
neuropathy. In this trial, each patient was asked
to score pain, numbness and weakness in each of
their left and right feet, calfs, thighs, hands and
arms giving 30 outcome measures in all. Instead
of analyzing these 30 outcomes in a global test, or
using adjusted marginal tests, two summary measures
were identified for analysis. The first, the “maxi-
mum distress” score, was the maximum score across
all 30 measures. The second, the “dominant symp-
tom” score, was the score for the symptom with
the worst score prior to starting study treatment.
These two measures were considered clinically rel-
evant, reflecting the most significant aspects of the
disease to each patient. They also provided a more
powerful analysis than that obtained by looking at
all 30 measures separately, because many patients
showed no distress throughout the study for certain
measures.

Repeated Measurements over Time

It is very common to follow patients over
time with repeated measurements of outcome
(see Longitudinal Data Analysis, Overview). For
example, clinical trials of antihypertensive agents
often collect blood pressure measurements over time.
Global tests are rarely of interest in this context.
Adjusted marginal tests are also of limited value as
they ignore the explicit structure of the data, and tend
to be conservative because of the correlation between
successive measurements. As with multiple outcome
measures, this is a situation where summary measures
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are often particularly valuable. For example, in
antihypertensive trials, there might be interest in
whether the trend in blood pressure over the duration
of the study differs between treatments. In this case,
the trend might be calculated for each patient using
standard methods for linear regression, and then
the average of the trends across patients compared
between treatments using, for example, a two-sample
t test (see Student’s t Statistics). This is, therefore,
a two-step process. Alternatively, the analysis can
be done in one step, using methods for mixed
effects models [7]. For example, such a model might
involve a linear trend for each subject, with a
further level of the model describing how these
trends vary among subjects and their dependence
on treatment assignment. In other applications; for
example, anti-HIV trials, there might be interest in
the maximal extent of viral suppression achieved
and also in the durability of effect, often expressed
as the change from baseline to the level at about
one year after treatment started. Thus, an important
advantage of the summary measure approach is that
it focuses the analysis on aspects of the data that
are considered most clinically relevant. However,
summary measures are sometimes used in order to
gain statistical power, without adequate care being
given to their interpretation. For example, in anti-HIV
trials, the area under the curve, formed by joining the
results of successive measurements over the duration
of the trial and bounded by the pretreatment level,
is sometimes recommended (see Bioequivalence).
However, this measure is effectively a time-weighted
average and does not distinguish short-term effects
from long-term effects, so that statistical significance
might be obtained at the expense of clinical relevance.

An alternative approach to the analysis is to cal-
culate a test statistic at each measurement time, and
then to combine the test statistics into one value (tak-
ing into account the fact that they are correlated), as
suggested by Wei & Johnson [14]. This reduces the
analysis to a single test. However, this method also
has the disadvantage that it does not distinguish short-
term effects from long-term effects or other patterns
of change that might be of clinical interest.

Subgroup Analyses

Common secondary analyses involve the investiga-
tion of whether differences between treatments vary

between different subgroups of the population stud-
ied, where the subgroups are defined by the values
of some covariate. From a multiple comparisons per-
spective, there are two problems. First, there may be
many possible subpopulations defined by a particular
covariate for which differences might be evaluated.
Collins et al. [1] showed the hazards of this very
nicely in an example in which they used the zodiac
birth sign as a means of defining subpopulations
and showed that the relative effect of treatment was
“significant” for patients born under Scorpio, but
was not for the other birth signs combined, almost
undoubtedly a chance finding reflecting a type I
error. This type of analysis is inappropriate. Instead,
a single test of interaction should be undertaken
to assess whether the relative effect of treatment
does vary across subgroups defined by the covariate
(see Treatment-covariate Interaction).

The second problem is that there may be many
covariates used in defining different divisions of the
study population. Adjusted marginal tests (applied
to the tests of interaction defined by each covari-
ate) should be considered, particularly if there is no
prior reason for anticipating a difference between sub-
populations. In the latter case, prespecification of the
subpopulations for subgroup analyses might help as a
means of identifying potential subgroups of interest.
However, it is important to appreciate that prespecifi-
cation is only desirable for a very limited number of
subpopulations (one or two), and that prespecification
of an extensive list of subpopulations does not avoid
the multiple comparisons problem.

Interim Analyses

Interim analyses are sometimes undertaken during the
conduct of the trial for ethical (see Ethics of Ran-
domized Trials) and cost reasons, with the idea that
a trial might be modified or terminated early if signif-
icant treatment differences are found. The successive
analyses will lead to an increase in the error rate. In
extreme, with continuous monitoring, the error rate
can be inflated to a very high level so that a “sig-
nificant” difference will be obtained with very high
probability, even if there is no true difference; what
Cornfield [3] termed “sampling to a foregone conclu-
sion”. Thus, control of the error rate in the face of
the multiple comparisons is desirable. Methods spe-
cific to this application have been developed and are
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discussed in detail elsewhere (see Data and Safety
Monitoring).

Closing Remarks

The multiple comparisons problem is a major issue
in the interpretation of results from clinical trials.
The discussion above shows that, in many instances,
the issue is better addressed by defining the specific
questions of greatest clinical interest. In this way,
the dimension of the multiple comparisons problem
can often be reduced, and a study better designed to
address these questions. When multiple comparisons
are still required, then prespecification of a limited
number of comparisons of primary interest is wise.
In many circumstances, the analysis can proceed
without further adjustment for multiple comparisons
by determining that it is the marginal error rates that
are of prime interest rather than the experiment-wise
error rates. This requires that thought be given to
the decisions that might follow from the results of
the trial, and to whether these decisions are to be
made on the basis of marginal hypotheses or upon
the collection of hypotheses, respectively.

Although the focus has been on hypothesis
testing and error rates, the problem of multiple
comparisons is also relevant to interval estimation
(see Estimation, Interval). Specifically, whenever it
is considered that some control of error rates across
comparisons is desirable, then similar arguments
apply in the construction of confidence intervals.
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Multistage Carcinogenesis
Models

Cancer is a disorder of cells whereby a visible tumor
is the end result of a whole series of changes which
may have taken many years to develop. Cancers
generally derive from the clonal expansion of a single
cell (monoclonal) that is dramatically altered by the
series of events.

To understand the process of carcinogenesis, the
story must start at the beginning – normal cells. A
normal cell has a well-defined shape and is orga-
nized within its environment of other normal cells.
Growth (cell division or replication) is dictated by the
stimulatory and inhibitory signals of the environment,
which are normally in balance until a growth stimu-
lus is required. In normal development and growth,
growth control allows individual organs (e.g. heart,
liver, lungs) to reach a specific size which is homeo-
statically maintained.

The process of replication brings with it the risk
of mutations. Mutations may be thought of as perma-
nent alterations in DNA (occurring within all or part
of the DNA of a cell) that can impair the regulatory
communication between the cell and its environment.
The most generally accepted mechanism is as fol-
lows. A single mutation alters the physical nature of
the cell, making it less responsive to external stimuli,
resulting in frequent cell division. As genetic dam-
age accumulates, the damaged cell becomes deaf to
external stimuli. Lack of external influence eventu-
ally results in uncontrolled replication, characteris-
tic of malignancy, and the resulting tumor (clonal
mass of mutated cells) damages healthy tissue in its
neighborhood or metastasizes where it may establish
new colonies at distant sites. Other mechanisms exist
including loss of genetic material, alterations in cel-
lular death, alterations in cellular communication not
related to mutations, and alteration in mitochondrial
DNA. The net effect in all cases is general loss of
homeostatic control of cellular division, growth of
a tumor, and resulting damage to surrounding tissue
(see Cell Cycle Models).

One hundred and forty years ago, Johannes
Mueller, a German microscopist, demonstrated that
cancers were made up of cells. This discovery
initiated a search for the specific differences between
normal and cancer cells. By 1914, the German

cytologist, Theodor Boveri, concluded that malignant
cells had atypical chromosomes and that any event
leading to such abnormality would cause cancer.
Advances in biological technology, especially in
the fields of cellular and molecular biology, have
identified many genes that take part in the progression
from normalcy to cancer.

The process of carcinogenesis is inherently proba-
bilistic, at least as long as it is unknown why certain
individuals are afflicted with cancer under certain
conditions and others are unaffected. Attention will
be focused on stochastic models of carcinogenesis
at the cellular level since one of the least under-
stood aspects of tumor development is the latent
period between cancer initiation and the appearance
of tumors. Mathematical models of carcinogenesis
strive to investigate the number and types of events
in the progression from normalcy to malignancy and
allow examination of hypothetical schemes that may
be tested objectively.

There are two basic concepts that have been used
in describing the events leading to carcinogenesis: hit
theory and multistage theory. The biological hypoth-
esis behind the hit theory of carcinogenesis is that
a cell must be damaged a certain number of times
before it loses growth control and becomes tumori-
genic. The damage to the cell is thought to be caused
by particles of the carcinogen hitting the nucleus of
the cell. The damage incurred is dependent on the
number of hits the cell receives and the dose of
the carcinogenic agent. A majority of the literature
on hit theory modeling comes from the area of bio-
physics where interest has centered on the interaction
between radiation and target cells with respect to
mutagenicity. Hit theory directly related to modeling
the process of carcinogenesis does not have a pro-
nounced history. Figure 1 displays a three-hit model
of carcinogenesis.

The first mathematical model of carcinogenesis
was that of Iversen & Arley [5]. Their model pos-
tulated that carcinogenic “hits” are independently
and randomly distributed among all normal cells of
a tissue. Each normal cell hit by the carcinogen
undergoes an irreparable change which marks the
onset of the cancer process. This model is frequently
referred to as the “one-hit” model of carcinogene-
sis because only a single hit is necessary for a cell
to undergo a mutation which will eventually lead
to malignancy. Once the cell becomes mutated, it
is assumed to lose growth control and proliferates
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Figure 1 Three-hit model of carcinogenesis [16]. In this
model, mutation rates are denoted by µi , (µA = µB =
µC = µ). All rates are expressed as number of mutations
per unit dose of carcinogen (denoted by d) for a fixed period
of time

via replication. An observable tumor results when
enough replicated cells have amassed to be clinically
detectable.

Stochastic Models of Carcinogenesis

Many years after the development of Iversen &
Arley’s stochastic cancer model, Rai & Van Ryzin
[16] resurrected the underlying theme of the one-hit
model and adapted it to include more than a single
hit, i.e. a multihit model. The biological hypothesis
behind the multihit model is that a normal cell must
be damaged a multiple number of times before it
results in a malignant cell. The amount of damage
that is incurred is dependent on the number of hits the
cell receives and the dose of the carcinogenic agent.
Rai & Van Ryzin further assumed that, once a cell has
been subjected to at least j hits, it becomes malignant
and will eventually result in a tumor. Unlike Iversen
& Arley [5], they did not model the growth process of
malignant cells. Mathematically, it was assumed that
once a cell received j hits it instantaneously became
an observable tumor.

The multihit model has been used to model the
occurrence of cancer in a variety of tissues; however,
it is not clear from Rai & Van Ryzin’s mathematical
derivation that their theory applies to entire tissues as
it does to an individual cell. Disregarding this caveat,

Normal
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cells
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(malignant)

cells

m1

m2

b1
d1

Figure 2 Two-stage model of carcinogenesis. In this
model, mutation rates are denoted by µi , birth rates are
denoted by βi , and death/differentiation rates are denoted
by δi . All rates are expressed as number of events per cell
per unit of time

the “hit” theory of carcinogenesis was still not well
received even after Rai & Van Ryzin’s development
of a generalized theory, and was generally abandoned
at this point. This was most likely due to the per-
ceived simplistic nature of the “hit” theory model and
a lack of plausibility relative to the multistage theory
of carcinogenesis.

The multistage theory of carcinogenesis also ass-
umes several events leading to DNA damage; how-
ever, it is hypothesized that these events must occur
in a particular sequence. In essence, the multistage
model is an order-restricted multihit model. This the-
ory was initially conceptualized by Muller [10] and
Nordling [12] from the observation that for some car-
cinomas the cancer incidence rate rapidly increased
with increasing age. Multistage theory continues to be
a popular concept since current biological evidence
suggests that genetic changes usually occur in a spe-
cific order. Figure 2 displays a two-stage model of
carcinogenesis.

The two-stage model shown in Figure 2 assumes
that a normal cell must pass through two unique,
sequential stages before becoming malignant. This
model has three types of cells: normal cells, stage-one
cells, and stage-two (malignant) cells. In the small
time interval [t, t + ∆t), the following events may
occur:
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1. A normal cell may acquire a mutation resulting
in damage to a single strand of the DNA which
results in one normal cell and one stage-one cell
with probability µ1∆t + o(∆t).

2. A stage-one cell may replicate, resulting in two
stage-one cells with probability β1∆t + o(∆t).

3. A stage-one cell may differentiate or die, i.e.
leave the system, with probability δ1∆t + o(∆t).

4. A stage-one cell may acquire a mutation, result-
ing in damage to a single strand of the DNA
which results in one stage-one cell and one stage-
two (malignant) cell with probability µ2∆t +
o(∆t).

The probability of more than one event occurring in
this small time interval is o(∆t).

For the model shown in Figure 2 (and most classes
of multistage models used to date) the growth of nor-
mal cells is assumed to be constant or deterministic.
In the context of the model, it is assumed that the
number of normal cells at any time t is constant. All
intermediate cell types (in this case, stage-one cells)
are assumed to undergo growth kinetics via a lin-
ear birth–death process (see Stochastic Processes).
A linear birth–death process implies that the rate
of growth of a cell population is proportional to
the number of cells in the tissue. Further modeling
assumptions are that the birth–death processes and
mutation processes are stochastic and independent
of one another. In addition, each cell acts indepen-
dently of other cells, the transformation process is
irreversible, i.e. damage to the genome is “fixed”,
and once a malignant cell is produced it loses growth
control and will eventually result in a tumor. Math-
ematically, these assumptions imply that the model
portrays the process of carcinogenesis as a Markov
process. A Markov process describes the fate of any
cell at time t as depending only on the present state
of the cell at time t and not on the past history of that
cell. More precisely, this model may be described as
a continuous-time multiple branching process since
all cell types (with the exception of malignant cells)
implement growth kinetics that spawn birth–death
processes from which the progeny form branching
processes.

Mathematically, the main outcome studied in the
context of these mathematical models of carcinogen-
esis is the time-to-first-entry into the malignant state,
generally referred to as the tumor incidence rate. Let
T be the associated random variable, in which case

tumor incidence is defined as

λ(t) = lim
∆t→0

Pr[T ∈ [t, t + ∆t)|(T ≥ t)]

∆t
. (1)

This is generally converted into a cumulative distri-
bution function (CDF) for tumor onset by the formula

Pr(T < t) = 1 − exp

[
−

∫ t

0
λ(s) ds

]
. (2)

For the simple two-stage model of carcinogenesis
in Figure 2, several authors have derived a closed-
form solution for the tumor incidence rate for time-
constant rate parameters (Kopp–Schneider et al. [6]
and Zheng [21]). The solution is given as

Pr(T ≤ t) = 1 − exp[−Λ(t)], (3)

where

Λ(t) =
(

X0µ1

β

)

 t

2
(β − δ − µ2 + R)

+ log




(δ − β + µ2 + R) + (β − δ

−µ2 + R) exp(−Rt)

2R







 ,(4)

where
R = [(β + δ + µ2)

2 − 4βδ]1/2 (5)

The most general formulation for the CDF is
derived by Portier et al. [15]. They use the Kol-
mogorov backwards equations to develop a system
of ordinary differential equations (ODEs) which,
through a simple algebraic manipulation, can be used
to derive (2) for any nonhomogeneous multistage
model of carcinogenesis. The model is still required
to be stochastically linear (the rate constants cannot
depend upon the numbers of cells in each stage of
the process). If we expand the two-stage model in
Figure 2 to include a birth–death process on the nor-
mal cells (rates β0(t) and δ0(t) for birth and death of
normal cells, and rates β1(t) and δ1(t) for stage-one
cells), then the ODEs derived by Portier et al. [15]
are

d

ds
Ψ0(s) = β0(t − s)[Ψ0(s)]

2 + δ0(t − s)

+ µ1(t − s)Ψ0(s)Ψ1(s) − [β0(t − s)

+ δ0(t − s) + µ1(t − s)]Ψ0(s)
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and

d

ds
Ψ1(s) = β1(t − s)[Ψ1(s)]

2 + δ1(t − s)

− [β1(t − s) + δ1(t − s)

+ µ2(t − s)]Ψ1(s), (6)

where the initial conditions are Ψ0(0) = 1 and
Ψ1(0) = 1. The CDF for tumor incidence is
calculated by solving this system from s = 0 to s = T

and plugging the solutions into the calculation

Pr(T ≤ t) = [Ψ0(t)]
m0 [Ψ1(t)]

m1 , (7)

where mi is the initial number of cells in stage i of
the process at time t = 0. A detailed derivation of
these ODEs would be inappropriate in this context;
interested readers should refer to the manuscript by
Portier et al. [15] for the details.

Even without the details, it is possible to develop
systems of ODEs intuitively for more complex mul-
tistage models. Examining the form of system (7)
relative to the form of the model in Figure 2, it
is possible to illustrate the pattern of these equa-
tions. Starting with the end of (6) first, it is clear
that in the equations pertaining to Ψi(s), the rates
of the process by which cells move out of state
i[βi(t − s), δi(t − s), and µi+1(t − s)] are summed,
multiplied by Ψi(s) and subtracted from the differen-
tial equation. The remaining terms in the differential
equation for Ψi(s) are the product of each rate for
cells leaving the state i times the Ψ·(s) for the even-
tual location of the resulting cell(s). These terms are
all added to the differential equation. For example,
a birth results in two cells returning to the state
in which the birth occurs. For state i, the resulting
product to be added to the differential equation for
Ψi(s) is βi(t − s)Ψi(s)Ψi(s); that is the rate for the
event of birth for the proper time, βi(t − s), times
the generating functions for the states of the two
resulting cells, Ψi(s) and Ψi(s). A mutation from
state i results in one cell returning to state i and
the next cell going on to state (i + 1) so the result-
ing product to be added to the differential equation
for Ψi(s) is µi(t − s)Ψi(s)Ψi+1(s). Note that, for
the state just prior to the malignant state (state 1
in the two-stage model), since the function for the
final state [Ψ2(s) in the two-stage model] is iden-
tically zero at all times, this term drops out of
the system. Finally, since death/differentiation sim-
ply removes a cell and does not place it into any

state being followed by the system, the proper term
to add to Ψi(s) for a death is simply δi(t − s).
The calculation of the CDF is a direct extension
of (7) to include all stages in the more complicated
model.

The most important aspect of this modification
to the determination of the CDF for tumor onset
is the ability to consider much more complicated
and realistic models (see below) and to incorpo-
rate biochemical and pharmacological events into the
determination of rate constants for the model (see
Portier et al. [15]).

Towards More Realistic Models

The hit theory and multistage theory have played
dominant roles in the mathematical modeling of car-
cinogenesis. The history of carcinogenic modeling
can be described as a hierarchy of models within
a respective framework, i.e. hits or stages. Gener-
ally, each newly developed model encompasses the
previously developed models. Thus, mathematical
models attempt to include the evolution of biological
evidence in cancer biology. A natural extension in
the mathematical modeling of carcinogenesis is the
development of a single model which incorporates
concepts from both hit theory and multistage theory.
This class of models still embodies all of the math-
ematical models constructed under the multihit and
multistage paradigms, and thus the history of carcino-
genesis modeling is preserved, while simultaneously
current experimental evidence is being incorporated
into this class of models. In essence, a natural exten-
sion in the continuum of the mathematical modeling
of carcinogenesis is being implemented. This class
of models is referred to as the multipath/multistage
models of carcinogenesis.

In fusing the hit theory and multistage theory
of carcinogenesis, it is important to understand the
notions of stages and hits in the context of the mul-
tipath/multistage model. Stages will be defined as
necessary events for carcinogenesis that must occur
in a specific order. Conversely, hits are defined as
events that have no specific ordering and no direct
bearing on carcinogenesis; however, they may aug-
ment the rate at which a stage occurs. Consequently,
by definition, hits yield alternative pathways to can-
cer. Figure 3 displays a two-path/three-stage model
of carcinogenesis. There are two possible scenarios
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Figure 3 Two-path/three-stage model of carcinogenesis.
In this model, mutation rates are denoted by µi , birth
rates are denoted by βi , and death/differentiation rates are
denoted by δi . All rates are expressed as number of events
per cell per unit of time

for a normal cell to be transformed into a malig-
nant cell:

1. A normal cell may undergo three mutational
events: transformation from the normal state to
stage one (rate µ1), transformation from stage
one to stage two (rate µ2), and then transforma-
tion from stage two to the malignant state (rate
µ3). This is the most direct path to carcinogenesis
where three stages are traversed.

2. A normal cell may undergo four mutational
events: transformation from the normal cells to
hit A cells (rate µA), transformation to stage one
(rate µA1), transformation from stage one to stage
two (rate µ2), and then transformation to the
malignant state (rate µ3).

In a modeling context, Figure 3 is a four-stage model
added to a three-stage model since hits and stages
are mathematically indistinguishable. However, bio-
logically this is not simply a fourth stage added to
a simple three-stage model, but a construct based
on some observations regarding certain carcinogenic
mechanisms. Because the hit A cells still lead to
stage-one cells, this state does not really constitute

a stage by the definition given. It is more closely
related to a hit since passage through this stage in
moving to stage one is not required, but does alter
the overall mutation rate.

Experimental evidence for the multipath/multi-
stage model is supported by current cancer research
in the area of oncogenes and tumor suppressor genes.
Oncogenes are thought to be genes whose activa-
tion accelerates replication. Tumor suppressor genes
are thought to act in the opposite manner; they are
genes whose deactivation removes some restrictions
on the mechanism that regulates cell proliferation.
Thus, if oncogenes are activated and tumor suppres-
sor genes deactivated, the net result is believed to
be a cell, and eventually a colony of cells, with lit-
tle or no growth control (malignancy) (see Tumor
Growth).

Current biological theory in the area of molecular
carcinogenesis suggests that a malignant cell results
from the accumulation of genetic damage to a single
cell. The multipath/multistage model may possibly
explain the underlying mechanisms involved in the
transformation of the mechanisms by which the onco-
genes and suppressor genes control replication. Three
equally likely possibilities exist:

1. Oncogene activation and suppressor gene deac-
tivation must occur in a sequential manner and
induce carcinogenesis. This situation would fit
the multistage theory of carcinogenesis. This the-
ory includes models such as those by Armitage
& Doll [1, 2], Neyman & Scott [11], Mool-
gavkar & Venzon [9], and Portier & Kopp-
Schneider [14].

2. Oncogene activation and suppressor gene deac-
tivation are not restricted to a particular order
of occurrence. Thus, carcinogenesis is induced
once both these events occur, regardless of order.
This would directly relate to the multihit theory
hypothesis. Models in this class have been pro-
posed by Iversen & Arley [5] and Rai & Van
Ryzin [16].

3. One of the events in the process, say oncogene
activation, could have no direct bearing on car-
cinogenesis such that it is unnecessary for tumor
formation. However, it may still alter the rate
at which one of the other events, say suppres-
sor gene deactivation, occurs. Thus, oncogene
activation could be considered as a potential hit
which augments suppressor gene deactivation.
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Because suppressor gene deactivation is neces-
sary for carcinogenesis, it is a stage in the pro-
cess. Models in this class have been proposed
by Portier [13] and Tan [20], and developed by
Sherman & Portier [17].

Estimation Considerations

Historically, mathematical models related to the can-
cer process have relied on tumor response data, i.e.
the presence or absence of a tumor, for parame-
terization. However, tumor response data are not
sufficient to uniquely parameterize the simplest of
mathematical cancer models. Mathematical and sta-
tistical techniques have been derived over the past
several years to take advantage of some of the inter-
mediate cancer biomarker data currently being col-
lected [3, 4, 6, 19]. Premalignant lesion data from
rodent skin papilloma studies (number of skin papil-
lomas) and hepatocarcinogenicity studies (number
and size of enzyme-altered hepatic lesions) have been
used to elucidate the underlying cancer mechanisms
of a variety of chemical carcinogens.

Mathematical models have also been developed
to focus strictly on the growth properties of pre-
malignant lesions. From cell labeling studies carried
out over a period of time (incidence labeling data),
Moolgavkar & Luebeck [8] have developed meth-
ods to estimate the birth rate of premalignant cells.
Lyles [7] incorporates incidence and prevalence cell
labeling data (BrdU cell labeling data and PCNA
cell labeling data, respectively) to estimate the rate
parameters of the cell cycle. From these methods,
one may test a variety of hypotheses which may elu-
cidate aberrant cell growth typically characterized by
premalignant cell populations.

Mathematical models of carcinogenesis are not
limited to using a single type of data (i.e. tumor
response data alone or labeling index data alone) in
the modeling process. Several pieces of information
may be incorporated into a single model to more
fully describe the cancer process or fill in the gaps
created by previous models. Important aspects of
this approach are its close ties to the underlying
biology of the cancer process and the enhancement of
statistical power in hypothesis testing (due to the use
of additional data). Once a model and data are chosen,
one may use maximum likelihood techniques to
arrive at parameter estimates and likelihood ratio
tests to examine a broad range of hypotheses.
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Multistage Sampling

Multistage sampling is an extension of cluster sam-
pling. The sampling units are hierarchically arranged:
primary, secondary, tertiary, etc. units are established
in accordance with the number of stages in the multi-
stage sampling design. For simplicity of illustration,
we consider a population that has been divided into
primary sampling units (PSUs), where the PSUs are
initially unstratified. A frame of M PSUs is assumed
(see Sampling Frames). A first-stage sample of m

PSUs is randomly selected from this frame. The pop-
ulation within the ith sampled PSU is itself divided
into Ni secondary units, and a sample cluster of ni

units is randomly selected from this frame. In multi-
stage sampling ni < Ni as opposed to cluster sam-
pling where ni = Ni . The sampling within each PSU
is independent of the sampling in other PSUs and
may be carried to any number of stages. One may use
any probability sampling method (such as stratified
sampling or cluster sampling) at any stage, and these
methods may differ between PSUs. The enumeration
or listing units on which surveys are conducted are
the units selected at the last sampling stage.

Other names used for multistage sampling are
nested sampling and k-stage sampling where k is the
number of sampling stages in the survey design. The
term subsampling is also used to describe the use of
sample clusters as the population for the subsequent
sampling stage.

Multistage sampling should not be confused
with multiphase sampling. The sampling units in a
multistage sample are nested. By contrast, multiphase
sampling uses the same set of units at all phases
included in its design. However, it is possible to
use both multistage and multiphase techniques in a
complex survey design (see Kish [4, Section 12.1]
and Foreman [2, Section 7.4]).

The primary reason for using multistage sampling
is to reduce the costs of data collection. For example,
in a single-stage sample of households in a city
one would have to list the households in the whole
city, whereas in a multistage sample with city blocks
used as PSUs, one could restrict listing activities to
a sample of city blocks. One also uses multistage
sampling when an exhaustive listing of the target
population cannot be compiled. For instance, a list of
hospital patients does not exist, but a list of hospitals
does. Kish [4, Chapters 6, 9–11] and Sudman [6,

Chapter 7] give detailed procedures for listing units
in multistage area surveys.

The operational advantages of multistage sampling
are offset by a loss in sampling efficiency. A multi-
stage sample usually results in larger sampling error
than does a simple random sample of the same size
for the corresponding sample estimates. However,
multistage sampling usually yields smaller variances
for a unit of cost.

To facilitate discussion, we consider two-stage
samples. Extensions to more sampling stages are
intuitive. A sample of m PSUs is selected from the
population total of M PSUs. A sample cluster of ni

secondary units is selected from the population of
Ni secondary units in the ith sample PSU. The total
number of listing units in the population and sample
are N = ∑M

I NI and n = ∑m
i ni , respectively.

The overall selection probability, Pij , for the j th
secondary unit in the ith PSU is the product Pij =
P1i × P2ij , where P1i and P2ij are sampling fractions
at the first and second sampling stages, respectively.
The P2ij is the conditional probability of selecting
the j th unit provided the ith PSU is selected. One
usually uses equal selection probabilities, P2ij = f2i ,
within PSUs, especially at the last stage. This article
assumes equal selection probabilities within PSUs.

When sampling fractions within PSUs are uniform
across PSUs, i.e. f2i = f2, Ni is frequently not a
multiple of the expected sample cluster size E(ni) =
f2i × Ni and the expected size includes a fraction.
The actual size is then variable with possible values
ni or ni + 1. To minimize the effort of determining
the actual sample cluster sizes in such situations, one
usually uses systematic random sampling to select
secondary units, thus allowing the random start to
determine the sample cluster size from each PSU.

Estimation

In multistage sampling, estimation is also done in
stages, starting with the last units. In two-stage sam-
ples one first estimates PSU aggregates with data
from secondary units. Here, we consider samples in
which simple random sampling is used at both stages
without replacement. For equal probability samples
of secondary units,

x ′
i = Ni

ni

ni∑

j

xij (1)
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is an unbiased estimate of the PSU aggregate Xi .
These estimates are used in place of Xi in the unbi-
ased estimate,

x ′ = M

m

m∑

i

x ′
i , (2)

of the aggregate X for the entire population. The
variance of x ′ is

σ 2
x ′ = M2

m

M − m

M
S2

1X + M

m

M∑

I

N2
I

nI

NI − nI

NI

S2
2IX

= B2
x ′ + W 2

x ′ (3)

where

S2
1X =

M∑

I

(XI − X)2

M − 1
, (4)

S2
2IX =

NI∑

J

(XIJ − XI )
2

NI − 1
, (5)

XI =
NI∑

J

XIJ , X =

M∑

I

XI

M
= X

M
and

XI =

NI∑

J

XIJ

NI

= XI

NI

(6)

[3, Volume I, Section 6.6, Volume II, Section 6.1].
The S2

1X is the population variance between PSU
totals. The S2

2IX is the population variance between
secondary units within the I th PSU.

The variance of x ′ in (3) is expressed in terms
of the contributions at each sampling stage. The first
term is the between-PSU component of variance; it
represents the contribution due to sampling PSUs.
The second term is the within-PSU component of
variance; it is the contribution due to sampling sec-
ondary units. The between-PSU component is the
variance one gets if there were no subsampling within
PSUs (ni = Ni) i.e. if the sample were a one-stage
cluster sample. The within-PSU component is the
variance one gets if one takes all PSUs into the
sample (m = M), i.e. if the sample were a stratified
sample with M strata (see Variance Components).

In multistage sampling the estimates of means and
proportions are usually ratios of estimated aggregates
because the denominator, as well as the numerators,
are unknown and, hence, must also be estimated. For
a ratio R = X/Y of aggregate variates X and Y ,
one may use the estimate r = x ′/y ′, where x ′ and
y ′ are defined in (2). Expressions for σ 2

r are similar
in form to those for σ 2

x ′ . The variance of r for samples
selected with equal probability without replacement
at both stages is approximately

σ 2
r = M2

m

M − m

M
S2

1R + M

m

M∑

I

N2
I

nI

NI − nI

NI

S2
2IR

= B2
r + W 2

r , (7)

where

S2
1R

.=
(

1

Y 2

)
(S2

1X + R2S2
1Y − 2RS1XY ) (8)

with S2
1X and S2

1Y defined in (4) and population
covariance defined as

S1XY =

M∑

I

(XI − X)(YI − Y )

M − 1
, (9)

and where

S2
2IR

.=
(

1

Y

)2

(S2
2IX + R2S2

2IY − 2RS2IXY ), (10)

with S2
2IX and S2

2IY defined in (5) and the population
covariance defined as

S2IXY =

NI∑

J

(XIJ − XI )(YIJ − Y I )

NI − 1
. (11)

The variance approximation in (7) is good if the
sample size is large enough that the coefficient of
variation Vy ′ = σy ′/Y for the denominator is less than
0.05 [3, Volume I, Section 6.6], or if the sample is
large enough that both Vx ′ = σx ′/X and Vy ′ are less
than 0.10 [1, Section 6.3] (see Ratio and Regression
Estimates).

Two estimates of variance are useful in multistage
estimates. When not designing samples, one may
approximate the combined contribution of the first
and second stages of variance simply with ultimate
cluster variance estimates. An ultimate cluster is the
entire sample of listing units selected from a PSU,



Multistage Sampling 3

regardless of how many sampling stages are used.
For example, in a three-stage sample where city
blocks, households, and persons are selected at the
first, second, and third sampling stages, persons are
the listing units and blocks are the PSUs; an ultimate
cluster then consists of all persons selected to the
sample from one block. When two or more PSUs are
selected to the sample, the ultimate cluster estimate of
σ 2

z for generic statistic z (z is the aggregate estimate
x ′ or ratio estimate r) is

σ̂ 2
z = M2

m
s2
cZ. (12)

If z is the aggregate estimate x ′ defined in (3), then

s2
cX =

m∑

i

(x ′
i − x)2

(m − 1)
, (13)

where x ′
i is an unbiased estimate of PSU aggregate

Xi , and x = x ′/M . Similarly, if z is a ratio estimate
r , then

s2
cR

.=
(

1

y ′

)2

(s2
cX + r2s2

cY − 2rscXY ), (14)

with

scXY =

m∑

i

(x ′
i − x)(y ′

i − y)

m − 1
. (15)

Expressions (13) and (14) are variances between ulti-
mate clusters.

The estimate in (12) is consistent. One may use
it with any multistage sample, regardless of the num-
ber of stages or probability subsampling methods,
provided the sampling is independent between PSUs.
When the PSUs are selected with replacement, σ̂ 2

x ′ for
the aggregate estimate x ′ is unbiased. When PSUs are
selected without replacement (see Sampling With
and Without Replacement), σ̂ 2

z overstates σ 2
z , but it

may still be a useful approximation, especially when
m/M is small and the between-PSU variance com-
ponent is not a large portion of the total variance
(see Hansen [3, Volume I, Sections 6.7 and 9.15] and
Foreman [2, Section 8.5]).

When one designs samples and needs approxima-
tions for the separate variance components, one may
use the following consistent estimates. An estimate
of the within-PSU component in (3) or (7) is

w2
z = M2

m
ŝ2

2z, (16)

where

ŝ2
2Z = 1

m

m∑

i

N2
i

ni

Ni − ni

Ni

s2
2iZ. (17)

When z is the aggregate estimate x ′,

s2
2iX =

ni∑

j

(xij − xi)
2

ni − 1
, (18)

and, when z is the ratio estimate r ,

s2
2iR

.=
(

1

y ′

)2

(s2
2iX + r2s2

2iY − 2rs2iXY ), (19)

with

s2iXY =

ni∑

j

(x ′
ij − xi)(y

′
ij − yi)

ni − 1
. (20)

A consistent estimate of the between-PSU component
B2 in (3) or (7) is

b2
z = M2

m

M − m

M
(s2

cZ − ŝ2
2Z), (21)

where s2
c is defined in (13) or (14) and ŝ2

2 is
defined in (17) [3, Volume I, Section 6.7, Volume II,
Section 6.4].

Sample Size and Allocation

For guidance in selecting among alternative sampling
designs, it is frequently helpful to compare them with
simple random samples. If one’s multistage sample
is self-weighting (f2i = f2 so fij = f1 × f2 = f ) in
addition to being selected with equal probabilities at
both stages, the comparison is conveniently made by
approximating the variance of estimate z with

σ 2
z

.= σ 2
Z

mn
[1 + δZ(n − 1)] = σ 2

Z

mn
DEFF (z), (22)

where σ 2
Z is the population variance between listing

units for variate Z, n = f N is the expected sample
size per PSU, N = N/M , and δZ is a measure of
the homogeneity for variate Z between listing units
within PSUs. The factor σ 2

Z/mn in (22) is the vari-
ance that would result if a simple random sample of
n = mn listing units were used to estimate Z. The
remaining factor is the design effect, DEFF, which
reflects the precision lost due to use of a multistage
sample instead of a simple random sample of listing
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units. The DEFF and δ differ with sampling design
and with the variate being estimated.

For self-weighting samples with both stages
selected with equal probabilities without replacement,
the appropriate value of δ is expressed by

δZ =
M − 1

M
S2

1Z − NS2
2Z

M − 1

M
S2

1Z + N(N − 1)S2
2Z

, (23)

where S2
1Z is defined in (4) for aggregates and in (8)

for ratios, and where

S2
2Z =

M∑

I

NI

N
S2

2IZ, (24)

with S2
2IZ defined in (5) or (10). The measure of

homogeneity for a multistage sample is approxi-
mately the same as that for the population. Thus, a
simple estimate for the δ in (23) is

δ′
z = s2

cz − ns2
2z

s2
cz + n(n − 1)s2

2z

, (25)

where s2
cz is defined in (13) or (14), and

s2
2z =

m∑

i

ni

n
s2

2iz, (26)

with s2
2iz defined in (18) or (19) (see Hansen

et al. [3, Volume I, Section 6.8] and Foreman [2,
Sections 8.2–8.3]).

Expression (22) shows that for a fixed sample size
n = mn, σ 2

z varies with the factor 1 + δZ(n − 1) and,
thus with δZ and n. For many populations the natural
clusters consist of units that are homogeneous relative
to the units in the population as a whole, i.e. δZ > 0.
For example, persons residing in a city block tend to
be more similar to one another than to persons in the
city as a whole. Hence, as a general rule one wants
to maximize the number of PSUs while minimizing
the sample size within each PSU.

Increasing the number or size of sample PSUs may
adversely affect survey costs. For example, the costs
of listing households increases with the number of
city blocks sampled when blocks are the PSUs in a
multistage sample of households. To determine the
most efficient sample allocation between PSUs and
secondary units, one must consider both the costs

and internal homogeneity of PSUs. For a two-stage
sample, a simple cost function is

C = C1m + C2mn, (27)

which includes one term for each sample stage. The
term for the kth sampling stage is the total cost for
that stage of sampling. That term is the product of
the number of units selected at the kth stage times
Ck , where Ck is the average cost that is incurred
when the kth-stage sample is increased by one unit.
Among other costs, C1 includes the cost for a list
of all secondary units within a PSU; it also includes
the costs of travel to reach PSUs if PSUs are geo-
graphically spread out. For example, in a sample of
hospital discharges, C1 includes the cost of gaining
the hospital’s cooperation and the cost of constructing
a sampling frame of all of that hospital’s eligible dis-
charges. The second-stage cost, C2, includes costs for
collecting and processing data about the listing unit.
Hansen et al. [3, Volume I, Sections 6.10–6.15] has
a good discussion on constructing cost functions for
multistage samples, but the costs need updating.

For two-stage samples selected with equal proba-
bilities at both stages and the cost model in (27), the
optimum sample size per PSU is

opt. nz =
(

C1

C2

1 − δZ

δZ

)1/2

= N

(
C1

C2

S2
2Z

S2
1Z − NS2

2Z

)1/2

, (28)

where δ is defined in (23). The optimum in (28) is
independent of total survey costs. It requires only
the ratio of unit costs. The optimum increases with
(1 − δ)/δ = [(1/δ) − 1]; it increases as δ decreases.
It also increases as the PSU costs increase relative
to the secondary unit costs. The optimum number of
sample PSUs depends on which of two objectives one
wants satisfied by the optimized sample. When that
objective is to produce estimates for a fixed value C0

for the survey cost C defined in (27), then

opt. mz = C0

C1 + C2 opt. nz

, (29)

where opt. nz is given in (28). If, instead of a fixed
survey cost, one wants to produce an estimate z with
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a specified value σ 2
0 for σ 2

z defined in (3) or (7), then

opt. mz =
MS2

1Z + N2

opt.n

N − opt. n

N
S2

2Z

σ 2
0 + MS2

1Z

, (30)

where opt.n is defined in (28), the S2
1 is defined

in either (4) or (8), and S2
2 is defined in (24) [5,

Sections 10.4–10.5]. Values for C1 and C2, as well
as estimates for S2

1Z and S2
2Z , can be derived from

experience in similar surveys for similar variates.
For more on optimizing multistage samples, see
Hansen et al. [3, Volume I, Sections 6.16–6.26, 9.7]
and Foreman [2, Section 8.4].

Variable PSU Sizes

When PSUs vary in size, sampling them with equal
probability is frequently not efficient. Simple random
samples of varying sized PSUs will likely yield large
between-PSU variance components for estimates of
totals for the entire population if the PSU totals
are correlated with the PSU size. Such samples will
also yield sample clusters of varying sizes if the
second-stage sampling fractions are uniform (f2i =
f2). Variation in sample cluster sizes usually means
increased survey costs owing to variation in work
load between PSUs. Efforts to reduce variation in
PSU size (by splitting large PSUs, combining small
PSUs, or otherwise reconstructing PSUs) are usually
too difficult or costly to be worthwhile.

There are three basic methods generally used for
controlling the effects of variation in PSU sizes.
Each requires some information on PSU size for
every PSU. However, one usually uses approxima-
tions because the actual sizes are rarely known. One
may use a stratified sample of PSUs with strata
defined by PSU size. The largest PSUs or unusual
PSUs can then be placed in a certainty stratum, where
the estimate has no between-PSU variance compo-
nent. The estimate for an aggregate X for the entire
population is then the sum of estimates for stratum
aggregates and the variance of that estimate is the
sum of the variances for stratum estimates. If one uses
simple random sampling at each stage within strata,
the estimate of aggregate Xh for the hth stratum is
given in (2) with variance given in (3).

Another method of controlling for varying PSU
sizes is to select PSUs by sampling with probability

proportional to size (pps). Under pps, one selects the
ith PSU with probability πi = m(Ai/A) = mPi , pro-
vided Ai < A/m. The AI is the approximation to size
of the I th PSU and A = ∑M

I AI . When AI > A/m,
one typically places the I th PSU in a certainty stratum
and then uses pps to select a sample of m − 1 PSUs
from the remaining population. For sample PSUs
with Ai < A/m, one almost always uses the prob-
ability f2i = f × (1/pi) to select the ij th secondary
unit. That makes the sample self-weighting and the
sample clusters approximately equal in size. Some
variation in ni is likely because of imperfect PSU
size measures. When PSUs are selected with varying
probabilities, an unbiased estimator of the population
aggregate X is the Horvitz–Thompson estimator

x ′ =
m∑

i

x ′
i

πi

= 1

m

m∑

i

x ′
i

Pi

, (31)

where x ′
i is given in (1). When the Pi are uniform

(Pi = 1/M), (31) becomes identical to (2). For a
self-weighting sample with PSUs selected with pps
without replacement, the variance of x ′ in (31) is
approximately

σ 2
x ′ = 1

m

M∑

I

PI

1 − nPI

1 − PI

(
XI

PI

− X

)2

+ 1

m

M∑

I

N2
I

PI

(NI − nI )

NInI

S2
2IX, (32)

with S2
2IX defined in (5) (see Foreman [2, Section 7.5]

and Hansen et al. [3, Volume I, Section 8.14, Vol-
ume II, Section 8.11]). The variance of ratio r is

σ 2
r

.=
(

1

Y

)2

(σ 2
x ′ + R2σ 2

y ′ − 2Rσx ′y ′), (33)

where

σx ′y ′ = 1

m

M∑

I

PI

1 − nPI

1 − PI

(
XI

PI

− X

)(
YI

PI

− Y

)

m − 1

+ 1

m

M∑

I

N2
I

PI

(NI − nI )

NInI

S2IXY (34)

with S2IXY defined in (11).
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When two or more PSUs are selected with pps,
the ultimate cluster estimate for σ 2

x ′ is

σ̂ 2
x ′ =̇ 1

m

m∑

i

(
x ′

i

Pi

− x ′
)2

m − 1
, (35)

where x ′
i is an unbiased estimate of the PSU popula-

tion aggregate Xi and x ′ is defined in (31).
Probability proportional to size and a fixed overall

sampling fraction usually decrease variances com-
pared with samples in which first-and second-stage
probabilities are uniform. However, pps increases the
portion of large PSUs selected to the sample. This
may increase survey costs, especially if the cost of
listing secondary units within PSUs is related to the
number of them within the PSU. However, the work
load at the second stage will be approximately the
same from PSU to PSU, because the within-PSU sam-
ples are about equal. Generally, when it is economic
to use pps, pps is preferred to stratification.

A third method of controlling for variations in
PSU sizes depends on a ratio estimate. When one has
supplementary information (from a census, adminis-
trative records, or source other than the survey) on
the population total for an independent characteristic
Y , one may estimate the total X by

x ′′ = x ′

y ′ Y = rY, (36)

where x ′ and y ′ are defined in (31). The variance
of x ′′ is σx ′′ = Y 2σ 2

r , where σ 2
r is defined in (33).

When YI is the PSU population total NI for listing
units or some other measure of PSU size that is
highly correlated with XI , the variance of x ′′ may
be substantially less than that of x ′. The estimate
x ′′ is biased, but the bias becomes trivial with large
numbers of sample PSUs. If one uses actual PSU

totals Yi in place of estimates y ′
i in (31), then y ′ has

no sampling at the second stage. The term involving
the within-PSU variance component is dropped from
σ 2

y ′ in (32).
For more on controlling for variation in PSU

sizes see Hansen et al. [3, Volume I, Chapter 8] and
Foreman [2, Sections 7.4–7.6].
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Multivariate Adaptive
Splines for Analyzing
Longitudinal Data

Longitudinal data represent one of the most com-
monly encountered data structures in health-related
studies as well as in other fields including economics
and finance. For every subject in a study, the out-
come variable is measured repeatedly over time, and
some (p) covariates are also collected, which may or
may not vary over time. The classic method for ana-
lyzing longitudinal data is the mixed-effects linear
model [4]. The purpose of this article is to describe
MASAL [7] – nonparametric, method for analyzing
and exploring longitudinal and growth curve data.

As an illustration, Figure 1 displays a subset of
the data analyzed by Zhang [8]. In this data set,
weights (kg) in the first one and half years were
collected from 298 infants in an effort to examine
the potential impact of the mother’s cocaine use
during pregnancy on the infant’s growth after birth. In
addition, information on gestational age, sex, and race
is also available. The objective is to characterize the
growth pattern and identify the variables that affect
the growth pattern.

For the notation, suppose that data are observed
for n subjects. For subject i, let yi = (yi1, . . . , yiTi

)′
be the response vector (e.g. an infant’s weights)
measured at Ti time points ti = (ti1, . . . , tiTi

)′ and Xi

a Ti × p design matrix (e.g. a mother’s cocaine use
and the infant’s sex). Laird and Ware [4] introduced
the following mixed-effects model:

yi = Xiβ + Zibi + ei , (1)

where β is the p × 1 fixed effect parameter vector, Zi

a random effect design matrix, bi the random effects,
and ei the measurement error. In general, ei and
bi are assumed independent each other and among
different subjects, and follow multivariate normal
distributions with mean 0.

Some nonparametric or semiparametric methods
have emerged to extend the mixed-effects model.
Here, the term “nonparametric” or “semiparametric”
is with respect to the fixed effect. In most extensions,
the time is isolated from the other covariates, and the
fixed effect is decomposed as Xiβ + µ(ti ) or Xiβ(t),
where Xi excludes the measurement time, but may

contain other time-dependent covariates. In other
words, the time trend is either additive or multiplica-
tive to the covariate effects. The major advantage of
such an extension is that one-dimensional smoothing
(see Spline Smoothing) has been extensively stud-
ied and well implemented in the statistical literature
(see also Spline Function), and the interpretation is
relatively easy.

In contrast, MASAL is the unique model that is
based on a multivariate nonparametric smoothing.
As we know, there are usually no a priori reasons
to believe that Xiβ + µ(ti ) or Xiβ(t) is necessarily
appropriate. As we will see later, a fitted MASAL
model can help us decide whether Xiβ + µ(ti ) or
Xiβ(t) is appropriate.

Specifically, Zhang [7] considered a general non-
parametric model

yij = f (x1,ij , . . . , xp,ij , tij ) + eij (tij ), (2)

where f is an unknown smooth function and eij (tij )

is an element of ei . Because tij can be viewed as one
of the time-varying covariates, for notational conve-
nience, we include the time as one of the covariates
and write f (Xi) = f (x1,ij , . . . , xp,ij , tij ). The esti-
mation of a MASAL model proceeds in two steps:
one deals with the covariance matrix, and the other
fits the f function for a given covariance matrix.

First, suppose that the covariance matrix, Σi(i =
1, . . . , n), is given. The f function is estimated by
finding a member in the following class of functions:

{
M∑

k=0

βkBk(X), M = 0, 1, . . .

}
,

where Bk(X) is a basis function to be defined shortly
and βk the regression coefficient (k = 0, 1, . . . , M),
to minimize the weighted least squares (WLS).

n∑

i=1

(yi − f (Xi))
′

−1∑

i

(yi − f (Xi)).

Unlike parametric regression, the number of terms,
M , and the individual basis, Bk(X), need to be esti-
mated from the data. Particularly, Bk(X) is made
of these two basis functions: (xl − τ)+ and xl, l =
1, . . . , p, where τ is called knot and needs to be esti-
mated, and for any number a, a+ = max(a, 0). Bk(X)

is either one of the forgoing two bases, for example,
(x1 − 2)+, or the product of those functions involv-
ing distinct covariates such as (x1 − 2)+x2(x3 − 5)+.
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Figure 1 Growth curves of prenatally cocaine exposed and unexposed boys and girls. Ten infants are arbitrarily chosen
in each group

The global minimization of the WLS is intractable.
Instead, forward and backward procedures are used
in practice [2, 6–8, 10] (see Variable Selection).
In terms of computation, the most challenging step
is to find the best τ during the forward stepwise.
The fastest and exact algorithm is described by
Zhang [7].

Next, we turn to the practical situation where Σi’s
are unknown. There are two main strategies. First,
as discussed in Zhang [7], we can assume a general
structure for Σi , for example, compound symmetry,
auto-regressive correlation (see ARMA and ARIMA
Models), or unstructured. Second, we decompose eij

into an independent random measurement error and
a systematic random variation. For example, in the
analysis of growth curve data (sometimes referred to
as functional data analysis), we may assume

eij (tij ) =
L∑

l=1

ϕl(tij )bil + εij , (3)

where similar distributions can be assumed for εij ’s
and bil’s to those in the linear mixed-effects model,

and ϕl(t)(l = 1, . . . , L) is a prespecified function of
t such asϕ(t) = t or

√
t [5].

Once the general covariance structure, Σi , is cho-
sen, the entire estimation procedure for MASAL
proceeds as follows. We begin the process with ini-
tializing the parameters in Σi , for example, by assum-
ing the independence of all observations. Then, the
function, f , can be estimated as described above.
Next, the residuals between yi and its predicted value
f̂ (Xi) are computed and used to estimate the param-
eters in Σi . Then, the function f can be reestimated,
and so on. While a theory has not been established,
in nearly all applications that I have encountered,
this process settles after the second iteration in the
sense that there are few changes in the estimated f

function and the WLS is hardly different in the sub-
sequent iterations.

Assuming that (usually it is useful to examine a
few choices)

eij (tij ) = bi1 + √
tij bi2 + εij , (4)
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and applying MASAL to the infant growth data
introduced earlier, the initial estimate of the f func-
tion under the independence assumption is

0.11 + {0.5 − 0.28x3 − 0.37(x2 − 3)+}x4

+ (0.028 + 0.00028x2 − 0.0008x3)t,

− {0.016 + 0.00036(x5 − 35)+

− 0.0015x1}(t − 153)+ ≡ X̃β(t) (5)

where x1 denotes race (white or black), x2

the number of previous pregnancies, x3 gender,
x4 cocaine exposure, x5 gestational age, β(t) =
(0.11, 0.1, 0.01t, 0.01(t − 153)+)′ and X̃ = (1, {5 −
2.8x3 − 3.7(x2 − 3)+}x4, (28 + 0.028x2 − 0.08x3),
16 + 0.036(x5 − 35)+ − 0.15x1).

Thus, this initial model requires time-varying coef-
ficients β(t)[3] (see Time-dependent Covariate)
although the design matrix is adaptively determined
from the data. Using the residual estimates from
this initial model, the covariance parameters are esti-
mated, which in turn leads to the updated estimate
for the f function:

0.12 + 0.014x4 + 0.035t − 0.012(t − 60)+

− 0.01(t − 150)+ − 0.003(t − 300)+.

Whereas the change from the initial model to
the second one is notable, it is not so after the
second iteration. As initially suggested, time-varying
coefficients are not warranted in the final model.
This model indicates an interesting growth pattern
of the infants. First, the presence of x4 is indicative
of the importance of cocaine exposure. Second, the
overall growth is increasing in time thanks to the
term, 0.35t , the growth becomes slower and slower
after 2 months, 5 months, and 10 months.

Basic diagnostic procedures have been pro-
posed [9] to assess the assumption of the covariance
structure, although further investigation is clearly
warranted. Owing to the highly adaptive nature of
MASAL, a formal theory for statistical inference is
difficult. However, bootstrap method [1] can be used
to resample the data and consider confidence inter-
vals and bands for the parameters of interest. For
instance, we can test the contribution of a variable
by removing it from our consideration and assess the
magnitude of the degraded goodness of fit. Likewise,
we can also test the linearity of a variable by exclud-
ing the nonlinear part of a variable. It is noteworthy,
however, that these strategies need careful scrutiny.

In summary, MASAL is the only available model
that is based on a high-dimensional smoothing tech-
nique and does not impose functional restrictions
on time and covariates a priori. Not only does it
accommodate time-varying covariates, but it also
allows unrestricted interactions among covariates and
between time and covariates. In addition, the fitted
models are easy to calculate and readily interpretable.
Thus, the mixed-effects multivariate adaptive splines
model is handy for exploring longitudinal data. How-
ever, before the related procedures for statistical
inference is thoroughly examined, MASAL should be
primarily used as a way to explore the data structure
in longitudinal and growth curve data, rather than a
method of hypothesis testing. Executable MASAL
programs (both stand-alone and S-PLUS compatible
versions) are available from Heping Zhang’s web site
at http://peace.med.yale.edu.
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Multivariate Analysis of
Variance

The multivariate analysis of variance, or MANOVA,
is an extension of the univariate analysis of variance
to multidimensional, or vector-valued, observations.
The same experimental design or treatment layout
applies to each of the observed response variables.
The univariate assumption of a normal distribution
is replaced by the multivariate normal distribution
for the data vectors and the random error components
in the mathematical model of the design.

The One-Way Analysis of Variance Layout

We begin with the univariate one-way layout. Ran-
dom samples of observations on some variable X

have been obtained under k treatments or other
experimental conditions. The data are arranged as
shown in Table 1. The datum xij is an observation on
a normally distributed random variable with mean µj

and a constant variance σ 2 for all N = N1 + · · · + Nk

experimental units. More generally, the observations
may be represented by the linear model

xij = µ + τj + eij ,

where µ is an effect common to all units, τj is the
effect of the j th treatment, and eij is a normally
distributed random variable with mean E(eij ) = 0
and variance var(eij ) = σ 2. The purpose of the one-
way analysis of variance is to test the hypothesis
that the k treatment means, µ1, . . . , µk , are equal, or
equivalently that the null hypothesis of no treatment
effects,

H0 : τj = 0, j = 1, . . . , k,

Table 1

Treatment
1 . . . k

x11 . . . x1k

. . . . .

. . . . .

. . . . .

xN11 . . . xNkk

Mean x1 . . . xk

Sample size N1 . . . Nk

is true. To test the hypothesis we compute the within-
treatments sum of squares

E =
k∑

j=1

Nj∑

i=1

(xij − xj )
2

and the between-treatments sum of squares

H =
k∑

j=1

Nj(xj − x)2,

where x is the grand mean of all observations. The
mean square E/(N − k) is an unbiased estimate of
the variance σ 2, and H/(k − 1) is such an unbiased
estimate only if the hypothesis of equal treatment
effects is true. E and H are independently distributed,
so that

F = [H/(k − 1)]

[E/(N − k)]

has the F distribution with k − 1 and N − k degrees
of freedom when the null hypothesis is true. When
the alternative of unequal treatment effects holds,
the expected value of F will be large, and the null
hypothesis should be rejected for F in excess of an
appropriate critical value.

The one-way multivariate analysis of variance has
the same experimental design, but the observations
xij are replaced by p × 1 observation vectors xij . The
p components, xijh, are measurements or other data
on p response variables describing characteristics or
dimensions of the experimental unit. The linear model
for the vector elements is

xijh = µh + τjh + eijh,

where µh is a general effect for the hth response
variable, τjh is the effect of the j th treatment on
the hth response, and eijh is a random disturbance.
The vector e′

ij = [eij1, . . . , eijp] has the multivari-
ate normal distribution with null mean vector and
covariance matrix E(e

ij
e′
ij ) = �. As in the univari-

ate model, a common covariance matrix holds for
all pairs (i, j ), and the eij of different experimental
units are independently distributed. The hypothesis of
equal treatment effects can be expressed as

H0 : τjh = 0, j = 1, . . . , k, h = 1, . . . , p,

or, in terms of the treatment mean vectors,

µ′
j = [µ1 + τj1, . . . , µp + τjp],
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Table 2

Treatment
1 . . . k

Mean vector [x11, . . ., x1p] . . . [xk1, . . ., xkp]

Grand mean vector [x1, . . ., xp]

as
H0 : µ1 = · · · = µk.

The alternative is that of unequal mean vectors.
For the multivariate analysis of variance we begin

by replacing the treatment means by mean vectors
(Table 2). The treatment sum of squares, H , becomes
the p × p matrix

H =





h11 . . . h1p

. . . . .

. . . . .

. . . . .

h1p . . . hpp



 ,

in which

hrs =
k∑

j=1

Nj(xjr − xr)(xjs − xs), r, s = 1, . . . , p.

The diagonal terms, hrr , are the treatment sums of
squares for the individual response variables, while
the off-diagonal values, hrs , are the sums of cross-
products for all pairs of the variables. The within-
treatments sum of squares, E, is extended to the
p × p matrix

E =





e11 . . . e1p

. . . . .

. . . . .

. . . . .

e1p . . . epp



 ,

with general element

ers =
k∑

j=1

Nj∑

i=1

(xijr − xjr )(xijs − xjs).

The rth diagonal element of E is merely the one-way
analysis of variance within-groups sum of squares
for the rth response variable. The off-diagonal term,
ers , is a corresponding sum of products of the obser-
vations on the rth and sth responses. From those
univariate definitions of the hrs and ers terms we can

easily construct the matrices H and E for the one-way
layout or, for that matter, those for any layout for
which an analysis of variance is available.

The relative closeness of the elements of H to
those of E is a measure of the validity of the hypoth-
esis of equal mean vectors. We measure “closeness”
by various functions of the roots of the determinantal
equation |H − λE| = 0 or, equivalently, the charac-
teristic roots of the matrix E−1H (see Eigenvalue).
The following are the principal test statistics for the
multivariate analysis of variance:
Wilks’ determinantal ratio:

Λ = |E|
|H + E|

= 1

|E−1H + I|
= 1

product of the characteristic
roots of E−1H+I

(see Lambda Criterion, Wilks’).
Roy’s greatest root :

cs = largest characteristic root of E−1H,

or

θs = cs

(1 + cs)

(see Roy’s Maximum Root Criteria).
Lawley–Hotelling trace:

T 2
0 = tr E−1H

= sum of the characteristic roots of E−1H

(see Lawley–Hotelling Trace).
Pillai trace:

V = tr H(H + E)−1

(see Pillai’s Trace Test).
We give the distributional properties of the statistics
in a later section.

An Example

As an illustration of the one-way multivariate analysis
of variance we use p = 3 dimensions of the skulls
of four variants of the wolf Canis lupus L. The
data were discussed by Jolicoeur [4, 5] and given
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as an example by Morrison [7]. The measurements
are given in Multivariate Analysis, Overview. The
response variables are these dimensions:

X1 = palatal length,

X2 = postpalatal length,

X3 = zygomatic width.

The four groups consisted of male and female wolves
from the Rocky Mountain and Arctic Archipelago
regions of Canada. The mean vectors and covariance
matrices for the four data sets are as follows:

1. Rocky Mountain males (N1 = 6) :

x′
1 = [126.50, 108.17, 145.17],

S1 =




1.5000 1.7000 2.3000

1.7000 6.1667 5.6667

2.3000 5.5667 24.9667



 .

2. Rocky Mountain females (N2 = 3):

x′
2 = [117.33, 102.67, 128.67],

S2 =




5.3333 0.6667 2.6667

0.6667 0.3333 −1.1667

2.6667 −1.1667 10.3333



 .

3. Arctic males (N3 = 10):

x′
3 = [115.80, 100.80, 142.40],

S3 =




6.1778 4.8444 6.4222

4.8444 9.5111 10.5333

6.4222 10.5333 31.8222



 .

4. Arctic females (N4 = 6):

x′
4 = [110.83, 96.17, 137.00],

S4 =




5.3667 2.4333 4.2000

2.4333 9.7667 5.8000

4.2000 5.8000 25.2000



 .

From these we compute the between-groups sums of
squares and products matrix:

H =




781.16 585.28 364.29

585.28 445.51 245.66

364.29 245.66 656.74



 ;

the within-groups sums of squares and products
matrix:

E =




100.60 65.60 95.63

65.60 165.93 149.30

95.65 149.30 557.90



 ;

and

E−1H =




7.88522 5.90989 3.20985

1.36789 1.13769 −0.46443

−1.06476 −0.87718 0.75123



 .

The characteristic roots of E−1H are 8.5280, 1.20595,
and 0.04018. The values of the four test statistics and
their approximate p values are shown in Table 3. The
hypothesis of equal mean vectors should be rejected
at any reasonable significance level.

The Multivariate General Linear Model

The Model

We now consider the multivariate analysis of variance
for the multidimensional general linear model. The
model is

X = Aξ + ε

= [A1 A2]

[
ξ1

ξ2

]
+ ε,

in which

X = the N × p observation matrix,
A = the N × q design matrix of rank r for the given

experimental design,
A1 = the N × r basis matrix for A,
A2 = the N × (q − r) completion of A1 into A,
ξ = the q × p parameter matrix,
ξ1 = the r × p parameter matrix corresponding to

the basis of A,

Table 3

Criterion Statistic p value

Roy’s greatest root 8.5280 �0.01
Wilks’ Λ 0.04574 3.17 × 10−10a

Lawley–Hotelling T 2
0 9.7741 1.55 × 10−47a

Pillai trace V 1.4804 0.00029a

aBased on large-sample limiting distributions.
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ξ2 = the (q − r) × p matrix of parameters for the
completion A2 of A, and

ε = the N × p matrix of random disturbances.

Each row of ε is independently distributed as a p-
dimensional multinormal random variable with null
mean vector and common covariance matrix �.

The set of linear parametric functions, a′ξ =
a′

1ξ1 + a′
2ξ2, is said to be estimable if a1 and a2 satisfy

the following relation:

a′
2 = a′

1(A
′
1A1)

−1A′
1A2

(Roy [20]). Then the minimum variance unbiased
estimator of a′ξ is

â′ξ = a′
1(A

′
1A1)

−1A′
1X.

General Linear Hypothesis

The multivariate general linear null hypothesis is

H0 : CξM = 0,

as opposed to its alternative, H1 : CξM �= 0. The
g × q matrix C has rank g ≤ r , and is specified by
the analyst. C is partitioned as [C1 C2], where its
submatrices have respective dimensions g × r and
g × (q − r) to conform with the partitioning of A
and ξ · M is a p × u matrix that will generate linear
functions of the responses or their parameters. Of
necessity, u ≤ p. If the original response variables
are to be used, then M = I. The null hypothesis can
be written in terms of the submatrices as

H0 : C1ξ1M + C2ξ2M = 0.

The hypothesis is said to be testable if the rows of
C1 and C2 satisfy the estimability conditions, or if

C2 = C1(A′
1A1)

−1A′
1A2.

We test the null hypothesis through the H and E
matrices defined by

H = M′X′A1(A′
1A1)

−1C′
1[C1(A′

1A1)
−1C′

1]−1

× C1(A′
1A1)

−1A′
1XM,

E = M′X′[I − A1(A′
1A1)

−1A′
1]XM.

H and E are independently distributed square sym-
metric matrices. E/(N − r) is an unbiased estimator
of the population covariance matrix � as long as the

linear model holds. H/g is only an unbiased esti-
mator of � if H0 is true. Examples of design and
hypothesis matrices and the resulting matrices H and
E have been given for some common experimental
design layouts by Morrison [7].

We may compute the elements of the general
H and E matrices from the univariate analysis of
variance in the same manner as for the one-way
MANOVA. The diagonal elements h11, . . . , huu of
H are the univariate hypothesis sums of squares for
the u linear functions of the multivariate response
variables (or the p response variables themselves
if M = I). The off-diagonal elements hij of H are
sums of products, or bilinear forms, whose matri-
ces are identical to the sums of squares quadratic
forms on the diagonal of H. Similarly, the diago-
nal elements e11, . . . , euu of E can be obtained from
the corresponding univariate ANOVA. Each eii is the
univariate error sum of squares for the successive
u linear compounds. The off-diagonal terms eij are
sums of products of all u(u − 1)/2 pairs of the linear
compounds of the observations, with the same bilin-
ear form matrix as the quadratic forms eii . By those
definitions one may avoid the matrix expressions for
H and E.

Test Statistics for the General Hypothesis

We now describe four common statistics for testing
the general hypothesis H0 : CξM = 0. The first is due
to Roy [19, 20], and arises from his union–inter-
section method of test construction. The statistic
is the greatest characteristic root cs of E−1H, or
the greatest root θs = cs/(1 + cs) of (H + E)−1H.
Upper critical values of the distribution of θs have
been computed and tabulated by Heck [1], Pillai &
Bantegui [15], and Pillai [12–14]. Charts and tables
of those critical values are available in current texts,
e.g. Morrison [7]. The parameters of the distribution
of the greatest root statistic θs when H0 is true are

s = min(g, u),

m = (|g − u| − 1)

2
,

n = (N − r − u − 1)

2
.

The hypothesis H0 : CξM = 0 is rejected if θs >

xα;s,m,n. When s = 1 the single nonzero characteristic
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root θ has the beta distribution, so that

F =
[

(n + 1)

(m + 1)

]
θ

(1 − θ)

=
[

(n + 1)

(m + 1)

]
tr E−1H

has the F distribution with 2m + 2 and 2n + 2
degrees of freedom when H0 is true. The Wilks’ [22]
determinantal ratio statistic Λ = |E|/|H + E| follows
from the generalized likelihood ratio test construc-
tion. For large N ,

χ2 = −
[

N − r − (u − g + 1)

2

]
ln Λ

has the chi-square distribution with gu degrees of
freedom when H0 is true, and H0 would be rejected
for large values of χ2. Rao [17, 18] has given a
transformation of Λ whose distribution can be closely
approximated by that of an F variate. Exact null
hypothesis distributions are also available in certain
special cases. If s = 1, then

F =
[

(1 − Λ)

Λ

] [
(n + 1)

(m + 1)

]

has the F distribution with 2m + 2 and 2n + 2
degrees of freedom. When s = 2,

F =
[

(1 − Λ1/2)

Λ1/2

] [
(2n + 2)

(2m + 3)

]

is distributed as an F variate with 4m + 6 and
4(n + 1) degrees of freedom. The Lawley [6] and
Hotelling [2, 3] statistic, NT 2

0 = N tr HE−1 tends to
have a chi-square distribution with gu degrees of
freedom when N is large and H0 is true. Similarly, the
Pillai [11] statistic, (N − r)V = (N − r) tr H(H +
E)−1, has a large-sample chi-square distribution with
gu degrees of freedom under the null hypothesis.
None of these criteria appears to be most powerful
against all alternative hypotheses. Most statistical
software systems for MANOVA give values for all
of the major statistics.

Power and Robustness Properties

A number of studies have shown that the power
probabilities of the four MANOVA test statistics
differ only slightly for selected alternate hypotheses.
Pillai & Jayachandran [16] found only small second-
decimal-place differences. The Roy greatest-root test

had lowest power against those alternatives, but other
studies showed it surpassed the competing tests in the
case of an alternative with a single large characteristic
root. Olson [8–10] concluded that the Pillai trace
statistic appeared to be the most robust in terms
of preserving its α level (see Level of a Test) and
power probabilities under nonnormality and unequal
covariance matrices. The greatest-root test seemed
to be affected the most by those departures from
the usual model assumptions. Some further aspects
of the sensitivity of MANOVA to nonnormality
and heterogeneous covariance structures have been
described in the article Multivariate Techniques,
Robustness.

Simultaneous Tests and Confidence
Intervals

As in the univariate case, MANOVA only indicates
whether the overall hypothesis H0 should be rejected,
and not which response variables and treatment
effects may have contributed to that decision. The
union–intersection test based on the greatest root
statistic leads directly to a multiple comparisons
method due to Roy & Bose [21]. One may test
all possible hypotheses of the sort H0 : b′CξMa =
0 for any treatment comparisons defined by b’C
and any linear functions of the response variables
specified by Ma with an overall error rate not in
excess of some given level α. Alternately, confidence
intervals can be found for all parametric functions
b′CξMa with a simultaneous confidence coefficient
not less than 1 − α. Explicit expressions for the test
statistics and intervals are available in many sources
on multivariate methods, e.g. Morrison [7].
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Multivariate Analysis,
Bayesian

Multivariate Bayesian analysis is that branch of
statistics that uses Bayes’ theorem to make infer-
ences about several, generally correlated, unknown
quantities. The unknown quantities may index prob-
ability distributions, or they may be hypotheses or
propositions, or they may be probabilities them-
selves. Such procedures have widespread biostatis-
tical applications. Some of the basic concepts of the
subject include the likelihood principle
(see Foundations of Probability), multivariate prior
and posterior distributions, Markov chain Monte
Carlo numerical methods, and the use of Bayesian
computer programs to implement the multivariate
Bayesian procedures. These concepts, methods, and
applications are discussed below.

Bayes’ Theorem, Posterior Distributions,
and Inference

In Bayesian analysis an unknown quantity is assigned
a probability distribution, to represent one’s degree
of belief about the unknown quantity. This degree of
belief is then updated via Bayes’ theorem, as new
information becomes available through observational
data, experience, or new insights.

Multivariate Bayesian inference is based on Bayes’
theorem for correlated random variables. The theo-
rem asserts that the joint density of several correlated,
jointly continuous, but unobservable random vari-
ables, given observations on one or more observable
random variables, is proportional to the product of
the likelihood function for the observable random
variables and the probability density function of the
probability distribution for the unknown variables.
(If the unobservable random variables are jointly
discrete, then we use the joint probability mass func-
tion instead of the joint density in Bayes’ theorem;
the analogous statement holds for unobservable, cor-
related random variables with mixed distributions.)
The proportionality constant does not depend upon
the unobservable quantities of interest; it is just that
constant that makes the probability density func-
tion for the random variables of interest integrate to
unity.

Bayes’ Theorem

Symbolically, let � denote a collection (vector) of
k unobservable random variables, and X a collection
(vector) of p observable random variables. Let f (·),
g(·), and h(·) represent densities (probability mass
functions) of their arguments. (Lower case letters will
be used to represent observed values of the random
variables designated by upper case letters.) Bayes’
theorem asserts that

h(θ |x) = 1

c
f (x|θ)g(θ),

where θ and x denote fixed values of � and X,
respectively, and c denotes a constant (depending on
x, but not on �), which is given by

c =
∫

f (x|θ)g(θ) dθ .

The integration is taken over all possible values in
k-dimensional space, and the notation f (x|θ) should
be understood to mean the density of the conditional
distribution of X given � = θ .

f (x|θ) is the joint sampling density for x|θ . When
it is viewed as a function of θ , it is called the likeli-
hood function (see section on “Likelihood Principle”
below).

g(θ) is the prior density of �, since it is the den-
sity of � prior to having observed X (it is a density if
the variables in the � array are continuous, and it is
a probability mass function if they are discrete). Note
that the prior density should not depend in any way
on the current data set, although it certainly could and
often does depend upon earlier-obtained data sets. If
the prior were permitted to depend upon the current
data set, then the use of Bayes’ theorem in this inap-
propriate way would violate the laws of probability.

h(θ |x) is the posterior density (probability mass
function) of �, since it is the distribution of �

“subsequent” to having observed X.
Bayesian inference in multivariate distributions is

based on the posterior distribution of the unobserv-
able random variables, say �, given the observable
data (the unobservable random variable may be a vec-
tor or a matrix).

A Bayesian estimator (or posterior summary) of
� is generally taken to be a measure of location of
the marginal posterior distribution of �, such as its
mean, median, or mode.
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For example, if there tends to be an underlying
“quadratic loss” penalty function in an estimation
problem, then the mean of the posterior distribu-
tion is optimal as an estimator, since it minimizes the
expected loss (penalty). (For the same reason, medi-
ans are used with absolute error loss functions, and
modes with binary types of decision rules.)

To obtain the marginal posterior density of �

given the data, it is often necessary to integrate the
joint posterior density over spaces of other unob-
servable random variables that are jointly distributed
with �.

For example, if the sampling distribution of X
given (θ, �) is N(θ, �) (see Multivariate Normal
Distribution), the marginal posterior density of � is
obtainable by integrating the joint posterior density
of (θ, �) over all elements of � that make it positive
definite.

Credibility Regions (Credible Regions)

Bayesian confidence regions (called credibility re-
gions or credible regions) are obtainable for any pre-
assigned level of credibility directly from the cumula-
tive distribution function of the posterior distribution.
We make a distinction here between “credibility” and
“confidence” that is fundamental, and not just a sim-
ple choice of alternate words.

The credibility region is a probability region for
the unknown, unobservable vector or matrix, condi-
tional on the specific value of the observables that
happened to have been observed in this instance,
regardless of what values of the observables might be
observed in other instances (the region is based upon
P {�|X}). For example, � denotes a 95% credibility
region for �|X if

Pr{� ∈ Ω|X} = 95%.

The confidence region, by contrast, is obtained from a
probability statement about the observable variables,
conditional on the unobservable ones, so it really
represents a region based upon the distribution of
where the observables are likely to be, rather than
where the unobservables are likely to be (the region
is based upon P {X|�}). When non uniform, proper
prior distributions are used, the resulting credibility
and confidence regions will generally be quite differ-
ent from one another.

Prediction

Predictions about a data vector(s) or matrix not yet
observed are carried out by averaging the likelihood
for the future observation vector(s) or matrix over
the best information we have about the indexing
parameters of its distribution, namely the posterior
distribution of the indexing parameters given the data
already observed.

Hypothesis Testing

Hypothesis testing may be carried out by com-
paring the posterior probabilities of all competing
hypotheses, given all data observed, and selecting
the hypothesis with the largest posterior probabil-
ity. These notions are identical to those in univariate
Bayesian analysis. In multivariate Bayesian analysis,
however, in order to make posterior inferences about
a given hypothesis, conditional upon the observable
data, it is generally necessary to integrate out over all
the components of �.

Likelihood Principle

The likelihood function is uniquely defined only up
to a multiplicative constant. The likelihood function
may be taken to be any constant multiple of the
ordinary sampling, or frequency, function (probabil-
ity mass function) of the joint distribution of all of
the observable random variables given the unobserv-
able ones.

The likelihood principle asserts that all relevant
information about � obtainable from the observable
data is found in the likelihood function. The implica-
tion is that in terms of the observable data, to make
inferences about � we merely require the likelihood
of the data, and nothing else. So if there are stopping
rules (see Sequential Analysis), or other additional
information about the sampling process, then such
information is irrelevant for Bayesian inference. Nor
should values of the observables that might have been
taken, but were not, be relevant. For example, the
expected value of the observables, a quantity required
for invoking an unbiasedness principle, is not rele-
vant for inference.
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(Multivariate) Prior Distributions

The process of developing a prior distribution to
express the beliefs of the analyst about the likely
values of a collection of unobservables is called mul-
tivariate subjective probability assessment. None of
the variables in a collection of unobservables, �, is
ever known. The multivariate prior probability den-
sity function, g(θ), for continuous � (or its counter-
part, the prior probability mass function for discrete
�), is used to denote the degrees of belief the analyst
holds about �. The parameters that index the prior
distribution are called hyperparameters.

For example, suppose � is bivariate (k = 2),
so that there are two unobservable, one-dimensional
random variables Θ1 and Θ2. Suppose, furthermore
(for simplicity), that Θ1 and Θ2 are discrete random
variables, and let g(θ1, θ2) denote the joint probability
mass function for � = (Θ1, Θ2).

Suppose Θ1 and Θ2 can each assume only two
values, 0 and 1, and the analyst believes the probable
values to be given by those in Table 1. Thus, for
example, the analyst believes that the chances that
Θ1 and Θ2 are both 1 is 0.4, i.e.

Pr{Θ1 = 1, Θ2 = 1} = g(1, 1) = 0.4.

Note that this bivariate prior distribution represents
the beliefs of the analyst, and need not correspond
to the beliefs of any other individual or group. Other
individuals may feel quite differently about �.

Multivariate prior distributions are sometimes dif-
ficult to assess owing to the complexities of thinking
in many dimensions simultaneously. It is easier to
assess one-dimensional marginal prior distributions
than it is to assess the distribution of a person’s
joint beliefs about several random variables simulta-
neously. The higher the dimension of the problem, the
more this difficulty is exacerbated. We next describe
several methods that have been proposed for reduc-
ing the difficulties of assessing multivariate prior
distributions:

Table 1 Prior distribution: g(θ1, θ2)

θ1 ↓ | θ2 → 0 1

0 0.2 0.1
1 0.3 0.4

1. One procedure that has been proposed for assess-
ing multivariate prior distributions involves pre-
dicting future values of observables, and then
imputing backwards to an implied distribution for
the unobservable, unknown indexing parameters
(see Kadane et al. [22]).

2. Another proposal for assessing a multivariate
prior distribution involves using the assessments
of a homogeneous, informed group of experts
(see Press [29; 30, Chapter 5]), and combining
their assessments into a composite multivariate
distribution by means of multivariate density
estimation.

3. In another approach, Arnold et al. [2] proposed
using bivariate normal and bivariate Pareto nat-
ural conjugate families for (Θ1, Θ2), (see dis-
cussion of natural conjugate families of prior
distributions below). The natural conjugate fam-
ilies are conditionally specified distributions of
(Θ1|Θ2) and (Θ2|Θ1); the appropriate family has
eight hyperparameters in the case of the nor-
mal, and six hyperparameters in the case of the
Pareto. It is suggested that the hyperparame-
ters be assessed using elicitation of many values
of conditional moments of Θ1 fixed at various
values of Θ2, followed by elicitation of many
values of conditional moments of Θ2 fixed at
various values of Θ1. By regressing the one set
of conditional assessments on the other set, we
can estimate the hyperparameters of the joint
prior distribution by least squares estimation. It
was suggested that the same approach could be
applied to more general exponential families.

The ability of individuals to assess correlation
coefficients was studied by Gokhale & Press [19].

For an outline of numerous methods for assessing
prior distributions that have been proposed, see Kass
& Raftery [23] and Press [30], Chapter 5.

(Multivariate) Vague Priors

In some situations the analyst does not feel at all
knowledgeable about the likely values of unknown,
unobservable variables. In such cases he will prob-
ably resort to use of a “vague” (sometimes called
“diffuse” or “noninformative”) prior distribution.

Let � denote a collection of k continuous, un-
known variables, each defined on (−∞, +∞). g(θ)

is a vague prior density for � if the elements of
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� are mutually independent, and if the probability
mass of each variable is diffused evenly over all
possible values. We write the (improper) prior density
for � as

g(θ) ∝ constant,

where ∝ denotes proportionality. Note that while
this density characterization corresponds in form to
the density of a uniform distribution, the fact that
this uniform distribution must be defined over the
entire real line means that the distribution is improper
except in the case where the components of θ are
defined on a finite interval.

If an unobservable variable were strictly positive,
such as an unknown variance, σ 2, then we could
adopt a vague prior for σ 2 by considering log σ 2 as
a new variable defined on (−∞, +∞), and taking a
vague prior on the variable log σ 2, as above. Thus

g(log σ 2) ∝ constant.

But by a change of variable this implies an (improper)
prior for σ 2, i.e.

g(σ 2) ∝ 1

σ 2
.

We next extend this idea to multidimensional vari-
ables.

The notion of “positive”, one-dimensional random
variables, extends, in a multivariate context, to “posi-
tive definite”, when we consider an array (a matrix) of
variables. Thus, if � denotes a k-dimensional square
and symmetric covariance matrix, and if � is a pos-
itive definite matrix, a vague prior on � is given by

g(�) ∝ |�|−(k+1)/2,

where |�| denotes the determinant of the matrix �.
This prior density was proposed by Jeffreys [21].

He suggested that to obtain a prior distribution for an
unknown �, the inferences of which will be invariant
under changes in the parameterization of the problem,
it is necessary to adopt a prior distribution whose
density is expressible as

p(θ) ∝ [J (θ)]1/2,

where J (θ) denotes the Fisher information matrix.
(For an elaboration of such priors, see, for example,
Press [28, Sections 3.6 and 3.8; 41, Sections 2.7.2–
2.7.4].) For additional invariance arguments relating

to these priors see Hartigan [20], Jeffreys [21], and
Villegas [36]. The exponent of |�| in the Jeffreys
invariant prior density presented here was first given
by Geisser & Cornfield [13].

For discussions of controversial issues relating to
multivariate vague prior distributions, see Press [30],
Chapter 5; Stein [33], and Dawid et al. [6]

(Multivariate) Natural Conjugate Priors

It is sometimes convenient for an analyst to con-
fine his description of his prior information about
some unobservable � to some preassigned family of
distributions. The family most often used is called
the natural conjugate family of prior distributions
(the term and concept is attributable to Raiffa &
Schlaifer [31]). The appropriate family is obtained by
interchanging the roles of the observable and unob-
servable random variables in the likelihood function,
and then “enriching” the parameters so that they have
arbitrary, assignable values. A property of natural
conjugate families of prior distributions is that the
posterior density belongs to the same family as the
prior density. So if the prior density family is nor-
mal, then the posterior density family will also be
normal; if the prior density family is beta, then the
posterior density family will also be beta, etc.

For example, if L(x|θ) = N(0, Ip), where Ip de-
notes the p-dimensional identity matrix, and N(0, Ip),
denotes the normal distribution with mean vector 0,
and covariance matrix Ip , then L(θ |ϕ, A) = N(ϕ, A)

is a natural conjugate prior distribution for �. This
result is obtained by writing out the density of (X|�)

and noting that if the same density is viewed as
a density of (�|X), then the resulting density is
proportional to that of a normal distribution. So we
adopt a normal distribution as a prior for �. We
then “enrich” the parameters by adopting completely
general parameters for this prior, namely (ϕ, A) (in
this way the hyperparameters do not depend upon the
sample data). Next, we use our prior beliefs about �

to assess the hyperparameters (ϕ, A).

(Multivariate) Mixture Priors

It sometimes happens that the family of prior distri-
butions being considered for adoption to represent the
analyst’s prior information about a multivariate prob-
ability distribution is not sufficiently rich to capture
the nuances of his information. For such situations it
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has been proposed [7] that the analyst adopt a prior
distribution that is a mixture (a convex combination,
in particular) of natural conjugate distributions. Such
a class of prior distributions is richer in hyperpa-
rameters than a single natural conjugate family, and
therefore can better accommodate to the richer infor-
mation the analyst has about the sampling distribution
parameters.

For example, consider the very simple case in
which a sample of size n has been taken from a
multivariate normal distribution with unknown mean
vector �, but known covariance matrix �0, and we
have found the sample mean x. We can formulate
the likelihood function from the fact that (x|θ, �0) ∼
N(θ, �0/n). We must next adopt a prior distribution
for the unknown �. For this purpose we decide to use
the mixture density of the normal distribution natural
conjugate densities,

p1(θ) ∝
∑

δi{N(ϕi , Ai )}, i = 1, . . . , m,

with δi ≥ 0,
∑

δi = 1.
Note that the hyperparameters (δi, ϕi, Ai, i = 1,

. . . , m) must all be preassigned by assessment. Then,
the posterior density for θ becomes

p(θ |x, �0) ∝ p1(θ)p2(x|θ, �0),

or

p(θ |x, �0, ϕ1, . . . , ϕm, A1, . . . , Am, δ1, . . . , δm)

∝
∑

δi

[
exp

(−1

2

)
(θ − ϕi )

′A−1
i (θ − ϕi )

]

[
exp

(−n

2

)
(x − θ)′�−1

0 (x − θ)

]
,

or

p(θ |x, �0, ϕ1, . . . , ϕm, A1, . . . , Am, δ1, . . . , δm)

∝
∑

δi

{
exp

(−1

2

) [
(θ − ϕi )

′A−1
i (θ − ϕi )

+ n(x − θ)′�−1
0 (x − θ)

] }
.

After the two quadratic forms in θ in the last equation
are combined by completing the square on θ , each
term in the summation becomes a normal density in
θ , but the weights must be modified. We finally obtain

the posterior density as the mixture

p(θ |x, �0, ϕ1, . . . , ϕm, A1, . . . , Am, δ1, . . . , δm)

∝
∑

δ∗
i N(ϕ∗

i , A∗
i ),

where

(A∗
i )

−1 = (Ai )
−1 + n�−1

0 ,

ϕ∗
i = A∗

i [(Ai )
−1ϕi + n�−1

0 (x)]

and

δ∗
i = [

δi |(A∗
i )|1/2 exp(−ci/2)

]
∑

[δj |(A∗
j )|1/2 exp(−cj /2)]

,

with
δ∗
i ≥ 0,

∑
(δ∗

i ) = 1,

and

ci = ϕ′
iA

−1
i ϕi + n(x′�−1

0 x) − (ϕ∗
i )

′

× (A∗
i )

−1(ϕ∗
i ).

We note that the posterior density is in the same class
as the prior, namely a mixture of normal densities.
If the sampling covariance matrix were unknown as
well, then the mixture would become more compli-
cated, but could be managed completely analogously.

Exchangeability

A multivariate cumulative distribution function (cdf)
that does not depend on the order in which the
random variables appear is sometimes referred to
as exchangeable. The corresponding populations are
also said to be exchangeable. Suppose, for exam-
ple, that (Θ1 . . . Θk, . . .) are one-dimensional random
variables any k of which follow the joint distribution
N(ae, H), where e denotes a k-dimensional vector of
ones, a denotes any scalar, and H denotes a covari-
ance matrix with equal diagonal elements, and equal
off-diagonal elements. If the Θis are permuted, the
joint cdf, or joint density, does not change, or any
Θi could be exchanged for any other, so the distri-
bution is called exchangeable. The original concept
was applied to Bernoulli sequences of trials (infi-
nite sequences) (see Binary Data) and has now been
extended to more general sequences.
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In some situations in Bayesian multivariate anal-
ysis it is useful to adopt an exchangeable prior dis-
tribution to express ignorance. For instance, suppose
we have observations from three multivariate normal
populations with equal covariance matrices, and we
wish to carry out Bayesian inference on the mean vec-
tors to compare the closeness of the three populations
(multivariate analysis of variance). In many situa-
tions like this it would not be unreasonable to take the
prior distributions for each of the mean vectors to be
the same, i.e. to assume, a priori, that the populations
are exchangeable (in the absence of any informa-
tion to the contrary). Thus, if (�, �, η) denote the
mean vectors for the three normal populations, we
could adopt the joint prior distribution for their mean
vectors,

g(�, �, η) = g∗(�)g∗(�)g∗(η),

where the distribution of � (or of �, or of η) is
perhaps N(µ, �), and the hyperparameters µ and �

must be assessed. Note that such an approach to
multivariate prior distribution assessment not only
simplifies the analysis, but it greatly reduces the
number of hyperparameters that must be assessed.

Numerical Methods of Bayesian
Multivariate Analysis

Numerical methods are of fundamental importance
in Bayesian multivariate analysis. They are used for
evaluating and approximating the normalizing con-
stants of multivariate posterior densities, for finding
marginal densities, for calculating moments and other
functions of marginal densities, and for sampling
from multivariate posterior densities, and for many
other needs associated with multivariate Bayesian sta-
tistical inference (see Numerical Integration).

Methods for evaluating and approximating mul-
tidimensional integrals associated with multivari-
ate posterior distributions are nicely summarized in
Evans & Swartz [11]. They include discussions of
the Laplace method, importance sampling and vari-
ance reduction techniques, multiple quadrature rules,
and Markov chain Monte Carlo (MCMC) methods,
including the Metropolis Algorithm.

MCMC, data augmentation, and related methods
have been studied and explicated by Metropolis
et al. [25], Geman & Geman [17], Tanner &
Wong [35], Gelfand & Smith [14], Casella &

George [4], Gelman & Rubin [15], Tanner [34,
Chapter 6], O’Hagen [26], Chib & Greenberg [5],
Gelman et al. [16, Part III], Carlin & Louis [3], and
by many other authors who have made a wide variety
of contributions to this rapidly expanding field.

Computer-Assisted Bayesian Multivariate
Statistical Inference

It was pointed out in the previous section that it
is often the case in Bayesian multivariate analy-
sis that posterior distributions are sometimes suffi-
ciently complicated that numerical procedures and
computers are required to effect posterior inferences.
Fortunately, computer programs have already been
written for many of the known multivariate Bayesian
inference procedures: see, for example, Spiegelhal-
ter et al. [32], for a general computer program for
Gibbs sampling (called BUGS); O’Hagen [26] for a
program (based upon the APL language) which intro-
duces Bayes’ theorem graphically in one dimension
(called “First Bayes”); Albert [1] for a text that intro-
duces the use of Bayesian inference by means of
MINITAB 10; Press [27; 30, Chapter 6 and its com-
plements A & B], and Goel [18], for compilations
and accompanying descriptions of many Bayesian
programs. Most of such computer programs became
obsolete shortly after they were written, but they are
still useful (see Software, Biostatistical).

Applications

Multivariate Bayesian analysis abounds with appli-
cations in biostatistics. One important area of biosta-
tistical application in multivariate Bayesian analysis
involves Bayesian meta-analysis (see, for example,
DuMouchel [8, 9], DuMouchel & Harris [10], and
Lindley & Press [24]).

Some case studies of other applications have been
collected as conference proceedings and are detailed
in Gatsonis et al. [12]. There are atleast six such
volumes now available under the same title (with
different authors). Some biostatistical multivariate
Bayesian applications presented in the first volume
deal with nonignorable nonresponse (see Bias from
Nonresponse); estimation of costs in a sewerage
operation; the Ames salmonella/microsome assay
(see Mutagenicity Study); and a cost-utility analy-
sis of breast cancer screening (see Screening Benefit,
Evaluation of).
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Multivariate Analysis,
Overview

Multivariate analysis is concerned with mathemati-
cal models for representing multidimensional obser-
vations, and methods for analyzing those data. A
common example of multivariate data might be the
lengths of a particular bone measured at six-month
intervals in young children, or the set of subtest scores
made by a subject on a cognitive intelligence test. The
measurements or scores obtained from each person
constitute a vector-valued observation. We assume
that the vector xi obtained on the ith individual, or
sampling unit, is an observation on the p × 1 vector
random variable X with some p-dimensional multi-
variate distribution described by the density function
f (x). Traditionally, most of the multivariate methods
for continuous variables assume that the population
distribution is multivariate normal, with the density
function

f (x) = (2π)−p/2|�|−1/2

× exp
[− (

1
2

)
(x − µ)′�−1(x − µ)

]
.

The elements of x each have the range −∞ <

xi < ∞, so the admissible values of x constitute p-
dimensional Euclidean space. The parameters of the
multivariate normal distribution are the mean vec-
tor E(X) = µ and the covariance matrix E{[X −
E(X)][X − E(X)]′} = �. � is always symmetric, and
must be positive definite for the density function
to exist. Otherwise, the distribution is said to be
singular, and must be described by its cumulative
distribution function. A multivariate normal random
vector with parameters µ and � is denoted by the
Wilks symbol, N(µ, �).

The justification for the multivariate normal dis-
tribution follows from the central limit theorem [3,
pp. 81–82], which essentially says that sequences
of properly standardized sums of independently dis-
tributed random vectors with a common well-defined
distribution tend to the multivariate normal form as
the number of terms in the sums increases without
limit. Often the central limit theorem model of ran-
dom variables as the sum of many independent under-
lying random components does not hold, and the
multivariate distributions are not even approximately
normal. In such cases appropriate transformations

of the individual variables may give random vectors
with distributions closer to that of the multivariate
normal.

Some Methods for the Multivariate
Normal Distribution

This review of multivariate analysis for continuous
variables will be restricted to those methods that arise
from the multivariate normal population model. First
we extend the common univariate hypothesis tests
and confidence statements on means to the mean vec-
tor µ. Next, we generalize the analysis of variance
for one variable to the case of vector-valued obser-
vations. We then describe methods for classifying an
observation vector to one of two or more unknown
populations by the linear or quadratic discriminant
function (see Discriminant Analysis, Linear). Prin-
cipal components analysis and factor analysis will
be described as means for dissecting covariance and
correlation structures and their matrices.

Inferences About the Multivariate Normal
Distribution

Estimation of the Mean Vector and Covariance
Matrix

Assume that a random sample of N p-component
observation vectors x1, . . . , xN has been drawn from
the N(µ, �) multinormal population. The usual esti-
mates of the mean vector and covariance matrix are
the sample mean vector and the sample covariance
matrix,

µ̂ =
(

1

N

) N∑

i=1

xi = x,

�̂ =
[

1

(N − 1)

] N∑

i=1

(xi − x)(xi − x)′ = S.

x and S are unbiased estimates of µ and �. x is
also the maximum likelihood estimator, and S can
be obtained by maximum likelihood followed by the
replacement of the divisor N by N − 1 to achieve
unbiasedness. x has the multivariate normal distribu-
tion with the obvious mean vector µ and covariance
matrix (1/N)�. The distribution of S is more com-
plicated. The sums of squares and products matrix
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A = (N − 1)S has the Wishart distribution [41]
with parameters degrees of freedom n = N − 1 and
covariance matrix �. The density function of the
Wishart distribution is

f (A)

=






|A|1/2(n−p−1) exp

(−1

2
tr A�−1

)

2np/2πp(p−1)/4|�|n/2

p∏

i=1

Γ

[
1

2
(n + 1 − i)

] ,

A positive definite,

0, elsewhere.

When p = 1 the Wishart density is equivalent to that
of a χ2σ 2 random variable, or to a chi-square density
if � = 1. The Wishart distribution also has many of
the properties of the chi-square distribution, e.g. the
sum of independent Wishart matrices with a common
covariance matrix parameter is also Wishart with
degrees of freedom equal to the sum of the degrees
of freedom of the individual matrices. The Wishart
density is useful as a starting point for deriving
estimates, hypothesis tests, and distributions based on
the normal distribution covariance matrix.

Another parameterization of the multivariate nor-
mal distribution is composed of the mean vector, the
p standard deviations or variances, and the matrix of
correlations. When the population covariance matrix
is a general positive definite matrix the joint distri-
butions of the sample sums of squares and sample
correlations are rather complicated, and are not in
forms that lend themselves to useful applications.

Inferences About Mean Vectors

Hypothesis tests and confidence intervals for means
based on normal distribution theory can be extended
to mean vectors. Since the mean vector x of
N independently and multinormally distributed p-
component vectors is also multivariate normal with
covariance matrix (1/N)�, the quadratic form,

χ2 = N(x − µ)′�−1(x − µ),

has the chi-square distribution with p degrees of
freedom. If � is known, then we can test the hypoth-
esis H0 : µ = µ0 against the general alternative that
the mean vector is not µ0 by rejecting H0 when
χ2 exceeds some right-hand critical value of the

chi-square distribution. The test statistic is the Maha-
lanobis distance of x from the hypothesized popula-
tion mean vector µ0. The statistic has an important
property: it is invariant under affine transformations
Y = AX + h on the sample and population mean vec-
tors. A is a nonsingular (i.e. |A| �= 0)p × p matrix of
constants, and h is a p × 1 nonrandom vector.

If the covariance matrix is unknown and estimated
by the sample matrix S, then the hypothesis on
the mean vector can be tested by the Hotelling T2

statistic [12]:

T 2 = N(x − µ0)
′S−1(x − µ0).

When the null hypothesis is true, F = [(N − p)/

p(N − 1)]T 2 has the F distribution with degrees
of freedom p and N − p, and H0 : µ = µ0 would
be rejected at the α level if F exceeds the critical
value Fα;p,N−p. When the alternative hypothesis, H1 :
µ = µ1, is true, the F statistic has the noncentral F

distribution with degrees of freedom p, N − p, and
noncentrality parameter

δ2 = N(µ1 − µ0)
′�−1(µ1 − µ0).

We can use the noncentral F distribution to compute
the power of the T 2 test for different alternatives, or
to determine the sample size N which will provide
some minimal power for a given α level.

The single-sample T 2 statistic can also be used
to test the equal-means hypothesis for repeated-
measures data (see Analysis of Variance for Longi-
tudinal Data). The p repeated observations on each
of the N sampling units are first transformed to p − 1
successive differences, or p − 1 differences from the
first, last, or other repeated measure response. The
null hypothesis of zero means for the p − 1 new vari-
ables is then tested by T 2. An alternative approach to
the analysis of repeated measurements or longitudi-
nal data through generalized estimating equations
has been given by Liang & Zeger [24] and Zeger
et al. [42, 43].

The two-sample hypothesis, H0 : µ1 = µ2, of
equal mean vectors in two multivariate normal
populations with a common covariance matrix �

can also be tested by the T 2 statistic. From the
independent random samples of N and M p-
component observation vectors, xi1 and xi2, we
compute the respective mean vectors, x1 and x2, and
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the within-samples covariance matrix, S, defined by

S =
[

1

(N + M − 2)

][
N∑

i=1

(xi1 − x1)(xi1 − x1)
′

+
M∑

i=1

(xi2 − x2)(xi2 − x2)
′
]

.

(S is an unbiased estimate of �). The two-sample T 2

statistic is

T 2 =
[

NM

(N + M)

]
(x1 − x2)

′S−1(x1 − x2).

When the null hypothesis of a common mean vector
is true, F = [(N + M − p − 1)/(N + M − 2)p]T 2

has the F distribution with p and N + M − p − 1
degrees of freedom, and the null hypothesis would
be rejected at the α level if F > Fα;p,N+M−p−1.
When the alternative hypothesis of unequal mean
vectors holds, F has the noncentral F distribu-
tion with degrees of freedom p, N + M − p − 1,
and noncentrality parameter [NM/(N + M)](µ1 −
µ2)

′�−1(µ1 − µ2). As in the single-sample test,
charts or tables of the noncentral F distribution can
be used to find the power of the T 2 test, or to deter-
mine the sample sizes N and M that will satisfy spec-
ified power and α probabilities. Details and examples
have been given by Morrison [26, Section 2.8].

Simultaneous Inferences for Mean Vectors

The previous T 2 tests only tell us whether or not
hypotheses on mean vectors should be rejected. If
the hypothesis has been rejected, then the test does
not tell us which of the p response variables may
have contributed to that decision. It is possible to
test hypotheses on the individual responses or linear
combinations of them with an overall, or “family”,
error rate α using a method due to Roy & Bose [35]
(see Multiple Comparisons). The Roy–Bose simul-
taneous tests and confidence intervals are described
under the Hotelling T2 entry, and in most texts on
multivariate analysis, e.g. Morrison [26, Section 2.3].

Multivariate Analysis of Variance

Generalization of Univariate Analysis of Variance

The univariate analysis of variance (ANOVA) begins
with the partition of a total sum of squares into two

independent components. The error component, E,
when divided by an appropriate degrees of freedom
parameter, always gives an unbiased estimate of the
error variance for the underlying linear model. The
other component, H , only has an expected value pro-
portional to the error variance if some hypothesis on
the model’s parameters is true. Under the hypothe-
sis, H/E is proportional to an F random variable,
and the hypothesis would be rejected for large values
of H/E.

The multivariate analysis of variance (MAN-
OVA) for p-dimensional observation vectors is a
generalization of ANOVA to hypotheses on mean
vectors and matrices. We assume the same mathemat-
ical model holds for each of the p response variables,
and those variables are jointly distributed according
to a p-dimensional multivariate normal distribution
with the same covariance matrix for all N sampling
units in the experimental design or other investiga-
tion. The mean vector of the distribution will depend
on the hypothesis being tested, and whether or not it
is true. The error sum of squares E is generalized to
the p × p symmetric matrix

E =



e11 . . . e1p
... · · · ...

e1p . . . epp



 ,

in which ejj = error sum of squares for the ANOVA
on the j th response variable, and eij = sum of prod-
ucts for the ith and j th response variables, obtained
by rewriting the sum of squares expression e in one
variable as a sum of products in two variables. The
generalization of the hypothesis sum of squares is the
p × p symmetric matrix

H =



h11 . . . h1p

... · · · ...
h1p . . . hpp



 ,

where hjj = univariate ANOVA hypothesis sum of
squares for the j th response variable, and hij = sum
of products for the ith and j th response variables,
obtained by rewriting the sum of squares expression
in one variable for h as a sum of products in two
variables.

The test statistic for the multivariate analysis of
variance null hypothesis that each of the hypotheses
for the individual responses is true is some function
of the roots of the determinantal equation

|H − λE| = 0,
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or equivalently, the characteristic roots (see Eigen-
value) of the matrix product E−1H. These include
the Wilks [39] determinantal ratio Λ = |E|/|H +
E| (see Lambda Criterion, Wilks’), the Law-
ley–Hotelling [16] statistic

T 2
0 = tr HE−1

= the sum of the characteristic roots of E−1H,

the Roy [33] greatest root statistic cs = maximum
characteristic root of E−1H (see Roy’s Maximum
Root Criteria), and the Pillai [29] trace statistic
V = tr H(H + E)−1.

The distributions of the test statistics under the
appropriate null hypotheses have been obtained for
large sample sizes (see Large-sample Theory), and
in some cases for small samples and special values of
the experimental design parameters. The asymptotic
theory of generalized likelihood ratio test statistics
implies that the transformed Wilks Λ,

χ2 = − [
N − r − (

1
2

)
(p − g + 1)

]
ln Λ,

is distributed as a χ2 random variable with pg

degrees of freedom where

N = the total number of independent
observations in the experimental design,

r = the rank of the design matrix, or
N − r = error degrees of freedom for the design,

g = the rank of the hypothesis matrix,
= k − 1 for the one-way layout,

p = the number of response variables.

Similarly, NT 2
0 has the large-sample χ2 distri-

bution with pg degrees of freedom when the null
hypothesis is true. Heck [11] computed critical val-
ues for a transformation of the Roy greatest char-
acteristic root statistic. Charts of those percentage
points and tables of additional values computed by
K.C.S. Pillai may be found in Morrison [26] and
other texts on multivariate analysis. The Pillai trace
statistic, (N − r)V , has the chi-square distribution
with pg degrees of freedom when N is large and
the null hypothesis is true.

No statistic appears to be uniformly most pow-
erful against all alternative hypotheses. Instead,
some of the tests have highest power against cer-
tain types of alternatives. One advantage of the Roy
criterion is that its union–intersection development
leads directly to simultaneous tests and confidence

intervals to determine which responses and treatment
comparisons may have led to rejection of the overall
multivariate hypothesis.

Olson [27] studied the robustness of six multivari-
ate analysis of variance test criteria through extensive
sampling studies. He concluded that the Roy great-
est characteristic root statistic was least robust under
nonnormality or unequal covariance matrices, while
the Pillai trace measure seemed most robust.

An Example

We illustrate the one-way multivariate analysis of
variance with some measurements on the skulls of
the wolf Canis lupus L. discussed by Jolicoeur [18,
19] and given as an example by Morrison [26]. These
three skull dimensions were chosen:

X1 = palatal length,

X2 = postpalatal length,

X3 = zygomatic width.

The four groups consist of male and female wolves
from the Rocky Mountain and Arctic Archipelago
areas of northwestern Canada. The measurements, in
millimeters, are reprinted in Table 1 with the kind
permission of Pierre Jolicoeur.

The data form an unbalanced two-way layout,
but we shall treat them as a one-way design for
simplicity. The matrices for the multivariate analysis
of variance are as follows.
Between-groups sums of squares and products matrix:

H =
[ 781.16 585.28 364.29

585.28 445.51 245.66
364.29 245.66 656.74

]
.

Within-groups (error) sums of squares and products
matrix:

E =
[ 100.60 65.60 95.63

65.60 165.93 149.30
95.63 149.30 557.90

]
,

E−1H =
[ 7.88522 5.90989 3.20985

1.36789 1.13769 −0.46443
−1.06476 −0.87718 0.75123

]

Characteristic roots of E−1H: 8.5280, 1.20595,
0.04018.

Values of the major multivariate analysis of vari-
ance test statistics are given in Table 2. The null
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Table 1

Rocky Mountain Arctic

Males Females Males Females

X1 X2 X3 X1 X2 X3 X1 X2 X3 X1 X2 X3

126 104 141 116 102 131 117 99 134 112 94 134
128 111 151 120 103 130 115 100 149 109 91 133
126 108 152 116 103 125 117 106 142 112 99 139
125 109 141 117 101 144 112 99 133
126 107 143 117 103 149 113 97 146
128 110 143 119 101 143 107 97 137

115 102 146
117 100 144
114 102 141
110 94 132

Mean

Group X1 X2 X3

Rocky Mountain males 126.50 108.17 145.17
Rocky Mountain females 117.33 102.67 128.67
Arctic males 115.80 100.80 142.40
Arctic females 110.83 96.17 137.00

Unpublished data reproduced by permission of P. Jolicoeur.

Table 2

Test criterion Statistic P value

Roy greatest root 8.5280 �0.01
Wilks Λ 0.04574 3.17 × 10−10

Lawley–Hotelling T 2
0 9.7741 1.55 × 10−47

Pillai trace V 1.4804 0.00029

hypothesis of equal mean vectors for the three skull
dimensions in each of the four region and gender
groups would be rejected by each of the test statistics.

Multivariate General Linear Model and
Hypothesis

The H and E matrices also follow from a gen-
eral linear model for a multivariate data matrix and
hypothesis tests on the model’s parameters. We rep-
resent the N × p data matrix by the following linear
model:

X = Aµ + e = A1µ1 + A2µ2 + e,

in which A is the N × q design matrix describing
the experimental design, µ is the q × p matrix of
model parameters, A1 is the N × r basis of A, A2 is
the N × (q − r) completion of A1, µ1 is the r × p

submatrix of µ corresponding to the basis of A, and
µ2 is the (q − r) × p submatrix of the parameters
corresponding to the completion of A1. Note that each
of the p columns of X has the same experimental
design matrix. Then the multivariate general linear
hypothesis is

H0 : CµM = C1µ1M + C2µ2M = 0,

and its alternative is simply that CµM �= 0. C is
a g × q matrix specifying the hypothesis; C1 and
C2 are its g × r and g × (q − r) submatrices cor-
responding to the parameter matrices µ1 and µ2,
respectively, and M is a p × u matrix of constants
that allows for hypotheses on linear compounds of
the multivariate response parameters. The H and E
matrices for the general model and hypothesis can be
shown to be

H = M′X′A1(A′
1A1)

−1C′
1[C1(A′

1A1)
−1C′

1]−1

× C1(A′
1A1)

−1A′
1XM,

E = M′X′[I − A1(A′
1A1)

−1A′
1]XM.

The matrices C2 and C1 must satisfy a testability
condition [34]:

C2 = C1(A′
1A1)

−1A′
1A2.
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Classification and Discrimination

The Linear Discriminant Function

Suppose two multivariate normal populations can be
used to describe a p-component random variable.
From respective random samples of N and M obser-
vations we have estimates x1 and x2 of their mean
vectors µ1 and µ2, and the within-sample estimate S
of their common covariance matrix �. Now consider
a new (N + M + 1)th observation vector x from one
of the two populations. We wish to assign x to pop-
ulation 1 or 2 on the basis of the values of the linear
function a′x, where the vector a has been chosen to
maximize the squared univariate t statistic,

t2(a) = [a′(x1 − x2)]2

{
a′Sa

[(
1

N

)
+

(
1

M

)]} ,

subject to the condition that a′Sa = 1. The coefficient
vector a maximizes the absolute distance between the
means a′x1 and a′x2 given the constraint a′Sa = 1 on
the elements of a. The maximizing vector is given by

a = S−1(x1 − x2),

and the maximum squared t2 (a) is the Hotelling two-
sample statistic:

T 2 =
[

NM

(N + M)

]
(x1 − x2)

′S−1(x1 − x2).

If each population is equally likely, then we adopt
the classification rule:
Assign x to population 1 if a′x is closer to the mean
a′x1, and to population 2 if a′x is closer to the other
mean a′x2.
Equivalently,
Assign x to population 1 if a′x > a′(x1 + x2)/2, and
to population 2 otherwise.
The new variable, y = a′x = (x1 − x2)

′S−1x, is
called the sample linear discriminant function. The
midpoint, a′(x1 + x2)/2 = (x1 − x2)

′S−1(x1 + x2)/2,
between the means of the linear discriminant function
for the two samples is also subject to sampling
variation, and the discriminant function is sometimes
expressed as the Wald–Anderson statistic:

W = x′S−1(x1 − x2) − (x1 + x2)
′S−1(x1 − x2)

2

(Wald [38] and Anderson [1]). Then the classification
rule in terms of W is:
Assign x to population 1 if W > 0, and to population
2 otherwise.
The distribution of W is complex for small samples,
and the calculation of misclassification probabilities
is difficult. A large literature exists on the estimation
of different kinds of misclassification rates; some
references have been given by Morrison [26].

In the rather artificial case of known parameters
the linear discriminant function becomes

y = x′�−1(µ1 − µ2),

and the classification rule is:
Assign x to population 1 if x′�−1(µ1 − µ2) − (µ1 −
µ2)

′�−1(µ1 + µ2)/2 > 0, and to population 2 other-
wise.
The linear discriminant function y has the univariate
normal distribution, and misclassification probabili-
ties are easily calculated. The classification method
can be extended to the Bayesian case of prior prob-
abilities p and 1 − p for the respective populations,
and misclassification costs C(1|2) and C(2|1) [1, 3].

For classification with k independent populations
we compute the Wald–Anderson statistics,

Wij = x′S−1(xi − xj) − (xi + xj)
′S−1(xi − xj)

2
,

for all k(k − 1) pairs of the k sample mean vectors,
and use the rule:
Assign x to the ith population if Wij > 0 for all j �= i.
We note that Wji = −Wij , and of course Wii = 0.
Alternatively, we can compute the sample Maha-
lanobis distances,

D2
i = (x − xi)

′S−1(x − xi), i = 1, . . . , k,

and assign x to the population with the minimum D2
i .

The two rules are algebraically identical.
When the populations have unequal covariance

matrices �1 and �2 the likelihood ratio classifica-
tion rule leads to a quadratic discriminant function
the form of which, with sample mean vectors and
covariance matrices S1 and S2, is

h(x) = (x − x2)
′S−1

2 (x − x2) − (x − x1)
′S−1

i (x − x1)

− ln

( |S1|
|S2|

)
.
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The vector x is assigned to population 1 if h(x) > 0,
and to population 2 otherwise. An alternative clas-
sification rule with multivariate normal populations
with unequal covariance matrices �1 and �2 has
been proposed by Anderson & Bahadur [4]. When
the parameters of the distributions are known, the
vector x would be assigned by the linear discriminant
function

y = x′(t1�1 + t2�2)
−1(µ1 − µ2)

to population 1 if y is greater than some constant c,
and to Population 2 otherwise. A number of methods
have been proposed for determining t1, t2, and c.
When the parameters are unknown and estimated
from the sample data, the linear discriminant function
might be written as

y = x′[tS1 + (1 − t)S2]−1(x1 − x2),

and the constant chosen as the midpoint

c = (x1 + x2)
′[tS1 + (1 − t)S2]−1(x1 − x2)

2

between the mean values of y for the two samples.
The quantity t might be chosen in some pragmatic
manner, as, for example, to minimize the number of
misclassified individuals.

Inferences About Covariance Matrices

Generalized likelihood ratio tests are available for
hypotheses on covariance matrices of multivariate
normal distributions. From a single sample we may
test that a covariance matrix has a specified form or
particular pattern, or that all of its correlations are
zero. The generalized likelihood ratio test of zero
correlations is particularly simple. We compute the
determinant |R| of the p × p correlation matrix R,
and from it the statistic

χ2 = −
[

N − 1 − (2p + 5)

6

]
ln |R|.

If the null hypothesis that all p(p − 1)/2 popula-
tion correlations are zero is true, then χ2 has the
chi-square distribution with p(p − 1)/2 degrees of
freedom for large N , and the hypothesis is rejected
if χ2 > χα;p(p−1)/2.

We may test that k populations have a common
covariance matrix, although the usual determinantal

form of that test appears to be affected seriously by
departures from normality. The hypothesis that two
subsets X1 and X2 of multivariate normal random
variables are independent, or that

H0 : cov(X1, X′
2) = �12 = 0

is tenable, can be tested by a generalized likeli-
hood ratio test due to Wilks [40], and sharpened in
its chi-square approximation by Box [5]. Develop-
ments of the likelihood ratio tests can be found in
Anderson [3], Morrison [26], and other sources for
multivariate analysis.

Roy [33] found a union–intersection test of H0 :
�12 = 0. If the sample covariance matrix is parti-
tioned as

S =
[

S11 S12

S′
12 S22

]
,

then the Roy union–intersection test statistic is the
greatest characteristic root of the matrix product
S−1

11 S12 S−1
22 S′

12 or any cyclic permutation of it, or the
corresponding product in the correlation submatrices
Rij . Details of the test and critical values have been
given by Morrison [26]. The union–intersection test
is based on the largest squared canonical correlation
coefficient, or the greatest squared sample correla-
tion between the linear compounds U = a′X1 and
V = b′X2 of the variables in the first and second sub-
sets. U and V were called the canonical variates by
Hotelling [14, 15], who proposed their use for deter-
mining the nature of the correlation structure between
the two subsets. Further pairs of canonical variates
can be found from the second greatest, third greatest,
etc. characteristic roots of the matrix product.

The Latent Structures of Covariance and
Correlation Matrices

The dependence structures of multivariate normal
random variables can be analyzed by various repre-
sentations of the covariance or correlation matrices.
The first method, principal components analysis, con-
sists of rotating the coordinate axes of the original p

variables to conform with the directions of succes-
sively smaller variation. The methodology is due to
Hotelling [13], although it had been proposed much
earlier by Pearson [28]. The second, factor analy-
sis, is based on the assumption that the correlations
among the p observed variables are generated by
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a smaller number, m, of uncorrelated latent factor
variables.

Principal Components

From the sample of N p-component observation vec-
tors we compute the mean vector x and the covariance
matrix S. The first principal component of the sam-
ple data, or of S, is the new variable Y1 = a′

1x,
where the vector of constants a1 has been chosen
to maximize the sample variance of Y1, or a′

1Sa1,
subject to the constraint a′

1a1 = 1. a1 is the charac-
teristic vector (see Eigenvector) of S corresponding
to the greatest characteristic root c1, or the vec-
tor satisfying the equations [S − c1I]a1 = 0, where
c1 is the largest root of the determinantal equation
|S − c1I| = 0. The remaining principal components
are found by extracting the other p − 1 characteristic
roots and vectors of S: The ith principal component is
the variate Yi = a′

ix with variance ci = a′
iSai . If the p

characteristic roots are distinct then the characteristic
vectors are mutually orthogonal, and the principal
components are uncorrelated. The total variance of
the principal components is

c1 + · · · + cp = tr S = s2
1 + · · · + s2

p,

and the proportion of the total variance due to the
ith component is ci/tr S. In practice we prefer
to consider the first few components that account
for as much of the total variance as possible. If,
for example, components 1, 2, and 3 explain 86%
of the total variance, then we might consider the
true dimensionality of the sample to be three rather
than p.

Geometrically, ai is interpretable as the vector
of direction cosines of the line from the mean x

through the direction of the ith greatest variation in
the p-dimensional scatter plot of the data. When the
ci are distinct, the successive axes are orthogonal,
or perpendicular, to one another. Each axis has an
orientation that minimizes the sum of squared perpen-
dicular distances to the data points, so that principal
components analysis amounts to an “orthogonal least
squares fit” of the component axes.

Certain patterned covariance matrices have dis-
tinctive principal components. If S is a diagonal
matrix with successive diagonal elements c1 > c2 >

. . . > cp, then the principal component axes are iden-
tical to those of the original variables. If the p × p

matrix S has the equal-variance, equal-covariance
pattern

S =





a b . . . b

b a . . . b
...

... · · · ...
b b . . . a



 ,

then the first principal component is Y1 = (x1 +
. . . xp)/

√
p, and its variance is c1 = a + (p − 1)b.

The second through pth components each have the
same variance, a − b, and coefficient vectors that are
mutually orthogonal with elements that sum to zero
so that they are also orthogonal to the first component.
Such a covariance matrix is called semi-isotropic,
because it describes an ellipsoid in p-dimensional
space with a single long axis (if b > 0), and p − 1
axes of equal lengths around it.

When the original variables are incommensurable
or have very different variances, it may be more
meaningful to extract principal components from the
correlation matrix. This is equivalent to a component
analysis on the standard scores zij = (xij − xj )/sj

computed from the original observations xij obtained
from the ith sampling unit’s j th variable. Then the
total variance for the p components will always be p.

A large-sample distribution theory for principal
components has been developed by Girshick [7, 8],
Anderson [2], and others. This includes tests and
confidence intervals for component variances, and
tests for component vectors. Asymptotic results for
inferences on components extracted from correlation
matrices are limited in scope, and depend on very
complicated distributions. Jackknife and bootstrap
methods show some promise for simpler inferences
in this area.

Factor Analysis

Just as principal components were invented to explain
portions of the total variance, factor analysis is
designed to explain the correlation structure of mul-
tivariate data. We postulate that the observable p × 1
multivariate normal random vector X with parame-
ters E(X) = µ and cov(X, X′) = � is related to the
m × 1 latent vector Y by the linear model

X = µ + �Y + e,

where e is another p × 1 random vector distributed
independently of Y. The number of latent variables m

is much smaller than p. Y has expectation E(Y) = 0
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and covariance matrix cov(Y, Y′) = I. E(e) = 0 and
cov(e, e′) = �, a diagonal matrix with ith diagonal
element ψi . Hence, E(X) = µ, and

cov(X, X′) = �

= ��′ + �.

The factor model representation of X has led to the
decomposition � = ��′ + � of the original covari-
ance matrix. For our purposes factor analysis will
consist of the estimation of � and �, the expression
of � in an “optimal” form, and the test of the fit of
the observed covariance matrix to that reproduced by
the factor model.

The matrix � of factor loading parameters is not
unique. If T is an m × m orthogonal matrix, or one
such that TT′ = T′T = I, then the new matrix � =
�T is equally suited for reproducing the covariance
matrix, for

� = � + ��′ = � + (�T)(�T)′ = � + ��′.

The selection of the matrix T is known as factor
rotation, for multiplication by the orthogonal matrix
T is equivalent to a rigid rotation of the m factor
axes. In practice, T is often found by using such
algorithms as the Kaiser varimax method [20–22]
(see Varimax Rotation), or occasionally, when m

is small, by successively graphically rotating pairs
of the factor axes to obtain as many large and as
many nearly-zero loadings as possible. Sometimes,
to achieve this oblique rotations are employed. This
makes the factors correlated.

The elements of � and � can be estimated by
maximum likelihood under the assumption that the N

independent observations on X are from the nonsin-
gular multivariate normal distribution. This approach
is due to Lawley [23], although it has been recast by
Rao [31] and others in the context of characteristic
roots and vectors. Allowance has also been made by
most current statistical programs for global maxima
on the boundary of the parameter space. For the deter-
mination of stationary maxima the Wishart density
of the sample covariance matrix S can be substituted
for the likelihood of the original data, and then maxi-
mized with respect to � and �. Lawley obtained the
following nonlinear equations for the estimates:

S�−1� = �(I + �′�−1�),

diag (��′ + �) = diag (S),

where the second equation merely requires that the
diagonal elements of the covariance matrix �̂ =
�̂�̂′ + �̂ reproduced by the factor model are the
same as those in the original matrix S. Unlike
principal components scale transformations on the
original p variables simply transform the rows of the
loading matrix � by the same amounts. Hence, the
factor loadings obtained from the correlation matrix
of the original variables differ from those of the
covariance matrix only by scale factors.

The maximum likelihood estimation process leads
to a test of the fit of the m-factor model to the
observed covariance structure. The generalized likeli-
hood ratio principle leads to the following goodness-
of-fit test statistic:

χ2 =
[

N − 1 − (2p + 5)

6
− 2m

3

]

× ln

(
|�̂ + �̂�̂′|

|S|

)
,

which is distributed as a chi-square variate with
[(p − m)2 − p − m]/2 degrees of freedom when N

is large. An approximation to the test statistic is

χ2 =
[

N − 1 − (2p + 5)

6
− 2m

3

]

×
∑∑

i<j

(sij − σ̂ij )
2

ψ̂iψ̂j

,

or a measure of the closeness of the observed and
reproduced covariances. In either case the hypothesis
of an m-factor model is rejected for large values of
the statistic.

Several other methods are available for data reduc-
tion and latent structure analysis. Multidimensional
scaling was originally introduced by Richardson [32]
and developed by Torgerson [36, 37] as a means
of approximately representing multivariate data in
lower-dimensional spaces. Gabriel [6] proposed the
biplot for describing both the relationships among
multivariate observations and the dependence struc-
ture of the variables (see Graphical Displays). Gutt-
man [9, 10] proposed his simplex and circumflex
models for responses ordered on a line or circle.
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Nonnormal Multivariate Methods

Although in this review of multivariate methods we
have largely assumed multivariate normal popula-
tions, in some cases alternative approaches not based
on normality are available. Logistic regression may
be substituted for discriminant analysis; Press & Wil-
son [30] have compared the two approaches with
multivariate data sets, and prefer logistic regression
in the case of nonnormality. Howe [17] showed that
the normal-theory maximum likelihood estimation
equations in factor analysis also follow from a min-
imum partial correlation argument independent of
the multivariate normality assumption. Mooijart [25]
has developed estimation methods for factor analy-
sis models that do not assume multinormality, but do
require the computation of higher-order crossproduct
matrices of the variables. Some of the effects of non-
normality are described in the article Multivariate
Techniques, Robustness.
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Multivariate Bartlett Test

In multivariate analysis we often employ Hotelling’s
T2 test and multivariate analysis of variance
(MANOVA) to compare two or more mean vectors.
One of the underlying assumptions for the T 2 and
MANOVA tests is that the corresponding population
covariance matrices are equal. It has shown that
the T 2 and MANOVA tests are fairly robust to
heterogeneity of covariance matrices as long as the
sample sizes are large and equal [7]. For other cases
we may use the multivariate Bartlett test to test the
homogeneity of covariance matrices.

The univariate Bartlett test was proposed in 1937
to test the homogeneity of variances [2]. It was later
extended to the multivariate case [3]. Assume inde-
pendent samples of size n1, n2, . . . , nk are randomly
drawn from k multivariate normally distributed popu-
lations. The null hypothesis of equality of covariance
matrices is given by

H0 : �1 = �2 = · · · = �k.

Suppose p is the number of variables involved, so �i

is of size p × p. To perform the test, we calculate

M = |S1|ν1/2|S2|ν2/2 . . . |Sk|νk/2

|Spl|νE
,

where νi = ni − 1, νE = ∑k
i=1 νi = ∑k

i=1 ni − k, Si

is the covariance matrix of the ith sample, and Spl

is the pooled sample covariance matrix

Spl =

k∑

i=1

νiSi

k∑

i=1

νi

.

A tractable expression for the exact null distribution
of M exists only for the case k = 2 [1, 6]. For k > 2
populations, Box [4, 5] provided chi-square and F
distribution approximations for the distribution of
M . They are both referred to as Box’s M test. For
the χ2 approximation, we use the statistic u which is
given as

u = −2(1 − c1) ln M,

where

c1 =





k∑

i=1

1

νi

−





1
k∑

i=1

νi









[
2p2 + 3p − 1

6(p + 1)(k − 1)

]
.

For computational purposes, we may use the follow-
ing form of ln M:

ln M = 1

2

k∑

i=1

νi ln |Si | − 1

2

(
k∑

i=1

νi

)
ln |Spl|.

u is approximately distributed as χ2
1−α

[
1
2 (k − 1)

p(p + 1)
]
. We reject H0 if u > χ2

1−α .
For the F approximation, the statistic depends on

two quantities, c1 and c2, where c1 is defined as above
and c2 is defined as follows:

c2 = (p − 1)(p + 2)

6(k − 1)





k∑

i=1

1

ν2
i

−





1
(

k∑

i=1

νi

)2








.

If c2 > c2
1, then

F = −2b1 ln M.

If c2 < c2
1, then

F = − a2b2 ln M

a1(1 + 2b2 ln M)
,

where

a1 = 1
2 (k − 1)p(p + 1), a2 = a1 + 2

|c2 − c2
1|

,

b1 = 1 − c1 − a1/a2

a1
, b2 = 1 − c1 − 2/a2

a2
.

Both Fs are approximately distributed as F1−α

(a1, a2).
Olsen [7] showed that the Box M test is very sen-

sitive to some forms of nonnormality for which the
MANOVA tests are rather robust. Therefore, in some
cases the M test may indicate types of covariance
heterogeneity that have only inconsequential effects
on the MANOVA tests. Hence, the test is not recom-
mended as a routine diagnostic for MANOVA tests.
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Multivariate Classification
Rules: Calibration and
Discrimination

This article emphasizes multivariate classification
rules, or models, where the classification is into one
of two possible states, but also discusses extensions
to multistate classifications. The accuracy of fit of
a model is the degree to which the predicted val-
ues, p̂i , coincide with the observed outcomes, yi ,
when these form a sample of size N drawn from
a random variable Y . When the outcome is binary,
being either a positive (yi = 1) or a negative (yi = 0)

outcome the predicted values are often expressed as
probabilities. Because the outcome takes only two
values, predicted and observed values will not match
closely for each observation as they might for a con-
tinuous outcome. Instead, models can be checked for
good discrimination (also called resolution or refine-
ment) and calibration (or reliability). Discrimination
(see Discriminant Analysis, Linear) refers to the
ability of the model to correctly distinguish the two
classes of outcomes with distinct predicted values.
Calibration of a probabilistic model describes how
closely the predicted probabilities agree numerically
with the actual outcomes. For example, events with
a predicted outcome probability of 60% should occur
about six times in 10. Generally, a model is well
calibrated only when predicted and observed values
agree for any reasonable grouping of the observa-
tions, whether ordered by increasing predicted values
or selected according to some external characteristic
like a risk factor.

Although a model with good calibration will tend
to have good discrimination, and vice versa, a given
model may be strong in one measure and weak in
another. A model that predicts all negative outcomes
to occur with probability 0.49 and all positive out-
comes to occur with probability 0.51 has perfect
discrimination but bad calibration, whereas a model
that predicts all events to occur with probability equal
to the prevalence of the outcome has perfect cal-
ibration but no discrimination. However, given the
choice, some have recommended that good discrimi-
nation be preferred to good calibration if prediction is
the goal, because a model with good discrimination
can always be recalibrated, but the rank orderings
of the probabilities cannot be changed to improve

discrimination [7, 21]. A model with good discrim-
ination can distinguish when events will occur for
an individual and not just on average. Diamond [4]
shows that a model with predictions uniformly dis-
tributed over [0, 1] and perfect calibration, in which
the observed event rate is the same as the pre-
dicted rate for any subset of observations, cannot
have perfect discrimination (as defined by the area
under the receiver-operating characteristic (ROC)
curve).

Brier Score

Mean squared error is a standard measure of the fit
of a model. For binary data, the mean squared error,
Σ(yi − p̂i)

2/N , is called the Brier score (BS). Here
p̂i is the predicted probability of a positive outcome
or event for individual i and N is the total sample
size. The Brier score can be considered a weighted
loss function in which increasing distance between
observed and predicted is penalized by a quadratic
measure. Other scoring rules which have been sug-
gested are the logarithmic rule [18] and the spherical
rule [20]. These three rules are called proper scoring
rules because they cannot be improved by giving any
predictions other than those consistent with the long-
run frequency probabilities of the system. In other
words, if the modeler knew the true event rate in
each prediction category, then he could do no better
than predicting that true rate.

The numerical value of the Brier score has no
direct meaning, but some weak standards of compar-
ison are available. The simplest is obtained by noting
that a prediction of 0.5 for each individual results
in a Brier score of 0.25. Another reference value is
the Brier score calculated assuming that all individ-
uals are given a predicted probability equal to the
prevalence, y. Writing this as B0 = Σ(yi − y)2/N =
y(1 − y), we see that this is simply the variance of
the yi . This suggests that we can form a statistic like
the multiple correlation coefficient R2 by normaliz-
ing the Brier score B1 as R2 = (B0 − B1)/B0, thus
allowing a comparison of Brier scores across mod-
els fit to data with different prevalences [13]. This is
important because the Brier score can be changed
simply by changing the prevalence. A number of
decompositions of the Brier score into components
of calibration and discrimination have been sug-
gested [12, 15, 21].
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Sanders’ decomposition [15] is

BS =

∑

j

nj (yj − p̂j )
2

N
+

∑

j

nj yj (1 − yj )

N
,

where the summation is over all groups with dis-
tinct predicted probabilities p̂j having an observed
event proportion of yj on a sample of size nj .
(In this article, the subscript j refers to a group
of individuals while the subscript i refers to single
individuals.) The first component describes calibra-
tion. It is minimized when the observed event rate
is the same as the predicted rate for each unique
prediction. The second component describes resolu-
tion and is minimized if each yj equals 0 or 1. It
therefore measures how well the predictions divide
the outcomes into homogeneous collections. As the
observed group event rates approach 0.5, the reso-
lution decreases because the predictions are not able
to differentiate between outcome categories. Geomet-
rically, the Sanders decomposition is similar to an
analysis of variance decomposition of the distance
between observed and predicted expressed as the sum
of the distance between the value of an observation
and the mean of the group in which the observation
is placed plus the distance between the group mean
and the predicted value.

Murphy [12] noted that the Sanders resolution
may be inflated by the overall prevalence of the
outcome. He therefore separated the resolution com-
ponent into two pieces in order to describe the
resolution adjusted for prevalence. In the Murphy
decomposition,

BS = y(1 − y) +

∑

j

nj (yj − p̂j )
2

N

−

∑

j

nj (yj − y)2

N
,

because the first term is the baseline Brier score, B0,
the sum of the second and third terms must be the
negative of the numerator of the normalized Brier
score represented by R2. This representation shows
explicitly how the Brier score is affected by changing
prevalence. The second term of the Murphy decom-
position is just the Sanders calibration. The third term
is then the part of the Sanders resolution that does

not depend on the overall prevalence and can be
controlled by the modeler. This corrected resolution
component improves as the mean event rates within
each group of observations are differentiated from
each other and from the overall event prevalence. The
Sanders resolution may be high simply because low
prevalence makes division into homogeneous groups
easy. Most groups may have zero events because few
events occur. Such groups contribute little to the Mur-
phy resolution, however, if their mean rate is nearly
the same as the overall mean rate.

Yates [21] described a third decomposition of the
Brier score as

BS = y(1 − y) + (p̂ − y)2 +

∑

j

nj (p̂j − p̂)2

N

− 2

∑

j

nj (p̂j − p̂)(yj − y)

N
.

The first term is the variance of the outcomes as in
Murphy’s representation. The second term involves
the simplest global measure of calibration, the bias,
which is the difference between the mean pre-
dicted value and the mean event rate. Yates calls
it calibration-in-the-large to distinguish it from the
Sanders/Murphy calibration. Models that are biased
may systematically over- or underpredict the true out-
come rate, even when discrimination is very good. In
logistic regression, the bias is zero. Even when a
model is unbiased, however, it may still be poorly
calibrated if some groups of individuals are badly
overpredicted while others are underpredicted. The
third term in the Yates decomposition is the variance
of the predicted values and the last term is twice
the covariance between the predicted and observed
values. Yates calls this the covariance decomposition
of the Brier score. The covariance term can also be
written as y(1 − y)(p̂1 − p̂0) in terms of the mean
discrimination, the difference p̂1 − p̂0 between the
average predicted probabilities in the positive and
negative outcome groups. Yates called mean discrim-
ination the slope because it is the slope estimate if the
predicted probabilities are regressed against a dummy
variable representing outcome status. A good model
should have a large slope, with a maximum of 1 for
binary variables coded as 0 or 1, and therefore the
sign of the covariance term above is negative.
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Yates also noted that the predicted variance in the
third term of his decomposition could be made zero if
the model always predicted the same value, but that
this would lead to a mean discrimination of zero.
Therefore the third term in the decomposition can be
rewritten as

∑

j

nj (p̂j − p̂)2

N
= n0var(p̂0) + n1var(p̂1)

N

+ y(1 − y)(p̂1 − p̂0)
2,

the sum of the pooled variance in the predicted values
across the two outcome groups and a term involv-
ing the slope. For a given slope, the second term,
y(1 − y)(p̂1 − p̂0)

2, is the minimum that the predic-
tion variance can achieve. This minimum variance
is reached only if within each outcome class the pre-
dicted values are the same. The pooled variance term,
which Yates called the scatter, measures the consis-
tency of the predictions in the two outcome groups.
High values of scatter indicate predictions that vary
substantially. Taken together, the Yates decomposi-
tion is then composed of terms representing preva-
lence, bias, scatter, and slope. For logistic regression,
a model can be described by the scatter and the slope.
The slope describes how well the model responds
to signals that discriminate events from nonevents
(i.e. positive from negative outcomes) and the scatter
describes how well the model filters out noise.

One disadvantage to the Brier score and its decom-
positions is that because all the relevant sampling
distributions are not known, hypothesis tests and
confidence intervals may be unavailable [22]. A test
of mean discrimination, p̂1 − p̂0, can be made by per-
forming a Student’s t test comparing the predicted
probabilities in the two outcome groups. The pooled
variance for this test is simply the scatter measure,
[n0var(p̂0) + n1var(p̂1)]/N . A test of overall bias,
p̂ − y, can be made by comparing the sample bias
to its standard error

[∑
pi(1 − pi)/N

]1/2
assuming

that the bias follows a normal distribution based on
the use of p̂ and y [8]. Spiegelhalter [19] describes
a test of calibration based on the Brier score that
can be used to determine if the observed score is
significantly different from the score expected under
the hypothesis of perfect model calibration that the
expected value of yi = p̂i for all individuals. Because
the Brier score is a weighted average of indepen-
dent Bernoulli random variables (see Binary Data),

an asymptotic test may be constructed on the basis
of a standardized normal test statistic with expecta-
tion

∑
pi(1 − pi)/N and variance

∑
pi(1 − pi)(1 −

2pi)
2/N2. Redelmeier et al. [14] have also developed

a test on the basis of a normal approximation for
comparing Brier scores from two different models.

Model Discrimination

The Sanders and Murphy resolution statistics measure
how well models assign different predicted probabil-
ities to groups of observations with different event
rates, but fail as true discrimination measures because
they do not consider the correct ordering of the prob-
abilities. For example, a model that assigns predicted
values less than 0.5 to all observations on which
an event was recorded and predicted values greater
than 0.5 to all observations on which an event was
not recorded would be perfectly resolved, but would
mean quite the opposite of what the probabilities were
intended to mean.

A simple discrimination measure that does
preserve ordering is the nonerror rate, the proportion
of observations for which the outcome falls in that
category with the higher predicted value. For a binary
outcome this is the probability that among events
the predicted value was greater than 0.5 and among
nonevents the predicted probability was less than 0.5.
Predictions of 0.5 get scored as one-half. A similar
type of test statistic can be formed by computing the
average probability across all observations assigned
to the outcome that occurs. Both these tests are
discussed in Hilden et al. [8] who give appropriate
standard errors.

A good measure of discrimination should also be
independent of model calibration. The nonerror rate
has perfect sensitivity and specificity if 0.5 com-
pletely separates the two outcome categories. Recali-
brating the predictions to a uniformly lower or higher
level, however, may destroy the perfect discrimina-
tion. Sensitivity and specificity defined with respect
to a fixed cutpoint would also fall into this category.
Mean discrimination also suffers by this criterion
because its magnitude depends on the levels of the
predicted probabilities in the outcome groups.

The c-index, or ROC curve area, has become
a standard of model discrimination for multivariate
logistic regression because it summarizes a model’s
pairwise discrimination and depends only on the
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rank ordering of the predicted values. It is cal-
culated as the probability that among all possible
pairs of individuals with different outcomes the pre-
dicted probability for the one with positive out-
come is higher than for the one with negative out-
come. Any pair with equal predicted probabilities
gets half credit. Hanley & McNeil [6] showed for
binary outcomes that this Wilcoxon rank sum statistic
(see Wilcoxon–Mann–Whitney Test) is numerically
equivalent to the area under the ROC curve formed by
plotting the true positive rate against the false pos-
itive rate for all possible cutpoints that divide the
[0, 1] probability interval into two parts. A model
with perfect discrimination has a value of 1.0 for
this statistic, while a model with no discrimination
in which probabilities are assigned randomly has a
value of 0.5. The c-index can also be expressed
as Somers’ D rank correlation statistic using the
linear transformation D = 2(c − 0.5) [7]. Standard
errors are then readily available for these statistics
using, for example, formulas for the Wilcoxon statis-
tic [11].

The ROC area statistic (as well as other discrim-
ination and calibration measures) can be affected by
specifics of the population used in the development of
a predictive model, such as its prevalence and case
mix. Consider a population consisting of a mixture
of two groups, one with an event rate of 0.2 and
the other with a rate of 0.8. The true ROC area for
the population depends on the mixture proportions of
the groups. A 1:1 mixture has an ROC area of 0.8,
but a 4:1 mixture has an ROC area of 0.72. Thus
a model developed from the first population would
appear better than one from the second population
even though the only difference was the composition
of the population.

Another measure of discrimination that can be
classified as a rank-order statistic takes the ratio of
outcomes that occur among observations with predic-
tions in a high percentile with those among obser-
vations with predictions in the corresponding low
percentile. The lowest and highest quartiles, quintiles,
or deciles could also be used (see Quantiles). This
measure ignores the middle part of the data and so
is more sensitive to discrepancies in the tails of the
predicted distribution. This may be of interest in mod-
els where definitive decisions are made if the model
indicates a very high or very low risk, but no decision
is made otherwise.

Model Calibration

Calibration measures may be characterized as statis-
tics that partition the data into groups and check how
the average predicted risk compares with the outcome
prevalence in each group. The Sanders and Murphy
statistics form the groups as the sets of observations
with the same predicted values. When all the pre-
dicted values are unique (as might occur in a regres-
sion model with continuous predictors), the Sanders
and Murphy decompositions degenerate so that the
calibration component is simply the Brier score.
Another type of calibration measure defines groups
of similar, but not identical, predicted values. Patients
are divided either into equal-sized groups that span
the probability scale with unequally sized ranges of
probabilities or into unequally sized groups that split
the probability scale into equally sized increments.
By describing the degree of accuracy over the entire
range of probabilities, calibration statistics reflect
how well an instrument predicts for patients with very
different likelihoods of the outcome of interest.

The most common form of calibration statistic is
based on the Pearson χ2 statistic (see Chi-square
Tests) used to summarize model fit by comparing
observed and expected outcomes within K groupings
defined by the predictors (see Goodness of Fit). It is
written

K∑

j=1

(Oj − Ej)
2

nj p̂j (1 − p̂j )
,

where for nj individuals in the j th group, Oj , is
the observed number of events and Ej = nj p̂j is the
expected number. Hosmer & Lemeshow [9] suggest
that division using equal-sized groups is preferable
especially when many of the predicted probabilities
are small and that the test statistic be compared with
a chi-square distribution having eight degrees of
freedom.

Model-Based Validation of Calibration
and Discrimination

Miller et al. [10] suggest a model for checking
both calibration and discrimination using an
idea of Cox [3] to examine the coefficients
from a logistic regression of Yi on the logit
of p̂i so that log[Pr(Yi = 1)/ Pr(Yi = 0)] = α +
β log[p̂i/(1 − p̂i)]. In this model the intercept, α,
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is a measure of calibration and the slope, β, is a
measure of discrimination. Perfect calibration and
discrimination correspond to a model with α = 0
and β = 1. The predictive probability is too low if
α > 0 and too high if α < 0. If β > 1, then the p̂i

show the correct direction but do not vary enough; if
0 < β < 1, then the p̂i vary too much; and if β < 0,
then the p̂i show the wrong general direction.

Three likelihood ratio tests can be constructed
to test discrimination and calibration: (i) the test of
H0 : α = 0 and β = 1 is a global test for calibra-
tion and discrimination; (ii) the test of H0 : α = 0
given β = 1 is a test for calibration given appro-
priate discrimination; and (iii) the test of H0 : β = 1
given α = 0 is a test of discrimination given appro-
priate calibration. From this model, Miller et al. [10]
develop regression diagnostics for assessing outliers,
influence, and leverage points as they affect calibra-
tion and discrimination.

Graphical Representations of Calibration
and Discrimination

Many graphs have been developed to represent cali-
bration and discrimination (see Graphical Displays).
Yates [21] describes a covariance graph for represent-
ing the components of his decomposition of the Brier
score plotting the predicted values on the vertical axis
against the outcome values on the horizontal axis.
Because there are only two possible outcomes, this
plot collapses to a vertical dotplot for each outcome
group. When the number of data points is large, it is
better to represent the distributions of predicted val-
ues for each outcome state as histograms. The spread
of these histograms describes the scatter component.
A line is then drawn connecting the means of the two
distributions. This is the slope component. The bias
is represented by the distance between the 45° line
indicating equality of predicted and observed, and the
intersection of the horizontal line drawn across from
the mean predicted value and the vertical line drawn
up from the mean event rate. Arkes et al. [1] describe
the use of this graph in evaluating the prognosis of
patients in the SUPPORT study.

The ROC curve formed by plotting the true posi-
tive rate on the vertical axis against the false positive
rate on the horizontal axis gives a good depiction of
the sensitivity and specificity of the diagnostic tests
set up by specifying cutpoints along the probability
scale.

Calibration can be represented either by a barplot
giving observed and average predicted probabilities
for each grouping of the observations [17] or as
a continuous curve across all possible predicted
values. Harrell et al. [7] have suggested using a
data smoother to describe the relationship between
observed and predicted in such plots. Schmid
et al. [16] use a second-degree loess smoother [2].
A moving average could also be used. Hilden
et al. [8] plot the cumulative number of events
against the expected number as the predicted values
increase from 0 to 1. For each of these plots the
departure of the continuous curve from the 45° line
of equality describes the lack of calibration evidenced
by the data.

Extensions to Multistate Outcomes

Many of the calibration and discrimination measures
may be easily extended to outcomes for which more
than two events are possible. The Brier score is writ-
ten as (1/N)

∑
(p̂i − yi)

T(p̂i − yi), where p̂i − yi

is a column vector with each element correspond-
ing to one of the possible events that could occur
on the ith individual. For the two-event case, this
value is actually twice the Brier score computed pre-
viously because the complementary event state is also
included in the calculation. The Brier score decompo-
sitions are also straightforward upon noting that the
squared terms in the two-state case can be replaced
with vector extensions. The measure of bias can be
extended by forming the column vector Z = p̂ − y
of mean predicted and observed in each of the k

states. Then ZTV−1Z follows a χ2 distribution with
k - 1 degrees of freedom. The calibration χ2 statis-
tics can be extended in the same way. For more
than two states, the c-index is defined as in the two-
state case, since a pair of individuals can still have
only two outcomes. But the equivalence with the
ROC curve area is lost. Good references for these
multivariate extensions can be found in Yates [22],
Winkler [20], Harrell et al. [7], and Hilden et al. [8].
Habbema et al. [5] discuss the use of a simplex to
present the distribution of predicted and observed val-
ues in the three-state case.

Conclusion

Many calibration and discrimination statistics are
available to measure how well binary (and multistate)
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outcomes are classified by models. The c-index and
the Hosmer–Lemeshow χ2 statistic are the most
widely used, but the careful data analyst should
assess model performance in many different ways,
bearing in mind that test statistics may vary from
dataset to dataset. Good performance is usually easier
to achieve on data with a wide variation in the
covariates. For example, if individuals are either very
sick or very well, it will be easier to categorize them.
Performance may also suffer when a model fit to one
set of data is tested on a new set, especially if the new
set displays less variation in the covariates than the
old one. When prediction is the goal of the modeling
process, in fact, model performance should never be
reported solely from the data used to develop the
model. Instead, it is wisest to choose the model that
displays the best calibration and discrimination on the
new data [7].
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Multivariate
Distributions, Overview

Multivariate distributions are defined on finite-
dimensional spaces. They serve as probabilistic
models for dependent outcomes of random exper-
iments. Biometric data typically comprise observa-
tions on multiple characteristics for each experi-
mental subject, and joint distributions are central
to the modeling and analyses of such data. Multi-
variate distributions derive from other distributions
through operations including transformations, pro-
jections, conditioning, convolutions, extreme val-
ues, mixing, compounding, truncating, and censor-
ing. From them derive the distributions of various
sample statistics of note in statistical inference. In
addition, multivariate distributions characterize the
behavior of stochastic processes through proper-
ties of their finite-dimensional projections. Occasion-
ally, multivariate distribution theory supports prob-
abilistic proofs for mathematical theorems. In short,
multivariate distributions arise throughout statistics
and applied probability, and their properties are
essential to an understanding of those and related
fields.

Basic Concepts

Origins and Uses

To fix ideas, suppose that a pharmacologist focuses
primarily on the cardiovascular system and sec-
ondarily on neurology and musculature. Let X =
[X1, X2, X3, X4, X5]′ represent observations on the
systolic X1, and diastolic, X2, pressures, pulse rate,
X3, and gross, X4, and fine, X5, motor skills. Pros-
pects for altering the cardiovascular state of a subject
through medication may be negated in part by adverse
side-effects on motor skills, for example. A complete
probabilistic description of the system entails the joint
distribution of the variables [X1, X2, X3, X4, X5].

The origins of this topic trace to studies begin-
ning in the early nineteenth century on multivariate
normal distributions and their applications [1, 2, 10,
11, 18, 19, 24, 43, 50–52, 55, 57], including early
biometrical investigations. Systematic studies of such
distributions in two and three dimensions are cred-
ited to Bravais [2] and Schols [52], and in any finite

dimensions to Edgeworth [11], including such essen-
tial concepts as regression and partial correlations.

Multivariate distributions merit scrutiny at several
levels of detail. At one extreme are basics such as
the stochastic convergence of vector sequences and
multidimensional Chebychev inequalities under weak
moment assumptions, which are genuinely nonpara-
metric. At the other extreme are rigidly parametric
models with distributions having specified functional
forms. A survey of the latter follows subsequently.
In between are classes of distributions exhibiting
common structural features such as symmetry or
unimodality, giving rise to semiparametric models.
For many purposes it suffices to know only the
structural properties of distributions rather than their
explicit functional forms. For example, various con-
cepts of multivariate unimodality are developed in
Dharmadhikari & Joag-Dev [8]; some of these enable
a sharpening of selected multidimensional Chebychev
bounds. Further examples are cited here with refer-
ence to distributions exhibiting suitable symmetries,
i.e. invariance under specified transformation groups.

Notions of stochastic ordering likewise admit sev-
eral realizations in higher dimensions. These in turn
give rise to useful multivariate probability inequali-
ties. A systematic account of the latter is found in
Tong [59], including many results for distributions
listed here. Results pertaining to multivariate nor-
mal and related distributions are found in Tong [60];
brief surveys appear in the articles on the Mul-
tivariate Normal Distribution and Multivariate t
Distribution. In particular, the comparative concen-
tration of probabilities, as a stochastic ordering, is
an essential concept for distributions on �k . Fol-
lowing Sherman [54], the probability measure µ(·)
is said to be more peaked about 0 ∈ �k than ν(·)
if and only if µ(A) ≥ ν(A) for every set A in the
class Ck comprising the compact convex subsets of
�k that are symmetric under reflection about 0 ∈ �k ,
i.e. x ∈ A implies −x ∈ A. We return to this ordering
subsequently.

Multivariate distributions exhibit many properties.
A property is said to characterize a distribution if
the property is unique to that distribution. A standard
reference here is Kagan et al. [39], with connections
to some distributions surveyed in the present article.

The choice of model is often critical in prac-
tice. Sometimes there is a clear mandate; more often
the choice must be guided by experience, conjec-
ture, and empirical validation. To aid in this choice,
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numerous discrete and continuous multivariate distri-
butions are now known, and others may be expected
to emerge in the future. Our purpose here is to set
forth basic concepts, to survey the principal known
multivariate distributions of discrete and continuous
types, and to give some insight regarding their use. It
will be seen that numerous multivariate distributions
arise through mixtures and compounding, in keep-
ing with complexities intrinsic to modern experiments
in many fields of inquiry. Such experiments often
may be modeled conditionally in a random envi-
ronment, so that unconditional distributions emerge
as mixtures. Details are noted subsequently. Stan-
dard references for mixture models, their structure,
analysis, and applications, are Everitt & Hand [12],
Titterington et al. [58], McLachlan & Basford [46],
and Lindsay [44].

Several topics encountered here are covered in
greater detail elsewhere in this encyclopedia, as
noted. Excellent references on the coverage of this
article, including overviews for both discrete and con-
tinuous multivariate distributions and myriad techni-
cal details, are Johnson & Kotz [37, 38] and Patil &
Joshi [49].

Notation

To fix notation, �k designates Euclidean k-space
and �k

+ its positive orthant; Fn×k is the collection
of real (n × k) matrices; Sk consists of real
symmetric (k × k) matrices; and S0

k and S+
k comprise

the positive semidefinite and the positive definite
varieties in Sk . Special arrays include the (k × k)

identity Ik , the unit vector 1k = [1, . . . , 1]′ ∈ �k , the
diagonal matrix diag (a1, . . . , ak), and the Kronecker
product A × B = [aij B]. Specifically, a ∈ Rk is a
column vector and a′ = [a1, . . . , ak] its transpose.
The transpose, inverse, trace, and determinant of
A ∈ Fk×k are denoted by A′, A−1, tr (A), and |A|,
respectively. If y ∈ �k is random, its vector of
expected values and its dispersion (or covariance)
matrix are designated by E(y) ∈ �k and var(y) ∈
S+

k when defined. If Y = [y1, . . . , yn]′ ∈ Fn×k , then
conventions for the corresponding arrays are E(Y ) =
[E(Yij )] ∈ Fn×k and var(Y) = var(y) ∈ S+

nk such that
y = [y′

1, . . . , y′
n]′ ∈ �nk .

The notation L(X) designates the law of dis-
tribution of X ∈ �k or X ∈ Fn×k , as appropriate.
Abbreviations for probability density, cumulative

distribution, and characteristic functions are pdf, cdf,
and chf, respectively, whereas iid refers to a sequence
of independent, identically distributed random ele-
ments (see Random Variable).

The Basic Tools

Let X0 be a set and (Ω, B, P ) a probability space
with Ω as an event set, B a field of subsets of
Ω , and P a probability measure. An X0-valued ran-
dom element is a measurable mapping X(ω) from
Ω to X0 which, when X0 is finite-dimensional such
as the Euclidean space �k , is multivariate. The
cumulative distribution function (cdf) of X(ω) =
[X1(ω), . . . , Xk(ω)]′ on �k is given by

F(x1, . . . , xk) = P(ω : X1(ω)

≤ x1, . . . , Xk(ω) ≤ xk), (1)

with values in the unit interval. Corresponding to each
cdf is a probability measure Px and conversely, giv-
ing the model (�k

, Bk, Px) in which Bk is the Borel
field of subsets of �k . This provides a formal frame-
work for multivariate distribution theory, although the
details are typically suppressed in the discussion that
follows.

The study of multivariate distributions draws heav-
ily on the calculus of �k , on integral transforms of
Fourier, Laplace, and Mellin, including characteris-
tic functions on �k (see [45]), and on embedding
other finite-dimensional spaces in �k . Distributions
often emerge through a change of variables and inte-
gral transforms, and their properties through inverse
images. Generating functions for joint moments,
cumulants, factorial moments, and probabilities are
used routinely (see Moment Generating Function).
Projection methods apply, as the distribution of
X(ω) on �k is determined completely by the one-
dimensional distributions of every linear transforma-
tion of it.

Some multivariate distribution functions admit
simple expressions in closed form. More commonly,
many others require expansions in multiple series
fraught with problems of convergence and stability.
Limit theorems (see Large-sample Theory) often
suggest simple approximations. Asymptotic expan-
sions, as well as expansions of the Cornish–Fisher
and Edgeworth types, are available for many other-
wise intractable multivariate distributions. Clearly, a
complete catalog of probability functions would be
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desirable for the distributions surveyed here. Unfor-
tunately, this is overly ambitious owing to the afore-
mentioned difficulties. Instead, we list functional
forms where tractable, and otherwise refer the reader
to excellent monographs which do supply complete
details as well as further references to the archival
literature.

Types of Distributions

Discrete distributions arise with counting data such
as pulse rates and numbers of adult and larval
insects. Continuous distributions typically associate
with measurements such as systolic and diastolic
pressures. A formal statement follows.

Suppose that X0 is finite-dimensional. Each prob-
ability measure P on [X0, B(X0), ·] is decomposable
as a mixture

P = a1P1 + a2P2 + a3P3,

ai ≥ 0, a1 + a2 + a3 = 1, (2)

such that P1 assigns positive probability to the
mass points of P, P2 has absolute continuity with
respect to the Lebesgue (i.e. volume) measure on
(X0, B(X0), ·), and P3 is purely singular on a set in
X0 having a Lebesgue measure zero, often a linear
subspace of X0.

Corresponding to P1, P2, and P3 on (Rk, Bk, P )

are cdfs F1, F2, and F3, respectively, as in (1). Here
F1(x1, . . . , xk) has a probability mass function (pmf)
as given by

p(x1, . . . , xk) = P(X1 = x1, . . . , Xk = xk), (3)

giving the jumps of F1(x1, . . . , xk) at its mass points,
whereas F2(x1, . . . , xk) has a corresponding probabil-
ity density function (pdf) given by

f2(x1, . . . , xk) = ∂k

∂x1, . . . , ∂xk

F2(x1, . . . , xk) (4)

for almost all {x1, . . . , xk}.
Partition X ∈ �k as X = [X′

1, X′
2]′ such that

X1 ∈ �r and X2 ∈ �s , with r + s = k. Then the
marginal cdf of X1 is given by Fm1(x1, . . . , xr) =
F(x1, . . . , xr , ∞, . . . , ∞) for either discrete, abso-
lutely continuous, or singular distributions. The pmf
for the conditional distribution L(X1|x2) of X1, given

that X2 = x2, is given by

p1(x1, . . . , xr |xr+1, . . . , xk) = p(x1, . . . , xk)

p2(xr+1, . . . , xk)
,

(5)

with p2(xr+1, . . . , xk) as the marginal function for
X2 = [Xr+1, . . . , Xk]′. A similar expression holds
in the absolutely continuous case in terms of
the joint pdf f (x1, . . . , xk) and the marginal pdf
f2(xr+1, . . . , xk).

The study of multivariate distributions is con-
cerned mainly with functions of the discrete (3)
and continuous (4) types; the principal distributions
of these types are surveyed in this article under
sections labeled “Discrete Distributions” and “Con-
tinuous Distributions”. In practice, P3 typically is a
degenerate distribution, often concentrated on a sub-
space of Rk and absolutely continuous there. These
pure types may be combined by mixture as in (2).

Continuous Distributions

Scope

Some finite-dimensional distributions arise from mul-
tidimensional limit theorems; many others serve as
models for outcomes of random experiments; and
still others originate primarily as derived distribu-
tions, often pertaining to sample statistics. Promi-
nent among limit distributions and those from which
others derive are multivariate normal distributions.
Their basic features, including marginal and con-
ditional distributions, regression functions, selected
probability inequalities, central limit theorems, and
Berry–Esseen bounds on convergence rates to a mul-
tivariate normal limit, are summarized under Multi-
variate Normal Distribution. Many basic distribu-
tions derived from these are known to be identical,
and thus invariant, for all parent distributions in
a structured class containing symmetric multivari-
ate stable laws and numerous others. An impressive
list of normal-theory statistical procedures, both uni-
variate and multivariate, are thus genuinely semi-
parametric, in the sense that it suffices to identify
only the structural symmetry of underlying distribu-
tions rather than their explicit functional forms. These
facts bear heavily on the robustness and validity
of normal-theory procedures for use with nonnor-
mal data, including linear statistical models, various
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data-analytic multivariate procedures, and the multi-
variate Bartlett test for equal dispersion matrices,
to cite telling examples. Symmetric multivariate dis-
tributions are surveyed next; special mappings of
practical note that are known to induce invariant
distributions are then characterized; and derived dis-
tributions having these properties are identified sub-
sequently. We then undertake a systematic survey
of the principal distributions of random vectors and
matrices of continuous types. The principal reference
for these is Johnson & Kotz [38]; vector and matrix
distributions having structural symmetry are found
in many sources, including Dempster [6], Kariya &
Sinha [40], Fang & Anderson [13], Fang et al. [15],
and Fang & Zhang [14], and other references to
be cited.

Symmetric Distributions

Multivariate data often are scattered more heavily
away from the center of location than are multivariate
normal data. Indeed, many models for contaminated
errors are so. Symmetric distributions that are either
more or less scattered than multivariate normal laws
are described here, where by “symmetry” is meant
invariance under a specified group of transformations
acting on the space of observations. In many applica-
tions these are seen to supply useful semiparametric
models, in lieu of overly restrictive multivariate nor-
mal models, as being germane to the outcomes of
random experiments.
Distributions on �n. Let Sn(θ, �) = [Sn(θ, �, ψ);
ψ ∈ Ψ ] be the class of elliptical distributions on
�n, having location-scale parameters (θ, �) and the
typical pdf

f (y) = |�|−1/2ψ[(y − θ)′�−1(y − θ)], (6)

where ψ(·) ∈ Ψ , with Ψ as the class of all such func-
tions on [0, ∞). The class Sn(0, In) contains isotropic
distributions on �k for which z and Q z have the
same distribution for every real orthogonal matrix Q
(n × n). Examples of elliptical distributions on �n

are given in Table 1, where Student’s t, Cauchy,
and stable laws with α < 2 have tails heavier than
those of multivariate normal distributions. It is known
that E(y) = θ and var(y) = γ�, with γ > 0, when-
ever these moments are defined. Further properties
are given in the references cited, together with review
articles by Devlin et al. [7] and Chmielewski [4]. An
original source is the penetrating work of Cambanis
et al. [3].
Distributions on Fn×k . Let Sn,k(�, � × �) = [Sn,k

(�, � × �, ψ); ψ ∈ Ψ ], with parameters (�, � ×
�) such that � × � = [γij�], be the class of dis-
tributions on Fn×k having the typical pdf

f (Y) = |�|−k/2|�|−n/2ψ

× [tr (Y − �)′�−1(Y − �)�−1], (7)

where tr (·) is the trace and ψ(·) belongs to the
class Ψ consisting of all such functions on [0, ∞).
This class contains symmetric stable distributions
including matrix normal distributions of the type
Nn,k(�, � × �), as given in Table 2, having E(Y) =
� and var(Y) = � × �, as well as matrix versions of
other examples from Table 1, and many others. Inde-
pendence of the rows of Y = [y1, . . . , yn]′ and multi-
variate normality are linked: if L(Y) ∈ Sn,k(�, In ×
�), then {y1, . . . , yn} are mutually independent if and
only if Y is matrix normal on Fn×k; see James [26].

More generally, Ln,k(�, �, �) designates the class
of matrix distributions on Fn×k having the typical pdf

f (Y) = |�|−k/2|�|−n/2φ(D′�−1D), (8)

Table 1 Examples of spherical distributions on �n having probability density functions f (x) or
characteristic functions ξ(t)

Type Description Comments

Multivariate normal f (x) = c1 exp(−x
′
x/2)

Pearson type II f (x) = c2(1 − x
′
x]y−1 γ > 1

Pearson type VII f (x) = c3(1 + x
′
x]−y γ > n/2

Student’s t f (x) = c4(1 + ν−1x
′
x]−(ν+n)/2 ν a positive integer

Cauchy f (x) = c5(1 + x
′
x]−(n+1)/2

Scale mixtures f (x) = c6
∫ ∞

0 t−n/2 exp(−x
′
x/2t) dG(t) G(t) a cdf

Stable laws ξ(t) = c7 exp[γ (t
′
t)α/2] 0 < α < 2 the index
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Table 2 Standard pdfs for some continuous matrix distributions

Type Descriptiona Comments

Normal Nn,k(�,� × �) k1 exp{−[tr (Y − �)′�−1(Y − �)�−1]} Y ∈ Fn×k

Wishart Wk(ν,�) k2|W|(ν−k−1)/2 exp(−tr W�−1/2) W ∈ S+
k

Matrix T k3|Ik + ν−1T
′
T|−(ν+r)/2 T ∈ Fr×k

ak1 = [(2π)nk/2|�|k/2|�|n/2]−1, k2 = {(2)νk/2πk(k−1)/4|�|ν/2 ∏k
i=1 Γ [(ν − i + 1)/2]}−1, and

k3 = {(νπ)rk/2 ∏k
i=1 Γ [(ν − i + 1)/2]/Γ [(ν + r − i + 1)/2]}−1.

with D = (Y − �)�−1/2, where φ(·) is a function
on S+

k and where �−1/2 is a factor of �−1. A sub-
class of these is Sn,k(�, � × �). Distributions in
Ln,k(�, In, �) have the property that (Y − �) and
Q(Y − �) have the same distribution for every real
orthogonal matrix Q(n × n). For a treatment of the
class Ln,k(�, �, �) and its extensions, see Demp-
ster [6], Dawid [5], Jensen & Good [34], and selected
sections of monographs on symmetric distributions as
cited earlier.
Invariance properties. Basic distributions induced
from the foregoing classes through mappings of
selected types are invariant. It remains to iden-
tify these. To be precise, let M be a subspace
of �n or Fn×k , as appropriate; let T be a map-
ping to a finite-dimensional space V ; and con-
sider classes of parametric families to be generated
from Sn(θ, �), Sn,k(�, � × �), and Ln,k(�, �, �)

as their parameters are varied. We are concerned
with distributions for V -valued random elements
induced through T (·). The following summary is
taken from Jensen & Good [34] as a primary source,
where proofs are provided. Applications appear sub-
sequently for families exhibiting suitable symme-
tries. These facts in turn may be used to determine,
essentially by inspection, the invariance properties of
numerous derived distributions beyond those to be
considered here.

Property 1. If T [c(y + m)] = T (y) for each c >

0 and m ∈ M ⊂ �n, then the distribution of T (y)

is invariant for all distributions L(y) in the class
[Sn(θ, �); θ ∈ M, � ∈ S+

n ] consisting of elliptical
families on �n.

Property 2. If T [c(Y + M)] = T (Y) for each c >

0 and M ∈ M ⊂ Fn×k , then L[T (Y)] is invariant
for all distributions L(Y) in the class [Sn,k(�, � ×
�); � ∈ M, � × � ∈ S+

nk] consisting of elliptical
families on Fn×k .

Property 3. If T [(Y + M)B] = T (Y) for each M ∈
M ⊂ Fn×k and each nonsingular matrix B(k × k),
then L[T (Y)] is invariant for all distributions L (Y) in
the class [Ln,k(�, �, �); � ∈ M, � ∈ S+

n , � ∈ S+
k ]

consisting of left-invariant distributions on Fn×k .
Stochastic orderings. Stochastic order relations
among distributions in the classes Sn(0, �) and
Sn,k(0, � × �) are of note. To fix ideas, consider
Sn(0, �, ψ) and Sn(0, �, ψ); let P�(·; ψ) and
P�(·; ψ) be their corresponding probability measures;
and recall the concentration ordering of Sherman [54]
for sets in the class Cn comprising the symmetric
convex subsets of Rn. Then a necessary and
sufficient condition that P�(·; ψ) should be more
concentrated about 0 than P�(·; ψ), is that � and
� should be ordered so that � − � is positive
semidefinite. Sufficiency is shown in Fefferman
et al. [16], and necessity in Jensen [33]. Further such
orderings apply when both (�, ψ) are allowed to
vary in [Sn(0, �, ψ); � ∈ S+

n , ψ ∈ Ψ ]; for further
details see Jensen [33]. These order relations in turn
extend directly, without further difficulty, to include
matrix distributions in the class [Sn,k(0, � × �); � ∈
S+

n , � ∈ S+
k , ψ ∈ Ψ ].

The principal multivariate continuous distributions
are surveyed next by name, although terminology
is not yet completely standardized. The multivariate
normal members of Sn(θ, �) and Sn,k(�, � × �) are
denoted respectively by Nn(θ, �) and Nn,k(�, � ×
�) as before. The notation χ2(ν, λ) designates the
noncentral chi-square distribution having ν degrees
of freedom and noncentrality parameter λ, whereas
the central case is abbreviated as χ2(ν).

Gamma Distributions

Gamma, chi-square, and exponential distributions
on R1+ are well known. Matrix and vector versions
of these are considered next.
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Matrix distributions. Suppose that �(k × k) is pos-
itive definite, W is random with values in S+

k , and
K(·) is a constant. The pdf with λ > 0, W ∈ S+

k , as
given by

f (W) = K(λ, �)|W|λ−1 exp(−trW�−1), (9)

f (W) = 0 otherwise, is that of a matric gamma
distribution [45, p. 40 ff.] Here K(λ, �) = {πk(k−1)/4
∏k−1

r=0 Γ [(2λ + r)/2]|�|λ+(k−1)/2}−1. If W = Y
′
Y with

L(Y) ∈ Ln,k(0, In, �) as in (8) such that n ≥ k, then
the pdf of W is

f (W) = K(n, k, �)|W|(n−k−1)/2φ(�−1/2W�−1/2)

(10)

for W ∈ S+
k , f (W) = 0 otherwise, a result of

Hsu [25]. Here K(n, k, �) = πnk/2−k(k−1)/4/|�|n/2
∏k

i=1 Γ [(n − i + 1)/2]. Moreover, if L(Y) =
Nn,k(M, In × �) with n ≥ k, and if W = Y

′
Y, then W

has a noncentral Wishart distribution, denoted by
Wk(n, �, �), with noncentrality matrix � = M

′
M.

The central version is denoted by Wk(n, �); its pdf
is a special case of (9) and (10) as given in Table 3;
whereas the noncentral pdf has a series expansion in
special polynomials (see [38, p. 170 ff.]).

Wishart matrices arise in multivariate normal sam-
pling, e.g. as the scaled sample dispersion matrix, and
otherwise in multivariate distribution theory. Parallel
remarks apply to (10) and the class Ln,k(M, In, �).
The noncentral Wishart distribution, although rather
intractable numerically, admits approximations based
on the following. As n → ∞, its limit distribution is

multivariate normal for standardized central and non-
central matrices, and for fixed n it is asymptotically
multivariate normal as the noncentrality parameters
grow in a specified manner [30].
Distributions on �k

+. Joint distributions for the diag-
onal elements of W = [Wij ] arise in the analysis of
variance for nonorthogonal designs, in time series
analyses, in multiple comparisons, in the analysis of
multidimensional contingency tables, in extensions
of Friedman’s chi-square test in two-way data based
on ranks (see Mantel–Haenszel Methods), and else-
where in statistical methodology. There is a mul-
tivariate gamma distribution on �k

+ for diagonal
elements corresponding to expression (9), a multi-
variate chi-square distribution when W is Wishart,
and a multivariate exponential distribution in the
central case of the latter for the case n = 2. The
joint distribution of [W 1/2

11 , W
1/2
22 , . . . , W

1/2
kk ], known

as a multivariate Rayleigh distribution, arises in the
detection of signals from noise [47]. More general
Rayleigh distributions are known [28], as are more
general multivariate chi-square distributions with dif-
fering marginal degrees of freedom. The latter arise
as the joint distributions of traces of diagonal blocks
of a block-partitioned Wishart matrix [29].

Densities for these distributions are rather intract-
able, apart from special cases, typically entailing
multiple series expansions in special functions from
applied mathematics. Details are given in Johnson
& Kotz [38, Chapter 40]. However, as n → ∞, the
standardized chi-square and Rayleigh distributions
in the limit are multivariate normal for both cen-
tral and noncentral cases, and for fixed n, the limits
again are multivariate normal as the noncentrality

Table 3 Standard pdfs for some continuous distribution on �k

Type Descriptiona Comments

Student’s t k1[1 + ν−1(t − µ)′R−1(t − µ)]−(ν+k)/2 t ∈ �k

Dirichlet k2(1 − ∑k
j=1 uj )

α0−1 ∏k
j=1 u

αj −1
j {0 ≤ uj ≤ 1,

∑k
j=1 uj ≤ 1}

Inverted Dirichlet k2
∏k

j=1 ν
αj −1
j /[1 + ∑k

j=1 νj ]α/2 {0 ≤ νj < ∞, α = ∑k
j=0 αj }

Roots of |W − w�| k3
∏k

i=1 w
(ν−k−1)/2
i

∏
i<j (wi − wj) exp[−(

∑k
i=1 wi)/2] {w1 > · · · > wk > 0}

Roots of |S1 − lS0| k4
∏k

i=1 l
(m−k−1)/2
i

∏k
i=1(li + 1)−(m+n)/2 ∏

i<j (li − lj ) {l1 > · · · > lk > 0}
ak1 = Γ [(ν + k)/2]/(πν)k/2Γ (ν/2)|R|1/2, k2 = Γ (α)/

∏k
j=0 Γ (αj ), α = α0 + α1 + · · · + αk,

k3 = πk/2/2νk/2 ∏k
i=1{Γ [(ν − i + 1)/2]Γ [(k − i + 1)/2]}, and

k4 = πk/2 ∏k
i=1 Γ [(m + n − i + 1)/2]/{∏k

i=1{Γ [(n − i + 1)/2]Γ [(m − i + 1)/2]Γ [(k − i + 1)/2]}}.
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parameters grow [27]. Alternate approximations are
found through multivariate normalizing transforma-
tions of the Wilson–Hilferty type; see Jensen [31]
and Jensen & Solomon [35] for further details.

Student Distributions

Vector and matrix versions of Student’s t statis-
tic are considered next. Further details are given
in the article on the Multivariate t Distribution,
based on normal sampling models. However, mul-
tivariate normality need not be assumed here, since
central versions of these distributions are seen to be
invariants under symmetry of the underlying parent
distributions, as noted subsequently.
Distributions on �k . There are two basic types. Sup-
pose that [X1, . . . , Xk] is multivariate normal with
means [µ1, . . . , µk], unit variances, and correlation
matrix R(k × k). A type I distribution is that of {Tj =
Xj/S, j = 1, . . . , k} such that the distribution of νS2

is χ2(ν) independently of [X1, . . . , Xk]. The typical
pdf for this type is listed in Table 3. To consider type
II distributions, suppose that νS = ν[Sij ] has the cen-
tral Wishart distribution Wk(ν, R) independently of
[X1, . . . , Xk]. A type II distribution on �k is that of
{Tj = Xj/Sjj , j = 1, . . . , k}. Both types are central
whenever µ1 = · · · = µk = 0 and are noncentral oth-
erwise. These distributions arise in multiple compar-
isons procedures, in the construction of rectangular
confidence sets for means, in the Bayesian analysis
of multivariate normal data (see Multivariate Anal-
ysis, Bayesian), and in various multistage procedures.
Further details are given in Johnson & Kotz [38,
Chapter 37] and Tong [60, Chapter 9].

More generally, if L(X1, . . . , Xk, Z1, . . . , Zν) is
in the class Sn(θ, �) with θ ′ = [µ1, . . . , µk, 0, . . . , 0]
and � = diag(R, Iν), a block-diagonal matrix,
then with νS2 = Z2

1 + · · · + Z2
ν , the central joint

distribution of {Tj = Xj/S; j = 1, . . . , k} is type
I multivariate t for all distributions in Sn(θ, �)

having the required structure. This follows from
invariance Property 1, so that normal-theory multiple
comparisons using {T1, . . . , Tk} are exact in level
for linear models having spherical errors [32].
Similarly, if L(Y) ∈ Sn,k(�, In × �) with parameters
� = [θ, . . . , θ]′, θ ∈ Rk ; if Xj = n1/2Y j with {Y j =
(Y1j + · · · + Ynj )/n; j = 1, . . . , k}, and if S is the
sample dispersion matrix, then invariance Property
2 asserts that the central distribution of {Tj =
Xj/S

1/2
jj ; j = 1, . . . , k} is type II multivariate t

for every L (Y) in Sn,k(0, In × �). Noncentral
distributions generally depend on the particular
distribution in Sn,k(�, In × �).
Matric t distributions. Let Y and W be independent
with L(Y) = Nr,k(0, Ir × �) and L(W) = Wk(ν, �)

such that ν ≥ k, and let T = YW−1/2 using any fac-
torization U

′
U of W with W1/2 = U. Then T has

a matric t distribution with pdf as listed in Table 2.
Alternatively, consider X = [Y

′
, Z

′
]′ with distribution

in Sn,k(0, In × �) such that n = r + ν and ν ≥ k, and
again let T = YW−1/2 with W = Z

′
Z. These vari-

ables arise from distributions in Sn,k(0, In × �) in
the same manner as for the multivariate normal case.
From invariance Property 2, T has a matric t distri-
bution for every distribution L(Y) in Sn,k(0, In × �).
This invariance property of L(T) transfers directly
to the scaled distribution L(ATB) considered by
Dickey [9] with A and B nonsingular.

Beta and F Distributions

Let X and Y be independent random gamma variates
having a common scale. Then U = X/(X + Y ) has a
beta distribution and V = X/Y has an inverted beta
distribution, with the Snedecor–Fisher F distribu-
tion as a special case of the latter. This section treats
vector and matrix extensions of these distributions.
Dirichlet distributions. Let {Z0, Z1, . . . , Zk} be
independent gamma variates having a common
scale and the shape parameters {α0, α1, . . . , αk},
and let T = Z0 + Z1 + · · · + Zk . Then the joint
distribution of {Uj = Zj/T ; j = 1, . . . , k} is the k-
dimensional Dirichlet distribution D(α0, α1, . . . , αk)

with pdf as given in Table 3. An important
special case is that {αj = νj/2; j = 0, 1, . . . , k}
with {ν0, ν1, . . . , νk} as positive integers and
with {Z0, Z1, . . . , Zk} as independent chi-square
variates. However, in this case neither independence
nor chi-square distributions are required. For
if y = [y′

0, y′
1, . . . , y′

k]′ ∈ Rn with {yj ∈ Rνj ; j =
0, 1, . . . , k} and n = ν0 + ν1 + · · · + νk such that
L(y) ∈ Sn(0, In), then invariance Property 1 ensures
that {Uj = y′

j yj /T ; j = 1, . . . , k}, but now with
T = y′

0y0 + y′
1y1 + · · · + y′

kyk , has the distribution
D(ν0/2, ν1/2, . . . , νk/2).

A matric Dirichlet distribution is known [48] for
which the random matrices {S0, S1, . . . , Sr} in S+

k are
independent Wishart matrices as given by {L(Sj ) =



8 Multivariate Distributions, Overview

Wk(νj , �); νj ≥ k, j = 0, 1, . . . , r}. If

Wj =



r∑

j=0

Sj




−1/2

Sj




r∑

j=0

Sj




−1/2

(11)

for j = 1, 2, . . . , r , then for the lower triangular
square root their joint pdf is

f (W1, . . . , Wr ) = K(ν)

r∏

j=1

|Wj |(νj −k−1)/2

× |Ik −
r∑

j=1

Wj |(ν0−k−1)/2 (12)

for Wj and (Ik − ∑r
j=1 Wj ) positive definite;

f (W1, . . . , Wr ) = 0, otherwise; see [38, p. 234].
Here with ν = [ν0, ν1, . . . , νk]′ and ν = ν0 + ν1 +
· · · + νr , K(ν) = K(ν0, ν1, . . . , νk) = ∏k

i=1 Γ [(ν −
i + 1)/2]/

∏r
i=0

∏k
j=1 Γ [(νi − j + 1)/2]. As before,

neither independence nor Wishart distributions are
required. For if Y = [Y′

0, Y′
1, . . . , Y′

r ] ∈ Fn×k with
n = ν0 + ν1 + · · · + νr , such that νj ≥ k and L(Y) ∈
Sn,k(0, In × �), then invariance Property 2 ensures
that the joint pdf of {W1, . . . , Wr} as in (11), with
{Sj = Y′

j Yj ; j = 0, 1, . . . , r}, is identical to (12) for
every distribution L(Y) in Sn,k(0, In × �).

Connections among these distributions follow.
When k = 1, (12) is Dirichlet. The ratios of quadratic
forms,

Uj(a) = a′Sj a
a′(S0 + S1 + · · · + Sr )a

, (13)

for j = 1, . . . , r and for fixed a ∈ Rk , and the ratios
of traces,

Uj = tr Sj

tr (S0 + S1 + · · · + Sr )
, (14)

for j = 1, 2, . . . , r , are both Dirichlet. The special
case of (12), with r = 1, is sometimes called a type
I multivariate beta distribution.
Inverted Dirichlet and F distributions. The inverted
Dirichlet distribution is that of {Vj = Zj/Z0; j =
1, . . . , r} whenever {Z0, Z1, . . . , Zr} are independent
gamma variates having a common scale and the
shape parameters {α0, α1, . . . , αr} (see [38, p. 238]).
The typical pdf is listed in Table 3. The scaled
variates given by {Vj = ν0Zj/νjZ0; j = 1, . . . , r}
then have a multivariate F distribution whenever

{αj = νj /2; j = 0, 1, . . . , r} with {ν0, ν1, . . . , νr} as
positive integers. This arises in the analysis of
variance in conjunction with ratios of independent
mean squares to a common denominator [17].
As before, neither independence nor multivariate
normality is required; take {Vj = ν0y′

j yj /νj y′
0y0; j =

1, . . . , k} with L(y) ∈ Sn(0, In) as stipulated for
Dirichlet distributions.

An inverted matric Dirichlet distribution due to
Olkin & Rubin [48] takes {S0, S1, . . . , Sr} as before
and defines {Vj = S−1/2

0 Sj S−1/2
0 ; 1 ≤ j ≤ r} using

the symmetric root of S0. The pdf f (V1, . . . , Vr ) is
known allowing S0 to be noncentral. For the central
case the joint pdf is given by

f (V1, . . . , Vr ) = K(ν)

r∏

j=1

|Vj |(νj −k−1)/2|

×
∣∣∣∣∣∣
Ik +

r∑

j=1

Vj

∣∣∣∣∣∣

(ν−k−1)/2

(15)

with ν = ν0 + ν1 + · · · + νr and K(ν) as defined fol-
lowing expression (12). The special case with r = 1
is sometimes called a type II multivariate beta distri-
bution. Neither independence nor the Wishart char-
acter is required in the central case. To see this, take
{Sj = Y′

j Yj ; j = 0, 1, . . . , r} as for matric Dirichlet
distributions with Y = [Y′

0, Y′
1, . . . , Y′

r ]′, and con-
clude that f (V1, . . . , Vr ), as given in (15), is invari-
ant for every L(Y) in Sn,k(0, In × �).

Some connections among the foregoing distribu-
tions follow. When k = 1, f (V1, . . . , Vr) is the pdf
of the inverted Dirichlet distribution. The collections
of ratios {Vj (a) = a

′
Sj a/a

′
S0a; 1 ≤ j ≤ r}, for fixed

a ∈ �k , and {Vj = trSj /trS0; 1 ≤ j ≤ r}, both have
inverted Dirichlet distributions.

Other distributions of these types are known. Mul-
tivariate F distributions having correlated numerators
have been found as ratios of multivariate chi-square
variates to a common denominator (see [38, p. 240
ff.]), with applications in linear inference.
Distributions of latent roots. Many problems in statis-
tics and applied probability entail the latent roots
(eigenvalues) of random matrices. These include
various topics in multivariate analysis pertaining to
reduction by invariance, and in the study of energy
levels of physical systems. Suppose that L(W) =
Wk(ν, �), and consider the joint distribution of the
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ordered roots {w1 > w2 > · · · > wk} of the determi-
nantal equation |W − w�| = 0. These entities arise
in tests for hypotheses about dispersion parameters,
for example. Their joint pdf is listed in Table 3.
Occasionally ratios of these roots are required (see
[38, p. 205]), for example in simultaneous infer-
ences for the dispersion parameters, in which case
an invariance result holds for the joint distribu-
tions of all such ratios. For if W = Y

′
Y, such that

L(Y) ∈ Sn,k(0, In × �), then the joint distributions
of ratios of the roots of |W − w�| = 0 are invari-
ant for all such matrix distributions by invariance
Property 2.

To continue, suppose that S0 and S1 are inde-
pendent Wishart matrices having the distributions
Wk(ν0, �) and Wk(ν1, �, �), respectively. Then cen-
tral (� = 0) and noncentral joint distributions of the
roots of

|S1 − lS0| = 0 (16)

are known (see [38, pp. 181–188]), as given in
Table 3 for the central case. These are the latent roots
of W1 at (11) when r = 1. A further invariance prop-
erty holds for the central case. For if Y = [Y′

0, Y′
1]′

with n = ν0 + ν1, S0 = Y′
0Y0, and S1 = Y′

1Y1, then
by invariance Property 3, the latent root distribution
is the same for all L(Y) in Ln,k(0, In, �).

Other Distributions

Numerous other multivariate continuous distributions
are known. Multivariate versions of Burr distribu-
tions arise through gamma mixtures of indepen-
dent Weibull distributions [38, pp. 288–291]. Vari-
ous multivariate exponential distributions are known;
some properties and examples are found on special-
izing the multivariate Weibull distributions treated
elsewhere in this encyclopedia. Various multivariate
stable distributions are known, as are other types
of symmetric distributions mentioned earlier. Multi-
variate extreme-value distributions are treated in
Johnson & Kotz [38, pp. 249–260], with emphasis
on the bivariate case. The Beta-Stacy distribution (see
[38, pp. 273–284]) yields a multivariate Weibull dis-
tribution as a special case. Multivariate Pareto dis-
tributions (see [38, pp. 285–288]) have their origins
in econometrics. The multivariate logistic distribution
(refer to [38, pp. 291–294]) is used to model binary
data in the analysis of quantal responses. Kibble [41]
used properties of characteristic functions to derive

a bivariate distribution having normal and gamma
marginals.

Discrete Distributions

Many discrete distributions have multivariate exten-
sions. These serve as building blocks for other dis-
tributions through compounding, in which distribu-
tions are assigned to some or all parameters of a
family. Here the principal distributions are surveyed
and connections among them noted. Generic names
are used including “negative” and “inverse” types,
in keeping with conventional usage for univariate
cases.

Few discrete multivariate probability mass func-
tions are known in closed form, notable exceptions
being the multinomial and multivariate hypergeo-
metric functions as given in many standard text-
books. More common are multiple series expansions
in special functions, or cases where joint facto-
rial moment, or joint probability generating, func-
tions are available. To catalog these here would
require much explanation of notation and concepts,
and considerable overlap with excellent sources now
available. Instead we undertake a careful descrip-
tion of each class of distributions and relations
among them. The principal references are Johnson
& Kotz [37, Chapter 11] and selections from Patil &
Joshi [49], to be referenced by page numbers to aid
the reader. Additional citations include the inequali-
ties of Jogdeo & Patil [36] for a number of discrete
multivariate distributions, and others to be noted on
occasion.

Binomial Distributions

The number of successes in n independent Bernoulli
trials, each having the probability π of success, has
the binomial distribution B(n, π). The number of
trials to k successes has a negative binomial distri-
bution. Some extensions follow.
Multivariate binomial distributions. The outcome of a
random experiment is classified as having or not hav-
ing each of s attributes {A1, . . . , As}. If {X1, . . . , Xs}
are the numbers having these attributes in n indepen-
dent trials, then theirs is an s-dimensional binomial
distribution with parameters

πi = Pr(Ai) i = 1, . . . , s,
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πij = Pr(AiAj ), i �= j, i, j = 1, . . . , s, (17)

. . .

π12...s = Pr(A1A2 . . . As).

The marginal distribution of Xi is B(n, πi), all hav-
ing the same index n, for i = 1, . . . , s. Bivariate
distributions having different indices are studied in
Hamdan [20] and Hamdan & Jensen [22].

For sequences of identical experiments, the limit-
ing standardized distribution is multivariate normal
as n → ∞. For nonidentical sequences such that
πi → 0 as n → ∞, i = 1, . . . , s, the limit is a mul-
tivariate Poisson distribution under conditions given
later. For further developments, see [49, p. 81].
Multivariate Pascal distributions. Independent trials
of the preceding type are continued until exactly k

trials exhibit none of the s attributes. The joint distri-
bution of the numbers {Y1, . . . , Ys} of occurrences of
{A1, . . . , As} during these trials is an s-dimensional
Pascal distribution (see [49, p. 83]).
Multivariate negative binomial distributions. Begin
with an s-variate Poisson distribution with param-
eters � to be defined in expression (18). Next
scale each parameter using a random gamma vari-
ate with parameters (α, k). The resulting mixture is
an s-variate negative binomial distribution (see [49,
p. 83]), its marginals negative binomial. It reduces to
the multivariate Pascal distribution when k is an inte-
ger and to the negative multinomial distribution on
mixing multiple Poisson distributions to be defined.

Multinomial Distributions

Let {A0, A1, . . . , As} be exclusive and exhaustive
outcomes having probabilities {π0, π1, . . . , πs} with
0 < πi < 1 and π0 + π1 + · · · + πs = 1. The num-
bers {X1, . . . , Xs} of occurrences of {A1, . . . , As} in
n independent trials have the multinomial distribu-
tion with parameters (n, π1, . . . , πs).
Negative multinomial distributions. If independent tri-
als are repeated until A0 occurs exactly k times, then
the numbers of occurrences of {A1, . . . , As} during
these trials have a negative multinomial distribu-
tion with parameters (k, π1, . . . , πs). This distribution
arises through mixtures: first as a gamma mixture of
multiple Poisson distributions as noted, and secondly
as a negative binomial mixture on n of multinomi-
als. As k → ∞ and πi → 0 such that {kπi → λi, 0 <

λ1 < ∞, i = 1, . . . , s}, the negative multinomial dis-
tribution with parameters (k, π1, . . . , πs) converges

to the multiple Poisson distribution with parameters
(λ1, . . . , λs). Further properties are developed in stan-
dard references (see [37, p. 292] and [49, p. 70]).
Multivariate multinomial distributions. These are the
joint distributions of marginal sums in multidi-
mensional contingency tables. Classify an outcome
according to each of k criteria having the exclusive
and exhaustive classes {Ai0, Ai1, . . . , Aisi

} for i =
1, . . . , k. If in n independent trials {Xi1, . . . , Xisi

; i =
1, . . . , k} are the numbers occurring in {Ai1, . . . Aisi

;
i = 1, . . . , k}, then their joint distribution is called
a multivariate (also multivector) multinomial distri-
bution, including the k-variate binomial distribution
when s1 = s2 = · · · = sk = 1. Further developments
are given in [37, p. 312] and [49, p. 86].
Multivariate negative multinomial distributions. Con-
tinue independent trials of the preceding type
until exactly t trials are classified in all of
{A10, A20, . . . , Ak0}. The numbers occurring in
{Ai1, . . . , Aisi

; i = 1, . . . , k} during these trials have
a multivariate negative multinomial distribution,
reducing to the negative multinomial distribution
when k = 1, and to the multivariate Pascal distribu-
tion when s1 = s2 = · · · = sk = 1. For further discus-
sion see [37, p. 314].

Hypergeometric Distributions

A collection of N items consists of s + 1 types: N0

of type A0, N1 of type A1, . . . , Ns of type As , with
N = N0 + N1 · · · + Ns . Random samples are taken
from this collection.
Multivariate hypergeometric distributions. In a ran-
dom sample of n items drawn without replacement,
the joint distribution of the numbers of items of types
{A1, . . . , As} is an s-dimensional hypergeomet-
ric distribution with parameters (n, N, N1, . . . , Ns).
With replacement, their distribution is multinomial
with parameters (n, N1/N, . . . , Ns/N). As N → ∞
and Ni → ∞ such that Ni/N → πi , with 0 < πi <

1 and π1 + · · · + πs < 1, the hypergeometric con-
verges to the multinomial distribution with param-
eters (n, π1, . . . , πs). If instead, N → ∞, Ni → ∞,
and n → ∞ such that Ni/N → 0 and nNi/N →
λi , with {0 < λi < ∞, i = 1, . . . , s}, then the limit
distribution is multiple Poisson with parameters
(λ1, . . . , λs). For further properties, see [37, p. 200]
and [49, p. 76].
Multivariate inverse hypergeometric distributions. If
successive items are drawn without replacement until
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exactly k items of type A0 are drawn, then the
numbers of types {A1, . . . , As} thus drawn have
an s-variate inverse hypergeometric distribution with
parameters (k, N, N1, . . . , Ns). As N → ∞, Ni →
∞, such that Ni/N → πi with 0 < πi < 1 and π1 +
· · · + πs < 1, this distribution converges to the s-
variate negative multinomial distribution with param-
eters (k, π1, . . . , πs).

If, instead, N → ∞, Ni → ∞, and k → ∞ such
that Ni/N → 0 and kNi/N → λi with {0 < λi <

∞, i = 1, . . . , s}, then the multivariate inverse hyper-
geometric converges to the multiple Poisson distribu-
tion with parameters (λ1, . . . , λs) (see [49, p 76].
Multivariate negative hypergeometric distributions.
Sampling proceeds in two stages. First m items are
drawn without replacement, giving (x1, . . . , xs) items
of types {A1, . . . , As}. Without replacing the first
sample, n additional items are drawn without replace-
ment at the second stage, giving (Y1, . . . , Ys) items
of types {A1, . . . , As}. The conditional distribution of
(Y1, . . . , Ys), given that {X1 = x1, . . . , Xs = xs}, is
a multivariate negative hypergeometric distribution.
It arises on compounding the multinomial distribu-
tion, with parameters (n, π1, . . . , πs), by assigning to
(π1, . . . , πs) an s-dimensional Dirichlet distribution
and then mixing. Under alternate conditions, this dis-
tribution converges either to the multinomial or to the
product of negative binomial distributions. See [49,
p. 77] for further details.

Poisson Distributions

Poisson distributions on R1 admit the following
extensions.
Multiple Poisson distributions. If {X1, . . . , Xs}
are independent Poisson random variables with
parameters {λ1, . . . , λs}, then their joint distribution
is a multiple Poisson distribution with parameters
(λ1, . . . , λs).
Multivariate Poisson distributions. Let {X1, . . . , Xs}
have the multivariate binomial distribution with
parameters as in (17), and suppose that n →
∞, πi → 0, i = 1, . . . , s, such that

n




πi −
∑

j

πij +
∑

j<k

πijk − · · ·

+ (−1)s−1π12...s




 → λi,

n

{
πij −

∑

k

πijk +
∑

k<1

πijkl − · · ·

+ (−1)s−2π12...s




 → λij , (18)

. . .

nπ12...s → λ12...s .

Then the limiting distribution of {X1, . . . , Xs} is
a multivariate Poisson distribution with parameters
given by (18). This distribution also can be derived
as the joint distribution of various partial sums of 2s−1

independent Poisson random variables with parame-
ters as appropriate. See Johnson & Kotz [37, p. 297]
and Patil & Joshi [49, p. 82] for additional references
and further details.

Multivariate Series Distributions

Further classes of discrete multivariate distributions
are identified by types of their pmfs.
Multivariate logarithmic series distributions. These
distributions arise through truncation and limits. If
[X1, . . . , Xs] has the s-variate negative multinomial
distribution with parameters (k, π1, . . . , πs), then
the conditional distribution of [X1, . . . , Xs], given
that [X1, . . . , Xs] �= [0, . . . , 0], converges to the s-
variate logarithmic series distribution with parame-
ters (θ1, . . . , θs) as k → 0, where {θi = 1 − πi ; i =
1, . . . , s}. See [49, p. 71] for details. A modified mul-
tivariate logarithmic series distribution arises as a
mixture, on n, of the multinomial distribution with
parameters (n, π1, . . . , πs), where the mixing distri-
bution is a logarithmic series distribution (see [49,
p. 73]).
Multivariate power series distributions. A class
of distributions with parameters (θ1, . . . , θs) ∈ Θ ,
derived from convergent power series, has pmfs of
the form

p(x1, . . . , xs) = a(x1, . . . , xs)θ
x1
1 . . . θxs

s

f (θ1, . . . , θs)
, (19)

for {xi =0, 1, 2, . . . ; i =1, . . . , s}, p(x1, . . . , xs)=0,
otherwise. The class of such distributions, called
multivariate power series distributions, contains the
s-variate multinomial distribution with parameters
(n, π1, . . . , πs); the s-variate logarithmic series dis-
tribution with parameters (θ1, . . . , θs); the s-variate
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Table 4 Some discrete multivariate compound distributions

Basic Mixing Mixing
distribution parameters distribution References Comments

Bivariate binomial n Poisson [23] Gives bivariate Poisson
(n, π01, π10, π11) distribution

Multinomial π1, . . . , πs Dirichlet [37, p. 309] Gives s-variate negative
(n, π1, . . . , πs) [49, p. 69] hypergeometric

distribution

Multinomial n Logarithmic [49, p. 69] Gives s-variate modified
(n, π1, . . . , πs) series logarithmic series

distribution

Multinomial n Negative [49, p. 68] Gives s-variate negative
(n, π1, . . . , πs) binomial multinomial distribution

Multinomial n Poisson [49, p. 69] Gives multiple Poisson
(n, π1, . . . , πs) distribution

Multiple Poisson u Gamma [49, p. 70] Gives s-variate negative
(uλ1, . . . , uλs) multinomial distribution

Multiple Poisson λ1, . . . , λs Multinormal [56] Gives s-variate Poisson–
(λ1, . . . , λs) normal distribution

Multiple Poisson u Rectangular [49, p. 80] Gives s-variate Poisson–
(λ, . . . , λ) on (0,1) rectangular distribution
λ = α + (β − α)u

Multivariate Poisson u Gamma [49, p. 82] Gives s-variate negative
(uλ1, uλ12, . . . , uλ12...s ) binomial distribution

Negative multinomial π1, . . . , πs Dirichlet [37, p. 311] Gives s-variate negative
(k, π1, . . . , πs) [49, p. 80] multinomial-Dirichlet

distribution

Convolution of γ1, . . . , γ2k Multivariate [42] Gives the distribution
multinomials hypergeometric of numbers judged
(γ1, . . . , γ2k , θ1, . . . , θs) defective of k types

in lot inspection

negative multinomial distribution with parameters
(k, π1, . . . , πs); and others. See Patil & Joshi [49,
p. 74] for further properties.

A nonexhaustive sampling of other discrete mul-
tivariate distributions is given next.
Bivariate Borel–Tanner distributions. A typical
Borel–Tanner distribution is the distribution of the
number of customers served before a queue vanishes
for the first time. If service in a single-server queue
begins with r customers of type I and s of type II
with different arrival rates and service needs for each
type, then the joint distribution of the numbers served
is the bivariate Borel–Tanner distribution studied by
Shenton & Consul [53].
Compound multivariate distributions. In many appli-
cations compound distributions arise from experi-
ments undertaken in random environments, where the

mixing distribution describes the variation of param-
eters of a specified model over the possible environ-
ments. Numerous bivariate and multivariate discrete
distributions have been obtained through compound-
ing, many motivated by the structure of the problem
at hand. Some examples are listed in Table 4, together
with references and brief comments. Series expan-
sions, using suitable sets of orthogonal polynomials,
are given in [20]– [23] for several discrete bivariate
distributions.
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definies et leur application aux probabilités, Mémoires
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Multivariate Graphics

The domain of multivariate graphics could span about
everything envisioned by mankind. Images are inher-
ently multivariate. A satellite image can be treated
as a single observation with multispectral and spatial
structure. Today’s computing power allows process-
ing and manipulation of such observations. Many of
today’s visualization targets were unthinkable a few
decades ago. For example, the human genome with
over two billion base pairs is a prime visualization
target. While today’s popular graphics challenge is to
develop visualization methods for massive data sets,
the old prime objective remains: to communicate to
ourselves and others.

This brief article cannot begin to cover the domain
of multivariate graphics. Rather, it tours a simple trail
covering a small fraction of the landscape. The visited
landscape primarily concerns static graphics. The tour
provides little discussion of animation and direct
manipulation methods. Even for static graphics the
tour calls out a few highlights and provides pointers
to other highlights that, unfortunately, are left to the
imagination.

The chosen trail emphasizes places that are best
known by the guide, who provides a personal view
about key multivariate encoding issues that extend
to places not visited. A few examples are drawn for
other applications, but the methods have ready appli-
cation to biostatistics. Along the tour, the discussion
touches on important graphic design activities with
words like focus, simplify, link, and enhance. These
activities are universally important.

A few pointers to the literature may help the
reader explore several facets of multivariate graphics.
MacEachren [57] provides a readily accessible
primer on symbolization and design. The classic
work covering a wide variety of visual symbols
and signs is Bertin [9]. Grinstein & Levkowitz [49]
cover perceptual issues in visualization. Kosslyn [55]
provides a gentle introduction to application of
human perception and cognition in graph design.
MacEachren [58] gives an extended treatment
that is a valuable resource for more advanced
students.

Foley et al. [43] provide an extensive overview of
computer graphics methods. The methods are most

immediately relevant to low-dimensional visualiza-
tion. Wegman & Carr [76] cover selected computer
graphic methods and address issues in perception and
connections to statistical graphics.

Gnanadesikan [47] covers many of the basics in
multivariate statistics, and numerous texts have fol-
lowed. The multivariate analysis literature deals with
important methods such as clustering, classifica-
tion, factor analysis, discriminant analysis, and
dimension reduction (see Battery Reduction) that
are not described here. (For a discussion of these,
see Classification, Overview; Cluster Analysis of
Subjects, Hierarchical Methods; Cluster Analysis
of Subjects, Nonhierarchical Methods; Rotation of
Axes).

Early work in multivariate statistical graphics pro-
vides a continuing source of ideas. Fienberg [41]
provides an early review. Barnett [6] contains a stim-
ulating collection of papers. The work of John Tukey
(see [32]) had a profound influence on statistical
graphics and is a third resource worth revisiting.

Cleveland’s recent books [30, 31] capture much of
his long efforts to guide scientists toward superior sta-
tistical graphics methods. Cleveland & McGill [33]
provide an early survey on dynamic multivariate
graphics that foreshadows the visualization revolu-
tion in computer science. Tufte [67–69] has done
much to expand interest in statistical graphics and
to draw attention to works of elegance and beauty
that appear on the printed page (see Graphical Dis-
plays).

Many additional resources are available. The com-
puting revolution has increased access to and usage
of visualization methodology by all disciplines. Pro-
fessional societies churn out videos, proceedings on
CDs, and collections of papers. Wood [81] reminds
us that different maps have a different agenda (see
Statistical Map). Similarly, papers on graphics have
different agendas. While important work appears in
medical imaging and other areas (see Image Anal-
ysis and Tomography), the entertainment indus-
try now drives much work in visualization. Estab-
lishing fruitful connections between visualization
techniques and scientific applications can involve
significant additional research. This tour is more
about graphical methods closely connected to prob-
abilistic inference (see Inference; Inference, Foun-
dations of) than about data and model-free visualiza-
tion methods.



2 Multivariate Graphics

The Goal of Multivariate Graphics:
Apparently Simple Comparisons

As an overview statement at the beginning of the
tour, the dominant goal of multivariate graphics
is comparison. Comparisons come in three forms:
(i) comparison of external images with each other;
(ii) comparisons of external images with external
references; and (iii) comparison of external images
with the analyst’s internal references. These internal
references include scientific knowledge and statisti-
cal expectations or models. The multivariate graph-
ics design goal is to facilitate meaningful compar-
isons. This includes converting internal references
into external visual references subject to further
manipulation. With external images and references
available, the next step often involves transformation
to simpler forms. Typically the goal is to produce sim-
ple comparison graphics that involve juxtaposition,
superimposition, or the direct display of differences.

A major goal in statistical graphics design is to
reduce the cognitive effort required to make compar-
isons. In terms of statistical graphics design, Koss-
lyn [55] warns “the spirit is willing, but the mind is
weak”. Graphic design must do everything it can to
help people to understand.

One important effort reduction strategy is to re-
express the standard for comparison in simpler form.
For example, in a simple regression involving one
independent variable, one can compare observed
(x, y) pairs to a predicted curve y = f (x). However,
to assess residuals, humans should not have to assess
differences from a changing reference line y = f (x).
It is better to plot the residuals directly. The refer-
ence line for residuals is a horizontal straight line,
and that is as simple as a visual reference can be.
As a second example the line x = y is the common
reference line in Q–Q plots (see Normal Scores).
Tukey’s mean–difference plot (see [30]) transforms
the reference line into a horizontal straight line. More
generally, Tukey [70] says “less than fully adjusted
variates should not be plotted”. While the statement’s
context is mapping of mortality rates for exploratory
analysis (see Mapping Disease Patterns), the strat-
egy of simplifying the human cognitive tasks by
removing known structure applies to all facets of mul-
tivariate graphics.

In multivariate graphics we seek apparently simple
views of comparisons. The path to these apparently
simple views can involve deep insights about the

phenomena involved, sound statistical summaries,
and careful attention to issues of human perception
and cognition.

Communication Objectives

Multivariate graphics can have many different com-
munication objectives. Communication objectives
influence graph design choices. Four common objec-
tives are to provide an overview, to tell a story,
to suggest hypotheses, and to criticize a model. In
providing an overview, coverage is important. Hid-
ing details is often crucial to achieve clarity in the
coverage shown. Similarly, in telling a story the pre-
determined message must shine through. Tufte [69] is
an important resource on the topic of visual explana-
tions. Newspapers sometimes have good graphics and
these can provide valuable lessons in communication.
Scientists often fail to tell simple stories because they
are reluctant to suppress caveats and a host of details
that qualify the basic results. Interactive network soft-
ware (see [25]) alleviates the problem by showing the
basic graphics and by giving access to metadata that
provide the basis for appropriate interpretation.

This article emphasizes discovery objectives that
include suggesting hypotheses and criticizing models.
For discovery, balanced visual emphasis of the vari-
ables helps the data to speak. Once known effects
have been removed, display methods that are asym-
metric in visual weighting of variables tend to be
poor in terms of discovery objectives. Of course a
fortuitous emphasis of some variables over others
occasionally leads to insight, but even then the care-
ful analyst will move toward the symmetric position
of trying all permutations of the variables.

The same method that is poor for discovery may
be used to advantage in telling a story. As an exam-
ple, Chernoff faces [28] provide a very asymmetric
representation and are poor at conveying multivariate
interpoint distances. Nonetheless, people have used
them to communicate effectively by, for example,
equating high salaries to smiles.

Basic Design Considerations

With Kosslyn’s warning in mind, we come to mul-
tivariate graphics prepared to do battle. Our willing
spirit uses the best tools in the arsenal to discover
the important patterns. As Cleveland [30] says, “tools
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matter”. The tools include encoding variables with
high perceptual accuracy of extraction, using easily
discriminated symbols, reducing memory and calcu-
lation burdens, grouping information into more man-
ageable units, and layering the information so it can
be dealt with in stages. The discussion below intro-
duces some of this in the context of univariate and
bivariate graphics.

Univariate Guidelines

Cleveland & McGill [34] discuss the perceptual accu-
racy of extraction and indicate preferred methods for
univariate comparisons. Their research had subjects
judge relative magnitudes of graphically encoded uni-
variate variables. Their results ranked the graphic
encoding methods into three classes, described here
as best, good, and poor.

The two best encoding methods represent vari-
ables using position along a common scale, as shown
in Figure 1, and position along identical nonaligned
scales. That humans do well in judging the position
of a point relative to a scale should come as no
surprise. Marr [59] notes the “quintessential fact of
human vision – that it tells about shape and space and
spatial arrangement”. Locating the position of objects
is a fundamental visual task. Map makers have long
used position along a scale as the fundamental encod-
ing for spatial coordinates. MacEachren’s [58] review
of the perception literature attests to the power and
primacy of positional encoding.

Length, angle, and orientation are good encodings.
Figure 2 shows that transforming line segments into a
standard position converts the task of judging length
into a task of judging the position of one endpoint
against a scale. While this is not necessarily what
people do, the example suggests that judging line
length is more complicated than judging position.

Figure 1 The best continuous univariate encoding: posi-
tion along a scale

Figure 3 shows angle encoding. Rotation of the
angles puts them in a position for comparison against
equivalent angular scales, shown in gray. The trans-
formation suggests that while angle comparisons
work pretty well, they are more complicated than
direct comparison against angle scales.

Area, volume, point density, and color satura-
tion are poor encodings. The reader familiar with
the experimental results involving Steven’s Law will
not be surprised by the poor results for the area and
volume encodings. Steven’s Law states that the per-
ceived magnitude of a stimulus follows a power law,

p(x) = axb,

where x is the magnitude of the true stimulus (i.e.
length, area, volume), and where the constants a and
b depend on the type of stimulus. Table 1, adapted
from Baird & Noma [5], provides the range of the
characteristic exponents b for length, area, and vol-
ume. That is, people’s perception of length tends to
be directly proportional to object length. However,

0.0 0.4 0.8 1.2

Various
positions

Standard
position

Figure 2 A good continuous univariate encoding: line
length

Table 1 Exponents for Steven’s Law

Encoding Exponent range (b)

Length (0.9, 1.1)
Area (0.6, 0.9)
Volume (0.5, 0.8)
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Figure 3 A good continuous univariate encoding: angle

we tend to judge area and volume nonlinearly. Con-
sider comparing areas, one of 4 square units and the
other of 1 square unit. With an exponent of 0.75, the
ratio of perceived magnitudes is not 4 to 1, but 2.8 to
1. One way of describing our comparisons is that we
underjudge the large areas relative to small areas. If
everyone had the same exponent, then graphic encod-
ing could adjust for systematic human bias. However,
the range of values for b in Table 1 indicates sub-
stantial variability from person to person. Providing
a set of reference symbols in a legend helps people
calibrate to the intended interpretation, but the best
strategy is to use better encodings when possible.

Weber’s law is a fundamental law in human per-
ception that has extensive ramifications concerning
encoding information for accurate human decoding.
A simple example gives the basic notion of the law.
The probability of detecting that a 1.05 in. line is
longer than a 1 in. line is about the same as the prob-
ability of detecting that a 1.05 ft. line is longer than a
1 ft. line. In absolute terms 0.05 in. is much smaller
than 0.05 ft. The use of a finer resolution scale allows
more accurate judgments on an absolute scale. In
static graphics Cleveland [30] uses visual grid lines to
provide a finer resolution scale for comparison pur-
poses. In interactive graphics, zooming in provides
a finer scale. Computer–human interface implemen-
tations that narrow focus to provide more accurate
judgements include sliders (e.g. Ahlberg & Schnei-
derman [1] and Eick et al. [40]) and lenses (Rao &
Card [63]).

Bivariate Guidelines

Tufte [67] notes that it took over 5000 years to gen-
eralize from early clay tablet maps to representing
general variables using a scatterplot. Now the scat-
terplot is the standard for representing continuous
bivariate data. The two orthogonal axes allow two
coordinates to be independently encoded as a posi-
tion along a common scale. In the statistical context,
the bivariate visualization tasks are often to observe
a functional relationship or to assess point density.
These are not the most natural visual tasks. Enhance-
ment methods reduce the amount of human visual
processing required and help different humans to see
the same summary.

Functional Relationships and Smoothing

When y is considered a function of x, common
practice is to enhance scatterplots of (x, y) pairs
by adding a smooth curve. To avoid the consid-
erable human variability in sketching an eyeballed
fit, the standard procedure is to fit the data using
a computational procedure that others can replicate.
Figure 4 shows a scatterplot with a smooth line gen-
erated using loess (see Cleveland et al. [35] for more
details). Loess smoothes the data using weighted
local regression. That is, the regression uses data
local to x0 to predict a value at x0. Points closest
to x0 receive the greatest weight. Each smoother has
many prediction points and so involves many local
regressions. Each regression in the smoother shown
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in Figure 4 used a linear model in x and included
the closest 60% of the observations to the predic-
tion point x0. Those with the data (see Fisher &
van Belle [42]) and the algorithm can reproduce the
smoother. The smoother in Figure 4 draws further
attention to the distinction between ocean and land
states and additional modeling is appropriate. A first
step might be to smooth the ocean and land states
separately.

Smoothing is an extremely important enhance-
ment technique (see Nonparametric Regression).
The decomposition of data into smooth and residual
parts is fundamental in statistical modeling. Hastie
& Tibshirani [50] provide a good introduction to
smoothing methods. Their description includes gen-
eralized additive models that cover the case of
multiple independent variables.

Numerous smoothers are available. Historically,
many researchers used cubic splines as smoothers.
Cubic splines have a continuous second derivative,
and that is sufficient to make curves appear smooth
to humans. The elegant mathematical formulation
behind splines increased their popularity in segments
of the statistical community. However, there is
no a priori best smoother. New methods, such as
wavelet smoothing [11], keep appearing in statistical
software. Different smoothers have different merits.
Recently developed wavelets smoothers are better
than many smoothers (but not necessarily all
smoothers) at tracking discontinuities in the
functional form.

Smoothers typically have some form of smooth-
ing parameter that needs to be estimated or speci-
fied by the user. With computational power at hand,
cross-validation methods have become increasingly
popular as a community standard. This reduces the
judgment burdens on the analyst, but of course
does not guarantee a match between an empirical
curve and a hypothesized true but unknown under-
lying curve. Hastie & Tibshirani [50] discuss cross-
validation for moderate-sized applications. Golub &
von Matt [48] discuss generalized cross-validation
for large-scale problems.

Data Density and Density Estimates

When one looks at observations in scatterplots, one
often looks for density patterns such as clusters,
gaps, and outliers. However, humans are not good
at visually assessing point density, so we again turn

to a replicable computational method to provide an
enhancement. Scott [64] provides a good introduc-
tion to density estimation. Like smoothing, density
estimation has associated smoothing parameters and
cross-validation methods to help in their selection.
Scott [64] provides a discussion of cross-validation
in the density estimation context.

A common task in statistics is to compare uni-
variate distributions. Figure 5 shows a set of boxplots
(see Graphical Displays). The boxplots show a cari-
cature of the distribution. The features shown include
the median, quartiles (see Quantiles), adjacent val-
ues, and outliers. Variations (see Frigge et al. [45])
may show extrema rather than adjacent values and
outliners. The variation in Figure 5 uses a white line
(see [15]) to provide intervals for comparing medi-
ans. If two confidence intervals do not overlap, then
the medians are significantly different.

Q–Q plots provide the preferred graphic to make
detailed continuous distribution comparisons [30].
Computing a set of probability–quantile (p, q) pairs
for each distribution lies behind the construction
Q–Q plots. For theoretical distributions, the cumu-
lative distribution function, F(·), provides the corre-
spondence between the pairs via p = F(q). In sim-
ple cases the quantile function, Q(·), is the inverse
of F(·) and Q(p) = q. Familiar p, q pairs from
the standard normal distribution are (0.5, 0) and
(0.975, 1.96). Order statistics approximations provide
pairs for sampled data. A common approximation is
((i − 0.5)/n, x(i)), where x(i) is the ith order statistic
and n is the sample size. Linear interpolation approxi-
mates values between the n pairs. Comparison of two
distributions, denoted 1 and 2, proceeds by plotting
quantile pairs (Q1(p), Q2(p)) over a range of proba-
bilities. Figure 6 shows a Q–Q plot for two batches
of data. The x-axis shows quantiles from batch 1 and
the y-axis shows quantiles from batch 2.

A strong merit of Q–Q plots is that in sim-
ple cases they have a nice interpretation. If points
fall on a straight line, then the distributions have
the same shape (basically, the same moments higher
than two) and the distributions differ only in the
first two moments. This is the case in Figure 6,
since the robust fit thin line matches the quantiles
quite well. The thick line is the reference line for
identical distributions. The slope of the thin line indi-
cates the ratio of the scale estimates (for example,
standard deviations). The lines are not quite par-
allel in Figure 6. Graphical fitting can proceed by
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Figure 5 A variation on boxplots. The median: a long horizontal line; first and third quartiles: ends of thicker boxes;
adjacent values: ends of thinner boxes; outliers: open circles; test intervals for different medians: white lines inside boxes

guessing at the ratio and multiplying this times the
y-axis quantiles until the lines are parallel. When
the lines are parallel, the vertical distance between
the two lines gives the difference in location (or
means) between the scale-adjusted distributions. In
Figure 6 the lines are nearly parallel so a reason-
able guess is that the distributions differ in location
by about 0.5. As indicated earlier, Tukey used a
mean and difference calculation to rotate the points
in the plot. This simplifies the identical distribu-
tion reference line to a horizontal line with a zero
intercept.

Q–Q plots get around the deceptive procedure
of superimposing two distribution functions or two
survival curves (see Survival Analysis, Overview).
As Figure 7 suggests, we are really poor at judging
the distance between curves. Our visual systems nat-
urally assess the closest differences between curves
rather than the correct vertical distances (see [31]).
Adding grid lines can help, but it is often better to
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Figure 6 A two-sample Q–Q plot. A good straight line fit
suggests similar distributional shapes. Given similar shapes,
the slope shows the ratio of scale parameters, such as
standard deviations. Given a slope of one, the intercept
shows the difference of location parameters, such as means.
Thin line: robust fit; thick line: same distribution line
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Figure 7 Explicit difference of two curves. Humans tend
to see the closest differences between curves, not differ-
ences in the y direction

plot the difference explicitly or make comparisons
using Q–Q plots.

Jones & Cook [53] have recently generalized
Q–Q plots to higher dimensions and this is worth
considering. Currently, analysts are more accustomed
to looking at densities than cumulative distributions
in higher dimensions.

Estimating point density adds another variable.
For two variables, the estimated density is a third
variable and can be represented as the surface z =
f (x, y). Many surface representations are available,
such as color draped perspective wireframes and
highlighted rendered polygons. For example, see
Cleveland [30]. Wegman & Luo [77] note that spec-
ular reflection highlights call attention to local den-
sity anomalies. Intersecting surfaces with translucent
planes help to focus attention on surface cross-
sections. In fact, Cleveland et al. [35] recommend
studying a sequence of two-dimensional (2D) cross-
section plots to increase understanding of surface
trends.

Tufte [68] notes that the pairing of contour and
surface plots can aid understanding. Iso-density
contour plots derive from cross-sections at fixed
densities. Given a density, z0, a contour line consists
of pairs (x, y) that satisfy the equation z0 = f (x, y).
A typical contour plot shows approximate contour
lines for several values of z. Labeled contour lines
do not have much visual impact. Several methods
can provide visual impact. An easy approach is
to communicate contour values by contour line
thickness. Another option is to fill the regions
between contour lines with color. The colors should
be ordered.

A brief digression to discuss color is appropri-
ate because color often comes into play in density
representation and other facets of multivariate repre-
sentation. Much literature is available on color. Good
starting points are Brewer [10] and Levkowitz [56].
Humans are very sensitive to a dark-to-light scale
that is referred to in the literature with terms like
value, lightness, or brightness. This is an ordered
scale and very important in visual interpretation.
Friedhoff & Benzon [44] describe three visual pro-
cessing channels, especially a high resolution dark-
to-light channel. Humans get their shape information
and many depth cues (linear perspective, interposi-
tion, shadow, and detail perspective) through this
dark-to-light channel. Tufte [69] and others warn that
when rainbow colors represent an ordered variable,
lightness jumps and inconsistencies create unintended
edges and patterns that can be confusing. Familiar
color orderings, such as the rainbow ordering, have
merit simply because they are familiar. However, the
cognitive advantages of familiarity need to be bal-
anced against the other facets of cognitive processing.

The literature also describes two other color dim-
ensions: saturation and hue. A saturation scale goes
from an achromatic color, such as medium gray, to a
saturated color, such as vivid red. This scale is also
ordered, but allows fewer distinctions than the dark-
to-light scale. The hue dimension can be thought of
as a circle that includes points between the colors of
red, yellow, green, cyan, blue, magenta, and red. Hue
is not an ordered scale and is good for distinguishing
six or fewer categorical variables.

Returning to density representation, note that since
contour plots reside in the dimension of the data,
they require one fewer dimension than density sur-
face plots. For trivariate data the estimated density
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constitutes a fourth variable. Scott [64] provides den-
sity representations using sectioned, nested three-
dimensional (3D) contour shells. He shows three
contours distinguished by different hues. Sectioning
reduces the shell to lines or ribbons and allows the
viewer to see through the shell surfaces. Alterna-
tively, surface translucence enables the viewer to see
more than one surface simultaneously. In other work
using four-dimensional data, Scott conditioned on the
fourth variable to produce an animated sequence of
3D contour shell views. Directly showing the den-
sity surface for four-dimensional data would require
a five-dimensional display.

As we push toward higher dimensions, enhance-
ment methods remain important. Options include rep-
resenting points, smoother, densities, residuals, and
selected features.

Geometric Interpretation, Distance
Judgments, Overplotting, and Scaling

In the multivariate context, accurate interpoint dis-
tance judgments are crucial to geometrically based
visual interpretation. In dimensions above one, inter-
point distance judgments are no longer equivalent to
judging two values along a single scale and subtract-
ing. For example, two points in a bivariate scatterplot
are rarely parallel to an axis. The cognitive task
becomes one of judging the length of an implicit line
between the two points. As indicated above, humans
perceive length in a plane with good perceptual
accuracy of extraction. For higher-dimensional rep-
resentations, assessing interpoint distances becomes
increasingly difficult. The position here is that mul-
tivariate encodings for continuous variables should
be ranked based on the ability of humans to judge
interpoint distances.

At first, a stereo 3D scatterplot might seem ideal
for representing continuous 3D data. Judging distance
between points equates to judging the length of a line
segment. On closer inspection, there is substantial
change from two to three dimensions. Depth percep-
tion for the third coordinate derives from horizontal
binocular discrepancies (parallax). The horizontal dis-
crepancies involve only a small fraction of our full
horizontal field of view. Horizontal visual acuity
within this small window determines how many dis-
tinct depth planes we can resolve. This cannot match
the horizontal position distinctions we make across

the full field of view. Stereo 3D plots are less than
ideal since humans do not judge depth as accurately
as they judge vertical and horizontal position.

While stereo 3D distance judgments are not as
accurate as 2D distance judgments, we live in a 3D
world and have strong intuitions about 3D relation-
ships. There are numerous cues that help us to assess
depth in the real world. In the description of Friedhoff
& Benzon [44], humans have three different visual
processing channels: a dark-to-light high-resolution
monocular shape channel described earlier; a binocu-
lar and motion parallax channel; and a low resolution
color channel. Depth cues from the monocular shape
channel, such as shadow, add to our depth percep-
tion. Since our depth judgment is calibrated by many
depth cues and much experience, stereo 3D plots are
only mildly asymmetric in the variables and this plot
remains a strong candidate as the best representation
for three continuous variables.

Historically, most analysts created depth views
via rotation (motion parallax). This approach is very
powerful. The main drawbacks are that moving points
are harder to study than stationary points and that
interacting with moving data is awkward. Using both
stereo and rotation maintains the depth when rota-
tions stops. The different viewing angles provided
through rotation can be informative. Mostly one sees
the edges of the data cloud. Different views reveal
different edges. Slicing (discussed later as section-
ing) helps to reveal the inside of the cloud. In the
virtual reality (VR) settings one can fly through data
clouds and touch points (or density features) to gain
additional detail.

The first criterion for ranking multivariate encod-
ings is the ability to convey interpoint distances.
The second criterion for assessing multivariate encod-
ings is the ability to represent many observations
quickly without severe breakdown or distortion due to
overplotting. Multivariate data can embody complex
relationships that translate into complex geometric
structure. Representing complex structure with data
can require large samples just to cover the applicable
domain. Seeing the structure through the noise that
results from measurement error and changing mea-
surement conditions can require much larger samples.
In low dimensions a common approach uses density
representations to reduce overplotting problems and
to focus on the density structure (see Carr [12], Carr
et al. [1], and Scott [64]).
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As we move beyond five dimensions or so, our
ability to judge interpoint distances deteriorates so
badly that we are forced to use clustering algo-
rithms and other computational methods to bring
out patterns. Simple graphical methods do not work
well except when there is a very simple geomet-
ric structure embedded in high-dimensional space.
For complex multivariate structure we can lower the
viewing dimensionality by sectioning (adding linear
constraints – see Furnas & Buja [46]), conditioning
on categorical variables, or by focusing attention
on computed features such as local modes. This
divide-and-conquer approach can reveal a plethora
of patterns, but it is only the rare individual that
can integrate a catalog of low-dimensional views
into a coherent high-dimensional framework. Few of
us claim to understand the full richness of a four-
dimensional structure.

The ability to see structure depends on many fac-
tors that include scaling of data prior to graphical
representation. Analysts often scale coordinates indi-
vidually when they are measured in different units
and jointly when measured in identical units. Trans-
formations, such as using a power transformation to
bring in the long tail of positive data, are common.
Scaling often standardizes variables to mean zero
and standard deviation one. Other options include
replacing observation by ranks or normal scores. Joint
scaling may spherize the data to remove correlation
structure. The host of options includes methods for
imputing values for missing data. Typically, graph-
ical encoding involves scaling coordinates into the
interval [0, 1] somewhere along the way. For the dis-
cussion of graphical representations below, assume
that the coordinates have been scaled into [0, 1] or
some other suitable interval such as [−π/2, π/2].

Multivariate Representation Methods

While researchers continue to develop new multivari-
ate representations, the representations tend to fall
into a few classes. The classes include glyph plots,
linked plots, nested plots, conditioned plots, geomet-
ric section plots, series plots, and composite plots.
Some of the classes break into subclasses.

Glyph Plots

Glyph plots are symbol plots in which data values
control the symbol parameters. For example, a circle
is a glyph when one coordinate of a multivariate
observation controls the circle size.

Multivariate glyph encodings typically fall into
classes, namely those that use the spatial position
to represent at least two of the multivariate coordi-
nates and those that do not. A stereo scatterplot falls
in the first class by representing three coordinates
using the spatial position. Of the various stereo pro-
jections described in Carr [13], the infinity-enlarged
(nonperspective) stereo projection has a particularly
simple description as a glyph plot. The stereo projec-
tion uses two multivariate coordinates to determine
the glyph position, and the glyph consists of left-
eye and right-eye dots with horizontal separation
(parallax) determined by the third coordinate. After
appropriate routing to the eyes, the eye–brain system
fuses the two dots into one dot in three dimen-
sions.

Figure 8 is a monochrome side-by-side stereo plot
adapted from the color version in Carr et al. [24].
Many can learn to fuse such images without the
aid of the viewer. In a VR environment, shuttering
glasses route separate full screen width images to

Figure 8 A side-by-side stereo pairs plot. Many can fuse the image without the aid of a viewer. The square dot should
appear in the back left corner. The coordinates are principal components. Symbols represent six proposed clusters. The
open squares on the right are not tightly clustered. The points connecting lines are minimal spanning tree lines
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the eyes and the analyst does not have to learn the
visual trick of decoupling eye convergence and lens
focusing.

Figure 8 shows six clusters derived from rat
spinal-chord gene-expression data, as shown later
in Figure 12. The coordinates for the plot are the
first three principal components derived from the
nine summary measurements over time on each type
of gene. In this case showing three coordinates
rather than two increases the variability represented
from 50% to 65%. Much variability is not captured
in the plot, but looking at a flattened 2D plot is
worse.

In Figure 8 the symbols distinguish the algo-
rithmically defined clusters. A minimal spanning
tree (see Dendrogram) connects the points in each
cluster to provide a repeatable visual path from point
to point. The visual task is to assess between-cluster
separation and within-cluster tightness. While color
would help to distinguish groups and overplotting is
a bit of a problem, one can still see that the “octagon”
and “plus” groups at mid-depth on the left are very
close. The split between the two groups seems some-
what arbitrary. The “square” group on the right occu-
pies much of the volume of the graphic. A reasonable
conjecture is that this group will be divided into sub-
groups when a few thousand more genes are added
to the analysis. A direct visual approach provides
an alternative to algorithmic evaluation approaches
based on questionable assumptions such as multi-
variate normality.

Carr et al. [22] suggest that glyphs using the best
encoding, position along a scale, to represent coor-
dinates will provide better judgments of interpoint
distances than other glyph encodings. This motivates
extending the stereo scatterplot to higher dimensions.
To represent a fourth coordinate, Carr et al.selected
from the class of good encodings. They chose the ray
angle over line length to encode a fourth coordinate
because this creates fewer ambiguities in overplotting
situations.

The ray glyph has many other uses. Since peo-
ple perceive ray angle more accurately than stereo
depth, it is a reasonable choice for encoding a
third variable, especially when the third variable is
the dependent variable. For large data sets, Carr
et al. [23] use hexagon binning to provide symbol
congestion control. The ray angle provides a sum-
mary for a hexagon region, and with only one symbol
per hexagon overplotting is not a problem. When rays

represent estimated values that have confidence inter-
vals, the authors represent the confidence intervals
using arcs. Small reference wheels at the base of the
ray provide an unobtrusive angular scale for compar-
ison. Angles can be judged accurately. The drawback
in the three independent variable setting is that inter-
point distance assessment is not as natural as judging
length in stereo plots.

For representing two dependent variables and two
spatial position variables, Carr [12] uses a bivari-
ate ray glyph. (Chambers et al. [27] describe many
graphical representations, including a closely related
metroglyph that represents both wind direction and
speed; see also Anderson [2].) A ray pointing to the
right encodes one variable (for small values the ray
points down and for large values it points up) and
a ray pointing to the left encodes the other. Simple
ray plots provide an effective way to show four-
dimensional (4D) information.

For five variables, Carr et al. [22] use ray angle
and length to represent the last two coordinates. They
show the ray angle in the plane of the display, for all
rotations of the data to provide maximum visibility
of the ray angle. The rays have to have a minimum
length the keep the angle visible. Mapping the two
coordinates into two spherical coordinate angles is
inferior because it is difficult to decode the angle
away from the display surface. The stereo parallax
difference between the two ends of the ray encodes
the depth angle information, and with a short ray
there is almost no depth resolution. Length is a rea-
soned choice.

Carr et al. [22] suggest encoding a sixth coordi-
nate using a carefully selected double-ended color
scale going through gray. Color encoding, no matter
how well chosen, is inferior to many other choices
for representing a continuous variable. However, after
five choices the options are extremely limited.

Few researchers have seriously tackled the
visualization of six-dimensional data. The power
of using a single glyph with well-chosen encoding
remains little appreciated. A notable exception is
Bayly et al. [7]. They successfully used colored
stereo ellipsoids to evaluate problems in improving
an electrostatic potential model. Their article includes
color side-by-side stereo figures. In a long sequence
of efforts Bayly (personal communication) failed to
obtain insight using many of the encodings described
in the entry. The breakthrough came when using
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a carefully chosen stereo glyph. Understanding six-
dimensional relationships is nontrivial. The selection
of good encoding can be crucial.

Stereo-glyph encodings are good encodings for
a difficult visualization problem. The encodings are
asymmetric in terms of the coordinates. Interpoint
distance assessment becomes progressively more dif-
ficult as one adds the angle, length, and color encod-
ings. However, interpoint distance assessment using
some of the methods below pales by comparison.

Glyph encodings that typically do not use coor-
dinates to determine glyph position include Cher-
noff faces [28], star plots, profile plots or line-height
plots, trees and castles [54], and cone plots [37].
Figure 9 shows a few examples of three encoding
approaches. Chernoff faces encode variables using
area of the face, shape of the face, length of the
nose, location of the mouth, curve of mouth, and
so on. Star plots, profile plots, and line-height plots
are all variants of k-sided polygons [65]. In early
work, Bertin [9] shows profile plots and Anderson [2]
uses a restricted variant of star plots. Star plots have
implicit [0, 1] axes at equal angles around a circle.
The length of the segment along each implicit axis
encodes the respective variable. Profile plots have
implicit [0, 1] axes orthogonal to a horizontal base
line. Segment heights indicate the magnitude of cor-
responding variables. Profile plots appear with minor
variations. Here, the “profile” plot connects the tips
of the segments and may optionally fill the poly-
gon, hiding the construction. The version in Kleiner
& Hartigan [54] draws adjacent boxes of the given
height. The line-height version is a thin, detached
box variation.

As one demonstration of the inferior nature of
nonpositional glyphs in low dimensions, one can

Faces

Stars

Profiles

Figure 9 Three types of multivariate glyphs

generate, say, a thousand points of 3D data embedded
in four dimensions. That is, select triples (u, v, w)

randomly, say from a normal distribution, and then let
x1 = f1(u, v, w), x2 = f2(u, v, w), x3 = f3(u, v, w),
and x4 = f4(u, v, w), where the four functions are
simple distinct polynomials. The structure in the
stereo-ray glyph plot will immediately suggest the
existence of a constraint and the fact that the data are
not four-dimensional. Looking at 1000 Chernoff faces
laid out in an two-way array using a happenstance
order is not likely to give the slightest clue.

Almost any graphic can be improved. Much can
be done to improve the nonpositional glyph encod-
ings. In terms of faces, research has revealed much
about our special face recognition “hardware”. For
example, face recognition improves if the faces are
smiling and turned 15 degrees. (See Takacs [66]
for a survey of the literature.) An improved face
encoding might reduce the error rates cited in Cher-
noff & Haseeb [29]. The high similarity rankings
reported in a paired comparison in an experiment
by Wilkinson [80] might get even better. However,
pair-comparison results do not necessarily extend to
seeing patterns in a dense plot. Issues include see-
ing inside face outlines, judging distances when faces
are not closely juxtaposed, and judging distances
through interposed sequences of faces. A better layout
often helps.

Like faces, the star representation is reasonably
popular. The area of the star conveys a general notion
of coordinate magnitude. Stars communicate when
bigger is better.

In terms of layout, plotting round symbols such
as faces and stars on a hexagon lattice seems rea-
sonable. Variants of the algorithm discussed by Eick
& Wills [39] can exchange icons such as stars with
the objective of placing similar stars together. Tak-
ing this one step further, some of the hexagon lattice
points can be strategically blank, to emphasize clus-
ters. Basically, the notion is to use a modified stress
criterion and a lattice-based variant of multidimen-
sional scaling to strengthen the representations of
interpoint distance.

Nonpositional glyphs come into their own in
higher dimensions. Figure 10 is a line-height plot
from Carr & Olsen [19] and shows the relative area
of 159 vegetation classes for each of 26 continen-
tal US ecoregions. The area determination for each
ecoregion followed after classifying 8 million pix-
els of a continental US AVHRR image into the
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26. Central and Eastern
Forested Highlands

25. Southeastern Plains

27. S.E. Alluvial and
Coastal Plains

28. Everglades

29. Gulf Coast Plain

23. S. Central
Semi-Arid Prairies

16. W. Central
Semi-Arid Prairies

15. Temperate Prairie

19. Central Plains

17. Mixed Wood Plains

14. Boreal Shield

18. Atlantic Highlands

20. Western Cordillera

6. Pacific Maritime
Mountains

30. Southern Cordillera

22. Semi-Arid California

21. Western Interior
Basin Ranges

24. Southern Deserts

Agriculture Rangeland Forest W T

Ecoregion Profiles
Bar Height: Percent of Ecoregion Acreage

Panel Height: 42 Percent

AVHRR Class Groupings

Classes Sorted Within Groupings
W: Wetlands and Water (Black and Gray)
T: Tundra and Barren (Black and Gray)

Figure 10 Line heights representing 159 variables. Separate row and column sorting creates visual clusters and simplifies
appearance. Here the sorting order is the minimal spanning tree traversal order
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159 vegetation classes. The theme of the article is
on simplifying plot appearance by sorting rows and
columns. One can infer from the example that rep-
resenting 500 variables using line heights is not a
problem for a small number of cases. The primary
representation problem is in showing the labels.
Mousing on a variable can reveal its label in an inter-
active setting. The real difficulty is in assessing the
patterns presented.

In general, nonpositional glyphs show interpoint
distances poorly. While stars and line-height glyphs
are better balanced with respect to the coordinates
than Chernoff faces, Kleiner & Hartigan [54] point
out that most such representations remain asymmetric.
That is, one can compare adjacent coordinates more
easily than nonadjacent coordinates. Reordering can
make a difference.

Nonpositional glyphs can represent a large number
of variables. An extreme case is to encode each
variable as the color of a pixel on a monitor. Thus,
it is possible to represent a single case with over a
million variables. The basic two problems remains:
how to represent many cases, and how to interpret
the graphic.

Linked Plots

Linking points across plots provides a way to con-
nect the variables that are represented in different
plots. Linking provides a weaker binding of the mul-
tivariate components than glyphs. Linking methods
include linking by lines, colors, names, and pointers,
and spatial linking by juxtaposition. The following
discussion emphasizes line linking and color linking.

Diaconis & Friedman [38] discuss M and N plots
that link points in different plots with lines. For
example, they represent 4D data using two 2D scat-
terplots. The first plot represents the first two coordi-
nates and the second plot represents the remaining
two coordinates. A line between a bivariate point
in one plot and a bivariate point in the second
plot indicates that bivariate points really represent
one four-coordinate point. Their general description
includes linking across multiple plots of varying
dimensionality. For example, a 4D representation
might link a 1D plot to a 2D plot to a 1D plot.

Parallel coordinate plots are the only variation
of M and N plots that have caught on. The paral-
lel coordinate plot for p dimensions is a sequence
of p univariate plots. The representation connects

p coordinates with p − 1 line segments. An early
example appears in Bertin [9]. Inselberg [51] and
Wegman [74] introduce the mathematical and statis-
tical aspects of parallel coordinate plots. They and
Inselberg & Dimsdale [52] describe the point-line
duality and other mathematical relationships that pro-
vide a basis for extended interpretation. For example,
Inselberg has used the representation to find the clos-
est distance between two lines in four dimensions.
Interpretation of some patterns requires significant
background. Other patterns are easy. For example,
Wegman notes that one can readily assess the cor-
relation between adjacent variables. Many crossing
segments between adjacent axes indicates a high neg-
ative correlation, and many parallel segments indi-
cates a high positive correlation.

Carr & Olsen [18] found parallel coordinates use-
ful for representing two variables in a map legend
when space was at a premium. The parallel coordi-
nate representation has particular merit in terms of
labeling and reading selected value pairs. However,
the scatterplot remains the preferred way of providing
the gestalt of a functional relationship.

Parallel coordinate plots have particular merit
in dynamic graphics. Carr & Nicholson [17] use
unlinked parallel coordinates axes as a multivariate
coordinate input device, in their case providing direct
manipulation of a 4D stereo ray glyph cursor. The
cumulative selection of points within a ball of the cur-
sor and cursor movement allows higher-dimensional
subset selection without the usual cross-product set
restrictions. Carr & Nicholson also display marginal
densities on the axes. As rotation and masking alter
the 4D view, this provides information about mul-
timodality in margin views. Parallel coordinates are
very useful for dynamic subset selection.

The line-linked plot paradigm has several weak-
nesses. First, coordinate representation is not sym-
metric. That is, assessing relationships within plots
is easier that assessing relationships between plots.
Owing to the difficulty in following links from plot
to plot, the relationships between variables in adja-
cent plots are easier to assess than relationships to
variables in distant plots. Following lines from plot
to plot is sometimes impossible owing to line over-
plotting. Diaconis & Friedman [38] suggest reducing
the line density by connecting coordinates of only
one point of each small cluster of points in the p-
dimensional space. Miller & Wegman [62] take a
different approach by calculating and representing
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line density. The line density plots convey much more
information about clusters than overplotted lines. The
line density approach extends to large data sets and
dynamic cluster selection, as described by Wegman
& Luo [78]. However, the approach does not solve
the problem of poor linking to nonadjacent plots.

In terms of understanding geometric structure,
line-linked plots leave much to be desired. Humans
are exceedingly poor at tomographic reconstruction.
In the simplest of cases, clear structure in 2D scat-
terplots can be hard to fathom by looking at linked
1D margin plots. The assessment of distance between
two multivariate points requires integration across all
the coordinate axes, and this is complicated enough
when all the coordinates are available at a glance,
as in glyph displays. Beyond suggesting clusters by
line overplotting density, the line-linked plots have
not caught on for understanding geometric structure.

A more popular linking technique is color linking.
The common application is the dynamic brushing of
points in a scatterplot matrix [8]. The points brushed
(selected) in one panel become highlighted in all
views of their coordinates. Brushing is a focusing
technique. It also serves as a conditioning technique
that often lowers dimensionality.

Since preattentive vision can handle the loca-
tion of distinctively colored points, color is a faster
link than lines. Of course, overplotting and multiple
multivariate points with the same color cause ambi-
guities. Color linking has several problems, some
relating to color perception limitations (for example,
color guidelines suggest working with six or fewer
distinct hues) and some relating to poor software
implementations.

In terms of implementations, the plotting order
of points may not be controlled and overplotting
can hide selected points. Subset memberships may
not be well represented. Carr et al. [22] discuss a
color scheme for representing disjoint subsets of three
nonexclusive, interactively defined subsets. Their
example identified a two-coordinate symmetry in a
seven-dimensional particle physics data set. Sophis-
ticated color treatment can provide subset repre-
sentation and color mixing for overplotted points.
Advanced graphics workstations have four color
channels, red, green, blue, and alpha. The alpha chan-
nel is there specifically to provide color-blending
options. Statistical graphics software has been slow
to exploit the capability.

Positional linking is another option. The layout
of the scatterplot matrix enables positional linking.
Suppose the x coordinate of a point is 0 and well
separated from the x values for other points. Then
it is possible to identify the other views of the point
in the scatterplot matrix by looking along the line
x = 0. When the x coordinate is not well separated
from other x coordinates, identifying the remaining
coordinates of a point can be difficult unless they are
highlighted by color or other means. The difficulty in
finding coordinates suggests that assessing interpoint
distances in a scatterplot matrix will be next to impos-
sible, except in pathologically simple cases. While the
scatterplot matrix is useful in the context of brushing,
and as a multiple window display for viewing many
2D projections, the scatterplot matrix is not a good
choice for perceiving higher-dimensional geometric
structure. Random points on a mobius strip have obvi-
ous structure in a stereo plot, while the structure is
obscure in a scatterplot matrix.

Positional linking comes into its own for small
perceptual groups. Figure 11 shows positional linking
of labels and dots in a dot plot. One can easily match
the middle label of a group to the middle dot of a
group. The grouping of labels and dots into small
units of five reduces the chances of matching error.
A solid list of 62 names is visually intimidating, so
the groups encourage reading. More generally, Carr
& Pierson [20] describe micromap designs that use
position and color to link statistical summaries with
small maps. The position region and shape in a small
map can also link to the corresponding position and
shape in a large map. Positional linking is a powerful
and underutilized tool.

Nested Plots

The classic example of nesting is the casement dis-
play [72]. The basic casement display is a matrix of
scatterplots, each with identical scales. The casement
display partitions the data into a crossed two-way
layout using two of the four coordinates. The two
layout coordinates define panel membership, and the
two remaining coordinates appear in the scatterplot.
The casement display is not symmetric in the coor-
dinates, sacrificing resolution for the two coordinates
defining the layout.

The nesting template can be varied in many ways.
Panels can show a higher-dimensional relationship.
Carr [16] provides a five-dimensional nested display.
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Figure 11 A dot plot with positional linking. Perceptual grouping into small units obviates the need for lines from labels
to dots. The Owl Monkey is a third label, and finding the corresponding third dot is trivial even across the page. Vertical
grid lines increase the perceptual accuracy of extraction
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The data set concerns a dependent variable, namely
protein folding energy, and four independent vari-
ables. The independent variables have seven levels
and are fully crossed. The seven-by-seven panel lay-
out presents all combinations for two of the indepen-
dent variables. Each panel within the layout panel
uses x and y coordinates to represent the two remain-
ing independent variables and a ray angle to repre-
sent the folding energy. Highlighted rays distinguish
local minima as computed using eight neighboring
points, two for each dimension. The highlighted rays
call attention to both local minima and saddlepoint
troughs through space.

With only one layer of nesting in each of the
horizontal and vertical directions, nested plots are
equivalent to the conditioned plots described further
below. The two-way layout is one of the most power-
ful templates available for getting two extra variables
into a graph. While the resolution is typically poor for
the two variables defining the layout, the resolution
loss is often overshadowed by that fact that many
people readily understand two-way conditioning.

Nested views can be nested. Mihalisin et al. [60,
61] describe deeper layers of nesting to handle up
to 10 variables. With study, people can learn to
spot certain classes of mathematical relationships in
deeply nested views. Nested views are not variable-
balanced views, but have a role in the arsenal of tools.

Conditioned Plots

Casement displays generalize to plots conditioned by
many variables. An early exposition on conditioned
plot (or coplots) appears in Cleveland et al. [35].
Conditioned plots are typically 2D plots, but they can
be 3D wireframe plots or other higher-dimensional
plots. People readily understand one-and two-way
layouts and conditioned plots build upon this under-
standing.

Trellis GraphicsTM automate the multiple-panel
plot production process. This includes labeling of
panels by factor names and graphical representa-
tion of factor levels. Trellis layout capabilities also
address the issue of panel shape. Panel shape can
strongly affect the perception of line slope, and bank-
ing of slopes to be close to ±45° is important in
some problems [30]. Trellis graphics provide many
sound defaults and a good framework for multivariate
graphics.

Conditioned (and nested) views do not have to
partition the data strictly to produce different panels.
Cleveland et al. [35] introduces the notion of shingles
that allow the same observations to appear in more
than one panel. This is helpful when smoothing a
scatterplot because it increases the number of points
in the plots and addresses poor smoothing at the plot
edges.

Laying out multiway panels in rows and columns
across many pages is often a good start. However,
general-purpose algorithms have not yet captured
all the current graphical design expertise. Methods
for simplifying visual appearance remain applicable.
These include grouping of information, sorting and
presenting the information in layers, and removal of
redundant information [14, 55]. The graphics tools
make it easy to apply thoughtful sorting, but the
analyst still has to do the thinking.

The difficulty of seeing patterns across levels of
conditioning factors and pages needs to be recog-
nized. As indicated above, humans are not good at
integrating low-dimensional relationships into higher-
dimensional or overview patterns. When the informa-
tion appears across pages, the limits of our short-term
memories compound the difficulty. When across-
panel insights occur, they are likely to be based on
panels juxtaposed closely in space or time. Careful
attention to the choice of layout is often the key to
obtaining multivariate insights.

Geometric Section Plots

Multiple univariate sectioning is a standard tech-
nique for lowering dimensionality and seeing through
objects. The cone plot [37] provides an interesting
example of a nonstandard sectioned plot. One picks
a vertex in p-space and a reference line through the
vertex (typically defined by selecting a data point
as a second point on the line through the vertex).
The reference line becomes the center line for a
set of cones. Connecting a different data point to
the vertex creates a second line. Rotating this line
around the center line defines two cones with tips
that touch at the vertex. Each data point is then asso-
ciated with the angle between its line and the cone
center line. Each point also has a distance to the
vertex. Thus, the selection of a vertex and a ref-
erence line associates an angle and a distance with
each data point. Dawkins uses the natural plot for a
distance and an angle, the polar coordinate plot. A
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different plot results from each selection of a center
line. Typically, Dawkins uses each case to define the
center line and this generates a plot (or panel) for
each case. Dawkins lays the panels out as a matrix
and describes the geometric relationships, such as
hyperplanes, observable within panels. Like nested
plots and parallel-coordinate plots, a certain amount
of knowledge is required before the plots are fully
appreciated, and this limits the audience.

Series Plots

Andrews [3] provides a series transformation that
represents a continuous multivariate observation as
a curve. If Xi is the ith coordinate of an observation,
then the curve for the observation is

y(t) = x1√
2

+ x2 sin(t) + x3 cos(t) + x4 sin(2t)

+ x5 cos(2t) + · · ·
for −π < t < π . Nearly identical observations will
plot similar curves. The plot can be used to assess
the clustering of observations. However, the first
coordinates are assigned to the lowest frequencies
and the low frequencies tend to be visually dominant.
Hence, the variation in the first coordinates is visually
dominant. The representation is not symmetric in the
variables.

The encoding can be modified to provide an ani-
mation. Slicing through the curves with a line at
time t yields a set of points. Varying t then leads
to the animation of points along a scale. Some have
thought this might be a one-dimensional analog of
the 2D grand tour mentioned below. However, Weg-
man & Shen [79] note that the curves are not properly
defined to provide a grand tour. They provide a gener-
alization that shows curves in three dimensions and
illustrate direct manipulation of a sectioning plane.
The curves intersect the plane to create a 2D scatter
of points. This is advantageous in that clusters can
separate better in a 2D sectioned view than they do
in a 1D sectioned view.

Functions have numerous series approximations.
Different series approximations can lead to different
graphics. One might even try wavelet encoding.

Composite Plots

Composite plots provide a good way to look at higher
dimensions. These plots often involve elements of

conditioning and exploit the capacity of the analyst to
understand two-way layouts. Figure 12, adapted from
Carr et al. [24], provides a composite plot example.
The data are rat spinal-chord gene-expression val-
ues observed at nine times. The times are gestation
days 11, 13, 15, 18, 21; postbirth days 0, 7, 14, and
adult. The gene-expression values range from 0 to 1
and indicate how fully the gene is functioning. The
basic plot is a time-series line plot, which is equiva-
lent to a parallel coordinate plot with axes at the time
points. The overplotting of all the data in a single par-
allel coordinate plot is not acceptable in looking at
individual genes. Figure 12 uses small multiples (see
Tufte [67]) to avoid heavy overplotting. Grouping
into units of four or fewer is cognitively advanta-
geous. With four or fewer easily discriminated line
textures, it is simple to match lines with the gene
labels. (The original used four colors rather than four
textures.) Arbitrary grouping into units of four can
raise questions and miss an opportunity. Figure 12
starts the grouping process by conditioning on mem-
bership in 14 gene function groups. The gene function
group name is at the left of each corresponding set of
panels. Thus, Figure 12 combines elements of con-
ditioned plots, parallel coordinates plots, and line
texture linking. Showing 1008 = 112 × 9 values on
a page is no problem.

Multiple Views, Dimensionality,
Cognostics, and Projection Searches

The above review of graphics representations sug-
gests a large number of view options. Cross these
viewing options with today’s data explosion and the
number of possible graphics seems overwhelming.
We are not going to look at all potentially insightful
plots. Something needs to give.

In most fields of endeavor one feels obliged to
find the obvious. Failing to find the complex is
forgivable in the rare cases that someone notices.
In multivariate graphics, is it important to look at
low-dimensional views of the data to see if there are
obvious patterns.

Frequently data relationships consist of a low-
dimensional geometric structure embedded in much
higher-dimensional data. For example, simple mix-
tures of two multivariate points generate a line
segment. Mixture of three multivariate points gen-
erates a triangle. The observational process can lead
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Figure 12 A multiple panel plot showing 112 time series with grouping and individual series labels
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to recording a mixture value. For example, the spec-
tral bands for pixels in a satellite image may reflect
the mixture of two vegetation classes with distinct
spectral signatures. Cook et al. [34] report an exam-
ple of seven coordinate particle physics data that
geometrically consists of a triangle with two line
segments at each vertex. Since the structure was
embedded in seven dimensions, the discovery pro-
cess using 2D plots was nontrivial. Nonetheless,
looking for the simple patterns sometimes produces
results.

Carr et al. [21] advocate looking at low-dimen-
sional margin views in part because the coordi-
nates have an immediate interpretation. A systematic
approach involves looking at 1D margin views, scat-
terplot matrices, stereo-scatterplot triples, and 4D
plots such as the stereo-ray glyph plots. For a large
number of variables, there can be layout problems.
In a single screen view, panels in a scatterplot matrix
can become too small to be useful. Also, increas-
ing the dimensionality of the view causes problems.
Given, say, 10 variables there are 45 2D panels and
120 3D panels. Approaches such as pan and zoom
help in the 2D cases and sectioning helps in the 3D
cases. However, with increasing dimensionality the
notion of a quick visual sweep over the whole space
is quickly lost.

In thinking about the future, Tukey [71] coined
the term cognostics (diagnostics interpreted by a
computer rather than a human). The idea was to
compute features of merit and have a computer rank
the plots by their potential interest to humans. Paul
Tukey [73] developed some early features of merit
for prioritizing scatterplots. Carr [12] developed dif-
ferent features of merit oriented toward large data
sets. The cognostics involved binning 2D and 3D
data as a starting step. One of the more nontra-
ditional cognostics used extensions of thinning (an
image processing technique) to assess the extent of
skeletal structure in low-density regions. The applica-
tion involved views of computational fluid dynamics
(CFD) variables and the features of merit were com-
puted in parallel, one time step behind the CFD
model. The strategy was to store information and
later to instantiate only high interest virtual plots.
The general concept applies to looking for patterns
in biological databases.

Asimov [4] proposed grand tour methods that pro-
vide an infinite sequence of 2D projected views.
Wegman [75] discusses a generalized grand tour with

the number of resulting coordinates being the same
number as in the original data. Thus, tour views are
not restricted to 2D projected views. The many views
provided by grand tour sequences tend to overwhelm
the mind rather than to facilitate quick insight. Similar
to the cognostics idea, projection pursuit (see Cook
et al. [36]) assists the analysts in finding interesting
views.

When one is looking for structure (and constraints)
in low-dimensional plots, an understanding of what
happens in projection to low dimensions is very
helpful. Furnas & Buja [46] shed insight into
what can be seen in low-dimensional views using
projection and sectioning. For example, lines in high
dimensions project into lines in low dimensions.

Sectioning (also called slicing and masking in
the graphics literature) adds mathematical constraints
that typically lower the dimensionality. For exam-
ple, adding the constraint x = 2 to the line y =
mx + b reduces the line to a point. Typically, sec-
tioning is implemented as a logical “and” among
constraints on individual coordinates. Direct manip-
ulation provides one way of controlling the bounds
ai < xi < bi on the ith coordinate xi . Sectioning can
apply to computed variables, including those con-
structed in touring sequences. Carr & Nicholson [17]
describe software that enables hyperplane section-
ing in the form of a < c′(x − x0) < b, where c, x,
and x0 are vectors. Graphical methods, using paral-
lel axes, define the normal vector to the hyperplane,
c, and a multivariate point, x0, in the hyperplane.
Direct manipulation controls the scalars a and b. (An
extension of the software providing stereo-ray glyph,
scatterplot matrix and parallel coordinate views, alpha
blending for color mixing, and other options is avail-
able; see Carr et al. [26].) Sectioning can reveal holes
and other structures in the data that remain hidden in
projected views.

A geometric structure is easier to identify when
the viewing dimension is higher than the dimen-
sion of the structure. For example, points on a sur-
face projected in a 2D scatterplot can saturate the
plot, while the surface remains evident in a 3D
scatterplot. Stereo 3D plots are the natural environ-
ment for viewing the 2D structures of such surfaces.
4D plots, such as the stereo-ray glyph plot, pro-
vide a way to look for 3D structures. Sectioning
is useful to lower the dimensionality of the data
until it falls below the dimensionality of the dis-
play.
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Figure 13 A binned scatterplot matrix showing over one-third of a billion nonzero point pairs. This overview crudely
represents density features using gray level for counts on a log 10 scale. A pure white dot represents over a million satellite
image pixels with the same bivariate spectral intensity

Massive Data Sets and Closing Remarks

Massive data sets pose new challenges. Some of
the old methods work for selected problems. As
one example, Figure 13 is a gray level version of
a binned data scatterplot matrix presented at the
1995 American Statistical Association annual meet-
ing. Each panel represents intensities for two spectral
bands (wavelength intervals) for 54 million pixels of
a multispectral satellite image. The recorded values
are intensities for each spectral band, as a measure on
a scale from 0 to 255. The different panels correspond
to different pairings of the first five spectral bands
from the seven spectral band image. (The binning dis-
cussion for six variables below omits band 6 because
it has a different spatial resolution.) The approach
of 2D binning and density representation scales well
in terms of the sample size. Binning 54 million 2D
points for each of the 15 pairings is not a problem.

Visualization gets a bit more challenging since the
bivariate densities (shown on a log scale) vary over
five orders of magnitude. Thus, interactive methods
become useful in bringing out density features.

Some tasks do not scale well to massive data
sets. Challenges in this satellite data problem include
six-dimensional (6D) binning without sacrificing 256
value resolutions per channel, viewing the higher-
dimensional density structures, and linking density
patterns in the binned panels back to the spatial
coordinates of the pixels to benefit from the spatial
information. With six spectral channels (variables) of
interest, each with 28 possible intensities, there are 248

potential cells. Straightforward binning that allocates
space for all possible cells breaks down. Methods
have to focus more on occupied cells. In this example
there will be at most 54 million occupied cells. It
turns out, via sorting and then binning, that there are
over 12 million occupied cells. This is too many cells
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for conventional methods. Making progress almost
inevitably involves sacrificing intensity resolution via
univariate rescaling or via use of a large number of
clusters.

With resolution reduction, viewing the 6D binned
density becomes feasible using a combination of
conditioning and positional glyphs. For example, a
two-way layout of panels can represent levels for
two variables. Individual panels can show three coor-
dinates using the 3D position. The ray angle can
represent a few levels of a discrete fourth variable,
and the ray length can be proportional to the log of
the count. This is similar to showing small histograms
in 3D space. The ray representation is advantageous
owing to ambiguities resulting from overplotted his-
tograms. Conceptually it is possible to zoom in to
get higher resolution detail. A common trick in very
low dimensions is to implement zooming with pre-
computed images. However, massive data sets require
significant processing and the increased dimensional-
ity makes it harder to anticipate where attention will
be focused.

A large problem arises when it is time to link
the density feature back to the 54 million spatial
coordinates. Brushing in geographic space or attribut-
ing density space and viewing the result in the
opposite space is no longer a trivial task. Since a
typical (1280 × 1024) workstation screen has about
1.3 million pixels, one has to pan through many
screens just to view all the pixels indicating spa-
tial position. The next satellite, with 36 channels,
possesses an even more formidable challenge. Chal-
lenges abound as we attempt to bring visualization
methods to increasingly larger, higher-dimensional,
higher resolution data sets.

The above description has been a whirlwind tour.
We can represent a million variables. We can repre-
sent millions of cases. Finding and communicating
multivariate patterns is another story. We have to
work hard to find meaningful patterns. There are
many barriers to the discovery of important patterns,
not the least of which is the plethora of accidental
patterns that will not replicate. We need statistical
methods to help us find our way, and results from
cognitive science so that we can more fully use the
power of our minds to see.

Having found meaningful patterns does not mean
that we will be able to communicate those patterns.
A picture may be worth a thousand words, but in this
electronic era neither a picture nor a thousand words

is worth very much. Unless graphics are apparently
simple, they are not likely to survive the first glance.
Communicating a complex multivariate structure to a
world seeking simple solutions is a major challenge.
This article provides some guidance toward graphics
that communicate, but much work remains ahead.
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Multivariate Median and
Rank Sum Tests

Multivariate nonparametric procedures were mostly
developed in the 1960s. There were some impasses
from the univariate to the multivariate channels, and a
basic rank-permutation principle, developed by Chat-
terjee & Sen [6], opened up the broad avenue to
multivariate nonparametrics. These include the mul-
tivariate one-sample model, two- and several-sample
problems, as well as multivariate analysis of vari-
ance (and covariance) models. In the following, we
briefly review univariate nonparametric procedures,
and then present more extensively their multivari-
ate extensions using chiefly the rank-permutation
principle.

Precursors of Multivariate
Nonparametrics

The classical sign test in the univariate case, fol-
lowed by the Wilcoxon signed-rank test, laid down
the foundation of distribution-free tests for the one-
sample location model, and there were subsequent
developments relating to alternative tests which are
characterized by local or asymptotic optimality prop-
erties against specific parametric type of alterna-
tives; Hájek & Šidák [13] is an excellent source for
these theoretical developments. In the same vein,
in the two-sample case, Mood’s median test and
the Wilcoxon–Mann–Whitney rank sum test are,
respectively, the analogs of the sign and signed rank
tests; the Brown & Mood [4] and Kruskal & Wal-
lis [15] extensions cover the multisample problems
and, later on, similar tests have also been proposed
for the analysis of variance (ANOVA) as well
as the analysis of covariance (ANCOVA) models.
A general account of multivariate nonparametrics,
with some mathematical abstractions, is given in
Puri & Sen [19]. Interestingly, the developments in
ANCOVA nonparametrics rest heavily on the mul-
tivariate nonparametric methodology, and hence, it
will be to our advantage to outline the univariate
tests first, then to motivate their multivariate analogs
in a coherent manner, and finally to cover general
linear models relating to multivariate AN(C)OVA
problems. We shall also include the two-way layout
problems covering both univariate and multivariate

models, where such rank tests play an important role.
The median test has some nice applications in the
multivariate association problem, and we shall touch
on that too.

Sign and Signed-Rank Statistics

Consider n observations X1, . . . , Xn from a continu-
ous distribution F , and let θ be the median of F , i.e. θ

is the unique solution of the equation F(x) = 0.5. We
want to test for a null hypothesis H0 : θ = θ0 (known)
against an alternative H1 that θ is > (or < or �=) θ0.
Without loss of generality, we set θ0 = 0 (otherwise,
we work with the residuals Xi − θ0). Define the sign
statistic as

Sn =
n∑

i=1

I (Xi ≤ 0), (1)

where I (A) denotes the indicator function of the set
A. Note that Sn has the simple binomial distribution
with sample size n and probability π = F(0), where,
under H0, F(0) = 1/2, irrespective of the functional
form of F , and F need not be symmetric about its
median. This provides a simple distribution-free test
for H0 vs. H1, based on a one-sided or two-sided
critical region for binomial distributions, depending
on the alternative. Moreover, note that for every α :
0 < α ≤ 1/2, and n(≥ 1), there exists a nonnegative
r(≤ n/2), such that

2−n

n−r−1∑

i=r+1

(
n

i

)
≤ 1 − α ≤ 2−n

n−r∑

i=r

(
n

i

)
. (2)

Then, if we denote the sample order statistics by
Xn:1 < · · · < Xn:n (where by virtue of the assumed
continuity of F , the equality signs are neglected with
probability 1), we have the following distribution-free
confidence interval for the population median:

PF {Xn:r ≤ θ ≤ Xn:n−r+1} ≥ 1 − α, for all F.

(3)

As a special case, letting r = [(n + 1)/2], we obtain
that a nonparametric point estimator of θ is given by
the sample median:

X̃n = Xn:(n+1)/2 or
Xn:n/2 + Xn:n/2+1

2
,

according as n is odd or even. (4)
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In this development neither the symmetry nor the
form of F is assumed as a part of the model, and
we have a distribution-free test, as well as point
and interval estimators. For large values of n, we
could use the convergence of the binomial law to a
normal one, and claim that under H0, n−1/2[Sn − n/2]
converges in law to a standard normal one, so that
the critical values can be approximated by using
tables for the standard normal distribution. For n

up to 50 or so, exact binomial tables can be used,
although for n ≥ 20 a normal approximation works
out well. For F possibly having discontinuities, ties
among the observations may occur with a positive
probability, and hence some adjustments for ties are
to be made. Assuming F to be symmetric about its
median, adjustment for ties can be made by sign-
inversions, and this will be described later on in a
general context.

Consider next the Wilcoxon signed rank statistic.
Here we assume that the cumulative distribution
function (cdf) F is symmetric about its median,
and write F(x) = Fθ(x) = F(x − θ), x ∈ R, where
F(x) + F(−x) = 1, for all x ∈ R. Let R+

ni =∑n
j=1 I (|Xj | ≤ |Xi |) be the rank of |Xi | among the

n observations |Xi |, j = 1, . . . , n, for i = 1, . . . , n.
Also let Si = sign(Xi) be the sign of Xi , for i =
1, . . . , n. Then define

Wn = (n + 1)−1
n∑

i=1

SiR
+
ni . (5)

Under the null hypothesis H0 : θ = 0, the two
vectors Sn = (S1, . . . , Sn)

′ (of signs) and R+
n =

(R+
n1, . . . , R+

nn)
′ (of absolute ranks) are distributed

independently, where Sn takes on each of the 2n

sign-inversions with the common probability 2−n, and
R+

n takes on each permutation of {1, . . . , n} with the
common probability (n!)−1. Thus, Wn is distribution-
free under H0 and, furthermore,

E0{Wn} = 0 and var0{Wn} = n(2n + 1)

6(n + 1)
. (6)

The exact permutation distribution of Wn can well be
approximated by a normal distribution when n is large
and, surprisingly, the approximation is quite good for
sample size as small as 10.

If we define Xi(a) = Xi − a, i ≥ 1, a ∈ R, and
denote the Wilcoxon signed-rank statistic based on
these aligned observations by Wn(a), then it is easy
to see that Wn(a) is a nonincreasing (step-)function

of a and, hence, virtually equating Wn(a) to 0, we
arrive at the following rank (R-)estimator of θ :

θ̂n = median
{

1
2 (Xi + Xj) : 1 ≤ i ≤ j ≤ n

}
. (7)

This estimator is consistent, median unbiased and
asymptotically normal for all continuous and sym-
metric F . This is asymptotically optimal when F is a
logistic cdf, about 95% efficient when F is normal,
and is usually more efficient than the sample mean
when F has a heavier tail than the normal law. This
R-estimator has a bounded influence function and is
globally robust. There are other signed-rank tests
based on scores an(R

+
ni) instead of the R+

ni , where
an(·) can be skillfully chosen to have asymptotic opti-
mality against specific F (the normal scores corre-
spond to a normal F ); but they may not have a closed
expression for the derived R-estimator. Moreover,
whenever the score generating function is unbounded,
we may have an unbounded influence function for
the derived estimators, and hence, from robustness
considerations, the Wilcoxon test and estimator may
dominate the scenario.

Two-Sample Location Model

Suppose that we have two independent samples:
X1, . . . , Xn1 are independent and identically dis-
tributed random variables with a continuous cdf F ,
and Y1, . . . , Yn2 are independent and identically dis-
tributed random variables with a continuous cdf G,
where both F and G are unknown, but not neces-
sarily symmetric. In a two-sample location model,
we set G(x) = F(x − θ), x ∈ R, and treating F as a
nuisance parameter (function), we like to test for the
null hypothesis H0 that θ = 0 against θ positive (or
negative or nonnull); and also, we like to estimate the
shift parameter θ in a robust, nonparametric fashion.
Note that in this setup, the null hypothesis actually
relates to the homogeneity of F and G.

Median Statistics

We let N = n1 + n2 and denote the combined sam-
ple order statistics by ZN :1 ≤ · · · ≤ ZN :N where, by
virtue of the assumed continuity of F and G, ties
among the observations (and hence the ZN :i) can be
neglected with probability 1. Also let us define

M = N + 1

2
or

N

2
,

according as N is odd or even. (8)
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Then we consider a two-by-two table; where m1 and
m2 denote the number of observations of the first and
second samples having values not exceeding ZN :M ,
so that n1 − m1 and n2 − m2 are the complemen-
tary entries in this table. Under the null hypothesis
F = G, all the N observations are independent and
identically distributed, and hence their joint distribu-
tion remains invariant under any (of the N !) permuta-
tions of the coordinates. Using this (discrete) uniform
permutation probability law, Mood [17] showed that

P {m1, m2|H0} =

(
n1

m1

) (
n2

m2

)

(
N

M

) ,

m1 = 0, 1, . . . , min(M, n1). (9)

Both one-sided and two-sided tests, known as the
Mood median test, can be made based on this hyper-
geometric probability distribution and a version of
the statistic Mn = {m2 − n2M/N}. The convergence
of hypergeometric to normal laws paves the way
for asymptotic normality of the test statistics (under
H0). Next, we note that if we replace the Yi by
Yi − a, a real, and denote the resulting median statis-
tic by Mn(a), a real, then under the shift model
G(x) = F(x − θ), θ real, (i) Mn(a) is a nonincreas-
ing (step-)function of a, a ∈ R, and (ii) Mn(θ) has
the same distribution as Mn under H0. This leads to
the following estimator of θ :

θ̃N = Ỹn2 − X̃n1 , (10)

where X̃n1(Ỹn2) is the sample median of the first
(second) sample observations. θ̃N is a robust, con-
sistent and asymptotically normal estimator of θ . It
is quite clear that both the sample medians are least
sensitive to outliers or gross errors in the respective
samples, and hence, this median estimator scores very
high with respect to robustness perspectives; the con-
ventional difference of the sample means, although
optimal for the normal shift model, is highly nonro-
bust to such outliers or gross errors.

Rank Sum Statistics

We denote by Ri(Sj ) the rank of Xi(Yj ) among the N

combined sample observations, for i = 1, . . . , n1(j =
1, . . . , n2). Then the Wilcoxon–Mann–Whitney rank

sum statistic can be expressed in the following form:

WN = n−1
2

n2∑

j=1

Sj − n−1
1

n1∑

i=1

Ri. (11)

An equivalent representation for WN is a generalized
U-statistic

Un1,n2 = (n1n2)
−1

n1∑

i=1

n2∑

j=1

I (Xi ≤ Yj ), (12)

which automatically adjusts for ties, if there are any,
while in WN , minor adjustments for ties are needed
to define the Ri and Sj properly. Note that under
H0 : F = G, the same permutation law as in the
case of the median test prevails, and hence WN is
genuinely distribution-free under H0. Furthermore,
E[WN |H0] = 0, V [WN |H0] = N2(N + 1)/{12n1n2},
and under H0, the standardized form of WN is asymp-
totically normal; this convergence holds quite well
even when n1 and n2 are as small as 9 or 10. The
asymptotic distribution of WN is normal even when
the null hypothesis is not true, although its mean and
variance functions would depend on the cdfs F and
G. The test based on Wn is consistent against a very
broad class of alternatives that Pr{X < Y } is not equal
to 1/2, and this includes, besides the shift alternative,
the stochastic ordering of X and Y , defined in terms
of an ordering of the cdfs F and G, without necessar-
ily being of the shift type. An important alternative in
this context is known as the Lehmann alternative:
G(x) = 1 − G(x) = [F(x)]c, for some c (> 0), and
the null hypothesis relates to c = 1. In this case, the
alternative hypothesis distribution of WN is also inde-
pendent of F and depends on the triplet (n1, n2, c).

Let us now replace the Yi by Yi − a, where a

is real, and denote the resulting Wilcoxon statistic
by WN(a), a real. Then it is easy to check that (i)
WN(a) is a nonincreasing step-function of a ∈ R,
and (ii) under G(x) = F(x − θ), WN(θ) has the same
distribution as WN has under H0. Therefore, virtually
equating WN(a) to 0, we arrive at the following R-
estimator of the shift parameter θ :

θ̂N = 1
2 {inf[a : WN(a) < 0] + sup[a : WN(a) > 0]}

= median [(Yi − Xj) : 1 ≤ i ≤ n2; 1 ≤ j ≤ n1].

(13)

This estimator is translation-invariant, median-
unbiased, consistent, robust, and asymptotically nor-
mally distributed. This is asymptotically optimal



4 Multivariate Median and Rank Sum Tests

when F is a logistic cdf and, for a normal F , it
is about 95% efficient. Again, this R-estimator has
a bounded influence function and is globally robust.
There are other R-estimators based on logrank or
normal scores statistics which are to be solved by
iterative methods, and which possess asymptotic opti-
mality properties against some specific F (namely
exponential or normal), but in terms of robust-
ness may not be preferable to the Wilcoxon score
estimator.

Several Sample Location Models

Now consider the case of c (≥ 2) independent sam-
ples of sizes n1, . . . , nc respectively, drawn from pop-
ulations having continuous cdfs F1, . . . , Fc, where we
set

Fj (x) = F(x − θj ), x ∈ R, j = 1, . . . , c; (14)

the θj are real (location) parameters, and F need not
be symmetric. In testing the homogeneity of the Fj

under this shift model, we really want to test for the
identity of the θj . On the other hand, use of specific
multisample rank statistics may lead to tests for the
homogeneity of the Fj against alternatives that may
be broader than such shift ones. Note that under H0,
all of the samples come from a common distribution,
and hence their joint distribution remains invariant
under any permutation of the coordinates over the
entire combined set. This generates a discrete uniform
probability measure, independent of F , so that tests
based on this law are distribution-free under H0.

Brown–Mood Median Statistic

We denote the j th sample observations by Xji , i =
1, . . . , nj , for j = 1, . . . , c, let N = n1 + · · · + nc,
and denote the combined sample order statistics by
ZN :1 ≤ · · · ≤ ZN :N ; by virtue of the assumed con-
tinuity of the Fj , ties are neglected with probabil-
ity 1. Let M be a positive integer, typically, close
to (N + 1)/2, and let mj be the number of Xji

in the j th sample with values ≤ ZN :M , for j =
1, . . . , c. Note that M = m1 + · · · + mc, and we have
a 2 × c contingency table with the first-row entries
m1, . . . , mc, marginal total M , second-row entries
n1 − m1, . . . , nc − mc and total N − M , and the bot-
tom marginal with entries n1, . . . , nc and total N .
The usual 2 × c contingency chi-square test statis-
tic (along with the Fisher exact testing procedure)

applies to this scenario [4]. The test is consistent
against possible nonhomogeneity of the c population
medians.

Kruskal–Wallis Statistic

We denote the rank of Xji in the combined sample by
Rji , for i = 1, . . . , nj , j = 1, . . . , c. Let then Rj · =∑nj

i=1 Rji , j = 1, . . . , c. Then the Kruskal–Wallis
[15] (rank sum) statistic can be written as

KN = 12

N(N + 1)

c∑

j=1

n−1
j

[
Rj · − nj (N + 1)

2

]2

(15)

(see Nonparametric Methods). The test based on
Kn is distribution-free under H0, and when the nj are
large, it has closely central chi-square distribution
with c − 1 degrees of freedom (df). Consistency
and efficiency properties run parallel to the two-
sample case.

Simple Regression Models

Another extension of the two-sample model relates
to the simple linear regression model [12] where
X1, . . . , XN are independent random variables with
continuous dfs F1, . . . , FN respectively, all defined
on R, and these Fj are linearly related in their
arguments; namely,

Fj (x) = F(x − βcj ), j = 1, . . . , N, (16)

where the cj are known (regression) constants, not
all equal, and β is an unknown regression parameter.
By virtue of the translation invariance of ranks, we
may absorb the intercept parameter in the unknown
cdf F itself, and the null hypothesis of homogeneity
of all the N cdfs reduced to that of β = 0. Define
Ri as the rank of Xi among the N observations,
for i = 1, . . . , N , and let cN = N−1 ∑N

i=1 ci . Then
consider a linear rank statistic

LN =
N∑

i=1

(ci − cN)aN(Ri), (17)

where aN(k), k = 1, . . . , N are suitable scores, not
all equal. A statistic of the median type can be defined
by letting

aN(k) = sign

(
k − N + 1

2

)
, k = 1, . . . , N,

(18)
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while a Wilcoxon-type statistic is based on scores

aN(k) =
(

k − N + 1

2

)
, for k = 1, . . . , N.

(19)

These definitions extend readily to the multiple
regression model, in which, for some p ≥ 1, β is
a p-vector and so are the cj .

Even in the simple regression model or the several
sample case, there may be certain technical problems
in defining suitable R-estimators (even based median
or Wilcoxon-type scores) in a closed form. There is
another statistic, known as the Kendall tau statistic
(see Association, Measures of), which is a mixture
of median and Wilcoxon scores, and which may have
some advantages. We define this as

TN =
N∑

i=1

N∑

j=1

sign(ci − cj ) sign(Xi − Xj). (20)

The double summation in the above formula can be
replaced by a summation over all {1 ≤ i < j ≤ N}.
It follows from Sen [21] that

β̂n = median

[
Xi − Xj

ci − cj

: {i, j : ci �= cj }
]

(21)

is a robust, consistent, median-unbiased and asymp-
totically normal estimator of β, and that in the par-
ticular case of binary ci (i.e. the two-sample location
model), this estimator reduces to the Wilcoxon scores
estimator θ̂N , considered in (13). A distribution-free
confidence interval for β (and hence θ) can also be
obtained by using the Kendall tau statistic based on
the aligned observations Xi − bci , i ≥ 1, b real.

Two-Way Layouts

The method of n-rankings and ranking after align-
ment are the two popular nonparametric methods
for statistical modeling and analysis of two-way lay-
outs, covering complete randomized block as well
as incomplete block designs. Both the median and
rank sum procedures are popular in this context. The
method of n-rankings is presented here, while the
other method depending on a multivariate approach
will be presented later. In that way, the impact of
multivariate nonparametrics will be clearer.

Consider n(≥ 2) blocks of p(≥ 2) plots receiving
p different treatments. Let Xij be the response of
the j th treatment in the ith block, for j = 1, . . . , p;

i = 1, . . . , n. Let rij be the rank of Xij within the
ith block (p) observations, for j = 1, . . . , p, and let
ri = (ri1, . . . , rip)′, i = 1, . . . , n. The method of n-
rankings is based on these n rank vectors. In fact, this
does not even require that all the Xij are observable;
it suffices to have the realizations of the within-
block ranks. This situation may arise, for example,
when n judges are asked to rank, independently of
each other, p objects (e.g. players), and the judgment
may involve some subjective elements too. Even
when the Xij are observable, we do not need to
assume that they come from homoscedastic normal
distributions, and the treatment or block effects may
not be additive. The null hypothesis H0 of interest
is the interchangeability of the observations within
each block, so that under H0, the ri are independent
and identically distributed random vectors, and each
ri takes on each permutation of {1, . . . , p} with the
common probability (p!)−1. (The adjustments for tied
ranks can be made easily.) Two popular test statistics
based on the method of n-ranking are the following:

1. Friedman’s [10] rank sum statistic

χ2
r = 12n

p(p + 1)

p∑

j=1

(
rj,n − p + 1

2

)2

, (22)

where rj,n = n−1 ∑
i = 1nrij , j = 1, . . . , p; and

2. Brown & Mood’s [4] median statistic:

Br = np(p − 1)

a(p − a)

p∑

j=1

(
Mj,n − a

p

)2

, (23)

where a is a positive integer, typically close
to (p + 1)/2, and Mj,n = n−1 ∑n

i=1 I (rij ≤ a),
j = 1, . . . , p.

For both the statistics, null distributions are gen-
erated by the (p!)n equally likely realizations of
(r1, . . . , rn), and hence they are distribution-free
under H0. Both are consistent against alternatives that
are more general than the conventional ANOVA dif-
ferences in the treatment effects. Moreover, for large
values of n, the exact null distribution of either statis-
tic converges to central chi-squared distribution df
with p − 1 df. Asymptotic properties of such tests
have been studied in detail in Puri & Sen [19, Chap-
ter 7]. Extensions to incomplete block designs and
more than one observation per cell have also been
presented there.
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Bivariate Independence Problem

This bivariate problem is essentially reducible to
a quasi-univariate one, and both rank sum and
median-type statistics are popular in this respect. Let
(Xi , Yi), i = 1, . . . , n be n independent and identi-
cally distributed random vectors having a continu-
ous bivariate cdf F(x, y), (x, y) ∈ R2. The hypoth-
esis of stochastic independence of X and Y can be
stated as

H0 : F(x, y) = F(x, ∞) · F(∞, y),

for all(x, y) ∈ R2. (24)

Recall that independence implies uncorrelation, but
the converse may not be true (without normality of
F ) (see Correlation). Moreover, alternatives to H0

may be of diverse types, and naturally different test
statistics may behave differently under such alter-
natives. One of the simple and appealing classes
of alternatives is the positive (negative) dependence
which specifies that F(x, y) ≥ (≤)F (x, ∞)F (∞, y),
for all x, y, with strict inequality at least on a set
of positive measure. Recall that F1(x) = F(x, ∞)

and F2(y) = F(∞, y) are the two marginal cdfs,
and as a suitable measure of dependence, known
as the grade correlation coefficient, we have the
following

ρg = 12
∫ ∫ [

F1(x) − 1
2

] [
F2(y) − 1

2

]
dF(x, y).

(25)

If Ri(Si) denotes the rank of Xi(Yi) among the X′s
(Y ′s), for i = 1, . . . , n, then the sample counterpart
of ρg is

rg,n = 12

n(n2 − 1)

n∑

i=1

(
Ri − n + 1

2

)

×
(

Si − n + 1

2

)
, (26)

and this is known as the Spearman rank correlation
coefficient. A related measure of dependence is the
quadrant measure

ρq = 4[P(X > θ1, Y > θ2) − 1], (27)

where θ1 and θ2 are the population medians of X and
Y . The sample counterpart of this is the following

Qn = n−1
n∑

i=1

sign

(
Ri − n + 1

2

)

× sign

(
Si − n + 1

2

)
, (28)

and is known as the quadrant test statistic. A related
measure, the Kendall tau statistic, can be expressed
as

Kn =
(

n

2

)−1 ∑

{1≤i<j≤n}
sign(Ri − Rj )sign(Si − Sj ).

(29)

In each case, under H0, the two rank vectors (R1, . . . ,

Rn) and (S1, . . . , Sn) are independently distributed
with a discrete uniform distribution over the per-
mutations of {1, . . . , n}, and hence these tests are
all distribution-free under H0. Various properties of
these tests have been studied in detail in Hájek &
Šidák [13] and in other contemporary nonparametric
texts.

The First Spark of Multivariate Nonparametrics

The simplicity of rank-based statistical procedures in
the univariate cases mentioned above stumbles into
roadblocks in the bivariate or genuine multivariate
cases; this impasse is primarily due to the fact that,
in a bivariate or multivariate case, neither the distri-
bution of the vector of coordinatewise signs nor the
coordinatewise ranks (or absolute ranks) are gener-
ally independent of the underlying distribution, even
when suitable hypotheses of invariance (similar to
the univariate cases) hold. For example, suppose that
we have a sample of n observations from a bivariate
distribution, and we want to test the null hypothe-
sis that both the marginal medians are equal to 0.
Thus, a simple extension of the sign test would be
a suitable function of the two coordinatewise sign
statistics. However, the two sign-functions sign (Xi)

and sign (Yi) for an observation (Xi, Yi) are not nec-
essarily independent, and hence a bivariate sign test
may not be genuinely distribution-free. Chatterjee [5]
eliminated this drawback by an appeal to a condi-
tional procedure based on a partitioning of the set of
observations into concordant and discordant ones,
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and showed that such conditional tests are condition-
ally distribution-free and have nice properties too.
Earlier, Chatterjee & Sen [6] considered the bivari-
ate two-sample (location/association) problem, and
demonstrated that a simple rank-permutation princi-
ple renders conditional distribution-freeness of a large
class of rank statistics, including both the median and
rank sum tests. Subsequent developments in multi-
variate nonparametrics, reported in Puri & Sen [19],
exploit this Chatterjee–Sen rank-permutation princi-
ple as extended to more complex setups, and here we
shall confine ourselves to specific problems in this
domain.

Multivariate Multisample Tests

Let Xij = (X
(1)
ij , . . . , X

(p)

ij )′, j = 1, . . . , ni be n1

independent and identically distributed random
vectors having a continuous p-variate cdf Fi(x), x ∈
Rp, for i = 1, . . . , c (≥ 2). We want to test for the
null hypothesis H0 : F1 = · · · = Fc = F (unknown),
against plausible alternatives that these cdfs differ
in location/scale and or association measures. We
shall mainly discuss the multivariate rank sum and
median procedures, studied in detail by Chatterjee
& Sen [6–8] and reported in more mathematical
abstraction in Puri & Sen [19]). Let R

(k)
ij be the

rank of X
(k)
ij among the N(= ∑c

1=1 ni) observations
on the kth characteristic, for j = 1, . . . , ni ; /i =
1, . . . , c; k = 1, . . . , p. Define the rank collection
matrix RN as the p × N matrix the kth row of which
contains the elements (R

(k)

11 , . . . , R
(k)

1n1
, . . . , R(k)

cnc
), for

k = 1, . . . , p. Thus, each row of RN contains the
number {1, . . . , N}, permuted in some order, and
there are (N !)p such possible realizations of RN .
Multisample multivariate rank statistics are typically
based on this rank-collection matrix, so that the
distribution theory of RN governs the same for such
coordinatewise rank-based statistics. For p = 1 – that
is a single characteristic – under H0, all possible N !
realizations of the rank vector are equally probable.
However, for p ≥ 2, unless the p coordinates of
the Xij are independent (wherein we have only
a quasi-multivariate setup), the distribution of the
rank-collection matrix depends on the underlying
F1, . . . , Fc, even under the null hypothesis. This
characterizes the lack of distribution-freeness of
multivariate multisample rank-based procedures. The
Chatterjee–Sen rank permutation principle removes

this impasse through a conditional approach which is
easy to interpret and implement in practice. Let us
permute the columns of RN in such a way that the
top row is in the natural order (1, . . . , N). We denote
the resulting element in the kth row and rth column
by R

(k)∗
Nr , for r = 1, . . . , N ; k = 2, . . . , p; note that

R
(1)∗
Nr = r, 1 ≤ r ≤ N . We denote the derived p ×

N matrix by R∗
N and term it the reduced rank

collection matrix. Note that the cdf of R∗
N depends,

even under H0, on the underlying F , but the
conditional distribution of RN , given R∗

N , under H0,
is independent of the underlying F , and is uniform
(discrete) over the N ! permutations of the columns
of R∗

N . We denote this permutational (conditional)
probability measure by PN , and advocate the use of
the same in the construction of some permutationally
(conditionally) distribution-free tests.

As in the univariate case, we consider the individ-
ual sample coordinatewise rank sum statistics:

R
(k)

i = n−1
i

ni∑

j=1

R
(k)
ij , k = 1, . . . , p; i = 1, . . . , c.

(30)

Let us also define the rank covariance matrix VN =
((vN,kq)) (of order p × p) by

VN = N−1(RN)(RN)′ −
(

N + 1

2

)2

11′, (31)

and denote by V−
N a generalized inverse of VN ;

under very mild regularity conditions, VN is positive
definite in probability, and hence, we may as well
work with the actual inverse V−1

N = ((v
kq

N )). It is easy

to verify that under PN , the R
(k)

i have all expected
value (N + 1)/2, and, furthermore,

cov
[
R

(k)

i , R
(q)

j |PN

]
= Nδij − ni

ni(N − 1)
vN,kq, (32)

for k, q = 1, . . . , p; i, j = 1, . . . , c where δij , the
Kronecker delta, is 1 or 0 according as i = j or not.
Then the multivariate generalization of the Kruskal–
Wallis [15] rank sum statistic is given by

LN =
c∑

i=1

ni

p∑

k=1

p∑

q=1

v
kq

N

[
R

(k)

i − N + 1

2

]

×
[
R

(q)

i − N + 1

2

]
. (33)
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The conditional (permutational) distribution of LN ,
given R∗

N , can be obtained by enumeration of all pos-
sible N ! conditionally equally likely realizations of
RN , and this provides a conditionally distribution-free
test for H0. The task becomes prohibitively laborious
when N becomes large. However, it has been shown
that the permutation distribution of LN converges (in
probability) to the central chi-square distribution with
p(c − 1) df when N is large. The test statistic reduces
to the Kruskal–Wallis statistic when p = 1. For c =
2, this corresponds to the Wilcoxon–Mann–Whitney
statistics [16] and it is consistent against the same
class of alternatives as in univariate case, but simul-
taneously for all the coordinates. The test is robust
against nonnormality of F as well as for error
contaminations, although unlike the parametric tests
based on the characteristic roots of the between-
sample sum of product matrix, normalized by the
pooled within-sample sum of product matrix, it is
not invariant to affine transformations on the origi-
nal observations. This lack of affine-invariance is, of
course, shared by most of the tests based on coor-
dinatewise rank vectors (which are themselves not
affine invariant). Also, unlike the univariate case, here
tables for the exact null distribution of LN are difficult
to construct, as they generally depend on the reduced
rank-collection matrix R∗

N and there are (N !)p−1

such matrices which are themselves not necessarily
equally likely, even conditionally. Nevertheless, the
conditional distribution-freeness, robustness proper-
ties, simple asymptotic distribution theory, and good
power properties make this multivariate rank sum
test a good competitor of the classical parametric
tests.

Let us present the multivariate multisample median
tests side by side. As in the univariate case, we con-
sider the coordinatewise median statistics for each
sample relative to the pooled one. Let M be a positive
integer, close to (N + 1)/2, and let

M
(k)
i =

ni∑

j=1

I (R
(k)
ij ≤ M), k = 1, . . . , p;

i = 1, . . . , c. (34)

We also introduce the p × p matrix V0
N = ((v0

N,kq))

by letting v0
N,kk = M(N − M)/N2, k = 1, . . . , p, and

for k �= q, defining the reduced rank collection matrix

R∗
N as before,

v0
N,kq = N−1

N∑

r=1

I (R(k)∗
r ≤ M, R(q)∗

r

≤ M) −
(

M

N

)2

, k �= q = 1, . . . , p. (35)

Again under very mild regularity conditions, V0
N

is positive definite in probability, and we therefore
assume that its inverse (V0

N)−1 = ((v
kq,0
N )) is well

defined (otherwise, we work with a generalized
inverse). Then we consider the following three types
of median tests. These tests are very robust against
error contaminations or outliers, but in general, for
nearly multinormal distributions, they may not be
asymptotically as efficient as the multivariate rank
sum test, although in terms of robustness we have an
opposite relative picture.

1. Omnibus median procedure. Recall that by let-
ting M

(k)∗
i = N − M

(k)
i , for k = 1, . . . , p, i =

1, . . . , c, we arrive at p sets of 2 × c contin-
gency table with the cell entries M

(k)
i , M

(k)∗
i , i =

1, . . . , c, for each k = 1, . . . , p. Unfortunately,
these tables are not necessarily stochastically
independent, and hence we need to appeal to
higher-dimensional categorical data models and
analysis schemes to formulate appropriate test
statistics; we refer to Chatterjee & Sen [6, 7]
for further details. For p ≥ 2, such a test is
consistent not only against possible heterogene-
ity of location parameters (or medians) of the
c populations, but also against possible hetero-
geneity of their association parameters of var-
ious orders. Note that the total df for such a
complex categorical data model is much higher
than p(c − 1), so that such an omnibus test
statistic carries too many degrees of freedom.
Hence, for location/shift alternatives, it may not
be efficient. For this reason, we shall find it
more convenient to deal more explicitly with the
other two types of median procedures, which are
geared toward such location alternatives and/or
pairwise association alternatives only, and are
generally more efficient than an omnibus proce-
dure.
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2. Multisample multivariate median test for loca-
tion. This procedure is directed for location alter-
natives, and the test statistic is given by

L0
N =

c∑

i=1

ni

p∑

k=1

p∑

q=1

v
kq,0
N

(
n−1

i M
(k)
i − M

N

)

×
(
n−1

i M
(q)

i − m

N

)
, (36)

so that, for p = 1, it reduces to Brown &
Mood’s test statistic considered earlier. As in
the case of the multivariate multisample rank
sum test, for small values of n1, . . . , nc, one can
appeal to the permutational probability measure
PN , and obtain a conditionally (permutation-
ally) distribution-free test for the null hypothe-
sis of homogeneity of the cdfs F1, . . . , Fc; for
large sample sizes, the permutational distribu-
tion of LN converges, in probability, to the
central chi-square distribution with p(c − 1) df.
Thus, for large sample sizes, the critical level
of this median test can be well approximated
by appropriate quantiles of this simple limiting
distribution.

3. Median tests for homogeneity of association
parameters. In addition to the p measures of
marginal locations, there are

(
p

2

)
measures of

pairwise associations of the p variates, and sim-
ilarly for higher-order associations when p ≥ 2.
In many situations, particularly when p is not so
small, inclusion of all such measures results in
a large-dimensional parameter space, and that in
turn pulls down the level of precision that can be
acquired from a given data set. For this reason,
often, multivariate models are conceived wherein
only first-order or pairwise association measures
are included along with the location measures,
so that essentially the number of parameters for
each cdf is reduced to

p +
(

p

2

)
=

(
p + 1

2

)
,

and in the given multisample model we would
therefore have

(c − 1)

(
p + 1

2

)

degrees of freedom. Tests for this broader (than
location) type of alternatives can be based on the

collection of the entries {M(kq)

i = ∑ni

j=1 I (R
(k)
ij ≤

M, R
(q)

ij ≤ M), k, q = 1, . . . , p; i = 1, . . . , c}.
Moreover, such a test statistic can be decom-
posed into two orthogonal components, L0

N

described before, for location alternatives, and
the complementary part for association alterna-
tives. For further details, we refer to Chatterjee
& Sen [7].

There is a basic difference in the asymptotic
relative efficiency (ARE) picture between the uni-
variate and multivariate cases. In both cases, for
local (Pitman-type) alternatives the test statistics
have appropriate noncentral chi-square distributions
with comparable degrees of freedom and noncen-
trality parameters. However, in the univariate case,
for two such test statistics under a common local
alternative their noncentrality parameters are propor-
tional to each other over the entire parameter space,
so that the ratio of noncentrality parameters pro-
vides a meaningful measure of the (Pitman) ARE
of one test with respect to the other (see Pitman
Efficiency). In the multivariate case, the ratio of
the two noncentrality parameters may depend not
only on the underlying distributions through appro-
priate dispersion matrices that appear in their expres-
sions, but also on the actual alternatives (namely,
the direction cosines in the location case). There-
fore a single measure of ARE may not be tenable
for the entire parameter space under (local) alterna-
tives, and hence one of the basic interpretations of
the ARE of such tests in terms of the sample sizes
needed to have equal (asymptotic) power may no
longer be possible. This drawback has been mini-
mized to a certain extent by using suitable lower and
upper bounds for the ratio of noncentrality parame-
ters, and then incorporating the univariate concepts
on such bounds. However, that may not convey
a definitive picture in all situations. We refer to
Puri & Sen [19, Chapters 4– 5] for a comprehen-
sive discussion of ARE of statistical tests in the
multivariate case.

In the univariate case, estimators of difference of
location parameters based on rank tests, particularly
the median and rank sum statistics, have already been
discussed earlier. These estimators extend to the mul-
tivariate case in a straightforward manner, as for each
of the p coordinates, the same univariate estimation
procedure can be adopted. The basic difference comes
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in the interval estimation problem as extended to con-
fidence sets in the multivariate case. The distribution-
freeness of the confidence intervals in the univariate
case may no longer hold in the multivariate case (as
the coordinatewise rank statistics are generally not
independent). However, asymptotic confidence sets
may still be achieved by using the Scheffé or Tukey
method along with the asymptotic chi-square distri-
butions of related test statistics (under H0). These
asymptotic procedures are generally more robust than
the classical parametric procedures, though for small
sample sizes, there may not be a good resolution. We
refer to Puri & Sen [19, Chapter 6] for details.

Multivariate One-Sample Rank Tests

We now present rank statistics which are the multi-
variate extensions of the sign and Wilcoxon signed-
rank statistics in the univariate case, treated earlier.
Let Xi = (Xi1, . . . , Xip)′, i = 1, . . . , n, be indepen-
dent and identically distributed random vectors hav-
ing a p(≥ 1) variate continuous cdf, F . We denote the
marginal cdfs corresponding to F by F[1], . . . , F[p]

respectively, and let θ = (θ1, . . . , θp)′ be the vector
of the marginal medians. Suppose that we want to
test for the null hypothesis H0 : θ = θ0 (specified)
against alternatives that θ �= θ0; without any loss of
generality, we let θ0 = 0. Different rank tests for this
hypothesis testing problem entail different regularity
conditions on the cdf. First, we consider multivariate
sign tests entailing least restrictive conditions in this
respect.

To motivate the scenario, we start with the bivari-
ate sign tests, and then present the general mul-
tivariate case. Hodges [14] considered an associa-
tion invariant and genuinely distribution-free sign
test, although its distributions on null or alternative
hypotheses are not very simple. Another association
invariant bivariate sign test is due to Blumen [3], and
this also shares the drawbacks of the Hodges’ sign
test to a certain extent. Bennett [1] used the classi-
cal likelihood ratio principle to arrive at an asymp-
totically distribution-free sign test. Chatterjee’s [5]
treatment include a conditionally distribution-free and
strictly unbiased bivariate sign test, basically related
to the Bennett version when the observations are iid, a
condition not needed in the Chatterjee case. If we cre-
ate a two-by-two table by drawing perpendicular axes
through the median vector (0 under H0), the positive

(negative) orthant X ≥ (≤) 0 constitutes the first (sec-
ond) type of concordance set, while the second and
fourth quadrants relate to the first and second type of
discordance sets. Although Chatterjee [5] considered
independent but not necessarily identically distributed
random variables, for simplicity of presentation, we
consider here the independent and identically dis-
tributed case. Let Pr(C) and Pr(D) = 1 − Pr(C) be
the probabilities of concordance and discordance,
respectively. Furthermore, let

τ = Pr{first type concordance}
Pr{concordance} and

γ = Pr{first type discordance}
Pr{discordance} (37)

Then the null hypothesis of θ = 0 can be equivalently
stated as

H∗
0 : τ = γ = 1

2 . (38)

In the sample, let C1, C2, D1, and D2 be the number
of observations which are concordant of the first and
second types and discordant of the first and second
type respectively. Note that n = C1 + C2 + D1 + D2.
Under H0, given C = c, we have

Pr{C1 = c1, D1 = d1|C = c} =
(

c

c1

)

×
(

n − c

d1

)
2−n, 0 ≤ c1 ≤ c, 0 ≤ d1 ≤ n − c,

(39)

which is a product of two independent binomial dis-
tributions, and is independent of the underlying df.
Therefore, a test based on this conditional law is con-
ditionally distribution-free. Chatterjee [5] considered
the test statistic

Tn = 4

[
C−1

(
C1 − C

2

)2

+(n − C)−1

(
D1 − n − C

2

)2
]

, (40)

and constructed a randomized test to achieve unbi-
asedness; he showed that, under H0, the conditional
distribution of Tn converges (in probability) to the
central chi-square distribution with 2 df when n is
large. With a view to presenting the general multivari-
ate case in the same vein, we rewrite Tn in the form
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Tn = nS′
nV−1

n Sn, where S′
n = n−1 ∑n

i=1 (sign (Xi1),
sign (Xi2)), and Vn has the diagonal elements equal
to 1 and the off-diagonal elements equal to n−1 ∑n

i=1
sign (Xi1Xi2). Adjustment for ties (at 0) can be made
easily under this conditional setup. In this setup, we
now proceed to the general p variate case, and define

Sn = n−1
n∑

i=1

[sign(Xi1), . . . , sign(Xip)]′,

Vn = ((vnkq))

=
((

n−1
n∑

i=1

sign(XikXiq)

))

k,q=1,...,p

,

Tn = nS′
nV−1

n Sn, (41)

where V−1
n is a (generalized) inverse of Vn. The con-

cordance–discordance picture in the bivariate case
extends to a reflection picture (over 2p possible
cells) in the multivariate case, and generates a similar
conditional distribution as a product of 2p−1 binomial
distributions. This provides the genesis of condition-
ally distribution-free sign tests in the multivariate
case. Again, the conditional null distribution of Tn

converge (in probability) to the central chi-square dis-
tribution with p df, so that critical levels may well
be approximated by chi-square percentile points. The
asymptotic power and efficiency properties of such
sign tests have been presented in Puri & Sen [19,
Chapter 4]. This test exploits only the reflection prop-
erty of the vector of signs of the observations (under
H0). There are some other sign tests, as would be
briefly introduced later on, that are based on more
stringent group-invariance structures, and are appro-
priate only under some additional regularity assump-
tions on the underlying distributions that validate
such invariance properties.

We consider next the multivariate signed-rank
statistics [26] and exhibit their (conditional) dis-
tribution-freeness under suitable groups of transfor-
mations. As in the univariate case, we consider for
each coordinate the vector of signs and absolute
ranks. Also, we need to assume some sort of symme-
try of the cdf F , which at least implies that all the p

marginal F[1], . . . , F[p] are symmetric. For the rank-
permutation principle to work out, we need a more
stringent symmetry-condition that the cdf is diago-
nally symmetric, implying that both X − θ and θ − X
have the same distribution. In the asymptotic case,
this may be relaxed to marginal symmetry.

Let R+
ij be the rank of |Xij | among the n observa-

tions |Xrj |, r = 1, . . . , n, i = 1, . . . , n, for j =
1, . . . , p, and let

Tnj = n−1
n∑

i=1

sign(Xij )R
+
ij , j = 1, . . . , p;

vnjk = n−1
n∑

i=1

sign(XijXik)R
+
ij R

+
ik,

j, k = 1, . . . , p;

Tn = (Tn1, . . . , Tnp)′,

Vn = ((vnjk))j,k=1,...,p. (42)

Then the multivariate signed-rank statistic is

Ln = nT′
nV−1

n Tn. (43)

Conditional on the rank collection matrix R+
n and the

collection of the n sign vectors, under H0, the per-
mutation (conditional) distribution of Ln is generated
by the 2n conditionally equally likely sign-inversions,
and hence, it is a conditionally distribution-free test.
For large values of n, the permutation distribution of
Ln converges (in probability) to the central chi-square
distribution with p df, so simple approximations to
the critical levels can be obtained from the per-
centile points of this limit law. The test is consistent
against the same alternative as in the univariate case,
extended coordinatewise to the multivariate case. The
asymptotic properties (including ARE) of this signed
rank tests are essentially the same as in the case of
the multisample rank sum test, and we refer to Puri &
Sen [19, Chapter 4] for details. As in the multisam-
ple model, here also, estimates of the coordinatewise
location parameters can be based on the coordi-
natewise sign or signed-rank statistics, so that there
are closed expressions for them. The situation with
confidence sets is somewhat more complex (as the
distribution-freeness does not hold in the multivari-
ate case); nevertheless, asymptotic solutions based on
the Scheffé method work out well; we refer to Puri
& Sen [19, Chapter 6] and Bickel [2] for details.

The sign and signed-rank tests are not rotation-
ally or affine-invariant, although in the bivariate
case, the Hodges [14] sign test has some invariance
property. Incorporating the idea of Oja’s simplex
median [18], some rotation invariant bivariate sign
tests have been developed in the recent past, and its
multivariate generalizations are nicely wrapped up
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by Chaudhuri & Sengupta [9], who also extended
the Hodges sign test to the multivariate case, and
also cited other pertinent references. While for rota-
tionally invariant rank tests the sphericity of the
underlying distribution is needed, for affine invari-
ance elliptical symmetry, less restrictive than the
sphericity, suffices, but then the resulting tests are
only asymptotically distribution-free (as opposed to
the conditionally distribution-freeness of the tests pre-
sented earlier). In biostatistical applications, often, the
coordinate variables may relate to different types of
responses or characteristics which may not be linearly
compoundable, and hence the assumption of spheric-
ity or elliptical symmetry may run contrary to the
experimental setup – and hence such invariant tests
having mostly mathematical appeals for large sam-
ple sizes may not be of much use. Incidentally, the
permutation version of the Hotelling T 2 test, consid-
ered by Wald & Wolfowitz [27] more than 50 years
ago, possesses the affine-invariance property, is com-
putationally simpler, and asymptotically optimal too
(when the underlying df are multinormal). On the
other hand, such affine-invariant sign or signed rank
tests share the nonrobustness properties of the T 2

statistics (to outliers or error contaminations as well
as nonnormality). In a multivariate setup, such model
departures can occur in many more ways than in
an univariate model, and hence should be carefully
examined before deciding on a suitable test statistic,
solely on its asymptotic optimality against a specific
distributional alternative.

Multivariate Paired Comparisons Tests

A natural extension of the sign test relates to paired
comparison studies, in which t (≥ 2) objects are con-
sidered in pairs (i, j ) : 1 ≤ i < j ≤ t , and judged
with respect to some performance characteristic(s) on
a relative basis for each pair. In the case of multiple
characteristics (say, p), for each pair of objects, we
have a p-vector Xij = (X

(1)
ij , . . . , X

(p)

ij )′, where X
(k)
ij

takes on the value +1 or −1 according as the ith
object is judged better (or not) than the j th one with
respect to the kth trait, for k = 1, . . . , p; 1 ≤ i < j ≤
t . Therefore, we are given

(
t

2

)
sets of multivariate sign

vectors, where for each such table we have generally
multiple observations. It is possible to use a conven-
tional (multidimensional) contingency table to ana-
lyze such paired comparisons experiments. However,

the degrees of freedom for such tests would be con-
siderably larger when t is not small. The practice is to
combine these subsets in such a way that the object
contrasts are highlighted with a considerable reduc-
tion of the df to enhance the power. Since we have
a multivariate situation, genuinely distribution-free
procedures may not be available. Sen & David [25]
incorporated the Chatterjee [5] sign-inversion princi-
ple, and derived a simple paired comparison test for
the homogeneity of the t objects in the bivariate case.
This test statistic is conditionally (permutationally)
distribution-free and has 2(t − 1) df [compared with
t (t − 1) in the classical contingency table approach].
An extension of this paired comparison test in the
general multivariate case has been considered by
Sen [24], and it contains an unifying account of the
developments in this area.

Multivariate Friedman χ2
r Test

A direct extension of the Friedman χ2
r test to

the multivariate case is due to Gerig [11]. He
incorporated the Chatterjee–Sen rank-permutation
principle to construct the permutational disper-
sion matrix of the individual treatment rank sums
(
∑n

i=1 r
(s)
ij = pr

(s)
n,j , j = 1, . . . , p, for each coordi-

nate (s = 1, . . . , q) separately, and incorporated this
in the construction of a quadratic norm:

Ln = n

m∑

s=1

m∑

s ′=1

vss ′
n

p∑

j=1

[
r

(s)
n,j − p + 1

2

]

×
[
r

(s ′)
n,j − p + 1

2

]
, (44)

where the vn,ss are all equal to p(p + 1)/12, while

vn,ss ′ = 1

n(p − 1)

n∑

i=1

p∑

j=1

[
r

(s)
ij − p + 1

2

]

×
[
r

(s ′)
ij − p + 1

2

]
, s �= s ′ = 1, . . . , q.

(45)

Again, this test is permutationally (conditionally)
distribution-free and under the null hypothesis of
homogeneity of the treatment vectors, Ln has asymp-
totically the central chi-square distribution with
q(p − 1) df. For detailed study of the asymptotic
properties of this test, we refer the reader to Puri
& Sen [19, Chapter 7].
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Aligned Rank Tests

An inherent problem of the method of n-ranking,
be it in the univariate or multivariate case, is that
it does not properly incorporate interblock informa-
tion (as the within-block rankings are independent for
different blocks). Thus, whenever the block effects
are additive, it seems that if these are estimated,
and alignment is made by subtracting these estimated
block-effects from the respective block observations,
then these aligned observations can be ranked across
the entire set of blocks, permitting interblock com-
parisons to a greater extent. Rank tests based on
such aligned observations are termed “aligned rank
tests”. Again, the process of alignment generally dis-
torts the exact distribution-freeness of such aligned
rank tests. Nevertheless, the Chatterjee–Sen rank-
permutation principle can be adopted to show that
such aligned rank tests are permutationally (condi-
tionally) distribution-free. We denote the aligned rank
of the j th observation in the ith block (within the
entire set of N = np aligned observations) by Rn,ij ,
and compute the averages Rn,j = n−1 ∑

i=1 Rn,ij ,
j = 1, . . . , p. Also let Rn,i· = p−1 ∑p

j=1 Rn,ij , i =
1, . . . , n, and define

Vn = [n(p − 1)]−1
n∑

i=1

p∑

j=1

(Rn,j − Rn,i·)2. (46)

Then the aligned rank sum test for the univariate case
is based on

L0
N = n

Vn

p∑

j=1

(
Rn,j − N + 1

2

)2

. (47)

A similar statistic in the multivariate case with gen-
eral scores has been worked out in Sen [22], and
reported in detail in Puri & Sen [19, Chapter 7]. In
the particular case of aligned rank sum procedure,
the test statistic involves the aligned rank average of
each treatment, for each coordinate, averaged over
the n blocks, and the rank correlation matrix of these
aligned ranks, so the analogy with the multivariate χ2

r

statistic is quite apparent. The asymptotic null distri-
butions of these aligned rank tests are the same as
those based on the method of n rankings, but in the
nonnull case, particularly, for local alternatives, they
fare better than the intrablock rank tests in terms of
ARE. On the other hand, the method of n rankings
does not require block-additivity, and hence in sit-
uations in which this additivity is in question, they

may fare better than aligned rank tests. In passing,
we may remark that median-type and rank-sum-type
statistics, based either on within block rankings or
aligned ones, have also been considered for facto-
rial designs. These tests are also (conditionally for
aligned ranks) distribution-free and possess some nice
properties. For a detailed account of these procedures
for replicated 2m experiments, we refer to Sen [23].

Rank MANCOVA

One of the major advantages of the Chatterjee–Sen
rank-permutation principle in the multivariate case is
that it provides an access to handling the analysis
of covariance in a general multivariate setup, termed
MANCOVA, without any further complication. Sup-
pose that there are p primary variates and q concomi-
tant or covariates, so that we have a (p + q)-variate
distribution of the responses. A minimal requirement
for a variable to qualify as covariable or concomi-
tant variable is that its distribution is not affected by
the treatment differences that are likely to arise with
the primary response variates. Therefore, granted this
basic assumption, the homogeneity of the conditional
distributions of the primary response variables, given
the concomitant variables, across the treatment regi-
men, implies the homogeneity of the (p + q)-variate
distributions over the treatment regimen. On the other
hand, the concomitant variates may not contribute
to any significant differences in the treatment regi-
men, and hence, not to lose any power, should not
be treated as primary response variables. The reso-
lution is quite simple. First, consider an appropriate
rank statistic, say LN , for testing the homogeneity
of the (p + q)-variate distributions for the different
treatment. Next, consider the parallel test statistic just
confining attention to the concomitant variates, and
let it be denoted by L0

N . Then the covariate adjusted
rank test statistic for the primary variates, denoted by
L∗

N , is given by

L∗
N = LN − L0

N. (48)

By the Cochran theorem on quadratic forms (see Chi-
square, Partition of), L∗

N is easily shown to be non-
negative, and clearly, for different score functions, we
would obtain different such MANCOVA test statis-
tics. For example, if p = 1 and q ≥ 1, and we use the
Wilcoxon scores (for the c sample problem), we will
get a version which resembles the Kruskal–Wallis
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statistic, adjusted for covariates; this was consid-
ered by Quade [20], and a unified theory based on
their rank-permutation principle is covered in Puri
& Sen [21]. The same thing can be done for Fried-
man’s χ2

r statistic, via the multivariate extension due
to Gerig [11]. For aligned rank statistics too, a sim-
ilar picture holds. Basically these MANCOVA rank
tests are conditionally (permutationally) distribution-
free), have asymptotically chi-square distributions,
and are more efficient than their MANOVA coun-
terparts where the concomitant variates are ignored
(leading to possible loss of information). For details,
we refer the reader to Puri & Sen [19, Chapter 5].

We conclude with the remark that for both the sign
(median) and rank-sum-type procedures, the statistics
can be handled as suitable functions of (general-
ized) U -statistics, and hence, their distribution theory
(under the null as well as alternatives) can be stud-
ied under much less restrictive regularity conditions
than in the case of general rank statistics. Moreover,
adjustments for ties can also be made without much
pain. Finally, being based on bounded scores, they
have excellent robustness properties, and they are
reasonably efficient for a broad class of underlying
distributions, including the normal, Laplace, and the
logistic cdfs. In applications in the general field of
biostatistics, we therefore advocate the use of such
procedures whenever the underlying distribution is
suspected to be different from a normal one, as well
as when we have ranked data sets.
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Multivariate Methods for
Binary Longitudinal Data

In many studies one measures a dichotomous (or
binary) response variable and a set of covariates at
several times for each of many individuals. When the
outcome can occur only once or only the first occur-
rence is of interest, then methods of survival analysis
are commonly used. However, the subject of binary
longitudinal data considers the situation when the out-
come can recur and the relationship of covariates with
the multiple occurrences of the outcome is of interest.
Examples of diseases or clinical outcomes that can
recur in the same patient are common and include
asthma attacks, skin cancers, urinary tract infections,
myocardial infarctions, injuries, migraines, seizures
in epileptics, and admissions to hospital.

The challenge to the multivariate analysis of
such data arises because some individuals are
more prone to recurrences than others. Thus, the
repeated measures of the response variable will
generally be positively correlated and regression
approaches must account for these correlations
(see Longitudinal Data Analysis, Overview). A
variety of regression models appropriately account
for these correlations and several excellent reviews
have compared and discussed their alternative
indications and performance [4, 9, 12, 14, 15].

Types of Models

Marginal Models

The scientific question of interest dictates the choice
of model. Consider, for example, a longitudinal study
in which use of antihypertensive drugs is assessed at
three different times in each member of an elderly
cohort. One question of interest is whether use of
these drugs differs by age and sex and also changes
over time because of the publication between the
surveys of evidence from large-scale clinical trials
demonstrating the efficacy of antihypertensive treat-
ment in the elderly. This suggests the following
model:

log

[
µit

1 − µit

]
= β0 + β1ageit + β2sexi

+ β3weightit + β4timet , (1)

where µit is the probability that the ith individual is
using antihypertensive drugs at the t th survey, ageit

and weightit are age and weight of the ith individual
at the t th survey, sexi is the sex of this individual, and
timet is an indicator variable denoting whether the
survey is before or after the demonstration of efficacy
from randomized trials. Note that the model contains
time-varying as well as fixed covariates. Parameters
in the model are interpretable in terms of the odds of
using antihypertensive drugs; for example, exp(β4) is
the odds of using antihypertensive drugs in the later
time period relative to the earlier period, for persons
of the same age, sex, and weight.

Eq. (1) is called a marginal model because it
does not include among the independent variables
the previous levels of the response variable. It com-
monly relates levels of covariates at each observa-
tion time to the dichotomous outcome at that time,
although previous levels of covariates can also be
included. The interrelationship among the repeated
measures of the response variable is usually consid-
ered to be a nuisance. To complete the specification
of model (1), one must also specify the relationship
between the variance of the response variable and
the independent variables and the association between
the repeated measures of the dichotomous response
variable. Commonly used and interpretable choices
are that var(Yit ) = λµit (1 − µit ), where λ is a con-
stant, and that corr(Yit , Yis) depends only on the time
interval between measures, t − s, where Yit is the
response variable of the ith individual at time t . Alter-
natively, one may parameterize the interrelationship
between repeated measures of the response variable
in terms of an odds ratio or allow the strength of this
interrelationship to vary according to levels of the
independent variables [3, 13, 18].

Mixed-Effects Models

The above marginal model is sometimes called the
population-averaged approach because it assumes
common regression parameters β for all individu-
als in the population. One may prefer to include
random effects terms and the model is then called
a subject-specific model (see Marginal Models). A
simple model of this type is

log

[
µit

1 − µit

]
= β0i + β1ageit + β2sexi

+ β3weightit + β4timet , (2)
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where µit is the expectation of Yit conditional on
a subject-specific intercept β0i that is assumed to
vary according to a known distribution, e.g. normal
(0, σ 2) [2, 17, 25, 26]. The repeated measures Yit and
Yis are then assumed to be independent, conditional
on the individual random effect β0i .

The parameters β in models (1) and (2) have
different interpretations. Consider, for example, the
parameter β3 which indexes the effect of weight in
the two models. In the population-averaged approach
this coefficient summarizes the average effects over
the whole population of a unit difference in weight.
In the subject-specific model this coefficient summa-
rizes the effect of a unit change in weight within
an individual. Neuhaus et al. [16] studied the rela-
tionship between parameters from the two models
and found that, as long as the correlation between
repeated response variables is positive, parameters in
model (1) are always smaller in absolute value than
the corresponding parameters in model (2), unless
that parameter is identically zero.

Transition Models

An alternative question of scientific interest focuses
on transitions between categories of the dependent
variable. In the above example one may be interested
in determinants of new use of antihypertensive drugs
or in withdrawal or noncompliance among previous
users of these drugs. In this case a model of interest
may be

log it[Pr(Yit = 1)] = β0 + β1ageit + β2sexi

+ β3weightit−1 + β4timet

+ β5Yit−1. (3)

Or, more generally, one may assume that the cur-
rent value of the response variable depends not only
on the most recent values, but on all previous val-
ues of this variable [1]. Interpretation of regression
coefficients for age, sex, weight, and time differs
from the marginal model because in the transition
model effects are conditional on the previous value
of the response variable. Hence, this model is called a
conditional model. Because the relationship of covari-
ates with initiation of therapy is likely to differ from
their relationship with withdrawal or noncompliance,
interactions between the effects of the covariates and
the previous response variables may be of particular
interest.

A related conditional model is of interest when
one focuses on the interrelationship among the values
of the repeated responses. This model conditions on
subsequent as well as previous values of the response
variable:

log it[Pr(Yit = 1|Y−it )]

= F




∑

k �=t

Yik, θ



 + β1 ageit + β2 sexi

+ β2 weightit + β3 timet , (4)

where Y−it denotes all response values for the ith per-
son except that at the t th time and F is an arbitrary
function of

∑
k �=t Yik and parameters θ [5, 20, 22].

This conditional expression allows for specification
of the joint distribution of the repeated response vari-
ables and so this model can also be used to estimate
the probability that a person uses antihypertensive
drugs at all three times or at no time.

Approaches to Inference

In describing the above models we have presented
only the relationship of the first and second moments
of the response variable to the independent vari-
ables. Because of the interrelationships among the
repeated measures, additional assumptions are often
required to specify the complete likelihood. A chal-
lenge for the estimation of the marginal model (1)
is the absence of joint probability distributions for
multivariate binary data that yield simple expressions
for marginal means [6]. Because of the intractability
of the likelihood, Liang & Zeger [11] have recom-
mended use of the generalized estimating equations
(GEE) method, a form of quasi-likelihood, for esti-
mation and inference. Estimates of the parameters β

are solutions of the GEE:

U(β) =
N∑

i=1

DT
i V−1

i (Yi − µi ) = 0, (5)

where N is the number of subjects, Di = ∂µi/∂βT,
and Vi is an approximate or “working” covariance
matrix of Yi . Several alternative forms of Vi are
commonly used, including the assumption that the
correlation between any two different measures in the
same person is independent of time (exchangeable
correlation), that it depends only on the time interval



Multivariate Methods for Binary Longitudinal Data 3

(autoregressive correlation), or that it is completely
unspecified. Liang & Zeger showed that the GEE
approach yields consistent estimates of the param-
eters β in (1), provided only that the specification of
the expected value of the dependent variable is cor-
rect. Even if the covariance matrix is misspecified,
the following robust estimate of the variance of the
parameters is available:

V̂ (β̂) = H−1
1 (β̂)H2(β̂)H−1

1 (β̂),

where

H1(β̂) =
N∑

i=1

D̂T
i V̂−1

i D̂i ,

H2(β̂) =
N∑

i=1

D̂T
i V̂−1

i (yi − µi )(yi − µi )
TV̂−1

i D̂i ,

and V̂i and D̂i are Vi evaluated at β̂.
An extension of the estimating equation approach

allows for a parameterization of the covariance Vi , or
alternatively of pairwise odds ratios between repeated
measures, as functions of independent variables [18,
29]. Prentice & Zhao presented estimating equations
for the joint estimation of both mean and covari-
ance parameters. They also showed that these esti-
mating equations correspond to the score equations
under a quadratic exponential likelihood for the joint
distribution of the repeated measures. Fitzmaurice
& Laird [8] have also presented a likelihood-based
approach that is closely related to the GEE method.

For the mixed-effects model (2), the logistic-
normal likelihood is identified by the specifica-
tion that the random intercept follows a normal
distribution and, conditional on this intercept, the
repeated measures for an individual are independent
and have a logistic relationship with the indepen-
dent variables. However, the likelihood does not
have a closed-form expression and thus a full maxi-
mum likelihood analysis requires numerical integra-
tion [7]. One alternative is the use of Gibbs sampling
techniques [27] (see Markov Chain Monte Carlo).
Other approximate methods are based on penal-
ized quasi-likelihood or marginal quasi-likelihood
approaches [2, 25, 26, 28].

Transition models such as model (3) can be
easily fitted with available software for logistic
regression analysis if the model adequately captures
the dependence on previous levels of the outcome

variable. For example, Bonney has presented
straightforward methods for estimation under his
proposed conditional model [1]. Rosner [22] has
described likelihood-based estimation under the
related conditional model (4).

Two issues that frequently complicate estimation
in analysis of longitudinal data are the presence of
missing data and of multiple levels of clustering
in the data. Laird [10] discussed general issues of
missing data in longitudinal studies, focusing on
likelihood-based methods. Rotnitzky & Wypij [24]
presented methods to quantify the bias that can arise
from missing data in both likelihood and quasi-
likelihood estimation approaches. Robins et al. [21]
have given modifications to the GEE approach which
yield consistent estimates when missing data are
missing at random (see Nonignorable Dropout in
Longitudinal Studies).

Multiple levels of clustering would arise in the
example presented above if siblings or spouses
whose use of antihypertensive drugs might be asso-
ciated were included in the longitudinal surveys.
Alternatively, in hypertension studies one often takes
multiple measures of blood pressure of hyperten-
sion status within a short time interval and then
repeats these measures after a longer interval. In this
case subjects have repeated assessments at intervals
such as one year and each assessment is composed
of replicate measures a short time (e.g. one week)
apart. Rosner presented an extension of his model
to account for such multiple levels of clustering [23].
Qaqish & Liang [19] described GEE approaches with
multiple measures on individuals who are clustered
within families.

References

[1] Bonney, G.E. (1987). Logistic regression for dependent
binary observations, Biometrics 43, 951–973.

[2] Breslow, N.E. & Clayton, D.G. (1993). Approximate
inference in generalized linear models, Journal of the
American Statistical Association 88, 9–25.

[3] Carey, V., Zeger, S.L. & Diggle, P. (1993). Modelling
multivariate binary data with alternating logistic regres-
sions, Biometrika 80, 517–526.

[4] Clayton, D.G. (1994). Some approaches to the analysis
of recurrent event data, Statistical Methods in Medical
Research 3, 244–262.

[5] Connolly, M.A. & Liang, K.-Y. (1988). Conditional
logistic regression models for correlated binary data,
Biometrika 75, 501–506.



4 Multivariate Methods for Binary Longitudinal Data

[6] Cox, D.R. (1972). The analysis of multivariate binary
data, Applied Statistics 21, 113–120.

[7] Crouch, E.A.C. & Spiegelman, D. (1990). The evalua-
tion of integrals of the form

∫
f (t) exp(−t2)dt : applica-

tions to logistic normal models, Journal of the American
Statistical Association 85, 464–469.

[8] Fitzmaurice, G.M. & Laird, N.M. (1993). A likelihood-
based method for analyzing longitudinal binary data,
Biometrika 80, 141–151.

[9] Fitzmaurice, G.M., Laird, N.M. & Rotnitzky, A.G.
(1993). Regression models for discrete longitudinal
responses, Statistical Science 8, 284–309.

[10] Laird, N.M. (1988). Missing data in longitudinal studies,
Statistics in Medicine 7, 305–315.

[11] Liang, K.-Y. & Zeger, S.L. (1986). Longitudinal data
analysis using generalized linear models, Biometrika 73,
13–22.

[12] Liang, K.-Y., Zeger, S.L. & Qaqish, B. (1992). Multi-
variate regression analysis for categorical data (with dis-
cussion), Journal of the Royal Statistical Society, Series
B 54, 3–40.

[13] Lipsitz, S.R., Laird, N.M. & Harrington, D.P. (1991).
Generalized estimating equations for correlated binary
data: using the odds ratio as a measure of association,
Biometrika 78, 153–160.

[14] Neuhaus, J.M. (1993). Estimation efficiency and tests of
covariate effects with clustered binary data, Biometrics
49, 989–996.

[15] Neuhaus, J.M. (1992). Statistical methods for longitudi-
nal and clustered designs with binary responses, Statis-
tical Methods in Medical Research 1, 249–273.

[16] Neuhaus, J.M., Kalbfleisch, J.D. & Hauck, W.W.
(1991). A comparison of cluster-specific and population-
averaged approaches for analyzing correlated binary
data, International Statistical Review 59, 25–36.

[17] Pierce, D.A. & Sands, B.R. (1986). Extra-Bernoulli
Variation in Regression of Binary Data. Technical Report
46, Dept of Statistics, Oregon State University.

[18] Prentice, R.L. & Zhao, L.P. (1991). Estimating equations
for parameters in mean and covariances of multivari-
ate discrete and continuous responses, Biometrics 47,
825–839.

[19] Qaqish, B.F. & Liang, K.-Y. (1992). Marginal models
for correlated binary responses with multiple classes and
multiple levels of nesting, Biometrics 48, 939–950.

[20] Qu, Y.S., Williams, G.W., Beck, G.J. & Goormastic, M.
(1987). A generalized model of logistic regression for
correlated data, Communications in Statistics A 16,
3447–3476.

[21] Robins, J.M., Rotnitzky, A. & Zhao, L.P. (1995). Anal-
ysis of semiparametric regression models for repeated
outcomes in the presence of missing data, Journal of the
American Statistical Association 90, 106–121.

[22] Rosner, B. (1984). Multivariate methods in ophthalmol-
ogy with applications to other paired data situations,
Biometrics 40, 1025–1035.

[23] Rosner, B. (1989). Multivariate methods for clus-
tered binary data with more than one level of nest-
ing, Journal of the American Statistical Association 84,
373–380.

[24] Rotnitzky, A. & Wypij, D. (1994). A note on the
bias of estimators with missing data, Biometrics 50,
1163–1170.

[25] Stiratelli, R., Laird, N.M. & Ware, J.H. (1984). Ran-
dom effects models for serial observations with binary
response, Biometrics 40, 961–971.

[26] Waclawiw, M.A. & Liang, K.-Y. (1994). Empirical
Bayes estimation and inference for the random effects
model with binary response, Statistics in Medicine 13,
541–551.

[27] Zeger, S.L. & Karim, M.R. (1991). Generalized lin-
ear models with random effects: a Gibbs sampling
approach, Journal of the American Statistical Associa-
tion 86, 79–86.

[28] Zeger, S.L., Liang, K.-Y. & Albert, P.S. (1988). Models
for longitudinal data: a generalized estimating equation
approach, Biometrics 44, 1049–1060.

[29] Zhao, L.P. & Prentice, R.L. (1990). Correlated binary
regression using a quadratic exponential model, Biome-
trika 77, 642–648.

(See also Categorical Data Analysis; Distribution-
free Methods for Longitudinal Data)

ROBERT J. GLYNN & BERNARD ROSNER



Multivariate Multiple
Regression

Multiple regression analysis is used whenever we
wish to model the relationship between a dependent
(response or endogenous) variable y and a set of
p explanatory (regressor or exogenous) variables
x1, . . . , xp. Many different forms of relationship are
possible, but the overwhelming emphasis in prac-
tical applications is on the linear relationship y =
β0 + β1x1 + · · · + βpxp, where the βj are parameters
(since such a relationship often will hold approx-
imately for some suitable transformations of the
measured variables even if it does not hold for the
variables themselves) (see Multiple Linear Regres-
sion).

In a typical application, values of each of these
variables are observed on each of n sample individ-
uals. Let us suppose that yi denotes the value of
the dependent variable and that xi1, . . . , xip denote
the corresponding values of the explanatory variables
for the ith individual in the sample. The explanatory
variables are usually assumed to be measured with-
out error, but the dependent variable is subject to
measurement errors. The statistical model for this sit-
uation is thus written

yi = β0 + β1xi1 + · · · + βpxip + εi,

for i = 1, 2, . . . , n. Here ε is a random departure
term which represents the measurement errors; since
random sampling is assumed, the εi are taken to
be independent and identically distributed random
variables each having mean zero and constant
variance σ 2.

If we collect together all the yi, βj , and εi into the
vectors

y = (y1, . . . , yn)
′,

β = (β0, β1, . . . , βp)′,

ε = (ε1, . . . , εn)
′,

and write the explanatory variable values in the
n × (p + 1) matrix X = (xij ) for i = 1, . . . , n and
j = 0, 1, . . . , p, where xi0 = 1 for all i, then the
above model can be written in the compact form

y = Xβ + ε.

In this formulation ε is a random vector whose mean
is 0 and whose dispersion (or covariance matrix) is
σ 2 I.

The main interest in practical applications is the
estimation of the parameters β, hypothesis tests
and/or confidence intervals for them, and perhaps
variable selection in order to model the relationship
between dependent and explanatory variables as par-
simoniously as possible. Least squares estimates of
the parameters are given by

β̂ = (X′X)−1X′y

provided that X is of full rank (which is the case
that we assume). For all the remaining objectives it
is also necessary to assume either normality of the
departures εi or large samples. In the case of normal-
ity, maximum likelihood estimates of the parameters
coincide with the least squares estimates, β̂ has a
multivariate normal distribution with mean vector
β and dispersion matrix σ 2(X′X)−1, and σ 2 is esti-
mated from the residual mean square in the analysis
of variance associated with the regression. For large
samples, the least squares estimates have asymptotic
normality with σ 2(X′X)−1 as the dispersion matrix.
These facts enable confidence regions and hypothe-
sis tests to be constructed for elements of β, while
variable selection procedures are built out of various
statistics arising in the associated analysis of variance.

Multivariate multiple regression analysis arises
when we have q (> 1) dependent variables, and
we wish to model the relationship between each of
these variables and the set of explanatory variables.
Attention is again focused almost exclusively on
linear relationships. If the dependent variables
are y1, y2, . . . , yq , the explanatory variables are
x1, x2, . . . , xp, and all these variables are observed
on each of n sample individuals, then we have to
allow each yi to have its own linear relationship with
all the xi . Thus we have to specify q different linear
models, one between each yi and the set of xi . By
analogy with the above formulation we can write
these models as

yi = Xβi + εi ,

where

yi = (yi1, . . . , yin)
′,

βi = (βi0, βi1, . . . , βip)′,

εi = (εi1, . . . , εin)
′,
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for i = 1, . . . , q. Here yij is the value observed
for the ith dependent variable on the j th sample
member, εij is the departure term corresponding to
the ith dependent variable and j th sample member,
βi are the parameters appropriate to the ith dependent
variable, and X is the same as before. Even more
compactly, putting the q columns yi side by side into
the n × q matrix Y, the q columns βi similarly into
the (p + 1) × q matrix B, and the q columns εi into
the n × q matrix �, we can write all q linear models
in the single expression

Y = XB + �.

Once again the sample individuals are indepen-
dent, but now there is association among the depar-
ture terms ε1j , . . . , εqj corresponding to the same
sample member. Consequently, we can treat the rows
of � as independent observations from a distribu-
tion with mean vector zero and dispersion matrix �,
and for most practical purposes this distribution is
assumed to be multivariate normal.

Maximizing the likelihood for this model produces
the estimator

B̂ = (X′X)−1X′Y,

and the same estimator results from various possible
definitions of matrix least squares, also. Moreover,
since B̂ = (β̂1, . . . , β̂q), on picking out appropriate
columns from the above equation we find that

β̂i = (X′X)−1X′yi ,

for i = 1, . . . , q. That is to say, the regression coeffi-
cients have the same estimates as they would if each
dependent variable was regressed separately on the
set of explanatory variables. However, all the individ-
ual β̂ij in B̂ are now intercorrelated – those within a
column of B̂ because of the correlations among the
xi , and those in different columns of B̂ because of the
correlations among the yi . Hence, to control type I
error rates (see Level of a Test), we cannot con-
duct hypothesis tests separately on each column of B̂
but instead we need multivariate tests for hypotheses
about B.

These tests are the analogs in multivariate anal-
ysis of variance (MANOVA) of the analysis of
variance (ANOVA) F tests for multiple regression.
General theory is given in the article Multivariate

Analysis of Variance in the discussion on multivari-
ate general linear models; we content ourselves here
with specifying the relevant matrices from which the
test statistics are obtained. The error matrix, by anal-
ogy with multiple regression, is given by

E = (Y − XB̂)′(Y − XB̂) = Y′Y − B̂′X′Y

[from which an unbiased estimate of � is given
by E/(n − p − 1)]. The total matrix is T = Y′Y −
nyy′ (where y is the vector of sample means of the
yi), so the hypothesis matrix for testing the overall
significance of regression is the difference of T and
E, namely

H = B̂′X′Y − nyy′.

Any of the standard test statistics can be used to test
the significance of H, e.g. Wilks’ lambda:

Λ = |E|
|E + H| .

To test the hypothesis that the yi only depend
on a subset of the xi , partition B into B′ = (B′

rB
′
d),

where Br denotes the subset of the βij that are to
be retained, while Bd denotes the subset of the βij

that are to be deleted from the full model. If Xr

contains the columns of X corresponding to Br, then
the hypothesis matrix for testing H0 : Bd = 0 is

H = B̂′X′Y − B̂′
rX

′
rY,

while the error matrix is E as before.
Finally, the above test provides a basis for step-

wise selection of a subset of the xi for the most
parsimonious prediction of all the yi , by either adding
at each stage the x variable that has the most signif-
icant (partial) lambda, or by deleting the x variable
that has the least significant (partial) lambda. Full
details of such a scheme are given by, for example,
Rencher [1].
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Multivariate Normal
Distribution

Biometric data typically entail observations on mul-
tiple characteristics for each experimental subject.
Multivariate normal distributions (or multinormal dis-
tributions) are often central to the modeling and
analysis of such data. Reasons abound: multivari-
ate normal distributions are tractable; they have
been studied extensively; their properties are widely
known; and they support a variety of known derived
distributions. Indeed, many standard problems in sta-
tistical inference initially were posed in terms of
multinormal distributions. Empirical evidence often
points towards the normality of multivariate data.
Biometric measurements, especially, may emerge as
the result of many small increments due to heredity
and environment, so that the approximate multivari-
ate normality of such data rests on multidimensional
central limit theory. In addition, it is now known
that many normal-theory procedures, both univariate
and multivariate, remain exact for many nonnormal
multivariate distributions exhibiting suitable symme-
tries. Further details may be found in the article
on multivariate distributions. Not only do multi-
normal distributions support an impressive list of
known derived distributions, but the limiting joint
distributions of numerous statistics arising in data
analysis are themselves multinormal in view of cen-
tral limit theory. The latter include statistics employed
in large-sample theory, nonparametrics, robust
statistics, and elsewhere. In short, a working knowl-
edge of multivariate normal distributions and their
properties is essential to the knowledgeable use and
development of statistical methodologies.

Multivariate normal distributions and their appli-
cations have a rich history. Origins of these distri-
butions, beginning with two and three dimensions,
trace to the early nineteenth century [1, 5, 7, 11, 13,
21, 23, 26]. Studies in heredity, culminating in the
work of Galton [10], treat bivariate correlation anal-
ysis in a biometric setting. Systematic developments
in two and three dimensions are credited to Bra-
vais [5] and Schols [26]. Multivariate extensions in
current usage are credited to Edgeworth [8], includ-
ing such essential concepts as regression and partial
correlations under multinormality. For further details

and an excellent overview, see Johnson & Kotz [18,
Chapters 35 and 36] and Tong [29].

To fix notation: �k designates a Euclidean k-
space; Fn×k is the collection of real (n × k) matrices;
Sk consists of real symmetric (k × k) matrices; and
S0

k and S+
k comprise the positive semidefinite and the

positive definite varieties in Sk , respectively. Special
arrays include the (k × k) identity Ik , the unit vector
1k = [1, . . . , 1]′ ∈ �k , and the diagonal matrix diag
(a1, . . . , ak). L (X) designates the law of distribution
of X ∈ �k . Abbreviations for probability density,
cumulative distribution, and characteristic functions
are pdf, cdf, and chf, respectively, whereas iid refers
to a sequence of independent identically distributed
random elements.

A brief survey of essential properties follows.
These are listed under basic properties, probabil-
ity inequalities, characterizations, and central limit
theory.

Basic Properties

Suppose that X ∈ �k is random having the chf
φX(t) = exp(it′µ − t′�t/2). Then X is said to have
the multivariate normal distribution on �k with
parameters (µ, �) ∈ �k × S0

k , to be designated as
L (X) = Nk(µ, �). Moments of all orders are
defined; the mean vector and dispersion covariance
matrix are given by E(X) = µ and var(X) =
�, respectively; and odd central moments of all
orders vanish by symmetry. The class of all finite-
dimensional multinormal distributions is closed under
affine transformations, in the sense that, if L (X) =
Nk(µ, �) on �k , and if Y = AX + b with A ∈ Fr×k

and b ∈ �r fixed, then L (Y) = Nr (Aµ + b, A�A′)
on �r . This follows directly from elementary
properties of chfs.

The distribution Nk(µ, �) is said to be singular of
rank r, or to be nonsingular, according as � has rank
r < k or rank k, respectively. For the nonsingular
case, the pdf exists and is given by

f (x)= [(2π)k |�|]−1/2 exp

[−(x − µ)′�−1(x − µ)

2

]
.

(1)

A reduction to principal components proceeds on
letting Y = PX such that L (Y) = Nk(θ, Dξ ), where
P is (k × k) orthogonal such that θ = Pµ, and Dξ =
P�P′ = diag(ξ1, . . . , ξk) contains the ordered eigen-
values {ξ1 ≥ ξ2 ≥ · · · ≥ ξk ≥ 0} of �. In particular,
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for the case that L (X) is singular of rank r , the last
k − r elements of Y are concentrated at the last k − r

elements of θ with unit probability.
Joint marginal and conditional distributions of

Nk(µ, �) emerge as follows (see the article
on multivariate distributions). Partition X =
[X′

1, X′
2]′, µ = [µ′

1, µ′
2]′, and � = [�ij ] conform-

ably, with X1 ∈ �r and X2 ∈ �t such that r +
t = k. Then the joint marginal distribution of
X1 is itself multivariate normal on �r as given
by L (X1) = Nr (µ1, �11), and similarly L (X2) =
Nt (µ2, �22) on �t . In like manner, the conditional
distributions L (X1|x2) for X1, given that X2 = x2,
are themselves multinormal on �r for every fixed x2.
Specifically, L (X1|x2) = Nr (µ1·2, �11·2), having the
linear regression functions E(X1|x2) = µ1·2 = µ1 +
�12�

−
22(x2 − µ2), and dispersion parameters �11·2 =

(�11 − �12�
−
22�21) (Cambanis et al. [6]). Here �−

22
is any generalized inverse of �22. For distributions
having full rank k, �−

22 becomes the unique inverse
�−1

22 . The matrix �12�
−
22 comprises the partial

regression coefficients of X1 on x2. The squared
canonical correlations between elements of X1 and
X2 are the eigenvalues of �12�

−1
22 �21�

−1
11 . For the

case r = 1, the single eigenvalue is called the squared
multiple correlation coefficient between X1 and X2.

Many further details are provided in Johnson &
Kotz [18] and Tong [29], for example. These include
sources for special aid tables and computational algo-
rithms for evaluating various multinormal probabili-
ties, as well as extensive reference lists.

Probability Inequalities

Basic Inequalities

Basic inequalities for multivariate normal distribu-
tions are essential. In practice, there is an excess
of parameters, since (µ, �) consist of k(k + 3)/2
distinct parameters. Owing to limitations of special
aid tables and the software now available, access to
probability inequalities enables the user to employ
approximate values from existing tables or algo-
rithms, giving bounds on the required probabilities.
In this spirit, some useful inequalities may be sum-
marized as follows. Basic sources are [28, Chapter 2]
and [29, Chapters 5 and 7], together with extensive
reference lists provided there.

In what follows, � = (σij ) designates any
positive-definite (k × k) matrix, whereas R = (ρij )

signifies a positive-definite correlation matrix.
The special equicorrelation matrix is denoted
by �(ρ) = [(1 − ρ)Ik + ρ1k1′

k] for [−(k − 1)−1 <

ρ < 1]. On occasion we suppose that L (X) =
Nk[0, R(κ)], its correlation matrix R(κ) hav-
ing the structure (ρij = κiκjωij , i �= j) such that
(|κi | ≤ 1; 1 ≤ i ≤ k), where � = (ωij ) is a positive-
definite correlation matrix. With these conventions
in place, let P�(·) be the probability measure
for L (X1, . . . , Xk) = Nk(µ, �); let F�(x1, . . . , xk)

be its cdf; and let F�(x1, . . . , xk) = P�(X1 >

x1, . . . , Xk > xk). In addition, let FD(x1, . . . , xk) be
the cdf of Nk(µ, D), with D = diag (σ11, . . . , σkk),
and similarly for F D(x1, . . . , xk). Furthermore, iden-
tify G�(a1, . . . , ak) = P�(|X1| ≤ a1, . . . , |Xk| ≤ ak)

for the case L (X) = Nk(0, �), and similarly
GD(a1, . . . , ak) with D = diag (σ11, . . . , σkk) as
before. Basic probability inequalities may be sum-
marized as follows:

Inequality 1. If L (X) = Nk(µ, �), then for fixed
but arbitrary (a1, . . . , ak), the function F�(a1, . . . , ak)

is increasing in each σij for all i �= j while other
values are held fixed.

Inequality 2. Suppose that L (X) = Nk(µ, �). If
σij ≥ 0 for all i �= j , then F�(a1, . . . , ak) ≥
FD(a1, . . . , ak) ≥ ∏k

i=1 Fi(ai) holds for each fixed
(a1, . . . , ak), where Fi(·) is the marginal cdf of Xi .

Inequality 3. Suppose that L (X) = Nk(µ, �). If
σij ≥ 0 for all i �= j , then F�(a1, . . . , ak) ≥
F D(a1, . . . , ak) ≥ ∏k

i=1[1 − Fi(ai)] for arbitrarily
fixed (a1, . . . , ak).

Inequality 4. Suppose that L (X) = Nk(0, �).
Then G�(c1, . . . , ck) ≥ GD(c1, . . . , ck) ≥ ∏k

i=1 Gi

(ci) for each fixed set (c1, . . . , ck) of positive con-
stants, where Gi(·) is the marginal cdf of |Xi |.

Inequality 5. Suppose that L (X) = Nk[0, �(ρ)]
with Pρ(·) as the corresponding probability measure.
Then for each fixed a > 0 and for all real
numbers (c1, . . . , ck) such that c1 + · · · + ck =
0, Pρ(|∑k

i=1 ciXi | ≤ a) is an increasing function
of ρ.

Inequality 6. Suppose that L (X) = Nk[0, R(κ)].
Then for each fixed set of positive numbers
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(c1, . . . , ck), the function Gk(c1, . . . , ck): (i) is strictly
increasing in each κi ∈ [0, 1] with other parameters
held fixed; and (ii) is strictly decreasing in each
κi ∈ [−1, 0] with other parameters held fixed.

Concentration Properties

The comparative concentration of probabilities on �k

is an essential concept. Following Sherman [27], the
probability measure µ(·) is said to be more peaked
about 0 ∈ �k than ν(·) if and only if µ(A) ≥ ν(A)

for every set A in the class Ck consisting of the
compact convex subsets of �k that are symmetric
under reflection about 0 ∈ �k , i.e. x ∈ A implies
−x ∈ A. For two multivariate normal distributions
Nk(0, �) and Nk(0, �) on �k having ordered scale
matrices, the following inequality applies. Sufficiency
is shown in [2], and necessity in [17].

Inequality 7. Let Nk(0, �) and Nk(0, �) be mul-
tivariate normal distributions on �k having ordered
scale matrices such that � − � is positive semidefi-
nite, and let P�(·) and P�(·) be their corresponding
probability measures. Then P�(·) is more concen-
trated about 0 than P�(·) in the sense that P�(A) ≥
P�(A) for every set A in the class Ck .

Characterizations

Multivariate distributions exhibit many properties.
Various characterizations of multivariate normality
are concerned with properties unique to multinormal
distributions on �k and samples therefrom. To
survey such results let X ∈ �k be random with pdf
p(x). Then its entropy is defined as −E[ln p(X)].
Furthermore, let {X1, X2, . . . , Xn} be random vectors
in �k; write X = (X1, X2, . . . , Xn)

′ ∈ Fn×k; let
(X , S) be the sample mean vector and the
sample dispersion matrix, i.e. X = n−1(X1 + · · · +
Xn) and S = ∑n

i=1(Xi − X )(Xi − X )′/(n − 1); and
let (A1, . . . , An, B1, . . . , Bn) be nonsingular (k × k)

matrices. The following characterizations are known,
a basic reference being [20].

Characteristic 1. Suppose that X ∈ �k has the pdf
p(x) with finite dispersion matrix var(X) = �. Then
L (X) has maximal entropy among all distributions
on �k with dispersion matrix �, if and only if L (X)

is multinormal, i.e. L (X) = Nk(µ, �) [24].

Characteristic 2. Given that (X1, X2, . . . , Xn) are
iid on �k , then (X , S) are independent if and only if
each of (X1, X2, . . . , Xn) is multinormal on �k .

Characteristic 3. Given that (X1, X2) are indepen-
dent on �k , then W = X1 + X2 is multivariate nor-
mal on �k if and only if each of (X1, X2) is multi-
normal on �k .

Characteristic 4. Let (X1, X2, . . . , Xn) be inde-
pendent random vectors on �k . If the linear forms
W1 = A1X1 + · · · + AnXn and W2 = B1X1 + · · · +
BnXn are independent, then each of (X1, X2, . . . , Xn)

is multivariate normal on �k [12].

Characteristic 5. Suppose for X = (X1, X2, . . . ,

Xn)
′ ∈ Fn×k that its distribution is invariant under

left-orthogonal transformations, i.e. L (X) = L (PX)

for every (n × n) orthogonal matrix P. Then
(X1, X2, . . . , Xn) are independent if and only if each
of (X1, X2, . . . , Xn) is multinormal on �k [14].

Characteristic 6. For X ∈ �k , the distribution
L (X) is multivariate normal if and only if every
linear combination L = a1X1 + · · · + akXk is normal
on �k .

Characteristic 7. The conditional expectation E(X |
X2 − X1, . . . , Xn − X1) is constant, independently of
values of the conditioning variables, if and only if
(X1, X2, . . . , Xn) are multinormal on �k [19].

Central Limit Theory on �k

Central Limit Theorems

The simplest central limit theorem on �k is for iid
random vectors having finite means and dispersion
parameters. Details follow.

Theorem 1. Let (X1, X2, . . .) be iid random vectors
on �k having the finite mean vector µ and dispersion
matrix �, and let X n = n−1(X1 + · · · + Xn). Then,
as n → ∞, the limit distribution of n1/2(X n − µ) is
multivariate normal on �k , i.e. L ∞(n1/2[Xn − µ]) =
Nk(0, �).

Limit theorems on �k are also known for non-
identical summands and even for certain dependent
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vector sequences. An example of the former is the
following.

Theorem 2. Let (X1, X2, . . .) be a sequence of
independent random vectors in �k having cdfs
[Fi(·), i = 1, 2, . . .] with finite means and disper-
sion parameters [(µi , �i), i = 1, 2, . . .]; let X n =
n−1(X1 + · · · + Xn) and µn = n−1(µ1 + · · · + µn).
Suppose that, as n → ∞: (i) n−1 ∑n

i=1 �i → � �= 0;
and (ii) for every ε > 0, n−1 ∑n

i=1

∫
||x||>ε

√
n
||x||2 dFi

(x) → 0. Then, as n → ∞, the random vector
n1/2(Xn − µn) ∈ �k converges in law to the normal
distribution Nk(0, �) on �k .

Multivariate normality is thus assured in the limit
under the existence of second moments. If third
moments are defined, then it is often possible to get
bounds on the rate of convergence of standardized
vector sums to a multinormal limit. Such bounds are
called Berry–Esseen bounds, to be considered next.

Berry–Esseen Bounds

To proceed, let C be the class of all measurable
convex sets in �k , and let CN ⊂ C be the subclass
consisting of continuity sets of some probability mea-
sure PN(·) to be identified. The following lemma is
basic; for a proof see [16].

Lemma 1. Let (X1, . . . , XN) be an iid sequence
in �k whose typical member X = [X1, . . . , Xk]′ has
zero means, the nonsingular dispersion matrix �, and
finite absolute third moments [E(|Xi |3) = β3i ; 1 ≤
i ≤ k]. Let PN(·) be the probability measure asso-
ciated with N−1/2(X1 + · · · + XN), and let P(·) be
its multivariate normal limit having zero means and
dispersion matrix �. Then, for each N = 1, 2, . . . ,

sup
A∈C

|PN(A) − P(A)| ≤ c(k)

k∑

i=1

γ
3/2
i β3i

N1/2
, (2)

where � = (γij ) = �−1 and c(k) is a finite positive
constant depending only on k. Moreover, if A ∈ CN ,
then

sup
A∈CN

|PN(A) − P(A)| ≤ 1.595k3
k∑

i=1

γ
3/2
i β3i

δN1/2
, (3)

where δ2 is the ratio of the smallest to the largest
eigenvalue of �.

Inequality (2) was given independently by
Bhattacharya [4], Sazonov [25], and, in a some-
what different form, by Bergström [3]. Moreover,
Bergström [3] has shown that c(k) can be replaced
by c0k

3/δ, where c0 is an absolute constant and δ2 is
as defined.

The foregoing results admit numerous applications
in statistical inference in assessing the accuracy of
large-sample approximate procedures. To fix ideas,
consider Pearson’s [22] chi-square test for goodness
of fit in testing H : π = π0 against general alter-
natives, where π = [π1, . . . , πk]′ are the actual and
π0 = [π10, . . . , πk0]′ the hypothetical multinomial
probabilities. Let X2

N be Pearson’s statistic based on a
sequence of N independent trials, and let FN(·) be its
actual, and Ψν(·) its limiting cdf – central or noncen-
tral as appropriate. Then Lemma 1 applies directly
to the following effect. Suppose that the test is car-
ried out at the nominal level α based on asymptotics,
whereas its actual level is αN , typically unknown.
Then lower and upper bounds on the actual level, in
terms of the nominal level α and the natural param-
eters of the problem, as supported by Lemma 1, are
given by

α − B(π0)

N1/2
≤ αN ≤ α + B(π0)

N1/2
, (4)

where

B(π) = c(ν)

ν∑

i=1

[(
1

πi

)
+

(
1

πk

)]
πi

× (1 − πi)[1 − 2πi(1 − πi)] (5)

is to be evaluated at π0, and ν = k − 1. Similar
bounds may be found for the actual power of the
test in a sequence of N independent trials at a
fixed alternative to H. Moreover, these bounds may
be evaluated numerically in particular cases using
expression (3). For further details see [15].

Similar developments apply in the case of
Friedman’s [9] test in a two-way analysis of variance
based on ranks (see Nonparametric Methods).
Details are given in [16].

There is by now a considerable literature pertain-
ing to multivariate normal distributions, multidimen-
sional limit theory with and without moments, and
Berry–Esseen bounds on rates of convergence to a
multinormal limit. A lengthy and detailed reference
list is omitted here; access is readily available through
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searching electronic databases such as the Current
Index to Statistics, for example.
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Multivariate Normality,
Tests of

The multivariate normal density is

f (X) = [(2π)m/2|�|1/2]−1

× exp[− (
1
2

)
(X − µ)′�−1(X − µ)],

where X is an m-variate random variable, µ is the
mean vector, and � is the symmetric covariance
matrix. Most tests for multivariate normality take
advantage of properties that are unique to the multi-
variate normal distribution. One property is the neces-
sary, though not sufficient, condition that the marginal
distributions of X are univariate normal. This permits
the use of a univariate test of normality to determine
if there is nonnormality in any of the marginals (see
Normality, Tests of). However, correlation among
the variates results in correlation between the m uni-
variate tests, causing difficulty in determining their
joint distribution. D’Agostino [6] suggests a Bonfer-
roni approach, i.e. applying each test for marginal
normality at the α/m level (see Multiple Endpoints,
P Level Procedures).

A second property is that if there exists correlation
between any pair of variates, then the relation is
strictly linear. A third property is that any linear
combination of the variates is normally distributed.

A fourth property of the multivariate normal distri-
bution is that the quadratic form (Xi − µ)′�−1(Xi −
µ) = c forms an ellipse of constant probability in m-
space. A related property is that the angles between
the marginal projection of the n observation vectors
x1, x2, . . . , xn onto any of the variate planes and an
arbitrary fixed vector through the mean have a uni-
form distribution over the interval (0, 2π), denoted
U(0, 2π), and these angles are independent of the
vector lengths.

Based on these properties, the scaled residuals
from a sample of size n,

Zi = �−1/2(xi − µ),

where �1/2 is the symmetric square root of the
covariance matrix, are m-variate standard normal,
N(0m, Im). The squared Mahalanobis distance
(squared radii )

R2
i = Z′

iZi = (xi − µ)′�−1(xi − µ)

is the squared length of the vector from the mean µ to
the observation in m-space relative to the probability
ellipses. Under multivariate normality the R2

i follow a
chi-square distribution with m degrees of freedom
(χ2

m). More commonly, when the true parameters are
unknown, the Zi and R2

i can be estimated by

zi = S−1/2(xi − x), (1)

where S1/2 is the symmetric square root of S, and

r2
i = z′

izi = (xi − x)′S−1(xi − x)

for some efficient estimators x of µ and S of �. The
N(0m, Im) and χ2

m only approximate the distributions
of the zi and r2

i ; the r2
i are more closely related to an

appropriately parameterized beta distribution.
Multivariate analyses are sometimes distinguished

by whether they are invariant under linear
transformations or dependent upon the original data
coordinate system. Therefore, while most of the
tests described are affine-invariant, in certain cases
tests which are coordinate-dependent may be more
pertinent to a specific situation.

Plots

One approach to assessing multivariate normality is
to use univariate probability plots to assess each
of the marginal variables (see Graphical Displays).
Scatter plots of all variables taken two at a time
are an effective way to identify outliers and non-
linear relations between variables. A third approach
includes ordering the marginal observations indepen-
dently and plotting the ordered observations against
each other taking the variates two at a time. These
plots are equivalent to normal probability plots and
should follow a linear pattern.

One common type of probability plot, called quan-
tile–quantile (Q–Q) plots, is produced by plotting the
order statistics, or sorted observations, of a sample
on the horizontal axis against the expected values
of the order statistics from the reference (e.g. nor-
mal) distribution on the vertical axis (see Normal
Scores). Probability paper is also available for some
distributions, where the probabilities are scaled to
the expected values on the vertical axis. If a sample
comes from the reference distribution, the plot should
be approximately linear. Healy [9] suggested using
probability plots of the r2

i relative to a χ2
m distribution.
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However, especially for smaller samples, the r2
i are

better approximated by a beta variable of the first kind
with parameters a = m/2 and b = (n − m − 1)/2. In
particular, if

y = nr2

(n − 1)2
,

then y has the density given by

f (y) = ya−1(1 − y)

B(a, b)
,

where B(a, b) is the beta function, given by

B(a, b) = Γ (a)Γ (b)

Γ (a + b)

and Γ (·) is the gamma function.
In the bivariate case the angles θi made by the

observation vectors with the x1 axis are uniform over
the interval (0, 2π). Therefore, a uniform probability
plot of θ∗

i = θi/2π can provide another indication of
nonnormality in the data. By defining ui = F(r2

i ),
where F is the χ2

2 distribution function, a bivariate
plot of (ui, θ∗

i ) should be uniform over the unit
square, although here also F may be better defined as
the appropriate beta distribution. For m > 2, one of
the m − 1 angles made between the projections of the
data onto each of the variate planes and, say, the x1

axis is U(0, 2π). The remaining m − 2 angles have a
distribution proportional to sinm−1−j θj , 0 ≤ θj ≤ π ,
j = 1, . . . , m − 2 [1].

Also for the bivariate case, the distribution of
the R2

i under normality is given by F(R2) = 1 −
exp(R2/2), where F is the cdf of the χ2

2 distribution.
Then, the plot of (R2

(i), Y(i)) should fall randomly
about the line

Y(i) = log10[1 − F(R2
(i))] = 0.271R2

(i) (2)

[11, 22], where the estimate of Y(i) is log10[(n − i +
0.5)/n]. If the r2

i are compared with the beta distribu-
tion, then the plot of (R2

(i), Y(i)) should approximate
the curve

Y(i) = 0.217(n − 3) loge

[
1 − nr2

(i)

(n − 1)2

]
, (3)

which reduces to (2) as n gets large. The line
described by (3) gradually curves away from the
straight line with slope −0.217, with more and earlier
curvature for small n.

Easton & McCulloch [7] presented a multivariate
Q–Q plot based on matching the observed data with
a multivariate reference sample. By assigning the
Euclidean distance between two points as the cost
function of matching the observed xi with yj from
the reference sample, the “best” matching is found
by identifying that permutation of the data, σ ∗, in the
set P of all permutations which solves

min
σ∈P

n∑

1

||yi − xσ (i)||2.

If the data and the reference sample have the same
shape, then X and Y will have the same shape if
there is an m × m matrix A, an m-vector b, and a
permutation σ such that Axσ (i) + b ≈ y. Given a ref-
erence sample, the matching problem can be solved
by alternating between optimizing the permutation for
fixed A and b, and then reoptimizing A and b for
the current permutation σ . They used an assignment
algorithm to obtain the optimal permutation at each
step and a multivariate normal random sample as the
reference.

If xi
∗ = A∗xσ ∗(i) + b∗ is the best matching of the

data to the reference sample, then the first displays
to consider are probability plots of each of the com-
ponents of x∗ vs. y. These plots will have a fuzzy
appearance, but the usual deviations from linearity
will appear in the presence of outliers, skewness,
or heavy/light-tailedness of the data. Isolated points
may stand out in the middle of these plots, and large
or heterogeneous variability around the 45° line may
indicate deviation from normality.

A second display from this matching procedure
is a distance Q–Q plot. For this, a second reference
sample U is drawn. Then the n Euclidean distances
between X∗ and Y are plotted against those obtained
from matching U and Y, since the distances should
be similar.

Skewness and Kurtosis

Because of the popularity and good power prop-
erties of univariate moment tests for normality, it
seems only natural that the first tests for assess-
ing multivariate normality would extend the notion
of skewness and kurtosis to a multivariate setting.
Small [29] combined the marginal skewness and the
marginal kurtosis values to obtain combined skew-
ness and combined kurtosis tests, respectively. Let
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B1 and B2 be the m-vectors of marginal skewness
and kurtosis values, respectively. By applying the
Johnson Su transformations [4], component-wise to
B1 and B2 as univariate transformations to normal-
ity, the transformed vectors y(B1) and y(B2) can be
used to obtain

Q1 = y(B1)
′U−1

1 y(B1)

and

Q2 = y(B2)
′U−1

2 y(B2)

as test statistics, where U1 = (ρ̂3
ij ), U2 = (ρ̂4

ij ), and
the ρ̂ij are the sample correlations. Q1 and Q2 are
each approximated by a χ2

m distribution, and an
omnibus test Q = Q1 + Q2 is approximately χ2

2m.
Mardia [18] presented sample estimates of

multivariate skewness and kurtosis, calculated from
generalized versions of the squared radii,

rij = z′
izj = (xi − x)′S−1(xj − x).

Note that, using this notation, rii = r2
i . Mardia’s

skewness and kurtosis measures are, respectively,

b1,m = n−2
n∑

i,j=1

r3
ij

and

b2,m = n−1
n∑

1

r2
ii = n−1

n∑

1

(r2
i )2.

Under multivariate normality the exact moments of
the two tests are

E(b1,m) = m(m + 2)[(n + 1)(m + 1) − 6]

(n + 1)(n + 3)

with unknown variance, while

E(b2,m) = m(m + 2)(n − 1)

(n + 1)

var(b2,m)

= 8m(m + 2)(n − 3)(n − m − 1)(n − m + 1)

(n + 1)2(n + 3)(n + 5)

Mardia [19]. Mardia & Zemroch [21] gave a FOR-
TRAN subroutine for calculating b1,m and b2,m.

Mardia & Foster [20] presented several omnibus
tests based on combinations of b1,m and b2,m. C2

w =
wtW−1w accounts for correlation between b1,m and

b2,m, where the vector w has elements b1,m and b2,m

under transformations to normality and W is the
correlation matrix associated with w; entries of w are

w(b1,m) = 1

6
(2f )1/26

[
4nf 2

3
b1,m

]1/3

− 18f + 4

and

w(b2,m) = 3

[
f1

2

]1/2

×
(

(1 − 2)/f1

1 + s[2/(f1 − 4)1/2]1/3 + 2/9f1 − 1

)
,

where

s = b2,m − E(b2,m)

[var(b2,m)]1/2
,

f = m(m + 1)(m + 2)

6
,

and

f1 = 6 + [8m(m + 2)(m + 8)−2]1/2

× √
n{[m(m + 2)/2]1/2/(m + 8)(n)1/2

+ [1 + 0.5nm(m + 2)/(m + 8)2]1/2}.

W is a matrix with 1s on the diagonal and c =
cov[W(b1,m), W(b2,m)] as the off-diagonal elements,
where

c = (f1/16f ) − (40/9)(1 − 2/f1)

× [1/(f1 − 4)] + (n/3σ)(1 − 2/f1)
1/3

× [2/(f1 − 4)1/2]cov(b1,mb2,m) + · · ·

by Taylor expansion and σ 2 = var(b2,m). Alterna-
tively, the omnibus test, S2

w = W(b1,m) + W(b2,m),
can be used.

Two other omnibus tests are based on a normal
approximation to a χ2 variable for b1,m,

U(b1,m) = n(b1,m − 6f/n)

(72f )1/2

and a transformation to normality of b2,m,

U(b2,m) = (n)1/2[b2,m − m(m + 2)(n − 1)/(n + 1)]

[8m(m + 2)]1/2
.
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The omnibus tests are

S2
n = U2(b1,m) + U2(b2,m)

and

C2
n = b′V−1b,

where

b′ = [b1,m − 6f/n, b2,m

− m(m + 2)(n − 1)/(n + 1)]

and

V =





72f/n2 12m(8m2

−13m + 23)/n2

12m(8m2 − 13m 8m(m + 2)/n

+23)/n2



 .

These four omnibus tests are approximately χ2
2 under

the null hypothesis.
Malkovich & Afifi [17] defined the distribution of

a random vector X to have multivariate skewness if

β1(C) = E{[C′X − C′E(X)]3}2

var(C′X)3
> 0

for some vector C; without loss of generality, we can
assume that C′C = 1. Similarly, multivariate kurtosis
was defined as

β2(C) = E[C′X − C′E(X)]4

var(C′X)2
�= 3

for some vector C.
They derived b1

∗ and (b2
∗)2, based on

b1,y =
n

[
n∑

1

(yj − y)3

]2

[
n∑

1

(yj − y)2

]3

and

b2,y =
n

n∑

1

(yj − y)4

[
n∑

1

(yj − y)2

]2 ,

with yi = C′xi ; the hypothesis of no multivariate
skewness is accepted if

b1
∗ = max

C
b1,y(C) ≤ K1.

The hypothesis of no multivariate kurtosis is
accepted if

(b2
∗)2 = max

C
[b2,y(C) − K]2 ≤ K2,

where K and K2 are appropriate constants. Since
kurtosis is not symmetrically distributed, K and K2

should be chosen to weight the minimum and maxi-
mum values (over all C) of b2,y , evenly, so that the
probabilities of finding a significant low or high value
of kurtosis when the null hypothesis is true are each
α/2; as the sample size gets large, K converges to 3.
For computational purposes, let

A =
n∑

1

(xi − x)(xi − x)′ (4)

and (A∗)′AA∗ = I, and define

yj = (A∗)′(xj − x), j = 1, . . . , n.

Then

b1
∗ = max

C′C=1
n

[
n∑

1

(C′yi )
3

]2

and

(b2
∗)2 = max

C′C=1
n

[
n∑

1

(C′yi )
4 − K

]2

.

Computational details for the iterative method of cal-
culating b1

∗ and (b2
∗)2 are given in Malkovich [16].

Under certain parametric restrictions, the multi-
variate Pearson distribution reduces to the multi-
variate normal. Bera & John [3] used Rao’s score
principle [25] (see Likelihood) to test those restric-
tions, in principle developing tests for Pearson alter-
natives. They defined

Tj =
n∑

i=1

z3
ij

n
,

Tjj =
n∑

i=1

z4
ij

n
,

and

Tjk =
n∑

i=1

z2
ij z

2
ik

n
,

where the zij are the j th component of the scaled
residual zi , given by (1). Tj , Tjj , and Tjk are asymp-
totically independent and normal with means 0, 3, and
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1 and variances 6/n, 24/n, and 4/n, respectively. Tj is
the univariate skewness test and Tjj is the univariate
kurtosis test for the j th component of z. Because of
consistency conditions, they recommend first testing
the m Tj values, using

C1 = n

m∑

1

T 2
j

6

as a test for skewness, which is asymptotically χ2
m. If

C1 is not significant, then test

C2 = n



 1

24

m∑

1

(Tjj − 3)2

+ 1

4

m∑

j=1

j−1∑

k=1

(Tjk − 1)2



 ,

which is approximately χ2
m(m+1)/2. Omnibus tests are

C3 = n

[
1

6

m∑

1

T 2
j + 1

24

m∑

1

(Tjj − 3)2

]

and

C4 = C1 + C2,

which can be tested using χ2
2m and χ2

m(m+3)/2, respec-
tively.

Koziol [13, 14] considered multivariate tests based
on the theory of Neyman’s smooth tests (see Chi-
square Tests). His smooth test for skewness is alge-
braically equivalent to Mardia’s b1,m,

Û 2
3 = nb1,m

6
,

while Û 2
4 , the smooth test for kurtosis, contains b2,m

as one of its components. Koziol [15] proposed

b̃2,m = n−2
n∑

1

n∑

1

r4
ij

and showed that

24nÛ 2
4 = n2b̃2,m − 6n2b2,m + 3n2m(m + 2).

Since the distribution of Û 2
4 is less complex than that

of b̃2,m, b̃2,m is only used to calculate the former
statistic. Û 2

3 and Û 2
4 are asymptotically independent

χ2 variables with
(
p+2

3

)
and

(
p+3

4

)
df, respectively,

under the null hypothesis.

Regression and Correlation Tests

The popularity and good power properties of regres-
sion and correlation tests for univariate normality
suggested the extension of those methods to the
multivariate case. Royston [27] proposed combina-
tions of marginal Shapiro–Wilk W tests (see Normal
Scores) for assessing multivariate normality. Using
Royston’s [26] transformation of W to normality,
the test for each marginal is calculated using

zi = (1 − Wi)
λ − µ

σ
,

where λ, µ, and σ are functions of n. The values

ki = {Φ−1[
(

1
2

)
Φ(−zi)]}2

are each approximately distributed as a χ2
1 random

variable. If the m variables were uncorrelated, then
G = ∑m

1 ki/m ∼ χ2
m/m; at the other extreme, if the

variates were perfectly correlated, then G ∼ χ2
1 . For

intermediate correlations, Royston used G ∼ χ2
e /e,

where

e = m

1 + (m − 1)c

and

c =
m∑

1

m∑

1

ĉij

m2 − m
.

The ĉij are estimates of the correlation between the
ki , which for 10 ≤ n ≤ 2000 are calculated as

ĉij = r5
ij

[
1 − 0.715(1 − rij )

0.715

0.35v

]
.

Malkovich & Afifi [17] presented a multivariate
Shapiro–Wilk criterion, where multivariate normality
is accepted if

min
D

WD ≥ KW,

where WD is the univariate Shapiro–Wilk test for
the observations reduced by zi = D′xi . The vector D
which gives a lower bound is given by

D′(x1 − x) = (n − 1)

(na1)
,

D′(xj − x) = −(na1)
−1, j > 1.

An approximate solution can be found by using

D = a−1
1 A−1(x1 − x),
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where a1 is the first coefficient for the Shapiro–Wilk
test and A is the matrix (4). Since any observation
can be designated as x1, the generalized statistic W ∗
can be obtained by identifying xk as that observation
for which

(xk − x)′A−1(xk − x) = max
1≤i≤n

(xi − x)′A−1(xi − x).

(5)

Then the order statistics G(i) are found, where

Gi = (xk − x)′A−1(xi − x)

and the univariate Shapiro–Wilk test is applied to the
G(i),

W ∗ =

(
n∑

1

an,jG(j)

)2

(xk − x)′A−1(xk − x)
.

Of the set of n vectors used in (5), Fattorini [8]
proposed using the vector CM which minimized the
Shapiro–Wilk statistic, so that WF

∗ ≤ W ∗.
Royston [27] suggested using either a χ2 or beta

distribution to transform the r2
i to approximate nor-

mality by
r ′
i = Φ−1[F(r2

i )],

where F is the selected cdf. Using the Shapiro–Wilk
W and the normality transformation, Royston pro-
posed the Ω test for m-normality. He further pro-
posed examining all subsets of the m variates of size
k, k = 1, . . . , m. Each value of k gives K = (

m

k

)
non-

independent tests Ω1, . . . , Ωk. These tests may be
inspected individually or further combined into a sin-
gle test for each value of k:

θk =
k∑

1

{Φ−1[
(

1
2

)
Φ(−Ωi)]}2,

where θk ∼ χ2
k .

Tsai & Koziol [30] proposed a multivariate
Shapiro–Francia [28] correlation test,

rm;n =

n∑

1

(r2
(i) − r2)(Qi − Q)

[
n∑

1

(r2
(i) − r2)2

n∑

1

(Qi − Q)2

]1/2 ,

where the Qi are the expected values of the χ2
m order

statistics. Small values of rm;n indicate deviation from
normality.

Other Tests

Univariate empirical distribution tests have been sug-
gested for use with the r2

(i) (see Goodness of Fit; Kol-
mogorov–Smirnov Test). These include the Ander-
son–Darling A2 and the Cramér–von Mises test [24],
given by

Jn = 1

12n
+

n∑

1

[
u(i) − (i − 0.5)

n

]2

,

where u(i) = Fm(r(i))
2, Fm being the χ2

m distribution
function. A test of the uniformity of the angles θi

using Rayleigh’s test [12] is obtained by letting

l̂i = r−1
i zi .

Rayleigh’s statistic is

R̂ = n−1/2
n∑

1

l̂i .

R̂ is normal with mean vector 0 and covariance given
by V = vI with

v = m−1[1 − 2/m({Γ [(m + 1)/2]/Γ (m/2)})2].

Ry = R̂′V−1R̂ can be compared to a χ2
m distribution

to obtain probability levels. Since they are inde-
pendent, if p1 = Pr(x > Jn) and p2 = Pr(x > Ry),
where the probabilities are obtained for the observed
test statistics Jn and Ry , then −2(log p1 + log p2) ∼
χ2

4 .
Ward [31] proposed estimating the cumulative dis-

tribution function of X,

yi = F̂ (xi ) =
m∏

j=1

Φ(zij ),

and using the Kolmogorov–Smirnov D or Ander-
son–Darling A2 test to test the goodness of fit of the
yi to the density

g(y) = (− log y)m−1

Γ (m)
, 0 < y < 1.

Here, the yi have an inherently different ordering
from the r2

i : while the r2
i are minimized at the point

x = x, yi tends towards its minimum value of 0 as
each of the m variates goes away from x.
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The χ2 test is adaptable to any null distribution,
including those that are multivariate in nature. As
in the univariate case, cells must be defined and
the expected and observed numbers of observations
found in each must be ascertained. The problems
with the univariate χ2 test, however, must also be
addressed in the multivariate setting, i.e. cell size and
number of cells.

For the bivariate case, Kowalski [11] used the χ2
2

distribution to determine cell sizes. If 2c2 = (X −
µ)′�−1(X − µ) is an ellipse of constant probability
based on a multivariate normal distribution, then the
volume of a ring between the ellipses defined by 2c2

and 2(c + dc)2 is

V = exp(−c2) − exp[−(c + dc)−2],

and nV observations would be expected to occur
within the ring. Comparison of expected with
observed of observations within rings can then
be made using the standard χ2 test. Mason &
Young [22] used the beta approximation for the r2

i ,

Wc = Pr(r2
i < 2c2) = 1 −

[
1 − 2c2n

(n − 1)2

](n−3)/2

.

To obtain rings of equal size, the approximate rela-
tionship

2c2 = n

[
1 − 1 − i

k

]2/(n−3)

can be used for a specified number, k, of cells and
n(Wc+dc − Wc) observations will be within the ring
defined by c and c + dc. Moore & Stubblebine [23]
extended Kowalski’s χ2 test to a general dimen-
sion m.

Cox & Small [5] proposed pairwise testing for
linearity between components of a multivariate distri-
bution using Qij , the Student’s t statistic of signif-
icance for the coefficient of x2

j when xi is regressed
on xj and x2

j . For the purpose of symmetry, the joint
statistic (Qij , Qj,i) is used. Then (for large samples),

max(|Qi,j |, |Qj,i |)

can be referred to tables of the bivariate normal
distribution, or

Q′R−1Q

can be used as a χ2
2 test, where Q = [Qi,j Qj,i],

R =
[

1 ρ̃ij (2 − 3ρ̃2
ij )

ρ̃ij (2 − 3ρ̃2
ij ) 1

]
,

and ρ̃ij is the observed correlation between the com-
ponents. An alternative is a regression of each compo-
nent xi on all other components xk and x2

j . From the
m(m − 1) regressions, the Q values may be ordered
and plotted on a normal probability plot, provided the
sample size is sufficiently large.

Andrews et al. [1] projected the data along direc-
tions which are chosen to be sensitive to particular
types of nonnormality. Since nonnormality in the data
may result in nonnormal clustering of points, the
vector

dα =

n∑

1

wizi

∥∥∥∥∥

n∑

1

wizi

∥∥∥∥∥

may be used to point to these clusters, where wi =
||zi ||α and α is a constant to be chosen which will
determine the region of sensitivity. In particular, if
α < 0, then dα points in the direction of nonnormal
clusters near the mean, while for α > 0, dα points
to clusters far from the mean. The observations can
be projected onto the direction identified by dα

∗ =
S1/2dα , and the lengths of the projections dα

∗ will,
under the null hypothesis, form a univariate normal
sample which can be tested using any univariate test
for normality.

Andrews et al. [2] proposed the nearest distance
test for ascertaining joint normality. The initial step
consists of transforming the data to the unit hyper-
cube by using the zi and calculating the vector yi ,
where the entries are defined by yij = Φ(zij ). After
calculating the distances

d(i, i ′) = max
k

[
min(|yki − yki ′ |, ||yki − yki ′ | − 1|)] ,

the nearest distance is found:

dmin = min
i ′ �=i

d(i, i ′).

These distances are further transformed to standard
normal deviates: for each yi let

wi = Φ
1 − exp{−n[2dmin(i)]p}

1 − exp(−1)
,
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if and only if dmin(i) < 1/2n1/p and d(i, i ′) >

1/2n1/p , i ′ < i. Under the null hypothesis, the
transformed distances are independent of the
coordinates from which they are measured; this
independence can be measured using multiple
regression. For all of the n′ ≤ n points that follow
these two conditions, fit the regression model

wi = β0 +
m∑

j=1

βjxij +
m∑

j=1

m∑

k=1

βjkxij xik.

The regression sum of squares should be compared
with a χ2

(p+1)(p+2)/2.
Henze & Zirkler [10] presented a class of invariant

consistent tests for composite multivariate normality,
based on the weighted integral of the difference
between the empirical characteristic function and its
pointwise limit. The test is given by

Tβ = n(4I(S singular) + Dn,βI(S nonsingular)),

where I is the indicator function and

Dn,β = n−2
n∑

j,k=1

exp

[
−β2

2
||zj − zk||2

]

+ (1 + 2β2)−m/2 − 2(1 + β2)−m/2n−1

×
n∑

j=1

exp

{
−β2

[2(1 + β2)]r2
j

}
,

where

||zj − zk||2 = (xj − xk)
′S−1(xj − xk)

and

β = 1√
2

[
n(2m + 1)

4

]1/(m+4)

.

Tβ rejects the null hypothesis when the test value is
too large. When S is singular, Dn,β is undefined, so
Tβ is set to its maximum value of 4, causing rejection
of the null hypothesis.

Recommendations

Since there are many types of departures from mul-
tivariate normality, a single best test may not exist.
A multivariate test may dilute the effects of a subset
of nonnormal components, while marginal tests may

miss departures in multivariate combinations of vari-
ables. Because many of the testing procedures are
difficult to program and are not included in avail-
able statistical packages, and critical values are not
always available, and because of the lack of definitive
power studies, it is difficult to evaluate the relative
usefulness of the tests. However, the Bera & John [3]
tests and Mardia’s skewness, kurtosis, and omnibus
tests seem to have relatively high power against a
variety of alternatives. The Tβ tests, and in particular
the parameterization with β = 0.5(T0.5), also seem
to have good power properties over a wide variety of
alternatives [10].
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Multivariate Outliers

Outlier rejection based on an appropriate test of dis-
cordancy is just one prospect; alternatives include
accommodation (outlier-robust) procedures, which
limit the effects of possible contamination on infer-
ring properties of the principal uncontaminated data
source, or identification of the nature of the contami-
nation as an interest in its own right. Such approaches
need appropriate outlier models to reflect the possible
uncontaminated or contaminated forms of the under-
lying population.

This same range of possible actions (rejection,
accommodation, identification), of procedures and
of models applies to multivariate also, but with a
crucial difference. For univariate data outliers are
extremes: they “stick out at the ends of the sample”.
For multivariate data, there is no natural concept of
an extreme, and outlier-detection procedures will be
needed to reveal outlying data points.

Multivariate data may contain outliers, of course.
They appear as observations lying well out on the
periphery of the data cloud. But what is “well out”?
We need appropriate formalizations of this notion for
detecting multivariate outliers before examining the
range of models procedures for the statistical analysis
of multivariate outliers (a comprehensive review is
provided in Chapter 7 of [7]).

Interest in outliers (or “spurious observations” or
“mavericks”) goes back to the origins of statistical
enquiry. As observations in a univariate sample, they
are not only extreme but are “extremely extreme” –
they trigger concern for whether they are truly part
of the population under investigation or reflect “con-
tamination” from some other low-incidence source.
Early preoccupation with rejecting such observations
“to restore the integrity of the sample”, or of stead-
fastly retaining them, so as not to “distort the message
of the data” has been replaced in modern times by
more sophisticated considerations.

Thus, whilst rejection based on an appropri-
ate statistical procedure (a test of discordancy) is
still a prospect, alternatives include accommodation
(outlier-robust) procedures which limit the effects of
possible contamination on inferring properties of the
principal uncontaminated data source, or identifica-
tion of the nature of the contamination as an interest
in its own right. Such approaches need to be based
on appropriate outlier models to reflect the possible

uncontaminated or contaminated forms of the under-
lying population and its distributional characteristics.
Such attitudes and approaches to outlier study pro-
vide a sound basis for handling outliers (see, for
example, Barnett [3]) and for the vast array of spe-
cific statistical inference procedures which have been
developed for studying outliers in recent times. Bar-
nett & Lewis [7] provide a comprehensive review
of the field, not only for basic univariate data, but
for more structured relational models such as linear
models (regression and designed experiments), time
series, directional data (see Circular Data Models),
categorical data, and general multivariate data (see
Diagnostics; Multivariate Analysis, Overview).

In all these cases the ranges of possible actions
(rejection, accommodation, identification), of proce-
dures, and of models are essentially similar to those
for univariate data. A crucial difference, however, is
in the indication provided by the data of the pres-
ence of outlying observations. For univariate data the
outliers are extreme values: they “stick out at the
ends of the sample”. In more structured or higher-
dimensional data the stimulus is less obvious. Out-
liers in regression data may be detected by extreme
residuals as distinctly breaking the pattern of rela-
tionship. For general multivariate data there is no
natural concept of an extreme, and outlier detection
procedures will be needed to reveal outlying data
points.

The fact that multivariate data may contain out-
liers is not in dispute. They are often clearly signaled
by observations lying well out on the periphery of
the data cloud. See, for example, the observations
marked A and B on the two-dimensional scatter
plot shown in Figure 1. But what do we mean by
“lying well out”? We need to consider appropriate
formalizations of this notion for detecting multivari-
ate outliers, and then proceed to examine the range of
procedures for the statistical analysis of multivariate
outliers (a comprehensive review is provided in [7,
Chapter 7].

Principles for Multivariate Outlier
Detection

We need some way of essentially “ordering” the
multivariate data. No natural unambiguous ordering
principle is possible in more than one dimension; but
progress can be made using more modest suborder-
ing principles. Barnett [2] categorizes these in four
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x2 A

x1

B

Figure 1 A bivariate sample

types: marginal, reduced (or aggregate), partial, and
conditional. For outlier study, reduced subordering is
almost the only principle that has been employed.

With reduced subordering we transform any
multivariate observation x, of dimension p, to a
scalar quantity R(x). We can then order a sample
x1, x2, . . . , xn in terms of the values Rj = R(xj ), j =
1, 2, . . . , n. That observation xi which yields the
maximum value R(n) is then a candidate for
declaration as an outlier – provided its extremeness is
surprising relative to the basic model F . Specifically,
an outlier xi will be adjudged discordant if R(n) is
unreasonably (statistically) large in relation to the
distribution of R(n) under F . Thus the principle of
a test of discordance is the same as it was for a
univariate outlier.

However, many problems now arise which are
specific to the multivariate case. Clearly, we may
lose useful information on multivariate structure by
employing reduced (or any other form of) suborder-
ing. So how are we to choose the reduction measure
R(x)? Subjective choice is fraught with danger; mul-
tivariate data do not reveal their structure readily (or
reliably) to casual observation.

Barnett [4] has considered general principles for
the detection of multivariate outliers. He proposes
two possibilities as follows.

Principle A

The most extreme observation is the one, xi , whose
omission from the sample x1, x2, . . . , xn yields the
largest incremental increase in the maximized likeli-
hood under F for the remaining data. If this increase
is surprisingly large, declare xi to be an outlier.

This principle requires only the basic model F to
be specified. If we are prepared to adopt an alternative
(contamination) model F , e.g. of slippage type with
one contaminant, we can set up a more sophisticated
principle, as follows.

Principle B

The most extreme observation is the one, xi , whose
assignment as the contaminant in the sense of F

maximizes the difference between the log likelihoods
of the sample under F and F . If this difference is
surprisingly large, declare xi to be an outlier.

Such principles have been applied: Barnett &
Lewis [7, Section 7.3] discuss applications to multi-
variate normal, exponential, and Pareto models.
Often, however, the reduction metric R(x) is chosen
in an ad hoc (if intuitively supported) manner. For
example, it is common to represent a multivariate
observation x by means of a distance measure,

R(x; x0, �) = (x − x0)
′�−1(x − x0),

where x0 reflects the location of the underlying distri-
bution and �−1 applies a differential weighting to the
components of the multivariate observation inversely
related to their scatter or to the population variabil-
ity. For example, x0 might be the zero vector, the
true mean µ, or the sample mean x, and � might
be the covariance matrix V or its sample equivalent
S, depending on the state of our knowledge about µ

and V.
If the basic model F were multivariate normal,

N(µ, V), the corresponding form,

R(x; µ, V) = (x − µ)′V−1(x − µ),

has substantial practical appeal in terms of probability
density ellipsoids and turns out to have much broader
statistical support, including accord with Principle
A. In fact, the sample shown in Figure 1 is from a
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bivariate normal distribution, and the appropriate
elliptic density contours in Figure 2 highlight any
intuitive concern we had for the observations A and
B. For other distributions, R(x; x0, �) may or may
not be appropriate, as we shall find later, but it is
nonetheless widely used.

A Bayesian approach to outlier detection
(“detection of spuriosity”) arises from the work of
Guttman [23]. It is interesting to note that the implicit
concept of extremeness used to detect the outlier
is again expressible in terms of the distance metric
R(x; µ, V).

We now proceed to consider accommodation pro-
cedures and then tests of discordancy for multivariate
outliers. With the greater complexity of the multivari-
ate case, however, there also exist a wide range of
informal proposals for outlier detection and process-
ing – we shall consider some of these.

Accommodation

For multivariate data we often need statistical meth-
ods that are specifically robust against (i.e. which
accommodate) outliers as manifestations of contam-
ination. Such accommodation procedures exist for
estimating parameters (often with specific regard
to the multinormal distribution) and for various

x2 A

x1

B

Figure 2 The sample with probability density ellipses

multivariate procedures (such as principal compo-
nents and discriminant analysis).

Suppose that, under a basic model F, X has mean
vector µ and covariance matrix V. Outlier robust esti-
mation of µ and of V (also the correlation matrix, R)
has been widely examined, both in terms of indi-
vidual components, and of the overall forms, of the
mean vector and covariance matrix. For µ, the start-
ing point is in an obvious generalization of the work
of Anscombe [1]. For N(µ, V), we order the sample,
and if R(n)(x; x, V) (or R(n)(x; x, S), depending on our
knowledge about V, is sufficiently large, then we omit
the observation x, yielding R(n), before estimating µ

from the residual sample; if R(n) is not sufficiently
large, then we use the overall sample mean, x. Such
adaptive trimming is revised by Golub et al. [21],
who employ a similar approach but based on Win-
sorization or “semi-Winsorization” (see Trimming
and Winsorization). This approach can be extended
to sequential trimming or Winsorization of several
sufficiently extreme values. Guttman [23] considers
the posterior distribution of a for a basic model
N(µ, V) and mean-slippage alternative N(µ + a, V)

for at most one of the observations.
Some qualitative effects of outliers on estima-

tion of V, and corresponding attitudes to robust
estimation, are considered by Devlin et al. [15] and
by Campbell [11], who claims that outliers “tend to
deflate correlations and possibly inflate variance”,
although this may be rather too simplistic a prescrip-
tion. A tangible form for outlier-robust M-estimators
of µ and V, relevant to an elliptically symmetric basic
model, is considered by Maronna [28] and by Camp-
bell [11].

An early proposal for direct robust estimation of
the matrix V in positive-definite form was made by
Gnanadesikan & Kettenring [20]. It involves selec-
tive iterative trimming of the sample based on values
of some measure R(x; x∗, I), where x∗ is a robust esti-
mator of µ. The procedure is intuitively appealing,
but only limited empirical investigation is reported.

Rousseeuw & van Zomeren [30] are also con-
cerned with outlier robust estimation of µ and V.
Rejecting the M-estimators of Campbell [11] in view
of the low breakdown point, they suggest alternative
robust estimators with a higher breakdown point.

Gnanadesikan [19, Section 5.2.3] includes detailed
proposals for constructing robust estimators of the
individual elements of µ and V as well as for directly
“multivariate” estimators of µ and V. One difficulty
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with such an approach is that, if we form estima-
tors of V or of R from separate robust estimators
of their elements, the resulting V and R may not be
positive-definite. Devlin et al. [14] propose a remedy
involving “shrinking” R until it is positive-definite,
and rescaling it if an estimate of V is required. (They
also review various ad hoc estimators of the corre-
lation coefficient, for a bivariate normal distribution,
based on partitioning the sample space, on transfor-
mations of Kendall’s τ (see Association, Measures
of) or on normal scores; see also [26]).

Another approach to outlier-robust estimation of
correlation uses the ideas of convex hull “peeling” or
ellipsoidal peeling (see [8, 32] for details) following
the suggestion by Barnett [2] that the most extreme
group of observations in a multivariate sample are
those lying on the convex hull (with those on the
convex hull of the remaining sample, the second most
extreme group, etc). Figure 3 shows the successive
convex hulls for the bivariate sample presented in
Figure 2.

Any form of multivariate analysis is, of course,
likely to be susceptible to outliers as the manifestation
of contamination. Proposals for modified forms of
multivariate analysis which give protection against

x2

x1

Figure 3 Convex hulls for the sample

outliers include those for principal component anal-
ysis using M-estimators [11], for canonical variate
analysis (see Canonical Correlation) [12], and for
discriminant analysis [10]. Critchley & Vitiello [13]
further examine Campbell’s approach to the influence
of outliers in linear discriminant analysis with par-
ticular regard to estimates of misclassification prob-
abilities. Outlier robust (accommodation) methods
have also been advanced for analysis of covari-
ance [9], correspondence analysis [16], and multi-
dimensional scaling [31].

Discordancy Tests

The notion of a test of discordancy is as relevant
to multivariate data as it is to univariate samples,
although conceptual and manipulative difficulties have
limited the number of formal and specific proposals.
Most work centres on the normal distribution, which
proves amenable to the construction of tests of discor-
dancy with desirable statistical properties and a useful
degree of unity of form.

Suppose x1, x2, . . . , xn is a sample of n obser-
vations from a p-dimensional normal distribution,
N(µ, V). A possible alternative model which would
account for a single contaminant is the slippage
alternative, obtained as a multivariate adaptation of
the univariate models A (slippage of the mean) and
B (slippage of the variance) discussed by Fergu-
son [18]. A test of discordancy can be based on
the two-stage maximum likelihood ratio principle (i.e.
Principle B, above). Models A and B have been stud-
ied extensively with various assumptions about what
parameter values are known [7, Section 7.3].

As an example, consider model A with V known.
Here we are led to declare as the outlier x(n) the obser-
vation xi for which Ri(x, V) = (xi − x)′V−1(xi −
x) is a maximum, so that implicitly the observa-
tions have been ordered in terms of the reduced
form of subordering based on the distance measure
R(x; x, V). Furthermore, we will declare x(n) a dis-
cordant outlier if

R(n)(x, V) = (x(n) − x)′V−1(x(n) − x)

= max Rj (x, V)

is significantly large.
The null distribution of R(n)(x, V) is neither read-

ily determined in exact form nor very tractable, but



Multivariate Outliers 5

it has been widely studied. Critical values for dis-
cordancy tests for models A and B under various
assumptions about parameter values being known or
unknown are given in [7, Tables XXX–XXXIV].

For model A with V unknown, using a similar
likelihood approach, it seems at first sight that quite
a different principle is advanced for the declaration of
an outlier xi and for the assessment of its discordancy.
Here we lead to implicitly ordering the multivariate
observations in terms of reduced subordering based
on the values of |A(j)|, which are

∑
(xi − x)(xi − x)′,

where the sum is taken over all observations except
xj . The |A(j)| are ordered, and the observation cor-
responding to the smallest value of |A(j)| is declared
an outlier.

Thus the outlier is the observation whose removal
from the sample effects the greatest reduction in the
“internal scatter” of the data set, and it is adjudged
discordant if this reduction is sufficiently large. This
approach was first advanced by Wilks [33], but the
distinction of principle for declaring an outlier in the
case of unknown V, compared with the case where
V is known, turns out to be less profound than might
appear at first sight since it is possible to reexpress
the internal scatter in terms of the distance measure
R(x, S).

Thus the outlier is again that observation whose
“distance” from the body of the data set is a maxi-
mum, provided we replace µ and V by x and S.

Frequently we encounter multivariate data for
which the normal distribution is quite unsuitable, in
view of manifest skewness. Thus we might need
to consider models expressing skewness. Two such
prospects are provided by a multivariate exponential
model and a multivariate Pareto model.

Many forms of multivariate exponential distri-
bution have been proposed. One of these, due to
Gumbel [22], has for the bivariate case a probability
density function

f (x1, x2) = [(1 + θx1)(1 + θx2) − θ]

× exp(−x1x2 − θx1x2).

Applying a directional form of Principle A, an appro-
priate reduction measure,

R(X) = X1 + X2 + θX1X2,

is obtained. Thus an upper outlier is detected as the
observation (x1i , x2i) which yields the largest value of

R(x) over the sample of n observations. It is judged
discordant if the corresponding R(n) = max R(xi ) is
sufficiently large. The distribution of R(n) is tractable.
See Barnett [4], who also considers a discordancy
test for an “upper” outlier in another skew bivariate
distribution: namely, the (one of the two) Pareto
distribution(s) considered by Mardia [27] which has
probability density function

f (x1, x2) = a(a + 1)(θ1θ2)
a+1

× (θ2x1 + θ1x2 − θ1θ2)
−(a+2),

for x1 ≥ θ1 ≥ 0, x2 ≥ θ2 ≥ 0, and a > 0. The corre-
lation coefficient is ρ = a−1(a > 2).

This time the appropriate restricted form of Prin-
ciple A (assuming θ1, θ2, and a are known) yields a
reduction measure

R(X) =
(

x1

θ1

)
+

(
x2

θ2

)
− 1.

This is again tractable and yields the critical value
γα for a level-α discordancy test for an upper outlier,
satisfying

δγ (a+1)
α − (a + 1)γα + a = 0,

with δ = 1 − (1 − α)1/n.

Informal Methods for Multivariate
Outliers

A host of informal proposals have been made for
detecting outliers in multivariate data by quantita-
tive or graphical methods (see Graphical Displays).
These cannot be regarded as tests of discordancy;
they may be based on derived reduction measures
(but with no supporting distribution theory) or, more
commonly, they are presented simply as aids to intu-
ition in picking out multivariate observations which
are suspiciously aberrant from the bulk of the sample.

Various forms of initial processing of the
data, involving transformation, study of individual
marginal components of the observations, judicious
reduction of the multivariate observations to scalar
quantities in the forms of reduction measures or
linear combinations of components, changes in the
coordinate bases of the observations, and appropriate
methods of graphical representation, can all help
to identify or highlight suspicious observations. If
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several such procedures are applied simultaneously
(or separately) to a set of data they can help to
overcome the difficulty caused by the absence of
a natural overall ordering of the sample members.
An observation which clearly stands out on one, or
preferably more, processed re-representations of the
sample becomes a firm candidate for identification as
an outlier.

An early example of an informal graphical pro-
cedure is described by Healy [25], who proposes
plotting the ordered Rj (x, S) against the expected
values of the order statistics of a sample of size n

from χ2
p.

We should not underestimate the importance of
the marginal samples (that is, the univariate samples
of each component value in the multivariate data)
in the occurrence of outliers. It is perfectly plausi-
ble for contamination to occur in one of the marginal
variables alone – for example, by misreading or an
error of recording. It could even happen that a single
marginal variable is intrinsically more liable to con-
tamination. We must be careful, however, not to adopt
too simplistic an approach in examining this prospect.
This is illustrated in some work by Barnett [5], who
considers a sample from a bivariate normal distri-
bution where contamination may have occurred by
slippage of the mean of the first component only for
one observation. The detection of such an outlier is
by no means simple.

Graphical and pictorial methods are often ad-
vanced in relation to multivariate outliers. Rohlf [29]
remarks as follows:

Despite the apparent complexity of the problem,
one can still characterize outliers by the fact that
they are somewhat isolated from the main cloud
of points. They may not “stick out on the end” of
the distributions as univariate outliers must, but they
must “stick out” somewhere.

With this emphasis it is natural to consider differ-
ent ways in which we can merely look at the data
to see if they seem to contain outliers. A variety
of methods employing different forms of pictorial
or graphical representation have been proposed with
varying degrees of sophistication. Review of such
methods of “informal inference” applied to general
problems of analysis of multivariate data including
the detection of outliers are presented by Gnanade-
sikan [19] and by Barnett [6]. (See [7, Section 7.4],
for further details on published contributions in this
spirit.)

It can be useful to perform a preliminary principal
components analysis on the data, and to look at sam-
ple values of the projection of the observations on to
the principal components of different order. Gnanade-
sikan & Kettenring [20] discuss this in some detail,
remarking how the first few principal components
are sensitive to outliers inflating variances or covari-
ances (or correlations, if the principal components
analysis has been conducted in terms of the sample
correlation matrix, rather than the sample covariance
matrix), whilst the last few are sensitive to outliers
adding spurious dimensions to the data or obscuring
singularities. Some modifications of approach to out-
lier detection by principal components analysis are
suggested by Hawkins [24] and by Fellegi [17].

Another way in which informal quantitative and
graphical procedures may be used to exhibit outliers
is to construct reduced univariate measures. Gnanade-
sikan & Kettenring [20] consider various possible
classes of such measures which are all similar in
principle to the “distance” measure discussed above.
Particularly extreme values of such statistics, possibly
demonstrated by graphical display, may reveal out-
liers of different types. For graphical display of out-
liers, the “gamma-type probability plots” of ordered
values, with appropriately estimated shape parame-
ters, are also a useful approximate procedure and have
been widely considered.

We have already noted the way in which out-
liers may affect, and be revealed by, the correlation
structure in the data. Some proposals for identifying
multivariate outliers specifically consider this mat-
ter. Gnanadesikan & Kettenring [20] suggest that we
examine the product–moment correlation coefficients
r−j (s, t) relating to the sth and t th marginal samples
after the omission of the single observation xj . As
we vary j we can examine, for any choice of s and
t , the way in which the correlation changes – sub-
stantial variations reflecting possible outliers. Devlin
et al. [14] make use of the influence function to inves-
tigate how outliers affect correlation estimates in
bivariate data (p = 2). Influence functions of other
statistics (apart from the correlation coefficient) have
also been proposed as a basis for detecting outliers.

We noted earlier the characterization of multivari-
ate outliers suggested by Rohlf [29] – that they are
separated from other observations “by distinct gaps”.
Rohlf has used this idea to develop a gap test for mul-
tivariate outliers based on minimum spanning trees
(see Graphical Displays). He argues that a single
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isolated point will be connected to only one other
point in the minimum spanning tree by a relatively
large distance, and that at least one edge connec-
tion from a cluster of outliers must also be relatively
large. Accordingly, an informal gap test for outliers
is proposed based on this principle.

This article can only briefly review the very wide
range of concepts and methods for multivariate out-
liers. Barnett & Lewis [7, Chapter 7] provide the
entrée to more detailed study.
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Multivariate Survival
Analysis

Multivariate survival analysis deals with methods
designed for the study of correlated failure time
observations taken on a single individual or a group
of individuals. Examples of applications include
epidemiologic studies on the familial tendency in
chronic disease incidence, follow-up studies of recur-
rent diseases (see Repeated Events), litter-matched
carcinogenicity experiments on animals (see Tumor
Incidence Experiments), or clinical trials on paired
human organs.

Extensions of both non and semiparametric meth-
ods of univariate survival analysis to the multivari-
ate setting have turned out to be quite difficult and
resulted in many different approaches. In general, the
analysis of multivariate failure time data requires a
rigorous specification of both censoring mechanisms
and timescales on which failure time observations are
recorded. Multivariate censoring arises when failure
time observations are registered on several different
time clocks. This is common to familial studies where
life lengths or age at the onset of a disease are mea-
sured on a different timescale for each member of the
family. Moreover, each family member may be sub-
ject to his/her own censoring mechanism. So-called
univariate censoring may arise when serial observa-
tions are taken on a single individual. These may be,
for example, times of successive episodes of asth-
matic attacks or times of the onset of specific stages
of a nonrecurrent disease. The univariate censoring
model applies also to many twin studies and matched-
pair experiments. Finally, the occurrence of a single
event may be recorded on several timescales. Exam-
ples are provided by staggered entry models where
of interest are both the calendar time of entry into a
clinical trial and the duration of the subsequent time
period on trial.

From a more mathematical point of view, both
univariate censoring models and models involving
multiple time measurements of a single event can be
formulated usually within the classical marked point
process framework of survival analysis [4]. How-
ever, the martingale-based methods for the deriva-
tion of estimates and their large-sample properties
are, in general, insufficient in this setting and are
replaced by methods related to empirical processes

techniques. These methods also apply to models
involving multiple clock experiments. Such exper-
iments can only seldom be defined using marked
point processes in real time because concepts such as
“past–present–future” do not have a clear-cut inter-
pretation in the case of multiparameter processes.

Nonparametric Estimation

Survival function estimation is the center-point of
nonparametric approaches towards the analysis of
multivariate failure time data. From a practical point
of view, multivariate survival functions are seldom of
interest on their own; however, they play an important
role as an auxiliary tool in other inferential problems.
Examples of applications include density estimation
in graphical displays of data, regression analyses
with uncensored or censored covariates, estimation
of dependence parameters, goodness-of-fit tests, and
so forth.

In the special univariate case, estimation of the
unknown survival function S of a possibly censored
failure time T is usually based on the Kaplan–Meier
estimate. The choice of this estimator can be justi-
fied by both nonparametric maximum likelihood
and self-consistency principles [20, 30]. In addition,
the estimate is the sample analog of the product-
integral representation of survival functions in terms
of cumulative hazards [23]. The latter concept does
not have a unique extension to multivariate distribu-
tions, whereas both maximum likelihood and self-
consistency principles do not lead, in general, to
unique and consistent estimates of the multivariate
survival functions in the presence of censoring [47,
53]. As a result, there are many different approaches
to this estimation problem.

Here, we assume first that the multivariate vec-
tor of interest is of the form (T , Z) where T is a
univariate failure time subject to censoring and Z is
a vector of uncensored covariates. In this case, non-
parametric estimation methods usually aim to recover
the parameters of the conditional survival function,

S(t |z) = P(T > t |Z = z) = π[0,t](1 − A( du|z)),
(1)

where A(t |z) is the cumulative hazard function
of the conditional distribution of the failure time
T given the covariate Z = z. Under identifiability
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assumptions such as the conditional independence
of the failure time T and censoring time T̃

given the covariate Z, estimation methods are
often based on Beran’s [5] conditional Nelson–Aalen
and Kaplan–Meier estimates. The conditional
Nelson–Aalen estimate assumes the form

Â(t |z) =
∫

[0,t]

n∑

i=1

Wi(z)Ni( du)

n∑

i=1

Wi(z)Yi(u)

,

where (Ni, Yi), i = 1, . . . , n, are counting and risk
processes Ni(t) = I (Ti ≤ t ∧ T̃i ) and Yi(t) = I (Ti ∧
T̃i ≥ t) associated with a sample of n individuals
under study, and Wi(z), i = 1, . . . , n, are weights
dependent only on their covariates Z1, . . . , Zn. The
conditional Kaplan–Meier estimate is obtained by
substituting this estimate into the right-hand side
of (1). A general counting process formulation of
nonparametric regression allows one also to accom-
modate intensity models with time-dependent covari-
ates or recurrent failure time events. In both settings,
different choices of the weights Wi(z) lead to dif-
ferent types of nonparametric regression estimates.
Examples include regressogram, kernel, and nearest
neighbor estimates. Under regularity conditions, these
estimates are uniformly consistent and asymptotically
Gaussian at a rate dependent on the choice of the
smoother [13, 35].

Under suitable identifiability conditions, the con-
ditional Kaplan–Meier estimate remains consistent
when covariates are subject to censoring and pro-
vides a convenient tool in the estimation of the
joint distribution function of failure time vectors T =
(T1, . . . , Tm) subject to multivariate censoring. In
what follows we consider the simplest bivariate cen-
soring model and assume that the observable data are
of the form (X1, X2, δ1, δ2) where Xl = Tl ∧ T̃l , δl =
I (Tl ≤ T̃l) and T = (T1, T2), T̃ = (T̃1, T̃2) are inde-
pendent failure and censoring variables.

As an ad hoc modification of Efron’s self-
consistency algorithm, Pruitt [47] proposed to
consider the sample analog of the identity

F(t1, t2) =
∑

i,j=0,1

Fij (t1, t2),

where F(t1, t2) = P(T1 ≤ t1, T2 ≤ t2) and Fij (t1, t2)

= P(T1 ≤ t1, T2 ≤ t2, δ1 = i, δ2 = j). Independence

of the failure and censoring times implies

F(t1, t2) =
∫

[0,t1]×[0,t2]
P(T1 ≤ t1,

T2 ≤ t2|T1 > u, T2 > v)

× EN00( du, dv) + EN11(t1, t2)

+
∫

[0,t1]×[0,t2]

P(v < T2 ≤ t2|T1 = u)

P (T2 > v|T1 = u)

× EN10( du, dv)

+
∫

[0,t1]×[0,t2]

P(u < T1 ≤ t1|T2 = v)

P (T1 > u|T2 = v)

× EN01( du, dv), (2)

where Nij (t1, t2) = I (X1 ≤ t1, X2 ≤ t2, δ1 = i, δ2 =
j). Pruitt’s estimate of the distribution function
F is the solution to the sample counterpart of
this equation obtained by replacing the expected
processes ENij (t1, t2) by their empirical counter-
parts and by approximating the subdistribution func-
tions P(v < Tj ≤ tj |T3−j = u) using the conditional
Kaplan–Meier estimate. In special cases, such as the
censoring of only one component of the vector T or
univariate censoring of ordered failure times T1 < T2,
the solution of (2) has an explicit form and the cor-
responding estimates assume the form of averaged
conditional Kaplan–Meier estimates. In the first of
these two cases the estimate is also fully efficient [1].
The consistency and asymptotic normality of Pruitt’s
estimate in the presence of bivariate censoring is
shown by van der Laan [55] who also provides a
fully efficient survival function estimate designed for
data subject to bivariate censoring [56].

There are several alternative estimators based on
ad hoc representations of the survival function of the
failure times (T1, T2) in terms of the subdistribution
functions of the observable data. Such estimates are
useful in that they are very simple to implement in
practice. In particular, they do not rely on smoothing
techniques and therefore can be applied towards anal-
ysis of data sets of small or moderate sample sizes.
One possible choice corresponds to the sample ana-
log of the identity S(t1, t2) = S1(t1)S2(t2)M(t1, t2),
where Sl are the marginal survival functions and

M(t1, t2) = exp
∫

[0,t1]×[0,t2]
d log F. (3)

The estimate of the bivariate survival function is
obtained by replacing the unknown marginals by
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their respective Kaplan–Meier estimators, whereas
the function M is approximated by

M̂(t1, t2) =
∏

uj ≤tj

∏

α

{
n∑

i=1

∏

l∈α

[Yil(ul)

−Nil(∆ul)]
∏

l /∈α

Yil(ul)

}(−1)|α|

,

where |α| is the cardinality of a set α ⊆ {1, 2}
and (Nil, Yil), l = 1, 2, i = 1, . . . , n, are the marginal
counting and risk processes associated with an
independent identically distributed (iid) sample of
censored failure times [14]. Alternatively, (3) is the
unique solution of the Volterra integral equation:

M(t1, t2)

= 1 +
∫

[0,t1]×[0,t2]
M(u1−, u2−)B( du1, du2), (4)

where B is a standardized version of the covari-
ance of the marginal martingales, Mil = Nil −∫

0 Yil dAl, Al( dt) = −Sl( dt)/Sl(t−), l = 1, 2. An
estimate of this covariance function is given
by Prentice & Cai [46] who further propose to
recover the function M by the solution to the
sample analog of (4). In practice, the two esti-
mates are in close numerical agreement and
are both consistent and asymptotically Gaussian
in the presence of bivariate censoring. Refer-
ences [8], [15], [18], [22], [24], [58], and [60] dis-
cuss the asymptotic properties of these estimates,
extensions to multivariate data and also provide appli-
cations to regression analyses and testing dependen-
cies. Other examples of survival function estimates
designed for multivariate censored data are given
in [9], [10], [54], [7], and [53]. Pruitt [49] provides
a useful overview of the small sample properties of
some of these estimates along with software available
through statlib at the Carnegie Mellon University.
Some care has to be taken in the use of these esti-
mates, however, as they may define signed measures
and may fail to be consistent in the presence of more
complex censoring mechanisms [19, 45, 48, 53].

Nonparametric Testing

Testing independence, k sample homogeneity, and
symmetry are examples of common testing problems

involving multivariate data. In the case of bivari-
ate data, nonparametric tests for independence are
often based on rank correlation statistics such as
logrank and Spearman rank correlation or Kendall’s
τ . Examples of censored data analogs of these tests
are given in [6], [11], [12], and [39]. In particular,
given an iid sample (Xi1, Xi2, δi1, δi2), i = 1, . . . , n,
of the observed withdrawal times and censoring indi-
cators, Oakes’ [39] analog of Kendall’s τ test rests on
a comparison of the number of pairs of observations
known to correspond to concordant and discordant
failure times:

τ̂ = 2

n(n − 1)

∑

i<j

a1(i, j )a2(i, j ),

where the score al(i, j ), l = 1, 2, assumes values
δil, 0 and −δjl if sign (Xil − Xjl) = 1, 0 and −1,
respectively. The logrank (or Savage scores) correla-
tion test is given by

Rn = 1

n

n∑

i=1

[Â1(Xi1) − δi1][Â2(Xi2) − δi2],

where Âl, l = 1, 2, are Nelson–Aalen estimates of
the marginal cumulative hazard functions. Standard-
ized versions of these statistics are asymptotically
mean zero normal and provide consistent tests against
alternatives of signed dependence. In the case of
uncensored data, under alternatives remote to inde-
pendence, rank correlation statistics and Kendall’s τ

statistic also provide consistent estimates of common
nonparametric association measures. However, this
does not carry over to censored data. In the case
of both uncensored and censored data, multivariate
extensions of Kendall’s test and rank correlation tests
are not uniquely defined. Some examples are given
in [2] and [18] (see Multivariate Median and Rank
Sum Tests).

Omnibus Kolmogorov–Smirnov type tests for in-
dependence are due to Pons & de Turckheim [44]. In
the bivariate case, such tests can be based on statistics

Un = sup
t1≤τ1,t2≤τ2

√
n|Ŝ(t1, t2) − Ŝ1(t1)Ŝ2(t2)|,

where Ŝi , i = 1, 2, are the marginal Kaplan–Meier
estimates, and Ŝ is an estimate of the joint survival
function of the underlying failure times. Alterna-
tively, such tests can also be based on the supremum
norm statistic comparing estimates of bivariate and
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marginal cumulative hazards. Critical values of the
tests are obtained based the bootstrap approxima-
tion to the null distribution of Un. Bootstrap meth-
ods apply also to other testing problems involving
multivariate data such as k sample homogeneity or
symmetry tests [50].

Rank tests designed for these problems are dis-
cussed in [3], [16], [17], [41], [58], and [61], among
others. In particular, symmetry tests arise in matched-
pair experiments and are often based on paired or
signed rank tests. In the case of uncensored data,
paired rank tests (or conditional rank tests) are scores
tests derived from the conditional likelihood of ranks
given the observed paired ranks [52]. Evaluation of
the scores of such tests and derivation of both finite
sample and asymptotic properties are, in general,
quite difficult; however, special choices such as the
paired Wilcoxon and logrank tests gained some pop-
ularity due to their good performance as compared
with other symmetry tests. Wilcoxon signed-rank
tests derive their form from the marginal likelihood
of signed ranks in the log-linear model log T2i =
log T1i + θ + εi , where θ is an unknown shift param-
eter and εi is an error term with a known symmet-
ric distribution. Special cases include the sign, and
signed Wilcoxon and normal scores tests. Their cen-
sored data analogs are limited to models involving
univariate censoring. The paper [17] provides a com-
parison of the asymptotic relative efficiency of the
two classes of symmetry tests.

Regression Models

Regression analysis of multivariate data is often
based on random effects (or frailty) models. The
idea of the use of frailty models is due to Vaupel
et al. [57] who introduced this concept to model
heterogeneity in univariate survival models. In the
multivariate setting, frailty models are used to
induce dependence among failure times by way of
a random effect accounting for possible genetic,
environmental and other factors linking the marginal
failure processes.

The simplest random effects models for multivari-
ate data are derived under the assumption that m

individuals, such as family members, share a common
unobserved factor W . Here, W is a nonnegative ran-
dom variable such that, conditionally on W and the
vector of observable covariates Z = (Z1, . . . , Zm),

the failure times (T1, . . . , Tm) of the m individu-
als are independent random variables with hazard
functions

αi(t |Z, W) = Wα0i (t) exp(βT
i Zi ) i = 1, . . . , m.

(5)

The conditional survival function of the failure times
T = (T1, . . . , Tm) given the covariates Z is

S(t1, . . . , tm|Z)

=
∫

exp

[
−w

m∑

i=1

exp(βT
i Zi )

∫ ti

0
α0i (u) du

]

× FW( dw),

where FW is the distribution of the frailty variable W .
Typically, this distribution belongs to some known
parametric family such as the family of gamma,
positive stable, inverse Gaussian distribution and
lognormal distribution [40, 26, 34]. Apart from the
conditional independence assumption, the model (5)
stipulates that, conditionally on W , components of
the vector T follow the proportional hazard model.
However, with the exception of Hougaard’s posi-
tive stable frailty model, averaging over W leads to
models with marginals that do not satisfy the pro-
portional hazard model assumption. Different choices
of the frailty distribution give rise also to differ-
ent types of dependence among the marginal failure
times. More flexible frailty models allowing for sev-
eral types of random effects and different degrees
of association among the components of the vec-
tor T = (T1, . . . , Tm), can be obtained by assuming
that W is a vector or matrix of correlated variables.
Examples of such models were provided by Yashin
et al. [62] and McGilchrist [34].

Inference methods in these models are quite dif-
ficult. A frequent approach rests on nonparamet-
ric maximum likelihood and EM algorithm [38];
however, only partial results covering the gamma
and correlated frailty models are available at the
present time [36, 37, 42, 43] and much attention
is paid to alternate approaches to regression anal-
ysis of multivariate data. In particular, in the case
of litter-matched experiments. Holt & Prentice [28]
propose the model (5) with systematic rather than
random effects. The paper [25] provides a detailed
derivation of the properties of the Cox and maximum
likelihood estimates in this model. Another com-
mon choice corresponds to the so-called “marginal
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approach” (see Marginal Models for Multivariate
Survival Data). Instead of modeling the conditional
distribution of Tj , j = 1, . . . , m, given a frailty vari-
able, it imposes semiparametric assumptions on the
marginal distribution of Tj s and leaves the joint
dependence structure among the components of the
vector (T1, . . . , Tm) unspecified. Under suitable iden-
tifiability assumptions, the unknown parameters of
marginals can be estimated by modifying estima-
tion procedures developed for univariate regression
analyses. Wei et al. [59] and Lin & Wei [32] pro-
vide the joint asymptotic structure of the estimates
in multivariate models with marginals satisfying the
Cox proportional hazard and accelerated failure time
model assumptions. The marginal approach can fur-
ther be strengthened by assuming that the failure
time data follow a multivariate copula model. In the
absence of covariates, these are multivariate models
in which the joint survival function S of the vector
T = (T1, . . . , Tm) is of the form S = Cθ(S1, . . . , Sm),
where Sl are the marginal survival functions and {Cθ :
θ ∈ Θ} is a parametric family of distribution func-
tions on the unit cube with uniform marginals [21,
27]. The parameter θ accounts for the joint depen-
dence among the marginal failure times. In these
models, the dependence parameter and the parameters
of the marginals can be based on a two-stage estima-
tion process: the parameters of the marginals are first
estimated as in univariate analyses, the resulting esti-
mates are next used to construct a pseudo-likelihood
for the unknown dependence parameter θ [27, 31,
51]. Although the resulting estimates are inefficient,
this estimation approach is relatively easy to imple-
ment and has a good practical performance. Other
examples of semiparametric models that can be used
in the analysis of multivariate failure time data are
surveyed in [26] and [33].
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Multivariate t
Distribution

Student’s t distributions on �1 arise through the use
of Studentized statistics in normal-theory sampling
models. Multivariate versions on �k typically derive
through Studentization from multivariate normal
models through an impressive array of methods
employed in the analysis of biomedical and other
data. Properties of these procedures in turn rest on
those of the corresponding joint distributions, and
their implementation requires the availability of spe-
cial aid tables or their software equivalents. On occa-
sion, multivariate t distributions themselves serve to
model the errors of a random experiment, offering
greater flexibility and heavier tails than multivariate
normal models.

There are two basic types of t distributions on �k .
Type I distributions emerge on scaling each compo-
nent of a random normal vector by a single random
scalar. Type II distributions entail separate scalings
by elements of a further random vector, itself having
a joint distribution on �k . Details are supplied subse-
quently. Excellent references are [5, Chapter 27] and
[8, Chapter 9].

There is by now a considerable literature per-
taining to multivariate t distributions on �k ,
mostly of type I. This literature may be catego-
rized roughly as follows for brevity. Broad top-
ics include: (i) basic multidimensional t distribu-
tions and their properties; (ii) computations for and
approximations to these distributions; and (iii) special
aid tables to support their many applications. Their
methodological origins encompass: (iv) multiple
comparisons for means, including Dunnett’s [2]
pairwise comparison of treatments with a con-
trol; (v) simultaneous confidence bounds for loca-
tion parameters; (vi) ranking and selection prob-
lems; (vii) Bayesian analyses; (viii) the analysis
of repeated measurements (see Longitudinal Data
Analysis, Overview); (ix) prediction intervals in
regression; (x) diagnostics for outliers; (xi) topics
in estimation; and (xii) as primary models for error
distributions arising in multilinear models as noted.
A lengthy and detailed reference list is omitted
here; access is readily available through searching
electronic databases such as the Current Index to
Statistics.

In what follows �k denotes Euclidean k-
dimensional space; abbreviations include pdf and cdf
for probability density and cumulative distribution
functions, respectively; and L(X) designates the
law of distribution of X = (X1, . . . , Xk)

′ ∈ �k . In
particular, Nk(µ, �) denotes the multivariate normal
distribution on �k having the mean µ ∈ �k and
the positive-definite (k × k) dispersion covariance
matrix V(X) = � = (σij ); and χ2(ν) identifies the
central chi-square distribution having ν degrees of
freedom.

Type I Distributions on �k

Basic Properties

Suppose that the distribution of X ∈ �k is given
by L(X) = Nk(µ, σ 2�) and that L(νS2/σ 2) = χ2(ν)

independently of X. In practice, S2 is typically
an error mean square from an analysis of vari-
ance based on ν degrees of freedom. Then, with
{Ti = Xi/S; 1 ≤ i ≤ k}, their joint distribution is a
type I t distribution on �k , to be designated as
L(T1, . . . , Tk) = tk(µ, �, ν). Its pdf takes the form

f (t) = C(k, ν)

[
1 + (t − µ)′�−1(t − µ)

ν

]−(ν+k)/2

,

(1)

where C(k, ν)=Γ [(ν + k)/2]/(πν)k/2Γ (ν/2)|�|1/2.
Here µ is the center of symmetry, � is the matrix
of scale parameters, and ν is the number of degrees
of freedom. The distribution is said to be central
whenever µ = 0, and to be noncentral otherwise.
The first two moments when defined are E(T) = µ

for ν > 1, and var(T) = [ν/(ν − 2)]� for ν > 2. For
arbitrary �, the one-dimensional marginal distribu-
tions are scaled t distributions on �1. However, if �

is replaced by a positive-definite correlation matrix
R = [ρij ], then each marginal is a Student’s t dis-
tribution on �1, central or noncentral as appropriate,
having ν degrees of freedom. These k-dimensional
distributions are elliptically contoured from expres-
sion (1), and the case ν = 1 yields elliptical Cauchy
distributions on �k .

Joint marginal and conditional distributions
of tk(µ, �, ν) emerge as follows. Partition T =
[T′

1, T′
2]′, µ = [µ′

1, µ′
2]′, and � = [Σij ] conformab-

ly, with T1 ∈ �r and T2 ∈ �t such that r +
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t = k. Since L(T) is elliptical, it follows from
the theory of elliptical distributions [1] that the
joint marginal distribution of T1 is L(T1) =
tr (µ1, �11, ν), and similarly for T2. In like manner,
the conditional distributions L(T1|t2) are elliptical
on �r , having the linear regression functions
µ11.2 = µ1 + �12�

−1
22 (t2 − µ2) and scale parameters

κ(t2)�11.2 with �11.2 = (�11 − �12�
−1
22 �21), where

κ(t2) depends on the conditioning value t2. These
properties hold even without moments, where now
µ11.2 represents the center of symmetry and �11.2 the
matrix of scale parameters.

Probability Inequalities

Basic inequalities for these distributions are essen-
tial. In practice, there is an excess of parameters
for tk(µ, �, ν), even in the central case with µ =
0, since (�, ν) consist of [k(k + 1) + 2]/2 distinct
parameters. Owing to limitations of available tables,
access to probability inequalities enables the user to
employ approximate values from existing tables giv-
ing bounds on the required probabilities. In this spirit,
we summarize some useful inequalities as follows.
Basic references are [7, Chapter 3] and [8, Chap-
ter 9], together with extensive reference lists.

In what follows, � = [σij ] designates any
positive-definite (k × k) matrix, whereas R = [ρij ]
denotes a positive-definite correlation matrix. An
equicorrelation matrix is denoted by �(ρ) = [(1 −
ρ)Ik + ρ1k1′

k] for {−(k − 1)−1 < ρ < 1}. With these
conventions in place, let P�(·; ν) be the proba-
bility measure for L(T1, . . . , Tk) = tk(µ, �, ν); let
F�(t1, . . . , tk; ν) be its cdf; and let F�(t1, . . . , tk) =
P�(T1 > t1, . . . , Tk > tk;ν). Furthermore, let FD

(t1, . . . , tk) be the cdf of tk(µ, D, ν), with D =
diag(σ11, . . . , σkk), and similarly for FD(t1, . . . , tk).
Finally, identify G�(a1, . . . , ak; ν) = P�(|T1| ≤
a1, . . . , |Tk| ≤ ak; ν) for the case L(T) = tk(0, �, ν),
and similarly GD(a1, . . . , ak; ν), with D =
diag(σ11, . . . , σkk) as before. Basic probability
inequalities may be summarized as follows.

Property 1. If L(T) = tk(µ, �, ν), then for fixed
but arbitrary {a1, . . . , ak} and ν, the function
F�(a1, . . . , ak; ν) is increasing in each σij for all
i �= j , while other values are held fixed.

Property 2. Suppose that L(T) = tk(µ, �, ν).
If σij ≥ 0 for all i �= j , then F�(a1, . . . , ak) ≥

FD(a1, . . . , ak) ≥ ∏k
i=1 Fi(ai) holds for each fixed

{a1, . . . , ak}, where Fi(·) is the marginal cdf of Ti .

Property 3. Suppose that L(T) = tk(µ, �, ν). If
σij ≥ 0 for all i �= j , then F�(a1, . . . , ak) ≥
F D(a1, . . . , ak) ≥ ∏k

i=1[1 − Fi(ai)] for arbitrarily
fixed {a1, . . . , ak}.

Property 4. Suppose that L(T) = tk(0, �,ν). Then
G�(c1, . . . , ck) ≥ GD(c1, . . . , ck) ≥ ∏k

i=1 Gi(ci) for
each fixed set {c1, . . . , ck} of positive constants,
where Gi(·) is the marginal cdf of |Ti |.

Property 5. Suppose that L(T) = tk[0, �(ρ), ν].
Then for each fixed a > 0 and for all real
numbers {c1, . . . , ck} such that c1 + · · · + ck =
0, Pρ(|∑k

i=1 ciTi | ≤ a) is an increasing function
of ρ.

Type II Distributions on �k

Basic Structure

Type II t distributions on �k have origins essentially
as follows. Suppose that L(X) = Nk(µ, �). Indepen-
dently of X, let νS = ν[Sij ], of order (k × k), have
a central Wishart distribution Wk(ν, �) having ν

degrees of freedom and the matrix � of scale param-
eters, such that diagonal elements of � and � are
the same. If we let {Ti = Xi/Si ; 1 ≤ i ≤ k}, with
{S2

i = Sii ; 1 ≤ i ≤ k} as the diagonal elements of S,
then L(T1, . . . , Tk) is said to have a type II t distri-
bution on �k .

Expressions for pdfs of such distributions are not
available in closed form. Nonetheless, probability
inequalities for such distributions are known under
special structure for dependencies among the ele-
ments of X and of S. An example follows.

Probability Inequalities

Suppose that L(X) = Nk(µ, R), its correlation matrix
R = [ρij ] having the structure {ρij = κiκjωij ; i �=
j }, such that {|κi | ≤ 1; 1 ≤ i ≤ k}, where � =
[ωij ] is a positive-definite correlation matrix.
Furthermore, let L(νS) = Wk(ν, �) independently of
X, such that � = [λij ] is a correlation matrix with
structure {λij = λiλj ; i �= j }, for some {λ1, . . . , λk}.
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Let {Ti = Xi/Si ; 1 ≤ i ≤ k}, with {S2
i = Sii ; 1 ≤ i ≤

k}, and denote the cdf Gk(c1, . . . , ck) = Pr(|T1| ≤
c1, . . . , |Tk| ≤ ck). With these conventions, the
following monotone properties of Gk(c1, . . . , ck)

apply, as shown in [7, Theorem 3.1.2].

Property 6. For each fixed set of positive numbers
{c1, . . . , ck}, the function Gk(c1, . . . , ck) is: (i) strictly
increasing in each κi ∈ [0, 1] with other parameters
held fixed; (ii) strictly decreasing in each κi ∈ [−1, 0]
with other parameters held fixed; and (iii) strictly
increasing in each |λi | with other parameters held
fixed.

Peakedness Ordering

The comparative concentration of probabilities is an
essential concept for distributions on �k . Following
Sherman [6], the probability measure µ(·) is said
to be more peaked about 0 ∈ �k than ν(·) if and
only if µ(A) ≥ ν(A) for every set A in the class
Ck comprising the compact convex subsets of �k

that are symmetric under reflection about 0 ∈ �k , i.e.
x ∈ A implies −x ∈ A. For two type I t distributions
tk(0,�, ν) and tk(0,�, ν) on �k having ordered scale
matrices, the following inequality applies. Sufficiency
is shown in [3], and necessity in [4].

Property 7. Let tk(0,�, ν) and tk(0,�, ν) be
type I multivariate t distributions on �k having
ordered scale matrices such that � − � is positive-
semidefinite, and let P�(·; ν) and P�(·; ν) be their

corresponding probability measures. Then P�(·; ν)

is more concentrated about 0 than P�(·; ν) in the
sense that P�(A; ν) ≥ P�(A; ν) for every set A in
the class Ck .
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Multivariate Techniques,
Robustness

Many statistical techniques are based on assumptions
about either the form or the structure of the data to
which they are to be applied. This is as much the case
in multivariate analysis as it is in other branches
of statistics. For example, a hypothesis test about a
population mean vector may assume normality of the
sampled data (an assumption about the form of the
data), while a comparison between the mean vectors
of two populations may additionally require equality
of the population dispersion matrices (an assumption
about the data structure). In practical applications it
is accepted that such assumptions will at best only be
approximations to the truth, but the hope is that the
validity and outcome of the technique will be largely
unaffected within the sort of range of departures
from these assumptions that might reasonably be
encountered for real data.

In the Dictionary of Statistical Terms [17], a sta-
tistical procedure is described in broad terms as being
robust if it is “not very sensitive to departure from
the assumptions on which it depends”. The robust-
ness of a technique is thus, loosely, the extent to
which it is unaffected by such departures, so that
a study of the robustness of standard techniques is
important from the point of view of practical statis-
tics. In the univariate situation such study is generally
restricted to inferential techniques arising from either
hypothesis testing or estimation (whether point or
interval). A theoretical distinction that is sometimes
made in these studies is one between criterion robust-
ness and inference robustness: the former is when
the behavior of any criterion on which the inference
depends (e.g. a particular test statistic or estimator)
is largely unaffected by departures from assumptions,
so that by implication the resulting inferences are
also unchanged; in the latter case, the behavior of
the criterion may be subject to appreciable changes
under departures from assumptions but the resulting
inferences are nevertheless unaffected. However, in
practical terms this distinction is rather academic –
the practitioner merely wants to know whether a tech-
nique is robust or not, and if not then what are the
main areas of sensitivity.

In the multivariate case interest has again mainly
focused on inferential techniques, particularly on

hypothesis testing. However, the issue is now wider,
as descriptive techniques such as canonical variate
analysis (see Canonical Correlation) and model-
ing techniques such as factor analysis also invoke
assumptions about the data, and thus have to be
examined for robustness. We therefore consider three
broad areas: inference, ordination and classification,
and latent variable models, and give an overview of
the robustness of the main techniques encountered
under each of them. We should be clear at the outset
about our frame of reference. We are here concerned
only with the robustness of standard multivariate
techniques to departures from those assumptions on
which they are founded, and our aim is to give a gen-
eral overview rather than to discuss the many detailed
points that have been raised in the literature. What
we are not concerned with is consideration of any
specifically robust procedures, by which is meant pro-
cedures that remain unaffected by outliers or other
data contaminants. This is a different aspect of robust-
ness to the one given above, and such procedures are
considered elsewhere in these volumes.

Inference

Most standard multivariate inferential procedures
are concerned either with statements about the
mean vector and/or the dispersion matrix of a
single multivariate normal distribution, or with
the comparison of these parameters across several
multivariate normal populations. Moreover, there are
now many special estimators of these parameters
that are designed to be robust with respect either
to outlying observations or to non-normality, so
we will not explicitly consider estimation here.
However, most extant tests of hypotheses about these
parameters are based on the assumption of normality
and (for multiple-population comparisons) equality
of dispersion matrices, so we focus in this section
on the robustness of these tests. It is convenient to
subdivide the discussion into single-population and
multiple-population tests, and within this subdivision
to consider tests of means and tests of dispersion
matrices separately.

For single-population tests of the mean vector,
Hotelling’s T 2 is the most common normal-based test
statistic. There have been various simulation studies
of the performance of this test statistic (e.g. [4, 7,
16], and [24]). The consensus view is that the test is
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more sensitive to skewness than to kurtosis of the
underlying distribution: it is reasonably robust with
regard to the nominal significance level (see Level
of a Test) when the underlying distribution is sym-
metrical, but the actual significance level is greater
than the nominal level for skew distributions, and the
discrepancy increases both with increasing skewness
and with number of variables p.

Single-population tests of dispersion matrices, by
contrast, are more sensitive to kurtosis than to skew-
ness in the parent population [19]. There are vari-
ous standard hypotheses about dispersion matrices,
but probably the most common is for independence
(either mutual or blockwise). Reassuringly, the study
by Pillai & Hsu [21] shows that none of the usual
test statistics is seriously affected if departures from
normality are only slight.

Turning to multiple-population tests, it is conve-
nient to consider tests of equality of dispersion matri-
ces first (as tests of equality of means usually make
this prior assumption as well). Here, unfortunately,
the situation is not very promising. The standard test
for equality of a set of dispersion matrices is the like-
lihood ratio test and its associated approximations
[22, p. 449], and available studies (e.g. [10], [15],
and [20]) demonstrate its extreme nonrobustness to
non-normality. In particular, it is very sensitive to
kurtosis, and a significant value of the test statistic
could be due equally to kurtosis as to departures from
the null hypothesis. Indeed, Layard [15] goes so far
as to say that its usefulness is suspect.

Turning finally to tests of equality of a set of
g population means, we encounter the most com-
plicated setup of those considered in this Section.
Essentially we are in the realms of one-way multi-
variate analysis of variance (MANOVA), in which
we assume that individual observations come from
multivariate normal distributions having possibly dif-
ferent means but a common dispersion matrix. The
complicating feature is that there are now several
“standard” test statistics for the null hypothesis (each
one sensitive to a different form of departure from
the null hypothesis). The likelihood ratio statistic
is commonly known as Wilks’ lambda (λ), the
union–intersection principle yields Roy’s maxi-
mum root, φmax, and the two other most common
statistics are the Lawley–Hotelling trace T 2

g , and the
Pillai trace V . (All these statistics reduce to the same
quantity, Hotelling’s generalized T 2, in the case of
g = 2 populations.)

One of the earliest studies of these statistics was
that by Ito & Schull [11], who demonstrated that
when the sample sizes are the same from each
population then moderate heterogeneity of dispersion
matrices does not affect T 2

g seriously, but when
there is inequality in sample sizes then both the
significance level and power of T 2

g can be affected
seriously. Analytical investigations of the effect of
non-normality on λ and φmax were conducted by
Davis [5, 6]. Broadly speaking, both statistics are
reasonably robust to non-normality providing that the
number of residual degrees of freedom is moderate
to large, but if the underlying populations have
large skewness or kurtosis then the effects on the
true significance level can be large when there are
fewer than about 30 residual degrees of freedom.
Generally, effects on significance level for excess
skewness are opposite to those for excess kurtosis,
while each effect is itself reversed as sample sizes
become more unbalanced. The widest comparison
of all four statistics was in the 1974 Monte Carlo
study by Olson [20], although he only considered
the case of equal sample sizes from all populations.
His conclusions were that kurtosis affects significance
levels only mildly, the powers of all tests suffer
under kurtosis, and inequality of dispersion matrices
is the most serious violation. The worst statistic of
the four in these respects is φmax (not surprisingly,
as it is based on just a single extreme eigenvalue),
while the best is Pillai’s V . Moreover, robustness
generally improves as either the number of groups
g or the number of variables p is reduced (so,
including variables “for the sake of it” is not to be
recommended!).

Ordination and Classification

Ordination is the geometrical representation of multi-
variate samples as points in a low-dimensional space,
while classification is the process of allocating indi-
viduals in multivariate samples to distinct popula-
tions. Often, prior ordination of multivariate data will
facilitate subsequent classification. Most ordination
techniques are purely descriptive and do not rely on
any assumptions about the data, so there is no need to
study their robustness. However, a genuine concern
is the effect that outliers, contaminations of various
types, or perturbations of the data might have on the
results of the analysis, and some techniques have been
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subjected to scrutiny with this in mind. Sibson [23]
has quantified the effect that perturbations of the input
dissimilarities might have on a metric scaling repre-
sentation of the data. This quantification is given in
terms of the Procrustes statistic between the origi-
nal and perturbed configurations of points. Langron
& Collins [14] have provided a similar quantifica-
tion for the results of generalized Procrustes analysis,
while Jackson [12, pp. 365–369] surveys the meth-
ods that have been developed to combat the effects
of outliers on principal components analysis.

The one ordination technique which does make
an explicit assumption about the data is canonical
variate analysis, in which multivariate observations
taken from g separate populations are represented
geometrically by points in space in such a way that
the ratio of between-population to within-population
scatter is maximized (thereby highlighting population
differences). This technique assumes a common dis-
persion structure across populations, and so is closely
related to one-way multivariate analysis of variance.
Robustness considerations associated with hypothe-
sis testing in the latter situation have already been
discussed above, but also of relevance is the robust-
ness or otherwise of the ordination of the populations
in the space of the canonical variates. Unfortunately,
very little appears to have been done on this aspect.
Campbell [3] offers some heuristic approaches for
examining the effect of within-population heterogene-
ity in specific practical cases, but all that can be said
in general is that standard canonical variate analysis
will give increasingly misleading results as the pop-
ulation dispersion matrices become more disparate
[18, p. 194].

By contrast to ordination, the area of discrim-
ination and classification has received consider-
able attention with regard to robustness. The pri-
mary focus has been on the case of two groups,
and specifically on the linear discriminant function
(see Discriminant Analysis, Linear). This function
was first derived in 1936 by Fisher [8] from the point
of view of discriminating between two populations.
Its derivation in this context was simply as the linear
combination of variables that maximizes the ratio of
squared difference of sample means to pooled within-
sample variance, without recourse to any assump-
tions about the form or structure of the data. In this
(discrimination) usage, therefore, the function is rea-
sonably robust to a variety of data types. However,
the function also arises as the optimal function for

allocating future individuals to one of two multi-
variate normal populations that have equal dispersion
matrices, where optimality is judged in terms of the
expected cost incurred by misclassification of future
individuals [25]. If the restriction to equal dispersion
matrices is relaxed, but the assumption of normal-
ity is retained, then the optimal function becomes a
quadratic discriminant function. These two functions
are used very often in practice and so have been sub-
jected to many robustness studies, in which the effects
of departures from normality and from equality of
population dispersion matrices have been examined.
The criterion on which this examination is based is
usually the error rate incurred in the classification
of future individuals (see Misclassification Error).
There are many complicated technical issues involved
in some of these studies, and space limitations pre-
clude any detailed discussion of them here; for an
excellent summary survey see [18, pp. 152–161].
However, some very broad conclusions that may be
drawn are that: both functions will perform very
poorly if the data are continuous but non-normal with
heavy tails and large skewness, while the quadratic
function may still perform reasonably well if the dis-
tributions are symmetric even through heavy-tailed;
the linear function will perform reasonable well on
binary data (scored 0 and 1) providing that the true
log likelihood ratio increases as the number of sub-
jects who score 1 increases, but not otherwise; and
the allocatory performance of the linear function with
mixtures of discrete and continuous variables depends
upon the similarity of the correlation patterns among
the continuous variables in the two groups, being
good when the similarity is high and poor when the
similarity is low.

Latent Variable Models

A popular technique for the analysis of covariance
structure, particularly in the social sciences, is factor
analysis. This technique had been used since the early
part of the twentienth century, but computational and
theoretical advances in the 1960s and early 1970s
by Jöreskog and co-workers not only greatly popu-
larized its use but also led to developments in more
general covariance structure analysis. The whole area
now comprises a series of techniques that can be cat-
egorized under the heading of structural equation
models [2]. All these techniques rest on the assump-
tion of underlying sets of latent variables for the
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explanation of observed covariances among a set of
manifest variables. Models of varying levels of com-
plexity can be built and analyzed with the aid of such
software packages as LISREL (an acronym for “lin-
ear structural relationships”, developed by Jöreskog
& Sörbom [13]) or EQS (denoting “structural equa-
tions”, developed by Bentler [1]). The fitting of these
models is achieved by optimizing one of a number
of available “fit functions” which measure the dis-
crepancy between data and model. While some of
these functions are fairly general ones, others have
been derived from distributional assumptions about
the data. In particular, the “default” choice of many
researchers is the function resulting from maximum
likelihood assuming normality of manifest variables,
so again a study of robustness is an important con-
sideration.

As in discrimination and classification, effects
of non-normality on the results of the maximum-
likelihood technique can be divided up according as
the manifest variables are continuous but non-normal,
categorical (and hence non-normal), or a mixture of
the two types. For continuous non-normal variables,
Bollen [2, p. 418] summarizes the available studies
by saying that violation of normality does not gener-
ally affect the bias or consistency of estimates, but
excessive kurtosis usually eliminates asymptotic effi-
ciency and makes the estimated asymptotic covari-
ance matrix and the chi-square goodness-of-fit test
potentially inaccurate. In the case of discrete or cate-
gorical variables, the evidence from available studies
[2, p. 435] suggests that not much distortion will
occur on using the maximum likelihood procedure
if the skewnesses and kurtoses of the variables are
close to normal distribution values, but the chi-square
goodness-of-fit statistic tends to be too big if the
variables are highly skewed. However, as yet there
has been little investigation in this area (and virtually
nothing in the case of mixed continuous/categorical
data), so these results can only be considered to be
preliminary ones.

Finally, Henly [9] reports a large-scale Monte
Carlo investigation of the robustness of a range of
estimators to misspecification of the fit function. As
well as concluding that robustness of the maximum
likelihood and the normal theory generalized least
squares estimators cannot be taken for granted, she
provides a comprehensive survey and reference list
of previous work in this area.

In summary, therefore, across all the different
areas the broad concerns are the effects that depar-
tures from normality and/or equal dispersion matrices
have on the standard techniques, in particular on type
I error (see Level of a Test) and power. As a sin-
gle overall conclusion it is probably fair to say that
departures from normality are relatively unimportant
providing that the true distribution is approximately
symmetric with kurtosis near the normal value, but
lack of equality of dispersion matrices can have much
more serious consequences for those techniques that
are aimed at analyzing grouped data.
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Multivariate Weibull
Distribution

Weibull distributions on �1 have wide usage in mod-
eling cumulative damage, fatigue, life lengths, and as
tolerance distributions for quantal responses. These
distributions figure prominently in survival analysis
as models for survival distributions (see Parametric
Models in Survival Analysis). Applications in the
biomedical sciences include survival analysis, cumu-
lative damage to the liver and other organs, sys-
tems reliability for pacemakers and prosthetic devices
in biomedical engineering, and life lengths of sur-
gical repairs and organ duration including trans-
plants. The typical cumulative distribution func-
tion (cdf) is F(x) = 1 − exp(−λxα), with λ and
α as the scale and shape parameters, respectively.
The reliability function F(x), also called the sur-
vival function S(x), is given by F(x) = 1 − F(x) =
Pr(X > x) = S(x). The failure rate function, also
known as the intensity function, the hazard rate
function, and the force of mortality function, is
given by r(x) = f (x)/F (x), with f (x) as the prob-
ability density function (pdf) of the distribution
(see Survival Distributions and Their Characte-
ristics). In what follows L(X) = W(λ, α) designates
the Weibull model on �1, with L(X) as its law of
distribution, and iid refers to independent and identi-
cally distributed random variables. Weibull distribu-
tions on �n encompass joint distributions exhibiting
essential Weibull characteristics. Since the distribu-
tion of X1/α is Weibull on �1 whenever X has an
exponential distribution, multivariate Weibull distri-
butions associate in a natural way with multivariate
exponential distributions of various types. Details
follow.

A characteristic property of the one-dimensional
Weibull family is its closure under the operation
of taking minima. Specifically, if {X1, . . . , Xn}
are iid random variables on [0, ∞), and if Y =
min{X1, . . . , Xn}, then L(Y ) is Weibull on �1 if and
only if each L(Xi) is Weibull on �1 for 1 ≤ i ≤
n. See Dubey [6] for further details. For additional
characterizations let L(X) be exponential with unit
mean, and let Z have a stable distribution on �1

with index α, independently of X. Then the Weibull
distribution, L(T ) = W(1, α), can be characterized in

terms of X as L(T ) = L(X1/α) as noted, and in terms
of (X, Z) as L(T ) = L(XZ−1); see [21] and [22].

On �n let F(t1, . . . , tn) = Pr(T1 > t1, . . . , Tn >

tn) be the joint survival function of the positive
random variables [T1, . . . , Tn]. Basic properties of
F(s, t) for n = 2, with obvious extensions, are as fol-
lows. The marginal survival function for S is given
by F(s, 0), for U = min{S, T } is F(u, u), and for
V = min{aS, bT } is F(av, bv) under arbitrary scal-
ing. Let R(t) = − log F(t). Then the hazard gradient
is the vector r(t) = [∂R(t)/∂t1, . . . , ∂R(t)/∂tn] =
[r1(t), . . . , rn(t)] when defined. These have been
studied in Johnson & Kotz [11] and in Shaked [20],
where bounds are provided, and elsewhere.

The foregoing facts are central to the study
of multivariate distributions exhibiting Weibull
characteristics. Many multivariate distributions have
Weibull marginals; five classes may be identified here
as follows:

C1. [T1, . . . , Tn] are independent such that {L(Ti) =
W(λi, α); 1 ≤ i ≤ n}.

C2. [T1, . . . , Tn] are generated as {Ti = min(XJ ; i ∈
J ); 1 ≤ i ≤ n}. Here, g is a class of nonempty
subsets of {1, 2, . . . , n} such that for each i,
i ∈ J for some J ∈ g, whereas {XJ ; J ∈ g},
are independent random variables having dis-
tributions {W(λJ ; α), J ∈ g}.

C3. For arbitrary positive constants {a1, . . . , an},
U = min{a1X1, . . . , anXn} has a Weibull dis-
tribution W(λ(a), α) on �1 for some λ(a) =
λ(a1, . . . , an) > 0 and α > 0.

C4. [T1, . . . , Tn] have a joint distribution with
Weibull minima such that Us = min{Ti ; i ∈ S}
has a Weibull distribution W(λs, α) on �1 for
some λs > 0, for every nonempty subset S of
{1, 2, . . . , n}.

C5. [T1, . . . , Tn] have a joint distribution with arbi-
trary Weibull marginals {L(Ti) = W(λi, αi);
1 ≤ i ≤ n}, on �1.

Class C2 comprises joint distributions of minima
of overlapping subsets of independent Weibull vari-
ates, as in [5] and [14]. Related work by Shaked [20]
considers minima over sets of random size.

Examples of bivariate distributions in these
classes are known. Consider the typical function
F(t1, t2) = exp{−[λ1c

α
1 tα1 + λ2c

α
2 tα2 + λ12 max(cα

1 tα1 ,

cα
2 tα2 )]} on the positive quadrant, such that

α > 0, c1 > 0, c2 > 0, λ1 > 0, λ2 > 0, and λ12 ≥ 0.
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If c1 �= c2 and λ12 > 0, then this distribution
belongs to class C3. Furthermore, consider func-
tions of the type F(t1, t2) = exp{−[λ1t

α1
1 + λ2t

α2
2 +

λ12 max(t
α1
1 , t

α2
2 )]} such that α1 > 0, α2 > 0, λ1 >

0, λ2 > 0, and λ12 ≥ 0. If α1 �= α2, then this distribu-
tion belongs to class C5. If α1 = α2 = α and λ12 > 0,
then this distribution belongs to class C2. The typical
marginal distribution in the class C4 takes the form
Pr[min

i∈S
(Ti) > t] = exp(−λSt

α) for some λS > 0. For

further reference see Lee [13].
A subclass of C5, due to Marshall & Olkin [17],

is generated as [T1, . . . , Tn] = [X1/α1

1 , . . . , X
1/αn
n ],

where [X1, . . . , Xn] follow the multivariate exponen-
tial distribution of those authors (see Multivariate
Outliers). The typical survival function takes the
form

F(t) = exp

[
∑

J

λJ max
i∈J

(tαi )

]

with α > 0 and λJ > 0 for J ∈ g, where sets J

are elements of the class g consisting of nonempty
subsets of {1, . . . , n}, such that, for each i, it is
true that i ∈ J for some J ∈ g. For extensions see
Arnold [1]. Weibull distributions of these types are
studied extensively in [19].

Lee [13] considered distributions of the foregoing
types and proposed the classification scheme adopted
here. He further established that the inclusion rela-
tions C1 ⊂ C2 ⊂ C3 ⊂ C4 ⊂ C5 are strict.

Distributions on �n are said to have the increasing
failure rate average (IFRA) property whenever
E[h(T1, . . . , Tn)] ≤ {E[hγ (T1/γ, . . . , Tn/γ )]}1/γ for
every nonnegative continuous nondecreasing function
h(·) and for all 0 < γ ≤ 1. Block & Savits [2] show
that the Weibull distributions on �n of Marshall &
Olkin [17], and distributions in the class C2, are
all IFRA for the cases αi ≥ 1, 1 ≤ i ≤ n, and α ≥
1, respectively. Related developments pertaining to
multivariate hazard rates and their applications are
undertaken by Johnson & Kotz [11].

Krishnaiah [12] generalized from Weibull distri-
butions for the case n = 2 on taking [T1, T2] =
[X1/α1

1 , X
1/α2

2 ] such that [X1, X2] follow a bivariate
gamma distribution. Maxim et al.. [18] considered
the choice of optimal designs under multivariate
Weibull sensitivity models. Connections are known
between particular multivariate Weibull distributions
and the multivariate extreme-value distributions of
Gumbel [7]; see also Johnson & Kotz [10, p. 249 ff].

More recent studies are germane. Repeated failure
time measurements are modeled in [3] using condi-
tionally independent Weibull failure times W(λ, α),
whereas α is then assigned a gamma distribution over
subjects. The unconditional mixture on �n is a mul-
tivariate Burr distribution (see [10, p. 288 ff.]). If,
instead, α is given a stable distribution as in [4],
then the resulting mixture is genuinely multivariate
Weibull having Weibull marginals. See also [8, 9,
15], and [16], where related matters and further mix-
tures are treated. The univariate Weibull distribution
is often employed in discussions of accelerated life
testing and failure models. Parallel developments are
reported in [15] for the class of multivariate Weibull
distributions as treated in [8].
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Mutagenicity Study

In many laboratory experiments, data are analyzed
via various statistical approaches, each depending on
the nature of the endpoint and aspects of the partic-
ular assay under study [39]. Among major endpoints
of interest, damage to genetic components such as
DNA is of increasing interest. Mutation induction, or
mutagenicity, and other forms of genotoxicity repre-
sent fruitful areas of study, particularly as continuing
biotechnological advances allow for more precise
genetic study.

Mutagenicity is perhaps the most varied of any
toxicological endpoint, since the potential mecha-
nisms of genetic damage are so numerous. Indeed,
there exist well over 100 different genotoxicological
assays, employing all sorts of animal and micro-
bial systems [18, 50]. Statistical themes associated
with mutagenicity experiments include proper identi-
fication of the sampling distribution [24, 31, 40],
construction of appropriate biomathematical mod-
els to characterize dose response and other fea-
tures of genetic damage [2, 3, 17, 22, 30], sample
size determination [7, 30, 35, 42], and the selec-
tion of statistical approaches associated with these
models and methods [28]. A basic introduction to
these issues is given in the compilation by Kirk-
land [21]. Here, attention will be directed at some of
the basic issues of dose–response analysis encoun-
tered in mutagenesis experiments.

Microbial Systems in Environmental
Mutagenesis: The Salmonella Assay

Perhaps the most well known of all modern muta-
genicity assays is the Ames/Salmonella microsome
assay [33], employing the bacteria Salmonella typ-
himurium to identify damage to DNA after expo-
sure to toxic agents. The assay is based on strains
of the bacterium unable to synthesize histidine, an
amino acid required for growth. This production defi-
ciency can be reversed into a production capability
via point mutations at selected sites on the bacter-
ial genome. DNA damage is indicated by mutation
of the bacteria from histidine-dependency to a self-
sustaining state. Thus, the mutated cells can grow
in a microenvironment (such as a Petri plate) con-
taining only minimal amounts of histidine; greater

mutant yield at higher exposures to the environ-
mental chemical suggests that mutagenesis increases
with increasing dose. Observational accuracy of the
assay is enhanced by use of a selective medium
for the growth environment, so that only mutant
colonies grow after exposure to the environmental
toxin.

The observations in such a microbial assay are the
mutated colony counts, Yij , for the j th replicate plate
at the ith dose (i = 1, . . . , T ; j = 1, . . . , Ri). Com-
monly, the number of replicate plates is taken to be
constant, e.g. Ri = 3, for all i. (Table 1 presents an
example of data from a Salmonella assay, using the
chemical agent 1,3-butadiene.) A natural candidate
for the sampling distribution of Yij is the Poisson
distribution for count variables. Indeed, many pro-
cesses that drive the Poisson sampling assumption are
active with the colony count data seen here. These
include:

1. The microbes’ responses are independent.
2. Each locally organized group of microbes experi-

ences the same environment (ignoring controlled
variables such as dose).

3. The plated number of microbes is large, say 108.
4. The probability that a plated microbe gives rise

to a visible mutant colony is small, between 10−5

and 10−9 [30].

A fifth assumption crucial to adoption of the Poisson
distribution, however, is that both the environment
and the number of microbes plated should remain
relatively stable across replicate plates (within a dose
group). If this is not the case, extra-Poisson vari-
ability results, and one is forced to model or oth-
erwise account for the consequent overdispersion
in Yij .

Table 1 Salmonella mutagenicity results for 1,3-butadi-
ene in strain TA1535

Mutants per plate, Average plate count,
Dose (ppm) Yij Y i

0.000 20 31 27 26.0
0.002 100 92 89 93.7
0.007 147 123 178 149.3
0.014 216 170 181 189.0
0.020 176 154 183 171.0
0.030 154 153 149 152.0
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Testing for Extra-Poisson Variability

Testing for extra-Poisson variability is critical when
analyzing count data from mutagenicity experiments.
Standard trend tests for Poisson-distributed counts
(see Trend Tests for Counts and Proportions) become
too sensitive in the presence of overdispersion, in-
creasing type I error rates above the nominally spec-
ified α level [38]. Thus, the data analyst must be
aware of the nature and level of any overdispersion
in the data before selecting a test for dose response.

Extra-Poisson variability in a set of ostensibly
homogeneous observations is most easily assessed
by a variance-to-mean comparison. The test employs
Fisher’s dispersion statistic [14, 15]:

X2
i =

T∑

i=1

(Yij − Y i)
2

Y i

, (1)

where Y i is the ith dose sample mean (i = 1, . . . , T )

(see Poisson Distribution). Asymptotically, X2
i is

distributed as χ2(Ri − 1), (i.e. with Ri − 1 degrees
of freedom), hence X2

i > χ2
1−α(Ri − 1) implies sig-

nificant extra-Poisson variability. This test is C(α)-
optimal against the negative binomial distribu-
tion [35], a standard alternative to the Poisson model.
To extend (1) to multiple test groups, simply aggre-
gate the individual X2

i statistics into a sum of per-dose
contributions [28]: X2 = ∑T

i=1 X2
i . Asymptotically,

X2 is distributed as χ2
(∑T

i=1 Ri − T
)

. (A slightly
more powerful test of extra-Poisson variability may
be constructed using the similar statistic C2 = ∑T

i=1∑Ri

j=1(Yij − Y i)
2/Y , where Y =∑T

i=1 RiYi/
∑T

i=1 Ri .
The null reference distribution of C2 is complex,
however, and hence somewhat difficult to apply in
practice [11].) Dean [13] discusses additional exten-
sions to more complex regression settings; see
also [20].

A common application of these tests is to large,
controlled databases where similar controlled trials
and replicate data are available. Margolin et al. [30]
reported on such data, demonstrating that the Poisson
model generally is inadequate to describe statistical
variability when analyzing Salmonella mutagenic-
ity experiments. Further research has suggested that
Salmonella data often exhibit extra-Poisson variabil-
ity, and that the parent distribution of the data is

better described by a negative binomial distribu-
tion [11, 28, 30]. Other publications indicate, how-
ever, that the Poisson model can be acceptable in
select instances [8], particularly for test data obtained
by imposing strict protocol adherence and by harvest-
ing all the data on the same day [16, 26]. Given these
conflicting considerations, testing for extra-Poisson
variability via X2 is necessary in practice.

Trend Tests for Dose Response

For mutagenicity experiments where no extra-Poisson
variability is evidenced, the well-known Cochran–
Armitage trend test for dose response may be em-
ployed. Under Poisson sampling, the test is known
to be optimal against any monotone dose–response
function [32, 48]. Given the observed counts, Yij (j =
1, . . . , Ri ; i = 1, . . . , T ), and denoting xi as some
increasing score (dose, log dose, etc.) associated with
treatment level i, the test statistic is

ZCA =

T∑

i=1

xi








Ri∑

j=1

Yij



 − RiY





(YS2
x)

1/2
, (2)

in which S2
x = ∑T

i=1Ri(xi − x)2 and x = ∑T
i=1Rixi/∑T

i=1 Ri . Asymptotically, ZCA is distributed as
standard normal, and significant dose response is
suggested when ZCA is larger than an appropriate
upper-α quantile, z1−α .

If the response is overdispersed and the Poisson
model is invalid, a form of Cochran–Armitage trend
test may still be constructed. Under a negative bino-
mial parent model, one simply replaces (YS2

x)
1/2 in

(2) with an updated estimator based on estimating the
negative binomial variance [28]. The result is

ZNB =

T∑

i=1

xi








Ri∑

j=1

Yij



 − RiY





[Y (1 + δ̂Y )S2
x ]1/2

. (3)

The dispersion estimator, δ̂, is calculated by the
method of moments, maximum likelihood (ML),
or maximum quasi-likelihood [10, 36, 49]. For ML
estimation, differentiating the log likelihood function
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with respect to δ achieves a nonlinear equation,

ψ

(
1

δ

) T∑

i=1

Ri +
T∑

i=1

Ri∑

j=1

[
ln(1 + δY i)

−ψ

(
Yij + 1

δ

)]
= 0, (4)

the solution of which provides δ̂ML. In (4), ψ(·) is the
digamma function, which is available from tables [1]
or computer algorithms [5]. Once calculated, δ̂ML is
substituted for δ̂ in (3). As above, significant dose
response is suggested when ZNB is larger than a
standard normal quantile, z1−α .

When the parent distribution of the data is not
known or indeterminate, it is possible to construct
a generalized score statistic (see Likelihood) for
testing trend producing a statistic recommended by
Astuti and Yanagawa [4]

ZGCA =

T∑

i=1

Ri(xi − x)Y i

√√√√
T∑

i=1

(xi − x)2
Ri∑

j=1

(Yij − Y )2

, (5)

where x, Y i , and Y , are defined as above. In large
samples, ZGCA, is distributed approximately as stan-
dard normal; thus we reject H0 in favor of an increas-
ing (decreasing) trend in the mean response when
ZGCA is greater (less) than or equal to z1−α(−z1−α .
(Two-sided testing is also possible.) This is similar to
the basic statistics in (2) or (3); the major difference
is that the terms estimating the Poisson or negative
binomial variances are replaced by the more robust
empirical variance estimate

∑Ri

j=1(Yij − Y)2.

Trend Test Under Nonmonotone Dose
Response

An important, additional feature illustrated by the
data in Table 1 is a curious downturn in the response
at higher doses. This form of nonmonotone dose
response is common in the Salmonella assay, and
is observed with other mutagenesis assays, includ-
ing data for chromosomal damage in yeast (Sac-
charomyces cerevisiae) or mold (Aspergillus nidu-
lans) [37, 42], in vitro cell transformation data, or in

vitro chromosome aberration data with human lym-
phocytes [43].

In Salmonella, the downturn phenomenon is dri-
ven by a number of possible mechanisms, the most
common of which is a consequence of the experi-
mental scheme employed to identify the mutational
events. Since mutagenesis is identified by growth on
a selective medium, any other mechanism that hin-
ders growth will compete with the desired outcome.
Thus, for example, high exposures of the toxic agent
can lead to cell death or perhaps chemical/threshold
induced increases in DNA repair. These factors con-
spire to reduce the yield of mutated cells by killing
or neutralizing the microbes before mutations can
be observed. The result is a downturn at the higher
doses, i.e. an umbrella response [25]. As might be
expected, simple tests for monotone trend such as
ZCA, ZNB, or ZGCA can exhibit large losses in power
to detect any increase in dose response in the presence
of a downturn [12], and suitable alternatives must be
employed.

Nonlinear biomathematical and empirical models
for this downturn phenomenon are available, which,
when coupled with the negative binomial sampling
model on the Yij s, involve fairly advanced statisti-
cal methodology [9, 23, 30]. A simple alternative is
to identify statistically the point of maximal depar-
ture from background mutation levels, and then test
for increasing trend up to that point. A number of
different procedures have been suggested for such
an approach [6, 46], the majority of which ana-
lyze the ranks of the observations by nonparametric
techniques [37].

For example, a nonparametric approach developed
by Simpson & Margolin [46] estimates recursively
the point of maximal response (the umbrella point),
and then tests for a significant increase in dose
response up to that point. One begins by calculat-
ing a series of two-sample Mann–Whitney statis-
tics [27], Wi , comparing the ith dose group with –
collectively – all preceding dose groups, starting at
i = T and working backwards. That is, WT tests
whether the response information at i = T departs
significantly above the pooled response information
at i = 1, . . . , T − 1. If so, an estimate, h, of the
umbrella index is h = T . If not, one discards the
information at i = T , and repeats the process at
i = T − 1. In this way, the test employs the values
of Wi(i = T , T − 1, . . . , 2) to estimate the umbrella
index via recursive pretesting. In effect, it selects
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this estimate as the largest dose index, h, such
that Wh is larger than a specified critical value ch;
i.e. h = max{i ∈ {2, . . . , T } : Wi > ci}, where c2 =
0 and ci = ci(q)(i = 3, . . . , T ) is the q-quantile of
the distribution of Wi under the null hypothesis of
no dose response. The tuning parameter q ∈ (0, 1)

must be prespecified, and is usually set at, or near,
q = 0.5 [37, 47].

Once the umbrella index, h, is estimated, the
recursive procedure calculates the conditional Jon-
ckheere–Terpstra trend statistic Uh = W1 + · · ·
+ Wh [19], and an increasing dose response is sug-
gested when Uh is larger than the (1 − π)-quantile of
the distribution of Ui under the null hypothesis of no
differences among the doses (i = 2, . . . , T ), for 0 <

π < 1. For fixed q and prespecified significance level
α, a conservative choice for π is given as π = α(1 −
q)/(1 − qT −1) [46]. A computing algorithm for these
calculations is described in [45], and extensions and
other research issues involved with rank-based testing
for Salmonella data are discussed in [44].

Example: 1,3-Butadiene

Consider the example of the airborne toxin 1,3-
butadiene, the data for which appear in Table 1. These
values represent a Salmonella mutagenic response
after gaseous exposure to the chemical, where an
increase in the number of observed colonies suggests
a mutagenic effect.

Begin by testing whether the data exhibit any
overdispersion relative to the Poisson sampling
model. Employing the aggregated dispersion statistic
using (1) to the data in Table 1 gives X2 = 22.134
on 12 df (P = 0.004). Strong departure from Poisson
variability is evidenced. If the negative binomial
sampling model were considered as an adequate
replacement to the Poisson for these data, then a trend
test for increasing dose response based on (3) gives
ZNB = 1.285, with one-sided P = 0.099. Marginal
suggestion of an increasing trend is given.

For these data, however, a downturn in the dose
response is evident. This could affect the trend test’s
ability to identify properly a positive dose response.
Application of the recursive test for an umbrella
response is therefore appropriate: setting the tuning
parameter to q = 0.5, the umbrella index is estimated
as h = 6, with a corresponding rank-based trend
statistic given by U6 = 105.5. Rejection occurs at
significance levels as low as α = 0.005, providing

strong evidence of a positive dose response for these
mutagenicity data.

References

[1] Abramowitz, M. & Stegun, I.A. (1972). Handbook of
Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 10th Ed. Wiley-Interscience, New
York.

[2] Ager, D.D. & Haynes, R.H. (1987). Mathematical
description of the interactions between cellular inacti-
vating agents, Radiation Research 110, 129–141.

[3] Alvord, W.G., Driver, J.H., Claxton, J. & Creason, J.P.
(1990). Methods for comparing Salmonella mutagenicity
data sets using nonlinear models, Mutation Research
240, 177–194.

[4] Astuti, E.T. & Yanagawa, T. (2002). Trend test for
count data with extra-Poisson variability, Biometrics 58,
398–402.

[5] Bernardo, J.M. (1976). Algorithm AS103. The digamma
function, Applied Statistics 25, 315–317.

[6] Bernstein, L., Kaldor, J., McCann, J. & Pike, M.C.
(1982). An empirical approach to the statistical analysis
of mutagenesis data from the Salmonella test, Mutation
Research 97, 267–281.

[7] Bishop, J.B. & Kodell, R.L. (1980). The heritable
translocation assay: Its relationship to assessment of
genetic risk for future generations, Teratogenesis, Muta-
genesis, and Carcinogenesis 1, 305–322.

[8] Bogen, K.T. (1994). Applicability of alternative models
of revertant variance to Ames-test data for 121 muta-
genic carcinogens, Mutation Research 322, 265–273.

[9] Breslow, N. (1984). Extra-Poisson variability in log-
linear models, Applied Statistics 33, 38–44.

[10] Clark, S.J. & Perry, J.N. (1989). Estimation of the
negative binomial parameter k by maximum quasi-
likelihood, Biometrics 45, 309–316.

[11] Collings, B.J. & Margolin, B.H. (1985). Testing good-
ness of fit for the Poisson assumption when observations
are not identically distributed, Journal of the American
Statistical Association 80, 411–418.

[12] Collings, B.J., Margolin, B.H. & Oehlert, G.W. (1981).
Analyses for binomial data, with applications to the fluc-
tuations test for mutagenicity, Biometrics 37, 775–794.

[13] Dean, C.B. (1992). Testing for overdispersion in Poisson
and binomial regression models. Journal of the American
Statistical Association 87, 451–457.

[14] Fisher, R.A. (1950). The significance of deviations from
expectation in a Poisson series, Biometrics 6, 17–24.

[15] Fisher, R.A., Thornton, H.G. & MacKenzie, W.A.
(1922). The accuracy of the plating method of estimating
the density of bacterial populations, Journal of Applied
Biology 9, 325–359.

[16] Hamada, C., Wada, T. & Sakamoto, Y. (1994). Statisti-
cal characterization of negative control data in the Ames



Mutagenicity Study 5

Salmonella/microsome test, Environmental Health Per-
spectives 102, Supplement 1, 115–119.

[17] Haynes, R.H. (1989). Mutagenesis and mathematics:
the allure of numbers, Environmental and Molecular
Mutagenesis 14, 200–205.

[18] Hollstein, M., McCann, J., Angelosanto, F. & Nic-
hols, W. (1979). Short-term tests for carcinogens and
mutagens, Mutation Research 65, 133–226.

[19] Jonckheere, A.R. (1954). A distribution-free k-sample
test against ordered alternatives, Biometrika 41,
133–145.

[20] Kim, B.S. & Park, C. (1992). Some remarks on testing
goodness of fit for the Poisson assumption, Communi-
cations in Statistics - Theory and Methods 21, 979–995.

[21] Kirkland, D.J. (1989). Statistical Evaluation of Muta-
genicity Test Data. Cambridge University Press, Cam-
bridge.

[22] Krewski, D., Leroux, B.G., Bleuer, S.R. & Broekho-
ven, L.H. (1993). Modeling the Ames Salmonella/micro
some assay, Biometrics 49, 499–510.

[23] Leroux, B.G. & Krewski, D. (1993). AMESFIT: A
microcomputer program for fitting linear-exponential
dose-response models in the Ames Salmonella assay,
Environmental and Molecular Mutagenesis 22, 78–84.

[24] Lockhart, A.-M., Piegorsch, W.W. & Bishop, J.B.
(1992). Assessing overdispersion and dose response in
the male dominant lethal assay, Mutation Research 272,
35–58.

[25] Mack, G.A. & Wolfe, D.A. (1981). K-sample rank
tests for umbrella alternatives, Journal of the American
Statistical Association 76, 175–181.

[26] Mahon, G.A.T., Middleton, B., Robinson, W.D., Green,
M.H.L., Mitchell, I. & Tweats, D.J. (1989). Analysis
of data from microbial count assays, in Statistical
Evaluation of Mutagenicity Test Data, D.J. Kirkland, ed.
Cambridge University Press, Cambridge, pp. 26–65.

[27] Mann, H.B. & Whitney, D.R. (1947). On a test of
whether one of two random variables is stochastically
larger than the other, Annals of Mathematical Statistics
18, 50–60.

[28] Margolin, B.H. (1985). Statistical studies in genetic
toxicology: a perspective from the U.S. National Toxi-
cology Program, Environmental Health Perspectives 63,
187–194.

[29] Margolin, B.H., Collings, B.J. & Mason, J.J. (1983).
Statistical analysis and sample-size determinations for
mutagenicity experiments with binomial response, Envi-
ronmental Mutagenesis 5, 705–716.

[30] Margolin, B.H., Kaplan, N. & Zeiger, E. (1981). Statis-
tical analysis of the Ames Salmonella/microsome test,
Proceedings of the National Academy of Sciences 76,
3779–3783.

[31] Margolin, B.H., Kim, B.S. & Risko, K.J. (1989). The
Ames Salmonella/microsome mutagenicity assay: issues
of inference and validation, Journal of the American
Statistical Association 84, 651–661.

[32] Margolin, B.H., Resnick, M.A., Rimpo, J.Y., Archer, P.,
Galloway, S.M., Bloom, A.D. & Zeiger, E. (1986). Sta-
tistical analyses for in vitro cytogenetic assays using
Chinese hamster ovary cells, Environmental Mutagen-
esis 8, 183–204.

[33] Maron, D.M. & Ames, B.N. (1983). Revised methods
for the salmonella mutagenicity test, Mutation Research
113, 173–215.

[34] Murphy, S.A., Tice, R.R., Smith, M.G. & Margolin, B.H.
(1992). Contributions to the design and analysis of in
vivo SCE experiments, Mutation Research 271, 39–48.

[35] Neyman, J. & Scott, E.L. (1966). On the use of
C(a) optimal tests of composite hypotheses, Bulletin
de l’Institut International de Statistique (Calcutta) 41,
477–497.

[36] Piegorsch, W.W. (1990). Maximum likelihood estima-
tion for the negative binomial dispersion parameter,
Biometrics 46, 863–867.

[37] Piegorsch, W.W. (1992). Nonparametric methods to
assess non-monotone dose response: applications to
genetic toxicology, in Order Statistics and Nonparamet-
rics: Theory and Applications, P.K. Sen & I.A. Salama,
eds. North-Holland, Amsterdam, pp. 419–430.

[38] Piegorsch, W.W. (1993). Biometrical methods for testing
dose effects of environmental stimuli in laboratory
studies, Environmetrics 4, 483–505.

[39] Piegorsch, W.W. (1994). Environmental biometry: Ass-
essing impacts of environmental stimuli via animal and
microbial laboratory studies, in Handbook of Statistics,
Vol. 12: Environmental Statistics, G.P. Patil & C.R. Rao,
eds. North-Holland/Elsevier, Amsterdam, pp. 535–559.

[40] Piegorsch, W.W., Lockhart, A.-M.C., Margolin, B.H.,
Tindall, K.R., Gorelick, N.J., Short, J.M., Carr, G.J.,
Thompson, E.D. & Shelby, M.D. (1994). Sources of
variability in data from a lacI transgenic mouse mutation
assay, Environmental and Molecular Mutagenesis 23,
17–31.

[41] Piegorsch, W.W., Margolin, B.H., Shelby, M.D., John-
son, A., French, J.E., Tennant, R.W. & Tindall, K.R.
(1995). Study design and sample sizes for a lacI trans-
genic mouse mutation assay, Environmental and Molec-
ular Mutagenesis 25, 231–245.

[42] Piegorsch, W.W., Zimmermann, F.K., Fogel, S., Whit-
taker, S.G. & Resnick, M.A. (1989). Quantitative
approaches for assessing chromosome loss in Sac-
charomyces cerevisiae: general methods for analyzing
downturns in dose response, Mutation Research 224,
11–29.

[43] Richardson, C., Williams, D.A., Amphlett, G.,
Phillips, B., Allen, J.A. & Chanter, D.O. (1989). Analy-
sis of data from in vitro cytogenetic assays, in Statistical
Evaluation of Mutagenicity Test Data, D.J. Kirkland, ed.
Cambridge University Press, Cambridge, pp. 141–154.

[44] Schumacher, M. & Schmoor, C. (1991). Statistical
analysis of the Ames assay, in Statistics in Toxicology,
L. Hothorn, ed. Springer-Verlag, Heidelberg, pp. 5–19.

[45] Simpson, D.G. & Dallal, G.E. (1989). BUMP: a FOR-
TRAN program for identifying dose-response curves



6 Mutagenicity Study

subject to downturns, Computers and Biomedical Re-
search 22, 36–43.

[46] Simpson, D.G. & Margolin, B.H. (1986). Recursive
nonparametric testing for dose-response relationships
subject to downturns at high doses, Biometrika 73,
589–596.

[47] Simpson, D.G. & Margolin, B.H. (1990). Nonparametric
testing for dose-response curves subject to downturns:
asymptotic power considerations, Annals of Statistics 18,
373–390.

[48] Tarone, R.E. (1982). The use of historical control
information in testing for a trend in Poisson means,
Biometrics 38, 457–462.

[49] van de Ven, R. (1993). Estimating the shape parameter
for the negative binomial distribution, Journal of Statis-
tical Computation and Simulation 46, 111–123.

[50] Waters, M.D., Stack, H.F., Brady, A.L., Lohman,
P.H.M., Haroun, L. & Vainio, H. (1987). Activity pro-
files for genetic and related tests, Appendix I, in IARC
Monographs on the Evaluation of Carcinogenic Risks to
Humans. Genetic and Related Effects: An Updating of
Selected IARC Monographs from Volumes 1 to 42, IARC
Working Group on the Evaluation of Carcinogenic Risks
to Humans, ed. International Agency for Research on
Cancer, Lyon, France, pp. 687–696.

(See also Biological Assay, Overview)

WALTER W. PIEGORSCH



Mutation

Most of the time when chromosomes duplicate, the
deoxyribonucleic acid (DNA) is faithfully copied.
Rarely, however, mutation occurs, i.e. there is a
change due to an error in the copying process,
leading to a mutant allele (see Gene). There are
different kinds of mutations, depending on which
base-pair in a DNA sequence is miscopied, such
as missense mutations that change an amino acid
in a protein and nonsense mutations that result in

the formation of an incomplete protein. Whereas
nonsense mutations usually lead to lack of bio-
logic activity, and hence have a large effect, mis-
sense mutations can vary in effect from none to
serious disease. The word mutation is now often
used to mean a mutant allele, especially if the allele
is rare and has a deleterious effect, in contrast to
a polymorphism. But all polymorphisms can be
assumed to have arisen by mutation, making evo-
lution possible.

ROBERT C. ELSTON



National Center for
Health Statistics (NCHS)

The National Center for Health Statistics (NCHS) is
the principal health statistics agency of the US, with
responsibility for designing and maintaining a vari-
ety of general-purpose descriptive health surveys on
a continuous basis and disseminating these data for
widespread use (see Surveys, Health and Morbid-
ity). The NCHS came into being in 1960 through
the combining of the National Health Survey and
the National Office of Vital Statistics. The princi-
pal health surveys conducted by the NCHS include
population-based surveys (the National Health Inter-
view Survey and the National Health and Nutri-
tion Examination Survey); record-based surveys (the
National Health Care Surveys); facility-based sur-
veys (the Master Facility Inventory and the National
Nursing Home Survey); and the Cooperative National
Vital Statistics System covering births, deaths, fetal
deaths, marriages, and divorces (see Vital Statistics,
Overview).

History

The National Vital Statistics System of the US
achieved essentially complete coverage for births and
deaths in 1933. The collection and archiving of vital
records are the responsibilities of each of the states
and territories. The federal system is a cooperative
program between each of the registration areas and
the NCHS (and its predecessor agencies). In coor-
dination with the Association for Vital Records and
Health Statistics, which represents the registrars of
each of the states, NCHS periodically revises the
model certificates for registration of vital events,
identifies the data items to be reported to NCHS for
national tabulation, and specifies quality criteria for
the accuracy, completeness, and timeliness of report-
ing vital events.

Drawing on the experience of such surveys as
the nationwide health survey of 1935–1936 done
under the auspices of the Work Projects Adminis-
tration (WPA) and local health surveys conducted in
Hagerstown and Baltimore, Maryland, which showed
that interview-based health surveys were feasible,
and encouraged by recent advances in population
sampling and statistical methods developed by the

US Bureau of the Census, the newly created US
National Committee of Vital and Health Statistics
issued a report calling for the development of a
National Morbidity Survey. Largely in response to
this report, Congress passed the National Health
Survey Act in 1956. The first component of the
National Health Survey to be implemented was the
National Health Interview Survey which went into
the field in July 1957, and has been conducted con-
tinuously since then. The second component, the
National Health Examination Survey (subsequently
to become the National Health and Nutrition Exam-
ination Survey when a major nutrition component
was added in 1971) was initiated in 1960 and has
been conducted periodically seven times with plans
for initiating it as a continuously ongoing survey in
1998. The third component was the Health Records
Survey which began in 1963 with the creation of a
National Master Facility Inventory (NMFI) designed
as a comprehensive file of inpatient facilities in the
US. Drawing a sample of hospitals from the NMFI,
the National Hospital Discharge Survey began in
1965 and has been conducted continuously since.
Additional subcomponents of the renamed National
Health Care Survey were added over the years includ-
ing the National Ambulatory Medical Care Survey,
the National Survey of Ambulatory Surgery, the
National Hospital Ambulatory Medical Care Survey,
and the National Home and Hospice Care Survey.
The National Nursing Home Survey has been con-
ducted intermittently since 1973 and is based more on
characteristics of facilities than on individual patient
records.

The NCHS has been based in a number of agencies
since its inception, but since 1987 it has been a com-
ponent of the Centers for Disease Control (CDC)
of the Department of Health and Human Services
with most of its staff of about 500 persons located in
Hyattsville, Maryland.

Survey Programs of the National Center
for Health Statistics

The National Health Interview Survey

The National Health Interview Survey (NHIS)
is a continuous cross-sectional survey of the
noninstitutionalized, civilian population of the US
designed to produce national data on the incidence
of acute illnesses and injuries, prevalence of chronic
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conditions and impairments, extent of disabilities,
utilization of health care services (see Health
Care Utilization Data), and, on a periodic basis,
information on other health-related topics such
as health insurance coverage, knowledge and
attitudes about HIV/AIDS, use of medical devices,
immunization status of children, and indicators of
progress toward achieving the objectives set in
Healthy People 2000: National Health Promotion and
Disease Prevention Objectives. The sampling plan
follows a multistage sampling design such that the
sample scheduled each week is representative of
the target population and the weekly samples can
be cumulated over time. For the years 1985–1994
a typical NHIS sample consisted of 198 primary
sampling units (counties or metropolitan statistical
areas) with approximately 7500 segments (defined to
contain an expected eight households each) yielding
about 59 000 assigned households, of which about
15% were vacant or out of scope. The expected
final sample of about 49 000 households comprised
a probability sample of about 125 000 persons.
The annual response rates for the core survey have
been between 94% and 98% over the years, with
somewhat lower response rates for the special topic
areas.

The data are collected through personal household
interviews conducted by interviewers employed and
trained by the Bureau of the Census according to pro-
cedures specified by the NCHS. The questionnaires
are developed in conjunction with statisticians and
experts in cognitive psychology. Extensive pretesting
and field trials are conducted before the survey goes
into each annual cycle. All members of the household
aged 17 and older are invited to participate and to
respond for themselves. For children and for persons
not at home, information is provided by a proxy (an
adult resident of the household). For some topics, a
random subsample of household members is selected
and special techniques have been developed for elicit-
ing confidential information on sensitive topics in the
household setting. The NHIS often serves as a sam-
pling frame for follow-on studies and special call-
backs will be made to household members selected
for such studies (see Call-backs and Mail-backs in
Sample Surveys). These targeted population studies
have included the Longitudinal Study on Aging, the
Teenage Attitudes and Practices Survey, the Access
to Care Followup Study, and the Disability Followup
Survey.

The National Health and Nutrition Examination
Survey

Through the National Health and Nutrition Exam-
ination Surveys, the NCHS provides estimates of
the prevalence of selected diseases and conditions,
normative distributions for a variety of physio-
logic, anthropomorphic, and nutritional measures, and
assessments of exposures to environmental hazards
such as lead and pesticides. Seven health examina-
tion surveys were conducted by the NCHS between
1960 and 1995. With the addition of the specific
mandate to monitor the nutritional status of the
US in 1970, the three Health Examination Sur-
veys conducted in the 1960s were followed by the
first National Health and Nutrition Examination Sur-
vey (NHANES I) in 1970–1973, NHANES II in
1976–1980, and NHANES III in 1988–1994. The
surveys were designed to obtain nationally repre-
sentative information on the health and nutritional
status of the population using interviews, physical
examinations, and standardized clinical and labora-
tory tests. This information is of two kinds: preva-
lence data of selected diseases and health conditions;
and normative population data on the distribution of
such measurements as height, weight, blood pressure,
visual and auditory acuity, and a variety of blood
chemistries such as cholesterol levels, vitamin lev-
els, and metabolites of pesticides and other environ-
mental exposures. The several surveys have targeted
different age segments of the population, with the
latest survey covering the entire noninstitutionalized
US population aged two months or older. A special
Hispanic Health and Nutrition Examination Survey
(HHANES) was conducted in 1983–1984 covering
three areas with high concentrations of Hispanic
Americans: Mexican Americans in the Southwest;
Cubans in Miami (Dade County), Florida; and Puerto
Ricans in the New York City area. Oversampling has
been used in other surveys to obtain more precise
estimates for selected subgroups of the population.
In NHANES III, black and Mexican Americans, as
well as children and older persons were oversampled.

The sample design of NHANES III employed a
stratified multistage probability sample of counties,
blocks, and persons randomly selected from house-
holds. The periods 1988–1991 and 1991–1994 each
constituted national samples of the US population.
Eighty-one counties were selected from 26 states
from which approximately 40 000 persons of all races
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were selected and about 30 000 agreed to partici-
pate in the medical examination. The examinations
are conducted in specially designed mobile examina-
tion centers that provide a standardized environment
for obtaining the measurements and biologic samples.
Some of the 30 topics investigated in the NHANES
III were: high blood pressure, high blood cholesterol,
obesity, passive smoking, lung disease, osteoporo-
sis, HIV, hepatitis, Helicobacter pylori, immunization
status, diabetes, allergies, growth and development,
blood lead, anemia, food sufficiency, dietary intake
including fats, antioxidants, and nutritional blood
measures.

NHANES I Epidemiologic Followup Study

The NHANES I Epidemiologic Followup Study
(NHEFS) is a national longitudinal study designed
to investigate the relationships between clinical,
nutritional, and behavioral factors assessed at baseline
NHANES I, and subsequent morbidity, mortality, and
institutionalization. The NHEFS population includes
the 14 407 participants who were 25–74 years of age
when first examined in NHANES I (1971–1975).
NHEFS provides data on mortality, morbidity, and
hospital utilization as well as changes in risk factors,
functional limitation, and institutionalization between
NHANES I and the follow-up recontacts. The first
wave (1982–1984) of data collection was conducted
for all members of the NHEFS cohort. Continued
follow-ups of the NHEFS population were conducted
in 1986, 1987, and 1992.

National Survey of Family Growth

The National Survey of Family Growth moni-
tors childbearing practices and reproductive health
through periodic household interview surveys of a
national sample of women aged 15–44. The sur-
vey provides data on contraception, infertility, use of
family planning and infertility services, sexual activ-
ity, family formation, family size and related aspects
of maternal and child health. Conducted periodically
since 1973, the survey was conducted most recently
in 1995.

The National Health Care Survey

The National Health Care Survey (NHCS), originally
consisting of four discrete record-based surveys, is

now an integrated survey of a wide variety of health
care providers. The NHCS was built upon the fol-
lowing four continuing surveys: the National Hospital
Discharge Survey, the National Ambulatory Medical
Care Survey, the National Nursing Home Survey,
and the National Health Provider Inventory (formerly
the National Master Facility Inventory). The new
surveys include the National Survey of Ambulatory
Surgery, the National Hospital Ambulatory Medical
Care Survey, and the National Home and Hospice
Care Survey.

National Hospital Discharge Survey

The National Hospital Discharge Survey (NHDS)
is the principal source of information on inpa-
tient utilization of nonfederal short-stay hospitals. It
includes data on diagnoses, procedures, length of
stay, expected source of payment, and patterns of
use of care in hospitals, and on the size, location,
and ownership of hospitals, but does not include
individual identifiers for patients. Conducted annu-
ally since 1965, the NHDS currently is based on data
abstracted from a sample of approximately 274 000
patient records from a sample of 525 hospitals from a
universe of about 8000 short stay hospitals. Only hos-
pitals with six or more beds and an average length of
stay for all patients of less than 30 days are included
in the sample.

National Ambulatory Medical Care Survey

The National Ambulatory Medical Care Survey
(NAMCS) provides statistics on the characteristics
of patients and services provided by office-based
physicians. The sample consists of 40 000 visits from
approximately 3000 physicians drawn from a sam-
pling frame of licensed physicians in office-based,
patient care practices compiled from files maintained
by the American Medical Association and the Amer-
ican Osteopathic Association. Data collection is car-
ried out by the participating physicians using a form
that takes only one or two minutes to complete. Up
to 10 patient visits per physician are reported each
day during about a one-week period. The sampling
rate and duration depend on the number of patients
the physician expects to see. The data collected for
each patient visit include information on the patient’s
symptoms, diagnostic procedures, physician’s diag-
noses, and medications ordered or provided, as well
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as patient management and planned future treatment.
The NAMCS has been conducted annually from 1974
to 1981, in 1985, and annually since 1989.

National Survey of Ambulatory Surgery

The National Survey of Ambulatory Surgery (NSAS)
provides information on the use of free-standing
and hospital-based ambulatory surgery centers in the
US. Although most surgery is still performed on an
inpatient basis, advances in medical technology have
enabled a wide variety of surgical and diagnostic
treatments now to be performed in an ambulatory
setting. The NSAS, which began in April 1994,
provides detailed data on this expanding area of
health care. Information collected includes patient
characteristics, diagnoses, surgical and diagnostic
procedures, and administrative information such as
patient disposition and expected sources of payment.

National Hospital Ambulatory Medical Care
Survey

The National Hospital Ambulatory Medical Care Sur-
vey produces statistics that are representative of the
experience of the US population receiving health
care in hospital emergency departments and outpa-
tient departments. This hospital-based survey, which
is based on abstracts from medical records, pro-
vides information similar to that collected in the
office-based ambulatory survey: demographic charac-
teristics of patients, patients’ complaints, physicians’
diagnoses, diagnostic/screening services, procedures,
medications, disposition, types of health care profes-
sional seen, expected sources of payment, and causes
of injury where applicable. Data collection began in
1992 with an annual sample of 70 000 visits to 440
hospitals.

National Nursing Home Survey

The National Nursing Home Survey is based on
self-administered questionnaires and interviews with
administrators and staff in a sample of about 1500
long-term care facilities. Information is obtained on
both the providers of services and on the nursing
home patients. Data about the facilities include char-
acteristics such as size, ownership, Medicare/Medi-
caid certification, occupancy, days of care provided,
and expenses. For patients, data are obtained on

demographic characteristics, health status, and ser-
vices received. The survey has been conducted peri-
odically since 1963, most recently in 1995.

National Nursing Home Survey Followup

The National Nursing Home Survey Followup is a
longitudinal study that follows the cohort of surviv-
ing current residents and discharged residents sam-
pled from the 1985 National Nursing Home Sur-
vey. Its primary purpose is to provide data on the
flow of persons in and out of long-term care facil-
ities and hospitals. The National Nursing Home
Survey Followup provides data on the subjects’
vital status, living arrangements, nursing home stays,
hospital stays, and sources of payment for stays.
The study population consisted of approximately
6600 subjects with follow-up conducted at two-year
intervals using computer-assisted telephone inter-
views.

National Home and Hospice Care Survey

The National Home and Hospice Care Survey
provides data on home health agencies and hos-
pices and their current patients and discharges.
This survey was instituted in 1992, in response
to the rapid growth in the number of these agen-
cies throughout the US. The annual survey is
based on personal interviews with administrators
and staff of approximately 1500 sample agen-
cies. Information is obtained on diagnoses, types
and length of services provided, number of visits,
patient charges, health status, and reason for dis-
charge.

National Health Provider Inventory

The National Health Provider Inventory (NHPI) is
a comprehensive national listing of nursing homes,
residential care facilities, hospices, and home health
agencies. The NHPI serves as a sampling frame
for several sample surveys. In addition, it is an
important source of national statistics on the num-
ber, type, and geographical distribution of health
providers in the US. Conducted periodically since
1963 under different survey titles – National Master
Facility Inventory, 1971–1976; Inventory of Long-
Term Care Places, 1986 – it was conducted in its
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present form in 1991. The NHPI provides names
and addresses of almost 56 000 facilities, includ-
ing more than 7800 home health agencies and hos-
pices, more than 15 500 nursing homes, and more
than 31 000 board and care homes. Information
about such items as type of facility, ownership,
size, location, and resident characteristics is collected
from questionnaires sent directly to agencies and
facilities.

National Vital Statistics System

The National Vital Statistics System is responsible
for US official vital statistics. The registration of
vital events – births, deaths, marriages, divorces, fetal
deaths, and induced terminations of pregnancy – is
the responsibility of each of the states and is carried
out under the civil registration laws of each state.
However, standard forms for the collection of the
data, model procedures for the uniform registration
of the events, and standards for quality and timeliness
of the statistical reports of events are developed
and recommended for state use through cooperative
activities of the states and the NCHS. The NCHS
shares the costs incurred by the states in providing
vital statistics data for national use. It produces
annual data for the US and for states, counties,
and other local areas, and monthly provisional data
for the US and each state. Typically, the record
of each event is filed by the responsible party
(physician, hospital, or funeral director) with the
local registrar of the town, city, or county where
the event occurs. The local registrar inspects the
report for completeness and accuracy, retains a local
copy, and sends the original to the state health
department. The state vital records office maintains
permanent archives of the records, processes the
statistical information, and provides summaries for
state and local use. A uniform data set from the
individual records is transmitted electronically to
the NCHS for compilation into national statistical
files. Two principal sets of reports are prepared from
these data: monthly provisional estimates assembled
on a “current flow” basis and final annual national
vital statistics volumes. Before 1997, the provisional
mortality data had been based on a 10% sample
of deaths, but since then all records received have
been incorporated into the provisional reports. The
contents and quality standards for the uniform data set
are reviewed approximately every 10 years. Rigorous

security controls have been instituted to ensure the
confidentiality of the records and prevent inadvertent
identification of individuals. The annual volumes
provide detailed tabulations of a wide variety of
characteristics of the approximately 4 000 000 births,
2 100 000 deaths, and 70 000 fetal deaths that occur in
the US and of the 2 300 000 marriages and 1 200 000
divorces.

The NCHS linked files of live birth and infant
death records are research files for exploring the
complex relationships between infant death and risk
factors present at birth. The linked files include
information from the birth certificate such as birth
weight, mother’s age, and prenatal care, linked
to information from the death certificate for the
same infant, such as cause of death and age at
death (see Record Linkage). The files are birth
cohort linked files. They are based on deaths
under one year of age to all infants born in
a calendar year. Each file contains approximately
40 000 linked records. The first annual national
linked file was for the 1983 cohort under a pilot
project. Beginning with the birth cohort of 1987,
linked files are part of the National Vital Statistics
System.

National Death Index

Working with state offices, NCHS established the
National Death Index (NDI), a central computer-
ized index of death record information, in 1979
as a resource to aid epidemiologists and other
health and medical investigators in determining
whether persons in their studies have died and, if
so, to provide the names of the states in which
those deaths occurred, the dates of death, and
the corresponding death certificate numbers. The
NDI is available to investigators solely for statis-
tical purposes in biomedical research and is not
accessible for legal, administrative, or genealogic
purposes.

National Maternal and Infant Health Survey

The National Maternal and Infant Health Survey
(NMIHS) collects data to study factors related
to poor pregnancy outcomes, including low birth
weight, stillbirth, infant illness, and infant death.
The NMIHS is a followback survey of informants
named on vital records. The 1988 survey was based
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on 10 000 live births, 4000 fetal deaths, and 6000
infant deaths and was the first national survey
that included data on those three pregnancy out-
comes simultaneously. National Natality Surveys had
been conducted in 1963, 1964–1966, 1968–1969,
1972, and 1980. A National Fetal Mortality Survey
was done in 1980, and a National Infant Mortal-
ity Survey was conducted in 1964–1966. A 1991
longitudinal follow-up to the NMIHS was con-
ducted to obtain additional information about respon-
dents from the 1988 survey. The NMIHS provides
data on socioeconomic and demographic character-
istics of mothers, prenatal care, pregnancy history,
occupational background, health status of mother
and infant, and types and sources of medical care
received.

National Mortality Followback Survey

Data on characteristics of deceased persons are pro-
vided in the National Mortality Followback Sur-
vey. The survey is based on questionnaires sent
to informants listed on the death certificates to
obtain additional data on socioeconomic character-
istics of deceased persons, use of and payment
for hospitals and institutional care during the last
year of life, and factors related to health status.
The 1986 survey was a national sample of approx-
imately 1% of US resident deaths of persons 25
years of age and over. The survey was conducted
annually from 1961 to 1968 and in 1986. The
most recent survey was initiated in 1993 and is
the first survey to collect information from medi-
cal examiners and coroners for external causes of
death.

Data Dissemination

The dissemination of its vital and health statis-
tics, of summary reports, and of research findings
is an essential part of the mission of NCHS. His-
torically, published reports have been the principal
modes of dissemination, but with advancing tech-
nologies, electronic products are becoming more
common.

Principal Publications

Vital Statistics of the United States has been published
annually since 1937. It contains the final summaries

of mortality and natality data in extensive demo-
graphic and geographic detail. Marriage and divorce
data have also been available since 1946.

Monthly Vital Statistics Reports are based on
monthly and cumulative data on vital events.

The Vital and Health Statistics series (the
“Rainbow Series”) contains detailed reports of the
background, methodology, analytical studies, and
tabulations from the various NCHS data collection
programs. Each program has its own series with a
distinctively colored cover.

Advance Data from Vital and Health Statistics are
summary reports that provide the first release of data
from the various surveys.

Health, United States is a comprehensive annual
report from the Secretary of Health and Human
Services to the President and Congress describing the
nation’s health.

Electronic Products

Data are disseminated in great detail through a vari-
ety of electronic products. As technology progresses,
the specific types of product have varied. Public-use
data tapes had been a dominant form for sharing
micro-level files with researchers. These data are
now released in cartridge format and on CD-ROMs.
Diskettes are available with detailed tables from a
variety of surveys. Most recently, the NCHS Home
Page (http://www.cdc.gov/nchswww/nchs
home.htm) has been established to provide instan-
taneous access to a range of statistical information
about health status (see Quality of Life and Health
Status) and use of health services in the US.
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National Institutes of
Health (NIH)

The National Institutes of Health (NIH), which began
as a one-room Laboratory of Hygiene in 1887, today
is one of the world’s foremost biomedical research
centers, and the federal focal point for biomedical
research in the US. The goal of NIH research is
to acquire new knowledge to help prevent, detect,
diagnose, and treat disease and disability, from the
rarest genetic disorder to the common cold. NIH
works toward achieving its mission by: conducting
research in its own laboratories (Intramural Research
Programs); supporting the research of nonfederal sci-
entists in universities, medical schools, hospitals,
and research institutions throughout the country and
abroad (Extramural Research Programs); helping in
the training of research investigators; and fostering
communication of biomedical information.

The NIH is one of eleven health agencies of
the United States Department of Health and Human

Services and consists of 27 separate institutes and
centers (see Table 1). From a budget of about $300
in 1887, the NIH budget has grown to over $27
billion in 2003, (according to “The National Institutes
of Health,” a public information brochure published
by the NIH.) Biostatistics and biostatisticians have
played, and continue to play, an important role in the
Intramural and Extramural Research Programs at the
NIH.

Biostatistics first appeared as a recognized disci-
pline at the National Institutes of Health in the years
1946–1948. The Division of Statistical Methods in
the US Public Health Service was established with
Harold Dorn as its first Head to support the research
of the then new NIH.

The degree of formal statistical training of his first
recruits (Jerry Cornfield, Sam Greenhouse, Jack
Lieberman, Nathan Mantel, and Marvin Schneider-
man) varied, but their experience in the applications
of statistics to problems of biology and medicine was
minimal [12, 13]. Within a few years, Sid Cutler,
Max Halperin, Bill Haenszel, Harold Kahn, Sam

Table 1 The Institutes, Centers, and Divisions of the US National
Institutes of Health

National Cancer Institute
National Eye Institute
National Heart, Lung, and Blood Institute
National Human Genome Research Institute
National Institute on Aging
National Institute on Alcohol Abuse and Alcoholism
National Institute of Allergy and Infectious Diseases
National Institute of Arthritis and Musculoskeletal and Skin Diseases
National Institute of Biomedical Imaging and Bioengineering
National Institute of Child Health and Human Development
National Institute on Deafness and Other Communication Disorders
National Institute of Dental and Craniofacial Research
National Institute of Diabetes and Digestive and Kidney Diseases
National Institute on Drug Abuse
National Institute of Environmental Health Sciences
National Institute of General Medical Sciences
National Institute of Mental Health
National Institute of Neurological Disorders and Stroke
National Institute of Nursing Research
National Library of Medicine
National Center for Research Resources
National Center for Complementary and Alternative Medicine
National Center for Minority Health and Health Disparities
Center for Information Technology
Center for Scientific Review
Clinical Center
John E. Fogarty International Center
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Marcus, Felix Moore, and others rounded out the
cadre of statisticians. Morton Kramer headed a statis-
tics group at the separate National Institute of Mental
Health.

Harold Dorn (NIH tenure 1946–1963) was the ini-
tial force in the recruitment and the building of a bio-
statistical presence at NIH (Figure 1). Jerry Cornfield
(NIH tenure 1947–1967), hired by Dorn, is charac-
terized by many as a leader who created the theoreti-
cal foundation for extensive methodological research
in epidemiology and clinical trials (Figure 2), and
whose forceful influence with physicians and epi-
demiologists enhanced the prestige of biostatistics at
NIH. Unfortunately, both suffered relatively early and
untimely deaths.

Many biostatisticians who stayed at NIH for much
of their careers tended to move around to different
institutes. The initial group of Harold Dorn, Marvin
Schneiderman, Jerome Cornfield, Jacob Leiberman,
Nathan Mantel, and Samuel Greenhouse arrived in
about 1946 (Figure 3). The first “splitting off” of the
individuals came in about 1948, when Max Halperin
also arrived (Figure 4). A more detailed listing of the
comings and goings of the early arrivals is given in
Table 2.

Figure 1 Harold Dorn (ca. 1950)

Figure 2 Jerry Cornfield (1974)

In 1948 both the statistical group and the NIH
were quite small. In the next decade the NIH grew
tremendously, as did the numbers and international
reputation of its statisticians. Several papers explore
the environment conducive to scientific collaboration
at NIH in the early decades [1–4, 6–11, 14], indicat-
ing that NIH stands as a model emulated throughout
the US and the world for the interface of statis-
tics and medicine. At one point in the 1960s there
was concern about the absence of intermediate level
statisticians to take over in the future and the impact
on recruiting younger statisticians that this absence
would have. This concern arose after statisticians
who would have been very successful in serving
as leaders in the future, individuals such as Sey-
mour Geisser and Marvin Zelen, left the NIH for
universities.

The medical leaders at NIH have been strong
supporters of biostatisticians over the years, and bio-
statistics as a discipline has flourished. Indeed, for
more than 50 years NIH has been home to many
of the most influential biostatisticians and the most
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Table 2 Chronologic overview of (≥5 year) tenures of early (entry before 1965) NIH Biostatisticians

Years, 1st Years, 2nd Years, 3rd
Statistician institute institute institute

Lieberman, Jacob E. 1947–56 NCI 1957–1962 DRS 1963–70 NHI
Dorn, Harold 1947–56 NCI 1957–59 DRS 1960–62 NHI
Cornfield, Jerome 1947–56 NCI 1957–58 DRS 1960–67 NHLBI
Moore, Felix 1947–57 NHI
Mantel, Nathan 1947–74 NCI
Marcus, Samuel C. 1948–60 NCI
Greenhouse, 1948–53 NCI 1954–66 NIMH 1967–74 NICHD

Samuel W.
Cutler, Sidney J. 1948–75 NCI
Schneiderman, 1948–80 NCI

Marvin A.
Sadowsky, Doris A. 1949–53 NCI 1954–79 NINDS
Kramer, Morton 1949–75 NIMH
Kahn, Harold 1950–51; NHI 1957–60 OD 1971–75 NEI

1960–70
Halperin, Max 1951–55 NHI 1955–58 DBS 1966–77 NHLBI
Kroll, Bernard H. 1951–58 NIMH 1959–82 NINDS
Loveland, Donald 1951–59 NCI 1970–74 NICHD
Haenszel, William 1952–76 NCI
Gordon, Tavia 1954–58 NHI 1958–60 NCI 1966–77 NHLBI
Pollack, Earl S. 1954–77 NIMH 1977–85 NCI
Geisser, Seymour 1955–61 NIMH 1962–65 NIAMD
Bailar, John C. III 1955–80 NCI
Morrison, Donald F. 1956–63 NIMH
Ederer, Fred 1957–64 NCI 1964–71 NHLBI 1971–86 NEI
Chiazze, Leonard Jr 1957–66 NCI
Goldberg, Irving D. 1957–66 NINDS
Crittenden, Margaret 1958–61 NCI
Gurian, Joan M. 1958–64 NCI 1965–71 NHLBI
Gehan, Edmund A. 1958–67 NCI
Rosen, Beatrice M. 1958–81 NIMH
Deutchberger, Jerome 1959–68 NINDS
Myers, Max H. 1960–86 NCI
Markush, Robert E. 1961–66 NHI 1967–69 NINDS 1970–74 NIMH
Jackson, Esther C. 1961–77 NINDS
Pettigrew, Karen 1961-present NIMH
Schachter, Joseph 1962–65 NHI 1965–67 DRS 1971–74 NIAID
Hawkins, C. Morton 1962–66 NINDS
Weiss, William 1962–84 NINDS
Seigel, Daniel 1963–67 NHI 1967–76 NICHD 1977–91 NEI
Zelen, Marvin 1963–67 NCI
Pettigrew, Hugh 1963–89 NCI
Gart, John J. 1965–91 NCI

Abbreviations: OD, Office of the Director, NIH; NCI, National Cancer Institute; NHI and NHLBI, National Heart and Heart,
Lung, and Blood Institute; NEI, National Eye Institute; NIAMD, National Institute for Arthritis and Musculoskeletal Diseases;
NIMH, National Institute of Mental Health; NICHD, National Institute of Child Health and Human Development; NINDS, National
Institute of Neurological Disorders and Stroke; DRS, Division of Research Services; DBS, Division of Biologics Standards.
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Figure 3 US Public Health Service, Division of Statistical Methods, 1947

important developments in the design and analysis
of biomedical experiments. The statistical founda-
tions for epidemiologic case–control studies, the use
of regression models for identification of high-risk
individuals, and key methodology for the conduct
of modern clinical trials all originated with NIH
statisticians.

NIH has also played a major role in the training
of biostatisticians. In 2004, 16 US universities offer
doctoral training programs (27 separate programs)
with funding from 10 NIH institutes.

In celebration of 50 years of biometry at the NIH, a
conference was held in January 1993 to acknowledge
and review contributions of those pioneers who laid
the foundation in the 1940s and continued, through
their contributions, persuasiveness, and perseverance,
to foster the strong presence of biostatistics at NIH
that exists today [5].

Biostatistics, representing the science of the
design of biomedical experiments (see Experimental

Design) and the analysis of quantitative data, is
more important today than ever. The goal of
biostatisticians at the NIH today is to continue
to provide statistical insight and rigor to NIH
investigations. At the 1993 conference celebrating
50 years of biostatistics at NIH, the diversity and
depth of the ongoing biostatistical collaboration
was demonstrated by the range of topics presented.
Some examples are: time series for modeling
counts from a relapsing–remitting disease (P.S.
Albert); a comparison of likelihood-based and
marginal generalized estimating equation methods
for analyzing repeated ordered categorical responses
with missing data (S.D. Mark, M.H. Gail); the
utility of large-simple trials in the evaluation of
AIDS treatment strategies (S. Ellenberg); mixed
effects regression models for studying the natural
history of prostate disease (J.D. Pearson); partial
questionnaire design for case–control studies
(S. Wacholder); stochastic curtailment (see Data
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Figure 4 The methodologic “big bang”

and Safety Monitoring) and conditional power in
matched case–control studies (S. Hunsberger); and a
comparison of tumor incidence analyses applicable in
single-sacrifice animal experiments [5].

The ongoing collaborations among those inter-
ested in developing and applying new statistical
methods and those interested in solving biomedi-
cal problems account for the continued vitality of
biostatistics at NIH.
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National Surgical
Adjuvant Breast and
Bowel Project

During the second half of the twentieth century, the
scientific method, a process by which hypotheses gen-
erated from laboratory and clinical investigation are
tested in randomized clinical trials, began to be more
frequently used. This seminal advance, which marked
the transition from anecdotalism and inductivism to
science, has accounted for most of the progress that
has been made in the management of breast cancer
for the past 50 years.

During that time I was fortunate to have been asso-
ciated with the National Surgical Adjuvant Breast and
Bowel Project (NSABP), a cooperative group that I
viewed as an extension of my laboratory and that con-
ducted what is now known as translational research.
The findings from large randomized clinical trials
carried out by my NSABP colleagues and I have,
in large part, been responsible for several paradigm
shifts that have occurred in the management of breast
cancer during the last half century. This overview
provides an account of the origin and early years
of the NSABP, a description of the major findings
obtained from NSABP breast cancer trials involving
more than 50 000 women, and a commentary about
the accomplishments of the group.

The Origin and Early Trials of the
NSABP (1957–1970)

The NSABP grew out of the Surgical Adjuvant
Chemotherapy Projects, a program sponsored by
the National Institutes of Health (NIH) Cancer
Chemotherapy National Service Center (CCNSC) to
test the effectiveness of various anticancer drugs
used with cancer surgery. The rationale for the
project was based on clinical and laboratory findings
obtained during the 1950s which suggested that
systemic agents administered during and shortly after
“curative” operations could improve the outcome of
cancer patients. There was evidence that tumor cells
were dislodged into the blood during surgery, thus
making the procedure less effective; that the growth
of cancer cells injected into the blood of animals
could be impaired by chemotherapy; and that thiotepa

(TSPA) and several other agents might be effective
in destroying such cells in humans.

In the spring of 1957, 23 surgeons were invited
by Dr I.S. Ravdin, chairman of the CCNSC Clinical
Studies Panel, to attend a meeting at Stone House on
the NIH campus to discuss the creation of the Surgical
Adjuvant Chemotherapy Breast Project (later known
as the NSABP), which had as its goal the conduct of
clinical trials. Each of the surgeons who participated
in that project agreed to abide by specific criteria
for the inclusion of patients that had been outlined
in a predefined protocol and to adhere to strict
randomization procedures that divided the patients
into treatment and control groups. Randomization
was planned to prevent bias in selecting patients
for a particular treatment. There were also plans for
centralized data collection, evaluation, and review
of pathologic material, as well as a program for
long-range follow-up. The willingness among this
group of surgeons to follow a predefined protocol
represented a radical departure from conventional
practice and set the stage for the more sophisticated
protocols that would subsequently be designed by
the NSABP.

Early in 1964 an executive committee was formed
to coordinate and direct the study and to provide
more effective liaison among project participants. I
was co-chairman of the group and was subsequently
appointed chairman and principal investigator of the
Surgical Adjuvant Chemotherapy Breast Project on 9
May 1967. For the next three years the operations and
statistical centers of the group remained at Roswell
Park Cancer Institute in Buffalo, New York, while I
interacted with them from Pittsburgh.

The first Surgical Adjuvant Chemotherapy Breast
Project trial, called Phase I (a term that should not
be confused with the current definition of a Phase I
trial), compared the outcome of patients treated by
radical mastectomy with or without the administra-
tion of TSPA. That study accrued 826 eligible patients
between April 1958 and October 1961, a remark-
able achievement at the time. The results of the
Phase I study, which subsequently became known as
NSABP B-01, provided the first evidence that the
use of chemotherapy could alter the natural history
of some patients and demonstrated, for the first time,
that the outcome of patients with one to three posi-
tive axillary nodes was different from that of patients
with four or more positive nodes [10, 12]. How-
ever, because so few patients seemed to benefit from
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the chemotherapy and because it resulted in toxicity,
surgeons were reluctant to accept the use of that treat-
ment modality. When patient entry into the Phase I
program was completed, a new study, Phase II, was
initiated. Its objective was to evaluate the worth of
5-fluorouracil (5-FU), as compared with TSPA, and
the value of postoperative radiotherapy and prophy-
lactic oophorectomy. Findings from the Phase II trial
demonstrated no advantage from the use of 5-FU over
TSPA and showed that the toxicity resulting from the
5-FU regimen was actually of greater magnitude.

In 1961, as part of the Phase II study, a random-
ized trial (NSABP B-02) was begun to resolve the
uncertainties about the worth of administering post-
operative radiation therapy as an adjunct to radical
mastectomy. Through five years of follow-up [11],
the data failed to confirm conclusions derived from
anecdotal information that had been obtained from
the use of similar radiation techniques that had
indicated an improvement in survival. Our findings
resulted in great controversy. It is interesting to note
that, 40 years later, uncertainty still exists with regard
to the worth of using postoperative radiation therapy
to improve survival outcome.

Because uncertainty also existed at that time with
regard to the use of prophylactic oophorectomy as an
adjunct to radical mastectomy, in 1961 the NSABP
initiated the B-03 study, a randomized clinical trial
that was designed to evaluate that treatment regimen
in premenopausal breast cancer patients. Preliminary
findings from B-03 demonstrated no difference in
either recurrence or survival data among patients
who had been treated by either oophorectomy, TSPA,
or placebo [34]. Accruing patients to the study was
difficult because there was a lack of appreciation
of the urgency for resolving that question – a sit-
uation that was to prevail for the next 30 years.
B-03, as well as the trial to evaluate postoperative
radiation therapy, was never updated because, after
the NSABP relocated to Pittsburgh, the data that
had been stored at Roswell Park were never made
available.

The Phase I and Phase II studies related patient
outcome to the location of breast tumors. At that time,
it was widely believed that patients with tumors in the
inner quadrants of the breast had a poorer prognosis
than did those with lesions in the outer quadrants.
An evaluation of more than 1000 patients in the
Phase I and Phase II studies demonstrated that the
location of a tumor was unrelated to prognosis and,

thus, led us to conclude that there was no justifica-
tion for selecting specific surgical or radiation therapy
approaches for treatment based upon tumor location.
Other information from the patients entered into those
trials demonstrated that the larger the tumor the more
likely that axillary nodes would be positive, that more
nodes would be involved, and that patient outcome
would be poorer. This led to the conclusion that, in
itself, size was not necessarily related to “earliness”
or “lateness” of a tumor and was not as consequen-
tial as other tumor and/or host factors that determine
the development of metastases. We also correlated
recurrence and survival rates with number of lymph
nodes examined in surgical specimens. Results indi-
cated that examination of a greater number of nodes
in a specimen was no more meaningful in determin-
ing prognosis than examination of only a few. Those
findings are still relevant to current arguments about
the management of axillary nodes in breast cancer
patients.

The interval between 1957 and 1969 marked a
learning period in the conduct of clinical trials,
especially with regard to experimental design. In
retrospect, the early trials of the Surgical Adjuvant
Chemotherapy Breast Project were too complicated
and represented a desire on the part of investigators
to answer too many questions at once. This circum-
stance led to my view that clinical trials should be
kept simple and that only a few questions should be
answered in any single study. Although the over-
all results of those trials were disappointing, they
were the first to demonstrate that cooperative studies
using adjuvant therapy could be effectively conducted
among large groups of investigators nationwide.

In addition to marking the rise in the use of
the clinical trials mechanism for evaluating adjuvant
therapy in the treatment of operable breast cancer,
the interval between 1957 and 1969 was noteworthy
because of the amount of information that was made
available for augmenting existing biologic hypotheses
and for generating new ones. The period was partic-
ularly significant because it marked my introduction
to the clinical trials process, which, in turn, stim-
ulated my interest in tumor metastases. During the
late 1950s and 1960s, my laboratory associates and
I published our findings in more than 50 scientific
papers. The information from our studies led me to
formulate an alternative hypothesis that became the
basis for a new generation of NSABP clinical trials.
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Paradigm Shifts

A New Surgical Paradigm

If any scientific basis existed for the disagreement
that persisted for several decades about the operative
management of breast cancer, then it related to differ-
ences in perception about the biology of the disease,
particularly in terms of tumor spread. Two divergent
hypotheses were at the center of the variance in opin-
ion. One, the concept formulated by William S. Hal-
sted at the end of the nineteenth century, gave rise to
the paradigm that governed the surgical management
of breast cancer for most of the twentieth century.
The Halstedian paradigm was based on an anatomic
and mechanistic perception of tumor spread that was
in keeping with the understanding of the biology
of tumor metastases at the time [5]. The tenets of
this hypothesis gave rise to an anatomic basis for
cancer surgery in which the Halsted radical mastec-
tomy, characterized by en bloc dissection, became
the hallmark of a surgical approach that emphasized
that curability could more effectively be achieved as
a result of more expansive, meticulously performed
surgical procedures. The use of radiation therapy after
surgery was governed by the same principles.

The alternative hypothesis, which I synthesized
nearly 25 years ago, contended that cancer is a
systemic disease that involves a complex spectrum
of host–tumor interrelations and that variations in
local–regional therapy are unlikely to substantially
affect survival [6]. That premise was formulated from
a series of laboratory and clinical investigations that
my associates and I carried out from 1958 to 1970
to obtain a better understanding of the biology of
metastases. All our findings had the same character-
istic, i.e. they did not conform to the concepts that
served as the basis for the principles of the Halste-
dian hypothesis but, rather, provided a matrix for the
formulation of an alternative thesis. That hypothesis,
which we developed in 1968, is biologic rather than
anatomic and mechanistic in concept, and its compo-
nents are completely antithetical to those of Halsted’s
thesis. Consequently, we hypothesized that variations
in the local–regional treatment of breast cancer, i.e.
different surgical regimens, were unlikely to affect
patient outcome. Thus, in August 1971 we imple-
mented the first of two clinical trials designed to test
the validity of the principles upon which our alter-
native hypothesis was based. In that study, approxi-
mately 1700 women [14] without clinical evidence of

axillary node involvement were randomized among
three treatment regimens: (1) radical mastectomy;
(2) total (simple) mastectomy with local–regional
irradiation, but no axillary dissection; or (3) total
mastectomy and removal of axillary nodes only if
they later became clinically positive.

The significant aspect of the B-04 study was that
40% of the patients with clinically negative nodes
treated by radical mastectomy were found to have
histologically positive nodes. Thus, about 40% of
the patients in the groups treated by total mastec-
tomy alone had positive axillary nodes that were left
unremoved. Despite this therapeutic nonconformity,
no significant difference in overall treatment fail-
ure, distant metastasis, or overall survival has been
noted among the three groups through more than
20 years of follow-up [33]. The negation of the pri-
macy of radical mastectomy and the principles upon
which it was based eliminated most of the biologic
considerations that might have contraindicated the
performance of breast-conserving operations. Conse-
quently, in 1976 we instituted a second trial, NSABP
B-06, to re-evaluate the principles of our hypothe-
sis and, at the same time, to appraise the worth of
lumpectomy plus axillary dissection for the surgical
management of breast cancer.

In the B-06 study, women with breast tumors
of less than or equal to 4 cm in size were
randomly assigned to one of three treatment
groups: (1) total mastectomy, (2) lumpectomy, or
(3) lumpectomy followed by breast irradiation. The
lumpectomy removed enough tissue to ensure that
the margins of resected specimens were free from
tumor. Women in all treatment groups had an
axillary dissection, and those with positive nodes
received chemotherapy. In almost 2000 women
through at least 12 years of follow-up, results (first
reported in 1985 [15]) demonstrated the efficacy of
lumpectomy and radiation therapy for the treatment
of breast cancer [22]. There continues to be no
significant difference in either distant distant disease-
free survival (DDFS) or overall survival among the
three treatment groups. Of most importance is the
observation that no difference in DDFS or overall
survival has yet occurred despite the fact that the total
mastectomy group (by virtue of breast removal) had
no breast tumor recurrence, that lumpectomy patients
who received radiation therapy had an ipsilateral
tumor recurrence rate of 10%, and that patients
treated with lumpectomy alone demonstrated a tumor
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recurrence rate of 40%. Aside from indicating the
efficacy of breast conservation, the findings from
B-06, just as did those from B-04, repudiated
Halstedian principles of breast cancer management
and provided support for our alternative hypothesis.
Moreover, they indicated that a large proportion of
women with breast cancer could be treated with
breast conservation.

In the years between the initiation of the B-04
study and the report of findings from B-06, i.e. from
1971 to 1985, a radical shift occurred in the treat-
ment of primary breast cancer. Most significantly, the
events described led to emancipation from conven-
tional thinking about breast cancer and its treatment
and set the stage for new scenarios that were to occur
in rapid succession. In a sequence that represented
an orderly scientific process, one paradigm governing
breast cancer management was replaced by another.
As a result, Halstedian principles of cancer surgery
must now be viewed as nothing more than historical
“milestones” against which cancer progress can be
measured, and the Halstedian paradigm must now be
permitted to assume its proper place in the annals of
surgical history.

The Systemic Therapy Paradigm

After a hiatus of almost a decade, the NSABP
launched a new trial to evaluate adjuvant therapy.
Not until the early 1970s, after Skipper and his asso-
ciates defined the concept of a growth fraction in a
tumor cell population and provided an array of tumor
growth kinetic principles that were instrumental in
formulating a hypothesis that postulated the value of
adjuvant chemotherapy, did such a trial become sup-
portable [35, 36]. The NSABP initiated the B-05 trial
to evaluate adjuvant therapy and to test that hypoth-
esis in 1972. In that study, L-phenylalanine mustard
(L-PAM) was administered after radical mastectomy
to patients with positive axillary nodes. The results,
reported in 1975, were the first (subsequent to our
1958 trial) to demonstrate that systemic adjuvant ther-
apy could alter the natural history of certain cohorts
of patients with primary breast cancer [13]. Within
a short time, that conclusion was confirmed by find-
ings from a study by other investigators in which
cyclophosphamide, methotrexate, and 5-fluorouracil
(CMF) was used [1].

In general, postoperative chemotherapy for the
treatment of node-positive, premenopausal women

(less than 50 years of age) has been widely accepted.
Of particular importance in the treatment of such
women was the report of findings from NSABP B-15,
which demonstrated that patients treated with doxoru-
bicin (Adriamycin) and cyclophosphamide (AC) over
63 days had the same outcome as those who received
six months of conventional CMF administered on
each of 84 days [18]. In 1984 the NSABP imple-
mented B-16, a trial designed to determine whether
tamoxifen plus chemotherapy (AC) was more effec-
tive than tamoxifen alone in improving the Disease-
free Survival (DFS), DDFS, and overall survival
of node-positive, tamoxifen-responsive patients aged
50 years and older. Results from almost 1200 eligi-
ble patients provided the first definitive information to
demonstrate a greater benefit from tamoxifen plus AC
than from tamoxifen alone [19]. Moreover, our stud-
ies had failed to demonstrate an unfavorable inter-
action between chemotherapy and tamoxifen when
that regimen was administered simultaneously to
tamoxifen-responsive patients. As a result of the
findings from the B-15 and B-16 studies, we con-
cluded that AC therapy given over 63 days produced
results comparable with those from CMF therapy
given over 154 days. We also recommended that
node-positive patients aged 50 years and older should
receive tamoxifen in addition to chemotherapy.

In the late 1980s it was hypothesized that failure
to achieve a greater therapeutic effect from the
use of systemic therapy was due to inadequate
drug administration. It was considered that a higher
dose intensity, i.e. amount of drug administered per
unit of time, would result in a better outcome.
On the basis of this consideration, we implemented
NSABP B-22, a study in node-positive patients that
involved manipulating the total dose and intensity
of cyclophosphamide in an AC combination. We
reported [25] no significant difference in DFS among
the treatment groups. Results from a companion
study (NSABP B-25), in which the intensity and
total dose of cyclophosphamide were increased to
levels beyond that in B-22, showed that an even
greater drug intensity and/or cumulative dose than
was administered in B-22 failed to demonstrate a
benefit beyond that obtained using the “standard”
dose and intensity of the drug. Failure to note
a difference in outcome among the groups was
unrelated to either differences in amount and intensity
of cyclophosphamide or to dose delays and intervals
between courses of therapy. We concluded that, until
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there was more information about the worth of
more intensive high-dose therapy, increasing the total
dose of cyclophosphamide was inappropriate in the
treatment of women with primary breast cancer.

At an NIH Consensus Conference held in 1985,
it was decided that a lack of information precluded
recommending therapy other than surgery for breast
cancer patients with negative axillary nodes [3]. Find-
ings from four NSABP randomized clinical trials
involving more than 8000 patients subsequently indi-
cated the propriety of using systemic therapy to treat
such women. Two of the studies, NSABP B-13 and
B-19, were conducted to evaluate the worth of adju-
vant chemotherapy in patients with estrogen-receptor
(ER)-negative tumors.

In B-13, 760 women were randomly assigned to
either methotrexate (M) and sequentially adminis-
tered fluorouracil (F) (M→F) followed by leuco-
vorin, or to surgery and no chemotherapy [16, 23]. In
B-19, a total of 1095 women with the same eligibil-
ity requirements were randomly assigned to receive
either M→F or cyclophosphamide (C) together with
MF (CMF) as conventionally used [23]. The aim of
the B-19 trial was to determine if the alkylating agent
cyclophosphamide contributed an additional bene-
fit when used in a chemotherapeutic regimen. Data
from both studies led us to conclude that M→F and
CMF were effective for women with ER-negative
tumors and negative axillary nodes. In the younger
age group, treatment with CMF clearly resulted in a
better DFS and survival; in the older age group, a
benefit from both regimens was apparent, although
it was less clear which regimen was most effective.
Because severe toxicity was less frequent after M→F
therapy, that regimen was recommended for older
women with associated medical problems that might
preclude the use of more toxic agents.

Two additional trials, B-14 and B-20, were con-
ducted by the NSABP in patients with ER-positive
tumors. The aim of B-14, a randomized, double-
blind, placebo-controlled trial initiated in 1982, was
to determine the effectiveness of adjuvant therapy
with tamoxifen in patients with negative axillary
nodes [17]. That study, which involved more than
2800 randomized and 1200 registered tamoxifen-
treated patients, has, arguably, provided some of the
most compelling information that has been gathered
during the past decade. Through 10 years of follow-
up, a significant advantage was observed in DFS and
survival among tamoxifen-treated women 49 years

of age or younger and 50 years old or older [24].
Tamoxifen therapy was also associated with a sig-
nificant reduction in the incidence of contralateral
breast cancer, a finding that led us subsequently to
consider the use of that drug for the prevention of
breast cancer. No additional benefit, however, was
observed from tamoxifen administration beyond five
years.

Before the B-14 findings became available, how-
ever, we concluded that the degree of benefit achieved
with tamoxifen in this patient population was unlikely
to be sufficiently great to eliminate the need for other
trials to test potentially more effective regimens. As a
result of that consideration, we implemented NSABP
B-20, a study that involved more than 2300 women
and was aimed at testing the hypothesis that the
addition of either M→F or CMF to tamoxifen (MFT,
CMFT) would result in a greater benefit than that
which could be achieved with tamoxifen alone [26].
In that trial, chemotherapy plus tamoxifen resulted
in significantly better DFS and survival than that
observed with tamoxifen alone [26]. When compared
with tamoxifen alone, MFT and CMFT reduced both
the rate of ipsilateral breast tumor recurrence (IBTR)
after lumpectomy and the rate of recurrence at other
local, regional, and distant sites. Of particular signif-
icance was the observation that the rate of treatment
failure was reduced after the administration of both
types of chemotherapy, regardless of the size of a
patient’s tumor, the degree of tumor ER positivity,
progesterone-receptor (PgR) level, or age. In addition,
we failed to identify any subgroup of patients who did
not benefit from chemotherapy.

Because the B-14 findings showed that tamoxifen
significantly reduced the rate of treatment failure
at local and distant sites, the rate of tumors in
the contralateral breast, and the incidence of IBTR,
and because all subgroups of patients benefited and
the benefits were attained with a relatively low
incidence of undesirable side-effects, we concluded
that tamoxifen was justified for women who met
the eligibility criteria of the study participants. Also,
when analyses of the B-20 study failed to identify
a subgroup of women with ER-positive tumors and
negative nodes who failed to benefit from either
MFT or CMFT, we concluded that women similar
to those in the trial might be considered candidates
for chemotherapy plus tamoxifen. However, because
patients with small (1 cm or less), mammographically
identified lesions were rarely enrolled in the B-14
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and B-20 studies, no information was obtained to
indicate whether or not such women “should receive
tamoxifen or tamoxifen and chemotherapy”.

The findings from the four studies conducted in
axillary node-negative patients raised several issues.
They demonstrated that, after surgery alone, the over-
all prognosis of such patients was sufficiently poor to
warrant the use of systemic therapy. In fact, the prog-
nosis of some of those women was worse than that
of women with positive nodes. That situation prevails
in women with ER-negative as well as in women
with ER-positive tumors. Although some patients in
the four studies did not need systemic therapy, many
women derived substantial benefit from it. Findings
from appropriate statistical analyses that we con-
ducted in search of inconsistencies in treatment effect
among node-negative patients in our studies failed to
identify subgroups of women with either ER-negative
or ER-positive tumors who did not achieve some ben-
efit from systemic adjuvant therapy, i.e. chemother-
apy in the former and tamoxifen plus chemother-
apy in the latter. However, as has previously been
mentioned, definitive information about the propri-
ety of using tamoxifen and/or chemotherapy for the
management of patients with tumors of 1.0 cm or less
in size is not yet available.

Consequently, when asked the question, Should all
patients with negative nodes and ER-positive tumors
be treated with tamoxifen plus chemotherapy?, we
are unable to provide as precise an answer as we
would like, despite the extent and credibility of our
findings. Certainly, there are patients who either will
not benefit from or will not need such therapy.
Because other investigators have also been unable to
identify these women with precision, we have taken
the position that, until markers are found that will be
able to do so with greater certainty than now exists,
patients who have been judged to be candidates for
such therapy should not be denied the chance to
receive it so that they may experience the benefit that
has been demonstrated.

In a recent attempt to identify subpopulations
of node-negative women with ER-positive tumors
who might require more aggressive forms of ther-
apy and to distinguish them from women for whom
such therapy is unnecessary, we assessed the out-
comes, through 10 years of follow-up, of more than
4000 node-negative patients in B-14 who received
either placebo or tamoxifen, taking into account their
age at surgery, ER status, PgR status, tumor size,

tumor S-phase fraction, and tumor nuclear grade [2].
Tumor size and S-phase were viewed as continu-
ous variables [2]. Perhaps the most significant of the
findings from that study was the observation of an
extreme heterogeneity of outcomes among a pop-
ulation that has, until recently, been considered to
have a favorable prognosis. For example, the 10-
year DFS for 35-year-old women in the B-14 trial
varied from about 80% to less than 40%, depend-
ing upon the interaction of the various prognostic
variables being assessed. Thus, a group of node-
negative patients who received tamoxifen or placebo
consisted of women who displayed myriad hetero-
geneous outcomes. These observations indicate that
more aggressive therapy is warranted for some, but
not all, patients in the node-negative, ER-positive
population. Before a specific therapeutic regimen is
prescribed, however, each patient’s prognosis must
first be determined as accurately as is currently
possible.

The remarkably low incidence of IBTR observed
in all of the node-negative and node-positive stud-
ies following lumpectomy, breast irradiation, and
systemic therapy has further justified the use of
breast-conserving surgery for most women. Those
findings support the author’s long-held contention
that the effect of local–regional therapy, i.e. surgery
and radiation therapy, should no longer be consid-
ered independent of the effect of systemic therapy.
Thus, the two separate and independent paradigms
that governed the management of breast cancer,
one that related to the management of local and
regional disease by surgery and radiation therapy and
the other that involved governing the treatment of
micrometastatic disease, have merged into a single,
interdependent paradigm.

The Preoperative Chemotherapy Paradigm

Hypotheses formulated from biologic and clinical
information obtained during the 1980s led us to
initiate NSABP B-18, the first randomized clini-
cal trial (involving more than 1500 women) that
was designed to evaluate the role of preoperative
chemotherapy in the treatment of primary operable
breast cancer [27, 28]. Although the use of such ther-
apy failed to improve the overall benefit beyond that
of patients who were randomly assigned to receive
the same therapy postoperatively, the findings demon-
strated that preoperative chemotherapy could be used
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without fear of decreasing the DFS or survival of
patients who received it. The most compelling find-
ings were those that demonstrated that women whose
tumors displayed a clinical and pathological complete
response as the result of preoperative therapy had
a more favorable outcome than did women whose
tumors displayed either a clinical complete response
or a clinical partial response. Thus, we concluded
that the response of a breast tumor to preoperative
chemotherapy could serve as a surrogate or inter-
mediate end point for determining the response of
micrometastases to systemic therapy. Because breast
tumor response could be determined within weeks
after preoperative chemotherapy was administered,
it became possible to predict a patient’s outcome
and then to provide her with information so that
she and her physician could consider other treatment
strategies without having to postpone therapy until a
treatment failure occurred.

Another finding of particular importance demon-
strated that the downstaging of large tumors after
the use of preoperative chemotherapy permitted more
patients to be treated with lumpectomies. As a con-
sequence, I have proposed that women with tumors
judged by surgeons to be too large for lumpectomies,
or women whose surgeons are ambivalent about per-
forming that procedure, should initially have the
option of receiving preoperative chemotherapy to
determine whether the primary tumor sufficiently
decreases in size so that lumpectomy and radiation
therapy, rather than mastectomy, can be carried out
in an attempt to enhance quality of life without
increasing the risk for distant disease. Finally, the
finding that preoperative chemotherapy downstages
axillary lymph node status, i.e. converts nodal status
from positive to negative, must be taken into account
before a decision with regard to the management of
axillary nodes can be made.

Whether or not preoperative chemotherapy is suf-
ficiently important to replace postoperative systemic
therapy remains to be seen. At least at this time, there
is justification to suggest its use in certain circum-
stances.

The Breast Cancer Prevention Paradigm

The concept that tamoxifen could be used to prevent
breast cancer had its origins in the late 1970s and
1980s, when the drug was shown to be of value in a
variety of laboratory and clinical settings. Particularly

germane to the concept of breast cancer prevention
was tamoxifen’s demonstrated ability to reduce the
incidence of contralateral breast cancer [9]. To test
that thesis, in 1992 the NSABP implemented the P-1
trial [8, 29]. In that study, women at increased risk
for invasive breast cancer were randomly assigned to
receive either placebo or tamoxifen for five years. The
study findings demonstrated that tamoxifen decreased
the overall risk of invasive and noninvasive breast
cancer by 50%, a reduction that occurred in various
age groups and categories of risk. The incidence of
ER-positive tumors (but not of ER-negative tumors)
was also reduced. The findings obtained in women
who had a history of lobular carcinoma in situ (LCIS)
or atypical hyperplasia – pathological entities con-
sidered to increase the risk of invasive breast can-
cer – were of particular importance, as they not only
provided the only quantitative information available
from a clinical trial to indicate the magnitude of their
risk, but also demonstrated that the risk could be sub-
stantially reduced by tamoxifen administration. These
findings are particularly relevant to those that were
recently obtained from our studies in which strategies
for the treatment of ductal carcinoma in situ (DCIS)
were evaluated.

In 1985, because of uncertainty regarding the
management of DCIS, we initiated B-17, the first
randomized clinical trial to test the hypothesis that
the treatment of localized DCIS by lumpectomy with
tumor-free specimen margins followed by radiation
therapy was more effective than was lumpectomy
alone in preventing the subsequent occurrence of
invasive tumor in the ipsilateral breast [20]. The
1993 report of our findings supported that hypothesis
and demonstrated that postoperative breast irradiation
markedly reduced the subsequent occurrence of inva-
sive ipsilateral breast tumors. When the outcome
of patients was examined relative to a wide array
of pathologic and mammographic characteristics, we
failed to find a discriminant that identified any group
of DCIS patients who did not benefit from postoper-
ative radiation therapy.

Because our previous trials and the studies of other
investigators had demonstrated a benefit from tamox-
ifen administration in a variety of settings, it was
considered that the drug might interfere with either
the development of a primary invasive cancer from
its start, or with the progression of residual DCIS to
invasive cancer in women with a history of DCIS.
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Consequently, in 1991 we initiated a second random-
ized clinical trial, NSABP B-24, to test the hypothesis
that treatment with postoperative radiation therapy
and tamoxifen would be more effective in patients
who had had DCIS removed either with or without
tumor-free specimen margins than would radiation
therapy alone in preventing invasive and noninvasive
cancers in the ipsilateral and contralateral breast [30].
The results of that study demonstrated that the risk of
ipsilateral breast cancer was lower in women treated
with tamoxifen, regardless of whether specimen mar-
gins were tumor free and regardless of whether DCIS
was associated with comedonecrosis. Because the
benefit from tamoxifen was due to a decrease in the
rate of ipsilateral, contralateral, and metastatic inva-
sive breast cancers, it seemed reasonable to conclude
that focusing only on the frequency with which ipsi-
lateral breast tumors occurred was too limited and
that an assessment of the effect of treatment on all
the sites combined seemed more appropriate. Finally,
because women in the P-1 trial who had a history
of LCIS or atypical hyperplasia were thought to be
at sufficiently high risk of developing an invasive
cancer to warrant being considered candidates for
tamoxifen administration, it seemed reasonable to
recommend that women with DCIS should also be
considered candidates for tamoxifen, since they are
at an even greater risk for developing invasive dis-
ease, even after they have been treated with radiation
therapy.

There has often been more of an emphasis on
the adverse effects of tamoxifen than on the bene-
fits resulting from its use. Findings from the NSABP
P-1 and B-24 trials, as well as the results of other
NSABP studies that have evaluated tamoxifen, have
failed to justify concerns about quality-of-life issues,
liver damage, hepatoma, retinal toxicity, and cancers
at other sites [4, 31, 32]. The excess risk of endome-
trial cancer [7, 21] and of vascular-related events
such as stroke, deep-vein thrombosis, and pulmonary
embolism that were observed in the tamoxifen group,
as compared with those in the placebo group in these
studies, has caused the most concern. In the P-1 study,
less than 1 woman per 100 (0.7%) in the tamoxifen
group developed endometrial cancer over a five-year
period. All such cancers were International Federa-
tion of Gynecology and Obstetrics (FIGO) stage 1,
and no deaths from endometrial cancer have, to date,
been reported. The undesirable vascular events in the
tamoxifen group in excess of those in the placebo

group over a five-year period were few: 0.2%–0.3%
of women experienced a stroke, approximately 0.2%
had a pulmonary embolism, and between 0.2% and
0.3% exhibited deep-vein thrombosis. Those events
occurred less frequently in women 49 years of age or
younger and were slightly more frequent in women
50 years of age or older, being approximately 1%
for endometrial cancer and less than 1% for each
of the vascular-related events over five years. In
view of the relatively few side-effects that resulted
from tamoxifen administration, we concluded that
its use as a breast cancer preventive agent may be
appropriate in many women at increased risk for the
disease.

Summary and Comments

This article has provided an overview of some of
the more important accomplishments achieved by the
NSABP during the past four decades. Subsequent to
each of the advances that I have noted, the same para-
doxical situation occurred that has relevance for the
conduct of future breast cancer research. Because the
extent of the unknown is often recognized only as
knowledge expands, it is not surprising that, after
each demonstration of a therapeutic advance in breast
cancer management, issues arise that cannot immedi-
ately be resolved. That consequence of accomplish-
ment has, all too often, resulted in confusion and in
pessimism about the meaning of the results obtained.
Thus, uncertainty arises with regard to the clini-
cal application of the findings. As a result, success
may now create more havoc than does failure. This
circumstance is, indeed, unfortunate because those
putative uncertainties do not detract from either the
credibility or the importance of the findings that gave
rise to them. It is, indeed, rare, if not impossible,
for a single study to provide enough information to
eliminate all uncertainties associated with positive
achievement. In essence, every answer generates a
whole set of new questions.

With the demonstration of the worth of systemic
adjuvant therapy for the treatment of invasive breast
cancer, postoperative breast irradiation after lumpec-
tomy for the treatment of DCIS, and tamoxifen for
reducing the incidence of invasive and noninvasive
breast cancer in women at increased risk for the dis-
ease, the same questions have arisen. They relate to
who will benefit from treatment and who will not;
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who will not need the therapy because they will never
demonstrate a treatment failure; how much of a ben-
efit is worthwhile; and whether or not the toxicity
and mortality encountered justify its administration.
Despite these uncertainties, the use of adjuvant ther-
apy is considered to be a major advance in the
treatment of breast cancer. Similarly, the use of breast
irradiation following lumpectomy for the treatment
of both invasive and noninvasive breast cancer has
been a major advance in the local–regional treat-
ment of that disease despite the questions that have
arisen. Also, the use of tamoxifen to obtund, and per-
haps prevent, the development of a phenotypically
expressed cancer before its diagnosis denotes a sim-
ilar advance. Nevertheless, research directed toward
identifying cohorts of patients who either do or do not
benefit from those therapies that demonstrate an over-
all advantage must be vigorously pursued because
such information will permit more precisely identify-
ing patients according to their need for and response
to therapy.

In conclusion, I believe that the continued use
of the scientific process is imperative if progress is
to continue in breast cancer research and treatment.
Although critics of the clinical trials mechanism
are numerous and their objections variable, e.g.
that such trials take too long, are too cumbersome,
are too costly, and are in need of replacement by
other mechanisms, until other alternatives become
available, such studies continue to provide the most
appropriate way of obtaining the kind of information
necessary for verifying hypotheses and for evaluating
therapies. It is unfortunate that many critics of clinical
trials do not participate in them, do not understand the
complexities and diligence necessary in their conduct
to obtain credible data, and would prefer to continue
to believe in the worth of retrospective information
for therapeutic decision-making. On the other hand,
there is little disagreement that there is a need for
some clinical trials to be made simpler, that they
be subject to fewer, less rigid rules and regulations,
and that the media look upon them more favorably
so as to eliminate the fear created by negative
publicity, which inhibits patients from participating in
them. Finally, the contributions made by the NSABP
during the past 40 years to advance the treatment
of breast cancer could not have occurred without
the cooperation of more than a hundred thousand
physicians, biostatisticians, nurses, administrative and
support staff, technicians, and, above all, the patients,

who participated in approximately 30 major NSABP
clinical trials. Their passion in carrying out this
effort against a single disease is, in itself, a unique
undertaking in medical history.
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Natural History Study of
Prognosis

Prognosis is defined as a forecast as to the prob-
able outcome of an attack of disease; the prospect
as to recovery from a disease as indicated by the
nature and symptoms of the case [10]. In the context
of research, it is a prediction of the future course of
a disease following its onset. The natural history of a
disease is the evolution of a disease in the absence of
medical intervention [14]. Today, however, this defi-
nition may be too narrow for many diseases in which
there are widely accepted treatments that are offered
universally. For example, if a patient is diagnosed
with severe diabetes, insulin may be prescribed. The
description of disease course would include the influ-
ence of the insulin, since few patients would continue
without medical intervention. Accordingly, we use
the term clinical course to describe the natural his-
tory of a disease that has been affected by medical
intervention. In this discussion the use of the term
natural history may also, include clinical course.

The term prognosis implies an outcome. Natural
history studies of prognosis are studies in which the
course of a disease is observed over time as outcomes
such as death, relapse of a tumor, or acquisition
of AIDS following HIV-1 infection. Rates, such as
percent of patients recurring within five years or a
10 year survival rate, are used to summarize these
outcomes [16]. While a rate is a simple description of
the outcome in a natural history study of prognosis, it
can sometimes mask different processes. For exam-
ple, in a study of cutaneous malignant melanoma,
approximately one-quarter of the Stage I patients had
a prophylactic lymph node dissection. The authors
found that while this procedure was associated with
an early survival advantage, this advantage was not
sustained over a longer follow-up period. Thus, a con-
clusion based on five years of follow-up, as opposed
to 10 years, would have been erroneous [33].

Sometimes we express outcomes as technical
results, e.g. percent change in tumor size, or whether
coronary dilatations exceed the diameter of normal
adjacent segments by 1.5 times [2], or specific values
of laboratory markers like CD4 T-cell counts [31].
While a laboratory marker is a more easily measured
outcome than an outcome such as “pain”, and one that

lends itself more readily to rigorous statistical analy-
sis, either type is relevant only if it is truly prognostic
and related to the clinical outcomes.

It is important to distinguish between the con-
cepts of risk and prognosis. Risk is related to the
likelihood of getting a disease, while prognosis is
about the progress and outcome of the disease, once
it has been acquired. Similarly, risk factors are those
characteristics that increase the probability of getting
the disease, while prognostic factors are those vari-
ables associated with different possible outcomes of
the disease, or time to an outcome, once the disease
is present. Of course, some variables may be both
a risk factor and a prognostic factor for the same
disease. Variables that have both risk and prognostic
roles may work in opposite directions. For example,
men are more likely than women to develop coronary
disease in middle age (risk), and also are more likely
to die from it if they get it (prognosis) [29]. Con-
versely, younger women are less at risk of getting
breast cancer, but once diagnosed with breast cancer,
young age is associated with worse prognosis [24].

This article discusses design considerations for
studies of prognosis, as well as analytical approaches.

Design Considerations

Design considerations in natural history studies of
prognosis include the definition and selection of the
population and samples to be studied, the defini-
tion of time zero, the definitions of outcomes, and
potential sources of bias. We described definitions of
outcomes. The following describes these other design
issues.

Cohort Studies

The usual design for a natural history study of prog-
nosis would be a cohort study [25]. In a cohort
study we follow a subject population over time, dur-
ing which periodic assessments or observations are
scheduled and the occurrence of predefined outcomes
in the cohort is recorded. The cohort can be prospec-
tively or retrospectively sampled. A retrospective
cohort might include all the patients presenting at
a hospital within a period of time with a specific
diagnosis or set of symptoms (see Cohort Study,
Historical). We assemble the cohort via a medical
record review. For example, in a retrospective study
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of the natural history of ductal adenocarcinoma of the
pancreas in patients under 40 years old, all patients
seen at the Mayo Clinic from 1970 to 1985 were
reviewed [21].

A prospective cohort study utilizes an inception
cohort, i.e. a group of subjects assembled near the
onset (“inception”) of disease. This cohort typically
cannot be gathered at a single point in time because
the screening and recruitment process requires some
time. Studies of this type typically are designed to
have a recruitment or accrual period when the cohort
is identified, and a specified follow-up period after the
last subject has been entered into the cohort. Thus, the
length of follow-up may vary by patient, depending
on their early vs. late recruitment. In a study of the
long-term prognosis of lupus nephritis, an inception
cohort of 87 patients at Montreal’s General Hospi-
tal and Children’s Hospital seen between 1967 and
1983 was studied. The inception point was the day
of first renal biopsy [17]. While prospective studies
clearly are less susceptible to selection bias, retro-
spective studies provide preliminary answers more
quickly and at a relatively low cost. Researchers use
retrospective cohort study results to plan a prospec-
tive study more effectively.

Bias

There are many types of biases that can occur in
natural history studies of prognosis and that effect
the conclusions. The most frequent are sampling or
selection bias, length bias, and dropout bias.

Sampling or selection bias results, also known as
assembly bias, results from the method by which
patients are sampled or selected to be in the
study [25]. This type of bias may occur, for example,
when the selected cases are not representative of the
diseased population, or when the groups of patients
differ in terms of the extent of disease under study.
For example, in a study of infective endocarditis,
it was shown that the clinical spectrum of the
disease could be distorted by referral patterns when
a community cohort in Minnesota was compared
with a Mayo Clinic cohort [39]. In general, natural
history studies of prognosis based only on patients in
academic institutions (or tertiary care centers) tend to
suggest poorer prognosis, unless the disease is treated
only at academic institutions. This is because subjects
may be referred to these centers only after treatment
efforts at the community level have failed. In cancer

studies conducted at tertiary care cancer research
centers, which tend to receive higher proportions of
more advanced cases, the natural history prognostic
estimates appear worse than those derived from a
representative sample of patients at all stages of the
disease. This is analogous to the susceptibility bias
that is present in cohort studies performed to estimate
the risk of acquiring disease based on exposure [14].

Length bias occurs in several ways. An example is
the natural history estimate of the latent period from
HIV infection to the onset of AIDS. Early studies
of HIV-infected cohorts estimated that this interval
was at least four years, on the basis of surveil-
lance data from the Centers for Disease Control [7].
Researchers continuously updated these estimates to
a current estimate of eight years or more on the
basis of cohorts from the US, Canada, Australia, and
the Netherlands [40]. Patients with shorter latency
presented earlier with the disease and affected the
estimate. Another form of length bias combined with
selection bias occurs when a cohort is not assembled
at the inception of disease, but is selected on the basis
of availability of patients (e.g. accepting patients at
different stages of the disease), and information is
collected after the inception of each subject’s dis-
ease. In this case the cohort includes only those
subjects who are available for study, and thus may not
include patients with the same time disease-inception
in whom a failure event (death, relapse) has already
occurred. This introduces length bias into the esti-
mates of time to progression within the natural history
of disease if the analysis does not take this into
account [6].

In dropout bias the patients who drop out of a
study or are lost to follow-up may be different from
the patients remaining in the study. Since the study
conclusions are based only on available data, if the
dropout pattern is not random, then this introduces a
form of selection bias. In addition to aggressive reten-
tion and follow-up of subjects, a carefully designed
observation schedule is helpful in assessing the mag-
nitude of the problem due to dropout (see Bias,
Overview).

Definition of Time Zero

For a cohort study to be meaningful, a well-defined
time zero should be defined for the disease of interest.
We define time zero as the time of onset of the first
or specified symptoms or the date of diagnosis. For
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diseases in which screening is routinely performed,
such as certain screening tests for newborns, this
definition is easy. In other cases, such as breast
cancer, this determination is less clear; the point of
inception might be based on a routine mammogram,
on the discovery of a lump during self-examination
test, or the onset of symptoms. The importance of
an unambiguous definition for time zero in a natural
history study of prognosis cannot be overemphasized.
The goal of describing the time course until outcome
events occur will be thwarted in the absence of an
unambiguous starting point.

In summary, the design of natural history studies
of prognosis must include a carefully defined cohort,
appropriate selection and assembly procedures, and
clearly defined starting points (time zero), follow-up
procedures, and unambiguous definitions of outcome.

Analysis Approaches

Dichotomous Outcomes and Logistic Regression

The choice of appropriate analysis tools depends on
the type of outcome that the study is describing. In
the first step of analysis in a natural history study of
prognosis we estimate the rate or percentage of those
who had a given outcome, e.g. the percentage who
died. At the next step we relate the percentage out-
come to prognostic factors. In the simplest case there
is a single, dichotomous prognostic factor. In a study
of severe cardiac events such as death and myocardial
infarction, researchers assessed the prognostic value
of dipyridamole first-pass radionuclide ventriculogra-
phy using a Fisher’s exact test [3]. A chi-square is
also typically used.

When there are several prognostic variables,
epidemiologists typically use logistic regression to
analyze further the natural history of prognosis. In
logistic regression we define a dichotomous outcome
variable Y , such as alive at the end of three years
(Y = 0) or died within the first three years since time
zero (Y = 1). We model the outcome variable as a
function of the prognostic variables or explanatory
variables [19]. The prognostic variables can be
dichotomous, such as sex, continuous, such as age, or
categorical, such as race. In a cohort study examining
the prognostic value of ultrasound findings at birth in
predicting disabling cerebral palsy, both dichotomous
variables, such as presence of ultrasound findings,
and continuous variables, such as gestation age at

birth, were explored [38]. In this study the logistic
regression modeling showed that certain ultrasound
findings (parenchymal echodensities/lucencies) were
strongly prognostic (odds ratio of 15) of disabling
cerebral palsy, even after accounting for well-known
prognostic factors such as gestation age and birth
weight.

The relationship between variables can also be
studied using a regression tree (see Tree-structured
Statistical Methods). In a study on the impact of
disease activity on long-term prognosis of lupus
nephritis, the researchers used a regression tree tech-
nique which gave easily interpretable and useful
results [17].

Survival Analysis

By far the most popular analysis tool in natural his-
tory studies of prognosis is survival analysis [9]. In
this approach we assemble a cohort at a particular
time zero in the course of disease, and follow the
subjects until either the outcome occurs (called “fail-
ure”), or a prespecified point for the end of the study
is reached. This prespecified time point can be a total
follow-up time or a total number of observed failures.
A description of the natural history of the group is
given by a Kaplan–Meier curve or a product–limit
estimator (see Life Table) [22]. This curve gives the
estimated survival experience of the study subjects
as a function of time. Sometimes, patients exit the
study before the failure event occurred, owing to loss
to follow-up, patient withdrawal from the study, or
other reasons. The observations on these patients are
defined as censored, and the calculation adjusts for
these. The estimation of the survival probabilities at
each point in time provides a description of the over-
all prognosis of the disease in question. The outcome
variable is, therefore, the time until an event occurs.

In the next step, specific prognostic factors for the
disease are examined. For example, in a study of risk
stratification and prognosis of patients with recent
onset of angina, the researchers examined whether
a positive thallium stress test and the number of
clinical risk characteristics as well as the number
of involved arteries were prognostic predictors of
future medical events [4]. The analytical tools used
to examine the effect of a single prognostic factor
on survival are the Mantel–Cox test, logrank test,
the Wilcoxon–Gehan test or the Peto test [28]. These
tests examine whether a dichotomous or categorical
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factor is significantly associated with better or worse
prognosis of the disease, depending on the value of
this factor. The tests differ primarily in the weight
that they place on observations at the early vs. later
part of the Kaplan–Meier curve.

When there is interest in the joint effect of several
factors on survival or when a factor is continuous
and there is no desire to categorize it (and hence lose
some information), the most popular analytical tool is
the Cox regression model, which is semiparamet-
ric. The Cox model is a regression model proposed
for survival distributions in which the time to fail-
ure is related to the prognostic factors and it allows
the introduction of the censored observations into the
model [8].

The typical use of the Cox model is in the context
of a proportional hazards model. A proportional
hazards model possesses the property that different
individuals have hazards that are proportional to
one another over time, depending on the values of
the fixed covariates. A typical example of the use
of a Cox model is in the study of unknown pri-
mary carcinomas [1]. The fixed covariates used were
pathology subtype (adenocarcinoma, neuroendocrine
carcinoma), number of sites (1, 2, 3+), gender, and
involved organ site.

Other covariates included in a Cox model may
be time-varying covariates (see Time-dependent
Covariate). When the covariates are time-varying,
the hazards are no longer proportional with respect
to the time-varying covariate, since the value of
the covariate may change over time. Thus, there
is no meaning to the concept of proportional haz-
ards. Time-varying covariates may be very important
in understanding the natural history of prognosis.
CD4 T-cell counts are typical time-varying covari-
ates for understanding the natural history of HIV
infection [15].

In addition to the Cox nonparametric approach
to survival analysis, there are parametric survival
models, including, in particular, accelerated survival
models that serve well for natural history studies
of prognosis. An example is a study based on the
Framingham Heart Study data which used a Weibull
distribution based accelerated failure time model
to model the time to angina pectoris when there is
interval censoring [36].

The development of martingale theory and
counting processes gave researchers many more
opportunities to expand and allow for more

complex survival models [13]. These models allow
for multivariate survival outcomes and flexibility
in modeling, resulting in better understanding of
the natural history of complex diseases such as
AIDS [5]. In this study both seroconversion time
and progression to AIDS were studied. The counting
processes models also allow for approaches such as
modeling time-varying effects using spline functions
to examine, for example, whether tumor necrosis
is a prognostic factor for early recurrence and
death in lymph-node-positive breast cancer [16]. The
issue here was that the effect of tumor necrosis
appeared to be changing with time, and the spline
modeling enabled the researchers to provide a better
description of the prognosis of these patients than
more traditional survival analysis approaches.

Longitudinal Data Analysis

Another way to study the natural history of progno-
sis in terms of data analysis is to use models for the
analysis of longitudinal data. This approach is use-
ful especially when the interest is not necessarily in
the presence/absence of an outcome, but rather in the
changes in a parameter over time. The parameter may
be the lung function of cystic fibrosis patients, or a
molecular biomarker called prostate specific antigen
(PSA) in the study of the natural history of prostate
disease [37]. The longitudinal model in this example
estimates the natural history of the biomarker both
as a function of time (or age) and as a function of
other prognostic factors, such as age at diagnosis, or
presence of cancer (as a time-varying parameter). In
a study of this type the subjects are measured repeat-
edly over time. In natural history studies of prognosis,
which are based on a cohort of subjects, there are
frequently unequal intervals between follow-up visits
of different patients and unequal numbers of mea-
surements for different patients. In this situation an
appropriate approach is a mixed effects model or ran-
dom effects model [26, 27]. This approach models
the change in a parameter across time, using the
repeated measurements and modeling the correla-
tion between the measurements of an individual. For
example, in a study of neurodevelopment in children
who were perinatally infected with HIV, the number
of measurements ranged from two to nine and the
timing was different between children [35].

The mixed effects model assumes a linear
relationship between the outcome variable and
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the explanatory variables. Moreover, it assumes
a normal distribution for the error of the so-
called individual random effects. The generalized
estimating equations approach (GEE) relaxes
these assumptions and generalizes the model to
dichotomous and other outcome variables [30]. Both
of these methods have received considerable attention
in the last decade, with much research devoted
to expanding these methods. As the methods are
developed and become more accessible, they may be
better suited for application in natural history studies.
In a study relating the outcome of poor visual acuity
to the genetic type of retinas pigmentia, the GEE
approach was used to combine correlated data of
two eyes per individual [23] (see Correlated Binary
Data).

Combining Data from Several Studies

There are several indirect approaches to natural his-
tory studies of prognosis that are based on exist-
ing data and previous studies. One approach takes
the raw data from several studies with similarly
defined populations, and combines the data for an
overall natural history study. In a study address-
ing the prognostic variables for survival in hepa-
tocellular carcinoma, data on patients from three
consecutive clinical trials conducted by the Eastern
Cooperative Oncology Group were combined and
a Cox proportional hazards model fit to the com-
bined data set [11]. The study is a natural history
study because none of the therapeutic approaches
worked, and ignoring the treatment or allowing the
treatment to be a covariate did not change results.
The definition of the patient population was iden-
tical in all studies, and thus the homogeneity of
the combined study population was established and
generalizability was possible (see Validity and Gen-
eralizability in Epidemiologic Studies). Combin-
ing the studies increased substantially the power
to detect significance of prognostic factors for sur-
vival.

Another approach to combining data from several
studies is meta-analysis [20]. In meta-analysis one
combines the results from several studies, either by
summarizing all of the studies that meet certain cri-
teria, such as in a study of inconsistent prognoses
of post-acute myocardial infarction [32], or by actual
data synthesis. An example of the latter is a study of

prognosis and outcomes of patients with community-
acquired pneumonia where odds ratios, rate differ-
ences, and confidence intervals were calculated as
well as overall mortality and the relationship with
prognostic factors [12].

Multiple Outcomes

Sometimes a natural history study can have multiple
outcomes. This can be true for all types of analy-
sis approaches. It can occur in the context of logistic
regression where there are two or more dichotomous
outcomes that can be observed, or multivariate sur-
vival variables that are observed. One example is time
to metastases of breast cancer at various sites as mul-
tiple outcomes. This problem can be dealt with both
as a competing risks problem in the context of a Cox
model, or in a generalization of joint outcomes [41].

Conclusion

The choice of analytical approach depends on many
factors related to the design of the study and the
definition of outcomes. Sometimes more than one
approach is applied to the same data and conclusions
are compared [34]. For example, consistency may be
a problem when there are missing data [18]. The
use of more than one analytical approach helps to
understand better the natural history of prognosis and
prevents erroneous conclusions.
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Negative Binomial
Distribution

The negative binomial distribution has been used in
biostatistical literature since Student [31]. He pro-
posed that the error in counting red blood cells using
the hemocytometric camera follows that distribution.
The method consists of stretching a few drops of
blood on a special slide that has a camera with a
grid superimposed. After some chemical treatment to
preserve the material and to color the blood cells, the
specimen is read on a microscope. The reader counts
the number of red blood cells in a fixed number of
quadrats (say 100). From that, given a proportionality
constant, the total number of red blood cells of the
donor is estimated.

This first application is emblematic, because the
negative binomial was proposed as an alternative to
the Poisson distribution for modeling counts when
data show a certain degree of extra-Poisson variation
(see Overdispersion). In this application, this extra
variation is due to the fact that the intensity rate is
not homogeneous, since the blood is not uniformly
spread on the slide.

The Negative Binomial Distribution

Definition

The distribution is obtained from the expansion of
(Q − P)−R , where Q − P = 1 and P > 0, similarly
to a derivation for the binomial distribution. The
probability mass function equals

Pr(y) = (R + y − 1)!

y!(R − 1)!

(
P

Q

)y (
1 − P

Q

)R

(1)

and is defined for nonnegative integer values y. The
value R need not be an integer, but when it is, this
is known as the Pascal distribution. The mean is RP

and the variance is RPQ. Therefore, the variance
exceeds the mean, and the distribution shows greater
tail probabilities than the Poisson. The probabilities
can be calculated from the binomial distribution,

observing that [16]

(R + y − 1)!

(y)!(R − 1)!

(
P

Q

)y (
1 − P

Q

)R

= R

R + y

(R + y)!

(y)!(R)!

(
P

Q

)y (
1 − P

Q

)R

. (2)

Example The observed number of accidents at
work during a five-week period are reported in
Table 1; the fitted negative binomial and Poisson
expected counts [17] are also shown. The negative
binomial distribution has higher probability for the
zero count and has a longer right-hand tail than the
Poisson distribution with the same expected value
(see Accident Proneness).

Derivation A

The negative binomial distribution can be derived in
two ways.

Suppose that we are interested in the number of
trials (say N ) until R successes have occurred, when
the probability of success is p for each trial. Then
the probability distribution of N is

Pr(N = y + R) = (R + y − 1)!

y!(R − 1)!
pR(1 − p)y (3)

for the reparameterization P = (1 − p)/p. This dis-
tribution is also called the binomial waiting-time dis-
tribution and, in the special case R = 1, it is the
geometric distribution, the discrete analogue of the
exponential distribution (see Parametric Models in
Survival Analysis).

Table 1 Negative binomial and Poisson
expected frequencies for observed counts of
work accidents during a five-week period

Negative
yi fi binomial Poisson

0 447 442 406
1 132 140 189
2 42 45 45
3 21 14 7
4 3 5 1

≥5 2 2 0.1

Reproduced from [17] by permission of the
Royal Statistical Society
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Example In the surveillance of rare health events,
such as congenital birth defects, the probability that
a birth has a malformed baby can be modeled as a
function of the number of nonmalformed babies born
since the previous malformation occurred (negative
binomial with R = 1). This approach is used in the
SETS scheme [7].

Derivation B

Suppose that a heterogeneous Poisson process gener-
ates the observed counts. This could be modeled as a
mixture of Poisson distributions, the expected value µ

of which is the realization of a gamma distribution
with density

Pr(µ) = [νκΓ (κ)]−1µκ−1 exp
(
−µ

ν

)
, (4)

with κ > 0 and ν > 0. Then

Pr(y) =
∫ ∞

0

[
µy exp−µ

y!

]
[νκΓ (κ)]−1µκ−1

× exp
(
−µ

ν

)
dµ

= [νκΓ (κ)y!]−1
∫ ∞

0
{µy+κ−1

× exp[−µ(ν−1 + 1)] dµ}

= (y + κ − 1)!

y!(κ − 1)!

(
ν

ν + 1

)y (
1

ν + 1

)κ

, (5)

which is negative binomial with parameters {κ, ν}
(where R = κ and P = ν). This mixture could arise
(factorizing µ = θt) either by varying the rate θ of
occurrence of the events for constant time span (t)

or the population at risk for each observation, or by
varying t . We cannot distinguish between these two
mechanisms from the data, and usually one of the two
sources of heterogeneity is controlled by the study
design.

Example: Varying rates. The observed regional
variation of the rate of surgical interventions can be
split into a component reflecting the underlying rate
variability among areas, service availability, physi-
cians practice styles, etc. which can be modeled by
the gamma density, and a random Poisson compo-
nent [13].

Example: Varying population-time. In counting
the number of larvae caught in a trap, the total catch
is the sum of the larvae that emerged from distinct
egg masses, the number M of which is unknown.
The negative binomial distribution arises as a Poisson
stopped sum of a logarithmic series variable [30].

Estimation of Parameters

Method of Moments

The method of moments [19] is the simplest way
to obtain estimates of the parameters of the negative
binomial. The method equates the population param-
eters to their sample counterparts (the mean to the
sample mean and the variance to the sample variance)
and then solves for the parameter estimates

P̂ = s2

y − 1
, (6)

R̂ = y2

(s2 − y)
, (7)

where y and s2 are the sample mean and variance
of the observed counts. This method could give
negative values if s2 < y. A different approach uses
the observed proportion of zero counts, p0 [3]:

R̂P̂ = y, (8)

p0 = (1 + P̂ )−R̂ . (9)

This method can be used if y > − log p0.
Iterative methods of moments were used by

Scheaffer & Leavenworth [28] and Clayton &
Kaldor [9]. The first used a normal approximation for
a transformation introduced by Anscombe [3] based
on sinh−1 to develop a new formula based on the
variance of the transformed variable. The second,
given initial estimates, is based on estimates of the
parameters of the Poisson distributions. From their
mean and variance, one updates the estimates of
the negative binomial parameters, and repeats until
convergence. A further refinement is to equate the
Pearson χ2 to its expected value, instead of using the
variance (see also [23]). In most circumstances the
method of moments works well. However, a warning
has been posed when the mean is small and the
sample size does not exceed 20 [8].
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Maximum Likelihood

Maximum likelihood (ML) estimation was discussed
by Fisher [15], who gave formulas for the case of
moderately small sample sizes. The ML estimator
is indeterminate when s2 < y, and Anscombe [4]
comments that the ML estimator does not have a
distribution, since there is a nonzero probability of
observing a data set with sample variance less than
the sample mean. A useful reparameterization is α =
1/κ , which yields the Poisson distribution as α → 0;
the parameter α is called the dispersion parameter,
because the negative binomial variance is V (y) =
µ + αµ2 [27]. To facilitate the specification of a
linear model for the mean value, the other parameter
is assumed to be the mean µ = ν/α. The negative
binomial density becomes

P(y) = (y + α−1 + 1)!

y!(α−1)!

(
αµ

1 + αµ

)y (
1

1 + αµ

)1/α

.

(10)

When µ is assumed as the parameter of the
Poisson likelihood the gamma prior has only one
parameter. Maximum likelihood estimates can be
obtained using the Newton–Raphson method [21]
(see Optimization and Nonlinear Equations). This
method produces biased results in small sample sizes,
and the distribution of α̂ is discrete in those cases. It
is recommended, therefore, to utilize other methods,
such as those listed below.

Conditional Maximum Likelihood

The conditional maximum likelihood estimator for
the dispersion parameter of the negative binomial
distribution was first proposed by Kalbfleisch &
Sprott [20] and evaluated by Anraku & Yanagi-
moto [2]. The negative binomial likelihood can be
factored into two terms: the first term allows the
estimation of µ, and the second term allows the esti-
mation of the dispersion parameter given µ. The
relationship between the conditional (CL) and the
unconditional ML estimator (UL) is

1

2

y

1 + αy
< CL − UL <

y

1 + αy
. (11)

The UL estimator is smaller than the CL, for any sam-
ple. Simulation studies seems to support CL against

ML. It should be noticed that both estimators are
defined only for s2 > y.

Maximum Extended Quasi-likelihood

Extended quasi-likelihood was proposed by Nelder
& Pregibon [26] in the context of the generalized
linear model. Clark & Perry [8] considered it for
the estimation of the dispersion parameter of the
negative binomial distribution. One of the merits
of this approach (see [24]) is the ability to han-
dle overdispersed as well as underdispersed data
(see Overdispersion). The extended quasi-likelihood
for the negative binomial distribution is

l(µi, α)=yi ln

(
µi

yi

)
− 1 + αyi

α
ln

(
1 + αµi

1 + αyi

)

− 1

2
ln(2π) − ln(1 + αyi) − 1

2
ln

(
yi + 1

6

)

− 1

2
ln

(
1 + α

6

)
+ 1

2
ln

(
αyi + 1 + α

6

)
,

(12)

and α is estimated by maximizing this. A simulation
study of Piegorsch [27] ended by concluding that “it
is more prudent to recommend general use of the
maximum quasi-likelihood approach as long as the
sample size is adequate (above 20), and α is not
very small”.

Regression Models with Random Effects

Random Intercept Model

Suppose that yi follows the Poisson distribution with
expected value µi = exp(xiβ + ui)ti . The term ui is
a random intercept that can be modeled by assuming
that exp(ui) follows a gamma density with mean 1
and variance α ([21]; see also [5]). This is consistent
with the interpretation of ui as a random noise with
expected value zero.

Example In a paper by Zeger & Edelstein [32],
yi denoted the number of deaths in village i with
ti person-years at risk, xi was a vector of predictor
variables, and ui was a random effect for the effects
of baseline health status on mortality. The model
allowed the underlying mortality rate to vary from
village to village.
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Extensions

First, an important extension allows the dispersion
parameter to vary as a function of covariates, such as
by letting log αi = ziγ . Using this approach, Man-
ton et al. [22] analyzed the geographic distribution
of age-specific lung cancer rates among North Car-
olina counties using a model with scale parameter
varying by age group and shape parameter by birth
cohort.

Secondly, in longitudinal studies a series of mea-
surements yi is recorded for the ith subject. When
the responses are counts, the negative binomial model
allows subject-specific covariates and random terms
for each subject. In most cases, however, we have
to cope with time-varying covariates. Morton [25]
adapts the negative binomial model by proposing that
the conditional variance take the form V (yij |ui) =
φµij , obtaining the estimates of β, α, and φ using a
quasi-likelihood approach.

The reader familiar with generalized linear mod-
els (GLMs) will be aware that taking log µi as
a linear function of the covariates and incorporat-
ing random terms results in a noncanonical link, so
that standard errors are only asymptotically equiva-
lent to those obtained from a GLM extended quasi-
likelihood model with canonical link log[µ/(µ + α)].
Models with random effects on the same scale as the
fixed effects can be more attractive [6], while other
methods avoid the specification of the form of the
mixing distribution (see [18] and [1] for an extension
to the general exponential family).

Empirical Bayes Estimates

Suppose that we want to estimate the rate of a certain
disease by areas within a country. Given {yi}, the
observed event counts, and {Ei}, the expected counts
for the areas given some standard reference rates, the
maximum likelihood estimator for θi is ri = yi/Ei ,
while the empirical Bayesian estimator for θi is the
mean of the posterior density f (θi |yi) [14],

f (θi |yi) = f (yi |Eiθi)f (θi |κ, ν) dθi∫
f (yi |Eiθi)f (θi |κ, ν) dθi

, (13)

which is gamma [yi + κ, ν/(νEi + 1)] with mean
θ̂i = (yi + κ)/(Ei + ν−1). The parameters κ and ν

can be estimated from the marginal distribution

∫
f (yi |θi)f (θi) dθi , which is the negative binomial

distribution.

Example The empirical Bayes estimator (ebmr) of
the rate ratios for lip cancer of 56 Scottish coun-
ties is reported by Clayton & Kaldor [9]. The ebmr
values are shrunk toward the mean, and nonzero esti-
mates are produced even for areas with observed zero
counts. The degree of shrinkage is proportional to
the variance of the gamma density and, for a given
area, to the amount of population at risk (i.e. the Ei)
(see Shrinkage Estimation).

Test of Overdispersion for Count Data

A score test with one degree of freedom (see Likeli-
hood), based on the negative binomial variance, uses
the statistic

T 2
1 =

[
n∑

i

(yi − µ̂i)
2 − (1 − hi)µ̂i

]2

2
n∑

i

µ̂2
i

, (14)

where µ̂i is the expected value and hi is the diagonal
element of the hat matrix derived from fitting a
regression model to the observed counts [11, 12].
Under a quasi-likelihood approach, the statistic is

T 2
2 = 1

2n

[
n∑

i

(yi − µ̂i)
2 − (1 − hi)µ̂i

µ̂i

]2

. (15)

The first test is an extension of the Fisher disper-
sion test (see Poisson Distribution) to the general
case of regression models (see also [10]).

Conclusions

The interest in the negative binomial distribution
arises from the frequency of occurrence in field-
work of count data with over- or underdispersion
with respect to the Poisson variance. Regression
models can be built and maximum likelihood or
extended maximum quasi-likelihood estimates of the
mean and dispersion parameters can be obtained. Cur-
rently, some software provides commands for nega-
tive binomial regression analyses (see glm, nbreg,
and gnbreg in Stata [29]).
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Applications can be found in geographical analy-
sis, in experimental designs, in epidemiology for the
analysis of cohort studies, and in longitudinal data
analysis. In most of these cases, the negative bino-
mial distribution is considered as an alternative to
the Poisson. The assumption of a specific form for
the density of random terms, using a scale different
from that of the fixed effects, limits the popularity of
such modeling.
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Nelson–Aalen Estimator

The Nelson–Aalen estimator is a nonparametric esti-
mator which may be used to estimate the cumu-
lative hazard rate function from censored survival
data (see Survival Distributions and Their Charac-
teristics). Since no distributional assumptions are
needed, one important use of the estimator is to check
graphically the fit of parametric models, and this is
the reason why it was originally introduced by Nel-
son [10, 11]. Independently of Nelson, Altshuler [2]
derived the same estimator in the context of com-
peting risks animal experiments. Later, by adopting
a counting process formulation, Aalen [1] extended
its use beyond the survival data and competing risks
setups, and studied its small and large sample proper-
ties using martingale methods. The estimator is nowa-
days denoted the Nelson–Aalen estimator, although
other names (the Nelson estimator, the Altshuler
estimator, the Aalen–Nelson estimator, the empiri-
cal cumulative hazard estimator) are sometimes used
as well. Below we present a number of situations
where the Nelson–Aalen estimator may be applied
and exemplify its use in one particular case. Further-
more, we indicate how counting processes provide a
framework which allows for a unified treatment of all
these diverse situations, and we summarize the most
important properties of the Nelson–Aalen estimator.
A detailed account is given in [3, Section IV.1].

Survival Data

Consider first the survival data situation, where we
want to study the time to death (or some other
event) for a homogeneous population with hazard
rate function α(t) and cumulative hazard rate function
A(t) = ∫ t

0 α(s) ds. Assume that we have a sample of
n individuals from this population. Our observation of
the survival times for these individuals will typically
be subject to right censoring, meaning that for some
individuals we only know that their true survival
times exceed certain censoring times. The censoring
is assumed to be independent in the sense that the
additional knowledge of censorings before any time
t does not alter the risk of failure at t (see Censored
Data). We denote by t1 < t2 < · · · the times when
deaths are observed and let dj be the number of
individuals who die at tj .

The Nelson–Aalen estimator for the cumulative
hazard rate function then takes the form

Â(t) =
∑

tj ≤t

dj

rj

, (1)

where rj is the number of individuals at risk (i.e.
alive and not censored) just prior to time tj . Thus
the Nelson–Aalen estimator is an increasing right-
continuous step function with increments dj/rj at
the observed failure times. The variance of the Nel-
son–Aalen estimator may be estimated by

σ̂ 2(t) =
∑

tj ≤t

(rj − dj )dj

(rj − 1)r2
j

. (2)

It may be shown (see below) that the Nelson–Aalen
estimator (1) as well as the variance estimator (2) are
almost unbiased. In large samples the Nelson–Aalen
estimator, evaluated at a given time t , is approxim-
ately normally distributed, so a standard 100(1 −
α)% confidence interval for A(t) takes the form

Â(t) ± z1−α/2σ̂ (t), (3)

with z1−α/2 the 1 − α/2 fractile of the standard nor-
mal distribution. The approximation to the normal
distribution is improved by using a log transform giv-
ing the confidence interval

Â(t) exp

[
±z1−α/2

σ̂ (t)

Â(t)

]
. (4)

This interval is satisfactory for quite small sample
sizes [5].

Right censoring is not the only kind of data incom-
pleteness in survival analysis. Often, e.g. in epidemi-
ological applications, individuals are not followed
from time zero (in the relevant time scale, typically
age), but only from a later entry time (conditional on
survival until this entry time). Thus, in addition to
right censoring, the survival data are subject to left
truncation. For such data we may still use the Nel-
son–Aalen estimator (1) and estimate its variance by
(2). The number at risk, rj , now is the number of
individuals who have entered the study before time
tj and are still in the study just prior to tj . For left-
truncated data the numbers at risk, rj , may be low
for small values of tj . This will result in estimates
Â(t) which have large sampling errors. But because
the increments of the Nelson–Aalen estimator are
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uncorrelated (see below), the uncertainty induced for
small time values has no influence on the increment
Â(t) − Â(s) of the Nelson–Aalen estimator over a
later time interval (s, t]. An estimator for the variance
of this increment is σ̂ 2(t) − σ̂ 2(s).

Quite often we want to estimate the survival distri-
bution function S(t) = exp[−A(t)], representing the
probability that an individual will be alive at time
t . This may be done from right-censored and/or
left-truncated survival data by the Kaplan–Meier
estimator. The relation A(t) = − ln S(t) suggests
that the cumulative hazard rate function alternatively
may be estimated as minus the logarithm of the
Kaplan–Meier estimator. Even though this estima-
tor numerically will be close to the Nelson–Aalen
estimator, the latter is the canonical one from a theo-
retical point of view. Furthermore, the Nelson–Aalen
estimator may be used in a number of different sit-
uations (see below) while the alternative estimator
applies only to the survival data situation.

An Illustration

To give an illustration of the Nelson–Aalen esti-
mator we use data from a randomized clinical trial
for patients with histologically verified liver cirrho-
sis. Patients were recruited from several hospitals
in Copenhagen between 1962 and 1969 and were
followed until death, lost to follow-up or until the
closing date of the study, October 1, 1974. The time
variable of interest is time since entry into the study.
Patients are right censored if alive on October 1,
1974, or if lost to follow-up before that date.

We consider only the 138 placebo-treated male
patients. Their median age at entry was 57 years,
while the lower and upper quartiles were 51 and
66 years, respectively. Of the 138 patients, 88 died
during the study. The Nelson–Aalen estimate for
these patients is shown in Figure 1 with 95% con-
fidence intervals computed according to (4). Even
though the cumulative hazard rate function provides
a useful summary measure (e.g. [6, Section 2.3]), it
is usually the hazard rate function itself which is the
entity of real interest. So when interpreting the esti-
mate in Figure 1, we mainly focus on the “slope” of
the curve. The estimate of the cumulative hazard rate
function is steeper for the first 9–10 months after
randomization than at later times. Therefore we have
evidence that the risk of dying for these patients is
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Figure 1 Nelson–Aalen estimate of the cumulative haz-
ard rate function for death for 138 placebo-treated male
patients with liver cirrhosis, with 95% log-transformed con-
fidence intervals

highest just after randomization. (This may, at least in
part, be due to heterogeneity which is not accounted
for in our simple analysis.) The hazard rate func-
tion is approximately 0.3 per year for the first 9–10
months and slightly below 0.2 per year thereafter
when estimated as the average slope of the curve
over the relevant time periods. More formal proce-
dures for smoothing the Nelson–Aalen estimate in
order to obtain an estimate for the hazard rate func-
tion itself are available but will not be considered here
(see Smoothing Hazard Rates). A further discussion
and analysis of the cirrhosis data is given in [12]. The
data were also used for illustrative purposes in [3].

Multi-state Models and Recurrent Events

The survival analysis setup considered above may
be generalized in two directions. More than one
type of event may be considered for each individual
under study, and/or the event in question may happen
more than once for each individual. Examples of
the first type are competing risks with two or more
causes of death and the Markov illness–death model
with the states “healthy”, “diseased”, and “dead”
(see Counting Process Methods in Survival Ana-
lysis). More generally, we may consider any Markov
process with a finite number of states which may be
used to model the life history of an individual. An
example of the second type is an inhomogeneous
Poisson process with intensity α(t) modeling the
occurrence of some recurrent event like episodes of
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angina pectoris in patients with coronary heart disease
or infections in AIDS patients. For both of these
two types of situations we observe the times when
events occur for a number of individuals (modeled
as iid copies of the relevant process) who need
not all be observed over the same interval of time.
The Nelson–Aalen estimator may then be applied to
estimate cumulative intensities.

To be specific, consider a finite-state Markov
process with transition intensities αgh(t) for g �= h.
Focusing on fixed g and h in what follows, we
drop the subscripts and write just α(t) for the g →
h transition intensity. Furthermore, we denote by
t1 < t2 < · · · the times when transitions from g to
h are observed. Let dj be the number of individ-
uals who experience a g → h transition at tj , and
write rj for the number of individuals in state g

(i.e. at risk for a g → h transition) just prior to time
tj . Then the cumulative g → h transition intensity
A(t) = ∫ t

0 α(s) ds may be estimated by (1) and its
variance by (2). Similarly, the integrated intensity of
an inhomogeneous Poisson process may be estimated
with the tj s denoting the times of observed events,
and the dj s and rj s being the corresponding num-
bers of events and numbers at risk, respectively. An
illustration of the use of the Nelson–Aalen estimator
to estimate integrated Markov transition intensities is
given by Keiding & Andersen [9].

Two Other Applications

For the situations considered so far, (1) and (2) apply
with rj the number at risk at tj for the event in
question. The use of the Nelson–Aalen estimator is,
however, not restricted to such situations. We mention
here two other applications and return to a general
discussion below.

Relative Mortality

Our first example considers right-censored and/or
left-truncated survival data, but they no longer come
from a homogeneous population. Rather, we assume
that the hazard rate function of the ith individual may
be written as the product α(t)µi(t), where α(t) is
a relative mortality common to all individuals and
µi(t) is the hazard rate function at time t for a person
from an external standard population corresponding
to the ith individual (e.g. of the same sex and age

as individual i). Typically the µi(t) will be known
from published life tables for the general population.
In this situation the Nelson–Aalen estimator may be
used to estimate the cumulative relative mortality
A(t) = ∫ t

0 α(s) ds. All that is required is that rj in
(1) be taken to denote the sum of the external rates
µi(tj ) for all individuals at risk just prior to tj . An
illustration of this use of the Nelson-Aalen estimator
is provided by Breslow & Day [7, Chapter 5].

An Epidemic Model

A simple model for the spread of an infectious dis-
ease in a community is the following (see Epidemic
Models, Stochastic). At the start of the epidemic, i.e.
at time t = 0, some individuals make contact with
individuals from elsewhere and are thereby infected
with the disease. There are no further infections
from outside the community during the course of the
epidemic. Let S(t) and I (t) denote the number of
susceptibles and infectives, respectively, just prior to
time t . Assuming random mixing, the infection inten-
sity in the community at time t becomes α(t)S(t)I (t),
where α(t) is the infection rate per possible con-
tact. We denote by 0 < t1 < t2 < · · · the times when
individuals are infected and let dj denote the num-
ber infected at tj . Then the cumulative infection
rate, A(t) = ∫ t

0 α(s) ds, may be estimated by the Nel-
son–Aalen estimator (1) where now rj = S(tj )I (tj );
see Becker [4, Section 7.6] for an illustration.

Counting Process Formulation and Small
Sample Properties

In general we consider the occurrences of some
events of interest (e.g. deaths, occurrences of a dis-
ease, infections), and denote by 0 < t1 < t2 < · · · the
times when an event is observed. We assume that two
or more events cannot occur at the same time, so that
there are no tied observations. (The handling of ties
is discussed briefly below.) Then the process N(t)

counting the number of observed events in the time
interval [0, t] is a (univariate) counting process. The
behavior of N(t) is governed by its intensity process
λ(t) given heuristically by

λ(t) dt = Pr(event occurs in [t, t + dt)|Ft−).
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Here Ft− represents all the information available to
the researcher just before time t . The counting pro-
cess satisfies Aalen’s multiplicative intensity model
if we may write its intensity process as

λ(t) = α(t)Y (t), (5)

for some unknown function α(t) and some observable
process Y (t) whose value at time t is known just
prior to t . All the situations considered above give
counting processes which fulfill (5). Survival data
from a homogeneous population, finite-state Markov
processes, and the inhomogeneous Poisson process,
all give a Y (t) process which is the number at
risk just prior to time t . For the model for relative
mortality, Y (t) is the sum of the µi(t) for those
at risk just before t , while for the epidemic model,
Y (t) = S(t)I (t). The common structure of all these
models when formulated as counting processes is
the reason why the Nelson–Aalen estimator may be
applied to all these diverse problems.

In fact, the counting process formulation provides
a framework which makes it simple to study the sta-
tistical properties of the Nelson–Aalen estimator. We
briefly indicate a few main steps and refer to [3,
Section IV.1.1] for a thorough treatment. First, we
note that, with rj = Y (tj ), we may write the Nel-
son–Aalen estimator (1) as

Â(t) =
∫ t

0

J (s)

Y (s)
dN(s), (6)

where J (s) = I (Y (s) > 0) and 0/0 is interpreted as
0. Then using (5), (6), and the decomposition N(t) =∫ t

0 λ(s) ds + M(t) of a counting process into a sum
of its integrated intensity process and a local square
integrable martingale M(t), we obtain

Â(t) = A∗(t) + M∗(t). (7)

Here A∗(t) = ∫ t

0 J (s)α(s) ds is almost the same
as A(t) when there is only a small probability
that Y (s) = 0 for some s ≤ t , while M∗(t) =∫ t

0 [J (s)/Y (s)] dM(s) is a stochastic integral and as
such is a local square integrable martingale. Relation
(7) is the key to studying the statistical properties
of the Nelson–Aalen estimator. Since M∗(t) has
expected value zero for any given t , we have EÂ(t) =
EA∗(t), so the Nelson–Aalen estimator is almost
unbiased. Furthermore, an unbiased estimator for the
variance of M∗(t) is its optional variation process

∫ t

0 [J (s)/Y (s)2] dN(s). Thus the variance estimator
(2) is almost unbiased when there are no ties. Finally,
a martingale has uncorrelated increments, and by
(7) this is (almost) the case for the Nelson–Aalen
estimator as well.

In the presence of ties, i.e. when the number of
events dj at tj exceeds one, the process N(t) count-
ing occurrences of events in [0, t] may have jumps of
size two or larger and is therefore no longer a count-
ing process. Often, however, we may write N(t) =∑n

i=1 Ni(t), where Ni(t) is a counting process reg-
istering the events for individual i. If we consider a
homogeneous population where the rates of occur-
rence of the events are the same for all individuals,
we may adopt the discrete extension of the model
described in [3, pp. 180–181]. For this extended
model, the arguments of [8, pp. 94–96], apply, to
show that the variance estimator (2) is almost unbi-
ased also in the presence of ties. This justifies the
use of the tie-corrected estimator (2) for all situa-
tions considered above, except for the model with
relative mortality and the epidemic model. Within the
framework of the extended model the Nelson–Aalen
estimator is a nonparametric maximum likelihood
estimator; see [3, Section IV.1.5] for details and fur-
ther discussion.

Weak Convergence and Confidence Bands

By (7) the martingale central limit theorem may be
used to prove that, considered as a stochastic process,
the Nelson–Aalen estimator (properly normalized)
converges weakly to a mean zero Gaussian martin-
gale. In particular, for a fixed t it is asymptotically
normally distributed, a fact that was used in con-
nection with the confidence intervals (3) and (4).
The weak convergence result also makes it possible
to derive confidence bands for A, i.e. limits which
contain A(t) for all t in an interval [τ1, τ2] with a
prespecified probability.

One important class of such confidence bands are
the equal precision bands. The standard and log-
transformed equal precision bands are obtained by
replacing z1−α/2 in (3) and (4) by d1−α , the 1 − α

fractile in the distribution of the supremum of the
absolute value of a standardized Brownian bridge
(over a certain time interval). This fractile may be
found (approximately) by solving (with respect to d)
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the nonlinear equation

4φ(d)

d
+ 2φ(d)

(
d − 1

d

)
ln

[
σ̂ (τ2)

σ̂ (τ1)

]
= α,

where φ(d) is the standard normal density function.
The equal precision bands require σ̂ (τ1) > 0, so they
cannot be extended all the way down to t = 0.
Typically, one will also omit the largest values of
t . The standard equal precision band has poor small
sample properties, so even with sample sizes in the
hundreds the use of the log transformed confidence
band is recommended [5]. As an illustration we use
once more the liver cirrhosis example. Considering
the interval from 4 months (1/3 year) to 8 years,
we have σ̂ (1/3) = 0.027 and σ̂ (8) = 0.163, so that
d0.95 = 2.99. Therefore the 95% log transformed
equal precision band for the cumulative hazard rate
function between 4 months and 8 years may be
obtained from (4) by using the fractile 2.99 instead
of the value 1.96 used for the pointwise confidence
intervals in Figure 1. A detailed study of the weak
convergence of the Nelson–Aalen estimator and the
derivation of confidence bands are provided by [3,
Section IV.1.2-3]. Here another class of confidence
bands, the Hall–Wellner bands, is also discussed.

We finally note that semi-Markov processes (or
Markov renewal processes), where the transition
intensities (only) depend on the sojourn times in the
states, do not give rise to counting processes which
fulfill the multiplicative intensity model (5). Thus the
results outlined above do not immediately extend to
such models. However, it turns out that enough of
the above structure is preserved to be able to define
Nelson–Aalen estimators also for such semi-Markov
processes and to derive identical asymptotic results
for these as for the case of Markov processes; see [3,
Section X.1] for a discussion and further references.
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Nephrology

Nephrology is defined as the scientific study and
treatment of the kidney and its diseases. Acute renal
failure usually occurs in previously normal kidneys,
often after a major injury or surgery, and typically the
patient’s renal function returns to normal after a short
period. Chronic renal failure, which is usually asso-
ciated with kidney disease, results in the irreversible
deterioration of kidney function. When the condition
becomes terminal the patient is said to have end-stage
renal failure (ESRF). Two forms of renal replacement
therapy are available for patients with ESRF; renal
dialysis and transplantation.

Dialysis partially cleans the blood of toxic waste
products normally excreted by the kidney. Hemodial-
ysis and continuous ambulatory peritoneal dialysis
(CAPD) are the most common treatment methods.
Other kidney functions are supplemented by drugs.
Transplantation is the preferred treatment for most
patients as it replaces all functions of the kidney, but
the main bar to expanding this is the worldwide short-
age of donor organs.

The clinical challenge in the management of dial-
ysis patients is the dialysis prescription. Inadequate
dialysis can lead to toxin build-up, anemia, infec-
tion, nutritional problems and an increased risk of
mortality. For the transplant recipient, rejection and
infection are the primary complications.

Renal Disease Registers

Several regional, national, and international registries
collecting data on ESRF patients have been estab-
lished worldwide (see Disease Registers). The range
of data collected extends to patient demography and
treatment modality, acceptance rates (incidence) and
patient stock levels (prevalence), patient outcome
and co-morbidity factors, dialysis duration and ade-
quacy and treatment center parameters (structure,
staffing, etc.). The reports prepared by the Reg-
istries [1] indicate the areas of key interest and the
statistical techniques applied.

Excepting for the registries in the US, Hol-
land, Finland, and Germany (under development),
participation is voluntary. Return rates for the first
established European Dialysis and Transplant Asso-
ciation–European Renal Association (EDTA–ERA)

registry have been particularly poor in recent years
(less than 50% for some countries) but other registries
claim high compliance rates of over 90% [1]. Similar
registries exist in the transplant arena in the US, UK,
Europe, and elsewhere [14]. These databases tend to
be less ambitious, having implemented the concept of
a core database of key readily available data items.
For specific additional studies, more detailed infor-
mation is then collected from co-opted centers for a
limited time.

In addition to these registries of observational
data, there have been a number of clinical trials
in nephrology, of which the National Cooperative
Dialysis Study (see, for example, Laird et al. [6]) is
probably the most comprehensive.

Nephrology Journals

A number of journals publish articles on the study
and treatment of renal disease in the clinical and
laboratory setting. Many papers include reference to,
and use of, statistical methods, although often the
content is quite low. Use of the t , Wilcoxon, and χ2

tests and analysis of variance are widely reported, as
are Kaplan–Meier and Cox survival analyses. Most
authors quote the package used but few comment
on the analysis method chosen or its limitations, and
even fewer acknowledge statistical advice. Generally,
the statistical content is higher in the transplantation
journals and in Kidney 1International.

Patient Survival Under Alternative
Treatment Modalities

Choosing an Appropriate Start Point and Study
Cohort

For many patients, the onset of ESRF can only be
defined retrospectively as the long-term prognosis
may be uncertain when regular dialysis first begins,
so the start point is often set at 90 or 120 days
after the start of dialysis. Also, several patients
will change dialysis modality in the first months of
treatment. Similarly, when comparing patients’ sur-
vival prospects under dialysis and transplantation,
setting the start point as the date of listing for trans-
plant excludes the potential bias of including patients
unsuitable for transplantation.
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Modeling Treatment Changes

Several authors have avoided the issue of patients
changing treatment by censoring (see Censored
Data) when a change occurs. To minimize the effect
of possible nonindependent censoring, the survival
time is censored at the point of change, but a death
within the following two months is considered a
death on the previous modality (unless the death
is unrelated to treatment) (see, for example, Nelson
et al. [12]). Similarly, transplantees are censored at
the date of grafting, as the chance of a patient
receiving a kidney is governed by donor availability
and not by dialysis mode or duration.

This is inadequate when the total survival expe-
rience under alternative treatments is of interest
(see Survival Analysis, Overview). For a trans-
plantee, for example, it is necessary to account for
the time the patient survived on dialysis prior to
receiving a graft. The Cox regression model with
time-dependent covariates can be used for inference
about relative risks in this situation.

In its simplest form (with a single treatment
change), the model would be

hi(t) = h0(t) × exp[z′
iβ + Ii(t)γ ], (1)

where h0(t) is the baseline hazard, zi is the p × 1
vector of fixed covariates, and Ii(t) = 0 if patient
i has not changed treatment at time t , 1 otherwise,
with β1, . . . , βp, γ the regression coefficients to be
estimated.

For a patient changing between dialysis treat-
ments, this model may not be unreasonable, but for a
change from dialysis to transplantation, model (1) is
not entirely appropriate as it assumes the transplan-
tation hazard remains constant. It is well recognized
that the hazard after transplantation is not constant
over time, and that the initial postoperative period
has the greatest hazard. An extension to (1) that
would allow for transient effects would be to include
multiple indicators to reflect the clinically relevant
cutpoints, t1, t2, and t3, say, namely

hi(t) = h0(t) × exp[z′
iβ + Ii(0 ≤ t − t∗i < t1)γ1

+ Ii(t1 ≤ t − t∗i < t2)γ2

+ Ii(t2 ≤ t − t∗i < t3)γ3], (2)

where t∗i is the time from entry to the study to
transplant.

The effects would then be modeled by way of the
step function. An alternative approach for exploring
transient hazard effects is to assume the hazard after
transplant has an exponential decay (see Parametric
Models in Survival Analysis), namely

hi(t) = h0(t) × Ii(t)

× exp{β0 + β1 exp[−γ (t − t∗i )]}. (3)

Other covariates can be controlled for by strati-
fication. Mauger et al. [10] have developed this fur-
ther to estimate the times at which the hazard and
survival curves for dialysis patients awaiting trans-
plantation cross the transplant hazard and survival
curves.

Inherent in models (1) and (2) is the assumption
that the relative risks, β1, . . . , βp , do not change
over time. Various studies have shown that the
risks attributable to human leukocyte antigen (HLA)
mismatching for transplant survival are transient. For
further exploration of issues surrounding the analysis
of transplant outcome per se, see Transplantation.

Occurrence of Repeated Events

Repeated events, usually of an adverse nature, arise
in many clinical settings, including nephrology. For
example, infections in the peritoneal cavity and at
the point of insertion of the catheter are common
complications that hamper significantly the success
of CAPD as a treatment. Statistical models have
been developed to understand better the etiology and
incidence of infection in these patients. Infection
occurrence can be recorded in one of two ways:

1. Number of infections, xi , say, over follow-up
time Ti .

In this situation, a Poisson process for counts is
appropriate, and both fixed effects and random
effects models have been explored. Vonesh [15] fitted
a mixed effect gamma Poisson multiplicative model
for modeling individual peritonitis infection rates,
namely

λ(zi ) = λi exp(z′
iβ), (4)

with
λi ∼ Γ (α, γ ), (5)

and compared the results with a fixed effects model
with λi = λ0 for all i. The conclusions were similar,
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but the mixed model, by giving less weight to the
few high-risk cases, provided a better fit and more
realistic standard errors.
2. Distinct recurrence times, tij , j = 1, . . . , ni ,

where ni is the number of infections occurring
in follow-up time Ti .

When distinct times to infection are available, sur-
vival models with covariates can be applied. Common
approaches when repeated event times are recorded
are either to reduce the data to counts and fit Poisson
regression models as described above, or, if the first
event is of greatest clinical significance and the num-
ber of repeated events small, to consider time to the
first occurrence and discard second and subsequent
events.

Hierarchical models with frailty allow full use of
the data and have been used to evaluate the relative
risks for repeat infections at the catheter insertion
with censoring. McGilchrist & Aisbett [11] assumed
the recurrence times were independent and suggested
fitting a multiplicative Cox model of the form:

hi(t) = h0(t) × fi exp(z′
iβ), (6)

where fi is the frailty term and

ln(fi) ∼ N(0, σ 2). (7)

If independence between the repeated infections is
not assumed, then more complex models are required
and Lindsey [7] has explored how this can be
achieved through counting processes and the use of
loglinear models.

Repeated Measurements

In many clinical trials and studies in nephrology,
outcome takes the form of repeated measures of
a (continuous) biochemical response recorded over
the treatment period. For example, in a trial to
compare the biocompatibility and functionality of
alternative dialysis membranes, white blood cell
(WBC) counts were recorded before dialysis and
at 15, 60, 120, and 210 minutes after the start of
dialysis. Many authors have considered the issues
associated with the analysis of serial measurements
in the context of clinical research (e.g. Matthews
et al. [9]). Some of the simplest approaches are to
choose an appropriate summary measure such as the

area under the curve, value at a fixed time or when
the response reaches a peak, rate of increase/decrease
(slope) for each patient, and use analysis of variance
to compare treatment effects. If the response relative
to a pretreatment baseline is appropriate, analysis of
covariance can be used.

However, if interest lies in evolution of the
response, and patient covariates are also appropri-
ate, this simple approach will be inadequate and
more complex models that allow for within indi-
vidual correlation are required. Linear models with
fixed and random effects and time series models for
characterizing the covariance structure are alternate
approaches that have received considerable attention
in the literature. Rochon [13] uses data from a trial
to evaluate the efficacy of erythropoietin for treat-
ing anemia in patients with ESRF to illustrate the
use of ARMA covariance models with time depen-
dence in the covariance matrix. In the trial, patients
were allocated at random (see Randomization) to
receive one of three drug doses and hemoglobin
measurements were measured weekly for 26 weeks
to ensure target levels were reached. Observations
were relatively stable at the beginning of the study,
but became more variable towards the end, so that
the usual ARMA assumption of constant variances
and covariances over time was not entirely appro-
priate and a model allowing for heteroscedasticity
(see Scedasticity) was fitted.

Biomedical Time Series – Patient
Monitoring

Biomedical time series also arise in the routine on-
going monitoring of both dialysis and transplant
patients. The function of a transplanted kidney is
monitored regularly for signs of rejection, while
patients on long-term dialysis are routinely tested for
high levels of toxic waste and low levels of other
blood constituents, such as WBC.

Physiological variation gives rise to typically
noisy series that are subject to different types of
abrupt change. For example, the WBC count will rise
temporarily following the administration of steroids,
and to assess accurately the underlying level, these
values need to be filtered out. Similarly, a func-
tioning kidney may exhibit alternating periods of
improvement and deterioration, some of which may
be self-correcting, others which may require medi-
cal intervention. Thus, the simple cumulative sum
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(CUSUM) procedure is not suitable as there is a
need to detect both the occurrence and form of each
change.

The multiprocess Kalman filter methodology was
developed by Gordon & Smith [5] specifically to
analyze these renal monitoring series. An appropriate
form of model for the series is selected [an AR(1)
for the WBC data], which can be expressed in the
general form:

yt = Ht θt + δy
(j)
t , (8)

θt = Gt θt−1 + δθ
(j)
t , (9)

where yt is the reading at time t , θt is a vector of
parameters, Ht and Gt are known regression and
transition matrices, and j represents one of four
possible states – stable state, impulse (temporary per-
turbation), change of level, and transient (temporary
perturbation). The components δy

(j)
t and δθ

(j)
t are

assumed normally distributed:

δy
(j)
t ∼N(0, λ−1R(j)

y ) and δθ
(j)
t ∼N(0, λ−1R(j)

θ ),

(10)

where the elements of Ry and Rθ are chosen to
reflect the different states. The quantities of interest
and of greatest clinical importance are the associated
probabilities that a change of level is obtained at time
t given y1, . . . , yt , and that a change of level occurred
at time t given y1, . . . , yt+1.

Institutional Comparisons

Comparison of institutional success rates has received
considerable attention in nephrology, particularly in
the transplantation arena. Of particular interest is
the work of Gilks [4]. He proposed a hierarchical
Bayes model for distinguishing between systematic
and random variation in center success rates and
showed for a study of UK transplant center success
rates from 1978 to 1984 that the phenomenon of
persistent center variability in raw success rates to
suggest institutional variation was an illusion.

Missing Data

Random missing values occur (see Missing Data),
especially in multicenter registries, because data may

be unavailable at some units and from patient migra-
tion to other cities and missed appointments. Informa-
tive missing values arise particularly in studies that
involve monitoring renal function. Typically, patients
who show a more rapid decline in function are those
more likely to terminate the study early and this tends
to occur particularly among patients enrolling with
poor function.

Clinical Trials

There are numerous examples in the literature of
clinical trials in nephrology. The use of randomized
controlled trials and factorial designs and crossover
designs have proved particularly popular. These
designs are appropriate as the majority of trial “treat-
ments” are not expected to cure or permanently alter
the state of the patient.

Examples of recent trials that have presented par-
ticular statistical challenges, although not unique to
nephrology, include the treatment of side effects of
renal dialysis (multivariate repeated measurements
evaluated using Bayesian methods) [3], and com-
plications arising from long-term dialysis (paired
comparisons with a “no preference” option in the
analysis of pain) [8].

Future Developments

The examples we have considered here were chosen
to illustrate the range of statistical methods that
have found application in nephrology in recent years.
While not unique to nephrology, many of the more
complex models described are examples of the appli-
cation of recent statistical advances and method-
ological developments. The computational aspects of
fitting these models are necessarily complex and fur-
ther evaluation of the performance of the algorithms
used for estimating the model parameters, and of the
properties of the estimates obtained, are likely to be
an area of continuing research.

Extensions to the Cox model by way of assess-
ing the model through the use of various diagnostics
such as martingale residuals (see Counting Process
Methods in Survival Analysis), estimated explained
variation, and assessing a model’s predictive ability
though cross-validation are just some developments
that could have application in nephrology studies. A
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recently proposed nonparametric method for esti-
mating relationships between covariates and hazard
rates that relaxes the assumption that covariate effects
are linear and additive on the log hazard [2] may also
be relevant.

While the survival of the patient is the primary
outcome, there is increasing interest in the develop-
ment of co-morbid conditions among renal patients,
such as heart disease and malignancy (in transplant
recipients). Further developments are needed to study
these competing risks better and to assess the influ-
ence of a patient’s treatment history, and factors
specific to different “treatment” episodes, on their
future status.

With the increasing computer power and the
continuing development of renal disease databases
there is potential for greater use of simulation,
not only in resource planning and allocation but
also in assessing the validity and robustness of
model estimates. The problem of missing values,
particularly in large multicenter databases, is likely
to be a continuing one and awareness of the effect
and handling of all types of missing values is an area
for further study.
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Network Sampling

Conventional sampling and network sampling dif-
fer with regard to the number of different selec-
tion units at which the same population element
is countable in the survey. Conventional sampling
postulates that every population element is uniquely
linked to one and only one selection unit at which
it is enumerable in the survey. Network sampling
is not subject to this restriction. The network sam-
pling paradigm indicates that every population ele-
ment belongs to a network of selection units at which
it is countable and the network sizes may vary,
including possibly null networks without any selec-
tion units. Conventional sampling may be viewed
as a special case of network sampling in which
every population element is linked to a network, and
each network contains one and only one selection
unit.

Flexibility with respect to network sizes provides
network sampling with design alternatives that may
be superior to those based on conventional sampling.
Network sampling is sometimes preferable when
multiple selection units seem to be inextricably linked
to the same population elements. However, network
sampling may be fostered as a design strategy to
improve survey efficiency whether or not multiple
selection units are inextricably linked to the same
population elements.

Historical Perspective

Network sampling is a relatively new kind of sample
design that emerged in the early 1960s in response
to an estimation problem involving a sample survey
of medical providers [7] designed to estimate the
prevalence of cystic fibrosis, a relatively rare and
often lethal genetic disease of children. In the survey,
medical providers reported each individual they had
treated for the disease. The estimation problem arose
because in designing the survey it had been implicitly
assumed that each patient had been treated by only
one medical source. The survey designers did not
realize that it was common practice for the same
patient to be treated by multiple medical sources
during the course of the disease. The mistake became
apparent when multiple medical providers in the
survey reported the same patients. If not adjusted,

the conventional estimation procedure would have
counted the same patients as many times as reported
by different medical sources and the estimate would
have been biased. The conventional procedure would
have been biased even if duplicate reports of the same
patients had not been counted.

Birnbaum & Sirken [1] derived three unbiased
estimators for network sampling which addressed the
effects of multiple reporting on the sample selection
probabilities. Their estimators differ from one another
with respect to kinds of information required about
network sizes of population elements that are counted
in the sample survey.

Initially, network sampling was applied only in
surveys for which multiple selection units appeared
to be inextricably linked to the same population ele-
ments. Many were establishment surveys which, like
the cystic fibrosis survey, involved estimating popu-
lation prevalence rates based on counts of individ-
uals having transactions with establishments whose
constituents overlap. For example, Laska et al. [9],
estimated the number of different individuals receiv-
ing mental health clinic care in a sample survey
of the patients of several mental health clinics with
overlapping clients (see also [18]). Establishment sur-
veys are not the only venues in which network
sampling is applied when multiple selection units
are inextricably linked to the same population ele-
ments. Levy & Sirken [13] applied network sam-
pling in estimating the number of defective statis-
tical statements in texts of technical publications
on the basis of number of defective statements
that straddle sampled lines of text. Faulkenberry &
Garoui [6] and Hendricks et al. [8] applied network
sampling in agricultural surveys to estimate the num-
ber of farms that overlapped sampled area land seg-
ments.

It was not until the 1970s that network sam-
pling was applied as a deliberate strategy to foster
design efficiency. This development occurred after
Sirken [19] demonstrated that fostering network sam-
pling could substantially increase survey yields and
decrease sampling errors, particularly in population
surveys of relatively rare events. He proposed foster-
ing network sampling in household surveys by link-
ing individuals to households of relatives and others
with whom they had well-defined relationships and
who could serve as good proxy respondents. Network
sampling based on kinship relationships was applied
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in several health surveys, including diabetes preva-
lence surveys [30], cancer prevalence surveys [4, 5],
surveys of births and marriages [15], surveys of
recent decedents [17], and surveys of the Jewish pop-
ulation [26].

Subsequently, it became apparent that network
sampling had potential for reducing measurement
errors as well as sampling errors. For example,
network sampling using kinship counting rules was
applied in a post-enumeration population survey
to improve estimates of census population under-
coverage [14, 30], and network sampling based on
friendship counting rules was applied in drug use
surveys to improve the quality of response on sensi-
tive questions [16]. More recently, Sirken et al. [31]
demonstrated the utility of fostering network sam-
pling in population-based establishment surveys of
disease prevalence which link individuals having
multiple transactions with the same establishments.
Population-based establishment surveys are partic-
ularly applicable when free-standing establishment
frames with good measures of establishment size are
not available.

Since Birnbaum & Sirken [1] first proposed sev-
eral network sampling estimators, the theory of
network sampling has been extended in several
directions. Sirken & Nathan [28] developed several
“hybrid” network estimators based on combinations
of counting rules. Network sampling theory has been
extended to ratio estimation [27] (see Ratio and
Regression Estimates), and to complex types of sam-
pling, including stratified sampling [10, 20], cluster
sampling [11], and multistage sampling [31]. Also,
relationships between network sampling and other
sample designs involving multiple linkages of selec-
tion units to the same population elements have been
investigated. For example, Casady & Sirken [2] com-
pared stratified network sampling and multiple frame
sampling estimators; Sirken [23, 24] and Casady
et al. [3] derived several unbiased network estimators
for dual system sampling, and Sudman et al. [32] dis-
cuss conventional sampling, network sampling, and
capture–recapture sampling as alternative design
strategies for sampling rare and elusive populations.
Sampling textbooks by Levy & Lemeshow [12] and
by Thompson [33] give special attention to network
sampling and other sampling strategies involving
multiple linkages for sampling rare and elusive pop-
ulations.

Sample Design Strategies

Surveys are complex measurement instruments
involving multiple interdependent design features,
each feature usually having several options, and each
option having its respective cost, error, and other
survey effects. Designing surveys involves selecting
an options set that contains one option for each design
feature, and the goal is to select the optimum option
set which has the greatest overall utility in meeting
the survey objectives.

In addition to the sample selection procedure (i.e.
stratified, cluster, multistage sampling, etc.) three sur-
vey design features are key to network sampling
designs and are particularly important in understand-
ing the survey circumstances that favor network sam-
pling [22].

1. Counting rules link population elements to selec-
tion units at which they are eligible to be enu-
merated in the survey.

2. Estimators are algebraic algorithms for counting
and weighting the population elements enumer-
ated in the sample survey to estimate population
parameters.

3. Respondent rules specify the sources that are
eligible to provide information about population
elements that are enumerated in the survey.

Each of these design features and some of their
respective options are discussed in the next section,
and their design effects in terms of sampling errors,
measurement biases, and survey costs are discussed
in the final section.

Survey Design Features

Counting Rules

Counting rules specify conditions for linking popu-
lation elements to selection units at which they are
eligible to be counted in the survey [22]. Groupings
of selection units that are linked to the same pop-
ulation elements are called networks, and groupings
of population elements that are linked to the same
selection units are called clusters.

A requirement of conventional sampling is that
the conditions specified by counting rules have the
property of linking each population element to a
network that contains one and only one selection
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unit at which it is countable in the survey. Counting
rules satisfying this condition are called conventional
counting rules. De facto and de jure residence rules
in household surveys are examples of conventional
counting rules. The de facto rule links individuals to
the households at which they happen to be located.
The de jure rule links individuals to their legal places
of residence.

Network sampling permits multiple linkages of
selection units to the same population element.
Counting rules of this type are called network count-
ing rules. Network counting rules in household sur-
veys typically link individuals to households of
kinfolk or others (such as friends or neighbors)
with whom they have close social relationships.
Frequently, the rules also link individuals to their
own households so that individuals without any
relationships to others will not be missed in the
survey.

In the following example, we compare effects of a
conventional and two network counting rules on the
formation of networks and clusters:

1. Conventional rule. Individuals are uniquely
linked to their own households.

2. Sibling rule. Individuals are linked to households
of their siblings.

3. Conventional/sibling rule. Individuals are linked
to their own and their siblings’ households.

Assume a census of diabetes prevalence is con-
ducted on a fictional population of seven individu-
als residing in four households. Table 1 shows the
within-household and between-household relation-
ships of these individuals. Note that the three sons
of the head of household A are siblings to one
another.

Table 2 compares the effects of the counting rules
on the formation of clusters. It lists the individuals
that are countable at every household by each of
the three rules. At household A, for example, three
individuals are countable (A1, A2, and A3) by the
conventional rule, two individuals are countable (B1

and C1) by the sibling rule, and five individuals
are countable (A1, A2, A3, B1 and C1) by the
conventional/sibling rule.

Table 3 compares the counting rules’ effects on
the formation of networks. It lists the households at
which the seven individuals are countable by each
counting rule. For example, B1 is countable at one
household (B) by the conventional counting rule, at
two households (A and C) by the sibling counting
rule, and at three households (A, B, and C) by
the conventional/sibling counting rule. On the other
hand, A1 is countable once (household A) by the
conventional and by the conventional/sibling rule but
is missed by the sibling rule.

Continuing with this example, to estimate dia-
betes prevalence requires knowing which of the seven

Table 1 Fictional population of households and individuals

Relationship to
Households Individuals Within-household relationship head of household A

A A1 Head Self
A2 Wife Wife
A3 Son Son

B B1 Head Son
C C1 Head Son

C2 Wife Daughter in law
D D1 Head Unrelated

Table 2 Effects of three counting rules on the formation of clusters

Household Conventional rule Sibling rule Sibling/conventional rule

A A1, A2, A3 B1, C1 A1, A2, A3, B1, C1

B B1 A3, C1 A3, B1, C1

C C1, C2 A3, B1 A3, B1, C1, C2

D D1 – D1
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Table 3 Effects of three counting rules on the formation
of networks

Conventional Sibling Conventional
Individuals rule rule sibling rule

A1 A – A
A2 A – A
A3 A B, C A, B, C
B1 B A, C A, B, C
C1 C A, B A, B, C
C2 C – C
D1 D – D

individuals were diabetic. This information would
be obtained by enumerating all individuals that are
countable at every household (Table 2). Summing
the unweighted numbers of individuals that are dia-
betics is an unbiased estimation procedure for the
conventional counting rule because that rule counts
each individual once and only once. However, this
would be a biased estimation procedure for either
of the network counting rules. The sibling rule is
biased because it counts three individuals (A3, B1,
and C1) twice and fails to count any of the other four
individuals. It is a biased estimation procedure for
the conventional/sibling rule because three individu-
als (A1, B1, and C1) are each counted three times.

In this example the conventional estimation proce-
dure would be unbiased for the conventional/sibling
counting rule if duplicate enumerations were elim-
inated for individuals counted multiple times. In
some sample surveys, however, eliminating dupli-
cate enumerations is not a sufficient condition for
unbiasedness.

Survey Estimators

Two network estimators (multiplicity A and B) and a
conventional estimator are compared, assuming sim-
ple random sampling of selection units to estimate
N , the population prevalence of a binomial vari-
able. Both network estimators are weighted sums
of population elements that are countable at sample
selection units in compliance with the counting rule
adopted in the survey. The estimators differ, however,
with respect to the ways they count the population
elements, and the network information they use to
determine the network weights.

The first multiplicity estimator (Na) counts the
same population element every time it is countable

at the same or different sample selection units, and
weights the element by the ratio of the number of
times it is countable at the sample selection unit to
the number of times it is countable at all selection
units. The second multiplicity estimator (Nb) counts
the same population element at most once at any
sample selection unit and weights the countable
elements by the inverse of the number of selection
units in its network. For example, in a household
survey using a conventional/sibling counting rule in
which two siblings that were enumerated in a sample
household have three other siblings living in another
household, each of the two siblings at the sample
household would get a weight of two-fifths based on
the multiplicity A estimator, and a weight of one-half
based on the multiplicity B estimator. Both network
estimators are unbiased if every population element
is linked to at least one selection unit by the counting
rule. The multiplicity A estimator is one of the three
unbiased network estimators originally proposed by
Birnbaum & Sirken [1].

The conventional estimator (Nc) is an unweighted
sum of the population units that are countable at
sample selection units in compliance with the con-
ventional counting rule.

Assume a population of N elements I =
{I1, . . . , Iα, . . . , IN } with a specified attribute, and
a sampling frame, H = {H1, . . . , Hi, . . . , HL},
containing L selection units households. Denote the
links between elements and units by the indicator
variable:

δα,i =





1, if Iα is linked to Hi ,

α = 1, . . . , N ; i = 1, . . . , L,

0, otherwise

The general form of the network estimator based on
a sample of l selection units is

N̂ = L

l

l∑

i

λi,

where λi = ∑
α Wαiδαi is the weighted sum of the

population elements countable at Hi, i = 1, . . . , L,
and Wαi is the network weight assigned to Iα , i =
1, . . . , N , when Iα is counted at Hi, i = 1, . . . , L.
The network estimator is unbiased if and only if

∑

i

Wαiδαi = 1, α = 1, . . . , N.
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The multiplicity estimator N̂a assigns the network
weights

Wαi = Sαi

Sα

, α = 1, . . . , N, i = 1, . . . , L,

where Sαi is the number of times Iα is linked to
Hi , i = 1, . . . , L, and Sα = ∑L

i Sαi is the number of
times Iα is linked to all L selection units.

The multiplicity estimator N̂b assigns the network
weights

Wαi = 1

S∗
α

, α = 1, . . . , N ; i = 1, . . . , L,

where S∗
α = ∑L

i δαi is the number of different Hi ,
i = 1, . . . L, to which Iα is linked.

The conventional estimator is a special case of the
network estimator in which Sα = 1, α = 1, . . . , N ,
and thus Wαi = 1, α = 1, . . . , N ; i = 1, . . . , L.

It is noteworthy that the multiplicity estimators
N̂a and N̂b require the network weights for the Iα

that are enumerated at sample selection units and
not at any others. Hence, it is often feasible and
cost-effective to collect the information needed to
calculate the weights from the selection units at which
the population elements are enumerable or possibly
from other information sources that are identified by
the sample selection units.

Respondent Rules

Essentially, three kinds of information are collected
for individuals enumerated in population surveys that
are based on network sampling:

1. Eligibility information identifies the individuals
that are countable at sample addresses in com-
pliance with network counting rules.

2. Topic information calibrates countable individu-
als on survey topic related variables.

3. Network information is used to determine net-
work weights.

For example, a diabetes prevalence survey based
on the conventional/sibling rule and the multiplicity
A estimator or the multiplicity B estimator would
collect the following kinds of information at sample
households:

1. Eligibility information – listing of resident indi-
viduals and their nonresident siblings that are
countable at the household.

2. Topic information – identifies the countable indi-
viduals that have diabetes.

3. Network information – for each countable dia-
betic, determines either the number of his or
her siblings for multiplicity estimator B (in this
instance self-evident from the eligibility infor-
mation) or the number of different households in
which the diabetic and siblings reside for multi-
plicity estimator A.

Most population surveys based on network sampling
collect all three types of information from the sam-
ple households at which individuals are counted. (The
individual himself and/or other sample household res-
idents may be specified as eligible within-household
respondents.) Otherwise, sample households may
identify other sources, such as de jure residences of
individuals who are not residents of sample house-
holds; or the information could be obtained from
multiple sources with eligibility information being
ascertained at sample households, and topic and
network information being obtained from de jure
residences.

Nonhouseholds are also potential information
sources. Population-based establishment surveys are
notable examples of network sample surveys in which
establishments are the principal sources of infor-
mation about individuals enumerated in household
sample surveys. Population-based establishment sur-
veys use network counting rules such as the fol-
lowing: “individuals with diabetes are countable at
every household whose residents were treated by the
same medical providers”. Suppose, for example, there
are two individuals living in different households
that are being treated by the same medical provider
and one of the households is selected in the sample
and the other is not. The population survey deter-
mines that a resident at the sample household has
diabetes, and then obtains from that household the
name and address of his or her medical provider. A
follow-up survey is conducted with that provider who
provides information about all diabetics in his prac-
tice, which in this example would be two diabetics.
The network weight assigned by network estimators
A and B to each diabetic would be equal to one-
half.



6 Network Sampling

Survey Design Effects

Sampling Errors

Assuming simple random sampling of l of L selection
units with replacement, the sampling variance of the
network estimator of N is

var(N̂) = 1

l
var(N),

where

var(N) = 1

L

L∑

i

(λi − λ)2

and

λ = 1

L

L∑

i

λi = 1

L

L∑

i

N∑

α

Wαiδαi = N

L
.

Clearly, the ideal network counting rules and weights
would have λi = λ, i = 1, . . . , L, and var(λ) = 0.
This would occur if, for example, the network count-
ing rule linked every population element to all L

selection units, that is, Sα = N , α = 1, 2, . . . , N , an
arrangement quite unlikely to be practicable.

Sirken [21] decomposed the variance of the multi-
plicity B estimator into components having interpre-
tations that are useful for guiding the selections of
counting rules and network weights:

var(N̂b) = 1

l






N∑

α=1

1

L

N∑

β �=α

δαiδβi

SαSβ

+ λ̂
var(γ )

E(γ )
+ λ[E(γ ) − 1] + λ(1 − λ)

}

where

γαi = δαi

Sα

, α = 1, . . . , N ; i = 1, . . . , L,

E(γ ) = N

R
,

var(γ ) = 1

R

N∑

α

1

Sα

−
(

N

R

)2

,

and

R =
N∑

α

L∑

i

δαi =
N∑

α=1

Sα

is the total number of links between selection units
and population elements.

The fourth term of var(N̂b) is independent of
network counting rules and weights, depending only
on the population parameter λ. Ignoring the first three
terms and var(N̂b) becomes var(N̂c).

Network counting rules and weights affect the first
term and network counting rules affect the second and
third terms.

The first term is nonnegative, and measures heap-
ing of population elements within selection units. It
is equal to zero if none of the population elements is
linked to more than one selection unit. The second
term is also nonnegative. It is a measure of net-
work size variability, and it equals zero if and only if
Sα = S, α = 1, . . . , N . The third term is nonpositive,
and is a measure of clustering of population elements
within networks that equals zero if and only if s = 1,
α = 1, . . . , N .

In summary, it is desirable from the viewpoint of
sample error effects to select network counting rules
and weights that minimize heaping of population
elements within selection units, maximize clustering
of selection units within networks, and minimize
network size variability.

Though network sampling typically yields more
population elements, it is not necessarily more
design-effective than conventional sampling. Thus,
the sampling error of neither N̂a nor N̂b is neces-
sarily less than that of (N̂c). Nor for that matter are
the sampling errors of one network estimator more
design-effective than the other. However, assuming
that none of the elements is linked to more than one
selection unit, which is a very strong assumption most
likely to be approximated when λ = N/L is small,

var(N̂b) ≤ var(N̂a) ≤ var(N̂c),

where

var(N̂c) = 1

l
λ(1 − λ),

var(N̂a) = 1

l
λ

[
1

l

L∑

i

N∑

α

(
Sαi

Sα

)2

− λ

]
,

and

var(N̂b) = 1

l
λ

[
1

L

N∑

α

1

S∗
α

− λ

]
.
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It is apparent that

var(N̂a) = var(N̂b)

if and only if

Sαi = Sα

S∗
α

, α = 1, . . . , N,

which implies that Iα is linked the same number of
times to each of the S∗

α selection units in its network.
Also

var(N̂c) = var(N̂b)

if and only if

S∗
α = 1(α = 1, . . . , N).

Under the conditions stated above, the design effect
(DE ) of network sampling compared to conventional
sampling is

DE = var(N̂b)

var(N̂c)
= h − λ

1 − λ
,

where

h = 1

N

N∑

α

1

S∗
α

is the inverse of the harmonic mean of Sα . If λ is
small, then the design effect is approximately

DE = h.

Measurement Biases

The major sources of survey measurement bias are
coverage, nonresponse, and response errors. Cov-
erage errors occur if population elements are erro-
neously counted when they are unlinked to selection
units, or missed when linked population elements are
not counted. Nonresponse errors occur when informa-
tion is not obtained for linked elements, and response
errors occur when invalid information is obtained
for linked elements. It is noteworthy that network
estimators are subject to response errors in network
information as well as response errors in survey
information.

Network sampling can be an effective design strat-
egy for handling measurement biases especially when
conventional sampling is predisposed to large mea-
surement biases, such as when conventional counting

rules fail to link population elements to any selec-
tion units (e.g. incomplete sampling frames) and/or
link elements to units that fail to report them in the
survey.

For example, survey experiments demonstrated the
efficacy of network sampling in overcoming measure-
ment biases associated with estimating the number
of deaths in conventional household surveys of pop-
ulation change. These surveys adopt counting rules
that link living persons to their de jure residences,
and deceased persons to their terminal de jure res-
idences. Royston et al. [17] demonstrated that pop-
ulation change survey estimates of the numbers of
deaths are subject to measurements biases due to lack
of coverage of deaths occurring in nursing homes and
other institutional establishments, and due to under-
reporting of noninstitutional deaths.

Household sample survey experiments conducted
in North Carolina [29] compared the effectiveness of
network and conventional sampling to estimate N ,
the number of North Carolinians that died during a
calendar period. The experiment tested three counting
rules:

Rule 1. Decedents are linked to their terminal house-
holds of residence.

Rule 2. Decedents are linked to residences of sur-
viving spouses, siblings and children resid-
ing in counties that were decedents’ terminal
residences.

Rule 3. Decedents are linked by rules 1 and 2.

Rule 1 implies conventional sampling and rules 2
and 3 imply network sampling. The experiment
compared the coverage and response biases and the
total undercounts of deaths associated with the three
counting rules.

The findings of the experiment are summarized
in Table 4 for decedents in the age range 65–84.
Undercoverage bias represents the fraction of N

deaths unlinked to any households, and underreport-
ing bias represents the fraction of linked deaths that
are unreported in the survey. The total undercount of
decedents is

total undercount = (1 − g) + g(1 − f ),

where g is undercount bias and f is underreporting
bias.

Total percentage undercounts are substantially
less for network sampling than for conventional
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Table 4 Comparison of three counting rules

Counting Total Undercoverage Underreporting
rule undercount bias bias

1 0.29 0.22 0.09
2 0.22 0.16 0.07
3 0.15 0.06 0.07

sampling. The undercounts are about a half and a
third smaller for rules 2 and 3 respectively than
for rule 1. Most of the undercount differences are
accounted for by differences in the undercoverage
rate, but underreporting bias was also less for network
sampling.

Rule 1 failed to cover any of the institutional
deaths representing about 29% of North Carolina
deaths in this age group. On the other hand, rule 3
covered about two-thirds of the institutional deaths
because they were survived by relatives residing in
the decedents’ county of terminal residences. Rule 2
missed about 16% of all deaths that were not survived
by relatives residing in the decedents’ counties of
terminal residence.

About 7% of all deaths were unreported by
households eligible to report them by rules 2 and 3,
and 9% by rule 1. Nearly all the unreported deaths
occurred at terminal decedent residences without any
surviving relatives when the survey was conducted.
This is not a particularly surprising finding after one
realizes that the event of death itself often precipitates
household dissolution and dislocation.

In this example, sampling error effects as well as
the measurement biases favor network sampling. The
sample design effect of rule 3 compared with rule 1
is substantially less than one, implying that network
sampling would attain equivalent precision compara-
ble with conventional sampling with a substantially
smaller sample size.

Survey Costs

Since the yields are greater and the interviews are
longer, data collection costs are greater for sur-
veys based on network sampling than for those
based on conventional sampling. Consequently, to be
cost-effective, network sampling must be more effi-
cient than conventional sampling, a necessity most
likely to be realized when conventional sampling
is subject to large sampling and/or measurement
errors.

Assume a sampling frame of L households con-
taining N individuals with a specified attribute. A
network sample survey is conducted to estimate N

based on a simple random sample of l households. A
simplified version of the expected field costs model
proposed by Sirken [25] is

C = lc,

where the unit cost is

c = c1 + λsc2

in which c1 is the expected cost of contacting a
household, c2 the expected cost of enumerating an
individual linked to a household, λ = N |L, and s =
(1/N)

∑N
i Sα .

What gains in data quality would be required
to overcome the lower field costs of conventional
sampling? Assuming measurement biases are a stand-
off, and that none of the elements is linked to
more than one selection unit, network sampling
is a cost-effective design alternative to traditional
sampling when the following inequality is satis-
fied:

s < 1 − (1 − λ)(1 − θ),

where θ is ratio of conventional sampling and net-
work sampling unit field costs. If λ/θ is small, net-
work sampling enhances design efficiency whenever
s < θ .

Values of the parameters s and θ vary depend-
ing on the particular set of network sampling options
that is selected for the counting rule, the estimator,
and the respondent rule. For example, the parametric
values would be different for an option set com-
prising the sibling counting rule, the multiplicity A
estimator, and a household respondent rule allow-
ing proxy respondents than they would be for an
option set comprising the conventional/sibling rule,
the multiplicity B estimator, and a self-respondent
rule disallowing any proxy respondents. The opti-
mum network sampling design option set represents
that particular option set from among all feasible
network sampling option sets for which the s is
smallest relative to its θ . Unless s > θ for the opti-
mum network sampling option set, network sampling
would be more cost-effective than conventional sam-
pling.
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Neural Network

Modern regression and classification techniques
(see Classification, Overview) have seen a rapid
development over the last 15 years. We hear
of names such as smoothers (see Nonparametric
Regression), projection pursuit, additive model,
CART (see Tree-structured Statistical Methods),
MARS, belief networks, and many more, each
designed to accommodate some of the deficiencies
of our more traditional linear-model-based regression
techniques. Neural networks appeared in the early
1980s and their coming established a new and popular
branch of applied statistical modeling, practiced
mainly in the computer science and engineering
community. Neural network models tend to be far
more ambitious than traditional statistical models,
and more successful on large-scale problems. The
initial response from the statistics community was
either rejection or heavy skepticism. At the time of
this writing neural networks have flourished for 13
years, and are used successfully in a large variety of
applications including face recognition, handwriting
and speech recognition, stock market prediction,
medical diagnosis (see Computer-aided Diagnosis),
system control, and genetic modeling.

While neural networks probably get more attention
than they deserve in the scientific community at large,
they in turn get less attention than they deserve from
statisticians. This article gives an overview of the
technology, and attempts to place it in the broad con-
text of flexible regression and classification. Along
with these models comes a lot of new, redefined, and
often attractive terminology, which we emphasize in
the text in italics.

Figure 1 depicts a neural network with three pre-
dictors or inputs, a single hidden layer of four hidden
units, and an output layer of two responses or output
units.

If we denote the vector of p inputs by x, and the
vector of K outputs by y, then this model can be
written more traditionally as

zj = σ(αj0 + αT
j x), j = 1, . . . , m = 4,

ŷk = fk(βk0 + βT
k z), k = 1, . . . , K = 2 (1)

1. The activation function σ is used to introduce
a nonlinearity at the hidden layer, and is often
taken to be the sigmoid σ(z) = 1/(1 + e−z).

Y1 Y2

Z1 Z2 Z3 Z4

X1 X2 X3

Output Layer

Hidden Layer

Input Layer

Single (Hidden) Layer Perceptron

Figure 1 A network diagram represents a neural network
model with three inputs (predictors), four hidden units, and
two outputs (responses). This configuration is often referred
to as a single layer perceptron

2. The parameters αjl and βkj are known as weights,
and define linear combinations of the input vec-
tor x and hidden unit output vector z, respec-
tively.

3. The intercepts αj0 and βk0 are known as biases.
4. The function fk permits a final transformation of

the output, and the typical choices are:
(i) fk(v) = v: identity, suitable for regression

with quantitative responses;
(ii) fk(v) = 1/[1 + exp(−v)]: inverse logit,

suitable when responses should lie in [0,
1] (as in two-class nonparametric logistic
regression problems);

(iii) fk(v) = evk /
∑K

l=1 evl : inverse multiple log-
it, used for k-class classification. Note here
that each fk requires the entire vector of
outputs v.

Neural networks can have more than one hidden
layer of units. A multilayer perceptron (MLP) simply
repeats the hidden layer several times, creating even
more complex models. In what follows we focus on
the single layer perceptron (SLP).

Each hidden unit can be thought of as a nonlinear
basis function which creates a new derived variable
zj from a linear combination of the inputs. The
responses are then regressed on these transformed
data zj either linearly or via logistic regression.
When the model is learned or fit to the data, an
optimal set of basis functions is learned at the same
time.
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Early perceptron models used hard or binary
thresholding functions σ(z) = 1(z > 0) at the hid-
den units, with strong neurophysiological implica-
tions–the hidden unit (neuron) either fires or does
not in response to its inputs. This biological inter-
pretation is not taken too seriously today, and soft
threshold functions such as the sigmoid permit dif-
ferentiation and smoother learning algorithms.

Versions of neural networks look like familiar
statistical models:

1. linear regression, when σ(z) = z, as long as
m ≥ p;

2. logistic regression with two or more classes;
again, σ(z) = z and the appropriate versions of
fk are used;

3. series and basis expansion models, where we
regress the response on a few appropriately
placed basis functions.

In addition, there are interesting comparisons with the
projection pursuit model [3]:

ŷk =
m∑

j=1

fkj (α
T
kj x),

where the functions fkj and the directions αkj are
fit simultaneously. The projection pursuit model typ-
ically invests many parameters on each function fkj

for a given direction αkj , while the neural network
can be seen to use exactly two.

Learning Neural Network Models

The computational paradigm central to most neu-
ral network systems is backpropagation, which is
essentially gradient descent using the chain rule plus
a few bells and whistles.

Suppose we use least squares on a sample of
training data to learn the parameters or weights
in (1):

R(α, β) =
N∑

i=1

K∑

k=1

(yi
k − ŷi

k)
2,

a criterion nonlinear in the parameters. Since we
anticipate using gradient descent algorithms, we re-
quire derivatives. All the derivatives will be sums

over the N observations, and we display only the ith
component (denoted by superscript i):

∂Ri

∂βkj

= −2(yi
k − ŷi

k)f
′
k(β

T
k zi )zi

j ,

∂Ri

∂αjl

= −
K∑

k=1

2(yi
k − ŷi

k)f
′
k(β

T
k zi )βkj σ

′(αT
j xi )xi

l .

Given these derivatives, a gradient update at the
(r + 1)th iteration has the form

β
(r+1)
kj ← β

(r)
kj − γr

N∑

i=1

∂Ri

∂β
(r)
kj

,

α
(r+1)
j l ← α

(r)
j l − γr

N∑

i=1

∂Ri

∂α
(r)
j l

,

where γr is the learning rate which can change
with iteration number r . The standard initialization
is to use random (Gaussian) starting values for the
parameters.

On-line learning refers to a similar gradient
descent algorithm, but where we take a separate
gradient step in response to each observation one at
a time (as opposed to the batch mode as presented).
The algorithm then has two distinct phases of
operation in response to each new training pair
(xi , yi ):

1. the feed-forward phase, in which xi is filtered up
through the network to produce a prediction ŷi :

2. the backpropagation phase in which the error
(yi − ŷi ) is filtered back and apportioned to each
of the coefficients, which are modified in turn in
a small way to reduce such a future error.

There are many different variants of this basic
approach – some examples are:

1. Batch algorithms typically use second derivative
information as well as gradients.

2. On-line algorithms are useful for very large
datasets, since changes are made continuously
without having to cycle through the entire train-
ing data set. The name on-line refers to their
use in dynamical systems which respond contin-
uously to a changing environment.
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3. When the responses are categorical, a different
criterion such as likelihood can be used for fit-
ting, but the basic algorithm is the same.

Neural network models are typically overparam-
eterized, often with more parameters than observa-
tions. Furthermore, the parameters are intrinsically
aliased – in fact, the model is perfectly symmet-
rical with respect to the hidden units. The sym-
metry is resolved by using random starting values,
similar in flavor to the fitting of mixture models.
Although the overparameterization can be controlled
somewhat by restricting the number of hidden units,
other strategies for regularization are popular, as
follows.

Early Stopping. Gradient descent will converge
slowly to a local minimum, which in a saturated
model will fit the training data perfectly. If an inde-
pendent validation set is available, then one can
monitor the performance of the model on this val-
idation set after each one or set of updates. The
usual bias-variance tradeoffs will cause this valida-
tion error to eventually increase as the training error
approaches zero, and will provide an optimal place
to stop.

Weight Decay. Similar to ridge regression, various
proposals exist for shrinking the weights towards
zero (see Shrinkage). As a simple example, consider
adding a penalty of the form λ(

∑
α2

kj + ∑
β2

j l) to
the criterion R. This introduces a hyperparameter λ,
which shrinks between the unrestricted model (λ =
0) and the constant model (λ = ∞). This approach
is similar in flavor to cubic smoothing splines (see
Spline Function) [4]. A large basis of cubic splines
is created, with a knot at each data point, but then
the large number of coefficients is fit subject to the
rather stringent smoothness constraints of the derived
function.

Model Averaging. Even when the model is not
overfit, the criterion R has multiple minima, and the
random starting weights will lead to one. One can
restart the algorithm many times, and then combine
the solutions in some way. Simple averaging works
well; [5] proposes an approximate form of Bayesian
posterior averaging.

Discussion

The field of neural networks is large, and there are
many large and important conferences each year,
which at their inception in the mid-1980s were
devoted to various aspects of the model described
in this chapter. The annual NIPS Neural Information
Processing Conference in Denver, Colorado is one
such venue. The mid-1990s versions of these con-
ferences would be more aptly described as applied
statistics than neural networks. Neural network mod-
els tend to be currently viewed as one of a number
of flexible regression models.

There have been many ingenious modifications
and restrictions to the neural network model to
broaden its range of applications. Two examples are
bottleneck networks for nonlinear principal compo-
nents (the inputs are also the outputs), and networks
with duplicated weights to mimic autoregressive
models.

While this field is strongly application driven,
some interesting theory has been produced [1]. For
example, neural networks are universal approxi-
mators – given enough parameters they can approx-
imate smooth functions arbitrarily well.

This author has seen many examples of inappro-
priate use of neural network models. For example,
their use is unlikely to be appropriate in small biosta-
tistical binary regression problems, where the primary
goal is to understand the effect of the inputs on the
event represented by the binary response. The con-
verse problem, of course, abounds as well. How often
do we struggle to fit large traditional parametric mod-
els to huge datasets with our inappropriate software.
When prediction is a goal, the black box neural net-
work model will often deliver close to the best fit
with very few tears.

There are many commercial software packages
available for fitting neural networks, and many free
packages as well. An SAS (see Software, Biostatis-
tical) module exists, and functions for S-PLUS (see S-
PLUS and S) contributed by B.D. Ripley are available
from the Statlib archive http://lib.stat.cmu/S.
For statisticians interested in reading more about neu-
ral networks, I strongly recommend the books by
Bishop [2] and Ripley [5]. Both of these synthesize
the vast neural network literature, contain key ref-
erences, and use a style and language familiar to
statisticians.
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Neurology

Neurology is the specialty of medicine which deals
with the structure and function of the nervous system,
and with its diseases. Although the word “neurology”
was introduced as long ago as 1681, this specialty
of medicine was closely allied with psychiatry until
the early decades of the twentieth century – both
being concerned with “nerve” disorders. Their prox-
imity is still apparent today within conjoint areas
such as neuropsychiatry. The main neurological dis-
orders (approximate point prevalence per 100 000)
are migraine (20 000), stroke (500), epilepsy (500),

Parkinson’s disease (200), cerebral palsy (60), multi-
ple sclerosis (50), and primary brain tumours (50);
others, such as syringomyelia (chronic progressive
disease of the spinal cord), Huntington’s chorea (a
hereditary, chronic muscular twitching), polymyosi-
tis (simultaneous inflammation of many muscles),
muscular dystrophy (progressive wasting and atrophy
of muscles), and motor neurone disease (degenera-
tion of motor neurones) are much rarer (each <10
per 100 000); the most interesting biostatistically are
stroke and epilepsy.

ANTHONY L. JOHNSON



Neuropathology

Neuropathology is the study of the nature, causes,
structure, and function of nervous system diseases.
This broad area of medicine includes pathology of
cerebrovascular disease (stroke, hypoxia, ischemia,
aneurysms, hemorrhage), neurodegenerative diseases
and dementia, craniocerebral trauma, neurometabolic
and demyelinating disorders, as well as many other
related topics covered in a standard reference text on
the subject such as Greenfield’s Neuropathology [3];
see also [4]. Complementary aspects of neuropathol-
ogy have from its beginning been the topographical,
anatomical emphasis of the French school and the
cellular emphasis on pathogenesis of the German
school. Modern technology is helping to integrate
these two aspects of the field. Biostatistical methods
and applications in neuropathology are as broad as
the field itself, ranging from simple linear regres-
sion models to detailed histological image analyses.
The most important elements in the nervous system
are neurons, their bodies (somata), branches (den-
drites) and firing channels (axons), and the central
questions of neuropathology are concerned with how
these most complex cells in our bodies grow, degen-
erate, and die by natural aging or disease processes.
From a biostatistical perspective, image analysis per-
haps serves best to orient one’s thinking about a field
whose main aim is to help clinical and basic scien-
tists recognize the cellular features of central nervous
system diseases and whose central tool remains the
light microscope. By special staining techniques one
is able in microscopic neuropathologic image analysis
to observe complex alterations of neurons, glia and
astrocytes, degenerative-reductive changes such as
axonal demyelination, and productive-accumulative
changes such as neurofibrillary tangles and senile
plaques seen in Alzheimer’s dementia.

For instance, it is well known that neurons may
aggregate in functionally significant ways to form
discrete layers within the cerebral cortex of macro-
columnar arrays of neurons that occur vertically
across the individual layers [8], and hence it is con-
ceivable that a disorder like schizophrenia, involv-
ing disturbances in several key corticolimbic brain
areas [1], might involve unusual arrangements of
neurons [2] arising from specific neurodevelopmen-
tal disturbances [11, 12, 15]. Although schizophre-
nia is also known currently to be a neurochemical

disorder involving dysfunction of glutamatergic cir-
cuitry [9], biostatistical image analysis has helped
demonstrate significant post mortem differences in
the arrangements of pyramidal neurons in layer IV
of the cingulate cortex for normal control, schizo-
affective and schizophrenic subjects [5]. Employ-
ing a second-moment estimator for stationary point
processes [10] and a modified bootstrap procedure
for statistical inference, a stereological analysis of
these spatial point patterns showed not only that
the psychotic subjects had fewer pyramidal neu-
rons per cubic micrometer in this brain region but
also that these cells tended to be more regularly
spaced (nonoverlapping) for these subjects. This find-
ing suggested that there may be increased inhibitory
distances among these neurons, and, therefore, that
there may be a relative expansion of the neuropil
surrounding these cells. Since the neuropil is the
site where most neural connections are found, this
finding implied further that the pyramidal neurons
of the cingulate cortex in schizophrenics may be
engaging in more synaptic connections than those of
normal individuals.

Neuropathology also uses macroscopic imaging
modalities such as computed tomography and mag-
netic resonance imaging for studies of brain structure,
and functional magnetic resonance imaging and sin-
gle photon emission computed tomography for stud-
ies of brain function, to provide data for detailed
yet lower resolution analyses. Volumetric studies
by computed tomography and magnetic resonance
imaging help quantify both cross-sectional and lon-
gitudinal changes in sizes and shapes of various
brain structures over time for the same individual
or cohorts of individuals. The growing literature
on differences between normal aging, Alzheimer’s
dementia, and vascular dementia provide a further
example of the biostatistics of neuropathology. For
instance, a lack of neuroimaging data may have con-
tributed to an underrecognition of mixed Alzheimer’s
and vascular dementia cases in community-based
studies [6, 14]. An analysis of computed tomogra-
phy brain scans from histopathologically confirmed
Alzheimer’s dementia cases [7] reported a 10-fold
increase in the yearly rate of medial temporal lobe
atrophy relative to losses experienced by control
subjects, from 1.5% per year to 15.1% per year.
This excessive atrophy was evidence for a neu-
ropathological cascade process and not a simple
acceleration of the normal aging process, and was
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confirmed through use of stereological techniques
that compared regional patterns of neuronal cell loss
in the hippocampus related to normal aging to that
associated with Alzheimer’s dementia [13], provid-
ing additional information on neurodegenerative pro-
cesses involved.

These two brief examples of current neuropathol-
ogy research have been included here, and many more
could have been cited, to demonstrate to the reader
that new technologies such as those involved in
microscopic cellular imaging and macroscopic struc-
tural and functional brain imaging enable neurosci-
entists to ask and to answer entirely new quantitative
questions regarding the neuropathology of the devel-
oping brain, the mature brain, and the aging brain. It
is anticipated that, by further evolution, the predomi-
nantly qualitative findings of the past will continue to
be enlarged, discarded and refined through the kinds
of detailed quantitative result provided by biostatisti-
cal analyses.
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Neyman, Jerzy

Born: April 16, 1894, in Bendery, Russia.
Died: August 5, 1981, in Berkeley, California,

USA.

Reproduced by permission of the Royal Statistical Society

Jerzy Neyman, one of the principal architects of
modern statistics, was Director of the Statistical Lab-
oratory, University of California, Berkeley. He was
born into a Polish family in Bendery, and died in
Berkeley at the age of 87. With Neyman’s passing,
history has closed a chapter on the early development
of this important scientific field.

At the time of his birth, there was no Poland
as a nation. The “Poland proper” had been divided
among Germany, Austria, and Russia. Neyman’s
father was a lawyer. When Neyman was 12 years
old, his father died of a heart attack. His caring
mother moved her family to Kharkov, where he
attended school and college. Although he was born
a Pole, Neyman spoke Russian almost as early as he
spoke Polish. At an early age, he could also speak
Ukrainian, German, French, and Latin fluently. Upon
his graduation from high school, through his mother’s
arrangement, he joined a student group making a jour-
ney to see Europe outside Russia. Before entering the
college in Kharkov, he decided to study mathemat-
ics instead of pursuing his father’s profession. He
received his mother’s support and encouragement.

“She had respect for intellectual activity”, Neyman
fondly recalled to Constance Reid in the late 1970s.
(Reid published her book entitled Neyman – From
Life in 1982 [33].) In 1921, after a Polish–Soviet
peace treaty, Neyman was sent to Poland in a repa-
triation of prisoners of war program between the two
countries. Thus Neyman saw his fatherland Poland
for the first time when he was 27 years old!

Neyman’s interest in mathematics was reinforced
when he studied with the Russian probabilist S.N.
Bernstein at the University of Kharkov. When he
read Henri Lebesgue’s Leçons sur l’intégration et la
recherche des functions primitives, Neyman was fas-
cinated by sets, measure, and integration. During his
college days he had proved five theorems on the
Lebesgue integral on his own. His article entitled
“Sur une théorème metrique concernant les ensem-
bles fermés”, published in 1923 [9], was one of his
early research papers in pure mathematics. His can-
didate thesis at the University of Kharkov (1916)
was on the integral of Lebesgue. In 1917, Neyman
returned to the university for a postgraduate study. In
the following year he was a docent at the Institute of
Technology, Kharkov. At the University of Warsaw,
Neyman studied mathematics with Waclaw Sierpin-
ski. He earned the Doctor of Philosophy degree from
the University of Warsaw in 1924. The oral exami-
nation consisted of Rigorosum Major in mathematics
and Rigorosum Minor in philosophy. No one knew
more statistics than Neyman to examine him on the
subject.

In the little spare time that he had during his stu-
dent days, Neyman was heavily involved in teaching
to earn a living. He also gave supplementary lectures
for professors at the university, and taught mathemat-
ics and statistics to college students.

Neyman first heard of Karl Pearson from his
reading of Pearson’s book. The Grammar of Sci-
ence [32]. Apparently, he was influenced by Pear-
son’s philosophical views expressed in the book.

Neyman’s contact with statistics occurred early in
his academic career. It appears that he had studied
applications of mathematical statistics with Bernstein
at the University of Kharkov. But he learned most
statistics through his work on his own, especially in
agricultural experimentation. He had held a position
of “senior statistical assistant” at the National Agri-
cultural Institute in Bydgoszcz, Poland, in 1921, and
he was a special lecturer at the Central College of
Agriculture in Warsaw in 1922.
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In the fall of 1925, Sierpinski and Kazimierz Bas-
salik, the director of the National Agricultural Insti-
tute, were awarded a Polish Government Fellowship
for Neyman to study mathematical statistics with Karl
Pearson in London. Neyman was well prepared in
mathematics and in statistics. While in London, Ney-
man and a young man about his own age, Pearson’s
son, Egon S. Pearson, became good friends.

During the academic year 1926–27, Neyman was
on a Rockefeller fellowship to study pure mathemat-
ics in Paris. He attended lectures given by Emile
Borel at the University of Paris and also lectures
by Lebesgue and Jacques Hadamard at the Collège
de France. In addition, he had some of his own
notes read at these institutes. Quite possibly, the year
of studying mathematics in Paris had prepared him
well for his joint endeavor with Egon Pearson in
the development of statistical theory in the years
to come.

Neyman and Pearson’s joint work formally started
in the spring of 1927, when Pearson visited Ney-
man in Paris. While there are no records of what
transpired during the ten days during which they
worked together, they must have laid out plans for
their future joint project. At the end of the 1926–27
academic year, Neyman went back to Poland, and
in 1928 he became head of the Biometric Labora-
tory at the Nencki Institute in Warsaw. He carried
out his joint work with Pearson mostly through cor-
respondence between Warsaw and London. Between
1928 and 1934, they published seven of their 10
most important papers on the theory of testing sta-
tistical hypotheses [20–26] (see Hypothesis Test-
ing).

In developing their theory, Neyman and Pearson
recognized the need to include alternative hypothe-
ses; and they perceived the errors in testing hypothe-
ses concerning unknown population values based on
sample observations which are subject to variation.
They called the error of rejecting a true hypothesis
the first kind of error, and the error of accepting
a false hypothesis the second kind of error. They
placed the importance on the probability of rejecting
a hypothesis when it is false. They called this prob-
ability the power of a test. They proposed a term
“critical region” to denote a set of sample statistic
values leading to the rejection of the hypothesis being
tested. The “size” of a critical region is the probabil-
ity of making the first kind of error, which they called
the level of significance.

They called an hypothesis which completely spec-
ifies a probability distribution a simple hypothesis.
An hypothesis which is not a simple hypothesis is a
composite hypothesis. An hypothesis concerning the
mean of a normal distribution with a known stan-
dard deviation, for example, is a simple hypothesis.
The hypothesis is a composite hypothesis if the stan-
dard deviation is unknown.

It is now difficult for us to imagine how one
could perform a statistical test without these concepts.
But the Neyman–Pearson theory was a considerable
departure from traditional hypothesis testing at the
time. They were severely criticized for their new the-
ory by the leading authorities of the field, especially
by R.A. Fisher.

Neyman and Pearson used conceptual mathemat-
ics and logical reasoning to develop the theory of
hypothesis testing. They emphasized “the importance
of placing in a logical sequence the stages of reason-
ing in the solution of . . . inference”. In their initial
papers [20, 21], it seems that they were leading the
reader, step by step, in their development of the the-
ory. They relied on the concept of the likelihood
ratio in testing hypotheses concerning parameters in
known probability distributions; and they elucidated
their ideas further with specific examples and numer-
ical computations.

After they had laid a solid mathematical founda-
tion for their theory, they applied it to the problem
of two samples [22], and to the problem of k sam-
ples [24]. In one of their joint papers [26], they used
the likelihood ratio to establish an objective criterion
for determining the best (in the sense of power of
test) critical regions for testing a simple hypothesis
and a composite hypothesis. That was a high point of
their accomplishments. The landscape of statistical
hypothesis testing would no longer be the same.

In 1934, Neyman joined the faculty of E.S. Pear-
son’s Department of Applied Statistics at Univer-
sity College London. Between 1934 and 1938 they
published only three more joint papers on testing
hypotheses [27, 28], possibly because of Pearson’s
involvement in administrative responsibilities. Ney-
man, however, was still very productive during that
period. From time to time, Neyman published many
papers on hypothesis testing on his own; but most
of the fundamental work was contained in his joint
publications with Pearson.

When he was still in Poland, Neyman had devel-
oped the idea of confidence interval estimation. He
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even gave his lectures on confidence interval esti-
mation rather than hypothesis testing in his class at
University College London in 1934. He published
his work in 1937 [10]. At that time, many statisti-
cians confused the confidence interval with the fidu-
cial interval, a concept developed by Fisher. That
confusion was soon dispelled by Fisher himself [3].
Neyman clarified the difference between the two in
his Lectures and Conferences [11].

To put it in very simple terms, the difference
between confidence interval and fiducial interval lies
in the assumption regarding the population value
being estimated. Consider a sample of size n and
mean X from a normal distribution with an unknown
mean u and unit variance. The basic quantity for
estimating u is the product n1/2(X − u). Accord-
ing to the confidence interval theory, the product
n1/2(X − u) is subject to variation, because the sam-
ple mean X is a random variable. For a given
probability, say 0.95, Pr{X − 1.96/

√
n < u < X +

1.96/
√

n} = 0.95. After a sample is taken and the
sample mean (say X0) is determined, the product
becomes n1/2(X0 − u), which is not subject to vari-
ation. The interval {X0 − 1.96/

√
n, X0 + 1.96/

√
n}

becomes a confidence interval, and 0.95 becomes
the corresponding confidence coefficient. In the fidu-
cial interval argument, there is a range of values of
u, each of which could have generated the sample
mean X0. For a given probability 0.95, one can find
two values of u depending on X0, say u′ < u′′, such
that fiducial Pr{u′ < u < u′′|X0} = 0.95. The interval
(u′, u′′) is the fiducial interval and 0.95 is the fiducial
probability.

In addition to the theory of statistical inference,
Neyman made contributions to many other branches
of statistics, such as the design of agricultural exper-
imentation (in 1923, 1925, and 1935), the theory of
sampling (in 1925, 1938 and 1939), a class of “con-
tagious” distributions (1939), and others. He even
used the “storks bring babies” example to show how
to avoid reaching a wrong conclusion by misusing a
correlation between variables, the so-called spurious
correlation [11].

Neyman’s work on applications of statisti-
cal methods in practical problems was very
extensive. He considered practical problems as
a source of inspiration for theoretical statisti-
cians. His publications related to biostatistics and
health include: virulent bacteria and disease (with

R. Iwaskiewicz [5]); recovery and relapse of can-
cer patients (with E. Fix [4]); accident proneness
(with G.E. Bates [1]); a stochastic model of an epi-
demic (with E.L. Scott [30]) (see Epidemic Mod-
els, Stochastic); multiphasic screening and diag-
nosis (with M.F. Collen et al. [2]); health-pollution
(in 1972); a view of biometry [15]; energy crisis,
pollution, and health (in 1975); environmental pollu-
tion and public health [17] (see Environmental Epi-
demiology); some problems of biometry deserving
particular attention (with R. Bartoszynski et al. [18]);
radiation-related public health studies (in 1980);
probability models in medicine and biology [19]; and
on understanding the mechanism of radiation effects
(with P.S. Puri [29]).

There was an interesting feature in Neyman’s
approach to practical problems. He had the ability
to visualize the phenomena behind the data and a
model of the mechanism that creates the phenom-
ena. He would express the model in mathematical
terms to produce new probability distributions, or
new stochastic models. Only then would he find
appropriate statistical methods with which to analyze
the data on hand [7].

Neyman devoted a considerable amount of time
and effort to three major projects of research. The
first was his joint studies of galaxies with E.L. Scott
and C.D. Shane. Over a span of 25 years, Neyman
published 24 papers on the subject. He reported their
work on the spatial distribution of galaxies (in 1953,
with Scott and Shane), on the problem of expansion
of clusters of galaxies (in 1954, with Scott), on the
statistical approach to the problems of cosmology (in
1958, with Scott), and on the relation of galaxies in
clusters in the presence of instability and absorption
(in 1961, with Scott).

In a separate effort, Neyman organized and edited
the volume The Heritage of Copernicus [16] for the
National Academy of Sciences, to commemorate the
500th anniversary of the birth of the great Polish
astronomer.

The second major project was on cloud seeding
and weather modification, jointly with Scott. This
project covered a period of over 20 years from the
early 1950s to 1980, and was reported in 26 publi-
cations. In this project, Neyman had the opportunity
to witness several cloud seeding experiments, and to
evaluate the designs and the outcomes. Their con-
clusion was as follows: “Methods of evaluation of
the effects of cloud seeding proposed by commercial
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operators could not be considered scientific. After a
few years and a few experiments nothing remarkable
could be asserted” [6].

His third project was on cancer and carcinogene-
sis, but on a much smaller scale than the other two.
This was also a joint effort with Scott. There were
two theories regarding the formation of cancerous
clones available to them: the one-stage mutation the-
ory and the two-stage mutation theory. According to
the one-stage mutation theory, the growth of a clone
of abnormal cells is from a single mutant cell; while
according to the two-stage theory, a second muta-
tion is necessary in order to produce a cancer clone.
Their main objective was to construct stochastic mod-
els that would best describe the process of formation
of cancerous clones [31] (see Dose–Response Mod-
els in Risk Analysis).

In the spring of 1937, Neyman delivered a series of
lectures on mathematical statistics and probability at
the Graduate School in the US Department of Agri-
culture in Washington, DC. That was the first time
that the American statistical public had the opportu-
nity to hear statistical theory from Neyman in person.
The lecture notes were subsequently published in
1937 [11], and revised and expanded in 1952 [14],
under the title Lectures and Conferences on Mathe-
matical Statistics and Probability. Among the reviews
of the 1937 book, there was one written by William
Feller, published in Zentralblatt, which reads in part
as follows:

The point of departure for the author is always actual
practical problem, and he never loses sight of the
applications. At the same time his goal is always
a truly rigorous mathematical theory. He appears
to insist on absolute conceptual clarity and rigor,
not only as a sound foundation, but also because
it is really useful and necessary, particularly where
the practical problem goes beyond the mathematical
aspect. . ..

Feller’s words should apply equally well to Neyman’s
other publications.

In 1938, Neyman accepted a mathematics profes-
sorship from the University of California at Berkeley,
and he established the Statistical Laboratory, with
himself as the director. That was the beginning of one
of the preeminent statistical centers in the world. In
1955, Neyman established the Department of Statis-
tics. He retained the title Director of the Statistical
Laboratory.

Neyman was a very dynamic person, full of ideas
and energy. Soon after the Statistical Laboratory was
established and the teaching program was in good
order, he began to plan a symposium of mathemat-
ical statistics and probability “to mark the end of
the war and to stimulate the return to theoretical
research”. The symposium had the participation of
leading authorities in theoretical probability and in
mathematical statistics, as well as those in applied
fields. The Proceedings of the symposium, edited by
Neyman [13], were published in 1949 to “stimulate
research and foster cooperation between the experi-
menter and the statistician”.

The success of the symposium prompted Ney-
man to plan a series of symposia, once every five
years. The number of participants and the coverage
grew from one symposium to the next. The Sixth
Berkeley Symposium, held in three different peri-
ods in 1970 and 1971, was attended by 240 leading
authors in 33 subject areas in the theory of prob-
ability, in mathematical statistics, and in scientific
fields using applications of statistics. The Proceed-
ings, edited by LeCam et al. [8], were published in
1972, in six volumes and 3397 pages – a gigantic
undertaking!

These symposia supplemented the teaching pro-
grams and research activities normally carried out
in universities and other academic institutions. They
also had a great deal of influence on the attitude of the
theoretical statisticians and research scientists, mak-
ing them recognize the need for and the advantage of
applications of statistics.

During the 40 years during which he was in
Berkeley, Neyman had students coming from all over
the world to attend his lectures and to learn the
proper way of conducting research. Neyman was
a generous man. He helped students financially in
any way he could. He recommended students for
the university scholarships and he secured Federal
grants for the support of both students and the fac-
ulty. At times, when he could not obtain the funds
that he needed to support students from any other
sources, Neyman took the money out of his own
pocket!

Neyman was a member of the National Academy
of Sciences, the American Academy of Arts and Sci-
ences, the Royal Swedish Academy, and the National
Academy of Poland. He was a fellow of the Royal
Society of London, and he was honorary president of
the International Statistical Institute.



Neyman, Jerzy 5

Neyman used to say: “Statistics is the servant to
all sciences”. In many ways, Neyman had expanded
the domain and improved the quality of the service.
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Neyman–Pearson Lemma

In the mid-1920s, Jerzy Neyman and Egon S. Pear-
son set out to elaborate a theory of testing statistical
hypotheses (see Hypothesis Testing). This resulted
in the publication of two papers [3] in 1928. They
proposed as a principle the use of likelihood ratio
tests. Suppose that the observable random vector pos-
sesses, with respect to some measure µ, a density
f (x, θ) that depends on a parameter θ ∈ Θ . One
hypothesis specifies that θ ∈ H1, while the alterna-
tive specifies that θ ∈ H2, where the Hi are subsets
of Θ . Neyman & Pearson proposed to reject H1 if
the ratio r(x) = sup[f (x, θ); θ ∈ H2]/ sup[f (x, θ); ∈
H1] exceeds a specified value c determined to insure
that the probabilities of rejection of H1 if true do not
exceed a specified limit.

They showed that many of the tests then in use
could be derived from that principle. They also intro-
duced the concept of power of a test, the probability
for θ ∈ H2 that H1 be rejected.

This, however, was a principle. It needed a math-
ematical justification. To describe the justification
with a simple notation, we shall use test functions
instead of “critical regions”. A test function φ is a
measurable function defined on the sample and such
that 0 ≤ φ ≤ 1. If the measures are noted Pθ, θ ∈ Θ ,
the power of φ at θ is

∫
φ dPθ . Critical regions cor-

respond to functions φ that take only values zero or
one, being one in the critical region.

The Neyman–Pearson lemma [4] initially covered
only the case in which each Hi is reduced to a single
point θi . It then says the following.

Lemma. Let r(x) = f (x, θ2)/f (x, θ1) and let φ

be such that φ(x) = 0 if r(x) < c and φ(x) = 1
if r(x) > c. Then, for any other test function ψ

such that
∫

ψ dPθ1 ≤ ∫
φ dPθ1 , one has

∫
ψ dPθ2 ≤∫

φ dPθ2 .
This lemma allowed Neyman & Pearson [5, 6]

to solve the problem of selection of critical regions
and justify their likelihood ratio principle in many
problems where there exist uniformly most powerful
tests. That includes the case in which the parame-
ter θ is real and the densities form a family with
monotone likelihood ratios (e.g. exponential fam-
ilies) if the hypotheses are of the form {θ ≤ a1}
against {θ > a2}. The case of two-sided hypotheses

of the kind {θ = 0} against {θ ; |θ | > a2} was not cov-
ered. Neyman & Pearson introduced for such cases
a concept of unbiasedness; requiring, for instance,
that the derivative of the power function vanish at
θ = 0.

This led Neyman & Pearson to consider prob-
lems of the following type. Given a finite set of
functions fi, i = 1, 2, . . . , m + 1, and constants ci ,
find test functions φ such that

∫
φfi dµ = ci, i =

1, . . . , m, and such that
∫

φfm+1 dµ be maximized.
The method of Lagrange multipliers suggests the
introduction of positive constants ki, i = 1, . . . , m,
and the sum s(x) = ∑m

i=1 kifi . One then takes φ = 0
where fm+1 < s and φ = 1 where fm+1 > s. For a
precise statement, see, for instance, [2, p. 96].

With the advent of Wald’s Theory of statistical
decision functions [7] (see Decision Theory), such
problems were essentially subsumed under the fol-
lowing general theorem.
If the family of measures {Pθ } is dominated, then all
admissible tests are either Bayes solutions or limits
of them.

Another more recent form of a Neyman–Pearson
lemma is that given by Huber & Strassen [1]. These
authors consider sets Hi = {P ; P ≤ vi} where the vi

are Choquet capacities alternating of order two, that
is such that v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B).
They show that in this case there exist least infor-
mative pairs (P1, P2) with Pi ∈ Hi and that the like-
lihood ratios of these pairs provide the optimal tests
between the Hi .
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Nightingale, Florence

Born: May 12, 1820, in Florence, Italy.
Died: August 13, 1910, in London, UK.

Florence Nightingale was the second daughter of
Fanny and William Nightingale. The Nightingales
were a wealthy family and had two large country
houses, one in Derbyshire and the other near Romsey
in Hampshire, as well as rooms in Mayfair, London.
Florence and her elder sister, Parthenope, were edu-
cated at home, initially by a governess and later also
by their father who was a graduate of Trinity Col-
lege, Cambridge. Their education was classical and
included only basic mathematics.

Florence was fascinated by numbers and in 1840
announced her wish for further tuition in mathemat-
ics. This request met with family disapproval, partic-
ularly from her mother who thought this unnecessary
study for a girl, who should by now be forming social
ambitions. Florence won the support of her Aunt Mai,
who managed to persuade Florence’s father to allow
the tuition, and for a few weeks Florence was tutored
by James Sylvester [2]. It is not clear when she was
introduced to statistics, but she used to study the blue
books and statistics on public health and hospitals
in the early hours of the morning [1]. Thus she was
familiar with the problems of hospital administration
well before her thoughts turned to nursing.

Florence believed that God had called her to do
something, but did not know what. She was discon-
tented with life and with herself. She seemed to gain
most satisfaction from helping the poor and sick liv-
ing near her family’s Derbyshire home. Sometime
in 1844 the realization came to her that her vocation
lay in hospitals among the sick, but, anticipating fam-
ily disapproval, it was not until December 1845 that
she proposed her plan to go to Salisbury Infirmary
to work as a nurse. The scheme was totally opposed
by her parents. Florence was not to be deterred, and
in 1851 persuaded her family to allow her to under-
take a course of training at Kaiserswerth in Germany.
She finally managed to convince her family that she
should be allowed to practice nursing and in 1853
took a position as superintendent of an Institution
for Sick Gentlewomen in Distressed Circumstances
in Harley Street, London.

Once the Institution was running smoothly, Flo-
rence started visiting other hospitals to collect facts to
establish the case for reforming conditions for hospi-
tal nurses. As her reputation grew, doctors contacted
her, asking her to recommend nurses. Florence rec-
ognized the need for a training school capable of
producing a supply of respectable, reliable and qual-
ified nurses. She established such a school in 1860.

In 1853 the Crimean War began; the initial battles
were horrific in terms of casualties. There were few
facilities for the sick and wounded, and the problem
was compounded by a cholera epidemic. Sidney Her-
bert was the Secretary of State for War responsible
for the treatment of the sick and wounded. He was
also a friend of Florence and knew of her work in
the Harley Street Institution. He wrote to her inviting
her to lead, with the government’s sanction and at the
government’s expense, a party of nurses to Scutari to
work in the British Army hospital.

The party of 38 nurses arrived at Scutari on
November 4, 1854. The first hurdle to overcome was
to be accepted by the Army medical department,
which had declared itself against the introduction
of women as nurses for soldiers. By the end of
November there were 8000 men in the hospitals and
the conditions were terrible, and so the Army medical
authorities grudgingly had to accept all offers of help.
All the administrative systems of the hospital had
collapsed, and slowly Florence got her way. Sanitary
improvements, cleaner surroundings and an improved
diet were rewarded with a massive decrease in the
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death rate. Woodham-Smith [7] provides a detailed
account of Florence’s time in Scutari.

Florence returned to England in July 1856 a
national hero, and the position of the nursing profes-
sion had now been established. Florence was deter-
mined to reform the British Army. In 1857, largely
through her efforts, a Royal Commission was set
up to investigate the disasters of the Crimean War.
Since women were not allowed to serve as members
of the Commission or to testify, Florence wrote and
compiled facts about the war and sent them to the
Commission. She worked with William Farr on
compiling the data she had collected in Scutari and
devised some novel graphical displays, most notably
her coxcomb [2, 6], to help convey her message. Her
work was published in 1858 [3].

On December 21, 1858, Florence was elected a
Fellow of the Statistical Society of London (now
the Royal Statistical Society); she was one of the
first female fellows of the society. She became an
honorary member of the American Statistical Asso-
ciation in 1874.

Soon after her return from Scutari, Florence be-
came reclusive and only saw people by appointment,
usually at her home in South Street, Mayfair. She was
a prolific writer, and in 1859 published her famous
work Notes on Nursing – What It Is And What It Is
Not. The book was very popular and was expanded
and republished in 1860 [4]. It has sold millions of
copies all over the world.

In 1859 she began her campaign for uniform
hospital statistics. She devised a disease classification
system and some model forms for the collection of
the data. Again she worked with William Farr on
this project. In 1860 this work was presented at the
International Statistical Congress, held in London [5].
For a short time London hospitals made returns on
these model forms, the data being published in the
Journal of the Statistical Society. Adolphe Quetelet

attended the congress, where Florence and he first
met. She was fascinated by his statistical work, which
had a great influence on her thinking [1].

In 1860 Florence established the Nightingale Tra-
ining School for nurses at St Thomas’s Hospital,
London. This was financed by the Nightingale Fund
established from donations made in recognition of her
work in Scutari. It became the model for schools of
nursing everywhere.

Florence’s work in the mid-1860s was dominated
by the contributions she made to sanitary improve-
ments in India, both for the Army in India and the
people of India. In 1907 she became the first woman
to be awarded the Order of Merit. Three years later
she died peacefully at the age of 90.
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Noise and White Noise

Noise is familiar to us as an unmusical sound or,
technically speaking, interference in a communica-
tion channel. The effect of snow on a television set is
a form of visual noise. In communication engineer-
ing, noise arises from all the uncontrolled sources
of fluctuations of voltage, current, thermal agitation
of electrons in resistors, etc. Shannon [6] depicted a
communication system schematically as in Figure 1.
Any difference between the message at source and
at destination could be attributable to inherent dis-
turbances, or noise, in any, or all, of the activities
indicated. Engineers spend much time and effort to
control and reduce the noise in a system.

In statistical methods such as regression analysis,
noise is the random sampling component and the
“message or signal” the underlying model. Most time
series are subject to noise, usually represented as a
stochastic element in an appropriate model descrip-
tion. A typical problem is to estimate X(t + ∆)

for positive, negative or zero ∆, from an observed
process {Y (t); where t is a real value} with assumed
model Y (t) = X(t) + Z(t), where Z(t) is the noise
component. Barahona & Poon [1] give details of
methods that can be used to distinguish deterministic
chaos from random noise in short time series.

To allow the investigator to identify the under-
lying model or signal from the collection of noisy
observations, he or she needs to determine the nature
and structure of the noise. There is a range of tools
available to analyze noise in time series data; see,
for example, [5]. The fast Fourier transform (FFT),
introduced by Cooley & Tukey [4], can be used to
estimate the power spectra of noise (see ARMA and
ARIMA Models). Computer software is also avail-
able to fit autoregressive moving-average models to
the noise process, using the analysis of autocorrela-
tion and partial autocorrelation functions [3, 5].

White Noise

Biostatistical time series data often occur as
sequences of observations equally spaced in time,
and can therefore be analyzed using discrete-time
models [2, 3, 5]. If {Zt } is a set of random

Figure 1 Main components of a communication system,
indicating where noise can affect the message sent

variables with E(Zt ) = µt , and autocovariance
function (see Autocorrelation Function) γt,s =
cov{Zt, Zs} = E[{Zt − µt }{Zs − µs}], then the sto-
chastic process is said to be stationary if µt = µ

and γt,s = γ (|t − s|). In many applications the noise
process is assumed stationary and ergodic, i.e. its
parameters can be estimated from a single realization
of the process.

White noise, in discrete time, is simply the name
given to a stochastic process {Zt } with E(Zt ) = 0,
and

γt,s =
{

σ 2, t = s,
0, t �= s.

Such a process has a constant spectral density.
Autoregressive moving-average processes are derived
from discrete-time white noise. The step from discrete
to continuous time is not easy and involves an
understanding of the Wiener process [2].
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Nominal Data

Nominal data arise from a specific type of measure-
ment. As defined by the psychologist S.S. Stevens
[9], measurement is the assignment of numbers to
entities according to some rule. Close examination of
such rules allows us to classify the various types of
measurements into a small set of possibilities. Mea-
surements are, of course, taken for many different
reasons to answer many different questions, usually
(but not always) on experimental units or subjects
or on observational units. Measurements produce
data which take on values along some measurement
scale. The measurement type(s) of data to be ana-
lyzed dictates the analyses that yield justifiable, and
meaningful interpretations.

Stevens classified measurement scales into four
types:

1. nominal;
2. ordinal;
3. interval;
4. ratio.

Nominal measurements give rise to a measurement
scale which classifies entities by labeled categories.
The categories are unordered. All we can state when
comparing measurements on different entities is that
they are equal or unequal. There is no particular
mathematical significance given to the labeled cat-
egories themselves. The scale produces labels to be
attached to the entities so that the entities can be
classified into (usually) a discrete number of cate-
gories (hence, statisticians often view nominal mea-
surements simply as producing unordered categorical
data).

Ordinal and interval measurements produce scales
on which measurements can be ranked (ordinal),
or scale values on which arithmetic can be defined
(interval). Letter grades given to students on an exam-
ination, or preoperative condition scores of patients
(poor, fair, good, and so forth) follow ordinal scales;
temperature measured in Fahrenheit or centigrade
falls on an interval scale (the absence of an abso-
lute zero-point is noteworthy for interval scales).
Lastly, ratio measurements have all the features of
interval measurements, with the additional property
that levels on the scale may be expressed as ratios.
Zero-points are well-defined (as in the case of the
Kelvin temperature scale). A very good, and lengthy,

discussion of measurement theory can be found in
Krantz et al. [5], Suppes et al. [10], and, especially,
Luce et al. [6] and a nice summary is given in Wall-
sten [11].

Ordinal measurements are usually categorical in
nature, and can be studied with ordered categori-
cal data techniques. Statisticians often assume that
measurements on interval and ratio scales can be
modeled as continuous random variables. One can
of course use techniques for nominal data to ana-
lyze ordinal measurements, but not ordinal techniques
for nominal data. It clearly is best to match the
level of measurement with the analytic techniques
used.

A good example of a nominal measurement scale
is gender, measured on people – two categories,
which clearly cannot be ordered in a meaningful
way. A nominal scale can have any number of lev-
els – assume that the number of levels is I . Other
examples include race, religion, and, of course, the
outcome of a possibly fatal disease (alive or dead).
Other examples of nominal data, as well as a lit-
tle more on the measurement aspects of nominal
scales, can be found in [7]. Nominal data are com-
mon in all areas of science, and the techniques
for their analyses have expanded greatly since the
1960s. There is a large variety of such techniques –
any of the tools of categorical data analysis are
appropriate, as long as categories are not assumed
to be ordered. Here, we briefly mention these tech-
niques.

We assume that interest is on a set of experimen-
tal units, or some observational subjects (people or
otherwise). Let this set be of size N . For simplicity,
we also assume that this set of units arises from a
simple random sample, and that we are taking mea-
surements on S ≥ 1 nominal scales. Responses given
by the units are unknown, and are governed by some
statistical mechanism (more on this below), so that
the nominal scales may be termed nominal variables.
Analytic techniques, whether they be data analytic or
statistical, depend on the number of variables under
study, and hence, the discussion here is divided into
the three possibilities: univariate, bivariate, and mul-
tivariate.

Univariate Techniques

For the analysis of a single nominal variable, we
record the frequencies of units falling into the I
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categories. These frequencies can be displayed graph-
ically, in a variety of different ways. When I = 2,
these binary data are often assumed to arise from
Bernoulli random variables, so that statistical tech-
niques based on the binomial distribution are usu-
ally appropriate when studying the frequencies. We
usually use 0 and 1 to code the two categories.
If interest is not on the frequencies, but on how
many subjects must be sampled before the frequen-
cies attain certain values, then the negative binomial
distribution may be appropriate. For these probabil-
ity models, we let p be the probability that a unit
takes on the value 1, or falls into the “second” cate-
gory. Frequently, interest centers on the odds of a
measurement of 1 vs. a measurement of 0, which
equals p/(1 − p). The logarithm of this odds ratio
is often termed a logit, and is a useful transformation
of binary data.

For I > 2 categories, or polytomous data, we
define pi as the probability of falling into the ith cate-
gory. The I frequencies can be displayed using many
graphical techniques (see Exploratory Data Anal-
ysis). Relevant probability distributions include the
polytomous generalization of the binomial, the multi-
nomial distribution, and occasionally, the Poisson
distribution (which arises naturally from the stochas-
tic Poisson process by counting how many events
occur in some fixed interval of time, for example).

Statistical inference centers on learning about the
unknown parameters of these distributions. Often,
one might hypothesize models for such parameters;
for example, one could test for equal probabili-
ties (p1 = p2 = · · · = pI = 1/I). A variety of logits
could be calculated and studied. These hypotheses
are often modeled loglinearly by postulating that the
logarithms of the probabilities (another useful theo-
retic transformation) are linear functions of various
parameters (see Loglinear Model). More sophisti-
cated forms of generalized linear model arise by
relaxing distributional and scale assumptions con-
cerning the response variable. The standard, albeit
asymptotic for large N , approach to such testing is
via chi-square tests. Other approaches are possible,
including the use of other distributions (such as the
beta-binomial distribution).

If some of the {pi} are zero, some of the cate-
gories must have zero frequencies regardless of the
magnitude of N . Such categories are called structural
zeros, and inferential procedures must take them into
account.

Bivariate Techniques

Assume that one has a pair of nominal variables, one
with I1 categories, and the second with I2 categories.
We record the frequencies of the units falling into the
I1I2 categories of the cross classification of the two
variables. These frequencies are arrayed into a two-
dimensional contingency table, of size I1 × I2. We
usually assume that a multinomial distribution with
probabilities {pij }, or a set of multinomial distribu-
tions (one for each row of the table, for example),
generated these data.

Hypotheses about the probabilities are usually
translated into loglinear models. Maximum likelihood
estimates of model parameters often have closed
form solutions, although iterative algorithms (such as
iterative proportional fitting) can almost always be
used.

Without question, the most common hypothesis
is independence of the two variables; that is, a test
of whether pij can be factored into the product
pi·p·j , for all i, j . The study of independence has
led to the construction of a wide range of measures
of association between two nominal variables; two
of the oldest and still most widely used are the
Goodman–Kruskal indices. Odds ratios can also be
used to quantify association.

This very standard hypothesis of independence can
be tested in a variety of ways, although the most
common is still via Pearson’s χ2 statistic, which for
large N , is chi-square distributed. Note, however,
that exact tests for categorical data do indeed exist
(which are not asymptotic likelihood ratio tests); the
most widely used is Fisher’s exact test.

In the case of square, I × I tables, a range of
special hypotheses arise, including tests of symmetry
and quasi-symmetry of the table (for example, does
pij = pji?), and the McNemar test, which looks at
equality of the upper and lower triangles. Such a
square contingency table is common when the two
variables have exactly the same categories (perhaps
they are measurements on the same units, separated
in time; such as success or failure of some drug at
time 1 and time 2). If both variables are binary, we
obtain a two-by-two table.

Yet another possibility, although one that is used
more often when S > 2 variables, is a regression
approach, using the logit transformation(s) of one of
the variables as the response variable. Techniques for
such a logistic regression are well understood, and
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increasingly used. Explanatory variables can be of
many types, and allow for a wide range of interac-
tions.

Multivariate Techniques

Lastly, suppose that S > 2, so that the contingency
table is multiway. Data analytic and statistical tech-
niques are designed to highlight the many inter-
actions that can exist among the variables, and to
test for different types of independence. We refer
those interested to the article on Categorical Data
Analysis, or to one of the many textbooks on the
subject, especially Agresti [1] and Bishop et al. [3]
for the more advanced student, or to the primers
by Agresti [2], Wickens [12], and Fienberg [4]. The
chapter by Sobel [8] presents a nice overview of mul-
tivariate techniques.
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Noncentral t Distribution

The noncentral t distribution is a two-parameter fam-
ily with a unimodal density having parameters ν

(degrees of freedom) and δ (noncentrality parame-
ter). Degrees of freedom are usually positive integers,
although any positive value is theoretically possible.
The noncentrality parameter can take on any real
value, although when it equals zero the distribution
reduces to a special case; namely, the well known
(central) Student’s t distribution.

Suppose that X and Y are stochastically indepen-
dent random variables such that X is normally dis-
tributed N(δ, 1) and Y is central χ2 with ν degrees
of freedom (df). Then the ratio

R = X√
(Y/ν)

follows the noncentral t distribution. (If Y is noncen-
tral χ2, then R has the doubly noncentral t distribu-
tion.) The most important application relates to the
testing of the null hypothesis H0, that the mean of
a normal population with unknown variance equals
µ0. If H0 is true, the statistic T = √

n(x − µ0)/s

follows the central t distribution with n − 1 df, but
if the mean instead equals µ1, then T follows the
noncentral t distribution with noncentrality param-
eter δ = √

n(µ1 − µ0)/σ . Similarly, for testing the
equality of means for two normal populations having
common unknown variance, one may construct the
statistic T = √

[n1n2/(n1 + n2)](x1 − x2)/sp, where
sp is the pooled standard deviation. Under the null
hypothesis, T follows the central t distribution with
n1 + n2 − 2 df, but when the two population means
differ by an amount ∆ = µ1 − µ2 the relevant non-
centrality parameter is δ = √

[n1n2/(n1 + n2)] ∆/σ .
The power of either test is expressible with the
cumulative distribution function (cdf) of the rele-
vant noncentral t , evaluated at the appropriate critical
point(s) of the corresponding central t distribution.

Some moments of the noncentral t are

E(R) = δ

√
ν

2

[
Γ

(
ν − 1

2

)/
Γ

(ν

2

)]
,

var(R) = ν

ν − 2
(1 + δ2) − [E(R)]2,

µ3(R) = ν

ν − 3
E(R)

[
3(1 + δ2)

(ν − 2)
− 2δ2

]
+ 2[E(R)]3.

The noncentral t density can be written as

f (ν, δ;t) = exp(−δ2/2)√
(πν)
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Although this series converges rather slowly for large
arguments, it satisfies the equation

d2S(t)

dt2
=

[
δ2νt

(ν + t2)2
− 3t

ν + t2

]
dS(t)

dt

+ δ2ν2(ν + 1)

(ν + t2)3
S(t).

This relationship is useful for recasting noncentral t

distributions in terms of S-system differential equa-
tions, which are used in solving their densities, cdfs,
and quantiles, as well as moments of integer and
fractional orders [4].

Alternative expressions for the noncentral t are
available; for example,

f (ν, δ;t) = K exp

[
− νδ2/2

ν + t2

](
ν

ν + t2

)(ν+1)/2

× Hhν

[
− δt

√
(ν + t2)

]
,

where

K = ν!
[
2(ν−1)/2

√
(πν)Γ

(ν

2

)]−1

and

Hhν(x) = 1

ν!

∫ ∞

0
uν exp

[−(u + x)2

2

]
du.

For a random sample of size n from an N(µ, σ 2)

population, with µ > 0, the sample coefficient of
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variation s/x has a distribution related to noncentral
t , although the tails of the former map to small
values of the latter. More specifically, if R has ν =
n − 1 and δ = µ

√
n/σ , then Pr(s/x > c) = Pr(0 ≤

R ≤ √
n/c).

Other situations in which noncentral t distributions
are relevant include one-sided tolerance limits for
a normal distribution (see Tolerance Interval), lot
acceptance sampling plans, confidence limits on one-
sided normal quantiles and binomial proportions,
and one-sided tolerance limits in linear regression.

Noncentral t tables have occasionally been pub-
lished; a fresh and extensive compilation [1] has
appeared recently. See also [2] and [3].
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Noncompliance,
Adjustment for

The randomized clinical trial (RCT) is arguably
the most important contribution of statistical sci-
ence to human health. It provides a scientific basis
for the unbiased evaluation of preventive and ther-
apeutic treatments, not by controlling sources of
variation as done in the laboratory, but by balanc-
ing them across treatment groups (see Randomized
Treatment Assignment). In the simple RCT design
(see Clinical Trials, Overview), each participant is
randomly assigned to one treatment (e.g. placebo;
see Blinding or Masking) or another (active agent)
as indicated by the value of Ri = 0 or 1. Given his
or her random assignment, a patient actually takes
either the placebo or active treatment as indicated
by Di(Ri) = 0 or 1, and then experiences a health
outcome Yi[Di(Ri)] = 0 or 1, i = 1, . . . , n.

In the ideal trial, 100% of participants comply with
the treatment to which they were randomly assigned
so that Di(Ri) = Ri . In practice, however, compli-
ance is less than perfect as illustrated in Table 1
with data from the Lipid Research Clinics Coro-
nary Primary Prevention Trial (LRC-CPPT) [8, 10,
16]. Of the 337 subjects reported in the table, 123
(36%) fail to reach the (arbitrary) 60% compliance
level used for illustration below. Note that the non-
compliance (<60%) rates in the placebo (R = 0)

and cholestyramine (R = 1) arms are quite differ-
ent – 46/172 = 27% and 77/165 = 47%, respec-
tively.

Such a RCT is designed to address several ques-
tions including:

1. Is there sufficient evidence to reject the null
hypothesis that the treatment and placebo
have the same effect on the health outcome
(see Outcome Measures in Clinical Trials)?

2. What is the average difference in outcome caused
by being randomized to the treatment, rather than
placebo, group?

3. Among persons who comply with their treatment
regimen, what is their average improvement as a
result of receiving treatment rather than placebo?

Questions 1 and 2 are typically addressed with
an intention-to-treat (ITT) analysis, in which the
average response is compared across randomization
groups (R = 0 vs. R = 1) without regard to the treat-
ment that was actually received. The target of esti-
mation implicit in the ITT analysis has been called
the programmatic effectiveness [14], which combines
the average therapeutic effect of the treatment and
the rate of patient compliance to the treatment regi-
men. Question 3 focuses upon the therapeutic benefit
alone. The average benefit among compliers has been
referred to as the biologic efficacy [14]. While effi-
cacy is often of scientific interest, the ITT analysis
alone is inadequate to estimate it. Compliance infor-
mation must also obviously be used.

Even when addressing questions 1 and 2,
compliance information is relevant. As compliance
decreases, effectiveness and the power to detect
a treatment difference also decrease [5]. Hence,
sample sizes must be increased to maintain a desired
level of power (see Sample Size Determination
for Clinical Trials). A second design strategy to
contend with imperfect compliance is inclusion
of a run-in period [13] after which persons with
poor compliance are dropped from the study.
Randomization to treatment group occurs at the end

Table 1 Two-by-two-by-two table displaying presence (1) or absence (0) of improvement in cholesterol
level by 20 units (Y ); treatment group assignment; R = 0 for placebo and R = 1 for cholestyramine; and
compliance level: <60%; ≥60%

Placebo (R = 0) Treatment (R = 1)

Compliance Compliance

<60% ≥60% <60% ≥60%

0 m00 = 42 m01 = 98 m0· = 140 n00 = 50 n01 = 16 n0· = 66
Y

1 m10 = 4 m11 = 28 m1· = 32 n10 = 27 n11 = 72 n1· = 99

m·0 = 46 m·1 = 126 m·· = 172 n·0 = 77 n·1 = 88 n·· = 165
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of the run-in period (see Compliance Assessment in
Clinical Trials).

Compliance is easy to discuss in the abstract, but
can be difficult to measure in practice. In many trials,
patients are asked to make diary entries of pills taken.
Or, in some studies, investigators repeatedly collect
patient sera samples from which estimates of drug
concentrations are made. In these cases, a longitudi-
nal data set is generated, from which compliance can
be inferred using methods such as those discussed by
Lim [15] and Kim & Lagakos [12].

Until recently, RCT practitioners were reticent
to estimate efficacy using compliance information
collected after randomization because substantial
selection biases can occur. Recently, the method of
instrumental variables, common in econometrics, has
been applied to the RCT to contend with selection
bias inherent in estimating efficacy. Because the
method leads to the ITT test of the null hypothesis,
and to unbiased estimates of efficacy in many
situations, they are attractive to many, although
certainly not all, statistical scientists. Below, the
main ideas of this approach are illustrated using
the LRC-CPPT data. Extensions to different kinds
of outcomes and compliance measures are then
summarized. Connections to instrumental variables
methods in econometrics and to Rubin’s causal model
are important and are discussed in detail by Angrist
et al. [2]. One of the more complex models for
compliance is presented in Efron & Feldman [8] and
in a paper critical of their approach by Albert &
DeMets [1].

Adjusting for Compliance to Estimate
Efficacy

The ITT estimate of relative risk (RR) representing
programmatic effectiveness for the LRC-CPPT data
in Table 1 is RRITT = (66/165)/(140/172) = 0.49
with an approximate 95% confidence interval (0.40,
0.60). These data provide evidence that assignment
to receive cholestyramine reduces the risk of failing
to improve the cholesterol level in comparison with
a group assigned to receive a placebo. However,
only 88 of the 165 participants (53%) in the treat-
ment group actually took more than 60% of their
medication. Hence, the relative risk estimate, RRITT,
probably underestimates the biologic impact of treat-
ment, since only about half of the treatment group

actually received a substantial fraction of the drug
assigned.

The question remains, what is the treatment effect
among the subgroup of persons who complied with
their treatment assignment? The direct, but naive,
way to estimate efficacy from Table 1 is to compare
the compliers in the treatment and placebo groups.
From Table 1, we have RRE1 = (16/88)/(98/126) =
0.23. Use of this simple estimate raises serious con-
cerns, because it is subject to selection bias. The
compliers in the treatment and placebo groups may
not be comparable in ways other than their treatment
status. There is evidence to this effect – the frac-
tion of compliers in the placebo group is 73% as
compared with 53% in the treatment group. Ingest-
ing cholestyramine has been described as similar to
eating sand; perhaps the placebo was more tolerable;
hence, the compliant subgroups in the two arms are
not necessarily comparable. This potential for differ-
ential subgroup selection bias is one basis for serious
concerns about such efficacy estimates among many
clinical trialists [6].

There is, however, another estimate of efficacy
that can be useful in some circumstances because
it does not suffer from this selection bias. Consider
an imaginary, perfect placebo that is identical to the
treatment in every possible way except that it has
no biologic activity. Further assume that compliance
is conditionally independent of the health outcome
given treatment assignment; that is, the effect of the
treatment (or lack thereof) on the health outcome is
not the cause of the differential compliance. Then, in
a clinical trial in which participants receive the drug
only if they are in the treatment group and comply
[D(1) = 1; D(0) = 0], randomization guarantees two
conditions:

1. The expected fraction of compliers would be the
same in the two treatment groups. The observed
fraction in the cholestyramine group (53%) is
an unbiased estimate of this common compli-
ance rate.

2. Among the noncompliers, no drug is received
(not quite true in the LRC-CPPT example where
the compliance level is actually a continuum) so
that their expected rate of health outcome would
be the same across the two treatment groups.

Under the assumptions above, these two facts allow
us to infer the expected entries in the placebo side of
Table 1 for an imaginary, perfect placebo. As shown
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by Sommer & Zeger [23], m10 can be estimated by
m··n10/n··. That is, the expected rate of successful
outcomes in a perfect-placebo, noncompliant sub-
group can be estimated by the observed rate in the
treatment, noncompliant group. The expected num-
ber of successful outcomes in the placebo, compliant
subgroup can then be obtained by subtracting the
imputed values for the noncompliant group from the
marginal totals m0· and m1·. This leads to the alter-
native relative risk estimate [23]:

RRE2 = n01/n·1
m̂01/(m̂01 + m̂11)

,

where m̂11 = m1· − (m··/n··)n10 and m̂01 = m0· −
(m··/n··)n00. For the cholestyramine example, the
new estimate of treatment efficacy is RRE2 = (16/88)

/(87.9/91.7) = 0.190. It is different from the naive
estimate RRE1 because it is corrected for the differ-
ential compliance rates in the two treatment arms.

RRE2 is a simple example of an instrumental
variables estimator, commonly used in econometric
research [4]. Recent applications of this approach
to clinical trials are by Permutt & Hebel [19],
Robins [20] and Baker & Lindeman [3]. A detailed
discussion of the use of instrumental variables for
causal inference (see Causation) within Rubin’s
framework is given by Angrist et al. [2].

More Realistic Applications

In an analysis of data from the Multicenter
Diltiazem Post-infarction Trial (MDPIT), Oakes
et al. [18] include a measure of compliance as a
covariate in Cox’s proportional hazard’s model [7]
to estimate a relative hazard parameter for each
of three comparisons; treatment vs. placebo for
compliers; treatment vs. placebo for noncompliers;
and compliers vs. noncompliers among persons
allocated to the placebo group. Their treatment vs.
placebo comparison among compliers is a survival
analysis analog of RRE1 . But their analysis also
summarizes the evidence about selection bias in
the comparison of the noncompliant subgroups and
hence is a sensible first step. White & Pocock [24]
extend this approach by considering time-dependent
indicators of compliance.

Robins [20], Robins & Tsiatis [21] and Mark
& Robins [17] develop and apply an accelerated
failure-time model [7] to estimate the causal relative

hazard of a treatment taking account of compliance
information. Following Rubin’s framework for causal
inference [11, 22], they assume that each individual
can be thought of as having a latent survival time
associated with each treatment. The causal effect is
defined as the difference in the latent survival times
for the treatments being compared. Under the accel-
erated failure-time model, the effect of treatment is
to rescale (make faster or slower) time so that the
parameter of interest is the fractional increase in sur-
vival for an individual on vs. off treatment. Their
use of compliance information is a survival analog
of what is done in the simple binary case above.
The strength of the Robins & Tsiatis method is that,
as in the binary case, the test of the null hypothesis of
no treatment effect is identical to the ITT test of the
same hypothesis. See also Goetghebeur & Lapp [9].

Goetghebeur & Molenberghs [9] have developed
this approach for the case of a binary response, but
with an ordinal measure of compliance, as occurs
in the cholestyramine example above. To do so,
they make the additional monotone treatment effect
assumption that, if a failure occurred at a given
level of treatment, then it would also have occurred
at all lower levels of treatment. This rules out the
possibility of drugs being toxic and therefore less
effective at higher doses, for example.

Efron & Feldman [8] take account of a continuous
measure of compliance with a continuous outcome
reduction in serum cholesterol level. Because they
are interested in a possible interaction whereby the
treatment effect will differ depending on a person’s
tendency to comply, they must use the observed com-
pliance information in both the treated and control
groups. Hence, they do not protect against unequal
selection from an imperfect placebo as was done in
the binary example above. Instead, they assume that
an individual’s inherent tendency to comply is mea-
sured by their quantile of compliance within their
own treatment group. With this assumption, they use
both the conditional means and variances of choles-
terol change, given the level of compliance, to assess
the causal effect of treatment as a function of com-
pliance. This approach is distinct in its assumptions
from the others described above. A critique of the
Efron & Feldman efficacy estimate is provided by
Albert & DeMets [1].

In summary, programmatic effectiveness and bio-
logic efficacy are both important targets for estima-
tion in clinical trials. The ITT analysis estimates
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effectiveness. This article reviews the use of instru-
mental variable methods as one approach to estimat-
ing the efficacy of the treatment among persons who
comply. In the case of a binary treatment indicator
and binary outcome, this approach leads to an estima-
tor that is not biased by differences between treatment
groups in compliance when the differences are due to
factors that are conditionally independent of the out-
come given the treatment assignment. Hence, they
will be useful when the decision to comply does not
depend on the outcome being studied. Several exten-
sions to more realistic situations are also summarized.
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Nondifferential Error

Suppose a response variable Y has a conditional
distribution F(y|x) given a true exposure measure-
ment, X = x. Suppose that instead of measuring X,
one measures an error-prone version of X, say Z.
Then the error process is said to be nondifferen-
tial if F(y|x, z) = F(y|x), namely if Y and Z are
conditionally independent given X. In usual cases,
though not in all cases, the effect of analyzing the
model F(y|x) by substituting Z for X will be to bias
estimates of exposure effect toward the null hypoth-
esis (see Bias Toward the Null) when the expo-
sure error is nondifferential. However, if exposure

measurements are differential, the bias can be in any
direction.

The term nondifferential error can also be applied
to errors in the outcome measure, Y . Suppose that
one measures the error-prone version W of Y , rather
than Y itself. Then the error process is nondifferential
if W is conditionally independent of X given Y .

(See also Bias in Observational Studies; Differen-
tial Error; Measurement Error in Epidemiologic
Studies; Misclassification Error; Validity and Gen-
eralizability in Epidemiologic Studies)

MITCHELL H. GAIL



Non-Fourier Waveforms

While the discrete Fourier transform (DFT) is indis-
pensable for analyzing stationary data, whose fre-
quency behavior is fixed over time, we often have
data that exhibits periods of high-frequency behav-
ior, which do not extend over the whole time period.
The DFT is not necessarily the “best” representation
of such data, and we wish to find sets of basis func-
tion, which are able to isolate such behavior. Quite
recently, there has been much interest in a class of
orthogonal transforms that give information about
the data at different times and scales. The functions
that are used to represent the data are no longer
the well-known sines and cosines of Fourier theory
but are functions that are known as wavelets. These
wavelets, as the name suggests, are “small” waves,
meaning that they are only nonzero in a finite time
interval. This compact support is critical for the suc-
cess of these representations and allows us to study
different scale behavior at different times.

A wavelet function, ψ(·), must satisfy two basic
properties, namely,

1. The integral of ψ(·) is zero:
∫ ∞

−∞
ψ(t) dt = 0. (1)

2. The square of ψ(·) integrates to unity:

∫ ∞

−∞
ψ2(t) dt = 1. (2)

The orthogonal transform associated with wavelets
as basis functions is known as the discrete wavelet
transform (DWT) and it results in a set of coefficients,
which relate to different times and scales. In the same
way, that the fast Fourier transform (FFT) has rev-
olutionized the implementation of spectral methods,
there exists a fast method of calculating the coeffi-
cients of the DWT, which is in fact computationally
even faster than the FFT.

Arguably the oldest wavelet function is named
after Haar [2]:

ψ(t) ≡






−1√
2
, −1 < t ≤ 0;

1√
2
, 0 < t ≤ 1;

0 otherwise.

(3)

The Haar wavelet at different scales is shown in
Figure 1.

More recently, many other families of wavelets
have appeared that have more desirable properties,
for example, in terms of their “smoothness”, than
the Haar wavelet. In particular, a class of wavelets
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Figure 1 The Haar Wavelet at different scales



2 Non-Fourier Waveforms

introduced by Daubechies [1] have proved popular
and gained widespread use.

Given a time domain sequence g = (g0, . . . ,

gN−1)
�, the calculation of the N DWT coefficients,

w = (w0, . . . , wN−1)
� can be written in matrix form

as
w = W g, (4)

where W is the N × N orthogonal wavelet matrix.
For illustrative purposes, when N = 8 and using

the Haar wavelet, we have

w=





w0

w1

w2

w3

w4

w5

w6

w7





=





(g1 − g0)/
√

2
(g3 − g2)/

√
2

(g5 − g4)/
√

2
(g7 − g6)/

√
2

(g3 + g2 − g1 − g0)/2
(g7 + g6 − g5 − g4)/2

(g7 + · · · +g4−g3− · · · − g0)/
√

8
(g7 + · · · + g0)/

√
8





.

(5)

The first four rows of this matrix correspond to
unit scale changes (high-frequency behavior), the next
two rows represent changes on a scale of two, the
seventh row represents changes on a scale of four,
while the final row represents the average at scale 8

(low-frequency behavior). In addition, each of the
rows corresponds to different, nonoverlapping, time
intervals in the data. For a good introduction to the
DWT with direct comparisons to the DFT see [4].

Non-Fourier waveforms find a wealth of appli-
cations, particularly in areas where the underlying
process has time-varying properties, for example, the
study of arrhythmia in electrocardiogram (ECG) data,
or denoising medical images (see Clinical Signals).
For some statistical applications of wavelets, see [3].
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Nonignorable Dropout in
Longitudinal Studies

Most longitudinal studies (see Longitudinal Data
Analysis, Overview) are designed to collect data on
every individual in the sample in a planned sequence
of observation times. However, longitudinal studies
habitually suffer from the problem of attrition; that is,
some individuals “drop out” of the study prematurely.
For example, suppose for each individual we plan
to make a sequence of T observations on outcome
variables Y1, . . . , YT . In addition, for each individual
we may have a set of fixed covariates, X, and these
are assumed to be fully observed. In that case, the
term dropout refers to the special case where if Yk

is missing, then Yk+1, . . . , YT are also missing. This
gives rise to a monotone data pattern (see Figure 1) in
contrast to the nonmonotone patterns that arise when
data are missing intermittently. Note that intermittent
missing data give rise to a considerably larger number
of potential missing data patterns but, apart from
that, do not raise any further technical considerations.
When there is dropout in a longitudinal study, the
key issue is whether those who drop out and those
who remain in the study differ in any further relevant
way. If they do not, then analyses restricted to those
remaining in the study yield valid (albeit inefficient)
inferences. If they do differ, then such analyses are
potentially biased.

In the statistical literature, three different types of
dropout have been distinguished [2, 4, 5]: completely

Figure 1 Schematic representation of a monotone data
pattern (adapted from Little [3])

random, random, and nonignorable dropout (see [3]
for a more refined classification of dropout). Often
the term “informative” dropout is used to refer to
nonignorable dropout, e.g [1] (see Diggle–Kenward
Model for Dropouts). To clarify the distinction
between these different types of dropout, it is help-
ful to introduce a dropout indicator variable, D, for
each individual. Let D = k if an individual drops
out between the (k − 1)th and kth observation time,
and D = T + 1 if there is no dropout. That is,
when D = k we only observe Y1, . . . , Yk−1, and the
remaining Yk, . . . , YT are missing. Note, however,
that D is recorded for all individuals. With com-
pletely random dropout, individuals leave or drop
out of the study in a process that is independent
of any other observed variables. That is, Pr(D =
k|X, Y1, . . . , YT ) = Pr(D = k), and the probability of
dropout does not depend on an individual’s outcomes
Y1, . . . , YT . Little [3] distinguishes completely ran-
dom dropout from covariate-dependent dropout. In
the latter, Pr(D = k|X, Y1, . . . , YT ) = Pr(D = k|X),
and the probability of dropout depends on values
of the fixed covariates X, but, given X, it is con-
ditionally independent of an individual’s outcomes
Y1, . . . , YT . Note, however, that if dropout depends
on covariates that have not been fully observed or on
covariates that have been omitted from the model
for the longitudinal outcomes, then dropout is no
longer said to be covariate-dependent. With random
dropout, the process can depend on the outcomes that
have been observed in the past, but, given this infor-
mation, it is conditionally independent of all future
(unrecorded) values of the outcome variable fol-
lowing dropout. That is, Pr(D = k|X, Y1, . . . , YT ) =
Pr(D = k|X, Y1, . . . , Yk−1), and the probability of
dropout depends only on outcomes that have been
observed or recorded. Finally, in the case of non-
ignorable or informative dropout, the dropout pro-
cess, Pr(D = k|X, Y1, . . . , YT ), depends on unob-
served values of the outcome variable. That is,
dropout is said to be nonignorable when the proba-
bility of dropout depends on the unrecorded values of
the outcome variable that would have been observed
had the individual remained in the study.

Completely random, covariate-dependent, and ran-
dom dropout are often referred to as being ignorable
(provided that the parameters of the dropout process
are distinct from the parameters of the model for
the longitudinal outcomes) [5]. We caution, however,
that the use of the term ignorable does not imply that
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the individuals with missing data can simply be disre-
garded. Rather, the term ignorable is used to indicate
that it is not necessary to specify an explicit model
for dropout in likelihood-based or Bayesian infer-
ence concerning the parameters in any model for
longitudinal outcomes. Ignorable dropout can often
be handled using standard statistical software (e.g.
BMDP5V or SAS PROC MIXED), where those who
drop out are included in the likelihood-based analysis
(see Software, Biostatistical). However, with nonig-
norable dropout, the dropout mechanism cannot be
ignored in likelihood-based or Bayesian inference [4,
5]. With nonignorable dropout, inference is only pos-
sible once assumptions are made about the dropout
process. Recently, quite a number of methods have
been proposed for handling nonignorable dropout,
and all of these methods make particular assump-
tions about the dropout process. A general overview
of the statistical literature on methods for modeling
dropout can be found in [3]. However, it is worth
stressing that, short of tracking down the individu-
als who have left the study, any assumptions made
about the dropout process are not verifiable. There-
fore, it is important to assess carefully the sensitivity
of inferences to a variety of plausible assumptions
concerning the dropout process.

Finally, there are some subtle issues concern-
ing the identifiability of models for nonignorable
dropout. That is, for any given set of data, some
parameters may not be estimable from the informa-
tion in the data since the likelihood is exactly the
same for a whole range of parameter values. In gen-
eral, nonignorable dropout models are nonidentifiable
unless some arbitrary constraints are imposed on the
model.
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Nonlinear Growth Curve

Traditional growth curve analysis is associated with
the monitoring of development of individuals over
time. A classic case involves recordings made on
a group of children, say, of y (height or weight)
at times x (age). For each child the points (x, y)
can be plotted to give individual growth curves.
Traditionally, again, low-degree polynomials would
be fitted to the curves and the resulting parameter
estimates used for inferences such as comparisons
between different groups of children.

Linear Growth Curves

Suppose that the observed value for a particular
individual at time xj is Yj , j = 1, . . . , p, and that the
curve is to be represented as a quadratic (for p > 3).
Then the statistical model is

Yj = β0 + β1xj + β2x
2
j + εj ,

where β = (β0, β1, β2)
′ is the 3 × 1 vector of regres-

sion coefficients and εj is the “error” term. As an
example, consider the data given in Table 1, plotted in
Figure 1. The x values here are the loads required to
produce slippage x of a timber specimen in a clamp.
There are eight specimens, each producing 15 points
on the curve. The eight individual curves in Figure 1

Table 1 Timber slip data

Timber specimen

Slip 1 2 3 4 5 6 7 8

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 2.38 2.69 2.85 2.46 2.97 3.96 3.17 3.36
0.20 4.34 4.75 4.89 4.28 4.68 6.46 5.33 5.45
0.30 6.64 7.04 6.61 5.88 6.66 8.14 7.14 7.08
0.40 8.05 9.20 8.09 7.43 8.11 9.35 8.29 8.32
0.50 9.78 10.94 9.72 8.32 9.64 10.72 9.86 9.91
0.60 10.97 12.23 11.03 9.92 11.06 11.84 11.07 11.06
0.70 12.05 13.19 12.14 11.10 12.25 12.85 12.13 12.21
0.80 12.98 14.08 13.18 12.23 13.35 13.83 13.15 13.16
0.90 13.94 14.66 14.12 13.24 14.54 14.85 14.09 14.05
1.00 14.74 15.37 15.09 14.19 15.53 15.79 15.11 14.96
1.20 16.13 16.89 16.68 16.07 17.38 17.39 16.69 16.24
1.40 17.98 17.78 17.94 17.43 18.76 18.44 17.69 17.34
1.60 19.52 18.41 18.22 18.36 19.81 19.46 18.71 18.23
1.80 19.97 18.97 19.40 18.93 20.62 20.05 19.54 18.87

Figure 1 Timber slip under loading: load vs. slippage

are quite close, and, by eye, it would not be unrea-
sonable to entertain a quadratic fit.

The matrix version of the quadratic model equa-
tion is Y = Xβ + ε, where Y is the p × 1 vector with
j th component Yj , ε is p × 1 with components εj ,
and X is p × 3 with j th row (1, xj , x2

j ). The sim-
plest assumption for the εj s, j = 1, . . . , p, is that
they all have mean 0, all have the same variance σ 2,
and are uncorrelated. In this case, least squares esti-
mates and their standard errors can be obtained for
the βs. More formal inferences can be made under
the standard additional assumption that the εj s are
normally distributed. More generally, a multivariate
normal distribution N (0, E), in which the εj s may be
correlated, will be adopted for ε. Often, a structured
form will be adopted for E depending on a parameter
vector τ .

The description above applies to the measurements
made on one individual (e.g. timber specimen) only.
To extend this to a group of individuals, denote
the set of data points for the ith by {(xij , yij ) : j =
1, . . . , pi}. Here, the individual subscript i is applied
to x as well as to y to allow the possibility of different
x values between individuals, and to p to allow
the possibility of different numbers of measurements
between individuals. In addition, the βs will also be
enhanced with the subscript i: individuals tend to
have different growth parameters. The linear model
equation for the ith individual is then

Yij = β0i + β1ixij + β2ixij
2 + εij , (1)

or, in vector notation, Yi = Xiβi + εi .
To perform an analysis on the group as a whole,

rather than on individuals separately, the individual
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model equations are linked via the parameters βi . In
the simplest case, where the βis are supposed to differ
from one another only by random variation between
individuals in a homogeneous population, they can be
represented as β + bi , where the bis are independent
with mean 0 and covariance matrix B. The model for
Yi becomes

Yi = Xiβ + Xibi + εi .

In the more general formulation of Laird & Ware [2],
the design matrices multiplying β and bi are allowed
to differ: thus, the model becomes

Yi = Xiβ + Zibi + εi . (2)

Nonlinear Models

The elements of the rows of Xi determine the shape
of the fitted curve for individual i. In the quadratic
example, row j of Xi is (1, xij , x2

ij ), the presence
of x2

ij making the curve nonlinear. However, this is
not the nonlinearity referred to in the title of this
subsection. The general model so far considered is
linear in the regression parameter β, whatever the
shape of curve determined by the elements of Xi .
It is only when parameters occur nonlinearly in the
equation that the model is said to be nonlinear.

As an example, consider an exponential regression
curve y = β0 + β1 exp(−γ x). Here, the parameters
β0 and β1 occur linearly, but the parameter γ does
not. We assume here that the value of γ is unknown
and to be estimated from the data, like β0 and β1.
Otherwise, γ would just be a known constant and
the model would be linear. In the case of timber
slippage, there is a well-established empirical law,
y = α[1 − exp(−γ x)], of exponential form with the
constraint β1 = −β0 = α. The exponential regression
model for individual i is

Yij = β0i + β1i exp(−γixij ) + εij , (3)

εij being the usual zero-mean error term. The (3)
model is similar to that of (1), the β parameters
appearing linearly, but now with the additional γ

parameter appearing nonlinearly. In vector notation
this is Yi = Xi (γi)βi + εi , where Xi (γi) is p × 2
with j th row [1, exp(−γixij ]: the design matrix Xi

now depends on the γ parameter. The more general
Laird–Ware form, corresponding to (2), has

Yi = Xi (γi)β + Zi (γi)bi + εi ; (4)

here, Yi is of length pi , i = 1, . . . , n, and the error
vectors εi are taken to be independent with mean 0
and covariance matrices Ei (τ ).

Not all nonlinear models present themselves
in the standard form given above. For instance,
the Bleasdale–Nelder form y = (α1 + α2x

φ)−κ ([1],
Section 8.1) has no linear parameters. However, it
can be reformulated as β(1 + αxφ)−κ , where β =
α−κ

1 and α = α2/α1, which does have a linear
parameter.

Nonlinear Parameter Homogeneous Over
Individuals

The statistical analysis is much simpler when there is
no variation in γi over individuals and we consider
this case first. Such homogeneity of γ , and of τ

in the covariance structure, is tenable when these
parameters are somehow more fundamental than the
bis, i.e. more like constants of nature than the
individually varying bi-characteristics. For instance,
in the exponential curve, β0i and β1i are location and
scale parameters, respectively, for the measurements
on individual i, whereas γ determines the intrinsic
shape of the regression curve. The general model,
(4), can be written as

Yi = Xi(γ )β + Zi (γ )bi + εi, (5)

where now γ has lost its subscript i.
Suppose that the random coefficients bi have mean

0 and covariance matrix B(τ ), and that the εi and
bi are all independent. Then the Yi are independent
pi × 1 vectors with means and covariance matrices
given by

µi = E(Yi ) = Xi (γ )β,

Σi = cov(Yi )

= Zi (γ )B(τ )Zi (γ )′ + Ei (τ ). (6)

Nonlinear Parameter Randomly Varying
Over Individuals

In many circumstances it is necessary to allow
for random variation in all the parameters, e.g.
when modeling biological data, in view of the large
natural variation among living things. Unfortunately,
however, allowing the γi to vary randomly over
individuals introduces a higher level of difficulty.
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Referring again to the general model, (4), to
calculate µi and Σi the operations E(·) and var(·)
must be taken over the joint distribution of bi and γi

now, not just that of bi in (6). To evaluate these,
some distributional specifications will have to be
made for γi . This will depend on the context, i.e. on
what kind of parameter γ is; for instance, if γ were
a rate parameter in an exponential decay model, a
distribution on (0, ∞) would be appropriate. In most
practical cases numerical integration will be needed
to evaluate these expectations and covariances.

Normal Likelihood Theory

For the between-individuals model, which describes
the distribution of parameters over the population of
individuals, suppose that (bi , γi) has a joint probabil-
ity density fbγ (bi , γi). Then, denoting the conditional
density of Yi given the individual parameters by
f (yi |bi , γi), the likelihood is �f (yi ), where f (yi )

is the unconditional density of Yi obtained by inte-
gration over (bi , γi):

f (yi ) =
∫

f (yi |bi , γi)fbγ (bi , γi) dbi dγi.

The integral is usually intractable for realistic models.
A certain amount of simplification is possible in

some cases. If the conditional distribution of bi |γi

is taken as normal, so is that of Yi |γi . Then the
expression for f (yi ) can be reduced by integrating
out bi :

f (yi ) =
∫

f (yi |bi , γi)fb|γ (bi |γi)fγ (γi) dbi dγi

=
∫

f (yi |γi)fγ (γi) dγi ;

here f (yi |γi) is the multivariate normal density with
mean E(Yi |γi) and covariance matrix cov(Yi |γi), and
fγ (γi) is the marginal density of γi in the (bi , γi)

distribution. This integral, over γi only, is of smaller
dimension than the preceding one. If there were no
between-individuals variation in γi , fγ (γi) would
be concentrated at a single point, say γ , and then
the integral would reduce to f (yi |γ ), the density
of N(µi, Σi) with µi and Σi given in (6). The
assumption of conditional normality of bi given γi

is just a natural extension of the usual assumption of
unconditional normality of bi given a fixed γ .

In general, Yi will not have a normal distribution,
even though it is conditionally normal given γi . Once
fγ (γi) has been specified, f (yi ) can be computed by
numerical integration, and a likelihood function thus
obtained for inference.

Mean Curves

Consider again the exponential model (3), and sup-
pose that (β0i , β1i , γi) has mean (β0, β1, γ ) over
the population of individuals. The “mean curve”,
obtained by inserting these mean parameter val-
ues, has the same exponential form. However, the
“curve of means”, i.e. the curve resulting from taking
the expectation of (3) over the joint distribution of
(β0i , β1i , γi), is not generally of this form. This is
because γi occurs nonlinearly in the equation: the
form of the curve, E(Yij ) vs. xij , is determined by
the form of E[β1i exp(−γixij )].

The curve of means defines average y responses
at given x values, whereas the mean curve exhibits
the characteristics of individual trajectories such as
turning points and asymptotes. In linear models, and
more generally in cases where γi is homogeneous
over individuals, the mean curve and the curve of
means coincide.

Further Reading

The literature on nonlinear growth curves is wide
and scattered, much of it concerned with numerical
approximations to the awkward integrations men-
tioned above. Some representative works are listed,
and further details and examples (including tim-
ber slippage) are given, in Hand & Crowder [1,
Section 8.4].
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Nonlinear Mixed Effects
Models for Longitudinal
Data

Experimental and observational studies in the med-
ical, biological, and social sciences often result in
data collected on specific subjects (or, in a more gen-
eral sense, specific experimental units) that can be
regarded as a sample drawn from the population of
interest. When several observations are collected on
each subject, the data are described as repeated mea-
sures. If the multiple measurements are indexed by
the time of the observation, we say they are longitu-
dinal data.

In the analysis of such data, we often must account
for the variation between the subjects but, in doing
so, we are not interested in the change in the response
associated with specific subjects as much as we are
interested in estimating the overall variation in the
response within the population that can be attributed
to subject-to-subject differences. Mixed-effects mod-
els are a flexible and powerful class of statistical
models for use with longitudinal data and other types
of repeated measures. These models incorporate both
fixed effects, which we will write as β, a vector
of length p representing parameters associated with
the entire population or with certain repeatable levels
of experimental factors, and random effects, which
we will write as bi , i = 1, . . . , m, a collection of m

vectors of length q that model the variation associ-
ated due to subject i in the observed collection of m

subjects.
A fundamental difference between the fixed

effects, β, and the random effects, bi , is that
the components of β are parameters in the
statistical model but the components of bi are not.
The statistical model incorporates parameters that
determine the distribution of the random effects.
Sometimes these parameters can be expressed as
variance components in the overall model.

Linear Mixed-effects Models

Laird and Ware [6] formulated a linear mixed-effects
model for univariate repeated measures data as

yi = Xiβ + Zibi + εi , bi ∼ N(0, �),

εi ∼ N(0, σ 2I), i = 1, . . . , m,

εi ⊥ εj , bi ⊥ bj , i �= j εi ⊥ bj , ∀ i, j,

(1)

where yi is the vector of length ni of responses for
subject i; Xi is the ni × p model matrix for subject i

with respect to β; and Zi is the ni × q model matrix
for subject i and the random effects bi . The symbol
⊥ indicates independence of random variables. The
columns of the model matrices Xi and Zi are based
on any covariates that are observed along with the
response for subject i.

The data shown in Figure 1 and described in [9,
Appendix A.19]. are an example of growth curve
data for which a linear mixed-effects model could
be appropriate. Here the response is the height and the
only covariate measured is the (scaled and centered)
age of the boy at each observation. Each boy’s height
was measured nine times over a fixed range of age
but the specific ages of the measurements vary from
boy to boy.

In applying model (1) to these data, we may
choose just an intercept and an age term for the fixed
effects, the model matrix Xi , in which case β would
be of length 2, or we could use a quadratic model
with an intercept, a column of age and a column of
age2 for which β would have length 3. The random
effects model matrix could be a single column for
the intercept, representing a random additive shift in
height for each subject, or could have the intercept
column and an age column, representing a random
shift in the intercept and a random shift in the growth
rate.

Nonlinear Mixed-effects Models

Although the linear mixed-effects model (1) is a
versatile model, it does not encompass all of the
mixed-effects models that are used in biostatistics. In
some fields, the experimenters will have externally
determined models of the mechanism determining
the response as a function of the covariates. For
example, it is common in pharmacokinetics to use
compartment models [1, Chapter 5] to predict the
subject’s serum concentration of a drug as a function
of the time since administration of the drug.

The data shown in Figure 2 and described in [9,
Appendix A.29] are typical longitudinal data from
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Figure 2 Serum concentration of theophylline (mg/l) versus time since administration of an oral dose of the drug. Each
panel shows the concentration profile for one subject

a clinical pharmacokinetic study. The concentra-
tion profile for a single subject could be mod-
eled as

ct = Dkeka

Cl (ka − ke)

[
exp (−ket) − exp (−kat)

]
. (2)

where ct is theophylline concentration in the serum
at time t after an initial oral dose of D. The
parameters in the model are the elimination rate
constant ke, the absorption rate constant ka , and the
clearance Cl.

The concentration profile (2) reflects many of the
properties that we would expect in such data, such
as c0 = 0, a predicted concentration of zero at time
zero, and limt→∞ ct = 0, complete elimination of the
drug after a long period of time.

All three of the parameters ke, ka , and Cl occur
nonlinearly in (2). The desire to incorporate fixed
effects and random effects in a population model
based on nonlinear models for pharmacokinetic data

motivated early formulations and development of
nonlinear mixed-effects models [10]. One form [7]
of the statistical model for the j th observation on the
ith subject is

yij = f (φij , xij ) + εij ,

i = 1, . . . , m, j = 1, . . . , ni, (3)

where the underlying model function f depends
on a subject-specific parameter, φij and the val-
ues of covariates xij and is nonlinear in at least
one component of φij . The random effects and the
fixed effects determine the subject-specific parame-
ter through model matrices Aij and Bij of suitable
dimension as

φij = Aijβ + Bij bi , i = 1, . . . , m, j = 1, . . . , ni .

(4)



Nonlinear Mixed Effects Models for Longitudinal Data 3

Using the vector function fi with components
{fi (β, bi )}j = f (φij , xij ), we can write model as

yi = fi (β, bi ) + εi , bi ∼ N(0, �),

εi ∼ N(0, σ 2I), i = 1, . . . , m

εi ⊥ εj , bi ⊥ bj , i �= j εi ⊥ bj , ∀ i, j.

(5)

As in the linear mixed-effects model (1), the fixed
effects β are common to the entire population and
the random effects bi are specific to the subject. In
this model, the parameter vector for the underlying
nonlinear model, φij , can depend on both the subject
and the observation because the model matrices Aij

and Bij can depend on the observation j . This allows
the model to incorporate time-dependent covariates.

The use of the matrices Aij and Bij may be con-
fusing. To make this more concrete, let us consider
a specific model [9, §8.2] for the theophylline data.
The parameters Cl, ke, and ka , in (2) must be pos-
itive for the model to be physically meaningful so
we reexpress (2) in terms of the logarithms of these
parameters.

ct = D exp (lKe + lKa − lCl)

exp (lKa) − exp (lKe)

{
exp

[− exp (lKe) t
]

− exp
[− exp (lKa) t

]}
, (6)

where lCl = log(Cl), lKe = log(ke) and lKa =
log(ka). The subject-specific parameter is φij = φi =
(lCl , lKe, lKa)′ and the covariate vector for the j th
observation on the ith subject is xij = (

Di, tij
)′

, rep-
resenting the dose given to subject i and the time of
the j th concentration measurement for subject i.

As shown in [9, Section 8.2], a reasonable non-
linear mixed-effects model for these data can be
formulated with β having the same components as φi

and with random effects only for lCl and lKe. That is,
φi has length 3 as does β while bi has length 2. The
matrices Aij = I3, the 3 × 3 identity matrix, and Bij ,
which is the first two columns of I3, do not change
with i or j .

It is possible to use a more general form of the
dependence of φij on β and bi [4, Section 4.2] but
the ability to reparameterize the nonlinear model
f (φij , xij ) in another set of parameters g(φ) allows
other forms of dependence on β and bi to be rewritten
as (4).

Estimation of Parameters

The parameters in the nonlinear mixed-effects model
(5) are β, the fixed effects, σ 2, the variance
of the within-subject random variation, and θ ,
some set of parameters that determine �, the
variance–covariance matrix of the random effects or,
equivalently, the set of parameters that determine
the relative variance–covariance Σ/σ 2. Although
many estimation criteria for these parameters have
been proposed [4], the most common is maximum
likelihood.

To evaluate the likelihood function, we must
determine the marginal density of the n = ∑m

i=1 ni-
dimensional response y from the model (5)

L(β, θ, σ 2|y) =
M∏

i=1

p(yi |β, θ, σ 2)

=
M∏

i=1

∫
p(yi |bi , β, σ 2) p(bi |θ, σ 2) dbi .

(7)

In theory, it is straightforward to define the max-
imum likelihood estimators β̂, σ̂ 2, and θ̂ as the
values that optimize (7). In practice, evaluation of the
integral in (7) and optimization of the resulting like-
lihood or log-likelihood function is difficult. Software
for estimating the parameters in a nonlinear mixed-
effects model uses approximations to the integral in
(7) or to the likelihood function itself. The nlme
package for S-PLUS and for R [5] uses an approx-
imation to the log-likelihood based on conditional
estimates β̂(θ) and conditional modes b̂i (θ) obtained
from a penalized nonlinear least squares problem [9,
7] (see Penalized Maximum Likelihood). PROC
NMIXED in SAS uses adaptive Gaussian quadra-
ture [8], which also is based on the conditional modes
b̂i (θ) of the random effects. The NONMEM pro-
gram [2, 3] which is widely used in pharmacoki-
netics, can use different approximations to the log-
likelihood including a first-order Taylor expansion of
the model function around 0, the expected value of
the random effects vector b.

This is but a brief introduction to the formulation
of nonlinear mixed-effects models and to methods of
estimating the parameters in such models. There are,
naturally, many other aspects of these models that we
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have not discussed but are covered in references such
as [4, 9].
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Nonlinear Regression

One of the most common situations in statistical
analysis is that of data which consist of observed
responses Yi thought to be related to corresponding
k-dimensional inputs xi = (xi1 , . . . , xik )

′. Nonlinear
regression is used when this situation may be rep-
resented by the regression equation

Yi = f (xi , θ) + εi, i = 1, . . . , n, (1)

where the form of the expectation function f is
entirely known except for the parameter vector θ =
(θ1, . . . , θp)′ and f is a nonlinear function of θ .
In this model, the random variable Yi , often called
the response or dependent variable, represents the
response for case i and the variable xi , usually called
the explanatory (see Explanatory Variables) or inde-
pendent variable, may represent an experimental set-
ting or predetermined conditions associated with the
ith response. A wide variety of assumptions concern-
ing the error terms {εi} are possible, but the most
frequent one is that they are independent and identi-
cally distributed (iid) normal random variables.

Linearity or nonlinearity of a model depends on
how the parameters occur in the expectation function,
but not on how the explanatory variables do, and
a nonlinear regression model is one in which at
least one of its parameters appears nonlinearly. For
example,

f (x, θ) = θ1 + θ2x1 + θ3x
2
2 + θ4x1x2

is a linear model as the expression is linear in the
parameters, whereas

f (x, θ) = θ1 exp(θ2x) (2)

is a nonlinear model, being nonlinear in θ2. More
formally, nonlinear means that at least one of the
derivatives of the expectation function f with respect
to the parameters is a nontrivial function of at least
one of those parameters.

Some nonlinear models can be transformed to a
linear one by taking a suitable transformation (see
Transformations) of the data. For example, in the
model in (2) we can take a log transformation of
the response variable, Y ∗

i = log Yi , and setting θ∗
1 =

log θ1, θ∗
2 = θ2, we obtain a new expectation function

f ∗(x, θ∗) = θ∗
1 + θ∗

2 x.

This model is now linear in its unknown param-
eters θ∗

1 and θ∗
2 and therefore we could estimate

these parameters using linear regression (see Linear
Regression, Simple) of the logarithm of the data on
the explanatory variable xi . However, assuming that
the error in Yi is additive, the model for Y ∗

i is

Y ∗
i = θ∗

1 + θ∗
2 xi + log

[
1 + εi

f (xi , θ)

]

= θ∗
1 + θ∗

2 xi + ε∗
i ,

and now the variance of the error becomes dependent
on xi through the expectation function f (xi , θ). Thus,
transforming the data results in a transformation of
both the expectation function and the disturbance
term, and so the usual assumption of constant vari-
ance and normality required for simple linear regres-
sion may no longer be valid. This may lead to serious
deficiencies in the estimates of θ∗ and hence of θ . The
decision whether or not to make a linearizing trans-
formation depends very much on the nature of the
errors, and linearization should only be used when
the transformed data are adequately described by a
model with an additive normal error.

Another type of transformation of a model is a
parameter transformation where the parameters of the
new model are related to the parameters of the old
one by an expression which involves parameters only
and not the explanatory variables xi . For example,
consider the following models:

Yi = θ1
xi

xi + θ2
+ εi

and
Yi = xi

θ∗
1 xi + θ∗

2

+ εi .

If we define θ∗
1 = 1/θ1 and θ∗

2 = θ2/θ1, then the two
models (parameterizations) produce identical values
of Yi for the same value of xi . However, the statistical
properties of estimators in one of these models may
be much better than in the other, in the sense that
the former may have properties closely approaching
those of estimators in linear regression models. This
is an important feature of nonlinear regression and
we give more details regarding this problem in the
final section.

If the joint distribution of {εi} in the model in
(1) is assumed known, then the parameter θ can be
estimated through the use of the maximum likeli-
hood method. Under the assumption that the {εi}
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are iid normal random variables with a constant but
unknown variance σ 2, the maximum likelihood esti-
mates of θ are the least squares values, which, by
definition, minimize the sum of squares

S(θ) =
n∑

i=1

[Yi − f (xi , θ)]2

over all possible values of θ . Other methods of
estimation include a weighted least squares method
which allows for variance heterogeneity in the model,
robust estimation (see Robust Regression), which
may be considered as an alternative to the least
squares method if outliers are present in data, and
quasi-likelihood estimation which does not require
the distribution of εi to be known explicitly, except
for its first two moments. These methods and others,
including Bayes estimation (see Bayesian Methods),
are discussed by Bates & Watts [4] and Seber &
Wild [18]. In what follows we discuss mainly the
least squares method assuming the validity of the
assumption of iid normal error.

In contrast to linear models, in nonlinear regres-
sion it is not possible to write down an explicit
expression for the least squares estimators of the
parameters. In addition, the least squares estimators
in this case have essentially unknown properties for
finite sample sizes. In particular, they are usually
neither unbiased, normally distributed, nor minimum
variance estimators as are those in linear models. The
estimators achieve these properties only asymptoti-
cally as the sample sizes approach infinity (see [11]
and Large-Sample Theory for a detailed develop-
ment of asymptotic theory). It is not possible, in
general, to present any guidelines as to how large the
sample size must be for these asymptotic properties
to be closely approximated.

This difference between estimators in linear and
nonlinear models should be remembered, since in
practice inference regions for nonlinear models are
often approximated using linear models. A number
of measures and procedures have been developed for
studying the behavior of the estimators in nonlinear
cases and they provide information on the adequacy
of linear approximation inference regions and indi-
cate situations where by changing the parameters a
nonlinear model behaves more like a linear model. A
brief description of some measures of nonlinearity is
given in the final section.

Examples of Applications

An important step in nonlinear regression is the spec-
ification of the model, including both the expectation
function and the characteristics of the disturbance
(see Model, Choice of). Frequently the expectation
function is tentatively suggested by theoretical inves-
tigations and the analyst’s job is then to find the
simplest form of the model and the parameter esti-
mates which provide an adequate fit of the model to
the data, subject to the assumptions about the distur-
bance. However, in many situations, particularly in
the biological sciences, the underlying processes are
complex and no physically meaningful models for
the expectation functions may be advanced. In such
cases, the statistician may suggest a model which has
the same sort of behavior as the data. In this search,
particularly helpful may be the literature, such as the
handbook by Ratkowsky [16], which examines com-
monly used nonlinear regression models.

Nonlinear regression has been applied to a wide
range of situations and we now give a selection of
examples.

Example 1

Processes producing sigmoidal growth curves are
widespread in many fields of study. In medicine, for
example, we may be interested in the normal growth
of infants (see Growth and Development) or the
growth of a tumor, and the effect of treatments upon
such growth. It is usually assumed that the theoretical
growth curve belongs to a known parametric family
of curves which start at some fixed point and increase
their growth rate monotonically to reach an inflection
point; after this the growth rate decreases to approach
asymptotically some final value. A number of func-
tions have been proposed for modeling such curves
(e.g. [18, Chapter 7]), many of which are claimed to
have some underlying theoretical basis. In most cases,
however, the approach to the analysis of growth data
is purely empirical and involves fitting a parametric
family of curves to the data. Two examples of growth
curves are the Gompertz function

f (x, θ) = θ1 exp[− exp(θ2 − θ3x)]

and the logistic function

f (x, θ) = θ1

1 + exp(θ2 − θ3)x
.
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Usually, the variable x represents time, but similar
models occur also in situations when the explanatory
variable is an increasing intensity of some other
factor, such as the amount of nutrients in a diet and
its effect on weight gain.

Example 2

Biological assay (bioassay) is a method for estimat-
ing the potency of a drug or material by the study of
the reaction caused by its use on experimental sub-
jects. In an indirect assay specified doses are each
given to a set of experimental units and the result-
ing responses are recorded. For quantitative responses
the assay can then be analyzed by fitting a nonlinear
dose–response regression model to the data. Various
functions having different characteristics have been
proposed to fit dose–response curves of a generally
sigmoidal shape. For example, in radioligand assays
(see Radioimmunoassay), in which potency estima-
tion involves the relation between counts of radioac-
tivity and dose, many researchers have found the
regression function to be satisfactorily represented by
the four-parameter logistic model (e.g. [10]), which
can be written as

f (x, θ) = θ1 + θ2

1 + exp(θ3 − θ4x)
,

where x is the logarithm of the dose. This represen-
tation is only one of many possible parameterizations
and, although different parameterizations give the
same predicted value of the response for a specified
dose, from a statistical perspective they are not all
equivalent [17].

Example 3

The forced expiratory volume Y , a measure of how
much air a subject can breathe, is widely used epi-
demiologically for screening against chronic respir-
atory disease. Cole [7] discusses a nonlinear model
relating Y to height (xi,1) and age (xi,2) of the form

Yi = x
θ1
i,1(θ2 + θ3xi,2) + εi .

This model appears to be equally suitable for
predicting maximum oxygen uptake which is the
best-known measure of an individual’s capacity to
deliver oxygen to, and to use oxygen in, exercising
muscle [14]. In this case xi,1 denotes the body weight.

Example 4

It is not necessary for the expectation function to
be an explicit function of the parameters and the
explanatory variables. For example, in an impor-
tant class of models, known as compartment models,
the expected response is given by the solution to
a set of linear differential equations. These mod-
els are commonly used in pharmacokinetics, where
the exchange of materials in biological systems is
studied. To estimate the parameters in such models
several methods can be used. In some cases it is
possible to obtain an analytic solution to the system
of differential equations and then use the expecta-
tion function, corresponding to the compartment for
which data are available, in a standard nonlinear esti-
mation program. However, special techniques have
been developed which allow one to avoid solving
explicitly for the expectation function and its deriva-
tives [5, 13].

In other situations, the expectation function may
be the solution to a nonlinear differential equation or
a partial differential equation which has no analytic
solution. Then the values of the expectation func-
tions must be determined numerically for any given
parameter values. In such situations numerical deriva-
tives or derivative-free optimization procedures often
have to be used to calculate the least squares esti-
mates. Dalgaard & Larsen [8], for example, proposed
an algorithm for the analysis of data obtained by
vitreous fluorophotometry, a method in clinical eye
research. The model involves the diffusion equation,
and the parameters are the diffusion coefficient in the
vitreous body of the eye and the permeability of the
blood–retinal barrier.

Calculating Parameter Estimates

Most of the methods of estimation in nonlinear
regression require an estimator obtained by maximiz-
ing or minimizing some objective function of θ , like
S(θ) for the least squares estimator. Since these opti-
mization problems can seldom be solved analytically,
the optimal value of θ must be in most cases located
by iterative techniques using a computer. One option
is to use standard nonlinear optimization algorithms
such as modifications of the Newton method or conju-
gate gradient method, which are widely available in a
number of numerical libraries (see, for example, [12]
and [18, Chapter 15]). However, when choosing an
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algorithm, some understanding of how it works and
its limitations may be necessary. Another option is to
use specialized software which exploits the particu-
lar structure of a nonlinear problem. For least squares,
most such methods are based on the Gauss–Newton
algorithm, which we now briefly describe.

For a given data set, the values of xi are fixed,
and as we vary θ through all possible values, the
expectation vectors

f(θ) := (f1(θ), . . . , fn(θ))′

:= (f (x1, θ), . . . , f (xn, θ))′

generate a surface in Rn, called the expectation
surface. The Gauss–Newton algorithm uses a linear
approximation to this surface as follows:

1. Near an initial point f (θ (0)) the expectation
surface is approximated by its tangent plane.

2. The observation vector y is projected onto the
tangent plane by linear regression to obtain a new
parameter vector θ (1).

3. The tangent plane is calculated at f (θ (1)) and the
procedure is continued until either convergence
or abnormal termination.

Formally the process can be justified using a
Taylor series expansion. Suppose that θ (0) is an
approximation to the least squares estimate θ̂ . For
θ close to θ (0) we have the linear Taylor expansion:

fi(θ) ≈ fi(θ
(0)) +

p∑

s=1

∂fi

∂θs

(θ (0))(θs − θ(0)
s ),

i = 1, . . . , n,

or
f(θ) ≈ f(θ (0)) + V0(θ − θ (0)), (3)

where V0 = V(θ (0)) = [∂fi(θ
(0))/∂θs] is the deriva-

tive matrix evaluated at θ (0). With approximation (3)
the original model can be rewritten as follows:

Y − f(θ (0)) ≈ V0β + ε,

where β = θ − θ (0) and ε = (ε1, . . . , εn)
′. Since this

approximation is linear in the parameter β, we can
use linear regression to obtain the least squares
estimate of β:

β̂(0) = (V′
0V0)

−1V′
0r(0),

where r(0) = y − f(θ (0)) is the residual vector at θ (0).
This suggests that for a given current approximation
θ (0), the next approximation should be

θ (1) = θ (0) + β̂(0). (4)

This provides an iterative scheme for obtaining
θ̂ and usually is referred to as the Gauss–Newton
method. If the starting value θ (0) is sufficiently close
to a local minimum θ̂ , the algorithm will converge.
The unmodified algorithm, however, is rarely used
in practice. To deal primarily with ill-conditioning
of the derivative matrix V, which may cause, for
example, the sum of squared residuals at θ (i+1) to be
greater than θ (i) on the ith iteration, and to avoid hav-
ing to code and specify the derivatives, modifications
to this method, as well as alternative methods, have
been suggested. The most common of these modi-
fications are the Hartley and Levenberg–Marquardt
algorithms. Another modification, described in [4],
forms the basis of the algorithm implemented in S-
PLUS (see S-PLUS and S). When the residuals for
the fitted model are large, the above algorithms may
converge very slowly or even fail. In such situations
two alternative methods can be used: the NL2SOL
algorithm and the algorithm due to Gill and Murray
(see [18, Chapter 14] for details about these and other
methods).

Optimization programs require specification of
convergence criteria and initial parameter estimates
θ (0). Obtaining good starting values is essential
to guarantee convergence, and many methods for
determining them have been proposed (e.g. [15]
and [4]). Convergence criteria are often based on
the relative change in S(θ) from one iteration to
the next or on the relative change in the com-
ponents of θ . Although they are usually reliable,
they are not unambiguous and criteria using differ-
ent rules have also been proposed [2]. In practice,
the concurrent use of several criteria is often recom-
mended.

Confidence Regions and Effects of
Nonlinearity

Several methods for determining confidence regions
for the parameter θ (see Estimation) have been
proposed. These include an exact method, usually
referred to as the lack-of-fit method, the likeli-
hood confidence regions, and linearization confidence
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regions (e.g. [11] and [9]). Only the first method
gives exact confidence regions, but it is computa-
tionally the most difficult. Likelihood regions are
generally easier to calculate but are still compu-
tationally tedious compared with the linearization
method, which is the most commonly used. In this
method confidence regions and confidence intervals
are obtained using the method of linear regres-
sion with the estimated variance–covariance matrix
approximated by (V̂′V̂)−1s2, where V̂ is the deriva-
tive matrix calculated at θ̂ and s2 is the esti-
mate of the residual variance. Unlike the exact
and likelihood regions, the linearization region is
always ellipsoidal. However, the extent to which
such a region approximates the exact region depends
on the extent of nonlinearity of the model, and
in some cases the discrepancies may be very
large.

To provide information on the adequacy of the lin-
ear approximation, Beale [6] and Bates & Watts [1,
3, 4] have developed a number of measures of non-
linearity using a geometric approach. For nonlinear
models the expectation surface is curved, and this is
in marked contrast to the linear models where the
expectation surface is always planar. This nonpla-
narity has been called the intrinsic nonlinearity. The
term intrinsic is suitable, as this nonlinearity becomes
determined the moment a model/data set combination
has been defined, and it cannot be altered by repa-
rameterization.

The other way in which linear and nonlinear
models differ involves the position on the expectation
surface of the values having equal increments in θ .
For a linear model, points f (θ) representing constant
values of θ are straight, parallel and equally spaced
for equal increments of θ , which in general is not true
for nonlinear regression models. This nonuniformity
of the spacing defines the second component of
nonlinearity, termed parametric effects nonlinearity.
This component depends on how parameters occur
in the expectation function and it can be changed by
reparameterization.

To quantify the extent of the two components
of nonlinearity, Bates & Watts derived curvature
measures based on second-order derivatives of the
expectation function. As found by these authors, and
in subsequent studies, the intrinsic nonlinearity is
typically small for most models of practical inter-
est. In contrast, the parametric curvature is usually
large enough to affect linear approximation inference

regions. However, a large parametric curvature can
often be substantially reduced by finding an appro-
priate reparameterization. At present little guidance
is available as to the choice of a reparameteriza-
tion, although occasionally certain transformations
are recommended from practical experience or are
suggested by the model itself (e.g. [15–17] for the
four-parametric logistic model).

For detailed information about measures of cur-
vature and nonlinearity and their applications in
assessing the appropriateness of linear approxima-
tions, see [4] and [18].

References

[1] Bates, D.M. & Watts, D.G. (1980). Relative curvature
measures of nonlinearity (with discussion), Journal of
the Royal Statistical Society, Series B 42, 1–25.

[2] Bates, D.M. & Watts, D.G. (1981). A relative offset
orthogonality convergence criterion for nonlinear least
squares, Technometrics 123, 179–183.

[3] Bates, D.M. & Watts, D.G. (1981). Parameter transfor-
mations for improved approximate confidence regions
in nonlinear least squares, Annals of Statistics 9,
1152–1167.

[4] Bates, D.M. & Watts, D.G. (1988). Nonlinear Regression
Analysis and Its Applications. Wiley, New York.

[5] Bates, D.M., Wolf, D.A. & Watts, D.G. (1986). Nonlin-
ear least squares and first order kinetics, in Computer
Science and Statistics: The Interface, D.M. Allen, ed.
Elsevier, New York, pp. 71–81.

[6] Beale, E.M.L. (1960). Confidence regions in non-linear
estimation (with discussion), Journal of the Royal Sta-
tistical Society, Series B 22, 41–88.

[7] Cole, T.J. (1975). Linear and proportional regression
models in the prediction of ventilatory function, Journal
of the Royal Statistical Society, Series A 138, 297–337.

[8] Dalgaard, P. & Larsen, M. (1990). Fitting numerical
solutions of differential equations to experimental data:
a case study and some general remarks, Biometrics 46,
1097–1109.

[9] Donaldson, J.R. & Schnabel, R.B. (1987). Computa-
tional experience with confidence regions and confidence
intervals for nonlinear least squares, Technometrics 29,
67–82.

[10] Finney, D.J. (1976). Radioligand assay, Biometrics 32,
721–740.

[11] Gallant, A.R. (1987). Nonlinear Statistical Models.
Wiley, New York.

[12] Gill, P.E., Murray, W. & Wright, M.H. (1981). Practical
Optimization. Academic Press, London.

[13] Jennrich, R.I. & Bright, P.B. (1976). Fitting systems of
linear differential equations using computer generated
exact derivatives, Technometrics 18, 385–399.



6 Nonlinear Regression

[14] Nevill, A.M. & Holder, R.L. (1994). Modelling maxi-
mum oxygen uptake – a case-study in non-linear regres-
sion model formulation and comparison, Applied Statis-
tics 43, 653–666.

[15] Ratkowsky, D.A. (1983). Nonlinear Regression Model-
ing. Marcel Dekker, New York.

[16] Ratkowsky, D.A. (1990). Handbook of Nonlinear Re-
gression Models. Marcel Dekker, New York.

[17] Ratkowsky, D.A. & Reedy, T.J. (1986). Choosing
near-linear parameters in the four-parameter logistic

model for radioligand and related assays, Biometrics 42,
575–582.

[18] Seber, G.A.F. & Wild, C.J. (1989). Nonlinear Regres-
sion. Wiley, New York.

(See also Optimization and Nonlinear Equations)

ADAM W. KOLKIEWICZ



Nonlinear Time Series
Analysis

Nonlinear time series analysis is currently a most
active area of research in time series and dynam-
ical systems literature. This is partly because of
the enormous interest in nonlinear dynamical sys-
tems, including chaos, since the early 1970s. A
number of recent textbooks on time series analy-
sis have included some coverage of this important
area; see, for example [3] and [5]. For a wider and
more in-depth coverage, we refer to [9, 16] and [19].
These cover roughly the work up to the early
1990s. For more recent surveys, we refer to [18]
and [20].

Nowadays, the term “nonlinear time series” is used
in both the statistical and the dynamical systems lit-
erature. Although there is much common ground,
the emphases are different, with the former focus-
ing on the randomness generated by a stochastic
system/model and the latter on the randomness gen-
erated by a purely deterministic system/model. In this
article, we shall concentrate on the former, although
passing references will be made to the latter where
appropriate.

To date, biostatistical applications using the sta-
tistical analysis of nonlinear time series include
epidemiology (e.g. [21] and [22]) and physiology
(e.g. [19]) and others. For similar applications, but
using the dynamical systems approach, see, for exam-
ple [6, 10, 12, 13] and [21].

Why Nonlinearity?

At the simplest level, linearity may be exempli-
fied by the doubling of the deflection of the indi-
cator of the balance if we place two copies of
this article instead of one on the balance. Depar-
ture from this doubling is often associated with
nonlinearity. In fact, it is obvious that we do not
expect the balance to keep doubling the deflection
of its indicator every time we double the number
of copies on it. This simple example illustrates a
fundamental fact: in reality, linearity cannot hold
in the large (or globally) although it may hold in
the small (or locally). For a deeper discussion of
the notion of nonlinearity in the context of time

series analysis, we refer to, for example, [1, 16],
and [19].

In time series analysis, linear methodology culmi-
nates in the classic family of autoregressive moving
average models (see ARMA and ARIMA Models)
including the vector cases, e.g. [2] and [11]. How-
ever, there are many observable phenomena that
cannot be explained properly if we restrict ourselves
to linear systems/models. The above, rather simple,
example of a balance is, in fact, an example of
the so-called saturation effect, in that the indicator
has only a finite range of deflection. The satura-
tion effect is common to many real systems, since
almost all real systems have finite capacity/energy
only.

Cycles are another often-observed phenomenon
in many time series and these may be due to the
bifurcation of a single global linear dynamics into
multiple local dynamics. For example, Watier &
Richardson [22] have studied the cycles observed in
the monthly notifications of Salmonella typhimurium
in France from January 1978 to December 1988.
They have suggested that the increase in the preva-
lence of some phage types from the cold period
to the warm period could alter the epidemiological
system from one approximately linear dynamics to
another and they have modeled the switching by
reference to the notification of seven months pre-
viously. They have used the fitted nonlinear time
series model (specifically a self-exciting threshold
autoregressive model, whose form will be given in
the next section) to explain the cycles by show-
ing that, in the absence of the background noise
that is modeled as a sequence of independent iden-
tically distributed random variables, the nonlinear
dynamics of the fitted model generate cycles that
bear some resemblance to the observed cycles. As
a digression, the Watier–Richardson example also
shows a possible intimate connection between non-
linearity (e.g. different dynamics corresponding to
different states of the phage types) and nonstationar-
ity (e.g. different dynamics corresponding to different
seasons), in some cases (see Stationarity). We can
sometimes put both notions, at least formally, on the
same footing by treating time as a covariate/state vari-
able as well.

Returning to our discussion, there are other
observable phenomena that can only be explained
properly by reference to nonlinear dynamics.
These include chaos, synchronization (i.e. how the
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frequency of oscillations of a system can get locked
into that of an external oscillator), jump phenomenon
(i.e. how the amplitude of oscillations of the output
signal of a system is affected when we alter the
frequency of the input signal), and others; e.g. [19].

Various Approaches to Nonlinear Time
Series Modeling

Parametric

There are essentially two major approaches to non-
linear time series modeling in statistical literature;
namely, the parametric approach and the nonpara-
metric approach. In the former, several classes were
proposed in the late 1970s and the early 1980s.
These included the threshold autoregressive mod-
els (TAR), the autoregressive models with condi-
tional heteroscedasticity (ARCH), bilinear models
(BL), the nonlinear moving average models (NLMA),
the polynomial autoregressive models, random coef-
ficient autoregressive models (RAC), and others.
Tong [19] has given a fairly comprehensive list of
these various parametric models, together with some
of their probabilistic structure and statistical estima-
tion. Granger & Terasvı̈rta [9] and Priestley [16] are
also relevant whilst Engle & McFadden [7], Nicholls
& Quinn [15] and Rao & Gabr [17] give more details
on specific models.

Given the vast number of parametric families
of models, it would be impossible to survey them
properly in this article. However, in order to
give the readers some general flavor, we refer
to Watier–Richardson’s model mentioned in the
last two sections. Let {Xt } denote the monthly
notifications of cases of Salmonella typhimurium in
France over the period January 1978 to December
1988. Their fitted model takes the form

Xt = 74.84 + 0.378Xt−1 − 0.367Xt−4

+ 0.341Xt−12 + ε
(1)
t , (1)

if Xt−7 ≤ 81, and

Xt = −0.392 + 0.658Xt−1 + 0.314Xt−11 + ε
(2)
t ,

(2)

if Xt−7 > 81. Here, ε
(1)
t and ε

(2)
t denote two indepen-

dent sequences of zero-mean, independent and iden-
tically distributed random variables (to be referred to

as iid), where ε
(1)
t has an estimated standard deviation

32.53 and ε
(2)
t 14.66. Essentially, the nonlinearity is

modeled by dividing the state space (i.e. the space
of values of X) into two regimes, one corresponding
to Xt−7 ≤ 81 and the other to Xt−7 > 81, and inside
each regime a linear autoregressive model is used.
This model is an example of the class of self-exciting
threshold autoregressive models; the adjective “self-
exciting” refers to the fact that the division is effected
by reference to a covariate that happens to be some
past value of the response. We have already men-
tioned some of the properties of this fitted model in
the last section.

The threshold models are currently one of the
more popular nonlinear time series models in the
literature. It is clear that conditional on the past X

values up to and including t − 1, the expectation
of Xt is a piecewise linear function of the past X

values. The primary, although by no means exclusive,
objective of the above model is clearly the general
drift of the time series. In econometric literature,
often the interest lies not so much in the drift
but rather in the diffusion about this drift (e.g.
the volatility of the stock market). Translated into
statistical language, the focus is then primarily on the
conditional variance term. Perhaps for this reason, the
class of ARCH models is particularly popular in the
econometric literature. In its simplest form, it may be
written as

Xt = εt

√
V t , (3)

where {εt } are iid and

Vt = γ + φ1X
2
t−1 + . . . + φqX

2
t−q, (4)

with γ > 0, φi ≥ 0 for all i. Note that E[Xt |Xt−1,

Xt−2, . . .] = 0 and var[Xt |Xt−1, Xt−2, . . .] = Vt .
Once the parametric form of the model is

defined, we could then proceed with general
statistical inference, including model identification,
estimation of parameters and testing of hypotheses
(e.g. testing for linearity), and so on. The
method of conditional least squares seems to play
a particularly important role in many of the
studies. By this we mean the minimization, with
respect to the unknown parameters, of

∑{Xt −
E[Xt |Xt−1, . . . , Xt−k]}2, where the summation is
over the data set and k is an appropriately chosen
order. (See, for example, [19] for details.) We return
to the issue of an appropriately chosen order later. All
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in all, although a significant number of asymptotic
results are now available, there are still many
outstanding problems, as we can see from the above
references.

Nonparametric

Putting the drift and the diffusion together, we may
write down a more general model in the form

Xt = f (Xt−1, . . . , Xt−p) + εtg(Xt−1, . . . , Xt−q),

(5)

where {εt } is the usual iid. This is also called a
nonlinear autoregressive model. If we assume that
g(·) ≡ 1, we have the so-called nonlinear autoregres-
sive model of order p with homogeneous noise. If we
assume that f is piecewise linear and g is piecewise
constant, then we recover the self-exciting threshold
autoregressive model. If we assume that f is identi-
cally zero and g is

√
Vt as in (4), then we recover an

ARCH model.
In the nonparametric approach, we do not assume

any particular parametric form for f or g. Instead,
we typically make only minimal assumptions, such
as differentiability. The general idea is that “we let
the data tell us what f and g are”.

There are numerous ways to estimate f and g

and we refer to [18] and [20] for some references.
To give some general flavor, we describe briefly the
locally polynomial approach, which is one of the
currently favored approaches. (For details, see, for
example, [8].) Let p(·) denote a probability density
function, called the kernel. Consider the following
local sum of squares:

S(α) =
∑

(Xt − α)2p

(
Xt−1 − x1

h

)
, (6)

where the summation is taken over t = 2, . . . , n, n

being the sample size of the X data and h is a
positive real constant, usually called the bandwidth
of the kernel p(·). Here, α is treated as an unknown
parameter as in the classical regression setup. The
major significance of the above sum is its local
characteristic: observations far from x1 are given less
weight. Minimizing S(α) with respect to α yields the

estimate

α̂ =
∑

Xtp

(
Xt−1 − x1

h

)

∑
p

(
Xt−1 − x1

h

) , (7)

which coincides with the Nadaraya–Watson estimate
of E[Xt |Xt−1 = x1], i.e. f (x1). Here, we call
it the locally constant estimate of f (x1). We
can generalize it to yield a locally polynomial
estimate in an obvious way by replacing α in
S(α) by

∑q

j=0 αj (Xt−1 − x1)
j , where q denotes the

degree of the local polynomial. We can further
generalize to obtain similar estimates of E[Xt |Xt−1 =
x1, . . . , Xt−k = xk], i.e. f (x1, . . . , xk), for k > 1.
For example, the locally constant estimate of
f (x1, . . . , xk) may take the form

f̂ (x1, . . . , xk)

=

n∑

t=k+1

Xtp

(
Xt−1 − x1

h

)
. . . p

(
Xt−k − xk

h

)

n∑

t=k+1

p

(
Xt−1 − x1

h

)
. . . p

(
Xt−k − xk

h

) .

(8)

Here, we have effectively taken the associated k-
dimensional kernel p(u1, . . . , uk) as a product of
k one-dimensional kernels p(uj ), j = 1, . . . , k. (We
have abused the notation of p(·).)

With the above nonparametric tools, many impor-
tant issues can be addressed. For example, in practice,
we often have to determine an appropriate order for
a nonlinear autoregressive model even though we do
not wish to commit ourselves to any particular para-
metric form of the autoregression. Let us denote the
true order by k0. To describe one nonparametric solu-
tion, let us omit the entry t = j in (8). We have
the so-called leave-one-out estimate of f (x1, . . . , xk),
say fj (x1, . . . , xk). Let L denote a fixed positive inte-
ger, which is much smaller than n. Minimizing

n∑

j=L+1

[Xj − f̂j (Xj−1, . . . , Xj−k)]
2 (9)

with respect to k = 1, . . . , L gives us an estimate
k̂CV of k0. It turns out that k̂CV is a consistent
estimate of k0. Moreover, the sample size requirement
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for a “good” performance of k̂CV is not excessive;
see [20].)

Other important issues that have been addressed in
the context of nonparametrics include tests for inde-
pendence, linearity, determinism, initial-value sensi-
tivity, nonlinear forecasting, and others.

Stationarity and Prediction

The problem of obtaining sufficient and necessary
conditions for strict stationarity for a nonlinear time
series model is much deeper than its linear counter-
part. The latter problem has a complete solution. This
is far from being the case for the former.

If the model can be recast in the form of a
Markov chain on a Euclidean space (of suitable
dimension), then we can appeal to the extensive
literature concerning the ergodicity of such Markov
chains. (See, for example, [14].) Chan & Tong [4]
were probably the first to point out that there is an
intimate connection between strict stationarity and
the notion of stability in deterministic difference
equations. Specifically, let us consider the following
nonlinear difference equation

zt = f (zt−1, . . . , zt−k). (10)

We may think of this as the skeleton of the nonlinear
autoregressive model; namely

Xt = f (Xt−1, . . . , Xt−k) + εt . (11)

Now, if |zt | → ∞ as t → ∞, then we say that
the system (10) is unstable. Otherwise, we say that
it is stable. In fact, under suitable conditions on f, zt

may converge to a finite limit, say z∗, regardless of
the initial value z0. Chan & Tong [4] have proved
that, under mild conditions on the distribution of ε,
if the z system has the above properties, then the
corresponding nonlinear autoregressive model (11)
defines an ergodic Markov chain and hence a strictly
stationary time series {X0, X1, . . .} if X0 is endowed
with the unique invariant distribution of the ergodic
Markov chain.

For a strictly stationary time series {Xt } with
finite variance, the conditional expectation of Xt+m,
given observations up to and including t , is the
m-step-ahead least square predictor of Xt+m. Let
us denote this by X̂t (m). It need not be linear in
Xt, Xt−1, . . .. If {Xt } is, in fact, given by a nonlinear

autoregressive model of order k, then X̂t (m) is
a nonlinear function of Xt, Xt−1, . . . , Xt−k+1 only.
Unlike the case with linear Gaussian time series
models, (i) var(Xt+m|Xt, . . . , Xt−k+1) is a function
of Xt, . . . , Xt−k+1 and need not be monotonically
increasing with respect to m; (ii) if it exists, the
conditional probability density function of Xt+m,
given Xt, . . . , Xt−k+1, need not be unimodal.
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Nonparametric Maximum
Likelihood

Consider estimation of the survival function of a
univariate or multivariate time variable T of inter-
est, based on observing n subjects from a particular
population (see Survival Distributions and Their
Characteristics). In an early phase of understanding
the survival function of T , or equivalently the hazard
of T , one typically has only limited knowledge about
the shape of these quantities. For example, it might be
reasonable to assume that the hazard of T is increas-
ing, but all other assumptions are hard to justify. In
such situations there is a need for a nonparametric or
semiparametric estimation method of the distribution
of T (see Semiparametric Regression). Nonpara-
metric maximum likelihood estimation (NPMLE) has
received a lot of attention over the last few decades.

For simplicity, we will assume that the n observa-
tions on the subjects are independent and identically
distributed (iid). Let x = x1, . . . , xn represent n iid
observations on a random variable X with probabil-
ity distribution Pθ0 indexed by a parameter θ0 which
is known to be an element of a set Θ . The set of pos-
sible probability distributions {Pθ : θ ∈ Θ} is called
a model for the distribution of X. If Θ ⊂ �k , then
the model is called parametric, and if Θ is infinite
dimensional, then the model is often referred to as
being semiparametric. For semiparametric models the
structure θ → Pθ and/or the structure of the set Θ

usually imply that the model is still strictly smaller
than the set of all possible probability distributions,
which explains the name semiparametric model. In
statistics, an important goal is to find an estimator of
θ0 based on the data x.

A celebrated estimation method is to define a like-
lihood of the data x as a function of θ and maximize
this likelihood over all θ in Θ (see Maximum Like-
lihood). This method makes sense in the classical
parametric models where there is only one sensible
candidate for the likelihood, but in semiparametric
models containing both continuous and discrete prob-
ability distributions one typically needs a generaliza-
tion of maximum likelihood estimation. In this article,
we will define maximum likelihood estimation, the
generalization, provide illustrations, and elaborate on
potential problems of maximum likelihood estimation
in semiparametric models.

To start with we will assume that the model
is dominated by a single measure µ so that stan-
dard maximum likelihood estimation (MLE) can be
defined. This allows one to identify each probabil-
ity distribution Pθ with a density pθ with respect
to (wrt) µ. This density pθ is defined by the prop-
erty that the probability that X falls in a set A

(under Pθ ) is computed by integrating pθ over the
set A wrt µ. If the Pθ s are continuous probabil-
ity distributions on �k

, µ being the Lebesgue mea-
sure, then one can choose pθ to be the classical
derivative of the cumulative distribution function
corresponding with Pθ (e.g. the normal density).
And if the Pθ s are discrete probability distributions
on a finite set of outcomes, µ being the count-
ing measure on this set, then pθ(w) equals the
probability that X = w (e.g. the binomial distribu-
tion).

The likelihood at θ of a given data vector x is
defined as the density of X evaluated at x and is thus
given by:

Lµ(θ |x) =
n∏

i=1

pθ(xi),

where we indexed the likelihood by µ to stress that
the likelihood depends on the choice of dominating
measure µ. Assume now that for this given data vec-
tor x there exists a θ̂ for which the likelihood L(θ̂ |x)

is larger than or equal to the likelihood L(θ |x) for
any θ ∈ Θ . Then θ̂ is called the maximum likelihood
estimator of θ0 for the model {Pθ : θ ∈ Θ}.

Under “regularity” conditions, a maximum likeli-
hood estimator θ̂ of θ is root-n consistent, asymptot-
ically normally distributed and efficient (see [1]). We
consider a classical textbook example of a parametric
maximum likelihood estimator.

Example 1

Let T1, . . . , Tn be n iid observations of a survival
time T of interest which is known to be exponen-
tially distributed with parameter λ > 0; the density
of T is given by fλ(t) = λ exp(−λt) and its hazard
equals λ and is thus constant. Thus, the likelihood
of an observed data vector t of T = (T1, . . . , Tn) is
given by

L(λ|t) =
n∏

i=1

fλ(ti ) = λn exp

(
−λ

n∑

i=1

ti

)
.
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In iid models it is more convenient to maximize the
log likelihood, which is here given by

log(L(λ|t)) = n log(λ) − λ

n∑

i=1

ti .

Since λ = 0 is not a maximizer, the maximizer falls
in the interior of the parameter space. Thus, the
maximum likelihood estimator λn solves the score
equation:

0 = d

dλ
log[L(λ|t)]

∣∣∣∣
λn

= n

λn

−
n∑

i=1

ti .

Thus, λn = 1/t, t being the sample mean of the tis.
Note that in the definition of a maximum likeli-

hood estimator it is essential that the likelihoods at
different elements of the model are comparable. A
semiparametric model typically contains both discrete
and continuous probability distributions. In this case,
the model is often not dominated by a single proba-
bility distribution so that we need a generalization of
the definition given above. For every pair θ1, θ2 one
can define the density (likelihood) of Pθ1 and of Pθ2

wrt µθ1,θ2 ≡ Pθ1 + Pθ2 , even when Pθ1 is discrete and
Pθ2 is continuous. Now, we will call θ̂ a maximum
likelihood estimator of θ0 if

Lµθ̂,θ
(θ̂ |x) ≥ Lµθ̂,θ

(θ |x), for all θ ∈ Θ.

This definition is due to Kiefer & Wolfowitz [9]. It
is easily verified that if the model is dominated by a
single measure µ, then the two definitions agree with
each other. In the case that the model is semiparamet-
ric, the maximum likelihood estimator is called the
nonparametric maximum likelihood estimator. This
name can be misleading since it does not mean that
no assumptions on the distribution of X have been
imposed.

It is typically possible to identify the nonpara-
metric maximum likelihood estimator with a finite
dimensional vector so that it can be defined as the
maximizer of a real valued functional on a euclidean
space. This often allows one to consider the MLE as a
vector solution of a set of estimating (score) equations
(see Likelihood). In some semiparametric models
these estimating equations can be explicitly solved.
In general, numerical iterative subroutines for deter-
mining such a maximum or solution of a multivariate
estimating equation are available. In some applica-
tions specific algorithms might arise naturally.

There exist several examples in the literature
where one can explicitly solve for the nonparamet-
ric maximum likelihood estimator by deriving a set
of score equations. The following example shows
how one can obtain score equations via differentiation
along one-dimensional submodels (see [5]).

Example 2

Let T1, . . . , Tn be n iid copies of a univariate sur-
vival time T with cumulative distribution function
F , where F is completely unspecified. Let Fn be the
empirical cumulative distribution which jumps 1/n

at each observation. By definition, we have that F̂ is
a nonparametric maximum likelihood estimator of F

if for any distribution F1:

∫
log

[
dF̂

d(F̂ + F1)

]
dFn ≥

∫
log

[
dF1

d(F̂ + F1)

]
dFn.

(1)

Suppose F̂ exists. Let µn be a dominating measure
of F̂ . Then f̂ ≡ dF̂ / dµn maximizes

f →
∫

log(f ) dFn over all f = dF/ dµn,

with F dominated by µn. (2)

In parametric models we could derive empirical
score equations for the maximum likelihood estimator
by differentiating the loglikelihood wrt the param-
eters that indexed the density of T . Differentiation
wrt such a one-dimensional parameter means that
one moves from pθn

to some local alternative in
the particular direction implied by this parameter.
Therefore, in order to imitate this procedure of obtain-
ing score equations in our nonparametric case it is
natural to define one-dimensional submodels ε →
[1 + εh(t)]f̂ (t) which go through f̂ (t) at ε = 0 and
where h represents a direction in which we move
from f̂ to an alternative. This one-dimensional sub-
model should consist of densities and therefore we
need to enforce F̂ h ≡ ∫

h(t) dF̂ (t) = 0. Thus, we
can represent h with h′(t) − F̂ h′ for any uniformly
bounded function h′. We will delete the prime (′)
and just work with directions h − F̂ h, h being any
uniformly bounded function.

Because f̂ maximizes (2) we have that

φh(ε) ≡
∫

log{f̂ε,h(t)} dFn(t)



Nonparametric Maximum Likelihood 3

is maximized at ε = 0, where f̂ε,h(t) ≡ {1 + ε[h(t) −
F̂ h]}f̂ (t). Consequently, the derivative of the one-
dimensional log likelihood φh(ε) at ε equals zero.
Thus

∫
[h(t) − F̂ h] dFn(t) = 0 for all uniformly

bounded h,

which implies that F̂ h = ∫
h(t) dFn(t) for all uni-

formly bounded h. This proves that dF̂ = dFn. In
other words, the maximum likelihood estimator in
the completely nonparametric model is given by the
empirical cumulative distribution function Fn.

Alternatively, one can view the likelihood as a
function of a finite-dimensional vector of parameters
and obtain score equations by differentiating wrt these
parameters. In the following success story of nonpara-
metric maximum likelihood estimation we present
both approaches for obtaining score equations, each
of them leading to different insights in the maximum
likelihood estimator.

Example 3: Univariate Right-censoring Model

In survival applications T is often either observed
or right-censored by a censoring variable C. Let the
distributions F and G of T and C be completely
unspecified and we will assume that C is independent
of T . A right-censored observation on T can be
represented as

Y = [T̃ = T ∧ C, ∆ = I (T ≤ C)].

In other words, we observe the minimum of failure
and censoring and the failure indicator. The density
of Y can be represented as

pF,G(t̃ , δ) = { dF(t̃)G(t̃)}δ + {S(t̃) dG(t̃)}1−δ.

So the log likelihood is given by:

n∑

i=1

log[ dF(T̃i)]∆i + log[S(T̃i)](1 − ∆i)

+ log[G(T̃i)]∆i + log[ dG(T̃i)](1 − ∆i).

We are concerned with estimating F . For maximum
likelihood estimation we concentrate on maximizing
the relevant part of the likelihood wrt F given by

n∑

i=1

log[ dF(T̃i)]I (∆i = 1) + log[S(T̃i )]I (∆i = 0).

One can now obtain a set of score equa-
tions by differentiating the log likelihood wrt a
class of one-dimensional submodels dFε(x) = (1 +
εh(x)) dFn(x),

∫
h dFn = 0, through the nonpara-

metric maximum likelihood estimator Fn, as in the
preceding example. This shows that Fn solves the
self-consistency equations (see [4] and [5]):

Fn(t) = 1

n

n∑

i=1

EFn
[I (Ti ≤ t)|T̃i , ∆i],

which provides an important heuristic interpretation
to the estimator, explained in detail in the next
example.

The following alternative way of obtaining score
equations provides a closed-form solution Fn. First,
note that Fn is discrete on the uncensored obser-
vations T1, . . . , Tm. Then we can reparameterize
the log likelihood in terms of the jumps dΛ of
the hazard at the uncensored observations by sub-
stitution of dF(T̃i) = dΛ(T̃i)S(T̃i−) and S(T̃i) =∏

Tj ≤ T̃i[1 − dΛ(Tj )], where for a T̃i with ∆i = 0
we have S(T̃i ) = S(T̃i−). This shows that the log
likelihood can be expressed as

n∑

i=1




∆i log[ dΛ(Ti)] +
∑

Tj <T̃i

log[1 − dΛ(Tj )]




 .

Consider this as a function of (λ1, . . . , λm) ≡
[ dΛ(T1), . . . , dΛ(Tm)]. Let λn = (λ1n, . . . , λmn) be
the maximizer of the log likelihood. Let kj

be the number of uncensored observations at
Tj , j = 1, . . . , m, so with continuous data kj = 1.
Differentiation of the log likelihood wrt λ1 at λn

yields

0 = k1

λ1n

− 1

1 − λ1n

n∑

i=1

I (T̃i > T1).

Simple algebra yields:

λ1n = k1

k1 +
n∑

i=1

I (T̃i > T1)

.

Similarly, differentiation wrt λj yields

λjn = kj

kj +
n∑

i=1

I (T̃i > Tj )

, j = 1, . . . , m.
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In other words, the jump of Λn at Tj is given by
the number of uncensored observations at Tj divided
by the number of subjects at risk just before Tj . The
corresponding estimator Fn of F is the well-known
Kaplan–Meier estimator.

If the supremum of the likelihood over the model
is attained by an element at the boundary of the
model, where the boundary is not part of the model,
then the maximum likelihood estimator will not exist.
For example, if the model for a real-valued random
variable X consists of all continuous densities, then
the supremum over the likelihood of n iid observa-
tions is attained by the empirical probability distri-
bution, which is not an element of the model (see,
for example, [12]). However, if we restrict in this iid
setting the model to all monotone decreasing (increas-
ing) densities, then the maximum likelihood estimator
appears to be a histogram density estimator with vari-
able bandwidth [3, 7]. The latter estimator can be
computed as the left derivative of the convex mino-
rant of the empirical cumulative distribution function,
which yields an extremely fast algorithm for comput-
ing this beautiful maximum likelihood estimator. It
should be noted that in these problems where the sup-
port of the maximum likelihood estimator is unknown
as well, score equations as derived in the preceding
example do not uniquely characterize the maximum
likelihood estimator (see [8]).

The monotone density model and right-censored
data model provide examples for which the maxi-
mum likelihood estimator is very sensible. Roughly
speaking, it can be shown that if the nonparametric
maximum likelihood estimator of a parameter of Pθ

is root-n consistent, then it will also be asymptoti-
cally efficient (see, for example, [6]). In other words,
if it works, then it results in asymptotically optimal
estimators of root-n estimable parameters.

The fact that the nonparametric maximum likeli-
hood estimator tries to be efficient at every element
in the model is one of the main reasons why it
performs poorly in truly high-dimensional models
(e.g. involving several covariates). In [10] and [11]
it is reasoned that for semiparametric estimation with
high-dimensional data structures one should sacrifice
the global efficiency and instead search for estimators
which are consistent at every element of the model
and are efficient at a specified subset of the model.
By now, their presented method has been used and
applied in several high-dimensional censored data
models.

This article concludes with an example where the
NPMLE is inconsistent, but can be repaired success-
fully by slightly transforming the data.

Example 4: Bivariate Right censoring

Suppose that we are concerned with estimation of
the bivariate lifetime distribution S0 of a particular
population of twins (see Twin Analysis). Let T =
(T1, T2) be the corresponding bivariate survival time
(see Multivariate Survival Analysis) of a randomly
drawn twin from this population and assume that
each twin is subject to right-random censoring by
an irrelevant censoring vector C = (C1, C2). The iid
observations on n twins are now

Yi ≡ (T̃i , ∆i) ≡ [Ti ∧ Ci, I (Ti ≤ Ci)],

with components given by:

T̃ij = min{Tij , Cij },
∆ij = I (Tij ≤ Cij ), j = 1, 2.

In other words, for twin 1 we observe the minimum
of censoring and survival and we observe if this
minimum is the actual survival time of interest, and
similarly for twin 2. Each bivariate randomly right-
censored observation Yi tells us that Ti = (T1i , T2i)

has fallen in a region B(Yi) in the plane where this
region is a dot if both T1i and T2i are observed (uncen-
sored), it is a half-line if only one of the survival
times is right censored (singly censored), and it is a
right-upper quadrant if both T1i and T2i are right cen-
sored (doubly censored). Therefore, the data can be
nicely presented as in Figure 1 (disregard the strips,
at this stage). If we had observed all Ti, i = 1, . . . , n,
then the NPMLE Sn(t1, t2) of S(t1, t2) would equal
the fraction of the Ti which is larger than (t1, t2).
In other words, we would give each observation Ti

weight 1/n and sum up the weights of the Tis with
Ti > (t1, t2).

In general, we can still give all uncensored obser-
vations weight 1/n. An observation Yi only tells us
that Ti ∈ B(Yi); so we want to give the mass 1/n to
B(Yi) in an appropriate way. Assume that by using
the observations in B(Yi) we are able to obtain a
good estimator PF 0

n
(T ∈ ·|T ∈ B(Yi)) of the condi-

tional distribution P(T ∈ ·|T ∈ B(Yi)) of Ti given
that Ti ∈ B(Yi). Then a natural thing to do is to redis-
tribute the mass 1/n corresponding with the censored



Nonparametric Maximum Likelihood 5

Figure 1 Right-censored bivariate data; • = uncensored,
→= censored.

observation Yi over B(Yi) as follows (assume for con-
venience that the estimate is discrete): a point s > t

gets the following fraction of the mass 1/n : PF 0
n
(T =

s|T ∈ B(Yi)). If we do the redistribution for all cen-
sored observations, then we obtain a new estimator
F 1

n , which might be an improvement.
This suggests the following algorithm:

1. Let {s1, . . . , sk} be a set of points in the plane
which contains all uncensored Ti and it is such
that each B(Yi) (lines and quadrants) contains at
least one of these sis.

2. Give each si a weight f 0
n (si) > 0.

∑k
i=1 f 0

n (si) =
1. Set the count M = 0.

3. Compute a new estimator f M+1
n , as follows:

f M+1
n (si) =

n∑

j=1

Pf M
n

(T = si |T ∈ B(Yj ))
1

n
,

i = 1, . . . , k. (3)

In other words, a point si gets from each obser-
vation Yj mass 1/nPf M

n
(T = si |T ∈ B(Yj )), which

is zero if si 	∈ B(Yj ) and it is 1 if si equals the
observed Tj .
4. Replace M by M + 1 and go to step 3.

This is the EM algorithm [2, 14]. f M
n can be

shown to converge to a solution fn of (3) with f M =
f M+1 = fn. Eq. (3) in fn is the well-known self-
consistency equation of Efron [4], which is solved by

NPMLE. The latter can be shown as in the univariate
right-censoring example by differentiating the log
likelihood along one-dimensional submodels.

If an uncensored observation receives mass from
a censored observation at step M of the EM algo-
rithm, then this influences the conditional probabil-
ities Pf M+1

n
[T = s|T ∈ B(Yj )] of each region B(Yj )

which contains this uncensored observation. If the
underlying F is continuous, then the half-lines B(Yj )

corresponding with singly censored observations will
with probability one not contain any uncensored
observations. Then the conditional probabilities over
lines do not change at a step of the EM algorithm
by mass given to the uncensored observations; i.e.
a singly censored observation with half-line B(Yi)

does not listen to information given by uncensored
observations, but its redistribution over the half-line
might change by mass given by doubly censored and
other singly censored observations interacting with
B(Yi). Since uncensored observations around a half-
line provide a lot of information about the distribution
over the half-line, there is no reason to expect good
performance of Sn. Indeed, Sn is not consistent for
continuous data [13].

Suppose now that the uncensored components
of the singly censored observations Yi are interval
censored by a lattice partition Ak,l = (uk, uk+1] ×
(vl, vl+1], in the sense that (we do as if) it is only
known to lie in (uk, uk+1] (if T1 is uncensored) or
in (vl, vl+1] (if T2 is uncensored) (see Figure 1). In
this way we have reduced the original data Yi by
putting an additional slight transformation on top of
it, i = 1, . . . , n. The interval-censored singly cen-
sored observations tell us that Ti has fallen in a
strip around the original singly censored observation,
which will contain other uncensored observations,
and hence we expect a better result from the EM
algorithm. In [15] it is shown that if one reduces the
data in this manner, then the NPMLE based on the
reduced data is efficient for the reduced data and effi-
cient for the original data if the reduction converges
to zero slowly enough when n converges to infinity.
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Nonparametric Methods

Many of the earliest statistical procedures proposed
and studied rely on the underlying assumption of
distributional normality. How well these procedures
operate outside the confines of this normality con-
straint varies from setting to setting. Although there
were a few isolated attempts to create statistical pro-
cedures that were valid under less restrictive sets of
assumptions that did not include normality, such as
the early introduction of the essence of the sign test
procedure by Arbuthnott [2] in 1710, and the rank
correlation procedure considered by Spearman [51]
in 1904, it is generally agreed that the systematic
development of the field of nonparametric statis-
tical inference traces its roots to the fundamental
papers of Friedman [18], Kendall [31], Kendall &
Babington Smith [33], Mann & Whitney [38], and
Wilcoxon [58].

The earliest work in nonparametric statistics con-
centrated heavily on the development of hypothesis
testing that would be valid over large classes of
probability distributions – usually the entire class
of continuous distributions, but sometimes with the
additional assumption of distributional symmetry.
Most of this early work was intuitive by nature
and based on the principle of ranking (see Ranks)
to de-emphasize the effect of any possible outliers
on the conclusions. Point and interval estimation
expanded out of this hypothesis testing framework
as a direct result of centering of the test statistics and
test inversion, respectively (see Estimation, Inter-
val).

Most distribution-free test procedures (and associ-
ated confidence intervals) are based on one or more
of the following three fundamental properties.

Result 1. Let Z1, . . . , Zn be a random sample
from some probability distribution and let A be a
subset of the common domain for the Zs. If I (t)

represents the indicator function for this subset A,
then the random variable V = ∑n

i=1 I (Zi) has a
binomial distribution with parameters n and p =
Pr(Zi ∈ A).

Result 2. Let Z1, . . . , Zn be a random sample from
a continuous distribution with cumulative distribution
function (cdf) F(·), and let Ri denote the rank (from
least to greatest) of Zi among the nZs, for i =
1, . . . , n. Then the vector of ranks R = (R1, . . . , Rn)

has a joint distribution that is uniform over the set
of all permutations of the integers (1, . . . , n).

Result 3. Let Z be a random variable with a
probability distribution that is symmetric about the
point θ . Define the indicator function Ψ (·) by

Ψ (t) = 1, if t > 0,

= 0, if t ≤ 0.

Then the random variables |Z − θ | and Ψ (Z − θ) are
independent.

Statistics based solely on Result 1 are referred to
as counting statistics, those based solely on Result 2
are commonly known as ranking statistics, and those
based on an appropriate combination of all three
results are called signed-rank statistics. Over the
years of development in the field, distribution-free
procedures have certainly become more sophisti-
cated, both in the problems they address and in their
complexity. However, the underlying premise behind
almost all such hypothesis tests continues to rest
with these three basic results or with modifications
thereof.

Much of the early work in distribution-free hypo-
thesis tests followed the general approach of mim-
icking a standard normal theory procedure for a
statistical problem by replacing the sample values
with some combination of rank or counting statis-
tics. The first nonparametric test statistics looked
quite similar in form to their classical normal the-
ory counterparts. However, more recent advances in
nonparametric statistics have been less tied to pre-
viously developed normal theory structure and, in
fact, there have been a number of settings where
nonparametric procedures were the first to be devel-
oped, and classical procedures followed a few years
later.

It is the intent of this article to provide some brief
overview of nonparametric statistics. However, the
field has grown over the years to such a size that
one must rely on standard textbooks in the area for
a truly complete picture. The very first such text-
books in nonparametric statistics were the pioneering
works of Siegel [49] and Fraser [17], both arriving on
the scene in the infancy of the field. Walsh [55–57]
published a three-volume handbook covering those
nonparametric procedures available at the time. Other
texts and reference books have added to the literature
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of nonparametric statistics over the years, includ-
ing the applications-oriented books by Bradley [3],
Conover [5], Daniel [10], Gibbons [21], Hollander &
Wolfe [27], and Marascuilo & McSweeney [39]. The
text by Lehmann [36] occupies an intermediate place
in the literature. It has a general application orienta-
tion, but a considerable amount of the basic underly-
ing theory of some of the procedures is also presented
in a substantial appendix. Textbooks dealing pri-
marily with the theory of rank tests and associated
point estimators and confidence intervals have been
published by Gibbons [20], Hájek [22], Hájek &
Šidák [23], Hettmansperger [25], Noether [44], Pratt
& Gibbons [46], and Randles & Wolfe [47]. The
monograph by Kendall [32] covers the specialized
topic of rank correlation methods. These resources
vary on the extensiveness of their bibliographies, but
it is safe to say that the vast majority of published lit-
erature in the field of nonparametric statistics is cited
in at least one of these volumes.

One of the necessities in the application of distri-
bution-free test procedures and confidence intervals
is the availability of the exact null distributions of
the associated test statistics (see Null Hypothesis).
Extensive tables of many of these null distributions
are available in some of the applications-oriented
texts mentioned previously. In addition, recent soft-
ware developments have made it a good deal easier
both to compute the appropriate test statistics and
to obtain the associated P values for many of these
test procedures (see Software, Biostatistical). Of
particular note in this regard are the Minitab and
StatXact software packages, for both their rather
complete coverage of the basic nonparametric pro-
cedures and their ability to circumvent the need for
exact null distribution tables by providing the associ-
ated exact or approximate P values for many of the
test procedures (see Exact Inference for Categor-
ical Data). StatXact also has the option of actually
generating the required exact null distributions for
some of the better known test statistics, including the
appropriate modifications necessary in the case of tied
observations.

We first turn our attention to brief descriptions of
the most commonly used nonparametric procedures
in standard statistical settings involving one, two, or
more samples, including one- and two-way analy-
sis of variance and correlation. In each case, the
emphasis will be on the description of the problem
and a particular standard approach to its solution,

rather than on attempting to cover the myriad of dif-
ferent nonparametric procedures that are commonly
available for the problem.

Finally, we will discuss briefly a few nonstan-
dard topics where the development of nonparamet-
ric methods has been particularly motivated by the
need to analyze medical and health sciences data.
Included in these topics will be censored data and
survival analysis, as well as proportional haz-
ards models, counting processes, and bootstrap
methods.

One-sample Location Problem

Continuity Assumption Only

Let Z1, . . . , Zn be a random sample arising from an
underlying probability distribution that is continuous
with cdf F(·) and median θ . Here the primary interest
is in inference about θ .

Test Procedure. For this setting, we are interested
in testing the null hypothesis that θ = θ0, where θ0

is some preset value appropriate for the problem. If
no additional assumptions are reasonable about the
form of the underlying F , the most commonly used
inference procedures are those associated with the
sign statistic

B = [number of sample Zs that exceed θ0]

(see Sign Tests). The properties of B follow from the
basic counting Result 1 with the set A = (θ0, ∞). In
particular, B has a binomial distribution with num-
ber of trials n and success probability p = Pr(Z1 >

θ0). When the null hypothesis is true, we have p

= 1/2 (since θ0 is then the median of the under-
lying distribution) and the null distribution of B

does not depend on the form of F . The associated
level α sign procedure for testing H0, vs. the alter-
native H1 : θ > θ0, is to reject H0 if the observed
value of B exceeds bα , the upper αth percentile
for the null distribution of B, namely, the bino-
mial distribution with parameters n and p = 1/2
(see Level of a Test). The appropriate tests for
the other directional alternatives θ < θ0 and θ �=
θ0 rely on the fact that the binomial distribution
with n trials and p = 1/2 is symmetric about its
mean n/2.
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Point Estimation and Confidence Intervals/
Bounds. Natural nonparametric confidence inter-
vals and confidence bounds for θ are associated with
these sign test procedures through the common pro-
cess of inverting the appropriate hypothesis tests.
These intervals and bounds are based on the ordered
sample observations Z(1) ≤ Z(2) ≤ · · · ≤ Z(n). The
100(1 − α)% confidence interval for θ associated in
this manner with the level α two-sided sign test is
given by (Z(n+1−bα/2), Z(bα/2)), where bα/2 is again the
upper (α/2)th percentile for the binomial distribution
with parameters n and p = 1/2. The corresponding
100(1 − α)% lower and upper confidence bounds for
θ (obtained by inverting the appropriate one-sided
sign tests) are given by Z(n+1−bα) and Z(bα), respec-
tively. The Hodges–Lehmann [26] point estimator
of θ associated with the sign test is θ̃ = median
{Z1, . . . , Zn}.

Continuity and Symmetry Assumption

Let Z1, . . . , Zn be a random sample from an under-
lying probability distribution that is continuous and
symmetric about its median θ . Once again the pri-
mary interest is in inference about θ .

Test Procedure. We remain interested in testing the
null hypothesis that θ = θ0. However, the additional
symmetry assumption now enables us to provide gen-
erally more powerful test procedures. For this setting,
the most commonly used inference procedures are
those associated with the Wilcoxon signed-rank test
statistic [58],

T + =
n∑

i=1

RiΨi,

where Ψi = 1, 0 as Zi >, < θ0, and Ri is the rank
of |Zi − θ0| among |Z1 − θ0|, . . . , |Zn − θ0|. Thus,
the Wilcoxon signed-rank statistic corresponds to the
sum of the |Z − θ0| ranks for those Zs that exceed
the hypothesized median value θ0. [Since we have
a continuous underlying distribution, the probability
is zero that there are ties among the absolute val-
ues of the (Zi − θ0)s. Likewise, the probability is
zero that any of the Zis actually equals θ0. How-
ever, these events may occur in actual data sets.
In such an event, it is standard practice to discard
the Zis that equal θ0 and reduce n accordingly.
Ties among the absolute values of the (Zi − θ0)s

are generally broken by assigning average ranks
to each of the absolute differences within a tied
group.]

Properties of T + under H0: θ = θ0 derive directly
from Result 3, which yields the independence of the
ranks of the |Zi − θ0|s and the Ψis, and Result 2,
which implies that the ranks of the |Zi − θ0|s are
uniformly distributed over the set of permutations
of the integers (1, . . . , n) under H0. The associ-
ated null distribution of T + does not depend on the
form of the underlying F(·) and has been exten-
sively tabled (see, for example, [27] and [59]). The
associated level α signed-rank procedure for test-
ing H0 vs. the alternative H1: θ > θ0 is to reject H0

if the observed value of T + exceeds tα , the upper
αth percentile for the null distribution of T +. The
appropriate tests for the other directional alterna-
tives θ < θ0 and θ �= θ0 rely on the fact that the
null distribution of T + is symmetric about its mean
n(n + 1)/4.

Point Estimation and Confidence Intervals/
Bounds. Once again, natural confidence intervals
and confidence bounds for θ are associated with
these signed-rank procedures through inversion of
the appropriate hypothesis tests. These intervals and
bounds are based on the ordered values of the M =
n(n + 1)/2 Walsh averages of the form Wij = (Zi +
Zj )/2, for 1 ≤ i ≤ j ≤ n. Letting W(1) ≤ · · · ≤ W(M)

denote these ordered Walsh averages, the 100(1 −
α)% confidence interval for θ associated with the
level α two-sided signed-rank test is given by
(W(M+1−tα/2), W(tα/2)), where once again tα/2 is the
upper (α/2)th percentile for the null distribution
of T +. The corresponding 100(1 − α)% lower and
upper confidence bounds for θ (obtained by invert-
ing the appropriate one-sided signed-rank tests) are
given by W(M+1−tα) and W(tα), respectively. The
Hodges–Lehmann [26] point estimator of θ associ-
ated with the signed-rank test is θ̂ = median {Wij ,

1 ≤ i ≤ j ≤ n}.
We note that both the sign and signed-rank infer-

ence procedures can be applied to paired replicates
data (Xi, Yi), where Xi represents a pretreatment
measurement on a subject and Yi represents a post-
treatment measurement on the same subject, and we
collect such paired data from i = 1, . . . , n indepen-
dent subjects. The appropriate sign or signed-rank
procedures are then applied to the post-minus-pre dif-
ferences Zi = Yi − Xi, i = 1, . . . , n.
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Two-sample Location Problem

Let X1, . . . , Xm and Y1, . . . , Yn be independent ran-
dom samples from the continuous probability distri-
butions with cdfs F(·) and G(·), respectively. We
consider here the case where G(y) = F(y − ∆), with
−∞ < ∆ < ∞; that is, the X and Y distributions dif-
fer only by a possible location shift ∆, and we are
interested in inference about ∆.

Test Procedure. For this setting, the appropriate
null hypothesis is that ∆ = ∆0, where ∆0 is some
preset value (often zero) of interest for the shift. The
most commonly used nonparametric inference proce-
dures for this setting are those associated with the
rank sum version of the Wilcoxon–Mann–Whitney
[38, 58],

W =
n∑

j=1

Rj ,

where Rj is the rank of Yj among the combined
sample of N = (m + n) observations X1, . . . , Xm,

Y1, . . . , Yn. (Once again, ties among the Xs and/or
Y s are broken by assigning average ranks to each of
the observations within a tied group.)

Properties of W under H0: ∆ = 0 (corresponding
to no differences between the X and Y probability
distributions) follow directly from the basic ranking
Result 2, which implies that the joint ranks of
X1, . . . , Xm, Y1, . . . , Yn are uniformly distributed
over the set of permutations of the integers
(1, . . . , N) under H0. The associated null distribution
of W does not depend on the form of the common
(under H0) underlying distribution F(·) and has been
extensively tabled (see, for example, [27] and [59]).
The associated level α rank sum procedure for testing
H0 vs. the alternative H1: ∆ > 0 is to reject H0 if
the observed value of W exceeds wα , the upper
αth percentile for the null distribution of W . The
appropriate tests for the other directional alternatives
∆ < 0 and ∆ �= 0 rely on the fact that the null
distribution of W is symmetric about its mean n(m +
n + 1)/2.

Point Estimation and Confidence Intervals/
Bounds. As in the one-sample setting, natural con-
fidence intervals and bounds for ∆ are associated
with these rank sum procedures through inversion of
the appropriate hypothesis tests. These intervals and

bounds are based on the ordered values of the mn dif-
ferences Uij = Yj − Xi, i = 1, . . . , m, j = 1, . . . , n.
Letting U(1) ≤ · · · ≤ U(mn) denote these ordered dif-
ferences, the 100(1 − α)% confidence interval for ∆

associated with the level α two-sided rank sum test
is given by U({[n(2m+n+1)+2]/2}−wα/2), U(wα/2−[n(n+1)/2]),
where once again wα/2 is the upper (α/2)th per-
centile for the null distribution of W . The cor-
responding 100(1 − α)% lower and upper confi-
dence bounds for ∆ (obtained by inverting the
appropriate one-sided rank sum tests) are given by
U({[n(2m+n+1)+2]/2}−wα) and U(wα−[n(n+1)/2]), respec-
tively. The Hodges–Lehmann [26] point estimator
of ∆ associated with the rank sum test is ∆̂ =
median {Uij , i = 1, . . . , m, j = 1, . . . , n}.

Other Two-sample Problems

The possibility of differences in location between the
X and Y distributions is certainly the most common
problem of interest in the two-sample setting. How-
ever, there are circumstances where differences in
scale are of primary concern, as well as situations
where it is important to detect differences of any kind
between the X and Y distributions. For discussion on
nonparametric two-sample procedures designed for
scale differences, see Wilcoxon-type scale tests. The
development of nonparametric procedures designed
to be effective against any differences between the
X and Y distributions was initiated by the pioneering
work of Kolmogorov [34] and Smirnov [50]. These
papers have inspired a substantial body of research
on such omnibus two-sample procedures (see Kol-
mogorov–Smirnov Test).

One-way Analysis of Variance: k �� 3
Populations

This is a direct extension of the two-sample loca-
tion problem. The data now represent k mutually
independent random samples of observations from
continuous probability distributions with cdfs
F1(x) = F(x − τ1), F2(x) = F(x − τ2), . . . , Fk(x)

= F(x − τk), where F(·) is the cdf for a continuous
population with median θ and τ1, . . . , τk represent
the additive effects corresponding to belonging to
population 1, . . . , k, respectively. Here, our interest
is in possible differences in the population effects
τ1, . . . , τk .
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Test Procedures. For the one-way analysis of vari-
ance setting, we are interested in testing the null
hypothesis H0: [τ1 = · · · = τk], corresponding to no
differences in the medians of the k populations. For
this setting, the most commonly used test proce-
dures correspond to appropriate extensions of the
Mann–Whitney–Wilcoxon joint ranking scheme as
specifically directed toward the particular alternative
of interest. For testing the null H0 vs. the stan-
dard class of general alternatives H1: (not all τis
equal), the Kruskal–Wallis [35] test is the most pop-
ular procedure. For one-sided ordered alternatives of
the form H2: (τ1 ≤ τ2 ≤ · · · ≤ τk , with at least one
strict inequality), the appropriate extension is that
proposed independently by Jonckheere [28] and Terp-
stra [54]. Finally, for umbrella alternatives H3: (τ1 ≤
τ2 ≤ · · · ≤ τq−1 ≤ τq ≥ τq+1 ≥ · · · ≥ τk , with at least
one strict inequality), with either the peak of the
umbrella, q, known a priori or estimated from the
data, the standard test procedures are those proposed
by Mack & Wolfe [37].

Multiple Comparisons and Contrast Estimation.
After rejection of H0: (τ1 = · · · = τk) with an
appropriate test procedure, one is most often
interested in deciding which of the populations are
different and then in estimating the magnitudes
of these differences. This leads to the use of
multiple comparison procedures, based either on
pairwise or joint rankings of the observations. With
pairwise rankings, where two-sample ranks are used
to compare separately the sample data for each of
the

(
k

2

)
pairs of populations, the most commonly

used multiple comparison procedures are those
considered by Dwass [12], Steel [53], and Critchlow
& Fligner [7] for two-sided all-treatment differences,
and by Hayter & Stone [24] for one-sided all-
treatment differences. The corresponding two-sided
all-treatment multiple comparison procedure based
on joint rankings, where the sample data from all
k populations are ranked jointly, has been studied
by Nemenyi [43] and Damico & Wolfe [8], while
the joint rankings multiple comparison procedure
for one-sided treatments vs. control decisions can
be found in [43] and [9]. Point estimation of any
contrasts in the τ s (that is, any linear combination
β = ∑k

i=1 aiτi , with
∑k

i=1 ai = 0) is discussed in
Spjøtvoll [52]. Simultaneous two-sided confidence
intervals for all simple contrasts of the form τj − τi

have been developed by Critchlow & Fligner [7],

while the corresponding simultaneous one-sided
confidence bounds (see Simultaneous Inference)
were studied by Hayter & Stone [24].

Two-way Analysis of Variance

We consider here the standard two-way layout set-
ting, where the data consist of one observation on
each combination of k treatments and n blocks (see
Randomized Complete Block Designs). The obser-
vation in the ith block and j th treatment combination,
denoted by Xij , arises from a continuous probability
distribution with cdf F(x − βi − τj ), where F(·) is
the cdf for a continuous distribution with median θ ,
for i = 1, . . . , n; j = 1, . . . , k. Moreover, the nk Xs
are assumed to be mutually independent random vari-
ables. (This is known as the additive two-way layout
model.) Here, our interest is in possible differences
among the treatment effects τ1, . . . , τk .

Test Procedures. For the two-way layout with one
observation per cell, we are interested in testing the
null hypothesis H0: (τ1 = · · · = τk), corresponding to
no differences in the k treatment effects. For this
setting, the most commonly used procedures cor-
respond to appropriate extensions of the sign test
procedure for paired replicates data as specifically
directed toward a particular alternative of interest.
For testing the null H0 vs. the standard class of
general alternatives H1: (not all τis equal), the Fried-
man [18] test procedure is based on within-blocks
ranks of the observations across treatment levels. For
ordered alternatives of the form H2: (τ1 ≤ τ2 ≤ · · · ≤
τk , with at least one strict inequality), the appropri-
ate test based on within-blocks ranks is that given by
Page [45].

Multiple Comparisons and Contrast Estimation.
After rejection of H0: (τ1 = · · · = τk) with an appro-
priate test procedure, one can use either the multiple
comparison procedure studied by Nemenyi [43] and
McDonald & Thompson [40] to reach the k(k − 1)/2
all-treatments two-sided decisions of the form τi = τj

vs. τi �= τj , or the corresponding treatments vs. con-
trol multiple comparison procedure due to Neme-
nyi [43], Wilcoxon & Wilcox [60], and Miller [41]
to reach the k − 1 treatments vs. control one-sided
decisions of the form τj > τcontrol. A method for point
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estimation of a contrast in the τ s can be found in
Doksum [11].

Independence

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from
a continuous bivariate probability distribution (see
Bivariate Distributions). The most common distri-
bution-free tests for the independence of the X and
Y variables are those considered by Kendall [31] and
Spearman [51] (see Rank Correlation). The null dis-
tribution properties of both of these test procedures
are based on the basic Result 2 and the fact that the
ranks of the Xs and the separate ranks of the Y s
are themselves independent under the independence
of X and Y . Approximate 100(1 − α)% confidence
intervals and bounds for the Kendall correlation coef-
ficient γ = {2 Pr[(Y2 − Y1)(X2 − X1) > 0] − 1} have
been provided by Noether [44], Fligner & Rust [16],
and Samara & Randles [48].

Censored Data

One of the areas where nonparametric methods have
played a major role in the analysis of medical and
health sciences data in particular has been that of
survival analysis of censored lifetime data. We dis-
cuss the basic concepts involved in dealing with
censored data in the one-sample setting and then
provide brief descriptions of the most important non-
parametric methods available for other selected set-
tings.

There are times in the collection of data that
we are prevented from actually observing the val-
ues of all of the observations. Such censoring lead-
ing to only partial information about the random
variables of interest can be a direct result of the
statistical design governing our data collection or
it can be purely a consequence of additional ran-
dom mechanisms affecting our data collection pro-
cess.

Considerable attention in the literature has been
devoted to three particular types of censoring, which
we now describe. The first of these, known as type I
censoring, corresponds to a fixed (preset) censoring
time, tc, at which the study is to come to an end. In
this setting, instead of observing the random vari-
ables Z1, . . . , Zn of interest, we are only able to
observe the truncated variables Wi = min(Zi, tc), i =

1, . . . , n. Type I censoring corresponds to medical
and health sciences studies conducted for a fixed
period of time after initiation and no entry to the
study once begun.

A second type of censoring, known as type II cen-
soring, corresponds to collecting survival (lifetime)
data until a fixed number, say r < n, of the sub-
jects have failed. Once this has occurred, the study
is terminated. In this setting, we only observe the
r smallest lifetimes (i.e. the first r order statistics)
among Z1, . . . , Zn. All we know about the remaining
n − r unobserved lifetimes is that they are at least as
long as the final observed failure.

A third type of censoring, called random cen-
soring, is probably the most common and the most
complicated type of censoring associated with medi-
cal and health sciences data. In this setting, not only
are the lifetimes random but the censoring times are
also random. In clinical trials, for example, such ran-
dom censoring could correspond to a study where
not all subjects enter the study at the same time, but
the study ends at one time, or to subjects leaving a
study because they moved from the area or because
of serious side-effects leading to discontinuation of
the treatment.

Probably the earliest nonparametric approach to
dealing directly with censored lifetime data was pro-
vided by Kaplan & Meier [30] in their development
of the product limit estimator for the survival func-
tion S(t) = 1 − G(t), −∞ < t < ∞ (see Survival
Distributions and Their Characteristics). The first
two-sample rank procedure designed specifically to
test hypotheses with censored data was provided
by Gehan [19]. He proposed a direct extension of
the Mann–Whitney form of the Mann–Whitney–
Wilcoxon test statistic that provided a natural way
to handle censored values occurring in either the X

and/or Y sample data. A generalization of the Gehan
two-sample test to the k-sample (k ≥ 3) setting has
been provided by Breslow [4]. For additional discus-
sion of such rank-based procedures for censored data,
the reader is referred to [42].

Other Important Nonparametric
Approaches

Brief mention must also be made here of three other
major initiatives in the development of nonparametric
approaches to the analysis of medical and health
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sciences data. Paramount among such developments
is that of the proportional hazards model initially
proposed by Cox [6] (see Cox Regression Model).
Seldom has any single paper had such an impact
on further research in the field. Kalbfleisch & Pren-
tice [29] provide a nice discussion of the analysis
of survival data by the use of the Cox proportional
hazards model and extensions thereof. A second
important thrust of more recent vintage has been the
application of counting process methods in sur-
vival analysis. For a good discourse on this important
methodology, the reader is referred to [1]. Finally,
we need to mention the advent of the bootstrap as
an important tool in the analysis of medical data.
The survey articles [14] and [15] serve very well as
introductions to this important topic, and its appli-
cation to the analysis of censored data is discussed
in [13].
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Nonparametric
Regression Analysis of
Longitudinal Data

Introduction

Longitudinal data involve repeated measurements
that are recorded over a period of time on the same
subject. The number of measurements for each sub-
ject may be different and is denoted by ni for the
ith subject when there are a total of n subjects in
the study. We use N = ∑n

i=1 ni to denote the total
number of observed measurements on all subjects.
The time points at which those measurements were
taken are also often different and are denoted by
ti1, . . . , tini

. We use Yij = Y (tij ) to denote a mea-
surement for the ith subject at the j th time point,
and Yi = (Yi1, . . . , Yini

) to denote the observed vec-
tor for the ith subject. This leads to a correlation
structure between the repeated measurements within
the same subject. Longitudinal data arise commonly
in health sciences and engineering research, but dif-
ferent terms have been applied to describe them.
They are usually referred to as “longitudinal data”
in biomedical applications, where a small number
of repeated measurements, ni , over time per subject
is common, and as “functional data” in engineering
and biological applications, where ni is often large.
Statistical approaches to analyze such data have also
been intrinsically different for longitudinal and func-
tional data. Longitudinal data are treated as vectors,
Yi, with subject-specific dimension ni for the ith sub-
ject, while functional data are regarded as realizations
of random processes with smooth paths, Y (t), that
are observed at discrete time points. Parametric GEE-
based marginal models and parametric random effects
models are the predominant approaches for longitu-
dinal data, and non- or semiparametric approaches
are the standard practice to analyze functional data.
Recent challenges in the biomedical and biological
fields prompted the development of more complex
and flexible approaches to model longitudinal data.
Nonparametric regression, well known to be more
data adaptive and less restrictive than parametric
approaches, thus emerged as a promising alternative
to handle longitudinal data. For readers searching for
such nonparametric approaches in the literature, a
keyword to include is “functional data” in addition

to “longitudinal data”. The two books [20] and [21]
on functional data analysis provide an excellent intro-
duction to this topic.

In this article, we focus on situations in which the
responses for the experimental subjects are longitu-
dinal data. The covariates can be a baseline vector
(X), a time-varying covariate vector (X(tij )), which
is longitudinal data itself, or a combination of both.
Key issues in nonparametric regression for such data
include inference for the overall mean and nonpara-
metric fixed effects, and modeling of the within-
subject covariance structure through nonparametric
random effects. We will use the fecundity data set
described in the next section to illustrate these issues.

We begin with nonparametric mean function esti-
mation, treating the overall mean as a function
on a time interval, [0, T ], over which data were
recorded for the subjects. This overall mean func-
tion is assumed to be smoothed and is often referred
by researchers as the mean curve.

Estimating the Overall Mean as a
Function of Time

We assume that the overall mean function (or mean
curve), µ(t) = E(Y (t)), is an unknown but smooth
function on [0, T ]. Hence, E (Yij ) = µ(tij ). If we
ignore for the moment the within-subject correlations,
then the mean function can be regarded as a nonpara-
metric regression function with the regressor being
the time variable. A scatter-plot smoother can then
be applied to all N observed data points (tij , Yij )

to estimate the mean function µ(·). Specifically, the
estimate at a particular time t is

µ̂(t) =
n∑

i=1

ni∑

j=1

wijYij . (1)

This is simply a weighted average of all the N

measurements, where the weights wij depend on
the design points tij and the particular smoother.
The choice of the smoother can be subjective and
common choices include the kernel method [8], local
polynomials [6], [14] and [32] and splines [22], [23]
and [24].

Standard software such as S-plus can be employed
easily to obtain a mean function estimate. The only
difference with respect to the standard nonparamet-
ric regression setting is that repeated measurements
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are available for each subject. For this reason, the
estimated mean function in (1) can be expected to be
consistent if n tends to infinity, provided the time
points tij are spread out over the design interval
[0, T ].

However, standard nonparametric smoothing
methods may need to be adjusted for longitudinal
data. An example for such an adjustment is the
choice of smoothing (or tuning) parameter that is
required by all smoothing methods. For the popular
cross-validation method, it was shown in [22] that a
leave-one-subject-out scheme should be employed for
longitudinal data rather than the standard leave-one-
observation-out scheme. All smoothing procedures
require the proper choice of a tuning parameter. This
problem is less understood and studied in longitudinal
settings, and further research is needed.

Example of Reproductive Fecundity Data: We
illustrate here the mean function estimate through
a data set collected on 1000 female Mediterranean
fruit flies (medflies) that was analyzed in [6]. Daily
egg production, in terms of the number of eggs laid,
were recorded individually until death for each of
the 1000 female medflies. This results in a sample
of 1000 longitudinally recorded fecundity curve data,
with Yij = number of eggs laid on day j by fly i.
The goal is to explore the reproductive behavior of
medflies through the pattern and modes of variation
of these fecundity curves, Y (t). Such information is
important because reproduction is considered by evo-
lutionary biologists as the single most important life
history trait besides lifetime itself. See [6] and the
references therein for details and information on bio-
logical features of the experiment.

Figure 1 provides the mean function estimates at
various bandwidths based on a local linear scatter-
plot smoother. Details of the procedure, including
the leave-one-subject-out cross-validated bandwidth
choice, are available in [6]. Because of the large
number of subjects (there are 1000 flies) in the
study and the dense recording per subject (repeated
measurements were available daily), cross-validation
selected a very small bandwidth at 2.5 days. The
mean curve based on the larger bandwidth 15 is
smoother but has larger bias than the mean curve
based on the smaller bandwidth 2.5, as is expected
for any nonparametric smoothing procedure.

The smoothing weights for the scatter-plot
smoothing procedure in Figure 1 were determined
by the choice of the local linear smoother and
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Figure 1 Mean egg-laying curves of 1000 female Mediter-
ranean fruit flies. (a) Daily cross-sectional means of flies
alive at the beginning of the day (Ž); (b) smoothed
mean curve with fixed bandwidth b = 15 (- - - - - - );
(c) smoothed mean curve with cross-validated bandwidth
choice b = 2.5 ( )

the corresponding bandwidths following the standard
practice in nonparametric regression. The within-
subject correlation structure was not incorporated.
An intriguing question for longitudinal data is how
to effectively adjust the weights wij in (1) in
the smoothing step to reflect the within-subject
correlation structure of Yi. This was cleverly
demonstrated for the case of smoothing splines in
[29], and for local polynomial smoothers in [27] and
[28]. It was shown that the asymptotic variance of
the mean function estimators can be minimized if
the weights are selected properly. However, these
optimal weights require the use of the true within-
subject correlation structure and do not necessarily
minimize the asymptotic bias. The bias issue is more
elusive and has not been resolved.

Nonparametric Fixed-effects Covariates

The procedures and discussion in the previous section
apply directly to covariates other than time. To esti-
mate the regression function E(Yi|Xi), corresponding
to fixed effects of covariates Xi, simply replace in
the scatter-plot smoother the tij by Xij for time-
varying covariates, and by Xi for vector covariates.
Another framework mimicking the marginal approach
of (Generalized Estimating Equations) can be found
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in [14], [27], [28] and [29], where E(Yij |Xij ) =
µij = h(g(Xij )), with h a known and differentiable
link function, and g an unknown smooth function.
Here, the covariance structure of the response Yi is
also assumed to be a function of the means µij , as
suggested in the generalized linear model setting. The
asymptotic variance of the minimum variance esti-
mate, ĝ(·), was derived in [29] for smoothing splines
and in [28] for local polynomial estimators. Addi-
tional results on semiparametric marginal models are
also available in these two articles and [15] and [18].

Nonparametric Random effects

The overall mean function in Section 2 represents the
population average, but individual trajectories may
vary owing to subject effects, which also contribute
to correlated repeated measurements within the same
subject. Subject-specific random effects can be added
for example by assuming as follows:

Yi(t) = µ(t) + vi(t) + ei(t), i = 1, . . . , n, (2)

where µ is the unknown overall mean function, vi

are unknown subject-specific random effects reflect-
ing the individual variation from the overall mean
function, and ei are measurement errors independent
of vi . The random effects are often regarded as real-
izations of a mean zero random process with smooth
paths. It is thus expected that both the smoothed mean
and random effects functions in (2) can be approxi-
mated using some basis functions. A B-spline basis,
such as cubic splines, is a common choice and was
proposed independently in [23] and [24], resulting in
the following mixed-effects model:

Yi(t) =
K∑

k=1

βkBk(t) +
K∑

k=1

bkBk(t) + ei(t). (3)

Here, βk are coefficients, bk are random variables
with mean zero, Bk(·) is a basis of spline func-
tions on [0, T ], and e(t) is the measurement error.
Consequently, the first summand yields the popula-
tion mean function and corresponds to a fixed effect,
while the second summand represents the random
effects attributed to subject variations and describes
the within-subject correlation structure. It is possible
to use separate bases for random and fixed effects in
equation (3). If we further assume normality for bk

and ei , then model (3) becomes a linear mixed-effects

model and thus can be fitted using either S-PLUS
LME or SAS PROC MIXED. This computational
advantage is an attractive feature of the B-spline
approach. However, it requires the choice of the
spline basis and the number of basis functions K ,
which in turn involves fairly complex choices of the
number and location of knots. Cross-validation proce-
dures or information-based criteria such AIC and BIC
are among the suggestions in [23] for the choice of
knots, but the issue is elusive and remains unsettled.

The B-spline basis approach may have difficulties
for a data set that requires a large number of basis
functions. This is because the degrees of freedom
involved in (3) may be too small or even negative
for sparse data. One solution is to use instead a local
basis such as local polynomials in model (3) as only
a low-degree polynomial is needed locally to fit the
data, and often a linear polynomial suffices. This is
explored in [32]. The trade-off is computation time
as smoothing is done locally at each point while the
B-spline approach is a global smoothing procedure.

Another remedy for the B-spline procedure is pro-
posed in [10] and is based on the reduced rank
procedure that involves the use of principal com-
ponents. This approach aims at reducing the actual
number of parameters needed in the nonparametric
mixed-effects model (3) so that one can increase the
degrees of freedom. However, it often involves a
compromise in terms of computational feasibility and
model flexibility. An alternative is the principal com-
ponent analysis approach, a commonly used method
for functional data that can be adapted to longitudinal
data.

Principal Component Analysis Approach

Simply put, this approach just replaces the prespec-
ified basis Bk in (3) by the eigenfunctions of the
covariance operator of the response. This is the
essence of principal component analysis and results
in a data-adaptive basis that can effectively reduce
the number of basis functions needed to model the
random effects. They are effective dimension reduc-
tion tools for longitudinal data. The concept is similar
to the problem to find the best K-dimensional linear
model for stochastic processes, and has been extended
in [4] and [22] to the case of functional or longitudi-
nal data and termed functional principal components
analysis.
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Here, the response functions Yi(t) are considered
realizations of smooth L2 process with mean µ(t) and
covariance function cov(Y (s), Y (t)) = γ (s, t). The
covariance function γ allows a spectral decomposi-
tion into orthonormal eigenfunctions ρk(·).

γ (s, t) =
∞∑

k=1

λkρk(s)ρk(t), (4)

with ordered nonnegative eigenvalues λ1 ≥λ2 ≥
. . . ≥ 0.

Let 〈·, ·〉 denote the inner product in L2 space.
The Karhunen-Loève representation for a randomly
selected curve is

Y (t) = µ(t) +
∞∑

k=1

Akρk(t), (5)

where the random variables ak correspond to the
principal component scores, and are given by

Ak = 〈ρk, Y − µ〉. (6)

The principal components Ak in (6) are uncorrelated
random variables with

E(Ak) = 0, var(Ak) = λk,

∞∑

k=1

λk < ∞,

that is, the kth eigenvalue in (4) corresponds to the
variance of the kth principal component as in the
multivariate case. The principal components Ak and
basis functions ρk in (5) can be interpreted as defining
the variation of the stochastic process about its mean
function, and A1ρ1 explains the maximum amount of
variation in Y among all functions that involve a sin-
gle real-valued random variable. Similarly, the func-
tion A2ρ2 explains the maximum additional amount
of process variation that is unexplained by A1ρ1, and
so forth, for k = 3, 4, . . ..

Methods to estimate the eigenfunctions and princi-
pal components are described in [22] on the basis of
smoothing splines. The leave-one-subject-out cross-
validation method to select the number of eigen-basis
is also first proposed there. Theoretical properties
of the functional principal components estimates can
be found in [19] under the hypothetical assumption
that the entire process Y (t) is observable. Similar
theoretical results for another functional principal
components approach based on kernel smoothers are
provided in [2].

Compared to the nonparametric mixed-effects
model in (3), functional principal component analysis
is more data adaptive and therefore typically requires
fewer basis functions. It also has the advantage to
allow direct interpretations in terms of modes of
variation of the underlying process and is favored
by biologists to explore the covariance structure of
the data. Although functional principal component
analysis is not yet available on standard statistical
packages, it is not difficult to write code in either
MATLAB or S-PLUS to perform this analysis.

Example of Fecundity data: To incorporate subject-
specific random effects of the reproduction process
of medflies, we perform principal component analy-
sis on the fecundity data. As in [6], we restricted the
analysis to the first 50 days of lifetime owing to high
variability of the fecundity curves beyond day 50.
This circumvents the problem of the eigen-analysis
being dominated by erratic tail behavior of the data
and provides a more sensible analysis. See [6] for
more details. The rest of the principal component
analysis presented below is based on the first 50 days
of daily egg counts for the 167 flies that lived beyond
day 50. The egg-laying curves Yi(t), i = 1, . . . , 167,
are considered as realizations of a stochastic process
on the interval T = [0, 50].

We applied the eigen-analysis based on local linear
smoothing as described in [6]. The optimal num-
ber of principal components based on AIC is nine,
but there is little gain after four components as
these four components explain 95.88% of the total
variation of the fecundity data. The eigenfunctions
corresponding to the largest four eigenvalues of the
covariance function, γ (s, t), are shown in Figure 2.
This example demonstrates how principal component
analysis effectively reduces the dimension of the data
from an infinite-dimensional curve to a few compo-
nents. In fact, selecting two components may suffice
as they explain already 82% of the total variation
based on Figure 2. To see whether one can reason-
ably predict the shape of the fecundity curve using
just two principal components, we proceed to fit
the fecundity curves of four randomly selected flies
using the Karhunen-Loève representation (5) with
two components.

Figure 3 exhibits the observed and predicted egg-
laying profiles of individual flies, as well as the over-
all mean curve. The overall mean curve would be the
predicted curve when no random effects are included.
As can be seen form Figure 3, the functional PCA
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Figure 2 First four eigenfunctions for egg-laying data. The fraction of variation explained by each of these components
are 0.6183, 0.2090, 0.0779 and 0.0536 respectively

approach seems to fit the curves reasonably well and
has much less bias than the overall mean curve. We
have thus demonstrated the effectiveness of the non-
parametric principal components analysis approach
for longitudinal data.

Although the fecundity data illustrated here were
sampled at the same time points (daily in this case),
the procedure can as well be applied to longitudinal
data sampled at irregular time points.

Nonparametric Mixed-effects Models with
Covariates

The procedures in the previous section allow to
handle the time effects for a sample of individuals
from the same population. When there are other
covariates X that affect the longitudinal response
data, one needs to incorporate these covariate effects
in addition to the time effects. This has been explored

for vector covariates in [6] by taking the conditional
expectation with respect to X on both sides of (5).
As a result, we have the following model:

E(Yi(t)|Xi) = µ(t) +
∞∑

k=1

E(Aik|Xi)ρk(t) (7)

Procedures to estimate all the components includ-
ing the mean function, the eigenfunctions and the
conditional principal components E(Aik|Xi) can be
found in [6], which also includes a semiparametric
index model to tackle situations when the vector X is
high dimensional. It is interesting to note here that the
fixed effect of a covariate in (7) is derived from the
unconditional principal components Aik and eigen-
functions ρk(t). This is because although Aik has
overall mean zero, the conditional mean E(Aik|Xi)

in (7) is not zero and thus contributes to the fixed
effects. Additional random effects can then be added
to the model through bik = Aik − E(Aik|Xi) to reach
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Figure 3 Observed data, predicted egg-laying curves and mean egg-laying curves for four randomly selected subjects

the following nonparametric mixed-effects model:

Yi(t) = µ(t) +
∞∑

k=1

E(Aik|Xi)ρk(t) +
∞∑

k=1

bikρk(t).

(8)

Other types of mixed-effects functional PCA
regression models include [3] and [25], and more
parsimonious semiparametric mixed-effects models
include [26] and [33].

Other Non- and Semiparametric
Regression Approaches

So far, we have discussed briefly a few nonparametric
approaches for longitudinal/functional data. There are
many other non- and semiparametric alternatives.
One of them is the Generalized Additive Model
(GAM) of the form:

E(Yi(t)) = β0 +
P∑

k=1

gk(Xitk) + ei(t), (9)

where (Yi(t), Xit1, . . . , XitP ) is observed at time t
for the ith subject with P -dimensional covariates
denoted by Xitj at time tj . The functions gk in (8) are
unknown smooth functions. Backfitting algorithms
were proposed in [1] and [30], and inference pro-
cedures studied in [16].

When the data exhibit a common shape or struc-
ture, a smooth curve g can be used to model this
common shape with individual responses adjusted
by some parametric transformation of the common
curve. This is referred to as self-modelling regres-
sion (SEMOR) in [13] and studied in [12] and [17]
among others. A more general semiparametric model
that includes SEMOR is recently proposed in [11].

Another approach that has emerged recently to
model longitudinal data is the varying-coefficients
model of the form:

Yi(t) = µ(t) +
K∑

k=1

β(t)Xi(t) + ei(t). (10)
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This was first applied to longitudinal data in [9], and
subsequently studied in [5], [7] among others. See
the review of this model in [31] for details.
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Nonparametric Regression

Nonparametric methods of regression seek to describe
the relationship between an explanatory variable, x

and a response variable, Y , whilst making only the
most general type of assumptions about the functional
form of this relationship. The idea is that when a
scatterplot (see Graphical Displays) does not indi-
cate any simple pattern of dependency of Y on x,
the data are allowed to “speak for themselves” in
determining which function fits them best. With data
such as these, nonparametric regression provides a
useful tool for exploratory analysis. The resulting fit-
ted curve may suggest a simple parametric model,
and provides a method of prediction when this is not
the case.

If n data pairs (x1, Y1), . . . , (xn, Yn) have been
observed then the relationship may be modeled by

Yi = m(xi) + εi, i = 1, . . . , n, (1)

where εi is an error term with zero mean and the func-
tion m(x) is the conditional expectation, E(Y |x). In
linear regression, for example, this function is defined
by m(x) = α + βx, where α and β are unknown
parameters. Nonparametric regression methods, on
the other hand, make only the assumption that m(x)

is a smooth function whose form is unknown. The
problem is then to find an automatic method for con-
structing an estimate of m(x) from the data. There
are a number of nonparametric techniques for doing
this, the most popular being kernel regression [7] and
spline smoothing [2]. Hardle [3] describes both these
and other nonparametric regression methods.

In the context of kernel regression the simplest
method is due to Nadaraya [5] and Watson [8]. Their
method works by estimating E(Y |x), i.e. m(x), by a
weighted average of the responses. The weights are
chosen so that Yi provides a large contribution to the
average if xi is close to x, and a small contribution
if xi is distant. Specifically, the Nadaraya–Watson
estimator is defined by

m̂(x) =

n∑

i=1

K(x − xi)Yi

n∑

i=1

K(x − xi)

.

In this equation K is a kernel function, typically
positive, symmetric about zero and integrating to one.
The parabolic shaped kernel given by

K(u) =
{ 3

4
h−1

[
1 −

(u

h

)2
]

, −h < u < h,

0, otherwise,

is a typical choice. This kernel is defined in terms
of a scaling parameter, h, called the bandwidth (or
window width by some authors). In practice, the
value of h should be chosen so that the range of
the kernel function is appropriate for the scale of
the data. The manner in which this should be done
has been the subject of much research. See Chap-
ter 5 of Simonoff’s monograph [6], for example.
With the use of this kernel, K(x − xi) will take
smaller values as the relative distance |x − xi |/h

increases.
Kernel estimators fit into the class of local

polynomial regression models. In this approach
E(Y |x) is estimated by fitting a weighted polynomial
regression, of degree r , say, to data whose xi value
is local to x. The kernel function defines the weights.
The Nadaraya–Watson estimator corresponds to the
case r = 0.

Spline smoothing is a somewhat different
approach to nonparametric regression; its motivating
philosophy is as follows. In fitting a curve to a
scatterplot there are two (conflicting) interests. In the
first place the regression function should be close to
the data points. Thus, if m̃(x) is a function estimating
m(x), then we wish the residual sum of squares,∑n

i=1[Yi − m̃(xi)]2, to be small. However, there is
usually good reason to believe that the function m(x)

is relatively smooth, so our estimator m̃(x) should
reflect this. The smoothness of m̃(x) (assumed twice
differentiable) can be measured by

∫
m̃′′(x)2 dx, with

larger values indicating greater roughness. Hence, the
expression

n∑

i=1

[Yi − m̃(xi)]
2 + λ

∫
m̃′′(x)2 dx

is a penalty criterion, taking large values if m̃(x)

fits the data poorly or is unacceptably rough. It can
be shown that the particular estimator, m̂(x), which
minimizes this criterion is a cubic spline – that is,
a piecewise cubic polynomial. The balance between
goodness of fit to the data and smoothness of function
is controlled by the parameter λ, with larger values
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Figure 1 Nonparametric regressions for cholostyramine
data [1]. Men were supposed to take six packets of
cholostyramine (a cholesterol-lowering drug) per day. Com-
pliance, x, is the percentage of the intended dose actually
taken, whilst improvement, Y , is the decrease in total
plasma cholesterol over the period of the treatment. The
broken line is fitted using kernel regression, the unbroken
one using spline smoothing

of λ leading to smoother m̂(x). The choice of an
optimal λ, resulting in an estimator m̂(x) which picks
up true trend but ignores haphazard variation in the
data, is of considerable importance in the practical
implementation of spline smoothing.

Both kernel and spline methods are illustrated
in Figure 1 using data on the drug cholostyramine,
given in [1]. The fitted curves bring out structure in
the data, such as the rapid rise in the response for
compliance of 90% or more, which would have been
lost had a linear regression been fitted.

Nonparametric regression techniques can be
generalized to cope with multiple explanatory
variables, although the resulting methods tend to
be computer-intensive. If there are p explanatory
variables, with xij denoting the value of the j th one
for the ith observation, then a natural extension of
(1) is

Yi =
p∑

j=1

mj(xij ) + εi, i = 1, . . . , n.

This type of model is referred to as a generalized
additive model, and is discussed in detail in [4].
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Nonrandomized Trials

A comparative clinical trial is a planned experiment
in human subjects involving two or more treatments,
where the primary purpose is to evaluate the relative
effectiveness of the treatments. Often, the comparison
is between two treatments, a proposed new treatment
for the disease and standard therapy. Usually, the
standard therapy has been utilized in other clinical
trials, often those at the same institution(s) conduct-
ing the comparative trial, so patient characteristics
related to prognosis may be known. In many clin-
ical trials, patients entering are randomized to the
available treatments (see Randomized Treatment
Assignment), but there may be circumstances for
conducting a nonrandomized trial in which the con-
trol group might be from: a historical control series
of patients; concurrent controls, either at the same
or other institutions; control patients from a com-
puterized database (see Administrative Databases);
or controls from articles reported in the literature.
Byar et al. [4] have summarized the major arguments
for conducting randomized clinical trials (RCTs), and
Pocock [13] gives reasons why nonrandomized stud-
ies are likely to yield misleading results.

Articles giving arguments in favor of conducting
nonrandomized trials are given by Gehan and Freire-
ich [7–9]. The general arguments for conducting a
nonrandomized trial involving a historical control
treatment are that all knowledge is historical and that
modifications are made as evidence accumulates. In a
nonrandomized historical control trial (HCT), results
of the proposed new treatment administered to con-
secutive patients are compared with those from a
historical control group. This approach is consistent
with the acquisition of knowledge by application of
the principles of the scientific method. Results for
patients on the new treatment can be compared with
predictions of outcome for the standard treatment
based on the premise that the past is the best guide
to knowledge about the future. Even advocates of
RCTs must accept some historical data; namely, the
results of their own studies, to make predictions about
future results for treatment. Confirmation of results of
experimental therapies in multiple studies makes their
acceptance more likely.

HCTs require much smaller numbers of patients
and shorter time periods for their conduct than
RCTs designed to meet equivalent objectives. Also,

it is likely that a larger number of patients will
be available for an HCT, since some patients will
not accept randomization to treatment, whereas they
would accept assignment to a new treatment that has
promise of being better than a standard therapy. If
an investigator is studying a proposed new (A) vs.
standard (B) therapy in a nonrandomized trial and
sufficient prior data are available so that the response
rate (say p) for the standard therapy may be assumed
known, then the number of patients required to com-
pare A with B is only one-quarter of that required
for an RCT with an equivalent statistical significance
level (see Level of a Test) and power [9]. When
the response rate is not assumed known, but is esti-
mated from a historical control series of moderate
size, Makuch & Simon [11] give tables for the num-
ber of patients needed. For example, if there are
100 patients in the historical control series and the
response rate of the standard therapy is 40% and it
is desired to detect a 20% improvement in response
rate for the proposed new therapy at a 5% signifi-
cance level (one-sided test) with a statistical power
of 80%, then 52 patients are needed on the new ther-
apy rather than 76 patients in an RCT. When the
historical control series is moderate in size (about 50
patients or more), the number of patients required on
the new treatment is generally less than that for the
new treatment group alone in an RCT (see Sample
Size Determination for Clinical Trials).

A clinical investigator conducting a nonrandom-
ized trial with a historical control group has no ethical
dilemma when advising his patients about entry into
the study (see Ethics of Randomized Trials). If it
is accepted that all clinical investigators should seek
results that are better than those observed in the past,
then it follows that no study should be started unless
there is some evidence suggesting that the new ther-
apy is at least as good or possibly better than the
standard therapy. In such a circumstance, a clinical
investigator doing a nonrandomized study would be
entering all patients on the new treatment that was
predicted to be better. In contrast, the ethical basis of
the RCT depends upon the absence of convincing evi-
dence about the relative merits of the two treatments.

Further, ethical concerns arise in an RCT, but
not in an HCT, when interim results suggest that
the new treatment is better than the standard ther-
apy at some level of statistical significance, say
P = 0.25. Such results could arise in a clinical trial
designed to accrue a fixed number of patients or in
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a sequential trial (see Data and Safety Monitoring)
when a boundary point for deciding in favor of one
of the treatments had not quite been reached. In such
a circumstance, could a clinical investigator honestly
seek the informed consent (see Ethics of Random-
ized Trials) of a potential patient by stating that the
evidence favoring each of the treatments was equiva-
lent? Of course, the same ethical concerns could also
arise in an HCT, if interim results suggested that the
standard therapy was better.

For randomized comparative trials sponsored by
the National Institutes of Health, data and safety
monitoring boards (DSMBs) have been set up to
evaluate data accrued during the trials at regular
intervals and decide about their continuation, without
informing the clinical investigators participating. In
such circumstances, the participating clinical investi-
gators could ask for the informed consent of patients
to enter the trial without the burden of knowing the
interim results.

The outstanding criticism of nonrandomized stud-
ies involving historical control groups is that, con-
sciously or unconsciously, patients may be selected
to receive the new treatment that have a more favor-
able prognosis than patients receiving the standard
therapy (see Bias from Historical Controls). Thus,
the clinical trial of the new treatment may yield a
positive result because the prognosis of the group of
patients and not the treatment was more favorable.
When a large body of data is available on the stan-
dard treatment, techniques for determining prognostic
factors are well known [3], and knowledge of these
factors may be used to stratify (see Stratification)
patients or to adjust the comparison of the new vs.
standard treatment by the use of regression models.

If a multivariate multiple regression model
involving prognostic factors (e.g. a logistic or
proportional hazards model) is available relating
the outcome of treatment to prognostic factors and
the model explains a substantial amount of the
total variation in outcome (see Explained Variation
Measures in Survival Analysis), the model may be
used to test for treatment effects after adjustment
for the prognostic features of the patients. An
example of a proportional hazards model comparing
disease-free survival and survival between treatment
groups in a breast cancer HCT study is given
by Buzdar et al. [5]. Simon [14] describes some
statistical regression models, and their usefulness in
prediction and inference, and gives methods for

examining adequacy of fit (see Goodness of Fit) and
some uses of regression models in clinical oncology.
A crucial assumption needed to utilize the regression
modeling approach is that the relationship of patient
characteristics to outcome is essentially the same in
the historical control and current study period.

Planners of RCTs rely primarily on randomization
and secondarily on stratification and regression mod-
els as techniques for ensuring the validity of compar-
isons between treatments, whereas those preferring
nonrandomized studies with historical control groups
can use only the latter two procedures. Arguing that
a historical control group might not be compara-
ble with a new treatment group involves asserting
either that there was an unknown prognostic feature
of major importance (in addition to those known) or
that factors related to the difference in time periods
were responsible for the observed treatment differ-
ence. If such unfavorable events did occur in a single
study, then the investigator who did not randomize
would have to discover in a subsequent confirmation
study that the new treatment was not as beneficial as
expected, whereas the investigator who randomized
would discover this within the trial.

Nonrandomized studies, possibly involving con-
current treatment groups, might be used to resolve
controversial questions, such as those when prelimi-
nary data suggest that one treatment is substantially
better than the other or when radically different types
of therapy are being compared. In the latter circum-
stance, proponents of the differing forms of therapy
(e.g. radiotherapy vs. radical surgery) might enter
consecutive patients on a single therapy and use strat-
ification and/or regression models involving prog-
nostic factors to test for differences in effectiveness
between treatments. Gehan [8] gives some examples
in clinical oncology of studies in osteosarcoma, brain
metastases, and localized stomach cancer in which
RCTs were planned, but had substantial difficul-
ties in their conduct because the studies involved
controversial questions. Patients were unwilling to
give informed consent to be randomized to the dif-
fering forms of therapy.

Baker & Lindeman [1] have proposed a non-
randomized paired availability design for evaluat-
ing epidural analgesia during labor. In their appli-
cation, the design consists of independent pairs of
experimental (epidural analgesia available) and con-
trol (epidural analgesia not available) groups, each
group being patients treated at a hospital before
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(control group) or after (experimental group) epidural
analgesia became available. The fundamental charac-
teristics of the design are: the intervention is avail-
ability of treatment; the target population from
which subjects arise is well defined with little migra-
tion in or out; and the study involves many pairs
of control and experimental groups. Baker & Linde-
man developed a test of the null hypothesis that the
receipt of intervention will increase response (mea-
sured by the percentage of patients having Caesarean
sections) by some specified nonzero amount, and
applied their results to a study of epidural analgesia.

Since clinical research in recent years has pro-
duced many efficacious new treatments, it is reason-
able to ask which of the important advances in an
area of clinical medicine in the last 25 years can
be attributed to HCTs and which to RCTs. At least
in cancer research there is strong evidence that new
treatment regimens for acute leukemia, choriocarci-
noma, lymphoma, lung cancer, osteosarcoma, breast
cancer, testicular cancer, and sarcoma have come
from nonrandomized studies. It should also be stated
that RCTs have debunked false claims made for some
new treatments [6]. Grage & Zelen [10] pointed out
that historical controls tend to exaggerate the value of
a new treatment, using as an example the treatment
of metastatic colorectal carcinoma to the liver.

Although Pocock [13] argues strongly in favor of
the RCT, he gives the requirements for a nonran-
domized study involving a valid historical control
group [12]. These are: the control group has received
a precisely defined treatment in a recent previous
study; the criteria for eligibility, work-up, and eval-
uation of treatment must be the same; important
prognostic features should be known and be the same
for both treatment groups; and there should be no
unexplained indications leading one to expect differ-
ent results. A further proviso might be that if there are
some modest differences between treatment groups
with respect to these features, then it should be estab-
lished that these were not sufficient to explain any
observed differences in outcome between treatment
groups.

The use of computerized data banks with infor-
mation on previous patients in a given institution
has been advocated as a substitute for the RCT by
some enthusiasts. For example, Starmer et al. [15]
give an example of the utilization of a data bank in the
management of chronic illness. However, Byar [2]
gives strong arguments why databases should not

be a substitute for RCTs. Literature controls might
be considered for a nonrandomized study in which
the control group is made up of patients previously
reported in the literature. Of course, it is possible
that there are substantial differences in patient selec-
tion and the experimental environment, such that a
meaningful comparison of the new with the standard
therapy would not be possible. Gehan & Freireich [9]
give some examples in which it seemed reasonable to
compare a new with the standard therapy involving
control patients from the literature.

In clinical oncology, phase I trials, designed to
find a maximum tolerated dose of therapy, and phase
II trials, designed to determine whether or not the
therapy is worth pursuing further, are generally non-
randomized, but such trials do not include a standard
therapy comparison group and are conducted prior to
the comparative (phase III) trial. Outcomes research
studies are also nonrandomized, and a critical com-
ponent of such research is inferring the relationship
between the therapeutic process and outcomes – the
major difficulty being the evaluation of processes
when these are not randomized.

Without question, the “gold standard” in clinical
research is the RCT. However, a nonrandomized trial
with a historical control group might be considered in
some circumstances. For planners of such studies, the
difficulty to be overcome is to demonstrate that the
groups of patients receiving the new vs. the standard
therapy had comparable probabilities of favorable
outcomes.
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Nonresponse

It would be preferred in virtually any sample sur-
vey to obtain an answer to every questionnaire item
from every sample member who is eligible to partici-
pate. Unfortunately, almost all surveys fail to achieve
that level of performance. Nonresponse may occur at
the level of the sample unit (unit nonresponse) or in
an individual questionnaire item (item nonresponse).
It is a potential source of error in survey estimates
because it may cause some segments of a target pop-
ulation to be underrepresented. Also, nonresponse
may reduce statistical power by resulting in a mea-
sured sample that is smaller than the desired sample
size. Concern about nonresponse has increased over
the past two decades as survey researchers have
observed a general decline in response rates [6, 7,
14, 19–21]. This article reviews the causes of survey
nonresponse, the nature of nonresponse error and its
potential impact on survey estimates, and techniques
for measuring and reporting nonresponse.

Causes of Nonresponse

Total Nonresponse

Some researchers categorize nonresponse as non-
sampling error, considering it as a function only
of the data collection process. However, as will be
described below, at the unit level, nonresponse may
be a function of the sampling process as well. There-
fore, overall it is most appropriate to consider survey
error attributable to nonresponse as nonobservation
error [14]. This broader concept appropriately casts
survey nonresponse as the failure of the survey pro-
cess to obtain full participation from all eligible
members of a sample.

The total nonresponse for any particular measured
variable is the sum of the two levels of nonre-
sponse: unit nonresponse and item nonresponse (both
expressed as percentages). For example, if a survey
fails to obtain participation from 20% of the eligi-
ble sample, and if among the 80% who participate
no response is obtained from 10% for the variable of
interest, total nonresponse for that variable is 0.20 +
0.10 × 0.80 = 28%. Therefore, although in most sur-
veys unit nonresponse accounts for the largest pro-
portion of total nonresponse, it is important for

researchers to account for both levels of nonresponse,
in combination as well as individually.

The above example applies to the typical cross-
sectional sample survey. Total nonresponse is both
more complicated and usually more serious in the
case of sample attrition in a longitudinal panel
study, a design in which repeated measures are to
be obtained from the same respondents over two or
more waves (observation points). Total nonresponse
for any particular variable in a panel study is cumu-
lative over the nonresponse at each wave. Therefore,
it is important to account for overall nonresponse for
the duration of a panel study as well as wave-specific
nonresponse.

Unit Nonresponse

Unit nonresponse occurs when members of a sample
who are eligible to participate in a survey either do
not participate at all or participate only partially, such
that sufficient data are not obtained to include them
in the analysis. Depending on the survey design, a
unit may be an individual, a household, an institution
or organization (e.g. a school), or other group (see
Unit of Analysis). Unit nonresponse is a function of
two components. The first is failure to contact sample
members (noncontacts), which appears to account
for most cases of unit nonresponse [20]. Examples
of this type of problem include cases where, for
the entire survey period, persons are not at home
(e.g. due to business or vacation travel) or constantly
use a telephone answering machine or voice-mail
system. The second component of unit nonresponse
is failure to obtain participation. This includes two
types of cases. One is where a sample member refuses
to complete an interview/questionnaire. The other
is where a sample member who otherwise would
complete an interview/questionnaire is unable to do
so, for example because of an illness or injury, or
being too busy with other activities.

Although hard data are lacking, researchers have
attributed recent increases in unit nonresponse to
secular trends in the US, especially in urbanized
areas [14, 21], whereby the population has become
more mobile, resulting in people being available
at their usual place of residence for shorter peri-
ods. In particular, the Council of American Survey
Research Organizations (CASRO) [7] noted that is
has become more difficult to contact women because
of their increased participation in the labor force.
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Kessler et al. [16] observed that there is an increased
tendency for entire households to be away from home
when interviewers call because of growing propor-
tions of single-member households and dual-earning
couples, increased commuting time, and an increase
in evening activities outside the home. Moreover,
people appear to be more protective of their more
limited personal time at home, making them less
receptive to requests to participate in a survey [6].

Two particular aspects of survey methodology
may effect unit nonresponse. The first is the mode
of initiating contact and collecting data. In general,
unit nonresponse is lowest for face-to-face inter-
views, slightly larger for telephone interviews, and
largest for mail (postal) surveys [1, 10]. The second
is the burden participation places on respondents. For
example, nonresponse tends to be larger for longer
interviews/questionnaires, less salient survey topics,
and sensitive or threatening survey topics. Addition-
ally, nonresponse tends to vary among population
subgroups. In particular, nonresponse tends to be
greater among young adults, the elderly, the poor,
persons with little education, and persons with cer-
tain disabilities such as impaired hearing [1, 14].
Other factors such as characteristics of the survey
sponsor and the time of year also may effect unit
nonresponse [11, 15]. Finally, the sampling pro-
cess may contribute to unit nonresponse in instances
when problems with the sampling frame prevent the
researcher from contacting a sample member, such as
if the frame contains erroneous or out-of-date address
and/or telephone information.

A special case of unit nonresponse is when a
respondent begins to participate in a survey but fails
to complete an interview/questionnaire. These par-
tial completes occur more often in face-to-face and
telephone interview surveys than in mail surveys,
when the respondent “breaks off” from an interview
before it is completed (for example, because of a
lack of time or a refusal to answer any more ques-
tions). Further complicating the matter is that some
so-called complete questionnaires may include unan-
swered questions (item nonresponse). Thus, although
partial completes usually are categorized as a com-
ponent of unit nonresponse, they are strongly related
to item nonresponse. The larger the item nonresponse
for a case, the more likely it is to be considered a par-
tial complete. Because there is no standard definition
of a partial complete, the researcher’s decision about
whether to include a case in the analysis or to count

it as a unit nonresponse usually is guided by two
factors: the proportion of the questions answered by
the respondent; and whether responses are obtained
for questionnaire items measuring key variables for
the analysis.

Item Nonresponse

Item nonresponse occurs when an eligible sample
member participates in a survey but does not provide
a usable response to one or more of the survey
questionnaire items (questions). For a survey where
the questionnaire contains some items that do not
apply to all respondents, item nonresponse refers only
to questions that apply to a particular respondent.
Thus, the data record for some respondents regarded
as “completes”, because their overall participation in
a survey was acceptable, may include missing values
for some variables.

Item nonresponse is a function of two compo-
nents. The first is failure to obtain an answer to a
question, which may occur for several reasons. The
most obvious one is when a question is presented
but the respondent refuses to answer or is unable
to provide the requested information. However, item
“nonresponse” also includes cases where a question
is not presented because a respondent or interviewer
does not follow instructions correctly (e.g. does not
understand that a question applies to the respondent,
or records only one response to a multiple response
question). Also, an interviewer may fail to present a
question because the interviewer feels uncomfortable
with the subject matter, or the interviewer may fail to
encourage a respondent properly to answer a difficult
question. Finally, item “nonresponse” also includes
cases where a respondent “answers” a question but
the response is not recorded (by the respondent or
interviewer).

The second component of item nonresponse is
failure to obtain a usable response to a question.
In a mail survey or other type of self-administered
questionnaire study a respondent’s handwriting may
be illegible, or a respondent may record two response
choices where only one response is requested and/or
logical (e.g. a respondent may record both “yes” and
“no” for a dichotomous question). For an interview
survey an interviewer may fail to probe properly
to obtain a clear and complete response. This is
particularly a problem for open-ended questions or
“other – specify” type responses (see Interviewing
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Techniques). Similar problems of lack of clarity
and completeness are even more likely to occur
in a mail survey or other type of self-administered
questionnaire study.

A special issue for item nonresponse is when
a respondent answers “don’t know” to a question,
which may or may not be a case of missing data.
In some cases, a respondent may use this response
as a convenient and polite way to refuse to answer.
In others, it may indicate that a respondent is unable
to answer because of inability to retrieve the nec-
essary information (e.g. from memory or records),
the respondent has no opinion about the subject of
a question, or because none of the response choices
is appropriate. In still other cases, “don’t know” may
indicate that the respondent has no knowledge about
the subject. For example, “I don’t know” may be a
valid response to a question such as “Whom would
you call if a member of your household needs emer-
gency medical treatment?”. Before data collection
begins, the researcher should anticipate the possibil-
ity that a respondent may answer “don’t know” to
virtually any question and decide whether to treat it
as a nonresponse or as a valid response to be included
in the analysis. This decision, even for identical ques-
tions, may vary from one survey to another depending
on the purposes of the study and how the data will
be interpreted. In general, the issue is whether it is
reasonable to expect respondents to have adequate
knowledge (e.g. about their age) or hold an opinion
(e.g. about their health status) so as to be able to
answer a question, as opposed to a situation where
“don’t know” may be a relevant substantive response
(e.g. indicating a lack of knowledge about a health
service).

Nonresponse Error and its Potential
Impact

Nonresponse error is a function of two components:
the magnitude of nonresponse (i.e. nonresponse rate);
and the extent to which nonrespondents systemat-
ically differ from respondents. Concern about sur-
vey nonresponse has been driven mainly by the
increase in unit nonresponse rates, probably because
unit nonresponse results in fewer cases in the analy-
sis, reducing statistical power and the precision of
survey estimates. All things being equal, a higher
rather than lower survey response rate is preferred

because a higher rate indicates that unit nonresponse
is lower. Moreover, when unit nonresponse is low,
total nonresponse probably is low (for most variables)
because item nonresponse is fairly low in most well-
conducted surveys [8]. In general, the lower the total
nonresponse rate the less concern about whether the
participation of nonrespondents would have changed
the survey estimates, simply because there are rela-
tively few nonrespondents.

However, a high response rate does not mean that
nonresponse error necessarily is trivial. For exam-
ple, nonrespondents may differ substantially from
respondents in terms of relatively rare characteris-
tics [16] or if most nonrespondents are concentrated
within one or two sample strata or population sub-
groups [23]. Also, nonresponse error may be sub-
stantial even when nonresponse is low if the fac-
tors causing nonresponse are associated strongly with
important variables in the study. Ironically, as Kessler
et al. [16] have observed, sometimes the techniques
used to increase response rates and reduce nonre-
sponse (e.g. special types of contact strategies or
monetary incentives) can increase nonresponse error
if they are more effective among some population
subgroups than others, and if an underrepresented
subgroup differs strongly from the others in terms
of key study variables.

Nonresponse often is correlated with important
demographic or other background characteristics (e.g.
education in mail surveys, or health status in inter-
view surveys) [6, 8]. But even if nonrespondents are
similar to respondents on those characteristics, they
may differ in terms of other important variables, such
as attitudes and behaviors [23]. For example, per-
sons who engage in risky behaviors may be less
willing than others to participate in a survey about
the epidemiology of the human immunodeficiency
virus [22]. Therefore, the key nonresponse issue is
nonobservation bias, whereby the absence of non-
respondents from the analysis causes one or more
survey estimates to be consistently lower or higher
than their population parameter (true value). This may
substantially change the univariate and/or multivari-
ate distributions of the survey data and result in
erroneous interpretations of a study’s findings.

The methods for taking account of sampling
error in survey estimates (e.g. confidence intervals)
assume that nonresponse error (as well as other
nonsampling error) is zero. As nonresponse error
increases, the model on which the computation and
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interpretation of inferential statistics are founded
becomes less appropriate. Therefore, the investment
in carefully designing and selecting a large, random
sample of a target population to minimize sampling
error may be subverted by a substantial nonresponse
bias. In most cases when the potential for nonre-
sponse bias is relatively large, a researcher should
consider using data collection strategies that have
been shown to obtain high response rates. Also, the
researcher may consider employing various strate-
gies for obtaining information about the nonrespon-
dents that can be used to take nonresponse error into
account in the analysis. These decisions about sur-
vey design must balance available resources with a
study’s objectives. For example, an exploratory study
may be able to tolerate larger amounts of both non-
sampling and sampling errors than a study that is
intended to provide a rigorous test of an important
hypothesis. In most cases a researcher will invest
more resources in the latter type of study.

Measuring and Reporting Nonresponse

Unfortunately, no model exists for taking nonre-
sponse error into account in a way similar to that for
assessing statistical inferences based on probability
theory. Moreover, in most cases it is very difficult
or impossible to estimate nonresponse error because
reliable knowledge, independent of the survey, about
the population regarding the variables measured in
the survey usually is not available. Tests for non-
response bias usually are limited to comparisons
of nonrespondents with respondents, or respondents
with the target population, in terms of aggregate char-
acteristics such as socioeconomic status and other
demographic variables based on data from exist-
ing sources (sometimes with questionable reliability)
such as the US Census, institutional records (e.g. from
schools or clinics), information that may be available
from the sampling frame (e.g. residential location),
or interviewer observation (e.g. type of dwelling
unit) [9, 14]. Such comparisons may be useful if the
criterion variables are strongly associated with the
main variables of interest in the survey. Although
it rarely is possible to make comparisons directly
regarding the main variables of interest, researchers
sometimes try to approximate this by comparing early
respondents with late respondents [18] or by con-
ducting brief follow-up interviews with subsamples
of nonrespondents [8, 14, 16].

In addition to using techniques that tend to reduce
nonresponse, researchers also sometimes apply var-
ious post hoc adjustments to improve the represen-
tativeness of survey estimates. These include tech-
niques such as poststratification and a variety of
strategies to impute values for missing question-
naire items (see Missing Data; Multiple Imputation
Methods).

Survey researchers usually report a response rate
(or a similar rate that may go by another name, such
as cooperation rate or completion rate) rather than
a nonresponse rate. It seems reasonable to regard a
survey nonresponse rate as the complement of its
response rate, obtained by subtracting the percent-
age response rate from 100% [14]. Unfortunately,
despite attempts to encourage survey researchers to
adopt a standard definition of response rate, there is
no universally accepted definition for either a sur-
vey response rate or nonresponse rate [5, 7, 14, 17,
20, 24]. Thus, there is considerable confusion in
comparing the quality of survey data across studies
(meta-analysis), time periods, and survey methods.

The prevailing concept appears to be that a sur-
vey response rate should reflect the degree to which
a survey succeeds in obtaining the cooperation of all
potential respondents in the sample. Accordingly, the
response rate may be calculated as the proportion
of sample members known or estimated to be eli-
gible for participation in the survey, from whom a
complete/usable set of data is obtained. While there
appears to be general agreement about the numerator
for the response rate calculation (i.e. complete/usable
cases), there is substantial variation in specifying
the denominator, especially regarding the definition
and estimation of eligible sample members [19, 20].
Moreover, the factors that effect eligibility vary with
the sampling design and data collection procedures.
In particular, this issue becomes quite complex in
surveys using methods such as random-digit dial-
ing telephone interviews, in which it is difficult and
sometimes impossible to determine the eligibility of
a substantial proportion of the initial sample.

The best guidance for computing response rates is
available from the American Association for Public
Opinion Research (AAPOR) both in the form of a
report [2] and a Response Rate Calculator spreadsheet
that may be downloaded free at the AAPOR web site
[3]. However, until standard definitions of response
and nonresponse rates are adopted, it is recommended
that survey reports state how the response rate (or
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similar term) is calculated, including the definition of
eligible sample members [8, 17, 24].

Response rates rarely are reported for individ-
ual items. Item nonresponse usually is indicated by
reporting the number of cases and/or degrees of
freedom when presenting results in the text and/or
tables of a survey report. However, when appropri-
ate, it is recommended that an item nonresponse rate
should be calculated as the proportion of respon-
dents from whom a usable response was not obtained
to a questionnaire item, from among the number of
respondents who were eligible to answer that item.

Finally, because nonresponse error is not necessar-
ily a direct function of the response rate, and because
the definition and calculation of response rate are not
consistent, it is not possible unequivocally to spec-
ify acceptable levels of survey response/nonresponse.
However, some gross guidelines are that a survey
with a response rate lower than 50% is very likely to
contain a substantial nonresponse error [4, 10, 12].
A response rate greater than 75% generally may be
regarded as good to excellent [10, 13]. However, it
is strongly recommended that virtually any response
rate should be compared with the response rate for
other surveys addressing similar topics, dealing with
similar populations, and using similar methods. Also,
the study’s goals should be considered: the more at
stake in terms of the study’s findings, the less the
tolerance for nonresponse error.
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Nonsampling Errors

It has become conventional to partition the total sur-
vey error into components representing sampling and
nonsampling errors. Sampling error arises from the
sampling process itself, i.e. from the fact that we are
making inferences from observations on a randomly
chosen subset of units, rather than observing the
whole population. Nonsampling errors include all the
errors not attributable to this incomplete enumeration.
Every step in the survey process is a potential source
of nonsampling error, from imperfections in the ini-
tial specification and listing of the target population,
through failure to obtain complete information from
all units drawn in the sample (see Nonresponse) or
to obtain correct information from the units that we
do contact, to errors in recording and managing the
data after the survey has been completed (see Data
Management and Coordination).

Sampling error is relatively easy to deal with, at
least in principle. We can reduce its effect by increas-
ing the sample size or by clever choice of design
and estimator (see Estimation). Moreover, we can
estimate its size internally from the sample measure-
ments themselves. In contrast, nonsampling errors
often increase as we increase the sample size or the
complexity of the sampling procedure and, although
special surveys can be designed to get information on
some components, it is difficult to measure the size
of most components without external information of
some sort. Unfortunately, the nonsampling compo-
nent of the total error is likely to be at least as large as
the sampling component in a well-designed survey.
Since the impact of this component of total survey
error is not captured by conventional formulas for the
standard error, published estimates of survey error
almost always underestimate the true state of affairs.

In the following sections we look at some spe-
cific sources of nonsampling error, with special ref-
erence to health surveys (see Surveys, Health and
Morbidity), under three general headings: cover-
age errors (frame errors and nonresponse); measure-
ment errors (question and format effects, respondent
errors, interviewer effects); and processing errors.
The choice of survey mode can have a substantial
impact on all these components. In health research,
this usually involves a choice among personal inter-
views, telephone interviews or mailed questionnaires.
Some useful advice on the relationship between the

survey mode and data quality for a variety of health
outcomes is given by Van der Zouwen et al. [32],
Siemiatydi [30], and Sibbald et al. [28]. Once the
mode has been chosen, most methods aimed at reduc-
ing the nonsampling errors involve more resources
being spent on preparation, pre-testing and piloting,
training and supervision, and processing. These meth-
ods tend to be expensive and, with a limited budget,
mean that the sample size will need to be reduced.

Coverage Errors

Coverage errors arise when the population from
which the sample is really drawn differs from the
target population. Two major sources of such errors
are deficiencies in the sampling frame or listing from
which the sample of units is drawn, and a failure to
elicit responses from every unit that is drawn in the
sample.

Frame Errors

A key requirement in the early stages of planning
for any survey is the development of a frame, i.e. a
list of units from which the sample will be drawn.
In a telephone survey the frame will consist of a
list of phone numbers, in a mail survey it will be
a list of addresses, while in a personal interview
survey it might be a list of households, area sampling
units, hospitals or physicians’ practices. Except in
the very simplest situations, the population defined
by the frame is likely to differ from the target
population whose characteristics we really want to
measure. For example, in a telephone survey any
member of the target population who is not accessible
by telephone will be excluded [7]. Similarly, in any
survey based on a register or list of patients held by a
health facility, such as a practice, a certain proportion
will have either moved address or left the facility
entirely [25].

Frame error can take the form of overcoverage.
This can occur when the frame contains units that do
not belong to the target population, or when there
are multiple or duplicate listings such that single
population units are identified with more than one
frame element. However, the most common type
of frame error takes the form of undercoverage (or
incomplete coverage), with some units in the target
population omitted from the frame. The effect of



2 Nonsampling Errors

undercoverage depends both on the proportion of
missing units and on the magnitude of the difference
between the values of the missing units and those
listed in the frame. For example, consider a simple
mean or proportion, θ . If we use subscripts T, F,
and NC to denote values for the target population,
the frame, and the units not covered by the frame
respectively, then we have

θT = θF + πNC(θNC − θF),

where πNC denotes the proportion of the target
population units that are not covered by the frame.
We see that the bias (i.e the difference between the
target and frame population values) is the product of
the proportion of undercoverage and the difference
between the means of the units in the frame and the
omitted units. Most health surveys are concerned with
more complex quantities than means and proportions
(relative risks, regression parameters, etc.). Here
the effect cannot be expressed quite so simply, but
the basic idea still applies; there is little bias from
undercoverage if the proportion of units not covered
by the frame is small or if parameter values for
the omitted units are very similar to those of the
frame units.

Unfortunately there is no way to detect the pres-
ence of undercoverage either from the frame or from
the sample itself, and no simple way to overcome
the problem completely. Some ways to help allevi-
ate this and other frame problems are discussed by
Lessler & Kalsbeek [19, pp. 80–102] and Groves [13,
pp. 81–128].

Nonresponse

Even if we have a reasonably complete frame from
which to draw our sample, we may not be able to
elicit responses from every unit. People may not
return mailed questionnaires, or they may be out
when the interviewer calls. Some people may be
unwilling or unable to respond even if they are con-
tacted. Some units may not provide any information
at all (unit nonresponse) while others may provide
responses for some items but not others (item non-
response). Nonresponse can be regarded as another
aspect of undercoverage, and the effect is very sim-
ilar to that for incomplete frames; the degree of
bias depends both on the response rate and on the
extent to which nonresponders differ from respon-
ders. The response bias will be small if the proportion

of nonrespondents is small (i.e. a high response rate)
or if there is little difference between responders and
nonresponders. Differences between responders and
nonresponders can be substantial in many health sur-
veys. For example, readiness to respond may be influ-
enced by recently experienced health events, which
may engender greater interest in participating in a
health survey [3], or by health status, with those hav-
ing the symptoms under investigation more likely
to respond [20, 31]. One difference between nonre-
sponse and frame undercoverage is that we do at least
know the proportion of nonrespondents so that the
possibility of a problem is clearly signalled, even if
we have no idea of its size. Perhaps for this reason,
there has been more attention paid to nonresponse
than to any other source of nonsampling error.

As with most nonsampling errors, prevention
is usually the best form of cure. It is hard to
do much to control differences between respon-
ders and nonresponders, but it may be possible to
increase the response rate. The choice of survey
mode can have a big impact on response rates. In
general, response rates for postal surveys tend to
be lower, but older people who feel threatened by
face-to-face interviews with a stranger may respond
well to a mail survey [15]. The design of ques-
tions (see Questionnaire Design) and the quality
of interviewers (see Interviewing Techniques) can
also affect the response rate [4]. Extra training and
extensive piloting can improve things here. Once the
survey is in progress, we can make vigorous attempts
to contact initial nonrespondents. For example, we
might get interviewers to call back several times if
a person is not at home, or send several reminder
letters with a mailed questionnaire (see Call-backs
and Mail-backs in Sample Surveys). Providing
incentives such as paying people to take part may
also improve response rates in some circumstances
(although this can accentuate differences between
responders and nonresponders if, for example, low-
income people are more likely to be attracted by the
offer [27]). Most of these measures are costly and
implementation will usually have to be at the expense
of sample size. This tradeoff will be worthwhile if the
extra responses are sufficiently different to alter the
survey estimate.

Getting an indication of the size of the differ-
ence between responders and nonresponders is diffi-
cult. Direct subsampling of nonrespondents, although
expensive, may be worthwhile in some circumstances.
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If we have auxiliary information on all units listed
in the frame, then we can calculate differences
between the means of the auxiliary variables for
respondents and nonrespondents. If these variables
are correlated with the study variables, this will
give some indication of the potential problems. For
example, Andersen et al. [1] compared respondent
reports of care received with medical record data and
derived adjustments. Frequently, however, such aux-
iliary information is not available. Another approach
is possible if we are prepared to assume that willing-
ness to respond lies on a continuum of cooperation.
Then we may get some idea of the likely magni-
tude of problems by looking at differences between
estimates for early and late responders, or those
who respond only after additional prompting [15]. A
number of studies have shown that nonresponders
are more like late responders than early respon-
ders [9, 29].

One way of getting direct information on non-
respondents which is particularly useful in health
surveys is through the use of proxy (or surrogate)
respondents. Questionnaires constructed using con-
crete items which require less interpretation by the
proxy and a shorter range of possible responses are
more likely to yield responses congruent with sub-
ject response. In health surveys, studies have shown
that proxies are able to report accurately on areas
of health and functioning, although they tend to rate
patients as slightly more impaired than patients rate
themselves [11, 22]. Agreement between subject and
proxy tends to be lower for conditions that are not
observable, relatively private and not likely to be
discussed, such as mental conditions and general
aches and pains [22]. The best agreement is achieved
in subject–proxy pairs where the respondents live
together; correlation is reduced as contact between
subjects is reduced.

Finally, a whole range of statistical procedures
have been proposed to mitigate the effects of unit
nonresponse. These include post-stratification and
weighting adjustments based on estimates of the
probability of response. These estimates might be
based on auxiliary information, for example, or
on extra information collected from respondents. A
common procedure uses data on how often each
respondent has been available for interview in the
past week. A good review of these procedures is
given in Lessler & Kalsbeek [19, pp. 161–233].
The most common procedure of all, particularly for

item nonresponse, is to impute the missing values
from respondent data. Many different imputation
procedures have been proposed and a good overview
can be found in Kalton & Kasprzyk [16]. There can
be problems making inferences, and particularly with
estimating precision, if too many values are imputed.
Rao [26] and the ensuing discussion give some
idea of the problems (see Missing Data; Missing
Data Estimation, “Hot Deck” and “Cold Deck”;
Multiple Imputation Methods).

Measurement Errors

Measurement errors arise from complex interactions
among the survey mode, the instrument (i.e. the
questionnaire in most health surveys), the particular
question, the respondent, and, in personal interview
and telephone surveys, the interviewer. For conve-
nience, we group common problems under three gen-
eral headings, but most problems involve all of these
components to some extent.

Question and Format Effects

It is obvious that asking the right questions is crit-
ical if we are to obtain good information about the
quantities in which we are interested. Common sense
tells us that questions should be clear and unambigu-
ous and expressed in language that the respondent can
understand. Unfortunately, the situation is much more
complex than this. The survey mode (personal inter-
view, telephone interview, mailed questionnaire) can
have a big impact. For example, telephone respon-
dents tend to indicate a more favorable health status
than mail respondents [23]. Differences can be large;
in a study reported in Moore [24], 44% of people
interviewed personally answered “Yes” when asked if
they favored contraceptives being made freely avail-
able to unmarried women, in contrast to 75% of those
questioned by telephone or mail. Even for a given
choice of mode, very subtle changes in the word-
ing, context, format, and layout of a questionnaire
can have a measurable effect on the survey response.
The order in which questions are asked affects the
way that people respond in all modes, but even seem-
ingly inconsequential factors such as the placement
of instructions and the color of print has been shown
to affect the responses. Questionnaire design is a
specialist subject with a huge literature of its own. A
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good introduction can be found in Kalton & Schuman
[17] which is essential, if chastening, reading for any-
one planning a survey for the first time.

Respondent Errors

The respondent is the ultimate source of information.
Even if the question is understood clearly, he or
she must have access to the information that is
sought and must be able (and willing) to access
this information accurately. Accuracy of recall is
related to respondent motivation, the degree of detail
required, the significance of the event and the time
elapsed since it occurred, and also to the nature of the
topic. For example, illness in healthy subjects may be
underreported because it is not of current concern to
the respondent (see Recall Bias).

Many surveys ask about events that occur in a
specific time-period, such as the number of visits to
a doctor over the past year. This requires respondents
to place events in time, and a common distortion
is “telescoping”, where an event is remembered as
having happened more recently than was actually
the case. Fortunately, this has the opposite effect to
loss of recall and the two errors may partially offset
each other. Surveys asking for sensitive or personal
information (e.g. about diet, sexual activity or alco-
hol consumption) may engender a “social desirability
bias” resulting from the wish of a respondent to con-
vey a positive image in keeping with social norms and
to avoid criticism. This can distort the measurement
of the variable of interest significantly [14, 33].

Methods to reduce respondent measurement errors
require some understanding of their causes. The lit-
erature on this topic is wide-ranging, and includes
work in cognitive psychology on memory and judg-
ment as well as work in social psychology, survey
methodology, and other disciplines. A good intro-
duction is given by Groves [13, Chapter 9]. The
Survey Research Center at Michigan has conducted
a long-term study aimed at improving the quality of
reporting of health events. Some of the results are
summarized by Cannell et al. [5]. Successful tech-
niques tried by Cannell and his colleagues at Michi-
gan include the use of instructions to respondents
asking them to think carefully about their responses
and emphasizing that accurate and complete answers
are important, the use of feedback, and securing a for-
mal agreement of respondent commitment. Some of
their findings are surprising. For example, they found

that longer questions sometimes gave an increase in
the number of health events reported, suggesting that
the common advice to “keep the questions short”
might be better phrased as “keep the questions sim-
ple” (see [17]).

Interviewer Effects

In personal interview and telephone surveys,
the interviewer introduces a further source of
measurement error. Some interviewers may simply
not adhere to the survey protocol. Most problems
stem from the interaction between the interviewer
and respondent. The effect is likely to vary according
to the type of question, with attitude questions,
questions requiring probing, fixed-alternative and
forced-choice items, together with poorly worded and
ambiguous questions, being particularly susceptible
to interviewer variability. When questions are unclear
and consistently require additional interviewer input,
there is a greater likelihood that results may be
influenced by the interviewer; different interviewers
may interpret questions differently, or may rephrase
questions in a directive manner [10]. “Acquiescence
bias” arising from the disposition to answer “yes”
(or, less commonly, “no”) regardless of the question
asked, may be more severe in interviews with
respondents who are of low socioeconomic status,
or belong to minority cultures, when the interviewer
is perceived to be of higher status.

The impact of interviewer variability depends on
several things. For simple means and proportions,
the variance of the sample estimate in simple ran-
dom sampling is inflated by a factor 1 + (n − 1)ρint,
where n is a weighted average of the interviewers’
case-loads and ρint is the intra-interviewer correlation
as defined by Kish [18]. This correlation is a scale-
free measure of the size of the variability among
interviewers. The effect is similar with more com-
plex survey designs. The impact depends both on
the interviewer variability, as measured by ρint, and
on the size of the case-load. Even very small val-
ues of ρint can have a big impact on the precision
of the estimate if the average case-load is large.
Most medical and health surveys are interested in
more complex issues such as making comparisons
between subgroups, comparing relative risks, esti-
mating regression coefficients, and so on. There is a
general belief that the impact of interviewer variabil-
ity is much less severe for more complex parameters.
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The special case of comparisons between subgroups
is examined by Davis & Scott [8]. They show that
the impact depends on the distribution of the case-
loads between the subgroups and on the interaction
between the interviewers and the members of the sub-
groups. The effect will usually be smaller than for a
single mean but can be almost as large if the case-
loads are very unbalanced and the interviewer effect
differs between subgroups.

Most suggestions for reducing interviewer effects
involve putting effort into the initial selection of inter-
viewers, and into their training and supervision. A
quality control protocol for checking interviewing
consistency using audio tapes of randomly selected
interviews has been shown to reduce interviewer vari-
ability [10]. The number of interviewers involved in a
survey is an important factor since small differences
between interviewers may give rise to appreciable
reductions in the precision of sample estimates if
each interviewer has a large case-load. With a con-
stant ρint, the impact of interviewer variance can be
reduced by increasing the number of interviewers
and so reducing the number of individuals respond-
ing to each interviewer. However, this will usually
result in a more heterogeneous pool of interviewers,
particularly in heath surveys, where the interviewer
often needs special expertise, and in less intensive
training and supervision, all of which will tend to
increase ρint. Data quality can sometimes be improved
by careful deployment of the interviewers. We have
seen above that making sure that interviewers see
respondents from all subgroups can improve the
precision of subgroup comparisons. Matching inter-
viewers to respondents, such as using an interviewer
of the same gender for examining sexual behav-
ior [6], can also sometimes be effective. For example,
older white male interviewers gained more reports
of substance abuse in a study by Johnson & Par-
sons [15].

Processing Errors

Once the respondents have answered the questions,
the responses have to be coded, edited and entered
in a machine-readable form. Supplemental editing
will usually be needed to clean the data. Finally, the
raw data will be manipulated into a form suitable
for analysis. Missing values may be imputed at this
stage. The processing stage is the least glamorous

but often the most important step in the whole
survey process. Errors can creep in at every step;
we may find coding errors, transcription errors, and
errors introduced by the editing. However, we have
an opportunity to remedy some of the nonsampling
errors introduced earlier in the survey operation. All
large survey organizations have their own specialized
editing procedures for detecting inconsistencies and
unlikely responses. In some cases we may have
to check back with the original respondent to get
clarification of responses that do not pass the editing
checks.

Coding and transcription errors can be minimized
by cutting down the human component of the process
as far as possible with the use of computer-assisted
data entry techniques. Computer assisted telephone
interviewing (CATI) is one of these techniques.
Providing interviewers with laptop computers so
that data entry and editing can be carried out at
the time of the original interview as with CATI is
another. Most of the effective methods to control
human errors involve careful selection, training, and
supervision of personnel, just as with other sources
of nonsampling errors. A good survey of modern
methods for process control in surveys is given by
Lyberg et al. [23].

Further Reading

Good general surveys of the broad field of nonsam-
pling errors can be found in the books by Groves [13]
and Lessler & Kalsbeek [19] and in the collections
edited by Biemer et al. [2] and Lyberg et al. [21].
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Normal Clinical Values,
Design of a Study

Ideally, a study to determine normal ranges for
a cross-section of a specified population should
start by selecting a random (i.e. probability)
sample of healthy individuals from that population
(see Probability Sampling). Since participation in
such a study requires informed consent, which
many randomly selected individuals may decline,
an attempt should be made to test whether those
agreeing to participate are representative of the entire
population. Unfortunately, these conditions have only
rarely been met in normal range studies. There
have been exceptions, however, and we will mention
these later.

The key stumbling block is the word “healthy”. If
one were interested in a cross-section of the entire
population (as defined, for example, by location, age,
or gender), a reasonably straightforward plan would
be to select individuals according to a probability
sample from existing census records and then invite
them to participate in a study to measure the varia-
tion in some physiological function or blood test. For
example, the National Health and Nutrition Examina-
tion Surveys (NHANES) conducted by the National
Center for Health Statistics were based on samples
of the civilian noninstitutionalized US population fol-
lowing a highly stratified (see Stratification), mul-
tistage sampling design. More familiar perhaps to
epidemiologists is the Framingham Heart Study.
Begun in 1948, this was a prospective study of risk
factors in myocardial heart disease. A list of town
residents was stratified by family size and precinct of
residence. A sample of two families was selected at
random from every three successive families in each
stratum. All persons aged 30–59 in each selected
family were included in the study.

The problem becomes more complicated when
one wants to restrict the selected sample of refer-
ence subjects to healthy persons. At some point in
the selection process a screen must be applied to
detect those who do not qualify as healthy. This
requires the development of a medical history ques-
tionnaire (see Questionnaire Design) (which many
people might refuse to fill out) and evaluation of
each individual return. Nevertheless, probability sam-
pling may be applied to obtain the initial sample of

individuals. A good example is a study undertaken
in 1974 by Munan et al. [9] of the University of
Sherbrooke in Quebec province, Canada, to estab-
lish population-based normal values for a variety
of blood constituents. A total of 900 households in
the Eastern Townships of Quebec (just north of the
Vermont–New Hampshire border) were chosen ran-
domly from 75 census enumeration districts. Within
these families, approximately 2400 persons agreed
to participate and were interviewed through a stan-
dard questionnaire. This questionnaire covered cer-
tain exclusion criteria listed in the next section. On
the basis of the responses to these criteria, slightly
over 50% of these individuals were selected as refer-
ence subjects.

During the 1970s, many studies were undertaken
to develop normal ranges from large samples of
individuals. The guiding principle in most cases was
to obtain data from individuals presumed a priori
to be healthy, so that every measurement could be
used in the calculations. Often, blood donors were
assumed to fit this description, although we recognize
now that paying blood donors can attract many who
are not really healthy. In addition, their ages are
younger, in general, than the population as a whole.
Other sources of subjects included attendees at a well-
person screening clinic, or an outpatient clinic for
some disability that was not expected to influence
the variables measured. For example, an orthopedic
clinic might meet this specification for many blood
constituents. In some studies, data were obtained
from instruments set up in a booth at an amusement
park or a fair that gathered large numbers of presumed
healthy persons. Under these circumstances, only
the most superficial criteria for judging health could
be applied.

If the variable for which normal values are desired
is an indicator of a specific disease, the general
health status of an individual in the population is
not of concern; rather, the question is whether or
not a prospective reference subject is suffering from
that particular disease. It is then more feasible to
obtain a statistically random sample, provided one
has available some highly sensitive diagnostic tests,
apart from the variable of interest, to detect the pres-
ence of the disease. The study of biochemical tumor
markers often fits this description. An example is
prostatic specific antigen (PSA), now well known
as an indicator of prostate cancer. In a recent study
by Oesterling et al. [11], a sample of almost 4000
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white males aged 40–79 years, without a history
of prostate cancer, was selected at random from a
population of over 100 000 in Olmsted County, Min-
nesota. Only slightly over 55% agreed to participate
in a prostatic evaluation, so the potential bias of
self-selection loomed (see Selection Bias). Compar-
ison of the medical records of those who agreed to
participate, and those who declined, did not show
“significant differences”. Of this slightly over 2000-
man group, about 25% were selected at random for
the evaluation, which included not only the PSA mea-
surement but also two additional diagnostic tests for
prostate cancer. From this sample, the authors deter-
mined normal ranges for PSA as a function of age.

It remains that the vast majority of published nor-
mal ranges for blood constituents are not derived
from random samples but from “samples of conve-
nience”; for example, hospital or laboratory employ-
ees, blood donors, medical students, or other groups
assumed to be “healthy” (or, at least, functioning nor-
mally in their daily occupations) and convenient to
the laboratory desiring to obtain these ranges. In some
sample groups, the restriction to a certain age group
will be obvious. The situation is worse for many
physiological functions where an “average normal”
value is repeated in many medical textbooks. A prime
example is cardiac output, for which the figure of
5–6 l/min is often cited as representing the average
73 kg male.

Exclusion Criteria

In 1975, Alström et al. [1] of the Scandinavian Com-
mittee on Reference Values (SCRV) published an
extensive, rather rigid, set of exclusion criteria, in-
cluding upper limits for blood pressure, hematocrit,
serum cholesterol and triglycerides, urine albumin,
and glucose. In addition, the use of therapeutic drugs
or drugs of abuse was barred, as well as a long
list of diagnosed diseases. Immediately on publi-
cation, these criteria were applied to a randomly
drawn sample of potential reference subjects in Kris-
tianstad, Sweden. Results [2] showed that use of
these criteria excluded all but 11% of the men and
24% of the women from further testing. Clearly,
some loosening of the criteria was needed. The cri-
teria employed by Munan et al. were simpler and
worked better. Even here, however, about 50% of
the randomly selected persons who agreed to partic-
ipate were finally excluded from the study, and the

differences, if any, between selected and original pop-
ulation were not explored. The exclusion criteria of
Munan et al. were as follows:

1. No chronic disease reported at the time of inter-
view.

2. No disease leading to confinement to bed during
the 15 days preceding the interview.

3. No medication intake in the 48 hours preceding
the interview, except for vitamins.

4. No alcohol intake in the 48 hours preceding the
interview.

5. Did not smoke more than 50 cigarettes during
the 48 hours preceding the interview.

During the 1980s, the Expert Panel on the The-
ory of Reference Values (EPTRV) of the International
Federation of Clinical Chemistry (IFCC) published
a series of recommended practices with respect to
the determination of normal values and ranges. One
of these recommendations [6] dealt with the selec-
tion of reference subjects. The EPTRV did not for-
mally adopt the rigid criteria of the SCRV, although
they suggested the 1975 list of criteria as a guide.
The EPTRV specifically recommended the exclusion
of individuals suffering from systemic disease and
such pathophysiological disorders as renal failure,
congestive heart disease, chronic respiratory disease,
liver disease, malabsorption syndrome and nutritional
anemia. Moreover, individuals on either therapeu-
tic drugs or drugs of abuse were barred, as well
as persons using oral contraceptives, alcohol, and
tobacco. Possible further criteria for exclusion include
pregnancy and recent surgery.

It appears that the problem of developing a set
of exclusion criteria that will bar those in a state of
ill health from contributing to a normal range study,
while not excluding the great majority of potential
reference subjects who agree to participate, has not
yet been resolved satisfactorily. It would seem, how-
ever, that every randomly sampled individual who
agrees to participate should be allowed to do so;
that is, should complete a medical questionnaire and
should be measured for the variables of interest.
Then, blind to these data, a reasonable set of prede-
termined exclusion criteria should be applied to the
information in the questionnaires. This would allow
comparison of the distributions of measured values in
the group of subjects acceptable under the criteria and
in those excluded. From such comparisons, informa-
tion may be obtained not only for determining normal
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ranges but also for judging the effects of the exclusion
criteria on the distribution of each variable.

Partitioning Criteria

The planning for a normal range study should include
consideration of separate ranges for different sub-
groups of the population. A smaller number of refer-
ence subjects within a given subgroup will provide an
unbiased and more precise range for future applica-
tion to patients of that subgroup than would a larger
number of subjects from many subgroups with clini-
cally important differences in the variable measured.
However, as discussed elsewhere, the fact that mean
values of different subgroups are significantly dif-
ferent by the usual statistical tests is an insufficient
reason for calculating separate normal ranges. The
differences must have a known physiological basis
or, at least, be large enough to be recognized as clin-
ically important even if the medical world is not sure
why they exist. Depending on the sample size in each
subgroup, this will demand mean differences whose
probability levels under the null hypothesis are far
smaller than 5% or 1%.

Most commonly, demographic groups (gender,
age, race) are the partitioning criteria that come
to mind first. Since these separate subgroups are
not equally represented in the population sampled
(except, in most cases, for gender), different sampling
rates must be applied to each subgroup to assure an
adequate number of reference subjects for calculat-
ing a normal range of acceptable precision (see next
section). For example, the criterion of age usually
does not imply equally spaced age intervals across the
life span. Rather, it refers to approximate age inter-
vals that are known to be associated with important
physiological changes. Thus, separate normal ranges
may be desired for selected variables in women
before and after menopause. This, then, becomes
the partitioning criterion, not a specified age bound-
ary. However, information on menstruation will not
become available until the medical questionnaires are
received from those women willing to participate in
the study. It may be, therefore, that an additional ran-
dom sample of older women will be needed to bolster
the sample size in the postmenopausal group.

Other partitioning criteria that might be clini-
cally significant for certain variables include blood
group, ethnic background, geographic location, stage

of pregnancy, and tobacco use. If one or another
of these is thought to be important, the relevant
questions must be included in the questionnaire. A
recent document published by the National Commit-
tee for Clinical Laboratory Standards (NCCLS) [10]
contains a sample questionnaire as a planning guide.

Partitioning, if warranted clinically, may improve
the homogeneity of within-group data. But whether
the measurements are eventually to be subdivided
into separate groups or not, certain rules followed
during the execution of the study will help greatly
to achieve a homogeneous distribution of the results.
Among these are conditions on the premeasurement
behavior of the reference subjects. For example,
they should not engage in strenuous exercise during
24 hours preceding the drawing of a blood speci-
men. Specimens should be obtained in a fasting state
and should be drawn during the morning hours to
eliminate variations due to circadian rhythms. It is
obviously important that the same measurement pro-
cess (e.g. analytical method) be used throughout the
study, and that stable environmental conditions be
maintained in the laboratory during this time.

Sample Size

Curiously, the EPTRV of the IFCC did not address
the question of how many reference subjects should
be sampled to provide the data for calculating a nor-
mal range (see Sample Size Determination). Until
recently, this issue has emerged only sporadically in
the clinical literature.

Sample size calculations assume that the data rep-
resent a random sample from the given population.
As indicated above, we believe that a statistically ran-
dom sample of healthy individuals can, and should,
be drawn from the population, although this prac-
tice has not been followed in the great majority of
studies from which published normal ranges have
been derived. Beyond the implicit assumption of ran-
dom sampling, recommended sample sizes depend
on the statistical method used to estimate the nor-
mal range. Various parametric and nonparametric
methods have been described elsewhere.

For a given sample size, the most precise esti-
mating procedure becomes available when the ref-
erence values are normally distributed or can be
transformed to a scale on which they are normal
(see Transformations). In this case, the percentile
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limits (see Quantiles) of the range are estimated
from the sample mean x and standard deviation
s. Assuming large samples (say, n ≥ 100), the vari-
ance of each limit on the normal scale is given
approximately by (3/n)σ 2. For comparison, if these
limits had been estimated by the corresponding sam-
ple quantiles, their large-sample variances would
be approximated by the formula varQp = p(1 −
p)/nf 2

p , where fp is the normal ordinate at the
pth percentile. For p = 0.025 or 0.975, varQp =
(7.13/n)σ 2. In other words, on the normal scale,
the variance of the quantile estimator of a 95% nor-
mal limit would be expected to be 2.4 times larger
than that of the normal estimator. The weighted
quantile estimate (Harrell–Davis formula), described
elsewhere (see Normal Values of Biological Char-
acteristics), is more precise than the simple quantile,
but the reduction in variance is not great, averaging
about 20%.

Let us assume that when a normalizing transform
can be found, the normal estimators will be used
to derive normal limits. Then, a general criterion
is needed for obtaining a recommended sample size
from which to estimate normal limits for a variable
that is normally distributed on either the original or
transformed scale. Until recently, this problem was
not addressed. Instead, in the few papers considering
the question of sample size for normal ranges, it was
assumed that the great majority of distributions of
clinically important variables were either not normal
and could not be normalized satisfactorily through the
usual transforming functions, or that the process of
trying to find a successful transform and testing for
normality was generally too difficult and expensive
for most clinical investigators to undertake.

For example, Reed et al. [12] include a table of
exact nonparametric 90% confidence intervals for
upper and lower normal limits for sample sizes from
120 to 369. They recommend a minimum sample size
of 120, since this is the smallest number for which an
exact nonparametric 90% confidence interval can be
calculated (i.e. for any smaller sample size, the lower
90% confidence bound for the lower normal limit is
less than the smallest observation, while the upper
90% confidence bound for the upper normal limit is
greater than the largest observation). More recently,
Miller et al. [8] arrived at a rule for the minimum
number of reference subjects based on bootstrap-like
resampling from a highly skewed empirical distri-
bution: creatine kinase in women. They found that

the standard deviation of the quantile Q0.975 declined
approximately as the square root of sample size up
to size 400, but thereafter the decline was less than
expected. These authors concluded that samples of
less than 200 subjects were clearly inadequate to
define 95% normal limits for highly skewed distri-
butions using the sample quantile estimator, but that
400 would probably be sufficient.

It was Linnet [7], however, who proposed a gen-
eral criterion for sample size that can be applied
conveniently to normally distributed variables. This
criterion and examples of its application are given
in Harris & Boyd [5]. Briefly, Linnet suggested that
the width of the 90% or 95% confidence interval for
the true normal limit (e.g. the 97.5th percentile of the
sampled population) be set equal to a fixed proportion
of the normal range; say, 0.1, 0.2, or 0.3. To illustrate
the application of this criterion, suppose that we are
concerned with a variable whose measurements form
a skewed distribution that can be normalized by a
square root transformation; that is, the Box–Cox (3)
transform parameter λ = 1/2. Then the width of the
95% normal range, after backtransforming the normal
estimators to the original scale, is given by

Wnr = (y + 2.0sy)
2 − (y − 2.0sy)

2 = 8ysy, (1)

where y is the mean and sy the standard deviation of
the square roots.

Similarly, the width of the 90% confidence inter-
val for the true 97.5th percentile will be the dif-
ference between the square of the upper limit of
the confidence interval computed from the normal
estimator minus the square of the lower limit. We
noted earlier that the large-sample variance of the
normal estimator is (3/n)σ 2. Substituting sy for
σ , the width of the confidence interval on the
original scale may be written Wci = 11.40ysy(1 +
2.0Cy)/n1/2, where Cy is the coefficient of variation
of the distribution of square roots. Then, the ratio,
say R, of Wci to Wnr becomes R = (1/n1/2)(1.25 +
2.85Cy). Setting R = 0.2, say, we obtain an expres-
sion for the minimal required sample size n as a func-
tion of Cy . This is graphed in Figure 1 (λ = 1/2).

For Cy = 0.2, the sample size must exceed 100 to
satisfy the condition on R. This number rises to 400
when Cy = 1.0. Also included in Figure 1 are similar
graphs for R = 0.2 when the power transformation
parameter λ is 1/3 or 1/4. Harris & Boyd [5, p. 72]
present a graph for the lognormal distribution, but
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Figure 1 Sample size needed to estimate 2.5% or 97.5%
normal limit with confidence interval 20% as wide as 95%
normal range, using square root, cube root, or fourth root
transformation to normalize the distribution; Cy = CV on
transformed scale

here n is a function of the coefficient of variation
(see Standard Deviation) of the measured values
on the original scale. They recommend that a pilot
sample of 150–200 reference subjects be measured
to determine a suitable power transform, if necessary,
to achieve normality, and the appropriate coefficient
of variation. Then, the foregoing results may be used
to estimate the final number of subjects needed to
attain the desired value of R. In circumstances where
such numbers cannot be obtained, the investigators
must settle for wider confidence limits relative to the
overall normal range or for a smaller confidence level.

Even if investigators finally decide that no trans-
form path will produce an acceptable normal dis-
tribution of their data, it is useful to estimate the
Box–Cox power parameter because in most cases a
power transform will greatly reduce skewness and
kurtosis. Then, a baseline sample size can be esti-
mated following Linnet’s ratio. If a nonparametric
estimation procedure is selected, general formulas for
Linnet’s criterion are not possible because confidence
intervals and normal ranges are expressed only in

terms of the rankings of the order statistics. In this
case, we return to the definition of the normal range
as a tolerance interval to contain at least a propor-
tion p of the population with confidence (1 − α).
To avoid an overly wide interval, Table A.30 in
Hahn & Meeker [4] gives the nonparametric sample
sizes needed to satisfy these conditions while guar-
anteeing a specified low probability of including a
given proportion greater than p. For example, set-
ting p = 0.95, 1 − α = 0.90 and specifying that the
probability of including a proportion greater than 0.98
should be no more than 0.1, the minimal sample size
is 258.

Given the data from a study of this size, one may
calculate Linnet’s ratio on an ad hoc basis using the
table of Reed et al. [12] to obtain 90% confidence
intervals for the upper and lower normal limits. Then
one may judge whether additional observations are
needed to achieve a satisfactory R value. For sam-
ple sizes greater than 369, large-sample approximate
confidence limits are given by the order statistics
x(r) and x(s), where r is the largest integer less than
or equal to np + 1/2 − zα/2[np(1 − p)]1/2, s is the
smallest integer greater than or equal to np + 1/2 +
zα/2[np(1 − p)]1/2, and zα/2 is the standard nor-
mal deviate cutting off the upper 100 (α/2)% of the
normal curve.
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Normal Clinical Values,
Reference Intervals for

The idea of trying to detect or diagnose a disorder in
an individual by comparing a relevant measurement
from that individual with a range of values expected
in a healthy or “normal” population is both ancient
and intuitive. However, it was made systematic and
scientific only in the 1950s when Wootton et al. [33]
proposed the use of specific probability distributions
to describe variation in biochemical measurements in
blood samples from 100 active, working volunteers.
Since then an enormous number of papers on “ref-
erence values”, “normal ranges”, “reference ranges”
or “reference intervals” (all may be regarded as syn-
onymous) have appeared in the medical, laboratory-
based, and statistical literatures. A key controversy
in the 1960s was whether hospital patients, a conve-
nient resource for hospital biochemistry laboratories,
were a suitable population on which to base refer-
ence ranges for application to the general public. This
was proposed by Pryce [19], but was effectively dis-
missed by the work of Elveback [8] who showed
major differences in the distributions of important
serum variables between healthy working individuals
and patients at the Mayo Clinic.

Leaving aside the vexed question of how to choose
appropriate reference populations, the notion that an
“abnormal” value (i.e. outside defined reference lim-
its) is reliably indicative of disease is open to several
criticisms. Since reference ranges are intended to
include a fixed proportion of the population (see the
section “Definitions” below), inevitably a proportion
of “normal” individuals will lie outside the limits
and will be falsely classified as “abnormal”. More-
over, concentrations of biochemical analytes form
a continuous scale, so useful diagnostic information
may be lost by dichotomizing at fixed values. Since,
nowadays, clinicians tend to order the batteries of
tests that are routinely available from multichannel
analyzers, there is an obvious problem of multiplic-
ity (see Multiple Comparisons) when interpreting
the results. More fundamentally, for effective dis-
crimination between normal and diseased states the
distributions of test values in diseased populations
are required. Such distributions are rarely available,
doubtless due to the high cost and difficulty of obtain-
ing enough appropriate data.

Despite these and other criticisms, reference
ranges remain a continuing feature of everyday
clinical practice. In most cases they are used more
as informal indicators that “something is wrong” in
a particular physiological system when forming a
clinical picture of a patient, rather than as formal
decision rules in screening (see Decision Analysis
in Diagnosis and Treatment Choice; Screening,
Overview).

Harris & Boyd [10] is a comprehensive recent text
on statistical aspects of reference values in laboratory
medicine. It includes useful contextual information
and several example data sets.

Definitions

A univariate p% reference interval is a pair of num-
bers (the reference limits) that enclose the central p%
of a sample of observations (the set of reference val-
ues) obtained from a specified group of individuals
(the reference subjects). Thus (100 − p)/2% of the
values lie below the lower limit and the same pro-
portion above the upper limit. The reference subjects
are (supposedly) representative of some larger popu-
lation, more or less well defined. A typical value of
p% in clinical settings is 95%.

When extended to k-dimensional multivariate dis-
tributions, the reference interval becomes a refer-
ence region and is bounded by a suitable (k − 1)-
dimensional surface. If the distribution of the refer-
ence values is multivariate normal, the surface is an
ellipsoid.

Note that, by default, reference intervals are
“cross-sectional”; that is, derived from samples
with one observation per subject, though they
may depend on factors such as age. Construction
of intervals for changes, as in studies of
human growth (see Growth and Development),
or in individual patient monitoring, requires
longitudinal data and generally more complex
methods of statistical analysis (see Longitudinal
Data Analysis, Overview; Multilevel Models), and
is not considered here.

Design and Sample Size

The choice of reference subjects should be appropri-
ate to the clinical use to which the resulting inter-
vals will be put. In some cases, this may involve
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measurements on special groups. For example, chil-
dren with cerebral palsy are known to grow less
rapidly than unaffected individuals, so age-specific
reference intervals for, say, height should be con-
structed from a suitable population of children with
the condition, not those from the general popu-
lation. The selection of individuals is considered
by the International Federation of Clinical Chem-
istry (IFCC) [12] in the clinical chemistry context
and by Altman & Chitty [3] for studies of fetal
growth.

Choice of sample size, n, is not necessarily
straightforward, since no comparison of an outcome
variable between groups (as in a clinical trial) is to
be made. Since adequate information about the tails
of the reference distribution is required, methods tend
to focus on the precision of estimated reference lim-
its. Stated simply, the width of a confidence interval
for a centile (see Quantiles) depends on

√
n, so n

may be determined by specifying this width, either in
absolute (measurement) units or relative to the width
of the reference interval. For example, a possible cri-
terion (illustrated by Harris & Boyd [10, pp. 68–69])
is to take n large enough to ensure that the width of
a 90% confidence interval for a reference limit is no
more than 20% of the width of a 95% reference inter-
val. One may use nonparametric methods or the
properties of the normal distribution to calculate n.
In the latter case, one must allow for estimation of a
shape parameter if transformation towards normal-
ity is needed (see below). It is less clear how to use
the approach in the age-specific case, since the width
of the confidence interval will vary with age. In addi-
tion, the question of a suitable choice of ages arises
(see Sample Size Determination).

Estimation

Univariate Case: Homogeneous Samples

One may determine reference intervals from a set of
reference values either by nonparametric methods of
quantile estimation or by fitting parametric densities
and calculating intervals from the resulting param-
eters. Nonparametric estimation is distribution-free
and therefore “robust”, but is usually inefficient in
comparison with parametric modeling when a suit-
able distribution has been found. For example, if the
underlying distribution is normal, the variance of the
simplest nonparametric estimator of the 97.5th centile

is 2.44 times that of the normal-based estimator, rep-
resenting a relative efficiency of only 41%. The situ-
ation is less unfavorable with skewed distributions.

One may use the simple quantile estimator
obtained by ordering the values and choosing the
appropriate order statistics (with interpolation if
needed). Harrell & Davis [9] proposed a method that
gives efficiency gains of about 20% at the cost of
additional computation. It is equivalent to applying
bootstrap resampling to the simple estimator.
Alternatively, kernel density estimators [27, 28]
may be used.

As regards parametric estimation, the most pop-
ular method involves the normal distribution or a
functional transformation towards normality. Trans-
formation is often needed because the distribution of
reference values is positively skewed. If we denote
the measurement variable by Y , the most commonly
used functions are the identity (Y is normal), log
Y (Y is lognormal), (Y λ − 1)/λ (Box–Cox trans-
formation) [5], [exp(γ Y ) − 1]/γ (scaled exponential
transformation, closely related to Box–Cox) [17],
and log(Y + C) (origin-shifted logarithmic transfor-
mation, e.g. [23]). If we choose the value of the shape
parameter (λ, γ , or C) correctly, the transformed
measurements will have zero skewness. However,
there is still no guarantee that they will be normal.
Residual kurtosis (nonnormal tails) or other peculiar-
ities may remain. Kurtosis may be removed by further
transformation, such as the modulus function [15].
The IFCC [13] recommend use of the exponential
transformation, followed by the John–Draper mod-
ulus transformation [15], if needed, to remove kur-
tosis. Maximum likelihood is the preferred method
of estimating the parameters of these distributions.
In most cases, the densities for Y corresponding to
the power, origin-shifted logarithmic and exponential
transformations may be shown by Taylor expansion
to be very similar. They lead to reference intervals
that are for practical purposes indistinguishable. (See
the example below for an illustration of this asser-
tion.)

Univariate Case: Subgroups and Covariates

The distributions of clinical variables such as blood
pressure or serum biochemicals are usually age- or
sex-specific. To retain their proper meaning, refer-
ence intervals should be constructed to take such
covariates into account. Categoric variables present



Normal Clinical Values, Reference Intervals for 3

little difficulty provided sample sizes are adequate,
because the methods described above may be applied
to subgroups. Modeling continuous variables such as
age is more challenging and has stimulated statisti-
cians to propose a variety of approaches to estimation.
Wright & Royston [34] summarize the main tech-
niques and compare them using several real data sets.
Nonparametric techniques have included a window-
based quantile estimator followed by polynomial
smoothing, both over age and over normal equivalent
deviates of selected quantiles [11, 18], and bivariate
kernel density estimation [21]. Most current paramet-
ric approaches stem in essence from the methods
of Cole [6] and Cole & Green [7]. Cole [6] applied
the Box–Cox power transformation to remove skew-
ness of Y in each of several contiguous age groups.
In a second stage, he smoothed each of the param-
eter estimates across age by fitting polynomials
(see Polynomial Regression). He called the result-
ing functions the L, M, and S curves; they represent
the age-specific power, median, and coefficient of
variation (see Standard Deviation) for Y . In a later
refinement, which may be described as a semipara-
metric method, Cole & Green [7] used natural cubic
splines to model the LMS curves by penalized max-
imum likelihood. This method is extremely flexible.
Fully parametric methods are proposed by Roys-
ton [22], Altman [2], and Royston & Wright [25].

The last is based on the Manly [17] exponential trans-
formation and uses fractional polynomials [24] to
represent the age-specific parameter curves. No age
grouping is needed.

Example

In a study [14] to compute age-specific reference
intervals, the serum concentration of immunoglo-
bulin-G (IgG) was measured in 298 children aged
between six months and six years. A scatter plot of
IgG concentrations against age is shown in Figure 1.

The continuous lines in Figure 1 are estimated
2.5th and 97.5th age-specific centile curves for IgG.
In fact, the curves show the fitted values from three
separate parametric models, based on the Box–Cox,
shifted logarithmic, and scaled exponential transfor-
mations, respectively. (Further details of the model-
ing, which is based on fractional polynomials and
maximum likelihood estimation, are given by Roys-
ton & Wright [25].) The results from the three models
are essentially identical, and this is typical of such
comparisons. The dashed lines show the fit from
Cole & Green’s natural cubic spline algorithm [7],
using respectively 1, 5, and 3 equivalent degrees
of freedom for the L, M, and S parameter curves.
Although there are differences between the paramet-
ric and semiparametric curves, they are minor.
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Figure 1 Serum IgG concentrations with estimated 95% age-specific reference intervals according to four models.
Continuous lines: three parametric models based on data transformation; broken lines, semiparametric model based on
natural cubic splines. See text for further details
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Parametric or Nonparametric?

Ultimately, parametric methods are more reward-
ing because, provided the model is approximately
correct, they usually offer greater precision and (in
the age-specific case) smoother centile curves than
do nonparametric methods. A second advantage is
in dissemination; parametric models have concise
equations that are easily published and, for example,
incorporated into computer software. A disadvantage
is that more initial effort may be required to find a
suitable model, if one even exists. Since the valid-
ity of parametric models depends strongly on the
correctness of their assumptions, such models must
be subjected to rigorous goodness-of-fit checks (see
below).

Multivariate Case

Methods of constructing reference regions for several
(usually related) laboratory variables are described
in detail by Albert & Harris [1]. Their approach is
parametric and is based on the multivariate normal
distribution, with preliminary univariate transforma-
tion of nonnormal components. Nonparametric mul-
tivariate density estimation does not seem to have
been proposed in the context of clinical reference
regions, nor has the age-specific case been discussed.
In both cases, construction of reference regions is not
straightforward. It is likely that since clinicians will
wish to inspect the individual test results anyway,
multivariate reference regions are little used in prac-
tice, despite the problem of multiplicity mentioned
above.

Goodness of Fit and Outliers

Essentially, two methods of assessing goodness of
fit of a p% reference interval have been proposed:
direct (e.g. [11]) and model-based (e.g. [6]). The
first involves counting the number of points that lie
between the reference limits. Apart from binomial
sampling variation, this number should be approxi-
mately np/100. The method is applicable in all cases
except when the simple quantile estimator has been
used to estimate the interval. Unless the sample size
is enormous, however, it lacks power. The second
method relies on the assumption that the data, possi-
bly after transformation, have a known distribution,

usually normal. Data transformed to standard normal
(i.e. with mean 0 and variance 1) are known as SD
scores or Z scores (see Normal Scores). The nor-
mality assumption may be checked by well-known
graphical methods such as a histogram or a normal
quantile–quantile (Q–Q) plot and by hypothesis
tests such as the Shapiro–Francia [26] or Ander-
son–Darling [31] statistics.

Two major difficulties arise with the model-
based method. First, if a shape parameter has been
estimated, the distribution of a normality test statistic
is affected, invariably in the direction of conservatism
(not rejecting the null hypothesis often enough).
Linnet [16] offered a corrected Anderson–Darling
test when the data have been power transformed.
Secondly, it is unclear how best to assess the
fit of models for age-specific reference intervals.
Departures from the model may be age dependent,
and overall plots and tests of Z scores may be
insensitive to them. Further research is needed in
this area.

The detection of outliers is mainly relevant to
the parametric approaches, as nonparametric methods
tend to be robust. There is a huge statistical literature
on outliers (a well-known text is [4]) and little may
need adding in the present context. A particular
problem that arises with power transformation of Y

(namely, whether the transformation depends on just
a few values) is considered by Tango [32].

Computation

When the reference values are homogeneous and
apparently normally distributed, their sample mean
and SD are all that are required to calculate
any desired reference interval. For example, a
p% interval is given by mean ±SD · Φ−1[(1 −
p/100)/2]. Essentially the same formula is used
when Y has been transformed; the limits are
calculated on the transformed scale and finally
back-transformed. For the normal age-specific case,
Altman [2] proposed a simple approximate solution
using absolute residuals that does not require
iteration. Some difficulty arises in finding maximum
likelihood estimates of the parameters when Y has
been transformed. Estimation is iterative as no
closed-form solution is available, and, in general, it
is necessary to use special purpose software (either
stand-alone programs or routines written for use with
particular statistical packages).
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Software Sources

Solberg [29] has implemented the exponential/mod-
ulus transformation method recommended by the
IFCC [13] for homogeneous samples in a stand-alone
program (RefVal). It is available from Dr H. E. Sol-
berg, Department of Clinical Chemistry, Rikshospi-
talet, N-0027 Oslo, Norway. Under the auspices of
the World Health Organization, an MS-DOS-based
package GROSTAT [20] has been developed that
implements the nonparametric methods of Healy and
colleagues [11, 18]. It is available from Dr H. Pan,
Institute of Education, Bedford Way, London WC1H
0AL, UK. A FORTRAN program that implements
the semiparametric method of Cole & Green [7] is
available from Dr T. J. Cole, MRC Dunn Nutrition
Unit, Downham’s Way, Cambridge, UK. Software
that implements the parametric methods of Royston
& Wright [25] for use with the package Stata [30]
may be obtained from Dr P. Royston, Department
of Medical Statistics and Evaluation, Imperial Col-
lege School of Medicine, Ducane Road, London W12
0NN, UK.
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Normal Distribution

This article describes the univariate normal distri-
bution, with brief references also to the bivariate
normal distribution and the multivariate normal
distribution. For each of these, there are brief histor-
ical remarks, and discussions of distributional proper-
ties, sampling distributions, and related applications.

The Univariate Normal Distribution

Historical Remarks

The univariate normal distribution is probably the
most important distribution in classical statistical
theory and methods. This distribution has a “bell-
shaped” continuous probability density function. In
the history of statistics, it was first discovered by the
German mathematician Carl F. Gauss in the early
nineteenth century while studying certain problems in
physics and astronomy. As a result, this distribution
is also known as the Gaussian distribution.

Distributional Properties

A continuous univariate random variable X is said
to follow a normal distribution with parameters µ

and σ 2 if its probability density function f (x) is of
the form

f (x) =
[

1

(2π)1/2σ

]
exp

[−(x − µ)2

2σ 2

]
,

− ∞ < x, µ < ∞, and σ > 0;

in symbols, X ∼ N(µ, σ 2). It can be shown by
elementary calculus that the mean and the variance
of this distribution are, respectively, µ and σ 2.

A random variable Z is said to follow a standard
normal distribution if Z ∼ N(0, 1) (see Standard
Normal Deviate). The distribution function of Z,
Φ(z), is then given by

Φ(z) =
∫ z

−∞

[
1

(2π)1/2

]
exp

(−u2

2

)
du.

Since the function exp(−u2/2) is symmetric about
0, Φ(z) satisfies Φ(z) = 1 − Φ(−z) for all z. The
(1 − α)th quantile [or 100(1 − α)th percentile] of a
standard normal distribution, often denoted as zα in

most textbooks, is the quantity that satisfies Φ(zα) =
1 − α, α ∈ (0, 1). Since the function Φ(z) cannot be
expressed in a closed form, tables for the numerical
values of Φ(z) and zα are needed. Such tables can
be found in most statistics books.

The following theorem, which can be proved by
calculus, shows how a normal distribution with mean
µ and variance σ 2 is related to the standard normal
distribution.

Theorem 1. If X ∼ N(µ, σ 2), then the random
variable Z = (X − µ)/σ is distributed according to
the standard normal distribution.

As a simple application of Theorem 1, it fol-
lows that:

Fact 2. If X ∼ N(µ, σ 2), then:

1. Pr[a < X ≤ b] = Φ((b − µ)/σ) − Φ((a − µ)/

σ) for all a < b;
2. The (1 − α)th quantile of the distribution of X

is µ + zασ .

Thus, tables for the standard normal distribution
can be used for any univariate normal distribution.

More detailed distribution properties of the uni-
variate normal distribution can be found in Patel &
Read [4] and other related sources.

Sampling Distributions

The chi-square distribution, Student’s t distri-
bution, and the F distribution, generally consid-
ered to be the cornerstones of classical statistical
analysis, are closely related to the normal distribution.
Specifically, let X1, X2, . . . , XN be a random sample
of size N from an N(µ, σ 2) distribution; let

X = 1

N

N∑

i=1

Xi and S2 = 1

N − 1

N∑

i=1

(Xi − X)2

denote the sample mean and the sample variance,
respectively. Then:

1. X has an N(µ, σ 2/N) distribution and (N −
1)S2/σ 2 has a chi-square distribution with N − 1
degrees of freedom. Furthermore, X and S2 are
independent.

2. t = N1/2(X − µ)/S has a Student’s t distribu-
tion with N − 1 degrees of freedom, where S =√

S2 is the sample standard deviation.
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3. t2 has an F distribution with degrees of freedom
(1, N − 1).

Another important sampling distribution result
related to the normal distribution is a fundamental
theorem in probability theory, called the central limit
theorem:

Theorem 3. Let X1, X2, . . . , XN be a random sam-
ple of size N from any population with mean µ and
finite variance σ 2. Then, for every fixed z,

lim
N→∞ Pr[{N1/2(X − µ)/σ } ≤ z] = Φ(z).

This theorem provides an approximation for the dis-
tribution of X when N is large. In most applications,

Pr[a < X ≤ b]=̇Φ(N1/2(b − µ)/σ)

− Φ(N1/2(a − µ)/σ)

when N ≥ 30.

Related Applications

In various applications of statistical inference
problems – including, estimation of the parameters
and hypothesis testing – the above sampling
distribution results are applied. These include the
following:

1. For inference on µ when σ 2 is known, the results
for the distribution of X and Theorem 3 may be
applied.

2. For inference on µ when σ 2 is unknown
under the assumption of normality, Student’s t

distribution may be used.
3. When making statistical inference on σ 2 under

the assumption of normality, the chi-square dis-
tribution may be used.

4. The normal distribution may be applied for
inference on the difference of two normal means
when their variances are known. Similarly, the
Student’s t distribution may be applied for the
same purpose when the variances are unknown
but equal; in the hypotheses-testing problem, this
is known as the two-sample t test (see Student’s
t Statistics).

5. The F distribution may be applied for testing
the equality of k ≥ 2 normal means when the
variances are assumed to be equal but unknown.

This method is known as the one-way analysis
of variance (ANOVA) method. When k = 2, it
reduces to the two-sample t test as a special case.

6. Other results related to Theorem 3 are useful in
large-sample inference problems. For example,
it is known that under regularity conditions the
maximum likelihood estimator has an asymp-
totically normal distribution, and that the asymp-
totic null distribution of −2 ln λ is chi-square,
where λ is the likelihood ratio function in a like-
lihood ratio test.

The Bivariate Normal Distribution

Historical Remarks

Studies of the bivariate normal distribution seem to
begin in the middle of the nineteenth century, and
moved forward dramatically when Galton published
his work [3] on the applications of correlation anal-
ysis in genetics. As Karl Pearson noted in his 1920
Biometrika paper [6], “In 1885 Galton had com-
pleted the theory of bivariate normal correlation” but,
because he “was very modest and throughout his life
underrated his own mathematical powers, he did not
at once write down the equation” of the bivariate nor-
mal density function. Consequently, it was Pearson
himself who gave a definitive mathematical formula-
tion of the bivariate normal distribution in his 1896
paper [5] on regression and heredity.

Distributional Properties

A two-dimensional random vector (X1, X2) is said
to have a bivariate normal distribution if their joint
density function f (x1, x2) is of the form

f (x1, x2) =
[2πσ1σ2(1 − ρ2)1/2]−1 exp

[− 1
2Q2(x1, x2; µ, �)

]
,

− ∞ < x1, x2 < ∞;

where

Q2(x1, x2; µ, �) = (x1 − µ1, x2 − µ2)�
−1

×
(

x1 − µ1

x2 − µ2

)

defines an ellipse centered at (µ1, µ2) ≡ µ (which is
the mean vector), the 2 × 2 matrix

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
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is the covariance matrix, and ρ ∈ (−1, 1) is the
correlation coefficient.

The marginal and conditional distributions of a
bivariate normal random vector are univariate normal.
For details, see the article on bivariate normal
distribution and Tong [7, Section 2.1].

Sampling Distributions and Related Applications

The sampling distribution results involve the distri-
butions of the sample mean vector X, the sample
covariance matrix S, the independence property of X
and S, and the distribution of the sample correlation
coefficient. Those results may be applied for esti-
mation and hypotheses testing purposes. For details,
see the article on bivariate normal distribution,
Anderson [1, Section 2.3], and Tong [7, Sections 2.1
and 2.2].

The Multivariate Normal Distribution

Historical Remarks

The development of the multivariate normal distribu-
tion theory, which originated mainly from the studies
of regression analysis and multiple and partial cor-
relation analysis (see Multiple Linear Regression),
was treated comprehensively for the first time by
Edgeworth in his 1892 paper [2]. The development
of the sampling distribution theory under the assump-
tion of normality (such as Fisher’s work on the
distributions of sample correlation coefficients and
Hotelling’s T 2 distribution) then followed.

Distributional Properties

An n-dimensional random vector X = (X1, . . . , Xn)

is said to follow a multivariate normal distribution
with mean vector µ = (µ1, . . . , µn) and covariance
matrix �n×n = (σij ), in symbols X ∼ Nn(µ, �), if its
joint probability density function is of the form

f (x) = [(2π)n/2|�|1/2]−1 exp
[− 1

2Qn(x; µ, �)
]
,

x ∈ �n,

where

Qn(x; µ, �) = (x − µ)�−1(x − µ)′.

The marginal and conditional distributions of a mul-
tivariate normal random vector are also normal. For
details, see the article on Multivariate Normal Dis-
tribution, Anderson [1, Sections 2.3, 2.4 and 2.5],
and Tong [7, Section 3.3].

Sampling Distributions and Related Applications

The sampling distribution results also involve X,
S, and their independence property; in particular,
the results are related to Hotelling’s T 2 distribu-
tion and the Wishart distribution (generalizations
of the Student’s t distribution and chi-square dis-
tribution, respectively). There also exist distribu-
tional results on the sample regression equations
and various types of sample correlation coeffi-
cients. Such results have been found useful for
the purposes of prediction and correlation analysis.
For details on sampling distributions, see the arti-
cle on Multivariate Normal Distribution, Ander-
son [1, Chapters 4, 5, and 7], Tong [7, Sections 3.4
and 3.5], and other related sources. For related appli-
cations in inference, a classical reference is Ander-
son [1].
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Normal Scores

Normal scores are the expectations of the order
statistics of a sample from the standard nor-
mal distribution. They are widely used in plots
(see Normality, Tests of) and tests to assess the
goodness of fit of the normal distribution to data,
and also in other procedures (see Normality, Tests
of).

The key idea in assessing fit is that a sample
from a continuous distribution will tend to have a
shape characteristic of that distribution. This shape
is given by the order statistics of the sample –
that is, its ordered values – comparison of which
with their expected values will be informative about
distributional fit. Their most common use is in
normal scores plots, as outlined below, but the same
basic idea can be extended to quantitative tests of
fit.

Another use of normal scores is in transforma-
tions to normality, when it is desired to apply a
technique suitable for normal data to data that are
visibly nonnormal.

Normal Scores Plots

A widely used procedure for assessing normality
and screening data for outliers is a normal scores
plot, in which the sample order statistics are plotted
against normal scores. This is a Q–Q plot of the
data and the normal scores, and is sometimes also
called a rankit plot. It is also used to assess the
fit of linear regression models, where a common
assumption is that the residuals have approximate
normal distributions.

The upper two rows of Figure 1 show normal
scores plots for six simulated normal samples. In
each case, the intercept and slope provide rough
estimates of the mean and standard deviation of
the sample. For example, the top left panel shows
data from the N(0, 1) distribution, while the data
in the top right panel have mean and standard
deviation approximately −4 and 3. The three panels
in the bottom row of the figure show (from left)
data from a distribution skewed to the right, to
the left, and a long-tailed distribution. In each case
there is a systematic departure from the straight-
line pattern seen in the top six panels, indicating

various types of nonnormality. Outliers would show
up as observations lying well away from the upper or
lower tails of the data, as in the central panel in the
middle row and the left and right panels in the bottom
row – although in fact none of those observations are
outliers.

Tests of Fit

As shown in Figure 1, purely graphical assessment
of normality can be inconclusive, especially when
sample sizes are small. Consequently, tests using
normal scores have been proposed for use when it
is critical to know whether data are normal. For
example, Shapiro–Wilk tests are based on the cor-
relation between the data and normal scores, with
low values of the correlation coefficient indicat-
ing nonnormality. These and other tests of normal-
ity should be used in conjunction with a normal
scores plot. For references and a fuller account, see
D’Agostino [1].

Transformation

When data clearly do not have a normal distribu-
tion, but it is desired to use a procedure based on
the assumption of normality, one possibility is to
replace each original data value with its correspond-
ing normal score and to perform the procedure on the
transformed data.

As an example, suppose that it is intended to
perform a test to compare the locations of two sets
of data the shapes of which are similar, but that it
is clear (perhaps from normal scores plots) that the
two samples are not normal. More precisely, we have
two random samples X1, . . . , Xm and Y1, . . . , Yn,
where the distributions of X and Y − θ are the
same for some θ , and we wish to test the null
hypothesis that θ = 0. A test statistic based on
normal scores is T = ∑N

r=1 e(r, N)Ir , where N =
n + m, the normal score e(r, N) is defined below,
and

Ir =






1, if the rth largest of the combined
sample X1, . . . , Xn,
Y1, . . . , Ym is an X,

0, otherwise.

This is like a rank test (see Nonparametric Meth-
ods) but with the ranks replaced by normal scores.
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Figure 1 Normal scores plots for simulated samples of size 49. The top two rows show data from normal distributions.
The bottom row shows data from a distribution skewed to the right (left), a distribution skewed to the left (center), and a
long-tailed distribution (right)

Its advantage over rank tests is its high power when
the distribution of X is close to normal. In practice,
it may be more convenient to replace the exact nor-
mal scores by their approximation give in (1) below.
For more details and related tests, including ref-
erences to tabulated significance points for T , see
Gibbons [2].

Computation

Suppose that Z1, . . . , Zn is a sample from the
standard normal distribution, and let Z(1) ≤ · · · ≤
Z(n) denote the corresponding order statistics. Let
Φ(z) and φ(z), respectively, denote the cumulative
distribution function (cdf) and probability density
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function pdf of the standard normal distribution. Then
the exact value of the rth normal score is

E(Z(r)) = e(r, n) = n!

(r − 1)!(n − r)!

×
∫ ∞

−∞
zΦ(z)r−1[1 − Φ(z)]n−rφ(z) dz.

This is awkward to work with, and an approximation
that is adequate for most purposes is

e(r, n) = Φ−1

(
r − 3

8

n + 1
4

)
, (1)

where Φ−1(·) is the inverse of the normal cdf. The
approximation given in (1) is readily calculated in
standard statistical software packages.

Royston [5] gives FORTRAN algorithms for
e(r, n) (available in machine-readable form from
URL http://lib.stat.cmu.edu/apstat/
177), while Harter [3] has tabulated their values

for n = 2(1)100(25)250(40)400; see also Pearson &
Hartley [4].
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Normal Values of
Biological Characteristics

This article focuses on clinical biochemistry (e.g.
blood glucose or serum cholesterol) and hematol-
ogy measurements (e.g. hemoglobin or hematocrit)
because this is the area where most progress has been
made in the collection and statistical treatment of
normal values. There are, of course, many nonchem-
ical variables used to assess physiological status. A
familiar example is brachial arterial pressure which
is routinely measured before a clinical examination.
Other examples will be noted in passing. The statis-
tical methods described below should be applicable
to all clinical (or, more generally, biological) vari-
ables that are measured on a continuous quantitative
scale.

The “normal range” is commonly understood to
be that interval which contains the measured values
of a specified clinical variable in 95% of a population
of healthy individuals. Since this range is estimated
from a sample of individuals, we should rather define
the estimate as a tolerance interval that has prob-
ability 100(1 − α)% of including at least 95% of
the population. In routine clinical practice the nor-
mal range is used as a prediction interval for the
value in a healthy patient. However, when used for
this purpose over and over again, as is always the
case, it no longer satisfies the limited conditions of a
statistical prediction interval (i.e. to predict the next
observation or the mean or all of a fixed number of
future observations). Therefore, we fall back on the
definition of the normal range as a statistical toler-
ance interval. The interval is usually not estimated
directly but only as the range of values between the
estimated 2.5th and 97.5th percentiles of the popu-
lation distribution. In many clinical situations, only
one percentile (usually the upper) is important for
diagnosis (see Quantiles).

The word “normal” is somewhat ambiguous, usu-
ally meaning “typical” but sometimes representing
the “ideal”. It also refers to a particular statistical
distribution. Moreover, an analogous range (perhaps
overlapping) could be defined for persons suffer-
ing from a particular disease. For these reasons,
the term “reference range” has supplanted the nor-
mal range, at least in the clinical laboratory. How-
ever, since the discussion here will be confined to

reference ranges in healthy individuals, and since the
term “normal range” is still commonly used outside
the clinical laboratory, we will continue this usage
here.

A study to determine normal values requires, first
of all, a set of criteria for judging whether a poten-
tial reference subject is really healthy. This and
other aspects of the design of a study to estab-
lish normal clinical values are considered elsewhere
(see Normal Clinical Values, Design of a Study).
We assume here that a collection of measured val-
ues on a given variable has been obtained from a
group of healthy subjects (one value per person). We
describe first various statistical procedures (includ-
ing tests of outliers) for deriving a normal range
from this collection. Next, we examine the ques-
tion of whether two or more collections of nor-
mal values obtained, say, from different sexes or
races or geographic locations are sufficiently dis-
tinct to warrant separate normal ranges. We then
review some recently published methods for estimat-
ing time-dependent normal ranges. We close with a
brief discussion of multivariate normal indexes or
regions.

Methods of Estimation

Parametric

Both parametric and nonparametric methods are
routinely used to estimate the percentile limits of the
normal range. Since most clinical variables are not
normally distributed, the parametric method applies
some mathematical transformation to the original
values in the hope that they will conform to a normal
distribution on the transformed scale. The log trans-
form has often been used when the observed distribu-
tion shows positive skewness (see Lognormal Dis-
tribution). Occasionally, the square root or log(x +
C) transforms are tried, estimating C by trial and
error using the coefficients of skewness and kurtosis
as guides. Unfortunately, the more general Box–Cox
power transform [3] has only rarely been applied to
normal values.

The Expert Panel on the Theory of Reference
Values (EPTRV) of the International Federation of
Clinical Chemistry (IFCC) has recommended [8]
either the Box–Cox function or Manly’s exponential
transform [12] to remove skewness, followed by
a second transform (e.g. the modulus function of
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John & Draper [10]), if necessary, to remove any
residual kurtosis. The Anderson–Darling goodness-
of-fit test is recommended to test final agreement
with a normal distribution. If the transform(s) have
been successful, the normal range would be estimated
as x ± 1.96s (or 2.0s) where x and s are the mean
and standard deviation of the measurements on the
transformed scale. The estimated 2.5th and 97.5th
percentiles would be backtransformed to the original
measurement scale for practical use.

Strictly speaking, the multiple of s should be
taken from a table of normal tolerance factors for the
given sample size, n, and level of confidence, 1 − α.
For example, for n = 100 and α = 0.05, the proper
multiplier for at least 95% coverage would be 2.23.
The factor 2.0 offers only about 50% confidence.
However, assuming this value for simplicity, the
large-sample standard error of the estimated upper
or lower 95% normal limit on the normalized scale
is given by s(3/n)1/2, and confidence limits for the
2.5th and 97.5th percentiles of the population may be
calculated as usual.

Nonparametric

When the parametric method achieves a normal
distribution, it produces more precise estimates of
the true normal limits than would a nonparametric
method applied to the same data on the normalized
scale (see Standard Normal Deviate). Clearly, how-
ever, some sophistication in statistics and computing
is needed to pursue this approach. Moreover, there is
no guarantee that a transform will be found to nor-
malize the distribution. Therefore, since the collection
of normal values has been carried out by clinicians or
clinical chemists, often without statistical advice, the
normal limits are more likely to be estimated by the
simplest nonparametric method, namely ranking the
data by order of magnitude and determining the 2.5th
and 97.5th sample quantiles, interpolating between
adjacent data points if necessary. Computing exact
nonparametric confidence limits for the population
percentiles is more complicated. Let x(r) and x(s) be
the rth and sth order statistics, the sample values
whose ranks are r and s, respectively. Then, x(r) and
x(s) will be the bounds of a 100(1 − α)% confidence
interval for the true percentile ζp if

s−1∑

i=r

(
n

i

)
pi(1 − p)n−i ≥ 1 − α. (1)

The summation may be written as the difference
between two binomial distributions (the first sum-
ming from r to n and the second from s to n) and may
be calculated from the incomplete beta distribution.
Reed et al. [14] have listed the ranks of the ordered
observations that provide 90% confidence intervals
for ζ0.025 and ζ0.975 from samples in the size range
120–369.

The drawback of the simple nonparametric method
is that it places great weight on two or three sam-
ple quantiles in the tails of the observed distribution.
A more recent nonparametric method for estimat-
ing the percentiles that define the normal range is
the weighted quantile procedure proposed by Har-
rell & Davis [5]. These authors estimate ζp by a
weighted average of all the observed order statistics,
expressed as

ζ̂p =
n∑

i=0

Wn,ix(i), (2)

where the weight function is given by the differ-
ence between two incomplete beta functions, and the
sum of the weights equals unity. The Harrell–Davis
estimate has been shown to be equivalent to a boot-
strapped estimate, i.e. the average of a large number
of resamples of the reference values. Bootstrapping
is probably more familiar than incomplete beta func-
tions to nonstatisticians; more importantly, it provides
a standard error of the estimate for use in calculating
confidence limits. With modern computing equip-
ment, the Harrell–Davis formula may be speedily
applied to many percentiles of the population. Results
could then be smoothed by eye to provide a non-
parametric guideline that would allow the clinician
to estimate the exact percentile corresponding to any
measured value in a new patient. Discussion and
examples of the Harrell–Davis estimate are given in
Harris & Boyd [6, Chapter 2].

The Harrell–Davis estimate produces a more pre-
cise result than the sample quantile, but the vari-
ance does not appear to decline by more than 20%.
Therefore, it remains considerably less efficient than
the parametric estimator, provided the normaliz-
ing transform(s) succeed. However, Linnet [11] has
demonstrated that sampling variation in the estimated
transformation parameter may widen the confidence
interval around a normally estimated limit by 25%,
increasing the variance of the normal estimator by
1.252, or a factor of 1.56. This implies that, in prac-
tice, the efficiency of the simple quantile on the
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normal scale is not 41% (1/2.4) but 64% (1.56/2.4),
while that of the weighted quantile estimate is actu-
ally about 77%. This conclusion has been sup-
ported by empirical results with distributions of blood
chemistries [17]. Given the ease with which boot-
strapping programs may be implemented today, the
Harrell–Davis estimate should be more widely used,
especially where the statistical expertise and the pro-
grams necessary to apply the parametric method may
not be available.

Treatment of Outliers

Observations whose values differ substantially from
the bulk of the observed distribution should be inves-
tigated further to discover, if possible, why they
occurred. One or two outliers in a large sample of ref-
erence values (say, more than 100) may indicate sick
persons whose conditions affected the variable being
measured. If this is confirmed by further investiga-
tion, then these observations should be deleted before
calculating normal ranges. A cluster of outlying
observations is more likely to indicate a temporary
dysfunction in the analytical system producing the
measured values, or possibly the inadvertent use of a
different analytical system than that used to obtain the
rest of the values. In such cases, one might expect the
outlying observations to have been obtained within a
relatively short time period, although this would not
necessarily be the case if the analytical problem were
highly transient and unpredictable. Again, the cir-
cumstances surrounding these observations should be
investigated, and if clear discrepancies with expected
conditions are found, these observations, too, should
be deleted from the reference sample.

If no specific reason(s) can be found to explain
extreme results, and especially if they occur in the
long tail of a skewed distribution, they should be
retained. As Barnett & Lewis [2] and others have
pointed out, such apparently aberrant values may
be the result of chance selection from a skewed
distribution representing all the observations. In this
case, a normalizing transform may be tried, at least to
separate the bulk of the distribution from the outliers.
If this succeeds, then one may either apply an outlier
test based on the assumption that the population
distribution is normal (e.g. one of the Dixon ratio
tests discussed by Barnett & Lewis), or estimate
the mean and standard deviation of the (assumed

normal) population by a robust method. Healy [7]
has described a symmetric trimming procedure for
this purpose. If normalizing transforms do not seem
to work, then extreme observations should still be
retained (given no reason for doubting them), and a
nonparametric method applied to estimate the normal
limits. If the total number of observations is small
(50–100), the bootstrapped estimates are preferred
over simple quantiles to minimize the effects of
outliers and provide estimates of the standard errors
of the estimated limits.

Separate Normal Ranges for Population
Subgroups

During the 1960s and 1970s, many studies of blood
constituents showed statistically significant differ-
ences in mean values of men and women and often
significant trends with age. Most of these studies were
based on large samples of presumed healthy individ-
uals (e.g. blood donors or attenders at a well-person
screening center). An example of a highly signifi-
cant trend with age was shown in serum albumin by
Wilding et al. [19]. Results are listed in Table 1.

The weighted least-squares slope is −0.054/
decade, with standard error 0.000445, a highly
significant decline with age. However, results
like these rarely affect routine clinical practice.
Laboratory reports to clinicians list normal ranges by
sex for very few blood constituents and by age for
none. This is partly due to the expense of obtaining
separate normal ranges for the same variable, but
more importantly, either no physiological basis has
been found to explain the subgroup differences
or the statistical difference is considered of no
clinical significance. Small differences of no clinical

Table 1 Mean and standard deviation (g/100 ml) of serum
albumin in men, by age [19]. Reproduced from [6] by
permission of Marcel Dekker Inc.

Age decade Number Mean Standard deviation
(i) (ni) (xi) (si)

20–29 96 4.41 0.20
30–39 721 4.35 0.21
40–49 1268 4.29 0.21
50–59 1112 4.24 0.22
60–69 415 4.19 0.22
70–79 105 4.13 0.30
Combined 3717 4.27 0.225



4 Normal Values of Biological Characteristics

importance between subgroup means will inevitably
become statistically significant if the sample size is
large enough. In addition, it may be shown [6] that
separate normal ranges are very little narrower than
the combined range unless the difference between the
means of subgroups is far greater than that required
to achieve statistical significance. A clear example of
this is seen in Table 1 by comparing the weighted
average standard deviation in each decade with the
standard deviation over all decades combined.

Many nonchemical variables show much stronger
effects of aging. Examples are forced expiratory vol-
ume (FEV) and pulmonary diffusing capacity, both
measures of lung function that decline sharply with
increasing age after 20–29 years. In addition, the
FEV is generally higher in men than in women.

Where separate normal ranges for men and women
are recognized in practice, the physical or physio-
logical basis for the difference is well known and
accepted. With respect to blood tests, separate ranges
for men and women are routinely reported for serum
calcium, creatine and uric acid as well as hemoglobin
and hematocrit. Cholesterol in various forms and
triglycerides are known to increase significantly in
healthy women after menopause; however, the nor-
mal range in cholesterol has been replaced by two
decision points: 200 and 240 mg/dl. Wong et al. [20]
have found substantial racial and gender differences
in creatine kinase, while Sinton et al. [18] have pre-
sented evidence favoring separate reference ranges
for alkaline phosphatase in pre and post-menopausal
women.

Is there a statistical criterion that might help to
answer the question of whether statistically signifi-
cant subgroup differences should be recognized clin-
ically, assuming that a physiological basis for such
differences is known? Sinton et al.suggested that sep-
arate normal ranges not be considered unless the
difference between subgroup means is at least 25%
as large as the 95% normal range for the com-
bined group. This is a rather stringent guideline. For
example [6, p.79], with 400 subjects in each of two
subgroups, the usual z-statistic for comparing the two
means would have to exceed 16.3 before separate
ranges would be recommended under this criterion.
Separate ranges for calcium or high-density lipopro-
teins would not meet this criterion, nor would racial
and gender differences in creatine kinase, although
the data of Wong et al.make it clear that these sepa-
rate categories for creatine kinase are justified.

Harris & Boyd [6] argue that real differences
between two population subgroups imply that normal
limits based on the combined group would cut off
proportions much less than or much greater than the
nominal 2.5% for either one subgroup or the other.
From simulation studies of two normal subgroup dis-
tributions with 120 subjects in each, they find that a
z-statistic of 5–8 would imply that in the subgroup
with the smaller mean, less than 0.5% of the dis-
tribution would exceed the upper 95% normal limit
based on the combined group, while only 0.5% of
the distribution with the larger mean would be less
than the lower normal limit of the combined group.
These results assume the larger standard deviation to
be within 30% of the smaller. (In most cases, sub-
group standard deviations are little different despite
statistically significant differences in mean values.)
These authors recommend z = 5 as a minimal crite-
rion for recognizing two separate subgroup normal
ranges when 120 subjects have been sampled in each
group. Under this criterion, the ratio of the difference
between subgroups means to the width of the com-
bined 95% normal range is 15.3%, considerably less
than the ratio of 25% proposed by Sinton et al. [18]
However, the critical value of z depends on the sam-
ple size according to the formula z∗ = 5(n/120)1/2.
Thus, for n = 400, say, z∗ would rise to 10.2.

When three or more subgroups are involved, it is
not immediately clear how to apply this criterion. One
possibility is to carry out analysis of variance fol-
lowed by simultaneous comparison of paired means.
Any pair of means whose difference is statistically
significant should then be reassessed using the higher
z∗ values (see Multiple Comparisons).

Time-dependent Normal Values

In the preceding section we developed the idea that
justifying separate normal ranges for demographic or
age subgroups requires a more stringent statistical cri-
terion than simply the result of a standard significance
test of subgroup differences. However, clinicians and
clinical chemists have long recognized that certain
clinically important variables will change with the
aging of a healthy individual. For example, as noted
above, serum cholesterol in healthy women rises after
menopause. Changes in selected biochemistries dur-
ing infancy and childhood have also been reported, as
have changes during pregnancy. Recently, Oesterling
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et al. [13] have found that prostate-specific antigen
in healthy men shows a clear increase with age
beyond 50 years. All of these studies have been
cross-sectional (single-sample) from healthy subjects
at different ages or duration of pregnancy.

Age-specific percentile values for height and
weight in normal children have long been familiar
to parents and physicians (see Anthropometry;
Growth and Development). Within the past decade,
however, British statisticians have published a
variety of new statistical methods for analyzing
cross-sectional age- or other covariate-dependent
measurements. The aim of these methods has been
to produce mathematically smooth curves across the
entire age span, in contrast to the earlier habit of
arbitrarily defining age groups and joining with a
straight line the estimated percentiles in adjacent age
groups. Some of these techniques are too complicated
to include here but have been described in Harris &
Boyd [6].

Simpler methods proposed by Isaacs et al. [9],
Royston [16], and Altman [1] should meet the objec-
tives of smooth percentile curves without predefined
age groups. Both Isaacs et al.and Royston seek a
single transform function to convert the conditional
distribution of the measurements at any age to normal
form, assuming that they are not normally distributed
on the original scale. Isaacs et al., working with
immunoglobulin data, chose the logarithmic trans-
form for IgA and IgM and the square root for IgG.
Royston tried both log and log(x + C) functions on
increasing values of serum cholesterol with age in
women and on declining fetal triglycerides with ges-
tational age.

The success of the transform function was assessed
in the following way. Before and after applying the
transform, a polynomial of appropriate degree was
fitted to the scatter diagram of values vs. age (or
other covariate). Then, the residuals from this curve
were tested for normality. Royston [15] suggests the
Shapiro–Wilk test for large samples. The polynomial
estimates the mean value of the variable at any given
age within the span of the data. Therefore, a normal
distribution of the residuals implies that all condi-
tional distributions by age are normal.

On the other hand, failure to achieve normality
may arise from a nonconstant standard deviation of
the residuals on the transformed scale across the age
range. This question is critical to the establishment of
other percentile curves (e.g. the 90th or 95th). Both

Isaacs et al. [9] and Royston [15] suggested subdi-
viding the residuals into a number of age brackets,
testing the homogeneity of standard deviations across
age, and, if needed, fitting a straight line or quadratic
to represent the change of standard deviation with
age. The drawback with this procedure is that it
requires arbitrary division of the data into age groups.
Altman [1] resolved this problem by noting, first, that
if the standard deviation is a function of age, then
age-standardized residuals (residuals divided by their
standard deviations) should be used to test normality.
But how are these to be determined without age-
grouping? Assuming normality to begin with, Altman
showed that if the absolute values of the unstandard-
ized residuals were plotted against age, and a linear
or quadratic curve, as suggested by the plot, were
fitted, then multiplying the coefficients by (π/2)1/2

produces an equation for the standard deviation of
the original (signed) residuals as a function of age.
Using this equation to derive age-standardized resid-
uals, their conformity to a normal distribution may
be tested. An example of the use of this technique is
given in Harris & Boyd [6, p. 170].

From the estimated mean at any age, the age-
dependent equation for the standard deviation, and
evidence that the age-standardized residuals are nor-
mally distributed, upper or lower percentile curves
can easily be calculated on the transformed scale and
backtransformed for clinical use. The final test of
validity is to calculate the proportion of observations
falling outside each estimated percentile. These pro-
portions should agree closely with expected values.

Multivariate Normal Indexes or Regions

Many diagnostic tests are grouped around specific
organ systems, such as the liver (whose status is
judged by measuring different enzymes) or the lung
(various tests of breathing capacity) or the kidneys
(serum creatinine, uric acid, urea nitrogen). One
might expect that measurements on a cluster of organ-
based variables would be correlated. Then, a single
multivariate index capturing these correlations along
with the normal means and variances would seem to
be an attractive diagnostic tool. In fact, although mul-
tivariate normal indexes and regions have been dis-
cussed in the clinical literature for over 20 years, they
are seldom, if ever, used in regular clinical practice.

A multivariate statistical index would usually be
limited to a linear function of the measured variables,
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in contrast to the common use of nonlinear models
applied to measurements of physiological functions
in clinical medicine. For example, in determining
the condition of the cardiovascular system, several
measured variables are often combined into a nonlin-
ear physico-mathematical model. A simple example
is the Fick principle for calculating cardiac output.
This is defined as systemic flow (l/min) obtained by
dividing the body’s oxygen consumption (ml/min)
by the difference between arterial and mixed venous
(i.e. pulmonary arterial) oxygen contents. Textbooks
in clinical medicine will frequently quote a single
“average” normal value for each of these measured
variables.

In one of the rare studies of the potential use
of multivariate normal regions or indices, Dur-
bridge [4] presented to clinicians over a 4-month
period a “distance” index reflecting six hepatobiliary
tests. Results for the individual tests were also pre-
sented in the laboratory report along with the oblig-
atory normal ranges. Durbridge reported that about
one-third of the physicians found that the index failed
to shed further light on organ status, beyond that
given by the individual tests. However, the major-
ity of clinicians either thought the index was useful
to them or said they needed more experience to reach
a conclusion. Given the innate conservatism of med-
ical practice, this result should not discourage further
studies of the use of multivariate normal regions. Of
course, values of individual variables and associated
normal ranges will continue to be included in reports
to the clinician. Moreover, anomalies between the
multivariate index and the univariate normal ranges
must be investigated and explained to the clinician.
These include cases where the multivariate index is
“significantly” high but none of the variables included
in the index falls outside its normal range, or where
one or more of the univariate results lie outside their
normal ranges while the multivariate index is within
bounds. Without clear interpretation of such results,
the physician will find the conflicting information
confusing and will probably reject any further use
of the multivariate index.

The conventional multivariate index for k variables
in the ith patient may be written as D2

k (xi ) = (xi −
x)S−1(xi − x), where xi represents the patient’s vec-
tor of results, x is the mean vector over the (pre-
sumed nondiseased) reference group, and S is the
sample variance-covariance matrix from this group.
Then D2

k (xi ) represents the “distance” between this

patient’s profile of test results and the mean profile
for the reference group (see Mahalanobis Distance).
The general form D2

k (x), with data coming solely
from the reference group, may be used to define the
boundary of a multivariate normal region, assuming
that the reference profiles form a sample from a k-
variate normal distribution. However, the multivariate
index is more suitable for clinical practice because it
is a single number for the ith patient just like an indi-
vidual test result. In addition, the multivariate index
computed for each member of the reference group
can be used nonparametrically. That is, the 95th per-
centile (say) of its true distribution may be estimated
by the nonparametric methods described earlier (e.g.
the Harrell–Davis procedure). This estimate can then
serve as a guideline for making a decision about a
particular patient’s index.
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The normal distribution has played a major role in
statistical analysis ever since the work on the theory
of errors by Gauss and Laplace in the early decades
of the 1800s. It is used as a model for populations
and random processes. It is the major distribution
in asymptotic situations (see Large-sample Theory)
because of the central limit theorem. Many sta-
tistical procedures are based on the assumption of
normality. In response to this widespread use, numer-
ous techniques for judging or testing for normality (or
for departures from normality) have been developed.

Moment Tests:
√

b1, and b2

The field of tests for normality was initiated by
Karl Pearson [18], who realized that deviations from
normality could be described by the standardized
third and fourth moments of a distribution, defined as

√
β1 = µ3

σ 3
and β2 = µ4

σ 4
. (1)

Here µi is the ith central moment for i = 3, 4 and
σ 2 is the variance,

µi = E(X − µ)i, σ 2 = E(X − µ)2, and

µ = E(X). (2)

If a distribution is symmetric about its mean, then√
β1 = 0. Values different from zero indicate skew-

ness and so nonnormality. β2 characterizes kurtosis
(or peakedness and tail thickness) of a distribution.
For the normal distribution, β2 = 3; other values
indicate nonnormality (see Figure 1 for illustrations
of varying

√
β1 and β2).

Tests of normality following from this are based
on the sample third and fourth standardized moments,
respectively, given as

√
b1 = m3

m
3/2
2

and b2 = m4

m2
2

, (3)

where

mk =
∑ (X − X)k

n
and X =

∑ X

n
. (4)

A. √ b1 > 0

B. √ b1 = 0

C. √ b1 < 0

A. b2 = 3

B. b2 < 3

C. b2 > 3

A B C

C

A

B

Figure 1 Distributions with varying
√

β1 and β2

Here, n is the sample size. Extensive tables of critical
points and approximations for the sampling distri-
butions of

√
b1 and b2 are readily available [2; 9,

Chapter 9; 10; 11; 16; 17].
These moment statistics can be applied separately

to tests of nonnormality due specifically to skewness
or kurtosis. They can also be applied jointly for an
omnibus test of nonnormality by employing various
suggestions given by D’Agostino & Pearson [8]. One
particular statistic for an omnibus test is given by

K2 = X2(
√

b1) + X2(b2), (5)

where X(
√

b1) and X(b2) are the standard normal
deviates equivalent (in probability) to observing

√
b1

and b2 [8; 9, Chapter 9]. D’Agostino et al. [12] sup-
ply a simple computer macro program. Bowman &
Shenton [4; 9, Chapter 7] present graphs that make
possible the performance of the test for samples of
size n < 1000. This test is available for basically all
practical applications.

Normal Probability Plots

The moment tests are formal procedures for statisti-
cal inference (see Hypothesis Testing). A graphical
display called normal probability plotting or probit
plotting was developed as an informal technique for
judging deviations from normality. The objective is
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Figure 2 Normal probability plot of cholesterol data

to graph the data in such a way that, if the underly-
ing population is normally distributed, then the graph
will be a straight line. The deviation from linear-
ity indicates the degree and type of nonnormality.
Figure 2 shows such a plot for cholesterol data from
the Framingham Heart Study. The ordered observa-
tions X(1) ≤ . . . ≤ X(n) are plotted on the vertical
axis. The horizontal axis contains the inverse of the
cumulative of the standard normal distribution

Z(i) = Φ−1
(qi )

, i = 1, . . . , n. (6)

There has been much discussion on the appropri-
ate value of qi (see Normal Scores). One standard
choice is qi = (i − 0.5)/n for i = 1, . . . , n. More
details are given in D’Agostino & Stephens [9, Chap-
ter 2] and by Brown & Hettmansperger [5].

Figure 3 contains a number of idealized normal
probability plots with possible explanations for the
deviation from a straight line. D’Agostino et al. [12]
have emphasized the usefulness of the joint use of
the moment tests with the normal probability plots in
data analysis.

Chi-square Test

The chi-square test developed by Karl Pearson in
1900 [19] can also be used for testing for normality.
For this test the data are categorized into k cate-
gories. Each category has Oi observed values for
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Figure 3 Normal probability plots with diagnosis non-
normality

i = 1, . . . , k with n = ∑
Oi . Under the null hypoth-

esis of normality, expected values ei are computed.
The chi-square statistic is then computed as

X2 =
∑ (Oi − ei)

2

ei

. (7)

For large samples this statistic has an approximate
chi-square distribution. The appropriate degrees of
freedom depend upon how the expected values are
obtained and the choice and number of categories
k. A full discussion of this test is given by David
Moore in D’Agostino & Stephens [9, Chapter 3]. A
nice feature of this test is that it can be employed for
censored samples. The moment tests need complete
samples.

Empirical Distribution Function (EDF)
Tests

Another general procedure applicable for testing nor-
mality is the class of tests called the edf test. For these
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tests the theoretical cumulative distribution function
of the normal distribution, F(x : µ, σ), is contrasted
with the empirical distribution function (edf) of the
data, defined as

Fn(x) = #(X ≤ x)

n
. (8)

A famous test in this class is the Kolmogorov
test [14] (see Kolmogorov–Smirnov Test), defined
by the test statistic

D = supx |Fn(x) − F(x, µ, σ)|. (9)

Large values of D indicate nonnormality. If µ and σ

are known, then the original Kolmogorov test can be
used. When they are not known they can be replaced
by sample estimates. Stephens [23], employing sim-
ulations, developed adjusted critical values for D of
(9) for this situation.

There are a large number of edf tests which
involve various weighting of the deviations Fn(x) −
F(x, µ, σ), with or without µ and σ known. Stephens
[23] simulated critical values for four of these:
the Cramér–von Mises W 2 test [6], the Kuiper V

test [15], the Watson U 2 [24], and the Anderson–
Darling A test [1], when µ and σ not known. Many
of these tests are given in detail in D’Agostino &
Stephens [9, Chapter 4]. Stephens has also extended
these tests to censored samples [9, Chapter 4].

Transformation Tests

A variation of the edf tests involves first transforming
the observations into independent observations free
of unknown parameters and then applying an edf
test. Quesenberry [9, Chapter 6] presents a general
theory of these. These transformation procedures
unfortunately require randomization of the data – a
feature many find unattractive.

Regression and Correlation Techniques

Probably the most interesting innovative test of nor-
mality after the moment tests is the Shapiro & Wilk
W test [22] and the extension of it by Shapiro &
Francia [21]. The original W statistic can be viewed
in a number of different ways. It is the ratio of the best
linear estimator of σ to the sample standard deviation.

It can also be viewed as the R2 (square of the correla-
tion coefficient) obtained from the normal probability
plots. In this latter framework it arises in a regression
and correlation context. Computationally, W is

W =
(∑

w(i)X(i)

)2

(n − 1)S2
, (10)

where w(i) are the optimal weights for the least
squares estimate of σ , and S2 is the sample variance.
Originally, the test required extensive computer work
to obtain the w(i). D’Agostino [7] developed a simple
approximation to W , called the D test. However,
Shapiro & Francia produced more direct approxima-
tions of the w(i) which produced a true extension of
W for large sample sizes [21]. Stephens [9, Chap-
ter 5], and Royston [20] also generated transforma-
tions of W that provide good approximations to the
null distribution.

Other Tests

There are a number of other tests for normality
based on the sample range, spacings of observa-
tions, the properties of the characteristic function,
U-statistics, etc. Some of these are outlined in
D’Agostino & Stephens [9, Chapter 9].

Power Studies, Recommendations

Given the large number of tests for normality, the
choice of which to use in practice is not easy.
Fortunately, a large number of power studies have
been performed. Many of these are summarized in
D’Agostino & Stephens [9, Chapter 9]. Other, more
modest ones, are recent [3, 13]. While it is not pos-
sible to give definitive answers, some general recom-
mendations can be made:

1. Popular textbook tests such as the chi-square and
Kolmogorov test have poor power in comparison
to other tests and should not be used to test for
normality.

2.
√

b1 and b2 have excellent power over a range
of alternative distributions which deviate from
normality with respect to skewness and kurtosis,
respectively. These appear to be especially pow-
erful as one-sided tests (see Alternative Hypoth-
esis).
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3. K2 of (5) and other such tests are sensitive
over a wide range of alternatives. They are
omnibus tests.

4. The most powerful of the edf tests is the Ander-
son–Darling test as modified by Stephens. Its
power is comparable to that of K2.

5. The Shapiro–Wilk W test and its extensions are
very sensitive omnibus tests. For many skewed
distributions they are the most powerful.

6 While the D’Agostino D test is an omnibus test,
it has the best power for the distributions with
β2 > 3.

Lastly, the usefulness of an investigation to judge
the normality or nonnormality of data usually comes
not from deciding to accept or reject normality, but
rather from understanding the nature of the non-
normality and then performing appropriate statisti-
cal analyses given this knowledge. To achieve this
knowledge one needs to look deeply at the data. The
use of formal tests in addition to informal analyses,
such as come from normal probability plots, is needed
to achieve this understanding.
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Nuisance Parameter

Consider a probabilistic model involving a set of
parameters θ divided into two subsets θ1 and θ2 for
which inference is required only about θ1. The set
θ2 are then called nuisance parameters. Because the
likelihood f (x|θ) involves θ2, estimation for θ1 must
also involve the nuisance parameters.

Handling nuisance parameters is conceptually
straightforward in a Bayesian context. The marginal
posterior distribution for θ1 may be found by
integrating out the nuisance parameter as

f (θ1|x) =
∫

f (θ1, θ2|x) dθ2.

If θ2 is high-dimensional, this computation may be
numerically intensive, but is always theoretically
possible by simulation.

In non-Bayesian inference, a standard way to
handle nuisance parameters is to find a set of statistics
T2 that are sufficient for the nuisance parameters θ2

given θ1 and to make inferences for θ1 based on the
conditional sampling distribution of T1|T2, θ1, where
{T1, T2} are the complete set of sufficient statistics
for x. Because T2 is sufficient for θ2, the distribution
of T1|T2 cannot involve θ2 and therefore provides
information only about θ1 [1, pp. 27–28]. It can be
shown [3, p. 145] that this is the only way to make
the inference independent of the nuisance parameters.

This conditional approach simplifies the problem
because it assumes that the probabilistic properties of
the sampling procedure are completely independent
of the nuisance parameters, but this simplification
can result in a loss of information and suboptimal
inference. Consider the full likelihood written as
f (x|θ) = f (T1, T2|θ1, θ2). Because T2 is sufficient
for θ2, we may write

f (x|θ) = f (T1|T2, θ1)f (T2|θ1, θ2).

Use of f (T1|T2, θ1) to make inferences about θ1 is
then optimal only if the second term f (T2|θ1, θ2) =
f (T2|θ2); that is, only if T2 is ancillary for θ1

given θ2.
An example involves the comparison of two bino-

mial probabilities, p1 and p2, drawn from samples
with size n1 and n2. Let x1 be the number of suc-
cesses in the first group and let x2 be the number of

successes in the second group. Then, reparameteriz-
ing in terms of the log odds ratio

δ = log

[
p2/(1 − p2)

p1/(1 − p1)

]

and the logit of the success probability in the first
group (see Logistic Regression),

α = log

[
p1

(1 − p1)

]
,

the likelihood may be written

L = exp(αx1)

(1 + exp α)n1
× exp [(α + δ)x2]

[
1 + exp(α + δ)

]n2
.

It can be shown that sufficient statistics for α and
δ are x· = x1 + x2 and x2. For fixed δ, inference
about α may be made from the total number of
successes, x· which are then sufficient. Thus, the
distribution of x2 given x· is independent of α and,
accordingly, can be used to make inferences about δ.
When δ = 0, this distribution is the hypergeometric
and leads to the well-known exact test of significance
due to Fisher [1, pp. 43–48] (see Fisher’s Exact
Test). This “exact” inference is not optimal, however,
because x· is not ancillary for δ given α.

Another common technique for handling nuisance
parameters for which sufficient statistics exist is to
make inferences for θ1 from a sampling distribution
conditional on θ2 with the sufficient statistics substi-
tuted for θ2. For example, the mean x of a sample
of size n from a N(µ, σ 2) distribution follows a
N(µ, σ 2/n) distribution. Often, if we do not know
σ 2, we may replace it by its sample estimate s2 in
making inferences about µ. This procedure is exact
if σ 2 = s2 and will be good enough for large sam-
ples. Of course, in this problem, the exact solution for
the unknown nuisance parameter is based on the piv-
otal quantity t = n(x − µ)/s that follows a Student’s
t distribution, but in many problems such pivotal
quantities may not exist. In general, assuming nui-
sance parameters to be known will place too much
precision on the estimates of the other parameters
because of the failure to consider the added varia-
tion from the unknown parameters. It can be shown
that the asymptotic variance of an efficient estima-
tor, when some parameters are unknown, is always at
least as large as its value when they are all known [2,
pp. 437–438].
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Null Hypothesis
A null hypothesis (usually symbolically represented
as H0:) is a statement about a population or set of
populations which is tested through completion of an
experiment. If only one population is being studied,
then the null hypothesis is generally stated in the form
that a parameter, θ (a measure of the population), is
equal to a hypothetical value, θ0; thus, H0:θ = θ0.
To illustrate, if the parameter of interest is the mean,
µ, then a statement of a null hypothesis might be
H0:µ = µ0, where µ0 is specified by the experi-
menter. For example, it might be hypothesized that
the mean length of hospital stay for patients undergo-
ing coronary artery bypass surgery (CABG) is 7 days
(or H0:µ = 7 days). If k ≥ 2 populations are being
investigated, then the null hypothesis is generally pre-
sented as a statement specifying how the value of a
parameter, θi for the ith population, is related to that
parameter from each of the other k − 1 populations.
Most often this hypothetical statement takes the form
that these values, θj , j = 1, 2, . . . , k, are all equal,
i.e. H0:θ1 = θ2 = · · · = θk . To illustrate, if the param-
eter of interest is the mean, µ, then the statement of
a null hypothesis might be H0:µ1 = µ2 = · · · = µk .
For example, if µ1 is the mean length of hospital-
ization for a population of males post-CABG, and
µ2 is the comparable parameter for a population of
females, then H0:µ1 = µ2. The usual presentation of
a null hypothesis that values of the parameter across
the k populations are equal suggests the derivation of
the term null (a nullity or no difference) in the testing

terminology. The word null is not always used, and
one may call this underlying hypothetical statement
merely the hypothesis, or equivalently the statistical
hypothesis or tested hypothesis.

A null hypothesis most often takes the form that
a parameter, θ , for a single population is equal to a
specified value, θ0, or that values of a parameter for
a set of populations are all equal. However, a null
hypothesis can be directional, that is, specifying a
bound on a parameter, say, H0:θ < θ0, or a relation-
ship among values of a parameter for several popula-
tions, for example, H0:θ1 < θ2 for k = 2 populations.

A researcher should note the distinction between
the null hypothesis (which is a statement about
the statistical character of a parameter for one or
several populations) and the clinical or subject matter
hypothesis. The latter hypothesis frequently expresses
a parameter relationship desired for the area of study
and thus is not stated in the null (no effect) form.
Often this clinical hypothesis indicates the magni-
tude of an anticipated effect of importance in the
subject area. A finding from an experiment which
results in the rejection of the null hypothesis is said
to be statistically significant. This conclusion must
be interpreted in light of what constitutes an impor-
tant or relevant finding in the subject area (clinically)
(see Clinical Significance Versus Statistical Signif-
icance; Hypothesis Testing).

(See also Alternative Hypothesis)

M.A. SCHORK



Number Needed to Treat
(NNT)

Introduction

The number needed to treat (NNT) was originally
proposed as a way of presenting the results of ran-
domized clinical trials with binary outcome [16, 32,
33, 47, 48, 50]. Defined as the inverse of the abso-
lute risk reduction (ARR), the number needed to
treat is the average number of patients needed to
be treated to prevent an adverse outcome in one
additional patient compared to a control or standard
treatment group. For example, in the Diabetes Con-
trol and Complications Trial (DCCT) the five-year
risk of neuropathy in type 1 diabetic patients was
16.9% in the standard treatment group compared to
6.7% in the intensive insulin treatment group [18].
The absolute effect of the treatment can be described
by ARR = 16.9% − 6.7% = 10.2%. This translates
to NNT = 1/0.102 = 9.8 ≈ 10, that is, on average
10 patients are needed to be treated with intensive
diabetes therapy to prevent one additional case of
neuropathy compared to the standard therapy. For an
adequate interpretation of NNTs, the characteristics of
patients being treated, the outcome being measured,
and the type and duration of interventions being com-
pared have to be known.

NNT as well as ARR represent absolute measures
of the treatment effect. Relative effect measures such
as the odds ratio (OR), the relative risk (RR), or
the relative risk reduction (RRR) frequently result in
impressive numbers, even though the absolute effect
of the treatment might be low. For example, if the two
risks are π0 = 0.6 and π1 = 0.1, then RRR = 83%,
ARR = 0.5 and NNT = 2; if the two risks are π0 =
0.006 and π1 = 0.001, then RRR = 83% remains
the same, but ARR = 0.005 and NNT = 200. Owing
to the low baseline risk, the absolute effect of the
treatment is also low, which is described by ARR
and NNT. The information given by ARR and NNT
is mathematically identical. However, the statement
“200 patients are needed to be treated in order to
avoid one event” is potentially more informative and
comprehensible than “the treatment reduces the risk
of an event by 0.005”. Several studies demonstrated
that assessment of health-care intervention effects by
consumers is affected by the way in which study
results are presented. The inclination of physicians to

prescribe drugs and to treat patients is stronger when
study results are presented by means of relative effect
measures than when the same study is described by
using absolute effect measures [12, 23, 40]. Health
authority members are more willing to support health
programs when results are expressed as RRRs com-
pared with absolute effect measures [22]. Likewise,
more patients assent to receive a therapy when poten-
tial benefits are reported in terms of RRR rather than
ARR or NNT [29].

NNT has become the standard for presenting
results of randomized clinical trials in the journal
Evidence-Based Medicine [47] and the ACP Journal
Club [1] and use of NNT to express study results is
suggested in the CONSORT explanation and elabo-
ration document [6]. However, the widespread appli-
cation and extension of NNT in different settings is
not without difficulties and care is required to use
and interpret NNT appropriately. Recent develop-
ments regarding NNT are given by the development
of methods to express benefit as well as harm, the
calculation, presentation, and interpretation of confi-
dence intervals, the application in screening studies,
public health research, epidemiology (case–control
and cohort studies), crossover studies, studies mea-
suring continuous and time-to-event data, risk-benefit
analyses, and systematic reviews. In the following,
the characteristics and application areas of NNT
are summarized.

General Characteristics

Relation to Other Effect Measures

A large number of effect measures exist to express
the magnitude of difference between two groups
concerning the risk of an adverse event. Let π0 be
the risk in the control group and π1 be the risk in the
treatment group. In the case of a beneficial treatment
(π0 > π1) the most frequently used effect measures
derived from a simple 2 × 2 table are

Absolute risk reduction: ARR = π0 − π1

Relative risk: RR = π1

π0

Relative risk reduction: RRR = π0 − π1

π0

= 1 − RR
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Odds ratio: OR = π1 × (1 − π0)

π0 × (1 − π1)

Number needed to treat: NNT = 1

π0 − π1
= 1

ARR

The relation between NNT and ARR is obvious.
It is helpful in practice to also express NNT as a
function of RR, RRR, OR, and the control event rate
π0. The respective formulae are given by

NNT = 1

(1 − RR) × π0
= 1

RRR × π0
(1)

NNT = 1 − (1 − OR) × π0

(1 − OR) × π0 × (1 − π0)

= 1

(1 − OR) × π0
+ OR

(1 − OR) × (1 − π0)

(2)

Similar formulas are published for the case of
harmful treatments [7, 9], for considering desirable
instead of adverse outcomes [39], and for the inverse
definitions of RR and OR [28].

Quantifying Benefit and Harm

NNT represents the inverse of the difference of
two risks. On principle, the difference of two risks
can be positive, zero, or negative. The concept of
NNT was originally developed for the situation of a
beneficial treatment, so that the risk of an adverse
event in the treatment group is lower than in the
control group [33]. Thus, calculating the risk differ-
ence as control minus treatment leads to a positive
ARR value. Considering only beneficial treatments,
the term “number needed to treat” was proposed
to describe the inverse of ARR. In the case of a
harmful treatment, this calculation leads to a nega-
tive risk difference and a negative NNT. To avoid
negative numbers, the risk difference is calculated as
treatment minus control if the risk of the treatment
group is higher than that of the control group lead-
ing to a positive value called absolute risk increase
(ARI). To describe the inverse of ARI, the unfa-
vorable term “number needed to harm” (NNH) was
used [39]. Recognizing that NNT and NNH are not
good abbreviations, Altman suggested the terminol-
ogy “number of patients needed to be treated for
one additional patient to benefit” (NNTB) or “be
harmed” (NNTH) [2]. This terminology should be

used when it is necessary to indicate the direction of
the effect. In the case of desirable outcomes, such as
healing or improvement of quality of life, the order
of the two probabilities in the calculation of NNT is
reversed. Here, NNTB represents the average number
of patients needed to be treated to gain one additional
beneficial outcome compared to a control or standard
treatment group [55].

Confidence Intervals

As with other estimated effect measures, it is impor-
tant to document the uncertainty of the estimation by
means of an appropriate confidence interval. In prin-
ciple, confidence intervals for NNTs can be obtained
by inverting and exchanging the confidence limits of
the corresponding risk difference [17]. Nevertheless,
calculating, presenting, and interpreting confidence
intervals for NNTs is not straightforward. Owing to
the reciprocal transformation, the NNT has undesir-
able statistical properties [34]. To obtain meaningful
confidence intervals for NNT two issues have to be
considered. Firstly, the unusual scale of NNT has to
be taken into account, and secondly, an appropriate
method to calculate confidence intervals for the risk
difference is required.

The key to understand the confidence interval for
NNT is that the domain of NNT is the union of 1 to ∞
(in the NNTB region) and −∞ to −1 (in the NNTH
region). The best value of NNT indicating the largest
possible beneficial treatment effect is 1, the NNT
value indicating no treatment effect (ARR = 0) is
±∞, and the worst NNT value indicating the largest
possible harmful effect is −1. Values between −1
and 1 are impossible for NNT. Owing to estimation
uncertainty, the estimated NNT may be negative even
when the true NNT is positive and vice versa. Even
when the sign of the estimated and true NNT are
identical, the estimation uncertainty can be so large
that neither a harmful nor a beneficial effect can
be excluded. In this case, the confidence interval
covers both the NNTB and the NNTH region. Thus,
the result NNT = 10 with confidence limits 4 and
−20 means that the two regions 4 to ∞ and −20
to −∞ form the confidence interval. To make this
clear, a confidence interval for an NNT estimate that
is not statistically significant should be presented
as NNTB = 10 (NNTB 4 to ∞ to NNTH 20) [2].
This presentation indicates that a beneficial treatment
effect of NNTB = 10 is estimated, but the uncertainty
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of this estimation is so large that a more beneficial
effect up to NNTB = 4 and a less beneficial effect
up to NNTB = ∞ (no effect at all) as well as a
harmful effect up to NNTH = 20 is compatible with
the observed data.

For large sample sizes and risks not close to 0 or
1, the usual Wald method can be used to calculate
confidence intervals for risk differences (see Estima-
tion, Interval). However, Wald confidence intervals
have poor coverage probabilities and a propensity to
aberrations in many practical situations. Thus, New-
combe proposed to calculate confidence intervals for
risk differences based upon Wilson scores [42]. This
method was also recommended for NNT [8].

Let n0 and n1 be the number of patients in the
control and the treatment group, respectively, and
let e0 and e1 be the number of patients having
an event in the control and the treatment group,
respectively. The risks of an event in the two groups
can then be estimated by the proportions p0 = e0/n0

and p1 = e1/n1. The effect measures can be estimated
by ARR = p0 − p1 and NNT = 1/(p0 − p1). Using
this notation, the 100 × (1 − α)% confidence interval
for ARR based upon Wilson scores is given by:

LL(ARR) = p0 − p1 − δ and

UL(ARR) = p0 − p1 + ε, (3)

where

δ =
√

(p0 − l0)2 + (u1 − p1)2,

ε =
√

(u0 − p0)2 + (p1 − l1)2,

li = ϕi −
√

ϕ2
i − ψi, ui = ϕi +

√
ϕ2

i − ψi, i = 0, 1,

ϕi = 2ei + z2
1−α/2

2(ni + z2
1−α/2)

, ψi = e2
i

n2
i + niz

2
1−α/2

, i = 0, 1,

and z1−α/2 is the (1 − α/2)-quantile of the standard
normal distribution.

The corresponding confidence limits for NNT can
then be calculated by LL(NNT)=1/UL(ARR) and
UL(NNT)=1/LL(ARR) in consideration of the NNT
scale ranging from 1 through ∞ to −1 (see above).
An SAS program can be used for calculations [8].

Confidence intervals for NNT based upon Wil-
son scores seem to be adequate for most practical
applications. For very small sample sizes or appli-
cations, which require that the true confidence level
under no circumstances remains under the nominal

level, exact [14] or quasi-exact methods [15] should
be used (see Exact Inference for Categorical Data).

Extensions and Applications

The principle of NNT has been extended and sug-
gested for use in a wide variety of circumstances.
The most important ones are summarized below.

Screening

Rembold extended the NNT concept to compare
strategies for disease screening [44]. The analogous
statistic termed “number needed to screen” (NNS)
describes the number of people that need to be
screened to prevent one death or adverse event. In
clinical trials that directly investigate the benefit of
a screening strategy, the point and interval estima-
tion of NNS is identical to that of NNT. However,
the intervention under study is a screening strat-
egy applied to a population, rather than a treatment
applied to patients. If no study exists that evaluates
directly the benefit of a screening strategy, NNS esti-
mation can be performed by combining the knowl-
edge of clinical trials investigating the benefit of treat-
ing risk factors and the prevalence of persons with
inadequately treated risk factors in the community.
Under the assumption that screened individuals with
positive results will show full compliance with subse-
quent treatment, NNS can be calculated by dividing
the corresponding NNT by the prevalence of unaware
or untreated disease.

Expressing the absolute effect of screening strate-
gies as NNS values has the same advantages as the
presentation of treatment effects by means of NNTs.
However, the NNS approach has some limitations.
Firstly, the division of NNTs by an estimated preva-
lence of untreated disease is subject to propagation
of errors. A method to calculate confidence intervals
for NNS taking the uncertainty of both the NNT and
the prevalence estimation into account is required.
Secondly, NNS values calculated from clinical tri-
als investigating the benefit of a screening strategy
directly (see Screening Trials) may not be compa-
rable to NNS values calculated from NNTs divided
by the prevalence of unaware or untreated disease.
The former may be more affected by participation
and selection effects than the latter. Hence, Richard-
son suggested to multiply the directly estimated NNS
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by the participation rate adjusted for selection to
obtain an NNS value free of participation and selec-
tion effects [45]. However, this method is even more
exposed to propagation of errors. Moreover, the bene-
fit of a screening strategy should be described includ-
ing participation and selection effects. Analogous
to the intention to treat analysis of clinical trials,
the gold standard is the unadjusted NNS estimated
from trials directly investigating the benefit of screen-
ing strategies.

Public Health Research

The NNT statistic relates to those patients actually
treated and gives no information how many peo-
ple of all patients with the disease or of the total
population will benefit from the treatment. Heller &
Dobson proposed two new statistics offering a public
health perspective [27]. The idea is similar to that of
NNS calculated by NNT divided by the prevalence
of unaware or untreated disease. The “disease impact
number” (DIN) takes into account the number of peo-
ple in the population with the disease, not just those
eligible for treatment according to the entry criteria
of the considered clinical trial. DIN is calculated by
dividing NNT by the proportion of patients with the
disease who are eligible for treatment. The “popu-
lation impact number” (PIN) takes into account the
total size of the population from which the patients
with the disease are drawn. PIN is calculated by
dividing DIN by the prevalence of disease in the pop-
ulation. DINs and PINs suffer from limitations similar
to those of indirectly estimated NNS values. Owing
to the division of NNTs by estimated proportions they
are subject to greater random error than NNT. How-
ever, they may play a role as communication tool for
treatment effects from a population perspective [52].

Case–control Studies

Bjerre & LeLorier proposed to use the NNTH statis-
tic to express the magnitude of harmful exposures
effects in case–control studies [11]. As informa-
tion about the absolute risk is not directly available
from case–control studies, they calculated NNTH by
using the odds ratio provided by the case–control
study and the unexposed event rate obtained from
external sources. Although not mentioned by the
authors, an additional advantage of this approach
is that adjusted NNTs can be calculated by using

adjusted ORs to estimate the corresponding NNT
values (see next section). Confidence intervals for
NNTH are calculated by transforming the confidence
limits of OR. Unfortunately, to calculate NNTH as
function of OR, formula (1) was used, which actu-
ally represents the relation between NNT and RR.
Thus, NNTH is systematically underestimated, that
is, the exposure effect is overestimated. The mag-
nitude of this error is negligible if OR and RR are
approximately equal. Thus, in case-control studies, in
which usually rare diseases are investigated, the error
is unimportant. However, in situations where OR
and RR are quite different, either formula (1) with
RR or formula (2) with OR must be applied to
obtain correct results. Let NNTH 1,OR be the NNTH
value calculated by formula (1) with OR and let
NNTH true be the true NNTH. It can be shown that
(NNTH true − NNTH 1,OR)/NNTH true = π1, that is, the
relative error of NNTH 1,OR equals the exposed event
rate [7]. Even, if the correct formula is used, a limita-
tion of this approach is that the confidence interval for
NNTH takes into account the uncertainty of the OR
estimation but not that of the unexposed event rate. A
possible solution is given by the methods developed
by King & Zeng for point and interval estimation of
risk differences in case–control studies based upon
Bayesian methods or a range of possible values for
the unexposed event rate [30].

Cohort Studies

The NNT concept has been applied to compare
exposed and unexposed persons in cohort stud-
ies [9]. For this application, the term “number needed
to be exposed” (NNE) was suggested. When it is
necessary to distinguish between harmful and benefi-
cial exposures, the abbreviations NNEH and NNEB
should be used. In the case of a harmful exposure,
NNEH represents the average number of persons
needed to be exposed for one additional case of dis-
ease or death compared to the unexposed persons.
NNEs are calculated as a function of the odds ratio
and the unexposed event rate by means of formula
(2). This approach allows the calculation of adjusted
NNEs by using adjusted odds ratios, estimated, for
example, by multiple logistic regression. Within the
framework of logistic regression, the adjusted odds
ratio is constant over the distribution of the con-
sidered confounders. However, the event rates and
their differences are dependent on the confounder
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values. Thus, NNE also varies with the values of
the confounding variables, which has to be taken
into account when adjusted NNEs are estimated. Two
methods were proposed to calculate adjusted NNEs.
In the first approach, the mean risk of the unex-
posed persons is used and NNE is calculated for
the corresponding confounder profile. In the second
approach, NNE is calculated for some fixed con-
founder profiles, which gives an impression about
different absolute effects of the exposure in cohorts
with varying confounder values. A similar principle
is applied to calculate pooled NNTs in meta-analysis
(see below).

Confidence intervals for adjusted NNEs can be
calculated indirectly via confidence intervals for the
corresponding risk difference. Within the framework
of logistic regression analysis applied to prospective
cohort data, risk differences between the exposed
and unexposed persons can be expressed as func-
tions of the logistic regression coefficients. Thus,
approximate standard errors and confidence inter-
vals for risk differences can be calculated by means
of the multivariate delta method [9]. In contrast with
the calculation of NNTs in case–control studies, this
method takes the estimation uncertainties of both the
odds ratio and the unexposed event rate into account.
The adequacy of the approximate confidence inter-
vals was investigated via simulations demonstrating
sufficient quality for most epidemiological applica-
tions [10].

Continuous Data

NNT represents a summary statistic for the com-
parison of two groups concerning a binary out-
come. Nevertheless, in some applications, investi-
gators want to express their study results in terms
of NNT although the outcome variable is measured
in a continuous scale (see Random Variable). One
obvious method to calculate NNTs for continuous
outcomes is to dichotomize the response in both
groups and to apply the usual methods. Alternatively,
one can dichotomize the difference of the responses
between the two groups. Walter examined the prob-
ability that the difference of the responses between
the two groups is larger than the minimally impor-
tant difference (see Sample Size Determination for
Clinical Trials) [55]. Without loss of generality, we
assume that higher response values correspond to
adverse outcomes (such as hypertension). Let X0

and X1 be the control and treatment responses of a
given subject and c be the minimally important dif-
ference. The probability described above is given by
θ = P(X0 − X1 > c). The continuous data version
of NNT is then calculated by NNT = 1/θ . Under the
assumption of bivariate normality of (X0,X1), θ is
given by

θ = Φ




µ0 − µ1 − c

√
σ 2

0 + σ 2
1 − 2ρσ0σ1



 , (4)

where Φ denotes the distribution function of the
standard normal distribution, µ0 and µ1 and σ0 and σ1

are the means and standard deviations of X0 and X1,
respectively, and ρ is correlation of X0 and X1 [55].
Estimation of θ and NNT is performed by substituting
the usual estimates of µ0, µ1, σ0, σ1 and ρ into
(4). Formulas for the standard error of the estimated
probability θ can be derived by means of the delta
method both for paired and unpaired data [55].

It should be noted that formula (4) is first of all
only useful in studies, which provide an estimate
of ρ (such as crossover studies, see below). In all
designs considered so far (randomized clinical tri-
als with parallel group design, cohort studies, and
case–control studies with two independent groups)
the within-subject correlation is not estimable. In this
case, Walter proposed to use a variety of different
assumed values of ρ and investigate the sensitivity
of θ to the unknown correlation value [55]. Alter-
natively, in studies observing independent groups,
the first mentioned approach of dichotomizing the
response in both groups could be used.

In practice, continuous outcomes are frequently
subject to random measurement error. Even in the
case of nondifferential measurement error, dichoto-
mization of continuous variables leads to a bias in the
estimated proportions and estimated NNTs. Walter &
Irwig investigated the effect of measurement error in
continuous outcomes on NNT estimation [56], and
methods to reduce the bias by adjusting for mea-
surement error are in development [38]. In general,
even in the case of no measurement error, one should
be aware of the potential loss of information due to
categorizing of continuous variables. Hence, calcu-
lation of NNTs from continuous data can only serve
as supplement to the analysis of data in the origi-
nal continuous scale by using means and differences
of means.
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Crossover Studies

Originally, the NNT statistic was developed for use
in studies investigating two independent groups. Wal-
ter systematically examined NNT estimators and
their variances for both crossover and parallel group
designs [55]. Owing to the undesirable statistical
properties of NNT, it is preferable to calculate the
standard errors of the corresponding risk differences
instead of the NNTs themselves. The NNT estima-
tors are identical in both designs, whereas standard
errors are different. Approximate confidence intervals
for risk differences can be calculated in both designs
by using the Wald method [55]. As described before,
confidence intervals for NNTs can be obtained by
inverting and exchanging confidence limits of the
corresponding risk difference [17]. For the parallel
group design, it was shown that the Wald method
is unreliable in many practical situations. The same
holds for crossover studies, in which it is preferable
to calculate confidence intervals for the difference
between paired proportions based upon the Wilson
score method [41].

As crossover studies provide an estimate of the
within-subject correlation, the continuous data ver-
sion of NNT based upon the minimally important
difference (see above) can be estimated directly.
Under the assumption of normality of the continuous
response, NNT can be estimated by using equa-
tion (4). Without making distributional assumptions,
NNT is given by the inverse proportion of subjects for
which the difference between the responses is larger
than the minimally important difference [55].

Survival Data

The concept of NNT was originally developed for
binary outcomes measured at a specific fixed time
point. Nevertheless, NNTs are also calculated and
presented for studies where the outcome is the time to
an event (see Survival Analysis, Overview). Unfor-
tunately, unclear and questionable methods have been
used for point and interval estimation of NNT in
studies in which follow-up times are not equal for
all patients. Owing to the application of questionable
ad hoc methods, different and confusing results have
been published for the same data [8].

First, it should be noticed that in studies with vary-
ing follow-up times, NNT would also vary according
to the length of follow-up. In such studies, no sin-
gle NNT value exists. NNT can be calculated at

any time point after the start of the treatment. Fre-
quently used methods to analyze survival times are
given by Kaplan–Meier survival curves providing
estimates of the survival probabilities S0(t) and S1(t)

of the control and treatment group, respectively, and
the Cox regression model, providing an estimate of
the hazard ratio (HR), possibly adjusted for other
prognostic variables. Altman & Andersen proposed
to estimate NNT by means of

NNT (t) = 1

S1(t) − S0(t)
(5)

if the survival probabilities S0(t) and S1(t) are given,
or by

NNT (t) = 1

(S0(t))HR − S0(t)
(6)

if the assumption of proportional hazards is fulfilled
and S0(t) and the HR for the comparison of the
control and treatment group are given [3]. If one fixed
time point is specified, one NNT value is obtained.
Otherwise, (5) and (6) will lead to a NNT curve as a
function of time.

To get an NNT statistic independent of time,
Lubsen et al. proposed to calculate NNTs by the
reciprocal of the difference of two hazards [36].
However, this approach requires the assumption of
constant hazards. Moreover, the difference of hazards
is not the same as the difference of risks. Thus, this
approach leads to a statistic with a different meaning
than that of the usual NNT. It should be noted that in
the presence of confounders survival probabilities are
dependent on the confounder values even if we can
assume a constant HR. Thus, NNT not only depends
on time but also on confounders. Altman & Ander-
sen proposed to calculate NNT curves for different
subsets of patients with varying prognosis [3]. How-
ever, more work is required to develop methods for
estimation of adjusted NNTs from survival times.

Combining and Pooling

Risk-benefit Analysis

The decision about the use of a treatment should not
be based upon its effect on the target event alone.
Adverse side effects attributable to treatment as well
as costs of therapy and costs avoided by preventing
target events should also be considered (see Decision
Analysis in Diagnosis and Treatment Choice). The
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“threshold NNT” (NNTT) was defined as the NNT
value at which the therapeutic benefit equals the
therapeutic risks [25, 26, 51]. If the estimated NNT
is below the threshold NNT, then treatment should
be administered. If the estimated NNT is above the
threshold NNT, the patients should not be treated
because the risks and costs of treatment are larger
than the expected benefit. The threshold NNT is
given by

NNT T = TEC + TEV

DC + AER × (AEC + AEV )
, (7)

where TEC represents the costs of treating one target
event, TEV the value of one target event avoided
(given in the same economic units as costs), DC the
direct costs of therapy, AEC the costs of treating
one adverse side effect, AEV the value of the side
effect and AER the event rate of the side effect [51].
Similar formulas for considering multiple side effects
and omitting costs can be found elsewhere [51].

While the concept of the threshold NNT seems
to be appealing, the practical application is challeng-
ing. For an adequate decision making, the estimation
uncertainties should be taken into account. The spec-
ification of the data (costs and values) required for
the calculation of the threshold NNT is not easy and
the quantification of these data uncertainties is much
more difficult. Especially, the values one is willing
to pay for one target or one side effect avoided are
highly subjective. Thus, it is quite important to dis-
close all data and assumptions used for calculating a
threshold NNT.

Combined NNT Measures for Different Outcomes

Several approaches have been published to combine
the NNTB of the target event and the NNTH of a
side effect into one measure incorporating benefit as
well as harm. Let π0, π1 be risks of the target event
and ν0, ν1 the risks of the side effect in the control
and the treatment group, respectively. We consider
the case of an adverse target event, an adverse side
effect and a treatment that is beneficial concerning
the target event (π0 > π1) but harmful concerning
the side effect (ν1 > ν0). For other situations, appro-
priate modifications of the following measures are
required. Riegelman & Schroth proposed the com-
bined measure

NNTcomb = 1

(π0 − π1) − (ν1 − ν0)
, (8)

that is, the reciprocal of the difference between ARR
of the target event and ARI of the side effect [46].
The authors proceeded by adjusting this measure
for the qualities and timings of the considered out-
comes [46]. This procedure was criticized because a
decision analysis has to be carried out before the
quality-adjusted NNT can be calculated [19]. Thus,
the intuitive meaning, which is one advantage of the
NNT statistic, is lost. It is only possible to interpret a
quality-adjusted NNT if the underlying decision anal-
ysis is understood. The statistical properties of the
quality-adjusted NNT statistic have not been investi-
gated and no methods to calculate confidence inter-
vals have been developed.

A second approach of an NNT measure incorpo-
rating benefit and harm was proposed by Schulzer
& Mancini [49]. They tried to calculate the number
of patients needed to treat to produce one “unquali-
fied success” (US), that is, the situation in which one
adverse target event is avoided while simultaneously
no treatment-induced side effect occurred. The NNT
for one unqualified success is given by

NNT US = 1

(π0 − π1) × [1 − (ν1 − ν0)]
. (9)

Formula (9) is based upon the assumption that the tar-
get event and the adverse side effect are independent
in both the untreated and the treated population. This
assumption will rarely be true in practical applica-
tions. Although a procedure was proposed to handle
situations in which an association between the pre-
vention of a target event and the induction of a side
effect is expected [37], this approach suffers from
the lack of an appropriate method to estimate the
association from the data. Moreover, no adequate
method to calculate confidence intervals for NNTUS

has been developed.
Willan et al. proposed the benefit–risk ratio

R = NNTH (side effect)

NNTB(target effect)
= π0 − π1

ν1 − ν0

= (π0 − π1) × NNTH (side effect), (10)

which can be interpreted as increase in the expected
number of prevented target events achieved for
each additional adverse side effect induced by
treatment [57]. For large sample sizes, Willan
et al. developed a statistical procedure to construct
confidence intervals for the benefit–risk ratio based
upon Fieller’s theorem [57].
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The development of a combined NNT statistic
incorporating benefit and harm of multiple events
is not straightforward. Before one of the proposed
combined NNT measures considering multiple events
can be routinely applied in practice, more work is
required concerning the practical utility of these mea-
sure as well as their statistical properties, especially
in small samples.

Meta-analysis

Since NNT has been advocated as a useful effect mea-
sure for systematic reviews [39], a number of authors
have pointed out that particular caution is needed in
deriving pooled NNTs in meta-analyses [5, 13, 20,
21, 53]. A single pooled NNT value over all stud-
ies in a meta-analysis may be misleading, especially
if there is a variation in the baseline risk, differ-
ent lengths of follow-up, differences in the outcomes
considered, or different clinical settings. The naive
approach of simply adding the raw totals of all con-
sidered trials as if the data came from one trial should
be avoided. The calculation of a pooled NNT should
be based upon a pooled effect measure, which should
be independent of the baseline risk. Using empir-
ical data, Furukawa et al. showed that the relative
effect measures OR and RR calculated by means of
an appropriate fixed or random effects regression
model often appear to be reasonably constant across
different baseline risks [24]. Meaningful NNTs can
be obtained by inserting the pooled RR or OR from
meta-analyses in formula (1) or (2). If there is vari-
ation in the baseline risk, different NNTs relevant to
specific patient subgroups should be calculated [20,
24, 53]. If there is evidence that even the relative
effect measures vary substantially between subgroups
in a meta-analysis, no meaningful pooled NNT can
be calculated.

Conclusion

The use of NNT as effect measure for the compar-
ison of risks between two groups has been advo-
cated in medical journals for several years [16, 33,
39, 43, 47, 50] but was recently criticized [53, 58]
or even rejected [28]. There seems to be a gap in
the assessment of the practical usefulness of NNTs
between some statisticians and clinicians [4, 28, 35].
Some mathematical arguments against the use of

NNTs, such as undesirable distributional properties,
are surely justified. However, strict mathematical
arguments lose their importance when NNT is consid-
ered as a way of presenting results, not as a tool for
statistical computations [4, 35]. A clear distinction
should be made between data analysis and subsequent
risk communication [54]. In the light of the effects on
consumers of the scale in which benefits and risks are
reported, it is frequently advisable to choose a statis-
tical model and a corresponding appropriate summary
measure for the task of data analysis, but alternative
effect measures to report the most important results.
For the translation of research findings to consumers,
the number needed to treat may represent a useful
tool, because it gives an intuitive impression of the
absolute effect of a therapy or an intervention. NNTs
contain the same information as risk differences, but
in the unit of patient numbers instead of probabilities,
which is easier to understand.

The attempt to extend and apply the simple NNT
concept developed for randomized clinical trials with
two independent groups and a binary outcome for
a variety of other settings led to the development
of more sophisticated approaches and procedures for
NNT calculation. Some useful approaches have been
developed, but situations remain for which further
work is needed to calculate meaningful NNTs, for
example, survival time studies or the combination of
NNTs for multiple outcomes. These extension and
adjustment procedures can alleviate problems with
NNTs. However, the extended and adjusted NNTs can
no more be considered as “one simple single yard-
stick” [31]. Particular caution is required to apply and
interpret NNTs adequately in practice, especially in
meta-analyses and in the presence of confounders.
Nevertheless, if handled appropriately, NNTs rep-
resent a useful communication tool to express the
absolute effects of interventions and exposures.
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Numerical Analysis

Numerical analysis is concerned with the accurate
and efficient evaluation of mathematical expressions,
especially on computers with floating point arith-
metic. While scientists have always been concerned
to some extent with numerical computation, the mod-
ern discipline of numerical analysis is almost entirely
a product of the period since 1950, during which there
has been an explosion in the availability of electronic
computers. There are three main issues:

1. to organize computations so that there is min-
imum accumulation of error in floating point
arithmetic

2. to organize computations efficiently, so that they
consume the least possible resources

3. to obtain accurate numerical approximations to
quantities which may not have explicit mathe-
matical expressions.

In other words, do it accurately, do it quickly, and do
it cheaply.

It might be thought that numerical evaluation con-
sists largely of translating textbook formulas into a
computer programming language – a mere coding
exercise – but this is very far from the case. Direct
translations of expressions from mathematical theory
are seldom optimal, and very often are found to fail in
circumstances when a less obvious numerical process
would have succeeded.

The focus on numerical results means that one
is not limited to direct expressions, but can evaluate
functions which are defined only indirectly, for exam-
ple through integrals, differential equations, series, or
as solutions to equations. An important example is the
maximum likelihood estimator for a nonlinear sta-
tistical model (see Nonlinear Regression). Indeed,
an indirect method is often preferred for numerical
evaluation even when a direct expression exists.

While efficiency and accuracy are both aims, it
is accuracy which takes precedence, since a slightly
slower accurate program is invariably preferred to
a faster one with unreliable accuracy. Errors arise
from three sources: (i) errors in the input data;
(ii) computation errors due to finite precision arith-
metic; and (iii) approximation error. The first of these
is not under the control of the calculation; in fact
it might be considered to be the special concern of
the statistician. Computation error appears because

of the difference between exact arithmetic and the
finite-length arithmetic available on digital comput-
ers and hand calculators. Approximation error occurs
when the computed expression is not exactly equal
to the theoretical quantity even in exact arithmetic.
An integral is replaced with a sum, for example, or
an infinite series is evaluated only to a finite number
of terms.

Efficiency is usually measured by counting basic
floating point operations (flops), such as additions,
subtractions, multiplications, and divisions. Another
consideration is to minimize the use of computer
memory and other space requirements, especially for
large jobs. More recent concerns which arise from
modern computer architecture include parallel com-
puting (designing algorithms so that they can be
evaluated in parallel streams on fast computers with
multiple processors) and local referencing (minimiz-
ing unnecessary paging of virtual memory).

It is also desirable to keep programs simple
and understandable, thus making the programs easy
to maintain and to modify. Users must often
choose between using compact programs which can
be tinkered with for their own use, and using
sophisticated high-performance software from public
libraries, which cannot be modified and must be taken
somewhat on trust.

Most biostatisticians can benefit from familiar-
ity with numerical analysis. An understanding of the
numerical methods being used and an idea of when
they will perform well or poorly is necessary even
for users of standard statistical package programs
(see Software, Biostatistical). You must still under-
stand the program’s purpose and limitations to know
whether it applies to your particular situation or not.
More importantly, many problems cannot be solved
by simple application of a standard program. If you
develop your own software, a knowledge of numeri-
cal analysis can help avoid numerical pitfalls that can
occur easily in a number of problems.

A justifiably popular text on scientific computing
is Press et al. [9], which contains a lot of advice
on routines to use. Other good general texts on
numerical analysis are by Atkinson [3] and Stoer
& Bulirsch [12]. An introduction with some statis-
tical orientation is by Thisted [13]. An elegant and
elementary introduction to the fundamental ideas of
numerical analysis is given by Stewart [11].

The remainder of this article discusses the basic
ideas of accuracy and describes briefly key topics in
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numerical analysis which are treated at more depth
in separate articles. Pointers to available software are
given at the end of the article.

Conditioning

The concept of conditioning refers to the intrinsic
difficulty of a numerical problem. A problem is ill-
conditioned if it is sensitive to perturbations in the
data, and well-conditioned if it is not. Conditioning
is often quantified by a condition number which
refers to the amplification of relative errors. Suppose
that x is the exact argument to a function f but
unfortunately only an approximation x̃ is available.
The condition number κ of f at x is defined, with
respect to a given norm (|| · ||), by the relation

||f (x̃) − f (x)||
||f (x)|| ≈ κ

||x̃ − x||
||x||

for x̃ near x. If κ is large, then errors in x are mag-
nified in the evaluation of f (x), while the opposite
is true if κ is small. If κ = 10k , then k is roughly
the number of significant figures of accuracy we can
expect to lose in the computation.

For univariate, differentiable functions, the con-
dition number is essentially κ = |xf ′(x)/f (x)|. For
example, f (x) = (x − 1)6 is an ill-conditioned func-
tion near x = 1, while f (x) = x1/2 is well-condi-
tioned for any x > 0.

For general multivariate functions, the specific
definition of condition number depends on the prob-
lem. For example, the computation of regression
coefficients from a multiple regression is ill-condi-
tioned when the design matrix X displays collinea-
rity. Conditioning also depends on the quantity of
interest. A least squares regression may be ill-
conditioned from the point of view of the regression
coefficients but well-conditioned from the point of
view of the fitted values.

Stability

A stable algorithm is one which evaluates a function
to the accuracy allowed by the function’s condition
number. A stable algorithm therefore will evaluate
a well-conditioned function accurately, and will do
as well as can be expected on an ill-conditioned

problem. For example, consider the problem of
computing the sample variance of the three num-
bers:

62, 63, 64

using four-digit decimal arithmetic. A commonly
taught formula for the variance is

s2 = 1

n − 1

(
n∑

i=1

x2
i − nx2

)
,

where n is the sample size and the xi are the
observations. Since the data are given to two sig-
nificant figures, it might be thought that carrying
four significant figures through the calculation will
leave a more than adequate safety margin. In this
case

∑
x2

i = 3844 + 3969 + 4096, which is 1191 ×
101 in 4-digit arithmetic. Similarly, nx2 = 3(632) is
1191 × 101 to 4 digits. Therefore, s2 is computed to
be 0, a 100% error compared with the true value
of 1. Alternative algorithms are available: for exam-
ple, s2 = ∑

(xi − x)2/(n − 1), which evaluates to
[(−1)2 + 02 + 12]/2 = 1 – the correct answer in this
case. The first formula is unstable, while the second
formula is stable. There are many other algorithms
for computing the sample variance, some of which
are of great interest to manufacturers of hand calcu-
lators; see Chan et al. [4] for a discussion.

The error in the first formula above arises in
the rounding errors of

∑
x2

i and nx2, and the error
is revealed when the difference is taken of the
two large and nearly equal quantities. This is often
called subtractive cancellation, although rounding
error occurred not in the subtraction but in the pre-
vious summation. It is a general principle that one
cannot add a large value to a floating point num-
ber and later subtract it without losing accuracy. One
concern, therefore, of numerical analysis is to limit
the growth in size of intermediate quantities in calcu-
lations. For example, a summation is generally stable
if the summands are all of one sign. In this case, the
partial sums cannot be greater in absolute value than
the final sum.

There is often a close relationship between stabil-
ity in numerical analysis and in statistics. Frequently,
parameters which are statistically interpretable be-
cause they measure some invariant characteristic of
a problem appear also in a stable algorithm, because
of the need to compute quantities which do not grow
without bound. Even the small example above gives
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an example of this, as the xi − x are the well-known
residuals, while in the textbook formula

∑
x2

i and
nx2 are merely intermediate quantities, not statisti-
cally useful quantities in their own right.

Let f̃ (x) be the approximation to f (x) which
arises from an algorithm. The algorithm is called
backwardly stable if f̃ (x) can be shown to be equal
to the exact evaluation of f at x̃, where x̃ is close to
x. In this way, a (backwardly) stable algorithm will
compute a well-conditioned function accurately, and
will compute an ill-conditioned function as accurately
as is allowed by its conditioning.

Although proving error bounds is an important
part of modern numerical analysis, the specific bou-
nds obtained are usually pessimistic and are seldom
used in practice. In general, rounding-error analyses
are less valued for their final bounds than for the
insight they provide about a numerical algorithm. A
thorough treatment of rounding-error analyses can be
found in Higham [6].

Floating Point Arithmetic

There are an infinite number of real numbers, but only
a finite number can be represented on a computer.
Therein lies the fundamental difference between exact
and computer arithmetic, alluded to above. Numbers
are represented on computers in floating point form,
i.e. f × βe in terms of a base β, fraction f , and
exponent e. For example,

2.597 × 10−3

is a base-10 floating point number with four figures
of accuracy. Most computers use base 2, and the
resulting arithmetic is called binary arithmetic.

Finite computer arithmetic produces three types
of errors. When an arithmetic operation produces
a number with an exponent that is too large, the
result is said to have overflowed. Similarly, an arith-
metic operation that produces an exponent that is
too small is said to have underflowed. Even within
the limits of the exponent, most numbers cannot be
represented exactly on floating point arithmetic of a
fixed word length. The resulting inaccuracy is called
rounding error. It is a central concern of numerical
analysis that rounding errors do not accumulate dur-
ing a long computation (see Floating Point Arith-
metic).

Linear Equations and Matrix
Computations

The theory and practice of solving a linear system

Ax = b

for x, and, more generally, the whole subject of
computations involving matrices, is now very well
developed (see Matrix Computations). Here, we
outline two applications of interest to biostatisticians.

In least squares regression of a response vector
y on a design matrix X, numerical analysts have
influenced statisticians to move away from the normal
equations for the regression coefficients in favor of
methods based on the decomposition

X = QR,

where Q is an orthogonal matrix and R is upper trian-
gular. This is because the QR approach is backwardly
stable, while the normal equations are not.

Conditioning for the least squares problem is
determined by that of X, which can be analyzed
through the singular value decomposition

X = UDVT,

where U and V are orthogonal and D is diagonal
containing the singular values. The condition num-
ber of X is usually defined to be the ratio of the
largest to the smallest singular value. If the columns
of X are standardized; say, by dividing by the sample
standard deviation of the column, then the singular
values entirely capture the idea of ill-conditioning
and collinearity for the least squares problem. The
singular value decomposition therefore gives statis-
ticians the means to quantify collinearity, and there
are those who propose its routine use in regression
computations for that reason [9, Section 15.4].

Numerical linear algebra is dealt with in more
detail in the article on Matrix Computations.

Optimization and Nonlinear Equations

Optimization means to find that value of x which
maximizes or minimizes a given function f (x). This
is a central concern in statistics, because statistical
estimation principles such as least squares, maximum
likelihood, posterior mode (see Bayesian Methods)
and M-estimation (see Robustness) are defined in
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terms of optimizing an appropriate objective func-
tion. Numerical optimization strategies come into
play when the statistical model is nonlinear and
analytic estimators of the parameters are not avail-
able.

A closely related problem is that of solving nonlin-
ear equations. Many algorithms for optimizing f (x)

are, in fact, derived from algorithms for solving
∂f/∂x = 0, where ∂f/∂x is the derivative vector of
f with respect to x.

Details are given in the article on Optimization
and Nonlinear Equations.

Interpolation and Approximation

The purpose here is accurately to approximate com-
plex functions with ones which are easy to evaluate.
For example, rational function approximations to the
standard normal distribution function and its inverse
allow it to be computed rapidly within statistical pro-
grams. Typical methods include series expansions,
rational functions, and polynomials (see, for example,
Press et al. [9, Chapter 5] and Polynomial Approx-
imation). A great many approximation formulas are
given in Abramowitz & Stegun [1].

Numerical Integration

After matrix computations, numerical integration is
one of the largest areas of numerical analysis. A
large number of sophisticated and reliable meth-
ods are available for numerical integration in one
dimension. Unfortunately, for statisticians wanting to
evaluate mixture models or Bayesian marginal pos-
teriors, the picture is less clear in high dimensions.
Statisticians have made a substantial contribution to
high-dimensional integration through the develop-
ment of efficient Monte Carlo methods. A survey of
integration methods is given in the article on Numer-
ical Integration.

Available Software

The final goal of numerical analysis is to make
numerical methods generally available through high-
quality portable software. Numerical analysts were
also early users of the internet, and a wide range
of software is available online. Netlib is the most
extensive collection of numerical programs. Its URL
is http://www.netlib.org.

Worthy of special mention are the LINPACK
library [5] for linear algebra and the EISPACK lib-
rary [10] for eigenvalue computations, both from
the Argonne National Laboratory. These are pub-
lished, documented and freely available, and have
gained wide acceptance by statisticians and other sci-
entists. The two libraries have now been combined
and updated as LAPACK [2]. Other libraries of note
include the QUADPACK library [8] for numerical
integration, and the SLATEC library – an enormous
library of FORTRAN programs.

The Guide to Available Mathematical Software
(GAMS) at http://gams.nist.gov provides a
virtual database of documented and supported
programs, searchable by program and problem type.
The journal ACM Transactions of Mathematical
Software is a source of refereed software, also
searchable by GAMS.

Commercial subroutine libraries include the NAG
Library (Numerical Algorithms Group) and the IMSL
Mathematics and Statistics Libraries. LINPACK, EIS-
PACK, and other routines have also been incorpo-
rated into the interactive matrix programming lan-
guage, MATLAB [7].

Another popular commercial source is Numer-
ical Recipes [9], accessible through www.nr.com.
Numerical Recipes supplies smaller, understandable
programs, which may be modified by users for spe-
cific applications. Netlib, GAMS, NAG, and IMSL
provide more sophisticated routines designed for high
performance on large problems. Considerable effort
has been expended to make the high-performance
routines efficient, memory-compact, and capable of
trapping most errors.

Programs developed by statisticians, dealing
specifically with statistical problems, can be
found at Statlib, the statistical database main-
tained at Carnegie-Mellon University. The URL is
http://lib.stat.cmu.edu.
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Numerical Integration

Numerical integration is the study of how the numer-
ical value of an integral can be found. Also called
quadrature, which refers to finding a square whose
area is the same as the area under a curve, it is
one of the classical topics of numerical analysis.
Of central interest is the process of approximat-
ing a definite integral from values of the integrand
when exact mathematical integration is not available.
The corresponding problem for multiple dimensional
integration is known as multiple integration or cuba-
ture.

Numerical integration has always been useful
in biostatistics to evaluate distribution functions
and other quantities. Emphasis in recent years on
Bayesian and empirical Bayesian methods and on
mixture models has greatly increased the importance
of numerical integration for computing likelihoods
and posterior distributions and associated moments
and derivatives. Many recent statistical methods are
dependent especially on multiple integration, possibly
in very high dimensions.

Although there exist many high-quality automatic
integration programs, no program can be expected
to integrate all functions, even in one dimension. It
is therefore useful for the user to know something
about the limitations of the commonly used meth-
ods.

This article describes classical quadrature meth-
ods and, more briefly, some of the more advanced
methods for which software is widely available. The
description of the elementary methods in this arti-
cle borrows from introductory notes by Stewart [31].
An excellent general reference on numerical integra-
tion is [5]. More recent material can be found in [7]
and [29]. Recent surveys of numerical integration
with emphasis on statistical methods and applications
are [9] and [8].

Trapezoidal Rule

The simplest quadrature rule in wide use is the
trapezoidal rule. Like many other methods, it has
both a geometric and an analytic derivation. The idea
of the geometric derivation is to approximate the area
under the curve y = f (x) from x = a to x = b by
the area of the trapezoid bounded by the points (a, 0),

(b, 0), [a, f (a)], and [b, f (b)]. This gives
∫ b

a

f (x) dx ≈ b − a

2
[f (a) + f (b)].

The analytic derivation is to interpolate f (x) at a and
b by a linear polynomial.

The trapezoidal rule cannot be expected to give
accurate results over a larger interval. However, by
summing the results of many applications of the
trapezoidal rule over smaller intervals, we can obtain
an accurate approximation to the integral over any
interval. We begin by dividing [a, b] into n equal
intervals by the points a = x0 < x1 < · · · < xn−1 <

xn = b. Specifically, if h = (b − a)/n is the com-
mon length of the intervals, then xi = a + ih, i =
0, 1, . . . , n. Applying the trapezoidal rule to each
interval [xi−1, xi] gives the composite trapezoidal
rule

∫ b

a

f (x) dx ≈ h

{
f (x0)

2
+ f (x1)

+ · · · + f (xn−1) + f (xn)

2

}
.

An error formula for the composite trapezoidal
rule can be obtained from polynomial approximation
theory. If f is twice continuously differentiable on
(a, b), then the error of integration decreases as h2,
so that doubling the number of points reduces the
error by a factor of four.

Simpson’s Rule

More sophisticated quadrature rules can produce
higher-order error terms. Even more popular than the
trapezoidal rule is Simpson’s rule:
∫ b

a

f (x) dx ≈ b − a

6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
.

Simpson’s rule can be derived by interpolating f (x)

by a quadratic polynomial at a, (a + b)/2, and b.
As with the trapezoidal rule, Simpson’s rule is

usually applied to many short intervals. Letting the
xi be as above for n even, and writing fi = f (xi) the
composite Simpson rule is

∫ b

a

f (x) dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + · · ·

+ 2fn−2 + 4fn−1 + fn).



2 Numerical Integration

If CSh(f ) denotes the result of applying the compos-
ite Simpson rule to f over the interval [a, b], and if
f has a continuous fourth derivative on (a, b), then

∫ b

a

f (x) dx − CSh(f ) = − (b − a)f (4)(ξ)

180
h4

for some ξ ∈ [a, b]. Although Simpson’s rule was
derived to integrate quadratic polynomials exactly on
each interval, the presence of the fourth derivative in
the error term signals that it in fact integrates cubics
exactly as well. This property follows from the fact
that Simpson’s rule is a special case of Gaussian
quadrature, treated below.

Newton–Cotes Formulas

The trapezoidal rule integrates any linear polynomial
exactly. In general, we might look for an (n + 1)-
point rule which integrates exactly any polynomial of
degree n. Such a quadrature rule is the Newton–Cotes
formula.

Let x0, x1, . . . , xn be distinct points in the interval
[a, b]. We wish to determine constants A0, A1, . . . ,

An such that
∫ b

a

f (x) dx = A0f (x0) + · · · + Anf (xn)

for any polynomial f of degree ≤ n. Strictly
speaking, as Newton–Cotes usually refers to
formulas with equally spaced abscissas, this is a slight
generalization.

Although there is an elegant analytic expression
for the Ai in terms of Lagrange polynomials [31],
they are difficult to evaluate stably. For rules of low
degree, one can substitute in f (x) = 1, f (x) = x,
f (x) = x2, etc. to obtain a system of linear equations
which can be solved for the Ai .

Clenshaw–Curtis Integration

Newton–Cotes formulas with equally spaced abscis-
sas are of practical use only for small point numbers,
say n ≤ 8. For n as low as nine, the coefficients Ai

vary in sign. As n increases, the coefficients become
large in absolute value, leading to unstable evalua-
tion of the integral. This problem can be avoided by
choosing the abscissas in a more sophisticated way.
One choice for which the coefficients are not only

positive but have stable analytic expressions is the
Chebyshev points on [a, b],

xi = b + a

2
+ b − a

2
cos

(
iπ

n

)
, i = 0, 1, . . . , n.

Define the modified Fourier coefficients,

aj = 2

n

n∑

i=0

′′f (xi) cos

(
ijπ

n

)
,

where ′′ indicates that the first and last terms in
the sum are to be halved. If n is even, then the
Clenshaw–Curtis formula can be written

∫ b

a

f (x) dx ≈ b − a

2

[
a0 − 2a2

(1)(3)
− 2a4

(3)(5)
− · · ·

− 2an−2

(n − 3)(n − 1)
− an

(n − 1)(n + 1)

]
.

Like other formulas of the Newton–Cotes type,
Clenshaw–Curtis will integrate exactly polynomials
of order n or less. In practice, it does rather bet-
ter than other rules of the same order, because of
the bounded variation properties of Chebyshev poly-
nomials. The error of Clenshaw–Curtis integration
can be estimated from the rate of decrease of the
coefficients aj . O’Hara & Smith [22] suggest the use
of bounds such as max(2|an−4|, 2|an−2|, |an|) for the
approximation error.

Treatment of Singularities

Provided that the integrand f is sufficiently smooth,
the Newton–Cotes formulas converge as n → ∞.
It sometimes happens, however, that one has to
integrate a function with a singularity. Suppose, for
example, that, for x near zero,

f (x) ≈ c

xd

for some constant c and 0 < d < 1. Then
∫ 1

0 f (x) dx

exists, but the Newton–Cotes formulas will not
obtain good results because f is not at all polynomial
on [0, 1]. A better approach is to incorporate the
singularity into the quadrature rule itself.

First define

g(x) = xdf (x),
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and look for a rule that evaluates the integral

∫ 1

0
g(x)x−d dx,

where g is a well-behaved function on [0, 1]. The
function x−d is called a weight function. Given any
modest number of points x0, . . . , xn in the interval
(0,1], the method of undetermined coefficients can
easily determine an integration rule of the form

∫ 1

0
g(x)x−d dx = A0f (x0) + · · · + Anf (xn)

by substituting in g(x) = 1, g(x) = x, g(x) = x2,
etc.

The appearance of derivatives in the error terms
for Newton–Cotes rules (and for the Gaussian rules
below) shows that the method is troubled not only by
singularities in the integrand, but by singularities in
its derivatives as well. A weight function may there-
fore need to remove singularities in the derivatives
as well as in the function itself.

Gaussian Quadrature

A polynomial of degree n is determined by its n + 1
coefficients. We have seen that the n + 1 coefficients
A0, . . . , An in the (n + 1)-point Newton–Cotes for-
mula can be chosen to make the rule exact for poly-
nomials of degree n or less. The idea behind Gaussian
quadrature is that the abscissas x0, . . . , xn represent
another n + 1 degrees of freedom, which may be used
to extend the exactness of the rule to polynomials of
degree 2n + 1.

Gauss quadrature formulas have the form

∫ b

a

f (x)w(x) dx ≈ A0f (x0) + · · · + Anf (xn),

where w(x) is a weight function which is greater than
zero on the interval [a, b]. The correct choice for
x0, . . . , xn turns out to be the zeros of an orthogonal
polynomial P{n+1} of order n + 1. An important point
is that the coefficients Ai are positive. Moreover,
A0 + A1 + · · · + An = ∫ b

a
w(x) dx, so no coefficient

can be larger than
∫ b

a
w(x) dx. Consequently, we

cannot have a situation in which large coefficients
create large intermediate results that suffer cancella-
tion when they are added.

Gaussian quadrature has error formulas similar to
those for Newton–Cotes formulas. Specifically, if f

is 2n + 2 times continuously differentiable on (a, b),
and Gnf is the quadrature approximation, then

∫ b

a

f (x)w(x) dx − Gnf

= f (2n+2)(ξ)

(2n + 2)!

∫ b

a

p2
n+1(x)w(x) dx,

where ξ ∈ [a, b]. If f does not satisfy the smoothness
property, then the accuracy of Gaussian quadrature is
generally reduced by at least an order of magnitude.
However, it is a consequence of the positivity of the
coefficients Ai that Gaussian quadrature converges
for any continuous function as n → ∞.

Particular Gauss formulas arise from particular
choices of the interval [a, b] and the weight function
w(x). The workhorse is Gauss–Legendre quadrature
in which [a, b] = [−1, 1] and w(x) = 1, so that the
formula approximates the integral

∫ 1

−1
f (x) dx.

The corresponding orthogonal polynomials are called
Legendre polynomials.

If we take [a, b] = [0, ∞) and w(x) = e−x , we
get a formula to approximate

∫ ∞

0
f (x)e−x dx.

This is called Gauss–Laguerre quadrature.
If we take [a, b] = [−∞, ∞] and w(x) = e−x2

,
we get a formula to approximate

∫ ∞

−∞
f (x)e−x2

dx

This is Gauss–Hermite quadrature.
Computing the abscissas and coefficients for these

and other Gauss rules in a stable and efficient manner
is a challenging nonlinear problem. Two success-
ful algorithms are those of Golub & Welsch [12]
and Sack & Donovan [28]. A FORTRAN program
implementing the Golub–Welsch method can be
obtaining by searching the NETLIB∗ database for
GAUSSQ. The expense of computing the abscissas
and coefficients is sufficiently great that they are
usually stored and reused rather than generated afresh
for each problem.
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Simpson’s rule is actually a variant of the
Gauss–Legendre three-point rule in which x0 and
xn are constrained to be the end points. Rules
with such constraints are called Gauss–Radau or
Gauss–Lobatto quadrature [5].

Progressive Formula

Despite their optimal properties, the Gaussian formu-
las are not universally used in practice. The main rea-
son for this is the difficulty of determining in advance
the required number of points to achieve a given level
of accuracy. In some cases, mathematical analysis of
the function to be integrated makes it possible to use
the analytic error bounds of the quadrature rules. It is
more common, however, to estimate the error empiri-
cally by applying the same quadrature rule twice with
different point numbers. Often the point number is
doubled until the successive values of the integral
agree to the required number of figures.

A succession of integration formulas with increas-
ing point numbers is said to be nested or progressive
if each formula reuses the abscissas of the earlier for-
mulas. The composite Simpson and Clenshaw–Curtis
rules with n doubling at each step are important
examples of progressive formulas. Gaussian formulas
are generally not progressive, as the abscissas at any
point number are different from those for any other
point number. The relative advantage of the Gauss
formulas is therefore lost in the expense of computing
addition abscissas and function evaluations.

One possibility is to construct progressive for-
mulas starting or finishing with a Gaussian for-
mula. Kronrod [18] gave a method for adding points
to a Gauss–Legendre formula in an optimal way.
The Kronrod rule adds n + 1 points to a n-point
Gauss–Legendre formula, resulting in a rule which
integrates exactly polynomials of order 3n + 1 (n
even) or 3n + 2 (n odd). The desirable properties
of Gaussian quadrature are preserved in that the
abscissas remain in the integration interval and the
coefficients Ai remain positive. When the n-point
Gauss rule is combined with its Kronrod optimal
extension, a very economical pair of formulas result
for the simultaneous calculation of an approximation
for an integral and the respective error estimate. The
problem of extending arbitrary quadrature formulas in
a progressive fashion was studied by Patterson [17,
23, 24], who also gave a stable computation for the

Kronrod rules. Together, the Kronrod and Patterson
methods provide a nested sequence of quadrature
rules based on an initial Gauss rule, and are the
basis of some of the most widely used integration
programs.

Adaptive Methods

A quadrature rule is adaptive if it compensates for
a difficult subrange of an integrand by automati-
cally increasing the number of quadrature points in
the awkward region. Adaptive strategies divide the
integration interval into subintervals and, typically,
employ a progressive formula in each subinterval
with some fixed upper limit on the number of points
allowed. If the required accuracy is not achieved
by the progressive formula, then the subinterval is
bisected and a similar procedure carried out on each
half. This subdivision process is carried out recur-
sively until convergence is achieved in each of the ter-
minating subintervals. Most general purpose integra-
tion programs are adaptive, since such a strategy can
be successful over a very wide range of integrands.

Multiple Integration: Product Rules

Multiple integration is concerned with the numeri-
cal approximation of integrals of two or more vari-
ables. It is not a simple extension of one-dimensional
integration. The diversity of possible integration
regions and singularities for d-dimensional functions
is daunting. As a general rule, it is not possible to
obtain the same accuracy with higher-dimensional
integrals as with one-dimensional integrals for rea-
sonable computing times.

The problem addressed by multiple integration is
to evaluate integrals of the form
∫

f =
∫ bd

ad

∫ bd−1(xd )

ad−1(xd )

· · ·
∫ b1(x1,...,xd )

a1(x1,...,xd )

f (x1, x2, . . . , xd)

× dx1 dx2 . . . dxd .

The most obvious approach is to treat the multiple
integral as a nested sequence of one-dimensional
integrals, and to use one-dimensional quadrature with
respect to each argument in turn. The resulting
multiple integration formula is a product rule.

Suppose that the integration region is a hyper-
rectangle, so that the integration interval [aj , bj ]
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for xj in the above integral is independent of
xj+1, . . . , xd . If Gauss quadrature is used to integrate
f with respect to xj , with abscissas xj0, xj1, . . . , xjn

and coefficients Aj0, Aj1, . . . , Ajn, then the product
rule is

∫
f ≈

n∑

i0,i1,...,id=0

A0i0A1i1 . . . Adid

× f (x0i0 , x1i1, . . . , xdid ).

This rule integrates exactly any sum of monomials
xα

1 x
β

2 . . . x
γ
n , where each α, β, . . . , γ is an integer

between zero and 2n + 1, a result which derives
directly from the corresponding result for the one-
dimensional Gauss rule.

The number of evaluations of f in the product
rule is (n + 1)d , which grows exponentially with
d. Rapid growth in the number of function eval-
uations usually limits the practical use of product
rules to around five or six dimensions. One spe-
cial case common in statistical applications is that in
which x1, . . . , xd are exchangeable. This arises when
x1, . . . , xd is an independent sample from some distri-
bution and f is a function of the probability density.
In that case only one evaluation of f is needed for
all points which are permutations of one another. The
total number of evaluations required is then

(
n+d

d

)
,

which is considerably smaller than (n + 1)d , so that
calculations for sample sizes up about 10 are man-
ageable.

Despite the above limitations, Gauss product rules
have been the basis of at least one general approach to
implementing Bayesian analysis methods, discussed
in [20] and [30].

Rules of Polynomial Degree

As with quadrature, most cubature rules are designed
to integrate a certain class of polynomials exactly.
A rule is said to be of polynomial degree r if it
integrates exactly any sum of monomials x

k1
1 . . . x

kd

d

with k1 + · · · + kd ≤ r . Although Gauss product rules
integrate certain monomials of higher order, they
do not integrate x2n+2

j exactly and are therefore of
polynomial degree 2n + 1.

By allowing rules that are not product rules, it is
usually possible to find rules which are more efficient
than the Gauss product rules in the sense of having
polynomial degree ≥ 2n + 1 yet requiring fewer than

(n + 1)d points. Methods for constructing rules of
prescribed polynomial degree are surveyed in [3]. For
a compilation of such rules see [32] and [4].

Polynomial rules of degrees five and seven on the
hyper-rectangle serve as basic integrating rules for the
popular multiple integration program ADAPT [11],
which is described further below.

Globally Adaptive Algorithms

One-dimensional adaptive programs usually consider
each subinterval in turn, subdividing each until a
specified accuracy is obtained. This straightforward
strategy is called locally adaptive because the behav-
ior of the algorithm in each local subinterval depends
only on the error estimates in that interval. How-
ever, for multiple integrals it is often unknown at
the beginning of the calculation whether the given
accuracy can be obtained in a reasonable amount of
time. A popular adaptive strategy, originally proposed
by van Dooren & de Ridder [33], always subdivides
the integration subregion with the largest error. Such
a strategy is known as globally adaptive because it
makes subdivision decisions using information about
all the current subregions. Although globally adaptive
algorithms require more memory space to maintain
the current subregion list and take more time to select
subregions for subdivision, at each stage in the cal-
culation the global estimate for

∫
f is in some sense

the best one available using the computation that has
been done so far.

The globally adaptive program ADAPT [11] and
its successor DCUHRE [1, 2] build on the work
of van Dooren & de Ridder [33]. ADAPT uses the
difference between nested pairs of polynomial rules,
of degrees seven and five, respectively, to estimate
the error in each subregion. Some of the degree
seven integrand values are also used to compute
fourth differences in directions parallel to each of
the coordinate axes. When a subregion is selected
for subdivision, it is divided in half in the direction
of largest absolute fourth difference. This clever
strategy for halving in only one direction, using
fourth differences to measure integrand irregularity,
is probably one of the main reasons for the practical
effectiveness of the algorithm. The later program
DCUHRE gives the user a choice of integration
rules, uses a more sophisticated error estimate, and is
organized to facilitate parallel integration of a vector
of related integrands.
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Lattice Methods

Lattice rules were originally called “number theo-
retic” or “quasi-random” methods [32]. The integra-
tion region is translated to the unit cube, and the
integral approximated by a multiple sum of the form

Qf = 1

n1n2 . . . nt

×
nt−1∑

jt=0

· · ·
n1−1∑

j1=0

f

(
j1

n1
z1 + · · · + jt

nt

zt

)
,

where z1, . . . , zt are carefully selected integer vec-
tors. This is the simple unweighted mean of the
integrand evaluated over a regular lattice of abscis-
sas in the unit cube. For the method to work well, the
integrand must be transformed to be periodic in the
cube so that its Fourier coefficients go to zero rapidly.

A lattice method originated by Korobov [16] and
extended by Patterson & Cranley [25] is implemented
in the NAG library∗ routines D01GCF and D01GDF.
Lattice methods are not yet in widespread use, but
there is some evidence [10, 29] that they can
outperform other available methods when the number
of dimensions is between about 10 and 20.

Monte Carlo Methods

The idea of estimating an integral by random sam-
pling is a natural one in a statistical context. In
the classical Monte Carlo method [13, 19], points
x1, . . . , xn are chosen randomly in the integration
region and the integral is estimated by

f = V

n

n∑

i=1

f (xi ),

where V is the volume of the integration region.
Convergence is guaranteed almost surely by the cen-
tral limit theorem under very weak conditions on f .
Moreover, the rate of convergence is independent of
the dimensionality. The error f − ∫

f is approxi-
mately normal with mean zero and standard deviation

σ(f )√
n

V,

where

σ 2(f ) = 1

V

∫
f 2 −

(
1

V

∫
f

)2

is the variance of f . Finally, and most impor-
tantly, a free estimate of the error is available as
σ 2(f ) may be estimated by the sample variance of
f (x1), . . . , f (xn).

The slow n−1/2 rate of convergence means that
Monte Carlo methods are usually limited to low
accuracy; say, three significant figures. However, this
accuracy can be achieved with comparable work for
any number of dimensions and for a very wide range
of integration regions. In many statistical applications
higher accuracy is not required; computational error
need only be small relative to the inherent statistical
uncertainty that enters the process of drawing infer-
ences from data.

Practical use of the Monte Carlo method depends
on techniques for reducing the σ 2(f ) variance term
in the error. Central amongst these is importance
sampling, in which x1, . . . , xn are sampled from a
distribution which is as much like f in shape as pos-
sible. This has the effect of sampling most densely
in those parts of the integration region where the
integrand is greatest. Specifically, write the inte-
gral as ∫

f (x)g(x) dx,

where g is a density function on the integra-
tion region, and f is as close to a constant
function as possible. Points x1, . . . , xn are sam-
pled from g, and the integral is approximated
as before by f . The standard deviation of f is
now

σg(f )√
n

,

where

σ 2
g (f ) =

∫
f 2g −

(∫
fg

)2

is the variance of f with respect to the density g.
Other variance reduction techniques include strati-

fied sampling and antithetic acceleration. Antithetic
acceleration involves generating pairs of identically
distributed but negatively correlated points x1

i and
x2

i . This tends to produce negatively correlated terms
in the sum; the more negative the correlation, the
lower the variance of the sum. See [5], [13], [15],
or [8] for references to variance reduction methods.
The use of Monte Carlo integration to solve Bayesian
problems is treated more fully in the article, Markov
chain Monte Carlo.



Numerical Integration 7

The NAG library subroutine D01GBF uses an
adaptive Monte Carlo algorithm to integrate over a
hyper-rectangle. The number of subregions is dou-
bled at each iteration, and in each the integral and
variance are estimated by Monte Carlo sampling.
Algorithms also exist which are adaptive in terms
of the importance sampling density. Such algorithms
refine the importance sampling density adaptively
so as to minimize σ 2 during the Monte Carlo pro-
cess [5, 21].

Conclusions

If a large number of well-behaved one-dimensional
integrands are to be integrated, and the user is willing
to do some analytic analysis to obtain efficiency, then
it is hard to go past the classical Gauss quadrature
methods. More usually, though, users will choose to
use an automatic integration program of some kind,
using computer time to save their own time and to
gain reliability.

Reliable and well-documented software for nu-
merical integration can be found by searching the
NIST GAMS online catalogue at http://gams.
nist.gov under class “h2”. See [14] for brief
reviews of much of this software. It is also worth
searching the STATLIB database for statistical func-
tions based on these routines. Simple integration
programs, suitable for modification by users, can
be found in [27]. Most major statistical and math-
ematical programming languages include numerical
integration programs, often based on the programs
found in GAMS.

In one and two dimensions there is a wealth
of reliable and effective programs. The leading
one-dimensional package currently is QUADPACK
by Piessen et al. [26]. This is available from the
NETLIB database and is cross-classified by GAMS.
It has also been incorporated into the NAG, IMSL,
and SLATEC subroutine libraries. QUADPACK pro-
vides a suite of programs designed for different types
of difficulties, such as singularities and oscillatory
integrands, and includes a decision tree to guide the
user in choosing the appropriate routine. The program
QAGS is a particularly robust general purpose inte-
gration program, as is the non-QUADPACK program
CADRE [6] which is included in the IMSL library.
In statistical applications, however, the integrands are
often smooth with a single dominant peak, so the

more efficient programs QNG and QAG, which use
higher-order Gauss, Gauss–Kronrod and Patterson
rules, may suffice.

So far there is no reliable suite of programs for
multiple integration. Up to 10 or perhaps 15 dimen-
sions, globally adaptive routines such as ADAPT
and DCUHRE can be recommended. When the num-
ber of dimensions exceeds about 20, Monte Carlo
methods are the only ones possible. Mark 20 of the
NAG library includes 10 multiple integration pro-
grams, including one which implements a Monte
Carlo method.
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Nursing

Most people will have some idea of what nursing is,
perhaps believing it is the general care of sick people,
as opposed to medical attention to their disease. In
fact, the definition of nursing has been and continues
to be a topic of much debate in the nursing profes-
sion. Florence Nightingale [6], in her work Notes
on Nursing – What It Is And What It Is Not, said, in
essence, that what nursing has to do is “. . .put the
patient in the best condition for nature to act upon
him”. A more recent and widely accepted definition
of nursing is that of Virginia Henderson [4]: “The
unique function of the nurse is to assist the individ-
ual, sick or well, in performance of those activities
contributing to health or its recovery (or to a peaceful
death) that he would perform unaided if he had the
necessary strength, will or knowledge. And to help
him gain independence as rapidly as possible.”

History of the Nursing Profession

Nursing was not suddenly invented during the
Crimean War. In the middle ages several religious
orders provided and staffed hospitals caring for the
sick and needy. The world’s first school of nursing
was established by Theodore Fliedner at Kaiserswerth
in 1833, and Florence Nightingale undertook a course
there in 1851.

In 1854, Florence Nightingale led, at the gov-
ernment’s expense, a party of nurses to Scutari to
work in the British Army hospital treating the sick
and wounded of the Crimean War. From the incep-
tion of this mission, Florence Nightingale was to be
an administrator. Woodham-Smith [7] suggests it was
not as an angel of mercy that she was asked to go
to Scutari; the consideration of overwhelming impor-
tance was the opportunity to advance the cause of
nursing. Florence Nightingale returned to England in
1856 as a national hero. The position of nursing as a
profession was now established.

In 1860, Florence Nightingale established, at St.
Thomas’s Hospital London, a school of nursing that
became a model for schools of nursing everywhere.
Since that time the nursing profession and nurse train-
ing have continued to change and develop as health
care advances. Nurses work as advanced specialists in
all clinical areas and have an increasingly important

role in the community, in general practice, and in
health education.

Nursing Research

Florence Nightingale is often regarded not only as the
founder of the nursing profession but also as the first
nurse researcher. Her research influenced health care
in general, and nursing specifically. Nightingale’s
Notes on Nursing [6] describe her initial research
activities, which focus on the importance of a healthy
environment in promoting the patient’s physical and
mental well-being. She changed the attitudes of the
military and society towards the care of the sick.

Following Nightingale’s work there was very little
further nursing research carried out until the 1950s,
when a research trend started, particularly in the US.
Through the 1950s and 1960s, a number of nurs-
ing journals started to appear; for example, Nursing
Research was first published in 1952. Through the
1960s, clinical research started to expand as spe-
cialty groups such as pediatric, obstetric, and com-
munity nursing developed standards of care. By the
1970s, nursing research was a growing activity in
the UK, and the Journal of Advanced Nursing began
publication in 1976. The teaching of research meth-
ods was introduced to the nursing curriculum in the
1970s, providing nurses with a basic understanding
of research methods.

Nursing research has always struggled for funding.
A major political victory for nursing research was the
creation of the National Center for Nursing Research,
in the US, in 1985.

The Briggs report [1] suggested the need for
nursing practice to be based on research. Subsequent
reports and nursing authorities, such as the Royal
College of Nursing, have continued to stress this
issue; however, there is still little evidence of wide-
scale adoption of this idea.

Types of Study Used in Nursing Research

Cross-sectional surveys have been commonly used
in nursing research: however, randomized controlled
trials (see Clinical Trials, Overview) have not been
used much in nursing research studies. The dom-
inant approaches to nursing research through the
1980s have been the so-called qualitative approaches,
phenomenology, ethnography, and grounded theory,
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approaches borrowed from sociology, anthropology,
and psychology (see Social Sciences). They are
thought by many nurse researchers to be a better
way of gaining an understanding of the rather sub-
jective and personal phenomena with which nursing
care is concerned. Such approaches have no place for
statistics.

The preference of these qualitative techniques
shown by nursing in the past two decades dur-
ing a time when medicine has been dominated by
the randomized controlled trial has enhanced the
divide between nursing and medicine. Each side often
chooses to disregard the knowledge of the other in the
belief that the philosophical approach of the other
side is irrelevant.

Statistical Development

Florence Nightingale is often referred to as “The
Passionate Statistician”. She strongly believed in
the importance of figures, and that the collection
of reliable data was essential to any worthwhile
determination of policy. While in Scutari, Nightingale
organized the record-keeping practices, resulting in
a systematic method for data collection. From her
data it was clear that preventable or, as she called
them, “Zymotic”, diseases were responsible for many
more deaths than were wounds. She used these data
to support her case for sanitary reforms, after which
mortality declined rapidly, from 42.7% in February
1855 to 2.2% by June 1855.

Nightingale believed in the value of publicizing
statistical findings through diagrams. In 1857, she
reported to Sidney Herbert “I have written to Dr Farr
for the diagram which is to affect thro’ the Eyes what
we may fail to convey to the brains of the public
through their word-proof ears” (quoted in Diamond
& Stone [2] from Florence Nightingale’s letter to
Sidney Herbert of August 7, 1857). Nightingale
drew on the help and statistical advice of William
Farr. The statistical tables in her reports owed
much to Farr and the diagrams were prepared under
Farr’s guidance, although the inspiration for them
lay with Florence Nightingale. She herself claimed
to have invented her “coxcombs”, which were polar
area charts, a type of pie chart. An example,
shown in Figure 1, is a reproduction of a diagram
in Nightingale [5]. It clearly shows the dramatic
reduction in mortality following the commencement
of sanitary improvements.

Nightingale was elected a Fellow of the Royal
Statistical Society in 1858, being proposed by
William Farr and seconded by William Guy, she
was among the first (if not the first) female fel-
lows of the society. In 1859, she began a campaign
for uniform hospital and surgical statistics to enable
one to ascertain the relative mortality in different
hospitals. She worked on this idea with Farr and
he got the “model forms” that Florence Nightingale
had drawn up discussed at an International Statisti-
cal Congress in 1860. The “model forms” duly went
into hospitals, and uniform statistics for hospitals
were published in the Journal of the Royal Statis-
tical Society from 1862 to 1866, by which time the
forms were considered to be out of date and based
on a classification of disease that was too rudimen-
tary.

In addition to working with Farr, Florence Nightin-
gale held the work of Quetelet in high regard. The
influence of Quetelet is discussed by Diamond &
Stone [2]. Florence Nightingale wanted to endow a
chair of Applied Statistics at Oxford University (it
would have been the first chair of statistics), but
a dispute with Francis Galton over the purpose
of the endowment led Nightingale to revoke the
legacy [2].

Use of Statistical Methods

It is perhaps surprising, given Nightingale’s strong
and passionate belief in the need for statistics, that
there has been no further development of statistics
in nursing research; indeed, the 1980s and 1990s
have seen relatively little use of any statistics in
nursing research. There have been occasional series
of articles about statistical methods in journals such
as Nursing Research in the Methodology Corner.
There have also been a few articles, similar to
those appearing in the medical literature, discussing
clinical significance versus statistical significance
and giving examples of misuse of statistical methods
in the nursing literature.

The majority of published nursing research has
used little more than elementary univariate methods.
However, the relatively extensive use of Cronbach’s
alpha for measuring reliability and of factor analysis
illustrate that nursing tends to use approaches from
psychology rather than medicine.

Nursing journals do not currently make exten-
sive use of statistics. When statistics are used,
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Figure 1 A diagram representing mortality in the hospitals at Scutari and Kulali, from October 1, 1854, to September
30, 1855. The area within the dashed circumference represents the average annual mortality in the military hospitals in and
near London, 20.9 per 1000

they are often used and presented poorly. Confi-
dence intervals are rarely reported in nursing jour-
nals.

The Future

Funk et al. [3] found that a great or moderate bar-
rier to the use of research for 68% of the nurses
in their sample was that the statistical analyses
were not understandable. The amount of statisti-
cal education that nurses receive is negligible, and
this is an issue that will need to be addressed if
the research-based practice initiative is to become
a reality (see Teaching Statistics to Medical Stu-
dents).

The emphasis on systematic reviews and meta-
analysis has started to have an impact on nurses.
Good quality systematic reviews of the literature on

nursing problems would be welcomed, but will not be
easy. The current criteria used to assess study quality
will need expansion and development if they are to
work well for nursing literature, in which random-
ized controlled trials are rare. Bayesian approaches
to meta-analysis (see Bayesian Methods) look a
promising approach, but they will need to be devel-
oped to summarize qualitative as well as quantitative
aspects of research.
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Nutritional Epidemiology

Epidemiology is the study of the etiology of illness
and related phenomena in human populations [38].
Nutritional epidemiology, a branch of epidemiol-
ogy, seeks to unfold the causal relationship between
aspects of the diet and occurrence of human illness
(see Causation). Historically, nutritional epidemiol-
ogy was concerned mainly with nutritional deficiency
diseases where a gross deficiency in a particular food
or nutrient caused an untoward condition to occur.
An early example, which took place in 1753, was the
observation that consumption of lemons and oranges
prevented the occurrence of scurvy among sailors on
British ships, and this has led to the discovery of
vitamin C deficiency as a cause of scurvy.

In recent years, the focus of nutritional epidemi-
ology has been shifted from nutritional deficiency
syndromes to the dietary determinants of chronic
diseases such as heart disease and cancer. The under-
lying premise in contemporary nutritional epidemiol-
ogy is that a person’s long-term habitual diet has an
impact on the occurrence of chronic disease. How-
ever, because the etiology of chronic diseases is
a great deal more complex than that of deficiency
syndromes, this shift in focus has indeed presented
immense challenges. Whereas the occurrence of a
deficiency syndrome typically has a single cause
(deficiency in a food or nutrient item), the risk of a
chronic disease not only can be attributed to numer-
ous causal factors, including genetic, environmental,
personal lifestyle (e.g. smoking, drinking, physical
exercise) as well as dietary, but also the factors exert
varying effects with complex interactions on dis-
ease occurrence. Moreover, a person’s diet is made
up of a myriad of dietary components, all of which
tend to be correlated with each other, and some of
which may increase the risk of disease while others
may have a protective effect. Whereas a deficiency
syndrome has a short latent period of exposure
to a single cause (the time interval between onset
of deficiency and onset of disease), many chronic
diseases have latent periods of exposure that are pro-
tracted and ill-defined. Because humans are exposed
to most dietary factors for their entire lives, there
is no clear standard for comparison. Unlike a defi-
ciency syndrome, where the exposure variable can
be categorized as “not deficient” or “deficient”, the
degree of risk for a chronic disease attributed to most

dietary factors varies on a continuum. Also, choos-
ing the most relevant time (person’s age) at which
to begin measuring diet relative to disease onset (the
reference period) is difficult and subjective because
the reference period is seldom known and may vary
not only from one disease to another but also among
persons. Additionally, diet can at any time affect the
disease process, and its effects may vary over time.
The greatest challenge of all which confronts nutri-
tional epidemiology of chronic diseases is how to
measure accurately and precisely a person’s long-
term diet. Clearly these factors make it difficult to
attribute the occurrence of a chronic disease to any
single food or nutrient item, and consequently any
observed relationship between a food or nutrient item
and chronic disease must be interpreted with care
and replicated in multiple studies. Notwithstanding,
nutritional epidemiology has made important contri-
butions to our knowledge regarding the influence of
diet on the etiology of human diseases. The intent of
this article is to present a brief overview of nutritional
epidemiology. A comprehensive and lucid treatise of
the subject is given by Willett [44]. Other general
references on nutritional epidemiology include [20]
and [25].

Types of Nutritional Epidemiologic Study

Different methods and procedures can be used
to carry out a nutritional epidemiologic study on
the dietary etiology of human disease occurrence,
and comprehensive accounts on epidemiologic study
designs are available in the literature [25, 38]. Most
of the nutritional epidemiology studies conducted
to date are observational in nature, in that the
allocation of persons to dietary exposure group is not
under the control of the investigator. Instead, disease
frequency is observed and compared between groups
of subjects with different dietary exposures. In this
section, we select a sampling of research findings
from the different types of nutritional epidemiologic
studies.

Group-based correlational studies, which correlate
the aggregate disease rate with the average dietary
intake for different groups of people, provided the
earliest clues that a person’s diet may affect the risk
of chronic disease. A geographic correlational study
compares the disease rate and average food intake of
groups of people living in diverse geographic areas
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(see Ecologic Study). As an example, Armstrong
& Doll in 1975 [3] correlated the cancer incidence
and mortality rates with the per capita consumption
of foods and nutrients from various countries. The
correlations ranged from 0.7 to 0.8 for meat and
animal fat consumption with colon cancer incidence
and mortality in men and women; for fat intake with
breast cancer incidence and mortality in women; and
for fat intake with mortality from cancer of the corpus
uteri. These remarkably high correlations stimulated
further research on intake of animal products and
cancer risk.

Other group-based correlational studies that make
use of experiments ongoing in nature are studies
of migrants, time trend, and special populations.
Migrant studies compare disease rates defined by
migration status. The disease rates of the first and sec-
ond generation migrants are compared with rates of
people in the country of origin as well as people in the
host country. Haenszel & Kurihara in 1968 [15] com-
pared the mortality from cancer and other diseases of
the first generation Japanese migrants (Issei), US born
second generation Japanese (Nisei), the Japanese in
Japan, and US whites. Table 1 summarizes the results
for selected causes of death for men. The standard-
ized mortality ratio (SMR) is the ratio of the rate of
each index group to the rate of the standard popula-
tion (Japanese in Japan) statistically adjusted to the
age distribution of the standard population. The rate
of the standard population is reexpressed as 100 [38]
(see Standardization Methods).

It can be seen that stomach cancer and CVA
mortality rates show steady progressions from those
in the parent country, where rates are high, to
those in the host country, where rates are low.
Similarly for colon cancer and heart disease, the
mortality experience of the Issei and Nisei increased
dramatically towards that of the US whites. The

Table 1 SMR comparing male mortality rates with those
of Japanese men in Japan, adapted from Haenszel et al. [15]

Cause of death Japan Issei Nisei US
whites

Stomach cancer 100 74 38 17
Colon cancer 100 374 288 489
Intracranial lesions of

vascular origin (CVA) 100 32 24 37
Arteriosclerotic heart

disease 100 226 165 481

mortality rates for all four sites are higher in the Issei
than in the Nisei, and part of this difference can be
attributed to the considerable age difference between
the two groups with the Issei being older than the
Nisei. (The SMR corrects for age differences between
the index groups and the standard population, but not
between index groups.)

Migrant studies have provided strong evidence for
the existence of environmental causes for chronic
disease by finding that disease rates of the migrant
populations diverged from those of the people in
their country of origin and approached the rates of
the people in their host country. Since the migrant
populations and the people in their country of origin
share the same genetic background, the change in
disease rates must be attributed to environmental and
lifestyle factors.

Studies of time trends can also be helpful in
determining the role of the environment in disease
etiology. For instance, mortality from stomach cancer
in the US declined by more than 30% between
1950 and 1960, and this decline is coincident with
a dramatic increase in the per capita consumption
of fresh fruits and vegetables (see Morbidity and
Mortality, Changing Patterns in the Twentieth
Century). Studies of special populations whose diet
is restricted also provide a unique opportunity to
evaluate the role of the environment and lifestyle
factors on disease etiology. For example, disease rates
may be compared between Mormons, who abstain
from caffeine intake, and a similar group of non-
Mormon individuals, to assess the role of caffeine
on disease development.

Although useful for generating diet–disease
hypotheses, group-based correlational studies have
fundamental weaknesses. The most crucial drawback
of group-based data is confounding. Exposure data
are collected at the group rather than at the individual
subject level, making confounding a virtual certainty
because the high correlations between exposure
variables at the individual subject level cannot be
disentangled. For example, in many populations
where meat intake is high, vegetable intake tends to
be low, and consequently any apparent association
between average meat consumption and disease rate
would be confounded by vegetable intake. When
comparing populations of different races (and genetic
backgrounds), as in a geographic correlation study,
confounding by different genetic predispositions
to diseases also renders the findings equivocal.
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Table 2 Relative risks for hip fracture by quintiles of calcium intake (mg/day), adapted from Lau
et al. [23] and Cooper et al. [11]

Hong Kong Britain

Calcium intake Relative risk Calcium intake Relative risk

Quintile Range Women Men Range Women Men

Q1 (low) <75 1.9 2.1 <433 1.2 6.2
Q2 75–82 1.9 1.4 433–566 1.4 5.8
Q3 83–128 1.1 1.7 567–683 1.1 3.3
Q4 129–243 1.2 1.5 684–837 1.2 6.2
Q5 (high) ≥244 1.0 1.0 ≥838 1.0 1.0

Table 3 Odds ratios for prostate cancer by quantiles of dietary fat intake, for cases diagnosed after
age 69 and their matched controls, adapted from Kolonel et al. [21]

Quantilea Total Caucasians Japanese Filipinos Hawaiians Chinese

Q1 1.0 1.0 1.0 1.0 1.0 1.0
Q2 1.1 2.0 0.6 4.0 1.2 1.1
Q3 1.5 2.3 0.8 5.8 1.3 1.6
Q4 1.7 2.6 1.2 2.8

aQuartiles for total, Caucasians, Japanese, and Filipinos, and tertiles for Hawaiians and Chinese.

The quality of the cause of death data on the
death certificates can also vary considerably among
countries (see Death Certification), and this may
render the disease rates not comparable.

The types of study described below record dietary
exposure and disease status from individual subjects,
thus avoiding many of the drawbacks inherent in
group-based data. The most widely used study design
in nutritional epidemiology is the case–control
study. With this study design, people with the disease
(cases) and comparable individuals without the
disease in question (controls) are asked about their
dietary and nondietary exposures. Nutritional factors
associated with disease occurrence are determined by
comparing the past diet of the cases with that of the
controls.

Two case–control studies were undertaken, one
in Hong Kong [23] and one in the UK [11], to
assess the effect of dietary calcium on hip frac-
ture in men and women. Dietary calcium intake was
estimated based on the frequency of consumption
of nine food items in the Hong Kong study and
six food items in the British study. A total of 400
radiologically confirmed fracture cases, 400 hospital
controls, and 400 community controls were recruited
in Hong Kong, and 300 cases were compared
with 600 community controls in the UK. A clear

protective effect of calcium intake on hip fracture
was found in all groups excepting the British women
(Table 2).

Case–control studies have largely been consis-
tent in demonstrating the adverse effect of dietary fat
for prostate cancer. One of these studies, conducted
in Hawaii, included 452 histologically confirmed
prostate cancer cases diagnosed between 1977 and
1983, and 899 age-matched (see Matching) popula-
tion controls [21]. The participants were administered
a diet history questionnaire with over 100 food items.
Table 3 shows a monotonic effect of saturated fat
on the risk of prostate cancer in older cases (those
diagnosed after age 69), and the finding is consistent
in most of the ethnic groups.

The case–control study offers many strengths in
the investigation of the dietary etiology of chronic
diseases. It is relatively inexpensive and efficient,
typically requiring several hundred study participants
and 2–4 years to complete the study; individual diet
is measured and related to the risk of disease; and
confounding can be minimized through appropriate
selection of controls, by using appropriate statisti-
cal analysis techniques, or both. The case–control
study is often the only feasible choice of study
design for rare diseases. The primary disadvantage
in all case–control studies is that the measurement
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of exposure data relies on recall. This is particularly
a problem in nutritional studies where cases must
remember their past diets before the onset of dis-
ease. The diet may also have changed as a result of
the disease process, and the current diet has been
found to influence the recall of past diet. The results
from a case–control study will be invalid if the
cases remember their past diets differently than the
controls do (recall bias of exposure), and if the
controls are not comparable with the cases (selec-
tion bias). Healthy control bias can be especially
problematic in studies of nutritional epidemiology
if only health-conscious volunteers serve as con-
trols.

Cohort studies avoid the inherent problems which
afflict the case–control study, namely recall bias and
selection bias. In this study design, diet is measured
on a large number of disease-free individuals who
are then monitored for disease occurrence. To date,
cohort studies in nutritional epidemiology have been
few in number, primarily because of their consid-
erable high cost in terms of resources and length
of follow-up. More than a decade of follow-up on
thousands or even hundreds of thousands of indi-
viduals may be required in a cohort study of diet
and chronic disease. Because a person’s diet is likely
to change with age, it is important to record dietary
intake on several occasions from each study subject
throughout the follow-up period. Repeated measure-
ments will provide more accurate information about
the average long-term exposure (see Longitudinal
Data Analysis, Overview). As noted earlier, nutri-
tional epidemiology of chronic disease is based on
the premise that long-term dietary exposure affects
disease risk.

In one large cohort study, 43 757 male health pro-
fessionals in the US were recruited to investigate the

etiology of the intake of dietary fiber on the occur-
rence of myocardial infarction. The cohort members
completed a mailed dietary questionnaire with over
100 food items; they were then followed for 6 years
for the occurrence of heart disease. Intake of dietary
fiber, particularly from cereal, was found to be statis-
tically associated with a decreased risk for myocar-
dial infarction [32]. Table 4 shows the relative risks
adjusted for relevant covariates.

Another cohort study example is the Iowa
Women’s Health Study, used to investigate the
postulation that aspects of the diet influence the
occurrence of endometrial cancer [47]. A cohort of
over 23 000 women was recruited and a questionnaire
with 127 food items was administered to each
participant. After 7 years of follow-up, dietary intake
was correlated with the incidence of endometrial
cancer. Although the findings are on the whole
equivocal, caloric intake from animal sources and
intake of processed meat appear to be associated
with a slight increase in the risk of endometrial
cancer, especially during the early years of follow-up
(Table 5).

In an intervention study or controlled trial
(see Clinical Trials, Overview), study participants
are randomly allocated to the different dietary
regimens (see Randomization). If the subjects have

Table 4 Relative risks for myocardial infarction by quin-
tile of energy-adjusted dietary fiber, adapted from Rimm
et al. [32]

Type of fiber Q1 (low) Q2 Q3 Q4 Q5

Total 1.00 1.01 0.96 0.92 0.64
Fruit 1.00 0.93 0.83 0.84 0.82
Vegetable 1.00 1.06 0.98 1.00 0.84
Cereal 1.00 0.98 0.90 0.88 0.73

Table 5 Relative risks for endometrial cancer by tertile of intake for selected dietary factors, adapted
from Zheng et al. [47]

≤4 years after cohort entry ≥5 years after cohort entry

T1 (low) T2 T3 T1 (low) T2 T3

Caloric intake from animal foods 1.0 1.3 1.2 1.0 0.9 0.9
Total meat 1.0 1.0 1.3 1.0 1.0 0.9
Red meat 1.0 0.9 1.2 1.0 0.9 0.9
Seafood 1.0 1.4 1.0 1.0 1.4 2.0
Processed meat 1.0 1.4 1.6 1.0 1.0 1.3
Dairy products 1.0 1.2 1.2 1.0 0.8 1.0
Eggs 1.0 1.2 1.4 1.0 1.4 1.3
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the disease, the dietary component is tested as a
therapeutic agent, and if the subjects are disease-free,
the dietary component is tested as a chemopreventive
agent. The controlled trial has one crucial advantage
over the cohort study described above, and that
is randomization. Because random allocation of
subjects to different exposure groups tends to reduce
confounding, the controlled trial is able to establish
with greater confidence whether a dietary component
is a causal factor. However, practical limitations
concerning compliance, dosage, latency (see Latent
Period), and cost seriously diminish the usefulness
of intervention studies in nutritional epidemiology.
Most free-living individuals will not strictly follow a
dietary regimen, and the persons in the control group
may adopt a diet similar to the test diet, particularly
if it is perceived to be beneficial (a phenomenon
known as control drift). These compliance issues
will obscure the differences between the treatment
groups, making it more difficult to ascertain a true
effect of the diet on disease risk. An example of
“control drift” was found in the Multiple Risk Factor
Intervention Trial (MRFIT) which randomly allocated
12 866 men at high risk for coronary heart disease
to either a special intervention program or usual
care [27]. The intervention program was a three-
pronged intervention aimed at smoking cessation,
blood pressure, and serum cholesterol reduction
through lifestyle and dietary modification. Although
serum cholesterol dropped from 254 to 236 mg/dl
over 72 months in the intervention group, a similar
reduction occurred in the nonintervention group: from
254 to 240 mg/dl.

A randomized, double blind, placebo controlled
trial of 29 133 male smokers, the Alpha-Tocopherol,
Beta-Carotene Cancer Prevention Study, was under-
taken to determine whether supplementation of alpha-
tocopherol and beta-carotene would prevent lung
cancer [7]. The study failed to confirm results from
observational studies that had found a protective
effect for these dietary components. Lack of precise
dosage and latency information have been postulated
as factors in the results.

Community intervention trials are experimental
studies carried out at the population level; they are
generally concerned with the effectiveness of an
education or incentive program on behavior. For
example, a number of participating communities may
be randomly allocated either to receive information
about the benefits of low-fat diets (test) or to receive

no such information (control). Cross-sectional sur-
veys, based typically on a sample of subjects from
each community, are conducted before and after
the information campaign to determine if there is a
greater change in diet in the test communities than in
the control communities. “Contamination” between
groups, where the control communities also receive
the test information, can be a problem in community
trials.

Variation in Dietary Intake

As noted previously, the underlying premise of nutri-
tional epidemiology is that a person’s true “average”
diet affects the occurrence of chronic diseases. It
would be an easy task to ascertain a person’s true
diet provided that a person eats the same foods and
the same quantity of each food day in and day out
(no day-to-day variation), and that a person’s diet
and its nutrient content can be measured perfectly
(no measurement error). In reality, a person’s diet
varies not only from day to day, but food prefer-
ence and quantity consumed may be altered as one
ages and as circumstances change. In contrast to sim-
ple exposures such as smoking, a person’s diet is a
composite exposure consisting of many food and bev-
erage items consumed in varying amounts, and each
food and beverage item contains numerous macro
and micronutrients. It is unlikely that an instrument
ever will ever be developed which will ascertain
dietary intake exactly. Indeed, accurate assessment
of a person’s long-term average diet is a major con-
cern of nutritional epidemiologic research today, and
methods and procedures for estimating the long-term
diet are still evolving. In this section we delineate
the concepts and definitions of variation in dietary
intakes. Measurement error will be discussed in the
next section.

The day-to-day variation in a person’s food and
nutrient intake is assumed to be random, that is,
a person’s daily diet fluctuates randomly about his
or her “average” diet. This assumption implies that
the average dietary intake over a number of ran-
domly selected days will approach a person’s true
habitual intake, and that any deviation of intake
on a given day from the true average diet is a
reflection of imprecision (sampling error) rather than
bias.

Some dietary components have been found to be
more variable than others. Macronutrients, such as
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fat which is present in most foods, tend to show
less day-to-day variation than substances that are
present in only a few foods or whose amount is
very high in a particular food. For instance, eat-
ing a mango can drastically increase the intake of
beta-carotene for that day. The day-to-day dietary
intake variation for a given person is referred to as
within-person variance. And the variation in dietary
intake among different persons is called between-
person variance. To estimate within-person vari-
ance, more than one measurement per person is
required.

It might be useful to depict the within-person
and between-person components of dietary variation
by a statistical model. The random effects anal-
ysis of variance model, also called the variance
components model, is given as:

Yij = µ + αiXi + εij ,

where Yij is the nutrient or food of interest for the
ith person and the j th day of measurement, µ is the
mean intake across persons and days, Xi is a dummy
variable that identifies person i, αi represents the
random effect due to person i, and εij represents the
random day-to-day variability, or the within-person
variability.

The variance components model assumes that
these conditions hold: the variance of εij , designated
by σ 2

ε , is constant across days and persons, and the
covariance between εij and εi ′j is zero when i �= i ′.
The variance of αi , designated by σ 2

α , is constant
across persons, and the covariance between αi and

αi ′ is zero when i �= i ′. Models of dietary components
often violate the first variance homogeneity assump-
tion because persons with higher intake tend to have
a larger within-person variance (i.e. the variance of
εij is proportional to Yij ). The assumption is usually
upheld after a suitable transformation (usually log)
is applied to the nutrient data Yij .

The total variance (σ 2
y ) is the sum of the between-

person variance (σ 2
α ) and the within-person variance

(σ 2
ε ). (With m replicated observations per person,

total variability is σ 2
α + σ 2

ε /m.) The ratio of these
quantities (σ 2

ε /σ 2
α ) gives an indication of the rela-

tive importance of the within-person to the between-
person variance components. A ratio close to zero
indicates that most of the dietary intake variability
occurs between persons, in which case the intake
level for an individual would be fairly constant
from day-to-day. A ratio around one indicates an
equal split between the two components, and ratios
greater than one indicate that the within-person vari-
ance exceeds between-person variance. Another use-
ful statistic based on the variance components is the
“intraclass correlation coefficient” (see Correlation),
which will be described later under validation stud-
ies.

Numerous investigators have estimated the within-
person and between-person variance components for
the daily intake of common nutrients based on
repeated food records [5, 16, 24, 28, 39]. Table 6
presents a summary of the results in the form of
ratios. Although between-person variation is substan-
tial, within-person variability is the larger variance

Table 6 Ratio of within-person to between-person variance components, adapted
from [5, 16, 24, 28], and [39]

Number of
Nutrient studies Median ratio Range of ratios

Energy (kcal) 12 1.4 0.8-2.2
Protein 10 1.4 1.2–3.9
Carbohydrate 9 1.2 0.8–2.0
Fat 9 1.3 0.9–2.8
Percent of calories from fat 8 2.4 1.3–4.8
Saturated fat 8 1.5 1.0–2.8
Cholesterol 11 4.4 1.8–6.8
Vitamin C 9 2.3 1.6–4.0
Vitamin A 7 4.6 1.6–>100
Iron 8 2.4 1.5–3.6
Calcium 10 1.6 1.0–2.6
Zinc 6 2.4 1.7–11.7
Dietary fiber 3 1.7 1.1–2.2
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component, accounting for 55% (carbohydrate) to
82% (vitamin A) of the total variation.

Measurement Error

Error in measuring the exposure variable is a common
concern in all etiologic research. Measurement error
may be minimal in simple exposures such as smoking
history, but it may be quite consequential in com-
plex exposures such as long-term dietary cholesterol
intake. Measurement error occurs when the true
exposure value in the ith person, Xi , is not directly
observable, but instead a surrogate value, Zi , is mea-
sured. Measurement error, defined as (Zi − Xi), may
be random (unbiased) or systematic (biased). The
error is random if the expected (long-range average)
value of Zi is Xi , and is systematic if the expected
value of Zi is not Xi . Random measurement error
will occur if a person is just as likely to overreport
as underreport, by the same amount, the consumption
of a food item. Systematic error will occur if a per-
son is more likely to underreport than overreport, or
vice versa, the consumption of an item.

Systematic measurement error of the exposure
variable may or may not bias the exposure–disease
association. If measurement error is constant for
all persons (e.g. all persons underreport the use
of cooking oil by the same amount), the expo-
sure–disease association will not be biased, and the
power will not be diminished. However, systematic
measurement error is seldom, if ever, the same for all
individuals.

Although systematic measurement error may not
be constant for all persons, the overall average error
in persons with disease (cases) may be the same
as that in persons without disease (controls). This
is called nondifferential measurement error. Non-
differential error will not bias the exposure–disease
association, but it will reduce the statistical power.
Differential measurement error occurs when the
overall average error in the cases is not the same
as that in the controls (e.g. the cases on average
underestimated the use of cooking oil more so than
the controls). Systematic errors which are differen-
tial between cases and controls will lead to invalid
estimates of the exposure–disease association, and
the extent and direction of the bias are difficult to
predict.

The consequence of random measurement error
in the exposure variable will depend on the specific

situation. If the exposure variable is a single contin-
uous or dichotomous variable, random measurement
error will attenuate the exposure–disease association,
that is, bias towards the null the correlation coeffi-
cient, regression coefficient or relative risk. Random
measurement error also tends to inflate the standard
deviation for the association, thereby reducing power
of statistical tests. If the exposure variable is polyto-
mous (with more than two exposure levels), the odds
ratio or relative risk for the most extreme exposure
level will be biased toward the null value, while those
for the intermediate levels can be biased away from
the null [6, 13, 26]. When confounding variables are
measured with random error, the effect of the expo-
sure variable on disease risk may be biased away
from the null, even if the exposure variable were mea-
sured without error [22]. Also random measurement
error in the exposure variable can lead to incomplete
adjustment of confounding, resulting in residual con-
founding in the adjusted exposure–disease associa-
tion estimates [2, 14].

It is a useful practice to estimate the extent of
measurement error in the exposure variables so that
more reliable exposure–disease associations can be
ascertained by taking into account these errors. Cor-
rection of measurement error may help to clarify
whether an observed null exposure–disease associ-
ation is real or attenuated. A reproducibility study
with repeated measurements of the exposure variables
can be deployed to estimate random exposure mea-
surement error (see Reliability Study). To evaluate
systematic measurement error, a validation study of
the dietary instrument against a “gold standard”, or
at least a more superior instrument, is required.

The simplest approach to reduce random measure-
ment error in the exposure variable is to use the
average value obtained from repeated measurements
of the exposure, as an average based on replicated
values has less random error than a single measured
value. For example, study subjects are asked to keep
food records on several occasions. This approach may
be feasible in a small etiologic study but is likely to
be prohibitive in a large study.

An alternative strategy to minimize the effect of
exposure measurement error on the exposure–disease
association is to estimate the association correct-
ing statistically, for the measurement error in the
exposure variable. The general approach is to quanti-
tate the statistical relationship between the measured
value, Zi , and the true value, Xi , of the exposure
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variable obtained from a “calibration” study and to
use this relationship in the correction of measurement
error (see Measurement Error in Epidemiologic
Studies). The “calibration” study is either a repro-
ducibility or validation substudy based on a sample of
subjects taken from the main etiologic study. Statisti-
cal methods pertaining to the correction of exposure
measurement error abound in the literature, and they
are still evolving. Because of the broad nature of
these methods, which encompass different statistical
models and assumptions and different types of mea-
surement error, the account given below is intended
only to provide a brief and incomplete sketch of the
topic, with a sampling of references for the reader to
turn to for more information.

The basic concept underlying the measurement
error correction methods can be depicted by a
simplified model. The expected value of X, given the
observed Z, is substituted for every study participant
in the main etiologic study, based on the calibration
substudy information. E(X|Z) is then substituted for
Z in the disease etiology model in the main study
to obtain an estimate of the true exposure–disease
association. A critical assumption of this model is
that the relationship between X and Z in the main
study is the same as that in the calibration substudy
sample. Wacholder et al. [41] warn that the value
from the “gold standard” in the calibration study
is almost always measured with error, albeit with
less error than the measurements used in the main
study. They show that correction to such an “alloyed
gold standard” only partially eliminates the bias when
the measurement errors between the two methods
are moderately to strongly positively correlated. But
when the measurement errors are either inversely cor-
related, uncorrelated, or weakly positively correlated,
the corrected exposure–disease association estimate
will tend to be overcorrected (anticonservative). It is
clear that care needs to be exercised in the application
of these statistical correction techniques.

The two examples shown below illustrate the
effect of exposure measurement errors on the expo-
sure–disease association and the role of the statistical
correction method. Both the examples assume that
results from a calibration substudy are available, that
the relationship between X and Z in the calibration
substudy can be extrapolated to the main study, and
that the exposure measurement error is nondifferen-
tial, that is, it does not depend on disease status.

Example 1

This example illustrates a statistical technique for cor-
recting systematic and random measurement errors in
a dichotomous exposure variable [12]. Results from
a validation study are required. Table 7 shows the
frequencies for the association between a “true” expo-
sure (X) and disease status.

The relationship between the true exposure (X)
and the observed exposure (Z) from the calibration
substudy is given in Table 8. Even with a moder-
ately high sensitivity of 0.60 and specificity of 0.70,
the exposure–disease associations are severely atten-
uated. As shown in Table 9, the true odds ratio of
5.0 becomes 1.6 and the true relative risk of 2.3
becomes 1.2.

The odds ratio or relative risk estimates can be
corrected for measurement error when sensitivity (ξ )
and specificity (ψ) estimates are available from a
validation substudy, using the identities in Table 10:

In our example,

atrue = 400(0.70) − 190

0.6 + 0.7 − 1
= 300,

btrue = 400(0.6) − 210

0.6 + 0.7 − 1
= 100,

Table 7 Association between true exposure (X) and dis-
ease status

True exposure

Disease status Yes No Total
Yes 300 100 400
No 150 250 400

Total 450 350 800

Case–control
study: odds ratio = (300 × 250)/(150 × 100) = 5.00

Cohort study: relative risk = (300/450)/(100/350) = 2.33

Table 8 Relationship between true exposure (X) and
observed exposure (Z)

True exposure

Observed exposure Yes No Total

Yes 60 30 90
No 40 70 110

Total 100 100 200

Sensitivity = ξ = 60/(60 + 40) = 0.60.
Specificity = ψ = 70/(30 + 70) = 0.70.
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Table 9 Association between observed exposure (Z) and
disease status

Observed exposure

Disease status Yes No Total

Yes 210 190 400
No 165 235 400

Total 375 425 800

Case–control
study: odds ratio = (210 × 235)/(165 × 190) = 1.57

Cohort study: relative risk = (210/375)/(190/425) = 1.25

Table 10 Correction identities

Exposure

Disease Yes No

Yes a b nD

No c d nND

atrue = nD ψ − bobs

ξ + ψ − 1
, btrue = nD ξ − aobs

ξ + ψ − 1

ctrue = nND ψ − dobs

ξ + ψ − 1
, dtrue = nND ξ − cobs

ξ + ψ − 1

ctrue = 400(0.70) − 235

0.6 + 0.7 − 1
= 150,

dtrue = 400(0.6) − 165

0.6 + 0.7 − 1
= 250.

This technique can be generalized to correct for
differential measurement error if sensitivity and
specificity estimates are available separately for cases
and controls. Note the standard error for the
corrected association will be larger than that for
the uncorrected value to account for the sampling
error in the estimation of sensitivity and specificity.
A corrected standard error is not available in the
literature. Rarely are epidemiologic studies focused
on one dichotomous exposure variable without other
covariates.

Example 2

This example illustrates that random measurement
error in two dietary exposures will tend to bias their
correlation towards zero. If information is available
from a reproducibility study for the two measure-
ments W and U , and no systematic error is present,

then the following variance components model hold,

Wij = µW + αiXi + εij ,

Uij = µU + viXi + ζij ,

so that the overall variances are varW = s2
b + s2

w/n

and varU = v2
b + v2

w/m. All errors are assumed to be
uncorrelated. The estimate of the “true” correlation
can be computed as

rtrue = robs

[(
1 + s2

w

(s2
bn)

) (
1 + v2

w

(v2
bm)

)]1/2

where robs is the observed correlation between Wobs

and Uobs, s2
w is the within-person variability of W

from a reproducibility study, s2
b is the between-person

variability of W from a reproducibility study, n is
the number of replicated values of W from a repro-
ducibility study, v2

w is the within-person variability
of U from a reproducibility study, v2

b is the between-
person variability of U from a reproducibility study,
and m is the number of replicated values of U from
a reproducibility study.

The proof is given below:

robs = cov(Wobs, Uobs)

[var(W)var(U)]1/2

= cov(µW + aiXi + εij , µU + viXi + ζij )

[(s2
b + s2

w/n)(v2
b + v2

w/m)]1/2

= cov(µW , µU)

[s2
bv2

b(1 + s2
w/(ns2

b ))(1 + v2
w/(mv2

b))]
1/2

= cov(µW , µU)

(s2
bv2

b)
1/2

× 1

[(1 + s2
w/(ns2

b ))(1 + v2
w/(mv2

b))]
1/2

= rtrue
1

[(1 + s2
w/(ns2

b ))(1 + v2
w/(mv2

b))]
1/2

.

When only one variable U is measured with error, the
formula relating the true and observed correlations
becomes

rtrue = robs

(
1 + v2

w

(v2
bm)

)1/2

.

Similarly, if only random error is present in the
exposure variable, the slope in a linear regression



10 Nutritional Epidemiology

can be corrected as

btrue = bobs

(
1 + v2

w

(mv2
b)

)1/2

.

As an example suppose a reproducibility study
includes 14 food records from which fat and vitamin
E intake were computed. Assume the within to
between person variance ratios of 1.5 for fat and 4.0
for vitamin E. In a large epidemiologic study, the
correlation between these two nutrients was found to
be 0.55. An estimate of the correlation corrected for
measurement error is

0.55 ×
[(

1 + 1.5

14

) (
1 + 4.0

14

)]1/2

= 0.66.

Again, the standard deviation for the corrected cor-
relation coefficient or regression coefficient must
account for the variability in the estimation of s2

b ,
s2

w, v2
b, and v2

w. Rosner et al. [34] derived a stan-
dard deviation for the corrected correlation based on
the delta method. Readers are referred to Beaton
et al. [5] for a more general formula where the mea-
surement errors cannot be assumed uncorrelated, and
to Kupper [22] for the effect on partial correlations
when a confounder is measured with error.

Statistical principles and procedures for the
correction of exposure measurement errors in relative
risk and odds ratio estimates under more complex
models and assumptions are expounded in the
following references: [1, 2, 4, 31, 33, 35–37], and
[43]. These methods address multiple continuous
or categorical exposure variables, confounding
variables, both systematic and random measurement
errors, and other situations often encountered in
nutritional epidemiologic research.

Dietary Assessment Methods

As noted earlier, the day-to-day variation and the
measurement errors inherent in ascertaining a per-
son’s long-term diet constitute the major challenge
in modern day nutritional epidemiology. Continuing
research efforts are still being devoted to developing
better methods for measuring a person’s “average”
diet. All the instruments used for assessing dietary
intake rely on information supplied directly by the
study participants, usually in the form of a question-
naire. Selection of a dietary assessment instrument for

a given nutritional epidemiologic study is motivated
by the intended use of the dietary data, and consid-
erations include whether the short-term or long-term
“average” diet is relevant, what dietary components
are most germane, and whether absolute intake or rel-
ative intake (i.e. the ranking of individuals by intake)
is desired (see Nutritional Exposure Measures).

The most commonly used tools for dietary assess-
ment are food records, 24-hour recalls, and food
frequency questionnaires. Food records and 24-hour
recalls, methods that assess recent diet, are generally
not feasible for use in large-scale epidemiology stud-
ies. Both methods provide information on the total
diet (daily calories) and can give information con-
cerning patterns of food consumption.

Food records are arguably the most accurate
method for assessing dietary intake. Participants are
required to record in a diary all foods at the time
they are eaten, as well as ingredients to all recipes.
Weighing foods before eating and any leftovers after-
ward is a common method for evaluating the amount
of food consumed. The record-keeping typically cov-
ers 3–7 days. Clearly, this technique puts a heavy
demand on the participants and is suitable only for lit-
erate and motivated volunteers. Another disadvantage
with food records is that the very act of recording of
foods consumed can change dietary behavior, either
by avoiding foods that are considered undesirable
or by simplifying the diet to facilitate the transcrip-
tion. However, food diaries are often the assessment
method of choice when high accuracy in the measure-
ment of diet is needed, as for example in validation
studies (described later).

In the 24-hour recall method, a trained interviewer
elicits information about the foods consumed and
their amounts, during the past day. This technique
is rapid, typically taking 10–20 minutes to complete,
and is not very burdensome to the study participants.
The quality of the 24-hour recall is directly related
to the skill of the interviewer, who uses structured
probes to facilitate an individual’s memory, but who
must be careful not to influence the responses. Inter-
views should be unannounced to avoid having the
persons change their diets for ease of recall. Tele-
phone administration of 24-hour recalls is feasible,
although the estimation of amounts is more difficult
(see Interviewing Techniques).

The crucial drawback of food records and 24-hour
recalls is that the large within-person variability
in most dietary components causes such short-term
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dietary information to be highly imprecise, deviat-
ing substantially from a person’s usual or average
diet. We illustrate this with the variance components
model. Person k has true mean intake of µ + αk ,
but with a single record or recall the measured value
would be µ + αk + εkj with variance σ 2

ε . Averaging
data across multiple records improves the estimation
of the person’s true average diet; with m replicated
days of collection, person k’s measured value would
be µ + αk + ∑

j (εkj )/m with variance σ 2
ε /m. It can

be seen that the within-person variation becomes neg-
ligible as m increases. The number of replicated days
required to characterize a person’s “true” long-term
average diet with high precision has been estimated
from numerous dietary variability studies. Briefly, the
estimates range from 4 days to 15 days for energy
intake, 6 to 14 for fat intake, 6 to 23 days for vita-
min C intake, and 47 to 105 days for vitamin A
intake. Adjustment for calories (described later) tends
to decrease the number of days slightly. Because
many different methods were used to estimate the
required number of replicated measurements, inter-
ested readers are directed to the following selected
references: [5, 16, 24, 28], and [39].

The dietary assessment method best suited for
use in large-scale nutritional epidemiologic studies is
the food frequency questionnaire (FFQ), also referred
to as the diet history method. With the FFQ tech-
nique, the frequency (and sometimes amount) of
consumption of a list of commonly eaten foods is
obtained. The list may consist of only a few highly
selected food items, or as many as 100–200 food
items, depending on the etiologic hypothesis being
tested. The questions may be open ended, where the
respondent gives the frequency of consumption for
each food item as times per day, week, month or
year, or they may be close ended where several fre-
quency categories are listed. Seasonal food items are
incorporated by asking for their intake during the
season they are available. Many of these question-
naires have “write-in” options where more detail is
obtained about specific foods or where participants
can add food items important to their diets that are not
covered by the list. If the amount consumed is also
estimated, typically by incorporating usual portion
size or serving size of each food item, the question-
naire is then referred to as “quantitative”. The serving
sizes of foods with natural units such as eggs are rel-
atively easy to assess. For other foods, aids such as

household measures, food models, or photographs are
often used to facilitate estimation.

The FFQ method is flexible in that it can be used
for short-term or long-term dietary recall, and for
estimating a partial or comprehensive diet; it can be
administered by an interviewer or self-administered.
When the long-term average diet is desired, as is the
case with most nutritional epidemiologic research, it
is important to inquire about a person’s diet covering
the relevant time frame or reference period. In a
case–control study, the case is asked about his or
her “usual” diet before the onset of symptoms, and
the control is typically asked about last year’s diet,
provided there has not been a recent change in the
diet. In a cohort study, it is important to administer
the FFQ more than once to increase the precision of
the estimate of a person’s average diet.

A comprehensive diet (or total caloric intake) is
sometimes required as overnutrition or undernutrition
may have a direct effect on disease risk. Also,
measurement of dietary components relative to the
total diet may be of interest (see caloric adjustment
below).

A drawback of the FFQ is that its list format makes
it “population sensitive”. A questionnaire that is well
suited to one population (e.g. Caucasians) may not
include the necessary items to cover adequately the
diet in another group (e.g. Japanese). It is crucial to
ensure that a FFQ covers all the commonly consumed
food items in the population. The FFQ interview
can be lengthy, typically requiring between 1 and 2
hours to complete, and this may adversely affect the
response rate. Because the FFQ inquires only about
consumption of selected foods, it measures relative
rather than absolute dietary intake. Administration
of different FFQs to the same person is likely to
produce different absolute values on intakes, such
as grams of fat consumed per day. However, the
dietary intakes of a group of persons as assessed
by the two FFQs should show comparable rankings.
Measurement of relative intake is generally adequate
for etiologic research because comparison between
cases and controls is of central interest.

Dietary Components

Diet consists of many substances, such as nutri-
ents, additives, contaminants, and other unknown
compounds. Information collected on a limited set
of relevant foods may be adequate when the dietary
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component of interest is concentrated in those foods.
In most studies on nutritional etiology of disease,
however, a wide variety of dietary components
are of interest, such as intake of total calories;
macronutrients, including fat, protein, and carbohy-
drate; micronutrients, including vitamin A, vitamin
E, and iron; and intake of particular foods or groups
of food, such as red meat or fruits.

In many of the early studies, information on a
brief list of foods was collected, and analysis was
focused on food intake. More recently, questionnaires
on comprehensive diet were introduced, and the
emphasis was on nutrient rather than food intake.
There is now some realization that both nutrients
and foods are important. A nutrient may react in the
same way biologically regardless of its food source,
in which case the nutrient intake is relevant. Also,
nutrient analyses allow comparison across studies
from populations with different food intakes. An
example where food intake may be the relevant
exposure is the recent interest in the influence of soy
product consumption on the risk of certain cancers.
Analyses often incorporate both nutrients and food
sources. For instance, fat from meat sources and
fat from dairy products can be studied as separate
exposures. Because food choices are correlated, it
is desirable to study food patterns and disease risk.
Analysis of food patterns with techniques such as
factor analysis has been attempted but is very
preliminary.

Use of dietary supplements can substantially alter
a person’s dietary profile, and information on supple-
ment use should be collected. However, the nutrient
data should be analyzed separately from food alone
and from foods and supplements, as it is not known if
a nutrient from a food and from a supplement behave
the same way biologically.

Computation of Nutrients

Computation of nutrients requires information on
the nutrient composition of the food. Information
generally comes from published nutrient composition
tables, but may be supplemented by food analysis.
National nutrient composition data are available from
many countries; the US Department of Agriculture
(USDA) publishes information about the nutritional
content of foods in the US. Investigators need to
use food composition data from food sources similar
to those under study whenever possible. Nutrient

content can vary dramatically by locale. For example,
the carotene content of plants is affected by soil
type, and the iodine content of fish is affected by
seawater content. The nutrient composition data in
national tables usually represents an average value
from analyses of that food from different sources
and locales. The tables generally have information
on hundreds of nutrients, given as units, such as
grams and milligrams, per 100 grams of food. The
nutrient composition data have varying degrees of
accuracy. Macronutrients such as protein and fat
content tend to vary less between food samples than
micronutrients. Some nutrients, like selenium, are
so variable between samples that usefulness of the
nutrient composition data is questionable.

The algorithm for nutrient computation is to
compute, for each food in the recall or FFQ, the daily
grams of consumption. If portion size is asked, each
serving size needs to be assigned a weight in grams.
Otherwise, weight in grams should be assigned to
a standard serving size. Daily grams are computed
for each food as frequency of intake per day times
the gram weight of that food. These quantities
are compared against a food composition table,
and daily nutrients from each food are computed
as daily grams of consumption times the nutrient
content of that food per 100 grams, multiplied by
100. These quantities are summed across foods for
each person to obtain nutrients per day. Note that
each food on the dietary assessment instrument
must be associated with a food in the composition
table. This assignment is very labor intensive for
food records and 24-hour recalls and requires a
person knowledgeable about nutrition, such as a
dietitian. A questionnaire specific food composition
table is required for FFQs where several foods are
grouped into a single question. For example, an
item for beef may include steak and roasts. The
corresponding item in the food composition table will
be a weighted average of nutrient composition data
for each beef item. Complex questionnaires generally
require initial preparation before comparison with
food composition data, such as adjustment for oils
added during cooking and fats eaten on meats.

Reproducibility and Validity

With food frequency questionnaires (FFQ), volun-
teers are asked to estimate their own usual diets.
In the parlance of the variance components model,
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a participant is being asked to recall the true aver-
age intake µ + αk , thereby “eliminating” the within-
person day-to-day variability. It is of course essential
to gauge how well the FFQ measures true average
diet. Desirable qualities for a FFQ are reproducibility
and validity.

A reproducible, or reliable, instrument will give
consistent answers on repeated administrations. To
study reliability, a FFQ is given to the same person
at two or more points in time and their responses are
compared. The time period between administrations
cannot be too short so that participants remember
what they reported earlier. It also cannot be too
long as an intervening dietary change can affect
responses. Therefore, a period of several months
is typical. Correlations between multiple adminis-
trations of questionnaires have ranged from 0.5 to
0.7; these correlations compared favorably with the
reproducibility for many biological measures, such as
blood pressure, over similar time intervals.

A valid instrument measures what it is intended to
measure. A valid instrument is reproducible, although
the reverse is not necessarily true. To verify valid-
ity of an instrument, measurements are compared
against accurate measurements from a “gold stan-
dard”. Because no perfect gold standard exists for
diet, FFQs are typically compared against supe-
rior dietary measurements, mostly commonly against
repeated food records, Burke’s dietary history, or
repeated 24-hour recalls. Biological markers are also
used. Generally, a random sample of subjects from
the population of interest is asked to give informa-
tion on their diets via multiple records or recalls.
These records or recalls need to span different days
of the week and different seasons for the average
across measurements to match closely the person’s
true average diet. Timing of the administration of
the FFQ is problematic. Administration prior to the
recalls and records prevents the more detailed record
keeping from altering the questionnaire responses,
that is, a learning effect. However, the reference peri-
ods will be different, in that the questionnaire will ask
about the year prior to the period of detailed dietary
information. Administration several months after the
last record or recall has the benefit that the reference
periods will be similar. As the participants cannot be
told at the beginning that a subsequent questionnaire
will be requested, drop out can be a problem; the
records or recalls of persons unwilling to do the sub-
sequent questionnaire will be unusable. Also, fatigue

may detrimentally affect the quality of responses to
the FFQ. It is crucial that the same food composition
table be used to compute the nutrient intakes from
both dietary methods so that the difference between
them cannot be attributed to differences in the nutrient
computation methods.

Ideally, correlation between the test method (FFQ)
and the gold standard should only reflect the extent
to which the FFQ measures diet accurately. How-
ever, the food record, the 24-hour recall, and the
FFQ methods all require the participants to record
their diets, which may induce spurious correlations:
a person who is a poor recorder of diet will tend to
report low intake values on all instruments, regard-
less of true intake. In this regard, use of biomarkers as
the gold standard in validation studies seems appeal-
ing, as the measurement procedure is completely
unrelated to recording of the diet. However, there
are serious limitations to their use, as few biomark-
ers exist and those that do, such as doubly-labeled
water and 24-hour urine nitrogen, only measure cur-
rent nutritional status, not “usual” status. In addition,
biomarkers are not only inordinately expensive, but
they can only validate one nutrient at a time, and
are dependent on a person’s metabolism as well as
dietary intake.

Analysis of Validation Studies

Measurements of validity need to be adjusted or strat-
ified (see Stratification) for variables that will be
controlled for in the final epidemiologic analysis.
For instance, validation should be performed sepa-
rately for different gender, age, ethnic, and education
groups if the questionnaire is intended for use in these
groups. Inclusion of groups with diverse diets in the
validation study will increase between-person varia-
tion which will inflate the correlation. The between-
person variance will be reduced through stratification
or adjustment in the epidemiologic analysis, and
therefore the adjustment should be performed in the
validation study also. For instance, without adjust-
ment for sex, a FFQ that poorly assesses calories
could yield a high correlation with a “gold standard”,
simply because it is able to distinguish the substantial
difference in caloric intake between men and women.

Several statistical methods can be used to com-
pare the performance of a dietary questionnaire with
that of a “gold standard”. The choice of statistical
method will depend on the intended use of the
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validation study. Means and standard deviations can
be presented for both methods, and a paired t test
used to compare the means. For most etiologic stud-
ies, it may be sufficient for a questionnaire simply
to rank people correctly, in which case a systematic
overestimation or underestimation in nutrient values
will not bias the exposure–disease association. A
single number comparing the two dietary method-
ologies for each nutrient is desirable as a moderate
number of nutrients are generally compared in a
validation study. The most frequently used agree-
ment measure is Pearson’s correlation coefficient r

on log transformed nutrient data, which measures
the linear relation between the two measurements.
A disadvantage to this statistic is that it depends
not only on the agreement between the methods,
but also on between-person variability in the popula-
tion. Use of r , however, allows for easy comparison
with past studies. The intraclass correlation coeffi-
cient, defined as r I = (σ 2

α − σ 2
ε )/(σ 2

α + σ 2
ε ) from the

variance components model, measures agreement,
rather than correlation, because it accounts for the
between-person variability. The r I can be thought
of as the proportion of the total variation accounted
for by between-person variability. Often in a vali-
dation study, an investigator would like to know if
the questionnaire performs equally well for different
groups. The correlation coefficients can be statisti-
cally compared between subgroups by converting the
correlations to Fisher z statistics (see Correlation),
which approximately have a normal distribution,
and comparing the z′ values by a chi-square statis-
tic [40].

The kappa statistic is a measure of agree-
ment for nominal variables that adjusts for chance
agreement. To use kappa in validation studies of

dietary questionnaires, the nutrients from each of the
two measurements must be categorized. A disadvan-
tage to this statistic is that the agreement depends on
the categorization, and it must be decided whether
to use different cutpoints for the food records and
the questionnaire, in which case the kappa measures
correlation, or whether to use the same cutpoints,
in which case agreement is measured. A weighted
kappa is a generalization where cells other than those
representing complete agreement are counted as par-
tial agreements; with specific weights, the weighted
kappa is related to the intraclass correlation coef-
ficient. Regression coefficients cannot be used to
measure the strength of the relationship, since the
slope is not scale-free but depends on the standard
deviations of the measurements.

Numerous studies have been conducted to validate
the FFQ against repeated food records or 24-hour
recalls, or Burke’s diet history [25]. A summary of
the results is presented in Table 11. It can be seen
that the correlation varies substantially between stud-
ies, attributed to differences in the period between
assessments, the number of repeated food records or
recalls, and the populations studied. Most correla-
tions appear to be in the range of 0.35 to 0.60. In
one of the most detailed validation studies, women
completed a FFQ at the beginning of the study, col-
lected four 1-week food records at 3-month intervals,
and then completed another FFQ [44]. In this study,
the correlations ranged from 0.28 for iron to 0.61 for
carbohydrate. Adjustment for caloric intake tended
to improve the correlations. Questionnaires can be
validated for food intake as well, although the correla-
tions tend to be low because of the high within-person
variability for foods.

Table 11 Pearson’s correlation coefficients between FFQs and a superior dietary assess-
ment method, adapted from [25]

Number of
Nutrient investigations Median Range Interquartile range

Energy (kcal) 12 0.48 0.29–0.74 0.35–0.58
Protein 10 0.42 0.18–0.80 0.41–0.58
Carbohydrate 7 0.48 0.27–0.60 0.42–0.58
Fat 12 0.52 0.08–0.94 0.36–0.59
Cholesterol 6 0.50 0.42–0.67 0.46–0.60
Vitamin C 9 0.46 0.33–0.64 0.38–0.58
Vitamin A 6 0.40 0.21–0.63 0.33–0.51
Vitamin E 4 0.49 0.39–0.64 0.44–0.56
Calcium 3 0.63 0.61–0.66 –
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Statistical Methods

As noted previously, nutritional epidemiology
investigates the influence of the diet (exposure
variable) on disease occurrence or death (outcome
variable). Because nutritional epidemiology is a
branch of chronic disease epidemiology, all of
the statistical principles and methods for chronic
disease epidemiology [8, 9, 38] are applicable to
nutritional epidemiology. Thus, the exposure–disease
association in nutritional epidemiology is quantified
by the odds ratio, risk ratio, or hazard ratio,
depending on the study design, and the statistical
models used to estimate this association include the
logistic regression, Cox regression, and Poisson
regression models. What is unique about nutritional
epidemiology is that the primary exposure variable
(a person’s long-term diet) is imprecisely measured,
due to considerable within-person variation and
measurement errors. As highlighted in the previous
sections, many of the statistical methods were
developed to address this problem. In this section,
several other statistical topics that are especially
germane to nutritional epidemiology will be
highlighted.

Grouping of the Exposure Variable

In the statistical analysis of data from nutritional epi-
demiology, the exposure variable (food or nutrient
intake) is often initially categorized into approxi-
mately evenly sized groups, such as tertiles, quartiles
or quintiles (see Quantiles), and then entered into the
appropriate statistical model as indicator or dummy
variables. The cutpoints are generally based on the
distribution of the controls, although the joint distri-
bution of cases and controls can also be used and
provides the best dispersion of counts by exposure
category. This grouping of continuous exposure vari-
ables serves several purposes: the distribution of a
nutrient tends to be skewed to the right and catego-
rization dampens the effect of the extreme values;
the effect of measurement error is reduced in that the
dietary questionnaire needs only to categorize people
into broad categories of intake; and the relationship
between exposure and risk of disease occurrence can
be assessed for dose–response trend. If the expo-
sure is to be used as a continuous variable, then it
is important to check that the relationship is indeed
monotonic prior to analysis. Statistical evaluation of

trend can be performed in a number of ways, such
as using a continuous predictor or assigning scores to
categories [38].

Multiple Comparisons

Some dietary questionnaires have more than 100 food
items, which are then converted to between 20 and
30 nutrients. Statistical analysis of exposure–disease
associations for all of these exposure variables will
give rise to many statistical tests of “significance”.
Moreover, statistical analysis if often repeated in sub-
groups defined by such factors as gender, race, age,
or subcategory of disease (e.g. stage of disease). It is
not uncommon to perform an overwhelmingly large
number of statistical tests from a single study, giving
a high likelihood of finding many “statistically sig-
nificant” test results purely by chance (see Multiple
Comparisons). It is crucial that the investigator is
aware of this problem. It is equally important to
make clear in the research report which hypotheses
constitute a priori or a posteriori tests. A stricter cri-
terion for reporting “statistical significance” should
be deployed for a posteriori tests.

Multicollinearity

Certain types of eating patterns are generally seen
together in individual diets, such as high fat and low
fiber diets. These eating patterns sometimes create
very high correlations, or multicollinearity, between
dietary exposures, leading to problems in model esti-
mation. If two exposure variables, such as fat and
dietary fiber, are highly inversely correlated, then the
regression coefficient (and hence the effect measure)
for fat will vary depending on whether dietary fiber
is in the model. Therefore, with multicollinearity, the
regression coefficient does not reflect any underly-
ing effect of the variable on disease, but rather a
marginal effect that depends on what other variables
are included in the model. Additionally, standard
errors of regression coefficients are inflated when the
independent variables in the model are highly cor-
related with each other, and the correlated variables
may not individually be statistically significant even
if there is a strong relationship between the set of
predictor variables and the outcome variable. In nutri-
tional epidemiologic studies, correlations between
foods and nutrients need to be investiaged prior to
building a model with multiple nutritional predictors.
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Remedial measures for multicollinearity, such as
ridge regression, are available. However, effects of
nutrients with near perfect correlation cannot be esti-
mated separately.

Energy Adjustment Methods

Almost all of a person’s total energy (caloric) intake
is contributed by three macronutrients: intake of
fat, protein, and carbohydrate. (Alcohol intake may
also contribute substantially to some peoples’ energy
intake.) The current thinking of some nutritional
epidemiologists is that it is not enough to estimate
the effect of a food or nutrient on the risk of
disease without giving due consideration to total
energy intake [44]. For example, if high fat and
energy intake were found to elevate the risk for colon
cancer, then it is important to distinguish whether the
apparent effect of fat intake on colon cancer actually
acts through its contribution to the energy content
(higher fat intakes results in higher energy content)
or whether there is a specific effect of fat, independent
of energy intake, on colon cancer. Statistically, what
is needed is to estimate the association between fat
intake and colon cancer adjusting for energy intake.
Another justification for energy adjustment is that
the same amount of a nutrient consumed will have
less potency on a large person than on a smaller
person (here, energy intake can be thought of as a
surrogate for body size). Energy adjustment has also
been advocated for micronutrients, such as vitamins
and minerals, even though they have no appreciable
energy content.

Not all nutritional epidemiologists agree with
the need for energy adjustment in the estimation
of nutrient-disease associations, and even though a
variety of statistical methods have been proposed
for energy adjustment, none is generally accepted as
a standard. Indeed, energy adjustment is currently
highly contentious [10, 17–19, 29, 30, 42, 44–46].
This section presents a brief sketch of the four
proposed energy adjustment models. In these models,
D denotes disease status, N denotes calories from the
nutrient of interest, and T denotes total caloric intake.
The exact specification of the regression model M(·)
is not given, but the logistic and Cox proportional
hazards models are the common choices.

Standard Model. M(D) = β0S + β1SN + β2ST +
ε, where the variables N and T are entered in the
model simultaneously.

Residual Model. M(D) = β0R + β1RR + β2RT +
ε, where R is the residual from the linear regression
model of N on T : N = α0 + α1T .

Partition Model. M(D) = β0P + β1PN + β2P(T −
N) + ε, where the caloric intake is partitioned into
calories from the nutrient of interest (N ) and those
from other sources (T − N).

Nutrient Density Model. M(D) = β0N + β1N

(N/T ) + β2NT + ε, where the calories from the
nutrient are divided by the total calories (N/T ) to
give the proportion of calories from the nutrient of
interest.
The following identities show that the first three
models are in fact equivalent when N and T are
continuous. However, the models are not equivalent
when either N or T or both are categorized and
represented by indicator variables. Brown et al. [10]
noted that the residual model is the most powerful and
robust of the three models with categorized variables.
Relationship between standard and residual models:

β0S = β0R − α0β1R,

β1S = β1R,

β2S = β2R − α1β1R.

Relationship between standard and partition models:

β0S = β0P,

β1S = β1P − β2P,

β2S = β2P.

Relationship between residual and partition models:

β0P = β0R − α0β1R,

β1P − β2P = β1R,

β2P = β2R − α1β1R.

No one model appears clearly superior to another.
The choice of model with continuous variables may
be guided by the meaning of the parameters contained
in each model. In the standard model, β1S measures
the effect on D of increasing N by 1 unit while
keeping total calories constant, that is, the effect
of substituting calories from sources other than N

(denote by N ′) with calories from N . β2S represents
the effect on D of increasing T by 1 unit while
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keeping N constant, that is, the effect of increasing
calories from N ′.

In the residual model, the above identities show
that β1R also measures the effect of substituting
calories from N ′ with calories from N . The parameter
β2R represents the effect on D of increasing T by
1 unit while holding R constant. Recall that R =
N − α0 − α1T . Substituting T ′ = (N + N ′) + 1 into
the equation, R is constant only when an increase of
1 unit in N ′ is matched with a concomitant increase
in N of α1/(1 − α1) units.

The partition model parameter β1P measures the
effect of increasing N by 1 unit while holding N ′
constant, that is, the effect on D of adding 1 calorie
from N . By the identity with β2S, β2P represents the
effect of increasing calories from N ′ by 1 unit.

The nutrient density model has a more complex
structure that involves the reciprocal of caloric intake,
making its coefficients rather difficult to interpret.

The partition model appears to have the param-
eters with the most straightforward interpretation,
although it cannot be used to energy-adjust food or
micronutrient intake. Pike et al. [29, 30] point out
that the interpretation of β1 in all four models is com-
plicated by the fact that N ′ is itself made up of many
dietary components. Suppose the nutrient of interest
is fat. A β1S of 0 would indicate that a substitution of
1 nonfat calorie with 1 fat calorie has no effect, that
is, that calories from different sources have the same
influence on the risk of D. This conclusion would be
incorrect if calories from carbohydrate have a protec-
tive effect and calories from protein and alcohol have
a direct effect on risk. The effect of calories from
fat is being compared against the average effect of
calories from the other components in these models.

Wacholder et al. [42] argue that it is not possible
to distinguish the generic effect on the delivery of
energy from the nutrient of interest and any specific
effect of that nutrient. They point out that the true
model of interest is

M(D) = β0 + βNN + βN ′N ′ + βT T + ε,

which is a nonidentifiable problem because T =
N + N ′. All four models given above are special
cases of this model, where one of the parameters
is excluded. Therefore, the parameters in the energy
adjustment models are confounded by the missing
parameter and cannot clearly distinguish between a
generic caloric effect and a specific nutrient effect. It
is clear that when energy and nutrient intakes are too

highly correlated, the variables measure nearly the
same function (highly collinear), and their effects on
D cannot be segregated. In this case, the residuals
from the regression of N on T will have limited
variability, as most of it will have been explained
by calories, and should not be used to represent an
independent exposure variable.

Energy adjustment methods can be used as a
tool to investigate the joint effects of energy and
individual nutrients on disease risk, but it is clear
that much care must be taken in its application and
interpretation.
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Nutritional Exposure
Measures

In all methods of measurement of nutritional expo-
sure, some estimate of the weight of food consumed
is required, and for the determination of nutrient or
other food component intake, either an appropriate
description for use with food tables is needed or
a portion must be available for chemical analysis.
Different methods are available to assess the weight
of food, and they vary in accuracy, complexity, and
cost [1, 5, 6]:

1. Food frequency questionnaires are designed to
assess long-term habits, over months or years,
and comprise a list of foods most informative
about the nutrients or foods of interest [5]. The
length of this list generally does not exceed 150
items. Various methods to assess portion sizes
may be used, for example fitting average portion
weights derived from other data to the respon-
dents’ chosen food and frequency selections.
To assess the frequency of food consumption,
accompanying the food list is a multiple response
grid in which respondents attempt to estimate
how often selected foods are eaten. Up to ten
categories ranging from never, or once a month
or less, to six times per day is a usual format.
Because responses are standardized, food fre-
quency questionnaires can be analyzed quickly
and easily so that large numbers of individu-
als can be investigated relatively inexpensively.
This method has been used particularly in cohort
studies.

2. Diet history is usually conducted by trained inter-
viewers, who obtain more detailed information
on usual foods consumed, portion sizes, recipes,
and frequency of food consumption over the
recent past. The diet history is less commonly
used in epidemiology but is frequently used in
clinical dietetics.

3. Twenty-four hour recalls are based on inter-
views on written information about the previous
day’s intake, and the actual foods consumed are
described, together with information on portion
weights. This method is also more costly due
to the variety of foods possibly consumed (at

least 5000 different food items are available in
most Westernized food suppliers), all of which
require estimation of portion size and individ-
ual computer coding. This method is used in
surveillance and cross-sectional studies, and
potentially for nested case–control studies and
validation studies.

4. Daily written records of the description and
amount of food are kept at the time of consump-
tion. In some studies, the consumer is asked to
weigh food as it is served. The method requires
substantial resources for data entry, but if records
are kept for a sufficient length of time, this
method has been generally used in research to
assess the accuracy of other methods such as
food frequency questionnaires, and for nested
case–control studies. However, regression dilu-
tion may be considerably underestimated because
of error correlation between the reference and test
method [3, 4].

5. Checklists are precoded lists of foods for rapid
data entry to be completed every day for several
days [2]. The consumer is given one checklist
per day, and asked to check off which foods are
eaten from the list. Portion sizes and the list of
foods are as for food frequency questionnaires,
but errors in the estimation of frequency of con-
sumption are avoided by this method.

Food frequency questionnaires or diet history
methods are used in case–control studies to assess
diet retrospectively prior to onset of symptoms.
However, estimates of past dietary consumption are
closely related to present consumption, and the dis-
crepancy between actual and recalled past diet is
greater the longer the period of recall attempted [5]
(see Recall Bias).

Measurement errors can arise from food table
databases, assessment of portion size, daily variation,
inaccurate frequency categorization in food frequency
questionnaires, and underreporting. All methods have
different types of error structure, so that the magni-
tude of the error varies according to the method and
may not be predictable. Relative validation stud-
ies, using biomarkers of intake as the reference
method, suggest that regression dilution from writ-
ten record methods is considerably less than with
food frequency questionnaires [3]. All methods may
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be subject to systematic bias from under- or overre-
porting.
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Nyquist Frequency

While a time series X(t) can often be thought
of as having values for all real values of t for
computation we must make recordings at discrete
time points. Suppose we choose to digitize the
record by taking values at time intervals ∆t apart,
giving X(∆t), X(2∆t), . . . , X(N∆t) to make infer-
ences about the original X(t).

The choice of time intervals is important since
the digitizing, which samples the series, has two
important consequences:

1. We have no information about phenomena which
have frequencies above the Nyquist frequency or
folding frequency of 1/2∆t cycles per unit time.

2. These missing effects may distort our perception
of those cyclic phenomena which have frequen-
cies below the Nyquist frequency. This effect is
called aliasing.

Some definitions are given as follows: A function
g(t) is periodic if

g(t) = g(t ± s) = g(t ± 2s)

= · · · = g(t ± ks) = · · · ,
and the smallest (nonzero) s value is called the period
of the function. The frequency f is the number
of periods per unit time; that is, f = 1/s cycles
per unit time. Thus, cos(2πt/s) has period s, while
cos(2πf t) has frequency f . Our Nyquist frequency
of 1/2∆t cycles per unit time will correspond to a
minimum period of 2∆t . Note that mathematicians
like to work in angular frequencies ω = 2πf radians
per unit time.

Sampling limits the frequency range because of
the nature of periodic functions. Suppose ∆t = 1 and
the signal contains a function which is periodic; say,
g(t) with frequency 3/2, i.e. period 2/3. Then we
observe in sequence

g(0), g

(
1

3

)
, g

(
2

3

)
= g(0), g

(
1

3

)
, g

(
2

3

)
, . . . ,

a signal which repeats in steps of 3, giving an appar-
ent frequency of 1/3. If we regard our periodic

Figure 1 Alias of a signal after sampling

component g(t), with period fb = k/2∆t + f0, f0 <

fN , as being expressed in terms of complex exponen-
tials exp(i2πfbt), then, since t = m∆t , they become
exp(i2πfbm∆t) = exp(i2πf0). For an example see
Figure 1.

If the power spectrum of the original series (see
Spectral Analysis) is h(f ), then we can show that
the power spectrum of the observed, digitized, series
hd(f ) is

hd(f ) =
∞∑

k=−∞
h

(
f + k

∆t

)
, − 1

2∆t
< f ≤ 1

2∆t
.

Our observed spectrum is thus the result of folding
the original over the Nyquist range.

This means that the observed value of the power
spectrum at f0 is made up not only of h(f0) but also
the values of the original spectrum at the aliases to
f0; that is, f0 ± 1/∆t, f0 ± 1/2∆t, f0 ± 1/3∆t, . . ..
So when you digitize a sequence it is vital that there
are no components with appreciable power whose fre-
quency lies outside the Nyquist range. Indeed, we can
prove that if the power outside this range is exactly
zero, then the original series can be reconstructed
exactly from the digitized one.

Comprehensive accounts are given in [1] and [2].
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Oblimin Rotation

Oblimin rotation is a general form of performing an
oblique rotation of vectors comprising the matrix
V of dimension (p × k) associated with princi-
pal components or factors in order to transform
these quantities into new variables by the relation-
ship B = V� [B is a matrix of dimension (p × k)

and � is a matrix of dimension (k × k)] such that
B will approximate simple structure (see Rotation
of Axes). Oblimin rotation is similar in nature to
the Orthomax orthogonal rotation procedure. Like
Orthomax, the Oblimin rotations are also quartic solu-
tions and are a general solution of the following
expression:

Q=
k(k−1)/2∑

g<j=1



p

p∑

i=1
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ij b

2
ig − c
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ij
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)
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where p is the number of original variables, k

is the number of retained components or factors,
bij are the coefficients of the vectors defining the
rotation, and c is an arbitrary constant. Unlike the
Orthomax procedure, Oblimin rotations require Q to
be minimized.

The Oblimin expression includes a number of
procedures that have been derived independently.
Covarimin rotation [1, 7], which is obtained by
setting c = 1, has been criticized by some as being
too close to an orthogonal rotation. Similarly, setting
c = 0 produces the Quartimin rotation [1, 6] which
has been felt to be too oblique. As a compromise,
Carroll [2] derived the Biquartimin rotation by set-
ting c = 1/2. Standard errors for the vector coeffi-
cients produced by Oblimin rotation were given by
Jennrich [4] and Clarkson [3].

There are several versions of these procedures.
The expression above is referred to as raw Oblimin.
In a manner similar to Varimax rotation, normal
Oblimin may be obtained by dividing each b2

ij or
b2

ig by the corresponding diagonal term of VV′. The
original Oblimin procedures involved both the pri-
mary and reference vectors. A later procedure, called
Direct Oblimin [5, 6], simplified this by doing away
with the reference vectors.

The direct Oblimin rotation is available in the
SPSS software package (see Software, Biostatisti-
cal) [8]. Table 1 provides an example of the direct

Table 1 Framingham depression data: characteristic and
direct Oblimin rotated vectors

Characteristic Direct Oblimin
vectors rotation

v1 v2 v3 v1 v2 v3

Effort 0.60 0.15 0.41 0.12 0.08 0.67
Restless 0.39 0.07 0.55 −0.06 −0.10 0.70
Depress 0.77 −0.13 −0.10 0.69 0.08 0.16
Happy 0.70 −0.23 −0.06 0.68 −0.05 0.15
Lonely 0.64 −0.23 −0.21 0.71 0.01 −0.02
Unfriend 0.35 0.67 −0.33 0.04 0.83 −0.06
Enjoylife 0.52 −0.27 −0.27 0.69 −0.03 −0.13
Feltsad 0.72 −0.23 −0.20 0.76 0.02 0.02
Disliked 0.34 0.72 −0.22 −0.06 0.83 0.06
Getgoing 0.58 0.20 0.47 0.04 0.10 0.73

Oblimin solution with the original principal compo-
nent characteristic vectors. This example deals with
depression data collected in the Framingham Study.
The principal components analysis is performed on a
sample of 1660 subjects (see Principal Components
Analysis for data description).

In recent years, these solutions seemed to have
lost favor to some two-stage procedures such as
Orthoblique or Harris–Kaiser rotation, Promax
rotation, and Optres rotation.
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Oblique Rotation

Given a matrix V of dimension (p × k) consisting of
a set of k vectors, usually defining a set of principal
components or factors, a new set of transformed
variables may be obtained by a rotation of V, namely
B = V�. V is often the factor loading matrix or
factor matrix from the initial step in a principal
components analysis or a factor analysis. Such a
rotation is said to be oblique if the resultant rotated
axes in the vector space are not at right angles to
each other. Most rotation procedures are designed
to approximate a simple structure. The matrix �

of dimension (k × k) defines the angles of rotation
and the matrix B of dimension (p × k) defines the
vectors determining the new variables obtained by
rotation.

The purpose of using oblique rotation is to obtain a
matrix B that exhibits a better pattern of simple struc-
ture than would be obtained by using an orthogonal
rotation. This improvement towards a simple struc-
ture comes at the cost of loss of orthogonality. If the
main purpose of rotation is to cluster groups of the
original variables, then this may present no problem.
As in the case of orthogonal rotation, there are many
methods of obtaining oblique rotations and, again,
there is a general quartic formula, the Oblimin rota-
tion, which produces a number of these procedures.
Unlike orthogonal rotation, the more popular oblique
procedures are not members of this family and are
generally two-stage procedures. Among these proce-
dures are Orthoblique or Harris–Kaiser, Promax,
and Optres rotations.

(See also Axes in Multivariate Analysis)
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Observational Study

An observational study is a study in which con-
ditions are not under the control of the investiga-
tor, unlike an experimental study. In particular, the
exposures or treatments of interest are not assigned
at random to experimental units by the investigator
(see Randomization). Thus, associations between
exposure and health outcome, say, may result from
confounding by factors associated both with expo-
sure and outcome.

Epidemiologic studies of disease etiology in hu-
mans are almost always observational because it is
unethical to allocate people to receive potentially
harmful exposures (see Ethics of Randomized
Trials). Although the investigator does not control
the allocation of exposure in observational studies, it
is possible to mimic experimental designs in many
respects and, by proper collection of observational
data, to examine critically the hypothesis that the
exposure has a causal impact (see Causation) on
health outcome. The process of causal induction

from observational data was brilliantly described by
Hill [1, 2] (see Hill’s Criteria for Causality).

Observational data are particularly subject to con-
founding in studies of therapeutic effects because
factors that cause a doctor or patient to select a par-
ticular treatment are also often strongly related to
health outcome. Such confounding has been called
‘confounding by indication’ [3]. Whenever possible,
an experimental design, the controlled clinical trial,
should be used to evaluate such treatments.
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Observer Reliability and
Agreement

Many measurements in medical practice and research
are based on observations made by clinicians. As
these measurements are prone to error, observer relia-
bility and agreement are important issues in medicine.
The terms “observer reliability” and “agreement”
are often used interchangeably, but in theory they
are different concepts. Reliability coefficients express
the ability to differentiate among subjects. They are
ratios of variances: in general, the variance attributed
to the difference among subjects divided by the
total variance [11, 12]. Agreement refers to confor-
mity. Agreement parameters determine whether the
same value is achieved if a measurement is per-
formed twice, either by the same observer or by
different observers [4]. In homogeneous populations
one can imagine that reliability might be low while
agreement is high; in a heterogeneous population,
reliability and agreement measures will correspond
well [13].

The parameters for assessment of observer reli-
ability and agreement differ according to the scale
of measurement. The possible scales of measure-
ment are: categorical data on a nominal scale (e.g.
the judgment of presence or absence of a sign or
symptom); categorical data on an ordinal scale (e.g.
judgment of the degree of severity of a lesion); and
data on a continuous scale (e.g. the measurement of
blood pressure). For each of these scales, reliability

and agreement parameters will be presented and dis-
cussed. Table 1 summarizes several characteristics of
the parameters.

Categorical Data

With a binomial outcome, the results of two obser-
vers rating N subjects or one observer rating N

subjects twice, may be presented in a two-by-two
table as shown in Table 2 [3]. The level of agreement
is 50% (both positive scores) plus 20% (both negative
scores). However, this measure does not discrimi-
nate between actual agreement and agreement which
arises due to chance. A measure which attempts to
correct for chance agreement is the kappa (κ) coeffi-
cient [4]. κ represents the extra amount of agreement
observed above chance (po − pe), divided by the
amount of agreement which could maximally occur
above chance (1 − pe). In Table 2, the observed
proportion of agreement (po) is the proportion of X-
ray films agreed on by the two rheumatologists as
being positive (50/100), plus the proportion agreed
on as negative (20/100), i.e. 0.70. The expected pro-
portion of chance agreement is calculated assuming
independence of the observers: 65/100 × 65/100 =
0.42 of the X-rays would be scored positive and
35/100 × 35/100 = 0.12 would be scored negative
by both observers: pe = 0.54.κ = (po − pe)/(1 −
pe) = (0.70 − 0.54)/(1 − 0.54) = 0.35. Usually, κ-
values lie between 0 and +1, where 0 indicates only
chance agreement and 1 indicates perfect agreement.
However, κ-values can be negative, when there is
less agreement than expected by chance (see Kappa
and its Dependence on Marginal Rates).

Table 1 Characteristics of the presented parameters of agreement

Characteristics κ κw ICC Generalizability study Limits of agreement

Scale Categorical Categorical Continuous Continuous Continuous
nominal ordinal

Measure of reliability
or agreement Agreement Agreement Reliability Reliability Agreement

Distinguish between random
and nonrandom errors No No No Yes Yes

Applicable to more than
two observers Yes Yes Yes Yes No

Expressed in metric unit
of measurement No No No Yes Yes

κ = kappa
κw = weighted kappa
ICC = intraclass correlation coefficient
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Table 2 Agreement between two rheumatologists rating
hand radiographs of 100 patients according to presence or
absence of evidence of erosions [3]

Rheumatologist B

Rheumatologist A Present Absent Total

Present 50 15 65
Absent 15 20 35
Total 65 35 100

In Table 3, an example is presented where both
random errors and nonrandom errors in the mea-
surements occur [3]. Two rheumatologists again show
70% agreement, but now rheumatologist A is more
likely to score X-rays as positive (75%) than rheuma-
tologist B (55%). The κ-value is 0.37, indicating a
level of agreement which is slightly higher than for
the example in Table 2.

The κ-coefficient can be extended for observations
with more than two nominal categories [2]. If the
number of categories increases, the opportunities for
disagreement will increase, and consequently κ will
tend to be lower.

In the situation of a scale with more than
two classes with a logical sequence (ordinal
scale), a weighted κ-coefficient (κw) has been
proposed [5]. This reflects the fact that disagreements
between adjacent categories are less serious than
disagreements over more categories. κw adjusts for
the seriousness of disagreement by assigning weights
(between 0 and 1) to partial agreement cells, where
0 means total disagreement and 1 total agreement.
Using quadratic weights in this calculation, κw

becomes equivalent to the intraclass correlation
coefficient [10] (see Correlation). This shows the
similarity of reliability and agreement under specific
conditions.

κ is the most widely accepted measure of agree-
ment when considering categorical data. κ includes

Table 3 Agreement between two rheumatologists rating
hand radiographs of 100 patients for presence of erosions
with bias in their evaluation [3]

Rheumatologist B

Rheumatologist A Present Absent Total

Present 50 25 75
Absent 5 20 25
Total 55 45 100

both random errors and nonrandom errors. However,
the interpretation of κ is difficult. The practice of
calculating a confidence interval for κ and assessing
whether it differs statistically significantly from zero
is of no use: the question is not whether an association
is present or not, but how close to perfect the observer
agreement is. Although proposals for interpretation of
different κ-values have been made, the interpretation
is not as straightforward as suggested [1, 9]. Several
factors should be taken into account. First, κ is depen-
dent on the number of classes. With more classes
it is more difficult to classify the subjects correctly
and lower κ-values are usually found. Secondly, κ is
dependent on the prevalence of the attribute being
measured. High underlying prevalences result in a
high level of expected agreement, leaving less room
for actual agreement. Supposing that the rheumatol-
ogists both scored 80% of the X-rays as positive,
agreeing in 65% of the X-rays on positive scores and
5% on negative scores. In that case, the agreement
would again be 70%, but the κ-value would only be
0.06. Thirdly, the κ-value also depends on differences
in the marginals of the two observers, that is, in the
presence of bias. In the case of bias, the κ-value can,
paradoxically, become higher [7, 8]. A single κ-value
does not differentiate between random and nonran-
dom errors. Therefore, presentation of the complete
table together with the κ-value is very important. The
table shows the prevalences of the scores, whether
there is bias as well as random errors and, in the
case of more classes, which classes are most difficult
to distinguish. This information is indispensable for
a proper interpretation of the κ-value and forms the
basis for improvement of the observer agreement.

Continuous Data

Intraclass Correlation Coefficient

The intraclass correlation coefficient (ICC) is a mea-
sure observer reliability designed for continuous vari-
ables, although it can also be used for ordinal data.
The ICC is defined as the ratio of the variance of
interest (often the variance between subjects) to the
total variance [11, 12]. These variances are derived
from analyses of variance (ANOVA). The structure
of the ANOVA model depends, among other things,
on whether the observers are drawn at random from
a large population of observers (random effects)
or whether they are the only observers of interest
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(fixed effects), and on whether each observer rates
each subject or not [11, 12]. These factors determine
the appropriate ICC formula. The ICC includes both
random errors and systematic differences. The ICC
ranges from 0 with no agreement to +1 with perfect
agreement.

The ICC avoids the problem of the Pearson corre-
lation coefficient that a linear relationship is mistaken
for agreement, but is, like other correlation coef-
ficients, dependent on the range of the variables
measured. With larger ranges, that is, in a more het-
erogeneous population, the value of ICC is higher.
This reflects the fact that in heterogeneous popula-
tions subjects are easier to distinguish than in homo-
geneous populations. Although the ICC is designed
to measure how well patients can be distinguished
from each other despite measurement errors, the ICC
is also used as a measure of agreement. In this case,
caution should also be exercised by comparing ICCs
between populations and by extrapolating results on
ICCs to populations which differ with respect to het-
erogeneity [13]. The ICC is a ratio of variances and,
therefore, difficult to interpret clinically. Presenta-
tion of its variance components, whose square roots
are expressed in the metric units of measurement
(see Unit of Analysis), would be more informative
clinically.

Generalizability Studies

A more extensive analysis using ANOVA is pro-
posed under the term “generalizability” studies [6]. In
any measurement situation there are multiple sources
of error variance. Besides intra-observer and inter-
observer disagreements, variability among subjects
may arise on different days, after different diets
or in stressful situations. The error variance can
be calculated for each source of error. By taking
the square root of the error variances the stan-
dard errors of measurement (SEMs) are obtained,
expressed in the dimension of the original measure-
ment. An important goal of generalizability studies is
to identify and measure variance components which
contribute errors to a measurement. They provide
a lot of information on observer reliability. They
identify sources of error (e.g. intra-observer or inter-
observer) and determine the relative importance of
each component. This provides useful information
for strategies to prevent or minimize errors. More-
over, the SEMs resulting from the analyses have

direct use in clinical practice and research. There-
fore, generalizability studies are powerful tools in
assessing intra-observer and inter-observer reliability
(see Validity and Generalizability in Epidemio-
logic Studies).

Example. In a three way factorial experiment
(random effects model), 15 patients are rated by five
different observers on three different days. Assuming
that the patient characteristics being judged are stable
over these days, the measurements at the three differ-
ent moments can be used to assess the intra-observer
reliability. The results of the ANOVA analysis are
presented in Table 4. From an investigation of the
variance components (σ 2), observations on different
days (W: within observers) or in interaction of days
with the other two main effects (P × W, B × W, P ×
B × W) appear to contribute little to the total varia-
tion. A greater proportion of variance is contributed
by the different observers (B: between observers), and
the largest by the inter-individual differences among
the patients (P) and the patient–observer interaction
(P × B). The variance components corresponding to
the various facets of the measurement design are
the major results of a generalizability study. The
square root of these variance components equals the
SEM. Hence, the generalizability studies identify the
sources of error, assess the relative contribution to
the measurement and provide direct usable clinical
information.

Limits of Agreement

A simple method which measures agreement and
distinguishes between random and nonrandom errors
was proposed by Bland & Altman [2]. In order
to assess whether there are systematic differences
between two rheumatologists A and B, the scores
of the two observers are subtracted (d) and plotted
against the mean of the measurements (Figure 1) [3].
The confidence interval around d(d ± tn−1SE) is
calculated to assess whether statistically significant
bias exists between the two rheumatologists. Fur-
thermore, limits of agreement can be calculated,
based on the mean difference between the rheuma-
tologists (d) and the standard deviation of these
differences. Approximately 95% of the differences
will lie between d − 2 and d + 2 standard deviations,
which are called the limits of agreement. These for-
mulas hold if the differences are not dependent on the
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Table 4 Fictitious example of ANOVA analysis of generalizability study

Facet SS df MS σ 2 : SEM2 % σ 2

Patients (P) 14 000 14 1000 σ 2
P = (MSP − MSPW − MSPB + MSPWB)/nBnW = 58.67 53.9

Inter-observer (B) 2400 4 600 σ 2
B = (MSB − MSBP − MSBW + MSPBW)/nPnW = 11.33 10.4

Intra-observer (W) 200 2 100 σ 2
W = (MSW − MSWP − MSWB + MSPBW)/nPnB = 0.47 0.4

P × B 4200 56 75 σ 2
PB = (MSPB − MSPBW)/nW = 23.33 21.4

P × W 1400 28 50 σ 2
PW = (MSPW − MSPBW)/nB = 9 8.3

B × W 160 8 20 σ 2
BW = (MSBW − MSPBW)/nP = 1 0.9

P × B × W 560 112 5 σ 2
PBW = 5 = MSerror 4.6

P = patients
B = between observers
W = within observers
SS = sum of squares
df = degrees of freedom
MS = mean square
σ 2 = estimate of variance
SEM = standard error of measurement

value of the mean (e.g. larger differences with higher
means). If this is not the case, transformations are
required to make the differences independent of the
mean.

The method of Bland & Altman [2] clearly visual-
izes systematic differences and random errors. More-
over, errors are expressed in terms of the scale
of measurement (see Measurement Scale), which
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Figure 1 Difference between rheumatologist A and rheu-
matologist B’s readings of grip strength measurements
plotted against mean measurements for 20 patients [3]

enables a direct clinical interpretation of the results.
The minimum acceptable level of agreement depends
on the clinical use and situation. Deciding whether
errors are acceptable is always a question of clinical,
not statistical, judgment.

Clinical Relevance

Assessing observer reliability and agreement is essen-
tial for interpretation of clinical observations both in
research and in medical practice. Even more impor-
tant than being aware of a suboptimal observer reli-
ability or agreement is coping with or anticipating it.
Tracing the sources and types (bias or random error)
of the disagreements is the beginning of wisdom.
For that purpose, presenting one single coefficient
is insufficient and a visual presentation of the data
is advisable. Generalizability studies, which aim to
determine the origin of the variation and their rel-
ative contribution to measurement errors, are most
valuable in this respect. Such studies are able to mea-
sure, among other things, the contribution of intra-
observer and inter-observer variation to the total of
measurement errors. The solutions for intra-observer
and inter-observer disagreements have to be sought
in standardization of the measurements and consen-
sus meetings about clinical observations. Knowledge
about the origins of the errors helps in this pro-
cess. If the agreement cannot be improved by these
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strategies, multiple measurements may be a solu-
tion. Depending on the major source of disagreement,
these multiple measurements should be performed
either by different observers or by the same observer.
In medical research, increasing the sample size is
also an option for coping with random errors. How-
ever, one should note that increasing sample size
does not prevent bias. In general, improvement of
observer reliability or agreement of clinical observa-
tions may have much impact on the quality of health
care.
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Occupational
Epidemiology

Especially since the late 1970s, numerous epidemi-
ologic studies have revealed elevated risks of can-
cer, cardiovascular disease, and neurologic and other
disorders among various occupational groups [106].
Strong evidence that many disorders are work-related
was unobtainable from the clinical experiences or
case reports that used to be the basis for identify-
ing occupational risks. The introduction of modern,
rigorous principles for epidemiologic research and
the integration of epidemiologic courses in occupa-
tional health training have played an important role
in this development. Many textbooks on epidemio-
logic methods have appeared since the early 1980s,
and some of these have specifically focused on occu-
pational epidemiology [41, 75, 115]. The availability
of computers and statistical packages also has facili-
tated the progress.

It is hardly possible to predict the directions in
occupational epidemiology that will lead to the most
important future achievements. Only the more general
aspects and principles of occupational epidemiol-
ogy can be illustrated here by examples drawn from
the several different subject matter areas. The chal-
lenge in occupational epidemiology has been, and
will be, to identify adverse agent(s) or processes
rather than to associate health risks with occupational
groups or titles, because successful prevention can
only be based on the elimination or reduction of spe-
cific exposures. The difficulties in this respect are
often considerable, however, as occupational expo-
sures tend to be mixed, and lifestyle factors may
interfere.

The refinements of methods in epidemiologic
research [63] came long after the first few epidemi-
ologic studies of occupational disorders. In 1843,
W.A. Guy studied “pulmonary consumption” in let-
ter press printers and identified a higher risk among
compositors than among pressmen [99]. The observa-
tion in 1879 of an increased occurrence of lung can-
cer among Schneeberg miners [70], and the excess
of bladder cancer among German aniline workers
reported around the turn of the century [135], are
other examples of early occupational epidemiology.

A more recent example of occupational epidemi-
ology, from 1948, demonstrated a high proportional

mortality of lung cancer among British workers
exposed to inorganic arsenic [78]. A few years later
an increased risk of lung cancer was demonstrated
among gas workers [49] and also bladder cancer in
rubber workers [39]. Important studies of the risk of
lung cancer in asbestos workers [142] and in under-
ground miners were published in the 1960s [164,
165]. Studies on chemically induced cardiovascular
disease also appeared relatively early – for example,
among workers exposed to carbon disulfide [76, 155].

There is now, in the twenty-first century, an
increasing interest in the effects of work stress
and psychosocial determinants of the risk of
cardiovascular disease. Other recent studies concern
neurologic disorders and their relationships to
occupational exposures. Ergonomic risk factors and
musculoskeletal disorders as well as reproductive
hazards from occupational exposures are other
aspects that have attracted interest since the
1980s. The health effects of electromagnetic fields
have been among the most intriguing questions
in occupational and environmental epidemiology
during the 1990s [89, 141, 154], although the
initiating study in this respect concerned cancer in
children [166].

For the future, as for today, a central issue in occu-
pational epidemiology will be the assessment of the
effect of single as well as combined exposures. The
recently developed tools of molecular epidemiology
may increase the power of epidemiologic studies to
detect risks at lower exposure levels and in smaller
worker groups. These new tools are already being
used in occupational epidemiology to define biomark-
ers of exposure or early effects [75, 161], to identify
susceptible individuals and to specify cancers by their
mutational patterns [13].

Defining Research Questions for
Occupational Epidemiology

New ideas for occupational studies have come from
a variety of sources. A clinical observation has often
suggested a connection between a disease and an
exposure; sometimes toxicologic data from animal
experiments have indicated a possible health hazard.
Suggestions for a study may also have originated
from observations or suspicions among workers
about an adverse health effect. Still other leads for
study derive from an examination of death records
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in various occupational groups (see Occupational
Mortality) or from studies that link census data
on job titles with cancer registry data or other
disease registries or causes of death. Clues for new
studies may also come from case–control studies
that routinely tend to assess a number of exposures;
should some unexpected associations appear, further
studies are usually warranted.

The Role of Clinical Observations for
Epidemiologic Research

The concerns about asbestos exposure as a cause
of lung cancer and mesothelioma have probably
generated more studies in occupational epidemiol-
ogy than any other job-related health risk. The
first suspicion of a lung cancer risk was raised
by two case reports in 1935 [60, 102], and other
such reports followed before the association between
exposure and disease was clearly assessed in 1955,
both in England [50] and California [32]. The risk
of mesothelioma was not noticed until 1960; again
the first suspicions arose from clinical observa-
tions [163].

The perception of possibly different risk pat-
terns for the different types of asbestos may in part
explain the numerous studies that have been con-
ducted worldwide on asbestos exposure, but little
gain in specific knowledge has been achieved in
this respect. Indeed, between 1977, when the IARC
(International Agency for Research Against Can-
cer) Monograph on asbestos exposure and cancer
risk was published, and 1986, when this material
was updated in the Monograph Supplement 7 [85],
there was little new information regarding the effect
of specific types of asbestos in spite of more than
a doubling of the number of available studies. Sev-
eral of these studies on asbestos in many countries
have probably been motivated by the need to con-
vince both the medical community and the authorities
in each country with local studies on the health
risk.

An even more clear-cut example of how a clin-
ical observation initiated a large number of epi-
demiologic studies arose from the discovery of a
cluster (see Clustering) of paranasal cancer cases
among furniture workers in High Wycombe, UK [2,
104]. The many subsequent studies from various
parts of the world have been convincingly consis-
tent [85]. Similarly, a cluster of nasal cancers was

traced to boot and shoe manufacturing [1], and again,
this link was confirmed in many studies from sev-
eral countries [85]. The rarity of this type of can-
cer certainly facilitated the recognition of a causal
relationship (see Causation) to occupational expo-
sures.

The report in 1974 of liver angiosarcomas among
workers exposed to vinyl chloride provides still
another example of how the observation of a cluster
of cases of a rare tumor [46] gave rise to a number
of further studies. Some of these included also other
cancers and cardiovascular disease [51]. The first
report on human liver angiosarcoma [46] referred
to animal experiments that indicated the possibility
of an oncogenic effect of vinyl chloride, but this
knowledge seemed not to have reduced workplace
exposures. A note added to the report on the human
angiosarcomas described unpublished data showing
liver angiosarcoma and other tumors in animals
exposed to vinyl chloride. The consistent findings
in humans and animals convincingly established the
risk of liver angiosarcoma from exposure to vinyl
chloride.

Studies of the association of phenoxy herbicides
with soft tissue sarcomas and lymphomas repre-
sent another theme in occupational epidemiology that
arose from clinical observations and a case series
report [67]. In contrast to the vinyl chloride case,
there has been no convincing experimental evidence
of a cancer risk from phenoxy herbicides. How-
ever, in particular, the 2,4,5-trichlorophenoxyacetic
acid was known to contain varying amounts of
2,3,7,8-tetrachlorodibenzodioxin and other dioxins,
for which there was growing evidence of cancer
risks from animal data from 1977 onwards [83, 159].
Although there has been some inconsistency among
the ensuing studies, it seems that soft tissue sarco-
mas are mainly related to dioxin exposure, whereas
the lymphomas, especially the non-Hodgkin lym-
phomas, might be caused by phenoxy herbicides
themselves [68].

Clinical observations also have stimulated
epidemiologic studies in other areas than cancer.
Painters with severe neurasthenic or psychoorganic
syndromes in the 1970s raised the question of a
role for long-term solvent exposure. Following some
initial case–control and cohort studies in Sweden
and Denmark indicating an effect [17, 112, 119],
further epidemiologic research has been conducted
and essentially confirmed both acute effects and the
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syndromes that may appear after long-term solvent
exposure [30, 43, 160].

Animal Data Initiating Occupational
Epidemiology

Sometimes the initial clue that precipitates epidemio-
logic research arises from animal studies. An example
of strong animal evidence of a cancer risk pre-
ceding epidemiologic research concerns lung can-
cer among workers with exposure to chloromethyl
methyl ether [54, 84]. The animal data existing in
this case have apparently been so convincingly cor-
roborating the epidemiologic findings that preventive
actions were taken in many countries and few further
human studies have followed.

Animal carcinogenesis studies of trichloroethy-
lene also triggered epidemiologic investigations in
the late 1970s [20, 156]. The early results were less
convincing of a cancer risk, and only by aggregat-
ing the results from the later three most informative
studies [5, 19, 150], and comparing the observed to
expected numbers of liver and biliary tract cancers as
well as non-Hodgkin’s lymphomas, could an IARC
Working Group conclude that there was limited evi-
dence for a carcinogenic effect from trichloroethylene
in humans [88].

Many epidemiologic studies also followed animal
studies showing that formaldehyde caused cancer in
the nasal cavity. An excess of nasal and nasopharyn-
geal cancers appeared as a fairly consistent finding in
several of these ensuing studies [85]. Still, the IARC
Working Group that evaluated this agent considered
the available studies to provide only limited evidence
for a carcinogenic effect in humans. This and the pre-
vious example indicate the problems and the latitude
involved in trying to assess finally a cancer risk.

Animal data suggest carcinogenic risks from lead,
cadmium, and beryllium, but epidemiologic find-
ings have been relatively weak, although finally
convincing enough for cadmium and beryllium to
permit a conclusion about sufficient evidence for
a carcinogenic effect also in humans [86]. A more
recent meta-analysis suggests also a cancer risk for
workers exposed to lead [57].

These examples notwithstanding, it is perhaps
surprising that relatively few epidemiologic studies
have been initiated in response to animal studies,
especially in view of the large number of chemicals
tested. For diseases other than cancer, there are

even fewer examples of animal studies leading to
epidemiologic investigations, but there is also a
relative lack of animal studies about other effects than
cancer. Furthermore, the principles of occupational
epidemiology have been less developed for such other
diseases.

Record Linkage Studies

Epidemiologists have linked mortality or cancer reg-
istry data with census or death certificate informa-
tion on occupation (see Record Linkage) in efforts
to discover new occupational health hazards. Even
when there is an increased risk of some disorder
in an occupational group, the imprecise measure of
exposure in such linkage studies attenuates the effect,
however. This dilution problem may explain why the
associations found have usually been weak and have
contributed relatively little new knowledge. Census
data reflect the occupational status at a point in time
(e.g. during a particular week), and are therefore
inherently poor measures of the occupational expo-
sure that may, or may not, have occurred over many
years.

A source of potential confounding (see discus-
sion later) in registry linkage studies is the geographic
variation in disease incidence, which may be real or
may reflect local preferences in diagnostic practice
(see Geographic Patterns of Disease). A common
job in an area with a high incidence of some dis-
ease may therefore be associated with an artifactually
increased occupational risk of the disease. For exam-
ple, the linkage of registry data in Sweden indicated
an excess of brain cancer in glass workers, but fur-
ther evaluation showed that there was also a locally
increased risk for others living in the relatively small
area where the glassworks were located [169].

These limitations do not imply that registry studies
are futile, however. For example, a Nordic registry
linkage study has contributed essential information
regarding the risk of lung cancer in connection
with silica exposure [103]. A proportional mortality
study linking causes of death to job titles on the
death certificates also suggested an occupational risk
for leukemia from exposure to electric and magnetic
fields [113]. Similarly, record linkage studies gave an
early indication that multiple sclerosis was associated
with solvent exposure [114] – a connection that now
seems rather likely in the light of a recent meta-
analysis [98].
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Concerns of Workers and Others

Sometimes workers perceive adverse health effects
and attract the interest of epidemiologists. For
example, a group of men exposed to bromochloro-
propane, a pesticide for nematodes, noted that none
of them had fathered any children. This risk was
later confirmed in epidemiologic studies [167, 168].
In contrast, suspicions that work with video display
units could cause spontaneous abortions have cre-
ated considerable concern and many studies, but no
consistent effect has been demonstrated [105]. There
are probably many small-size negative or nonpositive
studies relating to workers’ anxiety about a health
hazard that are unpublished and unknown but that
nevertheless reassure the workers involved.

Sometimes media reports have initiated a study,
as for example reports of a cluster of childhood
leukemia and non-Hodgkin’s lymphoma in the
vicinity of the Sellafield nuclear plant in England (see
Leukemia Clusters). A subsequent case–control
study suggested that paternal exposure could have
been the cause [59]; much controversy and other
studies have followed, and the risks remain unclear.
In general, however, there are surprisingly many
observations that paternal exposures may play
an important role for hazards affecting the next
generation, especially perhaps for birth defects [45].

Options in Study Design

Cohort Studies

Cohort studies are often regarded as the most valid
and informative type of epidemiologic study. Cohorts
are defined by a common event for its members.
This event is usually of a somewhat complex nature,
involving employment during a defined period at a
particular industry; exposure to a specific agent may
preferably also be required. Employment records or
trade union registers are almost always the starting
point for defining an occupational cohort. Cross-
sectional studies of specific exposures in the past
or data gathered as a consequence of biological
monitoring programs may also define suitable cohorts
for follow-up. For example, cohorts can be defined
based on surveillance programs for lead in blood
or some solvent metabolite, such as trichloroacetic
acid or mandelic acid in urine (reflecting exposure

to trichloroethylene and styrene, respectively (see
Surveillance of Diseases)).

The analysis of occupational cohorts may be based
on either cumulative incidence or incidence den-
sity, and these rates can be compared between the
exposed and unexposed in terms of a rate ratio (rel-
ative risk) or, more rarely, a rate difference. In
countries with sound mortality statistics and cancer
registries, the observed numbers of specific causes of
death or cancer types in a cohort are usually com-
pared to expected numbers as based on the general
population rates. These expected numbers are calcu-
lated by the “person-years method” from the national
(or regional) rates, and the relative risk in the exposed
cohort, compared to the general (or regional) popula-
tion, is expressed as the standardized mortality ratio,
SMR [33, 58] (see Standardization Methods). In
cancer incidence studies the corresponding measure
of effect is usually referred to as SIR, i.e. the stan-
dardized incidence ratio.

Occupational cohorts are usually historical or
retrospective in character (see Cohort Study, Histor-
ical) but may also include some prospective follow-
up. Still, the accuracy of the exposure assessment is
usually limited by that in the retrospective phase of
the study. A purely prospective cohort study would
permit more accurate exposure assessment in prin-
ciple, but this design is rarely used because it may
take decades to complete. Many cohort studies fail
to address adequately the changes in the pattern of
exposure over time. Inaccuracies in exposure assess-
ment can therefore be severe for those individuals
who change jobs and who acquire new exposures,
which in combination with the earlier exposures may
enhance multistage development of diseases such as
cancer.

It may be difficult to trace individuals of an
occupational cohort in countries without registries of
the living population and of deaths, or because of
restrictions in the use of identifying information. In
many countries tracing may therefore rely on driving
license registries, telephone directories, and writing
and calling people with similar family names living
in the vicinity of a factory at issue.

A successful follow-up includes 95% or more of
the cohort, as is possible in countries with good
registries. Emigrants are difficult but not impossi-
ble to trace in contrast to “guest workers”, who
often come from less developed countries without
population statistics. If the follow-up requires health
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examinations for assessing the health outcome, then
a reference cohort usually needs to be established for
sound comparisons; the participation rate may drop
to 80% or less.

To account for a latent period between exposure
and disease, especially in cancer studies, new cases
and cumulative person-years may be ignored in the
analysis for a certain period of time after the start
of exposure. Alternatively, the cases and the person-
years, along with the observed and expected number
of cases, might be analyzed separately according to
the time period since first exposure. Further aspects of
the analysis of occupational cohort data are discussed
below in connection with the healthy worker effect.

Cross-Sectional Studies

A traditional approach in occupational epidemiology
has been the cross-sectional study, i.e. to examine
an exposed and a nonexposed group at a particu-
lar point in time and to compare the prevalence of
some disease or symptoms in the two groups accord-
ing to degree of exposure. Cohort or case–control
studies of incident disease are preferable, however,
because they are not distorted by factors that influ-
ence survival or persistence of disease following
disease onset. Nevertheless, many medically less seri-
ous health problems may be studied by a cross-
sectional approach, especially as there is no other
realistic possibility regarding, for example, lung or
renal dysfunctions, neurobehavioral or neurophysio-
logic disturbances, or musculoskeletal and other non-
lethal disorders. A problem with the cross-sectional
design is, however, that the more severely affected
workers might have left their jobs, resulting in an
underestimate of the true health effects of a particular
exposure.

Studies of pregnancy outcome, such as the occur-
rence of malformations or low birthweight may be
regarded as cross-sectional. Also, the prevalence of
pregnancies that terminate in spontaneous abortions
may be compared between women with or without an
exposure of interest. Similar to other cross-sectional
studies in occupational epidemiology, the exposure
information gathered in studies on reproduction may
pertain to an entire period, e.g. pregnancy, or even
before.

The prevalence odds ratio is sometimes used
to measure risk in cross-sectional studies, but
when the prevalence rate is large, as for abortions

or musculoskeletal and other common disorders,
the prevalence odds ratio poorly approximates the
more intelligible prevalence ratio. Hence, when
the prevalence rate is 10% in the unexposed and
40% in the exposed, the odds ratio is 6.0, whereas
the prevalence ratio is only 4.0. Furthermore, a
potentially confounding factor has different effects
on the prevalence ratio than on the odds ratio. Thus,
the use of logistic regression to adjust the odds ratio
for confounding is of little utility in cross-sectional
studies of common symptoms or disorders. Further
details in this regard may be found elsewhere [16,
116, 170].

Cross-sectional studies in occupational health are
usually applied also to data involving molecular
markers such as DNA or protein adducts to indicate
an early effect of an exposure or a sort of subclinical
disorder. There are both shorter overviews and exten-
sive conference proceedings on adduct studies with
a variety of examples in occupational and environ-
mental health [22, 73, 161]. Some further aspects of
the use of molecular biological data are raised in the
section “Use of Molecular Epidemiology in Occupa-
tional Health” below.

Case–Control (Case–Referent) Studies

Etiologic factors for rare diseases are usually best
studied by case–control designs, unless exposures are
very unusual (or extremely common). Except when
the case–control study is nested in a cohort, the
study population is open or dynamic in occupational
case–control studies. Together with the time period
involved, the study population forms the base for a
study. An open base can be predetermined by defining
the study population in geographic or administrative
terms, but, alternatively, the boundaries may be
secondarily laid down by the way the cases are
recruited. That is, the study base can be either primary
or secondary [110].

In a study with a primary base, all cases of the
disease (or a representative sample of these cases)
in an area are ascertained from cancer registries (or
other disease registries when existent) or hospital
files. The cases are compared in terms of various
exposures with a sample of subjects from the study
base, i.e. the controls. This approach implies that
the general population is the reference for estimating
the odds ratio. If the study base is secondary, then
one would have to recruit the controls similarly to
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the cases, such as by taking patients with other
diseases in a hospital to serve as controls for the cases
with the disease of interest from that hospital [109]
(see Case–Control Study, Hospital-based). Results
obtained from a secondary base tend to be less
reliable than those derived from a primary base.

Especially since the 1980s, the case–control study
has become widely used in occupational health for
studying the effects of exposures that are not confined
to any particular industry, as, for example, in studies
of cancer risks from pesticide use in farming and
forestry. The risk of exposure to a particular industrial
process or agent can also be studied by locating the
case–control study to a restricted population living
in the area where a particular factory is located.
Examples include studies of lung cancer risk from
exposure to arsenic in copper smelter workers as
well as in the general population [18, 127]. As an
alternative to a cohort design, a case–cohort study
may be useful by allowing multiple case–control
comparisons against a common control group.

When other disease entities are used as controls,
there is the possibility that these may be associated
with exposure. In this case, the exposure frequency
of the diseased controls does not reflect the exposure
frequency in the base population and the risk ratio
is biased (see Bias in Case–Control Studies). If
a mix of other disorders are intended to be used
as the controls, then some disease entities may be
associated with the exposure and should therefore be
excluded. Should unrelated disorders be misjudged
and also excluded, no bias in the estimated rate ratio
(odds ratio) would result, as the relation of exposed to
nonexposed among the remaining, properly selected,
controls is not affected. Appropriate exclusions
may easily be misunderstood and lead to skeptical
comments, however, unless clear arguments are given
for leaving out some disorders from the control series.
Since more than one occupational exposure might be
of interest as influencing the occurrence of a disease,
a refinement might be necessary in the selection
of control disorders because some conditions might
be related to some but not all exposures under
consideration.

Nested Case–Control (Case–Referent) Studies

A nested case–control study is obtained if the cases
as well as the sample of controls are drawn from a
closed population, that is, within a cohort. The nested

case–control study is usually applied to gather infor-
mation on exposures and confounders not assessable
for all cohort members in the main study. For exam-
ple, the combined effect of an industrial exposure
and smoking (or other exposure) might be of inter-
est. Then, if the distribution of smoking is not known
for the cohort members, smoking status need be deter-
mined only for the cases and for a sample of the base
population, that is, a sample of the cohort members;
see, for example, the nested case–control study of
lymphohematopoietic cancer in a cohort of workers
manufacturing styrene-butadiene rubber [140].

Proportional Mortality Studies and Mortality
Odds Ratio Studies

As already mentioned, the proportional mortality
study has been applied in occupational epidemiology
for many years [78] and may be seen as a kind
of cross-sectional study at the time of death, even
though the deaths considered are not simultaneous.
The principle is to calculate the proportion of deaths
from a particular disease out of all deaths and
calculate the ratio of the proportions of cause-specific
deaths for exposed and nonexposed individuals, the
proportional mortality ratio (PMR). Stratifications
and standardizations for age and other factors may
be applied. Another possibility is to use national
or regional proportions of specific causes of death
for comparisons. The proportional mortality study
tends to be somewhat insensitive because any excess
mortality would not only affect the numerator but also
increase the denominator.

Proportional mortality data may also be ana-
lyzed by a case–control approach – sometimes more
specifically referred to as a mortality odds ratio study.
Analogously to a hospital-based case–control study,
other deaths than those from the disease of interest
are used as controls [8, 111]. Thus, the ratio of odds
of the cause of death of interest to the other deaths
for the exposed and nonexposed, respectively, namely
the mortality odds ratio, can be estimated as the expo-
sure odds ratio for the cases and for the other deaths.
Control diseases should be excluded if they are sus-
pected to be related to the exposure as in case–control
studies with hospital controls. The aforementioned
copper smelter study may illustrate this approach as
comparing various types of cancer and cardiovascu-
lar deaths against a common control group of deaths
unlikely to be related to the exposure [18].
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Correlational Studies

With a continuous census over time in an open
study base, a comparison could even be made with
regard to incidence rates in regions with a more
or less concentrated representation of the type of
industry and exposure under consideration. Although
studies of this type have been presented in the field
of occupational epidemiology, this design cannot be
recommended because of the lack of information
on exposures and confounders at the individual
level and because of the dilution with nonexposed
individuals. The design, also called an ecologic
study, is perhaps more useful in environmental
epidemiology, for example in studying health effects
of air or water pollution.

Character of Exposed Populations and the
Healthy Worker Effect

Being able to work usually requires good health,
which means that there is some selection regarding
who will enter a particular job as well as who is
expelled from it. More skilled jobs tend to recruit
workers with different lifestyles from workers in
less skilled jobs, and health-related departures from
the labor force may be concentrated among low
socioeconomic groups [47]. A particular group of
workers is therefore likely to be healthier than the
general population and also tends to differ from other
workers. This health-related selection process, called
the “healthy worker effect” [107], makes it difficult
to find proper comparison groups and explains why
various worker groups often enjoy better health
outcomes and have smaller risks than expected [6,
44].

One can distinguish between a healthy worker
effect in the period shortly after hire and a healthy
worker survivor effect operating on a long-term basis.
The latter may cause cumulative exposure to become
associated with good health among the long-term
employees and have a tendency to depress the upper
end of an exposure–response curve.

Cohort Studies

In cohort studies, the healthy worker effect is usually
evidenced by a total mortality of about 90% or less
than expected. A decrease in cardiovascular deaths

tends to contribute most to the healthy worker effect,
but other causes of death may also be below expected
levels. Sometimes the observed number of deaths is
as low as only about 50%–60% of the expected,
as, for example, in some studies for cardiovascular
disease [121], other noncancer deaths [24], as well
as cancer [157].

When the healthy worker effect is strong, the
comparison with expected numbers based on national
or regional rates is questionable, but often there is
no alternative reference population. One should be
cautious, however, in concluding that there is no
risk when national or regional rates are taken as
the reference. Even with an appropriate reference,
studies showing no effect should be looked upon
as essentially uninformative or “nonpositive” rather
than “negative” unless there is a large number of
cases [4, 74]. If a cohort is large enough, then
internal comparisons regarding exposure–response
relationships might offer the better comparability,
but often there is no unexposed reference group in
such studies. Regarding the early period of follow-up,
preemployment measures such as health exams create
strong selection for a healthy worker effect; a further
concern is that cases might have been selectively lost
to follow-up – for example, due to sorting out of
deceased individuals from company registries.

The healthy worker effect has been relatively weak
in many cohort studies from the Nordic countries.
Possibly the low unemployment rate that prevailed
for a long period of time made it necessary for
employers to recruit even people with a marginal
health prognosis. In contrast, a more pronounced
healthy worker effect may occur in countries and time
periods characterized by a high unemployment rate.
Usually the healthy worker effect is greater in the
younger age groups in a cohort and in the early phase
of follow-up [125].

In many studies, the higher risk ratios have
appeared among workers with short-time employ-
ment rather than among those who have been
employed for a long time, and risk may decrease with
increasing duration of employment and exposure. The
reason for the poor health outcome in short-time
employees is usually sought in certain lifestyle char-
acteristics. Part of the explanation may also be that
only those workers remaining healthy stay on the job
long enough to achieve a higher degree of exposure
measured as years of employment or as a product of
exposure concentration and time. Allowing for a time
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lag following initial employment tends to reduce this
healthy worker survivor effect.

Adjustment for length of follow-up and employ-
ment status (if associated with the disease, indepen-
dently of the exposure) may also reduce bias from
the healthy survivor effect [55, 123, 151]. Computer
programs are available that can provide appropriate
person-time data for such adjustments [124]. Arrighi
& Hertz-Picciotto [6] compared methods to deal with
the healthy worker survivor effect in a study of
exposure to arsenic on lung cancer risk. The so-called
G method of Robins et al. [136] was thought to be
most appropriate, but a lagged analysis worked rela-
tively well except for diseases with a short induction-
latency time.

Cross-Sectional Studies

A recent study of symptoms of the respiratory tract,
lung function and airway responsiveness in rela-
tion to occupational and smoking histories in under-
ground bituminous coal miners and nonmining con-
trols illustrates selection problems in cross-sectional
studies [131]. Miners with the longest duration of
work at the coal face responded less often to metha-
choline than miners who had never worked at the
coal face, and miners who responded to methacholine
were less likely to have worked in dusty jobs than
miners not responding. It was concluded that these
findings probably resulted from health-related job
selection. Similarly, a cross-sectional study of ani-
mal feed workers revealed a decreasing prevalence
of most chronic respiratory symptoms with increas-
ing years of exposure to dust and endotoxin [144].
Thus, the healthy worker effect may lead to under-
estimation of risk in cross-sectional studies and even
obscure a risk altogether.

Case–Control Studies

The healthy worker effect can also influence the
results of case–control studies if exposed individuals
tend to be healthier than other members of the
population constituting the study base. A more subtle,
reversed, and less obvious healthy worker effect can
occur in hospital-based case–control studies. If the
working population with the exposure of interest
is healthier than others in the study base, then the
controls would less often be exposed, as many of
them come from the unexposed part of the study
population with less good health. The result of the

healthy worker effect in such case–control studies
using hospital (or deceased) controls would therefore
be an exaggerated rate ratio (odds ratio). The same
reasoning applies to proportional mortality studies.
Park et al. [122] have presented parallel analyses
showing that mortality odds ratios (MORs) and
proportional mortality ratios (PMRs) were higher
than standardized mortality ratios (SMRs) for some
causes of death; it seems likely that “the truth”
might be somewhere between the different estimates
obtained. In case–control studies this reverse healthy
worker effect is avoided when population controls are
enrolled.

A related phenomenon in case–control studies
may arise when controls are recruited by random
digit dialing. Subjects answering the telephone are
less likely to be working or to have an exposed job,
especially if exposure is associated with a job that
demands long working hours. Thus, the exposure
frequency in the study base might be underestimated,
resulting in an exaggerated estimate of the effect of
the exposure.

Assessment of Exposure

Conferences held in the early 1990s reflect the efforts
made to improve exposure assessment in occupa-
tional epidemiology [15, 72, 77]. Specific knowledge
is required for preventive measures to reduce or elim-
inate hazardous agents or processes from the work
environment. The proper assessment of exposure is
therefore a key issue in any study of work-related
adverse health effects. There are conceptual diffi-
culties in defining exposure and dose, and further
problems in accurately measuring or classifying the
exposure. Errors in this regard can also affect adjust-
ments for confounding.

Records showing the specific job tasks of the
workers are available in many companies and usually
form the basis for cohort studies, but can also be
used for exposure assessment in case–control and
proportional mortality studies. Case–control studies
often rely on questionnaire information or interviews,
however, and may therefore be subject to recall bias
or interviewer bias (observer bias).

Measures of Exposure

Measures of exposure are usually either exposure
intensity, exposure duration, or cumulative exposure.
For acute diseases, peak exposure intensity is often
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particularly relevant. Cumulative exposure measured
as duration or as time-integrated intensity are often
used in studies of chronic disease. With ionizing
radiation as the paradigm, cumulative exposure is
commonly taken as a proper determinant of risk for
genotoxic and carcinogenic agents, and there are spe-
cific arguments in support of such a measure [134].
These arguments are based on an assumption of lin-
ear kinetics in the metabolism. However, a literature
survey on cancer studies has shown that intensity
measures of exposure often yielded larger relative
risks than duration of exposure, and intensity mea-
sures also often yield monotonically increasing expo-
sure–response curves [26].

Furthermore, in a pharmacokinetic study relating
cumulative exposure to tissue dose for insoluble,
respirable dust particles and toxic metabolites of
a nonpolar organic solvent, Smith [146] found no
linear relationship between cumulative exposure and
tissue dose. It was suggested that this observation
could explain why a disproportionally high risk of
pulmonary effects is commonly seen for workers
with relatively short but intense dust exposures.
Specific measures of exposure that result in large
apparent risks and clear dose–response relationships
have been suggested for particular diseases, such as
silicosis [40].

Job–Exposure Matrices

Occupations or job tasks are easier to recall and
report correctly than exposures to specific agents like
metals, solvents, or pesticides. Hoar [79] proposed a
job–exposure matrix to translate job task histories
into estimates of exposure to specific agents. A
job–exposure matrix consists of jobs on one axis
and specific exposures to substances or other agents
on the other, with the matrix elements describing
the likelihood of an individual’s exposure to a
specific substance in a given job, either in binary
or polytomous categories. A matrix may also
dichotomize exposure on a probability basis [29].

However, it is necessary to adapt the job–exposure
matrix to the country or region and the type of indus-
try where it is to be used. A population-specific
job–exposure matrix may therefore be preferable to
general job–exposure matrices developed elsewhere.
Such a matrix can be constructed from the results
of in-depth interviews of a job-stratified sample of
cohort members [97].

Ronneberg [138] used a job–exposure matrix in
a study of Norwegian aluminum smelter workers.
Jobs held by cohort members were identified from
personnel records; work tasks and their locations
were determined for all jobs, and information was
gathered about changes in exposure conditions over
time. Then the jobs were combined into categories
thought to represent similar exposure conditions, and
time-weighted average exposures were estimated on
a relative scale.

A specific job–exposure matrix for chlorinated
solvents assigned semiquantified estimates of the
probability and intensity of exposure to each four-
digit job category of the Standard Industrial Clas-
sification and Standard Occupational Classification
codes in the US [61]. The matrix was also designed
to account for the changing patterns of use of these
solvents by decade from the 1920s to the 1980s.
An algorithm was applied to assign each study sub-
ject a unique lifetime probability of exposure and
an estimated score of cumulative exposure for each
of the solvents. An important goal of the matrix
was to reduce the number of false positive exposure
assessments.

The latter principle is corroborated by a study
of astrocytomas and exposure to methylene chloride
showing that the odds ratios increased with increasing
specificity of the exposure assessment [53]. The
risk estimate more than tripled compared with the
risk estimate obtained without taking probability of
exposure and exposure by decades into account and
coding for industries and occupations.

There have been many comparisons and eval-
uations of the validity of the various approaches
to assess exposure. Structured questionnaire infor-
mation is commonly used, but underreporting of
exposure remains a problem [90, 128]. On the basis
of a large-scale study from Canada [143], Dewar
et al. [48] found that the assessment of exposure by
an expert team was more efficient than the use of a
job–exposure matrix. This may explain why inter-
views resulted in several increased odds ratios in
a study of mental retardation and parental occupa-
tion, whereas the use of a job–exposure matrix did
not [137].

Men and women with the same job title may
have different exposure patterns, indicating a need for
gender-specific job–exposure matrices [108]. A com-
parison of information on exposure to dusts, gases,
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and fumes from a job–exposure matrix with ques-
tionnaire data indicated a better agreement in men
than in women and suggested that men had a more
accurate recollection of exposure – especially well-
educated men [80]. Smoking habits had no effect on
the perception of exposure. For women, the percep-
tion of exposure did not vary significantly according
to respiratory symptoms. In men, however, subjects
without chronic cough or chronic bronchitis even had
a significantly higher perception of exposure than the
others, but no difference was shown for wheezing,
dyspnoea, or asthma.

Stengel et al. [152] compared the performance
of experts vs. job–exposure matrices in studies of
glomerulonephritis and bladder cancer. Categories
of exposure as obtained from both experts and
job–exposure matrices were dichotomized, using dif-
ferent cutoff points for exposure and nonexposure.
Sensitivity of the job–exposure matrices vis-à-vis
the experts was low (23%–63%), whereas specificity
was rather high (87%–98%). Assuming an odds ratio
of 3 and an exposure prevalence of 10%, and taking
the experts’ classification of exposure to be com-
pletely correct, the use of a job–exposure matrix led
to attenuation of the odds ratio by a factor of 1.5–2.1,
and to a loss of power equivalent to a reduction in
the number of subjects by a factor of 5–10. On the
other hand, the job–exposure matrix performed better
than self-reported exposure in discriminating high-
risk subgroups in a study of lung cancer and asbestos
exposure among construction workers [56].

Job–exposure matrices have also been applied
to assess physical exposures such as electric and
magnetic fields [21, 91] as well as to study aspects
of work organization such as work control, social
support, and psychological and physical job demands
[92, 65]. Also, a kind of job-exposure matrices have
recently been elaborated for assessing exposure to
carcinogens in some European countries [93, 94].

Some Other Aspects on Exposure Assessment

Data from biological monitoring programs may be
helpful for exposure assessment in cohort studies.
For example, when animal studies indicated a cancer
risk from trichloroethylene in the late 1970s, exist-
ing data from routine monitoring of the metabolite
trichloroacetic acid in urine could be used for defin-
ing cohorts for follow-up with regard to cancer [20,
156]. Although trichloroacetic acid in urine clearly

indicated exposure, the proper measure of exposure
(e.g. peak values or simple averages) was not evident.

Hygienists are needed not only for judgments
about whether a particular exposure is likely to have
occurred, but also to evaluate documents on previ-
ously measured exposures. Measurement strategies
and methods of sampling and analysis have varied
over the years. It is especially important to consider
the sampling strategies when hygienists’ measure-
ments are used for epidemiologic purposes [158].
The reason is that such measurements usually have
been made for control of the work environment after
changes in an industrial process for hygienic or tech-
nical reasons and therefore tend to underestimate the
average daily exposures.

Considerable differences in exposure may occur
between workers from the same factory and with the
same job titles [96]. Only one-quarter of some worker
groups had individual mean exposures within a two-
fold range for 95% of the individuals. Furthermore,
about one-third of the worker groups had a greater
than 10-fold range for 95% of the individuals. There
were also large day-to-day variations, especially for
outdoor workers and when the process was intermit-
tent. Indoor work in a continuous process led to more
homogenous exposures. Others have reported similar
observations regarding exposure variation [36, 126]
and a suggested approach to deal with the problem of
retrospective exposure assessment by Bayesian meth-
ods has lead to some discussion [37, 133 ].

Uncertainties are likely to affect any exposure
assessment, causing some individuals to be taken
as more exposed and others as less exposed than
they really are. In principle, one should emphasize
the need for a positive predictive value rather than
sensitivity of a job-exposure matrix or a questionnaire
for assessing exposure to agents of interest [132]; the
reverse is true for confounding factors, however.

Sometimes the presence of recall bias or observer
bias in case–control data can be revealed by
comparing the odds ratio for those with and without
reported exposure but within job categories with
potential exposure. If the latter, who report no
exposure, show a decreased risk in comparison to
those in clearly unexposed jobs, it is likely that
an increased odds ratio for those reported exposed
reflects some bias in the assessment of exposure [9].

If there are no systematic influences on the expo-
sure assessment, then the result is nondifferential
error, which usually leads to risk estimates that are
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biased towards the null value (see Misclassifica-
tion Error). Nondifferential misclassification makes
it difficult to discover adverse health effects by atten-
uating the risk estimates. However, even in the pres-
ence of nondifferential error, chance sometimes may
lead to exaggerated risk estimates. Little attention has
been paid to this possibility in reporting of study
results, but it has been well illustrated by computer
simulations [148]. Dosemeci et al. [52] showed that
discretizing continuous exposure data can lead to
biases away from the null if nondifferential error acts
on the continuous exposure measurement.

Assessment of exposure in limited time win-
dows may yield particular insights. A time-window
approach that is sensitive to recent exposures may
enable one to detect a late stage effect for cancer or
other diseases. For example, exposure to radon and
radon progeny in mines in the 5–15 years before
lung cancer seems to have had an important effect on
risk [25].

Confounding in Occupational
Epidemiology

Determinants of risk that are associated with the
exposure under consideration can spuriously increase
the apparent risk from this exposure. Such deter-
minants are called “confounders”. Confounders can
also obscure an effect, either when the confounding
risk factor tends to be more common in absence of the
exposure or when it is protective. In principle, con-
founding may explain all or part of an association of
a disease with an exposure, either because the con-
trol of a known confounding factor is incomplete, or
because the confounder has not been identified. Mis-
measurement or nondifferential misclassification of a
confounder can lead to poor control for confounding
[3, 132]. However, as long as the exposure under
study has a quite strong effect, incomplete control of
confounding is not too deleterious for risk estima-
tion [14, 62].

Often the concern about confounding in occupa-
tional epidemiology has been focused on lifestyle
factors such as smoking and alcohol use or socio-
economic class. Even for a strong risk factor like
smoking for lung cancer, the confounding influence
is quite modest because smoking tends to be nearly
equally prevalent among the occupationally exposed
and the unexposed [7, 14].

The most important confounders to consider in
occupational epidemiology are other work-related

exposures and factors [42]. For example, it is dif-
ficult to investigate the role of welding fumes on
lung cancer risk because asbestos has often been used
in protective equipment in the welding process, and
there is also considerable exposure to magnetic fields
from electric arc welding, which may or may not be
a risk factor. Likewise, in the artistic glass industry,
there has been exposure to many different and poten-
tially carcinogenic metals or metallic compounds, but
again, asbestos has also been present to protect from
the warm glass [86].

Sometimes various exposures are inextricably
linked. For example, some phenoxy herbicides have
contained impurities of chlorinated dibenzodioxins as
a result of the manufacturing process. The association
between exposures of this kind is so tight that there
is no way to control properly for confounding of
one compound to find out the effect of another.
Instead, one has to consider the effect of these
exposures en bloc [7]. Similarly, occupational job
titles might sometimes have to be viewed as blocs of
exposures. The best possibilities for prevention occur,
however, when specific exposures or processes can be
identified as hazardous.

Since a worker may be exposed to a complex array
of occupational and other agents of physical or psy-
chosocial character, there is considerable potential for
some mutually confounding effects in occupational
studies. For this and other reasons, it has become
increasingly common to consider many exposures,
especially in case–control studies. For example, Blair
et al. [27] considered some 150 occupations and
about as many industrial categories in a study of
lymphoma. When a great number of exposures are
analyzed, false positive findings may result from
the play of chance in the many comparisons. There
is also the possibility that confounding from one
or more of the exposures associated with increased
risk may explain some other positive associations as
well. More interest should probably be devoted to
this possibility than to the consequences of multiple
comparisons because exposures for consideration in
a study are not randomly selected but are usually
included on the basis of some evidence or suspicion
of an adverse effect.

Interaction of Exposure Effects

When multiple exposures occur in occupational set-
tings it would be useful to know whether synergistic
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or antagonistic interactions are present (see Synergy
of Exposure Effects). Not many examples in this
respect were found in a literature survey [10], but,
for example, combined exposure to vinyl chloride and
arsenic increased the risk of respiratory cancer, and
the combined exposure to phenoxy herbicides and
solvents seemed to increase the risk of lymphoma.
This latter interaction has also been recently con-
firmed by other data in which the combination of
phenoxy herbicides and solvent exposure gave an
odds ratio of 8.6 vs. 2.6 and 1.4, respectively, for
the two exposures alone [130]. Exposure to plastic
and rubber chemicals resulted in an odds ratio of 2.2,
which increased to 4.8 in the presence of solvents.

As in these examples, the sample sizes available
for assessing such occupational interactions are usu-
ally small, resulting in considerable uncertainty in
the estimates. A background of differently combined
exposures may explain inconsistent findings obtained
in different studies on the same agent, as can inter-
actions with factors outside the work environment.
In the latter respect, the strong synergistic effect of
smoking and asbestos exposure on the risk of lung
cancer is a classical example [66]. Arsenic and smok-
ing also act synergistically to increase the risk of
lung cancer [129]. A synergistic effect of smoking
and exposure to radon progeny seems likely as well,
although the results differ to some extent between
studies [25].

Use of Molecular Epidemiology in
Occupational Health

The great achievements in molecular biology over
the past decade have also influenced occupational
epidemiology [71, 73, 147, 161]. Chemical adducts
to deoxyribonucleic acid (DNA) or various proteins
like hemoglobin and albumin have been used as either
markers of exposure or taken as early adverse health
effects. A somewhat later development has involved
attempts to evaluate exposure effects in relation to
metabolic polymorphism and to detect mutations,
for example in the p53 gene. Specific mutations in
the p53 gene in squamous skin cancers have been
associated with UV-light exposure [31] and in liver
tumors with widespread exposure to aflatoxin B1 and
hepatitis B virus [34, 81], and, by analogy, it is likely
that characteristic mutations may result also from
occupational exposures to carcinogens.

Studies involving adducts are usually of a cross-
sectional design and tend to reflect rather recent
exposures due to the turnover of cells and pro-
teins in blood. There is a similarity in this respect
to investigations based on chromosomal aberrations,
sister chromatid exchanges or micronuclei. These
latter type of studies became common in the late
1970s and early 1980s [149]. It has been unclear to
what extent chromosomal damage implies any serious
effect, but a cohort follow-up indicates that chro-
mosomal aberrations might be predictive of cancer
development [64]. The relation to known exposures
to carcinogens remains uncertain, however [28] In
an evaluation of the cancer risk to humans from
styrene exposure, an IARC Working Group took into
special account the many studies indicating chromo-
somal damage [87]. Even so, there now seems to be
a decreasing enthusiasm to use chromosomal damage
as an outcome measure.

The case–control design is well suited to detecting
exposures that can lead to mutations in oncogenes or
tumor suppressor genes [147]. The cases are divided
into subentities defined by some mutational charac-
teristic, and each such subentity of cases is compared
with controls regarding exposure. For example, Tay-
lor et al. [153] compared 62 cases of acute myeloid
leukemia with 630 controls. The 10 leukemia patients
who were positive for ras-mutation were found to
have worked more often in high risk occupations.
Odds ratios between 1.9 and 7.2 were obtained for
the various exposure categorizations made. In con-
trast, the odds ratios for the ras-negative cases ranged
from 0.6 to 0.9.

The case–control design is also useful for
studying the impact of the genetically determined
polymorphism of enzymatic activity and metabolic
capacity that determines the susceptibility to risk
from an occupational exposure. For example,
individuals with one form of the polymorphic
CYP1A1 gene appeared to be more susceptible to
risks from smoking and occupational exposures such
as asbestos than those with other alleles [38, 100].
Although these results have not been confirmed, the
applied epidemiologic design used in these studies
defines a valid approach for studying metabolic
activity and occupational exposures as well as
smoking. Efforts to identify individuals at increased
occupational risk for bladder cancer because of a
glutathione-S-transferase M1 deficiency can serve
as another example of this type of study [35].
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Glutathione-S-transferase polymorphism may also
influence the susceptibility to nonmalignant asbestos-
related disease [145].

Occupational exposures may even increase the risk
for a clearly inherited disorder. Few individuals with
the genetic trait for familial amyloid polyneuropathy
develop the disease, suggesting that some other
factors might have been involved in the clinically
overt cases. In a case–control study of this disorder,
solvent exposure appeared as a fairly strong risk
factor, with an 11-fold risk for the more heavily
exposed [69].

More time is needed to evaluate the role of
molecular epidemiology for identifying health risks
in the workplace. The complexity and the costs
involved in these studies will remain a major hin-
drance for future development, even though some
interesting and important results are likely to appear.
Identification of genetically determined susceptibil-
ity to occupational exposures raises ethical concerns
because persons without elevated susceptibility may
be selected for employment. Instead, the proper goal
should be to create a safe work environment even for
those individuals who are more susceptible.

The Etiologic Contribution of
Occupational Exposures

The proportion of disease burden attributable to
specific exposures or jobs is rather substantial. In
Germany, for example, about 250 asbestos-associated
lung cancers and 400 mesotheliomas have been
recognized and compensated for each year [23]. Lung
cancer claims among the underground uranium mine
workers in Thuringia and Saxony ranked second to
asbestos. Lung cancers related to silicotic scar tissue
and to chromium (VI) and arsenic compounds and
other chemicals were also subject to compensation.

Estimates of the etiologic contribution of
occupational exposures to morbidity or mortality may
be obtained by calculating the so-called population
attributable risk or etiologic fraction. Any particular
occupational exposure is quite rare in the general
population, however, and can therefore cause only
a limited proportion of disease. The overall burden
of diseases related to various occupational exposures
may nevertheless be considerable. A study of lung
cancer in Norway indicated a population attributable
risk of 22%–35% for occupations with definitely

hazardous exposures [95]. The estimate rose to
37%–47% when jobs with “possibly exposed”
categories were also included. Asbestos exposure
was the main single risk factor. Attributable risks
may add up to more than 100% due to interaction
between risk factors. Not surprisingly, therefore, the
contribution from smoking could still be estimated to
be 82%. Quite similar estimates have more recently
been reported also from Sweden and Finland [12,
117].

The quantitative impact of working conditions on
cardiovascular diseases in Denmark has been sug-
gested to account for 16% of the premature cardio-
vascular mortality in men and 22% in women [118].
Including sedentary work as an occupational risk fac-
tor, the etiologic fractions rose to 51% and 55%
for men and women, respectively. Monotonous high-
paced work and shift work were considered the most
important single factors, whereas the impact of rather
rare chemical exposures to carbon disulfide, nitrogly-
col, lead, arsenic, carbon monoxide, and other agents
was marginal.

Estimates of attributable risk for musculoskele-
tal and neurologic disorders can be calculated as
well. Olsen et al. [120] estimated the population
attributable risk for coxarthrosis, a degenerative con-
dition of the hip joint, as 40% for physical workload
on the job, 55% for sports, and 15% for excess
weight. Overall these three risk factors could account
for about 80% of the “idiopathic” coxarthrosis. Landt-
blom et al. [98] reviewed 10 studies of multiple
sclerosis and found relative risks near two for expo-
sure to solvents. Assuming the frequency of relevant
solvent exposure to be in the range of 10%–20%
in an industrialized country, one would estimate a
population attributable risk of about 10% or more.
These few examples indicate that the contribution
of occupational exposures to cancer as well as other
disorders is not negligible.

Concluding Remarks

Identification of risks from occupational exposures
and quantification of the associated burden of
diseases should lead to prevention efforts. Mandated
and voluntary changes in the work environment
and proper supervision to ensure compliance with
regulations may be as beneficial to health as attempts
to change personal habits and lifestyle. Continuous
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epidemiologic surveillance is important to obtain
information about the long-term impact of preventive
measures.

When an epidemiologic study indicates a health
risk associated with an industrial process, required
changes in the production process may be costly.
Workers and the management often hold different
views of the balance between the costs and health
benefits of preventive measures. It is not unusual,
however, that an improvement in the work envi-
ronment also improves productivity; even so there
is usually considerable resistance from an industry
to accept epidemiologic evidence of a risk and to
improve the work environment.

The method of presenting epidemiologic results is
critical to a successful prevention strategy when seri-
ous health effects are indicated, such as excess cancer
deaths or malformations. When the study pertains to
a particular plant or company, it is advisable first
to inform the management as well as the employees
or their representatives. Mass media may be inter-
ested as well, but untimely information through the
media can create controversy and hostility towards
occupational health research. Press conferences in the
presence of management and worker representatives
can be useful for limiting negative publicity for a
company, because, eventually, the mass media will
get access to the information when a scientific report
is published. It is therefore advisable to provide infor-
mation in a more controlled manner [11].

In view of the technical difficulties of conducting
epidemiologic studies and a natural reluctance to
accept that an industrial process may be harmful,
it is not surprising that interpretations of data may
differ and serious controversies arise. For example,
in 1966 Hueper [82] reconsidered his early warnings,
in view of the European experiences, of lung cancer
risk from exposure to radon progeny, and accused
government officials of having impeded studies of
this health hazard among uranium miners in the US.
By 1966, Hueper’s suspicions had been confirmed
by the first report on an excess of lung cancer among
these miners [164]. As late as 1971, B. MacMahon
wrote in the preface to a comprehensive report on
lung cancer in uranium miners [101]:

The epidemic now in progress among American ura-
nium miners could readily have been – and indeed
was – predicted on the basis of past experience in
other parts of the world. Less predictable was the

extent of the scientific, legal and political contro-
versy that the American experience would engender.
Although . . . few medical experiences have been so
carefully documented, diametrically opposite opin-
ions are still held and expressed not only regarding
the interpretation of the facts that have emerged but
as to the nature of the facts themselves.

When epidemiologic study results are weak or incon-
sistent it is indeed difficult to come up with a tenable
judgment on the health risk involved. Some subjec-
tivity is unavoidable in such situations, but decision
makers may get some guidance from ethical consider-
ations. Hence, it seems reasonable to give the benefit
of the doubt to those suffering the risk [4], and in
balancing benefits against risk one has to be clear
about who takes the risk and who has the benefit. In
occupational health, the situation is more complicated
than in medical treatment, where the risk of adverse
side-effects might be weighed against benefits for the
same individual [162]. A comprehensive discussion
of the ethical guidelines in occupational health can
be found elsewhere [139].
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Occupational Health and
Medicine

Occupational health is an activity organized to protect
the health of employees from harmful consequences
arising out of their work. It includes industrial
medicine and occupational medicine which also
provides medical surveillance services. The aims are
to reduce the frequency and severity of occupational
diseases, i.e. diseases caused or exacerbated by
the occupational environment, and hence to reduce
premature death and disability. The prevention or
reduction of occupational disease is emphasized,
and this involves changes in the occupational
environment that may be achieved by those practicing
occupational hygiene. The importance given to
occupational health is dependent on the social
attitudes of the population in which it is based,
and many of the occupational health questions now
considered would have seemed of trivial concern a
few decades ago. Occupational health includes safety,
sometimes emphasized by the use of the term “health
and safety”, which is concerned with the reduction of
accidents in the workplace.

Important elements are first the identification of
adverse health effects of occupational exposure to
a pollutant (see Occupational Epidemiology) and,
secondly, the implementation of measures to reduce
exposure and hence the frequency or severity of
adverse health effects. This second step may involve
standard setting, i.e. the setting of exposure limits
predicted to lead to minimal adverse health effects.
The setting of such limits may utilize dose–response
data but also takes into account practicality and the
milieu in which employers and workers interact.

Historical Development

The Italian physician, Bernardino Ramazzini (1633–
1714), has been referred to as the “father of occupa-
tional medicine” [13]. He was professor of medicine
at the Universities of Modena and Padua. He stressed
the importance of direct examination of workers
and introduced the concept of the taking of an
occupational history. He described diseases associ-
ated with a wide range of occupations and their
causes [24], including diseases caused by the inhala-
tion of dusts and gases and those caused by poor

ergonomic practices. Ramazzini’s publications were
the main source on illnesses caused by work for
over a century [18]. Popper [22] drew the distinc-
tion between “occupational diseases” and “workers
diseases”, the former restricted to diseases caused
directly by some intrinsic feature of the occupa-
tion, such as exposure to a chemical, while the latter
also includes diseases occurring for socioeconomic
reasons associated with the occupation. Ramazzini
had noted that breast cancer was more prevalent
in nuns than other women, and attributed this to
celibacy.

In the eighteenth century there was a growing
concern on the effects of industrialization. Guy [10]
analyzed the proportion of deaths due to pulmonary
consumption in broad occupational groupings and
attributed an excess of such deaths to poor conditions,
such as inadequate drainage and ventilation, an
inadequate water supply, and overcrowding, in
both dwellings and workshops. William Farr
(1807–1883), the first compiler of Abstracts in
the General Register Office of England and
Wales, introduced a classification of occupations
in 1851 that was used for the analysis of
occupational mortality from official vital statistics.
Later, Hill [12] used national insurance statistics
to examine sickness absences of printers, cotton
weavers, and spinners. From about this time, and
particularly after the end of World War II, there was
increasing attention to research into the extent and
causes of occupational diseases, and this research
necessitated the application of statistical concepts
and methods into the design and analysis of
studies.

Types of Study

The relationship between the occupational environ-
ment and health has been studied in a variety
of ways. Insofar as occupational diseases may be
caused by industrial pollutants, then basic studies
of the interaction between pollutants and biologi-
cal systems have been carried out in toxicology, by
in vitro experiments, and by animal experimenta-
tion.

Studies of humans have involved experimentation,
looking at acute effects, but such studies are infeasi-
ble, and unethical, for chronic effects. Such effects
have been studied by epidemiologic investigations
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(see Observational Study). The outcome variables
include mortality, the occurrence or presence of a dis-
ease, and the value of a variable that measures some
function of health (see Health Status Instruments,
Measurement Properties of). For example, mea-
sures of lung function, such as the forced expiratory
volume, are indicators of health but do not indicate
disease unless grossly abnormal. Disease outcomes
include diseases specific to occupational exposure,
e.g. the pneumoconioses are caused by the inhala-
tion of dust or fibers. They also include nonspecific
diseases, the incidence of which may be increased by
occupational exposure. For example, the frequency
of lung cancer is increased by exposure to asbestos
and a number of chemicals, but it occurs also in the
absence of such exposures.

The main study designs employed have been:

1. Cross-sectional study – a study examining the
relationship between disease, or a measure of
health, and occupational conditions at a given
time.

2. Cohort study – a study in which subjects are
selected and followed-up over time to observe
their mortality, morbidity, or changes in some
functional measure of health, and to relate these
to the exposure within the occupation. Cohort
studies have been used particularly in the study
of cancer, and frequently are historical cohort
studies in which the cohort is defined in terms
of existing historical data, such as records of
employees. Follow-up is then from some time
in the past – often many years or decades – to
the present (see Cohort Study, Historical).

3. Case–control (case-referent) study – A study
in which cases of disease are identified and non-
cases are chosen as controls or referents. The
previous occupational exposure history of cases
and controls are then ascertained and compared
to give estimates of the association between
the occupational environment and the disease.
Case–control studies may be nested within a
cohort study so that the cohort study is used
to identify cases of disease in an occupational
population and the case–control study is used
to obtain more detailed information on expo-
sure on a smaller number of cases and con-
trols than would be practical for all members
of a large cohort (see Case–Control Study,
Nested) [16, 14].

Landmark Studies

One of the earliest controlled clinical trials took
place in the area of occupational health. J. Lind, a
naval surgeon on the Salisbury, divided a group of
12 seamen suffering from scurvy into six groups of
2. One of the treatments was two oranges and a lemon
a day, and the “most sudden and visible good effects”
were observed in the two seamen receiving this
treatment. Regrettably it took another 50 years before
lemon juice was supplied as a dietary supplement on
British naval vessels [15; 21, pp. 14, 15].

The association between exposure to occupational
environments and cancer has been a constant theme.
The first malignant disease to be associated with a
particular occupation was cancer of the scrotum in
chimney sweeps, described by Percivall Pott [23];
see [20] and [27]. Härting & Hesse [11] reported an
excess of respiratory cancers in underground metal
miners, later shown to be due to radon daughters. This
was the first association between an external agent
and an internal cancer. The studies of Doll [6] on lung
cancer amongst gas-workers, and of Case et al. [2]
on bladder cancer and exposure to chemicals, were
important studies, not only with respect to the
identification of occupational carcinogens, but also in
the early use of historical prospective cohort studies
and the use of the person-years at risk method of
mortality analysis. The risk of exposure to asbestos
in producing lung cancer has been identified and
confirmed using historical prospective studies [7, 25,
19], and the strong link between asbestos exposure
and mesothelioma has been evaluated using similar
studies following the identification of the link by
Wagner et al. [26].

Particular Statistical Concepts, Problems,
and Techniques

Most of the statistical methods used in occupational
health are not unique to that area. Problems of
potential bias due to confounding are often present
in epidemiologic studies since the workers in groups
to be compared may differ systematically in other
characteristics. The confounding effect of smoking
in studies on occupational respiratory diseases is
a particular problem because of the large effect
on health of the smoking habit (see Smoking and
Health). A particular type of bias, which may be
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considered as due to confounding, but is more
usefully considered separately, is the “healthy worker
effect”, which may arise in any epidemiologic study
in which a workforce is compared with the general
population or different workforces are compared with
one another. A second problem is that due to the
latency of occupational cancers, i.e. an excess of
cancer due to occupational exposure does not occur
until many years after the exposure (see Latent
Period). Related to this, during a follow-up study of
current workers the extent of exposure is constantly
changing during the period of follow-up when
adverse health effects are being noted. This makes the
linking of the extent of exposure to the health effect
difficult. A full account of many of the statistical
methods used in occupational health is given by
Checkoway et al. [3].

Healthy Worker Effect

Studies of occupational health are carried out in
groups of workers who select themselves, and are
selected by employers, into particular occupations.
These selection processes lead to the “healthy worker
effect”, which occurs because they are likely to
eliminate the most unhealthy from entering the
workforce and also may mean that those developing
ill health are less likely to remain in the job. As noted
by McMichael [17], these selection effects lead to
lower mortality rates than would be expected. Fox
& Collier [9] noted that the healthy worker effect
consisted of three components, which they attributed
to selection (see Selection Bias), survival, and length
of follow-up. They found that the effect was
particularly marked in the first 10 years after the start
of employment in which there was exposure to vinyl
chloride. The consequence of the healthy worker
effect is that comparisons of mortality between
employed groups and the general population may
be biased unless workers are followed-up after they
have left the employed group and unless comparisons
take account of time since the start of employment.
Methods of analysis using internal comparisons may
take account of the initial selection criteria provided
that these were applied similarly to the groups under
comparison.

The Analysis of Mortality – External Comparisons

One method of analysis of follow-up studies where
the outcome is mortality consists of the comparison

of the observed number of deaths due to all or specific
causes with the number that would be expected taking
into account the age distribution of the cohort studied,
the period during which follow-up occurred, and the
varying lengths of follow-up of the different subjects
in the study. The indirect method of standardization
is the basis of the method, referred to as the person-
years method (see Standardization Methods). This
method was first used by Doll [6] and has been
commonly applied in occupational mortality studies.
The total follow-up period is divided into periods,
usually of 5 years, and within each of these periods
the ages of those persons followed within that period
of time are similarly subdivided, again usually into
5-year groups. The expected number of deaths is
calculated by multiplying the person-years at risk
in each of the age–period intervals by the age- and
period-specific death rates of a standard population.
The standard population is a national or regional
population for which death rates are available. The
usual measure of effect is the ratio of observed
to expected deaths which, in analogy with indirect
standardization, is often referred to as an SMR.

The method has usually been applied to single
groups or descriptively to a few subgroups, but
may be extended to take account of other variables
recorded for the persons followed-up using Poisson
regression [1].

The Analysis of Mortality – Internal Comparisons

A disadvantage of the person-years method is the
implicit assumption that the death rates in the
occupational group would be the same as in the
standard population except for factors within the
occupational environment. While this assumption is
not strictly necessary, the healthy worker effect has
to be taken into account in the interpretation of the
results. The method does assume that the death rates
in the occupational group and the standard population
are in a fixed proportion in all the age–period
groups, i.e. that the standard death rates apply to
the occupational group at least proportionally. The
approach may be modified by working internally
within the occupational group and avoiding the use of
a standard population for comparison. This leads to
internally calculated SMRs, and comparison of more
than two of these depends on proportional hazards
of the subgroups across the age-period strata. This
problem may be overcome by the use of directly
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standardized rates, which leads to the standardized
rate ratio (SRR).

All these methods involve stratification and be-
come imprecise when there are several variables to
take into account. Stratification can be avoided by
using the most general method, i.e. Poisson modeling
(see Poisson Regression).

As it is often required to assess the mortality
of an occupational group in the context of the
population of which the workers are a part and
also to assess dose–response relationships within
the occupational group, or to compare subgroups
within the whole occupational group, a combination
of external and internal methods is appropriate.
For example, Checkoway et al. [4], in a study of
workers employed in the mining and processing of
diatomaceous earth, compared the mortality due to
lung cancer in the whole group. The methods of
analysis included comparison with US national death
rates using the SMR and internal analyses using
Poisson regression to examine the trend with duration
of employment. The combination of methods led to
the conclusion that there was an excess of deaths due
to lung cancer in the workforce, compared with the
US population, and that this excess was associated
with duration of employment in dust-exposed jobs.

Time-Related Exposure and Covariates

A measure of exposure to an occupational agent
that may be used is cumulative exposure, i.e. the
intensity of exposure accumulated to give a time-
weighted cumulative measure. Clearly this measure
will continue to increase as long as exposure
is occurring. Methods of analysis relating health
outcomes to exposure have to take this into account,
not only with respect to the appropriate exposure
to link with the outcome event, but also, equally
importantly, to allocate the earlier years, when the
event did not take place, to the lower cumulative
exposure; failure to do this results in biased
results [8]. Other variables that may be included in
the analysis as covariates (confounders) may also be
time-dependent (see Time-dependent Covariate) –
for example, smoking and age. One way of dealing
with this problem is through a proportional hazards
model [5] with time-related variables. Another way
when there are no covariates is to use the person-
years method, or corresponding internal methods,
with each individual transferring from one cumulative

exposure category to the next when the cumulative
exposure reaches the appropriate values.

Latency

Many diseases do not occur until some time after the
exposure that has caused the disease. In particular,
occupational cancers usually do not occur, i.e. they
cannot be diagnosed, until at least 10 years after
exposure. This feature should be incorporated into
the analysis since, otherwise, very recent exposure,
that cannot be relevant to the disease, is included as
if that exposure were relevant. One method of dealing
with this problem is to begin the follow-up after an
interval, of say 10 years, since the start of exposure,
and to ignore deaths and person-years at risk within
this interval. This method does not allow regression-
type methods including cumulative exposure but
may be extended for this situation by defining a
lagged cumulative exposure; for example, the lagged
cumulative exposure relevant to the disease risk
of a 45-year-old worker would be the cumulative
exposure at age 35.

Allowing for latency also helps to reduce the
influence of the healthy worker effect.

Future Developments

The perceived importance of occupational diseases
is dependent on societal attitudes. The major
occupational effects of early industrialization have
been eliminated, and the large excess death rates
due to exposure to asbestos and other occupational
pollutants have been identified and preventive
measures taken, although the excess mortality
continues to occur because of the long latency effects.
Concern has moved to the possibility or suspicion of
smaller effects. Methods will need to be developed to
identify small effects of occupational pollutants. As
the estimation of small effects may not be achievable
by epidemiologic studies, there is likely to be an
increasing emphasis on biological methods and on
the translation of biological findings into meaningful
risk assessments for exposed populations.

The concept of individual susceptibility to disease
has been a long-standing concept, but there has
been insufficient knowledge for most occupational
diseases on how to identify those who would be most
susceptible to occupational exposure. This means
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that it has not been practical to screen out of the
exposed workforce those most likely to develop
disease due to exposure to a pollutant. Advances
in molecular epidemiology may contribute to this
area by leading to the possible identification of
susceptible individuals, who could be advised to
avoid employment in particular industries.
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Occupational Mortality

The study of occupational mortality involves the
systematic tabulation of mortality by occupational
groups or by socioeconomic groups (see Social
Classifications) when these are defined by occupa-
tion. Three main methods are used to conduct these
studies.

The first method, cross-sectional studies, utilizes
the number of deaths occurring to persons in a given
occupation during a given time period divided by the
number of persons in that occupation in the mid-
dle of the period. The source for the numerator is
usually death certificates; the denominator is usu-
ally based on the census. As the age distribution
varies considerably between the occupational groups,
an age standardization is needed in order to com-
pare the mortality of different occupational groups. In
the cross-sectional studies, the comparative mortality
figure (CMF, direct standardization) or the standard-
ized mortality ratio (SMR, indirect standardization)
are used as summary measures of an occupational
group’s relative mortality.

The second method, death certificate studies, in-
volves the distribution of deaths by cause for a given
occupational group compared with the distribution
for a total population without regard to occupation.
Such studies are often sex-specific or limited to the
male population. Here proportional mortality ratios
(PMRs) are used as summary measures for each
occupational group’s relative mortality from a given
cause of death.

The third method, follow-up studies (see Cohort
Study), is based on individually matched records and
typically on census data. A census population is fol-
lowed up for deaths and emigrations, and maybe also
for new census data, which allows separate analy-
ses of persons who stayed in an occupation from one
census to the next. In these studies various methods
are used for the matching of individual records (see
Record Linkage). In the UK, for example, the study
population is flagged in the National Health Service
Central Register; whereas in the Nordic countries the
matching is based on the personal identification num-
bers used in both censuses and death and emigration
registrations. In the follow-up studies, the CMFs and
SMRs are often used as summary measures for an
occupational group’s mortality. However, each indi-
vidual in these studies has a record containing the

census characteristics, the number of person-years
at risk, and the eventual cause of death. It is there-
fore possible to use these data sets also for internal
comparisons of the mortality between occupational
groups; for example, controlled for sex, age, marital
status, and region.

Cross-Sectional Studies

The study of occupational mortality is closely linked
to procedures developed in England and Wales,
where the first cross-sectional study was published in
1855 [37]. Since then, occupational mortality studies
have been published every ten years; no other coun-
try has a similar record. The potentials and limitations
of cross-sectional studies are therefore best illustrated
by this series of data.

It was realized in England in the late 1840s that

if the age of the various classes of society . . . are
abstracted from the census returns . . . and if the
deaths are abstracted in the same classes . . . the
relative mortality . . . can be satisfactorily deduced
. . . and much light will be thrown upon the causes
which really influence the health and well being of
the working, middle and higher classes [36].

Farr used this method to tabulate the mortality for
1851 by occupation, and commented that

the professions and occupations of men open a new
field of inquiry, on which we are now prepared
to enter, not unconscious, however, of the peculiar
difficulties that beset all inquiries into the mortality
of limited, fluctuating, and sometimes ill-defined
sections of the population [37].

The methodological problems entailed in occupa-
tional mortality studies were thus realized from the
very beginning. In 1851, miners, bakers, butchers,
and inn and beershop keepers experienced the heav-
iest rates of mortality.

CMFs were first calculated for the 1880–1882
data. The 1900–1902 data showed a variation in the
CMF from 600 or below for clergyman, priest, min-
ister; gardener, nurseryman, seeds-man; gamekeeper;
and farmer, grazier, farmer’s son, etc.; to 1800 or
above for inn-, hotel-servant; costermonger, hawker;
tin miner; and general laborer [38].

In the 1910–1912 decennial supplement, Steven-
son “included for the first time an attempted grading
of the male working population into eight social
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classes as determined by occupation”, where “I repre-
sented as far as possible the middle and upper classes
. . . III skilled labour, and V unskilled labour” [46].
The social classes II and IV were intermediate
classes, and textile workers, miners, and agricultural
workers formed separate classes. Infant mortality
showed a steep gradient from 76 deaths per 1000
births in social class I to 153 in social class V. The
CMFs for men aged 25–65 for the classes I–V were
88, 94, 96, 93, and 142. Commercial clerks with an
CMF of 108 formed 28% of class I and thus inflated
the overall CMF for class I. This gave rise to a discus-
sion about criteria for grouping of occupations into
social classes, a discussion which has persisted ever
since.

The changing composition of the labor force made
it necessary to shift from an industry based classifi-
cation to one in which it was “no longer necessary to
assign the head of a tinplate etc. works to the same
social class as his labourers” [39]. In 1921–1923, the
relative mortality for occupations and social classes
were presented both by the CMFs and by summary
measures similar to SMRs. The CMFs for social
classes I–V were 821, 942, 951, 1007, and 1258;
and the SMRs were 82, 94, 95, 101, and 125. The
two methods of calculation gave similar results, illus-
trating a subsequently often observed robustness of
occupational mortality data.

From a previous holistic view of occupation as
encompassing both occupational risks and living con-
ditions, an interest in separating the two aspects
emerged in the 1930s. To address this question, the
1930–1932 decennial supplement added tables on
the mortality of married women by the social class
of their husbands. Similar gradients of SMRs from
social classes I–V were found; for men 90, 94, 97,
102, and 111; and for women 81, 89, 99, 103, and
113; and it was concluded “that the contribution made
by actual work done to men’s social mortality gra-
dient from all causes must be small compared with
the contribution made by the accompanying environ-
mental, economic and selective factors” [47].

The 1951 classification included 600 occupations.
However, the more detailed classification increased
the risk for discordance between numerators and
denominators. There was a tendency for people to
be given more prestigious occupational titles on
death certificates than they had in the census: in
1949–1953, for example, 1443 deaths were regis-
tered among company directors compared with only

98 expected deaths based on the number of company
directors registered at the census and the mortality
rates for all men. As a supplement to the SMRs for
deaths in persons aged 20–64, PMRs were therefore
presented for deaths in persons aged 65–74 to avoid
the problem of discordance between the numerators
and denominators. The post-war concern about equity
was reflected in systematic tabulations of trends in
social class differences in the 1949–1953 decennial
supplement. The SMRs for men from social classes
I–V were 98, 88, 101, 104, and 118 [40], show-
ing that the English society still had a disadvantaged
social class V. The relatively high SMR for social
class I was partly due to misclassification [24]. A
new observation was that the social class gradient of
some diseases changed as they became more frequent.
The mortality from lung cancer almost tripled in men
under 65 years from 1921–1923 to 1930–1932, and
the social class gradient changed from an excess
risk in social class I in 1921–1923, to equal risks
across social classes in 1931–1932, and to a clear
excess risk in social class V in 1949–1953. Coro-
nary heart disease increased rapidly in men after the
war. In 1930–1932 it was a disease of “the better
classes” [11], with an SMR gradient from 237 in
social class I to 67 in social class V, but the gra-
dient in 1949–1953 was from 150 in social class I to
89 in social class V.

“The most disturbing feature of the [1959–1963
decennial supplement] when compared with earlier
analyses [was] the apparent deterioration in social
class V” [41]. The SMRs for the five social classes
were 76, 81, 100, 103, and 143. A new and shorter
occupational classification was used in 1960, but the
results for social class V remained “even when the
rates were adjusted to the 1950 classification” [41].
The social class gradient in lung cancer had become
even steeper, with SMRs of 53 in social class I
and 148 in social class V. The change in the social
distribution of coronary heart disease had continued,
and the SMRs were now 98 for social class I and 112
for social class V.

When it came to results for specific occupations in
1959–1963, the concern about discordance between
numerators and denominators clearly influenced the
interpretation. Following a review of occupational
cancers, Adelstein wrote that “although the exercise
known as occupational mortality is not a useful tool
as an early warning system, it remains a valuable
analysis of mortality of groupings of occupations
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as a back-up and reference system” [1]; a modest
aim compared with the expectations a hundred years
earlier.

The social class III was in 1970–1972 divided into
nonmanual and manual workers. The SMRs for men
over the six social classes were 77, 81, 99, 106, 114,
and 137. Similar patterns were seen for women and
for stillbirths, and mortality of infants and children.
Gradients across social classes showed, for exam-
ple, that social class V had an almost fourfold risk
of respiratory diseases but the same risk of pancre-
atic cancer as social class I. Some occupations stood
out with high risks for specific diseases; for exam-
ple, butchers with cancer of the lung and maxillary
sinus, and electro- and dip platers with cancer of the
lung [33].

The 1972 smoking rates for men by occupational
order showed a high positive correlation with the
lung cancer mortality. Under these circumstances
the previous concern about the influence of living
conditions on occupational mortality became a con-
cern about “life-styles of persons” [33]. In a paper
on “work or way of life”, Fox & Adelstein found
that only 18% of the variation in mortality between
occupational orders remained when the mortality was
standardized for social class [12].

In 1979–1983, the social gradient in mortality
for men went from an SMR of 66 in social class
I to 165 in social class V; the official comment
being that “these data are subject to serious bias
and do not represent usable estimates of mortality by
social class” [34]. However, aggregated into nonman-
ual workers (social classes I, II, and IIIN) and manual
workers (social classes IIIM, IV, and V), where a seri-
ous misclassification would not be expected, the data
showed “an overall fall in all-cause mortality from
1970–1972 to 1979–1983 for both manual and non-
manual occupational classes, but the rate of decline
[had] been greater in nonmanual groups. Thus the
social gap [had] widened” [26].

As a consequence of concern about biases, the
150 year old practice of combining census and death
certificate data was abolished with the next decennial
supplement, that for 1990.

Cross-sectional studies of occupational mortal-
ity were undertaken in several other countries – for
example, in France in 1907–1908 [19], and in the US
in 1930 [50] and 1950 [14–16, 20] – but in no other
country did these studies have the same importance
for the social debate as in England and Wales.

Death Certificate Studies

At the time of the 1990 decennial supplement for
England and Wales, advancement in technology had
rendered the cross-sectional method obsolete, as the
overall mortality of an occupational group could now
be estimated from the individually matched records
of a follow-up study known as the Longitudinal
Study (see below). However, the death certificate
data were used for search of specific associations
between detailed occupations and causes of deaths
using only PMRs. This analysis included 1.8 mil-
lion deaths from 1979–1980 and 1982–1990. New
observations were, for example, an excess risk of
leukemia, lymphoma, aplastic anemia, and agranu-
locytosis in teachers, “suggesting a possible hazard
from exposure to childhood infections” [8].

In the US, large-scale death certificate studies
started in the 1970s. The first study was from
Washington State and covered deaths from 1950 to
1971 [27]. An update included deaths from 1950 to
1979. The systematic tabulation of PMRs for detailed
occupation and cause of death revealed, for example,
an increased risk of leukemia in workers exposed to
electric and magnetic fields and a deficit of multiple
sclerosis among outdoor workers [28].

Similar studies were undertaken in California [35],
Massachusetts [10], Utah [3], and Rhode Island [21].
A detailed analysis of the large number of solvent
exposed jewelry workers from Rhode Island revealed
an excess mortality from mental disorders, kidney
diseases, liver, and kidney cancer [9].

A standardized reporting, coding, and registration
scheme for occupation on death certificates from 12
states started in the US in 1984. A PMR analysis
for broad groups has been published for the 270 000
deaths occurring in 1984 for persons above the age
of 20 [42]. Data from death certificates from 1985 to
1991 are available on public-use data tapes [31].

Follow-Up Studies

That the numerator/denominator bias in cross-sectio-
nal studies could be overcome in follow-up studies
of census populations was realized as early as the
1920s in the Nordic countries, among others [7].
It was, however, 50 years later that such studies
started to emerge. The earliest studies were a 4 month
follow-up of the 1960 census population from the
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US [22], a 5 year follow-up of the Norwegian 1960
census population [48], a 17 year follow-up of a
sample of the French 1954 census population [5],
and a 10 year follow-up of the Swedish 1960 census
population [45].

The 1970 censuses were used for follow-up studies
of the national populations In Denmark [2, 4], Fin-
land [25, 44], and Norway [23], and a joint analysis
was made of the occupational mortality in Norway,
Sweden, Finland, and Denmark for the 10 year period
1971–1980 [32]. The Longitudinal Study from the
UK is a follow-up study of a 1% sample of the
1971 census population, where the sample is, in addi-
tion, continuously supplemented with 1% of births
and immigrations [13]. A 6 month follow-up of the
Italian 1980 census population was published in
1995 [43]. In addition to sex, age, and occupation,
these studies often also include other census variables
such as marital status, housing conditions, region,
family composition, etc.

Some important and fairly consistent observations
have been made from the follow-up studies of census
populations, such as:

1. All marginal groups of the labor market have
an excess overall mortality compared with the
working population. In the Nordic countries in
1971–1980, the SMR for economically inactive
men was 233, when the economically active
men were used as the standard. The SMR for
economically inactive women, the majority being
housewives, was 151 [32]. In England and Wales
in 1971–1975, the SMRs for unemployed men or
men with an inadequately described occupation
were 306 and 185, respectively, when all men
were used as the standard [13].

2. There is a social class gradient in the overall
mortality. The SMRs for men in England and
Wales in 1971–1975 varied from 80 in social
class I to 115 in social class V [13]. The short
follow-up of the US 1960 census showed for
white men aged 25–64 a mortality ratio of 0.92
for white-collar workers and of 1.07 for blue-
collar workers, when the mortality of all men
was used as the standard [22].

3. Farmers have a low overall mortality in many
countries. The mortality ratio for white male agri-
cultural workers was 0.76 in the US study [22],
the SMR for farmers in the Nordic countries was
87 [32], and farm workers in Italy had a 20%

deficit in overall mortality compared with all eco-
nomically active men [43].

4. When studied, the social class gradient in
mortality seems to have widened. In Finland
in 1971–1983, the overall mortality for men
aged 35–49 declined for all occupational
classes, but in 1984–1990 it increased for
workers and farmers while declining further
for white-collar employees [49]. In France, the
overall mortality for men aged 35–60 decreased
by 28%–30% for professionals, foremen, and
salaried employees, but by only 7%–12%
for skilled, unskilled, and farm workers from
1955–1959 to 1975–1980 [6].

The follow-up studies of census data are often crit-
icized for lack of information on personal habits,
especially tobacco smoking. Such data are available
in a follow-up study of 300 000 US veterans who
were interviewed about their smoking habits in 1954
and 1957. A follow-up study of this cohort pro-
vides smoking adjusted relative risks [17, 18], but
the number of deaths for a given combination of
occupation and cause of death is often small.

However, data from smaller cohorts with a broad
range of recorded variables may often provide useful
supplementary information to the census studies. Data
from the Longitudinal Study have shown, for exam-
ple, that men unemployed at the time of the census
have an excess mortality in the subsequent years [30].
Very useful supplementary data came from the British
Regional Heart Study, where unemployed men had an
excess mortality even when controlled for age, town,
social class, smoking, alcohol intake, and pre-existing
diseases [29].

However, at present follow-up studies of census
populations provide the most comprehensive data on
overall mortality by occupational groups in unse-
lected populations.
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Odds Ratio

If two events, E1 and E2, have respective probabil-
ities Pr(E1) and Pr(E2), the odds ratio comparing

E1 with E2 is [Pr(E1)/{1 − Pr(E1)}]/[Pr(E2)/{1 −
Pr(E2)}], namely the ratio of the odds of E1 to the
odds of E2.

MITCHELL H. GAIL



Odds

If an event E has probability Pr(E), the odds of the
event is defined as Pr(E)/{1 − Pr(E)}.

MITCHELL H. GAIL



Office for National
Statistics (ONS) (formerly
OPCS)

The Office for National Statistics (ONS) lies at the
centre of the UK Government Statistical Service,
which aims to “provide Parliament, Government and
the wider community with the statistical informa-
tion, analysis and advice needed to improve decision
making, stimulate research and inform debate”. The
Director is also the Head of the Government Sta-
tistical Service and Registrar General for England
and Wales. He has a leading international role as
a member of the UN Statistical Commission and
of the Board of EUROSTAT, the statistical office
of the European Union. The ONS was formed in
1996 as a result of the merger of the two major
statistical agencies in the UK, the Office of Popula-
tion Censuses and Surveys and the Central Statistical
Office. These two government departments had long
and distinguished histories [1, 2]. The new organi-
zation employs approximately 3000 people, spread
between its offices in London, Newport, Southport,
and Titchfield. The merger brought together the main
collection, processing, analysis, and publication of
social and economic statistics into a single organi-
zation. The Registrar General also has responsibil-
ity for the administration of the vital registration
of births, marriages, and deaths and for the run-
ning of the National Health Service Central Reg-
ister for England and Wales (see Vital Statistics,
Overview).

In partnership with other government departments
ONS aims to provide, for the UK, “the main statisti-
cal advisory service for policy formulation, resource
allocation, planning, and research on the number,
characteristics and health of the population. It col-
lects and analyses data from a wide variety of sources,
and publishes and interprets the statistics. Major cus-
tomers are government, business, researchers and the
general public.” Its main outputs, increasingly avail-
able on the web [3], are:

1. regular publications, including the quarterly Pop-
ulation Trends and Health Statistics Quarterly;

2. large-scale databases covering mortality, fertil-
ity, cancer incidence and survival, congenital
anomalies, morbidity in general practice, and lon-
gitudinal data from the ONS Longitudinal Study;
and

3. advice and interpretation of recent patterns and
trends.

It conducts a significant fraction of its work in
the health field on a commissioned basis, with the
Department of Health for England and the National
Health Service (NHS) as principal customers. ONS
also plays a key role in providing a service to govern-
ment covering the main survey collections. In recent
years, this has included surveys on children, psychi-
atric morbidity, health and nutrition, dental health and
disability, carried out for the Department of Health,
as well as the regular General Household Survey.

The UK Government Statistical Service is dis-
tributed among the constituent countries of the UK.
The Registrars General for Scotland and Northern Ire-
land have similar responsibilities for censuses, the
administration of vital registration, and associated
statistical activities to those held by the Registrar
General for England and Wales. The Government
Statistical Service also supports the Chief Medical
Officers for England, Scotland, Wales, and Northern
Ireland, supports the NHS in each of these coun-
tries, and provides policy advice to ministers. Statis-
ticians in different policy departments in government
take the lead on infectious diseases (Public Health
Laboratory Service; see Communicable Diseases),
occupational health (Health and Safety Executive),
transport, and home accidents (Departments of Trans-
port and Trade and Industry, respectively), health in
prisons (Home Office), and the health of the armed
forces (Ministry of Defence).
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Oncology

The subject of statistical methods applied to oncology
covers a wide range of applications. Accordingly, the
subject is considered here in three separate areas:

1. biostatistics in cancer epidemiology;
2. methods for cancer clinical trials; and
3. tumor modeling.

The three areas are interrelated, the most ubiqui-
tous connecting factor being the seminal work of
Mantel & Haenszel [30] on relative risk estimation
in case–control studies. From this single paper, an
enormous body of methodologic work has followed,
and innumerable studies in the field have made use
of the Mantel–Haenszel technique or of adaptations
thereof.

Biostatistics in Cancer Epidemiology

Definitions

Although epidemiology of a kind which entails at
least a basic application of scientific method has been
intermittently apparent for centuries, biostatistics has
only made a formal contribution since the twenti-
eth century. The role of biostatistics has included
advances in the methodology of study design as well
as in analysis of data, and it is timely to define
the three major design categories used in cancer
epidemiology.

First, there is the prospective cohort study, in
which a cohort of healthy individuals have certain
characteristics recorded and are subsequently moni-
tored for incidence of or mortality from a particular
cancer. The aim of the study is to assess whether the
characteristics recorded at recruitment are predictive
(see Prediction) of subsequent disease. A charac-
teristic which is related to incidence of disease is
usually referred to as a risk factor. Related to this
is the prevention trial in which healthy individuals
are randomized (see Randomization) to receive or
not to receive a particular intervention (for example,
vitamin supplementation), and are subsequently fol-
lowed up for the cancer in question to assess whether
the intervention has a preventive effect.

Secondly, and most commonly in cancer epidemi-
ology, there is the retrospective case–control design.

In a study of this design, a series of cancer patients
(cases) is compared with a series of subjects who
do not have the cancer in question (controls), with
respect to retrospectively assessed potential risk fac-
tors. This type of study has the advantage of being rel-
atively quick to perform, but is more prone to biases,
for example from differential recall between cases
and controls (see Recall Bias), than the prospective
cohort study [40].

Finally, there is descriptive epidemiology. This
is not, strictly speaking, a design at all, being
the practice and methodology of analysis of rou-
tinely collected national or regional figures on cancer
incidence or mortality, to determine differences in
morbidity or mortality by time or by geographic
area.

To understand the landmark developments in sta-
tistical methods in epidemiology, it is necessary to
define the fundamental measure of epidemiology, the
relative risk (RR). Let D denote the event of disease
occurring, RF+ denote the presence of a certain risk
factor, and RF− its absence. Let Pr denote probabil-
ity. The relative risk is defined as

RR = Pr(D|RF+)

Pr(D|RF−)
.

Historical Development

The first study of cancer epidemiology with a sub-
stantial biostatistical input was the Lane–Claypon
case–control study of breast cancer [26]. This inno-
vative study was the first rigorous case–control study
addressing multiple risk factors and using a large
cases base. Its findings included relationships of high
parity with lowered breast cancer risk, late marriage
with increased risk, miscarriage with increased risk
and a family history of cancer with increased risk.
This very much set the scene for later research, indi-
cating a concentration on factors related to fertility
and parity.

In a retrospective case–control study, the relative
risk is not directly estimable but it may be approx-
imated by the odds ratio (OR). This quantity is
invariant to the design of the study. Suppose that the
number of subjects with and without the disease and
the risk factor are as in Table 1.

The odds ratio is defined as

OR = ad

bc
.
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Table 1 Symbolic tabulation of disease status by risk
factor status

Risk factor Disease present Disease absent

Present a b

Absent c d

This is sufficient for the case in which there is only
one risk factor of interest and it is assumed unrelated
to other risk factors. In the case in which other factors
are related both to disease risk and to the risk factor
under study (such factors are known as confounders),
it is clear that some amendment or complication of
the formula is necessary. For this purpose, one of
the most important developments has been the pro-
posed estimate of Mantel & Haenszel [30]. A simple
example of confounding arises in the assessment of
the effect of alcohol drinking on lung cancer risk.
It is known that smoking has a strong predisposing
effect, and that heavy drinkers are more likely to be
smokers than the rest of the population. How do we
adjust our estimate of the effect of excessive drinking
on lung cancer for the common association of disease
and risk factor with smoking?

Let i denote smoking status, i = 0 representing
nonsmokers and i = 1 representing smokers and sup-
pose that we have a case–control study with data as
in Table 2.

Thus there are two two × two tables, one for
nonsmokers and one for smokers. A solution which
intuitively recommends itself is a weighted average
of the odds ratios calculated in each table separately.
Mantel & Haenszel suggested weights bici/Ni , where
Ni = ai + bi + ci + di . This approximates weighting
by inverses of the variances and gives the Man-
tel–Haenszel estimate familiar to epidemiologists

ORMH =
∑

((aidi)/Ni)
∑

((bici)/Ni)
.

Table 2 Symbolic tabulation of lung cancer by
heavy drinking and smoking

Lung cancer
Heavy drinker cases Controls

Present ai bi

Absent ci di

An accompanying chi-square test similarly adjusted
for stratum was also developed. The original devel-
opment of this estimate had no particularly strong
theoretic backing, but the estimate has subsequently
proved very robust and useful, and has been shown
to possess various desirable properties, in particular
its equivalence to the OR estimate from conditional
logistic regression in the case of a matched study
(see below). The disadvantage of the estimate is the
lack of a universally applicable variance estimate.
Different variance formulas apply depending on the
sparseness of the data [18].

A copious amount of research has built on the
Mantel–Haenszel estimate. For a review, see Gail
[20]. The range of applications includes adapta-
tions of the estimate for use in randomized trials,
prospective cohort studies, meta-analyses, and stud-
ies in which risk factors are measured with error
(see Measurement Error in Epidemiologic Stud-
ies).

Other landmarks in biostatistics as applied to can-
cer epidemiology include the development of gener-
alized linear models. This revolutionized statistical
analysis in many fields but was of particular benefit
in epidemiology, enabling estimation of relative risks
and odds ratios in a regression framework, notably
logistic regression and Poisson regression [6, 7].
This made it considerably easier to adjust for con-
founding variables in analysis of observational data.

Current Approaches and Ongoing Problems

Other major developments include the evolution of
methods to deal with mismeasurement of risk factors,
beginning with Bross’s [8] definition of the problem,
with approaches including simple likelihood-based
methods [15], imputation (see Multiple Imputation
Methods), and regression methods [39] and, more
recently, stochastic estimation [38] and structural
equations models [25].

The development of computer software and hard-
ware since the 1960s has gone hand in hand with the
development of statistical models, in particular soft-
ware for fitting generalized linear models. There are
now several computer packages available which per-
form logistic regression for unmatched case–control
studies, Poisson regression for cohort studies and con-
ditional logistic regression for matched case–control
studies (see Software, Biostatistical).
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The advent of generalized linear models has
also been influential in changing the approach to
descriptive epidemiology [18]. Poisson regression
has proved useful in providing simple estimates of
changes in disease rates over time (see, for exam-
ple, Lee et al. [29]). Recent methodologic work has
included Bayesian methods for smoothing changes
over time or area [3], the latter having a specific
application in cancer mapping (see Geographic Epi-
demiology) [10], techniques for identifying clusters
(see Clustering) [4] and methods for prediction of
future incidence or mortality [24].

Likely Future Developments

Problems of measurement error are of particular inter-
est because of the perceived need to ascertain the
effect of dietary factors (see Nutritional Exposure
Measures) on cancer risk. This is especially rele-
vant to the ongoing series of cohort studies of diet
and cancer [37]. In cancer epidemiology there is also
interest in other variables which are often impossible
to measure definitively, such as history of exposure
to electromagnetic fields. In this case, approaches
involving measurement by several different methods
are likely to be productive [25].

The growth of genetic epidemiology [1] raises
particular methodologic problems. These are likely
to stimulate considerable statistical research in the
future.

Another area of particular interest at the moment is
in descriptive epidemiology, in terms of analysis and
prediction of incidence and mortality rates. Because
of recent changes in therapy or the introduction
of preventive or screening policies, public health
departments are particularly interested in modeling
changes in rates, contemporaneously with, or follow-
ing upon, changes in policy. Techniques of interest
include linear modeling [24], the use of excess mor-
tality models [27], and Bayesian prediction [10].

Methods for Cancer Clinical Trials

Definitions and Historical Development

Whether for cancer or any other complaint, the basic
principle of a clinical trial is the same: a comparative
study in which one group (the control group) receives
a traditional regime or a placebo and another group

receives a new regime or treatment (study group).
There are, however, methodologic features which
tend to dominate in cancer clinical trials. First, time
to a given event – for example, death or recurrence –
is usually the primary outcome variable of a trial in
cancer treatment, rather than a dichotomous “cure”
result or a posttreatment cross-sectional measure of
a continuous attribute. Secondly, the nature of the dis-
ease, in particular the tendency of cancers at certain
anatomical sites to recur after a period of remission,
renders long-term success of therapy relatively dif-
ficult to achieve. Thus, full evaluation of the effect
of the new therapy may involve prolonged follow-
up. Another corollary of this difficulty in achieving
long-term success is that fairly small differences in
prognosis may be considered worth pursuing.

The seminal papers in the field are therefore
methodologic papers on survival analysis [11, 35]
and discursive works on the design and analysis
of survival studies [34, 35]. Both have proved very
useful in clinical trials both within and outside the
discipline of oncology. The two survival analysis
methods which have gone into widespread use are
the logrank test [33], which is another adaptation
of the Mantel–Haenszel method, and Cox regres-
sion [11]. The latter is a method which assumes a
constant proportional effect (of treatment, prognos-
tic feature, and so on) on the instantaneous hazard
of death or recurrence, but assumes no distributional
form for the survival probability (see Proportional
Hazards, Overview).

Following from the work on the methods of sur-
vival analysis, considerable effort has gone into the
calculation of sample sizes required for clinical tri-
als in general and cancer trials in particular; see, for
example, Freedman [19].

Current Approaches and Ongoing Problems

Due to the necessity of establishing treatment effects
which may be small in absolute terms, the neces-
sity for large clinical trials has long been appreciated
in oncology [34]. For this reason, multicenter trials
and overviews of separate clinical trials are a regu-
lar feature of cancer treatment research (see Meta-
analysis of Clinical Trials) [14, 32].

Another factor in cancer therapeutic research is the
need for timely results. Chemotherapies often have
toxic effects, and patients should not be subjected to
potentially harmful experimental treatments for any
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longer than is absolutely necessary. On the other
hand, the wider patient population is anxious for
effective new therapies to be introduced as soon
as possible. Consequently, a considerable amount
of research on stopping rules has been conducted
(see Sequential Analysis) [44].

In conjunction with developments in cancer pre-
vention, the methodology of disease prevention trials
is an ongoing issue. In a trial of a preventive mea-
sure, the ultimate aim is to assess the effect of the
measure on future disease incidence or mortality in
currently healthy individuals. Thus a small number
of disease/death events will occur in a large number
of subjects. For this reason, research has focused on
methods of reducing the numbers of patients required,
shortening the observation period and simplifying the
organizational aspects. Strategies include use of sur-
rogate endpoints for reducing the size and period of
the trial [36], and cluster randomization (see Group-
randomization Designs) to reduce complexity [21,
43].

Likely Future Developments

Bayesian methods are becoming more common in
trial design and analysis [41], with particular progress
in terms of monitoring (see Data and Safety Mon-
itoring) and early stopping. This trend is likely to
continue.

Pressure on resources combined with the need
to assess preventive measures give an impetus to
research on efficient designs of preventive measures.
In particular, surrogate outcomes are likely to be
more frequently adopted in trials of cancer screening
regimens [13]. Another potentially useful strategy
is the factorial design in which more than one
intervention is assessed in the same trial [5].

Tumor Modeling

Definitions and Historical Development

Traditionally, there has been a need to devise mathe-
matical models of tumor initiation and development,
first to understand better epidemiologic observations
of exposure and subsequent disease and, secondly, to
model realistically the results of animal experiments
in carcinogenesis and tumor promotion (see Tumor
Growth; Tumor Incidence Experiments). The sem-
inal works on the subject are the multistate models

of Armitage & Doll [2] and Day & Brown [12] (see
Multistage Carcinogenesis Models). Mathematical
forms for tumor development models include expo-
nential, Weibull, and Gompertz (see Parametric
Models in Survival Analysis) models. For a review,
see Gart et al.[22, Chapter 6].

Current Approaches and Ongoing Problems

In recent years, a major aim of tumor modeling
has been to describe and estimate the parameters
of tumor development in humans and its arrest by
early detection and treatment. This is necessary to
understand how programs of screening for cancers
have worked in the past and for ongoing monitoring
of such programs in the future. Although the ultimate
aim of screening is to reduce mortality from the
disease in question, it is desirable to have early
indicators of whether this is likely to be achieved
or whether changes are necessary to the screening
regime before results on mortality are available.

Although the methods developed are applicable
to screening for a variety of diseases, their primary
application has been in screening for breast cancer
and cervical cancer [42], cancers for which the effect
of screening has been demonstrated, researched and
documented over a long period of time. With recent
interest in screening for colorectal cancer, modeling
of the cancer process at this anatomical site is becom-
ing a target for research [28].

Probably the most commonly used model is the
Markov chain with discrete state space [42]. Such
a model divides the development of the tumor into
stages – for example, no disease, lymph node neg-
ative, and lymph node positive – with exponentially
distributed times spent within the stages. These have
been used to predict the effect of different screening
regimes for breast cancer [31].

One reason for use of the Markov chain model is
the mathematical tractability of the exponential dis-
tribution of time spent in each state which is implicit
in the Markov model. It is possible, however, to use
other distributions for time spent in states. Other mod-
els used in the past include the Weibull [17] and
nonparametric models [9].

Likely Future Developments

Computer programming and estimation from com-
plex biologic models are likely to become eas-
ier with the development of theory, practice, and
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software in Gibbs sampling (see Markov Chain
Monte Carlo) [23]. Gibbs sampling has already been
used to estimate screening sensitivity and the aver-
age time spent in the preclinical screen-detectable
period for colorectal cancer (see Screening, Sojourn
Time) [28].

With the possibility of chemoprevention of vari-
ous cancers [5], a new application for mathematical
models is likely to be the modeling of the biologic
processes underlying the chemoprevention strategies.
Another possible new application is in modeling of
early detection in circumstances in which a random-
ized trial of screening is not considered appropriate,
such as in screening of gene carriers for breast cancer.
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Operations Research,
Simulation

Introduction

Simulation is a versatile problem-solving methodol-
ogy that involves the abstraction of a real-life system
into a symbolic model format and provides an alter-
native to a purely mathematical analytical solution.
A Monte Carlo simulation generates random number
values (in a process similar to spinning a wheel of for-
tune), which can be interpreted as actual real-life cir-
cumstances or discrete events (see Pseudo-random
Number Generator). Using a computer, a large num-
ber of possible combinations of circumstances can
be generated to replicate the uncertainties in a real-
life scenario, and their impact on selected outcome
variables can be evaluated. One can manipulate and
experiment with such a model to produce information
about the behavior of the real-life scenario over time.

Simulation models can provide estimates of a
system’s performance measures, for example, the
length of a queue in a system with customers waiting
for service, the time spent by those customers in the
queue, as well as the total time spent in the system.
Simulation techniques can also be used to provide
financial estimates in the area of investment appraisal,
for example, the overall net present value (NPV) for a
capital-budgeting investment decision; the likelihood
of competitors entering a market and the effect of
those competitors on market share. In addition to
these performance estimates, simulation models can
provide a vehicle to evaluate the effect of changes
to a system’s input parameters or changes to various
operating strategies in a system, for example, changes
to the number of staff serving customers, changes in
the arrival rates or service rates of customers, changes
in future interest rates or discount rates included in
an investment decision analysis, and changes in future
revenues and costs.

A simulation model must be developed in a way
that accurately captures the real-life variation that
exists in the system. It must also be systematically
verified and validated before it is implemented to
provide valuable insight for a decision maker. Such a
model becomes a powerful tool for decision makers,
often helping to reduce the time needed to evaluate
decisions and saving significant costs when good
alternatives or solutions are identified. Experimenting

with such a model can be less expensive and less
disruptive than experimenting with the real-world
system. The decision maker can evaluate alternatives
in the “safe” environment of a symbolic model.

The Simulation Process

The following stages are part of any simulation study:

(1) Problem Statement
(2) Information Gathering and Data Preparation
(3) Model Conceptualization
(4) Model Implementation
(5) Analysis and Interpretation
(6) Verification and Validation
(7) Implementation and Documentation.

Problem Statement:

Any real-life system tends to be “messy” in terms of
its structure and the risk and uncertainty of the system
parameters. At the beginning of any simulation study,
one must first understand the problems or opportuni-
ties that exist in the system. What are the user’s stated
and unstated goals? Is there a gap between the cur-
rent situation and the desired one? What information
do we need and what criteria will be used to evaluate
the decisions?

This first stage is accomplished when we have a
complete description of the problem scenario includ-
ing a problem statement, objective criteria for evalu-
ation, and an understanding of the data that will be
needed to represent the real-life system in a simula-
tion model format.

Information Gathering

In this stage of a simulation study, information about
the real-life system definition and operation must be
gathered. Accurate data are needed to build the sim-
ulation model. What are the relevant data needed to
abstract the real-life system? What are the uncertain-
ties that exist in these data? Can we assess probability
distributions for these uncertainties and how will this
happen? What measures of effectiveness are appro-
priate to analyze these data?

The output from this stage is an understanding of
all relevant data and the key factors needed to build a
simulation model that accurately represents the real-
life scenario.
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Model Conceptualization

The art or craft of model building is the abstraction
of the real-life scenario into a symbolic model of
variables and relationships. This art requires a sim-
plification of the real-life situation that both captures
sufficient detail to be acceptable to decision mak-
ers yet does not become prohibitively complex. A
balance must be struck between keeping the model
understandable and representing a reasonable abstrac-
tion of the real-life complexity. One big advantage
of simulation modeling over analytical models is
the number and scope of complexities that can be
included. Mathematical models used in optimization
are often very limited by their assumptions and there-
fore applicable to only very simple circumstances.
Simulation models can capture much greater com-
plexity in most situations (see Model, Choice of).

For example, if the simulation model is built to
capture a process flow, for instance, a hospital emer-
gency room or an obstetrics–gynecology clinic, one
can capture the real-life routing logic that represents
various types of arrivals to the system as well as
various service patterns and interventions that might
occur in the system. If the model is built to capture
a capital-budgeting decision, for example, a 10-year
cash flow projection for a new ambulatory care facil-
ity, one can capture the relevant resource costs, uti-
lization factors, and revenues over a defined window
of time. In either case, this stage requires the con-
ceptualization of performance measures that will be
used to evaluate effectiveness as well as identifica-
tion of the key relationships among the inputs and
the performance measures.

Model Implementation

In this stage of a simulation study, the conceptual
model is translated into the requirements of a cho-
sen computer software package. Although general-
purpose languages can be used to program simulation
logic, special purpose simulation packages are avail-
able that are flexible, inexpensive, and user friendly.
The advantages of these packages include the abil-
ity to represent random variables with probability
distributions, the ability to control iterations of the
model, and the automatic generation of output statis-
tics, risk profiles, and sensitivity and scenario results.
Simulation packages are available in several cate-
gories. For the simulation of discrete event processes,

software such as GPSS/H, Simscript, ARENA, and
Process Model are widely used [2, 4–6]. For static
simulation models such as the simulation of finan-
cial spreadsheet projections, @RISK and Crystal Ball
products are available [3, 7].

Analysis and Interpretation

The execution of a simulation model using a com-
puter is designed to replicate all of the combinations
of variation that exist in the input parameters of a
real-life scenario. The simulation model will produce
statistical estimates or probability distributions for
all of the outcome variables, based on the variation
in the multiple input factors (see Estimation). This
is accomplished by repetitively executing the model
generating different sets of inputs and saving the out-
put results. For each execution or iteration of the
model, each random input variable is sampled from
its defined probability distribution. With a set of sam-
pled input values, the model is evaluated in terms of
the outcome variables and these results are saved.

For a discrete event process flow model such as a
hospital emergency room, the input variables might
represent types of patients arriving with different
types of demands for care, arrival time intervals,
types of available resources, and service times. The
outcome variables might be an estimate of the time
an arrival occurred, the time that service started, and
the time that service is completed. From these data,
estimates of the wait time, server idle time, and queue
length can be determined.

For a cash flow financial projection model such
as a capital-budgeting investment analysis, the input
variables might represent the types of costs, the
types of revenues, the growth rates or projections for
growth rates, the presence of competitors, and market
share. The outcome variables might be yearly after-
tax cash flows and net present value for the time
frame analyzed.

During each model iteration, a new set of random
variables is sampled and a new set of outcome vari-
ables are saved. Upon a predetermined number of
iterations or a predetermined termination point, all of
the outcome variables can be summarized in terms
of statistics (e.g. means, standard deviations, mini-
mum and maximum), risk profiles, sensitivity results,
and scenarios.

Once the model is producing outcome measures, it
is important to determine which input variables have
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the greatest impact on these measures. One needs
to pay attention to this type of information as the
most sensitive inputs should be modeled with the
greatest care. Sensitivity analysis allows the analyst
to explore how changes to the input variables impact
the output measures. Some typical types of sensitivity
analyses would explore the choice of a probability
distribution for a particular input or the choice of
a particular parameter value. If the number of input
factors is small, sensitivity may be explored changing
one variable at a time or the interactions of changes
to two or more variables simultaneously.

Verification and Validation

The output from a simulation model must be checked
for accuracy (verification) and reasonableness (valid-
ity). Completing these requirements can be time
consuming but are critical, requiring the analyst to
carefully check all of the inputs and relationships
to ensure that the process of developing the concep-
tual model as well as the process of translating the
conceptual model into a computer model was done
accurately. Initially, one should take steps to ensure
that the conceptual model makes sense to a group
of participants (conceptual model validity). Once the
conceptual model is agreed to, its translation into
the computer model should be verified for accuracy.
Finally, in order to validate the computer model,
the analyst should ask whether the model results
resemble the real-life output or expected output (face
validity)? Do the results make sense? Are the results
consistent with how the participants perceive the sys-
tem should behave? (See Model Checking.)

It is essential that a user have confidence that a
simulation model is credible before decisions can be
made on the basis of the model. One should design
the process of verification and validation to ensure
that confidence.

Implementation and Documentation

Once the model has been developed, verified, and
validated, simulation experiments may be executed,
analyzed, and documented. A simulation study is
considered successful when its results have been
understood, accepted, and acted upon. Documenting
all assumptions, conceptual logic, programmed model
logic, and data results in a way that is readable and
understandable by both an analyst and the user will

enable future modification to the model as well as
provide a foundation for future simulation modeling.

Conclusion

One creates simulation models in order to provide
valuable insight to decision makers by replicating
real-life decision scenarios and providing more com-
plete information about the risks and uncertainties in
those environments. Once a model has been verified
and validated as accurately representing the real-
world environment, many “what if ” questions about
the system can be posed.

Simulation models have been an indispensable
tool for decision makers in many different public
and private environments. Several excellent mod-
els in the area of health care are illustrative. Rossi
describes the use of a simulation model to forecast
short- and medium-term projections of HIV/AIDS
epidemic indicators for evaluating prevention cam-
paigns, alternate health care strategies for AIDS
patients, and drug supply needs [11]. This model also
estimates the number of intravenous drug users and
the number of AIDS cases that are not appropri-
ately tracked by surveillance and monitoring systems.
On the website, www.informs-cs.org, an annual
conference of simulation practitioners publishes pro-
ceedings with complete texts of articles relating to
a wide variety of applied simulation models. In the
Health Care Track for the Winter 2003 Conference,
papers on emergency management of critical inci-
dent response, mobile examination centers, a geriatric
center, and patient care processes in an ambulatory
care center, to name a few, present applied simulation
models that enhance decision making in health care
settings [1, 8–10]. Past conference papers are also
available demonstrating the widespread application of
simulation methods to the health care environment.
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Operations research methods have been applied
widely to improve efficiency and effectiveness in
health service delivery, as well as to assist managers
and policy-makers in planning and implementation.
The conceptual framework used in operations
research to assist managers in solving their decision
problems has several key attributes:

1. There is an identified decision-maker who is
expected to use the results from an operations
research analysis.

2. Essential elements of the manager’s decision or
problem can be mathematically modeled, includ-
ing constraints on alternatives or options.

3. Measurable indicators of the decision-maker’s
goals or preferences can be applied to identify
optimal solutions.

The focus on decision-making, measurable objec-
tives, constrained decision-making, and opportunity
costs are common to most operations research appli-
cations. With the growth in high-speed personal com-
puting, plus user-friendly software, many operations
research models can now be used directly by man-
agers, clinicians, and their staffs.

Operations research methods have been applied in
several areas of health care:

1. The efficient allocation of resources (infrastruc-
ture) to meet health care needs of patients or a
defined population.

2. Structuring the care processes to ensure that the
flow of patients and resources is efficient.

3. Information systems support and patient classifi-
cation systems to assist managers in understand-
ing the relationship of patient characteristics (e.g.
diagnosis, service types, care setting) to resource
requirements and costs.

These tools have applications in the design and
management of large managed care organizations
and integrated delivery systems, as well as in the
management of physician group practices and com-
munity health center clinics (see Health Services
Organization in the US). A significant barrier to
the application of operations research methods has
been the timely availability of relevant data at rea-
sonable cost. With advances in health management

information systems and their application in hospi-
tals and physician offices, this is becoming less of a
barrier than ever before. Advances in medical infor-
matics are making it possible to integrate complex
patient care and management data (see Administra-
tive Databases) in support of clinical and manage-
ment decision-making.

Operations research models to support decision-
making can be categorized in several ways. Models
may be either deterministic or stochastic, depend-
ing on the importance of random variability in the
problem and its solution (see Model, Choice of).
Making a decision regarding the numbers of hospital
beds needed in a community may use a deterministic
model to predict demand and market characteristics,
while an appropriate model to schedule hospital
admissions and operating rooms optimally would
need to incorporate the effects of random arrivals
of emergency admissions and variations in operating
time from patient to patient.

Another classification of operations research
models concerns whether the model is designed
to provide optimal solutions (see Optimization
and Nonlinear Equations) or has a more limited
capability to predict and compare the outcomes from
decision alternatives or trends (e.g. a simulation
model). One may want a decision model to determine
the optimal number of operating rooms on the basis
of a known future demand for surgery. However, a
model would be needed to estimate future demand
for inpatient vs. outpatient surgery on the basis
of trends in population and market characteristics,
and in surgical technologies. Since there will be
uncertainty about future demand, the predictive
model might be used to estimate high, average,
and low future scenarios. These estimates would
be used in the optimization model to determine
what impact, if any, uncertainty of future demand
would have on the optimal number of operating
rooms. Analysis of the sensitivity (see Sensitivity
Analysis) of optimal solutions due to uncertainty is a
standard part of the application of operations research
methods. Alternatively, one might not seek an
optimal decision but employ simulation modeling to
estimate the numbers of operating rooms that would
be needed under alternative demand projections.
Simulation modeling is frequently easier to learn and
to apply than many optimization models, and may
be appropriate when the assumptions underlying the
optimization model cannot be satisfied.
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Operations research models may operate over dif-
ferent time horizons in different decision-making
environments. Real-time decision-making is needed
when scheduling elective hospital admissions or
deciding when specific pharmaceuticals should be
reordered to avoid being out of stock when a prescrip-
tion needs to be filled. These models are generally
embedded in computer information systems so they
can be updated continually (see Database Systems).
This contrasts with models used in strategic and cap-
ital investment planning, which may be updated and
used annually or less frequently.

What distinguishes operations research from
related fields of biostatistics and economics is
the focus on a decision-maker, constraints on
alternative choices, the emphasis on tools that can
provide the decision-maker with optimal solutions,
and the explicit consideration of opportunity cost.
However, the methods used by operations researchers
are drawn from statistics, economics, computer
science, and other areas of applied mathematics and
behavioral sciences. Models used to find optimal
solutions include linear programming, decision
theory, and a range of nonlinear optimization
methods (e.g. dynamic programming, quadratic
programming). Optimization models may incorporate
stochastic models or stochastic models may be
used independently of optimization to predict system
performance under alternative assumptions. Some
frequently used stochastic models are queuing and
Markov models (see Markov Processes), inventory
control, and quality control models.

Health workforce models are used to determine
the efficient allocation of health care personnel for
meeting the health care needs of patients or a
defined population. Such models can be used to
predict future physician requirements, or to determine
optimal staffing in individual health care facilities.

Decision-making occurs at all levels of the US
health care system, ranging from Congress and cor-
porate boards to physician offices and pharmacies.
Operations research provides methods that can sup-
port decision-making at all these levels. The Analytic
Hierarchy Process is a method for strategic planning

that uses hierarchical methods to elicit utilities and
preferences. These methods have been used by corpo-
rate boards of directors in strategic decision-making.
Physicians and other health care providers need to
make decisions regarding the best care for indi-
vidual patients. Decision analysis models allow the
provider to compare alternative treatments in terms of
expected outcomes and costs (e.g. medical manage-
ment vs. surgery). Bayesian decision analysis models
can help to quantify the level of uncertainty and
its relationship to individual patient risk factors (see
Bayesian Methods; Bayesian Decision Models in
Health Care).

One of the most widely used operations research
optimization technique is linear programming. This
technique has been applied extensively in industrial
management, but less so in health care management.
As health care is becoming a more highly organized
and vertically integrated service industry, applications
of linear programming are increasing.

Operations research has contributed to the devel-
opment of patient classification methodologies that
can be used to predict patient care resource require-
ments and costs. Diagnosis Related Groups (DRG)
is a methodology using diagnoses, surgical proce-
dures, and patient characteristics for estimating the
cost of inpatient care. DRGs are widely used as the
basis for paying for inpatient hospital care, and also
as a measurement of a hospital’s “output” that can be
used with operations research techniques.

All of the applications and techniques of opera-
tions research share a common focus on the needs of
the decision-maker for making better decisions. The
complexity inherent in the provision of health care
services has limited the easy translation of operations
research applications from other services industries.
Where successful health care applications have been
developed, their impact has been substantial. DRGs,
physician requirements modeling, and applications of
decision analysis are probably the most notable exam-
ples of widely used and highly successful operations
research applications.

DONALD STEINWACHS



Ophthalmology

Ophthalmology is a branch of medical science con-
cerned with the structure, functions, and diseases of
the eye; and optometry is an art or occupation con-
sisting of the examination of the eye for defects and
faults of refraction, and prescription of correctional
lenses and exercises which does not include the use of
drugs or surgery. The eye has a wide variety of struc-
tures in which both physical and functional defects
can have serious consequences regarding the ability
to perform in everyday life, and in particular in occu-
pations and professions.

The history of ophthalmology dates from ancient
times and documents many issues pertinent to modern
ophthalmology. While many of the technical details
involved with today’s surgical procedures differ from
those of the past, many basic strategies for combating
eye disease (such as “couching cataracts” which dis-
lodges an opacified lens, or using a magnet to remove
foreign ocular bodies) have their roots in antiquity.
Indeed, some of the diseases described thousands of
years ago, such as trichiasis (inverted eyelashes rub-
bing against the eye), diplopia (double vision), and
night blindness, still constitute significant ophthalmo-
logic problems today.

Johannes Kepler (1571–1631), pioneered the phy-
sics of vision and refraction, and shifted the percep-
tion of the “organ of vision” from the lens to the
retina. During the seventeenth and eighteenth cen-
turies, cataracts were known to occur in the lens,
Daviel’s extraction of lenses was used in place of
the older “couching of cataracts”, and spectacles,
used since the thirteenth century, were prescribed
for patients following lens removal. The nineteenth
century brought new advances in anatomy and physi-
ology, including early attempts at corneal transplants,
a description of “diabetic retinopathy” (a condition
which currently is one of the leading causes of
blindness in the Western world), and the invention
of the ophthalmoscope, enabling observation of the
inner eye.

The twentieth and twenty-first centuries have
brought further advances in technology (e.g. tonome-
ters to measure intraocular pressure, lasers to treat a
variety of retinal abnormalities, and echography or
ultrasound to aid in diagnosis and management), and
the application of modern scientific knowledge: the

agent of trachoma, a conjunctival infection, was dis-
covered in China; strabismus surgery to correct mis-
aligned eyes increasingly addressed functional, rather
than cosmetic, issues; and genes associated with
certain eye disorders have been identified. Despite
these advances, eye disorders are still of major con-
cern.

Types of Data Collected

There are many types of data from ophthalmic
research: some are direct measures of visual function
and others are more descriptive of certain characteris-
tics associated with visual conditions. Data related to
visual function can be related to central vision and/or
peripheral vision. Central vision is the sharp, clear
vision that most people use when looking directly at
an item or object, such as reading or driving, while
peripheral vision is the progressively less clear vision
found at further distances from the point of fixation.
Tests of central vision include tests to measure visual
acuity, contrast sensitivity, reading speed, and others.

Peripheral vision is often quantified and described
using perimetry tests such as with visual field ana-
lyzers. Tests of either central or peripheral visual
function depend on the ability of the person being
tested to focus the test object on to the retina and for
that image to be correctly interpreted by the brain.

Refractive error is a measure of the amount of
optical correction needed to focus an image pre-
cisely on the retina. The measure is a combination
of three components (sphere, cylinder, and axis) that
are often summarized into a spherical equivalent
measurement: sphere + 1

2 cylinder. Subjective refrac-
tion is performed by presenting various lenses to
an individual and asking which makes the vision
clearer. Retinoscopy is an objective measurement
of the refractive error that uses a streak of light
to determine the needed refractive correction. When
performed by a skilled examiner, it is extremely accu-
rate, but the measurement of refraction can often be
more generally measured subjectively. Combinations
of objective and subjective measurements are also
possible. Refractive error measurements are usually
performed before further visual function testing and
corrective lenses matching the refractive error can be
worn by the person during the later tests of visual
function to determine, for example, the “best cor-
rected visual acuity” or the “best corrected reading



2 Ophthalmology

speed”. The change in refractive error over time is an
important issue in any surgery involving the cornea,
but there has been little development in the analysis
of refractive error measurements.

Visual acuity (VA) is a common measure of visual
function and generally consists of a “Snellen fraction”
of two numbers based on a measurement taken at
6 m (20 ft) from the testing object. The first number
indicates the distance separating the test object from
the test subject; the second indicates the distance at
which the object subtends an angle of 5 minutes. The
largest symbol used in the US subtends an angle of
5 minutes at a distance of 200 ft (60 m). An individ-
ual being tested is asked to read the smallest symbol
on the chart that they can clearly see. Therefore, if a
person is 6 m from the visual acuity chart and they
can clearly read the line on the chart that subtends
the desired angle at 6 m, then the visual acuity of
that person would be recorded as 6/6. If they are
unable to read the letters on that line but are able
to read the largest symbol, their vision would be
recorded as 6/60. If the individual is unable to rec-
ognize the largest test symbol, the distance at which
he recognizes it is recorded (i.e. if it was seen at
3 m the vision would be recorded as 3/60). When-
ever an individual is unable to recognize any symbol,
then VA is recorded as one of the following mea-
surements (in order of increasing poor visual acuity):
distance at which he can count fingers (CF), distance
at which hand motion can be detected (HM), light
projection ability (being able to project the direction
from which light is entering the eye from a small
penlight), light perception ability (LP), or no light
perception ability (NLP). The World Health Orga-
nization defines blindness as a VA less than 3/60,
and in the US blindness is legally defined as a VA
less than 20/200.

A variety of methods have been suggested for
computing the mean of a set of VA measurements,
all of which are expressed in fractional (Snellen)
notation: (i) treat the VA as a fraction, convert to
decimals, compute the mean, then express the result
as a fraction with a numerator of 6 m (or 20 ft); (ii)
if all VAs are all measurable at the same distance
(or convertible to 6/X or 20/X), then compute the
mean of denominators and report the average VA
as a fraction with 6 (or 20) in the numerator; and
(iii) convert the VA fraction to decimals, average the
logarithms of the decimals, take the antilogarithm of
the resulting mean, and report the average VA as a

fraction with 6 (or 20) in the numerator. This latter
method of calculating the mean VA is most consis-
tent with the geometric progression of VA used in
the newer standardized VA charts recommended for
visual research. The logarithm of the Snellen fraction
is approximately the logarithm of the minimal angle
of resolution (logMAR) and the new charts provide
a step of 0.1 logMAR units for each higher line on
the chart. An additional feature of the newer charts is
the uniformity in the number of letters on each line
of the chart. Earlier visual acuity charts had more
smaller letters on lower lines of the charts and fewer,
larger letters on higher lines, while the newer charts
have a standard five letters per line. Hence, the pre-
cision is constant over all levels of measured acuity.
Scores are computed from 0.1 logMAR units for each
complete line correctly read plus 0.02 units for each
additional letter.

Calculating a mean of a set of VA values with
both chart-measurable (Snellen fraction) and non-
chart measurable (CF, HM, LP, and NLP) visions is
more difficult and less standardized because there is
no universally agreed upon numerical equivalent for
the nonchart measurable (coded) visions. Arbitrary
Snellen fractions can be assigned for these coded val-
ues; however, it is usually preferable to report the
median VA or describe the data categorically. To
compute the change of vision among VA measure-
ments with a mixed continuous and categorical scale,
one is forced either to assign scores or describe the
change among category percentages.

Contrast threshold, another measure of visual
function, reflects the degree of contrast (darkness)
needed to distinguish an item from its underlying
background. Some disorders such as optic neuritis
may not affect VA (which is usually tested under
high-contrast conditions) but may affect the amount
of contrast needed to perform tasks such as reading.
There are varying tests to measure contrast threshold,
with the most common being the Pelli–Robson chart
that consists of triplets of letters at decreasing contrast
levels. The “log contrast sensitivity” is determined
by the faintest triplet of letters for which two of the
three letters were correctly identified, although newer
methods of scoring have been proposed. The data
are reported either as log contrast sensitivity which
ranges from 0.00 (the darkest segment) to 2.25 (the
lightest segment) or as contrast threshold, which is
equal to the reciprocal of the antilog of the contrast
sensitivity.
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A whole spectrum of other measures of visual
function exist. For example, special cards of various
sizes test reading rates; and measurements of abil-
ity to distinguish different colors can be done using
the Farnsworth–Munsell 100-hue test, the Ishihara
test, or Hardy–Rand–Rittler plates – the latter two
contain dots of primary and secondary colors which
test whether an individual can distinguish a particular
pattern among the colors. There are tests to deter-
mine if the individual is able to fuse correctly the
images from both eyes into a single image. Gold-
mann and Humphrey visual field tests determine the
location and extent of peripheral vision or the lack
of peripheral vision, which is one of the complica-
tions of glaucoma. Instruments for measurement of
vision-related quality of life have recently become
popular with the development of instruments such
as the Activities of Daily Vision Scale (ADVS), the
VF14, the National Eye Institute Visual Function
Questionnaire (NEI-VFQ), and the Refractive Status
and Vision Profile (RSVP). These instruments mea-
sure the impact of eye disease on the functioning in
activities of daily life.

Other commonly occurring ocular measurements
are derived from external physical examination of
the cornea, iris, lens, retina, and other parts of the
eye either during clinical examinations or from pho-
tographs, or fluorescein angiography. Retinal photo-
graphs and angiography aid in documenting the
pathology of retinal vasculature, retinal pigment ep-
ithelium, and some aspects of choroidal vascula-
ture. These methods require a trained observer to
quantify the features of the disease. A common
method of evaluating photographs or angiograms for
the presence of particular characteristics is to use
numerical scales or grading systems which assign
scores that reflect the relative severity of a charac-
teristic. Often, the grades are determined by com-
paring the characteristics with a set of “standard”
photographs or angiograms chosen to represent the
severity of the characteristic with a numerical score.
Two common examples of these methods include:
(i) grading of the degree of nuclear opacity of the
lens for classifying cataracts using the four-step
Lens Opacity Classification System II (LOCS II)
or the decimal LOCS III scales via photograph
or slit lamp examination; and (ii) grading of dia-
betic retinopathy from stereoscopic color fundus pho-
tographs using the modified Airlie House classifi-
cation schemes or from fluorescein angiograms as

developed for the Early Treatment Diabetic Retinopa-
thy Study.

Unfortunately, time and space limit the description
of the types of ophthalmologic data, and although
many have been listed or described, many more have
remained unmentioned. But more important than the
type(s) of data is the fact that the data from the
two eyes of an individual may differ. Some diseases
or conditions are bilateral (affecting both eyes) and
other conditions are unilateral (affecting only one
eye). Furthermore, bilateral conditions may occur at
different times or to different extents. Some treat-
ments may be eye-specific, while others are systemic
or affect the person and both eyes. All of these
features make analyzing ophthalmologic data more
challenging to statisticians.

Common Statistical Issues

The field of ophthalmology and vision research pro-
vides a rich source for both the application and the
development of statistical theory and methodology.
It is safe to say that one could find an application
of nearly every major statistical method to the wide
array of ophthalmologic data discussed above.

Because of the natural pairing of eyes within indi-
viduals, however, ophthalmology has provided par-
ticular inspiration for the development of methods
for paired, correlated data (see Correlated Binary
Data). Interest in providing designs and analyses that
“correctly” estimate and/or account for the associa-
tions inherent in paired data have both contributed to
and benefited from the increased research in methods
for analyzing correlated data over the past decade.
Ederer’s oft-quoted 1973 paper [2] with the title
“Shall we count numbers of eyes or number of
subjects?” lays the foundation for interest in this
area. In this article, Ederer notes that paired mea-
surements are usually correlated, and explains the
consequence of this correlation: positively correlated
observations provide less statistical information than
uncorrelated data when data analysis concerns the
average of paired measurements, but they provide
more information than uncorrelated data when the
analysis concerns the difference of the paired mea-
surements. Thus, using an experimental example, if
one is investigating two treatments, where one of
the two is applied to each patient (and thus both
eyes simultaneously), then the variance of the mean
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treatment difference using data from both eyes of
N patients may not be as small as if 2N inde-
pendent patients provided only one eye observation
each. Conversely, if each person receives one treat-
ment in their right eye and the other treatment in
their left eye, then the variance of the mean treat-
ment difference using both eyes may be smaller than
if using one eye of 2N patients. Ederer’s article
does not go into additional detail, but it provides the
basis for subsequent work that treats the eye as the
fundamental unit of analysis. Thus, the correlation
between eye measurements becomes a component
in the analysis. This correlation may be a nuisance
parameter that is required to obtain the “correct”
standard errors, or it may be the parameter of sci-
entific interest.

It is important to note that it is often useful to con-
sider the patient as the fundamental unit of analysis.
Obviously, there are a number of ophthalmologic-
related outcomes that can only be obtained on the
“person level” instead of the “eye level”; for example,
quality of life. For the evaluation of some systemic
or bilateral treatments for ocular disease (such as
gangcyclovir for CMV retinitis), summarization to a
person-level outcome is necessary. For some studies,
it is impractical or unethical to observe outcomes on
both eyes of patients. For example, with some highly
experimental surgical procedures, it may be desirable
not to treat one eye of a patient in the event that
complications occur or the procedure fails, thereby
not risking the loss of vision in at least one eye
(although the risk of vision loss from surgery may
be lower than the risk associated with no treatment).
Eye-specific selection criteria for entry in some stud-
ies may also result in patients providing only one eye
meeting eligibility criteria.

Even when observations specific to each eye are
collected, it may be easier to conduct analyses on
either a subset of the data or to transform the eye-
specific responses to person-specific responses and
then apply statistical methods that are appropriate
for independent data. Obvious subsets include anal-
yses based on only left eyes, right eyes, or one eye
chosen at random. These analyses can suffer from
lower efficiency and can possibly provide discordant
results [4]. Transformations to person-level responses
include using only the worse or better eye of patients,
the average of left- and right-eye responses, or a
“composite response” approach, which is similar to
using the worse eye of each patient but creates

additional ordinal steps by treating patients with iden-
tical values in both eyes as having a severity score
one step greater than patients having worse vision
in one eye [3]. Thus, for example, a patient with
retinopathy scores of “30” in each eye is assigned
a composite response of “30/30”, while a patient
with retinopathy scores of 30 and 10 is classified as
“30/<30”, one step lower on the composite response
scale. Therefore, if each eye were measured on a scale
of (10, 20, 30, 40), the corresponding ordinal compos-
ite response index would be (10/10, 20/<20, 20/20,
30/<30, 30/30, 40/<40, 40/40).

The primary advantage of these transformation
methods is that they allow one to use standard sta-
tistical techniques for analysis. However, there are
several problems with these approaches. From a
regression viewpoint, only models relating person-
specific covariates can be appropriately constructed
for person-level outcomes. To relate eye-specific
covariates, some transformation of the covariates
must be obtained (e.g. the average covariate value).
This is a clear example of the error-in-variables or
exposure misclassification problem that will result in
estimated effects which are biased relative to the true
relationship. In addition, the direct clinical interpre-
tation of an estimated relationship can be lost when
using these techniques. It has been shown that the
relationship of a person-level covariate to a composite
response score can be biased by up to 33% relative to
the relationship to the original eye score, with the bias
a function of the correlation between outcomes [3].
The interpretation of a relationship becomes less clear
when based on the average of two eye-specific covari-
ates [4], depending on the goal of the analysis.

In cases in which eye-specific outcomes are col-
lected, it is generally better to construct a statistical
model or test which incorporates the relationship
between eye responses. When data can be assumed
to be from a multivariate normal distribution,
regression models and testing methods date back to
the earliest interest in multivariate analysis. Two
influential papers by Rosner [8, 9] detail regression
models for bivariate normal data, with specific
application to problems in ophthalmology. These
models are flexible enough to allow the response of
each eye to be modeled as a function of covariates
that are specific to the individual (e.g. gender) and
covariates that are specific to the eye (e.g. intraocular
pressure). Standard maximum likelihood methods
are used for estimating and testing parameters.
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The single correlation parameter in the standard
bivariate normal distribution that, in our context, rep-
resents the correlation between left and right eye
responses, is often referred to as the intraclass corre-
lation. While the models of Rosner detail maximum
likelihood estimates of this parameter in conjunction
with regression modeling of the bivariate expecta-
tions, several other methods have been proposed to
estimate this parameter.

When the data cannot be assumed to have a multi-
variate normal distribution, such as with binary and
categorical data, different strategies need to be used
because of the dearth of an overall multivariate dis-
tribution for categorical responses with interpretable
parameters. If the scientific questions concern only
testing an hypothesis, nonparametric methods have
been developed for correlated data. For constructing
the association between covariates (risk factors and
treatment assignments) and ocular outcomes, there
has been a tremendous interest in bivariate and more
general multivariate models for correlated categorical
data that are directly applicable and often inspired
by ophthalmologic data. In particular, the papers
by Rosner [8, 9] also detail models for binomially
distributed data. In the context of strategies for cor-
related binary data, these methods can be classified as
conditional models, since they model the probability
of an outcome in an eye conditional on the outcome
of the fellow eye in addition to the covariates of inter-
est. The interpretation of the regression parameters
from these models can then be viewed as the effect
of a covariate after controling for the outcome status
in the fellow eye, and can be viewed as extensions of
beta-binomial methods. Building upon these models,
Rosner & Milton [10] consider significance testing
(see Hypothesis Testing) while Donner [1] and oth-
ers have proposed alternate approaches based upon
adjusting standard chi-square statistics.

By contrast to the conditional approaches, many
other strategies and models for correlated binary
data have been suggested. In particular, methods
which model the marginal outcome probability, such
as the generalized estimating equations methods,
have been extensively developed and applied to
ophthalmologic problems [7]. The interpretation of
the regression parameters from these models is dif-
ferent from the conditional approach in that the
parameter represents the effect of a covariate not
adjusting for the outcome in the fellow eye. Because
of the variety of methods that have been proposed,

several papers [4, 6] have made comparisons among
the approaches with specific application to ophthal-
mology problems. The key results from these papers
have highlighted the inadequacy of ignoring the cor-
relation between ocular outcomes, and have empha-
sized the difference between conditional and marginal
approaches.

The above methods are appropriate when inves-
tigating factors associated with the prevalence or
incidence of disease outcomes from two eyes. Other
scientific questions might concern the factors associ-
ated with the time to a particular event, such as the
time from enrollment in a clinical trial to a visual
acuity worse than 20/200. A variety of methods have
been developed for this type of “survival” or “fail-
ure time” outcome that occurs from paired eyes,
including those that extend the popular proportional
hazards (Cox regression) models.

Ophthalmologic data have also provided inspira-
tion for the investigation of a wide range of bio-
statistical problems beyond regression models for
correlated data. A particularly interesting area is the
measurement of visual field function throughout the
central retina (the “visual field”). Automated peri-
metry has gradually become more accepted as the
gold standard for determining field loss. Individuals
are asked to fixate on a central point while flashes of
light of varying brightness are presented to the indi-
vidual at varying locations. The patient then presses
a button when the flash is seen. Computerized analy-
sis packages and pre-programmed test patterns have
made the standardization of visual field tests much
more effective, and produce much more reliable and
reproducible results. The result of the test is to pro-
duce a grid that maps the ability to detect light across
the visual field. Several papers [5] have described
methods for analyzing this type of data for the pur-
poses of diagnosis. However, detecting changes over
time has proven a formidable task because of the
high degree of variability within and between tests,
particularly in field areas of damage.

Other ophthalmologic problems have motivated
biostatistical research. These include, for example,
models and methods for time to visual loss, deter-
mining numerical scales and schemes for clinical
outcome grading, studying the spatial pattern of reti-
nal structures, estimating agreement in binocular
data, and interim analyses of clinical trials (see Data
and Safety Monitoring) with long response times or
correlated outcomes. It is certain that the field will
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continue to provide interesting problems and inspire
further methodologic developments in biostatistics.
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Optimal Design

Informally, an optimal design is one which makes
best use of the experimental resources available.
We need to define what is meant by “best”, to
see which designs are best and to see if different
definitions of best give markedly different designs
(see Experimental Design).

Models and Parameter Estimates

The aim of any experiment is to estimate the param-
eters in some model as accurately as possible. Thus,
it is natural to define best in terms of the variance
of the parameter estimates for a regression model,
and in terms of the variance of estimable contrasts
of treatment effects in an experimental design model.
For either situation we need to specify the model
for which parameter estimates are required and the
design region, the region in which it is possible to
experiment.

Let the vector of observed responses be denoted
by y and let the model be given by E(y) = Xβ, where
we assume that the errors in the observations are
independent and have a constant variance denoted
by σ 2.

In simple linear regression, for example, we have
β ′ = (β0, β1) and all the entries in the first column of
X would be 1 and the entries in the second column
of X would be the x values at which the responses
were observed. Thus, for each observed y we would
have E(y) = β0 + β1x.

In a design model, X is the usual design matrix.
For a completely randomized design to compare
t treatments, for example, we have E(yij ) = µ +
τi, β ′ = (µ, τ1, τ2, . . . , τt ) and X has t + 1 columns.
If the first n1 responses are those associated with
treatment 1, the next n2 with treatment 2 and so on,
then the first column of X has all entries equal to 1,
the second column has the first n1 entries equal to 1
and the remainder equal to 0, the third column has the
first n1 entries equal to 0, the next n2 equal to 1 and
the remainder equal to 0, and so on. A simulation
study comparing 15 designs for 12 models is given
in [14].

In regression models it is usually the case that
the parameter estimates are unique and we can show
that β̂ = (X′X)−1X′Y. Thus, var(β̂) = σ 2(X′X)−1

and the matrix X′X is called the information matrix.
If we are interested in predicting the response at some
point x in the design region we would have ŷ(x) =
x′β̂, with var(ŷ(x)) = σ 2x′(X′X)−1x. Then we say
that a design is optimal if it minimizes var(ŷ(x)) or
some other function of var(β̂). A case study compar-
ing the estimates obtained using a 10-point data set
with those obtained from smaller, optimally chosen,
subsets appears in [12].

Optimality Criteria

The four most frequently used optimality criteria are
A, D, E, and G optimality. In all cases the expressions
are given in terms of the eigenvalues, λ1, λ2, . . . , λp

of the information matrix A = X′X.
A design is said to be A-optimal if the sum of

the variance of the parameter estimates is minimized.
Thus, we seek to minimize tr(A−1) = ∑

i λ−1
i .

A design is said to be D-optimal if the generalized
variance of the parameter estimates is minimized.
Thus, we seek to minimize det(A−1) = ∏

i λ−1
i .

A design is said to be E-optimal if it minimizes
the variance of the least well-estimated normalized
contrast. Thus, we seek to minimize the largest eigen-
value of A−1; that is, we aim to minimize the largest
value of λ−1

i .
A design is said to be G-optimal if it minimizes

the maximum variance of a predicted value over the
design region (see Minimax Theory).

Other optimality criteria may be preferred; see, for
instance, [7] and [10].

It is important to realize that the optimum design is
dependent on the postulated model. For example, in a
simple linear regression var(β̂1) = σ 2/

∑
i (xi − x)2,

where x = ∑
i xi/N . Then, with a, perhaps coded,

design region −1 ≤ x ≤ 1, the variance of β̂1 is
minimized by having half the responses at x = −1
and half at x = 1. If, however, the initial assumption
is incorrect and the response is really quadratic,
say, then it will be impossible to detect it with
this optimum design. This is why various authors
recommend that modifications of optimal designs be
used in practice (see, for example, [1], [9], and [16]).

Optimality and Block Designs

In design models the estimates of the elements of
β are not, in general, unique, but some functions
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of them, such as the difference of two treatment
estimates, are uniquely estimated. Such functions are
called estimable functions and can be represented
by c′β. As we are interested in the design setting,
in the treatment parameter estimates and not in the
block parameter estimates, we need to use a modified
information matrix.

We are only interested in connected designs; that
is, designs in which every pairwise difference of
treatment effects is estimable. Assume there are t

treatments and b blocks. Let Yij = τi + βj + Eij , 1 ≤
i ≤ t, 1 ≤ j ≤ b, although some treatments may not
appear in some blocks so the corresponding Yij do not
exist. (see Randomized Complete Block Designs) It
should be noted here that we have assumed that the
block and treatment effects do not interact. This is the
usual assumption in the literature on blocks designs,
and if this is not the case then the conclusions that
are drawn from the experiment may be invalid. It can
be helpful to test for nonadditivity; Read [13] gives
a test and a discussion. Let N be a t × b incidence
matrix in which the (i,j )th position is the number of
times that treatment i is in block j . Let R be a diago-
nal matrix with the treatment replication numbers on
the diagonal and let K be a matrix with the block
sizes on the diagonal. Then the information matrix A
is defined by A = R − NK−1N′. Let T be the vector
of treatment totals and let B be the vector of block
totals. Then the reduced normal equations are given
by Aτ̂ = q, where q = T − NK−1B. We now need
an expression for τ̂ . In any block design, A is not of
full rank and so no inverse exists. However, it can
be shown that in a connected design the rank of A is
v − 1. Hence, to get an expression for τ̂ we need to
calculate a generalized inverse for A, � say. A gener-
alized inverse of A is a matrix � such that A�A = A.
One way to get � is to calculate the eigenvalues
and corresponding eigenvectors of A. Suppose that
λi is an eigenvalue of A with corresponding eigen-
vector zi . These eigenvectors can be normalized so
that z′

izm = 0, unless i = m, when it equals 1. Then
we can write A in canonical form as A = ∑

i λiziz′
i ,

and a generalized inverse of A is � = ∑
i λ−1

i ziz′
i ,

where this summation is over the nonzero eigenval-
ues only. Then τ̂ = �q and the covariance matrix of
τ̂ is σ 2�. Note that the variance of estimable func-
tions of the treatment parameters is independent of
the particular generalized inverse used. The previous
definitions of optimality can now be used with �

replacing A−1 throughout.

Efficiency

The final topic that we will discuss is that of effi-
ciency. This is the ratio of the optimality value of the
optimal design to that of the proposed design. Clearly,
the efficiency of the optimal design is 1, and so all
other designs have a lower efficiency. The higher the
efficiency, the better the design.

There are other efficiency measures that are unique
to designed experiments. For blocked experiments
the variance of the pairwise differences of treatments
(see Paired Comparisons) is compared with the
variance that would be obtained in a completely
randomized design with the same replication as the
blocked experiment for each of the treatments. In a
completely randomized design with equal replication
r , say, for each of the treatments, we see that var(τ̂i −
τ̂m) = 2σ 2/r . For a block design in which each
treatment is replicated r times, the pairwise efficiency
factor is the ratio of 2σ 2/r to var(τ̂i − τ̂m). The ratio
of 2σ 2/r to the average variance of the treatment
differences is the average efficiency factor.

For balanced incomplete block designs, we get
� = k/λv(I − J/v) and so each pairwise efficiency
factor is λv/rk and hence so is the average effi-
ciency factor. For partially balanced incomplete
block designs with two associate classes (PBIBD (2))
a similar result can be obtained. In this case, there are
two pairwise efficiency factors, one for comparing
first associates and one for comparing second asso-
ciates. The values are given for the designs tabulated
by Clatworthy [4], as well as the general expressions
for any PBIBD (2).

Bounds on the efficiency factors of pairwise com-
parisons may be found in [8]. Algorithms for con-
structing designs such as GENDEX [6] and the
algorithm given by Paterson et al. [11] look for
designs which are close to the upper bound for effi-
ciency.

Other Topics

Optimal designs for bivariate logistic regression
appear in [7]. Optimal design of LD50 bioassay (see
Biological Assay, Overview) is discussed in [10] and
references cited therein. Optimal design of valida-
tion studies is considered in [15]. Optimal design
of Phase II clinical trials is discussed in [5]. An
introduction to the issues involved in the design of
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optimal crossover trials is given in [3]. A package
to construct optimal designs for a batch reaction cat-
alyzed by a soluble enzyme where the activity of the
enzyme decays with time is described in [2].
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Optimization and
Nonlinear Equations

Optimization means finding that value of x which
maximizes or minimizes a given function f (x). The
idea of optimization goes to the heart of statistical
methodology, as it is involved in solving statistical
problems based on least squares, maximum likeli-
hood, posterior mode (see Bayesian Methods), and
so on.

A closely related problem is that of solving a
nonlinear equation,

g(x) = 0

for x, where g is a possibly multivariate function.
Many algorithms for minimizing f (x) are in fact
derived from algorithms for solving g = ∂f/∂x = 0,
where ∂f/∂x is the vector of derivatives of f with
respect to the components of x.

Except in linear cases, optimization and equation
solving invariably proceed by iteration. Starting from
an approximate trial solution, a useful algorithm will
gradually refine the working estimate until a pre-
determined level of precision has been reached. If
the functions are smooth, a good algorithm can be
expected to converge to a solution when given a suf-
ficiently good starting value.

A good starting value is one of the keys to success.
In general, finding a starting value requires heuris-
tics and an analysis of the problem. One strategy for
fitting complex statistical models, by maximum like-
lihood or otherwise, is to progress from the simple
to the complex in stages. Fit a series of models of
increasing complexity, using the simpler model as
a starting value for the more complicated model in
each case. Maximum likelihood iterations can often
be initialized by using a less efficient moment esti-
mator (see Method of Moments). In some special
cases, such as generalized linear models, it is pos-
sible to use the data themselves as starting values for
the fitted values.

An extremum (maximum or minimum) of f can
be either global (truly the extreme value of f over
its range) or local (the extreme value of f in a
neighborhood containing the value); see Figure 1.
Generally it is the global extremum that we want.
(A maximum likelihood estimator, for example, is
by definition the global maximum of the likelihood.)

D

x1 x2 x

f(x )

CB

A

cba

Figure 1 The function f (x) has a local minimum at x2

and a global minimum at x1. The points A = [a, f (a)],
B = [b, f (b)], and C = [c, f (c)] bracket the global mini-
mum. The next point tried by a golden section search would
be D

Unfortunately, distinguishing local extrema from the
global extremum is not an easy task. One heuristic is
to start the iteration from several widely varying start-
ing points, and to take the most extreme (if they are
not equal). If necessary, a large number of starting
values can be randomly generated. Another heuris-
tic is to perturb a local extremum slightly to check
that the algorithm returns to it. Two relatively recent
types of algorithms, simulated annealing and genetic
algorithms, are often used successfully on problems
where there are a large number of closely com-
peting local extrema. Simulated annealing handles
multiple minima by introducing a stochastic element
into the interaction, which allows it to escape from
local extrema by temporarily increasing the objective
function. Genetic algorithms handle multiple minima
by remembering at each iteration a set of candidate
parameter estimates instead of just one.

This article discusses unconstrained optimization.
Sometimes, however, x must satisfy one or more
constraints. An example is some of the components
of x being known a priori to be positive. In some
cases the constraints may be removed by a suitable
transformation (xi = ezi , for example), or by use of
Lagrange multipliers.

One must choose between algorithms which use
derivatives and those which do not. In general, meth-
ods which use derivatives are more powerful. How-
ever, the increase in speed does not always outweigh
the extra overheads in computing the derivatives, and
it can be a great convenience for the user not to have
to program them.
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Algorithms are also distinguished by the amount
of memory they consume. Storage requirements are
typically order N or order N2, where N is the
dimension of x. In most biostatistical applications,
N is not usually so large that storage becomes an
issue.

If you can calculate first and second derivatives
of f , then the well-known Newton’s method is sim-
ple and works well. It is crucially important, though,
to check the function value f (x) at each iteration,
and to implement some sort of backtracking strat-
egy, to prevent the Newton iteration from diverging
to distant parts of the parameter space from a poor
starting value. If second derivatives are not avail-
able, then quasi-Newton methods, of which Fisher’s
method of scoring is one, can be recommended.
General-purpose quasi-Newton algorithms build up
a working approximation to the second-derivative
matrix from successive values of the first derivative.
If computer memory is very critical, then conjugate
gradient methods make the same assumptions as
quasi-Newton methods but require only order N stor-
age [8, Section 10.6]. If even first derivatives are not
available, the Nelder–Mead downhill simplex algo-
rithm is compact and reasonably robust. However,
the slightly more complex direction-set methods or
Newton methods with finite difference approxima-
tions to the derivatives should minimize most smooth
differentiable functions, with fewer function evalua-
tions. Whilst all the above comments apply generally,
the one-dimensional problem is something of a spe-
cial case. In one dimension, once one can provide an
interval which contains the solution, there exist effi-
cient “low-tech” algorithms robust enough to take on
all problems.

A practical introduction to root finding and opti-
mization is given in Chapters 9, 10, and 15 (Sec-
tions 15.5 and 15.7) of Numerical Recipes [8]. More
specialist texts are Dennis & Schnabel [2], Fletcher
[3], and Gill et al.[4]. A classic but technical text on
solving nonlinear equations is Ortega & Rheinboldt
[6]. A survey of available software is given by Moré
& Wright [5].

One Dimension

The case where x is one-dimensional is qualita-
tively simpler than the multidimensional case. This
is because a solution can be trapped between brack-
eting values, which are gradually brought together. A

root of g(x) is bracketed in the interval (a, b) if g(a)

and g(b) have opposite signs. A minimum of f (x) is
bracketed by a triplet of values, a < b < c, if f (b)

is less than both f (a) and f (c).
The simplest and most robust method for finding

a root in a bracketing interval is bisection. That is,
we evaluate the function g at the midpoint of (a, b)

and examine its sign. The midpoint then replaces
whichever end point has the same sign. After k

iterations, the root is known to lie in an interval of
length (b − a)/2k .

The equivalent method for function minimization
is the golden section search. Given a bracketing
triplet of points, the next point to be tried is that which
is a fraction 0.38197 of the way from the middle point
of the triplet to the farther end point (Figure 1). One
then drops whichever of the end points is farthest
from the new minimum. The strange choice of step
size ensures that at each iteration the middle point is
always the same fraction of the way from one end
point to the other (the so-called golden ratio). After
k iterations, the minimum is bracketed in an interval
of length (c − a)0.61803k .

Bisection and golden section search are linear
methods, in that the amount of work required increa-
ses linearly with the number of significant figures
required for x. There are a number of other methods,
such as the secant method, the method of false posi-
tion, Muller’s method, and Ridder’s method, which
are capable of superlinear convergence, wherein the
number of significant figures liberated by a given
amount of computation increases as the algorithm
converges. The basic idea is that g should be roughly
linear in the vicinity of a root. These methods inter-
polate a line or a quadratic polynomial through two
or three previous points, and use the root of the poly-
nomial as the next iterate. They therefore converge
more rapidly than bisection or golden search when
the function g is smooth, but can converge slowly
when g is not well approximated by a low-order poly-
nomial. They also require modification if they are not
to risk throwing the iteration outside the bracketing
interval known to contain the root.

It is an advantage to use one of the higher-order
interpolating methods when the function g is nearly
linear, but to fall back on the bisection or golden
search methods when necessary. In that way a rate of
convergence at least equal to that of the bisection
or golden section methods can be guaranteed, but
higher-order convergence can be enjoyed when it is
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possible. Brent [1, 8] has published methods which
do the necessary bookkeeping to achieve this, and
which can be generally recommended for root finding
or minimizing in one dimension. Brent’s algorithms
do not require the derivatives of f or g to be supplied.
However, the method for minimizing a function can
be easily modified to make use of the derivative when
it is available [8].

Newton’s Method

The most celebrated of all methods for solving a
nonlinear equation is Newton’s method, also called
Newton–Raphson. Newton’s method is based on the
idea of approximating g with its linear Taylor series
expansion about a working value xk . Let G(x) be the
matrix of partial derivatives of g(x) with respect to
x. Using the root of the linear expansion as the new
approximation gives

xk+1 = xk − G(xk)
−1g(xk)

(see Figure 2).
The same algorithm arises for minimizing f (x)

by approximating f with its quadratic Taylor series
expansion about xk . In the minimization case, g(x) is
the derivative vector (gradient) of f (x) with respect
to x and the second derivative matrix G(x) is sym-
metric. Beware, though, that Newton’s method as it
stands will converge to a maximum just as easily as
to a minimum.

If f is a log likelihood function, then g is
the score vector and −G is the observed informa-
tion matrix. Newton’s method for maximizing the

0 x1x0 x

g(x )

x2

Figure 2 Newton’s method converges quadratically from
the starting value x0

likelihood is based on the same quadratic expan-
sion which underlies asymptotic maximum likelihood
theory.

Newton’s method is powerful and simple to imple-
ment. It will converge to a fixed point from any suf-
ficiently close starting value. Moreover, once it starts
to home in on a root, the convergence is quadratic.
This means that, if the error is ε, the error after one
more iteration is of order ε2. In other words, the num-
ber of significant places eventually doubles with each
iteration. However, its global convergence properties
are poor. If xk is unlucky enough to occur near a turn-
ing point of g, then the method can easily explode,
sending the next estimate far out into the parameter
space (Figure 3). In fact, the set of values for which
Newton’s method does and does not converge can
produce a fractal pattern [8].

The problems with Newton’s method are: (i) an
inability to distinguish maxima from minima; and
(ii) poor global convergence properties. Both prob-
lems can be solved effectively through a restricted
step suboptimization [3]. Suppose we want to mini-
mize f (x). A condition for a minimum is that G(x) be
positive definite. We therefore add a diagonal matrix
to G to ensure that it is positive definite:

xk+1 = xk − [G(xk) + λkI]−1g(xk).

It is always possible to choose λk sufficiently large
so that f (xk+1) < f (xk). A simple algorithm then is
to choose λk just large enough to ensure a descent
step. As the iteration converges to a minimum, λk

can be decreased towards zero so that the algorithm
enjoys superlinear convergence. This is the algorithm
of choice when derivatives of f are available.

Solving g(x) = 0, when g is not the gradient of
some objective function f , is slightly more difficult.

0 x1 x0 x

g(x )

Figure 3 Newton’s method diverges from the starting
value x0
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One can manufacture a stand-in objective function by
defining

f (x) = g(x)Tg(x).

Then the root of g occurs at a minimum of f . Note,
however, that g is not the derivative of f , so that the
above restricted step strategy is not available. In this
case we can replace the Newton step with the line
search strategy,

xk+1 = xk − αkG(xk)
−1g(xk),

where 0 < αk < 1. It is always possible to choose
αk sufficiently small that f (xk+1) < f (xk). The line
search idea is to implement a one-dimensional subop-
timization at each step, minimizing f (xk+1) approx-
imately with respect to αk .

Both the restricted step and the line search algo-
rithms have global convergence properties. They can
be guaranteed to find a local minimum of f and a
root of g if such exist subject only to some standard
regularity conditions such as differentiability.

Quasi-Newton Methods

One of the drawbacks of Newton’s method is that it
requires the analytic derivative G at each iteration.
This is a problem if the derivative is very expensive
or difficult to compute. In such cases it may be
convenient to iterate according to

xk+1 = xk − A−1
k g(xk),

where Ak is an easily computed approximation to
G(xk). For example, in one dimension, the secant
method approximates the derivative with the differ-
ence quotient

ak = g(xk) − g(xk−1)

xk − xk−1
.

Such an iteration is called a quasi-Newton method. If
Ak is positive definite, as it usually is, an alternative
name is variable metric method.

One positive advantage to using an approximation
in place of G is that Ak can be chosen to be positive
definite, ensuring that the step will not be attracted
to a maximum of f when one wants a minimum.
Another advantage is that A−1

k g(xk) is a descent
direction from xk , allowing the use of line searches.

The best known quasi-Newton method in statisti-
cal contexts is Fisher’s method of scoring, which is
treated in more detail below. Among general purpose
quasilikelihood algorithms, the best is probably the
Broydon–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm. BFGS builds upon the earlier and similar Davi-
don–Fletcher–Powell algorithm. BFGS starts with a
positive-definite matrix approximation to G(x0), usu-
ally the identity matrix. At each iteration it makes a
minimalist (rank two) modification to A−1

k to gradu-
ally approximate G(xk)

−1. Both DFP and BFGS are
robust algorithms showing superlinear convergence.

Statisticians might fall into the trap of thinking that
the final approximation A−1

k is a good approximation
to G−1(xk) at the final estimate. Since Ak is chosen
to approximate G(xk) only in the directions needed
for the Newton step, it is useless for the purpose of
providing standard errors for the final estimates.

Fisher’s Method of Scoring

Of frequent interest to statisticians is the case where
f (x) is a log likelihood function and x is the vector of
unknown parameters. Then g is the score vector and
−G is the observed information matrix. For many
models (curved exponential families are the major
class), the Fisher information, I(x) = E[−G(x)], is
much simpler in form than −G(x) itself. Further-
more, since I(x) = var[g(x)], I(x) is positive definite
for any parameter value x for which the statistical
model is not degenerate. The quasi-Newton method
which replaces −G(x) with I(x) is known as Fisher’s
method of scoring [7, Section 5g]. Fisher scoring is
linearly convergent, at a rate which depends on the
relative difference between observed and expected
information [10].

Consider the special case of nonlinear least squa-
res, in which context Fisher scoring has a very long
history and is known as the Gauss–Newton algo-
rithm. The objective function is

f (β) =
n∑

i=1

[yi − µ(ti , β)]2,

where the yi are observations and µ is a general
function of covariate vectors ti and the vector of
unknown parameters β. Write y for the vector of yi, µ

for the vector of µ(ti , β), and µ̇ for the derivative
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matrix of µ with respect to β. The Fisher scoring
iteration becomes

βk+1 = βk + (µ̇Tµ̇)−1µ̇T(y − µ),

where all terms on the right-hand size are evaluated
at βk . The updated estimate is obtained by adding
to βk the coefficients from the multiple regression
of the residuals y − µ on the derivative matrix µ̇.
Gauss–Newton therefore solves the nonlinear least
squares problem by way of a series of linear regres-
sions.

The Gauss–Newton algorithm can be speeded-up
considerably in the special case that some of the β

appear linearly in µ. For example, if

µ(ti ; β) = β1 exp(−β3ti ) + β2 exp(−β4ti ),

then β1 and β2 are linear parameters. In such cases,
the Gauss–Newton iteration can be restricted to the
nonlinear parameters, β3 and β4. This idea is known
as separable least squares; see, for example, Seber
& Wild [9, Section 14.7]. Smyth [10] discusses the
same principle in the context of maximum likelihood
estimation.

Perhaps the most important application of Fisher
scoring is to generalized linear models (GLMs).
GLMs extend the idea of nonlinear regression to
models with nonnormal error distributions, including
logistic regression and loglinear models as special
cases. GLMs assume that yi is distributed according
to a probability density or mass function of the form

p(y; θi, σ 2) = a(y, σ 2) exp

{
1

σ 2
[y θi − b(θi)]

}

for some functions b and a (a curved exponen-
tial family). We find that E(yi) = µi = b′(θi) and
var(yi) = σ 2v(µi), where v(µi) = b′′(θi). If the
mean µi of yi is as given above for the nonlinear
least squares, then the Fisher scoring iteration for β is
a slight modification of the Gauss–Newton iteration:

βk+1 = βk + (µ̇TV−1µ̇)−1µ̇TV−1(y − µ),

where V is the diagonal matrix of the v(µi). The
update for β iteration is still obtained from a lin-
ear regression of the residuals on µ̇, but now the
observations are weighted inversely according to their
variances.

Classical GLMs assume a link-linear model of the
form

h(µi) = xT
i β

for some link function h. In that case the Fisher
scoring update can be reorganized as

βk+1 = (XTWX)−1XTWz,

where z is a working vector with components zi =
h′(µi)(yi − µi) + h(µi) and W is a diagonal matrix
of working weights 1/[h′′(µi)

2v(µi)]. The updated
β is obtained from weighted linear regression of the
working vector z on X. Since X remains the same
throughout the iteration, but the working weights
change, this iteration is known as iteratively reweigh-
ted least squares (IRLS).

When the observations yi follow an exponential
family distribution, observed and expected informa-
tion coincide, so that Fisher scoring is the same as
Newton’s method. For GLMs this is so if h is the
canonical link. We can conclude from this that IRLS
is quadratically convergent for logistic regression and
loglinear models, but linearly convergent for bino-
mial regression with a probit link, for example (see
Quantal Response Models). In practice, rapid linear
regression is difficult to distinguish from quadratic
convergence.

Nonderivative Methods

The Nelder–Mead downhill simplex algorithm is a
popular derivative-free optimization method. It is
based on the idea of function comparisons amongst a
simplex of N + 1 points. Depending on the function
values, the simplex is reflected or shrunk away from
the maximum point. Although there are no theoretical
results on the convergence of the algorithm, it works
very well on a range of practical problems. It is a
good choice if a once-off solution is required with
minimum programming effort or if the function to be
minimized is not differentiable.

If you are prepared to use a more complex pro-
gram and if the function to be optimized is smoothly
differentiable, the best performing methods for opti-
mization without derivatives are quasi-Newton meth-
ods with difference approximations for the gradient
vector. These programs require only the objective
function as input, and compute difference approxi-
mations for the derivatives internally. Note that this
is different from computing numerical derivatives and
inputting them as derivatives to a program designed
to accept analytic derivatives. Such a strategy is
unlikely to be successful, as the numerical derivatives
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are unlikely to show the assumed analytic behav-
ior.

Close competitors to the finite-difference methods
are direction set methods. These methods perform
one-dimensional line searches in a series of directions
which are chosen to be approximately conjugate,
i.e. orthogonal with respect to the second derivative
matrix. The best current implementation is given by
Brent [1].

EM Algorithm

The EM algorithm is not an optimization method
in its own right, but rather a statistical method of
making optimization easier. The idea is the possi-
bility that the log likelihood �(y; θ) might be easier
to maximize if there were additional observations
or information. Let z be the completed data, and
let �(z; θ) be the log likelihood for z. Maximiz-
ing the incomplete likelihood �(y; θ) is equivalent to
maximizing the conditional expectation of the com-
plete likelihood given y, E[�(z; θ)|y). In most cases,
the EM is applied when the complete likelihood
can be maximized in one step. However, the con-
ditional expectation changes with the updated esti-
mate of θ . So the optimization proceeds by alternate
steps of expectation and maximization – hence the
name “EM”.

The EM algorithm is linearly convergent, at a
rate which depends on the proportion of observed to
unobserved Fisher information. Let ρ be the fraction
of the Fisher information for a particular parameter
in the complete log likelihood �(z; β) which is not
actually observed. Then the error in the estimate for
that parameter after each iteration is εk+1 ≈ ρεk . The
proportion ρ can in applications be very close, or
even equal, to one for some parameters, so that con-
vergence can be very slow. On the other hand, the
EM algorithm normally converges even from poor
starting values. The iteration can often be speeded
up by Aitkin acceleration, which attempts to con-
vert linear convergence into quadratic convergence
[8, p. 92].

Software

Optimization software is included in the commercial
subroutine libraries IMSL and NAG, and in many
statistical programs such as SAS, S-PLUS, R, MAT-
LAB, and Gauss (see Software, Biostatistical). Pub-
licly available software can be obtained by search-
ing the NETLIB online library at http://www.
netlib.org/. The guides and software provided by
the Optimization Technology Center at the Argonne
National Laboratory at the URL, http://www.ece.
northwestern.edu/OTC, are also worth consider-
ing. Less elaborate programs suitable for user modi-
fication can be found in Numerical Recipes [8].
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Optres Rotation
Optres rotation [2, 3] is a nonquartic method of per-
forming an oblique rotation of a matrix V of dimen-
sion (p × k) made up of vectors associated with
principal components analysis or factor analysis
in order to transform these quantities into new vari-
ables by the relationship B = V� such that B will
approximate a simple structure. The matrix B is of
dimension (p × k) and the matrix � is of dimension
(k × k) (see Rotation of Axes). Optres rotation is
essentially an enhancement of a conventional oblique
rotation. The principle feature of Optres rotation is
that it requires, for each vector, a specification of
the variables (called salient variables) whose rotated
coefficients should be maximized and the nonsalient
variables whose coefficients should be minimized.
This specification is done by means of an algorithm
applied to the results of another oblique rotation such
as Promax. The Optres rotation then produces a new
rotation subject to the constraints associated with the
identified variables. Since Promax, itself, requires an
orthogonal rotation, such as Varimax, for its start-
ing approximation, Optres rotation is a three-step
procedure.

The Optres procedure is based on the following
criterion:

Qj = M(vj(s)
2) − cM(vj (ns)

2) = max,

where M(vj(s)
2) is the mean of the squared load-

ings of the salient variables of component or fac-
tor j (see Factor Loading Matrix), M(vj(ns)

2) is
the mean of the squared loadings of the nonsalient
variables of component or factor j , and c is a con-
stant designed to give equal importance to these two
quantities. Hakstian recommended c = 50, but Cure-
ton [1] felt that c = 100 was more appropriate.

For the Decathlon example given in the arti-
cle Rotation of Axes, the Optres solutions for c = 50
and c = 100 are given in Table 1 along with the
original principal component characteristic vectors
(see Eigenvector).
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Table 1 Decathlon: Characteristic and Optres rotated vectors

Characteristic vectors Optres c = 50 Optres c = 100
v1 v2 v3 v4 b1 b2 b3 b4 b1 b2 b3 b4

100 m run 0.69 0.22 −0.52 −0.21 0.79 0.01 0.01 −0.00 0.79 0.01 −0.00 −0.02
Long jump 0.79 0.18 −0.19 0.09 0.45 0.04 0.37 0.02 0.44 0.03 0.36 0.01
Shotput 0.70 −0.53 0.05 −0.18 0.05 0.73 0.05 −0.07 0.05 0.73 0.05 −0.07
High jump 0.67 0.13 0.14 0.40 0.02 −0.01 0.66 0.00 0.01 −0.02 0.66 0.00
400 m run 0.62 0.55 −0.08 −0.42 0.71 0.00 −0.08 0.55 0.71 0.00 −0.09 0.54
110 m hurdle 0.69 0.04 −0.16 0.35 0.21 −0.02 0.55 −0.20 0.20 −0.02 0.55 −0.20
Discus 0.62 −0.52 0.11 −0.23 0.01 0.74 −0.01 −0.01 0.00 0.74 −0.01 −0.00
Pole vault 0.54 0.09 0.41 0.44 −0.25 0.04 0.69 0.11 −0.26 0.04 0.69 0.11
Javelin 0.43 −0.44 0.37 −0.24 −0.19 0.71 −0.03 0.18 −0.20 0.71 −0.03 0.20
1500 m run 0.15 0.60 0.66 −0.28 0.01 −0.02 0.02 0.90 0.00 −0.01 0.01 0.90



Order Statistics

The order statistics of a collection of data or random
variables are their ordered values. More precisely, if
X1, . . . , Xn is a collection of random variables with
ordered values

X(1) ≤ X(2) ≤ · · · ≤ X(n),

then their rth order statistic is the rth smallest among
them, X(r). Thus X(1) and X(n) are, respectively,
the sample minimum and maximum. Clearly the
order statistics are not independent. In principle the
order statistics are certain to be unequal when the
underlying data are continuous, but in practice this
depends on the degree of rounding to which they are
subject.

The order statistics are widely used as the basis
of estimators and assessment of fit, but they have
many other uses. Simple statistics based on them
include:

1. The sample median,

medianjXj

=
{

X((n+1)/2), n odd,
1
2 (X(n/2) + X(n/2+1), n even.

2. The α trimmed mean,

1

n − 2r

n−r∑

j=r+1

X(j), (1)

where r is the integer part of αn, which gives the
sample average when α = 0 and is interpreted as
the median when α = 0.5 (see Trimming and Win-
sorization).
3. The median absolute deviation (MAD),

mediani |Xi − medianjXj |.
4. The interquartile range (IQR), X(m2) − X(m1),

where m2 and m1 are the integer parts of 3
4n

and 1
4n.

5. The range, R = X(n) − X(1).

The first two of these are estimates of the location
of the sample, while the last three can be used to
estimate its dispersion. The median, trimmed mean,
interquartile range, and MAD are little affected by

outliers, while the range is badly affected by them
because it depends on the most extreme observations
in the sample. The median, trimmed mean, interquar-
tile range, and range are linear combinations of order
statistics, a class of quantities called L statistics.

Linear interpolation between adjacent order statis-
tics is often used in small samples; an example is
provided by the median above.

For illustration, consider the following data, which
show the differences between the numbers of attacks
of angina pectoris that were suffered by 12 patients,
each of whom was given two different treatments [4,
p. 16]:

−25 2 2 3 5 7 7 7 9 14 19 42.

Their median is 7, their 25% trimmed mean 6.33,
their interquartile range 7, their MAD 4.5, and their
range 67. If the lowest difference of −25 is replaced
by −125, than the values of the first four are
unchanged, but the range becomes 167. The aver-
age and sample standard deviation for the original
data are 7.67 and 15.11; for the modified data they
are −0.67 and 40.69. Statistics such as the average,
sample standard deviation, and range are sensitive to
the values of extreme observations, and for this rea-
son robust estimates of location and scale are often
based on combinations of nonextreme order statis-
tics (see Robustness). In this example the rounding
is severe enough to give a number of ties.

Exact Distributions

Suppose that X1, . . . , Xn are independent identically
distributed continuous random variables with cumu-
lative distribution function (cdf) F and probability
density function (pdf) f . Then the rth order statistic,
X(r), has cdf

Pr(X(r) ≤ x) =
n∑

i=r

(
n

i

)
F i(x)[1 − F(x)]n−i (2)

and pdf

n!

(n − r)!(r − 1)!
F r−1(x)[1 − F(x)]n−rf (x). (3)

Eq. (2) follows because the event X(r) ≤ x occurs
if and only if at least r of Xj are less than or
equal to x, and these events are independent and
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each has probability F(x). Expression (3) is obtained
on differentiating (2). When the distribution F is
discrete, the possibility of ties among the X1, . . . , Xn

makes the corresponding formulas messy.
If F is known, then expressions for the

mean, variance, and other moments of X(r) can
be established from (3). For example, if the Xj

have the exponential pdf f (x) = λ exp(−λx), x >

0, then it is fairly straightforward to show that for
r = 1, . . . , n − 1 the differences of order statistics
X(r+1) − X(r) are independent exponential variables
with means λ−1/(n − r). Consequently

λE(X(r)) = e(r, n) =
r∑

j=1

(n + 1 − j)−1.

The quantities e(r, n), sometimes called exponential
scores, are useful in assessing the fit of the exponen-
tial distribution. In a plot of the order statistics against
the e(r, n), a straight line indicates perfect fit of the
distribution to the data, with the slope giving an esti-
mate of λ−1, while departures from exponentiality
will show as different types of curvature. Probabil-
ity plots such as this are widely used for assessing
fit. The best known of them is based on normal
scores, and is used to check normality of a sample of
data. In such plots it often suffices to replace the rth
expected order statistic by F−1[r/(n + 1)], which is
an approximation to the r/n quantile of F , though in
particular cases better approximations are sometimes
available.

The joint pdf of any subset of order statistics can
be written down in a form that generalizes (3), and
expressions for their covariances and other properties
obtained. For example, the expected value of the
range of n = 12 independent normal variables with
variance σ 2 is 3.26σ , so for the sample above an
estimate of σ based on the range is R/3.26 = 20.55.
Estimates such as this are easy to calculate and hence
are widely used in quality control, where the sample
size may be tiny, but their sensitivity to outliers
makes them too unreliable for general use.

The exact joint distribution of order statistics is
also useful in testing for outliers. For example, if
X1, . . . , Xn is thought to be a sample from the expo-
nential distribution, except that the largest observa-
tion may be an outlier, then a standard test rejects
the null hypothesis of no outlier for large values of
T = X(n)/

∑
Xj . The statistic T has a beta distri-

bution when there is no outlier, so exact calculation

of the significance level is straightforward. Barnett &
Lewis [3] is a compendium of such tests, many of
which rely on order statistics.

The cdf (2) is the basis for a simple nonparametric
confidence interval for the p quantile of F , i.e.
the value xp such that F(xp) = p; we suppose that
f (xp) > 0, so xp is unique. Suppose that we choose
s and r so that as nearly as possible,

Pr(xp ≤ X(s)) = α, Pr(X(r) ≤ xp) = α;

(X(s), X(r)) is then an approximately equi-tailed
1 − 2α confidence interval for xp . Since xp =
F−1(p), we should take the values of r and s so
that

s−1∑

j=0

(
n

j

)
pj (1 − p)n−j =̇α;

n∑

j=r

(
n

j

)
pj (1 − p)n−j =̇α.

For illustration, suppose that a confidence interval
is required for the median x0.5 of the population of
differences underlying the sample given above. In this
case n = 12, and with p = 0.5 we find that s = 3 and
r = 10 gives endpoints (2,14) for a 96% confidence
interval for x0.5.

Approximate Distributions

The exact formulas (2) and (3) for the pdf and cdf
of the rth order statistic can be difficult to work
with. Fortunately, there is a simple approximation
for the pdf of a central order statistic. Suppose that
r is the integer part of pn, where 0 < p < 1, and
let xp denote the p quantile of F . As before, we
suppose that f (xp) > 0. Then in large samples the
approximate distribution of X(r) is

X(r)∼̇N

[
xp,

p(1 − p)

nf 2(xp)

]
. (4)

Thus the sample median can be used to estimate
the median of the population from which the sam-
ple is drawn, and other order statistics can be used to
estimate their corresponding quantiles. The result (4)
shows that the limiting distribution of the median
of a sample of size n from the N(µ, σ 2) distribu-
tion is normal with mean µ and variance πσ 2/(2n),



Order Statistics 3

and that for such a sample the IQR and MAD have
expected values 1.35σ and 0.675σ ; thus IQR/1.35
and MAD/0.675 are the corresponding robust esti-
mates of σ .

One consequence of (4) is that although non-
parametric estimation of a population quantile is
straightforward, it is much harder to give an accu-
rate statement of its uncertainty in small samples.
For we see from (4) that the problem of estimating
the variance of X(r) is tantamount to estimating the
density f (·) at xp, and accurate density estimation
needs large samples because nonparametric density
estimators converge only slowly.

Under mild conditions on F , (4) extends to any
fixed number of central order statistics. Consider
X(r1) ≤ · · · ≤ X(rk), where rj is the integer part
of npj , and 0 < p1 < · · · < pk < 1, and for j =
1, . . . , k let xpj

= F−1(pj ) and suppose that f (xpj
)

is positive and finite. Then the joint limiting distribu-
tion of X(r1), . . . , X(rk) is multivariate normal with
means xp1 , . . . , xpk

and covariances given by pi(1 −
pj )/[nf (xpi

)f (xpj
)], where j ≥ i. This implies, for

example, that the IQR has a limiting normal distri-
bution, because it is a difference of the two approx-
imately bivariate normal random variables obtained
by taking p1 = 0.25 and p2 = 0.75.

These limiting distributions do not apply to an
order statistic X(r) for any fixed r , since in that
case r/n → 0 as n → ∞, corresponding to p = 0. In
this situation the approximate distributions that apply
are those for extreme values, and it is possible to
show that if there are sequences an and bn such that
Y(n+1−r) = an(X(n+1−r) − bn) has a nondegenerate
limiting distribution as n → ∞, then the pdf of
Y(n+1−r) must have the form

1

τ(r − 1)!

[
1 + κ

(
y − η

τ

)]−r/κ−1

× exp

{
−

[
1 + κ

(
y − η

τ

)]−1/κ
}

,

−∞ < η, κ < ∞, τ > 0,

where the range of y is such that 1 + κ(y − η)/τ > 0.
Such distributions are useful in a wide range of
applications, more details of which are given in the
article on extreme values, and in [8] and [10].

L statistics such as (1) are widely used, but appro-
priate distributional approximations are not immedi-
ate from the discussion above because they depend

neither on extreme values nor on a fixed number
of order statistics. Such a linear combination can be
written as

T = n−1
n∑

r=1

w
( r

n

)
X(r),

where w(u) is a function of u, for 0 ≤ u ≤ 1, which
ascribes weights to the order statistics. For the α

trimmed mean, for example,

w(u) =
{

1, α ≤ u ≤ 1 − α,

0, otherwise.

Then under mild conditions on w(·) and F , a general
result [12] is that T has an approximate normal
distribution with mean and variance
∫

w[F(x)]x dF(x),

2

n

∫ ∞

−∞
dx

∫ ∞

x

dy w[F(x)]w[F(y)]F(x)[1 − F(y)].

(5)

This result is theoretically useful because the condi-
tions are mild and easy to verify for particular choices
of w(·), and because estimates of the variance in (5)
can form the basis of uncertainty statements for the
estimator T .
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Ordered Alternatives

In experiments to determine whether a particular
chemical causes cancer in laboratory animals, the
dose response is an important indication of possible
carcinogenicity. If the test chemical is a carcinogen,
then in general the higher the dose the more animals
develop cancer. The dose response in toxicity assays
is an important example of ordered alternatives.

Do children tend to lie more as they grow older?
Here we would like to known if the lying tendency
is related monotonically to age. Does drinking during
pregnancy increase the risk of congenital malforma-
tion? Are younger cancer patients more prone to
multiple malignancies? These are some illustrative
examples of ordered alternatives in biostatistics.

Let d1 < d2 < · · · < dk−1 < dk denote ordered
values associated with k groups. There may, for
instance, be k levels of chemical dose in toxicity
assays. They may represent k age groups. The val-
ues are not necessarily quantitative but can be ordinal
values such as 1, 2, . . . , k, denoting unquantifiable k

values. We assume that the increasing d value also
increases the outcome value under the alternative
hypothesis, generating ordered alternatives.

Ordered Alternative in Binomial
Probabilities

Suppose that ni animals are assigned to the di

dose group, and that niµi animals are expected to
develop a particular type of tumor, where µi is an
unknown probability of developing the tumor dur-
ing the study period. We are interested in testing the
null hypothesis that µ1 = µ2 = · · · = µk against the
ordered alternative that µ1 ≤ µ2 ≤ · · · ≤ µk with at
least one strict inequality. Let Yi denote the num-
ber of animals developing the tumor of interest in
the di dose group. Yi is a binomial random variable.
We would like to determine whether the higher dose
increases the risk of the tumor. For such an anal-
ysis, the usual chi-square test with k − 1 degrees
of freedom is inappropriate, because it is directed
toward finding if µis are different rather than if
µis increase with increasing dose. The χ2 statistic
is given by

∑
ni(µ̂i − µ̂)2/µ̂(1 − µ̂), where µ̂i =

yi/ni is the observed proportion of animals devel-
oping the tumor of interest and µ̂ = ∑

yi/
∑

ni is

the overall observed proportion of animals develop-
ing the tumor.

An appropriate test statistic for the ordered alter-
native is

ZL =
∑

diYi − µ̂
∑

nidi

[
µ̂(1 − µ̂)

∑
ni(di − d)2

]1/2 ,

where d is
∑

nidi/
∑

ni (see Trend Test for Counts
and Proportions). If ZL ≥ z1−α , then the null hypo-
thesis is rejected and the chemical is considered to
cause the tumor. Here, z1−α is the upper α cutoff point
of the standard normal distribution. In applying the
ZL, it is assumed that µi is related to di linearly, i.e.
µi = a + bdi . When such an assumption is improper,
we can apply

ZM =
∑

iYi − µ̂
∑

ini

[
µ̂(1 − µ̂)

∑
ni(i − i)2

]1/2 ,

where i = ∑
ini/

∑
ni . If ZM ≥ z1−α , then the null

hypothesis is rejected in favor of the ordered alter-
native. Both ZL and ZM statistics are considered
nonparametric [1], while the ZM statistic is appli-
cable to broader ordered alternatives than the ZL

statistic.

Ordered Alternative in Poisson Means

The test statistic based on
∑

diYi or
∑

iYi is appli-
cable to ordered alternatives in means of k Poisson
distributions. Let Yi be a Poisson random variable
with mean wiµi for i = 1, . . . , k, where wi is a
known weight variable and µi is an unknown param-
eter which is ordered under the alternative hypothesis,
namely µ1 ≤ µ2 ≤ · · · ≤ µk with at least one strict
inequality. For example, suppose that Yi is a binomial
random variable with sample size ni and probability
µi = p(di), and that p(di) is an unknown function
of given dose di, d1 < d2 < · · · < dk . Furthermore,
assume that µi is very small. Then Yi is considered
a Poisson random variable with mean of niµi .

We know that (Y1, . . . , Yk) is a multinomial vec-
tor with (N, w1µ1/

∑
wiµi, . . . , wkµk/

∑
wiµi),

conditional on N = ∑
Yi . Lee [6] showed that both

the
∑

diYi and
∑

iYi statistics are applicable to test-
ing the null hypothesis against the ordered alternative,
although

∑
iYi is more broadly applicable than
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∑
diYi . For given N and wis, we can obtain

exact distributions of
∑

diYi and
∑

iYi statistics
under the null hypothesis that µis are constant
for all i. For notational convenience assume that∑

wi = 1 and that
∑

wiµi = 1. Under the null
hypothesis, TM = (

∑
iYi − n

∑
iwi)/{N [

∑
i2wi −

(
∑

iwi)
2]}1/2 is an asymptotic standard normal ran-

dom variable, and thus if N is large and TM ≥
z1−α , then the null hypothesis is rejected. We
can apply TL = (

∑
diYi − n

∑
diwi)/{N [

∑
d2

i wi −
(
∑

diwi)
2]}1/2 to testing somewhat narrower ordered

alternatives [6].
In testing ordered alternatives in Poisson means,

we can apply the best asymptotic normal (BAN)
estimation method [4]. For a small to moderate
sample size, the BAN estimation method can fail [7].
Furthermore, test statistics

∑
iYi and

∑
diYi are

asymptotically efficient [10].

Ordered Alternative in Multinomial
Probabilities

Let (Y1, Y2, . . . , Yk) be a k-variate multinomial
vector with sample size N and probabilities
(w1µ1, w2µ2, . . . , wkµk), where

∑
wiµi = 1 and∑

wi = 1. Under the null hypothesis, µi = µj for
i �= j , and under the alternative, µ1 ≤ µ2 ≤ · · · ≤
µk , with at least one strict inequality. We can apply∑

iYi to testing the ordered alternative. Examples of
ordered alternatives in multinomial probabilities can
be found in [5] and [6].

Nonparametric Tests for Ordered
Alternatives in Means of Continuous
Distributions

Suppose that Yij is an independent random variable
with distribution function F(yij − µi) for i =
1, . . . , k and j = 1, . . . , ni . This is a one-way
analysis of variance situation where the form of
the underlying distribution is unknown. Under the
null hypothesis, µi = µi ′ for i �= i ′, and under
the alternative, µ1 ≤ µ2 ≤ · · · ≤ µk with at least
one strict inequality. If k = 2, then we can apply
the Wilcoxon–Mann–Whitney two-sample test
statistic. For k > 2, we compute the Mann–Whitney
version of the Wilcoxon–Mann–Whitney statistic for
every pair of 1 ≤ i < i ′ ≤ k, and sum k(k − 1)/2

Mann–Whitney statistics. This statistic was proposed
for testing the ordered alternative by Jonckheere [3].

Let I (a < b) = 1 if a < b, 0 if a > b, and 1
2

if a = b. For i < i ′, let Uii ′ = ∑ni

u=1

∑ni′
v=1 I (yiu <

yi ′v). The Jonckheere statistic is given by J =∑k−1
i=1

∑k
i ′=i+1 Uii ′ . The exact null distribution of

J for k = 3, 4, 5, 6 and small nis is avail-
able [2]. Under the null hypothesis, E0(J ) =
(N2 − ∑k

i=1 n2
i )/4 and var0(J ) = [N2(2N + 3) −∑k

i=1 n2
i (2ni + 3)]/72, where N = ∑

ni . For a large
min(ni, i = 1, . . . , k), if [J − E0(J )]/[var0(J )]1/2 ≥
z1−α , then the null hypothesis is rejected in favor
of the ordered alternative at significance level α.
When some blocks are incompletes because of miss-
ing observations, see the methods presented in [9].

When observations are collected in n blocks of
size k, we cannot apply the Jonckheere test because
of the possible block effect. k is the number of
treatment groups. In this case, the Page statistic [8]
is a relatively simple and easy to use method to
test the ordered alternative. Suppose that Yij is
an independent random variable with distribution
function F(yij − µi − θj ) for i = 1, . . . , k and j =
1, . . . , n, θ is a block effect, and the parameter
of interest is µ, the treatment effect. Under the
null hypothesis, µi = µi ′ for i �= i ′, and under the
alternative, µ1 ≤ µ2 ≤ · · · ≤ µk with at least one
strict inequality.

Let rij be the rank of yij among (y1j , y2j , . . . ,

y(i−1)j , yij , . . . , ykj ), k observations of the j th block.
Let Ri = ∑n

j=1 rij . The Page statistic for testing the

ordered alternative is given by L = ∑k
i=1 iRi . Exact

cutoff points for given significance levels of 0.001,
0.01, and 0.05 are given for k = 3, . . . , 8 for small to
moderate n [2]. Under the null hypothesis, E0(L) =
nk(k + 1)2/4 and var0(L) = n(k3 − k)2/144(k − 1).
For a large n, if [L − E0(L)]/[var0(L)]1/2 ≥ z1−α ,
then the null hypothesis is rejected in favor of
the alternative hypothesis at the given significance
level α. When some blocks are incomplete because
of missing observations, see the methods presented
in [9].
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Ordered Categorical Data

The methodology considered herein complements
general methodology for categorical data analysis
(see, for example, Categorical Data Analysis;
Contingency Table; Loglinear Model), but it differs
from the general methodology in that a natural
ordering is assumed for one or more of the categorical
variables of interest. Ordered categorical data are
ubiquitous in the medical and health sciences, and
research into methodology for the analysis of such
data has been vigorous over the past 20 or so years.

An observed variable that is ordered categorical
may arise as the result of categorizing a continu-
ous variable, or it may be an inherently categorical
measurement. It is routine medical practice to clas-
sify patients as being at various degrees of risk for
developing a disease or condition according to spec-
ified ranges on risk factors (see Prognostic Factors
for Survival). In cardiovascular disease, for example,
important risk factors are serum cholesterol and blood
pressure levels. These variables are intrinsically con-
tinuous, but for some purposes, such as classifying
patients into groups or levels of risk, it is useful to
analyze them as ordered categorical variables; see,
for example, [49]. However, in classifying levels of
pain relief attained with a treatment it is often only
possible to arrive at subjective categorizations, such
as “no relief”, “some relief”, “considerable relief”,
or “complete relief”. Likewise, clinical assessments
of mental health status are sometimes based on a
numerical scoring system for one or more functional
items or tasks (see Scores), and at other times accord-
ing to a subjective clinical evaluation. Even when the
observed data arise from the subjective assignment of
an observed response into a category on an ordered
scale, it might be assumed that there does indeed exist
an underlying continuous random variable for which
the discrete classification is an imperfect measure.
The issue of whether the observed variable or the
underlying continuous variable is of primary interest
sparked a contentious debate between Karl Pear-
son [50] and G. Udny Yule [58, 59] in the early part
of this century. Those issues will not be revisited
here, but rather I cover methodology developed from
both points of view.

It should be noted that methodology developed
for categorical data in general can be applied to
the analysis of ordered categorical data. There are,

however, important advantages to using models and
methodology developed to explicitly take account of
the ordinal structure of the categories. In particular,
models for ordered categorical data tend to be more
parsimonious than their more general counterparts,
thus resulting in more efficient inferences and facil-
itating interpretation of parameters and economical
presentation of results. The ability to focus hypothesis
tests on restricted alternatives specific to the ordinal
structure of the data often results in tests that are
substantially more powerful (for the alternatives of
interest) than those that cover omnibus alternatives;
see, for example [3, pp. 269, 282–283] (see Isotonic
Inference).

The models and methodology outlined herein
focus on two general areas of statistical analysis:
(i) association and (ii) regression. The study of
correlation and linear regression are central to any
development of models and methodology for the
analysis of continuous variables, and the situation
is no different for categorical variables. Many of
the models, measures, and parameters that I consider
here have analogous counterparts in general linear
models for continuous data, e.g. in ordinary linear
regression and in the analysis of variance. There are,
of course, important issues particular to the analysis
of ordered categorical data, and those are the primary
focus of this article.

Models for the analysis of association are the
first topic I consider. The odds ratio serves as the
focus of much of the modern analysis of binary
data, and the models I consider for the analysis of
association build on that work by focusing also on
the use of odds ratios in summarizing associations.
Regression models for the analysis of an ordered
categorical response are covered subsequently. The
approach taken is to focus on models that generalize
(extend) logistic regression modeling of a binary
response. I conclude with a brief discussion of recent
developments and ongoing lines of research on the
analysis of ordered categorical data.

It is impossible to cover all approaches to the anal-
ysis of ordered categorical data here. It is inevitable
that some topics are omitted, intentionally or oth-
erwise, or not covered as fully as some others.
For example, ordinal probit models (see Quantal
Response Models) are mentioned only briefly. In
such cases, I have attempted to provide citations to
papers and books that will assist the interested reader
in exploring those areas.
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Models for Association

The correlation coefficient is the standard measure
for the assessment of (linear) association between
two continuous variables, and the parameters in a
classical linear regression are readily related to it.
The odds ratio plays the parallel role in the modeling
and analysis of categorical data. Here, I work within
the context of two-way contingency tables; citations
to literature on multivariate generalizations are given
subsequently. Continuous variables are introduced in
the subsequent section on regression-type models.
There are immediate connections between models
for odds ratios and regression models for categorical
data, just as there are immediate connections between
partial correlations and regression coefficients in
ordinary linear regression.

Odds Ratios for I × J Contingency Tables

Let πij denote the probability associated with the
cell in row i and column j of the I × J table
(i, = 1, . . . , I ; j = 1, . . . , J ), and let nij denote
the corresponding observed count. The letters R and
C are used to denote the row variable and the column
variable, respectively. A loglinear representation of
the saturated model (i.e. the only constraints placed
on the cell probabilities follow from the axioms of
probability) is

ln πij = λ + λR
i + λC

j + λRC
ij ,

where the λ terms are parameters to be estimated
from the data. The model of statistical independence
is the reduced model where λRC

ij = 0 for all pairs
(i, j ). The association between R and C is captured
by the λRC

ij terms, and contrasts of the λRC
ij terms

are readily interpreted in terms of log odds ratios for
2 × 2 subtables of the complete table, i.e.

ln

(
πijπi ′j ′

πij ′πi ′j

)
= λRC

ij − λRC
ij ′ − λRC

i ′j + λRC
i ′j ′ .

All possible local log odds ratios may be completely
characterized by a set of (I − 1)(J − 1) local log
odds ratios, and the model of independence for the
complete table is equivalent to independence in all
(I − 1)(J − 1) subtables. When at least one of the
variables is ordered, there are parsimonious models
between statistical independence and the saturated
model that have been found to be extremely useful

in empirical work for characterizing the pattern of
association.

Loglinear Models of Association

Goodman [29] and Haberman [35] considered simple
loglinear models for the association in contingency
tables having ordered categories. Goodman specified
models in terms of the basic set of local odds ratios
θij = (πijπi+1,j+1)/(πi,j+1πi+1,j ), and in particular
the models of uniform association, row effects associ-
ation, column effects association, and row + column
effects association are:

uniform : θij = θ,

row effects : θij = θi,

column effects : θij = θj ,

row + column effects : θij = θ1iθ2j ,

where i = 1, . . . , I − 1, j = 1, . . . , J − 1. The uni-
form association model takes the local association,
as characterized by local odds ratios, to be con-
stant throughout the table. The row effects asso-
ciation model summarizes the local association in
terms of I − 1 odds ratios θi , and, likewise, the col-
umn effects association model summarizes the local
association in terms of J − 1 local odds ratios θj .
The row + column effects model allows for addi-
tive variation of the local log odds ratios. Corre-
sponding loglinear models for the cell probabilities
restrict the λRC

ij parameters by assigning scores to
the categories of one or both of the variables cross-
classified. For example, in the uniform association
model λRC

ij = βuivj , where the ui are equally spaced
and the vj are equally spaced. Note that ln θ =
β[(ui+1 − ui)(vj+1 − vj )], and that there is no loss in
generality in assuming the scores ui = i and vj = j .
This model is also known as the model of linear-
by-linear association [3, 35] when the scores, or the
distances between them, are fixed but not assumed to
be equally spaced. Inferences are necessarily sensitive
to the choice of scores [34], but these simple loglinear
models provide a useful starting point for exploring
associations between ordered categorical variables.

Example 1: Association Between Mental Health
Status and Socioeconomic Status

In a now classic study of mental health in Manhattan,
New York, Srole et al. [53] explore the relationship,
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among others, between mental impairment and par-
ents’ socioeconomic status. Table 1, from that study,
has been used extensively (see, for example [3, 23,
29, 32], and [33]) to illustrate the utility and applica-
tion of models for ordered categorical data.

Residual degrees of freedom and deviance statis-
tics for loglinear association models applied to this
table are reported in Table 2. Note that under the
assumption of multinomial sampling for the nij a
deviance statistic equals minus two times the log like-
lihood ratio statistic, with an asymptotic chi-square
distribution under the assumed model, for testing
model goodness of fit (see Likelihood Ratio Tests).
The hypothesis of statistical independence between
mental health status and parents’ socioeconomic sta-
tus is rejected, both by the omnibus test of goodness
of fit (deviance = 47.42, on 15 df) and by the more
focused test of independence versus uniform asso-
ciation (deviance = 47.42 − 9.90 = 37.52, on 1 df).
The uniform association model provides an excellent
fit to these data (deviance = 9.90, on 14 df), and like-
lihood ratio comparisons of uniform association to
the row effects, column effects, and row + column
effects association models do not yield evidence
of departures from uniform association in favor of

Table 1 The Midtown Manhattan Study: mental health
and parents’ socioeconomic status

Mental health status

Parents’ Mild Moderate
socioeconomic symptom symptom
status Well formation formation Impaired

A (high) 64 94 58 46
B 57 94 54 40
C 57 105 65 60
D 72 141 77 94
E 36 97 54 78
F (low) 21 71 54 71

Table 2 Models summary for Table 1

Model Degrees of freedom Deviance

Independence (I − 1)(J − 1) = 15 47.42
Uniform association (I − 1)(J − 1) − 1 = 14 9.90
Row effects (I − 1)(J − 2) = 10 6.83
Column effects (I − 2)(J − 1) = 12 6.28
Row + column

effects (I − 2)(J − 2) = 8 3.05

these more general models. The maximum likeli-
hood estimate β̂ of β under uniform association is
0.09, with an estimated asymptotic standard error
of 0.015. Hence, there is strong evidence that men-
tal health status and parents’ socioeconomic status
are positively associated (i.e. higher socioeconomic
status is associated with better mental health), but
the strength of that association is quite small, i.e. an
approximate 95% confidence interval for the uni-
form local odds ratio is (1.06, 1.13), as compared
with the value 1.00 for independence.

All of the above models are appropriate when both
variables are ordered, but assuming fixed scores does
have limitations. Assigning fixed scores to a variable
implies a specified ordering and spacing to the cat-
egories. That may not be desirable or realistic for
some ordered variables, and it is inappropriate for a
nominal variable. The row effects (column effects)
model does not assume fixed scores for the row
(column) categories, and hence it can be used to
estimate row (column) scores, and to analyze nom-
inal–ordinal (ordinal–nominal) cross-classifications
of counts; see, for example, [1], and [23]. The row +
column effects model includes both fixed and esti-
mated scores for both variables.

RC and Quasi-Symmetric RC Models

The preceding loglinear models are immensely use-
ful, but they cannot be used to describe all data sets
encountered in practice. An intrinsically nonlinear
model that is a simple generalization of the linear-
by-linear association model is

ln(πij ) = λ + λR
i + λC

j + βµiνj ,

where the µi and νj are scores to be estimated from
the data [11, 29]. Hereafter, we refer to this model as
the RC association model. Setting ∆R

i = µi+1 − µi

and ∆C
j = νj+1 − νj , the local log-odds ratios are of

the form
ln(θij ) = β∆R

i ∆C
j .

The row effects and column effects models are special
cases of the RC model where one of the two sets of
scores are constrained to be equally spaced.

There are many instances in biostatistical prac-
tice where there is a one-to-one correspondence
between the categories of two, or more, ordered
categorical variables. It is frequently the case in
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this situation that questions arise regarding issues
of symmetry, be they in terms of the joint distribu-
tion of the variables, the marginal distributions of
the variables, or in the association as summarized
by local odds ratios. Models that exhibit symmet-
ric marginal distributions are said to satisfy marginal
homogeneity, and models of symmetric associa-
tion are said to exhibit quasi-symmetry. Quasi-
symmetry corresponds to symmetry in the associ-
ation, but asymmetry in the joint distribution. The
special case of the RC association model where
the row and column scores are constrained to be
equal (i.e. µi = νi , i = 1, . . . , I ) is a restricted form
of quasi-symmetry. Models of this type have been
considered by Agresti [2], Becker [17], and Good-
man [29, 32], among others. Note that the uniform
association model is the special case of the quasi-
symmetric RC model where the scores are assumed
to be equally spaced. Introducing the constraint λR

i =
λC

i (i = 1, . . . , I ) along with symmetric association
results implies a symmetric joint distribution, and
hence marginal homogeneity. In general, symmetry in
the joint distribution is equivalent to marginal homo-
geneity and symmetric association holding simulta-
neously.

The RC association model is not a loglinear
model or generalized linear model, and as such
it is not readily estimated with standard computer
programs for fitting generalized linear (or loglinear)
models (see Software, Biostatistical). Algorithms
that can be used to fit the model, as well as some
generalizations of it, are described in Goodman [29],
Becker [18], and Haberman [36]. It is also possible to
program in some statistical packages, such as GLIM
and SAS, to fit the RC association model; see, for
example [1, Appendix D].

Example 2: Reliability of Self-Reported Passive
Smoking Histories

Exposure to passive smoking has been studied as
a possible risk factor for lung cancer, and hence
reliable measures of exposure to passive smok-
ing are required. The data I consider here are
from a study of the reliability of passive smok-
ing histories [51]. A sample of 177 controls from
a case–control study of lung cancer were inter-
viewed on two different occasions with respect
to exposure to occupational and residential pas-
sive smoke. Subjects were to indicate the number

Table 3 Exposure to passive smoking in the
residence: number of smokers resided with

Second interviewFirst
interview 0 1 2 3+

0 19 7 1 2
1 2 15 18 10
2 1 5 5 6
3+ 1 4 3 18

Table 4 Models summary for Table 3

Model Degrees of freedom Deviance

Independence 9 69.02
Uniform association 8 24.41
Row effects 6 13.47
Column effects 6 17.02
Row + column effects 4 10.05
RC (I − 2)(J − 2) = 4 10.36
Quasi-symmetric RC (I − 2)(J − 1) = 6 10.59

of regular smokers with whom they had resided.
The results for the residential histories are given in
Table 3.

Residual degrees of freedom and deviance
statistics for both loglinear association models and
RC-type models are presented in Table 4. Again,
there is strong evidence of a departure from statistical
independence (deviance = 69.02, on 9 df), but in this
case models more general than uniform association
are better suited for summarizing the degree to
which the first and second interview responses are
associated. The conditional test of quasi-symmetric
RC association vs. RC association provides a direct
means for testing the assumption of homogeneous
scores; there is no reason to reject the null hypothesis
that the scores are homogeneous (deviance =
10.59 − 10.36 = 0.23, on 2 df). In addition, the
quasi-symmetric RC model provides a reasonable
summary of these data (deviance = 10.59, on 6 df).
The ∆̂i , i = 1, 2, 3, scaled for direct comparison
to the uniform distances equal 1, are (1.67, 0.36,
0.97), and β̂ = 0.88. The interested reader is referred
to Becker [14] for discussion of how the estimated
scores from the fit of the quasi-symmetric RC
model may be used to measure and characterize
the reliability of the residential passive smoking
histories within the framework developed by Darroch
& McCloud [26] for analyzing observer agreement
(see Agreement, Measurement of). Other relevant
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references on this subject are [2, 4, 7, 14, 19, 47],
and [56].

Comments

Models for local association provide a useful starting
point for the analysis of two-way cross-classifications
where at least one of the variables cross-classified
is ordered categorical. These models are not predi-
cated on the assumption of an underlying continuous
distribution for the ordered categorical variable(s),
but there are close connections between some of the
models and the bivariate normal distribution for
continuous data [15, 30, 39]. Generalizations of the
RC model to accommodate more general associa-
tion structures have been developed (see, for exam-
ple, [17, 20, 32], and [33]), as have generalizations
for higher-way contingency tables (see, for exam-
ple, [6, 16, 20, 22, 28, 29], and [33]).

In the case of the doubly ordered contingency
table, global cross-ratios [24] provide an alternative
odds-ratio measure of association. Models for global
cross-ratios have been considered by Dale [25], Hea-
gerty & Zeger [37], Molenberghs & Lesaffre [48],
and Williamson et al. [57], among others. All of
these authors also consider the joint modeling of the
marginal distributions (see Marginal Models) and
the association structure, which can be extremely use-
ful for some purposes. Global cross-ratio models also
do not require the assumption of an underlying con-
tinuous bivariate distribution, but certain models can
be motivated in terms of a multivariate Plackett dis-
tribution [25, 48]. The joint modeling of marginal
distributions and local association structure is con-
sidered by Lang & Agresti [43]. Multivariate probit
models [10, 13, 41, 44, 46] (see Quantal Response
Models for a definition of the univariate probit) are
an approach to the analysis of ordered categorical
that do assume an underlying continuous distribution
conditional on covariates, the multivariate normal.
In all of these papers the authors also specify regres-
sion models for the (univariate marginal) response
distributions, and so now we turn to the modeling of
ordered categorical responses.

Regression Models for an Ordered
Categorical Response

Logistic regression is a regression model for a binary
response variable. The link between the response,

“success” or “failure”, to a set of predictor variables
or covariates is through a linear regression model for
the log-odds for success versus failure. That is, let
π(xi ) denote the probability of success for subject i,
or for a group of ni subjects, with covariate vector
xi . Let logit (xi )] = ln{π(xi )/[1 − π(xi )]} denote the
so-called logit for observation i. Then the standard
logistic regression model is

logit[π(xi )] = β0 + β ′xi ,

where β0 is the intercept term.
In moving from the case of a binary response to

an ordered categorical response there are multiple
approaches to defining logits for the response. The
three logits that figure most prominently in the
biostatistics literature are adjacent-categories logits,
continuation-ratio logits, and cumulative logits. For
the purposes of exposition we take the number of
categories for the response to be J , and hence for
each set of logits it is necessary to construct J − 1
logits. Let πj (xi ) denote the probability of response
category j , given the covariate vector xi , and let
γj (xi ) = ∑j

k=1 πk(xi ). Then the respective logits are
defined as follows:

Adjacent-categories logits:

Lj(xi ) = ln

[
πj (xi )

πj+1(xi )

]
, j = 1, . . . , J − 1.

Continuation-ratio logits:

Lj(xi ) = ln

{
πj (xi )

[1 − γj (xi )]

}
, j = 1, . . . , J − 1.

Cumulative logits:

Lj(xi ) = ln

{
γj (xi )

[1 − γj (xi )]

}
, j = 1, . . . , J − 1.

The definitions of the adjacent-categories logits
and the cumulative logits are invariant with respect
to reversing the ordering of the response categories,
but the high-to-low ordering of the categories gives
a different set of continuation ratio logits than are
obtained with the low-to-high ordering. The decision
of which set of logits to use, and which ordering in
the case of continuation-ratio logits, should be based
on the substantive questions of interest that are to be
addressed in the statistical analysis.

Given a set of logits Lj(xi ), a general logit linear
regression model is of the form

Lj(xi ) = β0j + β ′
j xi .
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Note that there is a separate intercept β0j for each
logit. The interpretation of the regression coefficients
is specific to the form of the logits modeled. Models
where the vectors of regression coefficients βj are
constrained to be equal for all j = 1, . . . , J − 1 are
referred to as proportional-odds models. It is most
common to see the proportional-odds assumption
used with cumulative logits, and McCullagh [45]
has been highly influential in promoting the use of
proportional-odds cumulative logit models.

In general, adjacent-categories linear logit models
can be estimated using software for fitting loglinear
or generalized linear models, and continuation-ratio
linear logit models can be estimated using software
for fitting logistic regression models. Fitting cumula-
tive linear logit models under the proportional-odds
assumption requires specialized software, such as
that documented in Stokes et al. [54]. The interested
reader is referred to Agresti [3] for discussion of how
standard statistical software can be used to fit certain
ordered categorical linear logit models.

Example 3: Evaluation of Treatment Effects for
Relief of Arthritis Pain, by Gender

It is common in clinical trials of treatments for
pain relief to record an ordered categorical response
variable with categories ranging from no relief to
substantial or complete relief. The data used in
Table 5 to illustrate and compare the results obtained
with the three types of logits are from a clinical
study comparing an active treatment to a placebo
treatment for arthritis pain [42]. There are three
response categories for the degree of pain relief.

Table 5 Response to therapy for arthritis pain

Response to treatment

Gender Treatment Marked Some None

Female Active 16 5 6
Female Placebo 6 7 19
Male Active 5 2 7
Male Placebo 1 0 10

Table 6 reports the deviance statistics and esti-
mated regression coefficients for each of the three
types of logits under the proportional-odds assump-
tion. The models were fit using the lower levels
of pain relief as the numerators in odds, and the
continuation-ratio logits were formed going from
“none” to “marked”. That is, the continuation-ratio
logits were constructed for the comparisons “none”
vs. “some + marked”, and “some” vs. “marked”.
The adjacent-categories logits compare “some” vs.
“marked” and “none” vs. “some”, and the cumulative
logits make the comparisons “none” vs. “some +
marked” and “none + some” vs. “marked”. The gen-
der variable was coded 0 for “female” and 1 for
“male”, and the treatment variable was coded 0 for
“active” and 1 for “placebo”.

The data are congruent with proportional odds
for all three types of logits in this case. That is,
all three deviance statistics are consistent with good
fits to the data, and test statistics for testing the
proportional-odds assumption (not reported here) fail
to reject it. In general, it is possible that propor-
tional odds will be supported for a subset of the
adjacent-categories logits, continuation-ratio logits,
and cumulative logits, but not all three. The estimates
of β̂gender are all significantly greater than zero (e.g.
evaluate β̂gender/se(β̂gender) relative to the distribution
of a N(0,1) random variable), suggesting that females
tended to achieve a greater degree of pain relief. The
estimates of β̂ treatment are all significantly greater than
zero, suggesting that subjects on the active treatment
achieved higher levels of pain relief.

Comments

There are close connections between adjacent-
categories logit models and the association models
of the section on models for association. The
connections between the two approaches to modeling
ordered categorical data parallel those for loglinear
models and logit models for a binary response [21].
Goodman [31] focuses on regression formulations

Table 6 Models summary for Table 5

Logits Deviance β̂gender (se) β̂ treatment (se)

Adjacent-categories 3.36 0.741 (0.325) 1.076 (0.293)
Continuation-ratio 4.42 0.997 (0.460) 1.551 (0.409)
Adjacent-categories 2.71 1.319 (0.529) 1.797 (0.473)
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of loglinear association models, and Anderson [12]
considers a family of models that can be viewed as
generalizations of the regression formulation of an
RC association model. Anderson’s stereotype ordered
regression model, is equivalent to

ln

[
πj (xi )

πj+1(xi )

]
= β0j + φjβ

txi,

where the φj are ordered and j = 1, . . . , J − 1. Note
that the stereotype model follows from the general
logit linear model when the regression coefficient
vectors are assumed to be parallel, i.e. βj = φjβ.
In addition, just as RC models can be motivated in
terms of multivariate normality, Anderson provides a
motivation for stereotype models in terms of ordered
multivariate normal distributions. It is, however,
important to recognize that neither log multiplicative
association models nor stereotype regression models
are reliant on normality assumptions. Rather, the
point is that the models are also appropriate in those
cases where the assumption of latent normality is
assumed or reasonable.

The discussed papers by Anderson [12] and
McCullagh [45] provide good background on issues
that arise in the analysis of an ordered categorical
response, and the theoretical perspectives that can
be used to motivate the different logit formulations.
Among the issues discussed in both papers are: (i) the
utility of the models in data analysis; (ii) theoretical
results for statistical inference; (iii) the computation
of maximum likelihood estimates; and (iv) the
stochastic ordering of response distributions.

Concluding Remarks

The development and application of models to the
analysis of ordered categorical responses continues
to be an area in which important contributions are
being made. It was noted in concluding the section
on models for association that there have been recent
developments along the lines of the simultaneous
modeling of ordered categorical responses and the
association between them. An overlapping area in
which there has been much recent activity is the
analysis of repeated measures data (see Longitudinal
Data Analysis, Overview) in the form of an ordered
categorical response. Such data arise, for example,
in longitudinal studies, crossover experiments, and
studies of families or sibships (see Generalized

Linear Models for Longitudinal Data). General
approaches to the analysis of repeated measures
data have been applied to such problems, including
methodology based on generalized estimating
equations [37, 40, 55] and methodology based on
incorporating random effects into the models [8, 27,
38, 40]. The vast majority of this work builds on the
models and literature summarized herein.

This entry has focused on models for the analy-
sis of ordered categorical data, emphasizing the study
of association and the formulation of regression rela-
tionships. There are many important issues that can
not be covered here due to space limitations. A few
examples include methods for exact inference (see,
for example, [5]), measures (rather than models) of
association (see, for example, [1] and [23] and Asso-
ciation, Measures of), and inference for association
model scores under order restrictions [9, 52] (see Iso-
tonic Regression).
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Orders of Magnitude

It is often useful to compare the limiting behavior of
a function f (x) with some known simple function
g(x) as x tends to L:

1. If f (x)/g(x) remains bounded as x tends to L,
then we say that f (x) is at most of the order of
g(x) and we write f (x) = O[g(x)] as x → L.

2. If f (x)/g(x) tends to zero, then we say that f(x)
is of a smaller order than g(x), and we write
f (x) = o[g(x)] as x → L.

3. If f (x)/g(x) tends to 1 as x tends to L, then we
say that f (x) is asymptotically equal to g(x), and
we write f (x) ∼ g(x) as x → L.

Note that O(1) stands for any bounded function, o(1)

stands for any function tending to zero, and O(x)

stands for any function which is at most of order x,
as x tends to ∞. The above definition can be applied
to any sequence an by considering an = f (n), for
n ∈ N .

Listed below are some simple rules for asymptotic
calculations:

1. If f1(x) = O[g1(x)], and f2(x) = O[g2(x)],
then f1(x) + f2(x) = O[g1(x) + g2(x)].

2. f (x) = o[g(x)] implies that f (x) = O[g(x)].
3. If f1(x) = O[g1(x)] and f2(x) = o[g2(x)], then

f1(x)f2(x) = o[g1(x)g2(x)].
4. The order of magnitude of a sum of a finite

number of terms is the largest order of magnitude
of the summands.

Example: o(1) + O(n−1/2) + O(n−1) = o(1).
Example: Let f (x) = log(1 + x). By the Taylor ex-
pansion of f at x = 0, we have

f (x) = x + o(x) = O(|x|) as x → 0.

Example: n log(1 + n−1) = n[n−1 + o(n−1)] = 1 +
o(1).

For further examples, see [1]
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Ornstein–Uhlenbeck
Process

The Ornstein–Uhlenbeck process (OUP) is a diffu-
sion process (see Brownian Motion and Diffusion
Processes) – a continuous-time stochastic process
which satisfies the strong Markov property and has
continuous sample paths – which has a drift, towards
some mean taken to be zero without loss of gener-
ality, which is proportional to its displacement from
that mean, i.e. the process has instantaneous mean
−βX when at X, where β > 0, and constant instan-
taneous variance σ 2.

If the process is denoted by {X(t), t ∈ �}, then
the conditional distribution is of the form

X(s + t)|X(s)

= x ∼ N

{
exp(−βt)x, [1 − exp(−2βt)]

σ 2

2β

}
.

The limiting distribution of X(t) is N(0, σ 2/2β),
and if

X(t) ∼ N

(
0,

σ 2

2β

)
(1)

for some t , then the process is stationary and (1)
holds for all t .

The OUP is the only diffusion process that is both
stationary and Gaussian.

The stationary process has autocovariance func-
tion

γ (t) = exp(−βt)
σ 2

2β

and hence autocorrelation function

ρ(t) = exp(−βt).

The OUP can be obtained as the solution to the
following stochastic differential equation:

dX = −βX dt + σ dW,

where W(t) is a Wiener process.
The process generalizes to two or more dimen-

sions; then the conditional distribution is of the form

X(s+t)|X(s) = x ∼ N(exp(Bt)x,

� − exp(Bt)� exp(B′t)),

where � and B are matrix constants, B is stable
[i.e. exp(Bt) → 0 as t → ∞, or equivalently the
eigenvalues of B all have negative real parts], and
the limiting distribution is

X(t) ∼ N(0, �).

Genesis

The OUP arose originally [27] as a model for the
velocity of a particle suspended in a fluid and
undergoing Brownian motion. The particle’s veloc-
ity is assumed to be affected by collisions with the
molecules of the fluid, resulting in both random fluc-
tuations and an overall frictional effect. The process
representing the position of a particle which has
velocity given by an OUP will be referred to as the
integrated OUP. The integrated OUP improves on the
Wiener process as a model for Brownian motion, in
that the Wiener process has nowhere-differentiable
sample paths, and hence undefined velocity.

The OUP also arises as the limiting diffusion
approximation to certain urn models. In the Ehrenfest
urn model, there are 2N balls divided between two
urns, A and B. At each time step of the process,
one of the balls is selected (completely at random)
and moved to the other urn. Thus if at time t there
are i balls in A, and hence 2N − i in B, then at
time t + 1 there are i − 1 balls in A with probability
i/2N and i + 1 balls in A with probability 1 − i/2N .
As N → ∞ and the interval between steps becomes
small, the process converges to an OUP. Details are
given in, for example, [9]; Jacobsen [7] gives some
alternative urn models leading to the OUP, as part of
a historical account of the origins of the OUP.

Applications

Neural Models

An important application of the OUP is in model-
ing the activity of individual nerve cells. Stein’s [23]
model assumes that membrane potential in a nerve
cell changes discontinuously at random times due to
excitatory (positive) and inhibitory (negative) inputs,
with exponential decay of the potential between
inputs; when the potential exceeds some threshold,
the neuron fires. If the individual inputs are small
but frequent, then the behavior of the membrane
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potential in the Stein model can be well approxi-
mated by an OUP. This diffusion approximation has
become a basic model in the study of nerve-cell activ-
ity (e.g. [14]); Tuckwell [26] gives a self-contained
introduction to stochastic models in this area, and
describes results for the OUP model. The importance
of the interspike interval, the time taken for the poten-
tial to reach the level that triggers activity, has led to
particular interest in first-passage time problems for
the OUP.

Velocity Models

The original use of the OUP, as a model for the veloc-
ity of a particle, continues in a number of fields.
Stokes et al. [24], for example, consider cell motil-
ity effects in physiological processes. They present a
model in which an individual microvessel endothe-
lial cell follows an integrated OUP, with parameters
dependent on the biochemistry of the medium in
which it is moving.

Heubach & Watkins [6] model the rotational velo-
city of a white blood cell. They show that, in the limit
as the number of receptors on the cell becomes large,
and in a uniform concentration of chemoattractant,
the rotational velocity follows an OUP.

Movement Models

The OUP can also be used for the direct model-
ing of movement (rather than velocity). Dunn &
Gipson [3], for example, use a bivariate OUP to
represent the location over time of an animal exhibit-
ing home range behavior as a model with which to
interpret data from radio tracking. They also use a
higher-dimensional form to model simultaneously the
movements of multiple animals. Worton [28] reviews
some applications and refinements.

Population Models

The OUP arises as a limiting diffusion approxima-
tion in many population processes. Andersson &
Djehiche [1] consider a stochastic spatial epidemic
model (see Epidemic Models, Spatial). They show
that the differences between their model and its deter-
ministic approximation converge, as the number of
subpopulations increases, to an OUP.

Kämmerle [8] and Möhle [18] consider bisexual
versions of the Moran and Wright–Fisher models,

respectively, and show that in each case the backward
process – the number of ancestor-pairs of a given
generation – converges when suitably normed to an
OUP (see Population Genetics).

Other Biological Models

Martins [17] uses an OUP to represent the change in
(mean) phenotype within a species, under stabilizing
selection. Properties of the OUP can thus be used to
describe the behavior over time of between-species
variability in the phenotype.

Taylor et al. [25] analyze serial CD4 T-cell mea-
surements from the Multicenter AIDS Cohort Study.
They use the integrated OUP as part of their model,
to incorporate correlation between measurements
in a way that allows the testing of immunologic
theories about the dynamics of CD4 cell num-
bers.

Newell et al. [19] describe an experiment in which
individual human subjects, of various age groups,
stood still on a platform equipped to measure the
downward pressure exerted. The authors found that
the dynamics of the center of pressure could be
modeled adequately by an OUP, with parameters
dependent upon the age group of the subject.

Statistical Applications

In the applications mentioned so far, the OUP is used
directly as a model for some process of interest, or
emerges as a limiting case or approximation to some
such model. Alternatively, the OUP may be a limiting
approximation to a statistical quantity.

For example, in genetic mapping of quantitative
trait loci (QTL), Lander & Botstein [13] consider
the LOD score or likelihood ratio Z(t) at all loca-
tions t in the genome simultaneously. In the limit as
the genetic markers become dense and the number
of individuals tested becomes large, under the null
hypothesis of no QTLs, the random process Z(t)

converges to the square of an OUP. Thus knowl-
edge of the extreme-value behavior of the OUP
enables testing of that hypothesis. Lander & Bot-
stein assume a normal distribution for the phenotype
of interest; Kruglyak & Lander [10] give a nonpara-
metric version of the test, based on the Wilcoxon
rank-sum statistic, in which the OUP plays essentially
the same role.
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Inference

Parameter estimation for an OUP is typically by
maximum likelihood; we assume for this section that
the mean parameter, denoted by µ, is unknown.

If the process is observed continuously over some
interval [0, s], say, then the variance parameter σ can
be calculated exactly as

σ 2 = s−1 lim
n→∞

2n∑

j=1

{X(js2−n) − X[(j − 1)s2−n]}2.

The likelihood for the drift parameter, β, and for
the mean, µ, can then be written down – see, for
example, Tuckwell [26] or Guttorp [5] – and we can
thus obtain maximum likelihood estimates:

µ̂ =
{

[X(s) − X(0)]
∫ s

0
X2(t) dt

−1

2
[X2(s) − X2(0) − σ 2s]

∫ s

0
X(t) dt

}

×
{

s

∫ s

0
X2(t) dt −

[∫ s

0
X(t) dt

]2
}−1

and

β̂ =
{

[X(s) − X(0)]
∫ s

0
X(t) dt

−
( s

2

)
[X2(s) − X2(0) − σ 2s]

}

×
{

s

∫ s

0
X2(t) dt −

[∫ s

0
X(t) dt

]2
}−1

.

Alternatively, given discrete observations X(t1),

. . . , X(tn) on the process, the conditional density for
each observation is

X(ti)|X(ti−1) = x ∼ N(νi + exp[−β(ti − ti−1)]x, φi),

i = 2, . . . , n,

where

νi = {1 − exp[−β(ti − ti−1)]}µ
and

φi = {1 − exp[−2β(ti − ti−1)]}σ 2

2β
,

and so the log likelihood is of the form

n∑

i=2

(
−1

2
ln(φi) − 1

2
{xi − νi

− exp[−β(ti − ti−1)]xi−1}2/φi

)
.

If, rather than conditioning on X(t1), it is assumed
that the process is in equilibrium at time t1, then there
is an additional term in the log likelihood

−1

2
ln

(
σ 2

2β

)
− (x1 − µ)2 β

σ 2
,

and the information contained in X(t1) may be much
greater than in other observations. The likelihood
can be maximized numerically; if regular discrete
observations are available, then the relationship with
the AR(1) process (see below) may be exploited, and
estimation techniques from the time series literature
are available.

Dunn & Gipson [3], Dunn & Brisbin [2], and
Worton [28] consider inference based on the likeli-
hood for discrete observations in higher-dimensional
cases, the latter investigating the performance of esti-
mation based on the OUP likelihood in the case where
the true model is not an OUP, and using bootstrap-
ping to obtain standard errors.

Polson & Roberts [20] describe Bayesian model
selection techniques for diffusions, which allow com-
parison between an OUP, say, and an alternative
diffusion model.

As an alternative to likelihood-based approaches,
Kutoyants [11] and Kutoyants & Pilibossian [12] use
minimum distance estimation, based on the L2 and L1

norms, respectively.

Further Properties

First Passage Times

The first passage time of a stochastic process from x0

to a > x0, say, is

T = inf
t≥0

{t : X(t) ≥ a|X(0) = x0},

with the obvious change if a < x0. A time-varying
threshold a(t) can also be considered.
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The first passage time of the OUP to a fixed
threshold is of particular interest since it repre-
sents the interspike interval in neural models (see
above). Ricciardi & Sato [22] consider the first pas-
sage time for the OUP, and Giorno et al. [4] con-
sider the asymptotic case for the OUP and related
diffusions. Lefebvre considers the two-dimensional
case [16] and the integrated OUP [15].

Related Processes

An OUP X(t) is related to the Wiener process
W(t) by

X(t) = exp(−βt)W [exp(2βt)],

W(t) = t1/2X

(
ln t

2β

)
.

An OUP observed at regular discrete time intervals
(of length 1, without loss of generality) is of the form

Xt+1 = exp(−βt)Xt + εt ,

where the εts are independent N(0, [1 exp(−2β)]
σ 2/2β) random variables, and so the process is just a
Gaussian first-order autoregression or AR(1) process
(see ARMA and ARIMA Models).

A spatial discretization of the (integrated) OUP,
in which velocity, and hence position, is restricted to
integer values, is developed by Renshaw [21].
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[18] Möhle, M. (1994). Forward and backward processes in
bisexual models with fixed population sizes, Journal of
Applied Probability 31, 309–332.

[19] Newell, K.M., Slobounov, S.M., Slobounova, E.S. &
Molenaar, P.C.M. (1997). Stochastic processes in pos-
tural center-of-pressure profiles, Experimental Brain
Research 113, 158–164.

[20] Polson, N.G. & Roberts, G.O. (1994). Bayes fac-
tors for discrete observations from diffusion processes,
Biometrika 81, 11–26.

[21] Renshaw, E. (1987). The discrete Uhlenbeck–Ornstein
process, Journal of Applied Probability 24, 908–917.

[22] Ricciardi, L.M. & Sato, S. (1988). First-passage-time
density and moments of the Ornstein–Uhlenbeck pro-
cess, Journal of Applied Probability 25, 43–57.

[23] Stein, R.B. (1965). A theoretical analysis of neuronal
variability, Biophysical Journal 5, 173–194.

[24] Stokes, C.L., Lauffenburger, D.A. & Williams, S.K.
(1991). Migration of individual microvessel endothelial
cells: stochastic model and parameter measurement,
Journal of Cell Science 99, 419–430.



Ornstein–Uhlenbeck Process 5

[25] Taylor, J.M.G., Cumberland, W.G. & Sy, J.P. (1994).
A stochastic model for analysis of longitudinal AIDS
data, Journal of the American Statistical Association 89,
727–736.

[26] Tuckwell, H.C. (1988). Introduction to Theoretical Neu-
robiology, Vol. 2. Nonlinear and Stochastic Theories.
Cambridge University Press, Cambridge.

[27] Uhlenbeck, G.E. & Ornstein, L.S. (1930). On the theory
of Brownian motion, Physical Review 36, 823–841.

[28] Worton, B.J. (1995). Modelling radio-tracking data,
Environmental and Ecological Statistics 2, 15–23.

PAUL G. BLACKWELL



Orthoblique Rotation

Orthoblique or Harris-Kaiser Rotation [1, 2] is a
nonquartic method of performing an oblique rota-
tion of a matrix V of dimension (p × k) made up of
vectors associated with principal components anal-
ysis or factor analysis in order to transform these
quantities into new variables by the relationship B =
V� such that B will approximate a simple struc-
ture. The matrix B is of dimension (p × k) and the
matrix � is of dimension (k × k) (see Rotation of
Axes). The principal feature of Orthoblique rotation
is that the solution is obtained from the product of
a number of orthogonal matrices which are either
diagonal or orthonormal. One of these matrices is
the solution of an orthogonal rotation such as Vari-
max, making this a two-step rotation. Another is a
diagonal matrix made up of the characteristic roots
(see Eigenvalue) associated with the retained charac-
teristic vectors (see Eigenvector). This latter matrix
is raised to a power which essentially affects the nor-
malization of the original vectors. A power of zero
implies a model where the clusters are independent

and will be a definite oblique rotation. Higher pow-
ers will approach an orthogonal rotation. At various
times, Quartimax, Equimax, and Varimax have each
been suggested for the initial rotation, but Hakstian
& Abell concluded that the effect of this choice is far
outweighed by the choice of power.

For the Decathlon example given in the arti-
cle, Rotation of Axes, the Orthoblique solutions for
powers of 0.35 and 0.75 are given in Table 1 along
with the original principal component characteristic
vectors.
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Table 1 Decathlon Data: characteristic and orthoblique-rotated vectors

Characteristic vectors Orthoblique power = 0.35 Orthoblique power = 0.75
v1 v2 v3 v4 b1 b2 b3 b4 b1 b2 b3 b4

100 m run 0.69 0.22 −0.52 −0.21 0.89 0.05 0.02 −0.16 0.88 0.11 0.09 −0.14
Long jump 0.79 0.18 −0.19 0.09 0.56 0.09 0.43 −0.05 0.60 0.16 0.46 −0.02
Shotput 0.70 −0.53 0.05 −0.18 0.14 0.81 0.10 −0.13 0.20 0.82 0.16 −0.13
High jump 0.67 0.13 0.14 0.40 0.11 0.04 0.74 0.04 0.20 0.12 0.73 0.07
400 m run 0.62 0.55 −0.08 −0.42 0.81 0.02 −0.05 0.43 0.80 0.05 0.02 0.45
110 m hurdle 0.69 0.04 −0.16 0.35 0.30 0.04 0.61 −0.21 0.37 0.12 0.61 −0.18
Discus 0.62 −0.52 0.11 −0.23 0.10 0.81 0.03 −0.06 0.14 0.81 0.09 −0.06
Pole vault 0.54 0.09 0.41 0.44 −0.19 0.09 0.79 0.20 −0.08 0.15 0.75 0.22
Javelin 0.43 −0.44 0.37 −0.24 −0.14 0.76 0.02 0.17 −0.09 0.74 0.07 0.16
1500 m run 0.15 0.60 0.66 −0.28 0.02 −0.03 0.07 0.93 0.04 −0.05 0.08 0.93



Orthogonal Designs

In the design of experiments, the term orthogonal
is used widely and in different contexts. Orthogonal
designs is a term generally used by statisticians in
the context of experiments in which a number of
treatments (with or without a factorial structure)
are to be compared and in which it is desirable to
eliminate the variability due to nuisance factors such
as blocks, rows, columns, etc. This term, in a very
different context, has been used, for example, by
Geramita & Wallis [1].

Orthogonal Designs in Comparative
Experiments

In comparative experiments two factors (say, treat-
ments and blocks) are said to be orthogonal if and
only if the condition of proportional frequency is sat-
isfied. This condition can be explained as follows.
Suppose the two factors involved are A and B, where
A has a levels and B has b levels. Furthermore, let
nij be the number of times level i of A appears with
level j of B, let ni· be the number of times level i

of A appears in the whole design, and let n·j be the
number of times level j of B appears in the whole
design: i = 1, . . . , a; j = 1, . . . , b. Then A and B are
orthogonal if and only if the condition nij ∝ ni·n·j
holds for all values of i, j . In particular, if each level
of A appears equally often with each level of B, the
condition trivially holds. The simplest examples of
orthogonal design are randomized complete blocks
designs, where each of the v treatments under com-
parison appears precisely once in each block.

An advantage of this type of orthogonality is that
if A and B are orthogonal, then under a standard
additive model, the best linear unbiased estimator
of any contrast among the levels of A is uncorrelated
with the best linear unbiased estimator of any contrast
among the levels of B. As a consequence, the sums
of squares due to A and B in the analysis of variance
can be partitioned orthogonally.

Similar properties hold for higher order layouts,
involving more than two factors. For example, in the
case of Latin square designs with s treatments, each
treatment appears in each row and each column pre-
cisely once. The three factors – treatments, rows, and
columns – are mutually orthogonal; that is, treatments

are orthogonal to each of rows and columns, and the
rows are orthogonal to columns.

Latin squares can be generalized to Graeco–Latin
squares. Two s × s Latin squares are said to be
orthogonal if, when one of the squares is superim-
posed on the other, each of the s2 ordered pairs of
symbols from the two separate squares appears once
in the superimposed arrangement, called a Graeco-
Latin square. In a Graeco-Latin square, any pair
of the factors, rows, columns, symbols of the first
square, and symbols of the second square are orthog-
onal.

A set of Latin squares of the same order is said
to form a set of mutually orthogonal Latin squares
if each pair in the set is orthogonal. If a set of
mutually orthogonal Latin squares contains three or
more squares, then by superimposing these one over
the others, a generalization of Graeco-Latin square
is obtained, which may be called a hyper-Graeco-
Latin square. A further generalization is provided by
orthogonal arrays. An orthogonal array of size N , s

symbols, k constraints, and index t is an k × N array
having s symbols with the property that in any k × t

subarray, every st ordered t-plets occurs equally often
(say, λ times each) as a column. The integer λ is
called the index of the array. It is easily seen that a
Latin square of order s is equivalent to an orthogonal
array of size s2, s symbols, three constraints, strength
two and index unity. In general, one can convert an
orthogonal array to an orthogonal multifactor design
by identifying the rows of the orthogonal array with
the factors of the design.

Orthogonality in Response Surface Designs

In response surface experiments, it is often assumed
that the expected response to the quantitative input
variables is a smooth function; say, a polynomial.
In particular, suppose that the expected response to
the quantitative variables x1, x2, . . . , xp is a linear
function of p unknown parameters. A design for
fitting this function is said to be orthogonal if the
columns of the matrix of input variables are mutually
orthogonal. In an orthogonal response surface design,
the least squares estimators of the parameters of
the surface are mutually uncorrelated. Furthermore,
the least squares estimator of any parameter depends
only on the values in that column of the matrix of
explanatory variables and the data.



2 Orthogonal Designs

Orthogonal Factorial Structure

In experiments where the treatments have a fac-
torial structure (see Factorial Experiments), it is
often desirable to have designs in incomplete blocks
such that the usual least squares estimators of fac-
torial effects belonging to different main effects and
interactions are mutually uncorrelated. Such designs
are called designs with orthogonal factorial struc-
ture. Details on these are available in Gupta &
Mukerjee [2].

Other Orthogonal Designs

Geramita & Wallis [1] define an orthogonal design
of order n and type (s1, . . . , st ), where the sis are
positive integers, as an n × n matrix A with entries
from the set {0, ±x1, . . . , ±xt }, the xis being com-
muting indeterminates, such that

AA′ =
(

t∑

i=1

six
2
i

)
In,

where A′ is the transpose of A and In is an identity
matrix of order n. These orthogonal designs can be
regarded as generalizations of Hadamard matrices.
For a review on Hadamard matrices, see Hedayat &
Wallis [3].
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Orthogonal Rotation

Given a matrix V of dimension (p × k) often con-
sisting of a set of k vectors defining a set of principal
components or factors, a new set of transformed vari-
ables may be obtained by a rotation of V; namely,
B = V�. V is often the factor loading matrix or
factor matrix from the initial step in a principal
components analysis or a factor analysis. Such a
rotation is said to be orthogonal if the resultant
rotated axes in the vector space are at right angles to
each other (see Orthogonality). Most rotation proce-
dures are designed to approximate simple structure
(see Rotation of Axes). �, a matrix of dimension
(k × k), defines the angles of rotation and the result-
ing matrix, B, of dimension (p × k), contains the new
rotated vectors defining the transformed variables.

A great many of the orthogonal rotation schemes
belong to a class called Orthomax rotation. These
start with the general expression:

Q =
k∑

j=1




p∑

i=1

b4
ij − c

p

(
p∑

i=1

b2
ij

)2


 ,

where p is the number of original variables, k is the
number of retained components or factors, bij are
the coefficients of the vectors defining the rotation,
and c is an arbitrary constant. As the concept of a
simple structure requires the bij to be as large or
small as possible, these rotation methods are designed
to determine the bij such that Q is maximized. These
are sometimes referred to as quartic solutions since
they involve fourth powers of the coefficients.

If c = 1, then the resulting solution is called Vari-
max rotation in which the sums of squares of B
are maximized columnwise. Quartimax rotation is
obtained by setting c = 0 and maximizes the sums
of squares of B rowwise. A compromise, Equimax,
which maximizes the sums of squares across both
rows and columns is obtained by setting c = k/2.
Standard errors for the vector coefficients produced
by Orthomax rotations were given by Archer & Jen-
nrich [1].

A method not related to Orthomax is the Minimum
Entropy Solution [3], which minimizes:

H = −
p∑

i=1

k∑

j=1

b2
ij ln(b2

ij ).

A method of obtaining a single rotation to simultane-
ously obtain a simple structure for two sets of vectors
was obtained by Hakstian [2].
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Orthogonality

In the study of a system in which several factors con-
tribute to a net “effect” it is convenient, though not
always possible, to consider the contribution of each
factor independently of the others. Coordinate geom-
etry is a trivial example – any point on a plane can be
specified in terms of its x and y coordinates, and if we
move a point around by varying its x coordinate, its y

coordinate is unaffected. This is because movement in
the x direction is orthogonal to that in the y direction.
The orthogonality (Greek orthos = straight; erect) of
two entities implies that they are, in some sense
to be described below, perpendicular to each other.
In applied statistics, orthogonality may loosely be
regarded as a descriptive term for the ability to dis-
entangle individual effects.

We start with a brief overview of the relevant
formal mathematical notions; this provides a basis
for referral in later sections. The reader wishing to
skip the mathematical detail in the next few para-
graphs may find that the subsequent section “Orthog-
onal Vectors and Matrices” helps to fix ideas in
a geometrical context. The section “Orthogonality
in Experimental Design” is undoubtedly the most
important one from a biostatistical viewpoint; other
sections outline more peripheral material which may
be encountered in the literature.

Mathematical Definition

Orthogonality arises most naturally in the context of
inner product spaces. An inner product is a suitably-
behaved scalar (and possibly complex) valued, linear
operation (usually denoted by 〈·, ·〉) between pairs of
elements in a vector space V. Elements x and y are
said to be orthogonal, with respect to the space V and
inner product 〈·, ·〉, if 〈x, y〉 = 0.

It is natural to think of elements of V as having
a “size” or “length”. This is achieved by defining a
norm on the space, which has length-like properties.
The norm of x is usually denoted by ||x||: we are
solely interested in that defined by ||x|| = 〈x, x〉1/2.
If x and y are orthogonal and both have unit length,
they are called orthonormal.

A subset S of elements of V is called a subspace
of V if S is itself an inner product space with the
same addition and scalar multiplication defined as in

V. The set of elements of V which are orthogonal
to every element of S is denoted by S⊥. A funda-
mental result (the projection theorem) says that if x

is in V and S is a subspace of V, then x can be
uniquely written as x = x1 + x2, where x1 ∈ S and
x2 ∈ S⊥. x1 is the orthogonal projection of x onto S,
and satisfies ||x − x1|| = inf[||x − y|| : y ∈ S]. Fur-
thermore, the mappings x �→ x1 and x �→ x2 are
linear.

An orthonormal basis for V is a (possibly infinite
and uncountable) collection {ei} of elements of V
which are mutually orthonormal and which span V
(in other words, every element of V can be expressed
as a linear combination of the {ei}). If {ei} is such
a basis, define âi (x) = 〈x, ei〉 for all x ∈ V [so that
x = ∑

i âi (x)ei], and denote by âi (x) the complex
conjugate of âi (x). Then the Parseval relation states
that, for x, y ∈ V,

〈x, y〉 =
∑

i

âi (x)âi(y). (1)

In particular,

||x||2 =
∑

|âi (x)|2. (2)

The latter result is especially important because it
offers a means of assessing the relative contribu-
tions of each ei to the magnitude of x; alternatively,
it provides a decomposition of the magnitude of
x into individual effects arising from each of its
components.

Our discussion of inner product spaces ends here;
it is necessarily brief and details have been omitted in
order to present the most relevant results clearly and
concisely. Thorough treatments may be found in the
many available texts on real and complex analysis,
e.g. [12].

Orthogonal Vectors And Matrices

The theory of inner product spaces is most
easily visualized in terms of standard k-dimensional
Euclidean space. Let u = (u1, . . . , uk)

′ and v =
(v1, . . . , vk)

′ be vectors in �k , and define their inner
product to be the standard vector product

〈u, v〉 = u′v =
k∑

i=1

uivi . (3)



2 Orthogonality

The norm is thus defined by

||u|| =
(

k∑

i=1

u2
i

)1/2

, (4)

which justifies our thinking of it as a measure of
“length”. With this inner product, two vectors are
orthogonal if they are perpendicular to each other.
The most obvious orthonormal basis for �k is the
Cartesian one; the Parseval relation, (2), is then
Pythagoras’s theorem in k dimensions.

An orthogonal matrix is a square matrix whose
columns, considered as vectors in Euclidean space,
are mutually orthonormal. Orthogonal matrices can
be regarded as rotations and/or reflections of axes in
Euclidean space, as they map any one set of mutu-
ally perpendicular vectors into another. Orthogonal
matrices play an important role in multivariate analy-
sis (see Multivariate Analysis, Overview), because
any set of n measurements on each of k ordinal vari-
ates may be represented as an n × k data matrix X,
regarded as a set of n points in k-dimensional space.
Often interest centers on finding a subspace of dimen-
sion p < k which contains most of the information in
X; this amounts to finding an appropriate set of axes
on which to plot the data, or alternatively to find-
ing an orthogonal matrix, of dimension k × k, which
will map the data points to their positions within the
coordinate system defined by these axes. Perhaps the
most important tool for such purposes is the singu-
lar value decomposition, which allows any matrix to
be factorized into orthogonal components. Statisti-
cal applications of this decomposition are discussed
in [5].

In experimental design, a design matrix X
(see Analysis of Variance) which is not square
is usually described as being orthogonal if its
columns are mutually orthogonal; alternatively, X is
orthogonal if X′X is either a diagonal matrix or block
diagonal with blocks corresponding to submodels of
interest.

Random Variables

Here we consider a random variables with finite
second moments. An inner product may be defined as

〈X, Y 〉 = E(XY )

under which the norm of a random variable is
its root mean square. X and Y are orthogonal if
E(XY ) = 0. If E(X) or E(Y ) is zero, then orthog-
onality equates to lack of correlation; hence, if X

and Y are uncorrelated, then the random variables
X∗ = X − E(X) and Y ∗ = Y − E(Y ) are orthogonal.
Some authors describe uncorrelated random variables
as being orthogonal regardless of whether or not
either of them has zero mean; although this is tech-
nically incorrect according to the definition given
above, the practice is sufficiently widespread that the
point is worth mentioning to avoid confusion.

Regression and Conditional Expectation

Suppose we wish to approximate one random
variable, Y , by a linear function of k others,
say X1, . . . , Xk . Denote by S the space of
all linear functions of the {Xi}, i.e. S = (Z :
Z = ∑k

i=1 aiXi, a1, . . . , ak ∈ �). Suppose Ỹ is the
orthogonal projection of Y onto S; then, by
the projection theorem, Ỹ minimizes ||Y − Ỹ ||
(alternatively, ||Y − Ỹ ||2), so it is the linear predictor
with the minimum mean square error (MMSE). If
one of the predictors is a constant (X1 ≡ 1, say), then,
because Y − Ỹ is orthogonal to all the predictors,
we must have E[1 × (Y − Ỹ )] = 0, so the prediction
error is a zero-mean random variable.

A similar interpretation can be given to the idea of
conditional expectation. Here the aim is to approxi-
mate Y by any function of the {Xi}, not just lin-
ear functions; so now we are seeking our predic-
tor in the subspace T = [Z : Z = h(X1, . . . , Xk), h :
�k �→ �]. In this case, the function yielding the
MMSE predictor is the conditional expectation of Y

given X1, . . . , Xk .
A useful introduction to these ideas is given in [7].

Orthogonal Processes

In time series analysis, reference is frequently made
to orthogonal processes (or processes with orthogo-
nal increments). Orthogonal processes are stochastic
processes in continuous time, W(t), say, such that
when I1 and I2 are disjoint intervals on the real line,

cov

[∫

I1

dW(t),

∫

I2

dW(t)

]
= 0. (5)

Note that this definition uses the “uncorrelated”
interpretation of orthogonality of random variables
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rather than its strict definition. The Wiener process
(see Brownian Motion and Diffusion Processes) is
an example of such a process. Orthogonal processes
arise in the specification of continuous-parameter
time series models and in the Spectral Representation
Theorem (see Spectral Analysis). The ideas gener-
alize straightforwardly to spatial processes.

Orthogonality in Experimental Design

For the applied statistician, the most important role
orthogonality has to play is in isolating effects due
to different factors (see Experimental Design). To
explore this, we start by examining linear regression,
as this is perhaps the easiest scenario to visualize.
Some points related to the analysis of variance and to
factorial experiments are then discussed, and finally
the ideas are extended to general likelihood-based
estimation.

Linear Regression

Suppose we have a dependent variate y, which
we wish to regress on p covariates x1, . . . , xp

(see Multiple Linear Regression). A sample of n

observations on each variate is taken; the x-data are
assembled into an n × p data matrix X (the design
matrix), and the y-data are put into a n × 1 vector y.
The regression model is

y = Xβ + ε,

where β = (β1, . . . , βp)′ is a vector of parameters
to be estimated, and ε is a vector of uncorrelated
errors with equal variance. If ỹ denotes the fitted
value of y, then the standard technique for fitting
the model (see Least Squares) is to minimize the
residual sum of squares

∑
(y − ỹ)2 = (y − ỹ)′(y −

ỹ) = ||y − ỹ||2, if the vectors are considered as points
in �n and the norm and inner product are the standard
Euclidean ones defined in (3) and (4). Columns of X
also represent points in �n, and the span of all linear
combinations of these columns is a subspace, S say,
which is a hyperplane of dimension equal to the rank
of X. Each value of β defines a point in this subspace.

Now consider the Normal equations (see Multiple
Linear Regression) for the estimation of the param-
eter vector β:

(X′X)β̂ = X′y. (6)

If the matrix (X′X) is diagonal, then (6) has the trivial
solution

β̂j =

n∑

i=1

xij yi

n∑

i=1

x2
ij

, j = 1, . . . , p. (7)

In this case no element of β̂ depends on any other;
hence, if we decide to hold one or more β values
fixed, then estimates of the others are not affected.
Furthermore, the information matrix for β is diag-
onal (see Information Matrix), so that individual
parameter estimates are uncorrelated, and tests of the
significance of individual parameters are independent
of the values taken by other parameters. See [13,
Section 3.5] for more detail on the advantages that
accrue from an orthogonal design matrix in linear
regression.

It is instructive to link this with concepts
introduced earlier. In a geometrical context, (X′X)−1

will be a diagonal matrix if and only if its columns,
regarded as n-dimensional vectors, are mutually
orthogonal. The Parseval relation then gives us

||y||2 =
p∑

j=1

β̂2
j ||xj ||2 + ||e||2, (8)

where e is the vector of residuals from the fitted
model, and xj is the j th column of X. This is just a
decomposition of the sum of squares into individual
model components and residuals.

There is also a close parallel with the ideas dis-
cussed earlier in the section “Random Variables”, for
we have

x′
j xk =

n∑

i=1

xij xik = nÊ(XjXk),

the notation Ê(·) being used to denote a sample
estimate of the expectation. The space considered
here is thus effectively the sample version of that
considered previously. In particular, if a constant term
is included as a linear predictor (giving rise to a
column of ones in X) and the linear predictors are
mutually orthogonal, then all nonconstant predictors
must have zero mean and the sample correlation
matrix must be diagonal.
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It is unusual to find an example of linear regression
where the design matrix is orthogonal. It may be pos-
sible to find a set of orthogonal linear combinations of
the original variables (using principal components
analysis, for example), but this is generally only
useful in modeling if the principal components them-
selves have some physical interpretation. One excep-
tion to this general rule is in polynomial regression,
where terms of successively higher degree in a pre-
dictor variable X may be parameterized in such a way
as to ensure that columns of the design matrix corre-
sponding to each power of X are mutually orthogonal.
We seek a sequence [fp(·) : p = 0, 1, 2, . . .] such
that fp is a polynomial of degree p and

n∑

i=1

fp(xi) = 0, p = 1, 2, . . . ,

n∑

i=1

fp(xi)fq(xi) = 0, p 
= q.

Setting the coefficient of xp in fp(·) to be unity,
we obtain a set of simultaneous equations for the
coefficients in each fp(·). For example, we have

f1(x) = x − x,

f2(x) = x2 + a21x + a20, (9)

where

a21 =
∑

x2
i (x − xi)

∑
x2

i − nx2
,

a20 = −
(
a21x + n−1

∑
x2

i

)
.

Further discussion of orthogonal polynomials in this
context may be found in [13, Section 8.2].

We now present an example to clarify the ideas
presented so far. Figure 1 is a scatterplot showing
a clear linear relationship between energy require-
ment and body weight for a sample of 64 grazing
sheep in Australia. Let us fit constant, linear and
quadratic models to the data, using both a “naive”
and an orthogonal parameterization. Denoting by yi

the energy requirement for the ith individual, and by
xi its body weight (i = 1, . . . , 64), the two parame-
terizations are:

yi = β
(1)

0 + β
(1)

1 xi + β
(1)

2 x2
i + εi, (10)

Figure 1 Daily energy requirement versus body weight
for a sample of 64 sheep. This is data set no. 241 from [6].
The mean energy requirement is 1.69 Mcal/day, and the
mean weight is 35.94 kg

yi = β
(2)
0 + β

(2)
1 (xi − 35.9359)

+ β
(2)

2 (x2
i − 78.2152x + 1430.4947) + εi .

(11)

(the coefficients in the second parameterization being
obtained using Eq. (9)). The fitted constant, linear
and quadratic models under each parameterization are
shown in Table 1, together with P values for each
parameter. Notice the following:

1. The parameter estimates, and assessment of the
significance of model components, differ under
the first parameterization, depending on which
model is fitted. In particular, for the quadratic
model no components are significant, so the
misspecification of the model has serious con-
sequences. Under the second parameterization
there is no such ambiguity, and individual param-
eter estimates are unchanged by the inclusion of
other terms in the model. This is convenient for
computation, as we only need to estimate each
parameter once.

2. The equation of the fitted model is the same in
both cases. This is because of the uniqueness of
the least squares predictor, as guaranteed by the
projection theorem.

The full benefits of orthogonality here result from
the appearance of the quantity X′X in the normal
equations (6), which itself is a consequence of the
least squares approach to the estimation. It is clear
that these same properties of an orthogonal design
will continue to hold as long as estimation is carried
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Table 1 Parameter estimates and significance levels for models fitted to sheep data

Parameterization 1 Parameterization 2

Model Estimate P value Estimate P value

Constant β̂
(1)

0 = 1.693 <5 × 10−5 β̂
(2)

0 = 1.693 <5 × 10−5

Linear β̂
(1)
0 = 0.133 0.4640 β̂

(2)
0 = 1.693 <5 × 10−5

β̂
(1)

1 = 0.0434 <5 × 10−5 β̂
(2)

1 = 0.0434 <5 × 10−5

Quadratic β̂
(1)

0 = 0.941 0.3257 β̂
(2)

0 = 1.693 <5 × 10−5

β̂
(1)
1 = −7.779 × 10−4 0.9879 β̂

(2)
1 = 0.0434 <5 × 10−5

β̂
(1)

2 = 5.650 × 10−4 0.3895 β̂
(2)

2 = 5.650 × 10−4 0.3895

out by least squares or weighted least squares (so that
the quantity X′X is replaced by X′WX, where W is
a diagonal matrix). However, most inferential proce-
dures (such as hypothesis testing) rely on likelihood-
based estimation rather than least squares methods.
For simple linear regression, the two methods coin-
cide and an orthogonal design matrix gives rise to
a diagonal information matrix; it is the information
matrix that plays a central role in likelihood estima-
tion. We shall return to this point after discussing
the role played by orthogonality in the analysis of
variance.

Analysis of Variance

We have just seen that in linear regression, an orthog-
onal design matrix enables us to estimate the effect of
each covariate individually, regardless of which other
covariates are included in the model. The same is true
of the analysis of variance, for ANOVA model param-
eters are estimated by least squares, and the same
geometrical argument applies – see, for example, [10,
Chapter I.4]. However, for ANOVA models we have
the additional advantage that, for certain types of
experiment, it is possible to obtain an orthogonal
design matrix in a relatively straightforward man-
ner. A simple example illustrating this is given by [4,
Appendix C].

Unfortunately, much of the literature on analy-
sis of variance and experimental design is extremely
unclear as to exactly what is meant by orthogonality
in this context; the term is often used in a descriptive
rather than a mathematical sense, and the justifi-
cations for its use are varied. The various strands
may be connected as follows: suppose we fit an
ANOVA model to data, by least-squares estimation
of a parameter vector θ (which is typically a vector

of treatment effects), and that θ can be partitioned
into two subvectors θ1 and θ2. Let us also fit a model
containing only those parameters in θ1 – we refer to
this as the reduced model. Then the design of the
experiment is orthogonal for θ1 and θ2 if either of the
following equivalent conditions are satisfied:

1. The sums of squares attributable to parameters
in θ1 are the same in the ANOVA table for the
reduced model as in that for the full model.

2. The least-squares estimate of θ1 is the same in
the reduced model as in the full model.

These conditions result from an orthogonal design
matrix, as outlined previously; however, either one
of them is often cited as a definition of orthogo-
nality, even in situations where there is no explicit
mention of a design matrix. Perhaps the most helpful
interpretation of such a “descriptive” view of orthog-
onal design (see Orthogonal Designs) is that an
underlying design matrix exists, whose columns cor-
responding to θ1, regarded as vectors, are orthogonal
to those corresponding to θ2. Note that a design can be
orthogonal only for certain parameter combinations.

In the analysis of variance, frequent use is made
of orthogonal contrasts for making treatment com-
parisons simultaneously. Suppose there are a total of
t treatments in an experiment; any contrast is a linear
combination of at least two of them whose coeffi-
cients sum to zero, and represents a comparison of
treatments. The contrasts themselves may be regarded
as vectors in �(t−1), and are defined to be orthogo-
nal if these vectors are orthogonal. If the contrasts
are orthogonal and each treatment is applied to the
same number of observational units, then it can be
shown (see, for example, [10, p. 85]) that the design
matrix corresponding to the contrasts (rather than to
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the original treatments) is orthogonal, and hence their
effects can be assessed independently.

Schemes giving rise to orthogonal designs for
the analysis of variance include randomized block
designs (see Graeco–Latin Square Designs; Latin
Square Designs; Randomized Complete Block
Designs). These may all be regarded as special
cases of orthogonal arrays, which provide the
combinatorial framework within which a particular
orthogonal design may be generated. Orthogonal
arrays are used extensively in Taguchi design;
a useful introduction and extensive reference list
appears in [8].

Orthogonality in Likelihood Theory

A brief account is now given of the role of orthogo-
nality in more general parameter estimation settings.
Let θ = (θ1, . . . , θk)

′ be a model parameter vector
to be estimated, and let l(θ) be its log likelihood.
Then parameters θi and θj are said to be orthogonal
if E(∂2l/∂θi∂θj ) = 0. The implication is that, in the
large-sample normal distribution theory for the max-
imum likelihood estimator θ̂ , the estimators θ̂i and
θ̂j are asymptotically independent. Furthermore, the
standard error of θ̂j remains the same whether θi is
regarded as known or unknown. If all k parameters
are mutually orthogonal, then the information matrix
is diagonal and we have a clear parallel with the linear
regression case explored previously.

Now suppose that θi and θj are two parameters,
and that θi is given. It has been shown [2] that, as
θi is varied, the maximum likelihood estimate of θj

changes much more slowly when the two parameters
are orthogonal than otherwise. The most important
consequence of this is that, for large samples, fixing
θi has a minimal effect upon inference regarding θj ,
providing it is fixed close to its maximum likelihood
estimate.

Ideally, of course, we would like the estimate of
θj to be completely unaffected by changes in θi .
Examples of distributions for which this is possible
are given by [1, Chapter 9] – an important class is the
exponential family with θi as part of the canonical
parameter and θj as the complementary part of the
expectation parameter.

These ideas have particular relevance in a gener-
alized linear modeling framework, where the param-
eters represent effects of different predictor variables.
The information matrix for a generalized linear

model takes the form X′WX, where X is the design
matrix and W is a diagonal matrix. Thus, if X
is orthogonal then the information matrix is diago-
nal and the discussion in the preceding paragraphs
applies. When the maximum likelihood estimate can
be obtained directly by weighted least squares, we
can assess the effect of each predictor individually as
though it were the only one in the experiment; other-
wise, fixing one parameter at a “sensible” value (i.e.
close to its maximum likelihood estimate) will have
an effect on other parameter estimates, but the effect
will be smaller than if the design matrix were not
orthogonal.

Orthogonal Functions

Inner products may be defined on L2(�), the collec-
tion of complex-valued square-integrable functions
on the real line: for two functions f and g in
this class, the most commonly-used inner product is
given by

〈f, g〉 =
∫ ∞

−∞
f (x)g(x) dx,

where g(·) denotes the complex conjugate of g(·).
The function space is infinite-dimensional, and any
orthonormal basis for the space must have an infinite
number of elements. One such basis is the collec-
tion of complex exponential functions [eω : eω(x) =
(2π)−1 exp(−iωx), ω ∈ �+] used in Fourier theory.
For any function f which is in L2(�) (and satis-
fies certain other regularity conditions), the quantity
〈f, eω〉 = G(ω), say, is the Fourier coefficient at fre-
quency ω. The Parseval relation, (2), becomes

∫ ∞

−∞
|f (x)|2 dx =

∫ ∞

−∞
|G(ω)|2 dω,

so that the basis {eω} effects an orthogonal decompo-
sition of the variation in f into cyclical components
at each frequency ω ∈ �+.

Applications in Distribution Theory

Orthogonal functions have an important role to play
in distribution theory, and give rise to methods
for characterizing and approximating distributions,
establishing their properties, and also for finding
distributions which satisfy certain requirements. For
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example, the characteristic function of a continu-
ous random variable is just its expansion in terms
of the Fourier basis above. Other choices of basis
underlie methods such as the Edgeworth expan-
sion. A good account of the application of such
methods in distribution theory is given by [11]; see
also [9].

Applications in Time Series Analysis

Any realization of a time series (discrete or continu-
ous parameter) may be regarded as a function defined
on some interval and may thus, providing it is suitably
well-behaved, be expressed as a linear combination
of functions which are orthogonal over that interval
in exactly the same way as if it were deterministic
(the only difference is that the coefficients in the lin-
ear representation are random variables rather than
constants). This is the underlying idea behind the
spectral analysis of time series. Wavelet techniques
(see [3], for example) are another example using dif-
ferent basis functions. In some situations, there may
be a physical reason for wishing to decompose a time
series into orthogonal components (spectral analysis
was originally developed as a means of detecting
periodicities in noisy data); in others, statistical prop-
erties (such as approximate uncorrelatedness) of the
coefficients in the orthogonal representation may be
useful in their own right.

Concluding Remarks

Orthogonality has applications throughout mathemat-
ics and statistics; the topics covered here are merely
those which have some relevance in biostatistics.
Recurring themes include the Parseval relation, which
simultaneously forms the basis for an extension of
Pythagoras’s theorem and for variance decomposi-
tion, and the projection theorem, asserting the exis-
tence of a unique least squares linear predictor, for
example, which is orthogonal to the prediction error
(this property is called the orthogonality principle
by some authors). In closing, we emphasize that
orthogonality is best exploited in linear systems (a

consequence of the linearity of a vector product in
the underlying mathematical framework).

Given the enormous range of subjects within
which the notion of orthogonality may be use-
fully employed, the references below have been
chosen to provide a broad (and, where possible,
recent) overview of the relevant ideas. Most contain
extensive bibliographies for more detailed reading.
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Otorhinolaryngology

Otorhinolaryngology (ORL) is a speciality in medi-
cine dealing with diseases of the ears, nose, and throat
(ENT). The practice of ORL continues to change and
expand, as does research in this field. It covers areas
such as audiology, immunology, oncology, microbi-
ology, facio-plastic surgery, implantation of advanced
medical technologies, genetics, and communicative
development [8].

Modern otorhinolaryngology has expanded so
much over the past few decades that subspecialities
have developed, including pediatric ORL, head and
neck surgery, and otology. ENT surgeons care for
with patients of all age groups with a focus on chil-
dren (upper airway infections, middle ear diseases)
and elderly people (deafness).

As most of the diseases dealt with by otolaryngol-
ogists interfere with communication skills (hearing,
speech), the consequences for individual quality of
life and for society are tremendous. This is especially
true because many of the diseases in ORL are highly
prevalent, for example:

1. Seventy percent of children experience one or
more episodes of acute otitis media before the
age of 3 years [17]. Middle ear effusion that
is associated with hearing loss is present in
20–40% of all ears of preschool children, depen-
dent on the season [20].

2. ENT operations (adeno-tonsillectomy, tympanos-
tomy tubes) are by far the most common surgical
procedure in Western societies [5].

3. Around 10% of all people older than 65 years
possess a hearing aid [4].

In addition to these highly prevalent diseases, the
otorhinolaryngologist can be faced with several rela-
tively rare but life-threatening diseases, such as acute
airway obstruction, congenital syndromes with cran-
iofacial malformations, and malignant tumors of head
and neck.

In many respects, research in ORL follows the
same lines as in other specialities, including the
biostatistical aspects of these studies. Some landmark
studies on selected areas are:

1. A randomized clinical trial of the Veterans
Affairs Study Group comparing combinations
of surgery, chemotherapy, and radiotherapy in

patients with laryngeal cancer with respect to sur-
vival rate and other outcomes. Statistical analyses
are straightforward comparing Kaplan–Meier
curves of patients’ survival and disease-free
interval by logrank tests [18] (see Survival
Analysis, Overview).

2. A newly developed PCR assay (polymerase
chain reaction, a gene amplification method)
for Streptococcus pneumoniae is compared with
classic bacterial culture of the middle ear fluid.
The assay is to be used for the etiological
diagnosis of acute otitis media [19]. Sensitivity
and specificity of the PCR method were assessed
in 180 middle ear fluid samples of 125 children
with acute otitis media. Standard statistical
procedures (chi-square test and McNemar test)
were applied to the data.

3. Triggered by the high incidence of permanent
sensorineural hearing loss among US soldiers
returning from World War II, many studies
(human and animal experiments) have been
published on noise-induced hearing loss [6].
Typical of these kinds of studies is the graphical
presentation of mean and standard deviation
threshold shifts (TS) for exposed and unexposed
groups. Such permanent or temporary TSs
[expressed in decibel (dB) loss] are measured by
pure tone audiometry at frequencies ranging from
500 Hz to 8000 Hz. For statistical testing many
authors compare the mean of three frequencies
(1000 Hz, 2000 Hz, and 4000 Hz, important for
discrimination of speech) for each exposure
group.

4. Typical for pediatric infectious diseases in ORL
is the favorable natural course. As a result, the
effect of treatment in clinical practice seems
large. In randomized clinical trials, however,
only modest effects are demonstrated, under-
scoring the importance of this type of study.
An example of this phenomenon is a three-way
trial in 177 children with recurrent episodes of
throat infection that met the US standards for
tonsillectomy or adino-tonsillectomy [12]. Chil-
dren were randomized to either a tonsillectomy
group, an adino-tonsillectomy group, or a con-
trol group and followed for three years. The
authors assumed a Poisson distribution for com-
paring mean rates of occurrence of episodes
of throat infection using a generalized linear
model.
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As ORL diseases are so diverse and ORL
research touches so many disciplines, including
laboratory, clinical, and epidemiologic research
(see Observational Study), all study designs and
statistical procedures are applied in this field. Some
specific characteristics of ORL bear consequences for
biostatistics.

Specific Statistical Issues in ORL Research

Dependency

In principle each patient in an ORL study provides
the investigator with one nose, one throat, and two
ears. The ears do not act independently, but neither do
they perform in perfect concert. Analyses of data on
hearing, middle ear function, and morphology of the
ear have to cope with this partial dependency. This
feature of paired, dependent organs is not confined to
ORL. Other medical disciplines such as ophthalmol-
ogy, orthopedics, and nephrology share this feature.
With a view to the power of the study, it is tempting
to analyze the data as if they are independent. This
will lead to confidence intervals (CI) that are too
narrow. Until recently, conservative solutions for this
problem were found in selecting just one ear for each
patient, but this led to considerable loss of informa-
tion. The construction of a 95% CI for the prevalence
of middle ear disease with the ear as the unit of anal-
ysis, accounting for the dependency in pairs of ears,
is given below.

Let θ denote the true probability for an ear to
have middle ear disease and let γ denote the true
conditional probability that one ear is affected when
the other ear is also affected. Suppose a sample of n

pairs of ears (2n single ears) is drawn. Let nl denote
the number of left ears and nr the number of right
ears that are affected. Denote by nlr the number of
pairs where both ears are affected. The maximum
likelihood estimates for the prevalence of θ and the
conditional probability γ are given by

θ̂ = nl + nr

2n
, γ̂ = 2nlr

nl + nr
.

An approximate 95% CI for θ is then given by

θ̂ ± 2

(
θ̂ (1 − θ̂ ) + (θ̂ γ̂ − θ̂2)

2n

)1/2

.

When both ears are independent (θ̂ ≈ γ̂ ) the 95% CI
reduces to the conventional confidence interval for
θ from 2n Bernoulli trials with success probability
θ . If there is positive dependency, γ̂ > θ̂ , then the
width of the correct CI is on average larger than the
conventional CI.

More advanced methods for the analyses of cor-
related ears with the possibility to include covariates
are described by Rosner [15], Dallal [3], and Le &
Lindgren [10]. The outcome variables in the models
given by Rosner are normally distributed (mul-
tiple linear regression) or binomially distributed
(logistic regression). Dallal modifies the assump-
tions of the logistic regression model of Rosner.
Le & Lindgren give another logistic model for the
analysis of correlated ears (see Correlated Binary
Data).

Random effect logistic models for indistinguish-
able data are another possibility to model the depen-
dency between ears and to include covariates. In these
models, the probability θ that an ear is affected does
not only depend on the covariate values but also on
extra random variation. Let θi denote the probability
for each ear in the ith pair to be affected. The θi is
modeled by

logit(θi) = ln

[
θi

(1 − θi)

]
= z′

iβ + σui .

In this expression zi is the covariate vector for the
ith pair, β the vector of the regression parameters, ui

a realization of a standard normal distribution, and
σ > 0.

The issue of dependent ears also provides elegant
potential for within-person trials. Maw [11] became
famous for his trials on surgical treatment for persis-
tent middle ear disease in children. The design of the
trial allowed the child to act as his or her own control,
in that only one of the bilaterally affected ears was
treated with a ventilation tube. The unoperated ear
in the group of children not receiving surgery either
to the adenoids or tonsils allowed documentation and
examination of the natural history of the untreated
condition over a long period (see Crossover Designs;
Unit of Analysis).

Fluctuating Natural Course

Many infectious diseases in ORL have a very fluc-
tuating, and usually favorable natural course, that is,
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episodes of disease in different degrees of severity
are followed by episodes without the disease and vice
versa in an apparently random order. A typical exam-
ple is the occurrence of otitis media with effusion
(OME) in children. There are four states for charac-
terizing a middle ear with respect to OME based on
tympanometry measurement of the compliance of the
tympanic membrane at different levels of external air
pressure:

A. Normal (aerated) ear: no effusion present in
the middle ear cavity. A middle ear pressure
corresponding to ambient air pressure. Maximal
compliance at ambient air pressure.

B. OME ear: middle ear cavity filled with fluid.
No compliance of the tympanic membrane.

C1. Intermediate: slight negative pressure in the
middle ear. Fluid in some instances. Maximal
compliance at pressures below ambient air pres-
sure.

C2. Intermediate: moderate negative pressure in the
middle ear, fluid in approximately half of the
cases. Maximal compliance at pressures below
ambient air pressure.

A typical pattern for the development of the disease
is from type A to type B via type C1 and type C2,
followed by the same sequence in reverse order. It
takes at least several weeks to develop OME and
to recover from it. Short episodes (1 or 2 months)
are common, in many cases not even reaching the
type B state. Some children’s ears, however, have
persistent middle ear effusion (type C2 and B) that
may have long-term consequences for hearing and
language development.

A description of the natural course of OME is
very important as a first step in identifying those chil-
dren who will have persistent disease and therefore
need treatment. As there is no simple model that fits
the empirical data on the natural history of OME,
most statistical techniques fail in this description. For
instance, Markov models were explored but gave no
valid descriptions. Instead we used several graphi-
cal techniques [22]. A useful technique describing
dichotomized data (type B vs. the other types) on
ears measured by tympanometry nine times in a
period of 2 years is shown in Figure 1. It gives some
insight into cumulative incidence, rate of improve-
ment, and rate of recurrence. Unfortunately, these
graphical techniques are not suitable for studying

determinants of natural course, nor do they provide
precision parameters.

Simplified models and survival analytic techniques
are more suitable when the focus is on duration of
OME episodes. Let X denote the duration of an OME
episode. Suppose X has an exponential distribution
with density a exp(−ax), a > 0, and X is measured
in months. If after 3 months 50% of the patients have
recovered from OME, the monthly rate of recovery
is given by the solution of the equation exp(−3a) =
0.5. The proportion of patients still diseased after x

months is then given by exp(−ax). Such a simple
model does help to describe natural course (with an
appealing effect on public awareness) but might fail
proper fit [21].

An extension of the life table to repeating and
changing events described by Hoover [7] can be
used to model the cumulative episodes of middle
ear disease. Tests for changes in the number of
episodes within age intervals and differences between
individuals are possible.

Dynamics of Disease Over Time

Some typical ORL diseases now very prevalent, such
as OME, seemed rare in the past. Other diseases,
such as acute mastoiditis, have become less frequent
over time. These patterns are subject to bias as
concepts and classification of disease also change
over time [2]. Until the nineteen nineties, OME was
considered a sterile inflammation of the middle ear,
distinct from but correlated with acute otitis media
and upper airway infections. Nowadays, the general
belief is that OME is just one of several expressions
of infections of the upper respiratory system. This
idea is supported by principal components analysis
of data on signs and symptoms of a large number of
patients [16].

In addition, demographic trends such as aging of
the population and improving socioeconomic con-
ditions and changes in disease management lead to
changes in frequency of diseases or its sequelae [23].
Societal views on quality of life are also major
issues in ORL research [14]. For instance, utilities
for technology-supported hearing programs (cochlear
implants) or radical head and neck surgery (vs. radio-
therapy in case of advanced laryngeal carcinoma)
may vary over time and between groups of patients.
One should recognize these differences in the analy-
sis and interpretation of descriptive statistics on ORL
diseases and/or frequency of treatment options.
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Figure 1 Natural history of OME. Children with tubes excluded; n = 1217 ears. Reproduced from Zielhuis et al., Lancet,
vol. i, pp. 311–314.  The Lancet Ltd 1989

Dynamics of Management Over Time

ORL is a medical discipline that has experienced
large changes in the popularity of treatment options
over time. These were partly the result of the dynam-
ics of the disease itself, partly a result of newly
developed techniques or drugs (note that antibiotics
have only been available since World War II). Some
changes, however, are due to new scientific insights
into the effectiveness of specific treatments. A typical
example of this in the field of ORL is the prac-
tice of tonsillectomy, alone or in combination with
adenoidectomy [2, 5, 11]. In the 1950s and 1960s
it was almost routine to remove the tonsils and/or
adenoids. During the 1970s and 1980s the belief in
the effectiveness of these surgical procedures dis-
appeared, leading to a one-third reduction of their
frequency [5]. Since the late 1980s there has been
some revival of the tonsillectomy and/or adenoidec-
tomy for specific indications [12]. In the same period

the rate of surgery with ventilation tubes has risen
quite rapidly, with stabilization in recent years.

The practice of ORL in general is considered
sensitive to the results of epidemiologic research,
bearing consequences for medical practice. Despite a
high standard of international scientific communica-
tion in journals and at conferences, large international
differences do occur. For instance, European coun-
tries still prefer surgical treatment of middle ear
disease, while US physicians (most of them pedi-
atricians) prefer medical treatment (e.g. antibiotics
or steroids) [23]. To a certain extent these interna-
tional differences provide opportunities for ecologic
studies. Medical audit and formal assessment of
cost–effectiveness or cost–benefit ratios of medical
procedures and technologies is also expanding into
the field of otolaryngology [1, 9] (see Health Eco-
nomics). Alongside standard statistical procedures,
techniques like factor analysis, uncommon in this
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medical field, are being introduced. An example is
the Glasgow Benefit Inventory as a measure of patient
benefit from ORL interventions [13]. With a principal
components analysis of patient responses to five such
interventions, subscales for different types of benefit
are developed. The use of these and other evaluation
instruments will assist evaluation research as well.

Concluding Remarks

Biostatisticians entering the field of ORL are con-
fronted with large numbers of patients and a diversity
of diseases and treatment options. Most of the statisti-
cal procedures used are similar to those used in other
branches of medicine. Special features are the poten-
tial of each patient having two ears, the fluctuating
course of many of the common ORL diseases, and
the diversity of management options.
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Outcome Measures in
Clinical Trials

Clinical trials are an important source of informa-
tion used by health care decision makers to establish
health policy, and to make judgments about prescrib-
ing treatments for specific patients. In recent years,
the clinical evaluation of therapeutic interventions has
moved beyond simple measures of safety and efficacy
to include measures of symptom improvement, qual-
ity of life, and cost-effectiveness (see Clinical Epi-
demiology; Health Economics). This has resulted
in more complex experimental designs using multi-
ple response variables to address multiple objectives
(see Multiplicity in Clinical Trials). The purpose of
this article is to address the statistical considerations
used to select the outcome measures in clinical tri-
als. Issues relating to clinical endpoints, quality of
life assessments, and economic evaluations are dis-
cussed.

Clinical Endpoints

Primary Outcomes

In regulated environments evaluating pharmaceuti-
cal interventions, it is recommended that clinical
trials have a single primary objective. In confirma-
tory trials, this typically includes hypothesis testing
about the comparative efficacy of the therapies under
study. The hypothesis may be one of superiority
of one treatment compared to a placebo or other
control, or it may be the equivalence of two treat-
ments. The primary outcome variable or endpoint
is the measure capable of providing the best evi-
dence directly related to the primary objective of the
trial.

It is readily agreed that the most clinically rele-
vant outcomes are those directly relating treatment to
the patient’s health status. In studies of serious or life-
threatening diseases, this may be an important clinical
event (e.g. mortality or myocardial infarction), mea-
sured either as a binary outcome or by the time from
randomization to the event. In some trials, health
status may be measured according to disease rating
scales, usually with ordered categories of severity
(see Ordered Categorical Data) (e.g. the New York
Heart Association classification of congestive heart

failure). When study variables are continuous (e.g.
blood pressure or serum cholesterol) the effect of
treatment is usually based on a comparison of change
or percent change from baseline. Response data are
often collected on a repeated basis at several time
points during the trial. Also, patients may experience
several primary events during the period of obser-
vation. These data can be analyzed using models
for recurrent events or using the time to the first
event.

It is important that the primary outcome variable
be measured without bias in a reliable manner using
validated instruments with adequate sensitivity to
detect real change in a patient’s health status. These
assessments should be made prior to initiation of the
trial, using experience gained from previous trials or
from the published literature. The power and sample
size for the trial should be based on the primary
outcome variable.

Surrogate Endpoints

There are situations in which short-term measures of
response to treatment may provide reliable indica-
tors of long-term patient outcome. The presence of
serum antibody at protective levels following vac-
cine administration is one example. In the area of
cardiovascular disease, it has been shown using meta-
analysis [20], and with long-term clinical endpoint
trials, that lipid-lowering by diet or drugs does con-
fer the benefits of a reduced risk of coronary heart
disease [36, 37] and increased survival [36]. This
suggests that serum cholesterol levels may be a viable
surrogate endpoint marker.

The use of surrogate endpoints also has its
drawbacks [14]. Pocock [33] notes that their use has
been a “deceptively attractive pursuit” in many areas
of clinical trials research. His view was formed in
part by HIV research, with a reliance on CD4 counts
as a potential surrogate that could hopefully shortcut
the need for long-term trials. However, the Concorde
trial [5] of immediate and deferred use of zidovudine
failed to show a difference in clinical outcomes,
despite a significant change in CD4 cell counts.

The statistical methodology needed to explore sur-
rogate endpoints has undergone considerable devel-
opment in recent years. Prentice [35] proposed a
definition and operational criteria for surrogate
endpoints. Fleming et al. [15] discussed data analysis
methods.
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Responder or Threshold Variables

Investigators may want to re-express continuous or
ordinal variables into categorical or dichotomous
response variables (see Categorical Data Analysis).
These are often called responder or threshold analyses
since they are usually specifications of a positive
clinical result. A typical example may be a reduction
in serum LDL-cholesterol to a level below the
recommended levels established by the National
Cholesterol Education Program [31]. When using
these types of variables, it is important to recognize
that the loss of information can result in a loss
of power for the study, and regression to the
mean effects can introduce bias when the underlying
variables are subject to measurement error [4].

Composite Variables

Constructed variables which are composites of mul-
tiple measurements or endpoints are sometimes used
to provide a single summary response. At the indi-
vidual level, this involves combining the univariate
responses in some clinically sensible manner. This
technique is often used in quality of life assess-
ments. Composite endpoints can also be formed from
multiple clinical event data. For example, clinical
trials of antiretroviral therapy for patients infected
with HIV may use the combined clinical endpoint
of any new or recurrent AIDS defining event or
death. Composite endpoints of heart disease or death
have also been used for cardiovascular clinical trials.
Composite variables may offer advantages in terms
of increased statistical power due to the reduction in
dimensionality of the multiple endpoints, or to the
increased incidence of the composite event when the
incidences of the individual events are low. How-
ever, this advantage is offset if the treatment does
not affect each endpoint consistently. Also, the clini-
cal interpretation of the constructed variables can be
difficult.

Secondary Outcomes

Secondary outcome variables are either supportive
measures to help interpret the primary results, or
response variables, related to secondary objectives
or hypotheses. Trials may also include explanatory
variables to be used for generating hypotheses to be
tested in future studies.

Compliance

Although difficult to measure, it is well known that
patient noncompliance can dramatically impact esti-
mates of treatment effect in trials (see Compliance
Assessment in Clinical Trials). In a study com-
paring two treatment programs to reduce levels of
serum LDL-cholesterol, Oster et al. [31] showed that
patient compliance differed between programs and,
not surprisingly, noncompliance affected the likeli-
hood of patients achieving their target levels. Efron
& Feldman [13] proposed a compliance–response
regression to measure the relationship between the
treatment effect and compliance using data from a
primary prevention trial of a cholesterol lowering
drug (see Noncompliance, Adjustment for).

Multiplicity Considerations

Inclusion of multiple endpoints in a trial raises con-
cern about an increased probability of drawing a
false positive conclusion. This is the principal reason
that studies subject to regulatory review use only a
single primary endpoint, or use appropriate multiplic-
ity adjustments in those situations in which multiple
hypotheses are being tested. Cook & Farewell [6]
take a less restrictive viewpoint in allowing studies
to consider a few well-chosen, important clinical out-
comes and computing a marginal P value for each.
This position recognizes the P value as providing a
measure of the strength of the evidence against the
null hypothesis, rather than as a decision making cri-
terion wherein the type I error rate α (see Hypothesis
Testing) is interpreted as a rejection rate.

Understanding the distinction between multiple
endpoints and multiple hypotheses is particularly
important in circumstances in which the underlying
disease may be measured across a number of mean-
ingful dimensions. One such example is described by
Gormley et al. [19], who studied the effect of finas-
teride in men with benign prostate hyperplasia (BPH).
They recognized BPH as a multifaceted disease and
evaluated the effect of treatment on a biochemical
variable, dihydrotestosterone, on physiologic mea-
sures, prostate size, and urinary flow rate, and on
a subjective assessment of BPH symptoms using a
validated questionnaire. If evidence of a treatment
effect depends on any single variable being impacted
by treatment, then attention focuses on the most
extreme P value, and a Bonferroni-type adjustment
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(see, for example, [22]) is appropriate (see Multiple
Endpoints, P Level Procedures). If evidence of a
treatment effect requires that each of the variables
is affected by treatment, then no adjustment to the
individual P values is necessary. Tests of a global
hypothesis proposed by O’Brien [30] can also be per-
formed using the individual analyses to help interpret
the results (see Multiplicity in Clinical Trials).

Quality of Life

Patient perceptions of health-related quality of life
have recently received a higher priority in clinical
trials. This is due in part to the broadened defi-
nition of health proposed in 1947 by the World
Health Organization as “a state of complete phys-
ical, mental, and social well being, and not merely
the absence of disease and infirmatory” [40]. One of
the first clinical applications of quality of life was
by Karnofsky & Burchenal [27], who outlined the
basic criteria necessary for evaluating chemothera-
peutic agents. These included measures of survival,
but also subjective variables, such as performance
status, symptom status, mood, and well-being. There
are several important statistical considerations in the
design, analysis, and interpretation of quality of life
studies. Fletcher et al. [16] and Cox et al. [7] offer
recommendations on how to keep quality of life eval-
uations simple.

Measurement Characteristics

The most important statistical consideration in using
quality of life questionnaire instruments in clinical
evaluations is an assessment of its measurement char-
acteristics (see Health Status Instruments, Mea-
surement Properties of). Quality of life (QoL) is
by definition a multidimensional construct. A typi-
cal instrument consists of components or dimensions
which usually include a number of individual ques-
tions or items. The scoring of an instrument begins
with a response scale for each item. Scores are usu-
ally provided for each dimension and an overall score
is sometimes provided. Although controversial, the
scoring scheme may sometimes use weights based on
individual patient preferences [38], or data analytic
techniques based on factor analysis or discriminant
analysis.

Quality of life scales used in clinical trials should
have demonstrated reliability and validity, and be

responsive to changes in health status. Reliability is
assessed through examination of the internal consis-
tency at a single administration of the instrument,
using Cronbach’s alpha. The test–retest properties
of the scales can be evaluated using the concordance
correlation coefficient, or the intraclass correlation.
The correlation coefficient is not an appropriate mea-
sure of agreement in assessing reliability [2].

Face validity is a subjective judgment of whether
the instrument appears to cover its intended topics
clearly and unambiguously. It can be maximized
by including individuals of diverse backgrounds,
including both patients and healthcare providers,
among the developers. Construct validity is a formal
measure of the association between the QoL scores
and other objective and subjective measures of health
status.

Responsiveness checks the ability of a scale to
detect clinically meaningful changes in health sta-
tus. It is the most difficult property to assess prior to
its use in a trial. Responsiveness is usually assessed
through measuring the longitudinal association of
changes in QoL scores with changes in other mea-
sures of health status. Jaeschke et al. [24] defines
a minimal important difference as the change from
baseline in QoL score associated with a patient per-
ceived change in health status based on a global
rating.

Selection of Instruments

The choice of dimensions to use in a trial depends
on the nature of the disease and the candidate
treatments. For example, symptomatic conditions
such as asthma or rheumatoid arthritis are likely
to have a negative impact on a patient’s quality
of life that may potentially be offset with therapy.
Alternately, for patients with high blood pressure or
high levels of serum cholesterol, interest focuses on
the adverse experiences associated with therapy, or
on the reduction in both quality and length of life
associated with coronary heart disease.

Most clinical trials use standard questionnaire
instruments. These are generally categorized as
generic or disease-specific. Generic instruments cover
a broad range of quality of life dimensions and
are particularly useful when there is uncertainty
regarding the appropriate dimensions, or when there
is not much known about the therapeutic effects.
They are also useful for making comparisons among
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different diseases, which is sometimes necessary
when establishing health policy. The disadvantage
of generic instruments is that their responsiveness to
changes in health status is reduced. Health indices
are meant to provide an overall measure of a patient’s
quality of life by using a continuum from 0 (death) to
1 (perfect health). Health states with diminished qual-
ity are scored less than 1. The clinical usefulness of
health indices is limited unless individual component
scores are also made available.

Well-known examples of generic instruments in-
clude the MOS 36-item short form health survey
(SF-36) [39], the Sickness Impact Profile [1], and
the Nottingham Health Profile [23]. The Quality of
Well-Being (QWB) index [26] is a health index that
is an additive combination of three function scales
(mobility, physical activity, and social activity), and
a scale for symptoms and health problems. Fryback
et al. [17] provides a quantitative link between the
eight subscales of the SF-36 and the QWB as a means
of providing a single health utility summary score
representative of the SF-36 profile.

The quality adjusted life year (QALY) method of
analysis [38] accumulates the 0 to 1 quality scores
over the lifetime of individuals to combine the con-
cepts of quality and length of survival. The number
of QALYs gained is often used as a measure of health
benefit in cost–effectiveness analysis (see Health
Economics). A related method measures TWIST
(Time WIthout Symptoms of disease and Toxicity of
treatment) and Q-TWIST provides a quality adjust-
ment to TWIST [18] (see Quality of Life and Sur-
vival Analysis). While conceptually attractive, both
the QALY and Q-TWIST have limitations in inter-
pretation, since separate evaluations of quality and
survival are usually of interest.

Disease-specific instruments focus only on rele-
vant dimensions of quality of life that impact patients
with the underlying target illness. As such, they
have greater responsiveness and a higher level of
patient acceptance. Disease-specific quality of life
is most applicable with symptomatic disease, where
patients are able to detect changes in their health sta-
tus due to therapy. For example, Juniper et al. [25]
evaluated the measurement properties of an asthma
QoL instrument developed for use in clinical tri-
als. The 32-item instrument included dimensions for
activities, symptoms, emotions, and exposure to envi-
ronmental stimuli, and was developed through an

item-generation and item-reduction process involving
adult asthmatics.

Disease-specific QoL evaluations may have lim-
ited usefulness in guiding health policy decisions
involving multiple diseases and therapeutic interven-
tions. Fletcher et al. [16] recommends using both a
generic and a disease-specific instrument in trials.
This approach assures the focus needed to identify
the QoL impact of changes in health status, and
yet allows the possibility of detecting unexpected
effects, and may allow a comparison with other dis-
eases.

Analysis

Special considerations in the analysis of QoL data
in a clinical trial are related to the multidimen-
sional aspect of both the concept and the instru-
ment. Cox et al. [7] recommend simplicity in the
scoring and weighting schemes used. The analysis
should also evaluate the sensitivity of the results to
alternate scoring and weighting schemes. Fletcher
et al. [16] recommend that scores can be expressed
as the percentage out of the maximum achievable, to
facilitate the interpretation of aggregated dimension
scores.

The separate dimension mean scores, dimension-
by-treatment mean scores, and the overall treatment
mean scores are the key values for interpretation.
The possibility of a dimension-by-treatment quali-
tative interaction (see Treatment-covariate Interac-
tion) should be explored, since a drug may have a
positive impact on some dimensions and a negative
impact on others. A complete interpretation of the
trial results needs to consider the multivariate char-
acter of the data. This raises issues of multiplicity,
which can be addressed by a protocol specification
of a limited number of dimensions thought to be
impacted by therapy. An overall summary score can
be derived, but limits the clinical utility of the analy-
sis. Bonferroni and modified Bonferroni-type proce-
dures [22] based on the ordered P values can be used
if the researcher is to treat the multiple dimensions as
separate multiple hypotheses. Tests of significance of
departures from a global null hypothesis of treatment
equivalence can be undertaken using the methods
of O’Brien [30]. Global tests and overall summary
scores are more applicable for evaluating disease-
specific QoL, since there is less possibility of an
interaction.
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Effect Size

Two forms of effect size are available to help inter-
pret the magnitude of changes observed in a trial.
Deyo et al. [8] consider the difference in means rel-
ative to the standard deviation at baseline. This
approach transforms the change score into a standard-
ized unit of measurement that can be compared to
other instruments. The index of responsiveness [21]
considers the pre-minus-post mean changes relative
to the within-patient standard deviation during a sta-
ble period. This allows differences to be measured
against changes that individuals experience in nor-
mal day-to-day variability. Fletcher et al. [16] note
that, for an individual patient, a treatment effect of
one to two units of responsiveness is probably impor-
tant. When considering average treatment effects for
a randomized group, it is likely that effects that are
larger than one-third of the between-patient stan-
dard deviation are noticed by individual patients. The
availability of estimated effect sizes for established
therapies is useful in providing a benchmark for inter-
preting the results of trials involving experimental
therapies.

Economic Analysis

Economic endpoints are becoming an increasingly
important part of clinical trials. Data on individ-
ual patients’ use of health care resources can be
collected and combined with cost data, relevant to
the trial perspective, to perform cost comparisons or
cost–effectiveness analysis (see Health Economics).

There has been considerable debate on the appro-
priateness of randomized trials to support valid con-
clusions about economic endpoints [34]. Drummond
& Davis [11] discuss some of the methodologic
issues. There is no consensus on the most rele-
vant choice of outcome measure, clinically impor-
tant effect sizes [12], or the analytic method to
be used in comparing treatments on the basis of
cost–effectiveness [3, 29]. Dudley et al. [10] note the
complexity of analyzing cost data that are subject to
censoring.

Advances in the methodology are being made,
as a number of trials have recently been com-
pleted that have included economic evaluations. Ped-
ersen et al. [32] collected data on hospitalization
and coronary revascularization procedures, as part of
the Scandinavian Simvastatin Survival Study. They

concluded that simvastatin therapy, to reduce levels
of serum cholesterol, has the potential for signifi-
cant cost offsets, in addition to reducing mortality
and morbidity. Mark et al. [28] supplemented data
from the one-year Global Utilization of Streptoki-
nase and Tissue Plasminogen Activator for Occluded
Coronary Arteries (GUSTO) trial with projected life
expectancy data and hospital cost data, to evalu-
ate the cost–effectiveness of thrombolytic therapy
with tissue plasminogen activator (t-PA) compared to
streptokinase for the treatment of acute myocardial
infarction. Using cost–effectiveness analysis, they
concluded that the added costs of t-PA therapy were
consistent with other well-accepted medical tech-
nologies, when evaluated relative to the benefits of
therapy. Similarly, the Diabetes Control and Compli-
cations Trial (DCCT) Research Group [9] examined
the cost–effectiveness of aggressive approaches to
the management of insulin-dependent diabetes mel-
litus. They used a Monte Carlo simulation model,
based on the clinical outcome results of the DCCT,
supplemented with other clinical, epidemiologic, and
cost studies.

These three examples illustrate innovative ways
of utilizing clinical and health care utilization data,
collected as part of randomized trials, to per-
form cost–effectiveness analysis. In each case, the
researchers were able to overcome certain limita-
tions in the trial with supplemental data and modeling
techniques.
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Outcomes Research

The multidisciplinary field of study that seeks to
understand and improve the end results of particular
health care practices and interventions is now broadly
and commonly known as outcomes research [9]. The
US Agency for Healthcare Research and Quality
defines such end results to include not only sur-
vival and other biomedical endpoints, but also such
patient-reported outcomes as symptom status, func-
tional status, and experiences with the health care
system [1]. At the US National Cancer Institute, out-
comes research “describes, interprets, and predicts
the impact of various influences, especially (but not
exclusively) interventions on ‘final’ endpoints that
matter to decision makers: patients, providers, private
payers, government agencies, accrediting organiza-
tions, and society at large” [20, p. III-4]. In can-
cer, these final endpoints (outcomes) include not
only survival and disease-free survival (see Sur-
vival Analysis, Overview), but health-related quality
of life, patient perceptions of and satisfaction with
health care, and economic burden. Final outcomes
are to be distinguished from a variety of “interme-
diate” outcomes, for example, smoking quit rates,
colorectal cancer screening rates, tumor shrinkage
rates. While these latter are central to evaluating the
proximate success of a particular prevention, screen-
ing, or treatment intervention, the pivotal question
in almost every instance is whether improvement in
the intermediate outcome increases the likelihood of
improvement in one or more final outcomes.

Outcomes research, so defined, and quality-of-
care research are not synonymous, but are closely
linked. Indeed, much of the logic and vocabulary
of outcomes research can be traced to Donabedian’s
seminal work on assessing and assuring the qual-
ity of health care [12, 13]. His paradigm usefully
distinguishes three components of health care: “struc-
ture” (the nature and quantity of the physical, human,
and financial resources available for providing care);
“process” (the health care services and products
delivered to individuals and populations), and “out-
come” (the resulting impact on health and well-
being). The paradigm posits a fundamental functional
relationship among the components (see Figure 1).
The structure of care feeds into and supports the
production of the processes of care, and structure
and process together influence outcomes. While, as

Donabedian notes, this tripartite typology is a sim-
plifying abstraction of the complex reality of health-
care delivery, it offers what has become an enduring
framework for defining and analyzing the quality of
care. Specifically, quality may be measured by the
appropriateness of structure (e.g. was the physician
specialty certified?), process (e.g. was the service or
procedure performed consistent with evidence-based
practice guidelines?), or outcome (e.g. did the patient
have improved length of life or quality of life?).

While the valued end product of the healthcare
system is good outcomes, it is not always easy or
even feasible to judge quality by outcomes alone. For
example, the 40-year old hypertensive who begins
pharmacological and behavioral therapy to reduce
blood pressure can expect to see major “final out-
come” benefits only years later, when (all else being
equal) she will be at lower risk than otherwise for
heart disease, stroke, and microvascular problems.
Moreover, all else might not be equal. If this individ-
ual later develops adult onset diabetes, she may yet
suffer similar target organ damage even if her blood
pressure is controlled. In cases like this (and they are
numerous in the chronic disease domain), when the
outcomes of interest cannot be immediately observed
or else might be influenced by myriad systematic and
random factors, the focus of quality-of-care assess-
ment shifts to process or structure variables. In par-
ticular, quality is frequently measured by the extent to
which the processes of care that are expected to pro-
duce valued outcomes are performed. In the example
above, reducing this individual’s blood pressure may
be judged good quality care because substantial evi-
dence exists that, on average, it will eventually lead
to improvements in final outcomes that matter to her.

For outcomes research to achieve its potential
to improve health care quality, progress must con-
tinue on three broad fronts, leading specifically to:
(1) valid, reliable, appropriately responsive, and fea-
sible outcome measures, (2) sound evidence about the
impact of interventions on the outcomes of interest
(see Evidence-based Medicine), (3) the capacity and
commitment by research investigators and sponsoring
organizations to translate findings into information
useful to patients, providers, and other decision mak-
ers [18].

1. There has been significant progress in recent
decades to develop, test, and use measures of patient-
reported health outcomes, largely in research studies
but sometimes also in clinical practice. These include
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Figure 1 Components of health care

measures of health-related quality of life, at several
levels: generic (non-disease-specific) indexes of func-
tional status (see Quality of Life and Health Status),
such as the SF-36 [32] or the Sickness Impact Pro-
file [5]; disease-specific measures, such as the FACT
G [8] in cancer or the VF-14 [30] for vision assess-
ment; and even disease-subtype-specific measures
such as the FACT-B [28], which combines the FACT
G items with additional questions targeted for breast
cancer. There are scales measuring patient report
of symptom frequency and bother [10]. Measures
of global well-being may be preference-based [14,
17] or psychometrically derived (see Psychometrics,
Overview). For evaluating patient perceptions of and
satisfaction with healthcare, the CAHPS (Consumer
Assessment of Health Plans survey) instrument is
being increasingly applied [16]. While there are few
standardized instruments for measuring the economic
burden of disease, the guiding principle in most appli-
cations is the same: capture the explicit or implied
monetary value of the resources consumed by disease
and its treatment.

Descriptions and analyses of a wide variety of
quality-of-life measures are available in [6, 25, 29].
A comprehensive evaluation of the state of the
science in cancer outcomes assessment has been
completed by the Cancer Outcomes Measurement
Working Group, a 35-member task force appointed
by the National Cancer Institute [19]. Key find-
ings from the working group underscore the impor-
tance of modern psychometric approaches, such as
item-response theory modeling (see Rasch Models),
for improving the technical quality and feasibility
of patient-reported outcomes assessment. Through-
out, this working group was guided by the evalua-
tion criteria recommended by the Medical Outcomes
Trust [21].

2. The central inferential problem in outcomes
research can be summarized symbolically as: O =
f [P, S, X, E ], which says that outcome (O) is a func-
tion of process (P ) and structural variables (S), addi-
tional factors (X) such as patient characteristics and

risk factors, and random error (E); it is understood
further, that S may influence P , but at a point in time,
both may potentially influence O (Figure 1). The
approaches available for understanding the impact of
P and S on O, while adjusting for X and taking
account of E, are of course the standard strategies
for scientific inference. These include randomized
control trials (see Clinical Trials, Overview) [7]
and a variety of observational study designs, rang-
ing from retrospective [4] and prospective cohort
studies [26], to case–control studies [27], to system-
atic expert judgment and synthesis (e.g. through a
Delphi-type process) [22]. Observational studies are
increasingly employing techniques such as instru-
mental variables [24] and propensity scores [11] in
an effort to compensate or correct for selection biases
arising because patients are not randomized to inter-
ventions.

An important motivating concern in outcomes
research is whether there is an unexplained or unwar-
ranted variation across population groups in valued
health outcomes. In terms of the variables defined
above, does O vary systematically with X? If so,
does the impact of P and S on O also vary with X

(that is, should there be interaction terms allowing
for the possibility that the observed effectiveness of
interventions may vary across population groups)?

While most such analyses are still conducted
by individual investigators or small teams, there
is a growing trend towards larger collaborative
projects conducted by multidisciplinary groups
comprising clinicians, statisticians, psychometricians,
economists, behavioral scientists, and others [3, 23].

3. The challenges in translating the findings of
outcomes research into knowledge useful to deci-
sion makers have been underscored by a recent US
government report examining “The Outcomes of Out-
comes Research” [31]. The report framed its analysis
around a four-tiered pyramid (see Figure 2) depicting
the levels of impact that outcomes research might
have. In ascending the pyramid, one moves from
research that largely adds to the knowledge base
(level 1), to research that affects medical practice
policy (level 2), to research that affects medical care
delivery (level 3), to research that changes health out-
comes (level 4). The report concludes that most of
the federally funded outcomes research it reviewed
represented level 1 studies that contributed to under-
standing the epidemiology of disease, the impact of
specific interventions, or methodological issues (such
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Figure 2 Outcomes research levels of impact [31]

as meta-analysis or other inferential techniques).
There were only a few examples where outcomes
research had been incorporated into policy practice or
clinical decision making, or where interventions had
then been shown to improve patient outcomes [31].
In response, there has been a heightened focus in the
first half of this decade on initiatives to enhance the
dissemination, diffusion, and adoption of evidence-
based interventions (e.g. [2, 15]). At the same time,
much (level 1) work remains, to understand better
the behavioral, social, economic, and environmen-
tal factors that jointly determine whether, and how
rapidly, any given evidence-based intervention scales
the “outcomes pyramid.”

In sum, the central tasks of outcomes research are
measurement, inference, and translation into practice.
The central aim is to improve outcomes important
to decision makers, most typically through efforts to
enhance the quality of care.
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Outliers

Outliers are an important issue in data analysis. Since
a single undetected outlier can destroy an entire
analysis, analysts should worry about the origins,
relevance, detection, and correct handling of outliers.

Intuitively, an outlier is an observation so discor-
dant from the majority of the data as to raise suspicion
that it could not plausibly have come from the same
statistical mechanism as the rest of the data. Apparent
discordancy is what distinguishes an outlier from a
contaminant – an observation that did not come from
the same mechanism as the rest of the data but was
generated in some other way. A contaminant may
appear ordinary (and not outlying), while an outlier
could be, but is not necessarily, a contaminant.

Outliers can arise in several ways.

• They may be contaminants generated by some
other statistical mechanism. For example, if the
seeds used in a plant growth experiment contain
some foreign seed, then the plants produced from
the foreign seed will be contaminants and may be
outliers.

• They may result from procedural errors in data
gathering. For example, misreading an instrument
will produce a contaminant that may be outlying.
It is generally accepted that several percent of
even high-quality data are wrong, and some of
these errors may be outlying.

• The analyst may have a misconception of the true
model (see Misspecification). For example, if an
instrument is thought to produce normally dis-
tributed readings, but actually produces Cauchy-
distributed readings, then some valid correct
readings will be severe outliers relative to the
wrongly assumed normal model.

• In structured data such as multiple regression or
analysis of variance data, they may be a symp-
tom of some other model failure. Heteroscedas-
ticity (see Scedasticity) and nonlinearity, as well
as nonnormality, may cause what appear to be
isolated outliers.

Different possible origins of outliers call for dif-
ferent resolutions. Where the outliers are caused by
imperfect modeling, the model should be refined so
that they are accommodated. Where the outliers result
from errors of execution, the primary concern is to
minimize the damage they do to the analysis. Where

the outliers result from mixtures of distributions or
other types of contamination, there may be interest in
identifying the outliers and (in the mixture case) esti-
mating the characteristics of the mixture components.
It is not always clear in applications what caused the
outliers, and so “one size fits all” recipes for dealing
with outliers are inappropriate.

Here, we concentrate on methods of identify-
ing outliers – that is, of deciding whether observa-
tions really are implausibly discordant. This has two
parts – deciding which of the observations are most
discordant from the majority; and measuring their dis-
cordancy.

The first task – locating the most discordant obser-
vations – seems trivial at first glance, but is so only
in the simplest case of univariate random samples.
Here, it is only the largest and the smallest of the
data that could be potentially discordant. Locating the
most discordant observations, however, can be very
difficult in “structured” data sets such as time series,
analysis of variance, multiple regression, and multi-
variate data. Here, simple diagnostics like regression
residuals cannot be relied upon to locate discordant
observations.

Estimating the parameters of a model without risk
of serious damage from outliers is addressed by the
techniques of robust estimation (see Robustness), the
most familiar example of which may be the box
and whisker plot with its outlier identification rules
(see Graphical Displays). The objectives of robust
estimation and outlier identification are logically con-
nected – if the potential outliers are located, then
removing them from the sample and fitting the model
to the remaining data will neutralize them and so pro-
vide robust estimates. Similarly, sturdy estimates of
unknown parameters will provide a good picture of
the model fitting the majority of the data, thereby
helping locate potential outliers. The details of both
approaches are less simple than they seem though,
and the connection is not enough for either technol-
ogy to supersede the other.

Likelihood Models for Outliers

Outliers may be flagged and investigated in varying
degrees of formality. For example, making a normal
probability plot (see Normal Scores) of residuals
from a multiple regression and labeling as outliers
any cases that seem visually too far from the line
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is a method of flagging questionable cases. Being
informal though, it suffers from dependence on per-
ceptions of how large a deviation is too large and may
be criticized for having no obvious theoretical basis.
More formal statistical models for outliers remove
the subjective element and are valuable even if used
only as benchmarks to assess other less formal mod-
els. A general framework that permits the modeling of
data sets that might contain outliers is the “parameter
shift” model. Each “good” (scalar or vector) obser-
vation Xi in the sample is modeled as following a
specified statistical model with unknown parameter
vector θ

Xi ∼ gi(., θ).

There may also be one or more contaminating
observations Xi with distribution

Xi ∼ gi(., θ, αi),

where the parameter αi drives the contaminant’s
displacement, and is most conveniently parameterized
so that a contaminant with αi = 0 has the same
distribution as a “good” value. Commonly, different
contaminants are modeled as having different αi , but
in some settings, a common α for all is sensible.
Contaminants with sufficiently extreme αi values will
be outlying and so potentially identifiable; those with
less extreme αi values will be indistinguishable from
the good observations. This model is less restrictive
than it might seem. An outlier that resulted from
a recording error of transposing digits would not
plausibly be explained by this parameter shift model,
but since a good choice of αi could be fit to the
data, this conceptual failing is arguably unimportant.
For example, a transposition error of writing 84 for
Xi instead of 48 is exactly the same as adding
αi = 84 − 48 to the value actually generated by the
model.

This distributional approach to describing outliers
is attractive for those who like to work with for-
mal models, as it allows much of the processing
of outliers to be formalized and codified. Using say
maximum likelihood to estimate the parameters θ

and αi automatically gives a robust estimate of θ ,
and the likelihood gives a formal outlier test through
a test of the null hypothesis αi = 0.

The likelihood model describes contaminants, not
outliers. Contaminants that are not outlying are unde-
tectable; however, since they are undetectable pre-
cisely because they behave like “good”observations,

their invisibility means that failing to detect them
usually does not have serious bad consequences.

Computational Issues

Fitting the model is less trivial than it might seem as
it requires looking at all possible partitionings of the
data into the “good” and the “potentially suspect”
subsets. In the simplest cases, this can be done
by inspection. For a single sample from a normal
distribution with mean-shift contamination, it is easy
to show that the highest likelihood results when the
extreme order statistics of the sample are labeled as
“potentially suspect”. This means that no other types
of partitioning need be studied.

In multiple regression, it would be equally intu-
itive that the cases most likely to be outliers would
be those with the largest residuals, or the largest
studentized residuals. Here though intuition is mis-
leading: a pair of outliers can so distort the regression
line that both have small residuals. This is called
“masking”. They may also make the residual of a
“good” case large – this is termed “swamping”. Thus,
the most discordant observations need not necessar-
ily have large (or even nonzero) residuals. Reliable
identification of potentially suspect cases in multi-
ple regression requires the substantial computational
exercise of looking at all possible partitioning of the
cases into “good” and “potentially suspect” subsets,
selecting the partition with the largest likelihood.

“High-breakdown” methodologies do indeed
guarantee locating even large numbers of outliers,
however badly they may be placed, provided enough
computation is done. These methodologies are
inherently computer-intensive as the guarantee of
locating the outliers requires potentially investigating
all partitions of the data into an “inner half” and an
“outer half”. After this exhaustive search, all outliers
along with some inliers can be expected to be in
the outer half where using some cutoff rule should
distinguish the outliers from the more extreme inliers.

A much lighter computation is required for
“sequential identification” methods. In these, the
single observation from the whole sample whose
deletion would lead to the greatest increase in
likelihood is flagged as potentially suspect, and
temporarily removed from the sample. The single
observation in the remaining sample whose deletion
would lead to the greatest improvement in model
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fit is then identified as another potentially suspect
observation, and is also temporarily removed from
the sample. This stripping of observations continues
until some stopping rule is reached.

Sequential identification methods are of two types.
In “forward selection”, a discordancy measure is
calculated as each new potentially suspect observa-
tion is identified and the process stops when it first
fails to find an observation sufficiently discordant
to be called an outlier. In “backward elimination”
a preset number of potentially suspect observations
is identified in one pass, and then in a second pass,
each of them is tested sequentially to see whether it
really is sufficiently discordant to be called an out-
lier. A case that is not discordant is then reincluded
with the “good” observations and the testing of the
remaining potentially suspect observations repeated.

Both theoretical reasoning and practical experi-
ence show that backward elimination is much better
than forward selection, which can miss arbitrarily
severe outliers. This is because the masking effect
may cause the outlier diagnostics of all the outliers to
appear modest so that forward selection stops before
all outliers have been located.

Intuitive though sequential identification is, an
even more intuitive approach is one-pass identifi-
cation of all cases whose outlier diagnostics are
large. Because of masking and swamping though, this
approach is much worse than even forward selection
and should not be used at all. This leaves backward
elimination as the most reliable approach with low
computational requirements.

Another “backward elimination” method starts
with some small subset of the data that is outlier-free,
and then sequentially adds observations that appear
not to be discordant, reestimating parameters as each
new apparently concordant observation is added. Suc-
cess with this approach depends on finding a starting
subset of cases that is not only outlier-free but also
informative enough to correctly distinguish the inliers
from the outliers in the not-yet-classified group. Start-
ing with a high-breakdown estimate gives reliable
results, but at high computational cost. Methods using
full-sample estimates – for example, the cases with
the smallest absolute residuals from a full-sample
least squares regression fit – may succeed, but come
with no guarantees.

Even high breakdown methods are not com-
pletely bulletproof: see the example in Hawkins and
Olive [5] in which even high breakdown regression

methods saw nothing surprising about men less than
an inch tall, but whose head circumference was some
five feet.

The second phase, of deciding whether to label a
suspect case outlying, may be based on a likelihood
ratio or a case diagnostic such as a studentized resid-
ual. Two different philosophies on outlier labeling are
to use fixed cutoff values; and to use multiple com-
parison tests. An example of the first approach is to
flag as outlying any cases whose regression residual
exceeds 2.5 standard deviations regardless of sam-
ple size. This rule will delete a fixed percentage of
the cases in data sets consisting of only good data.
A sound multiple comparison method is the Bonfer-
roni approach of testing the externally studentized
residual (“outlier t”, or RSTUDENT) of a regression
against the α/n quantile of a Student’s t distribu-
tion, where n is the sample size and α a significance
level. In this approach, a fixed proportion of good
data sets will have one or more observations wrongly
labeled outliers.

Particular Cases

The easiest situation is mean-shift outliers from a uni-
variate normal distribution, with inliers distributed as
N(µ, σ 2), both parameters unknown, contaminated
by one or more N(µ + αi, σ 2) outliers. The scaled
deviations from the mean, (Xi − X)/s, where X is
the sample mean and s the standard deviation, are
effective for both identifying and testing a single out-
lier. Multiple outliers can be found using sequential
identification either by starting with the full sample
and stripping one suspect observation at a time, or
by starting with the easy-to-find “inner half” of cases
and adding concordants.

Outliers in the univariate normal can also be
modeled by scale contamination, where the outliers
are N(µ, σ 2(1 + α)). This (with a common α) can
be thought of as mixing the mean-contamination
model’s displacements over a N(0, ασ 2) distribution,
and is effective for outliers occurring symmetrically
to the left and the right of the inliers.

Flagging and testing for outliers from a chi-
square distribution use the scaled quantities Xi/X.
Cochran’s test for the largest such ratio is classical,
but outlier tests can also be performed on the smallest
such ratios.
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In homoscedastic normal linear modeling (both
linear regression and analysis of variance), a general-
purpose approach to outlier identification and testing
is by variance analysis. Let S0 with ν degrees of
freedom denote the residual sum of squares from a
fitted model using some set of cases. Write S1 for
the residual sum of squares obtained after deleting a
suspect observation. Then, the pseudo-F ratio

F = (ν − 1)(S0 − S1)

S1
(1)

may be compared with the fractiles (Bonferroni-
corrected or fixed) of an F distribution with 1 and
ν − 1 degrees of freedom to decide whether the
suspect case is or is not within plausible limits. This
F ratio is the square of the “outlier t” statistic that
software often produces as a case diagnostic.

In analysis of variance with replicates, fitting the
ANOVA model on the full sample and after removal
of individual readings leads to tests for individual
outliers. A different model is the “slippage” model
in which all the replicate readings in some cell are
displaced by the same amount. Reducing the original
data to cell means and taking these means as the basic
data to which to apply outlier screening methods
addresses the slippage model.

Multivariate outliers are commonly modeled by
the multivariate normal distribution N(µ, Σ) with
unknown mean vector and covariance matrix. The
mean contamination model holds that the outliers
are N(µ + αi , Σ), and mixing the outlier displace-
ments over a zero-mean normal distribution leads
to the scale-contamination model in which the out-
liers are N(µ, Σ + Γ ). With this baseline model,
if the sample mean vector and covariance matrix
are written as X and S respectively, then the dis-
crepancy of a single case Xi can be measured by
its squared Mahalanobis distance from the mean
Di = (Xi − X)′S−1(Xi − X). The traditional multi-
variate outlier statistic, Wilk’s lambda, is a monotonic

function of Di . Sequential deletion successively trims
the case with the largest Di from the current sam-
ple mean vector using the current sample covariance
matrix.

The likelihood outlier model can handle
generalized linear models. If the deviance of any
fitted model is S0 and the deviance obtained by delet-
ing some suspect case and refitting is S1, then the
deviance explained by deleting the case is S0 − S1,
and this can be referred to its asymptotic chi-squared
distribution to get an outlier test. This framework
covers Poisson and logistic regression and loglinear
modeling, among others.

The generalized linear model framework is also
useful for outliers in contingency tables – for exam-
ple individual cells whose frequencies violate inde-
pendence, which holds in the rest of the table. Delet-
ing a particular cell, refitting the model, and comput-
ing the change in deviance between the two fits gives
an outlier test statistic for that cell.

Time series can have two types of outlier – an
“additive outlier” displaces a single reading from
where it should have been, but does not affect
the subsequent observations. “Innovative outliers”
displace the whole time series from their point of
occurrence onward, and, apart from their occurrence
at an unexpected time, can be modeled by the
intervention analysis likelihood.

Example

Rousseeuw and Leroy [7] discuss a data set relating
the body weight and brain weight of 25 animals
alive today, along with three dinosaurs. Least-squares
regression of Y = loge (brain weight) on X = loge

(body weight) gives (standard errors in parentheses)

Y = 2.555 + 0.496 X

(0.413) (0.078). (2)

Outlier t after deletion number

Species Body weight Brain weight 0 1 2 3 4

Diplodocus 11 700 50.0 −2.507 −2.507 −3.646 −6.649
Brachiosaurus 87 000 154.5 −2.505 −3.644 −3.644 −6.804
Triceratops 9400 70.0 −2.094 −2.835 −6.045 −6.045
Human 62 1320.0 1.789 1.861 2.098 3.232

Residual SS 60.988 48.733 31.372 12.117 8.217



Outliers 5

With 28 data points, a maximum of four deletions
(15% of the data) seems reasonable. Starting with the
full data set, and sequentially deleting the case with
the largest absolute externally studentized residual for
four iterations gives the following set of externally
studentized residual of each of the four suspect cases
and residual sum of squares of the fitted regression.

The pseudo-F ratios for the successive deletions
are 6.29, 13.28, 36.55, and 10.44 with 1 numerator
degree of freedom and denominator degrees of free-
dom 25, 24, 23, and 22. Start with the last of these,
10.44, whose right tail area is 0.004. Multiplying this
figure by the remaining sample size, 25, gives a Bon-
ferroni P value of 0.1, which argues against making
the fourth deletion. Going to the next F ratio of 36.55
gives a P value of 3.6 × 10−6, indicating that the
deletion of the third dinosaur, and by implication, its
two even more extreme companions, is clearly called
for.

With an initial sample size of 28, the Bonferroni
5% and 1% points for the outlier t statistic would
be the two-sided 5/28 = 0.179 and 1/28 = 0.036%
points of a t distribution with 25 degrees of freedom,
which are 3.50 and 4.13, respectively. None of
these four cases is close to significance, illustrating
the masking effect. Successively deleting the three
dinosaurs makes humans the most outlying species.
At this point, humans’ t of 3.232 corresponds to
a right tail area of 0.0038, which after Bonferroni
adjustment, makes us unremarkable. The regression
found after deleting the dinosaurs is

Y = 2.150 + 0.752 X

(0.201) (0.046). (3)

Evidence of the damaging effect of the dinosaurs is
that the slope fitted after their removal is 3.3 standard
errors away from the full-sample estimate.

The high breakdown regression fit using the least
trimmed squares criterion gives the model X =
1.88 + 0.776W, close to what we get with ordinary
regression after deleting the dinosaurs.

Further Reading

The text by Barnett and Lewis [2] provides an
exhaustive coverage of the standard outlier situations
and models. Additional useful theoretical material
on the robust estimation aspects of outliers may be
found in Hampel et al. [3]. Rousseeuw and Leroy [7]

is a valuable exposition of the high breakdown
approach, though readers should be aware that many
of the specifics (notably computational procedures
and outlier flagging rules) are now obsolete. Better
algorithms for high breakdown estimation in the
difficult multivariate location/scatter case are given
in [6, 8], and for the regression case, in [4].

Atkinson and Riani [1] provide discussion cen-
tered on sequential identification starting from an
outlier-free subset of cases.

Hawkins and Olive [5] provide theoretical and
empirical support for routine use of a variety of
multiple regression methods, including sequential
outlier identification, in analysis of real data. They
also argue that in games against nature, in which a
malicious opponent tries to place outliers where you
cannot find them in a tolerable amount of time, the
opponent will always win, given large enough data
sets. In other words, it is impossible to guarantee
finding even huge outliers in a large data set if an
opponent is allowed to hide them. This argument
generalizes to other outlier settings – for example,
multivariate location/scatter.
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Overdispersion

The phenomenon which has come to be termed
overdispersion arises when the empirical variance in
the data exceeds the nominal variance under some
presumed model. Overdispersion is often observed
in the analysis of discrete data, for example count
data analyzed under a Poisson assumption, or data
in the form of proportions analyzed under a bino-
mial assumption. Support for overdispersion is most
likely first obtained when the “full” model is fitted
(see Generalized Linear Model), and the Pearson or
deviance residuals are predominantly too large [4];
the corresponding Pearson and deviance goodness-
of-fit statistics indicate a poor fit (see Chi-square
Tests).

The Poisson and binomial distributions are deri-
ved from simple, but fairly strict assumptions, and
it is not surprising that these do not apply gener-
ally in practice. Fitting either of these distributions
assumes a special mean–variance relationship, since
both distributions are fully characterized by a single
parameter. This can be contrasted with the analy-
sis of continuous data using a normal assumption.
Consider a simple example where a set of univari-
ate observations is modeled by a common N(µ, σ 2)
distribution. In estimating the fitted distribution, the
sample average of the data points defines the location
of the normal distribution on the number line (µ),
while the sample variance determines the spread of
the fitted bell-curve (σ 2). The normal distribution is
characterized by two parameters, while the Poisson
and binomial distributions are completely specified
when only the mean, or the probability of success,
respectively, is determined; the variance is fixed by
the mean.

The existence of overdispersion is not a recent
observation. Student [27] comments upon this prob-
lem, and Fisher [13] discusses a goodness-of-fit sta-
tistic for testing the adequacy of the Poisson dis-
tribution in the single sample problem, i.e. when
the counts Yi, i = 1, . . . , n, are assumed to be inde-
pendent variates from a Poisson distribution with
common mean. The statistic is

∑n
i=1[(Yi − Y )2/Y ],

where Y = ∑n
i=1 Yi/n, and is called the sample index

of dispersion (see Poisson Distribution).
An important question to ask when a model is

suspect is: Will the lack-of-fit affect inference and

lead to incorrect conclusions? If the effect is negli-
gible, and if the efforts involved in fitting a more
“exact” model are substantial, then the approximate
inference obtained under the simpler model may well
suffice. In what follows the effect of overdispersion
is shown to be nonignorable, and can be quite dras-
tic, so inference under a Poisson or binomial model
when overdispersion is present may be very mislead-
ing. We focus on the analysis of count and categorical
responses, because these are the two areas where
overdispersion most commonly arises, with binary
responses being an important special case of the lat-
ter.

Effect of Overdispersion on Standard
Poisson or Binomial Analyses

The effect of overdispersion is determined primar-
ily by how it arises and its degree of incidence.
One common way that overdispersion arises in the
analysis of proportions is through a failure of the
binomial independence assumption. In animal litter
studies, for example, responses of animals in a lit-
ter are often positively correlated; so, too, in dental
studies for responses on individual teeth for a sin-
gle individual. Let Y denote a binomial response,
Y = ∑m

j=1 Yj , where Yj are independent binary vari-
ates taking values 0 or 1 with probabilities (1 − p)
and p, respectively. Then, E(Y ) = mp, and var(Y ) =
mp(1 − p). If the independence assumption does
not hold, and the correlation (Yj , Yk) = τ > 0, then
E(Y ) = mp, and var(Y ) = var(

∑m
j=1 Yj ) = mp(1 −

p)[1 + τ(m − 1)], leading to overdispersion with
respect to the binomial model. Note that τ < 0 leads
to underdispersion, which is rare in practice, but
might correspond to competition among the binary
variates for a positive response.

Another way overdispersion may arise is through
a failure of the binomial assumption of constant prob-
ability of success from trial to trial. This might occur
if the population can be subdivided into naturally
occurring subunits, for example colonies, where the
probability of a positive response varies over these
subunits.

Similarly, for count data, failure of the assump-
tions underlying the use of the Poisson distribution
generally leads to overdispersion. In particular, the
probability of an event may vary over individuals
or over time. For a simple example, suppose the
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response is the number of days absent due to ill-
ness over a period of time, in a situation where the
number of episodes of illness, Y , are Poisson (µ)
distributed but will likely lead to consecutive days
of absence. The distribution of the number of days
of absence due to illness will then be overdispersed
with respect to the Poisson model. If A represents
the number of days absence during a single episode,
A and Y being independent, then the total number
of days of absence is

∑Y
i=1 Ai , which has mean and

variance, E(
∑Y

i=1 Ai) = µE(A), and var(
∑Y

i=1 Ai) =
µE(A){E(A)+[var(A)/E(A)]}>µE(A), if E(A) > 1.

In some contexts the Poisson or binomial variation
is only a minute part of the overall variability. This
is typical, for example, in cancer mapping studies,
where the distribution of rates over a region is to be
determined (see Clustering). In many cases it is the
spatial variation of the cancer mortality rates which
is the main component of the dispersion.

Overdispersion cannot be ignored. In fact, many
statistical packages routinely incorporate overdisper-
sion (see Software, Biostatistical). The magnitudes
and signs of the estimated covariate effects in a log-
linear or logistic analysis can be quite similar whether
or not overdispersion is properly accounted for, so
a researcher may gain no hint of an inappropriate
analysis by there being strikingly strange estimated
effects. However, the standard errors of the estimated
regression parameters will be underestimated; these
will reflect only the Poisson or binomial variation.
The precision of the resulting estimates will be too
high and P values for testing the significance of
the included covariates will be correspondingly too
low. This will very likely lead to incorrect inference,
unless the overdispersion is almost negligible.

Testing for Overdispersion

In many situations the presence of overdispersion
is clearly indicated by the presence of overly large
values of the Pearson or deviance goodness-of-fit
statistics, even when the full model is fitted. For-
mal tests for overdispersion have also been discussed
in the literature. Score tests (see Likelihood) for
overdispersion [3, 9, 10] compare the sample vari-
ance with what is expected under the model. For the
testing of extra-Poisson variation, the adjusted score
test statistic, for testing the null hypothesis H1: τ = 0
in the model with overdispersed variance function

µi + τµ2
i , is

TP1 =

n∑

i=1

{(yi − µ̂i)
2 − (1 − ĥi )µ̂i}

(
2

n∑

i=1

µ̂2
i

)1/2 . (1)

In (1) hi is the ith diagonal element of the hat matrix,
H, for Poisson regression; H = W1/2X
(X′WX)−1X′W1/2, where W = diag(µ1, . . . , µn),
and X is n × p with ij th entry µ−1

i (∂µi/∂βj ), µi =
µi(xi ; β). For loglinear regression, log µi = x′

iβ, and
X is the usual matrix of covariates. Estimates µ̂i

and ĥi are obtained by replacing β by β̂, its max-
imum likelihood estimate under the Poisson assump-
tion. The statistic TP1 converges in distribution, as
n → ∞, to a standard normal under H1. For test-
ing the null hypothesis H2: τ = 0, in the model with
variance function (1 + τ)µi , the score test statistic is

TP2 = 1√
(2n)

n∑

i=1

{
(yi − µ̂i)

2 − (1 − ĥi )µ̂i

µ̂i

}
,

(2)

which is also asymptotically (n → ∞) distributed as
standard normal, under H2.

It is interesting to note that the test statistic for
testing H2 when considering µi → ∞ asymptotics,
for fixed n, is equivalently

T ′
P2 =

n∑

i=1

(yi − µ̂i)
2

µ̂i

, (3)

which has a limiting distribution of χ2(n − p). This
is just the Pearson statistic, which is traditionally
used to assess correct specification of the mean. The
derivation of the tests for extra-Poisson variation
assumes that the regression specification is correct.
Hence, the Pearson statistic arises as a test of either of
two alternative hypotheses: namely, µi = µi(xi , β) is
incorrectly specified, or the distribution of the counts
has variance form φµi . We would not, however,
interpret a significantly large Pearson statistic as indi-
cating overdispersion in a generalized linear model,
unless the mean had been reasonably well modeled.
Otherwise, the apparent overdispersion could reflect
missing covariates, e.g. interaction terms, implying
systematic lack of fit, or, the functional form of the
mean may be inappropriate. Pregibon [22] develops
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a test for checking the form of the mean in general-
ized linear models; for multinomial models, O’Hara
Hines et al. [21] develop diagnostic tools for this pur-
pose.

Smith & Heitjan [25] develop a test for overdis-
persion which results when the vector of coefficients
in the mean is considered to be random. The score
tests TP1 and TP2 arise from a random intercept
model, and can therefore be considered a special
case of Smith & Heitjan’s test. Dean [8] discusses
testing for overdispersion with longitudinal count
data.

A score test for the adequacy of the binomial
model against an alternative with variance form
mipi(1 − pi)[1 + τ(mi − 1)] is

TB =





n∑

i=1

(p̂i(1 − p̂i))
−1[(yi − mip̂i)

2

+p̂i(yi − mip̂i) − yi(1 − p̂i)]





[
2

n∑

i=1

mi(mi − 1)

]1/2 , (4)

which has a standard normal distribution as n → ∞.
This variance form is obtained from the correlated
binomial model, discussed in the previous section.
Prentice [23] derives this statistic as a score test
statistic against beta-binomial model alternatives;
Tarone [28] derives it by considering correlated bino-
mial alternatives.

As an example in the application of the tests, con-
sider the data, given in [29], from a clinical trial of
59 patients with epilepsy, 31 of whom were random-
ized to receive the anti-epilepsy drug Progabide and
28 of whom received a placebo. The total seizure
count over four follow-up periods is taken here as
the response variable. Table 1 shows the results of a
Poisson regression analysis of the effect of Progabide
on seizure rate which includes two covariates and
their interactions, plus terms for a main and interac-
tion treatment effect. The data and this fitted model
have been discussed at length in Breslow [4] and his
results are given here. The Pearson and deviance
goodness-of-fit statistics clearly indicate lack-of-fit
of the Poisson model. The score test statistics TP1

and TP2 have observed values 36.51 and 37.56,
respectively. The overdispersion here is very substan-
tial.

Table 1 Loglinear Poisson regression fit to the epilepsy
data; case no. 207, with high leverage, omitted. Reproduced
from Statistica Applicata, Vol. 8, pp. 23–41, by permission
of Rocco Curto Editore

Coefficient Value Std. error t Statistic

Intercept 3.079 0.451 6.833
ln(base count/4) −0.074 0.201 −0.366
Age/10 −0.511 0.153 −3.332
ln(base count/4): 0.351 0.068 5.164

age/10
Progabide −0.610 0.191 −3.197
Progabide: 0.204 0.088 2.325

ln(base count/4)

Deviance = 408.4; Pearson χ2 = 456.52; df = 52.

Accounting for Overdispersion

With overdispersion present, the use of the Poisson
or binomial maximum likelihood equations for esti-
mating the regression parameters in the mean is still
valid. These are the usual generalized linear model
(GLM) or quasi-likelihood (QL) estimating equa-
tions, and they are unbiased estimating equations
regardless of any misspecification of the variance
structure. However, the estimated variances of the
parameter estimates will be in error, and possibly
severely so.

If there are alternative “overdispersed” models
which are postulated, then certainly one could pro-
ceed by maximum likelihood estimation. This will
be discussed further below. There are, however, some
robust, simple methods for adjusting standard errors
to account for overdispersion and these will be con-
sidered first.

McCullagh & Nelder [20] suggest a simple adjust-
ment, which is to multiply var(β̂), obtained from the
Poisson or binomial model, by an estimate of the
GLM scale factor, φ. This estimate is usually the
Pearson or deviance statistic divided by its degrees
of freedom. This is appropriate if the overdispersion
gives rise to a variance model which is a constant
times the nominal variance, e.g. φµ for counts and
φmp(1 − p) for proportions. This variance form may
also well approximate other, possibly more compli-
cated, variance structures in certain situations; for
example, for count data, when var(yi) = µi + τµ2

i

and τµi do not vary greatly with i.
If the sample is large, then an empirical variance

estimate can be computed. This is called the “sand-
wich” variance estimate, cf. Liang & Zeger [17].
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For loglinear models, for example, the sandwich
estimator is

var(β̂) =
[

n∑

i=1

µ̂ixix′
i

]−1 [
n∑

i=1

(
yi − µ̂i

µ̂i

)2

xix′
i

]

×
[

n∑

i=1

µ̂ixix′
i

]−1

. (5)

Unless very large samples are available, the sandwich
estimator tends to underestimate the true variance.

Resampling techniques, although typically
computer-intensive, have become popular for pro-
viding estimates of the variance of regression parame-
ters. Bootstrap and jackknife estimates are discussed
in [12], and there are methods of approximating these
which require less computing effort, e.g. the one-
step jackknife estimate. The bootstrap estimates are
considered to be quite accurate. Table 2, from [4],
compares these estimators in the analysis of the data
from [29], mentioned earlier. Notice how much larger
these estimates of the standard errors are compared
with those obtained from the Poisson model. The
treatment effect is no longer significant when overdis-
persion is taken into account.

Model-based methods for incorporating overdis-
persion lead to mixture models or random effects
models. A simple Poisson random effects model can
be derived by considering a model with individual-
specific random effects νi > 0 where, conditional
on (νi, xi), the distribution of Yi is Poisson with
a mean of νiµi(xi ; β), and the νi are continuous,
independent variates with probability density function
p(ν; τ) depending on a parameter τ . If µi(xi ; β) takes
the common form exp(x′

iβ), then the fixed and ran-
dom effects are added on the logarithmic scale and
the random effects can be construed as represent-
ing covariates which are unavailable. The probability

function of Y in the mixed model is
∫ ∞

0

(µν)y exp(−µν)

y!
p(ν) dν (6)

and the score function for estimating the regression
parameters has the intuitively appealing form

n∑

i=1

[yi − µiE(νi |yi)]
1

µi

(
∂µi

∂βr

)
= 0. (7)

This equation, with E(νi |yi) omitted, is the maximum
likelihood equation for Poisson regression [Eq. (8),
with σ 2

i = µi]. If the distribution of ν is specified,
then full maximum likelihood estimation can be per-
formed; if ν is assumed to be gamma, then this leads
to a negative binomial distribution for the counts.
However, it is more common to adopt the more robust
approach of specifying only the first two moments for
Y , i.e. µi and σ 2

i , respectively; the parameters in the
mean are then estimated using the quasi-likelihood
estimating equation,

n∑

i=1

(yi − µi)

σ 2
i

(
∂µi

∂βr

)
= 0, (8)

for count data, together with another estimating equa-
tion for the additional parameter τ in σ 2

i .
There are many important reasons for the wide-

spread use of the quasi-likelihood approach. For gen-
eralized linear models with a full likelihood, these
are the maximum likelihood equations. From the
viewpoint of estimating equations (see Estimating
Functions), Godambe & Thompson [14] (see also
Nelder’s discussion of that paper) derive impor-
tant optimality properties of the estimators. When
σ 2 = µτ , estimation of the regression coefficients is
not affected by the value of τ . Estimation is easy
with standard software. An important point is that

Table 2 Overdispersion adjusted standard errors for Table 1 coefficients. Reproduced from Statistica Applicata, Vol. 8,
pp. 23–41, by permission of Rocco Curto Editore

Scale One-step True Bootstrap
Coefficient method Sandwich jackknife jackknife (nb = 5000)

Intercept 1.263 0.711 0.792 0.792 0.870
ln(base count/4) 0.564 0.326 0.368 0.369 0.424
Age/10 0.430 0.237 0.264 0.263 0.291
ln(base count/4): age/10 0.190 0.104 0.117 0.117 0.137
Progabide 0.535 0.403 0.440 0.448 0.466
Progabide: ln(base count/4) 0.246 0.188 0.210 0.214 0.226
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the asymptotic variance of β̃, the estimate of β, is
independent of the choice of the estimating function
for τ , and depends only on the first two moments
of the distribution. This is also, asymptotically, a
very efficient estimator for a wide range of models.
Simulation studies have been conducted to investi-
gate the performance of β̃ in small samples; they
support the unbiasedness and efficiency of this esti-
mator.

A popular method for estimating τ is pseudo-
likelihood. Davidian & Carroll [7] derived the
pseudo-likelihood estimating equation as the maxi-
mum likelihood equation when residuals are normally
distributed. An alternative simple choice is equating
the Pearson statistic to its degrees of freedom.

Nonparametric methods of modeling random
effects for handling overdispersion have been shown
to be useful. Lindsay [18] is a comprehensive source
on the topic. He discusses the geometry and the-
ory of mixture models and describes a plethora of
applications where mixture models are used, includ-
ing overdispersion, measurement errors, and latent
variable models for cluster analysis. Practical issues
for estimation of nonparametric mixing distributions,
such as algorithms and computational problems, are
discussed at length in [2] and [16].

The preceding overdispersion models incorporated
a single random effect which was independent over
subjects. More general models might include multi-
plicative random effects [25]; large numbers of ran-
dom effects are common in animal breeding exper-
iments, where it is the prediction of the random
effects, representing sire effects, which is the main
focus of the study. In studies of the geographic
distribution of cancer mortality rates, or disease inci-
dence, the random effects may represent area-specific
effects and there may be good reason to suspect
that such area effects are not independent, and in
some circumstances may be quite similar within small
neighborhoods.

A general body of theory which synthesizes the
incorporation of several random effects, which are
not necessarily independent, falls under the head-
ing of generalized linear mixed models. It permits
a simple incorporation of overdispersion, as dis-
cussed previously, and can also model dependences
in outcome variables or random effects, as are typ-
ical in repeated measures design (see Nonlinear
Mixed Effects Models for Longitudinal Data). A

generalized linear mixed logistic model specifies that

log

(
pi

1 − pi

)
= x′

iβ + z′
iγ , (9)

where pi and xi are the probability of a positive
response and the vector of covariates, correspond-
ing to the ith proportion, respectively, zi is a vector
of covariates, and γ is distributed with a mean of
zero, and finite variance matrix. Conditional on γ , the
responses are supposed binomially distributed. As an
aside, note that the representation above elucidates
that apparent overdispersion can be induced by miss-
ing covariates, or by outliers. Residual diagnostics
are important for identifying the latter.

In generalized linear mixed models the random
effects are usually assumed to be Gaussian, and max-
imum likelihood estimation involves q-dimensional
integration; here q is the dimension of γ . Alter-
native simpler approaches for inference have been
proposed, using generalizations of moment meth-
ods or penalized quasi-likelihood [5]. The penalized
quasi-likelihood is a Laplace approximation to the
integrated likelihood, with some seemingly harmless
other approximations added. Breslow & Clayton [5]
provide simple algorithms for estimation using an
iterative fitting procedure which updates both the
parameter values and a modified response variable at
each step. They also evaluate the performance of their
estimators. It seems that bias corrections are required
for small samples, and these are given in [6].

Lee & Nelder [15] discuss hierarchical general-
ized linear models, where the distribution of the
random components is not restricted to be normal,
and where, like penalized quasi-likelihood, estima-
tion avoids numerical integration. Maximizing what
they call the h-likelihood, a posterior density, gives
fixed effects estimators which are asymptotically
equivalent to those obtained using the corresponding
marginal likelihood. Here, “asymptotically” refers
to cluster sizes tending to infinity, and the ran-
dom effects are cluster-specific. This is important to
note because many applications with random effects
involve several small-sized clusters. In general, their
asymptotic arguments require that the total number of
random effects remains fixed, as the overall sample
size becomes large. However, they also derive prop-
erties of their estimators on a model-by-model basis,
and some models require less strict assumptions.
When there are many random effects to be estimated,
none of the procedures described here will be simple,
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as can be expected when dealing with complicated
mechanisms for incorporating overdispersion.

Technical Reference Texts and Software
Notes

The general topic of overdispersion is discussed
in McCullagh & Nelder [20, Sections 4.5, 5.5, 6.2].
Chapters 9 and 10 of that text are also relevant and
discuss quasi-likelihood and joint modeling of mean
and dispersion. Diggle et al. [11] discuss random
effects models for longitudinal data, and Chapter 5 of
Lindsey [19] is devoted to the topic of overdispersion
in models for categorical data.

Software for incorporating overdispersion includes
S-PLUS [26], function glm, SAS ( [24], procedures
LOGISTIC, MIXED GENMOD, and CATMOD), and
GLIM [1].
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Overmatching

Overmatching refers to the unnecessary or inappro-
priate use of matching in a cohort or case–control
study. Matching on intermediate factors on the causal
pathway (see Causation) can inappropriately atten-
uate estimates of exposure effect, and matching on
factors that are not confounders can needlessly
reduce the power of the study [1, pp. 104–106].
Overmatching is also sometimes used to describe
elaborate matching schemes that make it difficult to

find suitable controls satisfying all matching criteria
(see Matched Analysis).
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P Value

The P value is probably the most ubiquitous statisti-
cal index found in the applied sciences literature and
is particularly widely used in biomedical research. It
is also fair to state that the misunderstanding and mis-
use of this index is equally widespread. A complete
discussion of all issues relevant to the P value could
touch on many of the subtlest and most difficult areas
in statistical inference. In this article we will focus
on those aspects most relevant to the interpretation
of results arising from biomedical research.

The P value, as it is used and defined today,
was first proposed as part of a quasi-formal method
of inference by R.A. Fisher, and popularized in his
highly influential 1925 book, Statistical Methods for
Research Workers [13]. It is defined as the proba-
bility, under a given simple hypothesis H0 (the null
hypothesis), of a statistic of the observed data, plus
the probability of more extreme values of the statis-
tic (see Hypothesis Testing). Other names that have
been used for the P value include “tail-area prob-
ability,” “associated probability,” and “significance
probability” [16]. It can be written as

P value = Pr(t(X) ≥ t(x)|H0),

where X is a random vector, x is a vector of observed
results, and t(X) is a function of the data, known as
a test statistic (e.g. the sample average).

This seemingly simple mathematical definition
belies the complexity of its interpretation, and even
the occasional difficulty of its calculation in real-
world settings. The seeds of this difficulty are embod-
ied in its definition, which is partly conditional
(depending on observed data for calculation), and
partly unconditional (calculated over a set of unob-
served outcomes defined by the study design) [26]. It
is therefore an index that seems to measure simultane-
ously an “error rate” (pre-experiment, unconditional
perspective) and the strength of inferential evidence
(post-experiment, conditional perspective). Fisher’s
original purpose for the P value was in the latter
category, as an index that denoted the statistical com-
patibility between observed results and a hypothetical
distribution. He meant it to be used informally as a
measure of statistical evidence. The larger the statisti-
cal distance (and the smaller the P value), the greater
was the evidence against the null hypothesis.

While the basic idea had undeniable appeal, this
definition posed several problems, some logical, some
practical, which Fisher never fully resolved. They
included the following:

1. How a measure of distance from a single hypoth-
esis could be interpreted as a measure of evidence
without consideration of other hypotheses [6].

2. How the probability of unobserved “more
extreme” results were relevant to the evidential
meaning of the observed result [19, 21].

3. How to calculate a P value when the
experimental design (e.g. sequential) or execu-
tion (unanticipated events) rendered the sample
space uncertain [8, 11].

4. How to choose an appropriate test statistic [9,
10, 20].

5. How the numerical magnitude of the P value
should be interpreted operationally [2, 3, 12].

These questions were difficult to address because
the P value was not part of any formal system
of inference. This contrasted with the likelihood
ratio, which was a part of Bayes’ theorem. But
while Fisher also developed the idea of mathemat-
ical likelihood, he eschewed Bayes’ theorem as a
useful tool in scientific inference. In its stead, he
developed a panoply of methods which were meant
to be tools in what he regarded as the fluid and
nonquantifiable process of scientific reasoning. He
offered various “rules of thumb” for the use of
these tools. Among such rules were the suggestion
that if the P value were less than 0.05, one might
start doubting the null hypothesis. He was clear
that the response to such a finding would generally
be to conduct another experiment, or gather more
data.

Had this been the full extent of the P value’s
theoretical foundation, it is doubtful that it would
occupy as central a role as it does today. It is
ironic that it became popularized, and indeed reified,
because of the development of another method that
did not include it, and which explicitly denied that
conditional inference could be part of a “scientific”
method [18].

The P Value as an “Observed Error Rate”

In 1933, J. Neyman and E.S. Pearson (N–P) pro-
posed the “hypothesis test”, which involved



2 P Value

“rejecting” or “accepting” null or alternative hypo-
theses with predetermined frequencies when they
were true [24]. The probabilities of making the wrong
decision were called error rates, and designated into
two classes: α, (or type I) error (the probability of
rejecting the null hypothesis when it was true) and β

(type II) error (the probability of accepting the null
hypothesis when the alternative was true) (see Level
of a Test). A critical value for a test statistic is deter-
mined (via a likelihood ratio), and the null hypoth-
esis is rejected if the statistic exceeds that critical
value, and is accepted if not (see Critical Region).
This methodology borrowed several of Fisher’s ideas,
most notably that of mathematical likelihood, and,
with its introduction of the concept of an alternative
hypothesis and associated power, appeared to address
some of the logical problems posed by Fisher’s less
formal system. But N–P explicitly rejected P values,
because for the “error rates” to have meaning (and for
a method to be “scientific”), an hypothesis had to be
rejected or accepted; a result could not reflect back
on underlying hypotheses in a graded way, which use
of the P value implied.

The N–P method provided the formal framework
of statistical inference (or at least decision-making)
that the P value lacked, but it was a framework
that encouraged the misinterpretation of P values.
The juxtaposition of the two approaches has been the
source of considerable confusion ever since. Since
both P values and type I error rates were tail-area
probabilities under the null hypothesis, the P value
came to be interpreted as an “observed type I error”,
and defined in most applied textbooks that way.
While it is mathematically true that the P value is
smallest alpha level at which one could still justify the
rejection of the null hypothesis, this fact does make
not make the P value an error rate. (It should be
stressed that the confusion we are discussing here is
not the more common lay misperception that P value
represents the probability of the null hypothesis.) The
outcome cannot fall within the region over which the
P value is calculated; by definition, the observed
outcome is always on the border of that region,
and is usually the most probable. In an applied
setting, this confusion is manifested in the inability to
quantitatively distinguish between the very different
inferential implications of a result reported as “P ≤
0.05” vs. “P = 0.05”. It is fascinating how few users
of P values recognize the profound difference in
inferential weight introduced by that subtle change in

inequality sign, whereas many agonize over the far
smaller difference between P = 0.04 and P = 0.07.

The identification of the P value as a form of post
hoc type I error rate, or as an “improved” estimate of
that error, created a powerful illusion that is undoubt-
edly the source of its appeal; that a deductively
derived error rate and inductive measure of inferen-
tial strength were identical, and that the “objective”
qualities of the first could be bestowed upon the latter.

Fisher and Neyman fought vigorously in print
over which approach was preferable, and Fisher in
particular expressed profound dismay at seeing his
“significance probability” absorbed into hypothesis
testing (“acceptance procedures”, in his words) [14,
23]. But textbook and software writers, either not
wanting to confuse readers, or perhaps themselves not
being clear about the issues, obscured the distinction,
and technology triumphed over philosophy [17].

The P Value as a Measure of Evidence

We have seen above how the conditionality of the P

value makes it inappropriate to view as a post-test α

level. We will see that its unconditional characteris-
tics render it problematic as an evidential measure as
well. Fisher’s proposal that the P value be used as a
measure of evidence appeared based on the intuitively
appealing idea that the more unlikely an event was
under the null hypothesis, the more “evidence” that
event provided against the hypothesis. The tail area
appeared to be a convenient way in which to index
the statistical distance between the null hypothesis
and the data. Fisher himself did not seem wedded to
that measure, simultaneously endorsing the use of the
mathematical likelihood as an alternative.

If the P value were used informally as Fisher
originally intended, it could be viewed as equivalent
to any other functional transformations of the distance
between the observed statistic and its null value, like
a Z-score, or standardized likelihood. But its use in
any formal way poses several difficulties. Because
the P value is calculated only with respect to one
hypothesis, and has no information, by itself, of the
magnitude of the observed effect (or equivalently, of
power), it implicitly excludes the magnitude of effect
from the definition of “evidence”. Small deviations
from the null hypothesis in large experiments can
have the same P value as large deviations in small
experiments. The likelihood functions for these two
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results are quite different, as are any data-independent
summaries of the likelihoods. This difference is also
reflected in the perspective of most scientists, who
would typically draw different conclusions from such
a pair of results.

The corrective in the biomedical literature has
been to urge the reporting of P values together with
estimates of effect size, and of the precision of the
measured effect, usually reported as a confidence
interval [1, 15, 25]. This does not completely solve
the problem of representing the evidence with the
same number when the data appear quite different,
but it at least gives scientists additional information
upon which to base conclusions.

The dependence on only one hypothesis means
that data with different inferential meaning can have
the same P value [4]. A converse problem occurs
when the same data can be represented by two dif-
ferent P values. This problem is created by the
inclusion of “unobserved” outcomes in the tail area
calculation of the P value. Experiments of different
design can have different “unobserved” outcomes
even if the observed data are identical. The classic
example involves the contrast between a fixed sample
size experiment and one in which a data-dependent
stopping-rule is used. Suppose that two treatments, A
and B, are applied to each subject in a clinical trial,
and the preferred treatment for that subject recorded.
The sequence of preferred treatments are five A s fol-
lowed by one B. If this was planned as an experiment
with n = 6, then the one-sided P value based on the
binomial distribution is

(
6
1

)(
1

2

)5 (
1

2

)1

+ 1

2

6

= 0.11.

If the experiment had been designed to stop when
the first B success was observed, then the more
extreme results would consist of longer sequences of
As, and the P value based on the negative binomial
would be
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+ 1

2

(
1

2

)6

+ · · · = 0.031.

While this is an idealized situation, this issue is
manifest in the real-world applications by the dis-
cussions of how to measure appropriately the evi-
dence provided by biomedical experiments that have
stopped unexpectedly or because of large observed
differences. In one trial of medical therapy known by

its acronym of “ECMO”, a variety of P values could
be derived from the data presented [22].

Perhaps the most illuminating examinations of the
inferential meaning of P values have used Bayesian
or likelihood approaches. Bayesian analyses show
that the P value is approximately the Bayesian pos-
terior probability, under a diffuse prior, of an effect
being in the direction opposite to the one observed,
relative to the null hypothesis. More generally, the
one-sided P value is the lower bound on that proba-
bility for all unimodal symmetric priors centered on
the null [7].

Both likelihood and Bayesian arguments show
that the P value substantially overstates the evidence
against a simple, “sharp” null hypothesis, particularly
for P values above 0.01. In the normal (Gaussian)
case, the minimum likelihood ratio for the null, which
is the minimum Bayes factor as well, is substantially
higher than the associated P value, as shown in
Table 1 [5, 12].

Since the P value is usually calculated relative
to a sharp null hypothesis, most users interpret its
magnitude as reflecting on the null hypothesis. The
standardized likelihood [exp(−Z2/2)] is the smallest
Bayes factor that can multiply the prior odds of the
null hypothesis to calculate the posterior odds. We
see that the odds are not changed nearly as much
as the P value’s magnitude would suggest; nor is the
probability. In the range of very small P values (P <

0.001) the quantitative differences are not likely to be
important in practice. But in the range which includes
many P values reported in biomedical research – that
is, 0.01 < P < 0.10 – the differences between most
users’ impression of the P value’s meaning and its

Table 1 The relationship between the observed Z-score,
(standard normal deviate), the fixed-sample size two-
sided P value, the Gaussian standardized likelihood
exp(−Z2/2), and the smallest possible Bayesian posterior
probability when the prior probability on the simple null
hypothesis is 0.5. The latter is calculated using Bayes’ the-
orem, and equals stand.lik./(1 + stand.lik.)

Gaussian Min. Pr(H0|Z)

P value standardized when
Z-score (two-sided) likelihood Pr(H0) = 0.5

1.64 0.10 0.26 0.21
1.96 0.05 0.15 0.13
2.17 0.03 0.09 0.08
2.58 0.01 0.036 0.035
3.29 0.001 0.0045 0.0045
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maximum inferential weight is striking. When one-
sided P values are used, the contrast is even more
marked.

One-sided vs. Two-sided P Values

Much has been written about how one could choose
whether to cite a one- or two-sided P value. This
is somewhat academic, since the de facto standard
in the biomedical literature is for two-sided tests.
Some writers have stressed that this is little more
than a semantic distinction – that is, about what label
should be attached to a Z = 1.96 – and that if the
result is completely reported, a reader could make the
appropriate adjustment if they judge it appropriate. It
is interesting to note that this distinction becomes
more than academic if one dichotomizes results into
“significant” and “not significant”. Then, whether the
test was one- or two-sided is an important factor in
assessing the meaning of the verdict. However, this
assumes that not even the direction of the result is
reported, which is unlikely.

This issue is similar to that confronting the exper-
imenter who stops a trial before its planned end.
In both situations, an experimenter’s intentions or
thoughts are taken as relevant to the strength of evi-
dence, such that two persons with the same data could
quote different P values. There is no clear resolution
to this, since those who focus on the unconditional
aspects of the P value will see such considerations
as important, and those who regard it primarily as
a conditional evidential measure will insist that such
considerations should be irrelevant. In general, the
custom that most or all P values be reported as two-
sided seems a good one, with the condition that if
one-sided P values are used, this be indicated clearly
enough so their value could be doubled by a reader.
If the P values are in a range in which doubling
makes a substantive difference, the evidence is equiv-
ocal enough so there will be controversy regardless
of how the P value is reported.

Conclusions

The P value represented an attempt by R.A. Fisher
to provide a measure of evidence against the null
hypothesis. Its peculiar combination of conditionality
and unconditionality, combined with its absorption
into the hypothesis testing procedure of Neyman and

Pearson, have led to its misinterpretation, widespread
use, and seeming imperviousness to numerous criti-
cisms. Since P values are not likely to soon disappear
from the pages of medical journals or from the tool-
box of statisticians, the challenge remains how to use
them and still properly convey the strength of evi-
dence provided by research data, and how to decide
whether issues of design or analysis should be incor-
porated into their calculation.
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Pain

There are many situations in clinical medicine when
it is necessary to assess how much pain a patient is
feeling. This may be either to ascertain how painful a
clinical procedure is, or to compare the pain relief, or
pain inflicted, by two or more modes of treatment. In
the medical literature, there is a fairly clear distinction
between acute pain and chronic pain.

Types of Pain

Chronic Pain

There are many ailments where patients suffering
from long-term illnesses are assessed for how much
pain they are experiencing. In particular, patients
with rheumatoid arthritis, back pain, and cancer often
fall into this category. Owing to the wide range of
illnesses, such studies appear in many specialist areas
of the medical literature. A typical example is a study
of chronic low back pain by Marchand et al. [10].

Acute Pain

There are many examples where patients undergoing
a medical procedure are asked postoperatively about
the level of pain they are suffering. Such studies
include patients having hip or knee replacements,
hysterectomies, and wisdom tooth removal. While
they cover many different types of operation, these
studies are particularly common in the anesthesia
literature. A typical example is a study by Hommeril
et al. [6] exploring pain relief after hip and knee
arthroplasty.

Experimental Pain

A further category is that of experimental pain. An
example is where volunteers immerse their hands
in ice or are subjected to small electric shocks.
These experiments usually yield straightforward data
that can be analyzed using conventional statistical
methods. A good example of such studies is that by
Bjorkman & Elam [1].

Historical Development

To study pain it is first necessary to measure it
reliably. Unfortunately, it is not possible (yet) to

attach an instrument to a patient to obtain a direct
objective measure of how much their pain hurts.
There are two common methods of getting round this
problem.

The 10 cm Visual Analog Scale (VAS)

This is the most common method for measuring pain
in the medical literature. It is used in all three types of
pain study described earlier. A standard 10 cm scale
is illustrated in Figure 1. The patient is asked to mark
on the line how much his or her pain hurts. This is
a very important component of the literature and is
addressed in detail in later sections.

Questionnaires

There are several pain questionnaires. The one which
seems to be the most used and respected is the McGill
Pain Questionnaire published by Melzack [12] in
1975. However, more recently, Thomas [16] pub-
lished the Glasgow Pain Questionnaire. Neither of
these is disease specific. This is an important point
because there is an expanding literature of pain scores
developed to assess the pain and disability associ-
ated with particular conditions. Two good examples
are the Aberdeen Back Pain [14] score and Psoriasis
Disability Index [5].

Measurement of quality of life is an expand-
ing area of the medical literature. The most com-
monly used questionnaires are the Nottingham Health
Profile [7] and the SF-36 [3]. Both have particular
domains dedicated to pain. Methodology for calcu-
lating sample sizes for the SF-36 was described by
Julious [8]. In order to study a particular disease it is
important to note that if either of these is to be used,
then a disease-specific score such as those mentioned
above should also be used. This is because they are
both general health questionnaires.

Two other approaches are worth mentioning.
Rather than a VAS score, the patient is asked
to fill in a four- or five-point categorical scale
ranging from no/little pain to very bad/unbearable.

Figure 1 Standard 10 cm scale
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This is most useful when the aim is to obtain a
single pain assessment and the subsequent analysis
is straightforward. The other method is to use the
amount of analgesia consumed by a patient as a
surrogate for pain. An example of this sort is
discussed later.

Different Types of Study

Chronic Pain

The usual aims for studying chronic pain are (i) to
ascertain the “average” amount of a pain a patient
suffers in daily life and (ii) to intervene with a
treatment that will hopefully reduce the suffering.
Any of the pain measures discussed above can be
used, although the questionnaires are particularly
popular. Usually, data are collected at baseline and
at a fixed point in time after treatment. These studies
do not present with any particular statistical problems
and can be analyzed using conventional techniques.

Acute Pain

The questionnaire-based measures of pain that are
appropriate to chronic pain are clearly not appropri-
ate for measuring acute pain. There are two reasons
for this. First, in acute pain studies the patients are
often in great distress. Secondly, some of the ques-
tionnaires take several minutes to complete, which
is too onerous for the patient and not suitable if the
experimenter wishes to assess pain levels at regular
intervals. The most common form of measurement of
acute pain is the 10 cm VAS. The properties of the
VAS have been explored by many authors. A good
source of references can be found in [13].

A common study design is to allocate randomly
patients recovering from an operation under general
anesthetic to receive pain relief from different anal-
gesic agents (see Randomization). Patients are then
asked to fill in a VAS at regular intervals. These
intervals are not always of equal length, and such
studies vary from 2 h to 48 h in duration. The most
common form of analysis in the medical literature is
to use either t tests (see Student’s t Statistics) or
Wilcoxon–Mann–Whitney tests to compare mean
pain levels at each time point between groups.

A typical example by Doyle et al. [4] is worth
describing. Forty children undergoing appendicec-
tomy were allocated randomly to receive one of

two bolus doses of morphine upon waking from
the operation. Each group then used the same
patient-controlled analgesia (PCA) regime to con-
trol their own pain. An observer filled in a VAS
every 4 h for 48 h for each child at rest and dur-
ing movement. The data were then analyzed using
a Wilcoxon–Mann–Whitney test at each time point.
The slight difference with this study is that the
patients did not fill in the VAS but an observer did.

A study by Hommeril et al. [6] is also worth
illustrating. In a double-blind (see Blinding or Mask-
ing) randomized study 32 subjects were allocated to
receive either ketoprofen or morphine after undergo-
ing hip and knee arthroplasty. The ketoprofen regime
was a continuous infusion over 13 h, whereas the
morphine regime was a single large bolus dose. The
patients filled in a VAS upon recovery and 1, 3, 5,
7, 9, and 13 h after recovery. Patients suffering from
extreme pain were allowed extra help in the form of
an intravenous paracetamol injection. In total, nine
of these injections were administered. The data were
analyzed using a Mann–Whitney test at each time
point. No attention was given to the fact that the study
had in effect changed due to the extra “treatment”
received by some of the patients.

Experimental Pain

In these studies the pain is usually very short lived
and can be reproduced by an identical stimulus.
Hence crossover designs are quite popular. The use
of crossover designs in acute pain studies is not
possible. There are examples of crossover designs
for chronic pain studies in the medical literature,
although the washout period must be such that
the effect of the drug administered in the first
experimental period has time to wear off.

Landmark Studies

Anybody wishing to learn about pain should consult
the volumes edited by Melzack & Ward [13] which
cover the entire subject from a medical viewpoint.
One paper well worth a mention is that by Matthews
et al. [11]. Here, they demonstrate in a major medical
journal the flaws of repeated significance testing at
successive time points (see Sequential Analysis).
Kelly reviewed 12 journals from the anesthesia
literature from 1991 and found that 59 out of 71
papers used this flawed method as the basis of
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their analysis. The logic of comparing bolus dosages
of analgesia is criticized in a British Journal of
Anaesthesia editorial [9]. However, despite this, the
practice is still very common.

Particular Statistical Concepts, Problems,
and Techniques

The flaws in making significant tests at repeated time
points are described by Matthews et al. [11] as:

1. A single curve joining the mean values at each
point may hide important variation between
patients within the same group.

2. The analysis does not take account of the fact
that measurements at different time points are
from the same patients.

3. Successive observations on a given patient are
likely to be correlated. Note that this is particu-
larly true for pain data.

4. Dividing the results into “significant” or “non-
significant” introduces an artificial dichotomy
into serial data (see Hypothesis Testing).

Statistically valid alternatives used in the medical
literature are either to use repeated measures analysis
of variance or to use summary measures as suggested
by Matthews et al. [11]. The latter route is certainly
the easier to interpret and in my view is more
appropriate for most medical applications. Problems
with both approaches include missing data. A patient
may be in a deep sleep or decide to drop out of
the study at any point. In most pain studies it is
necessary for ethical reasons to allow the patient to
take additional analgesia if they request it. This use
of so-called escape analgesia is often ignored when
it comes to data analysis. However, such data clearly
confound the intended comparison.

Solutions

The key to using a summary measure approach
is to ensure that the chosen measure is clinically
meaningful. For this reason, summaries such as
time to taking first escape analgesia, rate of pain
reduction over a fixed time period, minimum pain,
or the number of unacceptable pain observations
in a fixed time period are all appealing in various
circumstances. Here are three examples that illustrate
the use of summary measures.

Bray et al. [2] compared the efficacy of morphine
infusion against patient-controlled analgesia in a
double-blind randomized study on 30 children under-
going major abdominal surgery. The time period of
interest was the first 4 h after the child recovered
from the general anesthesia from the operation. Prior
to commencing the study, the authors decided to
ask the children to fill in a 10 cm VAS every half
hour for 4 h once awake after the operation. The out-
come of interest to the clinician was how long each
child’s pain is at an unacceptable level. Hence, a VAS
score of 50 mm or more was defined as unaccept-
able. The authors simply counted how many of the
pain scores were unacceptable and compared them
between groups using a Mann–Whitney test. This
simple summary encapsulated precisely the aim of
the clinicians in performing the study and provided
very clear and easily interpretable results which they
readily accepted.

Seymour et al. [15] explored the efficacy of keto-
profen and paracetamol for pain relief in patients
recovering from the extraction under general anesthe-
sia of their third wisdom tooth. A total of 206 patients
entered the study into one of five groups, a placebo
and two dosages of each drug. Patients filled in a
10 cm VAS at 15, 30, 45, 60, 90, 120, 180, 240, 300,
and 360 min after administration of the analgesia. The
investigators were interested in: (i) How quickly does
each treatment act? (ii) For how long does the treat-
ment have an effect? (iii) What is the maximum pain
relief provided from the treatment? For each of these
a summary measure was used. The speed with which
the drug acted was measured by simply looking at the
change in pain score over the first hour. The effec-
tive length of the treatment was assessed by observing
the times at which patients made requests for escape
analgesia, and the resulting information was analyzed
using the logrank test. The maximum pain relief was
calculated for each patient as the difference between
their baseline pain and their lowest VAS score. A
global summary in the form of the area under the
curve (see Bioequivalence) of the pain profile of
each patient was also calculated. The interpretation
of such a quantity is not clear and is complicated
by patients taking escape analgesia. This is a popular
measure with pharmaceutical companies but is not in
my view as useful as carefully thought out summaries
such as those illustrated which clearly provide useful
information for the researchers’ questions.
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The use of the cumulative amount of analgesia
consumed by a patient as a measure of pain was
mentioned earlier. This is appealing; however, a
warning to be wary of such studies is necessary.
Welchew & Breen [17] compared the pain relief
received between patient-controlled on-demand fen-
tanyl delivered epidurally or intravenously. Here, it
is the method of delivery that is being tested rather
than the analgesia. The subjects were 20 patients
undergoing upper abdominal surgery. They used two
methods of analysis. Each patient filled in a 10 cm
VAS every hour for 24 hours after recovering from
the operation. The Mann–Whitney test was used to
compare the means at each time point. They also plot-
ted the mean cumulative doses of drug consumed by
patients in each group and compared these at each
time point with an unpaired t test. Apart from the
obvious statistical error, they forgot that, because of
the safety lockouts on the patient-controlled analgesia
equipment, patients in each group would automati-
cally receive differing amounts of drug.

Anticipated Developments and Unresolved
Problems

There is great potential for statistics to make a major
and direct impact upon research into pain and pain
relief. The use of summary measures should be
explained and illustrated with the appropriate medical
literature. There seems to be a characteristic shape to
a pain curve which could be modeled. The parameters
of such a curve could then be compared between
different treatment groups, giving a comparison of
the pain profiles rather than many individual time
points. Methods for dealing with missing data and
for patients taking additional analgesia should be
developed.

Increasingly, chronic pain is been assessed by
qualitative methods. While these do not readily lend
themselves to statistical analysis, and indeed are
sometimes directly opposed to classical statistical
concepts of randomization and outcome variables,
there is some merit in their aim to provide better
quality information on pain.
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Paired Comparisons

The term paired comparisons is used in two rather
different senses. This article is not concerned with the
comparison of two treatments by the use of matched
pairs (see Paired t Test), but focuses on the method
of paired comparisons. In this method, t “treatments”
are compared pairwise in situations in which full
measurement of the responses is not feasible or is
inappropriate [7].

A good example is provided by preference testing
where, on the basis of the 1

2 t (t − 1) preferences
expressed by each of n respondents, one wishes to
test whether there are significant differences among
the treatments (see Hypothesis Testing), and, if so,
to rank the treatments or, better still, place them on
some preference scale. In each paired comparison
involved, the preferred treatment receives a score of
1 and the other a score of 0. Subsequent analysis is
based on the (total) scores, a1, . . . , at , attained by the
treatments at the end of the experiment. This requires
in all N = 1

2nt(t − 1) paired comparisons, which are
assumed to be stochastically independent.

It will be seen that the method is not confined
to preference testing, the essential feature being the
allocation of 1s and 0s for each paired comparison.
“Treatments” is a covering term that can also denote
“objects”, “individuals”, and so on.

An interesting application is given by Jin et al. [5]
in their study of whether there is segregation distor-
tion in the human leukocyte antigen complex. For
a parent of genotype ij , i �= j , at a particular locus
(i = 1, . . . , t ; j = 1, . . . , t), a score of 1 is given to
whichever allele, i or j , is transmitted to an offspring.
Here, block size two (pairing) is forced on the exper-
imenter, as it is for matching body parts or in round
robin tournaments.

Sometimes it is possible for a respondent to rank
all t treatments directly. If this is easily done, it may
be an appropriate procedure. However, the method of
paired comparisons allows inconsistencies to show
up. Thus, if A1 → A2 signifies that treatment A1

scores 1, it may happen that A1 → A2 and A2 → A3

but A3 → A1. Such circular triads [6] are an indi-
cation that the respondent finds it difficult to be
consistent. This may be due to small perceived differ-
ences among treatments, or to the fact that the merit
or worth of the treatments cannot be represented on

a linear scale. If such a representation is possible, we
say that a linear (paired comparison) model holds.

It can be shown [4, 6] that small values of the
total number of circular triads are equivalent to large
values of the sum of squares of the scores. Clearly,
either of these would lead us to suspect the null
hypothesis H0 of no treatment differences. A simple
approximate test may be made by rejecting H0 if

4

nt

t∑

i=1

(ai − a)2 > χ2
1−α(t − 1), (1)

where a = 1
2n(t − 1) and χ2

1−α(t − 1) is the upper
α significance point of the chi-square distribution
with t − 1 degrees of freedom. The approximation
is good except when N is small, in which case exact
tables of upper 5% and 1% points are available in [4].
Multiple comparison methods, based on the ai , may
be used to rank the treatments (see [4]).

Of course, it is not always possible to make all
pairings equally often. The analysis of such unbal-
anced experiments, where Ai and Aj are compared
nij times (i = 1, . . . , t ; j = 1, . . . , t ; nij ≥ 0) is
treated in [1].

The foregoing procedures are applicable generally,
but the interpretation of the results is simpler when a
linear model can be assumed. An important example
is the Bradley–Terry model [3], for which

Pr(Ai → Aj) = πi

(πi + πj )
,

i = 1, . . . , t, j = 1, . . . , t, (2)

where πi(> 0) represents the merit of Ai(i =
1, . . . , t). To fix the scale of the πi , it is usual to
impose the constraint

∑
πi = 1. General theory may

be used to test H0: πi = 1/t (i = 1, . . . , t) and to
estimate the πi . It can be shown that the resulting
estimates are ranked exactly as the ai . Moreover,
the method of maximum likelihood also allows
the immediate estimation of the πi for unbalanced
experiments.

Ties in individual paired comparisons produce a
complication. The simplest way of handling them is
to allot a score of 1

2 to each of the two tied treatments,
especially when the number of ties is relatively small.
For a full discussion, see [4].

A review of the subject, with emphasis on the
Bradley–Terry model, is given in [2]. The general
account [4] also deals with issues such as (i) designs
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for paired comparison experiments when not all
possible pairings can be made, (ii) multivariate
paired comparisons, and (iii) selection and ranking
of treatments.
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Paired t Test

A basic concept in study design is that extrane-
ous sources of variation should be controlled, so
that the comparison is made among groups which
are alike except for the intervention (see Exper-
imental Design). Techniques which may be used
include stratification and analysis of covariance.
Data which are naturally paired form useful strata
and often facilitate a more precise comparison than
one in a set of unrelated subjects. This leads to the
paired t test. The cost of pairing lies in the effort
needed to determine the values of the matching vari-
ables (which is low when there are natural pairs such
as litter mates or pre- and post-intervention mea-
sures), and the reduction of degrees of freedom (df)
from 2(n − 1) to n − 1 (see Student’s t Statistics).
The loss of degrees of freedom is almost never a
problem when n is greater than 15. The statistic
is based on the difference of the members of the
pair, so the variance of the difference is 2σ 2(1 − ρ),
where ρ is the correlation coefficient, and σ 2 is the
variance of a single observation. If ρ = 0, then the
variance is the same as that of the difference between
unpaired observations (2σ 2). In this case, the loss
is that of half of the degrees of freedom. When the
pairing is effective, ρ > 0, and the difference will
have a smaller variance than if the observations were
unpaired. The tradeoff is almost always in favor of
pairing.

The paired t test is used to compare mean dif-
ferences when the observations have been obtained
in pairs, and are thus dependent. Examples include
observations made on weight before and after an
intervention in a subject, serum cholesterol of two
members of a family, and blood concentration of a
toxin in litter mates. Subjects are often matched on
characteristics such as age, gender, race, and study
site (in multicenter studies). In each of these exam-
ples, the two observations are made on the same
response and will be correlated. Accounting for this
is necessary to analyze the study properly. For paired
data, it is natural to form the differences, and perform
the analysis on the differences. An interesting recent
account is by Senn & Richardson [5] who discuss the
study which W.S. Gosset (Student) used in his paper.
Moses [3] gives a summary of the theoretical aspects
of this test.

We assume that there are n pairs of observations,
and that each pair is independent of the other pairs.
Denote the paired observations as xi and yi , and
their difference as di for i = 1, . . . , n. The analy-
sis assumes that the observations are normally dis-
tributed with means µx and µy . The random variable
D = X − Y is then normally distributed with mean
µd = µx − µy and variance σ 2

d . The null hypothesis
is H0 : µd = 0. A Student t statistic can be com-
puted as

t = d

(sd/
√

n)
.

This statistic is then compared to Student’s t distri-
bution with n − 1 df. This analysis is equivalent to
a randomized blocks analysis of variance in which
the pairs correspond to blocks.

If the variances in X and Y are equal, the variance
of D is 2σ 2(1 − ρ), as noted above. If ρ < 0, the
variance is increased. This would not usually be the
case when the matching process is effective. If the
variances are unequal, the variance of D is σ 2

1 +
σ 2

2 − 2ρσ1σ2. The relative efficacy of a paired t-test
is 1/(1 − ρ) as compared with a two-independent-
sample t test in a parallel comparison. For example,
if ρ = 1/3, the relative efficacy is 1.5. This means
that 100 paired observations would have the same
power to detect differences as an unpaired study of
150 observations per group.

Example

We give here, in Table 1, data used by Student
(Gosset) as cited in Senn & Richardson [5]. The data
were on the amount of sleep gained under two soporic
drugs.

The means given here agree with those of Senn &
Richardson, but the standard deviations are slightly
larger. The values they report were those given by
Student, who used the divisor n in computing the
variance. Using the unpaired t-test we obtain a t =
1.86 with 18 df and a P value of 0.0792. By pairing
the observations, as we should, the result is t =
1.58/(0.39/

√
10) = 4.06 with 9 df and a P value

of 0.0028. It is better to report the mean of the
differences and its standard deviation rather than
showing only the t statistic or the P value (or
worse, NS for “not significant”, or some number of
asterisks!).
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Table 1

Patient Dextro Laevo

1 0.7 1.9
2 −1.6 0.8
3 −0.2 1.1
4 −1.2 0.1
5 −0.1 −0.1
6 3.4 4.4
7 3.7 5.5
8 0.8 1.6
9 0.0 4.6

10 2.0 3.4

Mean 0.75 2.33
Standard deviation 1.79 2.00

Robustness

The robustness properties correspond to those of
the one-sample t test. The effect of nonnormality is
fairly small if n is at least 30, since the distribu-
tion of d will be close to normal in that case. If one
difference (or a few) appear to be quite large (i.e.
outliers) the results can be affected. Outliers can be
considered a form of nonnormality. They affect the
variance of the observations, and can also affect the
skewness of the distributions. The P values reported
from an analysis are often given as P < 0.05 or
P < 0.01. Since the P value depends on the behavior
of the distribution in its tails, nonnormality generally
means that statements such as P < 0.001 are rarely
accurate (the quoted P value for the example thus
should be regarded as P < 0.01). Lack of indepen-
dence among the pairs (which might arise if multiple
members of a litter or a family were included in a
study, i.e. clustering) can seriously affect the level
of the test. If the correlation between any pair of
differences is γ , the variance of the differences is
σ 2(1 + 2γ ). Thus, the estimated variance is biased.
If γ > 0, the denominator of the t statistic is too
small, and the significance levels are incorrect. If
the correlation holds only among certain pairs (e.g.
independent clusters would lead to a block diagonal
covariance matrix), the analysis is more complex,
but the estimated variance is still biased. Lack of
common variance in X and Y does not formally affect
the analysis. However, unless the primary interest is

in the difference between the observations, the lack
of common variance indicates that X and Y do not
have the same distribution, although they might have
the same mean. If the variance differs over the pairs,
heteroscedasticity concerns arise (see Scedasticity).
Rosner [4] has suggested a random effects model
which accounts for this. Missing values can create
problems. Usually, only one member of the pair is
missing. If the missing value is related to the mean
value within the pair, the missingness is not random,
and the t test is affected (see Missing Data). For
further discussion of these points, see Miller [2] or
Madansky [1].

Several alternatives exist to the paired t test. These
are useful if the distribution is not normal and there is
concern that this may affect the performance of the
test. The sign test uses the number of positive (or
negative) signs as a binomial variable with probabil-
ity parameter 1/2 under H0, and, for large samples,
computes the standard normal deviate, z, to test H0.
The asymptotic relative efficiency (ARE) of this test
is 0.637 when the differences are normal. The signed-
rank test ranks the absolute values of the differences
and sums the ranks corresponding to the positive (or
negative) signs. The ARE of this test is 0.955. The
normal scores test replaces the ranks of the differ-
ences by their expected values under normality and
computes a t test on these. Its ARE is 1.0. For obser-
vations from nonnormal distributions, the efficiencies
of the nonparametric procedures may be higher than
indicated here and the t test can be very inefficient.
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Pairwise Independence

Suppose that two variables are considered as poten-
tially explanatory for a further variable, called the
response, and that the dependence of the response on
each of the variables taken alone and on both acting
jointly is of main interest. For an appropriately chosen
scale and measure of dependence, suppose further-
more that the effects of both variables turn out to
be (essentially) additive (see Additive Model). This
means that the effect of one of them on the response
is (nearly) the same no matter at which level the other
explanatory variable is fixed. Often, this is described
as the absence of an interaction but the presence of
two main effects.

An important role of pairwise independence of
explanatory variables is then as follows: it is cer-
tain that no dependence reversal can occur for the
(nearly) additive effect of one of the explanatory vari-
ables in comparison with the effect of this variable
taken alone. To put it differently, if the explanatory
variables are nearly independent, and have essen-
tially additive effects on the response, then the overall
effect of just one of them coincides at least qual-
itatively with the corresponding effects considered
conditional given the other variable. A strong rever-
sal of treatment success as related to variable B

occurs instead in the 23 contingency table displayed
in Table 1, since the explanatory variable pair B, C

is highly dependent.
For both discrete and for continuous responses,

further discussions of dependence reversal in spite of
essentially additive main effects are to be found, for
instance, in Snedecor & Cochran [5, p. 472], Good &
Mittal [1], Wermuth [6,7], and Guo & Geng [2]. In

a contingency table context early insights are due to
Yule [8] and Simpson [4], (see Simpson’s Paradox).

Mutual Dependence in Spite of Pairwise
Independences

In general, no mutual independence results even
if several variables are all pairwise independent.
Instead, more complicated types of dependencies
may still exist, which are often called higher-
order interactions. An important implication is
that methods of analysis relying completely on
pairwise associations, correlation-based techniques
or correspondence analysis, will overlook the
existing dependencies in such situations and are
therefore likely to lead to misleading interpretations.

An empirical example with four binary variables
is due to Lienert [3]. He reported on symptoms
after LSD intake. The 23 contingency table shown
in Table 2 is an adaptation of his results. The
three transient symptoms, recorded to be present
(level 1) or absent (level 2), are distortions in
affective behavior (A), distortions in thinking (B),
and dimming of consciousness (C). There is a strong
three-way interaction, as reflected for instance in the
quite distinct odds ratios at the two levels of C; at
the same time, the frequencies in the three marginal
tables show all three symptom pairs as being close to
independence.

With completely randomized designs (see Ran-
domization) it will typically occur that – at the time
a study starts – not only observed variables but also
unobserved variables will essentially be both pair-
wise, and mutually, independent. Note, however, that
even with this technique it is not possible to avoid
dependencies with unobserved intermediate variables,

Table 1 Dependence reversal because of strongly associated explanatory variables

C, site Overall; that is,
k = 1 k = 2 summed over sites

B, treatment B, treatment B, treatment
A,

outcome j = 1 j = 2 j = 1 j = 2 j = 1 j = 2

i = 1 (success) 96 600 400 4 496 604
(96%) (60%) (40%) (4%) (45%) (55%)

i = 2 4 400 600 96 604 496

Sum 100 1000 1000 100 1100 1100
Odds ratio 16 16 0.67
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Table 2 Symptoms after LSD intake: mutual dependence and pairwise independence

C, dimming of consciousness

k = 1 (yes) k = 2

A, distorted B, distorted thinking B, distorted thinking

affective behavior j = 1, (yes) j = 2 j = 1, (yes) j = 2

i = 1 (yes) 21 5 4 16
i = 2 2 13 11 1

Odds ratio 27.30 0.023

i.e. with unrecorded variables related to both treat-
ment and outcome, but occurring unnoticed before
observing outcome. Typical examples are noncompli-
ance of some patients (see Compliance Assessment
in Clinical Trials) or, more generally, unrecorded
treatment effects or changes in measurement devices
before treatment outcome is established.
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Panel Study

In a panel study a number of individuals are followed
for a given period of time. At each of a predetermined
set of time points several measurements on each
individual are taken. Data obtained from a panel study
are called panel data. A panel study designed to have
observations at k time points is called a k-wave panel
design. Under this definition the term panel study
could be used to refer to a large range of studies in
biostatistics, particularly in epidemiology and clinical
trials, although in many cases the term panel study is
not used. The main advantage of a panel study is that
individual changes over time can be modeled and the
unobserved heterogeneity across individuals and over
time can be taken into account.

In many panel studies, especially those lasting
for a long period, attrition or loss to follow-up is
an important issue. To keep the study population
at a proper size during the study, two variations
of the simple panel study can be used [3]. One is
the rotating panel study, which replaces a part of
the previous panel by a new panel at some time
points and each individual only stays in the study for
a certain period. Another is the split panel design,
which recruits a new panel at some time points
and keeps following all the panels until the end of
the study.

Two important design issues are the calculation of
sample size and the choice of time points to take the
observations. For studies with continuous or categori-
cal outcomes, standard sample size calculation proce-
dures for repeated measurement models can be used.
For panel studies that measure time to event (see Sur-
vival Analysis, Overview) the exact time of an event
may not be obtained. In these cases the panel data are
interval censored. With a predetermined number of
waves, optimal time points can be obtained by using
optimal design procedures [2]. These choose designs
according to a criterion based on the Fisher informa-
tion matrix, e.g. the D-optimality criterion. Similar
procedures can be used for estimating duration of
diseases or other recurrent events [1] (see Repeated
Events). For the variable k there is a tradeoff between
increasing costs and the gains in efficiency.

Several models can be used for the analysis of
panel data. A simple model for continuous outcomes
is a linear model with normally distributed vari-
ance components. Suppose a panel consists of n

individuals and k observations are taken on each indi-
vidual. Letting yij be observation j from subject i,
this model can be written as [7]

yij = uij + xijβ, (1)

where xij is a vector of covariates and β is a vector of
coefficients. Here uij is a term which can be either
random or fixed, representing the variation among
individuals and over time. For random uij , yij , j =
1, . . . , k, may be correlated and several correlation
patterns can be modeled by imposing properties on
the uij . A simple model assumes that uij = ui + eij ,
where ui and eij are independent random errors. This
model results in compound symmetry correlation in
the linear models. Another commonly used model
for uij in panel studies is the time series model or
serial correlation model. An example is the AR(1)
model (see ARMA and ARIMA Models) in which
uij = auij−1 + eij , for some constant a. A more com-
plicated model may be a combination of these two. In
(1) β (or a part of β) can also be random. Models with
random β are called random coefficient models [11].
For example, in a linear growth model, the growth
rate for each subject may be different and may be con-
sidered as a random variable. Other kinds of models
for panel studies include lagged dependent vari-
ables and lagged independent variables as covariates.
These models are also known as the dynamic models.

To include discrete outcomes we may use (1) as
a model for a latent variable, then discretize yij [6]
or, more generally, assume that conditional on uij ,
yij belongs to the exponential family. This model is
known as the generalized linear mixed model and
can be used to model several types of data such
as nonnormal continuous data and binary/count data
(see Generalized Linear Models for Longitudinal
Data). However, there are other models which are
not included in this family [5], such as the loglinear
models that are widely used in panel studies. A large
amount of work has been done in the context of
modeling repeated measurement data.

The main problem in analyzing panel data is
the correlation between repeated measures. Sev-
eral procedures have been developed for this pur-
pose. For linear models with normally distributed
errors, marginal models can easily be found and
either least squares or generalized least squares
can be used to estimate β. The parameters for the
variance components can be estimated using either
the maximum likelihood estimator (MLE) or the
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residual (or restricted) maximum likelihood estima-
tor (REML), or by the method of moments.

The analysis of discrete data is much more
difficult. For generalized linear mixed models the
marginal likelihood function normally does not have
a closed form and numerical integration has to
be used to obtain the MLE. An alternative is
to use approximations either when the variance
components are small or the number of observations
from each subject is large.

When uij = ui and ui is fixed, the number of
parameters for the subject effects increases with
increasing total sample size so that the asymptotic
properties of the MLE do not apply here. One
approach to deal with this problem is to use condi-
tioning (see Conditionality Principle). For example,
for binary data the total responses are sufficient
statistics for the subject effects. Conditioning on
them can eliminate the subject effects and yield a con-
sistent estimate of β. Conditioning is easy to perform
when k is small but complicated even for moderate
k. Conditioning can also be used for models with
random uij .

In the last 10 years the generalized estimating
equation (GEE) procedure [9] has been widely used.
To use GEE only a marginal model and a covariance
matrix for the outcomes are needed. This procedure
gives consistent estimates as long as the model for
the mean is correct, and in many cases it is effective
compared with the MLE if the “working covariance
matrix” is close to the true one.

Some special issues in panel data analysis are
worth consideration. Often, in panel data uij contains
both random subject effects and serial correlation.
For the analysis of continuous outcome models, the
Prais–Winston transformation can be used and the
correlation coefficient can be tested by the general-
ized Durbin–Watson test [8]. For generalized linear
mixed models the MLE is difficult to obtain and some
approximation methods may be used.

Attrition also causes problem in the analysis of
panel data, especially when loss to follow-up is
outcome related. In panel studies loss to follow-up
often depends on the previous observations. This
is classified in missing data analysis as missing

at random (MAR) [10]. In MAR data the missing
mechanism depends on the observed data (here
the previous observations) but not the missing
data (here the outcome after the loss to follow-
up). Several procedures have been proposed for
analyzing MAR data and even more complicated
missing mechanisms [4] (see Nonignorable Dropout
in Longitudinal Studies).
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Parallel-line Assay

Parallel-line assays are the most common type of
indirect analytical dilution assays (see Biological
Assay, Overview). The response, which is measured
on subjects at each of several fixed dose levels of the
standard and test preparations, may be either quanti-
tative or an “all-or-none” (quantal) variable, such as
“dead” or “surviving” for each subject. In the parallel-
line assay the measured response or an appropriate
transformation of response, referred to as the response
metameter, is a linear function of the logarithm of the
dose administered. The condition of similarity, which
is a prerequisite of all analytical dilution assays, spec-
ifies that the test preparation behaves like a dilution of
the standard preparation. Furthermore, the expected
response (yS) of the standard is generally assumed to
be linear in some known power of dose; that is,

E[yS|dS] = αS + βxS,

where

xS = dλ
S .

When λ → 0, then xS = log dS. If we next also
assume that a dose of the standard (dS) is equivalent
to the product of the relative potency parameter ρ,
times the dose of the test, dT for all dose levels, then

E[yT| log dT] = E[yS| log(ρdT)]

and

xS = log dS = log(ρdT) = log ρ + xT.

Therefore (see Figure 1),

E[yT|xT] = αS + β log ρ + βxT = αT + βxT.

When the responses are equivalent for the standard
and test, i.e.

αS + βxS = αS + log ρ + βxT.

Then

log ρ = αT − αS

β
.

E(y)

x

S
T

Figure 1 Expected response (E(y)) vs. dose metameter
(x) for standard (S) and test (T) preparations in a paral-
lel-line assay

Relative Potency Estimation and Validity
Tests

Quantitative Responses

Estimates of the parameters are readily calculated
from standard least squares regression programs.
The common slope and intercepts for test and
standard preparations are estimated as follows (see
Table 1 for notation):

β̂ =

∑

S,T

Sxy

∑

S,T

Sxx

,

α̂T = yT − β̂xT,

and

α̂S = yS − β̂xS.

Accordingly, the log relative potency estimate is

log ρ̂ = α̂T − α̂S

β̂
= (xS − xT) − (yS − yT)

β̂
.

Before proceeding to calculate the confidence inter-
vals for ρ, it is useful to verify that the assump-
tions of the model are not seriously violated. Table 1
summarizes in general form the analysis of vari-
ance (ANOVA) used to validate the assumptions.
The method of least squares used to estimate the
regression parameters, and to determine the confi-
dence interval for ρ, further assumes that the yi are
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independent normally distributed variables and that
Table 1 Analysis of variance in quantitative parallel-line assay

Source df Sums of squares Mean squares F

Total N − 1 SSy = ∑
S,T

∑Kp

i=1

∑npi

j=1

(
ypij − y

)2
MSy = SSy

N − 1

Among doses K − 1 SSD = ∑
S,T

∑Kp

i=1 npi

(
ypi − y

)2
MSD = SSD

K − 1

MSD

MSE

Preparations 1 SSP = ∑
S,T Np

(
yp − y

)2
MSP = SSP

MSP

MSE

Common slope 1 SSR =
(∑

S,T Sxy

)2

∑
S,T Sxx

MSR = SSR
MSR

MSE

Parallelism 1 SSPL = ∑
S,T

(
S2

xy

Sxx

)
− SSR MSPL = SSPL

MSPL

MSE

Nonlinearity K − 4 SSNL = SSD − SSP − SSR − SSPL MSNL = SSNL/(K − 4)
MSNL

MSE

Within doses N − K SSE = SSy − SSD MSE = SSE

N − K
= σ̂ 2

(error)

Notation (adapted from [8]):

npi = number of observations at dose i of preparation p,

ypij = response for subject j to dose i of preparation p,

xpij = dose metameter for subject j to dose i of preparation p,

where
i = 1, 2, . . . , Kp, p = S(Standard) or T(Test);

and

Kp = number of dose levels of preparation p,

Np =
Kp∑

i=1

npi, N =
∑

S,T

Np,K =
∑

S,T

Kp,

Syy =
Kp∑

i=1

npi∑

j=1

(Ypij − yp)2,

where

yp =

Kp∑

i=1

npi∑

j=1

ypij

Np

, Sxx =
Kp∑

i=1

npi∑

j=1

(xpij − xp)2,

in which

xp =

Kp∑

i=1

npi∑

j=1

xpij

Np

,

and

Sxy =
Kp∑

i=1

npi∑

j=1

(ypij − yp)(xpij − xp).
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var(yi) = σ 2 for all dose levels di . Absence of het-
eroscedasticity should be verified, whenever possible,
by an appropriate statistical test.

The five hypothesis tests of interest for parallel-
line assays, as shown in Table 1, are:

1. H1 : αT = αS and βS = βT = 0. Reject if

F = MSD

MSE
> F(K−1,N−K),

the critical level of the F distribution on (K −
1, N − K) degrees of freedom (df). Failure to
reject indicates the likelihood of poor selection
of dose levels, e.g. that they were outside a
dose range for observing changes in response
for either of the two preparations. (Calculated
variance ratios, F , in the analysis of variance
are often conventionally compared to tabulated
F(df1,df2) values corresponding to a 5% signifi-
cance level (see Level of a Test).)

2. H2: Reject linearity if

F = MSNL

MSE
> F(K−4,N−K).

If this hypothesis is rejected, indicating statistical
invalidity in the linearity assumption, then a non-
linear regression function, such as a quadratic,
may be applicable. More usually, a different part
of the dose range might be used, or, alternatively,
a transformation of the response variable might
achieve linearity.

3. H3 : βS = βT = β. If

F = MSPL

MSE
> F(1,N−K),

then there is evidence of fundamental invalidity
of the assay and the assumption of a constant
relative potency is suspect.

4. H4: Reject equivalence of mean responses for the
test and standard preparations if

F = MSP

MSE
> F(1,N−K).

If the dose-ranges for the two preparations are
not equivalent, then the parallel lines may be
far apart even when the mean responses are
the same. Although in bioassay the differences
between treatment means are not of primary

interest, a significant mean square for H4 indi-
cates a design problem associated with the doses
chosen for the experiment. On the other hand,
a nonsignificant test cannot necessarily be inter-
preted as assurance that the dose ranges were
appropriate [8].

5. H5 : β = 0; reject if

F = MSR

MSE
> F(1,N−K).

It is expected that a well-designed assay will
have a highly significant common regression co-
efficient.

If the analysis of variance does not indicate any
validity concerns and there was no evidence of
heteroscedasticity, Fieller’s theorem [6] for ratio
estimators can be applied to obtain the confidence
interval for ρ. In a parallel-line assay the 95% confi-
dence intervals for log ρ are calculated as

log ρ̂L, log ρ̂U

= (xS − xT) +


(log ρ̂ − xS + xT)

± σ̂ t

β̂




(1 − g)

(
1

NS
+ 1

NT

)

+ (log ρ̂ − xS + xT)2

∑
Sxx






1/2




/
(1 − g),

where

g = t2σ̂ 2

β̂2
∑

S,T

Sxx

and t has N − K degrees of freedom.

Quantal Responses

Toxicological assays frequently involve quantal res-
ponses. In quantal assays the response is the pro-
portion of subjects responding at a fixed dose level,
di . If the proportion responding is plotted against
log di , the curve is generally sigmoid in shape. This
leads to consideration of various probability density
functions for the tolerance distribution (see Quantal
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Response Models). The normal and the logistic are
the two most frequently used tolerance distributions,
but others such as the Cauchy or the angular have
been proposed for some applications. To illustrate,
when the normal probability density is specified, the
expected proportion responding at dose, di is

Pi = 1

(2π)1/2

∫ yi=(xi−µ)/σ

−∞
exp

(
−1

2
u2

)
du.

Hence the linearizing transformation is the normal
equivalent deviate (ned)

yi = −µ

σ
+ 1

σ
xi = α + βxi,

where yi is usually referred to as the probit of Pi [2,
3]. (In order to avoid negative values, most references
add 5 to each ned. [8].)

When the logistic transformation is used

Pi = 1

1 + exp[−(α + βxi)]

and

yi = logit

(
Pi

1 − Pi

)
= α + βxi .

Often, the estimates of ρ will be quite similar regard-
less of which linearizing transformation is employed,
since the curves will overlap over a wide range of
responses, with only the extremes differing. There are
varying viewpoints about how to select an appropriate
theoretical unknown tolerance distribution. Further-
more, validity tests seldom discriminate between the
normal and logistic functions in practice, so that
for estimation purposes there is limited basis for
preferring one over the other.

If the probability of responding at a particular dose
is a binomial, such that

Pr(ri responding) =
(

ni

ri

)
P

ri

i Q
ni−ri

i

and P is defined by the ned above, then the para-
meters α and β can be estimated iteratively by usual
maximum likelihood procedures (see Optimization
and Nonlinear Equations). Estimation involves
weighting the observed proportions at specified doses
since the binomial responses will have unequal
variances. (Weights are symmetric about the middle
of the tolerance distribution, with lesser weights at the
extremes.) For the probit transformation, the weight

at each fixed log dose di is niwi , where ni is the
number of subjects at log di and

wi = Φi

PiQi

.

Φi is the ordinate of the standard normal density
curve corresponding to yi , the expected probit of Pi .
While the calculations are somewhat laborious, they
are readily programmed and available in standard
packages such as SAS [11] or GLIM [9] (see Soft-
ware, Biostatistical). Following the notation adopted
above for quantitative response curves, the weighted
sums of squares and cross products obtained by max-
imum likelihood estimation are used to calculate the
estimated log relative potency,

log ρ̂ = α̂T − αS

β̂
= xS − xT − yS − yT

β̂

and

β̂ =

∑

S,T

Sxy

∑

S,T

Sxx

=

∑

S,T

Snw(x − x)(y − y)

∑

S,T

Snw(x − x)2
,

where xS, xT, yS, and yT are weighted means, e.g.
xS = Snwx/Snw, etc.

As before, the confidence interval for log ρ is cal-
culated by application of Fieller’s theorem. Since the
standard normal density is assumed for the tolerance
distribution, the within-subject error (σ 2) is assumed
to be 1 and normal distribution values are used for
specifying confidence intervals. The 95% confidence
intervals are, therefore,

log ρ̂L, log ρ̂U

= (xS − xT) +



(log ρ̂ − xS + xT)

± 1.96

β̂





(1 − g)

∑

S,T

(
1

Snw

)

+ (log ρ̂ − xS + xT)2

∑

S,T

Sxx






1/2



/
(1 − g),
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where

g = 1.962

β̂2
∑

S,T

Sxx

.

Validation of the model assumed for quantal assays is
analogous to the ANOVA performed for quantitative
parallel line assays. In quantal assays the statistical
significance for hypothesis tests is compared to the
chi-square distribution with appropriate degrees of
freedom. Hypothesis tests of interest are:

1. H1: reject if

X2 =
∑

S,T

Syy −
∑

S,T

{
S2

xy

Sxx

}
> χ2

KS+KT−4.

H1 is a test for nonlinearity of regression. When
the calculated X2 is not significant, the observed
data are not inconsistent with the assumption
of a normal log tolerance distribution. Where
H1 is rejected, consideration should be given as
to whether there is a systematic deviation from
normality in the dose–response relationship or
whether there is nonsystematic heterogeneity. In
the latter case, it is customary to employ a hetero-
geneity factor for the variance in calculating the
confidence intervals; the variances are multiplied
by the X2 calculated for nonlinearity divided
by its degrees of freedom (see Overdispersion).
The estimated variance is, therefore,

σ̂ 2 = X2

KS + KT − 4
.

All variances will thus have only KS + KT −
4 degrees of freedom when this adjustment is
made.

2. H2: reject if

X2 =
∑

S,T

{
S2

xy

Sxx

}
−

(
∑

S,T

Sxy

)2

∑

S,T

Sxx

> χ2
1 .

H2 is a test for parallelism of the transformed
regression lines, and therefore a nonsignificant
X2 verifies the fundamental validity of the assay.

A common extension employed in quantal assays
introduces an additional parameter, C, in the estima-
tion to incorporate a proportion responding (dying)
at zero dose level, which provides for a natural event
(death) rate in the absence of exposure. This leads to
an adjusted proportion responding at each dose level:

P ′
i = C + (1 − C)Pi.

Therefore,

Pi = P ′
i − C

1 − C
.

Estimation of parameters, including C, can proceed
as previously using standard iterative approaches
to obtain the maximum likelihood estimates. The
expression for Pi above is generally referred to as
Abbot’s formula [1].

Detailed illustrations of the design and analysis of
quantal assays are provided in [7, 8], and [10].

Additional Remarks

The formulas presented in Table 1 are general in form
and do not depend on having a symmetrical, balanced
design for the assay or equal spacing between doses.
For both design and efficiency reasons, a symmet-
ric design with equal numbers of subjects at each
dose level is preferable. Modern statistical analysis
software such as GLIM [9] or SAS [11] can read-
ily accommodate either unsymmetric or symmetric
designs. At least three dose levels of the test and
standard preparations are required to test all validity
assumptions in the ANOVA. With regard to quan-
tal assays, analyses using normal or logistic toler-
ance distributions can also be done in most general
statistical software packages, such as SAS, GLIM, or
S-PLUS (for examples, see references to statistical
software at the end of this section or [12]).

The methodology is easily extended to designs in
which multiple test preparations are simultaneously
compared to the same standard. In parallel-line assays
with more than one test preparation, optimal alloca-
tion among r test preparations given a total number
of subjects would be

Ns = r1/2NT

assuming that the variance of ρ is approximately
proportional to N−1

s + N−1
T .
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Finney [8] demonstrates that the analyses descri-
bed above may provide very similar estimates of
the relative potency and its confidence intervals even
when the normality assumption is not fulfilled, but
other model assumptions are not seriously violated.
Information derived from evaluating validity across a
related class of independent assays is preferred to jus-
tify an appropriate choice for the response metameter.

A useful indicator of the optimality of assay design
is the value of g from Fieller’s theorem. In quantita-
tive parallel-line assays, g can be rewritten as

g = Ftabulated

Fcalculated
,

where the numerator is the variance ratio for regres-
sion. Well-designed and well-executed assays will
generally have values of 0 < g < 0.05, whereas high
values of g indicate some lack of efficient design.
A comparative measure proposed by Bliss & Cat-
trell [4] to evaluate the sensitivity among assays is
σ̂ /β̂. Smaller values of σ̂ /β̂ are indicative of “bet-
ter sensitivity”, whereas larger values indicate lesser
precision, less steep slopes or a combination of both.

Finney [7, 8] and Brown [5] give detailed dis-
cussions of considerations important for optimizing
design of quantitative or quantal parallel-line assays.

References

[1] Abbott, W.S. (1925). A method of computing the
effectiveness of an insecticide, Journal of Economic
Entomology 18, 265–267.

[2] Bliss, C.I. (1934). The method of probits, Science 79,
38–39.

[3] Bliss, C.I. (1934). The method of probits – a correction,
Science 79, 409–410.

[4] Bliss, C.I. & Cattrell, M. (1943). Biological assay,
Annual Review of Physiology 5, 479–539.

[5] Brown, B.W. Jr. (1966). Planning a quantal assay of
potency, Biometrics 22, 322–329.

[6] Fieller, E.C. (1940). The biological standardization of
insulin, Journal of the Royal Statistical Society, Supple-
ment 7, 1–64.

[7] Finney, D.J. (1971). Probit Analysis, 3rd Ed. Cambridge
University Press, Cambridge.

[8] Finney, D.J. (1978). Statistical Method in Biologi-
cal Assay, 3rd Ed. Griffin, London, pp. 148–178,
297–315.

[9] Francis, B., Green, M. & Payne, C., eds (1994). The
GLIM System. Release 4 Manual, Clarendon Press,
Oxford, pp. 429–451.

[10] Hubert, J.J. (1984). Bioassay, 2nd Ed. Kendall/Hunt,
Dubuque, pp. 26–39.

[11] SAS Institute (1994). SAS/STAT User’s Guide, Version
4, 4th Ed. SAS Institute, Cary, Chapters 24, 35, and
36.

[12] Venables, W.N. & Ripley B.D. (1994). Modern Applied
Statistics with S-Plus. Springer-Verlag, New York, pp.
189–195.

(See also Radioimmunoassay; Slope–Ratio Assay)

CAROL K. REDMOND



Parametric Models in
Survival Analysis

Survival analysis in biostatistical applications invol-
ves the analysis of times to events (see Survival
Analysis, Overview); for conciseness we refer to
these times as lifetimes. Sometimes the objective is
to model or describe the distribution of lifetimes
in a single homogeneous population of individuals.
More generally, we wish to compare distributions
or to assess the relationship of explanatory vari-
ables to lifetimes. In some instances different types
of events may occur to an individual, and the joint
distribution of several lifetimes may be of inter-
est.

Parametric survival models are ones in which the
distribution of lifetimes is specified up to a parameter
θ that is of finite, and usually rather small, dimen-
sion. A major advantage of parametric models is the
availability of straightforward methods of estima-
tion and inference based on the likelihood function.
In addition, parametric representations facilitate the
accumulation of scientific evidence across different
but similar studies. However, fully parametric models
involve stronger assumptions than semi- or nonpara-
metric models. The choice of a parametric model is
more often based on a combination of tractability
and ability to fit the data than on any deep physi-
cal motivation, and it is therefore important to check
the adequacy of models and to consider the sen-
sitivity of inferences and conclusions to plausible
variations in them. The next two sections describe
the main families of models used for parametric
survival analysis, and how such analysis is carried
out.

Parametric Models

Following standard terminology, let T ≥ 0 be a ran-
dom variable representing lifetime and assume that
T has a continuous distribution with cumulative
distribution function (cdf) F(t) = Pr(T ≤ t), prob-
ability density function (pdf) f (t) = F ′(t), survivor
function S(t) = Pr(T ≥ t), hazard function h(t) =
f (t)/S(t), and cumulative hazard function H(t) =∫ t

0 h(u) du. Any one of these five functions speci-
fies the distribution of T (see Survival Distributions

and Their Characteristics). It is useful to note that
S(t) = exp[−H(t)].

Parametric models are specified in terms of a
parameter θ , and in this case we write F(t ; θ),f (t ; θ),
and so on. A wide variety of models has been used
for univariate lifetime distributions. The merits of
specific families of distributions are often discussed
both in terms of their ability to fit existing data and
the shapes of their hazard functions, which specify
the instantaneous probability of death or failure at
time t , given survival up to t . In the following
subsection we describe some important parametric
families. Two additional subsections discuss models
involving covariates and models that are multivariate
or involve random effects.

Some Important Parametric Families

Below we summarize the most widely used para-
metric lifetime distribution models. Unless specified
otherwise, the range of the lifetime variable t is t ≥ 0.

Exponential distribution. The exponential distri-
bution has survivor, density, and hazard functions of
the form

S(t) = exp(−λt), f (t) = λ exp(−λt) h(t) = λ,

where λ > 0 is a parameter; it is easily seen that
E(T ) = λ−1. The exponential family has constant
hazard functions and the associated “lack of memory”
property: Pr(T ≥ t + x|T ≥ t) = Pr(T ≥ x). These
characteristics are obviously restrictive, and limit
the applicability of the model. Approximate sample-
size calculations for clinical trials (see Sample Size
Determination in Survival Analysis) are sometimes
based on it, but require careful application [22]. It
is a useful fact that if T is an arbitrary random
variable with cumulative hazard function H(t), then
the transformed variable H(T ) has a standard (λ = 1)

exponential distribution.

Weibull distribution. The Weibull distribution
with inverse scale parameter λ > 0 and shape param-
eter δ > 0 has survivor, density, and hazard functions

S(t) = exp[−(λt)δ],

f (t) = δλ(λt)δ−1 exp[−(λt)δ], h(t) = δλ(λt)δ−1.
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The two parameters allow the Weibull density to
take a variety of shapes, and the hazard func-
tion is either monotone increasing, decreasing, or
constant according to whether δ > 1, δ < 1, or δ = 1.
The case δ = 1 gives the exponential distribution,
and, more generally, T δ has an exponential distri-
bution with hazard function λδ . The Weibull dis-
tribution often fits biostatistical survival data well,
and in some applications there is physical justifi-
cation for a Weibull model through weakest link
or multistage waiting time arguments (e.g. Armitage
& Doll [3]) (see Multistage Carcinogenesis Mod-
els).

Lognormal distribution. The lognormal distribu-
tion has the property that log lifetime, Y = log T , is
normally distributed with mean µ and variance σ 2.
This gives a two-parameter family with survivor and
density functions

S(t) = 1 − Φ

(
log t − µ

σ

)
,

f (t) = 1

(2π)1/2σ t
exp

[
−1

2

(
log t − µ

σ

)2
]

,

where Φ(x) is the standard normal cdf. The hazard
functions are nonmonotonic: they rise from 0 at t = 0
to a maximum, and then decrease to 0 as t → ∞.
This shape is implausible for some, but by no means
all, survival analysis applications. Moreover, the pro-
portion of the population with lifetimes greater than
the hazard function mode can vary widely accord-
ing to the values of (µ, σ). The lognormal model
has the advantage that when there is no censoring
of lifetimes we can apply simple normal distribu-
tion inference methods to the log lifetimes (see the
section “Model Fitting and Inference” below). How-
ever, censoring is more the rule than the exception in
survival data, and so this is a relatively minor advan-
tage.

Log-logistic distribution. The log-logistic family
has survivor, density, and hazard functions of the
form

S(t) = 1

1 + (λt)δ
, f (t) = δλ(λt)δ−1

[1 + (λt)δ]2
,

h(t) = δλ(λt)δ−1

1 + (λt)δ
,

where λ > 0 and δ > 0 are inverse scale and shape
parameters. It derives its name from the fact that
Y = log T has a logistic distribution. This family
is similar to the lognormal family, and its hazard
functions also increase from 0 at t = 0 to a max-
imum, and then decrease to 0 as t becomes large.
It is slightly more convenient than the lognormal
family for survival analysis, since its survivor and
hazard functions have simple closed-form expres-
sions.

Location-scale models for Y = log T . The Wei-
bull, lognormal, and log-logistic distributions share
a property: log lifetime Y has a location-scale dis-
tribution with survivor and density functions of the
form

SY (y) = G

(
y − µ

σ

)
, fY (y) = 1

σ
g

(
y − µ

σ

)
,

(1)

where µ(−∞ < µ < ∞) is a location parameter,
σ > 0 is a scale parameter, and G(z) and g(z) =
−G′(z) are the survivor function and pdf for the
standardized variable Z = (Y − µ)/σ . When T is
Weibull the distribution of Y = log T is called the
extreme-value distribution. When T is lognormal, Y

is normal, and when T is log-logistic, Y is logis-
tic. The three respective survivor functions for Z

are:

1. extreme-value G(z) = exp(−ez),
2. normal G(z) = 1 − Φ(z),
3. logistic G(z) = (1 + ez)−1,

where −∞ < z < ∞ in each case.
Other lifetime models can be formed by choos-

ing other distributions for Z or Y . Sometimes the
distribution of Z is allowed to depend upon one or
two additional parameters, thus giving very flexible
three- or four-parameter lifetime distributions. Two
such families are the generalized log gamma [16; 23,
Section 5.3] and the Burr–Pareto [6, 25]. The latter,
for example, gives a three-parameter distribution with
survivor function for T of the form

S(t) = [1 + α−1(λt)δ]−α, (2)

where α > 0, λ > 0, and δ > 0. This is obtained
from (1) by taking G(z) = (1 + α−1ez)−α and defin-
ing λ = e−µ and δ = σ−1. It may also be obtained
from a Weibull frailty model with gamma-distributed
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random effects (e.g. [12]). The special case α = 1
gives the log-logistic distribution, and as α → ∞ the
Weibull distribution is obtained, so the Burr–Pareto
model may be used to discriminate between these two
models.

The generalized log gamma model is similar, and
includes the Weibull and lognormal distributions as
special cases. An even more comprehensive four-
parameter family is obtained by choosing Z to have
a standardized log F distribution [20, pp. 28, 63; 7].
This includes as special cases all of the distributions
considered thus far.

Some other models. A number of other paramet-
ric models are occasionally used as lifetime distri-
butions; two of the more common models are the
gamma and the inverse Gaussian. In some circum-
stances it is convenient to formulate a model so as
to give certain shapes for the hazard function. For
example, the Gompertz distribution has loglinear haz-
ard, log h(t) = α1 + α2t . Another example arises in
contexts where the hazard function is thought to
exhibit the so-called “bathtub” shape, in which it
decreases from a local maximum at t = 0 to a local
minimum, and then increases thereafter. None of the
models discussed so far allows hazard functions of
this shape. Models that do have been proposed by
various authors; Hjorth [18], for example, considers a
three-parameter family with h(t) = λt + α/(1 + βt),
where λ > 0, α > 0, and β > 0. If λ ≤ αβ, then the
hazard function has the bathtub shape.

Finally, lifetimes are by convention usually taken
to be nonnegative, and the models discussed so far
all assume T ≥ 0. In some applications it is argued
that there exists an unknown minimum or “thresh-
old” time γ > 0 before which the event in question
cannot occur. In that case we can model the life-
time distribution by replacing t by t − γ in previous
expressions for survivor functions, hazard functions,
and so on. For example, in the case of the exponen-
tial distribution this yields a two-parameter model
with pdf f (t) = λ exp[−λ(t − γ )], t ≥ γ . A practi-
cal difficulty when γ is unknown is that threshold
parameters are difficult to estimate precisely unless
there is a considerable amount of data.

Regression Models

In most survival analysis applications there are
groups of individuals to be compared, or explanatory

variables, such as individual characteristics or
environmental conditions, whose relationship to
lifetime is to be examined. A small number of
homogeneous groups may be compared by fitting
separate lifetime distributions for each group, but
more generally, regression models that employ
covariates to model the effects of explanatory
variables are used. For example, in studying the
survival time from diagnosis of patients with multiple
myeloma, Krall et al. [21] considered 16 covariates
representing factors such as the white blood-cell
count at diagnosis, the presence or absence of
infection at diagnosis, and the sex and age of the
subject.

Survival analysis may also involve covariates that
vary over time. Time-varying covariates are usu-
ally handled through hazard-based semiparametric
models, especially Cox’s proportional or multiplica-
tive hazards model [1, Chapter VI; 20, Chapters 4
and 5] (see Cox Regression Model). This is to a
large extent because “partial” likelihood methods
of analysis for such models [9] tend to be simpler
than methods based on fully parametric models. Most
of the discussion below deals with cases where the
covariates are fixed, i.e. constant over time, since that
is the main domain of application of parametric mod-
els. We return to time-varying covariates later in the
article.

Let T denote a lifetime and x a p × 1 vec-
tor of covariates associated with each individual.
Fully parametric regression models are in principle
obtained by taking any parametric lifetime distribu-
tion and allowing its parameters to depend upon x in
some specified way. For example, Weibull regression
models are obtained by taking

S(t |x) = exp{−[λ(x)t]δ(x)}, (3)

where we write S(t |x) to denote the survivor function
of T given x. To complete the model we must
specify how λ(x) and δ(x) depend on x. In many
applications it happens that δ(x) does not vary much
with x, and so δ(x) = δ is assumed fixed. Models
with λ(x) = exp(x′β), where β is a p × 1 vector
of regression coefficients, are often used; this form
is flexible and automatically constrains λ(x) to be
nonnegative.

Although a very wide range of parametric regres-
sion models is possible, two types of models dom-
inate. These are termed accelerated failure time
(AFT) and proportional hazards (PH) models; each
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has both fully parametric and semiparametric ver-
sions. They are described in turn.

Accelerated failure time models. It was noted
previously that for several common parametric sur-
vival models the distribution of log lifetime Y is of
location-scale form (1). An important class of regres-
sion models is obtained by allowing the location
parameter µ in (1) to depend on x, so that the survivor
function of Y , given x, is

SY (y|x) = G

[
y − µ(x)

σ

]
, (4)

where G(z) is a specified survivor function on −∞ <

z < ∞. We may also write (4) as

Y = µ(x) + σε, (5)

where the “error” ε has a distribution with survivor
function G(z). In the case where µ(x) = x′β, we
have a linear model, although the errors are not
necessarily normal. The name “accelerated failure
time” derives from the corresponding model for T

given x, which has survivor function

S(t |x) = G

[
log t − µ(x)

σ

]
= S0

[
t

α(x)
; δ

]
, (6)

where α(x) = exp[µ(x)], δ = σ−1, and S0(t ; δ) =
G(δ log t). The effect of the covariates is to alter
the time scale for t multiplicatively, i.e. either to
accelerate or decelerate time. Other models that
alter the time scale are also possible; in particular,
nonlinear transformations of t may be used. In this
sense, (6) is actually a special type of “accelerated
failure time” model.

The most widely used parametric AFT models are
those for which ε in (5) has either a standard extreme
value, logistic, or normal distribution, corresponding
to T being Weibull, log-logistic and lognormal,
respectively. However, other distributions may be
used, as described in the preceding subsection. It may
be noted that the Weibull model, (3), is an AFT model
only if δ(x) = δ. Semiparametric versions of the AFT
family are also based on (4), but do not assume
any specific form for G(z) (see Semiparametric
Regression).

Proportional hazards models. A proportional haz-
ards (PH) family of regression models is one for

which the hazard function of T given x is of the
form

h(t |x) = h0(t)r(x), (7)

where r(x) is a positive-valued function and h0(t)

is a “baseline” hazard function. The hazard function
for any individual is proportional to h0(t), hence the
name of the family. Fully parametric PH models
specify parametric forms h0(t ; α) and r(x; β) for
the two components of (7); in its semiparametric
version [9], h0(t) is left unspecified. The specification
r(x; β) = exp(x′β) is often used.

From (7) and the relationship S(t) = exp[−H(t)]
it follows that the survivor function of T given x is
of the form

S(t |x) = S0(t)
r(x), (8)

where S0(t) = exp[−H0(t)] is the baseline survivor
function. A feature of PH models is that if S0(t ; α) is
in a family of parametric models, then S(t |x) is not
always in the same family. It is, however, if h0(t)

is of the form α1h1(t ; α2); this includes the Weibull
family, (3), with δ(x) = δ. It is also easily checked
that the family of Weibull regression models, (3), with
δ(x) = δ, is both a PH and an AFT model, and that
it is the only set of distributions with this property.
In other words, the class of PH and the class of
AFT models are distinct aside from models (3) with
δ(x) = δ.

The AFT and PH models make fairly strong
assumptions about the relationship between T and
x. Among other things, they imply that the sur-
vivor functions for individuals with different covari-
ate vectors never cross. Two extensions that relax
these assumptions are often useful. The first retains
a location-scale model, (4), for log T , but allows
the scale parameter σ to depend on x; the paramet-
ric form σ(x) = exp(γ ′x) is convenient (e.g. [28]).
The second is a relaxation of the PH assumption that
allows the regression coefficients in r(x) of (7) to
change over time, giving

h(t |x) = h0(t)r[x; β(t)].

A simple example is the two-step model in which
there is a specified value τ such that β(t) = β1 for
0 ≤ t ≤ τ and β(t) = β2 for t > τ .

Covariates may be linked to lifetimes in a vari-
ety of other ways. For example, additive hazards
models with

h(t |x) = h0(t ; α) + r(x; β) (9)
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are in some circumstances more plausible than PH
models. In another direction, so-called proportional-
odds regression models [5, 25], in which

log

[
S(t |x)

1 − S(t |x)

]
= log

[
S0(t ; α)

1 − S0(t ; α)

]
+ α(x; β),

are sometimes useful; there is an obvious connection
with logistic regression models for binary responses,
and such models are especially useful in situations
where T is a discrete variable.

Let us now consider briefly time-varying covari-
ates, in which case we write x(t) instead of x.
Situations in which time-varying covariates can
arise include (i) clinical studies where the treat-
ment assigned to an individual may change during
the course of the study, (ii) observational studies
in which time-dependent environmental variables or
exposures affect individuals, and (iii) studies where
covariates internal to an individual are prognostic
with respect to survival; for example, CD4 lympho-
cyte counts for subjects infected with the human
immunodeficiency virus (HIV) are prognostic for
time to death (see AIDS and HIV). In addition, syn-
thetic time-dependent covariates may be used to test
a PH assumption [9].

A general treatment of time-varying covariates is
delicate if we allow “internal” covariates; see [20,
Chapter 5] or [1, Section III.5]. We restrict the dis-
cussion here to “external” covariates whose values
are determined independently of individuals who are
under study, and assume that an individual’s hazard
function at time t depends only on covariates x(t)

whose value can be determined at time t .
Such covariates are readily incorporated into mod-

els via the hazard function. For PH models, (7), or
additive hazards models, (8), for example, we merely
replace x with x(t). The same thing can be done
for AFT models by writing down the hazard func-
tion h(t |x) that corresponds to (4), but the resulting
models are less appealing than in the case of multi-
plicative or additive hazards.

Even when the hazard function depends in a
simple way on time-varying covariates, calculation
of survival probabilities is more involved than for
fixed covariates, as is the comparison of survival
distributions for individuals with different covariate
values. In particular, if we condition on the external

covariate history x∗ = [x(s), s ≥ 0], then

Pr(T ≥ t |x∗) = exp

{
−

∫ t

0
h[s|x(s)] ds

}
. (10)

This requires knowledge of all covariate values
over (0, t).

Other Models

Survival models that involve more elaborate struc-
ture are sometimes needed. For example, there may
be several modes of death or failure, such as in car-
cinogenicity studies in which animals are determined
at autopsy to have died from one of several causes
(see Tumor Incidence Experiments). This is often
referred to as a competing modes of death or com-
peting risks problem; the observable data consist of
a lifetime T ≥ 0 and mode of death C, which is in
some set (1, . . . , k). Models with covariates are con-
veniently expressed in terms of mode-specific hazard
functions [23, Chapter 9].

hj (t |x) = lim
∆t→0

Pr(T < t + ∆t, C = j |T ≥ t, x)

∆t
,

j = 1, . . . , k.

Parametric representations hj (t |x; θ) similar to those
used for the hazard functions of parametric lifetime
distributions, discussed above, can be employed here.

Multivariate lifetime models in which m lifetimes
(Ti1, . . . , Tim) are associated with an individual i are
sometimes needed; for example, Ti1 and Ti2 might
represent the ages at death of identical twins [19]. It is
also occasionally useful to associate individual latent
failure times Ti1, . . . , Tik with multiple modes of
failure, as described in the preceding paragraph (see
Competing Risks). Various parametric families have
been proposed for multivariate survival analysis.

Discrete or continuous mixture models are also
employed frequently. For example, discrete mixtures
have been used in situations where a fraction 1 − p

of individuals have an effectively infinite lifetime
whereas the remaining fraction p have lifetimes that
follow a distribution with survivor function S1(t ; θ).
A main area of application is in connection with the
survival times of cancer patients, when a fraction
1 − p of patients are cured (see Cure Models).
The long-term survivors cannot be distinguished a
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priori, so a randomly selected individual has survivor
function

S(t ; θ, p) = 1 − p + pS1(t ; θ).

Models in which both p and S1(t) depend upon
covariates may be considered (e.g. [15]).

More general mixture models are obtained when
individuals or groups (“clusters”) of individuals have
unobservable random effects associated with them.
“Frailty” models, for example, assume that there is
a positive-valued random effect α associated with an
individual and that, conditional on α, the individual’s
lifetime distribution has cumulative hazard function
αH(t). The random effect is assumed to have a cdf
G, in which case the unconditional survivor function
for T is

S(t) =
∫ ∞

0
exp[−αH(t)] dG(α), (11)

which is a Laplace transform. Multivariate lifetime
models may similarly be obtained by assuming that
there is a common random effect α associated with
a group of lifetimes T1, . . . , Tm, which, given α, are
independent (e.g. [11]). Different parametric choices
for H(t) and G(α) in (11) provide a wide variety of
models.

Model Fitting and Inference

Model fitting involves estimation of the unknown
parameters in the models on the basis of observed
data. More generally, we may wish to estimate, or
test hypotheses about, certain features of the model.
Maximum likelihood methods are favored for most
applications, and software is widely available for the
most common lifetime models. Standard procedures
are described below, followed by a discussion of
model checking and an example.

Likelihood-based Estimation and Inference

Suppose that individuals i = 1, . . . , n have indepen-
dent lifetimes Ti with density and survivor functions
fi(t ; θ), and Si(t ; θ), respectively. The index i is
used with f and S to indicate that they may depend
upon covariates associated with individual i. Data
on lifetimes are frequently right-censored, so we will
assume that for some individuals (i ∈ D) the exact

lifetime ti is known, and for others (i ∈ C) only the
fact that ti exceeds the observed censoring time ci

is known. The likelihood function for θ is based on
the joint pdf of the observed data. Under the assump-
tion that the censoring of an individual at a point in
time cannot be related to future events, the likelihood
function is proportional to

L(θ) =
∏

i∈D

fi(ti ; θ)
∏

i∈C

Si(ci ; θ). (12)

The maximum likelihood estimate θ̂ is obtained by
maximizing L(θ) with respect to θ , or equivalently,
the log likelihood function

�(θ) =
∑

i∈D

log fi(ti ; θ) +
∑

i∈C

log Si(ci ; θ). (13)

With the models considered here, �(θ) can typically
be maximized by solving the maximum likelihood or
“score” equations ∂�(θ)/∂θ = 0.

Maximum likelihood large-sample theory pro-
vides several ways of constructing tests or confidence
intervals for model parameters [23, Appendix C]. The
two which are most readily available in software are
termed the Wald and likelihood ratio test procedures,
and are described briefly.

Suppose the p × 1 parameter vector θ is par-
titioned as θ ′ = (φ′, λ′), where the r × 1(r ≤ p)

parameter φ is the parameter of interest and λ is a
nuisance parameter. The p × p observed informa-
tion matrix I(θ) and its inverse,

I(θ) = − ∂2�

∂θ∂θ ′ =
(

Iφφ Iφλ

Iλφ Iλλ

)
,

V(θ) = I(θ)−1 =
(

Vφφ Vφλ

Vλφ Vλλ

)
,

play a key role in the Wald method. Under the
hypothesis that φ = φ0, the quantity V̂−1/2

φφ (φ̂ − φ0)

is approximately standard r-variate normal in large
samples, where V̂ stands for V(θ̂). Equivalently, the
Wald statistic (see Likelihood),

W1(φ0) = (φ̂ − φ0)
TV̂−1

φφ(φ̂ − φ0), (14)

is approximately distributed as the chi-square dis-
tribution with r degrees of freedom, χ2(r). The
statistic (14) can be used to test H: φ = φ0; large val-
ues of W1(φ0) provide evidence against the hypothe-
sis. Confidence regions with approximate confidence
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coefficient q are obtained as the set of parameter val-
ues φ that satisfy W1(φ) ≤ χ2

q (r), where χ2
q (r) is the

qth quantile of χ2(r).
The likelihood ratio method utilizes the statistic

W2(φ0) = 2�(φ̂, λ̂) − 2�[φ0, λ̂(φ0)], (15)

where θ̂ = (φ̂′, λ̂′)′; and λ̂(φ0) is the value of λ

that maximizes �(φ0, λ). Under H: φ = φ0, W2(φ0) is
approximately χ2(r) in large samples, and tests and
confidence regions are obtained in the same way as
with the Wald statistic.

The methods based on (14) and (15) produce two-
sided confidence regions consisting in the case r = 1
of parameter values on either side of φ̂. If one-
sided intervals are wanted, they may be based on
sign (φ̂ − φ0)W1(φ0)

1/2 or sign (φ̂ − φ0)W2(φ0)
1/2,

assumed to be approximately standard normal.
The asymptotic theory upon which these methods

rely requires that the models satisfy some mild reg-
ularity conditions. Of the models described earlier,
the only cases which are problematic concern thresh-
old parameters. For censored data a “large” sample is
essentially one for which n is large and not too high
a proportion of lifetimes is censored. For practical
purposes what we desire is that significance levels
(see P Value) or confidence coefficients calculated
from the asymptotic χ2 or normal distributions for
W1 or W2 are sufficiently close to their true values. If
there is doubt about the adequacy of the approxima-
tions, they may be checked by simulation. A warning
about accuracy is signaled by any large differences
in confidence intervals or significance levels based
on W1(φ0) and W2(φ0); in such cases intervals based
on W2(φ0) are likely to be more accurate. Analytic
adjustments to improve accuracy have been devel-
oped (e.g. [4]), but are not yet widely available in
software. Parametric bootstrap procedures [13] pro-
vide another possibility for improving accuracy.

Most survival analysis software relies solely on
Wald or likelihood ratio procedures. Major packages
with parametric survival analysis capabilities include
SAS (see PROC LIFEREG and PROC RELIABIL-
ITY), SAS JMP, S-PLUS (see especially the function
Censor Reg), SYSTAT (see the Survival module),
and LIMDEP. All handle estimation for accelerated
failure time regression models based on the Weibull,
lognormal, and log-logistic distributions. In addition
to right censoring, they handle interval censoring: in
this case the ith lifetime ti is known to lie in an

interval (ai , bi), yielding the likelihood function

L(θ) =
n∏

i=1

[Si(ai ; θ) − Si(bi ; θ)].

The likelihood (12) is a special case of this.
More complicated parametric models involving

multivariate lifetimes, competing failure modes, or
random effects may also be handled by maximum
likelihood. Although software is not widely available
for specific models, general purpose optimization
software allows one to deal quite easily with most
situations. Problems that cause difficulty tend to be
ones in which the observed data are uninformative
about certain aspects of the model, thus leading
to flat regions in the likelihood function (see, for
example, [15]).

Model Checking

Parametric survival models assume a specific form
for lifetime distributions and, in addition, the
dependence upon any covariates must be specified.
At preliminary stages of analysis it is useful to
group individuals so that within groups they have
similar values of important covariates. Nonparametric
(Kaplan–Meier) estimates Ŝ(t) of the survivor
function for each group may be compared graphically
to detect prominent features of the data, to assess the
shape of the lifetime distributions, and to see whether
a fairly simple regression model will suffice. A
particularly useful procedure is to plot log[− log Ŝ(t)]
(vertical axis) vs. log t (horizontal axis) for each
group. If a PH model is reasonable, then the curves
should be roughly parallel in the vertical direction
[see (8)]; if the curves are roughly parallel in the
horizontal direction, an AFT model is suggested. If
Weibull distributions are reasonable, then the curves
should be roughly linear [see (3)]; differences in slope
indicate a shape parameter that depends upon x. This
is often termed a Weibull probability plot and is an
example of probability or hazard plotting, which can
also be used to explore other models.

Graphical tools such as scatter plots or box plots
are also valuable (see Graphical Displays), but must
be modified to deal with censored observations. For
box plots the empirical quantiles for a group of indi-
viduals may be determined from the Kaplan–Meier
estimate, provided they are not beyond the largest
observation. For plots that involve the lifetimes
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directly it is important to plot lifetimes and censoring
times with different symbols.

Probability plots of empirical survivor functions
can provide checks on parametric models, as sug-
gested above. We may also compare fitted para-
metric models S0(t ; θ̂) for baseline distributions, or
models without covariates, with nonparametric esti-
mates. Formal goodness-of-fit tests based on this
idea exist for certain parametric models when there
are strict limitations on censoring and the presence
of covariates (e.g. [23, Chapter 10]), and in some
cases for more complex situations [1, Sections VI.3
and VII.6]. However, most regression model check-
ing is based on model expansion or on graphical
assessment of residuals.

Model expansion involves fitting models with
additional parameters that represent specific types
of departures from the current model; the need for
the extra parameters may be assessed via likelihood
ratio or Wald tests. Score tests for which only the
current model has to be fitted are also useful on
occasion (e.g. [23, Section 10.2.2]). Some examples
of model expansion are: (i) adding covariates rep-
resenting interactions or other effects, as a check
on a specified regression model; (ii) allowing σ in a
location-scale model (4) to depend on x, as a check on
the AFT assumption; and (iii) using the Burr–Pareto
distribution (2) in order to test the assumption of a
baseline Weibull distribution (α = ∞).

Location-scale models (4) are the most widely
used parametric regression models, and for them
residuals are naturally defined as

ẑi = y∗
i − µ(xi ; β̂)

σ̂
, (16)

where y∗
i = min(yi , log ci) is either a log lifetime or

log censoring time, depending on what was observed.
If the model is appropriate, the ẑis should look
roughly like a censored random sample from the
distribution with survivor function G. Probability
or hazard plots of the ẑis may be used to assess
the baseline distribution G, and plots of the ẑis vs.
covariates or other factors can be used to check on the
constancy of σ or to look for systematic departures
from the assumed specification µ(x; β). Departures
from the location-scale form itself are harder to
detect and are best examined by model expansion
or the graphical methods mentioned at the beginning
of this subsection. Plots should designate censored
and uncensored residuals with different symbols.

Sometimes it may be useful to adjust censored ẑis
upwards to give imputed uncensored residuals; a way
of doing this is described below.

In general, residuals for an arbitrary parametric
survival model may be defined as

r̂i = H(t∗i |xi ; θ̂), (17)

where t∗i = min(ti , ci) and H(t |x) = − log S(t |x) is
the cumulative hazard function. The motivation for
(17) is that the variables H(Ti |xi ; θ0) have a standard
exponential distribution if the model is correct and
θ = θ0. If the model is appropriate, the r̂i s, i =
1, . . . , n, should look roughly like a censored sample
of exponential variates. These residuals can be plotted
in ways described above to check on the model. It
will be noted that the AFT residuals, (16), are related
to the residuals (17) by r̂i = − log G(ẑi). Residuals
based on score or log likelihood contributions by each
individual are also used.

Sometimes censored residuals r̂i are adjusted
upwards to give imputed values for corresponding
uncensored residuals. This is usually done by adding
either 1 or log 2 to ris for i ∈ C. The motivation
for doing this is that if ri is a standard exponen-
tial random variable then E(ri |ri > r) = r + 1 and
Pr(ri > r + log 2|ri > r) = 0.5. If such imputed val-
ues are shown on plots, then it is also advisable to
show the censored residuals from which these were
calculated.

Conclusions about explanatory variables are gen-
erally not affected much by mild misspecification of
the baseline distribution in an AFT or PH model, or
by mild departures from the AFT or PH frameworks
themselves. Moreover, unless there is a consider-
able amount of data it is difficult to discriminate
among parametric distributions with rather similar
shapes, such as the Weibull, log-logistic, and log-
normal. One should, however, check carefully for
significant departures from assumed models. Obser-
vations that are unusual or highly influential should
also be scrutinized; in some cases it is a good
idea to refit models with certain observations omit-
ted. The fitting of expanded models is encouraged
both as a model checking device and as a way
to assess the sensitivity of inferences to variations
in the model that are plausible on the basis of the
observed data.
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An Example

As a brief example we consider data on survival times
for leukemia patients given by Feigl & Zelen [17] in
an early paper on regression analysis of lifetime data.
Survival times are in weeks from diagnosis, and there
are two covariates: white blood-cell count (WBC) at
diagnosis and a binary covariate AG that indicates a
positive or negative (positive = 1, negative = 0) test
related to white blood-cell characteristics. The data
are given in Table 1, where wbc denotes white blood-
cell count divided by 1000. The original data had
no censored lifetimes, but for illustrative purposes
three of the lifetimes have here been replaced with
censoring times.

Exploratory analysis suggests an AFT regres-
sion model in which covariates x1 = AG and x2 =
log(wbc) are included. Figure 1 shows a plot of log
(survival time) vs. log (wbc), with AG positive- and
negative-valued observations denoted by P and N ,
respectively. Small letter ps denote the three cen-
soring times. There are 17 AG-positive and 16 AG-
negative subjects; two of the AG-positive subjects
have wbc = 100 and t = 1, and their symbols are
overlaid in the figure. The plot suggests that lifetimes
tend to be shorter for subjects with higher WBC and
longer for AG-positive subjects.

Accelerated failure time models (5) with extreme
value and logistic error distributions were fitted,
corresponding to Weibull and log-logistic lifetime

Table 1 Leukemia survival data

Time AG wbc Time AG wbc

65 1 2.3 56 0 4.4
140a 1 0.75 65 0 3.0
100 1 4.3 17 0 4.0
134 1 2.6 7 0 1.5
16 1 6.0 16 0 9.0

106a 1 10.5 22 0 5.3
121 1 10.0 3 0 10.0

4 1 17.0 4 0 19.0
39 1 5.4 2 0 27.0

121a 1 7.0 3 0 28.0
56 1 9.4 8 0 31.0
26 1 32.0 4 0 26.0
22 1 35.0 3 0 21.0

1 1 100.0 30 0 79.0
1 1 100.0 4 0 100.0
5 1 52.0 43 0 100.0

65 1 100.0

a Denotes a censoring time; wbc = WBC ÷ 1000.
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Figure 1 Leukemia data: log lifetime vs. log wbc

distributions. Figure 1 suggests possibly different
effects of WBC for subjects with AG = 1 and
AG = 0, so models with and without a log (wbc) −
AG interaction term were fitted in each case. The
two distributions gave very similar results and in
neither case was the interaction term significant.
The maximum log-likelihood values �(β̂0, β̂1, β̂2, σ̂ )

for the models without the interaction terms (i.e.
with µ(x) in (5) given by β0 + β1x1 + β2x2) were
−52.9 (Weibull) and −53.0 (log-logistic), and so
provide no evidence to favor one distribution over
the other. Model checks described below also showed
the two models to be comparable. For convenience
we consider only the Weibull model in the remainder
of the discussion.

For the Weibull model the estimates (with standard
errors obtained from the observed information matrix
given in parentheses) are

β̂0 = 3.841(0.534), β̂1 = 1.177(0.427),

β̂2 = −0.366(0.150), σ̂ = 1.119(0.164).

There is clearly no evidence against the hypothesis
that σ = 1, suggesting that the exponential model
could be used. The effects of WBC and AG are both
significant, and are in the directions suggested by
Figure 1.

Model checks may be based on residuals ẑi of
the form (16). We use the extreme value resid-
uals with σ̂ = 1.119, but residuals based on the
exponential model give essentially the same pic-
ture. Plots of the ẑis against x1i , x2i , or fitted values
µ(xi ; β̂) do not suggest any major problems with the
model. Figure 2 shows a diagnostic probability plot
designed to check on the assumed baseline extreme
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Figure 2 Leukemia data: probability plot of residuals

value distribution. This is obtained by treating the
ẑis as a censored sample of 33 log lifetimes, and
computing the Kaplan–Meier estimate Ŝ(z) of the
survivor function of Z based on them. Figure 2 is an
extreme value probability plot of the points ẑi , wi =
0.5Ŝ(ẑi − 0) + 0.5Ŝ(ẑi + 0), based on plotting ẑi vs.
log(− log wi) for the uncensored residuals. The plot
is roughly linear, and provides no evidence against
the extreme value assumption.

One feature of the data is worth noting: for the
AG-positive group there is an individual with a high
WBC along with a reasonably large lifetime. For the
AG-negative group there are two such individuals. It
is clear from Figure 1 that these observations are very
influential. If they were omitted, then the effects of
WBC and AG would be increased substantially. We
have no reason to isolate these observations and so
they are retained, but their influence is noted.

Bibliographic Notes

Parametric models for lifetime data have been in
existence for a long time, but received increasing
attention from about 1950. The books by Law-
less [23] and Cox & Oakes [10] reference many
models. Early work on parametric methods for
the regression analysis of survival data empha-
sized exponential, Weibull, and lognormal models,
and may especially be found in the biostatistics
and reliability literature. Papers with biostatistics
applications include those by Sampford & Tay-
lor [27], Feigl & Zelen [17], Pike [26], and Zippin
& Armitage [29]. The focus for parametric analysis
quickly became the accelerated failure time and

location-scale models. The books by Kalbfleisch
& Prentice [20, Chapter 3] and Lawless [23, Chap-
ter 6] provide detailed treatments. Other good sources
include Cox & Oakes [10], Andersen et al. [1], and
Collett [8]. Some papers that study specific families
of models include Farewell & Prentice [16], Ben-
nett [5], Ciampi et al. [7], and Anderson [2]. Escobar
& Meeker [14] consider diagnostics and influence
analysis. Lawless [24] discusses general classes of
lifetime regression models.

The proportional or multiplicative hazards model
gained popularity quickly following the landmark
paper by Cox [9]. The emphasis has been very much
on semiparametric methods, however, and relatively
little fully parametric inference for these models is
found in the literature.
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Parental Effects

A parental effect refers to a situation where, condi-
tional on the individual’s own genotype, the pheno-
type of an individual depends upon the mother’s or
father’s phenotype or genotype. For example, a factor
complicating gene discovery in asthma is the possi-
bility, based on epidemiologic studies, that maternal
phenotype influences the inheritance of asthma and
atopy [10, 12]. The presence of asthma and asso-
ciated phenotypes such as atopy in children has
been consistently associated with an increased preva-
lence of asthma or atopy in mothers [10]. The dif-
ferential risk of transmission between parents may
be fourfold. The mechanism, or mechanisms, for
these parental effects are unknown, but possibilities
include genomic imprinting (see below) or maternal
modification of the developing infant’s immune sys-
tem by transmission of immune factors across the
placenta or through breast milk. The latter is likely
to be affected by a complex interaction between
maternal and fetal genetic and environmental fac-
tors. Similar parental effects have been noted in
other immunologic disorders, most notably type I
diabetes [21], rheumatoid arthritis [9], inflammatory
bowel disease [1], and selective IgA deficiency [20],
suggesting that parental effects on the developing
infant’s immune system may be an important com-
mon process modifying genetic diseases that are
immunologic in origin. The remainder of this arti-
cle describes the phenomena of genomic imprinting
and maternal effects and their implications for genetic
analysis. While there are clear theoretic differences
between these two mechanisms, in practice they may
be difficult to distinguish in complex diseases.

Genomic Imprinting

Imprinting refers to the situation where the relation-
ship between a genotype and a phenotype (or disease-
status) in an offspring depends upon which parent
passed on the disease susceptibility or phenotype-
modifying gene. When imprinting exists, the pene-
trance of the disease susceptibility allele will be
different for maternally derived vs. paternally derived
alleles. The observation that certain genes are ex-
pressed differently depending on whether they are
inherited from the father or mother implies that

genetic alteration of a gene or its expression has
taken place. For example, a chromosomal deletion of
a certain part of human chromosome 15 in a father
results in an offspring with Prader–Willi syndrome.
However, when the same part of chromosome 15 is
missing in a mother, the offspring has Angelman syn-
drome [2] (see Genetic Counseling).

Concrete examples of genomic imprinting derive
largely from studies of transgenic mice [16, 17].
However, imprinting has been suggested to play a
role in several complex human diseases in addition
to asthma, including bipolar affective disorder [4] and
type 2 diabetes mellitus [8]. The mechanisms causing
imprinting are poorly understood, but are thought to
involve DNA methylation. The effect of imprinting
can range from total inactivation of a gene and its
expression (see Gene Expression Analysis) to the
reduced expression in specific tissues. Interestingly,
the imprinting effect can appear to be heritable
only in a single generation. That is, the effect is
unmasked if it passes through the nonimprinting sex.
For instance, a gene inactivated by maternal imprint-
ing that is inherited by a son will be reactivated in the
next generation, i.e. the offspring of the son inherit-
ing the gene. (Note, however, that should the son
then have a daughter, her children will not express
the phenotype.) Conversely, the same gene inherited
by a daughter will remain inactivated in the next
generation.

For a quantitative phenotype assessed in a nuclear
family, the possible existence of imprinting upon
offspring phenotype may be crudely assessed by
estimating a basic variance component model (see
Variance Component Analysis, Equation (2)) or its
extensions. The basic variance component model is

Yi = µi + Gi + Ci + Ei, (1)

where Yi is a continuous trait measured on individual
i, µ is the conditional trait mean, and Gi , Ci and Ei

are independent random variables with zero means
and represent genetic factors, factors common to
relatives (i.e. familial environmental factors), and fac-
tors specific to an individual (including measurement
error, assumed to arise from nongenetic environmen-
tal factors), respectively (see Familial Correlations).

The result of imprinting at a locus on the expres-
sion of a quantitative phenotype will be to reduce the
expected phenotypic covariance between parents and
offspring relative to that between sibs (see Genetic
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Correlations and Covariances). Gametic imprint-
ing would be suggested if the difference between the
parent–offspring covariance and twice the covariance
between paternal half sibs derived from (1) were sig-
nificantly less than zero. Imprinting can be explicitly
assessed by extending (1):

Yi = µi + Gif + Gim + Ci + Ei, (2)

where the subscript f denotes components of genetic
variance derived from the father, and the subscript
m denotes components of genetic variance derived
from the mother. Note that in an imprinting model,
covariances between pairs of relatives are also esti-
mated separately for male–male, female–female, and
male–female relationships [3].

The phenomenon of imprinting has potentially
important implications for genetic analysis. The
reduction of the expected phenotypic covariance
between parents and offspring relative to that between
sibs caused by imprinting can lead to greatly reduced
power to detect linkage for both quantitative and
qualitative traits when such imprinting effects are
not considered in the analysis. Similarly, association
analyses are compromised when the differential
risk for outcome among individuals with the same
genotype (but alleles derived from different parent
genders) is not considered. In an imprinting situation,
genotypes of high risk are considered in the
same “exposure” category as genotypes conferring
no increased risk due to imprinting, biasing the
association towards the null. For these reasons,
inclusion of terms reflecting imprinting effects in
models of quantitative and qualitative traits is
important for segregation analysis, linkage analysis
(see Linkage Analysis, Model-free; Software for
Genetic Epidemiology) and association analysis
(see Disease-marker Association; Family-based
Case–Control Studies).

Maternal Effects

Maternal effects arise when, for reasons that may
be environmental (e.g. in utero environmental effects
or the effects of breast feeding), genetic, or a com-
bination of the two, the phenotype of an offspring
depends more upon maternal phenotype than on
paternal phenotype. Such an observed effect may
arise due to maternal genotype (any genetic effects on

the mother’s in utero environment or other nontrans-
mitted maternal genotype effect) or maternal phe-
notype (any characteristic in the mother – possibly
nongenetic – that influences the child’s phenotype).
For example, children of mothers with the genetic
disorder phenylketonuria may develop mental retar-
dation and small head size regardless of the child’s
genotype unless dietary intervention during preg-
nancy is pursued [5]. This disorder in the child is
due to the maternal genotype rather than transmitted
genes carried by the child.

The basic variance component model given in
(1) (see Genetic Correlations and Covariances;
Variance Component Analysis) can be extended
to allow for maternal effects [25] by splitting
each of the original components of variance into
two components, representing the direct expression
of each individual’s genotype and environmental
components as well as indirect maternal components
of variance:

Yi = µi + (Goi + Coi + Eoi ) + (Gmi + Cmi + Emi),

(3)

where the subscript o denotes components of variance
reflecting a direct effect of an individual’s genotype
and environmental exposures, and the subscript m
denotes components of variance reflecting an indi-
rect effect of the maternal phenotype. Note that this
formulation explicitly ignores epistatic sources of
maternal genetic variation.

As with imprinting effects, inclusion of terms
reflecting maternal effects in variance components
models of quantitative traits can be readily extended
to segregation analysis and variance-component-
based linkage analysis.

Failure to account for maternal effects (when
present) in variance component and segregation
analysis can result in misleading inferences regarding
mode of phenotypic inheritance. This is also true
for linkage and association analysis of qualitative
traits, where failure to account for potential maternal
or paternal effects can bias tests of the null
hypothesis regarding linkage or association to a
particular genetic variant possessed by affected
individuals [22]. For example, in the transmission-
disequilibrium test (TDT) setting, maternal effects
that increase risk for a disease among children
(regardless of the child’s genotype) will result in an
excess of affected child–mother pairs, compared with
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affected child–father pairs. This may lead to a false
conclusion of a maternal imprinting genetic effect,
when no such genetic effect (in the children) exists.

Paternal effects, while far less common than
maternal effects, can be dealt with analytically in the
same way as maternal effects.

Linkage Analysis

Methods to test and account for imprinting when
evaluating linkage have been proposed for model-
based linkage analysis, model-free allele-sharing
methods and variance component methods. Model-
based linkage analysis can be performed by
specifying male and female recombination fractions
separately [15], or by fixing the recombination
fraction of the assumed imprinting gender at 0.5
and then estimating the recombination fraction of
the other gender [7]. Alternatively, a four-penetrance
model can be created in which the disease locus
heterozygotes have different penetrances depending
on the parental origin of the particular alleles [18].
Because imprinting can occur for dominant and
recessive modes of inheritance, maximized lod score
(mod score) analysis can also be pursued under
this four-penetrance model [14, 18]. Tests of linkage
can be carried out via likelihood ratio testing
of the four-penetrance model under linkage vs.
the same model under no linkage. Explicit tests
of imprinting can be carried out by comparing
the four-penetrance model under linkage with a
standard three-penetrance model, which assumes the
two types of heterozygotes have equal penetrance.
The GENEHUNTER-IMPRINTING software can
perform parametric lod score linkage analysis under
the four-penetrance model (see Software for Genetic
Epidemiology).

Imprinting can be detected in model-free link-
age as differential results when stratifying family
sets according to paternal and maternal meioses [13].
For quantitative traits, marker allele sharing can
be estimated for maternally derived and paternally
derived alleles separately, and variance components
or Haseman–Elston regression used to assess link-
age as departure from the expected 25% sharing of
a particular parental allele [6]. A similar method for
qualitative traits has also been described [11]. Under
the variance component framework, linkage in the
presence of imprinting can be assessed by compar-
ing the likelihood of the data using the maximum

likelihood estimators (MLEs) of the parent-specific
major-gene variance components with the likelihood
obtained when constraining these to 0. Imprinting can
be tested in a manner similar to that described for
the model-based methods described above by com-
paring a likelihood where both parent-specific major
gene variance components are estimated with a model
where they are constrained to be equal (but not nec-
essarily 0). A similar strategy can be employed for
Haseman–Elston regression by estimating regression
coefficients for paternal allele sharing and maternal
allele sharing separately, and testing whether they are
equal to 0 (test of linkage) or whether they are equal
to each other (test of imprinting). These analyses can
be carried out using available identity-by-descent (see
Identity Coefficients) estimation software and stan-
dard statistical packages for variance components and
linear regression. Testing for maternal or paternal
effects not due to imprinting can be allowed for in
linkage analyses by the inclusion of parental pheno-
type through conditioning, covariate adjustment or,
in the case of a quantitative phenotype, inclusion of
random effects representing the indirect parental com-
ponents of individual phenotypic variance (as in (3)
above).

Association Analysis

Association analyses that incorporate parental effects
must include parental information. For parental
genotype effects and imprinting effects, family-
based association methods are needed. The most
commonly used method of family-based association,
the TDT, has been extended to allow for parent-
of-origin effects [19, 22–24]. As mentioned above,
failure to account for imprinting or parental
effects can bias TDT results because decreased
expression of phenotypes among children of the
imprinting gender may dilute transmission effects.
Simple comparisons of transmission estimates for
father–child pairs vs. mother–child pairs can also
lead to erroneous conclusions about imprinting
and genetic effects, when nontransmitted parental
effects influence the phenotype [22]. For these
reasons, recent methods have proposed the use of
conditional logistic [22] (see Logistic Regression,
Conditional) or log-linear models [23], expressed in
terms of direct genetic effects, imprinting effects,
and additional (nontransmitted) parental effects. For
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both approaches, trios can be characterized by the
joint mother, father, and child genotypes, resulting
in 15 distinct trio-types whose expected frequencies
can be calculated theoretically according to the
(child) genotype [genetic association], imprinting,
and parental genotype (or environment) effect sizes.
Logistic regression conditional on trio-type or log-
linear regression of expected trio-type cell counts
can be used to estimate these effect parameters and
test for association using likelihood ratio methods.
Such methods can be carried out in standard statistical
software packages for conditional logistic regression
and Poisson regression.

Conclusion

While the theory is well developed for parental
effects, little empirical work in human genetics has
focused on these issues. The identification of im-
printed genes, methodologic development to assess
and incorporate parental effects into genetic anal-
ysis, and further understanding of the imprinting
mechanism all represent important challenges for
genetic epidemiology.
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Pareto Distribution

The Pareto distribution comes in several different
forms. Its original form, with cumulative distribution
function

FX(x) = 1 −
( x

σ

)−ν

, σ, ν > 0, x ≥ σ, (1)

was introduced by Vilfredo Pareto in [8] as a model
for the distribution of income, and now commonly
goes by the name of the classical Pareto distribution
or Pareto distribution of the first kind. The parameter
σ is the scale parameter, and ν is related to the
expected value of X by the equation µ = νσ/(ν −
1). Two other forms of this distribution were also
proposed by Pareto. One of them, which is now
known as the Pareto distribution of the second kind,
takes the following form,

FX(x) = 1 −
(

1 + x − µ

σ

)−ν

, x > µ, σ, ν > 0,

(2)

and is obtained from the classical Pareto distribution
by a shift in location, as well as the addition of
the location parameter µ. The other one, the Pareto
distribution of the third kind, is given by

FX(x) = 1 − C exp(−bx)

(x + C)ν
, x > 0, C, ν, b > 0.

(3)

The fourth form of the Pareto distribution

FX(x) = 1 −
[

1 +
(

x − µ

σ

)1/γ
]−ν

,

x > µ, α, γ, σ > 0, (4)

is a direct generalization of (2), with the parameter γ

providing additional flexibility, and has been defined
in Arnold [1], which is a general reference book for
this distribution; see also Arnold [2], and Johnson
et al. [6].

For the classical Pareto distribution, the maximum
likelihood estimators (MLEs) of σ and ν are given by

σ̂ = X1:n, ν̂ = n




n∑

j=1

ln

(
Xj

σ̂

)

 , (5)

where X1:n is the smallest order statistic, from which
one may obtain the following unbiased estimators of
σ and ν,

σ ∗ =
[

1 − 1

(n − 1)ν̂

]
σ̂ , ν∗ =

(
1 − 2

n

)
ν̂.

(6)

If ν is known, then the MLE of σ is σ̂ = X1:n, while
the best linear unbiased estimator (BLUE) is given by

σ ∗ = νn − 1

νnσ
σ̂ . (7)

If σ is known then the MLE of ν is given by ν̂ above
with σ̂ replaced by σ .

Parameter estimation for the Pareto distribution in
(2) is discussed in [7], where exact explicit expres-
sions for the BLUEs of µ and σ are given for the
case in which ν is known.

For the situation in which a location parameter µ

(see Location–Scale Family) is added to the classi-
cal Pareto distribution, exact explicit expressions for
the BLUEs of µ and σ have recently been derived
in [3], for complete as well as right-censored sam-
ples. The robustness of these BLUEs is also exam-
ined in [3], where recommendations are made as to
how to protect against the situation in which the
strict distributional assumptions are not completely
satisfied.

Many of the applications of the distribution in
(2) (with µ = 0) stem from the fact that it is the
mixture (or compound) of exponential distributions,
fX|Θ(x|θ) = θ exp(−θx), where Θ has a gamma dis-
tribution, fΘ(θ) = [σ/Σ(ν)](σθ)ν−1 exp(−σθ). This
is used, for example, in the analysis of heart transplant
data in [9], where X represents the survival time
of a patient entering the study if no heart trans-
plant were received, and the hazard rate θ varies
from patient to patient and is assumed to follow
a gamma distribution. It is also used in the study
of remission rates of psychiatric patients in [4],
where X represents the time to rehospitalization
for psychiatric reasons, and the differing hazard
rates among patients are reflected by different val-
ues of θ , which are assumed to follow a gamma
distribution.



2 Pareto Distribution

The multivariate form of (2), with survival func-
tion (see Survival Distributions and Their Charac-
teristics),

SX(x) = Pr

[
k⋂

i=1

(Xi ≥ xi)

]

=
[

1 +
k∑

i=1

(
xi − µi

σi

)]−ν

, (8)

has been used (with k = 2) in [5] to model the
injuries to two drivers in a road accident, where Xi

is a measure of the severity of the injuries to driver
i, i = 1, 2. In the same paper, (8) has been used to
model the severity of a lesion in a patient as assessed
by two physicians, and is discussed as a model for
the liability of two people who are related to each
other of acquiring a certain disease (see Frailty). In
the former situation, Xi is a measure of the severity
of the lesion as assessed by doctor i, i = 1, 2, and in
the latter case, Xi is a measure of how likely each
person is to acquire the disease.
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Parsimony

In the development of statistical models, parsimony
is often viewed as desirable or, even, as embodying
a logical principle. In application, this requires that
models be based on as few assumptions as possi-
ble and include as few parameters as possible. For
example, Box & Jenkins [1] advocated the choice
of time series models with the smallest number of
parameters which gives adequate representation, and
Mallow’s Cp statistic [2], which is used to choose
between alternative regression models, incorporates
a penalty for additional parameters.

Such thinking is linked to the more general philo-
sophical principle of Occam’s Razor, “A plurality
(of reasons) should not be posited without neces-
sity”, which was named after William of Occam
(1280–1349).
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Partial Likelihood

Somewhat surprisingly, the robustness of the
likelihood function extends to various approximate
likelihoods used in models where likelihoods may be
difficult to calculate, or that may not be characterized
by a complete parametric specification. The partial
likelihood is one such approximate likelihood.

Partial likelihoods seem to have been used
formally for the first time in D.R. Cox’s
introduction of the semiparametric proportional
hazards model (see Cox Regression Model) [1],
and were discussed as a separate topic in a later
paper [2]. The partial likelihood is based on a
simple conditional probability argument. Suppose
that (A1, B1), (A2, B2), . . . , (AK, BK) is a collection
of pairs of observations. If the probability of these
outcomes depends on a parameter θ , then the
likelihood for θ based on the 2K observations can
be written:

Pr(AKBKAK−1BK−1 . . . , A1B1)

=
[

K∏

k=2

Pr(AkBk|Ak−1Bk−1 . . . A1B1)

]
Pr(A1B1)

=
[

K∏

k=2

Pr(Ak|BkAk−1Bk−1 . . . A1B1)

]
Pr(A1|B1)

×
[

K∏

k=2

Pr(Bk|Ak−1Bk−1 . . . A1B1)

]
Pr(B1).

In general, all four terms in this product may
depend on θ ; the first two terms comprise the partial
likelihood for θ based on the As in the sequence
(Ak, Bk).

The loss of information about θ caused from drop-
ping the last two terms will depend on how strongly
the conditional distribution of Bks, given the previ-
ous events in the sequence, depends on θ . Balanced
against the loss of efficiency is the possibility that
the partial likelihood may be simpler to compute
or may not depend on highly dimensional nuisance
parameters. The partial likelihood for the propor-
tional hazards regression model does not include an
infinite dimensional nuisance parameter that is part
of the full likelihood.

Consider a regression problem with right-
censored data with no tied values in the set

of observation times. Set Xj = min(Tj , Uj ), δj =
IXj =Tj

, and denote the observed data by (Xj , δj ,
Zj ), j = 1, . . . , n, where Zj denotes a vector of
covariates for the j th case. Let T o

1 < · · · < T o
L denote

the L ordered times of observed failures, and set
T o

0 ≡ 0 and T o
L+1 ≡ ∞. Let (k) be the case label

for the patient failing at T o
k . Let Bk be the event

describing the observed times of censoring in the
interval [T o

k−1, T o
k ], the case labels associated with

the censored times, and the fact that a failure has
been observed at T o

k . Finally, let Ak specify the label,
(k), of the case failing at T o

k . The likelihood of the
observed data is Pr(B1A1 . . . BLALBL+1).

In the proportional hazards regression model
the conditional hazard for Tj given Zj is
λ0(t) exp(β ′Zj ). If the conditional distributions
Bk contain little information about the regression
parameter β, then a reasonable partial likelihood for
β would be

[
L∏

k=2

Pr(Ak|BkAk−1Bk−1 . . . A1B1)

]
Pr(A1|B1).

For fixed k, since there are no ties in the observation
times, it can be established that

Pr(Ak|BkAk−1Bk−1 . . . A1B1) = λ(T o
k |Z(k))∑

j∈Rk

λ(T o
k |Zj )

= exp(β ′Z(k))∑

j∈Rk

exp(β ′Zj )
,

where Rk is the set of cases at risk at time T o
k , i.e.

{j : Xj ≥ T o
k } (see Risk Set). The partial likelihood

for β will thus be

L(β) =
L∏

k=1

exp(β ′Z(k))∑

j∈Rk

exp(β ′Zj )
.

The infinite dimensional nuisance parameter λ0 does
not appear in the partial likelihood.

The derivation of the partial likelihood for the
proportional hazards model requires more care when
there are tied survival times and time-dependent
covariates; the details for these cases can be found
in [1] and [4].

The general construction of a partial likelihood
is very similar. Suppose a data vector X has
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density fx(x, θ), where θ is a vector parameter
(φ, β), and that the primary inference question is
about β in the presence of the nuisance parameter
φ. If X can be transformed into a sequence
(V1, W1, V2, W2, . . . , VN, WN), then the likelihood
for θ can be written as

fx(x; θ) = fV1,W1,...,VN ,WN
(v1, w1, . . . , vN, wN ; θ)

=
N∏

n=1

fWn|V1,W1,...,Vn
(wn|v1, w1, . . . ,

vn−1, wn−1, vn; θ)fVn|V1,W1,...,Vn−1,Wn−1(vn|v1,w1,. . . ,

vn−1, wn−1; θ)

=
[

N∏

n=1

fWn|Qn
(wn|qn; θ)

]

×
[

N∏

n=1

fVn|Pn
(vn|pn; θ)

]
, (1)

where P1 = {∅}, Q1 = V1, and, for n = 2, . . . , N ,

Pn = (V1, W1, . . . , Vn−1, Wn−1)

and
Qn = (V1, W1, . . . , Wn−1, Vn).

When the first product on the right-hand side of
(1) depends only on β, Cox called this term the
partial likelihood for β based on W in the sequence
(V1, W1, . . . , VN, WN). Because of the way the con-
ditioning events are used in the construction, a par-
tial likelihood is not the likelihood of either the
observable or derived data, so the usual properties of
likelihood-based estimates do not hold automatically.

There are a number of results that are true for par-
tial likelihoods generally. Cox [2] shows that asymp-
totic sampling distributions for maximum partial like-
lihood estimates follow from standard arguments
about score statistics (see Likelihood) applied to

the partial likelihood score. Wong [6] gives a more
formal account, and shows how to calculate the
asymptotic relative efficiency of a maximum par-
tial likelihood estimate compared to an estimate from
the full likelihood. Oakes [5] and Efron [3] illustrate
asymptotic efficiency calculations for maximum par-
tial likelihood estimators in the proportional hazards
model, finding conditions under which the partial
likelihood estimators are fully efficient.

Cox [2] cites a number of difficulties that the
concept of partial likelihood presents, including the
possibility that since the conditioning argument used
to construct the partial likelihood is not necessarily
unique, different partial likelihood estimates may be
obtained from the same observations. The principal
difficulty from the practitioner’s perspective may be
that there is no direct, routine method for constructing
a partial likelihood in the presence of difficult likeli-
hoods or highly dimensional nuisance parameters.
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Partially Balanced
Incomplete Block Design

Partially balanced incomplete block designs
(PBIBDs) are used in the testing of drugs [2] and
in the design of factorial experiments.

As with other incomplete block designs, PBIBDs
are defined on a set of v treatments. The set of
v treatments is structured: for each treatment the
set of the remaining v − 1 treatments is partitioned
into a set of subsets called associate classes. This
partitioning is usually based on inherent attributes of
the treatments. For example, consider a combination
drug study (see [4]). Treatments having the same
level of factor 1 are first associates, treatments having
the same level of factor 2 are second associates and
treatments which have neither factor 1 nor factor 2 at
the same level are third associates.

We will define the concept of an association
scheme and of a PBIBD and then describe some
association schemes that have been used in the bio-
sciences.

If a set of v treatments has an association scheme
with m associate classes defined on it, then:

1. any two distinct treatments are ith associates for
exactly one value of i, 1 ≤ i ≤ m;

2. each treatment has exactly ni ith associates, 1 ≤
i ≤ m;

3. for any pair of ith associates, x and y, say, there
are a fixed number of treatments which are both
ith associates of x and hth associates of y, and
this number is independent of the particular pair
of ith associates chosen.

The parameters of the association scheme are
v and ni, 1 ≤ i ≤ m. Since each treatment is an
associate of every other,

∑
i ni = v − 1.

A design based on a set of v treatments with an
m-associate class association scheme defined on them
is a partially balanced incomplete block design with
m associate classes (PBIBD(m)). There are b blocks
of size k and each treatment is replicated r times.
If treatments x and y are ith associates then there
are λi blocks containing both x and y. The PBIBD
determines the association scheme, but not conversely
(see [8]).

The parameters of a PBIBD(m) are not indepen-
dent of each other. Counting plots, we see that there

are v treatments each replicated r times and there are
b blocks each with k plots. Thus vr = bk. Counting
pairs, we have that

∑
i niλi = r(k − 1).

For example, let the treatments be 1, 2, 3, 4,
5, 6, 7, 8, 9, 10 and let the pairs of first asso-
ciates be {1, 6}, {2, 7}, {3, 8}, {4, 9} and {5, 10}.
Any other pair of treatments is a pair of sec-
ond associates. So v = 10, n1 = 1, n2 = 8. If the
blocks of the designs are {1, 2, 3, 4, 5}, {1, 2, 3,

9, 10}, {1, 7, 8, 4, 5}, {1, 7, 8, 9, 10}, {6, 2, 8, 4, 10},
{6, 2, 8, 9, 5}, {6, 7, 3, 4, 10}, and {6, 7, 3, 9, 5}, then
b = 8, k = 5, r = 4, λ1 = 0, λ2 = 2.

The most commonly used association schemes are
the factorial association schemes. These include the
group-divisible, with two classes, and the rectangular,
with three. Both of these schemes have been gener-
alized to have more classes.

For the group-divisible association scheme there
is a set of v = mn treatments which may be viewed
as being divided into m subsets, (or groups, in the
nonalgebraic sense) each of n treatments. Treatments
in the same group are first associates; treatments
in different groups are second associates. We see
that n1 = n − 1 and n2 = n(m − 1). This association
scheme arises naturally when there are two factors,
the first with m levels and the second with n levels,
and the second factor is nested in the first. For
example, the first factor might be one of three types
of support provided to new mothers and the second
factor hospitals. Each hospital treats all new mothers
in the same way and so hospitals are nested within
type of support. The hospitals can be compared within
type of support and the types of support can be
compared across hospitals.

If instead the two factors are not nested but
crossed, then the corresponding association scheme
is the rectangular association scheme. This scheme
has three associate classes and is most easily visu-
alized by writing the treatments in an m × n array.
Treatments in the same row are first associates (hav-
ing the same level of factor 1), treatments in the same
column are second associates (having the same level
of factor 2) and treatments which have neither factor
1 nor factor 2 at the same level are third associates.
Combination drug studies provide one example of
this structure (see [4]).

Other schemes can be built up by repeated nesting
and crossing or a mix of these.

For complete diallel cross experiments the
Latin-square-type (Li-type) association scheme is
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appropriate. In this scheme there are n2 treatments
which are laid out in an n × n array. In an L2-type
scheme, a pair of treatments in the same row or
the same column are first associates and a pair of
treatments not in the same row or column are second
associates. In an Li-type scheme, we also need i − 2
mutually orthogonal Latin squares of order n. Then
a pair of treatments are first associates if they occur
in the same row, or in the same column, or in a
cell with the same symbol when any of the Latin
squares is superimposed on the square array. We see
that n1 = i(n − 1) and n2 = (n − 1)(n − i + 1) for
i ≤ n − 1. If i = n, then the scheme is a group-
divisible one with n subsets and with the names
of the first and second associate classes reversed.
If i = n + 1, then all treatments are first associates
of each other and the PBIBD will be a balanced
incomplete block design.

Lattice designs with n − 1 replicates are exam-
ples of L2-type designs. Lattice designs were intro-
duced by Yates [9] for crop cultivar trials and have
been extended by various authors, most recently Pat-
terson & Williams [6] to α-designs. These designs
have been shown to give slightly more preci-
sion than randomized complete block designs for
immunosorbent assays [1].

For complete half-diallel cross experiments the
triangular association scheme is appropriate. In the
triangular association scheme there are v = n(n −
1)/2, n ≥ 5, treatments. Arrange these treatments in
a symmetrical n × n array with the diagonal cells
empty. First associates are those in the same row or
column. Treatments not in the same row or column
are second associates.

For a partial diallel cross the scheme proposed
by Kempthorne & Curnow [5], and attributed to
G.W. Brown, is equivalent to a cyclic association
scheme. In the cyclic association scheme use
the integers modulo v, usually written as Zv =
{0, 1, 2, . . . , v − 1}, as the treatment names. Partition

the v − 1 nonzero entries in Zv by {1, 2, . . . , v −
1} = D ∪ E, where D = {d1, d2, . . . , dn1}. For each
di ∈ D we must have that v − di ∈ D. There are
n1(n1 − 1) differences of distinct elements of D.
These differences must contain each element of D

equally often and each element of E equally often.
The first associates of treatment i are the treatments in
i + D = {i + d1, i + d2, . . . , i + dn1}, where the sum
(modulo v) always lies between 0 and v − 1.

Further details about PBIBDs may be found
in [7] and [8]. Clatworthy [3] provides an extensive
tabulation of the two-associate-class PBIBDs men-
tioned here.
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Partner Study

Partner studies are epidemiologic investigations of
transmission of infectious diseases in susceptible
partners of known infected individuals. Widely used
for studying transmission of sexually transmitted
diseases (STD) such as Human Immunodeficiency
Virus (HIV) (see AIDS and HIV), these studies are
applicable in situations in which “partnerships” that
link known susceptible and infectious individuals can
be identified. Eligibility typically requires that expo-
sure to infection in susceptible individuals is limited
to a previously infected partner. This allows potential
bias associated with uncertainty about the source of
infection to be reduced or eliminated. Partner studies
focus primarily on the influence of measured covari-
ates on the probability of transmission, but can also
be used to gain knowledge of key parameters such as
the infectivity (transmission risk per unit of exposure).
Statistical analyses of data from these studies provide
a number of unique challenges, most of which arise
from the incomplete nature of data describing expo-
sure and infection (see Infectious Disease Models).

Study Designs and Data

Study designs for investigations of infectious disease
transmission depend on linking infection outcomes
in susceptible individuals to exposure to infectious
individuals. Thus, factors that characterize exposure
as well as those related to the nature of infectious-
ness and susceptibility are important considerations
in design and analysis. Because of the difficulty
in directly observing such factors, most studies are
carried out in restricted settings where exposure, sus-
ceptibility, and infectiousness can be more clearly
identified. Classical examples include observation of
disease outbreaks in households and island commu-
nities, where exposure can be assumed to be limited
to a group. The primary focus of statistical analy-
ses for such studies has been on describing epidemic
spread at the group level [2]. For sexually transmitted
diseases (STD), transmission must occur via sexual
contacts within partnerships. This suggests that sex-
ual partnerships are an ideal experimental unit on
which to study transmission, and motivates the notion
of a partner study. Partner studies have recently
become a popular tool for investigating HIV trans-
mission, although similar designs have undoubtedly

been used to study other STDs. Most studies focus
on a particular mode of sexual contact in a select
type of partnership (e.g. heterosexual transmission in
monogamous couples), but other modes of contact
(e.g. needle sharing among intravenous drug users)
can be investigated as well. Because the majority of
statistical work has focused on monogamous couples,
most of the development here will be restricted to this
setting.

A partner study consists of a sample of part-
nerships, each composed of an infected individual
called the index case, and a susceptible individual
referred to here as the partner. For a single such
couple, complete data on transmission include the
total number of contacts and time of occurrence of
each, information about the degree of susceptibil-
ity of the partner and infectiousness of the index
case at the time each contact is made, and indica-
tors of whether or not each contact induced infec-
tion in the susceptible partner. In actual studies,
the timing and outcome of individual contacts is
unknown, and exposure histories and infection indi-
cators can only be measured following an interval
of contact. As a result, direct biological measures
of susceptibility and infectiousness at the time trans-
mission occurred are almost always unavailable. The
vast majority of studies can be described as either
cohort, with a sample of partnerships consisting of
a known infected and susceptible individual followed
over time and infections observed and exposure mea-
sured at intervals; case–control, in which infected
and uninfected susceptible individuals and their index
case partners are recruited and exposure histories
and covariates are ascertained retrospectively; or
cross-sectional, where only infection status and risk
behaviours are collected, but no direct measures
of exposure are available. Kim & Lagakos [8] and
Jewell & Shiboski [4] provide more details about
study designs.

The remainder of this entry will focus primarily on
retrospective studies of sexually transmitted diseases
which exhibit minimal latency periods (i.e. infected
individuals become infectious almost immediately
after getting infected) (see Latent Period) and for
which no immunity or recovery is possible. HIV
provides a good example [1]. This simplifies the
presentation and best reflects the existing statistical
work in this area. Such studies are generally
characterized by incomplete observations of relevant
exposure and infection data. In Figures 1 and 2 are
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Time between index case and
partner infections (V ) Exposure interval (T )

End of contactInfection of partner

Infection of index case,
beginning of exposure

Beginning of epidemic

Partnership forms

A I, B C

Figure 1 Exposure history from a long-term monogamous partnership formed prior to the earliest possible time of infection
of the index case, A. The index case is infected at chronological time I , which also marks the beginning of exposure B.
Exposure ends at C, where the infection status Y of the partner is first determined. The duration of exposure T and the
time between the infections of the two partners V are also indicated. Contacts are indicated by the symbol “X”

Time between index case and
partner infections (V)

Exposure interval (T)

End of contactInfection of partner

Partnership forms,
beginning of exposure

Infection of index case

Beginning of epidemic

I B CA

Figure 2 Exposure history from a short-term monogamous partnership, where I , the time of infection of the index case,
is bounded below by A (see Figure 1), and contact (and hence exposure) begins at a subsequent time B. Contact ends at
C, where the infection status Y of the partner is first determined. Contacts are indicated by the symbol “X”

provided schematic representations of exposure data
commonly observed in retrospective studies. Both
represent exposure histories for single partnerships.
Let A denote a chronological time which provides
a lower bound on the infection time of the index
case, denoted I . This could represent the beginning
of an epidemic, date of sexual debut, or other relevant
information, and is useful in cases when the actual
data of infection is unknown. Let B denote the
chronological time when actual exposure to infection
in the partner begins, C the time exposure ends
or the partnership is recruited, and T the duration
of exposure, C − B. In “long-term” partnerships

which are formed prior to I (Figure 1), B ≡ I ;
for “short-term” partnerships which commence after
the infection of the index case (Figure 2), B > I .
In both situations, the time V between index case
infection and partner infection along with the actual
degree of exposure during the period [B, C] are the
quantities of primary interest, but neither can be
observed directly. Rather, the infection status of the
partner, denoted by the binary random variable Y ,
is ascertained at the time the partnership is recruited
along with retrospective information on exposure.

In some cases (e.g. couples where the index case
is infected with HIV via blood transfusion), the time
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of infection of the index case I and the exposure
interval [B, C] can be identified along with an esti-
mate of the number or rate of contacts during this
period. Here, observations of V are censored on
the left for infected partners (Y = 1) and on the
right for uninfected partners (Y = 0). This form of
interval censoring is also known as current status
data on V . In cases in which the time of index
case infection is unknown, it is impossible to iden-
tify correctly the beginning of the exposure interval.
In this case, observations are limited to the knowl-
edge that infections for both partners occurred in the
interval [A, C], and that the infection of the index
case preceded the partner’s. For a long-term part-
nership (Figure 1), only A, C, Y , and contact infor-
mation are observed. For a short-term partnership
(Figure 2), the initiation of contact B is observed as
well. Both of these types of observations are exam-
ples of doubly censored current status data on the
time to partner infection V . In practice, retrospec-
tive studies may contain a mixture of observations
of both types, in addition to more complex exposure
patterns.

Statistical Models

Statistical interpretation of partner study data is usu-
ally based on simplified models for the transmission
probability of infection in the susceptible partner,
defined as the probability of infection occurring,
conditional on a specified exposure history. Con-
sider the case of a single couple from a retrospective
study in the case that the time of the infection of the
index case is known. Let K(x) represent a counting
process with intensity µ(x) which measures con-
tacts in the interval beginning at the initiation of
contact B. Let λ(x) represent the probability that
infection is transmitted via a contact occurring at
time x following the index case’s infection at I .
This represents the transmission risk associated with
a single contact and is often referred to as the infec-
tivity of the disease. Necessarily, λ(x) depends on
both susceptibility of the partner and infectiousness
of the index case, and the relative influence of these
cannot be investigated in the absence of additional
data. If complete data in the sense described above
are available, the conditional probability of the part-
ner being infected following an exposure of length
T = C − B, given the observed sample path of K(x)

can be written:

Pt,k = Pr[Y = 1|K(x) : B − I ≤ x ≤ C − I ;

K(C − I) = k] = 1 −
k∏

j=1

[1 − λ(xj )], (1)

where (x1, . . . , xk) are the times of contacts. This
probability affords two interpretations in a survival
analysis context: (i) the probability that the partner’s
true infection time V does not exceed C − I ; and
(ii) the probability that the number of contacts K(V )

required for infection to occur does not exceed
K(C − I) = k. If λ(x) is assumed to be a con-
stant, then this reduces to the constant infectivity
model Pk = 1 − (1 − λ)k , which is frequently used
as a null model against which more complex mod-
els are compared. Since the times (x1, . . . , xk) of
contacts are unlikely to be available in any of
the study designs mentioned above, most analy-
ses are based on the marginal transmission prob-
ability based on the time V between infections
of the two partners, or on the discrete scale pro-
vided by the number of contacts K(V ) required
for infection to occur. The marginal probability for
becoming infected following an exposure of dura-
tion t beginning at B is computed from (1) by
taking the expectation with respect to the sam-
ple paths of the contact process K(x) [16]. When
K(x) is a nonhomogeneous Poisson process with
intensity µ(x),

Pt = 1 − exp

[
−

∫ C−I

B−I

λ(x)µ(x) dx

]

= G(C − I) − G(B − I)

1 − G(B − I)
, (2)

where G denotes the distribution function for the
infection time V , with hazard function λ(x)µ(x).
For long-term partnerships B ≡ I , and the right hand
side equals G(C − I). When λ(x) and µ(x) are
both constant this is the exponential model, the
time-based analog of the constant infectivity model
mentioned above. The infectivity λ(x) is clearly not
estimable without external information on µ(x). If
this is available, the model affords a proportional
hazards interpretation, with λ(x) representing the
“baseline” hazard of infection associated with a unit
contact rate. The effects of a vector Z of covariates
can also be considered, as discussed below. Because
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of these close ties with conventional survival anal-
ysis methods, models based on Pt are in general
preferred to those based on the marginal transmis-
sion probability Pk for becoming infected following
an exposure of k contacts. In the constant infectivity
case, these models are almost indistinguishable.

When the time of infection of the index case is
unknown, the exposure interval is also impossible
to specify. If, as discussed above, a lower bound
A on the time I of index case infection is known,
and if additional information on the distribution F

of this time in the interval [A, C] is available,
the transmission probability P can be computed as
follows [6]:

P = 1

F(C)

[∫ B

A

G(C − s) − G(B − s)

1 − G(B − s)
dF(s)

+
∫ C

B

G(C − s) dF(s)

]
(3)

The first integral on the right-hand side of (3) is
necessary for short-term partnerships, where it is
unknown whether or not the index case infection
preceded the initiation of contact B (Figure 2). In
long-term partnerships formed prior to A this term
vanishes, consistent with the assumption that the
index case was infected subsequent to this time
(Figure 1).

Estimation and Inference

Estimation and inference for parameters in transmis-
sion models are most commonly based on maximum
likelihood methods. For a sample of n partnerships
from a retrospective or cross-sectional study, the
log likelihood function (conditional on the observed
exposure information) is

n∑

i=1

yi log Pi + (1 − yi) log(1 − Pi), (4)

where Pi represents the transmission probability as
described above. In the case in which index case
infection times are known (i.e. current status infor-
mation is available on partners’ infection times),
nonparametric maximum likelihood estimates of
the distributions of V and K(V ) can be obtained
using isotonic regression [3, 7]. If index case infec-
tion times are unknown (i.e. doubly censored current

status information is available on partners’ infection
times), nonparametric estimation of G from (3) is
also possible in the case of long-term partnerships
if the distribution F of index case infection times is
assumed to be uniform [6].

In many cases it is desirable to estimate
the infectivity λ(x) directly, and to investigate
covariate effects in a regression setting. Using
the proportional hazards structure of (2), which
is appropriate for current status information on
partner infection in a retrospective design, the
complementary log–log transformation (see Binary
Data) yields the following regression model:

log[− log(1 − Pi)] = log

[∫ Ci−Ii

Bi−Ii

λ(x) dx

]

+ log µi + βzi . (5)

Here, the contact rate µi for the ith partnership has
been assumed to be constant and log µi represents
an offset term. For parametric choices of λ(x) the
techniques of generalized linear models can be used
to estimate parameters in this model. For example,
when this parameter is assumed to be constant in (2)
(or (1)), (4) is a standard generalized linear model
for the binary outcome Y and can be treated using
standard techniques and software [3]. When no para-
metric assumptions are made about λ(x) the resulting
models are semiparametric. For (5), the constraint
that the integrated infectivity is nondecreasing in
the duration of exposure must also be taken into
account in estimation. Estimation techniques include
estimating λ(x) and β jointly using penalized maxi-
mum likelihood and the EM algorithm [16]; profile
likelihood [12]; or modified generalized additive
models [15, 16, 18]. The regression coefficients β

can also be estimated separately, treating the infec-
tivity as a nuisance parameter using an approx-
imate partial likelihood approach [13]. Estimation
methods for doubly censored current status obser-
vations are poorly developed in the semiparametric
setting. Recent results indicate that such data gen-
erally provide inconsistent estimates (see Consis-
tent Estimator) of the distribution G unless addi-
tional assumptions (e.g. smoothness) are imposed [5],
and that, for estimation of β, methods for current
status data can be applied with little loss of effi-
ciency [10]. Fully parametric models for such data
can be also handled using standard maximum likeli-
hood techniques.
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Inference about the parameters introduced in the
models above is typically focused on two areas:
(i) the effects of covariates on the probability of
disease transmission; and (ii) investigation of the
properties of the infectivity λ(x). Techniques for
parameters in fully parametric transmission models
are straightforward, and in many cases follow stan-
dard practice for generalized linear models. By
contrast, asymptotic theory for parameter estimates
in semiparametric models is not well developed. In
addition, there are a number of complicating issues
in inference which arise from the lack of infor-
mation most studies provide about exposure and
the infection process. These include the possibili-
ties of measurement error in exposure data related
to retrospective ascertainment, and the potential
for uncontrolled heterogeneity of infectivity between
partnerships reflecting unmeasured factors influenc-
ing infectiousness and susceptibility. Ignoring these
factors may lead to biased estimates of λ and β [3,
14, 16]. Unfortunately, data from partner studies is
usually extremely limited, making it very difficult or
impossible to correct for these problems using exist-
ing methods. For example, data are rarely sufficient
to allow mixture models incorporating heterogene-
ity into λ to be fit, except in cases in which the
latter is assumed to be constant [20]. Similarly, val-
idation data for use in modeling measurement error
are rarely if ever available. Finally, even in well
conducted studies with valid exposure information
it is rare that data are extensive enough to yield
much detailed information about the form of the
infectivity. Despite these limitations, partner studies
remain valuable tools in understanding infectious dis-
ease transmission, and are worthy of further statistical
research.

Many of the above techniques can be generalized
to apply in other settings, including studies in which
identification of the index case is uncertain [9], and in
which multiple potential index cases may be associ-
ated with each partner [11, 17, 19]. Obtaining reliable
estimates of the per-contact infectivity is extremely
difficult in these situations, but the effects of covari-
ates on the probability of transmission can still be
investigated.
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Pascal, Blaise

Born: June 19, 1623, in Clermont, France.
Died: August 19, 1662, in Paris, France.

Blaise Pascal was one of the most influential figures
in French life and literature. Here, only his contribu-
tions to mathematics are considered.

In 1631, Pascal’s father Etienne moved from Cler-
mont to Paris in order to secure his son a better
education, and in 1635 he was one of the founders
of Marin Mersenne’s “Academy”, to which he intro-
duced his son at the age of 14. The younger Pascal
immediately put this new source of knowledge to
good use, producing (at the age of 16) his famous
Essay pour les coniques.

In the succeeding years, Pascal fils designed and
had built the first mechanical adding machine (there
is now a computer language called “Pascal”) and
conducted experiments into the nature of a vacuum
(the “Pascal” is the SI unit of pressure), but his chief
mathematical contribution was to lay the foundations
of the theory of probability.

Before his time, probability calculations amounted
to no more than the enumeration of equally probable
outcomes in games of chance, but Pascal introduced
the important idea of expectation and used recur-
sively the fact that if expectations of gain X and Y

are equally probable, the expectation is 1
2 (X + Y ). He

also introduced the binomial distribution for equal
chances and, with its help, and that of mathematical
induction applied to expectations, solved the Problem
of Points for two players.

This problem was the topic of correspondence
between Pascal and Pierre de Fermat in 1654 which,
together with Pascal’s contemporary Traité du trian-
gle arithmétique, includes three methods of solution.
Two players stake equal money on being the first
to win n points in a game in which the winner of
each point is determined by the toss of a coin. If
such a game is interrupted when one player still lacks
a points and the other b, how should the stakes be
divided between them?

Fermat and Pascal independently concluded that
the problem could be solved by noting that at most
a + b − 1 more tosses will settle the game, and that
if this number of tosses is imagined to have been
made, the resulting 2a+b−1 possible games (each
equally probable) may be classified according to the
winner in each case, the stakes then being divided
accordingly. Thus, the real game, of indeterminate
length, is embedded in an imaginary game of fixed
length. Apart from this novel idea, however, such
a solution by enumeration was straightforward, but
Pascal offered both an independent method based
on expectations which is valid for any number of
players, and, in the Traité du triangle arithmétique,
the solution for two players in terms of the bino-
mial distribution, proved by induction. He did not
give the binomial distribution algebraically, but by
reference to the “arithmetical triangle” of binomial
coefficients, the properties of which he elaborated
in his Traité (whence the name “Pascal’s Trian-
gle”).

Pascal’s seminal work laid the foundations of
probability theory, influencing Christian Huygens (De
Ratiociniis in Ludo Aleae, 1657) and thence James
Bernoulli (Ars Conjectandi, 1713). Already in 1710,
we find the binomial distribution being applied to a
biological problem (John Arbuthnot, An Argument for
Divine Providence, taken from the constant regular-
ity observ’d in the births of both sexes) and giving
rise to the first test of significance (see Hypothesis
Testing).
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Paternity Testing

Paternity testing on the basis of blood group typ-
ing has been known since 1920, but at that time was
only used to prove nonpaternity by way of exclu-
sion. For example, in the case of a child with blood
group AB, and mother with blood group B, a man
with blood group O could be excluded from pater-
nity, because the true father must have the compo-
nent A in his phenotype. In 1938, Essen-Möller [2]
was the first author to propose a statistical approach
in nonexclusion situations to quantify the available
genetic information. For the standard trio case (child,
mother, putative father) he defined the two alterna-
tive hypotheses “paternity” vs. “unrelated” and, on
the basis of estimated population frequencies, evalu-
ated the likelihoods:

X = L(observed phenotypes|“paternity”)

and

Y = L(observed phenotypes|“unrelated”).

Essen-Möller then used X and Y in a Bayesian
methods approach with equal prior probabilities to
calculate the probability of paternity as

W = X

X + Y
,

thus starting a never-ending discussion regarding the
appropriateness of introducing prior probabilities into
the statistical argument. It has to be pointed out,
though, that already at this stage it was evident that
the likelihood ratio X/Y (now known as the paternity
index ([1] and [5]) contained the complete genetic
evidence for a given case. Because of differing legal
situations in different countries, development since
the 1950s has not always been parallel, but by now
has led to more or less general scientific agreement
and standardization regarding the following aspects:

1. Use of high-quality genetic marker systems
with adequately estimated gametic population
frequencies.

2. Exact formulation of hypotheses for standard
trio cases, as well as complex relationships in
deficiency cases.

3. Standard likelihood calculation on the basis of
well-defined hypotheses and adequate parameter
estimates.

4. Likelihood ratio as the basis of decision making.
5. Additional statistics for the general and case-

specific probability of exclusion.

Marker Systems

The basis for all statements are the genetic marker
systems used for typing and the knowledge of the
genetic parameters governing these systems. In the
case of fully penetrant marker systems, these param-
eters are the mutation rates, the recombination frac-
tions and the gametic population frequencies of the
respective allelic expressions (see Gene Frequency
Estimation). Quality aspects regarding the selection
of markers make it preferable to have systems with
a negligible amount of mutation, free recombina-
tion between marker loci and no linkage disequi-
librium, which is equivalent to intragametic inde-
pendence, thus allowing easy calculation of overall
likelihoods by multiplication of marginal frequen-
cies [4]. In addition, the quality of such a marker
system is measured by its power to exclude paternity
for an unrelated man (general power of exclusion,
GPE ), which is a direct function of the number of
alleles and their population frequencies. The histori-
cal development has led from blood groups, protein
systems, enzyme systems (see Polymorphism) to
the highly polymorphic HLA system with all its
complexity of closely linked loci and linkage dise-
quilibrium, to the now available (over)abundance of
DNA sequence marker systems. Within the group
of DNA markers the multilocus probes (MLPs) are
being used less and less due to the impossibility of
determining the genotypes corresponding to a given
set of phenotypic signals. The standard systems now
being used almost worldwide are the two groups of
single locus probes (SLPs) with a continuous distri-
bution of allelic “fragment length” and the short tan-
dem repeat (STR) systems with discrete alleles [3].
Although SLP systems have extreme discrimination
powers (high heterozygosity, high GPE ), the prob-
lem of measurement error for the continuous frag-
ment lengths in these systems leads to complications
in their statistical evaluation. It can be expected that
STRs, with their simplicity of allele and genotype
definition, their ever-increasing number, their good
discrimination power and their increasing ease of
typing, will become the standard in all kinds of rela-
tionship testing.
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Hypotheses

The basis of all statistical argument in cases of nonex-
clusion is well-defined hypotheses. In the standard
trio case, the following are usually the two alter-
natives:

H1: The putative father is the true biological father
of the child.

H2: The putative father is not the biological father
of the child: he is an unrelated random male
from a given population.

It must be pointed out that the second hypothesis
is not simply the negation of the first hypothesis
and has to be clearly distinguished from the situa-
tion where the putative father could be related to the
true father (for example, he is his brother). Further-
more, the ethnic background(s) of the putative father,
the implicitly postulated true father and, to a lesser
extent, that of the mother, are part of the hypotheses.
For more complex situations in deficiency cases (such
as when the putative father is not available for testing,
but information on blood relatives is available) two
(or more) hypotheses must be well defined and can
be represented by the corresponding pedigree(s) that
include all individuals necessary to represent the pos-
tulated relationships, irrespective of the availability
for marker typing. Figure 1 represents the situation of
a case with a deceased putative father whose parents
are both available for typing.

4 5

3 2

1

4 5

3 6 2

1

H1: Individuals 4 and 5
are the biological grand-
parents of child 1 by way 
of  their son, 3, for whom 
no marker information is 
available. Individual 2 is 
the mother of child 1.

H2: Individuals 4 and 5 
are unrelated to child 1. 
An unknown man, 6, from
the same given popu-
lation  is the true father
of 1. Individual 2 is the 
mother of 1.

Figure 1 Hypothesis formulation and representation by
way of corresponding pedigrees

Likelihood Calculation

Every conceivable well-defined hypothesis can be
represented as a pedigree. Consequently, the calcula-
tion of the likelihood of the given hypothesis for the
observed phenotypes is identical to the probability
of the observed phenotypes given the corresponding
pedigree. Let gi,j be the ith possible genotype for the
j th person, with population frequency fi,j , phj be
the genotype of the j th person, and Pr(gi,j |gi,p, gi,m)

be the probability of gi,j conditional on the genotypes
of j ’s parents. Then the general formulation of such
a likelihood is

L(phenotypes|pedigree)

=
∑

gi,1

∑

gi,2

. . .
∑

gi,k

∏

k

P (phk|gi,k)

×
∏

founders

fi,k

∏

descendants

P(gi,k|gi,p, gi,m)

(see Elston–Stewart Algorithm).
For the case of high-quality marker systems, this

general formulation is considerably simplified:

1. The nested summation for all individuals reduces
to a single term for one-to-one correspondence
of genotype and phenotype, which is the case
for single locus DNA markers with no silent
alleles.

2. Marker systems having complete penetrance re-
duce the number of terms.

3. In the case of intragametic independence, popu-
lation frequencies are given by the product of the
allele frequencies for each marker.

4. Transmission probabilities are 1 for a homozy-
gous parent and 1/2 for a heterozygous par-
ent.

For example, consider the simple case of a trio with
the following typing results:

child (a/c), mother (c/d), putative father (a/b).

Letting fi be the population frequency of allele i, the
likelihoods of the hypotheses evaluate to

X = L(genotypes|H1) = fafbfcfd,

Y = L(genotypes|H2) = 2fafbfafcfd.

The general likelihood formulation can handle dom-
inance or untyped individuals by summation over
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all compatible genotypes, closely linked loci with
linkage disequilibrium by using haplotype frequen-
cies on the population level and recombination frac-
tions in the transmission probabilities, and even
possible mutations can be modeled into this com-
ponent (if reliable estimates are available). Ihm &
Hummel [6] were the first to present an algorithm
to evaluate the likelihood for a complex hypothesis
in relationship testing and today many software pack-
ages for pedigree analysis (see Software for Genetic
Epidemiology) can perform this calculation, given
the parameter estimates.

Likelihood Ratio, PI, and Posterior
Probability, W

In the case of two well-defined hypotheses with cor-
responding likelihoods X and Y , the likelihood ratio
statistic X/Y has been termed the paternity index,
PI. The PI contains the complete genetic informa-
tion and has the general property that with increasing
PI the probability of H1 in comparison with H2 also
increases. Consequently, the decision process for the
acceptation or rejection of H1 (“Paternity”) is the pro-
cess of setting a decision threshold for the PI statistic.
In most countries, a likelihood ratio of PI = 1000 : 1
has been chosen for the verbal conclusion “Pater-
nity practically proven”. Some countries are asking
for PI = 10 000 : 1. The power of the marker sys-
tems now available for typing is strong enough to
exceed this threshold in almost all situations when
there is paternity, and, in nonpaternity situations, one
or several exclusions will most likely be detected. The
evaluation of type I and type II errors (see Hypoth-
esis Testing) would be theoretically possible on the
basis of the two distributions of all possible geno-
type constellations conditional on the two hypotheses.
Because of the fact that new marker systems are con-
stantly being developed and introduced into paternity
testing, these conditional distributions would have to
be re-evaluated for any new set of marker systems.

The alternative approach, which dates back to the
original paper of Essen-Möller [2] is the calcula-
tion of posterior probabilities using Bayes’ theorem.
Given the conditional likelihoods, Xj , for two or
more mutually exclusive hypotheses Hj with prior
probabilities pj , the posterior probability of Hi is

given by

Pr(Hi |phenotypes) = piXi∑

j

pjXj

.

This expression can only be evaluated if, in addition
to the conditional likelihoods, Xj , the prior probabil-
ities of the hypotheses Hj are given. For the simple
situation of two alternative hypotheses, the above
expression reduces to

W = Pr(paternity|phenotypes) = pX

pX + (1 − p)Y
,

and, if one is willing to set both prior probabilities to
p = 1/2,

W = X

X + Y
,

the formula given by Essen-Möller [2]. It has to be
pointed out that the information contained in W

(with equal priors) is identical to that of PI since

W = PI

PI + 1
.

A threshold of PI = 1000 is equivalent to W =
0.9990.

The argument about the use of the paternity index
only, the use of the probability of paternity with
equal priors, or the estimation of prior probabilities
from “similar” previous cases and thereby the intro-
duction of nongenetic evidence, has governed the
scientific debate for decades. However, it has recently
ended because the strength of the genetic evidence
is so extreme that, no matter what decision proce-
dure is used, the amount of error in standard cases
is negligible. In complex deficiency cases with two
alternative hypotheses, the likelihood ratio is again
the statistic presenting the complete genetic informa-
tion for the postulated relationship. Since, in many
situations, direct exclusions are structurally not pos-
sible – for example, child, mother and one putative
grandparent – the likelihood ratio symmetrically pro-
vides information against the postulated relationship.
The complex situation with more than two mutu-
ally exclusive hypotheses is not directly accessible.
Pairwise comparisons with likelihood ratios is feasi-
ble but the comparison of one conditional likelihood,
Xi , simultaneously with all others is only possible
by way of the general Bayesian formulation using
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assigned priors. The approach using equal priors for
all hypotheses allows easy calculation, but provides
nothing more than a representation of the conditional
likelihoods, Xi , normed. Nevertheless, in this way,
preponderance of one of the hypotheses becomes eas-
ily visible.

General and Case-specific Probability of
Exclusion

In addition to the above defined likelihood statements,
there are two further statistics used in paternity test-
ing, one characterizing the general power of a marker
system to detect an exclusion (GPE ), the other char-
acterizing its power to exclude an unrelated man in
the case of a specific mother–child phenotype (SPE ).

Let M be a marker system with i = 1, . . . , n dif-
ferent phenotypes, phi . For a given mother–child
constellation (phm : phc) the set of all phenotypes
{phi} contains a uniquely defined subset of pheno-
types genetically compatible for a father of the child.
The sum of the frequencies of these phenotypes is
the probability that a random man is not excluded
(RMNE ):

RMNE(phm : phc) =
∑

compatible

f (phi),

and the specific probability of exclusion consequently
is defined as

SPE(phm : phc) = 1 − RMNE(phm : phc)

= 1 −
∑

compatible

f (phi).

Obviously, SPE depends on the phenotypes of the
given mother–child constellation. For any marker
system M the general power to exclude a random
man, GPE, is given as follows. Let i = 1, . . . , l be the
number of all possible mother–child constellations
(phm : phc)i . Let fi be the corresponding frequen-
cies of these constellations (easily calculated from
the general likelihood formulation for pedigrees; see
above) and SPEi the corresponding specific proba-
bility of exclusion defined above. Then, the general
exclusion probability of this system M is given by

GPEM =
l∑

i=1

fiSPEi .

For a set S of k independent marker systems Mi , the
overall exclusion probability is simply

GPES = 1 −
k∏

i=1

(1 − GPEMi
).

Given the new DNA polymorphisms available for
testing, it is no problem to reach overall exclusion
probabilities ≥99.9% with sets of 8–10 indepen-
dent single locus systems. Cost–benefit analysis has
shown that for a given level of GPES the overall cost,
CS , is minimized if markers, Mi , with corresponding
costs, Ci , are selected according to the magnitude of
the benefit–cost relationship, Ri , defined by

Ri = − log10(1 − GPEi )

Ci

.

Note that in deficiency cases the evaluation of SPE
may be very complex, or for certain hypotheses
structurally equal to zero and thus meaningless.

Conclusion

Paternity testing on the basis of marker typing has
become a highly efficient and standardized procedure
due to the large amount of information now available.
Marker systems with high discrimination power are
available, statistical procedures have been developed
to describe the general quality of the marker system
(GPE ) as well as statistics for the given case (PI,
W , SPE) – see, for example, [7]. Complex relation-
ship testing as an extension of paternity testing can
be performed on the basis of exact formulation of
hypotheses and corresponding likelihood statements.
Quality assessment requires continuous quality con-
trol of the laboratory work and a good data base
to determine relevant population parameters of the
marker systems used. The selection of marker sys-
tems with a high benefit–cost ratio leads to improved
discrimination power at reduced cost.
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Path Analysis in Genetics

The method of path analysis, introduced by the
pioneer population geneticist Sewall Wright [40, 41]
over 70 years ago, is a form of structural linear
regression analysis of standardized variables whose
purpose is two-fold: to explain the interrelationships
among a given set of variables, and to evaluate the
relative importance of varying causes influencing a
variable of interest. Algebraic equations that specify
the structural interrelationships among the variables
are known as structural equations. Although path
analysis can be pursued strictly through structural
equations, path diagrams that specify the proposed
structural relationships schematically are often more
helpful for conceptualizing a complex path model
quickly, and for determining the internal consistency
and limitations of a given model. Algebraic manip-
ulation of structural equations or analysis of path
diagrams using a standard set of tracing rules [19]
both yield identical results.

Path analysis was originally developed by Sewall
Wright for a systematic study of inbreeding and
systems of mating. Despite its application in a vari-
ety of contexts and despite its inherent appeal, it
remained a secluded method for a long time. In later
years this method has been used extensively in soci-
ological and econometric modeling in the guise of
structural equation models (e.g. [9]). The method was
largely neglected by the statistical community per-
haps because, around the same time that path analysis
was being developed, statisticians were overwhelmed
by the beauty and logic of the formal statistical meth-
ods that were being rapidly developed. A relative
lack of mathematical formalization appears to have
rendered path analysis less attractive [15]. Starting
in the mid 1970s, however, path analysis was widely
applied in human genetics and genetic epidemiology,
perhaps partly aided by the development of formal
tests of hypotheses [33].

Path analysis is especially useful for studying
the genetic epidemiology of complex phenotypes. In
terms of specifying the interrelationships among vari-
ables in a path model, there is a theoretical basis at
least for some of the relationships in families. For
example, genes cause phenotypes (see Genotype)
and not the other way around, and the genes of chil-
dren are determined (caused) by those of their par-
ents. When the direction of “causation” is less clear,

ambiguous correlational and other associative rela-
tionships, such as copaths [3] and delta paths [38],
are used. Formal tests of hypotheses are now rou-
tine in such situations, and path analysis enables
testing whether the theoretical model is consistent
with the observed interrelationships among variables
(i.e. assessment of goodness of fit). A rich battery
of path models have been developed over the years
for dealing with a variety of situations in genetic
epidemiology and behavioral genetics; see, for exam-
ple, [25].

For the purposes of evaluating familial resem-
blance, path models are based on multifactorial inher-
itance, which means that multiple genetic and/or
familial environmental effects contribute to the
resemblance within families where none of the indi-
vidual effects is large. In turn, the genetic effects are
assumed to be polygenic (see Polygenic Inheritance)
(i.e. many genes each with a small and equal effect).
While some models accommodate interactions at the
polygenic level, polygenic effects are often assumed
to be additive, and this is the case in the path analysis
models used in genetic epidemiology.

Under a given path model, correlations among the
variables (or, more specifically, among phenotypes
of family members) can be derived either by taking
the mathematical expectations of products of (stan-
dardized) variables, or directly from the path diagram
following a simple set of tracing rules (see [19]).
The gist of the method of path analysis consists of a
comparison of these model-based correlations, which
are functions of unknown parameters, with the actual
data. Fitting path models to family data needs appro-
priate statistical methods for obtaining consistent and
efficient estimates of the parameters of the model,
as well as for testing specific null hypotheses. Path
analysis usually considers a series of hypotheses and
rejects some as being inconsistent with the data, thus
leading to what appears to be a plausible model for
the observed data. For recent reviews of path analysis
in genetic epidemiology see [25] and [16].

The basic path model for familial resemblance
described in what follows can be extended to suit
other needs. For example, it is easily expanded to
include temporal and developmental variations across
time, to assess heterogeneity among multiple studies,
and to assess multiple correlated traits simultaneously
(i.e. multivariate analysis). The complexity of the
models depends on the particular need as well as
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Figure 1 Path diagram for the basic model. Part (a)
depicts the generic model involving a combined familial
component (T ) and a residual (R). Part (b) depicts the spe-
cific model with latent genetic (G), familial environmental
(C), and residual (R) sources of phenotypic (P ) variation
in an individual. Path coefficients are defined in the text

the type of data collected and the type of family
structures represented in the families.

The Basic Model

At an individual level, one may distinguish between
two variations of the basic model (Figure 1). A
generic model (Figure 1(a)) postulates that the mea-
sured variable (the phenotype P ) is derived from
the additive effects of two sources: the total familial
effect, where both genetic and familial environmental
effects are lumped together (T ), and a residual that
is not familial (R). A specific model (Figure 1(b))
further splits the total familial effect (T ) into a sep-
arate genetic effect (G) which is assumed here to be
polygenic with additive gene action, and a familial
environmental effect (C). The observed (measured)
variables are shown in squares and latent (unob-
served) variables are shown in circles.

The Generic Model

In terms of the corresponding unstandardized vari-
ables (P ∗, T ∗, and R∗, each with zero mean), the
generic basic model may be expressed as

P ∗ = T ∗ + R∗, (1)

where the familial and residual effects are assumed
to be uncorrelated. The total phenotypic variance is
given by

σ 2
p = σ 2

t + σ 2
r , (2)

where σ 2
x denotes the variance of X. The com-

ponents (σ 2
t and σ 2

r ) are called variance compo-
nents. The basic structural equation underlying this
model is obtained by dividing both sides of (1)
by σp:

P = tT + rR, (3)

where P, T , and R denote standardized variables, and
the standardized partial regression coefficients t and
r , called path coefficients, are given by

t = σt

σp

and r = σr

σp

. (4)

The variance of P in (3) defines what is called the
equation for complete determination:

t2 + r2 = 1, (5)

the components of which provide the variance com-
ponents relative to the total phenotypic variance.
Therefore, the components of (2) may be referred
to as absolute variance components, while those
of (5) may be called relative variance compo-
nents.

The Specific Model

Likewise, the specific model may be expressed as

P ∗ = G∗ + C∗ + R∗. (6)

Although exceptions exist in the literature (e.g.
see [25]), here all three causes are assumed to be
uncorrelated with each other and to act additively to
produce the phenotype. The corresponding structural
equations, absolute and relative variance components,
and path coefficients are given by

P = hG + cC + rR,

σ 2
p = σ 2

g + σ 2
c + σ 2

r ,

h2 + c2 + r2 = 1,

(7)

h = σg

σp

, c = σc

σp

, r = σr

σp

.

Historically, the classic quantitative genetic model
postulated that the phenotype was merely derived
from the additive effects of genes and (residual) envi-
ronments, where the environment was totally non-
familial. This is equivalent to the specific model
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without the familial environment (C). The equa-
tion for complete determination would reduce to
h2 + r2 = 1. Because all familial effects are then
only due to genes, h2, the proportion of pheno-
typic variance explained by the genetic component
(G), was simply called heritability. With the intro-
duction of familial nongenetic effects, vis-à-vis the
familial environment (C), some prefer to call h2

the genetic heritability. Likewise, one may define
cultural heritability (c2) as the proportion of the
phenotypic variance explained by the familial envi-
ronment. In the specific basic model, h2 and c2 are
the two unknown parameters, since r2 is readily
obtained from (7). If it were possible to measure the
underlying genes and environments (G and C), then
this model would be identified and we could esti-
mate the heritabilities directly from individual data.
However, lacking such measures, we have to resort
to indirect methods of estimating them and testing
hypotheses about them from particular types of fam-
ily data.

Path Models for Familial Resemblance

Extending the basic model for an individual (Fig-
ure 1) to groups of related individuals (families)
involves additional assumptions. These concern spec-
ification of marital resemblance and assortative mat-
ing, transmission from parents to offspring and other
effects that are unique to subjects and their relatives.
One of the simplest extensions is to nuclear families
consisting of parents and offspring, which demon-
strate most of the concepts.

Nuclear families are the most frequently used
study design for assessing family resemblance, and
have the advantage of providing the most representa-
tive sample of the population to which the results are
to be generalized. However, phenotypic data alone
from nuclear families do not provide enough informa-
tion to differentiate between genetic and family envi-
ronmental (cultural) sources of family resemblance.
Therefore, such data can be used only to assess
the combined effect of both genetic and cultural
effects. To resolve the genetic and cultural sources
of variance, several strategies have been developed
which use either additional types of family members
such as twins, adoptees, and extended families, or
use measured variables to index the latent familial
environment.

PF PM

TF TM

t tu

TC1
TC2

τF τF τM τM

t t

PC1
PC2

r r

RC1
RC2

ρ

Figure 2 TAU path model of resemblance among rela-
tives in nuclear families. P denotes a phenotype, T indi-
cates transmissible influences, and the subscripts F, M, C1,
and C2 denote father, mother, and two children, respec-
tively. R denotes nontransmitted residual environment. Path
coefficients are defined in the text

Simple Familial Model for Nuclear Families (TAU
Model)

In the absence of additional information, the famil-
ial components h2 and c2 are not resolvable in
nuclear families. However, the basic generic model
(Figure 1(a)) is useful in this context. This model of
familial resemblance, shown in Figure 2, has been
termed the TAU model by Rice et al. [37]. The TAU
model for nuclear families in Figure 2 depicts a father
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Table 1 Expected correlations for nuclear families predicted under the TAU (Figure 2)
and BETA (Figure 3) models

TAU model BETA model
Correlation between

Expected correlations Expected correlations

(PF, PM) t2u uc2

(PF, PC) t2(τF + uτM) (1/2)h2 + c2(fF + ufM)

(PM, PC) t2(τM + uτF) (1/2)h2 + c2(fM + ufF)

(PC1 , PC2 ) t2(τ 2
M + τ 2

F + 2uτMτF) + r2ρ (1/2)h2 + c2ψ

Note: ψ = b2 + f 2
F + f 2

M + 2ufFfM.

(F), mother (M), and two children (C1 and C2) yield-
ing four correlations (rFM, rFC, rMC, and rC1C2 ). An
additional latent residual variable (R) reflecting addi-
tional environments shared only by sibs is included
in order to account for the possibility that sib-
ling correlations can be higher than parent–offspring
correlations. The parameters of the model include: t

(the square root of the proportion of phenotypic vari-
ance explained by familial factors); u (the correlation
between spousal transmissible effects); ρ (the resid-
ual sibling correlation); and τF and τM (the effects
of the transmissible factor of fathers and mothers,
respectively, on that of a child). Using structural
equations or path analysis tracing rules [19], the four
correlations can be expressed in terms of the path
coefficients, as shown in Table 1. Maximum likeli-
hood techniques are then used to estimate the path
coefficients and test hypotheses about the model, as
discussed later. However, because there is insufficient
information in nuclear family data to estimate all five
path coefficients, we need to make some additional
assumptions. In one case, τF may be fixed at the
value of 1/2 (expected under polygenic inheritance),
and τM can differ from 1/2 to allow for maternal
influences. Alternatively, if the sibling phenotypic
correlation is less than both parent–child correla-
tions, then ρ may be fixed at 0 and both τM and
τF estimated in addition to t and u. Another alter-
native is the pseudo-polygenic model, where both
τF and τM are fixed to 1/2 and only t, u, and ρ

are estimated. It is called pseudo-polygenic because
the τ s may equal 1/2 due to nongenetic causes as
well. Extensions of the TAU model include sex dif-
ferences in the parameters and alternative sources
of spouse resemblance (i.e. social vs. phenotypic
homogamy).

PF
PM

h c u
c h

GF CF
CM GM

1/2

1/2 fF fM

fF

1/2

1/2fM

GC1
CC1 b b

CC2
GC2

B
c ch h

PC1
PC2

Figure 3 BETA path model of resemblance among rela-
tives in nuclear families. P , G, and C denote phenotype,
genotype, and familial environment, respectively. Sub-
scripts F, M, C1, and C2 denote father, mother, and two
children, respectively. B is the nontransmitted common sib-
ship environment. Path coefficients are defined in the text

Genetic and Familial Environmental Effects
(BETA Model)

A more informative model which permits differenti-
ation between the genetic and cultural heritabilities
as noted in (7) above is depicted in Figure 3 for
nuclear families. This model was termed the BETA
model by Rice et al. [37]. As in the specific basic
model, each phenotype is assumed to be caused by
genes (G), family environments (C), and a resid-
ual (R). Also, there is another latent variable (B)
reflecting additional shared sibling resemblance. The
parameters in the BETA model include: h (square
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root of genetic heritability); c (square root of cultural
heritability); u (correlation between familial environ-
ments of mates); b (additional correlation between
sibling familial environments); and fF and fM (pater-
nal and maternal, respectively, cultural transmission).
Genetic transmission is fixed at 1/2 since each par-
ent transmits half his/her genes to his/her offspring.
The correlations expressed in terms of the path coef-
ficients under the BETA model are also given in
Table 1 (last column). A more detailed discussion of
the BETA model and its theoretical development can
be found elsewhere [3, 4, 31–33, 41]. Extensions of
the BETA model include intergenerational differences
in the genetic and environmental heritabilities (e.g. h2

in children vs. h2z2 in adults), and alternative sources
of spouse resemblance.

When nuclear families consisting of fathers, moth-
ers, and children are used, the BETA model is not
identified, since there are more unknown parame-
ters (six) than observed correlations (rFM, rFC, rMC,
and rC1C2 ). There are two basic approaches which
have been taken to resolve the BETA model. The
first method stays within the basic nuclear family
approach and involves introducing additional imputed
variables into the model, which generates additional
equations and affords resolution of the model. For
example, one approach was taken by incorporating
the concept of an environmental index measured for
each individual in the family, which was assumed to
be an imperfect estimate of C [33], thus generating
two “observed” variables on each member (the phe-
notype P and an index I ). This provides enormous
power for resolution of genetic and familial environ-
mental effects. Unfortunately, unless the indices are
based on extensive information, they are known to
underestimate the familial environmental effect (c2)

and overestimate the genetic heritability (h2) [35].
Alternately, extended families or pedigrees pro-

vide additional information on other relationships
such as uncle–niece, half sibs, and first cousins.
While this information helps to fit contemporary path
models (such as the BETA model) to analyze the
data, it also poses two challenges. First, it is dif-
ficult to model cultural transmission adequately for
more remote relatives. Secondly, as the degree of
relatedness decreases, the information about genetic
heritability relies on increasingly larger multiples

of small differences in correlations. For these rea-
sons, arbitrarily large pedigrees are not ideal for path
analysis. Therefore, when extending nuclear family
designs, the benefits associated with increased identi-
fiability should be weighed against the potential error
associated with the design. However, nuclear families
with twin offspring provide a more appealing design.
Several investigators have taken advantage of an even
more complex study design involving twins and their
spouses and offspring [6, 25].

Simple Twin Model of Family Resemblance

One of the simplest designs capable of resolving
genetic and cultural heritabilities is the twin study
(see Twin Analysis). Monozygotic (MZ) twins share
all of their genetic material, while dizygotic (DZ)
twins are genetically only as similar as full sib-
lings and share half of the genotype (see Zygosity
Determination). Assuming that the correlation due
to familial environmental effects is identical for both
types of twins, the most commonly used estimates
of genetic (h2) and cultural (c2) heritabilities are:
h2 = 2(rMZ − rDZ), and c2 = 2rDZ − rMZ, where rMZ

and rDZ are the observed twin correlations estimated
from the data. A path diagram of the basic twin model
is shown in Figure 4. Each member of the twin pair
has his/her their own phenotype (P ), genotype (G),
and unique or residual environment (R), but the pair
shares a common familial environment (C). The addi-
tive genetic correlation (path between G1 and G2) is
1.0 for MZ and 1/2 for DZ twins. The standardized
path coefficients h and c are the square roots of the
genetic and cultural heritabilities, and r [derived such
that r2 = 1 − (h2 + c2)] represents the effect of the
unique environment on the phenotype. A powerful
(yet rare) design for directly estimating genetic heri-
tability involves the study of MZ twins reared apart
(e.g. [22]). Since these twin pairs are assumed to
share exactly the same genes and no common envi-
ronments, the simple MZ twin correlation reflects the
genetic heritability.

Adoption Model of Family Resemblance

Adoption studies permit a direct assessment of
genetic and cultural heritabilities because, under ideal
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G1 C G2

P1 P2

R1 R2

h c c h

r r

1 for MZ twins
1/2 for DZ twins

Figure 4 Path model of twin resemblance. P1 and P2

are the observed quantitative phenotypes for two members
of a twin pair; G1 and G2 denote latent additive genetic
effects which are correlated (1 for MZ twins and 1/2 for
DZ twins); C is the latent familial environment shared
by both members of a twin pair; R1 and R2 are latent
residual environmental influences not shared by the twins.
Path coefficients are defined in the text

circumstances, any resemblance between an adopted
child and his/her biological parents will be due
strictly to genetic effects, and resemblance between
an adopted child and adoptive parents (and between
adopted siblings) should be attributable strictly to
familial environmental effects. In principal, adoption
studies are one of the most powerful designs for
separating genetic and cultural effects, but in prac-
tice full adoption studies are rare, especially those
with measurements on the biological father. A note-
worthy exception is the Colorado Adoption Project
(e.g. [8]). The more common partial adoption studies
include those where measures are available only on
the adoptee and one set of relatives, usually the adop-
tive family. While this design allows direct estimation
of the cultural effect, critical assumptions regarding
selective placement are not testable. An additional
crucial assumption is that adoptions take place at (or

shortly after) birth so as to preclude any shared envi-
ronmental resemblance with the biological parents.

Other Developments

Combining multiple family designs into a single
approach by using the most informative relationships
(e.g. [12]) is one way to overcome the weaknesses
of individual approaches. One of the most appealing
designs combines nuclear family data with the basic
twin design which permits: explicit modeling of com-
plex effects (i.e. separation of genetic and cultural
heritabilities); testing critical assumptions (e.g. par-
ent–offspring, sibling, and marital resemblance); and
some cross-checks for consistency of the model fit to
the data (e.g. see [25]). In one of the more powerful
twin-family designs, twins (as well as nontwins) are
included as offspring in the nuclear family (e.g. [12]).
Another combined approach incorporates data on
spouses and offspring of adult twins [5]. Here, the
cousins (offspring of MZ twins) are biological half
siblings. While these combined designs provide a
wealth of information regarding marital resemblance,
maternal vs. paternal effects, and sex-linkage, they
present difficulties in modeling cultural transmission
across the resulting nonnuclear relationships.

Spouse resemblance is a critical aspect in path
models (see Assortative Mating), and if not
accounted for can lead to bias in the genetic
and cultural heritabilities [24]. Alternate models of
spouse resemblance include correlations between
the transmissible factors and/or genotypes of mates
(called social homogamy; [33]), or between the
phenotypes of mates (called phenotypic homogamy),
usually modeled as a copath [3]. Models for
phenotypic homogamy in the presence of cultural
inheritance were developed and studied extensively
by Wright [41], Cloninger et al. [4], and Jencks [14].
A path model for generalized assortative mating,
called mixed homogamy, was presented by Rao
et al. [32], in which both phenotypic homogamy
and social homogamy were incorporated. However,
distinguishing between these sources of marital
resemblance is difficult using only nuclear family
data, and additional information such as twins [6]
or multiple measurements in the spouses are needed
in order to identify the model. Heath & Eaves [11]
presented a model involving MZ and DZ twin pairs,
their spouses, and offspring which allows one to
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estimate all possible sources of resemblance between
mates and to test alternative hypotheses.

Temporal and developmental trends have also
been explored (e.g. [13, 27, 28, 7], and [30]). Models
with temporal changes in genetic and cultural
heritability that give rise to changes in family
resemblance have been developed for family data
(e.g. [13, 27], and [28]) twin data (e.g. [7]) and
adoption data (e.g. [26]), and some of these will be
discussed later.

It must be clear from the preceding discussion of
familial models that we cannot fit any given model to
any type of data set. A given model requires certain
type(s) of data. For example, even the simple TAU
model cannot be fitted to nuclear family data without
making additional assumptions. On the other hand,
data on MZ and DZ twins alone can resolve genetic
(h2) and familial environmental (c2) components
under certain assumptions. The type of data at hand
determines what kinds of questions can be answered
by a study.

Statistical Analysis

When dealing with family data of one type or another,
the method of choice is maximum likelihood under
the assumption that all the observed variables within
a family jointly follow a multivariate normal distri-
bution. To illustrate the method, let us consider a ran-
dom sample of nuclear families with variable sibship
sizes. Let X′ = (X11, X21, X31, X32, . . . , X3s) denote
the row vector of phenotypes for the father (X11),
mother (X21), and s children (X3k , k = 1, . . . , s).
Assuming that the means and variances are equal for
all children, the vector of means (µ′) of X′ is given
by (µ1, µ2, µ3) for the father, mother, and offspring,
and the corresponding variances are σ 2

1 , σ 2
2 , and σ 2

3 .
A correlation matrix (R) is defined as the one that
consists of the intercorrelations among all variables
in X′. Depending on the model, many of the elements
of the correlation matrix can be further equated. For
example, in the nuclear family TAU model, there are
four independent correlations:

spouse ρ(X11, X21),

(8)
father–child ρ(X11, X3k), k = 1, . . . , s,

mother–child ρ(X21, X3k), k = 1, . . . , s,

sibling ρ(X3k, X3l), k �= l = 1, . . . , s.

In path analysis, these correlations are expressed as
functions of the path coefficients of the model (see
Table 1). The covariance matrix (�) is defined in
terms of the correlations (or path coefficients) and
variances (� = σ ′Rσ , where σ is a diagonal matrix
of standard deviations).

Assuming that the data vector X for a given family
follows a multivariate normal distribution, the log-
likelihood function for the family is given by

ln L = −
(

1

2

)
[ln |�| + (X − µ)′�−1(X − µ)]

+ constant, (9)

where |�| is the determinant and �−1 is the inverse
of the covariance matrix �. The total log-likelihood
function for a sample is derived by summing across
the families. Because the likelihood function is com-
puted separately for each family and the model
is fitted directly to the data, a fixed family struc-
ture is not required. Therefore, missing data are
allowed, as are variable sibship sizes. Parameters of
the model (path coefficients, means, and variances)
are estimated simultaneously by maximizing ln L.
Maximization routines commonly used in genetic epi-
demiology include GEMINI and ALMINI [17]. Tests
of hypotheses are conducted by comparing the log
likelihoods across different models. The likelihood
ratio test, which is the difference between −2 ln L

with k + w parameters estimated and −2 ln L when
only k of the parameters are estimated, is asymptoti-
cally distributed as a χ2 with w degrees of freedom.
The only requirements for this asymptotic distribution
are that the reduced model (with only k parameters)
must be nested within the more general model (with
k + w parameters) and the reduced model must not
be on the boundary of the more general model (see
Generalized Linear Model).

The familial sources of variation may also be esti-
mated as variance components (see Genetic Corre-
lations and Covariances). The maximum likelihood
methods described here are formally equivalent for
both variance components analysis and path analy-
sis. The advantage of path analysis is that the model
is schematically represented, and all assumptions are
obvious from examining the diagram. Several com-
puter programs for estimating familial effects using
family data are currently available (see Software for
Genetic Epidemiology).
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Modeling Assumptions

Implicit in the path models are several assump-
tions. Linearity and additivity (see Additive Model)
of effects represent two fundamental assumptions.
Choice of scale is important for these assumptions to
hold, and such a scale may not exist for some vari-
ables. Secondary assumptions include the absence of
gene–gene interactions (dominance and epistasis (see
Genotype), and gene–environment interactions). It
is also assumed that the genes and familial envi-
ronment (partly) determine the phenotype, and not
vice versa, and that parental genes and environments
determine those of the offspring. While these assump-
tions may be reasonable for many phenotypes, in
some situations they may not be. For example, the
phenotype may temporally influence the environment,
such as when high blood pressure may modify a
person’s subsequent lifestyle. Additional assumptions
concern the resemblance between parents (see Assor-
tative Mating). We generally assume that spouses
resemble each another only due to their correlated
environment (u). However, if spouse selection is
based in part on the phenotype of interest, and if there
is a partial genetic determination for that trait, then
the correlations between parents may also include a
genetic component (mixed homogamy). Violations of
any of these modeling assumptions can give rise to
errors in inference [24].

Maximum likelihood methods require certain dis-
tributional assumptions. For example, the assumption
of multivariate normality is critical, especially for
hypothesis testing which is sensitive to moderate
departures from normality [23]. Deviations from nor-
mality can be controlled using suitable data transfor-
mations. Although transformations do not guarantee
multivariate normality, they tend to minimize the
impact [31].

Nonrandom Samples

The maximum likelihood techniques described for
random samples can be used to analyze data that have
been collected under an ascertainment scheme that
provides a selected sample, if adjustment for ascer-
tainment is incorporated into the likelihood function.
One method of adjusting for single ascertainment
through a proband is by conditioning the likelihood
function for a particular family on the phenotypic

value of the proband [1]. The conditional likelihood
for a family given the proband’s phenotype value
is then:

L(X|Xp) = fk(X)

f1(Xp)
, (10)

where X is the (k + 1)-dimensional vector of data
for a family, Xp is the proband’s phenotypic value,
and fk is the k-variate normal density function.
This conditional likelihood approach is generally
used for any sample of families each of which
is ascertained through a single proband, and for
that reason is termed the generic method [36]. If a
particular variable (such as the father’s phenotype)
is the variable on which selection occurs in every
family, then there is no information for estimating
the mean and variance of that variable and these
parameters must be estimated from other sources.

Additional information regarding ascertainment
can be used to increase the efficiency of estima-
tion and power of hypothesis tests [36]. For example,
there are different methods to correct for ascertain-
ment when probands are selected by truncation on
the distribution of a phenotype or a correlated trait,
such that families of probands whose selection vari-
able lies above a defined threshold are included in the
sample (otherwise they are excluded). Provided the
region of truncation is known and adherence to the
sampling scheme is maintained, then specific meth-
ods to correct for ascertainment are available and
provide more efficient parameter estimates and more
powerful hypothesis tests. If the region of trunca-
tion is not known and must be estimated, then the
generic method and the specific method are approx-
imately equal in efficiency and power. The generic
method is computationally simpler and easier to
implement and is relatively robust (see Robustness)
to departures from adherence to the truncation sam-
pling scheme.

Another method for adjusting for nonran-
dom ascertainment was developed by Hanis &
Chakraborty [10]. This method yields accurate esti-
mates of parameters for most types of nonrandom
sampling, and is robust against departures from mul-
tivariate normality. However, it is computationally
intensive and provides only approximate tests of
hypotheses, and while it can be theoretically applied
to multiple ascertainment schemes, the sample sizes
required for implementation become impracticably
large [34].
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Temporal/Developmental Trends

Three kinds of temporal trends may be distinguished
for quantitative traits. First, the mean of the popula-
tion can change systematically over time. These mean
effects are relatively easy to detect, and the clinical
relevance of such trends quantify how the average
individual in the population will change over time.

The second kind of temporal trend occurs when
the variance changes over time/age. Such hetero-
scedasticity with time, a second-order effect, is more
difficult to diagnose and is often viewed as a nuisance
that must be dealt with rather than an effect of
primary interest. Temporal changes in the mean and
variance can be dealt with outside of familial models
simply by analyzing the residual phenotype after
adjusting for age in both the mean and variance.

The third kind of temporal trend manifests in
the correlations (or covariances) between related
individuals. These trends are more complex because
two ages are involved (one for each individual),
and are both interesting and important to investigate
from a genetic epidemiological point of view. It
is natural to ask whether the familial components
within the path model framework also vary as a
function of time. The presence of secular trends
(e.g. increased obesity in the population over time)
could be manifesting as intergenerational differences
in genetic or cultural heritabilities. Developmental
trends, as for example growth spurts characteristic
in adolescence before attaining more stable adult
values, also may be a function of intergenerational
differences in the genetic or cultural heritabilities.

Several models take the approach of assuming a
particular temporal structure of the genotype (and
environment) that gives rise to the temporal changes
in family resemblance [2, 7, 13, 18]. For example,
Eaves et al. [7] presented a developmental model that
includes one constant pool of genes acting with con-
stant effect throughout all time, and at each time
point a specific set of genes that is active at that
time and no other. Such a model predicts exponential
trends in overall heritability. Boomsma & Mole-
naar [2] model the genotype (and environment) as
a first-order autoregressive process (see ARMA and
ARIMA Models), with each pool of genes depend-
ing only on the previous time’s pool. This model
gives rise to a simplex temporal structure. Each of
these models make assumptions about the underly-
ing genetic mechanisms and therefore anticipate a

particular kind of temporal change. Other models [27,
28, 30] make no assumptions about the gene action.
There is a myriad of alternative genetic mechanisms
that can cause temporal variability. For example,
there can be a variable lag time between gene action
and observed product, or more than one common set
of genes acting independently over time, or pools of
genes acting with one magnitude of effect at one time
and a different magnitude at another time, or environ-
mental triggers of gene action, etc.

A simple extension of path models that incor-
porates time-dependent effects using cross-sectional
family data may be considered for analyzing phe-
notypes that warrant temporal effects. For example,
the basic structural equation in (7) may be extended
so that each parameter is made a function of the
individual’s age (A):

P(A) = h(A)G + c(A)C + r(A)R. (11)

It is possible to describe the temporal variability in
h(A) and c(A) as continuous functions of age and
the two basic parameters at birth (h and c). An
important feature of this extension is that it enables
testing null hypotheses of alternate forms of temporal
trends as well as no temporal variation at all. The
simple TAU model has been expanded to incorporate
temporal trends in the familial correlations using
cross-sectional data [27]. The path coefficients are
functions of an individual’s age [i.e. t (A) and r(A)],
and the residual sibling correlation is a function of
the absolute age difference between the sibs. The
effects of parental transmissible factors on those
of their children (τF, τM) are the same for each
child, regardless of age, and the spouse correlation
is also assumed to be a constant. The functional
forms available for modeling the age trends are
chosen such that virtually any shape of trend can
be modeled. For example, it is possible to choose
a function that permits the heritability to increase or
decrease monotonically, or to increase (decrease) up
to a certain age and then decrease (increase) again
to a different value. A detailed discussion of the
available functional forms and the justification for
their parameterization can be found elsewhere [27].

A restriction in this model based on cross-sectional
family data is that the genes, habits, etc. that parents
give to their children are constant in their effects over
time, although all individuals express these factors
in the phenotype to varying degrees as a function
of their age at the time [t (A)]. However, temporal
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models based on longitudinal or repeated measures
family data (e.g. [30]) allow for temporal changes in
several components, including the mean and variance
functions, the transmissibility, the marital residual
correlation (which is a function of the cohabitation
time), and the sibling residual correlation. In the
repeated measures temporal model, the familial and
nonfamilial components are modeled as a correlation
between the residuals of a pair of repeated mea-
sures on the same individual. The later component
exists even if the phenotype is nonfamilial. Another
feature is that with repeated measures the model is
completely resolvable in nuclear families, whereas
the classic TAU model and the cross-sectional trend
extension are not fully identified.

Multivariate Models

A simple approach for addressing multivariate ques-
tions using only univariate path models involves
preadjusting one variable for the effects of a sec-
ond variable using multiple linear regression. The
residual score from the regression represents the inde-
pendent effects of the first variable after those from
the second have been removed. Comparison of the
univariate results prior to and after the adjustment
suggests whether the same or different familial fac-
tors underlie each of the traits. While this approach
is relatively simple to perform, a more informative
approach is to analyze correlated variables simultane-
ously with multivariate methods. Although increased
computation is associated with multivariate analy-
sis, there are several advantages, including greater
power to detect effects, and the ability to resolve
bivariate correlations into genetic and familial envi-
ronmental effects.

Formal multivariate path analysis decomposes the
phenotypic covariance of two or more traits into
additive genetic and familial environmental correla-
tions. Figure 5 illustrates the path diagram for two
correlated traits P1 and P2 for the simple case of
uncorrelated G and C in an individual. The expected
correlation between P1 and P2 is

rP1P2 = h1rGh2 + c1rCc2, (12)

where h1rGh2 is the standardized genetic covari-
ance and c1rCc2 is the standardized environmental
covariance. This expression reduces to h2 + c2 when
P1 = P2.

G1 C1 G2 C2

rG rC

h1 c1 h2
c2

P1 P2

Figure 5 Path model of genetic (G) and familial envi-
ronmental (C) influences on two correlated phenotypes (P1

and P2) measured on the same individual

In the context of path analysis of multivariate
family data, the basic structural model is invoked
repeatedly for each phenotype, so that the system
of linear structural equations defining a multivariate
system is given by (Pi = hiGi + ciCi, i = 1, . . . , k)
which can be represented in general matrix formula-
tion simply as

P = hG + cC, (13)

where P, G, and C represent (k × 1) column vectors
of phenotypic, genetic, and environmental standard-
ized deviations from the mean, respectively; h repre-
sents a (k × k) diagonal matrix containing the square
roots of the genetic heritabilities of the k traits; and
c is a (k × k) diagonal matrix containing the square
roots of the proportions of phenotypic variance that
are attributable to the environment.

The structural equation is used to derive the matrix
of expected covariances within individuals, or the
phenotypic correlation matrix RP :

E(RP ) = hRGh′ + cRCc′ + hsc′ + cs′h′, (14)

where RG is the matrix of correlations among
the genotypes for each variable within an individ-
ual, RC is the environmental correlation matrix,
and s is a full, nonsymmetric matrix consisting of
the genotype–environment correlations among all
measures.

In the context of a family design, the algebraic
derivations for expected correlations among rela-
tives are essentially obtained by using the univariate
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model. However, each variable in the diagram re-
presents not a single measure, but a (k × 1) col-
umn vector of measures, and path coefficients rep-
resent (k × k) diagonal matrices of path coeffi-
cients. Tracing rules for multivariate diagrams is
straightforward, consisting of the conventional path
analysis rules [19] with extensions developed by
Vogler [39].

There is little difference between the analysis of
multiple phenotypes measured simultaneously and
the analysis of the same character in an individual
at different points in time. When multiple measures
are obtained at discrete points that are identical for
all individuals, the multivariate methods presented
here can be applied directly to developmental or
longitudinal data.

Combined Path Analysis

Many traits are multifactorial and complex in the
sense that there are a number of genetic and/or non-
genetic determinants. For each of these traits it is
highly unlikely that anything close to “the gene” will
ever be discovered that explains most of the varia-
tion for that phenotype and solves the whole puzzle.
Instead, the genetic component of many of these traits
is expected to be in the oligogenic (few genes) to
polygenic (many genes) range. What we know so
far leads us to expect an elaborate interplay between
many factors in the development of the phenotypes,
including gene–gene and gene–environment inter-
actions. While much analytic progress can be made
using the standard genetic tools of path analysis, seg-
regation analysis, and linkage analysis, a combined
approach is potentially more powerful and holds great
promise for these traits. Indeed, a combined approach
may be the only way to disentangle the interplay of
the multiple underlying processes. The utility of this
approach has been demonstrated through combined
segregation and path analysis.

The general model [29] includes both a segrega-
tion component (g) and a multifactorial path model
component (m), as well as fixed effects (f ), so
that the phenotype (P ), univariate or multivariate,
is determined by

P = g + m + f + r, (15)

where r is the residual. In this formulation g can
denote any number of major genes, with whatever

pleiotropic effects they may have on the (multi-
variate) phenotype(s), and m denotes an arbitrary
path model so that m may be a linear expres-
sion with many terms containing multiple heritable
components. Likewise, f represents any number of
fixed covariate effects (e.g. sex, age, measured geno-
types). Eq. (15) defines a set of regression equations
for each person in a pedigree that are then linked via
both m and g. Interactions among effects (e.g. g ×
f ) can be included in the model. No distributional
assumptions need be made about observable fixed
effects such as sex. The segregation portion of the
model is an independent additive term in the regres-
sion equations, above and beyond any specified by
the path analysis part of the combined model. For
models with a segregation component, the log like-
lihood of each pedigree is partitioned as a sum of
conditional probabilities over every possible latent
genotypic vector. With large numbers of subjects per
pedigree, however, an exact likelihood formulation
can be impracticable to compute. Finally, consider-
able progress has been made in combining path and
regressive models by extending the regressive models
to incorporate the simple TAU model [21] as well as
the BETA [20] model.

Conclusion

Going from genes and their products to the expression
of normal variation involves a leap of faith, and
complex statistical procedures are often necessary to
demonstrate a relationship between the two. Here we
have discussed one such procedure (path analysis)
that attempts to relate the observations to the under-
lying determinants.

Important considerations include alternate family
designs (e.g. families, twins, adoptions) as well as
alternate models of family resemblance (e.g. uni-
variate, multivariate, TAU or BETA, marital resem-
blance, temporal trends). The increasing availability
of computer programs that empower the genetic epi-
demiologist to create appropriate models to fit their
data, instead of forcing their data to fit existing mod-
els, is particularly helpful in testing alternate modes
of genetic and cultural transmission. The relatively
new approach of combining models (e.g. path and
segregation analysis) should yield new insights into
determining how the multiplicity of causes under-
lying a phenotype are interrelated. Figure 6 illus-
trates a possible scenario for complex phenotypes
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Figure 6 Hypothetical model of the underlying genetic and environmental factors giving rise to a complex phenotype.
Modeling approximations are shown at the bottom

using body mass index (BMI) as an example. The
figure illustrates how complex phenotypes are deter-
mined by multiple genes, multiple environments, and
interactions among them. The complicated reality is
often approximated by simple and feasible models,
as shown at the bottom of Figure 6. Path analysis
offers a promising method for disentangling these
underlying causes by formulating simple refutable
hypotheses.
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Path Analysis

Path analysis is a statistical methodology that begins
with a model. Each model consists of a system
of equations and assumptions about the relation-
ships between a set of variables. The variables can
be observed, latent (unobserved), or disturbances
(errors). In some applications the observed variables
are nonstochastic, but in nearly all models the latent
and disturbance variables are random variables. The
hypothesized model originates with the researcher.
Path analysis provides an algorithm for understand-
ing the direct, indirect, and total effect of one variable
on another in this hypothesized structure. It also
allows a test of whether the hypothesized model
is consistent with the covariances (correlations) of
observed variables. A lack of fit (see Goodness of
Fit) is an indicator of an error in model specification
(see Misspecification). A “good” fit lends plausibil-
ity to the model, but it does not rule out the possibility
of other models with as good, or superior, fits.

Path analysis was invented by Sewall Wright
in graduate school. His first publication using the
method was in 1918 [12]. One of the most common
misunderstandings about path analysis is the belief
that it is a tool to “discover” causal relationships (see
Causation). This critique accompanied the introduc-
tion of path analysis and periodically appears in the
contemporary literature. Wright explicitly denies this
in several places: “. . . the method of path coefficients
is not intended to accomplish the impossible task
of deducing causal relations from the values of the
correlation coefficients” [15, p. 193]. Instead, Wright
describes path analysis as a method that

depends on the combination of knowledge of the
degrees of correlation among the variables in a
system with such knowledge as may be possessed
of the causal relations. In cases in which the causal
relations are uncertain the method can be used to find
the logical consequences of any particular hypothesis
in regard to them [13, p. 557].

Thus, path analysis is best seen as a method to test
the implications of a given model structure.

The primary components of path analysis are:
(i) the path diagram, (ii) the estimation of path coef-
ficients, and (iii) the decomposition of effects. The
next sections provide details on each.

Path Diagrams

Path diagrams are pictorial or graphical representa-
tions of a system of equations and assumptions (see
Graphical Displays). The diagrams are most useful
for the analysis of two or more equations that link
observed or latent variables and disturbances or errors
to each other in a system. The path diagram is easy to
interpret and it readily reveals relationships that might
be missed if viewing only the equations of a model.
Furthermore, the tracing of effects across variables
also is made easier with the diagrams.

Figure 1 contains standard and some nonstandard
notational conventions in path analysis. A basic dis-
tinction between the variables is whether they are
latent (unobserved), observed, or disturbance (error)
variables. Each observed variable is enclosed in a
box. Latent variables appear in ellipses or ovals. Dis-
turbances are not enclosed in either, although some
researchers place disturbances in ovals to signify that
they are latent.

Other symbols are best illustrated by way of exam-
ples. Figure 2(a) is the path diagram for a multiple
regression equation with four explanatory variables
and one dependent response variable. The straight
line with multiple arrow heads coming down from
it and pointing to the X1 to X4 variables indicates
that each pair of variables is associated. The reason
for their association is not explained by the model.
In the language of econometrics, these are correlated
exogenous variables.

Each straight single headed arrow signifies the
influence of an X on Y1. The coefficients correspond-
ing to these paths are the path coefficients. Originally,
Wright used path coefficients that were equivalent
to what are commonly called standardized regression
coefficients. The standardized coefficient is the prod-
uct of the unstandardized coefficient times the ratio
of the standard deviation of the explanatory variable
to the standard deviation of the “dependent” variable.
Now it also is common to use unstandardized regres-
sion coefficients in path diagrams. The final symbol
in Figure 2(a) is the disturbance, ζ1, that summarizes
the other influences on Y1 besides those of the Xs.
Exogenous variables or disturbances (errors) that are
not connected by two-headed arrows are treated as
having no linear association. Thus, the lack of two-
headed arrows linking ζ1 and the Xs represents the
usual multiple regression assumption that the distur-
bance is uncorrelated with the explanatory variables.
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Observed variable

Latent variable

Influence (path) from variable at base to variable at 
head of arrow

Covariance between a pair of exogenous variables or 
between a pair of disturbances or errors

Covariances between all possible pairs of exogenous 
variables or disturbances/errors that are connected by
arrows

Categorical (or noncontinuous) observed variable

Nonlinear relationship between variable at base of arrow and
variable at head of arrow

Interaction or nonlinear combination of variables; the
nonlinear function can be written within the oval

Constant term of 1 (used for intercepts)

Standard Symbols

Less Standard Symbols

1

Figure 1 Symbols for path analysis

Figure 2(b) contains an example of a simultaneous
equations model. The equations that correspond to
this path diagram are:

Y1 = α1 + γ11X1 + ζ1,

Y2 = α2 + β21Y1 + γ22X2 + ζ2,

Y3 = α3 + β31Y1 + β32Y2 + ζ3,

cov(xk, ζi), cov(ζi, ζj ) �= 0,

E(ζi) = 0, i, j = 1, 2, 3 for i �= j, k = 1, 2.

The β and γ coefficients correspond to the straight,
single-headed arrows. Sometimes these coefficients
are placed on the arrows in the diagram. The αs
are equation intercepts. They often do not appear
in a path diagram to avoid cluttering the figure.
The curved arrows indicate correlations among the
exogenous variables. These are not explained in the
model. Although econometricians rarely use path
diagrams, they have considerable experience with
simultaneous equation models such as this.
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Figure 2 Examples of path diagrams. (a) Multiple regres-
sion; (b) simultaneous equation model; (c) confirmatory
factor analysis; (d) general model with product interaction
of latent variables

A factor analysis example is given in Figure 2(c).
The three latent variables (the ξs) are in ovals. The
indicators of the latent variables are the X variables
that are in boxes. Errors of measurement (δs) are
unenclosed. The lack of two-headed arrows con-
necting them to each other or to the latent vari-
ables signifies the assumption that these variables are
uncorrelated.

The final illustration of a path diagram is a more
complicated general model [Figure 2(d)]. This model
has both a latent variable structure that allows the

latent variables to influence each other and it has a
measurement model linking the measures to the latent
variables that influence them. In addition, this model
includes a product interaction of latent variables. The
nonlinear function of the latent variables that forms
the interaction term is inside the middle oval in
the diagram. The nonlinear linkage of variables is
diagrammed with a saw-toothed, single-headed arrow
from its components to the product latent variable.

Researchers can construct a wide variety of other
path diagrams from the basic symbols given in
Figure 1. In all cases the diagram is just an alternative
to a system of equations and assumptions that show
the relationship between variables in a model.

Estimation of Model Parameters

Wright originally used the path diagrams as an aid to
writing the variances and covariances of the observed
variables in terms of the parameters of the model. The
parameters included the coefficients in the equations
as well as the variances and covariances of the
exogenous variables and disturbances (errors). He
then would solve for the model parameters in terms
of the variances and covariances of the observed
variables. Contemporary estimation procedures are
more sophisticated and use maximum likelihood and
least squares methods (see Structural Equation
Models for more details).

Decomposition of Effects

Path analysis makes a distinction between the direct,
indirect, and total effects of one variable on another.
The direct effect is the influence of one variable on
another that is not mediated by any other variable
that is part of the model. It corresponds to the
coefficient of a variable in the original structural
form of an equation. The indirect effect is the effect
of one variable on another that is mediated by, or
passes through, at least one other variable in the
system. The total effect is the sum of the direct and
indirect effects. In the special case of simultaneous
equation models, the total effect equals the reduced-
form coefficients that econometricians use.

Figure 2(b) is useful for illustrating these defini-
tions. The variable X1 has a direct effect on Y1 of γ12

and X1 has zero direct effect on Y2 and Y3. The indi-
rect effect of X1 on Y2 is γ11β21, the product of the
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paths that connect these variables. The X1 variable
has two indirect paths to Y3: γ11β21β32 and γ11β31.
The total effect is simply the sum of the direct effect
and all the indirect effects. Since the X1 variable has
zero direct effect on Y3, its total effect on Y3 is the
sum of its indirect effects, i.e. γ11β21β32 + γ11β31.

The decompositions of effects in the multiple
regression in Figure 2(a) or the confirmatory factor
analysis of Figure 2(c) are less interesting since all
the effects are direct effects. Figure 2(d) with the
interaction of latent variables complicates the decom-
position since in such models the influences of the
component variables in the interaction depend on the
value that the other components of the interaction
take. See Stolzenberg [11] for guidance on inter-
preting the decomposition of effects in models with
interaction terms.

Several issues surround the discussion of the
decomposition of effects. First, general formulas exist
for the decomposition of effects [7] (see Structural
Equation Models) or for finding the effects that oper-
ate only through specific variables in the system [3].
Secondly, the decomposition of effects is always with
respect to a specific path model. If a researcher adds
intervening variables between two variables that pre-
viously had a direct relation, then in the new model
this new link would be indirect. Thirdly, definitions
of the decomposition of effects differ among authors
when unanalyzed associations between exogenous
variables or disturbances are in the model (e.g. [5]).
Two-headed arrows connecting variables signify that
the association between these variables is not ex-
plained by the model structure. This creates ambigu-
ity in understanding the effects that might occur with
a change in an exogenous variable. For instance, in
Figure 2(b) the X1 and X2 exogenous variables have
a linear association, but we do not show the reason
for that association in the path diagram. If, in reality,
X1 affects X2, a shift in X1 will lead to real influ-
ences beyond those estimated with the decomposition
of effects given above. In the decomposition of the
covariance (correlation) between two variables into
its structural components (see the section “Implied
Covariance Matrix” in Structural Equation Mod-
els), terms that involve the covariance (correlation)
of exogenous variables or disturbances are sometimes
called spurious effects. A final issue to consider is that
there is some work that has redefined the decompo-
sition of effects to conform to specific definitions of
causality that involve the manipulation of variables

in the model. These definitions can lead to differ-
ent decomposition formulations than those described
here [9].

Sewall Wright’s Contributions with Path
Analysis

Wright’s applications of path analysis led to many
innovations. His first application in 1918 modeled
size as a latent variable that underlied the dimensions
of rabbit bones [12]. His latent variable analysis was
developed without knowledge of Spearman’s [10]
article that independently proposed factor analysis. In
1925, Wright [14] employed path analysis to estimate
a longitudinal panel analysis with latent variables in a
study of corn and hog associations. This was decades
before similar models would become more common-
place in the social sciences. Goldberger [6] suggests
Wright’s use of path analysis in supply and demand
models was a forerunner of the simultaneous equation
approach later developed by econometricians. The
influence of Wright’s path analysis on sociometrics
is clearly seen in the many sociological publications
on the technique that began to appear in the 1960s and
1970s (e.g. [1, 2], and [4]). Provine’s [8] biography
documents Wright’s many contributions to evolution-
ary biology.

Since Wright’s early work, the path analysis tech-
nique has evolved in many directions. Its current form
is best represented in structural equation models.
These models and path analysis arc widely known in
the social sciences and are receiving renewed interest
in the biological sciences.
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Pattern Recognition

The term pattern recognition refers to a technology
that recognizes and analyzes patterns automatically
by machine. Human beings are of course subjective
experts in both the discernment and imposition of pat-
terns in nature; pattern recognition by machines com-
monly excludes gestalt theory, although figure/ground
phenomena and other aspects of sensory perception
are common to both. The present brief treatment of
various topics in pattern recognition favors breadth
over depth, application over theory. Pattern recogni-
tion has been employed successfully in many areas
of application including optical character recognition,
speech recognition, face recognition, remote sens-
ing (sonar, radar, and satellite), mining, and medical
image processing (see Image Analysis and Tomog-
raphy). Specific examples include automatic reading
of addresses and postal codes, both machine- and
handwritten; training a programmable computer chip
to recognize its owner’s voice in executing a lim-
ited command vocabulary; employee identification
through video camera security systems; classifica-
tion of picture elements (pixels) as containing water,
land, or ice in a satellite image of the earth’s sur-
face; tracking cracks and fissures in geological core
samples; breast cancer detection in digital mammog-
raphy (see Screening, Overview); karyotyping for
identification of chromosomal abnormalities; detec-
tion of ventricular fibrillation; and semiautomatic
classification of volume elements (voxels) in human
brain images as representing white matter, gray,
matter or cerebrospinal fluid. Data in all of these
cases are multivariate objects consisting of one-
dimensional temporal waveforms, two- or three-
dimensional images in space, and four-dimensional
time series of image volumes. Pattern recognition
involving automatic scene analysis is also known as
image understanding and computer vision [7]. Rel-
evant temporal/spatial patterns (signals) are often
obscured by irrelevant detail (noise). In addition to
analyzing differences in signal intensity and contrast,
pattern recognition also employs color, shape, and
texture gradients, as in counting and categorizing
different types of white blood cells for instance.
Statistical models for pattern recognition problems
help to decide what is and is not relevant and take
advantage of some form of averaging and aggrega-
tion across replications when possible and advisable

to reduce extraneous sources of variance and thus
increase signal-to-noise ratio. While pattern recogni-
tion techniques are widely used, many are patented
and only available commercially. There do not yet
exist definitive solutions to any one of the aforemen-
tioned general problems.

Relatives of Pattern Recognition in Other
Fields

In biostatistics, pattern recognition is not as well
established as in engineering and industrial applica-
tions, yet its status is changing as biostatisticians par-
ticipate in continued cross-fertilization with these and
other disciplines. The reasons for the relative paucity
of pattern recognition applications in biostatistics to
date may involve preferences in engineering and
industry for certainty over uncertainty, determinism
over randomness, in applications that do not seem
to warrant formal statistical inference. While the
availability of massive amounts of data may indeed
favor deterministic algorithms and reduce the need
for classical distributional assumptions in some cases,
statistical models of uncertainty and inference con-
tinue to play a central role in pattern recognition.
Some authors use the term statistical pattern recog-
nition to describe the line of research that probes
structure and pattern in very large data sets with-
out recourse to classical assumptions that may be too
inflexible for practical use. Yet there do not appear
to be major differences between statistical pattern
recognition and pattern recognition per se. What dif-
ferences, then, exist between pattern recognition and
its relatives: artificial intelligence, expert systems,
artificial neural networks, and machine learning?

Artificial intelligence is “the science of making
machines do the sorts of things done by human
minds” [3]. Expert systems “attempt to organize the
knowledge of human experts in [a] particular field. . .

[and] contain domain specific knowledge” [6]. An
artificial neural network is “a massively parallel
distributed processor that has a natural propensity
for storing experiential knowledge and making it
available for use” [1]. Machine learning is “generally
taken to encompass automatic learning procedures
based on logical or binary operations that learn a
task from a series of examples” [15]. A distinguishing
characteristic of pattern recognition is perhaps that no
direct analogy is made in its methodology to underly-
ing biological processes, animal or human brains and
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minds, real or imagined. Pattern recognition appears
most closely related to machine learning, decision
theory, and information theory, all of which rely
heavily on statistical theory and methods. In fact, the
related fields cited here have their origins in multi-
disciplinary interactions between engineers building
pattern recognition machines, biologists, mathemati-
cians, psychologists, and statisticians. Statistics is one
of the oldest fields to study pattern recognition prob-
lems and has perhaps seen the greatest duplication of
its approaches in other fields [6].

Classification

“Recognition” often means “classification”. In opti-
cal character recognition, for instance, automatic
algorithms are used to classify intensity patterns
in a scanned digital image of a printed page as
members of an alphabet of allowable characters.
Figure 1 is a portion of text, from [21], that has been
scanned, blurred, and degraded with different types
of noise. A commercial optical character recognition
algorithm, set at default values of tuning constants,
recognized italics as italics and correctly classified
98.7% (221/224) of the characters in the original,
sharper image. Instances of errors were “machrnes”
and “recogmtion”. The process took 2 seconds (112
characters per second) on an IBM-compatible PC
with a Pentium 133 MHz chip. While a 1.3% error
rate may be unacceptable in certain cases, as in
automatic processing of lottery tickets for example,
it is perhaps surprising that an off-the-shelf computer
program could do so well with no tuning or train-
ing whatsoever. An automatic spell-checker, another
pattern-recognizer, could have made good guesses in
replacing these nonwords to achieve a perfect match.

Figure 1 Optical character recognition is one example of
pattern recognition; text source, [21]

Adding a small amount of Gaussian noise to the
original image and repeating the optical character
recognition task, without retaining any information
on this particular set of characters from the previous
run, resulted in slight degradation of results (adding
“superrised” and “mtelligence” as errors). Blurring
the image slightly yielded similar results; adding sim-
ulated dust and scratches doubled the processing time
and decreased accuracy to 90.6% (203/224). With
such good performance, it may also be surprising
that none of the characters in the degraded image
in Figure 1, which includes Gaussian noise, blur,
dust, and scratches, was able to be classified cor-
rectly by the machine. A human reader can easily
obtain a perfect, meaningful classification. Although
a more finely tuned test could surely have done better,
this small experiment demonstrates that, in pattern
recognition, subjective (prior) knowledge plays an
important role and that adding noise to a signal is not
necessarily an invertible process. Another example of
the current necessity of subjective human judgments
is in the classification of pixels in human brain images
as white matter, gray matter, or cerebrospinal fluid,
the application mentioned in the introduction. While
sophisticated and highly successful pattern recogni-
tion algorithms exist to get the job done, this task
remains at best semiautomatic, requiring a technician
to clean up and make sense of automatic results that
are not realistic despite all efforts to the contrary by
neuroscientists building the tools. Nonetheless, a job
that would take hours if done manually takes min-
utes if done semiautomatically. A major attractive
feature of pattern recognition is its ability to yield
objective, automatic, and rapid results. Tedium and
human error in repetitive, routine tasks can often be
removed automatically by designing and implement-
ing clever algorithms. Errors can be further reduced
through screening of results by human operators in a
multistage process of quality control.

Feature Detection, Extraction, and
Classification

Classical pattern recognition proceeds in two stages,
feature detection and extraction followed by classifi-
cation. Pattern features, such as the number of closed
loops in hand-written characters, are detected and
extracted at a first stage. Principal component ana-
lysis and singular value decomposition (see Matrix



Pattern Recognition 3

Computations) are examples of dimension reduction
techniques that are often used in pattern recognition
as preprocessing strategies for feature extraction (see
Reduced Rank Regression). At a second stage, vec-
tors of features, the dimensions of which are usually
much lower than those of the original multivariate
objects, are classified and a decision is made (e.g.
“This is a valid alphanumeric string”). Modern pat-
tern recognition involves bi-directional feedback and
iteration between these two stages. The classifier
adapts itself to subtleties of detected features, cre-
ating new features to be extracted, classified, refined,
and so forth. Instead of detecting a fixed list of
features according to fixed rules, new classes are
spawned and eliminated as dynamic algorithms adapt
to local data characteristics. These dynamic algo-
rithms may be either entirely deterministic or include
a random component. Features and their classifica-
tions can also be arranged in dynamic hierarchies and
dependency relationships, such as characters, words,
sentences, paragraphs, etc. These hierarchies are tra-
versed and altered, either bottom-up or top-down or
both, according to some goodness-of-fit criterion, to
converge at some final pattern classification and ulti-
mate decision.

Invariants and Deformable Templates

One important property of feature detectors and clas-
sifiers for pattern recognition is their invariance with
respect to minor pattern distortions or deformations.
In the optical character recognition example, place-
ments of characters on the page should not matter
much, for an “r” is generally an “r” regardless of
its orientation. Identification of invariants constitutes
important prior knowledge of the problem at hand.
Such invariance (in this case, translation, rotation,
and scale), as well as other forms of invariance (such
as reflection), suggest a class of deformable template
models. In deformable template approaches to pattern
recognition individual instances of a particular class
of objects of interest are represented as deformations
of an archetypal, template shape, or form, or tex-
ture, etc. from which they all derive according to
some specified mechanism, usually a random one.
All machine-written or hand-written instances of “r”
are seen as distorted instances of some common
template for “r”, all triangles share common prop-
erties that qualify them as members of the geometric

class “triangle”, all normal electrocardiograms are
modeled as perturbations of the same basic wave-
form of a normal template electrocardiogram, and so
forth (see Clinical Signals). Identification of invari-
ants to be preserved from one instance to the next
is a key component in the design of modern pattern
recognition systems. Such identification suggests how
multivariate objects are best represented as input to
the algorithm for the first-stage feature detection and
extraction mentioned previously. Until the late 1980s,
for instance, most text recognition consisted of matrix
matching methods in which a data matrix of 0s (for
white) and 1s (for black) containing a particular char-
acter was matched with the best fitting matrix from
a fixed library of font-specific character shapes. One
approach to optical character recognition in the 1990s
consists of passing the data matrix containing a char-
acter (getting to this point is a major problem in itself)
through a series of machine “experts”, one for each
possible character, that seek to detect the presence
of features that are invariant to irrelevant transforma-
tions, such as font changes, minor pixel shifts, etc.
within the group defining their character class. As
another example, in the analysis of human growth,
triangles of landmarks for developing structures can
be located on two-dimensional images collected over
time for each subject and the changing patterns of
shapes recognized and analyzed statistically. Shape
changes may in some cases be invariant with respect
to changes in size. A pattern recognition algorithm
for classification could then represent these triangles,
with size removed, by two of their interior angles. In
general, the best results from pattern recognition sys-
tems appear to be those built by human subject-matter
experts who have worked out important features and
their invariants in painstaking detail and have embod-
ied this knowledge in clever algorithms. Yet this is
should come as no surprise, since in biostatistical
science detailed substantive models, when available,
generally outperform rote, empirical ones.

Learning from Examples: Supervised and
Unsupervised Learning

Pattern recognition is an exercise in learning from
examples. Under supervised learning, the machine
is given a labeled collection of examples. In opti-
cal character recognition, for instance, examples of
scanned alphanumeric data along their correct char-
acter assignments are used to train the algorithm to
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recognize pattern features in data that are indicative
of particular characters and hence to assign character
labels to new test data correctly. This training usually
involves some form of cross-validation. Unsuper-
vised learning, which occurs less frequently in prac-
tice, refers to a pattern recognition exercise that does
not involve preassigned labels in either training or
test phases of algorithm development. The empha-
sis in unsupervised learning is on the discovery of
new groupings and common characteristics amongst
previously unclassified ensembles of examples.

Linear Discriminant and Nearest Neighbor
Rules: The Curse of Dimensionality

Pattern recognition systems built according to well-
established criteria from statistical decision and infor-
mation theory are known to outperform systems built
using ad hoc methods. A loss function is defined
through consideration of losses incurred by mak-
ing different sorts of classification errors, such as
the false positives and false negatives of medical
diagnoses. A classification rule is then chosen which
minimizes total risk, i.e. total expected loss, when
assigning class labels. When classification probabili-
ties are assumed to be known, the best that a pattern
recognition system can do is determined by Bayes’
rule, minimizing Bayes’ risk (see Bayesian Meth-
ods). Criteria for label assignment can be parametric
or nonparametric. When feature vectors have been
generated by multivariate normal (Gaussian) dis-
tributions, with different means yet a common vari-
ance–covariance matrix, then the optimal classifica-
tion (Bayes) rule that minimizes total Mahalanobis
distance is the well-known linear discriminant func-
tion (see Discriminant Analysis, Linear). (Note
the distinction between this pattern recognizer and
Fisher’s linear discriminant, which instead maximizes
the ratio of between-class to within-class variance.)
Many other parametric, likelihood-based classifiers
exist. Nonparametric, nearest-neighbor pattern recog-
nition assigns labels to new examples by measur-
ing distances to their nearest neighbors under some
particular metric. Metrics for determining nearness
may be either fixed or adaptive, Euclidean or non-
Euclidean. Class labels are determined by assigning
a new example to that class that minimizes the com-
bined distance from the example to a fixed number
k (much lower than the total number of examples)

of previous examples of that same class over all
possible class assignments. When k = 1, and for fea-
ture vectors of dimension p ≥ 2, nearest-neighbor
pattern recognition is equivalent to Dirichlet tessella-
tion or tiling of the feature space. When k = 1 and
p = 2, nearest-neighbor rules produce a feature space
tiling by what are also known as Voronoi or Theissen
polygons [21]. Linear discriminant, nearest-neighbor,
and other pattern recognition rules, whether para-
metric or nonparametric, can be extended to allow
for reject options or doubt probabilities for uncertain
classifications. When p is large, pattern recognition
is subject to the so-called curse of dimensional-
ity, i.e. the inability in high-dimensional spaces to
obtain enough examples to pack the feature space
densely. All examples are close to an edge rather than
uniformly spread throughout that space, and thus geo-
metric intuition gained from low-dimensional prob-
lems is often inapplicable [8]. The curse of dimen-
sionality is particularly vexing because it may be the
extremely high dimension of a multivariate problem
that recommends it for treatment by pattern recogni-
tion techniques to begin with. There appears to be no
substitute in the applied pattern recognition problems
of biostatistics for careful selection and representa-
tion of the most important features of interest, for
incorporation of prior knowledge whenever possible,
and for careful checking of results from automatic
algorithms by end users.

Prediction and Generalization:
Bias/Variance Tradeoff

The construction of pattern recognition systems and
the evaluation of their performance usually involves
some form of prediction. One way to assess the
predictive performance of a pattern recognizer is to
estimate its generalization ability, that is, how well it
performs on an entirely new set of examples (test set)
after having recognized patterns in previous, similar
examples (training set). Some form of bias/variance
tradeoff in algorithm design is required to avoid too
much variance, or overfitting, on the one hand, and
too much bias, or underfitting, on the other. This is a
type of model selection. For a fixed number of exam-
ples, bias/variance tradeoffs within nested families of
models (see Hierarchical Models) relate to algorith-
mic complexity: if a pattern recognizer is too simple,
then it is biased and makes systematic prediction
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errors, whereas if it is too complex, then it will make
unreliable predictions. An additional and somewhat
complementary way of assessing predictive perfor-
mance is to fix algorithmic complexity and to graph
generalization error as a function of training set size.
This produces a learning curve which, in general, is
a monotonically decreasing function. Repeating this
exercise for a pattern recognizer of different com-
plexity enables a comparison: when learning curves
for two algorithms cross, one outperforms the other
for small vs. large numbers of examples.

Layered Feed-forward Networks and
Their Equivalent Statistical Models

Artificial neural networks embody many key pattern
recognition ideas and principles. The artificial neural
network school gained a large following in the 1960s
and 1970s, dwindled somewhat in the late 1970s
and early 1980s, and is experiencing a resurgence in
the 1990s. Many of the ideas and principles of arti-
ficial neural networks are common to biostatistical
sciences, although sometimes under different names.
Figure 2 depicts perhaps the simplest artificial neural
network, the McCullough–Pitts neuron, or single-
unit perceptron [5, 13], whose algebraic formula is
y = sign

(
w0 + ∑p

i=1 wixi

)
, where sign(·) equals +1

if its argument is nonnegative and −1 otherwise. This
artificial neural network is a type of multiple linear
regression of y on x1, . . . , xp with unknown weights
(parameters) to be estimated and without any formal
error term (although many can of course be specified
at this point). This pattern recognizer is not ordi-
nary least squares regression but rather some form
of discriminant analysis with an indicator variable,

x1

w1

w0

xp

wp

y

Figure 2 This pattern recognizer is a simple form of
artificial neural net [5]

y, as the output of the “neuron” modeled as a linear
function of its inputs, the xs, which are themselves
indicator variables. The neuron “fires” or does not
fire depending on whether or not the summation is
positive. Networks of artificial neurons such as these
are constructed by forming interconnected banks of
such elements with xs feeding into every such node,
such as the circle in Figure 2, and the outputs of
these nodes feeding into similar nodes at another
level, and so forth. Such an arrangement is a lay-
ered feed-forward neural network or, equivalently, a
multilayer perceptron [10]. This toy example shows
that, in one sense, artificial neural networks “can be
regarded as a graphical notation for specific regres-
sion and classification techniques” [18]. Layers in
between input and output are called hidden layers
since they are not observable directly. Nodes at the
same level are not connected to one another directly
in a feed-forward net; otherwise, the construction is
a recurrent net, Hopfield net, Boltzmann machine, or
associative memory the stable patterns of which can
be recognized using Markov chain Monte Carlo
(“Gibbs sampler”) methodology [5, 21].

The layered feed-forward neural network is an
important pattern recognizer and a powerful tool
for general problems of classification and function
approximation [8]. Many forms of biostatistical mod-
els can be represented as artificial neural nets, and
vice versa [20]. For instance, when output y is
an indicator variable and is modeled as a func-
tion of inputs x that is loglinear in its parameters,
we have a form of multiple logistic regression or
logistic discrimination (see Discriminant Analysis,
Linear) that classifies new examples according to
maximum posterior probability. This is equivalent
to the “softmax” approach of artificial neural net-
works, and indeed predated it by decades. Exten-
sions to more than two classes lead to canonical
correlation analysis [12] and flexible discriminant
analysis by optimal scoring [4, 9]. When regression
functions are not necessarily linear and are allowed
to be members of a general feature space spanned
by smooth functions of x, artificial neural networks
have been shown to be equivalent to various forms
of generalized additive models, projection pur-
suit regression, and multivariate adaptive regression
splines. Expansions by Fourier and wavelets bases
are also possible. For more detail on the relationships
between layered feed-forward nets and these models,
and well as radial basis functions, nonparametric
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regression, and high dimensional density estima-
tion, see [5], [8], and [20] and discussions and ref-
erences therein. Demonstrations of close connections
between statistical methods and artificial neural net-
works such as these provide some idea of the depth
and breadth of pattern recognition – a truly multidis-
ciplinary field.

Optical Character Recognition of
Handwritten Zip Codes

One prized accomplishment of the neural network
school is in automatic recognition of handwritten zip
codes, which are US postal codes [5, 11]. This arti-
ficial neural network received multivariate input of
dimension p = 256 consisting of a 16 × 16 matrix
of 0s and 1s representing a single numeric charac-
ter. Each input was processed by three hidden layers
consisting of a total of 1256 nodes connected by a
total of 63 660 links and 9760 parameters, to yield
an output classification as one of the digits 0 through
9. The network was trained to recognize patterns in
a training set of 7291 handwritten zip code digits,
adapting to data features by back-propagation, which
is a form of gradient descent. The resulting discrim-
ination rule misclassified about 1% of the training
set cases, rejecting 12% of them as undecidable,
and misclassified 5.1% (102/2007) new test cases.
The network was subsequently refined by pruning to
reduce problems of overfitting through reductions in
the number of free parameters, to retain a 1% mis-
classification rate with only a 9% case rejection rate.

Some Benchmark Data Sets for
Biostatistical Pattern Recognition Research

The zip code data set has become a benchmark for
research in artificial neural networks and in other
approaches to statistical pattern recognition. There
does not yet appear to be a well-defined collec-
tion of benchmark data sets for strictly biostatistical
pattern recognition problems. However, some biosta-
tistical pattern recognition applications are mentioned
in [20] and [21] with accompanying data sets avail-
able through Statlib. These include data on R.A.
Fisher’s irises, hemophilia, Cushing’s syndrome, dia-
betes (in North American Indians, and for analy-
sis of an oral glucose tolerance test), renal disease

and hypertension, and differential diagnosis of liver
disease, tobacco viruses, and rock crabs.

The pattern recognition literature is enormous,
spanning many disciplines. In addition to the works
cited herein, the articles that appear after the Refer-
ence list are useful sources for further study.
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Pearl, Raymond

Born: June 3, 1879, in Farmington, New Hamp-
shire.

Died: November 17, 1940, in Hershey, Pennsyl-
vania.

Photograph supplied by The Alan Mason Chesney Medical
Archives of the Johns Hopkins Medical Institutions

Raymond Pearl was a member of the original faculty
of the Johns Hopkins University School of Hygiene
and Public Health. In a very real sense he established
biostatistics as a central discipline for the schools of
public health that were to follow.

Pearl’s primary training was in biology, with A.B.
and Ph.D. degrees in that subject from Dartmouth
College in 1899 and the University of Michigan
in 1902, respectively. He remained at Michigan as
an instructor in zoology until 1905. By then, Pearl
recognized a need for sound statistical methods for
application in biology, because in the study of human
biology it would not be enough to know the indi-
vidual organism in as much detail as possible; one
needed to know the characteristics of the group or
groups to which the individual belonged. The most
informative characteristics were usually quantitative,
and mathematical models and statistical methods
were required to study them.

Accordingly, he arranged to spend a year studying
biometrics with Karl Pearson at University College,

London. The impression Pearl made on Pearson was
apparently favorable, as he served as a Biometrika
associate editor from 1906 to 1910.

After a year as a junior faculty member in biol-
ogy at the University of Pennsylvania, Pearl joined
the Department of Biology of the Maine Agricultural
Experiment Station in 1907, where he rose to depart-
ment chairman and remained until 1918.

By 1917, Pearl was nationally known and respec-
ted, particularly for his application of statistical meth-
ods to population studies. In that year, he accepted an
appointment as wartime chief of the statistical divi-
sion of the US Food Administration (later the Food
and Drug Administration (FDA)).

Coincidentally, the Rockefeller Foundation had
decided to make funds available to establish an
institute of hygiene, a new type of institution for
increasing scientific knowledge, not only about how
to interrupt the spread of contagious disease, but also
about how to promote health and prevent disease
generally. William Henry Welch, a Johns Hopkins
University School of Medicine pathology professor,
had been selected to organize the new institution as
a component of Johns Hopkins. Welch saw in Pearl
just the individual to “provide a general theoretical
and philosophical approach to quantitative methods
as applied to human health and disease” [1, p. 63].

Pearl thus became the first professor and chairman
of the Department of Biometry and Vital Statistics
of the Johns Hopkins University School of Hygiene
and Public Health, the first institution of its kind
anywhere. His series of appointments at Johns Hop-
kins were Professor of Biometry and Vital Statis-
tics in the School of Hygiene and Public Health,
1918–1925; Professor of Biology in the School of
Medicine, 1923–1940, and in the School of Hygiene
and Public Health, 1930–1940; and Research Pro-
fessor and Director of the Institute of Biological
Research, 1925–1930.

Pearl published more than 700 books, articles,
and reviews. In his own listing they fell into the
categories: animal behavior; biology – general; bio-
metric theory; biometry – general; duration of life
(see Life Expectancy) and biology of death; effects
of physical agents on organisms; eugenics; evolution;
food and economics; general physiology; genetic
technique (see Genetic Epidemiology); heredity and
breeding (see Human Genetics, Overview); pathol-
ogy; physiology of reproduction; population; poul-
try husbandry; public health and hygiene; sex;
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teratology; tuberculosis; variation and correlation;
vital statistics; zoological and physiological tech-
nique; and miscellaneous.

One major line of research involved the mathe-
matical modeling of population sizes (see Popula-
tion Growth Models), especially using the logistic
function. With his Johns Hopkins colleague Low-
ell Reed, Pearl showed that US total population
sizes as reported from decennial census data from
1790 to 1910 matched very closely a certain logis-
tic curve [2]. The significance of this, to Pearl, was
that the parameters of the model were easy to explain
in terms of such concepts as the natural limit of the
population size, which, in turn, lent strong credibility
to predictions from the fitted curve. The publication
appeared in 1920; the predicted 1940 population size
differed by only 3.7% from that reported from the
actual 1940 census count.

Naturally, predictions of national population size
attracted the attention of the general public, as did
quite a few of Pearl’s other research endeavors. He
concluded from the analysis of data from a large
group of his fellow Baltimore citizens that those
using alcohol in moderation lived longer on the
average than those abstaining and than those using
it to excess. He also produced analyses indicating
the negative impact of cigarette use on life span (see
Smoking and Health).

Pearl was elected to the US National Academy
of Sciences at the relatively early age of 37, the
American Philosophical Society, and the American
Academy of Arts and Sciences. He served as Ameri-
can Statistical Association president in 1939. The
University of Maine, Dartmouth College, and St
John’s College (Annapolis) conferred honorary doc-
torates. He founded, and was first editor of, two
journals, Quarterly Review of Biology in 1926 and
Human Biology in 1929.

When Pearl died suddenly in 1940 at age 61, his
obituary appeared in many publications, including the
American Journal of Public Health, Science, The Sci-
entific Monthly, The New York Times, and Newsweek.
The obituary in Baltimore’s Evening Sun was written
by his close friend H.L. Mencken.
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Pearson Distributions

This system of probability distributions (often known
as Pearson curves) was developed by Karl Pearson
in 1894 and 1895 to provide flexible descriptions
of the nonnormal distributions encountered in his
biometric research. The original papers are repro-
duced in [5].

Apart from the fitting of models for observed fre-
quency distributions, the Pearson distributions have
also been used to provide approximations to other
theoretical distributions, and to study the effect of
nonnormality on sampling distributions. An early
book by W.P. Elderton, now available under joint
authorship [1], provided a popular guide to the Pear-
son curves. For a fuller description, see [3].

Pearson noticed a difference equation satisfied by
adjacent probabilities in the hypergeometric dis-
tribution, and produced an analogous differential
equation for continuous distributions with probability
density function (pdf) f (x):

f ′(x) = (x − a)f (x)

b0 + b1x + b2x2
. (1)

Variations in the four parameters of (1) produce
a wide range of unimodal distributions, including
U- and J-shaped distributions. Pearson identified
12 types, the normal distribution being a limiting
case of several types. The types can conveniently
be distinguished by the indices of skewness and
kurtosis, β1 = µ2

3/µ
3
2 and β2 = µ4/µ

2
2, respectively

(see Figure 1).
Several well-known distributions are special cases:

the beta distribution (I), the chi-square or gamma
(III), the F distribution (VI), Student’s t (VII), the
exponential (X), and the Pareto (XI). Pearson advo-
cated the fitting of the distributions by the method
of moments, equating the observed and theoretical
values of the first four moments. Efficient methods
such as maximum likelihood are now regarded as
preferable.
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Figure 1 A chart relating types of Pearson distributions to
measures of skewness and kurtosis (based, with permission,
on Table 43 in [4])

Another general system of continuous distribu-
tions, by Johnson [2], is based on transformations
of a normally distributed variable.

References

[1] Elderton, W.P. & Johnson, N.L. (1969). Systems of Fre-
quency Curves. Cambridge University Press, Cambridge.

[2] Johnson, N.L. (1949). Systems of frequency curves gener-
ated by methods of translation, Biometrika 36, 149–176.

[3] Ord, J.K. (1985). Pearson system of distributions, in
Encyclopedia of Statistical Sciences, Vol. 6, S. Kotz,
N.L. Johnson & C.B. Read, eds. Wiley, New York, pp.
655–659.

[4] Pearson, E.S. & Hartley, H.O. (1966). Biometrika Tables
for Statisticians, 3rd Ed. Cambridge University Press,
Cambridge.

[5] Pearson, K. (1948). Early Statistical Papers. Cambridge
University Press, Cambridge.

PETER ARMITAGE



Pearson, Egon Sharpe

Born: August 11, 1895, in Hampstead, UK.
Died: June 12, 1980, in Midhurst, UK.

Reproduced by permission of the Royal Statistical Society
Egon Pearson was the only son among the three chil-
dren of Karl Pearson. After education in Oxford
and Winchester, in 1914 he went to Trinity College,
Cambridge, to read mathematics. War service at the
Admiralty and Ministry of Shipping delayed his grad-
uation until 1920.

After leaving Cambridge, Pearson became a statis-
tics lecturer in his father’s department at University
College, London. Here he helped his father to edit
Biometrika. In 1924 he was appointed assistant edi-
tor, and after his father’s death in 1936 he became
managing editor, a position he held until 1965. After
Karl Pearson had retired in 1933 his department was
split into two, with Egon Pearson becoming head of
the new statistics department and R.A. Fisher becom-
ing head of the eugenics department. In 1935 Pearson
was made professor.

From the 1920s Pearson began to develop his per-
sonal philosophy of statistics, with two main strands.
Most famously, he embarked on an important collab-
oration with Jerzy Neyman which led to the philos-
ophy of statistical inference, now known as “Ney-
man–Pearson theory”. In this work, Neyman and
Pearson introduced ideas of the alternative hypothe-
sis and the power of a test [2]. Later papers included
ideas of suspended judgment in addition to formal

acceptance or rejection of a hypothesis [3, 4] (see
Hypothesis Testing).

Pearson’s other main field of activity was the
promotion of use of statistical methods in industry,
with an emphasis on model building. His interest in
this area arose from meeting W.H. Shewhart of Bell
Telephone Laboratories when Pearson was visiting
North America. An influential paper [6] led to the
formation of the Industrial and Agricultural Section
of the Royal Statistical Society (RSS) in 1933 and
the appearance of the Supplement to the Journal of
the Royal Statistical Society, starting in 1934. In
1936 Pearson broke new ground with the publica-
tion of a handbook (BS600) on statistical methods in
standardization.

During World War II Pearson worked for the
Ordnance Board, after which he returned to Univer-
sity College, where he remained until, and indeed
after, his retirement in 1960. Among his other pub-
lications, the two volumes of statistical tables (with
H.O. Hartley) [8] were especially valuable, their title
disguising their rich content.

Pearson was made CBE in 1946. He received
the Guy medal in gold from the RSS in 1955, and
was president in 1955–1956. He was elected FRS in
1966.

Further details of Pearson’s life are given by
Moore [1] in an eightieth birthday tribute. Many
of his important papers are republished in [5]
and [7].
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The founder of biometrics, Karl Pearson was one
of the principal architects of the modern theory of
mathematical statistics. He was a polymath whose
interests ranged from astronomy, mechanics, mete-
orology, and physics to the biological sciences in
particular (including anthropology, eugenics, evolu-
tionary biology, heredity, and medicine). In addition
to these scientific pursuits, he undertook the study
of German folklore and literature, and of the history
of the Reformation and German humanists (espe-
cially Martin Luther). He also contributed hymns
to the Socialist Song Book. Pearson’s writings were
prodigious: he published more than 650 papers in his
lifetime, of which 400 are statistical. Over a period of
28 years, he founded and edited six journals and was a
cofounder of the journal Biometrika. University Col-
lege London (UCL) houses the main collection of
Pearson’s papers, consisting of 235 boxes contain-
ing family papers, scientific manuscripts, and 16 000
letters.

Largely because of his interests in evolutionary
biology, Pearson created, almost single-handedly, the
modern theory of statistics in his Biometric School

at UCL from 1892 to 1903 (which was practiced
in the Drapers’ Biometric Laboratory from 1903
to 1933). These developments were underpinned by
Charles Darwin’s ideas of biological variation and
“statistical” populations of species – arising from the
impetus of statistical and experimental work of his
colleague and closest friend, the Darwinian zoolo-
gist, W.F.R. Weldon (1860–1906). Additional devel-
opments emerged from Francis Galton’s law of
ancestral heredity. Pearson also devised a separate
methodology for problems of eugenics in the Galton
Eugenics Laboratory from 1907 to 1933.

In his creation of biometrics, out of which the
discipline of mathematical statistics had developed
by the end of the nineteenth century, Pearson
introduced a new vernacular for statistics (including
such terms, for example, as the standard deviation,
mode, homoscedasticity, heteroscedasticity (see
Scedasticity), kurtosis, and the product-moment cor-
relation coefficient). Like a number of scientists
at the end of the nineteenth century, Pearson was
interested in the developing etymology in various
disciplines, especially biology. Though he attempted
to coin a number of biological words, the only
word that survived him is “siblings”, which he
used “to cover a group of brothers and sisters
regardless of sex”.

Family and Education

Karl was the second of three children born to William
Pearson and Fanny Smith. His mother came from a
family of seamen and mariners, and his father was
a barrister. The Pearsons were a Yorkshire family
of dissenters and of Quaker stock. By the time he
was in his twenties, Pearson had rejected Christianity
and had become a Freethinker, which involved the
“rejection of all myths as explanation and the frank
acceptance of all ascertained truths to the relation
of the finite to the infinite”. Though he did not
regard himself as an atheist, “he vigorously denied
the possibility of a god . . . because the idea of one
and all of them by contradicting some law of thought
involves an absurdity”. To Pearson “religion was
the relation of the finite to the infinite”. Politically,
he was a socialist whose outlook was similar to
the Fabians, but he never joined the Fabian Society
(despite requests from Sidney and Beatrice Webb).
Socialism was a form of morality for Pearson; the
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moral was social and the immoral was antisocial
in conduct.

There were a number of lawyers in the Pear-
son family, including William’s brother Robert and
Robert’s son, Hugh, as well as William’s eldest child,
Arthur, all of whom read law at the Inner Temple
in London. William was a very hard-working and
taciturn man who was never home before 7 p.m.
he continued to work until about midnight and was
usually up at 4 a.m. reviewing his briefs. To both
of his sons, William regularly emphasized the impor-
tance of hard work, especially so once they were at
Cambridge University. The children only really spent
any time with their father during vacations. In a let-
ter to Karl, his elder brother Arthur described the
experience of being home with their father as “sim-
ply purgatory . . . the governor never spoke a word”.
In this desolate atmosphere, with her husband work-
ing incessantly and never talking to anyone when he
was home, Fanny was deeply unhappy in her mar-
riage. Thus she transferred her love to her two sons,
and she was deeply affectionate to Karl, who was,
without doubt, her favorite child.

For a short time in 1866, both boys received
tuition from a Mr William Penn, who had started
a small school at Harrow, near London. As a child,
Karl was rather frail, delicate, often ill, and prone to
depression. On a number of occasions he received
tuition at home because he was too unwell to go
to school. After the Pearsons moved to 40 Meck-
lenburgh Square, in Holborn, London, in June 1866
(where they stayed until 1875), Karl and Arthur began
attending University College London School.

When they went up to Cambridge, at least one of
the Pearson boys was expected to read mathematics.
The Cambridge Mathematics Tripos was, at that time,
the most prestigious degree in any British university.
Although his father urged him to read mathematics,
Arthur settled on Classics. Thus when Karl was 15
years old, his father was already looking for someone
to prepare him for the Mathematics Tripos. Karl first
received tuition from the Reverend Louis Hensley
at Hitchin (50 miles from Cambridge). Subsequently
he was tutored in mathematics at Merton Hall in
Cambridge, by John Edward Rendall Harris, John
P. Taylor, and Edward John Routh.

By the spring of 1875, Pearson was ready to take
the entrance examinations at various Cambridge col-
leges. His first choice was Trinity College, where
he failed the entrance exam; his second choice was

King’s College, from which he received an Open
Scholarship on April 15, 1875. Pearson found that the
highly competitive and demanding system leading up
to the Mathematical Tripos was the tonic he needed.
Though he had been a rather delicate and sickly child
with a nervous disposition, he came to life in this
environment and his health improved. In addition
to the highly competitive and intellectually demand-
ing system, students of the Mathematics Tripos were
expected to take regular exercise as a means of
preserving a robust constitution and regulating the
working day. Pearson carefully balanced hard math-
ematical study against such physical activities as
walking, skating, ice-hockey, and lawn tennis.

As a diversion from studying mathematics, Pear-
son read works from such Romantics as Goethe and
Shelley in his second year. He also read Rousseau
and Dante, and wrote a couple of articles on Spinoza
for the Cambridge Review. Pearson’s time at King’s
College left its legacy through his revolt over the
compulsory divinity examination. Near the beginning
of his third year in 1877, he decided that he no longer
wished to be compelled to attend church services.
Pearson also refused to retake one of his divinity
papers, as it would have interfered with his study
for the Mathematics Tripos. The events that tran-
spired led eventually to King’s College abolishing the
whole system of compulsory divinity examinations in
March 1878.

Pearson spent the rest of 1878 in preparation
for the Mathematics Tripos examination, which he
took in January 1879. He graduated with honors;
subsequently, he received a Fellowship from King’s
College which he held for seven years. He was made
an Honorary Fellow of King’s in 1903.

A couple of weeks after Pearson had taken his
degree, he began to work in Professor James Stu-
art’s engineering workshop and read philosophy dur-
ing the Lent Term in preparation for his trip to
Germany. After making arrangements with Kuno Fis-
cher, Pearson left for Heidelberg in April 1879. Philo-
sophically and professionally, his time in Germany
was a period of self-discovery. The romanticist and
idealist discovered positivism: Pearson thus adopted
and coalesced two different philosophical traditions
to fulfill two different needs. Around this time, he
began to write the New Werther, a literary work on
idealism and materialism, written in the form of let-
ters to his fiancée from a young man wandering in
Germany. For Pearson the book was “about conflict
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between the ideal and the real, spirit and matter”. The
book was published in 1880 under the pseudonym of
Loki (a mischievous Norse god).

Germany and University College London

During his time in Heidelberg Pearson read Berkeley,
Fichte, Locke, Kant, and Spinoza, but he subse-
quently abandoned philosophy because “it made him
miserable”. He studied physics under Quincke and
metaphysics under Kuno Fischer. He then considered
becoming a mathematical physicist, but decided not
to pursue this since he “was not a born genius”. In
November 1879, he went to Berlin to hear Kirch-
hoff and Helmholtz and began to study Roman law
under Bruns, Baron, and Dernburg. A year later, he
took rooms back in London at the Inner Temple and
read law at Lincoln’s Inn. He became a barrister at
the end of 1881 and practiced law for a very short
time only. Still searching for some direction when he
returned to London, Pearson lectured on socialism,
Marx and Lassalle at the working men’s clubs and
on Martin Luther at Hampstead, near London, from
1880 to 1881.

By 1882 Pearson had decided that he did not want
to pursue the law because it depressed him, and he
decided instead to “devote his time to the religious
producing of German literature before 1300”. Later
that year his work on The Trinity, A Nineteenth Cen-
tury Passion-Play, The Son; or Victory of Love was
published. From 1882 to 1884, he lectured on German
society from the medieval period up to the sixteenth
century. He became so competent in German that by
the late spring of 1884 he was offered a post in Ger-
man at Cambridge. In his pursuit of German history,
Pearson consulted his friend, the Cambridge Univer-
sity librarian, Henry Bradshaw, who taught him the
meaning of thoroughness and patience in research.
With Bradshaw’s help, Pearson finished in 1887 Die
Fronica: Ein Beitrag zur Geschichte des Christus-
bildes im Mittelalter (which involved a collection of
the so-called Veronica portraits of Christ).

Nevertheless, Pearson found all these pursuits
deeply dissatisfying, and he “longed to be working
with symbols rather than words”. He then began to
write some papers on the theory of elastic solids and
fluids as well as some mathematical physics papers
on optics and ether squirts. He deputized mathematics
at King’s College, London and for Professor Rowe
at UCL in 1883. Between 1879 and 1884 he applied

for more than six mathematical posts and he received
the Chair of “Mechanism and Applied Mathematics”
at UCL in June 1884.

During Pearson’s first six years at UCL, he taught
mathematical physics, hydrodynamics, magnetism,
electricity, and his specialty, elasticity, to engineer-
ing students. Nearly all of his teaching on dynamics,
general mechanics, and statics was based on geo-
metrical methods. He finished editing the incomplete
manuscript of William Kingdom Clifford’s The Com-
mon Sense of Exact Science in 1885 and a year
later he finished Todhunter’s History of the Theory
of Elasticity.

The Gresham Lectures on Geometry and
Curve Fitting

Pearson was a founding member of the Men’s and
Women’s Club established in London in 1885 “for
the free and unreserved discussion of all matters in
any way connected with the mutual position and
relation of men and women”. Among the various
members was Marie Sharpe, whom he married in
June 1890. They had three children, Sigrid, Helga,
and Egon. Six months after his marriage, he took
up another teaching post as Gresham Professor of
Geometry, which he held for three years concurrently
with his post at UCL. As Gresham Professor, he was
responsible for giving 12 lectures a year, delivered
on four consecutive days, from Tuesdays to Fridays,
during the Michaelmas, Easter, and Hilary terms. The
hour-long lectures, which were free to the public,
were held at Gresham Collage, in London, and began
at 6 p.m. Between February 1891 and November
1893, Pearson delivered 38 lectures. His first eight
lectures formed the basis of his book, The Grammar
of Science, which was published in several languages.

Pearson’s earliest teaching of statistics can, in fact,
be found in his lecture of November 18, 1891 when
he discussed graphical statistics and the mathemat-
ical theory of probability, with a particular interest
in actuarial methods. Two days later he introduced
the histogram – a term he coined to designate a
“time-diagram” to be used for historical purposes. He
introduced the standard deviation in his Gresham lec-
ture of January 31, 1893. Pearson’s early Gresham
lectures on statistics were influenced by the work
of Edgeworth, Jevons, and Venn. Until November
1893, these lectures covered fairly conventional sta-
tistical and probability methods. While the material in
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these lectures was not original in content, Pearson’s
approach to teaching was highly innovative. In one
of his lectures, he scattered 10 000 pennies over the
lecture room floor and asked his students to count
the number of heads or tails: “the result was very
nearly half heads and half tails, thus proving the law
of average and probability”.

Pearson’s last 12 Gresham lectures signified a
turning-point in his career owing, in particular, to his
relationship with Weldon – who was the first biol-
ogist Pearson met who was interested in using a
statistical approach for problems of Darwinian evo-
lution. Their emphasis on Darwinian population of
species not only implied the necessity of system-
atically measuring variation, but also prompted the
reconceptualization of statistical populations. More-
over, it was this mathematization of Darwin which
led to a paradigmatic shift for Pearson from the Aris-
totelian essentialism underpinning the earlier use and
development of social and vital statistics. Weldon’s
questions not only provided the impetus for Pearson’s
seminal statistical work, but also led eventually to the
creation of the Biometric School at UCL.

In Pearson’s first published statistical paper of
October 26, 1893, he introduced the method of
moments as a means of curve-fitting asymmetri-
cal distributions. One of his aims in developing the
method of moments was to provide a general method
for determining the values of the parameters of a fre-
quency distribution (i.e. central tendency, variation,
skewness, and kurtosis). In 1895 Pearson developed
a general formula to use for subsets of various types
of frequency curve and defined the following curves:
type I (asymmetric beta density curve), type II (sym-
metric beta curve), type III (gamma curve), type
IV (family of asymmetric curves), and type V (nor-
mal curve). In his first supplement to this family of
curves in 1901 he defined types VI and VII (type
VII is now known as “Student’s” distribution),
and then in his second supplement in 1916 types
VIII and IX. Many of his curves were J-shaped,
U-shaped, and skewed. Pearson derived all of his
curves from a differential equation whose parame-
ters were found from the moments of the distribution.
As Churchill Eisenhart remarked in 1974, “Pearson’s
family of curves did much to dispel the almost reli-
gious acceptance of the normal distribution as the
mathematical model of variation of biological, phys-
ical and social phenomena” (see Pearson Distribu-
tions). Though the method of moments is not widely

used by biostatisticians today, it still remains a very
powerful tool in econometrics.

The Biometric School

Following the success of his Gresham lectures, Pear-
son began to teach statistics to students at UCL in
October 1894. By 1895, four years after Pearson
first started to teach statistics, he had worked out
the mathematical properties of the product-moment
correlation coefficient (which measures the relation-
ship between two continuous variables) and simple
regression (used for the linear prediction between
two continuous variables). By then, Francis Gal-
ton had determined graphically the idea of correla-
tion and regression for the normal distribution only.
Because Galton’s procedure for measuring correla-
tion involved measuring the slope of the regression
line (which was a measure of regression instead),
Pearson kept Galton’s r to symbolize correlation.
Pearson later used the letter b (from the equation for
a straight line) to symbolize regression. After Weldon
had seen a copy of Pearson’s paper on correlation, he
suggested to Pearson that he should extend the range
for correlation from 0 to +1 (as used by Galton) so
that it would include all values from −1 to +1.

In this seminal paper on “Regression, heredity
and panmixia” in 1896, Pearson introduced matrix
algebra into statistical theory (Arthur Cayley, who
taught at Cambridge when Pearson was a student,
created matrix algebra by his discovery of the theory
of invariants during the middle of the nineteenth
century). In the same paper, Pearson also introduced
the following statistical methods: η as a measure for
a curvilinear relationship, the standard error of an
estimate, multiple regression, and multiple, part and
partial correlation, and he also devised the coefficient
of variation as a measure of the ratio of a standard
deviation to the corresponding mean, expressed as a
percentage.

From 1896 to 1911, Pearson devised more than
18 methods of correlation. By the end of the nine-
teenth century he began to consider the relationship
between two discrete variables. In 1900, he devised
the tetrachoric correlation and the phi-coefficient for
dichotomous variables (see Categorical Data Anal-
ysis). The tetrachoric correlation requires that both X

and Y represent continuous, normally distributed and
linearly related variables, whereas the phi-coefficient
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was designed for so-called point distributions, which
implies that the two classes have two point values
or merely represent some qualitative attribute. Nine
years later, he devised the biserial correlation when
one variable is continuous and the other is discontin-
uous. With his son Egon, he devised the polychoric
correlation in 1922 (which is very similar to canon-
ical correlation today). Though not all of Pearson’s
correlational methods have survived him, a number
of these methods are still the principal tools used by
psychometricians for test construction (see Psycho-
metrics, Overview). Following the publication of his
first three statistical papers in Philosophical Trans-
actions of the Royal Society, Pearson was elected
a Fellow of the Royal Society in 1896. He was
awarded the Darwin Medal from the Royal Society
in 1898.

Pearson’s Chi-square Tests

At the turn of the century, Pearson reached a funda-
mental breakthrough in his development of a modern
theory of statistics when he found the exact chi-
square distribution from the family of Gamma dis-
tributions and devised the chi-square goodness-of-fit
test. The test was constructed to compare observed
frequencies in an empirical distribution with expected
frequencies in a theoretical distribution to determine
“whether a reasonable graduation had been achieved”
(i.e. one with an acceptable probability). This land-
mark achievement was the outcome of the previous
eight years of curve fitting for asymmetrical distri-
butions and, in particular, of Pearson’s attempts to
find an empirical measure of a goodness-of-fit test
for asymmetric curves.

Four years later, he extended this to the analysis
of manifold contingency tables and introduced the
“mean square contingency coefficient” which he also
termed the chi-square test of independence (which
R.A. Fisher termed the chi-square statistic in 1923).
While Pearson used n − 1 for his degrees of freedom
for the chi-square goodness-of-fit test, R.A. Fisher
claimed in 1924 that Pearson also used the same
degrees of freedom for his chi-square test of indepen-
dence. However, in 1913, Pearson introduced what
he termed a “correction” (rather than degrees of free-
dom) for his chi-square test of independence of 1904.
Thus, he wrote, if x is the number of rows and λ

the number of columns, then on average the correc-
tion for the number of cells is (x − 1)(λ − 1)/N . (As

may be seen, Fisher’s degrees of freedom for the chi-
square statistic as (r − 1)(c − 1) is very similar to
that used by Pearson in 1913.)

Pearson’s conception of contingency led at once
to the generalization of the notion of the association
of two attributes developed by his former student,
G. Udny Yule. Individuals could now be classed
into more than two alternate groups or into many
groups with exclusive attributes. The contingency
coefficient and the chi-square test of independence
could then be used to determine the extent to which
two such systems were contingent or noncontingent.
This was accomplished by using a generalized theory
of association along with the mathematical theory of
independent probability.

Pearson’s Four Laboratories

Pearson established and ran four laboratories. He
set up the Drapers’ Biometric Laboratory in 1903
following a grant from the Worshipful Drapers’ Com-
pany (which continued to fund Pearson’s work in
this laboratory until his retirement in 1933). The
methodology incorporated in the Drapers’ Biometric
Laboratory was twofold: the first was mathematical,
and included the use of Pearson’s statistical meth-
ods, matrix algebra, and analytical solid geometry.
The second involved the use of such instruments as
integrators, analyzers, curve plotters, the cranial coor-
dinatograph, silhouettes, and cameras. The problems
investigated by the biometricians included natural
selection, Mendelian genetics (see Mendel’s Laws)
and Galton’s law of ancestral inheritance, craniome-
try, physical anthropology, and theoretical aspects of
mathematical statistics. By 1915, Pearson established
the first degree course in mathematical statistics in
Britain.

Though Pearson did not accept the generality of
Mendelism, he did not reject it completely, as is
commonly believed. When William Bateson pub-
lished his fiercely polemical attack on Weldon in
1902, Bateson saw Mendelism as a tool for discon-
tinuous variation only. As a biometrician, most of
the variables that Pearson and his co-workers ana-
lyzed were continuous, and only occasionally did they
examine discontinuous variables. While Pearson and
Weldon used Galton’s law of ancestral inheritance for
continuous variables, they used Mendelism for dis-
continuous variables. Indeed, Pearson argued that his
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chi-square test of independence was the most appro-
priate statistical tool for the analysis of Mendel’s
discrete data for dominant and recessive alleles (such
as color of eyes where brown is dominant and blue
is recessive). Even today, Pearson’s chi-square tests
remain the most widely used technique for analyzing
Mendelian data.

A year after Pearson had established the Biometric
Laboratory, the Worshipful Drapers’ Company gave
him a grant so that he could establish an Astronomical
Laboratory equipped with a transit circle and a 4-inch
(10 cm) equatorial refractor. Hence, he also referred
to his two observatories as the Transit House and the
Equatorial House. Pearson was interested in deter-
mining the correlations of stellar rotations and the
variability in stellar parallax. He was also instrumen-
tal in setting up a degree course in astronomy in 1914
at UCL.

In 1907, Francis Galton (who was then 85 years
old) wanted to step down as director from the Eugen-
ics Record Office which he had set up three years
earlier, and he asked Pearson if he would take it on.
Though Pearson had “great hesitation in taking any
initiative at all . . . because he did not want Galton to
think that [he] was carrying all things into the biomet-
ric vortex!”, he took on the directorship reluctantly
and renamed the office the Galton Eugenics Labora-
tory. Pearson made very little use of his biometric
methods in this laboratory; instead he developed a
completely different methodology for problems relat-
ing to eugenics. This methodology was underpinned
by the use of actuarial death rates (see Actuarial
Methods) and by a very highly specialized use of
family pedigrees assembled in an attempt to discover
the inheritance of various diseases (which included,
for example, such conditions as alcoholism, cancer,
diabetes, epilepsy, paralysis, and pulmonary tubercu-
losis; see Population Genetics).

These family pedigrees became the vehicle thro-
ugh which Pearson could communicate statistical
ideas to the medical community by stressing the
importance of using quantitative methods for medical
research. This tool enabled doctors to move away
from concentrating on individual pathological cases
or “types” and to see, instead, a wide range of
pathological variation of the disease (or condition)
of the doctors’ specialty. Such work attracted the
interest of Major Greenwood, who was the first
medically qualified person to take an interest in
Pearson’s statistics in 1902, and who subsequently

became Reader of Medical Statistics in the University
of London in 1922 (the first position to be held at a
university in Britain). The statistical work of Pearson
and Greenwood was further promulgated by their
student, Austin Bradford Hill, who had the greatest
impact on the successful adoption of mathematical
statistics in the medical community. In 1924, Pearson
set up the Anthropometric Laboratory, this was made
possible by a gift from one of his students, Ethel
Elderton. The laboratory was open to the public
and used to collect and display statistics related to
problems of heredity.

In the spring of 1909, Galton was discussing
the future of the Eugenics Laboratory with Pearson.
While Galton thought that Pearson would have been
“the most suitable man for the first Galton Profes-
sor”, Pearson let Galton know that he was “wholly
unwilling to give up superintendence of the Biometric
Laboratory [he] had founded and confine [his] work
to Eugenics Research”. A month later, Galton added
a codicil to his will stating that he desired that the
first professor of the post should be offered to Pearson
on such condition that Pearson could continue to run
his Biometric Laboratory. Six months after Galton’s
death in January 1911, Pearson first learned about
Galton’s codicil to his will. He then relinquished
the Goldsmid Chair of Applied Mathematics after
27 years of tenure to take up the Galton Chair. The
Drapers’ Biometric and the Galton Eugenics labora-
tories, which continued to receive separate funding,
then became incorporated into the Department of
Applied Statistics. The essential aim in combining
both laboratories was to enable Pearson to give up
his undergraduate teaching of applied mathematics
and to devote himself “solely to what had been for
many years the main element of [his] research: the
advancement of the modern theory of statistics”.

Statistical Charts and Gunnery
Computations

Pearson then proceeded to raise funding for a new
building for his Department of Applied Statistics.
Adequate funding had been raised by 1914 and con-
tracts for the fittings had been made. In the early
summer of 1914, the new laboratory was complete
and preparations were under way for the occupation
and fitting up of the public museum and the Anthro-
pometric Laboratory. It was hoped that the building
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would be occupied by October 1915. These develop-
ments and further biometric work were shattered by
the onset of World War I. The new laboratory build-
ing was taken over by the government to be used as
a military hospital. Pearson and his co-workers took
on special war duties. They produced statistical charts
for the Board of Trade’s Labor Department as well as
for its Census production. Pearson was also involved
in elaborate calculations concerned with antiaircraft
guns and bomb trajectories “both through air and air
and water”. By June 1919, Pearson was in posses-
sion of his building and plans were under way for the
opening in October 1920. It was not until December
4, 1922, when the work had been completed, that the
building was occupied.

His wife, Marie Sharpe, died in 1928, and in 1929
he married Margaret Victoria Child, a co-worker in
the Biometric Laboratory. Pearson was made Emer-
itus Professor in 1933, and was given a room in the
Zoology Department at UCL which he used as the
office of Biometrika. From his retirement until his
death in 1936, he published 34 articles and notes,
and continued to edit Biometrika. Pearson was twice
offered honors by King George V, but declined on
both occasions. He also declined the Royal Statis-
tical Society Guy Medal in the society’s centenary
year in 1934. Pearson believed that “all medals and
honours should be given to young men, they encour-
age them when they begin to doubt whether their
work was of value”. Pearson accepted an honorary
Doctorate of Science (D.Sc.) from the University of
London in 1934 because if he had refused he “would
have hurt the executive of the university where he
had worked” for nearly half a century.

Pearson’s statistical achievement not only pro-
vided continuity from the mathematical and sta-
tistical work that preceded him (including that of
Francis Ysidro Edgeworth, Francis Galton, Adolphe
Quetelet, and John Venn), but also engendered
the modern theory of mathematical statistics in the
twentieth century which, in turn, provided the foun-
dation for such statisticians as R.A. Fisher who went
on to make further advancements for a modern theory
of statistics.
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Pedigrees, Sequential
Sampling

The great majority of genetic epidemiologic study
designs involve data not just on individuals, but rather
on families. Generally speaking, we can envision
collection of such data as involving two separate
operations: first, individuals are selected from the tar-
get population, or ascertained (see Ascertainment);
secondly, intrafamilial sampling among the rela-
tives of these ascertained individuals is conducted.
The resulting pedigrees are thus composed of ascer-
tained individuals and (subsets of) their relatives. (In
many applications, only affected individuals are eli-
gible for the initial ascertainment, which results in
ascertainment bias.)

One technique sometimes used for obtaining fam-
ilies is sequential sampling, in which intrafamilial
sampling proceeds in stages, with the decision to
continue (or stop) the sampling process made sub-
sequent to completion of each stage. For example,
a sequential sampling protocol might require obser-
vation of all first-degree relatives of any previously
observed affected individual. In this case, all first-
degree relatives of initially ascertained individuals
would be evaluated, and, if any of them were affected,
then all of their (previously unobserved) first-degree
relatives would be sampled, and so forth, with sam-
pling continuing or stopping at each stage, depending
on whether any newly observed individuals were
affected. Such schemes can obviously result in highly
variable observed pedigree structures, depending on
the ascertainment scheme, the underlying genetic eti-
ology of the disease under study, and the particular
intrafamilial sampling rule employed.

Cannings & Thompson [2] defined a broad class
of sequential sampling procedures, by allowing for
any intrafamilial sampling scheme meeting the fol-
lowing restrictions: (i) the decision as to which indi-
viduals to sample next depends only on the pheno-
types of individuals who have already been observed,
and possibly on other, auxiliary considerations (see
below); and (ii) all observed relatives are included
in the final sample. These restrictions preclude, for
instance, sampling schemes in which the investiga-
tor “looks ahead” for affected individuals and then
preferentially includes them in the sample, or in
which individuals are dropped from the sample after

determining that they are unaffected. (When these
restrictions are violated, unbiased parameter estima-
tion can become impossible.) It is interesting to note
that these criteria permit sampling (and stopping)
decisions to be based on auxiliary factors such as
cost-effectiveness, or the current likelihood ratio,
which introduces a sequential element in the clas-
sical statistical sense [7]. Also, many other sampling
schemes that do not entail sequential decision-making
per se, nevertheless belong to the class of schemes
defined by these restrictions. For instance, sampling
of all and only full-siblings of any ascertained indi-
vidual(s) satisfies (i) and (ii) above.

Sampling family members in a sequential man-
ner can, in some circumstances, greatly increase the
amount of genetic information in the sample [4].
For example, Boehnke et al. [1] simulated a quan-
titative trait under the mixed model (see Segre-
gation Analysis, Mixed Models), and compared
the efficiency of nonsequential and sequential sam-
pling schemes. They found that sampling sequentially
could increase power to detect segregation at a domi-
nant major locus by over 60%. (However, the amount
of increased efficiency actually achieved depends
upon the underlying genetic etiology of the disease
under study.) Thus, sequential schemes for intrafa-
milial sampling constitute an extremely flexible and
efficient class of procedures for sampling of pedigrees
in human genetics.

It is worth noting, however, that sequential sam-
pling introduces certain technical complications into
the calculation of likelihood, particularly when con-
ducted in conjunction with ascertainment through
affected individuals. Strictly speaking, observed pedi-
gree structure is a random variable, which may
depend upon genetic parameters as well as the sam-
pling procedures, and should then be included in
the formal (likelihood) model. Cannings & Thomp-
son [2] showed that, when intrafamilial sampling
is sequential, conditioning the likelihood on the
observed pedigree structure does not produce bias
in genetic parameter estimates, provided that ascer-
tainment is random, i.e. not a function of phenotype
(see also [5]), or single (see also [3] and [5]), and
provided that the Cannings & Thompson criteria
given above are not violated. However, when ascer-
tainment is neither random nor single, conditioning
likelihoods on the observed pedigree structure will
introduce (asymptotic) bias into parameter estima-
tion when families are sequentially sampled [5]. In
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fact, this result extends to nonsequentially sampled
families whenever the observed pedigree structure
depends on which among a set of relatives happen
to have been the initially ascertained individuals [5].
This result applies not only to segregation analysis,
but to linkage analysis as well [6]. It is also important
to note that while maximum likelihood parameter
estimates may not be (asymptotically) affected by
the use of sequential sampling procedures, standard
errors of estimators cannot be calculated in the usual
way when intrafamilial sampling is sequential. As a
result, it may be inappropriate to assume that test
statistics (e.g. −2 × the natural logarithm of the like-
lihood ratio) follow their canonical distributions (e.g.
a chi-square distribution) (see Likelihood Ratio
Tests).
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Peirce, Charles Sanders

Born: September 10, 1839, in Cambridge, Mas-
sachusetts.

Died: April 19, 1914, in Milford, Pennsylvania.

C.S. Peirce is regarded by many as the greatest
philosopher the US has ever produced and is con-
sidered to be the creator of pragmatism. He wrote
and published articles upon a wide range of subjects
including logic, mathematics, metaphysics, psychol-
ogy, optics, astronomy, chemistry, religion, and other
subjects. Many of his ideas are of significance to
statisticians. These ideas include his thoughts about
statistical inference, random samples, randomiza-
tion of treatments, the definition of probability, for-
mulation of hypotheses (see Hypothesis Testing),
and errors of measurement (see Measurement Error
in Epidemiologic Studies).

Charles Sanders Peirce (pronounced Purse) was
the second of five children born to Benjamin Peirce,
the leading American mathematician of that time, and
Sarah Hunt (Mills) Peirce.

Charles entered Harvard in 1855, graduated in
1859, and ranked seventy-first in a class of 91 grad-
uates. In July of 1861, he joined the US Coast
Survey as a computing aide to his father, who had
been employed with the Survey since 1852 and who
served as superintendent of the Survey, from 1867 to
1874. Charles married Harriet Melusina (Zina) Fay
on October 16, 1861. He received an M.A. degree
from Harvard in 1862 and an S.B. degree in chem-
istry, summa cum laude, from the Lawrence Scientific
School at Harvard in 1863.

He prepared 11 lectures on the logic of science
to be given at Harvard in the spring of 1865. It
appears that the lectures were not given at Harvard
but were given in revised form at Lowell Institute
in 1866. In 1867, he was elected to membership as
resident fellow in the American Academy of Arts
and Sciences. He worked as an assistant at Harvard
Observatory from 1869 to 1872 and lectured on
philosophy in 1869–1870. In 1870, he was sent by
his father to find suitable observation sites in Europe
along the path of totality to observe the solar eclipse
of December 22, 1870. He was a member of an
observation party near Catania, Sicily.

In 1871, he was in charge temporarily of the
Coast Survey. He included astronomical observations

made at Harvard Observatory from 1872 to 1875 in
Photometric Researches (1878). In 1872, he became
assistant at the Coast Survey and held this position
until 1884. In 1877, he was elected as a fellow of
the National Academy of Sciences. He was appointed
lecturer in logic at Johns Hopkins University in 1879
and in 1880 he was elected as a member of the
London Mathematical Society.

In 1876, he was separated from his wife, Melusina.
His father died in 1880. Charles divorced Melusina in
1883 and married Juliette Froissy. He lost his position
at Johns Hopkins University in 1884 for unspecified
reasons and never held another academic position.
In 1887, he and Juliette moved to a country home,
Arisbe, near Milford, Pennsylvania. Possibly because
of incompleted work, he was forcibly retired from the
Coast Survey in 1891.

He continued to write articles for periodicals, The
Monist and Nation, for example [1]. He became an
editor and contributor for Century Dictionary. He
continued to give lectures, which included lectures
on the history of science at the Lowell Institute in
1892, a lecture on number at Bryn Mawr College
in 1896, lectures on logic at the Lowell Institute in
1903, and lectures on the scientific method before
the Philosophy Club at Harvard in 1907. Because of
the strong friendship and support of William James,
he informally added Santiago (Saint James) to his
name.

In Peirce’s study of inductive science, the need for
random samples is explicitly stated. Peirce (“Lessons
from the history of science”, c. 1896 [2]) says, “A
sample is a random one, provided it is drawn by such
machinery, artificial or physiological, that in the long
run any one individual of the whole lot would get
taken as often as any other.”

Peirce thought of the need for experimental ran-
domization much before R.A. Fisher. Gustav Fech-
ner had performed a multifactor experiment in 1860
to study sensory perception. In 1885, Peirce and
Joseph Jastrow (see [4]) designed a similar exper-
iment that used randomization of treatments. They
presented slightly different weights in random order
to subjects who were asked to state which of the two
orders they had received. Two well-shuffled decks of
cards were used to make the randomization.

Peirce was interested in the meaning and interpre-
tation of probability and tried to give an operational
definition of probability. In a letter to William James
in 1909, he gave a long-range definition of probability
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and he continued to work on a definition of probabil-
ity in terms of endlessly diminishing oscillations.

On the subject of data analysis, Peirce [2] empha-
sized the importance of formulating hypotheses be-
fore examining the sample. He said, “We must first
decide for what character we propose to examine the
sample and only after that decision examine the sam-
ple.” Peirce gave as an example the examination of a
random sample of names from a biographical refer-
ence. If one allowed the data to suggest hypotheses,
one might reach some very unlikely conclusions. For
example, he listed several eminent men whose death
dates met the following criterion “. . . All eminent
men die in years whose date doubled and increased
by one gives a number whose last figure is the same
as that in the ten’s place of the date itself.”

Peirce [3] wrote a paper in 1870 entitled, “On the
theory of errors of observation”. The paper included
a lengthy theoretical development that resulted in
the normal law of errors (see Normal Distribution)
and the analysis of a large data set. He studied the

reaction times of an untrained 18-year-old boy to
signals received. He recorded 500 measurements for
each of 24 days and fit normal curves to the data sets.

He died at Milford, Pennsylvania, on April 19,
1914, at the age of 74. His unpublished papers and
his library were left to the Harvard department of
philosophy.
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Penalized Maximum
Likelihood

The standard approach to analyzing a set of obser-
vations xi, i = 1, . . . , n, thought to be a random
sample from some population with density f (·) is
to assume a parametric form for f and then esti-
mate the parameters of the density using, for exam-
ple, maximum likelihood. This parametric approach
has excellent properties if the assumed density is
the correct one, but can lead to grossly incorrect
inferences if the assumed density is inappropri-
ate.

Nonparametric density estimation methods avoid
this problem by weakening the assumption on the
true density to be that f is unspecified, except
that it is assumed to be smooth (that is, at least
a specified number of derivatives of f are square
integrable, where that number is usually two or
four). The nonparametric maximum likelihood esti-
mator (MLE) of f is not a reasonable density
estimator, since the maximizer of the nonparamet-
ric log likelihood is a set of (Dirac) spikes at the
observations {xi}. That is, it is not consistent with
a smooth density because of its great roughness.
Maximum penalized likelihood estimation modifies
the log likelihood to discourage the roughness of
the nonparametric MLE by penalizing the estimator
if it becomes too rough. The maximum penalized
likelihood estimator (MPLE) [3] is the maximizer
of

L(f ) = n−1
n∑

i=1

log f (xi) − Φ(f )

subject to
∫

f = 1, where Φ(f ) ≥ 0 is a rough-
ness penalty that decreases as f becomes smoother.
The resultant estimator provides a tradeoff between
fidelity to the data (from the log likelihood) and
smoothness (from the roughness penalty). The esti-
mator also has a Bayesian interpretation, with the
prior for the density having the form exp[−Φ(f )]
and the posterior mode being the final estimate.

Different choices of Φ yield different estima-
tors. A common strategy is to take g = log f and
Φ(g) = α

∫
[g(m)(u)]2 du, α ≥ 0, where g(m) is the

mth derivative of g [14, 15]. Then, f̂ = exp(ĝ) (note

that since the MPLE is defined through exponenti-
ating an estimate of the log-density, it is nonnega-
tive).

The smoothing parameter α controls the amount
of smoothing, with larger α resulting in a smoother
estimate. As α → 0, the MPLE approaches the non-
parametric MLE of Dirac spikes, while as α → ∞,
the MPLE becomes the MLE within a parametric
family that depends on Φ. For example, if f is
defined on the nonnegative numbers, and Φ(g) =
α

∫
[g′′(u)]2 du, the limiting family is exponential,

while if Φ(g) = α
∫

[g′′′(u)]2 du, the limiting family
is Gaussian. If f is bounded away from zero, and∫

[f (2m)(u)]2 du is finite, then a roughness penalty
based on mth order derivatives gives an estima-
tor the mean square error (MSE) of which con-
verges to zero at the rate O(n−4m/(4m+1)). Note that
the estimator does not achieve the usual paramet-
ric rate of MSE = O(n−1). This deficiency can be
viewed as being the price that one pays for weak-
ening the parametric assumption merely to smooth-
ness.

Penalized likelihood estimators are often called
spline estimators, since many such estimators take
the form of polynomial splines with knots at the
order statistics. Asymptotically, the MPLE is approxi-
mately a local-bandwidth kernel estimator. If Φ(g) =
α

∫
[g′′(u)]2 du, for example, then

f̂ (x) ≈ f (x)1/4

nα1/4

n∑

i=1

K

[
(x − xi)f (x)1/4

α1/4

]
,

with kernel function

K(u) = 1

2
exp

(−|u|√
2

)
sin

( |u|√
2

+ π

4

)
,

away from the boundary. Further theoretical analysis
of the MPLE can be found in [1], [2], [7], and [8].

The MPLE is difficult to compute, and for that
reason various adaptations of it have been proposed.
Scott et al. [13] converted the penalized likelihood to
one on discrete data by binning the observations, call-
ing this the discrete maximum penalized likelihood
estimator (DMPLE), and gave conditions where the
DMPLE converges to the MPLE as the bins narrow.
O’Sullivan [10] and Gu [6] described other spline-
based density estimators.

Penalized likelihood methods also can be gener-
alized to multivariate data, although with increasing
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Table 1

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

Staff 0 0 0 0 0 0 1 2 3 1 1 3 3 4 3
Trainee 1 1 0 0 1 0 1 3 5 4 0 2 5 0 0

computational difficulties. Natural roughness penal-
ties take the form of sums of squared derivative terms
(one for each dimension), such as (for bivariate data)

Φ =
∫∫ [(

∂f

∂u

)2

+
(

∂f

∂v

)2
]

du dv

(Scott et al. [12], who used a discrete version of this
penalty), or

Φ =
∫∫ [(

∂2γ

∂u2

)2

+
(

∂2γ

∂v2

)2
]

du dv,

where γ = √
f [4]. Granville & Rasson [5] proposed

and investigated a penalty based on g = log f .
Penalized likelihood estimation has also proven

valuable in the estimation of cell probabilities in
large sparse contingency tables. Consider a K-cell
multinomial vector ni, i = 1, . . . , K , with

∑
ni = n

and underlying cell probabilities pi, i = 1, . . . , K .
Under the usual asymptotic model of a fixed number
of cells K with n → ∞, the frequency estimator pi =
ni/n, i = 1, . . . , K , is consistent and fully efficient.

Tables in which the sample size is not large com-
pared with the number of cells are called sparse
tables, and the usual asymptotics (see Large-sample
Theory) do not provide a reasonable model for them.
Sparse asymptotics, where K and n both become infi-
nite at the same rate, provide a theoretical framework
for the analysis of large sparse tables. In this situation
the frequency estimator is no longer useful, since its
good properties require the number of observations in
each cell to become infinite. The frequency estimator
is not sparse asymptotic consistent, in the sense that

sup
1≤i≤K

∣∣∣∣
pi

pi

− 1

∣∣∣∣ �= op(1).

In contrast, maximum penalized likelihood esti-
mation leads to a sparse asymptotically consistent
estimator. The estimator is the maximizer of

K∑

i=1

ni log pi − α

K−1∑

i=1

(log pi − log pi+1)
2, α > 0,

where α is the smoothing parameter. Assuming
appropriate smoothness and boundary conditions on
the underlying probability vector p, the MPLE p̂
is sparse asymptotic consistent, with convergence
rate [16]

sup
1≤i≤K

∣∣∣∣
p̂i

pi

− 1

∣∣∣∣ = Op[K−2/5(log K)2/5].

An application of maximum penalized likelihood
estimation to sparse categorical data is illustrated
in Table 1. The data, originally from [9], and fur-
ther analyzed in [11] and [17], represent the perfor-
mance of staff and trainees in correctly interpreting
diagnostic tests given to psychologically disturbed
patients, as measured by counts of people at the dif-
ferent performance levels. The question of interest
here is whether the performance of staff and trainees
differs.

In Figure 1 are given the observed relative fre-
quencies [part (a)], and the (smoothed) penalized
likelihood estimates [part (b)] (staff probabilities are
represented by solid lines connecting ×’s, while
trainee probabilities are represented by dotted lines
connecting Ž’s). Because of the roughness in the
estimates, it is difficult to see from the unsmoothed
relative frequencies what the relative shape of the
distributions is. In contrast, the smoothed estimates
clearly show multimodality in both group’s scores,
with lower scores (less than 72) more probable for
trainees, and higher scores (greater than 72) more
probable for staff members.

Notes

1. IMSL provides a Fortran subroutine to calculate
a discrete maximum penalized likelihood density
estimate.

2. RKPACK-II, a collection of Ratfor routines for
penalized likelihood density estimation, is avail-
able using a World Wide Web browser at the
URL, at http://www.stat.purdue.
edu/∼chong/rkpk2.shar.gz.
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Figure 1 (a) Observed relative frequencies; (b) smoothed likelihood estimates
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Penetrance

There is a relationship between the underlying geno-
type and the observed phenotype of an individual
that must be defined in describing the genetic basis
of a trait. The function that describes this relationship
is called the penetrance function, and is defined in
a general sense as the conditional probability that
an individual with genotype g expresses phenotype
y : Pr(y|g) for a discrete trait, or φ(y|g) for a
continuous trait, where φ is the probability density
function. Specification of such a penetrance function,
along with associated parameter estimates, is a
necessary component in computations that are based
on maximum likelihood methods and requires
relationships between genotypes and phenotypes (see
Genetic Counseling; Linkage Analysis, Model-
based; Segregation Analysis, Complex).

When the relationship between the genotype and
the phenotype is simple, as is the case for most blood
groups, this conditional probability is either 0 or 1,
depending on the particular combination of geno-
type and phenotype. For many traits, however, the
relationship between specified underlying genotypes
and possible resulting phenotypes is not so clear. For
these traits, the penetrance function can be thought
of as a quantitative model that summarizes our lack
of understanding about the underlying mechanisms
relating genotype to phenotype. In defining the pen-
etrance function in these cases, we make the implicit
assumption that Pr(y|g) is an average over all pos-
sible individuals with genotype g, and that these
individuals have been randomized for all factors that
have an impact on this probability.

There are a number of commonly used
penetrance functions. For some phenotype–genotype
combinations, Pr(y|g) = k, where 0 < k < 1 but
k is a constant. This model is called a fixed-
penetrance model, and has been well described in
experimental organisms. For example, in the fruit fly
Drosophila melanogaster there is a gene for which
90% of homozygotes for allele i have an interrupted
wing vein [5]. This reduced penetrance probability
remains 90% in offspring of matings between obligate
homozygotes for the i allele, regardless of whether
the i/i parents have normal or interrupted wing
veins. In humans, there are many genetic disorders
that behave in a similar manner to this reduced
penetrance example in flies. For example, in the

autosomal dominant disorder split-hand deformity,
Pr(disease|genotype = Dd) ∼= 0.7, where D is the
disease allele and d is the normal allele [7]. For
phenotypes that are easily dichotomized into normal
vs. abnormal phenotypes, this narrower definition of
penetrance is often used: that of the penetrance of
a genotype, where it is specifically the penetrance
Pr(y = disease|g) that is of interest, possibly for
different underlying genotypes, g. This narrower
definition of penetrance is used only in the context of
inherited diseases (in humans) or unusual phenotypes
(in nonhumans).

Frequently, the penetrance differs among indi-
viduals as a function of some identifiable covari-
ate, which can then be incorporated into the model.
Covariates might include such intrinsic characteristics
of an individual such as age or sex, or might include
extrinsic characteristics such as diet or exposure to
some environmental factor. The penetrance function
may then be defined as Pr(y|g, c), where c may be
a vector of covariates. It is quite common, for exam-
ple, to assume that males and females have different
penetrance functions for certain phenotypes, such as
the probability of baldness.

Age is a particularly common covariate in pen-
etrance functions for human diseases. Examples in-
clude breast cancer, Alzheimer’s disease, and Hunt-
ington’s disease. For each, the probability that disease
has developed increases with the age of the individ-
ual. Typically, either a cumulative normal distribu-
tion, or a straight-line penetrance function (with a
minimum and maximum age of penetrance and a lin-
ear increase between them) is used. Other functions
are also possible, including use of liability classes
for age intervals, with fixed but increasing pene-
trance for each interval [6]. The parameters for the
functions will vary across genotypes, including the
possibility of 0% penetrance at all ages for some
genotypes (e.g. the nonsusceptible genotype for Hunt-
ington’s disease), or the possibility of sporadic forms
of the disease with later mean onset than the “genetic”
forms (e.g. early-onset Alzheimer’s disease [3]). In
model-based analyses of diseases with sporadic cases,
computation of likelihood for linkage analysis (see
Linkage Analysis, Model-based) or genetic coun-
seling requires using the density function and age at
onset for affected individuals, and the cumulative dis-
tribution function and age at last examination or at
death for unaffected individuals [4] since ultimately
what is desired is the reverse probability, Pr(g|y).
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A disease with age-dependent penetrance can also
be affected by other covariates. For example, ε4/ε4
homozygotes at the ApoE locus have a lower mean
onset age of Alzheimer’s disease than do individ-
uals with other ApoE genotypes [2]. Separate age-
dependent penetrance functions for different ApoE
genotypes increased the likelihood in a linkage anal-
ysis [3], as is expected if this model fits the data
better than one which did not account for this discrete
covariate.

The penetrance function may, in principle, also
take into account genotypes at multiple loci, e.g.
Pr(y|g1, g2), where g1 and g2 are genotypes at two
loci. In humans, relatively few such multilocus sys-
tems have been characterized well enough to define
precise multilocus penetrance functions. Until the
specific interacting loci have been identified, the
penetrance function will generally be parameterized
in terms of only one locus, which should be ade-
quate for describing penetrance in unrelated indi-
viduals unless there is linkage disequilibrium at
the population level between this locus and addi-
tional contributory loci. However, for computations
on related individuals, the increased sharing of alle-
les identical-by-descent (see Identity Coefficients)
in closely, vs. more distantly, related individuals
means that a single-locus penetrance function will
only approximate the correct penetrance probabili-
ties in computations on pedigrees. While this has
little effect on initial linkage analyses [1], the result-
ing model-misspecification may reduce the ease by
which such a disease locus can be localized to a

very small genomic region by multipoint linkage
analysis.
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Person-years at Risk

In follow-up studies of subjects subsequent to various
treatments or exposures and in the study of chronic
disease where the incubation period or length of
illness may be months or years, consideration must be
given to the time the subjects were under observation
or to the time intervening between the initial exposure
and the eventual outcome, e.g. recovery, onset of dis-
ease, or death. If the probability of a given outcome
is related to time, outcome measures are affected by
the length of the observational period [1].

Person-years at risk are units of measurement
which combine persons and time by summing indi-
vidual units of time (years and fractions of years)
during which subjects in a study population have been
exposed to the risk of the outcome under study. A
person-year is defined as the equivalent of the expe-
rience of one individual for one year [2]. Each subject

contributes only as many years as he or she has
been actually observed (or exposed); a subject under
observation for one year contributes one person-year;
six months would contribute one-half person-year,
etc. Person-years at risk frequently comprise the
denominator of calculations of incidence rates mea-
sured over extended and variable time periods or of
measures of morbidity and mortality resulting from
chronic exposure to environmental hazards such as
industrial toxic waste materials or cigarette smoke.
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Person-years of Life Lost

For public health planning purposes it is important
to have measures of the impact of particular diseases
and of the potential impact of preventive measures,
and one of the most useful and intuitive of such mea-
sures of impact is person-years of life lost, sometimes
termed, potential years of life lost, and generally
abbreviated as PYLL.

In principle, the measure is straightforward. In a
stationary or life table population, the person-years of
life lost due to a particular cause of death represents
the difference between the expectation of life of
the population and the expectation of life with the
cause in question eliminated (see Life Expectancy).
Standard methods are available for the calculation of
cause-deleted life tables [2]. In an actual population,
the PYLL are obtained by taking the deaths at each
age due to the cause being examined, and calculating
the years those people would have lived according to
the cause-deleted life table [1]. Like life expectancy,
the PYLL may be calculated from birth or any other
age, or over any given age range. Also like life
expectancy, it gives greatest weight to the deaths at
the youngest ages.

In practice, there are a number of complications,
arising from two main sources: judgments about the
value of life at different ages; and the problem of
competing risks.

Person-years of life lost is often used as a measure
in cost-of-illness studies, and in this context it is
common to restrict its calculation to the years of
economically active life (e.g. between 15 and 65).
In other contexts, it is generally calculated up to
a particular upper age limit, e.g. 65, 70, etc. The
use of such cutoffs is virtually universal, despite the
obvious theoretical weakness in arbitrarily weighting
or valuing all years lived (or lost) inside the limits
at unity and all those lived outside the limits at
zero.

One reason for excluding deaths at older ages
is the problem of competing risks and the dif-
ficulty of determining a single cause of death in
older people with multiple potentially lethal condi-
tions. Competing risks are, in fact, an issue at all
ages, and the various approximate methods which
have been used to calculate the index differ princi-
pally in the extent to which they attempt to come
to terms with competing causes of death. It is
still common, for instance, to base the calculation
on the assumption that, if the cause were elim-
inated, the individuals “saved” would all survive
to the upper age limit being used (e.g. 65 years).
That clearly overestimates the years lost, because in
that period such individuals would remain at risk
of dying from other causes. A second approxima-
tion involves applying the total mortality to the
lives saved; this underestimates the PYLL, because
it includes the cause that is meant to have been
eliminated.

Apart from these technical issues, the principal
shortcoming of the method is that basing it on cause-
deleted tables incorporates an inadequate model of
disease causation and prevention. Public health activ-
ities are principally aimed at elimination or reduction
of risk factors rather than causes of death, and as in
the case of smoking, one risk factor may result in
deaths from a variety of causes. Where appropriate,
the use of attributable fractions to convert PYLL
due to particular causes to PYLL due to particular
risk factors is a more realistic approach.
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Petty, William

Born: May 26, 1623, in Romsey, Hampshire, UK.
Died: December 16, 1687, in London, UK.

Petty was a precocious youth. His father was a
clothier, and the young Petty learnt many of the
skills of the business while he was learning Latin
and Greek at school. At the age of 14 he became a
cabin boy and attracted attention in France, during
a period of recovery from a broken leg, as “le petit
matelot anglais qui parle latin et grec”. He spent a few
years abroad, teaching English and navigation, and
studying at the Jesuit College in Caen. He returned
to England to join the Royal Navy, but in 1643,
after the outbreak of the Civil War, he returned to
the continent, studying medicine and mathematics in
Utrecht, Amsterdam, and Leyden. After a period in
Paris, he returned to England in 1646, joining his
father’s business. During this period, he sketched
the idea of a national scientific society, later to be
embodied in the Royal Society, of which he would
become a founder member.

After a while, he moved to Oxford to continue his
medical studies, and in 1649 he was made a Doctor of
Physic and Fellow of Brasenose College. By 1651 he
had become Professor of Anatomy and Vice-Master
of Brasenose.

In about 1652 he was appointed Professor of
Music at Gresham College, apparently with the influ-
ential help of his friend John Graunt. But almost
immediately he left for Ireland, where the Com-
monwealth government was engaged in resettlement
and in the forfeiting of estates of Irish landown-
ers who were in debt to the government. For this
purpose a survey of these estates was required, and
Petty was entrusted with the task, which eventually
expanded to the complete mapping of Ireland. He
became involved in Commonwealth politics, but after
the Stuart restoration in 1660 he found himself on
good terms with the monarchists, and was knighted
by Charles II on the granting of the Charter to the

Royal Society in 1662. Petty had by now become a
key figure in London intellectual circles.

In the meantime, Graunt, hitherto a prosperous
trader, had become bankrupt, and Petty was able
to repay Graunt’s earlier generosity by giving him
material support until Graunt’s death in 1674.

Petty shared Graunt’s interest in demographic mat-
ters (see Demography), and published many essays
on vital statistics, inventing the term “political arith-
metic”. He was not a pioneer of Graunt’s calibre, and
earlier rumours that he had written Graunt’s Observa-
tions on the Bills of Mortality appear to be unfounded.
His economic writings include a Political Anatomy
of Ireland, and A Treatise of Taxes and Contributions.
For a modern statistician perhaps his greatest con-
tribution was the advocacy of a national statistical
office, to enumerate population (see Censuses), eval-
uate property, organize tax collection and improve
the public health. His assessment of the importance
of official statistics can perhaps be judged from this
delightful quotation: “God sent me the use of things,
and notions, whose foundations are secure and the
superstructures mathematical reasoning; for want of
which props so many Governments doe reel and stag-
ger.”

Greenwood’s epitaph [2] is appropriate: “Careless,
happy-go-lucky, tendentious; yes, all of that. But
anyone who has felt the exhilaration . . . in the doing
of sums concerning biological problems, feels his
heart warmed by the arithmetic knight errant who had
so many statistical adventures” (see also [1] and [3]).
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Pharmaceutical Industry,
Statistics in

Pharmaceutical statistics is an emerging discipline
that is going through the classical stages of growth
of a developing science: first, as a loose collec-
tion of topics; next, as a recognized subspecialty;
and finally as a largely separate discipline. In this
respect, it is following closely on the heels of med-
ical statistics as it emerges from the science of
statistics, which in its turn has followed the emer-
gence of statistics from mathematics. These develop-
ments can be traced through the founding of journals
devoted to these respective subjects. Karl Pear-
son founded Biometrika in 1900 because he found
that his papers were too mathematical for the biol-
ogists and too biological for the mathematicians.
Biometrics was started after World War II, amongst
other reasons, because Biometrika was perceived as
being too abstract for the life scientist. Statistics in
Medicine has had a phenomenal growth since its
beginning in the 1980s and this is surely at least
partly due to the increasing numbers of statisticians
working exclusively in medicine and with no inter-
est (say) in agriculture. More recently, a new journal
has appeared, The Journal of Biopharmaceutical
Statistics, and although we can expect that many
papers on pharmaceutical statistics will continue to
appear in Statistics in Medicine in the same way
that papers on medical statistics continue to appear
in Biometrics, no doubt we can expect to see a
growth in this more specialist outlet for pharmaceu-
tical statistics. Perhaps eventually we will even see
the need for a specialist Encyclopedia of Pharmaceu-
tical Statistics!

Obviously, there is still a considerable overlap
between pharmaceutical statistics and medical statis-
tics. There are, however, many topics which are given
a different emphasis even if attention is restricted to
a field of common interest: the design and analy-
sis of clinical trials. For example, two of the most
important topics of research in the statistics of clinical
trials in the last quarter of the twentieth century have
been survival analysis and group sequential (see
Data and Safety Monitoring) methods. Although
both of these are of some importance to pharma-
ceutical statistics, in fact it is only a small minority
of trials in which survival is the main outcome, and

even fewer which are run sequentially. On the other
hand, crossover trials are much more important than
in medical statistics generally and there are various
other topics such as pharmacokinetic modeling that
really apply only in connection with drug develop-
ment [18].

Drug Development

Before describing the role of the statistician in drug
development, it is appropriate to say something about
drug development itself. It is the process of finding
and producing therapeutically useful pharmaceuticals
and of turning them into high-quality formulations
of usable, effective, and safe medicines. It is also
the process, however, of delivering valuable, reliable
and trustworthy information about appropriate doses
and dosing intervals and about likely effects and
side effects of these treatments. Drug development is
carried out by sponsors (mainly pharmaceutical com-
panies), and its acceptability is judged by regulators
such as the Food and Drug Administration (FDA)
of the US or the Medicines Control Agency (MCA)
in the UK. It is an extremely complex business and
the risks are high, but the potential rewards are also
considerable.

The phrase drug development is used in two
different senses within the pharmaceutical industry.
In its more general sense, it covers all the activ-
ities leading to the eventual marketing of a phar-
maceutical. In a more restricted sense, a distinction
is made between drug research, which covers the
study of basic mechanisms of action and the iden-
tification of candidate substances, and drug develop-
ment proper, which covers the business of producing
suitable formulations and studying their effects in
man.

It takes many years for a project to reach drug
development proper. First, basic research must be
undertaken to validate concepts and mechanisms.
The choice of therapeutic areas to investigate will
depend on commercial potential and this in turn
requires a thorough understanding of disease areas
and current therapies in order to establish unmet
medical need. Intelligence reports regarding these
matters will continue to be produced throughout
the life of a project. Next, a lead compound must
be identified for a particular indication. This will
then be subject to a battery of screening tests to
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assess its potential in terms of therapeutic activity.
Back-up compounds will also be investigated. If a
compound looks promising it will also be evalu-
ated from both safety and practical points of view.
Will it be easy to formulate? How many steps are
involved in the synthesis? How difficult will it be to
manufacture in large quantities? Before a treatment
can go into development, not only must satisfactory
answers have been obtained to all these questions,
but a viable pharmaceutical formulation permitting
further study must be available. This can be an
extremely delicate matter, involving work to develop
suitable solutions, pills, patches, or aerosols, as the
case may be (see Preclinical Treatment Evalua-
tion).

If and when a molecule is accepted into drug
development proper, animal studies will be under-
taken in order to check safety and to establish a
dose at which studies in man may be undertaken.
Once basic toxicological work has been undertaken,
phase I may begin and the first such studies may
start. These will be single-dose studies in which lower
doses are tried first and cautiously increased until a
maximum tolerated dose may be established. In many
indications such studies are carried out on healthy
volunteers but where the treatment is highly aggres-
sive (and hence intended for serious diseases) patients
will be used instead. In the meantime longer-scale
toxicological studies with animals will have been
completed. Pharmacokinetic studies in man will be
undertaken in which the concentration–time profile
of the drug in blood will be measured at frequent
intervals in order to establish the rate at which the
drug is absorbed and eliminated (see Bioavailabil-
ity and Bioequivalence). These studies together, if
successful, will permit multiple dose studies to be
undertaken.

Once maximum tolerated doses have been estab-
lished, phase II begins and dose-finding studies in
patients are started. This is usually an extremely dif-
ficult phase of development but, if the drug proves
acceptable, the object is that preliminary indications
of efficacy should be available and that a firm rec-
ommendation for doses and dose schedules should
emerge. Once these studies have been completed, the
pivotal phase III studies can begin. These have the
object of proving efficacy to a skeptical regulator and
also of obtaining information on the safety and toler-
ability of the treatment.

A successfully completed development program
results in a dossier: an enormous collection of clinical
trial and other reports, as well as expert summaries
covering not only the clinical studies as regards effi-
cacy and safety but also preclinical studies and other
technical reports as well as details of the manufactur-
ing process. The purpose of this dossier is to reassure
the regulator as to quality, safety, and efficacy of
the pharmaceutical. If successful, the package leads
to registration, but even during the review process,
phase IV studies may have been initiated in order to
discover more about the effect of the treatment in spe-
cialist subpopulations, or perhaps with the object of
providing data to cover price negotiations with pur-
chasing authorities. These reimbursers may include
national health services but also agents acting for pri-
vate health care plans.

Once a drug has been launched on the market
the process of monitoring and “pharmacovigilance”
begins in earnest, since the drug will now be used by
far more people than was ever the case in the clinical
trials in phases I to III, and rare side effects, which
could not be detected earlier, may now appear [18].
Some further phase IV postmarketing surveillance
studies may be initiated and further work extending
indications or preparing new formulations may be
undertaken.

It is important to stress that all this work is car-
ried out to an extremely high standard [1, 5, 9, 18].
A sponsor will have standard operating procedures to
cover all aspects of the trial, from informed consent
for patients (see Ethics of Randomized Trials),
to report writing, passing such diverse matters as
the handling of human specimens, monitoring, drug
disposal and accounting, source data verification,
database management (see Data Management and
Coordination), and, of course, statistical analysis en
route. These, in turn, will reflect regulatory guide-
lines [2]. The results will be closely examined by
regulators and this examination will, in some cases,
involve reanalysis of the data and even study-site vis-
its [4, 5, 9] (see Drug Approval and Regulation).
Of course, in-house quality control and assurance
also receives a great deal of attention and the typical
sponsor will have a number of auditors and monitors,
who, although not necessarily statisticians, will make
important contributions to data quality. The net result
is that the average standard that applies to clinical
trials within the pharmaceutical industry is far higher
than that which applies outside.
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Statistics in Drug Development: The
Current Position and Recent Past

A top pharmaceutical company will employ between
50 and 150 statisticians in a number of sites world-
wide dealing with various aspects of drug develop-
ment and research. Activities in which statisticians
can become involved include [18]:

1. Optimization in chemical, pharmaceutical, or
manufacturing development

2. Animal toxicology experiments
3. Bioassay (see Biological Assay, Overview)
4. Project prioritization and portfolio management
5. Quality control
6. Pharmacoeconomics (see Pharmacoepidemiol-

ogy, Overview)
7. Pharmacokinetics
8. Epidemiology and drug monitoring
9. Design and analysis of clinical trials.

The last of these has always been the most important
area of activity for the pharmaceutical statistician but
others, in particular epidemiology and pharmacoeco-
nomics, are growing in importance. The potential for
the statistician to contribute to portfolio management
is also considerable [17, 18].

The randomized clinical trial (RCT) provides the
fiducial framework which permits the regulator to
mandate the sponsor to carry out drug development.
The allocation of patients to treatment usually in-
volves an element of randomization, thus reducing
the sponsor’s ability to manipulate results. Each trial
has an extensive protocol covering all aspects of its
conduct. It will also include a detailed description
of the data which will be collected and the intended
analysis and these must be presented or accounted for
in the final report (see Clinical Trials Protocols).
A concern, sometimes amounting to an obsession,
with prespecified analyses is, in fact, one of the
characteristic features of pharmaceutical statistics.

It is the norm, of course, for trials to be designed
jointly by at least one physician and one statisti-
cian. Indeed, the Good Clinical Practice Guidelines
of the European Union state, “Access to biostatis-
tical expertise is necessary before and throughout
the entire procedure, commencing with the design
of the protocol and ending with completion of the
Final Report.” There has been a remarkable growth
in the number of statisticians employed by the phar-
maceutical industry since the 1970s. The first phase

of this growth was in the primary industry, but latterly
there has been an explosion in the secondary indus-
try: the Contract Research Organizations (CROs) (see
Proprietary Biostatistical Firms). This is illustrated
by the change in membership of Statisticians in the
Pharmaceutical Industry (PSI), a UK-based body,
since it was founded in the late 1970s. In the late
1980s, through the creation of the category of Asso-
ciate Member, it was opened to those not working in
the primary industry and they now exceed ordinary
members in number.

This growth in pharmaceutical statistics has taken
place both in North America and in Europe and, as
regards the statistical expertise available to sponsors,
there is no disparity between the two regions. (Japan,
although actively involved in the harmonization of
drug regulations, has lagged behind in this respect.)
As regards regulators, however, until recently the dis-
crepancy was considerable. The FDA employs about
120 statisticians in human health but until the 1990s
there were none in the European Union. The Royal
Statistical Society (RSS) was so concerned by this
state of affairs that it issued a report in an attempt
to encourage statistical representation in drug regu-
lation [12]. The position has now improved consid-
erably, with statisticians, for example, in Germany,
Sweden and the UK. This is a welcome development,
since employing physicians to consider statistical
arguments is clearly an inefficient and ineffective use
of resources.

Statistical topics which have been of particular
interest to pharmaceutical statisticians, whether work-
ing for regulators or sponsors, are:

1. Design and analysis of crossover trials [16]
2. Equivalence testing [18]
3. Pharmacokinetic and pharmacodynamic models

[10, 14, 21]
4. Repeated measures
5. Dose finding [22]
6. Bayesian methods
7. Nonlinear random effect modeling [10, 21]
8. Professional and practical statistical matters

[1, 5].

Two Examples

Statisticians employed in the industry can be involved
in a wide variety of tasks. Two examples are given
here to illustrate the breadth.
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Formoterol

The first concerns the development of a new for-
mulation of a drug, formoterol (eformoterol in the
UK) [19]. Formoterol is a beta-agonist used to treat
asthma and a series of trials carried out over a number
of years had succeeded in demonstrating that it had
a rapid onset and 12 hours duration of action [11].
This was a considerable improvement over the drugs
then available, which had a 4–5 hour duration.

A single-dose dry powder formulation had been
developed and it was desired to show that a dry
powder multidose formulation would be equivalent.
Normally, one would attempt to do this by measuring
concentration–time profiles of the active substance
in the blood, but this was impossible because (a) at
12 µg for a standard dose (80 000 doses weigh less
than a gram), formoterol is not detectable by bioas-
say, and (b) even if it were, 90% of it is swallowed
and although some of this is eliminated in “the first
pass”, the portion that remains might be a large (but
irrelevant for efficacy) part of what you would detect.
Hence, it is necessary to study the effects in patients
to compare the formulations.

This raises an issue of sensitivity, however, and
to show that equivalence is not falsely concluded
simply because the top of the dose–response curve
has been reached for each formulation, it is necessary
to compare various doses of each formulation: a par-
allel groups design. It is also necessary to include
a placebo (see Blinding or Masking). As a result,
it was decided to compare three doses of each for-
mulation with a placebo. There were thus seven
treatments. Sample size calculations showed that for
a parallel group trial 200 patients per group would
be needed for the target precision. For these sorts of
numbers, however, one might as well start a develop-
ment from scratch. On the other hand, a seven period
crossover was out of the question: for reasons of
patient compliance, five was the most periods that
could be contemplated.

In the end an incomplete blocks design was cho-
sen in 21 sequences replicated six times and five peri-
ods chosen in such a way that each patient received
five different treatments. Each treatment appeared
equally often in each period, so that each pair of
treatments was equally represented amongst the 126
patients. The design proved to be a considerable suc-
cess but the new formulation was not. The trials
showed unequivocally that the new formulation was

less potent: at least 24 µg of the multidose dry pow-
der were necessary to show the same effect as 6 µg
of the single-dose formulation.

Project Prioritization

The second example concerns work on project prior-
itization: how does one choose which drug devel-
opment projects to pursue [17]? Everyone agrees
that probability of success, cost to develop, time to
develop, and potential sales are the important consid-
erations, but there is no general consensus on how to
combine them.

A simple insight is sufficient to show, however,
that it is necessary to dig deeper into projects to
establish their worth. If two drugs have identical over-
all probabilities of success, identical overall costs to
develop, identical rewards and so forth, any index
based on weighting these factors would have to
score them identically. However, if one project were
such that it would fail early if it failed it would
be much more valuable than another which would
fail late if it failed. Hence, what is needed is an
index that goes into the cost and probability archi-
tecture of the projects. Such indices can be based
on decision analysis, a subject developed originally
by statisticians, and it is thus just as important to
the pharmaceutical industry for statisticians as for
marketers to be involved in this problem.

Statistics, Drug Development, and the
Future

The pharmaceutical industry is currently facing a
strong economic challenge as a consequence of
rapidly increasing health care costs and price curtail-
ment policies. This has various implications for the
work of the pharmaceutical statistician. First, price
regulation is forcing sponsors to consider pharma-
coeconomics and to provide reimbursers with evi-
dence regarding “value for money”. There has been
a rapid growth in the number of pharmacoeconomic
studies. Many of these have been carried out through
the medium of the RCT. The RCT is not, how-
ever, ideally suited to this and it will be necessary
in the future to combine information from a number
of sources using complex models, whereby current
knowledge is used to predict the probable health
effects and cash flow resulting from introduction of
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a pharmaceutical. This will be a great collabora-
tive opportunity for the statistician. Since the fiducial
framework of the RCT does not cover this, it is doubt-
ful that reimbursers will be able to mandate sponsors
to carry out these studies and as a consequence we
shall see the rise of third party analysis. Of course,
the industry will also have to carry out these anal-
yses, if only to predict what conclusions others will
come to.

Secondly, specialization is the order of the day,
and more and more work of all kinds, including sta-
tistical work, is being subcontracted by sponsors. The
CROs seem to provide sponsors with an attractive
option to disinvest: something which is only done
with difficulty with your own staff. However, busi-
ness is value added and if the CROs are adding the
value, this is an area of business lost to the primary
industry. Where will it all end? Will CROs eventu-
ally become the commissioning partners and trawl
the primary industry for molecules to develop? Will
the major pharmaceutical companies gradually turn
themselves into nothing more than the providers of
venture capital?

The third economic concern of the industry is
speed. All sponsors are trying to shorten development
times. One consequence for statistics is that the
time available to complete the final analysis has
been reduced from weeks to days. This means, of
course, that all computer programs have to be devel-
oped before the trial is over and validated and run
on blinded data before finally being applied to the
“cleaned” and decoded database. The irony is that
this practice, a reflection not only of economic but
also of regulatory pressure for prespecified analyses,
means that at a time when exploratory data analysis
has never been easier, it has been rendered virtually
obsolete. This development is not all bad: far from it.
Exploratory data analysis has always carried with it
the danger of overinterpretation. Far more attention
will have to be given to prior specification, whether
the framework is frequentist or Bayesian (see Infer-
ence). Nevertheless, the trend is worrying and many
companies would do well to consider the possibil-
ity of creating secondary databases for nonregulatory
analyses: the sort that could be carried out at leisure
and whose results could inform the design of further
trials. More serious, however, is that some companies
are reducing development times by moving towards
doing activities in parallel. This is extremely costly
when a project fails and what is needed is to carry

out the sort of statistical decision analysis described
above to see if it is justified.

Finally, the new concern with economics means
marketing will have to change. The golden era of the
“detail man” is over and marketing will be carried
out by highly qualified sellers to a few special-
ist buyers. Evidence (which in this context is just
another word for data and statistical analysis) will
become more important in selling the product and
the need for statistical support for marketing will
increase.

Subgroup analysis (see Treatment-covariate
Interaction) will become more important. Recently,
the National Institutes of Health (NIH) and
FDA have insisted that women and minorities be
adequately represented in clinical trials [7, 8]. This is
not as simple as it might seem. If a highly effective
treatment for lung cancer is found it will have been
found on the basis of studies where most patients
were male. (To insist that the same numbers of
females should be represented would simply delay
recruitment and the eventual proof of efficacy). Can
it then only be prescribed for men? Must further
trials be run until the same number of women
have been studied? Bayesian methods or frequentist
approaches which consider mean square error will
be needed to deal with this problem [18]. The issue
can only become more important since the Human
Genome Project will deliver ever more ways (and
perhaps more relevant ways) of classifying patients
into subgroups [15]. (It may, of course eventually
deliver a host of novel therapies, although there are
reasons for not hoping for too much in the near future
from this quarter [3].)

An important movement affecting clinical prac-
tice is evidence-based medicine [13], an idea which
originated at McMaster with Sackett and colleagues.
This requires the individual physician to integrate
global information on the efficacy of treatment into
his or her daily medical practice by formulating
precise questions concerning the care of the individ-
ual, searching medical databases (see Administrative
Databases) for the answer, critically appraising the
evidence, deciding on a treatment, and carrying out
a follow-up evaluation. A president of the RSS has
even suggested that it should be extended to public
policy making generally [20]. If it does it will only
increase the pressure and need for more information.
The quality of information available in dossiers sub-
mitted to regulatory authorities far exceeds that in
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published reports. This raises an interesting possibil-
ity: will there soon be a requirement that regulatory
dossiers, together with standard summaries, be made
available on-line? If so, will there be commercial
organizations whose sole purpose is to “surf the
Web” and produce analyses which they will then sell
to health care purchasers (see Internet)? Will the
industry statistician be constantly looking over his or
her shoulder, knowing that all analyses will eventu-
ally be repeated and modified by others who come
after?

So far potential developments in pharmaceutical
statistics have been looked at from the point of view
of the requirements of the user. What of statistics
itself? Here, various trends can be discerned. The
first is the rapid rise in the use of Bayesian methods.
The next few decades will show whether these are
so successful that frequentist methods completely
disappear by the time the DeFinetti–Lindley limit
of 2020 has been reached [6]. However, whether or
not we all become Bayesians, there are two Bayesian
lessons that all pharmaceutical statisticians are having
to learn. The first is the importance of random
effects models; for example, models that permit
appropriately combining information obtained from
repeated measures on a given patient in a particular
center with further information on the response of
all patients in that center, and even with information
on all patients in the trial, in order to produce better
descriptions of the effect of the treatment for him or
her. The second lesson is the importance of using
prior knowledge, in particular biological knowledge,
when choosing models for analysis (see Model,
Choice of).

One of the advantages brought by progress in
computing is that more difficult calculations can be
undertaken. Currently there is a lack of satisfactory
methods for dealing with missing data, patients who
take rescue medication, noncompliance, and so forth.
Some of the difficulties are inherent, but in some
cases the pharmaceutical statistician is held back
simply because computation is too difficult. These
are topics that will receive more attention in the
future simply because the ability to deal with them
increases. Also included under this heading are non-
linear models, as used for example in repeated mea-
sure designs for pharmacodynamic dose–response.

Thus, a forecast of the duties of the pharmaceutical
statistician and the nature of pharmaceutical statistics
during the next decade might suggest:

1. That (s)he will have to know more about Bay-
esian methods.

2. Random effect models will be extremely impor-
tant in his or her work.

3. In general, he or she will more often have to
carry out complex and nonlinear modeling than
is currently the case.

4. The incorporation of biological and pharmaco-
logical insights in planning and analysis will be
more important.

5. The RCT will continue to be important but
the proportion of statisticians not working on
planning and analyzing RCTs but instead in
health and economic modeling, epidemiology,
and so forth will rise.

6. The statistician will become more involved in
producing the clinical expert report (the overall
summary of evidence for an application) [5].

7. There will be a much greater chance that the
statistician will not be working in the primary
industry.

8. Communication will be of the essence.
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Pharmacoepidemiology,
Adverse and Beneficial
Effects

Pharmacoepidemiology has been defined as “the
study of the distribution and determinants of drug-
related events in populations and the application of
this study to efficacious drug treatment” [26]. Similar
definitions have been given by several authors [37,
53]. The term “drug” in the definition is generally
understood to include biologics, such as vaccines,
and the populations are understood to be human.
The emphasis is on studies of the safety and effec-
tiveness of drugs used for medical purposes. Both
randomized (see Clinical Trials, Overview) and non-
randomized (observational) designs are used, with
the latter being more common, especially for the
study of adverse effects. Pharmacoepidemiology may
be regarded as a subdiscipline of both clinical epi-
demiology and clinical pharmacology [53]. How-
ever, clinical pharmacologists typically use small,
carefully controlled studies to examine drug pharma-
cokinetics (absorption, distribution, metabolism, and
excretion) and pharmacodynamics (the relationship
between the drug level and drug effects), while phar-
macoepidemiologists typically examine drug effects
in larger populations under conditions more repre-
sentative of clinical practice. Pharmacoepidemiology
is an essential component of risk management of
pharmaceutical products. Risk Management “encom-
passes processes for identifying and assessing the
risks of specific health hazards, implementing activ-
ities to eliminate or minimize those risks, communi-
cating risk information, and monitoring and evaluat-
ing the results of the interventions and communica-
tions” [56].

Current US federal regulations require evidence
of both safety and effectiveness of drugs prior to
approval for marketing (see Drug Approval and
Regulation). However, such evidence is limited by
the extent, duration, and patient characteristics of
preapproval clinical trials. In addition, unexpected
potentially beneficial effects are sometimes found
after marketed use and questions may arise about
the effectiveness of various drugs under conditions
of use and in patient populations not included in
premarketing clinical trials. A well-known interna-
tional guideline on the extent of patient exposure to

assess the clinical safety of drugs intended for chronic
use in the treatment of non-life-threatening conditions
summarized limitations of preapproval information
on safety by noting, first, that it is expected that
short-term adverse events with a cumulative 3-month
incidence of about 1% or more should be well charac-
terized prior to approval; secondly, that events where
the rate of occurrence changes over a longer period of
time may need to be characterized depending on their
severity and importance to the risk–benefit assess-
ment of the drug; and thirdly, that adverse events
occurring in less than one in 1000 patients treated
are not expected to be characterized prior to market
approval [22]. Thus, it is often necessary to conduct
pharmacoepidemiologic studies of risks and benefits
of drugs and vaccines under conditions of marketed
use (see Postmarketing Surveillance of New Drugs
and Assessment of Risk).

To design and interpret such studies it is
essential to understand the clinical pharmacology
of the drug and the pathophysiology and natural
history of the diseases which the drug is used to
treat or prevent. It is also essential to understand
basic principles of epidemiologic study design (see
Pharmacoepidemiology, Study Designs) and to
identify and avoid potential sources of bias.

Some Common Sources of Bias in
Pharmacoepidemiologic Studies

In the epidemiologic literature bias refers to an
error which causes an estimate of a parameter to
differ in a systematic way from the true value [26]
in the source population, also known as the study
base, whose person-time experience (see Person-
years at Risk) the study is designed to sample [31,
57]. Numerous authors have provided methodologic
approaches by which sources of bias in epidemiologic
studies may be categorized [41, 43, 51] (see Bias
in Case–Control Studies; Bias in Cohort Studies;
Bias in Observational Studies; Bias, Overview).
We will briefly discuss some of the more common
sources of bias in epidemiologic studies of drug
effects.

Selection bias refers to errors arising because the
estimated exposure effect among subjects included in
the study differs from that which would have been
obtained from including the entire study base [41].
For example, selection bias may occur when the
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cases included in a study represent a nonrandomly
selected subset of all of those arising from the study
base [45]. Selection bias may also occur in hospital-
based case–control studies if the drug exposure is
related either positively or negatively to the diag-
noses used to select controls or the drug exposure
in the catchment population of the diagnoses used to
identify cases differs from that in the catchment popu-
lation of the diagnoses used to identify controls [57].
Differences in catchment populations are a particu-
lar problem with hospital-based studies because in
many teaching hospitals patients may be drawn from
hundreds of miles away for treatment of certain ill-
nesses requiring particular skill in management and
from only the immediate surrounding few miles for
treatment of common disorders that are often used to
select controls (see Hospital Market Area). Selec-
tion bias can produce serious distortions in estimates
of disease natural history or treatment outcomes of
patients drawn from referral centers [1, 28].

Confounding in epidemiologic studies occurs
when exposure groups differ with respect to an extra-
neous factor related to the outcome. Estimates of
exposure effects that fail to account appropriately
for the imbalance are subject to bias. A full discus-
sion of the assessment and control of confounding is
beyond the scope of the present article and may be
found in standard textbooks and in the current liter-
ature [41, 58, 60]. However, it is useful to mention
confounding by indication, a particularly problematic
form of confounding in studies of medical interven-
tions when an indication for the intervention is itself
a risk factor for the outcome under study [44, 59].
Studies in which confounding by indication has been
an important consideration include mortality among
asthma patients using long-acting inhaled beta ago-
nists [7], myocardial infarction among hypertensive
patients prescribed calcium channel blockers [38],
and renal cell carcinoma in association with the use of
diuretics [19]. A common way to avoid some obvious
confounding by indication is to compare adverse out-
comes of two drugs used for the same indication [7,
38]. However, even when the nominal indication is
the same for two drugs, there may be subtle differ-
ences in patient characteristics and clinical judgments
which lead to the choice of one drug over the other,
are not documented in medical records, and yet which
may be risk factors for the outcome.

A form of bias, which is closely related to but
conceptually distinct from confounding by indication

is protopathic bias [12, 44]. This occurs when early
symptoms of a disease which is present but not yet
recognized lead a patient to take a drug, which then
appears to be the cause of the disease when it is even-
tually diagnosed. A classic example of this form of
bias was seen in early studies of the antiulcer drug
cimetidine, where a higher than expected incidence
of gastric carcinoma was found among users than
among nonusers. It is likely that many of the cancers
were present but undiagnosed at the time the cime-
tidine was started. Subsequent studies with this class
of drug have shown that elevations in gastric cancer
risk diminish with duration of follow-up, returning
to baseline with long-term use [23]. Not only proto-
pathic bias but also confounding by indication was
likely present in the association between cimetidine
and gastric carcinoma. Peptic ulcer is both an indi-
cation for cimetidine and a risk factor for gastric
carcinoma, with Helicobacter pylori being causally
related to both peptic ulcer disease and gastric carci-
noma.

Information bias arises from inaccuracies in the
information collected on subjects in the study, result-
ing in misclassification of exposure, outcomes, or
covariates. For example, patient recall of previous
drug exposures has been shown to be subject to
error, with the extent of inaccuracy differing by
medication type, duration of therapy, recall inter-
val and patient age [25, 61] (see Recall Bias). The
misclassification of outcome is said to be differen-
tial (nondifferential) with respect to exposure if the
misclassification probability differs (does not differ)
depending on exposure. Differential and nondiffer-
ential misclassification of exposure with respect to
outcome are defined similarly (see Bias, Nondiffer-
ential). In a simple cross-classification of exposure
and outcome, nondifferential misclassification creates
a bias toward the null [41]. However, even slight
deviations from completely nondifferential misclas-
sification can produce large biases away from the
null [3].

When both exposure and outcome are misclassi-
fied and the misclassifications are correlated, the bias
may be in either direction even when the misclassi-
fications are nondifferential [4]. With more than two
exposure levels, nondifferential misclassification will
bias the most extreme category to the null but can
bias intermediate levels of exposure in either direc-
tion [2]. Bias due to misclassification of confounders
results in loss of ability to control confounding and
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cannot be adequately dealt with by methods used to
control confounding [13]. One practical conclusion
from all of these findings is that it is not correct to
conclude that risks of adverse drug effects estimated
from inaccurate information are likely to represent
underestimates simply because the misclassification
may be presumed to be nondifferential.

Misclassification is a particular problem in epi-
demiologic studies using hospital discharge diagnosis
codes to define outcomes and confounders, because
the codes often do not correctly reflect discharge diag-
noses recorded in the medical records [20]. This may
occur through miscoding, use of nonspecific codes,
omissions of codes in complicated patients with many
different diagnoses, or failure to modify a code for
an admission to “rule out” a condition when the con-
dition was ruled out. For example, in a sample of
about 1000 hospitalizations with the discharge diag-
nosis of acute myocardial infarction (AMI), medical
record review found that 26% did not meet clinical
criteria for AMI. Most were hospitalizations to rule
out AMI in which the code remained even though
AMI had been ruled out [20]. One approach which
avoids some of problems with information bias is
to use computer-based discharge diagnosis codes to
identify potential cases and to confirm these by med-
ical record review [40].

Adverse Drug Effects

Pharmacologic Classification

To help guide evaluation of adverse drug effects, clin-
ical pharmacologists have classified them into two
types, designated A and B, depending on their rela-
tionship to known pharmacological properties of the
drug [39]. Type A (“augmented”) effects are caused
by exaggerated pharmacological actions of a drug.
Such effects are also sometimes called “mechanism-
based” adverse effects. They are somewhat pre-
dictable on the basis of the pharmacology of the
drug and are typically dose-dependent. Examples
include hypotension with anti-hypertensive drugs and
gastrointestinal hemorrhage with nonsteroidal anti-
inflammatory drugs [14]. Most type A effects are
likely to have been at least identified before mar-
ket approval. However, the predisposing factors,
dose–response relationships, warning signs, spec-
trum of severity and long-term consequences may
not have been adequately characterized at the time

of initial marketing. Subsequent studies may reveal
an increased risk in some patients with impaired
metabolic clearance, concomitant use of drugs with
competing metabolism, or increased target-organ sen-
sitivity. Pharmacoepidemiologic studies of type A
effects should be aimed not only at quantifying risks
but also at finding ways to anticipate and reduce the
risk through identification of predisposing factors and
improved dosing guidelines [8].

Type B (“bizarre”) effects are those that are not
expected from the known pharmacologic properties
of a drug given in usual doses to patients who
metabolize the drug in a normal way [39]. Such
effects include idiosyncratic, immunologic, allergic,
pseudo-allergic, teratogenic, or carcinogenic reac-
tions for which mechanisms are often unknown.
Type B effects are typically rare, serious, unpre-
dictable, not dose-dependent, and unlikely to have
been adequately characterized or even recognized
before market approval. The liver, blood, and skin
are among the most common sites of type B reactions
to drugs, while some vaccines have been associated
with type B reactions of the nervous system [16, 21,
24, 36, 42, 55, 64]. Both drugs and biologics have
been associated with rare allergic and pseudo-allergic
type B reactions [9]. Pharmacologic studies of type B
effects are typically constrained by the rarity of the
events, but should attempt to identify patient sub-
groups at increased risk whenever this can be done.

Perhaps the most comprehensive example of using
epidemiologic information to identify risks and ben-
efits in different patient subgroups and providing
this information to patients and physicians is given
by the US prescribing information for oral contra-
ceptives [34]. A more limited example is given by
studies of agranulocytosis in association with the
angiotensin-converting enzyme inhibitor captopril; it
was found that the risk was extremely low except
in well-defined subgroups in whom use of the drug
could generally be avoided [5].

Timing of Adverse Effects in Relation to Duration
of Therapy

One of the most important aspects to consider in
both the clinical and epidemiologic evaluation of
adverse drug effects is the timing in relation to
duration of therapy [15, 17, 52, 54, 62]. Some effects,
such as angioedema with angiotensin-converting
enzyme inhibitors, are more common early in
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therapy [50]. Others, such as tardive dyskinesia
with phenothiazines, are typically seen only after
prolonged exposure to the drug. For some effects
there may be a time window of highest risk.
For example, onset of Guillain–Barré syndrome
following the so-called “swine flu” vaccine was
highest 17 days after vaccination and declined
thereafter [46]. Serum-sickness-like reactions to
drugs typically occur from 7 to 21 days after starting
therapy [9]. Depletion of susceptibles may also affect
the hazard function for adverse events in relation
to duration of therapy [62]. Accounting for timing
of adverse effects in relation to duration of therapy
requires collecting information on timing of the event
not only in relation to last exposure to the drug but
also in relation to duration of therapy. Failure to
account properly for timing may result in over- or
underestimation of risks and can create artifactual
treatment-by-subgroup interactions when comparing
patient groups with different temporal patterns of
usage [15].

Beneficial Effects

Intended Beneficial Effects: Efficacy, Effectiveness
and Outcomes Research

Efficacy refers to the benefits of an intervention as
measured under ideal circumstances in a randomized,
controlled clinical trial conducted in a homogeneous
set of patients with careful attention to the protocol.
Clinical trials conducted to provide demonstrations of
drug efficacy needed for drug approval are typically
conducted under conditions which maximize internal
validity of the trial itself at the possible expense of
external validity – generalizability to usual clinical
practice [48] (see Validity and Generalizability in
Epidemiologic Studies). Effectiveness refers to the
benefits of the intervention as measured under condi-
tions intended to resemble closely the settings and
patient populations where the intervention will be
used in clinical practice. Effectiveness depends not
only on efficacy but also on ease of administration,
acceptability to patients and prescribers, compliance,
and impact on use of health care resources. Conse-
quently, effectiveness of an intervention depends not
only on the intervention, but also on the setting in
which it is delivered.

Recently there has been an increased emphasis on
judging the results of health interventions in terms of

their ability to improve health outcomes, i.e. changes
in health status noticeable by patients, rather than
exclusively in terms of their ability to improve labo-
ratory tests or physiological parameters [10, 11, 48].
The field of outcomes research seeks to evaluate
the overall effects of different interventions on health
outcomes in clinical practice [10, 11, 27].

Because of the difficulty and expense of conduct-
ing randomized clinical trials in a clinical practice
setting, observational studies are often used for the
comparison of treatment outcomes [11, 27]. Obser-
vational studies of drug effectiveness are subject to
selection bias, which may be impossible to control
because the factors which lead to the choice of one
therapy over another may not be fully reflected in
any data source [6, 12, 28–30, 32, 59]. Selection
bias in the study of intended effects of drugs may
be more difficult to overcome than in the study of
unintended effects [30]. Confounding by the indica-
tion for therapy must be considered in all pharma-
coepidemiologic studies, and is particularly difficult
to control in observational studies of intended drug
effects [30, 59, 63]. Because most differences in
effectiveness between active agents are likely to be
moderate, observational studies are especially prone
to distortion caused by bias and confounding [30,
32, 63]. This cautionary note also applies to obser-
vational studies of vaccine effectiveness, though to
a lesser extent, because the effect sizes are typi-
cally much larger than for effectiveness studies of
drugs [33, 47] (see Vaccine Studies). As an alter-
native to observational studies of drug effectiveness
in clinical practice, randomized effectiveness trials
have been conducted [35, 49]. Such studies have
the potential for producing more valid estimates of
effectiveness than can be obtained from observational
studies.

Unintended Beneficial Effects

Some current indications for drug treatment began
with the serendipitous finding of an unexpected asso-
ciation between drug exposure and a beneficial effect.
The initial hypothesis of a beneficial drug effect
usually arises from case series or laboratory observa-
tions, followed by formal epidemiologic studies. As
useful as such studies have been in providing quanti-
tative estimates of benefit, randomized clinical trials
are essential for hypothesis testing. For example,
data from randomized clinical trials of beta-carotene
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in the prevention of lung cancer have not confirmed
findings of earlier observational studies which had
suggested a protective effect [18].
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Pharmacoepidemiology,
Overview

Pharmacoepidemiology, the study of patterns of med-
ication use in the population and their effects on dis-
ease, is a new field. The need for this area of research
became evident in 1961, during the thalidomide catas-
trophe, when it was realized that drugs prescribed for
therapeutic purposes could produce unexpected risks.
The entry of thalidomide, a new hypnotic drug, on the
market was accompanied by a sudden sharp increase
in the frequency of rare birth defects, characterized
by the partial or complete absence of limbs [29,
31]. Consequently, several countries either instituted
agencies to regulate drugs or expanded the mandate
of existing agencies [51]. These agencies were previ-
ously interested only in the demonstration of a drug’s
efficacy, but now required proof of a drug’s safety
before it was tested in humans let alone before it was
marketed for use by the general population (see Drug
Approval and Regulation). These proofs of safety,
based on toxicologic and pharmacologic studies, were
necessary before randomized controlled trials (RCTs)
(see Clinical Trials, Overview) could be conducted
on human subjects, primarily to demonstrate the effi-
cacy of a drug.

The use of the epidemiologic approach to char-
acterize population patterns of medication use and
to assess their effects developed as a complement to
RCTs for several reasons. First, RCTs were designed
to assess the efficacy and effectiveness of a drug, pro-
viding as well some data on its safety with respect to
commonly arising side-effects. However, rare side-
effects typically cannot be identified in clinical trials
because of their small size. For example, to detect a
relative risk of 2, for a side-effect having an inci-
dence of 1 per 100, we would require a two-arm trial
with over 3000 subjects per arm (α = 0.05, β = 0.1).
If the incidence of the side-effect is 1 per 10 000, the
sample size per arm would need to be over 300 000.
Clearly, these sample sizes are rarely if ever used in
RCTs, yet the number of people who will be using
these drugs will be in the millions.

Secondly, RCTs usually restrict the study sub-
jects to people without coexisting disease, who are
therefore not taking other medications that could
interact with the study medication. They are also

restricted with respect to age, rarely including chil-
dren and elderly subjects. Yet, the elderly will be
major consumers of most of these medications, along
with other medications they are using for coex-
isting diseases (see Co-morbidity; Drug Interac-
tions).

Thirdly, RCTs will usually be based on a short
follow-up that typically assesses medication use for
a period of 3–12 months. Yet, again, subjects may be
using these medications for years, so that the effect
of the prolonged use of these medications remains
clearly unknown from the RCT data. Finally, there
are situations where the RCT is either unethical or
inapplicable. For example, it would be ethically unac-
ceptable today in North America or Europe to assess
the long-term effects of a new anti-hypertensive agent
against placebo in an RCT, although this has been
done in China [12] (see Ethics of Randomized Tri-
als). Yet, a large number of hypertensive patients
from the general population are either untreated or
do not comply with their treatment (see Compliance
Assessment in Clinical Trials). They could be used
as the reference group for a nonrandomized study
based on a cohort study design.

Although pharmacoepidemiology can be simply
regarded as an application of epidemiologic princi-
ples and methods to the field of medications, it is
now developing as a discipline of its own because
of the special nature of drugs. Indeed, the ways by
which drugs are prescribed, employed, marketed and
regulated impose certain constraints on epidemiologic
research into their use and effects. This field poses
challenges that often require special solutions not
found in other domains of application, such as cancer,
cardiovascular, occupational or infectious disease epi-
demiology; medications are marketed rapidly, prac-
tice patterns of prescribing by physicians are variable
and profiles of drug use by patients are complicated
by varying compliance patterns. This complex and
dynamic context in which pharmacoepidemiology is
situated, as well as the available sources of data, have
given rise to unique statistical challenges. The fact
that the lifetime of a drug on the market is relatively
short and can suddenly be shortened still further by
a regulatory or corporate withdrawal, often imposes
major constraints on studies of its effects. These stud-
ies must be conducted rapidly and use existing data
in an efficient way without compromising validity
(see Validity and Generalizability in Epidemio-
logic Studies).
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In this article we describe several areas where
biostatistical input has served to advance pharma-
coepidemiology. Although the last two decades have
witnessed an explosion of methodologic advances put
forward by biostatistics in the design and analysis
of epidemiologic studies, most of these have been
fundamental to the field of epidemiology in gen-
eral. We do not discuss these areas here since they
are dealt with extensively elsewhere (see Analytic
Epidemiology; Descriptive Epidemiology). Instead,
we focus on the biostatistical aspects that produced
unique methodologic advances, specific to problems
posed by pharmacoepidemiologic research.

The Case–Crossover Design

When conducting a case–control study, the selec-
tion of controls is usually the most challenging task.
The fundamental principle is that selected controls
should be representative of the source population
which gave rise to the cases [33] a principle often
difficult to implement in practice, especially when
dealing with acute adverse events and transient expo-
sures.

For example, we may wish to study the risk of
ventricular tachycardia in association with the use
of inhaled beta agonists in asthma. This possible
effect has been hypothesized on the basis of clini-
cal study observations of hypokalemia and prolonged
Q-T intervals as measured on the electrocardiogram
in patients after beta agonist exposure [1]. These
unusual cardiac deviations were observed only in
the 4-hour period following drug absorption. Thus,
a case–control study of this issue would first select
cases with this adverse event and investigate whether
the drug was taken during the 4-hour span preceding
the event. For controls, on the other hand, the investi-
gator must define a time point of reference for which
to ask the question about use of this drug in the “past
4 hours”. However, if, for example, the drug is more
likely to be required during the day, but controls can
only be reached at home in the evening, the relative
risk estimate will be biased by the differential timing
of responses for cases and controls.

Consequently, when dealing with the study of tran-
sient drug effects on the risk of acute adverse events,
Maclure [30] proposed the case–crossover design,
which uses the cases as their own controls. The
case–crossover design is simply a crossover study in

the cases only. The subjects alternate at varying fre-
quencies between exposure and nonexposure to the
drug of interest until the adverse event occurs, which
does for all subjects in the study since all are cases
by definition. Each case is investigated to determine
whether exposure occurred within the predetermined
effect period, namely within the 4 hours previous to
the adverse event in our example. This occurrence
is then classified as having arisen either under drug
exposure or nonexposure on the basis of the effect
period. Thus, each case is either exposed or unex-
posed. For the reference information, data on the
average drug use pattern are necessary to determine
the probability of exposure in the time window of
effect. This is done by obtaining data for a sufficiently
long period of time to derive a stable estimate. In our
example, we might determine the average number of
times a day each case has been using beta agonists
(two inhalations of 100 µg each) in the past year.
This will allow us to estimate the proportion of time
that each asthmatic is usually spending as “exposed”
in the 4-hour effect period. This proportion is then
used to obtain the number of cases expected on the
basis of time spent in these “at-risk” periods, for com-
parison with the number of cases observed during
such periods. This is done by forming a two-by-two
table for each case, with the corresponding con-
trol data as defined above, and combining the tables
using the Mantel–Haenszel technique as described
in detail by Maclure [30]. The resulting odds ratio is
then given by OR = ∑

aiN0i/
∑

(1 − ai)N1i , where
ai is 1 if case i is exposed, 0 if not, N0i is the
expected number of unexposed periods and N1i the
expected number of exposed periods during the ref-
erence time span.

Table 1 displays hypothetical data from a
case–crossover study of 10 asthmatics who experi-
enced ventricular tachycardia. These were all queried
regarding their use of two puffs of inhaled beta ago-
nist in the last 4 hours and on average over the past
year. The fact of drug use within the effect period is
defined by ai with three cases having used beta ago-
nists in the 4-hour period prior to the adverse event.
The usual frequency of drug use per year is con-
verted to a ratio of the number of exposed periods to
the number of unexposed periods, the total number
of 4-hour periods being 2190 in one year. Using the
Mantel–Haenszel formula to combine the 10 two-by-
two tables, the estimate of the odds ratio is 3.0, and
the 95% confidence interval (1.2, 7.6).
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Table 1 Hypothetical data for a case–crossover study
of beta agonist exposure in last 4 hours and the risk of
ventricular tachycardia in asthma

Beta agonist Usual beta Periods
usea in agonist Periods of of non-

last 4 hours use in exposure exposure
Case no. (ai) last year (N1i ) (N0i )

1 0 1/day 365 1825
2 1 6/year 3 2184
3 0 2/day 730 1460
4 1 1/month 12 2178
5 0 4/week 208 1982
6 0 1/week 52 2138
7 0 1/month 12 2178
8 1 2/month 24 2166
9 0 2/day 730 1460

10 0 2/week 104 2086

aInhalations of 200 µg: 1 = yes, 0 = no

The case–crossover design depends on several
assumptions to produce unbiased estimates of the
odds ratio. Greenland [14] presented examples where
the odds ratio estimates from this approach can be
biased. For example, the probability of exposure can-
not vary over the time. Similarly, confounding fac-
tors must be constant over time. Finally, there cannot
be interaction between unmeasured subject charac-
teristics and the exposure. Nevertheless, this approach
is being used successfully in several studies [38, 43].
It has also been adapted for application to the risk
assessment of vaccines [11].

Confounding Bias

Because of the lack of randomization, the most
important limitation of observational studies in
pharmacoepidemiology is whether an important con-
founding factor is biasing the reported relative risk
estimate. A factor is considered a confounder if it
is associated, at each level of drug exposure, with
the adverse event, and with exposure to the drug
itself. Two approaches exist to address the prob-
lem of confounding variables, which we describe
in the context of the case–control design, although
they apply equally well to a cohort design. The
first is to select controls that are matched to the
cases with respect to all confounding factors and
to use the appropriate corresponding techniques of
analysis for matched data, usually conditional logis-
tic regression (see Matched Analysis; Matching).

This approach, although often appropriate, has been
shown to be susceptible to bias from residual con-
founding due to coarse matching [5]. The second
solution is to select controls unmatched with respect
to these confounding factors, but to measure these
confounders for all study subjects and use statistical
techniques based on either stratification or multi-
ple regression, permitting removal of their effect on
the risk from the effect of the drug under study.
This approach can also lead to residual confound-
ing if the confounder data are not analyzed properly.
For example, the risk of venous thromboembolism
has been found to be higher among users of newer
oral contraceptive drugs than users of older formu-
lations [22, 41, 52], after controlling for the effect
of age. A recent study, however, showed that when
confounding by the woman’s age is analyzed using
finer age bands, the relative risk is substantially
reduced [10].

Beyond such difficulties generic to epidemiology,
the context of pharmacoepidemiology has produced
several situations where confounding requires partic-
ular statistical treatment. Some are described in this
section.

Missing Confounder Data

It is at times impossible to obtain data on certain
important confounding variables. A frequent situa-
tion encountered in pharmacoepidemiology is that
of complete data for the cases and incomplete data
for the controls of a case–control study. This is
often encountered in “computerized database” stud-
ies based on administrative databases where cases
have likely been hospitalized and thus have an exten-
sive medical dossier. For these cases, the investiga-
tor will thus have access to ample information on
potential confounding variables. However, if the con-
trols are population-based (see Case–Control Study,
Population-based), it is unlikely they were hospi-
talized and will not provide comparable data on
confounders in the absence of medical charts. Con-
sequently, confounder data will only be available in
the cases, and not in the controls.

We can assess whether a factor is a confounder
on the basis of data available solely for the cases,
so that if the factor is deemed not to be a con-
founder, then the final analysis of the risk of the
drug under study will not need to be adjusted. The
approach is described by Ray & Griffin [37] and was
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used in the context of a study of nonsteroidal anti-
inflammatory drug (NSAID) use and the risk of fatal
peptic ulcer disease [15]. The strategy is based on
the definition [5] of a confounder C (C+ and C−
denote presence and absence) in the assessment of the
association between a drug exposure E (E+ and E−
denote exposure or not to the drug) and an adverse
condition D (D+ and D− denote cases and controls,
respectively). Confounding is present if both follow-
ing conditions are satisfied:

1. C and E are associated in the control group (in
D−).

2. C and D are associated in E+ and in E−.

Assuming, in the absence of effect modification,
a common odds ratio between E and D (ORED) in
C+ and in C−, condition 1 becomes equivalent to: C
and E are associated in the case group (D+). Thus,
if in the cases we find no association between the
potential confounder and drug exposure, confound-
ing by this factor can be excluded outright, without
having to verify condition 2. In this instance, the anal-
ysis involving drug exposure in cases and controls
can be performed directly without any concern for
the confounding variable. This strategy for assess-
ing confounding is extremely valuable for several
case–control studies in pharmacoepidemiology, since
if confounding is excluded by this technique, crude
methods of analysis can be used to obtain a valid
estimate of the odds ratio. However, this is not often
the case.

As an example, we use data from a case–control
study conducted using the Saskatchewan computer-
ized databases to assess whether theophylline, a drug
used to treat asthma, increases the risk of acute car-
diac death [46]. In this study, the 30 cases provided
data on theophylline use, as well as on smoking, pos-
sibly an important confounder. However, the 4080
controls only had data available on theophylline use
and not on smoking. Table 2 displays the data from
this study. The crude odds ratio between theophylline
use and cardiac death is 4.3((17/13)/(956/3124)).
Because of the missing data on smoking, it is only
possible to partition the cases, but not the con-
trols, according to smoking. The odds ratio between
theophylline use and smoking among the cases is
estimable and found to be 7.5((14/5)/(3/8)), thus
indicating that smoking is indeed a strong con-
founder.

Table 2 Data from a case–control study of theophylline
use and cardiac death in asthma, with the smoking con-
founder data missing for controls

Cases Controls

E E E E

Notation:
Combined a c b d

Stratified by smoking:
Smokers a0 c0

a a

Nonsmokers a1 c1
a a

Data:
Combined 17 13 956 3124
Stratified by smoking:

Smokers 14 5 a a

Nonsmokers 3 8 a a

aThese frequencies are missing for controls.

An approach was recently developed to permit the
estimation of the adjusted odds ratio of the theo-
phylline by cardiac death association, in the absence
of confounder data among the controls [45]. The
adjusted odds ratio is given by

ORadj = P0(w − y)

(1 − P0)y
, (1)

where y = {v − [v2 − 4(r − 1)rwx]1/2}/[2(r − 1)],
v = 1 + (r − 1)(w + x) when r �= 1 (and y = wx

when r = 1), r is the odds ratio between exposure
and confounder among the cases, x is the probability
of exposure among the controls, P0 is estimated
by a0(a0 + c0), and w is the prevalence of the
confounder among the controls [45]; w is the only
unknown and must be estimated from external
sources. An estimate of the variance of ORadj

in (1) exists in closed form. For the illustrative
data, an external estimate of smoking prevalence
among asthmatics, obtained from a Canadian general
population health survey, is 24%. Using this estimate,
the adjusted odds ratio is 2.4, much lower than
the crude estimate of 4.3, with 95% confidence
interval (1.0, 5.8).

This statistical approach was developed specifi-
cally to address the frequent problem of missing con-
founder data in pharmacoepidemiology. When using
computerized databases, these data are more often
missing only in the control series of a case–control
study. This technique, based on statistical reason-
ing, allows us to derive adjusted estimates of relative
risk with few assumptions. Extensions of this type
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of approach to a regression context will expand its
usefulness.

The Case–Time–Control Design

Case–control studies in pharmacoepidemiology that
assess the intended effects of drugs are often lim-
ited by their inability to obtain a precise mea-
sure of the indication of drug exposure. Adjust-
ment for this crucial confounding factor becomes
impossible and an unbiased estimate of the drug
effect is unattainable [49]. This bias, arising from
confounding by indication, is a major source of lim-
itation in pharmacoepidemiology [32]. Here again, a
within-subject approach, similar to the case–cross-
over design, has been developed. By using cases
and controls of a conventional case–control study
as their own referents, the case–time–control design
eliminates the biasing effect of unmeasured con-
founding factors such as drug indication [44]. This
approach is applicable only in situations where expo-
sure varies over time, which is typically often the
case for medications.

The correct application of the case–time–control
design is based on a specific model for the data, a
model that entails inherent assumptions and imposes
certain conditions for the approach to be valid. The
model, based on a case–control sampling design, is
presented for a dichotomous exposure that varies over
time and that is measured only for two consecutive
time periods, the current period and the reference
period. The logit of exposure Lijkl = logit{Pr(Eijkl =
1)}, is given by

Lijkl = µ + Sil + πj + Θk (2)

where Eijkl represents the binary exposure for group
i, period j , outcome k and subject l within group
i, µ represents the overall exposure logit, Sil is
the effect of study subject l in group i, πj is the
effect of period j and Θk is the effect of event
occurrence k. More specifically, i = 0, 1 denotes the
case–control group (1 = case subjects, 0 = control
subjects), j = 0, 1 denotes the period (1 = current
period, 0 = reference period), k = 0, 1 denotes the
event occurrence (1 = event, 0 = no event) and l =
1, . . . , ni designates the study subject within group
i, with n1 case subjects and n0 control subjects. The
confounding effect of unmeasured severity or indica-
tion is inherently accounted for by Sil .

The period effect, measured by the log of the
odds ratio, is given by δπ = π1 − π0 and estimated
from the control subjects. The net effect of expo-
sure on event occurrence is given by δΘ = Θ1 − Θ0.
The case subjects permit one to estimate the sum
δΘ + δπ so that the effect of exposure on event occur-
rence δΘ , is estimable by subtraction. The estimation
of the odds ratio is based on any appropriate tech-
nique for matched data, such as conditional logistic
regression.

Three basic assumptions are inherently made by
this logit model. The first is the absence of effect
modification of the exposure–outcome association
by the unmeasured confounder, i.e. the exclusion
of the SilΘk interaction term in model (2). The
second is the absence of effect modification of the
exposure–outcome association by period, i.e. a null
value for the πΘk interaction term. The third is the
lack of effect modification of the exposure–period
association by the confounder, represented by the
absence of an Silπj interaction term in model (2).
Greenland [14] presented examples of the bias that
can occur with this approach when the model contains
the latter interaction.

The approach is illustrated with data from the
Saskatchewan Asthma Epidemiologic Project [40], a
study conducted to investigate the risks associated
with the use of inhaled beta agonists in the treat-
ment of asthma. Using databases from Saskatchewan,
Canada, a cohort of 12 301 asthmatics was followed
during 1980–87. All 129 cases of fatal or near-fatal
asthma and 655 controls were selected. The amount
of beta agonist used in the year prior to the index
date was found to be associated with the adverse
event. In comparing low (12 or less canisters per
year) with high (more than 12) use of beta agonists.
The crude odds ratio for high beta-agonist use is 4.4,
with 95% confidence interval (2.9, 6.7). Adjustment
for all available markers of severity, such as oral
corticosteroids and prior asthma hospitalizations as
confounding factors, lowers the odds ratio to 3.1,
with 95% confidence interval (1.8, 5.4), the “best”
estimate one can derive from these case–control data
using conventional tools.

The use of inhaled beta agonists, however, is
known to increase with asthma severity which also
increases the risk of fatal or near-fatal asthma. It
is therefore not possible to separate the risk effect
of the drug from that of disease severity. To apply
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the case–time–control design, exposure to beta ago-
nists was obtained for the 1-year current period and
the 1-year reference period. Among the 129 cases,
29 were currently high users of beta agonists and
were low users in the reference period, while 9
cases were currently low users of beta agonists and
were high users previously. Among the 655 controls,
65 were currently high users of beta agonists and
were low users in the reference period, while 25
were currently low users of beta agonists and were
high users previously. The case–time–control odds
ratio, using these discordant pairs frequencies for a
matched pairs analysis, is given by (29/9)/(65/25) =
1.2, with 95% confidence interval (0.5, 3.0). This
estimate, which excludes the effect of unmeasured
confounding by disease severity, indicates a minimal
risk for these drugs.

The case–time–control approach provides an
unbiased estimate of the odds ratio in the presence
of confounding by indication, a common obstacle in
pharmacoepidemiology. This is possible despite the
fact that the indication for drug use (in our exam-
ple, disease severity) is not measured, because of the
within-subject analysis. Nevertheless, as mentioned
above, its validity is subject to several strict assump-
tions. This approach must therefore be used with
caution.

Risk Functions Over Time

Most epidemiologic studies assessing a risk over time
routinely assume that the hazards are constant or pro-
portional. Rate ratios are then estimated by Poisson
regression models or Cox’s proportional hazards
model [6]. Often, deviations from these simplifying
assumptions are addressed at the design stage, by
restricting the study to a specific follow-up period
where the assumptions are satisfied. For instance, to
study the risk of cancer associated with an agent con-
sidered to be an initiator of the disease, the first few
years of follow-up after the initiation of exposure
will not be accounted for in the analysis, to allow
for a reasonable latency period. On the other hand,
if the agent is suspected to be a cancer promoter,
these same first years will be used in the analysis.
Since such considerations are mostly dealt with at
the design stage, little attention has been paid to the
analytic considerations of this issue.

In pharmacoepidemiology, the risk of an adverse
event often varies strongly with the duration of use
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Figure 1 Different risk profiles by duration of drug use:
(a) acute effect; (b) increasing risk; (c) constant risk

of a drug. Figure 1 shows three different risk pro-
files, typical of drug exposure. Figure 1(a) displays
the usual profile of risk associated with an acute
effect. The drug will affect susceptible subjects early,
reflected by the early sharp rise in the curve, and once
these subjects are eliminated from the cohort, the
remaining subjects will return to some lower constant
baseline risk. The peak can occur almost immedi-
ately, as with allergic reactions to antibiotics, or may
take a certain time to affect the organ, as with gas-
trointestinal hemorrhage subsequent to NSAID use.
This profile of risk was used to explain variations
in the risk of agranulocytosis associated with the
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use of the analgesic dipyrone [16]. It has recently
been used to assess the risk profile of oral contracep-
tives [47]. Figure 1(b) shows a gradually increasing
model of risk, associated with diseases of longer
latency such as cancer. Figure 1(c) displays the con-
stant hazard model, after a rapid rise in the risk
level.

Unfortunately, such graphs are not part of the anal-
ysis plan of most pharmacoepidemiologic studies at
this point, despite the existence of appropriate tech-
niques [9, 16]. The next few years should see an
increasing use of spline functions and other simi-
lar tools to model the risk of drugs by their dura-
tion of use. The wider access to newer statistical
software such as S-PLUS [42] among researchers
in pharmacoepidemiology, as well as the publica-
tion of papers that simplify the understanding of
these sophisticated approaches [13, 16], will encour-
age their wider use in a field where they are clearly
pertinent.

Probabilistic Approach for Causality
Assessment

The traditional epidemiologic approach to assess
whether a drug causes an adverse reaction is based
on the Hill criteria [18], that require the association
to be biologically plausible, strong, specific, consis-
tent and temporally valid (see Hill’s Criteria for
Causality). These criteria are applied to the results
of pharmacoepidemiologic studies and, depending on
the number of criteria satisfied, provide a level of
confidence regarding causality of the drug (see Cau-
sation). The result of this exercise will be, if a
drug is judged to cause an adverse reaction, that
all exposed cases, or at least some etiologic pro-
portion of these cases [39], are due to the drug.
This approach is valuable for inferences to the pop-
ulation, but does not allow cases to be assessed
individually, does not incorporate the specifics of
the case, and does not entirely address the unique
features of drugs as an exposure entity in epidemiol-
ogy.

The study of individual cases of adverse reac-
tions has been the mainstay of national pharma-
covigilance centers throughout the world for several
decades [3, 51] (see Postmarketing Surveillance
of New Drugs and Assessment of Risk). When a
case report of a suspected drug-associated adverse

event is received, the natural question is whether
the drug actually caused the event. Several qual-
itative approaches have been proposed to answer
this question [20, 25]. Recently, however, a for-
mal quantitative approach using biostatistical foun-
dations has been put forward [26–28]. It is based on
Bayes’ theorem, which can be used in the following
way:

Pr(D → E|B, C) = Pr(D → E|B) Pr(C|D → E, B)

Pr(C)
,

where D → E denotes that the drug D causes the
adverse event E, B represents the background char-
acteristics of the case that are known to affect the
risk, while C represents the case information.

This Bayes’ theorem approach allows us to esti-
mate the posterior probability that an adverse event
was caused by a drug by separating the problem into
two components. The first component is the prior
probability of the event given the baseline character-
istics of the patients. This is estimated from existing
data obtained from clinical trials or epidemiologic
studies. The second component is the probability
of case information given that the drug caused the
event.

The primary limitation of this approach is the
scarcity of data available to estimate the two com-
ponents. In many instances, it is difficult to find
the clinical and epidemiologic data necessary to esti-
mate the prior probability, especially for rare clinical
conditions that have not been the object of exten-
sive population-based research. The same limitation
applies to the second probability component because
of the problems of finding cases relevant to proven
drug causation. Case series that apply directly to
the case being assessed are often difficult to find.
These limitations are real but not limited to the
Bayesian approach – they are a general problem in
the assessment of individual cases. The authors of
these methods suggest that the primary purpose of
the Bayesian approach is to provide a framework in
which subjective judgments relevant to assessment of
an individual case are coherently combined.

To facilitate the use of the Bayesian method, the
equation is usually expressed in terms of odds rather
than probabilities. This formulation simplifies some-
what the need for data, since epidemiologic studies
more frequently report odds ratios than absolute prob-
abilities. The relative likelihood may also be easier



8 Pharmacoepidemiology, Overview

to estimate subjectively. This equation formulated in
terms of odds is given as

posterior odds = Pr(D → E|B, C)/ Pr(D �→ E|B, C)

= [Pr(D → E|B)/ Pr(D �→ E|B)]

prior odds

×[Pr(C|D → E, B)/ Pr(C|D �→ E, B)]

likelihood ratio.

This approach was applied on several occasions [19,
23, 24, 34] and was recently made user-friendly by
computerizing [21]. The increasing amount of new
epidemiologic data on disease distribution and risk
factors combined with new clinical and pharmaco-
logic insights on drug effects will make this proba-
bilistic approach more effective in future uses.

Methods Based on Prescription Data

One of the distinguishing features of pharmacoepi-
demiology is the use of computerized administrative
health databases to answer research questions reli-
ably and with sufficient rapidity. The usual urgency of
concerns related to drug safety makes these databases
essential to perform such risk assessment studies. In
particular, databases containing only information on
prescriptions dispensed to patients, and no outcome
information on disease diagnoses, hospitalizations or
vital status, have been the object of interesting sta-
tistical developments. These standalone prescription
drug databases, that do not require to be linked to
outcomes databases, are more numerous and usually
more easily accessible than the fully linked databases.
They provide a source of data that allows the inves-
tigation of patterns of drug use that can yield some
insight into the validity of risk assessment studies
as well as generate and test hypotheses about these
risks. In this section we briefly review some of the
resourceful uses of these drug prescription databases
in pharmacoepidemiology.

A technique that was developed specifically for
the context of drug databases is prescription sequence
analysis [36]. Prescription sequence analysis is based
on the situation when a certain drug A is suspected
of causing an adverse event that itself is treated
by a drug B. To apply this technique, the com-
puterized drug database is searched for all patients
using drug A. For these subjects, all patients pre-
scribed drug B in the course of using drug A are

identified and counted. Under the null hypothesis
that drug A does not cause the adverse event treated
by drug B, this number of subjects should be pro-
portional to the duration of use of drug A relative
to the total period of observation. This extremely
rapid method of assessing the association between
drug A and drug B is assessed for its random error
with a Monte Carlo simulation analysis. This tech-
nique was applied to assess whether patients using
the antivertigo or antimigraine drug flunarizine (drug
A) causes mental depression, as measured by the use
of antidepressant drugs (drug B). The authors found
that the number of patients starting on antidepres-
sant drugs during flunarizine use was in fact lower
than expected [36]. They thus concluded, using this
rapid approach based solely on drug prescription data,
that this drug probably does not cause mental depres-
sion. An extension of prescription sequence analysis,
called prescription sequence symmetry analysis, was
recently proposed [17]. Using a population of new
users of either drug A or B, this approach compares
the number of subjects who used drug A before drug
B to that using B before A. Under the null hypoth-
esis, this distribution should be symmetrical and the
numbers should be equal.

Another function of these databases is to use
the prescriptions as covariate information to explain
possible confounding patterns. The concept of chan-
neling of drugs was put forward as an explana-
tion of unusual risk findings [48]. For example, a
case–control study conducted in New Zealand found
that fenoterol, a beta agonist bronchodilator used to
treat asthma attacks, was associated with an increased
risk of death from asthma [8]. Using a prescription
drugs database, it was found that severe asthmatics,
as deemed from their use of other asthma medi-
cations prescribed for severe forms of the disease,
were in fact channeled to fenoterol, probably because
fenoterol was felt by prescribers to be a more potent
bronchodilator than other beta agonists [35]. This
phenomenon of channeling can be assessed rapidly
in such databases, provided medications can be used
as proxies for disease severity. This approach can be
subject to bias, however, as it has been used with
cross-sectional designs that cannot differentiate the
directionality of the association. An application of
channeling using a longitudinal design was recently
presented [4]. It indicated that channeling can vary
according to the timing of exposure, i.e. that disease
severity was not associated with first-time use of a
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drug, but subsequently severe patients were more
likely to be switched to that drug. This type of
research into patterns of drug prescribing and drug
use can be very useful in understanding the results
of case–control studies with limited data on drug
exposures and subject to confounding by indication
(see Pharmacoepidemiology, Adverse and Benefi-
cial Effects).

These prescription drug databases have also been
used to study patterns of interchange in the dispens-
ing of NSAIDs. Such research is important because
switching patterns permits the identification of brands
that may not be well tolerated and result in the pre-
scription of another agent. By using a stochastic
approach, Walker et al. [50] estimated the transi-
tion probabilities from one NSAID to another. For
a set of k different brands of NSAID, they derived
the expected marginal distributions of the transition
matrix that corresponds to a global equilibrium state
by solving a system of k + 1 equations with k + 1
unknowns. By comparing these expected values with
the observed marginals of the transition matrix, it
was possible to assess whether this population had
reached this stable state and for which drugs. Such
models can be used rapidly to assess patterns of inter-
change and identify potentially harmful agents.

Finally, these prescription drugs databases may
in certain situations provide all the necessary data
for a conventional cohort or case–control study. For
instance, the use of beta blockers to treat hypertension
and other cardiac diseases has been hypothesized to
cause depression. A prescription for an antidepressant
drug can be used as a proxy for the outcome of
depression. In this way, a standalone prescription
drug database can provide data on exposure to beta
blockers, on the outcome of depression, as well as on
covariate information from other medications [2, 7].
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McGill Pharmacoepidemiology Research Unit is funded by
the FRSQ and by grants from the National Health Research
and Development Programme (NHRDP) and the Medical
Research Council (MRC) of Canada.

References

[1] Aelony, Y., Laks, M.M. & Beall, G. (1975). An elec-
trocardiographic pattern of acute myocardial infarction

associated with excessive use of aerosolized isopro-
terenol, Chest 68, 107–110.

[2] Avorn, J., Everitt, D.E. & Weiss, S. (1986). Increased
antidepressant use in patients prescribed beta-blockers.
Journal of the American Medical Association 255,
357–360.

[3] Baum, C., Kweder, S.L. & Anello, C. (1994). The
spontaneous reporting system in the United States, in
Pharmacoepidemiology, 2nd Ed, B.L. Strom, ed. Wiley,
New York, pp. 125–138.

[4] Blais, L., Ernst, P. & Suissa, S. (1996). Confounding
by indication and channeling over time: the risks of
beta-agonists, American Journal of Epidemiology 144,
1161–1169.

[5] Breslow, N. & Day, N.E. (1980). Statistical Methods in
Cancer Research. Vol. I: The Analysis of Case-Control
Studies. International Agency for Research on Cancer,
Lyon.

[6] Breslow, N. & Day, N.E. (1987). Statistical Methods
in Cancer Research, Vol. II: The Design and Analysis
of Cohort Studies, 2nd Ed. International Agency for
Research on Cancer, Lyon.

[7] Bright, R.A. & Everitt, D.E. (1992). Beta-blockers and
depression: evidence against an association, Journal of
the American Medical Association 267, 1783–1787.

[8] Crane, J., Pearce, N., Flatt, A., Burgess, C., Jack-
son, R., Kwong, T., Ball, M. & Beasley, R. (1989). Pre-
scribed fenoterol and death from asthma in New Zealand
1981–1983: case-control study, Lancet 1, 917–922.

[9] Efron, B. (1988). Logistic regression, survival analysis,
and the Kaplan-Meier curve, Journal of the American
Statistical Association 83, 414–425.

[10] Farmer, R.D.T., Lawrenson, R.A., Thompson, C.R.,
Kennedy, J.G. & Hambleton, I.R. (1997). Population-
based study of risk of venous thromboembolism asso-
ciated with various oral contraceptives, Lancet 349,
83–88.

[11] Farrington, C.P., Nash, J. & Miller, E. (1996). Case
series analysis of adverse reactions to vaccines: a com-
parative evaluation, American Journal of Epidemiology
143, 1165–1173.

[12] Gong, L., Zhang, W., Zhu, Y., Zhu, J., Kong, D.,
Page, V., Ghadirian, P., Lehorier, J. & Hamet, P. (1996).
Shanghai trial of Nifedipine in the elderly (STONE),
Journal of Hypertension 19, 1–9.

[13] Greenland, S. (1995). Dose-response and trend analysis
in epidemiology: alternatives to categorical analysis,
Epidemiology 6, 356–365.

[14] Greenland, S. (1996). Confounding and exposure
trends in case-crossover and case-time-control design,
Epidemiology 7, 231–239.

[15] Griffin, M.R., Ray, W.A. & Schaffner, W. (1988). Nons-
teroidal anti-inflammatory drug use and death from pep-
tic ulcer in elderly persons, Annals of Internal Medicine
109, 359–363.

[16] Guess, H.A. (1989). Behavior of the exposure odds ratio
in a case-control study when the hazard function is not



10 Pharmacoepidemiology, Overview

constant over time, Journal of Clinical Epidemiology 42,
1179–1184.

[17] Hallas, J. (1996). Evidence of depression provoked by
cardiovascular medication – a prescription sequence
symmetry analysis, Epidemiology 7, 478–484.

[18] Hill, A.B. (1965). The environment and disease: associ-
ation or causation?, Proceedings of the Royal Society of
Medicine 58, 295–300.

[19] Hutchinson, T.A. (1986). A Bayesian approach to assess-
ment of adverse drug reactions: evaluation of a case
of acute renal failure, Drug Information Journal 20,
475–482.

[20] Hutchinson, T.A., Leventhal, J.M., Kramer, M.S., Karch,
F.E., Lipman, A.G. & Feinstein, A.R. (1979). An
algorithm for the operational assessment of adverse
drug reactions. II. Demonstration of reproducibility and
validity, Journal of the American Medical Association
242, 633–638.

[21] Hutchinson, T.A., Dawid, A.P., Spiegelhalter, D.J.,
Cowell, R.G. & Roden, S. (1991). Computer aids for
probabilistic assessment of drug safety I: A spread-sheet
program, Drug Information Journal 25, 29–39.

[22] Jick, H., Jick, S.S., Gurewich, V., Myers, M.W. &
Vasilakis, C. (1995). Risk of idiopathic cardiovascular
death and nonfatal venous thromboembolism in women
using oral contraceptives with differing progestogen
components, Lancet 346, 1589–1593.

[23] Jones, J.K. (1986). Evaluation of a case of Stevens-
Johnson syndrome, Drug Information Journal 20,
487–502.

[24] Kramer, M.S. (1986). A Bayesian approach to assess-
ment of adverse drug reactions: evaluation of a case
of fatal anaphylaxis, Drug Information Journal 20,
505–518.

[25] Kramer, M.S. Leventhal, J.M., Hutchinson, T.A. &
Feinstein, A.R. (1979). An algorithm for the operational
assessment of adverse drug reactions. I. Background,
description, and instructions for use, Journal of the
American Medical Association 242, 623–632.

[26] Lane, D.A. (1984). A probabilist’s view of causality
assessment, Drug Information Journal 18, 323–330.

[27] Lane, D.A. (1986). The Bayesian approach to causality
assessment, Drug Information Journal 20, 455–461.

[28] Lane, D.A., Kramer, M.S., Hutchinson, T.A., Jones, J.K.
& Naranjo, C.A. (1987). The causality assessment of
adverse drug reactions using a Bayesian approach,
Journal of Pharmaceutical Medicine 2, 265–283.

[29] Lenz, W. (1966). Malformations caused by drugs in
pregnancy, American Journal of Diseases of Children
112, 99–106.

[30] Maclure, M. (1991). The case-crossover design: a
method for studying transient effects on the risk of
acute events, American Journal of Epidemiology 133,
144–153.

[31] McBride, W.G. (1961). Thalidomide and congenital
abnormalities, Lancet ii, 1358.

[32] Miettinen, O.S. (1983). The need for randomization in
the study of intended effects, Statistics in Medicine 2,
267–271.

[33] Miettinen, O.S. (1985). Theoretical Epidemiology: Prin-
ciples of Occurrence Research in Medicine. Wiley, New
York.

[34] Naranjo, C.A., Lanctot, K.L. & Lane, D.A. (1990). The
Bayesian differential diagnosis of neutropenia associated
with antiarrhythmic agents, Journal of Clinical Pharma-
cology 30, 1120–1127.

[35] Petri, H. & Urquhart, J. (1991). Channeling bias in the
interpretation of drug effects, Statistics in Medicine 10,
577–581.

[36] Petri, H., De Vet, H.C.W., Naus, J. & Urquhart, J.
(1988). Prescription sequence analysis: a new and
fast method for assessing certain adverse reactions of
prescription drugs in large populations, Statistics in
Medicine 7, 1171–1175.

[37] Ray, W.A. & Griffin, M.R. (1989). Use of Medicaid
data for pharmacoepidemiology, American Journal of
Epidemiology 129, 837–849.

[38] Ray, W.A., Fought, R.L. & Decker, M.D. (1992).
Psychoactive drugs and the risk of injurious motor
vehicle crashes in elderly drivers, American Journal of
Epidemiology 136, 873–883.

[39] Rothman, K.J. (1986). Modern Epidemiology. Little,
Brown, & Company, Boston.

[40] Spitzer, W.O., Suissa, S., Ernst, P., Horwitz, R.I.,
Habbick, B., Cockcroft, D., Boivin, J.F., McNutt, M.,
Buist, A.S. & Rebuck, A.S. The use of beta-agonists
and the risk of death and near death from asthma, New
England Journal of Medicine 326, 501–506.

[41] Spitzer, W.O., Lewis, M.A., Heinemann, L.A., Thoro-
good, M. & MacRae, K.D. (1996). Third generation oral
contraceptives and risk of venous thromboembolic dis-
orders: an international case-control study. Transactional
Research Group on Oral Contraceptives and the Health
of Young Women, British Medical Journal 312, 83–88.

[42] StatSci (1995). S-PLUS Version 3.3. StatSci, a division
of MathSoft, Inc., Seattle.

[43] Sturkenboom, M.C., Middelbeek, A., de Jong, L.T., van
den Berg, P.B., Stricker, B.H. & Wesseling, H. (1995).
Vulvo-vaginal candidiasis associated with acitretin, Jour-
nal of Clinical Epidemiology 48, 991–997.

[44] Suissa, S. (1995). The case-time-control design, Epi-
demiology 6, 248–253.

[45] Suissa, S. & Edwardes, M. (1997). Adjusted odds ratios
for case-control studies with missing confounder data in
controls. Epidemiology 8, 275–280.

[46] Suissa, S., Hemmelgarn, B., Blais, L. & Ernst, P. (1996).
Bronchodilators and acute cardiac death, Journal of Res-
piratory and Critical Care Medicine 154, 1598–1602.

[47] Suissa, S., Blais, L., Spitzer, W.O., Cusson, J., Lewis, M.
& Heinemann, L. (1997). First-time use of newer oral
contraceptives and the risk of venous thromboembolism,
Contraception 56, 141–146.

[48] Urquhart, J. (1989). ADR crisis management, Scrip
1388, 19–21.



Pharmacoepidemiology, Overview 11

[49] Walker, A.M. (1996). Confounding by indication, Epi-
demiology 7, 335–336.

[50] Walker, A.M., Chan, K.W.A. & Yood, R.A. (1992). Pat-
terns of interchange in the dispensing of non-steroidal
anti-inflammatory drugs, American Journal of Epidemi-
ology 45, 187–195.

[51] Wiholm, B.E., Olsson, S., Moore, N. & Wood, S. (1994).
Spontaneous reporting systems outside the United States,
in Pharmacoepidemiology, 2nd Ed., B.L. Strom, ed.
Wiley, New York, pp. 139–156.

[52] World Health Organization Collaborative Study of Car-
diovascular Disease and Steroid Hormone Contraception,

(1995). Venous thromboembolic disease and combined
oral contraceptives: results of international multicentre
case-control study. World Health Organization Collab-
orative Study of Cardiovascular Disease and Steroid
Hormone Contraception, Lancet 346, 1575–1582.

(See also Drug Approval and Regulation; Pharma-
coepidemiology, Study Designs)

S. SUISSA



Pharmacoepidemiology,
Study Designs

The field of pharmacoepidemiology includes the
study of the use of and effects of pharmaceuticals in
populations [10]. In general, the study designs used
in pharmacoepidemiology are the same as those used
in other areas of clinical epidemiology. There are
three key differences, however.

First, because pharmacoepidemiology studies are
usually performed after drug marketing, and because
500–3000 patients are generally studied prior to
drug marketing, pharmacoepidemiology studies usu-
ally must include substantially larger numbers of
patients in a cohort study or, alternatively, tap
an equivalently sized population for a case–control
study, in order to contribute new useful information.

Secondly, because at least one randomized clinical
trial was already performed prior to drug marketing,
pharmacoepidemiology studies are less likely to use
randomized clinical trial study designs; many of the
same limitations which the premarketing randomized
clinical trials were subject to would apply as well
to any postmarketing randomized clinical trial, and
so they would not be able to contribute new useful
information. For example, because of the need for
huge sample sizes, randomized clinical trials are not
an efficient means of studying uncommon adverse
effects, or the effects of drugs in types of patients
commonly excluded from such trials.

Thirdly, because pharmacoepidemiology questions
often arise as regulatory, commercial and public
health crises, answers must often be obtained very
quickly.

This need for rapidly performed studies of massive
sample size has led to a series of special approaches
which have characterized the field of pharmacoepi-
demiology, and will be the primary focus of this arti-
cle. Other analytic issues which are special to phar-
macoepidemiology include the need for special atten-
tion to the drug regimen. In many other areas of clini-
cal epidemiology, “exposure” is frequently treated as
a dichotomous variable. Even when studying drugs,
most randomized clinical trials specify a single fixed
dose of the drug of interest. In contrast, once a drug is
on the market, questions of how its effects vary with
different doses, different durations of therapy, and
different regimens (e.g. intermittent vs. continuous

administration) are often the questions which are of
greatest clinical importance. For reasons of space,
these have not been discussed here. The reader is
referred elsewhere for such considerations [2].

Data Resources Used in
Pharmacoepidemiology

Historically, the primary data resource used in phar-
macoepidemiology was the spontaneous reporting
system [1, 18]. This is a nonsystematic collection
of case reports (see Case Series, Case Reports)
of adverse events following use of drugs, consid-
ered by the treating physician as possibly due to the
drug. These are reports to the medical literature but,
more voluminously, to regulatory bodies (see Drug
Approval and Regulation). As case reports, they
are useful primarily for generating rather than test-
ing hypotheses. For example, case reports of acute
flank pain following the use of suprofen generated
formal studies which tested and confirmed the result-
ing hypothesis [14], while analogous spontaneous
reports of anaphylactic reactions to tolmetin were
not confirmed when these hypotheses were formally
tested [13].

Another approach to pharmacoepidemiology stud-
ies uses vital statistics data and drug utilization
data to perform analyses of secular trends, search-
ing for whether trends in drug exposure over time
or across geographic areas correlate with trends in
disease occurrence [9]. For example, with the mar-
keting of oral contraceptives, mortality rates from
pulmonary embolism increased, but only in women of
reproductive age [5]. While this type of study is easy
to perform, it obviously is prone to many difficulties,
including the limitations inherent in vital statistics
data as well as identifying which of the possible cor-
relations truly reflect cause vs. simply coincidence
(see Hill’s Criteria for Causality). For example,
in a study using data from 18 different cancer reg-
istries around the world to investigate the relationship
between sales of methyldopa and the development of
biliary carcinoma [12], the results from one of the
cancer registries showed an artifactual association,
caused by changes in coding practices in that registry.

Over the past two decades, pharmacoepidemiology
has been to the fore in scientific fields using
automated databases of claims information (see
Administrative Databases) for its research [7, 11].
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In clinical epidemiology studies, the largest expense
of the study is generally that of data collection,
and this is particularly problematic in the very large
studies of pharmacoepidemiology. However, using
these automated databases (see Database Systems),
the substantial cost of data collection for these very
large studies is borne by the underlying insurance
system, rather than the study. A large proportion of
pharmacoepidemiology studies are now using such
systems. However, given the relatively small number
of exposed diseased individuals relative to unexposed
diseased individuals, in using an automated database
to implement such a study one needs to obtain a huge
number of medical records of diseased individuals,
relatively few of whom are exposed. Inasmuch as
most of the cost of this type of study is the cost of
obtaining these medical records, this is inefficient,
and new methods are needed to enable one to
sample from unexposed diseased individuals. The
major weakness of these systems is the uncertain
validity of the data, especially the diagnosis data [11].
Furthermore, these systems can lack information
about key potential confounding variables, if they
do not come to medical attention. Thus, there is
increasing interest in the exploration of medical
record databases, as opposed to claims databases, for
such research [3].

Historically, there have been a few ongoing sys-
tems of ad hoc data collection, tailored for pharma-
coepidemiology research. One of these has been a
hospital-based system of collecting drug exposures
and outcomes in hospitals, pioneered by the Boston
Collaborative Drug Surveillance Program [4]. This
system has the advantage of known incidence rates
and high-quality data collected on site in the hospi-
tal, but an inability to study either the many important
drugs used in outpatients, or uncommon adverse reac-
tions, even if serious. New data collection in this
system was abandoned many years ago, although
a few hospitals have mounted analogous systems
elsewhere.

Another such system has been the system of
case–control surveillance developed by the Drug
Epidemiology Unit, now the Slone Epidemiology
Unit at Boston University [8]. This also focuses on
hospitals, but collects information on prior drug expo-
sures as possible causes of the hospitalization, per-
forming hospital-based case–control studies. This
system suffers from the uncertain validity of the
drug exposure data obtained from patients and from

restriction to hospital-based case–control studies,
with the inherent problems of selection bias. In recent
years, data collection for this system has been cur-
tailed.

Finally, many pharmacoepidemiology studies are
still designed as ad hoc clinical epidemiology studies,
whether cohort or case–control. The choices among
these designs are discussed elsewhere.

Special Methodological Approaches Used
to Apply These Resources

In applying the special resources described above,
unique challenges are confronted by pharmacoepi-
demiologists, in part because of the nature of the
information being collected, and in part because of
the large sample sizes required. These are each dis-
cussed in turn below.

Validity of Exposure and Outcome Data

In order to perform a valid epidemiologic study,
one obviously must have valid information on both
exposure and outcome. This can be very problematic
in pharmacoepidemiologic studies. The best mea-
sures of disease occurrence are medical records, as
patients often do not understand the details of the
diseases which they have. Case–control studies have
a major advantage here, as patients can be identified
from their health care providers. However, medical
records are very poor sources of information about
prior drug use, as drugs tend to be recorded very
incompletely [15]. Obtaining drug histories directly
from patients can be problematic, however, as most
patients cannot identify the drugs they are on now,
even less the drugs they took in the past. Special tech-
niques have been developed by pharmacoepidemiol-
ogists in order to maximize the validity of the drug
data collected from patients as part of case–control
studies, e.g. the use of indicator prompts and pictorial
handouts. The details of these approaches are beyond
the scope of this article, but the reader is referred
elsewhere for them [17]. However, suffice it to say
that much work remains to be done on these issues.

In contrast, data on drug exposure from claims
databases are extremely valid, as they represent doc-
umentation of the exact drugs dispensed to patients.
Reimbursement by insurance carriers varies accord-
ing to the identity and amount of the drug [11]. While
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this does not assure compliance with the dispensed
drug, it is a level better than prescribing informa-
tion, as many prescribed drugs are never dispensed. In
contrast, however, the diagnosis information in these
databases is of uncertain validity, as reimbursement
generally does not depend on diagnosis and, espe-
cially, on correct and precise diagnoses [11]. As such,
in studies using these databases, considerable atten-
tion needs to be paid to obtaining validation of these
diagnoses.

Special Study Designs Used to Increase Efficiency

Because of the large numbers of individuals included
in many pharmacoepidemiology studies, even when
using claims databases, pharmacoepidemiologists
seek special study designs to enable the data process-
ing and, especially, any medical record review to be
more efficient. In general, pharmacoepidemiologists
are studying diseases of low incidence. Furthermore,
any given drug is used by a small proportion of the
population. As such, one is investigating a low preva-
lence of exposure and a low incidence of disease. To
the degree one includes general population samples,
therefore, one collects information on a large number
of people who do not contribute much additional sta-
tistical information to the investigation. Case–control
studies can be useful toward this end, when the preva-
lence of exposure is high. However, for many drugs
this is not applicable.

Another approach which is used is the nested
case–control study. In this design, an investigator
first creates a cohort of exposed individuals and then,
within that cohort, identifies cases and a random
sample of noncases for the study. This design is
efficient and allows one to use conventional statistical
methods for the analysis of case–control studies,
which is a major advantage. However, it can result
in logistical problems in identifying the sample of
noncases, as they must be at risk of developing the
disease at the same time as the case, and identifying
these risk sets can be difficult [16].

Another design beginning to be used by phar-
macoepidemiologists is the case–cohort study, an
approach pioneered in occupational epidemiol-
ogy [6]. In this situation, one identifies a cohort of
exposed subjects in advance, and the subset of peo-
ple who are cases, as with the nested case–control
study. However, instead of sampling randomly from
the known noncases those at risk of developing the

disease at the same time as the case, one randomly
samples from the entire cohort, creating a subcohort,
which also can include some of the cases. Then,
the distribution of exposures and confounders in the
case group can be compared for analytic purposes
to the distribution in the subcohort. This approach
has the advantage of achieving much smaller sam-
ple sizes with a simple sampling scheme. Also, one
can study multiple outcomes within the same study.
It has the disadvantage of requiring analyses different
from those of normal case–control studies. Instead,
a modified Cox proportional hazards approach is
used and, until recently, software was not available
to implement this.

Conclusions

In conclusion, pharmacoepidemiologists use the same
methods of study design as do other clinical epidemi-
ologists. However, because of the special character-
istics of the field, there are special issues of study
design and analysis which arise. These have been
discussed briefly in this article.
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Pharmacogenetics

Most complex diseases are syndromes rather
than distinct diseases, and probably have multiple
environmental and genetic determinants [3, 13, 29].
A component of this complexity in diseases that
can be treated with pharmacotherapy is often a
highly variable response to pharmacological therapy
among individual patients [21]. Pharmacogenetics is
the study of the role of genetic determinants in the
variable response to therapy. Ideally, we would be
able to stratify a population needing treatment into
those likely, or unlikely, to respond to treatment as
well as those likely, or unlikely, to experience adverse
side-effects [24].

Variability in individual drug treatment response
may be due to many factors, including the sever-
ity and type of disease, treatment compliance, the
presence of other illness, the use of other drugs
(drug–drug interaction), environmental exposures,
sex and age. However, family-based studies have
suggested that genetic factors underlie a significant
proportion of the observed treatment variance in
many diseases [11].

Although many pharmacogenetic mechanisms are
possible, specific DNA sequence variants may alter
response to drugs in three main ways (Table 1) [12]:

1. Variation in the metabolism of a drug among
individuals, especially in enzymes involved in

Table 1 Possible pharmacogenetic mechanismsa

Genetic variants associated with: Type of mechanism

Altered uptake, distribution or
metabolism of the drug
administered

Pharmacokinetic

An unintended action of a drug
outside of its therapeutic
indication

Idiosyncratic

Alterations in the drug target or a
component of the drug pathway
leading to altered drug efficacy; or

Pharmacodynamic

Differences in the expression of a
physiological phenotype (see
Genotype) such that a given
target may not be
disease-associated in a given
patient

aReproduced by permission of Churchill Livingstone.

the catabolism or excretion of a drug. An impor-
tant example is the highly genetically diverse
cytochrome P450 system, known to have many
pharmacogenetic effects [10, 27].

2. Variation among population members with
respect to drug adverse effects that are not based
on the drug’s action.

3. Variation in the drug treatment target or tar-
get pathways. In this category, a population is
conceptually divided into responders and nonre-
sponders, and analysis of genetic variants (see
Genotype) is used in an attempt to distinguish
these groups [24].

The current trend in genetic analysis of
complex human diseases is away from family-based
strategies using microsatellite markers towards
single nucleotide polymorphisms (SNPs) [SNPs are
discussed in the article, Markers] genotyping and
different analytical strategies based on association
and haplotype analysis [14, 18, 20]. Since response
to drug treatment generally varies with age, and the
number and type of medications for a given disease
is changing rapidly, it is unlikely that family-based
treatment data will be available in the foreseeable
future for most complex diseases. In the absence
of these data, case–control association studies
are the approach of choice (see Disease-marker
Association). Case–control association analyses are
now recognized as being well suited for localizing
susceptibility loci [23], and they are intrinsically
more powerful than linkage analyses in detecting
weak genetic effects [3].

Pharmacogenetic studies have generally investi-
gated associations between drug response phenotypes
and genotyped DNA sequence variants, most com-
monly “SNPs”. The last decade has seen dramatic
increases in molecular genetic technologies that can
potentially be used to understand the biologic basis
of pharmacogenomics [22]. Because of their potential
biologic importance, the common SNPs in the human
genome increasingly have been the subject of large-
scale cataloguing projects funded by both government
and industry groups [2, 5, 9] (see Human Genome
Project). Limitations related to cost and the current
incomplete status of SNP databases has meant that the
association analysis of SNPs in pharmacogenomics
has so far been limited to polymorphisms within bio-
logically plausible candidate loci (see Gene).
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Although genetic information has only recently
begun to be integrated into the clinical trial setting,
there is now a growing list of candidate genes being
investigated for association with treatment response
in many different diseases [30]. Most pharmacoge-
nomic studies published to date have essentially been
post hoc genetic studies undertaken using DNA and
phenotypic data from subjects who had been enrolled
in a conventional clinical trial.

Statistical Issues

The testing of large numbers of SNPs for association
with one or more traits raises important statistical
issues regarding the appropriate false-positive rate of
the tests and the level of statistical significance to
be adopted given the multiple testing (see Multiple
Comparisons) involved [19]. Many relevant areas
of genetic statistics are under active methodological
development [18, 25]. Two major potential statisti-
cal issues in pharmacogenetics relate to population
stratification and statistical power.

Genetic Heterogeneity and Population
Stratification

In addition to variation in allele frequencies, there
is also a high degree of variation in the strength
of linkage disequilibrium in a given chromosomal
region among populations of different origins [31]
and also between different genomic regions [6, 26].

Such genetic heterogeneity is a major challenge to the
discovery of genes that modulate pharmacogenetics
pathways. An important limitation of case–control
association studies related to heterogeneity is the
potential that undetected population stratification will
produce misleading evidence of association.

Population stratification may cause spurious asso-
ciations in a case–control study when allelic frequen-
cies vary across subpopulations in a study cohort. For
example, if there is an imbalance in ethnic group rep-
resentation between the case and control cohorts, one
could detect a spurious association [4]. Such popula-
tion stratification may result from recent admixture
or from poorly matched cases and controls. Geno-
typing of unlinked panels of SNPs, chosen without
regard to the phenotype of interest, can be used to
ensure that case and control populations are genet-
ically homogeneous. Methods have recently been
developed to assess population stratification and, if
necessary, to test correctly for association in the pres-
ence of such stratification [15–17]. However, neither
systematic testing for population stratification nor
application of these new statistical methods has yet
been incorporated into the great majority of pharma-
cogenetic studies of complex human diseases.

Statistical Power

Growing experience with complex disease genetics
has made clear the need to minimize type I error in
genetic studies [7, 18]. Table 2 shows some simple

Table 2 Sample size requirements for case–control analyses of SNPs (one control per case; detectable
difference of OR ≥ 1.5; power = 80%)

Dominant modelc Recessive modeld

Sample size requirede Sample size requirede

Allele
frequencya Exposureb α = 0.05 α = 0.005 Exposureb α = 0.05 α = 0.005

10% 19% 1162 1934 1% 16 730 27 822
20% 36% 834 1388 4% 4370 7366
30% 51% 818 1360 9% 2094 3484
40% 64% 936 1556 16% 1316 2188
50% 75% 1200 1994 25% 980 1630
60% 84% 1732 2882 36% 834 1388

aFrequency of risk-increasing allele in controls.
bExposure (=prevalence) in controls assuming a diallelic locus with a dominant or recessive allele at the
Hardy–Weinberg equilibrium.
cOR of 1.5 between cases and controls for possession of at least one copy of disease-associated SNP by case.
dOR of 1.5 between cases and controls for possession of two copies of disease-associated SNP by case.
eRequired sample size = cases plus controls.
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estimation of required sample sizes needed to detect
a true odds ratio (OR) of 1.5 with 80% power and
type I error probability (α) of either 0.05 or 0.005.
Both mode of inheritance (dominant, recessive) (see
Genotype) and allele frequency can have dramatic
effects on required sample sizes (Table 2). Even for
the “best case scenario” – a common SNP acting in
a dominant fashion – a relatively large sample size
of more than 800 subjects is required at an α of 0.05
(Table 1).

Multiple testing issues are likely in many genetic
association studies of candidate loci where either
multiple SNPs in one gene, multiple SNPs in several
loci, or both [28] are tested, suggesting that a lower α

such as 0.005 is probably more realistic than an α of
0.05. Using an α of 0.005 or assuming an uncommon
SNP (allele frequency ≤0.10) that acts in a recessive
fashion points to the need for very large sample sizes,
i.e. more than 10 000 cases. Finally, Table 2 assumes
an effect size (OR = 1.5) which, in the context of
common, multifactorial diseases, may be quite large.
Assuming a smaller effect may be more realistic for
many genes, and would lead to concomitantly higher
required sample sizes. Simulation studies have also
suggested that genes of small effect are not likely to
be detectable by association studies in sample sizes
of less than 500 [8].

While these power calculations are simple and
fairly conservative, they suggest that the sample sizes
used in many of the small case–control pharma-
cogenetic association studies conducted to date had
insufficient power to detect even a large effect asso-
ciated with a SNP. This suggests that larger-scale
studies than most of those currently being performed
using data derived from standard clinical trials will
be needed. As other researchers have suggested [1],
the integration of genetic information into clinical tri-
als will likely require a paradigm shift in the conduct
and design of clinical trials. A central problem has
been that the parameters of the mutation(s) affecting
drug response (mode of inheritance, allele frequency,
effect size) are not generally known at the start of a
clinical trial. Study design remains one of the areas
most in need of attention in pharmacogenetics.

Future Directions and Issues

The ultimate goal of pharmacogenetics is to under-
stand the role that sequence variation among indi-
viduals and populations plays in the variability of

responses to pharmaceuticals. The frequency and
penetrance of a sequence variant affecting respon-
siveness to a particular drug and potential interactions
with other genetic and environmental factors must
ultimately be assessed in multiple population-based
samples. A SNP must be relatively common and have
a significant impact upon phenotype to be impor-
tant at the population level in determining treatment
response. These criteria become particularly impor-
tant when extrapolating from specific clinical trials to
general clinical use in the highly heterogeneous pop-
ulations that are the current major markets for drug
therapeutics. It is clear that large well-characterized
cohort studies of population-based and ethnically
diverse samples will be critical to the future success
of any diagnostic SNP-based pharmacogenetic tests
and for cost-effectiveness studies.

Thus far, pharmacogenetics studies have been lim-
ited to the candidate gene model. A new direc-
tion that is technically feasible at present, but as
yet remains unexplored in pharmacogenomics, are
SNP-based whole genome screens for variants asso-
ciated with variation in drug response [31]. Other
future directions include the use of pharmacogenomic
data for the study of gene–environment interactions
in determining response to pharmacologic therapy
and for homogeneity testing and improving study
design [12].
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Pharmacokinetics and
Pharmacodynamics

The final stage of establishing the safety and efficacy
of a new drug, prior to submitting an application
for marketing approval, typically involves one or
more randomized clinical trials comparing the drug’s
effect to that in an appropriate control group. Sample
size requirements in these pivotal (Phase III) trials
may dictate that the number of treatment arms be
kept to a minimum. As a result, it is not uncommon
to study just one dose level of the new drug in pivotal
trials. In this situation it is essential that adequate
investigation of possible dosing strategies be carried
out in earlier stages of clinical development to allow
determination of the “best” dose for inclusion in
Phase III testing.

Pharmacokinetic (PK) and pharmacodynamic
(PD) modeling are key tools in proper dose
selection. Pharmacokinetics attempts to characterize
the fate of the drug in the body following dosing,
primarily by sampling its concentration–time profile
in the circulation. Pharmacodynamics investigates
the relationship between the response induced by the
drug and its circulating concentration. A common
mnemonic is that pharmacokinetics deals with “what
the body does to the drug”, while pharmacodynamics
focuses on “what the drug does to the body”.
Whereas the response of interest in PK modeling
is always concentration of the drug and/or its
metabolites, there is often more flexibility in the
choice of response in PD models. Typically, it is
some relevant biochemical or physiological marker of
drug activity, that can be measured easily during the
early stages of clinical development. In some cases
this may be the intended final clinical endpoint (e.g.
reduction in blood pressure). More commonly, the
PD response, while providing some measure of the
drug’s biological activity, serves only as a surrogate
for the clinical outcome ultimately of interest.

PK/PD modeling plays a role not only in human
studies, but also in animal experiments conducted
during drug development. Although animal studies
involve certain unique aspects, the main issues in
model derivation and fitting parallel those encoun-
tered with human data. Accordingly, the exposition
here considers modeling of data from human subjects
only. Understanding the PK and PD characteristics

of a new drug is important, not only to identify
promising dosing regimens to be tested in pivotal effi-
cacy trials, but also to obtain information needed for
labeling, to allow the prescribing physician to use the
drug sensibly in clinical practice.

Pharmacokinetic Modeling

Objectives

Underlying most dosage regimens is the idea of a
“therapeutic window”, i.e. a range within which drug
concentrations should be maintained to achieve clin-
ical benefit. Concentrations that are too low may not
achieve efficacy, whereas higher levels may result
in undesirable side-effects. For instance, most antibi-
otics require a certain minimum inhibitory concen-
tration (MIC) to be sustained to maintain efficacy
against a particular target organism, but concentra-
tions too far in excess of the MIC may be toxic. An
effective dosing regimen should aim to reach con-
centrations within the therapeutic window as quickly
as possible, and to stay within the desired range
by suitable choices of maintenance dose and dosing
interval. On the basis of the drug’s PK characteris-
tics in a “typical” subject, a dosing strategy can be
designed which should maintain concentrations in the
desired range (see Minimum Therapeutically Effec-
tive Dose).

For some classes of agents, assuming a common
therapeutic window for all patients may be an over-
simplification. Subject-specific genetic, physiologic,
or demographic factors may alter the relationship
between drug concentration and effect to such a
degree that the desirable concentration range may dif-
fer substantially across patients, particularly if the
therapeutic window is narrow. Even if the target
concentration range is the same for all subjects, if
differences in their PK characteristics are sufficiently
marked it may be necessary to use different dosing
strategies for some subjects to maintain concentra-
tions in that range. For PK/PD modeling to provide
useful guidance for dosing patients, it is thus a mat-
ter of practical importance that the models capture
not only “typical” PK/PD behavior; they also need to
explain variation in this behavior as fully as possible.

Following the target concentration paradigm
described above, the primary clinical application of
PK information is the development of a dosing reg-
imen that maintains circulating drug concentrations
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within the therapeutic window appropriate for a given
patient. The relevant concentration range may be
derived from an understanding of the PD relation-
ship, if available. In the earliest stages of clinical
testing, some guidance on the appropriate range may
be obtained from preclinical work (e.g. from efficacy
studies in a relevant animal model, or from theoretical
considerations involving binding affinity and targeted
receptor occupancy).

To use the drug in clinical practice, three funda-
mental questions must be answered: (i) How should
the drug be administered? (ii) How much should be
given? (iii) How often should it be given? In addition
to these three basic questions, two auxiliary issues
often need to be investigated prior to approval of a
drug. These are: characterization of potential inter-
actions with other drugs likely to be used in the
target population, and identification of patient char-
acteristics such as sex, weight, ethnic group, or renal
function, which exert an effect on the kinetics of the
drug substantial enough to warrant dose adjustment.

The main goal of PK modeling is to address
these issues, using information obtained in clinical
studies. Developing a model to describe the kinetic
properties of a drug allows one to go beyond purely
empirical conclusions, based on dosing regimens
that have actually been studied, to predict outcomes
for regimens that have not been tested. Evaluating
the effects of subject characteristics, changes in
physiology or disease state, or other drugs, on kinetic
behavior is also naturally accomplished within a
suitable model framework.

Design Aspects of Pharmacokinetic Studies

The fundamental data in any PK study are concentra-
tion measurements at timepoints following single or
multiple doses of the drug. A prerequisite, therefore,
is the availability of an accurate and reproducible
assay to determine drug levels in any biological
matrix of interest. This requirement is not trivial, but
lies beyond the scope of this review, and we shall
assume that a reliable assay is available. Concep-
tually, one might be interested in drug concentra-
tions over time in any one of several target tissues.
However, ethical and practical considerations limit
the ability to obtain concentration measurements in
human subjects, so that data are generally available
only for blood (serum or plasma concentrations), and
possibly urine. Even if biopsies can be obtained for

other tissues, reliable determination of concentration
is difficult as homogeneous distribution of the drug
is unlikely for many tissues. To simplify the exposi-
tion, in what follows we consider drug or metabolite
concentrations obtained in blood, as this covers most
PK studies. We refer to “plasma concentrations”,
although in some cases drug levels may be assayed
in serum, or in whole blood. When available, urine
concentration data can provide further insight into
elimination characteristics.

It is helpful to identify two broad categories of
studies where PK data may be generated. In the first
of these, characterization of the kinetic behavior is
a primary goal. Such “classical” PK studies involve
intensive sampling of the concentration–time pro-
file in a relatively small number of subjects, often
healthy volunteers. In contrast, most clinical studies
do not have PK as the main focus, but some concen-
tration measurements may be obtained during their
conduct. In this situation, relatively few concentra-
tion measurements are available for a given subject,
but the number of subjects is often considerably larger
than that in a classical PK study, and information is
obtained in patients, the target population of inter-
est. Occasionally in clinical studies, more intensive
sampling may also be carried out in a subgroup of
subjects; this is quite common in Phase II trials, but
not usual in Phase III.

Some Fundamental Pharmacokinetic Concepts

Studies carried out primarily to address pharmacoki-
netic issues are often referred to as ADME studies,
since they are designed to characterize four fun-
damental aspects of a drug’s kinetics: absorption,
distribution, metabolism, and excretion.

Absorption refers broadly to the process by which
the drug proceeds from the site of administration to
the site of measurement within the body, typically the
bloodstream. An understanding of absorption charac-
teristics is important for drugs intended for extravas-
cular routes of administration, e.g. oral agents, or
drugs given by subcutaneous injection. Both the rate
and extent of absorption are of practical interest.
The rate may have implications for time to symp-
tom relief, the extent provides information on the
efficiency of the proposed route of administration.

Distribution deals with the question: Where does
the drug go? Because of practical constraints in mea-
suring drug levels in tissues, detailed information on
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distribution is difficult to obtain directly in humans.
Assessment of distribution is typically carried out
most extensively in preclinical animal studies, using
a radioactively labeled drug. The relevance of such
preclinical results to humans is subject to the usual
uncertainties surrounding interspecies extrapolation.

Metabolism refers to the conversion of one chemi-
cal species to another. It typically plays an important
role in the elimination of drugs from the body, as
very few drugs are excreted unchanged. The liver
is a major site of drug metabolism, through microso-
mal enzymes which act upon the drug; metabolism in
the gastrointestinal system is also common. In some
cases it is of interest to characterize the kinetics of
major metabolites as well as those of the original
drug, particularly if these metabolites exhibit signifi-
cant pharmacologic or toxic activity.

Excretion refers to the loss of unchanged drug
from the body. The term elimination, used to describe
any loss of drug, encompasses both metabolism

and excretion. Elimination occurs primarily, though
not exclusively, through the kidneys and the liver.
Physiological or demographic factors, as well as
the presence of other medications, can frequently
affect elimination. It is important to understand
which factors exert a substantial effect on elimination
patterns to facilitate any dose adjustments that might
be necessary as a result.

The key data obtained in any PK study are sam-
ples taken post-dosing from the concentration–time
curve. Appropriate summaries calculated from this
profile can provide information on specific ADME
characteristics of the drug. Table 1 summarizes key
PK quantities pertaining to absorption, distribution,
and elimination that can be calculated from the con-
centration profile (see Bioavailability and Bioequiv-
alence). Rates (e.g. of absorption or elimination)
are usually defined in terms of first-order kinetics.
This corresponds to an assumption that the rate of
change of drug concentration at a particular time is

Table 1 Common pharmacokinetic parameters

Parameter Explanation Remarks

Area below the curve,
AUC

Area below the concentration–time
curve

Often taken as a measure of total
exposure to the drug

Clearance, Cl Volume of plasma cleared of drug per
unit time

Cl = dose/AUC

Volume of distribution,
V

The volume that would be occupied if
the total amount of drug in the
body were at the same
concentration as that in the plasma

Gives an idea of the extent to
which drug is distributed to
tissues. If V � plasma
volume, then this indicates
extensive distribution
outside the plasma

Peak concentration,
Cmax

Maximum achieved plasma
concentration

Values of Cmax that are “too
high” may have
implications for toxicity

Tmax Time at which peak concentration
occurs

Mainly relevant for extravascular
administration; gives some
information on the rate of
absorption

Absorption rate, ka Fractional rate of drug absorption if
first order kinetics are assumed

Relevant for extravascular routes
of administration.

Elimination rate, kel Fractional rate of drug elimination from
the body during the terminal phase

kel = Cl/V

Terminal half-life, t1/2 Time taken for the plasma
concentration to fall by one half
during the elimination phase

t1/2 = log 2/kel

Bioavailability, F Exposure relative to that for the same
dose given IV. Exposure is
measured by the total AUC

F = AUCother route/AUCIV
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proportional to the drug concentration at that time,
which is approximately true in many cases. The con-
cept of an elimination half-life that is independent
of concentration also presupposes first-order elimina-
tion. Zero-order kinetics, reflecting a constant rate of
change of drug concentration, sometimes obtain, for
example, intravenous infusion at a constant rate, or
in the absorption of certain drugs from the gastroin-
testinal tract.

The relationships between the quantities shown
in the table are model-independent, unless stated
otherwise. That is, their validity does not rest on
any particular parametric model to describe the
underlying concentration profile. Estimation of these
quantities from experimental data is discussed below.

Compartmental Modeling

If intensive sampling of individual PK profiles has
been conducted, significant progress can be made in
estimating the PK parameters described in Table 1,
without assuming a specific parametric functional
form for a given subject’s response profile. If the goal
is to go beyond simple summarization of the data at
hand, for instance to project PK behavior for other
dosage regimens, then a more sophisticated model
framework is usually invoked. Similarly, stronger
assumptions about the form of the model describing
individual subject profiles are generally needed to
make progress on inference in the sparse data case.
A suitable basis to support derivation of relevant
parametric models is provided by the theory of
compartmental modeling. Data analyses are classified
as noncompartmental or compartmental, according to
the underlying assumptions.

The basic idea in compartmental modeling is to
represent the body as a system of compartments that
communicate reversibly with each other. One should
think of a “compartment” in this context not so much
as a particular anatomic or physiologic region, but
rather as a tissue or group of tissues with similar
blood flow and drug affinity. For example, the liver
and kidneys, being highly perfused organs, are often
considered as being in the same compartment as
the circulation. Compartments are assumed to be
“well-mixed”, assuring uniform distribution of drug
throughout. On the basis of such a representation, a
mathematical model can be derived to describe drug
disposition over time in different compartments. Such
models usually assume that drug transfer in and out

of compartments follows linear kinetics, with transfer
rates that are linear in concentration (i.e. zero or first
order). This leads to a system of linear differential
equations describing the transfer of drug between
compartments. The associated PK rate constants are
parameters that will generally need to be estimated
from experimental data.

An illustration is the case of a two-compartment
model to describe drug kinetics following a sin-
gle intravenous (IV) bolus injection. This model is
illustrated in the central part of Figure 1. Following
essentially instantaneous absorption of the drug into
the circulation, it is assumed to distribute into two
compartments. The central compartment represents
the blood, extracellular fluid and highly perfused
organs and tissues. The second (peripheral) compart-
ment may be thought of as other, poorly perfused,
tissues. For the case shown in Figure 1, elimination
is assumed to occur from the central (plasma) com-
partment only. The rate constants, k10, k12, and k21,
referred to as microconstants in the PK literature,
govern the assumed first-order kinetic transfers into
and out of the relevant compartments.

For this model, writing the differential equations
to describe the system, and solving, shows that the
function describing the concentration of drug in the
plasma at time t after dosing may be written in

V1,C1

V1,C1 V2,C2

V3,C3 V1,C1 V2,C2

k10

k12

k21

k10

k13

k31

k12

k21

k10

Figure 1 One-, two-, and three-compartment models to
describe drug kinetics following a single intravenous bolus
injection
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biexponential form:

C(t) = A1 exp(−λ1t) + A2 exp(−λ2t). (1)

Here the parameters λ1 and λ2 satisfy the relation-
ships λ1 + λ2 = k12 + k21 + k10 and λ1λ2 = k21k10.
The secondary parameters, A1 and A2, satisfy A1 =
[D(λ1 − k21)]/[VP(λ1 − λ2)] and A2 = [D(k21 − λ2)]
/[VP(λ1 − λ2)], where D and VP represent the amount
of drug administered and the volume of the plasma
compartment, respectively. Solving the linear differ-
ential equations that arise in compartmental mod-
els, for which transfers follow linear kinetics, is
most naturally accomplished using Laplace trans-
forms. Details for the most common cases are given
in Gibaldi & Perrier [6].

If the model above is a reasonable description
of the system, then we would expect the concen-
tration–time profile for a subject to decline in two
distinct exponential phases. During the distribution
phase there may be a relatively rapid disappear-
ance of the drug from the plasma compartment as
it distributes to the tissues. After equilibrium is
reached between the plasma and tissue compartments,
elimination exerts the dominant effect on plasma
concentration, resulting in a shallower decline dur-
ing the (terminal) elimination phase. This type of
behavior is evident in Figure 2; these data, taken
from a larger study, represent concentrations of
indomethacin measured in four subjects following a
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Figure 2 Concentrations of indomethacin in four subjects,
following a single intravenous bolus injection

single IV bolus dose. The constraint λ1 > λ2 is some-
times implemented to ensure identifiability of the
model; nonnegativity of all four parameters in the
model is required to yield sensible interpretations.
The model is nonlinear in λ1 and λ2; nonlinearity
in certain parameters is the norm for compartmental
models. Following intravenous dosing, assuming lin-
ear kinetics, a general representation of the function
describing plasma concentration is as a sum of expo-
nential terms, the number of exponentials correspond-
ing to the number of compartments.

Use of the two-compartment model described
above is particularly common. Modification to incor-
porate elimination from the tissue compartment is
straightforward. If distribution to tissues is mini-
mal, a single (plasma) compartment model may be
adequate to describe the concentration profile. If dis-
tribution to tissues occurs very rapidly, and few
sampling times fall in the distribution phase, then it
is possible to miss the fact that two compartments
are appropriate, as the observed concentration pro-
file will likely appear to follow a monoexponential
decline. Where the data indicate three distinct expo-
nential decay phases, the usual interpretation is that
tissues fall into two groups, one for which the move-
ment of drug from the plasma to tissue occurs at
a moderate rate, the second (“deep tissue compart-
ment”) consisting of very poorly perfused tissues
such as bone and fat. The distribution of drug from
the plasma compartment to these tissues is markedly
slower.

Another important extension of the two-com-
partment model given above is to accommodate
extravascular routes of administration such as oral
dosing, or subcutaneous or intramuscular injection.
In such cases the model is adjusted to include
an absorption phase. If absorption occurs from the
gastrointestinal tract, a lag time is sometimes included
as well. A general method for adjusting the expected
plasma concentration function following bolus IV
dosing (instantaneous input) to account for a different
input process is described by Gibaldi & Perrier[[6],
Appendix B]. One multiplies the Laplace transform
of the concentration function for IV dosing by that
of the input function, and takes the inverse Laplace
transform of the product. Application of this method
to the case of a two-compartment model with first-
order absorption into, and first order elimination
from, the plasma compartment yields a function for
the plasma concentration at time t that may be written
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as the sum of three exponential terms:

C(t) = A1 exp(−λ1t) + A2 exp(−λ2t)

+ A3 exp(−kat), (2)

where the six parameters in the model are known
functions of the microconstants and other PK para-
meters. Inspection of this function suggests the pos-
sibility of identifiability problems, depending on the
relative magnitudes of the absorption rate constant,
ka, and those associated with the distribution and
elimination phases (λ1 and λ2, respectively). For
most drugs, one expects that ka > λ2. For certain
drugs with very rapid elimination, fitting techniques
may sometimes interchange the two, a phenomenon
referred to as “flip-flop” behavior. In general, ka may
be larger or smaller than λ1, so that distinguish-
ing between them cannot be done on any theoretical
basis. A further difficulty arises if ka ≈ λ1. In that
case it is likely that the data support fitting only
two exponential terms. This would correspond to
a one-compartment model with first-order absorp-
tion, even though experience from other routes may
suggest two compartments are needed. Thus, it is
not always possible to determine ka unambiguously
from concentration data following oral administration
only. Infrequent sampling during the absorption phase
often compounds the problem. In theory, any ambi-
guity can be resolved by also characterizing kinetics
following IV administration in the same subject; this
may not always be practicable.

Nonlinear Kinetics

In many cases, linear kinetics obtain in only part of
the concentration range. Differences in kinetic behav-
ior may occur at higher concentrations, often due to
some type of saturation phenomenon, e.g. of plasma
protein or tissue binding, or of some capacity-limited
metabolic process. Elimination kinetics are frequently
affected. For example, suppose that clearance of the
drug occurs primarily through metabolism in the
liver, and that the activity of a particular enzyme
involved acts as a rate-limiting step. Then the rate
of metabolism may be linear over a portion of the
concentration range, but reach a plateau at higher
concentrations. Borrowing from standard modeling
approaches in enzyme kinetics, this type of behavior
is usually described by a rectangular hyperbola, with

parametric form given by the Michaelis–Menten
equation:

dC(t)

dt
= rate = VmC

Km + C
, (3)

where Vm represents the maximal rate and Km the
concentration at which half the maximal rate is
attained. Capacity-limited metabolism can also give
rise to nonlinear absorption kinetics, e.g., in the
case of drugs that undergo a significant degree of
metabolism in the liver before being absorbed into
the circulation (the so-called first pass effect). If one
or more transfer rates in a compartmental model
obey Michaelis–Menten kinetics, then the associ-
ated system of differential equations will be nonlin-
ear. In this situation, an analytic solution for con-
centration functions is not possible, except in cer-
tain special cases. Saturable, or otherwise nonlinear,
kinetics are to be expected at very high concentra-
tions of a drug. Nonlinear kinetic behavior within
the therapeutic concentration range is less frequent
and its existence can complicate dosing consider-
ably.

Multiple Dosing

Most drugs require multiple administration to main-
tain effect. If fixed doses are given, separated by a
constant dosing interval, then peak plasma levels fol-
lowing later doses will usually be higher than that
occurring after the first dose, a phenomenon known as
accumulation. The degree of accumulation following
successive doses attenuates until an eventual steady
state is reached for the plasma profile. At the steady
state, average input and output over the dosing inter-
val are the same. It is straightforward to show that the
average concentration at steady state is proportional
to the half-life divided by the length of the dosing
interval. The time to reach steady state is a function
solely of the drug half-life; to attain 90% of steady-
state concentration requires about 3.3 half-lives. Only
in the case of intravenous infusion at a constant rate
is the expected concentration at steady state actu-
ally constant; for an input function corresponding to
discrete doses at regular intervals, a “sawtooth” pat-
tern about some overall average steady-state level is
expected. If fixed doses are given, at constant inter-
vals, then the size and frequency of doses must be
balanced to preclude excessive fluctuations in level
between doses. More frequent dosing reduces the
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degree of fluctuation between peak and trough lev-
els, but must be balanced against practical aspects
such as patient compliance.

If one makes the assumption that the kinetic
behavior following a single dose is unchanged,
regardless of how many other doses may already have
been given, then it is straightforward in principle
to predict plasma concentration following multiple
doses. One applies the principle of superposition,
which simply adds the expected contribution of the
new dose to the concentration at any timepoint to
the expected concentration at that time from all pre-
ceding doses. Proceeding recursively, the expected
concentration is then simply a sum of terms, one
per administered dose, of the concentration function
evaluated at the time post-dosing for each of the indi-
vidual doses. If doses are given at times tk , and f is
the function describing plasma concentration after a
single dose, then

C(t) =
∑

k:tk<t

f (t − tk). (4)

It is important to recognize that the principle of
superposition represents an assumption, which may or
may not be true in practice. Quite often it applies until
concentrations exceed the range where linearity of
kinetics is preserved. Measurement of concentrations
following multiple dosing is needed to provide an
empirical check on the validity of models derived
from the principle of superposition.

Further Reading

Several texts cover various aspects of PK in more
depth. Gibaldi & Perrier [6] provide mathematical
details of derivations for the most commonly used
compartmental models. A more applied perspective
is taken by Rowland & Tozer [13]. Other approaches
that have been suggested for modeling PK data
include the use of physiologically based models [1],
and of stochastic compartmental models (e.g. [11]).
A partial list of current and future issues in applying
PK to clinical therapeutics includes: development
of controlled release formulations, differential PK
behavior of stereoisomers, use of stable isotopes
in determining bioavailability, appropriate dosing of
therapeutic proteins manufactured by recombinant
DNA technology, and the challenges in delivery
and dosing that accompany the promise of gene
therapy.

Statistical Aspects

The development so far has focused on deriva-
tion of theoretically based models to describe the
expected plasma concentration profile. In practice,
concentration values sampled from a subject’s profile
will be subject to measurement error. Estimation of
underlying model parameters is necessarily based on
observed concentration data and involves the explicit
or implicit assumption of a statistical model, char-
acterizing the variability in the data. To be useful
in practice, statistical modeling must also reflect the
design and the analysis objectives accurately. These
are generally sufficiently different for the “intensive”
and sparse sampling cases that distinct modeling
issues arise in the two situations. We now consider
each case separately.

Individual PK Modeling and Inference

Objectives

For early Phase I studies, with intensive sampling
of kinetic profiles, the primary objectives in analy-
sis are usually: (i) to establish the correct functional
form of the relevant PK model (e.g. one or two com-
partments) and (ii) to obtain a preliminary idea of
typical values of the model parameters. A subsidiary
objective may be characterization of the variability
in concentration measurements about the postulated
mean function. Intersubject variation in PK charac-
teristics is also of some interest, but estimating this
variability on the basis of a relatively small num-
ber of subjects who may not be representative of the
target patient population clearly has the potential to
mislead.

Noncompartmental Analysis

For data from “classical” studies, where relatively
frequent samples are taken from the concentration
profile, considerable progress can be made in esti-
mating subject-specific PK parameters using noncom-
partmental methods. For instance, the area under the
curve for a given subject can be estimated by applica-
tion of the trapezoidal rule to the subject’s observed
profile. For curves exhibiting two distinct phases
of exponential decay, a plot of log(concentration)
against time should reveal two separate phases of
approximately linear decline. Fitting a straight line
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to later concentration measurements on this plot
yields an estimate of the terminal rate of exponential
decline. The terminal half-life may then be estimated
by dividing log 2 by this slope estimate. Other param-
eters may be estimated by exploiting relationships
such as those shown in Table 1. Quantifying the
uncertainty associated with such noncompartmentally
derived parameter estimates, e.g. by calculation of
standard errors, is not straightforward, however. The
absence of replication precludes calculation of any
type of “pure error” estimate of within-subject varia-
tion to be used in calculating standard errors. Further-
more, although such methods do provide empirical
summaries of the observed concentration profiles,
they do not facilitate prediction of concentrations for
other dosing regimens, without the assumption of a
specific model form.

Compartmental Analysis

In estimating subject-specific parameters within a
compartmental modeling framework, the key statis-
tical techniques are those used in heteroscedastic
nonlinear regression problems. Denote the j th con-
centration measurement for the ith subject, taken at
time tij , by yij , j = 1 . . . mi , i = 1 . . . n. For con-
venience, use the vector xij to summarize covariate
information pertinent to the response yij ; typically,
this involves the measurement time, tij , and informa-
tion on dosing history for the ith subject up to that
time. Assume that

E(yij |βi ) = f (xij , βi); cov(yi |βi ) = Ri . (5)

Here, f is a function whose form is known from
the relevant compartmental model and which depends
nonlinearly on βi , a p × 1 vector of unknown PK
parameters, specific to the ith subject. The within-
subject covariance matrix Ri , is assumed to have the
same form for all subjects. We restrict attention here
to the case where Ri is diagonal; serial correlation
in the within-subject concentration measurements is
certainly possible, but methods commonly used in
PK modeling do not account for it. In contrast,
heterogeneity of variance in concentration usually
is accommodated when specifying the form of Ri .
Typically, a pattern of increasing variance is seen
as the mean concentration increases, suggesting that
variance might be modeled as a smooth function
of the mean. The most common implementation

of this idea in the PK literature assumes that the
variance is proportional to some power of the mean,
corresponding to diagonal elements of Ri of the
form vary = σ 2µ2θ . The value of θ appearing in the
exponent may be known, or may need to be estimated
from the data.

Estimating the subject-specific parameters βi from
the ith subject’s data is thus a nonlinear regres-
sion problem. Ordinary least squares fitting is
one possibility, but the heterogeneity of variance
in concentration measurements suggests adopting a
weighted approach instead, with weights wij chosen
to be inversely proportional to the response variance:
wij = σ 2/varyij .

If the weights are considered to be known con-
stants, then the weighted least squares (WLS) esti-
mate of βi is the value that minimizes

∑ni

j=1 wij {yij −
f (xij , βi )}2. In practice, the correct choice of weights,
wij , will not be known. However, a simple extension
of the WLS approach is to use estimated weights
in a scheme such as the following (assuming θ

known). First obtain a preliminary unweighted esti-
mator β

p
i , e.g. by ordinary least squares. On the

basis of this estimate, form estimated weights ŵij =
1/(µ̂2θ

ij ), where µ̂ij = f (xij , β
p
i ). Use these weights

to reestimate βi by weighted least squares. Update
the weights on the basis of the new estimate of
βi and iterate until convergence. Denote the final
estimate by β̂GLS

i . This method is known as general-
ized least squares (GLS), or sometimes as iteratively
reweighted least squares (IRLS) (see Generalized
Linear Model).

If θ is unknown, then it may be estimated from the
data. An overview of methods for estimating variance
parameters in the context of GLS regression may
be found in Carroll & Ruppert [2]. An alternative
method, commonly used by pharmacokineticists in
fitting individual profile data, is to maximize the
normal theory likelihood for the ith subject’s data
jointly in βi , θ , and σ ; this method is referred to in
the PK literature as extended least squares [12].

In practice, it is important to implement some
type of weighting scheme in estimating the regression
parameters, as failure to do so may give insufficient
weight to lower concentration values, resulting in
poor estimation of parameters pertaining to the ter-
minal phase. Weights based on predicted rather than
observed concentrations are preferable to avoid mis-
behavior due to one or two “bad” observed y values,
and some iteration is desirable to wash out the effect
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of poor initial weights. Small deviations from the
“optimal” weighting scheme are unlikely to affect
inference very much, so exact characterization of the
value of θ is not critical. With this in mind, a less for-
mal procedure is simply to examine plots of weighted
Studentized residuals following GLS fits for a small
grid of possible values of θ (e.g. 0, 0.5, and 1.0),
and choose the value which most nearly corrects for
the heterogeneity of response variance. Investigating
the pattern of within-subject heteroscedasticity on the
basis of residuals from a preliminary fit has the
advantage that it is straightforward to pool the within-
subject residuals across all subjects to obtain a single
estimate of θ . This presupposes that a common value
of θ is appropriate for all subjects, which is likely to
be reasonable for PK data, provided assay procedures
for determining concentrations are comparable.

In compartmental modeling, the parameters βi

appearing in the polyexponential functions usually
employed in fitting plasma concentration data are not
always the quantities of primary interest. Pharma-
cokinetic parameters that may be of more practical
interest are generally expressible as some known
(possibly nonlinear) function, h say, of the elements
of βi . For example, the terminal half-life in the case
of a two-compartment model following intravenous
bolus dosing may be calculated as log 2/β4i , where
β4i is the exponential decay rate for the elimination
phase. Estimation of such derived PK parameters is
straightforward: one simply substitutes the estimate
of βi obtained by GLS, or other method of choice,
into the appropriate expression. That is, an estimate
of h(βi ) is given by h(β̂i ).

Approximate expressions for estimating standard
errors for the β̂i , or functions of β̂i , may be obtained
by suitable application of standard asymptotic theory
for weighted nonlinear regression. Details may be
found in most nonlinear regression texts (e.g. [14]).
In the context of parameter estimation based on
data from only a single subject, where one may be
attempting to estimate five or six parameters from
only a dozen or so data points, the quality of such
approximations may be quite poor.

Estimates of subject-specific PK parameters may
be used for subsequent analyses in a number of ways.
They may form the basis of prediction of achieved
concentrations for different dosing regimens contem-
plated in future studies. If population modeling is of
interest, then subject-specific estimates may be used
as raw data for certain types of population analyses.

Software

Nonlinear regression routines with the flexibility to
allow iterative reweighting are available in most
major statistical packages (see Software, Biostatis-
tical). These routines generally require explicit spec-
ification of the regression function, and possibly its
first derivatives with respect to the parameters. More
specialized packages, such as NONLIN or ADAPT,
widely used by pharmacokineticists, allow the user
to choose from a library of preexisting models. This
obviates the need for explicit specification of the
regression function and derivatives, which can be par-
ticularly helpful in situations where complex multiple
dosing schemes have been used, or where explicit
solution of the differential equations is not possi-
ble. Generally, these programs also allow iterative
reweighting, with a few different options for the form
of the dependence of the variance on the mean.

Practical questions which may arise, no matter
what fitting routine is used, are the determination
of suitable starting values, conventions for handling
concentration values below the assay detection limit,
possible model identifiability problems, and suitable
choice of parameterization. In addition, convergence
to sensible values, and the reliability of standard
error estimates based on asymptotic approximations,
always tricky issues in nonlinear regression, can
be especially troublesome in fitting compartmental
models.

Population PK Modeling and Inference

Objectives

For sparse concentration data obtained in the clini-
cal setting, different statistical approaches are usually
needed. In part, this follows from the design; obtain-
ing individual estimates from each subject’s data is
generally not feasible. Analysis objectives also differ,
with greater emphasis on characterizing differences in
kinetic behavior among subjects. Population analysis
thus has two primary goals: (i) estimation of subject-
specific PK parameters, and (ii) understanding inter-
subject variation in PK characteristics.

Population Modeling

Noncompartmental techniques are generally less use-
ful in the population setting; the extra structure that
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follows from a compartmental modeling approach is
typically necessary to make much progress. Accom-
modation of two levels of random variation, within
and between subjects, is also necessary. The relevant
statistical techniques are those associated with mixed-
effect models. A two-stage model framework proves
useful; we first present this model in fairly general
form, and then explain the interpretation of its differ-
ent components. Let xij , yij , yi , βi , Ri , and f have
the same interpretations as before, and consider the
following model:
Stage 1:

yi = f (xi , βi) + ei ,

E(ei |βi ) = 0; cov(ei |βi ) = Ri . (6)

Stage 2:

βi = Aiβ + bi ,

E(bi ) = 0; cov(bi ) = D. (7)

Interpretation of stage 1, which models data for
the ith subject, i = 1, . . . , m, is as before. The
second stage models the intersubject variation in βi .
In the first term, Aiβ, the systematic component
of the variation, is modeled in terms of a k × 1
vector of fixed effects, β, and a p × k matrix Ai

incorporating subject-specific covariate information.
The second term, bi , is a p × 1 vector of random
effects, reflecting residual (unexplained) variation in
the PK parameters βi . In the simplest possible case,
Ai = I, so that βi = β + bi , corresponding to the
situation where all of the variation in βi is considered
random, about an overall population average β, with
covariance matrix D. If possible, one would like to
identify subject-specific covariates that account for
some of the variation in βi . This can be done by a
suitable choice of the “design matrix” Ai .

To fix ideas, suppose that the PK parameters βi

correspond to the bivariate vector of clearance and
distribution volume for the ith subject, (Cli, Vi). We
might wish to investigate the belief that clearance
for a given subject depends on the subject’s age.
One possibility would be to formulate a model that
postulates a linear dependence of clearance on age.
Suppose none of the measured subject-level covari-
ates plausibly affects the volume of distribution, so
that all between-subject variation in that parameter is
considered unexplained. Then, writing β1i and β2i for
clearance and volume of the ith subject, respectively,

this situation would be described by the following
model:

β1i = β1 + β3Agei + b1i ,

β2i = β2 + b2i . (8)

Thus, at the second stage, one attempts to build
a parametric regression model, where the subject-
specific PK parameter is the response and the model
attempts to separate the variation in this response
into a systematic component, predictable by measured
covariates, and a residual (random) component. As
in any regression model, the residual variation will
reflect both the true random variation in the popula-
tion, as well as any variation attributable to covariates
that have not been measured. In the case above the
regression model is linear in the fixed-effect param-
eters, β = (β1, β2, β3)

′. For the example described
above, Ai is the following 2 × 3 matrix:

[ 1 0 Agei

0 1 0

]
.

Dependence on other covariates would be incorpo-
rated by adding columns to Ai and corresponding
elements to the vector of fixed-effect parameters, β,
as necessary.

The need to accommodate both within-subject and
intersubject variation correctly in population analysis,
and the potential utility of mixed-effects modeling as
a way of doing this, was first recognized by Sheiner
et al. [15].

Inference

The two-stage model above is quite similar to the
two-stage mixed-effects model, described by Laird
& Ware [8], used to derive inferential methods for
linear repeated measurement data. This suggests
adapting inferential methods for the linear case for
use in fitting population PK models. This approach
forms the basis of most commonly used methods for
population PK modeling. In the linear case, normality
of ei and bi , and linearity of the model in bi , allow the
marginal distribution of yi to be derived explicitly.
Multivariate normality of this marginal distribution
allows application of standard maximum likelihood
or restricted maximum likelihood methods.

In contrast, nonlinear dependence of f on βi , and
consequently on bi , makes exact derivation of the
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marginal impossible, as the necessary integration over
the random-effects distribution cannot be performed
analytically. Dependence of the covariance matrix Ri

on bi complicates matters further. Most inferential
methods for PK modeling of sparse data within
the framework above rely on approximations to
the marginal likelihood. Specifically, a Taylor series
expansion in bi is used to provide an approximation
that is linear in bi , yielding an approximation to the
marginal likelihood. One can then apply methods for
linear mixed-effects models to carry out approximate
inference on the parameters β and bi , and the
independently varying components of the matrices Ri

and D.
Most of the commonly used methods are based

on some variation of one of two approximations. The
first of these involves a Taylor series expansion in
bi about zero, the mean of the random effects dis-
tribution, giving a first-order approximation to the
likelihood. This approximation was first suggested
by Sheiner et al. [15], and is referred to as the first-
order (FO) method in the PK literature. Lindstrom &
Bates [9] suggested a refinement, wherein accuracy
of the approximation may be improved by expanding
about the current estimate of the subject-specific ran-
dom effect in an iterative fashion. A variation of their
method has been adopted by pharmacokineticists;
the resulting inferential techniques being referred to
as first-order conditional estimation (FOCE). At the
time of writing, these methods are implemented in
two software packages: NONMEM, a package widely
used by pharmacokineticists, developed in the early
1980s, and a more recent suite of contributed func-
tions to S-PLUS, nlme, which implement the method
of Lindstrom & Bates.

Application of these methods allows inference
on the fixed-effects and the independently varying
covariance components. In addition, empirical Bayes
estimates of the individual random effects bi (and
thus of the subject-specific PK parameters βi) are
obtained. By analogy with the linear mixed-effects
model, the random-effect estimates may be viewed
as subject-level residuals, and thus prove useful in
screening covariates for inclusion in the second-stage
model to account for intersubject variation. Formal
testing of the need to include particular covariates
may be implemented using likelihood ratio test
techniques.

Other inferential methods have been proposed
in the recent statistical literature. Each assumes

some type of hierarchical model framework; most
attention has focused on relaxing assumptions
pertaining to the second-stage (random-effects) dis-
tribution. Among the proposed approaches are com-
pletely nonparametric estimation of the random-
effects distribution [10], and a semiparametric alter-
native, developed by Davidian & Gallant [3]. Recent
advances in using Markov chain Monte Carlo
(MCMC) techniques to deal with computational com-
plexities have allowed practical implementation of
Bayesian analysis in the context of hierarchical
regression models. Wakefield [17] illustrates applica-
tion of these methods in the context of population
PK modeling. Two recent texts that review model-
ing and inference in nonlinear hierarchical regression
are Davidian & Giltinan [4], and Vonesh & Chin-
chilli [16].

PD Modeling

Objectives

The primary goal of PD modeling is to character-
ize the concentration–effect relationship for some
appropriate measure of response (see Dose-response
in Pharmacoepidemiology). This can be used to
deduce the appropriate target concentration range to
guide dosing. Just as subjects may exhibit different
PK behavior resulting from genetic or physiological
characteristics, their response to circulating concen-
trations may also differ. Substantial differences might
result in a need for subject-specific target concentra-
tion ranges – particularly if the separation between
toxicity and efficacy response curves is narrow. In
such cases an understanding of the factors giving rise
to differential sensitivity to the drug may be important
in order to allow accurate prediction of the correct
target concentration range for a new patient.

Design Aspects

Data suitable for PD modeling are most often
obtained in a setting where PK (concentration) data
are also being collected. The goal is to characterize
the relationship between response and concentration,
so that concentration plays the role of “independent
variable” in PD modeling. Sometimes, concentration
values are obtained concurrently with the measure-
ment of the PD response, but sampling schedules
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for PK and PD measurements may differ. Concep-
tually, this can be accommodated by incorporating
an appropriate lag term in the model, or by using
predicted concentration values, from subject-specific
PK parameter estimates, at the PD measurement time-
points. Some studies employ a dose–titration design,
in which each subject receives multiple dose levels
of the drug, separated by a washout period. More
commonly, each subject is dosed at only one of
the possible levels, although multiple dosing at the
particular level assigned may occur. In this case,
concentration determinations may be made at sev-
eral timepoints post-dosing, ensuring some variation
in the achieved concentrations, but any one subject is
unlikely to achieve concentration levels that span the
entire range of interest. Thus, unlike PK modeling, it
is rarely possible to characterize the full concentra-
tion–effect profile for a particular subject on the basis
of that subject’s data only. As a result, population-
based fitting methods are usual in PD modeling.

Model Derivation

In comparison to PK modeling, both theoretical and
practical aspects of PD modeling are less well devel-
oped. This is not surprising; given the potential vari-
ety in the choice of PD endpoints, development of
a unified theory for modeling may be too much to
expect. Potential issues in PD modeling include (i)
choice of pharmacologic endpoint – factors to be
considered in making this choice include clinical rel-
evance, ease and variability of measurement, and sen-
sitivity to changes in drug concentration; (ii) possible
lag between changes in plasma concentration and PD
effect, a phenomenon known as hysteresis; (iii) error
in concentration measurements; (iv) the possibility of
diurnal or other temporal variation in response; (v)
feedback loops resulting in up- or downregulation of
response; and (vi) possible formation of metabolites
affecting response. This list is not exhaustive.

The most commonly used model relating PD
response to concentration is the so-called sigmoid
Emax model, proposed by Holford & Sheiner [7].
There are several possible parameterizations; the
following is common:

y = E0 + Emax − E0

1 + (EC50/C)γ
. (9)

This model is also referred to as the four-parameter
logistic function. The parameters have the follow-
ing interpretation. E0 and Emax are the response at

zero concentration and the maximal response, respec-
tively. EC50 is the concentration eliciting a response
halfway between E0 and Emax, and γ (the Hill coef-
ficient) is a parameter governing the steepness of the
concentration–effect relationship.

In some situations the biochemistry or physiology
of response is such that a definite lag occurs between
a change in the circulating concentration of the drug
and a change in response. One possible view is that
it is the drug concentration at the site where it elic-
its its effect (e.g. by binding to receptors in the
target tissue) that is important, more than plasma
concentrations. Measurement of drug levels at the
effect site is generally infeasible, of course, so plasma
concentrations act as a surrogate. The lag may be
interpreted as the time it takes for changes in plasma
concentrations to be propagated to the effect site.
Adopting this view, one approach to modeling the lag
in response is to incorporate a hypothetical “effect-
site compartment”, with a term that describes the
absorption process required for the drug to reach this
compartment (see, for example, [7]). Recent work by
Jusko and colleagues [5] develops a more general
approach, resulting in a family of indirect pharmaco-
dynamic models. The flexibility of the indirect model-
ing approach is appealing; given its relatively recent
introduction, there have been few reported applica-
tions in the literature to date.

Inference

The data structure in PD modeling problems usually
parallels that in population PK analysis: relatively
infrequent repeated measurements on each of a num-
ber of subjects, according to an unbalanced design. A
similar two-stage model is appropriate, with the first
stage modeling concentration–response data for each
subject, and the second stage describing intersubject
variation in parameters of the first-stage PD model.
Since this model is nonlinear in certain parameters,
inferential methods for nonlinear mixed effects mod-
els are appropriate for population PD modeling, as
well as for population PK modeling. Either sequen-
tial or simultaneous fitting of population PK and PD
models is possible. Details are beyond the scope of
this article; a more extensive discussion may be found
in Davidian & Giltinan [4].

In contrast to PK modeling, there is no require-
ment that the response variable in a PD model be
continuous. For discrete or binary responses, existing
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methods for population PK analysis will generally
not be appropriate. The natural model framework
in these cases is that of generalized mixed mod-
els; see, for example, [16]. This is an area of con-
siderable interest in the current statistical literature.
Given the interest in characterizing intersubject vari-
ation in PD parameters, subject-specific modeling is
more suitable than methods that focus on marginal
inference. Bayesian hierarchic modeling, imple-
mented by appropriate Markov chain Monte Carlo
(MCMC) methods, appears particularly promising in
this context.

Conclusion

Pharmacokinetic and pharmacodynamic modeling
address an important practical need during drug
development, namely that of learning how to dose
a drug sensibly to achieve therapeutic benefit. Sev-
eral factors can make this a challenging problem:
a steep concentration–effect relationship, poor sep-
aration of the dose–response curves for efficacy and
toxicity, and high intersubject variability in PK or PD
characteristics. Drugs that exhibit good separation of
the efficacy and toxicity curves are generally easy to
use in practice – even in the presence of high inter-
subject variation it may be possible to find a single
dosing regimen that is suitable for all patients. If the
therapeutic window is not so wide, then some indi-
vidualization of dosing may be required, depending
on the degree of intersubject variation. Ideally, simple
adjustments to dosing based on easily measured sub-
ject characteristics, such as age, sex, or weight, are
adequate. For drugs where simple adjustments prove
inadequate, a possible recourse is to implement some
degree of therapeutic concentration monitoring ini-
tially. With this approach a patient might be started
out on a dosage regimen based on “typical” kinetic
behavior. One or two blood draws are taken and
assayed for drug concentration, thereby allowing an
assessment of how different the subject’s concentra-
tion profile is from the norm. Beliefs about the values
of the subject’s kinetic parameters may be updated
in a Bayesian fashion, and possible dose corrections
may be implemented. Since therapeutic concentration
monitoring is somewhat resource-intensive, its use is
generally limited to drugs with a narrow therapeutic
window, and a high degree of unexplained inter-
subject variability in kinetics, such as theophylline,

digoxin, or phenytoin. At the most challenging end of
the dosing spectrum are drugs with poor separation
of efficacy and toxicity, a high degree of intersub-
ject PK and PD variability, and with few covariates
of predictive value. If no measure of a patient’s
sensitivity is available to guide a sensible choice of
target concentration range, it is sometimes possible
to titrate dose to a specific effect level. This requires
the availability of an easily measured PD endpoint
upon which dose titration can be based. In many sit-
uations it may not be practicable to dose a drug in this
manner, though in some cases this approach can be
successful. The anticoagulating agent coumadin, fre-
quently titrated for an individual subject according to
the coagulation parameter prothrombin time, repre-
sents an example of a drug dosed in this fashion. The
distilled grain extract Stolichnaya is another.
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Phase I Trials

The initial phase of human experimentation in the
development of chemotherapeutic drugs involves
finding a dose that produces an acceptable level of
toxicity. What is acceptable obviously depends on
the disease in question: in diseases with significant
morbidity and mortality, particularly cancer, the
acceptable level of toxicity is quite high. Indeed,
the toxicity of the drug may be to some extent
a measure of its potential efficacy. That any
toxicity is acceptable is an acknowledgment that,
in the absence of any information regarding the
optimal therapeutic dose of the drug, the maximum
benefit is presumed to occur at the highest possible
dose.

The Phase I trial has, as a general objective, the
determination of the maximum dose of a drug, either
alone or as part of a combination, that will, when
administered by a specific schedule and route, pro-
duce an acceptable level of toxicity. This dose is
usually referred to as the maximum tolerable dose
(MTD), although in animal studies the same acronym
may refer to the largest dose that will not kill any ani-
mals. A typical definition of acceptable toxicity (for
an anticancer agent) might be, for example, “toxic-
ity of grade 3 or worse in not more than one out
of three patients”, where grade 3 toxicity is fur-
ther defined according to criteria that are as objec-
tive as possible. An occurrence of toxicity that is
unacceptable is said to be a dose-limiting toxicity
(DLT). The MTD is most frequently defined in terms
of the frequency of occurrence of the binary out-
come associated with the presence/absence of DLT.
Mathematically, if Y denotes the binary response
with Y = 1 denoting the occurrence of DLT, then
one seeks a dose xMTD where Pr(Y = 1|xMTD) = q0,
where q0 is usually in the range 0.1–0.4 (although
this is often not explicitly defined). However, in
cases where toxicity is almost always restricted to
a single quantitative parameter; for example, white
blood count (WBC), it would be possible to define
the MTD in terms of the WBC itself; for exam-
ple, the highest dose where the median nadir WBC
is at least 2000 (see the section on continuous out-
comes below). One must also define the time period
over which the evaluation of toxicity is to be per-
formed. The MTD is typically defined only with
respect to relatively acute toxicities, such as those

occurring within three to four weeks of drug admin-
istration.

Once an MTD is established, one presumes that
this dose will be used in further evaluations of
efficacy in Phase II trials; however, this logical
progression is complicated by the fact that patient
populations in Phase I and II trials are likely to be
dissimilar.

Traditional Methods

When defined in terms of the presence or absence
of DLT, the MTD can be defined as some quantile
of a tolerance distribution or dose–response curve.
For a given sample size, the most effective way
of estimating this quantile would be to determine,
for each patient in the sample, the exact dose of
the agent in question at which DLT first appears.
Such data are nearly impossible to gather, however,
as it is impractical to give each patient more than
a small number of discrete dosages. Furthermore,
the data obtained from sequential administration of
different doses to the same patient would almost
surely be biased, as one could never distinguish
the cumulative effects of the different doses from
the acute effects of the current dose level. Extended
washout periods (see Crossover Designs) between
doses are not a solution, since the condition of the
patient, and hence the response to the drug, is likely
to change rapidly for the typical patient in a Phase I
trial. For this reason, almost all Phase I trials involve
the administration of only a single dose level to
each patient and the observation of the frequency of
occurrence of DLT in all patients treated at the same
dose level.

There are two significant constraints on Phase I
trial design. The first is the ethical requirement to
approach the MTD from below, so that one must
start at a dose level believed almost certainly to be
below the MTD, and gradually escalate upward. The
second is the fact that the number of patients typi-
cally available for a Phase I trial is relatively small,
say 15–30, and is not driven traditionally by rig-
orous statistical considerations requiring a specified
degree of precision in the estimate of MTD. The
pressure to use only small numbers of patients is
large – literally hundreds of drugs per year need to
be tested, and each combination with other drugs,
each schedule, and each route of administration
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requires a separate trial. Furthermore, the number
of patients for whom it is considered ethically jus-
tified to participate in a trial with little evidence of
efficacy is limited (see Ethics of Randomized Tri-
als).

As a consequence of the above considerations, the
traditional Phase I trial design utilizes a set of fixed
dose levels that have been specified in advance; that
is, x ∈ {a1, a2, . . . , aK}. The choice of the initial dose
level a1, and the dose spacing, are discussed in more
detail below. Beginning at the first dose level, small
numbers of patients are entered, typically three to
six, and the decision to escalate or not depends on
a prespecified algorithm related to the occurrence of
DLT. When a dose level is reached with unacceptable
toxicity, then the trial is stopped.

Initial Dose Level and Dose Spacing

The initial dose level is generally derived either
from animal experiments if the agent in question is
completely novel, or by conservative consideration of
previous human experience if the agent in question
has been used before but with a different schedule,
route of administration, or with other concomitant
drugs. A common starting point based on the former
is from 1/10 to 1/3 of the mouse LD10, the dose that
kills 10% of mice, adjusted for the size of the animal
on a per kilogram basis or by some other method.

Subsequent dose levels are determined by increas-
ing the preceding dose level by decreasing frac-
tions, a typical sequence being {a1, a2 = 2a1, a3 =
1.67a2, a4 =1.5a3, a5 =1.4a4, and thereafter ak+1 =
1.33ak, . . .} Such sequences are often referred to
as “modified Fibonacci”. (In a “true” Fibonacci
sequence the increments are approximately 2, 1.5,
1.67, 1.60, 1.63, and then 1.62 thereafter, converging
on the golden ratio.) With some agents, particularly
biological agents, the dose levels may be deter-
mined by log (i.e. {a1, a2 = 10a1, a3 = 100a1, a4 =
1000a1, . . .}) or half-log (i.e. {a1, a2 = 3a1, a3 =
10a1, a4 = 30a1, a5 = 100a1, . . .}) spacing.

Escalation Algorithms

A wide variety of dose escalation rules may be
used. For the purposes of illustration, we describe
the following:

1. Evaluate three patients at ak:

(i) if zero of three has DLT, then increase dose
to ak+1 and go to step 1;

(ii) if one of three has DLT, then go to step 2;
(iii) if more than one of three have DLT, then

go to step 3.
2. Evaluate an additional three patients at ak:

(i) if one of six has DLT, then increase dose
to ak+1 and go to step 1;

(ii) if more than one of six have DLT, then go
to step 3.

3. Discontinue dose escalation.

If the trial is stopped, then the dose level below
that at which excessive DLT was observed is the
MTD. Some protocols may specify that if only three
patients were evaluated at that dose level, then an
additional three should be entered, for a total of
six, and that process should proceed downward, if
necessary, so that the MTD becomes the highest dose
level where no more than one toxicity is observed
in six patients. The actual q0 that is desired is
generally not defined when such algorithms are used,
but clearly 0.17 ≤ q0 ≤ 0.33, so we could take q0 ≈
0.25.

While such an algorithm makes common sense,
only brief reflection is needed to see that the deter-
mination of MTD on rigorous statistical grounds is
extremely tenuous. Consider a trial where the fre-
quency of DLT for three consecutive dose levels
following the algorithm above is, respectively, zero of
three, one of six, and two of six. Ignoring at this point
the sequential nature of the escalation procedure, the
pointwise 80% confidence intervals for the rate of
DLT at the three dose levels are, respectively, 0 –
0.54, 0.02 – 0.51, 0.09 – 0.67. Although in such an
outcome the middle dose would be taken as the esti-
mated MTD, there is not even reasonably precise
evidence that the toxicity rate for any of the three
doses is either above or below the implied target rate
of approximately 0.25.

A more rigorous statistical analysis of this problem
would produce simultaneous confidence intervals for
the three dose levels, account for the sequential
sampling algorithm (see Sequential Analysis), and
also account for the fact that the toxicity rates
are presumably nondecreasing with increasing dose.
Such an analysis is quite complex for even such
a simple example, and would not alter the basic
point regarding the lack of precision about toxicity
rates. Furthermore, even the latter analysis does not
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quantify the imprecision in the estimate of MTD
itself.

Crude comparisons among different dose esca-
lation algorithms can be made by examining the
level-wise operating characteristics of the design,
i.e. the probability of escalating to the next dose
level given an assumption regarding the underly-
ing probability of DLT at the current dose level.
Usually, this calculation is a function of simple
binomial success probabilities. For example, in the
algorithm described above, the probability of esca-
lation is B(0, 3; px) + B(1, 3; px)B(0, 3; px), where
B(r, n; px) is the probability of r successes (toxici-
ties) out of n trials (patients) with underlying success
probability at the current dose level px . When the
probability of escalation is plotted over a range of px ,
one can characterize algorithms as relatively “aggres-
sive” or “conservative”.

More useful comparisons need to involve con-
sideration of the entire dose–response curve, which,
of course, is unknown. Many features of traditional
dose escalation algorithms can be studied by formu-
lating the design as a discrete Markov chain [11].
The states in the chain refer to treatment of a patient
or group of patients at a dose level, with an absorb-
ing state corresponding to the stopping of the trial.
If the design can be formulated such that one has
constant transition probabilities for various assump-
tions about the true dose–response curve, then much
information, such as the number of patients treated
at each dose level, can be calculated exactly by
carefully computing the appropriate quantities sum-
marized from successive powers of the transition
probability matrix P. Usually, however, simulation
studies are a more practical tool for this purpose.
As with exact computations, one needs to specify a
range of possible dose–response scenarios, and then
simulate the outcome of a large number of trials
under each scenario. Many different aspects of the
algorithm can be compared, such as the mean and
variability of xMTD (or, more usefully, the probabil-
ity of DLT at xMTD), the average number of patients
treated, and the percentage of patients treated at doses
where px is either undesirably small or large. In par-
ticular, one can study the sensitivity of the design
to features of the dose–response curve that will be
unknown in practice, such as the number of dose
levels between the starting dose and the true MTD,
and the steepness of the dose–response curve near
the MTD.

Alternative Approaches

A Bayesian Approach: The Continual
Reassessment Method

The small sample size and low information content in
the data derived from traditional methods have sug-
gested to some the usefulness of Bayesian approaches
(see Bayesian Methods) to estimate the MTD. In
principle, this approach allows one to combine any
prior information available regarding the value of the
MTD with subsequent data collected in the Phase I
trial to obtain an updated estimate reflecting both.

The most clearly developed Bayesian approach to
Phase I design is the continual reassessment method
(CRM) proposed by O’Quigley and colleagues [7, 9]
From among a small set of possible dose levels, say
{a1, . . . , a6}, experimentation begins at the dose level
that the investigators believe, based on all available
information, is the most likely to have an associated
probability of DLT equal to the desired q0. It is
assumed that there is a simple family of monotone
dose–response functions ψ such that for any “dose”
x and desired probability of toxicity q there exists
a unique θ where ψ(x, θ) = q and, in particular,
ψ(xMTD, θ0) = q0. An example of such a function
is ψ(x, θ) = [(tanh x + 1)/2]θ . Note that ψ is not
assumed to be necessarily a dose–response function
relating a characteristic of the dose levels to the
probability of toxicity. That is, x does not need to
correspond literally to the dose of the drug. The
uniqueness constraint implies, in general, the use
of single-parameter models, and explicitly eliminates
popular two-parameter dose–response models like
the logistic (see Quantal Response Models).

A prior distribution g(θ) is assumed for
the parameter θ such that for the initial dose
level; for example, a3, either

∫ ∞
0 ψ(a3, θ)g(θ) dθ =

q0 or, alternatively, ψ(a3, µa) = q0, where µa =∫ ∞
0 θg(θ) dθ . The particular prior used should also

reflect the degree of uncertainty present regarding the
probability of toxicity at the starting dose level; in
general, this will be quite vague.

After each patient is treated and the presence or
absence of toxicity observed, the current distribution
g(θ) is updated along with the estimated probabilities
of toxicity at each dose level, calculated by either
of the methods above. The next patient is then
treated at the dose level minimizing some measure
of the distance between the current estimate of the
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probability of toxicity and q0. After a fixed number,
n, of patients have been entered sequentially in this
fashion, the dose level selected as the MTD is the
one that would be chosen for a hypothetical n + 1st
patient. Confidence intervals for the probability of
toxicity at the selected dose level are available [6],
though not for xMTD itself, although some consistency
results are available [10].

Although the prior distribution g(θ) can be chosen
to be extremely vague, some practitioners object
philosophically to the Bayesian approach, and it is
clear in the Phase I setting that the choice of prior
can have a measurable effect on the estimate of
MTD [4]. However, the basic framework of CRM
can be adapted easily to a non-Bayesian setting and
can conform in practice more closely to traditional
methods [10]. For example, there is nothing in the
approach that prohibits one from starting at the same
low initial dose as would be common in traditional
trials, or from updating after groups of three patients
rather than single patients. Allowing for some ad hoc
deterministic rules to start the trial off, the Bayesian
prior can be abandoned entirely and the updating after
each patient can be fully likelihood based [8].

Storer’s Two-stage Design

Storer [11, 12] has explored a combination of more
traditional methods implemented in such a way as
to minimize the numbers of patients treated at low
dose levels and to focus sampling around the MTD;
these methods also utilize an explicit dose–response
framework to estimate the MTD.

The design has two stages and uses a combination
of simple dose-escalation algorithms. The first stage
assigns single patients at each dose level, and esca-
lates upward until the first toxicity is reached; then,
the dose is decreased one level and the second stage
begun. The second stage incorporates a fixed number
of cohorts of three patients; successive cohorts are
entered at the next lower, same, or next higher dose
level, respectively, according to whether the current
cohort experiences two or more, one, or zero dose-
limiting toxicities. After completion of the second
stage a dose–response model (see Dose-response
in Pharmacoepidemiology; Dose–Response Mod-
els in Risk Analysis) is fit to the data and the
MTD estimated by maximum likelihood. For exam-
ple, one could use a logistic model where logit

Pr[Y = 1|x] = α + βx, whence the estimated MTD
is xMTD = (logitq0 − α̂)/β̂.

The particular second-stage algorithm described
above is designed with a target percentile of q0 =
0.33 in mind. Although other percentiles could be
estimated from the same estimated dose–response
curve, a target q0 different from 0.33 would probably
lead one to use a modified second-stage algorithm.

Extensive simulation experiments using this trial
design in comparison with a more traditional design
demonstrated the possibility of reducing the variabil-
ity of point estimates of the MTD, and reducing the
proportion of patients treated at very low dose lev-
els, without markedly increasing the proportion of
patients treated at dose levels where the probability of
DLT is excessive; say, 0.5. Storer [12] also evaluated
different methods of providing confidence intervals
for the MTD. Standard likelihood-based methods
that ignore the sequential sampling scheme (a delta
method, a method based on Fieller’s theorem, and
a likelihood ratio method) are often markedly anti-
conservative. More accurate confidence sets can be
constructed by simulating the distribution of any
of those test statistics at trial values of the MTD;
however, the resulting confidence intervals are often
extremely wide. Furthermore, the methodology is
purely frequentist, and may be unable to account for
minor variations in the implementation of the design
when a trial is conducted.

With some practical modifications, the two-stage
design described above has been implemented in
a real Phase I trial [2]. The major modifications
included: (i) a provision to add additional cohorts of
three patients, if necessary, until the estimate of β in
the fitted logistic model becomes positive and finite;
(ii) a provision that the recommended Phase II dose
is not higher than the highest dose level at which
patients have actually been treated, in the event that
the estimate of xMTD is above that dose; and (iii) a
provision to add additional intermediate dose levels
if, in the judgment of the protocol chair, the nature or
frequency of toxicity at a dose level precludes further
patient accrual at that dose level.

Continuous Outcomes

Although not common in practice, it is useful to
consider the case where the major outcome defining
toxicity is a continuous measurement; for example,
the nadir WBC. This may or may not involve
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a fundamentally different definition of the MTD
in terms of the occurrence of DLT. For example,
suppose that DLT is determined by Y < c, where c

is a constant, and we have Y ∼ N(α + βx, σ 2). Then
xMTD = [c − α − Φ−1(q0)σ ]/β has the traditional
definition that the probability of DLT is q0. The use
of such a model in studies with small sample size
makes some distributional assumption imperative.
Some sequential design strategies (see Sequential
Analysis) in this context have been described by
Eichhorn & Zacks [3].

Alternatively, the MTD can be defined in terms
of the mean response, i.e. the dose where E(Y ) = c.
For the same simple linear model above, we then have
that xMTD = (c − α)/β. Fewer distributional assump-
tions are needed to estimate xMTD, and stochastic
approximation techniques might be applied in the
design of trials with such an endpoint [1]. Neverthe-
less, the use of a mean response to define MTD is
not generalizable across drugs with different or mul-
tiple toxicities, and, consequently, has received little
attention in practice.

A recent proposal for a design incorporating a con-
tinuous outcome is that of Mick & Ratain [5]. This is
also a two-stage study, which for a hypothetical study
of etoposide assumes a simple linear regression
model relating dose to the WBC nadir ln(WBC) =
α + β1 ln(WBCpre) + β2x, where WBCpre is the pre-
treatment WBC. The first phase uses cohorts of
two patients. Ad hoc rules for dose escalation are
determined by the toxicity experience in the cur-
rent cohort; however, the model is fit each time and
cohorts of two are added until at least eight patients
have been treated and β2 is significantly different
from 0 at the 0.05 level of significance. In the second
stage of the study, the dose for the next cohort
of two patients is determined by fitting the regres-
sion model to the accumulated data and estimating
the dose that leads to a mean nadir WBC of 2.5;
that is, ak+1 = [ln(2.5) − α̂ − β̂1 − ln(WBCpre)]/β̂1.
This continues until at least eight patients have been
treated and β2 is significantly different from 0 at the
0.001 level of significance.

Simulation studies of this design using a
pharmacokinetic model and historic database
demonstrated a clear increase in precision in the
MTD estimated from the model-based dose escalation
method, as compared with the MTD estimated from

a more traditional design. The average sample size
was also measurably smaller. Though such results
are promising, the method applies only to situations
where the dose limiting toxicity is a single continuous
outcome. Furthermore, the simulation studies that are
needed to establish the usefulness of the method in
specific situations often require the use of human
pharmacokinetic data that may not yet be available.
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Phase II Trials

Clinical trials of new medical treatments may be
classified into three successive phases. Phase I trials
typically are small studies to determine the maximum
safe dose of a drug, biological agent or combination
regimen [26]. Once a dose and schedule of a new
experimental regimen E have been determined, its
therapeutic activity is evaluated in a Phase II trial.
Phase II trials in cancer are usually single-treatment-
group studies whose primary goal is to determine
whether E has a level of anti-disease activity suf-
ficiently promising to warrant further development.
Phase II results also frequently serve as the basis for
additional single-treatment-group studies involving E
in combination with other drugs or in other dosage
schedules. Phase II trials are important because they
are the primary means of selecting treatments for
more rigorous evaluation in Phase III trials.

Phase II trials can be categorized broadly with
regard to objectives. The objective of most single-
agent Phase II trials in oncology is to determine
whether the agent has any anti-disease activity. This
is a Phase IIA trial. Gehan [15] proposed the first
Phase IIA design, a two-stage design in which n1

patients are treated in stage 1, the trial is stopped
if there are no successes in the first stage, and
otherwise an additional n2 patients are treated in
stage 2. The stage 1 sample size is chosen to control
type II error probability β (see Hypothesis Testing),
specifically n1 ≥ log(β)/ log(1 − p1) (see Phase IIA
trials below). The stage 2 sample size is chosen to
obtain an estimate of the success probability, having
standard error no larger than a given magnitude.
The size of n2 depends on the number of successes
in the first stage, since that stage provides the estimate
of success probability on which to base computation
of the binomial standard error.

Often, the goal of a Phase II trial of a combination
regimen E is to determine whether the new treatment
is promising, compared with a standard treatment S.
This is a Phase IIB trial. In this case, E is already
known to be active. An important consideration in
IIB trials is that it is clinically undesirable to continue
a trial of an experimental treatment that proves not
to be promising compared with S, to make way
for potentially more promising new treatments. It is
also important to recognize the comparative aspect
of Phase IIB trials, which may lead to formal use

of historical data on S in the evaluation of E, and
possibly to a randomized trial [31].

Short-term response is usually used as the measure
of treatment effect in Phase II trials. In oncology, par-
tial tumor response often is not a validated measure
of patient benefit. In general, the comparison of sur-
vival between responders and nonresponders is not
valid for demonstrating that treatment has extended
survival for responders [1]. Because response is often
viewed as a necessary but not sufficient condition for
extending survival, response may be used in Phase II
trials for screening promising treatments. To evaluate
the effectiveness of a regimen in prolonging survival,
however, a Phase III trial of survival is required.

Phase IIA Trials

Single-stage Designs

The simplest Phase II design is a single-arm (i.e.
treatment group) single-stage trial in which patients
are treated with E. Treatment success typically is
defined as a binary variable such as greater than 50%
tumor shrinkage. The data consist of the random
variable Yn, the number of successes, and n, the
number of patients evaluated. Yn is binomial in n and
the unknown success probability p. The sample size
is determined so that, given a fixed standard response
rate p0 and a target response rate p1 = p0 + a, which
represents a medically important improvement over
p0, a test of H0 : p ≤ p0 vs. H1 : p ≥ p1 has type I
error probability (significance level) ≤ α and type II
error probability ≤ β. The test is determined by a
cutoff, r , with H0 rejected if Y ≥ r and H1 rejected
if Y < r . The consequences of a type I error are
that an uninteresting or even inferior treatment is
likely to become the basis for a Phase III trial. The
consequence of a type II error is that a promising
treatment has been lost or its detection delayed.
The required sample size n and test cutoff r are
determined by specifying α, β, p0 and δ. Reasonable
values for δ are usually 0.15 to 0.20, since δ < 0.15
usually leads to unrealistically large n, while δ >

0.20 leads to a trial yielding very little information
about E.

An alternative method of designing a single-stage
trial is to choose n to obtain a confidence interval
of given width and level (coverage probability) to
estimate p. Ghosh [16] provides a good approximate
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confidence interval, or the exact binomial confidence
interval of Clopper & Pearson [6] may be used.

Multi-stage Designs

The most serious limitation of the single-stage design
is that it has no provision for early termination if the
interim observed response rate is unacceptably low.
The first multistage design introduced was Gehan’s
two-stage design described above. Schultz et al. [23]
and Fleming [13] provide a general multistage frame-
work for Phase II trials in which nj patients are
accrued at the j th stage and a decision is made to
stop or continue the trial at the end of each stage (see
Sequential Analysis). At stage j , H1 is rejected and
the trial is terminated if Sj , the cumulative number of
successes up to that point, ≤ aj . H0 is rejected and the
trial is terminated if Sj ≥ rj . The trial continues to
the next stage if aj < Sj < rj . If the trial continues to
the Kth (final) stage, then one of the two hypotheses
must be rejected; hence, aK = rK − 1. The sample
sizes in each stage and test cutoffs must be chosen to
provide overall test error rates α and β. The actual
sample size is thus random. Fleming [13] provides
an explicit method for determining the test cutoffs
to satisfy the error probability constraints, although
the number of stages and division of patients among
the stages are somewhat arbitrary. Bellisant et al. [3]
present a simulation study evaluating several multi-
stage Phase II designs.

Therneau et al. [39] provide an efficient enumera-
tion algorithm that provides optimal {aj , rj } bound-
ary values for given K, n1, . . . , nk , α, β, p0 and p1.

Simon [24] derives two-stage designs that either
(i) minimize the expected sample size (the optimal
design) under the null hypothesis or (ii) minimize
the maximum sample size (the minimax design) for
given α, β, p0, and p1. One need not specify n1 or
n2 because these are viewed as design parameters
to be optimized. An important distinction between
the two-stage version of the Fleming design and
Simon’s designs is that the latter allow only rejection
of H1 or continuation, but not rejection, of H0 at the
interim test. Simon [24] tabulates design parameters
and operating characteristics for a broad range of
parameter values, and a computer program to obtain
these values is available on Statlib (OTSDEXEC.ZIP)

Garnsey-Ensign et al. [14] provide an optimal
three-stage design that is essentially a combination of

the Gehan [15] and optimal Simon [24] designs. At
stage 1, the design stops with rejection of H1 if there
are no successes at that point; otherwise, it continues
to stage 2 and (possibly) stage 3. Rejection of H1 is
possible at any stage, but H0 may be rejected only
at the final test. The design is optimal in that the
expected sample size under the null hypothesis is
minimized for given α, β, p0 and p1 subject to the
requirement that n1 ≥ 5.

When computing a confidence interval for the
response probability, one should account for interim
decision rules (see Data and Safety Monitoring).
Methods for adjusting one-sample confidence inter-
vals for a binomial parameter computed after trials
with interim stopping rules (see Sequential Analysis)
have been discussed by a number of authors, includ-
ing Jennison & Turnbull [18], Atkinson & Brown [2],
and Duffy & Santner [10].

Bayesian Designs

Sylvester [29] proposes decision-theoretic Bayesian
methods for Phase II clinical trials. He optimizes
the sample size and decision cutoff of a single-stage
design to determine whether a new drug is active
by minimizing the Bayes risk. The approach assumes
that Pr[ΘE = p0] = 1 − Pr[ΘE = p1], with p1 > p0,
where ΘE is the response rate of regimen E, and
p1 and p0 are response rates at which E would and
would not be considered promising, respectively, i.e.
they assume that ΘE may take on two possible val-
ues. A more general approach is given by Brunier
& Whitehead [4], who use a beta prior distribution
for ΘE and derive optimal Bayesian designs based
on a utility function that accounts for both cost and
the number of patients treated in a future Phase III
trial.

Herson [17] proposes the use of predictive prob-
ability (PP) as a criterion for early termination of
Phase II trials to minimize the number of patients
exposed to an ineffective therapy. The PP of an event,
such as concluding that E is or is not promising
according to some decision rule, is the conditional
probability of that event given the current data, com-
puted by averaging over the posterior distribution of
the parameter, which is ΘE in the present context.
Mehta & Cain [21] provide charts of early stopping
rules based on the posterior probability of ΘE > p1,
where p0 is a fixed level at which E would be con-
sidered active.



Phase II Trials 3

Phase IIB Clinical Trials

Most Phase IIB trials evaluate one or more new treat-
ments relative to a standard therapy S; hence, they
are inherently comparative even though a standard
treatment arm usually is not included. In the designs
described above, it is common to assume that p0

is a known constant and to determine n to obtain
a test of p = p0 vs. p = p0 + δ for given type I
and type II error rates, α and β. For Phase IIB tri-
als, where p0 represents the activity level of available
regimens, the numerical value of p0 used in this com-
putation is often a statistical estimate p̂0 based on
historical data, rather than a known constant. The
empirical difference p̂ − p̂0, which is the basis for
the test, is thus the difference between two statistics
and has variance larger than the assumed p(1 − p)/n.
Consequently, the sample size computed under a
model ignoring the fact that p̂0 is a statistic is incor-
rect.

Makuch & Simon [19] derived single-stage
Phase II designs for binary endpoints that take
into consideration the number of patients in a
single historical control series (see Nonrandomized
Trials). Similar results were presented by Dixon
& Simon [9] for time-to-event endpoints. Thall &
Simon [31] derived optimal single-stage Phase II
designs that incorporate historical data from one
or more trials of S and account for the variability
inherent in p̂0. They considered both binary
and normally distributed responses. Because the
variability between historical studies sometimes
exceeds what is predicted by a binomial model for
binary responses, they used a beta-binomial model
to account for possible extra binomial variation.
Their results indicate that it is sometimes best to
randomize (see Randomization) a proportion of
patients to S, and they derived the total sample size
and optimal proportions for allocation to E and S
that minimize var(p̂ − p̂0). Their results indicate that
an unbalanced randomization may be superior to a
single-arm trial of E alone. When the uncertainty in
historical control outcomes is great, either because of
interstudy variability or lack of historical controls,
the traditional single-arm Phase IIB trial used in
oncology is not reliable. They also showed that
ignoring the variability in p̂0 may lead to trials with
actual values of α and β much higher than their
nominal values.

The above method for dealing with the variability
of an estimate of p0 may be regarded as a particular
approach to a more general problem. Given that
in a Phase II trial the success rate of E ultimately
must be compared to that of S, and that uncertainty
regarding the response rate of S will always exist,
the general problem is to account for this uncertainty
when planning the trial and interpreting its results. A
different statistical approach is based on the Bayesian
framework, in which the success probabilities of
E and S are regarded as random rather than fixed
parameters. To underscore this distinction, we denote
the random response probabilities by ΘE and ΘS.

Thall & Simon [32, 33] present a Bayesian app-
roach to Phase II clinical trials in which patient
response is binary and the accumulating data are
monitored continuously. Their designs require an
informative beta prior for ΘS, a flat or weakly infor-
mative beta prior for ΘE, a targeted improvement for
ΘE over ΘS, and lower and upper bounds m and M

on the allowable sample size. The maximum sample
size M is chosen to obtain a given level of relia-
bility in the posterior distribution of ΘE. Depending
upon the specific objectives, the posterior distribu-
tion of ΘE is updated when each patient response
is observed. The trial may be terminated if E is
shown with high posterior probability to be either
promising or not promising compared with S, or if the
predictive probability of either conclusion is small.
Otherwise, the trial continues. Although the frame-
work for determining early termination bounds and
M is Bayesian, the operating characteristics of the
design are evaluated using frequentist criteria, and the
design parameters are determined on that basis. An
alternative design stops early only if E is not promis-
ing compared with S, and does not stop early if E is
promising. This design would be preferred when it
is desirable to continue the trial if the new treatment
is promising, rather than terminate it early. A menu-
driven computer program “Multcomp” to implement
this design is available via anonymous FTP from
odin.mdacc.tmc.edu in directory/pub/source.

Randomized Phase II Trials

The response rates obtained in different Phase II tri-
als of the same treatment often vary widely. Simon
et al. [25] cite a number of factors as the sources
of this variability, including patient selection, defini-
tion of response, inter-observer variability in response
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evaluation (see Observer Reliability and Agree-
ment), drug dosage and schedule, reporting proce-
dures, and sample size. To deal with these prob-
lems, they propose randomizing patients among sev-
eral experimental treatments in Phase IIA trials, with
ranking and selection methods used to interpret
results. They do not require that a standard treatment
arm be included. Specifically, they propose that sam-
ple size be computed to ensure that, if one group of
treatments has response rate p0 + δ and the rest have
rate p0, then a “select-the-best” strategy will choose
one of the superior treatments with a desired proba-
bility. For example, 44 patients in each of three arms
will ensure a 90% chance of choosing a treatment
with response rate 0.35 when the other two treatments
have response rate 0.20.

Randomized strategies for Phase IIB evaluation
of new treatments have been considered by White-
head [40, 41], Strauss & Simon [28], and Thall &
Estey [30]. Whitehead assumes that the success rates
of the experimental treatments are random and may
be considered as independent draws from a beta prior
distribution. Given the total number of patients, N ,
he derives the number of treatments, k, and num-
ber of patients per treatment, n, which maximize
the expected success probability of the treatment
selected based on the largest observed success rate.
The constraint is that nk = N .

Strauss & Simon [28] study properties of a sequ-
ence of randomized Phase II trials. At each of k

stages, 2n patients are randomized between a new
experimental treatment and the better of the two
treatments from the previous stage, starting with a
known standard S at stage 1. The better of the two
treatments at each stage, the “winner”, thus becomes
the new standard, and is then compared with the
next experimental treatment. The goal is to select a
single treatment of Phase III evaluation. Similar to
Whitehead [40], Strauss & Simon assume that the
success probabilities of the experimental treatments
are independent draws from a beta prior distribution,
either with fixed mean equal to that of S or with
distribution adapted to the data in that its mean equals
that of the latest winner.

Multiple Outcomes

The designs discussed in the preceding sections are
based on a single binary outcome. Patient response

in clinical trials is an inherently multidimensional
phenomenon, however, with the possibility of
both adverse events and efficacy outcomes (see
Multiplicity in Clinical Trials). In addition to
evaluating treatment efficacy, a Phase II trial must
determine whether an experimental treatment is
sufficiently safe to allow its evaluation in a large
randomized trial.

Thall et al. [34, 37] present a general Bayesian
strategy for monitoring multiple outcomes in single-
arm clinical trials. Each patient’s response is char-
acterized as a multinomial variable that records
the specific combination of events occurring for the
patient in the course of the trial. This includes both
adverse events and efficacy outcomes, possibly occur-
ring at different study times. They use a Dirich-
let–multinomial model to accommodate general dis-
crete multivariate responses (see Multivariate Dis-
tributions, Overview), and they provide Bayesian
decision criteria for early termination of studies
with unacceptably high rates of adverse outcomes
or with low rates of efficacy outcomes. Each stop-
ping rule is constructed either to control the rate
of an adverse event or to achieve a specified level
of improvement of an efficacy event rate for the
experimental treatment, compared with that of stan-
dard therapy. They avoid explicit specification of
costs and a loss function, and evaluate the joint
behavior of the multiple decision rules using fre-
quentist criteria. Their approach accommodates a
broad range of clinical situations, including settings
in which observation of certain endpoints is con-
ditional on the occurrence of earlier events. They
illustrate the approach with a variety of single-arm
cancer trials.

Etzione & Pepe [12] propose a Bayesian cri-
terion for monitoring two adverse outcomes in a
pilot toxicity study, in the case where the occur-
rence of one event precludes the occurrence of the
other.

Bryant & Day [5] extend Simon’s [24] minimax
design to the setting with an efficacy endpoint and a
toxicity endpoint. They determine two-stage designs
that minimize the maximum expected number of
patients entered when the treatment is unaccept-
able either in terms of clinical response or toxicity.
Conaway & Petroni [7, 8] also propose Phase II
designs accounting for both efficacy and toxicity, and
formulate hypotheses in terms of tradeoffs between
these outcomes.
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Discussion

In oncology, nearly any clinical trial that is not a
dose-finding study and that does not contain a ran-
domized control group is called a Phase II trial.
Consequently, the Phase II category is quite hetero-
geneous with regard to objectives and characteristics.
Unfortunately, these differences are not always rec-
ognized, and statistical designs developed for one
type of Phase II trial are sometimes inappropriately
applied to another type.

Until recently, most statistical designs developed
for Phase II clinical trials were applicable primarily
to the objectives of Phase IIA trials. These include
the designs of Gehan [15], Schultz et al. [23], Flem-
ing [13], Simon [24], and Therneau et al. [39]. These
and other Phase II designs are reviewed by Mariani
& Marubini [20]. Phase IIB trials have the objec-
tive of determining whether a new regimen has a
level of anti-disease activity that is promising rela-
tive to the best available regimens. In dealing with
combination regimens, sometimes involving a com-
plex sequential treatment program for the patient, it
is not relevant to show that the regimen is active.
Rather, the focus often is on determining whether the
combination regimen under test is sufficiently active,
compared with the activity level of the best available
standard therapy, to warrant a Phase III trial. Hence,
Phase IIB trials are inherently comparative. Although
Phase IIA designs can be used for Phase IIB trials
if the response probability for the best available
regimen is known accurately, this is seldom the case.
Usually, the comparative aspects of Phase IIB trials
are either suppressed or not addressed directly. This
can have two undesirable effects. The first is that the
results with the experimental regimen may appear so
promising that a Phase III trial is difficult to con-
duct, since randomization to a control arm appears
unethical. The second is that the results are inap-
propriately interpreted as promising and a Phase III
trial is conducted when it is not warranted. In gen-
eral, we believe that the comparative aspects of
Phase IIB trials should be addressed directly, that
specific control groups should be identified, and that
uncertainties arising from the use of nonrandom-
ized control groups of finite size should be quan-
tified. The designs of Thall & Simon [31–33] and
Thall et al. [34, 37] address this. These designs are,
however, quite different from those developed for the
simple Phase IIA trials.

An alternative to conducting a Phase IIB trial is to
use a Phase III randomized design, allowing one or
several experimental regimens, with early termination
of a treatment arm if early results with that regimen
are sufficiently discouraging. The designs described
by Ellenberg & Eisenberger [11], Thall et al. [38],
Thall et al. [35, 36], Wieand & Therneau [42], Schaid
et al. [22], and Storer [27] are of this type. It is often
difficult to organize a Phase III trial of an experimen-
tal regimen, however, without some earlier Phase II
experience with that regimen.
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Phase-type Distributions
in Survival Analysis

When studying time to failure of some sort, it is often
natural to imagine that the process goes through a
number of stages, or phases. In cancer epidemiol-
ogy, this is an old recognition; the multistage model
of Armitage & Doll [2] postulated that development
of cancer went through a number of stages corre-
sponding to a simple homogeneous Markov model
(see Markov Processes). This assumption fits very
well with the Weibull hazard function that is often
observed for cancer incidence as a function of age.
The Armitage–Doll model has been an inspiration in
the understanding of carcinogenesis, although it has
now been overtaken by more complex models.

The Armitage–Doll model is a special case of a
phase-type distribution. In general, consider a time-
continuous Markov chain with a finite number of
states and constant transition intensities. One state
is supposed to be absorbing, the remaining states
being transient. Assume that the Markov process
starts somewhere in the transient space, and consider
the time until absorption. A transition time defined in
this way is said to have a phase-type distribution.

Considerable attention has been paid to this kind
of distribution in probability theory, especially in
queuing theory where they are a means for develop-
ing computationally manageable models. Some basic
references are [3, 5, 9], and [10]. Estimation prob-
lems have been considered by Asmussen et al. [4]
and Olsson [11]. Phase-type distributions may also be
of use in survival analysis, both for the insights they
give and as an estimation tool; see [1]. In particu-
lar, phase-type models can deepen our understanding
of hazard functions. An important modern use of a
simple phase-type model has been given by Longini
et al. [8].

The Armitage–Doll and Longini distributions are
so-called series models (see Figure 1, where the αs
are constant transition intensities). Such simple series
models may help in answering the question: Why
do hazard functions often increase with time? This

1 2 3 4 5
a1 a2 a3 a4

Figure 1 Series model with five states

is observed very often, like the increasing incidence
of cancer and heart disease and of general mortality
as a function of age. Phase-type theory tells us that
the hazard function for the time to move from the
initial to the final state in a series model is always
increasing with time, and reaching a maximum level
equal to the smallest transition intensity. This increase
is in spite of the constant transition intensities, so no
aging in the sense of increasing intensities is needed
to see an increasing hazard. This point has been made
repeatedly in cancer epidemiology [6], but may have
a more general validity.

However, hazard functions do not always increase
inexorably; sometimes they decrease, or they have
an initial increase followed by a decline. In the
phase-type framework such phenomena can also be
explained. To do this, one must introduce the concept
of quasi-stationary distribution on the transient state
space. If the Markov chain starts out with this initial
distribution, then the hazard function of the time until
absorption is constant. A quasi-stationary distribution
often exists [1, 7], and can be considered as a suit-
able normalized limiting distribution on the transient
state space.

Under certain assumptions (like irreducibility of
the transient state space) the hazard function of
any phase-type distribution will approach the con-
stant value consistent with the quasi-stationary initial
distribution. For some typical processes, allowing
movements back and forth between states, the fol-
lowing will be observed [1]: if the process starts out
in a state close enough to the absorbing one, then
the hazard function will be monotonically decreas-
ing. If the process starts out in an intermediate
distance from the absorbing state, then one will
observe a hazard function that first increases and then
declines. If the starting state is far enough out, then
the hazard function will be monotonically increas-
ing.

In general, there are two forces influencing the
Markov process: one is the “pull” of the absorbing
state, and the second is the diffusion on the transient
state. It is the balance of these two forces that
determines the shape of the hazard function.
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Physicians’ Health Study

The Physicians’ Health Study was a randomized,
double-blind, placebo-controlled, 2 × 2 factorial trial
of aspirin (325 mg every other day) and β-carotene
(50 mg every other day) among 22 071 apparently
healthy US male physicians. The aspirin arm was ter-
minated early, on 25 January 1988 (median treatment
and follow-up, five years) due primarily to the emer-
gence of a statistically extreme (P < 0.00001) 44%
reduction in risk of a first myocardial infarction. The
β-carotene arm ended as scheduled on 31 December
1995 (median treatment and follow-up, 12 years), and
showed no overall benefit or harm of β-carotene sup-
plementation on cancer or cardiovascular disease. The
Physicians’ Health Study cohort continues to provide
important information regarding the causes and pre-
vention of cardiovascular disease, cancer, and other
chronic diseases.

Background and Rationale

A critical element that must be considered when
designing a trial is the balance between the evidence
supporting the hypothesis being tested and the gap in
knowledge that may be filled by the results. Achiev-
ing this balance is a particularly delicate matter
in randomized clinical trials. For both ethical and
practical reasons, there must be sufficient belief in the
potential of the agent to be tested to justify exposing
half of the subjects to it, just as there must be suf-
ficient doubt about the agent to allow withholding
treatment from the other half [15].

In the late 1970s, we viewed these conditions
to be applicable to the use of aspirin in the pri-
mary prevention of myocardial infarction and the
use of β-carotene in the primary prevention of can-
cer. For aspirin, a plausible Nobel prize-winning
mechanism [38] had been advanced for the possi-
ble use of aspirin in the treatment and prevention
of cardiovascular disease [33, 34]. The epidemio-
logic evidence, however, was not consistent. A large
case series from California [10], two case–control
studies [5, 18], and a prospective cohort study had
suggested a possible small beneficial effect of aspirin
in men and women [12], while another case–control
study had found no association between aspirin
use and fatal coronary disease [17]. With respect

to β-carotene, more than 20 epidemiologic studies
conducted in various parts of the world had gen-
erally found reduced risks of cancers at various
sites associated with higher intakes of dark green
and yellow vegetables, which are abundant in β-
carotene [26]. In addition, the use of β-carotene-
containing multivitamins or supplements was increas-
ing rapidly, with as many as one-third to one-
half of US adults reporting daily vitamin consump-
tion [39], based largely on the belief, unsupported
by randomized trials, that β-carotene could prevent
cancer.

Thus, randomized trials testing whether aspirin
and β-carotene conferred benefits were both impor-
tant and timely. The Physicians’ Health Study was
designed to accomplish these and other objectives.

Methods

Detailed descriptions of the Physicians’ Health Study
have been published elsewhere [16, 28, 29]. In brief,
from 1981 to 1984, invitation letters, consent forms,
and enrollment questionnaires were sent to 261 248
male physicians between 40 and 84 years of age
residing in the US who were registered with the
American Medical Association in 1981. Of these,
59 285 were willing to participate in the trial, 26 062
of whom were excluded because they indicated
on the baseline questionnaire a history of myocar-
dial infarction, stroke, or transient ischemic attack;
cancer (except nonmelanoma skin cancer); current
renal or liver disease; peptic ulcer; gout; or con-
traindication to or current use of either aspirin or
β-carotene. The remaining 33 223 willing and eligi-
ble physicians were enrolled in an 18-week run-in
phase to assess willingness to participate and com-
pliance. Of these, 22 071 physicians were randomized
using a 2 × 2 factorial design to one of four treat-
ment groups: aspirin, β-carotene, both, and neither.
A total of 11 037 physicians were randomized to
aspirin and 11 034 to aspirin placebo; 11 034 physi-
cians were randomized to β-carotene and 11 037 to
β-carotene placebo. Active aspirin consisted of one
325 mg tablet (as Bufferin, supplied by Bristol-Myers
Products) to be taken every other day. Active β-
carotene consisted of one 50 mg capsule (as Lurotin,
supplied by BASF AG) to be taken every other
day.
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Follow-up

All follow-up was conducted by mailed questionnaire.
The initial follow-ups were at 6 and 12 months, then
yearly thereafter.

Endpoints

Endpoints (see Outcome Measures in Clinical Tri-
als) were considered confirmed or refuted only after
an endpoints committee made up of two internists,
a cardiologist, and a neurologist, all of whom were
blinded to the treatment assignments, had examined
all available information, including medical records.

Blood Samples

Kits containing Vacutainer tubes containing ethylene-
diamine tetraacetic acid, complete instructions for
blood draws, polypropylene cryopreservation vials,
and coldpacks were mailed to all 33 223 physicians
participating in the run-in phase. They were asked to
have their blood drawn into the Vacutainer tubes, to
fractionate the blood by centrifugation, and to return
the samples in the coldpack by prepaid overnight
courier. Upon receipt in the laboratory, each sample
was divided into aliquots and stored at −82°C. Spec-
imens were received from 14 916 (68%) of the ran-
domized physicians. None of the samples collected
between 1982 and 1984 has inadvertently thawed dur-
ing storage.

Results

Aspirin

The aspirin component of the trial was terminated
early in 1988, after an average follow-up of 60.2
months, due primarily to the emergence of a statisti-
cally extreme benefit on risk of a first myocardial
infarction. Aspirin takers had a 44% reduction in
risk of a first myocardial infarction, with significant
benefits on fatal and nonfatal events [28, 29]. As a
consequence of early termination, there were insuf-
ficient numbers of strokes upon which to draw firm
conclusions. However, the available data did not sug-
gest any reduction in stroke, and there was, in fact, a
possible but not statistically significant 19% increase
in nonfatal stroke. Because of aspirin’s effect on

platelet aggregation, a particular concern with its use
is a possible increase in hemorrhagic stroke. For this
subgroup of strokes, there was the suggestion of a
possible increased risk in the aspirin group (23 events
vs. 12 events), although the numbers were small and
did not achieve conventional statistical significance
(P = 0.06). There were also too few cardiovascular
deaths upon which to draw firm inferences.

β-carotene

Virtually no early or late differences in the overall
incidence of malignant neoplasms or cardiovascu-
lar disease, or in overall mortality, were observed
between the β-carotene and placebo groups. In the β-
carotene group, 1273 men had a malignant neoplasm
(except nonmelanoma skin cancer), as compared with
1293 in the placebo group (relative risk, 0.98; 95%,
0.91 to 1.06). There were also no significant differ-
ences in the number of cases of lung cancer (82 in
the β-carotene group vs. 88 in the placebo group); the
number of deaths from cancer (386 vs. 380), deaths
from any cause (979 vs. 968), or deaths from cardio-
vascular disease (338 vs. 313); the number of men
with myocardial infarction (468 vs. 489); the num-
ber with stroke (367 vs. 382); or the number with
any one of the previous three endpoints (967 vs.
972). Among current and former smokers, there were
also no significant early or late differences in any of
these endpoints. There were, however, suggestions
that among the prospective subgroup of men with the
lowest blood levels of β-carotene at randomization
(see Treatment-covariate Interaction), β-carotene
reduced the risk of total and prostate cancer, and also
reduced the risk of subsequent vascular events among
the subgroup of men with angina at baseline.

Discussion of Results

The Physicians’ Health Study was the first random-
ized trial to demonstrate a benefit of aspirin in reduc-
ing the risk of a first myocardial infarction. This
finding was not supported by the smaller British
Doctors Trial [27], but has been confirmed in two
more recently reported primary prevention trials, the
Thrombosis Prevention Trial [37] and the Hyperten-
sion Optimal Treatment trial [13]. An overview (see
Meta-analysis of Clinical Trials) of all four avail-
able trials shows a highly significant (P < 0.00001)
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33% reduction in risk of a first myocardial infarc-
tion attributed to aspirin [14], while there are still
too few strokes and deaths upon which to draw firm
conclusions.

With regard to β-carotene, the Physicians’ Health
study was by far the longest randomized trial of this
agent – at 12 years of treatment and follow-up, it
was two to three times longer than any other ran-
domized trial of β-carotene. Since the Physicians’
Health Study in 1982, three other trials of shorter
duration have been designed and completed. The
Chinese Cancer Prevention Study, conducted among
a nutritionally deficient rural population, found a
statistically significant 9% decrease in total mortal-
ity, a 13% decrease in total cancer mortality, and
a 21% decrease in gastric cancer deaths, and a non-
significant 10% decrease in cerebrovascular mortality
among those assigned to a combined daily treat-
ment of β-carotene (15 mg), vitamin E (30 mg),
and selenium (50 µg) [4]. In the six-year Alpha-
Tocopherol, Beta-Carotene Cancer Prevention Study
(ATBC), conducted among male Finnish smokers, the
risk of cancer was not lower among the men on active
treatment (50 mg of alpha-tocopherol, or 20 mg of β-
carotene, or both) compared with those in the placebo
arm. In fact, β-carotene use was associated with sta-
tistically significant increases in lung cancer (18%),
total mortality (8%), and mortality from ischemic
heart disease (12%) [36]. The Beta-Carotene and
Retinol Efficacy Trial (CARET), conducted among
men and women at high risk of lung cancer, was
stopped prematurely, with an average of just four
years of treatment and follow-up, because prelimi-
nary results showed an increased risk of lung cancer,
death from lung cancer, and death from cardiovas-
cular disease in the active treatment group [25]. It
must be noted that the possible increased risk did
not reach the prespecified O’Brien–Fleming bound-
ary (P < 0.007) for early termination (see Data and
Safety Monitoring). Thus, the null results from the
Physicians’ Health Study are the most accurate, least
biased, and least confounded results of β-carotene in
primary prevention to date.

Other Benefits of the Physicians’ Health
Study

The Physicians’ Health Study was the first large-scale
study ever to collect by mail and store a large

number of blood samples. Approximately 15 000 ran-
domized physicians (68%) contributed blood sam-
ples at baseline, which were stored as aliquots
in liquid nitrogen. This bank of blood samples
has offered the opportunity to conduct large-scale
blood-based epidemiologic studies using a prospec-
tive, nested, case–control design. Completed studies
include investigations on the influence of a vari-
ety of potential markers on risk of coronary heart
disease, including homocysteine [35] and inflamma-
tory markers such as C-reactive protein [30], fibrino-
gen [22], and soluble intercellular adhesion molecule-
1 [31]. The stored blood samples have also allowed
for the rapid evaluation of hypotheses generated
from the identification of possible genetic markers.
For example, a 1992 case–control study [7] sug-
gested an association between a polymorphism of
the angiotensin-converting-enzyme (ACE) gene and
the occurrence of myocardial infarction. Prospective
blood-based data from the Physicians’ Health Study
reported shortly thereafter, however, showed that the
presence of the D allele of the ACE gene conferred
no appreciable increase in the risk of ischemic heart
disease or myocardial infarction [21].

In addition to blood-based epidemiologic inves-
tigations, the Physicians’ Health Study has been an
excellent cohort for testing a variety of timely and
important hypotheses from observational data. These
range from a positive association between smok-
ing and risk of cataract [9] to an inverse association
between exercise and risk of type 2 diabetes [23] and
stroke [20], as well as the investigation of a num-
ber of dietary factors (fish consumption [2, 3, 24],
vitamins B6 and folate [8], and moderate alcohol con-
sumption [1, 6, 11]) on risk of various diseases.

The Physicians’ Health Study has also provided
an opportunity to explore the decreases in mortality
from cardiovascular disease that began in the mid
1960s. In 1982, when the study began, 28% of Amer-
ican men and 19% of US physicians smoked, though
only 11% of Physicians’ Health Study participants
reported being current smokers. That difference could
be one reason for the low rate of incidence of car-
diovascular events observed in the Physicians’ Health
Study. With respect to case fatality rates for myocar-
dial infarction, among participants in the Physi-
cians’ Health Study, the average time from onset
of symptoms of myocardial infarction to emergency
medical care was 1.8 hours, while the population
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average was 4.8 hours [32]. Shifting the popula-
tion average toward that observed among Physicians’
Health Study participants could significantly decrease
mortality and morbidity from myocardial infarction.

Finally, a number of methodological advances
have been tested in the Physicians’ Health Study.
The use of a prerandomization run-in, for example,
enhanced the validity and made the trial more effi-
cient – compliance with pill taking increased up to
40% and duration of follow-up decreased 7%. In
addition, enrolling 11 152 fewer subjects in the trial
resulting from the use of the run-in led to substantial
cost savings [19] (see Cost-effectiveness in Clinical
Trials). The Physicians’ Health Study also demon-
strated the advantages of the 2 × 2 factorial trial,
a research design allowing for the independent and
simultaneous evaluation of two hypotheses. Finally,
the trial showed the feasibility of conducting a large-
scale randomized trial entirely by mail at a fraction
of the usual cost for randomized trials.

Conclusion

The Physicians’ Health Study has made and should
continue to make important substantive and method-
ologic contributions to the investigation of the causes
and prevention of cardiovascular disease, cancer, and
other chronic diseases.
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Pillai’s Trace Test

Pillai in 1955 [24] proposed the trace test for
the following three testing problems: (i) equality
of mean vectors of lp-variate normal distributions
with the common but unknown covariance matrix
(see Multivariate Normal Distribution); (ii)
independence between two sets of variates distributed
jointly as a normal distribution with unknown mean
vector; and (iii) equality of covariance matrices of
two p-variate normal distributions with unknown
mean vectors.

In all these problems the test statistic can be
expressed as V (s) = trace(B), where B = S1(S1 +
S2)

−1, S1 and S2 being p × p matrices, s being
the number of nonzero characteristic roots of B

(see Eigenvalue). The problem (i) can be seen to
be equivalent to the multivariate analysis of vari-
ance (MANOVA) problem, and, in that case, S1 and
S2 denote the sums of squares and cross-products
matrices “due to hypothesis” and “due to error”,
respectively. For problem (ii), S1 = S12S−1

22 S21, S2 =
S11 − S12S−1

22 S21, where Sij , i, j = 1, 2, is the par-
titioned sums of squares and cross-products matrix
corresponding to the two sets of variates, based on
a random sample from the distribution. For problem
(iii), S1 and S2 are the sums of squares and cross-
products matrices based on random samples from
the two distributions with degrees of freedom (df)
ν1 and ν2, respectively.

The trace test has also been considered by
Bartlett [3] for (ii), and Nanda [20] has considered
the distribution of this statistic when S1 and S2 are
independent central Wishart matrices.

We assume s = p; if s < p for (i), then the
parameters can be modified appropriately. The null
distribution of V (s) takes the same form in each of
these three problems. Nanda [20] has derived the
distribution of V (s) when s = 2,3, and |ν1 − p| = 1.
Pillai [24] has suggested approximation of the null
distribution of V (s)/s by B[s(2m + s + 1), s(2n +
s + 1)], where m = (|ν1 − p| − 1)/2, n = (ν2 − p −
1)/2 (see Beta Distribution), and recommended this
approximation when m + n > 30; this amounts to
approximating the cut-off points of the test statistic
based on the upper percentage points of the F distri-
bution. Pillai & Mijares [32], and Mijares [17] have
tabulated upper 5% and 1% points of V (s) based on
this approximation for small s and various m and n;

see also Pillai [25, 26]. Pillai & Jayachandran [30]
have obtained the moment generating function of
V (s) and derived explicit expression for its cumula-
tive distribution function for s = 3, m = 1, 2, 3 and
s = 4, m = 0, 1, along with the corresponding values
of the exact upper 5% and 1% points for several n.
Mikhail [18] has derived the exact null distribution
of V (2). Davis [4, 5] has also obtained the null dis-
tribution for m = 2, 3, and studied the accuracy of
Pillai’s beta approximation. The exact null distribu-
tion of V (s) is obtained by Krishnaiah & Chang [13]
in the general case. Exact percentage points of V (s)

are tabulated by Schuurmann et al. [35]; see also
Anderson [1].

The limiting distribution of ν2V
(s), as ν2 → ∞, is

the chi-square distribution with ν1p df. The asymp-
totic expansion for the null distribution of V (s) is
derived by Muirhead [19] and Fujikoshi [6].

Khatri & Pillai [11] derived the first two moments
of V (s) in the noncentral case for MANOVA (linear
alternative).

Pillai & Jayachandran [31] derived the noncen-
tral distribution of V (s) for (i) and (ii) for the 2-
root case, and tabulated the power functions for
p = 2. Pillai [27] has obtained the moment gener-
ating function in the noncentral case for (i) and (ii),
and later Khatri & Pillai [12] derived the noncen-
tral distribution in a series form for (i). Pillai &
Al-Ani [28] derived the noncentral distribution in the
2-root and 3-root cases for (iii). See also Pillai & Sud-
jana [33] for some numerical studies on the nonnull
distribution.

Fujikoshi [6] has obtained asymptotic expansion
of the nonnull distribution of V (s) for MANOVA
and the test of independence (with local alterna-
tives) when ν2 is large; later, Fujikoshi [7] obtained
a similar expansion in terms of noncentral chi-square
distributions when ν1 is large. For similar asymp-
totic expansions for the nonnull distribution, see
Lee [14, 15].

Kiefer & Schwarz [10] have shown that Pillai’s
trace test is Bayes and admissible (see Decision The-
ory) for the MANOVA problem. It follows from the
results of Olkin & Perlman [21] that this trace test
is unbiased for problems (i) and (ii). Perlman [23]
has shown that the power function of this test enjoys
the monotonicity property in the respective noncen-
tral parameters in both cases, if the cutoff point is
not too large; for details, see Perlman [23]. It fol-
lows from the result of Anderson & DasGupta [2]
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that the one-sided trace test for (iii) enjoys the
monotonicity property of its power function when
the alternative is one-sided; Giri [8] has shown
that the one-sided trace test is locally best invari-
ant (see Hypothesis Testing) for (iii). The locally
best property of the trace test among all invari-
ant tests is shown by John [9] for (i), (ii), and
(iii). Schwarz [36] has studied the trace test and
shown that it has the local minimax property for (i)
and (ii).

Mikhail [18] found that the trace test has better
power than that of any other standard test for the
MANOVA problem when p = 2. Pillai & Jayachan-
dran [30] compared the trace test with other standard
tests for the MANOVA problem, and found that the
trace test has the maximum power for small devia-
tions from the null hypothesis when p = 2.

Schatzoff [34] calculated the expectation of the
observed significance value of the trace test under
different alternatives for the MANOVA problem, and
found that the trace test is quite sensitive. On the basis
of permutation distributions (see Randomization
Tests), Mardia [16] has shown that the trace test
is moderately robust for problem (i), but highly
sensitive for (iii). On the basis of a Monte Carlo
study, Olson [22] found that the trace test is most
robust among the standard tests for the MANOVA
problem with respect to deviations from normality
and homogeneity of covariance matrices. Pillai &
Sudjana [33] carried out some robustness study of
the trace test for (i) and (iii) in the 2-root case; a
robustness study for (ii) has been carried out by Pillai
& Hsu [29].
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Pinel, Philippe

Born: April 20, 1745, in Jonquières, France.
Died: October 25, 1826, in Paris, France.

Phillipe Pinel received his training in medicine from
the schools at Toulouse and Montpellier. In 1778 he
went to Paris where he eventually became associated
with a group of thinkers known as the Idéologues
who took their inspiration, in part, from the work of
the mathematician, the Marquis de Condorcet. Con-
dorcet believed that the “calculus of probabilities”
was the key to extending a scientific understand-
ing to problems dealing with human society – what
eighteenth-century thinkers referred to as the “science
of man”.

With the changing political climate following the
French Revolution, Pinel was able to find positions
in the Parisian hospitals that treated the mentally ill.
In 1793 he was appointed to Bicêtre and in 1795 he
was appointed to an analogous position at Salpêtrière,
then a repository for the inveterately insane. From this
institutional base, Pinel was able to test the success
of “moral treatment” of the insane, which involved

removing their physical restraints and treating them
in a more humane manner. Also, Pinel was able to
use the hospital setting to observe large numbers of
patients, thereby facilitating statistical comparison.
In a speech read before the Institut de France in
1807, Pinel [2] reported on a statistical “experiment”
that he conducted to demonstrate that “moral treat-
ment” was superior to the traditional treatment (which
involved bleeding and other more “physical” inter-
ventions by the physician). As discussed in Gold-
stein [1], Pinel used no control group of patients who
had been treated by the traditional means; however,
he did establish a 93% rate of cure for maniacs and
melancholics treated by “moral” methods. Two years
later Pinel [3] presented a more detailed analysis of
his statistical findings in Traitè Medico-Philosophique
sur l’Alienation Mentale, in which he declared that
the “fundamental principle of the calculus of proba-
bilities” entails acquiring knowledge of the number
of cases “favorable and contrary”.

Thus, Pinel is important not only for the history of
psychiatry, but also for the history of biostatistics.
By placing emphasis on more humanitarian treatment
of the insane, his work marks a major shift toward
more “enlightened” treatment of the mentally ill. By
placing emphasis on statistical comparison to prove
efficacy, he foreshadowed a methodological approach
that would become increasingly important throughout
the course of the nineteenth and twentieth centuries.
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de la Classe des Sciences Mathèmatique et Physique 8,
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l’Alienation Mentale, 2nd Ed. Paris.

J. ROSSER MATTHEWS



Pitman Efficiency

The Pitman efficiency is an index for comparing test
procedures or estimators. It is of special importance
for comparing procedures in large samples. Given
two procedures, P1 and P2, with a particular defini-
tion of “goodness” of the procedures, if P1 requires
n1 observations and P2 requires n2 observations to
achieve the same level of “goodness”, the efficiency
of P1 relative to P2 is rel. eff. (P1,P2) = n2/n1.
This is the basic idea in the Pitman relative efficiency
index. We illustrate this first with two examples.

Example 1

Suppose that X1, . . . , Xn are independent identi-
cally distributed (iid) random variables (a ran-
dom sample) from a lognormal distribution
ln(µ, σ 2) (i.e. log X1 ∼ N(µ, σ 2)). The expected
value of X1 is ξ = exp(µ + σ 2/2). Assume
that µ is unknown and σ 2 is known. An
unbiased estimator of ξ is the sample mean
Xn, having a variance var{Xn} = [w1(µ, σ 2)]/n,
where w1(µ, σ 2) = var{X1} = ξ 2[exp(σ 2)−1]. The
maximum likelihood estimator (MLE) is ξ̂n =
exp(Y n + σ 2/2), where Yi = log Xi(i = 1, . . . , n),
Y n = (1/n)

∑n
i=1 Yi . The MLE, ξ̂n, is a biased esti-

mator of ξ , having the mean square error (MSE)

MSE{ξ̂n} = ξ 2

[
exp

(
2σ 2

n

)
− 2 exp

(
σ 2

2n

)
+ 1

]

= σ 2

n
ξ 2

(
1 + 7

4

σ 4

n
+ · · ·

)

= σ 2

n
ξ 2 + O

(
1

n2

)
.

Let n1 be the value of n for which MSE {ξ̂n} = c and
let n2 be the value of n for which var{Xn} = c. For
small values of c we need large values of n1 and n2,
and the index of relative efficiency of the MLE vs.
Xn is approximately

n2

n1
≈ exp(σ 2) − 1

σ 2
= 1 + σ 2

2
+ σ 4

6
+ · · · ·

This shows that Xn is very inefficient, compared with
the MLE, if σ 2 is large. This result is intuitively clear,
since Xn is not a sufficient statistic for this family
of distributions.

Example 2

Consider a random sample X1, . . . , Xn, from a nor-
mal distribution, N(µ, σ 2), with known variance σ 2

and unknown mean µ. In quality control problems
we are often interested in testing whether p =
Pr{X1 ≥ ξ0} is greater than some value p0. Both
p0 and ξ0 are specified constants. This problem is
equivalent to that of testing the null hypothesis
H0 : µ ≥ µ0 against the alternative H1 : µ < µ0,
where µ0 = ξ0 − Z1−p0σ and where Z1−p0 is the
(1 − p0)th quantile of N(0, 1). It is well known that
the uniformly most powerful (UMP) test of H0 vs.
H1, at level of significance α, is given by the test
function

φ1(Xn) =
{

1, if Xn ≤ µ0 − Z1−ασ/
√

n.

0, otherwise.

The power of this test is given by the function,

ψ(1)
n (µ1) = Φ

(
µ0 − µ1

σ

√
n − Z1−α

)
,

for µ1 ≤ µ0,

where Φ(·) is the standard normal distribution func-
tion. Clearly, for each µ1 < µ0, limn→∞ ψn(µ1) = 1.
Moreover, ψ(1)

n (µ1) is a strictly increasing function of
n, and the value of n for which ψ(1)

n (µ1) ≥ 1 − β is

n1 = min

{
n : n ≥ (Z1−α + Z1−β)2

(Z1−p1 − Z1−p0)
2

}
.

Note that in terms of the original testing problem,
µ1 corresponds to p1 = Pµ1{X ≥ ξ0}, or µ1 = ξ0 −
σZ1−p1 . Obviously, if p1 < p0, then µ1 < µ0.

An alternative test procedure is to count the
number, Kn, of items in the sample having values
greater than ξ0 (number of conforming items). Kn

has a binomial distribution B(n, p). We consider
the test of the null hypothesis H0 : p ≥ p0, against
the alternative H1 : p < p0. The UMP test, based on
Kn, of level α, is

φ2(Kn) =





1, if Kn < Cα ,

γα, if Kn = Cα ,

0, if Kn > Cα ,

in which Cα = B−1(α; n, p0), and γα = [α − B(Cα −
1; n, p0)]/[b(Cα; n, p0)]. Here B−1(α; n, p0) denotes
the α-quantile of B(n, p0); B(Cα; n, p0) and
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b(Cα; n, p0) are the cumulative distribution func-
tion (cdf) and probability density function (pdf) of
B(n, p0), respectively, at Cα . The power function of
φ2 is

ψ(2)
n (p1) = Pp1{K2 < Cα} + γαPp1{K2 = Cα}

= B(Cα − 1; n, p1) + γαb(Cα; n, p1).

In large samples,

Cα =̇ np0 − Z1−α[np0(1 − p0)]
1/2

and

ψ(2)
n (p1) ∼= Φ

(√
n

p0 − p1

[p1(1 − p1)]1/2

−Z1−α

[
p1(1 − p1)

p0(1 − p0)

]1/2
)

.

Let n2 denote the smallest n needed so that ψ(2)
n (p1)

≥ 1 − β. We have

n2 =̇
(Z1−α[p0(1 − p0)]1/2

+ Z1−β [p1(1 − p1)]1/2)2

(p0 − p1)2
.

The ratio of n2 to n1 gives the relative efficiency of
φ1(Xn) vs. φ2(Kn). This is given by

n2

n1
�

(Z1−α[p0(1 − p0)]1/2

+ Z1−β[p1(1 − p1)]1/2)2

(Z1−α + Z1−β)2

× (Z1−p1 − Z1−p0)
2

(p0 − p1)2
.

For α = β = 0.05 and p0 = 0.95, we obtain the
relative efficiency values shown in Table 1. These
results are not surprising, since the binomial testing
is a nonparametric (distribution-free) method, while
the test φ1 is based on the minimal sufficient statistic,
Xn for the normal model.

Pitman [5] introduced an index of asymptotic
relative efficiency for tests and for estimators. An
exposition of the theory can be found in Lehmann’s
book on estimation [4] and in Pitman’s book [6]. A
more general approach was given by Hoeffding &
Rosenblatt [3]. We now present the essential results.

Table 1

p1 n2/n1

0.945 4.33
0.94 4.21
0.935 4.10
0.93 4.00
0.925 3.91
0.92 3.82

Asymptotic Relative Efficiency of Test
Procedures

Let X1, X2, . . . be a sequence of iid random variables
having a common cdf Fθ(x), which depends on a real
parameter θ . Let Tn = t (X1, . . . , Xn) be a real-valued
statistic, such that

Zn = Tn − µn(θ)

σn(θ)

d−−−−→
n → ∞ N(0, 1)

(see Convergence in Distribution and in Prob-
ability). It is often the case that σn(θ) = c(θ)wn,
where c(θ) > 0, wn > 0 and wn ↓ 0 and n → ∞.
Typically, wn = n−α or wn = (n log n)−α for α > 0.
Moreover, µn(θ) → µ(θ) as n → ∞. The problem
is to test H0 : θ ≤ θ0 against H1 : θ > θ0 at level
of significance α (see Level of a Test). Consider a
sequence of test procedures, which reject H0 when-
ever (Tn − µ(θ0))/σn(θ0) ≥ kn, where kn → Z1−α =
Φ−1(1 − α). The power functions corresponding to
this sequence of tests are, for some θ > θ0,

ψn(θ ; Tn)=Pθ {Tn ≥ µ(θ0)+knσn(θ0)}
∼=Φ

(
µ(θ) − µ(θ0)

c(θ0)wn

c(θ0)

c(θ)
− Z1−α

c(θ0)

c(θ)

)
.

We assume the following:

1. µ(θ) has a continuous derivative, µ′(θ), in a
neighborhood of θ0 and µ′(θ) > 0;

2. c(θ) is continuous in a neighborhood of θ0, and
c(θ0) > 0.

Notice that under these assumptions, for wn ↓ 0 as
n → ∞, for a fixed θ in the required neighborhood
of θ0, limn→∞ ψn(θ ; Tn) = 1. Thus, the above large
sample test is consistent. We consider its limiting
power, for a sequence of alternatives θn → θ0. More
specifically, let θn = θ0 + δwn with δ > 0. Then, for
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large values of n, µ(θn) ≈ µ(θ0) + δwnµ
′(θ0) and

c(θ0)/c(θn) → 1. The asymptotic power is

lim
n→∞ ψn(θn; Tn) = Φ

(
δµ′(θ0)

c(θ0)
− Z1−α

)
= ψ∗,

where 0 < ψ∗ < 1.
The function

J (θ ; T ) = [µ′(θ)]2

[c(θ)]2

is called the asymptotic efficacy of Tn (see [6,
p. 351]). Let {Vn} be an alternative sequence of
test statistics, having asymptotic efficacy J (θ ; V ) =
[η′(θ)]2/[d(θ)]2. Consider the case in which wn =
n−1/2 for both {Tn} and {Vn}. In this case, the sample
size n′ required for attaining the same limiting power
ψ∗ is such that

lim
n→∞

n

n′(n)
= J (θ0; V )

J (θ0; T )

=
(

η′(θ0)

µ′(θ0)

)2
c2(θ0)

d2(θ0)
.

This limit is called the Pitman asymptotic relative
efficiency (ARE) of {Vn} compared with {Tn}, and
denoted by eff(θ0; Vn, Tn). More generally, if wn =
n−α, α > 0, then the Pitman ARE is

eff(θ0; Vn, Tn) =
(

J (θ0, V )

J (θ0, T )

)1/2α

.

Note that if Zn and Wn = (Vn − ηn(θ))/vn(θ)wn do
not have the same asymptotic distribution then the
ARE index is not defined.

Example 3

Let X1, X2, . . . , Xn be a random sample from a distri-
bution G(x; θ) = F(x − θ), where θ is the median
of G(x; θ); that is, θ = G−1( 1

2 ; θ). We assume that
F(x) is symmetric around zero; that is, F−1( 1

2 ) = 0.
We further assume that F ∈ Ωs , where Ωs is the
family of symmetric distributions, which are abso-
lutely continuous, with pdf f (x), having a continuous
derivative f ′(x). Let Rj (j = 1, . . . , n) be the ranks
of Yj = |Xj | and let s(x) = I {x > 0} be the sign
of x. A score statistic for testing the hypothesis
H0 : θ ≤ 0 vs. H1 : θ > 0 is

V n = 1

n

n∑

j=1

φ

(
Rj

n + 1

)
s(Xj ),

where φ(·) is a score function; that is, φ(u) is
nondecreasing on (0, 1) φ(u) ≥ 0 and

∫ 1
0 φ(u) du <

∞. A large class of nonparametric test statistics can
be expressed as such score functions. As shown by
Hettmansperger [2, p. 105], the efficacy of Vn, for
θ0 = 0, is

J (0, Vn) =

[∫ 1

0
φ(x)

f ′{F−1[(x + 1)/2]}
f {F−1[(x + 1)/2]} dx

]2

∫ 1

0
φ2(x) dx

.

Using this function, one can obtain the Pitman ARE
of two different score statistics, when f (x) is a
specified density, symmetric around zero.

Asymptotic Relative Efficiency of
Estimators

Let F be a family of distributions depending on a
real parameter θ . Consider the problem of estimating
a real parameter w(θ). Given a random sample
Xn = (X1, . . . , Xn), let ŵ1(Xn) and ŵ2(Xn) be two
estimators of w(θ). We assume that:

1. Eθ {ŵi(Xn)} = wi,n(θ), i = 1, 2; and
2. Vθ {ŵi(Xn)} = σ 2

i,n(θ), i = 1, 2.

The efficacy of ŵi(Xn) is defined as

Jn(θ ; ŵi) = [w′
i,n(θ)]2

σ 2
i,n(θ)

.

The relative efficiency of ŵ2 compared with ŵ1 is
defined as (see [1])

REn(θ ; ŵ2, ŵ1) = Jn(θ ; ŵ2)

Jn(θ ; ŵ1)
.

The asymptotic relative efficiency is

ARE(θ ; ŵ2, ŵ1) = lim
n→∞

[
Jn(θ ; ŵ2)

Jn(θ ; ŵ1)

]
.

If both estimators are asymptotically unbiased, in
other words, wi,n(θ) → w(θ) as n → ∞, i = 1, 2
and if σ 2

i,n(θ) = [σ 2
i (θ)]/n + o(1/n) as n → ∞, then

ARE(θ ; ŵ2, ŵ1) = σ 2
1 (θ)

σ 2
2 (θ)

.
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If the family F satisfies the Cramér–Rao regularity
conditions (see [7]), the mean square error of an esti-
mator ŵ(θ) is often compared to the Cramér–Rao
lower bound for variances of unbiased estimators of
w(θ), and the relative efficiency is defined as

REn(θ ; ŵ) = w′(θ))2

nI (θ)MSEθ {ŵ} ,

where I (θ) is the Fisher information function. Thus,
if MSEθ {ŵ} = σ 2(θ)/n + o(1/n) as n → ∞, then
limn→∞ REn(θ ; ŵ) = [w′(θ)]2/I (θ)σ 2(θ).

Example 4

Consider the problem of Example 1, for estimating
the mean ξ of a lognormal distribution ln(µ, σ 2), with
σ 2 known. Here, w(µ) = exp(µ + σ 2/2), and the
Fisher information is I (µ) = σ 2. Thus, the relative
efficiency of the unbiased estimator Xn is

REn(µ; Xn) = [exp(µ + σ 2/2)]2σ 2

nV {Xn}

= σ 2

exp(σ 2) − 1
.

In this case REn(µ, Xn) < 1 for all σ 2, and
REn(µ, Xn) → 0 as σ 2 → ∞.

If the distribution of X depends on k parameters,
θ1, . . . , θk, k > 1, the definition of relative efficiency
of estimators of w(θ1, . . . , θk) is more complicated.
The reader is referred to Zacks [8].
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Placebos

History of Placebo

The placebo, which originates from Latin meaning “I
shall please”, was used for centuries as therapy for
patients whom physicians were unsure of how to treat
or for whom no useful treatment was available [26].
Attitudes towards therapies in Western cultures have
shifted dramatically over the last four decades. Princi-
ples of safety, efficacy, and informed consent of par-
ticipants are now well entrenched (see Ethics of Ran-
domized Trials); the randomized controlled trial (see
Clinical Trials, Overview) dominates as the method
for evaluating therapy and patients are increasingly
involved in decisions about their care [38]. The role
of the placebo has evolved in response to all of
these factors. In research, the notion of placebo con-
trol arose to account for those beneficial or harmful
effects not directly attributable to the therapy of
interest. Despite some dissent, placebos and placebo-
controlled trials remain the benchmark by which all
new drugs are evaluated and regulated [50]. In clin-
ical care, any part of an encounter can have some
therapeutic value and influence the patient’s response,
including taking a history, stating a diagnosis, or
making repeated measurements (e.g. blood pressure)
or assurances about prognosis. Knowledgeable clin-
icians are interested in determining which parts of
the placebo effect they should implement to optimize
their patients’ health.

Definitions

Many, similar definitions for “placebo”, “placebo
effect”, and “placebo response” exist. Here, we use
the word placebo to mean an inert substance or sham
procedure designed to appear identical to the active
substance or procedure but without known thera-
peutic effect. Placebo effect or placebo response is
the psychophysiologic effect associated with place-
bos, thought to be primarily operative through the
expectations or symbolic meaning of the adminis-
tered therapy [5, 36, 39]. This implies both positive
and negative effects, although the latter are often
referred to as the nocebo effect [19]. More recently,
the placebo effect has been further characterized as a
true placebo effect versus a perceived placebo effect.

The perceived placebo effect, which is the effect com-
monly quoted and discussed in the literature, includes
the true placebo effect plus other nonspecific effects,
including the natural course of disease, regression
to the mean, unidentified co-intervention effects,
and other time-dependent effects [15, 39]. The nat-
ural course of any disease or symptom will change
in severity over time and may resolve on its own
(see Postmarketing Surveillance of New Drugs and
Assessment of Risk). Regression to the mean, where
a follow-up measurement of a patient’s disease or
symptoms gives a more normal reading, is a well-
recognized phenomenon. Patients enrolled in a trial
may influence clinical outcomes by implementing
unidentified parallel interventions (co-intervention),
for example, by starting a weight-loss program while
in a trial of a diabetes drug. Time-dependent effects
might include the increasing skill of the investiga-
tor in measuring study endpoints, or the decreasing
“white coat hypertension” effect as patients become
used to having their blood pressure measured. Since
these nonspecific effects are inherent in any ther-
apy (i.e. active intervention, placebo, or no-treatment
groups), it has been argued that we should be focus-
ing on the true placebo effect as a measurement
target [15, 23].

Magnitude of the Placebo Effect

For decades, the placebo response has been assumed
to be similar across disease categories at approx-
imately 35% improvement from baseline [3]. This
figure has been applied equally to the proportion of
patients improving and to the degree of improvement
per patient per outcome. More recently, doubt has
been cast on the constant placebo response as evi-
dence accumulates that both the true and perceived
placebo effects are variable [15, 36, 55]. A review
of 75 trials of antidepressant medications revealed
that the placebo response rate varied from 12.5 to
51.8% and had increased over time [55]. A recent
systematic review of randomized trials with placebo
and no-treatment arms (see Meta-analysis of Clin-
ical Trials), concluded that there was evidence of a
mild true placebo effect for some subjective outcomes
(e.g. pain and anxiety) but not for more objective
outcomes (blood pressure, weight loss, asthma out-
comes) [23]. For example, placebo was associated
with a reduction in pain by a mean of 0.65 cm
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on a 10 cm visual analog scale, as compared with
no treatment. The authors measured the difference
in outcomes between the two arms at the end of
the treatment period rather than the change in out-
comes from baseline, thus attempting to control for
the nonspecific effects and determine the true placebo
effect [22]. Their concluding caution against the use
of the placebo and its effects for therapeutic purposes
outside of a controlled clinical trial raised a storm
of criticism. Although the validity of the findings
were questioned, in terms of widely varying popu-
lations and diseases, heterogeneity and low statistical
power [1, 46], wrong choice of placebo [27], and
contamination of the “no-treatment” arms [14], in our
opinion, it is really the generalizability of the findings
that is in question (see Validity and Generalizabil-
ity in Epidemiologic Studies). Within randomized
controlled trials, where patients acknowledge by their
consent that they know they may not receive an active
treatment, the perceived (total) placebo effect may be
more muted than in clinical practice. Furthermore,
even within randomized trials, unblinding can occur
and bias clinician and patient – a situation bound to
happen with a no-treatment arm. Finally, and most
important, a finding that placebo therapies and no-
treatment arms do not differ does not negate the
possibility that a true placebo effect occurred (and
occurred equally) in both groups.

It is important to keep in mind that placebos
are not risk free. Placebos may be harmful if they
delay access to effective therapy for the disease under
investigation, if their nonspecific symptomatic effects
mask a condition that has effective treatment or via
direct nocebo effect [1]. Where placebos are used
without patient consent, any revelation of the decep-
tion may seriously undermine patient–physician rela-
tionship, which is itself a powerful source of “placebo
effect”.

Influences on the Placebo Effect

The attitude and behavior of the clinician toward the
treatment and the patient, the attitude of the patient
toward her own health and the treatment, as well
as external, cultural, family, and media influences,
all influence the placebo effect [5, 13, 22, 28, 35,
36]. Treatment variables including appearance, inva-
siveness, impressiveness, perceived plausibility, past
experience, and cost all appear to play a role.

Provider factors can produce major placebo effects
and, although not well studied, are considered integral
to the “art of medicine”. The white coat of the clini-
cian, the stethoscope, the interest, empathy, authority,
and compassion displayed in the interview with the
patient and the motivation and skillfulness with which
a diagnosis or therapeutic path is pursued, each may
influence the patient [5, 36, 39]. In a study of 200
British patients presenting to a physician with abnor-
mal symptoms for which no firm diagnosis could be
made, the patients were randomly assigned to a neg-
ative or positive consultation, and placebo treatment
or no treatment [7]. The positive consultation con-
sisted of a firm diagnosis and reassurance that the
patient would be better in a few days while in the
negative consultation, the physician confessed uncer-
tainly. Two weeks later, 64% of those who received
a positive consultation reported improvement com-
pared with 39% of those who received a negative
consultation. The percentage of the placebo treated
group who improved was not significantly different
than the percentage in the untreated group.

Patient expectations, prior experiences with sim-
ilar therapies, severity of current complaints, and
suggestibility likely play a role in the placebo effect
but have not been rigorously studied [2, 17, 29, 34,
36, 41, 42]. In a 10-week study of exercise, 48 healthy
young adults were randomized to a control aerobics
training program or an exercise program with con-
stant reminders of the aim to improve both aerobic
capacity and psychological well-being [13]. After 10
weeks, significant increases in fitness levels were seen
in both groups, however, self-esteem and psycholog-
ical well-being were only significantly improved in
the experimental group, not the control group. Cul-
tural differences in placebo responsiveness have also
been explored. A review of 117 studies of ulcer treat-
ment, and 37 studies of treatment for anxiety, showed
Germany had the highest placebo healing rates for
ulcers, but experienced only moderate placebo rates
for treatments of anxiety. In comparison, Italy had the
lowest placebo effects for anxiety, while Brazil had
the lowest rates for ulcers [35]. Similarly, a retrospec-
tive analysis of deaths attributed to lymphatic cancer
found that Chinese-Americans who were born in
“Earth years”, and therefore deemed by Chinese med-
ical history to be especially susceptible to diseases
involving lumps, nodules, or tumors, had a lower
mean age of death than those born in other years. No
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such relationship could be seen in Caucasian controls
who died of similar causes [35, 36].

Patients who enter into trials compared with those
who do not and patients who adhere to their treat-
ment, whether placebo or not, compared with those
who do not (see Compliance Assessment in Clinical
Trials), may have different outcomes. In a large study
of beta-blockers to prevent a recurrence of a myocar-
dial infarction, it was found that those who took more
than 80% of their medications had a lower mortality
rate compared to poor adherers whether they received
beta-blockers or placebo [35, 39]. A Cochrane meth-
ods review pilot looked at patients enrolled in phase
III randomized controlled trials (see Clinical Trials,
Overview) versus patients who were similar but not
enrolled. In 23 out of 25 reports, better outcomes
were documented for patients within the trials com-
pared to those who were not. Overall, there were
lower mortality and lower rates for complications
of therapy [21]. An analysis of the CAMIAT (Cana-
dian Amiodarone Myocardial Infarction Arrhythmia
Trial) study [24] showed that adherence to placebo or
amiodarone, both predicted mortality. Patients who
received placebo and were considered noncompliant
had over a two-fold increased risk of sudden cardiac
death, cardiac mortality, and all-cause mortality com-
pared to those placebo patients who were compliant.

Drug and treatment characteristics, apart from the
pharmacology of the active ingredient(s), can have
powerful placebo effects. Studies suggest that sub-
jects react to the “meanings” or suggestion of the
color and quantity of drugs. Red suggests “hot” or
“danger”, blue suggests “down” or “quiet”, and a
quantity of two means “more than one” [6, 12, 35].
A group of medical students were told that they were
participating in a single-blinded study (see Blinding
or Masking) on the psychological and physiologic
effects of two drugs, a sedative and a stimulant, and
received one or two placebo capsules of either blue or
pink without attribution of any effect [6]. The consent
form they were asked to sign gave a brief descrip-
tion of the stimulant or sedative side effects they
may expect to experience. Study results showed that
the students tended to experience stimulant reactions
to the pink capsules, while the blue capsules pro-
duced depressant effects. Two capsules tended to pro-
duce a greater effect than one for both psychological
changes (e.g. drowsiness) and physiologic changes
(e.g. pulse) [37]. In other words, analgesia associated
with an injection of saline solution was reversed with

an opiate antagonist such as naloxone and enhanced
with an opiate agonist such as proglumide, which
suggests that these patients were experiencing a phys-
iologic response such as the release of endogenous
opioids [4, 35]. Furthermore, the placebo response
can be shown to produce a typical pharmacokinetic
profile of activity [56].

Surgery and other mechanical or invasive pro-
cedures have been thought to produce exaggerated
placebo responses, ever since the original studies of
sham internal mammary artery ligation for the treat-
ment of angina, where 80% of patients in the sham
treatment arm reported substantial improvement [9].
More recently, the value of an extremely common
procedure, arthroscopic lavage and debridement in
patients with osteoarthritis of the knee, was ques-
tioned when it was found no better than sham surgery
for outcomes of pain and physical function [37].
Reviews of trials examining placebo or comparing
different placebo routes indicate that injections are
more powerful than pills, and devices or procedures,
such as sham ultrasound or sham acupuncture seem to
be associated with stronger placebo effects than oral
placebos [15, 28]. However, the extent to which the
response is influenced by the procedure administrator
versus the procedure itself remains unclear.

Ethics of Employing Placebo in Research

Many questions have been raised about the ethics
of using placebos in human research. Strong critics
of the placebo argue that it is not ethical to assign
subjects to any intervention that has even the poten-
tial of being less efficacious than current therapy
(see Ethics of Randomized Trials). The oppos-
ing view asserts that very few “standard” treatments
have been proven effective by today’s research stan-
dards, that placebo-controlled trials are a necessary
first step with the smallest sample size to estab-
lish whether further research with a drug or treat-
ment is warranted and that patients tend to improve
within these trials regardless of allocation because
of the close attention and follow-up. Certain situ-
ations, such as life-threatening conditions where a
proven effective treatment exists, are agreed to be
inappropriate for placebo-only allocation [50]. One
of the areas of medicine where the use of placebo
has been debated widely is in depression. Critics
worried that randomization to placebo might lead



4 Placebos

to serious harm including suicide. When this was
reviewed, not only were completed and attempted
suicide rates similar for placebo, standard antidepres-
sants (imipramine, amitriptyline, trazodone), and the
investigational antidepressants (fluoxetine, sertraline,
paroxetine), but also the clinical responses were not
very different among the three groups either [30].
Another large review noted that the response to
placebo in depressed patients was highly variable
(10–50%) between trials, and has increased over the
years with increasing trial length [55]. All of these
factors suggest that the use of active treatment con-
trols instead of placebo would make accurate evalu-
ation of interventions difficult.

Although it has been well argued that research
subjects, by way of informed consent, indicate
their willingness to freely participate in a placebo-
controlled trial, there is some evidence that patients
may not be fully informed about risks and benefits
of the treatment options [25, 43]. Studies of consent
documents have shown that they sometimes overstate
the benefits and understate the risks of research
protocols and are frequently written beyond the
reading level of patients [11, 33, 49]. Even when
consent forms are accurate and appropriate, patients
may confuse treatment in a clinical trial with that of
individualized medical care, overestimate the benefits
of participating in a trial, and underestimate the risks
they may be involved in [20]. A recent survey of
patients participating in cancer trials showed that
while they were satisfied with the consent form
and considered themselves well informed, a large
percentage of these patients did not recognize that the
treatment being described was not a standard therapy,
that there was potential risk to themselves, and that
the study drug was unproven [25]. This research
suggests that some of the placebo effect is already
evident at this early stage before any treatment is
actually given – the trust in trial clinicians, the hope
for therapeutic benefit, and so on may color the
patient’s memory of consent.

Guidelines for the Use of Placebos in
Research

Several prominent guidelines provide some direction
for the use of placebos in research. All agree on basic
principles such as noncoercion and fully informed
consent for participants. In other matters, the guide-
lines differ somewhat. The Declaration of Helsinki

has the strictest guidelines and is often cited by crit-
ics of the placebo. First ratified by the World Medical
Association (WMA) in 1964, it cites “The benefits,
risks, burdens and effectiveness of a new method
should be tested against those of the best current pro-
phylactic, diagnostic and therapeutic methods. This
does not exclude the use of placebo, or no treatment,
in studies where no proven prophylactic, diagnos-
tic, or therapeutic methods exists” [57]. However, its
stand has been criticized as too strict as “best . . .

methods” may not be the same as “best available”
or “most cost-effective” comparators [40] and many
standard therapies have not been rigorously compared
to determine which is the best. The International Con-
ference on Harmonization (ICH), a committee with
representatives from the drug industry and regulatory
authorities internationally, has published ICH E10 –
Guideline for Choice of Control Group and Related
Issues in Clinical Trials [53]. These guidelines, cit-
ing the unique scientific usefulness and general safety
of placebos, allow the use of placebo controls even
when effective treatment exists unless subjects would
be exposed to an unacceptable risk of death or per-
manent injury or if the toxicity of standard therapy is
so severe that “many patients have refused to receive
it”. ICH E10 advocates the use of modified study
designs whenever possible, such as add-on studies,
factorial designs, or “early escape” from ineffec-
tive therapy [53].

Various national regulatory and research bod-
ies have formulated their own guidelines. The Tri-
Council Policy Statement (TCPS) from Canada’s
three main research granting agencies, requires that
grant recipients abide by the Declaration of Helsinki,
prohibiting the use of placebo-controlled trials if there
is an existing effective therapy available. However,
it allows for broad exemptions, for example, for
exceptional circumstances where effective treatment
is not available to patients due to cost constraints or
short supply, use in refractory patients, for testing
add-on treatment to standard therapy, where patients
have provided an informed refusal of standard ther-
apy for a minor condition for which patients com-
monly refuse treatment, or when withholding such
therapy will not lead to undue suffering or the possi-
bility of irreversible harm [51]. The US Food and
Drug Administration’s Code of Federal Regula-
tions (CFR), revised in April 2002, accepts placebo-
controlled trials and does not stipulate any restric-
tions but strongly advocates the need for informed
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consent [10, 18]. The primacy of informed patient
consent in placebo-controlled trials has spurred a
number of critiques [25, 32, 48], challenges [52], and
recommendations to improve processes of obtaining
consent [11, 31, 44, 47, 54].

Patients themselves have become involved. The
National Depressive and Manic-depressive Associ-
ation, a large patient-directed illness-specific orga-
nization in the United States, recently developed a
consensus development panel to discuss the con-
troversy regarding the use of placebo [8]. In their
guidelines, they acknowledge that mood disorders are
episodic, chronic conditions that are associated with
considerable morbidity and have no curative or fully
preventative treatments. Despite the Declaration of
Helsinki, it was agreed that mood disorder research
was not at the point where noninferiority trials (tri-
als designed only to rule out that the new therapy
is worse than the control) (see Equivalence Trials)
involving active controls could be considered scien-
tifically valid designs. Therefore, the guidelines cite
“placebo is justified when testing a new antidepres-
sant with a novel mechanism of action that has a
substantial probability of efficacy with an acceptable
adverse effect risk. However, placebo is also ethical
in studies of new drugs in a class because the newer
members may offer important advantages over the
original drug.”

Despite the guidelines that currently aid re-
searchers regarding the use of placebos in research,
there are ongoing issues that need to be addressed.
One could debate the “proof” of efficacy compared
to placebo for many drugs in current use, such that
the counterargument has been made that it might
be unethical to insist on the use of these drugs in
control groups. The Declaration of Helsinki’s view
on placebo was established in an attempt to deter
pharmaceutical companies and research organizations
from exploiting people in poorer populations, who
may not have access to proven treatments. This con-
cern is not relevant in many countries. Advocating
the use of placebos only when no standard treatment
exists leaves the efficacy of drugs in certain patient
groups largely unknown. Many clinicians need to
know whether a therapy is “better than nothing” and
could therefore be an alternative for patients who do
not respond to the conventional treatment or cannot
tolerate it [45]. In chronic diseases such as hyperten-
sion, diabetes, and vascular disease, combinations of
therapies are increasingly prevalent. It is likely a more

efficient assessment of a new drug to test it against
placebo initially before embarking on multiple, more
complicated, larger sample size, drug add-on trials.

Innovations to Improve Research
Involving Placebo

Apart from improving the process of informed con-
sent as described above, several themes of innovative
trial design are developing. All attempt to minimize
patient exposure to placebo only or increase the effi-
ciency of the design to lower sample size. The first
design, now commonly used, is the add-on trial where
one group gets both the standard therapy and the new
therapy while the other group gets the standard ther-
apy only. The difference between the mean response
of the combination standard/new therapy group and
the mean of the standard therapy group alone is a rea-
sonable estimate of effect of the new therapy provided
the two therapies do not interact with each other.

The second design was developed for antidepres-
sant drug trials to address the high placebo response
rates [55]. This two-phase randomized crossover
method initially randomizes more patients to placebo
than active therapy and, in the second phase, crosses
over only placebo nonresponders [16]. It is intended
to minimize the overall placebo response rate and
thus the sample size required to show a clinically
important difference (see Sample Size Determina-
tion for Clinical Trials).

The third design avoids the bias of patient selec-
tion according to placebo response. A 22 factorial
design involving standard and new therapies has four
groups: double placebo, new therapy, standard ther-
apy, and combination standard therapy/new therapy.
With a 1 : 1 : 1 : 1 allocation ratio, there are two esti-
mates of the efficacy of the new therapy–the dif-
ference between the new therapy group mean and
the double placebo group mean, and the difference
between the combination standard therapy/new ther-
apy group mean and the standard therapy group mean.
These two estimates are pooled together to measure
the overall efficacy of the new therapy by computing
the mean of the two estimates. These two estimates
should be similar to each other provided the new
therapy does not interact with the standard therapy.
However, one half of the patients are given either the
double placebo or the new therapy of yet unproven
efficacy. This may present an ethical problem if the
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standard therapy has excellent efficacy and clinicians
are reluctant to deny patients access to it. If the inves-
tigator were to drop these two groups from the third
design, the result is the first, add-on design, and the
measure of interaction between the two therapies has
to rely on theory, not data.

A fourth design is possible where there are two
known-to-be effective therapies available and where
some clinicians might use the first standard, some
might use the second standard, and some might use
both standards together. Here, a 23 factorial design
should be considered: triple placebo, new therapy,
first standard therapy, second standard therapy, dou-
ble combination of new therapy and the first stan-
dard therapy, double combination of the new therapy
with the second standard therapy, double combination
of the first standard and second standard therapies,
triple combination of the new therapy, the first stan-
dard therapy and the second standard therapy with
8 groups and an equal allocation ratio. The design
would provide four estimates of the efficacy of new
therapy, namely: (1) the difference in the mean of
new therapy group and the mean of the triple placebo
group, (2) the difference in the mean of the double
combination of new therapy and first standard group
and the mean of the first standard group, (3) the dif-
ference in the mean of the double combination of
the new therapy and second standard therapy and the
mean of the second standard group and (4) the differ-
ence between the mean of the triple combination of
new therapy, first standard therapy and second stan-
dard therapy and the mean of the double combination
of the first and second standard therapies. These four
estimates should be similar to each other provided
the new therapy does not interact with either of the
first or second standard therapies, an assumption that
can be checked.

Finally, if the two ethically challenged groups,
placebo and new therapy, are dropped from the fourth
design, then the remaining fractional factorial design
has six groups that permit three estimates of efficacy
of the new therapy, namely, (2), (3), and (4). Again
these three estimates should be similar to each other
provided the two standard therapies do not interact
with new therapy, and these three estimates should
be similar to the one estimate of the efficacy of the
new therapy that it is not possible to obtain from
the six groups, namely (1). This six-group fractional
factorial design still permits the efficacy of the new
therapy to be estimated by pooling together the three

estimates with the mean of (2), (3), and (4). Provided
the interaction assumption is reasonable, this three-
term mean should provide adequate evidence of the
efficacy of the new therapy. This fifth design should
be ethically acceptable since no patient is being
denied the benefit of a known therapy.

Summary

The placebo’s role in medicine has been and con-
tinues to be in transition. For decades, the dispute
regarding the placebo revolved around its ability (or
not) to induce psychological or physiological effects.
More recently, the debate has focused on the uti-
lization of the placebo-controlled trial, its usefulness,
and whether, despite informed consent, it impinges
on patient autonomy and the practice of beneficence.
There are currently several international guidelines
that direct the researchers on the use of placebos;
however, there are prominent differences between
them. The future is likely to bring developments
in trial designs where a new therapy’s effect can
be compared to placebo yet no individual subject
is exposed only to placebo, designs that lower the
placebo response rate so that treatment effect may be
ascertained more efficiently, and designs that allow
further exploration and exploitation of factors influ-
encing the placebo effect.
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Point Processes

Point processes provide the appropriate mathematical
models for describing a countable set of points ran-
domly located in some space; renewal and Poisson
processes on a line are the simplest and best-known
examples. There is a rich variety of applicable point
process models of relevance in many fields. As dis-
cussed in [17], the origins of point process theory lie
in the areas of life tables and renewal theory, count-
ing problems starting from work of S.D. Poisson and
leading to applications in particle physics and popu-
lation processes (see Population Growth Models),
and communication engineering.

Illustrative examples of point processes include:
times of emission of pulses in a nerve fiber; times
of arrival of patients at an intensive care unit; sur-
vival times of patients following onset of a disease;
locations of trees in a forest, ants’ nests in a region,
particles in space, or a specified type of cell in a
section (or volume) of tissue; locations and instanta-
neous directions of movement of insects, spermato-
zoa, etc. in a region; times of occurrence, locations
and magnitudes of earthquakes in a given region.

It may be helpful to read the present article in
conjunction with those on renewal processes and
Poisson processes. Especially in the latter, many key
point process ideas are introduced, often in a sim-
ple intuitive way using appealing examples. Here, we
sketch in a more formal way the foundational ideas,
in the hope that the reader may be assisted and moti-
vated to read the literature. Even those parts of the
point process literature that look forbiddingly mathe-
matical are often based on very simple ideas which a
nonmathematician may well be able to grasp without
needing to understand all the detailed mathematics.
Further aims, especially in later sections, are to show
some of the rich variety of point process and stochas-
tic process models that can be built from more basic
point processes, and to discuss some aspects of sta-
tistical inference for point process data.

Representing Realizations

The intuitive paradigm of a point process realization
should mostly be, as above, a (finite or) countable
set x = {xi} of (distinct) points randomly located in
some state space S. This space would commonly be

one-dimensional, often representing time, or two- or
three-dimensional. In principle, dealing with earth-
quakes would require a time dimension, three spa-
tial dimensions for the location of the epicenter,
and a further dimension for the magnitudes. Thus,
for many applications, the state space S will be a
Euclidean space, and essentially, this is assumed in
the present article. More general spaces can be used,
and indeed are required to deal with aspects of point
process theory and some applications, for example in
stochastic geometry and stereology (see [5] and [9]);
some of these applications are discussed in a later
section.

Two other points of view concerning realizations
are possible. The first, applicable only when the
space is one-dimensional and ordered, like the real
line, involves representing the realization as the
sequence of “intervals” between successive points
and telling where these points should be located in
relation to the origin. Renewal processes are usually
defined in this way. The second involves viewing the
realization as a counting measure N(·). (A measure
is a function defined for sets, taking nonnegative
real values or the value +∞, and additive, even
countably so, over disjoint sets. In respect of the latter
property a measure behaves like probabilities. A
measure is called a counting measure if its values are
nonnegative integers or +∞ (see Counting Process
Methods in Survival Analysis).) The connection
between this and the initial view is that N(B) =
#{xi ∈ B}, the number of points from the set {xi}
which lie in B, considered for suitable subsets B of
the space. Such subsets should include at least all
possible bounded sets which are intervals (on a line),
rectangles or disks (in a plane), or boxes or balls (in
space), as well as unions and intersections of these.
In addition, it is usual to assume that N(B) is finite
whenever the set B is bounded. Such an assumption,
often called local finiteness, is likely to be satisfied
in most applications.

The counting (measure) view of realizations,
although maybe not the most intuitive, is not without
practical relevance, in that suitable counts will often
provide an appropriate description of the data. More-
over, this view is necessary for developing a nice
mathematical theory of point processes in general
spaces, in particular because it facilitates the treat-
ment of possible “multiple” points. (In the set view
of realizations the points xi must, strictly speaking,
be distinct.)
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A disadvantage of adopting the counting viewpoint
is that the resultant theory depends heavily on the
theory of measure and integration, which is often
regarded as difficult, and not common knowledge
among those interested in applications of point pro-
cesses. Nevertheless, many of the ideas of point
process theory can be explained with minimal depen-
dence on measure and integration theory, sometimes
by resorting to the more heuristic “set” view of real-
izations. This is the approach adopted in the present
article. For a more mathematical approach consult
the references listed at the end of this article, espe-
cially [24].

Describing Point Processes

To describe a point process we need, in principle, all
probabilities such as Pr(N(B) = n), n = 0, 1, . . ., for
suitable sets B, and also all joint probabilities

Pr(N(B1) = n1, N(B2) = n2), n1, n2 = 0, 1, . . . ,

for suitable B1 and B2. For fixed B, the collection of
probabilities

{Pr(N(B) = n) : n = 0, 1, . . .}
is one of the one-dimensional distributions of the
process. Similarly, for fixed B1 and B2 the collection

{Pr(N(B1) = n1, N(B2) = n2) : n1, n2 = 0, 1, . . .}
of joint probabilities is one of the two-dimensional
distributions of the point process.

In general, for a fixed positive integer k and
(Borel) subsets B1, . . . , Bk of the state space we need

{Pr(N(B1) = n1, . . . , N(Bk) = nk)

: n1, . . . , nk = 0, 1, . . .}.
This is simply the joint distribution of N(B1), . . . ,

N(Bk), the numbers of points in the sets B1, . . . , Bk .
These joint distributions, for all possible k and
subsets B1, . . . , Bk , are called the finite-dimensional
distributions of the point process. For a given
point process, they must be mutually consistent;
for instance, the marginals of any two-dimensional
distribution must coincide with the separate one-
dimensional distributions for the specified sets B1

and B2. Furthermore, for example, since for disjoint
B1 and B2 the counts must be additive in the sense

that N(B1 ∪ B2) = N(B1) + N(B2) (with probability
one), the family of one-dimensional distributions
of a point process must be an “additive” family
of probability distributions. Such additivity and
consistency conditions, though in a sense simple,
are highly restrictive: they put severe limitations
on the structure of the possible finite-dimensional
distributions for a point process, and in general make
it a nontrivial task to specify (a new) point process
model.

If a suitable consistent, additive family of potential
finite-dimensional distributions can be found, then we
have specified a point process. (Some would regard
this conclusion as resting on a variant of a stochas-
tic process existence theorem usually attributed to
Kolmogorov.) Thus the properties of a point process
can be regarded as being determined by the collection
of all its finite-dimensional distributions.

At least when the state space is Euclidean, i.e.
S = �d for some positive integer d, a point process
is called (strictly) stationary if its probabilistic prop-
erties are invariant under translation: specifically, if
for every u in the state space S, every positive integer
k, every collection of subsets B1, . . . , Bk of the state
space, and every collection n1, . . . , nk of nonnegative
integers, we have

Pr(N(B1) = n1, . . . , N(Bk) = nk)

= Pr(N(B1 + u) = n1, . . . , N(Bk + u) = nk),

where B + u = {x + u : x ∈ B} denotes the set of all
points obtained by translating B by u. Thus for a
stationary point process the distribution, and hence
expected value, of the number of points falling in
any translate of a given set B is the same as that for
the set B. One consequence is that EN(B) = µ|B|,
where |B| denotes the Lebesgue measure (length,
area, volume, etc.) of B and µ, called the intensity,
denotes the expected number of points falling in any
set U having |U | = 1 (that is, any set having unit
length, area or volume, as appropriate). Also, for any
stationary point process, it can be shown that the limit

ρ = lim
h→0+

Pr
(
N(Bh) > 0

)

hd
,

where Bh = (0, h]d , exists and 0 ≤ ρ ≤ ∞ . The
quantity ρ is often called the rate of the point
process, though this terminology is not standardized
in the literature. Note that ρ ≤ µ since Pr

(
N(Bh) >
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0
) ≤ ƐN(Bh) for all h. For spatial point processes

(d ≥ 2) one may also be interested in isotropy, a
concept analogous to stationarity, defined by all the
finite-dimensional distributions being invariant under
rotations.

A point process is called simple if, with probability
one, its realizations have no multiple points, i.e.
if Pr(N({x}) = 0 or 1 for every x ∈ S) = 1. From
any point process N it is possible to derive an
associated simple point process N∗ by “forgetting”
all multiplicities in the original process N . The
process N∗ is stationary whenever N is stationary,
and therefore has an intensity µ∗. Clearly, µ∗ ≤ µ.
Furthermore, for a point process N that is both simple
and stationary ρ = µ (= µ∗), a result often known as
Korolyuk’s theorem.

A point process is termed mixing if events defined
in terms of the numbers of points in widely separated
sets are close to independent. (For a formal definition
see, for example, [17].) Some such property is needed
to ensure consistent estimation of the intensity of a
stationary point process; many use the related notion
of ergodicity (cf. [25] or [43, p. 194]).

It is important to be able to look at the distribution
of a point process when we view that process
from an arbitrary point in the process. The Palm
distribution of a point process is, more formally, the
conditional distribution of the process given that, for
example, there is a point of the process at x. For
a stationary point process this conditioning can be
reduced to the demand that there be a point at the
origin. Such conditioning requires care because the
conditioning event is clearly one of probability zero,
and a rigorous introduction is beyond the scope of
the present article. For a stationary point process on
the real line it is by means of the Palm distribution
that we must approach, for example, the distribution
of the times between successive points (“intervals”)
when starting from a description of the process in
terms of its finite-dimensional distributions. There
is also an inversion formula which allows the latter
distributions to be expressed in terms of the Palm
distribution. The simplest consequence of this is that
the intensity of a stationary simple point process is
equal to the reciprocal of the mean time between
successive points. For a development of these ideas
see [41, Chapter 4] or [45]. For a stationary isotropic
point process the Palm distribution is needed at
least in order to define formally the nearest-neighbor
distribution function and the K-function which play

an important role in statistical inference for such
processes (see the section “Statistical Inference” later
in this article).

Some Basic Point Processes

A homogeneous Poisson process in a Euclidean
space S = �d can be defined by the following two
requirements:

1. N(B) ∼ Poi(λ|B|), where | · | denotes Lebesgue
measure (length, area or volume) on �d and B

denotes any bounded subset of the state space S.
2. N(B1), . . . , N(Bk) are mutually independent ran-

dom variables whenever B1, . . . , Bk are pairwise
disjoint bounded subsets of S.

A point process satisfying the latter condition is often
called completely random. Observe that requirements
1 and 2 together specify the form of all finite-
dimensional distributions and ensure the process
is (strictly) stationary. In addition, requirement 1
ensures that λ is the intensity of the process.

Any homogeneous Poisson process has the funda-
mental property that, given the number of points in
a bounded subset of the state space, these points are
distributed independently and uniformly over the sub-
set. This “conditional” property is an important tool
in proving other results about homogeneous Poisson
processes and about processes derived from them.

The point process that results from such condition-
ing of is a particular type of Bernoulli process (also
called sample process or binomial process).

In general, such a process is defined on a compact
(i.e. closed and bounded) set W by requiring that
all its realizations have the same fixed total number
of points and that these points are distributed inde-
pendently and identically over W according to some
specified probability distribution. Such processes are
straightforward to simulate.

A Poisson process with intensity function λ(u),
where λ(u) is nonnegative for all u in S and∫
B

λ(u) du is finite for all bounded sets B, is defined
as for a homogeneous Poisson process but with
requirement 1 replaced by

1. N(B) ∼ Poi(
∫
B

λu du), for any bounded subset
B of the state space S.
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Such a process is also called an inhomogeneous
or nonhomogeneous Poisson process, a terminology
which is not meant to exclude homogeneous Poisson
processes as the special cases for which the intensity
function is in fact constant. The class of inhomo-
geneous Poisson processes includes, for example,
processes for which λ(u) – or perhaps preferably,
ln λ(u) – exhibits some trend with u, is a periodic
function, or is dependent on the values of some asso-
ciated explanatory variables. For processes on the real
line, viewed as a time axis, the intensity function is
commonly referred to as the instantaneous intensity
function.

In practice, many point processes will be defined
most simply by means other than direct specifica-
tion of their finite-dimensional distributions. When
S = [0, ∞) we can define an (ordinary) renewal pro-
cess by the set {L1, L1 + L2, L1 + L2 + L3, . . .} of
random points, where L1, L2, L3, . . . are indepen-
dent and identically distributed (lifetime) random
variables. If L1 is allowed a distribution different
from that of the other random variables the pro-
cess is called a modified renewal process. Counting
properties of a renewal process are less simple to
describe, except when the common distribution of
L1, L2, L3, . . . is an exponential distribution, in
which case the process reduces to a homogeneous
Poisson process on [0, ∞).

A wide variety of types of point process can
be defined in terms of simpler point processes,
such as Poisson or renewal processes. Their finite-
dimensional distributions could, in principle, then be
derived, although this may be difficult or tedious in
practice, and unnecessary in full detail. Sometimes it
is possible to work with probability generating func-
tions or moment generating functions of relevant
finite-dimensional distributions, and at other times
with certain summary measures or moments.

Three broad classes of point processes can be
constructed from Poisson processes by introducing
further randomness. One of these is the class of com-
pound Poisson processes. Such a process is obtained
from a Poisson process, homogeneous or inhomo-
geneous, by replacing each point, independently of
the other points, by a random number of new points
all of which are placed at the associated point of
the original process. In general a process of this
type would have points with multiplicity greater than
one. Another class is that of mixed Poisson pro-
cesses (cf. [22]), which are defined by allowing the

parameter λ of a homogeneous Poisson process to
have a specified distribution (see Contagious Distri-
butions). Such processes provide one of the simplest
classes of processes which are not mixing; essen-
tially the lack of mixing is a consequence of the
dependence of the number of points in even widely
separated sets on the common value of λ. The third
class is that of doubly stochastic Poisson processes
or Cox processes. Such a process is obtained from
an inhomogeneous Poisson process by allowing its
intensity function to be a realization of some other
stochastic process, which might be thought of as rep-
resenting an underlying (usually unobservable) envi-
ronmental heterogeneity. One type of Cox process
on S = � is obtained taking the stochastic process
governing the intensity function to be a continuous-
time Markov chain with finitely many states. Such
processes are also called Markov modulated Pois-
son processes [40]. In the simplest case, the Markov
chain has just two states, where these correspond to
a high level and a low (or even zero) level for the
intensity function. Both the mixed Poisson and Cox
process models allow for overdispersion (relative to
a Poisson process), in that the counts may have a
variance greater than their mean.

Product Densities

For point process properties, an approach which
many find both intuitively appealing and useful is
to consider the so-called product densities of the
process. These are defined, under further conditions
which will be mentioned in the next section, for a
point process which is simple. They can be described
in terms of differentials as follows: the first-order
product density is given, for any u in the state space
S, by m1(u) du = Pr(N( du) = 1), where the right-
hand side can be thought of as the probability of the
event “a point at u”. In the case of a Poisson process
with intensity function λ(u) we have m1(u) = λ(u).
For a general point process m1(u) itself is called the
intensity function of the process.

The second-order product density is given, for any
distinct u1, u2 in the state space S, by

m2(u1, u2) du1 du2 = Pr(N( du1) = 1, N( du2) = 1),

where the right-hand side is the probability of the
event “a point at each of u1 and u2”. In general,
for any positive integer k and any distinct u1, . . . , uk
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in the state space, the kth-order product density is
given by

mk(u1, . . . , uk) du1 . . . duk

= Pr(N( du1) = 1, . . . , N( duk) = 1).

For a stationary point process we must have
m1(u) = µ, the intensity of the point process, and
m2(u1, u2) must be a function just of u2 − u1, or even
just of the (Euclidean) distance d(u1, u2) between u1

and u2 when the process is also isotropic.
In the case of a homogeneous Poisson process

with intensity λ we have mk(u1, . . . , uk) = λk for
all k and distinct u1, . . . , uk , and the covariance
density is identically zero. For a renewal process, on
S = [0, ∞), it can be shown that

mk(u1, . . . , uk) = h1(u1)h(u2 − u1) . . . h(uk − uk−1)

for all k and distinct u1, . . . , uk, where h is the (ordi-
nary) renewal density and h1 the modified renewal
density, which takes account of the fact that the origin
need not be a renewal point (see Renewal Processes).

Since m1 (u) du = Pr (N ( du) = 1) = EN ( du),
it follows that EN(B) = ∫

B
m1(u) du gives the

expected number of points in B. Similarly,

EN(B)[N(B) − 1] =
∫

B

∫

B

m2(u1, u2) du1 du2

yields the second factorial moment of N(B). These
ideas lead to consideration of moment measures.

Moment Measures

For any point process N , a set function M1(·) can
be defined for (Borel) subsets B of S by M1(B) =
EN(B). This inherits the nonnegativity and additivity
properties of N and so is itself a measure, variously
called the mean measure, the intensity measure or the
first moment measure of N . This and higher-order
equivalents provide for a point process the analogs
of the ordinary moments of a random variable.

The simplest aspects of the dependence struc-
ture of a point process are embodied in its second
moment measure M2(·). This is defined for sub-
sets B1 and B2 of the state space starting from its
value M2(B1 × B2) = EN(B1)N(B2) for the “rect-
angle” B1 × B2 in S2, the Cartesian product of the
state space with itself, and extending in a stan-
dard manner to a measure M2(·) on S2. Since

M2(B1 × B2) = M2(B2 × B1), M2(·) is a symmetric
measure. In a similar way, starting from C(B1 ×
B2) = M2(B1 × B2) − M1(B1)M1(B2) we can define
the covariance measure of the point process N .
(Observe that C, although being additive for disjoint
sets, may take negative values.) Putting B1 = B2 = B

gives M2(B × B) = E{N(B)2}, and also the vari-
ance function, a set function, defined by varN(B) =
C(B × B). When the state space is the real line
and B = (0, t], it is the function V (t) = varN((0, t])
which is usually called the variance function.

A disadvantage of the moment measures is that
the second and all higher-order moment measures
of any point process have “diagonal concentrations”
[17, Section 5.4]. At least for simple point processes,
this disadvantage can avoided by introducing facto-
rial moment measures, which are the point process
analogs of factorial moments for a random variable.
The first factorial moment measure coincides with
the mean measure, while the second factorial moment
measure M[2](·) can be defined by

M[2](B1 × B2) = M2(B1 × B2) − M1(B1 ∩ B2)

for subsets B1 and B2 of S. Observe that when B1

and B2 are disjoint the right-hand side reduces to
M2(B1 × B2), but that when B1 = B2 = B (say) it
reduces to the second factorial moment of N(B).
In some circumstances when S = �d for some d,
the factorial moment measures can be defined by
densities with respect to Lebesgue measure (length,
area, volume, etc.) in the appropriate dimensional
Euclidean space, these being the product densities
introduced heuristically in the previous section.

A useful result for moment measures is
Campbell’s theorem (see [17, Section 6.4] or [27,
Section 3.2]), the simplest version of this being that
for a wide class of functions g and subsets B of the
state space

E

{∫

B

g(u)N( dx)

}
=

∫

B

g(u)M1( du).

An alternative, possibly more immediately meaning-
ful expression of this is

E





∑

i:Xi∈B

g(Xi)




 =
∫

B

g(u)m1(u) du,

where {Xi} is the set of random points correspond-
ing to the point process N and m1(u) its intensity
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function. The latter integral simplifies to µ
∫
B

g(u) du

whenever the point process is stationary with inten-
sity µ. Campbell’s theorem can be extended to results
for higher-order moment measures, and also to results
involving the Palm distribution; see, for example, [45,
Chapter 4].

Operations on Point Processes and
Associated Limit Results

There are a number of operations by which new
point processes can be generated from a process or
processes already defined. Useful tools for dealing
with these operations – generating functionals – will
be discussed in a later section.

Superposition

For two point processes N1 and N2, not necessarily
independent, a new process, N , their superposition,
can be defined by N = N1 + N2, where this is to be
interpreted as N(B) = N1(B) + N2(B) for subsets B

of the state space (or in intuitive terms as the pooling
of the sets of points for the two processes). When
the processes are independent, the distribution of the
superposition can be viewed as a convolution of the
distributions of the summand processes. In particular,
the superposition of two independent homogeneous
Poisson processes with respective intensities λ1 and
λ2 is another homogeneous Poisson process, with
intensity λ = λ1 + λ2. By iteration, the superposition
of several point processes can be considered and,
under appropriate conditions, the superposition of
a countable number of point processes (the latter
being needed, for example, in “Cluster processes”;
see below).

Random Deletion

Given a point process N , consider the operation
of random deletion or random thinning (sometimes
called Bernoulli deletion) whereby, given a realiza-
tion of N , each point in that realization is deleted
with probability 1 − p and retained with probability
p, independently of all other points in the realiza-
tion. The intensity function for the process of retained
points is then clearly pm1(u), where m1(u) is the cor-
responding intensity for the original process N . Thus,
if N is stationary with intensity µ, then the process
of retained points is stationary, with intensity pµ. If

N is a homogeneous Poisson process, then so is the
new process; furthermore, so is the process of deleted
points, and these two processes are independent.

Random Translation

For any point process N the operation of ran-
dom translation can be defined as follows: given
a realization of N , each point in that realization is
shifted, independently of all other points in the real-
ization, the shift having some specified distribution
function on S, where this distribution is the same
for each point in the original realization. (The shifts
are thus assumed independent and identically dis-
tributed.) If the original point process is stationary,
then so also is the resultant randomly translated pro-
cess; furthermore, if N is homogeneous Poisson, then
so is the resultant process and their intensities are
the same.

Cluster Processes

Here each point of an “input” point process is
replaced by the points of some subsidiary point pro-
cess or cluster, and the superposition of all these clus-
ters is then the “output” process or cluster process.
In the simplest situation the input might be a homo-
geneous Poisson process with specified intensity and
the clusters independent and identically distributed
point processes, each with its origin translated to the
associated point of the input process (often called
the cluster center). Then, when S = �, two particu-
lar types of cluster structure are: (i) a finite renewal
process with the number of points either fixed or
following a specified distribution, and the interval
(lifetime) distribution also specified; or (ii) a pro-
cess in which the number of points is either fixed
or follows a specified distribution, and these points
are placed independently and identically according
to a specified distribution on S. The resultant clus-
ter processes are respectively termed Bartlett–Lewis
and Neyman–Scott (cluster) processes. Processes of
the latter type can also be considered for Euclidean
state spaces S = �d . Compound Poisson processes
are special cases in which all the points of a given
cluster are placed at the cluster center.

State Space Transformation

In this case the operation is not defined directly on
a process or processes, but initially as a mapping
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which transforms points of the state space S into
points of a new state space S∗. Such a mapping then
transforms the set of points of any given point process
realization in S into a corresponding realization in
S∗. Under this type of operation an inhomogeneous
Poisson process on S is transformed into another
such process on S∗ [27, Section 2.3]. However, if the
initial process were a homogeneous Poisson process
the homogeneity would not in general be preserved.

Limit Results

Associated with the operations of superposition, ran-
dom deletion and random translation are certain limit
results concerning point processes. The simplest is
that the superposition of a large number of indepen-
dent and suitably sparse point processes is approxi-
mately a Poisson process.

For point processes in Euclidean state spaces, the
simplest limit theorem for deletions is as follows:
suppose that points of an initial point process are sub-
ject to Bernoulli deletions, with retention probability
p for any individual point, and that the scale is con-
tracted so as to balance the deletions and preserve
the intensity. From suitable initial point processes,
it is possible to prove convergence as p → 0 to a
homogeneous Poisson process.

Among limit results for random translations,
arguably the simplest allows the points of a suitable
initial point process to move with independent and
identically distributed random velocities, and yields
convergence to a homogeneous Poisson process after
a long time.

Substantial generalizations of these basic results
can be considered, and once again generating func-
tional methods can be used. Here, we have not
attempted even a definition of what is meant by con-
vergence of point processes: for this and other details
see, for example, [17, Chapter 9].

Generating Functionals

Various generating functions (probability generating
functions, moment generating functions or Laplace
transforms, and characteristic functions) are useful
tools in the study of random variables; probabil-
ity generating functions are especially helpful with
nonnegative integer-valued random variables. All the
above generating functions have “functional” rela-
tives that are useful in the study of point processes, as

a means of compactly summarizing information about
point processes and enabling that information to be
manipulated. We mention here only one type of func-
tional. (A functional is a function whose argument is
itself a function, rather than a real number or vector
of real numbers.)

The probability generating functional G of a
point process N can be defined, for functions h

mapping the state space S to values in [0, 1] and
equal to one outside some bounded set, by G[h] =
E

(
exp

{∫
s

ln h(u)N( du)
})

. This can be considered
heuristically as

G[h]=E

(
∏

u∈S

h(u)N( du)

)
=E




∏

u:N({u})>0

h(u)N({u})


.

The middle expression allows us to think of G as the
joint probability generating function of all the random
variables N( du), u ∈ S. Working heuristically with
this form, property (ii) of a homogeneous Poisson
process with intensity λ, and the form of the prob-
ability generating function of a Poisson-distributed
random variable, we find that the probability gener-
ating functional of a homogeneous Poisson process
with intensity λ is

G[h] =
∏

u∈S

E(exp{[h(u) − 1]λ du})

= exp

{
λ

∫

s

[h(u) − 1] du

}
.

Consider now the superposition N of two inde-
pendent point processes N1 and N2 having respective
probability generating functionals G1 and G2. Then
the probability generating functional of the superpo-
sition N is given by G[h] = G1[h]G2[h]. The prob-
ability generating functional of the process obtained
from N by random deletions, as described earlier is
G[1 − p + ph], where G is the probability generat-
ing functional of N . Using these ideas it is possible to
give proofs of the assertions about Poisson processes
made in the previous section; see, for example, [17,
Section 8.2].

Markov Point Processes and Some Related
Processes

A wide class of point processes on some bounded
subset S of a Euclidean space can be defined by
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specifying their densities, i.e. likelihood ratios, with
respect to a homogeneous Poisson process of unit
intensity defined on S. Among these processes are
some, known as Markov point processes, which allow
the introduction of a form of spatial dependence
that is local or Markov (see [14, Section 8.5.5],
[20, Section 4.9] or [45, Section 5.5]). For the sim-
plest such processes, the densities (with respect to
the unit Poisson process) have a representation as a
canonical exponential family (see, for example, [31,
Chapter 2] and references cited there), with a small
number of parameters. Since maximum likelihood
estimation is in principle straightforward for canon-
ical exponential families, inference for such Markov
point processes should also be so. The main dif-
ficulty is that the likelihood function for such a
Markov point process family would usually involve
the (parameter-dependent) normalizing constant, for
which an explicit closed form is generally impossible.
In such a case, the conventional approach to maxi-
mum likelihood estimation, based on solving the like-
lihood equation(s), is not feasible. However, recent
advances in computing power and statistical technol-
ogy have made it possible to bypass calculation of
the normalizing constant and conventional maximum
likelihood estimation by using the approach known as
Markov chain Monte Carlo, which involves large-
scale simulation. For an introduction to these ideas,
see [21].

The simplest nontrivial example of such a Markov
point process family is the family of Strauss pro-
cesses. These can be defined by densities (with
respect to the unit Poisson process) which are propor-
tional to βn(x)γ t (x), where x here denotes a particular
realization (i.e. a set of finitely many points from S),
n(x) is the number of points in x and t (x) counts the
number of r-neighbors of x, that is the number of
pairs of points in x that are within a prespecified dis-
tance r of each other. The parameter β, which must
be nonnegative, relates to the intensity of the pro-
cess, while γ is an interaction parameter and must
satisfy 0 ≤ γ ≤ 1. When γ = 1 the process reduces
to a homogeneous Poisson process with intensity β.
The case γ = 0 corresponds to a simple inhibition
process, often called a hard core process, in which
Poisson realizations are conditioned to have no pairs
that are r-neighbors. Cases with 0 < γ < 1 yield pro-
cesses exhibiting less strict inhibition. Another such
family, consisting of so-called triplets processes [21],

can be generated in a similar way by bringing in a fur-
ther statistic w(x) which counts the number of triples
of points that are mutual r-neighbors. The resultant
exponential family has a three-dimensional canonical
statistic (n(x), t (x), w(x)). Such processes can, like
the Strauss process, be fitted by Markov chain Monte
Carlo methods [21]. Similar comments apply to the
area interaction processes introduced in [6].

Another class of point processes including Strauss
processes is the class of pairwise interaction
processes, defined by densities (with respect to the
unit Poisson process) which are proportional to
βn(x)

∏
i 
=j h(d(xi, xj )) where d(xi, xj ) denotes the

usual Euclidean distance between xi and xj , and h

an interaction function, which must be a suitable
bounded function. Pairwise interaction processes are
a special case of the much wider class of Gibbs
processes [14, 45], which have their origins in
statistical mechanics.

Important in the simulation of the processes dis-
cussed in this section, and in Markov chain Monte
Carlo methods of inference for such processes, is a
class of spatio-temporal stochastic processes known
as spatial birth and death processes [7, 45]. These are
continuous-time pure jump Markov processes whose
state space is the set of all possible realizations of
point processes on S (that is, all finite subsets of S

which is assumed, as above, to be a bounded sub-
set of a Euclidean space), and whose only possible
transitions are either the “birth” of a new point, or
the “death” of a point in the preceding point pro-
cess realization. (Note that a spatial birth and death
process is Markov as regards time). The essence of
the connection with simulation is that, under cer-
tain conditions, the limiting distribution of a spatial
birth and death process is a Markov point process
as introduced above. A consequence of this is that
realizations of such a Markov point process can be
generated as observations on the relevant spatial birth
and death process after it has been running for a long
time [21, 36].

Statistical Inference

The remarks that follow do scant justice to a difficult
area which has been the subject of much recent
growth, but may serve as an introduction.

Any statistical analysis of point process data
should be backed by suitable graphical displays.
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Where feasible these should include a plot of the
point process realization; in itself, this may show
some form of interaction between points. For exam-
ple, there may be a tendency to clustering (in a
biological application, perhaps as a result of local
reproduction), or to inhibition (possibly arising from
competition for space or nutrients); regularity is
likely to be observed when there is inhibition with
a minimum permissible distance between points and
a sufficiently high intensity. Other plots of data sum-
maries are possible. Some of these may play a purely
descriptive or summary role; others may be relevant
in fitting particular point process models, or assess-
ing the goodness of fit of such models. Whatever the
approach, it should be driven primarily by the needs
of the person who collected the data.

Assume that the data are a partial realization of
a stationary point process: for example, only those
points within a bounded window W may be observed.
The prime interest may lie in estimation of the inten-
sity. In a forestry application, this may give valuable
information, for example on the overall quantity of
wood in the forest. However, in such an application
it may be necessary to use a more complex model:
one that introduces supplementary information on the
sizes of individual trees, represented as a mark (see
the next section) attached to each point in the point
process, may lead to better information on the overall
quantity of wood.

If stationarity does not seem a reasonable assump-
tion, then it may be of interest to estimate the intensity
function of the process. Here nonparametric ker-
nel density estimation techniques could be used (see
Density Estimation); or, based on an inhomoge-
neous Poisson process model, a specific paramet-
ric form could be fitted for the intensity function.
These approaches are discussed, for example, in [14,
Sections 8.2.4, 8.5.1] and [44, Section 13.3]. Graph-
ical displays in the form of a plot or contour plot of
the estimated intensity function could be provided,
respectively, for real line or planar data.

In the case of data which are a partial realiza-
tion of a stationary isotropic point process, three
other functions are often considered (see [14, Sections
8.2.6, 8.4] or [20, Chapter 2]). One is F(r) =
Pr(d(u, x) ≤ r), r > 0, the distribution function of
the distance d(u, x) from an arbitrary point u in
S to the nearest point of the process; this is often
called the empty space function. Another is G(r) =
Pr(d(x, x\{x}) ≤ r), r > 0, the distribution function

of the distance d(x, x\{x}) from an arbitrary point
x of x to the nearest other point of the process x.
This is the nearest-neighbor distribution function of
the process. Finally, there is the so-called (Ripley)
K-function [38] or reduced second moment function
which can be defined for r > 0 by

K(r) = µ−1E(number of further points of

x within distance r of an arbitrary point of x),

where µ is the intensity of the process. To define the
latter two functions formally requires consideration of
the Palm distribution of the process; the expectation
defining the K-function is in fact an expectation with
respect to the Palm distribution of the process.

For a homogeneous planar Poisson process
with intensity λ it follows that F(r) = G(r) =
1 − exp{−λπr2} and K(r) = πr2, r > 0. For a clus-
tered point process, F(r) for small r will be less than
the corresponding value for a homogeneous Poisson
process, while G(r) and K(r) for values of r close
to the range of clustering will each be greater than
the corresponding Poisson value. For a point process
showing inhibition, F(r) for values of r larger than
the range of inhibition will exceed the homogeneous
Poisson equivalent, while G(r) and K(r) for values
of r close to the range of inhibition will each be less
than the corresponding Poisson value.

Since F = G for a homogeneous Poisson pro-
cess, various proposals for assessing Poissonness of
a given point process, or as some would say com-
plete spatial randomness (often abbreviated to CSR,
see [20] or [14]) of that process, are based on com-
paring F with G. For example, Diggle [19] consid-
ered the statistic supr |F(r) − G(r)|. Van Lieshout
and Baddeley [30] suggested the function J (r) =
[1 − G(r)]/[1 − F(r)], defined for r such that
F(r) < 1, as a useful summary measure to indicate
the strength and range of interpoint interactions in a
point process. A homogeneous planar Poisson pro-
cess with intensity λ satisfies J (r) ≡ 1. Furthermore,
J (r) < 1 indicates clustering and J (r) > 1 inhibition
or regularity, while for many point processes J (r) is
constant for r beyond the range of spatial interaction.

The immediately preceding remarks refer to the
“true” functions being considered, whereas in prac-
tice these functions would usually be estimated from
some point process realization. Estimation of the
functions F, G, and K on the basis of the points in
a bounded window raises special problems of edge
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effects, which have been discussed by Baddeley [4].
Such effects are of two main types: sampling bias
that is size-dependent and related to the well-known
problem of length-biased sampling (for example,
widely separated nearest-neighbor pairs are less likely
to be represented in a fixed bounded sampling win-
dow), and censoring effects (which arise, for exam-
ple, because the nearest point to a given point inside
the window may be outside the window and there-
fore unobserved). Ways of dealing with these effects
are discussed by Ripley [39] and Baddeley [4]. For
example, extensions of Campbell’s theorem play a
key role in assessing bias in the estimation of F , G,
and K .

Estimates F̂ , Ĝ, and K̂ can be plotted separately,
along with their respective Poisson equivalents based
on the estimated intensity. These plots can be used
to assess the fit of a homogeneous Poisson process
model. Such assessment may be assisted by use
of Monte Carlo tests (cf. [20]). Here, for example
based on F , one would simulate 99 independent
realizations from the homogeneous Poisson model
with the estimated intensity, and then construct the
upper and lower envelopes for F ,

UF (r) = max
i

F̂i (r), LF (r) = min
i

F̂i (r),

where the maximum and minimum are taken over the
estimates F̂i of F from each of the 99 simulations.
The functions UF and LF are then plotted with F̂

and its Poisson equivalent. To the extent that F̂ lies
between UF and LF the Poisson model is regarded as
acceptable. (Note that, while (LF (r), UF (r)) gives a
98% confidence interval for F(r) for any specified
value of r , it cannot be asserted that the same
confidence coefficient applies for all values of r in
some interval – this is a problem of simultaneous
confidence intervals.) A similar approach based on
G, K, or J could be used; each function embodies
somewhat different information from the others, so
the plots should be complementary.

Variations on the above plots are possible. For
example, one could use a probability plot of P–P
type (see Graphical Displays) where F̂ (r) is plotted
against the corresponding Poisson equivalent F̂Poi(r)

for each r , and also plot the pairs (LF (r), F̂Poi(r))

and (UF (r), F̂Poi(r)) to give corresponding envelope
functions. In the case of the K-function it has been
found useful to plot either K̂(r) − πr2 against r , or
[K̂(r)/π]1/2 − r against r; (see, for example, [14]
or [20]).

Indications of deviations from Poissonness shown
in plots like those discussed above provide clues
as to what type of non-Poisson model may be
appropriate. A more detailed description of any
observed clustering or inhibition could be attempted
by the formulation and fitting of a more complex
model (cf. [14, Section 8.5]): for example, this might
be some simple Poisson cluster process or a Strauss
process. The choice of a suitable model and its fitting
may not be entirely simple matters and it is likely
that, at least at this stage, the investigator would
need to consult with a statistician knowledgeable
about point processes. The parameters of a reasonably
fitting model provide a summary of the original data:
for a homogeneous Poisson process this summary
would involve just the intensity; for a Strauss process,
as described in the previous section, the parameter
β is related to the intensity of the process, while
γ describes interactions between neighboring points.
Since the case γ = 1 reduces to a Poisson process,
it is in principle possible to assess Poissonness
parametrically within the family of Strauss processes
by testing the hypothesis γ = 1.

One of the problems that has impeded develop-
ment of inference for point process models is the
difficulty, and in most cases impossibility, of writ-
ing down an expression for the likelihood function.
A notable exception is that the likelihood can be
written down explicitly for any (inhomogeneous)
Poisson process on a line which has been observed
over a fixed time interval (0, T ); (see [28] or [42]).
As indicated in the previous section, there is much
current interest (see, for example, [21] and [36]) in
the use of Markov chain Monte Carlo methods.
These enable likelihood-based inference to be imple-
mented for parametric point process models even
when a likelihood function cannot be written down
explicitly. There is also the possibility of using
pseudo-likelihood methods, in which the likelihood
function is replaced by another closely related func-
tion that is then used as if it were the likelihood;
see [5, 8], and the references therein.

Marked Point Processes and Other
Related Processes

As we have indicated above, when modeling the
location of earthquakes in a region, or trees in a
forest, it may be appropriate to introduce a further
random quantity, often called a mark, associated
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with each point in an underlying point process. The
resultant process is known as a marked point process,
and can be considered as a point process on the
product space S × M consisting of all pairs (x, y)

where x is from the original state space S and y

from a space M consisting of all possible marks.
For the two examples indicated above, the mark
space would be taken as M = (0, ∞), though other
choices for M are possible. For example, a compound
Poisson process can be viewed as a marked (Poisson)
point process with M the set of nonnegative integers.
Although the general theory of point processes does
not strictly need extension to cover marked point
processes, the special structure of the new state space
leads to related special structure in, for example,
moment measures and product densities; see, for
example, [45, Chapter 4]. There is, in particular,
a version of Campbell’s theorem for marked point
processes (see also [44, Section 14.2]).

The case of a point process where there are two
types of point, for example two types of tree in the
forest, can be covered by using a two-point mark
space, e.g. M = {1, 2}. In addition, this setting allows
joint consideration of the point process of “retained”
points and the point process of “deleted” points in
the random deletion context discussed earlier. For
Bernoulli deletions it is even easy to write down an
expression for the joint probability generating func-
tional of the two processes (probability generating
functional of the marked point process) in terms of
the probability generating functional of the original
process. If the mark space is a finite set, without
loss of generality M = {1, 2 . . . , s}, then the marked
point process is often called a multitype or multi-
variate point process (see [12, Chapter 5] or [20,
Chapter 6]).

The theory of marked point processes is often
helpful in providing language and a unifying frame-
work within which other processes can be considered.
Markov and semi-Markov processes with finitely
many states can be viewed as multitype point pro-
cesses [12, Section 3.2], although most properties of
such processes can be conveniently derived without
using this connection. Alternating renewal processes
are a special case of semi-Markov processes in which
there are two types of mark and two types of lifetime,
alternating over time. Shot noise processes (cf. [12,
Section 5.6] or [42, Chapter 4]) can also be viewed
as marked point processes, where in this case the
mark attached to each point is a possibly random

multiple (independent and identically distributed for
each point) of a fixed function, e.g. a negative expo-
nential function with fixed decay parameter, which
represents a ‘blip’ of electric current associated with
that point. The actual shot noise process, which is not
a point process, is the superposition (sum) of all the
“blips” of current.

Marked point processes provide a framework
for treating many probability models of interest in
stochastic geometry and stereology. For example,
consider a stochastic process whose realizations are
a (finite or) countable number of line segments in
the plane, with each segment specified by a random
location, orientation and length. Such a process can
be viewed as a marked point process in which
the points of the underlying point process give the
locations of the midpoints of the line segments,
while two marks attached to each such point record
respectively the orientation and length of the line
segment to be associated with that point. (An example
involving positions and orientations of flies on a leaf
is quoted in [44, p. 265].) The simplest such model
involving line segments assumes that the underlying
point process is a homogeneous Poisson process in
the plane. Another type of model can be built from an
underlying homogeneous Poisson process in the plane
by supposing that each point is independently marked
with a positive number drawn from some specified
distribution, the same for each point. Then each
point of the underlying process is replaced by a disk
centered at that point and having radius determined
by the mark associated with that point. The union
of all such disks then constitutes a realization of the
desired process which, of course, is not itself a point
process; it is an example of a random set process.
Both these types of process are examples of Poisson
grain models or Boolean models; (see, for example,
[44, Appendix F] or [45, Chapter 3]). One application
of such models is to modeling the distribution of cells
over a region.

Rather than consider a process of line segments,
it is sometimes of interest to consider a process of
lines (infinite in length); see [17, Section 10.6] or [27,
Chapter 7] for some discussion of such processes.

Martingale Theory of Point Processes

A different approach to point processes is needed for
dealing with processes, such as arise in the study of
queueing or communication systems or in survival
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analysis, which evolve dynamically over time and in
a manner that may depend on the past history of the
process. For a point process Nt , where t represents
time and Nt = N((0, t]) in our previous notation, the
stochastic intensity function λ(t |Ht−) can be defined
heuristically by

λ(t |Ht−) dt = Pr(N( dt) = 1|Ht−),

where Ht− is a history of Nt up to but not including
time t . Using the mathematically well-developed
theory of martingales (see Counting Process
Methods in Survival Analysis), the martingale
theory of point processes provides an approach to
formalizing the notion of a stochastic intensity and
to solving a wide variety of problems by means of
the stochastic calculus that results. It is beyond the
scope of the present article to enter into details of
this extensive and technically rather difficult theory;
see [2, 11] and [42], the latter comprehensive work
being focused on applications to survival analysis.

Guide to the Literature

The annotated references that follow may be of some
assistance. An expanded version of the present arti-
cle with similar aims but introducing some more
advanced topics can be found in Milne [35]. For
those interested primarily in spatial data, especially in
biological applications, [20] is highly recommended
and [32] and [33] may prove useful. The examples
in parts of [14, 38, 39] and [44] are also good, and
in all these books there is some discussion of the-
ory; [23, Chapter 5] offers a succinct overview of
the theory of point processes and is well motivated
by examples; [27] is a masterly survey of the many
beautiful properties and applications of Poisson pro-
cesses and a good introduction to many aspects of
general point process theory. More detailed exposi-
tion of various aspects of the theory can be found
in [10, 16], Grandell [12, 22, 37] and [43]. A much
more comprehensive, yet readable, presentation of
the mathematical theory is given in [17] and Daley
& Vere-Jones [18]. A systematic and careful devel-
opment of the mathematical foundations of point
process theory is in [26] and [34], though these works
are usually considered difficult, even by probabilists.

Point process theory, with a view to applications in
stochastic geometry, is dealt with in [1, 44], and [45].
A good introduction to stochastic geometry, including

its connections with point process theory, is provided
in [3].

For those interested especially in statistical infer-
ence from point process data [13, 14, 20, 38, 44]
and [45] contain examples as well as an introduction
to relevant theory; in particular, [14, Section 8.6] and
[20, Chapters 6, 7] deal with aspects of inference for
multitype point process data.

Pre-1973 references are well covered in [15].
There are many references and an excellent coverage
of both theory and applications of point processes, as
at 1971, in [29].
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Poisson Distribution

The Poisson distribution arises as a limiting form of
binomial distribution. It is named after the French
mathematician, Siméon Denis Poisson (1781–1840),
but was introduced earlier in 1718, by A. De Moivre,
who presented the limiting result in approximate
form.

The Poisson distribution is also important in its
own right; for instance, when rare events of some
sort occur randomly in time or space. The variable
of interest is the number of events observed in a
continuous interval. The interval may be an interval
of time, but it may also refer to some other measure
of length, or it may be an area or volume segment.

The Poisson distribution is used in many areas
of medical research and, in particular, in toxicology,
bacteriology and epidemiology. Examples include
the number of abnormal cells in a fixed area of
a histological slide, the count of bacteria surviving
treatment in a fixed volume of bacterial suspension,
the number of white blood cells in a drop of blood,
the number of new breast cancer cases registered per
month by the National Cancer Registry or the number
of live births in Greater London during the month of
January.

In this article we use nontechnical and heuristic
arguments. More detailed information can be found
in [3] and [4].

Assumptions

For count data to follow a Poisson distribution three
conditions need to be met:

1. In any very small interval (smaller, say, than a
millisecond or a cubic nanometer) the probability
of an event occurring is proportional to the size
of the interval.

2. The probability that the interval contains two
or more events gets smaller as the interval gets
smaller and can, therefore, for all practical pur-
poses, be ignored.

3. What happens in any small interval is indepen-
dent of what happens in any other small interval
that does not overlap the first.

These conditions imply that events occur over time
or space at a constant rate on average, each event
occurring independently and at random.

Probability Distribution

We give a heuristic derivation of the Poisson prob-
ability distribution using the context of white blood
cell counts.

Suppose that Ms Smith has on average 6000 white
blood cells in a cubic millimeter of blood. It is rea-
sonable to assume that the probability of finding a
white cell in a small drop of blood is proportional to
the size of the drop and that, for a sufficiently small
drop, the probability of finding two or more white
cells is negligible. Since cells move independently,
the presence of a white cell in one small drop of
blood is not expected to affect the presence or absence
of a white cell in any other nonoverlapping drop
of the same size. A drop of 0.0005 cubic millime-
ter (V = 0.5 × 10−3mm3) of blood from Ms Smith
is examined. If several such drops were examined,
some of them would, by random variation alone, con-
tain no white blood cells, others would contain one,
or two, and some would contain as many as, say,
eight white blood cells. We would expect the aver-
age number of white blood cells to be three when
the average is taken over a large number of drops
of size 0.0005 cubic millimeters (0.5 × 10−3mm3 ×
6000cells/mm3 = 3 cells). We write µ = 3.

We make a hypothetical split of the 0.0005 cubic
millimeter drop of blood into yet smaller subdrops,
say, n = 60 or 100 or 300 subdrops of equal size.
The size of each subdrop (V/nmm3) gets smaller
when the number n gets larger. When the subdrops
are sufficiently small, most of them will contain no
white blood cells, some will contain one and it is
very unlikely that any subdrop will contain more
than one white blood cell. The small subdrops are
approximating a sequence of n binomial trials, in
each of which there is a probability µ/n of finding a
white blood cell and a probability 1 − (µ/n) of not
finding one. The probability that in the whole series
of n subdrops there are exactly x white blood cells
is given by the binomial probability

n(n − 1) · · · (n − x + 1)

x!

(µ

n

)x (
1 − µ

n

)n−x

. (1)

The assumptions underlying this binomial probabil-
ity get more accurate as n increases. What happens
when n increases indefinitely? We can replace n(n −
1)(n − 2) · · · (n − x + 1) by nx , since x will be negli-
gible in comparison with n. We can also replace [1 −
(µ/n)]n−x with [1 − (µ/n)]n since [1 − (µ/n)]x will
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approach one as n increases. It is a standard mathe-
matical result that [1 − (µ/n)]n approaches e−µ when
n increases indefinitely, e being the base of the nat-
ural (or Napierian) logarithms (e = 2.718 . . .). Thus,
when n increases indefinitely, the binomial probabil-
ity in (1) takes the form

nx

x!

(µ

n

)x

e−µ,

which equals

Px(µ) = µxe−µ

x!
, x = 0, 1, 2 . . . . (2)

and defines the Poisson probability distribution.
Interestingly, the limiting approximation derived

by De Moivre did not involve the Napierian e,
since this was not introduced until the days of Euler
(1707–1783).

Table 1 illustrates how the binomial distribution
approaches the Poisson when n gets larger and the
binomial probability π = µ/n gets smaller, while the
mean µ = nπ is kept constant.

Matsunawa [5] gives accuracy bounds for the
Poisson–binomial approximation. A rule of thumb
is that the Poisson approximation to the binomial
is good if n ≥ 20 and π ≤ 0.05 and very good if
n ≥ 100 and π ≤ 10.

The Poisson probabilities in (2) can also be
derived from a Poisson process by solving a set of
differential equations.

Table 1 Probabilities for three binomial distributions with
nπ = 3 and for the Poisson distribution with mean 3

Number of π = 0.05 π = 0.03 π = 0.01 Poisson
events x n = 60 n = 100 n = 300 mean µ = 3

0 0.046 0.048 0.049 0.050
1 0.145 0.147 0.149 0.149
2 0.226 0.225 0.224 0.224
3 0.230 0.227 0.225 0.224
4 0.172 0.171 0.169 0.168
5 0.102 0.101 0.101 0.101
6 0.049 0.050 0.050 0.050
7 0.020 0.021 0.021 0.022
8 0.007 0.007 0.008 0.008
9 0.002 0.002 0.003 0.003

10 0.001 0.001 0.001 0.001
· · · · ·
· · · · ·
· · · · ·

Properties

A Poisson random variable X takes the values
x = 0, 1, 2, . . . with probabilities defined by (2).
Thus, P0 =e−µ, P1 =µe−µ, P2 = 1

2µ2e−µ, etc. with
P1 + P2 + · · · = 1. The whole distribution is char-
acterized entirely by the one parameter µ. The
moment generating function is of the form E(etx) =
exp[µ(et − 1)], with the first two moments E(X)=µ

and E(X2)=µ2 + µ. Both the mean E(X) and the
variance var(X) = E(X2) − [E(X)]2 are thus equal
to µ.

The shape of the distribution for µ = 1, 3, 7 and
15 is shown in Figure 1. For small values of µ the
distribution is skewed, and it gets more symmetric as
µ increases. For µ ≥ 10, the distribution is close to
symmetric.

Normal Limit

When µ increases indefinitely the Poisson distribu-
tion approaches the normal distribution with mean
µ and variance µ. De Moivre derived the normal
limit to the binomial distribution, from which the
result for the Poisson distribution follows. Using a
continuity correction, the probability that a Poisson
random variable takes the integer value x is approx-
imated by the probability that a normally distributed
random variable takes values between x − 0.5 and
x + 0.5. The probability that a Poisson variable with
mean µ takes values greater than, or equal to, x is
correspondingly approximated by the tail area of a
normal distribution beyond the standardized normal
deviate z = (|x − µ| − 0.5)/

√
µ.

Variance-stabilizing Transform

The square root transformation Y = √
X of a Pois-

son random variable X stabilizes the variance, with
var(Y ) = 1

4 for all values of µ (see Delta Method;
Power Transformations). This allows checking the
Poisson assumption, and for Poisson random vari-
ables with large enough means one can get approxi-
mate results using methods appropriate for normally
distributed random variables with constant variance.

Sum of Poisson Variables

The Poisson distribution has a reproductive property:
let X1, X2, . . . , Xk be k independent Poisson
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4 Poisson Distribution

random variables with parameters µ1, µ2, . . . , µk ,
respectively. Then the sum X1 + X2 + · · · + Xk is
also a Poisson random variable with parameter µ1 +
µ2 + · · · + µk .

Binomial and Multinomial

Let X1 and X2 be two independent Poisson ran-
dom variables with parameters µ1 and µ2, respec-
tively. The conditional distribution of X1, given X1 +
X2 = n, is binomial with index n and probability
µ1/(µ1 + µ2). Correspondingly, for k independent
Poisson variables X1, X2, . . . , Xk with parameters
µ1, µ2, . . . , µk , the conditional distribution, given
X1 + X2 + · · · + Xk = n, is multinomial with index
n and probabilities µs/(µ1 + µ2 + · · · + µk), s =
1, 2, . . . , k. This relation between sampling distribu-
tions is central to the theory of a loglinear model for
categorical data analysis.

Hypergeometric

Let X11, X12, X21, and X22 be four independent Pois-
son random variables with parameters µ11, µ12, µ21

and µ22, respectively. They may be viewed as cell
counts in a 2 × 2 contingency table. Conditional
on both margins Xi1 + Xi2 = mi and X1j + X2j =
nj , i, j = 1, 2, the random variable X11 follows a
noncentral hypergeometric distribution with non-
centrality parameter θ = µ11µ22/µ12µ21. This con-
ditional distribution is used in matched case control
studies and in conditional logistic regression. For
θ = 1, i.e. when the odds ratio in the 2 × 2 frequency
table is unity, the distribution reduces to the standard
hypergeometric distribution.

Heterogeneity

In empirical studies, observed counts often exhibit
larger variance than would be expected from the
Poisson assumption. One mechanism generating this
larger spread is heterogeneity in the average event
rate over the population under study. Such overdis-
persion relative to the Poisson was noted already
in 1920 by Greenwood & Yule [2], who suggested
a model where the mean µ is not constant, but
a random variable with a gamma distribution
(see Accident Proneness). This leads to a two-
parameter negative binomial distribution for the

count. Mixing distributions other than the gamma dis-
tribution have been discussed, as well as distribution-
free approaches and quasi-likelihood methods for
handling overdispersion. If sources of heterogeneity
in the Poisson means are known and measured, then
Poisson regression methods are appropriate.

Test for Heterogeneity

For a set of k observed counts X1, X2, . . . , Xk , it
may be of interest to test the hypothesis that they are
drawn at random from a single Poisson distribution,
as opposed to being drawn from several Poisson
distributions with different means. A reasonable test
statistic for detecting heterogeneity would compare
the spread of the observed counts relative to their
average. Let X = ∑k

i=1 Xi/k denote the sample
mean. Under the null hypothesis of common mean µ

the Poisson heterogeneity or dispersion test statistic:

T =

k∑

i=1

(Xi − X)2

X
(3)

is approximately distributed as a chi-square distri-
bution with k − 1 degrees of freedom (see Chi-
square Tests). The heterogeneity test in (3) was
first introduced by “Student” in 1907 (see Gos-
set, William Sealy). Armitage & Berry [1] justify it
from two different points of view: for normally dis-
tributed observations with constant variance the sum
of squares divided by the variance follows a χ2 dis-
tribution. Here µ̂ = X is an estimator for the variance
under the null hypothesis. One may also view (3) as
the usual χ2 test statistic T = ∑k

i=1(Xi − µ̂i)
2/µ̂i ,

with Xi the observed count and µ̂i = X the corre-
sponding expected count under the null hypothesis.

In practice, it may be easy to show that a given
sample of counts does not originate from a Poisson
distribution. The result is useful, since it reveals the
presence of some kind of nonrandomness. If the Pois-
son distribution is rejected, then a distribution involv-
ing two (or more) parameters is needed to describe
the data. It may, however, take a very large sam-
ple to distinguish between, for example, the negative
binomial and some other two-parameter distributional
form. In general, one should view determination of a
specific mechanism for nonrandomness as a biologi-
cal, rather than a statistical, problem (see Contagious
Distributions).
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Poisson Processes

The Poisson distribution has often been rediscov-
ered, but goes back to the work of the French mathe-
matician S.-D. Poisson (1837). It arises as a limiting
form of the binomial distribution, when a rare event
is observed occasionally in a large number of rep-
etitions. Thus, suppose that there are a number n

of repetitions of some random experiment, the rep-
etitions being statistically independent. Suppose that
there is some outcome of the experiment which we
describe as a “success”, and which has a constant
probability p. The probability that there are exactly r

successes in the n trials is then given by the binomial
probability

b(n, p; r) =
(

n

r

)
prqn−r , r = 0, 1, 2, . . . , n.

(1)

If n is large and p is small, in such a way that
the mean number of successes µ = np is moderate,
then b(n, p; r) is well approximated by the Poisson
probability

πr(µ) = µre−µ

r!
. (2)

In fact, it is simple to prove that, as n tends to infinity
for fixed µ,

b
(
n,

µ

n
; r

)
−−−→ πr(µ). (3)

A famous example of the occurrence of the Pois-
son distribution (2), is the stream of particles emitted
from a piece of radioactive material and detected in a
Geiger counter. One can think of each atom as being
an independent trial, with a very small probability
of emission in a given interval of time. There are
many atoms, and the total number of particles emit-
ted in a time interval will thus have the distribution
of (2), where µ is the mean number of emissions in
that interval and will normally be proportional to the
length of the interval.

This is an example of a Poisson process occurring
in one (time) dimension. If we mark out along a time
axis the instants at which particles are emitted, then
we have a random set of points with the property that,
if N(a, b) denotes the number of points between a

and b, then for any a < b,

Pr[N(a, b) = r] = πr(µ), r = 0, 1, 2, . . . , (4)

where
µ = λ(b − a). (5)

Moreover (and this is an essential part of the def-
inition) the random variables N(a, b) for disjoint
intervals (a, b) are independent (where disjoint means
that no two overlap).

Many other random series of points, such as muta-
tions at a chromosome locus (see Gene), or arrivals
at a queue, are found to be, more or less exactly,
Poisson processes in this sense. In many cases, how-
ever, the rate λ is not constant, and then (5) must be
generalized to

µ =
∫ b

a

λ(t) dt, (6)

where λ(t) represents the instantaneous rate of occur-
rence at time t . The best way to visualize this is that
λ(t)h is, for small h, the probability that at least one
of the random points occurs between t and t + h.

The one dimension need not be time, but could be
spatial, and there is an obvious generalization to two
or more dimensions. For instance, the stars visible in
the sky, or the (centers of the) spots of a skin rash,
might be modeled as random sets of points in two
dimensions. The general structure is simple, although
there are technical mathematical niceties which are
here ignored. We have a space S, which might be
ordinary space of some dimension but could be more
complicated. The object of interest is a random set
of points in S, sufficiently dispersed that for typical
subsets A of S the number of these points falling in
A is a finite random variable N(A). (Think of S as
the plane, and the sets A as being bounded sets like
circles, triangles, and rectangles.) The random set of
points is then called a Poisson process if

1. the random variable N(A) has a Poisson distri-
bution (2), where µ = µ(A) depends on A

2. for disjoint sets A1, A2, . . . , An, the random vari-
ables N(Aj )(j = 1, 2, . . . , n) are independent.

In most cases the mean

µ(A) = E[N(A)] (7)

is given in terms of a rate function λ(x) on S by

µ(A) =
∫

A

λ(x) dx(A ⊆ S), (8)

but it can be a general (nonatomic) measure on S.
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The simple structure of the Poisson process leads
to a number of properties which are extremely pow-
erful in modeling random sets of points. Suppose,
for instance, that we have two independent Poisson
processes on the same S, and that the numbers of
their points falling in a set A are, respectively, N(A)

and N ′(A). Then superposing these two sets gives a
new random set, which also turns out to be a Poisson
process. The number of points of the new process
falling in A is N(A) + N ′(A), which has expectation
µ(A) + µ′(A).

Again, a mapping from one space to another
preserves the Poisson property. If we have a Poisson
process on a space S, and a mapping f from S to
another space S∗, then f maps the random set of
points into (usually) a Poisson process on S∗, and the
expectation measure maps in a simple way. The only
thing that can go wrong is that the induced measure
on S∗ may have atoms, in which case f may pile
points on top of one another.

Often the random points of the Poisson process
come with numerical values attached to them; the
stars have their magnitudes, the arrivals at a queue
their service requirements. This leads to the concept
of a marked Poisson process, where a mark, which
may be numerical or more complicated, is associated
with each point. If the marks of different points
are independent random variables (with distributions
depending on the positions of the points), there is
a powerful product space representation from which
detailed calculations can be made. Thus, a point of
the process at x, with a mark m, can be plotted as
a random point (x, m) in the product space S × M ,
where M is the space of possible marks. Then it can
be shown that this random set of points is a Poisson
process on the product space, and there is an explicit
formula for the expected number of points in a given
subset.

Suppose that a swarm of bees attacks an unfortu-
nate victim. It might be that the instants of successive
stings form a (one-dimensional) Poisson process, and
that the amount of venom in each sting is a random
quantity independent from bee to bee whose distri-
bution might depend on the time of the sting. Then
we have a marked Poisson process, and the prod-
uct space representation is two-dimensional, each bee
being represented by a point whose coordinates are
the time at which it stings and the amount of venom.
The victim might be interested in the total amount of
venom he receives. This is an example of a Poisson

sum of the form ∑
g(x), (9)

where the sum is taken over all the points x of a
Poisson process on S, and g is a real-valued function
on S. A result known as Campbell’s theorem, after
the work of N.R. Campbell (1909), gives an explicit
formula for the moment generating function of the
sum (9). This and details and proofs of the properties
already cited may be found in [2].

All the results so far described apply whatever the
dimension of the space S. For some problems S can
be quite a complicated geometrical object. For exam-
ple, some fibrous substances (such as paper) when
viewed microscopically resemble a random array of
lines in three-space, and this can be represented as
a random set of points in a four-dimensional mani-
fold. However, there are properties which are peculiar
to Poisson processes on the line. A one-dimensional
Poisson process can always be mapped, by an increas-
ing function, into a Poisson process which is homoge-
neous in the sense that it satisfies (4) and (5) for some
λ. A homogeneous Poisson process is a renewal pro-
cess in the sense that the intervals between successive
points are independent and identically distributed,
their common probability density being

λ exp(−λx), x > 0. (10)

This property is characteristic of the one-dimensional
homogeneous Poisson process, and has no analogue
in higher dimensions.

One useful aspect of this special case is that, in
one dimension, it is easy to construct an alternative
model for a random set of points (or point process
as it is then usually called) which is not Poisson. It
is only necessary to change the interval distribution
from (10), or to introduce some dependence between
successive intervals. It is much more difficult, in more
than one dimension, to devise usable models for non-
Poisson point processes. There are, however, variants
of the Poisson process which can sometimes provide
useful models.

One of these is the Poisson cluster process, in
which each of the points of a Poisson process gives
rise to a random number of daughters, the daughters
being dispersed about the parent point in a random
way (think of seedlings around trees). Another is
the Cox process, which is a Poisson process whose
rate function is itself a random process. These are,
in principle, very general classes of point processes,
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but the generality is paid for in great complexity
of calculation. At the same time, they have special
properties which limit their usefulness; for instance, a
Cox process is always overdispersed in the sense that
the variance of the number of points in any set always
exceeds its mean (there is equality for a Poisson
process), so that no Cox process could be a realistic
model for a random set which was underdispersed.

The other significant aspect of the theory of Pois-
son processes, which is not covered in [2], is that
of limit theorems and approximations. The Poisson
distribution started from a limit result (3), and there
are many situations where modifying a non-Poisson
process leads approximately or asymptotically to

a Poisson process. The best starting point of this
aspect is [1].
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Poisson Regression in
Epidemiology

Various authors [3, 9, 11, 12] have noted that
Poisson regression can be used to analyze cohort
survival data (see Cohort Study). This formulation
also leads to a unification of risk estimation
based on internal comparison of rates among
members of a cohort with various exposure levels
and classical epidemiologic methods based on
external rates that yield standardized mortality
ratios or standardized incidence ratios [2, 5] (see
Standardization Methods).

Poisson regression is an important alternative
to partial-likelihood-based analysis of the propor-
tional hazards model (see Cox Regression Model)
and to parametric analyses of such models (see
Survival Analysis, Overview) for two main reasons.
First, it provides an efficient and intuitive method
for dealing with cumulative exposures and other
time-dependent covariates and for allowing risk to
depend on multiple time scales (e.g. attained age,
time since exposure, or calendar time). Secondly,
it facilitates the consideration of a broad range of
risk models including those that allow for the direct
parametric description of baseline rates, absolute
excess rates, and relative risks.

Breslow & Day [4] offer a general discussion
of the use of Poisson regression in the analysis of
cohort survival data. Some of the most extensive
applications of these methods have involved studies
of radiation effects on mortality and cancer incidence
in the atomic bomb survivors [14].

Poisson Regression of Survival Data

The data from cohort survival studies typically con-
sist of information on whether or not the event of
interest occurred, the event or censoring time, t , and
a vector of possibly time-dependent covariates, z, for
each cohort member. Since interest centers on hazard
rates it is natural and useful for the purposes of anal-
ysis or summarization to reorganize such data into
an event–time table defined by a cross-classification
over a set of time intervals and covariate categories.
The data for each cell in such a table include the total
number of events, cis , the total time (person-years) at
risk, Ris , and representative values of the covariates,

zis for time period i and category s. For each cell the
ratio of the number of events to the time at risk is a
crude hazard rate. The analysis involves regression
methods to smooth these rates as a function of time
and other covariates.

When such tables are produced as simple sum-
maries of a data set, it is common to limit the number
of time periods and other factors used to define the
table. However, for modeling rates it is appropri-
ate to use detailed tables with many cells based on
a relatively fine stratification over time and other
factors. For example, a rate table to be used in an
analysis of an occupational cohort study (see Occu-
pational Epidemiology) might be defined in terms
of age, year, age at first exposure, sex, and cumu-
lative exposure with hundreds or even thousands of
cells. An event–time table for a clinical trial might
involve follow-up time, age at entry, sex, and treat-
ment. Although not usually necessary in practice, the
methods can be applied to a table based on indi-
vidual subjects where the only grouping is on time.
This suggests the close connection between the use of
Poisson regression methods for the analysis of rates
and the Andersen–Gill counting process method [1]
for analysis of hazard functions.

If it is assumed that the hazard, λis is constant
within each cell, then the expected number of events
in the cell is given by

E(cis) = Ris × λis .

In terms of a parametric function, λ(ti, zis, θ) for the
rates, the log likelihood for the survival data under
the piecewise constant hazard assumption is

∑

l,s

cis ln(λ(tl, zis, θ)) − Ris × λ(ti, zis, θ),

which is equivalent to the log likelihood that would
arise if the event counts in the table were independent
Poisson random variables. Thus, Poisson regression
can be used to estimate the parameters in this
model.

With this approach, modeling rates in terms of
time is straightforward since, in contrast to Cox
regression, there is no distinction between time-
dependent and time-independent covariates. This is
because the time-dependent computations are carried
out when the event – time table is constructed and
are not repeated each time a model is fitted.
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Using External Rates or Expected Cases

In some situations one has external data on the
expected rates λe

q stratified by time and other fac-
tors (e.g. age, calendar time period, and sex but not
exposure or treatment related factors). In this case, it
is possible to compute the expected number of cases
for each cell in the table as Ce

is = Ris × λe
q , where

q = q(is) denotes the external rate strata correspond-
ing to cell is. In this case, Poisson regression can be
used to model the relative hazard, ρis , since

E(cis) = Ce
is × ρis = Ris × λe

q × ρis .

When person-years are replaced by expected num-
bers of cases, this type of analysis is known as the
subject-years method or standardized mortality ratio
(SMR) regression [4].

Models for Rate Regression

Following the pioneering work of Cox [8], the most
commonly used hazard function model is the log-
linear proportional hazards model

λ(t, z, θ) = λ0(t, α) × exp(βz). (1)

Here λ0 is a baseline hazard for an individual with
covariate z = 0.

Other models are also important, however. For
example, in dose–response studies it is often useful
to consider models in which the excess relative risk
is a linear function of dose d; that is

λ(t, z, θ) = λ0(t, α) × (1 + βd).

Preston [16] has described a flexible general class
of parametric additive hazard models of the basic
form

λ0(t, α, z0) + λEAR(t, β, z1) (2)

and

λ0(t, α, z0)[1 + λERR(t, β, z1)], (3)

in which λ0 represents the baseline or background
rates and λEAR and λERR describe the excess absolute
or excess relative risks. In these models baseline
rates are usually assumed to be loglinear functions
of the covariates while the excess risks are modeled
as linear or products of linear and loglinear functions
of the covariates.

One reason for the popularity of the Cox regres-
sion model is that it allows one to focus (perhaps too
much) on the relative risk while treating the baseline
hazard as completely unspecified. A similar simpli-
fication is possible in the analysis of relative risk
models for rates using Poisson regression. This is
accomplished by the inclusion of a multiplicative
parameter for each time interval leading to models
such as

τi exp(βz) or τi(1 + βd). (4)

This approach can also be extended to allow strat-
ification over additional factors, in which case the
model is similar to the stratified Cox regression
model. Preston et al. [17] describe an efficient algo-
rithm for models with large numbers of stratum
parameters.

Parameter Estimation and Inference

Parameter estimates for Poisson regression models
are computed using maximum likelihood methods.
Models in which the rates depend on the parameters
through a linear function βz, are Generalized Lin-
ear Models (GLM). Parameter estimates for GLMs
can be computed using iteratively reweighted least
squares with person-years (or cases for subject-
years analysis or standardized mortality/incidence
ratio regression) as an “offset”. These methods are
available in all of the major statistical packages
including GLIM, SAS, and S-PLUS (see Software,
Biostatistical). However, the more general rate func-
tion models such as (3) and (4) are not GLMs. In this
case, it is necessary to make use of special software to
define the likelihood and possibly its derivatives. The
Epicure package [17] is designed to work with mod-
els in the general class described by (1)–(4) above.

Inference about parameters of interest can be
carried out using the standard asymptotic methods,
including Wald, score, and likelihood ratio tests.
However, because of the nonlinear nature of the
models and, in many applications, the limited infor-
mation on excess risks, asymptotic standard errors
and hence hypothesis tests and confidence intervals
based on Wald tests can be misleading. Score or like-
lihood ratio tests and profile-likelihood-based confi-
dence intervals should be emphasized when working
with additive hazard models.
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An important issue concerns the assessment of
goodness of fit for Poisson regression models
derived from detailed event–time tables. Because rate
modeling often involves relatively rare events and
event–time tables with many cells, the rates or the
number of events in each cell of the table can be
quite small. In this case, neither the global deviance
nor the Pearson chi-square statistic provides rea-
sonable guidance as to goodness of fit. The total
deviance is often much smaller than the putative
degrees of freedom (the number of cells in the table
minus the number of free parameters in the model).
Pregibon [15] developed generalized regression diag-
nostics that can be used for regression models in
exponential families. While such diagnostics may be
useful in looking for lack of fit and other problems
with fitted models [10], they should be interpreted
with caution since the underlying data are not inde-
pendent Poisson counts. In view of these issues, the
most effective general method for the assessment of
goodness of fit when using Poisson regression to ana-
lyze rates is to make use of likelihood ratio tests
designed to detect specific departures from models
of interest, such as time dependence or nonlinear-
ity, or to make use of Akaike’s criterion or related
statistics to compare alternative (possibly nonnested)
models.

Creating Event–Time Tables

The creation of an adequate event–time table is often
the most difficult aspect of carrying out analyses of
rates using Poisson regression. Among other features,
an ideal program for the construction of event–time
tables would:

1. allow for categorization on multiple time scales
(age, year, length of follow-up, etc.), as well
as multiple time-independent and time-dependent
factors with variable length intervals in each of
these scales;

2. allow for late entry, disjoint follow-up intervals,
and multiple events;

3. include procedures for the computation of and
categorization on time-dependent quantities;

4. allow computation and storage of counts for
multiple event types along with representative
values (often time-at-risk weighted means) for
covariates of interest for each cell in the table;

5. have efficient procedures for handling the large,
sparse tables that can arise when one stratifies on
multiple time scales;

6. be able to deal with the data structures that can
arise in describing complex exposure histories;
and

7. facilitate the incorporation of external rates.

Several computer programs are currently available for
the creation of event–time tables. However, many
of these programs, e.g. OCMAP [6] and O/E [13],
are designed for specific applications and are of lim-
ited use in more general problems. Procedures for
the creation of such tables in the major statisti-
cal programs are extremely limited or nonexistent.
The DATAB module in Epicure [17] and “Person-
years” [7] are probably the most flexible general-
purpose programs for event–time tabulation available
at this time. Hopefully, there will be major improve-
ments in this area over the next few years.

Summary

Poisson regression is a powerful tool for the analysis
of rates from cohort survival studies that facilitates
simple, straightforward analyses of temporal patterns,
baseline risks, excess relative or absolute risks, and
other aspects of hazard functions that may be difficult
to assess with other methods. The application of
Poisson regression requires that data on individual
subjects be organized into event–time tables stratified
on time and other factors of interest and, for the
most interesting models, specialized software capable
of dealing with nonlinear Poisson regression models
is also required. The tools needed to conduct these
analyses are available today but it is likely that they
will be more fully developed in the years to come.
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Poisson Regression

For response variables that have counts or frequen-
cies as outcomes it is often reasonable to assume
an underlying Poisson distribution and describe the
impact of explanatory variables on their means by
some regression function. Poisson regression mod-
els, as a widely applicable class of models partic-
ularly useful in biostatistics, emerged in the late
1970s; see, for example, [6, 11, 21–25, 28, 29, 31],
and [32].

As an example consider the data given in Table 1,
taken from [27]. Randomly chosen household
members from a probability sample of Oakland,
CA, were asked to note which stressful events had
occurred within the last 18 months and to report the
month of occurrence of these events. A scattergram
of the data indicates a decline of recalls as events lie
farther in the past, possibly due to the fallibility of
human memory (see Figure 1). To define a Poisson
regression model, assume that (i) the number of
recalls is a random variable Y distributed as Poisson
with mean µ, and (ii) µ is some function of X,
the number of months before interview. Plotting
logarithms of frequencies against months suggests a
linear relationship

log µ = α + βx.

For this loglinear model, the mean satisfies the
exponential relationship,

µ = exp(α + βx) = eα(eβ)x.

A one-unit increase in X has a multiplicative effect
of eβ on µ, i.e. the mean of Y at x + 1 equals the
mean of Y at x multiplied by eβ .

Most of the widely available software packages
are capable of fitting generalized linear models,
and can be used to obtain maximum likelihood
estimates for the parameters of Poisson regression
models as well. For these data one finds α̂ = 2.803
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Figure 1 Scattergram of observed frequencies and their
logarithms against months before interview. Solid lines
represent fitted means and respective values for the linear
predictor for the Poisson regression model mentioned in the
text

and β̂ = −0.0838; hence

µ̂ = 16.5 × 0.920x,

indicating a negative trend in time.
Using the relationship between the multinomial

and conditional Poisson distributions, this is shown
to be equivalent to an exponential decay model for
the probability of remembering an event. For a more
detailed discussion, see [27] or [33].

Definition

To define the basic version of a Poisson regression
model, suppose that we have observations y1, . . . , yn

for the response variable Y1, . . . , Yn, assumed to
be independently distributed Poisson variates with
means µ1, . . . , µn, i.e.

f (yi |µi) = µ
yi

i

yi!
exp(−µi). (1)

The systematic component of the model is specified
by some regression function η, depending on regres-
sion parameters β1, . . . , βk , with each component
relating values xi1, . . . , xik of explanatory variables
to respective means, i.e.

µi = ηi(β) = ηi(xi1, . . . , xik; β1, . . . , βk). (2)

Table 1 Distribution by months prior to interview of stressful events reported from subjects: 147 subjects reporting
exactly one stressful event in the period from 1 to 18 months prior to interview. Reprinted from [27, p. 3] by permission
of Academic Press, Inc.

Months 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number 15 11 14 17 5 11 10 4 8 10 7 9 11 3 6 1 1 4
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Often, this relationship is such that some monotone
transformation g of the means is connected to a linear
predictor of explanatory variables,

g(µi) =
k∑

j=1

xijβj .

In this situation g is called the link function and
the model defined in this manner is an instance
of a generalized linear model (see [35] and [36]
or, for an introductory text, [18]). For ηi(β)=
exp

(∑k
j=1 xijβj

)
we have the familiar loglinear

model,

log µi =
k∑

j=1

xijβj .

For the model specified by the stochastic compo-
nent (1) and regression function (2), the log likeli-
hood function is written as

�y(β) =
n∑

i=1

{yi log[ηi(β)] − ηi(β) − log(yi!)}. (3)

It may be worthwhile noting that this reduces to a
k-parameter exponential family log likelihood,

�y(β) =
k∑

j=1

(
n∑

i=1

xij yi

)
βj −

n∑

i=1

exp




k∑

j=1

xijβj





−
n∑

i=1

log(yi!), (4)

with jointly sufficient statistics
∑n

i=1 xij yi, j = 1,

. . . , k, if the model is log linear.

Some Special Cases

Loglinear Models for Contingency Tables

Suppose, in obvious notation, yij with indices i =
1, . . . , I and j = 1, . . . , J form a two-dimensional
contingency table, according to some classifying fac-
tors A and B having I and J categories, respectively.
A common method for analyzing data of this kind is
to assume that cell frequencies Yij are independently
distributed as Poisson and to use loglinear models,
where in an analysis-of-variance-like fashion loga-
rithms of expected cell frequencies µij are assumed to

be sums of several effects, e.g. for the multiplicative
model,

log(µij ) = βo + βA
i + βB

j , (5)

subject to some constraints on the βs. Sums of inde-
pendent Poisson variates are again distributed as
Poisson with means equal to the sum of respective
means. Row totals Yi+, column totals Y+j , and grand
total Y++ are, therefore, Poisson variates with means
µi+ = µi1 + · · · + µiJ , µ+j = µ1j + · · · + µIj , and
µ++ = ∑

i,j µij , respectively. Under the assump-
tion of the multiplicative model these quantities are
related by

µij = µi+µ+j

µ++
,

showing that the joint distribution of the contingency
table is, in a multiplicative manner, completely deter-
mined by the marginal distributions.

The Poisson model assumption implies that margi-
nals are random. If, instead, the total is fixed by
the sampling design, it may be more appropriate
to assume a multinomial distribution for the table.
Formally, the multinomial model can be inferred from
the Poisson model by conditioning on the total y++
(see Conditional Probability). For the probability
πij of an observation falling into row i and column
j , we then have πij = µij /µ++, and from assuming
the multiplicative model (5), it follows that

πij = πi+π+j , (6)

where πi+ and π+j are the marginal probabilities
of an observation falling into row i and column j ,
respectively. Hence, row and column variables A and
B are independently distributed.

Likewise, if row totals are fixed, then each row
may be assumed to be multinomially distributed.
Again, this can be inferred from the Poisson model
by conditioning on the row totals, and the multi-
plicative model (5) implies identical distributions for
the rows – a condition usually called homogeneity. It
may be worthwhile noting that maximum-likelihood
estimates for the parameters in the Poisson models
are identical to those obtained for some other sam-
pling designs, such as the multinomial designs just
mentioned, making this class of model particularly
interesting and useful.

Loglinear models for two- and higher-dimensional
contingency tables, used to describe the association
and interaction structure connecting the variables, are
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Table 2 Number of recurrences of superficial bladder cancer for 31 male patients
with grade 2, stage T1, solitary primary tumors and respective times under obser-
vation (in months) by size of primary tumor. Subset of data analyzed in [38]

Size Recurrences Time under observation

≤3 cm 1 2, 3, 6, 8, 9, 10, 11, 13, 14, 16, 21, 22, 24, 26, 27
2 7, 13, 15, 18, 23
3 20
4 24

>3 cm 1 1, 5, 17, 18, 25
2 18, 25
3 4
4 19

discussed in the article on Loglinear Model. Usually,
the goal is to find a parsimonious model that fits the
data well and allows meaningful substantive inter-
pretation. Most commonly, this search is restricted to
hierarchical models.

Multiplicative Rate Models

If occurrences of some kind of event are counted
over time, then often interest lies in the rate at which
events occur. The rate describes the instantaneous risk
for an event to happen at a given point in time. To
be more specific, the probability of observing exactly
one event in the interval ranging from t to t + h,
divided by its length h, is assumed to tend to some
value λ(t), as h tends to 0. λ(t), as a function of time
t , is called the rate or intensity function.

An important special case, termed the Poisson
process, assumes that waiting times between suc-
cessive events are independent and exponentially
distributed with common mean 1/λ. Here, the rate
function is constant over time, λ(t) ≡ λ. Furthermore,
the number Y (t) of events that occur up to time t is
distributed as Poisson with mean µ = λt . Note that
the mean of Y (t)/t equals the rate λ. This suggests
a Poisson regression approach

log λ = log
(µ

t

)
= α + βx

for modeling the dependence of the rate function on
an explanatory variable X. This can be rewritten as

log µ = α + βx + log t,

with log(t) as an offset, i.e. a variable in the linear
predictor, the corresponding regression parameter of

which is set equal to 1. Observe that this defines a
multiplicative model for the rate function,

λ = eα(eβ)x, (7)

with a baseline rate λ0 = exp(α) and proportionality
factor exp(βx).

For illustrative purposes a subset of the data
analyzed in [38] is reprinted in Table 2. For 31 male
patients, who have been treated for superficial bladder
cancer, the number of recurrent tumors has been
recorded for some time after removal of the primary
tumor. Defining X to be 1 for larger primary tumors
(>3 cm) and 0 otherwise, and assuming a Poisson
process with rate (7), yields parameter estimates α̂ =
−1.95 and β̂ = 0.385. The (baseline) rate for smaller
tumors is (estimated as) 0.142, the rate for larger
tumors being 1.47 times larger. In terms of waiting
times between recurrences, means are estimated as
7.06 and 4.80 months, respectively.

Now suppose that we have recorded, for n indi-
viduals, time under observation, ti , and the number
yi of events occurred. Observation times are assumed
to be nonrandom and counts to be mutually inde-
pendent. We also have a set of explanatory vari-
ables xi1, . . . , xik available for each subject. Under
the assumption of proportional rates, λi = λ0 exp(∑k

j=1 xijβj

)
, we have

µi = λi × ti = λ0 exp



log(ti ) +
k∑

j=1

xijβj





= λ0ti

k∏

j=1

exp(xijβj ), (8)
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i.e. a loglinear model for the mean of the Poisson
process, involving the logarithm of observation times
as an “explanatory” variable, with the associated
regression parameter fixed at a value of 1.

If the process is such that it can be characterized
by a time-varying rate function λ(t), it is called a
nonhomogeneous Poisson process. Writing

Λ(t) =
∫ t

0
λ(u) du

for the integrated rate or intensity function, the num-
ber of occurrences of the event in period until time
point t is again distributed as Poisson, but with
mean equal to Λ(t). Note that events in nonover-
lapping time intervals are independent, but waiting
times between successive events are, contrary to
the homogeneous process with constant rate, neither
identically distributed nor independent. In this situ-
ation model (8) can be modified, using a baseline
rate function λ0(t |α), possibly depending on some
additional parameter α, to give

µi = exp




log[Λ0(ti |α)] +
k∑

j=1

xijβj




 .

Choosing Λ0(t |α) to be t, tα, or exp(αt) corresponds
to an exponential, a Weibull, or an extreme value
intensity function, respectively, and results in a
loglinear model for the Yis. Disregarding constant
terms, the likelihood function for this model is

L(α, β) =
n∏

i=1



Λ0(ti |α) exp




k∑

j=1

xijβj








yi

× exp



−Λ0(ti |α) exp




k∑

j=1

xijβj







. (9)

If times for occurrences of each event were known,
a multiplicative term, depending on the parameter α,
would be added to (9); see [32].

There is a close connection to relative risk mod-
els, which are very frequently used in epidemiology.
This class of models assumes that risk factors interact
in a multiplicative way. See [9] and [12], and, for a
critical review, [26].

Proportional Hazard Models for Censored
Survival Times

Now suppose that individuals are under observation
until either a single event of interest occurs or the
period of observations ends for some other reason.
For each subject the data are of the form (yi, ci),
where yi is the time under observation, and ci is an
indicator variable for censoring, taking the value 1
if the event has occurred at time yi , and the value 0
if the event has not occurred until time yi . This is a
similar situation to the one in the previous example,
but with one terminal event that stops the process;
interest, however, lies in the analysis of the survival
times yi (see Survival Analysis, Overview).

The distribution of the survival time can be
uniquely described by the rate function, in the context
of survival analysis usually called hazard rate or
force of mortality. As before, a common approach
assumes proportional hazard rates,

λ(yi |α, β) = λ0(yi |α) exp




k∑

j=1

xijβj



 ,

with a baseline hazard λ0(yi |α).
Assuming a noninformative censoring mechanism

(and continuous survival times), the kernel of the like-
lihood function is

∏n
i=1 f (yi)

ci × S(yi)
1−ci , where

f (yi) denotes the density for the ith survival time,
and S(yi) = 1 − F(yi), the survival function, i.e. the
probability for the ith survival time to exceed yi . The
ratio f (yi)/S(yi) is identical to the hazard function.
For proportional hazard rates, the likelihood function
can therefore be expressed as

Ly,c(α, β)

=
n∏

i=1



Λ0(yi |α) exp




k∑

j=1

xijβj








ci

× exp



−Λ0(yi |α) exp




k∑

j=1

xijβj







 ,

where Λ0(yi |α) = ∫ yi

0 λ0(u|α) du denotes the cumu-
lative baseline hazard rate. Writing, as we did before,

µi = exp
{

log[Λ0(yi |α)] + ∑k
j=1 xijβj

}
, L(α, β) is

the likelihood function for n independent Poisson
variates Ci with means µi . Aitkin & Clayton [2] used
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this fact to bring survival analysis into the frame-
work of generalized linear models (see also [7, 28],
and [31]).

If no assumptions on the functional form of
the baseline hazard function are made, then this is
Cox’s proportional hazards model [13, 14] that can
be fitted by maximizing a “partial likelihood” (see
Cox Regression Model). Another semiparametric
model, due to Breslow [7], assumes a piecewise
exponential distribution for the survival times, the
baseline hazard function in this case is constant
over prespecified intervals of time (see Grouped
Survival Times). To be more specific, suppose that
the time axis is split into intervals (ap−1, ap], p =
1, . . . , P , with 0 = a0 < a1 < · · · < ap < ap+1 =
∞. The baseline hazard can now be written as

λ0(y|α) = exp(αp), if ap−1 < y ≤ ap.

To simplify notation, for individual i and interval
(ap−1, ap] the proportional hazard assumption can be
expressed in terms of a constant λip, where

λip = exp



αp +
k∑

j=1

xijβj



 . (10)

Define Pi to be such that yi is contained in interval
(aPi−1 , aPi

] and eip to be the exposure time of

individual i in the pth interval, i.e.

eip =
{

ap − ap−1, if p = 1, . . . , Pi − 1,

yi − aPi−1 , if p = Pi

.

Also, introduce an extended censoring indicator vari-
able to be

cip =
{

1, if p = 1, . . . , Pi − 1,

ci, if p = Pi .

Disregarding constant terms, the likelihood function
is then

Ly,c(α, β) =
n∏

i=1

Pi∏

p=1

(λipeip)cip exp(−λipeip),

where λip is defined by (10). Since this is a Pois-
son likelihood for the “counts” cip, the piecewise
exponential model reduces to a loglinear model. If
intervals are chosen such that their endpoints corre-
spond to observed times of death, i.e. tis with ci = 1,
then maximum likelihood estimates for the regression
parameters β are found to be close to those obtained
from the Cox model; see [3] and [39].

For an example consider the data printed in
Table 3. For 33 patients treated for papillary thyroid
carcinoma, survival time, censoring indicator, age,
and gender are reported. This is a small subset of the
data analyzed in [30]. For cutpoints a1 = 0.5, a2 = 1,

Table 3 Survival times: time in years, censoring indicator cens (= 0 for censored), gender
(1 for male), and age for 33 patients treated for papillary thyroid carcinoma. Subset of
data analyzed in [30]

Time Cens Gender Age Time Cens Gender Age

27.42 0 1 21 2.33 0 1 76
8.50 1 2 31 1.33 0 1 46
0.13 1 1 62 0.08 1 2 84
0.83 1 1 53 2.83 0 2 69
5.92 0 2 52 2.25 1 2 90
1.92 0 2 67 0.25 1 2 52
0.92 1 1 73 3.42 0 2 71

11.67 0 2 56 1.92 1 2 75
0.17 1 1 57 3.00 1 1 69
5.00 1 2 71 1.00 1 1 75
0.08 1 1 53 8.50 1 2 73
0.08 1 2 53 4.17 0 2 36
0.92 1 2 48 3.50 1 1 38
5.08 1 2 65 1.25 1 2 69
5.42 1 2 49 0.33 1 2 77
0.25 0 1 61 0.67 1 1 87
0.17 1 1 71
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a3 = 2, and a4 = 3, the piecewise-constant baseline
hazard function is, up to a constant, estimated as

λ0(y) =






0.45, if y ≤ 0.5,

0.36, if 0.5 < y ≤ 1,

0.11, if 1 < y ≤ 2,

0.16, if 2 < y ≤ 3,

0.20, if 3 < y.

Regression parameters, estimated for gender and age,
are −0.70 and 0.04, respectively.

Log-nonlinear Models

While loglinear models do have some desirable prop-
erties, it may not always be possible to find a param-
eterization such that the regression function is linear
on the log scale. An example of this is given in [20],
using a log-logistic regression function. The data
come from a radioimmunoassay, a widely used tech-
nique to measure the quantity of a given biological
substance by identifying the amount of a radioactive
labeled antibody from a reagent by subsamples of
increasing concentration. The response variable is the
amount of radioactive material remaining measured
in counts per minute. If these are very large, a nor-
mal distribution for the counts may be assumed, but if
this is not the case, an underlying Poisson distribution
seems to be more appropriate. For counts y1, . . . , yn

and concentrations x1, . . . , xn a regression function
of the form

ηi(β1, . . . , β4)

= β1 + β2

1 + exp{−[β3 + β4 log(xi)]} (11)

can be used to describe the relationship between
mean counts and concentrations. Note that this model
cannot be transformed into a loglinear one.

Other examples of log-nonlinear models arise
frequently in the analysis of contingency tables,
when specific structure in the data suggests inclusion
of nonlinear interaction effects into the regression
function. See, for instance, [1, pp. 287–293].

Likelihood Inference

When adopting a modeling approach it seems to be
natural to estimate the parameters of a model by

maximizing the likelihood function, or, equivalently,
its logarithm. The likelihood function contains all
the relevant information about the mechanism that
generated the data as well as the data actually
observed. The larger its value the stronger the support
given, by the data, to the corresponding value of the
parameters. When dealing with Poisson regression
models, maximum-likelihood estimation is, by far,
the most often used method to obtain estimates for
the unknown parameters.

Poisson regression models as defined above are
instances of curved exponential family models; even
if the model is loglinear, it is an exponential family
model. So a much more general theory applies to
this class of models. Here, only the special case
will be considered. Readers interested in a general
and detailed treatment are referred to, for example,
Barndorff-Nielsen & Cox [5].

To maximize the log likelihood function one
usually calculates partial derivatives with respect to
all the parameters, sets them equal to 0, and solves
this system of equations for the unknowns. For a
Poisson regression model with log likelihood (3), the
estimating equations

uj (β) =
n∑

i=1

∂

∂βj

ηi(β)
1

ηi(β)
[yi − ηi(β)] = 0

need to be solved. If the model is loglinear, then this
simplifies to

uj (β) =
n∑

i=1

xij

[
yi − exp

(
k∑

h=1

xihβh

)]
= 0.

A generally applicable method for obtaining esti-
mates numerically is provided by the Fisher scoring
algorithm (see Optimization and Nonlinear Equa-
tions). In the present case, this is seen to be an
iteratively reweighted least squares procedure, where,
in each step of the iterative algorithm, a weighted
least squares problem is to be solved. As a par-
ticular consequence to this fact, methods developed
for diagnosing linear regression models can be modi-
fied for generalized linear models. To define leverage
and influence one only needs to refer to respective
quantities calculated from the last iteration step (see
Diagnostics). Formulas needed to do so are lengthy
to write down, but most of the widely used software
packages provide, at least as an option, the figures.
For more on diagnostics for generalized linear models
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see [15]. Software packages found useful for fitting
Poisson regression models include GLIM [20] and
S-PLUS [10].

Not much is known about existence and unique-
ness of maximum likelihood estimators in the general
case. For loglinear models, however, if all observed
sufficient statistics involved are larger than 0, then
maximum likelihood estimates for the means, i.e.
µ̂i = ηi(β̂), do exist and are unique, which is also
true for β̂, if the design matrix is of full rank. For
a more detailed discussion, see [1] and the references
therein.

A statistic capable of measuring the amount of
support given by the data to a particular value of
the parameter compared to its maximum likelihood
estimate is the deviance, defined as minus two times
the logarithm of the normed likelihood :

Dy(β) = −2 log

(
Ly(β)

Ly(β̂)

)

= −2[�y(β) − �y(β̂)]

= −2
n∑

i=1

{
yi log

[
ηi(β)

ηi(β̂)

]

− [ηi(β) − ηi(β̂)]

}
.

The deviance cannot be negative. It provides a mea-
sure of distance between the model described by
β and the model characterized by the most likely
parameter β̂ and can, thus, be used to construct likeli-
hood regions. Assuming β to be the “true” parameter,
the deviance has an asymptotic χ2 distribution with k

degrees of freedom, where k is the dimension of the
parameter β. This admits an interpretation of likeli-
hood regions as confidence sets.

To obtain a measure of goodness of fit similar
to the residual sum of squares in normal linear
regression, the likelihood for the maximal model
that perfectly fits the data can be compared to the
likelihood of the model under consideration. This
statistic is usually written as

devy = 2
n∑

i=1

{
yi log

[
yi

ηi(β̂)

]
− [yi − ηi(β̂)]

}
,

(12)

and termed deviance as well. Assuming the null
model to be correct, the expected value for the

latter statistic is approximately equal to the number
of residual degrees of freedom, i.e. the number of
observations minus the number of parameters in the
model.

The deviance is a very important tool in searching
for a “good”, i.e. a parsimonious and well fitting,
model, as it can be used to compare nested hierarchi-
cal models. Suppose we have a model with parameter
β and a smaller one with a parameter γ , which can be
obtained from β by setting r components to 0. Then,
assuming the smaller model to be the correct one,
the difference of deviances (12) is asymptotically χ2

distributed with r degrees of freedom. Note that this
is a likelihood ratio test for the smaller model with
the null hypothesis against the larger model as the
alternative.

The deviance is a useful measure of discrepancy,
frequently supposed to have an approximate χ2

distribution. However, this is to be taken with care,
as χ2 is not, in general, guaranteed to be a large
sample distribution of (12). The deviance itself can
be approximated by

X2 =
n∑

i=1

[yi − ηi(β̂)]2

ηi(β̂)
, (13)

which is known as the Pearson goodness-of-fit statis-
tic (see Chi-square Tests).

Another way of performing significance tests of
hypotheses about single parameters is by applying a
Wald test (see Likelihood). This uses the approxi-
mate normality of the maximum likelihood estimates
and computes, as the test statistic, the ratio of the esti-
mate of the parameter of interest and its asymptotic
standard error. The formula is complex, but, again,
many statistical packages provide the figures for the
Wald test, sometimes under the heading t-test, as well
as observed significance values. For more detailed
accounts on likelihood inference for a generalized
linear model with some emphasis on the Poisson
regression model see [1, 19, 34] and [35] and the
references therein.

An obvious way of defining residual quantities
is to use square roots of contributions to the sums
in (12) or (13), and attach the appropriate signs.
Denoting raw residuals by ri = yi − ηi(β̂), we have

rD
i = sgn(ri)(−2{yi log

[
yi

ηi(β̂)

]

− [yi − ηi(β̂)]})1/2 (14)
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for the deviance residuals and

rP
i = yi − ηi(β̂)

[ηi(β̂)]1/2
(15)

for the Pearson residuals. In any case, large
residuals indicate large contributions to the respective
goodness-of-fit statistics. Both deviance and Pear-
son residuals can (and should) be standardized. This
requires computation of leverages for all observa-
tions. See [37] and [15] for more on residuals in
generalized linear models.

For the time trend model fitted to the Stress
Recall Data one calculates a deviance of 24.57 with
16 degrees of freedom. The deviance is 1.5 times
larger than its approximate expected value, indicat-
ing a moderate amount of overdispersion (see [8, 16],
and [17] for more on the phenomenon of overdis-
persion in Poisson regression models). Compared to
a model with only the constant term included, we
see a difference of deviances of 26.67. Referring
to its approximate chi-square distribution (with 1
degree of freedom) clearly confirms the time trend.
The regression parameter for the explanatory vari-
able “months before interview” has been estimated as
−0.0837, with an asymptotic standard error of 0.017,
resulting in a t-value of −4.99, which is definitely
large enough to reject the hypothesis of no time trend.
The smallest deviance residual is −1.99, the largest
2.04, and there is no obvious pattern suggesting any
specific inadequacies in the model.
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Poisson, Siméon–Denis

Born: June 21, 1781, in Pithiviers, Loiret, France.
Died: April 25, 1840, in Paris, France.

Poisson’s formative years were spent in the provinces
where he came of modest family. Encouraged by a
dedicated teacher at the École Centrale at Fontaine-
bleau, he was admitted to the École Polytechnique
in Paris in 1798, where, through the backing of
Laplace, he was appointed to the academic staff in
1800. He stayed at the École Polytechnique, replac-
ing Fourier as professor in 1806, while gaining other
posts, notably a professorship at the Faculty of Sci-
ences at the Sorbonne in 1816. He had been elected
to the Paris Academy of Sciences in 1812. Through
his life, characterized by hard work and dedication to
scientific research and the teaching of science, Pois-
son accommodated himself to the various changes
of political regime. In his research he treated a
very broad range of subjects in a great number of
publications, of which those on probability and its
applications are relatively few [4], the most impor-
tant being the book, published close to the end of his
life: Recherches sur la Probabilité des Jugements en
Matière Criminelle et en Matière Civile (1837).

In the Recherches, the Poisson distribution is
derived as the limit of the distribution function of
the (Pascal) distribution with mass function:

(
m + t − 1

m − 1

)
pmqt , t = 0, 1, 2, . . . ,

as m → ∞, q → 0 in such a way that qm → ω =
const. > 0 [5].

Indeed, the Poisson mass function e−ωωt/t!,
t = 0, 1, 2, . . ., occurs significantly earlier than in
Poisson’s work [1–3]. However, he considered the
“Cauchy” distribution with density f (x) = 1/π

(1 + x2), −∞ < x < ∞, some 20 years before
Cauchy. The use of the notion of a random variable,
of the cumulative distribution function, and the
definition of the density as its derivative, may be
original with Poisson [4].

Apart from his many scientific articles and mem-
oirs, Poisson was heavily involved in administration
and pedagogical activity. He had the habit of saying
“Life is good for only two things: to study mathe-
matics and to teach it.”
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Polya Process

The Polya process is a nonstationary birth process
(see Stochastic Processes). Let X(t) be the number
of individuals present at time t , with X(0) = 0 at
t = 0. The transition (conditional) probabilities of
X(t),

P0k(0, t) = Pr[X(t) = k|X(0) = 0],

satisfy the following differential equations:

d

dt
P00(0, t) = −λ0(t)P00(0, t) (1a)

and

d

dt
P0k(0, t) = −λk(t)P0k(0, t)

+ λk−1(t)P0,k−1(0, t), (1b)

for k = 1, 2, . . ., where

λk(t) = 1 + λk

1 + λt
, for k = 0, 1, . . . , (2)

is a function of both the number k and time t . The
probability generating function of X(t), as derived
in [2], is

GX(s, t) = [1 + λt − λts]−1/λ,

which leads to the formula for P0k(0, t):

P0k(0, t) =
(

1/λ + k − 1
k

) (
1

1 + λt

)1/λ

×
(

λt

1 + λt

)k

, (3)

for k = 0, 1, . . .. Formula (3) is a negative binomial
distribution with parameters 1/λ and 1/(1 + λt).
The expectation and the variance of X(t) are, respec-
tively,

E[X(t)] = t and

var[X(t)] = t[1 + λt].

The Polya process is closely related to the Polya
distribution generated by the Polya urn scheme [3–5,
7]. Suppose that an urn contains (a + b) balls, of
which a balls are red and b balls are black. A ball
is drawn at random from the urn, its color noted.

The ball is replaced and c balls of the same color
are added. After the first draw, there are (a + b + c)
balls in the urn. The procedure is repeated.

Among n draws, the number of times resulting
in red balls, X(n), has the following probability
distribution:

Pk,n =
(
n

k

)
{

a(a + c)(a + 2c) . . . [a + (k − 1)c]
× b(b + c)(b + 2c) . . . [b + (n − k − 1)c]

}

{
(a + b)(a + b + c)(a + b + 2c)

× . . . [a + b + (n − 1)c]

} ,

(4)

for k = 0, 1, . . . , n. The expectation and the variance
of X(n) are, respectively,

E[X(n)] = np and

var[X(t)] = npq[1 + nr]

[1 + r]
,

where p=a/(a+b), q =b/(a+b), and r =c/(a+b).
If c = 0, then (4) is a binomial distribution; if
c = −1, then (4) is a hypergeometric distribution.

The constant c is a “contagion” factor of the dis-
tribution (see Contagious Distributions). If red balls
stand for infection, then the occurrence of an infec-
tion (drawing a red ball) increases the amount of
infection in the population, and increases the prob-
ability of having an infected case (a red ball) in the
future. Drawing a black ball will have the opposite
effect. The number c can be either positive or nega-
tive. If c is positive, then the contagion is positive; if
c is negative, then the contagion is negative (such as
immunity). The Polya process and Polya distribution
have applications in studying contagious diseases, in
the theory of cosmic radiation [1], and in the analysis
of accident, insurance, and sickness statistics [6].

Polya [3, 7] has shown that, within a time interval
(0,t), if n → ∞, p → 0, and r → 0, so that np → t

and nr → λt , then formula (4) in the Polya distribu-
tion approaches formula (3) in the Polya process as
a limit.
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Polya’s Urn Model

The Polya urn model was introduced by Eggenberger
& Polya [2]. The urn initially contains balls of two
colors (W white balls and R red balls). A ball is
drawn at random. After each drawing, the chosen ball
is returned together with s balls of the same color.
The process is repeated n times. Let X be the number
of times a red ball is drawn. The exact distribution
of X can be found in Johnson & Kotz [3, p. 177]
and can be approximated by the well-known Polya
distribution [4, p. 64]. It is interesting to note that
when s = 0, X is a simple binomial random variable,
and when s = −1, X is a hypergeometric random
variable.

This simple urn model can be generalized. For
example, after each draw, t balls of color opposite
to that chosen are also added. Furthermore, s and
t may be negative, and s and t may be random
variables. For these general cases, the properties of X

have been studied through the theory of branching
processes [1] (see Polya Process).

This model applies to many practical situations
in medical studies. The case in which s and t are
random variables has an interesting and important
application to sequential methods in clinical trials
(see Adaptive and Dynamic Methods of Treatment
Assignment). Specifically, in comparing two treat-
ments A and B, suppose that eligible patients occur
singly and must be treated when they arrive. For each
patient’s treatment assignment, a ball is selected at
random from the urn with replacement. If it is white,

assign this patient to Group A; otherwise, assign this
to Group B. When the response of a previous patient
to treatment A is a success, we add s white balls and
t red balls to the urn. However, if the response is
a failure, we add s ′ whites and t ′ reds to the urn.
In practice, {s, t, s ′, t ′} are chosen so that this type
of randomized Polya urn scheme tends to put more
patients on the better treatment, but also provides reli-
able data to evaluate the treatment difference due to
its random nature. The urn scheme can also be mod-
ified to deal with the case in which more than two
treatments are involved in the study [5], using an urn
and balls with more than two colors.
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Polygenic Inheritance

Many quantitative, metric, or continuous traits do not
show simple Mendelian transmission (see Mendel’s
Laws) and their expression is believed to be con-
trolled by polygenes. Strictly speaking, polygenic
inheritance refers to the mode of inheritance of
characters or traits whose genetic component is
determined by polygenes (i.e. many genes) with
individually small effects, as opposed to monogenic
(i.e. single gene) or oligogenic (i.e. a few genes)
inheritance.

Plate [26] appears to be the first to use the
term “polygenic”. Fisher [8] and Mather [21] greatly
enriched the meaning of “polygenic inheritance”. The
main properties of polygenic inheritance were sum-
marized elegantly by Lerner [20], as follows: (i) most
metric and meristic (polychotomous, or categorical)
traits are affected by a number of genetic loci; (ii) the
effects of allelic substitution at each of the segregat-
ing loci are usually relatively small and interchange-
able, in the sense that identical phenotypes may be
displayed by a great variety of genotypes; (iii) the
phenotypic expression of polygenic traits is subject
to considerable modification by environmental influ-
ences; (iv) most populations have great reserves of
genetic variability, often carried in the gene pool in
balanced systems; (v) there is nothing biochemically
exceptional about genes controlling polygenic inher-
itance; (vi) polygenic traits show a continuous rather
than a discontinuous distribution.

However, it should be noted that, for dichotomous
or binary traits, which are either present or absent in
any one individual, a combination of polygenes and
environmental factors can determine an underlying or
latent risk or liability toward the trait (see Genetic
Liability Model). The values of the liability may or
may not be directly observable, and individuals hav-
ing the trait are those whose liability values exceed
a threshold that is sometimes unknown.

Historical Background

Around the turn of this century with the rediscov-
ery of Mendel’s work, the field of human heredity
was deeply divided and witnessed bitter confronta-
tion between the biometricians, represented by Karl
Pearson and W.F.R. Weldon, and the Mendelians,

led by the Cambridge geneticist William Bateson.
The biometricians held that the observed correla-
tions between relatives in large populations were
incompatible with Mendelian inheritance [25], and
the Mendelians seem to have considered discontin-
uous genetic variation as incompatible with anything
but obviously discontinuous phenotypic variation. A
series of experimental and theoretical discoveries
made during the 1910s and 1920s eventually led
to the settlement of the arguments between the two
schools.

Shull [29] demonstrated the rapid fixation of one
or another random combination of quantitative traits
in self-fertilized lines of maize and interpreted this
as due to automatic fixation of Mendelian units.
Johannsen [16] showed that heritable and nonherita-
ble agencies were jointly responsible for the variation
in seed weight, and that their effects were of the
same order of magnitude. The effects of disconti-
nuity of the genotype could be smoothed out and
continuous variation realized in the phenotype by the
action of the environment. Nilsson–Ehle [23] found
that similar factors with smaller individual effects
could account for continuous quantitative variation
if enough of them were segregating. Each factor
would be inherited in the Mendelian way, and its
change would be discontinuous. Yet with a num-
ber of such factors, having similar and cumulative
action, many different dosages would be possible.
Continuity would be completed by the blurring effect
of noninheritable agencies. These findings were also
independently documented by East around the same
period [4, 5]. Nilsson–Ehle and East both recognized
that their findings were consistent with the cumulative
effects of many genes, each with a small effect for
a continuous phenotypic variable, and thus laid the
one cornerstone of the “polygenic” theory of con-
tinuous variations. Sax [28] further established the
Mendelian nature of quantitative traits by demonstrat-
ing linkage of minor quantitative differentials with
marker genes. Yule [37] showed mathematically that
Mendelian variation could be retained indefinitely
in a randomly breeding population. It was on the
basis of these works that Ronald A. Fisher was
able to synthesize the idea of continuous phenotypic
variation of the biometricians with the genetic discon-
tinuity of the Mendelian mechanism of inheritance.
He showed [8] how Galton’s own data could be rec-
onciled with Mendelian inheritance. There were three
main aspects to Fisher’s argument. First, following
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the experimental results of East and Nilsson–Ehle,
Fisher adopted the polygenic model in which a large
number of genes (infinitely many in Fisher’s analysis)
of individually small effect were responsible for con-
tinuous variation and family resemblance in humans.
Secondly, Fisher questioned the generalization drawn
from Mendel’s experiments that all hybrids for a
given character would resemble one or the other
parent (i.e. he relaxed the assumption of complete
dominance). Thirdly, he allowed in various ways for
the effects of assortative mating. His model predicts
very well the pattern in the correlations between
different kinds of relatives.

Polygenic Models

Polygenic models, also called variance component
models or random effects models, are widely used in
the field of animal and plant breeding (see, for exam-
ple, [13, 14]). In human genetics, polygenic models
can be used to identify, among other traits associated
with the definition of disease, the subset that have a
significant genetic component in their etiology [15,
30]. Moreover, a good, well-tested polygenic model
can be utilized in genetic counseling [19]. Polygenic
models also have the merit that the parameterization
is straightforward: various cultural, environmental
and complex genetic effects can be easily incor-
porated into the models. Another attraction of the
models is their mathematical tractability when mul-
tivariate normality is assumed.

Under the polygenic model, the phenotype is the
result of the joint action of infinitely many genes,
each with a small contribution to the phenotype,
and of the environment. In mathematical terms, the
polygenic models assume that the phenotypic value
y is the additive combination of genotypic value v

and independent environmental effect e, namely

y = v + e.

In general, y can be an arbitrary function of v, but
such a model would be too complex to be useful in
reality.

The polygenic value v can be further decomposed
into various components. For example, v can be
decomposed into the mean value µ in the reference
population, the additive component a, which is the
combination of main effects of all loci, and the
dominance effect d, which is the combination of the

interactions between homologous genes at each loci
(see [1]), i.e.

v = µ + a + d,

where a and d are usually assumed to be normal. In
practice, phenotypes often have to be transformed to
approximate normality prior to analysis.

Let yi and yj be random variables defining the trait
values of individuals i and j , respectively. Also, let
σ 2

a be the additive genetic variance, σ 2
d the variance

due to dominance, and σ 2
e the environment variance.

Denote φij as the kinship coefficient for i and j (see
Inbreeding). Then, under the formulation of Fisher,
the covariance between the phenotypes for any two
individuals, i and j , in a given pedigree, is

cov(yi, yj ) = 2φijσ
2
a + ∆ijσ

2
d + δij σ

2
e .

A multivariate normal distribution with this covari-
ance structure is usually assumed. Under some fairly
stringent conditions, Lange [17] proved a central
limit theory for pedigrees.

In vector notation, and denoting � = (φij ) and
� = (∆ij ), the above model can be rewritten as

y = µ1 + a + d + e, (1)

where 1 is an n × 1 vector of 1s, a ∼ N(0, 2σ 2
a �),

d ∼ N(0, σ 2
d �), and e ∼ N(0, σ 2

e I).
Components a, d, and e are taken to be indepen-

dent so that the variance of the phenotype y is simply
the sum of the variances of the components.

A number of other assumptions are usually
made to limit the complexity of the model. These
include Hardy–Weinberg equilibrium and linkage
equilibrium (see Linkage Disequilibrium) for all
loci, no epistasis (see Genotype), and absence
of gene–environment interaction, of assortative
mating, and of correlated environments among
relatives. Note that some of the assumptions can
be relaxed without substantially complicating the
mathematics. For example, the assumption of no
correlated environments can be lifted by adding a
common environment component c to the model with
c ∼ Nn(0, σ 2

d C), where the element cij of C is 1 if i

and j share the same environment, and 0 otherwise.
Thus, a general polygenic model is

y = µ1 + z1 + z2 + · · · + zk + e, (2)

where the zis are k random components, with zi ∼
Nn(0, σ 2

i �i ); e is the environmental effect, with e ∼
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Nn(0, σ 2
e I). z1, . . . , zk and e are assumed mutually

independent. The �is are known and are at least
semi-positive-definite. Without loss of generality, we
can assume the �is are invertible since we can
always reparameterize the model so that, say, �̃i =
�i + (ε/σ 2

i )I, which is invertible, and σ ′2
e = σ 2

e − ε,
where ε is small enough so that σ 2

e − ε > 0. Note
that here we have assumed a constant mean µ for all
individuals. This is for convenience only. In general,
the model can include some fixed effects such as
sex and generation effects, or some covariates like
age. Incorporation of fixed effects and covariates is
straightforward.

Parameter Estimation

Maximum likelihood is the method of choice in
parameter estimation for polygenic models because of
its theoretical soundness. There are two approaches to
maximum likelihood estimation: Fisher’s method of
scoring and the EM algorithm. Most recent theoret-
ical developments in this area are aimed at reducing
the computational burdens of likelihood estimation
for variance components. In animal breeding genet-
ics, the maximum likelihood method and its related
method, restricted maximum likelihood, has been
applied to estimation in polygenic models, often tak-
ing advantage of relatively simple structure in animal
breeding data [9, 13, 14, 22]. In human genetics (see
Human Genetics, Overview), the method of scoring
is often the method of choice when pedigrees are not
too large or complex. Otherwise, the EM method is
often used.

The Method of Scoring

Lange et al. [19] provide an excellent exposition on
the use of scoring method in parameter estimation
for polygenic models. Consider the model in (1). Let
� = 2σ 2

a � + σ 2
d � + σ 2

e I, and γ = (µ, σ 2
a , σ 2

d , σ 2
e )′.

Let y = (y1, . . . , yn)
′ be the observed trait values.

Individuals with missing values are deleted prior to
analysis.

The log likelihood for the pedigree is then

L = − 1
2 log |�| − 1

2 (y − µ1)′�−1(y − µ1),

since

∂�−1

∂θ
= −�−1 ∂�

∂θ
�−1,

∂L

∂µ
= 1�−1(y − µ1),

and

∂L

∂σ 2
k

= −1

2
tr

(
�−1 ∂�

∂σ 2
k

)

+ 1

2
�−1 ∂�

∂σ 2
k

�−1(y − µ1),

where

∂�

∂σ 2
a

= 2�,
∂�

∂σ 2
d

= �, and
∂Ω

∂σ 2
e

= I.

The second partial derivatives of L are [19, 28]:

∂2L

∂µ2
=−1�−11′,

∂2L

∂µ∂σ 2
k

= ∂2L

∂σ 2
k ∂µ

= −1�−1 ∂�

∂σ 2
k

�−1(y − µ1),

∂2L

∂σ 2
k ∂σ 2

l

= 1

2
tr

(
�−1 ∂�

∂σ 2
k

�−1 ∂�

∂σ 2
l

)
− 1

2
(y − µ1)′�−1

×
(

∂�

∂σ 2
k

�−1 ∂�

∂σ 2
l

+ ∂�

∂σ 2
l

�−1 ∂�

∂σ 2
k

)

× �−1(y − µ1).

Since tr(AB) = tr(BA), E[A(Y − µ1)] = AE(Y −
µ1) = 0, E[(Y − µ1)′A(Y − µ1)] = tr(A�), where
A and B are constant matrices and Y is a random vec-
tor with mean µ1 and variance �, the information
matrix I(γ ) can be obtained by taking expectations
of the above second partial derivatives as

I(γ ) =




1�−11′ 0 0 0
0 ρ11 ρ12 ρ13

0 ρ21 ρ22 ρ23

0 ρ31 ρ32 ρ33



 ,

where

ρkl = ρlk = 1

2
tr

(
�−1 ∂�

∂σ 2
k

�−1 ∂�

∂σ 2
l

)
.

If there are m pedigrees, then the overall score
vector and information matrix are the summation of
score vectors and information matrices over all m

pedigrees.
Now let γ (i) be the value of the parameters at

the ith iteration, and let the score vector S[γ (i)] be
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the vector of partial derivatives of L with respect
to individual parameters evaluated at γ (i). Then, the
scoring algorithm takes the new value to be

γ (i+1) = γ (i) + I−1[γ (i)]S[γ (i)].

If the iteration converges to a unique value γ̂ ,
then standard large sample theory shows that γ̂ is
asymptotically multivariate normal with mean γ0

and covariance matrix I−1(γ̂0), where γ0 is the true
parameter value.

The EM Algorithm

The EM equations for estimating γ are:

µ∗ = 1

n
Eγ [1′(y − a − d − e)|y],

(σ ∗
a )2 = 1

n
Eγ [a′(2�)−1a|y],

(σ ∗
d )2 = 1

n
Eγ (d′�−1d|y),

and

(σ ∗
e )2 = 1

n
Eγ (e′e|y),

where

Eγ [a′(2�)−1a|y]

= p′(2�)−1p + tr

[
(2�)−1

(
I

σ 2
e

+ (2�)−1

σ 2
a

)−1
]

,

Eγ (d′�−1d|y)

= q′�−1q + tr

[
�−1

(
I

σ 2
e

+ �−1

σ 2
d

)−1
]

,

and

Eγ (e′e|y) = h′h + tr

[(
4I
σ 2

e

+ (2�)−1

σ 2
a

+ �−1

σ 2
d

)−1
]

,

where p = Eγ (a|y), q = Eγ (d|y), and h = Eγ (e|y).

Other Methods

Both the scoring and the EM methods require re-
peated inversion of certain matrices of an order equiv-
alent to the pedigree size. For small or moderate-size

pedigrees, this is not a problem. However, for large
pedigrees, the inversion of large matrices may not
be practically feasible. Thompson & Shaw [33] pro-
posed a method for parameter estimation using the
EM algorithm that avoids repeated inversion of large
matrices. Their method can be extended to multivari-
ate traits [34]. Guo & Thompson [10, 11] proposed a
Monte Carlo EM algorithm (see Monte Carlo Meth-
ods) to solve this problem.

Likelihood Computation

An EM algorithm that provides maximum likeli-
hood estimates may be of limited use if it does not
also provide a computable form of the likelihood
because likelihood values are needed for statistical
inferences and in monitoring the convergence pro-
cess. Although direct evaluation of the likelihood for
polygenic models is theoretically possible, as done
by Lange et al. [19], it is practically infeasible for
large pedigrees because of its demand for repeated
inversion of large matrices.

Elston & Stewart [6] proposed an algorithm, later
known as the Elston–Stewart algorithm or the
“peeling algorithm”, to compute the likelihood on
pedigrees for simple genetic models. They showed
that the algorithm can compute likelihoods not only
for major gene models but also for simple polygenic
models (i.e. with additive component only). The
algorithm was later generalized to more complex
pedigrees and more complex genetic models [2, 18,
24]. Thompson & Shaw [33] proposed a peeling
algorithm for computing the likelihood function on
large complex pedigrees for a simple polygenic
model. The algorithm has been extended to complex
polygenic models with multiple random effects [32]
and to multiple traits [34].

Approximations to Polygenic Models

The polygenic model assumes an infinite number
of loci, each contributing a small amount to the
variation of the trait of interest. Another class of
genetic model, called the mixed model, assumes that
the expression of the trait is determined by a major
gene plus polygenic background (see Segregation
Analysis, Mixed Models). This model has proved to
be a useful alternative to classical Mendelian models
in the analysis of pedigree data. The exact calculation
of the likelihood for the mixed model is virtually
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impossible except for very small pedigrees [24]. To
circumvent the problem, Hasstedt [12] proposed an
approximation to the likelihood on large pedigrees
for the mixed model. Guo & Thompson proposed a
method based on a Monte Carlo EM algorithm [10].

Fernando et al. [7] and Stricker et al. [31] took
a different approach, postulating a finite poly-
genic model that was suggested earlier by Cannings
et al. [2]. The model approximates polygenic inheri-
tance by postulating that trait values are determined
by a small number of biallelic loci having equal
and additive effects. This approach is computation-
ally fast, and is attractive as an alternative to the
traditional mixed model in linkage analysis.

Concluding Remarks

Polygenic inheritance is an important, and perhaps
common, mode of inheritance in genetics. Sewall
Wright [35, 36] was an avid advocate of the notion
that each phenotype is affected by multiple genes, and
that the same genes can affect more than one pheno-
type (pleiotropic effects). At least in plant genetics,
the increasing numbers of Mendelian marker loci
have helped confirm Robertson’s [27] prediction that
“the distribution of gene effects will probably be of
an exponential kind (so that the smaller the range of
the effect specified, the greater the number of loci
concerned)”; see [3].

As an approximation to polygenic inheritance,
polygenic models have been useful in establishing a
genetic basis for many traits. Under certain assump-
tions, they flexibly include various random and fixed
effects and are easy to parameterize. However, this
flexibility in no way means that it would be easy to
disentangle the joint action of a large number of loci,
and their mathematical tractability is not a licence to
apply the models indiscriminately to any data at hand.
Many assumptions underlying the polygenic model
are critical to ease the mathematical tractability, and
are often difficult to verify in practice. For example,
the assumption of no gene–environment interaction is
difficult to verify in reality, especially so when envi-
ronmental factors affecting the trait of interest have
not been completely identified. Indeed, the mathemat-
ical tractability always comes with a price: restricted
utility and the burden of verifying the underlying
assumptions. Nonetheless, polygenic models, if used
judiciously, can provide better insight into the genetic
mechanism underlying traits of interest.
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Polymorphism
Information Content

The polymorphism information content (PIC) value is
a measure of polymorphism introduced by Botstein
et al. [1] to describe a genetic marker’s usefulness
for linkage analysis when attempting to localize on
a chromosome the gene locus involved in a rare
dominant disease. The genotype of a person with
the disease is assumed to be heterozygous, and the
PIC value is then defined as the probability that the
marker genotype of such a person’s offspring would
allow one to deduce which marker allele was derived
from the affected parent. If there are n alleles at the
marker locus, the relative frequency of the ith being
pi , then, assuming Hardy–Weinberg equilibrium,
they showed that in this situation

PIC = 1 −
n∑

i=1

p2
i − 2

n−1∑

i=1

n∑

j=1

p2
i p

2
j . (1)

Estimating PIC and its standard error are discussed
in [4].

As the number of alleles increases, each with
decreasing population frequency, the PIC value app-
roaches its maximum value of unity.

Most authors who quote PIC values base them
on (1). However, Chakravarti & Buetow [3] derived
analogous formulae for mapping rare traits with other
modes of inheritance, and Chakravarti [2] derived
expressions for the joint PIC value of two markers
for a family structure consisting of four grandparents,
two parents, and their offspring.
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Polymorphism

In biology, polymorphism refers to the many different
forms that an organism can have. In genetics, it refers
to the many different genotypes and phenotypes or
gene products associated with a particular gene locus.
A locus was originally defined to be polymorphic if
the frequency of its least common allele is too large
to be due simply to recurrent mutation, operationally
taken to be at least 1% [1]. However, a locus at
which there are 1000 distinct alleles each with a
frequency of 0.1% would be considered extremely
polymorphic, and so a more accurate definition of a

polymorphic locus would put an upper bound, such
as 99%, on the frequency of its most common allele.
DNA polymorphisms abound. Many authors now use
the terms “polymorphism” or “gene polymorphism”
to denote a common allele at a locus that does not
cause disease (see Mutation).
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Polynomial
Approximation

A polynomial is a function that can be written in the
form

p(x) = c0 + c1x + · · · + cnx
n,

for some coefficients c0, . . . , cn. If cn �= 0, then the
polynomial is said to be of order n. A first-order
(linear) polynomial is just the equation of a straight
line, while a second-order (quadratic) polynomial
describes a parabola.

Polynomials are just about the simplest mathe-
matical functions that exist, requiring only multipli-
cations and additions for their evaluation. Yet they
also have the flexibility to represent very general
nonlinear relationships. Approximation of more com-
plicated functions by polynomials is a basic building
block for a great many numerical techniques.

There are two distinct purposes to which
polynomial approximation is put in statistics. The
first is to model a nonlinear relationship between
a response variable and an explanatory variable
(see Nonlinear Regression; Response Variable).
The response is usually measured with error, and
the interest is on the shape of the fitted curved and
perhaps also on the fitted polynomial coefficients. The
demands of parsimony and interpretability ensure
that one will seldom be interested in polynomial
curves of more than third or fourth order in this
context.

The second purpose is to approximate a difficult to
evaluate function, such as a density or a distribution
function, with the aim of fast evaluation on a com-
puter. Here, there is no interest in the polynomial
curve itself. Rather, the interest is on how closely
the polynomial can follow the special function, and
especially on how small the maximum error can be
made. Very high order polynomials may be used here
if they provide accurate approximations. Very often,
a function is not approximated directly, but is first
transformed or standardized so as to make it more
amenable to polynomial approximation.

On either type of problem, substantial benefit
can be had from orthogonal polynomials (see
Orthogonality). Orthogonal polynomials can be used
to make the polynomial coefficients uncorrelated, to
minimize the error of approximation, and to minimize
the sensitivity of calculations to roundoff error.

Suppose that the function to be approximated,
f (x), is observed at a series of values x1, . . . , xN .
In general, we will observe yi = f (xi) + εi , where
the εi are unknown errors. The task is to estimate
f (x) for new values of x. If the new x is within
the range of the observed abscissae, then the prob-
lem is interpolation. If it is outside, then the problem
is extrapolation. Polynomials are useful for interpo-
lation, but notoriously poor at extrapolation.

Polynomial approximation is relatively straightfor-
ward and good enough for many purposes. There are,
however, many other ways to approximate functions.
Many functions, for example, can be more econom-
ically approximated by rational functions, which are
quotients of polynomials. A survey of approximation
methods is given by Press et al. [4, Chapter 4].

Most numerical analysis texts include a treatment
of polynomial approximation. Atkinson [2, Chapter
4] gives a nice treatment of minimax approximation
using Chebyshev polynomials. Many specific poly-
nomial approximation formulae to functions used by
statisticians are given by Abramowitz & Stegun [1].
Many statistical texts mention polynomial regression.
Kleinbaum et al. [3, Chapter 13] give a very acces-
sible treatment, while that of Seber [5, Chapter 8] is
more detailed and mathematical.

Taylor’s Theorem

Use of polynomials can be motivated by Taylor’s
theorem. A well-behaved function f can be approx-
imated about a point x by

f (x + δ) ≈ f (x) + f ′(x)δ + f ′′(x)
δ2

2!
+ · · · .

The right-hand side, which is a polynomial in δ, is
an accurate approximation provided that δ is small.

The trouble with Taylor’s theorem is that the error
of approximation is not evenly distributed. The for-
mula is very accurate for δ near zero, but becomes
increasingly inaccurate as δ increases. Consider the
cubic Taylor series expansion for ex about zero on
the interval [−0, 3] (Figure 1). The approximation is
accurate for x near zero, but becomes poor for large
values of x. Meanwhile, there are other cubic poly-
nomials which follow ex with good accuracy over
the entire interval. The Holy Grail of polynomial
approximation is to find the polynomial that mini-
mizes the maximum deviation of the polynomial from
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Figure 1 The cubic Taylor series approximation to exp(x)
is accurate only near zero. The cubic Chebyshev polynomial
approximation is indistinguishable from the function itself

the function over the entire interval, the so-called
minimax polynomial.

Orthogonal Polynomials

The general polynomial p(x) above was written in
terms of the monomials xj . This is known as the
natural form of the polynomial. The trouble with
the natural form is that the monomials all look very
similar when plotted on [0, 1]; that is, they are very
highly correlated. This means that small changes in
p(x) may arise from relatively large changes in the
coefficients c0, . . . , cn. The coefficients are not well
determined when there is measurement or roundoff
error.

The general polynomial can just as well be written
in terms of any sequence of basic polynomials of
increasing degree,

p(x) = a0p0(x) + a1p1(x) + · · · + anpn(x),

where the degree of pj (x) is j , for j = 0, . . . , n.
There is a linear relationship between the original
coefficients cj and the new coefficients aj to make
the resulting polynomial the same in each case.

The idea behind orthogonal polynomials is to
select the basic polynomials pj (x) to be as dif-
ferent from each other as possible. Two polynomi-
als pi and pj are said to be orthogonal if pi(X)

and pj (X) are uncorrelated as X varies over some
distribution. Legendre polynomials are uncorrelated
when X is uniform on (−1, 1). Chebyshev polynomi-
als are uncorrelated when X is Beta(1/2,1/2) on (−1,
1). Laguerre polynomials are uncorrelated when X is
gamma on (0,∞). Hermite polynomials are uncorre-
lated when X is standard normal on (−∞, ∞).

Any sequence of orthogonal polynomials can be
calculated recursively using a three-term recurrence
formula. For example, the Chebyshev polynomials
satisfy

p0(x) = 1,

p1(x) = x,

p2(x) = 2x2 − 1,

. . .

pn+1(x) = 2xpn(x) − pn−1(x), n ≥ 1.

Another important property of orthogonal polynomi-
als is that pn(x) changes sign (and has a zero) n times
in the interval of interest. The zeros of the nth order
Chebyshev polynomial occur at

xk = cos

(
π

k − 0.5

n

)
, k = 1, . . . , n.

The Chebyshev polynomials also have the prop-
erty of bounded variation. The local maxima and
minima of Chebyshev polynomials on [−1, 1] are
exactly equal to 1 and −1, respectively, regardless
of the order of the polynomial. It is this property
which makes them valuable for minimax approxi-
mation. In fact, an excellent approximation to the
nth order minimax polynomial on an interval can
be obtained by finding the polynomial that satis-
fies pn(x) = f (x) at the zeros of the (n + 1)th order
Chebyshev polynomial. Figure 1 shows the use of a
third- order Chebyshev polynomial to approximate
the function ex on the interval [0, 3]. The error is
less than 0.18 over the whole interval.

As another example, consider the problem of
approximating the tail probability of the normal prob-
ability distribution function, 1 − Φ(x), for x > 0.
Since the tail probability decreases rapidly as x

increases, we consider the ratio of the tail probabil-
ity to the normal density function [1 − Φ(x)]/φ(x).
Finally, we transform x to y = (x − 1)/(x + 1),
which takes values on [−1, 1]. The resulting function
f (y) = {1 − Φ[x(y)]}/φ[x(y)] looks nearly linear
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and can be well approximated by a polynomial. The
tenth-order polynomial which interpolates f (y) on
the Chebyshev points on [−1, 1] approximates f (y)

to nine or more significant figures, and hence gives
an approximation to Φ(x) that remains accurate to
ten significant figures for very large values of x.

Polynomial Regression

Now we turn to the case in which the nonlinear
function is observed with error. Suppose that we
observe (xi , yi), i = 1, . . . , N , where

yi = f (xi) + εi,

where f is some nonlinear function and the εi are
uncorrelated with mean zero and constant variance.

Consider height as a function of age for 318
girls who were seen in a disease study [6] in East
Boston in 1980 (Figure 2). Height might be described
roughly by a straight line over a short range of ages –
say, ages 5–10 – but over wider age ranges a more
general function is needed. We initially fit a sixth-
order polynomial,

yi = β0 + β1xi + β2x
2
i + β3x

3
i + β4x

4
i

+ β5x
5
i + β6x

6
i + εi,
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Figure 2 Height (in inches) vs. age (in years) for 318
girls who were seen in 1980 in the Childhood Respiratory
Disease Study in East Boston, Massachusetts

with the intention of decreasing the order later if a
simpler polynomial is found to fit just as well. This
leads to a multiple linear regression problem for the
coefficients β0, . . . , β6, in which the design matrix is

X =





1 x1 x2
1 . . . x6

1

1 x2 x2
2 . . . x6

2...
...

...
...

...

1 x318 x2
318 . . . x6

318



 .

The columns of this matrix are very nearly collinear,
which will make the least squares problem ill-
conditioned. Nevertheless, we can obtain results from
a statistical package: the regression overall is highly
significant, with an F statistic of 135.7 on 6 and 311
df. However, the table of coefficients and standard
errors offers little guidance as to what order of poly-
nomial is required (Table 1). None of the regression
coefficients are significantly different from zero, a
reflection of the high correlations between the coef-
ficients (Table 2). We could determine the smallest
adequate order for the polynomial by fitting, in turn,
a fifth-order polynomial, a fourth-order, a third-order,
and so on. At each step we could test for the neglected
monomial term using an adjusted F statistic. A more
satisfactory solution, however, is to use orthogonal
polynomials.

Table 1 Coefficients and standard errors for polynomial
regression of height on age for the respiratory disease study

Coefficient Value se t value P value

β0 80.2384 32.9342 2.4363 0.0154
β1 −26.9075 23.0292 −1.1684 0.2435
β2 7.8563 6.3456 1.2381 0.2166
β3 −1.0296 0.8856 −1.1627 0.2459
β4 0.0712 0.0663 1.0737 0.2838
β5 −0.0025 0.0025 −1.0020 0.3171
β6 0.0000 0.0000 0.9503 0.3427

Table 2 Correlation matrix for the polynomial regression
coefficients

β0 β1 β2 β3 β4 β5

β1 −0.9935
β2 0.9774 −0.9950
β3 −0.9558 0.9824 −0.9960
β4 0.9313 −0.9650 0.9860 −0.9969
β5 −0.9058 0.9451 −0.9721 0.9888 −0.9975
β6 0.8805 −0.9241 0.9559 −0.9776 0.9910 −0.9980



4 Polynomial Approximation

Many statistical programs allow one to compute a
sequence of polynomials which are orthogonal with
respect to the observed values of x; that is, which
satisfy

N∑

k=1

pi(xk)pj (xk) = 0, i �= j.

(The function ORPOL is part of PROC MATRIX
or PROC IML in SAS. In S-PLUS or R, the
function is poly (see Software, Biostatistical).)
It is also convenient to choose the polynomials
so that

N∑

k=1

pi(xk)
2 = 1, i = 0, 1, . . . , N − 1.

In terms of these polynomials, the multiple regression
model becomes

yi = α0p0(xi) + α1p1(xi) + · · · + α6p6(xi) + εi,

where again there is a linear relationship between
the coefficients αj of the orthogonal polynomials
and the original βj . This model has the same fitted
values, sums of squares, and F ratio as the origi-
nal model. However, because of orthogonality, the
least squares estimates of the αj are uncorrelated and
have identical standard errors, which greatly simpli-
fies interpretation. In fact, each estimated coefficient
α̂j is unchanged by the actual order of the polynomial
which has been fitted.

The estimated coefficients and standard errors for
the orthogonal polynomial regression are given in
Table 3. In this case, the Student’s t statistics and P
values for the coefficients directly relate to the signif-
icance of cubic, quartic, and so on, components of the
regression. We can see that the fifth- and sixth-order
terms are not required, but that the third- and fourth-
order terms are approaching significance. A plot of

Table 3 Coefficients and standard errors for orthogonal
polynomial regression of height on age for the respiratory
disease study

Coefficient Value se t value P value

α0 60.2119 0.1426 422.1543 0.0000
α1 65.0285 2.5435 25.5669 0.0000
α2 −31.3549 2.5435 −12.3276 0.0000
α3 4.4838 2.5435 1.7629 0.0789
α4 4.9562 2.5435 1.9486 0.0522
α5 −2.1465 2.5435 −0.8439 0.3994
α6 2.4170 2.5435 0.9503 0.3427

the quadratic and quartic fitted values against age
(Figure 2) shows that the quartic fit might be pre-
ferred, because the quadratic is not monotonic in the
observed range.
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Polynomial Regression

It has been known for over a century [12] that a
polynomial may be found which will approximate
an arbitrary continuous function on a finite inter-
val as closely as may be desired. This, one pre-
sumes, is the mathematical motivation for the intro-
duction of polynomials into data analysis, which
appears to have occurred in the early twentieth cen-
tury (e.g. [3]).

At least in the initial stages of analysis, statisti-
cal models are often defined to be linear both in the
parameters and in the covariates. In the simple situa-
tion of a single continuous covariate, X, the predicted
value of the outcome variable in such a model is
β0 + β1X. The parameters β0 and β1 are estimated
from the data, usually by maximum likelihood. If
a technique such as analysis of residuals suggests
that a straight line is a poor fit, one may wish to
extend the model to accommodate nonlinearity in
the relation between the outcome and X. One way
is to fit a polynomial β0 + β1X + β2X

2 + . . . . This
polynomial regression model, though no longer lin-
ear in X, is still linear in the parameters and therefore
may be estimated by standard multiple linear regres-
sion techniques. Such models can be used for normal
errors regression, but also for the generalized lin-
ear model (such as logistic regression) and Cox
proportional hazards regression (see Cox Regression
Model).

Polynomial regression has two main uses. The
first is as a method of representing curved regression
relationships in observational data and in designed
experiments. The approach has been described by
many writers, for example [11]. The second is essen-
tially as a diagnostic for curvature (see Diagnostics).
This is popular in the analysis of epidemiological
data, where one may fit multiple regression models
which involve a risk factor, X, of central inter-
est together with several confounding variables. A
hypothesis test for including a quadratic term (i.e. in
X2) in the model serves as a crude overall test of
curvature.

Although polynomials in more than one variable
(see Definitions, below) are known, they appear to be
scarcely, if at all, used in biostatistical applications.

Definitions

A univariate polynomial of degree k in a scalar
variable X is defined as

k∑

i=0

βiX
i,

where X0 ≡ 1. A model may, of course, contain uni-
variate polynomials in several covariates. A bivariate
polynomial of degree k in a vector X = (X1, X2)

′ is
defined as ∑

0≤i+j≤k

βijX
i
1X

j

2 ,

with extension in similar fashion to higher dimen-
sions (numbers of components in X). The βs are
parameters that need to be estimated from the data.

Advantages of Polynomials

As model functions, polynomials have several advan-
tages. They are simple and familiar functions that
are easily described and reported in nonstatistical
journals. Fitting is easy using standard regression
software, available in all statistical packages (see
Software, Biostatistical). The resulting curves are
independent of the origin and scale chosen for X,
and at least for low-order polynomials (k ≤ 2) are
very smooth. Derivatives of any order of the fitted
curves with respect to X are easily calculated and are
also smooth. Since the models are fully parametric,
the standard array of tools for statistical inference –
hypothesis tests of parameters, confidence intervals,
and so on – is available.

Drawbacks

Unfortunately, polynomials also suffer from severe
disadvantages. The low-order models are quite inflex-
ible in the range of curve shapes they offer, whereas
the higher-order ones often display artefacts such
as “end effects” and “wiggliness”. The Runge phe-
nomenon [9] is an extreme manifestation of the latter
(see Examples). Polynomials cannot have asymptotes
as X tends to infinity, so they are unsuitable models
for such relationships. Certain types of nonlinear
model (see Nonlinear Regression) are almost invari-
ably preferable. To avoid inaccuracies in parameter
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estimates due to the high correlations between the
powers of X in the model, special techniques such
as centering or orthogonalization are needed (see
Orthogonality). It is sometimes difficult to know
whether a feature of the fitted polynomial (such as
a peak or a nadir) is real or not. This matters in cer-
tain applications where the shape of the unknown
true function is of central importance. An example is
the so-called J-shaped risk relationship in epidemi-
ology [4]. Polynomials are nonrobust in that a small
number of values can considerably affect the param-
eter estimates and hence the entire curve shape.

Related Techniques

Royston & Altman [8] have described “fractional
polynomials” which include noninteger and fractional
powers of X, and have illustrated their uses with sev-
eral biostatistical examples. Fractional polynomials
are much more flexible than conventional polyno-
mials and share most of their advantages. Other
approaches are variants of nonparametric regres-
sion, and include the scatterplot smoother [1], the
spline function ([5, 10]) and the generalized addi-
tive model (GAM) [7]. Although the statistical liter-
ature on nonparametric regression modeling is large

and growing, alternatives to polynomials such as
GAMs and fractional polynomials do not seem to
be much used by authors of medical and epidemio-
logic papers. The situation may change as software
becomes more widely available.

Examples

We shall illustrate some features of polynomial re-
gression using two data sets. The first comprises
observations on 478 patients rescued by the helicopter
ambulance service of the Royal London Hospital [2].
Each patient received an injury severity score (X)
between 1 and 76 at the rescue location (1 being
least severe), and either died (Y = 0) or recovered
(Y = 1) following subsequent hospital treatment. We
attempt to predict the probability of recovery as a
function of the severity score. Figure 1 shows the
results of fitting several logistic regression models to
the data.

The continuous line, a quadratic polynomial,
shows a biologically implausible rise in the
probability of recovery when X > 60. A cubic model
(short dashes) is a significantly better fit (P = 0.02)
but is showing some “waviness” near X = 55. A
fractional polynomial of degree 1 (long dashes) has

Figure 1 Fitted curves for three logistic regression models for recovery following rescue by helicopter (n = 478): quadratic
( ); cubic ( ); fractional polynomial of degree 1 (– – –). The original binary observations (♦) are “jittered” randomly
to separate the points
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Figure 2 Mean girls’ weight plotted against age group
(n = 12), together with fitted eleventh order polynomial
exhibiting the Runge phenomenon

a log likelihood only 0.6 lower than the cubic, but
has a smoother and more convincing curve shape
than either of the polynomial models. The fractional
polynomial function found here is β0 + β1X

−1/2,
which has an asymptote of β0 as X tends to infinity.

We use a second data set to illustrate the Runge
phenomenon. Figure 2 is a plot of the mean body-
weights of several thousand US girls according to
completed years of age between 6 and 17 years [6].

There are 12 pairs of observations. The continuous
line shows the behavior of an eleventh order polyno-
mial fitted to the data. The fitted line passes exactly
through every observation, but between observations
it oscillates wildly (the Runge phenomenon), partic-
ularly near the extreme ages. It is therefore quite
useless for estimating the mean weight at interme-
diate ages.

The example is artificial in that an interpolat-
ing polynomial has been used, something one would
be unlikely to do in practice since the “model” is
clearly overfitted. However, the same thing can hap-
pen in realistic situations and its presence may escape
the notice of the analyst. For example, connecting
the fitted values with straight line segments between

observations, as is often done automatically by sta-
tistical software, may conceal the oscillations in the
true fitted curve.

References

[1] Cleveland, W.S. (1979). Robust locally weighted regres-
sion and smoothing scatterplots, Journal of the American
Statistical Association 74, 829–836.

[2] Evans, S.J.W. (1996). Personal communication.
[3] Fisher, R.A. (1925). Statistical Methods for Research

Workers. Oliver & Boyd, London.
[4] Goetghebeur, E.J.T. & Pocock, S.J. (1995). Detection

and estimation of J-shaped risk-response relationships,
Journal of the Royal Statistical Society, Series A 158,
107–121.

[5] Green, P.J. & Silverman, B.W. (1994). Nonparametric
Regression and Generalized Linear Models: A Rough-
ness Penalty Approach. Chapman & Hall, New York.

[6] Hamill, P.V.V., Drizd, T.A., Johnson, C.L., Reed, R.B.
& Roche, A.F. (1977). NCHS Growth Curves for Chil-
dren, Birth–18 Years, United States. US Department of
Health, Education and Welfare, Washington.

[7] Hastie, T.J. & Tibshirani, R.J. (1990). Generalized
Additive Models. Chapman & Hall, New York.

[8] Royston, P. & Altman, D.G. (1994). Regression
using fractional polynomials of continuous covariates:
parsimonious parametric modelling (with discussion),
Applied Statistics 43, 429–467.
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Polytomous Data

In many studies the response of interest is restricted
to a fixed set of possible values, the so-called
response categories. Response variables of this type
are called polytomous, or, less frequently, polychoto-
mous. Examples are side effects of medical treatment
with the possible categories headache, insomnia, or
nausea, or several types of infection that may follow
an operation. Most rating scales have fixed response
categories that measure, for example, the medical
condition after some treatment in categories such as
good, fair, or poor, or the severity of symptoms in
categories such as none, mild, moderate, or marked.

These examples show immediately that there are at
least two cases to be distinguished, namely the case in
which response categories are mere labels which have
no inherent ordering and the case in which categories
are ordered. In the first case the response Y is mea-
sured on a nominal scale (see Nominal Data). Instead
of using the numbers 1, . . . , k for the response cate-
gories, any set of k numbers would do. In the latter
case the response is measured on an ordinal scale,
on which the ordering of the categories and the cor-
responding numbers may be interpreted, but not the
distance or spacing between categories (see Ordered
Categorical Data). Examples of nominal and ordi-
nal response categories are given in Figures 1 and 2.
In the nominal case the response categories are scat-
tered over the plane in order to show that categories
have no systematic ordering. In the ordinal case the
response categories are given on a straight line, thus
illustrating the ordering of the categories.

Another type of response category that contains
more structure than the nominal case but is not

2
Insomnia

5
No side effects

4
Restlessness

3
Nausea

1
Headache

Figure 1 Side effects as example for nominal response
categories where the numbers 1, . . . , k are mere labels

1
None

2
Mild

3
Moderate

4
Marked

Figure 2 Severity of symptoms as ordered categories

1
No infection

4
Infection type II

2
Infection

type I with
complications

3
Infection

type I
without

complications

Figure 3 Type of infection as nested structure

captured by simple ordering is given by the nested or
hierarchical response category. An example in which
the basic response is in the categories “no infection”,
“infection type I,” and “infection type II” is shown
in Figure 3. However, for infection type I two cases
have to be distinguished; namely, infection with and
without additional complications. Thus, one has splits
on two levels; first the split into basic categories and
then the conditional split for the outcome “infection
type I”.

Nominal Response: The Multinomial Logit
Model

Let 1, . . . , k represent the response categories,
i.e. Y ∈ {1, . . . , k}, and let x′ = (x1, . . . , xp) be
a vector of explanatory variables containing an
intercept. The objective is to investigate the effect
of the explanatory variables upon the probability
of response categories πr(x) = Pr(Y = r|x), r =
1, . . . , k. In the case of nominal response categories
the most widespread model is the multinomial logit
model, which assumes

πr(x) = exp(x′βr )

k∑

s=1

exp(x′βs)

, r = 1, . . . , k, (1)
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with the parameter vectors β1, . . . , βk being specific
for the response categories. The simple structure of
the model becomes obvious if one considers two
response categories r and s, for which one obtains
the odds

πr(x)

πs(x)
= exp[x′(βr − βs)] (2)

or, equivalently, the log odds

log
πr(x)

πs(x)
= x′(βr − βs ). (3)

Thus, by (2), the odds that the response is in
category r instead of category s are specified by
an exponential term depending on the difference of
parameters βr − βs , whereas the log odds or logits
depend linearly on the explanatory vector x, with
weights determined by the difference βr − βs .

Parameter interpretation may be illustrated by the
example from Figure 1 with dichotomous covariates
such as treatment (xT; one, new; zero, conventional)
and a continuous covariate such as age centered
at 30 years (xA). Then one has, for example, for
the response categories 2 (insomnia) and 5 (no side
effect)

Pr(insomnia)

Pr(no side effects)
= π2(x)

π5(x)

= exp(β02 − β05)

× exp(βT2 − βT5)
xT

× exp(βA2 − βA5)
xA .

That means that exp(β02 − β05) gives the baseline
odds that insomnia occurs instead of no side effects,
exp(βT2 − βT5) is the factor by which these odds
increase or decrease for the new treatment, and
exp(βA2 − βA5) gives the multiplicative increase or
decrease per year of age.

Since in the model given in (1) it is only possible
to investigate the effect of x upon the preference of
response categories over the alternatives, not all of
the parameter vectors β1, . . . , βk are identifiable. It is
common to choose a reference category, for example
k, and take βk = 0. Then the model reduces to

πr(x) = exp(x′βr )

1 +
k−1∑

s=1

exp(x′βs)

, r = 1, . . . , k − 1,

and

πk(x) = 1

1 +
k−1∑

s=1

exp(x′βs)

.

Although (1) seems to imply strong assumptions
about the relation between explanatory variables and
the response variable, this is not generally true. In
particular, for categorical explanatory variables the
model may just represent a reparameterization of the
conditional response categories; that is, it is a satu-
rated model.

For simplicity, let us consider the case of two
dichotomous explanatory variables, such as gender
and treatment. With xG being a dummy variable for
gender (1, male; 0, female) and xT coding treatment
(1, new treatment; 0, conventional), consider the logit
model

lr (x) = log
πr(x)

πk(x)
(4)

= β0r + xGβG,r + xTβT,r + xGxTβG×T,r ,

r = 1, . . . , k − 1.

The model includes the explanatory variables xG

and xT and their product xGxT, the latter repre-
senting the interaction between gender and treat-
ment. For each category r = 1, . . . , k − 1, there are
four parameters β0r , βG,r , βT,r , and βG×T,r yielding
a total of 4(k − 1) parameters. However, for each
of the four combinations of gender and treatment
there are k − 1 probabilities πr(xG, xT) = Pr(Y =
r|xG, xT), r = 1, . . . , k − 1. The last one is deter-
mined by

∑
r Pr(Y = r|x) = 1. Consequently, the

model contains as many parameters as probabilities,
and any set of probabilities can be represented in the
form given in (4). This may be explicitly shown by
solving the system of equations resulting for different
combinations of gender and treatment.

Generally, for categorical covariates any set of
response probabilities π1(x), . . . , πk(x) may be rep-
resented by the multinomial logit model if inter-
action terms are included into the linear term. For
three dichotomous variables for example, one has to
include x1, x2, and x3 and all of the interactions x1x2,
x1x3, x2x3, and x1x2x3. Parameter interpretation may
again be based on the form given in (2), or directly
on the logit form given in (3) or (4). The intercept
β0r = log[πr(0, 0)/πk(0, 0)] gives the odds of cate-
gory r in comparison with the reference category k
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if xG = 0 and xT = 0. The effect of xG, given by

βG,r = lr (1, 0) − lr (0, 0)

= log

{
[πr(1, 0)/πk(1, 0)]

[πr(0, 0)/πk(0, 0)]

}
,

represents the difference between the logit for xG = 1
and the logit for xG = 0 (holding xT = 0 constant).
It may also be seen as the logarithm of the odds
ratio between the corresponding odds. The interac-
tion effect, given by

βG×T,r = lr (1, 1) − lr (−, 1) − lr (1, 0) + lr (0, 0)

=

[
πr(1, 1)

πk(1, 1)

/
πr(0, 1)

πk(0, 1)

]

[
πr(1, 0)

πk(1, 0)

/
πr(0, 0)

πk(0, 0)

] ,

represents the ratio between two odds ratios, reflect-
ing the transition from xG = 0 to xG = 1 for xT = 1
in the nominator and for xT = 0 in the denominator.

If the interaction vanishes – that is, βG×T = 0 –
the two explanatory variables determine the response
separately. A model of this type is strongly related
to loglinear models, or to graphical models that
investigate forms of conditional independence (see
Antidependence Models). Suppose that Y, xG, and
xT are any three categorical random variables. If
xG and xT are conditionally independent given Y

(which corresponds to a special loglinear model),
then the interaction terms between xG and xT may be
omitted in the multinomial logit model, meaning that
the response is determined by regressors xG and xT

separately. For more than two explanatory variables,
there is a larger variety of interaction terms that
may be omitted. The resulting models correspond to
loglinear models of varying complexity, and therefore
various structures of conditional independence are
possible. Loglinear as well as graphical models are
considered extensively in [7]; for graphical models,
see also [26].

In the linear term x′β, various types of variables
may be included. If a covariate is dichotomous it
may be used directly in (0–1)-coding, whereas if
it is polytomous one has to use several dummy
variables. Continuous scaled covariates may enter
the linear term by using x, but also in polynomial
form including x2, x3, etc. Moreover, interactions
such as in the simple example above may be used.

The essential restriction is the linear form x′β, which
does not mean linear in the covariates but only linear
in the parameters. Of course, if continuous variables
are included, or only part of the interaction terms are
used, model adequacy should be checked (see later
section).

Ordinal Response

The multinomial logit model is based on the log-
its lr (x) = log[πr(x)/πk(x)], where k is the reference
category. By assuming lr (x) = x′βr , each logit lr (x)

has its own category specific parameter βr . Conse-
quently, a permutation of the response categories does
not change the validity of the model. This is also
easily seen from the form given in (1), where it is
obvious that no ordering of response categories is
used.

Cumulative Logits

If the categories are ordered, simpler models that
assume more structure will be more appropriate. By
using the ordering of categories, one may consider
the cumulative logits

lc
r (x) = log[Pr(Y ≤ r|x)/ Pr(Y > r|x)]

= log

{
[π1(x) + · · · + πr(x)]

[1 − π1(x) − · · · − πr(x)]

}
.

These cumulative logits represent the logarithm of
the odds that the response is below or in category r

instead of being above category r . By cumulating
over responses 1, . . . , r , the ordering is explicitly
used. A simple model that is based on cumulative
logits is the proportional-odds or cumulative logit
model

lc
r (x) = log

[
Pr(Y ≤ r|x)

Pr(Y > r|x)

]
= β0r + x′β,

r = 1, . . . , k − 1, (5)

where the intercept is now separated; in other words,
in x′ = (x1, . . . , xp), only the covariates or explana-
tory variables are collected. The advantage of the
model given in (5) is that by using the ordering
the number of parameters is strongly reduced. One
has intercepts β01, . . . , β0,k−1 and only one weight
parameter β instead of k − 1 weight parameters
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β1, . . . , βk−1 as in the multinomial logit model. Thus,
the model given in (5) is simpler with respect to
parameter economy. The additional structure assumed
in (5) becomes obvious by consideration of the cumu-
lative logits for two covariate values x1 and x2. One
obtains

lc
r (x1) − lc

r (x2) = log
Pr(Y ≤ r|x1)/ Pr(Y > r|x1)

Pr(Y ≤ r|x2)/ Pr(Y > r|x2)

= (x1 − x2)
′β,

meaning that the ratios of cumulative odds with dif-
ferent covariate values do not depend on the category
but only on the difference x1 − x2. This property
describes a form of strict stochastic ordering [16].
One has either lc

r (x1) > lc
r (x2) for all r or lc

r (x1) <

lc
r (x2) for all r . That means that the total response

is shifted toward lower or higher response categories
by the transition from subpopulation x1 to subpopu-
lation x2.

This shifting is also supported if the model is moti-
vated by an underlying continuous response. In some
cases the categorical variable Y may be considered as
a coarser version of a latent variable Ỹ . For example,
the severeness of a headache may subjectively have
a continuous scale but a response in categories such
as none, mild, or moderate, which are determined
by the investigator. One assumes that the observable
variable Y and the latent variable Ỹ are linked by

Y = r3, if θr−1 ≤ Ỹ < θr , (6)

with threshold values −∞ = θ0 < θ1 < · · · < θk =
∞. Thus the observable response is in category r

if the continuous underlying response is in interval
[θr−1, θr). If the continuous latent variable is given
by Ỹ = −x′β + ε, with an error variable that follows
the logistic distribution function F(x) = exp(x)/[1 +
exp(x)], one immediately obtains the cumulative logit
model given in (5), with β0r = θr , r = 1, . . . , k − 1.
The response mechanism in (6), together with Ỹ =
−x′β + ε, shows that transition from population x1

to population x2 means a changing of the expectation
from EỸ = −x1β to EỸ = −x2β, and therefore a
shifting on the latent scale resulting either in lower
or higher response categories.

By assuming an alternative but fixed distribution
function F for the noise variable x, one obtains
from (6) the more general model

Pr(Y ≤ r|x) = F(β0r + x′β).

Models of this type reduce the number of parameters
by exploiting the ordinal response. This advantage
is often crucial, since the response in categories
contains less information than a continuous response,
as is usually assumed in classic linear regression
models. For further information and applications of
cumulative models, see [5, 6, 14, 16], and [22].

Continuation-ratio or Sequential Logits

In many applications the ordering of the response
categories is due to a sequential mechanism. If
the response is, for example, tonsil size with cat-
egories “not enlarged”, “enlarged”, and “greatly
enlarged” [12], then starting from the normal state
“not enlarged” (category 1) one may reach “enlarged”
(category 3) only if the intermediate state has pre-
viously been reached, whatever the duration in this
state is. Similar responses are found in discrete dura-
tion data. If the time until recovery is measured in
months, it will take at least 10 months only if the
recovery process has lasted at least through 9 months
previously.

Appropriate modeling of categories that are rea-
ched only successively may be based on conditional
models that model explicitly the process of transition.
Let us consider the continuation-ratio or sequential
logits

ls
r (x) = log[Pr(Y = r|x)/ Pr(Y ≥ r|x)],

where the underlying odds determine that the res-
ponse is in category r instead of a category above or
in r . These odds may be rewritten in the form

Pr(Y = r|x)

Pr(Y ≥ r|x)
= Pr(Y = r|Y ≥ r, x),

therefore specifying the conditional probability of a
response in category r given category r is reached.

The corresponding continuation-ratio logit model
or sequential logit model has the form

ls
r (x) = log

[
Pr(Y = r|x)

Pr(Y ≥ r|x)

]
= x′βr . (7)

The model may be seen as consecutive dichotomous
steps. Starting in category 1, the first step, namely
the potential transition to category 2, is determined
by a dichotomous logit model with parameter β1.
Given that category 2 is reached, the next step –
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potential transition to category 3 – is determined by
a dichotomous logit model with parameter β2. More
generally, the rth step is determined by a dichoto-
mous logit model with parameter βr . Consequently,
the parameters have to be interpreted in the same way
as for dichotomous logit models, but with reference to
the specific step modeled. For the tonsil size example,
the model given in (7) means that one is explicitly
investigating the effects of covariates upon the transi-
tion from enlarged tonsils to greatly enlarged tonsils,
given one has at least enlarged tonsils. Actually, any
dichotomous model may be used in the consecutive
steps. The general sequential model is given by

Pr(Y = r|Y ≥ r, x) = F(x′βr ),

with a fixed response function F and the parameter
vector possibly depending on r .

An alternative way of interpreting the consecutive
steps is within the context of survival analysis. If the
response categories correspond to failure in discrete
time (in weeks or months), the conditional odds

Pr(Y = r|x)

Pr(Y ≥ r|x)

may also be interpreted as a discrete hazard func-
tion (see Discrete Survival-time Models), the con-
ditional odds representing the hazard of failure at dis-
crete time point t (corresponding to a time interval).
For discrete duration models and the connection to
sequential models, see [8, 10, 21], and [23]. Sequen-
tial models for ordinal data have been considered
in [9, 17], and [25].

Nested or Hierarchical Responses

Let us consider the infection example given in
Figure 3. The essential point is that, for response data
of the nested type, some hierarchy has to be taken
into account. At the first level one has the response
into categories “no infection” (category 1), “infection
type I” (categories 2 and 3), and “infection type II”
(category 4). At the second level, infection type I is
split into categories 2 and 3. Of course, one may fit
the multinomial logit model for categories 1–4. Then,
however, the information that categories 2 and 3 are
more similar than the other categories is not used.
This becomes even more important if the split into
subcategories with and without complications occurs
later in time than the primary first level split.

In this case an appropriate hierarchical model is
a two-step model. The first level may be modeled
by a trichotomous multinomial model with reference
category 1, given by

log
Pr(Y ∈ {2, 3}|x)

Pr(Y = 1|x)
= x′β(1)

1 ,

log
Pr(Y = 4|x)

Pr(Y = 1|x)
= x′β(1)

2 .

The conditional split on the second level may be
modeled by dichotomous logits

log
Pr(Y = 3|Y ∈ {2, 3}, x)

Pr(Y = 2|Y ∈ {2, 3}, x)
= x′β(2).

The principle is the conditional modeling of consec-
utive splits. This principle allows hierarchies with
more than two levels. In a straightforward way, any
category – for example, “infection type I with com-
plications” – can be split up further. The additional
structure could be modeled conditionally given the
response group “infection type I with complications”.
Not only dichotomous splits are possible. If infection
type I is split into five categories of different forms
of complications on the second level, one would use
a multinomial model. Consequently, on each level
one may use a nominal or an ordinal model, corre-
sponding to the type of response categories on the
level.

McCullagh & Nelder [17] illustrate the approach
of consecutive dichotomous splits by a study of mor-
tality and fertility of lactating cows with consecu-
tive trials of insemination leading or not leading to
pregnancy. Further examples have been given in [3,
15, 18], and [24].

Further approaches to the modeling of ordinal
data include “adjacent categories logits”, where the
logits between adjacent categories of the ordinal
scale are considered [1, Chapter 6], and the stereo-
type model [4], where the ordering results from the
modeling.

Estimation, Testing, and Goodness of Fit

The data usually are given as pairs (Yi, xi ), i =
1, . . . , n, of the response variable Yi and the covariate
vectors xi . The estimation of the models is most
often based on the maximum likelihood principle.
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The kernel of the multinomial log likelihood has the
form

l =
n∑

i=1

k−1∑

r=1

yir log[πr(xi )] + (1 − yi1 − · · · − yi,k−1)

× log[1 − π1(xi ) − · · · − πk−1(xi )], (8)

where the probabilities are given by πr(xi ) = Pr(Yi =
r|xi ) and yir , r = 1, . . . , k − 1, are dummy variables
coding the response by yir = 1 if Yi = r and yir = 0
otherwise. When maximizing (8) the response proba-
bilities have to be replaced by their parametric form.
The models considered here are special cases of a
(multivariate) generalized linear model for multi-
nomial response. That means that some (known)
transformation of the response probabilities depends
linearly on the covariates, as in the models given
in (3), (4), and (5). Generalized linear models pro-
vide a unified framework in which parameters can be
estimated, and the influence of specific variables can
be tested. For details, see [2, 11], and [17].

Of particular interest is the goodness of fit of
models, which may be assessed by considering the
difference between the data and the fitted values.
If the explanatory variables are categorical, only a
limited number of patterns (say g) for the vector
x is possible. Then one may consider grouped data
(pi , xi ), i = 1, . . . , g, where p′

i = (pir , . . . , pik) is
the vector of relative frequencies computed from the
ni observations taken at pattern xi . The goodness of
fit of the models may be checked by the Pearson
statistic

χ2 =
g∑

i=1

ni

k∑

j=1

(pir − π̂ir )

π̂ir

(see Chi-square Tests), or the deviance

D = 2
g∑

i=1

ni

k∑

r=1

pir log

(
pir

π̂ir

)
,

where π̂ir denotes the maximum likelihood estimate
of πir = Pr(Yi = r|xi) (see Likelihood Ratio Tests).
If ni → ∞ for fixed g (ni/n converges to λi ∈
(0, 1)), then both statistics are asymptotically χ2

distributed with g(k − 1) − p degrees of freedom,
where p is the length of the parameter vector β.
When applying χ2 or D, one has to keep in mind
that this fixed cell type of asymptotics assumes that
the local number of observations ni must not be too

low (see Likelihood Ratio Tests). The distribution
of χ2 and D is quite different for sparse data (n →
∞, g → ∞) (see [19] and [20]). If the covariates
are continuous then the number of patterns is the
same as the number of groups. In this case χ2 and
D will fail as goodness-of-fit measures. Hosmer &
Lemeshow [13] give a modification for this case,
based on grouping within intervals.
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Popper, Karl R.

Born: July 28, 1902, in Vienna, Austria.
Died: September 17, 1994, in London, UK.

In his Autobiography (see [13] or Unended Quest
[7]), Popper recalls being upset, as a child, by the
sight of hunger and poverty in the streets of Vienna.
His father was a lawyer and a “radical liberal”, his
mother was a musician. At the University of Vienna
after World War I he studied a variety of subjects
from physics, mathematics, and history of music to
education, psychology, and philosophy, while earning
his living mostly from schoolteaching. The encounter
with Marxism, and to a lesser extent with psycho-
analysis, made him conscious that he valued free
critical thinking over dogmatic theories. After lis-
tening with awe to a lecture by Einstein he was
reinforced in the conviction that what makes con-
jectures scientific is that they are open to refutation
by experience.

Although not a member of the Wiener Kreis, he
interacted with members of the Circle. He resisted
their idea that philosophical questions are reducible
to questions of language. His first manuscript, criti-
cal of the doctrines of the Circle, boldly attempted to
solve “the two fundamental problems in the theory of
knowledge” (the problems of induction and of demar-
cation) [1]. The manuscript was read and discussed
by Feigl, Carnap, Schlick, and Frank, among others.
His next work, entitled Logik der Forschung (1934),
first published in a series edited by Frank & Schlick,
would (so Popper thought) defeat the theses of logi-
cal positivism, through showing that there is no such
thing as “inductive logic” (“induction is a myth”),
and that the criterion of demarcation between science
and pseudo-science is that scientific propositions are
refutable (falsifiable), while pseudo-scientific ones
are irrefutable (unfalsifiable) [2]. Valid reasoning is
deductive, science is hypothetico-deductive, refuta-
tion is a case of modus tollens. Scientific theories
are neither verifiable nor probable; they are hypo-
thetical. The book was a great success. Popper was
invited to lecture abroad. In Prague he met Tarski,
whose theory of truth was to influence decisively his
own philosophical realism. In England he met with
Ayer and Russell, as well as with German-speaking
refugees such as Schrödinger and Hayek. On account
of the rise of Nazism in Austria, he then accepted a

teaching position in the University of New Zealand
at Canterbury. And that is how, in 1937, he became
a philosophy professor.

“The Poverty and the Open Society were my war
effort”: they were an attack on totalitarianism, and a
plea for a free society in which people “send their
theories to die in their stead”; that is, expose their
ideas to criticism and exchange arguments rather than
blows [3, 4]. Both texts were published after World
War II, thanks to Hayek, who also gave their author
the opportunity to return to Europe and teach in Lon-
don. Popper became a professor in logic and scientific
method at the London School of Economics and
stayed there for the rest of his career (1945–1969). In
spite of a somewhat eccentric marginality he became
a celebrity on the British philosophical scene, and
was knighted in 1965.

Conjectures and Refutations (1963) expands on
the thesis, already present in Logik der Forschung,
that truth is not manifest, searching for truth takes
work, cognitive delusions abound, and scientific theo-
ries are mere conjectures, the truth of which can never
be conclusively established [5]. Scientific theories,
however, have a degree of testability, and as a theory
passes more severe tests, it gets more highly “cor-
roborated” (which does not mean confirmed, but so
far not disconfirmed). Objective Knowledge (1972),
a collection of essays, marks a turn towards an evo-
lutionary epistemology [6]. Essay 3 on “epistemol-
ogy without a knowing subject” presents the reader
with the stimulating (and realist) view that scientific
problems, theories, and arguments develop within
a “third world”, largely autonomous with respect
to the first (world of physical objects) and second
(world of mental states); and that the objective traits
of the growth of knowledge (world 3) are of far
greater interest to epistemology than the subjective
thoughts of scientists (world 2). Essay 6 “on clouds
and clocks” generalizes Popper’s epistemic theory (of
learning through a trial and error-elimination pro-
cess), via a neo-Darwinist scheme, to a metaphysical
theory (of evolution through random variation and
natural selection within an “open”, i.e. indeterminis-
tic, universe). This is rehearsed in a clear and simple
style by A World of Propensities [12]. The Self and
its Brain (1977) is a fascinating dialogue between
a philosopher (P) and a brain scientist (E) on the
mind–body interaction [8].

While tackling a great variety of new subjects,
Popper never ceased to work on his initial work,
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translated into English in 1959 under the title The
Logic of Scientific Discovery [2], revised many times,
and completed by a huge Postscript from which
three new volumes have been extracted (see [9, 10],
and [11]). The reader of the Encyclopedia of Bio-
statistics will be most interested by Realism and the
Aim of Science (1982), in which Popper re-examines
in detail the problems of truth, corroboration, and
probability. He maintains that inductive reasoning,
that is [9], concluding validly from empirical obser-
vations to general regularities, is an illusion. There
are neither “inductive sciences”, as Mill or Whewell
thought, nor a “logic” of induction, as Carnap tried
to build, nor a “statistical” or “probabilistic” induc-
tion, as statisticians like R. A. Fisher tried to sketch.
According to Popper, scientific hypotheses do not
arise from experience, but are an expression of our
freedom to conjecture; they do not have to be plau-
sible, they have to be testable. He is an adept of a
selective or Darwinian theory of learning (as opposed
to an instructive or Lamarckian theory). We do not
learn from the facts, we learn “from our mistakes”
(from conjecturing and being refuted).

Popper’s views on inductive inference gave rise
to hot controversies. Inductivists objected that while
Popper emphasizes the negative aspect of scientific
methods (how to detect and reject errors), he does not
take account of the positive aspect (how to make judi-
cious hypotheses). The choice of a theory is guided
by experience. Rationally favoring some hypothesis
implies careful sampling of data, and estimation of
the degree of inductive support the hypothesis gets
from known data. Thus, statistical or probabilistic
induction does exist and is in use. Deductivists main-
tained that empirical facts cannot model our ideas,
and they produced more “proofs” of the impossi-
bility of induction. Even if mutual concessions and
rephrasing have now brought inductivists and deduc-
tivists somewhat closer to each other, inductivism still
emerges as the winner of the contest; inductivists
outnumber deductivists. But, as inductive methods
remain hard to “justify”, Popper’s critical examina-
tion of the topic of induction remains an interesting
challenge.
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Population Genetics

Population genetics, as the name implies, is con-
cerned with the analysis of factors affecting the
genetic composition of a population. It is thus cen-
trally concerned with evolutionary questions through
the change in the genetic composition of a population
over time as directed by natural selection, mutation,
migration, and other factors, with questions associ-
ated with genetic diseases in human populations, and
finally with plant and animal breeding programs, in
which an attempt is made to change the genetic con-
stitution of a population by artificial methods. To
the extent that this genetic composition is in part
random and can be described in quantitative terms,
population genetics is a subject of prime interest to
biometricians. Here we focus on biometrical aspects
of evolutionary population genetics, although we will
note the importance of several aspects of the evolu-
tionary theory on human genetics and on plant and
animal breeding programs.

Early Population Genetics Theory

It is a well-known curiosity that Darwin published
his theory of evolution by natural selection many
years before the (Mendelian) hereditary mechanism
(see Mendel’s Laws) was firmly established. One
matter in particular troubled him: under the blending
theory of heredity current during his time, which
assumed that the characteristics of any offspring are
a blend of the corresponding characteristics of the
two parents, the variation upon which his theory of
evolution by natural selection depended would soon
be dissipated unless some strong variation-creating
agency could be established causing offspring not
to resemble their parents. Such an agency, however,
would make inoperative another central component
of the Darwinian theory, namely the resemblance
between parents and offspring.

It was one of the early triumphs of population
genetics theory, stressed repeatedly by Fisher, that
the Mendelian hereditary system resolved this diffi-
culty at a stroke. The main early result responsible for
reaching this important breakthrough was the well-
known Hardy–Weinberg equilibrium law. This law
implies, for two alleles (or gene types) A1 and A2 at
some gene locus “A”, with no selection, mutation,

or any other disturbing force, and if random changes
in frequencies arising from stochastic processes in
finite populations can be ignored, that if the genotype
frequencies in any generation take the arbitrary val-
ues X (for A1A1), 2Y (for A1A2), and Z (for A2A2),
then following one generation of random mating
these frequencies will be of the form x2, 2x(1 − x)

and (1 − x)2, where x = X + Y , and that under ran-
dom mating these frequencies will be maintained in
all future generations. This result follows essentially
from the “quantal” nature of the gene.

Unfortunately this law is too often taught to stu-
dents for the wrong reason: the binomial form of
genotype frequencies which are derived under this
law is certainly interesting and convenient, but what
is crucial is not this but the unchanging nature of
genotype frequencies, as indicated by the law, if no
disturbing forces such as selection and mutation exist.
The only significant area where the law does not
come to grips with an important question concerns
the fact that it does not handle the stochastic changes
in gene frequencies implied by the finite nature of
every population. This stochastic behavior is a matter
we return to again later.

The quantal nature of the Mendelian scheme
ensures that the natural tendency of a Mendelian pop-
ulation is to maintain genetic variation. Of course
this variation will tend to be lost by the very process
of replacing an “inferior” allele by a “superior” one,
but this is an entirely different matter from a natu-
ral tendency of a hereditary system itself to destroy
variation. It is thus a crucial concern to quantify the
concept of variation in a Mendelian population, not
only among genotypic frequencies but, more impor-
tant to biometricians, among those measurable char-
acteristics whose variation is preserved through the
preservation of genetic variation.

The Correlation Between Relatives

In the early years of the century, biometricians noted
various regular forms for the correlation of certain
metrical traits such as height between various types
of relatives. It was one of the early triumphs of pop-
ulation genetics theory, attributable to Fisher [3], to
show that the form of these correlations could be
accounted for by Mendelian considerations. Suppose,
in the simplest case, that all individuals of genotypes
A1A1 have measurement m11 for this character, all
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individuals of genotype A1A2 have measurement m12,
and all individuals of genotype A2A2 have measure-
ment m22. Then it is easy to compute the mean m

and the variance σ 2 of the measurement as

m = m11x
2 + 2m12x(1 − x) + m22(1 − x)2

and

σ 2 = m2
11x

2 + 2m2
12x(1 − x) + m2

22(1 − x)2 − m2.

Further, since there is a one-to-one correspondence
between measurement value and genotype, it is
straightforward to write down all possible combi-
nations for this measurement between any pair of
relatives (mother–daughter, brother–brother, etc.),
together with their probabilities, using as a key part
of the argument the Mendelian rules for the transmis-
sion of genes from parent to offspring. From this it
is straightforward to find the covariance, and thus
also the correlation, between the two relatives for
the measurement in question. When this is done, a
remarkable series of formulas arises [3]. We find that
all such correlations are of the form

corr = (ασ 2
A + βσ 2

D)

σ 2
,

where α and β are simple constants such as 0, 1/2,
1/4 (and more generally of the form (1/2)k , for some
integer k), and σ 2

A and σ 2
D are defined by

σ 2
A = 2x(1 − x)[xm11 + (1 − 2x)m12 − (1 − x)m22]2

and

σ 2
D = x2(1 − x)2(m11 − 2m12 + m22)

2.

It is a matter of simple algebra to show that σ 2 =
σ 2

A + σ 2
D, so that the total variance in the measure-

ment has been subdivided into two components which
enter differently into the correlation between various
forms of relatives. We see here the beginnings of
the concept of the analysis of variance, to flower
so greatly in Fisher’s hands in the 1920s, and first
appearing in the biometrical context of the correlation
between relatives (see Familial Correlations).

The Additive and the Dominance
Variances

The two components σ 2
A and σ 2

D have interpretations
well beyond being simply components of the total

variance in the measurement. Our later main focus
is on σ 2

A, but we first briefly discuss σ 2
D. Clearly this

component is always zero if m12 = 1/2(m11 + m22),
that is if the measurement for the heterozygote A1A2

is the average for that of the two homozygotes A1A1

and A2A2. When this occurs we say that there is no
dominance in the measurement, and the component
σ 2

D of the total variance is nonzero only if dominance
does exist. Thus σ 2

D is called the dominance variance,
and this explains the suffix in the notation.

We have just noted the occurrence of the so-
called “additive genetic variance” σ 2

A in the formulas
for the correlation between various relatives. This
variance is, however, of even greater value, and its
significance is more clearly demonstrated, when we
consider evolutionary aspects of a genetic population.
To see this, suppose that the three genotypes A1A1,
A1A2, and A2A2 have (viability) fitnesses w11, w12,
and w22, respectively, and that no other form of
fitness differential (for example, fertility differentials)
exists. Then the frequency x of the allele A1 will, in
general, change from generation to generation, and it
is straightforward to find the formula for the change
∆x in the frequency of A1 from one generation to
the next. If we define the mean fitness w as a special
case of a mean measurement by the formula

w = w11x
2 + 2w12x(1 − x) + w22(1 − x)2,

then it is also straightforward to find the change ∆w

in w from one generation to the next, and from this
we find that, to a close approximation,

∆w = σ 2
A.

The statement embodied by this formula, that the
increase in mean fitness is approximately equal to the
additive genetic variance, has been called Fisher’s [4]
“Fundamental Theorem of Natural Selection”. More
precisely, this statement is the “conventional wis-
dom” version of the Fundamental Theorem. It is,
however, uncertain that this result was what Fisher
claimed to have achieved, and for an alternative inter-
pretation of Fisher’s theorem, see [2].

Whatever the correct interpretation of the theorem
might be, it quantifies in genetical terms the main
tenet of the Darwinian theory, that for evolution by
natural selection to occur, leading in some sense to an
“improvement” in the population, measured here by
an increase in mean fitness, there must be variation
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in the population, here variation in fitnesses of the
three genotypes.

However, the theorem shows that not all the vari-
ation in fitness is relevant to evolution, since only the
additive part of the variance is involved in the above
formula. To understand why this is so, we must first
investigate more closely the interpretation of the addi-
tive genetic variance σ 2

A. The key points to note are,
first, that at any given locus an individual passes on
a gene to an offspring, not the two genes comprising
his/her genotype at this locus, and second that evo-
lution concerns the changes in gene frequency. It is
thus necessary to define the concept of a “gene fit-
ness” to understand the differential transmission of
genes from parent to offspring as brought about by
natural selection and the consequent change in mean
fitness. (More correctly we should define an “allele
fitness”, and use “allele frequency” rather than “gene
frequency” above, but we follow here the standard,
albeit incorrect, usage.) We define “gene fitnesses”
by noting that an A1 gene combines with another A1

gene, with probability x, to form an individual of
fitness w11, and with an A2 gene, with probability
1 − x, to form an individual of fitness w12. We thus
ascribe a fitness w11x + w12(1 − x) to the gene A1,
and similarly we ascribe a fitness w12x + w22(1 − x)

to the gene A2. Since a randomly chosen gene is A1

with probability x and A2 with probability 1 − x, we
can define a mean and a variance of gene fitness by
using the probability distribution shown in Table 1.

The mean gene fitness is easily found, from this
distribution, to be identical with the mean genotype
fitness w given above, but the variance in gene fitness
is found to be different from the variance in geno-
type fitness, being x(1 − x)[xw11 + (1 − 2x)w22]2.
Recalling that at any locus each individual has two
genes in the genotype, we define the variance in the
fitness of any individual due to the genes in his/her
genotype to be twice this value, or (with the gen-
eral measurement replaced by fitness), by the additive
genetic variance in fitness.

If the additive genetic variance comprises all the
variance in fitness, then the dominance variance is
zero. This occurs, as noted above, if and only if

Table 1

Gene (allele) A1 A2

Gene fitness w11x + w12(1 − x) w12x + w22(1 − x)

Probability x 1 − x

the fitness of the heterozygote A1A2 is the average
of the fitnesses of the two homozygotes. This in
turn occurs if and only if genotype fitnesses are
completely determined, in an additive way, by genes
within genotypes. In this case it is not surprising that
all the variance in genotype fitness, being determined
solely by genes, is available for evolution.

If the additive genetic variance is zero, then either
one or the other gene is absent from the population
(a case we ignore from now on as trivial), or the two
genes are equally “fit” (as determined by the defini-
tion of gene fitness just described). As a result there
will be no change in gene frequencies through natural
selection and the population is at an (internal) equilib-
rium point. This observation explains the occurrence
of constant genetic variation in a population: if all the
variance in fitness is dominance variance, then the
population remains static in its genetic composition.

The above considerations also have considerable
significance for artificial selection. The (narrow) her-
itability for any character is defined as the ratio of
the additive genetic variance in a character to the total
variance, and if this is zero, the two genes A1 and A2

have equal values for this character and no increase
in the mean value of the character is possible through
a change in gene frequencies.

All of the above shows that the concepts devel-
oped in early and elementary population genetics
theory form the basis and origin of many general
procedures in biostatistics. In particular, the concepts
of subdividing a total variance into meaningful com-
ponents, of seeking the relevance of each component,
and of showing that various important quantities can
be written in terms of these components, all find their
origins in the simple arguments developed above.

Further Developments of Population
Genetics Theory

The population genetics theory sketched above needs
to be extended in many directions. For example, there
may well be more than two alleles at the locus in
question. The genes at different loci often interact
(epistasis; see Genotype) in defining some character.
Ecological considerations, such as geographical dis-
persal and the interactions of two or more species and
their consequent mutually interactive genetic evolu-
tion, need to be examined. The stochastic effects
which are inevitable in small populations are of
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potential importance. While these extensions to the
theory are the subject of much present-day popula-
tion genetics, here we focus the discussion on only
two of these extensions, namely multilocus theory
and the (single locus) stochastic theory.

If (as is indeed the case) most genetic character-
istics, and in particular those undergoing selection,
are determined by the genes at many loci, then a
proper analysis of genetic evolution must involve all
such genes. The appropriate vehicle for doing this
turns out to be the gamete, that is (in effect) a set
of single chromosomes carrying the genes at vari-
ous loci on them. Evolution then concerns changes in
gametic frequencies. A description of gametic evolu-
tion is extremely complex and here we focus on the
particular case where only two loci, A and B, are
of interest, and where also each of these loci allows
only two allelic types, namely A1 and A2 at the A
locus and B1 and B2 at the B locus. We thus consider
the evolution of the frequencies of the four gametes
A1B1, A1B2, A2B1, and A2B2, which we denote by
y1, y2, y3, and y4, respectively.

This evolution is particularly simple if knowl-
edge of the gene at the A locus on any chromosome
confers no information about the gene present at
the B locus on the chromosome. It is not difficult
to see that this occurs if and only if the equation
y1y4 = y2y3 holds. However, this will not necessar-
ily be the case and, when selection exists at the two
loci, the so-called “coefficient of linkage disequilib-
rium D (more appropriately called the coefficient of
association), defined by

D = y1y4 − y2y3,

will often not be zero.
This fact has several implications for biostatis-

tics, of which we mention two here and one later
when discussing human genetics. First, if all two-
locus coefficients of association are zero, the overall
additive genetic variance of the entire genome is sim-
ply the sum of the constituent single-locus additive
genetic variance values. If these coefficients are not
zero, then there is no simple relation between the
overall additive genetic variance and the single-locus
values. In the 1950s, when the concept of the analy-
sis of variance was used systematically in population
genetics, an attempt was made to subdivide the over-
all genome-wide additive genetic variance for some
character into meaningful components, in particular
components associated with single loci. Since the

total variance does not usually divide into the sum
of single locus components, this venture essentially
failed. Secondly, when some character depends on the
genes at many loci, the correlations between various
relatives for that character are far more complex that
those given by the single-locus formula above. Some
simplification and indeed some explicit expressions
for these correlations are possible when all possible
two-locus coefficients of association are zero but
in general, when these coefficients are nonzero, the
correlations are hopelessly complicated, containing
upwards of 100 terms even for a character deter-
mined by two loci. Thus the hope of a biostatistical
investigation of realistic correlations, at least when
coefficients of association are nonzero, seems to be
doomed.

A classical calculation concerning D is the follow-
ing. If there is no selection at either locus, no muta-
tion or indeed any other directed force, and (most
important) if the population consists of one large ran-
domly mating group, then the value of D decreases
geometrically each generation. More specifically, if
D is the value of the coefficient of association in one
generation and D’ the value in the following gener-
ation, and if the recombination fraction between the
two loci is θ , then

D′ = (1 − θ)D.

Thus, after t generations, D(t) = (1 − θ)tD(0), so
that, unless the two loci are closely linked, the value
of D should rapidly decrease to zero. The inference
that the occurrence of association between two loci
implies that they are closely linked is made often in
population and in human genetics. We discuss this
inference further below.

It was very early recognized in population genetics
theory that stochastic effects need to be considered
for a complete picture of evolution to be attempted,
since in a finite population one cannot avoid the
chance events that lead to unequal transmissions of
genes from parent to offspring. This inequality occurs
for two reasons: first, a heterozygous parent A1A2

might, by chance alone, transmit the A1 gene more (or
less) frequently to his/her offspring than the A2 gene,
thus causing a (random, nonselected) change in the
frequencies of A1 and A2 in the daughter generation.
Secondly, by chance alone, individuals of the same
genotype might transmit different numbers of genes
to the following generation: as an extreme example, if
one of a pair of identical twins is accidentally killed
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in early life while the other survives to reproduce,
their contributions to the next generation differ even
though the two twins have identical genotype and
hence identical fitness.

The fact that stochastic changes in gene fre-
quency will arise was recognized very early on,
and Fisher [4] and Wright [11] devised stochastic
models allowing for these changes. The model at the
center of their (similar but independent) work is now
called the Wright–Fisher model. This is a Markov
chain and represents perhaps the first major use of
Markov chains in science (although it appears that
neither Fisher nor Wright ever used the term “Markov
chain”). The model is as follows. The random vari-
able of interest is the number of A1 genes in the
population. The possible values of this number are
0, 1, . . ., 2N , where N is the population size. It is
assumed in the model that if, in any generation, there
are i such genes, then the number in the following
generation has a binomial distribution with parameter
i/2N and index 2N .

Clearly the states i = 0 and i = 2N are absorb-
ing, so interest focuses on the probability that a given
absorbing state is entered and, from the point of view
of the preservation of genetic variation, on the mean
time until one or other absorbing state is entered. This
then concerns a qualitatively different outcome from
that in infinitely large populations, where the amount
of genetic variation remains fixed. The rate at which
this variation is lost can be assessed in two ways.
First, one can find the leading nonunit eigenvalue of
the matrix of transition probabilities of the Markov
chain. For the Wright–Fisher model, this is easily
seen to be 1 − 1/(2N). This suggests that, in popula-
tions of large size, genetic variation tends to be lost,
on average, very slowly. This was the approach of
Fisher and Wright. Secondly, a more direct assess-
ment can be made by calculating the mean time until
the population consists entirely of A1, or entirely
of A2, genes, given some initial frequencies of A1

and A2. Unfortunately, this mean time cannot in
practice be calculated exactly in the Wright–Fisher
model. However, both Fisher and Wright were able
to approximate the behavior of a population following
the Wright–Fisher model by a diffusion process, for
which these mean times are easily calculated. These
show that the mean time until one or other gene is
lost from the population is proportional to the popula-
tion size. This is thus large in a large population, and
this agrees with the conclusion reached as a result of

the eigenvalue calculation. It is also possible to show
that these mean times differ only trivially from the
(unknown) values in the Wright–Fisher model. It is
interesting that both Fisher and Wright used (again
without knowing it) forward Kolmogorov equation
methods to establish the results they needed, and
never became aware of the far simpler and more
appropriate methods available through use of the
Kolmogorov backward equation.

Many extensions and variations to the Markov
chain model have appeared in the population genet-
ics literature over the past 40 years. The number
of alleles can be arbitrary, selection can exist, and
more realism has been introduced by noting that the
population includes both males and females, has a
geographical structure, can change in size over time,
and so on. Similarly, very extensive generalizations to
the diffusion process used by Fisher and Wright have
been made, again incorporating more realistic fea-
tures such as those described for the Markov chain
model (see Brownian Motion and Diffusion Pro-
cesses).

Fisher, Wright, and Haldane [5] also developed
theory for, and used, branching processes to dis-
cuss the probability of survival of a new mutant
gene. Once again, the introduction and first signifi-
cant applications of what would now be viewed as
standard equipment in any biometrician’s toolkit was
carried out in the early research in population genetics
theory.

Retrospective Theory

The analyses of Markov chains, diffusion processes
and branching processes by Fisher, Wright, and Hal-
dane, and the generations of population geneticists
following them (in particular Kimura [7]), are part of
the prospective theory of population genetics: given
certain selective values, mutation rates, population
sizes, and so on, statements were made about the
likely evolution forward in time of a population under
the Mendelian hereditary mechanism. This sort of
analysis was indeed needed in order to show that,
contrary to the views held even in many scientific
circles early in the century, the Darwinian paradigm
provided a valid and workable theory for evolution.
Two factors have, however, changed the broad direc-
tion of population genetics theory in recent years.
First, for all practical purposes and for all reasonable
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people, the Darwinian theory is indeed validated, so
that there is no longer any need for further validat-
ing arguments. Secondly, the nature of the genetic
material is now known. Early population genetics
theory in effect conceptualized different alleles (i.e.
different types of genes) as differently colored billiard
balls, with the A1 allele corresponding, say, to a red
billiard ball, an A2 allele to a blue ball, and so on. No
information was available about the interior constitu-
tion of the billiard balls, and the coloring allocation
(i.e. the labeling as A1, A2, and so on) was entirely
arbitrary. All that was important was the discrete
“quantal” nature of the color of the billiard ball (red,
blue, etc., but never a mixture), and, apart from rare
mutations, the faithful transmission by a parent of the
color, unmixed with any other color, to the genetic
make-up of his/her offspring.

The knowledge of the structure of genes as DNA
sequences has completely altered population genet-
ics, since now the description of a gene is no longer
simply an arbitrary label (such as A1 or A2) but the
actual DNA material of which the gene is made. In
other words, real rather than arbitrary descriptions for
genes are now available. This has led, among other
things, to a blossoming of the retrospective theory
of population genetics, in which a sample of genes
is taken, their DNA examined, and the questions
asked relate to the way in which, through evolu-
tion, the population arrived at its presently observed
state. The broad form of population genetics theory
needed to answer such questions is clearly closely
allied to statistics, in that data deriving from both a
stochastic process and also a sampling procedure are
available and an inference deriving from those data
is wanted.

Retrospective questions have entered the popu-
lar imagination: When did “Eve” live? Where did
she live? What do we even mean by “Eve”? What
inferences can we draw, given DNA information
from a number of present-day species, about the
tree of evolution leading to these species? These
questions can be answered only by assuming var-
ious stochastic process population genetic models,
none of which can be claimed to describe with close
fidelity the actual path that evolution happens to
have taken. Unfortunately, the estimates and infer-
ences drawn are often sensitive to the assumptions
made in those models, and this has led to much acri-
mony on the answers to the kind of question raised
above.

To population geneticists, perhaps the most inter-
esting and controversial question in retrospective
population genetics concerns the so-called neutral
theory [8]. This theory claims that a very large pro-
portion of the DNA variation that we see within
populations, and also much of the DNA difference
that we observe between species, was not directed
by natural selection but arose through purely random
stochastic effects. The analysis of this theory thus
requires as a starting point information concerning the
properties of the Wright–Fisher and other stochastic
prospective evolutionary models when no selection
acts, followed by a further analysis of what proper-
ties we might expect to see in samples of genes if the
theory is true. Substantial work in population genetics
theory, which is in effect no more than a statistical
analysis of present-day data testing certain evolution-
ary hypotheses, has been carried out to assess the
acceptability of this theory.

An important vehicle for essentially all retrospec-
tive intrapopulation genetic inferences is the coales-
cent process of Kingman [9]. Given a sample of n

genes, the coalescent traces their ancestry back in
time. At some point two genes will have a com-
mon ancestor and a coalescence may be said to have
occurred. Eventually all n genes will have a common
ancestor and the final coalescence will have occurred.
The properties of this coalescent process often pro-
vide, by moving forward in time, the simplest way
of deriving the probability distributions needed for
inferences from those data. An extended discussion
of this process, focusing on biological questions, is
given in [6], and extended mathematical and statisti-
cal aspects are discussed in [1] and [10].

Human Genetics

Several aspects of human genetics research, which
focuses largely on the elucidation of the genetic
basis of diseases, have parallels with, or even derive
directly from, evolutionary population genetics
theory.

First, there is a clear parallel with parts of the ret-
rospective theory of population genetics and human
genetics. In both cases we start with a sample of
genes and attempt to make some inference from
them. This is particularly true of questions concerning
the population genetics concept of allelic associa-
tion: if we see an association between a disease
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and a marker locus (see Disease-marker Associa-
tion), then one is tempted to infer that the disease
and the marker loci are closely linked. This argu-
ment is supported by the fact, noted above, that in
a randomly mating population the degree of allelic
association decreases geometrically fast over suc-
ceeding generations. However, the assumption that
the population from which the sample of genes is
drawn is mating at random is crucial for this con-
clusion, and in practice, for human populations, this
assumption is far from the truth. Simple geograph-
ical considerations imply nonrandom mating, as do
the existence of racial groups. Thus if a certain
disease is prevalent in some country and a cer-
tain unlinked marker gene is also prevalent there
and if a sample of individuals is taken in the USA
in which a significant proportion of individuals has
recent ancestry from that country, then an associa-
tion between the disease and the marker gene will
be observed. However, this association has nothing
to do with linkage between disease and marker loci.
Approaches to this problem, using both population
genetics theory focusing on geographical features and
human genetics theory in which this form of associ-
ation is separated from association due to linkage,
have both been undertaken. This is but one exam-
ple of the interwining of human genetics, one of
the central areas of biometrical research, and evolu-
tionary population genetics during the next decade
will lead to an increasing linkage between evolu-
tionary and human population genetics, and hence
to an increasing use of biometrical methods in both
areas.
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Population Growth
Models

Forecasting the growth of human populations has,
for at least two centuries, been a problem that has
taxed many scholars. The methods proposed have
included mathematical models, sometimes including
the search for an elusive “law” of human population
growth; statistical forecasts; and component projec-
tions. These methods have addressed geographical
areas ranging in size from local areas with very small
populations to the entire world. This article summa-
rizes the major features of each of the three types
of method and highlights the purposes to which they
are put.

The first person to propose a mathematical growth
model was probably Thomas Malthus. In his 1798
essay he observed that “Population, when unchecked
increases in a geometrical ratio” (Malthus, [16]). This
can be expressed by geometric or exponential growth
models:

Pt = P0(1 + r)t .

or

Pt = P0er t ,

where P0 is population at time 0, Pt is population at
time t , r is the rate of growth, and t is time.

These models are still widely used and often are
reasonably accurate for relatively small t . However,
in the long term it is clear that populations can-
not grow exponentially. This was observed first by
Quetelet [24] who, inspired by Newton’s law of vis-
cosity, outlined a theory by which, as populations
grow, they are restricted in size by increasing den-
sity. This idea was developed by Verhulst [27], who
concluded that growth was a function of size and
that an S-shaped curve was appropriate. He termed
this the “logistic” curve (see Logistic Distribution).
Much later, Pearl & Reed [18] made the logistic
curve popular for the long-term prediction of pop-
ulation growth, Pearl attempting to provide empirical
evidence for the mathematics through the famous
fruit fly experiments. This model can be expressed as

Pt = a

1 + exp(−abt)
,

where a and b are estimated coefficients and it can
be shown that a represents the upper asymptote, t is
time, and Pt is the population at time t .

The logistic model was very popular in the 1930s
when slowing rates of population growth were com-
mon in most countries where reliable population data
were collected. After World War II the model was not
used a great deal because it was shown to be very
inaccurate in a number of empirical situations. For
example, Yule [28] predicted a population of England
and Wales in 1971 of 58–59 million compared with
the actual figure of 49 million. Brass [5] notes that the
major problem was that “resource based” constraints
on population growth had not continued to slow in the
1950s. However, improved techniques to estimate the
model and changing demographic patterns may mean
that, for short-term forecasts, the logistic model may
be a possibility in the early part of the twenty-first
century.

The mathematics of these simple models was
developed by Sharpe & Lotka [25] who described a
simple one-sex deterministic population model (one-
sex because Sharpe & Lotka [25] calculate the pop-
ulation of men and simply assume that there are
enough women to maintain population growth). Pol-
lard [20] provides an excellent review of this model
and sensibly develops it in terms of women. Using
this model, Keyfitz [9] developed a formula to calcu-
late population momentum. Although the model has
not been widely used in recent years, the observations
by Bongaarts & Amin [3] that population momentum
will be an increasingly important factor in the growth
of populations in less developed countries mean that
it may gain a new prominence.

In the immediate post World War II period the
development of stochastic processes for applications
such as particle physics or telephone exchange
problems led to the possibility of developing
simple stochastic models for the growth of human
populations. The development of these models was
reviewed by Kendall [8] and more recently by
Alho [1].

They typically start with a simple set of equa-
tions to determine both births and deaths and base
these on a Poisson process. Kendall [8] was able,
in addition, to include migration. These models have
not been widely used despite a number of attempts
to generalize them [7, 19] to take account of the
dynamics between the sexes [7, 20]. The lack of suc-
cess of these latter attempts stems largely from the
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necessity to assume that one sex is dominant. This
means that if the sex ratio diverges greatly from unity,
then one sex will soon become extinct. In addition,
to be mathematically tractable, the two-sex model has
been dependent on the linear model. It is possible that
improved numerical methods will permit a nonlinear
exposition, but it seems unlikely that they will ever be
particularly popular for scholars working on human
populations. Pollard [20] reviews the early work, and
recently Pollard & Höhn [23] revisited the problem
and provided a number of extensions. A comprehen-
sive review is provided by Pollard [22].

The development of statistical models for time
series and their popularity, particularly in economet-
rics, led to their use to forecast population growth.
To forecast total population size, Lee [11, 12] was at
the forefront of adapting econometric models, partic-
ularly those of Box & Jenkins [4] (see ARMA and
ARIMA Models) to predict population growth. Thor-
ough reviews are provided by Land [10], Lee & Tul-
japurkar [13] and Alho [2]. The advantage of these
models is, of course, that they were developed partly
for prediction and so interval estimates of future
population size are possible. However, their use has
not been widespread probably because they suffer, as
do most of the mathematical models, from the prob-
lem that population growth depends on the dynamics
between births, deaths, and migration. Therefore,
most commentators would agree that it is important
that population growth models take this into account.

This need to control explicitly for fertility, mor-
tality and migration has led to component methods of
population projection being, without doubt, the most
commonly used method to estimate future population
size. Component methods are based on the following
simple balancing equation:

Pt = P0 + tB0 − tD0 + t I0 − tE0,

where Pt is population at time t , and P0 is population
at time 0, tB0 is births between times 0 and t , tD0

is deaths between times 0 and t , t I0 is immigrants
between time 0 and t , and tE0 is emigrants between
time 0 and t .

Starting with a base population, P0, these mod-
els account separately for trends in each of the
components of population growth to make a projec-
tion of future population size. In themselves, projec-
tions are just internally consistent forecasts dependent
on a set of assumptions. Methodologists always cau-
tion that a range of projections should be used but, in

practice, planners and policy makers usually believe
one. The mathematics of component methods were
developed by Leslie [14] and the “Leslie” matrix is
the basis for most computational models of compo-
nent projections. There are many computer packages
to make component projections.

The key elements in any component projections
are the models used to predict future mortality, fer-
tility, and migration. To describe these fully is out-
side the scope of this article but it should be noted
that there are a myriad of strategies ranging from
the simple (and almost always false) assumption
that the three components will remain constant to
very sophisticated mathematical and statistical mod-
els of future trends. Mathematical models have been
proposed by a number of authors, most notably
Brass [5] who developed a relational model to predict
future trends in fertility and mortality. Among many
authors, Murphy [17] and Pollard [21] have devel-
oped models for mortality, and there are many time
series models to predict fertility, although their suc-
cess has varied. Migration has not been modeled well
in most countries particularly at a subnational level.

A particularly notable set of forecasts for the world
was provided by Lutz [15], and Alho [2] develops
an excellent strategy to estimate the uncertainty in
these forecasts. In general, component models of pop-
ulation growth are reasonable at a national level in
the short term, but difficulties, particularly in mod-
eling future fertility, mean there are many examples
of extremely inaccurate forecasts in the medium to
long term.

For small areas, typically populations below
20 000, component models of population growth are
used sometimes. More common, though, are simple
models based on expected numbers of persons per
household or on census data updated by ancillary
information from, say, an electoral roll. In addition,
regression models have been used a little; for exam-
ple, by Erickson [6]. These models can be reasonably
accurate for estimating the total population size where
there is little population change. However, Simpson
et al. [26] show that when age-specific estimates are
required such models provide inaccurate forecasts
and there is little alternative to a local census.

In summary, there have been many attempts to
model population growth. If the aim is to forecast
future population, then in the short term there have
been a number of successful models, but in the
longer term population growth models have been
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less successful. However, they have been very useful
in understanding the dynamics of change in human
populations.
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Mémoires de l’Academie Royale des Sciences et Belles
Lettres (Brussels) 18, 3–41.

[28] Yule, G.U. (1924). A mathematical theory of evolution
based on the conclusions of Dr J.C. Willis, F.R.S.,
Philosophical Transactions of the Royal Society, Series
B 213, 21–87.

(See also Demography)

IAN DIAMOND



Population-based Study

A population-based study is a study of properties of
a well-defined population, such as individuals resid-
ing in a defined geographic region in a given time
period. The size of such a population can be esti-
mated, and, if all cases of a disease arising from
such a population are identified, rates of disease
can be calculated. Valid sampling frames can be
constructed for estimating the prevalence of risk

factors and other characteristics of such a popula-
tion. Population-based case–control studies yield
not only estimates of relative risk for given expo-
sures but also estimates of exposure-specific absolute
risk. The latter are obtained by combining informa-
tion on the overall risk of disease in the population
with information on the prevalences and relative risks
of various exposure levels.

MITCHELL H. GAIL



Postmarketing
Surveillance of New Drugs
and Assessment of Risk

The assessment of the safety of newly marketed
drugs (either prescription or over-the-counter prod-
ucts) is recognized as a fundamental public health
responsibility in every developed region of the world.
Efforts are under way to harmonize international stan-
dards for surveillance and reporting of adverse drug
events to regulatory bodies of the US, the European
Union (EU), and Japan [3]. The goal of this arti-
cle is to review the role, rationale, objectives, and
design of quantitative methods of surveillance strate-
gies developed for drug safety assessment over the
past 30 years. We emphasize, with several examples,
the quantitative methods that have been developed
in response to regulatory requirements to monitor
adverse drug event data for the purpose of assess-
ing potential risk (see Drug Approval and Regula-
tion; Pharmacoepidemiology, Adverse and Benefi-
cial Effects).

The Role of a Monitoring System

Finney [6], in a seminal paper which focused on mon-
itoring for adverse reactions to drugs used in medical
practice and on the methods for detecting drug associ-
ated reactions, stated that “the primary duty of a drug
monitoring system is less to demonstrate danger or
to estimate incidence than to initiate suspicions”. The
role of a monitoring system is to initiate a “suspicion”
and not to establish cause and effect relationships or
to estimate risk. When “suspicion builds”, it is the
task of more formal experimental and epidemiologic
studies to confirm the suspicion. Generally, quanti-
tative surveillance methods will have a hypothesis
generating goal.

Types of Monitoring Systems

Finney [7] described the major components of a
“monitoring system” as consisting of the reporters,
the patients, the drugs, and the events, stating that
there were three ways by which drug–events were
reported to a system: by patient, by drug, and by

event. In a related paper, Finney [6] expanded the
discussion of these three methods of ascertainment
by showing how these different methods impacted
the statistical methodologies used either to signal or
to evaluate causality of a drug–event association (see
Causation) or to assess the risk of a drug-related
event.

Finney stressed the need to identify a “reference
population” as the source of the data coming into the
monitoring system and to understand the underlying
assumptions related to the data being reported (e.g.
that events are independent and are representative of
some underlying population).

The pioneering study by Inman et al. [12], in
their investigation of thromboembolic disease and the
steroidal content of oral contraceptives, illustrates the
application of these principles to a monitoring sys-
tem. An example of event ascertainment by patient
(i.e. population based drug monitoring) was initiated
at the Kaiser-Permanente, Department of Medical
Research, in the early 1970s [8]. A unique feature
of this population-based approach was its ability to
screen over 75 000 patients for potential drug–event
associations. Any combination of a drug and an
event recorded within the system could be investi-
gated. Once a signal occurred, the evaluation of the
association for causality could be explored using tra-
ditional epidemiologic approaches (e.g. strength of
association, level of statistical significance to rule
out chance, consistency of the finding, specificity
of the event, time relationships, biologic plausibil-
ity, and gradients, etc. [9]; see Hill’s Criteria for
Causality). More recent examples of population-
based monitoring include the Boston Collaborative
Drug Surveillance Program, Group Health Coopera-
tive of Puget Sound, various Medicaid databases, and
the Saskatchewan database [20].

Perhaps the largest and most systematic drug–
event monitoring systems are those set up by gov-
ernmental regulatory bodies to monitor safety of new
drugs once marketed (e.g. in the US and UK [3, 23]).
In the US, postmarketing surveillance systems require
that manufacturers collect and send to a central point
reports for which there is a suspicion that a drug and
an event are associated. What is not required in the
US is that the suspicion be established as a causal-
ity [13].

The particular quantitative surveillance methods
for comparing drug–event reporting rates depend
on a variety of issues like the method of event



2 Postmarketing Surveillance of New Drugs and Assessment of Risk

ascertainment, the choice of control groups, the spe-
cific design of the database, and the various sources
of bias (underreporting, patient characteristics asso-
ciated with differential drug prescribing, treatment
patterns, and concomitant drug treatment). Therefore,
as we intend to illustrate several surveillance methods
developed to signal and to alert within the reporting
system available in the US, we describe the system
in the US in some detail.

The Drug–Event Monitoring System at the
Food and Drug Administration (FDA)

The Food and Drug Administration (FDA) Cen-
ter for Drug Evaluation and Research has had a
drug–event-based monitoring system since the late
1960s. In the US, the manufacturer and holders of
new drug applications (NDA)s are required to report
those adverse drug experiences (ADEs) associated
with their products which come to their attention.
The specific reporting requirements are described in
federal regulations [25]. It is worth noting that some
specific requirements for reporting may be modified
pending publication of final rules and the implemen-
tations of certain recommendations of the Interna-
tional Conference on Harmonization (ICH).

In general, the reporting requirements for man-
ufacturers creates a stratification for the timing of
when some reports are sent to and received by FDA.
These requirements involve distinguishing between
“serious and nonserious” adverse events and between
labeled and unlabeled adverse drug events (ADEs),
each term being defined in regulations. Serious unla-
beled ADEs must be submitted by the reporter within
15 days of learning of the event, whereas nonseri-
ous ADEs are submitted periodically in less frequent
intervals of time, like quarterly for the first 3 years
post approval and then every 6 months thereafter.
The underlying philosophy is to obtain reports from
health practitioners as soon as possible to identify
new adverse events associated with exposure to new
drugs. Where it is possible, an additional goal is to
characterize the unique patient features which make
patients susceptible to the adverse event and then to
change the drug label accordingly to inform patients
and prescribers about how to minimize the occurrence
of these events.

The basic instrument for collecting the informa-
tion on possible drug–event associations is called

the Medwatch form, which includes demographic
information about the patient, a description of the
reaction(s) that occurred, an outcome reflecting what
happened to the patient, an identification of the sus-
pected drug and concomitant drugs and other history
(see Figure 1).

Figure 2 shows the number of reports of labeled
and unlabeled and serious and nonserious ADEs
received for all marketed drugs in the United States
entered into a computer database at FDA over the
past 25 years. From Figure 2, it can be seen that
there has been a continuous increase in the num-
ber of drug-associated adverse events reported to
FDA. The histogram gives the number of reports
entered into FDAs computer file. Starting in 1984,
FDA distinguished between a manufacturer’s peri-
odic (labeled) and 15-day (serious and unlabeled)
reports, and direct voluntary reports to FDA from
health care providers.

Some Applications of Quantitative
Methods

In this Section we describe four different situa-
tions for which specific statistical methods have been
applied to postmarketing surveillance of adverse drug
reaction reports. In the first three applications, we
assume a centralized report registry like that of the
FDA and that reporters follow similar instructions on
what to report, use a standardized report form, and
report either voluntarily or in accordance with some
national program of reporting.

We distinguish between three situations: (i) moni-
toring a change in the reporting pattern of a specific
drug–event; (ii) monitoring the comparative report-
ing of a drug–event for several drugs in the same
class; and (iii) monitoring the comparative reporting
of drug–events reported from multiple sources. The
focus in each situation is on identifying an increased
frequency of ADEs.

Monitoring a Change in a Specific
Drug–Event Reporting Pattern

FDAs guideline [3] describes an “arithmetic” and a
“statistical” approach to signal generation. The arith-
metic approach is deterministic and is not discussed
further. The statistical approach is based on the con-
cept of a reporting rate where the numerator consists
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Figure 1 Medwatch form
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Figure 1 (Continued )
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of ADE reports and the denominator consists of some
measure of exposure [22].

In proposing this approach it was recognized that
the numerator, consisting of ADE reports, was subject
to reporting biases, and that the denominator, consist-
ing of estimated drug exposure based on sales data
or prescription surveys, is a crude estimate of expo-
sure. The approach attempts to detect changes from
one period of reporting relative to an earlier reporting
period.

Adopting the notation of Prause [17], the FDA
approach assumes that ADEs are rare, and the num-
ber of reported ADEs (xi) for a given drug–event
(in the ith interval) follows a Poisson distribution
with parameter cipi , where i denotes period and xi

denotes the number of reported adverse reactions of
a specific type of event for a given drug, ci denotes
the corresponding sales or any other estimate of drug
usage for this period, and pi denotes the rate of a
reported adverse reaction per sales unit in period

i. Let ci−1 be the sales in the historical (previous)
period.

We define Ri as the proportion of the ith interval
sales out of the sum of the sales for the i and i − 1
intervals, i.e.

Ri = ci

(ci−1 + ci)
,

and denote the observed number of ADEs for the ith
and (i − 1)th intervals as xi and xi−1, respectively. Xi

and Xi−1 can be modeled as two independent Poisson
random variables. Thus, the following hypothesis
testing criteria could be used as a basis for an alert
system:

H0 : pi ≤ pi−1 vs. H1 : pi > pi−1. (1)

FDA proposed an asymptotic procedure to test this
hypothesis based on the Poisson assumption. For
the comparison of pi and pi−1, a normal approx-
imation (see Normal Distribution) gives the test
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statistic,

ZFDA =
xi −

(
R

1 − R

)
xi−1

[
xi +

(
R

1 − R

)2

xi−1

]1/2 . (2)

A signal occurs when ZFDA > Z1−α , where Z is a
standardized normal variate (see Standard Normal
Deviate) and α is the tail probability. This approach
signals an increased frequency of reports and
assumes: (i) an unbiased comparison of the number
of reports of a specific drug–event reaction during
a recent appropriate time period with the number
of reports of the same drug–event reaction during
a previously observed comparative time period; and
(ii) that differences in drug exposure between the
intervals compared are taken into account. Norwood
& Sampson [16] proposed a binomial approach
based on the conditional distribution of xi given
xi + xi−1 to test the hypothesis (1).

Both the FDA Poisson-based method and the mod-
ification proposed by Norwood & Sampson test the
null hypothesis that there is no change between the
historical and the current period in the number of
ADE rates adjusted for sales against the alternative
hypothesis that there is an increase in the sales-
adjusted ADE rates.

Using the same notation as above, Norwood &
Sampson define

Pr (Xi = xi |xi + xi−1) =
(

y

xi

)
Rxi (1 − R)y−xi ,

(3)

where y = xi + xi−1.
The normal approximation to the above condi-

tional binomial distribution leads to the following
asymptotic version of the exact test:

ZNS = xi − (xi + xi−1) R
[
xi + xi−1Ri (1 − Ri)

]1/2 . (4)

Norwood & Sampson presented several examples
of how to apply this approach to ADEs associ-
ated with a particular product line involving various
dosage forms (capsules, tablets, liquid, and pow-
der). In one of their examples, they observed four
ADEs in the historical period with 18 000 sales,
giving a historical reporting rate of 0.22 per thou-
sand sales, compared to two ADEs in 5 650 sales,

or a reporting rate of 0.35 per thousand in the
current period. For these data the sales ratio R =
5.65/(5.65 + 18) = 0.24. The P value correspond-
ing to the binomial test was 0.44 and thus the
observed reporting change could be explained by
chance.

CUSUM Approach

Praus et al. [17] propose the use of a cumulative
sum (CUSUM) chart to address this question. They
assume that a background incidence level k0 of
reported ADEs per unit of sales volume is known,
together with its standard deviation. This informa-
tion may, for example, be estimated by a run-in-series
of earlier periods. Let k1 > k0 be an increase in the
level that one considers important to detect and which
serves as the rejection criterion.

The cusum score Si for the period i is then defined
in relation to its value in the previous period i − 1
by

Si = max

(
0, Si−1 + xi

ci

− kr

)
, i > 0, (5)

where S0 = 0.
Here, kr , where k0 < kr ≤ k1, is called the refer-

ence level and is usually taken as the mean of k0 and
k1. xi and ci are defined as the number of ADRs and
the sales volume in period i, respectively, as indicated
earlier.

Whenever Si exceeds a detection boundary h, an
increased incidence level is suspected (alert case).
The average run length ARL0 under the background
incidence k0, the standard deviation of k0, and the
difference k1 − kr will determine h, and the aver-
age run length ARL1 under an assumed increased
incidence level k1 is determined similarly. The equa-
tions defining h and ARLi cannot be solved explic-
itly, but tables and nomograms for practical use are
available.

Praus et al. [17] applied the cusum procedure to
the detection of serious ADEs for diphtheria vaccine.
The main advantage of the cusum method in this
diphtheria example is that it allows one to detect
trends over time. One limitation of a cusum method
is the need to have data on a drug that has been
on the market for a long time to obtain a stable
background rate.



Postmarketing Surveillance of New Drugs and Assessment of Risk 7

Monitoring the Comparative Reporting of
a Specific Drug–Event for Several Drugs
in the Same Class

Tsong [21] extended the work of Rossi et al. [18] and
Hsu [11] to compare the reports of ADEs associated
with several nonsteroidal anti-inflammatory drugs
(NSAIDs). The comparison of one marketed drug to
another using data from an ADE registry introduces
additional problems such as ensuring that the indi-
cation is the same for each drug compared, that the
patients are comparable, that the patterns of concomi-
tant medications are similar, and that the reporting
patterns are the same if each drug is first marketed
in different years. The power of this comparative
approach has been investigated by Tsong [22].

Comparing Two Drugs First Marketed in
the Same Year

Let X1i and X2i denote the number of reports of
drug A and drug B, respectively, in year i; and C1i

and C2i denote the number of prescriptions of drug A
and drug B, respectively, in year i. Let P1i and P2i

denote the ADE reporting rates of drug A and drug B,
respectively, in year i; P1i and P2i are estimated by
p̂1i = x1i/c1i and p̂2i = x2i/c2ii , and Ri = p1i/p2i

denotes the ratio of reporting rates in year i.
Let xi = x1i + x2i be the combined number of

ADE reports of both drugs, and pi = c1i/(c1i + c2i )

be the proportion of prescriptions for drug A out of
the total prescriptions combining drug A and drug B.

Assuming that xli and pi are given, under the
hypothesis of equal reporting rates of drug A and
drug B, x1i , the random variable for the number of
reports of drug A (and x1i is the realization of X1i)
can be assumed to be distributed as BIN (xi, Pi). For
testing H0 : Ri = 1 vs. Ha : Ri �= 1, the binomial test
is the conditionally most powerful test, namely

Z = x1i − (xici)

xici(1 − pi)1/2
(6)

When xi or x1i is small, the exact binomial p-values
can be determined. Otherwise the normal approxi-
mation of the binomial test is the Z-test comparing
against Zα/2, the (1 − α/2)th percentile of the stan-
dard normal distribution; typically, α = 0.05. Ri is
estimated by R̂i = (x1i/c1i)/(x2i/c2i), and its confi-
dence interval can be calculated using Cornfield’s
method.

Monitoring Drug–Events Reported from
Multiple Sources

Moussa [15] proposed a probabilistic approach to
monitoring ADEs in situations where ADE reports
are being collected from multiple registries (see Dis-
ease Registers) and collected at one central location
(e.g. a World Health Organization (WHO) reg-
istry comprised of several National registries). In
this situation, additional heterogeneities and irregu-
larities associated with each reporting center or region
are to be expected. In Moussa’s approach each sub-
population is considered a cluster (which is defined
as a homogeneous group of reports on a specific
drug–event from one subpopulation in a specified
time unit). The reports in a cluster are assumed to
conform to a Bernoulli distribution, with the param-
eter varying between clusters of the same subpopula-
tion according to a two-parameter beta distribution.
An additional assumption is made that the cluster size
follows a negative binomial distribution. The four
parameters of the compound model are estimated by
maximum likelihood.

Moussa uses these assumptions to construct a
one-sided cumulative sum test to signal an alert.
His model is applied to reports of intestinal hem-
orrhage associated with a specific drug submitted
over 16 months to the UK Committee on Safety of
Medicine, where the clusters are administrative sub-
populations of the UK.

Other Computer-assisted Surveillance
Methods

We now turn to several other surveillance methods
that were not originally developed for drug–event
monitoring but which can easily be adapted for that
purpose. Recall that each report to FAD’s system
already has a drug–event linkage, so that aspect
of the event–exposure relationship is known. Other
earlier methods only assumed a reported event but
assumed no exposure linked to the event. Computer-
assisted surveillance was used to alert health agencies
of unexpected increases in congenital malforma-
tions, not necessarily linking these events to any
particular exposure. Hill et al. [10] compared the
local incidence of congenital malformations to the
expected national experience in various administra-
tive areas in the UK. They used the cumulative sum
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techniques of Ewan & Kemp [5] and Woodward &
Goldsmith [24]. Bjerkedal & Bakketeig [1] used a
system which incorporated all births in Norway on
a monthly basis, and selected International Clas-
sification of Diseases (ICD) codes associated with
a description of the event. They established control
limits which would produce one false alarm every
230 months. Ericson et al. [4] compared two surveil-
lance systems using two registries run in parallel in
Sweden. One was a specific report card and the sec-
ond was a computerized analysis of births, and the
comparative specificity and timeliness of these sys-
tems was evaluated. The authors concluded that the
specific report system was the only one suitable for
monitoring malformations.

An alternative method to the cusum technique was
introduced by Chen [2]. Chen describes a system that
would be suitable for surveillance of congenital mal-
formations in a single hospital or in several hospitals
based on the number of consecutive births occurring
between the birth of an infant with a specific moni-
tored malformation and the birth of a second infant
with the same malformation. The groups of such con-
secutive births are called sets, and the set size is a
random variable with an assumed geometric distri-
bution. Chen compared the relative efficiencies of
the sets and the cusum techniques in monitoring the
occurrence of rare events. Chen found the sets and
cusum techniques to be comparable. The former was
somewhat less efficient when monitoring a single hos-
pital, although it was computationally simpler.

Levin & Kline [14] used a modification of Page’s
cumulative sum procedure to investigate unusual fluc-
tuations in the proportion of spontaneous abortions.
The monitoring of Nosocomial infections by the
National Nosocomial Infections Study (NNIS) for
the Centers for Disease Control (CDC) motivated
Shore & Quade [19] to propose a surveillance system
to detect an increase in the mean of the Poisson
distribution of cases of a disease. Like Chen, they
suggest an alert or signal to be based on the run-
length distribution based on the tail probability of a
geometric distribution.

Thus we see that several methods of assessment
of risk related to newly and currently marketed drugs
have been proposed. For the most part, this area
of research is limited by the completeness of the
numerator data and the biases associated with the
reported ADEs and the difficulties in obtaining an
adequate denominator as a surrogate for exposure.

The most useful areas of work have focused on the
search for increased frequencies of ADEs for a spe-
cific drug–event combination.
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Poststratification in
Survey Sampling

To stratify is to partition a set into disjoint subsets,
called strata. Poststratification is partitioning a sam-
ple, i.e. after the sampling has been performed. It is
an important method in statistical survey practice, e.g.
in opinion polls. In textbooks it is less prominent.

Poststratification can be combined with any
sampling method, but a typical situation is that the
sample is viewed as obtained by simple random
sampling. Suppose that we are investigating some
gender-related property and note that there are more
men than women in the sample. It is then natural to
estimate within each sex group and then combine the
two estimates into one with the help of the correct
sex ratio in the target population. This is precisely
the idea of poststratification.

Since poststrata have random sizes, the method
results in larger estimator variance than stratification
before sampling (see Stratified Sampling). It is still
often used for practical reasons, cost or simplicity. In
multipurpose studies, different poststratifications can
be employed on the same sample for different esti-
mating purposes. Sometimes stratification cannot be
done in advance because it is not known to which
stratum an individual belongs. In political opinion
polls it is thus frequent to ask not only about voting
intentions but also how you voted at the last elec-
tion, and then to poststratify according to the latter
variable.

Poststratification in not too many groups, within
which the study variable varies less than in the
whole population, can diminish variance substan-
tially. Since the number of strata grows at a multi-
plicative rate with the introduction of new stratifiers,
there is a risk of overstratification, which increases
variance again. If the sampling scheme is some-
how unbalanced, e.g. so that there are discrepan-
cies between sampling frame and target population,
or there is nonresponse, poststratification can also
reduce bias.

Mathematically, the situation can be expressed as
follows. Consider a study variable Y and a strati-
fication variable X. The purpose is to estimate the
population average of Y . If the sampling procedure
is balanced, then this will be the same as the expecta-
tion of Y,

∑
ypxy , where the sum is over all possible

values of the two variables, and pxy denotes the
probability that the ith observation (usually the ith
individual) of the sample has the values x and y.
The point is that the pxy are unknown, whereas the
marginal distribution of the stratification variable,

px :=
∑

y

pxy,

is known, or we have a good estimate of it from some
other (large) study.

Let s denote the sample, xi, yi the values of the
two variables for the individual i, nx the number of
sampled individuals with xi = x, and

yx :=
∑

i∈s,xi=x

yi

nx

if nx > 0 and zero otherwise. Then the estimator of
the population Y -average poststratified with respect
to X is defined as

ŷ :=
∑

x

pxyx.

The choice yx = 0 in empty poststrata is for math-
ematical convenience. It could well be argued that in
such cases one should choose the full sample aver-
age or a combination of yx ′ , where the x ′ are stratifier
values deemed to yield y-values close to those cor-
responding to x.

If, given strictly positive nx, yx is an unbiased
estimator of the conditional expectation of Y , given
X = x, then the poststratified estimator will have no
bias, provided all nx > 0. The overall bias will be∑

x px Pr(nx = 0) which is ∼ qn in the usual sam-
pling schemes, for sample size n and q = maxx(1 −
px).

Provided the different yi are uncorrelated, the
conditional variance will be

var(ŷ|nx, all x) =
∑

x;nx>0

p2
xσ

2(Y |x)

nx

,

where σ 2(Y |x) is the conditional variance of Y , given
X = x:

σ 2(Y |x) :=
∑

y

y2 pxy

px

− µ2(X|x),

µ(Y |x) :=
∑

y

y
pxy

px

.
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If sampling is simple and random without
replacement (see Sampling With and Without
Replacement) and the model is the classical one of
fixed given y-values in the population, then this is
still approximately true, the risk of sampling the same
individual more than once being disregarded.

The overall variance is then obtained as

∑

x

p2
xσ

2(Y |x)E

(
1

nx

|nx > 0

)
Pr(nx > 0)

+ µ2(Y |x) Pr(nx = 0)(1 − Pr(nx = 0)).

Here, the latter term can often be disregarded and the
expectation of 1/nx approximated by

1

npx

+ (1 − px)

(npx)2
.

In practice, the second term is usually also neglected,
leading to the impression that poststratification
“always pays”. As pointed out, however, this can
be misleading: if within-strata variances are not
considerably smaller than the overall variance of the
study variable, and the number of poststrata, i.e. the
number of different x-values, is of the same order as
n (a situation that can be met with in practice) the
second term is not negligible.

From a theoretical viewpoint, poststratification has
certain desirable properties: it is maximum likeli-
hood in a general model, and it has a conditional
minimal variance property among a natural class of
estimators (see Estimation). The question whether
inference statements should be made conditionally
upon poststratification or not is discussed in two arti-
cles by Jagers et al. and by Smith, the latter of which
also gives an overview. The method is looked at from
a Bayesian angle by Little.
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Power Divergence
Methods

Numerous asymptotic test statistics have been pro-
posed to assess the fit of a collection of counts
with a multinomial or product-multinomial proba-
bility model. Minimizing lack of fit, as measured by
such a statistic, is a plausible approach to estimat-
ing unknown model parameters. Power divergence
provides a unifying conceptual and computational
framework for these statistics and their associated
estimators, facilitating both analytic and simulated
comparisons of their behaviors and utility in small
sample and sparse large sample categorical data
analysis.

Let the observed counts be nij for independent
multinomial samples i = 1, . . . , s and response cat-
egories j = 1, . . . , r , with ni+ the size of the ith

sample, N = ∑s
i=1 ni+, and pij = nij /ni+. Write a

model for the cell probabilities πij = E(pij ) as πij =
πij (θ) for vector θ , with

∑r
j=1 πij (θ) = 1 for each i.

The “goodness-of-fit statistics” most commonly used
in this context are the log likelihood ratio statis-
tic [33]

X2
L = 2

s∑

i=1

r∑

j=1

nij log

(
pij

πij (θ)

)
, (1)

Pearson’s chi-square [36]

X2
P =

s∑

i=1

ni+
r∑

j=1

(pij − πij (θ))2

πij (θ)

=
s∑

i=1

r∑

j=1

nij

((
pij

πij (θ)

)
− 1

)

=
s∑

i=1

r∑

j=1

nij

(
pij

πij (θ)

)
− N, (2)

and Neyman’s modified chi-square [21, 31]

X2
N =

s∑

i=1

ni+
r∑

j=1

(pij − πij (θ))2

pij

=
s∑

i=1

r∑

j=1

nij

((
πij (θ)

pij

)2

− 1

)

=
s∑

i=1

r∑

j=1

nij

(
πij (θ)

pij

)2

− N (3)

(see Chi-square Distribution; Chi-square Tests).
When the model specifies fixed θ = θ0, each of
(1)–(3) is used as an asymptotically χ2

s(r−1) statistic to
test the simple hypothesis (see Hypothesis Testing).
Otherwise, X2

L and X2
P are evaluated at the maxi-

mum likelihood estimate θ̂ of θ , in which case X2
P

is Rao’s likelihood score statistic [40]. In contrast,
X2

N is evaluated at arg minθ X2
N(θ) which, for lin-

ear πij (θ), yields Wald’s [55] statistic. The reference
distribution for testing the composite hypothesis is
χ2

s(r−1)−dim(θ )
.

Note that each of (1)–(3) is the size-weighted sum
of departures of the ratios of observed to expected
cell proportions pij /πij (θ) from 1. However, the
departures are measured on different scales: additive
in (2), logarithmic in (1), and after exponentiation by
-2 in (3). Other asymptotically chi-square statistics
in the literature for this problem – for example, the
“externally constrained” discrimination information
statistic X2

I [12, 24] and the Freeman–Tukey chi-
square, equivalently the Hellinger distance [4, 10,
41] – take form similar to (1) and (3) but with other
exponents for the ratios. Since

lim
δ→0



1

δ

r∑

j=1

nij

((
pij

πij (θ)

)δ

− 1

)



=
r∑

j=1

nij log

(
pij

πij (θ)

)
, (4)

X2
L is naturally addressable as the “exponent 0”

member of this class.
Hence, Read and Cressie [8, 43, 45] defined and

studied the class of power-divergence asymptotic test
statistics, which, extending (2), can be expressed as

2Iλ({nij }, {πij (θ)})

= 2

λ(λ + 1)




s∑

i=1

r∑

j=1

nij

((
pij

πij (θ)

)λ

− 1

)



= 2

λ(λ + 1)




s∑

i=1

r∑

j=1

nij

(
pij

πij (θ)

)λ

− N



 (5)
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for λ �= −1, 0, and as the limits of (5) for λ = −1 or
0. These limits are X2

L for λ = 0 and, for λ = −1,
the discrimination information statistic

X2
I = 2I−1({nij }, {πij (θ)})

= 2
s∑

i=1

r∑

j=1

ni+πij (θ) log

(
πij (θ)

pij

)
, (6)

which is a sample size-weighted sum across pop-
ulations of Kullback–Liebler information num-
bers comparing fitted to observed distributions.
By (1) and (5), for λ ≤ 0, the statistic only
exists when nij > 0 for all i and j . When
2I δ({nij }, {πij (θ)}) exists and θ must be estimated,

θ̂
(δ) = arg minθ (2I δ({nij }, {πij (θ)})) is the minimum

power-divergence estimator (MPE) of order δ. In
such a case, the power-divergence test statistics

2Iλ({nij }, {πij (̂θ
(δ)

)}) may be used for δ �= λ without
affecting many asymptotic properties. Thus, as noted
above, in common application X2

P corresponds to
λ = 1, δ = 0. For the usual Freeman–Tukey statistic,
λ = −1/2 with δ = 0. For unknown θ , the statistics
are thus most appropriately doubly indexed. But most
comparative studies of the power-divergence class
have focused on relatively simple situations for which
this is not necessary: either fixed θ for a single multi-

nomial, or θ̂
0

under the independence hypothesis for
a two-way contingency table, for which the maxi-
mum likelihood estimates are typically used for tests
of any order λ. We thus suppress δ here for simplicity
(see Independence of a Set of Variables, Tests of).

Intuition may be gained from simple settings
allowing analytic comparison of MPEs. For θ of
length t , the estimation equations are

s∑

i=1

r∑

j=1

(
pij

πij (θ)

)λ+1
∂πij (θ)

∂θk

= 0, (7)

k = 1, . . . , t . Consider a single multinomial under
the constraint πj = θ1 for j = 1, . . . , r∗, πj = θ2 for
j = r∗ + 1, . . . , r . Then

(θ̂
(λ)

1 , θ̂
(λ)

2 )′ ∼






 1

r∗

r∗∑

j=1

pλ+1
j





1
λ+1

,



 1

(r − r∗)

r∑

j=r∗+1

pλ+1
j





1
λ+1





′

,

(8)

with proportionality constant enforcing the constraint
r∗θ̂ (λ)

1 + (r − r∗)θ̂ (λ)
2 = 1. Similarly, for estimating

θ ′ = (π1, . . . , πr)
′,

∑r
j=1 πj = 1 from s independent

multinomial samples under the homogeneity hypoth-
esis πij = πj , i = 1, . . . , s, j = 1, . . . , r ,

π̂
(λ)
j ∼

(
s∑

i=1

(ni+
N

)
pλ+1

ij

) 1
λ+1

, (9)

with proportionality constant such that
∑r

j=1 π̂
(λ)
j =

1 [20, 38, 45]. An extension of (9) is available
for monotone missing data, for example, as with
dropouts in longitudinal studies [20]. Thus, MPEs in
simple cases are normalized and possibly weighted
power means, with Pearson’s chi-square leading to
root mean squares, the Hellinger distance squared
mean roots, X2

I the geometric mean, and X2
N the

harmonic mean. The maximum likelihood estimator
leads to arithmetic means, and consequently is the
only MPE with the commonsense invariance prop-
erty that estimators are unaffected by pooling, within
and across populations, of categories with a common
probability.

The form of (5) suggests that power-divergence
statistics will be increasingly sensitive to cells with
high observed to expected count ratios for increas-
ingly large positive λ, and to cells with low ratios
for increasingly large negative lambda. Read and
Cressie [45] found this to be true in studies of statis-
tical power against “spike” or “dip” alternatives to
uniformity in a single multinomial, for which one or
two cell counts substantially exceed or fall short of
expectation. They recommended against the use of
power-divergence statistics with |λ| > 5, on grounds
that they are effectively dominated by unexpect-
edly low (λ < 5) or high (λ > 5) counts. Similarly,
(5)–(7) suggest that MPEs will be more sensitive
to the lowest among the observed proportions for
increasingly negative λ. To illustrate, Figure 1 plots
π̂

(λ)

1 from (9) for λ = −6 to 6, for equal size samples
from two binomials with p1 = 0.1, p2 = 0.6. Over
all λ, π̂

(λ)

1 ranges from 0.2 as λ → −∞ to 0.4 as
λ → ∞, as compared to π̂

(0)
1 , the maximum likeli-

hood estimator and pooled proportion, of 0.35.
It is somewhat surprising that the power-

divergence unification was not accomplished thirty
years earlier. X2

N , X2
L, and X2

P were all known
before 1930 ([31, 33, 36], respectively). In a
seminal unifying paper, Neyman [32] defined the
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Figure 1 Minimum power-divergence estimates (MPEs) of π1 under homogeneity of two binomials (n1+ = n2+, p1 = .1,
p2 = .6)

class of “best” asymptotically normal (BAN)
estimators of θ : consistent, asymptotically normal
continuous functions of the pij , with minimum
asymptotic (ni+ → ∞, ni+/n → ci < ∞) variance
among estimators having those properties (see
Efficiency and Efficient Estimators). Neyman
showed estimators minimizing any of X2

L, X2
P or

X2
N to be BAN. For testing, the minimized X2

P and
X2

N were shown to share the same null chi-square
distribution as X2

L, or as X2
P evaluated at the MLE

of θ , or as any of (1)–(3) evaluated at any BAN
estimator θ̂ of θ . This result applies to all power-
divergence statistics and MPEs.

Haldane [13], based on conversation with C.A.B.
Smith, credits M.C.K. Tweedie with the use of the
estimating equations (7) in the 1940s; they may have
been used informally even earlier (see Estimating
Functions). Working with a single population and
parameter θ , Haldane was looking for a class of fit
statistics from which improved estimates might be
found, and was clearly aware of

∑r
j=1 nj (pj/πj (θ))λ

as a candidate kernel for such a class. However, to
obtain test statistics and estimators fully defined even
for samples with zero cell counts, he replaced nj with
λ!

(
nj

λ

)
. The remainder of [13] shows the resulting

estimators to be BAN, and compares and discusses
bias adjustments (see Unbiasedness). Interestingly,
one estimator is a version of X2

N for which each

cell count is augmented by 1. Haldane’s “divergence”
measures and “minimum discrepancy” estimator did
not, however, gain widespread acceptance.

Kullback [24] obtained the logarithmic functions
X2

L and X2
I as directed divergences between observed

and fitted multinomial distributions [42]. Imrey [20]
applied Tweedie’s estimating equations to mono-
tone missing data, with a general solution implicit.
Much later, Read and Cressie [8, 43, 45] recog-
nized, crucially, that other goodness-of-fit chi-square
statistics are multiples of nonadditive directed diver-
gences [42]

Iα(π : p) = c




r∑

j=1

πα
j p1−α

j − 1



 (10)

between fitted and empirical probability mass func-
tions. The power-divergence class, as defined in (4),
follows by taking α = −λ and normalizing to the
chi-square distribution.

The distributions of power-divergence statistics
and performance characteristics of the corresponding
goodness-of-fit tests have been compared in several
ways. For simplicity we restrict to s = 1. With θ

defined as the probability vector π , when increasingly
large samples are drawn from a null multinomial
distribution with θ=π0, all power-divergence statistics
share the limiting χ2

r−1 distribution. Under the same
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scenario with composite null H0 : π = π(θ) for θ of
dimension t, and where the test statistic is calculated
at a BAN estimate of θ , the degrees of freedom
become instead (r − 1) − t .

Under the alternative π = π1, the power diver-
gences with λ > −1 have limiting Gaussian distri-
butions (see Normal Distribution) with respective
means

2N

λ(λ + 1)




r∑

j=1

π1j

((
π1j

π0j

)λ

− 1

)

 (11)

and variances proportional to N . Consequently,
all power-divergence statistics yield consistent
(limN→∞ Pr[2Iλ({nj }, {π1j (θ)}) ≥ cα] = 1) tests
against fixed alternatives. The Pitman efficiency of
test T1 relative to test T2 is the limiting ratio of the
sample sizes required by T2 and T1 to maintain a
specified power under a sequence of local alternatives
converging to π0 and for which this limit exists, for
example, H1 : π = π0 + δ/

√
N with

∑r
j=1 δj = 0,

which converges at rate N−1/2. The limiting distri-
bution under this sequence is noncentral chi-square
with noncentrality parameter

∑r
j=1 δ2

j /π0j . In this
setting, the Pitman efficiency is the ratio of non-
centrality parameters of the limiting distributions of
the corresponding test statistics under H1. Since the
limiting distribution does not depend on λ, all power-
divergence tests have Pitman efficiency of 1 relative
to X2

L. Several power approximations for this situ-
ation have been compared for sample sizes in the
range of 5r − 10r , for which two based on Edge-
worth expansions seem most effective [49].

For many tests, the attained significance level (i.e.
P value) under a fixed alternative hypothesis almost
surely declines exponentially to 0 with increasing
sample size N , for N sufficiently large. Half the
rate of exponential decline for such a test is known
as its “exact slope”, and the ratio of exact slopes
of two tests is the limit of the ratio of sample
sizes required, almost surely, for each of the tests to
achieve statistical significance at level α, as α → 0.
The Bahadur efficiency of T1 relative to T2 is thus
defined as the ratio, where it exists, of the exact
slope of T2 to that of T1. No power-divergence test
has greater Bahadur efficiency than X2

L, although
others may have equal efficiency depending on the
hypotheses being compared [37].

Efficiency results change considerably when one
considers “sparse” asymptotics in which increasing

sample size is associated with finer classification:
as N → ∞ the number of cells rN in the multino-
mial expands as well, so that rN → ∞, (N/rN) →
c, with 0 < c < ∞. As suggested by the large-
sample normality of chi-square distributions with
many degrees of freedom, the limiting distributions
of power-divergence statistics for λ > −1 are here
Gaussian. The moments of these distributions are
functions of λ, and hence, the behaviors of the statis-
tics differ under both null and alternative models. For
λ ≤ −1 under sparse asymptotics, the probability that
2Iλ({nij }, {πij (θ)}) is undefined remains positive no
matter how large the sample, so the limiting distri-
butions can only be defined conditional on all posi-
tive cell counts. With λ > −1, for testing uniformity
in a single multinomial, Pitman efficiency may be
evaluated under a sequence H1 : π = π0 + δ/N1/4.
While dependence on λ is small for −1 < λ ≤ 3, and
declines with increasing cell expectations N/rN , X2

P

is optimally efficient. However, this optimality holds
in the narrowest of circumstances, for it fails to gener-
alize to testing a simple nonuniform null hypothesis,
for which no statistic is clearly superior, or to nonlo-
cal dip alternatives for which the relative performance
of X2

P and X2
L appears dependent on the number of

dips [23]. It has also been noted that limiting normal
distributions under this local sequence are unchanged
by the presence of nuisance parameters, suggesting
that in this setting, power-divergence tests have low
efficiency as a class [50].

Studies have compared accuracy in small sample
settings of large-sample approximations to the dis-
tributions of power-divergence statistics. Read [44]
notes that for testing a simple multinomial hypoth-
esis, the standard chi-square approximation is not
adequate for λ < 1/3 or λ > 3/2. Of the conven-
tional goodness-of-fit statistics, only X2

P falls within
the acceptable range. The poor performance of the
approximation for X2

L relative to that for X2
P has

been found consistently [11]. The power-divergence
statistic with λ = 2/3 is sometimes known as the
“Cressie–Read statistic”. Read [44] and Read and
Cressie [45] recommend this choice from the power-
divergence class based on its generally good perfor-
mance in studies of both conventional and sparse
asymptotics, coupled with the convenient adequacy
of the conventional null approximation for all but
very small sample sizes. Recent work confirms the
conventional practice of basing use of the asymp-
totic approximation on minimum expected count (see
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Expectation) and shows that, for the Cressie–Read
and Pearson statistics when r > 2, the approxima-
tions may be considerably more tolerant than has
generally been appreciated [11].

While the above results on testing favor use of
power-divergence tests for λ in a range no wider
than perhaps 0.5–1.5, other studies indicate that
MPEs for small negative λε(−1, −0.5], for example,
the minimum Hellinger distance MPE with λ =
−0.5, may have substantial robustness advantages.
Although this comes at a price in small sample
efficiency, a penalized version that alters the influence
of zero cell counts appears to improve the situation
greatly [1, 47, 48].

Several data analytic techniques originally based
upon individual power-divergence statistics have
been generalized to the entire class. Thus, power-
divergence tests for independence in the 2 × 2
contingency table have been compared [26]. Methods
in the spirit of the “partition of chi-square”
technique originally developed by Lancaster [25],
who decomposed X2

P to localize sources of
heterogeneity in contingency tables (see Chi-
square, Partition of), and analysis of deviance
for sequential reduction of hierarchical loglinear
models [3], have been extended to “analysis
of divergence” [7, 27–29]. Akaike’s information
criterion AIC, based upon X2

L, has been generalized
to the “power-divergence information criterion”
PIC [6]. Confidence intervals derived by inverting
Wald and score statistics have been compared
to intervals obtained by inverting other power-
divergence tests [2].

Recently, a class of statistics based on power
divergences has been proposed for assessing fit of
a categorical time series regression model [9]. Pre-
dictors may include external variables and the past
history of the time series, which need not be station-
ary. The λ-order power-divergence based statistic is
the sum, across observation times, of power diver-
gences between the degenerate empirical distribution
of the single observation at each time and the fitted
distribution given by the predicted category probabil-
ities at that time. The latter are based on the partial
likelihood estimate β̂ of the vector β of regression
parameters. The centered power-divergence process
using β is a zero-mean martingale, and its analogous
process using β̂ is approximated by a mean-square
integrable martingale. From martingale central limit
theory, the latter process is Gaussian for λ > −1,

with variance a function of λ. It is also shown to
be the partial likelihood score for expansion of the
regression model in a λ-dependent direction. Notably,
for λ = 0 the expanded model degenerates to the cur-
rent model, so that the deviance is ineffective for
detecting model inadequacy in this context. Values
of λ from −1 to 1, excluding 0, are suggested as
potentially useful.

MPEs have been considered for estimating param-
eters of continuous distributions using samples where
the original observations have been grouped into cat-
egories and are no longer available. In this context,
MPEs have been criticized as subject to substantial
bias from low-level misspecification of the continu-
ous distribution, particularly for certain distributions
used commonly in econometric models [54].

Although the power-divergence class considerably
generalizes classical goodness-of-fit statistics for cat-
egorical data, power divergence itself is a special case
of a Csiszár’s φ-divergences, a much broader class of
directed divergences of form

∑r
i=1 qjφ(pj/qj ) for

functions φ that are convex on 
+ with φ(1) = 0,
φ′′(1) > 0, and the conventions that 0φ(0/0) ≡ 0 and
0φ(p/0) ≡ limu→∞ φ(u)/u. The power divergences
arise from this formulation by taking

φλ(u) = 1

λ(λ + 1)
(xλ+1 − x + λ(1 − x)) (12)

for λ �= −1, 0, and limits at these two values.
Considerable progress has been made in generalizing
asymptotic results on power-divergence estimators
and MPEs to φ-divergences and the corresponding
MφEs [30, 35]. Cressie and Pardo [7] have illustrated
the increased flexibility by using a φ-divergence due
to Renyi, evaluated at MPEs, for sequential testing of
higher-order effects in hierarchical loglinear models.

Power divergences have also seen increasing use
outside of the goodness-of-fit context, in their pure
capacity as directed divergences representing the dis-
parity between a set of probabilities and a reference
distribution. Thus, for given λ, Tomizawa et al. [52]
define a measure of asymmetry in square nominal
contingency tables as a multiple of the order λ power
divergence between the observed distribution among
the off-diagonal cells and the reference symmetric
distribution preserving the nij + nji for all (i, j ). For
square tables with ordered categories, a similar mea-
sure is developed using power divergence applied
to an artificial distribution constructed from cumula-
tive probabilities calculated at all pairs of row and
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column cut-points [51] (see Square Contingency
Table). In classification trees with categorical vari-
ables, the sum of a power divergence of given order
between each branch of a split and its source distri-
bution, weighted proportionally to the observations
in each branch, has been maximized over possible
splits to determine the best split at each stage [46]
(see Tree-structured Statistical Methods). Minimiz-
ing mean power divergence of observed from pre-
dicted observations in leave-one-out cross-validation
has been used to determine the smoothing param-
eter in generalized spline function-based logistic
regression [53]. Power divergence from a uniform
distribution has been minimized subject to con-
straints in order to determine observation weights in
unimodal kernel density estimation [15], monotone
kernel regression [14], and monotone hazard rate
estimation using a biased bootstrap [16] (see Boot-
strapping in Survival Analysis).

Indeed, the task of minimizing divergence from
uniformity is increasingly central to estimation.
Empirical likelihood estimation [34, 39] views the
empirical distribution as a multinomial. An unknown
parameter θ is estimated subject to constraints by first
associating with the observations a set of probabili-
ties that maximizes the multinomial likelihood while
preserving the constraints. The parameter estimate is
then calculated from this weighted, or “maximum
likelihood tilted,” multinomial. The task of finding
the tilted distribution is equivalent to minimizing the
0-order power divergence of tilted from uniform dis-
tribution, subject to the constraints. Estimation by
exponential tilting [22] involves the same process,
but the optimization criterion is minimization of the
Kullback–Liebler information in the tilted distribu-
tion rather than maximization of the likelihood, again
subject to constraints. The exponential tilting compu-
tation thus requires minimization of the order (−1)
power divergence of tilted from uniform distribution.
Generalized method of moment (GMM) estimation
involves minimizing a quadratic form in a set of
restrictions based on moment conditions [17]. In cer-
tain circumstances, an iterated version of GMM is
equivalent to estimation from the distribution that
minimizes the power divergence of order (−2) from
uniformity [19]. Maximum likelihood and exponen-
tial tilting are also useful for increasing computational
efficiency of bootstrap confidence intervals [18]. For
parametric estimation, Choi et al. [5] suggest that
robustness may be increased by a “biased bootstrap”

tilted maximum likelihood estimator. The weights for
tilting are obtained by maximizing the tilted loglike-
lihood on a constant contour of a power divergence
from uniformity.

Thus, power divergence methods highlight con-
nections between statistical inference and information
theory, and provide a unifying framework for statis-
tical procedures well beyond goodness-of-fit consid-
erations for categorical data models.
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Power Transformations

The assumptions in regression analysis include
normally distributed errors of constant variance
(see Scedasticity). Often these assumptions are
more nearly satisfied not by the original response
variable y, but by some transformation of y,
z(y). For nonnegative responses, one frequently used
transformation is log y. The original and transformed
analyses can then be compared in a number of
ways. Residuals can be plotted against fitted values,
or assessed for normality by probability plots
for various transformations (see Normal Scores).
Another comparison is through analysis of the linear
model using t or F tests – a correct transformation
often yields a simple linear regression model, with
no, or just a few, interaction or quadratic terms.
A formal way of comparing transformations is to
embed them in a parametric family and then to make
inferences about the transformation parameter λ (see
Model, Choice of). Transformations of three parts of
the model are of differing complexity and importance.
The most important is described in the following
section.

Transformation of the Response: Box and Cox [5].
The logarithmic transformation is one special case of
the normalized power transformation [5]

z(λ) =





yλ − 1

λẏλ−1
λ �= 0

ẏ log y λ = 0,
(1)

where the geometric mean of the observations is writ-
ten as ẏ = exp(Σ log yi/n). The regression model to
be fitted is then

z(λ) = Xβ + ε. (2)

For fixed λ, the value of β is estimated by least
squares giving a residual sum of squares for the
z(λ) of R(λ). The maximum likelihood estimate
λ̂ minimizing R(λ) is found by numerical search
(see Optimization and Nonlinear Equations), often
over a grid of λ values. Exact minimization of R(λ)

is not required, since simple rational values of λ

are customary in the analysis of data: λ = 1, no
transformation: λ = 1/2, the square root; λ = 0, the
logarithmic and λ = −1, the reciprocal being widely
used. An approximate minimum of R(λ) is, however,
required to establish confidence intervals for and to

test hypotheses about λ. It is important that these
comparisons of R(λ) do use the full form in (1)
including the geometric mean. Omission of this term
leads to meaningless comparisons – for most data,
log y is very much smaller than y and so are the
corresponding sums of squares, regardless of how
well the regression models fit.

Transformation of Explanatory Variables: Box
and Tidwell [6]. For a regression model with p

terms, it sometimes makes sense to consider models
in which one (or perhaps more) of the explanatory
variables is transformed, when the model is

y =
p∑

j �=k

βj xj + βkx
λ
k + ε. (3)

Again the maximizing value of λ has to be found
numerically, but the calculations are more straight-
forward than those for the Box–Cox transformation,
since the scale of the observations is unaffected by
the transformation. The residual sums of squares of
y can be compared directly as λ varies.

Transformation of Both Sides of the Model: Car-
roll and Ruppert [7]. The Box and Cox transfor-
mation often yields both approximately normal errors
and a simple linear model. But sometimes the two
transformations do not happen together. An exam-
ple is the data on mandible length from Royston and
Altman [10] plotted in Goodness of Fit. The analy-
ses in Diagnostics, Forward Search, and Residuals
showed that the log transformation yielded normal
errors, but increased the evidence for the inclusion
of a quadratic term in the linear model (see Polyno-
mial Regression). If there is a simple model for y,
the simplicity of the linear model can be maintained
by subjecting both sides of the model to the same
transformation. The purpose of the transformation is
then to obtain normal errors of constant variance.

Let E(Y ) = η = xT β be the simple linear model.
The transformation model is then

yλ − 1

λẏλ−1
= ηλ − 1

λẏλ−1
+ ε λ �= 0,

ẏ log y = ẏ log η + ε λ = 0. (4)

The optimizing value of λ again minimizes the resid-
ual sum of squares of the transformed response. For
given λ, estimating the parameters in general requires
nonlinear estimation, although this is unaffected by
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division by λẏλ−1. An example for the data on the
volume of trees analyzed in Residuals is given by
Atkinson [2].

The procedures using constructed variables
described in Residuals provide tests for the value
of λ, which avoid the need for calculation of
λ̂ whilst also giving information on the effect
of individual observations on tests and parameter
estimates. Numerous examples for the Box–Cox
and Box–Tidwell transformations are given by
Atkinson [1]. Cook and Weisberg [8, Chapter 13],
describe interactive graphical methods for selecting
a transformation. Diagnostic material on the
transformation of both sides of the model is given
by Hinkley [9], Shih [11], and by Atkinson [2].
Atkinson and Shephard [4] extend the Box–Cox
transformation to time series analysis and describe the
related diagnostic procedures. Diagnostic procedures
for the effect of groups of observations via the
Forward Search use the Fan Plot, described in
greater detail in [3, Chapter 4].

References

[1] Atkinson, A.C. (1985). Plots, Transformations, and
Regression. Oxford University Press, Oxford.

[2] Atkinson, A.C. (1994). Transforming both sides of a tree,
American Statistician 48, 307–313.

[3] Atkinson, A.C. & Riani, M. (2000). Robust Diagnostic
Regression Analysis. Springer-Verlag, New York.

[4] Atkinson, A.C. & Shephard, N. (1996). Deletion diag-
nostics for transformation of time series, Journal of
Forecasting 5, 1–17.

[5] Box, G.E.P. & Cox, D.R. (1964). An analysis of
transformations (with discussion), Journal of the Royal
Statistical Society, Series B 26, 211–246.

[6] Box, G.E.P. & Tidwell, P.W. (1962). Transformations of
the independent variables, Technometrics 4, 531–550.

[7] Carroll, R.J. & Ruppert, D. (1988). Transformation and
Weighting in Regression. Chapman & Hall, London.

[8] Cook, R.D. & Weisberg, S. (1999). Applied Regression
Including Computing and Graphics. Wiley, New York.

[9] Hinkley, D.V. (1985). Transformation diagnostics for
linear models, Biometrika 72, 487–496.

[10] Royston, P.J. & Altman, D.G. (1994). Regression
using fractional polynomials of continuous covariates:
parsimonious parametric modelling (with discussion),
Applied Statistics 43, 429–467.

[11] Shih, J.-Q. (1993). Regression transformation diagnos-
tics in transform-both-sides model, Statistics and Prob-
ability Letters 16, 411–420.

A.C. ATKINSON



Power

Traditionally, the power of a hypothesis test equals
the probability of rejecting the null hypothesis,
conditional on the falseness of the null. The definition
implicitly depends on a number of mathematical
assumptions. Equally importantly, the definition
depends on a number of philosophical assumptions
concerning the logic of science and the value system
of the scientist. Hence, examining the concept of
power requires at least a brief discussion of decision
making.

The practice of statistics involves either cre-
ating estimates of population properties (using
sample properties), or drawing inferences concern-
ing population properties (using sample properties).
Probability theory provides models of population
properties and sampling processes. Decision the-
ory blends mathematics, statistics, philosophy, and
behavioral science to model and guide decision
making. Although the systematic study of probability
began centuries ago, a completely rigorous mathe-
matical basis was not formalized until the begin-
ning of the twentieth century. In turn, the devel-
opment of estimation trailed probability, and infer-
ence (including hypothesis testing) trailed estima-
tion.

The most common approach to statistical hypoth-
esis testing stems from the work of J. Neyman
and E.S. Pearson, around the middle of the twen-
tieth century. No single approach has ever achieved
universal approval. More frankly, statisticians have
always disagreed on how to draw inferences. Cur-
rently, the most important alternative involves a
Bayesian approach, which avoids the language and
concepts of hypothesis testing.

In evaluating a scientific decision process, one
may consider (i) the scientific goal, (ii) the sci-
entist’s payoff function (values), (iii) the informa-
tion gathering mechanism, (iv) the mathematical
model, and (v) the mathematical objective function.
Our understanding of the human perceptual sys-
tem depends critically on the separate consideration
of perceptual performance and payoff function. For
example, two radiologists examining a chest X-ray
image may differ in their ability to detect lung
cancer, in their willingness to declare a perceived
anomaly as lung cancer, or both. Signal detection

theory, as well as the closely related receiver oper-
ating characteristic (ROC) curve analysis, provide
tools for disentangling performance from prefer-
ence. Power computations provide the same abil-
ity for statistical hypothesis testing. Power analy-
sis informs the scientist, who then chooses alterna-
tives based upon goals and values in the setting at
hand.

This broad, and therefore necessarily shallow,
discussion should allow drawing three conclusions.
First, to arrive at the doorstep of a power computa-
tion requires many assumptions, with most usually
left unstated. Secondly, the concepts and machinery
of power presented here derive from one particu-
lar approach to the problem of drawing inference
in science. Thirdly, earnest and serious disagreement
among statisticians suggests that achieving consen-
sus will require a new approach, distinct from any
currently available. Until then, the popularity of the
Neyman–Pearson approach encourages understand-
ing and extensive use of power analysis.

The most common approach to hypothesis testing
centers on stating a null and an alternative
hypothesis about parameters of a population.
For example, consider a physician interested in
mean response under standard treatment with mean
response under an innovative treatment. A traditional
classification of possible decisions (see, for example,
Daniel [5, p. 195]) is summarized in Table 1. In
such an interpretation, power equals the probability
of rejecting the null, conditional on the alternative
holding (see Level of a Test).

In contrast, mathematical statisticians now pre-
fer to define power as the probability of rejecting
the null, whether or not the alternative holds. The
unconditional approach, used in the remainder of this
article, treats the null hypothesis situation as a spe-
cial case of the alternative. Statisticians describe a test
which achieves minimum power at the null hypothe-
sis as unbiased.

Ideally, a technique provides the most powerful
test among a set of candidates. Typically, restrictions
must hold in order to find a “best” test. One of
the most appealing approaches arises from seeking
a uniformly most powerful unbiased test. Among
the class of all unbiased tests, one seeks that test,
the power of which for any alternative never falls
below the power of any other unbiased test. See
Kendall & Stuart [11, Sections 22.16 and 23.24], and
surrounding material) for further discussion.
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Table 1 The traditional approach

Decision
H0: no effect Ha: effect

No effect Pr{Correct negative} = Pr{False positive} =
(1 − α) Pr{Type I error} = α

Truth
Effect Pr{False negative} = Pr{Correct positive} =

Pr{Type II error} = β (1 − β) = Power

Sensitivity Analysis for Power

Scientists encountering the concept of power some-
times ask a statistician “Just tell me how many
subjects I need” (see Sample Size Determination).
The question presumes the availability of defen-
sible choices for unknown parameters, a precise
size of a scientifically important difference, a clear
specification of the costs of alternative designs,
and a clear specification of costs and benefits of
correct and incorrect decisions. The many dimen-
sions of uncertainty imply the need to consider
a wide range of alternatives. Considering a range
of values creates a sensitivity analysis by exam-
ining the sensitivity of the study power to the
assumptions.

The power of a t test as a function of mean differ-
ence is illustrated in Figure 1. The curve summarizes
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Figure 1 Power as a function of mean difference (after
Warshauer et al. [25])

results of Warshauer et al. [25] who examined the
value of a contrast agent in CT images of liver
cancer. A subject’s score equals the difference
between a baseline and IV contrast enhanced CT.
The horizontal axis represents the difference between
group (difference) means in Hounsfield units (HU),
a measure of brightness of an object in a CT. The
scientists had used a t test to assess the value
of adding a particular contrast agent to a patient’s
IV. The most important test was not significant.
Hence, they computed the power curve in order
to assess whether the study had possessed enough
power to detect clinically relevant effects. A dif-
ference between the groups of 10 HU was deemed
clinically significant. The computations assume five
subjects in the control group, four in the experi-
mental group, and α = 0.05. The solid power curve
uses the observed value of σ̂ 2 = 6.78 (based on
seven degrees of freedom). As a function of a ran-
dom variable (the variance estimate), a computed
power value becomes a random variable. Taylor &
Muller [23] described how to create an exact confi-
dence interval for such a power value. The dashed
line provides a one-sided 95% confidence region
for the power values. The distance between the
solid and dashed lines indicates the uncertainty in
the power computation due to having used σ̂ 2 in
lieu of σ2. The 95% quantile of χ2 (7) implies
that 6.78 × (14.067/7) ≈ 6.78 × 2 provides an upper
bound estimate of σ 2. Using this value in the power
calculations would provide approximately the exact
answer embodied in the dashed line. However, the
inexact approximation should never be used because
the exact answer requires no additional complex-
ity to calculate (see Taylor & Muller [23, Section
2.2] for details). A similar looking plot would occur
with other types of analyses, such as the compar-
ison of groups on a binary response (such as in
logistic regression) or with time-to-event (survival)
analysis.
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The example demonstrates many properties of a
reasonable power analysis. For any Gaussian the-
ory linear model analysis, such as the t test exam-
ple, power varies only with (i) sample sizes, (ii)
error variance, and (iii) mean differences, for a (iv)
fixed α. More generally, power depends on (i) design
properties, (ii) nuisance parameters, (iii) difference
parameters, and (iv) test characteristics. Power tables
and plots usually allow one or two dimensions to
vary. The investigator controls and knows the val-
ues of design properties, such as total sample size
and ratios of group sizes, as well as test character-
istics. In contrast, the investigator does not know,
with any certainty, the values of nuisance param-
eters and treatment differences. Hence, the latter
provide the critical and interesting dimensions for
plots and tables in a power analysis. A reason-
able sensitivity analysis also involves varying the
investigator-controlled dimensions, especially sample
size.

Aligning Power

The potentially most damaging errors that com-
monly occur in power analysis involve misalignment.
Describe a power analysis as aligned if the test
examined in power analysis coincides with the test
used in data analysis. Here, assume that the model
has been correctly specified. Alignment errors may
falsely inflate or deflate the power computed. Muller
et al. [19] provided examples of both, in the context
of using the power for Student’s t test in lieu of that
appropriate for analysis of variance for longitudinal
data. Whether or not such simple power calculations
apply must be defended in each particular application.

Although oversimplification of power analysis
occurs most often, other sorts of misalignment also
occur. Consider ignoring dropout in planning a clini-
cal trial lasting five years. Data missing at random
lead to the wrong sample size, while data miss-
ing not at random require distinct statistical methods
(see Nonignorable Dropout in Longitudinal Stud-
ies). Obviously, the data analysis must align with the
study, as well as the power analysis.

Ethical and monetary costs should dictate the
effort expended on power analysis. Inexpensive,
quick, and risk-free studies merit only limited power
analysis. In contrast, expensive and lengthy studies
with risky treatments merit thorough power analysis.

Increasing Power for a Fixed Sample Size

Increasing the type I error, α, automatically increases
power. Scientific reviewers would frown on any
blatant move of that sort. Of course, merely ignoring
the issue of multiple comparisons (conducting many
tests of the same idea with one set of data) will inflate
α and hence have the same effect. The discussion
here assumes that the scientist has balanced type
I and II error rates by careful choice of the type
and number of tests. See Muller et al. [18] for an
extended discussion of the general issue in the context
of toxicology.

The choice of analysis may increase power. For
example, a repeated measures analysis may be more
powerful than a necessarily Bonferroni corrected set
of tests at each time, if the effect increases rapidly
in time. However, a late developing effect may lead
to the Bonferroni corrected set of tests being more
powerful.

The choice of response variable may substantially
affect power. Obviously, one variable may vary with
the explanatory variables (or predictors) more than
another. The acquisition of more knowledge and
insight often rewards the scientist in this fashion.
The scale of the response may play an equally
important role. For example, the nature of clinical
medicine pushes physicians to think in terms of
binary or categorical responses. The practical need
to assign one among many treatments naturally leads
to the desire for categorical diagnosis. In studying
treatments for a bacterial infection, one obvious
response would be the presence or absence of disease.
If the diagnosis derives from a blood level, more
power would be expected from using the continuous
measure of serum concentration.

Reducing error variance provides one of the sim-
plest techniques to increase power. Merely ensuring
scrupulous adherence to recruiting criteria, study pro-
tocol, and laboratory assay technique help. In the
context of Gaussian theory linear models, cutting
error variance in half has nearly the same impact as
doubling the sample size.

The distribution of observations among design
points affects power. Consider choosing the set of
drug doses for an analysis of variance type design,
with drug dose as the categorical predictor of interest.
A design with one quarter of the subjects at each
of four doses will usually have noticeably less
power than a design with half of the subjects at
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the two most extreme doses. With two groups, a
balanced design (one with an equal number in each
predictor value group) usually has more power than
an unbalanced design. With a categorical outcome,
such as cancer/no cancer, power tends to depend more
on the distribution across predictors and number in
the smaller of the two category counts, rather than
on properties of the total sample.

Computing Power

Published theory may be combined with contempo-
rary computers to facilitate computation of exact or
approximate power for an extremely wide range of
statistical methods. Unfortunately, currently available
software does not fulfill the promise. Many commer-
cial vendors provide user-friendly packages. At least
until the middle of the 1990s, commercial products
limited coverage only to the most common statistical
techniques. Many statisticians have also written “free-
ware”, with a similar target. Other statisticians have
developed software for particular sets of complex, but
narrow, applications.

Tables in books and especially journal articles may
provide the most convenient current source for power
values. Note that the available books tend to follow
the same model as the commercial software, limiting
coverage to the most popular techniques.

Using computer software and printed material
for power requires a cautious approach. The issue
of alignment must be addressed. More importantly,
the conceptual complexity of power analysis, and
the limited availability of training, leads to more
mistakes than in data analysis. The user interface,
whether labels for rows and columns of a table,
or option names for a program, often proves to be
the problem. The reader should also recognize that
programs or associated documentation, whether sold
for profit or free, may contain fundamental errors.
For example, does the program need the variance
or the standard deviation? Either provides plausible
results when substituted for the other. Note also
that power computation often proves more difficult
numerically than data analysis. The competition in the
market for data analysis software has gradually raised
standards for numerical accuracy and ease of use.
One rarely sees commercial data analysis programs
printing negative variance estimates or probabilities
greater than one. The market for power software has
just started.

The limited bibliography provides sources for
power analysis for many common statistical meth-
ods. Examine Muller et al. [18] and Muller &
Benignus [16] for discussion of some of the phi-
losophy of power use. Kraemer & Thiemann [12],
Lipsey [15], and Cohen [3] provide general introduc-
tions to power methods. See Kupper & Hafner [13]
and Gatsonis & Sampson [6] for an indication of lim-
itations of using rough approximations. For a concep-
tual introduction to power for general linear models,
see O’Brien & Muller [20]. Muller et al. [19] provide
a more technical exposition, with particular atten-
tion to multivariate and repeated measures power.
Odeh & Fox [21] provide extensive tables for uni-
variate linear models. Gatsonis & Sampson [6] treat
the multiple linear regression model with Gaussian
predictors and response.

The reader should recognize that any reasonably
thorough list of sources would cover many pages.
Many widely used statistical methods in biostatis-
tics and associated excellent papers have been omit-
ted here for the sake of brevity. To find power
information for a particular technique not covered
in a general power book, consult texts describing
the data analysis method of interest. For example,
Agresti [1] describes power analysis methods for
repeated measures categorical data (see Longitudinal
Data Analysis, Overview). Next, consult the statis-
tical literature. Be sure to examine primary statistical
journals, not just scientific journals. The latter have
many discussions of special case models, while the
former may include more thorough treatments of gen-
eral models.

Related Concepts

The concepts of power discussed here have gener-
alizations in a wide range of scientific settings. In
some cases, criteria other than power provide a supe-
rior measure of study quality. For example, in group
sequential or purely sequential designs the expected
sample size often proves more interesting. Power and
sample size interact in nonobvious ways in prob-
lems centered on estimating confidence intervals.
An ongoing debate in the study of bioequivalence
surrounds the use of power for choosing sample size.

Prospective power analysis helps in planning stud-
ies to be conducted in the future. Retrospective power
analysis may help evaluate studies previously com-
pleted. See Benignus et al. [2] for an example. Power
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analysis also has value in meta-analysis [4, 7–10,
13, 21]. See Muller & Benignus [16], Taylor &
Muller [23, 24], and Muller & Pasour [17] for further
discussion.
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Preclinical Treatment
Evaluation

Every year the pharmaceutical industry develops
thousands of new compounds in the hope that some
of them will ultimately prove useful in the treatment
of human disease. Before any prospective new drug
can be tested in humans, it must undergo an extensive
series of preclinical tests and assessments to ensure its
safety and efficacy, to understand its pharmacokinet-
ics, metabolism, and other chemical properties, and to
determine safe and appropriate doses for human test-
ing. Some of these tests are performed in vitro (that
is, in test tubes and Petri dishes), while others involve
laboratory animals (in vivo testing). The vast major-
ity of compounds (some estimate more than 99%) are
discarded long before reaching the steps of animal
testing, and few eventually reach the marketplace.

Drug discovery sometimes begins with the
observation that a compound from nature has
some desirable action without knowing how the
compound works. Penicillin is one such example.
Large screening programs are still used to identify
compounds active against bacteria and other disease-
causing organisms. In the last few decades, the tools
of combinatorial chemistry and molecular biology
have become increasingly important. Combinatorial
chemistry enables synthesis of many compounds to
increase greatly the number available for screening.
Molecular biology can sometimes be used to speed
the search. For example, knowledge of how the
AIDS (acquired immune deficiency syndrome) virus
replicates may provide ideas for designing molecules
that interfere with viral replication. These compounds
are tested for activity against the virus in vitro, and,
by a series of experiments, scientists attempt to find
molecular structures with greatest potency.

Preclinical safety assessment requires a candidate
drug to undergo a battery of tests to identify
potential toxic effects. Statisticians are probably
most involved in screening for carcinogens (cancer-
causing agents) (see Tumor Growth; Tumor
Incidence Experiments). However, procedures for
identifying teratogens or developmental toxicants
(agents that damage a developing fetus or child)
(see Teratology) have become more quantitative
in recent years, and many statisticians are now
working in this area. While there are many other

areas of toxicity testing; for example, neurotoxicity
and genetic toxicology, this article focuses primarily
on preclinical testing for carcinogenicity and
developmental toxicity.

Historically, scientists have always been inter-
ested in devising in vitro tests that can assess drug
safety quickly and cheaply without resorting to ani-
mal testing. One of the most well known is the Ames
Salmonella assay for mutagenicity, wherein the test
chemical is added to bacteria in a Petri dish. While
the 1970s saw considerable optimism surrounding the
Ames assay, most experts now agree that the test
has fairly low sensitivity for predicting carcinogenic-
ity in rodents. However, because its specificity is
high, compounds found to be positive using the Ames
assay are likely to be dropped from further develop-
ment. In vitro assays are often supplemented with
in vivo assays; for example, the mouse bone mar-
row cytogenetic assay. Recently, there has also been
considerable interest in the use of computer-based
algorithms that attempt to predict carcinogenicity on
the basis of chemical structure and function, muta-
genicity, 90-day toxicity, and other factors. However,
the general consensus is that while these alternatives
can provide useful insight into mechanisms of action,
they cannot yet replace carcinogenicity bioassays (see
Biological Assay, Overview) in rodents. Finding in
vitro tests for teratogenicity and developmental toxi-
city is even more difficult, since less is known about
their mechanisms of action than for carcinogenicity.
Some tests (for example, assessing the motility and
morphometry of sperm) show promise, but it is likely
that in vivo tests will play a central role in drug testing
for some time to come.

General Principles for Animal Testing

Regardless of whether the endpoint is carcinogenic-
ity, teratogenicity, neurotoxicity, or some other kind
of adverse effect, toxicologists for the most part
concur on several general principles for designing
a high-quality animal experiment. First, the experi-
ment should be conducted in a familiar animal strain
and under stable experimental conditions to avoid
extra sources of variability that might confound study
results. Secondly, the route of exposure should be
the one that most closely mimics the intended clin-
ical route(s) to humans. For example, a compound
intended for intramuscular (IM) injection or intra-
venous (IV) administration to humans should usually
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be given by the same route to laboratory animals. A
drug intended for oral administration would be given
to animals by gavage. A third and somewhat con-
troversial principle is that the highest experimental
dose should correspond to the maximum tolerated
dose (MTD) for long-term studies (see Phase I Tri-
als). Loosely speaking, this is the highest dose that
can be administered without the experimental animals
experiencing excessive systemic toxicity that could
alter the test results. Precise definition of the MTD
depends on the specific testing situation. The primary
reason for using the MTD is to maximize the chance
of detecting a carcinogenic effect, if one exists. If
low doses were used instead, then experiments would
need to be much larger to achieve adequate statistical
power to detect effects. To illustrate, Table 1 shows
the sample sizes that would be required in order to
have a 95% chance of seeing at least one tumor, as
a function of the true probability that an animal has
a tumor:

Once pilot studies have been conducted to identify
the MTD, the next choice is the number of dose
groups to use, and the number of animals in each.
While several different choices might be justified,
most long-term experiments tend to include two or
three dose groups between control and MTD, with the
lowest at 1/4 (MTD) and the higher at 1/2 (MTD).

Caging is another important issue in experimen-
tal design. Specifics vary according to the type of
experiment being run. For a carcinogenicity experi-
ment, for example, some laboratories house multiple
animals together in the same cage. While this practice
is cost effective, it can lead to problems if the animals
fight (male mice are particularly prone to this prob-
lem). Allocation of cages within the animal room is
another important consideration. Because animals are
sensitive to light, noise, heat, and humidity, biases
could result if, for example, all the high-dose ani-
mals were placed on the top rack of cages. Possible

Table 1 Sample sizes required to
observe at least one tumor with 95%
probability

Pr(tumor) Sample size needed

0.1 30
0.01 300
0.001 3000
0.0001 30000
0.00001 300000

approaches include completely random allocation
(see Randomized Treatment Assignment) or cage
rotation. However, there are practical constraints to
both these strategies. Because light, heat, and humid-
ity gradients, if they exist, are likely to be vertical,
the most popular approach is a clustered block design
(see Blocking) wherein each column of cages con-
sists of just one dose group, and columns are ran-
domly allocated to dose groups.

Diet (or body weight) has received consider-
able attention in recent years, since food consump-
tion is an important confounder in animal studies.
Rodents given unlimited access to food can become
obese, resulting in decreased life span, earlier onset
of spontaneous tumors, and possibly altered drug
metabolism and consequent incidence of treatment-
induced tumors. Such considerations also add to the
argument for single animal caging, because multiple
animals per cage often lead to large variations in the
food consumption of individual animals.

Carcinogen Bioassays

In a typical long-term rodent bioassay, control and
exposed animals are followed over 18 to 24 months,
and are examined at death or sacrifice for the
presence of a variety of different tumors, as well
as nonneoplastic lesions. Usually, the experiments
are conducted in male and female animals from
two different species (for example, Fischer-344 rats
or B6C3F1 mice), with 50 to 60 animals per dose
group, sex and strain, for a total of approximately
800–960 animals (for a study with a control and
three dosed groups). This long-term experiment is
generally preceded by two shorter-term pilot studies
whose main goals are to establish the doses to be
used in the 24-month study and to study acute and
subchronic effects.

In the early days of the carcinogen bioassay,
statistical analysis was naively based on comparisons
of the tumor counts observed in each dose group.
For example, suppose that Table 2 represents the

Table 2 Summary data from a typical carcinogenicity
study

Dose level

d0 d1 . . . dI Total

Number of animals with tumor x0 x1 . . . xI x·
Number exposed n0 n1 . . . nI n·



Preclinical Treatment Evaluation 3

experimental data. Then, one could test for a dose
effect using a Cochran–Armitage trend test (see
Trend Test for Counts and Proportions), which can
be written as

χ2
ca =

[∑I
i=0 di(xi − Ei)

]2

V
, (1)

where Ei = nix·/n· is the expected number of tumors
in the ith dose group under the null hypothesis of
no dose effect (H0), and

V =
(

x·
n·

) (
n· − x·

n·

) I∑

i=0

ni(di − d)2.

Under H0, χ2
ca has an asymptotic chi-square distri-

bution with one degree of freedom. Eventually, it
became apparent that such analyses based on life-
time tumor incidence could be biased when lifetimes
were shortened due to toxicity associated with high
experimental doses. Several age-adjusted tests were
proposed in the early 1970s, including the tumor
prevalence test [9], which involves stratifying time
into three or four intervals (see Stratification) and
then comparing exposed and controls with respect
to πj = Pr(tumor-death in interval j ) using a Man-
tel–Haenszel test. Dinse & Lagakos [6] recognized
that a prevalence analysis can be easily accomplished
using logistic regression with tumor presence as the
outcome and dose and time as covariates. Although
the prevalence test is still widely used, many are
concerned about its strong implicit assumption of
nonlethality (that is, tumor onset does not change
an animal’s risk of death). Alternatives include a
survival analysis treating death with tumor as the
outcome [14]. However, this approach assumes that
the tumor is instantly lethal. Peto et al. [15] proposed
a method that relies on pathologists to assign cause of
death. The problem with the Peto method, however,
is that cause-of-death information is often unavail-
able, and can be unreliable. Much statistical research
in the past 10 or 15 years has focused on the develop-
ment of methods that apply to tumors of intermediate
lethality. Poly-3 is a promising method that replaces
the ni in the above table with an adjusted value,
Ni , that downweights animals that died early with
no tumors [1]. More precisely,

Ni = xi +
∑(

tij

tmax

)3

,

Tumor-free l (t) Tumor

a (t,x)

Death

b (t)

Figure 1 Three-state model for carcinogenicity

where tmax is the maximum death time observed in
the study and the sum is over the subset of animals
in the ith dose group that died with no tumor. The
third power is chosen because generally it has been
found that tumor incidence rates tend to occur as a
third- or fourth-order function of time. Alternately,
many have proposed methods of analysis based on
fitting a three-state model as depicted in Figure 1,
with λ(t) representing the instantaneous rate of tumor
onset at time t, β(t) the instantaneous death rate
at time t , and α(t, x) the instantaneous death rate
at time t for an animal that developed a tumor at
time x.

Many approaches to fitting the three-state model
are impractical because they assume the availabil-
ity of extensive interim sacrifice (wherein randomly
selected animals are killed at prechosen times during
the experiment and examined for tumors). Recently,
Dinse [5] and Lindsey & Ryan [13] have advocated
the use of semiparametric regression models that
assume an additive [α(t, x) = β(t) + ∆] or mul-
tiplicative relationship [α(t, x) = β(t)e∆] between
the hazards for death with and without tumor.
These approaches are appealing from a biologi-
cal perspective and can be applied to a typically
sized experiment with only a single terminal sacri-
fice.

The carcinogen bioassay raises several other chal-
lenging statistical problems. One is the issue of
multiplicity, wherein the chance of seeing sta-
tistically significant results is increased because
many (usually over 50) different tumor sites are
examined (see Multiple Comparisons). Some pro-
pose multivariate analysis methods that accom-
modate multiple tumor types [18]. Others argue
that multiple testing is not a serious problem
for tumor types that are rare in control animals,
although this depends on sample size [8]. The role
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of historical control information in the evaluation
of data from a carcinogenicity study is also an
important topic with interesting statistical questions
that have been discussed by many authors in recent
years [10].

Teratology Studies

The purpose of a teratology, or, more generally, a
developmental toxicology, study is to assess adverse
effects on reproduction and development. In response
to the thalidomide episode and growing concern
about prenatal effects of drugs, the US Food and
Drug Administration (FDA) issued a set of guide-
lines in 1966 for conducting animal studies to assess
the safety of drugs intended for human use. The
guidelines established a three-stage testing proce-
dure generally referred to as segments I, II and
III. “Segments” refer to sequential periods during
reproduction when the compound is administered.
In a segment I (fertility) study, the compound is
given prior to and during the mating phase and
up to implantation of the embryo. In a segment
II (teratology) study, the compound is administered
during the major period of organogenesis. In a seg-
ment III (late gestation and lactation) study, expo-
sure occurs from the end of the embryonic period
through lactation. Subsequently, the FDA added a
multigenerational protocol suitable for testing food
additives and pesticides. More recently, the guide-
lines have been modified to allow more flexible
study designs that combine segments, so long as all
phases of reproduction, premating through lactation,
are covered.

The remainder of this section focuses on the
segment II design, since this is the one to which most
of the published statistical work relates. Figure 2
summarizes the typical design, wherein pregnant
animals (dams) are exposed during the critical period
of major organogenesis (days 6–15, 17, or 19 for

Mating gd6 gd15 gd18

Sacrifice and
evaluation

Exposure

Gestation period

Figure 2 Chronological events in a developmental toxic-
ity study

mice, rats and rabbits, respectively) and sacrificed
just prior to normal delivery at which time the
uterus is removed and the contents are thoroughly
examined (note that “gd” denotes gestational day in
Figure 2).

Ordinarily, between 20 and 30 pregnant dams
are randomized to each dose group and control
and typical control litter sizes (number of live-born
offspring) range from eight to 10 in rabbits to 12 and
15 in mice and rats, respectively.

While the dam is the unit of randomization (see
Unit of Analysis) and maternal toxicity is an impor-
tant factor in these studies, interest centers primarily
on fetal outcomes. Examination of the uterine con-
tents produces several discrete and continuous fetus-
level outcomes. In addition to the number of eggs that
implant in the uterus, litter-specific counts of resorp-
tions (early fetal deaths) and fetal deaths (deaths
occurring later in gestation) are available. Viable
fetuses (animals that would be born live if the dams
were followed to term) are extensively examined for
malformations. Body weight and, occasionally, other
parameters, such as various body dimensions (e.g.
crown to rump length) and organ weights, are also
measured.

The statistical analysis of data from a teratology
experiment must account for the litter effect, or
the tendency for littermates to respond more simi-
larly than offspring from different litters. One easy
approach is to summarize data at the dam level;
for example, by considering litter-specific percent-
ages of resorptions or malformations as the endpoints
for analysis. More recently, there has been consid-
erable interest in the use of statistical methods for
correlated data that allow for fetus-specific analyses.
Some of these have been based on likelihood-based
methods, such as the beta-binomial [3]. Others have
been based on generalized estimating equations,
which provide a relatively simple and often robust
(see Robustness) approach to the analysis of cor-
related binary data. For example, Lefkopoulou &
Ryan [11] propose an appealing generalization of the
Cochran–Armitage trend test that applies to clustered
binary data. To illustrate, suppose, for simplicity, that
each fetus is classified as normal or abnormal. Let xij

be the number abnormal among the nij pups in the
j th litter of the ith dose group. Then, under the null
hypothesis of no dose effect, the following test statis-
tic has an asymptotic chi-square distribution with one
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degree of freedom:




∑

i

∑

j

di(xij − nij µ̃)




2

∑

i
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j

(di − d)2(xij − nij µ̃)2
,

where di is the dose level applied to the ith dose
group,

d =

∑

i

∑

j

nij dij

∑

i
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j

nij

and µ̃ =

∑

i

∑

j

xij

∑

i

∑

j

nij

.

Note that when nij = 1 (i.e. no litter effect), this
test statistic is asymptotically equivalent to the
Cochran–Armitage trend test, (1).

Handling multiple outcome data is another impor-
tant issue that arises in the analysis of developmental
toxicity data (see Multiple Endpoints, P Level Pro-
cedures). The issues here are slightly different from
those encountered in carcinogenicity, since com-
pounds that cause adverse effects are quite likely to
affect a variety of organ systems in the developing
fetus. Some authors [4, 16, 19] address the hierar-
chical nature of some outcomes (e.g. death and mal-
formation), and suggest analyses based on overdis-
persed multinomial models. Others have suggested
methods to deal with the analysis of multiple out-
comes measured on the same fetus [12], as well as
the challenge of analyzing the mixture of discrete
and continuous outcomes that arise in developmental
toxicity [2, 7].

Neurotoxicity and Other Studies

Neurotoxicity has traditionally been evaluated by
histopathologic examination of slides taken at nec-
ropsy, much as other forms of toxicity. In recent
years, assays that directly measure neurologic func-
tion in living animals have been increasingly used,
since neurological damage may not be evident at
necropsy, but may manifest later with behavioral
problems [17]. For example, a swim maze may be
used to measure problem-solving ability (time to find
the exit), and memory (time to find the exit a few
days later). An open field monitor records how a

rat explores a new environment (an open box criss-
crossed with electronic beams) by counting the num-
ber and location of beams broken over time. Other
assays measure righting reflex, balance, or habitu-
ation to repeated loud noise. Such response data
are often high-dimensional, and yet can show clear
effects, suggesting a need for multivariate statistical
methods (see Multivariate Analysis, Overview) to
capture and summarize the information. At this time,
however, little has been published on this topic.

Future Developments

Recent years have seen a number of exciting devel-
opments in toxicology. There is great interest in
the development of biologically based models that
take account of pharmacokinetics, metabolism, and
physiological systems to characterize better dose
response and improve the extrapolation from animals
to humans. While such models are still in relatively
early stages of development, it is likely that they will
become more widely used in the future. The use of
transgenic mouse models is also likely to become
more widespread in the future.
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Prediction

In statistical usage, the term prediction usually refers
to the attempt to predict individual values of a ran-
dom variable based on a statistical model, often one
which relates a response variable, which is to be pre-
dicted, to a set of explanatory variables. The errors
involved in prediction usually derive from uncertainty
in the estimation of the mean, or some function of
the mean, of the variable, and the “natural” variation
of the observed value about its mean. The former
is usually determined by the adequacy of an esti-
mated statistical model, while the latter is not subject
to manipulation. Prediction based on multiple linear
regression provides an example.

Examination of the predictive ability of a statis-
tical model is useful in a variety of situations. It is,
for example, a natural aspect of discriminant anal-
ysis and the basis of cross-validation. Geisser [2, 3]

has written extensively on prediction as a basis of
inference procedures. A book-length treatment of pre-
diction is [1].

In some other contexts, prediction takes on its
more usual meaning of “predicting the future” (see
Forecasting; Predictive Modeling of Prognosis).
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Predictive Modeling of
Prognosis

Changing prognosis over time is an essential fea-
ture of the course and treatment of chronic diseases
such as cancer, HIV/AIDS, leukemia, and diabetes.
Typically, when the patient presents initially he/she
can be characterized as having a certain state of
health, which the physician determines using vari-
ous objective and subjective measurements. Whether
the patient remains in the hospital for continuous
monitoring or leaves and returns for periodic obser-
vation and treatment, many of his/her measurements
will change over time. While some apparent clinical
changes in the patient might be attributable to mea-
surement error, others may reflect real beneficial
treatment effects or a worsening of prognosis.

Having arrived at a diagnosis, the physician can
assess the natural course of the disease, and, on
the basis of this information, can make judgments
about the patient’s prognosis. Prognosis is defined
in terms of the relative probability of developing
one of several alternative outcomes in the natural
history of the disease (see Natural History Study
of Prognosis).

In recent years, Markov models have become
important tools to describe and help understand
the progression and regression of chronic diseases
which are characterized by having well-defined
stages. These models have been used to find
possible markers for the transition from stable
states to the accelerated phase and the irreversible
(absorbing) state of a disease, and also to
describe the natural course of these diseases. Aalen
and Johansen [1] considered multistate continuous-
time Markov processes assuming that transitions
occurred just before the observation times (see
Aalen–Johansen Estimator). Klein et al. [17] use a
three-state semi-Markov model in a study of patients
with chronic myelogenous leukemia to analyze
the effect of elevated blood levels of adenosine
deaminase as a marker for transition from stable
disease to blast crisis, and then to death. Andersen
and colleagues [2–4] introduce proportional intensity
regression models for multistate Markov processes
assuming that the transition times are known as in
proportional hazard models [7]. Longini et al. [18]
use a Markov model to describe the distribution of the

incubation period for AIDS patients. In this model,
only progression to the next higher state or a jump to
the absorbing state are allowed.

Kay [16] proposed a methodology to fit a gen-
eral k-disease-state Markov model in continuous time
with application to the analysis of cancer markers
in survival studies. Kay assumes that the transi-
tions between states occur at unknown times between
observations, except for transitions to the absorb-
ing state. Andersen et al. [4] compare the approach
of Aalen and Johansen [1], which assumes that the
transition times are known, with the approach of
Kay [16], which assumes that the transition times are
unknown. Grüger et al. [13] looked at the interrela-
tionship between the disease process and the patient’s
examination scheme (i.e. the study protocol).

This article discusses predictive models for prog-
nosis using a general k-state Markov model in which
the exact transition times are not observed (see Tran-
sition Models for Longitudinal Data). An important
application of these models is discussed and analyzed.
Data from a longitudinal study in young patients
with diabetes from the Barbara Davis Center for
Childhood Diabetes, University of Colorado Health
Sciences Center, are used to determine factors affect-
ing the natural course of diabetic retinopathy.

Three Examples

Hepatocellular Carcinoma

Kay [16] shows the results of a multistate model
(see Multistage Carcinogenesis Models) applied to
81 patients with hepatocellular carcinoma. The main
goal of this statistical analysis was to determine the
usefulness of serum alpha-fetoprotein (AFP) as a
marker in hepatocellular carcinoma. High levels of
AFP are indicative of such cancers, particularly in
subjects with cirrhosis of the liver, at the diagnosis
state. Kay [16] shows that when the presence of cir-
rhosis is taken in account, AFP levels at the diagnosis
time no longer predict the survival time. However, a
multistate model showed that changes in AFP levels
are related to risk of death.

The patients were treated mainly by Adriamycin,
but a few cases underwent resection or transplanta-
tion. AFP levels were measured on all patients at the
start of the treatment and subsequently at convenient
time points during the follow-up period.
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Normal
x i (t ) ≤  1.05

Raised
xi (t ) >  1.05

Death

Figure 1 The three-state model for hepatocellular
carcinoma

If zi(t) represents the AFP value recorded at time
t for the ith patient, then the transient stages of the
disease are defined based on 5% increase of log zi(t)

over the baseline value, as shown in Figure 1; this is

xi(t) = log zi(t)

log zi(0)

HIV Infection

The understanding that individuals infected with
human immunodeficiency virus (HIV) pass through
various stages from infected but antibody-negative to
acquired immune deficiency syndrome (AIDS) diag-
nosis implies that the mathematical modelling of the
infection process is most naturally carried out using
a multistate model.

To analyze the natural course of this disease,
Longini et al. [18] use data on the progression of
individuals to AIDS arranged in cohorts of persons
recently infected whose serum specimens were found
to be positive. The multistate model for HIV infection
was defined using five states, as shown in Figure 2.
The first stage is HIV infection but with antibody-
negative status, the second is antibody-positive status
but asymptomatic. The third stage occurs when an
individual develops an abnormal hematologic indica-
tor and/or prodromal illnesses (pre-AIDS symptoms),
such as persistent generalized lymphadenopathy and
oral candidiasis. The fourth stage is clinical AIDS. A
fifth stage is included in the model to represent death
due to AIDS.

HIV-
negative

HIV-
positive

Pre-
AIDS AIDS

Death

Figure 2 The multistate model for four stages of HIV
infection

The Natural Course of Diabetic Retinopathy

Marshall and colleagues [19, 20] showed the results
of implementing a multistate model for diabetic
retinopathy in patients with type I diabetes. The study
data came from the follow-up of 277 subjects who
had type I diabetes for at least 5 years and ranged
in age from 14 to 29 years when initially seen at
the Eye-Kidney Clinic of the Barbara Davis Center
for Childhood Diabetes at the University of Colorado
Health Sciences Center. The Eye-Kidney Clinic was
open to all patients 14 years of age or older who
have had type I diabetes for at least three years. The
average duration of insulin-dependent diabetes mel-
litus for this population was approximately 10 years,
ranging from 3 to 28 years. The sex ratio was approx-
imately one-to-one.

All subjects were seen longitudinally at least
twice, with visits at an average of 1 year apart, for a
mean follow-up of three years. A total of 882 patient
visits occurred during the study period, an average
of 3.2 visits per subject. At each visit, a retinal spe-
cialist graded retinal findings using a modified Airlie
House classification [11] in which grade I indicates
no retinopathy; grade II indicates microaneurysms
only; grades III and IV indicate intermediate stages
of background retinopathy; and grades V and VI indi-
cate pre-proliferative and proliferative retinopathy,
respectively. The worst eye grade for each visit was
used to define the subject’s state at the time of the
visit. A four-state model was proposed to study the
natural history of this disease, as shown in Figure 3.

Grade
I

Grades
II− III

Grades
IV− V

Grade
VI

Figure 3 The multistate model for four stages of diabetic
retinopathy defined on the basis of eye grades according to
the Airlie House classification
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Continuous-time Markov Processes

The theory of continuous-time, finite-state Markov
processes is available from many sources (see,
for example, [6] or [8]). Suppose we observe a
continuous-time stochastic process {X(t), t ≥ 0}
with a finite number of values in E = {1, 2, . . . , k}
called states. We say that {X(t)} is a continuous-time
Markov process if for all times t > s > u > 0, and
for any states i, j and h ∈ E,

Pr{X(t) = j |X(s) = i, X(u) = h}
= Pr{X(t) = j |X(s) = i}. (1)

This conditional probability represents the proba-
bility of a transition from the state i at time s to
the state j at time t , and it is denoted as pij (s, t).
Clinically speaking, this property says that the clinical
history of a patient with the disease is summarized
entirely by the current stage of the disease. These
transition probabilities have the basic properties, 0 ≤
pij (s, t) ≤ 1, pii(t, t) = 1, pij (t, t) = 0 if j �= i, and

k∑

j=1

pij (s, t) = 1.

For any time τ in the interval (s, t) the transition
probability pij (s, t) can be written, using the Chap-
man–Kolmogorov equation, as

pij (s, t) =
k∑

v=1

piv(s, τ )pvj (τ, t).

This equation, in matrix notation, is

P(s, t) = P(s, τ )P(τ, t),

where P(s, t) is the transition probability matrix of
dimension k × k with elements pij (s, t).

The Markov process X(t) is characterized by the
transition intensities

λij (t) = lim
dt→0

Pr{X(t + dt) = j |X(t) = i}
dt

, i �= j

which represent instantaneous transition rates bet-
ween the different states. For mathematical conve-
nience,

λii(t) = −
k∑

j �=i

λij (t).

The transition probability, pij (s, t), satisfies the Kol-
mogorov forward differential equations

dpij (s, t)

dt
=

k∑

v=1

piv(s, t)λvj (t),

or, in matrix notation,

dP(s, t)

dt
= P(s, t)�(t), (2)

with the initial condition P(t, t) = I, where I is the
k × k identity matrix.

Important mathematical simplifications are obta-
ined by assuming that the process is homogeneous
in time. The consequences of this assumption are
that the transition intensities between the different
states λij (t) are constant over time, and the transi-
tion probabilities pij (s, t) depend only on the time
differences t − s. Eq. (2) reduces to a system of dif-
ferential equations with constant coefficients,

dP(t − s)

dt
= P(t − s)�,

for which the closed-form solution is

P(t − s) = e�(t−s) =
∞∑

n=0

{�(t − s)}n
n!

.

If � has distinct eigenvalues, ρ1, ρ2, . . . , ρk , and A
is a square matrix where the j th column is the right
eigenvector associated with ρj , then

P(t − s) = A diag{exp[ρ1(t − s)], exp[ρ2(t − s)],

. . . , exp[ρk(t − s)]}A−1. (3)

Individual transition probabilities can be calculated,
for any value of t − s, as

pij (t − s) =
k∑

v=1

aiv exp[ρv(t − s)]avj , (4)

where aij and aij represent the elements (i, j ) of the
matrices A and A−1, respectively.

The Model

Suppose we have a model with k − 1 transient dis-
ease states j = 1, . . . , k − 1 and a single absorb-
ing state j = k, as in Figure 4. The transient states
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. . .

. . .

State
1

State
2

State
k−1

State k

l12

l21

l23

l32

lk−2,k−1

lk−1,k−2

l1k
l2k

lk−1,k

Figure 4 A multistate model with k − 1 transient states
and one absorbing state. The model has a total of 3k − 5
parameters

are assumed to be ordered according to j and
instantaneous transitions can take place from state
j to the adjoining states j − 1 or j + 1. Transitions
can also take place from any of the transient states to
the absorbing state k.

Submodels can be obtained by eliminating some of
the parameters when some of the transitions are the-
oretically impossible or are unlikely to be observed
during the study time. Longini et al. [18] use a sub-
model to describe the incubation period of AIDS with
only progression transitions to the adjoining states
(see Figure 2).

For the model in Figure 4 the transition intensity
matrix � can be written as

� =




−(λ12 + λ1k) λ12 . . . 0 λ1k

λ21 −(λ21 + λ23 . . . 0 λ2k

+λ2k)
...

...
. . .

...
...

0 0 . . . −(λk−1,k−2 λk−1,k

+λk−1,k)

0 0 . . . 0 0





.

(5)

When equally spaced observations are available, and
where a discrete time Markov model can be con-
sidered, a continuous-time Markov model will be
more parsimonious. This model has 3k − 5 differ-
ent parameters, in contrast to a discrete-time model
with k(k − 1) independent parameters.

Regression Models

Suppose that each individual under study has an asso-
ciated vector of covariates z′ = (z1, z2, z3, . . . , zp)

representing a set of characteristics and natural risk
factors associated with the disease process. For a
given value of this set of characteristics z, we assume
that the Markov process is homogeneous with an
intensity matrix �(z) similar to the intensity matrix
� in (5) with elements

λij (z) = λij exp(β ′
ij z), (6)

where λij represent the baseline transition rate, and
βij represents the vector of regression coefficients
associated with z for the transition from state i to
state j . According to this model, for each possible
transition between two states, we introduce a propor-
tional intensity model similar to the Cox regression
model with constant hazard function. Model (6)
implies that each risk factor considered in the model
may have a different effect in the progression and/or
regression of the disease.

We must consider two types of model selection
procedure in the context of this multistate Markov
model. The first, more classical in statistical analysis,
is the selection of covariates associated significantly
with the progression and regression of the process.
Given the large number of parameters associated with
each covariate in model (6), it seems reasonable to
consider a forward selection procedure. The second,
more specific to this multistate model, relates to the
selection of the most parsimonious representation
of the association between each covariate and the
disease process. Consider the case of a model with
a single covariate. In the context of the four-state
model for diabetic retinopathy (Figure 3), there are
three natural models for representing the effect of
the covariate. The first, named the saturated model,
is defined as the model in which the effect of the
covariate differs in each of the five disease transitions.
In this model we have a total of 10 parameters,
five baseline transition intensities, and five different
regression coefficients.

The second model, named the progression and
regression (PR) model, is defined as the model in
which the effect of the covariate is the same for
all progression transitions, and the same for all
regression transitions. More formally, we formulate
this model by assuming that the null hypothesis
H0 : βj,j+1 = βp and βj,j−1 = βr is true. Under this
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hypothesis the number of parameters associated with
each covariable reduces from five to only two. We
can write the proportional intensity model (4) under
this hypothesis as

λij (z) =
{

λij exp(β ′
pz), j = i + 1,

λij exp(β ′
rz), j = i − 1.

(7)

Finally, the third model, called the progression minus
regression (PMR) model, is where the effect of
the covariate is the same for all progression transi-
tions and the same, but with a sign change, for all
regression transitions. Formally,

λij (z) =
{

λij exp(β ′z), j = i + 1,

λij exp(−β ′z), j = i − 1.
(8)

Survival Analysis

A point of major interest in practical applications
is the relationship between the Markov model and
survival analysis functions, including the survival
function, the hazard rate function, the median life-
time, the mean lifetime (see Life Expectancy) and
the residual mean lifetime. Let T be a random
variable which represents the lifetime of individuals
in a homogeneous population. The survival func-
tion, given that the process is in state i at time
s = 0, Si(t) = Pr{T > t |X(0) = i}, for a subject with
covariables z, is

Si(t |z) = 1 − pik(t ; z),

where pik(t ; z) is the (i, k)th element of the transi-
tion probability matrix P(t ; z). The density function,
expressed in terms of the survival function, fi(t) =
− dSi(t)/ dt , for a subject with covariables z, is

fi(t |z) =
k−1∑

j=1

pij (t ; z)λjk(z).

The hazard function hi(t |z) = fi(t |z)/Si(t |z) as a
function of the transition probabilities and intensi-
ties is

hi(t |z) =
k−1∑

j=1

pij (t ; z)
k−1∑

v=1

piv(t ; z)

λjk(z),

which represents a weighted mean of the transition
rates from the transient states to the absorbing state k.

The median lifetime from the transient state i to
the absorbing state k is defined as the value of t =
ξi that satisfies pik(ξi ; z) = 0.5. The mean lifetime,
Ei = E{T |X(0) = i}, is also a parameter of interest.
Again, in terms of the transition probabilities, the
mean lifetime is

Ei (z) =
∫ ∞

0
Si(t |z) dt

=
k−1∑

j=1

k−1∑

v=1

aiv(z)
( −1

ρv(z)

)
avj (z),

provided ρv(z) < 0, for every state v < k. Finally, the
residual mean lifetime, mi(t) = E{T − t |X(0) = i},
can be expressed in terms of the Markov model as

mi(t |z)

=

∫ ∞

t

Si(u|z) du

Si(t |z)

=

k−1∑

j=1

k−1∑

v=1

[ −1

ρv(z)

]
aiv(z) exp[ρv(z)t]avj (z)

1 − pik(t ; z)
.

The Data

The type of data collected will be different in each
application and is directly dependent on the nature of
the process. When the exact transition times of the
process τ1, . . . , τm′ are available (see Figure 5), the
statistical methods for estimating the parameters of
the multistate model are straightforward.

Closed-form solutions for the maximum likeli-
hood estimates can be derived for the basic model,

4

3

2

1

t

t0 t0

t1 t2

t1

t3

t4 t 2 t5

t 3

t6

t7 t 4
X(t)

States

Figure 5 An example of a process with four states. The τi

are the actual transition times and the ti are the observation
times of the process
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Table 1

Patient Data

1 (0,2) (41,2) (78,1) (95,3) (104,4)
2 (0,1) (17,1) (52,4)
3 (0,3) (23,2) (58,3) (72,2)

and an approach similar to fitting exponential regres-
sion models can be used for the model with covari-
ables.

In clinical studies in which each realization of the
process is a different patient, it is very unusual to
observe the exact transition times. Data are typically
only available at the times of visits to the clinic,
t0, t1, . . . , tm+1, as shown also in Figure 5. We assume
that the data obtained on each subject are unequally
spaced in time, and that the exact transition times are
not available. For a model of k = 4 states, the data
shown in Table 1 correspond to weeks from the date
of diagnosis and the state of the disease of the patient
at that specific date [16]. At the date of diagnosis,
patient 2 was in state 1, and 17 weeks later patient
2 was in state 1. This patient could have remained
in state 1 for the whole 17 weeks, or could have
transferred out of state 1 and back in again. Thirty-
five weeks later, at week 52, the patient died. Survival
times for these patients are 104 weeks for patient 1,
52 weeks for patient 2 and more than 72 weeks for
patient 3. The data of patient 3 represent a censored
observation.

The Likelihood Function

Suppose that the observation times for a subject
are t0 < t1 < · · · < tm < tm+1, and that x(t0) =
i0, x(t1) = i1, . . . , x(tm+1) = im+1 represent the ob-
served states of the process at these times. Then
the joint distribution of X(t1), X(t2), . . . , X(tm+1)

given X(t0) and the vector of covariables z can
be represented, using the Markov property (1) and
conditional probabilities, as

m+1∏

j=1

pij−1,ij (�tj ; z), (9)

where �tj = tj − tj−1.
The above expression represents the contribution

to the likelihood function for this subject if the arrival
time in the absorbing state is interval-censored, i.e.

if the time of transition to the absorbing state is
unknown. In survival studies, tm+1 may represent the
exact arrival time in the absorbing state k, which is
the lifetime, or it may represent the end of the study
for this subject, which is the censoring time.

Let T = τ be the exact arrival time in state k,
and c be the censoring time for this subject. Then
tm+1 = min(τ, c) and

δ =
{

1, if τ ≤ c,

0, if τ > c.

If δ = 1, then the contribution of this last transition
to the likelihood is

fim(�tm+1|z) =
k−1∑

j=1

pim,j (�tm+1; z)λjk(z),

and if δ = 0 the contribution is Sim(�tm+1|z) = 1 −
pim,k(�tm+1; z). The above expression for δ = 1 is a
continuous-time version of Kay’s likelihood contri-
bution [16].

The likelihood function for this subject can then
be written as

Lh(θ) =
m∏

j=1

pij−1,ij (�tj ; z){fim(�tm+1|z)}δ

× {Sim(�tm+1|z)1−δ}. (10)

The full likelihood can be obtained from the product
of the individual contributions. The subject subscript
h has been omitted for m, ij , tj , z, and δ in (10) and
in the rest of this article, for simplicity.

With the expression of the first factor in (10),
this likelihood function is equal to the likelihood
for parametric models in survival analysis with
censored observations. For a model with two states
(k = 2), and with constant transition intensities, this
Markov model reduces to a survival model using the
exponential distribution. In particular, p11(t |z) =
exp{−λ12(z)t} and p12(t |z) = 1 − exp{−λ12(z)t},
and the contribution of this observation to the
likelihood is {f (tm+1|z)}δ{S(tm+1|z)}1−δ .

The likelihood function (10) can be extended
to the case of time-dependent covariates z(t) by
replacing z by zj−1, where the covariates are assumed
to be constant between two observations z(t) = zj−1,
for tj−1 ≤ t < tj .
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Parameter Estimation

Let θij = (log λij , βij1, . . . , βijp) be the parameters
associated with the transition between states i and j ,
and θ be a vector made up of the θij vectors. A log
transformation is used to prevent the baseline tran-
sition intensities from taking negative values during
the iterative process of estimation. Let

ηij = log λij + βij1z1 + · · · + βijpzp

be the log transition intensity for a subject with
covariables z. Maximum likelihood estimates of θ can
be found by maximizing the log-likelihood function
l(θ) = ∑

lh(θ) where

lh(θ) =
m∑

j=1

log{pij−1,ij (�tj ; z)}

+ δ log{fim(�tm+1|z)}
+ (1 − δ) log{Sim(�tm+1|z)}.

The first derivative of the log likelihood function with
respect to θuvl is

∂lh(θ)

∂θuvl

=





m∑

j=1

1

pij−1,ij (�tj ; θ)

∂pij−1,ij (�tj ; θ)

∂ηuv

+ δ

fim(�tm+1|θ)

∂fim(�tm+1; θ)

∂ηuv

+ 1 − δ

Sim(�tm+1|θ)

∂Sim(�tm+1; θ)

∂ηuv

}
∂ηuv

∂θuvl

,

where the derivative of fi(t |z) with respect to ηuv is

∂fi(t |z)
∂ηuv

=
k−1∑

j=1

{
∂pij (t ; z)

∂ηuv

eηjk + pij (t ; z)
∂eηjk

∂ηuv

}

and where

∂Si(t |z)
∂ηuv

= −∂pik(t ; z)
∂ηuv

.

The derivative ∂pij (t ; z)/∂ηuv in the three expres-
sions above is

∂pij (t ; z)
∂ηuv

=
k∑

r=1

k∑

s=1

air (z)wuv
rs (t ; z)asj (z), (11)

where

wuv
rs (t ; z)

=




guv

rs (z)
{exp[ρr(z)t] − exp[ρs(z)t]}

(ρr(z) − ρs(z))
, if r �= s,

guv
rr (z)t exp[ρr(z)t], if r = s,

and guv
rs (z) is the (r, s)th entry in

Guv(z) = A(z)−1 ∂�(z)
∂ηuv

A(z).

The derivative of ηuv respect to θuvl is

∂ηuv

∂θuvl

=
{

1, for l = 1,

zl−1, for l = 2, . . . , p + 1.

The subscripts u and v refer to the transition between
states u to v.

Quasi-Newton algorithms can be used to mini-
mize −2l(θ) using only the likelihood function and
finite differences to obtain numerical approximations
of the derivatives, or the likelihood can be maximized
using explicit expressions for the derivatives. A dis-
cussion of these two approaches can be found in
Dennis & Schnabel [10] as well as a modular sys-
tem of algorithms for unconstrained minimization.
Dennis & Schnabel [10] also provide algorithms for
computing numerical approximations to the second
derivatives of the log likelihood using finite differ-
ences of the original function or the gradients if they
are available.

Once we have the maximum likelihood estimates
of the parameters of the transition intensity matrix
�(z), we also have estimates of the transition proba-
bility matrix P(t : z : θ). In particular, an estimate of
pij (t ; z; θ) can be obtained as pij (t ; z; θ̂ ).

An estimate of the asymptotic covariance matrix
of θ̂ is obtained from the negative inverse of the
empirical information matrix,

V̂(θ̂) = −
{

∂2L(θ)

∂θ∂θ ′

}−1

θ=θ̂

.

The estimate of the asymptotic variance of
pij (t ; z; θ̂ ) can be found using the delta method as

V̂{pij (t ; z; θ̂ )} =
{

∂pij (t ; z; θ)

∂θ

}′

θ=θ̂

V̂(θ̂)

×
{

∂pij (t ; z; θ)

∂θ

}

θ=θ̂

,
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where ∂pij (t ; z; θ)/∂θ can be evaluated using (11).
An estimate of the survival function can be obtained
directly from the estimate of the transition probability
matrix as Ŝi (t |z) = 1 − pik(t ; z; θ̂ ). An approximate
variance for Ŝi (t |z) is obtained as

V̂{Ŝi (t |z)} = V̂{pik(t ; z; θ̂ )}.

The Natural Course of Diabetic
Retinopathy (Continued)

Diabetic retinopathy currently is the leading cause of
new cases of blindness in people aged 20–74 years in
the US, and is considered in most cases a progressive
disease among people with insulin-dependent (type I)
diabetes mellitus (IDDM).

Improvement of early stages of retinopathy as part
of its natural history has been poorly understood.
In the past, physicians believed diabetic retinopathy
was a strictly progressive disease. Using a multistate
Markov model, Garg, Marshall and colleagues [12,
20] have shown that the natural course of early
diabetic retinopathy involves both progression and
regression.

The course of early diabetic retinopathy in young
subjects with type I diabetes was evaluated during
882 patient visits for 277 subjects over a mean of
2.7 years. All 277 subjects (138 males and 139
females) had direct ophthalmoscopy (with pupils
dilated) by at least two examiners (one ophthal-
mologic and one pediatric), followed by color reti-
nal photography, intravenous fluorescein angiogra-
phy and slit-lamp examinations. The retinal spe-
cialist graded retinal findings as follows: a grade
of I indicated no retinopathy; grades II–III microa-
neurysms or microaneurysms and one other finding;
grades IV–V advanced background changes with
intraretinal microvascular abnormalities; and grade
VI proliferative retinopathy. The category assigned
was that of the more severely involved eye.

Based on a modified Airlie House classifica-
tion [11] of diabetic retinopathy, a four-state Markov
model was used considering grades I, II–III and
IV–V as transient states and grade VI as an absorb-
ing state, as shown in Figure 3. In this case the exact
arrival times at the absorbing state were interval-
censored and the likelihood function (9) was used
to estimate the parameters.

The influence of duration of diabetes, age, mean
HbA1c, diastolic and systolic blood pressure, HbA1c

at the visit, sex, smoking, cholesterol, and family
history of hypertension on the transition intensities
between various stages of diabetic retinopathy was
evaluated. A model was fit for each of these factors
for all transitions, as shown in Figure 3. All but
gender, smoking and family history of hypertension
are time-dependent covariates.

HbA1c values were measured at each visit and
blood pressure was measured at each visit after
the patients rested in a sitting position for 5 min-
utes. Serum cholesterol levels were measured yearly.
Cigarette smoking is a dichotomous indicator of ever
having smoked. Family history of hypertension was
considered positive if any first-degree relative had
received medication for the treatment of hypertension
before 50 years of age.

A single-covariate Markov model was used to
assess the individual effects of factors associated with
diabetic retinopathy using a custom-designed com-
puter program [21]. The full model (6) with five
regression coefficients, the PR model (7) with two
regression coefficients, and the PMR model (8) with
only one regression coefficient were fitted to each
factor (Table 2). For each covariate, the most par-
simonious model among these three was identified
using the likelihood ratio test. If a given factor was
found to be significantly associated with the disease
process in the best model, the parsimonious repre-
sentation of this factor was used later for multiple
regression analysis.

Table 2 Likelihood ratio test of single-covariable Markov
models for various factors associated with diabetic retinopa-
thy using the full model (6), the PR model (7), and the PMR
model (8). All tests are compared to a basic model without
covariates

Full PR PMR
model model model

Factor χ2(5) χ2(2) χ2(1)

Duration of diabetes 58.2 54.7a 47.5
Age 33.5a 26.3 20.2
Mean HbA1c 27.2 22.2 22.2a

Diastolic blood pressure 12.0 10.9 10.5a

HbA1c at the visit 10.7 9.0 8.9a

Gender 9.8a 3.6 1.6
Smoking 9.4 4.1 3.6a

Systolic blood pressure 6.7 6.4 6.1a

Cholesterol 5.0 4.5 4.4a

Family history of
hypertension 4.5 4.3a 0.9

aBest model based on LR test.
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The duration of diabetes, the age of the subject and
the mean HbA1c levels (mean of all assessments at
or before visit time) were the factors most associated
with transitions of diabetic retinopathy. Diastolic and
systolic blood pressure and values of HbA1c at visit
times were also associated with the disease process.
All other factors, including gender, mean cholesterol
level (mean of all assessments at or before visit time),
family history of hypertension, systolic blood pres-
sure and a history of smoking, were not significantly
associated with changes in diabetic retinopathy. The
significance of the association between these factors
and transition times was tested using the likelihood
ratio test (Table 2). The only three factors in this
study that are time-independent covariates are gen-
der, family history of hypertension and a history of
smoking.

Duration of diabetes shows similar effects in
all progressive transitions and similar effects in all
regressive transitions. Model (7) is chosen as the best
representation for the association of this factor and
diabetic retinopathy. The regression coefficient esti-
mates for this model were β̂ ′ = (0.0528, −0.2223),
showing a significant departure from the assumption
of model (8). Based on the standard errors of the
estimates, (0.02774, 0.0456), and their correlation
coefficient, r = 0.5295, we can construct a Wald test
(see Likelihood) for the hypothesis, H0 : βp = −βr

associated with model (8). By using, L′ = (1, 1), the
Wald statistic is

W = (L′β̂)′(L′V̂β̂L)−1(L′β̂) = 6.80,

for which p < 0.01 based on the chi-square dis-
tribution with one degree of freedom. The equiv-
alent likelihood ratio test for this hypothesis is
χ2

(2) − χ2
(1) = 54.7 − 47.5 = 7.2 (Table 2). These two

results confirm that the PMR model does not hold for
duration of diabetes. Confidence intervals for the
parameters in the model can be obtained by using a
Wald-type test based on normal approximation.

Table 3 gives the estimates and the standard
errors of the estimates for the parameters of the
final multiple regression model. Duration of diabetes
remained the most important factor for explaining
changes in diabetic retinopathy. As expected, cumu-
lative HbA1c was the second most important clinical
variable associated with transitions in retinopathy.
The additional contribution of this factor in terms of
the likelihood ratio chi-square test is slightly greater

Table 3 Parameter estimates and standard errors for the
final multiple regression model

Standard
Factor Parameter Estimate error

Baseline λ12 0.0566 0.0075
Baseline λ21 0.0121 0.0024
Baseline λ23 0.0163 0.0035
Baseline λ32 0.0746 0.0243
Baseline λ34 0.0024 0.0011
Duration of diabetes βp1 0.0729 0.0283
Duration of diabetes βr1 −0.2084 0.0461
Mean HbA1c βp2 = −βr2 0.2128 0.0386
Diastolic blood

pressure βp3 = −βr3 0.0178 0.0056

than the contribution without controlling for duration
of diabetes. Diastolic blood pressure also remained in
the model, showing that it is an independent factor
associated with diabetic retinopathy.

The three covariates in the final model were cen-
tered in the mean values (in our study these are:
10.7 years of duration of diabetes, an HbA1c value
of 11.8 and a diastolic blood pressure of 70), there-
fore the baseline parameters represent the transition
rates from one stage to another for a subject with
average values for the risk factors for a given period
of time, in this case 1 month. By multiplying the
baseline transition estimate from state 3 to state 4
by 12 months and 100 subjects, we conclude that
an average of 2.88(= 0.0024 × 12 × 100) transitions
will occur from stage 3 to stage 4 in a period of 1 year
in a group of 100 subjects with average risk factors.
Similar conclusions can be made from the remaining
baseline transition estimates. The parameters associ-
ated with the covariates can be interpreted similarly
to the regression coefficients in the Cox regression
model. An increment of 1 year of duration of diabetes
will increase the risk of progression of the disease
process by 7.5% [exp(0.0729) = 1.075] and reduce
the chances of regression in the disease process by
19% [exp(−0.2084) = 0.81].

Figure 6 shows estimated survival curves of the
probability of remaining free of state 4 (grade VI)
retinopathy for a subject with 8 years since onset of
diabetes, 12% of HbA1c, and a diastolic blood pres-
sure of 70. The three curves represent the survival
curves for starting in one of the three transient stages.
Figure 6 shows that the probabilities of remaining
free of state 4 (grade VI) retinopathy during a period
of 5 years are 96%, 94%, and 86% starting from
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Figure 6 Survival curves for the probability of staying
free of grade VI retinopathy

stages 1,2 and 3 at time 0, respectively. These
probabilities dramatically decrease during a period of
10 years to 77%, 75%, and 65%, respectively.

These probabilities and Figure 6 also show that
staying in stage 2 does not significantly increase the
risk of progressing to diabetic retinopathy. However,
stage 3 shows a significant reduction during the first 5
years of the probability of staying free of retinopathy
and has similar reduction in the second 5-year period
when compared to the probabilities of stages 1 and 2.
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[13] Grüger, J., Kay, R. & Schumacher, M. (1991). The
validity of inferences based on incomplete observations
in disease state models, Biometrics 47, 595–605.

[14] Kalbfleisch, J.D. & Lawless, J.F. (1985). The analysis of
panel data under a Markov assumption, Journal of the
American Statistical Association 80, 832–871.

[15] Kalbfleisch, J.D., Lawless, J.F. & Vollmer, W.M. (1983).
Estimation in Markov models from aggregate data,
Biometrics 39, 907–919.

[16] Kay, R. (1986). A Markov model for analyzing cancer
markers and disease states in survival studies, Biometrics
42, 855–865.

[17] Klein, J.P., Klotz, J.H. & Grever, M.R. (1984). A bio-
logical marker model for predicting disease transitions,
Biometrics 40, 927–936.

[18] Longini, I.M. Jr., Clark, W.S., Byers, R.H., Ward, J.W.,
Darrow, W.W., Lemp, G.F. & Hethcote, H.W. (1989).
Statistical analysis of the stages of HIV infection using
a Markov model, Statistics in Medicine 8, 831–843.

[19] Marshall, G. & Jones, R.H. (1995). Multi-state Markov
models and diabetic retinopathy, Statistics in Medicine
14, 1975–1983.

[20] Marshall, G., Garg, S.K., Jackson, W.E., Holmes, D.L.
& Chase, H.P. (1993). Factors influencing the onset
and progression of diabetic retinopathy in subjects with
insulin-dependent diabetes mellitus, Ophthalmology 100,
1133–1139.

[21] Marshall, G., Guo, W. & Jones, R.H. (1995). Markov:
a computer program for multi-state Markov models
with covariables, Computers, Methods and Programs in
Biomedicine 47, 147–156.

(See also Time-varying Treatment Effect)

G. MARSHALL



Predictive Values

The positive predictive value of a diagnostic or
screening test refers to the proportion of individu-
als with positive test results who actually have the
target disease or disorder, i.e. Pr(disease|positive test
result). In the diagram in the article on Sensitivity,
the positive predictive value is a/(a + b). A synonym
is the post-test or posterior probability of disease,
given a positive test result.

Correspondingly, the negative predictive value is
the proportion of individuals with negative test results
who do not actually have the disease or disorder in
question. This is Pr(no disease|negative test result),
or d/(c + d) in the diagram. A synonym is the post-
test or posterior probability of no disease, given a
negative test result. There is also some interest in the
complement of this quantity, c/(c + d), which is the
post-test probability of disease, given a negative test
result.

The predictive values are useful clinically, and
may influence therapeutic decisions. An individual
with a positive result from a test with high positive

predictive value is a relatively good candidate for
therapeutic intervention. Conversely, there is rela-
tively little justification for intervention for an indi-
vidual with a negative result from a test that has high
negative predictive value for no disease.

Predictive values are functions both of the test
characteristics, in particular sensitivity and specifi-
city, and of the prevalence of disease in the popula-
tion. For instance, if the testing is done in a high-risk
population, where the prevalence (or, equivalently,
the pretest probability of disease) is high, then one
would expect the predictive values of disease to be
relatively high. Conversely, if the disease is rare, then
the predictive values for disease are relatively low; in
an extreme case, even the positive predictive value
may be sufficiently small that therapy cannot be jus-
tified on the basis of the test alone, particularly if the
therapy is expensive or hazardous.

(See also Clinical Epidemiology; Diagnostic Tests,
Evaluation of)

STEPHEN D. WALTER



Prevalence of Disease,
Estimation from
Screening Data

Consider a large sample survey in which the investi-
gators have used a simple, cheap but fallible indicator
of morbidity in order to assess the prevalence of one
or more illnesses. If morbidity is estimated solely on
the basis of this fallible information, then there is a
possibility that the results will be biased. A com-
mon refinement of this sample design (particularly in
psychiatric epidemiology) is to use the fallible infor-
mation as a screen to stratify the original sample into
two or more groups (usually referred to as screen
positives and screen negatives), and then to subsam-
ple from these strata for a more thorough diagnostic
investigation that is assumed to reveal the correct sta-
tus of the subject (the gold standard). The results
of this second phase of investigation are then used
to calibrate the fallible screening instrument and to
develop an unbiased estimator of prevalence from
the whole sample. This design is an example of
two-phase sampling (see Multistage Sampling). An
alternative, related design involves supplementing the
large screened sample by a completely independent
calibration or validation sample of comparable sub-
jects who are assessed using both the screen and the
gold standard (see Screening Benefit, Evaluation of;
Screening, Overview; Screening, Models of).

Two-phase or multiphase sampling is also often
referred to as double sampling by survey statisticians
and it is extensively used in industry as one design
for lot quality assurance sampling (LQAS). In the
health field it is also commonly but less satisfactorily
referred to as two-stage or multistage sampling. The
latter terminology is more properly and more usu-
ally applied to circumstances in which the sampling
units at each stage are different (i.e. nested sampling
designs). For example, one might take a random sam-
ple of clinics or health regions in the first stage of
the survey and then randomly sample patients from
within each of the selected clinics or regions. In two-
phase sampling the sampling units remain the same
at both phases of the survey.

The use of a randomization procedure while “in
the field” to determine second-phase sample member-
ship offers the possibility of concatenating initial and

later phases of data collection into a single assess-
ment of each subject. However, it is more common
for first and later phases of data collection to involve
both different measurement techniques and different
research staff, and to take place on different occasions
and in different locations. Of increasing interest is
the use of registry (see Disease Registers) or other
bureaucratic information systems (see Administra-
tive Databases), such as hospital birth records, as
the source of first-phase “screening” data.

The terminology of first-phase “screening” implies
the purposeful application of a screening test: a cheap,
robust and often noninvasive test that is, however,
recognized as being fallible or less accurate than the
gold standard. This is how the idea of screening was
introduced in the first paragraph of the present article.
From a statistical perspective, however, this is a need-
less limitation to this sampling design. The statistical
problem remains essentially the same whether a true
screening test is used to assess morbidity, or whether
the screen in fact attempts to measure risk factors
rather than ill health, or whether the strata in the two-
phase design arise “naturalistically”, say, through the
operation of a patient referral process. An example of
the latter would be an epidemiological study of chil-
dren sampled from all hospital birth records but strat-
ified by hospital. The critical element of the design is
not the use of a screening test, but the stratification
of the sampling design on a variable or variables for
which inference about the outcome variable should be
made marginal to the strata rather than conditional on
them (see Stratified Sampling). Simple prevalence
estimation, being marginal to all other variables, is
the obvious example, but the point also applies to
more general analyses. To the extent that second-
phase sampling results in data missing by design, the
methods to be discussed also relate to methods for
data missing at random [19] (see Missing Data) and
to the use of surrogate or auxiliary measures [22].

One final note on terminology: here we use the
term “screening” to indicate the provision of a simple
fallible indicator of the subjects’ state in order to
stratify the first-phase sample prior to subsampling
and further investigation. The term “screening” is
also commonly used to describe the first phase of
the process of case detection. Suspected cases, who
have been identified by the screening procedure, are
then further investigated with a view to treatment (in
a clinical setting) or entry into a research study, a
clinical trial for example. In this situation interest
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in the screen negatives is more limited, typically
to concerns relating to false negative patients who
ought to be receiving treatment or other forms of help,
and to the costs and possible risks associated with the
screening process itself. Screening for caseness is not
the subject of this article, but is discussed elsewhere
(see Screening, Overview).

The Analysis of Two-phase (“Screened”)
Samples

Prevalence Estimation Using Simple Conditional
Probabilities

Figure 1 illustrates the sample selection process.
From a first-phase sample of size N , N(s+) are
screen positive and N(s−) are screen negative (where
N(s−) = N − N(s+)). Of those subjects who are
screen positive, a subsample of size Nv+(s+) are
selected at random for a full diagnostic assessment
(validation). These subjects will have complete data
on all variables. Of these, Nv+(s+, d+) are found
to have a positive diagnosis and Nv+(s+, d−) to
have a negative diagnosis. Similarly, among the
N(s−) screen negatives a random sample of size
Nv+(s−) is also selected for validation. Of these
second-phase subjects, Nv+(s−, d+) are found to
have a positive diagnosis (despite the screening
information) and Nv+(s−, d−) are negative. Note
that the Nv+(s+, d−) subjects are false positives
(with respect to the screening information) and the
Nv+(s−, d+) are false negatives. Finally there are
Nv−(s+) and Nv−(s−) subjects for which there are
missing second-phase diagnostic data.

The proportion of cases in the screen-positive
and screen-negative strata are denoted by π(s+)

N

N (s+)

N (s−)

Nv+(s+)

Nv−(s+)

Nv+(s−)

Nv−(s−)

Nv+ (s+, d+)

Nv+ (s+, d−)

Nv+ (s−, d+)

Nv+ (s−, d−)

w

1 − w

π(s+)

 1 − π(s+)

 π(s−)

 1 − π(s−)

Phase 1
Sampling

Screen Phase 2
Sampling

Diagnosis

Figure 1 Two-phase data collection

and π(s−), respectively. The proportion of screen
positives in the first phase is ω and the proportion
of screen negatives is therefore 1 − ω. Using simple
conditional probabilities, the overall prevalence, π ,
is given by

π = ωπ(s+) + [1 − ω]π(s−) (1)

and can be estimated by inserting sample estimates
of each of the components on the right-hand side
of the expression. That is, ω, π(s+) and π(s−) are
estimated by n(s+)/n, nv+(s+, d+)/nv+(s+) and
nv+(s−, d+)/nv+(s−), respectively.

Using the well-known delta method, the variance
of π is given by

var(π) = ω2π(s+)[1 − π(s+)]

Nv+(s+)

+ (1 − ω2)π(s−)[1 − π(s−)]

Nv+(s−)

+ [π(s+) − π(s−)]2ω(1 − ω)

N
. (2)

This variance is estimated by insertion of the sample
estimates of ω, π(s+) and π(s−), as before.

This simple approach [6] is very straightforward
and that most commonly used in two-phase preva-
lence estimation studies. If, however, the investigator
wishes to consider multiple subpopulations and/or
investigate the effects of risk exposures on the preva-
lence of disease, then there are less cumbersome
methods.

Prevalence Estimation Using Inverse Probability
(Expansion) Weights

For the ith subject with complete data a probabil-
ity weight or expansion weight, wi , can be defined
as the reciprocal of the sampling fraction (proba-
bility of selection) for the second-phase sample. In
the simplest design the weight takes on just two
distinct values, one for the screen-positive subjects
and another for the screen negatives. The estimates
of the sampling fractions are nv+(s+)/n(s+) and
nv+(s−)/n(s−), yielding inverse probability weights
of n(s+)/nv+(s+) and n(s−)/nv+(s−), respectively.
The sum of the weights over the subjects in the
second-phase sample will be the first-phase sample
size. The sum of the products, wiYi , where Yi = 1
for validated cases and Yi = 0 for the nonvalidated
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cases, again over the subjects of the second phase,
provides an estimate of the number of cases in the
first-phase sample. An estimate of the prevalence of
disorder is therefore provided by the ratio

π =
∑

wiYi

∑
wi

. (3)

This estimator is the Horvitz–Thompson estimator
familiar to survey methodologists (see, for exam-
ple, [18]). As in the use of conditional probabilities, it
is straightforward to use a Taylor series linearization
method (the delta method) to estimate the variance
of this ratio. Other methods of variance estimation,
including the jackknife or bootstrap sampling, can
also be used in the case of either of the prevalence
estimation methods [18, Chapter 5].

Note that, although conditional probabilities and
inverse probability weighting look superficially very
different – the weighting method seeming to esti-
mate directly the marginal model of interest while the
conditional probability approach derives the marginal
rate from the “uninteresting” conditional model for
disease given the screen score – in this simple case
the two methods of prevalence estimation are alge-
braically equivalent. The variance estimates, how-
ever, being based on different Taylor expansions, may
differ slightly, but this is of no practical significance
in large samples.

A More General Framework

Let X denote risk exposures assessed at phase 1, Z

the screen score and Y the measure of true case
status. If complete information were available on
all subjects, the maximum likelihood estimator of
β, the vector of coefficients for the effects of risk
exposures, would be found by maximizing the log-
likelihood

∑
i log Prβ(Yi |Xi). In the context of two-

phase sampling, and letting i index subjects with
complete data and j index subjects not selected for
the second phase, then the EM algorithm for finding
the maximum likelihood estimator would involve the
iterative solution of

l(β) =
∑

i∈V +
log Pr

β
(Yi |Xi)

+
∑

j∈V −
E[log Pr

β
(Y |Xj )}|βc, Xj , Zj ], (4)

where βc is the current estimate. Various authors have
discussed the solution of such equations, primarily
for categorical risk factors [4, 5, 10, 35]. Eq. (4)
suggests a number of alternative estimators based on
different approximations or sample-based estimates
of the expectation term, including various forms
of imputation (see Multiple Imputation Methods).
In the mean score method of Pepe and others [22,
23, 26], the expectation is estimated by the sample
average. This is equivalent to solving score equations
of the form
∑

i∈V +
Sβ(Yi |Xi) +

∑

j∈V −

×






∑

i∈
{

Xi = Xj

Zi = Zj

Sβ(Yi |Xj)

NV +(Xi = Xj , Zi = Zj )






= 0,

(5)

which may be rewritten as

∑

i∈V +

[
1 + NV −(Xi, Zi)

NV +(Xi, Zi)

]
Sβ(Yi |Xi)

=
∑

i∈V +
wiSβ(Yi |Xi) = 0. (6)

The wi here correspond to the expansion weight of
the previous section. Hence, the estimating equations
can be easily solved by means of weighted regres-
sion, with weighted logistic regression being the
common choice.

Weighted regression estimators similar to (6) have
been derived within the survey research field [2, 3].
Flanders & Greenland [11] derive the same esti-
mator using pseudo-likelihood arguments, propos-
ing the use of the variously termed “empirical”,
“robust”, “information sandwich,” “heteroscedastic
consistent,” and “Huberized” parameter covariance
matrix [14]. In this case the parameter covariance
matrix obtained assumes the weights Wi to be known.
In practice, the weights are usually estimated and
often adjusted using a variety of methods quite
separate from the analysis for prevalence estima-
tion. The weights can be “poststratified” [16] to
conform to known population rates, or “raked” [9]
to conform to some known margins, or they may
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be smoothed using parametric or nonparametric
regression methods [17], or even trimmed [25] or
shrunken (see Shrinkage) [7]. Whatever the weights
chosen, the subsequent analysis of the prevalence data
can include any risk exposure measures, continuous
or discrete, from either phase.

Perhaps contrary to intuition, Pepe et al. [23] illus-
trate how if weights are estimated by simple sample
cell frequencies, then subjects in the nonvalidation set
contribute information through the variation in these
random weights, and worthwhile efficiency gains can
be made by fully exploiting this variation rather than
assuming the weights to be known. However, where
some cells are empty or where one or more risk expo-
sures or surrogate measures are continuous, the mean
score method cannot be applied directly. Although
under such circumstances some estimator based on
smoothing might be attempted, a series of papers by
Robins and others [27–29] argue that such estima-
tors may not approach their asymptotic distribution
in the moderate samples of typical studies. Instead
they draw on the ideas of semi-parametric regres-
sion estimators to propose a modified score function
of the form

∑

i∈V +
[wih(Xi)εi(β) + (1 − wi)φ(Wi)]

+
∑

j∈V −
φ(Wj ) = 0, (7)

where wi is the usual expansion weight, εi(β) is the
simple observed minus model expected residual, and
h(X) and φ(W) are functions of the data and param-
eters that can be chosen to achieve optimal efficiency.
Though of considerable interest, there is currently lit-
tle practical experience with such estimators.

Bayesian Approaches

Many of the issues already discussed have paral-
lels in Bayesian methods for multiphase sampling,
including the choice as to the direction in which to
model the graph [24]. Estimation is typically carried
out using Markov chain Monte Carlo methods and
Gibbs sampling in particular (see, for example, [12]).
Although the ability to incorporate prior informa-
tion may be of particular value where some screen
strata may not have been subsampled, a particular
focus of Bayesian work in this area has been in

model choice and model averaging [36]. This typ-
ically arises where the data from the two phases
are linked by happenstance rather than by formal
design, for example as occurs in the overlapping
samples obtained from bureaucratic systems and cap-
ture–recapture sampling methods, and thus where
there are a number of plausible probability models
that could describe the dependencies within the data.
Recently, Robins & Ritov [27] have criticized the use
of independent prior distributions for the parame-
ters of the screen and of the diagnostic measure that
have typically been used.

Comparisons of Methods

The Bayesian, conditional probability, weighting, and
EM methods for a simple prevalence study are com-
pared in Pickles et al. [24]. Schill & Drescher [30]
present some comparisons for the related design
where the screen is for risk exposure.

Statistical Software

In general, users of commercial statistical packages
should take great care in the use of any weighting
procedures provided. The use of weights within most
packages (such as SPSS [20]; see Software, Biosta-
tistical) will give the correct estimates of prevalence
and odds ratios, but unfortunately, for the most
part, will not use the appropriate variance estima-
tor. Estimates for confidence intervals, for example,
and associated significance tests will be invalid. This
arises from the fact that the weights are typically
interpreted as frequency weights (an indicator of the
number of observations with identical data to that
provided in a given record). The package accord-
ingly treats the ith subject in the second-phase sample
as if it had actually been recorded wi times. The
appropriate use of a probability weight, however, rec-
ognizes that the observation has only occurred once,
but that the observed second-phase subject is repre-
sentative of wi first-phase subjects, all but one of
which have not provided second-phase data. Pro-
grams such as SUDAAN [31] and STATA [34] will
deal satisfactorily with weights assumed known. In
general, though with substantial variation in ease of
use, almost any statistical program can be persuaded
to draw appropriate samples for bootstrap estimation
of the variance of weighted estimates. Software for
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mean score and semi-parametric regression methods
is not widely available, although implementation is
claimed to be straightforward. Bayesian models can
now be easily fitted using Gibbs sampling programs
such as BUGS [33].

Design Considerations

The relative advantages and disadvantages of screen-
ing in a two-phase survey, and also considerations of
optimal designs, have been discussed by, among oth-
ers, Deming [8] and Shrout & Newman [32]. Clearly
the use of a preliminary screening instrument has
potential advantages when it is both expensive, time-
consuming and difficult to carry out an accurate diag-
nostic assessment. It is intuitively appealing (particu-
larly for clinically trained researchers contemplating
a series of long and detailed psychiatric interviews,
for example) to consider some way of excluding
the majority of subjects who do not have a prob-
lem in order that valuable diagnostic resources can
be expended on those that do. The rarer the illness,
the more appealing this idea becomes. The approach
is only practically viable, however, if the potential
screening procedures are cheap (relative to the full
diagnostic assessment), accurate, easily administered,
and accepted by the survey participants. Here accu-
racy implies both a high sensitivity and a high speci-
ficity, with high sensitivity being the more important
of the two screening test characteristics. Clearly, we
do not want a screening test which misses a rela-
tively high proportion of our rare cases of illness.
Hand [13] discusses the determination of the cut-off
for a screening questionnaire that gives optimal sensi-
tivity and specificity, and how different cut-offs may
be appropriate for either prevalence estimation or
case detection. Begg & Greenes [1] discuss the esti-
mation of screen error rates from two-phase studies.

The costs involved in collecting survey data using
a two-phase design come from three areas of activity:
recruitment, screening, and diagnostic assessment. If
it is difficult and/or expensive to recruit subjects,
then the two-phase design becomes less attractive,
and a better strategy might be to lower the cost of
diagnostic assessment procedures. An example of the
latter would be the development of fully structured
interviews for use by lay interviewers. In many situ-
ations the relative gains in efficiency from two-phase
sampling seem to be rather slight. In summary, in

relation to single-phase designs, two-phase designs
will be more efficient when the prevalence is low,
and are likely to be less efficient if the screen costs
more than half of the cost of the diagnostic assess-
ment [32]. Deming [8] has argued that unless there
are clear gains in terms of relative efficiency, many
of the disadvantages of the design would lead us to
decide not to adopt it in survey work. These include
the extra administrative problems related to conduct-
ing a survey in two phases, the logistical problems
in recontacting respondents selected for the second
phase, scheduling their second-phase assessment and
minimizing nonresponse and noncompliance. There
are also the problems for the management of the more
complex databases and the increased complexity in
the analysis of the results. Despite all of these prob-
lems, the design seems to be growing in popularity.
One suspects that investigators pay too little attention
to them at the design stage of a study or, if they do,
give them less weight than the obvious attractions
of the design. Clinicians (and others) clearly con-
sider that it is a waste of valuable resources to spend
time assessing people without problems. The idea of
only assessing a very small proportion of those likely
to be well is possibly the strongest motivation for
a two-phase study. Even if we accept this view we
should be very wary of assessing too small a propor-
tion of screen negatives and should definitely resist
the temptation to assess none of them!

Little work has been done on the design of two-
phase studies for estimating the effects of risk expo-
sure. Design possibilities include stratification by
potential risk factors. Palmgren [21] considers opti-
mal design for estimating an odds ratio for com-
paring two prevalences. Reilly [26] also considers
optimal two-phase designs.

Other Areas of Application

Although the purpose of this article is to discuss
screening procedures for prevalence estimation, it
is also useful to consider other areas of applica-
tion in which either screening or two-phase sampling
might be of potential value. The first is in studies
specifically designed to evaluate the performance of
new screening instruments or diagnostic tests [1].
In a prospective design all the first-phase subjects
are assessed using the screen and then selected sub-
samples are evaluated using the gold standard. In a
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retrospective study all of the first-phase subjects
are given (or already have) a definitive diagnosis
and in this design the selected subsamples are the
ones who then get an assessment using the new
test or screening procedure. Note that it is partic-
ularly important that the assessments made within
the two phases (irrespective of whether the study
is prospective or retrospective) are made indepen-
dently, i.e. the assessors are blind to previous results
(see Blinding or Masking). The value of maintain-
ing blindness is another reason why both first-phase
strata should be subsampled in a simple two-phase
prevalence study (assuming, as should be the case,
that first-phase results are not made available to
the second-phase assessor). Similar designs might
also be used in studies of diagnostic agreement:
a trainee clinician or research student, for exam-
ple, diagnosing all available patients and then their
supervisor validating the diagnoses by independent
assessment of subsamples of the first-phase diagnos-
tic groups [15]. The final area of application to be
mentioned here is in the use of surrogate endpoint
measures (i.e. screens) in lengthy follow-up studies
and, in particular, randomized controlled trials (see
Clinical Trials, Overview). This is an area of appli-
cation that is in infancy but has been discussed in
the context of mean score [23] and regression meth-
ods [28].
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Prevalence Rate or Ratio

The prevalence rate or ratio refers to the number of
people who have a disease or condition at a given
point in time in a given population divided by the

number of people in that population. This quantity is
also known as the prevalence proportion.

(See also Prevalence)

MITCHELL H. GAIL



Prevalence

Prevalence is the number of persons who have a dis-
ease or condition at a given point in time in a defined
population. Sometimes prevalence refers to persons
who either have currently or have previously had a

disease, e.g. the prevalence of persons with a can-
cer diagnosis at any time up to the present. The term
prevalence is used also to refer to the proportion of
individuals with disease in the population, namely the
prevalence rate or ratio.
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Prevalence–Incidence Bias

Bias in epidemiologic studies is a form of “sys-
tematic error in the design, conduct, or analysis of
a study that results in a mistaken estimate of an
exposure’s effect on the risk of disease” [5]. While
biases have been categorized in many ways, Rothman
describes three general types: selection bias, informa-
tion bias, and confounding [3]. Selection bias results
from improper specification or selection of the study
sample and leads to a distortion of the effect mea-
sured [3, 4].

Jerzy Neyman identified a form of bias in analytic
epidemiologic studies which is in essence the result
of the use of prevalent rather than incident cases of
disease to assess etiologic relationships [2] (see Cau-
sation). Prevalence–incidence bias is a form of selec-
tion or sampling bias that results in part from eval-
uating the exposure–disease association well after
the exposure first occurs. During that time interval,
cases of short duration, due to death or short course
of illness, cases mild in severity or asymptomatic,
and cases in which the presence of disease alters or
entirely removes the exposure, are missed [4].

Neyman developed a fictitious example that asses-
sed the impact of differential survival on an etiologic
association [2]. This example, which assessed the
relationship between cigarette smoking and lung can-
cer, is shown in Table 1.

In this example, a comparison of the develop-
ment of lung cancer between time 0 and time T

in smokers and nonsmokers indicates a reduced risk
among smokers (relative odds ratio = 0.44). If one
assumes, however, that 95% of the lung cancer cases
in nonsmokers died before time T , as opposed to
only 10% of the lung cancer cases in smokers, and
that lung cancer was the only source of mortality in
this population, then a case–control study applied to

those alive at time T would produce a large putative
effect for smoking (relative odds = 8.0).

While clearly fictitious in terms of the known risk
of smoking on lung cancer, this example serves to
demonstrate the effect of using prevalent cases, at
time T , to describe the risk of disease development.
If an exposure, as in this example, results in selec-
tive survival and prevalent cases are used, then the
estimate of the risk of disease is an overestimate. If
an exposure results in selective mortality, then the
estimate of the risk of disease associated with that
exposure is an underestimate.

Prevalence–incidence bias is a particular problem
in evaluating associations between selected risk fac-
tors and coronary heart disease [1, 4]. Many cases
of coronary heart disease are rapidly fatal and some
are clinically mild or asymptomatic. Each of these
situations can lead a study of prevalent cases to a
faulty conclusion due to an under-representation of
cases. In addition, in coronary heart disease, and in
perhaps other diseases, it is possible that the pres-
ence of the disease will result in a modification of the
exposure being evaluated. This could make the asso-
ciation between an exposure and disease appear either
larger or smaller than it really is. Such an example is
shown in Table 2.

Here, the true risk of the development of coronary
heart disease associated with high serum cholesterol,
evident in the prospective study (relative odds =
2.40), is not seen in a case–control study using preva-
lent cases of coronary heart disease and assessment of
serum cholesterol at the same time (relative odds =
1.16) [1, 4]. It is likely that persons with diagnosed
coronary heart disease have altered their dietary pat-
terns and reduced both their intake of foods high
in cholesterol and their weight. It should be noted
that this same change in relative odds was evident
when analyses by Friedman et al. of the prospective
component were restricted to persons who survived

Table 1 An example of prevalence–incidence bias using fictitious data on smoking and lung cancer [2]

Lung
Case–control study at time T

Number at cancer by
time 0 time T Number Lung cancer cases

Smokers 10 000 1000a 9900 900
Nonsmokers 10 000 2000b 8100 100
Relative odds ratios 0.44 8.00

aIncludes 100 deaths from lung cancer.
bIncludes 1900 deaths from lung cancer.
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Table 2 Prospective versus retrospective study estimates
of the relative odds of coronary heart disease among Fram-
ingham men with and without high cholesterol [1, 4]

Prospective Retrospective
studya studyb

Cholesterol CHD NoCHD CHD NoCHD

Highc 85 462 38 34
Low 116 1511 113 117

Relative odds
ratio 2.40 1.16

aDeveloped CHD by time T .
bCHD present at time T .
cCholesterol measured at exam. 1 in prospective study and at
exam. 6 in retrospective study.

the full time period, lending further credence to the
possibility that prevalent cases of coronary heart dis-
ease may have altered their lifestyles, which resulted
in lower serum cholesterol [1, 4].

In summary, prevalence–incidence bias is likely
to exert its effect when a considerable amount of
time elapses between exposure and selection of sub-
jects for a study [4]. It is a bias that can result
in either an overestimate or underestimate of the
true risk of disease associated with a particular fac-
tor and is evident in case–control studies where

prevalent, rather than incident, cases are selected as
subjects.

The ability to correct, or even measure, the spuri-
ous effect caused by this bias is limited at best [4].
Avoidance of this form of bias is not simply achieved
through the use of incident rather than prevalent
cases in a case–control study. Ascertaining the true
association between the exposure and the disease can
only be achieved through the use of a prospective
study of incident disease (see Cohort Study).
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Prevalent Case

A prevalent case is a subject with a given disease
or condition who is alive in a defined population at
a given time. Sometimes the condition may refer to
the previous occurrence of an illness, as for persons
who now have or who previously have had cancer.
Thus, prevalent cases include subjects who developed

disease previously as well as incident cases who just
developed disease.

(See also Biased Sampling of Cohorts;
Case–Control Study, Prevalent; Cross-sectional
Study)

MITCHELL H. GAIL



Preventable Fraction

When considering a protective exposure or inter-
vention, an intuitively appealing alternative to
attributable risk (AR) is the preventable fraction
(PF ). The preventable or prevented fraction mea-
sures the impact of an association between a protec-
tive exposure and a disease at the population level. It
is defined as the proportion of disease cases averted
by a protective exposure or intervention (5). It can be
formally written as:

PF = Pr(D|E) − Pr(D)

Pr(D|E)
, (1)

where Pr(D) is the probability of disease in the
population, which may have some exposed (E) and
some unexposed (E) individuals, and Pr(D|E) is the
hypothetical probability of disease in the same pop-
ulation but with all (protective) exposure eliminated.
Another formulation of PF is the proportion of cases
prevented by the (protective) factor or intervention
among the totality of cases that would have devel-
oped in the absence of the factor or intervention [5],
which is why the denominator in (1) is the hypothet-
ical probability of disease in the population in the
absence of the protective factor.

PF can be rewritten as:

PF = Pr(E)(1 − RR), (2)

where Pr(E) denotes the prevalence of the protective
exposure in the population and RR the relative risk.
As is apparent from (2), PF depends both on the
prevalence of the protective exposure and the strength
of the association between the protective exposure
and disease, in a similar fashion as for AR. A strong
association between exposure and disease (marked by
a low RR) may therefore correspond to a high or low
value of PF , depending on the prevalence of expo-
sure, and portability from population to population is
not a common property of PF .

For a protective factor (RR < 1), PF lies between
0 and 1 and is usually expressed as a percentage.
PF increases with the prevalence of exposure and
the strength of the association between exposure and
disease. PF is null in the absence of association
between exposure and disease (RR = 1) and negative
when the exposure factor is a risk factor (RR > 1),

in which case there is no rationale for using PF as
a measure of impact.

Counter to what intuition might suggest, PF is not
a mere negative AR; that is, PF does not equal −AR

(unless RR = 1). The relationship between AR and
PF was worked out by Walter [6] and is given by

1 − PF = 1

1 − AR
. (3)

For a protective factor, AR is negative but can be
made positive by reversing the coding of exposure.
Under reverse coding, the exposed (protective) level
is relabeled as the reference level and the unexposed
level as the “exposed”, which leads to a positive value
of AR. This value is interpreted as the proportion of
cases attributable to lack of exposure to the protec-
tive factor and which could therefore potentially be
prevented by generalizing exposure in the population.
This valid interpretation of AR under reverse coding
has been used in the literature. For example, a posi-
tive AR for protective dietary factors was estimated
in a case–control study of gastric cancer [3]. AR

under this interpretation is sometimes called the pre-
ventable fraction [2, 4], which may introduce some
confusion.

It is important to note that the value of AR under
reverse coding differs from the value of PF . For
instance, if RR and Pr(E) are both equal to 0.5,
then PF is equal to 0.25 (or 25%), and the value
of AR obtained by reversing the coding is 0.33 (or
33%). This difference is not surprising in view of
the differing definitions of AR and PF . AR, with
reverse coding, measures the potential reduction in
disease cases if all subjects in the current popula-
tion became exposed (if the absence of exposure
were eliminated from the population), while PF

measures the reduction in disease cases obtained by
moving from a totally unexposed population to the
current population with exposure prevalence given
by Pr(E).

Given their close relationship, AR and PF share
the same properties. Regarding the interpretation of
PF , the above definition implies that PF measures
the actual reduction in disease load due to expo-
sure. This interpretation is fully warranted only under
the same conditions that ensure the validity of the
interpretation of AR as the actual reduction of dis-
ease corresponding to the elimination of exposure.
These conditions are unbiased estimation of PF , a
causal role for the exposure (see Causation), and



2 Preventable Fraction

invariance (see Sufficient Statistic) of the distribu-
tion of the other factors influencing disease occur-
rence under a change in the exposure distribution.
It might therefore be wiser to define PF as the
potential reduction in disease load associated with
exposure.

PF can not only be defined with regard to a
protective exposure factor, but also to the de novo
introduction of a prevention program in the target
population (e.g. an intervention designed to reduce
smoking). In such a case, since the prevalence of
the program is equal to zero before its implemen-
tation, one can assess the impact of its introduction
through the estimation of PF . Clearly, the impact
depends both on the effectiveness of the program and
its diffusion in the population (i.e. the prevalence of
“exposure” to the program), which is reflected in the
estimate of PF . This has been suggested as an ana-
lytic tool for assessing the effects of interventions [1].

It follows from (3) that estimability and estima-
tion issues are similar for AR and PF . Adjusted PF

estimates based on the Mantel–Haenszel approach
have been derived for cohort, case–control and
cross-sectional studies [2]. Unadjusted estimates and
adjusted estimates based on the weighted-sum app-
roach have been derived for cross-sectional studies,

and corresponding sample size calculations are avail-
able for using a test that PF equals 0 to assess
interventions [1].
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Prevention Trials

There is a considerable history of the use of ran-
domized clinical trials to assess strategies for the
primary prevention of disease. For example, in the
US, major coronary heart disease prevention trials
date from the 1960s [7, 9, 10] to the present, while
a number of trials have been initiated over the past
one to two decades that focus on the prevention
of major cancers and other important diseases. Pri-
mary prevention trials generally focus on reducing the
occurrence rate of one or more diseases, in contrast
to screening trials, which aim to reduce mortality
rates through early detection and effective treatment
of disease.

However, the history of primary prevention tri-
als is quite modest compared with that of therapeutic
trials that assess strategies for the treatment of estab-
lished disease. In fact, the role and place of primary
prevention trials in relation to other research strate-
gies remains controversial, and is an important topic
for further methodologic research. It is useful to
review some basic features of prevention trials to
explain the reasons for controversy, and to highlight
research needs.

First, consider the nature of the interventions or
the treatments to be assessed or compared. In thera-
peutic research, these arise typically from basic bio-
logical research in conjunction with drug screening
studies. While such sources may also generate pri-
mary disease prevention hypotheses, particularly for
chemoprevention trials, observational epidemiologic
sources (see Observational Study) also provide a
common and important source of prevention trial
hypotheses. For example, preventive interventions
may involve such “lifestyle” maneuvers as physi-
cal activity increases, nutrient consumption reduc-
tions or supplementation, or modifications of sexual
behavior.

A therapeutic trial among patients diagnosed with
a serious disease will aim typically to identify effec-
tive treatments for the reduction of a frequent out-
come, such as disease recurrence or death, and may
need to be of only one or two years’ duration. In
contrast, a primary prevention trial of a common vas-
cular disease or cancer will typically focus on the
reduction of incidence of a disease typically occur-
ring at a rate of 1% per year or less, and will
assess interventions that may require several years

to realize the most important of their hypothesized
effects. Hence, therapeutic trials may require rela-
tively small numbers of patients (see Sample Size
Determination for Clinical Trials), perhaps only a
few hundred, while primary prevention trials may
require tens of thousands of subjects, with resulting
logistical challenges and substantial costs. To cite a
particular example, the Multiple Risk Factor Interven-
tion Trial (MRFIT) [10] of combined hypertension
treatment, blood cholesterol lowering and smoking
cessation vs. control for the prevention of coronary
heart disease, involved the randomization of over
12 000 middle-aged and older men thought to be at
high risk of coronary heart disease, with an aver-
age follow-up duration of over seven years. Only
about 2% of MRFIT men experienced the desig-
nated primary outcome (see Outcome Measures in
Clinical Trials), coronary heart disease mortality,
by the planned date of study completion. The cost
of the trial was reported to be in the vicinity of
US$100 million.

The size and cost of prevention trials may be
increased further by the need to be conservative in
establishing intervention goals to ensure the safety
of ostensibly healthy study subjects for whom the
ability to monitor adverse events carefully may be
somewhat limited. In contrast, a therapeutic trial of
frequently monitored patients may be able to risk
toxicity to achieve efficacy. Furthermore, the long
duration of prevention trial follow-up may imply a
noteworthy reduction in adherence to intervention
goals over time, resulting in important increases in
the necessary sample size.

The interventions studied in a prevention trial,
like the treatments assessed in a therapeutic trial,
may have the potential to affect various disease
processes, beneficially or adversely, in addition to
those specifically targeted for reduction. In view
of the typical dominance of the patient’s disease,
these other effects are often relatively unimportant
in a therapeutic trial. In a prevention trial, how-
ever, overall benefit vs. risk assessments (see Health
Economics) can be quite different from the assess-
ment for the designated primary outcome alone. Even
a fairly rare adverse effect can eliminate the pub-
lic health utility of a preventive maneuver. The
need to assess the interventions in terms of suit-
able measures of benefit vs. risk has implications for
trial design and particularly for trial monitoring and
reporting.
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Role Among Possible Research Strategies

In view of the above litany of obstacles and chal-
lenges, it seems logical to take the viewpoint that a
full-scale disease prevention trial is justified only if
the interventions to be assessed have sufficient public
health potential, and if alternate less costly research
strategies appear unable to yield a sufficiently reliable
assessment of intervention effects. If the intervention
of interest falls outside the range of common human
experience, as is often the case with chemopreventive
interventions, there is little debate that randomized
controlled trials constitute the research strategy of
choice, and the discussion can focus on public health
potential and research costs. However, if the interven-
tion is already practiced in varying degrees by large
numbers of persons, purely observational approaches
may sometimes provide reliable disease prevention
information at lesser cost, and perhaps in a shorter
time, than can a randomized, controlled intervention
trial. In fact, a single observational study; for exam-
ple, a cohort study, may be able to assess a broader
range of interventions than is practical to include in
the design of a randomized prevention trial.

However, key determinants of observational study
reliability include the ability to control confound-
ing and the ability to measure accurately the level
of intervention adopted. Measurement error in the
“exposure” histories of interest, or in confounding
factors histories, can invalidate observational study
hypothesis tests and estimates of intervention effects.
Furthermore, randomized trials have the major advan-
tages that the randomized treatment assignment
(i.e. intervention vs. control) is statistically indepen-
dent of all prerandomization risk factors, whether
or not these are even recognized, and that outcome
comparisons among randomization groups (i.e. inten-
tion to treat analysis) typically will provide valid
hypothesis tests, even if adherence to intervention
varies among study subjects and is poorly measured
(see Compliance Assessment in Clinical Trials).

Consider the specific context of the Women’s
Health Initiative (WHI) clinical trial [17, 21], which
is enrolled 68 132 postmenopausal American women
in the age range 50–79. This trial is designed to
allow randomized controlled evaluation of three dis-
tinct interventions: a low-fat eating pattern, hypothe-
sized to prevent breast cancer and colorectal cancer,
and, secondarily, coronary heart disease; hormone
replacement therapy, hypothesized to reduce the risk

of coronary heart disease and other cardiovascu-
lar diseases, and, secondarily, to reduce the risk of
hip and other fractures; and calcium and vitamin D
supplementation, hypothesized to prevent hip frac-
tures and, secondarily, other fractures and colorectal
cancer. Each of these three interventions is already
being practiced in some fashion by large numbers of
postmenopausal American women. Important disease
reductions can be hypothesized for each intervention,
based on substantial observational studies, animal
experiments (see Preclinical Treatment Evaluation)
and randomized trials with intermediate outcomes
(e.g. the Postmenopausal Estrogen/Progestin Inter-
vention (PEPI) Trial [11]). In the case of hormone
replacement therapy, a randomized trial is motivated
by potential confounding in cohort and case–control
studies as hormone users tend to be of higher socioe-
conomic status with fewer vascular disease risk fac-
tors, by the magnitude of the hypothesized benefits,
and, importantly, by the need for reliable summary
data on benefits vs. risks (see Data Monitoring
Committees), particularly since breast cancer risk
may be adversely affected by hormone replacement
therapy. The dietary modification trial component is
motivated by associations between international can-
cer incidence rates and per capita fat consumptions
(see Ecologic Study), by migrant study data, and
by rodent feeding experiments. A large number of
case–control and cohort studies of dietary fat and
various cancers have yielded mixed results. These
latter studies rely exclusively on dietary self-reports,
which are known from repeatability studies to involve
substantial measurement error, though the absence
of a gold-standard dietary measurement procedure
precludes an assessment of measurement error char-
acteristics as a function of actual dietary habits and of
study subject characteristics, such as body mass. For
example, Prentice [15] describes a plausible measure-
ment model for dietary fat intake under which even
the strong associations suggested by international dis-
ease rate comparisons would be essentially eliminated
by random and systematic aspects of dietary assess-
ment measurement error. Hence, the current obser-
vational studies of dietary fat in relation to cancer
or other diseases may be uninterpretable, motivat-
ing the need for a randomized intervention trial to
assess whether a change to a low-fat eating pat-
tern during the middle decades of life can reduce
the risk of selected cancers and cardiovascular dis-
eases. This controversy over the interpretation of the
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observational data on dietary fat points to the press-
ing need for objective measures of fat consumptions
(i.e. biomarker measures) and for the development
of flexible measurement models to allow self-report
and objective exposure data to be combined in expo-
sure–disease rate analyses. The issues of exposure
measurement error, along with limited exposure vari-
ation within populations, and highly correlated expo-
sure variables, also point to a possible greater role for
aggregate (ecologic) study designs (e.g. [16]) among
observational research strategies. The calcium and
vitamin D component of the WHI is viewed as a com-
paratively inexpensive addition to the clinical trial.
It is motivated by the public health potential of the
intervention, as well as by observational data, and
data from smaller clinical trials.

Prevention Trial Planning and Design

Suppose that an intervention having potential to pre-
vent one or more diseases is to be subjected to a
randomized controlled trial. The trial design should
be responsive to the target population to which the
intervention, if effective, might be applied. For exam-
ple, the three interventions to be studied in the trial
component of the WHI are all potentially applicable
to the general population of postmenopausal women,
and the trial will be open to women who are not
otherwise practicing the interventions to any note-
worthy degree. After identifying the potential target
population for the intervention, there may still be rea-
son to focus the trial on a subset of this population.
There may be an identifiable subset at elevated risk
for the primary outcome that could be chosen for
trial participation, in order to reduce trial sample size.
For example, it may be proposed that a colon cancer
prevention strategy be assessed in subjects known to
have had colonic polyps, or a breast cancer prevention
strategy among women with a history of breast cancer
among one or more first-degree relatives, even though
it is hoped that the results will be applicable to a
broader target population. There are several aspects to
deciding on such an approach. First, although sample
size may be reduced, trial logistics may be compli-
cated and trial costs increased. For example, the costs
of screening to identify eligible subjects will increase
typically, and a larger number of participating clinical
centers may be required. Depending on the interven-
tion mechanism, high-risk study subjects may benefit

less, by virtue of their stage in the targeted disease
process, compared with other potential study subjects.
Also, a focus on high-risk subjects may lead to a dis-
torted view of the overall risks and benefits relative
to the entire targeted population.

Within the target population, criteria may be
needed to exclude study subjects with medical con-
traindications to either intervention or control regi-
mens, study subjects who are already practicing the
intervention to an unacceptable degree, or who may
not adhere to intervention group requirements or
to other protocol requirements (see Eligibility and
Exclusion Criteria).

Even if study subjects are selected on the basis
of elevated risk for the diseases that are targeted for
prevention, primary outcome events may constitute
a small minority of the disease events experienced
by study subjects during the course of the trial,
and perhaps even a small minority of disease events
that may in some way be affected by intervention
activities. Hence, there is an obligation to define sets
of outcomes, to be carefully ascertained, including
those that may plausibly be affected by intervention
activities, in order to provide an opportunity to assess
the overall risks and benefits in the target population.

The cost and logistics of a full-scale disease pre-
vention trial may motivate a trial with some interme-
diate outcomes in place of the disease to be prevented.
For example, a major trial was conducted in the US to
prevent colonic polyps, rather than colon cancer, by
means of a low-fat, high-fiber dietary pattern. This
study makes the assumption that the formation of
polyps is on the pathway between dietary habits and
colon cancer occurrence, and that reduction in polyps
occurrence will convey a corresponding reduction
in colon cancer incidence. While the conditions for
an intermediate outcome of this type to serve as a
“surrogate” for the disease of interest are rather strict
(see [4] and [13]), the benefits in terms of trial sam-
ple size, cost and duration may sometimes justify an
intermediate outcome trial. In other circumstances, a
trial with one or more intermediate outcomes may
be conducted first to inform the decision concern-
ing a trial with “harder” outcomes (see Surrogate
Endpoints).

In some circumstances, the relationship between
an intervention or behavior and a reduction in disease
will be regarded as sufficiently well established that
the research effort can shift logically to strategies
to encourage the desired behavior change. Cigarette
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smoking cessation or prevention in relation to lung
cancer and heart disease, or breast screening by
means of mammography and other techniques pro-
vide important examples. Randomized trials with
such behaviors as outcomes can be classified as dis-
ease control research, rather than primary prevention
research. In such studies, the intervention may some-
times be able to be delivered with particular economy
to persons in natural groups, such as social groups,
schools, or communities. In fact, the use of commu-
nity organizations and media may even define the
intervention strategy, as in the Community Interven-
tion Trial for Smoking Cessation, which took place
in 11 pairs of matched cities in the US. Such studies
naturally involve group randomization and there is a
range of interesting design and analysis issues [5, 6].

Returning to individually randomized prevention
trials with disease outcomes, other design choices
include the possible use of factorial designs, and
intervention and control randomization fractions. Fac-
torial designs have an obvious appeal in that they
provide the potential to make two or more inter-
vention comparisons in the same study population
at a cost that will typically be considerably less
than that for separate studies. For example, in the
WHI trial, study subjects must be eligible and will-
ing to participate in one or more of the hormone
replacement or dietary intervention components, and,
subsequently, are offered the opportunity to partic-
ipate in the calcium and vitamin D component – a
so-called partial factorial design. There is only a mod-
est overlap between the hormone replacement and
dietary intervention components due to component-
specific exclusionary criteria, but a large overlap of
either of these with the calcium and vitamin D com-
ponent. As a result, the projected trial sample size is
68 132 rather than the 120 000 or more that would be
required to assess the three interventions separately.
The potential disadvantages to a factorial design are
the possibility that the benefit associated with an
intervention may be reduced by the presence of one
or more other interventions, and the possibility that
adherence to a given intervention may be reduced by
the study demands or adverse effects that may arise
from participation in the other interventions (see Fac-
torial Designs in Clinical Trials).

The necessary sample size of a two-arm trial is
approximately proportional to [γ (1 − γ )]−1, where
γ is the fraction of the trial cohort assigned to the
intervention group. Hence, if the average study costs

associated with an intervention group subject are C

times that for the corresponding control group, sub-
ject trial costs will be approximately proportional
to [Cγ (1 − γ )][γ (1 − γ )]−1, which is minimized by
setting γ = (1 + C1/2)−1. For example, if study costs
per intervention group subject are 2.25 times that per
control group subject, then γ = 0.4, a randomization
fraction that is used for the dietary intervention com-
ponent of the WHI.

Upon selecting the interventions to be evalu-
ated, the target population, and major trial outcomes,
one needs to make a series of design assumptions
that will determine the size of the trial cohort.
Perhaps the most fundamental assumption concerns
the anticipated primary endpoint intervention bene-
fit, often expressed as a relative risk (hazard ratio)
for fully adherent intervention vs. fully adherent
control subjects as a function of time from ran-
domization. Assumptions concerning primary end-
point disease rates in the absence of intervention,
on intervention and control group adherence rates
and accrual patterns, trial duration and competing
risks can then be combined with the basic rela-
tive risk assumption to produce the sample size that
will yield a significant result (e.g. at the 0.05 sig-
nificance level) under design assumptions, with a
specified probability or power (e.g. power of 90%).
Various authors, including Self & Mauritsen [18],
provide flexible sample size and power procedures
that allow one to incorporate assumptions of this type.
The WHI Study Group [21] details such assumptions
for the WHI clinical trial. Corresponding primary
endpoint power calculations played a major role in
the specification of sample sizes of 48 000, 27 500,
and 45 000 for the dietary modification, hormone
replacement therapy, and calcium and vitamin D trial
components, respectively.

Pilot and feasibility studies play a critical role in
prevention trial planning. Such studies provide the
opportunity to assess study subject recruitment rates,
to evaluate the potential of a run-in period to identify
and exclude study subjects who may not comply with
study requirements, to observe biomarker changes
that may help to establish the basic relative risk
assumption, and to assess costs associated with all
aspects of at least the early phases of trial operation.
Information on these topics can be critically impor-
tant to the development of an efficient trial design.
See Urban et al. [19] for an example of the use of cost
projections to inform the design choices for a low-fat
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diet intervention trial, including eligibility criteria,
average follow-up duration, randomization fraction
and number of clinical centers. Careful consideration
of subsampling rates for the collection and process-
ing of baseline and follow-up data and specimens can
also play an important role in controlling trial costs.

Conduct, Monitoring, and Analysis

A disease prevention trial requires a clear, con-
cise protocol that describes trial objectives, design
choices, performance goals and monitoring and anal-
ysis procedures. A detailed manual of procedures that
describes how the goals will be achieved is necessary
to ensure that the protocol is applied in a standardized
fashion (see Clinical Trials Protocols). Carefully
developed data collection and management tools and
procedures, with as much automation as practical, can
also enhance trial quality. Centralized training of key
personnel may be required to ensure that the protocol
is understood, and to enhance study subject recruit-
ment, intervention adherence, and comparability of
outcome ascertainment, possibly through blinding of
the randomization assignment between intervention
and control groups (see Multicenter Trials). A com-
mittee knowledgeable in the various aspects of the
trial, and often external to the investigative group,
typically will be required for the timely review of
safety and clinical outcome data (see Data Monitor-
ing Committees).

As mentioned previously, prevention trial monitor-
ing for early stoppage (see Data and Safety Moni-
toring) will usually not only involve the designated
primary outcome(s), but also some suitable measure
of overall benefit vs. risks, as well as of impor-
tant adverse effects. Some aspects of the proposed
monitoring of the WHI clinical trial are described
in Freedman et al. [3]. For example, early stoppage
for benefit may be merited if the primary outcome
incidence reduction is significant at customary levels
(p < 0.05) and the summary benefit vs. risk mea-
sure is supportive (e.g. p < 0.20) without important
adverse effects. Early stoppage based on harm may be
indicated if an important adverse event is significant
(p < 0.05) without suggestive evidence (p > 0.20)
of benefit vs. risk. More sophisticated stopping crite-
ria could also be considered and critical values that
acknowledge the multiplicity of outcomes and of test-
ing times need to be constructed (see Multiplicity in

Clinical Trials). See Cook [1] for an example of such
a construction for a bivariate response.

The basic test statistic to compare two randomiza-
tion groups with respect to a failure time (disease)
endpoint might often reasonably be defined to be of
weighted logrank form:

n∑

i=1

δig(ti )[zi − n1(ti)n(ti )
−1],

where n is the total number of intervention and con-
trol study subjects, n1(ti ) and n(ti) are, respectively,
the number of intervention subjects and total sub-
jects at risk for failure at the failure time (δi = 1) or
censoring time (δi = 0) for the ith subject, while zi

indicates whether the ith subject is assigned to inter-
vention (zi = 1) or control (zi = 0). The test will
have high efficiency if the “weight” g(t) at time
t from randomization is chosen to approximate the
logarithm of the anticipated intervention vs. control
group hazard ratio for the endpoint under test, taking
account of anticipated adherence rates. For example,
if this hazard ratio is expected to be approximately
constant, then one might set g(t) ≡ 1, in which case
one has the classical logrank test, while if the hazard
ratio is expected to decline approximately exponen-
tially over the follow-up period, then one might set
g(t) = t . Adaptive versions in which the form of g(t)

is responsive to the evolving trial data may also be
considered.

The above test can be generated as a partial
likelihood [2] score test for β = 0 under a hazard
ratio model exp[x(t)/β], where x(t) = zg(t). This
modeled regression vector can be extended to include
other variables that may be intermediate between
intervention activities and outcome events, in an
attempt to explain intervention effects on disease out-
comes. The trial monitoring process will have some
effect on these tests and estimators, with typically
larger effects if early stoppage occurs. The estima-
tion of intervention effects may be biased (e.g. [20])
even for outcomes that do not contribute to early
stoppage decisions. Analyses that attempt to explain
intervention effects in terms of intermediate measures
can often be based efficiently on case–control [8]
or case–cohort [12] subsampling procedures, and
should acknowledge measurement error in the inter-
mediate variable assessment. See [22], which pro-
vides basic results from the WHI Clinical Trial
component on combined hormones, following early
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stoppage based on risks & feeding benefits as and
example of important and unexpected trial results,
and of the complexity of prevention trial reporting.
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Preventive Medicine

Statistics plays a central role in epidemiology and
preventive medicine, particularly in interpretation of
behavior, physiology, and pathology in groups of
people. Preventive medicine follows in a political
setting from findings of epidemiology and clinical
trials, and modes of disease causation and trans-
mission (see Communicable Diseases). Emphasized
are the classical strategies of hygiene and avoidance
of contact with infectious agents, as well as more
recently discovered community and personal actions
which can reduce the burden of chronic diseases;
for example, heart disease, stroke, cancer, AIDS and
HIV, injury, and violence.

History and Context

Excellent reviews of the history of epidemiology
are available [7, 16, 21], and of statistics in epi-
demiology [8]. In 1662, a life table approach used
London birth and death records to study seasonal
variations in infant mortality, and excess male mor-
tality compared with females [9]. A rudimentary clin-
ical trial in 1747 [16, 17] addressed epidemic scurvy
on long ocean voyages. Lind allocated 12 sailors to
six dietary treatments for six days, and observed a
near cure in the two who ate citrus fruit each day,
with no improvement in the other 10 men. Follow-
ing this finding, Captain James Cook lost no one to
scurvy in his voyages of 1769–1778 [10]. Despite
these dramatic findings, for political reasons it was
1795 before the British Navy (the “limeys”) routinely
added limes to its diet. Ignaz Semmelweis, in 1840,
introduced hand-washing in a Vienna hospital, and
observed a reduced rate of puerperal fever in mater-
nity wards [7]. In the 1849 London cholera epidemic,
John Snow counted cases according to residence. The
epidemic was restricted to a geographic area served
by two water companies which used sewage-polluted
water from the Thames River; access to this water
was blocked as a preventive action [20].

However, the population approach was virtually
derailed by a medical advance; namely, the
Henle–Koch postulates of the late 1800s, that
diseases are caused by specific living organisms [7,
21]. These postulates led epidemiologists to focus on
laboratory-based methodology for studying infectious

diseases [21]. It was not until the mid-1900s
that population approaches again emerged, led by
suspicions that an environmental factor, smoking,
caused lung cancer (see Smoking and Health), [21],
by the study of risk factors for cardiovascular disease
in the Framingham study [4], and by reduction of
dental decay by use of fluoridated water in one of
two New York communities [1, 16]. Currently, the
population approach is flourishing, and should be
of substantial value should the threat of antibiotic-
resistant infections materialize, due to evolution
of micro-organisms. The study of populations has
extended into such fields as establishment of
population norms, control of fertility, and population
genetics [21]. The mapping of the human genome
will allow an epidemiologic approach to defining the
gene–environment interaction in human disease.

Modern epidemiologic design was not described
in a textbook until 1960 [18, 21]. Design considera-
tions and basic statistical methods relied heavily on
the work of R.A. Fisher [5, 6]. The seminal paper
alerting epidemiologists to multivariate analysis was
published by Jerome Cornfield in 1962, using Fram-
ingham data [3]. The importance of the community
itself was illustrated in Ancel Keys’ cross-cultural
studies of coronary heart disease, beginning in the
1950s [14].

The use of statistics in epidemiology is
strongly influenced by need for causal inference
(see Causation). If epidemiologic associations are
not causal, then the corresponding preventive
strategy – for example, using safer sexual practices
to avoid AIDS – will not reduce disease risk.
Fundamental principles to be considered when
judging causality of an association were published
by A. Bradford Hill [11, 12], including strength
of association, consistency with other related
observations, temporality (presumed cause precedes
presumed effect) biological gradient, biological
plausibility, and coherence with other relevant
knowledge (see Hill’s Criteria for Causality).
Experimental design and statistical methods used
in epidemiology are often geared toward answering
questions about causality.

Specific Uses of Statistics in Epidemiology

Many texts describe epidemiologic methods [15] and
related statistical methods [13]. Computer software
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has made statistics accessible to nonstatisticians.
Central to all statistical methods used in epidemiol-
ogy is counting cases, most simply in the two-by-two
table, from which may be computed the disease
rates or risk in exposed (rE) and in unexposed (rU)
persons. The term “rate” pertains to prevalent dis-
ease (existent at the time of study) while the term
“risk” refers to incident disease (develops during
the period of study). Large relative risk (rE/rU) is
seen for exposures which are etiologically related
to the disease in question, while large risk differ-
ences (rE − rU) in highly prevalent diseases suggest
a large population burden of disease due to expo-
sure.

The sampling method influences the estimation
of absolute risk and differential risk. In the longi-
tudinal cohort study, exposed and unexposed per-
sons may be sampled at different sampling fractions.
Because incident disease develops within exposure
categories, diseased and nondiseased people have the
same sampling fraction. The clinical trial is simi-
lar, but exposure status is (randomly) allocated by
the investigator (see Randomization), participant
inclusion characteristics are typically much narrower
than in the general longitudinal study (see Eligibil-
ity and Exclusion Criteria), and explicit participant
informed consent for randomization is required. In
these longitudinal designs, rE is estimated as the num-
ber diseased divided by the number exposed, and
analogously for rU. In cross-sectional studies, where
exposure and disease status are determined at the
same time, the analogous estimator is of a rate rather
than a risk.

A different estimator is used in the case–control
study [2, 19], which is useful in limiting the num-
bers of nondiseased subjects needed to study rare
diseases. Diseased persons are sampled at one sam-
pling fraction and nondiseased at another (typically
much smaller) sampling fraction. Within disease cat-
egories, exposed and unexposed people are sam-
pled at the same rate. In this case rE and rU are
biased, but rE/rU is well approximated for rare
diseases by the odds ratio (the odds of expo-
sure to nonexposure in diseased divided by the
odds of exposure to nonexposure in nondiseased).
Case–control studies may be biased by changes in
exposure made after disease onset. Attempts to cor-
rect this problem include retrospective recall of pre-
disease exposure, and nesting cases and controls in

previously collected data (see Case–Control Study,
Nested).

The generalization of these designs to several
categories or to continuous exposure is mathemati-
cally straightforward, the former being analyzed with
a series of risk estimates, and the latter with a linear
or other continuous regression model of risk change
per unit change in exposure; life table versions of
regression account for length of exposure. “Disease”
variables may also be continuous.

Problems encountered throughout epidemiologic
statistics include within-person variation and con-
founding. Because population studies of humans do
not perfectly control the measurement condition, it is
rare that a measure represents the participant exactly.
The resulting within-person variation tends to bias
differential risk estimates falsely toward zero (see
Bias Toward the Null). Confounding, on the other
hand, occurs when variables are correlated for reasons
unrelated to the causality of the association in ques-
tion. Proper inference demands that “like be com-
pared with like” [8], whether through deconfounding
or randomization. In deconfounding for drinking, dif-
ferential risk of lung cancer, for example, is estimated
for smokers vs. nonsmokers, first within drinkers
and secondly within nondrinkers. The adjusted esti-
mate is pooled across drinkers and nondrinkers, using
standard weights for the drinking strata. Regression
methods for deconfounding extend this process to
multiple continuous variables; in most such meth-
ods the stratified analysis is implicit (see Stratifi-
cation).

Much effort is expended in epidemiologic
statistics on the P value, the chance that a given
observation would have arisen if risk did not
vary across exposure categories. This method is
fraught with interpretive difficulties, because P

values depend on valid model specification, on the
number of comparisons made, and on the context of
the interpreter. An emerging methodology is meta-
analysis, in which replications of a particular study
are formally examined for consistency. Drawbacks
are that meta-analysis loosens definitions of what
is being studied, and is subject to bias because
studies with null findings may be less available than
studies with provocative findings. Strengths are that
it tends to reduce dependence on P values because
of larger sample sizes in the combined studies than in
individual studies; it increases inferential dependence
on consistency across studies.
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Primary Factors

One of the aims of factor analysis is to display the
configuration of variables in as simple a manner as
possible. The eigenvalue technique was used to find
a set of axes to which variables could be referred.
However, the eigenanalysis leads to a solution such
that the variance of the variables is distributed across
all factors. Thus, the factors do not separate out inde-
pendent clusters of variables (see Cluster Analysis,
Variables). Rotation of axes is an attempt to place
the factors so that each contains only a few highly
loaded variables. Primary axes are the factor axes
that are rotated to a good fit to the configurations
of the variables involved [2]. They are unit vectors
that lie in the intersection of the primary factors.
In the two-factor case, primary axes coincide with
the primary factors. The primary factors represent
the “ideal” variables, each of which measures one
and only one common factor, with no unique fac-
tors. They provide the effective boundaries for the
variables involved. Reference vectors are defined as
the axes that are perpendicular to each of the primary
factors. With the oblique rotation, the reference vec-
tors are so located as to maximize the number of
near-zero loadings on each of the reference-vector
factors, with at least as many near-zero loadings on
each factor as the number of factors. They produce
a rotated factor matrix of a simple structure. These
axes are important concepts for the understanding of
factor rotation and the interpretation of the different
factor loading matrices. Following the discussion in
Cureton & D’Agostino [1], we illustrate and describe
these axes in terms of the geometric model.

In a two-factor geometric model, we can represent
the effective common-factor vector by a semicircle
with axes a (vertical) and b (horizontal) as the initial
axes. This is obtained by reflecting any negative first-
factor loadings of any variables. Figure 1 presents
this two-dimensional geometric model. In Figure 1,
the axes 0I and 0II are vectors of unit length extend-
ing from the origin to the perimeter of the semicircle
and provide the effective boundaries for the configu-
ration of variable vectors. Variable vectors are vectors
that extend from the origin to the plotted points of
the variables. The locations of boundary vectors are
determined by the type of transformation we apply
to the initial factor matrix. Ideally, most of the vari-
able vectors should lie on or close to the boundary

vectors 0I and 0II. In Figure 1, we have variables 1,
5, and 6 lying close to the boundary vector 0I. There-
fore, boundary 0I is overdetermined by variables 1,
5, and 6. Similarly, boundary vector 0II is overdeter-
mined by variables 2, 3, and 7. Even though variable
4 is not close to either vector, the structure is quite
clear. The reference vectors, labeled RI and RII, are
in Figure 1. RI is the reference vector that is orthog-
onal (see Orthogonality) to the axis 0I and RII is the
reference vector that is orthogonal to the axis 0II. In
other words, the axis 0I is correlated with the ref-
erence vector RII but uncorrelated with the reference
vector RI. Similarly, the axis 0II is correlated with the
reference vector RI but uncorrelated with the refer-
ence vector RII. By definition, each reference vector
is correlated with the corresponding primary axis and
uncorrelated with the other. Therefore, in the two-
dimensional case the boundary vector 0II coincides
with the primary axis PI, and the boundary vector
0I coincides with the primary axis PII. The primary
axes correspond to the first and second primary fac-
tors and geometrically the axes represent the primary
factors.

In higher-dimensional cases (m ≥ 3), the effective
boundaries become planes (m = 3) or hyperplanes
(m > 3) and the primary axes of the primary factors
are the vectors lying at the intersections of these
planes or hyperplanes. For the three-dimensional
case, we can represent the effective common-factor
vector space by a hemisphere of unit radius lying
on the top of the unit circle made by the axes b

and c (see Figure 2). This effective vector space
is obtained by reflecting the negative first-factor
loadings. Figure 2 presents the geometric model
for the three-factor case. The hyperplanes are the
bounding planes labeled as HI, HII, and HIII. These
planes can be thought of as an inverted triangular
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Figure 1 Geometric model for the two-factor case
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Figure 2 Geometric model for the three-factor case

pyramid with apex at the origin 0, and generate
a spherical triangle at the top where they meet
the surface of the hemisphere. Ideally, most of the
variable vectors should lie on or close to the planes
HI, HII, and HIII. The lines where these planes meet
are called the primary axes. They are all unit vectors.
We can see from Figure 2 that the primary axis 0PI
is at the intersection of the planes HII and HIII. The
primary axis 0PII is at the intersection of planes HI
and HIII. The primary 0PIII is at the intersection of
planes HI and HII. For reference vectors, it is not
easy to locate them visually in this three-dimensional
figure. Similar to the two-factor case, the reference
vectors are the unit vectors that are orthogonal to the
primary factors (here the planes HI, HII, and HIII).
The reference vector RI is orthogonal to HI, which
in turn is orthogonal to the primary axes PII and
PIII since both primary axes lie in HI. Therefore,
as defined, RI is correlated with the corresponding
primary axis PI and uncorrelated with the other
two. Similar descriptions apply to RII and RIII. The
reference vector RI, greatly shortened, is contained
in Figure 2.

In the m-dimensional case (m > 3), the sphere
becomes a hypersphere. Again, by reflecting all the
negative first-factor loadings, we obtain the effec-
tive vector space bounded by the part of hypersphere
where all the a coordinates are positive. The three
planes now become m hyperplanes of dimensionality
m − 1. These m hyperplanes intersect at the origin.
They form an inverted hyperpyramid and produce a
hyperspherical triangle that meets the surface of the
hyperhemisphere. Again, these hyperplanes provide
effective boundaries for the variable vectors. The pri-
mary axes are the intersections of these hyperplanes,
taken m − 1 at a time. As defined previously, the
reference vector is correlated with the corresponding
primary axis but uncorrelated with all other. So the
reference vector RI is orthogonal to the hyperplane
HI, which is therefore orthogonal to PII, . . . , PM
because the primary axes PII, . . . , PM all lie in the
hyperplane HI. In other words, RI is correlated with
PI but uncorrelated with all other m − 1 primary axes.
The same descriptions can be applied to the rest of
the reference vectors.

As discussed in Factor Loading Matrix, different
pattern and structure matrices can be obtained as the
projections of variable vectors onto the different set of
axes. They play an important role in the interpretation
of the results.
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Principal Components
Analysis

Principal components analysis is a method for
transforming a set of n correlated variables,
X1, X2, . . . , Xn, to m uncorrelated variables, Y1,
Y2, . . . , Ym, where m ≤ n, and the variances of the
Y s are in descending order with the sum of these
m variances equal to the “salient” or nonrandom
variance of the Xs. There are a number of related
aims of principal components, some of which are the
following:

1. To produce n uncorrelated variables. Transform
the original n correlated variables to n uncor-
related linear functions of the original vari-
ables.

2. To produce the best single composite variable.
Generate a single linear composite function of the
original variables which has maximum variance
among all possible linear functions of the original
n variables (or which maximally discriminates
the subjects in the data set).

3. To explain the salient variance. Transform the n

correlated variables to m uncorrelated variables
(m < n) which explain the salient variance of the
n original variables.

4. To reduce dimension. Start with the n dimen-
sions of the original variables, and identify m

dimensions (m < n), where the m dimensions
explain the salient variance of the original n vari-
ables.

5. To produce clusters and cluster scores. Cluster
the original n variables into m (m < n) subsets
(possibly exclusive) and generate simple scores
for these m subsets.

6. Battery reduction. Identify m variables from
the original n variables (m < n) which repro-
duce the salient variance of the original n vari-
ables.

7. To produce scales. Generate from the original
variables composites or “scales” that measure the
dimensions underlying the original data.

8. To produce uncorrelated regressor variables.
Produce uncorrelated variables from a set of
correlated variables and use the uncorrelated
variables rather than the original variables
as regressor variables in a regression analy-
sis.

Development of the Principal Components

The principal components are linear functions of the
original variables of the form

Yj = e1jX1 + e2jX2 + · · · + enjXn, (1)

with
e2

1j + e2
2j + · · · + e2

nj = 1, (2)

for j = 1, . . . , n. We can understand them best if we
view them as generated in a sequential manner. The
first principal component is the linear function of the
form (1) subject to (2) for j = 1, where the variance
of Y1 has the maximum variance over all possible
linear functions of the original variables subject to
(2). We call this variance λ1.

The second principal component, Y2, is the linear
function, uncorrelated with Y1 with the next largest
variance λ2 ≤ λ1. In a similar fashion, each principal
component is uncorrelated with all others and has the
largest possible variance λj subject to

λ1 ≥ · · · ≥ λn. (3)

In practice, usually there are strict inequalities in (3).
Thus, principal components are linear transforma-

tions of the original variables, uncorrelated with each
other and with decreasing variance. One can per-
form the principal components analysis on the Xs
in their original scale, i.e. on the raw data. How-
ever, we usually perform it on standardized variables,
i.e. variables derived from the original variables by
subtracting the mean and dividing by the standard
deviation. The principal components derived from
the raw data will be different from those obtained
on the standardized data. If performed on the origi-
nal variables, the variables with the largest variances
can dominate the results. When the analysis is per-
formed on standardized data, all variables are on
equal footing.

The method of principal components requires no
assumptions about the data. Usually the sample size
is large. It can be applied to a random sample from
some population. However, in practice this is often
not the case, and frequently there is interest solely in
understanding the sample data themselves.

Mathematical Derivation

Components of Original Variables

Assume a sample of size N is available and on each
individual n variables X1, . . . , Xn are measured. Let
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S represent the sample variance–covariance matrix.
The sample variance of a linear function of the form
(1) of the original n variables is

var(Yj ) = e′
j Sej , (4)

where e′
j is the vector of weights (e1j , e2j , . . . , enj )

of (1) subject to the restriction of (2) which, in vector
notation, is

e′
j ej = 1. (5)

Condition (2) [or (5)] is arbitrary and only guarantees
a unique solution. Any multiple of ej produces basi-
cally the same component.

The problem of finding the ej becomes that of
finding the maximum of (4) subject to (5), or finding
the maximum of

e′
j Sej − λj (e′

j ej − 1). (6)

Obtaining the solution to (6) is a simple matrix
algebra exercise where the λj , for j = 1, . . . , n, are
the solutions of

|S − λI| = 0. (7)

These λj are the eigenvalues of S. The ej are then
found for each λj as the solution of

(S − λj I)ej = 0, (8)

for j = 1, . . . , n. These are the eigenvectors or char-
acteristic vectors of S. Because of this, e′

j et = 0 for
j �= t , which ensures that the principal components
are uncorrelated.

It should be noted that the sum of the eigenvalues
equals the trace of S, which is the sum of the
variances of the Xs. So the sum of the variances of
the n principal components is equal to the sum of the
variances of the original variables.

Geometrically, ej is the vector of direction cosines
of the line from the vector of means of the Xs through
the direction of the j th greatest variation in the n-
dimensional plot of the data. When the λj are distinct,
the successive axes are perpendicular to one another.
See [7, p. 9] for more details.

Components of Standardized Variables

Because the scales of the original variables are
often different, the method of principal components

is usually applied to the standardized variables. In
this case consider the Xs as being standardized
(mean 0 and variance 1), and replace the vari-
ance–covariance matrix S above with the sample
correlation matrix R. The problem of finding the
appropriate ej then becomes one of finding the max-
imum of

e′
j Rej − λj (e′

j ej − 1). (9)

The λj and ej of (9), for j = 1, . . . , n, are the
solutions of

|R − λI| = 0 and (R − λj I)ej = 0. (10)

The λj are the eigenvalues of R and the ej are the
eigenvectors of R. So the j th principal component is
Yj = e′

j X, where X is the vector of the standardized
original variables and the variance of Yj is λj . Here
the sum of the eigenvalues (variances of Yj ) equals
n, which is the trace of R. In most of what follows
we assume we are dealing with standardized data.

One can perform principal components using stan-
dard procedures in readily available software pack-
ages such as the SAS [16] procedure PRINCOMP.
This procedure will automatically standardize the
variables.

Example

In the Framingham Heart Study, a 10-question
depression scale was administered (n = 10) where
the responses were No or Yes to the following (note
that the terms in parentheses will be used in the
following in reference to the variables);

1. I felt everything I did was an effort (EFFORT)
2. My sleep was restless (RESTLESS)
3. I felt depressed (DEPRESS)
4. I was happy (HAPPY)
5. I felt lonely (LONELY)
6. People were unfriendly (UNFRIEND)
7. I enjoy life (ENJOYLIF)
8. I felt sad (FELTSAD)
9. I felt that people dislike me (DISLIKED)

10. I could not get going (GETGOING)

A Yes was scored as 1 and No as 0, except for
questions 4 and 7, where the scoring was reversed



Principal Components Analysis 3

Table 1 Correlation matrix for the Framingham Heart Study depression data

REST- ENJOY- DIS- GET-
EFFORT LESS DEPRESS HAPPY LONELY UNFRIEND LIF FELTSAD LIKED GOING

EFFORT 1.000 0.218 0.348 0.320 0.235 0.173 0.228 0.273 0.171 0.440
RESTLESS 1.000 0.216 0.187 0.171 0.084 0.096 0.201 0.092 0.227
DEPRESS 1.000 0.514 0.453 0.192 0.291 0.558 0.175 0.333
HAPPY 1.000 0.347 0.118 0.417 0.396 0.112 0.314
LONELY 1.000 0.128 0.257 0.497 0.105 0.231
UNFRIEND 1.000 0.120 0.132 0.383 0.158
ENJOYLIF 1.000 0.328 0.051 0.157
FELTSAD 1.000 0.149 0.265
DISLIKED 1.000 0.197
GETGOING 1.000

Table 2 Eigenvector matrix and initial component matrix

Eigenvector matrix (e)

PRIN1 PRIN2 PRIN3 PRIN4 PRIN5 PRIN6 PRIN7 PRIN8 PRIN9 PRIN10
(e1) (e2) (e3) (e4) (e5) (e6) (e7) (e8) (e9) (e10)

EFFORT 0.327 0.135 0.406 −0.358 −0.182 0.321 0.192 −0.619 0.142 0.068
RESTLESS 0.213 0.058 0.540 0.516 0.626 −0.012 0.013 −0.004 0.016 −0.017
DEPRESS 0.419 −0.117 −0.102 0.141 −0.171 −0.166 −0.389 −0.230 −0.196 −0.693
HAPPY 0.381 −0.204 −0.059 −0.251 0.149 −0.405 −0.458 0.009 0.421 0.417
LONELY 0.348 −0.202 −0.207 0.380 −0.250 0.338 0.285 0.245 0.572 −0.070
UNFRIEND 0.191 0.593 −0.331 −0.012 0.198 0.518 −0.412 0.100 −0.063 0.104
ENJOYLIF 0.286 −0.239 −0.267 −0.481 0.543 0.092 0.395 0.154 −0.144 −0.233
FELTSAD 0.390 −0.198 −0.199 0.286 −0.154 −0.007 0.159 −0.122 −0.596 0.517
DISLIKED 0.185 0.635 −0.222 0.082 −0.022 −0.557 0.413 −0.088 0.125 −0.045
GETGOING 0.317 0.176 0.466 −0.240 −0.320 −0.051 0.000 0.669 −0.202 −0.029

Eigenvalue
(λj ) 3.358 1.290 1.022 0.872 0.795 0.627 0.590 0.552 0.508 0.386

Initial component matrix, A, elements = √
(λj )ej

PRIN1 PRIN2 PRIN3 PRIN4 PRIN5 PRIN6 PRIN7 PRIN8 PRIN9 PRIN10

EFFORT 0.599 0.153 0.410 −0.334 −0.162 0.254 0.147 −0.460 0.101 0.042
RESTLESS 0.390 0.066 0.546 0.482 0.558 −0.010 0.010 −0.003 0.011 −0.011
DEPRESS 0.768 −0.133 −0.103 0.132 −0.152 −0.131 −0.299 −0.171 −0.140 −0.431
HAPPY 0.698 −0.232 −0.060 −0.234 0.133 −0.321 −0.352 0.007 0.300 0.259
LONELY 0.638 −0.229 −0.209 0.355 −0.223 0.268 0.219 0.182 0.408 −0.043
UNFRIEND 0.350 0.674 −0.335 −0.011 0.177 0.410 −0.316 0.074 −0.045 0.065
ENJOYLIF 0.524 −0.271 −0.270 −0.449 0.484 0.073 0.303 0.114 −0.103 −0.145
FELTSAD 0.715 −0.225 −0.201 0.267 −0.137 −0.006 0.122 −0.091 −0.425 0.321
DISLIKED 0.339 0.721 −0.224 0.077 −0.020 −0.441 0.317 −0.065 0.089 −0.028
GETGOING 0.581 0.200 0.471 −0.224 −0.285 −0.040 0.000 0.497 −0.144 −0.018

so that a score of 1 would indicated depression for
all questions. Tables 1 and 2 contain the results of
a principal components analysis of the standardized

depression variables performed on N = 1660 obser-
vations. Table 1 contains the correlation matrix R
(upper triangle matrix). The first section of Table 2
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contains the eigenvectors ej as columns of the eigen-
vector matrix. These are the coefficients of the
principal components Yj of (1). The eigenvalues or
variances λj are given below this matrix.

The first principal component is

Y1 = 0.327 ∗ EFFORT + 0.213 ∗ RESTLESS

+ 0.419 ∗ DEPRESS + 0.381 ∗ HAPPY

+ 0.348 ∗ LONELY + 0.191 ∗ UNFRIEND

+ 0.286 ∗ ENJOYLIF + 0.390 ∗ FELTSAD

+ 0.185 ∗ DISLIKED + 0.317 ∗ GETGOING.

(11)

Its variance is λ1 = 3.358. We obtain the other prin-
cipal components in an obvious fashion.

Initial Component Matrix

The matrix of eigenvectors contains the weights of
the principal components. From these weights we can
obtain a second matrix, labeled A, whose elements
are defined as

aij = eij

√
λj , (12)

for i = 1, . . . , n and j = 1, . . . , n. The elements aij ,
are the correlations of Xi with Yj . The matrix A with
these elements is called the initial component matrix.
The elements are also often called loadings, and so
A is also called the initial loading matrix.

Example

The second section of Table 2 contains the A matrix
for the Framingham depression data. Notice how
the first component contains large loadings, and the
loadings of the other components are generally of
much smaller magnitude. This reflects that the earlier
components are more heavily correlated with the
original Xs than are the later components.

Amount of Variance Explained

As we stated earlier, the sum of the variances (or
eigenvalues) λj of the principal components equals
the sum of the variance of the original variables,
called the total variance. With standardized variables
the total variance is the trace of the correlation matrix
R, or n, which is the number of variables. Thus
the sum of the variances of the first m principal
components divided by n,

λ1 + · · · + λm

n
, (13)

is the cumulative proportion of the total variance
“explained” by the first m components. Table 3
contains the λj values for j = 1, . . . , 10, the differ-
ences in these, the proportions of the total variance
explained by the individual components, and the
cumulative proportion of total variance explained.

Number of Components Retained

In the above we started with n variables and ended
with n principal components. We still have as many
new components as original variables, but the compo-
nents are uncorrelated. This is the solution to Aim 1
given at the beginning of this article. Unless the
matrix R is singular, this will always be the case.
Often we desire to retain only a smaller set, say
m < n, of the principal components, possibly for use
in later analyses. The question is to decide upon m.
There are a number of approaches to this. First, if
we desire to retain the “best” linear function or com-
posite variable of the original variables that explains
as much variance as possible, then the first princi-
pal component is the appropriate one to retain. This
is the solution to Aim 2 given at the beginning of
this article. For the Framingham depression data this
is given as formula (11) above. See [4, Chapter
12] for more details on this best single composite
variable.

Table 3 Eigenvalues of the correlation matrix

PRIN1 PRIN2 PRIN3 PRIN4 PRIN5 PRIN6 PRIN7 PRIN8 PRIN9 PRIN10

Eigenvalue 3.358 1.290 1.022 0.872 0.795 0.628 0.590 0.552 0.509 0.386
Difference 2.067 0.268 0.150 0.077 0.168 0.038 0.038 0.043 0.123 –
Proportion 0.336 0.129 0.102 0.087 0.080 0.063 0.059 0.055 0.051 0.039
Cumulative 0.336 0.465 0.567 0.654 0.734 0.797 0.855 0.911 0.961 1.000
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Usually we desire not just one component, but
rather the m components needed to explain the
“salient” variance of the original n variables. Here
salient means reproducing the important or nonran-
dom variance of the original data. Aims 3 and 4
above relate to this, where the number of com-
ponents needed to explain the salient variance is
also considered the meaningful dimension of the
data.

There are a number of ways to determine m, most
being data-analytic rather than formal procedures
of statistical inference. Some of the popular data-
analytic rules when dealing with the principal com-
ponents obtained from the correlation matrix R are
as follows (details on these are given in [4], [7–10]):

1. Retain all components with λj ≥ 1.0 [13].
2. Retain all components with λj ≥ 0.7 [8].
3. Cattell’s scree test [3]. Often the differences in

the eigenvalues decrease regularly up to a point,
followed by a substantially larger difference, and
then followed by even smaller differences (usu-
ally 0.10 or smaller). The scree test selects the
number of components to retain as the number
that corresponds to the component immediately
preceding the substantially large difference. This
test is equivalently performed by plotting the
eigenvalues and retaining the number of com-
ponents that come before a break in the plot (see
Scree Test and [4, Chapter 5] for more details).

4. 80% rule. Retain all components needed to
explain at least 80% of the total variance.

5. Broken stick rule [10]. Retain all components
that correspond to eigenvalues whose proportion
of the total variance explained is above what
would be expected if all components were ran-
dom.

The existing inferential rules for determining m

are based on the assumption that the original X vari-
ables are normally distributed. Popular rules derive
from Bartlett [2]. Others are due to Girshick [6] and
Anderson [1].

Example

Applying the Kaiser λj ≥ 1.0 rule to the Framing-
ham depression data of Tables 2 and 3, we retain
three components which explain 56.7% of the total
variance. The other rules would have retained more
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Figure 1 Scree plot of eigenvalues for Framingham
depression data (principal components analysis)

components. The Jolliffe λj ≥ 0.7 rule and the scree
test would retain five components. Figure 1 displays
graphically the scree test. The 80% total variance rule
would retain six components.

For further examples we use the Kaiser rule and
retain only three components. Table 4 contains the
loadings for the three components. We still can des-
ignate it by A, but more appropriately we call it
A3, where the subscript designates the number of
components retained. Slight differences from Table 2
are due to rounding by the computer programs.

Some researchers use principal components anal-
ysis as a method to perform a factor analysis. In this
context we can designate the reduced matrix A (or
Am) with only m columns as F and call it the initial
factor matrix, the initial factor loading matrix, or
the initial factor pattern matrix (see Factor Analysis,
Overview, and [4]). The matrix F is standard output
from factor analysis software such as SAS Procedure
FACTOR [16].

Rotations

After we decide upon the number of components
to retain, the next step is to interpret them. The
procedure often employed is to define the components
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Table 4 Component matrices for Framingham depression data

Initial component matrix Varimax component matrix Promax component matrixa

FACTOR1 FACTOR2 FACTOR3 FACTOR1 FACTOR2 FACTOR3 FACTOR1 FACTOR2 FACTOR3

EFFORT 0.600 0.153 0.411 0.250 0.684 0.146 0.080 0.604 0.056
RESTLESS 0.391 0.066 0.546 0.067 0.670 −0.043 −0.079 0.644 −0.116
DEPRESS 0.768 −0.133 −0.103 0.717 0.290 0.145 0.621 0.127 0.060
HAPPY 0.698 −0.232 −0.059 0.686 0.269 0.021 0.606 0.125 −0.059
LONELY 0.637 −0.230 −0.209 0.697 0.114 0.064 0.647 −0.033 −0.002
UNFRIEND 0.351 0.674 −0.334 0.117 0.039 0.821 0.036 −0.063 0.801
ENJOYLIF 0.525 −0.271 −0.270 0.649 −0.004 0.019 0.630 −0.134 −0.030
FELTSAD 0.715 −0.225 −0.201 0.754 0.162 0.088 0.690 0.000 0.013
DISLIKED 0.339 0.721 −0.224 0.043 0.134 0.816 −0.057 0.045 0.793
GETGOING 0.580 0.200 0.471 0.189 0.734 0.158 0.009 0.663 0.068

Variance explained by each
Variance explained by each Variance explained by each component taking into

component component account other components

FACTOR1 FACTOR2 FACTOR3 FACTOR1 FACTOR2 FACTOR3 FACTOR1 FACTOR2 FACTOR3

3.358 1.290 1.022 2.579 1.670 1.421 2.061 1.277 1.299

aThis is the reference structure matrix; see Cureton & D’Agostino [4] for details.

in terms of the original variables that have high
loadings (high correlations) with the components.
Usually this does not work well with the retained
principal components. For, as is typically the case,
the first principal component is an average of all
the variables with high loadings on all the vari-
ables (see Table 4), while the second component
has, on average, smaller loadings, some positive and
some negative. The third component usually has
still smaller loadings. In general none of the prin-
cipal components lends itself to simple interpreta-
tion.

For interpretation purposes, usually we rotate or
transform the retained principal components in such
a way that the rotated components have high load-
ings on a small set of variables, and zero or near
zero loadings on the remaining variables. Often the
hope is that for the rotated components the high
loadings will form nearly exclusive sets. That is
to say, a variable that has a high loading on one
rotated variable will have a small (near zero) load-
ing on all other rotated components. This is also
called achieving a simple structure. The rotated
components maintain the salient variance of the orig-
inal variables explained by principal components, but
spread it out “usually more evenly” across the rotated
components. That is, the variances of the rotated com-
ponents usually have variances more equal to each

other than did the principal components (see Rota-
tion of Axes and [4, Chapters 6, 8, and 9] for more
details).

There are a number of procedures for performing
the rotation (outlined in the article Rotation of Axes).
Some are orthogonal rotations, such as the varimax
rotation [11, 12], where the rotated components are
uncorrelated, as are the principal components. Other
rotations methods are oblique rotations where, to
obtain better interpretation or, equivalently, a simpler
structure, the rotated components are allowed to be
correlated. Some major oblique rotations methods are
Oblimin rotation, Optres rotation, Orthoblique, or
Harris–Kaiser rotation, and the Promax rotation.
The latter starts with the Varimax rotation results and
employs a Procrustes rotation to obtain a simple
structure. (See the above-mentioned articles and [4]
for a detailed explanation of the details.)

Example

Table 4 also contains the results of two rotations
of the three retained principal components of the
depression data. It contains results of the orthogonal
Varimax rotation and the oblique Promax rotation.
The rotated components are easy to interpret. The
first is defined by DEPRESS, HAPPY, LONELY,
ENJOYLIF, and FELTSAD. The second is defined



Principal Components Analysis 7

by EFFORT, RESTLESS, and GETGOING. The
last component is defined by UNFRIEND and DIS-
LIKED.

Component Scores

Eq. (11) gives the first principal component function
for the Framingham depression data. If we “plug”
into that formula a subject’s standardized values for
the original data, we refer to the output as his first
principal component score. We obtain, in a similar
fashion, the other principal component scores from
(1) and (2). The coefficients eij of the principal
component scores for the retained components are
in the first m columns of the eigenvector matrix, e
(Table 2 for the depression data).

These principal components, Yj have variances
equal to λj for j = 1, . . . , m. Many researchers pre-
fer to have principal component scores with means
zero and variances equal to unity (that is, they prefer
to standardize them). The basic relationship of the
standardized Xs to the standardized Y s (we call them
Zs) is given by

X = AmZ + E, (14)

where X is an n-dimensional vector of standardized
scores of the original data for a subject, Am is the n ×
m initial component matrix of the retained compo-
nents, Z is the m-dimensional vector of retained stan-
dardized principal components scores of the subject,
and E is a “deviation” vector to acknowledge that the
principal components do not reproduce exactly the
initial data if we retain only m components (m < n).

In this case we obtain the Z as

Z = D−1
m A′

mX. (15)

Here D−1
m is the m × m diagonal matrix with diagonal

elements equal to 1/λj , for j = 1, . . . , m, and A′
m is

the transpose of Am. Note this is an exact solution
and not an estimate, even though there is a deviation
vector E in (14). The first m principal component
scores are the same whether we retain all n possible
principal components or just the first m. This is not
the case with factor scores.

For an orthogonal rotation the transformed com-
ponent scores are simply

Zt = �′
m(D−1

m A′
mX), (16)

where �m is the m × m transformation matrix that
rotates the original principal components to the trans-
formed component scores Zt . Here Zt is the m-
dimensional vector of transformed component scores.
We often call these component scores and drop the
term “transformed”. The formula for the component
scores for oblique rotated components is more com-
plicated [4].

Example

Table 5 gives the weights for the component scores
for the Varimax and Promax oblique rotation of the
Framingham depression data. We apply these to the
standardized variables (see [4, Chapter 12] for a
discussion of the weights for the raw, unstandard-
ized data).

Table 5 Component scoring coefficients for retained components Framingham depression data

Rotation method: Varimax Rotation method: Promax
standardized scoring coefficients standardized scoring coefficients

FACTOR1 FACTOR2 FACTOR3 FACTOR1 FACTOR2 FACTOR3

EFFORT −0.070 0.450 −0.002 0.025 0.419 0.044
RESTLESS −0.142 0.514 −0.130 −0.045 0.449 −0.083
DEPRESS 0.270 0.016 0.015 0.267 0.079 0.047
HAPPY 0.270 0.025 −0.075 0.260 0.077 −0.040
LONELY 0.313 −0.106 −0.022 0.281 −0.033 0.001
UNFRIEND −0.017 −0.113 0.614 0.020 −0.042 0.591
ENJOYLIF 0.324 −0.179 −0.036 0.275 −0.103 −0.020
FELTSAD 0.327 −0.087 −0.014 0.299 −0.011 0.013
DISLIKED −0.079 −0.019 0.604 −0.022 0.034 0.584
GETGOING −0.114 0.503 0.005 −0.006 0.461 0.052
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Clusters and Cluster Scores

Yet another objective of principal components
analysis (Aim 5 above) is to group the original
variables together into clusters and generate simple
summary variables or cluster scores. This can
sometimes be accomplished by an “intuitive cluster
analysis” achieved by examining either the rotated
component matrices (Varimax or Promax component
matrices of Table 4) or the weights of the rotated
component scores (Table 5) and set the “small”
loadings or weights to zero and the others to unity.
The variables that have the new weights equal to
unity for the same component comprise a cluster.
This intuitive cluster analysis works well for the
Framingham depression data. From either Table 4 or
Table 5 three clusters emerge:

Cluster 1: DEPRESS, HAPPY, LONELY, EN-
JOYLIF, FELTSAD

Cluster 2: EFFORT, RESTLESS, GETGOING
Cluster 3: UNFRIEND, DISLIKED

Note that the clusters comprise mutually exclu-
sive and exhaustive groups. We usually consider
this ideal.

After the clusters are obtained, we then desire to
produce scores or summary scores for them. Extend-
ing the intuitive clustering above, a simple solution
is to define the cluster scores to be the sum of the
standardized variables that comprise the clusters. For
the Framingham depression data the three cluster
scores are:
Cluster score 1:

DEPRESS + HAPPY + LONELY + ENJOYLIF

+ FELTSAD. (17)

Cluster score 2:

EFFORT + RESTLESS + GETGOING. (18)

Cluster score 3:

UNFRIEND + DISLIKED. (19)

This intuitive clustering does not always work.
Also, using the principal components solution as
a starting point can cause trouble, for the clusters
derived from principal components solutions may not
be as well determined as those from the depression

data (see Cluster Analysis of Subjects, Nonhierar-
chical Methods; Cluster Score for more details and
discussions of other methods).

Cluster scores usually are more stable than compo-
nents scores (or factor scores from a factor analysis)
across various subgroups. We recommend them as
summary measures.

Battery Reduction

Both component analysis and cluster analysis retain
all the original variables and combine them either
into component scores or cluster scores. At times we
desire to reduce the number of variables. For exam-
ple, if we have a questionnaire with, say, n = 100
questions and are concerned about the burden a long
questionnaire places on a subject, we may want to
find a subset of, say m = 20 or 25 questions that
reproduces the salient variance of the original n vari-
ables. This is battery reduction (Aim 6 above). Again
the rotated component solution can be a starting point
for such an analysis. (See Battery Reduction for one
method that involves Gram–Schmidt transforma-
tions of the initial component matrix for which a SAS
macro is available [5] from ralph@math.bu.edu.
Also see Cureton & D’Agostino [4, Chapter 12] for
further elaboration and other methods.)

Scale Development

Given a set of variables a scale is simply a compos-
ite function of them. The terms scale and scaling
are from the social sciences. There one objective
of scaling variables is to use the resulting scales to
summarize the status of the subjects from which the
original data came. However, more frequently the
objective is to use the original sample to generate the
scales and then use the variables and their scales to
investigate other populations and samples. For exam-
ple, from the analysis of the Framingham depression
data given in this article there are four possible scales
that can be used in other populations. They are the
sum of all 10 items and the three subscales (from
the cluster scores) given by (17), (18), and (19). The
sum is a summary of overall depression status and
the three subscales ideally each measure a separate
component or dimension of depression. Other typi-
cal examples from biostatistical research are scales
to quantify symptoms, quality of life (see Quality of
Life and Health Status), and comorbid status.
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Principal components analysis offers a number of
means for generating scales. In the context of scale
production, the first principal component is the best
linear scale from the original variables. Component
scores and cluster scores are scales of the variables.
Also, after a battery reduction exercise the retained
smaller set of variables can be combined to a scale.

In the context of scale development there are
usually data analysis steps and concerns beyond those
of a “typical” principal components analysis. First,
principal components analysis concerns itself with
explaining the variance of the data. It may be more
important in scale development to be concerned with
the correlation of the variables within a scale. Factor
analysis may be better suited for this. Secondly, there
is the concern about reliability (or reproducibility) of
the items or variables in the scales and the final scales
themselves. And finally, the validity of the scales
is always a major issue. This relates to determining
if they measure what the developers “claim” they
measure. Addressing the questions of reliability and
validity are major issues in psychometrics.

Reduced Rank Regression

It is not uncommon to have a regression analysis
where the number of potential explanatory (inde-
pendent or regressor) variables is extremely large.
Principal components analysis allows one to reduce
the number of regressors to a smaller set of uncorre-
lated composite variables, which can be the regressor
variables. The composite variables will tend to be
more reliable and more valid than the individual vari-
ables. If performed carefully principal components
regression (also called reduced rank regression) can
offer an excellent way of examining the full set of
potential regressors. (See Reduced Rank Regression
for more details and Jackson [7] for an extensive dis-
cussion. Further discussion is also in [4].)

Conclusion

Principal components is a major practical statistical
analysis technique. We have reviewed a number of
traditional uses. It continues to be a major method in
the understanding and development of important mul-
tivariate techniques such as classification techniques,
canonical correlation analysis, factor analysis, prin-
cipal coordinate analysis, correspondence analysis,
and the identification of multivariate outliers. There

are a number of excellent treatments going far beyond
our present discussion. It is easy to implement with
computer software that is readily available for its
many uses [5, 16]. Almost any statistical software
package will have a principal components analy-
sis procedure. The reader will be well rewarded in
examining the related articles in this Encyclopedia
and a number of available books [4, 7, 10, 14, 15].

References

[1] Anderson, T.W. (1951). Classification by multivariate
methods, Psychometrika 16, 31–50.

[2] Bartlett, M.S. (1954). A note on the multiplying factors
for various χ 2 approximations, Journal of the Royal
Statistical Society, Series B 16, 296–298.

[3] Cattell, R.B. (1966). The scree test for the number of
factors, Multivariate Behavioral Research 1, 245–276.

[4] Cureton, E.E. & D’Agostino, R.B. (1983). Factor Analy-
sis: An Applied Approach. Lawrence Erlbaum, Hillsdale.

[5] D’Agostino, R.B., Dukes, K.A., Massaro, J.M. &
Zhang, Z. (1992). Data/variable reduction by principal
components, battery reduction and variable clustering,
in Proceedings of the Fifth Annual Northeast SAS Users
Group Conference, Northeast SAS Users Group, pp.
464–474.

[6] Girshick, M.A. (1936). Principal components, Journal
of the American Statistical Association 31, 519–528.

[7] Jackson, J.E. (1991). A User’s Guide to Principal Com-
ponents. Wiley, New York.

[8] Jolliffe, I.T. (1972). Discarding variables in principal
component analysis. I: Artificial data, Applied Statistics
21, 160–173.

[9] Jolliffe, I.T. (1973). Discarding variables in principal
components analysis. II: Real data, Applied Statistics 22,
21–31.

[10] Jolliffe, I.T. (1986). Principal Component Analysis.
Springer-Verlag, New York.

[11] Kaiser, H.F. (1958). The varimax criterion for analytic
rotation in factor analysis, Psychometrika 23, 187–200.

[12] Kaiser, H.F. (1959). Computer program for varimax
rotation in factor analysis, Education and Psychological
Measurement 19, 413–420.

[13] Kaiser, H.F. (1960). The application of electronic com-
puters to factor analysis, Education and Psychological
Measurement 20, 141–151.

[14] Krzanowski, W.J. (1988). Principles of Multivariate
Analysis: A User’s Perspective. Clarendon Press, Oxford.

[15] Morrison, D.F. (1976). Multivariate Statistical Methods,
2nd Ed. McGraw-Hill, New York.

[16] SAS Institute, Inc. (1990). SAS/STAT User’s Guide,
Release 6.04 4th Ed. SAS Inc., Cary.

(See also Multivariate Analysis, Overview)

RALPH B. D’AGOSTINO, SR



Principal Coordinates
Analysis

In many applications, researchers collect informa-
tion on n objects which can be accumulated into
an n × n symmetric matrix D whose (i, j )th entry,
dij , gives a measure of the relationship between
the ith and j th objects. These entries may be mea-
sured directly, as with confusion matrices, which
count the number of times out of t trials that object
i is deemed to be the same as object j , or they
may be derived from more fundamental multivari-
ate observations on several variables, e.g. by calcu-
lating a (dis)similarity matrix or a distance matrix
(see Similarity, Dissimilarity, and Distance Mea-
sure). When observed values depend on the order
in which i and j are presented, the resulting square
matrix is usually asymmetric. Then we may sepa-
rate out the symmetric and skew-symmetric parts of
the matrix. Here, we are concerned with the sym-
metric part, but there may be interesting structure
in the skew part which also deserves separate anal-
ysis [1, 6]. The analysis of the symmetric part is
the concern of multidimensional scaling of which
principal coordinates analysis is computationally the
most simple special case. The basic idea of all mul-
tidimensional scaling methods is that the symmetric
matrix may be regarded as containing distance-like
information and one seeks a set of n points in
ρ dimensions whose

(
n

2

)
interdistances approximate

the matrix; we shall say that the n points gener-
ate approximations to the distances. If the diagonal
of D is not already zero, then it will be ignored.
Some preliminary transformation may be required
to ensure a symmetric matrix in distance-like form.
Thus, similarities might be converted into dissimi-
larities by subtracting from unity or probabilities pij

might be transformed into − log pij . When ρ is small,
usually ρ = 2, the points may be plotted to give a
graphic representation, or visualization, of the dis-
tances in the matrix (see Graphical Displays). A
frequently used illustration is the recovery of the
geographical map of a set of towns, given the road
distances between them (see, for example, [5]); prac-
tical applications include “maps” of patients with
differing symptoms, species, genotypes of agricul-
tural crops, sets of psychological stimuli, kinships or
other social structures, and many others. Inspection

of these maps may indicate patterns suggesting inter-
esting relationships or the maps may just be used as
a convenient way of reporting complex multivariate
relationships.

The relevant algebra is in two parts. The first part
concerns the possibility of finding a set of points in
any number of dimensions that generate the given
distances exactly. The second part concerns approxi-
mating the distances in a few dimensions.

Exact Euclidean Representations

A Euclidean representation is desirable for graphic
interpretation because, overwhelmingly, that is what
most people are familiar with. One way of finding
whether or not a Euclidean set of generating points
exists is to proceed as follows. Put the first point at the
origin, the second point a distance d12 from the origin.
Put the third point in a plane containing the first
two points and a distance d13 from the origin and a
distance d23 from the second point. One may proceed
in this way, at each stage adding a new point and, in
general, requiring a new dimension. If the rows of Y
give a set of coordinates for n points corresponding
to the first n samples, then it may be shown [5] that
the coordinates y of the (n + 1)th point relative to the
coordinate axes of Y are given by

y = − 1
2 (Y′Y)−1Y′[dn+1 − d − (e′

1dn+1)1] (1)

plus an extra coordinate yn+1, in a new dimension
orthogonal to those of Y, given by

y2
n+1 = e′

1dn+1 − y′y. (2)

In (1) and (2) e1 is a unit vector zero everywhere
except for its first value of unity, dn+1 is a column
vector containing all the squared distances of a new
(n + 1)th sample from the existing n samples, and
d is the diagonal of YY′ written as a column vector,
giving the squared distances of the first n points from
their origin. Thus, e′

1dn+1 gives the squared distance
of the (n + 1)th point from the first point placed at
the origin.

To see how (1) and (2) work, consider the set of
squared distances among four points exhibited in the
symmetric matrix:





0 4 10 6
4 0 10 6

10 10 0 8
6 6 8 0
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from which we derive




0 0 0 0
0 4 2 2
0 2 5 4
0 2 4 6





by replacing element aij of the first matrix by
− 1

2 (aij − ai1 − aj1). The underlined elements of the
second matrix then turn out to be successive elements
of the vector − 1

2 [dn+1 − d − (e′
1dn+1)1] needed in

(1), while the underlined elements of the first matrix
are the successive elements e′

1dn+1 needed in (2).
Thus, placing the first point at the origin and the
second at 2 on the first axes gives our initial one-
dimensional coordinates for the first two points as
Y1 = (0

2

)
. The coordinates of the first dimension of

the third point of Y2 are then obtained from (1)
as (4)−1(0 2)

(0
2

) = 1, where the column vector
(0

2

)

comes from the underlined elements in the third row
of the derived matrix. The coordinate of the second
dimension of the third point comes from the under-
lined element in the third row of the first matrix
which, when substituted into (2), gives y2

3 = 10 −
12 = 32 so that

Y2 =
( 0 0

2 0
1 3

)
.

We may now proceed to calculate the first two dimen-
sions of the fourth point of Y3 from (1) to give

(
5 3
3 9

)−1 (
0 2 1
0 0 3

)( 0
2
4

)
=

(
1
1

)
,

while from (2), y2
4 = 6 − 12 − 12 = 22 so that

Y3 =




0 0 0
2 0 0
1 3 0
1 1 2





which, as is easily verified, generates the initial
squared distances. Finally, if the last row of the
given squared distances were 2,2,2 rather than 6,6,8,
then it may be verified that the calculation of Y is
replaced by

(
5 3
3 9

)−1 (
0 2 1
0 0 3

)( 0
2
5

)
=

(
1

1 1
3

)
,

while from (2), y2
4 = 2 − 12 − (

1 1
3

)2
< 0 and no real

representation exists.
Thus, it is easy to generate the successive coor-

dinates described above, ending up with the final
version of Y in a lower-triangular matrix, the first
value of which is zero. When the process terminates
satisfactorily, the resulting configuration of n points
generates the given distances, is Euclidean, and occu-
pies, at most, n − 1 dimensions. If the distances do
not have a Euclidean representation, then the process
breaks down at some point, (2) requiring the square
root of a negative number. This may be accepted but
the resulting coordinates include imaginary numbers
and the representation is not Euclidean. When the dis-
tances have a Euclidean representation, they are said
to be Euclidean embeddable.

We are concerned with symmetric matrices of dis-
similarities D, with zero diagonal elements. Consider
the centered form:

B = (I − 1s′)D(I − s1′), (3)

where s′1 = 1. When B is positive semidefinite, we
may write

B = YY′, (4)

nonuniquely. Regarding the ith row of Y as the coor-
dinates of a point, the squared distance between the
ith and j th points is given by bii + bjj − 2bij . From
(3) it follows after some elementary algebraic manip-

ulations, that, provided we define D =
{
− 1

2d2
ij

}
then

bii + bjj − 2bij = d2
ij (5)

and hence Y generates the given distances. From
now on we assume that D is defined in this way.
Thus, that (3) be positive semidefinite guarantees
the real decomposition (4), thus providing a suf-
ficient condition for the distances dij to have a
Euclidean representation. That the condition is also
necessary for Euclideanarity was first proved by
Schoenberg [10] for the case s = 1/n and by House-
holder & Young [9] for the case s = e1, but the result
is valid for all s where s′1 = 1; an elementary proof is

given by Gower [7]. Thus, D =
{
− 1

2d2
ij

}
is embed-

dable in a Euclidean space if and only if (3) is positive
semidefinite.

From (3) we have that s′Bs = 0, so the vector
s′Y = 0, showing that s determines the location of
the origin of the generating points Y; the different
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solutions, Y, that satisfy (4) represent different ori-
entations around this origin. When s = e1, the ith
point of Y is at the origin, as in our example of four
points where the first point is at the origin and s = e1.
Other choices of s are discussed by Gower [7] and
by De Rooij and Gower [2]. The squares of distances
of the n points from the origin are the elements in
the diagonal of B, which may be written as a column
vector:

d = (s′Ds)1 − 2Ds (6)

and the sum of squares of the distances from the
origin is 1′d.

Of special importance is the choice s = 1/n,
which implies that 1′Y = 0 and hence places the
origin at the centroid of the generating points. The
squares of the centroid distances are then given as

d = 1

n2
(1′D1)1 − 2

n
D1, (7)

and the sum of squares about the mean (centroid) is

1′d = − 1

n
1′D1 = 1

n

n∑

i<j

d2
ij , (8)

a classical result relating a sum of squares about the
mean to the sum of squares of all

(
n

2

)
intersample

squared distances.

Approximate Euclidean Representations

We have seen that exact representations are multi-
dimensional; for practical purposes low-dimensional
approximations are required. Continuing with the set-
ting s = 1/n, and writing N = 11′/n, (3) becomes

B = (I − N)D(I − N), (9)

and if we choose the spectral decomposition, then Y
is given by

B = YY′, Y′Y = �, (10)

where � is the diagonal matrix of the eigenvalues of
B, assumed to be presented in nondecreasing order
(see Matrix Algebra). Because Y′Y is diagonal, Y
is referred to its principal axes and it follows that
Yρ , the first ρ columns of Y, gives a ρ-dimensional
principal components analysis of Y. Thus, with
these settings, the method of approximation is that

of principal components analysis so that the approx-
imation Yρ is obtained as an orthogonal projection
of the generating points with coordinates Y onto a
ρ-dimensional subspace. It follows that the method
could proceed by first computing any Y that satisfies
(9) or, indeed, any Y that satisfies (4) and apply-
ing principal components analysis to it. However, the
choice of (9) and (10) allows the two steps to be
subsumed into one step. Because they are referred
to principal axes, the rows of settings of Y that
satisfy (9) and (10) are known as the principal coor-
dinates of D and the method as principal coordinates
analysis [4]. Alternatively, especially in the psycho-
metric literature, the method is known as classical
scaling, a terminology which stresses the links with
multidimensional scaling [12]. The method could just
as easily operate with other choices of s to give
representations referred to principal axes through dif-
ferent origins, such as the circumcenter of the points
(see [7]), but s = 1/n minimizes the sum of squares
onto any ρ-dimensional subspace.

As with many statistical methods, there is inter-
est in interpolating a new sample into an existing
analysis. Of course, when interpolating a sample,
we could operate on the total of n + 1 samples to
find a ρ-dimensional principal coordinates approx-
imation. With m separate samples we could do m

separate analyses, but this would be both inefficient
and, because the positions of the original n samples
would change slightly in each analysis, would make
it difficult to compare the different interpolations.
So, sacrificing some accuracy, we seek to interpolate
directly into the existing ρ-dimensional approxima-
tion; versions of (1) and (2) remain the key formulas
for this operation. When the rows of Y are princi-
pal coordinates, Y′1 = 0 and, using (7) and (10), the
interpolation formula (1) simplifies to

y = −1

2
�−1Y′

(
dn+1 + 2D1

n

)
, (11)

which gives coordinates in all n − 1 dimensions.
Because � is diagonal the coordinates in the first
ρ dimensions require only the first ρ columns, Yρ of
Y to give

yρ = −1

2
�−1

ρ Y′
ρ

(
dn+1 + 2D1

n

)
, (12)

which is very simple to apply. Note that the extra
dimension (2) is orthogonal to the first ρ dimensions
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and may be regarded as a residual, but does not
enter into interpolation of further samples into the
ρ-dimensional approximation.

A typical application of (11) and (12) is to add
a new sample to the display, say a new town to the
geographic map, without recalculating eigenvectors.
Another application is to interpolate a point which
represents a pseudo-sample that pertains to a value ξk

of a kth variable, and then allowing ξk to vary while
holding all other variables fixed, typically at zero.
The resulting locus is a nonlinear biplot axis (see
Graphical Displays) for the kth variable [8], unless
dissimilarity is defined by the classical Pythagoras
formula, when the locus is a linear axis. Such biplot
axes have many of the familiar properties of Cartesian
coordinate axes; in particular, the nonlinear axis may
be marked at standard values of the kth variable and
then the value of the variable pertaining to any point
may be read off by orthogonal projection. Categorical
variables may be handled similarly, replacing the kth
axis by a set of category-level points, one for each
permissible category level of the kth variable. Then
the level of the kth variable pertaining to any point is
that given by the nearest category-level point. Note
that orthogonal projection is replaced by the more
fundamental concept of finding the nearest point of
a set, which becomes an orthogonal projection when
the set forms a continuum.

When squared distances are additive, in the sense
that D = ∑p

1 Dk , where Dk is a matrix of squared
distances calculated solely from the values of the kth
of p variables, the n interpolated points for the actual
values of the kth variable in the sample are given by
the columns of

Z = �−1Y′Bk, (13)

where Bk is calculated from Dk in the same way
that B is calculated from D in (9). This formula
is especially valuable for giving the category-level
points, as all category levels will occur in a sample.

Distributional results associated with principal
coordinates analysis are few. Indeed, in many appli-
cations it is difficult to see what null distribution
might be reasonably assumed for the distance matrix
or more fundamental variables from which it may be
derived. Often, it may not even be realistic to assume
that the variables are random variables. When sta-
bility of principal coordinates analysis, or indeed
other multidimensional scaling analyses, is of interest

bootstrap methods may be used. Sibson [11] pro-
vided a perturbation analysis for principal coordinates
analysis, showing that if D is perturbed by a symmet-
ric matrix εC, then the statistic for the Procrustean
fit (see Procrustes Rotation) between the generat-
ing coordinates of D and its perturbed form, when
expressed as a polynomial in ε, has no constant or
linear terms, depending only on ε2 and higher order
terms. This suggests that principal coordinates anal-
ysis is a robust method and Sibson reports that the
approximation is good, even when the perturbations
are of the same order of magnitude as the given dis-
tances. Perturbation of a Euclidean distance matrix
may induce non-Euclideanarity, manifesting itself as
some negative eigenvalues in (9), as well as small
positive eigenvalues representing noise. The princi-
pal coordinates analysis method may still be used if
the negative eigenvalues are ignored, provided these
are small. Sibson suggests a useful rule of thumb
that small positive eigenvalues of the same, or lower,
order of magnitude as the largest negative eigenvalue
may be ignored. Ignoring small negative eigenvalues
may also be justified by the Eckart–Young theo-
rem [3] giving YρY′

ρ as a least-squares approxima-
tion to B.
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Prior Distribution

Bayesian inference uses probability distributions to
represent knowledge. In statistical settings, inferences
are based on posterior distributions, which are com-
puted from Bayes’ Theorem:

p(θ |y) = L(θ)π(θ)∫
L(θ)π(θ) dθ

, (1)

where θ is the unknown parameter, y represents
the data, L(θ) is the likelihood function, p(θ |y) is
the density (pdf) of the posterior distribution, and
π(θ) is the density of the prior distribution. The
appearance of the prior distribution on the right-hand
side of (1) is at once a strength and a weakness of
the Bayesian approach: a strength because it allows
information beyond the data at hand to be used
in making inferences, and a weakness because the
inferences inevitably depend, at least to some degree,
on the choice of the density π(θ).

It is useful to distinguish three kinds of prior
distributions, informative priors, noninformative or
reference priors, and hierarchical priors or priors used
in hierarchical models.

Informative Priors

When there is substantial knowledge about a phe-
nomenon under investigation, it is natural to consider
incorporating that knowledge into a statistical analy-
sis. The most advantageous case occurs when there
is much relevant data that may be summarized in
the form of a prior distribution. A wonderful case
study is the analysis of The Federalist papers (a series
of early American political pamphlets) by Mosteller
& Wallace [15], in which papers of known author-
ship were used to form prior distributions in order to
determine who wrote the papers of unknown author-
ship. Another domain in which prior information
has been incorporated with great success is in medi-
cal imaging (see, for example, [14]), where specific
features of anticipated images are introduced to aid
reconstruction.

Alternatively, available knowledge may come
from opinions expressed by one or more experts. In
this situation, the opinions are formulated into prior
distributions through a process called elicitation, with

the resulting priors being called subjective. A general
review of elicitation methods, and their application to
clinical trials, is given by Chaloner [3]; see also [2,
6, 9, 11, 12, 16], and the many additional references
cited by Chaloner. The formalization of expert
opinion could be especially valuable in experimental
design; see [4] and [5]. An important attendant issue
in elicitation is the manner in which various expert
judgments ought to be combined [8].

Reference Priors

When there is little reliable information, or when
an analyst wishes to avoid subjective elicitation of
prior distributions, standard forms for priors may be
invoked. An example would be the use of a uniform
prior on the interval (0, 1) for a binomial propor-
tion. Although such uniform priors are useful in many
settings, allowing formal Bayesian analyses to pro-
ceed, a variety of theoretical and practical concerns
have been raised about this and related techniques for
selecting prior distributions. Kass & Wasserman [13]
have reviewed the extensive literature on the subject,
and summarized its major findings.

Ideally, one would like to have a given prior
distribution selected as “standard” for each specific
problem, such as the uniform prior for a binomial
proportion. As reviewed by Kass & Wasserman, this
was the point of view articulated by Harold Jef-
freys in his pioneering attempts to provide formal
rules for selecting priors [10]. However, despite the
efforts of Jeffreys and many others, no consensus
exists as to the rules to be used (except possibly in a
few problems, such as the binomial). Furthermore,
important complications may arise when improper
priors are used; that is, priors that do not inte-
grate to one. For example, the standard prior for
a single normal mean is uniform on the real line.
Although in this case no substantial difficulties arise,
in more complicated settings a variety of problems
may occur, including the possibility that the posterior
also may be improper, so that Bayesian inferences are
no longer well defined. An additional serious concern
is that seemingly innocuous prior distributions (such
as uniform) on multidimensional parameter spaces
may have unintended consequences for certain func-
tions of the parameters. The general conclusion to be
drawn from the literature is that one must be care-
ful, and cognizant of attendant potential difficulties,
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when selecting prior distributions in the absence of
specific information. However, the worries are greatly
diminished when posteriors are computed from large
samples [13].

Hierarchical Models

One of the major contributions of Bayesian meth-
ods to data analysis involves what have come to be
called hierarchical models, briefly described as fol-
lows. Suppose that we have a collection of observa-
tion vectors y1, y2, . . . , yk that are assumed to come
from the same family of distributions p(y|θ), but
for different values of the parameter θ1, θ2, . . . , θk .
If we also assume that the θis are drawn from some
family of distributions p(θ |λ), indexed by a further
parameter λ, then we obtain a hierarchical model.
Formally, this second family plays the role of a prior
for each parameter θi . When the parameter λ is esti-
mated by maximum likelihood or related techniques,
the resulting analyses are usually called empirical
Bayes methods. When, instead, a prior distribution is
introduced on λ (which is often called a hyperparam-
eter, to signify its role as a parameter of a distribution
on parameters), then inferences are considered to be
fully Bayesian. For many examples and further dis-
cussion, see [3] and [7].

References

[1] Carlin, B.P. & Louis, T.A. (1996). Bayes and Empirical
Bayes Methods for Data Analysis. Chapman & Hall, New
York.

[2] Carlin, B., Chaloner, K., Church, T., Matts, J.P. &
Louis, T.A. (1995). Elicitation, monitoring and analysis
of an AIDS clinical trial (with discussion), in Case
Studies in Bayesian Statistics, Vol. II, C. Gatsonis,
J.S. Hodges, R.E. Kass & N.D. Singpurwalla, eds.
Springer-Verlag, New York, pp. 48–89.

[3] Chaloner, K. (1996). Elicitation of prior distributions, in
Bayesian Biostatistics, D.A. Berry, & D.K. Stangl, eds.
Marcel Dekker, New York, pp. 141–156.

[4] Chaloner, K. & Verdinelli, I. (1995). Bayesian experi-
mental design: a review, Statistical Science 10, 273–304.

[5] Flournoy, N. (1993). A clinical experiment in bone
marrow transplantation: estimating a percentage point
of a quantal response curve, in Case Studies in Bayesian
Statistics, I, C. Gatsonis, J.S. Hodges, R.E. Kass &
N.D. Singpurwalla, eds. Springer-Verlag, New York, pp.
324–336.

[6] Freedman, L.S. & Spiegelhalter, D.J. (1983). The assess-
ment of subjective opinion and its use in relation to stop-
ping rules for clinical trials, Statistician 32, 153–162.

[7] Gelman, A., Carlin, J., Stern, H. & Rubin, D.B. (1995).
Bayesian Data Analysis. Chapman & Hall, New York.

[8] Genest, C. & Zidek, J.V. (1986). Combining probability
distributions (with discussion), Statistical Science 1,
114–148.

[9] Hogarth, R.M. (1987). Judgment and Choice, 2nd Ed.
Wiley, New York.

[10] Jeffreys, H. (1961). Theory of Probability, 3rd Ed.
Oxford University Press, Oxford.

[11] Kadane, J.B., & Wolfson, L.J. (1996). Priors for the
design and analysis of clinical trials, in Bayesian Bio-
statistics, D.A. Berry & D.K. Stangl, eds. Marcel
Dekker, New York, pp. 157–184.

[12] Kadane, J.B., Dickey, J.M., Winkler, R.L., Smith, W.S.
& Peters, S.C. (1980). Interactive elicitation of opinion
for a normal linear model, Journal of the American
Statistical Association 75, 845–854.

[13] Kass, R.E. & Wasserman, L. (1996). The selection
of prior distributions by formal rules, Journal of the
American Statistical Association 91, 1343–1370.

[14] Johnson, V., Bowsher, J., Jaszczak, R. & Turking-
ton, T. (1995). Analysis and reconstruction of medical
images using prior information (with discussion), in
Case Studies in Bayesian Statistics, Vol. II, C. Gatso-
nis, J.S. Hodges, R.E. Kass & N.D. Singpurwalla, eds.
Springer-Verlag, New York, pp. 149–240.

[15] Mosteller, F. & Wallace, D.L. (1964). Inference and Dis-
puted Authorship: the Federalist; reprinted as Applied
Bayesian and Classical Inference: the Case of the Fed-
eralist Papers. Springer-Verlag, New York, 1984.

[16] Spiegelhalter, D.J. & Freedman, L.S. (1988). Bayesian
approaches to clinical trials, in Bayesian Statistics,
Vol. 3, J.M. Bernardo, M.H. DeGroot, D.V. Lindley &
A.F.M. Smith, eds. Oxford University Press, New York,
pp. 453–477.

R.E. KASS



Privacy in Genetic Studies

The concept of privacy has come through a long evo-
lution in Western thought. Early notions of privacy
focused on the ownership and use of property, with
the idea that an individual could exercise dominion
over property, with the right to enjoy the benefits
provided by property and the right to dispose of the
property, either by destroying it or by transferring
full or partial ownership to another party. Concepts
of privacy expanded to include the immediate space
around the person, so that individuals came to enjoy
a personal space that cannot be entered without the
consent of the person. Early applications of the idea
of privacy of the person included the development of
the law of assault and battery, both in the criminal
law and the law of tort, as well as the evolution of
respect for the person in matters of corporal punish-
ment. The sphere of personal privacy was expanded
in the late nineteenth century to include the “right
to be let alone”, so the individuals could expect not
to have their lives and personal activities invaded
and pursued by reporters, journalists, and the pub-
lic media [17]. Early in the twentieth century, in the
context of the physician–patient relationship, the idea
of privacy was expanded to include support for an
individual’s right to decide personally what course
to follow in questions of medical or surgical treat-
ment [12].

At the turn of the twentieth century the world
of medical and surgical practice was profoundly
altered by the introduction of anesthesia and antisep-
sis. These new technical benefits rapidly expanded
the possibilities for treating a variety of human ill-
nesses. Patients became aware of an expanding array
of options, and they began to assert their own right
to make decisions about following medical treatment
regimens and about submitting to surgical proce-
dures [9]. Patients became more informed and less
tolerant when they discovered that they had been
denied information about health care options, and
they became quick to allege legal negligence on the
part of physicians for failing to convey complete
information about choices of treatment [4]. Early sup-
port for personal autonomy in treatment decisions is
found in the resounding holding by Justice Benjamin
Cardozo that “[e]very human being of adult years
and sound mind has a right to determine what shall
be done with his own body. . .” [12]. This and other

early decisions in the common law laid the foundation
for building the Doctrine of Informed Consent as it
governs interactions between physicians and patients
in the practice of medicine and surgery. This doctrine
has evolved to include the legal obligation of health
care professionals to disclose all information that may
influence the decision of a patient, including treat-
ment options, the risks and benefits of the options,
as well as the risk of choosing to decline treatment
altogether [15]. Integral to the structure and function
of the physician–patient relationship is the assurance
that information shared between physician and patient
will be held in confidence, so that both members
of the relationship may enjoy reciprocal candor that
should ultimately benefit the patient.

During the fifth and sixth decades of the twen-
tieth century, respect for privacy of the person and
the right of the individual to make autonomous deci-
sions expanded into the world of biomedical research.
The revelations of barbarous experimentation with
human beings, before, during, and after the Sec-
ond World War, both in the concentration camps
in Nazi Germany [16] and in a variety of civilian
and military arenas in the US [6], generated calls
for protecting individuals who participate as subjects
in biomedical research. These concerns were thor-
oughly studied by the federal government and became
the subject of legislation and regulations that estab-
lished safeguards to protect the interests of human
subjects. These safeguards are now found in the struc-
ture of the nationwide system of Institutional Review
Boards (IRBs) that supervise biomedical research at
public and private research institutions that enjoy
the benefits of federal funding. IRBs answer to the
government and are responsible for the informa-
tion that is conveyed to potential subjects, for their
competent and voluntary consent, for their under-
standing of the risks and benefits of participating in
research, and for their understanding of their rights as
research subjects [10]. Integral to the consent process
in biomedical research is consideration of how newly
developed research information will be handled.

Both patients and research subjects have vital
interests in the fate of information that is gathered
about their own health and the health of their fam-
ilies. The interests of patients include candor and
complete information about treatment options. The
interests of research subjects include an option for
access to information about research results and the
implications of these results for their families. Both
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patients and subjects are entitled to assurances that
their personal medical and/or research information
will be maintained in confidence and will not be
disclosed to other parties without express consent.
Indeed, the importance of confidentiality of infor-
mation in these relationships is guarded by severe
legal sanctions for unauthorized disclosures of per-
sonal medical or research information [7].

Over the past two decades the unprecedented
expansion of knowledge of human heredity has
opened significant new areas of medical practice and
biomedical research. Technological innovations have
driven the rapid dissection of the human genome,
and they now permit precise determination of the
genotypes of individuals and groups, with respect to
both an array of single gene diseases and a grow-
ing number of complex genetic susceptibilities to
future health problems. While exhaustive knowledge
of the genetic endowment of the human species may
remain elusive for years, the present compendium of
genetic information is expanding rapidly. As more
tests are developed, and as more and more ques-
tions about genetic disease and disorders are asked
and answered, individuals and families are seeking
information about their own genetic legacies and their
genetic prospects for their own health and the health
of their offspring. In response to the growing quest
for genetic information, the practice of genetic coun-
seling is expanding, albeit at a somewhat slower rate
than the demand for counseling services [14].

The unique genetic constitution of each individ-
ual renders personal genetic information perhaps the
most private information that may be generated for
any human being. Genetic information is also, how-
ever, unique because it may have significant impli-
cations for members of an individual’s immediate
family and collateral relatives as well. Over the past
two decades the power of genetic information to
influence or disrupt the lives of individuals and fam-
ilies has been thoroughly documented [3] and has
been the impetus behind numerous legislative efforts
to protect the privacy and autonomy of individu-
als who have knowledge of their own genotypes.
Most states now have enacted legislation that pro-
tects individuals from discrimination in employment
and health insurance on the basis of genotype [11].
While numerous genetic discrimination bills have
been introduced at the federal level, none has yet been
passed [5]. However, the Health Insurance Portability
and Accountability Act of 1996 [8], and the ensuing

regulations, do address questions of genetic privacy
in the context of protecting the health insurance sta-
tus of individuals and families who move from one
employer and health insurance provider to another.

During the 1960s the development of simple tests
and effective treatments for a few genetic diseases
resulted in the inception of newborn screening pro-
grams. These public health programs were initiated
in all states after a reliable test for phenylketonuria
became available, and screening quickly expanded to
include testing for sickle cell anemia and congeni-
tal hypothyroidism. Some states have subsequently
incorporated screening tests for several other genetic
diseases as well. Newborn screening is mandated by
law in most states, and screening is typically car-
ried out just after birth, usually without the express
consent of the parent(s). Screening without parental
consent is an invasion of privacy, both personal and
physical, that is justified because of the immense ben-
efits that accrue from identifying and treating infants
early in life: infants enjoy the prospect of a life-
time of health benefits, and public monies that would
otherwise be spent on caring for severely damaged
children can be directed toward other public health
efforts [1].

With the exception of newborn screening, generat-
ing genetic information by genetic testing continues
to be a matter of personal choice, an exercise of
personal autonomy. Individuals may choose to be
tested, either on their own initiative or in response
to the suggestion of a professional. Parents may
choose to have their children tested, although test-
ing minors for some adult-onset genetic diseases has
generated much debate and considerable caution [2].
Persons who participate in genetics research may also
seek information about themselves that is recorded
in research results, although disclosure of research
results is far more guarded because of the tenta-
tive, or unconfirmed nature of research results and
information. As the power of technology continues
to expand, the possibilities of generation and dis-
closure of genetic information without consent have
constituted a nucleus of federal concern that is now
focused on the rights of individuals and their inter-
actions with medical professionals and the research
community. While the legislative and regulatory pro-
cesses are slow, the depth of interest and concern for
personal privacy and patient autonomy illustrates and
reinforces the potential benefits from sequencing and
understanding the human genome [13].
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Probability Sampling

Probability sampling is a process used to select a
sample from a defined population with the charac-
teristic that every element of the population has a
known, nonzero probability of being included in the
sample. In probability sampling we select the sample
by a random mechanism under which each element of
the population receives this known selection proba-
bility [1]. Nonprobability sampling, in contrast, does
not have this feature.

Probability sampling allows us to evaluate statisti-
cal properties of estimators of population characteris-
tics and to construct estimators with desired statistical
properties, since the selection probability for every
sample is known (see Estimation). For instance, we
can evaluate how reproducible an estimator is over
repetitions of the sampling process yielding the esti-
mate (reliability) and whether the expectation of an
estimator over repetitions yielding the estimate is the
same as the true value of the parameter being esti-
mated (unbiasedness).

Nonprobability sampling is almost always less
expensive and easier to carry out than probability
sampling. Examples of nonprobability sampling are
selection of a predetermined number of individuals
having specified characteristics, or selection of indi-
viduals believed to be representative (see Quota,
Representative, and Other Methods of Purposive
Sampling; Snowball Sampling). In nonprobability
sampling we cannot evaluate statistical properties of
estimators such as reliability or unbiasedness since
there is no known selection probability for each ele-
ment in the population.
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Probability Theory

Probability theory is that part of mathematics that
aims to provide insight into phenomena that depend
on chance or on uncertainty. The most prevalent
use of the theory comes through the frequentists’
interpretation of probability in terms of the out-
comes of repeated experiments, but probability is
also used to provide a measure of subjective beliefs,
especially as judged by one’s willingness to place
bets.

The roots of probability theory are not as ancient
as those of many parts of mathematics, and only in
the sixteenth and seventeenth centuries does one find
the first glimmerings of the theory in the investiga-
tions made by Gerolamo Cardano, Pierre de Fermat,
and Blaise Pascal into games of chance. Despite the
luminous reputations of these famous mathematicians
and philosophers, the subject of probability theory
remained on the periphery of respectability, and for
a long time development was halting and lugubri-
ous. Through the first third of the twentieth century,
the eighteenth century works of Jakob Bernoulli (see
Bernoulli Family) and Abraham De Moivre con-
tinued to be viewed as the nearly definitive treatises
of probability theory [3, 11].

Still, even in the early days of the twentieth cen-
tury when probability theory clearly suffered from
the lack of a widely accepted foundation, there were
profound developments, most notably Albert Ein-
stein’s use of Brownian motion in 1905 to provide
the first determination of Avagadro’s number [7].
Nevertheless, in 1933 when Andrey Nikolayevich
Kolmogorov published his elegant succinct volume
Foundations of the Theory of Probability [10], the
mathematical world was hungry for such a treatment,
and the subsequent development of probability theory
was explosive.

Firm Foundation

Central to Kolmogorov’s foundation for probability
theory was his introduction of the triple (Ω , F, P )
that we now call a probability space, or sometimes
the “probabilist’s trinity”. The triple’s first element,
Ω , is required only to be a set. The second element
is a collection of subsets of Ω about which more
will be said later. The third element is a function

that assigns a real number to each of the elements
of F. This function is called a probability mea-
sure P provided that it satisfies the three following
axioms:
Axiom 1. For all A ∈ F we have P(A) ≥ 0.

Axiom 2. For any countable collection {Ai ∈ F : 1 ≤
i < ∞} for which Ai ∩ Aj = ∅ for all i �= j , we have

P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P(Ai).

Axiom 3. P(Ω) = 1.

Axioms 1 and 3 are quite bland. Axiom 1 only cap-
tures our understanding that probabilities of events
are nonnegative numbers, and Axiom 3 just echoes
our assumption that Ω is a sensible representation for
the universe of all possible outcomes of the chance
experiment being modeled. Only about Axiom 2 can
there be any quarrel, and at times arguments have
been made for preferring a probability theory that
only requires additivity of probabilities for finite col-
lections of sets. Kolmogorov’s decision to assume
countable additivity is not the only possible choice,
but it has been a fecund one that has proved to be
appropriate in a wide variety of circumstances.

The mathematical benefit of Kolmogorov’s second
axiom is that it connects probability theory with the
theory of measure as put forward by Borel, Lebesgue,
Radon, and Fréchet in the early part of the twentieth
century. It was in fact Fréchet who noted some 13
years after Lebesgue’s famous 1902 thesis that the
natural domain for a probability measure is a collec-
tion of sets that is closed under complementation and
countable unions. Fréchet called such collections σ -
algebras, and Kolmogorov required that the second
term of his triple be just such a collection [4, 5].

Basic Quantities of the Theory

To the practical mind, Kolmogorov’s axiomatization
of probability may seem only to defer the problem
of construction of probability models that serve to
inform us about the physical and social world, but
by putting the elusive probability function P on an
axiomatic footing Kolmogorov did provide real assur-
ance that one could study probability as sensibly as
one could study measure theory, analysis, or algebra.
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In particular, one could proceed with the investiga-
tion of the objects that had been of concern from
probability’s earliest days.

One of the most fundamental notions of proba-
bility theory is the random variable, and in Kol-
mogorov’s framework a random variable is nothing
more than a function from X : Ω → � with the prop-
erty that for all t one has that the sets {ω : X(ω) ≤ t}
are elements of the σ -algebra F. With this definition
we are on firm footing when we take the definition
of the distribution function F of X to be

F(t) = P(X ≤ t),

because the set {ω : X(ω) ≤ t} is in the domain of the
set function P . In this framework the expectation
E(X) of the random variable X can defined as the
Lebesgue integral of X with regard to P , or as
the Riemann–Stieltjes integral with respect to F ,
giving us

E(X) =
∫

Ω

X(ω) dP(ω) =
∫ ∞

−∞
x dF(x).

The probability distribution function and the
expectation operation provide us with the core
language that is needed to express almost everything
that one needs to say about individual random
variables. For example, a basic measure of dispersion
of a random variable is the variance, which one
writes in terms of the expectation as

var(X) = E(X − µ)2,

where µ = E(X) and the standard deviation of X

is defined to be the square root of the variance.

Central Role of Independence

With expectations and distributions we recapture
much of the most basic language of probability the-
ory, but the real power of probability theory only
emerges with the introduction of the central notion of
independence of events, algebras, and random vari-
ables. To begin that development, one first defines
elements A and B of F to be independent provided

P(A ∩ B) = P(A)P (B).

This definition is then extended to sub-σ -algebras
of A and B of F by calling A and B independent

provided A and B are independent for all A ∈ A and
all B ∈ B. Finally, random variables X and Y are
independent if A and B are independent when these
are respectively the smallest σ -algebras containing all
the sets {X ≤ t} and all the sets {Y ≤ t}.

This definition of independence of random vari-
ables may look a little burdensome at first, but for
many purposes it is much more convenient than the
definition of independence that is sometimes given in
elementary texts that call for the factorization of the
joint density of X and Y . In fact, densities may not
exist, but that is not the telling point. More to the
heart of the matter is that with Kolmogorov’s defini-
tion one clearly sees that the independence of X and
Y implies the independence of f (X) and g(Y ) for
any monotone functions f and g, while this intuitive
fact is cumbersome to check if one needs to verify a
density factorization.

Theorems That Make the Theory

There are two theorems that live at the very heart
of probability theory. The first is the law of large
numbers, without which our most fundamental intu-
itions about the relationship of probability theory and
the physical world would be at odds. The second
is the central limit theorem, which is arguably the
result that most clearly accounts for the practical util-
ity of probability as a helpmate to statistics, as well as
to the social and physical sciences [1, 2, 5, 6, 8, 9].

Theorem 1 (Law of Large Numbers). If {Xi :
1 ≤ i < ∞} is a sequence of independent random
variables with the distribution function, F , and if
E|Xi | < ∞, then the event that the sequence

1

n
{X1 + X2 + · · · + Xn}

converges to E(X1) has probability one.

Theorem 2 (Central Limit Theorem). If {Xi :
1 ≤ i < ∞} is a sequence of independent random
variables with distribution function F , E(Xi) = µ <

∞, and var(X) = σ 2 < ∞, then

lim
n→∞ P

(
1

σ
√

n
{X1 + X2 + · · · + Xn − nµ} ≤ x

)

= 1

(2π)1/2

∫ x

−∞
e−u2/2

du.
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Beyond Independent Random Variables

While the purest view of the aims and accomplish-
ments of probability theory may be found in the study
of sums of independent random variables, the appli-
cations of probability theory require the development
of structures that also capture aspects of dependence.
To give the simplest illustration of a such a system,
we consider a finite set S = {1, 2, . . . , n} which we
will call the set of “states”, and a matrix P = (pij ),
where all of the matrix entries satisfy 0 ≤ pij ≤ 1 and
where the row sums pi1 + pi2 + · · · + pin all equal
one. We now consider a sequence of random variables
Xn that are defined by sequential transitions accord-
ing to the row of the matrix P. Specifically, if Xn = i,
then Xn+1 is determined by making a choice from
the set S in accordance with the probability masses
(pij ). Such a sequence of random variables is called
a Markov chain, and the theory of such sequences
offers an important first step from the core theory
of independent random variables. The index of the
sequence {Xn : n ≥ 0} is usually viewed as “time”
and an important extension of the notion of a Markov
chain is that of a Markov Process where the index is
taken to be the whole positive real line and the state
space is permitted to be �d (or even a more complex
space). The most important such process is Brownian
motion [2, 9].

Another direction for the development of probabil-
ity theory that goes beyond independence is provided
by the theory of martingales [2, 4–6]. On one level,
martingales capture the notion of a fair gambling
game, and although this view is interesting (and loyal
to the origins of probability theory), the theory of
martingales turns out to be an appropriate tool for
many kinds of investigation (see Counting Process
Methods in Survival Analysis). In particular, the
theory of martingales provides the key to profound
connections between the theory of Markov processes
and the classical theory of harmonic functions.
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Procrustes Rotation

Most rotation procedures associated with principal
components analysis and factor analysis are de-
signed to rotate a set of vectors associated with the
retained components or vectors into a new set of
vectors whose associated transformed components or
factors will attain a simple structure (see Rotation
of Axes). In Procrustes rotation the procedure is
reversed; one is furnished with the two sets of vectors
and determines the matrix that will best transform one
set into the other. Although generally associated with
principal components and factor analysis, Procrustes
rotation may be used to relate any two matrices of
the same dimension.

The problem may be stated as follows. Given
two (n × m) matrices, A and B, what transformation
matrix T of dimension (m × m) will best transform A
into B (i.e. what matrix T will make AT most like B)?
Let E = AT − B. Then E is the difference between
B and the approximation for it, AT. The object is to
obtain T such that tr(E′E) is a minimum.

If T is orthonormal (TT′ = T′T = I) (see Orthog-
onality), this is called the orthogonal Procrustes
problem and has a least squares solution [6], although
the notion goes back to Mosier [4]. If S = A′B, U are
the orthonormal characteristic vectors of S′S, and U∗
the characteristic vectors (see Eigenvector) of SS′,
then T = U∗U′.

Table 1 contains the characteristic vectors for the
audiometric example given in the article Rotation
of Axes. Here, the vectors have been normalized to
unit length and become the matrix A. To facilitate
the screening of large sets of medical records, these
vectors were replaced by some simple approxima-
tions [2]. These are also normalized to unit length
and included in Table 1 as matrix B. The matrix T

which best rotates A into B is:

T =




0.996 −0.062 −0.041 −0.057
0.058 0.993 −0.099 0.009
0.048 0.096 0.994 0.021
0.056 −0.015 −0.022 0.998





tr(E′E) = 0.150.
The two-sided orthogonal Procrustes rotation [7]

is used to test whether a (p × p) matrix A is a
permutation of another (p × p) matrix B. This is
particularly useful in looking for particular patterns
in matrices which may have been obscured by a
permutation of the rows and/or columns. There are
also solutions for oblique Procrustes rotation [3, 5, 8,
9]. For the audiometric example, an oblique solution
reduced tr(E′E) to 0.133. There have been a number
of other modifications and extensions of the Pro-
crustes solution, including comparing three or more
matrices (see [2]).

The name Procrustes was given to this procedure
by Cattell (Hurley & Cattell [1]). In Greek mythol-
ogy, Procrustes, the Stretcher, was an innkeeper who
lured travelers with his “magical” bed which would
fit anyone. If the guest was too short, he or she was
stretched out to the length of the bed. If too long, he
chopped off his or her feet. Hurley & Cattell felt this
rotation procedure had about the same philosophy and
urged caution in using this technique.
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Product-integration

Product-integration was introduced more than 110
years ago by the Italian mathematician Vito Volterra,
as a tool in the solution of a certain class of dif-
ferential equations. It was studied intensively by
mathematicians for half a century, but finally the
subject became unfashionable and lapsed into obscu-
rity. That is a pity, since ideas of product-integration
make a very natural appearance in survival analysis,
and the development of this subject (in particular,
of the Kaplan–Meier estimator) could have been
much smoother if product-integration had been a
familiar topic from the start. The Kaplan–Meier esti-
mator is the product-integral of the Nelson–Aalen
estimator of the cumulative hazard function; these
two estimators bear the same relation to one another
as the actual survival function and the actual cumu-
lative hazard function (see Survival Distributions
and Their Characteristics). There are many other
applications of product-integration in survival analy-
sis, for instance in the study of multistate processes
(connected to the theory of Markov processes), and
in the theory of partial likelihood.

Ordinary integration is a generalization of sum-
mation, and properties of integrals are often eas-
ily guessed by thinking of them as sums of very,
very many terms (all or most of them being very
small). Similarly, product-integration generalizes the
taking of products; a product-integral is a prod-
uct of many, many terms (all or most of them
being very close to the number 1). Thinking of
product-integrals in this simplistic way is actually
very helpful. Properties of product-integrals are easy
to guess and to understand. The theory of product-
integration can be a great help in studying the statis-
tical properties of statistical quantities which explic-
itly or implicitly are defined in terms of product-
integrals.

Before defining product-integrals in general and
exhibiting some of their properties, we discuss the
relation, in survival analysis, between the survival
function and the hazard function. This leads us
naturally to the notion of product-integration in the
simplest of contexts.

Consider a survival time T with survival func-
tion S(t) = Pr(T > t), t ≥ 0; S(0) = 1. Suppose T

is continuously distributed with density f (t) and

hazard rate α(t). These two functions have intu-
itive probabilistic meanings: for a small time inter-
val t, t + h, the unconditional probability Pr(t ≤ T ≤
t + h) ≈ f (t)h, while the conditional probability
Pr(t ≤ T ≤ t + h|T ≥ t) ≈ α(t)h. In fact, the prob-
ability density f (t) = −( d/ dt)S(t) while the haz-
ard rate α(t) = f (t)/S(t). One can mathematically
recover the distribution function F(t) = 1 − S(t)

from the density by integration; F(t) = ∫ t

0 f (s) ds.
Also, one can recover the survival function from
the hazard rate. Noting that α(t) = −( d/ dt) log S(t),
one finds by integration [and using S(0) = 1, hence
log S(0) = 0], that − log S(t) = ∫ t

0 α(s) ds, and hence
S(t) = exp[− ∫ t

0 α(s) ds]. This is simple enough, but
neither the result nor its derivation have a probabilis-
tic interpretation.

If the survival time T had a discrete distribu-
tion, one would introduce the discrete density f (t) =
Pr(T = t) and the discrete hazard α(t) = Pr(T =
t |T ≥ t) = f (t)/S(t−). Still the survival function
can be recovered from both density and hazard, but
the formula in the latter case now seems quite dif-
ferent: S(t) = ∏t

0[1 − α(s)]. The continuous case
formula S(t) = exp[− ∫ t

0 α(s) ds] has, therefore, two
major defects: first, it does not have any intuitive
interpretation; secondly, it gives the wrong general-
ization to the discrete case.

Here is how both formulas can be unified and
made intuitively interpretable. Define the cumulative
hazard A(t) by, in the continuous case, A(t) =∫ t

0 α(s) ds, and in the discrete case, A(t) = ∑t
0 α(s).

[These two formulas are special cases of the com-
pletely general expression A(t) = ∫ t

0 dS(s)/S(s−).]
Now we can write, both in the continuous and the
discrete case,

S(t) =
t

�
0

[1 − dA(s)], (1)

which can be interpreted as the product over many
small time intervals s, s + ds making up the inter-
val [0, t], of the probability [1 − dA(s)]. Since the
hazard dA(s) can be thought of as the probability of
dying in the interval from s to s + ds given survival
up to the beginning of that time interval, 1 minus
the hazard is the probability of surviving through the
small time interval given survival up to its start. Mul-
tiplying over the small time intervals making up [0, t]
yields the unconditional probability of surviving past
t ; in other words, (1) is just the limiting form of the



2 Product-integration

equality

Pr(T > t) =
k∏

i=1

Pr(T > ti |T > ti−1)

=
k∏

i=1

[1 − Pr(T ≤ ti |T > ti−1],

where 0 = t0 < t1 < · · · < tk = t is a partition of the
time interval [0, t].

Consider now the statistical problem of estimating
the survival curve S(t) given a sample of inde-
pendently censored survival times. Let t1 < t2 < · · ·
denote the distinct times when deaths are observed;
let rj denote the number of individuals at risk just
before time tj and let dj denote the number of
observed deaths at time tj . We estimate the cumu-
lative hazard function A corresponding to S with the
Nelson–Aalen estimator

Â(t) =
∑

tj ≤t

dj

rj

.

This is a discrete cumulative hazard function, cor-
responding to the discrete estimated hazard α̂(tj ) =
dj/rj , with α̂(t) zero for t not an observed death
time. The product-integral of Â is then

Ŝ(t) =
t

�
0

(1 − dÂ) =
∏

tj ≤t

(
1 − dj

rj

)
,

which is nothing other than the Kaplan–Meier esti-
mator.

The actual definition of the product-integral in (1)
is the following:

t

�
0

[1 − dA(s)]

= lim
max |ti−ti−1|→0

∏
{1 − [A(ti) − A(ti−1)]},

where the limit is taken over a sequence of ever
finer partitions 0 = t0 < t1 < · · · < tk = t of the time
interval [0, t].

From this point we can choose either to study
properties of the product-integral or define it in
greater generality. Both aspects are important in
applications. Let us first give a more general defi-
nition. The important generalization is that we will
define product-integrals of matrix-valued functions

rather than just scalar-valued functions. The concept
now really comes into its own, because when we mul-
tiply a sequence of matrices together the result will
generally depend on the order in which the matrices
are taken. Even in the continuous case there will not
be a simple exponential formula expressing the result
in terms of an ordinary integral. Multiplying prod-
ucts of matrices turns up in the theory of Markov
processes, and this connects directly to the statistical
analysis of multistate models in survival analysis.

Suppose X(t) is a p × p matrix-valued function
of time t . Suppose also that X (or if you like, each
component of X) is right continuous with left-hand
limits. Let I denote the identity matrix. The product-
integral of X over the interval [0, t] is now defined as

t

�
0

[I + dX(s)]

= lim
max |ti−ti−1|→0

∏
{I + [X(ti) − X(ti−1)]},

where, as always, the limit is taken over a sequence of
ever finer partitions 0 = t0 < t1 < · · · < tk = t of the
time interval [0, t]. For the limit to exist, X has to be
of bounded variation; equivalently, each component
of X is the difference of two increasing functions.

Application to Markov Processes

We briefly sketch the application of product-in-
tegration to Markov processes. Suppose an individual
moves between p different states as time proceeds,
staying in each state for some random length of time
and then jumping to another. Suppose the individual
has intensity αij (t) of jumping from state i to state j

at time t , given the whole past history (in other words,
the process is Markov: the intensity only depends
on the present time and the present state). Define
cumulative intensities Aij (t) = ∫ t

0 αij (s) ds and the
negative total cumulative intensity of leaving a state
Aii = −∑

j �=i Aij . Collect these into a square matrix
valued function of time, A. Then one can show that
the matrix of transition probabilities P(0, t), whose
ij component is the probability of being in state j at
time t given that the individual started at time 0 in
state i, is given by a product-integral of A:

P(0, t) =
t

�
0

[I + dA(s)].
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This formula generalizes the usual formula for tran-
sition probabilities of a discrete time Markov chain,
since the matrix [I + dA(s)] can be thought of as
the transition probability matrix for the small time
interval s, s + ds.

Given possibly censored observations from a Mar-
kov process, one can estimate the elements of the
matrix of cumulative intensities A by Nelson–Aalen
estimators. The corresponding estimate of the transi-
tion probabilities, the Aalen–Johansen estimator, is
found by taking the product-integral of Â.

Mathematical Properties

A very obvious property of product-integration is its
multiplicativity. Defining the product-integral over an
arbitrary time interval in the natural way, we have for
0 < s < t

t

�
0

(I + dX) =
s

�
0

(I + dX)
t

�
s

(I + dX).

We can guess many other useful properties of product-
integrals by looking at various simple identities for
finite products. For instance, it is often important to
study the difference between two product-integrals.
Now, if a1, . . . , ak and b1, . . . , bk are two sequences
of numbers, then we have the identity:
∏

(1 + ai) −
∏

(1 + bi) =
∑

j

∏

i<j

(1 + ai)(aj − bj )

×
∏

i>j

(1 + bi).

This can be easily proved by replacing the middle
term on the right, (aj − bj ), by (1 + ai) − (1 + bi).
Expanding about this difference, the right-hand side
becomes

∑

j




∏

i≤j

(1 + ai)
∏

i>j

(1 + bi) −
∏

i≤j−1

(1 + ai)

×
∏

i>j−1

(1 + bi)



 .

This is a telescoping sum; writing out the terms one
by one, the whole expression collapses to the two
outside products, giving the left-hand side of the
identity. The same manipulations work for matrices.

In general, it is therefore no surprise, replacing sums
by integrals and products by product-integrals, that

t

�
0

(I + dX) −
t

�
0

(I + dY )

=
∫ t

s=0

s−
�

0
(I + dX)[ dX(s) − dY (s)]

t

�
s+ (I + dY ).

This valuable identity is called the Duhamel equation.
As an example, consider the scalar case; let A be a

cumulative hazard function and Â the Nelson–Aalen
estimator based on a sample of censored survival
times. Let S be the corresponding survival function
and Ŝ the Kaplan–Meier estimator. The Duhamel
equation then becomes the identity

Ŝ(t) − S(t) =
∫ t

s=0
Ŝ(s−)[ dÂ(s) − dA(s)]

S(t)

S(s)
,

which can be exploited to get both small-sample and
asymptotic results (see Kaplan–Meier Estimator).

We illustrate one other important identity in a
similar manner. Note that

∏

i≤j

(1 + ai) −
∏

i≤j−1

(1 + ai) =
∏

i≤j−1

(1 + ai)aj .

Adding over j from 1 to k gives us
∏

i≤k

(1 + ai) − 1 =
∑

j

∏

i≤j−1

(1 + ai)aj .

Now we can guess the identity

t

�
0

(I + dX) − I =
∫ t

s=0

s−
�

0
(I + dX) dX(s).

This is essentially Kolmogorov’s forward equation
from the theory of Markov processes (see Brown-
ian Motion and Diffusion Processes), and it is the
type of equation – solve Y (t) = I + ∫ t

0 Y (s−) dX(s)

for unknown Y , given X – which originally moti-
vated Volterra to invent product-integration. Y (t) =
�t

0(I + dX) is the unique solution of this equation.
(It is also just a special case of the Duhamel equa-
tion when we take the second integrand Y identically
equal to zero.)

Concluding Remarks

The product-integral seems first to have been used
as a fundamental tool in modern survival analysis by
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Aalen & Johansen [1], though it also appears in a
more informal context in Cox [3] and in Kalbfleisch
& Prentice [7]. Surveys of the theory of product-
integration are given by Gill & Johansen [6] and
Gill [5]. The former paper also pays attention to the
earlier history of the subject. In particular, it is worth
mentioning that a large variety of notations has been
used for the product-integral, including large curly
Ps, product-symbols, and the ordinary integral sign
embellished with a half-circle over the top.

As well as playing a role in the theory of the
Kaplan–Meier and the Aalen–Johansen estimators,
the product-integral is also a useful way to write like-
lihoods and partial likelihoods in survival analysis,
since these can be usefully thought of as continu-
ous products of conditional likelihoods for the data
in each new infinitesimal time interval given the
past. The product-integral is also useful in multivari-
ate survival analysis. In particular, Dabrowska’s [4]
multivariate product-limit estimator is based on a
representation of a multivariate survival function in
terms of product-integrals of a collection of higher-
dimensional joint and conditional hazard functions.
The book by Andersen et al. [2] gives a brief survey
of the theory and many detailed applications, cover-
ing all the topics mentioned above.
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de Saint Flour XXII - 1992), D. Bakry, R.D. Gill, S.A.
Molchanov & P. Bernard, eds. Springer-Verlag (SLNM
1581), Berlin, pp. 115–241.

[6] Gill, R.D. & Johansen, S. (1990). A survey of product-
integration with a view towards application in survival
analysis, Annals of Statistics 18, 1501–1555.

[7] Kalbfleisch, J.D. & Prentice, R.L. (1980). The Statistical
Analysis of Failure Time Data. Wiley, New York.

RICHARD D. GILL



Profile Likelihood

The profile likelihood is not a likelihood, but a like-
lihood maximized over nuisance parameters given
the values of the parameters of interest. Let θ be
the parameter(s) of interest and φ the nuisance
parameter(s) of the statistical model f (y|θ, φ) for
data y. Once y is observed, the likelihood function
is L(θ, φ) = Pr(y|θ, φ). Then the profile likelihood
P(θ) is defined by P(θ) = L[θ, φ̂(θ)], where φ̂(θ)

is the maximum likelihood estimate (MLE) of φ

for given θ . The profile likelihood is thus the value
of the likelihood generated as the nuisance param-
eter φ moves along the path φ = φ̂(θ) through the
parameter space. The name profile comes from the
geometrical interpretation in three dimensions: if θ

and φ are one-dimensional parameters, then the pro-
file likelihood is the profile of the likelihood surface
in θ as seen from a distance looking along the φ axis.

The profile likelihood conveniently formalizes the
use of likelihood ratio tests to construct likelihood-
based confidence regions for a parameter θ in the
presence of nuisance parameters. For regular para-
metric models, the asymptotic distribution of the
likelihood ratio test statistic (LRTS),

−2 log
L[θ0, φ̂(θ0)]

L(θ̂, φ̂)
,

is χ2
p, where p is the dimension of θ , under

the hypothesis θ = θ0 (see Large-sample Theory).
Clearly,

LRTS = −2 log
P(θ0)

P (θ̂ )
,

and so the acceptance region for the hypothesis is the
set of values of θ for which

P(θ)

P (θ̂ )
≥ exp

(
−1

2
χ2

p,1−α

)
,

where α is the size of the test. Define the profile
relative likelihood by PR(θ) = P(θ)/P (θ̂ ); then the
acceptance region is [θ : PR(θ) ≥ exp(− 1

2χ2
p,1−α)].

Plotting the profile relative likelihood in single
parameter-of-interest models provides a visual sum-
mary of the information about θ from this family of
regions, and the regions themselves can be computed
straightforwardly in many important models.

The main value of profile likelihoods is
in constructing confidence regions for nonlinear
functions of parameters, where methods based on
MLEs and their asymptotic standard errors are often
unsatisfactory.

A simple example is the toxicity test of a new
drug on mice, described in [1]. The numbers ri of
mice dying out of ni exposed at dose level xi are

xi : 422 744 948 2069
ri : 0 1 3 5
ni : 5 5 5 5

We fit the logistic regression model

log
pi

1 − pi

= β0 + β1 log xi.

MLEs and standard errors for the two parameters
are β̂0 = −53.90(34.34) and β̂1 = 7.93(5.08). For
the null hypothesis β1 = 0 of no regression on dose,
the Wald test statistic [β̂1/se(β̂1)]2 is 2.44, but the
LRTS is 15.74, and the score test statistic is 11.29
(see Likelihood). The Wald test fails to detect the
regression because the log likelihood in β1 is far
from quadratic, as is clear from the profile relative
likelihood in Figure 1.

Conventional inference about the ED50 based on
the parameter MLEs and their asymptotic covariance
matrix is useless in this example because of the
nonsignificance of the Wald test. However, the profile

Figure 1 Profile relative likelihood for regression slope
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Figure 2 Profile relative likelihood for ED50

likelihood is easily computed by reparameterizing the
model: defining the ED50 by θ = −β0/β1, the model
becomes

log
pi

1 − pi

= β1(log xi − θ).

The likelihood is easily maximized over β1 for fixed
θ , generating the profile relative likelihood shown in
Figure 2.

The MLE of θ is −β0/β1 = 6.80, and the 95%
likelihood-based confidence interval for θ is (6.59,
7.11), corresponding to a dose interval of (728, 1224).

The advantages and disadvantages of the profile
likelihood are clearly seen in the single-sample nor-
mal model N(µ, σ 2). Given a sample y1, . . . , yn with
sample mean y and sum of squares T = ∑

(yi − y)2,
the likelihood is (omitting irrelevant constants)

L(µ, σ) = 1

σn
exp

{
− 1

2σ 2
[T + n(y − µ)2]

}
.

Regarding µ as the parameter of interest and σ as the
nuisance parameter gives

σ̂ 2(µ) = 1

n
[T + n(y − µ)2],

P (µ) = 1

σ̂ n(µ)
exp

(
−n

2

)

= exp(−n/2)nn/2

T n/2

(
1 + t2

n − 1

)−n/2

,

PR(µ) =
(

1 + t2

n − 1

)−n/2

,

where t = √
n(y − µ)/s and s2 = T/(n − 1).

Thus, PR(µ) is exactly the scaled t density (see
Student’s t Distribution), and a likelihood-ratio-
test-based confidence interval for µ is exactly the
usual t interval, though the exact distributional result
improves on the asymptotic χ2 distribution.

Regarding σ as the parameter of interest and µ as
the nuisance parameter gives

µ̂(σ ) = y,

P (σ) = 1

σn
exp

(
−1

2

T

σ 2

)
,

PR(σ) =
(

σ̂

σ

)n

exp

[
−1

2

(
T

σ 2
− n

)]

=
(

T

nσ 2

)n/2

exp

[
−n

2

(
T

nσ 2
− 1

)]
,

where σ̂ 2 = T/n = (n − 1)s2/n. The profile likeli-
hood here is less satisfactory because it treats µ

as known to be y and so gains an extra degree of
freedom, relative to the marginal or restricted like-
lihood based on the χ2

ν distribution of T/σ 2, with
ν = n − 1. If we observed only T and not y, then we
would have a marginal likelihood for σ from T of

M(σ) = 1

2ν/2Γ (ν/2)σ 2

(
T

σ 2

)ν/2−1

exp

(
−1

2

T

σ 2

)

with a restricted maximum likelihood (REML)
estimate σ̃ 2 = T/ν, giving

MR(σ) = M(σ)

M(σ̃ )

=
(

T

νσ 2

)ν/2

exp

[
−ν

2

(
T

νσ 2
− 1

)]
.

Marginal likelihood-based confidence intervals based
on the χ2

1,1−α critical value have very accurate
confidence coverage and are shorter than the usual
(biased) intervals based on the equal-tailed χ2 test,
while intervals based on the profile likelihood using
the same critical value are even shorter because of
the extra degree of freedom, but are offset to smaller
values of σ and have reduced confidence coverage.

The unsatisfactory nature of the profile likeli-
hood – its overprecision resulting from apparently
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knowing the nuisance parameter as an explicit
function of the data and the parameter of interest –
has led to several proposals for adjusting or mod-
ifying it: this is a subject of continuing research
interest. From a Bayesian viewpoint the nuisance
parameter should be integrated out of the likelihood,
not maximized over. Non-Bayesian adjustments have
been proposed by Cox & Reid [4] and Barndorff-
Nielsen [3] among others. In simple models these
adjustments have an effect similar to integrating out
the nuisance parameter with respect to a uniform
prior distribution. In the normal model above when
σ is the parameter of interest, integrating out µ

with respect to a uniform prior gives the marginal
likelihood. [A fully Bayesian analysis with the usual
prior dσ/σ , however, gives the (normalized) profile
likelihood as the posterior distribution of σ .] Profile
likelihoods with a numerical penalty often appear as

average (posterior mean) likelihoods in the likelihood
approach of Aitkin [2].
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Profiling Providers of
Medical Care

The public debate on the cost and effectiveness
of health care in recent years has brought much
attention to the need for measuring and compar-
ing performance of providers of medical care, such
as physicians, clinics, hospitals, and health plans.
Although comparative performance measures in he-
alth care were proposed as early as 1916, their use
became widespread only in the late 1980s [1]. Promi-
nent recent examples of assessing performance in
the delivery of health care involved the analysis and
publication of annual hospital mortality data by the
Health Care Finance Administration and of heart
surgery mortality rates by New York State [4, 5].

The comparison of measures of a provider’s pro-
cess of care, outcomes, or both, to normative or com-
munity standards is often called profiling [7]. The
analysis may encompass several dimensions of care
including quality, use of services (see Health Care
Utilization Data), and cost (see Health Economics).
After defining appropriate metrics and standards in
each dimension of interest, the analyst proceeds to
estimate provider-specific performance, to examine
variations among providers and, ultimately, to iden-
tify possibly aberrant providers.

The results of profiling analyses are used to
generate feedback for health care providers, to design
educational and regulatory interventions by institu-
tions and government agencies, to design marketing
campaigns by hospitals and managed care organiza-
tions, and to select health care providers by individ-
uals and managed care groups. Profiling information
is often disseminated to the public in the form of
“report cards” for health systems, hospitals, and indi-
vidual health care practitioners [2]. A broad-based
system for generating information for report cards is
the Health Plan Employer Data and Information Set
(see [2]).

Provider profiling entails a multifaceted set of
analyses using data of varying quality, detail, and
completeness. The process normally includes some
form of risk adjustment, which is intended to
account for possible differences in patient case mix.
Commonly used methods for case mix adjustment are
based on regression models for predicting a specific
patient-level response, such as utilization, mortality,

and cost. Many of these risk adjustment systems can
be implemented using commercially available soft-
ware such as APACHE and others. The adjusted
responses are aggregated by provider, and compar-
isons are made to other providers or to normative
data. Relative rankings and z-scores (see Normal
Scores) for the difference between observed and
expected performance are often used to compare
providers [6]. More recent work approaches profil-
ing analysis using a class of metrics of comparative
and absolute performance, which are derived from
the distribution of provider performance indices [8].

The methodologic challenges of observational
studies generally apply to profiling analysis as well.
In particular, a careful analysis would need to account
for possible selection effects due to factors not
reflected in the patient-level data (see Propensity
Score; Selection Bias). In addition, the extent of
missing data can be substantial and the pattern of
missingness can vary across providers, even in well-
designed studies. Recently developed methods for
handling data not missing at random can be used to
minimize bias and loss of efficiency (see Multiple
Imputation Methods).

The statistical precision of provider-specific esti-
mates and provider comparisons is seriously limited
by the relatively small sample sizes of patients by
provider involved in a typical profiling analysis. In
addition, the analysis needs to account for correla-
tions due to clustering in the data and to address
the issue of multiple comparisons when ranks are
reported and when performance indices are used to
screen providers and identify “outliers”. In response
to these difficulties, recent methodologic work on
profiling has made use of hierarchical models, with
separate levels for modeling variation within and
between providers [3, 7, 8]. The hierarchical model
framework is suitable for accounting for sources of
variation and clustering effects in the process of com-
bining information across providers and for comput-
ing appropriate metrics of provider performance (see
Hierarchical Models in Health Service Research;
Multilevel Models).

As the process, cost, and outcomes of health care
undergo close scrutiny, the need for careful profiling
analysis is increasing. To meet this need successfully,
further development of the statistical methods alone is
not enough. Such work would have to be combined
with considerable streamlining and improvement of
the data collection mechanisms as well as with efforts
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to formulate a consensus on standards for performing
and reporting the results of profiling analysis.
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Prognosis

In clinical medicine, establishing a prognosis for an
individual is the estimation of the relative probabil-
ity of the various possible outcomes of a disease.
Essentially, this involves prediction of the outcome
probabilities for the natural history of a disease at
some point after the diagnosis has been made. The
outcome might be death, for example, in which case
one is trying to estimate the risk of death accord-
ing to characteristics of the patient, such as age and

disease severity; other examples are the prognostic
assessment for remission of symptoms, future quality
of life, or permanent disability. Conventionally, this
type of prediction extends the concept of natural
history to include the effects of various treatment
options.

(See also Clinical Epidemiology; Natural History
Study of Prognosis; Predictive Modeling of Prog-
nosis)

STEPHEN D. WALTER



Prognostic Factors for
Survival

Prognostic assessment of time to an event (death) is
important in many medical studies (see Prognosis).
Applications are widely varied, and include:

1. predicting the outcome to assist in making treat-
ment selection decisions

2. development of disease classification and staging
systems

3. identification of biological factors that may help
elucidate disease pathophysiology

4. analysis of treatment effects in randomized
clinical trials.

Statistical modeling is a process of discovery. One
usually wishes to determine what variables are asso-
ciated with outcome, the nature of this associa-
tion, and how the association is modulated by other
variables. There is, however, a conflict between
exploratory analysis for discovery and the ability to
make statistically valid statements about the result-
ing model. Consequently, it is useful to distinguish
exploratory prognostic investigations from confirma-
tory studies. In the latter, the form of the model, the
identity of the variables, and the nature of their repre-
sentations (e.g. binary with specified cutpoints, cate-
gorical with specified categories, linear, etc.) should
be specified in advance. Under such conditions, valid
statistical statements can be made about the model.
Simon & Altman have defined three phases of prog-
nostic factor studies and offered guidelines for phase
III (confirmatory) prognostic factor studies [17].

When a statistical model is used for the analy-
sis of randomized clinical trials, the need for making
statistically valid statements is paramount. Conse-
quently, this type of application should be dealt with
as a confirmatory investigation. In some confirmatory
prognostic studies even the regression coefficients of
the model are specified in advance so that the data
will provide a valid estimate of predictiveness of
the model. Confirmatory prognostic studies are rarely
performed. Consequently, the literature of prognostic
factors in medicine is often contradictory and difficult
for practicing physicians to utilize.

The process of model development and valida-
tion can be partially simulated by splitting the data
into two parts. Investigators are usually reluctant to

do this because most data sets are of limited size
for assessing all the variables of interest. In many
cases, however, published models have been overfit-
ted to the data. Such models may feature spurious
relationships and gross overestimates of predictive-
ness. When one has a very large data set, it is
best to split it into a portion for model develop-
ment and a portion for model validation. If the
data set is too small for splitting, then it is best
to limit the extent of model development to the
variables of greatest interest, and to develop the
model in a manner that will permit valid statisti-
cal inferences. The third alternative is to conduct
the study as an exploratory process of discovery
and to be emphatic about the need for validation
before the model should be considered for adop-
tion. Sample reuse methods such as the bootstrap
or cross-validation can also be used if the model
development process is algorithmic, although this is
often not the case.

We focus attention here on factors for predicting a
single outcome event, such as survival. Multistate and
multievent models present special problems [1, 2].

Many types of regression models for survival
data have been used. These include fully parametric
models based on exponential, Weibull, normal, log-
normal, gamma, and log-gamma distributions (see
Parametric Models in Survival Analysis). Propor-
tional hazards (PH) models, both parametric and
nonparametric types, represent the hazard function as
a product of a function of time and a function of the
covariate vector. The most commonly used prognos-
tic survival model is Cox’s regression (proportional
hazards) model [3]. Cox’s model avoids parametric
assumptions about the function of time. Accelerated
failure (AF) time models are characterized by an
assumption that the log of the survival time is the sum
of a linear regression function (β ′x) plus a random
variable which represents the log survival of a subject
with all covariate values equal to zero [12]. Expo-
nential and Weibull regression models (with only the
scale parameter depending on the covariates) are both
parametric PH models and AF models.

The models mentioned above are all fixed-effects
models in which the covariates are related to out-
come through a linear functional θ = β ′x = β1x1 +
· · · + βpxp, referred to as the “prognostic index”.
The models differ in the assumptions they make about
the underlying survival distribution and the param-
eter of the distribution which is determined by θ .
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Random-effects models such as frailty models have
also been studied but are not widely used yet [19].

Cox’s PH model is widely used, primarily because
it is a reasonably flexible model that does not require
an assumption concerning the underlying survival
distribution. In prognostic modeling attention is often
focused on inference about specific regression coeffi-
cients or on the prognostic index. Cox’s PH model is
almost fully efficient for such inferences. A general-
ization of the PH model replaces the linear functional
by θ = ∑

fi(xi), where fi(·) is a function with spec-
ified form such as a cubic spline [9].

For normal linear models it is well known that
the inclusion of spurious or marginally important
variables may increase the mean square error
of prediction, although the residual mean square
error will decrease [12]. This has led to the
development of various stepwise variable selection
algorithms. Unfortunately, the use of such methods
invalidates the statistical inference statements usually
associated with a regression model. Variable selection
procedures are also frequently the basis for claims as
to which are the “most important” covariates, when
in fact there may be several models that predict
about equally well. Use of stepwise procedures
often makes it difficult to provide direct answers
to questions such as whether use of a new assay
provides improved predictiveness compared to use
of a standard covariate alone [17]. For validity of
inference it is best to avoid variable selection.

Prognostic modeling is often performed on the
data at hand without much thought about sample size
and the number of variables that can be studied reli-
ably (see Sample Size Determination). Harrell [6]
has suggested that the number of events should be
at least ten times as large as the number of degrees
of freedom for reliable modeling of survival data. If
a continuous variable is represented by a restricted
cubic spline with four knots, then two degrees of
freedom are devoted to the variable. Similarly, a
categorical variable with three categories is repre-
sented by two indicator variables and hence counts
for two degrees of freedom. The number of vari-
ables modeled can be reduced by methods such as
principal components, variable clustering, or using
clinical summary indices that do not use the outcome
data [8].

Continuous variables are most often represented
linearly in prognostic modeling, but there is often
interest in determining the nature of the relationship

between an important continuous variable and out-
come. Statisticians often approach this by using poly-
nomials or by making the variable categorical (see
Categorizing Continuous Variables). One of the
most flexible and convenient approaches, however, is
to use a restricted cubic regression spline to represent
the relationship [5, 7]. This only involves defining
new variables, based on the variable of interest and on
the number and location of knots, and then using stan-
dard software to fit the model. As long as the number
and location of the knots are specified in advance,
standard significance tests (see Hypothesis Testing)
and confidence intervals can be used to interpret
the resulting relationship between the values of the
covariate of interest and the outcome. Restricted
cubic splines require the use of few degrees of free-
dom if the number of knots is kept small (e.g. 3–4).
An alternative way of modeling a continuous variable
is to dichotomize it using an “optimally selected” cut-
point. This approach is not recommended, however,
because the optimizing of the cutpoint is a nonlinear
process that is often ignored in subsequent inference
using the model.

Once the form of the model is selected, the
variables to be included are specified, and the manner
of representing continuous or categorical variables
is decided upon, the parameters of the model are
generally determined to maximize a likelihood or
partial likelihood function. The next step is assess-
ment of goodness of fit of the model. Both analytic
and graphic methods can be used. To test for the addi-
tivity of effects, models containing interactions can
be fitted and likelihood ratio tests performed. To test
for linearity of continuous variables, residual plots,
such as martingale residual plots for the Cox model,
can be used [18] (see Residuals for Survival Anal-
ysis). For parametric models there is a distributional
assumption to be checked. For the PH model, the
proportional hazards assumption should be checked
either by examining Schoenfeld residuals or in other
ways [13, 16]. One should also check for overly influ-
ential observations (see Diagnostics).

Once adequacy of fit is established, the statistical
significance of individual regression coefficients can
be examined using the Wald test based on the asymp-
totic normality of the maximum likelihood estimates
(see Likelihood). Confidence intervals for individ-
ual regression coefficients or for linear combinations
can be similarly determined. Risk groups can also
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be established based on values of the prognostic
index β ′x.

In many cases it will be useful to quantify the
proportion of variability explained by the model.
Measures of explained variability have been pro-
posed by several authors for survival models [11,
15] (see Explained Variation Measures in Sur-
vival Analysis). There is a bias in computing these
measures on the same set of data used to fit the
model. This bias can be reduced using the bootstrap
or cross-validation [6, 10]. Even without bias correc-
tion, however, the proportion of variability explained
often will be low, and this will temper the interpre-
tation of highly statistically significant effects. The
measures of explained variation are also quite useful
for comparing different models.

Usually the covariates studied represent properties
measured initially on subjects. In some applications,
however, there is interest in determining whether
a measurement made subsequently can be used as
an early indicator of disease recurrence. This can
be addressed by defining the measurement as a
time-dependent covariate. Most survival regression
models can accommodate time-dependent covariates.
In using a survival model to evaluate treatment
effect, however, time-dependent covariates should be
generally avoided because they may be influenced
by treatment and hence the regression coefficient for
treatment may be misinterpreted.

It is common to analyze randomized clinical tri-
als using survival models that account for important
covariates. The model is used in order to increase
power for detecting treatment effects. Since the tri-
als are randomized there should be no confound-
ing between treatment effect and prognostic factors.
Since these clinical trials are often intended to be
definitive bases for drug approval or public health
policy, the prognostic factors to be included and the
form in which they are modeled should be specified
in advance. Usually only main effects are included
in such models in spite of the fact that treatment
by covariate interactions are of considerable inter-
est to physicians. Incorporating such interactions,
however, raises multiplicity questions which may be
difficult to deal with satisfactorily (see Simultaneous
Inference). Dixon & Simon [4] studied a Bayesian
approach based on placing an exchangeable prior on
the regression coefficients for treatment by covari-
ate interactions with binary prognostic factors. Their

approach is applicable to the PH and other survival
models.

Survival models can also be used to evaluate
treatment effects in nonrandomized settings. One
approach is to use the model directly to reduce con-
founding between treatment and prognostic factors.
An alternative approach is to develop a model; for
example, a logistic regression model, to predict treat-
ment assigned on the basis of prognostic factors. The
prognostic index of that model, called a “propensity
score”, is then used as a covariate in a survival model
to evaluate treatment effects [14].
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Program Evaluation

Most societies are confronted by many complex
health problems. A health program may be defined as
an organized response to reduce one or more of these
problems. In most cases, health programs are imple-
mented to achieve specific objectives or outcomes
by performing some type of service or intervention.
Common examples include prenatal care programs to
improve birth outcomes, fluoridation of public water
supplies to improve community oral health, smok-
ing cessation programs to reduce smoking behavior,
school immunization programs to reduce morbidity
and mortality, public insurance programs to increase
use of health services, or medical treatments or pre-
ventive services to improve or maintain health.

Evaluation is the application of research meth-
ods to measure and explain the effects of a pro-
gram against the objectives it set out to accom-
plish. Program evaluations help decision makers to
understand the reasons for program performance,
and to make informed judgments about improving
a program, extending it to other sites, or cutting
back or abolishing a program so that resources may
be allocated elsewhere. In essence, evaluation is
a management or decision-making tool for admin-
istrators, planners, policymakers, and other health
officials.

Evaluation as a Profession

Program evaluation is a well-known, international
profession. In many countries, evaluators have estab-
lished associations (e.g. the American and Canadian
Evaluation Associations) which hold annual con-
ferences. The American Evaluation Association has
developed guiding principles to promote the ethi-
cal conduct of evaluations by its members [1]. The
Evaluation Quarterly, Evaluation Review, and Evalu-
ation and the Health Professions contain findings of
health program evaluations and advances in evalua-
tion methods.

Evaluation Methods

Most evaluations of health programs consist of three
basic steps. The first step occurs in the political realm,
where evaluators work with decision makers to define

the questions which the evaluation will answer about
a program. While evaluations may be performed for a
variety of reasons, most are conducted to answer two
fundamental questions: “Did the program succeed
in achieving its objectives?” and “Why is this the
case?”.

In general, program success or failure depends
on the accuracy of its underlying “theory of cause
and effect” and “theory of implementation” [7]. That
is, all programs have either an explicit or implicit
theory of cause and effect, which states that “if
the program performs X, then Y will result” (see
Causation). Programs also have a theory of imple-
mentation, which is usually defined by the proto-
cols for implementing a program in the field. Pro-
grams may fail because of faulty implementation, or
because of weaknesses in the program’s implemen-
tation strategy. For example, a health promotion pro-
gram to increase healthy lifestyles may be delivered
by nurses as part of physical examinations, or iden-
tical services may be delivered by nurses conducting
healthy lifestyle classes. The strategy for delivering
the intervention – through physical examinations or
classes – may affect the program’s success in chang-
ing people’s behavior. In short, programs are suc-
cessful only when their underlying theories of imple-
mentation and cause and effect are sound. Faulty
assumptions in either domain often undermine pro-
gram performance.

In the second step, the evaluation is conducted
to answer the questions about the program.
Impact evaluations (also known as “outcome” or
“summative” evaluations) address the first question
and use experimental or quasi-experimental designs
to estimate program effects [2, 4, 8] (see Outcomes
Research). Experimental designs (see Clinical
Trials, Overview) use randomization to determine
whether observed outcomes are due to the program.
However, in many programs randomization is not
possible because laws prohibit excluding groups from
the program, logistics prevent random assignment,
the evaluation is performed after the program
ends, or other reasons. In these cases, quasi-
experimental designs (such as interrupted time series,
regression–discontinuity analysis, and nonequivalent
control group and static comparison group designs)
are often used to estimate program effects [3]. In
general, the greater the political controversy about
a program in the first step, the greater the importance
of having a rigorous impact design that can withstand
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public scrutiny when the results of the evaluation are
released to the public.

Process evaluations (also known as “evalua-
tions of program implementation” or “formative
evaluations”) address the second question and
attempt to explain why programs have positive, neg-
ative, or no effects by examining how they were
implemented [6]. Process evaluations typically are
designed to answer the following questions: (i) Was
the program implemented as intended? (ii) Was the
intervention strong enough to make a difference
(dose–response relationship)? (iii) Did the control
group receive a similar intervention from another
source? (iv) Did external events weaken or reinforce
the program’s impact? To answer these questions,
process evaluations use both quantitative methods
(such as surveys and unobtrusive indicators) and
qualitative methods (such as focus groups, ethno-
graphic methods, and case studies). When an impact
evaluation is based on a quasi-experimental design,
evidence from process evaluations is useful for deter-
mining whether one or more threats to validity
account for program effects.

In the third step the evaluation returns to the polit-
ical realm, and findings are disseminated to decision
makers, interest groups, and other constituents. A
central assumption is that evaluations are useful only
when their results are actually used to formulate new
policy or improve program management. However,
history indicates that this is often not the case [5,
9]. Formal dissemination plans may be developed to
ensure that each group receives the information it
wants about the program in a timely manner. Results
also are more likely to be used when decision mak-
ers play an active role in creating the questions in
step one.

In the end, the results of an evaluation are not the
final determination of a program’s worth, which is
ultimately a political decision. An evaluation, how-
ever, can provide public evidence about a program to
reduce uncertainties and clarify the gains and losses
that different decisions might incur [9].
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Projection Pursuit

Projection pursuit is a multivariate data analysis tech-
nique, the idea of which originates from Kruskal [15]
and Switzer [29]. Its first successful implementation
was by Friedman & Tukey [10] to exploratory data
analysis, who also suggested the felicitous name pro-
jection pursuit. A unified notion of projection pursuit
was introduced by Huber [12], which set a basis for
further statistical research in the area.

As the name suggests, projection pursuit seeks
interesting structures of a high p-dimensional data
set by searching through projections of the data to
lower k-dimensional spaces. The interesting struc-
tures include clusters, separations, or unexpected
shapes or other “nonlinear structures”. The nonlinear
structures are opposite to linear structures. The linear
structures are found via an analysis of sample mean
and covariance, as attempted in classical multivari-
ate analysis. The lower dimension k is usually 1 or
2 or maybe 3. A one-dimensional (projected) data set
can be viewed via a histogram; a two-dimensional
data set can be viewed via a scatter plot; and a
three-dimensional data set may be inspected by spin-
ning a three-dimensional scatter plot (see Graphical
Displays). There are two key elements in implement-
ing projection pursuit. One element is the projection
pursuit index, which measures how important a pro-
jection is. The larger the index, the more interesting
the projection. Another element is the projection pur-
suit algorithm, which is an optimization algorithm
that searches stepwise over a k-dimensional space to
maximize the index.

How do we choose or specify a projection pur-
suit index? Since it is easier to agree on what is an
uninteresting projection, a projection pursuit index
is an estimate of some distance between an uninter-
esting distribution and the distribution of projected
data (or a projection). A natural uninteresting distri-
bution is the standard normal distribution, N(0, 1),
since it is the distribution that is the simplest and
the one that is studied most thoroughly in statistics.
Diaconis & Freedman [3] contains another argument
for regarding the normal distribution as uninterest-
ing: if the scale is fixed, then the normal distribu-
tion maximizes entropy, which is a standard measure
of randomness (or unstructured distribution). Thus,
heuristically the projection that maximizes the index

(with the normal distribution as an uninteresting dis-
tribution) is most interesting (and may be called the
least normal projection). Huber [12], Friedman [7],
Jones & Sibson [14], Hall [11], Cook et al. [2], Li &
Cheng [16], and Posse [21] all considered projection
pursuit indices that use the standard normal distribu-
tion as the uninteresting distribution. However, the
indices can easily be adapted to other uninterest-
ing distributions. For example, Nason [18] proposed
robust projection pursuit indices that measure diver-
gence from student t-distribution.

Example (Hermite Index)

Let X1, . . . , Xn be a p-dimensional data set of
size n. Consider one-dimensional projection pursuit.
Then the dimension k of the lower dimensional
projection space is 1 and a projection is specified
by a (p-dimensional) vector α such that αTα = 1.
The projected data in this case are one-dimensional
data points Z1, . . . , Zn, where Zi = αTXi for i =
1, . . . , n, the structures of which can be easily viewed
via their histograms.

Assume for the moment that E(Xi ) = 0 and
cov(Xi ) = Ip . Then the L2 distance between the
densities of projected data Zi = αTXi and N(0, 1)
indicates how interesting the projection by α is.
Here, the L2 distance between two functions f

and g is
∫

[f (z) − g(z)]2 dz. Since polynomials are
inexpensive to compute, Hall [11] defined his index
on the basis of an estimate of the m-term Hermite
expansion of the L2 distance:

IH
m(α) =

m∑

j=1

√
π

j ! × 2j−1

[
1

N

N∑

i=1

Hj(α
τ Xi )φ(ατ Xi)

]2

+ 2π1/2

[
1

N

N∑

i=1

φ(ατ Xi ) − 1

2π1/2

]2

, (1)

where φ is the probability density function (pdf) of
N(0, 1) and the Hj s are Hermite polynomials. In
practice, E(Xi ) and cov(Xi ) are arbitrary and the
distribution of Xi is unknown. Thus, a practical m-
term Hermite index is simply IH

m(α) above with Xi

replaced by the sphered data X̃i of Xi . The sphered
data are invariant under scale, location, and rotation
changes, and they satisfy

1

n

n∑

i=1

X̃i = 0,
1

n

n∑

i=1

X̃iX̃T
i = Ip. (2)
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For example, Friedman’s [7] sphering scheme is
X̃i = D̂−1/2Ûτ (Xi − X) for i = 1, . . . , n, where
ÛD̂Ûτ = �̂ is an eigenvalue–eigenvector decom-
position of the sample covariance matrix �̂ =
(1/n)

∑
(Xi − X)(Xi − X)τ and X = ∑

Xi/n is the
sample mean.

Of course, a different m will result in a different
projection pursuit index. See remarks in the next two
paragraphs for a discussion on choosing m. If the
resulting α is close to (1, 0, . . . , 0), then it indicates
that the first coordinate or the first variable in the
data may be interesting. However, if α is close
to (1/

√
2, −1/

√
2, . . . , 0), then it indicates that the

difference of the first and second coordinates of the
data may have an interesting structure.

Friedman’s index [6] differs from Hall’s in that
Friedman applied a Legendre polynomial expan-
sion of the L2 distance between the densities of
the transformed projection and a transformed stan-
dard normal random variable. The transformation is
R = 2Φ(Z) − 1, where Φ(z) is the cumulative dis-
tribution function (cdf) of N(0, 1). When k = 2,
a two-dimensional Legendre index can be obtained
in a similar way (cf. [7]). Other indices include
those based on the Kolmogrov distance (see Kol-
mogorov–Smirnov Test) (Li & Cheng [16]) skew-
ness, kurtosis and lower order polynomials [14], and
Hermite functions [13]. Sensitivity to a particular
nonlinear structure varies from one index to another;
and even the sensitivity of one type index (Hermite
index, say) changes as m changes. There are some
preliminary studies on comparing sensitivities of the
various indices, see [2] and [25].

Using sphered data in a projection pursuit proce-
dure is very important in practice. It usually provides
a large computational gain and may unmask the “lin-
ear structures” from the “nonlinear structures”. The
linear structures can often be found by examining
the sample mean and covariance of data, or a study
of principal components that are obtained by an
analysis of the covariance matrix. See [12] for more
discussions on the importance of sphering. Note that
the sphered data satisfy the constraints (2), which
makes the first two terms of Legendre, Hermite,
and other polynomial or polynomial-based function
(such as Hermite function) indices much smaller than
the higher order terms. See Sun [25], who suggested
using 3 ≤ m ≤ 6 in these indices.

How do we choose a projection pursuit algo-
rithm? It is important that the optimization algorithm

provides solutions close to the global maximum, or
that its first several solutions provide the most inter-
esting projections. Friedman [7] gave a practical pro-
jection pursuit algorithm (available in STATLIB [23])
for his one and two-dimensional Legendre indices, in
which he uses a clever idea called structure removal.
The idea of structure removal is to transform data
along an “interesting” direction (a solution) into stan-
dard normal data while keeping structures along the
other orthogonal directions unchanged. It has the
effect that interesting directions already found will
not be rediscovered, because normal structures are
uninteresting and will therefore minimize the index.
Structure removal should be implemented in all pro-
jection pursuit algorithms.

The next question is to judge how interesting
a solution is from a projection pursuit algorithm.
Even if data were multivariate normal, a projec-
tion pursuit algorithm would provide some solutions
or projections α. It is useful to have a significance
test (see Hypothesis Testing) to decide whether the
apparent structure is real or just the effect of noise.
Sun [24] derived a theoretical approximation for the
significance level (or P value) associated with Fried-
man’s one-dimensional projection pursuit index [7].
See Sun [26] for a rule of thumb in using this for-
mula. Sun’s method is applicable in principle to all
polynomial or polynomial function-based indices. See
Posse [21] for a nontrivial application of the idea to
his modified chi-square index, a two-dimensional pro-
jection pursuit index. A by-product of the P value is
that it helps a user to decide when to stop a projec-
tion pursuit algorithm. Consecutive large P values
indicate that there might not be much interesting
structure left.

Projection Pursuit Regression

The idea of projection pursuit goes beyond explora-
tory data analysis. For example, Friedman et al. [9]
and Friedman & Stuetzle [8] applied projection pur-
suit in density estimation, classification, and regres-
sion problems. More recent applications can be found
in Duan [5], Maller [17], Li & Cheng [16], Zhu
et al. [31], Ngai and Zhang [19], Renaud [22] and
Polzehl [20].

Consider a regression problem where X is a p-
dimensional predictor variable and Y is the response
variable. Projection pursuit regression approximates
the regression function f (x) = E(Y |X = x), by a
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finite sum of ridge functions

f (m)(x) =
m∑

i=1

gi(α
T
i x), (3)

where the ridge function gi is defined on the domain
of the projected data αT

i x and αi is the ith pro-
jection matrix such that αT

i αi = I, a p × k iden-
tity matrix. The projection pursuit regression model
(3) is quite general. It can be used to approximate
a large class of functions f well as m → ∞ for
suitable choices of αi and gi (cf. Diaconis & Shahsha-
hani [4]). For example, the simple linear regres-
sion, the neural network modeling with one hidden
layer, and the generalized additive model can be
viewed as special cases of (3), see [26]. There are
many algorithms for fitting gi and αi . Friedman &
Stuetzle [8] suggested a stepwise projection pursuit
regression algorithm (available in S-PLUS software,
http://www.insightful.com/), which allows a
backfitting, where αi are found in a stepwise way by
maximizing an updated index and gi are estimated
by super-smoother smoothing through the points rep-
resented by projected data αT

i X and the ith level of
residuals (see Nonparametric Regression).

Projection pursuit density estimation approximates
a high p-dimensional data density f (x) of X by

f (m)(x) = f0(x)

m∏

j=1

fj (zj ),

where zj = αT
j x are projected data based on a suitable

choice of projection operators αj ; f0 is an unin-
teresting density or initial model; and fi are low
dimensional densities based on interesting projections
of data. A stepwise projection pursuit density algo-
rithm for estimating f (m) may be as follows. (i) Let
f (0) = f0; (ii) given f (l−1), find α̂ that maximizes the
index

I (α) = 1

n

n∑

i=1

log

[
ĝα(Zi)

ĝ
(l−1)
α (Zi)

]
, (4)

where ĝα is a marginal density estimate based on
Z1, . . . , Zn, and ĝ(l−1)

α is a density estimate based on
the projection to α of a Monte Carlo random sample
from f (l−1); (iii) set

fl(α̂
Tx) = ĝα̂(α̂T x)

ĝ
(l−1)
α̂ (α̂T x)

,

f (l)(x) = f (l−1)(x) × fl(α̂
Tx).

Then repeat steps (ii) and (iii) until max I (α) is less
than a preselected small value.

Conclusions

The beauty of projection pursuit is its ability to lift
lower dimensional techniques to higher dimensions,
and hence it helps to overcome the curse of dimen-
sionality of a high dimensional data set. A common
feature of (exploratory) projection pursuit, projec-
tion pursuit classification, projection pursuit density
estimation, and projection pursuit regression is to
use an algorithm in a stepwise way to search over
low dimensional projections to maximize a projection
pursuit index, such as (1) and (4). Projection pur-
suit can be applied to other multivariate analysis, too.
For example, Polzehl [20] recently developed a pro-
jection pursuit discriminant analysis. Just like any
modern data analysis technique, projection pursuit
should be used in conjunction with (after) some sim-
ple preliminary data analysis, such as finding simple
structures using the summary statistics, performing
a predimension reduction via principal components,
and sphering the data.

Searching interesting projections via a projection
pursuit algorithm (which maximizes a projection pur-
suit index) as described above may be called auto-
matic projection pursuit. This is in contrast to the
manual projection pursuit, where a dynamic graphic
system is employed and the “interesting” projections
are searched by the human eye via spinning the pro-
jected data, as in Prim-9 [30] and Grand Tour [1].
Manual projection pursuit can be infeasible if the
data dimension is large or if a user is not experi-
enced. Xgobi [28] is a first attempt to combine prop-
erly automatic and manual projection pursuit. Xgobi
contains functions beyond projection pursuit. The
interactive dynamic projection pursuit by Sun, Fleis-
cher and Loader [27] is another new development
toward the same direction. It is an S-plus function that
dynamically loads some C and Fortran algorithms for
conducting both one- and two-dimensional projection
pursuit; it is currently the only software that provides
P-values of projection pursuit indices”.
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Projections: AIDS,
Cancer, Smoking

Planning for, and allocation of, health services is
very much a dynamic process which is highly depen-
dent on data and information about the current extent
and distribution of diseases and injuries in a popu-
lation, and, equally importantly, about how these are
changing. Decisions must be made today about future
health resources allocation; these decisions are ideally
based on informed judgments about future epidemi-
ologic patterns.

A prerequisite for making projections of disease
and injury rates, and of their determinants, is reliable
knowledge about current rates of cause-specific ill-
ness, and, in the case of determinants of health status,
reliable science linking various exposures with dis-
ease and injury outcomes. Ideally, projections should
be made taking into account possible changes in risks
or rates of disease and injury, based usually on recent
trends and on probable or possible changes in various
determinants of health status. In cases where informa-
tion is not considered sufficiently reliable to project
future disease or injury risks, then demographic pro-
jections are still possible provided that projections of
the future size and age–sex composition of the pop-
ulation are available. These projections assume that
the age–sex patterns and levels of mortality and mor-
bidity will remain constant, and hence the results of
such projections merely indicate the implications of
projected demographic changes, assuming no change
in the epidemiologic parameters. This is clearly an
implausible assumption and hence these projections
are likely to be of limited value for health plan-
ning.

More useful projections result from making
assumptions about likely or even possible changes
in disease and injury rates over the projection period.
The shorter the period, the more confidence there will
be in the results. Projections are commonly made over
a period of 10–30 years and hence the accuracy of
the projections is substantially lower than for shorter
projection periods, for which uncertainty in disease
trends is relatively minor. To provide some bounds on
this uncertainty, longer-term projections are generally
prepared on the basis of various “scenarios” of the
future, each of which assume different developments
in the underlying determinants of disease and

injury. For example, bounds may be defined by so-
called “optimistic” and “pessimistic” scenarios of
change over the projection period, with intermediate
assumptions defining a “baseline” or “best-guess”
scenario (see, for example, [10]).

Projections of disease and injury rates, and of
overall survival levels, are generally made using
one of two broad approaches: either past trends in
rates are projected using some mathematical model
relating rates in the past to time (calendar year),
or projections are made on the basis of projected
changes in the determinants of disease and injury
levels. Mathematical extrapolation typically assumes
that a logarithmic or higher-order polynomial expres-
sion adequately describes a previous time series of
rates. Conversely, deterministic models usually spec-
ify future rates as a function of distal or socioeco-
nomic variables (e.g. educational levels), or in the
case of diseases where the etiology is comparatively
well understood, such as major vascular diseases and
several sites of cancer, as a function of qualitative
and quantitative changes in exposure levels. Such
methods should also consider possible changes in the
underlying effect of exposure on disease outcomes,
where this can be ascertained. Much more detail on
these and other approaches to projecting epidemio-
logic parameters can be found in various studies [1,
2, 8, 10].

Whatever method is used to make projections, the
results will be more or less reliable depending on
the validity of the methods and the quality of the
data and science used to model the past. Rather than
interpreting projections as predictions of the future,
it is much more appropriate to view them merely as
the numerical consequences of a set of assumptions
which may, or may not, turn out to be valid.

Projections have been made for a variety of health
outcome indicators and for other aspects of the health
sector, including health services provision. Three
particular types of projections are described below
in view of their importance for global health status;
namely, cancer, smoking, and AIDS.

Cancer

Cancer is not a single disease, but several diseases
with very different causalities (see Oncology). The
etiology of some important sites in some populations
is well understood (e.g. the role of tobacco in lung
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cancer and cancers of the upper-aerodigestive tracts
(see Smoking and Health), and alcohol as a cause
of esophageal and liver cancers), whereas for others,
e.g. breast cancer, the science of causation is still
inconclusive. To the extent that the natural history
of certain cancers is well known, and can be clearly
described in terms of cohort-exposure to underlying
determinants, projections can be made with greater
reliability. This is certainly the case for lung cancer,
the leading site of the disease in the world, and
to a lesser extent for stomach cancer, the second
most common site, for which incidence and mortality
have been progressively declining for decades in most
populations where trends can be reliably documented.

When making cancer projections, therefore, it may
be convenient to consider three broad clusters of sites
depending on major known carcinogens and overall
disease trends. These sites broadly include:

1. tobacco-related cancers, which, in populations
where smoking has been widespread for decades,
account for up to 50% of all cancer cases [11]

2. stomach cancer, which alone has been declining
during the twentieth century, thought largely to
be due to less use of salt, and

3. all other sites, for which either incidence and
mortality have not changed greatly, or, where
large changes have occurred, are relatively
insignificant causes of overall cancer burden.

Projections of lung cancer can then be made using
various models that relate lung cancer risk to previous
cigarette consumption, appropriately allowing for the
time lag between onset of persistent smoking and
disease risk, sometimes expressed as the duration
of smoking (see Latent Period). Doll & Peto [4]
developed a risk function of the form

I = 0.273 × 10−12(cigarettes per day + 6)2

× (age − 22.5)4.5,

whereby lung cancer incidence, I , is primarily deter-
mined by duration of smoking. Other methods have
projected lung cancer as a function of various sce-
narios for smoking cessation, or as a direct function
of cohort exposure [6, 7].

Given the steady long-term decline in stomach
cancer incidence and mortality (see Figure 1), the
occurrence of the disease would appear to be strongly
related to dietary factors, and, in particular, to the
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salting of foods, which change with development.
Projections of stomach cancer mortality have been
made using a model with literacy (HC), GNP per
capita (Y ), and time (T ) (as a proxy for technology
and treatment advances) of the form

ln Ma,k,i = Ca,k,i + β1 ln Y + β2 ln HC + β3T ,

where Ca,k,i is a constant term and Ma,k,i is the
predicted mortality level for age group a, sex k, and
cause i [10].

It has been estimated that cancer caused about
6 million deaths in 1990, 3.4 million of whom
were men, and 2.4 million (of both sexes) in the
developed world. Lung cancer is already the leading
site of the disease, causing 945 000 deaths world-
wide in 1990, followed by cancers of the stom-
ach (752 000 deaths), liver (500 000), colon/rectum
(472 000), esophagus (358 000), and breast (322 000).
By the year 2020, lung cancer is projected to cause
more than 2 million deaths, mostly in men, and stom-
ach cancer is projected to decline further to 500 000
deaths. In that year, cancer is projected to be the
cause of about 10 million deaths – 70% more than
today [10].
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Smoking

There are two aspects of particular interest in rela-
tion to projections of smoking; namely, projections
of smoking patterns and levels in different popu-
lations and, much more importantly, projections of
smoking-attributable mortality. Projections of smok-
ing prevalence and consumption are, by themselves,
of limited public health interest. However, projections
of the future health effects of current (and past) smok-
ing patterns are of very considerable public health
concern, given the extensive health effects of smok-
ing [5, 12].

Currently, about one in two men in the develop-
ing world smoke, as do 40% of men, on average,
in the developed world. Large-scale prospective evi-
dence suggests that one in two smokers will even-
tually, either in middle age or old age, be killed
by smoking [5, 11]. If these risks were to apply
globally, and if current smoking trends were to
persist, then the massive increase in cigarette con-
sumption in developing countries over the last few
decades would eventually result in an annual global
toll from tobacco (primarily smoking) of about 10
million deaths each year, expected to occur in the
late 2020s or early 2030s [11]. In particular, of all
children and young adults alive today, these preva-
lence and risk measures suggest that something like
200–250 million of them will eventually be killed by
tobacco.

More precise age–sex–cause and region-specific
projections of smoking-attributable mortality have
been prepared by Murray & Lopez [10] by projecting
a measure of smoking intensity originally proposed
by Peto et al. [11] to estimate smoking-attributable
deaths in developed countries. This methods yields
similar projections to the classical attributable risk
approach described above but has the advantage of
greater specificity and detail for the projections.

AIDS

Acquired immune deficiency syndrome (AIDS)
results from infection with the HIV virus. Epidemi-
ologic surveillance of the epidemic includes mon-
itoring the number of individuals who have con-
tracted the HIV virus (i.e. are seropositive) as well as
the number of those who develop AIDS. Follow-up
cohorts of HIV-infected people suggest that virtually

all will develop AIDS, on average about 10 years
after infection, and that the disease will prove fatal
within about two to three years from onset.

Scientists [3, 9] have used these observations to
fit a gamma distribution (with parameter P ) of the
form

I (t) = t (P−1)e−t

(P − 1)!

to project future AIDS cases [I (t)] and deaths, given
estimated HIV infection rates in different populations.
By the turn of the century, about 20 million adults
and 1 million children worldwide are projected to be
living with the HIV virus. Murray & Lopez [10] have
used estimated infection rates since 1990 to project
incidence and mortality from AIDS until 2020. These
projections suggest that deaths from AIDS will rise
from around 400 000 in 1990 to peak at around 1.7
million somewhere between 2005 and 2010. Since
incidence in some regions (primarily developed) has
peaked, the global death toll from the disease is
expected to slowly decline beyond about 2010.

In contrast, tobacco-induced deaths are expected
to continue to rise well into the twenty-first century,
making tobacco by far the leading cause of death and
disease by about 2020 [10].
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Promax Rotation

Promax rotation [1, 2] is a nonquartic method of per-
forming an oblique rotation of a matrix V of dimen-
sion (p × k) associated with principal components
analysis or factor analysis in order to transform
these quantities into new variables by the relation-
ship B = V� such that B will approximate a simple
structure. The matrix B is of dimension (p × k) and
the matrix � is of dimension (k × k). (see Rotation
of Axes). Promax rotation is a two-stage procedure
which first obtains an approximation to B by means of
an orthogonal rotation such as Varimax. The vec-
tors obtained from this rotation are raised to some
power with negative signs restored if the power is
even. This has the effect of reducing the size of small
coefficients faster than larger coefficients and hence
approaches a simple structure. If the result of the
powering is H, then by Procrustes rotation, a rota-
tion of the original vectors V is performed which is a
least squares approximation of H. This becomes the
Promax rotation.

The choice of power will have an effect on the
results. Lower powers will approach an orthogonal

rotation. (Not powering the Varimax results would
leave the final solution unchanged.) Higher pow-
ers would increase the obliqueness of the solution.
General practice is to use powers in the range
of 2 to 4.

For the Decathlon example given in Rotation of
Axes the Promax solutions for powers of 2 and 4
are given in Table 1 along with the original princi-
pal component characteristic vectors (see Eigenvec-
tor).
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Table 1 Decathlon data: characteristic and Promax rotated vectors

Characteristic vectors Promax rotation (power = 2) Promax rotation (power = 4)

v1 v2 v3 v4 b1 b2 b3 b4 b1 b2 b3 b4

100 m run 0.69 0.22 −0.52 −0.21 0.90 0.02 0.02 −0.09 0.94 −0.01 −0.07 −0.14
Long jump 0.79 0.18 −0.19 0.09 0.60 0.05 0.42 −0.01 0.56 0.02 0.40 −0.04
Shotput 0.70 −0.53 0.05 −0.18 0.16 0.80 0.08 −0.12 0.12 0.81 0.04 −0.13
High jump 0.67 0.13 0.14 0.40 0.17 0.01 0.73 0.05 0.07 −0.03 0.78 0.05
400 m run 0.62 0.55 −0.08 −0.42 0.82 0.01 −0.05 0.49 0.87 0.00 −0.12 0.44
110 m hurdle 0.69 0.04 −0.16 0.35 0.35 0.00 0.60 −0.19 0.28 −0.04 0.61 −0.20
Discus 0.62 −0.52 0.11 −0.23 0.11 0.81 0.01 −0.05 0.07 0.83 −0.03 −0.06
Pole vault 0.54 0.09 0.41 0.44 −0.12 0.08 0.77 0.19 −0.25 0.05 0.86 0.20
Javelin 0.43 −0.44 0.37 −0.24 −0.13 0.77 0.00 0.16 −0.17 0.80 −0.00 0.17
1500 m run 0.15 0.60 0.66 −0.28 0.05 0.00 0.06 0.94 0.05 0.01 0.10 0.93



Propensity Score

The propensity score is the conditional probability
of exposure to treatment rather than control given
observed covariates or, more generally, the condi-
tional probability of selection given observed covari-
ates. It is used to adjust for nonrandom treatment
assignment or nonrandom selection. As a scalar sum-
mary of multidimensional covariates, the propensity
score is often used for matching, stratification, or
weighting adjustments. Matching and stratification
are common in observational studies; that is, in stud-
ies of the effects of treatments not randomly assigned
to subjects as they would be in a randomized clinical
trial. Weighting adjustments are common in adjust-
ing for nonresponse in surveys. Propensity scores
have also been used as part of permutation inference
and Bayesian inference (see Bayesian Methods), and
have been incorporated as a variable in a model.
Propensity scores were proposed by Rosenbaum &
Rubin [25].

In thinking about what propensity scores may
reasonably be expected to accomplish, it is useful to
distinguish overt and hidden biases. An overt bias is
visible in the data at hand. For instance, suppose that
in comparing smokers and nonsmokers with recorded
ages, one observes that smokers are somewhat older
than nonsmokers. Then, a direct comparison of the
mortality of smokers and nonsmokers ignoring age
would be affected by an overt bias due to age.
A hidden bias is similar, but it is not visible in
the data at hand, though it may be suspected to
exist. Adjustments for the propensity score reduce or
eliminate overt biases, but the adjustments do little
to address hidden biases, which must be investigated
by other means; see Rosenbaum [21, Sections 4–9]).

In an observational study, N subjects are observed,
of whom n receive the treatment and N –n receive
the control. Each subject has a vector X of observed
covariates that describe the condition of subjects prior
to treatment, so X is not affected by the treatment.
Write Z = 1 if the subject receives the treatment
and Z = 0 if the subject receives the control, so
n = ∑N

i=1 Zi . The propensity score e(X) is the condi-
tional probability of receiving the treatment given the
covariates X; that is, e(X) = Pr(Z = 1|X). Although
the propensity score will be discussed in the context
of nonrandom treatment assignment in observational

studies, it may be applied in other contexts, such as
nonresponse in sample surveys; see [15].

The propensity score has several properties, the
first of which is its balancing property. Pick a value
of the propensity score e(X), and sample at random
treated subjects, those with Z = 1, and control sub-
jects, those with Z = 0, having this same value of
e(X). Then these treated and control subjects with
the same e(X) have the same distribution of X. To
express this formally, follow Dawid [6] in writing
A || B|C for A is conditionally independent of B

given C. Then the balancing property of the propen-
sity score says:

X || Z|e(X) (1)

or, equivalently,

Pr[X|Z = 1, e(X)] = Pr[X|Z = 0, e(X)].

The proof of (1) is straightforward; see [22, Theo-
rem 1].

The balancing property is used in the following
way. For each treated subject, find a control with
approximately the same e(X) forming a matched pair.
Then the resulting matched sample will comprise a
treated and control group with similar distributions
for X. If X is of high dimension, then matching
exactly on X is difficult, but matching on a scalar
e(X) is straightforward. For instance, if X is a 20-
dimensional vector of binary covariates, then there
are 220 or about a million possible values of X, so
finding controls that exactly match for all of X is
infeasible with samples of reasonable size. In prac-
tice, one must estimate e(X); for instance, using
logistic regression of Z on X. This is illustrated
in [27] and [28]. There, 221 children with prena-
tal exposures to barbiturates were matched to 221
unexposed children drawn from a reservoir of 7027
potential controls. The vector X contained 20 covari-
ates, such as gender, mother’s socioeconomic status,
mother’s education, mother’s cigarette use, etc. In this
particular example, matching on the scalar estimate
of the propensity score balanced all 20 covariates.
Generally, after matching, the distributions of X in
matched treated and control groups are compared to
check that matching on the estimate of e(X) has suc-
ceeded in balancing X.

Alternatively, divide subjects into strata that are
homogeneous in e(X). Within strata, treated and con-
trol subjects tend to have similar distributions of X.
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This is illustrated in [26] where five strata formed
from an estimated propensity score balance a 74-
dimensional X of covariates in a study of coronary
bypass surgery.

It is useful to compare and contrast the balanc-
ing property of propensity scores with the balancing
property of randomization in a randomized exper-
iment. Like randomization, strata that are homoge-
neous in the propensity score e(X) may be quite
heterogeneous in X; however, within strata, the het-
erogeneity in X is not systematically related to the
treatment group Z. For instance, in the coronary
bypass example in [26], patients were denied bypass
surgery if they were quite healthy and did not need
it or if they were extremely ill and were unlikely to
survive surgery. The stratum with the lowest proba-
bilities of surgery, the lowest e(X)s, was extremely
heterogeneous, containing both the healthiest and
the sickest patients; however, within that stratum,
the bypass patients and the controls had similar
distributions of X. Balancing does not eliminate het-
erogeneity; rather, it leaves the heterogeneity intact,
but makes it nearly orthogonal to the treatment Z.
Unlike randomization, adjustments for the propen-
sity score balance the observed covariates X used in
calculating e(X), but they do not generally balance
unobserved covariates. Randomization balances both
observed and unobserved covariates, so randomiza-
tion removes both overt and hidden biases, whereas
adjustments for propensity scores reduce or eliminate
only overt biases.

Each subject has two potential responses, a res-
ponse r T that would be observed if the subject
received the treatment and a response rC that would
be observed if the subject received the control (see
[18, 30, 31]). In fact, r T is observed only if the
subject receives the treatment, Z = 1, and rC is
observed only if the subject received the control,
Z = 0. The effect caused by the treatment is a
comparison of r T and rC, such as r T − rC; that
is, a comparison of what the response would have
been under treatment and under control. Because
r T and rC cannot be observed jointly for one sub-
ject, causal effects cannot be calculated for individ-
ual subjects. Nonetheless, there are consistent and
sometimes unbiased estimates of population sum-
maries of causal effects under certain circumstances.
For instance, in a randomized experiment the aver-
age response of treated subjects minus the average
response of control subjects is an unbiased estimate

of the average treatment effect, τ = E(r T − rC) =
E(r T) − E(rC), and for binary responses, the sample
odds ratio is a consistent estimate of the population
odds ratio

Ψ = [Pr(r T = 1) Pr(rC = 0)]

Pr(r T = 0) Pr(rC = 1)
;

see Holland & Rubin [11]. Later in this discussion,
it will be important to distinguish the odds ratio Ψ

from the conditional odds ratio,

ωX = Pr(r T = 1|X = x) Pr(rC = 0|X = x)

Pr(r T = 0|X = x) Pr(rC = 1|X = x)

given X = x,

which is generally a function of x. Even when ωx is
constant, not varying with x, it does not typically
equal the odds ratio Ψ that would be calculated
in a randomized experiment without reference to
covariates.

Adjustment for a covariate X in an observational
study will yield consistent or unbiased estimates of
population treatment effects if treatment assignment
is ignorable, a term that will now be defined. Treat-
ment assignment is said to be ignorable given X if

Z || (r T, rC)|X
and (2)

0 < Pr(Z = 1|X) < 1, for all X.

This says that subjects may have unequal probabil-
ities of receiving the treatment Z, but conditionally
given the covariates X, the assignment of subjects to
treatment groups is equitable in the sense that it is
unrelated to the responses subjects will later exhibit;
that is, Pr(Z = 1|r T, rC, X) = Pr(Z = 1|X) = e(X).
It is not difficult to show that, if treatment assignment
is ignorable, then exact matching or stratification or
correct model-based adjustment for X can be used to
estimate population causal effects such as τ or ψ ;
see [31] and [22, Theorem 4], with their b(X) = X.
For instance, with ignorable assignment, an unbi-
ased estimate of τ is obtained by sampling X at
random, sampling a treated and a control subject
at random with this same X, and differencing their
responses. The average of such differences is con-
sistent for τ . With ignorable assignment, the odds
ratio ψ is consistently estimated in an analogous
way by first obtaining unbiased estimates of the
four probabilities, Pr(r T = 1), Pr(rC = 0), Pr(r T =
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0), and Pr(rC = 1), and, secondly, calculating the
odds ratio of the unbiased estimates. Hamilton [10],
Little [15], Sobel [36], and Stone [38] discuss related
issues.

The second fact about the propensity score is that
if treatment assignment is ignorable given X, then it
is also ignorable given just the propensity score e(X),
so if it suffices to adjust for X in estimating τ or ψ ,
then it suffices to adjust for the scalar e(X). Formally,
it may be shown [22, Theorem 3] that (2) implies

Z || (rT, rC)|e(X)

and (3)

0 < Pr[Z = 1|e(X)] < 1, for all e(X).

In short, the propensity score tends to balance
observed covariates X whether or not treatment
assignment is ignorable. If treatment assignment is
ignorable, then there is overt bias but no hidden bias,
so it suffices to adjust for the observed covariates X;
but in this case, it suffices to adjust for the scalar
e(X). Specifically, if treatment assignment is ignor-
able, then parameters such as the average treatment
effect τ or the odds ratio ψ can be consistently esti-
mated by adjusting for the scalar e(X) rather than the
multivariate X.

The performance of the propensity score in match-
ing or stratification has been studied by simulation.
Drake [7] compared propensity score adjustments
and model-based adjustments when the propensity
score or the model for the responses is incorrect.
Gu & Rosenbaum [9] compared various matching
techniques, in particular, concluding that match-
ing on the propensity score was better than cer-
tain distance-based matching procedures when there
are many covariates; say 20 or more covariates.
Rubin & Thomas [34, 35] examine propensity score
methods when covariates have multivariate normal
distributions, ellipsoidal distributions, and empirical
distributions derived from an example.

An alternative to matching or stratification for the
propensity score is weighting adjustments. Although
r T is observed only if Z = 1 and rC is observed
only if Z = 0, the quantities Zr T and (1 − Z)rC are
always observed, although they are often zero. With
a known propensity score, the quantity

Zr T

e(X)
− (1 − Z)rC

1 − e(X)
(4)

may be computed for all N subjects. If treatment
assignment is ignorable, then the average value of (4)
may be shown to be unbiased for the average treat-
ment effect τ ; see [22]. In practice, estimated propen-
sity scores are used in place of known propensity
scores in (4), so the estimator becomes, in effect,
the difference of two Horvitz–Thompson estima-
tors [12] with estimated weights. As it turns out, the
use of estimated weights is beneficial. The estima-
tor based on (4) using estimated propensity scores
is often superior to the analogous estimator based on
true propensity scores for much the same reason that a
poststratified estimator is often better than a sample
mean; see [22] for specifics.

The propensity score is also used in various other
ways. If the propensity score follows a linear logit
model, then conditioning on a sufficient statistic
for the parameters of the logit model eliminates
unknown parameters in the propensity score, and
yields exact permutation tests under the assumption
that treatment assignment is ignorable; see [20, 24].
For instance, this may be used to adjust matched
pairs for imbalances in covariates that were not fully
controlled by the matching; see [23, 24]. The use of
propensity scores in Bayesian inference is discussed
by Rubin [33]. The propensity score may be used as a
variable in a model-based adjustment; see [22, Corol-
lary 4.3] for theory, and see [2, 37] for applications.
Robins et al. [19] develop a novel semiparametric
estimate of a regression coefficient using estimated
propensity scores and various generalizations (see
Semiparametric Regression). See also [3,4].

It is important to distinguish adjustment by bal-
ancing X from adjustment by control for X. In a
randomized experiment, random assignment of treat-
ments would balance X, while blocking, matching, or
model-based adjustment, such as covariance adjust-
ment, for X would control for X. In experiments,
balancing by randomization would permit estima-
tion of the average treatment effect τ or the odds
ratio ψ based on averaged proportions, but control
for X would be required to estimate the conditional
odds ratio ωx and other parameters that condition
on a particular value of X. Gail et al. [8] care-
fully develop some consequences of the distinction
between balance and control in randomized exper-
iments. Similarly, in an observational study with
ignorable treatment assignment, matching or strat-
ification for the propensity score e(X) balances X
permitting estimation of τ or ψ , but control for X
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would be required to estimate conditional parameters
such as ωx. Balancing and control may be combined.
In experiments, this is done, for instance, using a ran-
domized complete blocks design. In observational
studies, this is done by combining matching or strati-
fication e(X) with further adjustments for X. See [21,
23, 24, 26, 29, 32] for discussion of various aspects
of combining matching or stratification with model-
based adjustments.

When comparing several doses of treatment, rather
than treated and control groups, a propensity score
may sometimes be constructed using an ordinal logit
model for the dose of treatment [13, 16]. When sub-
jects begin as untreated and then sometimes switch to
treatment after varied periods of time have elapsed,
a time-dependent propensity score may be based on
the hazard of receiving treatment given time-varying
covariates [14]. The use of propensity scores in large
case–cohort studies is discussed in [13].

For several applications of propensity scores,
see [1, 2, 5, 17, 21, 27, 39].
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Proportional Hazards,
Overview

In survival analysis, statistical models are frequently
specified via the hazard function α(t). A simple
model for the relation between the hazard functions
in two groups (e.g. a treatment group 1 and a control
group 0) is the proportional hazards model, where

α1(t) = θα0(t), (1)

θ being the treatment effect. The relation (1) between
the two hazards implies that the corresponding sur-
vival functions are related by the equation

S1(t) = S0(t)
θ ,

the so-called Lehmann alternatives.
To test the hypothesis α1(t) = α0(t), several non-

parametric tests are available. Among these, the
logrank test is locally most powerful against pro-
portional hazards alternatives.

In the semiparametric model (1), where “the
baseline hazard” α0(t) is left completely unspecified,
there exist several estimators for the hazard ratio

θ . Among these, the estimator based on the Cox
regression model is the most frequently used; in fact,
using this model, it is possible to adjust the treatment
effect θ for effects of other prognostic factors. This
proportional hazards model has gained widespread
popularity in biostatistics.

In some epidemiologic applications, the hazard
function α1(t) in an exposed group is compared with
a known hazard function; say, α0(t). In this case, the
maximum likelihood estimator θ̂ in the model (1)
is the so-called standardized mortality ratio, which
is the ratio between the observed number of deaths
in the exposed group and the number of deaths one
would expect if the hazard in the exposed group were
α0(t) (see Standardization Methods). Furthermore,
the score test (see Likelihood) for the hypothesis
θ = 1 is the one-sample logrank test.

In conclusion, for survival data, proportional haz-
ards has become the structure of choice, much like
linearity in models for the mean of a quantitative out-
come variable. However, other models are, indeed,
available, including additive hazard models and
accelerated failure time models.

PER KRAGH ANDERSEN



Proportional Mortality
Ratio (PMR)

With mortality data classified by cause of death,
the proportional mortality ratio (PMR) consists of
a numerator that is the number of deaths from a
particular cause and a denominator of total deaths
from all causes. Thus, a PMR is simply the frac-
tion (or percentage) of deaths from a particular
cause.

In descriptive epidemiology involving charac-
terization of PMRs by person, place, and time, it
is customary to calculate standardized proportional
mortality ratios (SPMRs) that use indirect standard-
ization to adjust for age and often for age, gender,
and race. See standardization methods for details
of these calculations as well as for a historical

description of the use of PMRs in vital statis-
tics, the limitations of PMR analyses, and the rela-
tionships between PMRs and standardized mortality
ratios (SMRs).

Particularly in occupational epidemiology, situ-
ations arise where the first and only available data
consist of deaths classified by cause among per-
sons who share a common occupational exposure.
In these situations, a proportional mortality study
is undertaken. Despite its major limitations and its
often erroneous interpretation as an indicator of risk
of mortality, PMR analysis can serve a useful role
in descriptive epidemiology. A simple and low-cost
proportional mortality study can suggest etiologic
hypotheses and lead to a chain of increasingly com-
plex analytic epidemiologic studies that ultimately
establishes causation.

THEODORE COLTON



Proportional Mortality
Study

Sometimes the only information available for an
epidemiologic observational study consists of mor-
tality records (usually death certificates) among a
particular group of individuals who share some com-
mon exposure. This often occurs in occupational
studies where the group consists of workers with
a particular job classification, all workers in some
industry, or employees at a particular installation
or plant (see Occupational Epidemiology; Occupa-
tional Mortality). Examples of each of these are:
nuclear shipyard workers, US Army veterans who
served in Vietnam, and employees at a factory where
inorganic arsenic compounds are handled. The intent
is to see whether an exposure that the workers or
group share is associated with increased risk of dis-
ease. Since the available information is only on
deaths, it is mortality rather than morbidity that can
be studied.

The key feature that characterizes a proportional
mortality study is that there are no denominator data
available that allow for the calculation of mortality
risk or death rates. With information on causes of
death among the group of decedents, one can cal-
culate the proportion of all deaths due to a specific
cause, namely the proportional mortality.

The essential strategy in a proportional mortality
study is to compare the proportional mortality in the
group of interest with proportional mortality in a
comparison group. The comparison group can consist
of an external control group, such as the general
population for which vital statistics are available,
or an internal control group; namely, a group of
decedents from the same source population who do
not share the exposure of interest. Thus, the essential
comparison in a proportional mortality study is the
ratio of proportional mortality in the study group to
that in the comparison group, in other words, the
proportional mortality ratio (PMR).

The basic premise of a proportional mortality
study is that if exposure is associated with increased
risk of a specific disease, then with the available
data on deaths by cause one should find proportion-
ally more deaths from that cause among the exposed
than among a comparison group of deaths, whether
the comparison group consists of an external or an

internal control group. Obviously, proportional mor-
tality studies apply only to fatal diseases. For exam-
ple, the common diseases of vision such as cataract,
glaucoma, and age-related macular degeneration are
each nonfatal and, hence, there is no place for pro-
portional mortality studies of such disorders.

Of course, since mortality for virtually every
disease has some relationship with age, there is
the possibility that the decedents in the study and
comparison groups have different age distributions.
Consequently, age constitutes a potential confound-
ing variable in virtually every proportional mortality
study. To adjust for such potential confounding, it
is customary to use standardization methods – in
particular, indirect standardization – and to calculate
a standardized proportional mortality ratio (SPMR).
(Although standardization is usually by age, one can
also standardize on other characteristics such as gen-
der, race, and calendar time.)

Thus, using the three examples of occupa-
tional exposure described above, there have been
proportional mortality studies conducted with cal-
culation of SPMRs that have examined the fol-
lowing: (i) proportional mortality for leukemia and
hematopoietic malignancies among shipyard nuclear
workers vs. an internal comparison group of workers
at these same shipyards but who were not involved
in nuclear work [11]; (ii) proportional mortality from
accidents and violent causes among US Army vet-
erans who served in Vietnam vs. an internal com-
parison group of US Army veterans of the Viet-
nam era but who did not serve in Vietnam [2]; and
(iii) proportional mortality from cancer – in particu-
lar, lung and skin – among employees at an arsenical
factory in the UK vs. an external comparison group
of population deaths (obtained from the death register
of the area in which the factory was located) [7].

Interpretation of Proportional Mortality
Studies

Proportional mortality studies need particularly cau-
tious interpretation. A common and naive misinter-
pretation is to view the PMR or SPMR as equivalent
to a relative risk as obtained in a cohort study or
an odds ratio as obtained in a case–control study.
Proportional mortality does not measure the risk of
death from that cause. As defined, it measures only
the relative frequency of that particular cause among
all causes of death.



2 Proportional Mortality Study

The basic limitation of a proportional mortal-
ity study is that one cannot determine whether an
increase in proportional mortality for a particular
cause of interest resulted from an increase in the
risk of death from that cause (the basic premise
underlying the study design), or from a deficit in
mortality; namely, a lowering of risk of mortality,
for various causes other than that of particular inter-
est. For example, if a proportional mortality anal-
ysis resulted in an increased proportional mortality
for some specific cancer, then one could not tell
whether there was indeed an increased risk of death
from that particular cancer, or whether the increased
proportional mortality might have resulted from a
lower risk of, say, mortality from cardiovascular dis-
eases and accidents.

Even if there is increased risk of mortality from
a particular cause, another limitation of proportional
mortality is that one cannot distinguish whether
such an increase resulted from an increase in the
incidence rate of the disease or a worsening of the
prognosis among existing (prevalent) cases of the
disease.

The aforementioned basic limitations of the pro-
portional mortality study severely limit its analytic
potential. Proportional mortality studies are often the
first, or an early, attempt to explore an association
epidemiologically. Why are proportional mortality
studies undertaken? In comparison with analytic epi-
demiologic studies, proportional mortality studies can
be completed much more rapidly and with consid-
erably less expenditure of resources. Often, it is
the findings of a proportional mortality study that
lead to a cascade of analytic epidemiologic stud-
ies of increasing complexity and cost that ultimately
result in establishing a causal relationship between
exposure and disease (see Causation). However,
there have been proportional mortality studies with
equivocal and controversial findings that have led to
considerable efforts and expenditure of resources in
subsequent analytic epidemiologic studies that ulti-
mately result in the assurance to an alarmed public
that there is no association between exposure and
disease. An example of the latter is a proportional
mortality study of the association of low-level occu-
pational exposure to radiation among nuclear workers
at Portsmouth Naval Shipyard, UK, with leukemia
and hematopoietic cancers; a subsequent large-scale
and expensive historical cohort study of mortality
failed to find increased cancer mortality risks from

radiation exposure [12]. In fact, a further analysis of
more detailed and complete data at Portsmouth Naval
Shipyard revealed misclassification bias in designat-
ing the causes of death in the initial proportional
mortality study [5].

An important point in interpretation is that the
same concerns with chance, bias (see Bias in Obser-
vational Studies), and confounding that apply to
cohort and case–control studies apply also to pro-
portional mortality studies. Of particular concern in
proportional mortality studies are: the completeness
of ascertainment of deaths; the accuracy of the coding
of causes of death; the definition of exposure and its
possible misclassification; and proper accounting for
relevant confounding variables.

Most epidemiology textbooks, such as Henenkens
& Buring [6] and Rothman & Greenland [14], des-
cribe proportional mortality studies, their characteris-
tics, and limitations. More details about study design
and analysis appear in occupational epidemiology
texts such as Checkoway et al. [3] and Monson [10].
Considerable details on the statistical analysis and
modeling of proportional mortality data appear in
Breslow & Day [1]. One can also view a proportional
mortality study as a special type of case–control
study, as pointed out by Miettinen & Wang [9],
and deploy the relevant design and analysis strate-
gies for that design, in particular the calculation
of a mortality odds ratio (MOR). This latter view
of proportional mortality is discussed in the next
section.

Design and Analysis of Proportional
Mortality Studies

External Controls

The design of a proportional mortality study with
external controls is indeed simple and straightfor-
ward. The basic material consists of deaths by cause
among a particular group who share some expo-
sure. One must take care that there is reasonably
complete ascertainment of deaths in the series and
that exposure classification is valid. As an exam-
ple of an incomplete series, consider the situation
of examining the employment records of an indus-
trial plant and identifying all those instances where
an employee had died. A proportional mortality anal-
ysis based on these existing records would likely
find increased proportional mortality for diseases
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such as acute myocardial infarction and accidents,
deaths that are likely to occur during employment,
and deficits in diseases such as cancer, which are
likely to occur subsequent to employment and dur-
ing retirement. Ideally, an appropriate proportional
mortality study would include all deaths among
those employed at the plant and would require ascer-
tainment of deaths among former plant workers
and retirees. Such ascertainment of postemployment
deaths, presuming that there has not been widespread
migration from the area, might entail searches of
death certificates among the local health agencies,
presuming that these sources can readily identify
prior plant employees. Similarly, with the group of
decedents assembled for analysis, one has to con-
sider carefully the definition of exposure and have
reasonable certainty that the group of deaths was
indeed exposed to the agent under consideration.
For example, a proportional mortality analysis of
all employees at a plant would necessarily include
office workers and others who might have minimal
or no exposure to the agent under consideration.
Such inclusions would tend to dilute the effects that
exposure to the agent might have on proportional
mortality.

The choice of the external reference standard
population is also important, although one’s possible
choices are often extremely limited. If, for example,
the group of decedents under study consists of almost
exclusively white males who died during the period
1960–1975 (which was the case with the proportional
mortality study of nuclear workers at Portsmouth
Naval Shipyard), then one would ideally choose
a reference population of white male decedents
during this same calendar time. Anticipating age
standardization, one needs a reference population of
decedents classified by cause of death and by age,
race, and calendar period. In this particular situation,
although one might have preferred to use deaths from
New England for the reference population, the only
available proportional mortality data with this amount
of detail were those for the entire US.

Once the reference population has been chosen,
the calculation of SPMR is straightforward, with
details of the calculations described in the article
on standardization methods. Determination of the
standard error of proportional mortality appears
in Breslow & Day [1], although the authors warn
against the conduct of statistical inference methods
on PMRs.

Internal Controls

For a proportional mortality analysis with internal
controls, one needs a group of deaths from unex-
posed subjects who are in other ways “comparable”
with the exposed study group. For example, in a pro-
portional mortality study of US soldiers who served
in Vietnam, an obvious internal control group consists
of deaths during the same time period among US sol-
diers who did not serve in Vietnam. In the example of
shipyard nuclear workers at Portsmouth Naval Ship-
yard, the internal control group consisted of deaths
among shipyard employees who were nonnuclear
workers.

One common method for analysis of these data is
to employ the methods for external controls described
above to each of the exposed and unexposed groups
of decedents and then to compare qualitatively the
resulting SPMRs in the two groups. For exam-
ple, in the initial proportional mortality study at
Portsmouth Naval Shipyard [11], the SPMRs for
leukemia were 5.62 for the nuclear workers (nearly
a sixfold increase) and 0.71 for nonnuclear workers
(close to the null value of 1.00). It is noted, how-
ever, that this initial study was particularly prone to
bias in that there was (i) incomplete ascertainment
of deaths; (ii) gross opportunity for misclassification
of exposure (nuclear worker or not), since this was
based on the recall of next of kin as to whether or
not the decedent wore a radiation monitoring badge
at work; and (iii) misclassification of cause of death,
since the study’s principal investigator determined,
from his review of the data, the underlying cause of
death for each decedent.

Another approach, as mentioned above, is to
regard a proportional mortality study with internal
controls as a variant of a case–control study. Cases
consist of deaths from the cause of interest among
both exposed and unexposed and controls consist of
deaths from all other causes among both exposed and
unexposed. Within this framework, one can analyze
the data by the methods applicable to case–control
studies; namely, to calculate an odds ratio. In this
instance, such a calculation yields what is called a
standardized mortality odds ratio (SMOR). Adjust-
ment for confounding by age, or by other charac-
teristics, can be accomplished with use of Man-
tel–Haenszel methods.

Viewed within the case–control framework, one
might wish to be more careful in the choice of
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controls in the design of such a proportional mortality
study. Following the basic principle underlying the
choice of controls in a case–control study; namely,
that the controls should represent the source popula-
tion from which the cases came, one would not nec-
essarily choose all other deaths as controls. Instead,
one would choose controls more carefully from a
limited group of causes of death where there was
a known lack of association of each cause with
the exposure of interest. Thus, one would exclude
from the control series those causes of death where
there was a known or suspected association with the
exposure of interest. Similar considerations apply in
hospital-based case–control studies, in which one
seeks to avoid selecting control diseases that may be
associated with exposure.

Other Considerations

In some instances, one can categorize exposure
according to duration and/or intensity and examine
dose–response relationships in proportional mortal-
ity. Duration of employment often serves this purpose
and, for the nuclear worker illustration, cumulative
recorded radiation exposure by means of badge-
monitoring constitutes an ideal dose measure. Meth-
ods for dose–response modeling with proportional
mortality, based on logistic regression, are described
by Breslow & Day [1].

There has been considerable investigation of the
relationship between the PMR and the standardized
mortality ratio (SMR) analyses of the same set of
data. In fact, if one takes cause-specific SMRs and
divides each by the all-causes SMR, then theoret-
ically these should agree with the corresponding
cause-specific PMRs. Kupper et al. [8] call this ratio
of cause-specific to all-cause SMRs a relative stan-
dardized mortality ratio (RSMR). Zwerling et al. [15]
give a recent example comparing the PMR and
RSMR approaches with injury mortality among Iowa
farmers. Decoufle et al. [4] and Roman et al. [13]
also compared the PMR and SMR.
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Proportional-odds Model

The proportional odds model is a class of generalized
linear models used for modeling the dependence of
an ordinal response (see Ordered Categorical Data)
on discrete or continuous covariates. Let Y denote the
response category in the range 1, . . . , k, with k ≥ 2,
and let γj = Pr(Y ≤ j |x) be the cumulative response
probability when the covariate is held at x. The most
general form of the linear logistic regression model
for the j th cumulative response probability,

logit(γj ) = αj − βT
j x, (1)

is one in which both the intercept α and the regres-
sion coefficient β depend on the category j . The
proportional-odds model is a linear logistic model in
which the intercepts depend on j , but the slopes are
all equal. Thus, we arrive at the model

logit(γj ) = αj − βTx, (2)

asserting that the graph of the k − 1 cumulative logits
against x is a series of parallel lines or planes with
intercepts α1, . . . , αk−1.

Ordinal response variables are common in a num-
ber of areas, notably survey research, food testing,
industrial quality assurance, radiology, and clinical
research. In a study of disease severity, for exam-
ple, the degree of impairment might be described by
one of a small collection of labels such as “none”,
“slight”, “moderate”, “severe”, and “incapacitating”.
One of the most effective ways to construct a model
for an ordinal response such as this is to invoke the
concept of a latent, or unobserved, response Z. The
actual recorded response Y is envisaged as a crude
manifestation of the latent variable in such a way that
the relationship is monotone:

αj−1 < Z ≤ αj ⇐�⇒ Y = j. (3)

The “cut-points” αj are envisaged as unknown points
on the latent scale. In the example described, the z

interval (−∞, α1] is interpreted as no impairment;
the interval (α1, α2] as slight impairment, and so
on. Unless the latent variable is close to one of the
boundaries, similar values of the latent variable are
not distinguished and give rise to identical responses.

This description of the model seems to require
the observer to have a precisely measured latent

variable Z available, if only to himself or herself,
and to make the comparison (3) before reporting
Y . Like all mathematical models of behavior, this
is an idealization of what actually occurs, and is
not to be taken literally, particularly at the edges.
In fact, the model does not make these extreme
demands on the observer. Although the model is
capable of this mechanistic interpretation, it is not a
necessary interpretation. What is important is not so
much the mechanism but the prediction. If the model
predictions are sufficiently close to observations and
known limiting behavior, then all is well.

The dependence of the latent variable on the
covariates may be specified by means of a linear
or nonlinear model, as appropriate. In the case of a
linear model, we have Z = βTx + ε, where ε is a ran-
dom variable with cumulative distribution function
F . Then the probability Pr(Z ≤ z) is F(z − βTx).
Relationship (3) between the latent variable and the
response gives the implied model for Y in the form

γj = Pr(Y ≤ j) = Pr(Z ≤ αj ) = F(αj − βTx),

or in linearized form

F−1(γj ) = αj − βTx.

If F(z) = ez/(1 + ez), implying that ε has the logistic
distribution, this scheme produces the proportional-
odds model (2) illustrated in Figure 1. Other choices
for F produce generalized linear models of the same
type. The cumulative probit model arises if ε is
normal, and the grouped proportional hazards model,
or complementary log–log model, arises if ε has the
extreme-value distribution; in other words, if exp(ε)

has the exponential or Weibull distribution. This
derivation explains the unorthodox choice of sign for
the regression coefficients in (1) and (2).

Various extensions of this scheme are possible.
Suppose, for example, that the covariates affect both
the location and scale of the latent variable according
to the model

Z = βTx + exp(τTx)ε.

Models incorporating dispersion effects of this type
are used in industrial quality assurance to detect
factors whose effect is primarily on the variability
of the product. The implied model for Y is then

F−1(γj ) = αj − βTx
exp(τTx)

, (4)
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Figure 1 Diagram illustrating how the distribution of the
latent variable Z changes with x in the proportional-odds
model. The horizontal axis represents the latent variable,
and the recorded categories are denoted by roman numerals
attached to the five contiguous Z intervals. Over the range
of x values shown, the probability for category IV is almost
constant. By contrast, the probabilities for categories I and
V vary by factors of 3–4 over the same range

which is no longer linearizable. Models (1), (2),
and (4) have the limiting property for extreme covari-
ate values, i.e. as βTx → ±∞, all the probability
accumulates in one of the extreme categories.

The class of models derivable in this way using
a latent variable all have an important invariance,
or closure, property connected with the amalgama-
tion of adjacent response categories. Suppose that
model (4) with k > 2 response categories is correct.
If categories j and j + 1 are combined into a single
new response category, then model (4) still applies,
but with k reduced to k − 1 and with αj deleted.
In general, information is lost when categories are
amalgamated, so the maximum likelihood estimate
is affected. In extreme cases, the parameters might
not be estimable from the reduced data. The model,
however, is invariant, and the same regression param-
eters apply to the reduced data. By contrast, most
of the competing models described at the end of
this article are not closed under category amalgama-
tion.

The term “proportional odds” stems from the fact
that in model (3) the odds of the event Y ≤ j satisfies

odds(Y ≤ j |x) = exp(αj − βTx).

Consequently, the ratio of the odds of the event Y ≤ j

for x1 and x0 is

odds(Y ≤ j |x1)

odds(Y ≤ j |x0)
= exp(−βT(x1 − x0)),

which is a constant independent of j . If we arrange
matters such that x0 = 0 is the baseline value of the
covariates, then it follows that exp(αj ) is the baseline
odds for the event Y ≤ j . From this point of view,
the proportional-odds model simply takes the baseline
odds, which can be set arbitrarily, and multiplies by
the factor exp(−βTx) to obtain the response odds at a
nonbaseline covariate value. Neither of the extended
models (1) nor (4) is a proportional-odds model in
this sense.

By definition, the cumulative response probabili-
ties are ordered γ1 ≤ · · · ≤ γk−1 ≤ 1. The logit trans-
formation is strictly monotone from (0,1) to the real
line. The proportional-odds model (2) must therefore
satisfy the constraints α1 ≤ · · · ≤ αk−1. This condi-
tion is both necessary and sufficient to ensure that
the fitted response-category probabilities are nonneg-
ative for all values of the covariate and for all values
of the regression coefficient β. The same condition is
necessary and sufficient for the nonlinear model (4).

The analogous condition to ensure nonnegative
response probabilities in model (1) is much more
complicated. Nonnegativity requires that

α1 + β1x ≤ · · · ≤ αk−1 + βk−1x

for all values of x in some set, X. At a minimum,
X must include the observed covariates, but the set
could be much larger, particularly if the model is to
be used for extrapolation or prediction. Suppose, for
simplicity, that there is a single covariate x taking
values in the range [0, ∞). Then, considering the
logits at x = 0 and x → ∞, we require both the
intercepts and slopes to be nondecreasing in j . This
condition is necessary and sufficient. Likewise, if the
covariate space is bounded, say X = [−1, 1], then a
necessary and sufficient condition is that

|∆β| ≤ ∆α,

componentwise, where ∆α is the difference vector
with components αj+1 − αj for j = 1, . . . , k − 2. If
there are p covariates, all in the interval [−1, 1], then
the necessary and sufficient condition

∑ |∆βj | ≤ ∆α

suggests that most models in class (1) are close to
(2) if p is large. Finally, if χ is a vector space,
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the condition (∆β)T x ≤ ∆α, stating that the linear
functional ∆β is bounded on χ , implies ∆β = 0.
The only models in (1) satisfying the nonnegativity
condition for x in a vector space, are those in (2).

The proportional-odds model and related fam-
ily (4) is only one of several families that are
designed to be used for the analysis of ordinal data.
The three main competing classes are as follows:

1. Loglinear model with pre-assigned category
scores [6, 9].

2. Canonical regression models [2, 7, 8].
3. Continuation-ratio models [4, 5].

When the categories represent temporally ordered
stages of development, such as educational attain-
ment, it is natural to consider the conditional prob-
ability of failure at stage j conditional on survival
up to stage j . The conditional probability of failure
at stage j , or the hazard of stage j , or the attrition
rate of stage j , is πj/(1 − γj−1). The natural linear
logistic model, in this context called a continuation-
ratio model or discrete-time proportional-hazards
model, is

logit

[
πj

(1 − γj−1)

]
= log

[
πj

1 − γj

]

= αj − βjx.

No order constraints are required on the parameters.
However, depending on the context, it may be sen-
sible to assume that βj = β, or, less commonly, that
αj = α.

The adequacy of the proportional-odds model can
in principle be tested by a generalized likelihood ratio
test of model (2) against either (1) or (4). Readily
available commercial software, such as SAS PROC
LOGISTIC, is available for fitting the proportional-
odds model. Regrettably, such software is rarely suf-
ficiently flexible to fit alternatives such as (1) or (4),
so likelihood ratio testing may require specially writ-
ten computer programs. In the absence of special
purpose programs, a feasible alternative for model
testing is to compute the residuals, and to exam-
ine them for patterns, either by plotting or by visual
inspection. However, particularly for ordinal data, the
visual appearance of a residual plot can be drastically
affected by the definition of residuals. Cumulative
residuals seem to be more appropriate than cell resid-
uals for many plots [11, Section 5.6].

The proportional-odds model goes back to the
early work of Snell [13], Williams & Grizzle [14],
and Simon [12]. Similar ideas, particularly the notion
of a latent variable and its use for modeling an ordinal
response, can be found in Karl Pearson’s early
work. For illustrations and numerical examples of
the proportional-odds model, see [1, 3, 10], and [11,
Chapter 5].
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Proportional-odds
Regression

The well-known proportional hazards model can be
expressed in terms of the hazard function h(t ; z) for
a case with survival time t and covariate z by

h(t ; z) = h0(t)g(z), (1)

where h0(t) is a baseline hazard function (see
Survival Distributions and Their Characteristics).
Plots of data, a priori information, and other
circumstances might suggest that the proportional
hazards assumption is inappropriate. An alternative
model is to consider the odds for survival,

a(t ; z) = [1 − S(t ; z)]

S(t ; z)
,

where S(t ; z) is the survival function, and assume a
similar relationship to (1) above:

a(t ; z) = a0(t)b(z), (2)

where a0(t) is the baseline odds of survival func-
tion. When log[a(t ; z)] is plotted against t , parallel
curves result, displaced by an amount log b(z) from
the baseline log odds or survival function log a0(t).
Alternatively, if two cases are compared with differ-
ent covariate values z1 and z2, then the ratio of the
odds of survival functions is given by

a(t ; z1)

a(t ; z2)
= b(z1)

b(z2)
,

which does not depend on t but depends only on
the covariate values and the form of the “regres-
sion” function b(·). Eq. (2) defines the so-called
proportional-odds regression. Particular examples are
given below.

Typically, a0(t) is specified parametrically and
log b(z) specified equal to a linear predictor βTz, with
z a vector of known covariates and β an unknown

regression parameter. For example, with a0(t) =
tφ(φ > 0), then φ log t − βTz has the logistic den-
sity with f (y) = ey{1 + ey}−2, −∞ < y < ∞ (see
Logistic Distribution). This is also an example of
accelerated failure-time models. If a0(t) is not spec-
ified parametrically, then estimation of β is still
possible using a technique described by Bennett [3]
based on estimating a0(t) at each failure time. Pet-
titt [6] develops some approximate estimates based
on ranks of observations so that a0(t) need not be
estimated explicitly. The scores used are given by
Prentice [7] who developed tests for H : β = 0 using
linear rank statistics. Bennett [2, 3] and Pettitt [6]
analyze a set of data referring to survival of lung can-
cer patients [5, pp. 89–90] and all authors find very
similar estimates for the various parametric and non-
parametric techniques. A possible explanation for this
is that the signal-to-noise ratio for the data is small
and therefore the ranks are almost fully efficient.

The proportional-odds model is popular in
the analysis of ordered categorical data [1,
pp. 322–324]. Hastie & Tibshirani [4, pp. 219–224]
describe an additive proportional-odds regression
model for ordered categorical data.
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Proportions, Inferences,
and Comparisons

Binomially based inferences about one proportion, or
about two proportions using data from independent
samples, are among the most common tasks in sta-
tistical analysis, taught in every elementary course.
However, despite the ease with which these tasks can
be described and the frequency with which they are
encountered, they remain controversial and inconsis-
tently handled in statistical practice.

Numerous papers in theoretical and applied pub-
lications have covered binomial point estimation,
interval estimation (see Estimation, Interval), and
hypothesis testing using exact, approximate, and
Bayesian methods. Yet, even with the advanced
computational power now widely available, no single
approach to this set of tasks has emerged as clearly
preferable. The methodological choices regarding
testing equality of two proportions, or estimating
any disparity between them, are equally perplex-
ing.

This article surveys, nonexhaustively, a range of
methods for handling each of the problems above,
based on underlying binomial or two-factor product-
binomial distributions. A related problem, which is
a comparison of two proportions using data from
a matched-pairs design (see Matched Pairs With
Categorical Data), can be placed within the frame-
work of a single proportion inference by considering
the binomial distribution of the number of discor-
dant pairs of the (1,0) type after conditioning on the
total number of both types ((1,0) and (0,1)) of dis-
cordant pairs (see McNemar Test). Unconditional
approaches to such matched dichotomous data place
the problem in the context of marginal symmetry
of a 2 × 2 multinomial contingency table, requir-
ing consideration of trinomial distributions, and are
beyond our scope here (see Multinomial Distribu-
tion).

One-sample Case

We observe X ∼ Bin(N, p) where N is fixed, and
wish to estimate or test hypotheses about the unknown
parameter p.

Point Estimation

The observed proportion p̂ = X/N is simultane-
ously the method of moments, maximum likeli-
hood, and minimum variance unbiased estima-
tor of p [22]. The Bayesian posterior mean, under
a conjugate beta prior p ∼ Beta(α, β), is p̂B =
(X + α)/(N + α + β) (see Beta Distribution; Berk-
son’s Fallacy). In the special case of the uniform
prior, Beta(1,1), the posterior mean thus reduces to
p̂B = (X + 1)/(N + 2), which is biased toward 0.5
compared with the maximum likelihood estimator
(MLE) [32]. Another popular Bayesian choice is the
Jeffreys prior, Beta(1/2, 1/2), which yields p̂B =
(X + (1/2))/(N + 1) and produces, as will be dis-
cussed, well-behaved frequentist confidence intervals.

Interval Estimation

The discreteness of the binomial distribution –
there are only N + 1 possible outcomes when
X ∼ Bin(N, p) – sometimes leads to erratic and
unpredictable behavior by confidence intervals for
p. This is particularly apparent for intervals
based on the asymptotic normal approximation
N(p, p(1 − p)/N) to the distribution of p̂ (see
Normal Distribution). On the basis of this
approximation, nearly all entry level and many
advanced courses teach the Wald 100(1 − α)%
confidence interval, p̂ ± z1−(α/2)

√
(p̂(1 − p̂)/N),

for p, with zγ the 100γ th percentile of the
standard normal, for example, zγ = 1.96 when γ =
0.975. This interval offers intuitive and easily
understandable properties for introductory level
students. For fixed p̂, the interval narrows as N

increases while, for fixed N , the interval is widest
when p̂ = 0.5 and narrows as p approaches 0 or 1.

The drawback, however, is that extremely large
samples are necessary for the interval to achieve
nominal 100(1 − α)% coverage, that is, for 100(1 −
α)% of all intervals constructed to contain p. While
this is particularly true for p near its extremes of
0 or 1, the coverage probability is low over the
entire range of p. Moreover, due to the binomial’s
discreteness, coverage does not approach 100(1 −
α)% monotonically as N increases [20], so that a
larger N can yield poorer performance.

Many classic texts, in recognition of the asymp-
totic origin of the Wald interval, recommend it only
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when min (Np, N(1 − p)) > 5 or > 10 or, more
stringently, when Np(1 − p) > 5 or > 10. Yet even
when N = 40 and p = 0.5 and this latter condition
is thus met, the exact coverage of the Wald interval
is only 91.9%. Even when N is 100, the portion of
the range of p for which a 95% confidence interval
achieves 95% coverage is negligible (Figure 1a).

A number of methods exist to ensure at least
100(1-α)% coverage for any fixed p [1, 3, 34].
These methods vary in computational complexity

and associated software requirements. While some
instructors and practitioners desire closed-form
formulae, others believe that “simplicity and ease of
computation have no roles to play in statistical prac-
tice” [27]. Some believe the confidence coefficient
is meaningful only as a guaranteed minimum cov-
erage probability at each use of an interval, while
others find a method that guarantees only average
coverage over a range of conditions to be quite sat-
isfactory. Such varied opinions leave much room for
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Figure 1 Coverage probabilities of six 95% confidence intervals for p, with N = 100
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disagreement on practical recommendations. Further,
to guarantee nominal coverage, one must generally
form an interval by inverting the acceptance region
of an exact hypothesis test. This requires computing
binomial probabilities of the observed outcome and
some unobserved outcomes over a range of possible
values of p. Such computationally intensive calcula-
tions are now simple to perform using many statistical
software packages (see Software, Biostatistical), but
unsuitable for the elementary courses in which con-
fidence intervals for proportions must be taught.

Below, we promote alternatives to the standard
Wald interval that meet four criteria [18]. The confi-
dence region must:

1.
2.

that is, the lower and upper endpoints of the
interval for p based on X should respectively
be the upper and lower endpoints of the interval
for (1 − p) based on (N − X);

3. yield monotone endpoints in X, that is,
for fixed N , LB(X, N) < LB(X + 1, N) and
UB(X, N) < UB(X + 1, N); and

4. yield monotone endpoints in N , that is,
for fixed X, LB(X, N) > LB(X, N + 1), and
UB(X, N) > UB(X, N + 1).

We review three easily computable alternatives
to the Wald interval and a more computationally
demanding “exact” interval, comparing coverage
properties with the Wald interval and with each other.

Jeffreys Interval

Assuming a Jeffreys prior p ∼ Beta(1/2, 1/2),
the resulting posterior distribution is p|X, N ∼
Beta(X + (1/2), N − X + (1/2)), and the Bayesian
equal-tailed 100(1 − α)% credible set is formed by
the α/2 and (1 − α/2) quantiles. Interpreting this
Bayesian credible set as a frequentist confidence
interval offers desirable frequentist properties as
will be demonstrated. While there are no closed-
form expressions for the endpoints, all common
statistical software packages (Excel, SAS, S-PLUS,
etc.) include simple function calls for such Beta
quantiles. Note that although error is allocated equally
to each tail, the interval itself will be symmetric
only when the posterior distribution itself is, requiring
X + (1/2) = N − X + (1/2) and hence X = N/2.

Wilson Interval

The Wald interval is formed by inverting the Wald
test of H0 : p = p0. That test is based on a Central
Limit Theorem (CLT) approximation to the distri-
bution of p̂ using the maximum likelihood binomial
variance estimator Np̂ q̂, where q̂ = 1 − p̂. Wilson,
in a 1927 JASA paper [55], introduced an interval
with a similar relationship to what is now known as
the score test (see Likelihood). Writing q0 = 1 − p0,
the score test CLT approximation to the distribu-
tion of p̂ uses the variance Np0q0 implied by the
hypothesized p0. The 100(1-α)% Wilson interval,
also referred to as the score interval [2], is

X + z2
1−α/2

2

N + z2
1−α/2

± z1−α/2

√
N

N + z2
1−α/2

√

p̂ q̂ + z2
1−α/2

4N
. (1)

As noted by Agresti and Caffo [4], this inter-
val is centered about the pseudo-estimator p̃ =
(X + z2

α/2/2)/(N + z2
α/2), which may be viewed as a

weighted average of the sample proportion and one-
half or, equivalently, as obtained by adding (z2

α/2/2)

successes and (z2
α/2/2) failures to the data. Similarly,

the interval’s width is a multiple of a pseudo stan-
dard error obtained from a weighted average of the
maximum likelihood variance estimator used for the
Wald interval and the true variance when p = 1/2.

Agresti–Coull Interval

The Agresti–Coull interval [5] takes the functional
form of the standard asymptotic Wald interval but
with minor adjustments in X, N , and p, to X̃ = X +
(z2

α/2/2), Ñ = N + z2
α/2, and p̃ = X̃/Ñ , respectively.

Thus, the interval has the standard Wald-like form

p̃ ± zα
2

√
p̃q̃

Ñ
, (2)

where q̃ = 1 − p̃. The difference is that the whole
experiment is treated as if there are (z2

α/2/2) more
successes and (z2

α/2/2) more failures than were actu-
ally observed. For a 95% confidence interval, this has
the affect of approximately adding two successes and
two failures, or in a Bayesian sense, starting with a
Beta(2, 2) prior for p. This prior has mean 1/2 and
is concave with single mode 1/2, while the Jeffreys
prior has mean 1/2 and is convex and bimodal at 0

be one contiguous interval;
be invariant to X → N − X transformation,
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and 1. Thus, in the Bayesian sense, the Agresti–Coull
prior distribution on p is more informative.

The Agresti–Coull interval is never narrower than
the Wilson interval, making it a more conservative
choice. It offers a clear improvement over the Wald
interval when X = 0 or X = N , for which the width
of the Wald interval is zero, and corrects particularly
well for the sometimes too narrow intervals and poor
coverage of the Wilson method when p is close to 0
or 1. The Agresti–Coull and Wilson (score) intervals
are very similar when p is near the center of its range.
See [4] for a fine, highly accessible review of this
interval.

Clopper–Pearson Interval

As always, it is easier to reach a performance goal
on average than to guarantee such performance is
always achieved across a range of conditions. The
intervals above are superior to the Wald interval in
providing approximately 100(1-α)% coverage aver-
aged over the range of possible values of p, but
coverage by each is below nominal for some combi-
nations of p and N . In contrast, the Clopper–Pearson
Interval [25], often called the Exact Interval, achieves
at least nominal coverage for all combinations of p

and N [1, 3, 25, 34]. For X �= 0 or N , the 100(1-α)%
Clopper–Pearson interval is

[(
1 + N − X + 1

XF2X,2(N−X+1)(
α
2 )

)−1

,

(
1 + N − X

(X + 1)F2(X+1),2(N−X)(1 − α
2 )

)−1
]

, (3)

where F df1, df2(c) is the c quantile from the F
distribution with df1 and df2 degrees of freedom.
When X = 0 or N , the undefined bounds in (3) are
respectively replaced by 0 and 1.

“Exact” in reference to the Clopper–Pearson inter-
val refers to use of the exact binomial sampling distri-
bution rather than using an asymptotic approximation
to produce the interval. (The relevant exact binomial
sums implicitly determine (3) through their relation-
ship, and that of the F distributions, to the incomplete
beta function.) This method, however, does not pro-
duce an exactly 100(1 − α)% interval, but rather one
of at least 100(1 − α)% and sometimes much higher
coverage. Thus, the price of guaranteeing at least

100 × (1 − α) coverage for each combination of N

and p is loss of precision, in the sense that intervals
are on average wider than necessary to achieve that
coverage for most N, p combinations. Nevertheless,
when preservation of nominal coverage is preferred
despite this conservatism, the Clopper–Pearson inter-
val accomplishes this objective and is widely used.

Other exact methods, for example, Blyth–Still
[18], the Blaker [17] interval nested within it, and
Blyth–Still–Casella intervals [21], are also available
in specialized software. The continuity correction
to the Wilson interval results in a wider, more
conservative interval that better approximates the
Clopper–Pearson interval. This frequently increases
minimum coverage, as in Figure 1, to the nominal
100(1 − α)% [31, 38].

Coverage Comparison

For a fixed sample size of N = 100, and 101 possible
values of the true p (0, 0.01, 0.02, . . . ,1.00), Figure 1
shows the true coverages of 95% Wald, Jeffreys,
Wilson, continuity-corrected Wilson, Agresti–Coull,
and Clopper–Pearson (aka Exact) intervals. Ideally,
the coverage of each would be 95% for every value of
p. While the discreteness of the binomial distribution
prohibits this, one still desires coverage near 95%.

It is clear from Figure 1 that the Wald interval,
even when N = 100, offers poor coverage. The
Jeffreys interval offers better coverage properties
than the interval obtained using a Uniform prior
(not shown). Also, Ghosh [37] shows that the Wald
interval is not only centered at the wrong place, but
is also frequently wider than the Wilson interval.

Figure 2 shows interval widths for N = 100 and
X from 1 to 50 (the plot is symmetric around 50).
The Clopper–Pearson intervals are clearly wider for
most values of X, and therefore for most values of
p. The Exact approach produces the widest intervals
except when p is near 0 or 1, when the Agresti–Coull
intervals are wider. The Wilson and Agresti–Coull
methods produce similar widths for p not near 0 or 1.
Figure 2 also demonstrates that the Jeffreys interval
is desirably narrow compared to other intervals
(Figure 2) while producing coverages nearly 100(1 −
α)% throughout the range of p (Figure 1).

There is philosophical debate over the relative
merits of requiring at least 95% coverage for any
value of p, as offered by exact methods or continuity
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Figure 2 Widths of five 95% confidence intervals for p, N = 100

corrections, versus requiring average 95% coverage
for all situations in which one might compute an
interval. The practicing statistician must weigh the
benefits and costs of each of the two competing
approaches, and choose the most appropriate method
for the given situation.

If guaranteed coverage is required, then the exact
Clopper–Pearson interval is preferable. If average
nominal coverage is satisfactory, then the Jeffreys,
Wilson, and Agresti–Coull intervals offer sound
frequentist properties. In the example shown, the
Jeffreys interval offers tightest oscillation around
95%; this may differ, however, for other choices of
N �= 100. The Agresti–Coull interval may be the best
compromise choice. It improves upon the Jeffreys
and Wilson intervals by ensuring that coverage is
not far below 100(1-α)% for values of p near 0
or 1. But it is not overly conservative, as are the
continuity-corrected Wilson and the exact intervals,
throughout the rest of the admissible range of p. The
Agresti–Coull interval also offers the advantage of
a form that is easy to remember and teach: for 95%
confidence, just construct the simple Wald interval

after adding two successes and two failures to the
data. Various other references, for example, [1, 6,
20, 42, 53], offer similar graphical comparisons of
the available choices of confidence intervals for a
binomial proportion.

Hypothesis Testing

The score and Wald tests, respectively invert-
ing the Wilson and Wald intervals, are com-
monly used, as is the likelihood ratio test [2]. The
score statistic is equivalently Pearson’s goodness
of fit chi-square X2

S1 = ∑2
i=1(Oi − Ei)

2/Ei = (p̂ −
po)

2/(po(1 − po)/N) (see Chi-square Tests), and
the Wald statistic is Neyman’s [44] modified chi-
square statistic X2

W1 = ∑2
i=1(Oi − Ei)

2/Oi = (p̂ −
po)

2/(p̂(1 − p̂)/N), where the Oi and Ei , i =
1, 2 are respectively the observed counts of suc-
cesses and failures and their expectations under H0 :
p = p0. The corresponding forms of the likelihood
ratio statistic are X2

L1 = 2
∑2

i=1 Oi log Oi/Ei =
2 [X log(p̂/p0) + (N − X) log((1 − p̂)/(1 − p0))].
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Under H0, all three statistics are asymptotically chi-
square with one degree of freedom. As suggested
by their denominator variances and the properties of
their associated confidence intervals, convergence to
this distribution is generally more rapid for X2

S1 than
for X2

W1, with departures for X2
W1 tending towards

higher than nominal type I error rates (see Hypoth-
esis Testing). The behavior of X2

L1 is intermedi-
ate [48].

The exact test, dual to the Clopper–Pearson inter-
val, is easy to calculate (see Exact Inference for
Categorical Data). For given p0 and N , the binomial
probability of observing X = 0 to X = N under the
null hypothesis is simply Pr(X = x) = (

N

X

)
px

0 (1 −
p0)

N−x . Calculating the P value, the sum of prob-
abilities of the observed and equally or less probable
nonobserved outcomes, is straightforward.

The mid-P value, a 1961 innovation of Lan-
caster [40], has recently received renewed atten-
tion [2]. The mid-P value is the exact P value,
as described above, less half the probability of the
observed count. The mid-P value removes unattrac-
tive discrepancies between the properties of P values
from discrete and continuous sampling distributions.
Specifically, unlike conventional exact P values, the
sum of mid-P values from two opposing one-sided
exact tests equals 1.0, the mean of mid-P values is
0.5 under the null hypothesis, and the null distribution
of mid-P values is closer to uniform than that of P

values. However, while generally conservative, tests
based on the mid-P value do not guarantee a type
I error rate of less than α, nor do the correspond-
ing confidence limits assure at least 100(1 − α)%
coverage.

Hypothesis tests corresponding to the Jeffreys,
Agresti–Coull, or another confidence interval for a
binomial proportion can be performed by rejecting
exactly when the interval excludes the hypothesized
value. Such tests may well have type I error closer
to nominal than one or more of the Wald, score, and
likelihood ratio tests. To find the P value for a test
formed by inverting a confidence interval, determine
the confidence coefficient CC of the interval with p0

on the boundary. Then, the P value is 1 − CC.
For example, assuming X = 38 successes are

observed in N = 100 trials with null hypothesis p =
0.5, the Jeffreys hypothesis test can be performed
by determining which confidence coefficient provides
an upper bound exactly equal to 0.5. A region
of the Beta(38.5, 62.5) distribution bounded above

at 0.5, and excluding equal probabilities on each
tail, contains 98.40% of the distribution; hence P =
0.0160. Likewise, using the equation for the upper
bound of the Agresti–Coull confidence interval and
solving for α yields P = 0.0165.

Power and Sample Size Determination

Whether the endpoints of an interval or the rejection
region of a test are based on exact binomial calcula-
tions or a large-sample approximation to the relevant
binomial distribution(s), coverage of an interval or
power of a test may be calculated either exactly
using binomial distributions under the alternative, or
approximately using a limiting normal distribution.
Only direct calculation from the binomial distribution
under an alternative gives true coverage or power,
although Gaussian approximations to such calcula-
tions are generally used and often provide sufficient
accuracy for practical purposes.

For example, the power of a two-tailed test of
H0 : p = p0 under the fixed alternative of HA : p =
p1 can be approximated as follows. First, find the
acceptance region of the stipulated test, (TL, TU);
for example, for X2

S1, Xε(TL, TU) with (TL, TU) =
Np0 ∓ z1−(α/2)

√
(Np0(1 − p0)). Then, using normal

theory under H1, calculate the large-sample normal
approximation to the probability that X falls outside
that region, for example,

Power = Pr

(
Z ≤ TL − Np1√

Np1(1 − p1)

)

+ Pr

(
Z ≥ TU − Np1√

Np1(1 − p1)

)
. (4)

This approximates the true power, Pr(X /∈ (TL, TU)|
p = p1) under X ∼ Bin(N, p1), which may be cal-
culated instead by summing the Bin(N, p1) proba-
bilities for all values of X outside (TL, TU ). This
approach applies, with obvious modifications, to any
other test procedure, specifically including exact tests
and tests using the mid-P . Power, and the method
for determining it, are based on the test’s rejection
region, not on how that rejection region is derived.
Note that standard moment-based expressions in text-
books, and default power calculations in statistical
software packages, are almost always asymptotic
approximations to the true power of a test. The ease
of inverting the moment-based expressions to yield



Proportions, Inferences, and Comparisons 7

approximate sample size requirements has much to
do with this. However, discrepancies in default sam-
ple size recommendations of software packages are
common, owing to variations in defaults on the tests
used and the specific power calculations inverted to
obtain them (see Sample Size Determination).

While the asymptotically based counterparts to an
exact test are generally more powerful, that is, type II
error probabilities β for the asymptotic tests are lower
than for the exact test, this gain comes at the expense
of higher type I error rates, which are not guaranteed
by the asymptotic tests. As shown in Figure 1 (with
α = 1 − coverage probability), these may far exceed
the nominal value used to (asymptotically) determine
the rejection region. For fixed α, power as a function
of sample size is also saw-toothed: counterintuitively,
a small increase in sample size may slightly reduce
power.

One-sample Summary

Numerous superior alternatives to the classic Wald
interval exist. The Clopper–Pearson and, at least
for 95% confidence, the continuity-corrected Wilson
intervals, assure that coverage cannot fall below the
nominal coefficient for any combination of N and p.
Similarly, the tests based on inverting these intervals
assure that type I error cannot exceed the nominal α.
The cost is wider intervals and reduced power rel-
ative to procedures whose coverage roughly centers
around, rather than below, the nominal confidence
coefficient. Among such procedures are the relatively
simple Jeffreys, Wilson, and Agresti–Coull inter-
vals, the latter two with closed-form expressions, and
their corresponding tests. The Agresti–Coull method
produces intervals with generally sound frequentist
properties, in a form easily taught and remembered.

For research design, software for sample size
determination should be used cautiously. For hypoth-
esis testing, for instance, such software typically
requires specification of p0 as well as a nominal α

and a target or guess at p1. Then, for fixed desired
power, a single or a selection of sample size rec-
ommendations is provided from among the available
choices. The researcher must recognize that power
and sample size results for alternative tests can dif-
fer not only because one test is more efficient, but
also because two tests of nominal size α may have
different actual type I error rates, and/or because of

approximations used in the calculations. This is par-
ticularly so since the power functions of the several
tests, and even their relative performance, may be
nonmonotonic with parameters and/or sample size in
neighborhoods of their hypothesized or recommended
values.

Two Independent Samples

Inference for two independent samples focuses on
how much the relative frequency of an observed char-
acteristic differs between two sampled populations. In
general, the lessons of the one-sample case regard-
ing (a) the liberality of the standard Wald procedure,
(b) conservatism of the standard exact procedure, (c)
availability of simple intermediate approaches that
achieve closer to nominal type I error by sacrificing
control of maximum type I error, and (d) the inher-
ent trade-offs of coverage and power with different
levels of type I error control, all continue to apply.
However, the two-sample situation is more complex
because (i) the null hypothesis of interest is typically
the composite hypothesis of no difference between
populations, with the common underlying propor-
tion a nuisance parameter, and (ii) the disparity
between populations may be parameterized in several
ways, most commonly as the difference (“risk differ-
ence”) [2–4, 8, 11, 43, 45, 49], ratio (“risk ratio”)
[2, 4, 12, 45, 49], and odds ratio [2, 3, 54], that are
functionally dependent only for a fixed value of the
nuisance parameter.

A consequence of (ii) is that there is no longer a
one-to-one relationship of hypothesis tests to confi-
dence intervals for any single parameter determined
to be of primary interest, and the details of inter-
val estimation vary depending upon the association
parameter chosen. To simplify exposition, and in con-
formity with the historical development, the ensuing
discussion will thus proceed primarily from a testing
perspective, with the reader referred to the excel-
lent reviews [1, 3] for additional detail on confidence
intervals.

Comparing two binomial proportions has long
occupied the field of statistics. In 1900, Karl Pearson
introduced what became the “standard” chi-square
test as a goodness-of-fit test to determine whether
observed data were compatible with a proposed prob-
ability model [47]. Its proper application to contin-
gency tables was clarified in 1922 by Fisher [33].
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Hundreds of papers have since offered extensions,
improvements, and adjustments to the test, which Sci-
ence 84, a popular magazine of the American Associ-
ation for the Advancement of Science (AAAS), called
one of the 22 most important scientific breakthroughs
of the twentieth century [7].

For the remainder of this section, we consider
a two-by-two (2 × 2) table of observed counts
under the probability model ni1|ni· ∼ Bin(ni·, pi),

Response

Present Absent Total

Population 1 n11 n12 n1·
Population 2 n21 n22 n2·
Total n·1 n·2 n·· = N

i = 1, 2. Such data, with this model, may arise
from several experimental or observational research
designs. The row totals n1· and n2· may be fixed
by the conditions of a designed observational study
or experiment or, in an observational study, only
N may have been determined by the researcher, or
n11, n12, n21, n22 may be independent Poisson counts.
In these latter cases, the within-row binomial distribu-
tions arise by conditioning inference on the observed
row totals n1·, n2· of a multinomial or product-
Poisson distribution, respectively. For such situations,
we will discuss a general class of asymptotic proce-
dures, exact inference, and Bayesian inference.

Asymptotic Methods

Read and Cressie [29, 48] defined the class of power-
divergence asymptotic test statistics T λ(N, m̂ij )

which, for H0 : p1 = p2 as above, take the form

T λ(N, m̂ij ) = 2

λ(λ + 1)

2∑

i=1

2∑

j=1

nij

[(
nij

m̂ij

)λ

− 1

]

(5)

for λ �= −1, 0, and the limiting forms T −1(N, m̂ij ) =
2

∑2
i=1

∑2
j=1 m̂ij log(m̂ij /nij ), T 0(N, m̂ij )=2

∑2
i=1∑2

j=1 nij log(nij /m̂ij ). The m̂ij are estimated exp-
ected values of the nij obtained by minimizing
T ζ (N, mij ), for some ζ (not necessarily equal to
λ), under the constraint p1 = p2. In our notation,

we suppress ζ , which does not affect the asymptotic
distribution of the test statistics. This family includes
the likelihood ratio test (λ = ζ = 0), Pearson’s chi-
square (λ = 1, ζ = 0), Neyman’s minimum modified
chi-square (λ = ζ = −2), and others that may be
conveniently studied within this unifying framework
(see Chi-square Tests).

Under all of the experimental or observational
designs given above, when p1 = p2 each member
of the power-divergence family converges in distri-
bution to chi-square with one degree of freedom as
n1·, n2· → ∞, and hence provides an asymptotically
valid test of H0 or, equivalently when n1· and n2· are
random, of row by column independence.

Pearson’s chi-square, which is the score test as in
the one-sample case, is commonly written in each of
the several forms

X2
S2 =

2∑

i=1

2∑

j=1

(Oij − Eij )
2

Eij

=
2∑

i=1

2∑

j=1

(nij − m̂ij )
2

m̂ij

= (p̂1 − p̂2)
2

(n−1
1· + n−1

2· )p̂(1 − p̂)
= N(n11n22 − n12n21)

2

n1·n2·n1·n2·
(6)

with m̂ij = ni·n·j , p̂1 = n11/n1·, p̂2 = n21/n2·, p̂ =
n·1/N . In the third form it is easily extended to the
score test for H0∆ : p1 − p2 = ∆,

X2
S2∆ = ((p̂1 − p̂2) − ∆)2

(n−1
1· + n−1

2· )p̂(1 − p̂)
. (7)

The set of all ∆ not rejected by this test forms an
asymptotic confidence interval for p1 − p2 analogous
to the Wilson interval in the one-sample case.

Neyman’s minimum modified chi-square [44],
which as earlier is the Wald statistic, replaces the
denominator Eij = m̂ij above with nij , yielding

X2
W2 =

2∑

i=1

2∑

j=1

(Oij − Eij )
2

Oij

=
2∑

i=1

2∑

j=1

(nij − m̂ij )
2

nij

= (p̂1 − p̂2)
2

p̂1(1 − p̂1)/n1· + p̂2(1 − p̂2)/n2·
. (8)

The set of all ∆ not rejected by the corresponding
Wald test of H0∆ using

X2
W2∆ = ((p̂1 − p̂2) − ∆)2

p̂1(1 − p̂1)/n1· + p̂2(1 − p̂2)/n2·
(9)
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may be written directly as (p̂1 − p̂2) ± 1.96√
(p̂1(1 − p̂1)/n1· + p̂2(1 − p̂2)/n2·). This is the

confidence interval traditionally presented in ele-
mentary statistics courses and texts, and most com-
monly used in practice. Unfortunately, this shares
the propensity of the one-sample Wald interval to
be too narrow to achieve nominal coverage. The
performance of the same interval, however, sub-
stituting p̃i = (ni1 + 1)/(ni· + 2) for p̂i , is much
improved [3].

As also noted by Agresti [3], the Wald interval
for the log odds ratio using the empirical asymptotic

variance
(∑2

i=1

∑2
j=1 n−1

ij

)
derived by the delta

method,

log

(
n11n22

n12n21

)
± 1.96

√√√√
2∑

i=1

2∑

j=1

n−1
ij (10)

generally performs well, and its performance is
improved if the nij are respectively replaced by
nij + 2ni·n·j /N2 and if, in addition, the intervals are
extended to ±∞ respectively whenever min(n12, n21)

= 0, min(n11, n22) = 0. Further, inverting an exact or
asymptotic chi-square test of H0 : p1/p2 = θ based
on the score statistic

XSθ = n1·(p̂1 − ˜̃p1)
2

˜̃p1(1 − ˜̃p1)
+ n2·(p̂2 − ˜̃p2)

2

˜̃p2(1 − ˜̃p2)
, (11)

where ˜̃pi is the MLE of pi under H0, provides a
generally well-behaved interval estimate for the risk
ratio p1/p2.

The likelihood ratio statistic X2
L2 = 2

∑2
i=1

∑2
j=1

nij log[nij /(ni·n·j )] is also a commonly used power-
divergence statistic for comparing two proportions.
Although the various power-divergence statistics
share the same limiting null chi-square distribution
as both n1· and n2· increase, and the tests have the
same Pitman efficiency under local alternatives in
the nonnull case, they differ in performance under
nonlocal alternatives (e.g. in Bahadur efficiency), in
more general problems under nonstandard “sparse”
asymptotics (in which the number of cells increases
with N ), and in small samples (see Asymptotic Rel-
ative Efficiency (ARE)). Cox and Groeneveld [28]
provide a thorough comparison of X2

S2 and X2
L2, pre-

dicting when each will provide a higher, that is, more
powerful, test statistic, under various null hypotheses.
Read and Cressie [48] recommend λ = 2/3 as the

best compromise between high power under a wide
range of true alternative hypotheses and the ability of
the chi-square distribution to approximate the distri-
bution of the test statistic under the null hypothesis
for small samples. Of the power-divergence methods
in general practical use, the Pearson chi-square, with
λ = 1, is closest to this.

Continuity Corrections

Owing to the discreteness of counts, the sampling
distributions of power-divergence statistics from con-
tingency tables are discrete, that is cdfs are step
functions, and cannot generally be well-approximated
by the continuous χ2

1 distribution when n1· or n2· is
small. In such circumstances, the actual type I error
rate of a test may be well above or below the desired
α level. Continuity corrections are modifications to
the test statistic or the approximating distribution for
the purpose of reducing or minimizing the effects of
such approximation errors. Such a continuity correc-
tion can be used, for instance, to control excessive
type I error of an asymptotic chi-square test by
shrinking the test statistic, thus making the test more
conservative. The classic continuity correction does
this by replacing (O − E)2 by (|O − E| − (1/2))2 in
the numerator of X2

S1.
Continuity corrections are thoroughly covered in

this volume and elsewhere [1, 2, 38, 43]. They
are generally constructed to better approximate the
behavior of exact methods for which statistical soft-
ware is increasingly available. Thus, their current
utility is primarily for situations when maintaining
the nominal α is crucial and statistical software for
exact testing is not handy.

Exact Methods

Statistical inferences using exact methods rely on
computations from one or more completely specified
discrete probability laws. A disadvantage is that
discreteness makes it impossible to perform tests with
a precisely predetermined type I error rate without
using a supplemental randomization to decide some
test results, a process most consider unsatisfactory
for scientific discourse. While the exact test and
interval are straightforward in the one-sample case,
with two samples the null hypothesis is composite:
rather than a specified p0, under H0: p1 = p2 = p,
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p can assume any value in [0,1]. A simplification
strategy is required to select from or combine over
this universe of distributions compatible with H0.

Fisher’s Exact Test

R.A. Fisher proposed conditioning on fixed row and
column marginal totals (see Conditional Probabil-
ity; Fisher’s Exact Test). This restriction on the
sample space allows direct numerical calculation of
the distribution of any test statistic from the 2 × 2
table. For instance, the distribution of any single cell
count is hypergeometric, as in

Pr(n11 = t) =
(
n1·
t

)(
n2·

n·1−t

)
(

N

n·1

) , (12)

where t ranges from max(0, n1· + n·1 − N) to
min(n1·, n·1). One can calculate the probability of
each possible t , and then a P value by summing the
probabilities of n11 and all t more compatible than
n11 with the alternative hypothesis.

The highly constrained hypergeometric setting
may lead to very few possible values of n11, and
hence very few possible tables and P values. In
the tea tasting example through which Fisher intro-
duced the test, N = 8 with n1· = n·1 = n2· = n·2 = 4.
Since 0 ≤ n11 ≤ 4, there are five possible P val-
ues, respectively, 0.014, 0.24, 0.76, 0.99, and 1.0 for
n11 = 0, . . . , 4 for his one-sided test, and three pos-
sible P values (0.029, 0.48, 1.0) for the two-sided
test. Thus, for instance, the common true type I error
rate of all one-sided tests with desired (nominal) type
I error rates between 2 and 23% is actually 1.4%.
This inherent conservatism, at times extreme, can
be removed by supplemental randomization to pre-
cisely achieve any nominal α; Tocher [52] has shown
such randomized tests to be uniformly most powerful
among unbiased tests. The mathematical optimality
of randomized tests has not, however, overcome the
taint of arbitrariness that restricts their use.

Consequently, a variety of alternative nonrandom-
ized exact methods have been developed that reduce
the discreteness and hence conservatism of Fisher’s
approach. For instance, Agresti [3] provides a thor-
ough and readable review of confidence interval
options for the difference, ratio, and odds ratio of two
binomial proportions that guarantee nominal cover-
age. See [6, 26, 50] for details of some intervals with
good properties.

Using mid-P values with Fisher’s exact test has
gained considerable recent support. As in the one-
sample case, this method does not guarantee preser-
vation of the nominal level α, but performance of a
test using mid-P is generally closer to nominal than
that of the corresponding exact test, and power is
inherently higher [1].

Unconditional Exact Tests

It is more common in experiments, and always
the case in observational research, for at least
one tabular margin to be random. Conditioning on
only one set of margins, say {n1·, n2·}, produces a
much larger sample space than conditioning on two,
allowing many more possible tables and P values
under H0, and thus tests frequently yielding closer
to the nominal type I error rates. However, the
indeterminate nuisance parameter p1 = p2 = p must
still be removed. This problem may be overcome,
in the context of an arbitrary test statistic T such
as T = X2

S2, by maximizing the exact P value over
possible values of the nuisance parameter:

P value = sup
0≤p≤1

Prp(T ≥ to|n1·, n2·), (13)

where t0 is the observed test statistic [9, 10, 19].
This “unconditional exact” method has been crit-

icized precisely because it maximizes over the full
range of p; Fisher [35] and others [51] have argued
that possible samples with far different total successes
than were observed are irrelevant. In response, Berger
and Boos [15] proposed maximizing the P value over
a 100(1 − β)% confidence set Cβ for p, and adjust-
ing the result for the restriction to the confidence set.
Adding β to the maximum over the confidence set
yields a valid P value, namely,

P value = sup
p∈Cβ

Prp(T ≥ to|n1·, n2·) + β. (14)

Since the approach becomes more conservative
(P values increase) as the confidence interval
narrows, these authors favor a high confidence
coefficient, for example, 100(1 − β)% = 99.9% or
β = 0.001, and hence a wide interval. This
modification of the approach of Boschloo [19]
also maintains the guaranteed level α and is
“often uniformly more powerful than other tests”
including Fisher’s exact test [14]. At the time of
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publication, this test and its associated confidence
intervals were not widely commercially available.
However, both have been implemented in StatXact
Version 6 [30], and modified Boschloo P values are
obtainable using software available from Berger at
http://www4.stat.ncsu.edu/∼berger/
software.html. Several alternative unconditional
exact intervals that also guarantee coverage have been
proposed by Chan & Zhang [24].

Bayesian Methods

The reader is referred to [39] for a thorough review
of Bayesian inference for 2 × 2 tables based on a
variety of noninformative, subjective, and correlated
priors; see also Bayesian Methods for Contingency
Tables.

At the price of introducing a continuous subjective
prior distribution for the two unknown parameters p1

and p2, the choice of which is open to debate, the
Bayesian statistician bypasses many frequentist dif-
ficulties due to discreteness. In a hypothesis-testing
framework, the frequentist’s final result is a P value –
the probability of the observed data and data more
compatible with the alternative, conditional on a fixed
null hypothesis. Owing to discreteness of the sample
space, the discrete distribution of a test statistic may
yield few choices of achievable type I error rates for a
nonrandomized exact test, and may be poorly approx-
imated by the continuous chi-square or other asymp-
totic distribution. The Bayesian, however, conditions
upon the observed data – all of it rather than selected
margins – and calculates the posterior probability of
a particular hypothesis of interest: Pr(p1 > p2|{nij }),
Pr(p1 < p2|{nij }), Pr (|p1 − p2| < ε| {nij }), and so
on [39]. Such probabilities are determined by inte-
grating over the appropriate space in the joint poste-
rior distribution of (p1, p2), which will be continuous
whenever a continuous prior is selected. Circum-
stances are uncommon in which a discrete bivari-
ate prior would be reasonable for the two unknown
proportions.

A more general advantage of Bayesian meth-
ods is that they satisfy the likelihood principle,
which asserts that inference about a parameter should
depend only on the relative values of the likelihood
function at the parameter’s admissible values and not
otherwise on the data collection method. As Berger
and Berry clearly illustrate [13], frequentist hypoth-
esis testing incorporates the probability of outcomes

that never occur and therefore, two different research
designs that yield the exact same data may provide
different P values and hence, different inferences.
Bayesian methods do not exhibit this somewhat coun-
terintuitive behavior because, no matter what the
research design, they condition on all of the data
rather than on a particular choice of marginal totals
[41]. In a Bayesian analysis, discreteness is still man-
ifest in the distribution of the posterior probability of
a specific hypothesis, considered as a random vari-
able. The posterior can realize only as many values
as there are possible tables under the study design, but
this does not produce the interpretive complications
presented by the frequentist context.

As an example, when independent Jeffreys priors
are placed on p1 and p2, Pr(p1 > p2) is closely
approximated by Φ−1(z), where

z = (n11n22 − n12n21)

√
n11 + n12 + n21 + n22

n1·n2·n·1n·2
.

(15)

This corresponds to the one-sided P value from
X2

S2. Numerical methods such as Gibbs sampling and
Markov Chain Monte Carlo (MCMC) can be used
to improve this approximation [23, 36]. Howard also
considers the case of correlated priors for p1 and p2.
Such a choice, with positive correlation, is one way
to represent the subjective belief that p1 and p2 are
unequal but not likely to differ substantially.

Study Design and Power

For Student’s t-test and other tests based on contin-
uous distributions, it is possible to choose a rejection
region that guarantees precisely an arbitrary prespec-
ified type I error rate, whatever the common value
of the mean. This is not possible when comparing
two proportions, regardless of the test used, without
very large sample sizes or use of a supplementary
randomization resisted by the scientific community.
Consequently, the power of a test at a nominal α

depends on the sample sizes in each group, the val-
ues of each of the two probabilities, and the true
type I error rate achieved by the test in that com-
bination of circumstances. The power is relatively
increased when true type I error overshoots the nom-
inal α, as for instance, with the Wald test based on
the observed difference p̂1 − p̂2 in small to moder-
ate samples, and relatively decreased when true type
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I error falls below nominal α, as with Fisher’s exact
test in most of its uses. When designing a study, such
trade offs should be kept in mind. The various widely
published asymptotic formulae for approximate sam-
ple sizes or power for the chi-square, likelihood ratio,
or Fisher’s exact tests generally fail to capture the
saw-tooth nature of this sample size/power trade off.
As in the single proportion case, small increases in
sample size may reduce power.

As a general rule, efficient use of data is pro-
moted by the use of methods for which actual type
I error rates are close to nominal. Methods based on
power-divergence statistics and associated confidence
intervals, slightly modified if needed to improve cov-
erage, are generally useful for moderate to large
samples, and for smaller samples when strict con-
trol of type I error is not essential. The power of
any test against any fixed distribution in the space
of alternatives is defined as the probability of the
rejection region under the alternative distribution.
This may generally be computed more accurately
by exact calculations or Monte Carlo methods than
by asymptotic formulae. Sample size may be chosen
indirectly by this method which, although cumber-
some, is reliable and avoids ambiguities associated
with the use of asymptotic approximations in general
purpose statistical software. Most available sample
size/statistical power software packages calculate the
power for Pearson, likelihood ratio, and Fisher exact
tests [46], but may default to approximations.

When the true type I error rate must not be allowed
to exceed the nominal α to any degree, as frequently
occurs in the context of regulatory decision mak-
ing, Fisher’s exact test has been the conventional
choice. However, unconditional exact methods gener-
ally offer more power, and under randomization, the
unconditional framework for inference is no less valid
than the conditional. The modified Boschloo uncondi-
tional test is usually more powerful than the original
Boschloo test, which is uniformly more powerful than
Fisher’s exact test [14]. Similarly, inversion of the
modified Boschloo test produces a narrower uncon-
ditional exact confidence interval for p1 − p2, while
guaranteeing at least nominal coverage [15, 30].

We reiterate that commercially available sample-
size software uses a variety of formulae and approx-
imations that are not always well documented, and
may or may not incorporate continuity corrections
by default.

Two-sample Summary

The Pearson chi-square test is powerful and offers
nearly α type I error rates for large samples. For
smaller studies, however, test statistics are desirable
that either do not require asymptotic assumptions or
are adjusted to improve performance. The modified
Boschloo unconditional exact test is a more powerful
alternative to Fisher’s exact test that strictly preserves
nominal type I error when study design leaves at least
one tabular margin random. If both margins are inher-
ently fixed and preservation of nominal type I error
is essential, then Fisher’s exact test, with its inherent
conservatism, is warranted. Bayesian tests that escape
some discreteness problems and produce straightfor-
ward interpretations may also provide insight.

Confidence intervals for differences of proportions
and ratios of proportions or odds are generally avail-
able by inverting hypothesis tests. These methods are
discussed in a variety of texts and manuscripts [2–4,
8, 11, 12, 43, 45, 49, 54]. Bedrick provides thor-
ough coverage of confidence intervals for ratios of
two proportions within the power-divergence family
of statistics. He concludes that 0.67 ≤ λ ≤ 1.25 give
intervals with the best coverage. This range includes
the intervals based on the “Cressie–Read statistic”
with λ = 2/3, and on the Pearson chi-square test.

For small samples, when strict preservation of
coverage is not essential, confidence intervals can
be constructed by inverting hypothesis tests based
on mid-P values [16] to substitute for the overly-
broad exact intervals. Closed forms do not exist
but software such as Cytel’s StatXact [30] computes
these intervals.

For simple problems of inference about one and
two proportions, research and expanded computing
power have clarified deficiencies in methods that
have formed the basis of statistical pedagogy and
most scientific practice. Although improved meth-
ods have been identified, and their properties are
generally well-understood, they have not yet seen
widespread application. A key requirement for the
acceptance of any modern statistical methodology is
convenient availability in software. While many of
the newer techniques discussed here are implemented
in special purpose commercial software and/or can
be readily programmed using SAS/IML, S-PLUS, or
the freeware R, as of March 2004, we know of none
employed as defaults, and support by the general pur-
pose statistical packages used by most data analysts
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is inconsistent. More frequent use of the improved
methods, and hence better inferences for these scien-
tifically ubiquitous situations, await more widespread
and convenient implementation by the mass market
software packages.
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Proprietary Biostatistical
Firms

A “proprietary biostatistical firm” is generally a pri-
vate company offering statistical services to the phar-
maceutical, biotechnology, and/or medical device
industries. It might be privately owned or a pub-
licly traded company. The more generic term, Con-
tract Research Organization (CRO), is often used to
describe such companies, but will also be used to
refer to companies providing a wider range of ser-
vices in pharmaceutical research and development.

Introduction

The fact that certain substances can prevent and/or
relieve human conditions has played an important
role in the history of mankind, spanning the cen-
turies and cultures of the world. Today’s pharma-
ceutical medicines; that is to say, products that have
been synthesized and developed rather than natu-
rally occurring, had their origins in the emergence of
chemical companies in the nineteenth century. How-
ever, it was not until the synthesis of antibacterial
substances in the 1930s that the chemotherapeutic
revolution started. The outbreak of war at the end of
the 1930s provoked a surge of research for other anti-
infective compounds, and the therapeutic potential of
penicillin, identified in 1929, was more fully realized.
The modern research-based pharmaceutical industry
was born.

It has been since the 1980s, and still is effec-
tively, the exclusive right of the pharmaceutical and
the biotechnology industries to research, develop,
and deliver health care products to the populations
of the world. As the pharmaceutical industry grew,
so did the interest in, and concern for, the safety
and efficacy of new medicines, and in the growth
in expenditure for the health of the public. When
the thalidomide misadventure happened in the early
1960s, society, through national governments, was
ready to act. Regulations controlling drug develop-
ment and subsequent marketing practices were born
(see Drug Approval and Regulation).

With regulatory requirements established and in-
creasing gradually since the 1960s, the drug devel-
opment process has become more complex, result-
ing in increased costs and time pressures on the

research-based pharmaceutical industry. The stimulus
for reducing health care costs, the usage of generic
drugs, and the emergence of the biotechnology indus-
try in the 1980s added to the changes in the pharma-
ceutical environment. The industry began to consoli-
date and in some cases reduce the size of their staff.
The concept of developmental research using sources
outside the industry became a reality and the CRO
industry was born.

The Beginnings in the 1970s

At first, the pharmaceutical companies were look-
ing for services to manage peak periods in selected
areas. With regulation had come the requirement for
appropriate designs and statistical analyses of clini-
cal trials. Although the pharmaceutical industry had
rapidly expanded their in-house statistical staff in the
1970s, the specialist area of biostatistics lent itself to
being contracted out. Some of this early consulting
work was provided by academia (biostatistics/ statis-
tics departments, medical schools, or other publicly
funded organizations); indeed, many of today’s CROs
started life as consultancy services within academic
departments.

As personal computing became established and
continuously more powerful in the 1980s, and when
commercial statistical software became more fully
developed and reliable (see Software, Biostatisti-
cal), CROs began to function and offer their sta-
tistical services to the international pharmaceuti-
cal industry. Some of these companies flourished
briefly and disappeared. Others expanded with the
increased demand for data handling capabilities in
a controlled environment and established themselves
as complete data operations, providing comprehen-
sive biostatistical and clinical data management ser-
vices. Some companies expanded further by adding
clinical operations to their services, such as expert
medical advice in the design of studies and plans
for drug development, drug packaging and distri-
bution, monitoring of studies and adverse events
(see Data and Safety Monitoring), strategies for
regulatory affairs, design and development of CAN-
DAs (Computer Assisted New Drug Applications),
post-marketing surveillance and reporting, and eco-
nomic cost–benefit evaluations of pharmacologic
drugs (see Pharmacoepidemiology, Adverse and
Beneficial Effects). Biostatistical services included
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designs, methodology, and sample size determina-
tion for clinical trials, plans for statistical monitoring
of the conduct of clinical trials, and analyses of
studies including therapeutic outcome measures and
quality of life.

Several CROs have expanded further to meet
the changing needs arising from consolidations,
the downsizing of pharmaceutical companies, and
the growing biotechnology industry by offering
other nonclinical services (e.g. analytical chemistry,
toxicology, pharmacology, formulation development,
laboratory services, and manufacturing). While the
CROs specializing in the biostatistical aspects of
clinical trials still exist, pharmaceutical companies
often contract out biostatistical and other services,
such as those associated with complete clinical
investigations, whether they be single or multiple
studies or indeed entire drug development programs.

The Biostatistical Consulting Operation

As already indicated, much biostatistical contract
work is being done as part of more extensive services.
In this section we outline the job and the career struc-
tures for biostatisticians, whether they are employed
by a CRO specializing in biostatistics (and data man-
agement) or a CRO which offers biostatistics as one
of their services.

The Career

The growth in biostatistical consultation and sup-
port of new drug development in the pharmaceutical
industry resulted in an increased number of bio-
statisticians being employed during the 1970s and
early 1980s. As the CROs grew in the 1980s and
1990s, they employed many biostatisticians, as may
be noted by the membership in pharmaceutical statis-
tics organizations such as The European Federation
of Statisticians in the Pharmaceutical Industry (EFSPI
and its national organizations) and the Biopharma-
ceutical Section of the American Statistical Asso-
ciation. For example, at the end of 1996, the UK
national organization of EFSPI, PSI (Statisticians in
the Pharmaceutical Industry), counted more than
half of its 800 members as belonging to the contract
research industry.

A career as a biostatistician in a CRO is not just
a possibility but is a reality. Depending on the size

of the organization and the variety of its services, as
well as on the individual and his/her strengths and
aspirations, careers in biostatistics span the full spec-
trum of both a technical and a managerial ladder.
Professional and regulatory demands on the biostatis-
tician require the highest level of technical skill,
challenging any new graduate for years ahead. The
academically trained biostatistician in the CRO must
develop consulting skills (see Statistical Consulting)
to meet the needs of varied clients, projects, therapeu-
tic subject matter areas, and appropriate designs for
clinical trials. Depending upon the responsibilities of
the biostatistician, time is required to learn or enhance
skills and teamwork, communicate effectively in
client/customer relationships, and learn managerial
skills, whether these skills are needed on a partic-
ular project or in leading and directing staff mem-
bers. Biostatisticians in CROs may progress from
junior/assistant to principal statistician, from leader
of a team to manager of biostatistics and to a senior
role as a business leader. The Chief Executive and
Founder of the world’s largest CRO is a biostatisti-
cian by training. A career in contract research offers a
dynamic environment with opportunities for initiative
and scope to develop, excel, succeed, and prosper.

The Job

The main responsibility of the biostatistician in a
Biostatistics Department in a CRO is typically quite
operational, i.e. writing a detailed statistical analy-
sis plan from a prescribed study protocol, including
tables, listings, and graphical analyses as well as a
report outline (see Clinical Trials Protocols). The
biostatistician participates in the generation and pro-
gramming of analysis files, tables, listings, and graphs
and prepares the statistical report or contributes to an
integrated medical and statistical study report.

The work of the biostatistician often includes
discussions with the client about the design, appro-
priate sample size, and methods of analysis of a
study, interaction with the biostatistical personnel
of the client concerning the statistical sections of
the protocol, and consultation with appropriate clini-
cal and/or data management departments concerning
monitoring of the study and issues of data qual-
ity. Other aspects of the job include, for exam-
ple, regulatory issues, drug packaging and distribu-
tion, preparation of patient randomization sched-
ules (see Randomized Treatment Assignment), and



Proprietary Biostatistical Firms 3

marketing/sales/business development in relation to
contractual issues. In some circumstances, the bio-
statistician may work on-site at the client’s company.
Internally, work processes and standard operating
procedures need constant attention. Statistical tools,
especially software packages, need to be regularly
reviewed and upgraded as necessary. Training is
always an important concern. At a more advanced
level the biostatistician may be called upon to advise
the client on statistical issues and/or methodologies
(see Teaching Statistics to Physicians), on regula-
tory statistical strategy, on drug development plans,
and regulatory submission formats and documenta-
tion.

In conclusion, a successful biostatistician in a
CRO will have skills in multiple areas, from the
highest level of technical ability to knowledge of
regulatory affairs, and be a highly effective com-
municator, able to function effectively with senior
personnel in other disciplines.

Facts and Figures About the CRO
Industry

The CRO industry, which counts biostatistical con-
sulting as one of its components, is a burgeoning

environment of industrial scientific life, which has
seen sustained annual growth rates of over 50% in
the last few years. The total dollars outsourced to
CROs has been growing at a rapid pace for half a
decade – 20% to 30% per year – and it is expected
that this growth will continue at these levels for
at least the next few years. In 1996, there was an
estimated $15 billion spent on clinical development
by pharmaceutical and biotechnology companies, of
which about 18% ($2.7 billion) was contracted out
to an estimated 500 CROs. Dollars for clinical devel-
opment are expected to grow by 6% to 9% annually
at least through 1998; with the expected increase in
dollars spent on clinical development, it is estimated
that approximately $3.5 billion will be outsourced in
1997 and $4.4 billion in 1998.

There are hundreds of CROs around the world
competing for the drug development dollars. How-
ever, the top five to ten largest CROs currently
receive over half of the outsourced business.

DIANE GEHAN & JORGEN SELDRUP



Pseudo-likelihood
The term pseudo-likelihood has been used by sev-
eral authors (e.g. Besag [1], Suzuki [6], Prentice [3],
Kalbfleisch & Lawless [2], Wild [7], and Scott &
Wild [4] in a rather heuristic way, to describe a func-
tion of the data and the parameters of interest that
has properties similar to those of the usual likelihood
function. Often, the pseudo-likelihood arises as an
estimate of an unobserved likelihood based on com-
plete data; this is especially the case in the context
of response-selective or response-biased sampling. In
such contexts, the pseudo-likelihood function for the
parameter gives rise to a pseudo-score function as
its logarithmic derivative; typically, the pseudo-score
function has expectation zero, though sometimes this
only holds asymptotically. The primary use of the
pseudo-likelihood, then, is to define an estimating
equation (see Estimating Functions) through set-
ting the pseudo-score to zero. In many instances,
these heuristics lead to good inferential procedures,
but there is no clear theoretical theme to develop for
this article. What I shall do, however, is develop one
simple example where pseudo-likelihoods have been
suggested to give a general idea of the approach, and
provide entry points to the literature through refer-
ences to a number of papers.

Suppose that N independent individuals give rise
to data (y�, x�), � = 1, . . . , N , which have the joint
probability density function (pdf)

f (y|x, θ)g(x).

Here, y is a response variable, x is a vector of
explanatory variables, and θ is the vector of parame-
ters of interest which describes, perhaps among other
things, the regression of y on x. It is assumed that
x arises from some pdf g(x) which does not depend
on θ .

With complete data, inference on θ would be
based on the likelihood arising from the product of
conditional densities. The log likelihood is

�(θ) =
N∑

�=1

log f (y�|x�; θ), (1)

with the corresponding score function

s(θ) =
N∑

�=1

s�(θ), (2)

where s�(θ) = ∂ log f (y�|x�, θ)/∂θ .

We consider, however, situations in which we
have incomplete data and further where the data
collection is response-selective. Specifically, we sup-
pose that the range S of the response variable Y

is partitioned into k subsets: S = S1 ∪ S2 . . . ∪ Sk ,
where SiSj = φ for all i �= j . The data collection is
response-selective in that the probability that (y�, x�)

is observed depends upon the class in which y� falls.
Thus, (y�, x�) is observed with known probability
pj if y� ∈ Sj for all l = 1, . . . , N and j = 1, . . . , k.
Such a sampling scheme could arise in several dif-
ferent ways, of which we mention only two:

1. Basic stratified samples (BSS). The N units
have been generated from (1), and Nj are obser-
ved to have response y� in Sj . A simple random
sample of nj = pjNj items is selected and fully
observed in the j th stratum.

2. Variable probability sampling (VPS). As items
arise, their stratum membership is identified. If
the lth item falls in Sj it is independently selected
for full observation with specified probability pj .
Selection continues until we have a sample of n

items.

Variations on both of these schemes are possible and
arise in practice.

For simplicity, we consider VPS. An estimate of
the full (unobserved) log likelihood (1) is given by
the log pseudo-likelihood function

lp(θ) =
k∑

i=1

1

pj

∑

l∈Dj

f (y�|x�, θ), (3)

where Dj is the set of items observed in the j th
stratum. The corresponding pseudo-score function
that estimates (2) is

sp(θ) =
k∑

i=1

1

pj

∑

l∈Dj

s�(θ). (4)

It can be seen that sp(θ) has expectation 0 and
that, under fairly general conditions, the estimator θ̂p

that satisfies sp(θ) = 0 is asymptotically normal with
variance estimated by Â−1 + Â−1B̂ Â−1, where

Â = ∂2lp(θ)

∂θ
∂θT|

θ=θ̂
,

B̂ =
∑

(1 − pj )p
−2
j

∑

l∈Dj

s�(θ̂)s�(θ̂)T.



2 Pseudo-likelihood

It should be noted that there are many ways, in
general, that the full log likelihood (1) could be
estimated. The “weighted” pseudo-likelihood (3) and
related pseudo-score (4)represent only one approach.
Scott & Wild [4] compare a number of competing
approaches to this problem.

One simple example of a design of this type is the
case–cohort design of Prentice [3]. In this, N indi-
viduals are at risk of failure over an interval (0, τ ),
and interest centers on relating the failure rate λ(t |z)
to a vector of covariates z which can be measured
on each individual under study. It is too expensive,
however, to observe all individuals. Instead, the data
comprise observations on all individuals who fail in
(0, τ ) and, in addition, a sample of those individuals
who do not fail. Specifically, each individual in the
cohort who does not fail is independently observed
with probability p2. Here, the response variable for
the lth individual is T� and its range is divided into
S1 = (0, τ ) and S2 = [τ, ∞). The sampling rates for
the two strata are p1 = 1 and p2 < 1, and the pseudo-
likelihood described above can be applied directly
for the case λ(t |z; θ), a parametric model. Details are
given in Kalbfleisch & Lawless [2], where various
alternatives are also considered and compared.

Prentice [3] considers the case–cohort study in the
context of a proportional hazards model

λ(t |z) = λ0(t)r(zTβ), (5)

where z is a vector of covariates, β is a vector of
regression parameters, and r(x) is a relative risk
function. He derives a pseudo-likelihood based on
case–cohort data, and Self & Prentice [5] evaluate
its asymptotic properties.
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Pseudo-random Number
Generator

One of the most frequently called functions on a
scientific computer is the random number generator.
Random numbers are required for many purposes.
A major use is in simulations. Large quantities of
random numbers are needed to generate the random
samples from distributions (theoretical and/or empir-
ical) which are the basis of any stochastic simulation.
Another use for random numbers is the Monte Carlo
evaluation of multivariate integrals (see Markov
Chain Monte Carlo). Ideally, what is required in a
simulation is a stream of independently and uniformly
distributed random variables taking values between 0
and 1 [i.e. a random sample from the uniform dis-
tribution on (0,1)]. At best this ideal can only be
realized approximately.

Among the possible ways of generating random
numbers are mechanical processes, such as those
often used to select the winning numbers in lot-
tery draws, and methods using electronic noise, as in
ERNIE, the device used to select the winning num-
bers in the British premium bond scheme (another
lottery). It is difficult to validate such machines and
to ensure that they always behave correctly. Fur-
thermore, if one needs to reproduce the stream of
numbers used in a particular application, this can be
done only by storing the complete stream as it is cre-
ated. Such devices are also unsuitable for rapid access
by the simulation program.

Nowadays, computers almost invariably use a
“random number generator” program. These are, in
fact, pseudo-random number generators (PRNGs),
because it is impossible to construct a practicable pro-
gram for computing truly random sequences. PRNGs
are programs that produce a deterministic sequence
that mimics a random sequence of numbers. Their
advantages include speed, reliability, reproducibility,
and portability. Because simulations may consume
very large numbers of random numbers it is usually
important that it takes very little time to produce a
single one; PRNGs are usually highly efficient (often
very short) programs and hence can be very fast. They
are reliable sources of pseudo-random numbers in the
sense that, provided they are correctly implemented,
they will operate precisely as their theoretical speci-
fication predicts. There is no difficulty in producing

a perfect replica of a sequence. Hence, if required,
an entire simulation can be repeated exactly. PRNGs
can be made extremely portable so that different users
can get the identical random number stream, even on
different types of computer.

Ripley [10] gives a formal definition: a sequence
of pseudo-random numbers is a deterministic seq-
uence of numbers in the interval [0, 1] having the
same relevant statistical properties as a sequence of
random numbers. The key word here is relevant.
Before using a PRNG for a particular project it is
essential to check whether it can be regarded as
producing a sequence that is ‘random enough’ for
the purpose in hand. For example, a sequence that is
suitable for a fairly small queueing simulation may
be unsatisfactory for a large operations research
simulation of the ordering systems for a large health
authority. It may be possible to predict suitability
from a knowledge of the theoretical properties of
the PRNG or it may be necessary to carry out a
battery of statistical tests on trial sequences to check
its suitability for various purposes. Some generators
have been very well researched in both aspects. Some
have been shown to have serious flaws but are,
unfortunately, still in use.

The advantages and disadvantages of PRNGs can
best be explained by considering a class of genera-
tors that has enjoyed wide popularity for most of the
latter part of the century. These are the multiplica-
tive linear congruential generators (MLCGs), often
abbreviated to multiplicative congruential generators
(MCGs). They are based on a very simple integer
recurrence relationship. The algorithm starts with a
“seed” value, say X0. It then applies the congruency
relationship,

Xi = aXi−1(mod m), (1)

to obtain the next member of the sequence (i.e. Xi is
the remainder when the product aXi−1 is divided by
m); X, a, and m are all integers. The pseudo-random
numbers are obtained by setting

Ui = Xi

m
. (2)

At best, (1) produces each of the integers 1, 2, . . . ,

m − 1 once, in some apparently random order, and
then repeats that sequence exactly, i.e. the output
is periodic. However, not all MCGs produce all
the integers before starting to repeat the sequence.
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The length of the period depends on a and m. A
convenient choice for m, for ease of calculation on
a binary computer, requires it to be a power of 2,
say m = 2k , but a necessary condition to achieve the
maximum possible period is that m is prime. For com-
puters with 32-bit word-length 232, 231, and especially
231 − 1 are the popular values. The MCG with m =
231 − 1 has been particularly thoroughly researched
because 231 − 1 is prime. Prime m is considered
desirable for various reasons: The properties of gen-
erators with prime m are well understood. For a given
m, there are many values of a which lead to a genera-
tor with the maximum possible period (m − 1). Good
(well-tested) implementations are available. Research
has shown that, when m = 231 − 1, one of the best
choices for a is 16 807. The resultant generator has
been in widespread use for many years and is still a
popular choice for many applications.

In order that the actual output sequence from any
generator program is precisely as theory predicts,
the recurrence computations must be exact, i.e. there
must be no rounding or other numerical errors. Owing
to their finite word-length, computers can only rep-
resent real numbers approximately, whereas integers
can be represented exactly (up to a certain size deter-
mined by word-length and the computer’s arithmetic).
This is the reason why the integer recurrence given in
(1) is used, rather than a recurrence on the Ui directly.

The upper limit on exact integer representation
causes implementation problems. For reasons of effi-
ciency, m is often chosen to be very close to the
upper limit. In this situation, aX can be very much
larger than m and hence the upper limit. Thus, a naı̈ve
implementation of (1) will fail disastrously. Ways
of overcoming this problem include using higher
precision computer arithmetic (see Floating Point
Arithmetic), or breaking up the problem and replac-
ing the single (1) by several equations in each of
which the upper limit is never exceeded.

The length of the period of the MCG with
m = 231 − 1 and a = 16 807 is approximately 2 ×
109. This is adequate for many problems, but the
large-scale simulations that are increasingly common
nowadays require PRNGs with much longer periods.
One way of obtaining a generator of greater length,
but which still uses only simple MCGs, is to combine
the outputs of two or more different MCGs. The sim-
plest way of doing this is by adding their outputs and
taking the fractional part (as was originally proposed
by Wichmann & Hill [12] for 16-bit computers). It

is straightforward to compute the period of the com-
bined generator: for suitable choices of m and a it
is just the product of the individual periods. The
increased period is not the only benefit. For well-
chosen generators, the “randomness” of the combined
generator is found to be better than that of the indi-
vidual components. For example, L’Ecuyer [6] com-
bined two particular MCGs, each of whose modulus
was very close to 231 − 1. The combined genera-
tor has period 2 × 1018 and behaves very well. But
period lengths of this order are still inadequate for
many present-day applications. Adding more compo-
nent MCGs would increase the period but it would
also slow down the generator.

An alternative way of combining generators is
shuffling : the order of the output sequence of one
generator is varied “randomly” by the output from
another generator. The theoretical properties of the
resultant generator are difficult to determine. Such
generators have not found favor generally.

Before considering other types of generator, a par-
ticular aspect of the randomness behavior of PRNGs
in general needs to be mentioned. So far, we have
only considered the generation of univariate uni-
form variables – these may be represented as random
points on the unit line. However, many problems
nowadays require the generation of multivariate ran-
dom variables. This involves generating multivariate
uniform variables – these may be regarded as random
points in n-dimensional space, n ≥ 2, depending on
the specification of the random variable. The standard
way of doing this is to use n consecutive numbers in
the output from the PRNG as the coordinates of a
pseudo-random point in n-dimensional space. Simi-
larly, the next n numbers in the sequence form the
next point, and so on. Marsaglia [8] found that for
MCGs such points were located on a limited number
of parallel hyperplanes instead of being distributed
randomly in space. This lattice structure reflects the
serial correlation structure (i.e. the lack of indepen-
dence) in the output sequence from the MCG. For
some generators the resultant regularity can easily
be seen in two dimensions by plotting the output
numbers against each other in pairs. Some generators
are better than others, in the sense that the distance
between the hyperplanes is less. Tests for lattice struc-
ture have been devised and can be applied, along
with other tests, when validating a particular PRNG.
Whether or not lattice structure is a serious problem
in practice depends very much on the particular type
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of application for which the generator is being used.
It is known that combining MCGs by addition does
not remove lattice structure problems.

MCGs are the special case of the linear congru-
ential generator (LCG),

Xi = aXi−1 + c(mod m), (3)

where c = 0. However, provided m is prime, incor-
porating a nonzero value of c confers no advantage
over the corresponding MCG.

The LCGs are members of a much wider class of
generator for which the current value Xi depends on
more than one of the previous values:

Xi = a1Xi−1 + a2Xi−2 + · · · + akXi−k(mod m),

(4)

where some of the aj may be zero.
The MCG of (1) uses large values of m. At the

other extreme, we can set m = 2 and restrict a to
either 0 or 1 in (4). The output stream is then a
sequence of 0s and 1s. Viewing these as computer
bits, bj , we can construct pseudo-random numbers in
the form of binary fractions, for example

Ui = 0 · bi�bi�+1 . . . bi�+n, � > n. (5)

This type of generator is known as a Tausworthe or
feedback shift register (FSR) generator because of the
way in which it is implemented – the computer opera-
tions required to produce each pseudo-random num-
ber are very simple and fast. Generalized feedback
shift register (GFSR) generators result if Ui is made
up from nonconsecutive bits in the output stream.
Instead of the simple seed that an MCG requires, FSR
and particularly GFSR generators require special ini-
tialization procedures; they also use much more mem-
ory. However, given appropriate choices of constants
and correct implementation, very fast generators with
extremely large periods and good “randomness” prop-
erties (including their higher-dimensional behavior)
can be constructed. Well-tested implementations are
available. Combinations of GFSR generators by addi-
tion have also been implemented [11].

Other generators that have recently been intro-
duced by Marsaglia & Zaman [9] are based on replac-
ing the addition operation in special cases of (4) by
other binary operators. These generators are known
as add-with-carry (AWC) and subtract-with-borrow
(SWB) generators. They are designed to be very fast

and have extremely long periods. However recent the-
oretical analysis [1] suggests that their lattice struc-
tures are effectively equivalent to those of LCGs with
very large moduli m.

A different approach to obtaining better lattice
structure is to be found in the inversive congruential
generators (e.g. [4]). They use the relationship

Xi = aXi−1(mod m), (6)

where X (the inverse of X) is the solution of XX =
1(mod m). Such generators are known to have much
better lattice structure than the normal MCGs, but
suffer from the same constraints on period length.
Also, the computation of X is time-consuming.

Properties such as period length are global (i.e.
they describe overall features of the entire output
sequence of a PRNG) and are derived theoretically.
However, the practical question that faces any user is
the behavior of samples from the sequence and, most
important, the relevance of that behavior to particular
applications. It is, therefore, extremely important that
very thorough tests are carried out before a genera-
tor is released for general use. For the great majority
of users, writing PRNG programs is not a recom-
mended activity. However, it is not a good idea to
place too much trust in the random number func-
tions provided by computer operating systems (or
indeed by various packages, particularly those that
are not specifically designed for statistical use) with-
out first checking their specifications and suitability
for the application in hand. The reader is recom-
mended to use one of the thoroughly researched and
tested professional implementations (for example, in
the IMSL and NAG libraries; see Numerical Anal-
ysis).

There is a very substantial research literature on
the generation of pseudo-random numbers and this
is increasing rapidly. General introductions to the
standard methods can be found in the books by Dag-
punar [2] (fairly elementary) and Ripley [10] (more
mathematical). A good brief survey is given by
L’Ecuyer [7]. Currently, a useful source of informa-
tion on various aspects of random number generation
is the World Wide Web site http://random.mat.
sbg.ac.at, maintained by the Mathematics Depart-
ment of the University of Salzberg, Austria.

The design and implementation of algorithms
for converting pseudo-random numbers into pseudo-
random values from various nonuniform distributions
is best left to professionals. Some general methods are
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available, but usually a substantial amount of work
is needed to produce a workable algorithm for any
particular distribution (see Simulation). For many
distributions there is an ad hoc method based on
the particular properties of that distribution. As in
the case of PRNGs, the correct and efficient imple-
mentation of the algorithms is a skilled activity and
the resulting programs require very thorough test-
ing before adoption for general use. There is a very
substantial research literature on nonuniform random
variable generation. The books by Dagpunar [2] and
Ripley [10] contain introductions to this topic as well.
Devroye’s encyclopedic book [3] concentrates on the
theory leading to a vast range of algorithms, but
contains very little practical information on imple-
mentation and efficiency. For a very recent general
survey of the area and suggestions for further reading,
see Kemp [5].
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Psychiatry

The mentally ill have always been with us – to be
feared, marveled at, laughed at, pitied or tortured,
but all too seldom cured (Alexander & Selesnick,
The History of Psychiatry, 1967).

In his Dictionary of Psychology, Professor Stuart
Sutherland defines psychiatry as “the medical spe-
ciality that deals with mental disorders”. An almost
equally brief definition appears in Campbell’s Psy-
chiatric Dictionary, namely “the medical special-
ity concerned with the study, diagnosis, treatment
and prevention of behaviour disorders”. In terms of
either definition psychiatry has a long history since,
for example, Pythagoreans employed music therapy
with emotionally ill patients [11], and Aretaeus (A.D.

50–130) observed mentally ill patients and did care-
ful follow-up studies on them. As a result, he estab-
lished the fact that manic and depressive states occur
in the same individual and that lucid intervals exist
between manic and depressive periods. He consid-
ered mental illness in terms of outcome, emphasizing
the course of the disease and its prognosis. He also
understood that not all persons with mental illness
are destined to suffer intellectual deterioration, a fact
not again adequately emphasized until the twentieth
century.

A widely quoted remark of Galton is that until
the phenomena of any branch of knowledge have
been submitted to measurement and number, it cannot
assume the dignity of a science. Psychiatry, dur-
ing the twentieth century, has struggled to attain
such scientific respectability by making quantitative
observations on mentally ill patients, and psychia-
trists have become increasingly aware that a strict
scientific approach is required for their discipline to
progress. Statistics has, during this period, become
a most important basic science in psychiatry and
more and more often psychiatric researchers resort
to sophisticated and powerful statistical techniques
to help them unravel the complexities of their data.

But in the nineteenth century and earlier, the use
of statistics in psychiatry was largely restricted to
simple descriptive measures, and it is only in the
second half of this century that the use of inferential
(see Inference) and other more complex methods
has become widespread. However, the use of even
simple descriptive statistics was important and their
presentation often led to changes in policy if not

to changes in attitude to the problems of lunacy.
Table 1, for example, taken from Schull [22], shows
the number of people officially identified as insane
and the rate of insanity per 10 000 people in England
and Wales at various times during the nineteenth
century. The increase in lunacy as suggested by
these figures became one of the main weapons in
reformers’ arguments for new legislation to deal with
the insane, since they indicated that insanity was now
a serious social problem, a view endorsed by the
following from the 1844 Report of the Metropolitan
Commissioners on Lunacy:

Lunatics have unfortunately become so numerous
throughout the whole kingdom, that the proper con-
struction and cost of asylums for their use has ceased
to be a subject which affects a few counties only,
and has become a matter of national interest and
importance.

Schull points out, however, that the achievement of
reform (the construction of asylums and the employ-
ment of doctors to effect the cure of the insane) failed
to bring a halt or even a diminution in the rapid
upward spiral of cases of lunacy. Between 1844 and
1860, when the population as a whole grew by just
over 20%, the number of lunatics almost doubled; and
the growth in the number of the insane continued to
far outstrip the rate of increase of the general pop-
ulation for the rest of the century. Schull discusses
the various “official” explanations for the increase,
one of which was that a large number of cases pre-
viously unreported had only recently been brought
under observation because the method of gathering
statistics on insanity had previously been slipshod
and inadequate; the apparent increase was therefore
dismissed as largely a statistical artefact. Alternative
explanations for the increase assumed it to be real and
attributable to stresses attendant upon life in a higher
“mechanical” civilization. (The arguments described
here appear not to have altered dramatically over the
intervening 150 years!)

Examination of early issues of the Journal of Men-
tal Science (the forerunner of today’s British Journal
of Psychiatry) provides an example of “statistical
proof” in Matt’s [18] investigation of the inheritabil-
ity of insanity, although the proof amounts only to
the presentation of a set of data rather than to the use
of more formal inferential methods.

An indication of the psychiatrist’s attitude to math-
ematical and statistical topics in the early part of the
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Table 1 Total population, total number officially insane, and rate of insanity per 10 000 people in England and Wales

Number Rate Source of data
deemed per on number

January 1 Population insanea 10 000 insane

1807 9 960 000 2248 2.26 House of Commons, 1807
1819 11 106 000 6000 5.40 Burrows, 1820
1828 13 106 000 8000 6.10 Halliday, 1828
1829 13 370 000 16 500 12.34 Halliday, 1829
1836 14 900 000 13 667 9.18 Parliamentary Return, 1836
1844 16 480 000 20 893 12.6 Metropolitan Commissioners on Lunacy
1850 Not available
1855 18 786 914 30 993b 16.49 Commissioners on Lunacy
1860 19 902 713 38 058 19.12 Annual Reports
1865 21 145 151 45 950 21.73
1870 22 501 316 54 713 24.31
1875 23 944 459 63 793 26.64
1880 25 480 161 71 191 27.94
1885 27 499 041 79 704 28.98
1890 29 407 649 86 067 29.26

aIncludes lunatics in asylums, but also those in workhouses, at large in the community, etc.
bThe Commissioners found 20 493 lunatics in asylums of all types in 1855; lacking a complete enumeration of all lunatics not so
confined, they estimated that these amounted to 10 500 persons.

twentieth century may perhaps be gleaned from the
comments made by Edward Mapother when review-
ing Spearman’s book The Abilities of Man: Their
Nature and Measurement in the Journal of Mental
Science in 1928:

Doubtless most readers of this Journal, like the
reviewer, will be content to take for granted the
mathematics involved.

Freud, too, was not convinced about statistics. Fleiss
reports that in the 1920s, Joseph Zubin and a few
fellow graduate students undertook a study of 4-
, 5-, 6-, and 7-year-old children to put to the test
Freud’s Oedipus theory. Data were collected and
analyzed, and the statistical results seemed to confirm
the master’s theory. It was Zubin’s task to prepare
the tables, charts, and summary statistics and to
send them to Freud. “Ganz amerikanisch” was his
disparaging reply, implying that only in America was
the need felt to test what was obvious.

Nevertheless, statistical methodology began to
appear in psychiatric journals around this time.
Cameron [1], for example, in a study of perseveration
used the correlation coefficient and a test to
assess its significance. A report by the Royal
Medico–Psychological Association Committee on
Mental Deficiency on the evidence of neuropathic
conditions in the relatives of normal persons

published in the Journal of Mental Science in 1937
used a t test to examine the difference in average
family size for two groups of families, those who
included a weak-minded person and those who did
not. (The details of the t test (see Student’s t
Distribution) were confined to an appendix.) The
same paper also contains an application of a one-way
analysis of variance. Masserman & Carmichael [17]
used Pearson’s contingency coefficient to assess
the relationship between diagnosis and prognosis in
psychiatry.

The first clinical trial in psychiatry came in
response to the focal infection theory as a cause
of mental disorder [3]. Kopeloff & Cheney [14] and
Kopeloff & Kirby [15] undertook to test this hypoth-
esis by removing surgically all the foci of infection
from one group of patients and comparing their out-
come with an untreated control group. The only
difference found was a higher mortality from the
experimental group but no difference in outcome. No
statistical tests of differences were made, and results
were reported simply in terms of numbers and per-
centages of improved cases. It was only 50 years later
that Zubin & Zubin [25] calculated the statistical sig-
nificance of the difference in percentages and found
it to be nonsignificant.

The first psychiatrist to advocate the use of
Fisher’s experimental methods in the evaluation of
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physical treatments in psychiatry appears to have
been Sir Aubrey Lewis [16]. In this article, he crit-
icizes the past use of small series of cases and
“the common lack of a coordinated plan for the
therapeutic experiment”. Of a controlled trial he
concludes:

An organized experiment would demand much that
has not hitherto been practicable, including voluntary
acceptance by independent hospitals and clinics of
an agreed procedure for the selection, management,
evaluation of mental state, and follow-up investiga-
tion of treated, as well as of control cases. Such
an experiment, as R.A. Fisher has demonstrated,
requires much forethought and self-discipline on the
part of those who carry it out.

Lewis concludes with the following statement:

For the most important psychiatric conditions, such
trials are essential, unless we are prepared to go on
taking decades to decide questions which could be
settled in a few years.

Although small controlled trials of electro-convulsive
therapy (ECT) and psychotropic drugs began to
appear in the 1950s, it was some 20 years later that
the results of the first trial of the sort envisaged by
Lewis were published, when, in 1965, the Medical
Research Council’s multicenter trial of drug therapy
and ECT in the treatment of depression was com-
pleted.

(It is interesting to note that this trial was not
universally welcomed. In a letter to the British
Journal of Psychiatry, Sargant wrote: “There is no
psychiatric illness in which bedside knowledge and
long clinical experience pays better dividends; and
we are never going to learn how to treat depressions
properly from double-blind sampling in an MRC
statistician’s office.”)

Early studies of the inheritance of mental disorders
also had reason to be grateful to Fisher. In his twin
studies and family studies of manic depression, the
British psychiatrist Elliot Slater was concerned with
the problem of the use of age-of-incidence data in the
estimation of life-time risk, and acknowledges early
advice on appropriate statistical methods from Fisher;
the following is taken from Slater’s autobiographical
sketch [23]:

I had the temerity to write to R.A. Fisher to ask for
his help. He gave it at once, and in a completely
satisfying way; and it was in his journal that my
paper was eventually published. Fisher helped me

on many occasions, in investigations I carried out
in later years, and never grudged time or trouble. I
came to have for him the greatest admiration and
affection.

Psychiatric epidemiology was at first hampered by
inconsistencies in the reporting of the characteris-
tics of the mentally ill, but in the US, at least,
became more viable after 1917 when the American
Medico–Psychological Association’s Committee on
Statistics urged all mental hospitals to adopt a uni-
form reporting system. With the assistance of the
National Committee for Mental Hygiene, this Asso-
ciation produced the first uniform nomenclature of
mental diseases in 1918. After World War II there
was a literal explosion of community and demo-
graphic studies of the mentally ill. The National
Mental Health Act was passed in the US in 1946. A
result of this Act was that responsibility for gathering
data on the mentally ill was transferred to the Public
Health Service and the soon-to-be-created National
Institute of Mental Health.

In England, the 1949 Millbank Memorial Fund
Conference on the epidemiology of mental disorders
produced general agreement on the importance of epi-
demiology for causal research and for administrative
policy. Its relevance to clinical psychiatry, however,
was disputed by many of the practising psychia-
trists at the Conference who questioned how far
epidemiological inquiry should be based on the con-
ventional schemata of disease, which, in their opin-
ion, were inapplicable to mental disorders. Francis
reminded the Conference that epidemiology is basi-
cally dependent upon the accuracy of diagnosis and
that until a valid base for classification can be gen-
erally employed, data from different areas cannot be
properly compared.

The realization that, as in other medical and scien-
tific disciplines, classification is also fundamental in
psychiatry led many psychiatrists and statisticians in
the 1950s, 1960s, and 1970s to devote much energy
to using multivariate analysis techniques such as
principal components analysis, factor analysis, and
cluster analysis on various sets of psychiatric data
in an effort to refine or even redefine diagnostic cate-
gories. Examples of such studies are those of Fleiss &
Zubin [9] and Everitt et al. [8]. In many respects, this
opportunity to apply complex multivariate techniques
to an important practical problem provided an impe-
tus to research in multivariate analysis in general and
cluster analysis in particular. The reciprocal impact
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Table 2 American Journal of Psychiatry (AJP), British Journal of Psychiatry (BJP) and Archives of General Psychiatry
(AGP) during 1980 by categories of statistical usage

AJP BJP AGP
Categories of (1980) (1980) (1980)

statistical usage 339 papers 148 papers 110 papers

1. Expository 18 (5.3%) 6 (4.1%) 4 (3.6%)
literature review, etc.

2. No statistical data, 115 (33.0%) 12 (8.1%) 2 (1.9%)
case reports, etc.

3. Descriptive statistics 65 (19.2%) 14 (9.5%) 11 (10.0%)
only tables, graphs, means, variances

4. Chi-squared and t tests, Fisher 95 (28.0%) 75 (50.7%) 66 (50.0%)
exact test; 1 or 2 samples, contingency tables

5. Product–moment correlations, 42 (12.4%) 22 (14.9%) 30 (27.3%)
rank correlations

6. Analysis of variance 25 (7.4%) 22 (14.9%) 32 (9.1%)
F tests: 1-, 2-, and higher way

7. Nonparametric rank methods 9 (2.7%) 11 (11.5%) 10 (9.1%)
(other than rank correlations)

8. Measures of association 10 (2.9%) 13 (8.8%) 9 (8.2%)
and agreement (other than correlation)

9. Regression analysis 6 (1.8%) 9 (6.1%) 10 (9.1%)
simple, multiple, polynomial, stepwise

10. Discriminant and 4 (1.2%) 6 (4.1%) 7 (6.4%)
factor analysis

11. Estimation: 0 (0.0%) 3 (2.0%) 2 (1.8%)
maximum likelihood interval estimation, etc.

12. Cluster analysis, 1 (0.3%) 0 (0.0%) 1 (0.9%)
classification

13. Life tables, life 1 (0.3%) 0 (0.0%) 2 (1.8%)
testing, survival analysis

14. Time series analysis 2 (0.6%) 0 (0.0%) 1 (0.9%)
spectral analysis

15. Classical 0 (0.0%) 3 (2.0%) 1 (0.9%)
experimental design: Latin squares, hierarchical models

16. Bayesian methods 0 (0.0%) 0 (0.0%) 1 (0.9%)

of the latter on psychiatry has, however, been lim-
ited. Certainly, neither of the current editions of the
two diagnostic classifications systems in use today,
the American Psychiatric Association’s Diagnostic
and Statistical Manual and the World Health Orga-
nization’s International Classification of Diseases,
appears to have benefited from any of the many clus-
ter analysis studies that have been reported in the
psychiatric literature.

In 1985, DeGroot & Mezzich [5] produced their
Table 2 showing articles in three major psychiatric
journals by category of statistical usage. By a large

margin, the most common appearance of statistics
in psychiatric journals is in the form of a signifi-
cance test (see Hypothesis Testing), usually either
a simple t or chi-squared test. But there is con-
siderable evidence that not even such simple meth-
ods are always used wisely. White [24], for exam-
ple, considered 12 issues of the British Journal
of Psychiatry from July 1977 to June 1978, and
found statistical errors that could potentially affect
at least one conclusion in over a third of the papers.
One common error was failure to use a dependent
samples t test for matched data (see Matched
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Analysis). A similar exercise carried out nearly 20
years later by McGuigan [19] showed that the prob-
lem had, if anything, become worse, since now
40% of papers examined contained serious statistical
errors.

It is likely that repeating DeGroot & Mezzich’s
study today would give similar percentages to those
shown in their Table 2, particularly with respect to
simple significance tests. Psychiatrists (or at least edi-
tors of psychiatric journals) appear to have developed
a fondness for the P value, which overcomes the
many criticisms of its use that have been made in
the psychological and medical literature – see, for
example, Rozeboom [21], Oakes [20], and Gardner
& Altman [10]. But despite its likely overall sim-
ilarity, the 1995 version of DeGroot & Mezzich’s
Table 2 would contain a number of new categories.
Logistic regression, for example, is now applied rou-
tinely in many psychiatric investigations. Correspon-
dence analysis (see Greenacre [12]) has increased
in popularity and is often used to display contin-
gency tables graphically. A recent example is given
by Corten et al. [2] in an investigation of subjec-
tive quality-of-life measures in assessing rehabil-
itation treatment in psychiatry. Structural equa-
tion modeling (see Dunn et al. [7]) has also begun
to appear in the psychiatric and related literature.
Hines et al. [13], for example, use such models to
assess the influence of the corpus callosum on ver-
bal fluency, language lateralization and visuospa-
tial ability. Brain structure was modeled through
correlations between measures taken of the cross-
sectional surface area of the posterior fifth (splenum),
the posterior third minus fifth (isthmus), the ante-
rior fourth (genu) and the midregion lying between
the isthmus and the genu using magnetic resonance
imaging.

Meta analysis is now used frequently in medicine
in general and psychiatry in particular for combining
results from different studies of the same topic.
A recent example involves the possible association
between schizophrenia and birth complications. Many
other categories of technique could almost certainly
be added, although their number of occurrences
would probably be rather small.

Research in psychiatry includes components from
the biological, medical, behavioral, physical and
social sciences. The mixture provides many oppor-
tunities for the statistician interested in diverse appli-
cation experiences, and statistics has a central role

to play in the continuing development of psychiatry
as a scientific discipline. Statistical thinking should
pervade every stage of a research investigation in
psychiatry.

Two of the most exciting features of psychiatry
in the last few years of the twentieth century are
the availability of techniques such as functional
magnetic resonance imaging (fMRI) with the promise
of at least the possibility of new and powerful
insights into the working of the human brain and
the causes of mental illness, and the appearance of
powerful new drugs capable of making the last part
of the quotation that began this article obsolete. Vast
amounts of data are generated by fMRI and related
methods and the creation of appropriate statistical
methodologies for their analysis will be a further
challenge for statisticians working in psychiatry in
the future. Longitudinal clinical trials to test new
therapies generate many statistical problems and
statisticians have, over the course of the last five
years or so, developed a range of new techniques
for analyzing the data from such trials (see, for
example, Diggle et al. [6], and Crowder & Hand [4])
(see Longitudinal Data Analysis, Overview). As
yet these developments have not had a major impact
on psychiatric reports of clinical trials, and a further
challenge for statisticians working with psychiatrists
is to persuade them that the new methods offer real
advantages.

The increasing collaboration of psychiatrists and
statisticians over the last 20 years has had benefits
for both and the future offers further challenges
and possibilities in seeking the ultimate goal of
overcoming the misery that is mental illness.
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Gustav Fechner (1801–1887), the founder of psy-
chophysics, was an optimist. Not only was he con-
vinced that the mind coexisted with the body, but he
believed that he could prove it. Initially, he enthusias-
tically studied “after images” by staring into the sun.
Because these images lasted when he turned from
the sun, that was initial proof for him that conscious
perception was separate from physical perception.
Fechner was almost blind from these studies when
he came across the work of E.H. Weber, one of his
colleagues at Leipzig.

Weber was interested in muscular sensation
and noticed that when subjects lifted objects of
varying weights, sometimes they could perceive
the difference between objects, and sometimes they
could not. Weber concluded that when a person
distinguishes between two stimuli, it is not the
difference between them that is perceived, but rather
the ratio of this difference to the magnitude of the
things being compared. That is, if subjects were
comparing a 20 kg weight with a 20.1 kg weight,
they may not perceive the two weights as different.
However, when comparing a 1 kg weight with a
1.1 kg weight, the difference was readily perceived.
Weber characterized his findings with the following
formula:

∆R

R
= K,

where ∆R was the “just noticeable difference”
between a standard and comparison stimulus, K

was a constant, and R was the magnitude of
the standard stimulus. This formula states that a
noticeable (threshold) stimulus increment divided by
the magnitude of a standard stimulus gives a constant
value. Weber demonstrated that this finding held true
for virtually all physical stimuli, such as light, sound,
and pressure.

Fechner was very excited by Weber’s work and
extended it to measure psychological sensation, rather
than stimulus magnitude [13]. Fechner defined sen-
sation as the conscious experience that accompa-
nied the brain’s perception of external stimuli. By
evaluating subjects’ perceptions of stimulus changes,
he concluded that Weber’s “just noticeable differ-
ences” were equal throughout the range of sensa-
tion, and so they could be used as units for mea-
suring internal conscious experience. Fechner noted

that the magnitude of the perceived sensation was
proportional to the log of the stimulus magnitude;
as one’s sensation of a stimulus increased linearly,
the value of the physical magnitude increased expo-
nentially. Fechner’s extension of Weber’s formula
became known as Fechner’s Law, which stated

S = K log(R),

where S represents sensation magnitude, and K and
R are from Weber’s formula. He used this model to
develop the concept of a “sensation scale”, which
described the internal psychological processes under-
lying perception.

Fechner is sometimes referred to as the first
psychometrician. Psychometrics is the study of the
measurement of “psychological characteristics such
as abilities, aptitudes, achievement, personality traits,
skills, and knowledge” [2, p. 93]. Fechner’s obstinate
work on measuring sensation illustrated that it was
possible to measure unobservable processes within
the human psyche. Today, the field of psychometrics
includes educational testing, measurement of attitudes
and perceptions, personality testing, opinion surveys,
health inventories, and other forms of psychological
measurement. Psychometric techniques created for
measuring the human mind have also proven useful in
biometrics and other fields that deal with measuring
the intangible.

Psychological Scaling

Measurement involves measurement scales. The
scales involved in most physical measurement are so
widely known and accepted (e.g. kilograms, meters,
liters) that there is little controversy surrounding
the measurement process. However, in psycholog-
ical measurement, the scales are more nebulous.
On what type of scale can we measure the human
mind? Fechner’s work provided the first psycho-
logical scale measured in units of “just noticeable
differences”. L.L. Thurstone, another early psycho-
metrician, extended Fechner’s work to measure qual-
ities such as attitudes in units similar to these [48].
Later, Rensis Likert introduced the method of sum-
mated ratings that measured attitudes along ordered
integer scales [24]. Today, psychological measure-
ment involves a variety of scales including those
used in educational testing, such as the SAT score
scale; in intelligence testing such as the IQ scale; in
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personality testing such as the Minnesota Multipha-
sic Personality Inventory (MMPI) [7]; and in health
psychology such as the Jenkins Activity Survey [18].
These tests are measured on very different scales.
To understand how psychological scales are devel-
oped, the concept of measurement itself must first be
understood.

Measurement and Measurement Scales

In its most general sense, measurement is the pro-
cess of assigning numbers to objects according to
a set of rules [43]. The set of rules used to make
these assignments is called the measurement model.
The numbers used to classify objects within the
measurement model comprise a measurement scale.
There is a continuum of measurement scales. Selec-
tion of an appropriate scale is motivated by both
the purpose of the study and the nature of the vari-
able(s) being measured. For example, if the purpose
of an assessment is to classify people into one of two
stress behavior profiles such as “type A” (high-stress)
or “type B” (low-stress), the nature of the measured
variable required is dichotomous. However, if the
purpose of the assessment is to determine the degree
of stress experienced by an individual, the nature
of the measured variable must be continuous. The
variables measured in these two situations are both
related to stress. However, because these variables
differ qualitatively from one another, and because
there are different purposes associated with each
assessment, each situation requires a different mea-
surement model and a different measurement scale.
For example, the type A/type B classification might
be accomplished using the Jenkins Activity Survey,
while degree of stress experienced may be measured
using galvanic skin response or heart rate.

Stevens [43] provided a taxonomy of measure-
ment scales by describing in detail four specific levels
on the measurement continuum. The lowest level,
called the nominal scale, is used for assigning num-
bers to objects that form mutually distinct categories
(see Nominal Data). No order relations exist between
the categories to suggest that one category possesses
more of the attribute measured than another. Eth-
nicity and political party affiliation are examples of
attributes measured on a nominal scale. Asians and
Latinos would be assigned different numbers in the
measurement process; as would Democrats, Repub-
licans, Independents, and Conservatives. Thus, the

nominal scale of measurement is essentially numer-
ical coding. The coding rule is to assign the same
number to objects in the same category and different
numbers to objects in different categories.

The second level of measurement is called the
ordinal scale. These scales include an inherent log-
ical order among the mutually exclusive categories
(see Ordered Categorical Data). Unlike the nom-
inal scale, the magnitude of the numbers assigned
to the different categories correspond to meaningful
differences in magnitudes of the attribute measured.
For example, on a coma inventory, patients who
are assigned higher scores exhibit superior physi-
ological responses than patients who are assigned
lower scores. School grades on a letter scale (A,
B, C, D, E) provide another example of an ordinal
scale. Similarly, higher scores on the Apgar assess-
ment (a test of the health of newborns) indicate bet-
ter physiological functioning among newborns than
lower scores. However, an important feature missing
from an ordinal scale is equal interval widths between
categories. That is, we cannot say that the difference
in physiological functioning between Apgar scores of
seven and eight is the same as the difference in phys-
iological functioning between Apgar scores of three
and four. Similarly, on rating scale inventories, we
cannot say the difference between “strongly agree”
and “agree” is the same as the difference between
“strongly disagree” and “disagree”. Such statements
are reserved for variables measured on interval or
ratio scales.

Interval scales have the property of equality of
intervals on the scale that correspond to distinct inter-
vals of the characteristic measured. This property
allows for differences between scores to be inter-
preted with respect to the magnitude of the measured
variable. For example, when one measures temper-
ature in degrees Centigrade one is using an inter-
val scale. The difference between 10°C and 20°C is
the same, in some physical sense, as the difference
between 80°C and 90°C. Note that the same thing
cannot be said of the perceived sensation of warmth.
To determine equal intervals in that scale we would
need to take a logarithmic transform of these tem-
peratures (following Fechner’s Law). This illustrates
how an interval scale in one realm may not be in
another. Note also that it is, in general, meaningless
to make statements like “80°C is twice as warm as
40 °C”. In no sense is this true. If we need to make
such inferences we need a stronger scale.
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The fourth level of measurement, the ratio scale,
describes those scales commonly used to measure
physical attributes. Ratio scales possess all the
qualities of the lower scales (mutually exclusive
categories, inherent logical order, and equality of
intervals) as well as an absolute zero point. This
absolute zero point corresponds to the absence of the
characteristic measured. For example, in measuring
blood alcohol level, a reading of zero indicates the
absence of alcohol in the bloodstream. Similarly,
before a patient steps on a triple-beam scale, the scale
should read zero, which corresponds to the absence of
weight on the platform. The absolute zero property
of a ratio scale is important because it allows for
relative statements to be made across measurements.
Examples of such statements are “the patient’s heart
rate has doubled since admission”, “Alice is half as
tall as Eduardo”, and “Melanie’s range of motion in
her right knee is twice her range of motion in her left
knee”. Note how these types of statements could not
be made with respect to a variable such as intellectual
functioning, which is measured on a scale without an
absolute zero point.

The nature of the measurement scale must be
considered when analyzing and interpreting measure-
ment data. As illustrated above, the level of the
measurement scale places restrictions on the types
of inferences that can be drawn from the measure-
ment process. For example, when a nominal scale is
used, the numbers assigned to the mutually exclu-
sive categories provide no information regarding the
magnitude of the variable being measured. Consider
measuring ethnicity using a nominal scale where
Blacks are coded “1”, Hispanics are coded “2”, and
Whites are coded “3”. In looking at these “scores”,
we could not infer that Whites have more ethnicity
than the other groups just because a higher number
was assigned. We could easily transform this scale
by recording Blacks as “37”, Hispanics as “12”, and
Whites as “−1”. This transformation of the original
scale is admissible because the fundamental prop-
erty of the scale, mutually exclusive categories, holds
across the transformation. All subjects who are in
the same ethnic group are assigned the same num-
ber. However, calculation of statistics such as the
“mean ethnicity” is affected by the scale transforma-
tion. This issue is not restricted to the nominal scale.
Consider the measurement of health care satisfaction
on a five-point Likert scale. The same order relations
may not hold if the scale were transformed to a three-

or 12-point scale. Different measurement scales have
different types of admissible transformations. Thus,
the nature of the measurement scale must be consid-
ered when analyzing measurement data and reporting
the results (see [31], for a more comprehensive dis-
cussion of this issue).

The issue of an absolute zero point is another
important scale feature that must be considered when
interpreting measurement results. In most areas of
psychometrics the measurement scales are below the
ratio level, and so a zero point on the scale is either
absent or arbitrary. Therefore, for these scores to be
understood and interpreted appropriately, they must
be referenced to external information. Incorporating
external information into the score scale is an impor-
tant area of psychometrics. However, before dis-
cussing how this is done, we first provide information
regarding the purposes and models underlying psy-
chological measurement.

Purposes and Uses of Tests and Inventories

Tests and inventories are systematic procedures for
observing the characteristics of a group of objects
and describing the characteristics using a numerical
scale. There are many uses of tests and inventories;
however, most are used for the purposes of making
diagnoses or decisions about groups or individuals.
For example, psychiatric inventories are used to place
patients into treatment programs, public health sur-
veys are used to monitor the quality of health of
various groups of people, and medical tests are used
to provide specific information regarding a patient’s
condition. Such tests can provide a great breadth of
information, and so it is no surprise that their use is
both pervasive and growing.

Most tests are standardized in some fashion so that
extraneous factors do not interfere with the interpreta-
tion of test scores. Standardized tests refer to tests on
which the content and administrative conditions are
virtually the same for all test takers. Without stan-
dardization, test scores would vary depending on the
specific content and characteristics of the testing sit-
uation. Thus, comparisons of groups and individuals
would be difficult to make. Standardized tests pro-
vide a level playing field for making comparisons
between individuals and groups who take the same
test. For this reason, standardized tests and invento-
ries provide more objective information than unstan-
dardized measures. However, standardized tests and
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inventories do not comprise a limited type of assess-
ment. There is a plethora of testing formats and
test questions (item types) that fall into this cate-
gory. Standardized tests may differ markedly from
one another on the basis of the item types and test
formats used.

Item Types and Test Formats

There are several different types of items that appear
on tests and inventories, as well as several differ-
ent testing formats. A popular item type on surveys
and educational tests is the multiple-choice item.
This item type features a question or item stem,
followed by a series of options. Only one option
contains the correct answer, and so these items can
be scored dichotomously (right/wrong). An advantage
of multiple-choice items is that they can be scored
mechanically, such as by using an optical scanner.
Many other item types that are scored dichotomously,
such as true/false items, matching items, and items
requiring the “bubbling-in” of numerical responses
can also be scored mechanically. In fact, the recent
advent of computer-administered testing (described
in more detail in the section “Contemporary Testing
Practices” below) has allowed for mechanical scor-
ing of many different item types on computer. For
example, the US Medical Licensing Exam is sched-
uled to include “simulated patient” scenarios where
medical licensure candidates are required to “treat”
hypothetical patients on-line.

When the scoring of test takers’ responses is
automatic, the assessment is said to be scored “objec-
tively”. However, some item types can currently only
be scored by human judges. These item types are
said to be scored “subjectively”. Examples of sub-
jective item types are open-ended questions such
as those found in structured interviews, essay ques-
tions, and some tasks presented in performance-
based assessments (such as simulated patient tasks
that are not computerized). The distinction between
objectively-scored and subjectively-scored item types
is often subtle. The key feature is whether an external
grader is needed to interpret test takers’ responses in
order to assign a score. When external graders are
used, the scores are typically assigned to responses
according to a well-defined set of rules. The Apgar
assessment for newborns presents an inventory that
uses both objectively-scored and subjectively-scored

items. The heart rate “item” of the Apgar is mea-
sured objectively by reading the baby’s pulse, but
the color “item” is measured subjectively by looking
at the baby and discriminating between blue and pink
hues.

Objectively-scored items, such as the multiple-
choice item, reduce subjective elements that may con-
taminate scores associated with other item formats.
For example, if a newborn’s Apgar score depends on
the perceptual acuity of the observing nurse, differ-
ences in acuity among nurses may become a source of
measurement error. An additional advantage of many
objectively-scored item types is that a broad range
of content can be tested in a relatively short amount
of time. Dozens of multiple-choice items, covering a
variety of content areas, can typically be answered in
a smaller amount of time than it takes to complete
a performance task or write an essay. However,
multiple-choice items and other objectively-scored
formats also have disadvantages. First, they typically
take longer to develop than open-ended items. Sec-
ondly, they do not allow test takers to provide creative
responses. For this reason, open-ended item formats,
which usually require external judges for scoring, are
used to test skills that are not conducive to testing
via objectively-scored formats.

Recent advances in computer technology and mea-
surement are providing mechanisms for scoring new,
complex item formats objectively. Within the near
future it is likely that behavioral measurements such
as interpersonal skills and psychological well-being,
which were thought to be beyond objective measure-
ment, will be scored mechanically. Thus, physical and
monetary resources, such as access to these emerging
technologies, is likely to be a key determinant in the
selection of different item types and testing formats.
Before discussing the relative utility of different test
and item formats, fundamental measurement concepts
and models that are critical to all item formats are pre-
sented. We return to item and test format differences
in a later section.

Fundamental Measurement Concepts

In this section we discuss three critical notions: reli-
ability, generalizability, and validity. Psychometri-
cians have developed increasingly sophisticated the-
oretical conceptions of these notions as well as the
statistical machinery to allow them to serve practical
purposes.
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Reliability

A key issue in all measurement is the stability of the
particular measure under consideration. In psycho-
metrics we are principally interested in test scores
and their stability is usually denoted by the term
reliability. The technical meaning of this term is
closest to the dictionary meaning “giving the same
result on successive trials” and refers to the degree
to which test scores are free from errors of mea-
surement. There are many ways to characterize the
reliability of a measuring instrument, but a common
one is as a correlation between two independent mea-
surements of the same phenomenon. For example,
suppose we are trying to ascertain the reliability of
a yardstick as an instrument for use by humans in
measuring objects of lengths ranging from an inch
to a yard. We might choose a few dozen objects
of different apparent lengths to be measured then
go and measure them all. After measuring them we
might then go and measure them all a second time
and correlate the first set of measurements with the
second. This correlation would be an estimate of
the reliability of the measurement process utilizing
the yardstick. See Feldt & Brennan [14] for the full
story.

It is easy to see that there are a number of dif-
ficulties with this sort of operational approach to
reliability. For example, how does the estimate vary
with different individuals carrying out the measure-
ment process or with a different set of objects to
be measured? It was in reaction to these kinds of
problems that Cronbach et al. [11] proposed general-
izability theory.

Generalizability

Early approaches to estimating the reliability of a
measure or instrument yielded a simple number, often
termed the reliability coefficient. Consequently, none
of the different sources of variability (i.e. unrelia-
bility) was distinguished from another. It is often
the case, however, that a more detailed account-
ing is needed of the contributions made by these
different sources of variability. This leads naturally
to a decomposition of the variance into its compo-
nent parts.

In the ruler example described previously, we
would want to know what was the variance due to
measurers as well as the variance due to the charac-
teristics of the set of objects being measured. In other

circumstances we might want to measure the varia-
tion associated with the use of different rulers, or at
different times or temperatures. Each aspect or facet
of the measurement process adds its own contribution
to the total measurement variance. By examining this
decomposition we can state more precisely just what
we mean by measurement accuracy than is possible
with a single reliability coefficient. Moreover, we can
predict the extent to which the quality of the measure-
ment process generalizes to other circumstances, e.g.
different objects being measured or different people
doing the measuring. The method derives its name
from this capability. Note that by using this more
powerful approach, it is possible to predict the effect
on reliability if one or more sources of variation is
eliminated.

To calculate these variance components requires
a more extensive data-gathering effort than that
required to calculate a reliability coefficient. To
estimate the variance due to different measurers we
will need to have a sample of measurers make
measurements. To estimate the variance due to
different-sized objects being measured, for example,
we will need to have ratings on several samples
of objects. Often the gathering of such information
is difficult or expensive. Consequently, even though
a variance components conception of variability is
attractive, it may not always be practicable. See
Brennan [5] for more details.

Validity

The basic notion is that a measurement process is
valid if “it measures what it is supposed to mea-
sure”. More specifically, the term validity refers to
the appropriateness, meaningfulness, and usefulness
of the specific inferences that are made from the
measurement process. Note that the term validity
does not refer to the process itself, but rather to
the inferences made from it. This is a very impor-
tant distinction. As an illustration, consider a process
that yields a blood pressure measurement in its typi-
cal form of systolic over diastolic. An inference one
might make on the basis of a particular measurement
concerns the state of the individual’s cardiovascu-
lar system. Another inference might be in regard
to the individual’s emotional state. Under ordinary
circumstances one would expect the first kind of
inference to have greater validity than the second
kind.
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Traditionally, validity of mental measurements has
been treated within three distinct subcategories –
content validity, predictive validity, and construct
validity. They can be described briefly as follows:

1. Content validity. The extent to which the content
of the measuring instrument samples the class of
situations or subject matter about which conclu-
sions are to be drawn. If we are interested in
making inferences about a person’s health, how
many of the various components of health do we
measure? And how well do we measure them?

2. Criterion/predictive validity. The extent to which
an individual’s future performance on one or
more external variables (the criteria) is predicted
from performance on the test. The predictive
validity of parental height as a predictor of
a child’s adult height can be empirically
determined.

3. Construct validity. The extent to which certain
explanatory theories and concepts account for
performance on the test. Construct validity refers
to how well the inferences derived from test
scores correspond to theoretical and practical
notions of the construct presumably measured
by the test. As an example, consider a men-
tal test composed of mathematics items, verbal
reasoning items, verbal analogies, reading and
oral comprehension, and spatial visualizing. The
extent to which all individuals align themselves
identically on all of these various subtests is the
extent to which the underlying unitary construct
of “intelligence” is supported.

Messick [30] provides a more comprehensive
description of validity theory, and is considered to
be the seminal work in this area.

Formal Measurement Models

In the first section we described the various sorts of
measurement scales and their associated characteris-
tics. It is a common misconception that the strength
of a measurement scale is determined by the exper-
imental procedure used in the measurement. This is
not the case. The strength of the scale is determined
by the measurement model, and in particular by the
model for parameter estimation that is applied to the
data gathered from the experiment. Over the long his-
tory of psychometrics there have been many formal

models proposed. In this section we describe two of
them. The first, true score theory, is a straightfor-
ward linear model based on observed scores. The
second, item response theory is nonlinear (but lin-
ear in the logit – see below) and bears a surface
similarity to dose–response curves so familiar in
bioassay. There is an important, indeed critical, dif-
ference between item response theory and bioassay.
In bioassay, one typically plots survival rates against
dosage. Since both quantities are observable, at least
in principle, this is straightforward. Statistical issues
arise as one postulates different models to describe
(as parsimoniously as possible) the dose–response
curve and then tries to estimate the free parame-
ters of the model (see Quantal Response Mod-
els).

By contrast, in a typical application of item
response theory one wants to plot performance on
an item (say a question about the number of vis-
its to a doctor made in the last year) against an
overall health status variable. But the latter is not
directly observable. Such variables are often referred
to as latent variables (see Path Analysis). Each
individual in the sample is assumed to possess a
value of this latent variable and this (unknown)
value is represented by a parameter to be esti-
mated. In addition, models for the curve describ-
ing the relation between performance on the item
and the latent variable are of interest. Progress can
only be made when data on a number of such
items are available – but the statistical problems are
formidable because the “dose” values must be esti-
mated at the same time as the parameters describing
the set of “dose-response” curves for the different
items.

True score theory is familiar and easy, but in
most circumstances does not satisfy the requirements
for an interval scale. Item response theory is more
complex and may seem arcane, but provides much
stronger measurement characteristics. At the moment
at least this is the contemporary choice for most
modern testing programs and it is being adopted for
measuring medical outcomes [28, 38].

True Score Theory

In what follows we employ the terms “test” and
“examinee” to conform with psychometric usage.
However, the ideas apply equally well to any sort
of assessment or inventory.
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The fundamental idea of true score theory can be
stated in a single simple equation:

observed score = true score + error. (1)

This equation explicitly states that the score we
observe on a test is composed of two components,
the true score and an error term. The term true score
has a very specific technical meaning. It is the average
score that we would expect to obtain if the examinee
retook exactly similar (parallel) forms of the exam
very many times. The error term characterizes the
difference between what is observed on a particular
occasion and the unobserved long-term average.
Such errors are considered to be random and hence
unrelated to true score; that is, the distribution of the
errors is the same regardless of the size of the true
score. This definition requires the errors to have an
average size of zero.

Repeating this same discussion in mathematical
terms yields an analog to (1) for examinee i on test
form j :

xij = τi + eij , (2)

where xij is the observed score for examinee i on
test form j , τi is the true score for examinee i, and
eij is the error for examinee i on test form j . These
quantities have the following properties:

E(xij ) = τi, (3)

E(eij ) = 0, (4)

cov(τi, eij ) = 0. (5)

In much of the discussion in the rest of this article
it will be important to collect the scores for many
examinees and to study the variability among those
scores. It is commonly assumed that the scores
of any examinee are uncorrelated with any other
examinee. Utilizing (2) and these properties we can
decompose the variance of the observed scores into
two orthogonal components, true score variance and
error variance, i.e.

σ 2
x = σ 2

τ + σ 2
e . (6)

Eq. (6) follows directly from the definitions of
true score and error, but provides us with many
tools to study test performance. Obviously we prefer
tests whose error variance, σ 2

e , is small relative to
observed score variance σ 2

x . A test with small error
variance would measure an examinee’s true score

more reliably than one with a large error variance. We
can characterize how reliably a test works by the ratio
of error variance to observed score variance, σ 2

e /σ 2
x .

If this ratio is close to zero, then the test is working
well – the observed score has very little error in it.
If it is close to one, then the test is working poorly –
the variation in observed score is mostly just error.
When the ratio is rescaled [see (7)] so that it takes
the value one when there is no error and zero when
it is all error, it is the test’s reliability:

reliability = 1 −
(

σ 2
e

σ 2
x

)
. (7)

This representation of reliability is intuitively appeal-
ing, but is not in a useful form because it cannot be
directly computed from observed data; although we
can observe σ 2

x , we cannot observe σ 2
e . A slightly

different conception, using the idea of parallel test
forms, yields an observable quantity.

Before deriving this important equation we need
a formal definition of parallel test forms. Specifically
two forms, say form X and form X′, are parallel if

E(x) = E(x ′) = τ and σ 2
x = σ 2

x ′ (8)

for all subpopulations taking the test, where x and x ′
are the scores on form X and form X′, respectively.

The correlation of one parallel form with another,
ρxx ′ , is

ρxx ′ = cov(x, x ′)
σxσx ′

= cov(τ + e, τ + e′)
σxσx ′

=

[
cov(τ, τ ) + cov(τ, e)

+cov(τ, e′) + cov(e, e′)

]

σxσx ′
.

The last three terms in the numerator are zero,
yielding

= cov(τ, τ )

σxσx ′
.

But cov(τ, τ ) = σ 2
τ , and from definition (8), σx =

σx ′ so that σxσx ′ = σ 2
x . Combining these results we

obtain:

ρxx ′ = σ 2
τ

σ 2
x

,
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but since σ 2
x = σ 2

τ + σ 2
e [from (6)], we can rewrite

this as

ρxx ′ = 1 −
(

σ 2
e

σ 2
x

)
. (9)

Using a similar approach, it is possible to show
that

ρ2
xτ = 1 −

(
σ 2

e

σ 2
x

)

so that
ρxx ′ = ρ2

xτ . (10)

This result is important since ρxx ′ is directly
estimable from data, whereas ρ2

xτ is not. How to
estimate ρxx ′ well is the subject of a great deal of
work that we will only touch on here. One obvious
way is to construct two parallel forms of a test, give
them both to a reasonably large sample of appropriate
people, and calculate the correlation between the
two scores. That correlation is an estimate of the
reliability of the test. But making up a second form
of a test that is truly parallel to the first is a lot of
work. An easier task is to take a single form, divide it
randomly in half, consider each half a parallel form of
the other, and correlate the scores obtained on the two
halves. For obvious reasons such a measure of test
reliability is called split-half reliability. This yields
an estimate of reliability for a test similar to, but
only half as long as, the test we actually gave. Some
sort of adjustment is required. A second issue that
must be resolved before using the split-half reliability
operationally is to figure out how to split the test.
Certainly all splits will not yield the same estimate,
and we would not want to base our estimate on an
unfortunate division. Let us consider each of these
issues in turn.

The Spearman–Brown Formula for a Test of Dou-
ble Length. Suppose we take a test X, containing
n items and break it up into two half tests, say Y

and Y ′, each with n/2 items. We can then calculate
the correlation that exists between Y and Y ′ (call it
ρyy ′) but what we really want to know would have
been the correlation between X and a hypothetical
parallel form X′ (ρxx ′). A formula [(11)] for estimat-
ing this correlation was developed by Spearman [42]
and Brown [6] and is named in their honor:

ρxx ′ = 2ρyy ′

1 + ρyy ′
(11)
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Figure 1 Reliability at double length as a function of
reliability at unit length

A derivation of (11) follows directly from the char-
acteristics of parallel tests and is given in [27,
pp. 83–84].

To get an idea of how this expansion works,
consider the two lines in Figure 1. The dashed
diagonal line indicates equality of reliability between
the original test and one of double length. The curved
line shows the estimated reliability of a test of double
length. Note that when reliability of the original test
is extreme (0 or 1) doubling its length has no effect.
The greatest effect occurs in the middle; a test whose
reliability is 0.50 when made twice as long attains a
reliability of 0.67.

Which Split Half? Cronbach’s Coefficient α.
There are many ways that we can split a test of n

items in half (assuming that n is an even number).
Specifically, there are

1

2

(
n

n/2

)
= n!

2[(n/2)!]2

different ways that n items can be split in half. With
all of these possible ways to divide the test in half
it can be a difficult decision to determine which one
we should pick to represent best the reliability of
the test. One obvious way around this problem is
to calculate all of them and use their mean as our
best estimate. But calculating all of these for any test
of nontrivial length is a very big deal. For example,
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there are more than 63 trillion (63 × 1012) split halves
for 50 items! One way around this problem is due
to Cronbach [10]. He derived a statistic that is a
lower bound on the reliability of the test and is
equivalent to taking the mean over all possible splits.
Novick & Lewis [36] provided the conditions under
which Cronbach’s statistic is actually equal to the
reliability of the test. Cronbach’s statistic is usually
called Cronbach’s α in his honor, and is shown as
the expression on the left-hand side of (12):

n

n − 1




1 −





n∑

i=1

σ 2
yi

σ 2
x








= α ≤ ρxx ′ . (12)

A necessary and sufficient condition for Cronbach’s α

to be equal to the test’s reliability and not just a lower
bound, is that all the components making up the score
have the same true score. The technical name for this
condition is that all components be τ -equivalent.

To calculate α, we conceive of the test score x

as being composed of the sum of n items Yi . We
calculate the variance of each item across all the
examinees who took it and sum it up over all the
items. Next we calculate the variance of the total
score. The ratio of these two variances forms the core
of Cronbach’s α.

Estimating True Score. Under true score theory,
the principal object of interest is the examinee’s true
score. A reasonable approach is to use the observed
score as an estimate of the true score. Although
this estimator has the virtue of being unbiased (that
is, equal in expectation to its target) it can be
improved upon.

The heuristic behind the improved estimator is
similar to the familiar “regression to the mean”
argument. Observed scores that fall far below the
mean of the group are likely to have resulted, in part,
from a relatively larger negative random error on that
particular occasion. In a repeat test we would expect
these observed scores still to fall below the mean,
but not by nearly so great a margin. The greater the
reliability of the test, the less the effect of the random
errors.

The improved estimator, due to Kelley [19],
requires three pieces of information: the observed
score of the examinee, the mean score over the

population of examinees, and a measure of the test’s
reliability. The estimate, τ̂ , of the true score, τ , is
given by

τ̂ = ˆρxx ′x + (1 − ˆρxx ′)µ̂, (13)

where ˆρxx ′ is an estimate of the reliability of the test,
x is the observed score, and µ̂ is an estimate of the
population mean. This result states that to estimate the
true score from an observed score, the latter should
be regressed toward the mean of the population by an
amount related to the test’s reliability. The amount of
the “adjustment” to x increases as the reliability of
the test decreases. Note too that for a fixed level of
reliability, the amount of the adjustment is larger, the
greater is the distance of the observed score from the
population mean.

A Model for Error. The reliability coefficient that
we have just discussed provides us with one measure
of the stability of the measurement. It is often useful
to have another measure that can be expressed on the
scale of the score. For example, we would usually
like to be able to present an estimate of someone’s
true score with error bounds: τ̂ = 1.2 ± 0.3. Such a
statement raises two questions. The first is: What does
± 0.3 mean? The second is: How did you get 0.3?

There can be different answers to the first ques-
tion depending on the situation. One common and
reasonably useful answer is “it means that 95% of
the time that someone whose estimated value of τ̂ is
this value, her true score is within 0.3 of it”.

The answer to the second question requires a little
longer explanation. The explanation goes back to (9):

ρxx ′ = 1 −
(

σ 2
e

σ 2
x

)
.

Simplifying this we can isolate error variance on
one side of the equation and, by taking the square
root, obtain an estimator for the standard error of
measurement:

σe = σx(1 − ρxx ′)1/2 (14)

The uncertainty in our estimates of true score will be
due to the variability of the error, e. To be able to
provide a probability statement about the variability
of the estimate we need to assume something about
the distribution of the error. What sort of distribution
we assume depends on the character of the scoring
metric we use for the test. There are many choices
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(see [27, Chapter 23] for an extended discussion
of alternatives), but for the common situation of
observed scores in the middle of the range of possible
scores the assumption of a Gaussian distribution of
errors is reasonable for most practical applications.

Item Response Theory

Item response theory is a family of mathematical
descriptions of what happens when an examinee
meets an item. It stems from early notions that
test items all ought somehow to measure the same
thing [26]. Item response theory formalizes this by
explicitly positing a single dimension of knowledge
or underlying trait on which all examinees rely,
to some extent, for their correct response to all
the test items. Examples of such traits are verbal
proficiency, mathematical facility, jumping ability, or
spatial memory. The position that each item occupies
on this dimension is termed that item’s difficulty
(usually denoted b); the position of each examinee on
this dimension is that examinee’s proficiency (usually
denoted θ). The item response theory model gives the
probability of answering a question correctly in terms
of the difference between b and θ (both of which
are unobservable). The simplest model combines just
these two elements within a logistic function (see
Logistic Distribution). Because it characterizes each
item with just a single parameter (difficulty = b) it is
called the one parameter logistic model. This model
was first developed and popularized by the Danish
mathematician Georg Rasch (1901–1980) and so
is often termed the Rasch model in his honor. We
shall denote it the one parameter logistic model in
this article to reinforce its position as a member of a
parametric family of logistic models.

The one parameter logistic model is

p(θ) = 1

1 + exp[−(θ − b)]
, (15)

where p(θ) is the probability of someone with
proficiency θ responding correctly to an item of
difficulty b. The interpretation of P is open for
discussion. We tend to think of this P as arising
from sampling. Specifically, if there is a large number
of items all with the same difficulty b, a particular
examinee would be able to answer some of them
correctly, and some he would not. The proportion
of items that a particular examinee with proficiency

θ can answer correctly is given by (15). P(θ) is
increasing in θ for a fixed b. For a fixed θ , P(θ)

is smaller for larger values of b.
The structure of this model is most easily seen in

a graph. Figure 2 shows a plot of what this function
looks like for three items of different difficulty. These
curves are called the item characteristic curves – they
are also sometimes referred to as trace lines or item
response functions. Note that the item characteristic
curves for this model are parallel to one another. This
is an important feature of the Rasch Model. It is
informative to contrast the item characteristic curves
shown in Figure 2 with those in Figure 3.

Figure 2 Item characteristic curves for the one parame-
terlogistic model at three levels of difficulty

Figure 3 Typical item characteristic curves for the two
parameter logistic model
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The one parameter logistic model has many attrac-
tive features, and the interested reader is referred to
the writings of Rasch [37] and of Wright [55] for
convincing descriptions of its efficacy.

In many applications of item response theory to
predetermined domains of items, it has been found
that one does not get a good fit to the data with
one parameter logistic model. A common cause of
misfit is that the item characteristic curves of all
items are not always parallel. When this occurs, there
are two options. One is to delete items whose item
characteristic curves show slopes that are divergent.
The second is to generalize the model to allow
for different slopes. This can be done through the
addition of a second parameter for each item. This
parameter, usually denoted a, characterizes the slope
of the item characteristic curve, and is often called
the item’s discrimination. The resulting mathematical
model, which now contains two parameters per item
is called the two parameter logistic model and looks
quite similar to the one parameter logistic model.
Explicitly it is

P(θ) = 1

1 + exp[−a(θ − b)]
. (16)

Once again our intuition is aided by seeing plots
of the item characteristic curves achievable with
this more general model. We have drawn three two
parameter logistic model for items with the same
b parameter (b = 0) in Figure 3, demonstrating the
variation in slopes often seen in practice. Shown
is an item that has rather high discrimination (a =
2), average discrimination (a = 1), and lower than
average discrimination (a = 0.5).

The reason for calling the maximum value of the
slope of the item characteristic curve the “discrim-
ination” is that items with large slopes (i.e. high
discrimination) are better able to distinguish between
lower and higher proficiency examinees. For an item
of high discrimination there is a relatively short inter-
val along the proficiency scale where P(θ) moves
from nearly zero to nearly one. Note that items of
high discrimination are not very useful unless they
are centered (i.e. have a b-value) in a region of the
proficiency scale of interest to the examiner.

With the addition of the slope parameter, the
two parameter logistic model greatly expanded the
range of applicability item response theory. Many
sets of items that could not fit under the strict
equal slope assumption of the one parameter logistic

model could be calibrated and scored with this
more general model. However, this was not the
end of the trail. So long as the multiple-choice
item remains popular, the specter of an examinee
getting an item correct through guessing remains not
only a real possibility, but an event of substantial
likelihood. Neither of the two models so far discussed
allows for guessing – if an examinee gets an item
right, it is assumed to provide evidence for greater
proficiency. Yet, sometimes we see evidence in a
response pattern that an examinee has not obtained
the correct answer in a plausible fashion. Specifically,
if someone gets a very difficult item correct, an item
far beyond that examinee’s estimated proficiency,
then we can draw one obvious conclusion. The test is
not unidimensional – the suspect item was answered
using a skill or knowledge base other than the one
we thought we were testing. This can be corrected
by either modifying the test (removing the offending
item) or generalizing the model to allow for guessing.
The former fix is not likely to work, because different
people may choose different items to guess on –
eventually we will have to eliminate all difficult
items. So, if we are to continue to use multiple-choice
items, we have little choice but to use a more general
model to describe examinees’ performance on them.
Such a model was fully explicated by Allan Birnbaum
in Lord & Novick’s [27] classic text. It adds a third
parameter, c, which represents a binomial floor on the
probability of getting an item correct. The resulting
model, not surprisingly called the three parameter
model, is shown explicitly below:

P(θ) = c + 1 − c

1 + exp[−a(θ − b)]
. (17)

Once again we can get a better feel for the structure
of the three parameter logistic model once we view
a plot of a typical item characteristic curves. Such a
plot is shown in Figure 4.

There is an indeterminacy in the estimation of
the parameters of all these models that must be
resolved one way or another. For example, suppose
we define a new value of slope, say a∗ as a∗ = a/A,
where a is the original value of the slope and A

is some nonzero number. If we then define a new
difficulty as b∗ = Ab + B, where b is the original
difficulty and B is some constant, a redefinition of
proficiency as θ∗ = Aθ + B would yield the result
that P(θ, a, b, c) = P(θ∗, a∗, b∗, c). Obviously there
is no way to tell which set of parameters is better
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Figure 4 Typical item characteristic curve for the three
parameter logistic model

because they produce identical estimates of probabil-
ities of correct responses, and hence provide exactly
the same fit to observed data. The usual way of
resolving this indeterminacy is to scale proficiency so
that θ has a mean of zero and a standard deviation of
one in some reference population of examinees. This
standardization allows us to understand at a glance
the structure of our results. However, if we sepa-
rately standardized with respect to two independent
samples that were not randomly drawn from the same
population, then we could not compare resulting item
parameter estimates between them (because the first
two moments of their proficiency distributions have
been made to be identical artifactually). To do this we
need to link these independent samples. A method for
doing this is described in [50].

The three parameter logistic model is the item
response theory model that is most commonly applied
in large-scale testing applications, and so we con-
fine the balance of our discussion to it. Estimating
the parameters for a set of items under an item
response theory model is usually called calibration.
As indicated earlier, this is a difficult task since the
examinees’ proficiencies (θ values) must be estimated
as well. Programs available for calibration are BILOG
for binary (dichotomous) data [34] and MULTILOG
for polytomous data [44].

Estimating Proficiency. In this section we assume
that we have already calculated (somehow) the three
parameters (a, b, and c) for each item, and have given

this calibrated test to a sample of examinees. Our task
is to estimate the proficiency, θ , for each of them. We
do this using the method of maximum likelihood.
In this discussion we alternate between the method
of maximum likelihood and Bayes’ modal estimates
(see Bayesian Methods). In the way we use these
terms, there is a clear connection between the two,
because the maximum likelihood estimator is just a
Bayes’ modal estimator with a uniform prior.

To estimate proficiency we need to define three
new symbols: xi is the vector of item responses
for examinee i, in which each response is coded 1
if correct, and 0 otherwise; it has elements {xij },
where the items are indexed by j . βj is the item
parameter vector (aj , bj , cj ) for item j and is a vector
component of the matrix of all item parameters β.

The conditional probability of xi given θ and β is
shown in (18):

P(xi |θi , β) =
∏

j

Pj (θi)
xij Qj (θi)

1−xij , (18)

where Q(θ) = 1 − P(θ).
The genesis of (18) should be obvious with a

little reflection. It is merely the product of the
model-generated probabilities (the item characteris-
tic curves) for each item. The first term, P(θ), in the
equation reflects the item characteristic curve for cor-
rect responses (when x = 1); the second term, Q(θ),
for incorrect responses (when x = 0). Sometimes this
is better understood graphically. Suppose we consider
a two-item test in which an examinee gets the first
item correct and the second item incorrect. The prob-
abilities for each of these occurrences are shown in
the top and middle panels of Figure 5, respectively.

In order for this product to represent validly
the probability of a particular response vector, the
model must be true and the item responses must
be conditionally independent (see Statistical Depen-
dence and Independence). Conditional indepen-
dence is a basic assumption of most item response
theory models. It means that the probability of
answering a particular item correctly is independent
of responses to any of the other items once we have
conditioned on proficiency, θ . This assumption is
testable [39], and when it is violated tends to yield
overestimates of the accuracy of estimation [46].

If we know β, the item parameters, we can look
upon (18), for a fixed response pattern xi , as the
likelihood function L(θ |xi ) of θ given xi ; its value at
any value of θ indicates the relative likelihood that
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Figure 5 Example of how item characteristic curves
multiply to yield posterior distribution of proficiency

xi would be observed if θ were the true value. Eq.
(18) thus conveys the information about θ contained
in the data, and serves as a basis for estimating
θ by means of maximum likelihood or Bayesian

procedures. The maximum likelihood estimate of θ is
merely the mode of the likelihood. Stated graphically,
in terms of Figure 5 it is the value of θ associated
with the highest point on the likelihood (the bottom
panel in the figure). This likelihood was obtained by
multiplying the curve in the top panel by the curve in
the middle panel. The estimation methods commonly
used are variations on this theme.

Another common method for estimating profi-
ciency is the Bayes modal estimate. It is based upon
the posterior distribution,

p(θ |xi ) ∝ L(θ |xi )p(θ), (19)

where p(θ) expresses knowledge about θ prior to
the observation of xi . Thus, this is commonly called
the prior distribution of θ . To accommodate the
prior into the estimation scheme, we merely treat
the prior as one more item and multiply it in, along
with everything else. If we have no prior informa-
tion whatsoever, then p(θ) has the same value for
all θ – a “noninformative prior” – and the posterior
distribution for θ is simply proportional to the likeli-
hood function. Alternatively, an “informative prior”
has a more profound effect; this is shown graphi-
cally in Figure 6. The prior used in this illustration
is a standard normal distribution, and is shown in
the top panel (labeled N). Note that in this example
(taken from [47]), the examinee has taken a two-item
test (labeled Items A and C), and has gotten both
correct. The posterior is labeled P. If we multiply
just these two item characteristic curves together to
get the probability of occurrence of both events (their
likelihood), then we would obtain a curve much like
that shown at the bottom of Figure 5. This curve is
an important component of the posterior distribution
of proficiency because, when multiplied by the prior
distribution of proficiency, it shows the likelihood
of various values of proficiency after (posterior to)
the examinee responds. The bottom panel of Figure 6
shows this posterior distribution.

Although finding the value of θ that maximizes
(18) cannot be done in closed form, it is in
principle straightforward using an iterative method
like Newton–Raphson (see Optimization and
Nonlinear Equations). In practice, many problems
can arise. For example, if an examinee answers all
items correctly (or all incorrectly) the estimate of
proficiency will be infinite. In the three parameter
logistic model there are a number of other response
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Figure 6 Schematic representation of Bayes’ modal esti-
mation, showing a normal prior (N), responses to two items
(A and C), and the resulting posterior

patterns (e.g. many patterns at below chance levels)
that would also yield infinite proficiency estimates.
Also, the likelihood surface does not always yield
a single mode; sometimes it can have a number of
local extrema. In these cases, zeros may correspond
to a local, but not the global, maximum of L, or
even to a local minimum. The problems of infinite
estimates are usually solved by utilizing a prior
proficiency distribution (that is, using the kind of
Bayesian estimator discussed next); those of local

extrema are often resolved through the use of a
“good” (i.e. close to the global maximum) starting
value for the Newton–Raphson iterations (e.g. one
based on a rescaled logit of percent correct).

On the Accuracy of the Proficiency Estimate

So far we have been concerned with obtaining a point
estimate of an examinee’s proficiency. The point we
have adopted is the most likely value, the mode of
the posterior distribution. But even a quick glance
at the posterior in Figure 6 tells us that there is
a substantial likelihood of other values. The width
of the posterior distribution is commonly used to
characterize the precision of the proficiency estimate.
If the posterior is very narrow, then we are quite sure
that the proficiency estimate we provide is a good
one. If the posterior is broad, then we are less sure. In
practice we can increase the accuracy of the estimate
of proficiency by increasing the length of the test
using appropriately difficult items. If we add an item
that is much too easy for the examinees in question,
then the item characteristic curve would essentially
be a horizontal line in the neighborhood of these
θs. Multiplying the posterior by a constant like this
would do little to shrink the variance of the posterior.
An identical thing happens if the item is much too
hard. This is meant to emphasize the side condition
of adding appropriately difficult items.

If the number of items an examinee has been
administered is large, then the variance of the
likelihood function can be approximated as the
reciprocal of the information function:

I (θ) =
∑

j

(P ′
j )

2

Pj (θ)Qj (θ)
, (20)

where P ′
j is the first derivative of Pj with respect

to θ . This expression has the attractive features of
(i) being additive over items, and (ii) not depending
on the values of the item responses. This means that
for any given θ , one could calculate the contribu-
tion of information – and therefore to the precision
of estimation of θ – from any item in an item pool.
A typical information function is shown in Figure 7.
The approximation for the estimation error variance
of the maximum likelihood estimate of θ is less accu-
rate for small numbers of items, but its advantages
make it a popular and reasonable choice for practi-
cal work.
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Figure 7 Typical three parameter logistic model informa-
tion function

A similarly motivated expression can be used to
indicate the precision of the Bayes model estimate
of θ :

var−1(θ |xi ) ≈ I (θ) − ∂2p(θ)

∂θ2
.

The precision of the Bayes modal estimate, θ , typ-
ically exceeds that of the maximum likelihood esti-
mate because the information from the item responses
is augmented by a term that depends on the prior dis-
tribution. If p(θ) is normal with mean µ and variance
σ 2, for example, then even before the first item is pre-
sented, one has at least this much knowledge about
what an examinee’s proficiency might be. In this
case, I (θ) = 0 since no items have been adminis-
tered, but ∂2p(θ)/∂θ2 = −σ−2. The impact of this
prior information decreases as more items are given,
however, because its contribution remains fixed while
I (θ) increases with each item administered. Note also
that if the prior is uniform, then the prior contributes
nothing to measurement precision.

Estimating Item Parameters

Up to this point we have assumed that the item
parameters were known. This is never the case in
practice, when estimates must be used. Precise esti-
mates with known properties are obviously desirable.
In this section we outline a general framework for
item calibration, briefly discuss the pros and cons
of a variety of item calibration procedures that have

been used in the past, and describe, in some detail, a
Bayesian variation of the method of marginal maxi-
mum likelihood.

Notation and General Principles. The probability
of observing the response matrix X = (x1, . . . , xN)

from a sample of N independently responding exam-
inees can be represented as

P(X|θ, β) =
∏

i

P (xi |θi , β) =
∏

i

∏

j

P (xij |θi, βj ),

(21)

where θ = (θ1, . . . , θN) and β = (a1, b1, c1, . . . ,

an, bn, cn) are all considered unknown, fixed
parameters. The continued product over items for
each examinee is understood to run over only those
items administered to that examinee. After responses
have been observed, (18) is interpreted as a likelihood
function for θ and β and serves as the foundation for
item parameter estimation.

There are three commonly used approaches to item
parameter estimation: joint maximum likelihood max-
imizes the likelihood depicted in (18). The other two
approaches are conditional maximum likelihood and
marginal maximum likelihood. The last is the method
of choice. Conditional maximum likelihood is only
possible for the one parameter logistic model, and
even there is so computationally intensive as to be
impracticable in many situations. It is never used
for estimation in the three parameter logistic model
and we do not dwell on it further. The interested
reader is referred to [53] for details on this proce-
dure. Before we go on to describe marginal maximum
likelihood, we briefly discuss joint maximum likeli-
hood.

Joint maximum likelihood estimates are obtained
by finding the values of each βj and each θi that
together maximize (21). This is done by applying
exactly the same ideas discussed earlier in the context
of estimating θ . Direct maximization of (21) with
respect to θ and β jointly often proves unsatisfactory
for a number of reasons. First, for a fixed number
of items, these estimates of β are not consistent in
the number of examinees; that is, the expected val-
ues do not converge to their true values. Secondly,
because each of the many θ values is poorly deter-
mined when examinees take relatively few items,
numerical instabilities can result. Maximizing values
of item parameters may thus yield results that are
unreasonable or even infinite.



16 Psychometrics, Overview

Remedies leading to finite and reasonable esti-
mates of β under the three parameter logistic model
require information beyond that contained in the item
responses, and structure beyond that implied by the
item response theory model. Let us now discuss a
Bayes’ modal solution, extending ideas introduced in
connection with Bayes’ modal estimation of θ . Prior
distributions for both examinee and item parameters
are required. It is perhaps best to develop the solution
in two stages.

Let p(θ) represent prior knowledge about the
examinee distribution, assuming we have no addi-
tional information to lead us to different beliefs for
different examinees. We treat p(θ) as known a priori,
but it can be estimated from previous data, or even
from the same data as those from which the item
parameters are to be obtained (see Empirical Bayes).
Consistency and increased stability follow if maxi-
mizing values for β are obtained after marginalization
with respect to p(θ). That is, marginal maximum like-
lihood estimates of β maximize

L(β|X) =
∫

P(θ, β|X) dθ, (22)

or, more expansively,

L(β|X) =
∏

i

∫
p(xi |θ, β)p(θ) dθ .

Numerical procedures for accomplishing marginal
maximum likelihood estimation are described by
Bock & Aitkin [3], Levine [22], and Samejima [40].
Without further precautions however, neither rea-
sonable nor finite item parameter estimates are
guaranteed.

Let p(β) represent prior knowledge about the
item parameter distribution, again assuming for the
moment that we have no additional information that
leads us to hold different expectations among them.
We obtain a posterior distribution for item parameters
by multiplying L by p(β):

p(β|X) ∝ L(β|X)p(β). (23)

Bayes’ model estimates of β are the values that
maximize (23) [32]. If a proper distribution p(θ)

has been employed for examinees, and a proper and
reasonable distribution p(β) has been employed for
items, then the resulting Bayes’ modal estimates of β

would be stable, reasonable, and consistent. Posterior
means can also be employed, but modes are more

often used because of their ease of calculation. When
estimating item parameters, just as when estimating
proficiency, one typically gets indices of the precision
with which they have been estimated. Under ordinary
marginal maximum likelihood, one gets standard
errors of item parameter estimates; under Bayesian
procedures, one gets posterior standard deviations.

The assumption of exchangeability among items
(i.e. using the same prior distribution for all items)
can be relaxed if some items have been administered
previously. The prior distributions for these items can
then be determined by the results of previous esti-
mation procedures, taking the forms of distributions
concentrated around previous point estimates.

Simulation studies have always been a prereq-
uisite to using any estimation scheme. Asymptotic
properties such as consistency do not necessarily
characterize estimators’ behavior in samples of the
size and nature encountered in many specific appli-
cations. Moreover, although it is sometimes possible
to obtain satisfactory parameter estimates with any
of the procedures mentioned (see [35] for a compar-
ison of two methods), the accumulation of evidence
suggests that marginal maximum likelihood, with
suitably chosen priors, is the best method currently
available.

Interpreting Scores on Tests and
Inventories

The selection of a measurement model is of criti-
cal importance for facilitating measurement precision.
However, provision of an accurate score does not
guarantee that the score will be interpreted appropri-
ately. Thus, another important area of psychometrics
is incorporating meaning into test scores and pro-
moting accurate score interpretation. This section
describes two common approaches for attaching
meaning to test scores and describes how these dif-
ferent approaches affect score interpretation.

Norm-referenced and Criterion-referenced
Approaches in Test Development

Consider a score of 112 obtained from an “adherence
assessment” inventory, designed to predict whether a
patient will stick to a critical treatment plan. Is this a
“good” score? Does this score indicate that the patient
is likely to adhere to her/his treatment regimen when
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released from hospital? One way to make this score
more informative would be to determine if it is above
the average score of all patients who have taken this
inventory. A related question is: Is the score at or
above the average score of all patients who have stuck
to their treatment plan? Interpreting scores in this
fashion illustrates a norm-referenced interpretation.
That is, norm-referenced scores are interpreted with
respect to the scores attained by others.

Perhaps a more important question regarding the
mysterious score of 112 is: Does this score signify
that the patient should be retained in the hospital?
Given this question, the performance of others on
the inventory is much less relevant. The primary
concern is whether the score is associated with the
criterion of adherence to treatment. Interpretations
attached to test scores on the basis of external
criteria are called criterion-referenced interpretations.
Meaning is attached to the scores by associating
significant characteristics of the attribute measured
with specific test scores. Both norm-referenced and
criterion-referenced interpretations attach meaning to
test scores, but they do so in different ways.

Norm-referenced interpretations describe test
results in relation to the performance of one or more
specific reference groups, called norm groups, who
took the same test. Using our previous example, if
we were told the average score on the adherence
test was 100, we would know that a score of 112
is above average. But to what norm group does this
average refer? If the average score of 100 refers
to a population of patients who adhered to their
treatment plan, then we may be impressed with a
score of 112. Contrariwise, if the average score
refers to a population of patients who did not adhere
to their treatment plan, then a score of 112 may
indicate that the patient is not likely to maintain
treatment. Thus, in interpreting norm-referenced test
scores, the appropriateness of the norm group for
making inferences about a particular test taker must
be considered.

Criterion-referenced interpretations describe test
scores with respect to preestablished and well-
defined relationships between test scores and external
criteria associated with the characteristic measured.
For example, the criterion variable “number of
breaths taken per minute” may be used to
measure respiration. Respiration is the underlying
characteristic of interest, but meaningful standards
of respiratory status are established on the basis of

the number of breaths taken per minute. Using this
criterion-referenced approach, interpretations such as
“if patient takes less than seven breaths per minute,
oxygen should be administered” can be made. In this
situation, the breathing “scores” of other patients are
irrelevant. All scores are interpreted with respect to
the externally-defined standard of “less than seven
breaths per minute”.

Standards on criterion-referenced tests are devel-
oped using subject-matter experts to define carefully
the variables to be measured, and to determine scores
that reflect significant levels of the characteristic mea-
sured. These standards need not be static. For exam-
ple, only a few years ago a cholesterol level of 240
was considered “normal”. However, as a result of
updated population analyses and reports of the inci-
dents of coronary disease, medical experts revised
their definition of normal cholesterol to correspond
to a “score” of 200.

Both criterion-referenced and norm-referenced
information can be used to interpret a test score.
For example, if a patient’s hypertension is measured
by taking her/his blood pressure, it is informative to
know how far the patient’s blood pressure departs
from the average of a comparable norm group (e.g.
120/80), as well as whether the score is above some
maximum or minimum criterion of healthy blood
pressure.

Criterion-referenced inventories often have several
subscores indicating different factors related to the
purpose of the assessment. For example, in measur-
ing arterial blood gas, five parameters are obtained
(pH level of blood, percentage of CO2, percent-
age of O2, saturation of the hemoglobin molecule,
and amount of H2CO3+). Similarly, the General
Health Questionnaire-28 [16], which is an inventory
designed to identify nonpsychotic psychiatric dis-
orders, provides four subscores describing somatic
symptoms, anxiety and insomnia, social dysfunction,
and severe depression. The provision of such sub-
scores facilitates accurate diagnosis and the develop-
ment of treatment plans.

The differences between norm-referenced and
criterion-referenced scores are important for evalu-
ating the appropriateness of a test for a particular
purpose. In norm-referenced testing the character of
the norm group is a primary concern when making
inferences about test scores. In criterion-referenced
testing it is critical that the criterion domain is appro-
priate and clearly defined.
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Understanding and Interpreting Test Scores

The norm-referenced/criterion-referenced distinction
is important when drawing inferences from test
scores. However, to facilitate appropriate interpre-
tations of test results, other distinctions and other
“types” of test scores must be understood. The most
straightforward test score is the raw score, which is
simply the sum of the individual scores associated
with each test item. For example, the score on an anx-
iety inventory may simply be the sum of the number
of symptoms marked by a respondent. In intelligence
and educational testing, items are typically scored
“correct/incorrect”. In these situations the raw score
indicates the number of items answered correctly. An
alternative way of reporting test scores is to report
a percent score, or percent correct score, which is
calculated by dividing the number of points earned
on a test by the highest possible score on the test.
For example, on a dichotomously scored intellectual
functioning inventory, a percent correct score of 85
indicates that the person answered 85% of the items
correctly.

Although raw and percent scores are simple to
understand, they have some major limitations. First,
in many assessment situations individuals take differ-
ent forms of a test or take different tests altogether.
For example, if an individual is given a test of aca-
demic skills as well as a performance test of various
aspects of physical fitness, inferences about relative
ability in the two realms are very limited if one
can only use raw or percent scores. This same prob-
lem manifests itself even within a single test battery,
which is comprised of many subscales. Secondly, raw
and percent scores are not useful for making compar-
isons across subscales because the intensity, quality,
and difficulty of the items comprising the subscales
will be different for each scale (e.g. answering 50%
of the vocabulary items correctly is unlikely to have
the same interpretation as answering 50% of the arith-
metic items correctly).

Norm-referenced and criterion-referenced inter-
pretations can be used to facilitate comparisons across
different tests and subscales. Percentile rank scores
can be used to interpret an individual’s relative stand-
ing on each subscale with respect to a specific norm
group. A percentile rank score is a norm-referenced
score that represents the percentage of test takers
in a norm group who scored at or below the score
attained by the individual. Some tests report more

than one percentile rank score. Different percentile
rank scores refer to different norm groups. An isomet-
ric strength measure would have separate percentile
rank scores for males and females. Percentile ranks
are also often calculated separately for different age
groups. Percent correct scores are often enhanced
using criterion-referenced interpretations such as a
thorough description of the test items. For example,
a percent correct score of 90 on a manual dexterity
test may indicate that a physical rehabilitation patient
was able individually to pick up nine of ten bolts, the
thinnest of which was 2 mm; but she/he was unable
to pick up the smallest bolt, which was 1 mm wide.

Although raw scores, percentile rank scores, and
percent correct scores are meaningful, many test
scores are reported on a standard score scale to facil-
itate further their interpretation. Standard scores are
scores reported on a scale that has a predetermined
mean and standard deviation. An individual’s stan-
dard score represents her/his distance from the mean
of a norm group in terms of the standard deviation
of the score scale. Any raw score or percent correct
score can be transformed to a standard score (using
linear or nonlinear procedures as described earlier in
the article). Standard score scales differ across tests
as a result of the specific scale chosen by the test
developers. For example, the SAT and ACT are both
tests designed to assist colleges in making admis-
sions decisions. However, these tests are reported on
very different scales. Although two individuals taking
these different tests could be compared with respect
to their deviation from the mean of the score scale for
each test, it must be remembered that different norm
groups were used to derive these score scales, and
so such comparisons are extremely limited. Standard
score scales are designed to be most useful for inter-
preting scores associated with a single assessment
instrument. However, when the same norm group
is used across the different subscales comprising an
assessment, relative comparisons across the subscales
can be made with respect to this norm group.

Standard scores are also used to eliminate prob-
lems that may occur when comparing the perfor-
mance of individuals who took different forms of a
test. For example, to prevent cheating on a test that is
used over a long period of time, or to prevent prac-
tice effects when tests must be administered to the
same individual at different points in time, multiple
test forms are needed. Unintended differences in dif-
ficulty or intensity between these forms would lead
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to different raw scores or percent correct scores for
the same individual. Thus, if raw or percent correct
scores were used, then test takers would get differ-
ent scores depending on the particular form they were
administered. Through a process called equating, dif-
ferences in test scores can be adjusted statistically so
that “form effects” are eliminated when placed on the
standard score scale (see [17] or [20] for descriptions
of equating).

Percentile and Standard Score Bands

The standard error of measurement is another piece
of information useful for interpreting test scores. As
described in an earlier section, this index describes
the average amount of error contained in a test score.
By adding and subtracting one standard error of
measurement from a particular score, a confidence
band, or confidence interval, is formed around the
test score. This band shows the probable limits of the
score that would be obtained if the person were tested
again. Many tests use this to report confidence bands
for standard and percentile rank scores.

Setting Standards on Norm-referenced and
Criterion-referenced Tests

As described previously, scores from criterion-
referenced tests are usually interpreted with respect
to well-defined aspects of the content domain.
Many criterion-referenced tests incorporate pre-
established standards of performance. Licensure tests
are a conspicuous example. Test takers who score
above the passing standard are awarded a license,
while those who do not reach this standard are
ineligible for licensure. Some tests have multiple
standards. For example, in measuring brain waves,
standards of electroencephalogram responses are
used to classify patients into one of four states of
excitement/relaxation (e.g. brain wave frequencies of
14 H2 –30 Hz signify an “excited” state [54]).

The process of determining the test scores that
correspond to different categories of performance is
called standard setting. Standard setting on norm-
referenced tests is accomplished using percentile
rank scores. For example, a scholarship may be
awarded to the “top 10%” of examinees. The obvious
disadvantage of norm-referenced passing standards
is that classification decisions (e.g. pass/fail) vary
primarily as a function of the characteristics of the

norm group. How valuable is a bathroom scale to
you if its estimate of your weight depended on who
else used it that day?

Standards set on criterion-referenced tests circum-
vent this problem by using objectively established
standards. One common criterion-referencing proce-
dure uses subject-matter experts to scrutinize the
items that comprise the test and estimate the probable
performance of individuals representative of differ-
ent diagnostic categories [8, 25]. These item judg-
ments are summed over items and experts to derive a
“cutscore” for each desired examinee classification.

A more empirical criterion-referenced approach is
to use respondents’ performance retrospectively on
a criterion to establish standards on the test itself.
For example, if a questionnaire is designed to predict
relapse in a drug treatment program, then it could be
given to all patients entering the program, and then
one year later the average score of all patients who
relapsed could be used as the cutscore for predicting
relapse of patients entering the program in the future.

The procedures for determining criterion-refer-
enced standards have their limitations. Standards
developed using subject-matter experts are only as
good as the particular group of experts employed.
Standards established using external criteria are
typically expensive of time and resources as well as
being limited by the variation observed among the
respondents used to establish the cutscores. Thus,
there are tradeoffs among the different procedures
for setting standards on tests. Criterion-referenced
procedures have many advantages over norm-
referenced procedures. Two obvious advantages are
that attainment of a particular standard is not
dependent on the performance of others, and also that
score interpretation is especially straightforward.

Contemporary Testing Practices

Societal needs often evoke the potential inherent
in science and technology. With respect to testing,
there are current demands to measure attributes more
thoroughly, and to measure characteristics that were
previously considered untestable. Recent advances in
computer technology, coupled with the newer mea-
surement models such as item response theory, have
allowed psychometricians to meet these demands.
This section discusses some of these recent devel-
opments and their influence on testing in the health
professions.
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The two most consequential developments in
psychometrics within the past decade are a
renewed emphasis on “performance assessments”
and delivering tests through computer-assisted
technology. These two movements did not develop
in complete isolation. In many cases, performance
assessments became possible by capitalizing on
innovations in computer technology. The new types
of tests made possible by computer technology are
called computer-based tests. These tests are re-
defining traditional testing practices along several
dimensions.

Computer-based Testing

The idea of delivering tests by computer is not
new. One of the earliest computer-based tests was
the PLATO system designed to deliver both course
material and tests to students at the University
of Illinois and, eventually, around the country [1].
Like other early computer-based tests, the PLATO
tests simply involved transferring existing paper-
and-pencil multiple choice tests to an electronic
database for later delivery via computer terminals.
Two advantages of this immediately became obvious:
(i) examinees could take the test whenever access to
a terminal was available, and (ii) their scores were
available immediately following conclusion of the
test. Soon thereafter the idea of using a computer
to “tailor” the test for each individual examinee
emerged. This type of test, called a computerized
adaptive test, is now widely accepted and is already
implemented, or scheduled to be implemented, in
many large-scale testing environments.

Computerized adaptive tests provide a test tailored
to individual examinees by administering different
questions to different examinees. In an adminis-
tration of these an algorithm is programmed into
the computer to select test questions that are most
appropriate for the examinee currently taking the test.
The NCLEX exam, which is the licensing exami-
nation for registered nurses in the US, provides a
noteworthy example of how these work [56]. This
computerized adaptive test involves an enormous
pool of test items called an item bank. When a nursing
candidate sits for this exam, a prespecified test item
is administered. The next item administered depends
on the examinee’s response to the first item. If the
candidate answers the item correctly, then a more
difficult test item will be administered. However,

if the candidate answers the test item incorrectly,
then an easier item will be administered. The com-
puter makes such item administration decisions on
the basis of the candidate’s responses to earlier items
and other factors, such as coverage of the different
content areas comprising the NCLEX. These deci-
sions provide individualized tests, targeted to each
candidate’s ability level, that are essentially equiva-
lent with respect to content coverage.

All computerized adaptive tests require a pool of
content-valid items that are prearranged from simple
to difficult. Typically, a middle difficulty item is
administered first. If it is answered correctly, then
the next item is chosen from among the items in
the pool that are somewhat more difficult. If it is
answered incorrectly, then the next item is chosen
from among those items in the pool that are somewhat
less difficult. If it too is answered incorrectly, then
the third item is chosen from among those items
that are even less difficult. The process continues
until some suitable stopping point is reached. If the
pool is sufficiently large, then each individual is
likely to receive a unique sequence of items. The
computer attempts to administer items that are of
appropriate difficulty for each candidate (i.e. items
that the candidate has about a 50–50 chance of
answering correctly). Testing ceases either when a
predetermined number of items have been presented
or when the estimate of the uncertainty surrounding
the current estimate of the candidate’s ability falls
below a prespecified threshold. From a psychometric
perspective, items for which a candidate has about a
50–50 chance provide the most information about the
candidate’s skill, and so computerized adaptive tests
increase testing efficiency by about 30%–40% [52].
Thus, these tend to be of much shorter duration
than traditional paper-and-pencil tests of comparable
accuracy.

The benefits of computerized adaptive tests
include increased examinee motivation, reduced
testing time, and increased precision of measurement.
However, they increase the complexity of the scoring
process. When examinees take such a test, they
essentially take different tests. Therefore, they must
include a method for placing these different test
forms on a common score scale. Fortunately, item
response theory methodology (described in an earlier
section) provides the necessary foundation for an
appropriate scoring model. The item response theory
parameters are used to select items appropriate for
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each candidate at a given level of proficiency, θ .
Examinee’s responses to early test questions are
used to provide initial estimates, which govern the
item selection process. The computer carries out
these calculations rapidly so that the administer
item → estimate θ → administer new item cycle is
transparent to the examinee. The θ scale onto which
both items and examinees are mapped provides the
common scale from which the test scores are derived.

In practice, computerized adaptive testing is more
complicated to implement than described above. One
reason is that usually there are multiple constraints
operating on the process. For example, it may be
required to ensure that each candidate is administered
a specified number of items from different content
domains during the course of the test. In that case the
item selection algorithm must take into account both
psychometric and substantive considerations in its
choice. At present algorithms that handle nearly 200
constraints are operating on computerized adaptive
tests such as the NCLEX and the Graduate Record
Examination.

An additional advantage of computerized adaptive
tests is that the tailored testing process lends itself
naturally to diagnostic assessment. In this setting,
real-time psychometric analyses identify potential
examinee weaknesses and select future items to
elucidate more specifically the nature of the potential
weakness. In this manner a more detailed prescription
for remediation is provided.

Many variants of computerized adaptive testing
are currently operational. In the case of licensure
tests such as the NCLEX and US Medical Licensure
Examinations, interest centers on making a pass/fail
decision at a particular cutscore. Some systems,
such as the one implemented at Educational Test-
ing Service (ETS) termed computerized mastery test-
ing, involves building a library of mini-tests, called
testlets, of the original full-scale paper-and-pencil
examination [23, 49]. Candidates are administered
two testlets, at which point a decision based on
Bayesian analysis is made either to pass, fail, or con-
tinue testing. If the decision is to continue, then the
candidate is administered another randomly chosen
testlet and the Bayesian analysis is repeated using
the additional information obtained from the testlet.
Again there is a decision to pass, fail, or continue.
A limit is set on the total number of testlets to be
administered and a pass/fail decision is made at that

point. Nearly 50% savings in testing time have been
realized using this system.

Performance Assessment

With the advent of multimedia and other exten-
sions of computer capabilities, the presentation of
more complex stimuli, such as those involving video
and audio, provided an impetus to move toward
more complex item response formats. In most com-
puter based test applications, multiple-choice items
are typically administered. However, there is a cur-
rent trend toward administering newer item formats
that require the individual to construct a response
rather than selecting from a number of predetermined
choices [9]. These newer item formats fall under
the rubric of “performance assessment”. Performance
assessments attempt to measure proficiency by hav-
ing examinees perform a task, such as administering
treatment to a simulated patient. As described earlier,
multiple-choice and free-response item formats have
both strengths and limitations. Thus, the features of
each format are important before considering current
innovations in performance assessment.

Despite recent criticisms [41], the multiple-choice
item format has several attractive features. Multiple-
choice items require less time to answer than free-
response items, they tend to produce reliable scores,
and they can be scored objectively (and inexpen-
sively when automated scanning and sensing equip-
ment is available). Because multiple-choice items
take less time to answer than other item formats,
they also provide greater ability to span the con-
tent domain tested in comparison with more time-
consuming item formats. For example, in clinical
settings there often is a need for instruments that
can be administered quickly and do not demand
much of the patient. For this reason, most psycho-
logical assessments (e.g. Beck Depression Inventory)
and health inventories (e.g. MOS (Medical Outcome
Study) Short-form Health Survey) rely on multiple-
choice items.

However, reliance on multiple-choice items may
limit the depth to which one can probe a domain.
Thus, questions of test design are intimately tied
to issues of validity. In addition to operational
constraints, tradeoffs between broad (but perhaps
superficial) coverage and in-depth analysis must be
made within the context of the nature and the purpose
of the assessment.
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There is no universally accepted delineation of
the response sets that qualify as raw material for
performance assessments. One might consider a full
range, extending from simple fill-in-the-blanks to
short answer questions, to the kind of tasks involved
in simulated patient examinations. As one moves
to more extended and unconstrained response sets,
accurate and reliable scoring is more difficult to
achieve. It is necessary to develop scoring rubrics to
guide the scorers or judges in their task. Construct-
ing appropriate rubrics and effectively training judges
to use them consistently is a demanding task that
requires good judgment, experience, and considerable
patience. Too often poorly executed scoring of perfor-
mances has led to unreliability and reduced validity,
thereby vitiating any of the hoped-for advantages of
performance-based assessments [21].

Probes that are meant to elicit extended responses
can present the investigator with other difficulties.
One is the set of issues related to response style. To
take a familiar example, a teacher may ask students to
make a presentation to the class related to an assigned
project. Some students may feel uncomfortable mak-
ing such a presentation, either because of inexpe-
rience with the format, innate shyness, or cultural
traditions. If the teacher is insensitive to these possi-
bilities, then her assessment of student performance
relative to standard learning goals may have substan-
tially lowered validity. Similar considerations apply
in clinical interviews. In other situations respondents
may misinterpret the questions, may refuse to respond
or respond in a perfunctory manner because of disin-
terest, fatigue, or frustration. While these factors may
play a role when multiple-choice items are used, they
are more likely to occur and to have more serious
consequences when performance measures are used.

In some instances the response styles involved
in performance assessments must be explicitly
taken into account. For example, in scoring a
Rorschach protocol, counts are taken of various
kinds of responses. It is known that propensity to
provide multiple responses is associated with various
demographic characteristics (e.g. level of education)
as well as with the psychological traits under study.
Unless appropriate precautions are undertaken in
the preparation and the analysis of data, misleading
clinical interpretations could result. The Rorschach
protocol is a good example of a response set so
complex that at least five completely different scoring
systems have arisen, all purporting to provide clinical

indications for a comparable set of psychological
states. Attempts to create a single comprehensive
system have met with limited success [12].

Comparisons of the efficiency of information
gathered between multiple-choice and performance
assessment items typically reveal that the two
formats are measuring the same construct, but
that multiple-choice items are more efficient with
respect to measurement precision [52]. However,
when considering appropriate item formats, concerns
of construct validity may be more heavily weighted
than those of measurement efficiency.

It is often difficult to determine the relative worth
of performance-based assessments empirically. As
an example, consider a test administered to provide
automobile licenses. In many states the test has two
parts: a written multiple-choice section and a driving
test. The latter part is a performance assessment. The
two parts address different aspects of the standard
set for granting a license. One aspect deals with
knowledge of the rules of the road, appropriate
laws, and so on; the other deals with the ability
to drive the vehicle safely. It is certainly sensible
to require that individuals meet both aspects of the
standard. A factor analysis of the performance of a
group of individuals on the two parts would very
likely show a substantial positive correlation between
the two. A positive correlation signifies that the
ranking of individuals on the multiple-choice section
is congruent with the ranking of individuals on the
driving test. Nonetheless, the conclusion that one or
the other of the tests is redundant is incorrect. It
is important to ensure that the individual has met
the standard for each aspect of the standard, which
can be ascertained only by actually observing the
performance on the two parts. In principle, one could
use regression analysis (not correlation analysis) to
estimate the level of performance on one part given
performance on the other part and data from a large
group on both parts. However in situations where
meeting the standard carries some value, neither the
test sponsor nor the majority of individuals would
be likely to want to base the decision on just one
component and a statistical prediction.

Despite their shortcomings, performance-based
assessments are becoming increasingly popular [9].
Stringent test development procedures, appropriate
scoring rubrics and procedures, and sophisticated
scaling models have greatly improved the psychome-
tric properties of many of these assessments [15]. It is
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likely that the use of performance-based assessments
will increase in the medical professions.

In terms of integrating performance assessment
and computer based tests, two critical technologies
must be in place before performance-based item
formats can be delivered in practice and scored
through computers. The first is the development
of expert systems that can accurately score the
responses. These systems, employing principles and
techniques of artificial intelligence, exist for a num-
ber of different symbol systems including natu-
ral language, mathematics, engineering design, and
graphic design [4]. In general, the cost and diffi-
culty of building a suitable system is proportional
to the complexity of the potential responses and
inversely proportional to the number of constraints
that are placed on the examinee. The second tech-
nology comprises the psychometric models that can
be used to extract the maximum amount of informa-
tion from these extended responses. Since constructed
response items usually require considerable testing
time, unless more useful information is obtained from
each item the reliability and validity of the result-
ing test scores may be far below acceptable stan-
dards.

Unfortunately, measurement theory has not kept
pace with the development of performance assess-
ments. If responses to a probe can be assigned to
one of a number of categories (ordered or unordered)
then polytomous item response theory models [45]
can be used as a measurement model. When a
response set consists of a number of diverse per-
formances (as might be the case on a certification
or licensure examination), the measurement models
employed typically do not take into account the mul-
tivariate character of the data. One exception is a
class of multidimensional item response theory mod-
els [29] that were explicitly developed to deal with
these types of data. However, these models are of
increased complexity and have yet to be applied
to operational test data. More recent developments
employing Bayes inference networks [33] appear to
hold great promise in providing a firmer foundation
for the design and psychometric analysis of complex
assessments.

With the problems and benefits associated with
performance assessments, an appropriate conclusion
is that greater thought should go into the type of
application as well as the design of the probes so
that more useful information can be generated. As

Messick [30] argues in the context of educational
assessment:

There should be a guiding rationale akin to test
specifications that ties the assessment of particular
products or performances to the purposes of the
testing, to the nature of the substantive domain at
issue, and to construct theories of pertinent skills
and knowledge (p. 27).

Thus, the decision to use performance-based assess-
ment formats, multiple-choice items, or some com-
bination of the two is dependent on the nature of
the construct measured. The relative advantages and
limitations of these item formats must be consid-
ered in the context of the reliability and validity of
the scores they will provide as well as the prac-
tical constraints within which the assessment must
exist.

The field of psychometrics has a short, but
rich, history. Like many of the scientific fields that
developed primarily during the twentieth century,
psychometrics has experienced rapid growth. This
article briefly presented the evolution of psychometric
theory, described popular measurement models, and
provided a snapshot of new directions in the
field. Measuring psychological phenomena is a
challenging, but rewarding endeavor. Galileo once
proclaimed: “we must measure what is measurable
and make measurable what cannot be measured”.
This goal continues to drive psychometricians
to understand and measure abilities, proficiencies,
attitudes, and other psychological constructs.
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Pulmonary Medicine

Respiratory disease (ICD 460–519), which excludes
diseases of the lung not associated with respiration,
such as lung cancer, accounts for about 15% of all
deaths annually in the UK. The most common res-
piratory cause of death is pneumonia, accounting
for 60% of all respiratory deaths, and this occurs
mainly in those over 70 years old. The remainder are
mainly due to chronic obstructive pulmonary disease
(32% of all respiratory deaths). Other lung diseases
are mainly associated with occupation, such as coal
workers’ pneumoconiosis, asbestosis, and byssinosis,
but these are relatively rare. The principal obstruc-
tive diseases are chronic bronchitis, emphysema, and
asthma. A patient can be assumed to have chronic
bronchitis if sputum has been coughed up on most
days of at least three consecutive months for more
than two successive years, provided other causes have
been excluded. It develops in response to long-term
action of various types of irritant on the bronchial
mucosa, the most important of which is cigarette
smoke, but also as part of general air pollution.
Emphysema means literally “inflation” in the sense
of abnormal distension with air. Persistent inflamma-
tion in the airways, mainly as a result of smoking,
causes irreparable damage to the alveolar septa. Most
patients with pulmonary emphysema complain of
exertional breathlessness. Asthma is associated with
episodic attacks of wheeze and dyspnea. During an
attack of acute asthma, the chest is held near the
position of full inspiration, and expiration is diffi-
cult. Pneumoconiosis is an occupational disease that
causes the lung to fibrose and is diagnosed from a
chest radiograph by the profusion of small rounded
opacities. It is graded into three main categories in
accordance with a classification provided by the Inter-
national Labor Office (ILO) [13]. Clinical diagnosis
of respiratory diseases requires a clinical examina-
tion, and depends on a variety of signs and symptoms.
However, simple questionnaires, such as the Medical
Research Council (MRC) chronic bronchitis ques-
tionnaire [18, 19], and tests of lung function, are
the main methods by which epidemiologic research
in respiratory medicine has developed. Much use-
ful information is given in [11] with many statistical
issues covered in an appendix by Peto. Some general
points on the presentation and analysis of data from
respiratory studies are given in [2].

Lung Function Measurement

Historical Development

The early history of lung function measurement has
been described by Cotes [6]. The volume of air that
a person can inhale during a single deep breath was
first measured by Borelli in 1679. In 1831, Thackrah
showed the volume of air to be less in women
than in men, and to be reduced among workers
and other occupations due to the inhalation of dust.
Hutchinson, in 1846, was the first to quantify lung
volumes and designed a spirometer to measure vital
capacity defined as “the greatest voluntary expiration
following the deepest inspiration”. He showed that
vital capacity increased with height, decreased with
age, and is reduced by excess weight and by disease
of the lung.

Main Measures in Respiratory Medicine

There are a limited number of measures that are
commonly used in clinical trials or epidemiologic
studies. These include lung function tests such as
forced expiratory volume in one second (FEV1 ),
forced vital capacity (FVC), and peak expiratory flow
rate (PEFR).

The FEV1 is the volume of gas that is expelled
from the lung over one second when the subject
makes a maximal expiratory effort from a position
of full inspiration. Other time periods are sometimes
used, and indicated by the subscript. The FVC is the
total volume of air expired until no more gas can be
expelled from the chest after a full inspiration. Both
are measured in liters using a spirometer. The peak
expiratory flow rate (PEFR) is the maximum flow
rate that can be sustained for a period of 10 ms and is
measured in liters per second (l/s). It is another mea-
sure of ventilatory capacity [24] and is used widely
in asthma studies.

Bronchial challenge tests give measures of bron-
chial irritability, related to asthma susceptibility, mea-
sured by the PD20 and PC20 that are derived from
the FEV1. A bronchoconstricting agent such as his-
tamine, AMP or methacholine is inhaled in doubling
doses until the FEV1 falls 20% from baseline. The
PD20 is the cumulative dose of the agent inhaled,
whereas the PC20 is the particular concentration of
the agent that caused the FEV1 to cross the critical
point.
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Relationship of Disease to Lung Function

In chronic bronchitis, FEV1 is reduced in many
cases and the FEV1/FV C ratio is subnormal. PEFR
may be reduced but shows little diurnal variation.
In emphysema, FEV1 is reduced. The hallmark of
asthma is diurnal variation in PEFR, with lowest
values being recorded in the morning (“morning dip-
ping”). Changes in FEV1 due to bronchodilator drugs
or corticosteroids are also an important indicator. The
PD20 or PC20 is used widely in clinical and epi-
demiologic studies of asthma. It is useful because
it is independent of diagnostic patterns; that is, the
willingness of a physician to name the disease as
asthma, and of symptom awareness, the importance
placed on the severity of symptoms by the subject or
the recognition of terms used in a questionnaire.

This article concentrates on some specific points
of interest for the design and analysis of studies that
involve measurements of respiratory function.

Particular Techniques in Respiratory
Medicine

Estimating the FEV1

Successive measurements of the FEV1 of an indi-
vidual will vary and a number of studies have been
carried out to find what is the optimum combination
of these. Because the test is a measure of maximal
performance, one would have expected the maxi-
mum of a number of blows to be best. The Medical
Research Council [18] recommended that the best
procedure would be to require five blows, the first
and second to be treated as practice attempts and to
report the average of the third, fourth, and fifth blows
as giving the individual’s FEV1.

Ferris [10], on the basis of three sets of data,
suggested that the mean of the largest three of five
measurements was best. Oldham & Cole [21] exam-
ined nine indices, including the two mentioned. From
two data sets they concluded that in terms of repeata-
bility for normal subjects there was little to choose
between the various indices. However, differences
were found in the measured rate of decline in FEV1

using different indices over a period of 9.5 years. The
index by Ferris gave values closest to the MRC def-
inition over the 9.5 years and also gave the largest
multiple correlation with age and degree of pneu-
moconiosis. They suggested that the mean of the

largest three out of five blows was logically more
sensible than the MRC definition and urged that it
should replace the MRC index.

Estimation of the PD20 (PC20 )

Bronchial reactivity is a measure of how the lung
reacts to an inhaled agent such as histamine or metha-
choline. In general, people with asthma react by
bronchoconstriction to lower doses than people with-
out asthma, and so reactivity can be used to provide
a standardized method of estimating the prevalence
of asthma. Yan et al. [25] described a quick and
simple method of measuring the PD20 that gave
reproducible results under field conditions. The test
stopped when the FEV1 had fallen by more than 20%
of the baseline value, or the 4.0 µmol dose had been
given, or the subject asked to stop. The PD20 was
estimated by interpolation. Chinn et al. [4] showed
that linear interpolation was unsatisfactory and fitted
a curve of the form:

loge(c − y) = a + bx,

where y is FEV1, x is log10(dose), c represents
mean FEV1 before it is affected by histamine, b

is the regression coefficient, and a is a curve posi-
tion parameter. They estimated a, b, and c using a
two-step procedure and showed that this exponential
curve (see Parametric Models in Survival Analy-
sis) fitted the data well. The advantage of estimating
the PD20 by curve fitting is that it allows extrap-
olation of value above 4 µmol. Another parameter
that can be derived from the above method is the
slope b, and O’Connor et al. [20] showed how this
could be useful in population studies. Peat et al. [22]
described methods for measuring repeatability of the
PD20 and explained methods for calculating changes
for doubling dose, percentage change, or fold differ-
ence. The latter concept is explained by means of an
example: a mean change in responsiveness from 1.96
to 0.98 µmol would be a change of 0.5-fold differ-
ences; that is, the mean dose at which the response
occurred was half that at which it occurred initially.

Standardization of FEV1

Lung function and, in particular, FEV1 depends on
age and height and, in any comparison of groups, dif-
fering age and height distributions must be accommo-
dated. A common method is to use linear regression
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models that have been fitted to large normal pop-
ulations to obtain the predicted FEV1 for a given
age and height. Standard regression equations are
available in Cotes [6] and Enright et al. [9]. The anal-
ysis may then proceed by analyzing the ratio of the
observed to expected values, but this method is not
recommended because there are issues of compara-
bility of populations and multiple linear regression
methods are usually easier to interpret.

Kory et al. [14] recommended the simple linear
regression:

FEV1 = β0 + β1 × age + β2 × height. (1)

Others have argued for an interaction term, age ×
height, in the model, or to standardize for height by
calculating FEV1/height2 or FEV1/height3.

From the analysis of nine cross-sectional surveys,
Cole [5] showed that a model used

FEV1

height2
= α0 + α1 × age (2)

fitted the data better than a linear model. He also
argued from allometric (see Allometry) principles
that although a relationship with height3 (or even
height4) may be the true model in which both FEV1

and height are considered as correlated variables,
when log(height) is thought of as a predictor of
log(FEV1), estimates from linear regression are shal-
lower than the true slope and on the basis of the
correlations in the data, the value of the slope would
be shrunk to approximately 2, so that on a linear scale
one would expect FEV1 to be related to height2.

However, Kronmal [15] has shown that if the true
relationship is described by

FEV1 = β0 + β1 × age + β2 × height2, (3)

then the estimate for α1 in (2) is a biased estimator
of β1 in (3). He argued that the coefficient for age
in (2) is measuring the joint effect of varying age
and height2, which is an interaction, whereas the
coefficient obtained in (3) from linear regression is
measuring the effect of age, having adjusted for
height2. Prudent statistical practice does not fit an
interaction term without fitting the main effects; in
this case, terms for age and height2 as well as age ×
height2. These different models can, in fact, lead to
different conclusions when two groups with different
heights are compared; for example, a comparison of
the rate of decline in lung function for men and

women. For epidemiologic studies in which a large
number of subjects with age and height measurements
are available, it would seem better to adjust for age
and height by including them (and possibly height
squared) as terms in the regression equation. It is
generally accepted that lung function declines linearly
with age but the possibility of quadratic relationships
with height should be investigated for each data set.

Statistical Methods Stimulated by
Respiratory Data

The famous paper by Bland & Altman [1] on meth-
ods for assessing agreement between two methods
of measurement originated in a comparison of two
peak-flow meters. They dealt only with measurements
on the same scale. However, it may be required to
compare repeatability of different indices; for exam-
ple, PD20, in log(mg/ml) and the slope of the FEV1

dose response curve in liters (mg/ml)−1. Dehaut
et al. [7] and Chinn [3] suggested the use of the intra-
class correlation coefficient (ICC) (see Correlation),
defined as the ratio of the between-subject to total
variation. Chinn [3] suggested that to be useful a
measurement should have an intraclass correlation
coefficient of at least 0.6. Baseline FEV1 measured
on two occasions 1–14 days apart were found to have
an ICC of 0.88 [4]. However, repeated measurements
of FEV1 on the same day may give an ICC as high
as 0.99 [21].

The paper by McCullagh [17] on ordinal regres-
sion was stimulated by a study of pneumoconiosis
in coalminers. A typical study in this area would be
to determine factors associated with the severity of
pneumoconiosis using the ordinal ILO category as the
dependent variable and exposure to dust as the main
predictor variable, with other potential confounding
variables such as cigarette smoking included in the
equation.

When the dependent variable is PD20, it may
be truncated if the FEV1 of a subject fails to drop
to below 20% of baseline or if the subject asks to
stop early. This leads to truncated regression as the
method of analysis.

In truncated regression the model is

yi = α + βxi + ε,

where ε is assumed N(0, σ 2). If yi is not censored,
then the probability of observing yi conditional on the
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parameters is f [yi − xiβ)/σ ], where f is the N(0,1)
density. If yi is right-censored at ui (i.e. the true
value is known to be greater than ui), then the
probability is 1 − F [(ui − xiβ)/σ ], where F is the
cumulative normal density. The parameters can be
estimated by maximum likelihood and the analysis
is implemented in the statistical package STATA [23]
(see Software, Biostatistical). The assumption of
normality of the residuals assumes a much greater
importance than in unconstrained multiple regression
and should be investigated carefully. An example of
truncated regression in respiratory medicine has been
given by Devereaux et al. [8].

The whole area of the analysis of repeated mea-
sures has been stimulated by the fact that lung
function measurements are made repeatedly on indi-
viduals. The classic paper by Laird & Ware [16]
on random effect models considered 200 school
children who had their FEV1 measured on five suc-
cessive occasions to examine the effect of air pollu-
tion. This has lead to a whole plethora of papers on
repeated measurement analysis.

Discussion and Conclusions

Diseases of the respiratory system form a large part
of the burden of disease in Western society and
are the subject of much research. Asthma, particular
in children, is increasing in prevalence, and there
is intensive activity to determine the reasons for
this. The FEV1, originally devised to measure the
effect of certain occupations on respiratory health,
has emerged as one of the most important prognostic
factors for future illness, comparable in power to
serum cholesterol [12].

There are some interesting statistical problems that
have arisen in the field of respiratory medicine, such
as the standardization of results for age or height,
comparison of methods, and ordinal regression which
have proven fruitful elsewhere.
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Quality Control in
Laboratory Medicine

The statistical aspects of quality control (QC) in the
field of clinical laboratory medicine are much more
intricate than might be thought. Body fluids such
as human blood are a molecular “soup” of extraor-
dinary complexity, within which even a relatively
simple constituent such as calcium can exist in a
number of different states, for example, intracellular,
compounded, ionized, or bound to carrier proteins.
Laboratory assays encompass the blood gases, elec-
trolytes, trace elements, vitamins, clotting factors,
proteins, hormones, tumor markers, drugs and poi-
sons, and more, and the assay of any one analyte has
to accommodate, potentially at least, the presence of
all (see Biological Assay, Overview). This is not to
mention any one or more of the legion medications
that the patient might be taking.

The vast majority of clinical laboratory assay
methods rely upon the elicitation of a specific and
observable property of the test analyte that varies
in proportion to the concentration of the analyte
in the biological test matrix. In order to visualize
that relationship (the measurement function), stan-
dard solutions, or calibrators, of known concentration
with respect to the analyte of interest are assayed in
parallel with the test specimen. The level of the prop-
erty (Y ) recorded for each calibrator is plotted against
the calibrators concentration value (X), the points so
defined providing an estimate of the assay calibration
function. The level of the property recorded for the
test specimen is translated into units of concentration
by reference to the inverse of the calibration function,
under the critical assumption that calibration function
and the measurement function are, to all intents and
purposes, identical. Regular recalibration is a charac-
teristic feature of laboratory assay systems.

Where possible, assay methods in routine use
(field methods) should be supported by a clear link to
a hierarchical program of reference technology. Such
programs embrace a series of primary and secondary
reference methods and standard reference materials,
discussed in detail by Uriano & Cali [34], Tietz [32]
and Boutwell [1]. The problems that beset attempts
at assay standardization can prove formidable: Ekins
[9] provides a very clear account of the subject

from the perspective of immunoassay methods (see
Radioimmunoassay).

The complexity of the biological test matrix poses
a number of threats to the integrity of laboratory
measurement. First, it is practically impossible to
reproduce in full the complexity and properties of
the biological test matrix in necessarily artificial cali-
brators. The primary impact of a failure in this regard
is the very real possibility that the calibration func-
tion will no longer mirror the measurement function,
thereby introducing a systematic error (or bias) into
the measurement process. Second, the complexity of
the analyte itself, or of its presentation in the biolog-
ical test matrix, may also pose problems in respect
of constructing plausible calibrators. For example,
in its native state, the analyte may be intracellular,
protein-bound, or conjugated with inorganic radicals
as a prelude to excretion. In the laboratory, it may be
a white powder in a bottle. Transforming the latter
into a credible facsimile of the former is a prereq-
uisite of meaningful measurement and failure in that
endeavor is a primary source of systematic error. The
reader is referred to [30, 31] for a more detailed
account of the above problems. Third, the biological
test matrix may, by virtue of its physical or chemical
composition, elicit a signal in the measurement sys-
tem that is indistinguishable from that generated by
the target analyte (cross-reaction) or, it may modify
the signal generated by the target analyte (interfer-
ence). These effects, which reflect a lack of specificity
in the measurement chemistry, are typically speci-
men dependent, manifesting as a bias on repeated
assay of a single test specimen and as a random vari-
able across different test specimens. They are referred
to variously as matrix effects, specimen-dependent
biases, random biases, or subject-by-method interac-
tions. Summarizing, we have, for a given test result
Xi :

Xi = ξi + φ + ψi + εi (1)

where: Xi = observed test result for sample i.
ξi = true test value for sample i.
φ = analytical bias, primarily calibration

failure.
ψi = specimen-dependent bias.
εi = random measurement error (impreci-

sion).

The ideal for a laboratory measurement system
would be a degree of measurement specificity, stan-
dardization, and control that effectively eliminated
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all bias. Under such ideal circumstances, (1) would
reduce to (2):

Xi = ξi + εi (2)

QC would appear to have little left to concern itself
with beyond regulating the magnitude of the random
error term ε There is, however, another dimension
of complexity to the reported test value X. That
dimension is time, whose passing reveals several new
sources of variation in laboratory test results and
several new challenges for QC to accommodate.

First, all living organisms change over time as a
consequence of perfectly natural biological variation.
Biological variation can take a number of forms; it
may be nonrandom, for example, daily, monthly, or
seasonal rhythms (see Chronomedicine), along with
those changes that characterize our progress from
cradle to grave, or it may be random in character. For
the majority of analytes of clinical interest, biological
variation can be construed as a random process over
time (see Stochastic Processes), changes occurring
around a homeostatic setting point µ, the latter being
fixed for a given individual but differing in value
across a set of individuals.

Second, the random measurement error term ε is
itself time dependent. Laboratory assays are typically
undertaken by assaying a number of test specimens
in one batch or analytical run, for example, one run
a day. A single analytical run will be characterized
by fewer sources of variation than a number of con-
secutive analytical runs, for example, one run, one
calibration of the measurement system, a common
set of analytical reagents, a common set of all those
factors beyond strict technical control. The time ele-
ment in respect of assay imprecision is captured in
the terms within-run and between-run imprecision.
Incorporating the above factors into model (2) we
have:

Xijk = (µi + ηij ) + εij + εijk (3)

(true value ξ )

where Xijk = the observed result from the kth repli-
cate assay in the j th analytical run (or
day) for the ith test subject.

µi = the subject’s individual biologic mean
or homeostatic setting point.

ηij = a peturbation due to biologic variation
in the j th analytical run having an
expected value (see Expectation) of
0 and a variance σ 2

η .

εij = a peturbation due to random measure-
ment error in the j th analytical run
having an expected value of zero and
a variance σ 2

B .
εijk = a peturbation due to random mea-

surement error in the kth replication
within the j th analytical run having an
expected value of zero and a variance
σ 2

W .

We have four components of variability associated
with (3) which, in the laboratory sciences, are typ-
ically expressed in terms of estimated standard
deviations (SD) or corresponding coefficients of
variation (CV = SD as a % of the relevant mean
value):

SDG = Between-subject biological variation, reflect-
ing the differences between individuals in a
given population in respect of their homeo-
static setting-points µι. SD2

G is an estimate
of σ 2

µ. CV G = SDG as a percent of the pop-
ulation mean.

SD I = Average within-subject biological variation,
reflecting the changes in a given subject’s
test result over time. SD2

I is an estimate of
σ 2

η . CV I = SD I as a % of population mean.
SDB = Between-run imprecision component. SD2

B

is an estimate of σ 2
B . CV B = SDB as percent

of control sample mean.
SDW = Within-run imprecision component. SD2

W is
an estimate of σ 2

W . CV W = SDW as percent
of control sample mean.

We also have two derived quantities:

SDbiol = Total biological variation.

SDbiol = (SD2
I + SD2

G)1/2

or CV biol = (CV 2
I + CV 2

G)1/2 (4)

SDT = Total imprecision.

SDT = (SD2
W + SD2

B)1/2

or CV T = (CV 2
W + CV 2

B)1/2 (5)

Estimates of the random measurement error com-
ponents can be obtained by assaying the same con-
trol or test specimen a minimum of k = 2 times on
each of j = 20 days, following the recommendations
of the National Committee for Clinical Laboratory
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Standards (NCCLS) [24]. The error components are
obtained from a one-stage nested analysis of vari-
ance (ANOVA). A worked example is presented by
Kringle & Bogovitch [21].

Note that for (3) we have equated runs with
days (one run = one day) simply in order to min-
imize model complexity. If multiple runs within a
given working day were a feature of the test ser-
vice under study, an additional level of subscripting
would be required for the random error term ε in
order to distinguish within-run, run-to-run, and day-
to-day sources of random variation. The error com-
ponents can be obtained using a two-stage nested
ANOVA [21].

The majority of laboratory test methods exhibit
some degree of dependence between the magnitude
of the error variance and analyte concentration (het-
eroscedasticity; see Scedasticity). This dependence
may take the form of a simple proportional rela-
tionship, that is, a constant CV T , at least as an
approximation, but this is by no means the rule.
Heteroscedasticity necessitates obtaining several esti-
mates of random error variation across the work-
ing range of the test method, preferably in prox-
imity to medical decision points for the analyte in
question. Given such estimates, imprecision profiles
can be constructed for both within-run and total
imprecision.

Coefficients of variation need careful handling in
the context of summarizing analytical imprecision
(CV W or CV T ). Users may lose sight of the connec-
tion between a CV and its parent SD, for example, an
analytical error CV of 6% implies a 95% error mar-
gin of plus or minus 12% (not 6%) at the relevant
test concentration or activity level.

The factors to be considered in developing esti-
mates of biological components of variation are
reviewed in detail by Fraser and Harris [13]. The
authors provide a clear account of the requisite
experimental design and subsequent data prepara-
tion, prior to the estimation of the components of
variation (see Variance Components) using a two-
stage nested ANOVA. Estimates of biological vari-
ance components (CV I and CV biol) have already
been published for a large number of laboratory ana-
lytes [12, 27]. A comprehensive data bank of such
components, along with source references, is main-
tained online at www.westgard.com. The compo-
nents play a key role in subsequent discussion of
analytical goals for QC.

Quality Control in Context

Quality control (QC) refers to a set of procedures
by which we seek to monitor the components of
error associated with laboratory test procedures in
furtherance of the practice of good medicine. QC is
essentially a set of techniques adapted from industrial
statistical process control (SPC). QC is, or should be,
embedded within the larger framework of a total qual-
ity system embracing all aspects of the laboratory
function. Total quality management (TQM) places the
user of the laboratory center stage in respect of defin-
ing the levels of quality (and costs) that constitute an
acceptable level of service.

Waiting in the wings, Six Sigma, a total quality
management system that aims for an error (defect)
rate of no more than four in a million in the “product”
of a manufacturing or service delivery process. The
Six Sigma goal is achieved through the pursuit and
elimination of all sources of variation impacting upon
process outcome. If the process in question starts
with a request for a given test, and ends with the
delivery of the required test result, every conceivable
aspect of the journey from request to return is the
subject of ongoing scrutiny and, where required,
redesign or reeducation. A statistical overview of Six
Sigma is provided by Hahn et al. [16]: a collection
of lab-oriented essays on the topic is available at
www.westgard.com.

Control Charts

The day-to-day practice of QC in laboratories (inter-
nal QC) is largely focused on charts, simple graphical
displays of the results obtained for control samples
against time of assay. The classic laboratory “con-
trol” chart is the single value modification of the
“Levey–Jennings” chart, described by Henry and
Segalove [17] in 1952. It is widely referred to as
a “Shewhart” control chart in clinical laboratory lit-
erature, reflecting its origins in the work of Shewhart
[29] in the 1930s. An example of the chart is illus-
trated in Figure 1.

For the construction of the chart, SDT should be
estimated from a minimum of 20 assays of the control
sample over 20 different days at a time when the
assay is judged to be in statistical control.

In operation, the results obtained for a single con-
trol specimen introduced into every analytical run
should be checked against the 2s limits, or the 3s
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Figure 1 Levey–Jennings QC chart (s = total imprecision SDT )

limits if there are two or more such controls. Any con-
trol value exceeding the appropriate threshold flags
an out-of-control assay run, that is, no test results
are to be reported from that run. In practice, many,
if not most users of the above charting system rely
on a simple 2s rule, irrespective of the number of
control samples involved. Westgard & Groth [38]
have published power functions for the above con-
trol rules, revealing the very high false-alarm rates
that accompany misuse of the 2s rejection rule. A sec-
ondary problem with the basic Levey–Jennings chart
is its relative insensitivity to systematic error (bias).
To address these deficiencies, Westgard et al. [37]
published their ‘multi-rule’ control procedure along
with associated error-detection power curves. Essen-
tially, it is an elaboration of the Levey–Jennings chart
obtained by including control lines at the control
mean plus or minus 1s, 2s, 3s, and 4s, preferably
color-coded for clarity. Two control samples, or one
control assayed twice, comprises the minimum con-
figuration required to assess a given test run. The
two control results are assessed against the following
rules:

12s One control result exceeding the 2s limits.
This is a warning rule that initiates reference
to the remaining rules.

13s One control result exceeding the 3s limits.
A REJECTION rule, primarily sensitive to
random error.

22s Two consecutive control results both greater
than +2s or both less than −2s. A REJEC-
TION rule, sensitive to bias.

R4s One observation exceeding +2s limit and the
other exceeding the −2s limit. A REJEC-
TION rule, sensitive to random error.

41s Four consecutive control results all exceeding
the +1s limit, or all exceeding the −1s limit.
A REJECTION rule, sensitive to bias.

10m Ten consecutive control results all in excess
of the mean, or all lower than the mean. A
REJECTION rule, sensitive to bias.

Clinical laboratories are under increasing regulatory
pressure from professional bodies and/or Government
agencies in respect of meeting specified standards of
performance, making it ever more important that an
appropriate QC strategy is in place for every assay
system in use. By appropriate, we mean a strategy
that strikes a cost-effective balance between the prob-
ability of rejecting a bad run correctly, which prob-
ability we would like to be high, and the probability
of rejecting a good run incorrectly, which probabil-
ity we would like to be low. By “bad” we mean an
assay whose total error (TE), a combination of both
random and systematic error components, exceeds a
specified threshold. What might constitute an appro-
priate threshold for TE is taken up in the section on
analytical goals. Westgard [36, 40] provides a clear
account of the steps involved in formulating an opti-
mal QC strategy. A software package, EZ rules, for
automatic selection of statistical control rules is avail-
able through www.westgard.com, which also hosts
a comprehensive inventory of resources in respect
of laboratory QC. EZ rules has been reviewed by
Linnet [11].
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Cumulative Sum (Cusum) Control

A sensitive indicator for low-level bias in assay sys-
tems is the cumulative sum (cusum) chart, developed
by Page [26] for manufacturing control. A cusum
chart records the deviations of each control result in a
series from a control set-point or mean µc, but instead
of plotting the deviations individually, we plot the
running, or cumulative sum of those deviations, that
is, cusum value = Σ(Xi − µc). If the assay method
is unbiased, we would expect an approximate balance
between the positive and negative deviations, result-
ing in a cusum trace fluctuating around a horizontal
line centered on zero. Any shift in the accuracy base
(bias) will result in the accumulation of deviations of
like sign, manifesting as a slope or ramp away from
zero on the cusum chart.

Two control rule strategies are available to alert
the user to significant bias, one visual, the V-mask
template, and one numerical, the decision-interval
rule. A practical account of both is presented in [30].

Westgard et al. [39] describe a combined Levey–
Jennings cusum control chart, along with associated
error-detection power curves. Cusum control rules are
not without their problems, amongst which are the
assumptions of statistical independence and constant
error variance for the control results being charted.
The consequences of violating these assumptions
have been explored by Johnson & Bagshaw [20].

An interesting implementation of the CUSUM
principle is to be found in the program “Change-
Point Analyzer”, (downloadable from www.
variation.com). Essentially, it is a hybrid of the
cusum principle and a bootstrap estimator for deter-
mining the probability of change (bias) in a given
series. The program includes automatic checking for
nonindependence and outliers, with a number of
workarounds for both contingencies.

Alternative Control Procedures

Cembrowski et al. [6] and Neubauer [25] each
describe control programs for detecting persistent
systematic error, using exponentially weighted
moving averages (EWMA), the former authors
employing Trigg’s tracking signal as a trend
detection device [33]. Jay Smith & Myers [19]
describe a procedure for detecting short-term trends
in serial control results using a moving least-
squares regression slope estimator. An original

variation on the EWMA theme is described by
Bull et al. [2, 3] utilizing the daily or batch
mean for patient test results, for each of the
erythrocyte indices, mean corpuscular hemoglobin,
mean corpuscular hemoglobin concentration, and
mean corpuscular volume, to monitor calibration drift
in automated hematology analyzers. The performance
characteristics of Bull’s algorithm have been studied
by Lunetsky & Cembrowski [22].

Delta Checks

The use of patient test data to drive QC procedures
has obvious attractions in terms of relevance (real test
specimens rather than “artificial” controls), cost (con-
trols cost money), and convenience. Bull’s algorithm
is an example. Another is the Delta check based on
observing the difference between two separate test
results on the same patient. The original Delta check
rules were either empirical in nature, or based on
studies of the observed distributions of differences
in the population being served by the laboratory.
The observation of unexpectedly large differences
signals a possible problem, for example, mislabel-
ing of specimens. Sheiner et al. [28] have reviewed
the performance of several Delta check methods.
Fraser [12] suggests an intellectually pleasing basis
for Delta checking by defining the upper limit for
expected change in terms of total imprecision (SDT )
and within-subject biological variation (SD I ). Fraser
refers to such a limit as a reference change value
(RCV ):

RCV = 20.5 ∗ Z ∗ (SD2
T + SD2

I )
1/2 (6)

where Z = standard normal deviate, giving us:

RCV = 2.77 ∗ (SD2
T + SD2

I )
1/2 for 95% limit (2-

sided).
= 3.65 ∗ (SD2

T + SD2
I )

1/2 for 99% limit (2-
sided).

Bear in mind the possible dependence of SDT

on the level of the analyte, that is, select an appro-
priate value for SDT from the assay imprecision
profile. A 99% limit is recommended by Fraser for
Delta checking. Large-scale Delta checking is easily
incorporated into laboratory information management
systems (LIMS).

As an aside, note that the RCV lends itself
directly to assessing the significance of observed
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changes between consecutive test results on the
same patient, that is, can the observed change be
ascribed to the combined effect of error plus perfectly
natural biological variation, or is it so great as to
signify something worthy of attention or clinical
intervention?

Authoritative recommendations on the design and
implementation of internal QC schemes have been
published by the International Federation of Clinical
Chemistry (IFCC); see [4], and by the NCCLS [23].

External Quality Control

The control procedures described above relate to
internal QC, the laboratory monitoring itself on a
day-to-day basis. External QC programs, run by com-
mercial organizations or professional bodies, provide
an invaluable link to the experience of hundreds of
other laboratories, and they serve to alert any individ-
ual laboratory to the possibility that its performance
might be inconsistent with that of the collective.

The basic operation of such schemes involves the
distribution of the same “control” material to all par-
ticipating laboratories, the subsequent results returned
being subjected to statistical summary. Typically, the
mean of results returned for a given analyte, strati-
fied by assay methodology where this is appropriate,
is viewed as a surrogate “true” value. The devia-
tion of any one test result from the appropriate group
mean is expressed in standardized form, usually based
on an index of group dispersion. Schemes vary in
the frequency of specimen distribution, in the defini-
tion of true or target values and in the criteria they
employ for characterizing performance. All exter-
nal QC schemes provide a necessarily retrospective
view of performance. The topic is well covered by
Buttner et al. [5], Westgard and Klee [40] and a well-
informed discussion of outstanding problems from
the perspective of the UK National External Qual-
ity Assessment Schemes (UK NEQASs) is provided
by Hirst [18].

Analytical Goals for Laboratory Error

QC procedures are designed to monitor the per-
formance characteristics of laboratory test methods
(imprecision, bias, and blunders) and to alert us to
changes in those characteristics that may impact upon
the quality of the laboratory service. QC procedures

do not of themselves define desirable quality stan-
dards. What standards? Defined by whom? Desirable
to whom? Ask 20 different people with an interest
in the laboratory (managing it, running it, paying for
it, working in it, or using it) how they would define
“quality” in relation to a laboratory test result. You
will surely get 20 different answers, reflecting 20 dif-
ferent sets of priorities. And so it is with those who
have busied their minds with this problem over the
last two decades.

The subject is reviewed by Fraser [12, 14] who
describes a hierarchy of objectivity in the definition
of quality objectives. Paraphrasing from top down
(from the most to the least desirable), we have qual-
ity standards defined by a specific medical need, by
general medical needs in relation to case finding and
case monitoring, by professional or expert recommen-
dations, by legislation or regulation, or by what is
technically possible.

The Aspen conference on Analytical Goals in
Clinical Chemistry [10], organized by the College
of American Pathologists in 1976, agreed guidelines
for maximum tolerable imprecision in relation to two
broad classes of test usage, (a) population screening,
and (b), individual testing (e.g. case management).
The guidelines, which drew on the work of Cotlove
et al. [7], were framed in terms of a key recommen-
dation. Analytical variance should not exceed one-
quarter of the relevant biological variance, thereby
insuring that the variability of result is increased by
no more than 12% due to assay imprecision. The lat-
ter result follows from noting that the overall variabil-
ity associated with an observed test result is made up
of two (primary) components, one biological (within-
subject biological variation) and the other analytical
(total imprecision). The variability imparted to the
observed test result by analytical imprecision, over
and above that due to biology alone, is obtained from
the following formula, adapted from [13]:

[
1 +

(
CV 2

T

CV 2
I

)]1/2

(7)

If analytical variance = 1/4 within-subject bio-
logical variance, we have (CV 2

T /CV 2
I ) = 0.25, so

[1 + 0.25]1/2 = 1.118. That is an increase of 11.8%
in observed variability due to analytical impreci-
sion alone. The choice of 11.8% as a threshold for
the inflationary effect of analytical imprecision is
arbitrary. It follows from a memorably simple rule,
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that is, CV T < 1/2 CV I (or 1/4 if using the cor-
responding CV 2), and from the fact that the impact
of analytical imprecision on overall test variability
grows appreciably larger once the Aspen threshold is
exceeded.

A Working Party of the European Group for
the Evaluation of Reagents and Analytical Systems
in Laboratory Medicine [15] subsequently proposed
quality specifications based on a pragmatic marriage
of the Aspen “rule” and the current state of the art
in laboratory testing as judged from external QC
schemes:

The total imprecision threshold (CV limit) should
be:

(a) less than one-half of the average within-subject
biological variation (CV I ), or

(b) less than the state of the art achieved by the best
0.20 fractile of laboratories,

whichever is the less stringent. The second approach
to be used if the requisite biological data are unavail-
able.

The inaccuracy threshold (Blimit) should be:

(a) less than one-quarter of the total biological
variation (CV biol), or

(b) less than one-sixteenth of the clinical reference
interval, when data on biological variation are
unavailable, or

(c) less than twice the ideal imprecision, if the
above specifications are too demanding.

Note the commonplace use of standard deviations (or
corresponding CV) rather than variances (or CV 2)

as descriptors of variability in clinical laboratory
settings.

The user of the laboratory is unlikely to be very
interested in the distinction between imprecision and
inaccuracy. Of more relevance will be their combined
effect in a given test result, the total error (TE), where
TE% = total imprecision (%) + total bias (%). The
bias prevailing in a given test system can be conve-
niently estimated using the cumulative performance
statistics provided by external QC scheme organiz-
ers. The most commonly cited quality goal for TE is
given by:

Total error threshold = TE limit = Blimit

+ 1.65 (CV limit) (8)

By way of illustration, we have the following basic
biological reference values for serum copper, Table
A1.3 of ref [12]: CV I = 4.9% and CV G = 13.6%.
It follows from (4) that the total biological variation
is CV biol = 14.5%. The error thresholds for serum
copper estimations are therefore:

for imprecision:
CV limit = 1/2 (4.9) = 2.5%

for bias:
Blimit (%) = 1/4 (14.5) = 3.6%

for total error:
TElimit (%) = 3.62 + 1.65 (2.5) = 7.7%

The quantity TE limit plays a key role in formulat-
ing optimal internal QC strategies using Westgard’s
operating specifications charts [36, 40].

The logical basis of the above “European” qual-
ity goals is discussed in very accessible terms by
Fraser [12]. The same publication also provides an
extensive listing of the threshold values CV limit,
Blimit, and TE limit for blood chemistry, immunol-
ogy, urine chemistry, hematology, and hemostasis;
see www.westgard.com for similar resources.

In the United States, quality goals have been
enshrined in legislation as fixed upper limits for TE
by the Clinical Laboratory Improvements Amend-
ments of 1988 (CLIA’88), Final Rule [35]. The doc-
ument is accessible online at www.cms.hhs.gov/
clia/. In its current form, the CLIA’88 proposals
call for the circulation, by approved proficiency-
testing (PT) centers, of five test samples three times a
year to US laboratories. In effect, a mandatory exter-
nal QC program covering every pathology discipline.
PT failure is getting two incorrect results out of five,
in two out of three consecutive surveys.

The danger with establishing quality thresholds,
however, derived or defined, is that they may be per-
ceived to be targets to aim for, rather than lines that
should not be crossed. With that in mind, Ehrmeyer
et al. [8] have pointed out that any laboratory achiev-
ing a TE of one-third the CLIA thresholds will have
something approaching a 100% chance of satisfying
the CLIA’88 regulations. The “one-third” CLIA rule
might therefore be regarded as a desirable analytical
goal simply in terms of retaining a license to practice.

Complete listings of the CLIA’88 TE thresholds
are available at www.westgard.com, along with
a wealth of technical information and essays from
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authorities in the field. European and US CLIA
quality specifications are compared and contrasted by
Westgard et al. [41].

References

[1] Boutwell, J.H. ed. (1978). A National Understanding for
the Development of Reference Materials and Methods
for Clinical Chemistry – Proceedings of a Conference.
AACC Press, Washington.

[2] Bull, B.S. & Elashoff, R.M. (1974). The use of patient
derived haematology data in quality control, Proceedings
of the San Diego Biomedical Symposium 13, 515–519.

[3] Bull, B.S., Elashoff, R.M., Heilbron, D.C. & Coupe-
rus, J. (1974). A study of various estimators for the
derivation of quality control procedures from patient ery-
throcyte indices, American Journal of Clinical Pathology
61, 473–481.

[4] Buttner, J., Borth, R., Boutwell, J.H. & Broughton,
P.M.G. (1983). Federation of clinical chemistry:
approved recommendation (1983) on quality control in
clinical chemistry: IV. Internal quality control, European
Journal of Clinical Chemistry and Clinical Biochemistry
21, 877–884.

[5] Buttner, J., Borth, R., Boutwell, J.H., Broughton, P.M.G.
& Bowyer, R.C. (1983). International federation of
clinical chemistry: approved recommendation (1983) on
quality control in clinical chemistry: V. External quality
control, European Journal of Clinical Chemistry and
Clinical Biochemistry 21, 885–892.

[6] Cembrowski, G.S., Westgard, J.O., Eggert, A.A. &
Toren, E.C. Jr. (1975). Trend detection in control data:
optimization and interpretation of Trigg’s technique for
trend analysis, Clinical Chemistry, 21, 1396–1405.

[7] Cotlove, E., Harris, E.K. & Williams, G.Z. (1970).
Biological and analytic components of variation in long-
term studies of serum constituents in normal subjects.
III. Physiological and medical implications, Clinical
Chemistry 16, 1028–1032.

[8] Ehrmeyer, S.S., Laessig, R.H., Leinweber, J.E. &
Oryall, J.J. (1990). Medicare/CLIA final rules for pro-
ficiency testing: minimum intralaboratory performance
characteristics (CV and bias) needed to pass, Clinical
Chemistry 36, 1736–1740.

[9] Ekins, R. (1991). Immunoassay standardization, Scan-
dinavian Journal of Clinical Laboratory Investigation
Supplement 205, 33–46.

[10] Elevitch, F.R. ed. (1977). Proceedings of the 1976 Aspen
Conference on Analytical Goals in Clinical Chemistry,
College of American Pathologists, Skokie.

[11] Linnet, K. (2002). EZ rules: automatic selection of
statistical control rules for laboratory tests: software
review, Clinical Chemistry 48, 594–595.

[12] Fraser, C.G. (2001). Biological Variation: from Princi-
ples to Practice. AACC Press, Washington.

[13] Fraser, C.G. & Harris, E.K. (1989). Generation and
application of data on biological variation in clinical

chemistry, Critical Reviews in Clinical Laboratory Sci-
ences 27, 409–437.

[14] Fraser, C.G. & Hyltoft Peterson, P. (1999). Analytical
performance characteristics should be judged against
objective quality specifications, Clinical Chemistry 45,
321–323.

[15] Fraser, C.G., Hyltoft Petersen, P., Ricos, C. &
Haeckel, R. (1992). Proposed quality specifications for
the imprecision and inaccuracy of analytical systems
in clinical chemistry, European Journal of Clinical
Chemistry and Clinical Biochemistry 30, 311–317.

[16] Hahn, G.J., Hill, W.J., Hoerl, R.W. & Zinkgraft, S.A.
(1999). The impact of six sigma improvement – a
glimpse into the future of statistics, The American
Statistician 532, 208–215.

[17] Henry, R.J. & Segalove, M. (1952). The running of
standards in clinical chemistry and the use of the control
chart, Journal of Clinical Pathology 5, 305–311.

[18] Hirst, A.D. (1998). External quality assurance, Annals
of Clinical Biochemistry 35, 12–18.

[19] Jay Smith, S. & Myers, G.L. (1991). Analyzing quality-
control trends with moving slope charts, Clinical Chem-
istry 37, 341–346.

[20] Johnson, R.A. & Bagshaw, M. (1974). The effect of
serial correlation on the performance of CUSUM tests,
Technometrics 16, 103–112.

[21] Kringle, R.O. & Bogovitch, M. (1999). Statistical pro-
cedures, in Tietz Textbook of Clinical Chemistry, 3rd
Ed, C.A. Burtis & E.R. Ashwood, eds. W.B. Saunders
Co, Philadelphia, 288–294.

[22] Lunetsky, E.S. & Cembrowski, G.S. (1987). Perfor-
mance characteristics of Bull’s multirule algorithm for
the quality control of multichannel hematology ana-
lyzers, American Journal of Clinical Pathology 33,
634–638.

[23] NCCLS Document C24-A2 (1999). Statistical Qual-
ity Control for Quantitative Measurements: Principles
and Definitions; Approved Guidelines, 2nd Ed. National
Committee for Clinical Laboratory Standards, Wayne.

[24] NCCLS Document EP5-A (1999). Evaluation of Preci-
sion Performance of Clinical Chemistry Devices: Tenta-
tive Guidelines, 2nd Ed. National Committee for Clinical
Laboratory Standards, Wayne.

[25] Neubauer, A.S. (1997). The EWMA control chart:
properties and comparison with other quality-control
procedures by computer simulation, Clinical Chemistry
43, 594–601.

[26] Page, E.S. (1954). Continuous inspection schemes,
Biometrika 14, 100–115.

[27] Ricos, C., Alvarez, V., Cava, F., Garcia-Lario, J.V., Her-
nandez, A., Jimenez, C.V., Minchinela, J., Perich, C. &
Simon, M. (1999). Current databases on biologic varia-
tion: pros, cons, and progress, Scandinavian Journal of
Clinical Laboratory Investigation 59, 491–500.

[28] Sheiner, L.B., Wheeler, L.A. & Moore, J.K. (1979). The
performance of delta check methods, Clinical Chemistry
25, 2034–2037.



Quality Control in Laboratory Medicine 9

[29] Shewhart, W.A. (1931). Economic Control of Quality of
Manufactured Product. Van Nostrand, New York.

[30] Strike, P.W. (1991). Statistical Methods in Laboratory
Medicine. Butterworth-Heinemann Ltd, Oxford.

[31] Strike, P.W. (1996). Measurement and Control in Labo-
ratory Medicine: A Primer on Control and Interpretation.
Butterworth-Heinemann Ltd, Oxford.

[32] Tietz, N.W. (1979). A model for a comprehensive mea-
surement system in clinical chemistry, Clinical Chem-
istry 25, 833–839.

[33] Trigg, D.W. (1964). Monitoring a forecasting system,
Operational Research Quarterly 15, 271–274.

[34] Uriano, G.A. & Cali, J.P. (1977). Role of reference
materials and reference methods in the measurement
process, in Validation of the Measurement Process, J.R.
De Voe, ed. American Chemical Society, Symposium
series, Washington, DC.

[35] U.S. Department of Health and Human Services: Clinical
Laboratory Improvements Amendments of 1988. Final
Rule. Laboratory Requirements, February 28, (1992).
Federal Register 57, 7002–7288.

[36] Westgard, J.O. (1992). Charts of operational process
specifications (“OP-Specs charts”) for assessing the

precision, accuracy, and quality control needed to sat-
isfy proficiency testing criteria, Clinical Chemistry 38,
1226–1233.

[37] Westgard, J.O., Barry, P.L., Hunt, M.R. & Groth, T.
(1981). A multi-rule Shewhart chart for quality control
in clinical chemistry, Clinical Chemistry 27, 493–501.

[38] Westgard, J.O. & Groth, T. (1979). Power functions for
statistical control rules, Clinical Chemistry 25, 863–869.

[39] Westgard, J.O., Groth, T., Aronsson, T. & de Verdier, C.
(1977). Combined Shewhart-Cusum control chart for
improved quality control in clinical chemistry, Clinical
Chemistry 23, 1881–1887.

[40] Westgard, J.O. & Klee, G.G. (1999). Quality man-
agement, in Tietz Textbook of Clinical Chemistry, 3rd
Ed, C.A. Burtis & E.R. Ashwood, eds. W.B. Saunders
Co, Philadelphia, 384–418.

[41] Westgard, J.O., Seehafer, J.J. & Barry, P.L. (1994).
European specifications for imprecision and inaccuracy
compared with operating specifications that assure the
quality required by US CLIA proficiency-testing criteria,
Clinical Chemistry 40, 1228–1232.

P.W. STRIKE



Quality of Care

What is Quality of Care?

Quality of care refers to the attributes or characteri-
stics of the delivery and subsequent outcomes of
health care [4]. Health care includes the treatment
of both physical and mental illnesses. High qual-
ity of care is defined by the Institute of Medicine
[16] as the “degree to which health services for indi-
viduals and populations increase the likelihood of
desired health outcomes and are consistent with cur-
rent professional knowledge”. This definition applies
to various health providers, including physicians,
nurses, and case managers; to all types of health
care organizations such as preferred provider organi-
zations, health maintenance organizations, and point-
of-service plans; and to almost all settings of care
such as hospitals, physician offices, nursing homes,
and community sites.

Why Assess Quality of Care?

There are three general reasons for assessing qual-
ity of care delivered in the ordinary circumstances
of routine practice: to improve care, to provide
accountability, and to quantify information for market
choices.

Improve Care

Empirical support for many treatment recommenda-
tions is surprisingly thin – most evidence arises from
randomized trials (see Clinical Trials, Overview)
where inclusion criteria can be stringent and in which
selective practitioners participate. In contrast, routine
practice consists of patients covering a wide spec-
trum of health status, from the very ill to the worried
well. Well-collected data in these settings can provide
information about the quality of treatments, of deliv-
ery strategies, and of organizational mechanisms. For
example, if patients receive too much care, then this
may result in the use of unnecessary interventions,
unnecessary exposure to health risks, and resource
waste. If patients receive too little care, either lack-
ing in intensity or adequacy or both, then they are
at risk of untoward outcomes, such as morbidity and
mortality, which ultimately lead to higher costs. Iden-
tifying differences in health outcomes on the basis

of quality measurement can lead to improved health
outcomes.

Provide Accountability

Several constituencies have a stake in periodic dis-
closure of the quality of health care: consumers [1];
government [6]; professional societies [3, 13]; and
purchasers [26]. Public disclosure of quality typically
involves comparisons of health care providers or set-
tings on the basis of quality measures in report cards
[24] or league tables [11] (see Profiling Providers of
Medical Care). Consumers of health care want to be
able to identify high-quality practitioners and health
plans. Professional societies want to ensure that spe-
cialists are kept informed of the latest advances to
improve patient care, and may use quality measures
as the basis for board certification. Government health
programs wish to enforce compliance with health
and safety requirements, and credentialing of med-
ical staff. In the United States, the Joint Commis-
sion on Accreditation of Healthcare Organizations,
for example, has statutory authority to certify hospi-
tals, ambulatory surgical centers, clinical laboratories,
home health agencies, and hospices. Employers who
purchase health care want to avoid the effects of poor
quality of care on productivity.

Market Choices

Public and private employers, business coalitions,
and public programs, such as Medicaid and Medi-
care, have sought to redesign the health care sys-
tem through negotiation with providers and insur-
ers. These activities, denoted value-based purchasing
[22], are designed to ensure and improve the qual-
ity of health programs. Purchasers contact selectively
with health plans or provider organizations based on
price and demonstrated quality [9]. Enhanced health
benefit packages may help employers retain employ-
ees, increase employee satisfaction and productivity,
decrease absenteeism, and hence reduce long-term
health costs. Virtually all companies in the Fortune
500 companies, for example, have reported collect-
ing some information about health plan quality [18].
Some large companies, like Xerox, have used quality
measures in making procurement decisions [17].

How to Measure Quality?

Prior to the mid-1980s, professional judgement was
used to ensure patients received high quality of care.
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This was usually accomplished by individual practi-
tioners who would monitor care of their patients. In
a 1980 article, Avedis Donabedian [7] suggested that
quality of care should be measured by its structure,
process, or outcome.

Structural measures include resources of the health
care system that reflect the capacity of the provider to
deliver good health care. The availability of diagnos-
tic and therapeutic equipment for patient care may be
assessed to determine whether quality of care is ade-
quate. These organizational characteristics are often
required by government programs through accredita-
tion or certification requirements as a way to ensure
some capacity for quality.

Process-based measures refer to what care givers
do to and for patients. Typically, such measures focus
on the diagnosis and management of disease, as well
as preventive care such as screening. These measures
should be under the control of the health professional.
The idea is to define a population of patients who
should get a therapy or test, and count how many
actually got it. Eligible patients are identified using
established guidelines or other explicit clinical crite-
ria [20]. In Table 1, the target population consists of
patients discharged alive or dead with a diagnosis of
acute myocardial infarction (AMI). Because selected

subsets of patients are used for inference, for exam-
ple, those eligible for reperfusion therapy, achieving
a sufficient sample size for valid inference and gen-
eralizing results to all patients may be difficult.

Outcomes-based measures refer to responses that
characterize a patient’s health status and quantifies
whether the care received has improved the patient’s
health. Common examples include risk-adjusted
mortality, occurrence of complications, relief of sym-
ptoms, and patient reports about their health. Thirty-
day risk-adjusted mortality following an AMI is a
common outcomes-based measure as the majority of
treatments for care will have be given within one
month of admission.

Good structural or process measures are those
that, if modified, would lead to demonstrable changes
in outcomes. Similarly, good outcome measures are
those that, if the process measure was changed,
changes in outcomes would occur.

Data Analyses

Analyses of health care quality data are challenging
due to their nonexperimental nature and complex
structure. Randomized studies are infrequently used

Table 1 AMI process and outcomes-based quality measures. Example measures for assessing hospital-specific quality of
care for patients having a heart attack

Process
Outcome

Underuse of 30-day
Measure Reperfusion Angiography Beta-blockers Mortality

What? Therapy to open blocked
vessels to restore blood
to the heart

Invasive procedure to
assess extent of heart
disease

Medical therapy that
lowers the heart’s
need for oxygen

All cause mortality

Definition Angioplasty or
thrombolysis within 12
hours of hospital arrival

Use within 12 hours after
symptom onset & prior
to discharge

Discharge Rx for
beta-blockers

Died within
30-days of
admission

Exclusions No ST-elevation; onset of
chest pain > 12 h prior
to arrival; bleeding on
arrival; hx of ulcer or
chronic liver disease;
CVA; warfarin on
admission; age > 79;
recent trauma; surgery
within 2 months;
aborted angiography

Not rated ACC Class I;
died within 1 day of
admission; underwent
primary angioplasty

EF < 35%; pulmonary
edema or CHF and
EF < 50%; shock,
systolic blood
pressure < 100, or
hypotension; hx of
COPD, dementia;
heart block;
bradycardia; insulin or
antidepressant trt

None but adjust for
admission risk
factors

hx = history; Rx = prescription; CVA = cerebrovascular accident; EF = ejection fraction; CHF = congestive heart failure;
COPD = chronic obstructive pulmonary disease; ACC = American College of Cardiology.
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to assess quality of care, although some have been
used to identify interventions that lead to improve-
ments in health quality [21, 25, 27]. Because the
majority of quality studies are observational, the lack
of randomization may lead to confounding when
identifying factors that impact quality. Health ser-
vices researchers have historically adopted one of two
approaches to reduce bias [12]. The first approach
involves modeling outcomes-based measures and uti-
lizing regression-adjustment techniques to balance
the observed confounders across groups defined by
study factors, for example, hospital type. The idea is
to adjust for the patient’s condition prior to the initial
contact with the health system. For example, to deter-
mine if patients receive poorer quality in one type
of hospital compared to another type, the analysis
needs to adjust for differences in coexisting con-
ditions (see Co-morbidity) and severity of illness
between the two groups . However, process-based
measures are implicitly risk-adjusted by restricting
the sample to those patients who are known to ben-
efit from treatments. In estimating use of needed
beta-blocker therapy, AMI patients whose ejection
fraction is less than 35%, who have bradycardia, or
several other observed comorbidities (Table 1), are
eliminated from the analysis.

Regardless of the risk-adjustment strategy, re-
searchers commonly invoke ignorability assumptions.
That is, given the data, quality is independent of
the factor (e.g. hospital type) conditional on the
observed covariates. While this assumption is more
likely to hold when detailed clinical data are avail-
able, researchers need to assess the validity of the
assumption and adopt appropriate modeling tech-
niques (see Model, Choice of) for causal inference
with observational data, such as propensity scores.

A common mistake in analyzing health care qual-
ity data has been to ignore important sources of
variation due to the natural clustering of data, such as
hospital-level variation. Ignoring clustering of indi-
viduals within health care units leads to overstated
precision estimates and inflated type I error rates
(see Hypothesis Testing) [23]. This problem can
be substantial if the objective is to make inferences
about the quality of health care units. To circumvent
these problems, hierarchical regression models can
be used to accommodate individual-level and cluster-
level covariates, as well as cluster-level variation
(see Hierarchical Models). While a generalized
estimating equation approach has the advantage of

making no distributional assumptions about the joint
distribution of quality measures over the clusters, this
approach is not applicable if the primary objective is
to make inference about each cluster.

A third important analytic issue relates to the
fact that health services researchers collect multiple
quality measures for a particular population. The mul-
tiple quality measures could be longitudinal, such
as hospital-specific 30-day mortality over a 5-year
period (see Longitudinal Data Analysis, Overview).
Methods have been proposed to model longitudinal
health care quality data [2, 5, 19] that separate lon-
gitudinal variation from sampling variation.

Alternatively, the multiple measures could con-
sist of mixed responses, such as 30-day mortality,
reperfusion therapy, needed angiography, and health-
reported quality. Health services researchers have
either modeled the multiple quality measures sepa-
rately or pooled the measures in some fashion. Sepa-
rate analyses of quality measures have several draw-
backs. The numerous measures can often confuse
consumers with the information [8]. If researchers
are interested in identifying factors that impact qual-
ity, separate analyses provide no formal means of
evaluating how similar the effects are across the vari-
ous measures. Furthermore, separate analyses may be
inefficient if interest centers on estimating the asso-
ciation between a particular factor, such as hospital
type, and quality.

Pooling quality measures, for example, score the
quality measure as met if the patient received any
needed therapy, also have some disadvantages. Re-
searchers are unable to isolate effects of specific
factors on each quality measure. It is also difficult
to arrive at a rule when the measures are made
on different scales such as binary, continuous, or
categorical. Lastly, the optimal method for combining
the measures depends on the measurement process.
To accommodate multiple mixed measures, latent
variable models can be used to model the correlation
among the measures [10, 14], even if the measures are
made on different scales [15] (see Path Analysis).
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Quality of Life and
Health Status

Introduction

Clinical studies, epidemiological investigations, pop-
ulation surveys, and clinical practices increasingly
incorporate self-reported measures of health status
and quality of life. These help to determine whether
treatments are doing more good than harm, whether
health and quality are improving or worsening, and
to see if health status differs between groups. Self-
reported outcomes are often compared to clinical or
performance-based measurements that remain the pri-
mary endpoints for most clinical trials and are impor-
tant markers of disease, injury, and their trajectories.
Self-reported measures of health and quality of life,
however, often have more meaning to the persons
affected by disease or treatment. Because percep-
tions of health and illness influence what people do
about their health (e.g. visit doctors, go to hospital, or
ignore signs and symptoms), policy makers are also
increasingly interested in self-reported outcomes.

Concepts

Self-reported outcomes, referred to as patient-re-
ported outcomes (PROs) in the context of health care,
include any report coming directly from the person or
persons affected by their life, health condition(s), and
treatment [1]. PROs address the source of the report
rather than the content. PROs not only include health
status and quality of life but also reports on satisfac-
tion with treatment and care, adherence to prescribed
regimens when directly related to end result out-
comes, and any other treatment or outcome evaluation
obtained directly from patients through interviews,
self-completed questionnaires, diaries or other data
collection.

Health status, functional status, well-being, quality
of life, and health-related quality of life are concepts
that are often used interchangeably in PROs-related
discourse and measurement. There is no consen-
sus and widely adopted definition of quality of life
because it is used in different contexts by differ-
ent people. One definition is unlikely to suit all
uses or individuals. There is considerable agreement,
nonetheless, that the quality of life construct is more

comprehensive than health status and includes aspects
of the environment that may or may not be affected by
health or perceived health. The health status concept
and its domains and constructs range from nega-
tively valued aspects of life, including death, to the
more positively valued aspects such as role function
and happiness. Health status is a useful concept in
the context of assessing health services and treat-
ment effectiveness. Functional status measures usu-
ally refer to limitations in the performance of social
roles or activity limitations. The status concept is
highly dependent on the perspective of the assessor
and the assessed. Well-being measures refer to sub-
jective perceptions, including reports of unpleasant or
pleasant sensations and global evaluations of health
or subjective status. Symptoms may be included in
well-being measures or considered separately. Well-
being and quality of life may be distinguished by the
level of evaluation; that is, quality of life contains
more global evaluations of life position and perspec-
tives, and well-being contains more domain-specific
perspectives such as psychological or physical [10].
It is important to note that PROs and quality of life
are sometimes equated with functional status, and this
labeling can be erroneous and of particular concern
to persons with disabilities. Persons with functional
limitations may enjoy high quality of life through
environmental supports or simply through their own
life perspective and evaluation of their needs and
desires. Although function may be important to many
evaluations of their health, health-related quality of
life or quality of life should not be used as synonyms
and these concepts should be identified and labeled
separately, particularly when using terminology of
PROs context of health care.

The boundaries of concepts and their definition
depend upon the measurement objectives, the fund-
ing sponsors’ motives, the users’ particular concerns,
and most important of all, the evidence or data on
the concept and constructs [11]. Investigators may
be interested in defining the health of populations to
discover or document unmet needs, to determine the
effect of medical interventions, or to guide alloca-
tion of resources. Traditional measures of morbidity
and mortality are limited in defining health status
and leave the texture of peoples’ lives unexplored.
Physiological measures, along the traditional end-
points in clinical trials, often bear limited relation
to how affected persons are feeling. Thus, if one
wishes to determine the impact of interventions on
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the outcomes of real interest to the persons most
affected, it is necessary to assess persons’ experience
through subjective evaluation and reporting of that
experience.

It is important to note that some widely val-
ued aspects of human existence are not generally
defined as health status, such as a safe environment,
adequate housing, guaranteed income, and freedom.
These global human concerns, however, sometimes
adversely affect or are affected by health status. Thus,
the term health-related quality of life is often used
to indicate that the measure is concentrated on the
health concept and the field of health outcomes. Qual-
ity of life, however, may include all aspects of life,
including the environment or externalities outside the
context of healthcare.

The World Health Organization Quality of Life
(WHOQOL) group, a worldwide research group orga-
nized by the World Health Organization has defined
quality of life as “individuals” perceptions of their
position in life in the context of the culture and
value systems in which they live, and in relation
to their goals, expectations, standards, and concerns”
[20–22]. This definition reflects the growing recogni-
tion that quality of life can be inherently subjective,
although normative definitions have been proposed
that include more objective standards as well as per-
ceptions of objective conditions [3, 4]. Quality of
life can be used as a descriptor (i.e. the presence or
absence of a characteristic of life), an evaluative state-
ment (i.e. some value is attached to the characteristics
of an individual, population, or kind of human life),

or a normative or prescriptive statement, (i.e. certain
norms indicate, which characteristics must be present
to have a life of quality).

The WHOQOL group places quality of life squar-
ely in the two traditions of an internal psychological
and physiological mechanism producing a sense of
satisfaction or gratification with life [9] and those
external conditions that trigger the internal mecha-
nism [16]. Thus, quality of life is a broad ranging con-
cept that incorporates in a complex way, individuals’
physical health, psychological state, level of indepen-
dence, social relationships, personal beliefs, and their
relationships to salient features of the environment
[21]. Figure 1 shows this relationship between health
concepts and general quality of life, and how deter-
minants from the internal (individual) as well as the
external (social and cultural) environment influence
the general quality of life.

The concepts and domains included in the mea-
surement of quality of life help in making opera-
tional definitions. Table 1 contains core concepts and
domains contained in many health and quality of life
measures. Table 1 and Figure 1 also demonstrate the
multidimensionality of the concepts of health status
and health-related quality of life, as a result require
multiple indicators to measure.

How the items are arranged, and how the domains
are grouped and scored varies widely. It is gen-
erally agreed that the content validity of quality-
of-life measures can be judged only by the per-
sons or populations being assessed (see Health
Status Instruments, Measurement Properties of).
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Figure 1 Relationship among quality of life and health concepts
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Table 1 Concepts and domains used in defining self-reported health status, quality of life, and health-related quality of
life

Concepts Domains and Attributes

Symptoms Frequency, severity, bothersomeness
Reports of physical and psychological symptoms or sensations not directly

observable, for example, energy and fatigue, nausea, irritability

Functional status Frequency, difficulty, severity, ability, with or without help
Physical Functional limitations and activity restrictions, for example, self care; walking,

mobility, and sometimes sleep, and sexual function when construed narrowly
Psychological Positive or negative affect and cognitive, for example, anger, alertness, self-esteem,

sense of well-being, distress
Social Engagement, limitations in work, school, play, household management,

participation in the “community”

Health perceptions Frequency, severity/intensity, satisfaction
Global General ratings of health and quality of life, for example, satisfaction or overall

well-being
Worries and concerns About health, finances, the future

Spiritual Meaning and purpose of life, connection to a deity, a belief system, or the universe

Disadvantage/Opportunity Frequency, impact
Perceptions of stigma or reports of discrimination because of health condition,

reports of advantage

Resiliency Frequency, satisfaction, ability
Reports of ability to cope or withstand stress and illness

Environmental Satisfaction, importance
Evaluations of personal safety, adequacy of housing, respect, freedom, and so on

Satisfaction with treatment Expectations, importance, satisfaction
Reports of treatment and treatment experience

Adherence to prescribed or
recommended treatmenta

Behaviors directly linked to outcomes

Reports of taking treatment, doses, attendance, or Routine behaviors like
tooth-brushing intermediate to end results

aIncluded not as an end result of treatment but sometimes closely linked causally to treatment and thus a close proxy for a health
status outcome. Reports of other behaviors like smoking, alcohol consumption, and so on are generally considered intermediate
and not end result outcomes though this has been disputed by many.

Thus, the extent to which the domain of interest is
comprehensively sampled by the items or questions
in the measure can only be judged by representa-
tives of the target population. If the target population
is unable to speak for themselves, proxy judgments
are considered acceptable, particularly if supported
by rigorously controlled observational studies with
inter-rater reliabilities. Before assuming that people
cannot speak for themselves, however, they should
be asked and every effort should be made to com-
municate with them directly. Proxy responses are
not PROs.

In addition to content validity, the other
psychometric properties of quality-of-life measures
include the following: (1) specification of the

measurement model including the instrument’s scale
and subscale structure and the conceptual and
empirical basis for combining multiple items into a
single score; (2) reliability, including the degree to
which the instrument is free from random error
either by testing the homogeneity of content on
multi-item tests with internal consistency evaluation
or testing the degree to which the instrument
yields stable scores over time; (3) construct,
criterion, and predictive validity wherein the logical
relationships among different measures are examined;
(4) responsiveness or the assessment of the ability
of the measure to assess change over time when
real change has occurred (longitudinal construct
validation); and (5) interpretation of the effect
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size, or the degree to which one can assign
qualitative meaning to an instrument’s quantitative
scores [17].

Several concepts listed in Table 1 are considered
important, but difficult to define and measure. Spiritu-
ality, often measured in end-of-life treatment evalua-
tion and increasingly in other contexts, is rarely mea-
sured to determine generic health status even though
life-threatening illness or orientation to health may
be built on spiritual beliefs and practices. Resiliency
can be measured as a self reported outcome of well-
being, although physiologic measures may also be
employed. Other concepts difficult to measure are
capacity, stigma, disadvantage, and societal reac-
tion, although self-report measures exist and major
advances are being made in the analysis and interpre-
tation of health disparities (http://healthdis-
parities.nih.gov). Both adherence to treatment
and satisfaction with treatment can be measured by
PROs. Adherence represents the patients’ report of
behaviors that coincide with medical or health advice,
for example, to take medications, follow diets and
exercise regimens, use medical devices when needed,
or execute life style and behavioral change. Patient-
reported measures of adherence are collected on
self-reported questionnaires or interviews and often
are compared to pill counts, physiological measures,
or some other trace measure of adherence. Reports
of adherence may be viewed both as predictors of
health and treatment satisfaction or a function of
health and satisfaction, and thus are not always “out-
comes”. Adherence is an intermediate outcome and
not included as an end-result of treatment. It is dis-
cussed here to emphasize that it can be a PRO and is
often considered in analyzing other outcomes.

Satisfaction with treatments and treatment experi-
ence, (i.e. care) represents salient aspects of treatment
and overall evaluation of treatment experience. Rat-
ings and reports of experience of treatment can be
multidimensional or global. Global ratings of satisfac-
tion are often positively skewed, that is patients report
high levels of satisfaction, even in the face of other
negative information. Rapid progress is being made
to obtain patient reports of treatment satisfaction that
also reflect the drivers of global satisfaction, such
as expectations, outcomes, the gap between expecta-
tions and outcomes, and the importance of different
attributes of treatment [14].

A large number of different examples of instru-
ments and their development and validation process

can be found in Quality of Life Research, Journal
of Clinical Epidemiology, Medical Care, and many
specialty journals. A detailed discussion of the psy-
chometric properties and their evaluation are found
in numerous places [2, 5, 6, 8, 13, 19].

Types of Measures

There are a number of ways of categorizing instru-
ments designed to measure PROs such as health
status and quality of life [7, 13]. Taxonomy of self-
reported health status and quality of life measures
is contained in Table 2. The measures are classified
accordingly: (1) Source of the Report: information
was gathered from the patient or proxy; (2) Mode of
Data Collection: the data were collected through self
administration, interviewer-administered, or computer
administered tests; (3) Testing Content: use of adap-
tive or dynamic testing where the content varies for
individuals and items are calibrated or standard con-
tent where everyone takes the same items; (4) Types
of Scores: reflecting the level of aggregation across
concepts and domains; (5) Range of Population and
Concepts included or covered; and (6) Weighing Sys-
tem used in scoring items – whether an indicator,
index, profile, or battery, instruments can be divided
into two broad categories [12]. Generic instruments
measure the full range of health and quality of life,
without focusing on specific areas. They are designed
for use across a wide variety of populations. Specific
instruments are designed for application to individu-
als, conditions or diseases, domains, or populations.
Generic and specific instruments may be health pro-
files or utility measures that are distinguished by
having preference weights applied to the items and
domains. Some utility measures, and indeed some
profiles, also incorporate an index score or a sin-
gle number for analyses. Utility measures, discussed
more fully in Utility in Health Studies, are useful for
economic applications, since they produce quality-
adjusted life years, a combined measure of how long
one lives as measured by survival or mortality and
how well one lives, as measured by functional status
and well-being.

Applications

Decision makers and analysts wanting to measure
PROs should first identify the problem or application
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Table 2 A taxonomy of self-reported health status and quality of life measures

Measure Strengths Weaknesses

Source of Report

Person or patient Sensations, feelings, evaluations
known only to the person

When established that person cannot
speak, write, or communicate to
others

Proxy (Not a PRO) Can observe and report behaviors
only to patient

Cannot report feelings known

Mode of Collection

Self-administered, with or without
supervision

Privacy Missing data, particularly by mail,
and without supervision no
assurance of who completed

Interviewer-administered Control Sensitive information like income
sometimes difficult/cost

Computer-administered and/or
computer-adapted

Flexibility Cost/for persons not familiar or
afraid of computer

Testing Strategy

Dynamic or tailored content: based
on health status, age, etc.

Items relevant to person
More precise measurement

Requires item bank and item
calibration

Standard or fixed-length content Content same for all respondents
Easy to administer

Many content items not relevant to
individual

Floor and ceiling effects

Types of Scores Produced

Single indicator number Global evaluation May be difficult to interpret trends
Sometimes easy to interpret

Single index number Represents net impact
Useful for cost effectiveness

Sometimes not possible to
disaggregate contribution of
domains to the overall score

Profile of interrelated scores Single instrument Length may be a problem
Contribution of domains to overall

score possible
May not have overall score

Battery of independent scores Wide range of relevant outcomes
possible

Cannot relate different outcomes to
common measurement scale

May need to adjust for multiple
comparisons

May need to identify major outcome

Range of Populations and Concepts

Generic: applied across diseases,
conditions, populations, and
concepts

Broadly applicable
Summarizes range of concepts
Detection of unanticipated effects

possible

May not be responsive to change
May not have focus of patient

interest
Length may be a problem
Effects may be difficult to interpret

Specific: applied to individuals,
diseases, conditions, populations,
or concepts/domains

More acceptable to respondents
May be more responsive to change

Cannot easily compare across
conditions or populations

Cannot detect unanticipated effects

Weighting System

Utility : preference weights from
patients, providers, or community

Interval scale
Patient or consumer view

incorporated

May have difficulty obtaining
weights

May not differ from statistical
weights that are easier to obtain

Equal-weighting : items weighted
equally or from frequency or
responses

Self-weighting samples
More familiar techniques
Appears easier to use

May be influenced by prevalence
Cannot incorporate tradeoffs
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of the measure. With this information, one can then
identify the desired characteristics of existing mea-
sures to be included in the assessment. For example,
monitoring the health of populations and commu-
nities demands parsimonious instruments including
global evaluations across a number of conditions and
different population groups. For comprehensive eval-
uation in a clinical trial, health profiles or batteries
are most appropriate according to the main effects
intended and unintended or adverse consequences of
treatment. For economic evaluation, utility measures
are useful to produce a comparison across alterna-
tive treatments.

PROs directly from children and youth are tak-
ing greater prominence among all interested parties,
following similar development as that for adults and
older adults [18]. Children and youth represent a spe-
cial case, however, given knowledge of variation in
how and when children develop, the wide variation
in willingness and ability to self-report across the age
spectrum, and the “special” language of children and
adolescents in different cultures of the world. Rapid
progress is being made in Europe and North America,
to be followed and informed by work in other parts
of the world, often less accessible to Western parties.

Demand is also increasing for quality of life mea-
sures available for use in cross-cultural comparisons,
which requires special attention to cultural adaptation
and validation in each culture in which the mea-
sure is applied [15]. The most desirable means of
development and validation is to have the goal of
cross-cultural comparability in mind from the begin-
ning. Measures developed simultaneously in different
cultures have the advantage of identifying as early
as possible those domains and items that are more
or less valid in a particular culture or population.
Translating instruments developed in one culture for
use in another is more common, but the danger of
this approach is the assumption that the conceptual
structure, domains, and items are cross-cultural. For
example, assessments of functional status that use
examples such “ability to walk several blocks” run
the danger that “blocks” have different if any meaning
at all in different cultures. Response scale anchors,
such as “quite a bit”, also do not translate easily into
different languages.

Testing of the psychometric properties of cross-
cultural measures is similar to that for instruments
used within one language or cultural group, although
standards for aggregation across sites have not been

rigorously applied. When it is and is not valid to use
measures in different populations and to pool data
across different cultures remains an area for further
investigation and debate.

Conclusion

Quality of life measurements are important for mea-
suring the impact of disease, treatment, health and
social policies, and the progress of economic and
social development. Developers and users should
specify and label the content and type of measure
for every application of a PRO and provide evidence
of its appropriateness to the intended use, for validity
of the measure as used in a particular case, and how
to interpret results. A major challenge faces devel-
opers and user of these measures in establishing a
testable theory of the expected and observed relation-
ships among the different concepts and domains of
quality of life. It is also important to establish a theory
of how to link clinical variables with health-related
quality of life as it is to link larger determinants of
PROs such as political unrest, economic depression,
inequalities, and sociocultural trends and processes
[13, 23].

Researchers tend to approach the relationship
inductively by collecting data and examining the
correlations, but a priori hypotheses are impor-
tant for developing systematic knowledge of how
disease and treatment impacts different indicators
of health outcome. The most appropriate approach
to causal modeling, the use of health outcomes
in meta-analyses, development and application of
community-level indicators of health, and interpreta-
tion of observed health and quality-of-life measure-
ments remain challenges for both the developers and
uses of these measures.

References

[1] Acquadro, C., Berzon, R., Dubois, D., Leidy, N.K.,
Marquis, P., Revicki, D. & Rothman, M.; PRO Har-
monization Group. (2003). Incorporating the patient’s
perspective into drug development and communication:
an ad hoc task force report of the patient-reported out-
comes (PRO) harmonization group meeting at the food
and drug administration, Value Health, 6(5), 522–531.

[2] Bowling, A. (1991). Measuring Health: A Review of
Quality of Life Measurement Scales. Open University
Press, Milton Keynes.



Quality of Life and Health Status 7

[3] Calman, K.C. (1987). Definitions and dimensions of
quality of life, in The quality of life of cancer patients,
N.K. Aaronson & J. Beckman, eds. Raven Press, New
York, pp. 1–9.

[4] Campbell, A., Converse, P.E. & Rodgers, W.L. (1976).
Quality of American life: Perceptions, Evaluations and
Satisfaction. Russell Sage Foundation, New York.

[5] Fairclough, D.L. (2002). Design and Analysis of Quality
of Life Studies in Clinical Trials. CRC Press, Boca Raton.

[6] Fayers, P. & Machin, D. (2000). Quality of Life: Assess-
ment, Analysis, and Interpretation. John Wiley & Sons,
New York.

[7] Fitzpatrick, R., Fletcher, A., Gore, S., Jones, D., Spiel-
gelhalter, D. & Cox, D. (1992). Quality of life measures
in health care. I: application and issues in assessment.
British Medical Journal 305, 1074–1077.

[8] Guyatt, G.H., Feeney, D.H. & Patrick, D.L. (1993).
Measuring health-related quality of life, Annals Of
Internal Medicine 118, 622–629.

[9] Hornquist, J.O. (1982). The concept of quality of life,
Scandinavian Journal of Social Medicine 10(2), 57–61.

[10] Kahnemann, D. & Diener, E. & Schwartz, N. (1999).
Well-Being: The Foundations of Hedonic Psychology.
Russell Sage Foundation, New York.

[11] Patrick, D.L. & Bergner, M. (1990). Measurement of
health status in the 1990s, Annual Review of Public
Health 11, 165–183.

[12] Patrick, D.L. & Deyo, R.A. (1989). Generic and disease-
specific measures in assessing health status and quality
and life, Medical Care 27(Suppl. 3), S217–S232.

[13] Patrick, D.L. & Erickson, P. (1993). Health Status and
Health Policy: Quality of Life in Health Care Evaluation
and Resource Allocation. Oxford University Press, New
York.

[14] Patrick, D.L., Martin, M., Bushnell, D. & Pesa, J.
(2003). Measuring satisfaction with migraine treatment:
expectations, importance, outcomes, and global rating,
Clinical Therapeutics 25(11), 2920–2935.

[15] Patrick, D.L., Wild, D.J., Johnson, E.S., Wagner, T.H.
& Martin, Ma. (1994). Cross-cultural validation of
quality-of-life measures, in Quality of Life Assessment:
International Perspectives, J. Orley & W. Kuyken, eds.
Springer-Verlag, Berlin, Heidelberg, pp. 19–32.

[16] Rogerson, R.J. (1995). Environmental and health-related
quality of life: conceptual and methodological similari-
ties, Social Science and Medicine 41(10), 1373–1382.

[17] Scientific Advisory Committee, Medical Outcomes
Trust. (2002). Assessing health status and quality-of-life
instruments: attributes and review criteria, Quality of Life
Research 11(3), 193–205.

[18] Starfield, B. (1996). Health status measurement: the
special case of children and youth [editorial], Injury
Prevention 2(2), 86–87.

[19] Streiner, D.L. & Norman, G.R. (1995). Health Measure-
ment Scales: A Practical Guide to Their Development
and Use. Oxford University Press, New York.

[20] Szabo, S. (1996). The world health organization quality
of life (WHOQOL) assessment instrument, in Quality
of Life and Pharmacoeconomics in Clinical Trials, B.
Spilker, ed. Lippincott-Raven Publishers, Philadelphia,
pp. 355–362.

[21] The WHOQOL Group. (1994). The development of
the world health organization quality of life assessment
instrument (WHOQOL), in Quality of Life Assessment:
International Perspectives, J. Orley & W. Kuyken, eds.
Springer-Verlag, Berlin, Heidelberg, p. 41.

[22] The WHOQOL Group. (1995). The world health organi-
zation quality of life assessment (whoqol): position paper
from the world health organization, Social Science &
Medicine 41(10), 1403.

[23] Wilson, I.B. & Cleary, P.D. (1995). Linking clinical
variables with health-related quality of life: a conceptual
model of patient outcomes, Journal of the American
Medical Association 273(1), 59–65.

Further Reading

Patrick, D.L. & Chiang, Y.P. (2000). Measurement of health
outcomes in treatment effectiveness evaluations: con-
ceptual and methodological challenges, Medical Care
38(Suppl. 9), II14–II25.

DONALD L. PATRICK



Quality of Life and
Survival Analysis

In clinical research, interest often centers around the
survival times of patients T (> 0), or, more generally
speaking, the times from a suitable starting point such
as, for example, time of diagnosis or randomization
to the occurrence of an end point such as death
or disease recurrence. For these kind of data the
methodology of survival analysis is usually applied.

In recent years an additional end point concerned
with the subjective assessment of treatment by the
individual patient has been introduced which is cir-
cumscribed with the term “(health-related) quality of
life ((H)QoL)”. A large body of literature is avail-
able covering the many aspects of how to adequately
and sensibly evaluate an approximation of a patient’s
QoL (see, for example, [4–7, 15], and [16]; Quality
of Life and Health Status).

The most commonly used approach of measur-
ing QoL is by means of standardized, self-assessed
questionnaires, popular examples being the EORTC
QLQ-C30 of the European Organization for Research
and Treatment of Cancer, the Rotterdam Symptom
Checklist (RSCL), or the Functional Assessment of
Cancer Therapy (FACT). The data emerging from
assessments with one of these measuring instruments
consist of patients’ answers to about 20 to 50 ques-
tions with mostly preformulated, ordinal answering
categories. For the analysis of QoL these questions
are usually condensed by suitable methods, e.g. sum-
mation over correlated questions, to yield one global,
unidimensional QoL score Q or several subscores Qj

corresponding to specific QoL dimensions (see Psy-
chometrics, Overview).

As the evaluation of changes of QoL over time
is of most importance in clinical trials, repeated
measurements on the individual patient are essential
for an adequate assessment of QoL. The least nec-
essary requirement commonly accepted is to assess
QoL at baseline before treatment starts, then dur-
ing and shortly after treatment to account for short-
term effects, and also some time after treatment has
stopped to evaluate late effects. This describes the
classical measurement situation of a QoL-incorpora-
ted clinical trial, considering in parallel the length of
survival via clinical follow-up and the quality of this
survival by continuing QoL assessment.

Two analysis approaches are principally applicable
here: analyzing length and quality of survival as two
separate end points, or jointly as one combined end
point. In the following we assume for simplicity
that our QoL measuring instrument will provide at
times t > 0 a unidimensional QoL variable Q(t) with
values standardized between a lowest possible score
of 0 and a highest possible score of 1.

Separate Analysis of QoL Data Over Time

When collecting QoL data over time, the adoption
of the experimental design of a classical analysis
of variance (ANOVA) accounting for repeated mea-
surements within patients is warranted (see Analysis
of Variance for Longitudinal Data). Depending on
whether normality of QoL scores, possibly after suit-
able transformation, can be assumed or not, general
linear models or generalized linear models are
appropriate. For standard applications in this situ-
ation the statistical methodology has been worked
out and software packages like S-PLUS, SAS, and
BMDP can be used. A review of the most impor-
tant procedures with special reference to QoL data
can be found in [4, 12], and [17]. However, some
problems specific to QoL data have to be encoun-
tered, of which the most influential departure from
straightforward applications is to deal with the situa-
tion of missing QoL data. Although missing data can
be regarded a common problem in longitudinal sam-
pling plans, the assumption of missing at random is
generally more questionable for QoL data (see Non-
ignorable Dropout in Longitudinal Studies; Bias
from Nonresponse). It has been suggested in this
context that patients with either an extremely good
or an extremely poor QoL will have a higher likeli-
hood of refusing to respond to a QoL questionnaire.
In the extreme, questionnaires not available due to
mortality clearly are not missing at random.

Estimates can be severely biased, especially when
complete case analyses are routinely applied, but also
when methods are used that account for data missing
at random.

Combined Analysis of Length and Quality
of Survival

The separate analysis of survival times and QoL
may lead to situations where a univocal decision
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about treatment efficacy appears problematic espe-
cially when mortality is not negligible.

In a combined analysis of both end points, QoL
data will be used in a first step to define, implicitly or
explicitly, a stochastic process describing patients’
QoL levels over time. In a direct application, the
parameters of the process using either continuous or
discrete time, together with a continuous or a discrete
state space incorporating an absorbing death state,
could be estimated depending on the availability of
corresponding QoL data. In an indirect way the states
of the process could be used as QoL weights for the
survival times spent in these states.

Time to QoL Defined Events

The most straightforward application of a combined
analysis of time and quality is by definition of an
additional QoL-oriented end point such as, for exam-
ple, the reaching of a deterioration in QoL of a certain
amount q0. The time Tq until this state is reached
may be measured with an appropriate sampling plan
and then analyzed by the classical methods of sur-
vival analysis. In this way it is possible to assess a
patient’s time spent alive with an acceptable QoL.

In a comparison of two radiation strategies for
brain metastases in lung cancer patients, Rosenman
& Choi [14] defined as such an end point the time to
the first occurrence of a Karnofsky index of 60% or
below. They compared product-limit estimates (see
Kaplan–Meier Estimator) for the overall survival
probabilities with those obtained using the times to
the QoL-oriented end point. Their analysis resulted in
a nonsignificant trend of favoring one treatment over
the other with regard to overall survival, which dras-
tically reverses when survival with a “good” QoL is
considered. This also represents the most interesting
scenario for a QoL analysis, when treatments with
comparable efficacy in the primary end points can be
shown to differ in an important secondary end point.

However, the choice of suitable QoL values for
the definition of states usually will be arbitrary, but
nevertheless might be influential for the results.

Such an approach may be extended by defining
more than one QoL state in between the optimal QoL
state and death. Suitable stochastic processes may be
defined by modeling the times spent in the different
states and the transition probabilities from one state
to another. Markov-type models have been proposed

for comparable situations [12] (see Markov Chains).
In a full Markov model it is assumed that transi-
tions from one QoL state to another are independent
and depend only on the previously occupied state.
In practice, however, the methodology of stochastic
processes is applied to QoL data only rarely. The
major reason is that the continuous observation of
patients’ QoL required for obtaining exact transition
times can be regarded as infeasible in practical clin-
ical trial settings.

Quality-Adjusted Survival Times

From the viewpoint of survival analysis it seems
appealing to combine length of survival and QoL into
one single end point described as quality-adjusted
survival (QAS) time. Originally, QAS times have been
introduced in the field of decision analysis where
they are usually called quality-adjusted life years
(QUALYs) [16].

This approach is again, but now rather implicitly,
based on the stochastic process formulation of the
QoL process. J different QoL states are defined only
for the purpose of producing weights qj accompany-
ing the time Tj the patient spent in that state. QAS
times are then defined by multiplying each period
of the individual survival time with the weight cor-
responding to the QoL assessment reported by the
patient, or a general utility assessment, and then sum-
ming these weighted times:

QAS =
J∑

j−1

qjTj .

In this way the number of different time variables
Tj representing the transition times from one state
to another are condensed into one time variable
representing a new quality-adjusted time scale. The
conventional survival time of a patient T can be
regarded as a special case of a QAS time giving
constant weight equal to 1 for all time spent in the
alive state and 0 after death.

A comparable QAS approach was chosen by Korn
[11], who allows individual QoL measurements Q(t)

at arbitrary points in time 0 = t0 < t1 < · · · < tJ = T

with Q(t) = 0 for t > T , and suggests plotting Q(t)

vs. time t to allow a graphical representation of the
development of a patient’s QoL over time. The area
under this quality of life curve (AUC) created by



Quality of Life and Survival Analysis 3

linear interpolation of QoL between adjacent QoL
measures Q(tj ) and Q(tj+1) can be interpreted either
as a weighted sum of partial survival times,

AUC =
J∑

j=1

(tj − tj−1)[Q(tj ) − Q(tj−1)]

2
,

or equivalently as a time-weighted sum of QoL
scores,

AUC = Q(t0)(t1 − t0)

2

+
J−1∑

j=2

Q(tj )(tj+1 − tj−1)

2
.

The most important application of QAS times
has been introduced by Gelber et al. [8] with
their definition of TWiST (time without symptoms
and toxicity) or, later, Q-TWiST (quality-adjusted
TWiST). TWiST was proposed as an additional new
end point in a clinical trial of adjuvant therapy in
patients with advanced breast cancer. The apparent
benefit of chemo- and/or endocrine therapy with
respect to disease-free and overall survival is thereby
balanced against the treatments’ toxicity and side-
effects. Formally, both the times in which a patient
suffered severe side-effects during the treatment
period TTOX and the times after a relapse TREL are
subtracted from his/her total survival time T . In the
terminology of QAS this is equivalent to attaching a
weight of 0 to both states:

TTWiST = 0 × TTOX + 1 × TTWiST + 0 × TREL

= T − TTOX − TREL

In Q-TWiST, weights qj greater than 0 will allow
positive partial QAS times from the states toxicity
and relapse:

TQTWiST =qTOX × TTOX+1 × TTWiST

+ qREL × TREL

=T − (1 − qTOX)TTOX − (1 − qREL)TREL.

A natural approach for an analysis would be to use the
QAS time of each patient instead of the conventional
survival time and then apply the usual methods of
survival analysis. A simple treatment comparison
could, for example, be based on a comparison of
the distribution functions of the QAS times for

each treatment Pr(QAS > t). If all QAS times were
observed, this would be unproblematic.

However, Gelber et al. [8] noted that, when cen-
sored observations occur, the use of QAS times can
lead to seriously biased estimates of the correspond-
ing QAS probabilities. They show that transforming
the original survival time scale to a QAS time scale
introduces informative censoring. A reason for this
bias is the fact that patients with low QoL weights
can only slowly accumulate their QAS time and
will therefore more likely have earlier censoring than
those with higher QoL weight. The inclusion of a
relatively large proportion of patients with poor QoL
in the “early” risk set leads to an underestimation of
the corresponding hazard function for QAS time. In
a simple, hypothetical, example, Glasziou et al. [9]
illustrate the severity of the bias.

Korn [11] proposes a modified Kaplan–Meier
estimate for QAS that aims to reduce this bias. His
conditional independence estimator (CIE) is derived
under the assumption that the censoring distribution
in small time intervals is independent of the QoL
score just before that interval. In practice, the more
frequent QoL is assessed, the more bias reduction
might be achieved. However, the CIE still remains
asymptotically biased, but the bias will always be
smaller than that of the naive product-limit estimate.

Another drawback of the CIE is that Korn’s
assumption of conditional independence will in gen-
eral not be fulfilled, and it will remain difficult to
quantify the amount of bias for a specific trial based
on the trial data alone. Recently Zhao & Tsiatis
[18] for the first time proposed an asymptotically
consistent estimator for the distribution of QAS
times, applying the method of weighted estimating
equations (see Estimating Functions) according to
Robins & Rotnitzky [13].

One solution that avoids the bias in the estimation
of the distribution of QAS times introduced by the
informative censoring is by a partitioned survival
analysis [7]. This is principally applicable when
QoL states can be defined such that patients may
pass the QoL states only in descending order. In
this application QAS times are not calculated on
an individual basis, but, instead, mean marginal
transition times for each health state are calculated by
integrating over the corresponding survival functions.
If censored observations are present, these means
have to be restricted to some upper limit M < tmax

being the largest censored survival time. In a second
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step, weighted sums of these means are calculated
according to the definition of the individual QAS
times, again using the corresponding weight of each
health state qj . For Q-TWiST this leads to

E(TQ−TWiST) =
∫ M

0
SOS(t) dt − (1 − qTOX)

×
∫ M

0
STOX(t) dt − (1 − qREL)

×
∫ M

0
SREL(t) dt.

Estimates of these restricted means are obtained by
inserting the corresponding product-limit estimators
Ŝj (t) = Pr(Tj > t). Mean QAS times estimated for
different patient groups can be used for univariate
treatment comparisons [9].

In a number of papers Cole et al. [1–3] have
extended the methodology of partitioned survival
analysis to adapt to further models used in survival
analysis. To allow for the inclusion of covariates
additional to treatment Cox’s (proportional hazards)
regression models have been proposed for Q-
TWiST [2]. To overcome some of the limitation of
the restricted means, parametric models have been
proposed to predict Kaplan–Meier estimates beyond
the restriction time M [1]. One of the advantages of
the Q-TWiST methodology is the ability to perform
meta-analyses over different trials without having
used the same QoL questionnaire. The methodology
and an example using data from eight trials of
adjuvant chemotherapy trials in breast cancer is
presented in [3].

If the choice of appropriate weights for the health
states is in doubt, then a threshold utility analysis,
originally called “inverse inference” by Hilden [10],
provides an informative way to display how changes
in the QoL weights qj influence trial results based
on the definition of corresponding QAS times. In the
simple Q-TWiST model of two QoL states, treatment
comparisons are calculated within a particular data
set in dependence of all possible combinations of the
QoL weights (qREL, qTOX). The results of this estima-
tion process may be displayed graphically in a plane
spanned by (qREL, qTOX). A threshold line identifying
those values (qREL, qTOX) that yield treatment equiv-
alence with regard to QAS, as well as areas of sig-
nificant treatment differences, could be highlighted.

It is interesting to note in this context that the
edges of the unit square of (qREL, qTOX) correspond to
the situations usually considered in survival analysis:
for qTOX = 1 and qREL = 1, QAS time reduces to
the overall survival time, for qTOX = 1 and qREL = 0
to disease-free survival time and for qTOX = 0 and
qREL = 0 to TWiST. This allows the conventional
end points of survival analysis to be directly linked
to all theoretically possible QAS times. The major
advantage of a threshold utility analysis is that
it allows individual patients or their physicians to
estimate a preferable treatment according to their
individual choices of weights for the QoL states.

Decisions on an overall treatment superiority
might also be based on an optimality of one treatment
over another for all possible weights, or at least in a
markedly larger area.

Discussion

The subjective assessment of the impact of treatments
on the individual patient using QoL questionnaires is
becoming standard practice in clinical research. The
adequate sampling plan for obtaining QoL data is
that of a classical repeated measurement design (see
Longitudinal Data Analysis, Overview). A suitable
analysis of such data could rely on well-known proce-
dures based on linear or generalized linear models if
mortality or censoring did not occur. However, in the
majority of clinical trials, censored observations will
be inevitable, and mortality usually the primary end
point. Treating QoL measures after disease recurrence
or death as missing data, or assigning it an arbitrary
low value, may lead to uninterpretable results. In this
situation an integration of QoL measurements into
the conventional survival analysis methodology that
accounts for censoring seems sensible.

With the definition and use of QAS times, how-
ever, a number of statistical and conceptual problems
arise. The obvious definition of a QAS time scale for
an individual introduces informative censoring which
prevents a direct adaption of methods of survival
analysis to QAS time. At the moment the availability
of suitable unbiased statistical estimation procedures
is limited.

From a conceptual point of view the use of QAS
times is the subject of much criticism, too. The major
criticism is that this procedure leads to an explicit
equation of qualitatively differing years of survival.
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Assume the four different scenarios of: (i) three
years spent with perfect QoL (qj = 1); (ii) four
years with a moderately impaired QoL (qj = 0.75);
(iii) six years with medium QoL (qj = 0.5); and
(iv) 15 years with severely impaired QoL (qj = 0.2).
Each of these scenarios leads formally to the same
QAS time of three years. Forcing these scenarios of
different life experiences into numerical equivalence
can be regarded as extremely simplifying. Applied
routinely, e.g. for allocating resources in health care
programmes, QAS times may lead to far-reaching
consequences [16] (see Health Services Research,
Overview). It is therefore necessary that any QAS
time analyses should always be accompanied by the
corresponding, conventional survival analyses, and
should not rely on one simple set of QoL weights,
but be subject to additional sensitivity analyses [4].
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Quality of Life

Background

The term quality of life (QoL) has been used in a
wide variety of ways. In the broadest definition, the
quality of our lives is influenced by our physical and
social environment as well as our emotional and exis-
tential reactions to that environment. From a societal
or global perspective, measures of QoL may include
social and environmental indicators, such as whether
there is affordable housing and how many days of
air pollution there are each year in a particular loca-
tion. These are general issues that concern everyone
in a society. Kaplan and Bush [22] proposed the use
of the term health-related quality of life (HRQoL)
to focus on the specific role of health effects on the
individual’s perceptions of well-being, distinguishing
these from job satisfaction and environmental fac-
tors. In the medical literature, the terms QoL and
Health-related quality of life (HRQoL) have become
interchangeable.

Health-related Quality of Life

The World Health Organization (WHO) defined
health in 1948 [38, 39] as a “state of complete phys-
ical, mental, and social well-being and not merely
the absence of infirmity and disease”. This defi-
nition reflects the focus on a broader picture of
health. Wilson and Cleary [37] propose a conceptual
model of the relationships among health outcomes.
There are five levels of outcomes that progress from
biomedical measures to quality of life reflecting the
WHO definition of health. The biological and phys-
iological outcomes include the results of laboratory
tests, radiological scans, and physical examination as
well as diagnoses. Symptom status is defined as “a
patient’s perception of an abnormal physical, emo-
tional, or cognitive state”. Functional status includes
four dimensions: physical, physiological, social, and
role activity. General health perceptions include the
patients’ evaluation of past and current health, their
future outlook, and concerns about health. All these
factors subsequently influence the overall evaluation
of quality of life (see Figure 1).

Although various definitions of HRQoL have been
proposed during the past decade, there is general
agreement that HRQoL is a multidimensional concept

that focuses on the impact of disease and its treatment
on the well-being of an individual. Cella and Bonomi
[2] state

“Health-related quality of life refers to the extent to
which one’s usual or expected physical, emotional
and social well-being are affected by a medical
condition or its treatment.”

We may also include other aspects like economic
and existential well-being. Patrick and Erickson [29]
propose a more inclusive definition that combines
quality and quantity.

“the value assigned to duration of life as modified by
the impairments, functional states, perceptions and
social opportunities that are influenced by disease,
injury, treatment or policy.”

All of these definitions emphasize the subjective
nature of the evaluation of HRQoL, with a focus
on its assessment by the individual. It is important
to note that an individual’s well-being or health
status cannot be directly measured. We are only able
to make inferences from measurable indicators of
symptoms and reported perceptions.

Often the term quality of life is used when any
patient-reported outcome is measured. This has led
to both confusion and controversy. Side effects and
symptoms are not equivalent to HRQoL, although
clearly they influence an individual’s evaluation of
quality of life. While symptoms are often part of the
assessment of HRQoL, solely assessing symptoms
is a simple, convenient way of avoiding the more
complex task of assessing HRQoL.

Measuring Health-related Quality of Life

Guyatt et al. [19] define an instrument to include the
questionnaire, the method of administration, instruc-
tions for administration, the method of scoring and
analysis, and interpretation for a health status mea-
sure. All these aspects are important when evaluating
a measure of HRQoL.

Health Status versus Patient Preferences

There are two general types of HRQoL measures,
health status assessment, and patient preference
assessment [33, 40]. The development of these
two forms is a result of the differences between
the perspectives of two different disciplines:
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psychometrics and econometrics. In the health status
assessment measures, multiple aspects of the patient’s
perceived well-being are self-assessed and a score is
derived from the responses on a series of questions.
This score reflects the patient’s relative HRQoL
compared with other patients and to the HRQoL
of the same patient at other times. These measures
are primarily designed to compare groups of patients
receiving different treatments or to identify change
over time within groups of patients. As a result,
these measures have been used in clinical trials to
facilitate the comparisons of therapeutic regimens.
The assessments range from a single global question
asking patients to rate their current quality of life
to a series of questions about specific aspects of their
daily life during a recent period of time. Among these
health status measures, there is considerable range
in the context of the questions with some measures
focusing more on the perceived impact of the disease
and therapy (How much are you bothered by hair
loss?), other measures focusing on the frequency and
severity of symptoms (How often do you experience
pain?), and still others assessing general status (How
would you rate your quality of life?).

Measures in the second group, patient preferences,
are influenced strongly by the concept of utility (see
Utility in Health Studies) borrowed from economet-
rics, which reflects individual decision making under
uncertainty. These preference assessment measures
are primarily used to evaluate the trade-off between
the quality and quantity of life. Values of utilities
are always between 0 and 1 with 0 generally associ-
ated with death and 1 with perfect health. Examples
include time trade offs [24], standard gamble [32],
and multiattribute assessment measures [5, 10]. Time
trade-off utilities are measured by asking respon-
dents how much of the time they expect to spend in
their current state would they give up for a reduced
period of time in perfect health. If, for example, a
patient responded that he would trade five years in his
current state for four years in perfect health (trading
one year), the resulting utility is 0.8. Standard gam-
ble utilities are measured by asking respondents to
identify the point at which they become indifferent

to the choices between two hypothetical situations.
Suppose a patient is presented with two treatment
alternatives, one option is a radical surgical procedure
with no chance of relapse but significant impact on
HRQoL and the other option is watchful waiting, with
a chance of progressive disease and death. The chance
of progressive disease and death is raised or low-
ered until the respondent considers the two options
to be equivalent. Assessment of time trade-off and
standard gamble utilities requires the presence of a
trained interviewer or specialized computer program.
Because of these resource needs, these approaches are
generally too time- and resource-intensive to use in
a large clinical trial. Multiattribute assessment mea-
sures combine the advantages of self-assessment with
the conceptual advantages of utility scores. Their
use is limited by the need to develop and validate
the methods by which the multiattribute assessment
scores are converted to utility scores for each of the
possible health states defined by the multiattribute
assessments. For example, the EuroQoL scale, also
known as the EQ-5D, is a standardized non–disease-
specific instrument for describing and evaluating
HRQoL [3]. The EQ-5D covers five dimensions of
health: mobility, self-care, role (or main) activity,
family and leisure activities, pain and mood. Within
each dimension, the respondent chooses one of three
items that best describes his or her status. Weights are
used in scoring the responses, reducing the 243 (35)
possible health states to a single utility score. Util-
ities have traditionally been used in the calculation
of quality-adjusted life years (QALYs) for economic
evaluation (cost-effectiveness) and policy research as
well as in analytic approaches such as Q-TwiST [14,
15]. It is important to note that the utility one gives
to a hypothetical situation has been seen to vary from
what the individual gives when the situation is real;
results of any analysis should be interpreted carefully
from that perspective.

Objective versus Subjective

Health status measures differ among themselves in
the extent to which they assess observable phenomena
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or require the respondent to make inferences. These
measures may assess symptoms or functional bench-
marks wherein individuals are asked about the fre-
quency and severity of symptoms or whether they
can perform certain tasks such as walking a mile. The
measures may also, or instead, assess the impact of
symptoms or conditions by asking individuals how
much the symptoms bother them or interfere with
their usual activities. Many instruments provide a
combination. The value of each will depend on the
research objectives: Is the focus to identify the inter-
vention with the least severity of symptoms or to
assess the impact of the disease and its treatment?

There has been considerable discussion of whether
subjective assessments are less valid and reliable
than objective measures. This misconception is gen-
erally based on the observation that patient ratings
do not always agree with ratings of trained profes-
sionals. If we take the ratings of these professionals
as constituting the gold standard, we are ignoring
the valuable information of how the patient views
his or her health and quality of life, especially the
aspects of emotional and social functioning. There
is measurement error in both subjective and objec-
tive assessments; neither is necessarily more accurate
or precise in all circumstances. Most widely used
measures of HRQoL are the product of careful devel-
opment resulting in a measure that is highly reliable,
sensitive to change with good predictive validity and
minimal measurement error. In contrast, some of the
biomedical endpoints that we consider objective can
include a demonstrably high degree of measurement
error (e.g. blood pressure), misclassification among
experts, or have poor predictive and prognostic valid-
ity (e.g. pulmonary function tests) [36].

Generic versus Disease-specific Instruments

There are two basic types of health status measures –
generic and disease-specific. The generic instrument
is designed to assess HRQoL in individuals with and
without active disease, and across disease types (e.g.
heart disease, diabetes, depression, cancer). The Med-
ical Outcomes Study Short Form (MOS SF-36) is
an example of a generic instrument [35]. The broad
item content of a generic instrument is an advantage
when comparing vastly different groups of subjects or
following subjects for extended periods after treat-
ment has ended. Disease-specific instruments nar-
row the scope of assessment and address in a more

detailed manner, the impact of a particular disease
or treatment (e.g. joint pain and stiffness in patients
with arthritis or treatment toxicities in patients with
cancer) [12]. As a result, they may be more sensitive
to smaller, but clinically significant changes induced
by treatment [28].

Global Index versus Profile of Domain-specific
Measures

HRQoL measures come in a variety of forms reflect-
ing their intended use. The major distinction is
between an index and a profile. Profiles consist of
multiple scales that reflect the multiple dimensions
of QoL such as the physical, emotional, functional,
and social well-being of patients. In most instru-
ments, each scale is constructed from the responses
to multiple questions (often referred to as items).
Two methods of construction are used for the cre-
ation of indices. In the first, a single question is used
to assess the subject’s assessment of quality of life.
In the latter, developers provide methods to combine
responses to multiple questions to provide a single
index of QoL.

The advantage of the single index is that it pro-
vides a straightforward approach to decision making,
which may be required in settings such as clinical
trials where QoL is the primary outcome. Indices
that are in the form of utilities are used in cost-
effectiveness analyses performed in pharmacoeco-
nomic research. On the other hand, a profile of the
various domains reflects the multidimensional char-
acter of quality of life [1]. There are limitations that
should be considered when using either approach.
First, there is always a set of “values” being imposed
when an index is constructed. These values may come
from each individual’s concept of what is meant by
quality of life when a single question is asked, or the
values that a developer assigns to the construction of
the index. The values may be as arbitrary as the num-
ber of questions that are used to assess each domain,
or statistically derived to maximize discrimination
among different groups of patients. It is impossi-
ble to construct an index that aggregates the multiple
dimensions of HRQoL that will be suitable in all con-
texts. The important point is that one should be aware
of the weights (values) that are placed on the different
domains in the interpretation of the results. A single
index measuring HRQoL cannot capture changes in
individual domains. For example, a particular inter-
vention may produce benefits in one dimension and
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deficits in another that cancel each other and are thus
not observed in the aggregated score.

Response Format

Questionnaires may also differ in their response for-
mat. The most widely used format is the Likert
scale, which contains a limited number of ordered
responses that have a descriptive label associated
with each level. Variations include scales in which
only the extremes are anchored with a descriptive
label. Individuals can discriminate at most seven to
ten ordered categories [25, 31] and reliability and sen-
sitivity to change drops off at five or fewer levels.

Dichotomous response formats and visual analog
scales (VAS) (see Pain) are also used. The VAS con-
sists of a line, generally 10 cm in length, with descrip-
tive anchors at each end of the line. The respondent
is instructed to place a mark on the line. The original
motivation of the VAS was that the continuous mea-
sure could potentially discriminate more effectively
than a Likert scale; this has not generally been true
in most validation studies where both formats have
been used. The VAS format has several limitations.
It requires a level of eye–hand coordination that may
be unrealistic for anyone with a neurological condi-
tion, those experiencing numbness and tingling side
effects of chemotherapy, and for the elderly. VAS pre-
cludes telephone assessment and interview formats.
Finally, it requires an additional data management
step in which the position of the mark is measured. If
forms are copied rather than printed, the full length
of the line may vary, requiring two measurements
and additional calculations. A compromise format is
a numerical analog where patients provide a number
between 0 and 100 (see Table 1).

Period of Recall

QoL scales often request individuals to base their
evaluation over a specified period, such as the last
seven days or the last four weeks. The time frame
must be short enough to detect differences between
treatments and long enough to minimize short-
term fluctuations (noise) that do not represent real
change [26]. In addition, the reliability with which
individuals can rate aspects of their QoL beyond
several weeks must be called into question. Scales
specific to diseases or treatments where there can
be rapid changes will have a shorter recall duration,
whereas instruments designed for assessment of
general populations will often have a longer recall
duration. Longer time frames may also be appropriate
when assessments are widely spaced (e.g. annually).

Scoring

The majority of HRQoL scales that are derived from
a series of questions with a Likert response format
are scored by summing or averaging the responses
after reverse coding negatively worded questions.
There are more complicated weighting schemes based
on factor analytic weights; item response or Rasch
models are rare but may become more common in
computer assisted testing. To facilitate interpreta-
tion, there has been an increasing tendency to rescale
this result so that the possible range of responses is
0 to 100 with 100 reflecting the best possible out-
come. Most instruments also have an explicit strategy
for scoring in the presence of missing responses
to a small proportion of questions. The most com-
mon method is to impute the missing response using
the average of the other responses in the specific
subscale when at least half of the questions have
been answered.

Table 1 Example of a Likert and visual analog scale

Likert Scale

Not at all Slightly Moderately Quite a bit Greatly

How bothered were you? 0 1 2 3 4

Visual analog scale

How bothered were you? |- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
Not at all Greatly



Quality of Life 5

In contrast, utilities are always on a 0 to 1 scale.
Scoring depends on the method used to elicit the pref-
erences. Scores derived from multiattribute assess-
ment are instrument specific.

Development and Validation of HRQoL
Measures

Development

The effort and technical expertise required to develop
a new instrument is generally underestimated,
with most efforts taking three to five years (or
more) rather than the couple of weeks initially
expected. Researchers contemplating this step should
research the existing instruments as well as the
various methodologies for instrument development
and validation including traditional psychometric
theory and item response theory. To fully develop
an instrument from the beginning requires multiple
studies, hundreds of observations, years of testing and
refinement.

Validation

There are numerous procedures for establishing the
psychometric properties of an instrument. For a for-
mal presentation, the reader is referred to one of
the many available books. A partial list specific to
HRQoL includes Streiner and Norman [31], McDow-
ell and Newell [23], Juniper et al. [21] and Naughton
et al. [27], Frank-Stromborg and Olsen [11], Staquet,
Hays, and Fayers [30] and Fayers and Machin [9].

The validity of a measure in a particular setting
is the most important and the most difficult aspect
to establish. This is primarily because HRQoL is
an unobservable latent variable (see Path Analysis)
and there are no gold standards against which the
empirical measures of validity can be compared.
Nonetheless, we can learn a good deal about an
instrument by examining the instrument itself and
the empirical information that has been collected.
For example, we can demonstrate that the measure
behaves in a manner that is consistent with what we
would expect and correlates with observable things
that are believed to be related to HRQoL.

Face validity refers to the content of an instru-
ment: Does the instrument measure what it proposes
to measure? and Are the questions comprehensible

and without ambiguity? The analogy is whether an
archer has chosen the intended target. The wording
of the questions should be examined to establish
whether the content of the questions is relevant to the
population of interest. Although experts (physicians,
nurses) may make this evaluation, it is advisable to
verify the face validity with patients as they may
have a different perspective. Criterion validity is the
strength of a relationship between the scale and a gold
standard measure of the same construct. As there is
no gold standard for the dimensions of quality of
life, we rely on the demonstration of construct valid-
ity. This is the evidence that the instrument behaves
as expected and shows similar relationships (conver-
gent validity) and the lack of relationships (divergent
validity) with other reliable measures for related and
unrelated characteristics (see Health Status Instru-
ments, Measurement Properties of). Confirmatory
factor analysis structural equation modeling is one
of the statistical methods used to support the con-
struct validity or proposed structure (subscales) of an
instrument. Application may be used to confirm that
a scale is unidimensional. Results from exploratory
factor analysis (see Exploratory Data Analysis) in
selected populations should be interpreted cautiously
especially when the sample is homogeneous with
respect to stage of disease or treatment [8].

The next question is: Would a subject give the
same response at another time, if they were expe-
riencing the same HRQoL? This is referred to as
test–retest reliability (see Agreement, Measure-
ment of). If there is a lot of variation (noise) in
responses for subjects experiencing the same level of
HRQoL, then it is difficult to discriminate between
subjects who are experiencing different levels of
HRQoL or change in HRQoL over time. This is
generally measured using Pearson or intraclass cor-
relations when the data consists of two assessments.
Finally, we ask: Does the instrument discriminate
among subjects who are experiencing different levels
of HRQoL? and Is the instrument sensitive to changes
that are considered important to the patient? These
characteristics are referred to as discriminant validity
and responsiveness. Reliability can be characterized
using the analogy of the archer’s ability to hit the
same target repeatedly with consistency. Internal con-
sistency (see Validity and Generalizability in Epi-
demiologic Studies) refers to the extent to which
items in the same scale (or subscale) are interrelated;
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specifically the extent to which responses on a spe-
cific item increase as the responses to other items
on the scale increase. Cronbach’s coefficient α is
typically reported. For the assessment of group dif-
ferences, values above 0.7 are generally regarded as
acceptable though values above 0.8 (good) are often
recommended. For assessment of individual patients
in clinical practice, it is recommended that the value
should be above 0.9.

Responsiveness is the ability of a measure to detect
changes that occur as the result of an intervention
[16, 17]. Here the analogy is whether the archer can
respond to change and hit various areas on the target
consistently. One factor that can affect responsiveness
is a floor or ceiling effect. If responses are clustered
at either end of the scale, it may not be possible to
detect change due to the intervention.

Translation/Cross-cultural Validation

When HRQoL is measured in diverse populations,
attention needs to be paid to the methods of trans-
lation and cross-cultural validation. Backward and
forward translations must be performed using the
appropriate native language at each step. There are
numerous examples where investigators have found
problems with certain questions as questionnaires
are validated in different languages and cultures.
Techniques such as cognitive testing, with subjects
describing verbally what they are thinking as they
form their responses, have been very valuable when
adapting a questionnaire to a new language or cul-
ture. This should be followed by formal validation
studies designed to generate both standard reliabil-
ity and validity statistics. Item response theory (IRT)
methods (see Rasch Models) and Rasch models have
facilitated the examination of differential item func-
tioning across cultures or languages.

Item Banking and Computer-adaptive Testing

There has been considerable effort over the last
decade to develop item banks, large databases of
responses to individual questions from multiple ques-
tionnaires. One objective of this effort is to establish
a method of translating results obtained on one scale
to another scale. The second application, referred to
as computer-adaptive testing, is an attempt to reduce
the subject burden during testing by selectively pre-
senting questions that will best discriminate in the

range of function of that subject. Specifically, if an
individual’s response to the first question indicates
a high level of functioning, that individual will not
be presented with questions designed to discriminate
among individuals with low levels of functioning. In
both cases, IRT methods play a predominant role.

Use in Research Studies

“Implicit in the use of measures of HRQoL, in clini-
cal trials and in effectiveness research, is the concept
that clinical interventions such as pharmacologic
therapies, can affect parameters such as physical
function, social function, or mental health.” [37]

All principles of good design and analysis are appli-
cable, but there are additional requirements specific
to HRQoL. These include selection of an appropriate
measure of HRQoL and the conduct of an assess-
ment to minimize any bias. The HRQoL instruments
should be selected carefully, ensuring that they are
appropriate to the research question and the popu-
lation under study. New instruments and questions
should be considered only if all other options have
been eliminated. Among the most common statistical
problems are multiple endpoints and missing data.

Instrument Selection

Ware et al. [34] suggest two general principles to
guide the selection of instruments to discriminate
among subjects or detect change in the target pop-
ulation. “When studying general populations, con-
sider using positively defined measures. Only some
15% of general population samples will have chronic
physical limitations and some 10 to 20% will have
substantial psychiatric impairment. Relying on nega-
tive definitions of health tells little or nothing about
the health of the remaining 70 to 80% of general
populations. By contrast, when studying severely ill
populations, the best strategy may be to emphasize
measures of the negative end of the health status con-
tinuum.”

In cases where the population is experiencing peri-
ods of health and illness, very careful attention must
be paid to the selection of the instrument balanc-
ing the ability to discriminate among subjects during
different phases of their disease and treatment with
appropriateness over the length of the study. One can-
not assume that a questionnaire that works well in
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one setting will work well in all settings. For exam-
ple, questions about the ability to perform the tasks of
daily living, which make sense to individuals who are
living in their own homes, may be confusing when
administered to a patient who has been in the hospi-
tal for the past week or is terminally ill and receiving
hospice care. Similarly, questions about the amount
of time spent in bed provide excellent discrimination
among ambulatory subjects, but not among hospital-
ized patients.

There is a temptation to pick an HRQoL instru-
ment, become familiar with it, and use it in all
circumstances. Flexibility must be maintained in the
choice of instrument to target the specific research or
clinical setting, the specific population, the challenges
associated with administration, and the problem of
respondent burden.

Multiple Endpoints

Because QoL is a multidimensional concept that is
generally measured using several scales that assess
functional, physical, social, and emotional well-being,
there are multiple endpoints associated with most
QoL evaluations. Longitudinal data arise in most
HRQoL investigations because we are interested in
how a disease or an intervention affects an individ-
ual’s well-being over time. Because of the multidi-
mensional nature of HRQoL and repeated assess-
ments over time, research objectives need to be
explicitly specified and an analytic strategy devel-
oped for handling multiple endpoints. Although ade-
quate for univariate outcomes such as survival, state-
ments such as “To compare the quality-of-life of
subjects on treatments A and B” are insufficient;
details should include domains, population, and the
time frame relevant to the research questions. Strate-
gies addressing the multiplicity of endpoints include
limiting confirmatory analyses, construction of sum-
mary measures/statistics [6] and multiple compari-
son procedures. Examples of summary measures that
reduce multiplicity over time include area-under-the-
curve (AUC) and average rates of change (slope);
their interpretation is straightforward. Construction
of these measures is complicated by the presence of
missing data. QoL indices are used to reduce the mul-
tiplicity across domains.

Missing Data

Although analytic strategies exist for missing data,
their use is much less satisfactory than initial preven-
tion. Some missing data, such as that due to death,
is not preventable; however, missing data should be
minimized at both the design and implementation
stages of a clinical trial [7, 26, 41].

The protocol and training materials should include
specific procedures to minimize missing data. A prac-
tical schedule with HRQoL assessments linked to
planned treatment or follow-up visits can decrease
the number of missing HRQoL assessments. When
possible, it is wise to link HRQoL assessments with
other clinical assessments.

Interpretation/Clinical Significance

All new measures take time to become useful to
clinicians or patients. This process requires that we
define ranges of values that have clinical implica-
tions. When measures such as hemoglobin and blood
pressure were first used, there was a period dur-
ing which normal ranges were established; once the
ranges were available, the readings became clinically
useful. Nor are the rules that have been developed
simple, since the benefits/risks of a change in either
measure depends on where the individual started, age,
gender, and current condition or lifestyle (pregnancy
or about to run a marathon). Interpretation of mea-
sures of QoL is similarly complex.

Clinical significance has various meanings depend-
ing on the setting. When a treatment decision is
required, there is an implied ordering of information
into categories (often dichotomous) that correspond
to various decisions. For example, one might con-
sider a patient’s current hemoglobin as well as gender
and clinical history when making a decision to treat,
monitor closely, or do nothing. In contrast, when the
situation calls for evaluation of effectiveness of an
intervention based on the information from a random-
ized clinical trial, the decision is generally based on
continuous or ordered information such as grams/dL
of hemoglobin. Thus, meaningful differences/changes
in QoL measures will depend on whether a decision
is being made for an individual or for a group of
individuals. There are two general strategies used
to define the clinical significance of QoL scores,
distribution-based and anchor-based methods. There
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is no single approach that is appropriate to all settings
and none of the methods is without some limitations.

Distributional Methods

One general approach is based on the distribution of
scores expressed as the relationship (ratio) between
the magnitude of an effect and a measure of variabil-
ity [3, 18]. The magnitude of the effect may be either
the difference between two groups or the change
within a group. Measures of variability include the
standard deviation of a reference group, the stan-
dard deviation of change, and the standard error
of measurement. A distributional method was used
by Cohen [4] in his criteria for meaningful effect
or “effect size” (see Outcome Measures in Clinical
Trials) in psychosocial research. The major advan-
tage is that values are relatively easy to generate from
validation studies or clinical trials. There are a num-
ber of limitations. Many clinicians are unfamiliar with
“effect size” and skeptical about defining meaningful
differences solely on the basis of distributions. These
values are generally applicable to groups. Measures
of variability can differ across studies being affected
by the selection criteria, which can influence the het-
erogeneity of the sample. Finally, one still needs to
make a decision about the size of the effect that is
relevant in any particular setting, requiring a value
judgment of risks and benefits.

Anchor-based Methods

Anchor-based methods are based on the relationship
between scores on the QoL measure and an inde-
pendent measure or anchor. Examples of anchors
are the patient’s rating of health, disease status, and
treatments with known efficacy. The anchor must
be interpretable and there needs to be an apprecia-
ble association of the anchor with QoL. Within this
group of methods, there are numerous approaches,
none of which fits all needs. One concern is that the
motivation for QoL measurement is to move beyond
traditional clinical endpoints, but we appear to be
using these same clinical endpoints to “justify” and
interpret QoL measures.

One approach is to classify subjects into groups
based on the anchor, and estimate differences in
the QoL measures. For example, one might form
three groups based on function corresponding to no,
moderate, or severe limitations and observe average

scores of 80, 70, and 50 respectively. The mirror
image of that approach is to classify subjects using
QoL measures and describe the outcomes in terms
of either an external or internal anchor. In the first
case, one might observe that a group of patients
with a mean score of 80 experience 5% mortality,
while another group of patients with a score of 60
experience 20% mortality. In the latter case, one
might observe that 32% of those who score 50 on
the SF-36 physical function scale can walk a block
without difficulty, in contrast to 50% who score 60.

Another approach is to elicit a value, a mini-
mum important difference (MID) from clinicians or
patients; that is, the smallest difference in the scores
that is perceived as important, either beneficial or
harmful, and which would lead the clinician to con-
sider a change in the patient’s management [20].
Within-patient transitions are yet another approach
that has been used. Individuals are asked to judge,
during a specified time, whether they have improved,
not changed, or gotten worse. The corresponding
changes in QoL scores are then summarized within
each group. The advantage of this approach is that
it is easy to assess and appears simple to interpret.
However, there is an accumulation of evidence that
the retrospective assessment reflects the subject’s cur-
rent QoL rather than the change.

Conclusions

In the health sciences, QoL assessment is now an inte-
gral component of patient-focused research. Given
the increasing complexity of health care, the extent
of chronic illness, and the variety of therapies that
generally do not improve survival but often only
decrease morbidity, measurement of HRQoL out-
comes provides an additional evaluation of treat-
ment benefit. These developments have occurred in
the latter half of the twentieth century, a period
in which individual preferences and autonomy have
been increasingly valued in many societies, espe-
cially in Europe and North America. In parallel, reli-
able and valid measurement strategies have evolved
from social science research to make it possible to
quantify subjective assessments of health status and
QoL. Further, advances in statistical methodology
have been integrated into research designs, making it
possible to interpret these assessments in a variety of
research and clinical settings. A major aspect of this
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work has been to bridge the gap between psychomet-
ric/statistical theory and the language and realities of
clinical practice. There are many who remain skepti-
cal about the contributions of QoL assessments to
treatment decisions and health care policies; how-
ever, the more these measurements are integrated into
research, the greater the likelihood that the outcomes
that matter to patients will ultimately be incorpo-
rated into medical care [13]. Many of the studies
that have failed to detect changes have suffered from
nonignorable missing data and the use of inappro-
priate analytic methods. Therefore, statisticians have
an important role to play in the design and analy-
sis of studies with QoL outcomes, if the studies are
to produce interpretable results. In this article, we
have provided a perspective on where we are in QoL
assessment, as well as an honest evaluation of some
of the limitations of this methodology. Much addi-
tional work needs to be done, and fortunately there is
considerable international interest in addressing the
challenges of this young measurement science.
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Quantal Response Models

In 1981 a new group of anti-parasite drugs, called
avermectins, was successfully introduced to treat
internal parasites in cattle. However, the drugs remain
in low concentrations in the cattle dung, and there was
concern that this would also kill the organisms that
degrade the dung. The type of experiment needed to
investigate this is a quantal response experiment: a
particular organism was selected – the common yel-
low dung fly – and exposed in groups to different
concentrations of the drug for a fixed time. The result
of such an experiment is then a set of proportions
of the kind displayed (for a different example) in
Figure 1.

Quantal response data arise in many studies. If
one is interested in an effect on human beings, such
as a possible carcinogenic response, then typically the
substance investigated would be applied to an alter-
native animal, in the hope that the conclusions there
could be extrapolated to different animals of inter-
est. Care is needed in the selection of appropriate
animal models. Quantal data also occur in industrial
reliability testing, and from observational studies, an
example of which is shown in Figure 1. The response
of interest here is the onset of menarche in young
girls, grouped into a range of different age-bands.
It is obviously far easier to design an experimental
study than an observational study. Experiments need
to be tailored to the type of organism involved, and
can be limited by considerations of space, time, and
expense – an experiment on insects would be con-
ducted in a very different way from one on large
mammals.

The quantal response experiment has obvious sim-
ilarities with a standard regression setup, but the
response variable at each dose/age-group, etc. is
now discrete (see Binary Data). Frequently it can
be assumed that individuals respond independently,
both within and between the different dose levels,
etc. resulting in a likelihood function which is a
product of binomial probabilities. There are many
variations on the simple quantal response experi-
ment described here, and we examine several of
these later. For instance, a response may be dis-
crete but not binary, as when fetuses are classi-
fied as dead, alive, or deformed; animals may not
respond independently, which could occur if they are

Figure 1 For each of a sample of 3918 Warsaw girls,
taken in 1963, it was recorded in [29] whether or not
they had reached menarche (started menstruating). The girls
were divided into groups according to age, and plotted are
the proportions in each group that had reached menarche
v. mean age of group. The fitted curve results from a logit
model, fitted by maximum likelihood

housed in the same cage, or come from the same lit-
ter; doses administered may differ from the nominal
level, as could arise when the substance is admin-
istered through food or in the field; organisms may
respond “naturally” – for example handling mortal-
ity can be high in insect experiments, but negligible
in studies of large animals; we may be interested
in response over time as well as with respect to
dose.

The routine testing of new substances for good
behavior as potential new drugs to market regularly
produces a sequence of quantal response experiments.
Frequently a wide range of doses is then used, as
response is usually uncertain before the experiment
is conducted. However, although each experiment
may be treated on its own, there is often an element
of comparison involved, as when a new substance
is a minor modification of an earlier one. Quantal
response studies may be conducted explicitly in order
to make a comparison, e.g. to investigate whether
a rural environment results in an overall delay in
onset of menarche, when compared with an urban
environment (it does), or whether smoking advances
the age of menopause (it does). To describe a set
of quantal response data, or to make a comparison
between two or more such sets of data, it is useful to
think in terms of a simple summary of experiments.
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The dung fly experiment mentioned above was thus
described in the British newspaper The Independent
(on September 23, 1996) as follows:

. . . half of the larvae of the common yellow dung fly
died when exposed to just 0.05 parts of Ivermectin
[the most effective avermectin] per million. Lower
concentrations caused major disruption to the fly’s
life-cycle. Cattle dung from bolus-administered cat-
tle contains 10 times this concentration of the drug.

The ED50 or median effective dose is the dose level
that results in an expected 50% response under certain
underlying model assumptions, and is the summary
that has been used in the above newspaper article.
In some applications, such as studies of the toxic
effects of food additives, or in the evaluation of
insecticides, other values such as ED10−6 , or ED99

would, respectively, be more appropriate summaries.

Notation and the Spearman–Kärber
Estimate

We assume that k doses are tested, that there are ni

individuals exposed to the ith dose, and ri of those
individuals respond.

Independence assumptions result in the likelihood

L =
k∏

i=1

(
ni

ri

)
P

ri

i (1 − Pi)
ni−ri , (1)

where Pi is the probability of response at the ith
dose. In most cases, response increases as the dose
level increases, and Pi is modeled by means of
a cumulative distribution function, Pi = F(di) (see
Random Variable). This model is sometimes given
a threshold or tolerance interpretation, as follows:
any individual is assumed to have its own dose
tolerance threshold, T , responding to dose d if and
only if d ≥ T . Thus if T is distributed throughout
the population of individuals as a random variable
with cumulative distribution function F(t), then the
probability that any individual responds at dose d is
simply

Pr(T ≤ d) = F(d).

There are various situations where this interpretation
is not appropriate, e.g. in situations where a response
can result from infection by a single virus particle
(see Infectivity Titration). However, the threshold
model is often useful, and we see an example of

this later when we discuss models for multivariate
response.

The ED50 is now seen to be the median of F(·),
and also its mean if F(·) is a symmetric function
about the mean. A very simple estimate of the ED50

results if we make this symmetry assumption and if
also the dose range has been chosen wide enough
that r1 = 0 and rk = nk . This is known as the Spear-
man–Kärber estimate of the ED50, which takes its
simplest form when the doses are equally spaced by
an amount ∆, namely,

ÊD50 = dk + ∆

2
− ∆

k∑

i=1

(
ri

ni

)
. (2)

For the case of ni ≥ 2 for all i, an unbiased estimate
of var(ÊD50) is then given by

k−1∑

j=2

rj (nj − rj )∆
2

n2
j (nj − 1)

. (3)

Extension and elaborations are described in [32].
It is convenient to possess an explicit estimate of

the variance of a key quantity of interest. Experimen-
tal resources are usually limited by considerations
not only of cost, space, and time, but also of limit-
ing animal suffering and mortality. Experiments may
then be designed in order to try to minimize the vari-
ance in the context of a fixed total number,

∑k
i=1 ni ,

of animals. We discuss experimental design in more
detail below. The Spearman–Kärber estimate can be
made more robust by a small amount of suitable
trimming, such as 5%; see [18] and [32]. The Spear-
man–Kärber approach is nonparametric, because it
makes no assumptions about the form of the func-
tion F(·), other than the assumption of symmetry.
Much more complex nonparametric methods now
exist – see, for example, [22] for a method based
on density estimation. We now consider paramet-
ric methods which historically came later than the
Spearman–Kärber estimate of the ED50. Paramet-
ric methods can make strong assumptions regard-
ing the form of F(·) and this can in turn result
in large increases in the precision with which, for
example, the ED50 is estimated. This is graphically
demonstrated in [16]. The advantage of a parametric
approach is the flexibility with which departures from
standard experimental procedures can be accommo-
dated.
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Models

Parametric models for quantal response data involve
assuming a form for F(·). The simplest models
involve the location and scale pair of parameters
(α, β), usually through either F(α + βd) or F(α +
β log d). The latter form is useful if a wide dose-range
has been adopted, as discussed above, in facilitating
comparisons, or when natural mortality is present, as
we shall discuss below. Historically the normal cumu-
lative distribution function was assumed for F(·),
resulting in probit analysis. Only the largest of data
sets, and Figure 1 provides a rare example of this, per-
mit discrimination between probit analysis and logit
analysis, which is based upon

P(d) = 1

1 + exp[−(α + βd)]
, (4)

or the same form using log(d), if appropriate. Logit
analysis is the simplest example of logistic regres-
sion. It is usually now adopted in preference to probit
analysis, but an interesting exception arises when
dose levels are subject to error (as when the sub-
stance is administered through food which may only
be partly eaten) – see [40]. In that case the probit
model is computationally easier to handle than the
logit model. The opposite is usually the case, owing
to the normal cumulative distribution function lack-
ing an explicit algebraic form. Both logit and probit
models are simple examples of a generalized linear
model.

Under probit and logit models, the likelihood is
a function of α and β, and maximum likelihood
estimates follow from routine numerical optimiza-
tion, as explicit maximum likelihood estimates do
not exist (see Optimization and Nonlinear Equa-
tions). This is easily accomplished using computers;
computational aspects will be discussed below. When
the model is parameterized in terms of α and β, the
maximum likelihood estimate of the ED50, when F(·)
is symmetric, is given by −α̂/β̂, and an estimate of
its standard error is easily obtained using the delta
method – see [6]. Alternatively, the model may be
parameterized in terms of F [β(θ − d)], thereby pro-
viding a direct estimate of the ED50, θ , and of its
standard error.

The model fitted to the data illustrated in Figure
1 is the logit model, with maximum likelihood esti-
mates of parameters. In this case the poor fit to the

data in the tails is improved by switching to a pro-
bit model – the main difference between the two
models is in the tail behavior. A simple graphical
guide to the appropriateness of a model can be obtain
from plotting F−1(ri/ni) against di , and checking
for departures from linearity. The resulting ordinates
for the logit and probit models, respectively, involve
logits and probits. A wide range of more complex
models have been studied to improve the fit of mod-
els to data, with particular reference to tail behavior.
See, for example, [3, 43, 12], and [31].

One example of such a complex model has

P(d) =





1 − [1 + λ exp(α + βd)]−1/λ,

for λ exp(α + βd) > −1,

0, otherwise.

(5)

The additional parameter, λ, provides a function with
a more flexible shape. When λ = 1, this is simply the
logit model, while if λ �= 1, then the model has an
asymmetric tolerance distribution. A likelihood ratio
test, or a score test (see Likelihood) could be used
to examine whether, for a particular data set, it was
necessary to take λ �= 1. In the limit as λ → 0, the
model becomes the complementary log–log model.

A simple way of modeling “natural” mortality
or response also involves adding a parameter to the
model, resulting in Abbott’s formula:

P(d) = λ + (1 − λ)F (α + β log(d)). (6)

Here λ is the probability of natural response. Control
groups, which receive no dose, are often included as
standard experimental procedure. Several papers have
considered how historical controls, providing control
response information from previous experiments, can
be included in a current analysis; see, for example,
[41] and [26].

Extensions

Making Comparisons

Assume tests of two substances result in the two fitted
models

Pr (response to dose dj )

= 1

[1 + exp[−(αi + βi log dj )]
, for i = 1, 2.

(7)
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Frequently we might expect parallelism (see
Parallel-line Assay), which corresponds to β1 = β2,
and be interested in a measure to represent the
difference between the two substances. In this case
the ratio d1/d2, of equally effective doses, may be
used. It is called the relative potency. When both
models produce the same probability of response at
respective doses of d1 and d2 say, then

α1 + β log d1 = α2 + β log d2, (8)

resulting in a constant value of the relative potency.
This approach was used in [19] to demonstrate

an advancement of the age of menopause by 1.23
years due to smoking. In that case the logarithmic
transformation was not used.

Mixtures of Drugs

As in certain treatments of AIDS, “cocktails” of drugs
are sometimes found to perform especially well, in
excess of expectations based on the separate perfor-
mance of the components of the cocktails. The drugs
are then said to exhibit synergy, the opposite effect
to this being termed antagonism. A large literature
exists on models for responses to drugs presented in
combination – see, for example, [4] and [1] (see Syn-
ergy of Exposure Effects). An attractive application
for quantal responses is described in [15].

Wadley’s Problem

If the response variable has a Poisson distribution
rather than a binomial distribution, then the resulting
experiment is called Wadley’s problem. It provides
another example of a generalized linear model.

Polytomous Responses

When there are three responses, rather than two, at the
ith dose there are probabilities (Pi1, Pi2, Pi3), with

3∑

k=1

Pik = 1.

If ni individuals result in respective responses
(ri1, ri2, ri3), then the data follow a trinomial
distribution:

Pr(ri1, ri2, ri3|ni) = ni!

ri1!ri2!ri3!
P

ri1
i1 P

ri2
i2 P

ri3
i3 . (9)

In the case of a logit model we would then write

Pi1 = {1 + exp[−(α1 + βdi)]}−1

1 − Pi3 = Pi1 + Pi2

= {1 + exp[−(α2 + βdi)]}−1,

with α1 < α2. (10)

The table of data is an example of a contingency
table with ordered categorical responses. Once
again, maximum likelihood estimation requires
numerical iteration. This is a particular instance of
the general framework established for the analysis of
such data by McCullagh [27]. Simpler descriptions
of data in contingency tables with ordered categories
are provided by ridits [10, 48] or by rankits, if
the categories can be ranked [24] (see Polytomous
Data).

Multivariate Responses

In contrast, multivariate responses correspond to
a single individual being classified in more than
one way. An interesting example of multivariate
response is provided by Ashford & Sowden [5], in
which working coalminers are classified according to
whether they are breathless or not and whether they
wheeze or not. The model proposed for these data was
a simple bivariate extension of the simple threshold
model.

Bayesian Analysis

In a standard probit or logit analysis, we might have
prior information relating to the pair of parameters,
(α, β). This may have been obtained indirectly via
prior opinions of the likely response levels to particu-
lar doses. It is shown in [39] how a classical Bayesian
analysis can be carried out, and which would, for
example, result in a posterior distribution for an ED50.
Toxicity classes – corresponding to ED50s lying in
particular intervals – can then be assigned probabili-
ties directly. Further Bayesian work can be found in
[17] and, from a design perspective, in [11].

Times to Response

Quantal response experiments are frequently run
for fixed times before responses are recorded, and
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popular times are one week or other multiples of
days. Sometimes ED50 and similar dose levels are
qualified by the duration of the experiment. In cases
of prolonged exposure to the substance being tested,
we might expect a tradeoff between dose and time,
similar effects resulting from either a low dose for a
long time or a high dose for a short time. In other
experiments there may be a limit to the response
at each dose, which would be approached as the
duration of the experiment was increased. The former
case is expressed in one form by Ostwald’s equation
[34], in which XT λ = κp, for the constants λ and
κp. Here X denotes concentration and T duration,
corresponding to a level p%.

Stochastic models which include a description of
times to response are drawn from survival analysis.
If F(t ; d) denotes the probability of response by time
t to dose d, then following [36], the Weibull model,

F(t ; d) = 1 − exp[−tγ exp(α + β log d)], (11)

can be shown to agree with Ostwald’s equation.
An alternative approach, which was used by Pack
and Morgan [35] to describe data exhibiting limits
to response at each dose, extended the standard
threshold model: at each dose level there was a
probability of response which was dose-related, as
described by a logistic model. Responding individuals
were then given a log logistic distribution, which was
dose-independent.

A characteristic of time-to-response data is that it
is usually interval-censored, typically with observa-
tions taken only once a day. For general discussion
of such models, see [14].

Overdispersion

Data frequently exhibit more variation than that
allowed for in simple binomial and Poisson models
(see Overdispersion) of response. This can be due
to factors such as a lack of independence of response,
or heterogeneity of subjects. In a modeling context,
the Poisson distribution might be replaced by the
negative-binomial distribution, and the binomial by a
beta-binomial distribution, though several alternatives
also exist. In some cases it may be appropriate to fit
mixtures of distributions, for which there may, for
example, be a genetic justification – see [9] and [7].
A robust procedure results from adopting a quasi-
likelihood approach, which makes use of just the

means and variances of the responses – see, for
example, [47] and [8].

The beta-binomial distribution has the probability
function

Pr(X = x|n)

=

(
n

x

) x−1∏

r=0

(µ + rθ)

n−x−1∏

r=0

(1 − µ + rθ)

n−1∏

r=0

(1 + rθ)

,

for 0 ≤ x ≤ n (12)

(we interpret
∏−1

r=0 as unity). We can see that θ = 0
returns us to the binomial form. We have

E[X] = nµ,

var(X) = nµ(1 − µ)

{
1 +

(
θ

1 + θ

)
(n − 1)

}
.

(13)

Thus positive θ produces a larger variance than in
the binomial case. Negative values of θ may also be
used, allowing a straightforward likelihood ratio, or
score, test of θ = 0 [38, 44].

In the dose response context we can allow both
µ and θ to be suitable functions of dose, and then
use standard testing procedures to investigate whether
such complexity is required – see, for example, [42,
13], and [30]. Mixed models, such as the logis-
tic–normal and probit–normal, provide an alternative
approach to dealing with overdispersion – see, for
example, [20] and [37].

Design and Sequential Methods

Suppose our objective is to innoculate cattle against a
disease. We might well wish to use a dose at about the
PD90, say, this being the dose that would protect 90%
of animals. Higher doses might be thought to be too
expensive to produce, or to result in undesired side
effects. It may only be possible to use a small number
of animals to estimate the PD90, and the question then
arises of how to allocate dose levels to the animals.
Adopting an optimal design approach, we might, for
example, focus on the PD90, and try to estimate this
as precisely as possible. We saw earlier an expression
for the variance of the Spearman–Kärber estimate of
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the ED50. Prior estimates of parameters may be used
to estimate numbers responding at any dose level,
resulting in an expression to be optimized with regard
to the allocation of a fixed number of individuals
over doses. This is the basic idea of optimal design
procedures. It relies on being able to produce prior
estimates of parameters. The prescription can be
very clear and simple – for example to distribute
individuals over just two doses. However, poor
performance can result from poor initial estimates
of the parameters, and a more conservative approach
is advisable in practice – see, for example, [2] and
[21]. A two-stage design is studied in [2]; the first
stage improved on prior estimates of parameters and
informed the choice of doses at the second stage.

A formal Bayesian approach is adopted in [11].
Fully sequential methods involve allocating indi-

viduals to doses in a way that depends on previous
responses. For example, in an up-and-down exper-
iment, if a rat responds to a dose then the next
rat is treated with a lower dose. Subsequent dose

levels would then be reduced until a rat fails to
respond, and the next dose level to be chosen would
then increase, and so on. A form of up-and-down
experiment results in the fixed dose procedure for
evaluating toxicity – see [46]. In its simplest form,
the up-and-down experiment produces dose levels
according to the following sequence:

di+1 = di − 2∆(ri − 0.5),

where ri = 1 if the individual exposed at dose di

responds, and ri = 0 otherwise. Here the doses are
selected at intervals of ∆. For discussion of variants
of this procedure, and how to analyze the resulting
data, see [23] and [45]. The Robbins–Monro proce-
dure of stochastic approximation for estimating an
ED100p value allows the step-length to decrease with
increasing i, to produce the following sequence of
doses:

di+1 = di − c

i
(ri − p),

for a suitable constant c.

Figure 2 An example of computer code for fitting the model displayed in Figure 1, and producing the figure. The MATLAB

language is used. The program of (a) reads in the data, minimizes the negative log likelihood using the fmins command,
which uses a simplex method – see [33] – and plots the data and the results. The program of (b) establishes minus the log
likelihood
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Many variants have been devised – see [25]
and [49]. Sequential optimization, in which optimal
design ideas are used in a sequential context, has been
considered in [28] and [21]. Sequential methods, even
if only applied for a limited number of stages, have
an obvious appeal, in limiting the use of experimental
resources and individuals (see Sequential Analysis).
In practice a nonsequential approach may prove to
be more practicable. For example, in routine assays
the experimenter will want to set up and conclude
one experiment according to a laboratory schedule
before starting another. In some cases responses may
be slow to obtain, thereby ruling out a sequential
approach. While it is simple to devise a system of
new doses on paper, in practice it is usually much
simpler to construct the appropriate dilutions on just
one occasion, and then to select from these in future
experiments.

Computing

There are several computer packages which may
be used to fit models to quantal assay data (see
Software, Biostatistical). A range of facilities exist
in packages such as GLIM, GENSTAT, SPSS-X, SAS
and S-Plus. In SAS, for example, PROC GENMOD
can be used for fitting generalized linear models,
and PROC LOGISTIC provides specialized software
for logistic regression. The availability of powerful
integrated computer languages means that for many
statisticians it is a simple matter to program their own
analyses. For instance, the fit and display of Figure 1
are produced by the MATLAB commands of Figure 2.
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hungen zwischen Adsorption und Giftigkeit, Kolloid-
Zeitschrift 6, 297–307.

[35] Pack, S.E. & Morgan, B.J.T. (1988). A mixture model
for interval-censored time-to-response quantal assay
data, Biometrics 46, 749–758.

[36] Petkau, A.J. & Sitter, R.R. (1989). Models for quan-
tal response experiments over time, Biometrics 45,
1299–1306.

[37] Preisler, H.K. (1989). Analysis of a toxicological
experiment using a generalized linear model with
nested random effects, International Statistics Review
57, 145–159.

[38] Prentice, R.L. (1986). Binary regression using an
extended beta-binomial distribution, with discussion of
correlation induced by covariate measurement errors,
Journal of the American Statistical Association 81,
321–327.

[39] Racine, A., Grieve, A.P., Fluhler, H. & Smith, A.F.M.
(1986). Bayesian methods in practice: experiences

in the pharmaceutical industry, Applied Statistics 35,
93–150.

[40] Ridout, M.S. & Fenlon, J.S. (1991). Analysing dose-
mortality data when doses are subject to error, Annals
of Applied Biology 119, 191–201.

[41] Ryan, L.M. (1993). Using historical controls in the
analysis of developmental toxicity data, Biometrics 49,
1126–1135.

[42] Segreti, A.C. & Munson, A.E. (1981). Estimation of the
median lethal dose when responses within a litter are
correlated, Biometrics 37, 153–154.

[43] Stukel, T.A. (1990). A general model for estimating
ED100p for binary response dose-response data, Amer-
ican Statistician 44, 19–22.

[44] Tarone, R.E. (1979). Testing the goodness of fit of the
binomial distribution, Biometrika 66, 585–590.

[45] Wetherill, G.B. & Glazebrook, K.D. (1986). Sequential
Methods in Statistics, 3rd Ed. Chapman & Hall, London.

[46] Whitehead, A. & Curnow, R.N. (1992). Statistical eval-
uation of the fixed-dose procedure, Food and Chemical
Toxicology 30, 313–324.

[47] Williams, D.A. (1982). Extra-binomial variation in
logistic linear models, Applied Statistics 31, 144–148.

[48] Williams, O.D. & Grizzle, J.E. (1972). Analysis of
contingency tables having ordered response categories,
Journal of the American Statistical Association 67,
55–63.

[49] Wu, C.F.J. (1985). Efficient sequential designs with
binary data, Journal of the American Statistical Asso-
ciation 80, 974–984.

(See also Biological Assay, Overview)

BYRON J.T. MORGAN



Quantile Regression

Consider the situation illustrated in Figure 1 which
shows various quantiles of infant boys’ weight plot-
ted against age. Interest may be focused not only on
the mean relationship between these two variables,
but also on the relationship between the extreme
quantiles and age. The quantiles may act as appropri-
ate boundaries for indicating potential infant feeding
problems, and therefore are useful when examin-
ing the progress of a child’s weight gain over time.
Clearly, in this and many similar situations, a stan-
dard regression model is not sufficient for predict-
ing the relationship between all the quantiles of a
dependent variable y and a vector x of explanatory
variables.

With this fact in mind, Hogg [2] and Koenker &
Bassett [4] generalized the method of minimum mean
absolute deviation (MAD) regression (see Robust
Regression) to quantile regression in which, under
the assumption of linearity, they developed a tech-
nique for modeling the quantiles of the conditional
distribution function F(y|x).

To describe the method, let us examine how to
specify ordinary quantiles as the solution to certain
estimating equations (see Generalized Estimating
Equations), which minimize a particular sample loss
function. This will enable us to develop and estimate
regression models for conditional quantiles. Given a
sample of n univariate observations {y1, y2, . . . , yn},
the pth sample quantile µ̂p, 0 ≤ p ≤ 1, satisfies the
relationship

n∑

i=1

[pI (yi > µ̂p) − (1 − p)I (yi < µ̂p)] = 0, (1)

where I is the indicator function taking the value 1
when its argument is true, and 0 otherwise. Note
that µ̂p is an estimate of the corresponding popu-
lation quantile µp, which satisfies p[1 − F(µp)] −
(1 − p)F(µp) = 0. Eq. (1) can be viewed as an
estimating equation where positive residuals ri =
yi − µ̂p are given weight p and negative residuals
weight (1 − p), and value is measured by the sign of
the residual. That is, (1) can be rewritten in the form∑n

i=1 ψp(ri) = 0, where

ψp(r) =
{

pψ(r), if r > 0,
(1 − p)ψ(r), otherwise,

(2)

Figure 1 Quantiles of infant boys’ weight against age. In
this example the extreme quantile lines may be useful for
indicating potential infant feeding problems

and ψ(r) = sign(r). Sometimes ψp is referred to
as the influence function (see Diagnostics) for
estimating regression quantiles with corresponding
asymmetrical loss function

ρp(r) =
{

pρ(r), if r > 0,
(1 − p)ρ(r), otherwise,

(3)

where ρ(r) = |r|. The estimating equation above,
and hence µ̂p , can be obtained by minimizing the
corresponding mean sample loss function

n−1
n∑

i=1

ρp(yi − µp). (4)

To extend the method above to quantile regression,
we proceed in a manner analogous to linear least
squares regression and replace µp in (4) by µp(x) =
x′βp , where βp is a vector of regression coefficients
for the pth conditional quantile. It is then fairly
straightforward to see that βp can be estimated by
solving

n∑

i=1

ψp(yi − x′
i β̂p)xi = 0. (5)

In the special case p = 0.5, the fitted surface is the
regression median of y on x that minimizes

n−1
n∑

i=1

∣∣∣yi − x′
i β̂0.5

∣∣∣ , (6)

the mean absolute deviation of residuals.
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Expectile and M-Quantile Regression

Despite their apparent simplicity, regression quan-
tiles suffer two distinct disadvantages in practice.
First, they are usually not unique and hence are
quite difficult to compute. Fairly sophisticated lin-
ear programming techniques are often used (see,
for example, [8] and [6]). Secondly, and perhaps
more importantly, they do not include ordinary least
squares regression as a special case, which is gen-
erally the preferred technique for modeling average
behavior.

In view of these difficulties, Newey & Powell
[9] developed expectile regression. Expectiles are
obtained by modifying the ordinary least squares
criteria in the same way as (4) modifies the MAD cri-
teria of (6). That is, they are obtained by solving (5)
with ψ(r) = r . Clearly, expectile regression reduces
to ordinary least squares regression when p = 0.5,
and for any 0 < p < 1, they are unique and can
easily be computed using the method of iteratively
reweighted least squares (see Generalized Linear
Model).

Figure 2 shows the influence function ψp for
expectiles when p = 0.75. One important feature
worth noting is that its influence function is
unbounded, which implies that estimates of expectile
regression parameters may be quite sensitive to
outliers. With this difficulty in mind, Breckling
& Chambers [1] suggested that the influence
function be modified by using the M-regression ψ-
function,

ψ(r) = ψ(r, c) =
{

r, if |r| < c,
c sign(r), otherwise,

(7)

in the definition of (2), where c > 0 (see Robust
Regression). The resulting method is called M-
quantile regression. As c → 0 it approaches quantile
regression, and as c → ∞ it approaches expectile
regression. In this regard it can be viewed as a
compromise between the two, sharing the robust-
ness properties of quantile regression and ease of
computation of regression expectiles. In particular,
when p = 0.5, M-quantile regression reduces to ordi-
nary M-regression, a common choice for robust esti-
mation of the conditional mean when the residual
distribution is symmetrical around zero; see Huber
[3].

Figure 2 The influence curves ψp for quantiles, expectiles
and M-quantiles (c = 1) in the case p = 0.75. The expectile
influence curve is unbounded and hence may be sensitive
to outliers in the data. The M-quantile influence curve is
a compromise between the quantile and expectile influence
curves

The Purpose of Modeling Quantiles

As illustrated in our introductory example, the
relationship that holds between x and the con-
ditional mean of y given x may not be appro-
priate or representative of those values of y not
lying close to the conditional mean. One may
well ask what circumstances lead to this situa-
tion.

It is often the case when modeling nonexperi-
mental data that not all the explanatory information
for the response variable y can be controlled, and
only an incomplete set of covariates is available for
the modeling process. There may be additional vari-
ables, z, that also explain the variation in y, but
which have not been measured. If there is an inter-
action between z and x, then it is likely that the
relationship between x and extreme y values differs
from the mean relationship; see Figure 3. When it
becomes necessary to make predictions based only
on changes in the x values, then better forecasts
could potentially be made by directly modeling the
relationship between the extreme as well as mean
values of y conditional upon x. For example, it
may be appropriate to use the actual quantile or M-
quantile regression surface that passes through each
individual observation when making forecasts. This
is the basis of the prediction technique developed in
[7].
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Figure 3 Regression quantiles for p = 0.10 (lower line),
p = 0.5 (middle line) and p = 0.90 (upper line) of an
indicative data set consisting of a single covariate x and
dependent variable y. Note that the slope of the three
regression lines differs significantly, indicating a varying
relationship between y and x in the data

The varying relationship illustrated in Figure 3 of
the regression quantiles with p can also be used to
test for heteroscedasticity [5].
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Quantiles

Quantiles divide a statistical distribution (population)
or a sample of data into equal and ordered parts.
Equal means that all parts contain the same num-
ber of sample elements, or equal population mass.
Ordered means that the parts are arranged so that
all sample elements within a part are less than those
in the part following it and greater than those in
the part preceding it. The term has no numerical
attributes until further specification is provided for
its use, usually the number of equal parts. Division
into N ordered parts requires N − 1 points or quan-
tiles. For certain N , the set of these N − 1 points has
a well-known name related to N : median (N = 2),
tertiles (N = 3), quartiles (N = 4), quintiles (N =
5), deciles (N = 10), and percentiles (N = 100).
Because, for example, one-fifth of the population
or sample data is less than the lowest quintile, a
more general naming of that quintile is the 0.2
quantile. Equivalently, this is the 20th percentile.
Generalizations to expressions such as the 0.2143
quantile are possible but not very useful.

There is a limited number of quantiles defined
for a discrete distribution. With sample data, various
conventions are useful for approximating quantiles of
interest. From a sample of size M odd, the median
or 50th percentile is the (M + 1)/2th ordered value;
for even M , we use the average of the M/2th and
(M/2 + 1)th ordered values. Similar ideas may be
used for other quantiles, especially for summarization
and visualization of data.

Quantiles are useful in a variety of biostatisti-
cal settings. In testing of statistical hypotheses and
related estimation procedures, if we choose a level
of significance α (see Level of a Test) or confi-
dence (1 − α), we must determine the 1 − α quantile,
the point in the appropriate distribution exceeded by
100α%.

Various sets of quantiles are useful in exploration
and summarization of sample data (see Exploratory
Data Analysis), especially visually through box plots
(see Graphical Displays), to assess symmetry, dis-
persion, and location. For a biological measure for
which extreme values are detrimental, such as blood
pressure or cholesterol, the safety and efficacy of a

new treatment may be assessed and compared to oth-
ers with respect to specified upper quantiles. We may
decide that an improved treatment is one which yields
a 98th percentile no greater than the standard and also
a 75th percentile (upper quartile) markedly less than
the standard.

Quantiles are also useful when modeling risk
relationships between predictor (or explanatory)
and outcome (or response) variables, as in logistic
regression or generalized linear models. For
example, in studies of the effect of improved nutrition
on reducing the incidence of disease, we often find
that measures of nutritional status seem unrelated
to outcome until the status reaches high levels
or exceeds some threshold. A common approach
to model this relationship, which requires few
assumptions, is based on quantiles. The distribution
of nutritional status is frequently skewed, and
we may choose to transform it by the sample
quintiles into a categorical variable. The four
quintiles {Q1, Q2, Q3, Q4} divide the sample into
five ordered quintile groups {G1, G2, G3, G4, G5}.
An observed value X of nutritional status receives the
designation (transformed value) of the quintile group
of which it is a member. Thus, if Q2 < X < Q3, then
X has transformed value or category 3, or G3 if you
wish. The lowest quintile group is typically selected
as the reference group against which higher groups
are compared, and we may find that only the upper
category is significantly different from the reference
category in relation to risk of disease.

Strictly speaking, one should not say “in the upper
quintile”, because quantiles are not groups but, rather,
points that demarcate groups. The second quartile
is also the median, and “in the median” highlights
the inconsistency. The term quantile group seems
appropriate and not overly onerous. Nevertheless, the
simpler but imprecise usage such as “in the upper
quintile” is commonly found in prestigious medical,
epidemiology, and even biostatistics journals as de
facto standard.

(See also Order Statistics)

ROY C. MILTON



Quartimax Rotation

Quartimax rotation [3, 4] is one of the earlier
orthogonal rotation procedures for use with
principal components analysis and factor analysis.
Given a matrix V of dimension p × k consisting
of a set of k vectors defining a set of principal
components or factors, a new set of transformed
variables is obtained by an orthogonal rotation of V,
namely B = V�. Here � is a matrix of dimension
k × k, determined such that the coefficients of the
resulting matrix B of dimension p × k, containing
the new vectors defining the transformed variables,
will maximize the quantity

Q =
k∑

j=1

p∑

i=1

b4
ij ,

where p is the number of original variables and k is
the number of retained components or factors. Quar-
timax rotation is a special case of orthomax rotation
with c = 0 (see Orthogonal Rotation). In this pro-
cedure, the sums of squares of B are maximized
rowwise as contrasted to varimax rotation, which
maximizes them columnwise. There is a tendency
for quartimax to produce a “general” rotated vector
which has no small coefficients. Because of these
properties, quartimax has generally been replaced
by varimax rotation. The standard errors for quar-
timax loadings were given by Archer & Jennrich [1]
and their asymptotic distribution also by Archer &
Jennrich [2].

For the audiometric example introduced in the
article on Rotation of Axes, V and B are given

in Table 1. The results for the varimax rotation are
included also, for comparison.

This is an example where the popular rotation
procedures such as varimax did not produce useful
results because the units of the original variables,
Hz, represent points on a continuum rather than a set
of qualitative variables which generally rotate much
more favorably. Quartimax, on the other hand, sum-
marizes the situation quite well. The first three rotated
vectors define three groups of frequencies. The first
rotated vector clusters both 500 Hz and 1000 Hz
measurements, the second vector is associated with
4000 Hz, and the third vector with 2000 Hz. The
fourth vector restates the left–right ear difference,
as did the fourth characteristic vector.
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Table 1 Audiometric example: characteristic and rotated vectors

Characteristic vectors Varimax rotation Quartimax rotation

Frequency (Hz) v1 v2 v3 v4 b1 b2 b3 b4 b1 b2 b3 b4

500 left 0.80 −0.40 0.16 −0.22 0.58 0.13 0.06 0.71 0.90 0.11 0.03 0.22
1000 left 0.83 −0.29 −0.05 −0.33 0.44 0.10 0.27 0.79 0.83 0.09 0.25 0.36
2000 left 0.73 0.30 −0.46 −0.19 0.05 0.22 0.78 0.45 0.35 0.22 0.79 0.28
4000 left 0.56 0.60 0.42 −0.11 0.04 0.89 0.15 0.20 0.18 0.89 0.15 0.11
500 right 0.68 −0.49 0.26 0.33 0.91 0.08 −0.00 0.23 0.87 0.05 −0.07 −0.35
1000 right 0.82 −0.29 −0.03 0.25 0.77 0.10 0.34 0.31 0.82 0.08 0.28 −0.23
2000 right 0.62 0.40 −0.56 0.27 0.17 0.19 0.93 −0.00 0.19 0.19 0.91 −0.17
4000 right 0.50 0.65 0.42 0.11 0.11 0.91 0.19 −0.02 0.11 0.90 0.17 −0.10



Quasi-experimental
Design

Quasi-experiments have been defined as “experi-
ments that have treatments, outcome measures, and
experimental units, but do not use random assignment
to create the comparisons from which treatment-
caused change is inferred” [6]. (True experiments, in
contrast, are intervention studies that employ ran-
domization.) The term quasi-experiment was first
introduced in 1963 in Campbell & Stanley’s clas-
sic Experimental and Quasi-Experimental Designs for
Research [3]. These designs are often employed when
random assignment to treatment groups (see Ran-
domized Treatment Assignment) is not possible.

In principle, every randomized-trial design
has a quasi-experimental counterpart that simply
substitutes some other method of treatment allocation
for random assignment. Thus, there are potentially
a limitless number of quasi-experimental study
designs, ranging from simple comparison of two
parallel groups (see Clinical Trials, Overview) to
factorial designs, repeated measures designs (see
Longitudinal Data Analysis, Overview), crossover
designs, group-randomization designs, and so
forth. In addition, the term “quasi-experiment”
has historically been considered to include certain
single-group designs that have no randomized-trial
counterpart, such as the interrupted time series design
described below.

A quasi-experiment is designed around an inter-
vention. Typically the main study goals are to esti-
mate the size of the intervention effect on some
outcome and to test whether it differs significantly
from no effect. (Quasi-experiments can certainly con-
sider multiple interventions and multiple endpoints
simultaneously, but the theory is broadly similar, and
for simplicity we shall consider only studies of a
single intervention and a single main outcome.) At
some point during the study, subjects are exposed to
the intervention of interest, and outcomes in those
subjects are observed. The crucial question in esti-
mating the effect of the intervention is: What would
have been observed on those subjects had they not
been exposed to the intervention? Quasi-experimental
designs differ chiefly with regard to how they seek
to answer this question.

After discussing confounding as the central
methodological issue in most quasi-experimental
designs and describing a useful notation for study
designs, the discussion below focuses on three quasi-
experimental designs, each of which raises generic
design and analysis issues that arise in a larger class
of quasi-experimental studies. Cook & Campbell [6]
and Campbell & Stanley [3] discuss several other
specific quasi-experimental designs and comment on
their strengths and weaknesses.

Confounding

Expectations about what would have happened in the
experimental group in the absence of intervention
are often based on outcomes observed in a non-
exposed control group. Because quasi-experiments
do not employ randomization to form comparison
groups, the experimental and control groups can,
and often do, differ with regard to other measured
or unmeasured factors that influence the outcome.
Hence observed differences in outcomes between the
experimental and control groups can represent a mix-
ture of effects of the intervention under study and
the effects of these pre-existing differences between
groups. Prevention or removal of confounding of this
sort thus becomes an important methodological issue
in unbiased estimation of intervention effects from
quasi-experimental evidence [9].

Several techniques are available to overcome con-
founding. In the study-design stage, restriction or
matching can be used. For example, confounding
by gender can be prevented by restricting the study
population to males alone or to females alone. Match-
ing on one or more potential confounding factors can
also be employed. However, restriction and matching
are not always feasible or sufficient, particularly if
the number of potential confounding factors is large.
Accordingly, confounding must routinely be consid-
ered in the analysis stage of a quasi-experiment,
usually by including potential confounding factors as
covariates in an analysis of covariance (ANCOVA),
multiple regression or other type of multivariate
analysis.

Except for randomization, all of the methods for
control of confounding require that the investigator
know what the important confounding factors are
and how to measure them. Omission of an important
confounding factor from an analytic model results
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in what is sometimes called a specification error
or model misspecification, and the result can be
substantial bias in estimation of the intervention
effect.

Campbell–Stanley Notation

Campbell & Stanley [3] developed a useful notation
for study designs that conveys several important fea-
tures and helps distinguish one design from another at
a glance. The notation applies to both randomized and
nonrandomized study designs. The following symbols
are used for every design:

X = exposure to an intervention;
O = observation or measurement.

Additional symbols are sometimes used to indicate
the method by which subjects are allocated to treat-
ment groups. These include:

R = random assignment;
C = assignment based on whether a subject’s value

on a certain score falls above or below a specified
cutoff value.

These symbols are arranged in rows, each row
representing a different group of study subjects.
Within a row, the ordering of symbols from left to
right indicates the temporal sequence in which steps
are carried out. Symbols that are aligned vertically
indicate performance at the same point in time. A
simple example is:

R O X O

R O O
(1)

This design involves randomization (R) of subjects
into two study groups, each of which is observed
(O) after randomization. One group is then exposed
to an intervention (X) while the other group is not.
Lastly, both groups are observed (O) concurrently at
follow-up.

When neither R nor C appears, then study groups
are assumed to be formed on some other basis.
For example, the quasi-experimental counterpart to
design (1) above would be:

O X O

O O
(2)

Symbols may be subscripted as necessary to avoid
ambiguity if there are multiple interventions, obser-
vation occasions, or allocation steps.

Pretest, Posttest Nonequivalent Control
Group Design

In spite of its cumbersome name, design (2) above is
among the most commonly used quasi-experimental
designs, involving baseline (“pretest”) and follow-up
(“posttest”) measurements on subjects in each of two
groups, only one of which is exposed to the inter-
vention. For example, Simon et al. [14] studied the
effect of a $20/visit copayment for mental-health vis-
its among government workers and their dependents
who were enrolled in a large health-maintenance
organization. The new copayment applied to families
of state government employees, but not to families
of federal government employees, who served as a
no-intervention control group. Data were gathered on
each enrollee’s use of any mental-health services and
annual visit rate during the year before the change
and during the year after the change.

More generally, results from this type of quasi-
experiment can be portrayed graphically as in
Figure 1. Y is the outcome variable, and a value
of Y is obtained for each subject in each of two
treatment groups at each of two time points. (Unique
identification of a particular Y -value would require
three subscripts, but for simplicity we will omit the
subscript that indexes individual subjects.) Baseline
measures of Y are designated as Y0 and those
obtained at follow-up as Y1. As shown in Figure 1, a

t0 t1

Y

Y0C

Y0E

Y1C

Y1E

Control

Experimental

Time

Figure 1 Diagram of results for the nonequivalent control
group design
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second subscript (E for experimental, C for control)
is added when needed to distinguish between study
groups. Mean values of Y are always taken across
subjects within a treatment group and time point.

Despite the apparent simplicity of this design,
approaches to data analysis have been varied and
sometimes controversial. The parameter of main
interest, τ , is the effect of the intervention. Concep-
tually, it can be defined as:

τ = Y 1E − Y
∗
1E, (3)

where Y
∗
1E is the mean value of Y that would have

been observed in the experimental group at follow-up
had the group not been exposed to the intervention.
The alternative analytic approaches differ chiefly with
regard to how they estimate Y

∗
1E. We compare three

approaches here.

Separate Comparison of Baseline Means and
Follow-Up Means

Under this approach, the experimental and control
groups are first compared with regard to Y0 and
possibly other baseline characteristics. If no signif-
icant differences are found, the groups are treated
as “essentially equivalent” (as if randomization had
been performed), and τ is estimated from follow-up
data alone:

τ̂ = Y 1E − Y 1C. (4)

In effect, this approach assumes that if the groups did
not differ significantly at baseline, they would have
been equivalent at follow-up in the absence of an
intervention effect.

This approach has several shortcomings. Since the
study groups were not formed by random assign-
ment, they may well be found to differ significantly
with regard to Y0 or other potentially confounding
variables, obligating the analyst to account for these
differences in estimating τ . Even if the baseline dif-
ferences are not statistically significant, the power to
detect a true difference may be low, especially if sam-
ple sizes are small and/or if variation within groups is
large. (Failing to reject the null hypothesis of equiv-
alence at baseline does not necessarily mean that it is
true.) Finally, ignoring baseline data when estimating
τ may be a lost opportunity to increase the precision
of τ̂ , because Y0 and Y1 are likely to be correlated
within the same subjects.

Difference in Change Scores

A second approach to analysis grants that the experi-
mental and control groups may differ on Y0 but posits
that an effective intervention would produce larger
(or smaller, depending on the alternative hypothe-
sis) average changes in Y over time (i.e. Y1 − Y0)
in the experimental group than in the control group.
This approach leads to the following estimate of τ :

τ̂ = (Y 1E − Y 0E) − (Y 1C − Y 0C). (5)

Note that (5) can be rewritten as:

τ̂ = Y 1E − [Y 0E + (Y 1C − Y 0C)]. (6)

Eq. (6) says that, in the absence of an intervention
effect, one would expect the mean of Y at follow-up
in the experimental group to be whatever the mean
of Y was at baseline in that group, plus the average
change observed in the control group from baseline to
follow-up. With observations at only two time points,
a test of the null hypothesis H0 : τ = 0 can be based
either on an unpaired t-test of the difference in mean
change scores between groups or (see Student’s t
Statistics), equivalently, on an analysis of variance
(ANOVA) with repeated measures [1].

The main advantage of the change-score analysis
is that it is a simple and easily understood method
to accommodate baseline differences in Y0 between
groups. Perhaps surprisingly, however, it does not
automatically improve the precision of τ̂ in compari-
son with the estimate from (4). Fleiss [7] shows that if
σ0 is the (within-group) standard deviation in Y0, σ1

is the standard deviation in Y1, and ρ01 is the correla-
tion between Y0 and Y1 in the same subjects, then the
standard error of τ̂ from (5) is less than the standard
error of τ̂ from (4) if and only if ρ01 > (σ0/σ1)/2.

A related shortcoming of change-score analysis
applies when Y0 is measured with error and/or is vari-
able within subjects over time. Many physiologic or
behavioral characteristics fit this description: systolic
blood pressure, for example, is subject to both errors
in measurement (see Measurement Error in Epi-
demiologic Studies) and short-term variability within
individuals. Under these conditions, change scores
tend to be negatively correlated with baseline values
[7]: subjects with unusually low values of Y0 tend
to regress toward the mean by manifesting larger
increases (or smaller decreases) in Y than do other
subjects, while those with unusually high values of
Y0 show the opposite.
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Finally, change-score analysis provides no way to
examine possible interaction effects between values
of Y0 and the experimental treatment.

Analysis of Covariance

A third approach uses Y1 as the dependent variable
and treats Y0 as one of possibly several covariates in
an ANCOVA. Figure 2 illustrates the analytic model
graphically. Each subject’s pair of (Y0, Y1) values
corresponds to a point on the graph. The two ovals
indicate hypothetical clusterings of those points for
the experimental and control groups. Within each
group, Y0 and Y1 are positively correlated, but the
data points for the experimental group form a cluster
located to the left of those for the control group,
implying that Y 0E < Y 0C. The unadjusted difference
in Y 1 between groups is the length of line segment ac,
while the adjusted difference is the length of ab. The
length of bc is thus the amount of bias in estimating
τ if baseline differences in Y are ignored, as they are
in (4).

As shown in [1], the ANCOVA formulation leads
to a third estimate of τ :

τ̂ = (Y 1E − Y 1C) − β(Y 0E − Y 0C) (7)

where β is the slope of the regression of Y1 on Y0.
In Figure 2, Y

∗
1E corresponds to the height of point b

above the horizontal axis.
The relationship of this analysis to the change-

score analysis is clarified by noting that (5) can be
rewritten as

τ̂ = (Y 1E − Y 1C) − (Y 0E − Y 0C). (8)

Y1C

Y1E

Y1

Y0

a

b

c

Control

Experimental

Figure 2 Analysis of covariance for the nonequivalent
control group design, using Y0 as the covariate

In other words, the change-score analysis corresponds
to an ANCOVA analysis in which the slope coeffi-
cient β in (7) is constrained to be 1. In general, unless
Y1 and Y0 are completely uncorrelated, τ̂ from (7) can
be expected to be more precise than the correspond-
ing estimates from (4) or (5).

Reichardt [13] notes that this basic ANCOVA
model can be extended in several ways. The β param-
eter can be allowed to differ between experimental
and control groups, thus allowing study of interaction
effects between Y0 and treatment group membership.
Additional covariates besides Y0 can also be intro-
duced, some of which may be transformations of
Y0 to accommodate nonlinear relations between Y1

and Y0.
The ANCOVA model is not, however, immune

to difficulties caused by extraneous random error
in Y0 due to measurement error or natural variation
in Y over time. Cochran [4] shows that measure-
ment variation in Y0 leads to biased estimation of
the slope parameter β toward 0, by a factor of
σ(trueY0)/σ(measuredY0), assuming that the measurement
error is independent of true Y0 values. This factor is
sometimes termed the reliability of Y0 measurements.
Because of this attenuation of β, not all of the con-
founding by differences in Y 0 between experimental
and control groups is removed.

Because there is only a single baseline observa-
tion, pre-existing time trends in Y cannot be detected
and taken into account in estimating Y

∗
1E. Such

trends may arise, for example, from general historical
changes that affect Y or from growth or maturation
of study subjects over time.

Interrupted Time Series

An interrupted time series quasi-experiment can be
diagrammed as follows:

O O O . . . O X O O . . . O (9)

A single study group is examined on repeated occa-
sions, then exposed to the intervention of interest,
then examined repeatedly again thereafter. A major
advantage of this design is the opportunity to rec-
ognize and characterize preintervention patterns of
variation over time, which may be cyclical or mono-
tone, and which provide a basis for predicting what
would have been observed during the postinterven-
tion period in the absence of an intervention effect.
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An important feature of time series data, however,
is that observations closer to each other in time
tend to be more correlated with each other than are
observations separated more widely in time (temporal
autocorrelation). Correlated errors violate a standard
assumption of ordinary least squares regression and
invalidate the usual tests of significance (see Hypoth-
esis Testing) based on it.

Selection of an approach to analysis depends in
part on whether individual subject or only group-
level data are available for each of the time periods,
and on the number of pre- and postintervention mea-
surements. When a large number (say, 50 or more)
of group-level observations are available over time,
autoregressive integrated moving average (ARIMA)
models, based on work by Box & Jenkins [2],
offer several attractive features [10] (see ARMA
and ARIMA Models). Briefly, ARIMA models seek
first to model variability within the time series in
terms of secular trends, cyclical variation (such as
seasonality), autocorrelation between serial measure-
ments, and persistence of random perturbations from
one measurement to the next. The form of the
ARIMA model can then be summarized as ARIMA
(p, d, q), where p represents the number of auto-
correlation parameters, d the number of differencing
steps required to achieve stationarity, and q the
number of moving-average parameters needed to
accommodate persistence of random perturbations. A
parameter for intervention is then added to the model
in order to estimate a change in the series following
the point of intervention. O’Carroll et al. [12] used
ARIMA modeling to evaluate the effect of a new
law in Detroit requiring a mandatory jail sentence
for illegally carrying a gun in public. The evaluation
was based on changes in monthly counts of firearm-
related and non-firearm-related homicides occurring
indoors or outdoors in public before and after the
ordinance took effect.

Design (9) does not directly allow separation of
intervention effects from the effects of extraneous
historical factors that happen to coincide in time
with the intervention. However, this shortcoming can
sometimes be remedied by adding one or more no-
intervention control groups followed over the same
time period:

O O O . . . O X O O . . . O

O O O . . . O O O . . . O
(10)

Wagenaar & Holder [16], for example, used ARIMA
modeling to assess the effect on alcohol consumption
of privatizing wine sales in five US states, examining
monthly sales of beer, wine, and spirits in those
states before and after privatization and comparing
the changes observed with concurrent changes in
neighboring states and for the US as a whole.

When the Os in (9) and (10) represent individual-
level measurements on many study subjects over
time, the analyst can consider several relatively new
statistical approaches for analysis of longitudinal
data. Zeger & Liang [17] review three families of
longitudinal analysis models (marginal, transition,
and random effects). All of these approaches allow
the use of familiar regression tools relating a response
variable to several explanatory variables, while
accounting properly for within-subject correlation
over time.

Regression Discontinuity

The basic regression-discontinuity design can be
denoted as follows:

O C X O

O C O
(11)

As before, let Y represent a continuous outcome
variable, measured at baseline (Y0) and at follow-
up (Y1). The unique feature of this design is that Y0

itself is used as the basis for allocating subjects to
the experimental or control group, as indicated by the
symbol C in (11). If a subject’s value of Y0 falls above
(or below) a predefined cutoff value, the subject is
assigned to the experimental group; if Y0 falls on the
other side of the cutoff value, the subject is assigned
to the control group. Subjects in the experimental
group are then exposed to the intervention, and Y1 is
measured at follow-up on everyone in both groups.

This subject-assignment scheme would at first
seem to confound Y0 and the intervention effect
hopelessly. But Figure 3 illustrates the results
expected if the intervention is effective. As usual, Y1

and Y0 are positively correlated within each group.
However, the regression relation between them is
discontinuous at the cutoff value: in this example,
Y1 scores on experimental-group subjects are shifted
higher than Y1 scores on control-group subjects,
presumably because of the effect of the intervention.
In particular, the size of the intervention effect is the
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Y1

Experimental

Control

Cutoff
Y0

Figure 3 Illustration of the regression-discontinuity de-
sign

size of the offset between the two regression lines at
the cutoff point.

The regression-discontinuity design has some very
attractive features. Often resistance to randomization
stems from concern that the neediest subjects would
be deprived of a possibly beneficial intervention. Y0

values may represent the severity of a disorder and
may thus be good indicator of “need”. The assign-
ment scheme in the regression-discontinuity design
assures that all subjects on the “needier” side of
some cutoff value of Y0 receive the intervention.
Also, in contrast to many other quasi-experimental
designs, in which the basis for nonequivalence of
comparison groups may not always be clear, in the
regression-discontinuity design the basis for assign-
ment is known to depend completely on Y0. Even
though other potential confounding factors may be
associated with Y0 (and Y1), they would not usu-
ally account for the sharp discontinuity illustrated in
Figure 3.

An approach to data analysis from a regression-
discontinuity study is described by Trochim [15]
who first conceived the design. The basic regression
model is:

Y1 = b0 + b1(Y0 − cutoff) + b2z + e (12)

where z = 1 for experimental-group subjects and z =
0 for control-group subjects, b0 = Y 1 in the control
group when Y0 = cutoff, and b1 is the slope of the
regression relation between Y1 and Y0 (assumed to
be the same in both groups). The parameter of main
interest is b2, representing the intervention effect.

(Subscripts indexing individual subjects have again
been omitted for Y1, Y0, z, and e.)

Two key assumptions in (12) are a common value
for b1 in both groups and a linear relation between
Y1 and Y0. The former assumption can be relaxed by
introducing an interaction term, b3(Y0 − cutoff)z. If
this term improves the fit of the model significantly, it
suggests that the intervention effect varies according
to Y0 and that a single summary value of effect
may be insufficient. The assumption of a linear
relation between Y1 and Y0 can be circumvented by
adding pairs of terms representing quadratic, cubic,
and higher-order powers of Y0 − cutoff and their
corresponding interaction terms with z, as described
by Trochim [15].

Correct inference about the key parameter b2

turns out to depend heavily on correct specifica-
tion of the form of the relation between Y1, Y0, and
z. It also requires strict adherence to the assign-
ment rule represented by C in (11). Moreover,
the regression-continuity design has been shown to
require about 2.75 times as many subjects as the
corresponding randomized-trial design at fixed lev-
els of power and hypothesized intervention effect
[13].

Although the regression-discontinuity design has
been applied for program evaluation in the social
sciences and education, it appears to have been
rarely used in health research: it is a solution
awaiting a problem. However, Johnston et al. [8]
describe useful potential applications in rehabilita-
tion medicine, and the design’s unique strengths seem
worth exploiting in many other health-related con-
texts.

Conclusion

Quasi-experimental study designs are an attempt to
apply some of the desirable features of controlled
trials to research situations in which randomization is
not possible. Meta-analyses that have compared the
findings of randomized and nonrandomized studies
have often found that the apparent benefits of new
medical and surgical therapies over conventional
ones tend to be larger in nonrandomized studies
[5, 11]. While some of the differences may be
due to features of randomized trials that confer
a conservative bias (e.g. the intention to treat
principle), it is widely believed that much is due to
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confounding and selection biases in nonrandomized
studies that cannot be completely overcome without
randomization. Investigators would be prudent to
continue seeking ways to use randomized designs
whenever possible, be diligent in their attempts to
measure and control for potential confounding factors
when randomization is not possible, be appropriately
modest about conclusions from quasi-experiments,
and be open-minded as evidence from stronger study
designs becomes available.
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Quasi-independence

Many contingency tables contain cells whose
counts are missing, unreliable, a priori structurally
fixed, or ignored in certain hypotheses of interest. A
contingency table with structurally fixed cell counts
is said to be incomplete or truncated. A valid model
for an incomplete contingency table must ignore the
cell counts which are structurally fixed, and asymp-
totic tests of these models must have their degrees
of freedom adjusted. The quasi-independence (QI)
model is most commonly used to analyze incomplete
contingency tables or used when our hypothesis of
interest is focused on part of a complete table. For
some models of a square contingency table only
the off-diagonal cells are of interest. For complete
contingency tables, QI is a form of independence
conditional on the restriction of our interest to an
incomplete portion of the table.

Incomplete contingency tables usually contain
structural zeros, i.e. counts of zero in cells in which
observations cannot occur. They are often found in
genetics and medicine because of biological or logi-
cal constraints. Tables of chromosome combinations
contain structural zeros for lethal genetic combina-
tions. Cross classifications of diseases by sex contain
structural zeros for sex-specific diseases, e.g. females
cannot develop testicular cancer. Cross classifications
of diseased patients according to birth order and sib-
ship size yield triangular incomplete tables since birth
order cannot exceed sibship size. See [5] for many
examples.

A classic triangular table discussed by Bishop
& Fienberg [4], among many others, is Table 1.
Here, ratings of stroke patients, based on a five-
point ordinal scale A to E of increasing severity,
were obtained on admission to, and discharge from,

Table 1 Initial and final ratings on disability of 121 stroke
patients

Final state

A B C D E

E 11 23 12 15 8
D 9 10 4 1 0

Initial state C 6 4 4 0 0
B 4 5 0 0 0
A 5 0 0 0 0

hospital. As none of these patients had a second
stroke and no patient was discharged if their condition
worsened, then no discharged patient’s final rating
can be worse than their initial rating, and so for the
given data there are 10 structural zeros. This cross-
classification by initial and final rating yields what is
termed a triangular table, since the structural zeros
form a triangle.

The Quasi-Independence Model

The quasi-independence model is a useful general-
ization of the model of independence for a two-
dimensional complete contingency table. Let Yij

denote the count in cell (i, j ) of a two-dimensional
rectangular contingency table. Let S denote a set
of cells. The QI model for S assumes that the
expected value of Yij , E(Yij ), has the multiplicative
form E(Yij ) = αiβj for all cells (i, j ) in S, where αi

is a function only of row i and βj only of column j .
Note that the QI model for S makes no assumption
about the expected counts in cells not in S, so that
these expected counts are ignored by the QI model for
S. If S is the set of all cells, then this is the definition
of independence, but usually S will be a proper sub-
set, namely the cells not structurally fixed. If the QI
model for S holds, then the model of independence
will hold conditionally for any rectangular subtable
whose cells are all in S.

A loglinear form of the QI model is typically used
when the QI model is fitted to complete tables, but
the hypothesis of interest relates to only part of the
table. The saturated loglinear model for the expected
cell counts has the form of a constant term, a row-
effects term depending only on i, a column-effects
term depending only on j , and interaction terms for
each cell in the table which depend on both i and
j . The model of independence corresponds to all the
interaction parameters equaling zero. The QI model
for S corresponds to all the interaction parameters
equaling zero for cells in S and taking nonzero values
for cells not in S. In this case the fitted cell counts
for cells not in S equal the observed counts, so that
cells not in S are effectively ignored in the analysis.
Hence, we may think of the QI model for S applied
to a complete contingency table as a special model
for interaction having a separate interaction parameter
for each cell not in S.

The extension of the concept of QI to multidimen-
sional contingency tables is straightforward [8]. Any
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loglinear model for a complete multidimensional con-
tingency table can be assumed to hold for a subset S

of the cells in the complete table, and these models
are called quasi-loglinear models.

Uses for Complete Tables

QI models can be used to analyze complete contin-
gency tables. Sometimes when a loglinear model is
fitted to a complete contingency table, a significant
lack of fit can be caused by a few outlying cells,
with the model fitting the remaining cells well. In
two-dimensional tables, QI models have been used to
detect outlying cells and to calculate deletion resid-
uals (the residual from the expected count with the
suspected outlying cells deleted) [16]. A related prob-
lem is that when the hypothesis of independence is
rejected, the analyst may want to identify those cells
that contribute most to the significant goodness-of-fit
statistic [6].

QI models are often used in the analysis of square
tables when both cross-classified variables have the
same categories. A classic example is a table of
interrater reliability (see Observer Reliability and
Agreement; Agreement, Measurement of), where
two observers rate a number of subjects on a nom-
inal scale. After modeling patterns of agreement,
which involves the main diagonal counts, it is natu-
ral to model patterns of disagreement, so that interest
focuses on the off-diagonal cell counts. QI for the
off-diagonal cells allows for differential agreement
by each category and, given that the raters disagree,
implies that their ratings are independent [2].

Goodman [11] used QI models to analyze the
scalability of the observed response patterns for a
set of three or more dichotomous items in order to
estimate the proportion of intrinsically scalable (and
unscalable) respondents.

Estimation

When the cell counts follow either independent Pois-
son, multinomial, or product-multinomial sampling,
maximum likelihood estimation is typically used
to fit QI models. Conditions for the existence of
maximum likelihood estimates for incomplete tables
is discussed in [13]. Explicit formulas for maximum
likelihood estimates of the fitted counts usually

only exist for contingency tables with very special
structures, such as triangular tables [12]. Various
iterative methods can be used to find maximum
likelihood estimates of the parameters, including
Newton–Raphson methods (see Optimization and
Nonlinear Equations), some weighted least squares
programs, and iterative proportional fitting. Itera-
tive weighted least squares programs, which can be
used for maximum likelihood estimation (see Gener-
alized Linear Model) and which allow prior weights
of zero, such as GLIM4, can be used for fitting QI
models with a moderate number of parameters. In
this case, the QI model for S is fitted by giving prior
weights of zero to cells not in S. Alternatively, iter-
ative proportional fitting can be used for fitting QI
models with a large number of parameters when the
program allows user-defined starting values for the
expected counts. Starting values of zero are speci-
fied for expected counts of cells not in S, so that
the fitted counts for cells not in S always equal zero
at each stage of the iterative process. Both weighted
least squares and iterative proportional fitting meth-
ods implicitly result in the cells not in S being ignored
in the modeling.

Many computer packages can be used to fit
QI models (see Software, Biostatistical). A guide
to statistical software for categorical data analysis
which describes fitting QI models is provided in [1,
Appendix A].

Asymptotic Tests and Degrees of Freedom

Because certain cells in the contingency table are
ignored when fitting QI models, the degrees of free-
dom (df) needed for carrying out asymptotic chi-
square tests based on the likelihood ratio or Pearson
chi-squared test statistics need adjustment. Proce-
dures for calculating the correct df for asymptotic
tests for many of the incomplete tables encountered
in practice are given in [5, 10]. However, when the
tables include sampling zeros (not structurally fixed),
the calculation of the correct df are problematic even
in the case of complete tables [14]. One way of diag-
nosing problems associated with df calculations is to
use fitting methods, such as Newton–Raphson, that
involve iterative matrix inversions. Typically, this
problem will result in a rank problem in the iterative
matrix inversions.
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Exact Tests

When small cell counts in the contingency table cause
concern about the validity of using asymptotic tests,
such as in Table 1, exact or Monte Carlo exact
tests may be used. For small contingency tables,
complete enumeration may be used to calculate the
exact P value. For moderate to large tables, Monte
Carlo methods can be used to estimate the exact P
value [15, 17]. One advantage of exact tests is that
the concept of degrees of freedom is unnecessary,
so that degrees of freedom calculations are also
unnecessary.

Relationships with Other Models

Finally, we note that a number of models have
been shown to be equivalent to a QI model. The
Bradley–Terry model for paired comparisons is
equivalent to a QI model when the data are rearranged
into a specific contingency table format [9]. The
model of quasi-symmetry or symmetric association
for a square contingency table assumes that the inter-
action parameters in a loglinear model for symmet-
rically opposite cells are equal. Quasi-symmetry for
a 3 × 3 table is equivalent to QI for the off-diagonal
cells and QI for the off-diagonal cells implies quasi-
symmetry for larger square tables. Certain latent
class models are equivalent to QI models [7]. Tests
of independence between two discrete or discretized
random variables with random censoring are equiva-
lent to testing the goodness of fit of a loglinear model
applied either to complete or incomplete contingency
tables [3].
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Quasi-likelihood

Quasi-likelihood (QL) is a method of estimation
for regression analysis with discrete or continu-
ous responses. Like weighted least squares, quasi-
likelihood requires specification of only the first two
moments of the response distribution. The quasi-
likelihood also refers to the objective function, anal-
ogous to a likelihood, that is used for inference in
this method. Quasi-likelihood (QL) is another suc-
cessful example of a partially parametric approach
to statistical modeling in which only that portion of
the probability model of scientific interest is speci-
fied. Cox’s proportional hazards model (see Cox
Regression Model) and the partial likelihood [1]
method of estimation for survival data are other lead-
ing examples.

QL is an extension of generalized linear mod-
els (GLMs). QL is to generalized linear models as
least squares is to the general linear model. In
the classical linear model, it is assumed that yi =
x′

iβ + εi, i = 1, . . . , n, where the εi are independent
Gaussian random variables with mean zero and possi-
bly different variances vi , here assumed to be known.
The maximum likelihood estimate of β is then given
by β̂ = (X′V−1X)−1(X′V−1Y), where X is an n × p

matrix with xi as its ith row, Y = (y1, y2, . . . , yn)

and V = diag (v1, v2, . . . , vn). But the same estima-
tor can be arrived at by assuming only that E(Y) =
Xβ and that var(Y) = V, and then finding the min-
imum variance unbiased estimator of β. Whereas
the classical linear model specifies the entire prob-
ability distribution of the responses, weighted least
squares estimators rely only on assumptions about
the first two moments of the distribution.

The generalized linear model [16] is a powerful
extension of the classical linear model that includes
models for discrete (see Categorical Data Analy-
sis) and non-Gaussian, continuous responses. In a
GLM, the response variable is assumed to follow
an exponential family distribution which includes
the normal, binomial, Poisson, gamma, and other
distributions as special cases. The expected value
µi of the outcome yi is assumed to depend on the
linear predictor x′

iβ through the link function g by
g(µi) = x′

iβ. Finally, the variance vi of the response
is a known function of the mean, vi = v(µi). Most

common regression models, including linear regres-
sion, logistic regression, probit analysis (see Quan-
tal Response Models), Poisson regression and some
survival analysis models, are special cases of GLMs.
The advent of GLMs has unified regression method-
ology for the diverse types of responses encountered
in biostatistical practice.

The score equation (see Likelihood) for the regre-
ssion coefficients β in a GLM is

n∑

i=1

∂µi

∂β
v−1

i (yi − µi(β)) = 0, (1)

which is typically solved for β̂ through an itera-
tive weighted least squares algorithm because the
weights v−1

i (µi) depend on β (see Generalized Lin-
ear Model). In 1974, Wedderburn [22] pointed out
that only the mean and variance of the response
appear in (1). He showed that the solution of this
equation had desirable statistical properties whether
or not the mean and variance functions derive from a
particular likelihood. Hence, Wedderburn advocated
an estimation method in which we specify only: the
dependence of the mean µ on explanatory variables
x; and the dependence of the variance v of a response
on its mean µ, and then solve (1). He further intro-
duced the integral of (1) as the quasi-likelihood, to
be used as an objective function for inference, ana-
logous to the likelihood function when the complete
probability distribution of the data is specified. The
QL is given by

Q(yi, µi) =
∫ µi

−∞
yi − t

vi

dt + f (yi), (2)

where f (yi) is an arbitrary function of yi .

Properties of QL Estimators

QL estimators have desirable finite sample and
asymptotic statistical properties (see Large-sample
Theory). Its finite sample optimality derives from
the fact that the QL estimating equation is perhaps
the most important example of an optimal estimating
function as defined by Godambe [5, 6]. An optimal
estimating function g(Y, θ) = ∑n

i=1 g(yi, θ) is a
random function with expectation 0 for all θ which
minimizes

Sn = E

[(
g(Y, θ)

E(∂g(Y, θ)/∂θ)

)2
]

. (3)
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This criterion selects for unbiased estimating
functions which have small variance (numerator) and
steep gradients (denominator). It is an estimating
equation analog of the Gauss–Markov criterion for
linear unbiased estimators (see Least Squares).
Score functions minimize this criterion. Godambe
& Heyde [7] show that the QL estimating function
minimizes (3) among unbiased functions that are
linear in the data. A related line of theory has
established that the QL is the projection of the true
score function into a class of unbiased estimating
functions [12]. Firth [4] presented specific evidence
about the efficiency of QL estimators in finite
samples.

QL estimators also have two desirable asymptotic
properties. First, under regularity conditions, the solu-
tion of the QL estimating function is a consistent
estimator of β given only that E(yi) = µi(β), regard-
less of whether the variance assumption vi = v(µi)

is correct. Hence, the QL estimator will converge to
the correct value as long as the regression model for
the mean is correct. This important property is illus-
trated in the example below. Secondly, McCullagh
[15] has shown that the QL estimator is asymptot-
ically unbiased and efficient among the class the
estimating equation of which is a linear function of
the data Y .

Example

The data set below [13] is from a teratologic exper-
iment to test the effects of a chemical agent on the
survivorship of rat pups. The fraction that survived
21 days of lactation for each dam for the control and
treated groups are as follows:

control 13/13 12/12 9/9 9/9 8/8
4/5 9/10 9/10 8/9 11/13
8/8 12/13 11/12
5/7 7/10 7/10

treated 12/12 11/11 10/10 9/9 5/10
8/9 4/5 7/9 4/7 10/11
3/6 3/10 0/7
9/10 9/10 8/9

There is nearly four times as much variation among
these survivor fractions as is expected under a
binomial model, indicating that the probability of
pup survival is not constant across dams; in other
words, that there is a substantial litter effect (see
Overdispersion).

The scientific question – Does the chemical expo-
sure decrease the pups’ chance of survival? – can
be formulated as a logistic regression model. How-
ever, there are at least two approaches to account
for the litter effect. First, the survival probabilities
can be assumed to vary across dams beyond that due
to the treatment. The conjugate prior for the bino-
mial sampling distribution is the beta distribution,
giving a beta-binomial model for the observed frac-
tions [11, 23]. As an alternative, the QL approach can
be used where the variance of the number of surviv-
ing pups is assumed to follow vi = φniµi(1 − µi),
where ni is the number of pups in litter i and φ is
the overdispersion parameter which allows for extra-
binomial variation. The QL estimator of the logistic
regression coefficients is consistent given that only
the logistic model for the expected survival rates is
correct. Unfortunately, the same is not true for the
beta-binomial model. For example, if the degree of
extra-binomial variation (litter effect) is assumed to
be the same in the treated and control groups, then the
beta-binomial, maximum likelihood estimate of the
treatment log odds ratio of survival is −0.665(se =
0.460). When the litter effects are allowed to dif-
fer for the two treatment groups, the treatment effect
MLE is −1.13(se = 0.464), nearly twice as large.
But the QL estimate is −0.961 whether or not the
overdispersion is assumed to be the same in the two
groups.

Hence QL has the important advantage that it
unlinks the estimation of the regression coefficients in
the mean model from the specification and estimation
of the variance model [20].

Extensions of Quasi-Likelihood

Extensions and applications of QL, reaching from
methods for stochastic processes [7, 24] to miss-
ing data problems [10], to estimation of semipara-
metric regression models [21], have broadened its
influence on biometric research. We focus on four
extensions. The first is to allow inference about vari-
ance functions. As originally proposed, the QL objec-
tive function (2) is useful for inference about the
mean model: choosing among explanatory variables
or for comparing link functions, but it is not use-
ful for choosing among variance functions. Hence,
Nelder & Pregibon [19] introduced an extended
quasi-likelihood function that includes a second term
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−1/2 log[2πφvθ (y)] where var(y) = φvθ (µ) is the
variance function which is now assumed to be a
member of a class, indexed by the parameter θ .
Mean parameters that maximize the original QL also
maximize the extended QL, but variance parame-
ters can now also be estimated by maximizing the
extended version. Finite sample and asymptotic stud-
ies of the extended QL have been reported in [3,
18].

The original QL estimating equation is lin-
ear in the data. A second interesting exten-
sion, proposed by Crowder [2] and Godambe
& Thompson [8], is to define an estimat-
ing function analogous to (1) for the response
W = (y1,y2, ...,yn,y

2
1 ,y1y2,y1y3, ...,yn−1yn,y

2
n),

giving rise to a QL-like method with quadratic esti-
mating functions. In quadratic QL estimation, the first
and second moments of the distribution must be cor-
rectly specified to make consistent inferences about
their parameters, third and fourth moments must be
specified to increase the efficiency of estimation.

A third extension deals with the limitation that
the original QL equation does not permit nuisance
parameters. For example, in regression analysis with
correlated responses, the regression parameters are
often of scientific interest, but correlation among
responses must be modeled to make valid and effi-
cient inferences. Liang & Zeger [14] proposed a
multivariate analog of (1), called the generalized
estimating equation or GEE, which could include
nuisance parameters. They showed that the asymp-
totic properties of the QL carry over to the GEE as
well.

A final important line of QL research addresses
the question of how to define the QL objective
function for cases, such as the GEE, in which there
is more than one path of integration available. Such
a function is needed if the QL estimating function
has multiple roots, for example. McLiesh & Small
[17] project the likelihood ratio statistic on to the
space of functions linear in the responses and then
propose the log of this projection as an objective
function. Li & McCullagh [12] obtain a unique
quasi-likelihood function by projecting the true score
equation, rather than log likelihood, on to a class
of estimating functions, each member of which is
linear in yi and is required to be the derivative
of an objective function. Hanfelt & Liang [9] have
developed an alternate approach in which they do
not limit the class of estimating functions, but rather

allow the integral of the QL estimating function to
be path-dependent. They showed that many useful
properties of the log-likelihood, including identifying
consistent roots, are preserved by these extended QL
functions.
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Quasi-symmetry

Quasi-symmetry arises most commonly in the anal-
ysis of dependent samples in contingency tables.
In their simplest form, such tables have a two-
dimensional square structure, where the variable for
rows has the same categories as the variable for
columns (see Square Contingency Table). Examples
are: (i) when the responses of two matched sub-
jects (such as mothers and daughters, or patients and
controls) are classified according to some categori-
cal variable (see Matched Pairs With Categorical
Data); (ii) when subjects are categorized according
to two essentially similar variables (such as visual
faculty of the right and the left eye); and (iii) panel
studies, where each subject is classified according to
the same criterion at two different points in time, or
according to the same criterion by two judges.

Three types of symmetry can occur in such situa-
tions: complete symmetry, marginal symmetry, and
quasi-symmetry. These are introduced in the next
Section for two-dimensional tables.

Two-Dimensional Tables

Tables 1–3 illustrate the three types of symmetry
for a two-dimensional square table (cf. [5]). In that
case, observed frequencies {nij , i, j = 1, . . . , I } in
the cells (i, j ) are formed by cross-classifying two
categorical responses with a random sample of size
n. The joint distribution of {nij } is multinomial with
parameters n and {πij }, where πij is the probability of
the cell in row i and column j of the table. Complete
symmetry is defined by πij = πji for all i and j

(see Table 1). The maximum likelihood estimates
(MLEs) are π̂ij = (nij + nji)/2n, and the number of
independent constraints is I (I − 1)/2.

Marginal symmetry, also referred to as marginal
homogeneity, is defined by πi+ = π+i , i = 1, . . . , I ,
where + denotes the sum, e.g. πi+ = ∑

j πij .
Table 2 shows an example. The number of
independent constraints is I − 1. Although no explicit

Table 1 Example of complete symmetry

0.10 0.15 0.05 0.30
0.15 0.25 0.10 0.50
0.05 0.10 0.05 0.20
0.30 0.50 0.20 1.00

Table 2 Example of marginal symmetry

0.08 0.17 0.05 0.30
0.12 0.25 0.13 0.50
0.10 0.08 0.02 0.20
0.30 0.50 0.20 1.00

Table 3 Example of quasi-symmetry

0.10 0.05 0.15 0.30
0.05 0.40 0.05 0.50
0.06 0.02 0.12 0.20
0.21 0.47 0.32 1.00

solutions exists for MLEs, numerical solutions are
easily obtained by iterative methods [7, p. 289;
13, p. 493] (see Iterative Proportional Fitting).
Complete symmetry implies marginal symmetry. For
2 × 2 tables, marginal symmetry conversely implies
complete symmetry.

A third kind of symmetry occurs when there
are symmetric proportions in so far as it is possi-
ble, given asymmetric marginal distributions. Quasi-
symmetry is a weaker condition than complete sym-
metry, meaning that the odds ratios describing
the association structure, rather than the probabili-
ties themselves, are symmetric. Specifically, for all
i and j , the odds ratio (πikπkj )/(πkiπjk) is the
same for all values of k. Thus, in Table 3, for
i = 1, j = 2, and k = 1, 2, 3 : (π11π12)/(π11π21) =
(0.10 × 0.05)/(0.10 × 0.05)= (π12π22)/(π21π22) =
(0.05 × 0.40)/(0.05 × 0.40)= (π13π32)/(π31π23) =
(0.15 × 0.02)/(0.06 × 0.05)= 1. Quasi-symmetry
applies to square tables of size 3 × 3 and larger. The
number of independent constraints is (I − 1)(I −
2)/2. For I = 3, quasi-symmetry is equivalent to
quasi-independence.

The quasi-symmetry model was introduced by
Caussinus [9] in multiplicative form as

πij = αiβjγij ,

where the αi describe the rows, the βj describe the
columns, and the interaction parameters γij satisfy
γij = γji , for i �= j . All parameters must be suitably
constrained, such as

∏
i αi = 1. The model implies

that there is a shift in the expected off-diagonal
elements, relative to the symmetry model, caused by
the differing main effects {αi} of the rows and {βj }
of the columns. For a loglinear representation, see
[3, p. 235].
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The likelihood equations have no direct solution
but can be solved iteratively. Caussinus [9] used the
method of iterative proportional fitting, Haberman
[13] additionally described a method for obtaining
ML solutions using the Newton–Raphson procedure
(see Optimization and Nonlinear Equations), and
Bishop et al. [7, p. 291] used an incomplete table
representation. Using standard software such as SAS,
one can fit the complete symmetry model as well as
the quasi-symmetry model (cf. [3, p. 276]).

Example

Table 4, given by Stuart [18] and analyzed by Bishop
et al. [7, p. 284], describes data on unaided distance
vision for the right and left eyes. One would expect
that most people have equivalent visual faculties in
both eyes. Most observations in Table 4 concentrate
on the main diagonal, supporting this hypothesis.
Under complete symmetry, the estimated expected
cell count is m̂ij = (nij + nji)/2, and the Pearson
chi-square test statistic for checking its fit (cf. [13,
p. 489]) simplifies to

X2 =
4∑

i=2

3∑

j=1

(nij − nji)
2

(nij + nji)
.

This, or the likelihood ratio test statistic G2, has
asymptotic χ2 distributions with df = 6. The values
X2 = 19.11 and G2 = 19.25 for Table 4 suggest that
the hypothesis of complete symmetry is not tenable
(p = 0.004).

For the quasi-symmetry (QS) model fitted to
Table 4, the goodness of fit statistics equal X2 =
7.26 and G2 = 7.27, with corresponding p values
of 0.064. Thus, the QS model provides a significant
improvement in fit over the complete symmetry
model. Table 5 shows the estimated expected fre-
quencies m̂ij for the QS model.

Table 4 Observed counts for unaided distance vision

Left eye grade

Right eye grade Best Second Third Worst Total

Best 1520 266 124 66 1976
Second 234 1512 432 78 2256
Third 117 362 1772 205 2456
Worst 36 82 179 492 789

Total 1907 2222 2507 841 7477

Table 5 Expected values under quasi-symmetry for the
unaided distance vision data of Table 4

Left eye grade
Right eye
grade Best Second Third Worst Total

Best 1520.00 263.38 133.58 59.04 1976
Second 236.62 1512.00 418.99 88.39 2256
Third 107.42 375.01 1772.00 201.57 2456
Worst 42.96 71.61 182.43 492.00 789

Total 1907 2222 2507 841 7477

The interpretation of quasi-symmetry requires
some care, since the model refers to symmetrical
odds ratios instead of symmetrical probabilities. For
instance, the ML estimate of the odds of having
second-degree rather than third-degree visual faculty
on the left eye, given best faculty of the right
eye, equal (263.38/133.58); compared to the odds of
having second-degree rather than third-degree visual
faculty on the left eye, given second-degree faculty
of the right eye, which is (1512.00/418.99), we obtain
an odds ratio of 0.55. Symmetrically, the odds of best
grade to second grade on the left eye, given second-
degree faculty on the right eye, compared to the odds
given third-degree faculty on the right eye, equals
(236.62/1512.00)/(107.42/375.01) = 0.55. Thus, the
QS model implies a certain kind of symmetric
relationship between the visual faculty of the left and
the right eye, even though proportions of different
grades of visual faculty differ for the right and the
left eyes.

Three- and Higher-Dimensional Tables

More generally, consider three responses i1, i2, i3,
where each response ig has I possible categories
at any occasion g, g = 1, 2, 3. Then an I 3 con-
tingency table summarizes the frequencies of the
possible responses at the three occasions. A cell in
the contingency table is denoted by i = (i1, i2, i3)

according to the responses. The probability that a
randomly selected individual enters cell i in the con-
tingency table is π(i), the expected frequency for that
cell is mi = nπ(i), and the marginal probability for
response in category h at the gth occasion is denoted
πg(h). Three types of symmetry can be defined as
follows:

1. Complete symmetry occurs when πi = πj for any
permutation j = (j1, j2, j3) of i = (i1, i2, i3). For
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instance, if I = 3, the responses (0,1,2), (0,2,1),
(1,0,2), (1,2,0), (2,0,1), and (2,1,0) all have the
same probability.

2. Marginal symmetry of order one is defined
by π1(h) = π2(h) = π3(h), for all h = 1, . . . , I .
Marginal symmetry of order two addition-
ally assumes equality of the joint marginal
probabilities πg,g′(h, h′), = πg,g′(h′, h), for all
g �= g′, and π12(h, h′) = π13(h, h′) = π23(h, h′).
Marginal symmetry of order two implies that of
order one.

3. In an I 3 table, quasi-symmetry of order two
or order one is a property of interactions of
π . Quasi-symmetry of order two is satisfied if
there are three sets of parameters {αg(h), h =
1, . . . , I } and parameters {γ (i)} that are identical
for all permutations of i = (i1, i2, i3), such that

πi = α1(i1)α2(i2)α3(i3)γ (i),

with suitable identifiability constraints. Quasi-sym-
metry of order one holds if there are 3(3 − 1)/2 addi-
tional parameters βgg′(h, h′) that satisfy βg,g′(h, h′) =
βg,g′(h′, h) and β12(h, h′) = β13(h, h′) = β23(h, h′);
that is,

πi = α1(i1) α2(i2) α3(i3)

× β12(i1, i2)β13(i1, i3)β23(i2, i3) × γ (i).

Quasi-symmetry of order one implies that of
order two.

For a detailed discussion of this case, see [5]
or [7]. MLEs are not directly available for either
the marginal or the quasi-symmetry models. Bishop
et al. [7] gave formulas for calculating the MLEs
iteratively and thus the likelihood ratio statistics to
test the corresponding hypotheses. Similar consider-
ations apply to higher-dimensional tables, which can
exhibit additional orders of quasi-symmetry. A more
convenient representation of these models is given
by a loglinear formulation (see [1, p. 388]). Com-
puter packages for fitting loglinear models perform
the necessary computations to obtain estimates for
the symmetry and quasi-symmetry models of general
order.

Tests Related to Quasi-Symmetry

An important property of quasi-symmetry is that it
is complementary to marginal symmetry with respect

to complete symmetry. The quasi-symmetry structure
for expected cell counts with the addition of marginal
symmetry is equivalent to complete symmetry (cf.
[9]); that is,

quasi-symmetry + marginal symmetry

= complete symmetry.

Thus, to test for marginal symmetry, one can test for
complete symmetry assuming that quasi-symmetry
holds. In terms of likelihood-ratio goodness of fit
statistics,

G2(CS|QS) = G2(CS) − G2(QS).

For I × I tables, this difference has on the null
hypothesis, an approximate chi-square distribution
with I − 1 degrees of freedom. For the example on
unaided vision, G2

CS − G2
QS = 19.25 − 7.27 = 11.98

with df = 3, suggesting that the hypothesis of
marginal symmetry does not hold. Note that com-
plete symmetry implies both marginal symmetry and
quasi-symmetry. In the absence of complete sym-
metry, one could have either marginal symmetry or
quasi-symmetry, but not both. For T -dimensional
tables Bhapkar & Darroch [6] proved that HCS =
H

(k)

QS ∩ H
(k)
MH, where H

(k)

QS and H
(k)
MH are the hypoth-

esis of quasi-symmetry and marginal symmetry of
order k.

Several well-known tests, such as McNemar’s
test, Cochran’s Q, or the Mantel–Haenszel proce-
dure are special cases of tests for marginal symmetry.
See, for instance, [2, p. 229]). Alternatively, one may
use the “conditional likelihood score” statistics intro-
duced by Darroch [10].

Other Applications of Quasi-Symmetry

Many useful models are special cases of the quasi-
symmetry model. A Markov chain is a random
process in which individuals move among a lim-
ited number of states at certain points in time. The
probability of moving from state i to state j at any
time point is called a transition probability. For a
Markov chain of order one, these conditional proba-
bilities depend only on what happened one time point
previously. The considerations of complete, marginal,
and quasi-symmetry apply to this model (see [15]).
If the conditional probability of transition between
events is the same in each direction, then there is
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reversibility. In terms of the analysis of contingency
tables, this is quasi-symmetry. If the margins do not
change over time, then the process described by the
Markov chain is in the equilibrium state; that is, the
marginal distribution is stationary. In terms of con-
tingency tables, this is marginal symmetry.

Other applications of quasi-symmetry arise in the
context of psychometric models. The most basic
item response model used in educational testing was
proposed by Rasch [17] (see Rasch Models). It
applies when a sample of subjects respond to a set
of items, such that the observations are Bernoulli
(see Binary Data) (“correct” or “incorrect” answer).
In a certain sense, this model can be regarded as a
quasi-symmetry model. For theoretical and computa-
tional aspects of this connection and for examples
in the context of generalized linear models, see
[14]. The latent class model is closely related to
the Rasch model, but the latent variable represent-
ing the subjects is categorical rather than continuous.
For quasi-symmetry in latent class models, see [3]
and [4]. Another model closely related to the Rasch
model is a model for paired comparisons formulated
by Bradley & Terry [8] (see Bradley–Terry Model).
This model has been shown to be equivalent to a
quasi-symmetric loglinear model (Fienberg & Larntz
[12]), and Dittrich et al. [11] describe how to fit the
Bradley–Terry model using GLIM.

Conclusions

In practice, the rather restrictive hypothesis of com-
plete symmetry is often rejected in favor of the more
flexible structure of quasi-symmetry. Useful introduc-
tions to the topic are [1, 3, 7, and 13]. More advanced
sources are [5, 6, 16].
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Questionnaire Design

In responding to an ever-increasing demand for infor-
mation gathering and analysis to assist in making
policy decisions, and designing effective treatments,
many health professionals find themselves in the
position of developing and reviewing survey ques-
tions or relying on information based on survey data
(see Surveys, Health and Morbidity). The survey
research community has known for some time that
poorly designed questions can result in poor data
quality, particularly in household or general popu-
lation surveys [15]. Since surveys are a necessary
source of data, the importance of improving our
understanding of the inherent flaws of survey ques-
tions remains critical.

Through the use of a survey interview, it is feasible
to collect a wide array of meaningful data cover-
ing factors of possible etiologic significance for dis-
ease [1, 6, 9, 10]. Information concerning the social,
psychological, and economic aspects of each indi-
vidual’s life situation, as well as past experiences
and family medical history, can be determined with
varying degrees of validity and can be related to the
incidence or prevalence of disease [8]. Due to the
usually retrospective character of such investigations
and the difficulties in establishing validity for self-
report measures, most researchers accept that answers
to these kinds of questions rely in part on inference,
which may be error-prone [2, 11]. Nevertheless, the
broad range of factors that can be explored through
surveys make them particularly suitable for sorting
out a multitude of hypotheses about health issues,
treatments, and outcomes.

Designing a questionnaire requires development
of a set of questions used to obtain statistically use-
ful information from an individual. While that task
appears to be straightforward and clear cut, ques-
tionnaires are difficult to design for several reasons
(see Schechter & Herrmann [16] for further dis-
cussion). First, each question must provide a valid
and reliable measure. Secondly, the questions must
clearly communicate the research intention to the
survey respondent. Thirdly, the questions must be
assembled into a logical, clear instrument that flows
naturally and will keep the respondent sufficiently
interested to continue cooperation (see Interview-
ing Techniques). To meet these challenges, designing
a questionnaire should involve three distinct phases:

initial questionnaire planning, development and test-
ing of specific questions, and final construction of the
data collection instrument as a whole.

Initial Questionnaire Planning

Low estimates of the time needed to develop
early drafts of questions can have a serious effect
on questionnaire quality. Typically, the person
responsible for developing the survey instrument is
one of many people involved in the survey process.
However, since the survey cannot be fielded without
a completed data collection instrument, pressure to
develop a questionnaire quickly is often exerted.
Experienced questionnaire designers joke that a
questionnaire is finished when time runs out, not
necessarily when it is the best it can be.

If the instrument needs to be constructed from
scratch rather than modified from an existing one,
a list of concepts or topics will first be generated.
Translating general topics into series of survey ques-
tions is challenging and time-consuming. Consul-
tations, meetings, and brainstorming sessions with
subject matter experts, survey methodologists, and
survey sponsors will be beneficial prior to writing
any questions. Reviews of related surveys and data
collection instruments that might have measured sim-
ilar concepts will help facilitate the writing of new
questions.

Once a draft of questions is developed, time is
needed for iterative cycles of review and revision.
This cyclical process is critical to the development
of the instrument, because drafts of questions usually
help researchers to refine and clarify their research
objectives. It is through this process that the question-
naire will evolve, and the concepts included in the
survey will become more focused. Reviews should
insure that every item in the questionnaire is defen-
sible as a meaningful contribution to the intended
analyses. Most designers work with survey sponsors
to develop table specifications that illustrate how the
data from a series of questions will be analyzed. A
critical examination of draft table shells is key to
insuring a comprehensive, thoughtful research plan.
A related approach that some find helpful is to docu-
ment in written form the purpose or justification for
each question.

Invariably, the length of the questionnaire becomes
a topic of debate during the initial planning phase. A
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lengthy instrument is cause for concern, because it
increases both the cost of interviewer administration
and the respondent burden. Survey sponsors and other
interested researchers often view a questionnaire as
a “once in a lifetime” opportunity to collect data
that will contribute significantly to solving a unique
problem. Reviewers of draft questions find that their
topics of interest increase because they begin to see
the rich potential that the data will offer. It is never-
theless necessary to limit the instrument scope for a
number of reasons.

Beyond the sheer data collection expenses of long
questionnaires is the impact that length has on data
quality. Increased response burden may lead to cog-
nitive problems in answering questions that can result
in response error. For example, respondents may
resort to guessing or less serious efforts at recall-
ing information [13]. Respondents may begin to give
wrong answers as a way to shorten their interview.
They may ascertain, for example, that answering
“No” to a screener question about a medical condition
will eliminate a long series of follow-up questions
about that condition. Interviewers also become tired
and aware of the burden on respondents. In order
to complete interviews successfully, they may read
questions too quickly or may lead respondents to
answers.

Lastly, the survey objectives and draft questions
need to be reviewed together to insure that the right
types of questions are being asked for a given topic.
Questionnaires can contain a mix of questions that
ask for reports of knowledge, behavior, practice, atti-
tude, and opinion. In addition, many surveys ask
one respondent for proxy reports of others. Con-
sider the similarities and differences in the following
questions:

1. Knowledge – How often does the National Can-
cer Institute recommend that women age 50 and
older should get mammograms?

2. Opinion – How often do you think that women
age 50 and older should get mammograms?

3. Behavior – Since turning 50, how many mam-
mograms have you had?

4. Proxy – Since turning 50, how many mammo-
grams has your wife had?

Sponsors sometimes suggest questions that will not
measure what is needed. During the review process,
categorizing questions by type (e.g. knowledge) and

reviewing these categories against the list of topics
can improve the instrument and subsequent analy-
sis.

Development and Testing of Specific
Questions

After draft questions have been developed, the next
step is to refine these specific questions and test them
with a variety of respondents. Testing questions in a
cognitive laboratory offers an opportunity to iden-
tify serious question problems in a cost-effective and
timely manner. Cognitive interviews are based on the
theory that in answering a survey question, respon-
dents mentally process the question in cognitive
stages. Tourangeau [20], Willis et al. [21], and others
(see Jobe & Herrmann [12] for further discussion)
have presented cognitive models that describe four
stages: comprehension of the question, retrieval of
information, decision or judgment about the question
and answer, and the actual response given. Applying
principles of cognitive psychology when conducting
laboratory interviews helps the researcher understand
and resolve the problems that questions can create for
respondents.

Terms and Concepts Should be Familiar and Easy
to Understand

Problems arise when questions contain unfamiliar,
vague, or ambiguous terms and concepts. The respon-
dent’s comprehension of the question may not coin-
cide with the intentions of the questionnaire designer
but, nevertheless, it serves as the internal frame from
which the respondent develops an answer. As a gen-
eral rule, questions should be written in the standard
spoken version of the language being used. Wording
that is specific and concrete is more apt to commu-
nicate uniform meaning. Furthermore, words that are
nontechnical and shorter both in length and in sylla-
bles are preferred.

Laboratory interviews often reveal problems asso-
ciated with question structure. For example, the ques-
tion can be so brief that the respondent is unsure
of the intent of the question. Similarly, a ques-
tion can be too long and complex, so that the
respondent is unsure what the question is really ask-
ing. These sorts of question problems can result in
the respondent’s individual interpretation of what is



Questionnaire Design 3

being asked. If the respondent is to assume or know
something specific before formulating an answer, the
relevant information must be included in the ques-
tion.

Cues and Ordering of Questions Should Serve to
Stimulate Recall

Survey respondents are often asked to recall and
access information from memory. This process may
be fairly direct and a quick and accurate answer to
the question may be provided. However, problems
can occur when the respondent has to recall too much
information, or has to recall information that is not
readily accessible in memory. Recalling an event or
behavior can be especially difficult if the event was
relatively unimportant or trivial to the respondent,
if the event happened long ago, or if the question
requires recall of too much detail (see Recall Bias).

Recognizing some degree of error in reporting
exact information, there are questionnaire design
steps that can help the respondent’s memory search.
Sometimes, a short series of related questions will
jog the respondent’s memory and assist in more
difficult recall tasks. Providing an anchor for the ref-
erence period (such as “Since last Christmas . . .”)
can help place the memory in correct context [14].
In a face-to-face survey, recall can also be stim-
ulated by the use of calendars, timelines, or other
visual tools that may help the respondent to organize
events in a time sequence. Questions should ask about
information that is directly accessible to respondent
memory. Recall delay should be kept to a minimum,
as the recent past is generally easier to remember
than more distant events. Focusing a question only
on recent activity may reduce telescoping, the ten-
dency for rare events occurring prior to the designated
recall period to be erroneously included in the activity
report [4, 5].

As the respondent evaluates retrieved informa-
tion, he or she judges the accuracy of the response
and may decide that the information is not complete
or accurate. For certain questions, respondents may
quickly decide that the task is too complicated to
try to retrieve the information from memory and,
rather, will answer with an estimate. The question-
naire designer should anticipate that respondents will
rely on estimation strategies if the question requires
too much detail or mental calculations.

Ordering and Format of Questions Should be
Unbiased and Balanced

The ordering of questions can influence response
strategies and response errors. Context effects occur
when two or more questions deal with aspects of the
same issue or with closely related issues. This takes
on practical importance because questionnaires are
ordinarily constructed by grouping together questions
on the same subject matter which may, ironically,
encourage context effects. General questions seem to
be more sensitive to order effects than more specific
questions. It may be that general questions are so
broad that their frame of reference is more open to
interpretation and, therefore, respondents are more
likely to use the context from another question in
their interpretation.

The format of the question itself can also cause
cognitive problems. An open format allows the res-
pondent to offer any answer and the interviewer
records a verbatim response. However, questionnaires
that are designed to collect significant amounts of
data from a relatively large pool of respondents
usually employ a closed format. Uniform, fixed
response categories are provided and the respon-
dent is instructed to select from them. The responses
are coded, numbers are assigned to them, and they
are counted and statistically analyzed. When deter-
mining the format of the responses, however, more
than just an open and closed format needs to be
addressed. What scales are being used (see Mea-
surement Scale)? Are the response options consistent
with the measure being sought? One typical finding
in reviews of questionnaires is that the question and
corresponding response categories ask for much more
detail than is needed for analysis purposes [17]. This
demand for detail can create an unnecessary burden
on the respondent which could lead to “satisficing”
(providing a quick answer, whether accurate or not,
to satisfy the survey requirements [13]).

Assembling the Final Questionnaire

After the questions have been revised and tested, they
must be integrated into a final data collection instru-
ment. Sponsors and subject matter experts typically
focus on the development and review of individual
questions designed to measure specific items of inter-
est. While each questionnaire item must be judged
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carefully on its own merit, it is usually the respon-
sibility of the questionnaire designer to fit the items
together in a meaningful way so that the entire ques-
tionnaire is unified. The goal is for the respondent to
sense that the progression between topics and ques-
tions is natural and interesting. The smooth flow
of the questionnaire should not only increase the
respondent’s attention and cooperation, but has an
important effect on the interviewer’s ability to best
do his/her job. Survey researchers who have observed
field interviews often hear interviewers make com-
ments such as “I know I already asked you this, but
I have to ask again”. This is troublesome both to the
interviewer, who often worries that the respondent
will break off the interview prior to completion, and
to the respondent, who often becomes aggravated or
irritated by questions that are repetitive, inappropri-
ate, or abrupt (see Interviewing Techniques). It is
useful to consider the following when reviewing the
overall questionnaire:

1. Is there a logical progression of questions, so
that the respondent is drawn into the interview
by awakening interest in the topic?

2. Is the respondent first asked items that are simple
to answer and then asked those which are more
detailed or complex?

3. Is the respondent first asked objective, straight-
forward questions and then asked for more per-
sonal or sensitive information?

4. Is the respondent brought smoothly from one
frame of reference to another by use of transi-
tional statements or series of questions that fit
well together?

When analyzing the questionnaire as a whole, one
should experiment with moving sections of ques-
tions. The order of the question series is originally
put together in a somewhat random fashion, and yet
designers are hesitant to move series of questions
around in order to increase logic and administration
flow. One check on the flow of the questionnaire is
to list, in order, the main topics of each series to
determine if the ordering is appropriate and mean-
ingful.

Questions and response formats should be review-
ed for consistency. For example, it is undesirable for
series of questions to shift abruptly from Yes/No to
True/False to Agree/Disagree response alternatives. It
is also confusing to vary the use of reference periods.

For example, questions about events in the past 12
months should not be interspersed with questions
about events in the past 30 days.

A thorough check of skip patterns is essen-
tial. Skip patterns insure that inappropriate ques-
tions are skipped, and also that appropriate items
are not skipped. Both respondents and interviewers
can quickly feel irritated by inappropriate, repeti-
tive questions. These patterns should be tested by
mock administrations of the questionnaire, following
as many different branches of skip logic as possible.

Lastly, the mode of administration must be con-
sidered in the final review of the instrument. There
are three common modes for data collection: (i) self-
administered, where a respondent completes a form
with no interviewer interaction; (ii) telephone, where
an interviewer calls a respondent and asks survey
questions over the phone (see Telephone Sampling);
and (iii) face-to-face, where an interviewer meets
with a respondent and asks the survey questions
in person (see Interviewer Bias). For each mode,
another level of complexity may be added by using
a computer for data entry (see Computer-assisted
Interviewing).

Choice of mode may seem primarily an admin-
istrative issue, but it can also affect data quality
[3, 7, 18]. For self-administered questions, instruc-
tions must be clear, brief, and easy to follow without
assistance. Since the respondent cannot ask for clarifi-
cation, he or she will interpret questions and response
alternatives from a personal frame of reference. And
if the question or format is too complicated or tech-
nical, error may result as the respondent becomes
frustrated in attempts to complete the questionnaire.

Personal interviews obviously offer visual com-
munication between the interviewer and the respon-
dent. This is important not only in motivating the
respondent to answer accurately, but also in serving
to troubleshoot comprehension and recall problems
[19]. Interviewers can answer questions and provide
detailed explanations as to what the questions really
mean. In addition, face-to-face interviews provide
excellent opportunities for respondents to use mem-
ory aides such as cards and calendars. When design-
ing telephone surveys, questions should be more
brief and direct than in face-to-face interviews [7].
Response alternatives should be shorter and easier to
understand because the respondent must remember
all the choices while selecting an answer.
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Conclusions

In the 1980s, a shift in questionnaire design from
a literary approach to a scientific approach was
begun. Research during this period has resulted in an
increased understanding of the mental processes that
enable survey respondents to answer questions, and
this understanding has produced a dramatic improve-
ment in the quality of questionnaires. Clearly, a
good questionnaire grows from research hypotheses
that have been carefully studied and thought out.
Discussion of the research problem with colleagues
and subject matter experts is critical to develop-
ing good questions. Questions should be reviewed,
revised, and tested on an iterative basis. Further-
more, examining the questionnaire as a whole is an
essential element of good questionnaire design. Since
health professionals, researchers, and policy makers
rely heavily on survey data, current research on ways
to reduce nonsampling errors in surveys will con-
tinue to have emphasis and importance.
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Quetelet, Lambert–
Adolphe–Jacques

Born: February 22, 1796, in Ghent, Belgium.
Died: February 17, 1874, in Brussels, Belgium.

Adolphe Quetelet received his initial scientific train-
ing from the University of Ghent. After graduating
with a doctor of science degree in 1819, he taught
mathematics at a collège in Brussels. When he was
elected to the Académie Royale des Sciences et
Belles-Lettre de Bruxelles, he campaigned for the
founding of an astronomical observatory in Belgium.
In 1823, the Belgian government agreed to fund the
project and to finance Quetelet’s visit to Paris where
he learned mathematical and astronomical methods
from such scientific notables as Jean Baptiste Joseph
Fourier and Siméon-Denis Poisson and, possibly, the
aging Pierre Simon Laplace. In addition to these
theoretical concerns, Quetelet’s sojourn in Paris also
sparked a lifelong interest in social statistics: he
began to collect data on things like birth, death, mar-
riage, crime, and suicide, and arranged his results
according to age, sex, profession, and place of resi-
dence (see Vital Statistics, Overview).

In 1835, Quetelet combined his twin interests in
statistics and the natural sciences in a book enti-
tled, Sur l’Homme et le Dévelopment de ses Facultés.
By developing an elaborate system of metaphors and
similes, Quetelet attempted to describe the statistical

regularities in society in terms of the theories of
physics and astronomy; he dubbed his activity “social
physics” with the central organizing construct being
l’homme moyen, or the statistically “average man”.
The average man produced stability in the social
order by serving as a kind of “center of gravity”. In
addition to this political role, Quetelet [2] also empha-
sized the centrality of the concept of the average man
for medical diagnosis: “The consideration of the aver-
age man is so important in medical science, that it is
almost impossible to judge of the state of an individ-
ual without comparing it to that of another imagined
person, regarded as being in a normal condition.”

Quetelet’s specific analogies from physics and
astronomy proved to have little resonance among his
contemporaries; nevertheless, he still had a tremen-
dous impact on the development of biostatistical
thinking. As discussed in Lécuyer [1], his gen-
eral belief in the orderliness of the social world
as revealed through statistical data was exceedingly
influential among some of the leading statistically
minded physicians and demographers of the nine-
teenth century, such as Louis-Adolphe Bertillon
(1821–1883), Jacques Bertillion (1851–1922), and
William Farr (1807–1883). Also, Quetelet had a
profound impact on the nineteenth-century statisti-
cal movement more generally by playing a decisive
role in the founding of numerous statistical soci-
eties, such as Section F of the British Association
for the Advancement of Science (1833), the Statis-
tical Society of London (1834), and various inter-
national statistical congresses. Even today, some of
Quetelet’s statistical ideas are still in use; one promi-
nent example is his measure of body mass (now
called Quetelet’s Index), which is formed by com-
puting the weight of an individual and dividing it by
the height of the individual squared.
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Queuing Processes

A facility has s stations, or servers, for serving
customers. If all the s stations are occupied, then
newly arriving customers must form a queue, or a
waiting line, until a station is available for service.
The main features in analytic studies of queuing are
the length of queue, the waiting time, and the duration
of service.

Queuing phenomena can be observed in many
practical situations where congestion problems exist.
Queuing is apparent in everyday business transac-
tions, in communications, in medical services, in
transportation, and in industry. The objective of queu-
ing is to resolve congestion, to optimize efficiency,
to minimize waiting time or inconvenience to cus-
tomers, to speed production, or even to save life.

The queuing concept was originally formulated by
Erlang [3] in his study of telephone network con-
gestion problems. In “The Life and Works of K
Erlang,” published in 1948, there is a good collection
of articles of both practical importance and theoretical
interest. However, it was the two papers by Kendall
[6, 7] that brought queuing problems to the atten-
tion of theoretical people. As advances were made in
stochastic processes, queuing theory also has flour-
ished. Mathematicians, statisticians, engineers, and
investigators in many other disciplines have made
contributions to queuing theory and to the resolving
of practical problems. Actual needs and the curiosity
of theoretical investigators have elicited many vari-
ations of queuing problems. It has been observed,
for example, that customers often arrive in groups
of various sizes, rather than singly; unaccommodated
incoming phone calls may be lost instead of waiting
in a queue (balking); service time may vary from one
station to another due to the difference in efficiency of
servers (heterogeneous servers); the service provided
in medical institutions, in assembly lines, and oth-
ers, often consists of several phases, each requiring
a separate waiting line (tandem queue). Most of the
problems have been resolved with great mathematical
ingenuity, some beyond the level of this article.

Generally, a queuing system is identified by:
(i) the input process (arrivals may be random,
planned, or patterned; (ii) the service time distribu-
tion; and (iii) the number of stations; or simply by

Input distribution/service time/number of stations.

Symbolically, G (“general”) stands for an arbitrary
distribution; M (“Markov”) for arrivals by a Poisson
process, exponential interarrival time, or exponential
service time; and D (“deterministic”) for constant
interarrival time or service time. For example, we
may denote a queuing system with Poisson arrivals,
an exponential service time, and s stations by M/M/s,
and denote a queue with arbitrary arrivals, a constant
service time and one service station by G/D/1. In
this entry, we consider M/M/s queues, for s > 1,
and discuss in some detail the number of customers
in a queuing system, the length of the queue, the
waiting time, the service time, and the total amount
of time a customer will spend in the system, and
their relationship. The corresponding formulas for an
M/M/1 queue can be obtained from this article with
the substitution of s = 1. The M/M/∞ queue, in
which there are an infinite number of stations, is also
presented. The article closes with a brief account of
M/G/1 queues. Queuing theory is a vast area with an
enormous literature. This article provides just a brief
introduction. Several important areas are omitted,
such as networks of queues (see, for example, [5])
and queues with priorities (see, for example, [8]). The
references include several sources for discovering
more about this fascinating topic.

M /M /s Queues

In an M/M/s queue, there are s stations (servers), the
arrival of customers follows a Poisson process with
parameter λ; service time has an exponential distri-
bution with parameter µ; and the service discipline
is first come, first served. When all the s stations are
occupied at time t , there is a probability sµ∆ + o(∆)

that one of the stations will be free for service within
the time element (t, t + ∆). Let X(t) be the number
of customers in the system at time t , including those
being served and those in the waiting line. If there
are i customers present at time t = 0, so X(0) = i,
let the transition probabilities be

Pi,k(0, t) = Pr[X(t) = k|X(0) = i],

i, k = 0, 1, . . . . (1)

These satisfy the following system of differential
equations:

d

dt
pi,0(0, t) = −λpi,0(0, t) + µpi,1(0, t),
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d

dt
pi,k(0, t) = −(λ + kµ)pi,k(0, t) + λpi,k−1(0, t)

+ (k + 1)µpi,k+1(0, t),

k = 1, . . . , s − 1, (2)

d

dt
pi,k(0, t) = −(λ + sµ)pi,k(0, t) + λpi,k−1(0, t)

+ sµpi,k+1(0, t), k = s, s + 1, . . . .

Instead of solving the above differential equations for
every finite t , we consider the limiting case when
t → ∞, and let X = X(∞) be the corresponding
limiting random variable. We shall call the possible
values of X(∞) the states of the queuing system.
The states in a system are said to be communicative
if any state in the system can be reached by any other
state in the system (see Markov Chains).

In this case, the limiting probabilities

lim
t→∞ Pr[X(t) = k|X(0) = i] = πk, i, k = 0, 1, . . . ,

(3)

exist, independently of the initial state i. If, in
addition, ∑

k

πk = 1, (4)

then these limiting probabilities give the stationary
distribution of the Markov chain {X(t), t ≥ 0}, oth-
erwise there is no stationary distribution and πk =
0, k = 0, 1, . . . (see [4, p. 261]).
Since the limiting probabilities are independent of
time, their derivatives with respect to time vanish.
This provides a series of difference equations, leading
to the solution

πk = (sρ)k

k!
π0, k = 1, . . . , s, (5)

= ρk ss

s!
π0, k = s + 1, . . . , (6)

or
πk = ρk−sπs, k = s + 1, . . . , (7)

where

π0 =
[

s∑

k=0

(sρ)k

k!
+ (sρ)s

s!

ρ

1 − ρ

]−1

(8)

and
ρ = λ

sµ
(9)

is called the traffic intensity.

Note that ρ is the ratio of the arrival rate to the
service rate when all s servers are busy. The above
solution requires that ρ < 1. If ρ ≥ 1, then πk = 0,
k = 0, 1, . . ., and no stationary distribution exists. It
is intuitively clear that the queue eventually grows
unboundedly if ρ > 1.

The mean and variance of X, the number of
customers, are

E(X) = sρ + ρπs

(1 − ρ)2
(10)

and

var(X) = sρ + ρπs

(1 − ρ)3
[(1 + ρ) + s(1 − ρ)2]

− ρ2π2
s

(1 − ρ)4
. (11)

Length of Queue

Let Q = Q(∞) be the number of customers in a
queue in the limiting case, and let (qn) be the
probability distribution of Q:

qn = Pr(Q = n), n = 0, 1, . . . . (12)

When there are s or fewer than s customers in the
system, no one will be waiting in the line, and hence

q0 = Pr(X ≤ s) = 1 − ρ

1 − ρ
πs. (13)

When there are k = s + n customers in the system,
the length of the queue is n, and the probability is

qn = Pr(X = s + n) = ρnπs, n = 1, 2, . . . .

(14)

It is easy to verify that

∞∑

n=0

qn = 1. (15)

The mean and variance of Q are:

E(Q) = ρπs

(1 − ρ)2
(16)

and

var(Q) = ρ(ρ + 1)πs

(1 − ρ)3
− ρ2π2

s

(1 − ρ)4
. (17)
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Service Time

The service time t is the length of time needed to
complete service to a customer. It is assumed here
that all the s stations are equally efficient and have the
same exponential distribution, with density function

ht (τ ) = µ exp(−µτ), τ > 0, (18)

and distribution function

Ht(τ) = 1 − exp(−µτ), τ ≥ 0. (19)

Let t1, t2, . . . , ts be the service times of the s sta-
tions. They have the same density function in (18)
and the same distribution function in (19). If the s

stations begin to serve customers at the same time,
then it is clear that their service times will have the
same distribution. In practice, at a given moment,
some of the stations may already have served cus-
tomers for different lengths of time, and it seems
inappropriate to speak of the same distribution when
services are already in progress. However, under the
present assumption of the exponential density func-
tion in (18) where µ is constant, the length of time
required to complete service has the same probabil-
ity distribution, regardless of when the service first
started. Therefore it is justified to speak of the same
service time distribution for t1, t2, . . . , ts .

Let us arrange the s service times in order of
magnitude, and introduce the order statistics

t(1) < t(2) < · · · < t(s).

Of course, we do not know in advance which
station will have the shortest service time t(1), or
which station will have the longest service time
t(s). According to the theory of order statistics,
when the exponential function (18) is the underlying
distribution, the density function of t(1) is

ft(1)
(τ ) = sµ exp(−sµτ), τ > 0, (20)

which has expectation

E(t(1)) = 1

sµ
(21)

and variance

var(t(1)) = 1

s2µ2
. (22)

It is the distribution of t(1) that is needed for studying
the waiting time in a queuing process.

Waiting Time

The waiting time is the length of time that a customer
has to wait before receiving service. Let Wn be
the waiting time of the nth customer in a queue,
n = 1, 2, . . .. Since the first customer in a queue
will get service as soon as one of the s stations
becomes available, the waiting time W1 has the same
distribution as t(1). The density function of W1 is

fW1(τ ) = ft(1)
(τ ) = sµ exp(−sµτ), τ > 0, (23)

and the distribution function of W1 is

FW1(τ ) = 1 − exp(−sµτ), τ ≥ 0 (24)

which is an exponential distribution with parameter
sµ, as noted earlier.

As soon as the first person in a queue leaves the
queue to receive service, the second person in the
queue becomes the first person in the queue, and he
or she in turn will have to wait for another period of
W1 before receiving the service. In other words, the
waiting time of the second person in the queue is

W2 = W11 + W12, (25)

where both W11 and W12 stand for W1, the second
subscripts are added to differentiate the two periods
of waiting. The density function of W2, fw2(τ ), is
obtained from the density function of W1:

fw2(τ ) =
∫ τ

0
fw1(ξ)fw1(τ − ξ) dξ. (26)

Substituting (23) in (26) and integrating the resulting
expression, we obtain an explicit formula of the
density function of W2:

fw2(τ ) = (sµ)2τ exp(−sµτ), τ > 0. (27)

In general, the waiting time of the nth person in a
queue is

Wn = W11 + W12 + · · · + W1n. (25a)

Each of (W11, W12, . . . , W1n) has the same distri-
bution as W1. Following formula (26), we use the
density function of W1 in formula (23) and repeated
integrations to find the following formula of the den-
sity function of Wn:

fWn
(τ) = (sµ)n

τn−1

(n − 1)!
exp(−sµτ), τ > 0.

(27a)
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Now, consider a newly arriving customer and their
waiting time W . If there are fewer than s customers
in the system, then the new customer will receive
service immediately, and W will have a value zero
with probability

Pr{W = 0} = Pr{X < s}
or

Pr{W = 0} =
s−1∑

k=0

πk = 1 − πs

1 − ρ
. (28)

If there are s + n − 1 customers ahead of the new
customer, then his or her waiting time is Wn. There-
fore the density function of W is

fW(τ) =
∞∑

n=1

πs+n−1fWn
(τ). (29)

Substituting formulas (7) and (27a) in (29), and
simplifying the resulting expression, we find the
density function of the waiting time W :

fW(τ) = πssµ exp[−(1 − ρ)sµτ ], τ > 0. (30)

We should emphasize that the waiting time W is not
an ordinary continuous variable, as it has a point of
discontinuity at W = 0. Hence,

FW (τ) =
(

1 − πs

1 − ρ

)
+

∫ τ

0
πssµ

× {exp[−(1 − ρ)sµξ ]} dξ

= 1 − πs

1 − ρ
exp[−(1 − ρ)sµτ ], τ ≥ 0.

(31)

The mean and variance of W are, respectively,

E(W) = πs

(1 − ρ)2sµ
(32)

and

var(W) = 2πs

(1 − ρ)3(sµ)2
− π2

s

(1 − ρ)4(sµ)2
. (33)

Total Length of Time in the System

The total length of time T that a customer spends in
a queuing system is the sum of the waiting time W

and the service time t :

T = W + t, (34)

with the density function gT (τ) and the distribution
function GT (τ). While the waiting time W and the
service time t are independent continuous random
variables, the point of discontinuity of the distribution
of W at W = 0 invalidates the usual relation of
convolution between their density functions. The
density function gT (τ) may be obtained by way of the
distribution function GT (τ). Using the relationship
among the three distribution functions of T , W , and t ,

GT (τ) =
∫ τ

0
FW(ξ) dHt(τ − ξ), (35)

we find that

GT (τ) = 1 − exp(−µτ) − πs

(1 − ρ)[(1 − ρ)s − 1]

× {exp(−µτ) − exp[−(1 − ρ)sµτ ]}
(36)

from which

gT (τ) = µ exp(−µτ) + πsµ

(1 − ρ)[(1 − ρ)s − 1]

×{exp(−µτ)−(1−ρ)sµ exp[−(1−ρ)sµτ ]},
τ > 0. (37)

Since GT (∞) = 1, the distribution of T is proper.
From (37) we derive the expectation

E(T ) = πs

(1 − ρ)2sµ
+ 1

µ
(38)

and variance

var(T ) = 2πs

(1 − ρ)3(sµ)2
− π2

s

(1 − ρ)4(sµ)2
+ 1

µ2
.

(39)

Clearly, (38) and (39) can be derived also from the
relations:

E(T ) = E(W) + E(t) (40)

and
var(T ) = var(W) + var(t). (41)

A Busy Station

The probability that a station is busy is equal to the
traffic intensity ρ. Verification of this probability is
straightforward. Since, if X > s, the probability that



Queuing Processes 5

a station is busy is one, and if X = k for k < s, the
probability that a station is busy is k/s,

Pr{a station will be busy at a given moment}

=
s−1∑

k=0

πk

k

s
+

∞∑

k=s

πk = ρ

[
1 − πs

ρ(1 − ρ)

]
+ πs

1 − ρ

= ρ. (42)

M /M /∞ Queues

When there are infinitely many stations in a system,
the number of stations in use is the number of cus-
tomers present. There are no queues and no waiting
times. For t ≥ 0, let X(t) denote the number of cus-
tomers present at time t . Again we consider the case
where the arrival of customers follows a Poisson pro-
cess with rate λ and service time has an exponential
distribution with parameters µ, so the queuing system
under discussion is M/M/∞. In that case, it is easily
seen that {X(t), t ≥ 0} follows the simple migration
process (with η replaced by λ) that is analyzed in the
article entitled Migration Processes, where the dis-
tribution of X(t) is determined for any t ≥ 0 and any
given initial number of customers X(0). In particular,
a stationary distribution always exists for X(t), and is
Poisson with mean λ/µ. Note that this corresponds to
letting s → ∞ in the solution (5)–(9) of the M/M/s
queue, as one would expect on intuitive grounds.

M /G /1 Queues

Whilst the assumption that the arrival of customers
follows a Poisson process may be reasonable in many
settings (although it precludes multiple arrivals), the
assumption that a typical service time follows an
exponential distribution is clearly unrealistic in most
applications. Thus, we now study M/G/1 queues, so
there is a single server, customers arrive at the points
of a Poisson process with rate λ and the service times
are independent and identically distributed, according
to some specified distribution.

Method of Stages

The method of stages is a device invented by Erlang
for determining the properties of M/G/1 queues for
certain service time distributions. In its simplest

form, the service time of a customer is assumed
to consist of k stages, labelled 1, 2, . . ., k, having
independent exponential service times with density
given by (18), so the total service time of a given
customer follows the gamma distribution with density
fS(t) = µktk−1e−µt /(k − 1)! (t > 0). For t ≥ 0, let
X(t) denote the number of customers in the system
at time t and, if X(t) > 0, let I (t) denote the
stage of the customer that is being served. Then
the queuing system is completely specified by the
process {(X(t), I (t)), t ≥ 0}. Moreover, this process
is Markov, owing to the lack-of-memory property of
the Poisson process and the exponential distribution.
Its stationary distribution can be determined using
similar methods to that described for the M/M/s
queue (see [2, Section 5.2]) thus facilitating analysis
of the queue. Note that the k stages need not
correspond to physical stages during a typical service
time. Observe that, in this model, service of a typical
customer is described by a continuous time Markov
chain with k + 1 states (state k + 1 corresponds to
completion of service), with the service time being
given by the time to absorption in state k + 1.
This framework clearly extends so that a typical
service time is given by the time to absorption of an
arbitrary but specified finite state space continuous
time Markov chain; such an absorption time is said
to have a phase-type distribution. Any given service
time distribution can be approximated arbitrarily
closely by a phase-type distribution, so this approach
provides a flexible framework for computational
analysis of queues (see, for example, [1] and [9]).

Embedding

Suppose now that a typical service time, S say,
follows any arbitrary but specified distribution. For
t ≥ 0, let X(t) denote the number of customers in
the system at t . Now {X(t), t ≥ 0} is not a Markov
process, unless S follows a negative exponential
distribution, however, the long-term behavior of the
queue can be studied by exploiting a Markov chain
that is embedded in {X(t), t ≥ 0} ([7]), as is now
described. For n = 1, 2, . . ., let Xn be the number
of customers in the system just after completion
of the nth customer’s service. The lack-of-memory
property of the Poisson arrival process implies that
{Xn, n ≥ 1} is a Markov chain, whose asymptotic
properties are analyzed in, for example, Grimmett and
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Stirzaker [4, Section 11.3]. Here we just outline the
main results.

Let ρ = λE[S] denote the traffic intensity of the
queue and suppose that ρ < 1. Then both {X(t); t ≥
0} and {Xn, n ≥ 1} are asymptotically stationary and

lim
t→∞ Pr[X(t) = k|X(0) = i]

= lim
n→∞ Pr[Xn = k|X1 = i] = πk,

i, k = 0, 1, . . . , (43)

where
∑

k πk = 1. Moreover, the limiting probability
that the queue is empty is π0 = 1 − ρ and the limiting
mean number of customers in the system is

E[X] = ρ + ρ2 + λ2var(S)

2(1 − ρ)
, (44)

which is known as the Pollaczek–Khintchine for-
mula. Suppose that the queue is in equilibrium, and
let W and T = W + S denote, respectively, the wait-
ing time and the total time spent in the system of a
typical customer. Then E[T ] satisfies Little’s formula

E[T ] = λ−1E[X]. (45)

Note that for fixed mean service time E[S], the
equilibrium mean queue size, mean waiting time and
mean total time spent in the system are all increasing
with the variance of a typical service time, so these
quantities are all minimized when the service times
are constant.

Busy Periods

Suppose that the queue is empty just prior to time t =
0 and a customer arrives at t = 0. Let B denote the
time that elapses until the queue is empty again, that
is, the length of a typical busy period of the server.
The distribution of B can be studied by considering
an embedded branching process, in which individuals
are customers in the queue and the offspring of a
given customer are those customers that arrive whilst
he/she is being served (see, for example, [4, Section
11.3]). In particular,

if ρ < 1 then E[B] = E[S]

(1 − ρ)
,

if ρ = 1 then E[B] = ∞ and Pr{B = ∞} = 0,

if ρ > 1 then Pr{B = ∞} > 0. (46)

Note that if ρ > 1 then with probability one the server
is ultimately busy forever.
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QUORUM

Like any research enterprise, particularly one that
is observational, the meta-analysis of evidence can
be flawed. Accordingly, the process by which
meta-analyses are conducted has recently undergone
scrutiny. A 1987 survey of 86 English-language
meta-analyses [5] assessed each publication on 23
items from six content areas considered important
in the conduct and reporting of a meta-analysis
of randomized trials: study design, combinability,
control of bias, statistical analysis, sensitivity
analysis, and problems of applicability. The survey
results indicated that only 24 (28%) of the 86 meta-
analyses reported addressed all six content areas.
The updated survey, which included more recently
published meta-analyses, showed little improvement
in the rigor with which they were reported [6].

To help overcome inadequate reporting several
authors have suggested guidelines for reporting meta-
analyses [2, 7]. However, a consensus across disci-
plines about how meta-analyses should be reported
has not been developed. Following the Consolidated
Standards of Reporting Trials (CONSORT) initia-
tive to help improve the quality of reporting of
randomized trials, the Quality of Reporting of Meta-
analyses (QUOROM) conference was organized to
address these issues as they relate to meta-analyses
of randomized trials.

The QUOROM group comprised 30 clinical epi-
demiologists, clinicians, statisticians, editors and re-
searchers. In conference, the group was asked to
identify items they thought should be included in a
checklist of standards. Whenever possible, checklist
items were guided by research evidence suggesting
that failure to adhere to the item proposed could
lead to biased results. For example, authors are asked
(under the “Methods” heading and “Searching” sub-
heading) to be explicit about the publication status of
reports included in a meta-analysis. Only about one-
third of published meta-analyses report the inclusion
of unpublished data [1].

The role of the grey literature (i.e. literature that
is difficult to locate and/or retrieve) was examined
in 39 meta-analyses that included 467 randomized
controlled trials (RCTs), 102 of which were grey
literature. On average, the exclusion of grey literature,
compared with its inclusion, resulted in a statistically

significant exaggeration of the effectiveness of an
intervention by 15% [3].

A modified Delphi technique was used in assessing
candidate items.

The conference resulted in the QUOROM state-
ment, an 18-item checklist (Table 1) and a flow dia-
gram (Figure 1). The checklist describes an optimal
way to present the Abstract, Introduction, Methods,
Results and Discussion sections of a report of a
meta-analysis. It is organized into six headings and
14 subheadings. Subheadings in the Methods section
include searches selection, validity assessment, data
abstraction, study characteristics, and quantitative
data synthesis. In addition, the Results section is
broken into study characteristics and quantitative
data synthesis. Research documentation was iden-
tified for nine of the 18 items. The flow diagram
provides information about both the number of RCTs
identified, included, and excluded and the reasons
for excluding trials, throughout the meta-analytic
process.

The QUOROM Statement was published in The
Lancet in 1999 [4] and is available (checklist and
flow diagram) on the CONSORT Internet site
(www.consort-statement.org).

RCTs included in meta-analysis (n =...)

RCTs with usable information,
by outcome (n =...)

Potentially appropriate RCTs to be
included in the meta-analysis (n =...)

RCTs retrieved for more
detailed evaluation (n =...)

Potentially relevant RCTs identified
and screened for retrieval (n =...)

RCTs withdrawn, by outcome,
with reasons (n =...)

RCTs excluded from meta-
analysis, with reasons (n =...)

RCTs excluded, with
reasons (n =...)

RCTs excluded, with
reasons (n =...)

Figure 1 QUOROM flowchart
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Table 1 QUOROM checklist

Reported?
Heading Subheading Descriptor [Y/N]

Title Identify the report as a meta-analysis [or systematic review]
of RCTs

Abstract Use a structured format

Describe
Objectives The clinical question explicitly
Data sources The databases, i.e. list and other information sources
Review methods The selection criteria (i.e. population, intervention, outcome,

and study design); methods for validity assessment, data
abstraction, and study characteristics, and quantitative
data synthesis in sufficient detail to permit replication

Results Characteristics of the RCTs included and excluded;
qualitative and quantitative findings (i.e. point estimates
and confidence intervals); and subgroup analyses

Conclusion The main results

Describe

Introduction The explicit clinical problem, biological rationale for the
intervention, and rationale for review

Methods Searching The information sources, in detail [e.g. databases, registers,
personal files, expert informants, agencies,
hand-searching], and any restrictions (years considered,
publication status, language of publication)

Selection The inclusion and exclusion criteria defining population,
intervention, principal outcomes, and study design

Validity
assessment

The criteria and process used [e.g. masked conditions,
quality assessment, and their findings]

Data abstraction The process or processes used [e.g. completed
independently, in duplicate]

Study
characteristics

The type of study design, participants’ characteristics,
details of intervention, outcome definitions, and how
clinical heterogeneity was assessed

Quantitative
data synthesis

The principal measures of effect [e.g. relative risk], method
of combining results (statistical testing and confidence
intervals), handling of missing data, how statistical
heterogeneity was assessed, a rationale for any a priori
sensitivity and subgroup analyses, and any assessment of
publication bias

Results Trial flow Provide a meta-analysis profile summarising trial flow (see
Figure 1)

Study
characteristics

Present descriptive data for each trial [e.g. age, sample size,
intervention, dose, duration, follow-up period]

Quantitative
data synthesis

Report agreement on the selection and validity assessment;
present simple summary results (for each treatment group
in each trial, for each primary outcome); present data
needed to calculate effect sizes and confidence intervals
in intention-to-treat analyses (e.g., 2 × 2 tables of counts,
means and SDs, proportions)

Discussion Summarize key findings, discuss clinical inferences based
on internal and external validity; interpret the results in
light of the totality of available evidence; describe
potential biases in the review process [e.g. publication
bias]: and suggest a future research agenda
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At the time of this writing, 10 medical journals
have participated in a randomized trial evaluating the
impact of applying the QUOROM criteria on journal
peer review. Accrual to this trial is now complete and
the results should become available by the Spring of
2001.
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Quota, Representative,
and Other Methods of
Purposive Sampling

The term purposive applies to any method of choos-
ing a sample in which the probabilities of selec-
tion for the various sampling units cannot be cal-
culated. For example, consider a target population
of hospital patients. A full probability sample can
be achieved by assigning each patient an identifi-
cation label and selecting a sample wherein each
subject has the same chance of selection (e.g. a
simple random sample) using random numbers.
Alternatively, the researcher can select a purpo-
sive sample based on personal judgment – liter-
ally, “this patient”, “that female”, “this elderly per-
son over here”, etc. The researcher might sincerely
believe that by using judgment instead of letting
the patients be chosen by randomization a more
representative sample, or one that is better bal-
anced on key variables, will result. The purpo-
sive sample, however, will always be vulnerable to
charges of selection bias that never can be sat-
isfactorily answered. Furthermore, without knowl-
edge of the selection probabilities for each unit in
the sample, estimation of the mean square error
in purposive sampling is highly subjective, if not
impossible.

Kruskal & Mosteller [8], and also Kish [7], have
observed that a precise definition of “representative
sampling” is elusive. Historically, the term was first
used by Kiaer [4] to refer to sampling, in contrast
to full enumeration. His concept of the “representa-
tive method”, however, was broad enough to include
purposive methods as well as what would be called
probability sampling today. Indeed, this generality
of meaning was carried down to the title of Ney-
man’s seminal paper [12]. “On the two different
aspects of the representative method: the method
of stratified sampling and the method of purpo-
sive selection”. The term representative has since,
however, disappeared from the technical lexicon of
sampling. We still encounter the informal use of
“representative sample” in newspaper articles and in
occasional requests for proposal (RFPs) from vari-
ous agencies. Whether they fully realize it or not,
when prospective sponsors of survey research ask

for a “representative sample” they mean one that
will lead to valid statistical inferences, supported
by estimated sampling errors that are small, and by
evidence that biases due to selection, noncoverage,
nonresponse, and various sources of measurement
error are not serious. In other words, representa-
tive now implies probability sampling, hopefully,
under conditions sufficiently optimal that the results
will stand up under close scrutiny by the scien-
tific community or statistically sophisticated courts
of law.

A Situation Where Purposive Sampling is
Permissible

We have defined purposive sampling as involving
selection by judgment instead of randomization. One
case in which a judgment selection may be prefer-
able to strictly random sampling is that in which
the survey budget permits replication in only a small
number of sites. An example is a public health experi-
ment for which probability samples of school children
in more than one metropolitan area are desired. If the
costs of administering the survey in a city are so
high that only a few different metropolitan locations
can be selected, it is better to use expert judgment
to achieve “balance” in the selection of the cities
rather than let the vagaries of simple randomization
determine which areas are studied. An alternative,
however, to selection of the sites by judgment is the
method of controlled selection [6, Section 12.8]. Con-
trolled selection, which involves random selection of
a design from a set of multistratified layouts, might be
called a combination of random and purposive selec-
tion since the designs to be selected are constructed
purposively.

Quota Sampling

As practiced today, quota sampling is a purposive
method that enables one to obtain a desired number
of completed personal interviews in a relatively short
period of time without the expense of call-backs (see
Call-backs and Mail-backs in Sample Surveys).
In the form with the least potential bias, referred to
by Sudman [16] as “probability sampling with quo-
tas”, the method involves drawing sampling locations
down to the block level with exactly the same tech-
nique of multistage sampling selection with sam-
pling probabilities proportional to size as in full
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probability area sampling. Then, instead of field list-
ing of housing units and probability sampling of
households and persons contained therein, interview-
ers are allowed to fill quotas of respondents according
to the availability of qualified subjects and what-
ever personal judgment may enter into the selection
process. (This is why the method must be called “pur-
posive”.) In the US, the predetermined quota controls,
usually few in number for administrative feasibility,
are set according to the most recent census counts
for the smallest area that immediately surrounds the
sampled location. For example, an interviewer may
be instructed to begin calling on households at a
particular corner of a city block and proceed from
door to door until five adult females and five adult
males are interviewed. Not-at-homes and refusals are
ignored by continuing to the next household where
a cooperating individual may be found. With this
procedure, it is possible that a cluster of 10 inter-
views, balanced with respect to sex, can be completed
in a day or two. If greater control over selection is
desired, the sex strata can be broken down into age
groups within sex, making the filling of quotas more
time-consuming, but forcing the demographic charac-
teristics of the cluster to be more congruent with those
of the immediately surrounding area. It is these con-
siderations that led Cochran [1, p. 136] to describe
quota sampling as “stratified sampling with a more
or less nonrandom selection of units within strata”.

Criticism and Shortcomings of Quota
Sampling

Other textbooks, in addition to [1], are critical of the
use of quota sampling. Deming [2, p. 31] dismisses
the technique in only a few words. While Yates [17]
and Kish [6] can scarcely be said to endorse the
method, they do allow for occasions when the results
from quota samples may be useful. Kish [6, p. 565],
for example, says that he believes that “a quota
sample is more likely to represent the attitudes of
the nation’s young people than a probability sample
of a college’s students”, but he is, of course, not so
much praising quota sampling as he is deploring an
inferential leap from the population of one college
to the youth of a whole country. The fundamental
problem with quota sampling is that, in the absence of
a full understanding of the selection mechanism that
determines which individuals shall participate in the

survey, one can never be sure that serious biases are
not working against valid estimation and inference.
For example, tests of significance (see Hypothesis
Testing) and confidence interval estimates, if done
at all, must use estimated standard errors about
biased means. These may be very different from
the root mean square errors about target population
parameters that are needed for meaningful inferences.
As Yates [17, p. 84] observes, “the fact that a quota
system has consistently given reliable results over a
period of years is no guarantee that it will also do so
in the future”.

Research Comparing Quota Sampling and
Full Probability Sampling

Immediately after the failure of the pre-election polls
to forecast the victory of the incumbent President
Harry S. Truman over Thomas E. Dewey in Novem-
ber 1948, the US Social Science Research Council
appointed a committee of statisticians and sociolo-
gists to study the technical procedures and methods
of interpretation that had been used. The method
of selection used by the principal polling organiza-
tions was almost uniformly quota sampling because
of its time and cost advantages. Although the full
blame for the forecasting débâcle is not attributed
to sampling – equally important was the failure of
the pollsters to interpret the undecided vote and to
detect the shift in voter attitudes that occurred near
the end of the campaign – the committee’s report
[11] observes that quota methods tended to be biased
against the lower educational attainment classes and
against rural dwellers.

Other comparisons of quota and probability samp-
ling are reported by Stephan & McCarthy [14], inclu-
ding the carefully controlled experiments of Moser &
Stuart [10] in the UK. Sudman [16] and Stephenson
[15] discuss similar studies performed at the National
Opinion Research Center (NORC). In a theoretical
paper, King [5], applying a Bayesian model of biased
measurement to the allocation of fixed resources to
either quota sampling, full probability sampling, or
a combination of both methods, finds that quota
sampling is only economically feasible when the prior
correlation between the means of the unbiased and
biased processes is very high. In plain language, one
has to be fairly certain that the results between quota
and full probability methods will be in agreement
before quota sampling should be used.
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Current Practice

Although widely used by American market research
firms and polling organizations during the years in
which the empirical studies described above were car-
ried out, quota sampling has largely been supplanted
by random digit dialing and telephone interviews
(see Telephone Sampling). The extent to which the
latter method achieves the equivalent of full proba-
bility sampling depends on the way in which refusals
are dealt with and the thoroughness of call-back pro-
cedures, but it is probable that many of the concerns
about bias that were present with quota samples have
been alleviated. In the UK, however, quota meth-
ods still are used extensively. In fact, the public
opinion polls – almost exclusively quota samples –
conducted before the British 1992 general election
were by everyone’s reckoning a statistical disas-
ter. Over 50 polls conducted in the month before
the election gave an average lead of 1.5 percent-
age points to the Labour Party, but the final result
was a Conservative victory by 7.6 percentage points.
This polling calamity set off a flurry of investiga-
tive activity reminiscent of the American 1948 post-
election experience mentioned above. Recent papers
by Jowell et al. [3], Lynn & Jowell [9], and Smith
[13] all discuss whether the incorrect results can
be blamed (at least in part) on quota sampling and
its inability to deal with refusals. Although almost
40 years have passed since their work was pub-
lished, the following quote from Stephan & McCarthy
[14] in commenting on the experiments of Moser
& Stuart [10] would appear to be as relevant as
ever:

the fundamental status of quota sampling, as far as
evidence derived from direct comparisons is con-
cerned, is left more or less as outlined . . . Instances
of serious bias can be found; close agreement
with check data or with probability sample results
exists for many items; the sources of serious bias
are frequently related to the socio-economic con-
trol; the actual allocation of bias among possible
sources is extremely difficult; and it seems impos-
sible to place quota sampling on a sound theoretical
basis.
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R- and Q-analysis

This article discusses four alternative criteria for per-
forming principal components analysis on a data
matrix. The properties of these four criteria were
given by Okamoto [6]. A numerical example illus-
trating all four criteria on a single data set may be
found in Jackson [5].

R-Analysis

In principal component analysis, one generally begins
with an n × p data matrix X representing n observa-
tions on p variables. From this, some type of p × p

dispersion matrix is formed, usually a covariance
matrix or its related correlation matrix. A set of
linear transformations, utilizing the characteristic vec-
tors of this matrix, is found which will transform the
original correlated variables into a new set of vari-
ables. The variables in this new set are uncorrelated
and are called principal components. The values of
the transformed data are called principal component
scores. Further analysis may be carried on in terms of
these scores. (A subset of these transformed variables
may be retained for this analysis.) This procedure is
referred to as R-analysis and is the most common
application of principal components analysis. Similar
procedures are carried out in factor analysis.

Q-Analysis

The situation may arise where one may wish to
reverse the process and study the relationships among
the observations rather than the variables. This is
referred to as Q-analysis. In this case, an n × n

covariance or correlation matrix will be formed and
the characteristic vectors and principal component
scores obtained from these. Generally, n > p, so
that covariance or correlation matrices will not have
full rank and there will be a minimum of n − p

zero characteristic roots (see Eigenvalue). Q-analysis
may be used in conjunction with clustering of the
individuals in the data set. Some multidimensional
scaling techniques are an extension of Q-analysis and
are often used where the data are not homogeneous
and require segmentation.

N-Analysis (Singular Value Decomposition)

With proper scaling or normalization, the character-
istic vectors of R-analysis become the principal com-
ponent scores of Q-analysis, and vice versa. These
relationships can be extended to N-analysis or singu-
lar value decomposition [1, 4] (See Correspondence
Analysis), where the characteristic roots and vectors
(eigenvectors), as well as the principal component
scores, may be determined directly from the data
matrix.

Relationships Among R-, Q-, and
N-Analysis

To show the relationships among R-, Q-, and N-
analysis, assume that the n × p data matrix X has
variable means equal to zero and that X has rank
p. For R-analysis, the operations will be carried out
on the p × p dispersion matrix X′X, whose unit
characteristic vectors will be denoted by the p × p

matrix U and whose characteristic roots will be the
diagonal elements of the p × p matrix L. U and L are
used to obtain the principal component scores, Y, for
the observations, by the relationship Y = XUL−1/2.
For Q-analysis, the operations will be performed
on the n × n dispersion matrix XX′. The nonzero
characteristic roots will be the same p × p matrix
L. The corresponding p characteristic vectors will be
denoted by the n × p matrix U∗. U∗ and L are used
to obtain the principal component scores Y∗ for the
variables. It can be shown that the principal scores
from the R-analysis are equal to the characteristic
vectors from the Q-analysis, and vice versa. That is,

Y = XUL−1/2 = U∗ and Y∗ = X′U∗L−1/2 = U.

In singular value decomposition, these quantities
may be obtained for either R- or Q-analysis from the
data matrix X directly, i.e.

X = YL1/2U′ = U∗L1/2Y∗,

and, using the relationships above, it can be
shown that

X = U∗L1/2U′.

This relationship is employed in dual-scaling
techniques where both variables and observations are
being presented on the same chart. An example of
such a technique is the biplot [2].
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M-Analysis

Finally, a fourth technique, M-analysis, is used on
a data matrix which has been corrected for both
its column and row means (double-centering). This
technique has been widely used for the two-way
analysis of variance where there is no error term
other than that included in the interaction term.
The interaction sum of squares may be obtained
directly from double-centered data. M-analysis is
then employed on these data to detect instances of
nonadditivity and/or obtain a better estimate of the
true inherent variability. (See [5] for a summary of
these techniques.) A version of M-analysis also used
in multidimensional scaling is a method known as
principal coordinates [3, 7, 8].
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R

The R system is an independent, open source, freely
available implementation of a dialect of the S lan-
guage. The S language [1, 2] is the basis for the
commercial S-PLUS software system for data analy-
sis and graphics. Both R and S-PLUS are described
and compared in [12].

Construction of the R system has been a major
statistical computing research project. Ihaka & Gen-
tleman [7], both at that time working at the Univer-
sity of Auckland, developed the initial version. The
ongoing development of the R system is now coor-
dinated by an international team of expert volunteers
known as “R core” but much of the work is done by
very many contributors of code from many countries
around the world.

The R program operates by assembling collec-
tions of functions and data sets for use at any one
time. These collections are known as “packages”
in R, (although the analogous concept is known as
a “library” in S-PLUS). R is particularly important
for developing and promulgating new statistical, data
analytical, or graphical techniques; this is mostly
done by releasing a new package with a suite of func-
tions for implementing the techniques in question.

The R system has, as key features:

• an interpreted, object oriented programming lan-
guage with a C-like syntax (see Computer Lan-
guages and Programs),

• a command-line input, supplemented by a sys-
tem of menus that is mainly useful for file
operations, for accessing the internet or for find-
ing and reading help pages,

• code that is open source, that is, freely available
for scrutiny or modification,

• support for a wide variety of static and dynamic
color graphics capabilities, making it easy to
produce publication quality graphical output
that can include mathematical text (see Graph-
ical Displays),

• a close integration of data analysis and graphics,
• a base package that handles commonly required

types of computations, and which is a basis for
adding further packages,

• a large and rapidly growing range of packages,
including some standard ones for “lattice”

graphics and the classes and methods of S
release 4 [3],

• various mechanisms, some offered via addi-
tional packages, for interfacing to other software
systems – local database systems, networked
database systems, other interpreted languages
(e.g. Python), Geographical Information Sys-
tems GIS systems, and so on.

Experimental forms of graphical user interface
(GUI) are available for limited component parts of R.
There are several initiatives that are aimed at devel-
oping a GUI system or systems that might be used
for the base package and perhaps for other packages
that are supplied as part of the base installation. More
details on this and other aspects of R can be found at
the URL http://cran.r-project.org.

In recent years, there has been a major release of R
at about six-monthly intervals. Because of the some-
what experimental and rapidly changing nature of the
system, it has been impossible to ensure complete
backwards compatibility. Package updates happen
often as well and old packages may be updated to
new versions or new packages installed from within
a session of R itself, which is a particularly strong
feature. In principle, anyone with access to the inter-
net may have the latest version of R and all of its
listed packages at any time.

The Sweave package is an interesting example of
the linking of the abilities of two different software
systems, an idea first proposed by Donald Knuth [8].
It allows the interleaving of code and text in a LATEX
document, which can then be processed into a final
document that can include tables, graphics, computer
output, and associated code. Changes in the code are
immediately reflected in the output document, making
it straightforward to ensure that published analyses,
and modifications to those analyses, are reproducible.

The R system has close points of contact with the
more experimental and specifically research-directed
aims of the Omegahat project [9]. These connec-
tions also result in the development of code that is
of direct use to R users as well as to Omegahat.
More details on Omegahat can be found at the URL
http://www.omegahat.org

The Bioconductor project [6], which is a major
cooperative effort between professional statisticians
who work with microarray data, is the most sub-
stantial of a number of R-based initiatives. For many
statisticians working with microarray data, R is now



2 R

a very commonly used platform. Related comput-
ing challenges, which the Bioconductor packages
address, include the development of data structures
that facilitate work with microarray data, linkages
into associated annotation information, and local and
internet-based access to databases.

Official documentation for R includes an intro-
ductory manual, an R language manual, a guide to
importing and exporting data from R, a manual on
extensions to R, a guide to the installation and admin-
istration of R, and a document that gives answers to
frequently asked questions. For the S language on
which R is based, see [1, 2, 12]. Dalgaard [4] is a
careful introductory text, both for the language and
for using R for elementary statistical analysis; see
also [14]. Maindonald & Braun [10] (intermediate
level) and Venables & Ripley [13] (advanced level)
both use examples as a basis for their exposition; see
also Fox [5]. The mechanisms used by R for includ-
ing mathematical annotation on graphs is discussed
in [11].
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Radiation Epidemiology

Introduction

Radiation epidemiology is a specialized field of epi-
demiology, which seeks to characterize and quantify
the health risks associated with exposure to ioniz-
ing and nonionizing radiation. One of the principal
aims of radiation epidemiology is to provide the
human data needed to recommend or set protec-
tion standards for workers and the general public.
The data are also used to estimate levels of risk
from diagnostic radiation procedures, to indicate how
radiotherapy protocols can be improved to reduce
acute and long-term side effects, to better understand
individual susceptibility, and to learn more about dis-
ease mechanisms.

Radiation is a general term that includes both ion-
izing and nonionizing radiation. The many different
types of radiation have a range of energy forming
an electromagnetic spectrum. Ionizing radiation is
located in the high frequency region of the electro-
magnetic spectrum. Nonionizing radiation includes
optical radiation and electromagnetic fields, as well
as acoustic fields. The nonionizing region of the
spectrum has a wide range of frequencies and wave-
lengths. At the lowest frequencies there are static
fields, for example, those used for magnetic reso-
nance imaging (MRI). Further along the spectrum,
nonionizing radiation includes time-varying electric
and magnetic fields produced by power lines, electri-
cal appliances, radiofrequencies, and microwaves, as
well as radiation wavelengths in the infrared, visible,
and ultraviolet ranges.

This article is concerned with the many types
of ionizing radiation, which are emitted with differ-
ent energies and penetration abilities. Ionizing radi-
ation produces electrically charged particles (ions)
that have enough energy to break chemical bonds
and that can cause a range of biological dam-
age. Exposure to ionizing radiation can come from
external sources, such as X- or γ -rays, or from
internal sources emanating from radioactive materi-
als deposited through inhalation, ingestion, or rarely
through dermal absorption. In radiation epidemiol-
ogy, we are most concerned with X- and γ -rays,
neutrons, and α-particles and other radionuclides
because they are used in medicine, occur as a result
of the nuclear bombings in Hiroshima and Nagasaki,

are important components of fallout from nuclear
testing or accidents, or occur in nature. Individuals
or populations can receive one or more acute expo-
sures to radiation or they can be exposed to protracted
radiation over a long period of time, such as from
occupational exposure. Unlike most other carcino-
gens, about 85% of radiation exposure to the general
public comes from natural sources, largely radon,
but also cosmic radiation and natural background
radiation. The remaining public exposure comes from
medical radiation (about 14%), with only about 1%
coming from fallout, occupational exposure, radioac-
tive discharges, and consumer products combined
[117]. People are exposed to radiation in a variety
of settings. Large numbers of the general popula-
tion receives many low-dose radiologic examinations
over their lifetime; whereas a relatively small percent
of the population receives high-dose radiotherapy as
treatment for cancer or a few benign diseases, for
example, hyperthyroidism.

Radiation can cause a variety of acute and long-
term biological effects at the molecular, cellular, tis-
sue, and organ levels. Deleterious health effects occur
when a sufficiently large number of cells die or are
damaged so that tissue or organ function is no longer
adequate, or when cells lose their proliferative capac-
ity, transform or mutate. The important biologic con-
sequences of radiation are thought to result primarily
from direct damage to DNA [58, 117]. Recent experi-
mental studies, however, suggest that radiation might
also cause damage to the cytoplasm [121], and that
radiation effects can occur in cells that are not directly
exposed to radiation through bystander effects [7, 78]
or genetic instability [49, 76]. Cataracts [85], neuro-
logical abnormalities [122], thyroid diseases [79, 99],
cardiovascular diseases [102], benign and malignant
tumors [113], and birth defects [123] are some of
the more important long-term health effects associ-
ated with radiation exposure. Since radiation-related
cancer has been studied in greatest detail and is of
most concern to the public, it will be our major
focus.

Wilhelm Röntgen discovered X-rays in 1895.
They were used in medicine one year later to treat
a nevus and the following year to treat cancer
[34]. Owing to the very high early exposure of
people working with radiation, it was recognized
as a carcinogen very soon after it was discov-
ered. Since then it has been studied intensively, and
by 1920 it was already identified as the cause of
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bone cancers occurring among young women who
used radium to paint watch dials [25]. About two
decades later, radiation was shown to increase the
risk of leukemia among radiologists [69], and by
the 1950s the first indication of radiation-induced
malignancies was observed among the atomic bomb
survivors [24]. Over the last fifty years, we have
learned that most types of radiation can increase
the risk of developing cancer, and that most can-
cers can be induced by radiation, but that there
are differences in the magnitude and type of bio-
logic effects manifested following equal doses of
radiation. These differences are partly owing to
the type of radiation and the duration of expo-
sure, as well as host factors such as age, gender,
and genetic susceptibility. In addition, some tis-
sues and organs appear to be more radiosensitive
than others.

The study of the long-term effects of radiation
exposure began with astute observations of rare dis-
ease excesses among highly exposed individuals [20,
32]. As more was learned, larger studies of persons
exposed to moderate doses of ionizing radiation were
conducted and risks of disease were compared among
exposed and nonexposed groups. When these stud-
ies unequivocally demonstrated that radiation was a
carcinogen [81], the field moved toward more quan-
titative methods of describing risks. Because radia-
tion exposure assessment (called dosimetry in radia-
tion epidemiology) is detailed and relatively accurate
compared with many other exposures, the field of
radiation epidemiology has progressed to more pre-
cise quantification of risks, evaluation of the role of
factors that might modify radiation risks, detecting
risks at low doses, and characterizing the shape of
the dose–response function. In parallel, the fields of
radiation biology and biophysics were advancing and
many relevant findings from experimental work were
integrated into radiation epidemiology approaches
[9]. The strong interactions between these disciplines
has led to a general awareness of the importance
of biological mechanisms in analyzing epidemiology
results, and to a subfield of biological or mechanis-
tic modeling of epidemiologic data [83, 84, 117].
Currently, radiation epidemiology employs sophis-
ticated statistical methods for risk assessment and
uncertainty analyses and has increasingly embraced a
multidisciplinary approach to better understand how
the physical aspects of radiation influence the biolog-
ical effects observed in humans.

Major Issues in Radiation Epidemiology

Although there is a clear consensus that moderate to
high radiation doses cause harmful effects in humans,
a central issue in radiation today is quantifying the
biological effects at low doses, that is, at doses
below about 0.1 Gy (see “Radiation Measurements”
section). Other important questions in radiation epi-
demiology include: how much cancer is caused by
radiation; what is the shape of the dose–response
relationship; does the increased risk associated with
radiation exposure persist throughout life; how do
age and gender modify effects (see Effect Modi-
fication); how does dose rate influence risk; how
should known radiation risks from one population
group be transferred to another population group;
and to what extent do uncertainties in dose assess-
ment influence dose–response analysis and inference
on effect modifiers. As collaborations with radiobiol-
ogists, dosimetrists, and biophysicists expand, more
intriguing questions are becoming the focus of atten-
tion. These include: how does radiation cause cancer;
why do organs and tissues vary in sensitivity; what
causes differences in individual susceptibility to radi-
ation; and how does radiation interact with other
disease-causing agents.

Types of Studies Used in Radiation
Epidemiology

Epidemiology includes both observational and exper-
imental methods, however, as in other subdisciplines
of epidemiology, radiation epidemiology primarily
relies on observational studies. Observational inves-
tigations use both descriptive and analytic study
designs. In general, descriptive studies are used to
generate hypotheses and analytic studies are used to
test hypotheses.

Descriptive Epidemiology

Descriptive studies usually use publicly available data
to describe a temporal or geographic pattern or trend
in a population group. While useful observations have
been made based on descriptive studies, the aggre-
gated nature of the exposure and disease data, and the
frequent lack of confounding information are seri-
ous drawbacks. Descriptive studies are sensitive to
biases and can produce misleading results. Examples
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of descriptive radiation studies include evaluations
of cancer rates in geographic areas near nuclear
power facilities compared with rates from similar
areas not in proximity of a nuclear plant [47], and
thyroid cancer rates in West European countries fol-
lowing the disastrous Chernobyl accident compared
with rates before the accident [13]. Despite the rather
inconsistent results from the various studies, some
investigators have interpreted the positive findings
as indicating an association between radiation expo-
sure and cancer. Unfortunately, the lack of individual
doses and information on potential confounding pre-
cludes concluding a cause and effect relationship
between disease and exposure (see Causation).

A specific type of descriptive study, called
ecologic (also known as correlational or geographic),
has been used to a limited extent in radiation
epidemiology. In this design, aggregate rates of
disease are regressed on characteristics of population
groups, but it is not known whether the people
who are exposed are those who develop the health
outcome of interest. Furthermore, because covariate
data are limited, it is difficult to control for
confounding. When the population groups are large,
the statistical precision and stability is high, but when
a strong confounding factor exists on the individual
level, which cannot be adjusted for on the aggregate
level adequately, the results can be erroneous [33,
77, 86]. (see Ecologic Study and Ecologic Fallacy.)
A continuing controversy in radiation epidemiology
concerns the role of residential radon in lung
cancer etiology. Using an ecological approach, Cohen
[12] aggregated lung cancer mortality rates with
mean levels of radon exposure in 1600 counties
in the United States. Using a surrogate smoking
index to adjust for potential confounding from
smoking, he reported a protective effect between
lung cancer mortality and radon concentration
levels indicating that radon is beneficial. Other
investigators, however, have observed that a small
correlation between smoking and radon concentration
levels can sufficiently confound results so that a
negative association is observed when the true
association is positive [63]. In addition, Puskin [95]
found that a variety of other smoking-related cancers
were negatively correlated with radon, associations
which were highly implausible, and concluded that
the protective effect of radon on lung cancer was
due to incomplete control of smoking. Moreover,
analytic epidemiologic studies consistently show a

small excess risk of lung cancer associated with
residential radon.

Analytic Epidemiology

In analytic studies, such as case–control and cohort
studies, the unit of observation is the individual, that
is, information on outcome, exposure, and covariates
is collected for individuals. In case–control studies,
individuals with the disease of interest (cases) are
drawn from a defined population and their exposure
history is compared with appropriate nondiseased
controls selected from a similar population with the
same potential for radiation exposure. Questionnaires
are most often used to collect data on exposure
and covariates. Case–control studies are an efficient
and cost-effective method for studying relatively rare
diseases; they are, however, subject to selection and
recall bias.

Studies of the carcinogenic risks associated with
diagnostic radiography during early childhood have
generally employed a case–control design [43, 70,
103, 104]. These studies are fraught with difficul-
ties for a variety of reasons. Doses are generally
low, and estimating individual organ doses is com-
plicated because records of diagnostic examinations
usually are not available. Dosimetry for diagnostic
radiographs generally relies on patient and/or par-
ent recall of the number, type, and date of exams
and, therefore, is subject to the problem that cases
and controls might remember or report their history
of diagnostic examinations with different levels of
accuracy. The potential for recall bias that is, cancer
patients may remember their medical history better
than a control who does not have a serious illness, can
result in risk estimates that are artificially high. Nev-
ertheless, despite exposure assessment weaknesses,
case–control studies have been useful in highlighting
the potential dangers of diagnostic X rays.

Cohort studies of selected populations exposed to
radiation have been the mainstay of radiation epi-
demiology. In this method, exposed and nonexposed
individuals are followed over time until a sufficient
number of study subjects develop a particular disease
outcome. A major advantage of prospective cohort
studies or retrospective cohort studies (see Cohort
Study, Historical) with good exposure records is that
radiation exposure can be ascertained without rely-
ing on the memory of the study subjects. Fifty years
after the Hiroshima and Nagasaki atomic bombings,
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the Life Span Study (LSS) cohort of atomic bomb
survivors continues to be the most informative study
of the carcinogenic effects of radiation exposure in
humans. It is the major source of epidemiologic
data used for radiation risk assessment and has had
the greatest impact on the development of radiation
protection standards [83, 117]. Decades of dosime-
try efforts, including periodic improvement in the
dosimetry system, have resulted in well-characterized
individual doses, for most organs and tissues, for
close to 90 000 survivors in the cohort [97]. The good
dosimetry and the relatively complete and unbiased
cancer incidence and mortality ascertainment have
helped make the LSS the “gold standard” in radia-
tion epidemiology. Over time, it has become apparent
that the LSS can provide valuable information on
the nature of radiation-associated cancer risk follow-
ing low doses, because about 35 000 survivors were
exposed to doses between 5 and 200 mSv [89]. The
latest cancer incidence and mortality reports demon-
strate that the elevated cancer risk continues through-
out life and that the shape of the dose response for
solid cancers is linear with no evidence of a radia-
tion dose threshold (see Extrapolation, Low Dose)
below which there is no excess risk [89, 90, 113].
Indeed, even within the narrow low-dose range, can-
cer risks are well described by a simple linear dose
response (see Linear Regression, Simple), and the
best estimate of a threshold dose for cancer incidence,
if it exists, is 0 mSv, with a 95% upper confidence
bound (see Confidence Intervals and Sets) of about
60 mSv [89]. Cancer risks in the LSS are described
in terms of both excess relative risk (ERR) and
excess absolute risk (EAR) models. Using an ERR
model, the risk per Sievert is higher for women than
men and decreases with increasing age at exposure
or attained age. The EAR per 10 000 person years
per Sv is also higher among women, but although
it tends to decrease with increasing age at exposure,
the EAR has increased throughout the study period as
the cohort ages. Evaluation of patterns of organ (or
site) specific risks suggests that, with few exceptions,
the excess risks for most solid cancers do not deviate
significantly from the overall solid cancer risk esti-
mate [88]. In the next 20 to 30 years, the number of
cancer cases diagnosed in the LSS will nearly dou-
ble. With the additional cases, the LSS will prove to
be an important resource for evaluating interactions
between radiation and other environmental or genetic
risk factors.

Nested case–control (see Case–Control Study,
Nested) and case–cohort studies are special types
of cohort studies that are used in radiation epidemi-
ology when detailed dosimetric data are needed, but
are difficult or expensive to collect for the entire
cohort. Nested case–control studies have been used
very effectively to evaluate radiation treatment for a
first primary cancer in the development of a second
cancer. Detailed radiotherapy information is needed
to estimate organ doses and chemotherapy and other
data are needed to assess confounding and modify-
ing effects, but it would be prohibitively expensive
and time consuming to collect and abstract all of
this information for a cohort large enough to have an
adequate number of second cancers. In a population-
based cohort of 19 046 patients with Hodgkin’s dis-
ease, a nested case–control study was conducted to
quantify the treatment-related risk of developing a
second cancer of the lung [31, 115]. On the basis
of the daily radiotherapy logs for each patient, dose
to the subsite of the lung where cancer developed
was estimated for 222 cases who developed a second
lung cancer. Radiation doses to the same part of the
lung as the case was estimated for the two matched
controls for each case. Cumulative cytotoxic drug
intake also was estimated for each study subject and
information on smoking history was abstracted from
patient records. This intense data collection effort
allowed fairly precise radiation dose estimation and
control for confounding. Lung cancer risk was found
to increase significantly with radiation dose up to
40 or more Gy and also with increasing amounts of
alkylating agents in an additive fashion, and tobacco
appeared to multiply radiation risks.

A more recent development in radiation epidemi-
ology is the use of meta and pooled analyses (thyroid,
breast, radon, nuclear workers) to combine either
published (meta analysis) or original (pooled anal-
ysis) data from several studies. Combined analyses,
especially of rare diseases or exposures, can increase
statistical power substantially [10, 14, 55, 64, 94, 99].
They are useful for detecting small risks, improving
precision of risk estimates, formally comparing data
from several studies with the goal of identifying con-
sistent patterns of risk, and systematically assessing
modifying factors and subgroup risks that could not
be evaluated adequately in single studies. The thyroid
gland of children is one of the more radiosensitive
organs in humans [98], and therefore is of spe-
cial interest in radiation epidemiology. But because
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thyroid cancer is rare the number of cases in any indi-
vidual study is likely to be small. A pooled analysis of
seven studies, which included almost 120 000 people
(about 58 000 exposed to radiation) and 700 thyroid
cancers, demonstrated the linearity of the radiation
dose response and the importance of age at expo-
sure as a modifying effect, that is, people exposed
during childhood had a very high excess relative
risk, but for those exposed as adults there appeared
to be little risk [99]. The ERR per Gy for people
exposed before age 15 was 7.7 (95% CI = 2.1; 28.7),
whereas for atomic bomb survivors exposed as adults
it was 0.4 (95% CI = −0.1; 1.2). Following child-
hood exposure, the ERR remained elevated through-
out the 40 year follow-up period, but appeared to
decline somewhat after about 30 years. Linearity also
described the dose response in a pooled analysis of
1502 breast cancers diagnosed among 77 527 women
(almost half exposed) [94]. In this analysis, the age
effects were more complicated, with age and age at
exposure both being important in the excess absolute
rate models, but only attained age in the excess rel-
ative risk models. This analysis also suggested that
exposure at low-dose rates (protracted exposure) is
less tumorigenic than acute or high-dose rate fraction-
ated exposures. Pooled analyses of nuclear workers
exposed to low levels of protracted radiation have
provided more precise risk estimates than any of the
individual studies [10]. While the number of excess
cancers was still too small either to accept or to rule
out the null hypothesis, the confidence bounds on the
risk estimate indicated that the current occupational
exposure standards are reasonable.

Radiation Measurements

Unlike many other environmental hazards, ionizing
radiation can be measured with fairly good precision.
The strength of a radioactive source is quantified by
its activity, and the number of radioactive disintegra-
tions per second. The unit of activity is the Becquerel
(1 Bq = 1 disintegration per second). Absorbed dose
deposited by ionizing radiation is quantified as the
energy deposited per unit mass. The unit of absorbed
dose is the Gray (1 Gy = 1 J/kg). Some types of ion-
izing radiation are more biologically effective (per
unit dose) than others. To account for this, the quan-
tity called equivalent dose is used, which is the
absorbed dose multiplied by a radiation weighting

factor. For example, the weighting factor is 20 for
alpha particles. The unit of equivalent dose is the
Sievert (1 Sv = 1 J/kg). To account for the effect of
an inhomogeneous distribution of dose in the body,
the effective dose is used. Effective dose is the sum
over specified tissues of the product of the equiva-
lent dose to the tissue, and a weighting factor for
that tissue – this latter being a measure of its rel-
ative radiosensitivity. The unit of effective dose is
also the Sievert (Sv). The SI units described above
have replaced traditional units: 1 Bq = 2.7 × 10−11

Curie (Ci); 1 Gy = 100 rad; 1 Sv = 100 rem [44].
The concentration of radon in air is measured in
Bq/m3 (replaces the historical unit of pico Curies
per liter). In studies of underground miners, expo-
sure to alpha particles from radon (Rn-222) and
its short-lived decay products, Po-218 and Po-214,
is measured in working level months (WLM). One
working level (WL) is any combination of the short-
lived progeny of radon in 1 liter of air, under ambient
temperature and pressure, that results in the ultimate
emission of 1.3 × 105 MeV of alpha particle energy
(1 WL = 2.08 × 10−5 Jm−3). One WLM is a cumu-
lative exposure equivalent to 1 WL for a working
month of 170 hours (1 WLM = 3.5 × 10−3 Jhm−3).

Retrospective Exposure Assessment

The crucial need to measure exposure from radia-
tion carefully was clear very soon after the discovery
of X rays. This need resulted in the development
of the field of radiation dosimetry. The field has
advanced substantially since then [51], so that today
radiation dosimetry is probably the most sophisti-
cated of epidemiologic exposure assessment methods.
To quantify long-term radiation-related health risks
adequately for populations exposed years ago, ret-
rospective dose reconstruction is often performed in
concert with radiation epidemiology. For epidemi-
ologic studies, the ideal measure of exposure is
the absorbed dose to the organ or tissue of inter-
est for each study subject. Three basic methods are
used in radiation dosimetry: physical measurements
made in a laboratory or the environment; analytic
model-based dose reconstruction, and biodosimetry.
These methods have been applied to both exter-
nal and internal sources of exposure. The quality of
dose reconstruction will depend on the complexity of
the exposure situation, the exposed population, the
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quality and quantity of data relevant to the exposure,
and the availability of physical and biological sam-
ples [45]. Identifying the sources of uncertainty in
dose estimation is becoming more common in radia-
tion epidemiology. With better understanding of the
type and amount of these uncertainties, the influ-
ence of dose errors can be accounted for in the
statistical analysis of radiation effects. This issue is
discussed in detail in the section “Adjusting for errors
in dosimetry”.

Dosimetry for external radiotherapy largely relies
on laboratory experiments, using an anthropomorphic
phantom, or a water phantom in combination with a
mathematical phantom, that simulate the actual expo-
sure conditions recorded in a patient’s medical record.
The laboratory measurements along with computa-
tional models have been used to estimate absorbed
doses and their uncertainties, to organs inside and
outside the radiation field, for individual study sub-
jects [108]. When detailed treatment parameters are
known, individual organ dose estimates are fairly
accurate. When treatment records are incomplete or
not available, the dose estimates will have a large
degree of uncertainty. Dosimetry for internal medi-
cal exposure is more complicated and, therefore, the
level of uncertainty is much higher [51].

Dose estimation for past environmental exposures
is difficult. The best environmental dose reconstruc-
tion is that for the Life Span Study of atomic bomb
survivors in Japan. This major dosimetry program to
estimate individual organ doses for most survivors is
largely based on physical measurements from build-
ing materials found in the Hiroshima and Nagasaki
surroundings, investigation of shielding factors made
during mock-up tests in Nevada, and analytic model-
ing based on many variables, including what is known
about the physical qualities and yields of the bombs,
weather conditions at the time of the bombings, the
location and shielding conditions of survivors at the
time of the bombings, and the attenuation from differ-
ent shielding configurations [97]. Several methods of
biological dosimetry have been used to estimate doses
in subgroups of the survivors [1, 6, 80, 106]. In gen-
eral, there has been fair agreement with model-based
dose estimates. Since the bombings, several inves-
tigators have assessed dosimetry errors in the LSS
of atomic bomb survivors [27, 46, 91]. It has been
estimated that there is an error of about ±30% in
individual organ doses and that the error results in a
4 to 11% underestimate of the dose response [91]. To

account for the error, an adjustment to the doses is
made in the analyses.

Elaborate dose reconstruction projects have been
conducted to estimate doses from fallout in the United
States [8, 82, 114] and the former Soviet Union
[105], from nuclear accidents [26, 57, 117], and
from nuclear facility discharges [18, 19, 22]. In these
situations, past environmental measurements and cur-
rent measurements of soil and brick are often used
in conjunction with computational modeling, espe-
cially for external exposure. Estimating radiation dose
received as a consequence of intake of contami-
nated air, water, and food is more difficult because
it not only requires knowing what radiation was
released, but also past dietary intake for each indi-
vidual. When possible, biodosimetric measurements
are also performed. Combining several methods of
exposure assessment can improve accuracy and reli-
ability.

Studies of radiation workers provide an important
source of information on the effects of low-dose pro-
tracted exposure. Occupational exposure assessment
is based primarily on dosimeters worn by individ-
ual workers. The dosimeters provide a measurement
of cumulative external exposure, but accurate dose
estimates to an individual worker are dependent on
a wide array of conditions, including the quality of
the dosimeter, the precision in recording the measure-
ments, the care in which the dosimeter is worn, and
the uncertainties in the conversion from exposure to
organ dose [10, 29, 118]. As in other situations, it
is more complicated to estimate dose from internal
occupational exposure [53].

Biodosimetry methods increasingly have been in-
corporated into epidemiologic studies to validate
dose estimates derived from physical or model-based
dosimetry methods or to provide dose estimates when
other sources of dose data are missing or incom-
plete [116]. For many years, chromosome aberra-
tions in lymphocytes have been evaluated as a mea-
sure of dose. For past radiation exposure, translo-
cations can be assessed using fluorescence in situ
hybridization (FISH) techniques. This method is one
of the most accurate and sensitive of the biodosime-
try methods, but is labor intensive and expensive
[21, 48, 116]. More recently, the electron paramag-
netic resonance (EPR) technique has been used to
measure radiation dose accumulated in tooth enamel
[11, 80]. New biodosimetry approaches currently are
being developed.
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Models for Disease Risk from Radiation
Exposure

In radiation epidemiology, three general modeling
approaches are used to analyze data and assess risk:
the dosimetric approach; the empirical or descriptive
approach; and the biologically motivated approach
[84, 117]. (see Model, Choice of)

Dosimetric Risk Models

In the dosimetric approach, a model for disease risk
is developed in studies with accurate disease out-
come information and well-characterized dosimetry,
then applied to a population with a possibly differ-
ent radiation exposure experience. The dosimetric
approach often requires knowledge of the relative
consequences on disease outcomes of exposure to
different types of radiation (specified by the relative
biological effectiveness, RBE) and under different
exposure regimes. For example, the application of
risk models derived from the Japanese LSS of atomic
bomb survivors to radon-exposed underground min-
ers requires knowledge of differential effects of acute
exposure to gamma radiation and neutrons relative to
chronic exposure to alpha radiation. This process is
complicated by evidence that RBE depends on dose
level [71].

While the dosimetric approach has been applied
historically in radiation risk assessment, it is no
longer widely used because of the inherent difficulties
of incorporating the wide range of exposure con-
ditions encountered with diagnostic and therapeutic
radiations and with natural radiations such as radon
and cosmic rays. These diverse exposure conditions
include very low and very high doses, direct and
inverse dose rate effects (dose–response slope vary-
ing as a function of dose), and acute, chronic or
highly fractionated doses. In addition, the need to
apply risk models to populations with very different
radiation exposures has diminished as more and larger
populations with diverse radiation exposures are stud-
ied. Investigators, however, still conduct comparisons
of risk models and risk estimates across diverse pop-
ulations and types of radiation to gain insights into
mechanisms of radiation effects.

Empirical or Descriptive Risk Models

The most common modeling approach with epidemi-
ologic data uses empirical models. With the

empirical approach, modeling starts with a relatively
simple structure and few a priori assumptions.
Models develop increasing complexity by including
factors that statistically improve model fit, although
added covariates typically require some level of
biological plausibility. The approach is amenable
to a broad-based exploration of diverse exposures
and of factors that modify the exposure–response
relationship. Although empirical models are less
structured than biologically motivated models,
these models still require assumptions on the
basic shape of the dose–response relationship
and on the functional form of factors that
modify that relationship [84]. Although empirical
models can be developed distinct from specific
biologic assumptions, models are flexible enough to
accommodate biologically hypotheses.

Data are typically analyzed under an ERR model,

λ(xbk)[1 + ρ(d) ∈ (xem)]

or EAR model,

λ(xbk) + ρ(d) ∈∗ (xem)

where d is the radiation dose, xbk and xem are vec-
tors of covariates used to specify the background rate
of disease and effect modification, respectively, λ(•)
is the background rate of disease in non-radiation-
exposed individuals, ρ(•) is the dose–response func-
tion, and ∈(•) and ∈∗(•) are functions describing effect
modification of the ERR and EAR, respectively.

In modeling radiation effects, the dose–response
relationship, at least for cancer, is based on the
radiobiological assumption that lesions are initiated
as a result of one or two ionizing events, resulting
in a molecular cascade of effects leading to malig-
nancy, or to programmed cell death (apoptosis) [117].
With this biological interpretation as a framework,
a general dose–response model is specified by the
linear-quadratic-exponential form:

ρ(d) = (β0 + β1d + β2d
2)e−α1d−α2d

2
(1)

where the linear and quadratic terms in dose corre-
spond to one or two ionizing events, and the exponen-
tial factor corresponds to cell death at high radiation
doses. While this model is useful as a conceptual
starting point for analysis, data are seldom sufficient
in numbers of cases and ranges of doses to enable
simultaneous estimation of all parameters (see Esti-
mation).



8 Radiation Epidemiology

In the Japanese LSS cohort, analysis is conducted
under an assumption of piecewise exponential time
to failure (see Grouped Survival Times), which is
often referred to as Poisson regression due to the
form of the likelihood function. ERR models are
used to model disease rates for solid tumors, while
EAR models are applied with leukemia, with dose
given in Sv [83, 89, 93]. For these data, xbk includes
variables such as attained age, city, sex, calendar
year of follow-up, and possibly other factors. For
ERR models, the background disease rate, λ(xbk), is
often modeled semi-parametrically by categorizing
the components of xbk and jointly stratifying on all
levels. Effect modifiers, xem, may include variables
used in the background as well as age at exposure and
time since exposure. For solid tumors, the preferred
risk model for ρ (d) is linear in dose, that is, only β1

is nonzero,
ρ(d) = β1d

where β1 is the excess relative risk per Sv (ERR/Sv).
A variant of this model has been used to examine
threshold relationships, where a dose below a given
level is assumed to have no effect on disease rate,
by setting d ′ = d − do for d > do and zero otherwise
[41, 42, 62]. However, there has been no convincing
evidence for the existence of such a threshold in the
LSS cohort [89]. Variables to evaluated effect mod-
ification, ∈ (xem), may be continuous or categorical
(see Random Variable). The preferred risk model
for the ERR of respiratory cancer is

ρ(d) = β1d

∈ (t, s) = exp

[
α1 ln

(
t

20

)
+ α2I (s)

]
(2)

where t is years after exposure and I (•) an indicator
function (see Dummy Variables) taking value zero
for females (s = 0) and one for males (s = 1) [83].

The dose–response parameter is sometimes repa-
rameterized as

ρ(d) = eβ∗
1 d (3)

to remove range restrictions on β1. However, under
this formulation, the estimated parameter is con-
strained to be nonnegative and standard errors are
proportional on the original dose scale.

Radiation from the Hiroshima atomic bomb in-
cludes a mixture of gamma and neutron radiation,
with a neutron to gamma ratio which decreased with

distance from the hypocenter [89]. For Hiroshima
atomic bomb survivors, total dose is defined deter-
ministically as d = g + RBE × n, where g and n

are the gamma and neutron dose, respectively, and
the RBE is set to 10 (although 20 has also been
used). To address the issue of neutron effects at low
doses [100], Pierce and Preston apply a dose–re-
sponse model of the form:

ρ(g, n) = β(g + θg2 + φn) (4)

where θ defines a quadratic effect for gamma dose
and φ specifies RBE [89]. While in theory θ and φ

can be estimated directly along with β, data are not
sufficient and results are examined for a variety of
values of θ and φ [90].

Leukemia is one of the most radiogenic cancers.
Excess cancer risks have been observed within two
years of exposure. In the LSS cohort that was assem-
bled five years following the bombings, excess risks
are at their maximum 5 to 10 years after exposure
then decline, although risks remain elevated 50 years
after the bombings [117]. The preferred model for
leukemia risk is an EAR model of the form:

ρ(d) = β1d + β2d
2

∈∗ (t, a0) =






exp[α1I (t ≤ 15) + α2I (15 < t ≤ 25)]
if a0 ≤ 20

exp[α3I (t ≤ 25) + α4I (25 < t ≤ 30)]
if a0 > 20

(5)

where ao is age at exposure. Here I (•) is an indicator
function that takes value 1 when the argument is true
and 0 otherwise.

ERR models are also applied to data from radon-
exposed underground miners [66, 84]. Exposure–re-
sponse has the form:

ρ(d) = [β(θ0d5 – 14 + θ1d15 – 29 + θ2d30+)] (6)

where cumulative exposure, d, in units of Working
Level Months (WLM) is redefined as “effective”
cumulative exposure by weighting cumulative WLM
incurred 5 to 14, 15 to 29, and 30 years or more prior
to current age. The weights, θi , are estimated in the
model fitting, with θ0 fixed at one for identifiability.
Exposure effects on lung cancer mortality in miners
diminish over 50% after 25 years since exposure.
Models for effect modification use indicator variables
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and take the form

∈ (a, z) = ga(α1)gz(α2) (7)

with

ga(α1) = exp[α1,1I (a < 55) + α1,2I (55 < a ≤ 65)

+ α1,3I (65 < a ≤ 75) + α1,4I (75 < a)]

gz(α2) = exp[α2,1I (z < 5) + α2,2I (5 < z ≤ 15)

+ α2,3I (15 < z ≤ 25)

+ α2,4I (25 < z ≤ 35) + α2,5I (35 < z)]

Here the exposure–response relationship ρ(d)
varies with attained age, a, and years of expo-
sure, z. The α2,j parameters represent variation of
the exposure–response relationship with duration for
fixed cumulative exposure. Parameter estimates are
positive and monotonically increasing, suggesting
an enhancement of radon effects with longer dura-
tions (and lower rates) of exposure. An alternative
model includes categories of exposure rate, z, as an
effect modifier.

Latency is the interval of time from an increment
of exposure to a change in disease response. (see
Latent Period) A general method based on B-splines
(see Spline Function) has been used to explore the
exposure-time-response patterns in Colorado Plateau
uranium miners exposed to radon and its decay prod-
ucts [36, 35]. For each subject, suppose exposure
history, x(t), is given for each year t, t = 1, . . . , T ,
where the index for subject is dropped for clarity.
Cumulative exposure is

∑
x(t). If w(•) defines a

weighting function for the contribution to risk of each
exposure increment, then

∑
w(t)x(t) is the “effec-

tive” exposure. The logarithm of the relative risk is
given as

β1

∑
w(t)x(t) + β2z

where z is a vector of additional risk factors. Cubic B-
splines, which are continuously differentiable, piece-
wise polynomial functions [17], are used to model
the weighting function w(t ; θ) by defining

w(t, θ) =
m∑

j=−3

θjBj (t) (8)

where θj are unknown parameters, and Bj (t) are
known basis functions with knots at 0 < t1 < . . . <

tm, and with
∑

Bj (t) = 1 for all t . For the Colorado

miner data, Hauptmann et al. show that exposures
5 to 25 years prior to current age have the greatest
impact on the relative risk of lung cancer [35]. These
results are similar to a previous analysis of the same
data using a bilinear latency model, which requires
more restrictive assumptions [56].

Biologically Motivated Risk Models

Biologically motivated models attempt to use results
from experimental animal, cellular, and molecular
studies, and a detailed understanding of radiobiology
to specify a structural form for the carcinogenic
relationship between radiation dose (and other disease
risk factors) and cancer outcome [83, 84, 117]. A
number of biologically motivated models have been
developed and applied to data from specific radiation
studies, including experimental animal studies and
epidemiologic studies. Biologically motivated models
have not yet been used to develop general risk models
for risk assessment and radiation protection.

It has long been recognized that age-incidence
curves for many epithelial cancers vary approxi-
mately as a power of age, suggesting a multistage
process for carcinogenesis (see Multistage Carcino-
genesis Models). The most widely applied multistage
model for carcinogenesis is the Armitage–Doll model
[3] (see Dose–Response Models in Risk Analysis).
The model assumes that a cell undergoes k distinct,
ordered, heritable changes, and that the background
rate of disease is independent of the age of the at-
risk cells. An exposure acting at a single stage, say
the ith stage, is postulated to modify the stage transi-
tion rate. The importance of multistage models to the
analysis of epidemiological and experimental animal
data lies in the assumption that age patterns of disease
occurrence relative to the timing of exposure contains
important information about whether exposure oper-
ates early and/or late in the carcinogenic process [16].
For many adult cancers, k generally ranges from four
to six, implying five to seven stages [117]. Applica-
tion of the Armitage–Doll model to the atomic bomb
survivor data suggests the presence of five stages with
radiation acting both at an early and at a late stage
[83, 111], although others conclude incidence of solid
tumors is consistent with three stages [60].

To explain age patterns of solid tumors in the LSS
data and more generally, the Armitage–Doll model
has been extended to allow radiation exposure to act
as a general mutagen that may affect a particular
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stage or all stages in the carcinogenesis pathway
[87, 92]. Age–time patterns under this model are in
concordance with model predictions, although some
skepticism has been raised about this approach [117].

The biological and mathematical characteristics
of the two-stage clonal expansion model have been
discussed in the general context of carcinogenesis
[72–74]. The model postulates that a pool of nor-
mal stem cells are transformed at a given rate into
premalignant initiated cells, either spontaneously or
in response to a specific carcinogenic agent. These
initiated cells undergo a birth and death process,
which may be modulated by a nongenotoxic “promot-
ing” agent, and undergo clonal expansion. Initiated
cells in the premalignant clone may undergo further
genomic damages that lead to malignant transforma-
tion, growth, and malignant tumor. The two-stage
clonal expansion model has been applied to radon
exposure data from animal experiments [39, 67] and
to radon-exposed underground miners [37, 75]. Anal-
yses based on the two-stage clonal expansion model
suggest that radon may affect both the first transfor-
mation rate of normal to initiated cells and the rate
of clonal growth of the initiated cells. An alternate
analysis using a generalized multistage clonal expan-
sion model suggests that a three-stage model may
offer a better fit to the Colorado data than the two-
stage model [61]. Clonal expansion models have also
been applied to data from the LSS cohort [40, 50,
59]. The most recent analysis suggests that a variety
of models are consistent with risk patterns and that
data are too limited to discriminate among the various
models [40].

Adjusting for Errors in Dosimetry

Random errors in dose estimates for atomic bomb
survivors and their potential impact on dose–response
evaluation have long been investigated [27, 46, 91].
Errors arise principally from uncertainties in the pre-
cise location of survivors and the type of shielding,
information that is used as input to a multiparameter
dose prediction model. This information is based on
extensive interviews with subjects, in person or by
mail, several years following exposure [27]. Pierce
et al. apply a regression calibration approach for error
adjustment [91] (see Multiplicative Model). For true
dose x and observed dose z, the regression calibration
replaces z with E[x|z], where E[•] denotes expected

value. The density function for the true dose given
the observed f (x|z), is proportional to

f (x|z) ∝ f (x)f (z|x)

The marginal distribution of x, f (x), is assumed
Weibull, with parameter values selected such that
there is agreement between the observed z’s and the
theoretically values induced from f (x) and f (z|x)

under the assumed error model. Four error mod-
els for log(z) are considered: (i) “lognormal with
30% error”, that is, lognormal with geometric stan-
dard distribution (GSD) (see Geometric Distribu-
tion) of exp(0.30), (ii) “lognormal with 40% error”,
(iii) “contaminated lognormal with 40% error”, that
is, a mixed lognormal having GSD = exp(0.30) with
probability 0.75 and GSD = exp(0.75) with proba-
bility 0.15, and (iv) z having a normal distribution
with coefficient of variation 0.40. Models (iii) and
(iv) are selected to evaluate a “heavy tailed” distribu-
tion and a nonsymmetric (on a log scale) distribution,
respectively. The authors conclude that use of the
unadjusted observed doses results in risk estimates,
which are about 4 to 11% too small [91]. Most cur-
rent analyses of the LSS data use adjusted doses.

Nuclear workers are studied to obtain direct esti-
mates of the effects of radiation exposures at low
doses and low dose rates. Exposure assessment is
aided by annual doses estimated from dosimeters
worn by workers and exchanged weekly or bi-weekly.
However, exposure evaluation of nuclear workers
may be influenced by both systematic errors and
random errors [28, 29, 30]. Gilbert and Fix describe
potential sources of measurement error for workers at
the Hanford nuclear facility [29]. Cumulative expo-
sures may be biased from an inability to identify
workers who are truly nonexposed and have zero
recorded doses, from workers who are exposed to
low doses but have zero recorded doses due to the
adjustment of dosimeters, which subtracts a fixed
contribution from natural background radiation. Sen-
sitivity of dosimeters over a range of photon energies
and the ability to respond to radiations from a variety
of directions vary over time and result in temporal
changes in errors since all doses below detection
limits are recorded as zero. Improvements in dosime-
ters result in temporal variation in the measurement
error for recorded doses, with increased errors in
earlier years. Risk estimates are based on dose to
target tissue, while exposure assessment for work-
ers is based on recorded doses from dosimeters. In
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addition, no precise data are available for workers
exposed at other nuclear facilities. Finally, com-
puterized files include annual dose estimates and
not individual dosimeter values, further potentiating
underestimation of cumulative dose. Assuming errors
are multiplicative and lognormally distributed, and
that errors from different sources are independent,
Gilbert presents a detailed sensitivity analysis on
the effects of random and systematic errors for the
Hanford nuclear workers [28]. Adjustment for errors
in the analysis of all cancers, except leukemia are
nearly unchanged, while adjustment for errors in the
analysis of leukemia, excluding chronic lymphocytic
leukemia, increase the upper confidence limit by a
factor of 1.4. Since sampling uncertainty is large,
adjustments do not fundamentally modify inference.

A cohort of children from southwestern Utah,
southeastern Nevada, and southeastern Arizona who
were exposed to iodine isotopes (principally 131I
and 133I) from fallout from aboveground detona-
tions of nuclear weapons tests conducted from 1951
through 1958 at the Nevada Test Site, were exam-
ined for incidence of thyroid disease. A positive
but nonsignificant dose response was found for thy-
roid cancer and for thyroid nodules [52]. Dosimetry
for this study is based on environmental model-
ing of ground deposition of radioiodine for each
weapons test, interviews with subjects’ parents to
obtain information on dietary habits, prior medical
irradiation, medical history, and lifestyle factors. A
path analysis links the dispersion of radiation in
the environment, the uptake of radioiodines into the
food supply, the intake of milk and leafy vegeta-
bles, direct inhalation, and external exposure from
radiation in the passing fallout cloud to create a radi-
ation exposure estimate for each subject [114]. A
dose conversion factor is then applied to convert
exposure from radioiodine intake and from exter-
nal sources to thyroid dose. A multiplicative error
model and lognormal errors are specified and used to
define a range of GSDs for uncertainty and a “sub-
jective confidence interval” for true dose [114]. More
formally, under a classical measurement error model
and using a Gibbs sampling approach (see Markov
Chain Monte Carlo), measurement error correction
of large uncertainties in thyroid dose results in a
three-fold increase in the dose–response estimate
[112]. A semiparametric Bayesian approach that
allows for a mixture of both classical and Berkson
errors (see Measurement Error in Epidemiologic

Studies) acting through a latent intermediate vari-
able (see Path Analysis) has also been applied to
these data [68]. The error-adjusted dose–response
estimate is nearly double the unadjusted estimate, but
has markedly widened confidence limits.

Diagnostic and treatment protocols for medical
radiation procedures are typically well-documented
in medical records, which suggests the possibility of
a good characterization of errors in dosimetry. Stud-
ies using anthropomorphic phantoms, where radiation
dosimeters are embedded in constructs of tissue-
like material and exposed under realistic conditions,
provide data for the development and testing of pre-
diction equations relating radiation exposure from X
ray machines to dose to target tissues. As an example,
uncertainties in the estimation of dose to the thyroid
are evaluated for their effects on risk estimates of thy-
roid cancer in a study of Israeli children aged 15 years
and under, who are treated with cranial irradiation for
tinea capitis (ringworm of the scalp) [101]. Data from
studies of phantoms are used to develop a predic-
tion equation on the basis of age at treatment, X ray
machine output, and amount of additional machine
filtration, and including estimates of within-patient
error, between-patient error, and random error. This
prediction equation is used with covariate information
from patient records to provide individualized dose
estimates. Estimation of parameters in the prediction
equation results in classical error, while the need to
impute unknown patient data on age at treatment and
other factors results in Berkson error. Schafer et al.
use Poisson regression methods for cohort data and
compare a full likelihood approach with a regres-
sion calibration approach [101]. After adjustment for
multiple sources of error, risk estimates, and their
standard errors, as well as inference on effect modi-
fiers, are not appreciably altered with either approach.
The results suggest that classical error plays a rela-
tively minor role and Berkson error is limited. Since
the components of dose uncertainties in the tinea
capitis study are likely present in other epidemiologic
studies of patients treated with radiation, this analysis
may provide a model for considering the potential
role of uncertainties.

Cohort mortality studies of underground miners
are an important source of information on the effects
of inhalation of radon and its decay products on
lung cancer occurrence. Uncertainties in miner data
arise from a variety of sources [84]. While cause
of death may be misspecified either by failure to
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record deaths or miscoding of cause of death, the
major source of uncertainty derives from character-
ization of exposures many years in the past. Errors
in exposure assessment arise from limited numbers
of measurements of radon in air, particularly in the
early years of mine operations, the need to interpo-
late radon concentrations between unmeasured mines
and time periods, and the need to extrapolate radon
to time periods prior to measurements. Exposure
measurement devices are typically not distributed
throughout the mine, since measurements are often
motivated by regulatory concerns. Finally, documen-
tation on numbers of hours and precise locations of
workers in mines is frequently incomplete. A pre-
cise assessment of errors is crucial for the evaluation
of the shape of the exposure–response function, par-
ticularly at low exposure rates, which can influence
the extrapolation of risks to the lower exposures
in the general population. Results in miners suggest
a greater exposure–response relationship for work-
ers with increased exposure duration (or decreased
exposure rate), that is, for a given total exposure,
exposures for longer durations at lower rates are
more deleterious than exposures of shorter dura-
tions at higher rates [66]. Uncertainties in exposures
are greatest in the early mining years when mine
exposures are highest and before widespread mea-
surements are available. Thus, periods of highest
exposure rates are also periods most prone to expo-
sure measurement errors. Stram et al. address uncer-
tainties for the complex exposure assessment in the
study of Colorado plateau uranium miners [109, 110].
They fit a multilevel regression of the logarithms of
radon concentration on mine, location, region, and
year-specific data. The model defines a single impu-
tation, which is used to estimate exposure, that is, the
expected true exposure under the model given the
observed measurements, for unmeasured time peri-
ods and unmeasured mines. A nested case–control
study is selected from the cohort data, matching 40
controls to each case, and analyzed using conditional
likelihood regression methods. They find a steeper
exposure–response slope and a diminished inverse
exposure-rate effect.

Studies of radon-exposed underground miners in-
dicate that exposures up to 30 years and earlier
may influence risk of lung cancer [64, 84]. For
epidemiologic studies of residential radon, expo-
sure histories must therefore be reconstructed up to
30 years prior, creating [84] substantial uncertainties

in exposure assessment [65]. Uncertainties arise from
contemporary measurements of radon in one or two
rooms not precisely characterizing levels within a
dwelling or not accurately reflecting past radon levels
due to modified living patterns of the current occu-
pant, structural alterations of the residence, or normal
random variations within a room, between rooms of
a house, and from year to year. The use of contempo-
rary radon measurements to estimate concentrations
in past years induce classical error, which tends to
bias risk estimates towards the null [15, 96] (see
Bias Toward the Null). Uncertainties also arise from
gaps in the historical record, due to residences that no
longer exist or are used for nonresidential purposes,
are located outside the study area, are occupied only
briefly and excluded by the measurement protocol,
or are not measured owing to refusal of the cur-
rent occupant. Investigators typically employ a single
imputation approach for gaps, inserting the mean
radon concentration of control houses for missing
data in the calculation of time weighted average radon
exposure over an exposure period of interest [120].
This single imputation induces Berkson error, which
increases variance, but under a rare disease assump-
tion, a linear model for the odds ratio and limited
missing data does not appreciably bias risk estimates
(see Missing Data in Epidemiologic Studies).

Precise characterization of all uncertainties in res-
idential radon studies is problematic. Investigators
have addressed uncertainties by developing models
and directly adjusting risk estimates [15, 96]. Other
investigators address uncertainties using simulations
under realistic error models to conduct sensitivity
analyses, with estimates of error based on previous
measurement experience [54], or a variance compo-
nents analysis of validation data for temporal and
spatial variation [119]. These disparate approaches
have consistently found that error-adjusted estimates
of excess odds ratios for lung cancer incidence and
radon were 50 to 100% greater than unadjusted
estimates.

Investigators have also sought to limit uncertain-
ties through study design by enrolling only long-term
residents [4, 5, 23] or by analytically modeling radon
levels for gaps in residential history [38]. Finally,
an improved retrospective radon dosimeter has been
developed that measures residual radiation embedded
in glass artifacts, such as mirrors and picture frames,
from radon in air. The dosimeter measures past
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cumulative exposures and thereby reduce exposure
uncertainty [2, 54, 107].
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Radiation Hybrid
Mapping

Radiation hybrid (RH) mapping is a somatic cell
genetic technique for constructing maps of mam-
malian chromosomes. Originally developed in the
1970s, its current incarnation evolved in the early
1990s as a way to bridge the gap in map res-
olution between genetic linkage mapping, with a
resolution of approximately 1 megabase (Mb) pairs
of deoxyribonucleic acid (DNA), and physical map-
ping by pulse field gel electrophoresis, with a res-
olution of up to a few hundred kilobase (kb) pairs.
RH maps can include nonpolymorphic markers (see
Genetic Markers; Polymorphism) and are flexible
and powerful enough to order polymorphic markers
too closely linked to be easily mapped with linkage
methods.

A set of hybrid clones (“hybrids”) created in
one experiment is called a RH panel. Early panels
consisted of hybrids containing fragments from only
a single human chromosome. This technology quickly
gave way to whole-genome panels, which contain
fragments from all human chromosomes, allowing
one to build maps of any portion of the human
genome.

Experimental Design

To develop a whole-genome RH panel for human
mapping, one starts with a diploid human fibrob-
last cell line. The cells are irradiated with a dose of
radiation strong enough to fragment the chromosomes
into several pieces: the higher the radiation dose, the
smaller the fragments, and the higher the mapping
resolution. Cells containing the fragmented human
chromosomes are recovered by fusion with a thymi-
dine kinase (TK) deficient rodent cell line, and hybrid
cells containing human chromosome fragments are
selected for in hypoxanthine–aminopterin–thymine
(HAT) medium. The hybrid cells retain loci near
the human TK gene on chromosome 17 at high fre-
quency, but retain loci on other human chromosomes
nonselectively. The hybrids cells are propagated to
create clones; each hybrid clone (“hybrid”) contains
cells with a unique set of fragments from the origi-
nal human chromosomes, and can be tested for the
presence of known human DNA markers.

Mapping begins by genotyping each hybrid for
the markers to be mapped. A vector Xi denotes the
observations for hybrid i under a given order, with
a 1 indicating that a marker is present in the hybrid,
and a 0 indicating absence. In reality, hybrids are
often genotyped twice. If the genotypes at any marker
are discordant, then the genotype for that hybrid
at that locus is treated as missing. Whole-genome
RHs may have retained 0, 1 or 2 copies of any
marker. However, assays typically only determine
the presence or absence of the marker, and not the
number of times it is present in the hybrid. The
patterns of presence and absence of the markers in
the hybrid clones are used to infer marker order by
exploiting the principle that the closer together two
markers are on a chromosome, the fewer radiation-
induced breaks are expected to occur between them,
and the more likely it is that they will be retained or
lost together in a hybrid. Figure 1 depicts a simple
example of a single chromosome with eight markers
and four hybrids.

Statistical Analysis

The goal of RH mapping is to determine the correct or
most likely order of a set of markers and to estimate
the distances between the markers. The analyst must
choose both the criterion for evaluating and compar-
ing individual locus orders, and a search method for
traversing through the possible locus orders in order
to find the optimal map.

Methods for Evaluating a Locus Order

Nonparametric. The closer together two loci lie on
a chromosome, the less likely it is that a radiation-
induced break will separate them, and thus the less
likely it is that one will be lost and the other retained
in a hybrid. A simple strategy is to find the order
with the fewest total number of obligate chromosome
breaks between adjacent markers (see, for example,
[4]). An obligate chromosome break is observed
between two markers in a hybrid if one of the
markers is present and the other is absent from the
hybrid. In counting the number of obligate breaks,
untyped markers are ignored. For example, if hybrid
1 in Figure 1 has been typed for all eight markers,
then the observation vector under the true order is
X1 = (10 000 111). This order requires two obligate
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Figure 1 The figure at the left depicts the true (unknown in actual mapping experiments) locations of eight markers on
a chromosome. The four circles represent four different hybrids. Within each are shown only the retained pieces of the
chromosome of interest. In the first hybrid, three fragments have retained one or more markers from the chromosome. In
hybrid 2, only one fragment containing a marker from this chromosome was retained. In hybrid 3, one fragment containing
five markers was retained. In the last hybrid, three fragments contain six of the eight markers of interest. Using the correct
chromosome order, the hybrid genotypes would be displayed as: X1 = (10 000 111); X2 = (01 000 000); X3 = (00 111 110);
X4 = (11 111 001)

breaks; one between the first and second markers,
and one between the fifth and sixth. Other breaks
may have occurred, and in fact the figure shows that
there is also a break between the seventh and eight
markers. However, only two breaks are required to
explain the observed data for the true order. For this
hybrid, any order in which the first marker is adjacent
to one of the last three requires only one obligate
break. Barrett [2] showed that under some common
modeling assumptions the minimum breaks method
is statistically consistent; as the number of hybrids
increases, the probability of inferring the correct order
converges to 1.0.

Maximum Likelihood. Likelihood methods pro-
duce an estimate of distances between markers as
well as a statistic (the maximum likelihood) for eval-
uating a marker order. As with the obligate breaks
method, we first choose a marker order. Under a

given order, we estimate parameters via maximum
likelihood. We consider the map order with the
largest maximum likelihood the best order. Most
researchers have parameterized their models in terms
of fragment breakage and retention probabilities.
Under a specific marker order (A1, A2, . . . , AM), the
breakage probability θi(1 ≤ i < M) is the probabil-
ity that at least one break occurs between markers Ai

and Ai+1. The simplest assumption that can be made
about fragment retention is that all fragments are
equally likely to be retained. Actual data typically do
not support this assumption, but it is usually adequate
to order markers correctly, if not accurately esti-
mate intermarker distances [11]. Many more realistic
(and hence complex) retention models are available
in RH mapping software (see, for example, [4], [10]
and [15]).

Typically, we assume that breakage and retention
are independent processes and that retention of one
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fragment is independent of retention of any other
(see, for example, [6]). Under the first assumption,
breakage can be modeled as a Poisson process, and a
breakage probability θ can be converted to an additive
distance d using d = − ln(1 − θ), a formula analo-
gous to Haldane’s no-interference mapping function
used in meiotic mapping (see Genetic Map Func-
tions). The distance d is measured in Rays or cen-
tiRays (cR), which are analogous to Morgans and
centiMorgans in meiotic mapping. A distance of 1
Ray corresponds to one expected break between the
two loci per chromosome. The breakage probability
between two markers, and therefore also the distance,
depends on the radiation dose. Thus, it is best to
state the X-ray dose with the distance, such as cR8000

for a dose of 8000 rads of radiation. The com-
mercially available G3 whole-genome panel devel-
oped at Stanford [16] averages 24kb per cR10 000.
However, there is only a rough correspondence of
breakage to physical length: the average ranges from
18 kb/cR for chromosome X to 33 kb/cR for chromo-
some Y.

For simplicity, assume a single retention rate r

for all fragments. For a single hybrid and marker
order A1, A2, . . . , AM , we assume that the number of
copies of each marker present in the hybrid Gk, k =
1, . . . , M , form the states of a Markov chain.
For whole-genome diploid (see Human Genetics,
Overview) hybrids, only the presence or absence
of markers is directly observable, and the states of
the chain are partially hidden from view. The tran-
sition probabilities tc,k(i, j ) = Pr(Gk+1 = j |Gk = i)

are the probabilities that j copies of marker Ak+1 are
retained given that i copies of marker Ak are retained
when the maximum number of copies (ploidy) is c.

To compute tck(i, j ), first consider a haploid
hybrid. In this situation c = 1, and the transition prob-
abilities are:

t1k(0, 0) = 1 − θkr,

t1k(0, 1) = θkr,

t1k(1, 0) = θk(1 − r),

t1k(1, 1) = 1 − θk(1 − r).(1)

The haploid transition probabilities (1) (see Markov
Chains) can be used to construct the diploid transition

matrix as follows:




t1k(0, 0)2 2t1k(0, 0)t1k(0, 1) t1k(0, 1)2

t1k(1, 0)t1k(0, 0)
t1k(0, 0)t1k(1, 1)
+t1k(0, 1)t1k(1, 0)

t1k(1, 1)t1k(0, 1)

t1k(1, 0)2 2t1k(1, 1)t1k(1, 0) t1k(1, 1)2




,

where the rows correspond to 0, 1, and 2 copies of
marker Ak retained, and the columns to 0, 1, or 2
copies of marker Ak+1 retained. For example, the
probability of moving from a state where 0 copies
of marker Ak are retained to a state where 2 copies
of marker Ak+1 are retained is found in the top right
corner entry of the matrix.

For a single hybrid, let φi(xi |gi) = Pr(Xi =
xi |Gi = gi) be the probability that we observe marker
Ai to be present (Xi = 1) or absent (Xi = 0) given
that gi copies of the marker are retained. φi(1|0) is
the false positive error rate, and φi(0|gi), gi = 1, 2,
are the false negative error rates for marker Ai .
Here, assume that the error rates are known. Lange
et al. [10] discuss aspects of error rate estimation,
and Slonim et al. [15] discuss error detection. We
assume that typing results for individual markers are
independent given the G1, . . . , GM ; i.e.

Pr(X1 = x1, . . . , XM = xM |G1 = g1, . . . , GM = gM)

=
M∏

k=1

φk(xk|gk).

We further assume that the observations are indepen-
dent given the underlying marker counts. Then the
likelihood for the observations (X1, . . . , XM) from a
single hybrid is

Pr = Pr(X1 = x1, . . . , XM = xM)

=
∑

g1

· · ·
∑

gM

(
c

g1

)
rg(1 − r)c−g1

×
M−1∏

k=1

tc,k(gk, gk+1)

M∏

k=1

φk(xk|gk). (2)

Since the hybrids are independent, their likelihoods
are multiplied to get the full likelihood. For haploid
hybrids with no typing error, there is no summation
over the index gk since xk = gk . The likelihood (2)
can be evaluated as an iterated sum using Baum’s
algorithms from the theory of hidden Markov chains
(see, for example, [10]), and the EM algorithm [7]
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can be used to maximize the likelihood. Here, the
retention patterns of the markers are the observed,
“incomplete” data, and the “complete” data include
the number of copies of each locus retained, the
locations of the chromosome breaks, and the retention
status for each fragment.

Bayesian. Bayesian methods yield posterior proba-
bilities of locus orders that allow more easily inter-
pretable comparisons of competing orders. However,
the ease of interpretation comes at great expense in
computational difficulty. Thus, the Bayesian meth-
ods that have been developed to date have not been
widely used for map construction. One of the more
promising methods uses a “simulated tempering”
modified sampling scheme on the mixing character-
istics of the Markov chain [8].

Map Building and Identifying the Best
Order

For M markers, there are M!/2 possible marker
permutations. When only a small number of markers
are to be ordered, all possible orders may be evaluated
and compared. For up to 10–12 markers, branch-
and-bound algorithms (see, for example, [13]) also
work well. Using branch and bound guarantees that
the best order and all orders within a specified number
of units (e.g. number of obligate breaks, or log10

likelihood) of the best order will be identified, while
substantially decreasing the number of orders that
must be evaluated. However, the number of orders
to be evaluated still scales exponentially with the
number of markers [4].

The locus ordering problem is a version of the
classic traveling salesman problem (TSP) in combi-
natorial optimization. Thus, optimization algorithms
that have been applied to the TSP are quite success-
ful for building RH maps [1]. Simulated annealing
[9] and genetic algorithms are explored by several
authors [3, 4, 14].

For building maps across large segments or whole
chromosomes, the common strategy is to first build
a framework map, with markers that can be ordered
with high confidence. Then, we put additional mark-
ers in “bins” along the framework using various
strategies. Typically, these markers cannot be ordered
among themselves with high certainty, but can be
placed in a location relative to the framework (see, for

example, [12], [15] and [16]). An alternative strategy
for dealing with uncertainty in the order and location
of markers is to calculate the posterior distribution of
the position of each marker [17].

Software for RH Mapping

RHMAP: http://www.sph.umich.edu/stat-
gen/boehnke/rhmap.html [5]
RHMAPPER: http://www-genome.wi.mit.
edu/ftp/pub/software/rhmapper/ [15]
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Radiation

Biostatistical applications in the area of ionizing
radiation are primarily addressed at understanding the
biological consequences of radiation exposure, espe-
cially the health risks. The availability of data from a
wide range of epidemiological and experimental stud-
ies, many with well-characterized estimates of dose or
exposure, has led to sophisticated biostatistical mod-
eling of risks that is perhaps unique to the radiation
field. This article focuses on studies that have been
aimed at identifying effects, understanding biological
mechanisms, and estimating dose–response relation-
ships for cancer risks, although other areas such
as dosimetry and environmental clean-up have also
required special statistical approaches.

During the 20 or so years following the discovery
of X-rays in 1895, many of the effects of expo-
sures to high doses of radiation, including acute tissue
damage, risk of progressive anemia, and risk of can-
cer following doses sufficient to cause macroscopic
tissue damage, were identified through clinical expe-
rience. Radiation exposure was also found to produce
genetic changes in insects. Subsequently, following
the atomic bombings of Hiroshima and Nagasaki,
surveys quickly provided evidence that irradiation
at high doses increased the risk of leukemia and
cataracts in survivors, and of mental retardation
among those exposed in utero. A program of genetic
research on the effects of radiation was also set
up in the late 1940s. However, in the mid-1950s,
there were no data for obtaining the quantitative risk
estimates needed for assessing the consequences of
peacetime uses of radiation or for addressing con-
cerns regarding world radioactive fallout from testing
of hydrogen bombs.

As a result, large studies of the causes of death
and the incidence of cancer among those who had
been irradiated were initiated, first among the sur-
vivors of the Hiroshima and Nagasaki bombings
and in several populations given medical irradiation,
and later in several groups occupationally exposed
to radiation including nuclear industry workers (see
Occupational Epidemiology). Many of the studies
included extensive efforts to estimate radiation doses.
In addition to these studies, which were primarily
of the effects of X- and gamma-radiation, studies of
underground miners exposed to inhaled alpha parti-
cles in the form of radon and its progeny were also

initiated. Together these studies have shown that the
most important late effect of exposure to doses of
irradiation too small to cause acute effects or macro-
scopic tissue damage is an increased risk of cancer in
many organs and tissues in the body. Recently, evi-
dence that exposure to ionizing radiation can increase
the risk of cardiovascular, respiratory, and digestive
diseases has also become available [37]. By contrast,
hereditary effects of radiation exposure have not been
clearly demonstrated in human populations. Atomic
bomb survivor studies have also demonstrated effects
on the developing brain, but absence of additional
appropriate human data and uncertainty about the bio-
logical mechanisms have prevented extensive study
of this topic. For a detailed historical review see Doll
[12] and for a more recent review, see Ron et al. [34].

All human beings are exposed to low doses
of radiation environmentally, many receive medical
exposures, and some are also exposed occupation-
ally. Because some of these exposures carry ben-
efits to the individual or to society, and because
reducing exposure can be costly or may carry alter-
native risks, quantifying risks from such exposures
is of substantial interest to society. The effects of
exposure to low doses of ionizing radiation in a
population may not be negligible, and one esti-
mate concluded that around 5%–6% of the 26 000
cancer deaths that occur in the US each year are
likely to be due to natural ionizing radiation [6],
but such calculations are subject to many difficul-
ties, particularly that of extrapolating from high to
low doses and low dose rates (see Extrapolation,
Low Dose). Other difficulties in estimating radiation
risks come about because experimental studies indi-
cate that the effects of radiation exposure vary by
the type of radiation involved (gamma rays, alpha
particles, etc.) and in some cases by exposure rate,
while epidemiologic studies indicate that radiation
effects depend on characteristics of the exposed pop-
ulation such as age at exposure, sex and other factors.
Also, to estimate lifetime risks and to evaluate detri-
ment in terms of life-shortening, an understanding of
the patterns of risk over time following exposure is
required.

The Major Studies

The many settings in which radiation exposure has
occurred, together with the ability to measure radi-
ation dose, have led to a wealth of data on the
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carcinogenic effects of radiation exposure so that,
with the possible exception of smoking, more is
known about the carcinogenic effects of exposure to
radiation than of any other potential carcinogen.

Of particular importance is the Life Span Study of
the survivors of the atomic bombings of Hiroshima
and Nagasaki mentioned above, in which some
100 000 persons of all ages and both sexes were
identified from the 1950 population census, and
included in a cohort study. Dose estimates are
available for about 86 000 subjects, of whom around
18 000 received doses of about 0.1 Sv or more to
major internal body organs while a further 36 000
are thought to have been essentially unexposed, with
doses of less than 0.005 Sv, and these form an
internal control group (to get this in perspective, the
average annual exposure to background radiation in
the US excluding radon is roughly 0.001 Sv). To date,
the cohort has been followed from 1950–1990 and
a total of 4863 deaths have occurred from cancer
in the exposed, of which 425 are estimated to be
in excess (see Excess Mortality) and likely to be
due to the radiation exposure; 85 of these excess
deaths were due to leukemia [29]. For leukemia,
most of the excess deaths occurred in the first 15
years after exposure, while for other cancers about
25% of the excess deaths occurred in the last 5
years of follow-up and the excess absolute risk
per unit time is still increasing. There are clear
dose–response relationships both for leukemia and
for solid cancers (see Figure 1). Tumor registries
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Figure 1 Shape of the dose–response curve for solid
cancers among males aged 30 at exposure among survivors
of the atomic bombings of Hiroshima and Nagasaki. Based
on Pierce et al. [29]

in the cities of Hiroshima and Nagasaki also allow
the study of cancer incidence in this cohort, with
the most recent published results covering the
period 1958–87 [41]. The tumor registries have also
allowed detailed study of cancers of several specific
sites.

As well as studies of the Japanese atomic bomb
survivors, cohort studies of persons treated with gen-
erally high doses of external X-ray and gamma radi-
ation for diseases such as ankylosing spondylitis,
cervical cancer, tuberculosis, benign gynecological
disease, peptic ulcer, skin hemangiomas, childhood
cancers, mastitis, thymic reduction, and tinea capitis
have been carried out. In addition, studies of per-
sons exposed to internal alpha emitters have been
conducted in radium dial painters and in patients
with a variety of conditions injected with the contrast
medium Thorotrast. In many instances these stud-
ies have reported results that are in accordance with
those found in the Japanese atomic bomb survivors,
but they have also provided important supplemental
information. For example, they have demonstrated
that, in marked contrast to other forms of leukemia,
chronic lymphocytic leukemia, which occurs only
very rarely among ethnic Japanese, is not readily
inducible by radiation. In addition, a recent pooled
analysis of several studies of breast cancer inci-
dence have given support to the concept of a linear
radiation dose response for breast cancer, have high-
lighted the importance of age and age at exposure
on the risks, and have suggested a similarity in risks
for acute and fractionated high-dose-rate exposures
with much smaller effects from low-dose-rate pro-
tracted exposures. There is also a suggestion that
women with some benign breast conditions may be
at elevated risk of radiation-associated breast cancer
Preston et al. [32].

Most of the above studies involve populations
exposed to X-rays or gamma rays at doses and dose
rates considerably higher than would normally be
experienced and thus considerable downward extrap-
olation is involved in risk assessment. Several stud-
ies of much lower exposures have been carried
out, including studies of nuclear workers [3, 26]
and populations exposed to fallout [8, 38]. Where
adequate dose estimates are available, such stud-
ies provide a direct evaluation of the risks at the
actual levels of interest. Although these studies cover
large populations, their low doses inevitably result in
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reduced power to detect effects and substantial poten-
tial for confounding, and they cannot be expected to
provide precise estimates of risk or much informa-
tion on modifying factors (see Effect Modification).
Nevertheless, they have provided reassurance that
extrapolation from higher doses and dose rates has
not seriously underestimated risks.

A promising source of new information comprises
persons who were exposed in countries of the for-
mer Soviet Union, where exposures were generally
much larger than those from similar activities in
other countries. Studies include those exposed as a
result of the Chornobyl accident in 1986 [43] and
those exposed as a result of operations of the Mayak
nuclear facility, which began operations in 1948 to
produce plutonium for the Soviet Union’s nuclear
weapons program ([17, 18] – or cite whole issue –
see references). Studies of Chornobyl clean-up work-
ers, workers at the Mayak facility, and populations
living near the Techa River downwind of the Mayak
facility are unique in providing information on pro-
tracted whole body exposure at cumulative doses
that are sufficiently large that risks can be estimated
with some degree of precision. In addition, studies
of Chornobyl exposures have clearly demonstrated
that exposure to iodine-131 in childhood can increase
the risk of thyroid cancer, and extensive efforts to
estimate thyroid doses for individual subjects should
make it possible to quantify risk as a function of
dose. Studies of Mayak workers have provided the
first direct demonstration in humans that exposure
to plutonium increases risk of lung, liver, and bone
cancers.

The studies discussed above are not directly rele-
vant for one of the most important sources of popu-
lation exposure to ionizing radiation, namely inhaled
radon and its progeny. It had been known for sev-
eral centuries that miners in the Erz Mountains had a
high mortality from chest disease, but it was not until
early in the twentieth century that it was appreciated
that the disease was in fact lung cancer, and not until
the 1950s that it was widely accepted that radon was
likely to be the principal cause. About a dozen studies
of radon-exposed miners have now been carried out
including over 60 000 men. All the studies found high
risks of lung cancer that were related to radon expo-
sure [22] but the risk was very specific to this site
of cancer and there was no material risk of mortality
from other cancers [9].

The majority of the studies mentioned above
are cohort studies. However, case–control studies
have played an important role in documenting the
association between risk of childhood cancer and
obstetric X-rays [1], while nested case–control or
case–cohort studies have sometimes been used to
obtain information on doses [2, 44] or covariates
[20] that would be too costly to obtain for the
entire cohort. Case–control studies are also currently
being used to estimate directly the risks of residential
exposure to radon (e.g. [10, 28]). The need for this
arises because residential radon is the largest source
of exposure to ionizing radiation in many populations,
often accounting for over half the population dose,
whilst the available remedial measures are costly.
Extrapolation of the risks from the miners’ studies
is particularly uncertain owing to the very different
exposure conditions in mines compared with homes,
and is complicated by the fact that there is evidence
from the studies of radon-exposed miners that the
risk per unit exposure varies with exposure rate, with
a higher risk per unit exposure when the exposure
is delivered at a lower compared with a higher rate
[23, 42].

In addition to observational studies on humans,
a large number of experimental studies have been
conducted both in vivo and in vitro. These studies
have increased our understanding of the carcinogenic
process and have provided information in areas where
human data are inadequate. Experimental studies
have been especially important in developing our
understanding of modifying factors such as exposure
rate and type of radiation, and of the shape of the
dose–response function.

The large and ever-growing number of studies
has led to a sizable literature. This is reviewed
periodically by a number of committees including the
United Nations Scientific Committee on the Effects of
Atomic Radiation UNSCEAR [43], the International
Commission on Radiological Protection [16], and
the Committee on Biological Effects of Ionizing
Radiation of the US National Research Council [5,
27]. Their reports should be consulted for further
details.

The Contribution of Biostatistics

The wealth of data and the availability of quantitative
estimates of biologically relevant measures of dose
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or exposure have led to the development of complex
models for describing radiation risks that have drawn
on information obtained from both epidemiologic
and experimental studies. Statisticians have been
stimulated to use a wide variety of methods to fit
models that include the characterization of modifying
factors and that address exposures that may be
protracted over time.

As would be expected, the Cox regression model
forms the basis of many applications. In a few cases
(e.g. [14]) simple proportional hazards models have
been fitted to data on individual subjects, but the
complexity of fitting such models, especially when
study sizes are large, often makes such an approach
cumbersome. Furthermore, it is sometimes desirable
to model absolute rather than relative risks, and
this generally requires parametric models for the
baseline risks. These difficulties can be avoided by
the assumption of piecewise constant exponential
hazards, enabling the data to be summarized in terms
of tables of the numbers of events and person-years
at risk. A wide variety of models can then be fitted
by means of Poisson regression, and the flexible
programme AMFIT [31] was developed to enable
this type of analysis to be carried out easily (see
Additive Hazard Models; Poisson Regression in
Epidemiology).

The application of Poisson regression using
AMFIT is illustrated by analyses of atomic bomb
survivor mortality data in which both excess relative
risk and excess absolute risk models were applied to
data for leukemia and solid cancers with exploration
of the shape of the dose–response functions and the
dependence of risks on sex, city, age at exposure,
and time since exposure [29]. Another application,
which illustrates the feasibility of the approach for
exposures that are protracted and variable over time,
is an analysis of data from 11 underground miner
cohorts [22], where risks were found to depend not
only on cumulative exposure, but also on exposure
rate, time since exposure, and age at risk. The shape
of the exposure–response function and the effect
of age at exposure were also explored in these
analyses.

The radiobiological understanding that has come
from experimental studies has sometimes affected the
choice of models, and, in particular, has led to the
use of models in which the relative risk is a linear or
linear–quadratic function of dose. Biologically based
models have also been applied to radiation data;

for example, the two-stage clonal expansion model
has been used to describe lung cancer risks in both
Colorado miners [25] and rats [24] exposed to radon
and radon progeny.

In the radiation epidemiology field there are sev-
eral instances in which combined analyses of original
data from several studies have been carried out. Early
examples were analyses of data from three studies of
radiation exposure and breast cancer [19] and anal-
yses of data from the Life Span Study of Japanese
atomic bomb survivors and patients given X-ray ther-
apy for ankylosing spondylitis [7]. Subsequent com-
bined analyses include those of 11 underground miner
cohorts [9, 22], of several cohorts of nuclear workers
in three countries [3], of several studies of radiation-
induced thyroid cancer [35] and eight cohort studies
of breast cancer [32]. A major reason for conducting
combined analyses is to obtain more precise estimates
of parameters than those based on individual studies,
an advantage that is especially important for inves-
tigating modifying factors. Combined analyses also
provide a more rigorous evaluation of consistency
of results among studies. Some combined analyses
have accounted for heterogeneity among the studies
in the confidence intervals for the overall risk esti-
mate [22, 35].

By contrast to the sophisticated analyses described
above that have been applied to observational epi-
demiologic data, the statistical methods applied to
experimental animal data have in many cases been
fairly simple. However, in some cases the hazard
has been modeled as a function of dose, age, and
other factors, an approach that is similar to that
applied to epidemiologic data although modifications
have sometimes been required. In animals, where
detailed examination of tissues is conducted after
death, tumors are often not the cause of death, but
are instead found incidentally to death from other
causes, and appropriately modeling the hazard func-
tion requires different statistical treatment of fatal
and incidental tumors. Although extensive statistical
research on this statistical issue has been conducted,
much of it has been addressed at appropriate tests
of the null hypotheses, and methods need to be
extended to allow the hazard modeling that is of
interest in animal experiments involving exposure to
radiation. Gart et al. [13] and Dewanji et al. [11]
describe an approach in which two hazard functions
(for fatal and incidental tumors) are modeled, and
this general approach has been applied in analyses of
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data on rats exposed to radon [15]. Other innovative
analyses of animal data include those of Chmelevsky
et al. [4] and those of Luebeck et al. [24] referred
to above.

Recent Developments

Recently considerable effort has been expended on
the pooled analysis of data from a number of dif-
ferent sources. The need for this arises in part from
the desirability for further direct evaluation of risks to
populations exposed at low levels, for example work-
ers in the nuclear industry or populations exposed to
environmental radon, where relative risks are small
and the results from individual studies do not provide
a clear answer (see Figure 2), and in part from the
need to bring together data from a number of different
sources, such as both high- and low-dose epidemio-
logic studies and experimental studies, to develop risk
models. Already, some pooled analyses have revealed
heterogeneity among the available studies (e.g. [22]),
and in some cases there may be a need for the appli-
cation of better methods to account for and describe
such heterogeneity.
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Figure 2 Relative risks for lung cancer by categories of
radon (Rn) concentration for seven case–control studies of
residential radon exposure. Also shown are the predicted
risks from studies of underground miners exposed to radon,
as estimated by the US Committee on the Biological
Effects of Ionizing Radiations (BEIR IV). Based on Lubin
et al. [21]

A considerable amount of effort has also been
expended in the development and application of
methods that account for uncertainties in the esti-
mation of doses (or exposures) in several studies.
The presence of random errors in individual dose
estimates (see Measurement Error in Epidemi-
ologic Studies) may cause underestimation of the
effects of radiation in dose–response analyses, dis-
tort the shape of the dose–response curves, and
cause confidence intervals and significance tests (see
Hypothesis Testing) to give misleading answers.
Some work on this topic has already been car-
ried out in the radiation field. For example, Pierce
et al. [30] estimated the distribution of true doses
among Japanese atomic bomb survivors, and took
an assumed coefficient of variation for the random
dose errors, thereby aiming at a way to estimate
E(true dose|estimated dose). Corrections based on
this and related considerations are now being used in
many analyses of atomic bomb survivor data. Another
example is that of Thomas et al. who applied an
empirical Bayes approach to a case–control study
of leukemia in Utah residents exposed to radioac-
tive fallout [40]. Recently, methods that model fully
the effect of dose estimation uncertainties have been
developed [33]. This work was carried out to pro-
vide methods for the analysis of case–control studies
of indoor radon, but should also be useful for the
analysis of a wide variety of case–control and cohort
studies. Other recently published studies addressing
measurement error include Schafer et al. [36] and by
Stram et al. [39].

Finally, it seems likely that future scientific devel-
opments in radiation research and advances in under-
standing the biology and particularly the genetic
basis of cancer will also stimulate future statistical
developments.
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Radioimmunoassay

Radioimmunoassays (RIAs) are commonly performed
in clinical and biomedical research laboratories to
estimate the concentration of an antigen in a bio-
logical specimen. The RIA is a type of radioligand
assay (RLA) in which antigens are labeled with
radioisotopes. An analogous approach to radioligand
assays in which antibodies are radiolabeled rather
than antigens is referred to as an immunoradiometric
assay (IRMA).

Radioimmunoassays differ from traditional bioas-
says (see Biological Assay, Overview) in that they
arise from specific chemical reactions in biochemi-
cal systems that follow the law of mass action and
do not have the errors associated with biological test
systems (see Pharmacokinetics and Pharmacody-
namics). Basically, the biochemical system modeled
is the immune system which produces antigens (Ag)
as a response to the presence of antibodies (Ab). The
binding of antigens to antibodies can be represented
as a two-way chemical reaction:

Ag + Ab −−−⇀↽−−− AgAb.

The concentration of AgAb follows a curvilinear
function of the initial concentrations of Ag and Ab.
Therefore, by measuring the AgAb complex in the
system, the initial concentrations of either the anti-
body or antigen can be inferred. Measuring AgAb is
done by labeling part of the antigen with a radioactive
tracer such as iodine-131. When the labeled anti-
gen is introduced, the unlabeled antigen of unknown
concentration in the system decreases the amount
of labeled antigen that is bound to the antibody;
thus, measuring either the unbound labeled antigen
or the radioactive AgAb complex provides a method
to estimate indirectly the unknown concentration of
unlabeled antigen. As with other bioassays, a stan-
dard curve is developed, to which the specimens of
unknown potency are compared. The techniques for
formulating a standard curve, which are based on
biochemical theory and the law of mass action, are
described by McHugh & Meinert [6] and Meinert &
McHugh [7].

The development of modern, virtually totally auto-
mated techniques, has enabled laboratories to move
from the use of unsophisticated statistical proce-
dures based on manual curve fitting to more appro-
priate methods for curve fitting which incorporate

routine quality control checks for systematic errors
and outliers. Weighted least squares estimation, or
maximum likelihood estimation, based on linear or
nonlinear functions, are often utilized, augmented by
analysis of variance techniques to test the validity
of the underlying model.

Statistical Design and Models

Much of the relevant statistical methodology for
RIAs is found in clinical chemistry and biochemistry
journals. Chapter 16 of Finney’s classical text on
bioassay methods [1] provides a useful summary of
the statistical considerations and standard analysis
techniques. The recent text by Govindarajulu [3]
gives a more detailed description of the theoretical
biochemical model and a useful list of references,
that encompass laboratory quality control issues and
calibration curve fitting.

The primary response measure in an RIA is a
radiation count during a specified time interval for
fixed dose levels. The counts of bound labeled or
free ligand labeled antigen are designated B and F

respectively, with T (total) = B + F . The symbol
B0 will be used for the expected count bound at
zero dose level and N will be used for the expected
count at “infinite (nonspecific)” dose. Direct measure-
ments can be incorporated to estimate both “zero” and
“infinite” dose levels. For statistical analysis, a loga-
rithmic transformation of dose is typically used as a
dose metameter (x), and a response metameter (y) is
specified that is assumed to be linearly related to x,
that is, E(y) = α + βx. The expected count (U) at a
given dose is expressed as

U = E(u|x) = B0 + (N − B0)F (x),

where F(x) can be any of a number of sigmoidally
shaped curves, such as the logistic or cumulative
normal, which will vary from one to zero for an
RIA as x varies between −∞ and +∞ [1].

Suppose that the functional form used is

F(x) = 1

1 + exp(−2Y )
.

(Note that some references use Y rather than 2Y in
F(x). If Y is used, then the estimates of α and β will
be twice the value obtained when 2Y is used. Param-
eter estimates of B0 and N are unchanged.) Then an
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often satisfactory linearizing response metameter is

Y = 1

2
ln

(
U − N

B0 − U

)
= α + βx,

where Y = 1
2 log it(U − N)/(B0 − N). Iterative met-

hods of estimation based on weighted least squares
or maximum likelihood, analogous to those used in
standard quantal bioassay designs, are utilized to
estimate the parameters and to calculate the potency
or relative potency.

An additional factor that must be considered for an
RIA is the variance function of the observed counts,
which is used for weighting the observations in the
regression analysis. Analyses have shown that, in
general, the variance of the counts is subject to extra-
Poisson dispersion (see Overdispersion). (See, for
example, Rodbard & Cooper [13] and Rodbard [11].)
Rodbard [12] recommended a quadratic function for
the variance, whereas Finney [1] has proposed that
the variance (φ(U)) be specified as

φ(U) = V UJ ,

where J is the rate of increase in variance with
increase in count and U is assumed to be normally
distributed. While the variance function could be
estimated simultaneously within a single assay in
conjunction with the regression parameters, greater
reliability is obtained by pooling a large body of
experiments, and assuming that J remains constant
across assays. The careful analyst will reassess the
value of J periodically. A flexible, comprehensive
computer program is desirable to permit estimation
of parameters assuming various forms for the weights
(reciprocals of the variance function) (see, for exam-
ple, [14]).

Potency Estimation

The parameters α, β, B0, and N are generally esti-
mated by minimizing the weighted sum of squares

∑[
(u − U)2

φ(U)

]

or, alternatively, by maximizing the log likelihood

−1

2

∑
log[φ(U)] − 1

2

∑[
(u − U)2

φ(U)

]
.

Both approaches will give asymptotically equivalent
results, but weighted least squares has more
frequently been employed in estimation software
primarily because of practical considerations.

The log potency is obtained by inserting a speci-
fied fraction bound (P ) in

Y = 1

2
ln

(
P

1 − P

)

to calculate Y and then solving for log dose (x) in

Y = α̂ + β̂x.

If Y = 0, then log(ID50) = −α̂/β̂, the estimated log
midrange (ID50).

A common approach in radioimmunoassay is to
compare a single dose level of a test preparation to a
separately estimated standard response curve, where
α̂, β̂, B̂0, and N̂ are the estimates obtained in the logit
transformation analysis for the standard curve, and u

is the mean value for n independent counts at log dose
x of the test preparation (T ). The logit is calculated as

Y = 1

2
ln

[
u − N̂

B̂0 − u

]
.

The potency estimate is then log(ρ̂) = −x + (Y −
α̂)/β̂. The variance of Y depends not only on the
variance of u but also on the variances of β̂0 and N̂ ,
and the covariance terms, which are generally esti-
mated by first-order approximations for the variance
of Y . The variance of u is estimated as

φ(u) = V uJ

n
,

where V is the residual mean square of the least
squares estimation based on the standard curve. Usual
values of J in practice range from 1.0 to 1.5. The
(1 − α)% confidence intervals are estimated through
application of Fieller’s theorem for ratio estimators.

Similarly, if observations are made within a sin-
gle experiment on doses of standard (S) and test
preparations (T ), then the fundamental assumption of
assay validity is the condition of similarity, which for
radioimmunoassays leads to estimation closely anal-
ogous to that for parallel-line assays. The estimated
log relative potency (ρ̂) is

log(ρ̂) = α̂T − α̂S

β̂
,
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where β̂, B̂0, and N̂ are common estimates across
both standard and test preparations. Fieller’s theorem
is employed to calculate confidence limits for log ρ.

Validity Testing

Typically, as noted above, the dispersion of the
counts increases directly with the mean response
level; that is

σ 2
u = σ 2UJ ,

where σ 2 is the weighted mean-square within repli-
cate sets. A precision profile calculated from the
within replicate “standard error” divided by the slope
of the response curve (coefficient of variation) esti-
mates the best that the assay can achieve. Tests
relevant for evaluating the validity of the assay and
the adequacy of the statistical model are [10]:

1. stability of assay system;
2. excessive within-replicate dispersion among sets

of tubes;
3. goodness of fit of the assumed response curve;

and
4. parallelism of the standard and test response

curves.

Stability, or lack of systematic drift, is evaluated
either (i) by checking one or two quality control
samples at a few points throughout the assay or (ii) by
including several standard curves at different times in
the assay. The latter provides a more powerful tool
for identifying drift. Healy [4] proposed a robust
estimate of dispersion, based on each mean square
following a multiple of a chi-square or gamma
variate. If there are n values from which the n − k

outlier values are omitted, then each of the k mean
squares will have r degrees of freedom if the number
of replicates is r + 1. The proposed estimate is σ̂ 2 =∑k

i=1 yi/nb. The unbiasing factor, b, depends upon
the slope of the linearized response curve, the fraction
of the sample omitted, the degrees of freedom, r , and
the total sample size, n (see [5, Table 13.4A]).

Finney [2] recommends that a reasonable way to
evaluate goodness of fit, assuming that test doses are
measured in duplicate, is to plot the apparent lack
of fit, measured as the difference between the mean
of the replicates of each dose and the fitted curve
expressed as the percentage change in dose versus
log dose on the same graph as the precision profile

from the within-replicate dispersion versus log dose.
A variance ratio test is used to compare the weighted
sum of squares of the expected mean response for
each curve to the value predicted if the curve provides
a good fit.

In order to check for the validity of parallelism,
the test preparations must be evaluated at two or more
dose levels. It is customary to evaluate parallelism
when an assay is under development, but parallelism
may not be verified for subsequent assays. Inclusion
of some samples at multiple dilutions is advisable,
particularly when any change is made in the assay
system, such as using a different reagent. Not infre-
quently, assays of multiple test preparations will find
a lack of parallelism present for only a few of the test
specimens. A combined test of parallelism is often
employed which incorporates the traditional bioassay
test of parallelism with the goodness of fit of the test
samples to the assumed response curve.

Other Calibration Methods

Although the logistic model has been most widely
used for calibration curves, it has the disadvantage
that it does not always provide linearity over the full
range of dose concentrations. Alternate approaches
have included empirically based curve fitting using
splines, polynomials, or polygonals, which often pro-
vide excellent fits in practice and models based on
chemical reactions, some of which have been gener-
alized to allow for multiple binding sites (e.g. [8]).
Criticisms of the former are that “while” splines are
“well-adapted for smoothing very good data in order
to secure internal consistency of interpolation. . . ,

they are much less suited to estimation from points
subject to appreciable experimental error, especially
if the precision of that estimation is important to
subsequent calculations” [2]. When the binding site
concentration and the equilibrium constant are both
small, a four- or five-parameter logistic model pro-
vides a good fit to the observed data for a wide
range of doses, comparing well with the theoreti-
cally derived model of McHugh & Meinert [6] and
Meinert & McHugh [7] based on biochemical the-
ory. While the McHugh–Meinert theoretical model
may generally give somewhat narrower confidence
intervals than the corresponding logistic model, a
comparison by Raab [9] of the four-parameter logistic
model to the four-parameter mass action curve for ten
databases found the logistic model to be more robust.
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Radon–Nikodym Theorem

If f is a real-valued function on a measure space
(Ω,F, µ) for which the integral

∫
Ω

f dµ exists (finite
or infinite), then ν(B) = ∫

B
f dµ defines another

measure with the property that µ(B) = 0 implies
ν(B) = 0, i.e. ν is absolutely continuous with respect
to µ. When ν is a probability measure, the func-
tion f is called the density of ν with respect to
µ; thus, the existence of a density implies absolute
continuity. The Radon–Nikodým Theorem is essen-
tially the converse of this statement, as follows. If
(Ω, F , µ) is σ -finite and ν is a (possibly signed)
measure on (Ω, F ) which is absolutely continuous
with respect to the measure µ, then there exists a
real-valued measurable function f on Ω such that
ν(B) = ∫

B
f dµ for every B ∈ F . More generally,

then, for measurable functions g on Ω,
∫
Ω

g dν =∫
Ω

fg dµ whenever either integral exists. The func-
tion f is called the Radon–Nikodým derivative of ν

with respect to µ and is denoted dν/dµ. It is unique
up to changes on a set of µ-measure 0. For probabil-
ity measures, a simplified statement of the theorem
is that absolute continuity implies the existence of a
density.

When µ is Lebesgue measure on the real line
and ν is a probability measure with cdf F , abso-
lute continuity of F (as a function) is equivalent
to absolute continuity of ν (as a measure). By the
Radon–Nikodým Theorem, this in turn implies that
ν has a density.

The Lebesgue Decomposition Theorem gives a
unique decomposition ν = νac + νs of an arbitrary
σ -finite measure ν on (Ω, F ) into a measure νac

which is absolutely continuous with respect to µ

and a measure νs which is singular with respect
to µ [3]. Singularity means there is a set A with
µ(A) = 0 which supports all of νs, in the sense
that νs(A

c) = 0. Here Ac denotes the complement
of A. The Radon–Nikodým Theorem then insures
the existence of a Radon–Nikodým derivative for the
absolutely continuous part νac.

The theorem was proved by H. Lebesgue in the
context of Euclidean space, and then generalized
to abstract measure spaces by J. Radon and by
O.M. Nikodým.

Applications in Probability and Statistics

Conditional Expectation

In elementary probability the conditional distribution
(see Conditional Probability) of a discrete ran-
dom variable X, given a discrete random variable
Y , is given by Pr(X = x|Y = y) = Pr(X = x, Y =
y)/ Pr(Y = y). For jointly continuous X and Y with
joint density f (x, y), the conditional distribution
is given by the conditional density fX(x|Y = y) =
f (x, y)/fY (y), where fY is the marginal density of
Y . These distributions determine conditional expec-
tations E(X|Y = y). Taking Y random yields the
random variable E(X|Y ). Averaging the quantities
E(X|Y = y) over y yields the overall average of X,
i.e. E(X) = E[E(X|Y )]. More generally, averaging
over a subset of the values y yields

E[X1B(Y )] = E[E(X|Y )1B(Y )], B ∈ B , (1)

where B denotes the Borel sets of the real line
and 1B denotes the indicator function of the set B.
The Radon–Nikodým Theorem makes possible the
definition of the conditional expectation E(X|Y ) for
more general joint distributions, where no elementary
definition is possible, and without the intermediate
construction of an explicit conditional distribution
of X given Y = y. Specifically, provided that only
E(X) exists, the measure ν(B) = E[X1B(Y )] on B is
absolutely continuous with respect to the distribution
µ of Y , and the defining property of dν/dµ states that

E[X1B(Y )] =
∫ ∞

−∞

(
dν

dµ

)
(y)1B(y)µ( dy), B ∈ B .

Therefore, defining E(X|Y = y) = (dν/dµ)(y) en-
sures that the fundamental property (1) of conditional
expectation still holds in the more general context.
The uniqueness of the Radon–Nikodým derivative
means that no other definition of conditional expec-
tation could have property (1).

Likelihood Functions and Likelihood Ratios

Given a family {Pθ, θ ∈ Θ} of probability measures
which are all absolutely continuous with respect to
some underlying measure µ, the Radon–Nikodým
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derivatives dPθ/dµ serve as likelihood functions, or
as likelihood ratios if µ is also a probability measure.
This is particularly useful when one has observations
which are not elements of a finite-dimensional space,
such as trajectories of a continuous-time stochastic
process, where elementary definitions of the likeli-
hood do not apply. The Neyman–Pearson lemma
says that hypothesis tests based on such likelihood
ratios are optimal. In comparing two probability mea-
sures P1 and P2, µ = P1 + P2 can be used as the
underlying measure.

Girsanov’s Formula

When µ is Wiener measure on the space of contin-
uous functions on an interval (i.e. the distribution of
Brownian motion), and ν is the distribution of Brow-
nian motion with a drift, Girsanov’s formula provides
an explicit expression for dν/dµ. For signal detection
in the presence of additive Gaussian white noise (see
Noise and White Noise), this makes possible the con-
struction of a likelihood ratio test for the presence of
the signal, as the value of the likelihood ratio can be
calculated from an observation of the trajectory of the
process [5]. Girsanov’s formula covers a wide family
of processes beyond Brownian motion as well.

Spectral Measures

When ν is the spectral measure of a stationary process
in continuous or discrete time, for example, a time
series, properties of the spectral density dνac/dµ (see

Spectral Analysis) are important in analyzing mixing
properties, smoothness, interpolation, and prediction
[2, 4]. Here, µ is Lebesgue measure on the real line
or on the unit circle.

Local Time

If X(t) is a real-valued stochastic process indexed
by time t ≥ 0, the corresponding occupation measure
on � at time t is given by νt (B) = µ({s ∈ [0, t] :
X(s) ∈ B}), B ∈ B , where µ denotes Lebesgue mea-
sure. If νt is absolutely continuous with respect to µ,
the local time (dνt/dµ)(x) at a point x then describes
the relative amount of time the process X spends at
x during [0, t], even though the times t for which
X(t) = x form a set of Lebesgue measures 0 for each
fixed x [1].
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Random Coefficient
Repeated Measures Model

This topic is concerned with the modeling of data
where measurements of one or more attributes
are repeated on the same set of individuals over
time. Typical applications are to the modeling
of the anthropometric growth of children or
animals (see Nonlinear Growth Curve). The model
specification will be developed for the case where a
single continuous measurement is made on several
occasions for a sample. This will then be extended to
consider the case of multiple measurements at each
time point and mention will be made of extensions
to latent variable models and to discrete response
data. To begin with, we look at the simple, restricted,
data structure where there are a fixed number of
measurement occasions and each individual has a
measurement on each occasion.

Multivariate Models

Consider the data matrix of responses:

Individual Occ. 1 Occ. 2 Occ. 3 Occ. 4
1 y11 y21 y31 y41

2 y12 y22 y32 y42

3 y13 y23 y33 y43

The first subscript refers to occasion and the second
to individual. We assume multivariate normality and
so for the response vector we have initially

Y ∼ N(µ, Σ) (1)

This constitutes a null model and, in general, we
will wish to include further variables, notably age or
time. Suppose we wish to express the response; say,
a weight measurement, as a linear function of time
(t) measured at each occasion. We may then write

yij = β0j + β1j tij + εij , (2)

where we allow the intercept and average growth rate
to vary across individuals. Suppose, further more, that
(

β0j

β1j

)
∼N

[(
β0

β1

)
,

(
σ 2

β0

σβ01 σ 2
β1

)]
εij ∼N(0, σ 2

ε ).

(3)

We have replaced the general mean and covari-
ance structure given by (1) by the specific struc-
ture given by (3). Thus, for example, the goodness
of fit of (3) can be judged and the model elabo-
rated with suitable explanatory variables. Grizzle
& Allen [9] provide details of estimation and test
procedures.

This multivariate model cannot deal satisfactorily
with the typical situation where the spacing and
number of measurement occasions are variable and
has generally been superseded, except in one or two
special cases such as that of latent growth models,
mentioned below. We now develop an alternative
approach to fitting models such as (2), based upon
a multilevel model.

The Two-Level Repeated Measures Model

Model (2) and the associated covariance struc-
ture (3), as they are written, make no particular
assumptions about the number or spacing of mea-
surement occasions and, in fact, constitute a spe-
cial case of a two-level model (see Multilevel
Models). Level 1 units are the measurement occa-
sions and level 2 units are individuals. All the
usual procedures for estimation and inference in
such models are therefore available, including cases
of multivariate responses, nonlinear models, etc.
We can additionally consider individuals as nested
within further hierarchies; say, animal litters or
schools for students and cross-classifications may
also occur.

A consequence of (2) is that measurements made
on the same individual are correlated through the
sharing of common intercept and slope parameters,
and it is this dependency that leads to the inadequacy
of simple estimation procedures, for example, based
upon ordinary least squares. Furthermore, interest
will usually lie just as much in the covariance matrix
estimates as in the average growth parameters. We
may also wish to form posterior mean estimates of the
individual growth parameters (β0j , β1j ) and we shall
illustrate below how these can be used for efficient
prediction. As in the general multilevel model case,
we may have a Bayesian formulation for the model
with prior distributions upon the parameters (see, for
example, [1]).

In the following sections we shall consider in
more detail nonlinear models, multivariate response
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models with more than one response on each occa-
sion and complex structures for the level 1 resid-
uals. For a detailed exposition of further aspects
of these topics and some alternative approaches, as
well as a discussion of issues related to informa-
tively missing data and transition-type models, the
reader should consult Diggle et al. [4]. In particu-
lar, these authors consider the so-called population
average model, where interest centers on the estima-
tion of the fixed or average component of (2) (see
Marginal Models). This often allows simplified esti-
mation procedures to be used with no requirement
for the separate estimation of the random compo-
nents. This may be appropriate in certain circum-
stances, but, since it ignores the specific nature of
repeated measurements data, is not considered further
here.

Nonlinear and Generalized Linear Models

Most attempts to fit nonlinear models to repeated
measurements have fitted separate curves to each
individual’s set of measurements and then combined
these to describe the between-individual variation
(see Nonlinear Growth Curve). A major problem
with this approach is that it requires many measure-
ments on each. Also, while nonlinear curves have
been used successfully to describe change, for exam-
ple, in pharmacokinetic studies, in other areas, such
as growth, they can also impose inflexible relation-
ships among growth events that are not empirically
supported [5].

Bock et al. [2] describe a maximum likelihood
analysis of a human growth model using the super-
imposition of three logistic functions. Lindstrom &
Bates [13] describe an approximate estimation pro-
cedure for nonlinear models and Goldstein [7] gives
an example using the so-called Jenss–Bayley [10]
curve for children aged 5 to 10 years (see Growth
and Development). Davidian & Giltinan [3] give
a detailed discussion of different approaches to the
fitting of nonlinear models to repeated measures
data.

Where the response is discrete; for example,
binary or ordered as in the case of recording devel-
opmental stages over time, then a generalized linear
model will be appropriate. Consider the following
example where each individual, j , is measured sev-
eral times, t , and their nutritional state, y, at occasion

i is classified as adequate (1) or inadequate (0). A
standard model would be written as

logit {πij } = aj + bj tij ,

πij = Pr(yij = 1), (4)

yij ∼ bin (πij , 1).

This expresses the logit of the probability of hav-
ing an adequate nutritional state as a linear func-
tion of time. Such a model might be appro-
priate, for example, in evaluating a nutritional
intervention programme and further covariates for
group membership, age, etc. can readily be intro-
duced. We can also try alternative link functions and
study the possibility of further random coefficients.
For responses such as counts we would typically use
a log link with a Poisson or related distributional
assumption.

For many longitudinal data we are effectively
measuring the cumulative probability of a response
over time. Thus, when studying the onset of menarche
the probability of occurrence is an increasing function
of time and successive observations will consist of
a string of zeros (nonoccurrences) followed by a
string of ones (occurrences). More generally, we will
have an ordered sequence of stages through which all
individuals pass and (4) will be modified to reflect
this. One such proportional hazards model can be
written as

γ
(s)
ij = {1 − exp[− exp(β0 + β1ts )]}, β1 > 0, (5)

where s indexes the stages and the cumulative
probability is

γ
(s)
ij =

s∑

h=1

π
(h)
ij .

We can add further covariates and random coeffi-
cients as before.

An extension of both (4) and (5) is to the multi-
variate case where multiple responses are measured
on each individual at each time point, with possi-
bly missing responses on some occasions and where
some responses are discrete and some continuous.
A discussion of such models and their estimation is
given in [7, Chapter 7] and the multivariate model
with continuous-only responses is discussed in the
next section.

In these models, so far, we have made the basic
assumption that the level 1 errors are independent.
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We shall deal with violations of this assumption for
continuous responses below, but there are also many
cases for discrete responses where this assumption
is untenable and this gives rise to particular diffi-
culties. As an example, consider a repeated survey
of attitudes to abortion where we wish to study the
characteristics of individual and group changes over
time. For a large proportion, perhaps the majority,
of the population there will be no change in their
attitudes; thus, the probability that they will agree
with a “pro-abortion” statement will be very close to
one or zero. A model such as (4) would generally
require such individuals to have extremely large pos-
itive or negative random effects, since it is unlikely
that we would have covariates that could discrim-
inate precisely among such individuals. This, then,
poses severe distributional problems for parametric
models.

An obvious way to avoid this difficulty is to
consider the vector of, say, binary responses for
each individual as a multivariate vector where the
distribution on each occasion is binomial and the
between-occasion covariances are estimated from the
data. Lipsitz et al. [14] study such models with
examples. While this approach is satisfactory for
a number of fixed occasions, even with missing
data, and while it can also be extended to other
than binary responses, it is unable directly to handle
the general case of arbitrary occasions. To do this
requires an extension of the serial correlation models
discussed below, but that is beyond the scope of this
article.

Multivariate Continuous Responses

Where several responses are recorded on individuals
on each occasion we will generally wish to model the
average time relationship for each response and the
covariance matrix among the responses as a function
of time. This is readily done by considering the
multivariate response structure as a further, lowest,
level in the data hierarchy with measurements nested
within occasions within individuals (see Multilevel
Models).

There are several advantages to considering the
joint modeling of several responses. The ability to
estimate their covariance matrix as a function of
time allows one to study the distribution of any
function of the responses with respect to time. For

example, when studying issues of prior determination
it may be useful to see whether the correlation
between two variables a given time apart is greater
when one is the prior variable rather than the other.
Likewise, it provides a general prediction procedure
for one measurement, conditional on any set of
observed prior measurements. We illustrate this with
an example concerned with the prediction of adult
height given a series of height measurements taken
during a period of childhood growth. In this case, one
of our response measurements, adult height, is made
at the level of the individual and the others are made
at the occasion level.

Consider the following extension to (2):

yij = β0j + β1j tij + β2t
2
ij + β3t

3
ij + εij ,

yj =
∑

k

γjkxjk + αj , (6)

(
αj

β0j

β1j

)
∼ N




(

α

β0

β1

)
,




σ 2

α

σαβ0 σ 2
β0

σαβ1 σβ01 σ 2
β1







 ,

where the adult measurement, yj , is allowed to
depend on further covariates, and we may also wish
to incorporate covariates into the growth period
component of the model. The key feature of this
model is that we have a joint covariance matrix for
the adult height component and the growth curve
parameters, all of which vary at the level of the
individual. Given the model parameters and any
set of growth measurements for an individual, say
Y ∗

j = (y∗
1j , y∗

2j , . . . , y∗
pj ), we can estimate E(yj |Y ∗

j )

together with an estimate of its standard error, etc.
Details are given in [6]. A further development
of the multivariate growth model is the so-called
“latent growth model”. In essence, this considers
each of the sets of random coefficients β0j , β1j ,
etc. as a latent variable or factor. Each observed
response is thus a linear function of factor scores
where the coefficients are, for example, polynomials
in time, or, more generally, may be estimated from
the data. One restriction of such models is that they
require the same set of discrete occasions for all
measurements and thus lose the flexibility of the
continuous time formulation. A full discussion can
be found in [15].
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Serial Correlation Models

For some kinds of repeated measurements, the struc-
ture implied by (2) or (4) is inadequate. For example,
daily measurements of animal weights over a long
period will not usually fluctuate completely randomly
about a long-term smooth trend for each animal, the
departure from such a trend on any one day being
more like the departures on neighboring days than
on days further distant. In a study of human growth,
Goldstein et al. [8] found that residuals from mea-
surements of height made on adolescent boys had a
noticeable serial correlation when made less than
three months apart. To incorporate such possibilities,
we can extend (2) by adding the following covariance
condition for two level 1 residuals s time units apart,
where time is continuous:

cov(εt , εt−s) = σ 2
ε exp(−g(s, z)). (7)

Here, g is a positive function and may depend on
covariates, z, which may be measured at the indi-
vidual or occasion level; thus, for example, allowing
the exponential decay rate implied by (7) to vary
with time.

One possible simple choice, which is the continu-
ous time analog of a first-order autoregressive series,
is g = αs and other possibilities are discussed by
Goldstein et al. [8] and Diggle et al. [4, Chapter 5].
An alternative approach is via state-space modeling,
which leads to similar, although not generally identi-
cal, models [11].

In Table 1, we give an example of a model
with a simple correlation structure, together with
the estimation of a seasonal effect for a set of
three-monthly height measurements made on a
sample of 26 boys aged between 11 and 14 years.
Full details are given by Goldstein et al. [8]. A
fourth-degree polynomial is fitted for the average
growth curve with a cosine term representing
seasonal growth. The first three coefficients are
random at level 2 and the serial covariance structure
is given by g = αs fitted at level 1.

The serial correlation parameter value of 6.9
implies that the residual correlation three months
apart is 0.19 and that six months apart is 0.04. The
existence of a seasonal effect implies an average
difference between summer and winter of about
0.5 cm with no evidence of any variation between
individuals.

Table 1 Height in centimeters as a fourth-degree polyno-
mial on age, measured about 13.0 years. Standard errors
in parentheses; correlations in parentheses for covariance
terms. Serial correlation structure fitted for level 1 residuals

Parameter Estimate (se)

Fixed
Intercept 148.9
age 6.19(0.35)
age2 2.16(0.45)
age3 0.39(0.17)
age4 −1.55(0.43)
cos (time) −0.24(0.07)

Random Intercept age age2

Level 2
Intercept 61.5(17.1)
age 7.9 (0.61) 2.7(0.70)
age2 1.5 (0.25) 0.9(0.68) 0.6(0.2)
Level 1
σ 2

ε 0.23(0.04)
α 6.90(2.07)

Fitting this model, with an extra parameter to
describe autocorrelation among the level 1 residuals,
provides a more parsimonious model than attempting
to fit, say, the cubic coefficient as random at level 2.
In some cases, however, the data may be equally well
explained either by such a random coefficient model
with independent level 1 residuals or, alternatively,
by a simpler between-individual covariance structure
and a complex nonindependence structure at level 1.
A choice between such models will then need to be
made on grounds of substantive interpretation. In the
view of the present author, substantive interpretations
generally are best made by adopting a level 1 serial
correlation structure only after fitting a suitably
complex model using random coefficients alone.
The use of various diagnostic tools for judging
fit in multilevel models is discussed by Lewis &
Langford [12].

Software

Some of the particular models described (for exam-
ple, the nonlinear model of Bock et al. [2], the latent
growth model or the Bayesian models) have special-
ized software, details of which can be found by con-
sulting the references given at the end of the article.
Some of the major software packages, most notably
SAS, can handle many, although not all, of the
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models and the generalized estimating equations
procedures used by Diggle et al. [4] are available
in S-PLUS. The general-purpose multilevel model-
ing package, MLn (Rasbash & Woodhouse [16]) uses
both maximum likelihood and quasi-likelihood esti-
mation and has facilities to analyze all the models
described, although it can only handle the latent
growth model indirectly by providing summary input
for other structural equation software packages.
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Random Digit Dialing
Sampling for
Case–Control Studies

Random digit dialing (RDD) is a method of sam-
pling households through the selection of telephone
numbers by a random choice of the digits in the tele-
phone numbers. RDD was initially developed as a
sampling method for household surveys, but it is now
considered a useful tool in epidemiologic research,
particularly for selecting controls in a population-
based case–control study, i.e. studies using controls
selected from the general population, as distinct from
hospital controls or other specialized lists. In coun-
tries with high levels of telephone coverage, RDD can
provide an almost unbiased sample of the household
population for use as controls. Furthermore, once the
households are contacted by telephone, there is a rel-
atively low cost of screening to locate persons with
the demographic and health characteristics that match
the cases for the disease being studied.

RDD obviously omits residents of households that
do not have telephones. In the US only about 5%
are without telephones, but they are mainly very
low-income households, and if the causal factors
for the disease are believed to be heavily influ-
enced by income, the results could be seriously
biased. For such studies the researcher should con-
sider whether RDD is appropriate. However, in most
case–control studies, the exclusion of nontelephone
households is not believed to have any appreciable
effect. It is prudent to exclude cases who do not
have home telephones from the analysis so that cases
and controls have similar socioeconomic characteris-
tics.

In the US each telephone contains 10 digits, con-
sisting of a three-digit area code, a three-digit central
office code (generally referred to as an exchange), and
a four-digit suffix. There are presently 35 000–40 000
active area code/central office code combinations in
use in the US. Since 10 000 possible number com-
binations exist in the four-digit suffixes attached
to each area code/central office, there are a little
over 350 000 000 possible telephone numbers that can
be dialed in RDD, about four times the approxi-
mately 90 000 000 households with telephones. Most
of the 75% of telephone numbers that do not connect
to households are unassigned numbers; others are

connected to businesses, government offices, institu-
tions, pay phones, computers, faxes, etc.

With simple random sampling, about three-quar-
ters of the calls will be completely unproductive,
consisting of nonworking or nonhousehold numbers.
The costs of such unproductive calls are quite high,
and statisticians have examined the properties of a
number of sampling methods designed to reduce the
number of excess calls. The general consensus among
sampling and survey statisticians is that currently one
of two available methods should be used – what is
referred to as the Mitofsky–Waksberg Procedure [13],
or the List-Assisted Method [3, 8]. Both methods
increase the proportion of household numbers in the
sample from about 25% to 50%–60%. Brick et al. [2]
note that although the list-assisted method is slightly
biased, the bias is trivial for most practical purposes.
The Mitofsky–Waksberg procedure provides a com-
pletely unbiased sample of households but has several
operational complications that can affect the tim-
ing and the required record-keeping. (See Telephone
Sampling for a description of the two sampling meth-
ods and a list of references.)

The cheapest method of sampling is to use direc-
tory sampling, that is, select a simple random sample
from a sampling frame of all telephone numbers
listed in the white pages of current telephone directo-
ries for the geographic area of interest. In the US, this
procedure will produce a highly biased sample since
only about two-thirds of telephone households have
their current numbers listed. It is not recommended
by knowledgeable statisticians. If used, the biases can
be reduced, although not eliminated, by restricting the
cases in the study to those whose telephone numbers
are listed in telephone directories. It should be noted
that although restricting both cases and controls to
households listed in telephone directories appears to
be similar to RDD in that the cases and controls come
from similar populations, the population eligible for
the study with RDD is about 95% of all households
as compared with about 60% for directory sampling.
The potential for bias is thus generally quite small for
RDD studies but can be substantial for directory sam-
pling. For this reason, directory sampling is usually
not recommended.

There are, at present, at least two commercial
firms that maintain up-to-date records on existing
area codes/central office codes in the US (GENESYS
Sampling Systems and Survey Sampling Inc.). These
companies can select samples using either of the two
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recommended methods, or following other procedures
specified by the client. Both companies have exten-
sive resources for geographic coding and can help
identify the area codes/central office codes in the geo-
graphic area designated for a study. Statisticians and
epidemiologists who have not had extensive experi-
ences with RDD studies would probably benefit by
consulting one of these companies for assistance in
sampling.

Potthoff [9] has described the steps in selecting
controls. We summarize and extend his discussion.
The cases are all of the eligible ones that occur in
a given geographical region in a given time period.
RDD controls are sampled from the same region,
typically by strata (demographic categories such as
sex, age, race) (see Stratified Sampling). Frequently,
geographic subareas are included in the matching
criteria; the subareas may be defined by census tracts,
zip codes, telephone exchanges, or broader geography
such as counties or central cities vs. suburbs. The
areas may serve as proxies for environmental or
socioeconomic matching, but they should be broad
enough to produce the required number of controls.
In general, everyone within a stratum (often referred
to as a matching cell) is given the same chance
of selection. The sample sizes are designated in
advance for the strata, the size being based on the
desired number of controls per case, the available
budget, and possibly logistical considerations. Most
population-based case–control studies use frequency
matching of controls to cases within strata rather than
individual matching. Frequency matching involves
defining matching cells, for example, white females
40–44 years of age, and locating the desired number
of controls in each matching cell. RDD selection can
be used for both individual and frequency matching.

Telephone contacts can be used to select controls
and to conduct interviews, or only for the sample
selection, in which case subsequent interviews may
be carried out in personal visits to the households
or, more rarely, by mail. The decision on which
approach to use depends on the length and content
of the interview, e.g. whether physical measurements
or laboratory tests are necessary, whether observation
of such items as prescription drugs is required, etc.
The same general principles are used for both types
of studies. If personal visits will be required, then
the researcher should take this into account in estab-
lishing the geographic area in which the study will
be conducted in order to avoid excessive interviewer

travel. Methods of sampling that tend to cluster the
sampling units, e.g. the Mitofsky–Waksberg method,
should be considered.

With telephone interviewing, the selection and
enlistment of controls and the interviewing can be
done in a single telephone contact [5, 6]. Alterna-
tively, a two-step process can be used in which the
first call is restricted to taking a household cen-
sus with sample selection carried out as an office
operation, and a second telephone call made for a
telephone interview or to arrange for a visit [6]. If
the time schedule permits, then the two-step process
is usually preferable since it provides a tighter con-
trol on sample size. There is difficulty in achieving
the exact sample sizes in a one-step process with-
out incurring biases from loss of persons who are
infrequently at home and require multiple attempts
to reach. However, some researchers prefer the one-
step method because it usually produces a somewhat
higher response rate. In addition, if there is a long
lapse of time between the two contacts, then a non-
trivial part of the sample will have moved, introduc-
ing the potential for important biases in the study as
well as some uncertainty in the number of controls
that will be interviewed. If a two-step process is used,
then the time period between the two steps should be
kept as short as possible.

A number of issues arise in the sample selection
via RDD. They are discussed briefly below. More
complete discussions can be found in the references,
particularly [5–7], [11], and [12].

1. RDD covers only persons living in households
with telephones. It is normal practice to exclude
from the analysis the cases that do not have
telephones or who do not reside in ordinary
households, e.g. institutions or the military. A
clear definition of households and household
members needs to be established to treat such
ambiguous cases as college students, persons in
the military, etc.

2. The geographic areas that are used to determine
the boundaries of the study, or the matching
cells, frequently consist of political units (coun-
ties or cities) or census tracts. These areas may
not conform to telephone exchanges, leading to
a considerable amount of screening to identify
persons within the designated geographic area.
To avoid this excessive screening, the researcher
should consider the possibility of defining the
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study area as the set of telephone exchanges that
approximates the geography desired. Match-
ing cells can also be defined by telephone
exchanges. The same geographic rules need to
be applied to cases as to controls.

3. If the boundaries of the study area are political
or census-defined geography, then it is neces-
sary to include all telephone exchanges that
cover the area. If the geographic location is
not obvious from the telephone exchange, then
each respondent should be asked whether the
residence is within the boundaries of the study
area.

4. In case–control studies, it is usually desirable
to select controls with equal probability. Two
problems occur in RDD sampling. The first is
that households with two or more telephone
numbers have greater chances of selection than
those with one number. The higher probability
of selection of such households can be avoided
by subsampling them, i.e. retaining one-half of
households with two telephone numbers, one-
third of those with three numbers, etc. This adds
somewhat to the number of households that
need to be screened to reach the required sample
size (about 4% of US, households have more
than one telephone number), but the resulting
simplification in the analyses usually makes it
worthwhile. The second problem arises when it
is considered undesirable to choose more than
one person in a household, either to avoid a
heavy response burden in any household or
because the intraclass correlations (see Cor-
relation) within a household would appear to
complicate analyses of the data. Subsampling
within households will create considerable vari-
ation in probabilities of selection and is not
recommended. Many case–control studies are
restricted to the adult population, or to a sub-
set, such as ages 45–69. In such cases it is
possible to reduce sharply the number of house-
holds with multiple controls by designating in
advance half of the sample for male controls
and half for female controls. In any household,
only the males, or females, are then eligible for
the sample. Depending on the distribution of
the desired number of controls by sex, instead
of designating 50% of the sample for male con-
trols and 50% for females, a 60–40, 70–30,
or some other ratio could be used. This sex

designation of the sample greatly increases the
amount of screening necessary to locate the
controls, and a researcher should weigh this fact
against the desirability of simpler analytic meth-
ods. Potthoff [9] has described another method
of choosing only one control per household with
an equal probability sample, but this method
also increases the required screening.

5. With frequency matching, the amount of screen-
ing that will be required can be estimated by
calculating the number of households that need
to be screened to locate one required control
in each of the matching cells (strata), and mul-
tiplying it by the number of desired controls.
The stratum with the largest value determines
the screening sample size. This result should
be increased to account for the percentage of
refusals or those who are out of scope (e.g. per-
sons with some types of chronic diseases may
be considered ineligible for the study). It may
also be necessary to increase the screening if
no more than one person per household is cho-
sen and one of the devices described earlier for
doing this is used.

6. It is frequently difficult to determine the total
number of households that will need to be
screened to provide the desired number of con-
trols, and the subsampling rates for the various
strata. Some of the difficulty comes from the
small samples desired per matching cell and the
consequent large sampling errors on the house-
hold yield. Another reason may be uncertainty
of the population size of the various strata when
geographic matching is required. When time
permits, it is useful to do the sampling in waves,
(e.g. divide the workload into monthly subsam-
ples) with each wave a random sample of the
population. The sample sizes and subsampling
rates in each wave can be based on experience
in previous waves. Since the waves are all ran-
dom samples, the data can be pooled without
the need to take the different sample sizes and
rates into account.

7. It is necessary to inquire whether the telephone
number reached is for a home, business, institu-
tion, or some other nonhousehold facility. This
is normally one of the first questions asked.
Some small businesses operate in residential
units and the telephones are used both for busi-
ness and personal use. The questions asked
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should be able to identify such cases and retain
them in the sample. Both companies previously
referred to that supply telephone samples can
match the sample numbers with yellow page
directory listings to reduce the number of busi-
ness numbers that need to be dialed. There is
a small loss of households that operate small
businesses, but the bias is generally considered
trivial.

8. A policy needs to be established on how to treat
answering machines, that is, whether to leave
messages or simply to hang up and try again.
Answering machines are quite common in the
US, and the method of dealing with them could
have an important effect on response rates.

9. The study should include provision for a con-
siderable number of callbacks to insure that
persons who are infrequently at home have the
same chance of selection as the rest of the popu-
lation. Many researchers make eight to 12 calls
for the hard-to-get population spread through-
out daylight and evening hours and weekdays
and weekends, and some researchers use larger
numbers. As a result of the large number of
households in which all adults are employed and
the number containing only a single adult, it is
necessary to mount a major follow up opera-
tion to attain a reasonable response rate. There
have been a number of studies of the differences
between persons who can be easily reached
by telephone and those requiring more effort,
and they have revealed important differences
in occupational status and life styles. There
are also likely to be differences in exposure
and in background variables affecting many dis-
eases. Failure to achieve reasonably consistent
response rates among persons who are easily
reached and those who require more callbacks
could lead to serious biases that are not possi-
ble to detect and correct for. Although a main
purpose of the callbacks is to make first con-
tact with the household residents, it can also
be used to try to convince potential respondents
who initially refused to cooperate and to change
their minds. Conversion of about one-third of
those who initially refused is not uncommon
(see Call-backs and Mail-backs in Sample
Surveys).

10. Evening calls are necessary in a large number
of households, and researchers should recognize

that most of the interviewing will have to be
done after normal working hours. A common
practice is to start off with one round of daytime
calls to the entire sample which will usually
identify almost all of the nonworking, busi-
ness, and institutional numbers, and a minor-
ity of the households. The remaining calls –
mostly to households – are then made in the
evening.

Under some circumstances, weighting the data
may be necessary to avoid biases in the analysis.
Weighting will be needed if all persons within a
matching cell did not receive the same chance of
selection, e.g. if there was subsampling of house-
hold members within the same matching cell, or if
all households with more than one telephone num-
ber were retained in the sample. For example, if
households with multiple telephones were not sub-
sampled, then households with two telephone num-
bers should be given a weight of one-half, those
with three numbers given a weight of one-third, etc.
Similarly, with subsampling within households so
that only one person within a cell was chosen, the
weight should be the number of household members
within the matching cell. If the subsampling went
further so that only one person per household was
selected for the control regardless of the number of
matching cells represented in a household, then a
more complex system of weighting will be required.
Such subsampling should be avoided if at all possi-
ble since it will complicate the study operations and
may have a serious effect on the precision of the
results.

Standard odds ratio analysis is not strictly appli-
cable in case–control studies that use cluster samp-
ling such as the Mitofsky–Waksberg method or
that require weighting. Modifications in the anal-
ysis that account for clustering are described by
Graubard et al. [4]. Appropriate confidence inter-
vals for odds ratios can also be obtained through use
of either of two software packages originally devel-
oped for analyses of surveys using complex sample
designs but that also contain provision for estimat-
ing the precision of odds ratios, WESVAR [1] and
SUDAAN [10]. If there are only minor deviations
from an unclustered, equal-probability sample selec-
tion scheme, then it is probably satisfactory to use
the more common methods of establishing confidence
intervals around odds ratios.
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Random Effects

Consider an explanatory variable which takes on k

possible values in a particular data set and which is
to be related to a response variable via a regression
model. Assume that some function of the response
variable is related to the linear predictor µ + αi ,
i = 1, . . . , k − 1, or equivalently αi , i = 1, . . . , k,
where i indexes the possible values of the explana-
tory variable (see Dummy Variables). Examples
of such explanatory variables are an indicator for
clinics in a multiclinic study, school classrooms in
a study of school children, different studies in a
meta-analysis, and blocking factors in experimental
design. Other explanatory variables may be included
in the linear predictor. For example, a single addi-
tional variable could be added to define a linear
predictor µ + αi + βX, i = 1, . . . , k − 1.

The αis are referred to as random effects if they
are assumed to arise as a random sample from a
distribution of effects associated with a wider range
of values for the explanatory variable. For exam-
ple, it might be assumed that there is a distribution
of effects, f (α, θ), associated with all the possible
clinics which could have been recruited for a clini-
cal trial or perhaps, more generally, which might be

expected to use the treatments under study in the trial.
The parameter α might be some measure of central
tendency, sometimes taken to be zero, and θ might
represent a shape parameter such as a variance. The
analysis would then not focus on the particular αis
but, rather, on the characteristics of the distribution
f . This analysis contrasts with that which regards
the αis as fixed effects (for general discussion of
the distinction and of its effect on the methods of
analysis see Analysis of Variance). The choice of
analysis can be quite influential in, for example, meta-
analysis.

With an additional variable in the linear predictor,
it is possible to extend the model further to have, say,
αi + βiX, i = 1, . . . , k, where the regression coeffi-
cient for X varies with the value of the indicator
variable. The βis can be fixed or random. When they
are assumed random, then the model is sometimes
called a random coefficient model. Such an approach
is used in multilevel models.

Random effects are also important in a variety of
Bayesian methods.

(See also Random Coefficient Repeated Measures
Model)

VERN T. FAREWELL



Random Error

Suppose one seeks to measure the width of a table
by repeatedly applying a ruler to obtain a series of
measurements. One assumes that the true table width,
µ, remains constant and that any given measurement,
yi = µ + ei , represents the sum of a systematic com-
ponent and an error component, ei = yi − µ. In this
simple model, µ is called the systematic part, and,
if the expectation of ei is zero, ei is called the ran-
dom error. If it is assumed that the random errors are
independent, then the mean value y = µ + n−1 ∑

ei

converges (almost surely) to the true value (see Con-
vergence in Distribution and in Probability). As
the sample size, n, increases, the effects of random
error diminish, and, in particular, if the ei have a

common variance, σ 2, var(y) = σ 2/n. The dimin-
ishing influence of random error with increasing sam-
ple size is also found in more general models with
systematic and random components (see Generalized
Linear Model).

Suppose, however, we subsequently learn that our
ruler had been worn down so that the putative interval
[0, 1] cm was only 0.9 cm long. Then, the errors ei =
yi − µ have expectation (µ − 0.1) − µ = −0.1 cm,
and y gets closer and closer to the biased answer,
µ − 0.1, as n increases. Thus, increasing the sample
size offers no protection against systematic error
and only leads to more precise biased estimates (see
Estimation).

MITCHELL H. GAIL



Random Mixing

The simplest models for epidemics of infectious dis-
eases are nonlinear owing to their mass action terms.
The mass action component of these models accounts
for new infections through contacts between infected
and susceptible persons, usually through the assump-
tion that “. . . the chance of an infection is propor-
tional to the number of infected on the one hand,
and to the number not yet infected on the other”
[3, p. 703]. Random mixing is an interpretation of
contact patterns which justifies that assumption (see
Epidemic Models, Deterministic).

In the elementary Kermack & McKendrick [3,
p. 713] epidemic model for a closed population, the
rate of new infections is written dx/ dt = −κxy,
where x and y are the numbers susceptible and
infected, respectively. Decomposing κ into β, the
chance of infection per contact, times µ, the rate of
contact per infected/susceptible pair per unit time,
reveals the basic structure of the assumed contact
process: there are xy pairs capable of producing a
new infection in the population, each of which has the
same rate of contact, µ, per unit time; a fraction β of
those contacts produces new infections. Alternatively,
define c as the contact rate per person per unit time
and let py be the proportion of contacts that are
with infected persons. Then dx/ dt = −βcxpy . If
contacts are randomly distributed, then the proportion
of contacts with infected persons (in the early stages
of an epidemic when the population size n ≈ x + y)
is simply the proportion infected in the population,
i.e. py = y/n. Since the contact rate per person is
n times the contact rate per pair, c = µn, the two
formulations of the mass action term are equivalent.

Epidemic models based on simple random mix-
ing are often inconsistent with elementary facts
about human populations. This is especially true with
respect to diseases associated with sexual practices,
including HIV/AIDS (see AIDS and HIV), where
contacts that transmit disease are strongly influenced
by variations in customs, preferences, and opportuni-
ties. To build models for such cases, epidemiologists
have invented generalizations of random mixing on
the basis of the idea that a population can be divided
into groups characterized by different rates of contact
and/or different patterns of mixing with other groups.
In terms of the pair-rate notation, the group-specific
infection rate in these more general epidemic models

can be written as

dxi

dt
= −β

∑

j

µijXiYj ,

where xi and yi are the number susceptible and
infected in group i and µij is the rate of contact per
i, j pair per unit of time. This class of mixing models
includes decidedly nonrandom patterns as well as
generalizations of random mixing. Among the latter,
we include the following:

1. Wiley & Herschkorn [7] propose quasi-random
mixing for sexual contacts among male homo-
sexuals at risk of HIV transmission. This model
is specified by setting µij = µ for i, j ∈ S and
µij = 0 for i, j �∈ S, where S is a set that defines
admissible pairings. This specification is moti-
vated by the concept of inconsistent roles in
sexual intercourse.

2. Hethcote & Yorke [2] build epidemic models
for gonorrhea transmission that incorporate pro-
portional random mixing (µij = µiµj ), allowing
groups to mix randomly but with heterogeneous
contact rates.

3. Koopman et al. [4] generalize proportional ran-
dom mixing to allow for a bias toward within-
group mixing. They call this pattern reserved
mixing, and it is specified in the pair-rate nota-
tion by setting µij = µiµj for i �= j and µij =
µ∗

i + µ2
i for i = j .

More complex patterns of mixing can be formed as
sums of random mixing patterns in different social or
physical settings (see, for example, [6]). For further
reading, see [1] and [5].
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Random Sample

A collection of units or observations generated by
a probabilistic process is called a random sample.
This apparently simple definition covers a multitude
of situations.

In finite population sampling, the sample is
selected from a fixed and finite population of units.
Typically, the sample units are those for which data
are collected. A random sample (or “probability
sample”) is drawn by any rule that assigns a
probability to every possible sample. A common
additional requirement in this context is that every
unit in the population has a nonzero probability of
being included in the sample. One such sampling
scheme is simple random sampling (SRS), in which
the size of the sample, n, is predetermined and every
sample of size n has equal probability. The term

“random sampling” is loosely used for SRS, but in
fact is more general, including sampling schemes in
which different samples have different probabilities;
furthermore, the probability of inclusion in the sample
is not necessarily the same for every unit.

We may also speak of a sample from a prob-
abilistic process capable of generating an infinite
population of values. An independent and identi-
cally distributed (iid) random sample is a collec-
tion of observations on a random variable, each
of which is independently generated from the same
probability distribution; iid sampling is a natural
model for repeated observations of the same process.
In this context as well, however, “random sample”
unmodified may also refer to samples which are not
iid.

ALAN ZASLAVSKY



Random Variable

Let S be a sample space, the set of all possible
outcomes of an experiment. A random variable is
a real-valued function that assigns a real value to
each outcome of the sample space S. For a more
rigorous definition, see the article on Probability
Theory.

Random variables are used to describe the uncer-
tain outcomes of a study. Thus, in a hospital the
number of patients that will be receiving treatments
next year may not be known. Similarly, the sur-
vival time of a patient with a terminal disease is not
known.

Let X denote a random variable and let x be
a particular outcome of X. A random variable X

is discrete if it can assume a finite or a countably
infinite number of possible values. X is continu-
ous if it can assume any value in some interval
or intervals of real numbers and if the probability
is zero that it will assume any specific value. That
is, if for any real number x, f (x) = Pr(X = x) is
zero.

We now consider properties of a discrete random
variable X. Let f (x) = Pr(X = x). A function f (x)

is defined to be the probability function or the prob-
ability mass function if

0 ≤ f (x) ≤ 1 (1)

and ∑

x

f (x) = 1, (2)

where the summation is over all x. Here, f (x) is
defined for all x, and is a real-valued function. The
cumulative distribution function (cdf) F(x) is defined
by F(x) = Pr(X ≤ x), for all real x. The survival
function S(x) is given by

S(x) = 1 − F(x) = Pr(X > x). (3)

Note F(x) (and S(x)) are also real-valued functions,
and

Pr(a < x ≤ b) = F(b) − F(a) = S(a) − S(b). (4)

For a continuous random variable we can use
similar definitions. Let X be a continuous random

variable. f (x) is a probability density function (pdf)
or density function if

f (x) ≥ 0,
∫ ∞

−∞
f (x) dx = 1,

and for any two real numbers a, b with a < b,

Pr(a < X < b) = Pr(a ≤ X ≤ b) =
∫ b

a

f (x) dx.

The cdf F(x) is defined by F(x) = Pr(X ≤ x). By
definition,

F(x) =
∫ x

−∞
f (x) dx (5)

and

f (x) = d

dx
F(x). (6)

The above definitions can be extended to two
or more variables when several characters, such as
height and weight, are of interest. Let us consider the
bivariate case.

Let (X, Y ) be a discrete bivariate random variable.
Then f (x, y) = Pr(X = x, Y = y) is a joint prob-
ability function or joint probability mass function,
where x and y are real numbers, if

f (x, y) ≥ 0,
∑

all x

∑

all y

f (x, y) = 1.

The bivariate distribution function F(x, y) is de-
fined by F(x, y) = Pr(X ≤ x, Y ≤ y) = ∑

X≤x∑
Y≤y f (x, y), where the sum is over all pairs (x, y)

such that X ≤ x and Y ≤ y. The marginal probabil-
ity functions f (x) of X and g(y) of Y are given by

f (x) =
∑

all y

f (x, y) (7)

and

g(y) =
∑

all x

f (x, y). (8)

The conditional probability functions f (x|y) of X

given Y = y, and g(y|x) of Y given X = x, are
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defined as

f (x|y) = f (x, y)

g(y)
, where g(y) �= 0, (9)

and

g(y|x) = f (x, y)

f (x)
, where f (x) �= 0. (10)

X and Y are independent if and only if

f (x, y) = f (x)g(y) (11)

for all real numbers x and y.
For continuous random variables there are similar

definitions. f (x, y) is the joint probability density
function if

f (x, y) ≥ 0,
∫ ∞

−∞

∫ ∞

−∞
f (x, y) dx dy = 1,

Pr(a ≤ X ≤ b and c ≤ Y ≤ d)

=
∫ b

a

∫ d

c

f (x, y) dx dy,

for all real numbers a, b, c and d. The marginal
densities f (x), g(y) of X and Y are given by

f (x) =
∫ ∞

−∞
f (x, y) dy (12)

and

g(y) =
∫ ∞

−∞
f (x, y) dx. (13)

The conditional density f (x|y) of X given Y = y is

f (x|y) = f (x, y)

g(y)
, where g(y) �= 0, (14)

and the conditional density g(y|x) of Y given X = x

is similarly given by

g(y|x) = f (x, y)

f (x)
, where f (x) �= 0. (15)

X and Y are independent if and only if

f (x, y) = f (x)g(y) (16)

for all real numbers x and y.
Similar definitions in terms of distribution func-

tions can be given. For three or more variables,
similar definitions can be given in an analogous
manner.

ASIT P. BASU



Randomization Tests

Using randomization to assign interventions in an
experiment (such as a clinical trial) guarantees
the validity of statistical tests of significance (see
Hypothesis Testing), in that the process of random-
ization makes it possible to ascribe a probability dis-
tribution to the difference in outcome between groups
under the null hypothesis [2, 7]. This can be imple-
mented directly with randomization-based inference,
wherein the outcome data are analyzed many times
(once for each acceptable assignment that could have
been employed) and then compared with the observed
result, without dependence on additional distribu-
tional or model-based assumptions. Thus, hypothesis
testing (“randomization tests” or “permutation tests”)
and corresponding test-based confidence intervals
can be designed based on the randomization distri-
bution. Often, the terms “randomization test” and
“permutation test” are used interchangeably, but some
authors make a distinction (for example, see [4]).

The randomization test must be selected based
on the study design, to produce the appropriate ran-
domization distribution; thus, it would differ among
unrestricted, stratified (see Stratification), and pair-
matched designs (see Matched Analysis). In the
simplest case, with pair-matched designs, we esti-
mate some quantity for each pair; for example, the
difference in outcome between the two members of
pair j , denoted X̂1j − X̂2j , j = 1, 2, . . . , J . Then the
expected value of the mean difference is 0 under the
null hypothesis of no intervention (treatment) effect.
For hypothesis testing, we want to know the proba-
bility that an estimate of the mean would be as large
or larger than the observed estimate of the mean, by
chance alone. We calculate the mean (of X̂1j − X̂2j )
for each of the 2J ways (permutations) that the inter-
vention assignments could have occurred. The rank
of the observed mean among all possible means pro-
vides the one-tailed significance level; for example,
if it is in the top 1%, then it is significant at the
0.01 level. Ranking the absolute values of the means
leads to a two-tailed significance level (see Level of
a Test).

This randomization test, whether one-tailed or
two-tailed, is conditional on the absolute differ-
ences |X̂1j − X̂2j |. It makes no modeling assump-
tions but does require that the outcome measures
for the two members of a pair are exchangeable

under the null hypothesis. As noted in [11], this
requirement is equivalent to orthant symmetry on
the paired differences, where, as defined by Efron
[5], a random vector U = (U1, U2, . . . , UJ ) exhibits
orthant symmetry if it has the same distribution
as U∂ = (∂1U1, ∂2U2, . . . , ∂J UJ ) for every choice of
∂j = ±1, j = 1, 2, . . . , J .

We can also use this randomization test to deter-
mine a test-based confidence interval for the between-
group difference. If we shift the mean outcome of
one of the groups by various amounts ∆, then the
confidence interval is defined as those values of ∆

for which a randomization test of X̂1j − (X̂2j + ∆)

fails to reject the null hypothesis at the appropri-
ate significance level [11–13]. Operationally, if we
determine ∆1 as the value of ∆ at which the null
hypothesis is just rejected at P ≤ α in the upper
tail, and ∆2 the same for the lower tail, then ∆1

and ∆2 are, respectively, the lower and upper lim-
its of a 100(1 − 2α)% confidence interval. Another
approach, using a bootstrap distribution, has also
been suggested for determining confidence intervals
in this situation, particularly for large sample sizes,
as discussed by Freedman et al. [8].

The randomization test described above applies to
the pair-matched setting. For an unmatched, unstrati-
fied design in which 2n subjects are allocated to two
equally sized groups, the approach is analogous but
the number of permutations is larger; namely,

(2n

n

)
.

Here we assume simply that all of these reallocations
of subjects to groups are equally likely. This approach
can be generalized to a stratified design, the num-
ber of permutations depending on the randomization
distribution.

The advantage of a randomization test in provid-
ing a robust test of significance can also be obtained
in the presence of covariates. One situation is when
baseline covariates are used to adjust the analysis of
intervention effect (for an example, see [3]). Such
covariates can be placed in a regression model to
predict outcome under the null hypothesis of no inter-
vention effect (i.e. no intervention term in the model),
and then residuals between observed and predicted
outcomes can be calculated. When differences in such
residuals between groups are analyzed, a beneficial
effect from intervention would lead to an expected
mean difference that favored the intervention group.
A randomization test using residuals is a valid test of
the null hypothesis even if the model is misspecified
[9, 10] (see Misspecification).



2 Randomization Tests

A second situation using covariates involves sep-
arate analyses in subsets defined by baseline covari-
ates. In this situation, we use statistical tests for
interaction to investigate whether the intervention
effect differs according to the covariate value. As
with the test for the main effect of intervention,
tests for intervention–covariate interaction can be
randomization tests; here, again, we permute the
assignment to intervention group based on the ran-
domization distribution (for an example, see [3]).
Such interaction tests are of interest because of
the real risk of finding spurious differences in sub-
sets by chance alone [1] (see Simultaneous Infer-
ence).

Strictly speaking, the two-sample randomization
test (described above) tests the strict null hypothesis
that the two groups have the same distribution (i.e.
that intervention has no effect on any of the observa-
tions), rather than the less strong hypothesis that the
mean intervention effect is zero. This distinction is
usually not a concern in practice, but it could affect
the properties of the test in some situations; for a
discussion of this issue, see [9] and [6].

Detailed discussion of randomization tests for var-
ious experimental designs can be found, for example,
in [4].
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Randomization

Randomization refers to the random assignment of
experimental units to one of two or more treatments
for the purpose of comparing the treatments on
some outcome measure (see Randomized Treatment
Assignment). Randomization prevents the existence
of systematic differences between groups other than
the treatments being compared. In statistical terms,
randomization provides a sound objective basis for
claiming a particular distribution for the outcome
under the null hypothesis of no difference across
treatments. In the absence of systematic differences
between treatments, outcome differences across treat-
ments are strictly a function of randomization when
the null hypothesis is true.

The concept of randomization was originally made
explicit and advocated in 1935 by R.A. Fisher, in
his classic text, The Design of Experiments [2]. The
argument for randomization is that it will prevent
systematic differences of any kind, whether or not
they can be identified by the researcher. This makes
randomization preferable to systematic assignment of
treatment groups (see Systematic Sampling Meth-
ods) to produce similar distributions on a set of
recognized and measurable factors; as Fisher points
out, “. . .the uncontrolled causes which may influence
the result are always strictly innumerable”.

Randomization may not result in exactly the
same distribution of identified confounding factors
across treatment groups in a particular sample, but
does guarantee that “in the long run” distributions
of any factor will be the same across treatment

groups. The larger the sample size, the more sim-
ilar will be the distributions of confounders across
treatments. Randomization can be performed within
blocks, where blocks are homogeneous with respect
to identified confounders, thus guaranteeing exactly
the same distribution of blocking factors across treat-
ments while at the same time retaining the advantage
of randomization (see Randomized Complete Block
Designs). Much work has been devoted to randomiza-
tion designs and to methods of implementing random
assignment.

Randomization was originally used in agricultural
experiments, where various plots in a field are ran-
domly assigned to different experimental conditions.
In the 1940s, the idea was adopted for use in clinical
trials, where human subjects are randomly assigned
to different experimental treatments. There has been
argument against randomization in particular situa-
tions with human subjects due to practical and ethical
considerations [1], for example (see Ethics of Ran-
domized Trials), but still the statistical advantage of
randomization is recognized and acknowledged as a
limitation when randomization is not feasible.
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Randomized Complete
Block Designs

In the completely randomized design or one-way
design (see Experimental Design), we assume that
experimental units (EUs) are initially homogeneous
and that subsequent differences are due to differences
in applied treatments. In many situations, a large
enough group of “uniform” EUs may not be available.
If such nonhomogeneous EUs are used, then the error
term for testing treatment differences and estimating
standard errors of treatment means will be inflated
and hence the power of tests will be decreased.

One technique for dealing with this situation
uses covariates (regressor variables measured on
each EU) to account for such nonhomogeneity (see
Analysis of Covariance).

Alternatively, blocking may be used so that EUs
are grouped (“blocked”) into uniform subgroups
called “blocks” or “reps”. (The term “rep” is used
in a wide variety of contexts, so we will only use
the term “block” here.) For example, human subjects
in a clinical trial may be blocked on the basis of
factors such as age or weight if the researcher thinks
such factors could influence a subject’s response to
treatment. We usually assume that a blocking factor
is an environmental factor which is not itself of
much interest but which may influence an EU’s
response and hence mask the effect of the treatments
if uncontrolled.

The randomized complete block design (RCBD)
is the simplest block design and has only one
blocking factor. More complicated block designs
include the Latin square and Graeco-Latin square
designs which have two and three blocking factors,
respectively. In addition to the number of blocking
factors, designs can be distinguished depending on
whether the blocks are “complete” or “incomplete”.
For example, in the RCBD, the number of EUs
per block is the same as the number of treatments
and so each treatment occurs in each block exactly
once. In the generalized randomized complete block
design, the number of EUs per block is some constant
multiple (say, k) of the number of treatments and
so each treatment occurs in each block k times. If
there are not enough homogeneous EUs to obtain
complete blocks, then we have the class of designs
called incomplete block designs, which may be

either balanced or partially balanced with respect
to the number of times two treatments occur in the
same block together.

In the RCBD, once the EUs have been grouped
together into blocks, treatments are randomly
assigned to EUs within each block; that is, there
is a separate treatment randomization for each
block. With more complicated designs, such as Latin
square and incomplete block designs, there are further
restrictions on randomization to achieve balance or
partial balance.

Note that, as both the number of blocking factors
and restrictions on randomization for balance or par-
tial balance increase, complications in the statistical
analysis due to missing cells also increase. (In the
RCBD, a “cell” is a block-by-treatment combination
and a “missing cell” is a block-by-treatment combi-
nation that should have been observed according to
the original design but was not, for whatever rea-
son.) If it is anticipated that missing cells are likely,
then complicated block designs should be avoided.
As the simplest block design, the RCBD suffers less
from these problems than more complicated designs.
However, the researcher should consider use of the
one-way design if many missing cells are likely (see
Missing Data Estimation, “Hot Deck” and “Cold
Deck”; Multiple Imputation Methods).

These topics are covered in greater depth in the
wide variety of experimental design texts and the
reader is urged to consult these (see, for example,
[1], [4], [6], and [7]).

The Usual Statistical Model: Linearity and
Normality

The usual model that describes the RCBD is a linear
model, i.e. a model that is additive in the parameters
(see General Linear Model), as opposed to a
nonlinear model. In addition, the main distributional
assumption is that the data come from a normal
distribution.

In what follows we write the RCBD model for
p treatments and r blocks, for the two basic cases
of blocks either fixed or random. Treatments are
assumed fixed. We also assume that there are no
missing cells.

In both cases we express each model in both a
full-rank or cell-means formulation [5] and a non
full-rank, effects formulation [9]. In addition, we use



2 Randomized Complete Block Designs

the notational convention that lower-case Latin letters
are random variables while Greek letters are fixed
(constant) parameters.

Fixed Treatments and Fixed Blocks

In the development of the theory of linear models,
the idea of “fixed” effects came first. The ideas
of fixed, random, and mixed models were codified
by Eisenhart in 1947 [2]. In recent usages of the
RCBD, blocks are usually considered as random,
but there are cases where blocks as fixed effects
make sense. For example, consider an example from
Neter et al. [8, Problem 24.10, p. 940] in which
treatment is “fat content of diet” and block is “age
groups”. Three people were randomly selected from
each of five different age groups and assigned to
one of three diets. The age groups were 15–24,
25–34, and so on up to 55–64. Clearly, these
age groups were not randomly selected from some
larger population (the usual operational definition of
a “random” effect).

The cell-means model for the RCBD with p fixed
treatments and r fixed blocks is written as

yij = µij + eij , i = 1, . . . , p; j = 1, . . . , r, (1)

subject to µij − µij ′ − µi ′j + µi ′j ′ = 0, (2)

or equivalently

subject to µij − µi· − µ·j + µ·· = 0. (3)

Here, yij is the response on the experimental unit
in treatment i and block j ; µij = E(yij ) is the
mean response of the (i, j )th treatment-by-block
cell; and eij is the random error or residual. The
eij s are assumed to be independently and identi-
cally distributed (iid) as normal random variables
with mean zero and constant variance σ 2

e . The
parameters µi·, µ·j , and µ·· are marginal treatment,
block, and overall means, respectively, and are
obtained by averaging across block, treatment, and
treatment-by-block levels, respectively.

The side condition (2) or (3) is that of “no block-
by-treatment interaction”. Because there is only one
experimental unit per cell and hence no estimate of
experimental error variance based on replication, this
assumption is necessary to provide an estimate of
σ 2

e . The side condition of no interaction means that,
within a block, the difference between any pair of
treatments is the same as that between the same two

treatments in any other block. Thus a graph of the
cell means µij vs. the block subscript j will produce
parallel lines when µij with the same treatment
subscript i are connected by lines. The condition of
“no interaction” is also called “additivity”.

The effects model for the RCBD with blocks
fixed is

yij = µ + τi + βj + eij , i = 1, . . . , p; j = 1, . . . , r.

(4)

Here, µ is the overall mean, τi is the ith treatment
effect, βj is the j th block effect, and yij and eij are as
before. The “no block-by-treatment interaction” con-
dition is represented by the absence in the model of
a term (τβ)ij ; that is, setting (τβ)ij = 0 is equivalent
to either of the side conditions (2) and (3).

Model (4) is “nonfull rank” or “overparameter-
ized” and therefore additional conditions must be
imposed on the τis and βj s to achieve full rank and
thus obtain a solution to the normal equations (see
below). In textbooks the most common conditions
imposed are the so-called “dot” conditions: Στi =
τ· = 0 and Σβj = β· = 0. Alternatively, a general-
ized inverse can be used to solve the normal equa-
tions. These two approaches are basically equivalent,
with most computer routines opting for the latter. For
the general user and for cases in which the data are
balanced and there are no missing cells, these issues
are somewhat unimportant. The interested reader is
referred to [10] and [11] for thorough discussions
of problems with nonfull rank, effects models, and
unbalanced data.

Fixed Treatments and Random Blocks

The cell-means model for the RCBD with blocks
random is

yij = µi + bj + eij , i = 1, . . . , p; j = 1, . . . , r.

(5)

Here, µi is the ith treatment mean, bj is a random
effect due to the j th block, and yij and eij are as
before. The random block effects are assumed to
be iid normal with mean zero and variance σ 2

b . In
addition, the eij s and bj s are assumed to be mutually
independent.

The effects model for the RCBD with blocks
random is

yij = µ + τi + bj + eij , i = 1, . . . , p; j = 1, . . . , r.

(6)
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The only change between (5) and (6) is that µi

has been replaced with µ + τi , where again µ is
the fixed overall mean and τi is the fixed treatment
effect. Note that apart from the substitution of bj

for βj , models (4) and (6) look identical. This
resemblance is somewhat misleading, as the effect of
blocking is described by quite different parameters
in the two models: by means for fixed blocks and
by the variance component σ 2

b for random blocks.
This difference is emphasized by comparing the
mean, variance, and covariances of the yij for the
two models (see Table 1). In addition, when blocks
are random, the “no block-by-treatment interaction”
assumption means that σ 2

tb = 0.

The Usual Statistical Analysis

Estimation

Fixed parameters, such as treatment means or
effects, are usually estimated by least squares,
which involves minimizing the error sum of squares
SSe = ∑p

i=1

∑r
j=1 e2

ij . In the case of fixed blocks,
this results in a set of linear equations called
the normal equations. In the case of random
blocks, we get a more complicated set of linear
equations called the mixed model equations [3]. In
the balanced case with no missing cells, formulas
for the estimators are nicely intuitive, no matter
whether blocks are considered fixed or random,
and the estimators are, in fact, uniformly minimum
variance unbiased (UMVU) under normality.
Estimates for treatment means and pairwise treatment
differences (see Paired Comparisons), along with
their estimated standard errors, are summarized in
Table 1.

There are many different techniques for estimat-
ing variance components. Three common ones are

maximum likelihood (ML), restricted maximum
likelihood (REML) and the method of moments,
which is also referred to as analysis of variance
(ANOVA) estimation. In the balanced case with no
missing cells, the REML and ANOVA estimators are
the same and are also UMVU under normality. These
estimators are summarized in Table 1. In the bal-
anced case, the ML estimators may be equal to the
REML estimator or may differ by a simple constant,
which is a function of the number of levels in the
factor.

Tests of Hypothesis

Given that there are no missing cells, the data
from an RCBD are usually analyzed by ANOVA,
an arithmetic technique for partitioning an overall
measure of variability (“sum of squares”) into pieces
that are associated with a particular set of effects,
e.g. differences in treatment means or a variance
component.

For the RCBD, the ANOVA partitions the total
sum of squares into three pieces associated with
treatments, blocks, and error. (Note that if the “no
block-by-treatment interaction” assumption is not
satisfied, the error source of variation is measur-
ing the strength of that interaction.) These three
sums of squares are then divided by their respec-
tive degrees of freedom to obtain mean squares,
and ratios of the mean squares are then taken
to obtain the F test statistics (see F Distribu-
tions). The ANOVA is the same whether blocks
are fixed or random and is summarized in Table 2.
The expected mean squares are used in mixed mod-
els to determine appropriate testing terms for the
F tests. These do differ, depending on whether
blocks are fixed or random, and are summarized in
Table 1.

Table 2 Analysis of variance: fixed model and mixed model

Source Degrees of freedom Sums of squares Mean squares F ratio

Treatments p − 1 SSt = r

p∑

i=1

(yi. − y..)
2 MSt = SSt/(p − 1) Ft = MSt/MSe

Blocks r − 1 SSb = p

r∑

j=1

(y.j − y..)
2 MSb = SSb/(r − 1) Fb = MSb/MSe

Error (p − 1)(r − 1) SSe =
p∑

i=1

r∑

j=1

(yij − yi. − y.j + y..)
2 MSe = SSe/(p − 1)(r − 1)
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Randomized Response
Techniques

Randomized response (RR) sampling owes its begin-
ning to Stanley L. Warner [29] in 1965. He developed
his method to address the need which often arises in
medical, psychological, or sociological investigations
for facts about highly sensitive matters. For example,
most survey respondents would feel uncomfortable
discussing their history of abortion, participation in
drug use, sexual behavior, status relative to many
medical conditions, extent of use of oral contracep-
tives, or whether they have defrauded some gov-
ernmental agency. The standard approach for such
questions has been to assure the respondent of the
confidentiality or anonymity of the information he
or she provides. Nevertheless, such attempts at open
inquiry into sensitive issues often result in high non-
response rates, willful misstatements, and outright
lies, inducing a high degree of bias and error that
cannot be overcome.

As conceived by Warner, the method of RR sam-
pling would (by its nature) both guarantee the respon-
dent’s anonymity and convince the respondent of that
protection. His original procedure was to offer to the
respondent a choice of questions where one was the
opposite or negation of the other. For example, the
respondent could be offered two questions:

1. Have you smoked marijuana in the last 30 days?
2. Have you not smoked marijuana in the last 30

days?

To determine which question is to be answered,
the respondent is given a “randomizing device” (see
Randomization) of some kind, e.g. a deck of cards,
some of which are marked with question 1 and
the rest with question 2. Thus, the drawing of a
card would “randomly” determine which question the
respondent would answer. The outcome of the ran-
domizing device is seen only by the respondent, not
the interviewer. Thus the interviewer may record a
“yes” response but never know if that answer meant
“Yes, I have smoked marijuana in the last 30 days
and I am answering question 1” or “Yes, I have
not smoked marijuana in the last 30 days and I am
answering question 2”.

The nature of the sampling is explained by the
interviewer carefully to the respondent and then the

respondent is allowed to investigate the randomizing
device to his or her satisfaction before participating in
the survey. Thus (it was hoped that) the respondent
would realize his or her “perfect anonymity”. That
is, not even the interviewer could know for sure to
which group the respondent belonged. Nevertheless,
by knowing the make-up of the randomizing device
as well as the aggregate results, an estimate can be
obtained of the proportion of respondents, in this
example, who had smoked marijuana in the last
30 days without ever knowing the precise status
of any single respondent. Such knowledge would
presumably not only make respondents willing to
participate in the survey but also persuade them to
provide truthful responses.

There are a few disadvantages to the use of
RR techniques. Implicit in the nature of RR is the
assumption that the respondent is sufficiently cog-
nizant, informed, and educated to recognize and
appreciate his or her anonymity. This feature could
escape an audience of poor education or low sophis-
tication. Secondly, the estimates provided by RR
techniques have larger variation than a standard esti-
mator from the same-sized sample. This naturally
results because of the “noise” or “extra variation”
introduced by the randomizing device. However, one
can easily compensate for this shortcoming by simply
increasing the size of the sample to be taken by the
RR techniques. Most statisticians feel this tradeoff is
a small price to pay for both the increased cooper-
ation and the increased truthfulness by respondents
that result in more accurate estimates.

In summary, the underlying rationale for all RR
techniques is that a randomizing device is used to
select the question to be answered by the respon-
dent. Such a device, it is hoped, will convince the
respondent that even the interviewer will be unable
to determine the respondent’s true status with respect
to the sensitive issue(s) being addressed.

Several papers on RR provide significant reviews:
see [3], [14], [16], and [17]. However, by far the
most recent and most comprehensive review of RR
techniques which presents 424 references and an
abstract of each publication is that of Daniel [5].

Truly from humble beginnings, RR techniques
have flourished both in theoretical sophistication and
in practical application to actual surveys. This article
attempts to cite several significant papers and direct
the reader to several important dimensions developed
in RR techniques.
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Warner’s Original Model

Continuing with our marijuana example, let π be
the proportion of individuals possessing the sensitive
characteristic (those who had smoked marijuana in
the last 30 days) and let p be the probability of
the random device giving question 1 (where p �= 1

2 ).
Then the probability of getting a “yes” is given by

λ = Pr(yes) = πp + (1 − π)(1 − p). (1)

The πp term is due to the “yes” answers received
from those “who had smoked marijuana in the last 30
days” and who got question 1. The (1 − π)(1 − p)

term is due to the “yes” answers received from those
“who have not smoked marijuana in the last 30 days”
and who got question 2. If we let n1 be the total
number of “yes” responses out of a sample taken of
size n, then an unbiased estimate of λ is given by

λ̂ = n1

n
. (2)

Utilizing (1) and (2), an unbiased estimate of π is
given by

π̂ = p − 1

2p − 1
+ n1

(2p − 1)n
, (3)

where p �= 1
2 . Since n1 follows a binomial distribu-

tion with parameters n and λ, it can be shown that

var(π̂) = π(1 − π)

n
+ p(1 − p)

n(2p − 1)2
, (4)

and an estimate of this variance can be found by
using π̂ for π in (4). The first term in (4) is the
variance term due to binomial sampling, and the
second is the variance term due to the randomizing
device. Note that if p = 0 or if p = 1, RR sampling
reduces to ordinary (binomial) sampling, and (3) and
(4) simplify accordingly.

For sufficiently large samples this estimated vari-
ance can be used to construct a (1 − α) 100% confi-
dence interval for π :

π̂ ± Z(α/2)
√

v̂ar(π̂).

In addition, Levy [18] describes how tests of hypoth-
esis (see Hypothesis Testing) about π may naturally
be done by inserting the hypothesized value of π in
(4) to obtain an estimate of var(π).

Continuing with our example, suppose n = 400
high school seniors were selected from a New York
inner-city school and asked their marijuana use within
the last 30 days by the RR method described. Let the
randomizing device be a deck of 50 cards, where
15 have question 1 and 35 have question 2, so that
p = 15/50 = 0.30. If n1 = 240 answered “yes”, then
λ̂ = n1/n = 0.60. Hence, by (3), Warner’s original
estimate is given by π̂ = 0.25 and (4) gives v̂ar(π̂) =
0.00375.

If an earlier study seemed to indicate only 10% of
these high school seniors had smoked marijuana in
the last 30 days, a natural hypothesis test would be
H0 : π = 0.10 vs. H1 : π > 0.10 at α = 0.05. That
is, does the RR method seem to indicate a propor-
tion of marijuana use higher than 10%? Substitut-
ing the hypothesized proportion π = 0.10 into (4)
gives var(π̂) = 0.00351 with a resulting observed test
statistic of

Z = π̂ − π0

[var(π̂)]1/2
= 0.25 − 0.10

(0.00351)1/2
= 2.53.

The critical value would be +1.645, and thus we
would reject H0 with an observed p value of Pr(Z >

2.53) = 0.0057. A 95% confidence interval for π

would be given by π̂ ± 1.96[v̂ar(π̂)]1/2 = 0.25 ±
1.96(0.00375)1/2 = (0.13, 0.37).

Improving the Efficiency of RR Sampling
Using Multiple Trials

It has already been noted that the introduction of
the randomizing device induces extra variation into
the estimators. This effectively decreases the sample
size. So while in our example n = 400, the effect
of randomizing might be an increase in variation
so that the sample is “effectively” only 250. One
obvious way to overcome this is simply to increase
the sample size. Another less obvious solution is to
have multiple trials performed on each respondent
[19, 20]. While it does not make any sense to ask a
respondent the same question repeatedly in ordinary
sampling, the reader can see the potential benefit in
RR sampling by considering an extreme case of our
high school seniors example where p = 0.30. If a
single respondent were asked 100 times, one could
conceivably get 100 “yes” and 0 “no” answers or 0
“yes” and 100 “no” answers or anything in between.
A large number of “yes” and few “no” answers (say,
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70 “yes” and 30 “no”) would tend to indicate that
this respondent had not smoked marijuana in the last
30 days, since in 100 trials where p = 0.30, one
would expect to get 30 answers to question 1 and 70
answers to question 2. Conversely, a large number
of “no” and few “yes” answers (say, 70 “no” and
30 “yes”) would tend to indicate that this respondent
had smoked marijuana in the last 30 days. However,
it would be expected that as a single respondent was
asked the same question over and over the respondent
might realize that he or she is progressively losing
his or her anonymity. This could result in loss of
truthfulness or random answering and a collapse of
any benefit normally associated with RR sampling.
Liu & Chow [20] explore the optimal number of trials
per respondent and derive the model and estimators
associated. Furthermore, they report on a field trial
conducted in Taiwan where the randomizing device
was a globe with a short neck that contained 3 red
and 7 white balls. The globe was manipulated by a
respondent so that a single ball fell at random into the
neck. Depending on the color of the ball (which was
hidden from the interviewer) the respondent answered
a question related to abortion. Their study compared
direct questioning to RR with one trial and to RR with
three trials. Their results indicate a much higher rate
obtained by both RR methods (with the three-trial
estimate highest of all) and no apparent discomfort
from the respondents who were asked to undergo the
process three times.

Chow et al. [4] formulated a new RR model
and randomizing device to obtain multiple responses
without appearing to do so. Their device consisted of
a glass urn with a long neck. The urn contained balls
of two colors, one color associated with the sensitive
category and the other to the nonsensitive. The urn is
shaken by the respondent and inverted to allow balls
to flow into the neck. The respondent then tells the
number of balls in the neck that correspond to his or
her category color. They develop estimates based on
the hypergeometric distribution. Greenberg et al.
[14] developed a method of moments estimators for
this model and device.

Technical Concerns with Warner’s
Original Model

Several authors have noted some technical problems
with Warner’s original model. Moors [24, 25] notes

that 1 − p ≤ λ ≤ p if p > 1/2 and p ≤ λ ≤ 1 −
p if p < 1/2 since 0 ≤ π ≤ 1. Thus λ must be a
truncated estimate and this prevents π̂ from being a
truly unbiased estimate of π . Also, although Warner
originally claimed π̂ was the maximum likelihood
estimate (MLE) for π , a number of authors pointed
out a flaw in his original claim [6, 8, 27, 28]. All
recommend a truncated estimator that is the true
MLE for π given by the following. For p < 1/2,
the estimate is given by 1 if λ̂ ≤ p; π̂ if p < λ̂ <

1 − p; and 0 if λ̂ ≥ 1 − p. But for p > 1/2, then the
estimate is given by 0 if λ̂ ≤ 1 − p; π̂ if 1 − p <

λ̂ < p; and 1 if λ̂ ≥ p. Without such truncations,
sample estimates could give strange estimates of π

that could be negative or greater than 1! For our
illustrative high school example, suppose n1 = 300
answered yes; then λ̂ = n1/n = 0.75 and so π̂ =
−0.125! Using the recommended truncated estimator,
this value would be set to 0. Devore [6] offers
a slightly modified procedure where n is an even
number and stands for the number of cards in a deck,
one-half of which are marked with the command
to answer “yes”. The other half of the cards are
marked with the sensitive question of interest. The
sample of n chosen persons is asked to select a card
without replacement. This results in a true unbiased
estimate of π that is also the MLE and is given by
π̂ = (2n1/n) − 1 with var(π̂) = (2/n)π(1 − π) and
̂var(π̂) = [2/(n − 2)]π̂(1 − π̂).

Other Generalizations to Warner’s
Original Model

Abul-Ela et al. [1] extended Warner’s model to con-
sider a population of t mutually exclusive categories
where at least one but not more than t − 1 of those
categories is a sensitive category. Their study con-
sidered three categories of women who were known
recently to have given birth to a child: those women
who were already married when they became preg-
nant; those who got married during their pregnancy;
and those who were still unmarried at the time of
their delivery. Here, the last two categories are poten-
tially sensitive ones. The randomizing device they
used was a deck of cards with each card having one
of three associated questions to which the respondent
would answer “yes” or “no”. The authors developed
the model and estimators for this trichotomous situa-
tion and reported on some observations of a field trial
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of the model. Note that (in general) a situation with
t categories necessitates t − 1 independent samples,
each of which has a different proportion of allocation
of questions by the randomizing device.

Liu et al. [22] developed a new randomizing
device to be used in the multiproportions environ-
ment. The device consists of a glass urn with a long
neck. The urn contains beads of several colors, one
color associated with each category of interest. The
urn is inverted, allowing several balls of each color
to flow into the neck which has locations sequen-
tially numbered on it. The respondent is asked to
reply according to the location of the first bead of
his or her identifying color that appears in the neck.

Franklin [9] considered a dichotomous population
(as Warner did) but used a randomizing device that
used continuous distributions. Specifically, he pre-
sented a portable, programmable computerized device
that presented respondents with two windows: one
marked “yes” and the other marked “no”. When-
ever the respondent pressed a button on the device,
two separate two-digit numbers appeared in these
windows. The interviewer, after explaining what was
to take place, then allowed the respondent as much
time as he or she wished to “play with” the device
and the button. Starting only after the respondent was
content with the device, the interviewer then asked a
sensitive question. The respondent then pushed the
button on the device another time and reported the
two-digit number that appeared in the appropriate
“yes” or “no” window. This two digit response was
recorded by the interviewer. The numbers from the
“yes” window were distributed approximately nor-
mally with mean 40 and standard deviation 5, while
the numbers from the “no” window were distributed
approximately normally with mean 50 and standard
deviation 5. Thus, a two-digit response such as “43”
could have come from either distribution. Franklin
incorporated multiple trials into his model by actu-
ally displaying six digits in each of the “yes” and
“no” windows. This actually constituted three sep-
arate two-digit responses, unbeknown to the respon-
dent who felt he or she was responding once. Franklin
field-tested his device on university students, asking
five sensitive questions. His article both derives the
theory for his “continuous distribution randomizing
device” and presents the results of his field trial which
contrasts estimates of the five proportions of interest
made by his RR technique with those made by direct
sampling methods. His results indicate that all five

RR estimates of the proportions were greater than
the corresponding one from direct sampling. In addi-
tion, three of the RR proportions were significantly
greater statistically than the corresponding one from
direct sampling.

The Unrelated Question (RR) Model

The randomizing device that selects one of two
questions to be answered is the crux of Warner’s
model; one question is the opposite of the other
and hence they are “related”. Greenberg, Horvitz and
colleagues [11, 15] were the first to note that the two
questions need not be related. They explored the use
of two randomizing devices: one a deck of 50 cards
and the other, a box with two colors of beads. Each
card in the deck had one of two statements:

1. There was a baby born in this household after
January 1, 1965, to an unmarried woman who
was living here (sensitive).

2. I was born in North Carolina (nonsensitive).

The box of beads had a small window in which
(after shaking) one bead would randomly appear. The
color of the bead was associated with one of the
two statements which were attached to the box. The
window was not visible to the interviewer. Results
of field studies undertaken in North Carolina are
reported, and a “two trials per respondent” model
developed for the unrelated question scenario.

The introduction of a second, unrelated and non-
sensitive question appears to have both advantages
and disadvantages. Presumably, the answering of two
distinct questions by “yes” or “no” would not be as
potentially confusing as Warner’s original procedure.
There, if a marijuana smoker obtained question 2, he
or she must (if truthful) answer “no”. This double
negative answer could pose some difficulty in certain
sampling situations.

However, the use of a second question introduces
two proportions: the proportion of respondents who
possess the sensitive characteristic (π1) and the pro-
portion of respondents who possess the nonsensitive
characteristic (π2). To solve for π1, either outside or
previous knowledge of the value of π2 must be avail-
able so that the scenario reduces to solving one equa-
tion in one unknown, π1; or, if π2 is itself unknown, a
second independent sample (with a different value of
p for the randomizing device) must be obtained. This
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produces a scenario of two equations obtained (one
from each of the two independent samples) in two
unknowns, π1 and π2. Whichever scenario occurs,
estimators and estimates of their variances can be
easily obtained.

In spite of the extra parameters introduced, Green-
berg et al. [11] were able to show that under cer-
tain conditions and parameter choices, the unrelated
model can be made more efficient than the origi-
nal Warner model. In addition, Greenberg et al. [12]
showed how the “unrelated but innocuous question”
could be built into the randomizing device itself.
Specifically, their randomizing device was a box
with three types of colored ball: red, white, and
blue.

The sensitive question they examined dealt with
the occurrence of an emotional problem requiring
professional help and was answered by the respon-
dent if the ball which randomly appeared in the
window of the box was red. Otherwise, the respon-
dent answered the unrelated question of “The color of
the ball in the window is blue”. See [12] for deriva-
tion of estimates and their variances.

Moors [23] addressed the optimization of choices
for samples and of the proportion for the randomizing
devices for the unrelated question RR model.

The Use of RR Techniques in Obtaining
Quantitative Data

All the RR techniques thus far considered are essen-
tially categorical or qualitative in nature. That is,
respondents fall into one of several mutually exclu-
sive categories (at least one of which is sensitive)
and the intent of the RR method is to estimate accu-
rately the proportions associated with each category.
But many scenarios may beg for a quantitative mea-
sure of the sensitive attributes. For example, instead
of wishing to know “Have you smoked marijuana in
the last 30 days?”, one may really be interested in
“How many times have you smoked marijuana in the
last 30 days?”.

Greenberg et al. [13] developed just such an RR
technique for dealing with a quantitative response.
They modified their earlier developed “unrelated
question” model by having two unrelated questions
(one of which was sensitive) but which both required
a quantitative (numerical) response rather than a cate-
gorical (yes/no) response. The two specific questions
they used were:

1. “How many abortions have you had in your
lifetime?” (sensitive).

2. “If a woman has to work full-time to make
a living, how many children do you think she
should have?” (nonsensitive).

The randomizing device was a box with red and
blue balls: The two questions were identified by
“red” and “blue”, respectively. The respondent shook
and then tipped the box, allowing a single ball to
appear randomly in a window (which was hidden
from the interviewer). The respondent then answered
the question which matched the color of the ball that
appeared in the window.

This model allowed estimation of the means of the
two distributions addressed by the questions. Since
both of those means were unknown, the investigation
necessitated two independent studies, each using a
bead box with a different proportion of red and
blue balls as the randomizing device. See [13] for
derivation of estimates for the means and estimates
of their respective variances.

Eriksson [7] introduced a model in which a finite
set of values can be given as the response to the
sensitive question. As an example, the sensitive
question could be “In how many of the last 7 days
have you smoked marijuana?” and thus the responses
could be 0 through 7. The randomizing device he
proposed was a deck of cards some of which were
marked with this type of sensitive question and others
were marked with statements like “Give as your
answer !” where the blank would contain a
number from 0 through 7. Knowing the proportion
of the cards marked with “Give as your answer 0”,
“Give as your answer 1”, etc., he derives estimates
of the mean of the sensitive distribution.

Liu et al. [21] developed, apparently indepen-
dently, a similar model and randomizing device.
Their randomizing device consisted of a glass urn
with a short neck that could contain precisely one
ball. The urn contained balls of two colors: red and
white. If after shaking, a red ball appeared in the
neck of the urn, the respondent answered the sen-
sitive, quantitative question. But the white balls all
were numbered with a discrete number (such as from
0 through 7) and if a white ball was obtained, the
respondent would give as his or her reply the num-
ber on the ball. Knowing the precise number of balls
marked with 0s, with 1s, etc., they derived estimates
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of the mean of the distribution for the quantitative,
sensitive characteristic.

Poole [26] presented an RR technique capable of
estimating an entire distribution function for a quan-
titative sensitive response. His randomizing method
consisted in asking the respondent to select randomly
a number from a table of random numbers, enter that
number into a calculator and then multiply it by his or
her salary (the sensitive issue). The resulting number
is the value given by the respondent. Knowing the
distribution of the random numbers, he derives an
estimate of the distribution function associated with
personal salaries.

Important Field Studies Using RR
Techniques

Many field studies have been undertaken with a wide
range of RR models and randomizing devices. While
the various models and randomizing devices and field
studies are not without controversy, nevertheless, it
can be generally stated that RR techniques have
performed at least as well as ordinary sampling
methods. Four studies in particular have not only
attempted to conduct a study by RR techniques but
also simultaneously conducted a comparison study
using ordinary sampling methods. Their results and
observations are instructive.

Boruch [2] reported a study of marijuana use
among college students and found no significant
difference in the estimated means obtained by direct
question methods, from an RR technique, and from
his own contamination model. In fact, the results
seem only to indicate greater variability present in
the two indirect procedures than in the direct question
method.

Goodstadt et al. [10] reported on a field study
of drug usage involving 854 high school students
and their drug usage of six separate substances over
the preceding 3 months. They found that subjects
were significantly more likely to respond to these
questions when the RR method was used than with
the direct method. Furthermore, for five of the six
drugs (alcohol, marijuana, amphetamines (“speed”),
tranquilizers, and heroin) the subjects claimed sig-
nificantly more frequent drug use than with the tra-
ditional direct method. Only for hallucinogens was
no significant difference found. One of their clos-
ing statements is insightful: “The most significant

result of the reported research was the finding that
the standard (direct) procedures for inquiring appear
to provide a significant underestimate of drug use.
Statistically significant differences in estimated mean
drug use occurred despite the considerably higher
variability associated with the randomized response
estimates.”

Liu et al. [20] presented the comparative results
of rates of abortion in Taiwan by three methods:
direct question; RR with one trial; and RR with three
trials. The last two methods gave significantly higher
estimates of the proportion of women who have
had an abortion of 28.2% and 30.3% (respectively)
as compared to several direct studies that never
achieved over 19.5%. In addition, a matching study
of 48 (successful) interviews with Taiwanese women
known to have had an abortion was conducted by
RR (multiple trial) and direct methods. The RR
method estimated the proportion who had an abortion
as 95.7% with a standard error of 8% so that a
95% confidence interval would contain the expected
value of 100%. However, the direct method estimated
a significantly lower percentage of 19.8% with a
standard error of 10.5%. Thus, a 95% confidence
interval estimate from the direct method would be no
larger than 40%, which is considerably lower than
the expected value of 100%. In their words, this
“suggests that most of the abortion cases were willing
to give truthful responses in this (RR) multiple trial
model”.

Finally, Franklin [9] reported on two studies of
college students involving 473 who were interviewed
by RR (using continuous randomizing distributions)
and 477 who were interviewed by the direct method.
The two studies were independent but conducted
on one college campus within a period of a week.
He deliberately chose five questions with what were
judged to be varying degrees of “sensitivity”. All five
questions gave a higher estimated proportion by the
RR method than by the direct method. However, two
of the questions (of what was judged “moderate sensi-
tivity”) surprisingly showed no significant differences
(“Have you smoked marijuana in the last 30 days?”
and “Would you ever steal from an employer?”).
There was a significantly greater estimate from the
RR method than from the direct method for the
other three questions, (“Have you ever participated
in a homosexual act?”, “Have you ever cheated on
an exam here at this university?”, and “Would you
ever cheat on your income tax?”) with all P values
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less than 0.0004. It was not anticipated that the two
questions on cheating would be significant as they
were felt to be of “low sensitivity”. However, the
researcher noted that before the survey was actually
conducted, the students were asked for their social
security numbers, which were then used to screen
“enrolled students” from “visitors on campus”. The
researcher reasoned that having those unique identi-
fying numbers turned those questions about cheating
into highly sensitive ones (for the “direct questioned
respondents”). The article conjectures “that some of
the confusion about the efficacy of the RR technique
may be related to the ‘true sensitivity’ of the question
for the interviewee as opposed to the ‘perceived sen-
sitivity’ by the interviewer”. The article also reported
that 88.9% of the respondents who used the RR tech-
nique felt “their friends would be more likely to
answer truthfully to sensitive questions by this RR
technique”. It should be noted also that the tech-
nique used by Franklin incorporated (unbeknown to
the respondent) three trials per respondent along with
sample sizes of near 500.

In summary, RR techniques seemed to establish
themselves as being superior to direct question meth-
ods if certain reservations are understood. First, the
question of interest must be “truly sensitive” to the
population of interest. For example, it may well be
the case that “Have you smoked marijuana in the last
30 days?” is a sensitive question for high schools
students but not necessarily for college students. Sec-
ondly, RR techniques have greater variability that is
inherently introduced by the randomizing device as
compared to direct question methods. This additional
variability needs to be factored into the circumstances
and overcome either by multiple trial responses or by
a careful choice of randomizing parameters or by a
substantially increased sample size or by a combina-
tion of all three.

Odds and Ends

Winkler & Franklin [31] approached the original
Warner dichotomous model from a Bayesian per-
spective. Taking a natural conjugate beta form for
the prior density of π (the proportion of the popu-
lation with the sensitive characteristic), they derived
posterior density forms.

Warner [30] derived a general linear model for
randomized response.

Chaudhuri & Mukerjee [3] present RR sampling
from a finite population and develop some “unifying
theory” that is very helpful and insightful.
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Randomized Treatment
Assignment

An important goal of clinical research is the devel-
opment of therapies that improve the probability of
a successful outcome in the ill or that prevent the
onset of a disease in the healthy. The fundamental
question asked in a clinical trial, “Does the ther-
apy under investigation work,” implies an interest in
causation. Although frequently associations between
therapy and outcome are observed, association alone
does not imply causation. A rigorous answer to
the question of whether a treatment actually bene-
fits patients requires a direct concurrent comparison
of those on the treatment to those not on it. Con-
vincing evidence of effectiveness requires not only
observing a difference between the two groups with
respect to an outcome of interest, but also demonstrat-
ing that the therapy has most probably caused that
difference. For example, patients undergoing a new
surgical intervention may experience longer average
survival time than patients who do not undergo the
surgery. Whether that apparent benefit is due to the
surgery itself or to the ability of surgeons to select
patients of low surgical risk is relevant to the assess-
ment of the effect of the intervention (see Bias in
Observational Studies).

An experiment affords the best approach to infer-
ring that an observed association reflects the actual
effect of therapy, rather than a noncausal relation-
ship. Experimentation, more rigorously than obser-
vation or a priori reasoning, isolates the effect of
an intervention from systematic differences between
the group of people being treated and the con-
trols. To ensure an unbiased assessment of treat-
ment, the study groups must be equivalent in all
respects except for the treatment itself. In many clin-
ical trials, the method used to render the groups
equivalent is randomization, the allocation of peo-
ple to treatment through a process governed by
chance. Although lotteries, which reflect an under-
standing of the need for a chance mechanism to
ensure unbiased selection, date back thousands of
years, the application of random selection to exper-
imentation is relatively recent. Stigler [29] credited
the first application of randomization in experimen-
tation to Pierce & Jastrow in 1885 [26]. Fisher,
in a 1926 paper on agricultural experiments [8]

and more generally in his Statistical Methods for
Research Workers [10], stressed the centrality of ran-
domization for statistical inference. He contended
that statistical tests (see Hypothesis Testing) based
on normal theory provided good approximations to
the exact randomization distribution. While the lit-
erature [23] has cited Diehl’s [7] clinical trial on
vaccines for the common cold as the first clini-
cal trial to randomize participants, Waller [31] has
pointed out that Diehl probably used an alternat-
ing, not a random, sequence to assign treatments
to participants. Armitage [1] states, “The success-
ful implementation of randomized trials in medicine,
in the 1940s, is largely due to the advocacy and
example of Sir Austin Bradford Hill” (see, for exam-
ple, [13]).

Randomization requires an active process of dis-
tributing experimental units by chance, not a passive,
haphazard method of selection. According to Fisher,

Apart . . . from the avoidable error of the experi-
menter himself introducing with his test treatments,
or subsequently, other differences in treatment, the
effects of which the experiment is not intended to
study, it may be said that the simple precaution of
randomization will suffice to guarantee the validity
of the test of significance, by which the result of the
experiment is to be judged [9, p. 21].

Thus Fisher very early in his career stressed the
importance of randomization to the valid calculation
of experimental error.

Randomization has at least two purposes: it allows
the deduction of causality and it removes bias from
the selection of patients for specific treatments. The
ability to deduce causality stems from the fact that
randomization tends to balance the treatment groups
with respect not only to known prognostic factors,
but also with respect to unknown, unmeasured fac-
tors. By preventing investigators from consciously
or unconsciously selecting patients for specific treat-
ments, randomization removes investigators’ bias
from the process of the allocation of treatment groups.

Statistically, from the frequentist point of view,
randomization has a third desirable feature: it allows
construction of the sample space that renders statis-
tical tests of significance valid.

While randomization is necessary for the unbiased
comparison of treatments, it alone does not suffice
to ensure fair comparisons. The actual assignment
of participants to treatment must precisely reflect
the randomization, and the formal analysis of the
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data must respect the randomization; otherwise, the
analysis, by violating the structural balance assured
by the experimental technique, creates potential bias
in the evaluation of the treatments (see Intention to
Treat Analysis).

Necessity of Randomization in Clinical
Trials

In many laboratory experiments, especially those in
the physical sciences, the scientist has the tools to
render the “subjects” equivalent. With the ability to
exert exquisite control over the samples being com-
pared, small experiments, fastidiously executed, may
suffice to measure precisely the effects of stimuli. In
biology, however, especially when the “subject” is
the entire organism, the inherent variability among
experimental units renders such tight control impos-
sible. Even identical twins or genetic clones in the
laboratory are not truly identical, because although
they are genetically similar, they may differ consid-
erably in experience and behavior. Unrelated people
differ even more. Strategies to match experimental
groups by controlling as much as possible the distri-
bution of variables in the experimental groups help
to achieve comparability, but the very large numbers
of variables, measured and unmeasured, that charac-
terize an individual make perfect balance impossi-
ble.

In addition to the difficulty of trying to select
groups to make them comparable, in clinical trials
the treating physician may have conscious or uncon-
scious preference for a specific treatment for a given
patient. Bias in construction of treatment groups can
creep into a clinical trial quite subtly, because the
treating physician may be reluctant to assign certain
patients to certain arms. Thus an important feature of
assignment of therapy to participant is unpredictabil-
ity: the next treatment assignment must not be known
in advance. Randomization offers the mechanism that
typically achieves balance and unpredictability of
assignment of treatment in experiments. Although
any particular realization of a random allocation of
subjects to groups may produce imbalance (other-
wise, no one would ever be dealt a full house in
poker!), the set of all possible random allocations
does not in any way favor one group over another.
Furthermore, a large sample size will yield groups in
any specific experiment that will have a very high

probability of being well balanced with respect both
to baseline risk and intrinsic responsiveness to inter-
vention.

Armitage [1] and Lachin et al. [21] present useful
discussions of the need for randomization in clinical
trials that aim to evaluate therapy (see also Friedman
et al. [11]).

Randomization as the Basis of Statistical
Inference

According to frequentist theory, randomization
allows a direct test of cause and effect and
permits construction of valid tests of statistical
significance [14, 17]. A simplified description of
the randomization model follows. Each patient in
the study has a true value of the outcome variable.
For example, in a trial that studies the effect of a
new drug on the level of LDL-cholesterol (LDL) in
the serum, the model conceptualizes each patient as
characterized by a “true value” of LDL. The first step
in the clinical trial is analogous to random shuffling
of the deck of study participants into two piles.
In the absence of assigned treatment, the shuffle is
expected to produce two sets of cholesterol values
with identical distributions.

A study with m patients in each of two treat-
ment groups has

(2m

m

)
possible assignments of patients

to the two groups. The mean levels of LDL in the
two groups resulting from the random allocation are
expected to be equal. Of course, in any specific
allocation the means will differ from each other,
but if the sample size is large, the random shuf-
fling ensures a low probability of a large difference.
To perform the clinical trial, one introduces a treat-
ment, here a putative LDL-lowering medication, and
assigns it to each member of one of the “piles”. If
the medication reduces LDL-cholesterol by 10 mg/dl,
then the treated group is expected to have an aver-
age LDL-cholesterol level 10 mg/dl lower than the
untreated group. To test the effect of treatment, one
compares the observed means in the two popula-
tions. Under the randomization model, all possible
ways the shuffle could have allocated participants
to the treatment and control groups constitutes the
sample space. A surprisingly large observed differ-
ence in the two groups leads to the claim that the
treatment must have “caused” the difference because
the only systematic characteristic that distinguishes
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between the two groups is the treatment. To derive
a statistical test of the null hypothesis of no effect
of treatment, one can construct the sample space
of all possible outcomes by enumerating each of
the

(2m

m

)
combinations, computing the test statis-

tic, and calculating in what position the observed
sample sits in the space of all possible allocations
ordered according to the likelihood of the occur-
rence under the null hypothesis. Even in relatively
small samples, however, the sample space may be
large enough to render this calculation intractable. In
1955, Kempthorne [17] proved Fisher’s earlier con-
tention that statistical tests based on normal theory
were reasonable approximations to the randomization
distributions (see also Hinkelmann & Kempthorne
[14]). Lachin [18–21] presents discussions of the
theory as applied specifically to randomized clin-
ical trials. The act of randomization has provided
the formal template that allows a statistical test of
whether the treatment “caused” a difference in LDL.
The answer in the study group leads to the inferen-
tial leap that if the treatment truly caused a difference
in this specific group of people, then it should cause
a difference in other people as well. The random-
ization procedure does not guarantee the legitimacy
of this generalization of the trial’s result to a larger
population.

Arguments Against Randomization

While most clinical trialists view randomization as
necessary to valid inference about the effects of ther-
apy, some people object to randomization on ethical
grounds (see Ethics of Randomized Trials). Some
argue further that often randomization is difficult to
perform, but according to Senn, “Contrary to what
is sometimes claimed, randomization is not a nui-
sance in clinical trials: from the practical point of
view it is one of the easiest allocation procedures
to implement” [28]. Some hold that careful statisti-
cal modeling in the absence of randomization can in
some cases discern the effect of therapy. For discus-
sion of these arguments, see, for example, Basu [2],
Levine [22], and Friedman et al. [11].

While randomization is necessary for the construc-
tion of statistical tests from the frequentist point of
view, it is relevant to Bayesian and likelihood-based
inference for another reason. Both of these methods
of inference consider the data fixed after the exper-
iment is completed; they, unlike in the frequentist

approach, are not concerned with the experiments
that might have occurred. Inference is based on the
likelihood – the probability of the data given the
parameters of interest – not the process that gave rise
to the data. From the point of view of such inference,
randomization enhances the validity of the likelihood.
In fact, several Bayesian discussions of clinical trials
urge randomization to ensure blinding and protec-
tion from confounding [16, 24]. Since the likelihood
used in the Bayesian analysis is based on absence of
confounding, randomization is essential.

When should Randomization Start
and End?

The literature on clinical trials includes considerable
discussion concerning the period during the life
of development of a therapy that randomization is
appropriate. Failure to randomize relatively early in
the development of a new therapy or in the study
of a new application of an accepted therapy may
render interesting hypotheses untestable, for once the
medical community regards a therapy to be safe and
effective, physicians are reluctant to randomize to
therapies they perceive as less effective. Chalmers
[4] has therefore recommended randomizing from the
first patient. On the other hand, if data from clinical
trials have demonstrated the safety and effectiveness
of a therapy, continuing to randomize to confirm a
previous observation or to ask more refined questions
about the therapy may raise ethical problems.

A reasonable practical approach is to start ran-
domization quite early in the development of a new
therapy, although not necessarily at the beginning,
and to continue to randomize as long as legitimate
uncertainty exists surrounding the safety and efficacy
of the therapy [5] (see Data and Safety Monitoring).

Methods of Randomization

Randomization requires a mechanism governed by
chance to assign treatments to people. The ideal
allocation device is a perfectly unbiased coin tossed
by an angel. Real clinical trials should use verifiable
methods of randomization so that, after the study, the
investigators can demonstrate that the allocation was
free from bias. A coin flipped by a person is fallible
chiefly because a less-than-honest coin flipper can
fail to record tosses that land on the “wrong side”.
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Thus, the main problem with flipping coins is that
the process permits no checks of the validity of the
process.

In the past, many trials have used tables of ran-
dom numbers to produce randomization lists. This
method can be cumbersome for all but the simplest
type of randomization. Furthermore, because pub-
lished tables of random numbers are available to
everyone, staff in a clinic can potentially find the
sequence that is in use, thus permitting selection bias
to affect the study.

Whenever possible, a computer should produce
the randomization list. The person who generates
the randomization list should be separate from the
persons recruiting and treating participants. During
the course of the study, the generator of the list should
not divulge the details of the particular method used
to construct the list to any of the clinic personnel
involved with the patients.

Many studies use opaque sealed envelopes to
hold the treatment assignment. This method, though
quite standard, is subject to violation, especially
in unmasked studies (see Blinding or Masking).
An investigator intent on enrolling a patient into a
specific treatment arm can hold the envelope to the
light, or even open an envelope and not enter a patient
if the “wrong” assignment is listed. In recent years,
many clinical trials have adopted telephone, fax, or
encrypted on-site computer codes for randomization.
These methods allow a rigorous accounting of all
persons entered into the study.

The randomization list itself should be held invi-
olate by the person or group controlling the assign-
ment of treatments to participants. Because violations
of randomization can invalidate the entire trial, the
investigators should establish procedures for random-
ization and protection of the validity of the random-
ization before the trial begins.

For a study treatment that is viewed as a comm-
unity-wide intervention, a trial might randomize
one group of communities or clinics to receive
the control treatment and another group to receive
the study treatment. See, for example, a descrip-
tion of the COMMIT study [6]. Random allo-
cation makes this approach theoretically accept-
able provided that the unit of statistical analy-
sis remains the community, not the individual per-
son participating in the study. To have a power-
ful test of the effect of treatment, this method of

allocation may require many communities. More-
over, the investigators must be careful to assess
the impact that the intervention had on the entire
community, not only on those people who partic-
ipated in the program (see Group-randomization
Designs).

So-called “randomized” clinical trials often use
nonrandom approaches to assignment of treatment.
In fact, people often use the term “random” loosely
in the sense of apparent haphazardness, but strict
randomization through a mechanism governed by
chance prevents the treatment assignment from
being predicted and protects against bias. The
following paragraphs, which represent the control
therapy by C and the experimental treatment by
E, describe some common nonrandom ways of
assigning patients. The considerations below apply
with obvious modifications to the comparison of two
active treatments or to the comparison of more than
two study groups.

Some studies assign patients in alternating seq-
uence. This scheme assigns the first participant to
treatment C, the second to E, the third to C, and
so forth. The argument adduced in favor of such
alternating sequences is that because patients enroll
in a “chance” order, a method that alternates patients
to one treatment or other will result in groups of
roughly equal risk. The flaw in this method stems
from the fact that the treating physician who knows
the sequence can choose which patients receive
which therapy. Even if the therapy is blind, a single
revelation of the treatment code unblinds the entire
study. This type of assignment clearly violates the
requirement of assigning treatment by chance in
order to minimize physician bias. In addition, from a
frequentist point of view, the sample space consists
of only two possible realizations, ECECEC . . . C and
CECECE . . . E. With only two possible outcomes,
the exact two-sided P-value from the randomization
test is 1.0, no matter how dramatically the two groups
differ after treatment!

Another scheme allocates patients on alternating
days to treatment C or E. This type of assignment
has problems similar to the first one. From the
frequentist view, the sample space again consists of
two possible allocations, so that once more the exact
P -value is always unity. From the point of view of
biased selection, once the clinicians have deduced the
scheme, they can control the allocation of patients to
a particular therapy. Thus, this type of assignment is
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subject to substantial bias in studies of nonemergency
conditions. In true emergencies, practical exigencies
may make such allocation necessary. If all patients
are entered into the study, then the bias may be
negligible since treatment cannot be delayed until the
next day.

The medical literature includes many examples of
studies that perform their randomization rigorously
but fail to begin therapy until several hours, or even
days, after randomization. Omitting from analysis
the patients who drop out between the time of
randomization and the time of therapy can introduce
bias. Whether the dropouts in fact lead to bias
depends on the reasons for failing to remain on
the trial. If the treatments are unmasked, then bias
should be highly suspected; if the treatments are
masked, dropouts after randomization may not lead
to bias. To avoid a biased comparison, the analysis
should generally include all patients in the groups
to which they were randomized (see Intention to
Treat Analysis). When exceptions to this rule are
made, the reasons for the exclusions must be strictly
independent of treatment assignment.

Guidelines for Randomization

In a clinical trial that specifies the entire study sample
before the experiment begins, the study statistician
can construct the complete randomization schedule in
advance and assign the treatments to the appropriate
study participants. Phase I experiments of normal
volunteers, experiments with dietary manipulations
[15], or vaccine trials with closed populations [25]
often have such prespecified study samples. The
typical clinical trial, however, enters participants
during a sometimes prolonged recruitment period. At
the beginning of the trial, the people who will enroll
are not known; perhaps some of them have not even
yet manifested the disease to be studied. Thus, the
assignment of treatments to participants must occur
before identifying all participants. The process must
be stepwise. First, the potential participant agrees to
join the study, signs an informed consent (see Ethics
of Randomized Trials) document, and is officially
enrolled in the trial. Then the randomization process
begins and the treatment is assigned. Once enrolled,
a person is, except in certain special cases, part of the
randomized trial, even if he or she fails to participate
any further.

Some Problems with Simple
Randomization

The primary purpose of randomization is to ensure
comparability of the treatment and control groups.
The type of randomization described above is simple
randomization: each person arrives at the study,
the study authority flips a theoretical coin that has
probability p of assigning the participant to the
control group, and, depending on the outcome, the
patient receives treatment or control. On average, a
proportion p, usually 1/2, of the assignments will be
to treatment and (1 − p) to control. A very large
sample size guarantees that the proportions of people
assigned each treatment will be arbitrarily close to the
chosen values of p and 1 − p. In practice, however,
this kind of simple, unrestricted randomization will
not produce exactly the prespecified proportions of
patients in each study group.

Another important limitation of unrestricted ran-
domization in clinical trials stems from the structure
of the typical trial. A purely random process that
generates a sequence of Cs and Es will produce,
by chance, occasional long sequences of the same
treatment assignment. Because participants enter tri-
als over time, such sequences may produce unwanted
homogeneity among patients entered at approxi-
mately the same time. Assignment to test and control
therapies should ensure balance not only overall, but
in addition, the length of sequences of the same treat-
ment should be short and, at any particular time in the
study, nearly the same number of patients should be
on each therapy. Furthermore, unrestricted random-
ization can lead to some small clinics randomizing
all, or nearly all, participants to the same treatment.
Such an allocation is clearly undesirable.

Finally, some sequences of random numbers may
by chance produce an unbalanced allocation with
respect to a specific baseline variable. Therefore,
if the primary outcome is strongly related to a
specific prognostic variable, one might like to adopt
a strategy that guarantees balance for that variable.
Such constrained randomization is called “blocking”
or “stratification”. While these words are technically
synonymous, in randomized clinical trials “blocking”
generally refers to randomization within small subsets
without regard to specific prognostic variables, while
“stratification” refers to randomization within subsets
defined by categorical variables. To perform blocked
randomization, one should use block sizes that are
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multiples of the number of treatment groups, then
assign at random the treatments within the blocks. For
example, consider a study with three treatments A, B,
and C to assign with equal probability. If the block
size is six, then the assignment rule would allocate at
random two each of A, B, and C to the six persons in
each block. At the end of every six assignments, the
numbers in the three treatment groups will necessarily
be equal. The longest possible sequence, four of the
same treatment, occurs when the last two participants
in one block and the first two in the succeeding block
are assigned the same treatment.

This more balanced allocation does not come
without a price. Strictly, the fact that the data are
blocked imposes extra complexity on any frequen-
tist analysis, for the statistical analysis ought to
reflect the randomization. Conventionally, however,
the blocking is ignored in the analysis of clinical tri-
als because the complexities incurred are generally
not considered worth the very small gain in expected
power. Lachin et al. [21] warn, “. . . if there is signifi-
cant heterogeneity in some systematic way among the
patients entering the trial, such as a change over time,
then ignoring the stratification . . . may substantially
distort the size of the test”.

A potentially serious problem with simple block-
ing in unblinded studies is the fact that a clever
investigator can deduce some of the allocations. For
example, the first five assignments in each block
of six always determine the last one. Smaller block
sizes assure more balance but in unblinded trials they
lead to a higher proportion of predictable allocations.
In unblinded studies of treatment and control with
blocks of size two, half of the allocations are known
with certainty because the first allocation fully deter-
mines the configuration of the block. To prevent the
clinic staff from knowing what patients are to be
assigned what therapy, a study should take several
precautions in selecting block sizes. First, the inves-
tigators should not know the block sizes. Secondly,
the allocation should use an unpredictable mixture of
block sizes, so that the sequence of assignments to
therapy would confuse a person who tried to decode
the system. Thirdly, block sizes can vary by clinic.
In clinics that are expected to recruit many patients,
the block size may be as high as 20. In clinics that
are expected to recruit very small numbers of par-
ticipants, the block size should be smaller to ensure
reasonable balance of treatment assignments.

The type of simple or blocked randomization
already described does not guarantee balance for
specific baseline variables. Even in randomized clin-
ical trials with large populations, simple unstrati-
fied randomization will lead to imbalance in some
baseline variables. In fact, if tests are performed at
a 5% level of significance, statistically significant
imbalance is expected to occur in 1 out of 20 inde-
pendent baseline variables. Although most observed
imbalances will be dismissed as not germane to the
question of effectiveness of therapy, sizable imbal-
ance on important known prognostic factors can be
unsettling. The statistical literature proposes several
approaches to analysis of data when such imbalance
occurs: ignoring the imbalance as an unlucky event
but one within the range of outcomes in random
assignment; “adjusting” through statistical models for
the imbalance in specific variables if that imbalance
is statistically significant; “adjusting” through statis-
tical models for large imbalance in specific variables
even if the degree of imbalance is not statistically
significant; “adjusting” for all important prognostic
variables when at least one important such variable
shows considerable imbalance. The argument for the
last choice is that the presence or absence of statisti-
cally significant imbalance should not be the driving
force to ask whether actual allocation affects the
conclusion (see Covariate Imbalance, Adjustment
for).

Rather than relying on chance to avoid imbal-
ance on important variables, one can create strata and
then randomize within strata (or within blocks within
strata). First, we consider precision. While hetero-
geneity does not generally affect the type I error (see
Hypothesis Testing) – but see [21] – if there is con-
siderable heterogeneity in the study population, then
isolating sources of variation from the effect of treat-
ment can sometimes lead to increased precision in
the estimate of the treatment effect. One simple effec-
tive method to achieve such isolation is stratification
of the study group into relatively homogeneous sub-
groups using a stratification variable strongly related
to outcome. Gains in precision sometimes occur even
if the sample is balanced overall.

In the absence of compelling reasons to the
contrary, multicenter trials generally stratify ran-
domization within clinic because of the potentially
large differences among clinics. Different clinics may
recruit from very different patient groups. Their
approaches to treatment and concomitant therapies,
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their threshold for aggressive therapy, the quality of
their staff, and their available equipment may be quite
heterogeneous. Furthermore, the degree to which the
clinics adhere to the protocol may also vary and the
quality of their data may differ markedly. Finally,
even in large clinical trials the number of patients
within individual clinics may be quite small. Thus
allocation of treatment at random without regard to
clinic leads to a high probability that some clinics
will have very unequal numbers of patients assigned
to the treatment groups.

Selection of the stratification variables presents a
practical problem. Investigators often desire to strat-
ify on many variables of interest. Sometimes these
variables are highly correlated, so that stratifica-
tion on one or two of them leads to near balance
on the others. Thus, using a few stratifying vari-
ables can often achieve reasonable balance for all
the variables of interest. A large number of strata
may create so complex a routine in the clinic that
the chance with which a patient receives the incor-
rect assignment increases. Too many strata may lead
to excess costs. In drug trials, for instance, a suf-
ficient quantity of the drug must be available for
each stratum. Generally, the more strata, the more
drug necessary, and often clinics will end up with
unused drug. Depending on the cost of the drug
and its phase of development, the need for excess
drug can be very expensive. Finally, overstratification
can lead in some extreme cases to decreased power.
Too many strata can lead to incomplete strata. For
example, suppose a trial to study the effect of LDL-
lowering on the progression of atherosclerotic plaque
uses only three important stratification variables: gen-
der, smoking status (non-, former, or current smoker),
and age (40–49, 50–64, >64). These three variables
lead to 2 × 3 × 3 = 18 possible strata. If all the strata
were equally likely and all the clinics recruit the
same number of people, a trial with 600 patients
in 20 clinics would then have an expected stratum
size of 600/(20 × 18) = 1.7, which is less than the
number of treatments. Of course, some clinics will
recruit more than others, and some strata are much
more common than others. Nonetheless, many peo-
ple will be the sole occupants of their randomization
cells. A strict analysis according to the randomiza-
tion would have to exclude those people. In practice,
however, most data analyses would ignore the strati-
fication [12].

Other Methods of Randomization

This discussion addresses only the usual methods
of randomization in clinical trials. Other meth-
ods available include deterministic play-the-winner
[33] or probabilistic urn model [32] (see Orn-
stein–Uhlenbeck Process) approaches to maximiz-
ing the probability of a participant’s receiving
the better therapy, adaptive allocation to achieve
marginal balance of specific prognostic variables
[3], and covariate adaptive procedures, both deter-
ministic [30] and probabilistic [27] (see Adaptive
and Dynamic Methods of Treatment Assignment).
Another option is “prerandomization” to increase the
pool of people willing to enter trials (see Ethics of
Randomized Trials) [34].

Other Randomization in Clinical Trials

Randomization in clinical trials is not restricted to
allocation of participants to treatments. Depending
on the specific trial, a given study may randomize
such items as the sequence of tests, the assignment
of readers for diagnostic procedures, or the order in
which a panel of judges views paired “before” and
“after” measurements. Investigators should consider
randomization to prevent bias at various critical
points in the study.

Conclusion

Randomization, the allocation of treatments to study
participants by an aleatory mechanism, ensures unbi-
ased assignment of treatments to participants, guar-
antees the balance of treatment groups with respect
to the expected distribution of measured and unmea-
sured baseline variables, and, under frequentist sta-
tistical theory, allows the calculation of experimental
error. Coupled with complete follow-up of the study
cohort and rigorous analytic strategies, randomization
leads to unbiased tests of the null hypothesis of no
difference between treatments.
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Tests of randomness are used to assess whether data
are truly random or whether the data have some sort
of pattern. For data that are collected over a period
of time, such as blood chemistries for a patient, this
pattern may be a relationship between the order in
which the data were collected and the magnitude of
a variable of interest. This may also be a relationship
between a dichotomous characteristic of interest, such
as gender, and the magnitude of another variable of
interest. For data that are collected over geographic
areas, such as mortality rates for a disease across
counties, this may be a relationship between rate and
location. Some tests of randomness are used to detect
general nonrandomness, while other tests are used to
detect a particular pattern of nonrandomness.

Many tests of randomness are based on the con-
cept of runs. For example, suppose the outcome in
each of a series of trials can be classified as either a
success (S) or a failure (F). The results of nine trials
are, in order,

F F F S S F S S S.

Each sequence of observations of the same type
(success or failure) is called a “run”, and in this
case we have a total of four runs, two of S and two
of F. The number of runs could be as few as two
(F F F F S S S S S or S S S S S F F F F), if all failures
occurred before all success or vice versa, or as many
as nine (S F S F S F S F S), if successes alternated with
failures. This illustrates the important point that “too
few” or “too many” runs is evidence of a nonrandom
relationship between the order of the experiments and
the outcome, and we would reject the null hypothesis
of randomness if either of these outcomes is the
case. The Wald–Wolfowitz [16] runs test is the best
known test that is based on the number of runs, but
because this test compares the probability distribution
of two populations and is not a test of randomness, the
null hypothesis of identical distributions is rejected
only if there are too few runs. Therefore, a test
of randomness based on the number of runs can
be thought of as a Wald–Wolfowitz runs test, but
with a two-tailed rejection region (see Alternative
Hypothesis).

Tests of randomness that focus on nonrandom-
ness due to clustering can be based on the length
of the runs. Mosteller [12] indicated that a test of

randomness can be based on the length of the longest
run, which is three in the above example. O’Brien
& Dyck [13] developed a statistic using a weighted
linear combination of the variances of the length of
“success” runs and of “failure” runs. Larger variances
suggest that the data are clustered. Agin & Godbole
[1] developed a statistic based on the number of “suc-
cess” runs of a given length, which can be used to
detect cyclical clustering.

Tests of randomness that focus on nonrandomness
due to trends can be based on the differences between
values of successive observations, such as the von
Neumann test [15]. This test is based on the mean
square successive difference, the mean square of the
difference of successive observations. Small squared
differences between values of successive observations
relative to squared difference between the values of
the observations and their mean value are indicative
of a trend. The rank von Neumann test of Bartels [2]
is similar to the von Neumann test, except that this
test uses the ranks of the observations. This test is
also more powerful that the von Neumann test under
certain conditions.

Daniels [5] and Mann [10] developed tests for
nonrandomness due to trends that correlate the value
of a variable with the time or order that the variable
was measured, using Spearman’s rho (Daniels) or
Kendall’s tau (Mann) (see Rank Correlation). A
high positive or negative correlation suggests a trend.
Dietz & Killeen [6] provided a multivariate extension
to Mann’s test which detects a trend in at least one
variable.

An important application of tests of randomness
involves spatial data. Some tests are used to assess
whether the locations of point data are randomly
distributed over a given region or whether the data
are either aggregated or are distributed too regularly.
These tests are primarily used in biological appli-
cations, and involve the use of techniques such as
counting the number of observations in subregions,
or quadrats, of the region of interest, or computing
distances between each observation and its nearest
neighbor [3] or its kth nearest neighbor.

Other tests involving spatial data are used to assess
whether there is a relationship between a characteris-
tic of a population and the location of that population
(see Geographic Epidemiology). Cliff & Ord [4]
explore the relationship between a dichotomous vari-
able and geographic area based on the BW statistic,
classifying areas as either black (B) or white (W) and
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counting the number of times a black area borders,
or is linked to, a white area. A small value of BW
suggests that the data are aggregated, while a large
value suggests that the data are too regularly dis-
tributed. This statistic is equivalent to an extension of
the runs test to multidimensional data when observa-
tions are linked using orthogonal minimum spanning
trees [7]. The multiresponse permutation procedure
statistic discussed by Mielke et al. [11] may also
be used to link data. Hubert et al. [9] discussed the
relationship between unidimensional and multidimen-
sional tests of randomness, showing that many tests,
including some of those discussed above, have the
same general form.

Tests of randomness can also be used to assess
the randomness of a sequence of pseudo-random
numbers generated by a given algorithm. This is
important, because the validity of simulation tech-
niques are dependent on whether generated random
numbers are truly random. Some tests of randomness
are discussed by Strube [14] and Gruenberger & Jaf-
fray [8]. These include investigating the length of
intervals between repetitions of the same number,
the correlation between numbers that are close in the
sequence, and the frequency of occurrence of certain
numbers. In addition, goodness-of-fit tests can also be
applied to a sequence of generated random numbers
to test for randomness.
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Range

The range of a set of observations is defined to be the
difference between the largest and the smallest values
of the set. For grouped data, it is taken to be the
difference between the upper limit of the last interval
and the lower limit of the first interval. In practice,
the standard deviation of a set of measurements is
roughly equal to one-sixth of the range.

In life testing, when the observations are exponen-
tially distributed, the traditional likelihood ratio
test statistic cannot answer questions of how to com-
pare location parameters or threshold values. In mul-
tiple comparisons among these location parameters,
the range statistic is more appropriate.

The range statistic can also be used to test
the hypothesis that a set of location parameters
varies “within a small but negligible difference” [3]
(see Equivalence Trials; Bioequivalence). This is
equivalent to testing the hypothesis that the location
parameters fall into the zone of indifference speci-
fied in advance. When observations follow a normal
distribution, the range and studentized range statis-
tics can be used to test the hypothesis that all the
mutual differences among means are smaller than a
negligible quantity.

Exponential Distribution

Let π1, . . . , πk denote k ≥ 2 populations such that
the n independent observations Xi1, . . . , Xin taken
from population πi are exponentially distributed with
density

f (x; αi, θ) =
(

1

θ

)
exp

[
− (x − αi)

θ

]
,

αi < x < ∞, θ > 0,

zero elsewhere, where αi is an unknown location
parameter or guaranteed life span, and θ is a common
but unknown scale parameter or standard deviation.

Let Yi denote the first order statistic of the sample
of size n from population πi . Let Y[1] ≤ · · · ≤ Y[k]

denote the ordered values of the k first-order statistics
Y1, . . . , Yk , and take as estimator of θ

θ̂ =
k∑

i=1

n∑

j=1

(Xij − Yi)

[k(n − 1)]
.

Define the range statistic C to be C = n(Y[k] −
Y[1])/θ̂ . Under the null hypothesis H0 : α1 = · · · =
αk, C has the density

g(c) = (k − 1)

k−2∑

i=0

(−1)i
(

k − 2
i

)

×
[

1 + c(i + 1)

v

]−(v+1)

, c > 0,

where v = k(n − 1).
We note that, if k = 2, then C has an F distribu-

tion with (2, 2v) degrees of freedom. Furthermore,
the distribution of C converges to that of R as v

goes to infinity, where R is the range of independent
observations from the standard exponential distribu-
tion with the density f (x) = e−x for x > 0.

The range statistic C provides a quick test for
H0 : α1 = · · · = αk vs. Ha : αi �= αj ; one rejects H0

at α level of significance if the computed value of C is
larger than cα

k,v, where cα
k,v was given by Chen [2] for

α = 0.10, 0.05, 0.01, k = 2(1)5, 10(10)50, 100, and
n = 2(1)6(2)10, 16, 30, 60, ∞.

The range statistic C is not as powerful as the
likelihood ratio test (LR). However, if multiple com-
parison among αs is of interest, the LR test is not
applicable. Like Tukey’s studentized range statistic
for comparing normal means, the major role of the
range statistic C rests on its extensive use in multi-
ple comparisons of the location parameters. It is easy
to find that a set of exact 1 − α simultaneous confi-
dence intervals for the difference αi − αj is given by

αi − αj ∈ (Yi − Yj ) ± cα
k,vθ̂

n

for all i �= j = 1, . . . , k. When the sample sizes are
not equal, we suggest replacing 1/n by 1

2 (1/ni +
1/nj ) and k(n − 1) by v = ∑

i (ni − 1) to obtain a
conservative set of confidence intervals. Furthermore,
a set of exact 1 − α simultaneous confidence intervals
for all linear contrasts of the location parameters is
given by

k∑

i=1

aiαi ∈
k∑

i=1

aiYi ± aα
k,v

θ̂

n

k∑

i=1

1

2
|ai |,

where
∑

ai = 0.
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Normal Distribution

It is well known that, given a large enough sample
size, a point null hypothesis µ1 = µ2 = · · · = µk

will always be rejected. In applications, the point
hypothesis is unrealistic; more appropriate is an
“interval” null hypothesis: H0 : (µ[k] − µ[1])/σ ≤
δ vs. the alternative hypothesis Ha : (µ[k] −
µ[1])/σ > δ, where µ[1] ≤ · · · ≤ µ[k] denote the
ordered population means, and δ(> 0) must be
specified in advance (see Ordered Alternatives).
The null hypothesis states that all standardized
differences between means fall into a zone of
indifference specified by a quantity δ, while the
alternative describes the practically meaningful
differences among means which are defined to fall
in the preference zone.

Let there be k independent populations π1, . . . , πk

such that observations obtained from πi are indepen-
dent and normally distributed with unknown mean µi

and a common unknown variance σ 2, i = 1, . . . , k.
Our objective is to test the interval hypothesis H0

using the range or the studentized range.
Let Xij (j = 1, . . . , n) be an independent random

sample of size n from population πi . Define

Xi =
n∑

j=1

Xij

n
,

S =






k∑

i=1

n∑

j=1

(Xij − Xi)
2

[k(n − 1)]






1/2

,

i = 1, 2, . . . , k, (1)

and let X[1] ≤ · · · ≤ X[k] be the order statistics of
X1, . . . , Xk . The hypothesis H0 is rejected at the α

level of significance if

X[k] − X[1] >
γS√

n
, (2)

where γ is the solution to the equation

α = 1 − l

∫ ∞

0

∫ ∞

−∞
[Φ(y + γ u) − Φ(y)]l−1

× [Φ(y − δ
√

n + γ u) − Φ(y − δ
√

n)]k−l

× φ(y)qv(u) dy du − (k − l)

∫ ∞

0

∫ ∞

−∞
[Φ(y

+ δ
√

n + γ u) − Φ(y + δ
√

n)]l[Φ(y + γ u)

− Φ(y)]k−l−1φ(y)qv(u) dy du, (3)

where l = k/2 for even k, and l = (k − 1)/2
for odd k. The table of critical values γ was
tabulated by Bau et al. [1] for α = 0.01, 0.05, δ =
0.10, 0.20, 0.25, 1/3, 0.5, k = 2(1)10, and n = 2(1)

20(2)30(10)60, 80, 100, 200. If the sample sizes are
not all equal, then we suggest replacing n by ni and
k(n − 1) by

∑
i (ni − 1) in (1) and n in (2) and (3)

by the average sample size to obtain an approximate
solution.
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Rank Correlation

If X and Y are two observations on the same unit,
both measured on an ordinal scale, then there are
many circumstances in which it is important to assess
the degree of association or correlation between
X and Y . Such a measure of correlation may be
used as a measure of reliability (when X and Y

are two measurements of the same construct from
independent observers or at two different times), or as
a measure of validity (when X is a measurement of a
construct and Y is a criterion defining the construct),
or as a measure of heritability (when X and Y are
two measurements taken from identical twins raised
apart; see Twin Analysis), as well as a measure of
more general types of association. The most common
approach to assessing such association arises when, in
a population sample, (X, Y ) have a bivariate normal
distribution, in which the correlation coefficient ρ

is a natural parameter. Then the Pearson (product-
moment) correlation coefficient rP is the maximum
likelihood estimator of ρ:

rP =
∑

(Xi − MX)(Yi − MY )

(N − 1)sXsY

.

Here the sample of size N from the population
(Xi, Yi), i = 1, 2, . . . , N , has sample means MX and
MY , and sample standard deviations sX and sY .

While rP is reasonably robust to deviations from
the assumptions of the bivariate normal distribution
[6, 10], it can be misleading when the deviations
are major. Consequently, an alternative approach,
appropriate to measuring such association under less
restrictive assumptions, is of value. This has given
rise to proposals for rank correlation coefficients,
which, like rP, are measured on the interval from −1
to +1, are sensitive to monotonic association, take
on a value of ±1 for perfect positive or negative
association, take on a value of 0 when X and Y

are independent, but make no other distributional
assumptions. The two most widely used such sample
rank correlation coefficients were those proposed by
Spearman [12] and by Kendall [3].

To compute the Spearman rank correlation
coefficient, rS, the set of observed Xs are rank-
ordered from 1 to N , with tied observations assigned
the average of the associated ranks. The same is done
separately with the observed Y s. Thus, the sum of

the ranks of either X or Y is always N(N + 1)/2.
Then the equation above for rP is applied to the ranks
rather than to the raw data. Clearly, rS is invariant
under strictly monotonic increasing transformations
of either X or Y or both.

To compute Kendall’s tau, τ , every pair of (X, Y )

observations is assessed. For any pair of bivariate
observations, say (Xi, Yi) and (Xj , Yj ), a score of +1
is assigned to the pair if sign(Xi − Yi) = sign(Xj −
Yj ) and −1 otherwise. The score of zero is assigned
in the case of a tie. These scores are summed over the
N(N − 1)/2 possible pairs of observations to obtain
S. Then,

τ = S
{[

1
2N(N − 1) − U

] [
1
2N(N − 1) − V

]}1/2 .

If there are no ties in the X ranking, then U = 0; if
there are no ties in the Y ranking, then V = 0. In that
case, the denominator is simply N(N − 1)/2. When
there are ties, one counts the number of tied values
in each set of tied values to obtain one value of u

(for the X values) or v (for the Y values). Then,

U = 1

2

∑
u(u − 1), V = 1

2

∑
v(v − 1).

Once again, clearly, τ is invariant under strictly
monotonic increasing transformations of either X or
Y or both.

Both rS and τ satisfy the general desiderata of
a correlation coefficient. However, if (X, Y ) were
drawn from a bivariate normal population, then
rP would be a consistent estimator of ρ, rS of
6/π[sin−1(ρ/2)], and τ of 2/π[sin−1(ρ)]. Clearly,
while the three sample correlation coefficients are
measured on the same range, have the same ran-
dom value, and values indicating perfect association,
no two of them are measuring correlation in exactly
the same way. In the case of the bivariate normal
population, the differences between the parameters
estimated by rP and rS are not major, at most a dif-
ference in the second decimal place. The parameter
estimated by τ , however, may differ by as much as
0.2 from either of the other two. When the bivari-
ate normal assumptions do not hold, the discrepancy
between the rS and τ may be even larger. The cir-
cumstances under which one would be preferred to
the other have not been clearly enunciated. Most com-
monly, rS is used, but largely because of its greater
ease of computation and its closer correspondence to
the familiar rP.



2 Rank Correlation

In most contexts in which the correlation coef-
ficient is used, it is clear from the outset that the
population value is not exactly zero. Yet the most
common statistical task is to test the null hypothe-
sis that the correlation coefficient is zero. For small
sample sizes, the exact distributions of both rS and
τ under the assumption of independence of X and Y

are tabled [4].
For larger sample sizes, the distribution, under

the null hypothesis of randomness, of each of these
statistics is approximately normal. As a standard
normal test statistic to test that hypothesis, one
might use

3τ [N(N − 1)]1/2

[2(2N + 5)]1/2
or rS(N − 1)1/2.

While it would be preferable to present confidence
intervals rather than to perform a statistical test on
a null hypothesis known a priori to be untrue, the
exact non-null distributions of τ and rS are in general
unknown, since they depend on the parent distribu-
tion. If the parent distribution were bivariate normal
(or the observed X and Y represented any monotonic
transformations of X∗ and Y ∗ drawn from a bivari-
ate normal distribution), one might obtain approxi-
mate confidence intervals in the following way, using
methods developed for rP. Fisher’s z-transformation
for a correlation coefficient r is defined as z(r) =
1
2 ln[(1 + r)/(1 − r)]. Then, two-tailed 100(1 − α)%
level confidence intervals for z(ρ) are given approx-
imately by [2]

z(rS) ± Zα/2

[
1.060

(N − 3)

]

or z(τ) ± Zα/2

[
0.437

(N − 4)

]
,

where Zα/2 are the critical values of the standard
normal distribution. Bootstrap methods have also
proved useful for this purpose [9, 11].

The Spearman rank correlation coefficient concept
can be extended to the situation where, for each
unit sampled from the population, an m-dimensional
vector (X1, X2, . . . , Xm) is observed, using Kendall’s
coefficient of concordance [5]. There are several
equivalent ways to compute this coefficient, W , all
based on rank ordering the units (averaging the
ranks of ties) on each of X1, X2, . . . , Xm separately.
The most revealing way is this: the Spearman rank

correlation coefficient between each pair of variables
is computed, and rS−ave is the average Spearman
rank correlation coefficient over all m(m − 1)/2
possible pairs. The coefficient of concordance, W ,
equals

W = [1 + (m − 1)rS−ave]

m
.

It should be noted that the coefficient of concordance,
W , equals 1/m, rather than zero, when all the Xs are
independent, but that it does equal +1 for perfect
positive association. Thus, W itself does not satisfy
the general qualities required of a rank correlation
coefficient as stated above. Moreover, logically one
cannot have perfect negative association when m > 2,
for if Xi and Xj were perfectly negatively associated,
and if Xj and Xk also were, then that would
automatically mean that Xi and Xk would have to
be perfectly positively associated. For this reason,
the most common situation for application of this
approach is that of reliability or validity assessment,
where it is assumed that the pairwise correlations are
all positive.

An alternative method of computation is based
on applying the formula for an intraclass correla-
tion coefficient (itself based on two-way analysis
of variance for N units by m observations [1];
see Correlation) to the ranks. Again, for small
samples, the distributions under the null hypothesis
of total independence have been tabled [4]. How-
ever, once again, given the context of use, there
is seldom any a priori doubt that the true corre-
lation exceeds zero. Thus, confidence interval esti-
mation would be preferable. It has been shown
that when the distribution of the m-dimensional
vector is multivariate normal, with equal correla-
tion coefficients between each pair of observations,
with large sample size, the distribution of rS−ave

is approximately that of the intraclass correlation
coefficient based on the actual observed values [7,
8]. Again, since rS−ave is invariant under any strictly
increasing transformation of any or all of the m-
variables involved, the observed values themselves
does not require a multivariate normal distribution in
order for the approach to yield a good approxima-
tion. Both tests and confidence interval estimation
may be based on this approximation [8]. In more
general circumstances, bootstrap estimation might be
used.
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Rank Regression

The term rank regression was coined by Cuzick [7]
to denote a regression model in which the ranks
of the dependent variable were regressed on a set
of covariates. The approach can be viewed as a
hybrid between M-estimation and R-estimation (see
Robustness). It differs from M-estimation in that
the dependent variable is replaced by a score based
on ranks and from R-estimation in that the ranks
of the dependent variable itself are used, not those
of the residuals. Since the ranks are unaffected by
strictly increasing transformations, this approach can
be formally specified by the model

g(t) = β ′z + ε, (1)

where g is any strictly increasing transformation of
the dependent variable t , z is a vector of covariates, β

are the corresponding regression coefficients and ε is
the error term, usually taken to be mean zero. These
models have also been called transformation models.
The Box–Cox [3] model in which g is restricted to
be a power law, or the logarithm, forms a well-known
parametric submodel (see Power Transformations).

In general, the intercept term is undefined for this
model, since it can be incorporated in g, and, for the
same reason, information on scale is relative to the
error term. Thus, when E(ε2) < ∞, one usually takes
var(ε) = 1 and interprets the regression coefficients
in terms of number of the standard errors.

The most well-known rank regression model is the
proportional hazards model

λ(t |z ) = λ0(t) exp(β ′z),

where λ0(t) is the unknown and completely unspec-
ified baseline hazard function, and exp(β ′z) is the
relative risk term indicating how covariates affect the
hazard. This model can be rephrased in terms of (1)
by letting

g(t) = log
∫ t

0
λ0(s) ds,

taking ε to have (minus) an extreme value
distribution:

p(ε ≥ x) = exp(−ex),

and changing the sign of β. The motivation for
rank regression models has come from survival anal-
ysis, but their use is not restricted to this area.

More general rank regression models allow ε to
have different distributional forms (e.g. normal or
Pareto). The Pareto form has an interesting interpre-
tation in terms of a proportional hazards model with
an unknown (or unmeasured) regression parameter
that is assumed to have a log gamma distribution
and to be independent of the error term and the other
covariates [6]. A useful special case is when the
frailty also has a log-exponential distribution, lead-
ing to a symmetric error distribution (logistic). This
model has an interpretation in terms of proportional
odds [1], i.e.

F(t |z)
1 − F(t |z) = exp(βz)

F0(t)

1 − F0(t)
,

where F0(t) is the baseline distribution of t and
F(t |z) is the distribution when the covariates take
the value z. Fully efficient and computationally fea-
sible methods for estimating β (and g) are only
known for the proportional hazards model, although
Wu [18] has an efficient estimator for the propor-
tional odds model in the two-sample case. Dabrowska
& Doksum [8] have constructed a class of n1/2-
consistent and asymptotically normal estimates for
the general Pareto model in the two-sample case.
Klaassen [12] has investigated methods based on
solving Sturm–Liouville equations for the Pareto
model, and Magaluri [15] has some general theo-
retical results. Cuzick [7] proposes a method for
estimating β for known general error distributions
that are shown to be n1/2-consistent and asymptot-
ically normal, provided a consistent initial estimate
exists. In essence, this method consists of replac-
ing g(t) by an estimate based on the ranks of the
observed values of t and the marginal distribution of
β ′z + ε (which depends on β), and then using the
maximum likelihood (ML) estimating equation for
β corresponding to the distribution of the error ε.
Specifically, for independent identically distributed
(iid) samples {ti , zi , i = 1, . . . , n} and error distribu-
tion F , let

Fb(t) = 1

n

n∑

i=1

F(t − bzi )

for general b, and define

t
b

i = F−1
b

(
Ri

n + 1

)
,
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where Ri is the rank of ti . If φ = (log F ′)′ is the
influence function for ε, then solve

n∑

i=1

ziφ(t
b

i − bzi ) = 0

for b̂. The method also provides an estimate of the
covariance matrix for b̂, and g(t) can be estimated in
a n1/2-consistent manner by

ĝ(ti) = t
b̂

i (ti),

with interpolation between the ti . Weak convergence
of this estimator was established. The estimate can
be extended to deal with censoring by replacing
(Ri/n + 1) with the Kaplan–Meier estimator and
replacing φ with (log F)′ when ti is censored. Further
details can be found in [2].

Cheng et al. [5] have proposed a similar approach
that is more easily analyzed when there is censoring.
They define

ξ(z′
ijβ) = Pr(εi − εj > z′

ijβ)

= E(I {g(ti ) − g(tj )}|zi , zj ),

where zij = zi − zj . Note that ξ(z′
ijβ) depends only

on the error distribution for ε, which is assumed
known so that this can be computed. They then define
the estimating function

U(β) ≡
n∑

j=1

n∑

i=1

w(z′
ijβ)zij {I {ti > tj } − ξ(z′

ij , β)},

where w is a weight function, and choose a root β̂

of U(β) = 0 as the estimate. To mimic the quasi-
likelihood approach, the weight function is taken as

w(0) = ξ ′(0)

{ξ(0)[1 − ξ(0)]} .

When censoring is present, and the potential censor-
ing times are assumed to be iid with survival function
G(t) = P(c ≥ t), they note that

E

(
∆jI {ti ≥ tj }

G2(tj )

∣∣∣∣
zi ,zj

)
= ξ(z′

ijβ0),

where ∆j = I {Tj ≥ Cj } is the censoring indicator.
The estimating function is modified to become

U(β) =
n∑

i=1

n∑

j=1

w(z′
ijβ)zij

×
{

∆jI (ti ≥ tj )

Ĝ2(tj )
− ξ(z′

ijβ)

}
,

where Ĝ(·) is the Kaplan–Meier estimator for the
survival function G of the censoring distribution.
Cheng et al. [5] show that if the weights w(·) are
positive, then U(β) = 0 asymptotically has a unique
solution and that when w ≡ 1 and

∑∑
z′
ij zij is

positive definite, the above equation has a unique
solution for all n. Asymptotic normality is established
and an expression for the variance is given that can
be approximated from the data.

Lai & Ying [13] have also used the term rank
regression to refer to models based on ranks of
residuals in censored regression models. These mod-
els have a very different character and are based
on the “aligned-rank” or R-estimator methods in
[10, 16], and [11] for noncensored data. The clas-
sical approach is based on solving the estimating
equation

n∑

i=1

ziφ(ti − bzi ) = 0,

where φ is the influence function for the chosen
error distribution (see also [9]). Note that here ti
is used directly, not after transformation into t

b

i ,
and the main goal of this approach is to provide
robustness against misspecification of the error dis-
tribution. Early results for the two-sample problem
with censoring were given in [14] and [17]. Another
early approach along these lines for censored data
was explored by Buckley & James [4]. They chose
φ(t) = t corresponding to least squares regression,
and developed an extension for censored data in
which censored observations were replaced by their
expected values based on current estimates of β and
the Kaplan–Meier estimator. For dealing with cen-
soring (and truncation), an estimating equation based
on a weighted logrank test and martingale theory has
proved more analytically tractable but is technically
very demanding [19].
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Rank Transformation

If a set of univariate observations are ordered from
the smallest to the largest, then the position of an
observation in the ordering is termed its rank. The
smallest observation has rank 1, the next smallest
rank 2, and the largest observation has rank equal to
the number of observations. If for a set of observa-
tions on a variable X, denoted x1, x2, . . . , xn, r(xi)

denotes the rank of the ith observation, then a
rank transformation of X generates the set of ranks
r(x1), r(x2), . . . , r(xn).

Rank transformations of response variables play a
fundamental role in many nonparametric methods.
More generally, the response variable measurements
for a set of observations are uniquely represented by
their ranks and their order statistics. Model-based
inference based on ranks typically derives from the
marginal likelihood generated from the marginal dis-
tribution of the ranks. For example, the partial likeli-
hood used for the Cox regression model in survival
analysis corresponds to a marginal distribution based
on ranks for uncensored survival data with no ties.

Rank transformations of explanatory variables in
regression models may also be used. Their use might

be motivated by a reluctance to rely too heavily
on the measured values of the explanatory variable
and can be regarded as a more general procedure
than grouping the variable into a small number of
classes. It has been suggested that rank transforma-
tions are particularly useful for variable selection
[2].

A discussion of the link between standard para-
metric analysis procedures on rank transformed data
and nonparametric procedures is provided in [1].
Ranking is also an essential component of statistical
procedures based on scores.
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Ranks

We are all familiar with ranks and rankings as they
occur in everyday life. Ranks arise naturally in sit-
uations where performance or some other quality
possesses a natural ordering from the “best” or “first”
to the “worst” or “last”, as, for example, the ordering
of finishers in a race. If the n objects to be ranked
are represented by the symbols (o1, o2, . . . , on), we
denote by ri = r(oi) the rank assigned to object oi .
Thus,

µ = [r(o1), r(o2), . . . , r(on)] = (r1, r2, . . . , rn)

is a ranking of the n objects, and is a permutation or
rearrangement of the n integers (1, 2, 3, . . . , n). For
example, if a judge is asked to rank four contestants
(objects), then a ranking of these may be displayed as

Object 1 2 3 4,

Rank 3 2 4 1,

where the object subscripts appear in the first line, so
that in this case

r1 = r(o1) = 3, r2 = r(o2) = 2,

r3 = r(o3) = 4, r4 = r(o4) = 1.

Sometimes we may find it more convenient to think
in terms of an ordering of the objects, in which case
the above example may be represented as

Rank 1 2 3 4,

Object 4 2 1 3,

i.e. rank 1 goes to o4, rank 2 goes to o2, rank 3 goes
to o1, and rank 4 goes to o3.

The space of all possible rankings consists of the
n! permutations of the integers (1, 2, 3, . . . , n), so
that, for example, with n = 4 objects we find that
the 4! = 4 × 3 × 2 × 1 = 24 possible rankings are
given by

1234 1243 1324 1342 1423 1432,

2134 2143 2314 2341 2413 2431,

3124 3142 3214 3241 3412 3421,

4123 4132 4213 4231 4312 4321.

In such spaces of rankings one may be interested
in probability models and in various statistical ques-
tions. One model is the so-called “null” or uniform
model, which assumes that every possible ranking in

the space is equally likely. Under such a model each
object can equally achieve any of the n ranks, so that
the expected rank of a given object is simply the sum
of the first n integers divided by n,

E(ri) = 1

n
(1 + 2 + · · · + n) = (n + 1)

2
.

Using the fact that the sum of squares of the first
n integers is n(n + 1)(2n + 1)/6, we can also easily
compute the variances and covariances of the ranks
under the uniform model,

var(ri) = (n2 − 1)

12
,

cov(ri , rj ) = − (n + 1)

12
, 1 ≤ i �= j ≤ n.

The properties of ranks under the uniform model are
fundamental to the development of many nonpara-
metric tests (see Nonparametric Methods), in that
many such tests can be represented as linear rank
statistics, i.e. as linear combinations of functions of
the ranks.

In practice, it may be difficult for judges to rank
a large number of objects, as, for example, if one
is asked to taste test many varieties of apples. In
such a situation we may prefer to present for com-
parison every one of the 1

2 n(n − 1) pairs of objects
separately. Paired comparisons are discussed in [5]
and [12]. Note that, although every ranking uniquely
determines the outcome of every paired comparison,
not every set of 1

2n(n − 1) paired comparisons can
be resolved into a ranking. Thus, in comparing three
objects, a judge may prefer o1 to o2, o2 to o3, and yet
prefer o3 over o1, creating what Kendall refers to as
a “circular triad”.

Models for the mechanism by which individu-
als generate rankings and models for nonnull dis-
tributions on the space of rankings can incorporate
paired comparisons as long as only those preferences
which can produce a ranking are permitted. Such
an approach was originally introduced by Babington
Smith [16]. Other approaches utilize order statistics
and distances between rankings, and these originate
with Thurstone [17] and Mallows [13]. A model
which decomposes the ranking process into stages
is discussed in Fligner & Verducci [10].

If, in fact, we actually observe a random sample
x1, x2, . . . , xn from a continuous distribution, then
the order statistics are an ordering of these variables
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from the smallest to the largest, denoted by x(1) <

x(2) < · · · < x(n), so that the rank of the ith order
statistic x(i) is r(x(i)) = i, i = 1, . . . , n. The rank of
the observation xi is the value r(xi) = ri equal to the
number of observations ≤ xi .

Distances between rankings arise naturally in any
situation where we need to measure how “close” two
different rankings are. Various such distances can be
defined and some of the more useful ones are studied
in Diaconis & Graham [7]. If we denote the distance
between the rankings µ1 and µ2 of judges 1 and 2
by d(µ1, µ2), then the rank correlation between the
two rankings can be defined as

α(µ1, µ2) = 1 − 2d(µ1, µ2)

M
,

where M is the largest possible distance between two
rankings. By choosing an appropriate distance we
can generate both Spearman’s and Kendall’s rank
correlation, among others. In the case of Spearman,
the appropriate distance is the squared Euclidean
distance between the two rankings, which we call
Spearman’s distance, defined as

ds(µ1, µ2) = 1

2

n∑

i=1

[r1(oi) − r2(oi)]
2,

for which the maximum is MS = n(n2 − 1)/6.
In a randomized block design, where m judges

(blocks) rank n objects (treatments), the average dis-
tance between all 1

2m(m − 1) pairs of rankings mea-
sures the level of agreement or concordance between
the judges and generates a test statistic for treatment
effects (see Agreement, Measurement of). When
the distance is Spearman, this measure is essentially
Kendall’s coefficient of concordance W , [12], and the
test reduces to Friedman’s test. Other distances will
generate different test statistics, so that, for example,
the distance which generates Kendall’s rank corre-
lation yields a concordance statistic introduced by
Ehrenberg [9] and studied in Alvo et al. [3].

Up to this point we have assumed that all objects
are to be ordered so that there is a strict preference.
However, either by design or by circumstance, there
may not be a preference between two or more objects.
In such situations the space of possible rankings is no
longer the space of permutations of (1, 2, 3, . . . , n).

For example, a judge may be asked to pick from
a list of eight possible qualities of a mate the three
qualities that best describe an ideal partner. If the

best three are to be ordered, then the ranks would
be 1, 2, 3, for the top three and a 4 for each of the
remaining five least preferred qualities. An example
in which the best three qualities are o4, o2, and o1, in
that order, would give the partial ranking

Quality 1 2 3 4 5 6 7 8,

Rank 3 2 4 1 4 4 4 4.

If, on the other hand, the top three are not required to
be ordered, then the partial ranking will contain only
two distinct numbers, a 1 for each of the top three,
and a 2 for each of the remaining seven. The above
example then becomes

Quality 1 2 3 4 5 6 7 8,

Rank 1 1 2 1 2 2 2 2.

Distances between partial rankings may be defined
in various ways and used to approach various sta-
tistical questions. An important work in this area is
Critchlow [4].

A similar problem arises when a distinct ranking
is expected but for some reason the ranking has ties.
For example, the ranking may have been generated
from a random sample x1, x2, . . . , xn in which not all
the xi values are distinct. How we assign values to
the tied ranks depends on the situation. In the context
of certain nonparametric tests the usual approach is
to assign each set of tied objects the midrank, i.e. the
average of the ranks they would have received had
they not been tied. This is done partly to ensure that
E(ri), the expected rank of observation i, remains
(n + 1)/2. The example above, in which the first
three are ordered and the rest and tied, would now
become

Quality 1 2 3 4 5 6 7 8,

Rank 3 2 6 1 6 6 6 6.

A very good discussion on dealing with ties may
be found in Pratt & Gibbons [15]. Note that the
presence of ties has various implications on the null
distributions of many nonparametric tests.

Certain situations may arise as in the apple tasting
example above, where it is much easier for the judges
to rank a small set of objects. In such a case we
may want to present to the judges only a subset of
k of the possible n objects for their consideration.
The ranking of this subset is known as an incomplete
ranking. Such rankings may also arise by chance
if, for example, the ranking arises from a random
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sample x1, x2, . . . , xn in which some of the xi values
are missing. Distances between incomplete rankings
and corresponding measures of rank correlation are
discussed in Alvo & Cabilio [2].

The pattern of k out of n objects (treatments)
presented to each of m judges may be designed to
follow a balanced incomplete block design. The
classical test for treatment effect in such a situation
is a generalization of Friedman’s test due to Durbin
[8]. The Durbin statistic turns out to be essentially
the average of the Spearman distances between all
1
2m(m − 1) pairs of incomplete rankings, and an
analogous statistic can be defined using the Kendall
distance (see [1]).

There has been a resurgence of interest in the area
of ranking models and rank-based statistical methods
in recent years. Some noteworthy books are that by
Diaconis [6] and a very complete coverage of the
subject by Marden [14]. Also of some interest is a
collection of papers in this area edited by Fligner &
Verducci [11].
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Rao–Blackwell Theorem

This theorem gives a general way of reducing the
variance of an unbiased estimator when a suffi-
cient statistic is available. It also brings about the
relevance of sufficiency to the question of seeking
a minimum variance unbiased estimator (see [3]
and [5]).

The most familiar version of the Rao–Blackwell
theorem is stated in the following form.

Theorem A. Let (Pθ : θ ∈ Θ) be a family of prob-
ability distributions on a sample space X and suppose
that τ̃ is an unbiased estimator of a real-valued func-
tion τ of θ . Then if T = T (X) is a sufficient statistic
for θ, τ̂ = Eθ [τ̃ |T ] is also an unbiased estimator of
τ(θ), and varθ (τ̂ ) ≤ varθ (τ̃ ) for all θ ; that is, τ̂ is a
uniformly better unbiased estimator.

An important use of this theorem is to establish the
existence of uniformly minimum variance unbiased
estimators. This is done by demanding the existence
of a sufficient statistic T with an additional property
such as completeness (see Sufficient Statistic). For
example, let X1, X2, . . . , Xn be independently, iden-
tically distributed (iid) in a Poisson distribution with
mean θ , and suppose that τ(θ) = e−θ is the parameter
of interest. Let τ̂ = 1 if X1 = 0, and τ̂ = 0 if X1 �= 0.
This is obviously an unbiased estimator of τ(θ). It is
clear that, if we consider the statistic τ̂ = Eθ (τ̃ |T ),
where T = ∑n

i=1 Xi is a complete sufficient statis-
tic, then τ̂ = [1 − 1/n]T and is the unique minimum
variance unbiased estimator of τ(θ) (see [5, Sections
2.5 and 2.6]).

In the event that τ(θ) is a vector or τ̃ is not unbi-
ased, Theorem A does not apply. We give below a

more general version of the Rao–Blackwell theorem
formulated in terms of decision theory.

Theorem B. Let the action space A be a convex
subset of Rk , and suppose that the loss function
L(θ, a) is a convex function of a ∈ A for each θ ∈ Θ .
Suppose that T is a sufficient statistic for θ . If τ̃ (X)

is a decision rule, then the decision rule based on T ,
defined by

τ̂ (T ) = E[τ̃ (X)|T ],

is a decision rule that is as good as τ̃ provided that
this expectation exists; that is, the risk of τ̂ is no
larger than that of τ̃ .

The Rao–Blackwell theorem was proved by Rao
[4] and Blackwell [1] for unbiased estimators with
squared error loss in the form of Theorem A. The
general version, Theorem B, can be found in [3]
or [2].
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Rasch Models

In psychological tests (see Psychometrics, Overview)
or attitude studies, we are often interested in quanti-
fying the value of an unobservable latent trait, such
as mathematical ability or manual dexterity, on a sam-
ple of individuals (see Path Analysis). While latent
traits are not directly measurable, we assume that we
can assess indirectly a person’s value for the latent trait
from his/her responses to a set of well-chosen items on
a test. In some studies, interest centers on traits associ-
ated with the items in the test (for example, difficulty
of each item) rather than on individual traits.

Initial attempts at modeling latent variables inclu-
ded formal measurement models, two examples of
which are the standard factor models, and what
are known as Thurstone models for attitude scaling
(see, for example, Molenaar [32]; Factor Analy-
sis, Overview; Latent Class Analysis; LISREL).
It is now widely recognized that a better alterna-
tive to classical test theory is what is known as Item
Response Theory (IRT) – see, for example, [21] and
[7]. Item response theory states that when a person
is confronted with an item (for example, a question
in a test), the probability of a certain response is a
function of the person’s position on the latent trait,
plus one or more parameters associated to the partic-
ular item. For each item, the item response function
(IRF) is the probability of a certain answer given as
a function of the latent trait value.

A fundamental component of IRT is the family
of Rasch models (RM), introduced by Danish statis-
tician Georg Rasch [33]. Given responses from n

individuals to k items in a test, the RM permits
the estimation of parameters associated with indi-
viduals and with items, as well as prediction of the
person’s behavior when confronted with a different
set of items from the same domain. The individ-
ual parameter is often referred to as ability, while
item parameters refer to the difficulty (or simplic-
ity) of each item. When the ability parameter is high
and the difficulty parameter is low, the probabil-
ity of a correct answer to the item increases. Here,
we view “persons”, “items”, and “responses”, in a
general context, with “persons”, for example, repre-
senting perhaps laboratory animals or households. In
the example given later, “persons” represent individ-
uals, “items” represent different influenza outbreaks,

and “responses” are binary (individuals get sick or
not in each outbreak).

Rasch models can be of at least two kinds. If the
number of possible answers to each item is two, then
the RM is called dichotomous (see Binary Data);
otherwise, the model is said to be polytomous. In
the dichotomous RM, positive answers are indicative
of a high position in the latent trait scale.

The Rasch model from psychological testing
is a simple but very important logistic response
model (see Logistic Regression) that allows for
the incorporation of individual effects. It has
important technical links to a subclass of the
better-known loglinear models involving quasi-
symmetry. As a consequence we can think of
the heterogeneity resulting from the Rasch model’s
individual effects as inducing a specific form of
dependence in the loglinear model used to describe
the cross-classification of responses to several
variables when we aggregate across individuals.
The Rasch model thus serves as a heuristic for
interpreting this special kind of heterogeneity in
more general loglinear model settings. There are,
of course, alternative approaches to heterogeneity
such as stratification and the use of regression-like
components utilizing additional explanatory variables
that “account for” heterogeneity, but we do not
pursue these here. Among regression-like approaches
to modeling heterogeneity, generalized mixed linear
(or nonlinear) models (see Generalized Linear
Model) have received increased attention recently,
in particular in the context of longitudinal data
analysis; see, for example, [28] and [14], and the
references given therein (see Generalized Linear
Models for Longitudinal Data).

This article introduces the Rasch model, describes
the important link to loglinear models, and illustrates
the Rasch model approach to interpreting interactions
in the context of an example on infection in response
to a series of influenza outbreaks.

The Rasch Model

We focus on the RM for the dichotomous case.
Let S1, S2, . . . , Sn denote the n individuals providing
binary responses to k items I1, . . . , Ik that measure
the same latent trait θ . It is assumed that each individ-
ual Si has a value θi that reflects his/her position on
the latent trait scale (ability). Furthermore, each item
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Ij has a parameter αj associated with it that denotes
the difficulty of the item. (Generalizations of the sim-
ple RM allow for more than one parameter associated
with an item. For example, an additional item param-
eter may reflect a change in the difficulty of the item
for an individual who takes the same test at two dif-
ferent times. For more details, refer to Fischer [22,
23] and Embretson [17].)

If we let X denote the n × k matrix of responses,
and α and θ denote the vectors of item and individual
parameters, respectively, the simple dichotomous RM
states that

Pr(Xij = xij |θi , αj ) = exp[xij (θi − αj )]

1 + exp(θi − αj )
, (1)

where the entries xij are either 0 or 1. Thus

log

[
Pr(Xij = 1|θi, αj )

Pr(Xij =0|θi, αj )

]
= θi − αj , (2)

so the RM is evocative of the logit model for the log
odds for Xij = 1 vs. Xij = 0 (see Logistic Regres-
sion).

A standard approach to modeling the matrix of
responses X is to assume independence of items
and of individuals. The assumption of indepen-
dence among persons is one we typically make in
multivariate problems (see Multivariate Analysis,
Overview), and when it fails to hold we often turn to
dependence structures described by loglinear models.
The assumption of independence of answers within
an individual, however, deserves some explanation.
Intuitively, given a sample of individuals with dif-
ferent values for the latent trait, we would expect
a positive correlation between the value of θ and
the number of positive answers. For a given individ-
ual the model assumes, however, that all systematic
variation between items is explained by the value
of θ . Thus, we can use a conditional independence
argument and say that, given θ , the responses of an
individual to different items are independent. This
is referred to as local independence. Under these
assumptions, the likelihood function for the matrix
of responses X = x is given by

Pr(X = x|θ, α) =
n∏

i=1

k∏

j=1

exp[xij (θi − αj )]

1 + exp(θi − αj )

=

n∏

i=1

exp



θixi+ −
k∑

j=1

αjxij





n∏

i=1

k∏

j=1

(1 + exp[θi − αj ])

, (3)

where xi+ = ∑k
j=1 xij are the individual scores or

total number of correct answers for each individual.
Model (3) is overparameterized, since for any con-
stant c and for θ∗

i = θi + c and α∗
j = αj + c we have

that θ∗
i − α∗

j = θi − αj . We can estimate the parame-
ters in the model, however, by imposing a restriction
that fixes the origin of the scale. Typically, we use
the restriction α+ = ∑

j αj = 0 but, equivalently, we
could also set θ+ = 0.

One very appealing aspect of the model is the
existence of very simple sufficient statistics for both
θi and αj . Note that model (3) has an exponential
family form, and so it is simple to show that the
sum of correct answers xi+ for an individual is
sufficient for the individual parameter θi , and the
sum of correct answers for an item across individuals,
x+j = ∑

i xij , is sufficient for the item parameter αj

(see, for example, [5], [6], [30], and [31]). Because
these sufficient statistics are in fact the “margins” of
the matrix X, we should not be surprised to discover
that there are interesting links between methods of
estimation for RMs and certain loglinear models.

Several estimation methods for the parameters in
(3) have been proposed – for example, see [21] and
[24]. Essentially, unrestricted maximum likelihood
(ML) estimation has problematic asymptotic prop-
erties. Since the model includes one parameter for
each individual in the sample, as n → ∞ the number
of parameters also goes to infinity, and thus ML
estimators of individual and of item parameters are
inconsistent. We refer the reader to [5] for a detailed
discussion of ML estimation in the RM and to [27]
for an interesting Bayesian treatment. The method of
conditional maximum likelihood estimation (CML),
first proposed by Rasch [33] and based on max-
imizing the likelihood function conditional on the
individual scores, is an alternative to unrestricted esti-
mation and gives rise to consistent estimators for item
parameters. Further, such a conditional approach to
estimation provides some direct links to maximum
likelihood estimation for loglinear models applied to
derived contingency tables. We describe this linkage
below.
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RM and its Relation to Loglinear Models

The conditional approach to likelihood estimation
(CML) was suggested initially by Rasch, who noted
that the conditional distribution of X given the indi-
vidual marginal totals {Xi+ = xi+} depends only on
the item parameters, α. Each of the row sums {Xi+}
can take only k + 1 distinct values corresponding to
the number of correct responses. Next, we recall the
alternate representation of the data in the form of an
n × 2k array, {W} = {Wij1j2,...,jk

}, where Wij1j2,...,jk
=

1 if individual i responds {j1, j2, . . . , jk} to the k

items, and = 0 otherwise. Adding across individu-
als we create a 2k contingency table, Y, with entries
Yj1j2,...,jk

= W+j1j2,...,jk
.

We can work with this collapsed array since all
of the information we need is the response pat-
tern, i.e. {j1, j2, . . . , jk}, and the number of “correct”
responses that correspond to that pattern. Such infor-
mation allows us to completely reconstruct the orig-
inal matrix of responses, X, except for the labeling
of individuals, and thus we can use the 2k array Y
to represent the conditional distribution of X given
{Xi+ = xi+}.

Duncan [16] and Tjur [34] independently noted
that we can estimate the item parameters for the
conditional Rasch model that arises from expression
(1) using the 2k array Y, and certain loglinear models.
The conditional RM is obtained by conditioning on
the value of the individual scores {xi+}. The resulting
expression is

Pr(Xij = xij , j = 1, 2, . . . , k|{xi+}, α)

=
exp



−
k∑

j=1

αjx+j





γi(α1, . . . , αk)
, (4)

where γi(α1, . . . , αk) are elementary symmetric func-
tions given by

γxi+(α1, . . . , αk) =
∑

x1

· · ·
∑

xk

exp



−
∑

j

αjx+j



 ,

(5)

subject to
∑

j xij = xi+.
More specifically, Tjur [34] shows that maximum

likelihood estimation of the 2k contingency table of
expected values, m = {mj1j2,...,jk

}, using a Poisson

sampling scheme and the loglinear model

log mj1j2,...,jk
= ω +

k∑

j=1

δj

−
n∑

i=1

log γxi+(α1, . . . , αk), (6)

with ω = log n and δj = −αjx+j , leads to consistent
estimators of item parameters in the conditional RM
(4). The sums of elementary symmetric functions
in (6) turn out to depend only on the values
for the totals {xi+}, and thus there are only k +
1 distinct values. Tjur proves this equivalence
by: (i) assuming that the individual parameters are
independent identically distributed random variables
from some completely unknown distribution, π ;
(ii) integrating the conditional distribution of X
given {Xi+ = xi+} over the mixing distribution, π ;
(iii) embedding this “random-effects” model in an
“extended random model”; and (iv) noting that the
likelihood for the extended model is equivalent to
that for expression (6) applied to Y. An important
technical issue, not explored further here, is the set
of moment inequalities that must be satisfied for
π (see [10]). Kelderman [29] gives a step-by-step
derivation of the loglinear models that correspond
to both the unconditional RM of expression (1) and
the conditional RM of expression (4), and Fienberg
& Meyer [19] present a related description and
also an equivalent representation in the form of a
multiplicative model, which we reproduce here in
Table 1.

The multiplicative parameters a, b, and c in
this Table correspond to δ1, δ2, and δ3, and the
multiplicative parameters {Si} correspond to the k + 1
distinct values of the sums of elementary symmetric
functions in (6). The minimal sufficient statistics are

{yi++}, {y+j+}, {y++k}

Table 1 Multiplicative form for the expected values m in
the Rasch model for the 23 table

Item C

Yes No

Item A Item A

Yes No Yes No

Item B Yes abcS3 bcS2 abS2 bS1

No acS2 cS1 aS1 S0
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and

{y111, y110 + y101 + y011, y100 + y010 + y001, y000}.
Note that these are the minimal sufficient statistics
of the model of quasi-symmetry preserving one-
dimensional marginal totals.

A 2k contingency table is symmetric if the expec-
ted counts under all possible permutations of sub-
scripts are equal. Symmetry implies that all of the
r-way sets of marginal totals are equal to one another
for r = 1, 2, . . . , k − 1. Quasi-symmetry generalizes
this notion by allowing sets of lower-order marginal
totals to differ (see [8, Chapter 8]). The quasi-
symmetry model preserving one-dimensional margi-
nal totals for a 2k table is equivalent to that of
expression (6). Additional simplifications ensue here
because

m̂111 = y111, m̂000 = y000.

For more details on this relationship between
quasi-symmetry and the Rasch model, see [18, 20].
In particular, they point out the relevance of the
moment constraints described by Cressie and Holland
[10], that are not encompassed in the quasi-symmetry
structure (see also [9]). Agresti [1–4], Darroch et al.
[13], and Kelderman [29] all explore further aspects
of these loglinear representations for the Rasch
model, as we do in a limited fashion in the example
below. A parallel literature in the 1980s linked
models for individual heterogeneity, similar to the
Rasch model, with models of symmetry and quasi-
symmetry (for example [11]). Darroch & McCloud
[12] give an especially interesting application of this
approach to an example involving the separation of
sources of dependence in a series of four influenza
outbreaks. Their model is similar to a generalized
Rasch model but uses a fixed-effects version for
heterogeneity rather than the random-effects version
described above. We revisit this example in the next
section.

Example: Influenza Outbreaks in
Michigan

Table 2 contains infection frequencies to four influ-
enza outbreaks for a sample of 263 individuals in
Tecumseh, MI during the winters of 1977/78 to
1980/81. These data were first reported by Haber [25]

Table 2 Infection profiles and frequency of infection for
the influenza example

j1, j2, j3, j4 Frequency j1, j2, j3, j4 Frequency

0 0 0 0 140 1 0 0 0 20
0 0 0 1 31 1 0 0 1 2
0 0 1 0 16 1 0 1 0 9
0 0 1 1 3 1 0 1 1 0
0 1 0 0 17 1 1 0 0 12
0 1 0 1 2 1 1 0 1 1
0 1 1 0 5 1 1 1 0 4
0 1 1 1 1 1 1 1 1 0

and later analyzed in depth by Darroch & McCloud
[12]. One interesting aspect of these data is that
outbreaks 1 and 4 were caused by the same type of
virus, and thus responses (conditional on individuals)
to these two outbreaks are potentially dependent.
Since we have already collapsed over individuals,
the data form a 2k contingency table, where k = 4
for the four influenza outbreaks and corresponds to
the number of items for a standard Rasch model.

To understand the different sources of heterogene-
ity in this example, consider an individual who, by
virtue of her personal characteristics, is highly sus-
ceptible to influenza. She is likely to succumb to
outbreaks 1, 2, and 3, as expected, but is unlikely to
get sick during outbreak 4. Since outbreaks 1 and 4
are caused by the same type of organism, individuals
who get sick during outbreak 1 develop some degree
of immunity to the virus, thus inducing a negative
dependence between outbreaks 1 and 4.

We can fit RM such as (1) to these data in a
straightforward manner if we assume independence
among individuals and among influenza outbreaks.
This assumption might be reasonable if all influenza
outbreaks were caused by different types of virus.
The loglinear model arising from the conditional rep-
resentation (4) of the RM (in the u-term notation of
Bishop et al. [8], and used in the article on Loglinear
Models) is

log mj1j2j3j4 = u +
4∑

j=1

uj (xj ) + u5(xi+), (7)

where the u5(xi+) and the uj (xj ) factors correspond
to individual scores and influenza parameters, respec-
tively, and is simply the u-term representation for the
loglinear model of expression (6).
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The model in (7) corresponds to a standard RM,
and therefore does not accommodate the negative cor-
relation between outbreaks 1 and 4. Thus, we do not
expect it to fit these data well. More appealing models
for these data would include one or more interaction
terms to represent the dependence between outbreaks
1 and 4. One such model, suggested by the Darroch
& McCloud analysis, includes an interaction between
outbreaks 1 and 4 and is given by

log mj1j2j3j4 = u +
4∑

j=1

uj (xj ) + u14(x1x4) + u5(xi+),

(8)

where the u14(x1x4) are associated with the four
possible infection profiles when considering only out-
breaks 1 and 4.

Model (8) may still be underparameterized, insofar
as it does not include an interaction term for individ-
ual scores × outbreaks parameters. From an intuitive
viewpoint, the interaction between scores xi+ and the
first outbreak x1 should be included, since the value
of the score might well depend on the individual’s
response to x1 and, conditional on x1, also on the
response to x4. Another way to think about this is
the following. Consider the ways an individual can
obtain a score xi+ = 2. If he does not get sick dur-
ing outbreak 1, then he can obtain the score of 2 in
three different ways, each with the same probability
of occurrence given independence among outbreaks
(2, 3, 4). If he gets sick during outbreak 1, however,
then he needs one more infection to round up the
score, but now each of the three possible infection
patterns does not have equal probability, in light of
the dependence between outbreaks 1 and 4. To cap-
ture such an effect, we consider a third model closely
linked to the analysis of Darroch & McCloud with an
additional interaction term:

log mj1j2j3j4 = u +
4∑

j=1

uj (xj ) + u14(x1x4)

+ u5(xi+) + u15(x1, xi+). (9)

We fitted models (7), (8), and (9) to the influenza
infection data in Table 2, and compared the fit of
the models using the usual likelihood-ratio chi-square
statistic, G2 (see Likelihood Ratio Tests), as repor-
ted in Table 3.

Table 3 Degrees of freedom and deviance statistics for
the three models fitted to the influenza data

Degrees of Deviance
Model freedom G2

Rasch model (no
interactions) 8 25.79

RM + outbreaks 1 and
4 interaction 7 16.11

RM + outbreak (1, 4) + score
by outbreak 1 interactions 5 5.52

From Table 3 we see that, as expected, the standard
RM did not fit the data well. The fit of the model
improved considerably when we added the first inter-
action term, between the first and fourth outbreaks.
While this model accounts for the fact that both out-
breaks 1 and 4 are caused by the same type of virus,
it ignores the effect that the response to the first out-
break has on individual scores. The last model we
fitted includes this effect, and its fit is superior to
that of the other two models.

Note that, while model (7) corresponds to the
standard RM for this problem, neither loglinear mod-
els (8) or (9) have an RM representation. In fact,
the latter two models are not RM at all, due to
the presence of the interaction terms. Nonetheless it
is interesting to see that reasonable loglinear mod-
els can be obtained by starting with the RM as a
basis, and then adding terms as needed to model
potential dependences not accommodated by the sim-
ple RM.

Finally, Table 4 gives the estimated cell counts
for the 24 contingency table under the three fitted
models. Given its better fit, model (9) produces val-
ues of cell counts that are in good agreement with
observed counts. We can also compare the estimated
values with observed frequencies in Table 4. Esti-
mated infection frequencies computed from the RM
(7) over- and underestimate observed cell counts in
the expected direction. For example, the RM model
tends to overestimate infection frequencies in cells
{0, j2, j3, 0} and {1, j2, j3, 1}, which is consistent
with the assumption of independence among out-
breaks.

Summary

The Rasch model comes to general statistical practice,
and biostatistics in particular, from psychological
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Table 4 Infection profiles, observed frequencies, and esti-
mated frequencies under three loglinear models of infec-
tions during the four influenza outbreaks

Obs. m̂, m̂, m̂,
j1, j2, j3, j4 freq. model (7) model (8) model (9)

0 0 0 0 140 140.0 140.0 140.0
0 0 0 1 31 19.7 22.8 28.4
0 0 1 0 16 18.5 15.7 16.7
0 0 1 1 3 4.6 5.7 3.6
0 1 0 0 17 20.9 17.9 18.9
0 1 0 1 2 5.2 6.4 4.0
0 1 1 0 5 4.9 4.4 2.4
0 1 1 1 1 1.3 2.1 1.0
1 0 0 0 20 24.8 27.7 20.0
1 0 0 1 2 6.1 1.8 1.8
1 0 1 0 9 5.8 6.9 10.0
1 0 1 1 0 1.5 0.6 0.6
1 1 0 0 12 6.5 7.8 11.3
1 1 0 1 1 1.7 0.7 0.7
1 1 1 0 4 1.6 2.6 3.8
1 1 1 1 0 0.0 0.0 0.0

testing, and it generalizes the model of indepen-
dence among a set of response variables by allowing
for the incorporation of individual effects. Thus we
speak of local independence, conditional on the indi-
vidual. In this article we have shown an important
connection between the Rasch model and a special
loglinear model for the usual contingency table rep-
resentation of the relevant response variables, that
of quasi-symmetry. As a consequence we can think
of quasi-symmetry as providing a representation for
dependence introduced by Rasch-model-like hetero-
geneity. Through an example dealing with influenza
epidemics, we have illustrated here how loglinear
generalizations of this Rasch model representation are
useful in biostatistical contexts involving such forms
of heterogeneity.

The most extensive area of application of this type
of approach to heterogeneity to date has come in the
area of capture–recapture modeling – for example,
see [9, 13, 15, 20] and [26]. As we noted at the out-
set, there are alternative approaches to heterogeneity
such as stratification and the use of regression-like
components utilizing additional explanatory variables
that “account for” heterogeneity. The principal exam-
ple in [26], dealing with the ascertainment of dia-
betes in a region of Italy, contrasts the results of
generalized-Rasch-like loglinear models and separate
loglinear models for separate strata. Fienberg, John-
son and Junker [20] revisit this example and provide

an alternative Bayesian analysis based on the Rasch
model and some generalizations of it.
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Rasch, Georg
Born: September 21, 1901, in Odense, Denmark.
Died: October 19, 1980, in Byrum, Laesø, Den-

mark.

Georg Rasch was Professor of Statistics from 1962 to
1972 at the University of Copenhagen. He received
his degree in mathematics from the University of
Copenhagen in 1925 and worked as a mathemati-
cian at the university until 1930, when at age 29,
he became a doctor of science on a dissertation con-
cerned with matrix calculations and its applications
in differential and difference equation theory [1]. At
the time, he was considered to be one of the most
talented of the new generation of Danish mathemati-
cians. But as no satisfactory position was created for
him as a mathematician, he chose to work as a consul-
tant in applied mathematics, primarily data analysis
and statistics. In the 1930s he worked with problems
in medicine and biology, but he later added educa-
tion, psychology and sociology as fields of interest
(see Social Sciences).

Between 1935 and 1936, he visited University
College in London, primarily to work with R.A.
Fisher. He was much impressed by Fisher’s ideas
on the foundations of mathematical statistics and
introduced them in Denmark after his return. In the
following years, he worked primarily at the State
Serum Institute, where he founded the Biostatistics
Department and was its director from 1940 to 1956.
In this capacity, he made many contributions to new
developments in biology and medicine, primarily as a
consultant for doctoral dissertations by the scientists
at the Institute and many other medical doctors. He
had, however, a much more lasting influence on
the development of statistics, in both theory and
applications, through the fact that most, if not all,
of the next generation of Danish statisticians worked
as his assistants at the Serum Institute. For example,
Professor A. Hald started his career as an assistant to
Rasch.

In the 1940s and 1950s he had various part-time
teaching assignments at the university, but it was not
until 1961, when he was almost 60 years old, that
he was appointed to a chair in statistics at the Uni-
versity of Copenhagen. It may seem surprising, but
it is nevertheless a fact, that he did not work with
applications in education and psychology until the
mid-1950s, when he was into his own fifties. These

disciplines occupied most of his thinking in the 1960s
and 1970s, and it was here that he made his most orig-
inal contributions. As a consultant to the Ministry of
Social Affairs, to the Office of Military Psychology,
and to the Danish Educational Research Institute, he
was faced with the task of extracting information
on individuals from intelligence and ability tests. He
rejected the traditional statistical methods, primarily
based on various factor analytic techniques (see Fac-
tor Analysis, Overview), and developed new and
more exact methods based on latent trait models as
we know them today. The most simple and elegant
of these models was fully developed by Rasch in
1960 and now bears his name: the Rasch model. The
model was not invented as a new theoretical devel-
opment, but was established through careful study
of the empirical data with which he worked. He
also realized that the model required a new statis-
tical methodology based on the use of conditional
probabilities. In 1960, in his famous book [2] and in
an important paper read at the Berkeley Symposium
on Probability and Statistics [3], he presented both
a new revolutionary model and an associated fasci-
nating new statistical methodology. The model was
developed further in the following years and he made
many important applications of it, but to a remark-
able degree the theory was developed within a span
of three to four years. In the 1960s and 1970s there
followed a few papers in which he tried to extend
his discoveries from 1960 to a more general theory
of measurement primarily directed toward the social
sciences. It was these ideas that occupied his think-
ing for the rest of his life. In his scientific works,
Rasch combined mathematical skill and a skill for
reading empirical evidence in a unique way. He used
mathematics to make ideas precise and to formulate
the theoretical framework for the analysis of data in
an exact way. But data from real life were the main
source for all his theoretical developments and model
formulations. Rasch was thus an early and eager
advocate of checking the fit of a model by statisti-
cal and/or graphical methods (see Model Checking).
Georg Rasch was a knight of the Danish order of
Dannebrog and an honorary member of the Danish
Statistical Society.
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Rate

Rate refers to a limiting ratio of the changes in
two quantities as these changes tend to zero. The
denominator often involves time, t , as for the haz-
ard rate, λ(t) = lim∆↓ ∆−1 Pr (disease first occurs

in [t, t + ∆)|disease first occurs at or after t). The
notation [t, t + ∆) means that the event occurs at or
after t but before t + ∆.

Sometimes rate refers to a proportion, as in neona-
tal mortality rate and prevalence rate.

MITCHELL H. GAIL



Ratio and Regression
Estimates

Ratio and regression estimators are used to improve
the precision of estimates of a population total or
mean, by exploiting the relationship between an out-
come y, and an auxiliary measurement x. Estimates
of ratios themselves are also often made – these
include rates and proportions for the population and
for targeted subgroups. Such estimates are widely
used in biostatistical research; indeed most public-use
data tapes are issued with poststratified ratio adjust-
ments (based on sex, race, and age) to the sampling
weights. Domain estimates can be viewed as ratio
estimates as well, so that epidemiologic prevalence
estimates for population subgroups are essentially
ratio estimates. In the following, estimators, along
with variance estimates for population totals, are dis-
cussed; for estimators of population means, divide by
N , and adjust the variance estimate by N−2.

Ratio Estimators

The ratio estimator is used when two numbers are
associated with each of N units in a finite population.
One of these is a positive known quantity x, and
the other is an unknown y, the outcome measure
of interest. Letting s be the set of n units in a
sample from the population, the ratio estimate for
the population total, T = ∑N

i=1 yi , is

T̂R =

∑

i∈s

yi

∑

i∈s

xi

N∑

i=1

xi = R̂X, (1)

where
∑

i∈s denotes the sum over the sample units,
R̂ = ∑

i∈s yi

/ ∑
i∈s xi is the sample ratio, and X is

the population x-total. The sample ratio can also be
written

R̂ = ys

xs

= Nys

Nxs

= Ŷ

X̂
,

where ys = n−1 ∑
i∈s yi and xs = n−1 ∑

i∈s xi are
the sample means, Ŷ = Nys and X̂ = Nxs are the
simple expansion estimators of the population y-total,
T , and the population x-total, X, respectively. This

makes R̂ a natural estimate of the population ratio
R = ∑N

i=1 yi

/∑N
i=1 xi .

A domain is defined by a sample characteristic
which is generally not available until the survey
has been executed. Suppose we are interested in
the average number of physician visits in the past
year for Latinas aged 18 to 64. Letting zi = 1 if
the respondent is in this category and zi = 0 oth-
erwise, and measuring the number of physician visits
with y, the population characteristic we want to esti-
mate is a population ratio R = ∑N

i=1 yizi

/∑N
i=1 zi =∑N

i=1 y ′
i

/∑N
i=1 zi , which we estimate with R̂ = Σi∈s

yizi

/
Σi∈szi . Thus estimates for population subgroups

can be made from survey data by appropriately
defining zi and calculating a ratio estimate.

An equivalent form for the ratio estimator (1)
of the y-total is T̂R = Nys(X/xs), where X =
N−1∑N

i=1 xi = X/N is the known population aver-
age of the xs. Writing T̂R this way illustrates the
intuitive appeal of the ratio estimator as a multiplica-
tive adjustment to the simple expansion estimator
Ŷ = Nŷs by the factor X/xs . This adjustment is
upward if xs < X and downward if xs > X; intu-
ition supports such an adjustment for if the sample
mean of the xs is smaller than the population mean,
one might suspect that the sample mean of the ys
would be low as an estimate of the population aver-
age, justifying an upward adjustment of the simple
expansion estimate, Nys .

An example where the ratio estimator would
be valuable is in estimation of the total number
of hospital discharges over a given period, based
on a sample of n hospitals from N . Here the
auxiliary information x, known for all hospitals in the
population, is bed size. If the hospitals selected for
the sample are smaller (as measured by bed size) on
the average than those in the population, an upwards
adjustment of the simple expansion estimate of the
number of discharges will be in order.

Of course intuition alone is not enough to jus-
tify use of the ratio estimator. The properties of this
estimator have been extensively studied from two dis-
tinct points of view. One treats the ys as unknown
constants and develops properties of the estimator
with respect to the random sampling plan used to
select the units for s. Cochran [1] gives a com-
prehensive treatment of this probability sampling
theory approach to estimation. The other theory
which treats y1, . . . , yN as realizations of random
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variables Y1, . . . , YN , is developed using a statisti-
cal model which relates Yi and xi . There has been
considerable contention over the role each of these
theories should play in inference for finite popu-
lations. A number of simulation studies have been
done where both theories apply, and situations where
model-based inference has important messages are
noted in the following.

Cochran [1] delineated the properties of the ratio
estimator assuming a simple random sample (with-
out replacement; see Sampling With and Without
Replacement) of size n from the N units in the
population. The properties so developed are often
used as well when the sampling method is system-
atic rather than simple random, even though there is
considerable evidence that appropriately chosen sys-
tematic samples can be superior to random samples
for inference. Averaging over all possible samples,
the ratio estimate has a bias of order 1/n and thus is
negligible for large n. This bias is generally ignored
even for moderate samples sizes. An empirical study
by Kish et al. [4] showed that the bias relative to the
root mean square error is small unless n is very
small.

Beginning with the simple ratio, R̂, a common
formula for the estimated variance is

v(R̂) = R̂2{cv2(ys) + cv2(xs) − 2rcv(xs)cv(ys)}
(2)

where cv2(ys) = v̂ar(ys)/y
2
s = {(1 − f )/n(n − 1)}∑

i∈s(yi − ys)
2/y2

s so cv(ys) is the estimated
coefficient of variation (see Standard Deviation)
of ys, cv(xs) of xs , and r is the estimate of
the correlation between ys and xs , which for
simple random sampling is just the ordinary sample
correlation calculated from the data, r = [

∑
i∈s(xi −

xs)yi]/[
∑

i∈s(xi − xs)
2 ∑

i∈s(yi − ys)
2]1/2; f is the

sampling fraction n/N . This formula follows from a
simple Taylor series for R̂, often referred to in survey
research as the linearization method. Unfortunately,
linearization has not always produced useful variance
estimates in survey research. For example, this
method, when applied to T̂R , leads to a variance
estimator for T̂R equal to v0 = N2{(1 − f )/n(n −
1)} ∑

i∈s (yi − R̂xi)
2, which has been shown to be a

poor estimator of the variability in T̂R .
Wu [22] and Wu & Deng [24] studied a general

class of variance estimators for use with T̂R of the

form

vg(T̂R) =
(

X

xs

)g

v0.

The two special cases of this estimator correspond-
ing to g = 0 and g = 2 are the variance estimators
recommended in many sampling texts for use with
the ratio estimate of a population total. Cochran
[1] listed both, deriving v0 via a linearization argu-
ment, and v2 from the relation T̂R = NXR̂ which
implies v2 = (NX)2v(R̂), where v(R̂) is found as
in (2).

When applying the ratio method of estimation, the
data should show a straight-line regression through
the origin with variance increasing with x. Its use
in other situations can lead to large inefficiencies
and/or large biases in estimation. Royall & Cumber-
land [12] studied the ratio estimator and estimators of
its variance under such a model: Yi = βxi + εi

√
xi ,

where E(εi) = 0, E(ε2
i ) = σ 2, and E(εiεj ) = 0 for

i �= j . This model assumes variance proportional to
x; Royall & Cumberland [11], following Royall &
Eberhardt [15], developed a class of variance estima-
tors whose performance is robust against failure of
this assumption and which have good properties as
an estimator of the mean square error of T̂R when
viewed conditionally on sample characteristics. This
conditional analysis allows us to see properties of the
estimators which are concealed in theoretical devel-
opments which average over all possible samples. In
an empirical study of the ratio estimator with different
populations all of which appear to conform well to
this model, Royall & Cumberland [12] concluded that
v0 should not be used to estimate the variance of
the ratio estimator, that the robust variance estima-
tors they studied did a good job of tracking the mean
square error of T̂R , and that the ratio estimator itself
can show a large conditional bias due to failure of
the specification E(Yi) = βxi in badly balanced sam-
ples – those where xs and X differ substantially. The
use of stratification on x, and/or systemic sampling
after ordering the population on x, can help avoid
the selection of badly balanced samples, thus pro-
viding some protection against bias in T̂R . One of the
robust variance estimators Royall & Cumberland [12]
studied was very nearly v2, hence on these grounds
this estimator can be recommended. Wu and Deng
[24], in an unconditional analysis of vg , suggest using
the data to choose g optimally, but in an empiri-
cal study drew the conclusion that v2 was a good
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performer in populations where variance increases
with x. More recently published sampling texts [8,
18] generally recommend v2 for use with the ratio
estimator, but this is not universal among sampling
texts. A simple computing formula for this variance
estimator is

v2(T̂R) = (NX)2R̂2{cv2(ys) + cv2(xs)

− 2rcv(xs)cv(ys)}. (3)

The jackknife variance estimator for T̂R has also
been studied extensively [6, 7, 10–12, 22–24]. The
jackknife variance estimate [3] is

vJ(T̂R) = (NX)2 1 − f

n
(n − 1)

∑

j∈s

(R̂(j) − R̂(·))2

where for every j ∈ s, R̂(j) = [nys − yj ]/[nxs − xj ]
is the ratio estimate found after deleting unit j

from the sample and R̂(·) is the average of these
n estimates. Royall & Cumberland [12] showed
vJ is asymptotically equivalent to v2 and in their
empirical study noted that it generally was larger
than other robust variance estimators, leading to more
conservative confidence intervals. Wu & Deng [24]
drew similar conclusions about vJ and cautiously
recommended its use with T̂R .

Confidence intervals for a population total T̂R ±
1.96

√
v rely on large-sample normality of the

estimates. Conditions for asymptotic normality of the
ratio and regression estimators were given in Scott &
Wu [19]. Such asymptotic results should be used with
caution in moderate samples; Royall & Cumberland
[14] and Valliant [20] note from empirical studies
poor coverage properties of confidence intervals for
some populations, even though the variance estimates
were appropriately tracking the mean square error.

Stratified Ratio Estimates

Sampling from strata is much more common than
simple random sampling from a population. Stratifi-
cation improves the efficiency of the estimators and
helps to avoid conditions of extreme imbalance which
can give rise to large conditional biases in the ratio
estimator. Royall & Herson [16] discussed the use
of stratification on x with the ratio estimator and
showed the value of stratification in protecting infer-
ences from bias due to imbalance.

Suppose the N population units are divided into
H strata of sizes N1, . . . , NH so that

∑H
h=1 Nh = N .

Stratified random sampling consists of indepen-
dently choosing simple random samples of size nh

from each stratum with
∑H

h=1 nh = n the total sample
size. Denote the measurements on the N popula-
tion units by yhi and xhi for i = 1, . . . , Nh and h =
1, . . . , H , and let the set of sampled units from stra-
tum h be sh. Two ratio estimators of the population
total are commonly used with this plan, the separate
ratio T̂RS, and the combined ratio T̂RC. These are

T̂RS =
H∑

h=1

NhXh

(
ysh

xsh

)
,

T̂RC =
H∑

h=1

NhXh(R̂C),

where R̂C = ∑H
h=1 Nhysh

/∑H
h=1 Nhxsh

is the ratio of
the stratified expansion estimators for the y-total and
the x-total, ysh

= n−1
h

∑
i∈sh

yhi is the sample mean of
the ys in stratum h, xsh

= n−1
h

∑
i∈sh

xhi that of the xs,
and Xh = N−1

h

∑Nh

i=1 xhi is the known stratum mean
of the xs in stratum h.

The separate ratio estimate uses a different ratio
estimate for each stratum and, if the nh are not too
small, will be a better estimator than the combined
ratio estimate. The estimator R̂C is used by itself with
stratified designs to estimate rates and prevalences
for subgroups of the population, such as disease rates
among well-defined racial subgroups.

The variance estimator for T̂RS comes directly
from the single-sample case, since T̂RS is the sum of
H independent ratio estimates, T̂Rh = NhXh(ysh

/xsh
).

Using the robust variance estimates for T̂Rh, we have

v2(T̂RS) =
H∑

h=1

v2(T̂Rh)

=
H∑

h=1

(NhXh)
2

(
ysh

xsh

)2

{cv2(ysh
)

+ cv2(xsh
) − 2rhcv(xsh

)cv(ysh
)}

and each v2(T̂RS) is calculated using only the
data from stratum h, exactly as in the single-
sample case[(3)]. A robust variance estimate for
the combined ratio estimate can be written in a
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parallel fashion. First, for the ratio R̂C itself we
have

v(R̂C) = R̂2
C{cv2(Ŷ ) + cv2(X̂) − 2rcv(X̂)cv(Ŷ )},

where Ŷ = ∑H
h=1 Nhysh

is the simple stratified expa-
nsion estimate of the y-total, cv2(Ŷ ) = v̂ar(Ŷ )/Ŷ 2,
and v̂ar(Ŷ ) = ∑H

h=1 N2
h{(1 − fh)/nh(nh − 1)}Σi∈sh

(yhi − ysh
)2 (with analogous formulas for cv2(X̂)),

fh = nh/Nh, and r = ĉov(X̂, Ŷ )/[v̂ar(X̂)v̂ar(Ŷ )]1/2,
where ĉov(X̂, Ŷ ) = ∑H

h=1 N2
h{(1 − fh)/nh(nh − 1)}∑

i∈sh
(yhi − ysh

)(xhi − xsh
). For T̂RC a variance

estimate is

v2(T̂RC)=X2R̂2
C{cv2(Ŷ ) + cv2(X̂)−2rcv(X̂)cv(Ŷ )},

where X = ∑H
h=1

∑Nh

i=1 xhi = ∑H
h=1(NhXh) is the

population total of the xs. The variance estimators
v2(T̂RS) and v2(T̂RC) (or close variants of them) have
been studied empirically by Valliant [20], Wu [23],
and Deng & Wu [2], and they generally perform quite
well. Both Valliant [20] & Wu [23] also considered
the stratified jackknife variance estimator defined
generally [3] as

vJ =
H∑

h=1

1 − fh

nh

(nh − 1)
∑

j∈sh

(T̂(hj) − T̂(h))
2,

where T̂(hj) is the estimate calculated without the
hj th unit and T̂(h) = ∑

j∈sh
T̂(hj)/nh. Rao & Wu [9],

Krewski & Rao [6], and Lemeshow & Levy [7]
considered other versions of the jackknife variance
estimator. Wu [23] argued that v2(T̂RC) and vJ applied
to T̂RC should have similar performance. In a simula-
tion study Valliant [20] compared the performances of
several variance estimators for T̂RC and T̂RS; among
these were stratified versions of robust variance esti-
mators, one with similar properties to v2(T̂RC), and
another the jackknife variance estimator. With respect
to conditional coverage properties, their performance
was better than the other estimators considered. Val-
liant further pointed out in his study that stratification
on x alone was not sufficient to protect oneself from
a conditional bias due to imbalance on x, although it
does guard against gross imbalances that can occur
with simple random sampling. He suggested a com-
bination of stratification on x with systematic sam-
pling within strata ordered on x, and the use of a
robust variance estimator (like vJ or v2) for reliable
inference.

Regression Estimators

From a simple random sample s from a popula-
tion, the simple linear regression estimator for a
population total can be calculated as

T̂L = Nys + b(NX − Nxs)

where b = ∑
i∈s(xi − xs)(yi − ys)

/ ∑
i∈s (xi − xs)

2,
which is the usual estimate of a slope in a simple
linear regression. Like the ratio estimator, the regres-
sion estimator has considerable intuitive appeal as an
adjustment to the simple expansion estimator, Nys . If
a plot of the data indicates a straight-line regression
of y on x with constant variance, then a linear regres-
sion estimator is appropriate and will be superior to
a ratio estimator when the intercept is not the origin.
Under simple random sampling, the regression esti-
mator is biased, but, as in the case of ratio estimation,
this is usually ignored when n is not small. A vari-
ance estimator found in most sampling textbooks [1]
is vC = N2{(1 − f )/n(n − 2)} ∑

i∈s d2
i , where di =

yi − ys − b(xi − xs) are the residuals. In an empiri-
cal study of the regression estimator, Royall & Cum-
berland [13] showed that vC was seriously flawed as
an estimator of the variance of T̂L, and suggested
several superior variance estimates. One choice was

vD(T̂L) = N2
∑

i∈s

aid
2
i

(1 − pi)
, (4)

where

ai =




1 − f

n
+ (xi − xs)(X − xs)∑

j∈s

(xj − xs)
2





2

+ 1 − f

nN

and pi = 1/n + (xi − xs)
2/

∑
j∈s (xj − xs)

2 is the
ith diagonal element of the “hat” matrix in a standard
linear regression. Another choice was the jackknife
variance estimator

vJ(T̂L) = 1 − f

n
(n − 1)

∑

j∈s

(T̂L(j) − T̂L(·))2,

where T̂L(j) is the regression estimator based on
the sample obtained by deleting unit j from the
sample, and T̂L(·) is the average of the nT̂L(j)s. Royall
& Cumberland [13] indicated that the jackknife
variance estimate and vD should perform similarly
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as they were asymptotically equivalent. Deng &
Wu [2] studied vJ, vD, and a class of adjusted
estimators vg(T̂L) = (X/xs)

gvC, where g is to be
chosen optimally from the sample. They also caution
against the use of vC, and note, with respect to both
conditional and unconditional coverage of confidence
intervals, that vJ, vD, and v2 are much better than
vC. Särndal et al. [17] proposed a variance estimator
for T̂L which, like (4), is calculated from weighted
squared residuals.

Stratified Regression Estimators

Regression estimators of a population mean or total
can also be defined when stratified random sampling
is used, and an auxiliary variable x is available.
Analogous to the case of ratio estimation, there is the
separate regression estimator T̂LS, and the combined
regression estimator T̂LC. The separate regression
estimate of a population total is

T̂LS =
H∑

h=1

T̂Lh,

where T̂Lh = Nhysh
+ bh(NhXh − Nhxsh

) is the lin-
ear regression estimator of the stratum total,

∑Nh

i=1
yhi , using data only from that stratum. Here

bh =

∑

i∈sh

(xhi − xsh
)(yhi − ysh

)

∑

i∈sh

(xhi − xsh
)2

is the estimated slope in stratum h. The combined
regression estimator uses a single slope estimate,
combining information across strata,

bc = ĉov(X̂, Ŷ )

v̂ar(X̂)

=

H∑

h=1

N2
h

1 − fh

nh(nh − 1)

∑

i∈sh

(xhi − xsh
)(yhi − ysh

)

H∑

h=1

N2
h

1 − fh

nh(nh − 1)

∑

i∈sh

(xhi − xsh
)2

,

where X̂ and Ŷ are the simple stratified expansion
estimators of the x-total and the y-total, respec-
tively.

Variance estimation for the separate linear regres-
sion estimator is straightforward, since it is a sum of
H independent regression estimates. Hence a robust
estimator is vD(T̂LS) = ∑H

h=1 vD(T̂Lh), where each
vD(T̂Lh) is calculated as described earlier in (4) for the
unstratified case. A similar calculation can be done
summing the jackknife variance estimates. For the
combined regression estimator T̂LC, variance estima-
tion is more problematical. Valliant [20] studied sev-
eral variance estimators for T̂LC, and recommended a
robust version analogous to vD (4). He also found the
performance of the traditional linearization estima-
tors unacceptable. Valliant showed empirically that
the robust estimator and a jackknife variance esti-
mate were generally superior to the other choices
of variance estimator. Because the formula for vD is
unwieldy, the jackknife variance estimate for T̂LC is a
good choice for variance estimation for the combined
regression estimator. Its calculation is

vJ(T̂RC) =
H∑

h=1

1 − fh

nh

(nh − 1)
∑

j∈sh

(T̂(hj) − T̂(h))
2,

where T̂(hj) is the estimate calculated without the
hj th unit and T̂(h) = ∑

j∈sh
T̂(hj)/nh. Valliant [20]

indicated some simplifications to vJ that considerably
lessen the computational burden of the jackknife in
stratified sampling.

Stratified Systematic Sampling

We have already indicated some of the benefits of
using stratification on x or systematic sampling from
strata ordered on x, with the ratio or regression
estimators. Kott [5] noted that systematic sampling
is one way of protecting against certain kinds of
model failure. Valliant [21] studied stratification on
x and, using systematic sampling within strata, com-
pared this plan with simple random sampling within
strata. He considered the ratio and regression esti-
mators (both separate and combined) and a number
of variance estimators. From theoretical considera-
tions and an empirical study, he recommended for
moderate nh the separate regression estimator, T̂LS,
combined with stratified systematic sampling, and
suggested using either a jackknife variance estima-
tor or the robust variance estimate vD(T̂LS) (4). This
combination provided the most reliable inferences for
the population total.
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Real Time Approach in
Survival Analysis

The real time approach in survival analysis (or,
more generally, event history analysis) means that
the statistical modeling respects the original order in
calendar time in which the events recorded in the data
took place.

This principle is realized naturally in paramet-
ric likelihood inference and in Bayesian inference,
where, if the modeling is based on conditional inten-
sities (hazards) conditioned at each point in calendar
time on the events in the past, the likelihood expres-
sion will always assume the same simple canonical
form.

In more explicit terms, we can express the data
from an observation interval (0, t] in the form of
N(t) marked points (Ti, Xi), where 0 < T1 < T2 <

· · · < TN(t) ≤ t and where Xi is a description of the
event (such as the index or label of a failed indi-
vidual) which occurred at time Ti . If λt(x) denotes
the conditional intensity of an event indexed by x

occurring at time t , and λt = ∑
x λt (x) is the corre-

sponding “crude” intensity of an event regardless of
its index, then the likelihood expression will be of
the well-known canonical form

Lt =
∏

(i:Ti≤t)

λTi
(Xi) × exp

(
−

∫ t

0
λs ds

)
.

Depending on the studied context, the intensity
λt (x) can correspond, for example, to the failure of
individual x, and then depend on the recorded pre-
t history through (possibly time-dependent) internal
and/or external covariates, such as the age of
individual x at time t , time elapsed from a
treatment, if any, type of the treatment received, and,
possibly, calendar time itself. Such dependencies,
when modeled explicitly, will then lead to the model
parameters appearing in some particular functional
form in the likelihood expression. The real time
approach can accommodate, without any additional
difficulty, study designs involving staggered entry
of individuals or general noninformative censoring
schemes. Noninformative censoring will simply result
in multiplicative contributions to the likelihood
expression which do not depend on the model
parameters of interest, and which therefore can
be ignored in likelihood-based inference. For a

concrete example, see [3]. From the point of view
of asymptotic theory, the real time approach has
the additional advantage that the score ∂ log Lt/∂θ ,
evaluated at the “correct” parameter value θ = θ0,
and viewed as a stochastic process in time parameter
t , will always be a martingale with respect to the
recorded pre-t histories and the probability Pθ0 [1, 2]
(see Counting Process Methods in Survival Ana-
lysis). This can be used as a convenient technical
device in proving consistency and asymptotic
normality of the parameter estimators under weak
mathematical conditions (see, for example, [4]).

The real time approach can be compared and,
to some extent, contrasted with more commonly
used nonparametric and semiparametric estimation
techniques in survival analysis, such as the Nel-
son–Aalen, Kaplan–Meier, and the Cox regression
estimators. In these methods, the individuals are
first aligned according to some time reading which
is used as a baseline, and statistical estimators are
formed by comparing, for each individual failure,
the intensity of the failing individual to the crude
intensity of all individuals who were then at risk
simultaneously (according to the baseline). If the
baseline time reading does not match with calendar
time (e.g. if the study design involves staggered entry
and age or time from treatment is used as a baseline),
then the original sequencing of the events recorded
in the data will be changed in the realignment of the
individuals. As a result, the natural notion of pre-t
“past” may be lost, and this in turn may violate the
assumptions underlying the statistical survival model,
under consideration.
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Recall Bias

Recall bias occurs in case–control studies and refers
to the bias that results when cases with the dis-
ease of interest tend to over- or underestimate their
previous exposures, compared with controls without
disease. For example, a woman who has just given
birth to a malformed infant may more assiduously

recall her antenatal drug exposures than a control
woman who had a normal infant. Recall bias induces
differential error and can seriously distort the results
of a case–control study.

(See also Bias in Case–Control Studies; Bias in
Observational Studies; Bias, Overview)

MITCHELL H. GAIL



Receiver Operating
Characteristic (ROC)
Curves

Receiver operating characteristic (ROC) analysis was
developed to summarize data from signal detection
experiments in psychophysics [21]. Today, the term
refers to

a method of quantifying how accurately exper-
imental subjects, professional diagnosticians and
prognosticators (and their various tools: tests or
instruments yielding numerical results, combinations
of data-collection and data-display devices, different
amounts and types of information . . .) perform when
they are required to make a series of fine discrimina-
tions or to say which of two conditions or states of
nature, confusable at the moment of decision, exists
or will exist [50].

In biomedical applications, the two states are often
referred to as diseased and nondiseased, or D+ and
D− for short. Central to this analysis is the ROC
curve, which displays diagnostic accuracy as a series
of pairs of performance measures. Each pair consists
of a true positive fraction (TPF) and the correspond-
ing false positive fraction (FPF) for a given definition
of “test” (t) positivity, t+. These fractions are cal-
culated from the D+ and D− groups respectively,
TPF as the proportion of (t+, D+) among those
D+, and FPF as the proportion of (t+, D−) among
those D−. In the medical literature, the term TPF is
called sensitivity and the complement of the FPF is
called specificity. For the performance of statistical
tests, the term power, rather than sensitivity, tends to
be used. Equivalently, one can use its complement,
the false negative fraction (FNF, the complement
of TPF) or the frequency (β) of a so-called type II
error. There is no direct statistical term for specificity.
Instead, statisticians again focus on the complement,
using the false positive fraction (FPF, the comple-
ment of the true negative fraction, TNF) to denote
the frequency (α) of what they call type I error.

Diagnostic performance is sometimes naively
characterized using a single overall index of
“accuracy”, calculated as the sum of two proportions,
i.e. the proportion of (t+, D+) instances plus
the proportion of (t−, D−) instances, where the
proportions are based on all patients undergoing the
test. This index is a weighted average of sensitivity

and specificity, using as weights the (particularistic)
relative frequencies of the D+ and D− states. Using
two measures, namely a (TPF, FPF) pair, avoids this
arbitrariness.

Although a (TPF, FPF) pair is a big improvement
over an overall accuracy index, it is often not
sufficient. A single (TPF, FPF) pair still does not
allow meaningful comparison of the performance
of one diagnostic test with another, or even with
the same test performed in another setting or by
another observer, when different criteria for test
positivity are used in the two instances compared.
The ROC curve, in the form of a series of (TPF,
FPF) pairs (see Figure 1), isolates a test’s capacity to
discriminate between a given disease and its absence,
from the confounding influence of the decision
criterion (confidence level or cutting score) that is
adopted for test positivity [37, 52, 58]. A more
accurate test will be located on an ROC curve closer
to the top left corner than a less accurate one. A
noninformative test will have an ROC curve that lies
along the diagonal.

Statistical techniques to handle the full range of
ROC study designs continue to be developed [3,
5, 9, 26]. Analyses can vary in complexity from
deriving an ROC curve for a single diagnostic test
involving numerical values derived from patients
at a single institution, to complex multi-institution
studies to compare two or more imaging modalities.
The complexity also depends on the purpose of the
discrimination test, the setting and context to which
it refers, whether in the study interpretations are
performed individually in real time [18] or later
in “batch” mode [52], and whether the tests under
study and the procedures for independent definitive
determination of the true state of nature (the gold
standard) are costly, invasive, uncomfortable or
dangerous.

This latter issue can create special problems since
ROC curves are strongly influenced by the source of
the test material used [6]. Distortions occur when the
result of the test being studied affects the subsequent
work-up needed to establish a definitive diagnosis.
Information available on the distribution of test
results and clinical indicants in the source population
can be used to remove quantitatively this “verification
bias” from ROC curves [20, 30]. Other biases in
the assessment of diagnostic tests and guidelines for
circumventing the problems in prospective studies
have been described [4, 7].
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Figure 1 Example of empirical ROC points and smooth
curve fitted to them. The empirical points are calculated
from successively more liberal definitions of test positivity
applied to the 2 × 5 table (inset) of disease status (D+
or D−) and rating category (−− to ++). The smooth
ROC curve is derived from the fitted binormal model (inset,
lower right, with parameters a = 1.657 and b = 0.713 on
a continuous latent scale) by using all possible scale values
for test positivity. The fitted parameters a and b, together
with the four estimated cutpoints, produce fitted frequencies
of {32.9, 6.4, 5.9, 10.7, 2.1} and {3.2, 1.5, 2.1, 11.2, 32.9}
for the D− and D+ rows of the 2 × 5 table. Note that
a monotonic transformation of the latent axis may produce
overlapping distributions with nonbinormal shapes, but will
yield the same multinomial distributions and the same fitted
ROC curve

The complexity of the test material can have an
important bearing on the ability of a study to compare
tests. Cases resulting in an ROC curve that is midway
between the diagonal (subtle or completely obscure
ones) and the upper left corner (all ‘obvious’) allow
for sizable differences in performance; however, the
closer the curve is to the upper left corner, the
narrower is the sampling distribution of the various
indices derived from the curve [39].

For clinical imaging studies involving inter-
pretations, the most economical method of col-
lecting a reader’s impression of each case is
through the use of a rating scale, i.e. graded lev-
els of confidence that the case is D+. A discrete
five-point scale – 1 = “definitely not diseased”, 2 =
“probably not diseased”, 3=“possibly diseased”, 4=
“probably diseased”, 5 = “definitely diseased” – is

commonly used. Getting a reader to use all of the
rating categories provided yields a more stable ROC
curve estimate, but is not always easy to accomplish
without causing other problems [23]. Use of ratings
from the continuous 0–100% confidence scale [31,
49] has several advantages: it more closely resem-
bles reader’s clinical thinking and reporting; its use
of a finer scale leads to somewhat smaller stan-
dard errors of estimated indices of accuracy; and
it increases the possibility that the data will allow
parametric curve fitting.

Obtaining an ROC Curve and Summary
Indices Derived from it

For rating scale data, the 2 (D states) × k (rating
categories) frequency table of the ratings yields k − 1
empirical (TPF, FPF) ROC points. As shown in
Figure 1, these are obtained from the k − 1 possible
two-by-two tables formed by different re-expressions
of the 2 × k data table. After TPF = 0 at FPF = 0,
the lowest leftmost ROC point is derived using the
strictest cutpoint, where only the most positive cate-
gory would be regarded as positive; each subsequent
point towards the top right ROC corner (TPF =
1, FPF = 1) is obtained by employing successively
laxer criteria for test positivity. For objective tests
that yield numerical data, the same procedure – with
each distinct observed numerical test value as a cate-
gory boundary and with k no longer fixed a priori but
rather determined by the numbers of ‘runs’ of D+ and
D− in the aggregated data – is used to calculate the
series of empirical ROC data points. The sequence of
points can then be joined to form the empirical ROC
curve or a smooth curve can be fitted.

As a summary measure of accuracy, one can
use: (i) TPF[FPF], the TPF corresponding to a single
selected FPF; (ii) the area under the ROC curve; or
(iii) the area under a selected portion of the curve,
often called the partial area. Summary (i) is readily
understood and most clinically pertinent. However,
reported TPFs are often in reference to different FPF
values, and it may be unclear whether a reference
FPF was chosen in advance or after inspection of the
curve. Moreover, the statistical reliability tends to be
lower than that of other summary indices.

Summary (ii) has been recommended as an alter-
native [52]. It has an interpretation in signal detection
theory as the proportion of correct choices in a two-
alternative forced choice experiment [21], i.e. an
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experiment where in each trial the subject is presented
with a pair of stimuli, one from a randomly cho-
sen D+ and one from a randomly chosen D−, and
is asked to decide which derives from which. This
method of reporting judgments is common in psy-
chophysics and has statistical advantages when using
synthetic images, where observer time is the limiting
factor [8].

To some, the area index has a serious limitation.
Since a large part of the area comes from the
rightmost part of the curve, it includes FPFs of no
clinical relevance, and so can be insensitive when
used to compare the performance of two tests. One
curve may have higher TPFs than another in the
region of relevant FPFs, but they could conceivably
cross. Since the area under the entire curve averages
the sensitivity over the full (0, 1) range of FPFs, any
superiority in the relevant FPF region may be lost,
or even reversed, when the curves are ranked on the
basis of the entire area. The average sensitivity (TPF)
over a range of relevant FPFs, summary index (iii)
[34, 53, 60], is a compromise between (i) and (ii).

All three indices can be calculated either from the
empirical or a (parametrically fitted) smooth curve.
The statistical precision of nonparametric estimates
can be calculated using a general method applicable
to all three indices [60]; in the case of (ii) other
essentially equivalent but less cumbersome methods,
based on U-statistics, are also available [11, 28].
The case of (i) is more subtle than most realize: the
standard error of an estimated TPF must include, in
addition to its own obvious binomial variation, the
uncertainty associated with determining the position
of the FPF point [32].

A smooth ROC curve can be fitted to rating scale
data by fitting two overlapping distributions on a
continuous but “latent” scale underlying the results
for D− and D+ cases [12, 36] In the most commonly
used, “binormal”, model, the two distributions are
taken to be, without loss of generality, N(0, 1) for
D−, and N(µ, σ ) for D+. The distributions of the
ratings are thus multinomial, with expectations that
are functions of the k − 1 cutpoints and the two
parameters µ and σ , allowing the k + 1 (two relevant
and k − 1 nuisance) parameters to be fitted to the
observed data table (2k − 2 degrees of freedom
in total, leaving k − 3 degrees of freedom to test
the fit) using the criterion of maximum likelihood.
Small additions to empty cells can be used to
avoid “degenerate” situations [13]. The extent to

which the normal deviate (see Normal Scores)
transformations (z[TPF], z[FPF]) of the empirical
(TPF, FPF) pairs are linear provides a visual test
of the fit, since under the binormal model their
expectations satisfy

z(TPF) = (1/σ)z(FPF) − µ/σ = bz(FPF) − a.

When b = 1, the curve in (TPF, FPF) space is
symmetric about the negative diagonal, while b < 1
produces a curve which rises more steeply at first and
“flattens out” at the end.

Since the various summary indices derived from
the fitted curve are functions of the estimates
of a and b, their statistical precision – used in
tests (see Hypothesis Testing) and confidence
intervals – can be calculated from the corresponding
variance/covariances provided by the maximum
likelihood procedure. Confidence intervals can also
be calculated for the entire curve [33].

For rating scale data, the popularity of the binor-
mal model over bilogistic [22, 47] or other com-
petitors [16] is more historical than theoretical. Use
of a binormal model for rating data does not imply
that if one could observe the latent distributions, they
would have this exact form [38]. Rather, the work-
ing assumption is that the two overlapping multino-
mial distributions can be mathematically predicted
from the discretization of two normal distributions
on some unspecified latent scale. Whereas any two
overlapping distributions will uniquely determine a
specific ROC curve, the reverse is not true: the
“binormal” assumption concerns only the functional
form of the ROC curve, which can always be exam-
ined empirically, and not the form of the underlying
distributions themselves, which cannot be determined
in many applications of ROC analysis [38]. Use of a
small number of rating categories, with few degrees
of freedom, to distinguish the fit of one specific form
over another, leaves considerable freedom to fit dif-
ferent distributional forms. This freedom is not a
function of sample sizes (numbers of cases) but of
the number of rating categories [25].

More important than the choice of distributional
family seems to be the need to allow for unequal
variances (b �= 1). Empirically, b tends to be less
than 1 [51], possibly because of the presence of
unidentified subtypes in the D+ sample. Thus,
whereas one-parameter models, with b = 1, would
have practical advantages, particularly for meta-
analyses and for fitting an entire (but symmetric)
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ROC curve to a single empirical (TPF, FPF) data
point, they are not supported by empirical findings.

Care must be taken in the fitting of parametric
curves to results recorded on a numerical scale:
directly fitting N(µ1, σ1) for D− and N(µ2, σ2) for
D+ can yield severe distortions when the data do
not arise from normal distributions [19]. The method
in which the raw data are first categorized and the
categorized data analyzed as if they were rating data
[41] – with the assumptions of overlapping normal
distributions on an unspecified transform of the
actual measurement scale – is a much more robust
approach.

Comparison of ROC Curves

Because of the need to account for large differences in
case difficulty, compared curves are usually based on
the same set of cases, and one must therefore take the
correlation of the estimated curves – and summaries
derived from them – into account when calculating
the standard error of differences.

Parametric methods for comparing two curves are
based on the estimates of the binormal (or bilogistic,
or other model) parameters (a, b) associated with
each curve, and their variances and covariances [34,
42]. The equality of two curves can be assessed by
testing the equality of the two vectors (a1, b1) and
(a2, b2). Comparisons involving a summary index are
made by computing, for each curve, the appropriate
function of the parameter estimates, then using the
delta method to calculate the standard error of the
difference in indices.

A nonparametric method is now available to
compare two curves based on continuous data from
the same set of cases [59]. A criterion for positivity
that is common for the two tests is induced using the
ranks in the combined D+ and D− data for each test.
Using this calibration, one first computes the differ-
ence in the numbers of errors made by the two tests
at each possible level of test positivity and then cal-
culates the average of the absolute differences over
the different levels. The test statistic is referred to the
permutation distribution obtained by randomly inter-
changing pairs of ranks. Nonparametric comparisons
of the areas under two curves are based on correlated
U-statistics [11] or equivalently on the jackknife
method [27], while partial areas, and – ultimately –
sensitivity at a single specificity value can be com-
pared with a more general method [60].

Guidelines for sample size determination and
power calculations are available for both parametric
[software program ROCPWR from Charles Metz
at the University of Chicago, or the article by
Obuchowski & McClish [43]] and nonparametric
approaches [29].

Comparison of Accuracy of Imaging
Procedures

The methods just described deal only with sim-
ple comparisons of two tests that yield objective
numerical results, and are not sufficient for imaging
studies (see Image Analysis and Tomography)
which produce interpretations of each case by mul-
tiple readers. For example, the performance with
conventional versus laser printed films might be stud-
ied by having several readers interpret each image; a
comparison of computed tomography, magnetic reso-
nance and ultrasound images might involve different
readers for each modality [46]. Several refinements
and some alternatives to the method initially pro-
posed for dealing with these more complex com-
parisons have been suggested. The challenge is to
include and estimate properly each of the several rel-
evant components of variance and covariance since
the comparison is necessarily an average over cases,
readers and (possibly) rereadings [40, 52]. Two meth-
ods [15, 44] deal with the problem by modeling the
variation in the summary index in question, while
another [54] models the raw rating data responses.
From the investigations thus far [14, 55], both mod-
eling approaches appear to give comparable answers,
but commentators [48, 35] have called for some fur-
ther work to investigate the performance of analysis
strategies that use statistical tests to decide what is
the appropriate error term and denominator degrees
of freedom when reader x modality interactions are
involved.

When studies of imaging procedures involve
multiple centers, complex procedures, ethical con-
cerns, “real-time” readings, and different experts in
the different imaging modalities [18], the data can
quickly become imbalanced and/or incomplete. Anal-
ysis problems are thus aggravated by the subjective
(and thus possibly nonpoolable) nature of the ratings,
the often large numbers of case–reader sets, each
containing too few observations to allow paramet-
ric fitting of separate ROC curves, and the fact that,
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unlike the usual response measures in clinical trials,
the elemental ROC data are not absolute numbers that
can be easily averaged or displayed individually in a
descriptive way. If all available data are to be used,
the only logical approach is to use regression meth-
ods. Since the first regression work in this area [57],
there has been considerable activity in developing
parsimonious approaches to the problem, includ-
ing random effects models [2], Gibbs sampling (see
Markov Chain Monte Carlo) [17], and generalized
estimating equations [56, 61].

In some situations, the study material may involve
more than one region of interest on an image. Sample
reuse methods can help to calculate the precision with
which statistical contrasts are made [1, 10, 24, 45]
(see Bootstrap Method).

Software

Programs for parametric estimation are available
from the WWW location www-radiology.uchi
cago.edu/cgi-bin/software.cgi maintained
by the developer, Charles Metz. Special-purpose pro-
grams for nonparametric inference are more numer-
ous, but most of the tasks can be accomplished using
a spreadsheet [27]. Software for the multireader, mul-
ticase approach to imaging data is available from the
authors of ref. [15]; software for the other approaches
is still evolving and interested users should contact
the various authors cited above.

Future Developments

Whereas methods for comparing ROC curves asso-
ciated with tests that yield objective test results
have now become routine, solutions to the com-
plex analytic problems involved in the comprehensive
comparison of accuracy of imaging procedures have
not been completely achieved. The methods pro-
posed in the last 5 years need further testing; the
links between them need to be better understood;
and user-friendly software to implement these newest
approaches remains to be developed.

References

[1] Baum, R.A., Rutter, C.M., Sunshine, J.H., Blebea, J.S.,
Carpenter, J.P., Dickey, K.W., Quinn, S.F., Gomes, A.S.,

Grist, T.M. et al. (1995). Multicenter trial to evaluate
vascular magnetic resonance angiography of the lower
extremity. American College of Radiology Rapid Tech-
nology Assessment Group, Journal of the American
Medical Association 274, 875–880.

[2] Beam, C. (1995). Random effects models in the ROC
curve-based assessment of the effectiveness of diagnos-
tic imaging technology: concepts, approaches and issues,
Academic Radiology 2, Supplement 1, S4–S13.

[3] Begg, C.B. (1986). Statistical methods in medical diag-
nosis, Critical Reviews in Medical Informatics 1, 1–22.

[4] Begg, C.B. (1987). Biases in the assessment of diagnos-
tic tests, Statistics in Medicine 6, 411–424.

[5] Begg, C.B. (1991). Advances in statistical methodol-
ogy for diagnostic medicine in the 1980s, Statistics in
Medicine 10, 1887–1895.

[6] Begg, C.B. & Greenes, R.A. (1983). Assessment of
diagnostic tests when disease verification is subject to
verification bias, Biometrics 39, 207–215.

[7] Begg, C.B. & McNeil, B.J. (1988). Assessment of radi-
ologic tests: control of bias and other design considera-
tions, Radiology 167, 565–569.

[8] Burgess, A.E. (1995). Comparison of receiver operating
characteristic and forced choice observer performance
measurement methods, Medical Physics 22, 643–655.

[9] Campbell, G. (1994). Advances in statistical methodol-
ogy for the evaluation of diagnostic and laboratory tests,
Statistics in Medicine 13, 499–508.

[10] Dagirmanjian, A., Ross, J.S., Obuchowski, N., Lewin,
J.S., Tkach, J.A., Ruggieri, P.M. & Masaryk, T.J. (1995).
High resolution, magnetization transfer saturation,
variable flip angle, time-of-flight MRA in the detection
of intracranial vascular stenoses, Journal of Computer
Assisted Tomography 19, 700–706.

[11] DeLong, E.R., DeLong, D.M. & Clarke-Pearson, D.L.
(1988). Comparing the areas under two or more cor-
related receiver-operating characteristic curves: a non-
parametric approach, Biometrics 44, 837–845.

[12] Dorfman, D.D. & Alf, E. (1969). Maximum likelihood
estimation of parameters of signal detection theory
and determination of confidence intervals-rating method
data, Journal of Mathematical Psychology 6, 487–496.

[13] Dorfman, D.D. & Berbaum, K.S. (1995). Degeneracy
and discrete receiver operating characteristic rating data,
Academic Radiology 2, 907–915.

[14] Dorfman, D.D. & Metz, C.E. (1995). Rejoinder in Sym-
posium on Advances in Statistical Methods for Diag-
nostic Radiology, Academic Radiology 2, Supplement 1,
S76–S78.

[15] Dorfman, D.D., Berbaum, K.S. & Metz, C.E. (1992).
Receiver operating characteristic rating analysis: gen-
eralization to the population of readers and patients
with the jackknife method, Investigative Radiology 27,
723–731.

[16] Egan, J.P. (1975). Signal Detection Theory and ROC
Analysis. Academic Press, New York.



6 Receiver Operating Characteristic (ROC) Curves

[17] Gatsonis, C. (1995). Random-effects models for diagnos-
tic accuracy data, Academic Radiology 2, Supplement 1,
S14–S21.

[18] Gatsonis, C. & McNeil, B.J. (1990). Collaborative eval-
uation of diagnostic tests: experience of the Radiologic
Diagnostic Oncology Group, Radiology 175, 571–575.

[19] Goddard, M.J. & Hinberg I (1990). Receiver operating
characteristic (ROC) curves and non-normal data: an
empirical study, Statistics in Medicine 9, 325–337.

[20] Gray, R. & Begg C.B. (1984). Construction of receiver
operating characteristic curves when disease verification
is subject to selection bias, Medical Decision Making 4,
151–164.

[21] Green, D.M. & Swets, J. (1966). Signal Detection Theory
and Psychophysics. Wiley, New York.

[22] Grey, D.R. & Morgan, B.J.T. (1972). Some aspects of
ROC curve fitting: normal and logistic models, Journal
of Mathematical Psychology 9, 128–139.

[23] Gur, D., Rockette, H.E., Good, W.F., Slasky, B.S.,
Cooperstein, L.A., Straub, W.H., Obuchowski, N.A. &
Metz, C.E. (1990). Effect of observer instruction on
ROC study of chest images, Investigative Radiology 25,
230–234.

[24] Hajian-Tilaki, K.O., Hanley, J.A., Joseph, L. & Col-
let, J.P. (1997). Extension of receiver operating char-
acteristic analysis to data concerning multiple signal
detection tasks, Academic Radiology 4, 222–229.

[25] Hanley, J.A. (1988). The robustness of the binormal
model used to fit ROC curves, Medical Decision Making
8, 197–203.

[26] Hanley J.A. (1989). Receiver operating characteris-
tic (ROC) methodology: the state of the art, Critical
Reviews in Diagnostic Imaging 29, 307–335.

[27] Hanley, J.A. & Hajian-Tilaki K.O. (1997). Sampling
variability of nonparametric estimates of the areas under
receiver operating characteristic curves: an update, Aca-
demic Radiology 4, 49–58.

[28] Hanley, J.A. & McNeil, B.J. (1982). The meaning and
use of the area under an ROC curve, Radiology 143,
129–133.

[29] Hanley, J.A. & McNeil, B.J. (1983). A method of com-
paring the areas under receiver operating characteristic
curves derived from the same set of cases, Radiology
148, 839–843.

[30] Hunink, M.G., Richardson, D.K., Doubilet, P.M. &
Begg, C.B. (1990). Testing for fetal pulmonary maturity:
ROC analysis involving covariates, verification bias,
and combination testing, Medical Decision Making 10,
201–211.

[31] King, J.L., Britton, C.A., Gur, D., Rockette, H.E. &
Davis, P.L. (1993). On the validity of the continuous
and discrete confidence rating scales in receiver oper-
ating characteristic studies, Investigative Radiology 28,
962–963.

[32] Linnet, K. (1987). Comparison of quantitative diagnostic
tests: type I error, power and sample size, Statistics in
Medicine 6, 147–158.

[33] Ma, G. & Hall, W.J. (1993). Confidence bands for
receiver operating characteristic curves, Medical Deci-
sion Making 13, 191–197.

[34] McClish, D.K. (1989). Analyzing a portion of the ROC
curve, Medical Decision Making 9, 190–195.

[35] McClish, D.K. (1995). Invited discussion in Symposium
on Advances in Statistical Methods for Diagnostic Radi-
ology, Academic Radiology 2, Supplement 1, S61–S64.

[36] McCullagh, P. (1980). Regression models for ordinal
data (with discussion), Journal of the Royal Statistical
Society, Series B 42, 109–142.

[37] Metz, C.E. (1978). Basic principles of ROC analysis,
Seminars in Nuclear Medicine 8, 283–298.

[38] Metz, C.E. (1986). ROC methodology in radiological
imaging, Investigative Radiology 21, 720–733.

[39] Metz, C.E. (1989). Some practical issues of experimental
design and data analysis in radiological ROC studies,
Investigative Radiology 24, 234–245.

[40] Metz, C.E. & Shen, J.H. (1992). Gains in accuracy from
replicated readings of diagnostic images: prediction and
assessment in terms of ROC analysis, Medical Decision
Making 12, 60–75.

[41] Metz, C.E., Shen, J.H. & Herman, B.A. (1990). New
methods for estimating a binormal ROC curve from con-
tinuously distributed test results. Paper presented at the
annual meeting of the American Statistical Association,
Anaheim.

[42] Metz, C.E., Wang, P-L. & Kronman, H.B. (1984). A
new approach for testing the significance of differences
between ROC curves from correlated data, in Informa-
tion Processing in Medical imaging, F. Deconink, ed.
Martinus Nijhoff, The Hague, pp. 432–445.

[43] Obuchowski, N.A. & McClish, D.K. (1997). Sample size
determination for diagnostic accuracy studies involving
binormal r.o.c. curve indices, Statistics in Medicine 16,
1529–1542.

[44] Obuchowski, N.A. (1995). Multireader, multimodality
receiver operating characteristic curve studies: hypothe-
sis testing and sample size estimation using analysis of
variance with dependent observations, Academic Radi-
ology 2, Supplement 1, S22–S29.

[45] Obuchowski, N.A. (1996). Nonparametric analysis of
clustered ROC data. Presentation at Eastern North Amer-
ican Biometrics Meeting.

[46] Obuchowski, NA. & Zepp, RC. (1996). Simple steps for
improving multiple-reader studies in radiology, Ameri-
can Journal of Roentgenology 166, 517–521.

[47] Ogilvie, J.C. & Creelman, C.D. (1968). Maximum
likelihood estimation of ROC curve parameters, Journal
of Mathematical Psychology 5, 377–391.

[48] Rockette, H.E. (1995). Contributed comments in Sym-
posium on Advances in Statistical Methods for Diag-
nostic Radiology, Academic Radiology 2, Supplement 1,
S70–S71.

[49] Rockette, H.E., Gur, D. & Metz, C.E. (1992). The use of
continuous and discrete confidence judgments in receiver
operating characteristic studies of diagnostic imaging
techniques, Investigative Radiology 27, 169–172.



Receiver Operating Characteristic (ROC) Curves 7

[50] Swets, J.A. (1986). Indices of discrimination or diagnos-
tic accuracy: their ROCs and implied models, Psycho-
logical Bulletin 99, 100–117.

[51] Swets, J.A. (1986). Form of empirical ROCs in discrim-
ination and diagnostic tasks: implications for theory and
measurement of performance, Psychological Bulletin 99,
181–198.

[52] Swets, J.A. & Pickett, R.M. (1982). Evaluation of Diag-
nostic Systems: Methods from Signal Detection Theory.
Academic Press, New York.

[53] Thompson, M.L. & Zucchini W. (1989). On the statis-
tical analyses of ROC curves, Statistics in Medicine 8,
1277–1290.

[54] Toledano A. & Gatsonis, C.A. (1995). Regression anal-
ysis of correlated receiver operating characteristic data,
Academic Radiology 2, Supplement 1, S30–S36.

[55] Toledano A. & Gatsonis, C.A. (1995). Rejoinder in Sym-
posium on Advances in Statistical Methods for Diag-
nostic Radiology, Academic Radiology 2, Supplement 1,
S81–S82.

[56] Toledano, A.Y. & Gatsonis, C. (1996). Ordinal regres-
sion methodology for ROC curves derived from corre-
lated data, Statistics in Medicine 15, 1807–1826.

[57] Tosteson, A.N.A. & Begg, C.B. (1988). A general
regression methodology for ROC curve estimation,
Medical Decision Making, 8, 204–215.

[58] Turner, D.A. (1978). An intuitive approach to receiver
operating characteristic curve analysis, Journal of
Nuclear Medicine 19, 213–220.

[59] Venkatraman, E.S. & Begg, C.B. (1996). A distribution-
free procedure for comparing receiver operating charac-
teristic curves from a paired experiment, Biometrika 83,
835–848.

[60] Wieand, S., Gail, M.H., James, K.L. & James, B.R.
(1988). A family of nonparametric statistics for com-
paring diagnostic tests with paired or unpaired data,
Biometrika 76, 585–592.

[61] Zhou, X.H. (1996). Empirical Bayes combination of
estimated areas under ROC curves using estimating
equations, Medical Decision Making 16, 24–28.

(See also Diagnostic Test Evaluation Without a
Gold Standard; Diagnostic Tests, Evaluation of)

J.A. HANLEY



Record Linkage

At the core of all descriptive epidemiology studies
lies a data set, with many variables, which has been
gathered to answer a specific hypothesis. Often it
is only as the project develops that the researcher
realizes the potential of exploring alternate study
endpoints by adding in other data about the same
respondents. The tried and tested technique is for
a clerk to look at the individual records, sorted in
some logical order, and put the records together,
applying intuitive decision rules based on human
judgment. As record systems have been computerized
over the past 20 years, one of the greatest impacts
of increased processing power has been to facilitate
linkages between related data sets, even when they
do not share a unique identifier.

Three main techniques are used for record linkage,
Newcombe [13] and Jamieson et al. [9] describe in
detail the technical issues relating to exact matching
and probability linkage (see Matching, Probabilis-
tic). They can be summarized as follows:

1. Unique. Records are linked together where
unique identifiers such as insurance number or
health service number match exactly. The files of
records are computer sorted into the same order,
and matched together within blocks. It is a fairly
simple process, but may only identify 80%–85%
of true matches due to errors in recording of
identifiers.

2. Fuzzy. For data sets which do not have unique
identifiers, key identifiers such as surname, date
of birth, sex, date of interview/treatment, and
postal district are used for linkage. To cope with
coding errors, fuzzy matching identifies records
which are “almost” the same, such as surname
spelling incorrect, or year and month of birth cor-
rect, but day wrong. Computer programs either
present a choice of matches for the user to choose
the best match, or have incorporated a simple
scoring system and determine the best match
from the score. Computer algorithms are well
developed for matching on individual variables,
and this technique provides 85%–90% of true
matches. It requires human intervention and there
may be operator bias.

3. Probability. This is the most sophisticated form
of linkage, in which decision rules on records

matching are programmed based on the proba-
bility of two records being from different people
having the same identifier. These probabilities
are aggregated to a score and checked against a
threshold to determine whether a match is made.
The computer system needs to be tailored for the
data sets to be matched and is processor inten-
sive, but provides linkages of 95%–99% true
matches with false positive rates of 1%–2%.

The following are examples of the uses made of
record linkage within healthcare systems and demon-
strate the value of this powerful technique. Many of
the examples come from uses made of the Scottish
Medical Record Linkage Database [7], which con-
tains morbidity records from Scottish hospitals, and
mortality records from the General Register Office
(Scotland) from 1968 onwards – almost 4 million
people with 12 million episodes.

Medical record linkage poses problems of data
confidentiality and privacy, because the linked data
are comprehensive and the techniques use personal
identifying data. Most analytic studies do not require
access to patient identifiable data once the linkages
have been made. For administrative data sets, strict
controls need to be in place to ensure that the data
are not released to individuals and used for purposes
other than those registered in government legisla-
tion.

The issue of infringing civil liberties, by invasion
of privacy through wrongful use of information, is
currently taxing most governments. Researchers need
to be aware of legislation and appropriate use of data.
For example, in Scotland, access to identifiable data
is controlled by medically qualified data holders, and
a Privacy Advisory Committee [10] has been estab-
lished, with membership drawn from senior medical
officers, legal professions, and the public, to ensure
that ethical approval is in place for record linkage
studies.

Evidence-Based Medicine

The perception remains that descriptive epidemiol-
ogy has little to contribute to the development of
evidence-based medicine with its focus on random-
ized clinical trials (see McPherson [12]). Probability-
based record linkage techniques can make a major
contribution in assessing the efficacy of treatment
regimes at the macro level. For example, using exact
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matching on health service administration numbers,
Evans et al. [4] at the Tayside Medicines Monitoring
Unit are able to use case–control methodology to
review the association of topical nonsteroidal anti-
inflammatory drugs with hospital admission for upper
gastrointestinal bleeding and perforation. The Scot-
tish Health Service are now automating the linkage
between prescribing data, patient hospitalization, and
death profiles. This will establish a facility for post-
marketing surveillance, in which possible adverse
drug reactions can be quickly analyzed and assessed
before the public are alarmed by the media (see Phar-
macoepidemiology, Overview).

Another area in which linkage is being used effec-
tively is the follow-up of very low birthweight chil-
dren and the impact of their improved survival on
health care costs. In California [2], probability-linked
data from the California Birth Cohort and Medicaid
claims in years after birth have been used to evaluate
competing hypotheses for racial and ethnic differ-
ences (see Ethnic Groups) in mortality and health
care costs, and to assess the need for hospital ser-
vices from the improved neonatal survival of these
children.

Outcome Measurement

Evaluating the effects of medical care is not a new
idea, but it has received increased emphasis over
the past decade because of concerns for the qual-
ity and cost of medical care (see Quality of Care).
While most attention has been placed on determining
the effectiveness of new treatment regimes through
randomized control trials, the inclusion criterion for
patients can be so selective (see Eligibility and
Exclusion Criteria) that the true efficacy of the
treatment can only be assessed when it comes into
general usage. Application of record linkage tech-
niques using administrative databases for follow-up
of cohorts of patients with specific disease patterns,
or procedures, permits analysis of outcomes mea-
sures which would otherwise be prohibitively expen-
sive.

The Clinical Resource and Audit Group of the
Scottish Office Department of Health have pioneered
the publication of routine clinical outcome measures
in the UK since 1993. The three reports [17] to date
have been produced following detailed consultation
with health service professionals, to gain consensus

on the measures and to assess the feasibility of
using them to monitor the effectiveness and appro-
priateness of health purchasing strategies. Without a
unique patient identifier, probability linkage is the
key to determining readmission rates, including to
other institutions, and postoperation survival after dis-
charge.

While the measures tend to be presented as inter-
val estimates (see Estimation, Interval), standard-
ized for confounding factors, such as age, sex,
deprivation, and co-morbidities, administrative data
do not yet contain robust measures of severity of
disease. As with all descriptive epidemiology tech-
niques, the outcome measures highlight topics for
more detailed investigation via randomized controlled
trials or clinical audit.

Survival Rates

As the search continues for new, meaningful outcome
measures, one of the main uses of record linkage has
been analysis of survival patterns for disease, espe-
cially for cancer (see Survival Analysis, Overview).
Most civil registration authorities provide an exact
matching service for bona fide researchers. How-
ever, increased computing power has meant that this
process can now be automated to include probabil-
ity or “fuzzy” matching techniques, which increase
the reliability of the links. Within the Scottish Can-
cer Registry, we found that exact matching with
manual techniques under-ascertained almost 5% of
deaths [16], because the procedures were built on
zero tolerance of false positive rates. This resulted
in one study for the nuclear industry showing a
“healthy worker” effect (see Occupational Epidemi-
ology), until another three deaths were determined by
automated probability linkage among the cohort of
employees.

The availability of population-based data in spe-
cific diseases registers, such as cancer, diabetes,
and renal failure, with linkage to death registrations
enables the development of survival tables [16] (see
Life Table), which are of use not only to the profes-
sional dealing with individual patients but also to the
patients and their carers. Society is becoming more
attuned to the concepts of risk, and one of the most
common questions asked when life-threatening dis-
ease is diagnosed is “What is my chance of surviving
1 year, 5 years, or 10 years?”. Insurance compa-
nies are very interested in improved estimates of
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actuarial risk (see Actuarial Methods) for health
care policies.

Changing Treatment Patterns in Hospital
Care

Access to databases containing linked patient
episodes over long time periods (15+ years) helps
to identify the changing treatment patterns and
use of hospital resources by cohorts of patients
with specific disease. For example, the protocol for
clinical treatment of asthma in children has changed
considerably over the past 20 years, and Strachan
et al. [18] used linked data for children with their
first hospital admission for asthma between 1980 and
1984 to explore the increase in subsequent emergency
admissions for the disease during the following 10
years (see Health Care Utilization Data).

In mental health (see Psychiatry) the impact of
policies for shifting care from the acute sector to
the community can be monitored from linked data
sets. Geddes & Juszczak [5] argue that trends in
increased suicide rates for recently discharged female
psychiatric patients may well be related to changes
in discharge protocols due to implementation of gov-
ernment policy and new clinical practice. In a similar
vein, the Scottish Health Service is currently link-
ing mental health discharge records to the general
hospital patient database, to investigate if the pol-
icy of early discharge from psychiatric institutions
has resulted in psychiatric patients being readmitted
to acute care after a short period in the commu-
nity.

The effect on emergency readmission rates from
early hospital discharge and associated quality of
care have been identified by Henderson et al. [8]
and Thomas & Holloway [19]. Investigation of Scot-
tish data demonstrates “like” Trusts which have sig-
nificantly different medical emergency readmission
rates, with inversely related bed occupancy rates and
lengths of continuous inpatient stay. Instead of focus-
ing on efficiency (high throughput, and short length
of hospital stay) commissioners of health care can
consider the effect of a 50% variation in the risk of
emergency readmissions: Does this provide accept-
able levels of value for money versus quality of care
for the patient?

One of the roles of descriptive epidemiology is
to aid the understanding of uncertainty. McPherson

[12] uses the example of 5 year mortalities fol-
lowing treatments for prostatectomy, reported from
analysis of large linked databases, to highlight the
impact of changing clinical practice without the rig-
ors of assessment trials, and the concerns raised
amongst patients when consensus cannot be reached
amongst clinicians on the effect of different treat-
ments.

Health Service Planning

The potential of taking data created routinely as part
of a government’s system for paying for medical care
and turning it into information on health needs and
the health of the population is well demonstrated by
the work of Roos & Shapiro [14] and Roos et al. [15]
and his team at the Manitoba Center for Health Pol-
icy and Evaluation (see Health Services Research,
Overview). The research attempts to move beyond
medical care policy initiatives (e.g. insuring availabil-
ity, quality of care, and efficiency) to health policy
initiatives of improving longevity and quality of life.
As pressures grow, throughout Europe and North
America, to contain the costs of health care by reduc-
ing investment in acute sectors, health planners are
looking to such population health information sys-
tems for quantitative trend data on which to base their
decisions. Evidence is needed to answer questions
such as:

1. Are high risk populations poorly served or do
they have poor health outcomes despite avail-
ability of services?

2. Can we shift resources from acute care to primary
care?

3. What services can be rationed without jeopardiz-
ing at-risk populations?

Lack of population morbidity information leads epi-
demiologists to use hospitalization rates as proxy
measures for underlying morbidity. Improved avail-
ability of general practice diagnosis and treatment
data from administrative systems in the surgery
allows estimation of the true level of demand in com-
munities, which can be linked with hospital discharge
data at a patient level. This is invaluable for needs
assessment work in public health, where commission-
ers of services attempt to balance supply with demand
within small geographic areas (see Small Area Vari-
ation Analysis).
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Longitudinal and Cohort Studies

Many of the most renowned epidemiologic stud-
ies, such as Framingham [20] and Whitehall [11],
used the manual tracking systems available from civil
death registries. The advent of computer technology
has made automated follow-up of survey data for
alternative endpoints other than death a simple pro-
cess – provided that informed consent is obtained
by the subject for access to computerized medical
records.

In 1973–76, a cohort of the population in the
west of Scotland towns of Paisley and Renfrew,
aged 45–64 years, took part in a cardiovascular
survey of mid-life health, the MIDSPAN [6] project.
Participants gave written consent to their medical
records being used for follow-up, and the data set now
includes details of all episodes of hospital care and
death registrations for participants as they have aged
over the past 20 years. It can be used for prospective
case–control studies to investigate determinants of
good and poor health from baseline lifestyle variables
and clinical measurements.

The West of Scotland Coronary Prevention Study
(WOSCOPS) [21] demonstrated the value of auto-
mated linkage in a randomized–controlled trial com-
pared to prospective follow-up using direct contact
with patients. An accuracy check of the study’s
own independent records of deaths and hospital-
izations for the study population with data avail-
able from the Scottish Medical Record Linkage
Database showed that while almost 100% accu-
racy was achieved for deaths, the study records
under-ascertained hospitalizations for cardiovascular
disease.

In the US, the Veterans Affairs database [1] has
formed the source for multicenter randomized and
quasi-randomized health service trials, which are
much easier to plan and conduct in a centralized state
system than in the private sector.

The UK Case–Control Study for Childhood Can-
cers will report findings in 1997. One of the method-
ological issues which has arisen from the study,
access to case notes, has demonstrated the value of
conducting applied research within the health admin-
istration system of the country rather than solely in
an academic environment. The study is investigating
hypotheses for cause and effect of cancer in chil-
dren, covering ionizing radiation, chemical exposure,

preconception and in utero exposure, parental occu-
pational hazards, electromagnetic fields, and infec-
tious exposure.

Summary

This article has described the main applications of
record linkage techniques in epidemiology: from
follow-up studies in randomized controlled trials and
surveys to outcome measurement and survival fol-
lowing hospital care in the general population.

The Chief Medical Officer of the UK government
[3] recently identified the need to use better descrip-
tions of public health risk. We have demonstrated
that, within health administration systems, much of
the data already exists. When integrated using link-
age techniques, these data can be used to build the
knowledge base to identify these risks and to quantify
them in both relative and attributable ways.

The use of such linked databases for descriptive
epidemiology brings the following benefits:

1. data ascertainment, validity, and quality are doc-
umented within the administrative system;

2. linkage can be performed by computer at low
cost relative to staff costs;

3. completeness of linkage is greater than by man-
ual methods;

4. research efforts can focus on the analyses and
interpretation of the data rather than data collec-
tion.

Provided that privacy and confidentiality rules are
strictly applied, and users remember that in any link-
age system, be it exact match or probability-based,
one cannot be 100% certain that the correct data have
been linked, there are vast data repositories available
waiting to unlock the answers to key epidemiologic
questions.
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Reduced Rank Regression

Given a set of predictors (explanatory variables),
x1, x2, . . . , xp, and a response variable, y, the
multiple linear regression procedure finds the best
least squares linear prediction of the response
variable given all of the predictors. If X is an
n × p matrix of n observations on the predictor
variables and y is an n × 1 vector of observations on
the response variable, the multiple regression model
would be

y = Xb,

where b is a p × 1 vector of regression coefficients.
The ordinary least squares estimator for b is

b = (X′X)−1X′y,

and the lack-of-fit of this estimator is given by the
standard error of estimate,

(
y′y − b′X′y
n − p − 1

)1/2

.

Among the many problems associated with mul-
tiple regression is the difficulty of multicollinearity
of the predictor variables (see Collinearity). Multi-
collinearity means that two or more predictor vari-
ables are highly correlated (see Correlation) or that
there are one or more linear constraints on these
variables. In the latter case, X′X does not have an
inverse. Even if these variables are not completely
collinear but are still correlated, the following prob-
lems may arise:

1. obtaining a stable inverse for X′X may be diffi-
cult.

2. as the predictor variables become more cor-
related, the standard errors of the regression
coefficients increase in size and the regression
coefficients become more and more correlated.
These conditions make it difficult to interpret
these coefficients.

A number of procedures have been designed to
deal with these problems. Early solutions include
elimination of predictor variables in the model by var-
ious sequential procedures such as stepwise regres-
sion or the investigation of combinations of subsets
of variables (see Variable Selection). Another proce-
dure is ridge regression, which enhances the chances

of getting a good inverse of X′X at the expense of
introducing bias into the regression coefficients. Most
of these are rather ad hoc procedures. There are also
some straightforward multivariate solutions.

Principal Components Regression

Principal components regression is a technique which
requires the predictor variables to be transformed
into principal components which, in turn, become
the predictors in the least squares solution. Principal
components regression deals directly with the prob-
lem of multicollinearity. If some of the predictors
are perfectly correlated and/or other linear constraints
exist, then the principal components analysis will pro-
duce one or more characteristic roots (eigenvalues)
equal to zero. The characteristic vectors (eigenvec-
tors) associated with these roots may be used to
identify these situations (see, for example, [1]). This
may suggest the deletion of some variables so that
a stable regression solution can still be obtained. In
many cases, the ordinary least squares solution may
experience near-multicollinearity. Because the princi-
pal components are uncorrelated, there is no problem
in principal components regression with matrix inver-
sion. The regression coefficients are also uncorrelated
and there is no inflation of their standard errors. This
regression equation may then be restated back in
terms of the original correlated predictor variables.

In addition to transforming correlated variables
into uncorrelated ones, principal components analy-
sis also allows one to approximate the original data
with k < p components to obtain a more parsimo-
nious description of the structure of the original
variables. Principal components regression may be
carried out with this reduced set of components but
the resultant regression coefficients, in terms of the
original variables, would only be estimates of the
ordinary least squares solution, and the corresponding
standard error of estimate would be larger. However,
if there is not much increase in this quantity and
the principal components are interpretable, then this
could be a useful prediction equation, particularly if
k is small relative to p. This is the goal of principal
components regression.

Principal components regression has been widely
used in many fields, particularly with a reduced set
of components. However, caution should be used
with this technique. The principal components are
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obtained sequentially in order by the amount of
variability of the original variables they account for.
Various stopping rules are available to determine how
many components to retain, the general assumption
being that the variability unaccounted for is inherent
variability. There is no reason to assume that the
components accounting for the most variability will
be the best predictors of the response variable, and
there are many examples in the literature where this
is not so. This would suggest the use of stepwise
principal components regression (see, for instance,
[2]) but more effort has been directed towards some
other methods.

Latent Root Regression

Latent root regression [5, 11] differs from principal
components regression in that the response variable
is included in the principal component analysis. Any
component that has a zero characteristic root has a
linear constraint among the variables, and the corre-
sponding vector should indicate what that would be.
Latent root regression is recommended for this pur-
pose as well as to select variables which would make
the best predictors. Reviews of these techniques are
given by Gunst [4] and Mason [7].

Partial Least Squares Regression

The main criticism of principal components regres-
sion is that there is no guarantee that the larger
components will be the best predictors, so some ad
hoc scheme must be employed. For this reason, there
has been considerable use in the last few years of a
technique called partial least squares regression [12].
This technique is similar to principal components
regression in that it produces a set of vectors for the
predictor variables but does take the response variable
into account. As each vector is obtained, it is imme-
diately related to the response and the reduction in
variability among the predictors. The estimation of
the next vector takes that information into account.
The very nature of partial least squares regression
would indicate that it should do at least as well as
principal components regression for the same number
of retained components.

At the present time, partial least squares regression
has been most widely used by analytical chemists,
and most of the relevant information on applications

is in the chemometrics literature. An algorithm for
performing partial least squares regression may be
found in [3]. Stone & Brooks [8] proposed a tech-
nique called continuum regression in which ordinary
least squares, principal components regression, and
partial least squares regression all fall out as special
cases.

Multiple Responses

In addition to multiple predictors, there may also
be multiple responses. Ordinary least squares and
principal components regression treat each response
as a separate regression problem, neither of them
taking into account the relationships among the
response variables. Partial least squares regression
does take these relationships into account. As par-
tial least squares regression sequentially establishes
a set of vectors for the predictor variables, it simul-
taneously establishes a corresponding set of vectors
for the response variables. For this reason, partial
least squares regression has been referred to as “criss-
cross” regression.

Maximum Redundancy

Being confronted with sets of both predictor and
response variables might suggest the use of canonical
correlation, a technique which obtains sets of vectors
for each set of variables whose corresponding compo-
nents will have maximum correlation. That technique
will not produce an optimum prediction equation but
an optimum solution can be obtained by a simi-
lar technique, maximum redundancy [9, 10], where
redundancy is defined as the trace of the explained
covariance matrix of the responses divided by the
trace of the covariance matrix of the responses. Most
of the applications of maximum redundancy have
been in the fields of psychology and education.

Summary

A number of procedures have been suggested as
alternatives to ordinary least squares to enhance the
interpretation of the relationship between the predic-
tor and response variables and/or to resolve prob-
lems associated with multicollinearity among the
predictor variables. Although the most popular alter-
native, historically, has been principal components
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regression, it does have some weaknesses and is being
replaced by techniques such as partial least squares
regression and maximum redundancy. Because partial
least squares regression and maximum redundancy
have been developed widely in different fields of
application, it has not yet been established what the
relative merits of them are. A unified treatment of the
methods discussed in this article along with compu-
tational details may be found in [6].
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Regression to the Mean

Regression to the mean (RTM) can broadly be
described as the tendency of observations that are
extreme by chance to move closer to the mean when
repeated. The importance of this in biostatistics is that
causality (see Causation) – rather than RTM – may
erroneously be inferred when there is improvement
after a treatment or change after an intervention.

Examples of RTM are common in clinical medi-
cine. For example, a patient is noted to have a higher
than average blood cholesterol on an initial screening
exam. A repeat measurement will also likely be high
but will on average be closer to normal even if the
patient was not given medication. As Turner et al.
[5] note in the context of pain problems, most acute
and some chronic pain will resolve regardless of
treatment. Since many individuals seek treatment or
agree to enroll in trials when symptoms are more
extreme, any change is likely to be an improvement,
making any treatment appear effective – even if it is
useless.

To define RTM further suppose we are interested
in the ability of a drug to lower blood cholesterol and
compare a patient’s initial value x and posttreatment
value y. Figure 1 is a hypothetical graph of x and y

assuming a pretreatment mean µ. For simplicity, we
assume that x and y are both normally distributed
with common variance σ 2 and correlation ρ and
that the drug has no effect.

A patient with a high pretreatment value, x, will
have an expected posttreatment cholesterol level that
is also high. The expected value, E(Y |x), will not
be x but instead will be the lower value E(Y |x) =
x − (1 − ρ)(x − µ). The difference, (1 − ρ)(x − µ),
is the effect of RTM, and this increases for both larger
values of x − µ and for smaller values of ρ. In other
words, the magnitude of the RTM varies directly with
the variability of the process being observed and the
correlation between the two measurements.

When there is a treatment effect, τ ,

E(Y − x|x) = τ − (1 − ρ)(x − µ).

In this case the apparent treatment effect, E(Y − x|x)

will be due in part to the actual treatment effect, τ ,
and to the relative size of both 1 − ρ and x − µ.

In clinical trials, regression to the mean can bias
the estimate of the treatment effect. Suppose that
we now conduct a trial in which a sample of n
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Figure 1 Hypothetical graph of posttreatment vs. blood
cholesterol level pretreatment

patients is taken from the population and compare
the average posttreatment cholesterol values, y, with
the pretreatment values, x. If the sample is a simple
random sample, the difference y − x is an unbiased
estimate of τ because x will have expected value µ.

However, most clinical trials are different in that
we select from only a subset of the population – those
with disease or, in this case, those with a cholesterol
level above some cutoff, say c. In this case y − x does
not estimate the true treatment effect, but instead

E(Y − X|X ≥ c)=τ − (1 − ρ)





σφ

(
c − µ

σ

)

1 − Φ

(
c − µ

σ

)



,

where φ and Φ are the density and cumulative
density function for the normal distribution. Again,
for extreme values of c − u or small values of ρ the
unadjusted treatment effect is biased. Results using
this formula are presented in Table 1, which presents
the effect of regression to the mean for various combi-
nations of selection percentile, x, and correlation, ρ.

Suppose that patients are selected to be enrolled
in a drug trial if their cholesterol levels are high,
say above the 75th percentile. The average percentile
for such patients is the 90th percentile. Assuming
that pre- and posttreatment values have a correlation
coefficient of 0.8, the posttreatment average will have
dropped to the 85th percentile even in the absence
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Table 1 Expected posttreatment percentile for
a given pretreatment cutoff percentile and ρ (see
text)

Selection percentile

ρ 50th 75th 90th 95th

0.0 0.50 0.50 0.50 0.50
0.2 0.56 0.60 0.64 0.66
0.4 0.63 0.69 0.76 0.80
0.6 0.68 0.78 0.85 0.89
0.8 0.74 0.85 0.92 0.95
1.0 0.79 0.90 0.96 0.98

of treatment effect. If ρ = 0.6, then the average
will drop to the 78th percentile. If ρ = 0, then the
expected posttreatment value will be at the 50th
percentile for any pretreatment selection percentile.
If ρ = 1, then there is no bias from RTM.

The term “placebo effect” has been defined by
Turner et al. [5] as the nonspecific effects of treat-
ment attributable to factors other than the active
drug, including physician attention, patient expecta-
tions, changes in behavior, etc. Benefits from taking a
placebo are often attributed to these factors, but RTM
alone can produce such apparent benefits. Regres-
sion to the mean, then, is distinct from a “placebo
effect”. McDonald & Mazzuca [3] reviewed 30 ran-
domly selected clinical trials in which the outcome
was either a biologic, physiologic, or anatomic mea-
surement. The authors noted that the improvement
observed in placebo-treated patients and that of the
estimate that would occur in biochemical variables
due to regression to the mean were “remarkably
similar”.

Since RTM is a consequence of a correlation
between two measurements, x and y, strategies con-
sist of either eliminating the correlation or correcting
it. McDonald & Mazzuca [3] suggest repeating the
pretreatment measurement. In the cholesterol exam-
ple, we would admit patients into the trial if x1

were above the 90th percentile. A repeat pretreat-
ment cholesterol, x2, would be compared with a
posttreatment y1. Senn [4] shows that under restricted

conditions, E(y1 − x2|x1) = τ is independent of x1.
A second possibility is to adjust for the correla-
tion. When the underlying population from which the
selected sample is drawn is large, Chen & Cox [1]
suggest using the population to estimate the correla-
tion and thereby adjust the treatment estimate. Hayes
[2] examines various graphical methods. A third strat-
egy is to conduct a randomized placebo-controlled
clinical trial. This option will yield the most accurate
results, since it involves no conditions or distribu-
tional assumptions.

In an experiment in which before and after
measurements are made in order to evaluate some
intervention, regression to the mean can account
for some and possibly all of the estimated treat-
ment effect. The extent of confounding will depend
on the actual treatment effect, the sampling pro-
cedure used for patient selection, and the correla-
tion between the two measurements. Methods of
analysis and sampling techniques are available to
adjust for regression to the mean, although direct
estimation of treatment effects in trials is probably
best.
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Regression

The use of the term regression in statistics origi-
nated with Francis Galton, to describe a tendency to
mediocrity in the offspring of parent seeds, and was
used by Karl Pearson in a study of the heights of
fathers and sons. The sons’ heights tended on average
to be less extreme than the fathers, demonstrating a
so-called “regression towards the mean” effect (for
details and a description of the most widely used form
of regression analysis, see Linear Regression, Sim-
ple; Multiple Linear Regression). The term is now

used in a wide variety of analysis techniques which
examine the relationship between a response vari-
able and a set of explanatory variables. The nature
of the response variable usually determines the type
of regression that is most natural (for a very general
formulation of regression models and examples see
Generalized Linear Model).

(See also Correlation; Cox Regression Model;
Logistic Regression; Poisson Regression;
Proportional-odds Model)

VERN T. FAREWELL



Regressive Models

Regressive models are designed for the analysis
of correlated and naturally ordered data. They
are regression models with explanatory variables
including functions of preceding outcomes. Autore-
gressive models (see ARMA and ARIMA Models)
are special cases with regression on the immediately
preceding outcomes and are therefore conveniently
indexed by the order, p say, indicating how far
back the lagged values of the series itself should be
regressed on. Thus, a Markov process is a first-order
autoregressive model including only the regression on
the first most immediately preceding outcome; a Yule
process is second-order involving the two immedi-
ately preceding outcomes; and so on. Autoregressive
models have been extensively studied in the context
of long time, or spatial, series in which stationarity,
seasonality, and the possibility of change points (see
Change-point Problem) are of most interest. In the
more general case of regressive models, the regres-
sion may involve just the first or all the preceding
outcomes, as in a study of successive pregnancy out-
comes, or the outcomes of natural links in branching
structures, as, for example, parental disease status in
human pedigree studies.

The emphasis in the present summary is on like-
lihood models for studying biological phenomena
allowing for dependence among the outcomes. The
nature of the measured outcome largely determines
the measure of dependence used. Thus, for continu-
ous outcomes, the correlation coefficient is natural,
whereas for binary outcomes a regression coefficient
that measures the change in the logarithm of the odds
is a more natural measure.

Continuous Outcomes

The regressive model for n correlated and naturally
ordered continuous outcomes y1, y2, . . . , yn can be
constructed following [6] using the Gram–Schmidt
orthogonalization

z1 = y1,

z2 = y2 − b21y1,

z3 = y3 − b31y1 − b32y2, (1)
...

zn = yn − bn1y1 − bn2y2 · · · − bn,n−1yn−1,

i.e. z = By where B is a lower triangular matrix
with 1s along the diagonal and is chosen so that the
zs are uncorrelated. Letting var(y) = V, the covari-
ance matrix of z is the diagonal matrix W = BVB′ =
D[wi], wi scalar. The Jacobian of the transforma-
tion is unity. Let the density function of a p-variate
normal distribution (see Multivariate Normal Dis-
tribution) with mean zero and covariance matrix �

be written as

φ(t, �) = (2π)−p/2|�|−1/2 exp
(− 1

2 t′�−1t
)
.

The density function of y can thus be written as a
product of univariate normal densities:

φ(y, V) = φ(z, W) =
n∏

i=1

φ(zi, wi). (2)

In the language of multiple linear regres-
sion, for i = 1, 2, . . . , n, zi is yi adjusted for
y1, y2, . . . , yi−1; bi1, bi2, . . . , bi,i−1 are the partial
regression coefficients; and wi is the conditional vari-
ance of yi given y1, y2, . . . , yi−1. Let Vi−1 = (σst )

and Ri−1 = (ρst ) denote the variance matrix and cor-
relation matrix of y1, y2, . . . , yi−1, with respective
inverses V−1

i−1 = (σ st ) and R−1
i−1 = (ρst ). Then

bij =
i−1∑

s=1

σisσ
sj =

(
σii

σjj

)1/2 i−1∑

s=1

ρisρ
sj ,

wi =σii −
i−1∑

j=1

σij bij =σii



1 −
i−1∑

j=1

ρij b
∗
ij



=σiiw
∗
i ,

(3)

where

b∗
ij =

(
σji

σii

)1/2

bij and w∗
i = 1

σii

wi.

The computation of bij and wi becomes trivial once
R−1

i−1 is computed, yielding explicit formulas for b∗
ij

and w∗
i .

Consider the case in which y1, y2, . . . , yi−1 can
be put into exactly two subgroups, A and B. Let the
correlation of yi and the elements of class A be η, the
correlation of yi and elements of class B be α, all the
ys in A have the same correlation ρ, all those in B
have the same correlation γ , and every y in A have a
correlation of τ with every y in B. Using the notation
Ii for an identity matrix of order ni, 1i for a column
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vector of ni ones, and Jij for an ni × nj matrix of
ones, the correlation matrix of y1, y2, . . . , yi is

Ri =
[ Ri−1 | η11

| α12

η1′
1 | α1′

2 | 1

]

=
[

(1 − ρ)I1 + ρJ11 | τJ12 | η11

τJ21 | (1 − γ )I2 + γ J22 | α12

η1′
1 | α1′

2 | 1

]
.

The inverse of Ri−1 is

R−1
i−1 =

[
p11I11 + q11J11 p12J12

p21J21 p22I22 + q22J22

]
,

where

p11 = 1

1 − ρ
, q11 = − λ2ρ − n2τ

2

(1 − ρ)(λ1λ2 − n1n2τ 2)

p12 = p21 = − τ

λ1λ2 − n1n2τ 2
,

p22 = 1

1 − γ
, q22 = − λ1γ − n1τ

2

(1 − γ )(λ1λ2 − n1n2τ 2)
,

λ1 = 1 + (n1 − 1)ρ and λ2 = 1 + (n2 − 1)γ.

Then

b∗
ij =






λ2η − n2τα

λ1λ2 − n1n2τ 2
,

if yj is in subgroup A

λ1α − n1τη

λ1λ2 − n1n2τ 2
,

if yj is in subgroup B,

and

w∗
i = 1 − n1η(λ2η − n2τα) + n2α(λ1α − n1τη)

λ1λ2 − n1n2τ 2
.

Some special cases are as follows:

1. n1 = n2 = 1, η = α. Then

b∗
ij = η

1 + τ
and w∗

i = 1 − 2η2

1 + τ
.

2. If y1, y2, . . . , yi belong to class A and class B is
empty, then n1 = i − 1, n2 = 0, γ = 0, η = ρ,
so that

b∗
ij = ρ

1 + (i − 2)ρ
and

w∗
i = 1 − (i − 1)ρ2

1 + (i − 2)ρ
.

3. If α = n1τη/γ1, then

b∗
ij =






η

λ1
, if yj is in class A,

0, if yj is in class B,

and

w∗
i = 1 − n1η

2

λ1
.

The orthogonal variate zi in (1) is then a linear com-
bination of yi and the ys for class A members only.
Here, class A may be taken as all those measure-
ments immediately preceding the ith measurement.
The results are then relevant to the study of autore-
gressive models. For example, n1 = 1 and τ = η = ρ

give α = ρ2, the well-known condition for a Markov
type of dependence. If n1 = 2, we have a Yule type
of dependence.

Regressive Logistic Models for Correlated
Binary Outcomes

In the case of binary outcomes Yj = 1, 0 with asso-
ciated covariates Xj , one can consider the regres-
sion on the preceding outcome Y ∗

j−1 = 2Yj − 1, or
the first outcome (Y ∗

1 ), and on the sum of preced-
ing positives S+

j−1 = ∑j−1
s=1 Ys , preceding negatives

S−1
j−1 = ∑j−1

s=1 (1 − Ys), and the other covariates Xj .
The model is defined by a logistic function; thus

θj = log[Pr(Yj = 1|Y1, . . . , Yj−1, Xj )/

Pr(Yj = 0|Y1, . . . , Yj−1, Xj )]

= γ0 + γ1Y
∗
1 + γ2Y

∗
2 + · · · + γj−1Y

∗
j−1 + βXj ,

where for convenience we have included only one
component of X. To postulate parsimonious versions
so that only a few γ s need to be estimated, consider
the following model introduced by Bonney [7]:

γt =






γ + + γ, if t = j − 1, Y ∗
j−1 = 1,

γ − + γ, if t = j − 1, Y ∗
j−1 = −1,

γ +, if t < j − 1, Y ∗
j−1 = 1,

γ −, if t < j − 1, Y ∗
j−1 = −1.

This parameterization allows the immediately preced-
ing outcome to increase or decrease the logarithm
of the odds of the current outcome by an amount γ
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more than an increase or decrease from a more remote
outcome. The logit of the current outcome becomes

θj = γ0 + γ Y ∗
j−1 + γ +S+

j−1 + γ −(−S−
j−1) + βXj .

The modeling problem is therefore reduced to that
of regression on the immediately preceding outcome,
the number of preceding positives (1s), the number of
preceding negatives (0s), and other covariates. There
is no problem replacing Y ∗

j−1 by Y ∗
1 so that the first

outcome has a different effect on the current out-
come. Some old approaches are special cases. Thus,
for Markov dependence of order 1 as in [14, 15],
and [18], γ + = γ − = 0. The suggestion in [14] of
regressing on the cumulative sum of preceding suc-
cesses corresponds to γ − = 0. Therefore we have
a sufficiently general model against which the sim-
pler models may be tested. It incorporates the natural
explanatory variables one would consider in analyz-
ing a sequence of binary outcomes. If it fits the data,
then we have accounted for covariates of interest as
well as the dependence in the sequence of obser-
vations in terms of a model that is easy to fit and
interpret. Moreover,

S+
j−1 + S−

j−1 = j − 1,

so S+
j−1, S−

j−1, and the serial order j are perfectly
collinear. Hence, any two of them are sufficient in
the regression analysis. If, on the other hand, only one
of them is included, then we have omitted a critical
covariate that may show up as residual dependence.
Table 1 displays an example.

Furthermore, in the case of equally spaced out-
comes, regression on time is the same as regression
on the serial order. In unequally spaced studies,
actual time may replace serial order, as is commonly
done. However, it is likely that significant collinear-
ity with S+

j−1 and S−
j−1 may remain. Moreover, many

unequally spaced serial observations are made at con-
venient periods, e.g. baseline, six months, 12 months,
and 24 months. In such cases a few dummy vari-
ables describing the periods may be better than the
more common linear function of time.

The results for binary outcomes generalize natu-
rally to polytomous outcomes [2, 9].

With regard to the performance of the regressive
models, a large computer simulation study [13]
showed the following:

1. If the regression on preceding outcomes is
ignored as in standard logistic regression, then

Table 1 Frequencies of spontaneous abortiona

Sample
Number of Sequence of
pregnancies outcomesb MRH Leridon Roman

1 0 1435 948 2651
1 201 103 417

2 00 1238 752 1914
01 197 72 261
10 156 62 295
11 45 21 53

3 000 827 590 853
001 176 64 129
010 128 42 188
011 31 8 34
100 100 44 216
101 20 8 30
110 27 12 29
111 8 5 14

4 0000 405 466 240
0001 57 40 41
0010 68 45 64
0011 30 9 18
0100 85 28 65
0101 18 11 26
1000 19 31 103
1001 6 6 18
0110 19 8 23
0111 6 0 5
1010 15 6 24
1011 2 0 1
1100 13 8 15
1101 9 3 7
1110 5 1 5
1111 2 3 5

aExtracted from [22].
b0 = live birth; 1 = spontaneous abortion.
Equivalent models [7]: θi = 5.9157 + 1.5408S+

i−1 −
0.0835S−

i−1 + 0.5322X2 − 0.3124X3, and θi = −6.6443 +
0.8121Si−1 + 0.7285X1 + 0.5322X2 − 0.3123X3, where S+

i−1
is the number of spontaneous previous abortions, S−

i−1 is the
number of previous live births, X1 is the serial pregnancy num-
ber, X2 = 1, X3 = 0 for Leridon, X2 = 0, X3 = 1 for Roman,
X2 = 0, X3 = 0 for MRH, and Si−1 = S+

i−1 + S−
i−1.

the bias in the estimation of the regression
coefficient of a covariate is increased by at least
12% in samples of sizes 200–500 and dependent
groups of size two, and can be as bad as 25% in
groups of size five if the true state of nature is
Markov of order 1, and 30%–60% in the equally
predictive case. In samples of sizes greater than
500, the bias is negligible only if the regression
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coefficient of the covariate and the dependence
are both positive or both negative.

2. Modeling the dependence leads to more robust
estimates of regression parameters, with the
equally predictive model being generally more
robust than the Markov model.

3. Caution should be exercised when the sample
size is small because, while the regressive model
can correct the bias of desired regression esti-
mates, the additional parameters can increase
problems of noncovergence, infinite variances,
and nonunique estimates. Thus, for a sample size
of 50 and group size two, the mean square error
associated with the regressive model that fits an
extra parameter can often be larger than that of
the standard logistic.

Regressive Models in Family Studies

The design of the regressive models for family data
[3, 4, 7, 8] was based on the following observations
on pedigrees (see Figure 1):

1. Dependence among relatives arises from the
biologic relationships, whether genetic or
environmental in origin.

2. Pedigrees are structures evolving in time:
grandparents appear before parents, who in turn
appear before grandchildren, and so on. The
time ordering along vertical lines of descent is
evolutionary.

3. A pedigree, however complex, is made up of
distinct sibships joined through the common
parents. Thus, it is natural to consider models
in which different sibships are conditionally
independent given the intervening parents.

In view of these observations, the regressive
models account for patterns of dependence in family
data by specifying a regression relationship between a
person’s phenotype (Y ), the phenotypes of ancestors
and older relatives (YA), the genotype (g), if

1 2

7 1 2 6 3 9 4 5 6 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I

II

III

Figure 1 A three generational human family or pedigree

any, at some postulated genetic loci, and other
explanatory variables (X). In essence the classical
penetrance function is generalized to include
ancestral phenotypes. The generalized penetrance
function is the conditional probability of Y given
g, YA, and X, i.e.

Pr(Y |g, YA, X).

For a continuous trait, this is replaced by the
probability density function. Including YA in the
regression allows for unspecified (or residual)
factors, such as spouse correlations, unspecified
genes, and cultural and other environmental effects.
Broad patterns of dependence are possible with YA

including only a few relatives, which simplifies
the calculations greatly. In the class A pattern
of dependence parents alone account for residual
correlations among sibs, so that YA includes only
the phenotypes of mother (YM), father (YF), and
spouse (YS) if spouse correlations are not zero; class
B adds the oldest sibs, class C adds the immediately
preceding sibs, and class D includes all preceding
sibs. An example of the penetrance function is given
in Figure 2.
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Figure 2 Estimated penetrance functions for a single
gene in a family study of chronic atrophic gastritis
[5]: 1. homozygous recessive (AA), mother affected;
2. homozygous recessive (AA), mother unaffected; 3.
carrier (AB) or noncarrier (BB), mother affected; 4.
carrier (AB) or noncarrier (BB), mother unaffected,
where penetrance = [1 + exp[θ(g)]]−1, θ(AA) = −3.33 +
0.65ZM + 0.12X for AA persons, θ(AB/A′B) = −10.25 +
0.65ZM + 0.12X for AB or BB persons, ZM = 1 if mother
is affected and ZM = −1 if mother is unaffected, and
X = age at examination. Reproduced from Bonney et al.
[5] by permission of John Wiley & Sons Ltd



Regressive Models 5

Using Correlations to Describe Familial
Dependence [6]

Suppose that the vector y = (y1, y2, . . . , yn)
′ com-

prises n measurements on members of a nuclear
family: father, mother, and n − 2 offspring (sibs), in
that order. We use the following notation:

µi = mean of xi ,
σ 2

i = variance of xi ,
ρFM = father–mother correlation,
ρPO = parent–offspring correlation, and
ρSS = sib–sib correlation.

Usually the means, µi , and sometimes the
variances, σ 2

i , are modeled as linear functions of
explanatory variables including major genotypes, if
any are postulated. The orthogonalization process (1)
yields

z1 = x1 − µ1, and

zi = (xi − µi) −
i−1∑

j=1

bij (xj − µj )

= (xi − µi) −
i−1∑

j=1

σi

σj

b∗
ij (xj − µj), i = 2, . . . , n,

and var(zi) = wi = σ 2
i w∗

i , where

w∗
i = 1,

b∗
21 = ρFM, w∗

2 = 1 − ρ2
FM,

b∗
31 = b∗

32 = ρPO

1 + ρFM
, w∗

3 = 1 − 2ρ2
PO

1 + ρFM
.

For i > 3, we are adjusting xi for xs from individuals
who could be either parents or sibs, i.e. we have a
two-class case. Letting n1 = 2, n2 = i − 3, ρ = ρFM,
γ = α = ρSS, and τ = η = ρPO, we obtain:

b∗
ij =






ρPO

1 + ρFM

[
1 + i − 3

1 − ρSS

(
ρSS− 2ρ2

PO

1 + ρFM

)]−1

,

if j is parent,

1

1 − ρSS

(
ρSS − 2ρ2

PO

1 + ρFM

)

×
[

1 + i − 3

1 − ρSS

(
ρSS − ρ2

PO

1 + ρFM

)]−1

,

if j is a sib,

and

w∗
i = 1 −

[
2ρ2

PO

1 + ρFM
+ (i − 3)ρSS

1 − ρSS

(
ρSS − 2ρ2

PO

1 + ρFM

)]

×
[

1 + i − 3

1 − ρSS

(
ρSS − 2ρ2

PO

1 + ρFM

)]−1

.

For a class A regressive model, Bonney [3] gave
the correlation among sibs due to common parentage
as 2ρ2

PO/(1 + ρFM), so that in the absence of other
sources of correlation, ρSS = 2ρ2

PO/(1 + ρFM). Then
the formulas reduce to

b∗
ij =






ρPO

1 + ρFM
, if j is a parent,

0, if j is a sib,

and

w∗
i = 1 − 2ρ2

PO

1 + ρFM
.

Thus, the orthogonal variate zi in (1) for a sib depends
only on the ys for the parents. See [3] for the formulas
for classes B, C, and D.

Using Variance Components to Describe
Dependence

A popular example of the use of variance compo-
nents with human family data was developed by
Morton & MacLean [21], who proposed a model
for polygenic inheritance in which variances (σ 2)
are partitioned into σ 2 = σ 2

a + σ 2
e for parents and

σ 2 = σ 2
a + σ 2

c + σ 2
r for sibs, where

σ 2
a = variance due to additive polygenic factors,

σ 2
e = variance due to environmental factors,

σ 2
c = variance due to common sibling environmental

factors, and
σ 2

r = variance due to random environmental factors
on sibs such that σ 2

e = σ 2
c + σ 2

r .

Boyle & Elston [12] reviewed and extended the
model to include other sources of variation. For this
model of inheritance, the parent–offspring correlation
is ρPO = 1

2σ 2
a /σ 2 and the sib–sib correlation is ρSS =

( 1
2σ 2

a + σ 2
c )/σ 2. Morton & MacLean assumed zero

spouse correlations (ρFM = 0) and σ 2
i = σ 2 for all

i. Thus, in terms of the regressive models (1), the
variance components model leads to

z1 = x1 − µ1, w∗
1 = 1,

z2 = x2 − µ2, w∗
2 = 1,
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and

z1 = (xi − µ1) −
i−1∑

j=1

b∗
ij (xj − µj), i ≥ 3,

where

b∗
ij =






[
σ 2

1
2σ 2

a

+ (i − 3)

(
σ 2

c + σ 2
r

1
2σ 2

a + σ 2
r

+ σ 2σ 2
c

1
2σ 2

a

(
1
2σ 2

a + σ 2
r

)
)]−1

,

if j is a parent,
[
(i − 3) + σ 2

(
1
2σ 2

a + σ 2
r

)

σ 2σ 2
c + 1

2σ 2
a

(
σ 2

c + σ 2
r

)
]

,

if j is a sib,

and

w∗
i = 1 −

[
1

2

(
σ 2

a

σ 2

)2

+ (i − 3)

×
1
2σ 2

a + σ 2
c

1
2σ 2

a + σ 2
r

1
2σ 2

a (σ 2
c + σ 2

r ) + σ 2σ 2
c

(σ 2)2

]

×
[

1 + (i − 3)

1
2σ 2

a (σ 2
c + σ 2

r ) + σ 2σ 2
c

σ 2
(

1
2σ 2

a + σ 2
r

)
]−1

,

if i ≥ 3.

Using these in (2) leads to a likelihood function
which is a product of univariate normal densities.

Scope of the Regressive Models. Table 2 summa-
rizes the scope of the regressive models for family
studies and the relevant references for further reading.

Table 2 Scope of regressive models regression setup

Dependent variable Explanatory variables

Genotype
(specific) Ancestral Other

Phenotype or major phenotypes covariates
Y g YA X

1. No causal scheme Y YA X

2. Polygenic causal scheme Y YA X

3. Genetic association
(measured genotype)

Y g YA X

4. Segregation analysis Y g

Oligogenic complete
penetrance

Y g

Incomplete penetrance Y g X

More general (includes
mixed models)

Y g YA X

5. Linkage Y g YA X

(two or
more loci)

One trait
One or more

markers
Two or more traits Y g

(vector) (two or
more loci)

6. Pleiotropy Y g YA X

(vector) (one locus)

Some pertinent publications: continuous traits [3, 10]; binary traits [4]; variable age-of-onset in familial disease
[1, 17]; liability models [16]; path analytic models [19, 20]; genetic linkage analysis [8, 11] (see Linkage
Analysis, Model-based).
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Relationship Testing

Methods of genetic analysis generally assume rela-
tionships are known without error within families.
Relationship misclassification due to factors such
as false paternity, unknown adoption, and sample
switches or duplications can compromise genetic
analyses. Therefore, methods have been developed
to detect misspecified relationships within a family
and infer true relationships when putative ones are
incorrect.

Depending on the pedigree structure, analysts
often can detect relationship misspecification by ob-
serving Mendelian inconsistencies within a family:
for example, a parent–offspring pair failing to share
an allele (see Gene), or a sibship exhibiting more
than four alleles. Identifying such inconsistencies
often results from calculating a zero likelihood for
pedigree data, or visually detecting logical inconsis-
tencies in pedigree drawings. Algorithms also exist
for detecting Mendelian inconsistencies and identify-
ing the individual(s) most likely responsible for these
errors [13, 15, 18]. Given smaller family subsets such
as sibling pairs, it may not be possible to identify
misspecified relationships with certainty. Still, with
sufficient marker data, they may be identified proba-
bilistically.

Many relationship inference methods analyze dif-
ferent pairs of relatives. In what follows, we focus on
these relative-pair-based methods. These methods can
be divided into three general categories: likelihood-
based methods, expected allele-sharing methods, and
continuous-data methods. We compare and contrast
these categories of methods. All three categories dis-
tinguish different relationships using the pattern of
alleles shared by the relative pair based on the prin-
ciple that closely related pairs in general share more
alleles than distantly related pairs.

Assumptions and Notation

We assume a noninbred relative pair is typed for
a collection of M codominant markers. Assume
marker k has nk alleles with population frequencies
q1, q2, . . . , qnk

. Let θk be the recombination fraction
between markers k and k + 1 (1 ≤ k ≤ M − 1). We
assume θk is known without error and is the same
for both sexes. If X -linked data are included, then

we assume the sex of each individual is known. Let
Xk be the pair of genotypes at marker k, and X =
(X1, X2, . . . , XM) be all the genotype data for the
pair. Let ibdk and ibsk denote the number of alleles
shared identical by descent (ibd) and identical by state
(ibs), respectively, by the pair at marker k. Finally, let
RPut and R denote the putative relationship and true
relationship for a relative pair (see Linkage Analysis,
Model-free for more detail on ibd and ibs).

Likelihood-Based Methods for
Relationship Inference

Likelihood-based methods for relationship inference
are based on work by Thompson [19], who evaluated
the probability, Pr(Xk|R), of a pair’s data at marker k

conditional on the pair’s relationship. Using Bayes’
rule,

Pr(Xk|R) =
2∑

i=0

Pr(Xk|ibdk = i)Pr(ibdk = i|R).

(1)

Pr(Xk|ibdk = i) is the conditional probability of the
data Xk at marker k, given the pair shares i alleles ibd
at that marker. This probability is a simple function of
ibdk and the allele frequencies q1, q2, . . . , qnk

, and is
independent of the relationship R. These probabilities
were evaluated for an autosomal marker by Thomp-
son [19] and for an X-linked marker by Epstein et al.
[8].

Pr(ibdk = i|R) is the probability a pair of relation-
ship R shares i alleles ibd at marker k; it is a simple
function of R. For example, for an autosomal marker
and i = (0, 1, 2),

Pr(ibdk = i|R = full sibs) = (
1
4 , 1

2 , 1
4

)

and

Pr(ibdk = i|R = parent–offspring) = (0, 1, 0).

Similar probabilities may be calculated for other
relationships and for X-linked data.

The joint probability for M unlinked markers is
then [19]

Pr(X|R)=
M∏

k=1

Pr(Xk|R)
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=
M∏

k=1

[
2∑

i=0

Pr(Xk|ibdk = i)Pr(ibdk = i|R)

]
.

(2)

One can determine the most likely relationship of
a pair by evaluating Pr(X|R) under different rela-
tionships R and inferring the relationship that max-
imizes the joint probability (2). One can also obtain
maximum likelihood estimates of Pr(ibdk = i|R) for
i = 0, 1, 2, and infer the relationship that is most con-
sistent with these estimates [12, 19].

Equation (2) only applies to unlinked markers,
which limits marker number and reduces the ability
to distinguish different relationships. Göring &
Ott [10] and Boehnke & Cox [2] independently
extended the work of Thompson [19] to allow
for linked markers. In particular, they noted that
under the assumption of no genetic interference,
ibd1, ibd2, . . . , ibdM represent a hidden Markov
chain for many relationships R. They then used
Baum’s algorithms [1] to evaluate Pr(X|R). Let
αk(i|R) = Pr(X1, X2, . . . , Xk−1, ibdk = i|R) be the
joint probability of the marker data at the first k − 1
markers and that the pair shares i alleles ibd at
marker k given the pair’s relationship is R. For
the first marker, α1(i|R) = Pr(ibd1 = i|R), which is
evaluated as before. For subsequent markers,

αk+1(j |R) =
2∑

i=0

αk(i|R)Pr(Xk|ibdk = i)

× Pr(ibdk+1 = j |ibdk = i; R). (3)

Pr(ibdk+1 = j |ibdk = i; R) is the transition pro-
bability that a pair of relationship R shares j alleles
ibd at marker k + 1 given they share i alleles ibd at
marker k. These probabilities depend on θk and R.
The transition probabilities for different relationships
were presented for autosomal data by Risch [16] and
for X-linked data by Epstein et al. [8]. One obtains
P(X|R) by the final summation

Pr(X|R) =
2∑

i=0

αM(i|R)Pr(XM |ibdM = i). (4)

Boehnke & Cox [2] calculated Pr(X|R) under
four different relationships [monozygotic (MZ) twin,
full sib, half sib, and unrelated] and inferred the
relationship that maximized this probability. Göring
& Ott [10] assumed prior probabilities for full sibs,

half sibs, and unrelated pairs in the study population
and calculated the posterior probability, Pr(R|X), of
each of these relationships using Bayes’ rule.

McPeek & Sun [12] and Epstein et al. [8] ex-
tended the method of Göring & Ott [10] and Boehnke
& Cox [2] to test additional relationships including
parent–offspring, grandparent–grandchild, avuncular
(e.g. aunt–niece) and first cousins. McPeek & Sun
[12] evaluated Pr(X|R) and then used a likelihood
ratio statistic to test the null hypothesis that the
putative relationship of a pair is correctly specified
against the alternative hypothesis that the putative
relationship is misspecified. Under the alternative,
they maximized the likelihood as a function of the
probability from among the other tested relationships.
Their likelihood ratio statistic is skewed, so they
estimated significance by simulation. For more dis-
tant relationships such as avuncular and first cousins,
McPeek & Sun [12] noted that {ibdk} no longer form
a Markov chain [9], which complicates the likelihood
calculation. They remedied this problem by calculat-
ing the likelihood for these more distant relationships
under an augmented ibd Markov chain.

Epstein et al. [8] calculated Pr(X|R) for a vari-
ety of relationships and inferred the relationship that
maximized this probability. Unlike McPeek & Sun
[12], they chose to approximate Pr(X|R) for avun-
cular and first-cousin relationships by incorrectly
assuming {ibdk} are Markovian. This approximate
likelihood is an adequate substitute for the true like-
lihood in the inference of avuncular pairs and first
cousins [12].

Broman & Weber [3] and Epstein et al. [8] ex-
tended these likelihood-based methods to allow for
genotyping error. Failure to allow for genotyping
error has only a modest impact for many relationships
but often leads to incorrect classification of MZ twins
and parent–offspring pairs. To model genotyping
error, they let ε denote the probability that a genotype
is chosen at random according to population genotype
frequencies and let 1 − ε be the probability that
genotyping is done correctly with certainty. For this
genotyping-error model, the only component altered
is Pr(Xk|ibdk = i). If either member of the pair is
correctly genotyped for marker k, then Pr(Xk|ibdk =
i) remains the same. If either member is randomly
genotyped, then the pair is effectively unrelated.
Hence,

Pr(Xk|ibdk = i; ε)
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=(1 − ε)2Pr(Xk|ibdk = i; ε=0)

+[
1 − (1 − ε)2] Pr(Xk|ibdk =0; ε=0).

(5)

While this random-genotype model is not a true rep-
resentation of how genotype error occurs, it is com-
putationally simple and can detect errors generated
by more realistic error mechanisms [6].

Expected Allele-Sharing Methods for
Relationship Inference

In contrast to likelihood-based methods, allele-sharing
methods directly compare the observed allele shar-
ing of a relative pair with that expected given the
pair’s putative relationship. These methods originated
with Chakraborty & Jin [5]. Ehm & Wagner [7] and
McPeek & Sun [12] proposed ibs-based test statis-
tics to detect misspecified relationships based on a
set of linked autosomal markers. Stivers et al. [17]
derived an analogous ibs-based test statistic limited
to unlinked markers.

Ehm & Wagner [7] only tested pairs of putative
full sibs, although one could easily extend their
method to test other putative relationships. They
based their test on half the total number of alleles
shared ibs by a pair across a series of M autosomal
markers:

SEW = 1

2

M∑

k=1

ibsk.

The authors standardized SEW by subtracting the
mean of SEW and dividing by its standard deviation,
where they calculated both the mean and variance
assuming the putative relationship of full sibs.

McPeek & Sun [12] described essentially the
same statistic generalized to any arbitrary putative
relationship. Their test statistic relied on the average
number of alleles shared ibs by the pair across a series
of markers:

SMS = 1

M

M∑

k=1

ibsk.

They also standardized the sum, again based on
the putative relationship for the pair. For large M ,
the resulting standardized statistics ZEW and ZMS are
approximately distributed as standard normal if the
putative relationship is true.

Since ibd-based methods often are more powerful
than ibs-based ones, McPeek & Sun [12] derived
an analogous ibd-based allele-sharing statistic. This
statistic, which they called the expected identical
by descent (Eibd) statistic, is the average estimated
number of alleles shared ibd by a pair at a series of
markers, conditional on the marker genotypes and the
putative relationship; it takes the form

Eibd = 1

M

M∑

k=1

E(ibdk|Xk; RPut).

Eibd is approximately distributed as normal if the
putative relationship is true.

McPeek & Sun [12] also created an ibd-based
method that is conditional on ibs sharing. This
statistic, which they called the adjusted ibs-sharing
statistic (Aibs), has the form

Aibs = 1

M

M∑

k=1

Aibsk.

For marker k, the author calculated Aibsk by sum-
ming over all four possible draws of an allele from
each member of the relative pair. For a given draw,
the authors evaluated the probability that the two alle-
les drawn from the pair are shared ibd given they
are shared ibs and the putative relationship of the
pair. Aibs approximately follows a normal distribu-
tion under the putative relationship.

For putative full sibs, Olson [14] presented an ibd-
sharing statistic that infers the most likely relationship
of a pair when the putative relationship is rejected.
The method has some similarities with the Eibd
statistic since both calculate the expected number of
alleles shared ibd by a relative pair. However, while
one calculates Eibd at a series of markers, Olson [14]
considered any location along the genome. Let îbds

denote the estimated number of alleles shared ibd by
the pair at some genomic location s, where îbds is
calculated using existing multipoint methods such as
those described in Kruglyak et al. [11]. For full sibs,
Olson [14] standardized îbds as Zs = √

2(îbds − 1),
and calculated the expected ibd sharing along a
chromosome as

Yc = 1

Lc

∫ Lc

0
Zs ds,

where c denotes an autosomal chromosome of interest
and Lc denotes the length of that chromosome. She
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then calculated an overall statistic across all 22
autosomes as

Y =
(

22∑

c=1

Yc

)/[
22∑

c=1

var(Yc)

] 1
2

.

Y approximately follows a standard normal distribu-
tion under the putative relationship of full sibs.

Since one does not estimate ibd sharing contin-
uously along a chromosome, but rather at a num-
ber of points spaced at equal intervals, Olson [14]
approximated Yc by another statistic

Ŷc =
d
√

2
P∑

p=1

(
îbdp − 1

)

P
,

where P denotes the number of points where one esti-
mates ibd and d denotes the distance between adja-
cent points. Then, she calculated the overall approx-
imate Ŷ in the same analogous fashion as Y . Her
simulations demonstrated that Ŷ often has smaller
tail probabilities than a standard normal distribution.
Therefore, Olson [14] calculated relationship criti-
cal values for Ŷ , which are functions of the genome
length and the average marker information content.
Her method inferred the relationship based on these
critical values.

Continuous-Data Methods for Relationship
Inference

Both likelihood-based and expected allele-sharing
methods use the allele sharing of a relative pair at
discrete points along the genome to infer relationship.
Continuous-data methods assume that, with advances
in sequencing technology, it may soon be possible
to observe ibd allele sharing continuously along a
chromosome. Relationship inference methods based
on continuous data should be more powerful than
methods based on discrete data, since the patterns
and lengths of the sharing provide information for
distinguishing different relationships.

Browning [4] used Monte Carlo methods to esti-
mate the likelihood of a particular relationship of
a pair using simulated continuous-ibd gamete data.
She calculated the likelihood for the observed data
weighted by multiple crossover processes consistent

with the data simulated from the particular relation-
ship. She evaluated this likelihood under both the
putative relationship and the alternative one and then
constructed a likelihood ratio statistic for inference.
As with other Monte Carlo procedures, this method
is computationally intensive.

Zhao & Liang [20] developed a method to evalu-
ate the exact likelihood for the continuous-ibd gamete
data using the theory of continuous-time Markov
chains. The authors developed a relationship-specific
intensity matrix that denotes the transitions from
ibd sharing to nonsharing and vice-versa along the
genome. Using this intensity matrix and the observed
lengths of ibd sharing and nonsharing along the chro-
mosome, the authors calculated the exact likelihood
for the data under the given relationship. The authors
then constructed a likelihood ratio statistic to test the
putative relationship against an alternative one.

Discussion

Likelihood-based and expected allele-sharing meth-
ods provide an efficient means of distinguishing
a variety of relationships. Simulation studies have
shown that likelihood-based methods tend to have
greater power to reject an incorrect putative rela-
tionship than expected allele-sharing methods under
a variety of marker and map situations [7, 12].
Likelihood-based methods can also infer the actual
relationship of the relative pair if the putative one
is rejected. With the exception of Olson [14], none
of the expected allele-sharing methods infer the
actual relationship of a pair if the putative one is
rejected.

The likelihood-based and expected allele-sharing
methods rely on several assumptions. They assume
that intermarker recombination fractions and popula-
tion marker allele frequencies are known and assume
that crossover interference (see Genetic Map Func-
tions) is absent. In principle, the violation of these
assumptions might lead to biased results; in fact, this
appears not to be the case. Epstein et al. [8] explored
the effect of recombination fraction misspecification
and found their likelihood-based method was robust
to such error. McPeek & Sun [12] investigated the
effect of misspecified allele frequencies and found
their ibs-based statistics were more sensitive to error
than their likelihood-based method and Eibd statistic.
The authors also investigated the effect of crossover
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interference and found that it had a trivial effect on
their results.

In theory, continuous-data methods should have
more power than the other methods to infer the
most likely relationship, since they use more data.
However, as of yet, scientists cannot readily apply
these methods because continuous data with known
ibd sharing and nonsharing are unavailable. The
power of the continuous-data methods to differen-
tiate commonly tested relationships such as full sibs,
half sibs, and grandparent–grandchild is unknown.
Browning [4] and Zhao & Liang [21] only applied
their methods to relatively distant relationships,
including greatgrandparent–greatgrandchild and first
cousins.

This work concentrated on inference methods for
pairwise relationships. Recently, Sieberts et al. [17]
developed a likelihood-based method for relationship
inference for trios of relatives. The addition of a third
relative is valuable since it can increase the power to
infer relationships correctly. The authors constructed
their likelihood by extending the Baum algorithms [1]
in (3) and (4) to accommodate trios. Their method
also allowed for a general error model that makes
no assumptions about the relationship between the
observed marker phenotype and the true underlying
marker genotype. The previous error models of
Broman and Weber [3] and Epstein et al. [8] both
made the unrealistic assumption that the observed
marker phenotype and true marker genotype were
independent conditional on the occurrence of an error.
Sieberts et al. [17] applied their trio-based method
to real data examples and showed their method
has an increased ability to distinguish relationships
and requires less marker data for proper inference
compared to pairwise methods. While their method
can be more computationally intense than pairwise
methods (depending on the chosen error model), the
extra amount of computer time generally should not
prevent efficient analysis.

Conclusions

Relationship testing of relative pairs within families
is important to ensure the validity of analysis results.
We have presented a variety of inference methods that
can be used to test the putative relationship of a pair.
Some methods presented here can also infer the most
likely relationship of the pair when the putative one is

incorrect. Unless otherwise noted, these methods are
accurate, computationally fast, and robust to model
misspecifications. Software for these methods has
been developed and can be downloaded, usually for
free, from the World Wide Web [7, 8, 10, 14, 17].
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Relative Hazard

The relative hazard is the ratio of two hazard rate
functions at a given time. If this hazard ratio is
constant, as is assumed in the proportional hazards
model, it can be consistently estimated both from

cohort and from time-matched case–control studies
(see Density Sampling). Over a small time interval,
the relative hazard can be estimated as the incidence
density ratio, also known as the incidence rate ratio.

MITCHELL H. GAIL



Relative Odds

The relative odds, or odds ratio, is the ratio of the
odds of disease in an exposed cohort divided by
that in an unexposed cohort. The relative odds can
be estimated not only from cohort data but also
from case–control data, because the relative odds of
exposure comparing cases with disease-free controls
equals the relative odds of disease comparing exposed

with unexposed [1]. For rare diseases, the odds ratio
approximates the relative risk.

Reference

[1] Cornfield, J. (1951). A method of estimating comparative
rates from clinical data. Application to cancer of the lung,
breast and cervix, Journal of the National Cancer Institute
11, 1269–1275.
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Relative Risk Modeling

Risk models are used to describe the hazard function
(see Hazard Rate) λ(t, z) for time-to-failure data as
a function of time t and covariates Z = Z1, . . . , Zp,
which may themselves be time dependent. The term
“relative risk models” is used to refer to the covariate
part r(·) of a risk model in a proportional hazards
form

λ(t, Z) = λ0(t) r[Z(t); β], (1)

where β represents a vector of parameters to be esti-
mated. In the standard proportional hazards model,
the relative risk term takes the loglinear form
r(Z, β) = exp(Z′β). This has the convenient prop-
erty that it is positive for all possible covariate and
parameter values, since the hazard rate itself must
be nonnegative. However, in particular applications,
some alternative form of relative risk model may be
more appropriate.

First, an aside on the subject of time is warranted.
Time can be measured on a number of different
scales, such as age, calendar time, or time since start
of observation. One of these must be selected as the
time axis t for use of the proportional hazards model.
In clinical trials, time since diagnosis or start of
treatment is commonly used for this purpose, since
one of the major objectives of such studies is to make
statements about prognosis. In epidemiologic studies,
however, age is the preferred time axis, because it
is usually a powerful determinant of disease rates,
but it is not of primary interest; thus, it is essential
that its confounding effects be eliminated. However,
other temporal factors, such as calendar date, or time
since exposure began may still be relevant and can
be handled either by treating them as covariates or
by stratification.

Why Model Relative Risks?

Before proceeding further, it is worth pausing to
inquire why one might wish to adopt the propor-
tional hazards model at all. Certainly, there are
examples of situations where some other form of
model provides a better description of the under-
lying biologic process. Two alternative models that
have received some attention are the additive haz-
ards model λ(t, Z) = λ0(t) + Z′β and the acceler-
ated failure-time model S(t, Z) = S0[t exp(Z′β)],

where S(t) = exp[− ∫ t

0 λ(u) du] is the survival func-
tion. Although any risk model can be reparameterized
in proportional hazards form, it may be that a more
parsimonious model can be found using some alter-
native formulation. For example, the additive risk
model could be written as λ(t, Z) = λ0(t)(1 + Z̃′β),
where Z̃ = Z/λ0(t) if the baseline hazard λ0(t) were
some known parametric function, such as a set of
external rates for an unexposed population. In this
case, whether the proportional hazards or additive
hazards model provides a more parsimonious descrip-
tion of the data depends on whether relative risk or
the excess risk is more nearly constant over time
(or requires the fewest time-dependent interaction
effects).

The advantages of relative risk models are both
mathematical and empirical. Mathematically, the pro-
portional hazards model allows “semiparametric”
estimation of covariate effects via partial likelihood
without requiring parametric assumptions about the
form of the baseline hazard. Furthermore, at least
with the standard loglinear form of the relative risk
model, asymptotic normality seems to be achieved
faster in many applications than for most alternative
models. Empirically, it appears that many failure-time
processes do indeed show rough proportionality of
the hazard to time and covariate effects, at least with
appropriate specification of the covariates. Evidence
of this phenomenon for cancer incidence is reviewed
in Breslow & Day [2, Chapter 2]: age-specific inci-
dence rates from a variety of populations have more
nearly constant ratios than differences.

Data Structures and Likelihoods

Failure-time data arise in many situations in biology
and medicine. In clinical trials, time-to-death or time-
to-disease-recurrence are frequently used endpoints.
In epidemiology, cohort studies are often concerned
with disease incidence or mortality in some exposed
population, and case–control studies can be viewed
as a form of sampling within a general population
cohort. All these designs involve the collection of
a set of data for each individual i = 1, . . . , I com-
prising a failure or censoring time ti (see Censored
Data), a censoring indicator di = 1 if the failure time
is observed (i.e. the subject is affected), zero oth-
erwise, and a vector of covariates zi , possibly time
dependent.
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The appropriate likelihood depends on the sam-
pling design and data structure. For a clinical trial or
cohort study with the same period of observation for
all subjects, but where only the disease status, not the
failure-time itself, is observed, a logistic model for
the probability of failure of the form Pr(D = 0|Z) =
[1 + αr(Z, β)]−1 might be used, where α is the odds
of failure for a subject with Z ≡ 0. Again, the stan-
dard form is obtained using r(Z, β) = exp(Z′β). The
likelihood for this design would then be

L(α, β) =
∏

i

Pr(D = di |Z = zi ; α, β)

=
∏

i

[αr(zi ; β)]di

1 + αr(zi ; β)
. (2)

The same model and likelihood function would be
used for an unmatched case–control study, except
that α now involves the control sampling fractions as
well as the baseline disease risk.

In a clinical trial or cohort study in which the
failure times are observed, the proportional hazards
model (1) leads to a full likelihood of the form

L[λ0(·), β] =
∏

i

λ0(ti)
di r[zi (ti); β]di

× exp

{
−

∫ ti

si

λ0(t) r[zi (t); β] dt

}
, (3)

where si denotes the entry time of subject i. Use of
the full likelihood requires specification of the form
of the baseline hazard. Cox [6] proposed instead a
“partial likelihood” of the form

L(β) =
N∏

n=1

r[zin (tn); β]
∑

j∈Rn

r[zj (tn); β]
, (4)

where n = 1, . . . , N indexes the observed failure
times, in denotes the individual who fails at time tn
and Rn denotes the set of subjects at risk at time
tn. This likelihood does not require any specification
of the form of the baseline hazard; the estimation
of β is said to be “semiparametric”, as the relative
risk factor is still specified parametrically (e.g. the
loglinear model in the standard form). This partial
likelihood can also be used to fit relative risk models
for matched case–control studies (including nested
case–control studies within a cohort), where n now

indexes the cases and Rn indicates the set comprising
the nth case and his matched controls.

For very large data sets, it may be more convenient
to analyze the data in grouped form using Poisson
regression. For this purpose, the total person-time
of follow-up is grouped into k = 1, . . . , K categories
on the basis of time and covariates, and the number
of events Nk and person-time Tk in each category
is recorded, together with the corresponding val-
ues of the (average) time tk and covariates zk . The
proportional hazards model now leads to a Poisson
likelihood for the grouped data of the form

L(λ, β) =
K∏

k=1

[λkTkr(zk; β)]Nk

× exp[−λkTkr(zk; β)]

Nk!
, (5)

where λk = λ0(tk) denotes a set of baseline hazard
parameters that must be estimated together with β.

Approaches to Model Specification

For any of these likelihoods, it suffices to substi-
tute some appropriate function for r(Z; β) and then
use the standard methods of maximum likelihood
to estimate its parameters (see Estimation) and test
hypotheses (see Hypothesis Testing). In the remain-
der of this article, we discuss various approaches to
specifying this function. The major distinction we
make is between empiric and mechanistic approaches.
Empiric models are not based on any particular bio-
logic theory for the underlying failure process, but
simply attempt to provide a parsimonious descrip-
tion of it, particularly to identify and quantify the
effects of covariates that affect the relative hazard.
Perhaps the best known empiric model is the log-
linear model for relative risks, but other forms may
be appropriate for testing particular hypotheses or
for more parsimonious modeling in particular data
sets, as discussed in the following section. With a
small number of covariates, it may also be possible
to model the relative risk nonparametrically. Mech-
anistic models, on the other hand, aim to describe the
observed data in terms of some unobservable under-
lying disease process, such as the multistage theory
of carcinogenesis. We touch on such models briefly
at the end.
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Before proceeding further, it should be noted that
what follows is predicated on the assumption that
the covariates Z are accurately measured (or that the
exposure–response relationship that will be estimated
refers to the measured value of the covariates, not
to their true values). There is a large and growing
literature on methods of adjustment of relative risk
models for measurement error (see Measurement
Error in Epidemiologic Studies).

Empiric Models

The loglinear model, ln r(Z; β) = Z′β, is probably
the most widely used empiric model and is the stan-
dard form included in all statistical packages for
logistic, Cox, and Poisson regression (see Software,
Biostatistical). As noted earlier, it is nonnegative
and it produces a nonzero likelihood for all possible
parameter values, which doubtless contributes to the
observation that in most applications, parameter esti-
mates are reasonably normally distributed, even with
relatively sparse data. However, the model involves
two key assumptions that merit testing in any partic-
ular application:

1. for a continuous covariate Z, the relative risk
depends exponentially on the value of Z; and

2. for a pair of covariates, Z1 and Z2, the
relative risk depends multiplicatively on the
marginal risks from each covariate separately
(i.e. r(Z; β) = r(Z1; β1)r(Z2; β2)).

Neither of these assumptions is relevant for a single
categorical covariate with K levels, for which one
forms a set of K − 1 indicator variables correspond-
ing to all levels other than the “referent” category.
In other cases, the two assumptions can be tested
by nesting the model in some more general model
that includes the fitted model as a special case. This
test can be accomplished without leaving the general
class of loglinear models. For example, to test the
first assumption, it may suffice to add one or more
transformations of the covariate (such as its square)
to the model and test the significance of its addi-
tional contribution. To test the second assumption,
one could add a single product term (for two contin-
uous or binary covariates) or a set of (K − 1)(L − 1)

products for two categorical variables with K and L

levels respectively.
If these tests reveal significant lack of fit of the

original model, one might nevertheless be satisfied

with the expanded model as a reasonable descrip-
tion of the data (after appropriately testing the fit of
that expanded model). However, one should then also
consider the possibility that the data might be more
parsimoniously described by some completely differ-
ent form of model. In choosing such an alternative,
one would naturally be guided by what the tests of
fit of the earlier models had revealed, as well as by
categorical analyses. For example, if a quadratic term
produced a negative estimate, that might suggest that
a linear rather than loglinear model might fit better;
similarly, a negative estimate for an interaction term
might suggest an additive rather than multiplicative
form of model for joint effects. In this case, one
might consider fitting a model of the form r(Z; β) =
1 + Z′β. Alternatively, one might prefer a model that
is linear in each component, but multiplicative in their
joint effects, r(Z; β) = ∏

p(1 + Zpβp), or one that
is loglinear in each component but additive jointly,
r(Z; β) = 1 + ∑

p[exp(Zpβp) − 1].
In a rich data set, the number of possible alter-

native models can quickly get out of hand, so some
structured approach to model building is needed. The
key is to adopt a general class of models that would
include all the alternatives one might be interested
in as special cases, allowing specific submodels to
be tested within nested alternatives. A general model
that has achieved some popularity recently consists
of a mixture of linear and loglinear terms of the form

r(Z, W; β, γ )

= exp(W′
0γ0)

[
1 +

M∑

m=1

Z′
mβm exp(W′

mγm)

]
, (6)

where βm and γm denote vectors of regression coef-
ficients corresponding to the subsets of covariates
Zm and Wm included in the mth linear and log-
linear terms, respectively. Thus, for example, the
standard loglinear model would comprise the single
term m = 0, while the linear model would comprise
a single term m = 1 with no covariates in the loglin-
ear terms. A special case that has been widely used
in radiobiology (see Radiation) is of the form

r(Z, W; β; γ ) = 1 + (β1Z + β2Z
2)

× exp(−β3Z + W′γ ),

where Z represents radiation dose (believed from
microdosimetry considerations to have a linear-quad-
ratic effect on mutation rates at low doses multiplied
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by a negative exponential survival term to account for
cell killing at high doses) and W comprises modifiers
of the slope of the dose–response relationship, such
as attained age, sex, latency, or age at exposure. For
example, including the log of latency and its square
in W allows for a lognormal dependence of excess
relative risk on latency (see Poisson Regression in
Epidemiology for a discussion of software for fitting
such models).

Combining linear and loglinear terms, using the
same p covariates, would produce a model of the
form r(Z; β, γ ) = exp(Z′γ )(1 + Z′β) against which
the fit of the linear and loglinear models could be
tested with p df. Although useful as a test of fit of
these two specific models, the interpretation of the
parameters is not straightforward since the effect of
the covariates is essentially split between the two
components. It would be of greater interest to form a
model with a single set of regression coefficients and
an additional mixing parameter for the combination
of the submodels. Conceptually the simplest such
model is the exponential mixture [28]

r(Z; β; θ) = (1 + Z′β)1−θ exp(θZ′β), (7)

which produces the linear model when θ = 0 and the
loglinear model with θ = 1. An alternative, based
on the Box–Cox transformation, was proposed by
Breslow & Storer [3], which also includes the lin-
ear and loglinear models as special cases. However,
Moolgavkar & Venzon [20] pointed out both of these
mixture models are sensitive to the coding of the
covariates: for example, for binary covariates, rela-
belling the two possible values leads to different
models, leading to different inferences both about
the mixing parameter and the relative importance of
the component risk factors. Guerro & Johnson [12]
developed a variant of the Box–Cox model of the
form

r(Z; β, θ) =
{

exp(Z′β), θ = 0,

(1 + θZ′β)1/θ , θ �= 0,
(8)

which appears to be the only model in the litera-
ture to date that does not suffer from this difficulty.
These kinds of mixtures could in principle also be
used to compare relative risk with additive (excess)
risk models, although the interpretation of the β coef-
ficient becomes problematic because it has different
dimensions under the different submodels.

Although suitable for testing multiplicativity vs.
additivity with multidimensional categorical data,

these mixtures are less useful for continuous covari-
ates because they combine two quite different com-
parisons (the form of the dose–response relationship
for each covariate and the form of their joint effects)
into a single mixing parameter. One way around this
difficulty is to compare linear and loglinear models
for each covariate separately first to determine the
best form of model, then to fit joint models, test-
ing additivity vs. multiplicativity. Alternatively, one
could form mixtures of more than two submodels
with different mixing parameters for the different
aspects.

A word of warning is needed concerning infer-
ence on the parameters of most nonstandard mod-
els. Moolgavkar & Venzon [20] pointed out that
for nonstandard models, convergence to asymptotic
normality can be very slow indeed. Thus, the log-
likelihoods are generally far from quadratic, leading
to highly skewed confidence regions. For this reason,
Wald tests and confidence limits should generally
be avoided. Furthermore, as the parameter moves
away from the null, the standard error increases
more quickly than the mean, so that the Wald test
can appear to become less and less significant the
larger the value of the parameter [13, 34]. These
problems are particularly important for the mixing
parameters θ , for which inference should be based on
the likelihood ratio test and likelihood-based con-
fidence limits. For example, Lubin & Gaffey [15]
describe an application of the exponential mixture of
linear-additive and linear-multiplicative models [28]
to testing the joint effect of radon and smoking on
lung cancer risk in uranium miners; the point esti-
mate of θ was 0.4, apparently closer to additivity than
multiplicativity, but the likelihood ratio tests rejected
the additive model (χ2

1 = 9.8) but not the multiplica-
tive model (χ2

1 = 1.1). A linear mixture showed an
even more skewed likelihood, with θ̂ = 0.1 (appar-
ently nearly additive) but with very similar likelihood
ratio tests that rejected the additive but not the mul-
tiplicative model.

Models for Extended Exposure Histories

Chronic disease epidemiology often involves mea-
surement of an entire history of exposure {X(u), u <

t} which we wish to incorporate into a relative risk
model through one or more time-dependent covari-
ates Z(t). How this is done depends upon one’s
assumptions about the underlying disease mechanism.
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We defer for the moment the possibility of modeling
such a disease process directly and instead continue
in the vein of empiric modeling, now focusing on
eliciting information about the temporal modifiers of
the exposure–response relationship.

Most approaches to exposure–response modeling
in epidemiology are based on an implicit assumption
of dose additivity, i.e. that the excess relative risk at
time t is a sum of independent contributions from
each increment of exposure at earlier times u, pos-
sibly modified in some fashion by temporal factors.
This hypothesis can be expressed mathematically as

r[t, X(·); β; γ ] = R[Z(t); β],

where

Z(t) =
∫ t

0
f [X(u); α] g(t, u; γ ) du, (9)

and where R(Z; β) is some known relative risk
function such as the linear or loglinear models
discussed above, f is a known function describ-
ing the modifying effect of dose rate, and g is a
known function describing the modifying effect of
temporal factors. The simplest weighting functions
would be f (X) = X and g(t, u) = 1, for which Z(t)

becomes cumulative exposure, probably the most
widely used exposure index in epidemiology. For
many disease with long latency, such as cancer,
it is common to use lagged cumulative exposure,
corresponding to a weighting function of the form
g(t, u; γ ) = 1 if t − u > γ , zero otherwise. Other
simple exposure indices might include time-weighted
exposure

∫ t

0 X(u) (t − u) du or age-weighted expo-
sure

∫ t−γ

0 X(u) u du, which could be added as addi-
tional covariates to R(Z; β) to test the modifying
effects of latency or age at exposure. The function
f can be used to test dose-rate effects (the phe-
nomenon that a long, low-intensity exposure has a
different risk from a short, high-intensity exposure
for the same cumulative dose). For example, one
might adopt a model of the form f (X) = Xα or
f (X) = X exp(−αX) for this purpose.

Models that do not involve unknown parameters
α and γ are easily fitted using standard software by
the device of computing the time-dependent covari-
ate(s) for each subject in advance. Relatively simple
functions of γ (such as the choice of lagging inter-
val in the simple latency model) might be fitted by
evaluating the likelihood over a grid of values of

the parameter. For more complex functions g(t, u; γ ),
such as a lognormal density in t − u with unknown
mean and variance (and perhaps additional depen-
dence of these parameters on age, exposure rate, or
other factors), it is preferable to use a package with
the capability of computing Z(t ; α, γ ) at each itera-
tion. This generally requires some programming by
the user, whereas most of the likelihood calculations
and iterative estimation are handled by the pack-
age. For example, using SAS procedure NLIN, one
can recompute the covariates at each iteration by the
appropriate commands inside the procedure.

Unfortunately, the additivity assumption has sel-
dom been tested. In principle, this could be done by
nesting the dose-additive model in some more gen-
eral model that includes interactive effects between
the dose increments received at different times. The
obvious alternative model would simply add further
covariates of the form

Z∗(t) =
∫ t

0

∫ u

0
F [X(u)X(v); α]

× G(t, u, v; γ , δ) dv du, (10)

where F and G are some known weighting functions.
However, one should take care to see that the dose-
additive model is well fitted first before testing the
additivity assumption (e.g. by testing for nonlineari-
ties and temporal modifiers).

Nonparametric Models

The appeal of Cox’s partial likelihood is that no
assumptions are needed about the form of the depen-
dence of risk on time, but it remains parametric
in modeling covariate effects. Even more appeal-
ing would be a nonparametric model for both time
and covariate effects. For categorical data, no para-
metric assumptions are needed, of course, although
the effects of multiple covariates are commonly esti-
mated using the loglinear (i.e. multiplicative) model,
with additional interaction terms as needed. Similarly,
continuous covariates are frequently categorized to
provide a visual impression of the exposure–response
relationship, but the choice of cutpoints is arbitrary.
However, nonparametric smoothing techniques are
now available to allow covariate effects to be esti-
mated without such arbitrary grouping.

One approach relies only on an assumption of
monotonicity. Thomas [29] adapted the technique of
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isotonic regression to relative risk modeling, and
showed that the MLE of the exposure–response rela-
tionship under this constraint was a step function with
jumps at the observed covariate values of a subset of
the cases. The technique has been extended to two
dimensions by Ulm [33], but in higher dimensions
the resulting function is difficult to visualize and can
be quite unstable.

Cubic splines and other means of smoothing pro-
vide attractive alternatives which produce smooth, but
not necessarily monotonic, relationships. The gener-
alized additive model [14] has been widely used for
this purpose. For example, Schwartz [26] described
the effect of air pollution on daily mortality rates
using a generalized additive model, after controlling
for weather variables and other factors using similar
models. A complex dependence on dew point temper-
ature was found, with multiple maxima and minima,
whereas the smoothed plot of the particulate air pol-
lution was seen to be almost perfectly linear over the
entire rate of concentrations.

With the advent of Markov chain Monte Carlo
methods, Bayesian techniques for model selection
and smoothing have become feasible and are cur-
rently an active area of research. A full treatment of
these methods is beyond the scope of this article; see
Gilks et al. [11] for recent reviews of this literature.

Mechanistic Models

In contrast with the empiric models discussed above,
there are circumstances where the underlying disease
process is well enough understood to allow it to be
characterized mathematically. Probably the greatest
activity along these lines has been in the field of
cancer epidemiology. Two models in particular have
dominated this development, the multistage model
of Armitage & Doll [1] and the two-event model
of Moolgavkar & Knudson [18] (see Multistage
Carcinogenesis Models). For thorough reviews of
this literature, see [17], [31], and [36]; here, we
merely sketch the basic ideas.

The Armitage–Doll multistage model postulates
that cancer arises from a single cell that undergoes a
sequence of k heritable changes, such as point muta-
tions, chromosomal rearrangements, or deletions, in
a particular sequence. The model further postulates
that the rate of one or more of these changes may
depend on exposure to carcinogens. Then the model

predicts that the hazard rate for the incidence of can-
cer (or more precisely, the appearance of the first
truly malignant cell) following continuous exposure
at rate X is of the form

λ(t, Z) = αtk−1
k∏

i=1

(1 + βiX). (11)

Thus, the hazard has a power function dependence on
age and a polynomial dependence on exposure rate
with order equal to the number of dose-dependent
stages. It further implies that two carcinogens would
produce an additive effect if they act at the same
stage and a multiplicative effect if they act at differ-
ent stages. If exposure is instantaneous with intensity
X(u), its effect is modified by the age at and time
since exposure: if it acts at a single stage i, then
the excess relative risk at time t is proportional
to Zik(t) = X(u)ui−1(t − u)k−i−1/tk−1 and for an
extended exposure at varying dose rates, the excess
relative risk is obtained by integrating this expres-
sion over u [8, 35]. More complex expressions are
available for time-dependent exposures to multiple
agents acting at multiple stages [30]. These models
can be fitted relatively easily using standard soft-
ware by first evaluating the covariates Zik(t) for each
possible combination of i < k and then fitting the
linear relative risk model, as described above. Note,
however, that the expressions given above are only
approximations to the exact solution of the stochastic
differential equations [16], which are valid when the
mutation rates are all small.

The Moolgavkar–Knudson two-stage model pos-
tulates that cancer results from a clone of cells of
which one descendant has undergone two mutational
events, either or both of which may depend on expo-
sure to carcinogens. The clone of intermediate cells
is subject to a birth-and-death process (see Stochas-
tic Processes) with rates that may also depend on
carcinogenic exposures. The number of normal stem
cells at risk varies with age, depending on the devel-
opment of the particular tissue. Finally, in genetically
susceptible individuals, all cells carry the first muta-
tion at birth. The predicted risk under this model (in
nonsusceptible individuals) is then approximately

λ[t, X(u)] = µ1µ2[1 + β2X(t)]
∫ t

0
[1 + β1X(u)]

× exp[ρ(t − u)] du, (12)
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where µk are the baseline rates of the first and sec-
ond mutations, βk are the slope of the dependence
of the mutation rates on exposure, and ρ is the net
proliferation rate (birth minus death rates) of inter-
mediate cells. For the more complex exact solution,
see [24].

There have been a number of interesting applica-
tions of these models to various carcinogenic expo-
sures. For example, the multistage model has been
fitted to data on lung cancer in relation to asbestos
and smoking [30], arsenic [4], coke oven emissions
[9], and smoking [5, 10], as well as to data on
leukemia and benzene [7] and nonleukemic cancers
and radiation [32]. The two-stage model has been
fitted to data on lung cancer in relation to smoking
[23], radon [21, 25], and cadmium [27], as well as
to data on breast [22] and colon cancers [19]. For
further discussion of some of these applications, see
[31].

As in any other form of statistical modeling, the
analyst should be cautious in interpretation. A good
fit to a particular model does not of course establish
the truth of the model. Instead the value of models,
whether descriptive or mechanistic, lies in their abil-
ity to organize a range of hypotheses into a systematic
framework in which simpler models can be tested
against more complex alternatives. The usefulness of
the multistage model of carcinogenesis, for example,
lies not in our belief that it is an accurate description
of the process, but rather in its ability to distinguish
whether a carcinogen appears to act early or late in
the process or at more than one stage. Similarly, the
importance of the Moolgavkar–Knudson model lies
in its ability to test whether a carcinogen acts as an
“initiator” (i.e. on the mutation rates) or a “promoter”
(i.e. on proliferation rates). Such inferences can be
valuable, even if the model itself is an incomplete
description of the process, as must always be the
case.
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Relative Risk

The relative risk is the ratio of the risk of disease
in an exposed cohort over a defined time interval
to the risk of disease in an unexposed cohort over

this same time interval. Relative risk is synonymous
with cumulative incidence ratio. Relative risk can
be estimated both from cohort studies, and, for rare
diseases, from case–control studies.

MITCHELL H. GAIL



Reliability Study

Reliability studies and validation studies provide
information on measurement error in exposures
or other covariates used in epidemiologic studies.
Such information on the measurement error process is
needed to obtain valid estimates and inference using
methods such as regression calibration or maximum
likelihood (see Misclassification Error). Reliability
studies are based on repeating an error-prone mea-
surement, and the validity of this method depends
on a model for the errors given by (1) below. Val-
idation studies are applicable to a broader class of
error models, including models admitting differen-
tial error, but validation studies require that one be
able to measure correct (“gold standard”) covariate
values on some subjects.

To define reliability sampling plans more pre-
cisely, let Y be the response variable, and let X be
the true values of the variable which may be mis-
classified or measured with error. In some cases,
X can never be observed and can be thought of
as a latent variable. In other cases, X is a “gold
standard” method of covariate assessment which is
infeasible and/or expensive to administer to large
numbers of study participants. Instead of observing
X, we observe W, which is subject to error. Finally,
there may be covariates Z upon which the model for
response depends that are measured without error. In
main study/reliability study designs, the main study
consists of the data (Yi , Wi , Zi ), i = 1, . . . , n1. If the
reliability study is internal, it consists of (Yi , Wij ,
Zi), j = 1, . . . , ni, i = n1 + 1, . . . , n1 + n2 observa-
tions, and if the reliability study is external, it consists
of (Wij ), j = 1, . . . , ni, i = n1 + 1, . . . , n1 + n2

observations. Thus, there is only a single measure-
ment for each main study subject, but replicate mea-
surements for each subject in the reliability study.

The measurement error model for which a relia-
bility study can be used is

W = X + U, (1)

where U is a mean zero error term with some vari-
ance–covariance Σ . The error U is assumed indepen-
dent of X. Note that model (1) implies that the error
is nondifferential, not only with respect to Y but also
with respect to Z because f (W|X, Y, Z) = f (W|X).

Under model (1), replicate data from a reliability
study can be used for valid estimation and inference.

This model has been applied to the analysis of blood
pressure, serum hormones, and other serum biomark-
ers such as vitamin concentrations, viral load mea-
surements, and CD4 cell counts.

We assume that subjects in an internal reliability
study are selected completely at random. That is, if V

is an indicator variable that equals 1 if a participant
is in the validation study and 0 otherwise, then
Pr(V = 1|Y, X, Z, W) = Pr(V = 1) = π .

To correct point and interval estimates relating
Y to X for bias from measurement error in W, it
is necessary to estimate Σ and var(X) = ΣX using
model (1). Estimates of the quantities, Σ and ΣX,
are needed to correct the estimate of the param-
eter of interest describing the association between
Y and X, β, for bias due to measurement error. If
an internal reliability sample is used one can esti-
mate Σ from it. The quantity var(W) = ΣW can
be estimated from the combined main study/internal
reliability study data, and ΣX can be estimated by
Σ̂X = Σ̂W − Σ̂ . The same approach can be used if
an external reliability sample is used except, in this
case, ΣW should be estimated from the main study
only. This is because, under model (1), it is reason-
able to assume that Σ may be transportable from
one population to another, whereas ΣX, and hence
ΣW, are likely to vary across populations. Because
an internal reliability study ensures that Σ is cor-
rectly estimated and yields more efficient estimates
of ΣX, it is preferred to an external reliability study.

In some applications, the goal of the research
is simply estimation of the reliability coefficient,
also known as the intraclass correlation coefficient,
ρ, equal to ΣX[ΣW]−1 (see Correlation). These
applications arise, for example, in the evaluation
of new medical diagnostic procedures such as new
technology for ascertaining load of HIV in body
tissue, or in assessing the consistency of different
clinicians in evaluating the functional status of their
patients. Designs of studies whose purpose is to
estimate the reliability coefficient have n1 = 0 and
no data on Y. In what follows, we will first discuss
design of such reliability studies. Then, we will
discuss the main study/reliability study design, where
n1 > 0 and Y is observed in the main study and
possibly in the reliability study.

Design of Reliability Studies

A nontechnical introduction to reliability study design
considerations appeared in a recent epidemiology
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textbook by Armstong et al. [1]. A series of papers by
Donner and colleagues [3, 4, 8] investigated design
of reliability studies in considerable detail. The first
and last of these provided formulas for the power
to test H0 : ρ = ρ0, vs. Ha : ρ = ρA, where ρ is the
intraclass correlation or reliability coefficient, equal
to ΣX/ΣW, for a given (n2, R), and where R is the
number of replicates per subject. In addition, tables
were given for power for fixed values of n2 and R.
The first paper was based upon exact calculations,
and the last paper developed a less computation-
ally intensive approximation to the exact formula
which appears to work quite well. The total num-
ber of observations (n2 × R) is minimized with a
relatively small value for R, as long as the relia-
bility is 40% or higher. In these cases, R = 2 or 3
is sufficient. Eliasziw & Donner [4] minimized relia-
bility study cost with respect to n2 and R, subject
to fixed power to test H0 vs. Ha as given above
using the formula for power derived in [3]. Cost
was taken as a function of the unit cost of repli-
cating data within subjects, the unit cost of accruing
subjects, and the unit cost related jointly to the num-
ber of replicates and the number of subjects. Tables
were given for the optimal values of n2 and R, for
different unit cost ratios and different values of ρ0.
They found that for ρ > 0.2, the cost per subject is
more influential than the cost per measurement. In
addition, they found that the optimal n2 and R were
highly stable despite moderate changes in unit cost
ratios.

Freedman et al. [5] investigated the design of reli-
ability studies when X and W are binary. Reliability
of W as a surrogate for X was parameterized by the
probability of disagreement between the two repli-
cate measures of X, W1, and W2, corresponding to
the values obtained from two different raters (see
Agreement, Measurement of). They gave tables
for n2 which assured a fixed confidence interval
width around the estimated probability of disagree-
ment when R = 2. For probability of disagreement
between 0.05 and 0.40 and confidence interval widths
of 0.1 to 0.2, sample sizes between 50 and 350 are
needed. These authors also considered study design
when the goal is to estimate the within-rater prob-
ability of disagreement as well as the between-rater
probability of disagreement, and provided tables of
power for scenarios in which there are two raters and
two replicates per rater.

Design of Main Study/Reliability Studies

One can select various main study sizes (n1), reli-
ability study sizes (n2), and numbers of replicate
measurements (R) for each subject in the relia-
bility substudy. An “optimal” main study/reliability
study design will find (n1, n2, R) to achieve some
design goal. One may wish to minimize the vari-
ance of an important parameter estimate, such as the
log relative risk, β, subject to a fixed total cost.
Alternatively, one may wish to minimize the overall
cost of the study, subject to specified power con-
straints on the parameter of interest (see Validation
Study for further discussion of choices of design
optimization criteria). Liu & Liang [6] considered the
optimal choice of R for internal reliability designs
with n1 = 0, that is, designs in which all subjects are
in the reliability study. They studied generalized lin-
ear models for f (Y|X, Z; β) with the identity, log,
probit, and logit link functions. They assumed the
measurement error model for X described by (1) with
X following a multivariate normal distribution
MVN(µX, ΣX). The validity of their results required
an additional approximation in the case of the logis-
tic link function, which is the link function most
commonly used in epidemiology. For scalar X and
W, these authors derived a formula for asymptotic
relative efficiency of β∗, the measurement-error cor-
rected parameter describing the relationship between
Y and X, as a function of Σ/ΣX and R. They
found that the precision of β∗, relative to the pre-
cision which would be obtained for estimating β if
X were never measured with error, is little improved
by increasing R above 4.

Rosner et al. [7] investigated the effect of chang-
ing n2 and R on the variance of elements of a
nine-dimensional vector β, where β is the log odds
ratio relating coronary heart disease incidence to
the model covariates in data from the Framingham
Heart Study [2]. Four of the model covariates were
measured with error (Figure 1). In this figure, n1

was 1731, and Σ and Σx were assigned the val-
ues estimated in the analysis. When n2 was greater
than or equal to 100, the standard error of the
four measurement-error corrected estimates reached
an asymptote, indicating little or no gain in efficiency
from increasing n2 beyond that value. At that point,
the gain in efficiency ranges between a 10%–20%
reduction in the variance for the three variables
measured with some error (BMI has little error, as
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Figure 1 The relationship between the sample size (n2) and the number of replicates per subject (R) in a reliability study,
and the standard error of the measurement-error corrected logistic regression coefficient, β∗. Abbreviations and symbols
used are: se for standard error and rI for the reliability coefficient var(x)/var(w). Number of replicates, R: • = 2; + = 3;
∗ = 5; � = 10. (a) Cholesterol; (b) glucose; (c) body mass index; (d) systolic blood pressure

evidenced by the high reliability coefficient, r1 =
95%). Increasing the number of replicates decreased
the standard errors of the estimates substantially when
n2 was small, but made little difference for larger

reliability studies. For the three variables measured
with error (cholesterol, glucose, and systolic blood
pressure), the design (n2 = 10, R = 10) was equally
efficient as the design (n2 = 100, R = 2). Although
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the former requires fewer measurements, the latter
may be more feasible, as it only requires two visits
per subject.

Conclusion

Although model (1) is restrictive, there are many
instances in biomedical research where it is con-
sidered reasonable. Methods of analysis under this
model are well developed, but more research is
needed on optimal design, and there is a need for
user-friendly software for finding optimal designs.
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Remington, Richard D.

Born: August 2, 1931, in Nampa, Idaho.
Died: July 26, 1992, in Iowa City, Iowa.

As a leading public health statistician, Richard D.
Remington played a major role in linking the quan-
titative fields of biostatistics and epidemiology to
public health research and policy. His distinguished
academic career reflects an extraordinary commitment
to public health, particularly his advocacy of the vital
role that biostatistical and epidemiologic thinking and
research must play in the resolution of significant
public health problems and in the development of
national public health policy. He was a tireless, artic-
ulate advocate for his profession.

Richard Remington began his university studies
pursuing the field of mathematics. He received a
B.A. degree in mathematics with honors in 1952
and an M.A. in mathematics in 1954, both from
the University of Montana. He entered the field of
public health, first receiving an M.P.H. degree in
1957, then a Ph.D. in Biostatistics in 1958, both from
the University of Michigan.

On receiving his doctoral degree, he was appointed
to the faculty of the Department of Biostatistics at
the University of Michigan School of Public Health,
serving there through 1969, and earning the rank of
full professor in 1965. During a sabbatical year in
1966, he was a Visiting Scholar at the London School
of Hygiene and Tropical Medicine.

In 1969 he joined the faculty of the University
of Texas School of Public Health, Houston, where he
served through 1974 as Associate Dean for Research,
Professor and Head of Biometry. In 1975, he returned
to the University of Michigan as Professor of Bio-
statistics and Dean of the School of Public Health.
In 1982, he was appointed as the University of
Iowa Foundation Distinguished Professor of Preven-
tive Medicine and Environmental Health, and from
1982 to 1988 served as Vice President for Academic
Affairs and Dean of the Faculty at the University of
Iowa, also serving as Interim President of the Univer-
sity of Iowa in 1987–1988. Following a sabbatical
year in 1989 at the University of Texas School of
Public Health, Professor Remington returned to the
University of Iowa, and founded the Institute for
Health, Behavior, and Environmental Policy, serving
as the Institute’s Director until his death in 1992.

During his tenure at the University of Texas
School of Public Health, Professor Remington served
as the Scientific Director of the Data Management
and Analysis Coordinating Center for the National
Heart, Lung, and Blood Institute (NHLBI)’s land-
mark Hypertension Detection and Follow-up Program
(HDFP). HDFP, in a national, community-based,
randomized controlled trial (see Clinical Trials,
Overview) involving 10 940 persons with high blood
pressure, compared the effects on five-year mortality
of systematic antihypertensive treatment and referral
to usual community medical therapy. In recognition
of the significant research advances made by HDFP,
Professor Remington, his research colleagues, and
HDFP staff received the Albert and Mary Lasker Spe-
cial Public Health Award, the highest award in the
field of public health.

Several decades of Professor Remington’s career
were involved with fundamental inquiries into the
public health impact of hypertension, the impor-
tance of its early detection and treatment, and, more
broadly, its prevention. For this work, Professor Rem-
ington was recognized in 1992 as the Lewis Conner
Memorial Lecturer of the American Heart Associa-
tion, and the following year he received the Golden
Heart Award, the most prestigious honor bestowed by
the American Heart Association.

Professor Remington was an effective voice for
public health research, policy, and training through
his leadership of dozens of significant national and
international committees, including membership on
the NHLBI Clinical Trials Review Committee, one of
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the most distinguished review groups of the National
Institutes of Health, and chairmanship of the Com-
mittee for the Study of the Future of Public Health,
a committee appointed by the Institute of Medicine
of the National Academy of Sciences. As Chairman,
Professor Remington was chief architect of the Insti-
tute of Medicine report, The Future of Public Health
[1].

Professor Remington’s contributions to biostatis-
tics, epidemiology, and public health have been rec-
ognized by honors and his election to memberships in
scientific academies. He was elected a fellow of the
American Public Health Association, the Ameri-
can Statistical Association, the UK Royal Statis-
tical Society, an elected member of the Institute of
Medicine of the National Academy of Sciences, and
was awarded an honorary doctor of science degree
from the University of Montana in 1984.

Professor Remington was a prolific author, pro-
ducing over 80 scholarly articles and two books. His
text, coauthored with Professor M. Anthony Schork,
[2] is widely used in introductory biostatistics and
statistics courses.

Second only to public health was his love of
music. As Dick Remington he was a virtuoso on

the double bass and jazz tuba, always in demand
to record with well-known Dixieland musicians and
Dixieland bands.

Perhaps even more enduring than his contribu-
tions, publications, and music is his colleagues’ mem-
ory of his altruism, warm embrace, and humanity. No
matter what the occasion, Dick Remington always
found time to listen to his colleagues and students,
urge them on, and share with them his insight, zest,
and dedication to the public health profession.

A memorial, Tribute to Richard D. Remington,
was read in the Senate of the United States by
the Honorable Tom Harkin, Iowa Senator, on the
Legislative day of Tuesday, September 8, 1992.
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Renewal Processes

In a renewal process we study the occurrences, or
recurrences, of an event “E” of interest, and the
distribution of the corresponding random variables.
Generally, a process depends on the complexity of
the distributions of the random variables, and the
distribution may change following the occurrence
of an event. In the development of the theory of
renewal processes, we make use of the repetitive
pattern in many practical situations, and consider an
event E to be a “renewal event” only if the underlying
conditions of a process remain unchanged following
an occurrence of E. Formally, a renewal event is
defined by the following two conditions:

1. the occurrence or nonoccurrence of an event E
in any given time interval is uniquely deter-
mined; and

2. the process following an occurrence of event E is
a complete (independent) replica of the process
following any other occurrence of E.

Let tr be a time interval following the (r − 1)th
occurrence of E and including the rth occurrence
of E, for r = 1, 2, . . .. According to condition 2
above, (t1, t2, . . .) will be independent and identical
distributed random variables. The time in the process
may be discrete as in a random walk (see Stochastic
Processes), or continuous as in a Poisson process.
In this article we briefly review the distributions
of the renewal processes for both the discrete and
continuous cases. We also consider the number of
renewals N(t) within a given time interval (0, t],
and the age, excess life, and total lifetime of the
component in use at time t . Some extensions of the
basic ordinary renewal process are also outlined.

We illustrate the concept of renewal events with a
few examples.

Example 1. Success in Bernoulli Trials

Let event E be “success” in a sequence of Bernoulli
trials (see Binary Data). The result of a sequence of
trials may appear as follows: FFFSFSSFFS, so that
the event E occurs at the fourth, the sixth, the seventh,
and the tenth trials, and t1 = 4, t2 = 2, t3 = 1, and
t4 = 3.

Example 2. Return to Origin

Consider a one-dimensional random walk of a parti-
cle starting from the origin. The particle moves one
step to the right or one step to the left after each
trial. Let event E be “return to origin”. Suppose that
the result of a sequence of trials is: RL LR RRLL
LLRR . . .. Event E occurs at the second, the fourth,
the eighth, and the 12th trials.

Remark. The event “success” in Example 1 is a
“single” event; its occurrence at a trial is independent
of the preceding trials. In Example 2, “return to
origin”, RL, LR, RRLL, LLRR, etc. represents a
pattern. The occurrence of E at a particular trial is
dependent on the outcomes of the preceding trials.
Nevertheless, both examples satisfy the conditions
underlying a renewal process. So far as occurrence of
an event is concerned, trials need not be independent.
Sequences of trials following occurrences of an event
are independent sequences.

Example 3. Failure and Renewal

When an electric bulb, an automobile tire, or a
mechanical component fails, it is replaced with a new
one. The renewal times are continuous random vari-
ables, and are assumed independent and identically
distributed.

When a renewal is a result of a failure, the term
failure time or lifetime is often used for renewal time.

The theory of renewal processes was developed
mainly by Feller [5–8]. Other contributions to the
theory of renewal processes include those in [1, 4, 8,
10, 12], and [13]. This article is based on the material
in [2] and [11].

Discrete Time Renewal Processes

In discrete time renewal processes, the units of time
t may be called “trials”. The occurrence of event E at
the nth trial is denoted by “t = n”. For the ith trial,
we define a random variable Xi such that Xi = 1 if
event E occurs at the ith trial, and Xi = 0 if not. We
let f (n) be the (first) renewal probability, defined as
follows:

f (n) = Pr{Xn = 1 and Xm = 0; m = 1, 2, . . . ,

n − 1|X0 = 1}, n = 1, 2, . . . . (1)
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It is clear that

f (n) = Pr{t = n}.
The sum ∞∑

n=1

f (n) = f (·)

is the probability that event E will eventually occur.

Classification of Events

A renewal event may or may not be recurrent,
depending on the probability f (·).

Transient Event. A renewal event E is a transient
event if f (·) < 1. In this case there is a positive
probability 1 − f (·) that event E will not occur in
a finite number of trials.

Recurrent Event. A renewal event E is a recurrent
event if f (·) = 1. In this case, the sequence {f (n)}
forms a proper probability distribution. The expecta-
tion ∞∑

n=1

nf (n) = E(t) = λ (2)

is the mean recurrent time.

Recurrent Null Event. A renewal event E is a
recurrent null event if f (·) = 1 and λ = ∞.

Recurrent Nonnull Event. A renewal event E is a
recurrent nonnull event if f (·) = 1 and λ < ∞.

Periodic Event and Aperiodic Event. A renewal
event E is a periodic event if there exists an inte-
ger α > 1 such that E can occur only at trials
α, 2α, 3α, . . .. The largest α with this property is the
period of E. A renewal event E is aperiodic if α = 1.

Let tr be the number of trials following the (r −
1)th occurrence of E and including the rth occurrence
of E, for r = 1, 2, . . ., as defined above. Each random
variable tr has the probability distribution:

Pr{tr = n} = f (n), n = 1, 2, . . . .

The sum Tr = t1 + t2 + · · · + tr is the length of time
required for r occurrences of E, and its probability
distribution,

Pr{Tr = n} = fr(n) for n = r, r + 1, . . . (3)

is the r-fold convolution of f (n) with itself, or, in
convolution notation,

{fr(n)} = {f (n)}r∗.
The sum

fr(·) =
∞∑

n=1

fr(n)

is the probability of r occurrences of E in an infi-
nite sequence of trials. For a transient event E where
f (·) < 1, the probability fr(·) tends to zero as r

becomes infinitely large. This means that, in an infi-
nite sequence of trials, a transient event occurs a
finite number of times, while a recurrent event occurs
infinitely often.

For a renewal event E, there are two types of
probabilities associated with the occurrence of E. In
addition to the probability f (n) introduced above,
there is a probability p(n) that the event E will occur
at the nth trial regardless of its occurrences in the
preceding trials. Formally, we define p(n) as follows:

p(n) = Pr{Xn = 1|X0 = 1}, n = 1, 2, . . . ,

with p(0) = 1. These two types of probabilities have
the relationship

p(n) =
n∑

j=1

f (j)p(n − j), (4)

so that

f (n) = p(n) −
n−1∑

j=1

f (j)p(n − j).

Theorem 1. The sum of p(n) and the sum of f (n)

are related by formulas

∞∑

n=0

p(n) = 1

1 − f (·) , (5)

and

f (·) = 1 − 1
∞∑

n=0

p(n)

.

Thus, f (·) = 1 if the infinite sum
∑∞

n=0 p(n)

diverges, and f (·) < 1 if the infinite sum of p(n)

converges.
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Corollary. The event E is recurrent if

∞∑

n=0

p(n) = ∞,

and E is transient if

∞∑

n=0

p(n) < ∞.

Theorem 2. If event E is recurrent non-null with
period α, then

lim
n→∞ p(αn) = α

λ
,

where λ is the mean renewal time. If E is recurrent
non-null and aperiodic, then

lim∑

n→∞
p(n) = 1

λ
. (6)

If E is recurrent null or transient, then p(n) → 0 as
n → ∞.

We illustrate the above results with an example.

Example 4. “Success” in Bernoulli Trials

Let E be “success” in an infinite sequence of
Bernoulli trials, with the probability of success in a
single trial denoted by π . Then p(n) = π and p(0) =
1 by definition. Clearly, the event E is recurrent
nonnull and aperiodic, and

f (n) = [1 − π]n−1π.

According to (4),

π =
n−1∑

j=1

[(1 − π)j−1π]π + (1 − π)n−1π,

which obviously is true. Furthermore, the infinite sum

∞∑

n=0

p(n) =
∞∑

n=0

π = ∞,

and

f (·) =
∞∑

n=1

f (n) =
∞∑

n=1

(1 − π)n−1π = 1,

consistent with the fact that E is recurrent. To verify
(6) in Theorem 2, note that p(n) = π is independent
of n, so that

lim
n→∞ p(n) = π,

while the mean renewal time is

λ =
∞∑

n=1

nf (n) =
∞∑

n=1

n[1 − π]n−1π = 1

π
.

Thus, λ and π are reciprocal, as required by (6).

Delayed Renewal Processes

In many practical situations the renewal process is
already in progress when a first observation is made.
This type of renewal processes is called the delayed
renewal process. The probability distribution of t1,
denoted by k(n), is different from f (n), the common
distribution of t2 or t3, etc. Suppose that at the time
of first observation, n0 trials have taken place since
the last occurrence of E. Then k(n) is the conditional
probability that E will occur for the first time at the
(n0 + n)th trial given that E does not occur in the
first n0 trials. This means that k(n) and f (n) satisfy

k(n) = f (n0 + n)

1 −
n0∑

j=1

f (j)

.

The main feature of a delayed renewal process is the
first occurrence of E. After that, the ordinary renewal
process returns.

Continuous Time Renewal Processes

In a continuous renewal process, each renewal time
tr of a system has the same density function f (τ) and
the same distribution function F(τ), for r = 1, 2, . . ..
The sum Tr = t1 + t2 + · · · + tr is the length of time
needed for r renewals of the system. The density
function of Tr is obtained from

fr(τ) =
∫ τ

0
fr−1(τ − x)f (x) dx, r = 2, 3, . . . ,

(7)

and the distribution function of Tr from

Fr(τ) =
∫ τ

0
Fr−1(τ − x) dF(x), r = 2, 3, . . . ,

(8)

with repeated integrations beginning with r = 2.
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Delayed Renewal Processes

If, at the initiation of a study, the system has been
in operation for a period τ0, then we have a delayed
renewal process. The first random variable t1 is the
residual lifetime of the system beyond “age” τ0. The
distribution function of t1 is

K(τ) = F(τ0 + τ) − F(τ0)

1 − F(τ0)
. (9)

The density function of t1 is

k(τ) = f (τ0 + τ)

1 − F(τ0)
.

The formulas of the distribution function and the
density function of Tr are the same as those in (7) and
(26), except that F1(τ ) = K(τ) and f1(τ ) = k(τ).

Example 5. Exponential Distribution I

Suppose each tr has an exponential distribu-
tion with

f (τ) = µ exp(−µτ) and F(τ) = 1 − exp(−µτ).

(10)

The expectation and the variance of tr are, respec-
tively,

E(tr ) = 1

µ
and var(tr ) = 1

µ2
,

where the parameter µ is known as the force of
mortality in life table analysis and the failure rate
or hazard rate in survival analysis. Using (7) and
(8) we find the density function and the distribution
of Tr :

fr(τ) = µr τ r−1

Γ (r)
exp(−µτ),

and

Fr(τ) = 1 − exp(−µτ)

r−1∑

i=0

(µτ)i

i!
, (11)

which is a gamma distribution with parameters µ

and r . Note that when each tr has the exponential
distribution (10), the process of renewal times is a
one-dimensional Poisson process with rate µ.

In the delayed renewal process where t1 is the
residual lifetime of the system beyond τ0, the distri-
bution function of t1 is, from (9),

K(τ) = {1 − exp[−µ(τ0 + τ)]} − [1 − exp(−µτ0)]

1 − [1 − exp(−µτ0)]

= 1 − exp(−µτ) = F(τ).

Thus the residual lifetime t1 has the same distribution
as the total lifetime t2 or t3. This, however, is a special
case. Here, the force of mortality, or the failure rate
µ, is independent of the “age” of the system; the
probability that the system will fail in a time element
(τ, τ + dτ) remains the same regardless of the length
of time it has been in operation. A system that has
been in operation up to time τ0 will last as long
as when it is new. The equality K(τ) = F(τ) is
justified.

A System with Components

Suppose that a system has s components which have
the renewal times (or failure times) (τ1, τ2, . . . , τs).
Each τi has the same density function h(τ) and the
distribution function H(τ). Let T be the renewal
time of the system with the density function f (τ)

and the distribution function F(τ). Obviously, the
distribution of T is a function of H(τ) and the
number s, but their exact relationship depends on the
definition of the failure of the system. The following
are two definitions of failure and the corresponding
distributions.

Minimum Length of Life

An electric circuit with light bulbs connected in series
fails as soon as one of the bulbs burns out. A chain
is broken when its weakest link fails. Generally, a
system with s components operating concurrently
fails when the component with the shortest lifetime
fails. Let us arrange the lifetimes of the components
(τ1, τ2, . . . , τs) in the order of magnitude: [τ(1) <

τ(2) < · · · < τ(s)]. The renewal time of the system is
the first order statistic τ(1). Therefore the density
function of the renewal time of the system T is

f (τ) = h(1)(τ ) = s[1 − H(τ)]s−1h(τ),

and the distribution function of T is

F(τ) = H(1)(τ ) = 1 − [1 − H(τ)]s .
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Example 6. Exponential Distribution II

Suppose the common distribution of the s compo-
nents is exponential as given in (10). The renewal
time of the system has the density function

f (τ) = h(1)(τ ) = sµ exp(−sµτ),

and the distribution function

F(τ) = H(1)(τ ) = 1 − exp(−sµτ),

which is an exponential distribution with parameter
sµ. The expected renewal time of the system is

E(T ) = E[t(1)] = 1

sµ
,

and the variance is

var(T ) = var[t(1)] = 1

(sµ)2
.

Maximum Length of Life

An electric circuit with s light bulbs connected in
parallel fails only when all the bulbs are burned out.
A room with s lights will not be dark unless all the
lights are out. A system is still in operation so long as
one of the components is working. In such cases, the
renewal time of a system T is the maximum lifetime
of (τ1, τ2, . . . , τs), or the sth order statistic τ(s). It
follows that the distribution of the renewal time T is

F(τ) = [H(τ)]s ,

and the density function of t is

f (τ) = s[H(τ)]s−1h(τ)

Example 7. Exponential Distribution III

Suppose that the common distribution of the s com-
ponents is exponential as in (10). Then the renewal
time of the system has density function

f (τ) = h(s)(τ ) = s[1 − exp(−µτ)]s−1µ exp(−µτ),

and distribution function

F(τ) = H(s)(τ ) = [1 − exp(−µτ)]s .

The expected renewal time of the system is

E(T ) = E[τ(s)] = 1

µ

(
1 + 1

2
+ · · · + 1

s

)
,

and the variance is

var(T ) = var[τ(s)] = 1

µ2

(
1 + 1

22
+ · · · + 1

s2

)
.

Number of Renewals N(t)

Thus far we have been discussing the length of time
{tr} and {Tr} needed for a given number of renewals
to take place. Another aspect of renewal processes
of considerable interest is the number of renewals
N(t) occurring within a given time interval (0, t].
In this case, the time interval (0, t] is fixed, while
the number of renewals N(t) is a random variable.
The main purpose here is to derive a formula for the
probability distribution of N(t),

Pr{N(t) = r} = Pr(t), r = 1, 2, . . . .

It can be shown that

∞∑

r=1

Pr{N(t) = r} = 1 (12)

and N(t) is a proper random variable.

Theorem 3. The probability distribution and the
expectation of N(t) are related to the distribution
function Fr(t) of the time of r renewals Tr as follows:

Pr{N(t) = 0} = 1 − F1(t) (13)

Pr{N(t) = r} = Fr(t) − Fr+1(t), r = 1, 2, . . .

(14)

and

E[N(t)] =
∞∑

r=1

Fr(t). (15)

Proof. If the number of renewals occurring within
the time interval (0, t] is greater than or equal to r ,
then the length of time required for r renewals must
be less than or equal to t , and vice versa. In other
words,

N(t) ≥ r and Tr ≤ t
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are equivalent, and the corresponding probabilities
must be equal:

Pr{N(t) ≥ r} = Pr{Tr ≤ t} = Fr(t).

Therefore,

Pr{N(t) = r} = Pr{N(t) ≥ r} − Pr{N(t) ≥ r + 1}
= Fr(t) − Fr+1(t).

When r = 0, (14) implies (13). To find the expecta-
tion E[N(t)], we write

E[N(t)] =
∞∑

r=1

r Pr{N(t) = r}

=
∞∑

r=1

r[Fr(t) − Fr+1(t)]

=
∞∑

r=1

Fr(t),

and complete the proof.
Theorem 3 provides us with a simple method of

obtaining the probability distribution and the expec-
tation of N(t) directly from the distribution function
of the renewal time Fr(t).

The function M(t) = E[N(t)] is called the re-
newal function and, when it exists, its derivative
m(t) = M ′(t) is called the renewal density. Note from
(15) that m(t) = ∑∞

r=1 fr(t), so that, for small ∆t ,
the probability that there is a renewal in the time
interval (t, t + ∆t) is given by m(t)∆t + o(∆t).

Theorem 4. If in an ordinary renewal process the
renewal time tr has a finite expectation E(tr ) = λ and
a finite variance σ 2, then, as t → ∞, the number of
renewals N(t) has an asymptotic normal distribution
which has a mean t/λ and a variance tσ 2/λ3.

Feller [6] originally established the theorem for
the discrete case, where t is the number of trials.
Takacs [13] proved the theorem for time - continuous
processes. The following theorem is due to Smith
[12].

Theorem 5. If the renewal time has a finite mean
E(tr) = λ and a finite variance σ 2, then

lim
t→∞

E[N(t)]

t
= 1

λ
, (16)

and

lim
t→∞

var[N(t)]

t
= σ 2

λ3
. (17)

There is a fine difference between Theorems 4 and
5. Theorem 4 is regarding the asymptotic distribution
of N(t), whereas Theorem 5 concerns the moments of
N(t) as t → ∞. Since convergence of a distribution
does not imply convergence of moments, the two
theorems are addressing two different issues.

To appreciate the above theorems, let us consider
a specific distribution.

Example 8. Exponential Distribution IV

When the renewal time of a system tr has an exponen-
tial distribution as given in (10) and the expectation
and the variance of tr are

E(tr ) = 1

µ
and σ 2 = 1

µ2
, (18)

the interval of r renewals Tr = t1 + t2 + · · · + tr has
a gamma distribution with the distribution function
given in (11):

Fr(t) = 1 − exp(−µt)

r−1∑

i=0

(µt)i

i!
. (11a)

According to Theorem 3, the probability distribution
of the number of renewals in (0, t) is

Pr{N(t) = r} = Fr(t) − Fr+1(t). (14)

Substituting (11) in (14) yields

Pr{N(t) = r} = (µt)r

r!
exp(−µt), (19)

which is a Poisson distribution with parameter µt . It
follows that the expectation and the variance of N(t)

are, respectively,

E[N(t)] = µt and σ 2
N(t) = µt. (20)

According to Theorem 5,

E[N(t)] −−−→ t

λ
(16a)

and

var[N(t)] −−−→ tσ 2

λ3
. (17a)
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Substituting formulas (18) for the expectation and
the variance of tr in (16a) and (17a), we recover the
formulas of the expectation and the variance of N(t)

in (20). Verification of the theorems is complete.
Finally, the reader may wish to prove as an exer-

cise the equation

∞∑

r=1

Fr(t) = µt,

where Fr(t) is given in (11).

Backward and Forward Recurrence Times

Consider a continuous time renewal process with
lifetimes tr having E(tr) = λ < ∞, density f (τ),
and distribution function F(τ). Let t > 0 be a fixed
point in time. The backward recurrence time At is
the time since the last renewal, that is, the age of
the component in use at time t , and the forward
recurrence time Et is the time until the next renewal,
that is, the excess life of the component in use
at time t . For most choices of density f (τ), the
distributions of At and Et cannot be determined
explicitly, however, their asymptotic distributions are
equal and given by (e.g. [11, Proposition 3.4.5])

lim
t→∞ Pr{Et ≤ x} = lim

t→∞ Pr{At ≤ x}

= 1

λ

∫ x

0
[1 − F(u)] du. (21)

Moreover, provided σ 2 = var(tr ) < ∞, then (e.g.
[11, Proposition 3.4.6])

lim
t→∞ E[Et ] = lim

t→∞ E[At ] = σ 2 + λ2

2λ
. (22)

It is easily verified that the mean of the distribu-
tion given by the right-hand side of (21) is (σ 2 +
λ2)/(2λ). For t > 0, let Tt = At + Et be the total
lifetime of the component in use at time t . Then, using
(22),

lim
t→∞ E[Tt ] = lim

t→∞ E[Et ] + lim
t→∞ E[At ] = σ 2 + λ2

λ
.

(23)

Example 9. Exponential Distribution V

When the renewal time of a system tr has the expo-
nential distribution given by (10), it is easily verified

that the limiting distributions of Et and At are also
given by (10) and that limt→∞ E[Tt ] = 2/µ. Thus,
the limiting mean total lifetime of the component in
use at time t is 2/µ while the mean lifetime of a
component is 1/µ! At first sight, this result, which
is known as the inspection paradox, may seem sur-
prising. However, it has a fairly simple explanation,
which is given below in the general setting.

Arguing informally, considering the interval that
covers the point t and letting t → ∞ is equivalent
to considering the interval covering a point chosen
uniformly in [0, t] and letting t → ∞. In the latter,
it is clear that an interval of length y is y times more
likely to be sampled than an interval of length 1, so
the limiting distribution of Tt as t → ∞ has density
fT (y) that is directly proportional to yf (y). Since∫ ∞

0 fT (y) dy = 1 it follows that fT (y) = λ−1yf (y)

(y > 0). Note that

E[T ] =
∫ ∞

0
yfT (y) dx =

∫ ∞

0
λ−1y2f (x) dx

= σ 2 + λ2

λ
,

agreeing with (23). Note also, that in the limit as t →
∞, the sampled point is uniformly distributed within
the interval containing it. Thus, denoting the limiting
excess and total lifetimes by E and T , respectively,
for x > 0, Pr{E > x|T = y} = (y − x)/y if y > x

and zero otherwise, so conditioning on T ,

P(E > x) =
∫ ∞

0
Pr{E > x|T = y}fT (y) dy

=
∫ ∞

x

λ−1f (y)(y − x) dy. (24)

Differentiating (24) with respect to x shows that E

has density

fE(x) = λ−1
∫ ∞

x

f (y) dy = λ−1(1 − F(x)),

which corresponds to the right-hand side of (21).

Equilibrium Renewal Processes

Consider a delayed renewal process in which the first
lifetime t1 has density function given by

k(τ) = λ−1(1 − F(τ)) (25)
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and distribution function given by

K(τ) = λ−1
∫ τ

0
[1 − F(u)] du, (26)

where F is the distribution function of the subse-
quent lifetimes t2, t3, . . . . Such a process is called
an equilibrium renewal process. Note that if we start
observing an ordinary renewal process at some fixed
time t > 0, then the resulting process is a delayed
renewal process in which the initial lifetime t1 is
given by the excess life Et . Thus, for t large, it fol-
lows from (21) that the observed process will be very
close to the equilibrium renewal process, and indeed
equal to it in the limit as t → ∞. It can be shown that
the equilibrium renewal process is stationary, that for
any t > 0, the excess life of the component in use
at time t has the same distribution as t1, (i.e. given
by (25) and (26)), and that its renewal function and
renewal density are respectively λ−1t and λ−1 (t ≥
0) (see, for example, [11, Theorem 3.5.2]).

Alternating Renewal Process

In an alternating renewal process, the even num-
bered renewal times t2r , r = 1, 2, . . . , have a differ-
ent distribution to the odd numbered renewal times
t2r−1, r = 1, 2, . . . . For example, consider a single
machine that breaks down repeatedly. Suppose that
the machine has just been repaired at time t = 0.
Then t1, t3, t5, . . . denote the lengths of successive
working periods of the machine and t2, t4, t6, . . .

denote the lengths of successive repair times. Sup-
pose that t1, t2, . . . are independent, t1, t3, . . . each
have density f1(τ ) and mean λ1, and t2, t4, . . . each
have density f2(τ ) and mean λ2. Then

lim
t→∞ Pr{machine is working at time t} = λ1

λ1 + λ2
.

(27)

In fact, (27) holds under the weaker assumption that
(t1, t2), (t3, t4), . . . are independent, that is, allow-
ing for dependence between the lengths of a working
period and the subsequent repair period (see, for
example, [11, Theorem 3.4.4]). Further characteris-
tics of the system, such as the limiting excess life
distribution given that the machine is working at time
t , can also be computed; (see, for example, [3, Chap-
ter 7], and [11, Section 3.4.1].

Renewal Reward Process

Suppose that in a renewal process there is an award,
Ri say, associated with the ith renewal. Then the total
reward earned by time t is

R(t) =
N(t)∑

i=1

Ri,

where N(t) is the number of renewals occurring in
the time interval (0, t] and the sum is zero if N(t) =
0. For example, suppose that claims come into an
insurance company at the points of a renewal process
{N(t), t ≥ 0}. Then, if Ri denotes the value of the ith
claim, R(t) is the total value of all claims over (0,
t]. Suppose that (t1, R1), (t2, R2), . . . are independent
and identically distributed, that λ = E[t1] < ∞ and
λR = E[R1] < ∞. Then

R(t)

t
−−−→ λR

λ
almost surely as t → ∞,

and
E[R(t)]

t
−−−→ λR

λ
as t → ∞,

(see, for example, [11, Theorem 3.6.1]). Note that ti
and Ri are not assumed to be independent. The above
results also hold if, instead of being earned en masse
at the end of a lifetime the reward is earned gradually
over the lifetime. As well as occurring naturally in
many practical settings, renewal reward processes can
also be used to analyze more complicated stochastic
processes, such as queueing processes, where they
arise as embedded processes, see, for example, [9,
Section 10.5].
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Repeated Events

Repeated or recurrent events often arise in
longitudinal studies involving multiple subjects.
Some examples are the occurrence of epileptic
seizures [2], the recurrence of tumors in cancer
patients or laboratory animals [5, 12], and coughing
or wheezing episodes in persons with bronchial
asthma [6]. Broad objectives in analyzing repeated
events include (i) understanding and characterizing
event occurrence processes for individual subjects,
(ii) characterizing subject-to-subject variability and
relating it to covariates or treatments, and
(iii) assessing the relationship of time-dependent
covariates or other processes to event occurrence.
Several types of repeated events may be of interest
in a single application but throughout most of this
discussion, we assume that one specific type of event
is being considered.

To set up a framework for analyzing repeated
events, suppose that subjects i = 1, . . . , m are obser-
ved and that the times of occurrence of events are
recorded. Assume that subject i is observed over the
time period (0, τi]; τi is sometimes referred to as
a censoring or termination time. Let ti1 ≤ ti2 ≤ · · ·
denote the times of event occurrence for subject i

and let Ni(t) represent the number of events over
(0, t]. Finally, let ti0 = 0 and xij = tij − ti,j−1 (j =
1, 2, . . .).

In the following sections, we describe the model-
ing of repeated events, discuss methods of analysis,
and present an example.

Models for Repeated Events

Let us temporarily drop the subscript i and con-
sider events that occur in continuous time for an
arbitrary subject. A full probability model for an
orderly (no coincident events) process {N(t) : t ≥ 0}
may be specified in terms of the complete inten-
sity function [9, p. 9]; (see Point Processes). Define
Ht = {N(s) : s < t} as the “history” of the process
up to time t , and let dN(t) denote the number of
events over the small interval [t, t + ∆t). The inten-
sity λ(t ; Ht) is defined by

λ(t ; Ht) = lim
∆t→0

Pr{dN(t) = 1|Ht }
∆t

. (1)

The probability distribution of the point process
{N(t) : t ≥ 0} over (0, τ ] can be given in terms of
λ(t ; Ht); see [3, pp. 57–58] or [4]. In particular, the
probability density that exactly n events occur over
the specified interval (τ0, τ ), and at times t1 < · · · <

tn, is

n∏

j=1

λ(tj ; Htj ) exp

[
−

∫ τ

τ0

λ(t ; Ht) dt

]
(2)

The formula (2) provides likelihood functions
for maximum likelihood estimation and associated
inference procedures for models in which the inten-
sity is specified in terms of unknown parameters.
When τo and τ are random, it also gives partial
likelihoods, which can be used in the same way as
likelihoods, provided that τo and τ are determined
according to a process depending only on prior event
history or covariates (see [1] or [3, p.59]).

Poisson processes, where the complete intensity
(hereafter just the “intensity”, for brevity) is of the
form λ(t ; Ht) = ρ(t), or renewal processes, where
it is of the form h(t − tN(t−)), are common models.
The former is convenient when counts (i.e. numbers
of events in various time intervals) are emphasized;
for a Poisson process, the number of events occurring
in time interval (s, t] has a Poisson distribution
with mean

∫ t

s
ρ(u) du, and the numbers of events in

disjoint intervals are independent. Renewal processes
are convenient when the intervals between events
are of more direct interest. For a renewal process,
the times X1, X2, . . . between successive events are
independent and identically distributed with hazard
function h(x).

Fixed or time-varying covariates may be incorpo-
rated into the intensity function. We consider here
only “exogeneous” covariates that are not affected
by the event process, and condition on their real-
ized values. If z is a vector of fixed covariates,
then multiplicative models in which λ(t ; Ht, z) =
λo(t ; Ht)φ(z) are often useful. Models with

λ(t ; Ht, z) = ρ(t)φ(z) (3)

λ(t ; Ht, z) = h(t − tN(t−))φ(z) (4)

for the Poisson and renewal cases, respectively, are
easy to interpret and handle statistically. In (3) and
(4), φ(z) is some positive-valued function that spec-
ifies the effect of z on the intensity. Time-varying
covariates z(t) may be incorporated in the same way.
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When we specify an intensity function (1), we
have a complete model for the repeated event pro-
cess. As in ordinary regression or longitudinal data
analysis, simple analyses of means or rates that avoid
strong assumptions about the recurrent event process
are often attractive, however. The rate of occurrence
function is defined by r(t) = dE{N(t)}/dt , and the
mean or expected count function R(t) = E{N(t)} is
thus

R(t) =
∫ t

0
r(u) du. (5)

For a Poisson process, the function r(t) is also
the intensity function but, in general, they are quite
distinct, and r(t) does not fully specify the process.
Covariates z can be introduced into the rate or mean
functions, the simplest way being by the multiplica-
tive specification

r(t ; z) = r0(t)φ(z) (6)

A distinction should be made between fully para-
metric models that are specified solely in terms of
a finite-dimensional parameter θ and semiparamet-
ric models, which involve arbitrary rate, mean, or
intensity functions. For example, if in (3), we specify
ρ(t) = exp(γ0 + γ1t) and φ(z) = exp(βz), the model
is fully parametric; if we specify φ(z) thus but leave
ρ(t) an arbitrary positive-valued function, the model
is semiparametric.

Poisson and renewal processes are fundamental
in their simplicity and ease of interpretation but
in many situations fail to represent event processes
satisfactorily. Three broad approaches to modeling
and analysis in such cases are (i) to seek satisfactory
specification of the intensity processes by building in
aspects of the event and covariate histories, (ii) to add
random effects or time-varying covariates to Poisson
or renewal models, and (iii) to generalize renewal
models by incorporating serial dependence among the
times between events.

Other types of models are discussed in books on
point processes (e.g. [10] and [20]) and on counting
processes (e.g. [3]).

Random effects are sometimes incorporated into
Poisson or renewal models in order to represent unob-
servable heterogeneity among subjects. For example,
if events for individual i occur according to a Pois-
son process, the counts Ni(t) have Poisson distribu-
tions with means Ri(t) and variances also equal to
Ri(t). Larger variances than means are often observed

across individuals, however, and this “overdisper-
sion” may signal unobserved heterogeneity.

One way of dealing with this (e.g. [6, 14]) is to
assume that given (unobservable) random effects αi ,
the processes {Ni(t), t ≥ 0} are Poisson with inten-
sity functions αiri(t). The αi’s are assumed to be
independent random variables with mean 1 and vari-
ance σ 2

α . It is easily seen that E{Ni(t)} = Ri(t) and
Var{Ni(t)} = Ri(t) + σ 2

αRi(t)
2. In addition, the event

counts in nonoverlapping time intervals (s1, t1) and
(s2, t2) for the individual are now correlated, with
covariance σ 2

αRi(s1, t1)Ri(s2, t2), where Ri(s, t) =
Ri(t) − Ri(s). It is often convenient to assume that
the αi’s have gamma distributions, in which case
the Ni(t)’s have negative binomial distributions.

Aalen and Husebye [1], Lawless and Fong [16],
and others discuss the incorporation of random effects
into renewal processes, and Andersen et al. [3, Chap-
ter 9] consider general counting processes.

The modeling approach taken with repeated events
necessarily depends on one’s objectives. Even so,
more than one approach may be supportable in a
given setting. A particularly interesting situation is
when the comparison of treatments is a main objec-
tive. In this case, intensity-based comparisons may
mask the treatment effects, and comparisons based
on marginal rate or mean functions may be preferred.
However, one might be interested in the relationship
of treatment to patterns in events, and not just their
frequency. For discussions along these lines, see [6]
and [13, Chapter 9].

Statistical Methods

Likelihood and Partial Likelihood Methods

For models with a full probability specification, max-
imum likelihood is in principle available, although
in some circumstances, it may be difficult or indeed
impossible to implement. From (2), the likelihood
based on n independent subjects observed over inter-
vals (τoi, τi) is of the form (suppressing dependence
on covariates in the notation and writing Hi(t) for
the history of subject i, including covariates)

m∏

i=1






ni∏

j=1

λi(tij ; Hi(tij ))




 exp

{
−

∫ τi

τoi

λi(t ; Hi(t)) dt

}

(7)



Repeated Events 3

If the information necessary to evaluate the inte-
grals in (7) is not available (e.g. values of covari-
ates at all time points may not be available) or if
the integrals are intractable, then they have to be
approximated somehow for maximum likelihood to
be feasible. For simple models, maximum likelihood
is discussed in many references; for example, see [10]
and [20] for Poisson and renewal processes, [1] and
[14] for Poisson and renewal processes with random
effects, and [3, 4], and [6] for general discussion.

Maximum likelihood based on (7) is most attrac-
tive when the model is fully parametric, in which
case, standard large sample results concerning esti-
mators, score (see Likelihood), and likelihood ratio
test statistics apply as m → ∞, and these can be used
to obtain hypothesis tests or confidence intervals.
Semiparametric methods may in many cases also
be obtained from (7), although delicate mathematical
points arise in a rigorous treatment. For semipara-
metric models, the most common approach is via
multiplicative intensity Poisson models, which are
analogous to proportional hazards models in sur-
vival analysis. In this case, the complete intensity is
assumed to be of the form

λ(t ; Ht) = λ0(t)φ[z(t); β], (8)

where λ0(t) is an arbitrary “baseline” intensity func-
tion and z(t) is a vector of fixed or time-varying
covariates.

The partial likelihood method of Cox [7, 8] (see
Cox Regression Model) applies to models of the
form (8). Define δi(t) = I (τi ≥ t ≥ τoi) and note that
if an event is observed at time t , then under (8), the
probability it occurs for subject j is

δj (t)φ[zj (t); β]
m∑

i=1
δi(t)φ[zi (t); β]

, (9)

which is independent of λ0(t). The partial likelihood
for β is the product across all event times of terms of
the form (9), and can be maximized to give an esti-
mate β̂. Tests or confidence intervals for β follow by
standard maximum likelihood methods. The cumula-
tive baseline intensity function Λ0(t) = ∫ t

0 λ0(u) du

can be estimated by

Λ̂0(t) =
∫ t

0

dN ·(u)
m∑

i=1
δi(u)φ[zi (u); β̂]

, (10)

where dN ·(u) is the total number of events observed
at time u. Andersen et al. [3] give a comprehensive
account of these methods.

In the special case in which there are no covariates,
the right side of (8) is just λ0(t) so the process is
Poisson. Then, the estimate (10) becomes

Λ̂0(t) =
∫ t

0

dN ·(u)
m∑

i=1
δi(u)

, (11)

which is termed the Nelson–Aalen estimator.
Owing to a connection with ordinary maximum

likelihood, partial likelihood methodology can also
be used with semiparametric renewal process models
where

λ(t ; Ht) = ho[B(t)]φ[z(t); β], (12)

where B(t) = t − TN(t−) is the time since the last
event before t , and ho(s) is a baseline hazard func-
tion; see [11] and [19]. The models (8) and (12) can
also be extended by allowing z(t) to include func-
tions of previous event history; these are sometimes
referred to as modulated Poisson and renewal pro-
cesses.

Estimating Function Methods for Rate and Mean
Functions

The methods above are based on full probability mod-
els. Sometimes, it is attractive to model only the mean
and rate functions for the repeated event, as in (5)
and (6). It turns out that if the start and termination
times τoi and τi for observation of individuals are
determined independently of their event processes,
then simple robust methods that are closely related
to analysis under the Poisson model (8) can be used.

This approach follows from an observation of Nel-
son [23], who noticed that the Nelson–Aalen estima-
tor (11) is a generally valid nonparametric estimate
of a common mean function, R(t) = E[Ni(t)] for
i = 1, . . . , m. Lawless and Nadeau [17] subsequently
provided methodology for parametric and semipara-
metric models including covariates; Pepe and Cai
[25] consider related methods. Surveys of these and
later developments are given in [6] and [18]. We
outline here the methodology for the case of multi-
plicative semiparametric models, where the rate func-
tion (6) is given by

r(t ; z) = ro(t)φ[z; β] (13)
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with ro(t) an unspecified baseline rate function.
Proofs for results stated below can be found in [17]
and [21].

The key idea is to recognize that the maxi-
mum likelihood estimating equations for (13), which
come from a Poisson process (in which case (13) is
also the process intensity) are unbiased more gener-
ally, provided that the observation intervals (τoi, τi)

are independent of the event processes. Thus, the esti-
mates coming from these equations are consistent
under the model (13), regardless of the underlying
event process, and estimating equation theory may
be used to give robust variance estimates and other
tools for inference.

The Poisson maximum likelihood estimating equa-
tions for the semiparametric model (13) are [17]

m∑

i=1

∫ τ

o

δi(t)[ dNi(t) − dRo(t)φ(zi ; β)]

× ∂ log φ(zi ; β)

∂β
= 0 (14)

and

dRo(t) = dN ·(t)
m∑

i=1
δi(t)φ(zi ; β)

0 ≤ t ≤ τ (15)

where τ = max(τi), we assume each τio = 0 for sim-
plicity, and Ro(t) = ∫ t

o
ro(s)ds is the baseline mean

function. Inserting dRo(t) from (15) into (14) pro-
duces the same estimating equation for β as given
by the Cox partial likelihood for β based on the
terms (9) in the Poisson model. Furthermore, inser-
tion of the resulting estimate β̂ into (15) gives the
generalized Nelson–Aalen estimate (10) as the esti-
mate R̂o(t). Thus, any software that implements the
Cox Poisson regression model (8) for repeated events
can be used to obtain the estimates β̂ and R̂o(t) aris-
ing from (14) and (15). For example, for the common
model in which

φ(z; β) = eβ
′z, (16)

with β and z both p × 1 vectors, the S-Plus function
coxph with the “cluster” option for individuals can
be employed.

Sandwich-type robust variance estimates for β̂,
R̂o(t), and estimated mean functions

R̂(t ; z) = φ(z; β̂)R̂o(t) (17)

can also be given ([17, 21]). Current software pack-
ages give the robust variance estimates for β̂ only, but
more is planned for a forthcoming version of SAS.

In the case where there are no covariates, the
common mean function Ro(t) = E[Ni(t)] is esti-
mated from (15) with φ(z; β) = 1, which is the
Nelson–Aalen estimator (11). For non-Poisson pro-
cesses, the Poisson variance estimate for R̂o(t) should
be replaced with the robust estimate

V̂ar{√m[R̂o(t) − Ro(t)]}

=
m∑

i=1

{∫ t

o

δi(s)

δ · (s)

[
dNi(s) − dN · (s)

δ · (s)

]}2

, (18)

where δ · (s) = ∑m
i=1 δi(s).

Additional Considerations

It is, in general, important to consider the process
that determines the observation periods (0, τi] for the
various subjects. It has been noted that the robust
methods require that the τi’s are determined indepen-
dently of the event processes, whereas for maximum
likelihood methods based on a full intensity specifi-
cation, the τi’s may be determined randomly in a way
that depends upon past event history but not on future
events. Andersen et al. [3, Section 2.7] and Aalen and
Husebye [1] give precise requirements for the obser-
vation periods (τoi, τi) of individual subjects. A prac-
tical requirement for the use of (7) is that the history
Hi(t) needed to compute the intensity function at time
points in (τoi, τi) be available. Finally, the methods
above do not require that the censoring or observation
processes for individuals be modeled. If censoring
can be modeled satisfactorily, it may be possible to
use censoring weights (e.g. see [6] and [26]) to mod-
ify estimating functions for rate and mean functions
so as to allow history-dependent censoring.

We now mention a few other topics of practical
interest. First, events are sometimes recorded only at
intermittent times, resulting in counts for specified
time intervals rather than exact event times; see [6,
Section 2.3] for a review and references to methodol-
ogy. Secondly, in some settings, the repeated events
process ceases with the occurrence of some termi-
nating event, with which it may be associated; for
example, events may be associated with the treatment
of a specific illness and terminate when the illness
ends or the patient dies. This area is reviewed in
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[6, Section 5]. A third point is that we have dis-
cussed the analysis of one specific type of event.
Multiple event types j = 1, . . . , J can be handled
via intensity-based modeling by setting up counting
processes Nj(t) and complete intensities λj (t ; Ht) for
each event type [3]. This allows association between
event types through dependence of the intensities on
prior events in Ht . Other approaches discussed in
this article can also be extended to handle multiple
events, in particular, the robust methodology for rate
and mean functions [24].

We have emphasized multiplicative models like
(8), (12), and (13). Multiplicative models for event
occurrence are convenient, flexible, and easily inter-
preted, but other types are also useful in many set-
tings. Fully parametric models of other types are eas-
ily handled, but semiparametric models can require
some additional development beyond what has been
given here. For example, see [13, p.289] and [22] for
the case of accelerated failure-time models for rate
and mean functions.

Finally, we have not discussed the very impor-
tant topic of model checking. Specific methodology
depends to some extent on the types of models under
consideration, but a universal approach is to test base
models against “expanded” models having additional
parametric structure. Graphical displays involving
the raw data, nonparametric and parametric estimates,
and suitably defined residuals are also important.
Andersen et al. [3] and Therneau and Grambsch
[27] provide numerous examples for multiplicative
intensity models.

The following rather simple example illustrates
several of the points about modeling and methodol-
ogy that have been discussed earlier. For more com-
plex settings involving multiple covariates and more
complicated observational patterns, see for example,
illustrations and discussion in [6, 13, Chapter 9] and
[27, Chapter 8].

An Illustrative Example

Gail et al. [12] presented data on the times to devel-
opment of mammary tumors for 48 female rats in
a carcinogenicity experiment (see Tumor Incidence
Experiments). The animals were assigned randomly
to two groups, treatment (23 animals) and control
(25 animals), and the days on which new tumors
occurred for each animal were recorded. All animals
were observed over the time period (0, τ ] = (0, 122]
days. Although the data are given in discrete time
units (days) and, in fact, animals were inspected for
the presence of new tumors every two to four days,
we will, for simplicity, treat the occurrence times as
continuous; this does not affect the main conclusions;
see [17] for methodology written in terms of discrete
time processes. The main objective of the experiment
was to compare the frequency of tumor occurrence
for treatment and control animals.

A useful place to start is to plot nonparametric
estimates (11) of the mean functions for animals in
the two treatment groups. Figure 1 shows this and
indicates that (i) there is no pronounced trend in the
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Figure 1 Estimates of mean functions for treatment and control groups
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tumor occurrence rate for either group, and (ii) the
rate and the expected number of tumors for control
animals is about twice that for treatment animals.

To make a more thorough comparison, we might
consider fitting Poisson processes to the events for
the individual animals. However, there is evidence
of overdispersion, particularly in the control group.
Under a Poisson model, the total number of tumors
Ni(122) for each animal has a Poisson distribution.
However, the sample means and variances for the
treatment and control group animals are NT = 2.65,
s2
T = 3.62 and NC = 6.04, s2

C = 14.92, respectively.
Formal tests [14] provide evidence against the Pois-
son model.

To compare the rate functions for the two groups,
Figure 1 suggests the multiplicative model (6) with
φ(z) = exp(βz), where zi = 0 if animal i is in the
control group and 1 if it is in the treatment group.
Robust estimation of β, as described above (see (14)
and (15)) and in [15] and [17] yields β̂ = −0.82
with a standard error of 0.21. This indicates a rather
strong treatment effect; the tumor rate for treatment
animals is estimated to be exp(−0.82) = .44 times
that for control animals. Inference based on a Poisson
model with individual random effects for each animal
[14] yields the same result. However, if we ignored
the overdispersion and fitted Poisson processes to
the two groups, we would obtain the same estimate
β̂ = −0.82, but a smaller standard error of .15, thus
overstating the strength of the treatment effect. A
partial likelihood analysis yields the same inference
for β as the Poisson model, and thus also overstates
the treatment effect.

Other models may be considered for these data.
For example, Gail et al. [12] fit renewal models
in which times between successive events (tumors)
for an animal are considered independent. Graphical
and more formal methods may be used to check
models that assume a specific probabilistic structure
for the event processes (e.g. see [3, 10, 14, 27]). Plots
involving both residuals and the raw data (e.g. [10])
are especially helpful.
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Reproduction Number

The basic reproduction number (or ratio), R0, is the
expected number of secondary cases of an infec-
tion which one typical case could generate during
its infectious period in a completely susceptible pop-
ulation. It is the most important theoretical concept in
communicable disease epidemiology. If R0 is greater
than one, then a newly introduced infection may lead
to a large epidemic in a completely susceptible pop-
ulation and a stable endemic level may persist if
the host population is large enough such that new
susceptibles are born into the population at a suf-
ficiently high rate. If R0 is less than one, then the
total size of a newly introduced outbreak will remain
small (see Epidemic Thresholds). In addition to this
qualitative threshold property, R0 has an important
quantitative interpretation because it allows one to
determine the amount of effort needed to reduce the
incidence of a disease to zero: in a homogeneously
mixing population the lower bound, c∗, for the neces-
sary coverage with a vaccine that is 100% efficacious
is given by the simple expression 1 − 1/R0, because
for this coverage the number of secondary cases of
one infective is reduced to the critical value of one
[R0(1 − c∗) = 1] (see Vaccine Studies). This practi-
cal implication motivates epidemiologists to estimate
R0 from data about epidemics or endemic equilib-
ria.

The notion, which has its origin in demogra-
phy, was first introduced into the epidemiology of
infectious diseases by Macdonald [13] in the con-
text of malaria. Smith [15] applied it to the control
of arboviruses, i.e. viruses which are transmitted
from man to man or from animal to man by arthro-
pods (e.g. yellow fever by mosquitoes). There is a
parallel sequence of papers, started by Bharucha-
Reid [5], followed by Neyman & Scott [14] and
Bartoszýnski [3], in which the spread of infec-
tious diseases in large populations is approximated
by branching processes. In 1975 the concept was
introduced independently and under different names
in the context of directly transmitted virus diseases by
Becker [4], Dietz [7], and Hethcote [12]. Currently,
only the symbol has been standardized in epidemic
theory, but R0 is still being called by several names.
The most natural one would be “basic reproduction
ratio” or “basic reproduction number”, since R0 is
a dimensionless quantity and does not deserve the

affix “rate”, which suggests a dimension “time−1”. A
Dahlem Workshop [1] helped tremendously to popu-
larize R0 and the seminal paper by Diekmann et al.
[6] provides a mathematically rigorous framework for
its definition. The key reference is the dissertation of
Heesterbeek [9], with its remarkably short title: “R0”.
The most recent survey article is Heesterbeek & Dietz
[11]. For an excellent description of the history of R0,
see review article by Heesterbeek [10].

Because of its important implications, it is essen-
tial to estimate R0 on the basis of epidemiological
data. A survey of estimation methods is given by
Dietz [8]. R0 depends on three parameters: (i) the
contact rate, (ii) the duration of the infectious period,
and (iii) the probability that a contact between an
infective and a susceptible individual leads to an
infection. The last parameter is sometimes broken
down into two factors describing infectivity and sus-
ceptibility. For a homogeneously mixing population
(see Random Mixing), the equilibrium proportion of
susceptibles equals the inverse of the basic reproduc-
tion number, because in this situation on average one
case produces one secondary case (see Secondary
Attack Rate). For infections with lifelong immu-
nity, the average age at first infection divided by
life expectancy equals the proportion of susceptibles
in the population, because this equals the fraction
of life before the infection. Therefore, one can esti-
mate a basic reproduction number by the ratio of
life expectancy over the average age at first infec-
tion [7]. The comprehensive reference work on the
mathematical approach to the epidemiology and con-
trol of human infectious diseases by Anderson &
May [2] contains numerous estimates of R0 for a
wide variety of diseases in different geographical
regions.

One can also estimate R0 from the final size of
an epidemic if one knows the number of individuals
infected during the epidemic and the final proportion
of individuals still susceptible. The following formula
provides an estimate of R0 for a homogeneously
mixing population:

R0 = (u0 − u∞)−1(ln u0 − ln u∞),

where u0 denotes the initial and u∞ the final propor-
tion of susceptibles.

The estimates of R0 are highly dependent upon the
assumptions about the contact structure in the pop-
ulation and the effects of immunity. If one only has
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age-specific antibody prevalence data, it is impossible
in principle to deduce the underlying mixing matrix.
One frequent simplifying assumption is proportional
mixing, which associates with each individual a cer-
tain contact rate. The probability that a contacted
individual is infectious is then a weighted average
of the prevalence using the contact rates as weights.

In spite of impressive theoretical progress, the
practical application of R0 is still in its infancy
because of the intrinsic difficulties in applying this
theoretical concept to real-life situations.
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Reproduction

Human reproduction, fertility, sexuality, and family
planning are central to our lives, and research into
these areas has been under way for years. While this
research uses methodologies and techniques that are
common to many other branches of behavioral and
biomedical science, there are a number of biostatisti-
cal challenges that are unique to the field. The main
biostatistical problem is the assessment of fertility
and pregnancy rates in different groups of users –
ranging from men and women using highly effec-
tive methods to reduce their fertility, those using less
effective methods, those living in “natural fertility”
situations in which no fertility regulation methods are
used at all, or to infertile couples who may be trying
to increase their fertility. With a greater understanding
of the factors that affect human fertility and the dif-
ferent ways in which these factors might be modified,
clearer ideas have emerged on the most appropriate
statistical measures to summarize information. Sim-
ilarly, we now appreciate better the limitations of
different research designs, the information generated
by such designs and the types of data that need to be
recorded.

The main biostatistical challenge is to summa-
rize information on the effectiveness of different
contraceptive methods in preventing pregnancy, the
adverse and beneficial secondary effects associated
with their use, and the reasons why people stop
using their chosen method, switch to another method,
or stop using any contraceptive method at all. Ide-
ally, this information would be presented in such
a way that an individual could freely choose the
most appropriate method for his or her situation and
reproductive intentions, and that this choice could be
made with the fullest breadth and depth of knowl-
edge available. In addition, the provider needs to
know the risks, benefits, advantages, and disadvan-
tages of different methods of fertility regulation in
order to give appropriate advice and counseling on
the most suitable methods to use. Similarly, policy
makers, responsible for ensuring reproductive health
and family planning services, need to have informa-
tion relevant to their country or populations. Thus,
not only is comprehensive information required on
the characteristics of different methods, their relia-
bility under ideal and typical conditions of use, their
side effects, the type of advice, and the counseling to

be given to potential or existing users, but also the
extent to which this information can be generalized
to women and men in different personal and social
situations.

Comparisons between contraceptive methods
within the same broad class are in general
more straightforward and reliable than comparisons
between widely different methods. For example, the
comparative efficacy and rates of side effects of
two types of intrauterine device (IUD) are relatively
easy to establish, and to generalize to populations
other than those studied. By contrast, comparative
statements about methods that are widely different,
for example periodic abstinence or withdrawal (coitus
interruptus) and long-term methods such as five-year
implants or sterilization, are much more problematic.
However, this is exactly the information required.

To appreciate the biostatistical problems encoun-
tered in the study of human reproduction, fertility,
and family planning, an understanding is necessary
of the complex social, behavioral, and physiologi-
cal processes that determine human fertility. A great
deal is known about these and has been presented
from different perspectives, and the following briefly
summarizes those aspects that give rise to the unique
and challenging problems for the biostatistician. Fur-
ther details can be found in many good textbooks or
reviews (see, for example, Gray et al. [8], Hatcher
et al. [11], and Nieschlag & Behre [14]).

Key Factors in Male and Female
Reproductive Physiology

The Female Partner

The physiological factors which determine whether
a woman becomes pregnant include her ability to
conceive (fecundity), the fertilizing capacity of her
partner, the timing and frequency of intercourse, and
the chances that the fertilized ovum will be implanted.
Her fecundity is mainly determined by ovulation –
whether or not it occurs and its regularity. These can
be affected by many factors: ovulation only occurs
naturally during the reproductive years, except during
and soon after a pregnancy or during full breast
feeding, and its regularity decreases with age. It can
also be affected by extreme malnutrition or obesity,
other physiological disorders, smoking, and strenuous
exercise.
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Successful fusion of oocyte and sperm and sub-
sequent implantation require patent fallopian tubes
which effectively transport the ovum from the ovary
to the uterus. These may be adversely affected by
pollutants such as smoking or damage caused by sex-
ually transmitted diseases or other infections.

The regular human menstrual cycle has usual
length of 28–30 days, although there is consider-
able variation in length both between women and
within the same woman. The normal cycle is divided
into the follicular phase, which leads up to ovula-
tion around 14–18 days after the onset of menses,
and the luteal phase, which lasts about 14 days. The
endometrium (the lining of the uterus) is prepared to
receive the fertilized ovum, and, in the absence of a
successful implantation, is sloughed off at the onset
of the next menstrual cycle. Typically an ovum can
be fertilized up to one or two days following ovu-
lation. A number of physiological changes, some of
which can be comparatively easily observed, occur
around the time of ovulation as the hormonal balance
shifts from the follicular to the luteal phase. Examples
include changes in cervical mucus quantity and qual-
ity around ovulation, a rise in basal body temperature
(BBT) between 0.2 °C and 0.4 °C, or changes in the
ratios of urinary metabolites that reflect circulating
hormone levels.

There is a delay from the actual time of fertiliza-
tion to the recognition of a pregnancy. Implantation
occurs about six days following fertilization, at which
time it is possible with very sensitive urinary assays
to detect early signs of pregnancy [2]. Less sensitive
tests, such as home pregnancy urinary testing kits,
are only reliable two or more weeks after fertiliza-
tion. Usually, the first recognizable sign of pregnancy
is a delay in the expected onset of menstruation,
although this is not a very specific indicator, as there
are many other factors that can be responsible for
menstrual delay. Clinical signs of pregnancy other
than lack of menstruation are not apparent before six
weeks.

The Male Partner

By contrast to the woman, who only ovulates once
in each cycle, sperm production is a continuous
process. The sperm are formed in the testes and
stored in the epididymis ready to be released dur-
ing ejaculation. A typical ejaculate contains between
100 million and 400 million sperm, only a small

proportion of which are viable, motile, and able to
swim towards the ovum. Only a few hundred actu-
ally reach the ovum and only a single sperm is
required for fertilization. Sperm can survive in the
female genital tract up to four or five days follow-
ing ejaculation. The spermatogenic cycle (time from
the formation of spermatogonia to the production of
mature sperm capable of fertilization) takes about
90 days.

The factors that affect male fertility are less well
understood than for the female. Male fertility declines
naturally with age, and a number of environmental
pollutants and toxic exposures can reduce sperm
production and quality. In addition, there can be
partial or complete blockage of the epididymis or vas
deferens due to sexually transmitted diseases or other
infections.

Opportunities for Contraceptive Methods

There are many factors that can disrupt the nor-
mal menstrual cycle, introduce variability, or prevent
ovulation, fertilization, or implantation. Methods of
fertility regulation target different stages of the pro-
cess. For example, the method of periodic abstinence
restricts intercourse to the infertile phases of the
cycle; female hormonal methods reduce fecundity
by blocking ovulation or implantation or changing
the quality of cervical mucus to prevent the sperm
ascending the genital tract. Barrier methods pre-
vent contact between sperm and the ovum, while
male hormonal methods reduce the production of
spermatozoa. Sperm production is a complex pro-
cess of precisely timed stages, any of which can
be targets for the development of new methods of
fertility regulation (see, for example, Hamilton & Sal-
ing [9]).

Some contraceptive methods act continuously and
are permanent (e.g. male and female sterilization),
some act continuously but are reversible (e.g. IUDs
and hormonal methods), while others are used only
around the time of intercourse (e.g. spermicides or
barrier methods such as condoms and diaphragms).
The coitus dependent methods require a high degree
of compliance with correct method use to prevent
pregnancy reliably, and it is difficult to separate the
intrinsic efficacy of the methods from those factors
that determine whether the method is used at all, and,
if used, whether it is used correctly.
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Biostatistical Challenges

The delay in recognition of pregnancy and the
high rate of early pregnancy loss cause problems
for estimating pregnancy rates and the efficacy of
different contraceptive methods in cohort studies.
First, when the decision to stop using a method is
made, the woman may already be pregnant, although
the pregnancy may not be recognized until later.
It is unclear whether such an event should be
counted as a contraceptive failure, or according to the
expressed reason why the woman stopped using the
method, or both. Some studies require an additional
visit six to eight weeks after discontinuation of
the method or release from the study to ensure
that all pregnancies, including those not recognized
at the time of discontinuation, are recorded. The
second, though related, problem is to determine
when fertilization actually occurred. In a cycle that
does not result in pregnancy, menstruation usually
starts about 14 days after ovulation, so the timing
of ovulation can be made retrospectively. However,
in a cycle in which fertilization and subsequent
implantation occur, the exact time of ovulation
cannot be determined accurately, unless there is daily
monitoring of follicular growth or urinary metabolites
[31]. In the absence of such methods, 14 days are
usually added to the date of last menstrual period
to give an “estimated date of conception”, although
this can be substantially in error if menstrual cycles
are not regular. The third problem concerns the
distinction between early “chemical” pregnancies
detected by sensitive assays and clinically recognized
pregnancies which can only be detected much later.
About 20% of fertilized ova never reach the stage of
implantation and a further 10% are lost before they
result in clinically recognizable pregnancies. Thus,
without a clear and consistent definition of pregnancy,
rates reported from different studies are difficult to
compare.

Some methods of fertility regulation are imme-
diately effective while others require a delay before
they become effective. Barrier methods, such as con-
doms or spermicides, which prevent contact between
the sperm and ovum, are immediately effective and
can be immediately reversed. Similarly, the IUD is
effective from the moment it is inserted and its effect
is rapidly reversed following removal. By contrast,
currently available methods of male fertility regu-
lation have a delayed effectiveness as the sperm

production is stopped and the extra-testicular reserves
of sperm are exhausted. This occurs with vasectomy,
which prevents the sperm reaching the ejaculate, as
well as with hormonal methods, which can reversibly
suppress sperm production.

Many social, environmental, and personal factors
determine which contraceptive methods are chosen
and whether they are used correctly and consistently.
These factors include the user’s age, marital status,
educational level, socioeconomic status, reproduc-
tive intentions, actual and perceived risks associated
with use of different methods, access to appropri-
ate family planning services, attitudes to unwanted
pregnancy, and access to safe and appropriate meth-
ods for the termination of pregnancy. The interactions
between these factors are complex and unique to each
individual and vary according to time, personal cir-
cumstances, and place. While the goal is to develop
biostatistical methods to assess contraceptive efficacy
that can be generalized to other users, these factors
are critically important in determining overall perfor-
mance of a method. Moreover, the advantages and
disadvantages of available methods will be weighed
differently as individual circumstances evolve.

Historical Development

Effectiveness of a Method which is not
Coitus-Related

The first comprehensive undertaking to record infor-
mation systematically on large scale use of a con-
traceptive method was the Cooperative Statistical
Program (CSP) for the Evaluation of Intrauterine
Devices, which was established in the USA by the
National Committee on Maternal Health in 1963 and
supported by the Population Council. Although the
IUD had been known and used since the 1930s, the
CSP was the first attempt to evaluate the safety,
effectiveness, and acceptability of a newly intro-
duced contraceptive method by analysis of pooled
data using uniform procedures and a systematic sta-
tistical approach. In 1970, the CSP reported on 23 917
insertions with 10 different devices [23] and showed
features now known to be common to many differ-
ent contraceptive methods. In particular, pregnancy
and expulsion rates of the devices were higher in
the first compared with subsequent years of use,
pregnancy rates were higher among younger women,
and removals due to medical reasons (primarily
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complaints of increased pain and/or menstrual bleed-
ing) were more common than removals for personal
reasons. Thus, even with the early IUDs, their con-
traceptive efficacy was high (cumulative two-year
pregnancy rates in the range 3–17%, compared with
over 90% among women not using any method to
avoid pregnancy), there were technical problems with
the devices remaining in place (cumulative expulsion
rates up to 30% at two years) but that “side effects”
were the main factors leading to device removal
(cumulative rates 15–40% at two years). About 60%
of women still had the device in place two years after
insertion.

Effectiveness of a Coitus-Dependent Method

The IUD is a device that is continuously effective
(provided that it remains in place), does not inter-
fere with sexual intercourse, and does not require
any particular action by the user for its effective-
ness. Thus the method effectiveness is the same as its
effectiveness under typical conditions of use. By con-
trast, periodic abstinence methods require no external
technology or devices. All rely for their effectiveness
on rules of when to abstain from sexual intercourse
in order to avoid pregnancy, and users may con-
sciously or unconsciously depart from these rules. If
the rules are not followed correctly, the efficacy of
such coitus-dependent methods is much reduced, and
this difference is reflected in two distinct measures
of contraceptive efficacy – the method effectiveness
under conditions of perfect use, and the method effec-
tiveness under conditions of typical use. The distinc-
tion is important for methods which require a high
degree of user compliance.

The recognition that fertile and infertile phases of
a woman’s menstrual cycle could be used to avoid
pregnancy had been known since the 1930s [12, 15],
but little work was done prior to 1970 with natu-
ral family planning (NFP) methods to study their
effectiveness or investigate how their reliability and
ease of use could be improved. In 1976, the World
Health Organization initiated a five-country study
of the ovulation method, which is based on recog-
nizing changes in quantity and quality of cervical
mucus to identify the fertile period [32]. A total
of 869 volunteers of proven fertility with regular
menstrual cycles kept daily records of menstruation,
cervical mucus secretions, and acts of intercourse.
Couples were instructed to abstain from intercourse

during menstruation (because of possible early onset
of the fertile period during the last days of menstrual
bleeding), on alternate “dry days” prior to the onset
of the fertile period (to minimize the difficulty of
recognizing the onset of mucus secretion because of
the presence of seminal fluid), and during the fer-
tile period, which began on the first day of mucus
secretion or the sensation of dampness or wetness
detectable at the vulva. The “peak day” was defined
as the last day on which fertile type mucus was recog-
nized, and intercourse could be resumed on the fourth
day after the peak day. Couples were thus required to
abstain from intercourse for about half the menstrual
cycle.

Almost 95% of women were able to identify
accurately the fertile period of the menstrual cycle
after an initial three-month training phase, and these
entered a 12-month effectiveness phase. The cumu-
lative discontinuation rate at the end of the effec-
tiveness phase was 35.6%, the most common reasons
for discontinuation being pregnancy (cumulative rate
19.6%) or desire for pregnancy (6.6%). Pregnancies
were classified as method-related (all the rules for
the method had been followed, and the peak day
had been correctly identified), inadequate teaching or
application of instructions (the record was only par-
tially completed, the woman did not fully understand
the method, had difficulty in recognizing the onset of
wet days, or was confused as to which day follow-
ing the peak was safe for resumption of intercourse),
conscious departure from the rules (the couple know-
ingly made a decision to have intercourse, despite
indications of fertility), or of uncertain classification.
A total of 130 pregnancies were observed over 7514
cycles (22.5 pregnancies per 100 woman-years (see
Person-years at Risk), assuming 13 cycles per year),
of which 16 (2.8 per 100 woman-years) were method
related, 22 (3.8 per 100 woman-years) were due to
inadequate teaching or application of the method,
89 (15.4 per 100 woman-years) were due to con-
scious departure from the rules, and the remaining
three were unclassified. The low pregnancy rate when
the method was correctly used has stimulated further
research into improved methods of identifying the
fertile phase of the cycle, based for example on uri-
nary metabolites [5, 13]. These would not require the
couple to abstain from intercourse on alternate days
prior to the onset of mucus secretion, and may be
able to detect more accurately the timing of ovula-
tion. They require less training in the recognition of
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cervical mucus changes and no genital touching and
therefore may be more accessible to a wider range
of users. They may also require fewer days of absti-
nence and thus be less likely to result in departures
from the rules and subsequent “user failures”.

Method Failure or User Failure

Unfortunately, the method of analysis of pregnancy
rates and assessment of contraceptive efficacy in this
pioneering report were incorrect. The authors used
the same denominator (total number of cycles of
exposure) to compute all rates, but they divided preg-
nancies according to the different reported patterns of
intercourse. The correct analysis requires each cycle
also to be classified according to the reported pat-
tern of intercourse. The number of pregnancies that
occurred during correct method use should be com-
pared with the number of cycles during which the
method was correctly used, to derive the pregnancy
or failure rate for correct method use. Similarly, the
pregnancies that occurred following conscious depar-
ture from the rules need to be compared with the
number of cycles when the rules were not followed,
and not with the total number of cycles (see Denom-
inator Difficulties). The only correct result in the
original report is the overall pregnancy rate (22.5
pregnancies per 100 woman-years), the other rates
given all being underestimates since the denomina-
tor is overestimated. However, the overall pregnancy
rate is the most difficult to interpret and to generalize
to other potential users of the method.

A major problem encountered with classifying
each cycle according to the pattern of intercourse
and rule breaking is that couples may be more likely
to report acts of intercourse contrary to the rules in
cycles in which a pregnancy in fact occurred, which
would result in an overestimate of the pregnancy rate.
For example, suppose there were 100 cycles during
which intercourse occurred on a given fertile day, and
these resulted in 30 pregnancies. If there is correct
reporting of acts of intercourse in the pregnancy
cycles, but only half of the acts in cycles that did not
result in pregnancy are reported, the 30 pregnancies
would apparently have occurred in 65 instead of 100
cycles. It is impossible to judge the extent to which
this problem occurred with the WHO study, but the
data collection methods were designed to minimize
any such underreporting – volunteers were asked to
maintain records on a daily basis and were visited by

study staff monthly. In many cycles the visits would
have taken place and the charts reviewed before any
pregnancy had been recognized.

A subsequent reanalysis of the WHO study effec-
tiveness phase data [24] showed that 16 pregnancies
occurred in 6683 cycles of correct use, resulting
in a “method failure” rate of 3.1 per 100 woman-
years, about 12% higher than the originally computed
method failure rate. However, the remaining 114
pregnancies occurred in 801 cycles in which rule
breaking had been recorded, resulting in a pregnancy
rate of 14.2% per cycle or 185.0 per 100 woman-
years. Compare this result with the original report of
15.4 pregnancies per 100 woman-years for conscious
departure from the rules. It is clear that the ovulation
method does result in a low pregnancy rate when used
correctly, but it is very unforgiving of any departure
from the rules.

Overall Pregnancy Rate

The overall pregnancy rate is a weighted average
of method failure rate and user failure rate, with
weights proportional to the number of cycles of each
type observed in the study. It is therefore difficult
to interpret and generalize to other groups who may
have a different proportions of perfect and imper-
fect use cycles. Better counseling of users, better
teaching of how to use the method, different per-
sonal circumstances, and attitudes to an unplanned
pregnancy would all change these proportions. More-
over, in the same population or group of volunteers
these proportions may also be different, as the con-
sequences of departures from the rules are known
to them. Thus, not only can the overall pregnancy
rate not be generalized to other groups, it does not
even apply to a further study in the same cohort
of volunteers! The other measures of failure – the
pregnancy rate during perfect use, or the pregnancy
rate when the rules were not followed – may be
more applicable to other groups of users when they
adopt that particular pattern of intercourse. The only
assumption required to generalize these particular
pregnancy rates to other groups is that the women
have similar fecundity rates and their partners’ fer-
tility is comparable. We cannot be assured that this
will be the case, and a rough assessment can only
be made using indirect indicators of fertility. The
women were of proven fertility, had regular men-
strual cycles of length 23–35 days, were aged 34.5
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(sd 6.2) years and their partners were aged 30.1 (sd
4.6) years. Thus the volunteers in the WHO study
were selected so as to insure that only fertile couples
were included, although the fertility of those who did
not get pregnant during the study can only be pre-
sumed.

Pregnancy Rate Summary

During correct use of the ovulation method there were
16 pregnancies in 6683 cycles. This can either be
expressed as a Pearl rate (usually pregnancies per
100 woman-years) or as the percentage of women
who conceive within one year. Both statistics assume
that the risk of conception in each cycle is constant
(implying a geometric distribution for the number
of cycles to conception) and when the incidence rate
is low give very similar results. It is conventional to
consider 13 cycles per year – in the WHO study the
median cycle length was 27.7 days, corresponding
to an average of 13.2 cycles per year. Thus the Pearl
rate for correct method use is 16/6683 × 1300 or 3.11
pregnancies per 100 woman-years, with 95% confi-
dence limits from the Poisson distribution (1.78,
5.05) pregnancies per 100 woman-years. The pro-
portion of women conceiving within 13 cycles is
1 − (1 − p)13, where p is the probability of concep-
tion per cycle and gives the cumulative rate 3.07%
(1.76%, 4.94%). When the incidence rate is low there
is very little difference between the two statistics and
it is often incorrectly assumed, by analogy with per-
centages, that the Pearl rate must lie in the range
0–100. However, when events are not rare, the two
statistics give very different results. In the 801 cycles
during which the rules were broken there were 114
pregnancies. Thus 14.2% (11.9%, 16.8%) of cycles
resulted in pregnancy with corresponding Pearl rate
185 (155, 219) pregnancies per 100 woman-years. By
contrast, the cumulative percentage of women con-
ceiving within 13 cycles is 86.4% (80.7%, 90.9%).
Thus the choice of statistic is important and the
cumulative proportion conceiving within a specified
period is preferred. It is also similar to the cumula-
tive life table rate which is used to assess method
failure and method discontinuation rates. However,
the Pearl rate is simple to calculate and interpret, can
be generalized to different types of exposure, and
gives similar results when the incidence is rare. It
thus has its uses, particularly when the incidence is
low.

Constant or Decreasing Risks

Both statistics (Pearl rate and cumulative proportion
conceiving within one year) assume that the risk (or
hazard rate) of pregnancy in each cycle is constant,
but, while this assumption may be appropriate for an
individual, it is in general not true for a cohort of
users. The cohort can be considered to consist of two
types of women – those who adhere to the rules and
those who do not. Since those who break the rules
have a higher pregnancy rate than the others, they
will drop from the risk set at a faster rate than those
who adhere to the rules. After a number of cycles, the
remaining cohort or risk set will have a smaller pro-
portion of rule breakers and thus the cohort pregnancy
risk will be lower. The problem of heterogeneity in
time to event data is discussed in detail by Aalen
[1]. This decreasing incidence rate applies not only
to pregnancies in NFP studies, but also to other end-
points and other contraceptive methods. For example,
in a cohort of IUD users, the younger, higher fertility
women will become pregnant earlier, those prone to
expel the device will drop from the cohort earlier, and
those intolerant of or susceptible to side effects, such
as menstrual disturbances, will discontinue method
use earlier. Thus the study cohort changes in compo-
sition as the study progresses and event rates for all
types of events decline with time. Within a limited
time interval the cohort incidence rate may be con-
stant, and the Pearl rate can provide a good summary
measure in each interval. Similarly, annual cumula-
tive life table rates, conditional on being at risk in the
interval, can be computed to show how the incidence
rate changes with time [33].

In the WHO NFP study, the overall pregnancy
rate did decline with time, but the incidence rates
were more nearly constant in the subgroups of women
who adhered to the rules and among those who
departed from the rules [24], illustrating how the
changing composition of the cohort affects the overall
incidence rate.

Possible Underreporting of Acts of Intercourse

The WHO study required daily records of mucus
symptoms and menstruation as well as acts of inter-
course. As a minimum, volunteers were required to
record the last act before, all acts during, and the
first act after the fertile period, with a note indi-
cating whether all acts during the cycle had been
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reported. A simpler design and instructions would
have been to insist on all acts of intercourse being
reported, irrespective of their timing relative to the
fertile period. Although there were monthly reviews
of the records by the study monitors and an assess-
ment of the reliability of the information, there are
strong suggestions in the patterns of pregnancy rates
that substantial underreporting did occur. The per-
centage of imperfect use cycles which resulted in
pregnancy were 12.6%, 7.7%, and 3.9% for women
aged under 28 years, 28–34 years or 35–38 years,
respectively, in Ireland, New Zealand, and the Philip-
pines, while in India the corresponding pregnancy
rates were 46.0%, 30.7%, and 16.8%, and in El Sal-
vador they were 86.9%, 70.1%, and 45.4%, respec-
tively. It is not plausible that the underlying fecundity
of the volunteers is so different by country since the
eligibility criteria were the same in all countries.
Adjustment for other factors that might be related
to pregnancy rates (such as reported frequency of
intercourse) could not explain these large differences
between countries. Moreover, the pregnancy rates
among perfect use cycles were much more homoge-
neous between countries, and Trussell & Grummer-
Strawn [24] concluded that acts of intercourse which
occurred contrary to the rules were less likely to be
reported when the cycle did not result in pregnancy,
and the rate of such underreporting was higher in
India and El Salvador than the other countries.

It is impossible to assess correctly perfect and
imperfect use failure rates for methods which require
a high degree of user compliance, such as the ovu-
lation method, or male or female condoms, or the
diaphragm, unless there is accurate, unbiased record-
ing of all acts of intercourse and other features
of coital behavior. The only statistic that does not
require accurate records of coitus and method use is
the overall pregnancy rate, but we have seen above
that this rate is the most difficult to interpret. By
contrast, the assessment of pregnancy rates for meth-
ods which are not coitus- or user-dependent, such as
the IUD, can be made without the need for diaries,
since the perfect use and overall pregnancy rates are
the same.

The Steiner Model for Assessing Efficacy and
Effectiveness

The importance of distinguishing between the effi-
cacy of the contraceptive method when used correctly

and the behavioral factors that determine whether
the method is used correctly or at all was recog-
nized by the authors of Contraceptive Technology
[10]. A comprehensive review of the literature on
contraceptive effectiveness [25] was undertaken and
two main statistics were used to summarize the effi-
cacy of different methods – the perfect use and typi-
cal use pregnancy rates.

This distinction has been widely used in subse-
quent publications (see, for example, Hatcher et al.
[11]). More recently, Steiner et al. [21] proposed a
theoretic model of contraceptive efficacy and con-
traceptive effectiveness that distinguishes clearly the
different factors that govern the assessment of con-
traceptive methods. The couple’s ability to conceive
(fecundity of the female and fertilizing capacity of
her partner) combined with the timing and frequency
of intercourse determine the (unobservable) expected
pregnancy rate RExp in the absence of contracep-
tion (see Figure 1). This expected pregnancy rate
is reduced by the protection due to the contracep-
tive method under conditions of perfect use to yield
the “perfect use pregnancy rate”, RObs,Perf. The effi-
cacy of the contraceptive method is defined as the

Ability to conceive Pattern of intercourse

Expected
Pregnancy rate,

RExp

Inherent protection of method

Perfect compliance Imperfect compliance

Perfect use
pregnancy rate,

RObs, Perf

Imperfect use
pregnancy rate,

RObs, Imp

Typical use
pregnancy rate,

RObs, Typ

Figure 1 A conceptual model for contraceptive efficacy
and contraceptive effectiveness (adapted from Steiner et al.
[21])
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preventable fraction under conditions of perfect use
1 − RObs,Perf/RExp. When the method is used imper-
fectly, we observe the “imperfect use pregnancy
rate”, RObs,Imp. The difference between the two preg-
nancy rates is a measure of how unforgiving the
method is of imperfect use. Similarly, the preventable
fraction can be computed to give the efficacy of the
method under conditions of imperfect use. In practice,
there may be degrees of imperfect use, each with a
different impact on the pregnancy rate, but only one
type of imperfect use is shown in Figure 1 for sim-
plicity. Most users or groups of users will have a
mixture of perfect and imperfect use and we observe
the “typical use pregnancy rate”, RObs,Typ. The effec-
tiveness of the method, the preventable fraction under
conditions of typical use, is 1 − RObs,Typ/RExp. Effec-
tiveness is thus a measure that includes the degree of
compliance with correct method use. The difference
between efficacy and effectiveness rates depends not
only on the pregnancy rates under conditions of per-
fect or imperfect use, but is also a function of the
proportion of users who use the method perfectly, or
the proportion of cycles in which the method is used
perfectly. These proportions provide information on
the degree of difficulty in using the method according
to the rules for perfect use (assuming that subjects are
trying to use the method perfectly to avoid pregnancy
and do not deliberately use it imperfectly). Meth-
ods that do not require any particular intervention
by the user, such as the IUD or sterilization, have the
same typical and perfect use pregnancy rates, since
the method cannot be used imperfectly. Thus IUD
effectiveness is the same as IUD efficacy. However,
oral contraceptives, which must be taken according to
a fixed schedule, or coitus-dependent methods such
as the condom, have a lower perfect than typical use
pregnancy rate, and there can be a considerable dif-
ference between the efficacy and effectiveness of the
method.

Contraceptive efficacy measures the inherent pro-
tection of the method and can thus be readily gen-
eralized to other populations and groups of users. In
theory, the preventable fraction would be the same for
users with different fecundity and patterns of inter-
course. Similarly, the imperfect use pregnancy rate
and preventable fraction under conditions of imper-
fect use can be generalized to other groups of users
and can demonstrate the implications of imperfect use
on pregnancy rates. By contrast, contraceptive effec-
tiveness is very difficult to generalize, as the degree

of compliance with correct method use (or proportion
of perfect compliance users or cycles) depends on
many factors that differ from one group to another,
according to personal circumstances, and may also
vary within the same couple from cycle to cycle.
Although the typical use pregnancy rate is the easiest
to observe, it is the most difficult to generalize.

The value of the model introduced by Steiner
et al. [21] is that it focuses on what information is
necessary to assess the different measures of a con-
traceptive method and generalize these to other users.
Only in studies in which there is accurate recording of
all acts of intercourse relative to the time of ovulation
can the expected number of pregnancies be computed.
Moreover, to distinguish between the effectiveness of
the method under different patterns and types of use,
accurate records of each use are required in an unbi-
ased manner. In the NFP study, it was possible to
classify cycles according to whether or not the rules
for abstinence were correctly followed, and if not,
according to the type of departure. However, a more
complex example is the assessment of a barrier con-
traceptive method such as the diaphragm. If the day
of ovulation and all acts of intercourse are accurately
recorded, then the expected pregnancy rate RExp can
be computed, but exact details of how the diaphragm
was used for each act of intercourse (e.g. how long
before intercourse it was inserted, how long it was
left in place after intercourse, and whether spermi-
cide was also used) are necessary to distinguish the
different types of imperfect use, their associated preg-
nancy rates, and the efficacy of the method according
to these different types of imperfect use.

Conceptions According to Different Times
of Intercourse

To apply the Steiner model and estimate contraceptive
efficacy, we need to know the probability of con-
ception among couples not using any contraceptive
method according to different patterns of frequency
and timing of intercourse. Estimates of such concep-
tion probabilities have been derived from pregnancies
among women who received a single insemination
with donor sperm [19], from records of menstrual
cycles, intercourse, and pregnancies among couples
practicing the calendar method of NFP [4], and from
records of couples planning pregnancies [31]. The
analysis and interpretation of these conception prob-
abilities is not straightforward, and there is currently
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no consensus on the exact values for couples of nor-
mal fertility.

Donor Insemination

Schwartz et al. [19] reported on the success rate
of artificial insemination with frozen donor semen
among 529 presumed fertile women from infer-
tile couples in which the male partner was either
azoospermic or oligozoospermic (no or few sperm
in the ejaculate). The day of ovulation was estimated
from the basal body temperature (BBT) chart as the
last day of hypothermia before the postovulatory rise.
Data are available from 631 cycles with interpretable
charts that resulted in 82 pregnancies. The propor-
tion of cycles that resulted in a pregnancy (defined
as at least three weeks of sustained hyperthermia
from the BBT chart) is shown in Table 1 according
to cycle day and show the highest pregnancy rate
for inseminations on day −1. These results probably
underestimate the chances of conception following
coitus in couples of normal fertility, since the major-
ity of infertile couples have some degree of fertility
impairment in both partners [22]. While only couples
with documented male factor infertility were included
in the donor insemination series, reduced fecundity in
the female partner is to be expected. Moreover, frozen
donor semen may have a lower fertilizing capacity
than fresh semen deposited during coitus.

The Barrett–Marshall Model

Conception probabilities according to cycle day
among couples of normal fertility were obtained
by Barrett & Marshall [4], who studied records of
menstrual cycles, acts of intercourse and daily BBT
charts for 241 couples, the majority of whom were
practicing the calendar method of fertility regulation.
Some couples also continued to record acts of
intercourse and daily BBT charts in cycles in which
they were attempting to achieve a pregnancy. By
contrast to the donor insemination data, where there
was only a single insemination per cycle, multiple
acts of intercourse occurred in many cycles. Barrett
& Marshall introduced a simple probability model for
the probability of conception in a given cycle

P = 1 −
∏

i

(1 − πi)
xi , (1)

where πi is the probability of fertilization on day i

and xi is an indicator variable, which takes value 1
if intercourse takes place on day i and 0 otherwise.
The results of the maximum likelihood fit are shown
in Table 1 (using Schwartz’ renumbering of the days
before ovulation in preference to Barrett & Marshall’s
notation) and show reasonable agreement with the
artificial insemination data.

A third set of conception probabilities was
obtained by Vollman [29] from 74 couples who had
been using periodic abstinence to avoid conception
and then “agreed to have intercourse only once in
the cycle for the next planned pregnancy”. Although
the data included cycles with more than a single
act of intercourse, Vollman did not use model (1)
but computed the conception probabilities directly
from the number of conceptions that resulted from
intercourse on a particular day by the number of
cycles with intercourse on that day. This will have
underestimated the conception probabilities.

These three sets of conception probabilities were
smoothed by Dixon et al. [6] using a weighted
moving average to reflect uncertainty in the exact
time of ovulation which had been indirectly estimated
from the BBT charts (Table 1). There is no theoretic
reason or evidence that such smoothed estimates
are more appropriate, and the highest chance of
conception on day −1 is substantially less than
that obtained from the original daily conception
probabilities.

The Extended Schwartz–Barrett–Marshall Model

A limitation of model (1) is the assumption that
the probabilities of conception from different coital
acts in the same cycle are independent. If Pi is
the probability of conception during a cycle with
intercourse on day i, then the model implies that
the probability Pij of conception in a cycle with
intercourse on days i and j is given by

Pij = Pi + Pj − PiPj . (2)

Application of the independence model to cycles with
multiple acts of intercourse leads to conception prob-
abilities as high as 68% if intercourse takes place
every day [18]. This appears to be too high, particu-
larly in view of the rate of fetal loss within the first
six weeks of pregnancy (the endpoint used by Barrett
& Marshall). The model can be generalized to include
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these other factors by writing the overall probability
of pregnancy in a given cycle as P = PoPfPv, where
Po is the probability of ovulation, Pf the probabil-
ity that the ovum is fertilized, and Pv the probability
that the fertilized ovum successfully implants and sur-
vives to the time of observation. Assuming that coital
acts within the cycle are independent, we have, as
before,

Pf = 1 −
∏

i

(1 − πi)
xi .

The extended Schwartz–Barrett–Marshall model for
the probability of conception in a cycle with coital
pattern x is

P(x) = kPf = k

[
1 −

∏

i

(1 − πi)
xi

]
, (3)

where only the product k = PoPv is estimable (see
Estimation), since the probabilities of ovulation
and ovum viability cannot be estimated separately
from the observed pregnancies and coital patterns.
Note that the probability of pregnancy in a cycle
with intercourse on days i and j is now given by
Pij = Pi + Pj − PiPj/k instead of (2) from the Bar-
rett–Marshall model. The parameter estimates from
model (3) obtained by Schwartz et al. to Barrett &
Marshall’s NFP data (extended by a small number of
additional cycles; Table 1) are comparable to those
from model (1). The combined ovulation/viability
factor k was estimated to be 0.52, and the estimated
probability of conception for a cycle in which inter-
course occurs every day during the fertile period is
reduced from 68% to 49%. Since all cycles included
in the analysis had an ovulatory BBT pattern, the
parameter k provides an estimate of Pv, the proba-
bility that the fertilized ovum survives to six weeks
of pregnancy. There is also good agreement with
the direct estimates of the conception probabilities
from those cycles in which a single act of intercourse
occurred in the fertile period (Table 1).

The model was further extended by Royston [17]
who postulated that the probability of fertilization
resulting from a single act of intercourse on the
day of ovulation was 1 and declined exponentially
according to the survival capacity of sperm and
ovum for single acts before or after the day of
ovulation. He also assumed that the viability of the
fertilized ovum decreased linearly with the age of
the woman. In addition, he allowed for uncertainty

in the exact time of ovulation (indirectly estimated
from the day of BBT shift) by averaging over an
assumed normal distribution with mean 2 and
standard deviation 1.25 days. The fitted conception
probabilities (Table 1) show a maximum around days
−2 and −1 with nonzero probabilities as far as
day 3. Note that we have renumbered the days of
the cycle so that day 0 corresponds to the last day
before the BBT rise, instead of the first day of
hyperthermia used in Royston’s original paper. The
viability of the fertilized ovum was estimated to
be 0.48, close to that obtained in model (3), and
declined by 0.022 for each additional year of the
woman’s age. The mean lifetime of the sperm was
1.47 days, twice as long as that of the ovum (0.70
days).

The Early Pregnancy Study

The fourth source of data on conception probabil-
ities according to cycle day is records of couples
enrolled in the Early Pregnancy Study [31]. This
was a prospective study of 221 women planning
pregnancy who kept coital and menstrual diaries
and provided daily early morning urine samples for
estimation of ovarian steroid metabolites. The exact
day of ovulation was estimated from the rapid drop
in the estrogen-to-progesterone ratio that occurs just
before ovulation [3]. The primary objective of the
study was to determine the risk of early pregnancy
loss among healthy women, and thus a highly sen-
sitive assay was used to detect pregnancies within
six days of fertilization, around the time of implan-
tation (“chemical pregnancies”). From a total of 199
chemical pregnancies, 48 ended within six weeks of
last menstrual period and the remaining 76% were
recognized clinically. The estimated conception prob-
abilities obtained from these data for cycles in which
a single act of intercourse took place are similar to
those obtained from model (3) using all observed
cycles (Table 1). The peak conception probabilities
around the day of ovulation were in general higher
than those seen with the donor insemination and NFP
series, particularly for coitus on day 0 where the
rates were more than twice as great. This is to be
expected, since the study included chemical pregnan-
cies. Interestingly, no pregnancies were observed for
coital acts on the day after ovulation, although the
authors could not exclude conception probabilities as
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Figure 2 Estimated probabilities of conception arising
from single acts of intercourse relative to the day of
ovulation

high as 12% owing to the small number of total cycles
observed.

Summary

The data described above are the only currently
available sources of information on conception prob-
abilities for acts of intercourse on different days
of the cycle and some are plotted in Figure 2 for
comparison. The artificial insemination data proba-
bly underestimate the true rates due to the potential
for subfertility in the female. Similarly, the NFP data
of Barrett & Marshall and Vollman are also proba-
ble underestimates, since they refer to couples who
had been successfully using the method for some
time and thus the highest fecundity couples will
have either achieved a pregnancy or have changed
to another contraceptive method. By contrast, the
results from the Early Pregnancy Study are overesti-
mates due to the inclusion of chemical pregnancies.
A further analysis of these data considering only the
clinically recognized pregnancies has recently been
completed [27].

Studies of Emergency Postcoital
Contraception

Emergency postcoital contraceptive methods protect
against pregnancy after unprotected intercourse by
reducing the viability of any fertilized ovum and
preventing implantation. Although a variety of differ-
ent hormonal regimens have been studied, the most
widely used method is the Yuzpe regimen [34], which
involves two high doses of estrogen and progestogen,

the first taken within 72 hours of intercourse and the
second 12 hours later. Each dose contains 500 µg of
levonorgestrel and 100 µg of ethinylestradiol, which
is about three times higher than the usual daily
doses of hormones in the most widely used combined
oral contraceptive pills (150 µg of levonorgestrel and
30 µg of ethinylestradiol). The majority of women
request emergency contraception soon after a sin-
gle act of unprotected intercourse during the fertile
period, and thus the expected number of pregnancies
can be estimated using the daily conception probabil-
ities, either directly for a single act, or using model
(3) if there were multiple acts. In general, the exact
day of ovulation is not known and must be esti-
mated from the usual menstrual cycle length and the
date of onset of the previous menses. Any uncer-
tainty in this estimate is not a problem for properly
randomized comparative studies (see Clinical Trials,
Overview) [30], since the comparison between treat-
ment arms will not be biased. Similarly, differences
between treatment arms will not be biased by calcula-
tions based on daily conception probabilities that are
too low or too high (see, for example, Dixon et al.
[6]), and the simple comparison of the number of
observed pregnancies in the treatment arms [7] also
provides a valid estimate of differences between the
groups.

However, it is less easy to estimate the abso-
lute efficacy of postcoital contraceptive methods. The
overall pregnancy rate is a poor measure of the per-
formance of such methods, since many cycles with
unprotected intercourse will not result in pregnancy.
A better measure is the preventable fraction, or effi-
cacy rate, which has been estimated to be approx-
imately 75% (95% confidence interval 68%–79%)
by Trussell et al. [26], who reanalyzed data from ten
studies of the Yuzpe regimen. However, the estimated
efficacy rate for one study ranged from 55.3% to
67.1% according to which estimates of daily con-
ception probabilities were used.

Estimating the Efficacy of Other
Contraceptive Methods

While the conceptual model (Figure 1) and the esti-
mates of conception probabilities (Table 2) clarify
the information necessary to assess efficacy, these
cannot provide estimates of efficacy for all contracep-
tive methods. Estimating the efficacy of emergency
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contraception is straightforward, since the necessary
information can be obtained by interview when the
woman requests the method. Most users are exposed
to a single act of unprotected intercourse and the
method must be used within three days so that the
timing of intercourse, usual length of menstrual cycle,
and date of onset of the most recent menses can
be accurately provided. This is by contrast to other
coitus-dependent methods, for which information on
coitus and menstruation is seldom sufficient.

Withdrawal (coitus interruptus) presents particu-
lar difficulties, since the method is used in ways that
are difficult to observe – either it is used in emer-
gency as a last resort when no other contraceptive
methods are available, or it is used as a deliberate
strategy for the prevention of pregnancy. The for-
mer type of user cannot be identified in advance, and
any retrospective information collected on such users
will be hopelessly biased by a greater reporting rate
for cycles where pregnancy actually occurred. The
second type of user will usually have poor access to
reproductive health care services and will thus be dif-
ficult to identify. Nevertheless, any cohort of regular
withdrawal users would be biased toward the better
and more reliable users of the method. Information
on the typical pregnancy rates of withdrawal must
be obtained from other sources, such as population
based studies or cohorts assembled for other reasons.
For example, as part of the Romania 1993 Reproduc-
tive Health Care Survey, women provided informa-
tion retrospectively on contraceptive and pregnancy
history. These were combined to reconstruct periods
of use of different contraceptive methods, the timing
of any pregnancies, and the times and reasons for
changing to another method. The 12-month cumula-
tive life table pregnancy rate was found to be 30%
[20]. This rate is more than four times higher than that
estimated from a cohort of women participating in a
long term prospective study conducted in England
and Scotland by the Oxford Family Planning Asso-
ciation, which enrolled 17 000 British women aged
25–39 years using oral contraceptives, a diaphragm,
or an IUD. In this cohort, the estimated pregnancy
rate for withdrawal was 6.7 per 100 woman-years
[28].

The wide discrepancy in estimated pregnancy rates
from the UK cohort and the Romanian study illus-
trates the difficulties in assessing typical use preg-
nancy rates. The reproductive health care facilities
in the two countries were widely different and the

Oxford FPA cohort contained a large proportion of
careful users. Indeed, a more representative group of
married users in the UK yielded an estimated preg-
nancy rate of 21.9 per 100 woman-years [16] that
is closer to the estimate from Romania. Note that
it is almost impossible to obtain sufficient accurate
information on menstruation and acts of intercourse
among a group of withdrawal users to estimate the
expected number of pregnancies. Thus the contracep-
tive efficacy of the method cannot be estimated, but
only the typical use pregnancy rate.

Unresolved Problems

The first unresolved problem concerns estimates
of daily conception probabilities. The extended
Schwartz–Barrett–Marshall model has been shown
to provide a good fit to data on conceptions and
patterns of intercourse, and has proven its value
for estimating conception probabilities according to
different days relative to ovulation. It can also be
applied to observed coital patterns to estimate the
expected number of pregnancies in the absence of
contraception and hence the contraceptive efficacy
of different methods. The only outstanding issue
is whether better or more data can be obtained
on which to apply the model and derive more
reliable estimates. Data on pregnancies arising from
donor insemination or from users of natural family
planning methods have their limitations, while studies
of couples planning pregnancy, as in the Early
Pregnancy Study, may yield more representative
data. It is important to collect such information
from a wide range of couples (different countries,
age ranges, personal circumstances) to understand
better the factors related to fecundity and fertilization
probabilities. The availability of simple home testing
methods to record urinary metabolites (see, for
example, May [13]) would greatly simplify data
collection and estimation of the day of ovulation.

The second unresolved problem concerns the effi-
cacy of other coitus-dependent methods and the
simultaneous use of combinations of methods. As
we have seen, typical use pregnancy rates can
be obtained for coitus-dependent methods, but the
requirement to record coital acts and estimate the
day of ovulation make it very difficult to collect
unbiased data that would permit calculation of the
efficacy of perfect use and of various types of imper-
fect use. Such efficacy estimates will be valuable
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in counseling prospective users and predicting preg-
nancy rates among different types of user. An addi-
tional challenge is to establish typical use pregnancy
rates and contraceptive efficacy of mixed method
use; for example, use of a barrier method only dur-
ing the fertile phase of the cycle. Theoretic typi-
cal use pregnancy rates can be estimated using the
extended Schwartz–Barrett–Marshall and the contra-
ceptive efficacy of barrier and natural family planning
methods, but validation against observed data would
be essential.

Key References

The following references are considered of particular
importance in preparing this article: Barrett & Mar-
shall [4], Royston [17], Schwartz et al. [18], Steiner
et al. [21], Trussell & Grummer-Strawn [24], Trussell
et al. [26], and Wilcox et al. [31].
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Resampling Procedures
for Sample Surveys

One of the major statistical challenges in the develop-
ment and application of complex probability sample
designs is the valid estimation of sampling errors.
Probability sampling theory and practice permits var-
ious departures from the simple random, with or
without replacement, sampling model. These depar-
tures, which often take the form of stratification,
cluster sampling, multistage sampling, and unequal
probability of selection, are often used in order to
produce sample designs that are both feasible and
cost efficient. One of the drawbacks to these prac-
tical and efficient probability sample designs is the
complexity and possible intractability that occurs
with respect to the estimation of sampling errors.
There are several basic methods linked to the gen-
eral concept of resampling that have been developed
for the estimation of sampling errors from complex
(clustered and stratified) sample designs. These meth-
ods are discussed under three general headings: Sim-
ple Replication, Jackknife Repeated Replication, and
Balanced Repeated Replication. It is interesting to
note that while the use of a resampling technique
known as the bootstrap has enjoyed wide use and
acceptance in the general statistical literature, there
have not been many attempts to apply simple boot-
strap methods to complex applied probability sample
designs. There has been some work by Rao and Wu
[8], but they conclude that for certain classes of com-
plex designs “the bootstrap variances estimators are
less stable than those based on the linearization or
the jackknife.”

The basic approach of repeated replication in sur-
vey design was developed at the US Census [1]
and built on the basic concepts of Mahalanobis [6].
McCarthy [7] introduced the idea of orthogonal bal-
ancing. It should be noted, however, that the use of
replication in the form of “split-samples” was proba-
bly in use by psychologists prior to the development
of probability sampling.

Simple Replication

The basic strategy of Simple Replication (see Inter-
penetrating Samples) or Replicated Subsamples
involves four basic steps.

Assuming that the total sample is to consist of
a primary selection (which will produce the desired
sample size of n elements), a sample design is devel-
oped that will involve the selection of a/K primary
sampling units. The value of K must be some inte-
ger greater than one and less than n (Deming [2]
recommends the use of K = 10). A probability sam-
pling design is formulated so that it may be repeated
K times. Full flexibility is allowed in the sample
design as long as the conditions required for proba-
bility sampling are satisfied. The sample design may
be as simple as simple random or systematic selec-
tion of a/K elements with no stratification. It may be
quite complex and involve stratification, clusters of
unequal size, unequal probability of selection, and/or
multiple stages of sampling.

Once the sample design has been specified, the
actual sample selection process is carried out sepa-
rately and independently a total of K times. Each
repetition produces a replication or replicate. Let
Rk denote the Kth replication or replicate. The set
consisting of all K replicates constitutes the total
sample S : S = {R1, . . . , Rk}.

Application of the estimation function g(·) for the
particular survey estimate produces the total sample
estimate g(S). Let g(Rk) denote the survey estimate
produced from the kth replicate.

The simple replicated estimate of the sampling
variance of g(S) is

varrep[g(S)] = 1

K(K − 1)

K∑

k=1

[g(Rk) − g(S)]2. (1)

The standard error of g(S) is estimated as

se[g(S)] = {var[g(S)]}1/2. (2)

Confidence intervals based on this estimated stan-
dard error se[g(S)] generally use the Student’s t
distribution with K − 1 “degrees of freedom”.

It should be noted that (1) is an unbiased estima-
tor of the sampling variance of g(Rk) = ∑

g(Rk)/K ,
the mean of the K estimates g(R1), . . . , g(Rk). The
use of (1) as a variance estimator for g(S), the esti-
mate derived from the total sample, depends upon the
assumption that the sampling distribution of g(S) is
approximately equal to the sampling distribution of
g(Rk). For certain simple statistics and simple sample
designs, the two estimates g(S) and g(Rk) are alge-
braically identical. This is the case for simple means
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and proportions from simple random samples of fixed
size n elements. For other more complex estimates
(e.g. regression and correlation coefficients) and/or
more complex sample designs (e.g. designs based on
clusters of unequal size), these estimates may be dif-
ferent. For certain types of estimates based on order
statistics (e.g. medians and percentiles (see Quan-
tiles)) the impact of departures from this assumption
may be substantial.

When first proposed, Simple Replicated Subsam-
pling was seen as a sample design tool: that is, it was
a model for sample designs that would permit simple
and straightforward estimation of standard errors. The
resampling took place in terms of generating K repli-
cations from the “sampling distribution”. In many
practical sample design situations, particularly those
involving the presentation of legal evidence in either
administrative or legal proceedings, the method has
proven to be both simple and intuitively appealing
for both statisticians and nonstatisticians. However,
the method does have its limitations. The greatest
limitation of the model is the limits that are placed on
the complexity and efficiency of design. For example,
a sample of 100 elements may, in its fullest com-
plexity, utilize a stratification structure of 50 or even
100 strata. In a Simple Replicated Subsample Design
which utilizes K = 10 replicates, the maximum num-
ber of strata is equal to 10.

The Simple Replicated Subsampling model is
often used as a model for the computation of sam-
pling errors, even in those situations in which it is not
actually used in the sample design. That is, even when
the sample is not selected in accord with the model,
a pseudoselection model is formulated that refor-
mulates the actual sampling process into a similar
replicated subsampling process. This reformulation
often involves a collapsing or combining of substrata
within primary strata, after sample selection, for the
purpose of standard error estimation. For example,
a sample design might specify the selection of 100
elements from a population that is partitioned into
50 equal sized strata, with two elements selected per
stratum. This design might be viewed as a replicated
sample based on K = 2 or it might be reformu-
lated, for purposes of sampling error estimation, into
a design consisting of 10 strata with K = 10. The
actual 50 strata would be collapsed or combined into
10 computational strata.

In most situations in which a design is reformu-
lated for the purpose of standard error estimation, it

is generally the case that the estimate of sampling
error will be “conservative”.

Jackknife Repeated Replication

Jackknife Repeated Replication (JRR) and Balanced
Repeated Replication (BRR) are methods for standard
error estimation that involve actual “resampling” or
reuse of sample observations.

In their simplest forms, BRR and JRR assume a
sample selection model based on a stratified design
with two independent selections per stratum. This
“paired selection” model assumes that the population
is partitioned into H = a/2 strata, where a represents
the total number of primary selections. Within each
of these strata, it is assumed that there will be two
independent primary selections. Following the first
stage of sampling, there may be any number of
subsequent stages, and selection may involve equal
or unequal final probabilities for elements.

Jackknife Repeated Replication (JRR) estimates
of sampling variance and standard error [3] are con-
structed as follows: we assume H = a/2 strata, each
consisting of two primary stet units.

Let S denote the entire sample along with any
weights that have been applied to the sample obser-
vations (including poststratification) associated with
the full set of a primary selections.

Let Jh denote the hth jackknife replicate formed
by including all sample observations not in the hth
stratum, removing all sample observations associated
with one of the two primary selections in the hth
stratum, and including twice all sample observations
associated with the other primary selection in the hth
stratum.

Let CJh denote the hth complement jackknife
replicate formed in the same way as the hth jackknife
replicate Jh, except that the eliminated and doubled
primary selections are interchanged.

Let g(S) denote the total sample derived estimate
for which a sampling variance is sought. Let g(Jh)

and g(CJh) denote the same estimator applied to
the hth jackknife replicate and complement jackknife
replicate respectively. Note that it is assumed that any
weighting process that has been applied to the total
sample is applied to each jackknife and complement
jackknife replicate as if they constituted the sample
that was being used for estimation. (In those cases
in which “reweighting” of each jackknife replicate is
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not feasible, the original weights may be used, but
this may result in some estimation bias. In practice,
the magnitude of this bias is often negligibly small.)

There are two jackknife repeated replication esti-
mates that are used to estimate the variance of g(S)

and corresponding standard error g(S). These are
defined as follows:

varJRR-S[g(S)] = 1 − f

2

H∑

h=1

[g(Jh) − g(S)]2

+ 1 − f

2

H∑

h=1

[g(CJh) − g(S)]2,

(3)

with

seJRR-S[g(S)] = {varJBRR-S[g(S)]}1/2; (4)

and

varJRR-D[g(S)]

= 1 − f

4

H∑

h=1

[g(Jh) − g(CJh)]
2, (5)

with
seJRR-D[g(S)] = {varJRR-D[g(S)]}. (6)

Confidence intervals based on these Jackknife
Repeated Replication estimates of standard error
generally use the Student’s t distribution with H

“degrees of freedom”. The form seJRR−D[g(S)] given
in (6) provides a more conservative estimate of
standard error and is generally preferred [5].

Balanced Repeated Replication

Balanced Repeated Replication (BRR) estimates of
sampling variance and standard error are constructed
as follows: we assume H = a/2 strata, each consist-
ing of two primary selections units.

Let S denote the entire sample along with any
weights that have been applied to the sample obser-
vations (including poststratification) associated with
the full set of a primary selections.

Let HSi denote the ith half-sample formed by
including all of the observations associated with one
of the two primary selections from each of the strata;
and let CHSi denote the ith complement half-sample
formed by all of the observations associated with the
primary selections in S not in HSi . The method used

for choosing the pattern of primary units that form
the half-samples HSi and complement half-samples
CHSi is known as “full-orthogonal balance”. In gen-
eral, to achieve full-orthogonal balance it is necessary
to form K half and complement half samples, where
K is the smallest multiple of 4 that is equal to or
greater than H . Given the K half- and complement
half-samples, the two forms for BRR estimates of
sampling variance and standard error are [4, 7]:

varBRR-S[g(S)] = 1 − f

2K

K∑

i=1

[g(HSi) − g(S)]2

+ 1 − f

2K

K∑

i=1

[g(CHSi) − g(S)]2,

(7)

with

seBRR-S[g(S)] = {varBRR-S[g(S)]}1/2; (8)

and

varBRR-D[g(S)]

= 1 − f

4K

K∑

i=1

[g(HSi) − g(CHSi)]
2, (9)

with

seBRR-D[g(S)] = {varBRR-D[g(S)]}1/2. (10)

Confidence intervals based on these balanced repeated
replication estimates of standard error generally use
the Student’s t distribution with H “degrees of free-
dom”. The form seBRR-D[g(S)] given by (6) provides
a more conservative estimate of standard error and is
generally preferred [5]. For a more complete discus-
sion of variance estimation in survey samples, readers
should consult [9].
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Residuals for Survival
Analysis

The standard definition of a residual is the
observed datum minus its expected value estimated
from a model. Right-censoring precludes its direct
application to survival data; a censored observation
provides incomplete information on the failure time.
Alternative definitions of residuals are needed. Three
major ones are the generalized residuals of Cox
& Snell [13], residuals based on counting process
martingales and their transforms, and residuals from
the generalized linear regression model [27] for
loglinear Poisson regression. The first two are
general, while the third is specific to the loglinear
proportional hazards model of Cox [12] (see
Cox Regression Model). In each case, there are
interesting analogies between survival residuals and
residuals for normal theory linear regression.

The proportional hazards (Cox regression) model
is the most frequently used model for survival data,
and we emphasize it. The notation and setup are
as follows. On each of n independent individuals,
one has observed a p-dimensional vector, Xi , i =
1, . . . , n, of predictor values (or explanatory vari-
ables), a non-negative random variable, Ti , the dura-
tion of follow-up time, and a binary indicator, δi ,
taking the value 1 if the follow-up terminates in
the failure event of interest (e.g. death) and 0 if
not. Underlying the variables Ti and δi is a pair
of latent random variables: Di , the time to failure
of person i, and Ci , the time to censoring, where
Di and Ci are conditionally independent given Xi ;
Ti = min(Di, Ci) and δi = I (Di ≤ Ci), with I (A) as
the indicator function for event A. Also Di is assumed
to be an absolutely continuous random variable with
probability density function fD(t) and survivor func-
tion SD(t) = Pr(D > t). Interest centers on modeling
the hazard function λi(t) = fDi(t)/SDi(t). Under the
Cox model, we have

λi(t) = λ0(t) exp(β ′Xi ). (1)

The model is parametric if λ0(t) is a specified
function of time or semiparametric if λ0(t) is
unspecified. The covariate vectors may be functions
of time; for simplicity, we initially assume that they
do not vary over time.

Generalized Residuals

Suppose for the ith individual there exists a function
hi of data Zi and parameter vector θ such that
hi(Zi , θ) = ei , where the eis are independent and
identically distributed of known distribution. Then the
Cox & Snell generalized residual is Ri = hi(Zi , θ̂),
where θ̂ is the maximum likelihood estimator of θ .

Crowley & Hu [14] and Kay [22] were the
first to apply this definition to censored survival
data regression. The cumulative hazards Λi(Ti)[=
− ln Si(Ti)], i = 1, . . . , n, are distributed as a cen-
sored sample of independent unit exponentials,
with 1 − δi serving as a censoring indicator. Under
the Cox model, Λi(Ti) = exp(β ′Xi )

∫ Ti

0 λ0(s) ds, and
the Cox–Snell generalized residual is Λ̂i(Ti)=
exp(β̂ ′Xi )Λ̂0(Ti). Many investigators have proposed
standard hypothesis tests and plots for assessing the
exponentiality of these residuals as global checks for
model goodness of fit [18]. A common plot is a
graph of the ordered residuals on the abscissa with
their Nelson–Aalen cumulative hazard estimator [5,
pp. 445, 556] on the ordinate. If failure times are
completely observed, it is just a graph of the ordered
residuals against the expected values of exponential
order statistics. Thus, this plot is the exponential
analogue of the normal Q–Q plot for residuals from
linear regression (see Normal Scores).

Unfortunately, the validity of these techniques is
highly questionable for semiparametric models [7].
An illustrative extreme case occurs when there are
no covariates. If the failure times are completely
observed, the generalized residuals are precisely the
expected order statistics of a unit exponential sample
[15], and the Nelson–Aalen plot is exactly a 45° line
through the origin. Monte Carlo simulations show
that when there is censoring and one covariate, the
appearance of the Nelson–Aalen plot depends on the
variance of |β ′Xi |, with the deviation from the 45°

line increasing with the variance [7]. Thus, a model
containing covariates may appear to fit less well than
one with no covariates, even when the covariates have
a substantial impact on the hazard. For parametric
models, on the other hand, the generalized resid-
uals behave like standardized residuals from least
squares regression. The ordered residuals have the
correct means but substantially smaller variances than
the order statistics from the reference distribution, a
unit exponential sample for survival data [7], and
a standard Gaussian sample for least squares. The
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assessment of exponentiality of generalized survival
residuals provides a valid indicator of model appro-
priateness only for parametric models.

Generalized Linear Model Residuals

The formal similarity between likelihoods for
proportional hazards models for survival data and
loglinear models for Poisson data [4, 23, 33]
has inspired the use of residuals developed for
the generalized linear model which has Poisson
regression as an important special case. Let
Zi, i = 1, . . . , n, be independent Poisson variates
with means µi = exp(β ′Xi ), where Xi is a p-
dimensional covariate vector. The basic “observed
minus expected” residual is zi − µ̂i , but transformed
residuals have proved more useful for model
checking. Three of these, the Pearson, deviance,
and partial residual have been adapted to the
semiparametric Cox model. The Pearson residual
is (zi − µ̂i)/µ̂

1/2
i , the deviance residual is sgn(zi −

µ̂i){2zi ln(zi/µ̂i) − zi + µ̂i}1/2 [27, p. 39], and the
partial residual for the j th covariate is (zi − µ̂i)/µ̂i +
β̂j xij [27, p. 402], j = 1, . . . , p.

In the Cox model, the unit of analysis can be
either each individual or, more finely, each individual
at each death time. The residual definition depends
on the choice of unit. For the finer level of analy-
sis, let T1 < T2 < · · · < TQ denote the ordered death
times. Suppose rq individuals are at risk of death
at T −

q . Let δkq = 1 if individual k, k = 1, . . . , rq ,
at risk at T −

q , died at Tq and 0 otherwise, for
q = 1, . . . , Q. Then, using the Whitehead [33] Pois-
son formulation, δkq is the analog of zi . Condition-
ing on the risk set and assuming no tied survival
times, the probability of death at time tq for an
individual at risk with covariate Xi is pq(Xi ) =
exp(β ′Xi)/

∑rq

k=1 exp(β ′Xk). The analog of µi is
pq(Xi ), a conditional mean. Hall et al. [21] extend to
Cox regression the adjusted variable plot from multi-
ple linear regression. Their plot for the j th covariate
contains

∑Q

q=1 rq points (one for each individual at
each death time) whose coordinates have complicated
formulas but can be interpreted as “adjusted z” ver-
sus “adjusted xj ”, where the adjustment is for the
other covariates, the Poisson weights, and the loglink
function. A least squares line through the origin has
slope β̂j , the maximum partial likelihood estimate
from the Cox regression, and residuals equal to the
Pearson residuals, {δjk − p̂q(Xk)}

/
p̂q(Xk)

1/2, where

p̂q(Xk) = exp(β̂ ′Xk)
/∑r

j=1 exp(β̂ ′Xj ). As in linear
regression, these plots show the partial leverage and
influence of each unit on each β coefficient.

At the level of analysis where each individual is
the unit, δi is analogous to zi and Λ̂0(Ti) exp(β̂ ′Xi )

is analogous to µ̂i . The analogy is purely formal
because Λ0(Ti) exp(β ′Xi ), itself a random variable,
cannot be the expected value of δi nor can it be a
conditional mean, since the correct conditional mean
is given by

E(δ|T , X) = fD|X(T )SC|X(T )

fD|X(T )SC|X(T ) + SD|X(T )fC|X(T )
.

The counting process martingale approach (below)
gives a more probabilistic justification for the Poisson
residual δi − Λ̂0(Ti) exp(β̂ ′Xi ). The deviance trans-
formation symmetrizes the distribution of the Poisson
residuals and therefore the deviance residual can
offer improvement for detecting outliers in some
cases [31]. A plot of the partial residuals for the
j th covariate against Xij (see Figure 1) suggests
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Figure 1 Partial residual plots for primary biliary cirrhosis
data, comparing a model with bilirubin (a) to one with log
bilirubin (b). The solid line is a weighted smooth, quadratic
loess with span of 60% [10] and the dotted line is the fitted
functional form from the model. Roughly 10% of the partial
residuals are too large to fit on these plots; the vertical scale
was chosen to enhance clarity
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the correct functional form for the covariates in the
linear predictor. As with Poisson regression, a scat-
terplot smooth superimposed on the residual plot is
a useful guide; the smooth should weight each point
proportional to µ̂i to stabilize variance and reduce
bias. If the model is correct, then the smooth will
give roughly a straight line with slope β̂j . If incor-
rect, the smooth will suggest the correct functional
form. For example, a concave curve would suggest
using log Xij rather than Xij . The primary biliary
cirrhosis data [17, Appendix D] provides an illus-
trative example. Primary biliary cirrhosis (PBC) is a
fatal liver disease. A survival model for PBC patients
(n = 312) was developed and the bilirubin level in
the blood was found to be the most important risk
factor. The Figure shows the partial residuals from
a Cox model with bilirubin as the sole predictor.
The weighted smooth in Figure 1(a) is a concave
curve, suggesting lack of fit for bilirubin with no
transformation. When log bilirubin is used instead
(Figure 1(b)), the weighted smooth approximates the
line β̂ log bilirubin quite closely, indicating a good
fit for the log transformation. Analogous plots for
more extensive models with multiple predictors have
a similar appearance [20] and concur in supporting
the log transformation as the appropriate functional
form for bilirubin. If the covariates are highly cor-
related, an incorrect functional form for one covari-
ate may influence the appearance of partial residual
plots for other covariates. However, the augmented
partial residual plot [26] for highly correlated pre-
dictors in linear regression works for Cox regres-
sion as well. In this technique, the regressors are
quadratic polynomials instead of linear terms, and
the partial residual is [(δi − µ̂i)/µ̂i] + β̂j xij + γ̂ x2

ij

plotted against xij [20].

Counting Process Martingale Residuals

A counting process N(t) is a stochastic process
with N(0) = 0, and with sample paths that are
right-continuous step functions having jumps of size
one. Typically N(t) counts the number of events
in [0, t], t ≤ τ , where τ is the prespecified time
for the end of the study. Given a filtration, a
sequence of increasing sigma-fields {Ft , t ≤ τ } to
which {N(t), t ≤ τ } is adapted, the Doob–Meyer
decomposition gives

N(t) = A(t) + M(t),

where A(t) is an increasing, predictable process
called the compensator, and M(t) is a mean-zero
martingale. Usually Ft contains all available infor-
mation on the counting process and any covari-
ates through time t . Heuristically, E[ dN(t)|Ft− ] =
dA(t), so the differential of the compensator gives
the conditional probability of an event in the next
instant of time, given the preceding history. Because
E[M(t + s)|Ft ] = M(t), the martingale is a process
without drift. It has uncorrelated increments and is a
natural generalization of a white noise process. Thus,
the Doob–Meyer theorem decomposes the counting
process into two stochastic processes – a statistical
model and a residual process.

Barlow & Prentice [8] laid down the framework
for martingale residuals in survival analysis. Allow-
ing for time-varying covariate processes, the data
consist of independent triples {Ni(t), Yi(t), Xi (t); t ≤
τ, i = 1, . . . , n} and a filtration specified by

Ft = σ {Ni(u), Yi(u
+), Xi (u

+);

0 ≤ u ≤ t, i = 1, . . . , n}.
In the single-event setting, emphasized here, Ni(t)

is 0 prior to the observed death of individual i and
1 at and after the death. For recurrent event data,
Ni(t) counts the events in [0, t] occurring for indi-
vidual i; Yi(t) is an adapted left-continuous at risk
process, which takes the value 1 when individual
i is at risk for an observed event and 0 other-
wise. Xi (t) is a vector process, giving the value
of p covariates over time for individual i. Suppose
that time to death is independent of censoring,
and the covariate processes are adapted and have
sample paths that are left-continuous step func-
tions with right-hand limits [17, Lemmas 1.4.1 and
2.3.1 and Theorem 4.2.3]. Then, the compensator
for Ni is Ai(t) = ∫ t

0 Yi(u)λi(u) du, where λi(u) is
the hazard function for individual i. The subject-
specific martingale process is Mi(t) = ∫ t

0 dNi(u) −∫ t

0 Yi(u)λi(u) du. Transforms of these martingales
provide a family of residual processes. Consider a
predictable, locally bounded, possibly vector-valued
process Hi(t), defined in terms of data on the ith
and possibly other subjects prior to t . The martingale
transform Ri(t) = ∫ t

0 Hi(u) dMi(u) is itself a mean-
zero martingale. Furthermore, cov[Ri(s), Rj (t)] = 0
for i �= j , although Ri and Rj are not indepen-
dent unless Hi and Hj are independent; var[Ri(t)] =
E

∫ t

0 Yi(u)Hi(u)⊗2
λi(u) du, where a⊗2

is the outer
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product of vector a and has (j, k) element = ajak .
Having fitted a model, one has estimates β̂ and Λ̂0(·)
and residual processes R̂i(·). The residual processes
evaluated at t = τ have properties similar to the resid-
uals from multiple linear regression. They sum to zero
and are negatively correlated with asymptotic corre-
lation −1/n. If the correct model has been fitted, then
the residual processes have the patternless structure
of martingales. Various choices of Hi can be used to
detect different aspects of model inadequacy.

In the semiparametric Cox model, two choices of
H have proved useful. H = 1 gives the estimated
subject-specific martingale, M̂i(·), which estimates
the difference between the number of events observed
up to t and the integrated conditional expectation
under an assumed model. In the case of time-fixed
covariates, M̂i(τ ) = δi − Λ̂0(Ti) exp(β̂ ′Xi), the Pois-
son residual discussed above. For the second choice,
let Hi(t, β) = Xi (t) − EX(t, β), where EX(t, β) =∑n

i=1 Xi (t)Yi(t) exp[β ′Xi (t)]/
∑n

i=1 Yi(t) exp[β ′Xi

(t)], the weighted mean covariate vector of those at
risk at time t . The score statistic (first partial deriva-
tive of the log likelihood) for the Cox partial likeli-
hood can be written as

∑n
i=1

∫ τ

0 Hi(t, β) dMi(t, β),
and

∫ τ

0 Ĥi(t) dM̂i(t) is the ith score residual. Let
I(t, β), a p × p matrix, denote the negative Hes-
sian of the Cox partial log likelihood; I(τ, β̂) is
the observed Fisher information matrix. The scaled
score residuals, I(τ, β̂)−1

∫ τ

0 [Xi (t) − EX(t, β̂)]
dM̂i(t), are infinitesimal jackknife measures of influ-
ence and approximate the change in β̂ that would
occur if the ith individual were deleted. They are the
analogs of the dfbeta residuals from linear regression,
which have a very similar formula, being proportional
to (XtX)−1Xi r̂i , where XtX is the information matrix
[9, p. 13]. The sum of the outer products of the dfbeta
residuals gives the famous sandwich estimator for the
variance of β [25].

Suppose the individuals are not independent but
come in independent clusters. Examples include time
to blindness, where the cluster is the pair of eyes, and
studies of households, where the individual lifetimes
are clustered into families. A simple approach is to
fit a model assuming independence of individuals and
then correct the estimated variance of β̂ for within-
cluster covariance. The sum of the dfbeta residuals
within each cluster measures the influence of the
cluster on β. The sum of the outer products of these
summed cluster dfbeta residuals provides a consistent
variance estimator which takes into account the

within-cluster correlation. This approach provides a
simple computational method for the marginal models
of Wei et al. [32] as one example.

The integrands of the score residuals are them-
selves useful residuals. Suppose we have time-fixed
covariates and let X(k) denote the covariate vector
of the individual with the event at tk . Then X(k) −
EX(tk, β̂) is the Schoenfeld residual [30], useful
for detecting nonproportional hazards. An alternative
to proportional hazards is time-varying coefficients.
Suppose the hazard function is

λi(t) = λ0(t) exp




p∑

j=1

βj (t)Xij



 ,

where βj (t) = βj + θjgj (t), with gj (t) a predictable
process for j = 1, . . . , p. Proportional hazards holds
if θj = 0 for all j . Let

V(t, β) =
[∑

Yi(t) exp(β ′Xi )X⊗2

i

/∑
Yi(t)

× exp β ′Xi

]
− EX(t, β)⊗

2
,

the weighted covariate variance at t , where summa-
tion is over the n individuals. Then a Taylor’s series
expansion shows that

E[X(k) − EX(tk, β)] � V(tk, β) diag [θjgj (tk)].

[19, 29, 30,] and a plot of the j th component of
the scaled Schoenfeld residuals, V(tk, β̂)−1[X(k) −
EX(tk, β̂)] + β̂, against event times suggest the func-
tional form of βj (t), particularly when enhanced by
a superimposed scatterplot smooth. A horizontal line
is indicative of proportional hazards.

Extensions

Of the three survival residual definitions, the count-
ing process martingale transformations have proved
the most successful and have recently been extended
to other survival models, beyond the semiparamet-
ric Cox model where they were originally developed.
Lin & Spiekerman [24] consider a broad class of
parametric regression models including proportional
hazards and accelerated failure time. They suggest
plotting martingale residuals against each covariate
as an informal check on the correctness of functional
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form for the covariate and plotting cumulative sums
of martingale residuals, with several realizations sim-
ulated from the asymptotic distribution assuming cor-
rect functional form superimposed, to assess visually
how unusual the observed residual pattern is. They
suggest another cumulative residual plot for assessing
goodness of link.

As discussed earlier, martingale residual trans-
forms are also useful in assessing leverage and influ-
ence. Suppose the hazard has a general form as a
parametric function of time and covariate vector,
λi(t) = λ(t, Xi , θ). The contribution of the ith indi-
vidual to the score statistic is

∫ τ

0

∂ ln λ(s, Xi, θ̂)

∂θ
dM̂i(s),

where M̂i(t) = Ni(t) − ∫ t

0 Yi(s)λ(s, Xi , θ̂) ds. This is
proportional to the infinitesimal jackknife measure of
influence. Escobar & Meeker [16] suggest a quadratic
form in these martingale transform residuals as a local
influence statistic [11], an approximation to case dele-
tion influence statistics, for parametric accelerated
failure time models.

Martingale residuals are also useful in assessing
goodness of fit in the linear regression model [1, 2].
The hazard is

λi(t) = β0(t) + β ′(t)Xi (t), (2)

a linear function of the covariates with time-varying
regression coefficients. Because the hazard model is
linear, the estimated martingale residual processes
M̂i(·) are martingales rather than approximations
to martingales, as with the loglinear Cox model
[3]. Aalen [3] recommends two residual plots. The
individuals in the data set are grouped, usually on
the basis of similar covariate values, and an over-
all counting process, compensator, and martingale
residual process are computed for each group, by
summing the individual processes. The martingale
residual process plot graphs each group’s martin-
gale residual against time. If the model fits well,
then the plot fluctuates around the zero line and
thus can identify groups or time intervals for which
the model fits poorly, as shown by large deviations
from zero. The Arjas plot [6] graphs the overall
counting process against the estimated compensator
for the group at each event time, thus comparing
the “observed” and “expected” number of events
(see Real Time Approach in Survival Analysis).

The null configuration is the 45° line. Because the
model is linear, the martingale residuals, M̂i(τ ),
are directly useful in evaluating the correct func-
tional form of covariates, unlike the Cox model,
where the transformed residual M̂i(τ )/µ̂i is help-
ful for the partial residual plot. Aalen [3] recom-
mends linear regression of the martingale residu-
als on curvilinear transformations of the covariates,
such as low-order polynomials, to detect nonlin-
ear covariate effects. Martingale transforms are use-
ful for assessing influence. McKeague & Sasieni
[28] consider a partially parametric linear haz-
ard model with time-fixed covariates and hazard
function

λi(t) = β1(t)
′X1i + β ′

2X2i ,

where X1j and X2i are q- and p-dimensional
covariates. They show that the infinitesimal jack-
knife influence measure for person i on β̂2

is var(β̂2)
∫ {X2i − E[X2i |X1i (t)]}Wii dM̂i(t), where

Wii is the ith diagonal element of a user-defined
weight matrix.

It is clear that martingale transform residuals pro-
vide a wide variety of diagnostic techniques for a
broad class of survival models. As with linear regres-
sion, there is no single “one-size-fits-all” general-
purpose residual.
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Residuals

For the linear regression model with response y and
fitted values ŷ = Xβ̂, the residuals are the vector of
differences y − ŷ. Their great importance in the anal-
ysis of data lies in their use for checking agreement
between the fitted model and the data. With a few
exceptions, any pattern in the residuals is evidence
either of an inadequate model or of irregularities in
the data, such as outliers. The pattern suggests how
the model may be improved.

In the next section, we describe some general pur-
pose plots for regression residuals, which are helpful
in detecting systematic differences between the fit-
ted model and the data. Normal probability plots
and simulation envelopes for their interpretation are
described in the following section, before a discussion
of deletion residuals. The succeeding two sections
demonstrate two useful graphical procedures involv-
ing residuals: added variable plots for the inclusion
of a new explanatory variable and the related con-
structed variable plots, demonstrated for a power
transformation of the response. Residuals for gen-
eralized linear models and the constructed variable
plot for examining the goodness of the link function
conclude the entry.

Attention throughout is on the patterns made by
residuals in suitable plots. Related material on influ-
ence of individual observations is in Diagnostics.
The extension to the effect of groups of observations
is described in the article on the Forward Search.
Statistics based on aggregations of the residuals over
the data are discussed in Goodness of Fit.

Least-Squares Residuals

In the multiple regression model

y = Xβ + ε, (1)

y is the n × 1 vector of responses, β is the p × 1 vec-
tor of parameters and it is assumed that the additive
errors of observation ε are independently distributed
with constant variance σ 2. Also in (1) X is the n × p

matrix of carriers, that is of explanatory variables
and perhaps functions of them, such as quadratics
(see Polynomial Regression) and interaction terms.
The observation yi together with xT

i , the ith row of

X, form the ith case. The least-squares estimate of
β is

β̂ = (XT X)−1XT y. (2)

The least-squares residuals are given by

e = y − ŷ = y − Xβ̂ = y − X(XT X)−1XT y

= (I − H )y = Ay. (3)

In (3) I is the n × n identity matrix and H is the
“hat” matrix, so called because ŷ = Hy.

Before fitting any model, the data should be plot-
ted to reveal the structure and suggest appropriate
models. Once a multiple regression model has been
fitted useful plots of residuals include the following:

• Residuals against fitted values ŷ, to check
for constancy of variance. If the variance of
the residuals seems to increase with ŷ, either
weighted regression or a transformation of the
data may be appropriate.

• Residuals against a variable xout not currently
included in the model. Any relationship between
the two suggests including xout in the model.

• Similarly, the residuals can be plotted against
the variables x in already in the equation. Any
structure suggests that either a higher-order term
should be included in the model, for example,
x2

in if xin appears linearly in the model, or
that x in be replaced by a function f (x in), for
example, log(x in).

• Residuals ei against lagged residuals ei−1. If the
observations are in time (or space) order, any
pattern in this plot would suggest correlation
between the observations, when ordinary least
squares is no longer applicable. Time series
methods should be used, for example the struc-
tural time series models described by Har-
vey [11].

Often, it does not make much difference whether
the residuals used in plotting are the least-squares
residuals e or the studentized or deletion residuals
defined in the next two sections.

As a first example of the usefulness of these plots,
we take the data from Royston and Altman [13] on
mandible length as a function of gestational age in
167 fetuses with ages from 12 weeks. The data, plot-
ted in Figure 2 of Goodness of Fit, show a clear
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linear relationship, which is statistically highly signif-
icant. The plot of the residuals e from the regression
of length on age against ŷ m, given in Figure 1,
shows that the variance of the observations is not
constant and partly increases with fitted value. This
is not surprising with nonnegative observations rang-
ing from 8 to 45. If the percentage accuracy of the
measurements is constant, a logarithmic transforma-
tion of the response y would yield a response with
errors of constant variance. An analysis of these data
with log(y) as response is in Diagnostics.

The second example is of data on the volume y of
70 shortleaf pine as a function of tree diameter x1 and
of height x2. The data are tabulated by Atkinson [2]
who discusses appropriate models. As a first analysis
y was regressed on x1 and x2. Comparison of the
geometry of the trunk of a pine tree with that of a
cone suggests that a term in x2

1 might also have to
be included in the model. To help investigate this
suggestion Figure 2 shows the plot of e against x1.
This interesting plot shows strong curvature, suggest-
ing indeed that a term in x2

1 should be included. The
increasing scatter in the plot also suggests that the
data may need transformation – the volumes range
from 2.0 to 163.5 cubic feet, so measurement errors
of constant variance are implausible.
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Figure 1 Mandible length data. Residuals e and fitted
values ŷ from regression of length on gestational age. The
increasing variance with ŷ suggests a transformation of the
response
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Figure 2 Pine data. Residuals e from regression of vol-
ume on diameter and height against diameter, x1. The
curvature in the plot suggests inclusion of a term in x2

1 .
The heteroscedasticity again suggests a transformation of
the response

Studentized Residuals and Envelope Plots

The plots of the preceding section indicate in a
general way which, if any, departures are present
from a model. In this and the following sections,
descriptions are given of methods involving residuals,
which are specific for particular problems, sometimes
being derived from score tests. But we start with
further consideration of residuals for the regression
model.

The residuals e are not independent, nor do they
have the same variance. It follows from (2) that they
have covariance matrix (I − H )σ 2, so that var(ei)

= σ 2(1 − hi), with hi the ith diagonal element of
H . The studentized residuals ri are given by

ri = ei

s
√

1 − hi

, (4)

where s2 = ∑
e2
i /(n − p) is used to estimate σ 2.

Although they are not uncorrelated, the ri all do
have variance one. Unfortunately, the nomenclature
for residuals is not standard. The ri are sometimes
known as standardized residuals as well as (inter-
nally) studentized residuals.

The normality of the errors εi can be checked by a
normal probability, or Q–Q, plot of the residuals ei or
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of the studentized residuals ri . Figure 3 of Goodness
of Fit gives a normal probability plot of the residuals
ei for the data on mandible length used in Figure 1.
This plot is curved and suggests that the residuals are
far from normal. However, the plot of the residuals
from a fit of a quadratic in age to log(y) in Figure 1
of Diagnostics is much straighter, indicating that the
transformation helps achieve normality.

The interpretation of residual plots is aided by an
indication of how straight the plot can be expected
to be. This guidance can be provided by simulation.
One way is to simulate m sets of data using the fit-
ted model, to calculate the n values of ri for each
simulation and then to produce m Q–Q plots, one
per simulation. A comparison is made by eye to see
whether the plot of the observed ri differs in any
systematic way from the m simulated plots. A more
objective comparison, following Atkinson [1], is to
use a simulation envelope. An envelope with 95%
content can be constructed by taking the maximum
and minimum, at each of the n observational points,
of m = 39 simulated probability plots. The probabil-
ity is then 1/40 that the observed value is the largest
of itself and the 39 simulated values and 1/40 that it
is the smallest, making the probability 5% in all that
the observed value lies outside the envelope at each
of the n plotting positions. The probability that, for
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Figure 3 Mandible length data. Normal Q–Q plot of stu-
dentized residuals ri from regression on age: ž, residuals;
+, simulation envelope. There is clear evidence of departure
from normality

example, at least one point lies outside the envelope
is larger. However, the envelopes provide a useful
calibration of probability plots, even if the exact prob-
ability of the observed plot lying in part outside the
envelope is not known.

For many models, the simulations require esti-
mation of the parameters of the model, in order to
generate the simulated values of the data. However,
the parameter estimates β̂ and s2 are not required for
the studentized residuals ri from linear regression,
as their distribution does not depend on the mean
and variance of the yi , but only on the correlation
induced in the fitting process. The studentized residu-
als from fitting the linear model with the same matrix
of carriers X as the data to a random normal sample
therefore have the required distribution.

Figure 3 shows a normal Q–Q plot of the stu-
dentized residuals for the mandible length data. The
residuals clearly show signs of nonnormality, both in
the lower tail of the distribution and in the more mod-
erate values where both positive and negative resid-
uals fall outside the envelope. A smooth envelope
was obtained by increasing the number of simulations
to 119 and taking the third largest and third small-
est values, again giving an envelope with pointwise
95% content. Because of the number of observations,
167, the central part of the plot is congested unless
some points are omitted. Here, away from the tails
of the distribution, every third or fifth point has been
plotted.

Although this example is for studentized residuals
from the normal distribution, the procedure can be
used for other quantities, such as the Cook statistic for
influence described in Diagnostics. Nonnormal data
can also be simulated, for example, for generalized
linear models, although, as was mentioned above, the
parameters of the model fitted to the data may have
to be used in the simulation. Examples for regression
models are given by Atkinson [1] and by Venables
and Ripley [18].

Deletion Residuals

Even if the errors εi have a normal distribution,
the distribution of the studentized residuals is not
normal, the distribution of r2

i being a scaled beta. In
this section, we discuss the deletion or (externally)
studentized residual r∗

i , which has a Student’s t
distribution. This is obtained from (4) on replacing
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s2 as an estimate of σ 2 by the deletion estimate
s2
(i), that is, the mean square estimate from the n − 1

observations excluding case i.Then

r∗
i = ei√

s2
(i)(1 − hi)

, (5)

has a t distribution on n − p − 1 degrees of freedom.
In common with other deletion quantities for linear

regression, the value of s2
(i) can be found exactly from

the fit to all the data, the ei and the leverage measures
hi . If S(β̂) is the residual sum of squares for all n

cases and S(β̂(i)) is the same without case i, the two
estimates of σ 2 are

s2 = S(β̂)

n − p
and s2

(i) = S(β̂(i))

n − p − 1
. (6)

The relationship

S(β̂(i)) = S(β̂) − e2
i

1 − hi

(7)

provides a means of calculating s2
(i) and so r∗

i .
A discussion of deletion quantities such as r∗

i is
given in diagnostics. If there is some systematic
departure from normality, as is indicated by Figure 3,
there is little to choose between plotting the stu-
dentized residuals ri and the deletion residuals r∗

i ,
particularly if a simulation envelope is used to aid
interpretation of the plot. However, if an outlier is
present, particularly, at a leverage point, that is with
a value of hi close to one, the outlier will be revealed
by the deletion residuals: the value of s2

(i) will be
small, due to deletion of the outlier and so the value
of the deletion residual will be large. An informative
alternative derivation of r∗

(i) is as the t statistic for the
presence of an outlier, that is

r∗
i = yi − ŷ(i)

s.e. (yi − ŷ(i))
= yi − xT

i β̂(i)

s.e. (yi − ŷ(i))
. (8)

Q–Q plots, with envelopes, of deletion residuals
are given by Atkinson [1]. Discussions of deletion
diagnostics are also given by Belsley et al. [4], by
Cook and Weisberg [7] and by Ryan [14].

Added Variable Plots

Figure 2 is a plot, for the pine data, of the residuals
from the regression of volume on x1 (diameter) and

x2 (height). One implication is that a term in x2
1

should be considered for addition to the model. This
implication can, of course, be examined by fitting the
augmented model including x2

1 and testing the extra
term. To find out how the result of this test depends
on individual observations an added variable plot can
be used, which is a plot of two sets of residuals.

In general, the model E(Y ) = Xβ has been fitted
and we are interested in the augmented model

E(Y ) = Xβ + wγ, (9)

where w is n × 1 and γ is scalar. The least-squares
estimate γ̂ can be found in the usual way by fitting
(9) or by using the formulation of multiple regression
as a series of linear regressions. For this, it is helpful
to extend the notation for the least-squares residuals,
(3) and let

e(y) = e = (I − H )y = Ay. (10)

Similarly, the residuals from regression of w on X

are
e(w) = (I − H )w = Aw. (11)

Then γ̂ is found by the regression, through the origin,
of e(y) on e(w), that is

γ̂ = eT (w)e(y)

eT (w)e(w)
. (12)

Further, the t test for γ when (9) is fitted is exactly
that from (12), where the estimate of σ 2 is on n −
p − 1 degrees of freedom, rather than the apparent
n − 1. The output of statistical software may need
adjustment on this point.

The added variable plot is the residual plot of e(y)

against e(w). An advantage of the plot over that of
e(y) against w itself is that the use of residuals allows
for the effect of other variables in the model, with
which w might be highly correlated. Since the plot
has a direct regression interpretation, it can provide
insight into the effect of individual cases on the
evidence for including w.

As an example, we return to the pine data. When
volume is regressed on x1 and x2, the regression on
x2 is not significant. If x2 is dropped and, following
the indication of Figure 2, x2

1 is included, the new
variable is highly significant, with a t value of 13.49.
It is then sensible, since much of the variability in
the data has been accounted for, to check whether
x2 should now be included. The added variable plot
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of Figure 4 accordingly shows the residuals from
regressions on x1 and x2

1 . There is a clear trend in the
plot, suggesting the inclusion of x2 and, in fact, the t

value is 9.54. The scatter of points in the plot suggests
that evidence for this regression is not confined to a
few points, but is supported by all the data.

Further analysis of the pine data is given by Atkin-
son [2], including comparison with models for the
Minitab tree data described by Ryan et al. [15]. Fur-
ther examples are given by Cook and Weisberg [7]
and by Atkinson [1]. In addition, both describe the
use of partial residuals to provide a complement to
the added variable plot, the partial residual plot which
again has slope γ̂ . The procedure can be useful for
suggesting functional forms f (x) to replace regres-
sion on x.

Constructed Variable Plots

The constructed variable plot extends the idea of the
added variable plot to tests of nonlinear aspects of
model specification, often through a Taylor series
expansion. As an example, we take the Box–Cox
power transformation of the response in a regression
model.

The analysis of the data on mandible length shows
appreciable evidence not only of the nonnormality
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Figure 4 Pine data. Added variable plot. Residuals of y

(volume) and height w after regression on diameter, x1,
and on x2

1 . Evidence that height should be included in the
regression

of the residuals, Figure 3, but also of increasing
variance with fitted value, Figure 1. Often, normality
and constant variance can be achieved by fitting the
regression model not to y but to a function of y,
many times log(y). The appropriate transformation
frequently also leads to a simple linear model, without
quadratic or interaction terms.

The logarithmic transformation is one special case
of the normalized power transformation (Box and
Cox [6])

z(λ) =
{

(yλ − 1)/λẏλ−1 λ �= 0
ẏ log y λ = 0,

(13)

where the geometric mean of the observations is
written as ẏ = exp(Σ log yi/n). If the residual sum of
squares of the z(λ) is R(λ), the profile loglikelihood
of the observations, maximized over β and λ, is

Lmax(λ) = −
(n

2

)
log

{
R(λ)

n − p

}
(14)

so that λ̂ minimizes R(λ).
For inference about the transformation parameter

λ, Box and Cox suggest likelihood ratio tests using
(14). A disadvantage of this likelihood ratio test is
that a numerical maximization is required to find the
value of λ̂. For regression models, a computation-
ally simpler alternative test is the approximate score
statistic derived by Taylor series expansion of (13) as

z(λ)
.= z(λ0) + (λ − λ0)

∂z(λ)

∂λ
|λ=λ0

= z(λ0) + (λ − λ0)w(λ0). (15)

In (15) w(λ0) is the “constructed variable” for the
transformation and can be treated as is the extra
explanatory variable in (9). The approximate score
statistic (see Likelihood) for testing the transforma-
tion, Tp(λ0), is then the t statistic for regression on
w(λ0) in (9). For the power transformation (13), the
constructed variable is

w(λ) = yλ log y

λẏλ−1
− z(λ)

(
1

λ+
)

log ẏ. (16)

Provided the model for z(λ) contains a constant,
regression on (16) is equivalent, in the special cases
of λ = 1 and 0, to regression on

w(1) = y

{
log

(
y

ẏ

)
− 1

}
(λ = 1) (17)
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and

w(0) = ẏ log y

(
log y

0.5 log y − log ẏ

)
(λ = 0).

(18)

Box and Cox analyze a set of 48 observations
on the survival times of animals in a 3 × 4 factorial
experiment and show that a simple additive model
is obtained for the reciprocal transformation, that
is, for λ = −1. Rate of death, rather than survival
time, is the quantity with a simple structure. If one
of the observations for poison II, treatment A is
changed from 0.23 to 0.13, the log transformation is
indicated, rather than the reciprocal. Figure 5 shows
the constructed variable plot for the altered data and
the log transformation. The t value for regression on
w is 1.15, so that there is no evidence, from this
aggregate statistic, that the log transformation is not
satisfactory. But, as the figure shows, the evidence
for regression provided by the majority of the data
is being annulled by the altered observation. When
the observation is corrected, further transformation is
indicated by the slope of the plot. The constructed
variable plot for λ = −1 then shows no significant
patterns.

Residual constructed variable e(w)
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Figure 5 Poison data. Constructed variable plot for the
log transformation of the altered data. The line is the regres-
sion of e(y) on e(w), which is rendered not significant by
the one altered case

This example illustrates the use of the constructed
variable plot of residuals against residuals in pin-
pointing the effect of this one observation on infer-
ence about the transformation parameter. Other plots,
such as those of e(y) against ŷ also suggest that a
transformation might be beneficial, but do not indi-
cate the effect of individual cases on the estimated
value of λ. An analysis of the poison data, includ-
ing the altered data, is given by Atkinson [1] with a
more complete analysis using the forward search in
Atkinson and Riani [3]. Cook and Weisberg [8] and
[9] describe the use of graphical methods in which
λ can be varied interactively: the effects of the value
of λ on the straightness of the Q–Q plot of resid-
uals, or on the constructed variable plot, amongst
others, can be assessed visually as a complement to
the numerical choice of λ̂. Similar methods can be
applied to transformations of the explanatory vari-
ables or of both sides of the model mentioned in
Power Transformations.

Generalized Linear Models

For the generalized linear model there are several
definitions of residuals, with slightly different prop-
erties, which all reduce to the same quantity for
linear regression. In the nomenclature of McCul-
lagh and Nelder [12] the response yi has expectation
E(Yi) = µi , where µi is related to the linear predictor
ηi = xT

i β by the link function g(µi) = ηi . The vari-
ance of Yi is given by var(Yi) = φV (µi), where φ is
the scale factor and V (µi) is the variance function.
The likelihood ratio statistics for testing hypotheses
about the parameters of the linear predictor are based
on the differences of the scaled deviances D(β)/φ.
For the normal theory regression model of earlier
sections, the link is the identity, g(µi) = µi , φ = σ 2

and the deviance D(β̂) = R(β̂), the residual sum
of squares. A slightly fuller description is given in
Goodness of Fit. Three residuals are as follows:

• Pearson Residual.

rP i = yi − µ̂i√
V (µ̂)

, (19)

so named since

∑
r2
P i = φX2, (20)
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where X2 is Pearson’s Goodness-of-Fit test (see
Chi-square Tests).

• Deviance Residual. Since the observations are
independent, the deviance D can be written as

D =
n∑

i=1

d2
i . (21)

The deviance residual is then

rDi = disign (yi − µ̂i), (22)

so that rDi and rP i have the same sign. The
distribution of rDi is closer to normal than that
of rP i , although neither will be at all normal for
small counts.

• Deletion Residual. For least-squares regression,
the change in the residual sum of squares on the
deletion of the ith case is given by (7), which is
the square of the unscaled version of the deletion
residual r∗

i (5). Taylor expansion of the change
in deviance yields the deletion residual

rGi =
{
r2
Di + hi

1 − hi

r2
P i

}1/2

sign (yi − µ̂i),

(23)

which reduces to ei/
√

(1 − hi) for linear regres-
sion. Unless points of high leverage are present
(that is some hi are near one), the deletion resid-
ual is close to the deviance residual.

The Pearson and deviance residuals can be studen-
tized by division by

√{φ̂(1 − hi)}. The deletion
residual can be scaled by the deletion estimate φ̂(i).
In addition, the working residuals come from the last
stage of the iteratively reweighted least-squares fitting
algorithm used for generalized linear models.

Although residuals for generalized linear models
can be informative, they are not so helpful as those
for normal regression models. One problem is that
the discreteness of the data, for Poisson and binomial
models, can induce patterns that have nothing to do
with good or bad fit. For example, Pearson residuals
for binary data can only take two values, being
proportional to either 1 − µ̂i or −µ̂i .

As an example where residuals are informative
for binomial data with large ni we turn to the data on
the mortality of beetles from Bliss [5], analyzed in
Goodness of Fit. There are readings at eight dose

levels. When a logistic model is fitted with lin-
ear predictor ηi = βo + β1xi , the residual deviance is
11.23. Since φ = 1 for the binomial distribution, the
value is large although not significant at the 5% level
when compared with χ2

6 . Figure 6 is a plot, against
dose, of the observed and fitted proportions of insects
killed. The figure suggests some systematic difference
between the two sets of values, which is revealed
in Figure 7. This shows the deviance residuals rDi

against xi . There appears to be a U -shaped relation-
ship between residuals and dose, suggesting perhaps
that a quadratic term in x should be included. Inclu-
sion of x2 in the logistic model reduces the residual
deviance to 3.19, a clear improvement in the model.

Goodness of Link Plot

In Goodness of Fit, a goodness of link test was
derived for Bliss’s beetle data using the constructed
variable η̂

2. This, like the addition of x2 in the logistic
model, was significant, with a t value of 2.70. It is
however possible that this aggregate value is being
caused by one or a few cases, as happened in the
analysis of the altered survival data. We therefore
prepare a constructed variable plot for this test.

The plot is of the Pearson residuals from the
fit of the logistic model against the residuals of η̂

2
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Figure 6 Beetle data. Observed and fitted values for a
logistic model in logdose: ž, observed proportions; F, fitted.
There seems to be a systematic difference between the two
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Figure 7 Beetle data. Deviance residuals against x. The
curved pattern suggests including a term in x2 in the model

Residual constructed variable e(w)
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Figure 8 Beetle data. Goodness of link plot for the
logistic model in x, suggesting that the link is unsatisfactory

from weighted regression on x, the weights being
those from fitting the generalized linear model. The
plot in Figure 8 shows a trend shared by nearly all
points, supporting the conclusion that the logistic link
is generally unsatisfactory when combined with a
simple linear model. If the complementary log–log
model (see Generalized Linear Model) is used,

the residual deviance is 3.45, close to the 3.19 of
the quadratic model with the logistic link, but with
one less parameter. In this case, the complementary
log–log model appears preferable.

Discussion

A fuller discussion of residuals, especially for gen-
eralized linear models, is given by Davison and
Snell [10]. Seber and Nyangoma [16] present more
recent results on residuals for multinomial models.
Therneau and Grambsch [17] is a book-length treat-
ment of modeling survival data when censoring is
present, including a chapter on residuals with SAS
and S-Plus code. Other examples of the computa-
tion of residuals are given by Venables and Ripley
[18]. Like the residuals described in this entry, these
residuals are all based on least-squares or maximum
likelihood estimation. Often, information on the ade-
quacy of a model can be obtained by comparing such
residuals with those from a very robust fit such as
least trimmed squares or least median of squares.
An example is given in Diagnostics.

The successful extraction of the information con-
tained in residuals is aided by good graphical pro-
cedures. The flexible environment for data analysis
provided by S-Plus permits the calculation and plot-
ting of many kinds of residual (Venables and Ripley
[18]). Cook and Weisberg [8] illustrate incisive graph-
ical procedures, using their Arc package based on the
Xlisp-Stat language. An introduction, with an empha-
sis on regression, is given by the same authors in [9].
Plots of residuals from robust fits during the forward
search are described by Atkinson and Riani [3] for
regression, response transformations, and generalized
linear models.
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Response Effects in
Sample Surveys

Sample surveys are the most widely used method for
obtaining information from populations of interest
because of their flexibility, but they are, of course,
subject to measurement error, as are all forms of
data collection. Response effects, as distinguished
from sample biases, are those that are caused by
the methodology for obtaining answers from respon-
dents: the questions, the context of the questionnaire,
the method of data collection, and the characteristics
and behavior of interviewers.

For behavioral questions, where presumably there
is a “true” answer, response effects are synonymous
with response errors. For attitudinal questions, there
is now a general recognition that there is not a
single “true” answer, but that answers are context
dependent. The differences in responses that depend
on the survey context are called response effects.

Respondents’ Tasks

In the past decade, a major thrust in understanding
response effects has been to understand better the
cognitive tasks faced by a respondent in answering a
question. In general, there is wide agreement among
researchers regarding the substantive nature of these
tasks, although different researchers use somewhat
different labels (see, for example, Groves [15], Strack
& Martin [25], Tourangeau [30–32], and Tourangeau
& Rasinski [33]).

As a first step, respondents have to interpret the
question to understand what is meant. If the question
is an opinion question, they may either retrieve a
previously formed opinion from memory, or they may
“compute” an opinion on the spot. To do so, they need
to retrieve relevant information from memory to form
a mental representation of the target that they are to
evaluate. In most cases, they will also need to retrieve
or construct some standard against which the target
is evaluated. Once a “private” judgment is formed in
their mind, respondents have to communicate it to the
researcher. To do so, they may need to format their
judgment to fit the response alternatives provided as
part of the question. Moreover, respondents may wish
to edit their response before they communicate it,

due to influences of social desirability and situational
adequacy.

Similar considerations apply to behavioral ques-
tions. Again, respondents first need to understand
what the question refers to, and which behavior they
are supposed to report. Next, they have to recall or
reconstruct relevant instances of this behavior from
memory. If the question specifies a reference period,
then they must also determine if these instances
occurred during this reference period or not. Simi-
larly, if the question refers to their “usual” behavior,
then respondents have to determine if the recalled
or reconstructed instances are reasonably represen-
tative or if they reflect a deviation from their usual
behavior. If they cannot recall or reconstruct specific
instances of the behavior, or are not sufficiently moti-
vated to engage in this effort, then respondents may
rely on their general knowledge or other salient infor-
mation that may bear on their task to compute an
estimate. Finally, respondents have to provide their
estimate to the researcher. They may need to map
their estimate on to a response scale provided to them,
and they may want to edit it for reasons of social
desirability.

Accordingly, interpreting the question, generating
an opinion or a representation of the relevant behav-
ior, formatting the response, and editing the answer
are the main components of a process that starts with
respondents’ exposure to a survey question and ends
with their overt report. Each of these steps may influ-
ence the direction and magnitude of response effects.

Question Comprehension

The key issue at the question comprehension stage is
whether or not the respondent’s understanding of the
question matches what the researcher had in mind: Is
the attitude object, or the behavior, that the respon-
dent identifies as the target of the question the one
that the researcher intended? Does the respondent’s
understanding tap the same facet of the issue and the
same evaluative dimension?

Belson [1–4] asked respondents after the inter-
view to define what the question meant and clearly
demonstrated that many respondents defined terms
differently than the researcher intended. In addition,
many of the terms used in public opinion research do
not have clearly defined lexical meanings to begin
with [6, 13, 14], and respondents who ask the inter-
viewer to provide a definition are usually instructed
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to define the concept for themselves. As a result, it
remains often unclear what a term meant to a respon-
dent. In a study by Fee [12] it was observed that
there were at least nine different meanings for the
term “energy crisis”. Similarly, the term “big gov-
ernment” elicited at least four distinct representations:
one referred to “big government” in terms of welfare
and overspending; one in terms of big business and
government for the wealthy; another one in terms of a
combination of federal control and diminished states’
rights: and a fourth in terms of bureaucracy and a lack
of democratic process. Needless to say, it is nearly
impossible to interpret the responses to a question
without knowing which interpretation respondents
chose.

Aside from the different meanings that individual
respondents attach to questions, there are cultural
differences as well. This means that cross-cultural
comparisons between ethnic groups, whether in the
same or different countries, are always subject to
differences in interpretation. Finally, the meaning of
a term may change over time, posing considerable
problems for trend analyses.

Recalling or Computing a Judgment

Once respondents determine what the researcher is
interested in, they need to recall relevant information
from memory. In some cases, respondents may have
direct access to a previously formed relevant judg-
ment that they can offer as an answer. In most cases,
however, they will not find an appropriate answer
readily stored in memory and will need to compute
a judgment on the spot.

Whether respondents can recall a previously
formed relevant judgment from memory depends on
whether such a judgment has been formed in the first
place, and on whether it is accessible at the time of
the interview. In the case of attitude questions, one
of the key determinants is the personal importance
of the issue and the degree of respondents’ personal
experience with the attitude object. Not surprisingly,
issues of personal importance are more likely to
elicit spontaneous judgments than less important
ones. Moreover, some daily activities, such as
major purchasing decisions, require the evaluation
of different objects and, if the decision was made
recently, the evaluations formed at that point may still
be accessible in memory. In addition, the likelihood

that a respondent has access to evaluative judgments
of an attitude object increases with the degree of
the respondent’s personal experience with the object
[11]. Finally, if respondents have been asked a related
question before, the judgment formed at that time
may still be accessible in memory, provided that
little interfering information has been activated in the
meantime.

In the case of behavioral questions, a relevant
answer is most likely to be directly accessible if the
behavior is of personal importance and has a low
frequency of occurrence [8, 22, 26]. If the behav-
ior is a frequent one, respondents are only likely
to have direct access to a judgment if the behavior
is highly regular, in which case they may remem-
ber a rate of occurrence, such as “once a week”
[17]. For infrequent, irregular behavior, forgetting
is the most serious problem. Forgetting takes two
forms: forgetting that an event occurred at all, lead-
ing to under-reporting; and remembering that the
event occurred, but mis-remembering when the event
occurred, called telescoping [7, 27]. Telescoping
usually results in over-reporting of events, because
respondents recall events as occurring in the reference
period whereas they actually occurred in an earlier
period. It is possible to reduce omissions by using
aided recall and other cueing methods. It is also pos-
sible to reduce telescoping by use of bounded recall
methods [18, 29].

Most frequently, however, answers to survey ques-
tions are not stored in memory, and respondents will
need to compute a judgment when asked. In the
case of attitude questions, this is because issues are
complex whereas survey questions are necessarily
simple, as Schuman & Kalton [21] noted. Thus, even
under conditions in which respondents can retrieve
an opinion on the issue from memory, this opin-
ion may not exactly match the facet tapped in the
question. Similarly, respondents are unlikely to have
an appropriate answer to most behavioral questions
stored in memory. Even if they can recall relevant
instances, they will still need to determine if these
instances fit the reference period, and so on. As a
result, most of the answers that we record in sur-
veys reflect judgments that respondents generate on
the spot, in the specific context of the specific inter-
view. They are therefore strongly influenced by the
information that is accessible at that time, which is
in part a function of the preceding questions.
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For behavioral questions, if the behavior is
frequent, but irregular, respondents will estimate by
computing a rate for a short time period and extrapo-
lating [5]. The computed rate may be too high or too
low because of forgetting, telescoping, or arithmetic
errors (see Recall Bias).

Formatting the Response

Once respondents have formed a judgment, they can-
not typically report it in their own words. Rather,
they are supposed to report their judgment by endors-
ing one of the response alternatives provided by
the researcher. This requires that they format their
response in line with the options given. Accordingly,
the researcher’s choice of response alternatives may
strongly affect survey results [23]. Respondents use
the response alternatives as reflecting the researcher’s
knowledge of the population distribution for an item,
with the middle response category reflecting the mid-
dle of the distribution. Then, they select an answer
category based on whether they believe they are
above average, below average, or average relative
to the population. One obvious way to avoid this
problem is to omit the answer categories (see Ques-
tionnaire Design).

Editing the Response

Finally, respondents may want to edit their response
before they communicate it, reflecting considerations
of social desirability and self-presentation. Not sur-
prisingly, the impact of these considerations is more
pronounced in face-to-face interviews, lower in tele-
phone interviews, and lowest in self-administered
questionnaires [10, 24].

Socially desirable behavior that has been stud-
ied includes voting, donating to charity, reading,
and exercising [19]. Record checks generally reveal
significant over-reporting for such behavior that is
reduced as the method becomes less personal.

On the other hand, reports of illegal or socially
undesirable behavior, such as traffic violations, alco-
hol consumption, and drug use, are substantially
under-reported, and this under-reporting is not usu-
ally improved by using self-administered question-
naires. Some improvements are possible by making
the questions less threatening and using random-
ized response procedures, but no method has been

shown to produce accurate reports of highly threat-
ening behavior such as drunken driving [9, 34].

Interviewer Effects

The visible characteristics of interviewers have been
shown to impact responses, particularly to attitude
questions. The most notable examples of this have
been responses to questions about racial attitudes.
Questions asked of white respondents by black
interviewers result in more positive attitudes toward
blacks than do questions of white respondents asked
by white interviewers. Similarly, questions of black
respondents by black interviewers result in more
militant attitudes toward whites than when the
interviewers are white [16, 20].

Similar effects are noted for other ethnic groups
when the ethnicity of the interviewer is visible or is
revealed by the interviewer’s name. Also, interviewer
effects are observed based on the gender of the inter-
viewer for questions of men and women dealing with
women’s rights. No effects are observed when the
visible characteristics of the interviewer are unre-
lated to the topic of the questions. Interviewer effects
may also be observed if respondents give ambigu-
ous answers to questions. Then, interviewer variance
may be observed in how the answer is probed and
recorded (see Interviewer Bias; Interviewing Tech-
niques).

The Magnitude of Response Effects

We have discussed the causes and direction of
response effects, but no attempt has been made here
to quantify their magnitude (see Sudman & Bradburn
[27]). For specific surveys, it is difficult to predict the
magnitude of effects, especially since there will often
be multiple effects, sometimes operating in different
directions. Generally, however, response effects are
often larger than sampling biases and, for reasonable
sample sizes, much larger than sampling variance.

It is often possible, using recently developed
cognitive methods, to reduce response effects sig-
nificantly by careful design and testing of survey
instruments and methods [28]. If this is possible, then
it is almost always a better use of resources to attempt
to do so, or at least to measure response effects, than
simply to increase sample size to reduce sampling
variances.
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Response Surface
Methodology

The main purpose of this methodology is to model
the response based on a group of experimental factors
presumed to affect the response, and to determine
the optimal setting of the experimental factors that
maximize or minimize the response. The factors are
all quantitative and the objective is achieved through
a series of experiments.

Let F1, F2, . . . , Fk be k factors affecting the
response y and let E(y) = f (X1, X2, . . . , Xk), where
X1, X2, . . . , Xk are the levels of F1, F2, . . . , Fk , and
E(y) is the expected response. We assume f to be
a polynomial of degree d. A k-dimensional design
of order d is said to be constituted of n runs of the
k factors (Xi1, Xi2, . . . , Xik), i = 1, 2, . . . , n, if from
the responses recorded at the n points all of the coef-
ficients in the dth degree polynomial are estimable.

First-Order Design

Initially a first-order design will be used to fit the
model E(y) = β0 + ∑k

i=1 βiXi . For this, one usually
uses Plackett & Burman designs [15]. A Hadamard
matrix Hm is an m × m matrix of ±1 such that
H′

mHm = mIm, where Im is the identity matrix of
order m. A necessary condition for the existence of
Hm is m = 2 or m ≡ 0 (mod 4). If 4t − 5 ≤ k <

4t − 1, in an H4t , the first column will be converted
to have all ones, and any k columns of the last 4t − 1
columns of H4t will be identified with the coded
levels of the k factors in 4t runs. These 4t runs and
several central points (0, 0, . . . , 0) in coded levels
constitute the design. If the lack of fit is significant,
then one plans a second-order design at that center.
Otherwise, one moves away from the center by the
method of steepest ascent to determine a new center
to plan a second-order design.

Method of Steepest Ascent

One maximizes the estimated response ŷ = β̂0 +∑k
i=1 β̂iXi from the initial design on the contours∑k
i=1 X2

i = R2. The maximum occurs when Xi ∝
β̂i . One decides desirable increments to proceed for

factor Fi , determines the proportionality constant,
and determines Xj for j = 1, 2, . . . , k, j �= i. In this
way all coordinates in k dimensions are determined,
to obtain ∆. Moving the center by incrementing
∆, 2∆, 3∆, . . ., one determines the expected ŷ. If ŷ

shows a maximum or minimum in the experimen-
tal region, then one moves the center to the setting
at which ŷ is optimum and carries out a second-
order experiment. Otherwise, at a reasonable distance
away from the original center, one performs another
first-order experiment to determine a new path along
which a center in the second-order experiment will
be determined.

Second-Order Experiment

Let the design consist of F noncentral points and n0

central points and let n = F + n0. In the coded doses,
without loss of generality, one assumes that:

∑
Xiα = 0,

∑
XiαXiβ = 0,

∑
XiαX2

iβ = 0,
∑

X3
iα = 0,

∑
XiαX3

iβ = 0,
∑

XiαXiβXiγ = 0,

∑
XiαXiβX2

iγ = 0, (1)

∑
XiαXiβXiγ Xiδ = 0, for α �= β �= γ �= δ;

∑
X2

iα = n; (2)

∑
X4

iα = na,

∑
X2

iαX2
iβ = nλ4, for α �= β. (3)

If X is the design matrix, then X′X cannot be
made diagonal in original parameters. However, in
orthogonal polynomials of the factors settings, one
may obtain orthogonality if λ4 = 1. A second-order
design is called orthogonal when

∑
X2

iαX2
iβ = n.

A second-order design is said to be rotatable if the
variance of the estimated response at (x1, x2, . . . , xk)
is a function of ρ = ∑k

i=1 x2
i . For a rotatable design,

we have a = 3λ4 and λ4 > k/(k + 2). The last in-
equality is needed to make X′X nonsingular. By
making var(ŷ) the same at the settings at which ρ = 1
and ρ = 0, we obtain uniformly precise rotatable
designs and, for them, λ4 for different values of k

are as shown in Table 1.
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Table 1

k λ4

2 0.7844
3 0.8385
4 0.8704
5 0.8918

The nonzero central points are usually taken as
follows:

1. A 3n experiment or a fractional replication of
a 3n experiment in which main effects and two-
factor interactions are not aliased with each other;
with factor levels −g, 0, and g (see Fractional
Factorial Designs).

2. A Central Composite Design (CCD), in which
the factorial points form a 2n experiment or
a resolution 5 fractional replication with levels
g and −g and 2n axial points (±α, 0, . . . , 0),
(0, ±α, . . . , 0), . . . (0, 0, . . . , ±α).

3. A Box–Behnken design [3], in which the v ×
b incidence matrix of a balanced incomplete
block design with parameters v, b, r, k, and λ,
where r = 3λ, is used, in which the ones in each
column are replaced by ±g, so that the v factors
are experimented in b(2k) runs.

The factor levels in the runs are determined so that
the design is orthogonal, or rotatable, or uniform
precision.

Let us illustrate using a CCD, which is orthogonal
and rotatable in k = 3 factors. The noncentral points
are F = 8 + 6 = 14 of the form (±g, ±g, ±g),
(±α, 0, 0), (0, ±α, 0), (0, 0, ±α). Let n0 be the
number of central points and let n = 14 + n0. If one
wants the CCD to be orthogonal and rotatable, one
must have

8g4 + 2α4 = 24g4, 8g4 = 14 + n0.

Furthermore, condition (2) implies that

8g2 + 2α2 = 14 + n0.

An approximate solution is

α = 2.197, g = 1.306, n0 = 9.

Canonical and Ridge Analysis

Using a second-order design, one conducts an
experiment and, using the data, fits a second-degree

regression equation,

ŷ = β̂0 + X′β̂ + X′B̂X,

where X′ = (X1, X2, . . . , Xk) is the vector of the k

factors settings, β̂ ′ = (β̂1, β̂2, . . . , β̂k), and

B̂ =




β̂11
1
2 β̂12 . . . 1

2 β̂1k

1
2 β̂21 β̂22 . . . 1

2 β̂2k

1
2 β̂k1

1
2 β̂k2 . . . β̂kk



 .

The critical point at which the derivative of ŷ

with respect to X is zero is given by x0, where
2B̂x0 = −β̂. Letting z = X − x0, and ŷ0 = β̂0 +
x′

0β̂ + x′
0B̂x′

0, the regression equation can be rewrit-
ten as ŷ = ŷ0 + z′B̂z.

Let λ1 ≥ λ2 ≥ · · · ≥ λκ be the eigenvalues of
B̂, and let D be the diagonal matrix with ele-
ments λ1, λ2, . . . , λk . Let M be an orthogonal matrix
such that D = M ′B̂M , and let w = M ′z. Then ŷ =
ŷ0 + ∑k

i=1 λiw
2
i , where w = (w1, w2, . . . , wk). This

implies that at the critical value x0 local maximum
is attained when λ1 ≤ 0, and a local minimum is
attained when λk ≥ 0. When the inequalities are
strict, x0 is the unique critical value, whereas when
the inequalities are not strict, x0 is a point at which a
local maximum or minimum is attained. When some
λi are positive and some negative, one may find an
absolute maximum (or minimum) of ŷ at concentric
spheres of varying radii Ri . The estimated regres-
sion function ŷ = β̂0 + X′β̂ + X′B̂X is maximized
(or minimized) such that X′X = R2, and x∗ satis-
fying 2(B̂ − µIn)x∗ = β̂ maximizes (or minimizes)
ŷ if µ > λk (or µ < λ1). For different choices of
µ depending on the objective, x∗ and R2 will be
determined. The ŷ values at those x∗ values will be
determined, and ŷ will be plotted against R2 to find
the absolute maximum or minimum in the region of
experimentation.

Further Reading

1. For some of the original ideas in this methodol-
ogy, the interested reader is referred to the papers
of G.E.P. Box and his co-authors (see Box &
Wilson [7], Box [1, 2], Box & Youle [8], Box &
Hunter [6], and Box & Draper [4].

2. For more details of this methodology, the
interested reader is referred to the books by
Box & Draper [5], Khuri & Cornell [10], and
Myers & Montgomery [13]. For review articles
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on this methodology, see Herzberg & Cox [9],
Mead & Pike [11], and Myers et al. [14]. For
other constructions of rotatable designs, see
Raghavarao [16].

3. For the construction of Hadamard matrices,
which are Plackett & Burman designs, see
Raghavarao [16].

4. Taguchi and his co-workers developed different
ideas to optimize responses using orthogonal
arrays [17]. See also Vining & Myers [18]
for combining Taguchi and response surface
philosophies.

5. For handling dual responses in this methodology,
see Myers & Carter [12].

6. For basic ideas of orthogonal blocking of second-
order experiments, see Box & Hunter [6].
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Response Variable

In many data sets, there is a distinction between
response variables and explanatory variables. If so,
the primary questions of the analysis relate to how the
response variables depend on the explanatory vari-
ables. The term dependent variable is often used as an
alternative name for a response variable. Cox & Snell
[1] indicate that response variables are the primary
properties of interest and that explanatory variables
hopefully explain systematic variation in the response
variables.

Response variables are naturally defined when
explanatory variables are fixed by an experimenter
and the aim is to assess the effect of the explanatory
variables on the subsequently measured response.
However, it may be simply that the response vari-
able is regarded as dependent on the explanatory
variables. Alternatively, the aim of the analysis
may be to predict the response on the basis of
the explanatory variables. In all such cases, it is
generally helpful if the distinction between vari-
ables is maintained in the analysis. The most natu-
ral example of this arises in the use of regression
models.

There may be a number of response variables, per-
haps regarded as a multivariate response variable. The

formation of a single combined response variable or
the separate consideration of the univariate response
variables will often simplify the analysis. Other-
wise, techniques of multivariate analysis become
appropriate.

Cox & Snell [1] also distinguish intermediate
response variables which may, for some purposes,
also be treated as explanatory variables. For example,
in a clinical trial in HIV-infected individuals, the
primary response may be the time to the development
of AIDS. The level of CD4 counts at some time
after treatment could be used as an intermediate
response to determine the effect of treatment on
CD4 counts. The effect of treatment on the time to
AIDS would also be investigated but, additionally,
this could be examined when information on the
changes in CD4 counts is used to define an additional
explanatory variable. The latter analysis examines
how much of the treatment effect on the primary
response variable is accounted for by changes in the
intermediate variable.
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Restricted Maximum
Likelihood

Restricted maximum likelihood estimation (REML)
is an approach to estimation that maximizes the like-
lihood over a restricted parameter space. While appli-
cable to more general models, it has most often been
applied to the estimation of variance components
in a general linear model with a multivariate nor-
mal distribution. It is an alternative to maximum
likelihood (ML) estimation which leads to unbiased
estimators. This method was first proposed by Pat-
terson & Thompson [12] for a simple balanced data
setting, and has been developed by Corbeil & Searle
[2], Harville [8], and Dempster et al. [4]. Essentially,
the procedure “adjusts” for the fact that the fixed
effects are unknown when estimating components of
variance. In balanced analysis of variance settings,
this takes the form of an adjustment in degrees of
freedom. In these settings, the REML estimators of
the variances are the familiar unbiased least squares
estimators.

In the case of the ordinary univariate analysis of
variance (ANOVA) or multiple linear regression
model, we have

Y = Xα + ε, (1)

where Y is an N × 1 observed data vector, α is a
p × 1 vector of fixed-effects parameters with X as its
associated N × p design matrix, and ε is an N × 1
vector of error terms. In this simple case we assume
that the error terms are independent and distributed as
N(0, σ 2I). The ML estimator of σ 2 is sse/N , where
sse is the residual sum of squares. This, however,
is a biased estimator of σ 2, since its expectation
is σ 2(N − p)/N . The REML estimator of σ 2 is,
instead, sse/(N − p), the usual least squares estimator
of the residual variance, which is unbiased.

Now suppose that the N × 1 vector Y follows a
general linear model of the form

Y = Xα + Zb + ε, (2)

where α is a p × 1 vector of fixed-effects parame-
ters, b is a q × 1 vector of random effects, X and Z
are design matrices of dimension N × p and N × q,
respectively, and ε is an N × 1 error vector. This
error term is assumed to have an N(0, R) distribution,

the random effects b are assumed to be distributed as
N(0, D), and ε and b are assumed to be independent.
The variance of y is then V = ZDZ′ + R. The ele-
ments of D and R may be taken to be functions of a
k × 1 unobservable parameter vector θ . The variance
of the error terms is often assumed to be R = σ 2I,
where I is the identity matrix, although restrictions
on R may be less severe. When the variance matrix
V is known, the maximum likelihood estimator, αM,
of the fixed-effects parameters is the least squares
estimator with

αM = (X′V−1X)−1X′V−1Y. (3)

If V is unknown, then the estimator takes the same
form, with maximum likelihood estimates of D and
R substituted for the unknown parameters. As in the
univariate case, however, these variance estimates
may be biased, sometimes severely so.

Patterson & Thompson suggested dividing the data
into two independent parts, each represented by an
appropriate transformation of the Y vector. One of
these is the set of error contrasts; the other is a set of
linear functions of the fixed effects. Some candidates
for suitable transformations are SY and QY, where

S = I − X(X′X)−1X′,

Q = X′(ZDZ′ + R)−1.

In univariate regression, as in model (1), SY is the
N × 1 vector of residuals using the least squares esti-
mate of α, and QY is the p × 1 vector of sums of
cross-products of X and Y, divided by the residual
variance σ 2. The matrices S and Q are not restricted
to these forms; any full-rank matrix S with the prop-
erty that E(SY) = 0 for all α may be used. The log
likelihood of the data, L, is also divided into the two
corresponding parts L′ and L′′, with L = L′ + L′′.
Patterson & Thompson use only the log likelihood of
SY to estimate the variances D and R. They claim
that when the α are regarded as fixed and unknown,
linear functions of these, as in QY, cannot provide
information about variance parameters. By basing the
variance estimators on the error contrasts only, the
loss of degrees of freedom due to estimating the fixed
effects is accounted for. Rao [14] also breaks down
the data into the same component parts, but does not
use this for estimation. He shows instead that the test
for adequacy of the model can be performed using the
error contrasts only. The next step is to use the likeli-
hood for QY to estimate α, substituting the variance
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estimates already found. The REML estimator of α

takes the form of (3) above, substituting the REML
estimates for the unknown variances.

The REML estimators of α and its variance are,
therefore,

αR = (X′V−1
R X)−1X′V−1

R Y (4)

and

varR(α) = (X′V−1
R X−1),

where

VR = ZDRZ′ + RR,

and DR and RR are the REML estimates. The ML
estimator of α and its variance have the same form
as (4) above, except that ML estimates of the vari-
ances D and R are substituted in place of the REML
estimates. In both cases the variance of the estima-
tor of α is underestimated since it does not account
for the variability in the estimates of D and R.
Kacker & Harville [10] and Prasad & Rao [13] have
proposed alternative forms for the variance which
account for this extra variability but are computa-
tionally intensive.

The REML estimator of θ , the unknown com-
ponents of V, can be shown to maximize the log
likelihood L′(θ), where

L′(θ) = − 1
2 log |V| − 1

2 log |X′V−1X|
− 1

2 (Y − XαR)′V−1(Y − XαR)

and αR is the REML estimator of α. In contrast, the
ML estimator of θ maximizes the log likelihood L(θ),
where

L(θ) = − 1
2 log |V| − 1

2 (Y − XαM)′V−1(Y − XαM)

and αM is the ML estimator of α, defined above. The
two likelihoods differ by a single term, usually of
order p.

The same REML estimators for α, D, and R can
be derived in another way, based on Bayesian prin-
ciples. To do this, assume a vague prior distribution
for α. Specifically, let α have the limiting distribution
N(0, �), where �−1 → 0. We then find the poste-
rior distribution for α, and base inference upon this.
We may estimate α by the mean of its posterior dis-
tribution. When D and R are known, this posterior

distribution is normal, with mean and variance

E(α|Y, D, R) = (X′V−1X)−1X′V−1Y (5)

and

var(α|Y, D, R) = (X′V−1X)−1.

When the variances are unknown, we must substitute
estimates of D and R for these parameters. We
now compute them from the marginal likelihood of
Y, or f (Y; D, R). The REML estimators are the
maximum likelihood estimators of D and R based
on this marginal likelihood. In contrast, the usual
ML estimators are based on the complete likelihood
f (Y; α, D, R).

Note that in (4) the variance varR(α) is not really
the variance of the estimator αR; it is the variance
in the posterior distribution of α. In the Bayesian
approach we treat α as a random variable, and should
base inference on the posterior distribution. Alter-
natively, for strict sampling theorists, varR(α) is a
proper estimator of the variance if we use RR and
DR to estimate R and D and ignore the variation in
RR and DR themselves. This is true since

var(αR) ≈ (X′V−1
R X)−1X′V−1

R VV−1
R X(X′V−1

R X)−1

� varR(α).

Likelihood ratio tests for α, however, are inappro-
priate, since the likelihood maximized is actually
f (Y; D, R) and not f (Y; α, D, R).

Harville [7] shows the connection between Patter-
son & Thompson’s REML approach to estimating D
and R based on the error contrasts and the Bayesian
approach which gives α a vague prior normal distri-
bution. Harville first shows that the likelihood for
the error contrasts is proportional to the marginal
likelihood of θ based on the full data, Y, or

fS(SY; θ) ∝
∫

fY (Y; θ, α) dα, (6)

where fS and fY are the probability density functions
of SY and Y, respectively. If we assign an improper
prior, g(α), to α that is independent of θ , as do
Dempster et al. [4], then

∫
fY (Y; θ, α) dα ≈

∫
fY (Y; θ, α)g(α) dα

= fY (Y; θ).
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We see from (6) that our inferences about θ will be
the same as in REML. Also, as long as the joint prior
density for α and θ is proportional to the prior for
θ alone, the marginal density for θ based on Y is
proportional to that based on the error contrasts. We
therefore do not lose information by using only the
error contrasts.

Secondly, suppose that the joint prior for θ and α

is flat relative to the data’s likelihood, so that the
posterior density is proportional to the likelihood.
Then the ML estimator of θ is the θ component
of the mode of the joint posterior distribution. Eq.
(6) shows that, in contrast, the REML estimator of
θ based on fS(SY; θ) is the mode of the marginal
posterior distribution of θ .

REML estimation for a random-coefficients
model for longitudinal data has been presented by
Laird & Ware [11]. It has been described for arbitrary
structural models for the within-person covariance
matrix by Jennrich & Schluchter [9]. Both of these
works use the EM algorithm of Dempster et al.
[3] to estimate the parameters with REML. Diggle
et al. [5] give an overview of REML estimation for
longitudinal data. Suppose that m repeated measures
are observed on each of N individuals, with Nm

total observations. The distinction between REML
and ML estimation is particularly important when
the number of fixed parameters p is large relative
to Nm, and the ML estimators are more severely
biased. REML estimators also perform better when
the variance matrix is near-singular, as in an example
presented by Tunnicliffe-Wilson [15].

Although largely developed for the case of mul-
tivariate normality, REML estimation can be applied
to other situations in which the parameter space is
restricted. The term has been used when particu-
lar restrictions, such as order restrictions, are placed
on the parameters (e.g. [1]; see Isotonic Inference).
Many of these problems lead to the technique of iso-
tonic regression. Dykstra & Madsen [6], for exam-
ple, discuss some restricted estimators for the Poisson
distribution.
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Retrospective Study

Retrospective study is a term originally used to
describe a case–control study, in which the previous
exposures and other characteristics of cases with
the disease of interest are compared with the previ-
ous exposures and other characteristics of disease-
free controls. More generally, the term is applied
to studies in which the relevant exposures and/or

disease incidences have occurred before the time of
the study data collection. For example, a historical
cohort study, in which historical records of occupa-
tional exposures (see Occupational Epidemiology)
and disease occurrence are analyzed just as in a
prospective follow-up study, is sometimes called a
retrospective study.
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Reverse Arrangement Test

The reverse arrangement test is used for evaluating
whether a sequence of ordered data is derived from
independent observations of the same random vari-
able by detecting whether a significant trend underlies
the observations. It is a nonparametric test, making
no assumptions about the distribution of the input
data and about a model for the possible trend.

Given a sequence of N observed values of a ran-
dom variable, x1, x2, . . ., xN , the ith reverse arrange-
ment, Ai , is the number of times that xi > xj for
i > j . The total number of reverse arrangements is
A = ∑N−1

i=1 Ai . The number A may range between 0
and N × (N − 1)/2. If {xi} are N independent obser-
vations of the same random variable, then A is a
random variable with mean value:

µA = N

(
N − 1

4

)
(1)

and variance

σ 2
A = N(N − 1)

(
2N + 5

72

)
(2)

If an increasing or a decreasing trend underlies the
data, we may expect A to be respectively greater or
lower than µA. The distribution of A is derived in
[2] and that for N between 10 and 100 is tabulated
in [1]. The values up to N = 20 are shown in Table 1.
However, the tendency to normality is extremely
rapid: when N ≥ 14, the variable

z = A − µA

σA

(3)

approximately follows the standard normal distribu-
tion and can be used to reject the null hypothesis with
little loss of accuracy.

To clarify the test, consider the following series
of diastolic blood pressure values measured daily in
a patient during a two-week monitoring period:

{75; 90; 85; 82; 68; 82; 69; 64; 75; 63; 60; 73; 73; 70}.

Table 1 Reverse arrangement distribution. Values of
AN

α such that the probability (A > AN
α ) = α, with

N = number of observations

α

N 0.99 0.975 0.95 0.05 0.025 0.01

10 9 11 13 31 33 35
12 16 18 21 44 47 49
14 24 27 30 60 63 66
16 34 38 41 78 81 85
18 45 50 54 98 102 107
20 59 64 69 120 125 130

Source: [1]. Reproduced with permission of John Wiley & Sons
Ltd. 1986  John Wiley & Sons Ltd

In this sequence of N = 14 measures, x1 = 75
is greater than eight of the following values, and
thus A1 = 8; x2 = 90 is greater than all the next 12
observations, and A2 = 12. The value of each reverse
arrangement, Ai is:

A1 = 8 A5 = 3 A8 = 2 A11 = 0;
A2 = 12 A6 = 8 A9 = 5 A12 = 1;
A3 = 11 A7 = 3 A10 = 1 A13 = 1
A4 = 9

and A = A1 + A2 + · · · + A13 = 64. As shown in
Table 1, we should reject the null hypothesis at
the 5% significance level α because A does not
fall within the range from 27 to 63. Alternatively,
we could use (1–3), which give µA = 45.5, σ 2

A =
83.417, and z = 2.026. The two-tails significance of
z is p = 0.043, and also, in this case, we should reject
the hypothesis of independence at α = 5%.
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Reversibility

Reversibility in the context of time series analysis
implies that all modeling and statistical analysis can
equally be performed on the reversed time-ordered
values as on the original sequence. A reversible
sequence will have a statistical time symmetry in
its appearance, meaning that features of the series
will not change after the time series is presented
in reversed order. It only makes sense to consider
reversibility in respect of stationary series, and not
to consider deterministic aspects such as trend and
seasonality. Irreversible or directional time series are
very common and can often be identified visually,
but most standard methods of time series analy-
sis do not react to directionality. Directionality may
be considered as an asymmetric assessment of time
series dependence, not detected by autocorrelation
or other second-order methods. Thus, models based
on second-order properties, such as Gaussian linear
time series models, are reversible [12]. However, if
the standard innovation variables are not Gaussian,
then these models exhibit directionality. Likewise,
there are various nonlinear time series models that are
unavoidably directional. Directionality can be incor-
porated in the assessment of suitability of a proposed
model, and is particularly relevant when predictive
use is anticipated. The classical time series of sunspot
numbers and Canadian lynx data are often given as
examples with directionality. The literature contains
scattered references, and there is an assessment of the
area by Lawrance [8].

Technical Definitions

A time series in discrete time, modeled by
the random variables [X(t), t = 0, ±1, ±2, . . .] is
said to be reversible when, for all r = 1, 2, . . .,
and t = 0, ±1, ±2, . . ., the joint distribution of
[X(t), X(t + 1), . . . , X(t + r)] is equal to the joint
distribution of [X(t + r), X(t + r − 1), . . . , X(t)].
This definition appears to be by Brillinger &
Rosenblatt [3], although the first mention of the idea
may be due to Daniels [5]. More limited definitions
have been given in [8]. For instance, first-order
reversibility was proposed as the case r = 1 of the
general definition; it implies marginal stationarity.
The term lag reversibility was used to denote that

the joint bivariate distribution of [X(t), X(t + r)] is
the same as that of [X(t + r), X(t)] for r = 1, 2, . . .

and t = 0, ±1, ±2, . . .. A particular aspect of this
type of reversibility is that corr[X(t)2, X(t + r)] =
corr[X(t), X(t + r)2]. These conditions can very
easily be verified with actual data to give a statistical
assessment of directionality.

Theoretical Results

Linear Models

A key contribution of Weiss [12] proved the result
that linear autoregressive processes, with or with-
out a moving-average component (see ARMA and
ARIMA Models) are reversible if and only if they are
Gaussian. For a moving-average linear model com-
ponent of the form

b0ε(t) + b1ε(t − 1) + · · · + bqε(t − q),

where ε(t), t = 0, ±1, ±2, . . ., is an independent
and identically distributed innovations sequence
of random variables, and b0, b1, b2, . . . is a
sequence of constants, a general condition giving
reversibility is that (bj = bq−j , j = 0, 1, . . . , q);
if the innovations sequence is symmetrically
distributed (bj = −bq−j , j = 0, 1, . . . , q) also gives
reversibility. There are direct consequences of this
reversibility to the invertibility of linear time series
models. Box & Jenkins [2] refer to this as being
able to express the innovation term ε(t) as a linear
function of the present and past X(t). If this is to be
so, roots of the equation

1 − b1x − b2x
2 − · · · − bqx

q = 0,

inside or on the complex unit circle, are not allowed.
With odd-order moving-average components, there is
always at least one root on the unit circle; with even-
order components, there is at least one root inside the
unit circle. Thus, in both cases, reversibility precludes
invertibility. Moving away from reversible models,
a number of directional linear models have been
studied. For first-order linear autoregressive models,
Gaver & Lewis [6] consider exponential and gamma
marginal distributions, and Lawrance [7] gives their
compound Poisson innovation distribution (see Con-
tagious Distributions); Rao et al. [11] give results
for such models with self-decomposable marginal
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distributions. A striking result for first-order linear
models with uniform marginals is the connection
between reversibility, chaos and congruential random
number generators (see Pseudo-random Number
Generator) [1]. The reversed uniform process is the
multibranch generalization of the chaotic shift-map
process. This is the continuous-valued version of the
congruential random number generator.

Nonlinear Models

Most of the available results for nonlinear models
concern first-order autoregressions, although in non-
standard forms. Chernick et al. [4] show that the
reversed form of the Gaver & Lewis exponential
model was a nonlinear model with minimization
replacing addition for combining terms. Lewis &
McKenzie [9] construct an extended class of pro-
cesses based on the minimization operation, modeling
uniform distribution, Weibull and Pareto distri-
bution, among others. McKenzie [10] also develops
nonreversible models in negative binomial variables
using a thinning operation in place of multiplica-
tion. A variety of other nonlinear models have since
appeared in the literature and most are irreversible.
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Rheumatology

The field of rheumatology deals with clinical dis-
orders which involve the musculoskeletal system.
Rheumatology includes inflammatory and noninflam-
matory diseases of joints, bones, muscles, and con-
nective tissues. The inflammatory disorders are char-
acterized by the features of inflammation, including
pain, stiffness, redness, swelling, and reduced func-
tion in the affected areas. Generally, these conditions
improve with activity and are worsened by rest. The
noninflammatory disorders are characterized by pain
which is made worse with activity and improves with
rest.

The inflammatory disorders include various forms
of arthritis and the collagen vascular disorders. The
prototype of inflammatory arthritis is rheumatoid
arthritis, which presents with joint pain and swelling
associated with stiffness, involving the small joints
of the hands and feet as well as the larger joints, in
a symmetric distribution. The cause of most forms
of inflammatory arthritis is unknown, but it is rec-
ognized that the main problem is an inflammatory
process in the lining of the joint, the synovium.
These conditions tend to be chronic, with periods of
exacerbation and remission. With time, the chronic
persistent inflammation in the synovium leads to joint
destruction, deformity, and disability.

Some forms of inflammatory arthritis have known
causes. For example, septic arthritis is caused by
infective agents, and some viruses are associated with
arthritis. Gout, which is a crystal induced arthritis,
results from uric acid deposition in the joints, and
pseudo-gout, also a crystal induced arthritis, results
from calcium pyrophosphate dihydrate deposition in
the joints.

The collagen vascular diseases include a number
of inflammatory conditions which affect the connec-
tive tissues, including the joints. These conditions
are usually multisystem, affecting many organs and
systems in the body. Systemic lupus erythematosus,
the commonest of these conditions, affects young
women, with a variable presentation, course, and
prognosis. Scleroderma, also known as systemic scle-
rosis, also affects women, is not as common, and has
an important vascular component. The vasculidites
are a group of diseases characterized by inflamma-
tion in the blood vessels, and the symptoms and signs
depend on the blood vessel involved. Polymyositis is

a rarer condition which affects primarily the muscles:
when the skin is involved it is called dermatomyositis.

The noninflammatory conditions include degener-
ative arthropathies, which are the most common form
of arthritis, nonarticular rheumatism, and traumatic
injuries. Osteoporosis is also included in the nonin-
flammatory rheumatological disorders.

Historical Development

The term “rheuma” was introduced in the first century
AD, and indicates a substance that flows. Rheumatic
diseases such as gout were recognized as early as
the fourth century BC, but the concept of systemic
rheumatic disease was introduced in the sixteenth
century. The term “rheumatologist”, to refer to the
physician dealing with rheumatic diseases, is recent
[21].

Gout was the first rheumatic condition to be
clinically described and urate was found to be the
causative factor in the nineteenth century. Until the
late 1940s, almost all patients with arthritis were
thought to have either gout or rheumatoid arthritis.
However, in 1948 rheumatoid factor was discovered,
as an antibody present in the sera of more than
80% of patients with rheumatoid arthritis, but not in
patients with osteoarthritis. This further resulted in
the differentiation of inflammatory forms of arthri-
tis into those which were rheumatoid factor positive
(seropositive), such as rheumatoid arthritis, and those
which were rheumatoid factor negative (seronega-
tive), which include psoriatic arthritis, which is asso-
ciated with psoriasis, ankylosing spondylitis, which
affects primarily the back, Reiter’s disease, which
affects the back, peripheral joints and skin, and the
arthritis of inflammatory bowel disease. In addition
to being seronegative, the latter group of condi-
tions have other features in common: they affect the
back, are associated with skin and mucous mem-
brane lesions, and are associated with certain genetic
factors, namely HLA-B27. In the same year, the diag-
nosis of systemic lupus erythematosus was facilitated
by the discovery of the lupus erythematosus cell
preparation. Subsequently, the antinuclear factor was
described and the relationship of autoantibodies to
the collagen vascular diseases became clear. About
140 arthritic conditions are recognized by the Inter-
national Classification of Diseases (ICD) codes.

With the recognition of these various forms of
arthritis, it became necessary to develop criteria for
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classification and diagnosis [22]. Criteria were estab-
lished for the diagnosis of rheumatoid arthritis, sys-
temic lupus erythematosus (SLE), the arteridites, and
other conditions. These have facilitated research into
the mechanisms involved in these conditions, as well
as the inclusion of patients into therapeutic trials (see
Clinical Trials, Overview). Comparisons of patients
from different centers can now be achieved, and mul-
ticenter trials are feasible since patients with similar
characteristics may be recruited. A consensus on cri-
teria for response to treatment in rheumatoid arthritis
has also been developed [10].

Types of Studies

The classical epidemiologic studies, such as cohort
and case–control studies are used in rheumatological
research, although the extent of epidemiologic inves-
tigation into risk factors is less than for many other
diseases. Genetic epidemiology has been and should
continue to be an area of particular interest. Types
of investigations in this area include those based
on sibling pairs, family studies, and the search for
candidate genes through disequilibrium testing. Mul-
ticenter efforts may be needed to provide adequate
sample sizes [14]. Similarly, there are many clinical
trials in rheumatology which aid in the evaluation
and licensing of treatments. Other investigations are
based on clinical databases devoted to patients with
a particular rheumatological disease, specific inves-
tigations on a specially recruited group of patients,
and comparisons of different groups of patients (see
Administrative Databases).

A wide variety of clinical and radiological mea-
sures in rheumatology derive from expert assess-
ment. Reliability studies are therefore of particular
importance in rheumatological research. Reliability of
measurement within a single center or across multi-
ple centers may be required, depending on the nature
of the investigations under consideration. Reliability
and validity studies are also of considerable impor-
tance for quality of life measurements, which are
increasingly being used in research activities.

Historically, classification studies have aided in
the definition of different rheumatological conditions.
The approach of the collection of “gold standard”
cases and the comparison of these to individuals
with other conditions led to some progress. Recursive
partitioning methodology [2] (see Tree-structured

Statistical Methods) has been used in the validation
of criteria. These studies continue to be useful, but the
methodological requirements, such as the definition
of a gold standard, become increasingly challenging
as disease subgroups are defined on the basis of
immunologic abnormalities, genetic factors, and so
on. A related area is the evaluation of new diagnostic
tests which involves the classic considerations of
sensitivity, specificity, and predictive value.

Treatment

The therapeutic approach to arthritis is control
of pain and inflammation. The choice of anti-
inflammatory medication depends on the severity
of the inflammatory process, and its possible
effect on vital organs. Thus, for mild cases of
joint inflammation, nonsteroidal anti-inflammatory
drugs (NSAIDs) are used. These have been shown
effective in controling inflammation in both animal
models of inflammation and in the human disease.
An increasing number of NSAIDs have become
available, primarily because of their side-effects
which motivate attempts to develop newer drugs with
less toxicity. When NSAIDs are ineffective, disease
modifying drugs are used. These include medications
such as gold compounds, penicillamine, anti-
malarials, salazopyrine, methotrexate, azathioprine,
cyclophosphamide, and cyclosporin (see [18, Section
VI]).

Corticosteroids are used to control inflammation
in the more systemic conditions, as well as in the
resistant cases of joint inflammation. These drugs
appeared so effective when first introduced in the late
1940s that, although there have not been controlled
trials to prove their efficacy, new modalities are now
measured against corticosteroids.

On the basis of the current understanding of mech-
anisms of inflammation, new approaches have been
developed including agents that interfere with Tumor
Necrosis Factor such as the anti-TNF, antibody inflix-
imab, and the TNF receptor fusion protein etanercept.
In RCTs, these later agents have been shown effective
in RA, PsA, and ankylosing spondylitis and are being
tested in vasculitis. Other agents directed against B
cells and T cells are at various stages of development
and testing.
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Methodological Issues

The nature of rheumatological diseases and their
medical management creates some particular method-
ological difficulties. An obvious initial one is consid-
eration of the time of origin for studies of disease.
Patient recall is a source for information on the onset
of symptoms. But, for example, there are groups of
patients with some features of SLE who have not
developed full blown disease even after more than 10
years of follow-up. Similarly, referral patterns related
to medical care are widely varied influencing both the
time of treatment initiation and the type of clinical
center within which treatment is sought. Clinical tri-
als and database studies thus must almost inevitably
have time origins which are variable and somewhat
arbitrary. However, on balance, many investigators
support the notion that the time of diagnosis should
be used as the baseline for disease origin [19], some-
times taking it to be the time the diagnosis might
have been made had an appropriate physician seen
the patient.

At the “other end” of the studies, there is wide
variation in the outcome measures used by differ-
ent researchers. Short-term outcomes are common
in clinical trials related to drug licensing activities
(see Drug Approval and Regulation) but longer-
term outcomes are often of more clinical interest. The
identification of a single outcome of interest is usually
difficult, as evidenced by the selection of a set of out-
comes as the consensus requirements for the reporting
of clinical trials in rheumatoid arthritis [11]. Other
conditions have not yet reached even this stage of
standardization but efforts are being made, for exam-
ple, in psoriatic arthritis [16] and myositis [15, 17].

The evaluation of these multiple outcomes re-
quires careful consideration. Many classical multi-
ple comparison procedures are not relevant, based
as they are on an experimental false positive error
defined as one or more false positives on individual
outcomes. It is difficult to provide a mathematical
characterization of the “clinical insight” which jointly
evaluates disease progression in terms of these mul-
tiple outcomes [4, 5].

As mentioned earlier, there is a subjective eval-
uative component to many of these outcomes, some
evaluated by the patient, some by physicians. In addi-
tion to the reliability issue already discussed, it is
also important to consider expectation bias which

can arise in randomized, but unblinded, clinical tri-
als. Epstein [8] illustrates the dramatic differences
which can result when evaluation of a “promising”
new treatment is done in a blinded versus unblinded
manner.

The classic assumption in most statistical meth-
ods to deal with time to event data is that censor-
ing is independent of the outcome (see Censored
Data). Thus, individuals who are lost to follow-up
are assumed to be no different, in terms of subsequent
outcomes, to individuals who remain under follow-
up. Because of the long course of most rheumatic
diseases, follow-up is particularly problematic. Spe-
cific attention should be paid to the nature of lost-to-
follow-up patients before undertaking studies which
involve long-term outcomes. There is recent inter-
est in mortality studies which consider the survival
of arthritis patients compared with the general pop-
ulation, motivated partly by the burden of disease
hypothesis. Loss-to-follow-up information is critical
in these studies, which must be based on databases
accrued over a considerable period of time [9].

The course of rheumatic diseases means that
not only are there multiple types of outcomes (see
Multiple Endpoints, P Level Procedures) but also
multiple measurements of outcomes over time (see
Longitudinal Data Analysis, Overview). A simple
example is the number of inflamed joints in a
patient with rheumatoid arthritis which could be
measured at each clinic visit. Statistical methods for
the analysis of times to a single event are therefore
not appropriate in many cases. Fortunately, there
is increasing methodological interest in models for
longitudinal data, and much of this work is relevant
to studies in rheumatology.

A particular approach which may be useful is to
model disease progression as a Markov multistate
model (see Marker Processes). Not only will this
make use of repeated measurements on outcome vari-
ables, but it will also allow individuals to enter
follow-up at different states and may help to deal with
the lack of a well characterized time of disease onset.
This approach has been used to study disease pro-
gression in psoriatic arthritis [13]. Other approaches
should be explored [6, 14] and, of course, goodness
of fit investigations will be required [1].

In these long-term studies of disease progression,
prognostic markers of interest may also be measured
at several points in time. Thus the ability to incorpo-
rate time-dependent explanatory variables would be a
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useful feature of any method of analysis. The incorpo-
ration of such variables will reflect what occurs in the
clinical monitoring of patients. There are, of course,
other time-independent variables such as demograph-
ics and genetic factors which must also be considered.

Landmark Studies

Prognosis

The study of survival in SLE performed by Merrell &
Shulman [19] provided a framework for subsequent
studies of prognosis in SLE and other rheumatic
diseases. They defined the onset of the disease as
the time of diagnosis, and provide a rationale for its
use. They also took appropriate account of patients
lost to follow-up who were regarded as censored at
the time at which they were last observed.

Treatment

Gold was the first antirheumatic drug to be investi-
gated through a controlled clinical trial in RA [12],
although a high placebo effect was noted. A sub-
sequent trial by the Empire Rheumatism Council is
considered the landmark article both for the efficacy
of gold, and for the standard of clinical trials in
rheumatology [7]. This was a multicenter trial involv-
ing 24 centers.

Disease Associations

The HLA region of chromosome 6 in man is the
major histocompatibility locus. Because of its role in
the immune response, it was thought to be related
to the susceptibility and/or resistance to disease. It
was not until landmark articles from the UK [3]
and US [20] that the role of this region in disease
susceptibility was confirmed. These studies provided
the framework for subsequent studies of HLA and
disease associations.
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Ridge Regression

Ridge regression was initially promoted by Hoerl &
Kennard [8, 9] within the multiple regression model:

Y = 1β0 + Xβ + ε, (1)

where X is an (n × p) matrix of n observations on p

explanatory variables, the columns of X have mean
zero (i.e. centered), 1 is an (n × 1) vector of ones
allied to the mean coefficient β0; Y is the n-vector of
responses, and ε the n-vector of random errors with
constant variance σ 2. The class of ridge estimators of
the p-vector β is

β̂(k) = (X′X + kI)−1X′y, (2)

with the class indexed by the hyperparameter k. The
mean coefficient β0 is usually estimated by y , the
sample mean of the observed n-vector y; see [3]
for alternative forms. The idea of regularization by
adding a small constant to the diagonal of X′X in (2)
had appeared earlier in the context of function min-
imization, the Levenberg–Marquardt modification of
Newton–Raphson, as described, for example, in [14]
(see Optimization and Nonlinear Equations).

Hoerl & Kennard suggested plotting the p-
coefficients, β̂i (k), from (2) as functions of k, ranging
from k = 0 (least squares) to k = ∞[β̂i (∞) =
0, i = 1, . . . , p]. This ridge trace typically shows
large changes in at least some of the coefficient
estimates as k increases from zero. The squared
length of the vector, β̂(k)′β̂(k), monotonically
decreases as k increases. At the same time the residual
sum of squares may only show a modest increase
from the least squares value at k = 0. One argument
of Hoerl & Kennard was that the least squares
estimator of β is unnaturally long, especially when
the X-matrix is nearly collinear (see Collinearity),
and dramatic reductions in length are possible with
small increases in k from zero.

From a slightly different perspective, the effect of
the estimator may be judged from the amalgamated
mean squared error of estimation,

E(β̂(k) − β)′(β̂(k) − β).

This can be decomposed as the sum of variance and
a squared bias term. Initially at k = 0 the bias is
zero, but the variance may be large, especially if X

is near collinear. The variance of the ridge estimator
reduces as k increases from zero monotonically, the
squared bias term increases, and typically the mean
squared error, the sum of the two terms, decreases
initially and then starts to increase as bias takes over
for larger values of k. Hoerl & Kennard provided a
theorem proving the existence of k > 0 for which the
mean squared error was less than that of least squares.
Unfortunately this does not provide guidance on the
choice of k, which was left to the “elbowing” out of
the ridge trace.

Nowadays the ridge trace has been largely aban-
doned in favor of explicit choices of estimator k̂.
Whatever value is chosen the improvement in mean
squared error of estimation cannot be realized at
all values in the parameter space of β, when near-
collinearity is present; see [4, Chapter 4]. The situa-
tion is not so critical for prediction squared error loss
at the design points, where ill-estimated directions are
down-weighted.

Estimators of k are often motivated by Bayesian
roots. If a priori βi, i = 1, . . . , p, are independent
normal with mean zero and variance τ 2 and a vague
prior is taken for β0, then, with normality of the
errors in the model in (1), (2) is the Bayes estimate
of β (mean of the posterior distribution), where k =
σ 2/τ 2. Such estimators range from simple empirical
Bayes plug-in values for the hyperparameter τ 2 as in
[10], to maximum marginal likelihood [1].

Ridge regression may be viewed as a continu-
ous version of variable selection, where unimportant
variables have their coefficients shrunken towards
zero. Shrinkage to zero is evident from both the
Bayesian roots and the form of the the ridge estima-
tor. In canonical form (2) becomes [λi/(λi + k)]α̂i ,
where θ is the orthogonally transformed β, θ̂ its least
squares estimate, and λ1, . . . , λp the eigenvalues of
X′X (see Eigenvalue). Thus, the shrinkage is more
pronounced for directions of small eigenvalues of
X′X, corresponding to a large variance of the least
squares estimator. Shrinkage to zero is also evident
from the augmented form given in [12]. This form is
also useful for computation. If the n-vector Y is aug-
mented by p zeros, to form an (n + p) × 1 vector Y∗,
and X∗ is the (n + p) × p matrix X augmented by√

k times a p × p identity matrix, then least squares
applied to X∗ and Y∗ gives the ridge regression esti-
mator, (2).

For any k > 0, the estimator in (2) is not invariant
to changes in scale. The Bayesian roots also attest
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to the importance of the relative scales of the p

explanatory variables, since changing from, say, days
to weeks will increase x by a factor of 7 and con-
sequently decrease the corresponding β-coefficient
by a factor of 7. The required exchangeability of
coefficients underpinning ridge regression will not
necessarily match the common approach of standard-
ization of explanatory variables to all have variance 1
(autoscaling). This would also imply that it is not
necessarily sensible to rescale the explanatory vari-
ables each time an observation or observations are
left out in cross-validation or bootstrap approaches
to estimation of k.

For reviews of ridge regression and other shrink-
age estimators in the context of multiple regression
see [7] and [4, Chapter 4]. The simple ridge form of
regularization of statistical problems involving many
parameters has become commonplace. In the neural
network literature it comes in the form of a quadratic
penalization, a particular example of “weight decay”;
see, for example, [13]. The Bayesian form of the
technique may motivate adaptations to nonnormal
models, as in [2]. Le Cessie & Van Houwelingen
[11] adapt ridge to logistic regression and apply it
to the diagnosis of ovarian cancer using the groups
in a histogram of DNA content as explanatory vari-
ables. Multivariate forms of ridge regression have
been developed by Brown & Zidek [5, 6] (see Mul-
tivariate Multiple Regression).
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Risk Adjustment

Some cases are more difficult than others. For exam-
ple, an 80-year-old hospital patient with a heart attack
is more likely to die than one aged 50, while almost
anyone admitted for cataract surgery is substantially
less likely to die than either of these two. Clearly,
when comparing hospitals on patient outcomes (such
as mortality) or system outcomes (such as how much
of what services are used), comparisons should be
adjusted for intrinsic differences in patient risk (see
Case Mix).

When calculating and adjusting for “risk”, it is
important to stay focused on “risk of what”. For
example, patients at a moderate risk of death from
coronary artery disease may have the highest risk
for receiving coronary artery bypass graft (CABG)
surgery, since those who are less sick may not need
this aggressive therapy, while the very sickest patients
may be deemed too frail to survive it.

Raw comparisons of outcomes can be mislead-
ing. For example, in the mid-1980s, reporters used
the Freedom of Information Act to force the Health
Care Financing Administration (HCFA, called CMS)
to release its data on hospital mortality for Medi-
care patients. Ominously, the “worst” facility had
87.6% of its Medicare patients die; however, this rate
seemed less strange when the facility was revealed
to be a hospice program. Over the years, HCFA
made great strides in the sophistication of the risk-
adjustment methods used to produce its annual hos-
pital mortality reports. However, the HCFA admin-
istrator’s stated reason for abandoning these annual
reports in 1993 was that the methodology appeared
to unfairly penalize inner city public facilities, whose
patients may well be at greater risk of dying than is
captured in the data available for modeling.

Thus, differences in patient risk often do not “aver-
age out” and failure to adequately adjust for differ-
ences between the patients seen by different health
care providers can produce seriously misleading com-
parisons. Much research supports this concern, and
supports the use of risk adjustment (see Adverse
Selection).

Thus, for example, instead of reporting an
observed rate, O, of mortality following CABG
surgery, for a surgeon or a hospital, E, an expected
rate based on patient characteristics, is also computed,
and some measure of the discrepancy is reported
(e.g. the risk difference, O minus E, or the risk
ratio, O divided by E). Typically, the expected rate
is produced using standard multivariable modeling
techniques applied to large databases, and all caveats
for the care required in developing and using such
models apply.

One way to produce a “risk-adjusted” rate for a
particular facility is to multiply its risk ratio by a
broadly defined average rate. For example, if nation-
ally, 2% of nursing home patients develop bedsores in
a six-month period, a facility with O/E equal to 1.10
would have its risk-adjusted problem development
rate equal to 2.2%. If either the number of cases seen
or the number of expected events at a facility is small,
the risk ratio calculation becomes unstable; empirical
Bayes modeling is one way to produce more stable
estimates. For further information, see [1].
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Risk Assessment for
Environmental Chemicals

In 1983, the National Academy of Sciences (NAS)
published a seminal report, Risk Assessment in the
Federal Government: Managing the Process [8], on
the theory and practice of human health risk assess-
ment for chemicals in the environment.

Even though dictionaries define risk in terms
of the probability of injury, damage, or loss [19],
and even though other professions have long since
adopted probabilistic frameworks using the Monte
Carlo method developed in 1946, most human
health risk assessments for chemicals in the envi-
ronment still use deterministic methods that employ
point values for all variables. Probabilistic meth-
ods have three key advantages over the deterministic
ones that they replace. First, probabilistic methods
use all the information available about the vari-
ability and the uncertainty inherent in the assess-
ment, while deterministic assessments discard most
of the information. Secondly, by using probabil-
ity distributions to represent the range of expo-
sure and/or toxicity, probabilistic methods reveal the
compounded conservatisms inherent in deterministic
methods. Thirdly, probabilistic methods – relying as
they do on the full range of values that a variable
may assume – reestablish the now blurred boundary
between risk assessment and risk management.

We note that risk assessment and epidemiology
have some goals in common, but that risk assessment
differs from epidemiology by its central focus on the
prediction of future events.

Risk Assessment vs. Risk Management

The NAS report defined two roles for individuals and
stressed the need to keep these roles and associated
activities well separated from each other:

1. A risk assessor is an analyst – perhaps an engi-
neer or scientist – who uses facts and quantitative
reasoning to estimate or bound the exposures and
health effects, if any, to a person exposed to
chemicals in the environment. The risk assessor
may also analyze different technical options for
remediation of the property.

2. A risk manager is a different person – perhaps a
legislator, judge, member of a jury, a regulator,
or the public itself – who then weighs the health
risks in light of other social, political, and eco-
nomic factors. The risk manager(s) then decide(s)
the actions necessary or appropriate for a given
situation. The actions may range from continu-
ing the “do nothing” or “no action” alternative, to
restrictions on land use, to complete excavation
and removal. Risk management is the process
of weighing policy alternatives and selecting the
most appropriate regulatory action by integrating
the results of risk assessment with engineering
data and with social, economic, and political con-
cerns to reach a decision.

Considering a contaminated property as an example,
a risk assessor usually (i) performs a “baseline risk
assessment”, i.e. she or he analyzes the health risks
to people who use the property under both the current
and reasonable foreseeable use for reducing the risk
and then (ii) estimates cleanup targets, as appropriate.
A risk assessor may also complete a “verification risk
assessment” ex post remediation. A risk assessor may
perform the same general types of studies to assess
or compare the effects of pesticide residues in foods,
the operation of a proposed incinerator, new methods
to disinfect public water supplies, the reliability of
a manufacturing plant, or even the transportation of
hazardous materials.

Risk Assessment: The Five-Step Process

Risk assessors usually follow a five-step process
when completing a risk assessment. The typical
five-step process used today is shown in Figure 1.

In what follows we use the assessment of a con-
taminated property as an example.

Hazard Identification

In this first step, the risk assessor reviews informa-
tion about the property, such as location, land use, and
abutting land use, and plans for future development.
For a hazardous waste site, the risk assessor would
review and analyze all of the monitoring data, includ-
ing, for example, (i) chemical measurements in soils,
ground water, sediments, surface water and/or air,
and (ii) physical measurements, such as wind speed,
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Figure 1 The five-step process for a risk assessment

temperature, hydraulic gradients, and turbulence. In
the hazard identification step, the risk assessor must
define the nature and extent of the problem, espe-
cially the lateral and vertical extent of the contami-
nation. The resulting “study area” need not conform
to property boundaries of ownership or even to state
lines.

In hazard identification, the risk assessor must
also select a list of “study chemicals” or “chemicals
of concern”, a subset of organic and/or inorganic
compounds reported at the site that entails the highest
exposure and the highest risk. The risk assessor
usually selects the study chemicals for consideration
according to these (sometimes competing) factors:

1. high average and/or maximum concentrations;
2. long persistence in the environment;
3. high toxicity, especially carcinogenicity, terato-

genicity, or reproductive toxicity;
4. high frequency of detection;
5. great mobility in the environment; and/or
6. high public concern or awareness.

The risk assessor may also consider other factors as
well, including whether the chemical is related to
human activities or naturally occurring, whether the
chemical is reported in concentrations above either
natural or anthropogenic background concentrations,
and whether the chemical is an essential nutrient for
plants or animals.

Dose–Response Assessment

The risk assessor assembles information on the
acute, subchronic, and chronic toxicities of the study
chemicals selected in the previous step. Toxicologists
distinguish between (i) potential carcinogens, which
are chemicals that may initiate or promote the
development of cancer, and (ii) noncarcinogens,
which are chemicals that cause damage other
than cancer to cells, tissues, organs, or organ
systems in the exposed individual (see Dose–Res-
ponse Models in Risk Analysis). More often now,
toxicologists also identify neurotoxins, mutagens
(agents that may cause somatic or genetic mutations;
see Mutagenicity Study), and teratogens (agents
that may cause birth defects in newborns; see
Teratology). Of course, some chemicals may cause
multiple effects at different times and doses. For
example, in high doses, a particular dioxin called
2,3,7,8-TCDD may cause immediate tissue damage
and a skin disease (effects of acute exposure); in
lower doses, and over time, it may increase the
probability that a few different types of cancer will
develop (an effect of low-dose chronic exposure).
(For general references, see [7] and [9].)

Developing Reference Doses (RfDs). Studies have
shown that many people incorrectly believe “No dose
of a chemical is safe”. In fact, for any chemical,
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there is a dose low enough that it does not cause
significant clinical effects and a dose high enough
that it probably does. We safely eat small amounts
of cyanide in almonds, accidentally swallow apple
seeds, and other foods; on the other hand, ingestion of
less than a half pound of salt all at once will likely kill
an adult. Mammals (including humans) have evolved
to eat safely a multitude of naturally occurring toxic
chemicals in foods, and, as a result, mammals have
excellent defenses against many types of chemicals
(including many industrial chemicals) and can readily
detoxify and excrete them.

Identifying a dose of a chemical that is unlikely
to cause effects is challenging. Experience has taught
us that humans do not respond the same way as any
particular experimental animal species. Sometimes
humans are more sensitive to a certain chemical than
rats are but less sensitive than, say, guinea pigs. Dif-
ferent animals (including humans) sometimes even
respond to a chemical or drug exposure with dif-
ferent types of responses altogether. For example,
some tranquilizer drugs used with dogs and horses
will make cats more excited instead of depressing
them. And humans themselves vary from person to
person in their response: one person can drink alco-
hol seemingly all evening, while another is quite
drunk after one glass of wine. Given a new chem-
ical, a toxicologist cannot predict whether humans
are more or less sensitive than the test animal, or
whether they will respond with the same toxic effect,
or how much variability different people will exhibit
in their response. If this were not trouble enough,
most animal toxicity tests last for six months to two
years, while a human exposure might occur over
30–40 years or more.

The solution to these questions has been to apply
limits on the uncertainty. Experience over many years
with thousands of chemicals has allowed toxicolo-
gists to develop rules for estimating a “safe” dose.
The US Environmental Protection Agency (EPA)
has developed a standardized method for develop-
ing “reference doses” (RfDs) for several hundred of
the solvents, pesticides, metals, and other chemicals
most commonly encountered in the environment. The
method does not identify the highest dose of a chem-
ical that is safe, but it does identify a dose unlikely to
cause effects; that is, the highest safe dose is probably
not lower than the RfD.

The current EPA method has three main steps
(although changes are proposed for the future). First,

test animal studies and human observations (if avail-
able) are reviewed for study quality and to find the
lowest dose at which adverse effects were observed
(the “LOAEL” or lowest adverse effect level), and the
next lower dose at which these effects are not seen
(the “NOAEL,” or no observed adverse effect level).
Secondly, depending on the quality and findings of
the experimental data, several uncertainty factors are
applied to the LOAEL (or the NOAEL, if it is avail-
able) to estimate the RfD. If good dose information
is available from accidental human exposures (as for
mercury) one can use a NOAEL directly as an RfD,
or one can divide it by a factor of 1–10 to account
for variations among humans. For most chemicals we
must use animal studies. If we have available only a
LOAEL from an animal study, we divide by a fac-
tor of 10 to estimate a NOAEL. The factor of 10
accounts for potential differences between humans
and experimental animals. The result may be divided
by a factor between one and 10 if the experiment
lasted less than the animals’ lifetime (rats and mice
live about two years) to estimate a safe dose for a
human lifetime. We can use an additional modify-
ing factor if we have reason for additional concern,
such as that the only effects observed in the test are
very serious ones. Sometimes we make other modifi-
cations in the dose estimate to represent more closely
the dose that we expect that humans will receive. This
process has been used both for ingested and inhaled
doses of chemicals. There is no comparable approach
developed for dermal exposure to chemicals; gen-
erally we use the oral RfD to evaluate a dermally
absorbed dose, in spite of the obvious uncertainties.

The final step in the derivation of an RfD is to
identify qualitatively the scientific confidence in it.
Good, plentiful, studies with consistent findings result
in high confidence, while if the available studies
are poor or few, confidence is low. Note that low
confidence usually results in a lower RfD because the
greater uncertainty is reflected in higher uncertainty
factors. So the RfD is no less “safe” if confidence is
low; in fact, the true highest safe dose may be 1000
or more times higher.

Most scientists recognize that this approach is not
optimal; it may result in overprotection at unneces-
sary expense. The current approach produces some
odd results, such as an RfD for phenol that is below
the dose received when one uses a common over-
the-counter sore throat medication as directed (phenol
is its active ingredient). The EPA and other groups
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are working on more effective approaches, using
pharmacokinetics, modeling, sophisticated statistics,
quantitative analysis of variability and uncertainty,
and other methods. One such approach is used for
lead and is being developed for other metals such as
arsenic and mercury. The approach is to use a model
to evaluate several sources of exposure to lead and
to predict the expected values in a population of a
particular biomarker, in this case blood concentra-
tions. (This approach has had only limited success so
far.) Meanwhile, risk managers need to be mindful of
how RfDs are developed and understand that if a risk
assessment shows that a certain chemical concentra-
tion “exceeds a level of concern”, that this does not
mean we shall see toxic effects in exposed people.
For most chemicals, there is a large margin of safety
built into the toxicity value used in the risk calcu-
lation. Also, the target concentrations of concern are
so low that the effects cannot be detected in small or
medium sized populations.

Developing Cancer Slope Factors (CSFs). Toxi-
cologists agree that there is a safe dose with respect to
toxic effects other than cancer. The EPA has assumed
that there is not a safe dose for carcinogens; there is,
however, a dose that poses an acceptably low risk.
Cancer is considered a dose-related example of a
stochastic process; that is, there is always a chance
of acquiring cancer from exposure to a carcinogen, no
matter how small the dose; however, the smaller the
dose, the smaller the chance. For some cancer caus-
ing agents, such as radiation, this appears to be true.
Cancer (really a group of diseases) differs fundamen-
tally from other toxic effects such as liver damage,
in which a certain threshold of damage is necessary
before the damage makes any practical difference,
since the body can live with or replace many dam-
aged cells. It is thought that cancer can result from a
single mutation in DNA. This mutation can theoreti-
cally be caused by a single molecule of a carcinogenic
chemical [1]. Therefore, there is theoretically always
a possibility that a single molecule could cause the
damage that leads to cancer. In reality, this is proba-
bly not true for most chemicals, but the EPA currently
regulates carcinogens on this basis.

There are only about 30 known chemicals or
industrial processes that cause cancer in humans.
All other chemicals considered carcinogenic are only
suspected to cause cancer in humans, perhaps because
of weak evidence from human studies, or because

the chemical tested positive in an animal test system.
Groups of test animals (usually rats, mice, or dogs)
receive the highest dose or half the highest dose of
the test chemical that one expects they can tolerate
for their lifetime without significant toxic effects
other than cancer, and at the end of that time (about
two years for rats and mice) the test animals are
necropsied and examined for tumors. If the test
groups have more tumors than the control group, then
one can employ tumor data in a model to predict
possible cancer rates in humans exposed over a much
longer lifetime to much lower doses. The model most
commonly used by the EPA produces a “cancer slope
factor” (CSF) that one can use to estimate cancer
risk in exposed humans. The CSF assumes a linear
relationship between exposure dose and carcinogenic
response. For example, with a person exposed to
0.02 mg alachlor per kg body weight every day
for a lifetime and where the CSF is 0.08 mg/(kg d),
an estimate of the cancer risk is (0.02 × 0.08) =
0.0016 = 1.6 in 1000.

Often, results from the animal studies fail to
show a clear effect. In any case, toxicologists
must evaluate all available evidence for a chemical,
including studies among different animal species,
and epidemiologic studies in humans, to determine
whether the weight of evidence indicates whether
a chemical may be a human carcinogen. Under
the pre-1996 guidelines [10], the EPA classified
carcinogens according to the weight of evidence into
one of five groups that ranged from “Known human
carcinogen” to “No evidence of carcinogenicity”.
All but perhaps 35–40 chemicals ever studied
fall somewhere between these two categories; their
carcinogenicity in humans is uncertain. Guidelines
published for review in 1996 replace the five groups
with three categories and a narrative to describe the
weight of evidence [18].

Much of this uncertainty concerning carcinogenic-
ity comes from the process of identifying and evalu-
ating potential carcinogens. Toxicologists know that
there are serious questions about the validity of ani-
mal carcinogenicity studies. Some scientists believe
cancer in test animals is actually a byproduct of the
cell damage and subsequent cell reproduction and tis-
sue repair induced in the experimental animals due
to the toxic dose levels typically used in the tests.
With humans exposed to extremely low doses of the
same chemical in the environment, the cell damage
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is too minor to induce tissue repair, and the chem-
ical probably does not cause cancer. On this basis,
many people believe that the true risk from such low
exposures may be as low as zero. A second argument
applies to chemicals that only cause tumors in spe-
cific situations. For example, many chemicals appear
to cause tumors only in mice – not in other experi-
mental animals – and only in the livers of those mice,
rather than in other organs. Chlordane is such a chem-
ical. We would not expect these chemicals to cause
cancer in humans: experts disagree, however, so the
cancer risk is uncertain. The same issues discussed for
noncancer reference doses apply here, as well; tox-
icologists must extrapolate from high doses to low,
short-term experiments to long-term environmental
exposure, and animals to humans. Finally, uncertainty
about the models used to develop the CSF is large.
While the true cancer slope factor is not likely higher
than the published CSF, it may be much lower, and
perhaps as low as zero (see Extrapolation, Low
Dose).

Sources of Chemical Toxicity Information. The
EPA has already established and published the physi-
cal, chemical, and toxicological properties of many
chemicals found at hazardous waste sites. These
evaluations, based on the results from studies con-
ducted by the National Cancer Institute (NCI) and
from articles in refereed journals, are often reduced
to either “chemical profiles” or simply a handful of
numbers that represent toxic potencies. Published by
the EPA, the findings and opinions on these chemicals
are usually listed in two widely available resources:
(i) the Integrated Risk Information System (known
as IRIS [17]), a database updated monthly and avail-
able over several wide-area computer networks and
(ii) the Health Effects Assessment Summary Tables
(known as HEAST [16]), a database updated quar-
terly or semiannually and available in print from the
National Technical Information Service (NTIS) in
Springfield, Virginia. These two databases typically
give several toxicity values for a single chemical,
depending whether the exposure occurs via ingestion
(e.g. via food or water) or via inhalation (e.g. via
gases or particulates). Neither of these databases cur-
rently includes toxicity values for dermal exposures.

For use in a numerical example later in this article,
we note that EPA’s IRIS database recently listed
the CSF for the ingestion of benzene as 2.9 × 10−2

mg/(kg d).

Exposure Assessment

The risk assessor first determines if complete “expo-
sure pathways” exist and then estimates the doses
delivered along those pathways [11].

Exposure Pathways. An exposure pathway is any
route that a chemical may travel from an environmen-
tal source (e.g. an abandoned dry sludge lagoon) to a
receptor (also called the exposed individual), such as
a child living nearby. An exposure pathway has five
main parts:

1. a chemical source;
2. a release mechanism (e.g. leaking, leaching, wind

erosion);
3. a transport and/or exposure medium (e.g. air,

water, soil, sediment, food);
4. an exposure point with receptors present or

potentially present (actual location where expo-
sure is possible); and

5. a route of entry (inhalation, ingestion, dermal
contact).

A complete exposure pathway is one that has no
functional barrier that prevents an exposure. The
pathway may be completed (i) by the chemical mov-
ing from the source to the receptor or (ii) by the
receptor moving to the source. In this example, fugi-
tive dust that carries the chemicals may blow from
the lagoon to the child’s house, or the child may play
in or near the old lagoon. Either way, with a com-
pleted pathway, the receptor comes into contact with
some of the chemical from the source. If no expo-
sure pathway is complete, there is no exposure and
subsequently no risk.

In exposure assessment, the risk assessor usu-
ally considers three different exposure routes into the
body: inhalation, ingestion, and dermal contact. With
ingestion, the risk assessor considers whether a per-
son may deliberately or inadvertently swallow some
liquid or solid, including food, beverages, or soils
(say, by hand-to-mouth movement). With inhalation,
the risk assessor considers whether a person breathes
toxic materials as gases, vapors, aerosols, or parti-
cles. With dermal contact, a risk assessor considers
whether a person may touch gases, liquids, or solids
that contain toxic materials and possibly absorb the
chemical through the skin. Of course, in some situ-
ations, all three exposure routes may convey mean-
ingful amounts of a chemical.
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Exposure pathways are often categorized as
“direct” or “indirect” pathways. Although no strict
definitions exist, a direct pathway exists when the
exposed person experiences the chemical in the same
medium as that in which it is present in the source.
In our example, the child may inadvertently ingest
contaminated soil near the abandoned lagoon and thus
experience a direct pathway. Alternately, an indirect
pathway exists when the exposed person experiences
the contaminants in a different medium, often at a
distance from the source. In a different example,
the child may drink cow’s milk containing dioxin
that traveled from an incinerator via this complicated
route: formation in the incinerator, emission into the
atmosphere as a gas, adsorption on to a particle in
the atmosphere, wet or dry deposition on to grass
in a pasture, ingestion by the cow, secretion in the
cow’s milk, and ingestion by the child drinking
milk. For some types of facilities – for example,
some incinerators – risk assessments show that these
indirect pathways, although challenging and difficult
to measure or analyze, may cause greater exposures
than do direct exposures for some chemicals. In
some areas of the US and in many other countries,
homegrown vegetables may be an important part of
the diet, and transfer of chemicals from soil, water,
or air to vegetables may be highly important. In other
cases, high exposure estimates for indirect pathways
may result from compounding many conservative
assumptions.

Estimation of Dose. When reading a risk assess-
ment or a research publication, one should always
check the definition of dose used by the authors,
because different concepts and different units of mea-
surement are common in the literature [1].

Here we distinguish three primary concepts of
dose, noting that the first is most commonly used
in risk assessments at hazardous waste sites.

1. Exposure dose is the mass of chemical that enters
a person’s body via ingestion, inhalation, or
dermal contact. No allowance is made for excre-
tion or exhalation of the chemical before absorp-
tion or metabolism. The conventional measure of
exposure dose in units of milligrams of chemical
per kilogram of body weight per day, mg/(kg d),
explicitly scales by body weight, because a
larger person needs greater exposure than does
a smaller person to have a comparable effect. A

milligram of chemical theoretically causes more
harm to a child than to an adult.

2. Absorbed dose is the mass of chemical absorbed
or metabolized by the receptor’s body. Although
measured in the same units, mg/(kg d), absorbed
dose is always smaller than exposure dose,
because some of the chemical is excreted or
exhaled from the body before absorption in the
lungs or gastrointestinal tract. On scientific merit,
absorbed dose is always preferable to exposure
dose, but it is also more difficult to measure or
estimate because the (relative) absorption of the
chemical may depend on many factors, including
the age, health, and health status of the exposed
person. With some chemicals, such as lead and
other metals found in soils, identification of the
absorbed dose may be very important in estimat-
ing risk. It may also be used in extrapolating from
one exposure route to another, such as from an
ingestion to a dermal dose.

3. The third concept of dose – biologically effec-
tive dose (BED) – is rarely used today directly
in practical risk assessments for hazardous waste
sites. BED is the mass of chemical (or sometimes
the concentration of chemical) that reaches the
target organ or tissue and causes the physiologi-
cal or genetic damage. Of central importance in
laboratory studies, BED is rarely used in prac-
tical risk assessments, because it is so difficult
to determine even the identity of the chemical
or the metabolite that causes the damage at the
molecular level in the body. Usually, laboratory
scientists study BED using radio-labeled com-
pounds or other chemical measurement and phar-
macokinetic models of absorption, metabolism,
and excretion. This type of information can be
helpful in extrapolating from animal studies to
predicted human effects, or from one exposure
situation to another. The toxicity values used in
risk assessments may be refined as a result of
such studies.

The duration of exposure clearly plays a central
role in toxicology. Sometimes a brief, relatively large
dose may cause less damage to an organism than
does a much lower total dose sustained over a longer
period of time, and sometimes the opposite is true.
While occupational hygienists, police, or fire officials
focus on exposures that occur over minutes or hours,
risk assessors usually focus on exposures that range
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in duration from a year or so to a full lifetime (usually
assumed to be 70 years). Thus, risk assessors rarely
consider acute health effects (from exposures of a few
seconds to a few weeks) and instead tend to focus on
subchronic, chronic, or lifetime exposures (here taken
to mean, respectively, a few months, a few to many
years, or a full lifetime). The exception to this is if
very high exposures over a short time are possible,
such as during site remediation. When reading an
article or report, it is important to understand what
time frames are included and what are excluded from
the analyses.

We estimate exposure dose from the measurements
or models of the exposure point concentration (e.g.
the concentration in soil in a residential yard) and
the contact rate (e.g. the amount of soil ingested
from the yard). The exposure point concentration
is the steady or time-varying concentration of the
chemical in the medium to which a person has
been exposed. In a particular situation, a single
exposed person may have several exposures to a
single compound. For example, at work, a person may
breathe air that contains a chlorinated solvent, while
at home the person may ingest water that contains
the same compound. If the contaminant comes from
a single source, the analysis is usually much easier
than if the compound comes from multiple sources.
A risk assessor may rely upon measurements or
models to estimate the exposure point concentration.
In most instances, concentration measurements are
more reliable than modeled concentrations. However,
models are frequently used if there are no cost-
effective or realistic ways to measure the exposure
point concentrations directly. Also, models are often
used to predict the fate and transport of chemicals in
air or ground water.

When using a model to estimate the exposure
point concentrations of a chemical, especially a
multimedia model, a risk assessor should remember
the words of George Box, “All models are wrong but
some are useful” [2]. Although originally penned for
another purpose, these words suggest the need for
great caution in using models to estimate exposure
point concentrations and movement of chemicals
in the environment. Before one can rely upon any
concentrations modeled by oneself or others, we urge
that one attempts to understand all of the limitations
of the model(s) and to make a reality check for the
values before proceeding.

When estimating the contact rate, a risk assessor
is really estimating ‘in the order of’ intensity, fre-
quency, and duration of exposure. A typical adult
may drink daily ∼1–3 liters of water, some at home
and some at work. Those exposures may last five,
20, or more years, depending on changes in resi-
dence, employment, or occupation. The same person
may have other exposures also via ingestion, inhala-
tion, or dermal contact. Some exposures happen inter-
mittently in time or space; for example, recreational
use of a park.

The EPA has published numerous guidance manu-
als on the selection of the exposure factors needed to
estimate contact rate [15]. For example, the Agency’s
Exposure Factors Handbook [12] lists point values
for many physiological or behavioral variables for
children and adults. The Agency’s Exposure Fac-
tors Handbook does contain many of the standard
values widely quoted and mandated in risk assess-
ments. According to the EPA, each adult is assumed
to weigh 70 kg, to ingest 2 l/d of drinking water, to
breath 20–24 m3/d of air, and to live in the same
residence for 30 years. The Agency chose some of
the values as “conservative” or upper bound values
(e.g. 2 l/d of drinking water for each adult) and chose
others as typical or average values (e.g. 70 kg as the
average weight of an adult).

While these numbers are simple to memorize and
easy to apply, it is important to realize that they
misrepresent conditions that most people experience.
People vary in many attributes. Not everyone weighs
the same amount, or has the same diet, or lives in
a home as long as 30 years. Furthermore, the actual
values for some assumptions such as soil ingestion
rates are simply unknown. Each of these exposure
factors is better represented by a range or distribution
of values – a topic discussed later.

As a practical matter, we recommend that risk
assessors first estimate the exposure dose to a person
on a day during which exposure is known to occur.
For example, if a child has exposure to a toxic
chemical when trespassing on an industrial property,
the risk assessor should first estimate the dose on
that particular day of trespass. If the behavior occurs
every day of a year, then the average daily dose on a
day of exposure equals the average daily dose during
that year of exposure. However, if the exposure does
not happen every day, then the average daily dose
for the year is less than the average daily dose on the
day of exposure. All doses need evaluation against
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an appropriate measure of toxicity. For example, an
adult could drink one Martini every night for two
weeks without serious adverse effect, but drinking
14 Martinis in one night would have dangerous health
effects, even though the average daily dose over two
weeks is the same. The risk assessor must account for
high-dose, short-term exposure potential, even during
one year or less.

As a numerical example, we estimate the average
daily dose (ADD) averaged over a lifetime of expo-
sure for an adult who (unwittingly) drank water from
a contaminated well at a vacation home. To make
the calculation, we estimate the exposure dose to this
person who weighed 70 kg, drank 2 l/d of water, and
visited the vacation home two days per week (the
weekend) for 10 weeks per year (the summer). This
person owned the house for 20 years. The well water
contained 115 µg/l of benzene (a known human car-
cinogen). We use this formula:

〈ADD〉life = Conc × IngR × CF

BW

D

7

W

52

Y

70
,

where 〈ADD〉life is the average daily dose, averaged
over a lifetime (mg/(kg d)), Conc is the concentration
in drinking water (µg/l), IngR is the ingestion rate
(l/d), CF is the conversion factor (mg/µg), BW is
the body weight (kg) D is the number of days of
exposure per week, W is the number of weeks of
exposure per year, and Y is the number of years of
exposure in a lifetime of 70 years.

Substituting the values with CF = 10−3, we find
〈ADD〉life ∼ 5.16 × 10−5 mg/(kg d).

While doses of carcinogens may be averaged over
a lifetime, doses of noncarcinogens are averaged over
a shorter time (usually the duration of exposure).
In the example above, it is appropriate to average
exposure to a noncarcinogen over 20 years.

Risk Characterization

The risk assessor combines all the information gath-
ered in the preceding three steps to estimate quanti-
tatively the health risk. In practice, this step usually
culminates (i) in a numerical estimate of noncar-
cinogenic health effects as measured by a summary
statistic called the total hazard index (HI) and also
(ii) in a numerical estimate of the carcinogenic poten-
tial as measured by a summary statistic called the
total incremental lifetime cancer risk (ILCR) (see, for
example, [13]).

For exposure to a single noncarcinogenic chemi-
cal via a single exposure pathway, the hazard index
is usually defined as the average daily dose aver-
aged over one year of exposure divided by the
reference dose for that chemical via that exposure
pathway.

HQij = 〈ADD〉year

Rf D
,

where HQij denotes the hazard quotient for that
combination of chemical and, exposure pathway (as a
ratio, it has no units); 〈ADD〉year denotes the average
daily dose averaged over one year, expressed in mg
of chemical per kg of body weight per day; and
Rf D denotes the reference dose for that chemical
and route of exposure (e.g. inhalation), also expressed
in mg of chemical per kg of body weight per
day.

In a full study, the risk assessor estimates the
hazard index (HI ) by summing the hazard quotients
over all chemicals and exposure pathways [14]:

HI =
∑

i

∑

j

HQij .

Given its definition as a ratio of positive numbers,
the HI may range from zero to infinity. If the
HI > 1, then the risk assessor may disaggregate
it into those components that act on a common
organ system or by a single molecular mechanism.
The reasoning behind this is that the body can
handle multiple chemical stresses through multiple
defenses. For example, at a mining site, people
may be exposed to lead, zinc, arsenic, manganese,
and copper. For practical purposes, at low doses,
these metals act independently on different organ
systems, and regulatory agencies often treat the risks
from these metals separately instead of adding them
together. The risk manager may become increasingly
concerned as the HI disaggregated by organ system
or molecular mechanism exceeds unity.

For exposure to a single carcinogenic chemical via
a single exposure pathway, the incremental lifetime
cancer risk is usually defined as the average daily
dose averaged over a lifetime multiplied by the cancer
slope factor [10]:

ILCRij = 〈ADD〉life × CSF,

where ILCRij denotes the incremental lifetime can-
cer risk for that combination of chemical and expo-
sure pathway (as a probability, it has no units);
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〈ADD〉life denotes the average daily dose averaged
over a full life, usually taken as 70 years, expressed
in mg of chemical per kg of body weight per day; and
CSF denotes the cancer slope factor for that chemical
and route of exposure, expressed in the inverse of (mg
of chemical per kg of body weight per day).

Continuing the numerical example from above,
the adult who drank the water contaminated with
benzene (CSF = 2.9 × 10−2 mg/(kg d)) while stay-
ing at a vacation home has an estimated ILCR ∼
1.5 × 10−6.

In a full study, the risk assessor estimates the total
incremental lifetime cancer risk by summing over all
chemicals and exposure pathways [13]:

Total ILCR =
∑

i

∑

j

ILCRij .

Before estimating the total incremental lifetime can-
cer risk, the risk assessor may estimate subtotals by
chemical source and by route of exposure to help clar-
ify which exposure pathways cause the greatest risk.
Of course, for a contaminated site, the risk assessor
must take care to add risks from exposures related to
the site.

Because the incremental lifetime cancer risk is for-
mulated and interpreted as a probability of developing
cancer at some time during a lifetime, the value (in
theory) ranges from zero to one. As a practical matter,
the probability of developing cancer is not linear at
high doses (as the CSF implies). Even very heavy
cigarette smokers are not guaranteed to develop lung
cancer. Probabilities that exceed 1 in 100 are usually
highly inaccurate.

Analysis of Variability and Uncertainty

The risk assessor names the sources, magnitudes, and
likely effects of variability and the uncertainty in
the analysis. We define variability and uncertainty as
follows:

1. Variability represents diversity or heterogene-
ity in a well characterized population of plants,
animals, or people. Fundamentally a property
of nature, variability is usually not reducible
through further measurement or study. For exam-
ple, different adults drink different volumes of
tap water each day, no matter how carefully or
how often we measure their diets.

2. Uncertainty represents partial ignorance or lack
of perfect information about poorly character-
ized phenomena or models. Fundamentally a
property of the risk analyst, uncertainty is some-
times reducible through further measurement or
study. For example, a risk assessor may not now
know how much soil each adult ingests per day,
but she or he may be able to design exper-
iments to gain additional (but still imperfect)
information.

Few risk assessments contain more than a few
paragraphs of text acknowledging the variabilities
and uncertainties in the methods and results. Some
risk assessments go further and include sensitivity
analysis. For example, a risk assessment may include
several calculations of the same result, but each
one predicated on a different set of input values
chosen within the range of the variability or the
uncertainty inherent in the analysis. A sensitivity
analysis might indicate that the risk estimate is
sensitive to the rate of fish ingestion, and may
suggest that a survey of the affected population might
tighten the upper and lower bounds on the risk
estimate.

Risk assessments may include information on
model uncertainty; in other words, the uncertainty
inherent in the mathematical formulation of the
models used in exposure assessment, dose–response
assessment, or risk characterization.

New Directions in Human Health Risk
Assessment

The practice of human health risk assessment for
exposure to chemicals in the environment is shift-
ing from a deterministic to a probabilistic paradigm.
Two features distinguish the two paradigms. In
the probabilistic paradigm we consider (i) all vari-
ables as random variables instead of point val-
ues, and (ii) quantitative analyses of variability and
uncertainty now become an integral part of risk
characterization.

Most people understand intuitively that exposure
variables such as body weight, the daily ingestion rate
of drinking water, and the number of days a person
visits a park are random variables. Similarly, most
people understand intuitively that toxicity values,
such as the Rf D or the CSF , are also random
variables (by exhibiting inter-individual variability).
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However, some people are uncomfortable with the
logical consequence from these facts; namely, if all
of the input variables in a risk assessment are random
variables, then the output variable – the estimated
incremental lifetime cancer risk – is also a random
variable. In other words, the estimated risk for a
situation is not a point value but a range of values
(see, for example, [6] and [3]).

When establishing the probability distributions
for the input variables for a risk assessment, it is
instructive to distinguish two driving forces behind
the need for probability distributions – variability
and uncertainty – as defined earlier. For example,
with body weight, the random variable captures
mostly the known and well measured inter-individual
variability in a population. As a second example, for
the number of days a person swims in a local pond,
the random variable may capture mostly the unknown
or poorly measured inter-individual behavior in a
population. So in a risk assessment, the random
variables inevitably capture different combinations of
variability and uncertainty for each different input
variable [4].

For the probabilistic risk assessment paradigm, in
any given situation, the risk assessor should focus
on choice of (i) accurate input distributions and
(ii) accurate exposure, toxicity, and risk characteri-
zation formulas. In probabilistic risk assessment, the
analyst has to select input distributions based on the
facts of the situation.

In the probabilistic paradigm, the risk manager
receives more information than in the deterministic
paradigm; namely, she or he receives distributions
for exposure and risk instead of merely point values.
While risk management in the deterministic paradigm
consists of comparison of point values for estimated
and acceptable risks as a so-called “bright line
test”, risk management in the probabilistic paradigm
consists of comparison of estimated and acceptable
distributions of risk.

To continue the numerical example from above,
we learn that the fixed values used earlier oversim-
plified the history. After discussion with the exposed
individual and with further field testing, we find
that we can better represent some of the variables
in the equations as probability distributions than
as point values, precisely because variability was
an intrinsic part of the person’s behavior and also
of the aquifer from which the person consumed
ground water. With this new information, we find

that these probability distributions better describe
the situation than do the point values that they
replace:

1. The variability in Conc (concentration) is well
described by a triangular probability distribution
with a minimum of 80, a mode of 85, and a
maximum of 120, in units of µg/l.

2. The variability in IngR (ingestion rate) is well
described by a normal or Gaussian probability
distribution with a mean of 1.60 and a standard
deviation of 0.20, in units of l/d.

3. The variability in BW (body weight) is well
described by a normal or Gaussian probability
distribution with a mean of 70 and a standard
deviation of 10 in units of kg.

4. The variability in D (days per week) is well
described by a uniform distribution with a
minimum of 1.0 and a maximum of 2.5.

5. The variability of W (weeks per year) is well
described by a uniform distribution with a mini-
mum of 7 and a maximum of 11.

All the other variables and conversions in the equa-
tion have the same point values as before.

With this new information, we use a commer-
cial software package named Crystal Ball [5] to
convolve (an operation analogous to ordinary multi-
plication) the probability distributions and the point
values in the equations for estimating 〈ADD〉life

and ILCR. The results of the convolution (as done
by 5000 repetitions of a Monte Carlo simulation
in the software package) are shown in Figure 2.
Figure 2 now more fully expresses the variability
inherent in the situation as a range of values from
∼ 5.0 × 10−7 to ∼ 2.0 × 10−6. The point estimate
calculated earlier (∼ 1.5 × 10−6) occurs well above

Figure 2 Estimated distribution of risk based on estimated
distribution of exposure
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the 95th percentile of the estimated distribution.
This graph conveys considerably more information
than did the point value calculated earlier in this
article.

Given an estimated distribution for risk, the risk
manager might use decision rules along these lines
to render an opinion on the acceptability of the
estimated risk: (i) Is the median of the risk distri-
bution less than 1 in a million? (ii) Is the average
of the distribution less than 1 in 100 000? (iii) Is the
95th percentile of the risk distribution less than 1
in 10 000? If the answer to all three questions is
“yes”, then the risk manager might decide that the
risk is acceptable. In other words, the risk manager
may only look at selected percentiles or summary
statistics when deciding if a risk is acceptable for a
population.

The new paradigm does require more effort to
specify the input variables and more computation
to estimate the distribution of the output variable,
namely risk. The probabilistic paradigm still contains
unquantified uncertainty. Entire exposure pathways
may have been overlooked. Laboratory analyses may
have been biased. Statistical data analysis may have
been inappropriate. Conservative assumptions may
have been incorporated in the risk assessment unno-
ticed. The risk paradigm itself may over- or under-
estimate risk due to the averaging of exposure, the
interactions of chemicals, or other reasons. Overall,
the uncertainties for some exposure variables such
as soil ingestion rates or toxicity values may have
been underestimated in the past due to a focus on
specific studies without consideration of fundamen-
tal biological principles or other information. One
should acknowledge these and other uncertainties to
allow for proper interpretation of the distribution of
risk. Even considering these remaining uncertainties,
the output distribution conveys much more fully the
full range and probabilities of plausible health risks –
and provides enormous benefit over the simple point
estimates that result from a deterministic calculation.

The probabilistic paradigm builds on the fun-
damental definition of risk as the probability of
adverse outcome. It reestablishes the now blurred
lines between risk management and risk assessment.
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Risk Assessment in
Clinical Decision Making

Risk has been defined technically as “the probability
that a particular adverse event occurs during a stated
period of time, or results from a particular challenge”
[5, 21]. In popular usage, the term is usually broader,
and can refer simply to exposures that may cause
or lead to adverse events, but without reference to
probability. For example, the Oxford English Dictio-
nary gives as its primary definition: “hazard, danger;
exposure to mischance or peril”.

In this article, we will use the technical definition
of risk and will focus on risks to patients in the clin-
ical setting, particularly of events incurring physical
harm due to therapeutic interventions. There are also
possible risks to caregivers, e.g. loss of professional
reputation or being sued following a poor decision –
or even to a health care system or insurance company
responsible for paying the costs of decisions made by
caregivers and their patients. Similar general princi-
ples can be applied to other types of risk, but the
issues discussed in this article will relate directly to
clinicians and patients, and to the statisticians who
provide them with the estimates of risk.

Factors that Modulate Risk Assessment
and Clinical Decisions

Clinical decisions are made because it is believed
that the actions that follow them will do more good
than harm. Risk assessment, therefore, is one impor-
tant component of such decisions. The assessment of
risk (like clinical decisions in general) can be modu-
lated by the circumstances or context in which they
are made, the values and preferences of the deci-
sion makers, and the information available [7, 12].
While some values are already held by each of the
decision makers, their ability to assess risk efficiently
in different circumstances (in conjunction with their
values) depends on whether they are aware of the rel-
evant information needed to make the decisions; they
have access to such information; the information is
available to them in a manner that is intellectually
accessible, unbiased and appealing; they are able to
interpret the information; and they have the skills to
incorporate the information into their decisions. Infor-
mation to guide clinical decisions can come from

multiple sources, some of which are more reliable
than others (see Utility in Health Studies; Decision
Analysis in Diagnosis and Treatment Choice).

Ultimately, clinical decisions should take account
of both risks and benefits, and should consider alter-
native actions (including doing nothing). A fully
informed decision, therefore, requires knowledge of
both the benefits and the risks of the available options.
While the beneficial effects of an intervention may
be known from randomized controlled trials (RCTs)
(see Clinical Trials, Overview), however, frequently
RCTs are not appropriate or have paid less attention
to the harm that may result from the same interven-
tion. For example, RCTs (usually of short duration)
may be unable to capture all the relevant informa-
tion on risks associated with drugs that may have
long-term side-effects. On those occasions, decision
makers are forced to look at other types of study (such
as cohort or case–control studies) or other sources
of information (usually less valid, such as anecdotes
or case series) to guide their decisions.

Components of Risk Assessment

Several aspects make up risk assessment. These
aspects include risk estimation, risk communication,
risk perception, and risk acceptance.

Risk Estimation

Risk estimation involves the use of statistical tech-
niques to obtain a numerical value of risk. Since this
is dealt with in detail elsewhere, we will give here
only a brief overview.

Several measures of risk are available: absolute
risk (and absolute risk difference); relative risk; and
the number needed to treat (NNT) or the num-
ber of treatment-years to produce a single adverse
outcome. The value of these measures to decision
makers depends on their precision, validity (unbi-
asedness), and reliability. A precise estimate may
be difficult to achieve if the study generating the
measure has small sample size. This is particularly
relevant when evaluating interventions with rare out-
comes. For example, Miller et al. [15] estimated the
risk of neurologic sequelae in previously normal chil-
dren persisting 1 year after pertussis vaccination to be
one in 310 000. In such circumstances, the confidence
interval might be used to estimate an upper bound on
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the risk involved. (In this case, the upper 95% limit
was one in 54 000.) (See Pharmacoepidemiology,
Adverse and Beneficial Effects.)

In addition, the validity of the estimate may be
threatened if the design of the study that has gener-
ated the estimates is biased. An unbiased estimate
may be difficult to achieve, particularly if the out-
come is recorded using subjective measures, the inter-
vention cannot be studied under double-blind condi-
tions (see Blinding or Masking) or the allocation
to study groups is neither concealed nor randomized
[1, 2, 22] (see Randomization). Reliability, in turn,
can be affected by limitations in the definition, attri-
bution, recording, identification, classification, report-
ing, measurement, and analysis of information related
to adverse effects of treatments [3, 8, 11]. On occa-
sions, a further complication may be introduced by
the need to obtain an exposure–response relationship.
Different formulations of a given drug, for example,
may contain different amounts of the drug, leading to
different risk estimates. (See Dose–Response Models
in Risk Analysis; Dose-response in Pharmacoepi-
demiology.)

Risk Communication

Even when the risk estimates are accurate (precise
and unbiased), it would be unrealistic to expect
that such estimates will lead automatically to risk
assessment. It has been shown, for instance, that
the type of risk estimate presented to decision mak-
ers (i.e. absolute event data versus relative risk
reductions) can affect their assessments of risk [16].
The way in which risk estimates are described (or
“framed”) can also influence the reaction of those
given the information. It has been shown repeat-
edly, for instance, that if the information is worded
in a way that emphasizes the negative rather than
the positive aspects of the same outcome (e.g. when
describing the effects of an anticancer drug in terms
of deaths rather than survivors), decision makers may
alter their perception of risk and their preferences [18,
23].

In addition to the selection of the outcomes and
the way in which the information is framed, the for-
mat in which the risk estimates are shown to decision
makers can also affect their reactions. Graphical
displays, for instance, are used frequently to repre-
sent risk with the hope that they will facilitate data

interpretation. There is little empirical evidence, how-
ever, that could be used to guide the selection of
graphical displays to communicate risk information.
Some of the existing evidence suggests that patients
and clinicians may interpret information from the
same displays differently. When results of clinical
trials are presented as survival curves, for instance,
patients appear to focus more on the endpoints, while
clinicians pay more attention to intermediate points
[14]. Different shading and plotting symbols can also
have strong effects on the visual perception of data
[24]. More research is required to assess the impact
of different visual displays on decision makers. A
recent review, for instance, identified 13 methods
to display the results of meta-analyses graphically,
but did not find a single study on the effects of
such displays on decisions [9]. Other aspects of risk
communication also require more research. Little is
known, for instance, on the effect of risk percep-
tion of different media to communicate risk (e.g.
face-to-face contact, paper, videotapes, audiotapes,
CD-ROM, Internet).

In summary, there appears to be no simple best
method of presenting information to decision makers.
One approach is to provide data to decision makers
in several different forms, trying to explain any dif-
ferences that may arise in the interpretation of the
information across the methods.

Risk Perception

Risk estimation and communication play an impor-
tant role in the way in which risk is perceived.
However, they are not the only factors that determine
risk perception. Even if decision makers are presented
with accurate estimates in multiple forms, their per-
ception of risk could be affected by factors such as:
the probability value associated with the particular
events and the nonlinearity of decision weights; their
prior beliefs and experience; their ability to inter-
pret probabilistic information; their intuitive rules of
thumb (heuristics); and the suspicion of vested inter-
est in those generating risk estimates (risks evaluated
by those who might have a vested interest in the
results may be viewed as understated compared with
risks evaluated by independent sources). We consider
each of these in turn.

Probability Value. It has been shown that patients
and healthy volunteers can be strongly influenced



Risk Assessment in Clinical Decision Making 3

by different levels of probability of adverse events
[18]. When the probability of survival given to can-
cer patients in that study dropped below 0.5, patients
adopted a “dying mode” in which quality of life
became more salient than quantity of life in decision
making [18]. In addition, it has been suggested that
decision makers weight different levels of probability
in a nonlinear fashion. Moderate and high probabili-
ties, for instance, tend to be underweighted relative to
outcomes that are certain, low probabilities tend to be
overweighted, and very low probabilities are either
severely overweighted or neglected altogether [10].
This has important implications for risk acceptance
(see below).

Prior Beliefs and Experience. Prior beliefs of
decision makers can also affect their perception of
risk. Clinical decision makers, like “lay” people,
tend to form opinions rather quickly, usually in
the absence of strong supporting evidence. These
opinions, once formed, are slow to change in response
to new evidence. New evidence is usually handled
in a very asymmetric way by decision makers: sup-
portive evidence tends to be considered more con-
vincing than opposing evidence, regardless of the
rigor with which it has been gathered [17]. One
important factor that can influence dramatically the
prior beliefs of decision makers is a vivid experi-
ence [17]. A tragic outcome with the last patient
can change the way in which a clinician will per-
ceive the risk that the same outcome will occur in
the next patient. Similarly, a patient’s perception
of risk may be influenced more by the experience
of a close friend than by evidence collected from
thousands of patients in well-controlled clinical tri-
als, leading the patient to reject such evidence –
especially if it contradicts the patient’s preconceived
theories or challenges his/her hopes [20]. Alterna-
tively, if an intervention has been used by clinicians
or patients for a long time, the hazards associated
with a “new” or unfamiliar intervention may be per-
ceived as worse than those which are more familiar
to them [5, 21].

Ability to Interpret Probabilistic Information.
The ability of decision makers to interpret
probabilistic information can also influence their
perception of risk. In part because of their
exaggerated reliance on vivid experiences or
anecdotes, but also because of their lack of formal

training in statistics, patients (and other lay members
of the public) have a limited ability to interpret
probabilistic information or any other type of
scientific evidence that could help them assess risk.
This “lack of training” limits their ability to build
hypotheses, to assess covariation and causation and
to predict events [17]. There is little research in
relation to the understanding of statistical principles
by clinicians. In a recent study, however, doctors who
said that they were confident about their ability to
evaluate risk of coronary heart disease consistently
overestimated such risks in individual patients as well
as the absolute benefits of modification of coronary
risk factors [6]. In another study, the same tendency
of physicians to overestimate risk was identified [19].
Furthermore, the investigators taught the physicians
to make better judgments of disease probability, but
such an improvement in risk assessment did not result
in changes in their treatment decisions [19].

Heuristics. Even if clinicians and patients were
equipped with the skills required to evaluate
probabilistic information on risks, there are few
choices in the clinical setting that could be
informed fully with evidence generated in RCTs or
observational studies. Despite this lack of evidence,
most clinicians do make decisions. The way in
which they do so in the absence of evidence
has been explained by the use of intuitive ad
hoc rules of thumb, also called “heuristics”, to
guide their choices [13]. Patients also use heuristics,
particularly to reduce complex inferential tasks to
simple judgmental operations during the evaluation
of event frequency, probability and causality [17].
Many of these strategies are poorly understood and
potentially problematic. There have been recent calls
for the systematic study of the heuristics of medicine,
hoping that the more uniform use of explicit, refined
and better heuristics could lead to more efficient
medical care [13]. Similar efforts should be made to
understand and refine patient heuristics.

Risk Acceptance

Whether a particular risk is accepted or not depends,
at least in part, on each of the factors described so
far. In addition, there are other elements that could
also affect risk acceptance:

Implications of the Decision. A risk may be more
acceptable when the adverse event, if it occurs, has
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a minor impact on the person making the decision
than if it has a major impact. For instance, in
cases of mental depression, the risk of experiencing
the relatively minor adverse effects associated with
tricyclic antidepressants or lithium may be more
acceptable than the risks of suicide if the depressive
disorder is left untreated.

Type of Outcome. An increase in resource utiliza-
tion might be regarded as more acceptable to a patient
with cancer, particularly if the costs of care are cov-
ered by an insurance company, than a reduction in
the likelihood of survival.

Timing Between Decision and Outcome. Surgical
mortality, an immediate hazard, may be considered
worse than later death caused by the toxic effects of
a drug, a deferred hazard [5].

Circumstances. Risks imposed for the benefit of
others may be less acceptable than risks undertaken
for self-protection. For example, compulsory whoop-
ing cough vaccinations may be imposed on older
children primarily for the benefit of younger age
groups [5, 20, 21].

Role. A hypothetical risk is likely to be accepted
more easily by a healthy volunteer than a real risk by
a patient [4].

Formal Decision Making Procedures

There exist a number of procedures for helping a
patient reach a decision which attempt to incorpo-
rate the values and preferences of the patient. These
include: the standard gamble, time tradeoff, utili-
ties, and willingness to pay.

Conclusion

Biostatistics is primarily concerned with providing
accurate estimates of risk in clinical situations. What
we have shown in this article is that decision mak-
ing following the estimation of risk depends on more
than just the risks (and benefits) involved. Risk com-
munication, perception and acceptance have subtle
characteristics that play important roles. Statisticians,
health care practitioners and others must be aware of

these to help patients reach decisions in the clinical
setting.
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Risk Assessment

The various usages of the term risk all concern the
possible occurrence of events or situations, called
hazards, the consequences of which are uncertain, but
may be harmful. Informal usages of risk may indicate
the nature, or merely the existence, of the possible
danger (“There is a risk of post-operative infection”;
“I never take risks”). In technical discussions the term
is used quantitatively, but even there the usage is not
standard.

There are two principal, and mutually incompati-
ble, interpretations:

1. The probability, or chance, of an adverse event.
Clearly, this must be put in context: it should
refer to a defined set of circumstances, and, for
hazards continuing over time, the rate per time
unit, or for a unit of exposure, is normally used.

2. A combination of the chance of an adverse effect
and its severity. There are obvious difficulties
with this type of definition: How is severity
measured, and how are the two components com-
bined?

The extensive literature on risk covers many
aspects, which are commonly collectively termed risk
assessment or risk analysis. The first of these terms
is sometimes used more restrictively, to include the
concepts of risk estimation, risk evaluation, and risk
perception, as defined below. The study of risk brings
together engineers, behavioral and social scientists,
statisticians, and others, and to some extent usage
of terms varies amongst these groups. For exam-
ple, engineers and other technologists tend to favor
approach 2, statisticians and biologists tend to favor
1, and behavioral and social scientists tend often to
use a mutifaceted approach. Reference [6] contains
chapters by groups of writers from different back-
grounds, and has extensive bibliographies. See also
[1] for a popular exposition.

Risk theory has a specialized meaning, being con-
cerned with the financial integrity of an insurance
company in the light of random fluctuations in claims.
It forms an application of the theory of stochastic
processes [7].

Statisticians will note that usage 2 above is closely
related to the concept of a risk function in deci-
sion theory. There, uncertain events, the distribution
of which depends on an unknown scenario, have

consequences measured by a loss function; a par-
ticular decision function, defining the action to be
taken when the event is observed, has an aver-
age loss for any given scenario; and the risk (or
integrated risk ) is the mean of the average loss
when taken over the prior distribution of the sce-
narios. Application of this approach is hampered
by the difficulty of determining losses in financial
terms, and of defining the various probability distri-
butions.

Attention has been focused on various interrelated
aspects of risk, including the following:

1. Risk estimation: the estimation of the probabili-
ties of the adverse outcomes, and of the nature
and magnitude of their consequences.

2. Risk evaluation: determination of the significance
of the hazards for individuals and communities.
This depends importantly on the next aspect.

3. Risk perception: the extent to which individuals
assess risks and the severity of possible out-
comes, assessments that may differ from those
made by “experts”.

4. Risk management: the measures taken by individ-
uals and societies to prevent the adverse effects
of hazards and to ameliorate their consequences.

We deal briefly with these topics in turn. The arti-
cles in [6], and their bibliographies, provide a much
broader picture. Many of these topics are discussed
fully elsewhere, in relation to risk assessment for
environmental chemicals (also, see Risk Assess-
ment in Clinical Decision Making).

Health Hazards

There are several clearly distinct categories of haz-
ards that give rise to health risks.

First, there are hazards that arise from the physical
and biological environment. Many of the hazards in
the physical environment are man-made. It is our
own choice, collectively, to pollute the atmosphere
with emissions from domestic fires, power stations,
or burning oil wells, and to treat water supplies
with disrespect. These are examples of damage to
the environment, and damage to ourselves from the
environment. The biological environment presents a
hazard to us mainly in the form of microorganisms
causing infectious disease.
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Other hazards arise from personal, rather than
societal, choice. These include habits with adverse
consequences, such as the consumption of tobacco,
alcohol, and narcotic drugs. The category includes
also indulgence in sport and travel; and our often
unwise dietary choices. We tend to shrug off the
hazards that we ourselves incur, by understating the
risks or overstating the benefits, while deprecating the
folly of others.

Finally, there are hazards that cannot be prevented
by personal decisions. They follow inexorably from
our innate or ingrained characteristics – our genetic
makeup or our experiences in early life. In some
instances, medical science can reduce the risk to
which susceptible individuals are subject: in others,
the burden has to be endured.

Risk Estimation

The risks from many prominent health hazards can be
estimated reliably from objective statistical informa-
tion. In other instances, in which numeric information
is lacking, risks may be guessed by informed experts
(as in the setting of insurance premiums for nonstan-
dard risks; see Actuarial Methods). There are, for
instance, no reliable data on the frequency of explo-
sions at nuclear power installations, and estimates
of risk would have to rely on expert judgments, or
on careful estimation of risks of failure at individual
links in the chain of connected events.

Even when statistical information is available, an
individual may argue that his or her risk is not prop-
erly represented by the population estimate. There is
a long-standing debate as to whether medical statis-
tical information necessarily applies to an individual
in the population concerned; in the nineteenth cen-
tury, for instance, opposite views were held by P.C.A.
Louis and by C. Bernard. Clearly, if the individual
has known characteristics that can be shown to affect
the risk, they should be taken into account. If no such
characteristics can be identified, it seems reasonable
to apply the population estimate to the individual. The
point is important, in emphasizing that risk estimation
is far from being an objective matter.

Statistical information on the risk of mortality
from different diseases is widely available, for indi-
viduals of each sex at different ages, in different
occupational (see Occupational Epidemiology) and
social groups and for different countries (see Mor-
tality, International Comparisons). Information on

the risks of morbidity is less comprehensive. Such
information, based on data for large populations, is
of some value for the estimation of risks for random
members of the populations, but gives little or no
indication of risks for individuals exposed to certain
specified hazards; such as environmental pollution
(see Environmental Epidemiology), social habits,
or the onset of disease.

For questions of this type, special investigations
are required. The whole range of types of epidemi-
ologic study is available, including case–control
studies, cohort studies, and case–cohort studies.
The risks of adverse progression of disease may be
estimated by a study of prognosis. See [3] for an
example of various investigatory methods employed
in a study of the apparent excess risks of childhood
leukemia (see Leukemia Clusters) due to contami-
nation of water supplies in a town.

In many “high-profile” public health problems, it
is not possible to mount epidemiologic studies to
give unambiguous estimates of risk. The mechanism
giving rise to the risk may not be fully understood, or
the dangers may arise from a complex chain, the risks
for which are difficult to measure. In such instances,
the risks may be estimable only within very broad
bands. For instance, in the crisis in the British beef
industry, due to the outbreak of bovine spongiform
encephalopathy (BSE), leading to an apparent risk of
Creutzfeldt–Jakob disease (CJD), it was very difficult
to estimate precisely the risk of CJD to a person
eating beef. Since the cessation of use of suspect
cattle feed, and the culling of relevant herds, it is
probably reasonable to say that the risk is “extremely
low”, and perhaps to put some upper bound on it, but
such estimates would rely on somewhat shaky data,
and on the personal judgments of experts.

Another example is that of prolonged exposure
to low levels of possibly carcinogenic chemicals.
Carcinogenicity experiments, with the administration
of high doses to animals (see Animal Screening
Systems; Serial-sacrifice Experiments), may give
quite precise estimates of a median effective dose.
However, risk estimation for low-level exposure to
humans involves extrapolation to low doses (using
models that are not necessarily correct [5]), and from
the animal to the human species (see Dose–Response
Models in Risk Analysis). The result of such extrap-
olation may well be reassuring, but it is unlikely to
be quantitatively precise.



Risk Assessment 3

Risk Evaluation and Perception

The evaluation of risk, either by individuals or by
societies, should in principle involve a balancing of
the costs and benefits: the potential occurrence of
adverse effects, arising from exposure to a hazard,
should be balanced against the potential benefits in
physical or psychological rewards. Cost–benefit anal-
ysis (see Health Economics) is, however, a some-
what idealized concept. Apart from the difficulties
of risk estimation, outlined above, both the poten-
tially adverse effects and the supposed benefits may
be difficult to evaluate on commensurate scales.

The benefits may in part be assessable as direct
economic gains to a community. They may also
include amenities, such as palatable food or attractive
cosmetics, the value of which may be estimable by
enquiry as to the prices that people are willing to pay
for them.

The costs may be even more elusive. They include
direct financial losses; for instance, in productivity.
They include also disbenefits of pain and other symp-
toms. One might enquire how much people would
be willing to pay to avoid such discomforts, but this
would be a difficult exercise for people who had never
experienced the symptoms in question.

Then, there is the crucial question of the value
of human life. There are various approaches to this
task, such as: (i) calculation of lost earning capac-
ity; (ii) implicit evaluation based on societal practice,
such as compensation awards or expenditure on spe-
cific safety measures; or (iii) the size of insurance
premiums.

None of these possible approaches is likely to be
simple, but it seems important to encourage further
discussion and research, especially for the evaluation
of risks for which community decisions, such as the
imposition of government regulations, are required.

Evaluation by individuals of risks incurred by
possible individual choices, again in principle
involves the balancing of costs and benefits, but these
may be very subjective and even more difficult to
quantify than those involved in community action. In
a sense, the decisions actually taken by individuals,
sometimes without appreciable introspection, carry
implications about the values attached by those
individuals to the various elements in the equation.
From this point of view, the relevant estimates
of risk may be the subjective perceptions of the
individuals themselves, rather than more “objective”

estimates provided by experts. These two forms
of estimate may be quite disparate. We tend to
be more concerned about infrequent but dramatic
events, such as major air crashes, than about
frequent but less dramatic series of events such
as the regular toll of road accident deaths. In one
study [4], people thought that accidents caused as
many deaths as disease, whereas in fact disease
causes 15 times as many. The incidences of death
from spectacular causes such as murder, botulism,
tornadoes, and floods were all overestimated, whereas
those for cancer, stroke, and heart disease were
underestimated.

The importance of the “benefit” side of the equa-
tion is illustrated by the varying acceptability of
activities with comparable risks. People are generally
prepared to accept much higher risks of death from
activities in which they participate voluntarily, such
as sports, than from those encountered involuntarily.

Risk Management

This term covers the decisions, taken by individuals
and communities, to accept or forego hazardous situ-
ations after assessment of risks, or to reduce exposure
to the hazards and/or their adverse consequences.

As noted above, decisions by individuals are
highly personal, and to a detached observer they may
often seem irrational. A rational study of teenage
smoking may conclude that the hazardous practice
should be avoided, but its conclusions may carry lit-
tle weight with a young person who is ill-informed
about risks, and whose “benefits” include the plea-
sures of conformity with peer practice. Nevertheless,
in such situations, improved information about risks
and adverse consequences is highly desirable, and
the provision of risk information forms one of the
major roles of government and other public bodies
concerned with risks.

Institutions with a role in risk management include
international, national, and regional governments, and
a variety of public and private organizations. Apart
from the provision of information, governments may
issue regulations to reduce or control the use of haz-
ardous substances. Their decisions may be guided by
advisory committees, perhaps internationally based.
For instance, in the assessment of evidence of car-
cinogenicity of chemicals, authoritative advice is pro-
vided by the program of the International Agency
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for Research on Cancer (IARC) Monographs on the
Evaluation of the Carcinogenic Risk of Chemicals to
Humans [2].

Institutions concerned with mitigation of the
adverse effects of hazards include the judiciary
(through compensation awarded in the law courts),
insurance companies, and a variety of community
bodies concerned with social welfare.

Conclusions

The interdisciplinary nature of all the aspects of risk
assessment discussed here has encouraged lively dis-
cussion and research. Biostatistics forms only one
component in the mixture, but it is an essential ingre-
dient. Publications are spread widely in the technical
press, but special note should be taken of the journal
Risk Analysis.
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Risk Factor

A factor whose presence is associated with an
increase in the probability of developing a disease is
called a risk factor for that disease. It is a generic term
widely used in epidemiology (see Epidemiology,
Overview) that can stand for genetic traits, sociode-
mographic characteristics as well as occupational,
environmental, or any other types of exposures. This
definition implies that a risk factor for a given dis-
ease must be present before disease occurrence. By
analogy to risk factors that refer to the development
of a disease, prognostic factors are defined as fac-
tors whose presence is associated with an increase in
the probability of patients developing a certain out-
come (e.g. recurrence or death) during the course of
disease (see Clinical Epidemiology; Prognosis). An
association between a risk factor and a disease can

be quantified by various measures such as the rela-
tive risk, hazard ratio, odds ratio, or risk difference.
Risk factors are usually identified from observational
epidemiologic studies so that the association between
a risk factor and a disease is not necessarily of a
causal nature (see Causation; Hill’s Criteria for
Causality), which is why Miettinen [1] recommended
the use of the term risk indicator rather than risk
factor. In contrast with risk factors, factors whose
presence is associated with a decrease in the prob-
ability of developing a disease are usually called
protective factors.
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Risk Set

In survival analysis, one of the most frequently
used methods is the Kaplan–Meier estimator for
nonparametric estimation of the survival distribution
function S(t) based on right-censored data. Thus,
let X1, . . . , Xn be independent identically distributed
lifetimes with S(t) = Pr(Xi ≥ t) and assume that
(X̃i, Di), i = 1, . . . , n, are observed. Here, X̃i = Xi

and Di = 1 if individual i is observed to die and X̃i =
Ui , a right-censoring time, and Di = 0 if the lifetime
of individual i is censored at time Ui , in which case
the only information on Xi is that Xi > Ui (“indepen-
dent censoring”). Then the Kaplan–Meier estimator
is given by

Ŝ(t) =
∏

X̃i≤t

(
1 − Di

r(X̃i)

)
, (1)

where r(s) = #R(s) and

R(s) = {i : X̃i ≥ s} (2)

is the risk set at time s; that is, the set of individuals
alive and uncensored just before time s. Thus, the
concept of a risk set is fundamental in nonparametric
survival analysis.

Also, when the survival times are subject to left-
truncation (delayed entry) – that is, individual i is
followed, not necessarily from time 0, but maybe
from a later entry time Vi ≥ 0 – the survival distribu-
tion function may be estimated by (1) by redefining
the risk set to be the set

R(s) = {i : Vi < s ≤ X̃i} (3)

of individuals alive and uncensored just before time
s and with entry times before time s.

The Nelson–Aalen estimator

Â(t) =
∑

X̃i≤t

Di

r(X̃i)
, (4)

of the cumulative hazard function A(t) = − log S(t)

also involves the risk set in an explicit way, and
since most linear nonparametric test statistics for
comparison of survival distributions are based on
sums of weighted differences of the Nelson–Aalen
estimators, the risk sets, again, play a fundamental
role.

The Cox regression model states that the hazard
function for the conditional distribution of Xi given
covariates Zi is given by

αi(t |Zi ) = α0(t) exp(β ′Zi ),

and the unknown regression coefficients β are
estimated by maximizing the Cox partial likeli-
hood

L(β) =
n∏

i=1




exp(β ′Zi )∑

j∈R(X̃i )

exp(β ′Zj )





Di

. (5)

Thus, at every failure time, the risk score exp(β ′Zi )

for the individual failing at that time is compared with
the sum of the corresponding risk scores exp(β ′Zj )

for all individuals, j , in the risk set (2) or (3) at
that time.

If the sample size, n, is large and, in particular, if
the Cox regression includes time-dependent covari-
ates, then the calculation of the sum over the risk set
in (5) may be time consuming. In such cases, sam-
pling from the risk set may be advantageous. This
amounts to replacing R(·) in (5) by a sampled sub-
set, say R̃(·), of the risk set. This kind of sampling is
frequently used in epidemiology in so-called nested
case–control designs.

In multistate survival models based on, for
example, nonhomogeneous Markov processes, the
Nelson–Aalen estimator (4) carries over in a rather
straightforward manner. Thus, for the intensity
of transition αhj (t) from state h to state j one
may estimate the integral Ahj (t) = ∫ t

0 αhj (s) ds by
the sum

Âhj (t) =
∑

Xhji≤t

Dhji

rh(Xhji)

over all the observed h → j transition times, Xhji ≤
t . Here, Dhji is the number of such transitions
at Xhji and rh(s) is the number of individuals at
risk for making an h → j transition just before
time s; that is, the number of individuals in state
h at time s− or, stated slightly differently, the
size of the type h risk set at time s−. So, also
in multistate models, the concept of a risk set is
important.

PER KRAGH ANDERSEN



Risk

Risk is the probability that an individual without
disease will develop disease over a defined age or
time interval. If risk is estimated as the proportion of
members of a fixed cohort who develop disease in
a defined time period, it corresponds to an average
individual-specific risk (see Cumulative Incidence).
This proportion is an estimate of a crude risk or
absolute risk because it is reduced by the chance that
subjects will die of other diseases before they develop
the disease of interest (see Competing Risks).

Often the risk for the interval [0, t) is calcu-
lated from 1 − exp(− ∫ t

0 λ(u) du), where λ(u) is the
cause-specific hazard rate. For small hazard rates,
this expression is approximately equal to the cumu-
lative hazard,

∫ t

0 λ(u) du. These expressions cor-
respond to pure probabilities of disease and esti-
mate the probability of developing disease in the
absence of other causes of death under the assump-
tion that the various causes of death act indepen-
dently.

MITCHELL H. GAIL



Robust Methods in Time
Series Analysis

In general, a statistical procedure might be said to be
robust if it is not overly sensitive to departures from
any assumptions upon which it depends. Robustness
was introduced by Box [4] when he considered the
properties of tests of equality of variances. Robust
estimators, usually of location and scale parameters,
are not sensitive to the presence of outliers. The three
main kinds of robust estimator are those defined as
L-estimators (linear functions of order statistics), R-
estimators (based on tests involving ranks), and M-
estimators (maximization of some function of the data
and parameter). There exists an extensive literature
concerned with the robust estimation of location and
scale parameters in statistical analysis [2, 15, 17,
pp. 157–162].

Associated with the notion of robustness, partic-
ularly in the context of time series, is the procedure
of smoothing – where the purpose is to “remove
or suppress”, in some way, the possible effects of
contamination or spurious information. This occurs
commonly with biomedical time series data. Tiao &
Xu [30] bring these ideas together and extend meth-
ods first introduced by Cox [12], to produce robust
exponential smoothing in multistep forecasts with
autoregressive integrated moving average (ARIMA)
models (see ARMA and ARIMA Models).

Many biostatistical investigations use the class of
Gaussian ARIMA models to analyze time series data.
If {Yt } is a time series, then the standard ARIMA (p,
d, q) model is written

Φ(B)∇dYt = Θ(B)at , (1)

where B is the backshift operator B(Yt ) = Yt−1

(see Backward and Forward Shift Operators);
∇ ≡ 1 − B, the differencing operator; Φ(B) ≡ (1 −
φ1B − · · · − φpBp), Θ ≡ (θ0 − θ1B − · · · − θqB

q)

the autoregressive and moving average polynomials
in B, respectively; {at } is an assumed white-
noise process (see Noise and White Noise); and,
φ1, . . . , φp and θ0, θ1, . . . , θq , unknown parameters
to be estimated. The specification and estimation of
p, d, and q also present robustness considerations.

To fit the model, the investigator carries out a
sequence of steps: tentatively specifying a model;

using maximum likelihood to estimate the parame-
ters; and then, performing various diagnostic tests
to check the adequacy of the model. If the model
is found to be deficient in some respect, than the
sequence is repeated.

This general procedure is an important exam-
ple where robustification [17, pp. 176–181] is often
necessary to remove the unwarranted effects of con-
tamination or the breakdown of assumptions, or both.
A detailed review and summary of the many different
aspects and considerations of robust time series tech-
niques (up to 1987) is provided by Stockinger &
Dutter [27].

Time Series Outliers

Outliers in time series are usually classified as either
innovation or additive [14]. For a variety of reasons,
gross values can occur quite “naturally” in sets of
biological and medical observations – for example,
in the continuous monitoring of heart-rate, sudden
and unusual measurements can often be observed,
attributable to well-known characteristics of the body
system. In fact, it is the nature of many feed-back
mechanisms in the human body to allow and adjust
for such events.

In general, there are two main ways of handling
time series outliers. Detection followed by removal,
or robust modeling and estimation. Details of the
detection approach can be found in [8], in which
outliers are identified on a one-by-one basis and the
contaminated series adjusted accordingly.

Any algorithm used to estimate the parameters of
a model must be able to protect these estimates from
outliers. Because the estimation problem is nonlinear,
these robust algorithms are almost always iterative.
Sejling et al. [26] discuss various such algorithms,
and, building upon previous work, introduce a general
method for obtaining recursive robust parameter esti-
mates in autoregressive (AR) models. Two algorithms
derived from this model are compared with the use
of a recursive least squares estimation algorithm, in
which the outliers are treated as missing. McDougall
[22] extends these ideas and produces methods appli-
cable to general ARIMA models, where both kinds
of outliers, innovation and additive, might be present.

With the knowledge that any time series {Yt ; t =
0, . . . , N − 1} can be represented as the sum of N

sines and cosines at the Fourier frequencies {ωk =
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2πk/N ; k = 0, . . . , N/2}, an approach to the analysis
of real data is to produce initially a robust form
of the discrete Fourier transform (see Fast Fourier
Transform (FFT)). The coefficients can then be
inverse Fourier transformed to produce a filter for
the data. The filtered time series data can then
be used for standard analysis. Tatum & Hurvich
[29] give details of a filter that can handle large
amounts of contamination and outliers. Details of
other non-Gaussian filters that deal with both types
of outlier can be found in [1, 16], and [9].

Other methods for robust filtering and smoothing
include the use of the robust Kalman filter [10], M

estimate smoothers, and robustified splines [27].

Robust Bayesian Estimation

Bayesian ideas and methods have been used by
a number of authors to obtain time series models
robust to outliers. Le et al. [18] use the ratio of
posterior to prior odds, known as Bayes factors, to
compare autoregressive models on a pairwise basis.
This comparison is made, in the presence of outliers,
using a robust likelihood procedure following the
techniques of Martin [24]; see also [28].

Neural Networks

The application of an artificial neural network to
nonlinear systems has been a major area of research
in recent years. Wu [32] gives details of an economic
example, where the performances of ARIMA models
and neural networks are compared in terms of their
robustness. Connor et al. [11] developed a robust
learning algorithm, applied it to recurrent neural
networks in order to filter outliers from time series
data, and assessed the sensitivity of the procedure.

Statistical Tests

A well-known statistic for testing the adequacy of a
time series model is the Box–Pierce [5] or so-called
portmanteau statistic. Li [19], Chan [7], and Wong &
Li [31] have produced robust versions of this statistic,
and examined their performance in the presence of
outliers. Li & Hui [20] have produced a robust
multivariate version of the portmanteau statistic for
use in multiple time series modeling. Large-sample

properties of robust M-estimates used in the testing of
hypotheses in autoregressive models can be found, for
example, in [3]. Li & Hui [21] have also developed
robust tests for lagged relations between two time
series.

Examples

A discussion of many of the issues, including that of
robustness, associated with autoregressive and spec-
tral analysis models in heart rate variability studies
is given in [6]. The robust smoothing and filtering of
psychophysiological time series data has been con-
sidered by Schmitz et al. [25]. Details of methods,
originally developed for engineering applications but
applicable to many problems in the medical and life
sciences, to identify and model time-varying biolog-
ical systems can be found in [23]. The authors show,
in simulation studies, that these methods are robust
to the presence of general noise in the system, and
apply the techniques to a study of ankle stiffness.

An investigator must not lose sight of the fact that
what constitutes an outlier, contamination, or spuri-
ous information is often a matter of judgment and
degree. Understanding of the system (e.g. biological
or medical) that has given rise to the data is impor-
tant in all aspects of the modeling of biostatistical
time series data [13].
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Robust Regression

The term robust regression refers to a collection of
procedures and a body of theory associated with
the application of robust or resistant procedures to
regression models.

Robustness and resistance are related properties
which differ slightly in their foundations: the def-
inition of robustness is grounded in distributional
assumptions while that of resistance is based on
the numerical properties of an algorithm. The idea
of robustness has many different tight mathemati-
cal definitions, all capturing some characteristic of
a procedure the properties of which are relatively
insensitive to small changes in the assumptions spec-
ifying a model. The property of resistance, on the
other hand, is the insensitivity of the results of a pro-
cedure to changes in a small fraction of the data.

Here, a regression model will denote a statisti-
cal model relating a response y to a collection of
explanatory variables x = (x1, . . . , xp)′. The regres-
sion models most commonly used include: additive
models of the form

y = x′β + σe,

where β is a vector of regression parameters, σ is
a scale parameter, and e denotes an error variable,
typically of mean 0; logistic regression, where y is
assumed to be binomial with mean n exp(x′β)/[1 +
exp(x′β)]; and loglinear models, where y is assumed
to be Poisson with mean exp(x′β).

Regression models are very widely applied. Their
structure has implications for the robustness and
resistance of any estimation procedure, and has
given rise to many different procedures for estima-
tion and testing. This is because the observations,
although typically assumed to be independent, are not
identically distributed and, as a result, have differing
influences on the estimates. The ideas of robustness
and resistance are illustrated by the mean and median
in a location model (see Location–Scale Family).

Location Models

Location models are the simplest regression models.
These involve only one parameter and have the form
y = µ + σe. The parameter may be estimated by the
mean y or by the median ỹ (and a great many other

estimators). Small changes in the tail length of the
distribution can make much greater changes in the
variance of the mean than of the median. The median
is more robust than the mean. Large changes in only
one observation produce much greater changes in
the mean than in the median. The median is more
resistant.

Least Squares Regression

Least squares estimates are maximum likelihood
estimates if the errors e are assumed to be inde-
pendent normally distributed or Gaussian random
variables with mean 0 and common variance. The
Gauss–Markov theorem (see Least Squares) states
that the resulting estimates have minimum variance
among the class of linear, unbiased estimates. How-
ever, because the estimate is linear, it is not resistant:
one observation y can change the estimate by an arbi-
trarily large amount. And, as in the case of location,
the variance of the parameter estimate depends heav-
ily on the assumed tail length of the distribution. The
estimates are not robust.

These properties are exacerbated if some obser-
vations are potentially highly influential. This arises
when the explanatory variables of the observations
are very different from the rest. This is easily seen
by considering the variances of the residuals. If X
denotes the matrix with rows the explanatory vari-
ables x′, then the variance matrix of the residuals is
proportional to I − X(X′X)−1X′ = I − H. The diag-
onals of this matrix, 1 − hii , are the variances of
individual residuals. Some of these can be arbitrarily
small. If this is the case, then the associated resid-
uals must be small and the fitted values x′β̂ very
close to the observation. This implies that observa-
tions associated with small residual variances will
have a determining effect on the estimation. Such
points are called leverage points (see Diagnostics).

Lp Regression Estimation

For the location model, least squares, minimizing
the sum of squares of the residuals, y − µ̂, led to
the estimate µ̂ = y. The median may be shown to
minimize the sum of absolute residuals. These are
special cases of Lp estimates, which are defined to
minimize the sum of pth powers of the residuals.
The robustness and resistance of the median might
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suggest that the same properties would hold for Lp

estimates with p < 2 and for p = 1 in particular.
However, this is not the case if points of high leverage
exist. An observation with very unusual explanatory
variables will have fitted values very dependent on
the parameter estimates. These differences will have
a large, determining effect on Lp estimates, including
L1 estimates.

M-Estimation for Regression

Maximum likelihood estimates for regression models
are defined to maximize

∑
ψ((y − x′β̂)/σ), where

ψ(·) is the log density of e. If ψ is differentiable,
the estimates may be defined by the system of p

equations

0 =
∑

xiφ

(
y − x′β̂

σ

)
for i = 1, . . . , p, (1)

where φ is the derivative of the log density.
M-estimates are the generalization of (1) that

arises when φ is not restricted by a relation to a den-
sity function. Different choices of φ lead to different
estimators with different properties of resistance and
robustness.

For example, if φ is unbounded, a single obser-
vation may contribute an arbitrarily large compo-
nent to the sum in (1). Bounded functions, φ, may
be expected to have greater resistance to individual
observations. If φ is 0 outside of a finite inter-
val, observations outside of this interval will not
contribute to the sum defining the estimate. Esti-
mates defined by such functions will be insensitive
to the length of the extreme tails of the distribution.
Such estimates will be robust to differences in the
extreme tails.

Huber [3], studying the location model, used a
specific measure of distance between distributions
and found the form of φ to minimize the maximum
variance of the estimate in a neighborhood of the
normal or Gaussian distribution. The resulting φ was
the derivative of the density of the least favorable
distribution in the neighborhood. The function φ is
given by

φ(u) = −c, u < −c,

= u, −c < u < c,

= c, u > c. (2)

The bounded nature of the function leads to resistance
of the estimate to single observations.

The estimating equations (1) may be expressed
in the form of the equations defining weighted least
squares estimates:

0 =
∑

w

(
y − x′β̂

σ

)
x(y − x′β̂),

where w(u) = (1 − u2)2. This is equivalent to (1)
with

φ(u) = uw(u). (3)

The weights are often called the bi-square weights.
The Princeton robustness study [1] presents proper-
ties of a large variety of M-estimates for the location
model.

The M-estimates described above involve the
parameter σ . Estimates are produced by replacing this
parameter with an estimate of scale. The median of
the absolute residuals,

MAD = median(y − x′β̂) (4)

may be rescaled to yield a robust estimate of scale.
The regression estimates may then be computed
by iteration, successively estimating scale by MAD
and regression parameters by weighted least squares.
Beginning with an initial estimate of the regression
parameters, the scale may be estimated. The regres-
sion estimates are then updated using weighted least
squares with weights given by (3).

Alternatively, a defining estimating equation for
σ may be added to (1) and the larger system of
equations solved iteratively.

The solution is unique if the system of equa-
tions corresponds to the derivatives of a convex
function. In other cases, the value of the estimate
will depend on the initial values iteration. Huber [4]
contains a more detailed discussion of iteration and
convergence.

Downweighting Leverage Points

Observations with unusual values of the indepen-
dent variables may remain highly influential for the
M-estimate. For this reason, many authors have pro-
posed the use of iterated weighted least squares,
where the weights include a factor that diminishes
the influence of such observations. Many of these



Robust Regression 3

proposals are based on the least squares estimate of
the variance of residuals: 1 − hii . Huber [4] suggests
replacing φ in (1) with (1 − hii)

1/2φ. Observations
with high leverage and therefore with small resid-
ual variance will have little influence in the equa-
tion defining the estimate. Krasker & Welsch [5]
review more extensively the handling of leverage
points.

R and S Estimators

Two other classes of robust estimators have been
proposed. Hettmansperger [2] develops R-estimates
based on the ranks of residuals. Estimates are
defined to minimize

∑
a(Ri)ri , where ri denotes a

residual and Ri its rank. The function a is bounded
and monotonic.

Because the defining equation is linear rather than
quadratic in the residuals (as in the case of least
squares), the estimates are more resistant and robust.

Least squares estimates may also be considered as
those which minimize s2, an estimate of scale. Any
estimate of scale may be used to define an estimate of
the regression parameters. Such estimates are called
S-estimates [11, 12].

Rousseeuw [10] proposed defining estimates to
minimize the MAD (4). Although the computational
problems involved in this minimization are extremely
difficult, the resulting estimate is very resistant.

Robust Logistic Regression

Logistic regression is used to model binomial data.
Since such data are bounded, insensitivity to gross
outliers is not a concern. However, even in this
case, individual observations can greatly influence the
maximum likelihood estimates.

The maximum likelihood estimates are found
by minimizing the sum of deviances, essentially
negative components of the log-likelihood. These
deviance components are the logistic analogs of
squared residuals. Pregibon [7] proposed estimates
found by dampening the contribution of large

deviances to the minimization. The proposed
form corresponds to the function φ in (2). The
resulting estimates are not unbiased. Kunsch et al.
[6] proposed alternative estimators which are
conditionally unbiased. Morgenthaler [9] proposed
estimates of parameters in generalized linear models
[8], and for logistic models in particular, based on
least absolute deviations of residuals.

References

[1] Andrews, D.F., Bickel, P.J., Hampel, F.R., Huber, P.J.,
Rogers, W.H. & Tukey, J.W. (1972). Robust Estimates
of Location: Survey and Advances, University of Toronto
Technical Report. Princeton University Press, Princeton.

[2] Hettmansperger, T.P. (1984). Statistical Inference Based
on Ranks. Wiley, New York.

[3] Huber, P.J. (1964). Robust estimation of a location
parameter. Annals of Mathematical Statistics 35,
73–101.

[4] Huber, P.J. (1980). Robust Statistics. Wiley, New York.
[5] Krasker, W.S. & Welsch, R.E. (1980). Efficient boun-

ded-influence regression estimation, Journal of the
American Statistical Association 77, 595–604.

[6] Kunsch, H.R., Stefanski, L.A. & Carroll, R.J. (1989).
Conditionally unbiased bounded influence estimation in
general regression models, with applications to general-
ized linear models, Journal of the American Statistical
Association 84, 460–466.

[7] Pregibon, D. (1982). Resistant fits for some commonly
used logistic models with medical applications,
Biometrics 38, 485–498.

[8] McCullagh, P. & Nelder, J.A. (1989). Generalized
Linear Models, 2nd. Ed. Chapman & Hall, London.

[9] Morgenthaler, S. (1992). Least-absolute-deviations fits
for generalized linear models, Biometrika 79, 747–754.

[10] Rousseeuw, P.J. (1984). Least median squares regres-
sion, Journal of the American Statistical Association 79,
871–880.

[11] Rousseeuw, P.J. & Yohai, V. (1984). Robust regression
by means of S-estimators, in Robust and Nonlinear Time
Series Analysis, Lecture Notes in Statistics, Vol. 26.
Springer-Verlag, New York, pp. 642–656.

[12] Yohai, V.J. (1987). High breakdown point and high
efficiency robust estimates for regression, Annals of
Statistics 15, 642–656.

DAVID F. ANDREWS



Robustness

Robust procedures are generally considered to be sta-
tistical methods which are insensitive to small devia-
tions from the underlying assumptions. In particular,
if the optimal procedures require the assumption of
normality, then the corresponding robust procedures
would not be influenced by departures from normality
of the form of slightly longer or shorter tails or slight
skewness in the underlying distribution. Such depar-
tures from normality could result from the presence
of a small proportion of outliers or spurious values
in the observations. Robust procedures are ones such
that these outliers, if they occurred, would have little
effect on the analysis of the data.

Historical Development

Huber [17], in his extensive review article, points
out that in 1821 Gauss [9] specifically introduced
the normal distribution to suit the sample mean,
and Huber suggests that a misunderstanding of the
Gauss–Markov theorem and the central limit theo-
rem by contemporary nineteenth-century researchers,
led to the almost exclusive use of the arithmetic
mean in practical applications throughout that time
(see Least Squares). These theorems refer to the
arithmetic mean as the best linear unbiased estima-
tor of the expected value of a population, and to
its distribution being approximately normal. If the
observations are independent with a common normal
distribution, then the sample mean is the least squares
(maximum likelihood) estimator, the best unbiased
estimator (see Unbiasedness), the minimax estima-
tor, and is asymptotically efficient (see Efficiency
and Efficient Estimators), so it is best in a vari-
ety of ways. However, the sample mean is not robust
against quite small departures from the assumption of
normality; in particular, being seriously affected by
outliers or long-tailedness. The occurrence of discor-
dant values or of distributions with longer tails than
normal was recognized by researchers in the nine-
teenth century, but the full significance of the effect
of these on the behavior of the sample mean as an
estimator was not fully appreciated, except by a few.

Huber’s historical review gives details of a few
instances of anxieties caused by the problems of
dealing with outlying values and long-tailed distri-
butions. He cites, for example, an early case of the

routine application of a 5% trimmed mean (see Trim-
ming and Winsorization) for estimating land yields
in France from 20 consecutive years of observations
with the highest and lowest values removed, and
refers to the development of procedures for detect-
ing and rejecting grossly discordant observations by
Peirce [24] and Chauvenet [4]. More details of the
heated controversy that Peirce’s criterion for reject-
ing observations generated are given by Stigler [26],
who also describes many overlooked contributions to
the development of robust estimators between 1885
and 1920. In particular, Stigler discusses Newcomb’s
[22] use of subjectively weighted astronomical obser-
vations and long-tailed distributions, produced from
mixtures of normal distributions, to derive a Bayes-
type estimator (see Bayesian Methods) which effec-
tively gives lower weight to the extreme observations.
The computational efforts involved in evaluating
some of these alternative estimators was a major
deterrent to their general acceptance. Edgeworth [7]
investigated properties of the median and later, in
1893, he suggested an estimator based on weighted
quartiles. Eddington [6] and Jeffreys [19], amongst
others, proposed alternative probability models for
errors with long-tailed distributions and used robust
alternatives to the usual estimators, remarkably sim-
ilar to some of the procedures rediscovered more
recently. Stigler [27] gives an account of an original
suggestion, by Smith [25], of a robust estimator of
location which is surprisingly similar to a biweighted
M-estimator.

The effects of nonnormality on estimates of
variance and the sensitivity of tests involving sample
variances, such as F tests and t tests, were noted by
E. S. Pearson and by R.A. Fisher, but there was
little formal development of robust methods during
that time. The word “robust” was initially used by
Box [3] as a technical term in connection with the
comparison of variances problem.

It was not until around 1960 that J.W. Tukey
and the Statistical Research Group at Princeton
began to investigate seriously the properties of robust
estimators of location and scale. Tukey [28, 29]
provided a survey of this work. He dramatically
illustrated the sensitivity of the mean square deviation
(see Standard Deviation)

sn =
[

1

n

∑
(xi − x)2

]1/2

,
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based on a sample of n observations xi, i = 1, . . . , n,
with sample mean x = ∑

xi/n, to very slight depar-
tures from normality. He considered the asymptotic
relative efficiency (ARE) of this estimator of scale,
relative to the mean (absolute) deviation

dn = 1

n

∑
|xi − x|,

for samples from a contaminated normal distribution
with distribution function

F(x) = (1 − ε)Φ

(
x − µ

σ

)
+ εΦ

(
x − µ

3σ

)
, (1)

where Φ(x) is the standard normal cumulative dis-
tribution and ε is the proportion of contamination of
the standard normal by the normal with three times
its standard deviation. When ε equals zero (or one),
the relative efficiency of dn to sn is nearly 88%, so
that there is a 12% loss in efficiency if dn is used
instead of sn with normal samples. However, ε need
be only 0.002 for the relative efficiency of dn to sn to
exceed 100%. Only two observations in 1000 need to
come from the wider distribution for the mean abso-
lute deviation to be a better estimate of scale than the
mean square deviation. This was quite a surprising
result and does not even imply that these two observa-
tions are outliers. They need only to have come from
the contaminating distribution which produces a pop-
ulation that has slightly longer tails than the normal
distribution. This work prompted further investigation
into alternative robust estimators for both location
and scale, with important early contributions from
Huber [16] and Hampel [10].

Criteria of Robustness

One of the major problems in the application of a
robust procedure is the consideration of an appropri-
ate set of criteria that the procedure should satisfy.
Different criteria have led to the development of
different robust methods. The Princeton Robustness
Study investigated the behavior of 68 estimators of
location over a wide variety of nonnormal distri-
butions. The six authors [1] agreed that many of
these alternative estimators were more robust than
the sample mean, but they were not able to rec-
ommend a specific estimator which would meet the
various requirements of robustness, because they did
not agree on the criteria to be used.

Huber [17], in his Wald lecture, asks “What is
a robust procedure?” and points out that there are
several conflicting aims which make it difficult to
choose, in a rational manner, between different robust
competitors. The assumptions, such as normality,
underlying any procedure are required to allow cal-
culation of certain probabilities such as the type
I error for tests or the confidence levels for esti-
mates, or to show that the method is efficient or has
high power. These probabilities will change under
departures from the assumptions. Procedures which
maintain the type I error or the actual confidence lev-
els are regarded as validity robust while those that
maintain high power or size of confidence interval
are regarded as efficiency robust. Even within these
categories it is possible to consider different kinds
of departure from the underlying assumptions and
different characteristics of the estimators or test statis-
tics involved. The characteristics used for judging
the competing methods could include the asymptotic
variance, the absolute efficiency or the relative effi-
ciency. If the distribution function is represented by
F , then the range of alternative distributions could
include all smooth F , or all F belonging to a selected
finite set of Fi such as the normal, Cauchy, two-
sided exponential and rectangular distributions, or
all F in the neighborhood of a specific F . Huber
[16] considers procedures with a small asymptotic
variance over distributions in a neighborhood of the
normal distribution, while Hampel [10, 11] consid-
ers estimates whose distribution changes little under
arbitrary small variations of F . The various objectives
of robustness have resulted in the development of a
variety of robust estimation methods broadly classi-
fied as M-estimators (based on maximum likelihood
methods), L-estimators (based on linear functions of
order statistics) and R-estimators (based on ranking
methods).

M-Estimators

If f (x − θ) is the density function of a random
variable x with unknown location parameter θ , then
the log likelihood function, l(θ), for a sample xi, i =
1, . . . , n, is

l(θ) =
n∑

i=1

ln f (xi − θ) = −
n∑

i=1

ρ(xi − θ), (2)

where ρ(x) = − ln f (x).
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If possible, the maximum likelihood estimator of
θ is found by differentiation of l(θ), which gives

d[l(θ)]

dθ
= −

n∑

i=1

f ′(xi − θ)

f (xi − θ)
=

n∑

i=1

ϕ(xi − θ), (3)

where ρ ′(x) = ϕ(x). The solution of

n∑

i=1

ϕ(xi − θ) = 0 (4)

that maximizes l(θ) is called the maximum likelihood
estimator, or M-estimator, of θ . The form of the M-
estimator depends on the shape of the function ρ,
or equivalently the shape of the function ϕ. For the
normal distribution ρ(x) = x2/2 (apart from a con-
stant), from which ϕ(x) = x, and the solution to (4)
is the sample mean x. For the two-sided exponential
distribution, which has longer tails than the normal
distribution, ϕ(x) = −1 for x < 0 and ϕ(x) = 1 for
x > 0, leading to the median as the M-estimator.
Other distributions with long tails have ϕ functions
which are bounded or which “descend” to zero for
|x| > k, for some k. Huber’s [16] robust estimator,
proposed to minimize the asymptotic variance over
a class of distributions in the neighborhood of the
normal, is one of these M-estimators with ϕ(x) = x

for |x| ≤ k, and ϕ(x) = k sign(x) for |x| > k. Eq.
(4) would in this case need to be solved by an itera-
tive method. One feature of this and other estimators
based on bounded or redescending ϕ functions, is that
they are not scale invariant. A scale invariant version
may be obtained if

n∑

i=1

ϕ

[
(xi − θ)

d

]
= 0 (5)

is solved instead, where d is a robust estimate of
scale. One possible robust estimate of scale which
could be used for d is

d = median|xi − median(xi)|
0.6745

. (6)

This form of robust scale estimate is known as
the mean absolute deviation (from the median), and
includes the factor 0.6745 so that d approaches
the population standard deviation for large samples.
The sample standard deviation is not used for d

since it is not robust to outliers. The value of k

may be determined so that the asymptotic efficiency

of the estimator reaches a satisfactory level under
normal assumptions. For instance, when k = 1.5 the
asymptotic efficiency was shown by Huber [16] to be
greater than 95%.

Other forms of M estimators have been pro-
posed, including Hampel’s redescending ϕ function,
Andrews’ sine wave and Tukey’s “biweight”. These
are respectively defined as follows:

1. Hampel’s redescending ϕ:

ϕ(x) = if − k1 < x < k1,

ϕ(x) = k1 sign(x) if k1 ≤ |x| < k2,

and

ϕ(x) = k1

(
k3 − |x|
k3 − k2

)
sign(x)

if k2 ≤ |x| < k3,

with k1 = 1.7, k2 = 3.4, and k3 = 8.5.
2. Andrews’ sine wave: ϕ(x) = sin(x/k) if |x| ≤

kπ , and ϕ(x) = 0 if |x| > kπ , with k = 1.5.
3. Tukey’s biweight: ϕ(x) = x[1 − (x/k)2]2 if

|x| ≤ k, and ϕ(x) = 0 if |x| > k, with k = 5.

These values of the constants give reasonable per-
formance of the estimators when the distribution is
normal, but alternative values may be used instead.
Further comments about the convergence properties
of the iterative procedures involved in deriving these
M-estimators are given in the review article by Hogg
[14]. In his article, Hogg also discusses the extension
of this approach, using M-estimators based on robust
ρ and ϕ functions, to the estimation of the coeffi-
cients in the linear model y = Xβ. This leads to the
concept of robust regression.

L-Estimators

An L-estimator is one that is based on a linear
combination of the ordered sample values. Exam-
ples of such estimators are the median and the α-
symmetrically trimmed means, defined as

xαT =

n−r∑

i=r+1

x(i)

n − 2r
, (7)

where r = [nα] is the largest integer less than or
equal to nα and x(i) is the ith ordered observation.
A symmetrically Winsorized mean is obtained in a
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similar way except that, instead of the r smallest and
largest observations being deleted, they are replaced
by the values of the smallest and largest untrimmed
observations, x(r+1) and x(n−r) respectively, so that
the α-symmetrically Winsorized means are defined
as

xαW =
(

rx(r+1) +
n−r∑

i=r+1

x(i) + rx(n−r)

) /
n. (8)

For samples from a symmetric population, the sym-
metrically trimmed and Winsorized means are both
unbiased estimators of the population mean. For esti-
mating from asymmetrical distributions, it would be
natural to define asymmetrically trimmed or Win-
sorized means in an obvious manner.

This class of robust L-estimators also includes
those based on selected percentiles, such as
Gastwirth’s [8] weighted average of the 33 1

3 rd, 50th
(median) and 66 2

3 rd percentiles, with weights 0.3,
0.4, and 0.3, and the trimean using the 25th, 50th,
and 75th percentiles with weights 0.25, 0.5, and
0.25. Patel et al. [23] considered that the “trimmed
means, the tri-mean and Gastwirth’s estimator are
perhaps the simplest among reasonably good robust
estimators” of location. David [5] provides a detailed
review of linear order-statistic estimators (see Order
Statistics). The link between these estimators and
M-estimators through the influence function (see
Diagnostics) is discussed by Hampel [12].

R-Estimators

The development of nonparametric procedures such
as the Wilcoxon and Mann–Whitney tests (see
Wilcoxon–Mann–Whitney Test), which are suitable
under more general conditions than the corresponding
t tests, provided some respite for those worried
about nonnormality. For normal populations the one-
and two-sample Wilcoxon tests have efficiency of
more than 95% compared with the t tests, and
can be substantially more powerful if the samples
come from long-tailed distributions. Highly efficient
Hodges & Lehmann [13] estimates may be developed
from the Wilcoxon tests. These are the median of
all pairwise averages, med [(xi + xj )/2], for the
location of a single population, and the median of
all between-sample pairwise differences, med (yi −
xj ), for the difference between the locations of the

two populations. These estimates may be used to
provide suitable confidence intervals in fairly general
situations. An extensive introduction to rank statistics
is given by Lehmann [20], and further discussion of
R-estimates may be found in Huber [18].

Adaptive Procedures

The basic idea of adaptive estimation is that the
estimation procedure is selected after observing the
data. For example, the form of the estimator is
dictated by the sample values themselves or some
characteristic of the sample such as skewness or
kurtosis, so that samples with large kurtosis (heavy
tailed) could use the median as a location estimator,
while those with kurtosis near zero (normal) would
use the sample mean. More generally, an adaptive
trimmed mean uses some characteristic of the sample,
such as a ratio of linear functions of order statistics, to
determine the proportion of trimming applied to the
ordered sample. Hogg & Lenth [15] give a detailed
review of full and partial adaptive procedures used in
estimating location and include illustrations involving
the extension of these procedures to regression
analyses and analysis of variance.

Resistant Procedures

A statistical procedure is called resistant if the esti-
mate or test statistic has a value which is insen-
sitive to small changes in the underlying sample
[21]. The underlying distribution does not really
come into this definition, but Hampel’s theorem,
linking continuity of estimators and robustness in
a neighborhood of the underlying distribution, sug-
gests that although conceptually different, resis-
tance and robustness are, for practical purposes,
the same.

Extension to Other Problems

Over the last 30 years there has been extensive
research into robust methods applicable to a variety
of statistical problems. The ideas of robust estima-
tion of location using M-, L-, and R-estimators, have
been extended to multivariate data and to robust
regression. There is now an extensive literature
on robust estimation in the presence of outliers,
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robust regression diagnostics, robust estimation of
correlation matrices for use in multivariate tech-
niques, robustness in scientific modeling, in time
series modeling and in experimental design. Bar-
nett & Lewis [2] provide a comprehensive coverage
of all aspects of dealing with outliers in statistical
data.
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Rotation of Axes

Both principal components analysis and factor
analysis are procedures which transform a set of p

correlated variables into a set of k new variables. In
the case of principal components analysis, the new
variables, the principal components, are uncorrelated
(see Correlation). In the case of factor analysis, the
new variables, the factors, are uncorrelated within a
reduced space defined by the reduction in total vari-
ability due to residual variability associated with each
variable, independent of the others. For both pro-
cedures, these transformations are generally linear.
In most cases, k < p, since a principal aim of both
procedures is to reduce the dimensionality required
to describe a multivariate situation. The coefficients
defining these transformations, often referred to as
loadings, are used to aid in identifying the nature of
the new variables. Sometimes, the new variables will
be difficult to interpret. At other times, the procedure
has been employed chiefly as an intermediate step in
determining a reduced set of the original variables
which satisfactorily account for the variability of the
deleted variables. In either case, a second linear trans-
formation may be useful. This latter transformation is
generally referred to as a rotation of the components
or factors.

If there are k components or factors to be rotated,
then there will be k new rotated variables. The vari-
ables produced by rotation may be correlated. They
will account for the same amount of variability of
the original variables as the components or factors
from which they were derived. Most texts on prin-
cipal components and/or factor analysis will have
some material on rotation. Among those with detailed
explanation of the philosophy and general mechan-
ics of rotation are [3] and [4]. Other articles in this
Encyclopedia deal extensively with principal compo-
nents analysis, factor analysis, and specific rotation
methods.

Simple Structure

Most of the methods described in this article are
designed to attain the properties of what Thurstone
[7] called simple structure. Its purpose is to pro-
duce rotated vectors whose coefficients are either
relatively large or close to zero. If the matrix of

dimension p × k of rotated vectors is B, each column
defining a transformed variable, then simple structure
requires that:

1. each row of B should contain at least one zero.
This means that each of the original variables
should be uncorrelated with at least one of the
rotated components or factors

2. if there are k components or factors, then each
column of B should have at least k zeros. This
specifies a goal; for interpretation, the more zeros
the better

3. for each pair of columns of B, there should be
several variables that have zeros in one column
but not the other and, if k ≥ 4, a large number
of variables with zeros in both columns and a
smaller number of variables with nonzero coef-
ficients in both columns. This is an attempt to
obtain some independence among the variables
produced by the rotated vectors.

The objective of simple structure is to produce a
set of new vectors, each involving primarily a sub-
set of the original variables with as little overlap as
possible so that the original variables are divided
into groups somewhat independent of each other.
This is, in essence, a method of clustering the origi-
nal variables (see Cluster Analysis, Variables), and
some computer packages (see Software, Biostatis-
tical) employ this method to do it. Most statistical
computer packages that include principal components
and factor analysis will also have a number of rotation
options.

In practice, it is nearly impossible to obtain the
number of zeros required for a simple structure, but
rotated vectors containing very small coefficients will
suffice for most problems of interpretation.

Algebraically, rotations may be described as fol-
lows: Let the transformation of the original p vari-
ables, x, into k components or factors, y, be y = Vx,
where V is a matrix of dimension p × k and consists
of a set of vectors relating one set of variables, x,
to the other, y (see Principal Components Analysis
and Factor Analysis, Overview for a discussion of
the mathematical models underlying these transfor-
mations.) Then the rotation of the vectors V into a
new set B is done by the relationship B = V�, where
� is a matrix of dimension k × k consisting of angles
defining the rotation. This rotation takes place only in
the subspace defined by the k retained components or
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factors. Because of this, the amount of variability of
the original variables accounted for by the variables
obtained by this rotation will be exactly the same as
that accounted for by the original components or fac-
tors. If the number of retained components or factors
is changed, then the rotated results will also change.
Early rotation procedures were graphical solutions
which, while quite sophisticated, could handle only
problems of limited size. Present day solutions are
generally performed by means of computerized math-
ematical algorithms.

Numerical Example

Table 1 displays a correlation matrix related to some
physical measurements on 305 girls [4]. Note that
the first set of four variables – measurements of
“lankiness” – are highly correlated, as are the second
set, representing “stockiness”. The intercorrelations
among the two sets are smaller. The characteristic
vectors defining the first two principal components
are displayed in Table 2, where the vectors are
normalized to their corresponding characteristic roots.
The first principal component, accounting for 58%
of the total variability, is a measure of overall size.
The second component (22%) represents a contrast
between the two types of measurement.

Orthogonal Rotation

An orthogonal rotation is a rotation which preserves
the orthogonality of the transformed component
or factor. For the above example, one possible
orthogonal rotation has the matrix defining the angle
of rotation as

� =
[

0.771 0.636
−0.636 0.771

]
.

This particular orthogonal rotation is a varimax
rotation. The rotated vectors are shown in Table 2.
The first four coefficients of the first vector,
representing the lankiness measurements, are quite
large relative to the remaining four. The situation
for the second vector is reversed. The conclusion is
that there are two groups of variables: the first four
and the second four. While this seems obvious when
rotating a pair of vectors, examples requiring higher
dimensionality are apt to be more difficult to interpret,
particularly if one wishes to cluster variables.

The rotated axes are shown in Figure 1 and are
represented by the dashed lines. The points represent
the original eight variables in terms of the loadings of
the two characteristic vectors. If these same points are
projected against the new axes, then the coefficients
or loadings of B will result. This is an orthogonal
rotation, in that the new axes are still at right angles
to each other.

There are a number of methods for producing
orthogonal rotations, each having their strengths and
weaknesses. A more detailed description of some of
them appears in the article Orthogonal Rotation, as
well as in separate entries for some specific methods.

Oblique Rotation

It is possible to obtain an even greater differentiation
between the two sets of physical measurements
by performing an oblique rotation, one in which
the resultant axes are not at right angles to each
other. One such oblique rotation is the orthoblique
or Harris–Kaiser rotation, which is also shown in
Table 2.

This produces greater differences between the
two sets of coefficients but at the cost of loss
of orthogonality. The amount of variability of the
original variables attributed to these rotated variables
will be the same as that due to the components
or factors. The improvement towards the simple
structure is shown in Figure 2. There are now two
sets of rotated vectors. Those labeled P1 and P2

are called primary vectors, which pass through the
clusters of points. R1 and R2 are reference vectors,
Ri and Pi being orthogonal to each other. It is the
projection of the points on the reference vectors that
produce the rotated vectors B. In orthogonal rotations,
this situation does not exist. Note, in Table 2, that
the amount of variability attributable to the two
orthogonally rotated components equals the amount
attributable to the principal components, but those of
the oblique rotation do not. These latter quantities
must also include the joint contribution of the rotated
components pairwise; these, added to that of the
rotated components themselves, will add to the total.

There are a number of methods for producing
oblique rotations which will appear in the article
Oblique Rotations, as well as separate entries
for some specific methods. A number of both
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4 Rotation of Axes

Table 2 Physical measurements: characteristic and rotated vectors

Characteristic Orthogonal Oblique
vectors rotation rotation

v1 v2 b1 b2 b1 b2

Height 0.86 −0.37 0.90 0.26 0.91 0.06
Arm span 0.84 −0.44 0.93 0.20 0.96 −0.02
Length of forearm 0.81 −0.46 0.92 0.16 0.96 −0.06
Length of lower leg 0.84 −0.40 0.90 0.23 0.92 0.02
Weight 0.76 0.52 0.25 0.89 0.05 0.90
Bitrochanteric diameter 0.67 0.53 0.18 0.84 −0.02 0.87
Chest girth 0.62 0.58 0.11 0.84 −0.10 0.89
Chest width 0.67 0.42 0.25 0.75 0.08 0.75

Var. explained 4.67 1.77 3.50 2.95 2.84 2.35
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Figure 1 Physical measurements: orthogonal (varimax)
rotation

orthogonal and oblique rotations can be expressed
in a generalized form known as quartic rotation
procedures. An overview of these procedures may
be found in [2].

Procrustes Rotation

The occasion may arise where one already has two
sets of vectors and wishes to find the matrix which
will best “rotate” one set into the other. The method
which attempts to determine this relationship is called
Procrustes rotation, and is described in that article.
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Figure 2 Physical measurements: oblique (orthoblique)
rotation

Applicability

Rotational procedures may be quite useful when
one wishes to cluster variables, and as such have
found widespread use in such diverse fields as
psychology, education, anthropology, biology, and
market research. These procedures have somewhat
less application in sciences such as chemistry or
physics. The physical measurements example of
Table 1 is a typical application in the field of
multivariate biostatistics.
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Numerical Examples

The numerical example above is useful in producing
a graphical explanation of rotation but will not be as
useful in illustrating the various rotation techniques
because only two vectors are being rotated. In the
case of k = 2, many of these techniques produce the
same results. We need k > 2 to show the difference.
For this reason, two additional examples will be
given. One of these will be an example where rotation
was appropriate and the other where it was not.
These examples will also be employed in some of
the separate articles in this Encyclopedia dealing with
specific procedures.

The first example deals with Decathlon data for
160 individual records from the first eight Olympics
after World War II [6]. Table 3 includes both the
characteristic vectors (eigenvectors) associated with
the four retained principal components of these
data and the corresponding varimax rotation. (The
correlation matrix is included in the original reference
and also in [1].) The other common rotation
techniques all showed similar results.

The first rotated vector has high loadings for
100 m run and 400 m run along with somewhat lower
loadings for long jump (which requires a short run
before execution) and the 110 m hurdles. This would
imply a cluster involving short distance running and
associated jumping. The second rotated vector has
high loadings for shot put, discus, and javelin, all
of which are throwing events. The third rotated
vector has high loadings for the long jump, high
jump, 110 m hurdles, and the pole vault, all events
requiring jumping. The final rotated vector has a high

loading for the 1500 m run and a lower loading
for the 400 m run, indicating a cluster for long
distance running. The 1500 m run had a correlation
of 0.39 with the 400 m run and very low correlations
with anything else. In interpreting rotation results,
reference to the original correlation matrix will also
be of use. Although most of the results obtained by
rotation probably could have been deduced from the
characteristic vectors, the rotated results may seem
much clearer.

The second example deals with the audiometric
examinations of 100 39-year-old men [5]. Table 4
includes both the characteristic vectors associated
with the four retained principal components of these
data and the corresponding varimax rotation. The
variables represent hearing loss from a standard at
four different frequencies for both left and right ears.

The first principal component represents an overall
shift in hearing for all frequencies in both ears. The
second component represents a contrast between high
and low frequencies and can be used as an early
warning of hearing loss. The third component is
another contrast, primarily between the two higher
frequencies, and the fourth component represents the
difference between left and right ears. The variability
unexplained by these four components is a measure
of testing and measurement variability. The results
from the varimax rotation are not as distinct as those
obtained in the other example. One could probably
deduce that the 500 Hz and 1000 Hz measurements
formed one cluster, the 2000 Hz a second, and
the 4000 Hz a third. There is a suggestion of ear
differences also, but the results are not very distinct.
In this case, the characteristic vectors furnish all the

Table 3 Decathlon data: characteristic and rotated vectors

Characteristic vectors Varimax rotation

v1 v2 v3 v4 b1 b2 b3 b4

100 m run 0.69 0.22 −0.52 −0.21 0.88 0.14 0.16 −0.12
Long jump 0.79 0.18 −0.19 0.09 0.63 0.19 0.52 −0.01
Shot put 0.70 −0.53 0.05 −0.18 0.24 0.82 0.22 −0.15
High jump 0.67 0.13 0.14 0.40 0.24 0.15 0.75 0.08
400 m run 0.62 0.55 −0.08 −0.42 0.80 0.07 0.10 0.47
110 m hurdle 0.69 0.04 −0.16 0.35 0.40 0.15 0.64 −0.17
Discus 0.62 −0.52 0.11 −0.23 0.19 0.81 0.15 −0.08
Pole vault 0.54 0.09 0.41 0.44 −0.04 0.18 0.76 0.22
Javelin 0.43 −0.44 0.37 −0.24 −0.05 0.74 0.11 0.14
1500 m run 0.15 0.60 0.66 −0.28 0.05 −0.04 0.11 0.93

Reproduced from [6] by permission of Research Quarterly for Exercise and Sports.
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Table 4 Audiometric example: characteristic and rotated vectors

Characteristic vectors Varimax rotation

Frequency v1 v2 v3 v4 b1 b2 b3 b4

500 Hz left 0.80 −0.40 0.16 −0.22 0.58 0.13 0.06 0.71
1000 Hz left 0.83 −0.29 −0.05 −0.33 0.44 0.10 0.27 0.79
2000 Hz left 0.73 0.30 −0.46 −0.19 0.05 0.22 0.78 0.45
4000 Hz left 0.56 0.60 0.42 −0.11 0.04 0.89 0.15 0.20
500 Hz right 0.68 −0.49 0.26 0.33 0.91 0.08 −0.00 0.23
1000 Hz right 0.82 −0.29 −0.03 0.25 0.77 0.10 0.34 0.31
2000 Hz right 0.62 0.40 −0.56 0.27 0.17 0.19 0.93 −0.00
4000 Hz right 0.50 0.65 0.42 0.11 0.11 0.91 0.19 −0.02

Reproduced from [5] by permission of the American Society for Quality Control.

information needed, and no rotation is needed. The
frequencies chosen for the audiometric procedure are
from a continuum of frequencies that could have
been chosen, and, when the original variables are
of this form, rotation is less likely to be useful
than the decathlon example where the variables
are specific events. All of the common rotation
procedures had similar problems with these data
except for quartimax. That exception is dealt with
in the article on quartimax.
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Roy’s Maximum Root
Criteria

To illustrate his union–intersection principle, Roy
[37, 38] proposed the maximum characteristic
root eigenvalue test statistic for each of the
following problems: (i) testing the equality of k

p-variate normal distributions (see Multivariate
Normal Distribution) with the same but unknown
covariance matrix; (ii) testing the independence
between two sets of variates jointly distributed as
a normal distribution with unknown mean vector;
(iii) testing the equality of covariance matrices of two
p-variate normal distributions with unknown mean
vectors; and (iv) testing that the covariance matrix of
a p-variate normal distribution with unknown mean
vector equals a specified matrix �0.

For problems (i)–(iii), the test statistic can be
expressed as the largest characteristic root b1 of a
random matrix B ≡ S1(S1 + S2)

−1. For problem (i),
which can be considered as a version of multivariate
analysis of variance (MANOVA), the matrices S1

and S2 denote the sums of squares and cross-products
matrices “due to hypothesis” and “due to error” with
degrees of freedom (df) ν1 and ν2, respectively. For
problem (ii), S1 = S12S−1

22 S21, S2 = S11 − S12S−1
22 S22,

where (Sij ; i, j = 1, 2) is the partitioned sums of
squares and cross-products (SP) matrix corresponding
to the two sets. Lastly, S1 and S2 denote the SP
matrices corresponding to random samples from the
two populations for problem (iii). Furthermore, Roy
also considered the largest characteristic root t1 of
the matrix S as a test statistic for problem (iv), S/ν1

being the sample covariance matrix with df ν1.
The null distribution of b1 takes the same form for

each of the problems (i)–(iii). Moreover, the limiting
distribution of ν2b1 is the same as the distribution
of t1 defined for (iv) with �0 = I, as ν2 → ∞. We
shall assume that the number s of nonzero roots of
B equals p, in the sequel; for s < p, see [22] for an
appropriate change of parameters for (i).

The literature on this topic is rather extensive. We
cite only the major references which give information
on many other related works. In a pioneering paper,
Roy [36] considered the maximum root statistic for
problem (i) and derived its null distribution with an
explicit expression for s = 2, 3, and 4. Later, the null
distribution of b1 has been derived in a series form

following the reduction method of Roy, the Pfaffian
method of Mehta [21], and through zonal polynomials
introduced by Constantine [8] for the distribution of
roots. See [1, 18, 19, 28], and [40] for more details.

To make the null distribution of b1 amenable to
evaluation of upper percentage points, Pillai [24] has
suggested an approximation. Using this approxima-
tion as well as using the exact distribution, tables have
been constructed for the upper percentage points of
b1 for various values of the parameters (see [19, 25,
26, 31], and [44].

The nonnull distribution of b1 in the multivariate
analysis of variance problem has been obtained by
Khatri & Pillai [16], DeWaal [11], Pillai & Sugiyama
[35], Krishnaiah & Chang [20], and Khatri [15],
among others. The noncentral distribution of the
largest canonical correlation coefficient has been
derived by Pillai & Sugiyama [41], DeWaal [11],
Pillai [27], and Khatri [15], in particular. For problem
(iii), the nonnull distribution of b1 has been obtained
by Khatri [14], Pillai & Sugiyama [35], and Chang
[5] in the general case. For this problem, Chang [5]
has obtained a beta-type asymptotic expansion of the
distribution of b1. For asymptotic distribution of the
maximum root for problems (i) and (ii) see [1] and
[22]. Also see the review paper by Pillai [29].

8The distribution of the largest characteristic root
of a Wishart matrix follows from the result in Con-
stantine [8]; it has been obtained also by Sugiyama
[41], Krishnaiah & Chang [20], and Khatri [15]; see
[22] for its asymptotic distribution. Tables for the
upper percentage points of t1 are given in Clemm
et al. [7] and Krishnaiah [19]. The distribution of the
maximum root of a noncentral Wishart matrix has
been obtained by Hayakawa [13]. For an approxi-
mation to the cumulative distribution function of the
largest root of the covariance matrix, see [32].

The maximum root test for MANOVA has been
shown to be admissible (see Decision Theory)
by Ghosh [12] and Anderson & Takemura [4].
The monotonicity of the power function of Roy’s
maximum root test in terms of the corresponding
noncentrality parameters has been shown by Das
Gupta et al. [10] for MANOVA, by Anderson &
Das Gupta [2] for the test of independence, and by
Anderson & Das Gupta [3] for problems (iii) and
(iv) with one-sided alternatives.

It has been observed that Roy’s maximum root
test for (i) and (ii) has relatively (in comparison with
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other standard tests) lower power for local alterna-
tives and nonlinear alternatives; see [33, 34], and
[39]. Based on a Monte Carlo study, Olson [23]
has observed that Roy’s test for MANOVA is (rel-
atively) most affected by deviations from normality
and homoscedasticity; see Korin [17] for a similar
study. For testing the equality of covariance matrices,
Chu & Pillai [6] have observed that Roy’s two-
sided test based on the maximum root performed best
locally among all standard two-sided tests. Pillai &
Hsu [34] have studied robustness of the test of inde-
pendence based on Roy’s maximum root criterion
along with three other criteria.

For simultaneous confidence intervals based on
the maximum root, see Roy [38] and Srivastava &
Khatri [40]; properties of such confidence intervals
have been studied by Wijsman [42, 43]. The rela-
tive efficiency of these confidence intervals has been
studied by Cox et al. [9].
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Royal Statistical Society

The Statistical Society of London was established in
1834, with the stated purpose of procuring, arranging,
and publishing “Facts calculated to illustrate the Con-
dition and Prospects of Society”. Four main classes of
study were specified in the founding prospectus: eco-
nomical statistics, political statistics, medical statis-
tics, and moral and intellectual statistics. Although
the term “medical” was then primarily applied to
issues of public health, the Royal Statistical Society
(as it was to become in 1887), is still strongly asso-
ciated with what is now known as “biostatistics”.
This article has a biostatistical perspective; for more
general historical articles, see [2, 7, 13, 14, 16].

Early volumes of the Journal of the Statistical
Society (see Journal of The Royal Statistical Soci-
ety) are full of worthy statistical data on national
and international trade and economics, the empire,
transport, mortality, and social investigations. The
latter strongly reflect the Victorian concern, if not
obsession, with insanity, crime, and the ills of the
lower classes. Typical examples include: Report upon
the Mortality of Lunatics (1841), Sanitary Condition
of Borough of Reading (1847), Rate of Mortality
among Persons of Intemperate Habits (1851), Dura-
tion of Life among the Clergy (1851), Statistics of
the Insane, Blind, Deaf and Dumb, and Lepers, of
Norway (1852), and Vital and Medical Statistics of
Chittagong (1862). Sadly, the content of such papers
does not always live up to the interest aroused by
their titles; there is a general dullness of presenta-
tion, a lack of graphics, and an absence of incisive
interpretation. The latter merely puts into practice
the strictures expressed in the original prospectus in
1834: “The Statistical Society will consider it to be
the first and most essential rule of its conduct to
exclude carefully all opinions from its transactions
and publications, – to confine its attention rigorously
to facts, – and, so far as it may be found possible, to
facts which can be stated numerically and arranged
in tables.”

An exception to this self-imposed role is Florence
Nightingale, who returned in 1857 from her revo-
lutionary work in the Crimean War, determined to
use all possible statistical tools as polemical weapons
in her crusade to reform military and civil hospi-
tals. She enlisted the help of William Farr, who was
then the dominant force in the statistical analysis of

public health data; he contributed many articles to
the Journal and became President of the Society in
1871. Florence Nightingale was elected as the first
woman Fellow of the Society in 1858, and embarked
in 1859, on a campaign for uniform hospital and sur-
gical statistics, which would “enable us to ascertain
the relative mortality of different hospitals. . .”. In
1860, the International Statistical Congress in London
decided that “Miss Nightingale’s Scheme for Uni-
form Hospital Statistics should be conveyed to all
governments represented”. The Journal of the Statis-
tical Society published summaries of these statistics
for London and provincial hospitals for five years, as
a series of tables without comment. These were sum-
marized in 1867 by Guy [6], who specifically denied
that any variability in outcome could be due to qual-
ity of care given by the staff “chosen, as it is, from
among those members of the profession who have
already given proofs of sound training, ability, and
skill in practice”.

The Society, which became the Royal Statistical
Society with the award of the Royal Charter in 1887,
was slow to embrace the dramatic methodological
and applied developments in statistics that began near
the end of the nineteenth century; only Edgeworth
and Yule seriously contributed to the methodological
content of the Journal, beginning with a classic expo-
sition in the 1885 Jubilee issue [4]. Here, Edgeworth
discusses the variability of the mean of a set of obser-
vations, the central limit theorem, and introduces
the term “insignificant”, while Yule [17] displays a
remarkable use of modern statistical method: model
fitting (see Model, Choice of), estimates of error,
tests of goodness of fit, and interpretation of a large
data set. There were also mathematical papers by
Karl Pearson and Galton, but these were largely
summaries of longer papers given elsewhere; Karl
Pearson was never a Fellow of the Society, and the
new Biometric school primarily relied on its own
new journal Biometrika as an outlet. The hugely
influential work of Fisher carried out at Rothamsted
Experimental Station was also not reflected in the
Journal until the 1930s.

The Society began publishing the discussion of its
read papers in 1873, but it was not until the 1930s that
a notorious series of papers established its continuing
reputation for public statistical disputes. Neyman
presented his development of confidence intervals
to the Society on June 19, 1934, in which he sought
to make inferences about parameters without having
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to use a prior distribution [10]. Arthur Bowley, a
strong advocate of Bayesian methods, or “inverse
probability” as it was then known, was given the task
of proposing the vote of thanks. He started by saying
“I am not at all sure that the ‘confidence’ is not a
‘confidence trick”’, and added “Does that really take
us any further? Does it take us beyond Karl Pearson
and Edgeworth? Does it really lead us towards what
we need – the chance that in the universe which we
are sampling the proportion is within certain limits? I
think it does not.” He finished with “The statement of
the theory is not convincing, and until I am convinced
I am doubtful of its validity.”

R.A. Fisher, however, was generous in his praise
of the paper, interpreting it as direct support for his
own “fiducial theory”. This good-natured alliance
against the inverse probabilists was soon to break
down. Later that year, Fisher was strongly attacked
when he presented his work on likelihood [5], and in
1935, he rounded on Neyman: “. . .were it not for the
persistent efforts which Dr Neyman and Dr [E.S.]
Pearson had made to treat what they speak of as
problems of estimation, by means merely of tests of
significance, he had no doubt that Dr Neyman would
not have been in any danger of falling into the series
of misunderstandings which his paper revealed” [11].
Published continuations of this personal dispute were
still appearing 20 years later, and it might be still
claimed to be reflected in arguments concerning the
focus of regulatory bodies on P values.

The war focused attention on industrial statistics,
but in the 1950s, the Society began to turn its atten-
tion to modern biostatistics. Austin Bradford Hill
became President in 1950, Sir Ronald Fisher in 1952,
and in October 1955, the Study Circle on Medical
Statistics became a Section. The computer was enthu-
siastically embraced: Bartlett [1] records early work
on “the Manchester computer” in simulating epi-
demics (see Epidemic Models, Stochastic), and in
the discussion, Norman Bailey generously states that
“provided they are not made an excuse for avoiding
difficult mathematics, I think there is great scope for
such computers in biometrical work”. Hollingsworth
[8] is the first published example of “computer-
aided diagnosis”.

The year 1972 turned out to be somewhat of an
annus mirabilis for methods applicable in biostatis-
tics: Nelder & Wedderburn [9] described the basic
algebraic and computational framework for general-
ized linear models, Peto & Peto [12] established the

theoretic framework for the logrank test, and Cox [3]
introduced the proportional hazards model with an
arbitrary underlying hazard rate function, and hence
made possible the introduction of multiple covari-
ates into survival analysis. Consulting the Science
Citation Index in April 1997, we find Nelder & Wed-
derburn [9] had over 600 citations and Peto & Peto
[12] over 1100, but these are paltry compared with
the 6000 citations of Cox [3].

Biostatistical activity in the Society has contin-
ued to grow in line with the increasing importance of
the subject in medical research. The 1960 regulations
state that the Medical Section may “arrange period-
ical meetings or conferences of the Section for the
reading of papers, discussion or demonstrations. . ..
The Section Committee may recommend that any
papers read before the Section shall be published
by the Society.” This has led to special meetings
and collected articles on such topics as HIV/AIDS
(1988), cancer near nuclear installations (1989) (see
Leukemia Clusters), institutional “league tables”
(1996), BSE/CJD (1997) and ethics, integrity, and
clinical trials (2002) (see Medical Ethics and Statis-
tics).

Guy Medals are awarded in gold (since 1892), sil-
ver (since 1893), and bronze (since 1936). In 1999,
the Guy Gold medal was awarded to Michael Healy
for his extensive statistical contributions to agricul-
ture, medicine, and a wide variety of other appli-
cations in which he has had a significant influence.
Discussion papers cited in awards of the Guy Sil-
ver Medal often feature biostatistical themes; they
include examples on repeated significance tests (see
Sequential Analysis), multivariate proportional haz-
ards (see Multivariate Survival Analysis), DNA
sequencing, Bayesian methods in the pharmaceuti-
cal industry, medical expert systems (see Artificial
Intelligence), and so on. The Bradford Hill Medal
for medical statistics was inaugurated in 1994, with
a posthumous award to Martin Gardner.

The Institute of Statisticians was for many years
the professional body for statisticians in the United
Kingdom, but after many years of attempted nego-
tiations, the Society finally merged with the Insti-
tute on January 1, 1993. The increased emphasis
on professional matters led to the introduction of
Chartered Statistician (CStat) status, and the forma-
tion of a Professional Affairs Committee. There is
a strong relationship with the pharmaceutical indus-
try: the Society was instrumental in bringing full-time
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statisticians into the United Kingdom drug regulatory
framework [15] (see Drug Approval and Regula-
tion), and there is continued dialog with statisticians
in the pharmaceutical industry (see Statisticians in
the Pharmaceutical Industry (PSI)).

The merger with the Institute of Statisticians raised
membership of the Society to over 6000. Sections
currently include Medical, Research, General Appli-
cations, Social Statistics, Business and Industrial,
Quality Improvement, Official Statistics, and Sta-
tistical Computing, and there are study groups in
Environmental Statistics and Primary Health Care.
General conferences are held every two years, alter-
nating with specialist meetings on topics such as
Practical Bayesian Statistics and teaching statistics.
In 2003, the theme of the Society’s conference was
statistical genetics and bioinformatics and in 2005,
the Society and PSI will be organizing a joint con-
ference in statistics and health care.

In March 2004, Significance was launched as the
Society’s new quarterly magazine for anyone inter-
ested in statistics and the analysis and interpretation
of data. Its aim is to communicate and demonstrate
in an entertaining and thought-provoking way, the
practical use of statistics in all walks of life and
to show how statistics benefit society. Articles are
largely nontechnical and hence accessible and appeal-
ing, not only to members of the profession, but also to
all users of statistics. It is intended that the magazine
should be relevant to people working, for instance,
in central and local government, medicine and health
care, administration, economics, business and com-
merce, industry, social studies, survey research, sci-
ence, and the environment.

After many years without a base in which gen-
eral meetings could be held, in 1995, the Society
finally moved into excellent premises at 12 Errol
Street in London. In the last 10 years, the Society has
increasingly sought to raise its own profile and that
of statistics. The Society is committed to a policy
of outreach – disseminating and promoting the use
and understanding of statistics to advance the wel-
fare of society. In line with this policy, it has, for
instance, taken a close interest in statistical education
at all levels and has established a Centre for Statis-
tical Education, currently based at Nottingham Trent
University. The Society has produced a report on the
use of performance indicators and is now working
with stakeholders in this area to develop good prac-
tice not only in target setting, but also in the design,

analysis, and reporting of performance indicators. It is
similarly working with stakeholders within the legal
and associated professions to ensure the appropri-
ate collection and use of forensic statistical evidence
(see Medico–Legal Cases and Statistics; Statistical
Forensics). Since 1990, the Society has argued that
an independent statistical service, free from politi-
cal interference, is essential to the maintenance of
a healthy democracy and has paid close attention
to the UK Government’s measures to implement
National Statistics. Comprehensive information about
the Society, its purposes and activities, can be found
at www.rss.org.uk.

With a thriving Medical Section, the Royal Statis-
tical Society continues to keep its traditional balance
between biostatistical methodology and practice. It
now stands in a very strong position to further the
role of statistics in public life in general, and in the
health field in particular.
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Saddlepoint
Approximation

Saddlepoint approximations are a class of asymptotic
approximations to a density or tail probability of a
statistic. McCullagh [5], Jensen [8], and Kolassa [6]
discuss these methods in detail. Suppose that T =∑n

j=1 Yj/n, for Yj independent and identically dis-
tributed. Suppose that the cumulant generating
function K(β) = log E

[
exp(βYj )

]
exists for β in an

open set about 0. Let fT (t) represent the density
of T . Then fT (t) exp([tβ − K(β)]) represents an
exponential family for T at a potential value t . Note
that Eβ [T ] = K′(β) and Varβ [T ] = K′′(β). Let β̂

solve t = Eβ̂ [T ], or

K′(β̂) = t. (1)

Applying the Gaussian approximation (see Nor-
mal Distribution) to fT (t) exp(n[t β̂ − K(β̂)]), one
obtains

fT (t) exp(n[β̂t − K(β̂)])

= (exp(0)/
√

2π)
√
K′′(β̂)

(
1 + O

(
1

n

))
. (2)

The notation O(1/n) indicates a quantity that,
when multiplied by n, is bounded as n → ∞, and
represents a relative error; that is, it reflects the
difference between the density approximation and the
true density, divided by the true density. Daniels [2]
showed that

fT (t) =
√

n exp(n[K(β̂) − β̂t])
√

2πK′′(β̂)

(
1 + O

(
1

n

))
.

(3)

Approximation (3) is preferred to direct applica-
tion of the central limit theorem, because the bound
on the relative error is uniform for t in compact
regions in the range of K′; a uniform bound on the
relative errors of more direct Gaussian-based approx-
imations generally exist only for t/

√
n bounded. The

other approximations given below share this relative
error behavior. Approximations discussed in this arti-
cle are called saddlepoint approximations, since they
might also be derived using complex integration tech-
niques, in which the integrand near β̂ is shaped like
a saddle; β̂ is known as the saddlepoint.

When T = (T 1, . . . , T d) is the mean of independ-
ent and identically distributed random vectors, each
with d components, the above logic motivates the
approximation

fT (t) = nd/2 exp(n[K(β̂) − β̂t])[
(2π)d/2

√
|K′′(β̂)|

]
(

1 + O

(
1

n

))
,

(4)

where β̂ satisfies

K′(β̂) = t. (5)

Statistical applications typically require approxi-
mate tail probabilities rather than approximate den-
sities, since tail probabilities may be used to con-
struct hypothesis tests, and hypothesis tests may be
inverted to construct confidence intervals; see [3].
When d = 1, one might integrate (3) to approxi-
mate P [T ≥ t]. Typically, one cannot perform these
integrations exactly. One might integrate by parts,
and demonstrate that an omitted term is sufficiently
small. Let ŵ = √

(2[β̂t − K(β̂)]) sgn(β̂). Lugannani
and Rice [7] show that

P [T ≥ t] = 1 − Φ(
√

nŵ)

+ φ(
√

nŵ)(1/ŵ − 1/ẑ)√
n

(
1 + O

(
1

n

))
,

(6)

where ẑ = β̂
√

(K ′′(β̂)). [1] derives the r∗ form of the
approximation

P [T ≥ t] = 1 − Φ(
√

nŵ∗)
(

1 + O

(
1

n

))
for

ŵ∗ = ŵ + (nŵ)−1 log

(
ẑ

ŵ

)
. (7)

Conditional probability densities may be approx-
imated by calculating (4) for both the joint and the
marginal densities (see Marginal Probability), and
dividing the results. Applying this technique to the
distribution of the last component T d , conditional on
all other components T−d = (T 1, . . . , T d−1), yields

fT d |T−d
(td |t−d) =

√
nφ(

√
nŵ)

√
|K′′(β̂)|/|K′′

−d (β̃)|

×
(

1 + O

(
1

n

))
. (8)
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Here β̂ solves (4) and β̃ solves β̃d =
0 and K′

−d(β̃) = t−d , K′′
−d is the matrix K′′,

omitting the row and column corresponding to
d, K′−d represents K′ with component d omitted,
and ŵ = √

(2[K(β̃) − K(β̂) + [β̂ − β̃]t]). Again,
P

[
T d ≥ td |T−d = t−d

]
may again be approximated

by (6) or (7), for ẑ = β̂d

√
(|K′′(β̂)|/|K′′−d (β̃)|).

Skovgaard [9] derived this approximation, using
(6). Approximations (6) and (7) are called double
saddlepoint approximations, to distinguish them
from an application of the univariate saddlepoint
distribution function approximation based on the
cumulant generating function of the conditional
distribution, which might be called a single
saddlepoint conditional probability approximation.
The single saddlepoint approach is useful when the
conditional cumulant generating function is available,
or when, like [4], one employs an approximation to
the conditional cumulant generating function.

The preceding development is for continuous
random variables. If possible values of components
of T are separated by a constant, say 1/n, then
probability masses for T are approximated by (3)
or (4). When d = 1, one might add (3) over the
tail region to show that (6) and (7) still hold, with
ẑ = 2n sinh(β̂/(2n))

√
(K′′(β̂)), and with β̂ satisfying

K′(β̂) = t − 1/(2n). For d > 1, when the possible
values of T d are separated by 1/n, (6) and (7) hold
as approximations to P

[
T d ≥ td |T−d = t−d

]
, where

ẑ = 2n sinh(β̂d/(2n))
√

(|K′′(β̂)|/|K′′
−d (β̃)|), and td is

corrected for continuity before applying (5).
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Salk Vaccine

The largest and, until the 1980s, the most expen-
sive medical experiment in history was carried out
in 1954. Well over a million young children par-
ticipated, and the immediate direct costs were over
5 million mid-century dollars. The experiment was
carried out to assess the effectiveness, if any, of
the Salk vaccine as a protection against paralysis
or death from poliomyelitis. The study was elabo-
rate in many respects, most prominently in the use
of placebo controls (children who were inoculated
with simple salt solution) assigned at random (that
is, by a carefully applied chance process that gave
each volunteer an equal probability of getting vaccine
or salt solution) (see Randomization) and subjected
to a double-blind evaluation (that is, an arrangement
under which neither the children nor the physicians
who evaluated their subsequent state of health knew
who had been given the vaccine and who the salt
solution; see Blinding or Masking).

Why was such elaboration necessary? Did it really
result in more or better knowledge than could have
been obtained from much simpler studies? These are
the questions on which this discussion is focused.

Background

Polio was never a common disease, but it certainly
was one of the most frightening and, in many ways,
one of the most inexplicable in its behavior. It
struck hardest at young children, and, although it was
responsible for only about 6% of the deaths in the age
group 5 to 9 in the early 1950s, it left many helpless
cripples, including some who could survive only on
a respirator. It appeared in epidemic waves, leading
to summer seasons in which some communities felt
compelled to close swimming pools and restrict pub-
lic gatherings as cases increased markedly from week
to week; other communities, escaping an epidemic
one year, waited in trepidation for the year in which
their turn would come.

The determination to mount a major research
effort to eradicate polio arose in no small part from
the involvement of President Franklin D. Roosevelt,
who was struck down by polio when a successful
young politician. His determination to overcome his
paralytic handicap enabled a great deal of attention,

effort, and money to be expended on the care and
rehabilitation of polio victims and – in the end, more
importantly – on research into the causes and preven-
tion of the disease.

During the course of this research, it was discov-
ered that polio is caused by a virus. Although clinical
manifestations of polio are rare, it was discovered
that the virus itself was not rare, but common, and
that most adults had experienced a polio infection
sometime in their lives without ever being aware
of it. This finding helped to explain the otherwise
peculiar circumstance that polio epidemics seemed
to hit hardest those who were better off hygien-
ically (that is, those who had the best nutrition,
most favorable housing conditions, and were oth-
erwise apparently most favorably situated). Indeed,
the disease seemed to be virtually unknown in those
countries with the poorest hygiene. The explanation
is that because there was plenty of polio virus in
the less-favored populations, almost every infant was
exposed to the disease early in life while still pro-
tected by the immunity passed on from the mother.
As a result, everyone had polio, but under protected
circumstances, and, thereby, everyone had developed
immunity.

As with many other virus diseases, an individual
who has been infected by polio and recovered is
usually immune to another attack (at least by a
virus strain of the same type). The reason for this
is that the body, in order to fight the infection,
develops antibodies in response to the presence of
the protein part of the polio virus. Once the body
has learned how to make antibodies to a particular
kind of virus, it is able to make them again very
rapidly, if the virus should attack a second time. This
ability to make antibodies rapidly to fight against
subsequent viral attacks is part of what makes people
immune.

Smallpox and influenza illustrate two different
approaches to the preparation of an effective vac-
cine. For smallpox, which has long been controlled
by a vaccine, we use for the vaccine a closely
related virus, cowpox, which is ordinarily incapable
of causing serious disease in humans, but which gives
rise to antibodies that also protect against smallpox.
(In a very few individuals this vaccine is capable
of causing a severe, and occasionally fatal, reac-
tion. The risk is small enough, however, so that
before smallpox was conquered we did not hesitate
to expose all our school children to it in order to
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protect them from smallpox.) In the case of influenza,
however, instead of a closely related live virus, the
vaccine is a solution of the influenza virus itself,
prepared with a virus that has been killed by treat-
ment with formaldehyde. Provided that the treatment
is not too prolonged, the dead virus still has enough
antigenic activity to produce the required antibod-
ies so that, although it can no longer infect, it is
sufficiently like the live virus to be a satisfactory
vaccine.

For polio, both of these methods were explored. A
live-virus vaccine would have the advantage of repro-
ducing in the vaccinated individual and, hopefully,
giving rise to a strong reaction that would produce
a high level of long-lasting antibodies. With such a
vaccine, however, there might be a risk that a vac-
cine virus so similar to the virulent polio virus could
mutate into a virulent form and itself be the cause
of paralytic or fatal disease. A killed-virus vaccine
should be safe because it presumably could not infect,
but it might fail to give rise to an adequate anti-
body response. These and other problems stood in
the way of the rapid development of a successful
vaccine. Some unfortunate prior experience also con-
tributed to the cautious approach of the researchers.
In the 1930s, attempts had been made to develop vac-
cines against polio; two of these were actually in use
for a time. Evidence that at least one of these vac-
cines had been responsible for cases of paralytic polio
soon caused both to be promptly withdrawn from
use. This experience was very much in the minds
of polio researchers, and they had no wish to risk a
repetition.

Research to develop both live and killed vaccines
was stimulated in the late 1940s by the develop-
ment of a tissue culture technique for growing polio
virus. Those working with live preparations devel-
oped harmless strains from virulent ones by grow-
ing them for many generations in suitable tissue
culture media. There was, of course, considerable
worry lest these strains, when used as a vaccine in
humans, might revert to virulence and cause paralysis
or death. (It is now clear that the strains devel-
oped are indeed safe – a live-virus preparation taken
orally is the vaccine presently in widespread use
throughout the world.) Those working with killed
preparations, notably Jonas Salk, had the problem
of treating the virus (with formaldehyde) sufficiently
to eliminate its infectiousness, but not so long as to
destroy its antigenic effect. This was more difficult

than expected, and some early lots of the vaccine
proved to contain live virus capable of causing paral-
ysis and death. There are statistical issues in the safety
story [1], but our concern here is with the evaluation
of effectiveness.

Evaluation of Effectiveness

In the early 1950s the Advisory Committee convened
by the National Foundation for Infantile Paralysis
(NFIP) decided that the killed-virus vaccine devel-
oped by Jonas Salk at the University of Pittsburgh had
been shown to be both safe and capable of inducing
high levels of the antibody in children on whom it had
been tested. This made the vaccine a promising can-
didate for general use, but it remained to prove that
the vaccine actually would prevent polio in exposed
individuals. It would be unjustified to release such a
vaccine for general use without convincing proof of
its effectiveness, so it was determined that a large-
scale “field trial” should be undertaken (see Vaccine
Studies).

That the trial had to be carried out on a very
large scale is clear. For suppose we wanted the trial
to be convincing if indeed the vaccine were 50%
effective (for various reasons, 100% effectiveness
could not be expected). Assume that, during the trial,
the rate of occurrence of polio would be about 50
per 100 000 (which was about the average incidence
in the US during the 1950s). With 40 000 in the
control group and 40 000 in the vaccinated group,
we would find about 20 control cases and about 10
vaccinated cases, and a difference of this magnitude
could fairly easily be attributed to random variation.
It would suggest that the vaccine might be effective,
but it would not be persuasive. With 100 000 in each
group, the expected numbers of polio cases would be
50 and 25, and such a result would be persuasive.
In practice, a much larger study was clearly required
because it was important to get definitive results as
soon as possible, and if there were relatively few
cases of polio in the test area, the expected number
of cases might be well under 50. It seemed likely,
also, for reasons we discuss later, that paralytic polio,
rather than all polio, would be a better criterion of
disease, and only about half the diagnosed cases
are classified “paralytic”. Thus the relatively low
incidence of the disease, and its great variability from
place to place and time to time, required that the trial
involve a huge number of subjects – as it turned out,
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over a million (see Sample Size Determination for
Clinical Trials).

The Vital Statistics Approach

Many modern therapies and vaccines, including some
of the most effective ones such as smallpox vaccine,
were introduced because preliminary studies sug-
gested their value. Large-scale use subsequently pro-
vided clear evidence of efficacy. A natural and simple
approach to the evaluation of the Salk vaccine would
have been to distribute it as widely as possible,
through the schools, to see whether the rate of
reported polio was appreciably less than usual dur-
ing the subsequent season. Alternately, distribution
might be limited to one or a few areas because lim-
itations of supply would preclude effective coverage
of the entire country. There is even a fairly good
chance that were one to try out an effective vaccine
against the common cold, convincing evidence might
be obtained in this way.

In the case of polio – and, indeed, in most cases –
so simple an approach would almost surely fail
to produce clear-cut evidence. First and foremost,
we must consider how much polio incidence varies
from season to season, even without any attempts to
modify it. From Figure 1, which shows the annual
reported incidence from 1930 through 1955, we see
that, had a trial been conducted in this way in 1931,
the drop in incidence from 1931 to 1932 would have
been strongly suggestive of a highly effective vaccine
because the incidence dropped to less than a third
of its previous level. Similar misinterpretation would
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Figure 1 Poliomyelitis in the US, 1930–1956. Source:
Meier [2]. Estimated. Figures complete through
December 8

have been made in 1935, 1937, and 1952. One might
suppose that such mistakes could be avoided by using
the vaccine in one area, say, New York State, and
comparing the rate of incidence there with that of
an unvaccinated area, say, Illinois. Unfortunately, an
epidemic of polio might well occur in Chicago – as
it did in 1956 – during a season in which New York
had a very low incidence.

Another problem, more subtle, but equally burden-
some, relates to the vagaries of diagnosis and report-
ing. There is no difficulty, of course, in diagnosing the
classic respirator case of polio, but the overwhelm-
ing majority of cases are less clear-cut. Fever and
weakness are common symptoms of many illnesses,
including polio, and the distinction between weakness
and slight transitory paralysis will be made differently
by different observers. Thus the decision to diagnose
a case as nonparalytic polio instead of some other
disease might well be influenced by a physician’s
general knowledge or feeling about how widespread
polio is in his or her community at the time.

These difficulties can be mitigated to some extent
by setting down very precise criteria for diagno-
sis, but it is virtually impossible to obviate them
completely when, as would be the case after the
widespread introduction of a new vaccine, there is
a marked shift in what the physician expects to find
(see Outcome Measures in Clinical Trials).

The Observed Control Approach

The difficulties of the vital statistics approach were
recognized by all concerned, and the initial study
plan, although not judged entirely satisfactory, cir-
cumvented many of the problems by introducing a
control group similar in characteristics to the vacci-
nated group. More specifically, the idea was to offer
vaccination to all children in the second grade of par-
ticipating schools and to follow the polio experience
not only in these children but in the first- and third-
grade children as well. Thus the vaccinated second
graders would constitute the treated group, and the
first- and third-graders would constitute the control
group. This plan follows what we call the observed
control approach.

It is clear that this plan avoids many of the dif-
ficulties listed above. The three grades all would
be drawn from the same geographic location so
that an epidemic affecting the second grade in a
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given school would certainly affect the first and third
grades as well. Of course, all subjects would be
observed concurrently in time. The grades, naturally,
would be of different ages, and polio incidence does
vary with age. Not much variation from grade to
grade was expected, however, so it seemed reason-
able to assume that the average of first and third
grades would provide a good control for the second
grade.

Despite the relative attractiveness of this plan
and its acceptance by the NFIP advisory commit-
tee, serious objections were raised by certain health
departments that were expected to participate. In
their judgment, the results of such a study were
likely to be insufficiently convincing for two impor-
tant reasons. One is the uncertainty in the diag-
nostic process mentioned earlier and its liability to
be influenced by the physician’s expectations, and
the other is the selective effect of using volun-
teers.

Under the proposed study design, physicians in
the study areas would have been aware of the fact
that only second-graders were offered vaccine, and
in making a diagnosis for any such child, they
would naturally and properly have inquired whether
the child had been vaccinated. Any tendency to
decide a difficult diagnosis in favor of nonpolio
when the child was known to have been vacci-
nated would have resulted in a spurious piece of
evidence favoring the vaccine. Whether or not such
an effect was really operating would have been
almost impossible to judge with assurance, and the
results, if favorable, would have been forever clouded
by uncertainty (see Bias in Observational Stud-
ies).

A less conjectural difficulty lies in the difference
between those families who volunteer their children
for participation in such a trial and those who do
not. Not at all surprisingly, it was later found that
those who do volunteer tend to be better educated
and, generally, more well-to-do than those who
do not participate. There was also evidence that
those who agree to participate tend to be absent
from school with a noticeably higher frequency than
others. The direction of effect of such selection on
the incidence of diagnosed polio is by no means
clear before the fact, and this important difference
between the treated group and the control group also
would have clouded the interpretation of the results
(see Selection Bias).

Randomization and the Placebo Control
Approach

The position of critics of the NFIP plan was that the
issue of vaccine effectiveness was far too important
to be studied in a manner that would leave uncer-
tainties in the minds of reasonable observers. No
doubt, if the vaccine should appear to have fairly
high effectiveness, most public health officials and
the general public would accept it, despite the reser-
vations. If, however, the observed control scheme
were used, a number of qualified public health scien-
tists would have remained unconvinced, and the value
of the vaccine would be uncertain. Therefore, the
critics proposed that the study be run as a scientific
experiment with the use of appropriate randomiza-
tion procedures to assign subjects to treatment or
to control and with a maximum effort to eliminate
observer bias (see Randomized Treatment Assign-
ment). This plan follows what we call the placebo
control approach.

The chief objection to this plan was that parents of
school children could not reasonably be expected to
permit their children to participate in an experiment
in which they might be getting only an ineffective
salt solution instead of a probably helpful vaccine.
It was argued further that the injection of placebo
might not be ethically sound since a placebo injec-
tion carries a small risk, especially if the child is
unknowingly already infected with polio (see Ethics
of Randomized Trials).

The proponents of the placebo control approach
maintained that, if properly approached, parents
would consent to their children’s participation in
such an experiment, and they judged that because
the injections would not be given during the polio
season, the risk associated with the placebo injection
was vanishingly small. Certain health departments
took a firm stand: they would participate in the trial
only if it were such a well-designed experiment.
The consequence was that, in approximately half the
areas, the randomized placebo control method was
used, and in the remaining areas, the alternating-grade
observed control method was used.

A major effort was put forth to eliminate any
possibility of the placebo control results being con-
taminated by subtle observer biases. The only firm
way to accomplish this was to ensure that neither
the subject, nor the parents or the diagnostic per-
sonnel could know which children had gotten the
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vaccine until all diagnostic decisions had been made.
The method for achieving this result was to prepare
placebo material that looked just like the vaccine but
was without any antigenic activity, so that the con-
trols might be inoculated and otherwise treated in just
the same fashion as were the vaccinated.

Each vial of injection fluid was identified only
by a code number, so that no one involved in
the vaccination or the diagnostic evaluation process
could know which children had gotten the vaccine.
Because no one knew, no one could be influenced
to diagnose differently for vaccinated cases and for
controls. An experiment in which both the subject
getting the treatment and the diagnosticians who will
evaluate the outcome are kept in ignorance of the
treatment given each individual is called a double-
blind experiment. Experience in clinical research has
shown the double-blind experiment to be the only
satisfactory way to avoid potentially serious observer
bias when the final evaluation is in part a matter of
judgment.

For most of us, it is something of a shock to be
told that competent and dedicated physicians must
be kept in ignorance lest their judgments be colored
by knowledge of treatment status. We should keep in
mind that it is not deliberate distortion of findings by
the physician that concern the medical experimenter.
It is rather the extreme difficulty in many cases of
making an uncertain decision that, experience has
shown, leads the best of investigators to be subtly
influenced by information of this kind. For example,
in the study of drugs used to relieve postoperative
pain, it has been found that it is quite impossible to
get an unbiased judgment of the quality of pain relief,
even from highly qualified investigators, unless the
judge is kept in ignorance of which patients were
given the drugs.

The second major feature of the experimental
method was the assignment of subjects to treat-
ments by a careful randomization procedure. As we
observed earlier, the chance of coming down with
a diagnosed case of polio varies with a great many
factors, including age, socioeconomic status, etc. If
we were to make a deliberate effort to match up the
treatment and control groups as closely as possible,
we should have to take care to balance these and
many other factors, and, even so, we might miss some
important ones. Therefore, perhaps surprisingly, we
leave the balancing to a carefully applied equivalent
of coin tossing: we arrange that each individual has

an equal chance of getting vaccine or placebo, but we
eliminate our own judgment entirely from the indi-
vidual decision and leave the matter to chance.

The gain from doing this is twofold. First, a chance
mechanism usually will do a good job of evening
out all the variables – those we did not recognize
in advance as well as those we did recognize.
Secondly, if we use a chance mechanism in assigning
treatments, we may be confident about the use of
the theory of chance (that is, probability theory)
to judge the results. We can then calculate the
probability that so large a difference as that observed
could reasonably be due solely to the way in which
subjects were assigned to treatments, or whether,
on the contrary, it is really an effect due to a true
difference in treatments.

To be sure, there are situations in which a skilled
experimenter can balance the groups more effectively
than a random-selection procedure typically would.
When some factors may have a large effect on the
outcome of an experiment, it may be desirable, or
even necessary, to use a more complex experimental
design that takes account of these factors. However,
if we intend to use probability theory to guide us in
our judgment about the results, we can be confident
about the accuracy of our conclusions only if we have
used randomization at some appropriate level in the
experimental design.

The final determinations of diagnosed polio pro-
ceeded along the following lines. All cases of polio-
like illness reported by local physicians were sub-
jected to special examination, and a report of history,
symptoms, and laboratory findings was made. A spe-
cial diagnostic group then evaluated each case and
classified it as nonpolio, doubtful polio, or definite
polio. The last group was subdivided into nonpar-
alytic and paralytic, with paralytic further divided
into nonfatal and fatal polio. Only after this process
was complete was the code broken and identification
made for each case as to whether vaccine or placebo
had been administered.

Results of the Trial

The main results are shown in Table 1, which shows
the size of the study populations, the number of
cases classified as polio, and the disease rates; that
is, the number of cases per 100 000 population. For
example, the second line shows that in the placebo
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control area there were 428 reported cases, of which
358 were confirmed as polio, and, among these, 270
were classified as paralytic (including four that were
fatal). The third and fourth rows show corresponding
entries for those who were vaccinated and those
who received placebo, respectively. Beside each of
these numbers is the corresponding rate. Using the
simplest measure – all reported cases – the rate in
the vaccinated group is seen to be half that in the
control group (compare the boxed rates in Table 1)
for the placebo control areas. This difference is
greater than could reasonably be ascribed to chance,
according to the appropriate probability calculation
(see Hypothesis Testing). The apparent effectiveness
of the vaccine is more marked as we move from
reported to paralytic cases to fatal cases, but the
numbers are small and it would be unwise to make
too much of the apparent very high effectiveness in
protecting against fatal cases. The main point is that
the vaccine was a success; it demonstrated sufficient
effectiveness in preventing serious polio to warrant its
introduction as a standard public health procedure.

Not surprisingly, the observed control areas pro-
vided results that were, in general, consistent with
those found in the placebo control areas. The vol-
unteer effect discussed earlier, however, is clearly
evident (note that the rates for those not inoculated
differ from the rates for controls in both areas).
Were the observed control information alone avail-
able, considerable doubt would have remained about
the proper interpretation of the results [3].

Although there had been wide differences of opin-
ion about the necessity or desirability of the placebo
control design before, there was great satisfaction
with the method after the event. The difference
between the two groups, although substantial and def-
inite, was not so large as to preclude doubts had there
been no placebo controls. Indeed, there were many
surprises in the detailed data. It was known, for exam-
ple, that some lots of vaccine had greater antigenic
power than did others, and it might be supposed that
they should have shown a greater protective effect.
This was not the case; lots judged inferior in potency
did just as well as those judged superior. Another
surprise was the rather high frequency with which

apparently typical cases of paralytic polio were not
confirmed by laboratory test. Nonetheless, there were
no surprises of a character to cast serious doubt on
the main conclusion. The favorable reaction of those
most expert in research on polio was expressed soon
after the results were reported. By carrying out this
kind of study before introducing the vaccine, it was
noted, we had facts about the Salk vaccine that we
still lack about the typhoid vaccine, and about the
tuberculosis vaccine after many decades of use.

Epilogue

It would be pleasant to report an unblemished record
of success for the Salk vaccine following so expert
and successful an appraisal of its effectiveness, but
it is more realistic to recognize that such success
is but one step in the continuing development of
public health science. The report of the field trial
was followed by widespread release of the vaccine
for general use, and it was discovered very quickly
that a few of these lots had actually caused serious
cases of polio. Distribution of the vaccine was then
halted while the process for making the vaccine
was reevaluated. Distribution was reinitiated a few
months later, but the momentum of acceptance had
been broken and the prompt disappearance of polio
that researchers had hoped for did not come about.
Meanwhile, research on a more highly purified killed-
virus vaccine and on several live-virus vaccines
progressed, and within a few years the Salk vaccine
was displaced in the US (but not in Sweden) by live-
virus vaccines.
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Sample Size Adequacy in
Surveys

Introduction

The Cambridge Dictionary of Statistics defines a
sample survey as “A study that collects planned
information from a sample of individuals about their
history, habits, knowledge, attitudes, or behavior
in order to estimate particular population [Italics
ours] characteristics” [5]. While the general concepts
involved in the determination of sample size ade-
quacy are essentially the same for sample surveys
as they are for other designs, the actual process is
generally driven by the following three features:

Consideration of Sample Design

In most other study designs, the data are assumed
to arise from an unrestricted random sampling
process (i.e. random sample from an infinite uni-
verse). In sample surveys, the sampling process can
involve stratification, clustering, multistage selec-
tion, and other complications such as missing data;
and methodology has to take these into consideration.
Also, the chances of being selected in the survey may
not be the same for each population unit (i.e. unequal
selection probability).

Emphasis on Estimation

In sample survey work, the primary objectives gen-
erally focus on construction of point and interval
estimates of characteristics of the population (see
Estimation; Estimation, Interval). Hypothesis test-
ing is often a secondary objective. Thus, sample size
assessment is generally stated in terms of the widths
of symmetric α confidence intervals achievable with
a particular n (number of units or number of clus-
ters) rather than the statistical power of rejecting a
specified null hypothesis.

Population

Sample surveys involve samples of n units from
a population of N units, where N is some finite
number. As noted above, this contrasts with the
usual (often implied) assumptions made in statistical

inference; namely, that the units are selected by
random sampling from a universe assumed to be
infinite. It also allows estimation of population totals
or aggregates, which are not possible if populations
are considered infinite.

Objectives

With this in mind, our objective in this entry is to
formulate an approach to sample size assessment,
which is accessible and can be readily used in a wide
variety of situations for point estimation of entities
such as means, totals, proportions, and ratios. We
are aiming this discussion at researchers who need
to assess adequacy of sample size for purposes of a
grant or contract application or some similar activity.
The methods described below are not “cutting edge”
but are widely known, widely used, and applicable to
many situations found in practice.

Approach

The approach we are taking is very similar to that
used by Thompson in his sampling book [12]. Let us
suppose we are assessing the adequacy of a sample
survey design based on a simple random sample
of n enumeration units from a population contain-
ing N enumeration units, and we want the resulting
half-width of the α confidence interval for the esti-
mated mean to be no wider than ε units on the scale
of the variable being estimated. Let us first ignore
the fact that we are sampling from a finite pop-
ulation and assume that we are using unrestricted
random sampling from an infinite universe and that
the variable of interest is normally distributed about
its mean with variance equal to σ 2, where σ 2 is
known. Since the standard error of an estimated
mean under unrestricted random sampling is equal
to σ/

√
n, the half-width of the α confidence interval

for the estimated mean is equal to z1−α/2σ/
√

n. Then
from classical theory, the sample size, n, satisfies the
specifications if the following holds:

z1−α/2

(
σ√
n

)
≤ ε

or

n ≥ z2
1−α/2σ

2

ε2
(1)
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where

z1−α/2 = the 100 × (1 − α/2) percentile of the nor-
mal distribution

σ 2 = the variance of the variable being analyzed

For finite population sampling, if d̂ is an estimate
of a parameter, d, then the specifications are that
we want n large enough that the half-widths of the
resulting 100 × (1 − α/2)% confidence intervals are
no wider than ε. However, the variance of d̂ is
dependent not only on the variance, σ 2, and the
sample size, n, but also on the sample design being
used (denoted by Ψ ) and the population size, N .

Let Var(d̂) = fΨ (σ, n, N). Then the specification
is satisfied if the following inequality holds:

z1−α/2

√
fΨ (σ, n, N) ≤ ε (2)

Frequently Used Sample Designs

Simple Random Sampling

If the design is simple random sampling of n units
from a population of N units, then the inequality
(2) is given by

z1−α/2

√(
σ 2

n

)(
N − n

N − 1

)
≤ ε (3)

Solving inequality (3) for n, we see that the specifi-
cation is satisfied if

n ≥ Nσ 2z2
1−α/2

σ 2z2
1−α/2 + (N − 1)ε2

(4)

If n is very much smaller than N (for practical
purposes, n ≤ 10% of N ), then the right hand side
of relation (4) reduces numerically to the right hand
side of relation (3).

The following example will illustrate the proce-
dures discussed above for determining the adequacy
of sample size. Suppose we guess that approximately
two-thirds of the clients of a chain of weight loss
clinics will lose between 2 and 14 pounds during the
first month, and that we wish to take a simple random
sample of 25 clients from the 750 registered clients.
We wish to be 95% confident of estimating the true
mean weight loss to within 3 pounds of its true value.
Is the proposed sample of 25 clients large enough to
meet this specification?

In this example, N = 750, n = 25, ε = 3, σ = 8
(assuming a normal distribution, approximately two-
thirds of values encompass 2 standard deviations
from the mean), and z1−α/2 = 1.96. From relation (4),
it would require a sample of 26.39 (which rounds to
27) persons to satisfy the specification, so n = 25 is
too small a sample size.

Stratified Random Sampling

A major rationale for stratification is its potential
property as a variance lowering design tool. Thus,
if effective, it should yield an estimate that has a
lower standard error than that obtained by a simple
random sampling design having the same number of
observations. Thus, it should require a smaller n to
obtain the same specifications of precision.

The variance of an estimate from stratified ran-
dom sampling depends on the strata variances
within, denoted σh : h = 1, . . . , L; the strata pop-
ulation sizes, Nh : h = 1, . . . , L, and the sampling
allocations, π1 = n1/n, . . . , πL = nL/n within each
stratum (see [9], p. 147 for the specific form of the
variance). Using this and solving the resulting expres-
sion in relation (2), we would obtain the following
approximate expression for the total sample size, n,
that satisfies the specifications:

n ≈

(
z2

1−α/2

N2

)(
L∑

h=1

N2
hσ 2

hx

πhX
2

)

ε2 +
(

z2
1−α/2

N2

)(
L∑

h=1

Nhσ
2
hx

X
2

) (5)

If estimates of the components of (5) are available
from pilot studies, previous or similar surveys, or can
be “guesstimated”, then (5) can be used to assess the
adequacy of the sample size.

Two-stage Cluster Sampling

In many situations, it may not be either feasible or
possible to compile sampling frames that enumerate
all units for the entire population. In such cases,
one may be able to construct a sampling frame that
identifies groups or clusters of enumeration units
without listing explicitly all individual units. One
can perform sampling from such frames by taking
a sample of clusters, obtaining a list of individual
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units within each selected cluster, and then selecting
a sample of the enumerated units.

While the approach for sample size estimation is
similar for two-stage cluster sampling designs as for
the more simple designs considered above, the vari-
ance formulas are often more complex, especially if
the clusters vary with respect to the number of sam-
pling units and are selected with unequal probabilities
at the first stage of sampling. One approach is to use
the following approximate formula for the variance
of an estimate from a two-stage cluster sample and
substitute it into relation (2):

Var(xclu) = Var(xsrs) × DEFF , (6)

where

Var(xclu) = the variance of an estimated mean per
unit from a two-stage cluster sample,

Var(xsrs) = the variance of an estimated mean per
unit from a simple random sample of the
same number, n, of observational units,

and

DEFF = Var(xclu)

Var(xsrs)

DEFF is a quantity known as the design effect, which
reflects the inflation in variance (mostly due to the
sampling of clusters and the unequal weighting of
observations intrinsic in most multistage designs).
Sometimes the design effect can be estimated as a
product of two factors: one representing the ineffi-
ciency of the unequal weighting used in the sample
design and the other representing the intraclass cor-
relation coefficient (see Correlation), which repre-
sents, in essence, the inefficiency in sampling more
than 1 unit from the same cluster. Specific formulas
are shown in [9].

Some Practical Guidelines for Assessing
Sample Size Adequacy

The authors highly recommend utilizing the follow-
ing guidelines to help ensure both appropriateness
and accuracy in determining sample size adequacy.

Required Input from Client

1. Specification of key variables (and their approx-
imate value or range of values) on the basis of
which sample sizes will be determined.

2. Specification of needed precision of the estimates
and “credibility level” of obtaining that level of
precision. Note: different clients may request pre-
cision in a variety a ways (e.g. standard error
of the estimate, half-width of confidence inter-
val, coefficient of variation (CV) (see Standard
Deviation), and effective sample size). Some-
times differences are of interest, so aspects such
as power, detectable differences or effect size
(see Design Effects) might be what are specified.

3. Available budget (if applicable) or cost compo-
nents.

4. Sample Design (sampling plan and estimation
procedure).

5. “Guesstimates” of variance of relevant variables,
intracluster correlations or a range of possible
correlations.

6. Will the survey be designed to satisfy multiple
constraints?

7. Response and eligibility definitions and rate
assumptions.

Computation of Required Sample Sizes

1. Search for available algorithms/software that
is appropriate to obtaining the required sample
size based on the particular sample design and
estimation procedure being used.

2. On the basis of client input (3. above), run appro-
priate statistical algorithm. Though a theoretical
algorithm may exist, an applicable one may not
and hence some programming may be necessary.

3. Perform quality control (QC) procedures on the
resulting sample size determination.

Items/Procedures for QC Checks

1. Verify with client investigators that determined
sample sizes have both “face validity” (see
Health Status Instruments, Measurement
Properties of) and are likely to be obtained given
the available budget.

2. Verify that the sample size satisfies the study
specifications (i.e., using the obtained sample
size, compute the precision of the estimate).
This should be performed for several key esti-
mates (at least for all on which sample sizes are
based), if the survey is required to satisfy multi-
ple constraints.
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Appendix

References to Methodology and Formulas for sample
sizes appropriate for common specific sample designs
(denoted by number in reference section) are given
below:

1. Simple random sampling [4, 6, 7, 9]
a. Linear estimates
b. Ratio estimates

2. Systematic sampling with a random start [1, 9]
3. Stratified random sampling [2, 4, 6, 7, 9, 10]

a. Equal allocation
b. Proportional allocation
c. Optimal allocation

4. Multistage Cluster sampling [4, 6, 7, 11]
5. Two-Phase sampling [9]
6. List-assisted telephone surveys [7–9]
7. Multiple variance constraints [3].
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Sample Size
Determination for Clinical
Trials

A fundamental rule of sample size determination is
that the method of calculation should be based on the
planned method of analysis. For clinical trials, the
array of analytic methods is large. Rather than pro-
duce a catalog of methods, this article will provide
the reader with a discussion of the conceptual issues
behind sample size determination that arise specifi-
cally in clinical trials.

One defining characteristic of a clinical trial is
that observations are made on human subjects. This
impacts on the sample size calculation of clinical
trials in the form of three primary distinguishing fea-
tures. First, however well-intentioned, patients cannot
always be cooperative with the planned conduct of
the study. In dealing with plots of land or labora-
tory animals, one is usually less concerned about
the experimental “units” receiving only part of the
assigned treatment, or receiving another treatment,
or failing to be present for a scheduled measurement.
Factors such as these are a significant part of every-
day clinical trials, and their impact on sample size
can be substantial.

Secondly, because clinical trials deal with the
treatment of humans, ethical issues (see Ethics of
Randomized Trials) raise the importance of the
sample size calculation. A sample size that is too
small can lead to a failure to detect a treatment effect
and consequently the abandonment of what may be
a very promising treatment. This in turn represents
the breach of an implicit contract with the study
patients that the trial, as designed, is of sufficient size
to detect a useful improvement in treatment. If it is
not, then the patients may have needlessly donated
their cooperation and needlessly been exposed to an
experimental therapy whose risks and benefits are as
yet not clearly known.

Finally, clinical trials tend to be costly. The Sys-
tolic Hypertension in the Elderly Program [1] trial
was budgeted at 50 million dollars, and the Women’s
Health Initiative at about ten times that amount. With
such large expenditures involved, one needs to bal-
ance carefully the extra cost of requiring a larger
sample size with the danger of failing to detect a use-
ful treatment difference. To repeat a very complex

or large trial with another of adequate sample size
will often be difficult to justify, even if the sponsor’s
objectives are still worth pursuing.

Clinical trials can be designed in many ways, but
the setting most frequently encountered is the com-
parative trial, in which two or more treatments are
compared. It will be assumed here that the primary
objective is hypothesis testing, and initially, the dis-
cussion will be restricted to the two-group case.

Sample size formulas frequently take the form

Ntot = c2(z1−ασ0 + z1−βσA)2

δ2
, (1)

where Ntot is the total sample size, c is a constant,
z1−α is the standard normal deviate whose prob-
ability of being exceeded is α, σ0 and σA are the
standard deviations under the null and alterna-
tive hypotheses, and δ is the treatment effect. The
variables on the right-hand side of this formula are
parameters whose values depend on the design of the
trial. Values for all parameters must be obtained to
determine the sample size. In most cases, however,
one cannot be confident of knowing all of these val-
ues with precision. Arriving at a chosen sample size
often involves calculating sample size for a range
of values of the uncertain parameters and choosing a
size that seems feasible and reasonably close to meet-
ing the scientific requirements of the study. Sample
size calculations usually involve other considerations,
such as non compliance and missing data, which
directly impinge on the parameters in (1).

Choice of Outcome Measure

Primary and Secondary Outcomes

Often in clinical trials there are many variables that
can be used to assess the success of the treat-
ment. These are called outcome or endpoint variables
(see Outcome Measures in Clinical Trials). Under
the null hypothesis of no treatment effect, the formal
testing of many outcome variables (see Multiplicity
in Clinical Trials) increases the probability of falsely
discovering a significant effect for at least one of
them. To maintain the desired probability of a type I
error in the presence of many outcomes, adjustment
for multiple comparisons is necessary. One con-
sequence of such adjustment is that the power is
reduced for demonstrating that a specific one of those
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outcomes is significantly altered by the treatment.
In order to strike a balance between the desirability
of assessing the effect of treatment on many vari-
ables, while maintaining adequate power for specific
variables, outcomes in clinical trials are often class-
ified as primary or secondary. Usually the primary
endpoint is limited to one outcome, although there
are exceptions. The efficacy of the treatment is then
formally based on statistical significance only with
respect to the primary outcome. If more than one
primary outcome is chosen, then a multiple compar-
isons adjustment is usually applied; this is reflected in
the sample size calculations through the significance
levels assigned to the individual primary outcomes.
The sample size is then chosen so that there is ade-
quate power for each primary outcome. Note that
multiple comparisons are appropriate only if one will
claim success when any of the primary outcomes is
significant. If significance is required for all of the pri-
mary outcomes, then the type I error becomes much
smaller, rather than larger, than the nominal signifi-
cance level. The usual practice in this case, however,
is to use the nominal significance level.

Repeated Measurements

Now assume that a single primary outcome has been
chosen, and attention is at first restricted to continu-
ous measurements. For purposes of illustration, con-
sider a trial of hypertensive patients in which blood
pressure has been identified as the primary outcome.
There are many possible times at which this measure-
ment can be taken. Before randomization it can be
used to identify patients who are eligible for the trial,
i.e. hypertensive patients. In a long trial, blood pres-
sures may be measured frequently to assure that the
blood pressure of hypertensive patients is adequately
controlled. It also could be measured frequently to
study the time course of response. Furthermore, since
the variability of the measurement is a crucial fac-
tor for sample size, one can use/repeated measure-
ments (see Longitudinal Data Analysis, Overview)
to reduce the variability. For example, one can aver-
age all of the postrandomization measurements for
an individual. For blood pressure, this is rarely done,
because the initial response may wane, owing to bio-
logic changes or diminishing compliance with the
treatment regimen. Alternatively, the variance can
still be reduced by taking multiple measurements near
the end of a specified period of interest. In deciding

whether to take multiple measurements, many factors
must be considered. It is well known that the vari-
ability of blood pressure measurements has between-
patient and within-patient variability, and within a
patient, there are also within-visit and between-visit
components of variability. While it is less expensive
to measure a patient repeatedly within a single visit,
repeating the within-visit measurement beyond two
or three times is generally not done because at this
point the between-visit variability becomes the dom-
inant source of variation. The cost of increasing the
number of visits has to be weighed against the cost of
enrolling more patients. Additionally, increasing the
number of visits per patient may result in increasing
rates of failure to attend some of these visits.

Change from Baseline

Should one use change from baseline or just the
follow-up assessment? The choice here hinges on the
correlation between baseline and follow-up: if the
correlation is less than 0.5, then only the follow-up
measurement should be used, otherwise the differ-
ence is preferred. This correlation is a function of the
length of time between baseline and follow-up. The
same considerations regarding the variance compo-
nents of the final measurement also apply to the
baseline measurement (see Baseline Adjustment in
Longitudinal Studies).

Survival

If the outcome is an “event” that may happen over
time, then the trial is frequently called a survival
trial (see Survival Analysis, Overview). Although
survival trials bring to mind outcomes such as death
or heart attack, for a drug designed to relieve pain the
event could be meaningful pain relief. Patients who
do not have an “event” during a specified period are
said to have censored observations. With a survival-
type event, an important consideration is whether one
is interested in comparing the entire survival curve
(i.e. the times to an event) or only the proportions
surviving at a specified time. In sepsis trials, patients
have virulent infections with high mortality rates
within 30 days (see Clinical Trials of Antibacterial
Agents). Suppose, at the end of 30 days, the drug is
unable to keep alive more patients than the placebo.
While a comparison of survival curves may detect
a difference in time to death, this may amount to a
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few extra days of life for unwell patients who still
succumb within the 30 days. Thus, it is argued, only
the proportions surviving at 30 days are important.

When there is censoring, comparing proportions
becomes more difficult. In a trial such as the sep-
sis trial, where each patient is observed for exactly
30 days, and mortality from any cause is the primary
outcome, censoring is not expected to be a problem,
since the outcome information can presumably be
determined for all patients. However, in a trial where
the outcome is fatal or nonfatal heart attack, death
from a noncardiac disease would censor the data. In
long-term trials, where patient entry is staggered over
a recruitment period, and each patient is followed
until the trial is closed out, censoring is very com-
mon. In these situations, each patient has a different
length of follow-up. It is difficult to assign meaning
to the term “proportion surviving” without specifying
a fixed period of observation common to all patients.
One can estimate the probability of surviving when
patients have differential lengths of follow-up using
the Kaplan–Meier method. Kaplan–Meier estimates
of the probability of surviving to the end of such
a trial are usually very unreliable because of heavy
censoring towards the end of the trial. Often in these
long-term trials, survival curves are compared and
the logrank test, which compares the entire survival
experience, is usually preferred. Sample size method-
ology for the logrank statistic has been developed
by Schoenfeld [12], Freedman [4], and Lakatos [7].
The Kaplan–Meier method and logrank statistic are
designed only for noninformative censoring, and the
sample size methods just referenced assume noninfor-
mative censoring as well (see Sample Size Determi-
nation in Survival Analysis).

Selecting the Parameters

Frequently, identifying a method or formula which
is reasonable for determining the appropriate sample
size is the easy part of the problem. With every sam-
ple size formula, the statistician must choose values
for the parameters. Unfortunately, the values of most
of the parameters are only poorly known before the
trial. In specific applications, the values of some of
the parameters may be fairly well agreed upon. Some
statisticians rely on the clinicians to provide values
for the parameters. However, the statistician is best
served by judging his or her own estimates for all
parameters, and negotiating these judgments with the

clinicians. It should be understood that the ability to
negotiate successfully for adequate sample size may
be greatly diminished if the statistician does not have
a firm position on the clinical background and the
choice of parameters.

Type I and Type II Error Rates
(Significance and Power)

Type I Error (Corresponding to z1−α)

The null hypothesis, H0, is that the experimental
therapy has no different effect on the outcome com-
pared with the control. Associated with every test is
the type I error rate, or significance level, which is
the probability of falsely rejecting the null hypoth-
esis. When testing an experimental treatment, it is
usually assumed that one has introduced this new
treatment because it is thought to be superior to con-
trol, and that the trial is being carried out to “prove”
this. There is rarely any interest in proving that it
is worse; often sponsors will abandon a drug that
is not much better than the control (although see
the section “Equivalence Trials” below). According
to most authors, the standard by which a new treat-
ment is judged a success is whether the equivalent of
the standard normal deviate value of the primary
outcome statistic exceeds 1.96. The implied level of
significance corresponding to 1.96 is generally felt
to be a reasonable standard against which all trials
should be judged. The 1.96 can correspond to a one-
sided hypothesis with significance level 0.025 or a
two-sided hypothesis of significance level 0.05. If
one is truly interested in also knowing whether the
treatment is worse than control (a recent trial of dig-
italis is an example), then 1.96 can also be used as
the standard for testing this. A minority opinion is
that because the researcher is not interested in test-
ing whether the treatment is worse than control, a
reduced standard, such as 1.645, is appropriate for
judging whether the experimental therapy is better.
However, most biostatisticians consider that the stan-
dards by which an experimental therapy is judged
better than control should not depend on whether one
was interested in proving that it is worse than control.

Type II Error Rate (Corresponding to z1−β)

The choice of the alternative hypothesis, Ha, is an
area of frequent contention (see below). The type II
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error rate is the probability of failing to reject the
null hypothesis, given that the alternative hypothesis
is true. The power is one minus the type II error rate.
In other words, if the experimental treatment is truly
better than control by the amount postulated in the
alternative hypothesis, the power is the probability
of showing a significant difference. When trials are
designed, a good deal of attention may be placed
on whether the power is adequate, with 90% power
the generally accepted standard for major Phase III
trials. However, when a trial is analyzed, there is
often little or no attention paid to the power, with
the significance level dominating the spotlight. If
the trial fails to reach the conventional criterion for
statistical significance, then it is often concluded that
the experimental treatment was no better than control.
Such a conclusion may not be true – the lack of
significance may simply be a matter of inadequate
power. In the analysis of the trial, lack of power is
properly expressed in a wide confidence interval for
the treatment difference.

A Balance Between Type I and Type II Errors

The error of falsely concluding benefit of an inef-
fective therapy (type I error) has traditionally been
thought of as the more critical of the two types of
error. If ineffective therapies were given the stamp
of approval, then physicians would end up prescrib-
ing ineffective medications, and patients would spend
large amounts of money on worthless treatments.
More importantly, patients might be denied superior
therapies because physicians believed an approved
inferior was effective. Furthermore, research in a dis-
ease might be impeded because a beneficial therapy
appeared to exist.

However, if trials are designed with inadequate
power, then there are also important consequences.
Some of these were discussed at the beginning of
the article. Inadequate power can result in failure to
detect a treatment that is truly effective. If the therapy
is subsequently abandoned, then patients are denied
therapy that could provide relief or even save lives.
Alternatively, if there is still hope and conviction that
the treatment is sufficiently promising, then trials will
have to be rerun, this time with adequate power; this
process leads to loss of time and money.

On balance, primary importance is still given to
the type I error. Additionally, some trials are felt to be
of sufficient importance to warrant very large sample

sizes and consequently high power. Even then, the
type I error rate is generally chosen to be at least as
small as the type II.

The Treatment Effect (δ)

There are a number of different criteria that may
be used to arrive at the treatment effect for the
calculation, i.e. the alternative hypothesis Ha. Two
criteria that are very important are (1) the smallest
clinically meaningful difference (SCMD), and (2) the
anticipated treatment effect (ATE).

As sample sizes increase, the size of an estimated
treatment effect that can be detected as statistically
significant decreases towards 0. However, very small
treatment effects may not be meaningful clinically,
and trials need not be designed to detect such small
differences. But if the sample size of a trial is based
on a rather large treatment effect which is consid-
erably larger than some meaningful difference then,
at the final analysis, statistical significance may very
well not be achieved because the treatment effect is
smaller than the large assumed treatment effect, but
still clinically meaningful. Had the original trial been
powered to detect this smaller effect, statistical signif-
icance of this clinically meaningful difference would
have been achieved. Thus, it is important to consider
what is the SCMD, even if its exact value is often
elusive (see below).

The decision as to what is a clinically mean-
ingful difference is one that requires the input of
the statistician, the clinician and the sponsor. Con-
sider first, mortality. While “clinically meaningful”
seems to imply a physician’s opinion, one could argue
that patients are often in the best position to judge
whether a decrease in mortality is meaningful in a
specific situation. Some people feel that any decrease
in mortality is meaningful. Others might consider a
minimum of 10% decrease in the probability of mor-
tality necessary to offset the toxic side effects of a
given chemotherapy regimen. A sponsor may con-
sider the prevalence of a disease to be so low that if
the drug produces only a 10% reduction in mortality,
then it would not be worth the cost of development.
With so many diverse considerations, it should not be
surprising that agreement on an SCMD in mortality
is often difficult.

Now suppose the primary endpoint of the trial is
diastolic blood pressure. For an individual patient,
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a physician might feel that a 10 mmHg decrease
is the smallest that is clinically meaningful. The
desired decrease might be larger for patients with
higher initial blood pressures. In many trials, how-
ever, the targeted treatment effect compared with
placebo is chosen to be in the range of 3–5 mmHg
reduction. Why is there this discrepancy? One reason
may be that the anticipated treatment effect (ATE) is
much smaller than 10 mmHg. This arises because the
observed reduction will be the average of a popula-
tion of individual changes, with some of the distri-
bution of changes being well below 10 mmHg. One
could consider using a drug that achieved a 10 mmHg
or larger reduction in only a portion of the patients.
Physicians routinely monitor the blood pressure of
hypertensive patients, and if a patient’s blood pres-
sure remains excessive with the current prescribed
medication, the physician will usually change the pre-
scription.

If the ATE is considerably larger than the SCMD,
then it is unrealistic to expect the sponsor to sup-
port the sample size needed to detect an effect much
smaller than is likely to occur. However, it has been
common to conduct trials that attempt to detect treat-
ment effects that are far larger than could realistically
be anticipated. In summary, the chosen treatment
effect should reflect both of these considerations: it
must be achievable and it must be meaningful.

Equivalence Trials

Sometimes treatments are introduced which are
expected to have no better efficacy, or minimally
poorer efficacy, than an already accepted treatment.
Some reasons for introducing such a therapy
may be because this new treatment may be less
toxic, less expensive, or have fewer side effects
(see Equivalence Trials). One of the key differences
between testing for superiority and equivalence is
that the latter requires the designers to specify the
largest acceptable treatment difference as part of the
null hypothesis. This factor is critical, because this
declared difference plays a large role in the P value
obtained at the end of the trial, and whether or not the
nominal significance level is attained. A central issue
for equivalence testing is agreeing upon how much
one is willing to accept reduced efficacy in exchange
for other benefits such as reduced toxicity. If a new
therapy offers very visibly reduced side effects as
compared with a standard highly toxic chemotherapy,

a patient or his physician may be willing to accept up
to perhaps a 5% or 10% increase in mortality. With
an antihypertensive medication, where the side effects
are much less severe, such an increase in mortality
may appear less acceptable. If, however, the fact that
the patient must take the antihypertensive medication
with these side effects for the rest of his life is
factored into the picture, then a mortality increase
may appear less objectionable. A sample size formula
for this situation is

Ntot = c2(z1−ασ0 + z1−βσA)2

(δa − δ0)2

Here, δa is the difference that one is willing to accept,
and δ0 is the expected or true difference. For equiva-
lence, we usually set δ0 = 0. Confidence intervals are
often the preferred approach for analyzing the results
of equivalence trials. The above formula is valid for
confidence intervals.

Sample Size Adjustment

There are many factors which influence the sample
size which are not considered in the sample size
formulas above. These factors should be accounted
for in the method of calculation. A few common
factors are now discussed.

A Simple Adjustment for Noncompliance

One of the factors that distinguishes clinical trials
from other experiments is the difficulty in getting
patients to adhere to their assigned treatment
regimens. This is particularly true in the longer
prevention trials, since the motivation of an acute
condition is not present. The intention to treat
paradigm dictates that patients be analyzed with
respect to their initial treatment assignment. The
usual philosophy in sample size determination is
that a treatment difference that is both meaningful
and likely to occur is identified. Then, recognizing
that many patients may take less than their assigned
treatment regimen, the statistician models the impact
of noncompliance on the treatment effect and in turn
on the probability of rejecting the null hypothesis.
Many models have been proposed for accounting
for noncompliance in sample size calculation [5,
6, 14]. A simple approach is discussed here that
can be applied regardless of the type of outcome
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variable. A more complex procedure is discussed
later under survival analysis. In some trials, most of
the noncompliance is likely to occur near the time
of randomization. If there are difficult side effects,
then these are likely to occur soon after initiation
of therapy, and most patients will not endure these
for long periods. Furthermore, those patients who
enroll but have little interest in the therapy will stop
taking medications soon after randomization. Perhaps
the simplest model for noncompliance is for a new
treatment vs. placebo trial, in which a proportion
of the patients on the new treatment discontinue
their medication immediately, while the remainder
adhere. In this case, a proportion will receive no
benefit of therapy, while the remainder receive full
benefit. This model is considered conservative. One
approach to account for this is to calculate what is
referred to as the “observed treatment effect”. If δ is
the treatment effect under full compliance, then the
observed treatment effect is d = (1 − pm)δ, where
pm is the proportion of noncompliers. A sample size
adjustment factor based on this observed treatment
effect d would be nadj = n/(1 − pm)2, since

nadj

n
= 4(zα + zβ)2σ 2

(1 − pm)2δ2

/ 4(zα + zβ)2σ 2

δ2

Table 1 presents some inflation factors using this
model and various proportions of noncompliance.

A Simple Adjustment for Nondifferential Loss to
Follow-up

The term “loss to follow-up” refers to a type of
censoring applied to any patient whose status with
respect to the final endpoint cannot be determined
at the time of the analysis. Thus, if the endpoint
is stroke, and the patient dies of cancer prior to
having a stroke, then this is considered loss to follow-
up. If the reason for censoring is not related to
the endpoint, then the censoring is referred to as
noninformative or nondifferential censoring. If the
probability of nondifferential loss to follow-up is l,

Table 1 Inflation factors for a simple, conservative non-
compliance adjustment

Proportion noncomplying 0.05 0.10 0.20 0.30 0.50

Inflation
factor = 1/(1 − pm)2 1.11 1.23 1.56 2.04 4.00

then a simple adjustment is nadj = n/(1 − l). This is
equivalent to assuming that all patients who are lost
will be lost at the time of randomization; generally
this is conservative.

Adjusting Survival Analyses for Noncompliance
and Other Factors

Many models have been proposed for analyzing sur-
vival data. The desirability of a comparison of pro-
portions vs. a comparison of survival curves was
discussed in the section “Choice of Outcome Mea-
sure” earlier in this article. In those situations for
which survival curves should be compared, the curves
may have a variety of shapes. A common pattern is
for events to happen soon after randomization, and
then taper off. The pattern is dramatic in congestive
heart failure (e.g. Study of Left Ventricular Dysfunc-
tion [13] and CONSENSUS [2]), and in angioplasty.
In these nonconstant hazard situations, proportional
hazard models should be used in preference to
exponential models, since the latter assume that the
hazard rate will be constant throughout the trial.
Additionally, the treatment effect may vary during
the trial. In angioplasty, Reopro, which is admin-
istered intravenously, is usually given for less than
a day. The effects on mortality appear to continue
for perhaps 6 months. However, the largest benefit
is around the time of administration, with the bene-
fit tapering rapidly over the first 30 days. A similar
tapering of benefit occurs on a group basis when
there is noncompliance. In these cases, nonpropor-
tional hazards models should be used in preference
to proportional hazard models. Lakatos [7] provided
a general method for calculating sample size for
the logrank statistic which allows a great deal of
flexibility in simultaneously specifying nonuniform
accrual patterns, nonconstant and nonproportional
hazard functions, lags in treatment effects, loss to
follow-up, noncompliance, and dropout. The Lakatos
method employs nonstationary Markov models; a
simple computer program is needed for implementa-
tion. Exponential models are not appropriate if non-
compliance, drop-in or treatment lag are to be mod-
eled, and the nonstationarity of the Markov model is
essential.

Determining Duration and Treatment Effect for
Survival Trials

Increasing the duration of a trial increases the over-
all failure rate and, in turn, can reduce the required
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sample size, especially if failure is a rare event. The
relationship between required sample size and dura-
tion may be complex in survival trials, particularly
if there is noncompliance or nonconstant hazards.
Although a parameter for duration does not appear
explicitly in the sample size formula, the duration
which provides a prespecified power can be deter-
mined by fixing all other parameters (including sam-
ple size). A simple iterative procedure is then used,
in which power is calculated for a series of fixed
trial durations which are successively adjusted to
bring the power as close as desired to the target
power.

Similarly, for survival trials, the treatment effect
may be a complex function of other factors. Non-
compliance, for example, can cause a diminution of
the treatment effect over time. As with duration, an
iterative procedure can be used.

Adjusting for Group Sequential Designs

Methods for calculating sample size when group
sequential procedures will be used (see Sequential
Analysis) in the presence of trial complexities such
as noncompliance, drop-in, loss-to-follow-up and the
like have been developed by Lakatos [8]. Here a few
issues are discussed. Suppose there is a boundary z1,
z2, . . . , zk , and the tests are successively performed
at predetermined fractions of the total “information”
(for continuous endpoints the information fraction
is roughly the proportion of patients in the current
analysis, and for survival trials, the information frac-
tion is roughly the proportion of events (see Lan &
Zucker [10] for a detailed account). The alpha level
is the cumulative probability under successive test-
ing, and under the null hypothesis, of the calculated
z value exceeding the boundary z values. In other
words, it is the accumulated probability of reject-
ing the null hypothesis after the sequence of tests
has been performed assuming the null. Similarly, the
power is the accumulated probability of rejecting the
null hypothesis after the sequence of tests has been
performed assuming the alternative. What is impor-
tant here is that to calculate the power, one generally
needs to integrate, numerically, under the alterna-
tive hypothesis. It is also important to note that a
lower bound on the power can be calculated without
numerical integration. This is because the probabil-
ity of rejecting the null at the final analysis must
be less than or equal to the combined probability

of rejecting it over all analyses. Thus, if the final
boundary value for a group sequential procedure is
zk = 2.10, then an upper bound on the sample size
is nadj = n[(1.28 + 2.10)/(1.28 + 1.96)]2 = 1.088n;
here the 1.28 corresponds to 90% power, and the
1.96 to a two-sided 0.05 level test. Since the very
popular O’Brien–Fleming final boundary [11] value
is usually less than 2.10 (see Data and Safety Moni-
toring), the sample size inflation factor is usually less
than 8.8%. In contrast, the sample size adjustment
factor when noncompliance, drop-in, lag in treatment
effect, and loss to follow-up are expected may be
100% or more (cf. Lakatos & Lan [9]). Therefore,
when using the O’Brien–Fleming procedure, if the
exact sample size incorporating group sequential and
all other expected effects would be difficult to cal-
culate, it is generally better to use a sophisticated
procedure for calculating the effects of noncompli-
ance and the like, and a post hoc inflation for the
group sequential testing, than to use a sophisticated
group sequential sample size method and a post hoc
inflation for noncompliance.

Unequal Allocation between Treatment Groups

While most trials allocate patients to the treatment
groups in equal proportions (e.g. 50% to group A,
50% to group B), this rule is not universally applied.
If there are two or more active groups and the pri-
mary objective is to compare each active group with
control, then optimal power is achieved with unequal
allocation. This occurs because a disproportionately
large fraction allocated to the control group will ben-
efit all tests. Formulas for optimal allocation can be
found in [3]. Frequently, in drug trials there may
be a disproportionately high allocation to the active
groups, simply to obtain more safety experience with
a new investigational drug.
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Sample Size
Determination in Survival
Analysis

Many survival studies are designed to compare two
alternative treatments, but information on the val-
ues of certain explanatory variables may also be
available. It has been shown by Schoenfeld [6] that
the expression for calculating the required number of
deaths is the same whether or not account is taken
of supplementary explanatory variables. For this rea-
son, an efficacy study to compare the survival times
of individuals who receive a new treatment with those
who receive a standard will be the focus for this
article.

Suppose that there are two groups of individu-
als, and that the standard treatment is allocated to
the individuals in Group I, while the new treatment
is allocated to those in Group II. Assuming a pro-
portional hazards model for the survival times, the
hazard of death at time t for an individual on the new
treatment, hN(t), can be written as

hN(t) = ψhS(t),

where hS(t) is the hazard function at t for an
individual on the standard treatment and ψ is the
unknown hazard ratio. We will also define θ =
log ψ to be the log-hazard ratio. If θ is zero, then
there is no treatment difference. On the other hand,
negative values of θ indicate that survival is longer
under the new treatment, while positive values of
θ indicate that individuals survive longer on the
standard treatment.

In a survival study, the occurrence of censoring
means that it is not usually possible to measure the
actual survival times of all individuals in the study.
However, it is the number of actual deaths that is
important in the analysis, rather than the total number
of subjects. Accordingly, the first step in determining
the required number of individuals in a study is to
calculate the number of deaths that must be observed.

Calculating the Required Number of
Deaths

To determine the sample size requirement for a study
(see Sample Size Determination for Clinical Tri-
als), we calculate the number of individuals needed

for there to be a certain chance of declaring θ to
be significantly different from zero when the true,
but unknown, log-hazard ratio is θR. Here, θR is the
reference value of θ . It will be a reflection of the mag-
nitude of the treatment difference that it is important
to detect, using the test of significance (see Hypoth-
esis Testing). In practice, θR might be chosen on the
basis of the increase in the median survival time
that is to be detected, or in terms of the probability
of survival beyond some specific time.

The required number of deaths is taken to be such
that there is a probability of 1 − β of declaring the
observed log-hazard ratio to be significantly different
from zero, using a hypothesis test with a specified sig-
nificance level of α, when in fact θ = θR (see Level
of a Test). The quantity 1 − β is the probability of
rejecting the null hypothesis when it is in fact false,
and is the power of the test. Both α and β are taken
to be small, and the values chosen will depend on
the circumstances of the study; typical values are
α = 0.05 and β = 0.1.

The required total number of deaths, d, can be
found using

d = 4(zα/2 + zβ)2

θ2
R

, (1)

where zα/2 and zβ are the upper α/2- and
upper β-points, respectively, of the standard normal
distribution.

This result appears in many papers, although the
assumptions on which the result is based can be dif-
ferent. For example, Bernstein & Lagakos [1] obtain
(1) on the assumption that the survival times in each
of the two groups have exponential distributions.
However, Schoenfeld [5] obtains the same result
when the logrank test is used as a basis for compar-
ing the treatments, without making the assumption of
exponentiality; this derivation is included in [2].

A variant on the formula for the required number
of deaths is given by Freedman [3], who has [(1 +
eθR)/(1 − eθR)]2, in place of 4/θ2

R. However, when θR

is small,

(
1 + eθR

1 − eθR

)2

≈
(

2 + θR

θR + θ2
R/2

)2

= 4

θ2
R

,

and so the two expressions will tend to give sim-
ilar results. Freedman’s expression is the basis for
the extensive tables of sample size requirements in
Machin & Campbell [4].
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The derivation of the result in (1) assumes that the
same number of individuals is to be assigned to each
treatment group. If this is not the case, a modification
has to be made. In particular, if the proportions of
individuals to be allocated to Groups I and II are π1

and π2, respectively, then the required total number
of deaths becomes

d = (zα/2 + zβ)2

π1π2θ
2
R

.

Notice that an imbalance in the number of individu-
als in the two treatment groups leads to an increase
in the total number of deaths required. The derivation
also includes an approximation which means that the
calculated number of deaths could be an underesti-
mate. Some judicious rounding up of the calculated
value is therefore recommended to compensate for
this.

Example: Comparison of Two Treatments

A clinical trial is to be designed to compare a new
form of chemotherapy with a standard for the treat-
ment of patients with ovarian carcinoma. The time
from randomization to death is the response variable
of interest.

As a first step, information is obtained on the sur-
vival times, in months, of patients who have received
the standard treatment. The Kaplan–Meier estimate
of the survivor function derived from such data is
shown as the step function drawn with a solid line in
Figure 1.
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Figure 1 Estimated survivor functions for individuals on
the standard treatment ( ) and the new treatment (- - - )

From this estimate of the survivor function, the
median survival time is 30 months, and the survival
rates at 1, 3, and 5 years can be taken to be given by
S(12) = 0.68, S(36) = 0.42, and S(60) = 0.20.

The new treatment is expected to increase the
survival rate at 4 years from 0.25, the value under
the standard treatment, to 0.40. This information can
be used to calculate a value for θR. To do this, we
use the result that, if the hazard functions are assumed
to be proportional, then the survivor function for an
individual on the new treatment at time t is

SN(t) = [SS(t)]
ψ, (2)

where SS(t) is the survivor function for an individual
on the standard treatment at t and ψ is the hazard
ratio. Therefore,

ψ = log SN(t)

log SS(t)
,

and so the value of ψ corresponding to an increase
in S(t) from 0.25 to 0.40 is

ψR = log(0.40)

log(0.25)
= 0.66.

With this information, the survivor function for an
individual on the new treatment can be estimated
by [SS(t)]ψR . In particular, SN(12) = 0.76, SN(36) =
0.56, and SN(60) = 0.35. The estimated survivor
function for the new treatment is shown as a dotted
line in Figure 1.

The median survival time under the new treatment
can be found from this estimate of the survivor
function. Using Figure 1, the median survival time
under the new treatment is estimated to be about 40
months.

To calculate the number of deaths that would be
required in a study to compare the two treatments, we
take α = 0.05 and β = 0.10. With these values of α

and β, zα/2 = 1.96 and zβ = 1.28, and taking θR =
log ψR = log 0.66 = −0.416, the number of deaths
required to have a 90% chance of detecting a hazard
ratio of 0.66 to be significant at the 5% level is then
given by

d = 4(1.96 + 1.28)2

0.4162
= 243.

Allowing for possible underestimation, this can be
rounded up to 250 deaths in total.
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Calculations such as those used in this example are
only going to be of direct use when a study is to be
continued until all patients entered into the study have
died. In most trials, the analysis will take place before
everyone has experienced the endpoint, so that some
observations will be censored. This has to be taken
into account when designing the study, and so we
now examine how the required number of individuals
can be obtained.

Calculating the Required Number of
Individuals

To calculate the actual number of individuals that are
required in a survival study, we need to consider the
probability of death over the duration of a study.
Typically, individuals are recruited over an accrual
period of length a. After recruitment is complete,
there is an additional follow-up period of length f .
The total duration of a study will therefore be of
length a + f . Notice that, if f is small, or even
zero, then there will need to be correspondingly more
individuals recruited in order to achieve a specific
number of deaths.

Once the probability of an individual dying in the
study has been evaluated, the required total number
of individuals will be found from

n = d

Pr(death)
, (3)

where d is the required number of deaths found from
(1). The probability of death can be taken as

Pr(death)

= 1 − 1

6
[S(f ) + 4S(0.5a + f ) + S(a + f )], (4)

where

S(t) = SS(t) + SN(t)

2
, (5)

and SS(t) and SN(t) are the estimated values of the
survivor functions for individuals on the standard and
new treatments, respectively, at time t . This result
is similar to that given by Schoenfeld [6], and full
details of the derivation are included in Collett [2].

A simpler result is based on the assumption that
survival times are exponentially distributed. If the
mean survival times under the standard and new

treatments are λ−1
S and λ−1

N respectively, then the
average survivor function, S(t), is given by

S(t) = e−λSt + e−λNt

2
. (6)

Estimates of λS and λN can be obtained from the
corresponding median survival times for each treat-
ment group, using the result that the median, tm, of an
exponential distribution with mean λ−1 is such that
λ = (log 2)/tm.

Although (6) is based on more restrictive assump-
tions about the distribution of survival times than (5),
it will often lead to quite similar results. Schoen-
feld & Richter [7] give nomograms that enable the
required number of individuals to be determined on
the assumption of exponential survival times.

The tables in [4] follow [3] in assuming that each
individual in a study is followed up for some time
τ after randomization, and that analysis takes place
at time τ after the last person has been recruited.
The proportion of individuals expected to survive
in each group is then SS(τ ) and SN(τ ), and so
the probability of death is 1 − [SS(τ ) + SN(τ )]/2. In
many situations, individuals are followed up until
the end of the study, rather than for a fixed time.
In this case, the value of τ could rather be taken
to be the average length of follow-up, given by
τ0 = f + (a/z). However, this approach does not
take account of patient follow-up extending beyond
time τ0, and so the required number of individuals
will tend to be overestimated.

The result in (3) shows how the required number
of individuals can be calculated for a trial with an
accrual period of a and a follow-up period of f . Of
course, the duration of the accrual period and follow-
up period will depend on the recruitment rate. So
suppose that the recruitment rate is expected to be m

individuals per month and that d deaths are required.
The number recruited in an accrual period of length
a is then ma, and so the expected number of deaths
in the study is

ma × Pr(death).

Values of a and f which make this value close to the
number of deaths required can then be found numeri-
cally – for example, by trying out different values of
a and f . This algorithm could be computerized and
an optimization method used to find the value of a
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that makes

d − [ma × Pr(death)] (7)

close to zero for a range of values of f . Alternatively,
the value of f that yields the result in (7) for a
range of values of a can be found. A two-way
table giving the required number of individuals for
different combinations of values of a and f will be
particularly useful in planning a study. This process
is facilitated by software packages for calculating
sample size requirements in a survival study, such
as nQuery Advisor.

Example: Comparison of Two Treatments
(Continued)

Previously, it was shown that 250 deaths needed
to be observed for the study on ovarian cancer to
have sufficient power to detect a hazard ratio of
0.66 as significant. Suppose that individuals are to
be recruited to the study over an 18-month accrual
period and that there is to be a subsequent follow-
up period of 24 months. From (4), the probability
of death in the 42 months of the study will then be
given by

Pr(death) = 1 − 1

6
[S(24) + 4S(33) + S(42)].

Now, using the estimated survivor functions shown
in Figure 1,

S(24) = SS(24) + SN(24)

2
= 0.52 + 0.64

2
= 0.58,

S(33) = SS(33) + SN(33)

2
= 0.42 + 0.56

2
= 0.49,

S(42) = SS(42) + SN(42)

2
= 0.30 + 0.44

2
= 0.37,

and so the probability of death is

1 − 1

6
[0.58 + (4 × 0.49) + 0.37] = 0.515.

From (3), the required number of individuals is

n = 250

0.515
= 486,

and so nearly 500 individuals will need to be recruited
to the study over the accrual period of 18 months.

This demands a recruitment rate of about 28 individ-
uals per month.

If it is only expected that 15 individuals can be
found each month, the accrual period will need to be
extended to ensure that there is a sufficient number
of individuals to give the required number of deaths.
The number of individuals that could be recruited in a
period of a months would be 15a. Various values of a

can then be tried in order to make this approximately
equal to the value obtained from (3). For example, if
we take a = 30 and continue with f = 24, then the
probability of death during the study is

Pr(death) = 1 − 1

6
[S(24) + 4S(39) + S(54)].

From Figure 1, the survivor functions for individuals
on each treatment at 24, 39, and 54 months can be
estimated, and we find that S(24) = 0.58, S(39) =
0.46, and S(54) = 0.27. The probability of death now
turns out to be 0.552, and the required number of
individuals to give 250 deaths is 453. This would be
consistent with an estimated recruitment rate of 15
per month.

Now suppose that it is decided that the study will
not have a follow-up period, so that the accrual period
is equal to the duration of the study. If the accrual
period is taken to be 30 months, so that a = 30 and
f = 0, then the probability of death is given by

Pr(death) = 1 − 1

6
[S(0) + 4S(15) + S(30)].

Now, S(0) = 1.00, S(15) = 0.73, and S(30) = 0.51,
and the probability of death is 0.262. The required
number of individuals is now 250/0.262 = 955, and
this would just about be met by a recruitment rate
of 32 individuals per month. This shows that the
absence of a follow-up period leads to an increase
in the number of individuals that must be entered
into the study.
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Sample Size
Determination

Sample size determination refers to the evaluation of
the sample size desired or required for a study dur-
ing the design stage, before data are collected. Such
evaluations are based on a consideration of the oper-
ating characteristics of the statistical procedures to
be employed in the ultimate statistical analysis of the
study data. Invariably these operating characteristics
depend in part on the sample size.

For example, a cross-sectional survey of the
prevalence of diabetes (diagnosed or undiagnosed)
among native Americans would require a sample size
of 1421 to allow estimation of the prevalence to
within a precision of ±0.02 with 90% confidence,
assuming a true prevalence no larger than 30%. Also,
a randomized clinical trial of a new drug treat-
ment vs. placebo for congestive heart failure would
require 652 patients for a two-sided test at α = 0.05
to provide 90% power to detect a 30% reduction
in the risk of mortality after 1 year of follow-up,
assumed to be no greater than 40% in the population
(see Alternative Hypothesis; Level of a Test; Null
Hypothesis).

In the first example, the sample size was deter-
mined based on the desired precision of the confi-
dence interval estimate of the prevalence (prob-
ability) of the disease on sampling from a large
population. In the second example, the sample size
determination was based on the desired power of
the test for the difference between two proportions
(probabilities).

In general, the required sample size for any study
can be based on the operating characteristics of the
statistical procedures to be applied in the analy-
sis of the data. For simple statistical estimates and
tests, these relationships can be defined explicitly,
for example by the derivation of the expression for
the power function of a particular statistical test. In
more complex analyses, such as regression mod-
els, these characteristics can be assessed indirectly
through simulation, assuming an appropriate popu-
lation model under which the sampling in the actual
study is expected to be performed.

In all cases, the adequacy of the sample size
determined depends on the accuracy of the initial

specifications of the assumed parameters in the popu-
lation. For example, if the true prevalence of diabetes
in the target population is closer to 50%, then a sam-
ple size of 1421 will provide 87% confidence for a
precision of ±0.02. For the purposes of planning a
study, therefore, it is always advisable that one con-
sider a range of population parameters over which
the operating characteristics are assessed for specific
sample sizes.

Since the application of procedures for sample
size evaluation is universal to all realms of statis-
tical methods, the literature on this topic is indeed
vast. McHugh & Le [11] provide a review of sam-
ple size determination for commonly used statistical
procedures in biostatistical practice from the perspec-
tive of the precision of an estimator. Lachin [7] and
Donner [3], among others, likewise provide a review
of sample size determination for commonly used sta-
tistical tests from the perspective of the power of
the test. General texts on the topic include [10, 1,
2, 15], and [12], among others. Many reference texts
on general statistical methods, epidemiologic meth-
ods, and clinical trials include descriptions of sample
size evaluation, or of the operating characteristics of
an estimator or test based on sample size. The fol-
lowing presents an introduction to the basic concepts
for statistical procedures which are commonly used
in biostatistical practice.

Estimation Precision

Consider that we wish to estimate a parameter θ in a
large (infinite) population based on a simple random
sample. Assume that we plan to employ an estimator
θ̂ which is normally distributed, at least asymptoti-
cally, as θ̂ ∼ N(θ, Σ2) where Σ2 is some function of
sample size N , such as Σ2 = σ 2/N , where σ 2 is a
variance component. Then the following apply:

1. The 1 − α confidence interval (CI) for θ is of the
form θ̂ ± eα , where

eα = z1−α/2Σ (1)

is the precision of the estimate at level 1 − α and
z1−α/2 is the upper two-sided standard normal
deviate at level 1 − α/2. Since Σ is a function
of the sample size N , then so also is the precision
of the estimate eα .
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2. For a confidence interval θ̂ ± e with a given
degree of precision e, the corresponding level
of confidence 1 − α is provided by the stan-
dardized deviate z1−α/2 = e/Σ = √

Ne/σ . This
allows one to evaluate the relationship between
the level of confidence and the degree of preci-
sion of the estimate for different sample sizes.

3. Solving for N , the sample size required to pro-
vide an interval estimate with precision ±e at
confidence level 1 − α for a given variance com-
ponent σ is given by

N =
(z1−α/2σ

e

)2
. (2)

For example, the simple proportion with a char-
acteristic of interest, say p, from a sample of N

observations is asymptotically distributed as P ∼
N[π, π(1 − π)/N ], where π is the probability of the
characteristic in the population and the large-sample
variance of p is Σ2 = π(1 − π)/N with σ 2 = π(1 −
π) (see Binomial Distribution). The sample size
required to estimate a probability assumed to be less
than π = 0.3 (or greater than π = 0.7) with precision
e = 0.02 at 90% confidence is provided as

N =
[

z1−α/2[π(1 − π)]1/2

e

]2

=
[

(1.645)[(0.3)(0.7)]1/2

0.02

]2

= 1421.

(Throughout, all calculations of N are rounded up to
the next whole integer.)

It may be judged that this sample size is too
large. However, using the first relationship, one
can determine that a 90% confidence interval with
N = 1000 provides a degree of precision of e =
1.645[(0.3)(0.7)]1/2/

√
1000 = 0.024. Alternatively,

using the second relationship, one could show
that a sample size of N = 1000 provides 83%
confidence of estimating π with a precision of ±0.02,
where the corresponding normal deviate is 1.38 =
0.02

√
1000/[(0.3)(0.7)]1/2.

Such computations, however, assume that the
variance is known a priori, or in this case that the
probability is known. These developments can be
generalized to allow for sampling variation in the
estimated variance, and thus in the precision of the
estimate. This leads to expressions which determine
the sample size needed to provide probability 1 − β

that the realized 1 − α confidence interval will have
a precision of no greater than e (cf. [5]).

Clearly, such computations could be applied to a
variety of estimation problems. Sample size deter-
mination based on the precision of an estimate will
not be considered further, in part because the above
expressions are analogous to those obtained from a
consideration of the power of the corresponding test
(see below). Those interested are referred to the arti-
cle by McHugh & Le [11], or to texts on sampling.

Power

The power of a statistical test refers to the probability
that a statistically significant test statistic will be
obtained in a study under a specific hypothesis.
In any statistical test, one sets out to assess the
probability of the data under the null hypothesis H0,
commonly termed the P value. Usually “the data” are
summarized in the form of an estimate of a parameter
or a sufficient statistic for a parameter, and statistical
significance is declared if the resulting P value is less
than the a priori stated significance level.

Normal Theory Population Model

The simplest case is that of a statistic, say T , which
is normally distributed, at least asymptotically, and
for which the mean, µ, and variance, Σ2, can be
specified under the null hypothesis H0 : µ = µ0 and
under an alternative hypothesis H1 : µ = µ1 �= µ0. In
many cases, the variance of the statistic will depend
on the mean value, such that the variance under
the null hypothesis, Σ2

0 , differs from that under the
alternative hypothesis, Σ2

1 . Thus T ∼ N(µ0, Σ2
0 )

under H0 and T ∼ N(µ1, Σ2
1 ) under H1, with Σ2

1
possibly �= Σ2

0 .
The test of H0 : µ = µ0 is based on the usual z-

test z = (T − µ0/Σ0, where z ∼ N(0, 1) under H0.
The null hypothesis is rejected against a one-sided
alternative in the lower tail (H1 : µ1 < µ0) if the
obtained z-test value has a corresponding P value =
Φ(z) ≤ α at significance level α (one-sided). Like-
wise, H0 is rejected against a one-sided alternative
in the upper tail (H1 : µ1 > µ0) if the correspond-
ing P value = 1 − Φ(z) < α; H0 is rejected against a
two-sided alternative when the two-sided P value =
2[1 − Φ(|z|)] ≤ α. The choice of the alternative, one-
vs. two-sided, is based on the nature of the ques-
tions to be addressed or the desired information, not
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the expected direction of the result (see Alternative
Hypothesis).

General Expressions for Power

In this setting, basic expressions for the power
function of the statistical test are readily derived.
Under H1 : T ∼ N(µ1, Σ2

1 ), and thus

Z = T − µ0

Σ0
∼ N

[
µ1 − µ0

Σ0
,
Σ2

1

Σ2
0

]
. (3)

The expected value of the test statistic under the
alternative is termed the noncentrality parameter, ∆,
where in this case ∆ = (µ1 − µ0)/Σ0.

From the distribution under the alternative, the
power of the test is obtained as follows. Power 1 − β

is the complement of the probability of a type II error,
β, of failing to reject the null hypothesis H0 when an
alternative hypothesis is true. Consider the case where
µ1 > µ0 and a one-sided upper-tail test is conducted.
Then β = Pr(z < z1−α|µ1, Σ2

1 ) and

β = Φ

[
z1−α − (

(µ1 − µ0)
/

Σ0
)

Σ1
/

Σ0

]
. (4)

Thus, β = Φ(zβ), where zβ is the standard normal
deviate corresponding to the probability of a type II
error β:

zβ = z1−αΣ0 − (µ1 − µ0)

Σ1
. (5)

Since this is a lower-tail probability, then the upper-
area probability corresponding to the level of power
is obtained from z1−β = −zβ , so that

z1−β = (µ1 − µ0) − z1−αΣ0

Σ1
. (6)

To allow for a one-sided alternative of the form
H1 : µ1 < µ0, or a two-sided alternative, we employ
|µ1 − µ0|. This leads to the general expression for the
relationship of power to the noncentral distribution of
the test statistic:

|µ1 − µ0| = z1−αΣ0 + z1−βΣ1, (7)

where z1−α/2 is employed for a two-sided test. Some
authors have used an abbreviated notation zα and zβ

for z1−α and z1−β , respectively.

In this formulation, T can usually be defined
such that the variances can be factored of the form
Σ2

i = σ 2
i /N , where σ 2

i is the variance component
(i = 0, 1) and N is the total sample size. Substituting
into the above yields

√
N |µ1 − µ0| = z1−ασ0 + z1−βσ1. (8)

From this we can derive expressions to perform the
following types of computations:

1. The total sample size N required to ensure a
power of 1 − β of detecting a relevant difference
µ1 − µ0 with a test at level α (or α/2 if two-
sided) is

N =
(

z1−ασ0 + z1−βσ1

µ1 − µ0

)2

. (9)

2. The power 1 − β to detect a difference µ1 − µ0

with a test at level α with a specific sample size
N is provided by Φ(z1−β), where

z1−β =
√

N |µ1 − µ0| − z1−ασ0

σ1
. (10)

Note that power 1 − β is 0.50 for z1−β = 0,
> 0.5 for z1−β > 0, and < 0.5 for z1−β < 0.

3. The difference µ1 − µ0 which can be detected
with power 1 − β with a specified sample size
N is provided by

|µ1 − µ0| = (z1−ασ0 + z1−βσ1)√
N

. (11)

In general, all three relationships may be used in
planning the sample size required for a study. The
latter relationships are also useful for the assessment
of the power of a study post hoc, after it has been
completed, especially in the event of a nonsignificant
result.

Each of these relationships is a representation
of the power function of the statistical test derived
from (10). If the variance components under the
null and alternative hypotheses are equal (at least
approximately so), then (10) reduces to

z1−β =
√

N |µ1 − µ0|
σ

− z1−α = √
Nθ − z1−α,

(12)

where θ = |µ1 − µ0|/σ is the standardized differ-
ence, termed the noncentrality factor.
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Figure 1 Power curves for the test of a difference in
means for α = 0.05 (two-sided)

Figure 1 presents the power to detect a difference
for a test statistic with various sample sizes as a
function of θ . In all cases, for a difference of 0, the
probability of a significant test result is simply α, the
significance level under the null hypothesis. As the
magnitude of the difference increases under the alter-
native, the power increases, reaching an asymptote
at 1.0 as θ approaches ∞. The rate at which power
increases is a function of the sample size. Similar
power function curves could be computed for any
test statistic based on the more precise equation (10)
employing the variance components under the null
and alternative hypotheses if they differ.

The equation for the determination of sample
size (9) can be viewed as the determination of
the N for which the corresponding power function
intersects the point (θ, 1 − β) for a given level α and
standardized difference θ , or the point (µ1 − µ0, 1 −
β) for a specific difference µ1 − µ0 with variance
components σ1 and σ0. For example, suppose we
wish to detect a difference of |µ1 − µ0| = 2 with
σ = 8.7(σ 2

0
∼= σ 2

1 ), yielding θ = 0.23. Referring to
Figure 1, the power function for N = 200 provides
∼ 90% power to detect this difference. This is the
same sample size that would be provided by a direct
computation using (9).

Sample size evaluation in practice, however, is
usually an iterative process. In this example it may
be that an N of 100 would be financially feasible.
The power function (Figure 1) shows that N = 100
provides 63% power to detect the originally specified
difference θ = 0.23, but that it also provides 90%
power to detect a difference of θ = 0.33. If these
operating characteristics are considered acceptable,
then the smaller N of 100 might be employed.

Such power function curves are also important in
evaluating the interpretation of a negative, nonsignif-
icant test result after a study has been completed.
For example, suppose that a sample size of only
50 was employed in this study, and that the final
result is not significant. Since the power function for
N = 50 (Figure 1) shows that this sample size has
power of 0.90 or greater to detect a standardized dif-
ference θ = 0.46, then one can safely conclude that
a difference of this magnitude likely does not exist.
However, there was less power to detect smaller dif-
ferences, such as a power of 0.369 for θ = 0.23.
Thus, one can only conclude that the study may have
failed to detect such differences due to lack of power.

Power and Precision

Most of the literature on sample size evaluation
is described in terms of the power function of
a statistical test rather than the precision of an
estimate. However, there is a simple correspondence
between the two approaches. Most z-tests can also
be expressed as an estimation-based test of the form
Z = (T − µ0)/Σ0, where T is an estimate of the
parameter of interest (θ = µ1 − µ0, θ̂ = T ).

Thus, the expression relating N to the precision
of the estimate is approximately the same as that
relating N to the power of the test, where µ1 − µ0

is replaced by the precision e and z1−β = 0, so
that e = z1−α/2Σ0. Therefore, the N derived using
a 1 − α confidence interval to ensure a precision e

is approximately the same as the N needed to detect
a difference µ1 − µ0 = e with power = 0.50 using a
two-sided test.

However, when constructing a confidence interval,
the variance under the alternative is employed, so that
(1) is actually e = z1−α/2Σ1. To derive the equivalent
equations for the precision of an estimate from those
for the power of a test, we would employ z1−α/2Σ1

when Σ0 �= Σ1, where Σ1 (or σ1) is the multiplier of
z1−β in the sample size equation.

Example: Test for Two Proportions

For a simple 2 × 2 table, the usual large-sample
test is the Pearson contingency chi-square test on
1 degree of freedom (df) which is directed towards
a two-sided alternative. The chi-square value is equal
to the square of the usual z-test for two propor-
tions, which is based on the large-sample normal
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approximation to the binomial. Either a one- or a
two-sided z-test can be performed. Given two sam-
ples of sizes ne and nc for the experimental and
control treatments, respectively, in which xe and xc

are positive for the characteristic of interest, the cor-
responding simple proportions are pe = xe/ne and
pc = xc/nc. Each is the maximum likelihood esti-
mate of the corresponding population probabilities
such that E(pe) = πe and E(pc) = πc, and the large-
sample variances of each proportion are var(pe) =
πe(1 − πe)/ne and var(pc) = πc(1 − πc)/nc. In the
following, it is convenient to present these expres-
sions in terms of the total sample size N and the
sample fractions Qe = ne/N and Qc = nc/N , where
Qe + Qc = 1.0.

The null hypothesis is H0 : µ = µ0 = (πe − πc) =
0 such that πe = πc = π . Under H0 the MLE of π

is p = (xe + xc)/(ne + nc). The test then is based on
T = pe − pc, where µ0 = 0, and

Σ2
0 = var[(pe − pc)|H0]

= π(1 − π)

N

(
1

Qe
+ 1

Qc

)
= σ 2

0

N
, (13)

which for large samples, can be estimated as

Σ̂2
0 = p(1 − p)

N

(
1

Qe
+ 1

Qc

)
.

Thus the test for two proportions is of the form
Z = (pe − pc)/Σ̂0.

Under an alternative hypothesis, H1 : µ = µ1 =
(πe − πc) �= 0, and thus

Σ2
1 = var[(pe − pc)|H1]

= 1

N

[
πe(1 − πe)

Qe
+ πc(1 − πc)

Qc

]

= σ 2
1

N
. (14)

Substituting these expressions into the general equa-
tions relating sample size to power yields
√

N |πe − πc|

= z1−α

[
π(1 − π)

(
1

Qe
+ 1

Qc

)]1/2

+ z1−β

[
πe(1 − πe)

Qe
+ πc(1 − πc)

Qc

]1/2

. (15)

Solving for N , z1−β or (πe − πc) provides the expres-
sions needed to address the three types of questions
described above.

When ne = nc = N/2(Qe = Qc = 1/2), this ex-
pression simplifies to

√
N |πe − πc| = z1−α[4π(1 − π)]1/2

+ z1−β[2πe(1 − πe)

+ 2πc(1 − πc)]1/2. (16)

Furthermore, Lachin [7] shows that Σ2
0 ≥ Σ2

1 . Thus,
it is conservative to use
√

N |πe − πc| = (z1−α + z1−β)[4π(1 − π)]1/2. (17)

For example, suppose we wish to plan a study with
two equal-sized groups (ne = nc) to detect a 30%
reduction in mortality associated with congestive
heart failure, where the 1-year mortality in the control
group is assumed to be no greater than 0.40. Thus,
πc = 0.40 and πe = 0.28 (= 0.70 × 0.40). Under the
null hypothesis π = 0.34. We desire 90% power for a
two-sided test for two proportions at α = 0.05. Using
(9) the required total N is obtained as

N = [{1.96[4(0.34)(0.66)]1/2 + 1.282[2(0.28)(0.72)

+2(0.4)(0.6)]1/2} /
(0.4 − 0.28)

]2

= 652.

Using the simplification which employs only the null
variance component yields:

N =
[

[1.96 + 1.282][4(0.34)(0.66)]1/2

0.4 − 0.28

]2

= 656.

Alternatively one could solve for z1−β to deter-
mine the power to detect a difference with a specified
sample size, or the magnitude of the difference which
could be detected with a given power for a spe-
cific sample size. For example, the power to detect
this same difference with the smaller sample size
N = 500 using the more complete equation (10) is
provided by

z1−β = (500)1/2(0.4−0.28)−1.96[4(0.34)(0.66)]1/2

[2(0.28)(0.72)+2(0.4)(0.6)]1/2

= 0.879,

yielding 81% power.
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Finally, we note that the above expressions also
provide the basic elements for the corresponding
expression relating sample size to the precision
of the estimate of the difference in probabilities.
For example, to provide a 95% (1 − α) confidence
interval for πe − πc with precision ±0.05 requires a
total sample size

N =
(z1−α/2σ1

e

)2

=
[

(1.96)[2(0.28)(0.72) + 2(0.4)(0.6)]1/2

0.05

]2

= 1358.

Simplifications

As suggested by (17), the expressions for sample
size and power can be simplified by using only one
variance component rather than that under the null
and under the alternative in the cases where the
two differ, as where the variance depends on the
expectation. Referring to (8), if σ0

∼= σ1
∼= σ , then

the basic equation becomes

√
N

|µ1 − µ0|
σ

= z1−α + z1−β. (18)

The left-hand side is the noncentrality parameter of
the noncentral distribution of the test statistic; see
(12). Factoring

√
N , the remainder is termed the

noncentral factor θ ,

θ = |µ1 − µ0|
σ

, (19)

such that √
Nθ = z1−α + z1−β . (20)

This leads to simple equations for sample size and
power as a function of the noncentral factor:

N =
(

z1−α + z1−β

θ

)2

, (21)

z1−β = θ
√

N − z1−α. (22)

Using these expressions, Lachin [7] presents tables
which give the sample sizes required to detect a range
of values of θ for different levels of α and β, and the
power to detect specific values of θ for a range of
sample sizes. Other articles and texts likewise present
various tables for sample size and power. In practice,

however, direct computation using the appropriate
expressions is readily performed.

Variance Components and Noncentral Factors

Within this framework, it is relatively straightforward
then to derive the basic equations for sample size or
power from the expected value and variance of the
test statistic under the null and alternative hypotheses
for a test statistic which is normally distributed,
at least asymptotically. Expressions can be further
simplified by noting that, for two independent group
problems with equal sample sizes (Qe = Qc = 0.5),
the term in Σ0 involving the sample fractions is
(Q−1

c + Q−1
e )1/2 = 2. The following is a summary

for many common tests, assuming equal sample sizes
in the two groups. Below, a simple adjustment is
described for the case of unequal sample sizes. In
each of the following cases, µ0 = 0 under H0.

For a z-test of means between two groups, the
test statistic is based on the sample mean, which is
assumed to be normally distributed as N(νi , γ 2/N)

within each group i = e, c with common variance γ 2

between subjects in each group. Then µ1 = (νe − νc),
σ 2

0 = σ 2
1 = 4γ 2, and θ = |νe − νc|/2γ . For the paired

z-test for means, the statistic is based on the mean
of N paired differences assumed to be distributed as
N(ν, γ 2/N). Then µ1 = ν �= 0 and θ = |ν|/γ .

The expressions for the z-test for proportions in
two independent groups are presented in (15)–(17).
From (17), the noncentral factor is θ = |πe − πc|/
[4π(1 − π)]1/2. In the case of paired or matched
observations, the test (McNemar test) is based on
the multinomial parameters for the 2 × 2 table with
discordant probabilities π01 and π10 for the matched
assessments in N pairs with binary measurements (0
or 1) for each pair member. Thus, for example, π01

is the proportion of the N pairs where the first pair
member has measurement 0 and the second member
a 1. Then H0 : π10 = π01 = π , and under H1, µ1 =
π10 − π01 �= 0. Various expressions for the power of
this test have been proposed for the unconditional
case where the number of discordant pairs is not fixed
a priori by design. Lachin [8] concludes that it is
conservative to use that obtained from the underlying
multinomial probabilities where

σ 2
1 = [(π10 + π01) − (π10 − π01)

2] (23)

and σ 2
0 = 2π , where σ0 ≥ σ1. Thus the noncentral

factor is θ = |π10 − π01|/(2π)1/2.
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Although nonparametric rank tests are generally
used for the analysis of survival (event-time) data
(see Survival Analysis, Overview), calculation of
sample size and power are often performed assum-
ing some simple parametric model. The Mantel or
logrank test is the most commonly used test in
this setting, which is asymptotically fully efficient
against a proportional hazards or Lehmann alter-
native. The simplest parametric form of this model is
the exponential model with constant hazard rates λe

and λc over time in each group. Some authors have
derived expressions for the power function of the test
for exponential hazards using the normal approxima-
tion to the distribution of λ̂ (e.g. [9]), while others
have used that for ln λ̂ (e.g. [14]). The resulting com-
putations are nearly equivalent, but those using the
distribution of ln λ̂ are preferred.

Asymptotically, the sample estimate of the
natural log hazard rate ln λ̂ is distributed as
N[ln λ, 1/E(D|λ)]. Thus, the power of the test
depends on the expected total number of events
E(D|λ) to be observed during the study. Here
E(D|λ) = NE(δ|λ), where δ is a binary variable
(see Dummy Variables) representing observation of
the event (δ = 1) vs. not (right censoring of the event
time, δ = 0), and E(δ|λ) is the probability that the
event will be observed as a function of λ and the
total exposure of the cohort (patient years of follow-
up). Under H0 : λe = λc = λ, or ln(λe/λc) = 0, while
under H1, µ1 = (ln λe − ln λc) and

σ 2
1 =

[
2

E(δ|λe)
+ 2

E(δ|λc)

]
. (24)

Thus σ 2
0 = 4/E(δ|λ). Lachin [7] shows that in this

case σ1 ≥ σ0, so that it is conservative to use θ =
[ln(λe/λc)]/{2[E(δ|λe)

−1 + E(δ|λc)
−1]}1/2.

In a study with no censoring of event times,
where the event times of all subjects are observed,
then E(δ|λ) = 1. In the case where each subject is
followed for T years of exposure, then E(δ|λ) =
1 − exp(−λT ). In a study with uniform entry over
a recruitment interval of R years (see Staggered
Entry), and a total study duration of T years
(T ≥ R),

E(δ|λ) =
[

1− exp[−λ(T − R)] − exp(−λT )

λR

]

(25)

(see Sample Size Determination in Survival Anal-
ysis).

Unequal Sample Fractions

In each of the above cases, the variance component
under the null or alternative hypothesis is used to
define the noncentrality parameter. For two indepen-
dent group problems with unequal sampling frac-
tions Qe �= Qc, the term in Σ involving the sample
fractions is (Q−1

c + Q−1
e )1/2 �= 2. Thus, the Σ for

unequal sample sizes equals C = (Q−1
c + Q−1

e )1/2/2
times that for equal sample sizes, so that the factor θ

with equal sample sizes should be multiplied by 1/C.
Thus, from (21), the sample size for the unbalanced
design is C2 = (Q−1

c + Q−1
e )/4 times that for equal

sample fractions. For example, for Qe (or Qc) = 0.7,
the sample size required for the unbalanced design
is (1/0.7 + 1/0.3)/4 = 1.19 times the N for the bal-
anced design, so that the unbalanced design requires
approximately 19% larger sample size to provide the
same level of power as the balanced design.

Power for t, χ2 and F-Tests

For test statistics which follow the Student’s t,
chi-square or F distributions, among others, deter-
mination of sample size or power is conducted
through identification of the noncentrality parame-
ter, ∆ = Nθ2, of the noncentral distribution of the
test statistic. For a 1 df χ2 test statistic, the non-
centrality parameter is Nθ2, where θ is the non-
central factor for the test. Thus, from (20), the
value of the noncentrality parameter which pro-
vides power 1 − β for a u = 1 df two-sided test at
level α, designated as ∆(1, α, β) = Nθ(1, α, β)2 =
(z1−α/2 + z1−β)2. For example, ∆(1, 0.05, 0.10) =
(1.96 + 1.2816)2 = 10.507.

Values of the noncentrality parameter providing
various levels of power for the noncentral chi-
square and noncentral t distributions on u df,
∆(u, α, β), and for the F -distribution on u and v

df, ∆(u, v, α, β), are widely tabulated. Programs are
also available, such as the SAS functions PROBCHI
for the cumulative probabilities and CINV for quan-
tiles of the chi-square distribution, both of which
provide computations under the noncentral distribu-
tion. Equivalent functions provide these computations
for the t distribution (PROBT and TINV), and the
F distribution (PROBF and FINV). SAS functions
CNONCT, TNONCT, and FNONCT, now available
in release 6.07, provide the values of the required
noncentrality parameter ∆ for specific levels of α

and β [4] (see Software, Biostatistical).
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To determine sample size using this approach, one
first obtains the value of the noncentrality parameter
which will provide the desired level of power, e.g.
the value ∆(u, α, β) for the noncentral chi-square
distribution. One then evaluates the value of the non-
centrality factor θ under the alternative hypothesis.
The noncentrality factor is usually defined using the
variance under the null hypothesis, often because
the expected value of the statistic (the noncentral-
ity parameter) is derived under a sequence of local
alternatives. Given the value of θ , the N required
to provide power 1 − β is that value for which
∆(u, α, β) = Nθ2, yielding N = ∆(u, α, β)/θ2.

Example: Contingency Chi-Square Test

Consider the case of a random sample of N sub-
jects divided among K mutually exclusive categories
(cells) with cell frequency xi in the ith category
l = 1, . . . , K . These frequencies are distributed as
multinomial with cell probabilities πl, l = 1, . . . , K .
These cell probabilities, in turn, can be expressed as
a function of M underlying parameters, expressed as
πl(α), for α = (α1 . . . αM). Under a null hypothesis
stated in terms of the α, H0 : α = α0, with corre-
sponding multinomial probabilities πl(α0), where the
parameters α are estimated from the sample, then the
Pearson contingency chi-square statistic

χ2 =
∑

l

[xl − Nπl(α̂0)]2

Nπl(α̂0)
(26)

is distributed as chi-square on K − M − 1 df. Under
an alternative hypothesis, H1 : α = α1, χ2 is dis-
tributed as noncentral chi-square with noncentrality
parameter Nθ2, where

θ2 =
∑

l

[πl(α1) − πl(α0)]2

πl(α0)
(27)

The most common instance is the r × c contin-
gency table (K = rc) under the hypothesis of inde-
pendence, where

∑
l denotes summation over rows

i = 1, . . . , r and columns j = 1, . . . , c. Then πij is
the probability associated with the ij th cell, with
marginal probabilities πi. and π.j for the ith row
and j th column, respectively. The hypothesis of inde-
pendence then implies the null hypothesis that πij =
πi.π.j . Thus, the parameters under the null hypothe-
sis are α = [π1. . . .π(r−1).π.1 . . .π.(c−1)], consisting of

M = (r − 1) + (c − 1) parameters to be estimated
from the sample. The resulting test is based on
K − M − 1 = rc − (r − 1) − (c − 1) − 1 = (r − 1)

(c − 1) df.
One way that such a contingency table might

arise is the r × c comparative trial in which r

independent groups of sample sizes ni = QiN are
compared with respect to the proportions pj(i) in each
of c categories, where pj(i) = xij /ni and E(pj (i)) =
πj(i),

∑
j pj (i) = ∑

j πj (i) = 1.0 for each group i =
1, . . . , r . The null hypothesis of homogeneity is
H0 : πj(i) = αj for all i. Under the alternative, these
conditional probabilities differ across groups such
that under H1 : πj(i) = αj + δij , where δij �= 0 for
some (i, j ). Then, Lachin [6] shows that

θ2 =
∑

j

1

αj




∑

i

Qiδ
2
ij −

(
∑

i

Qiδij

)2


 . (28)

For example, let the following be the pattern of
conditional probabilities {αj } expected under H0 for
a planned clinical trial comparing three equal-sized
(Qi = 1/3) treatment groups with respect to three
categories of recovery:

αj = ∑
i Qiπj (i) =

Complete Partial No
recovery recovery recovery

0.10 0.15 0.75

Under the alternative, assume we wish to detect the
following pattern of differences (δij ) among the three
groups, where πj(i) = αj + δij :

{δij } =





Placebo −0.09 −0.11 0.20

Low dose −0.01 0.01 0.00

High dose 0.10 0.10 −0.20

Substituting these values into (28) yields θ2 = 0.1456.
From tables of the noncentral chi-square distribution
for α = 0.05, β = 0.10, and 4 df, or using the SAS
function CNONCT, we require ∆(4, 0.05, 0.10) =
15.405. Solving for N = ∆/θ2 yields N = 106.

To determine power based on a given sample
size N , one simply determines the value of the
noncentrality parameter ∆ = Nθ2 and then evaluates
the cumulative probability at the critical value under
the noncentral chi-square distribution. This approach
is employed in the following example.
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Example: K-Group ANOVA

Consider the case of the one-way analysis of vari-
ance (ANOVA) for the test of equality of K inde-
pendent group means, H0 : ν1 = ν2 = · · · νK vs. H1 :
νi �= νj for some two groups 1 ≤ i < j ≤ K , assum-
ing a common variance σ 2 within groups under the
null and alternative hypotheses. Also assume equal
sample size n within each group, with a total sample
size N = nK . Then the K group ANOVA F -test =
MSB/MSE on u = K − 1 and v = K(n − 1) df fol-
lows a noncentral F -distribution, where MSB and
MSE are the mean squares between and within
groups, respectively.

The expected mean squares between groups
E(MSB) and within groups or for error E(MSE)
under the alternative hypothesis that some differences
exist among the K population means are:

E(MSB) = σ 2
ε +

n
∑

i

(νi − ν)2

K − 1
= σ 2

ε + nσ 2
ν , (29)

E(MSE) = σ 2
ε .

Under the null hypothesis, σ 2
ν = 0 and E(MSB) =

σ 2
ε , so that (K − 1)MSB/σ 2

ε is distributed as central
chi-square. Under the alternative, however, (K −
1)MSB/σ 2

ε is distributed as noncentral chi-square
with noncentrality parameter ∆ = nθ2, where

θ2 =

∑

i

(νi − ν)2

σ 2
ε

. (30)

Thus, under the alternative, the F -test is also dis-
tributed as noncentral F with noncentrality parameter
∆ = nθ2. The values of ∆ for given (k, n, α, β)

have been tabulated. Some charts and tables present
these relationships in terms of the reparameteriza-
tion φ = [∆/(u + 1)]1/2, where u is the numerator
df(= K − 1).

For example, for K = 3 groups, assume that the
population means under the alternative hypothesis are
(ν1 = 2, ν2 = 4, ν3 = 6), so that

∑
i (νi − ν)2 = 8.

Also assume that σ 2
ε = 15. Then θ2 = 8/15 = 0.533.

For n = 25 per group, the critical value for the F -
test at the 0.05 level on 2 and 72 df, obtained as
FINV (0.95, 2, 72), is 3.12391. The noncentrality
parameter is ∆ = (25)(8/15) = 13.333. The type II
error β is then the probability of an Fvalue <

3.12391 on (2, 72) df with ∆ = 13.33. Using FPROB

(3.12391, 2, 72, 13.33) yields β = 0.09691 and
power = 0.90309.

For sample-size determination for an F -test or a
t-test, since the denominator df depends on n, an
iterative procedure is required. Charts are also widely
available relating sample size to the noncentrality
factor θ .

Example: Multiple Regression Model

In a multiple linear regression model with m

covariates or explanatory variables, a variety
of different tests may be conducted, such as
an overall model test on p df and tests of
each of the individual regression coefficients, each
of which will have a different power function.
The power for these tests depends on the total
N , the residual variance σ 2

ε , and on the joint
distribution of the m covariates. For example, in
the homoscedastic normal errors model with m

covariates (plus the constant term), β̂ = (X′X)−1X′Y
and ĉov(β̂) = �̂β̂ = (X′X)−1σ̂ 2

ε , where σ̂ 2
ε is the

MSE on N − m − 1 df. Then the test of H0 : β = 0
(including the intercept) is provided by the quadratic
form F = β̂ ′(�̂β̂)−1β̂ on (m + 1, N − m − 1) df.
Under H1 : β �= 0, F is distributed as noncentral
F with noncentrality parameter ∆ = β ′(�β̂)−1β =
E[Y′X(X′X)−1X′Y]/σ 2

ε = E(β̂ ′X′Y)/σ 2
ε . Thus, to

evaluate power or sample size a priori, it is
necessary to specify the covariance matrix of (Y|X)

to determine the noncentrality parameter for the test
of regression for the model.

Similarly, the test for the j th individual coefficient
in the model is t = β̂j /γ̂j , which is distributed as t on
N − m − 1 df, where var(β̂j ) = σ 2

j = (�β̂)jj , which
involves the jj element of (X′X)−1 . To determine
the noncentrality parameter for the test again requires
specification of the joint distribution of X. For
analyses involving quantitative covariates, therefore,
it is rare that there is adequate prior information on
the joint distribution of (Y|X) to evaluate the size
of the noncentrality parameter. For this reason, some
authors, e.g. Cohen [1], discuss power and sample
size for arbitrarily defined “small” to “large” effect
sizes in terms of the values of ∆.

Example: Logit Model

One case in which it is tractable to consider the
evaluation of the noncentrality parameter is the logit
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(logistic regression) model for binary covariates
using the power function of the large sample Wald
chi-square test (cf. [13]; see Likelihood). The model
relates the logit of the probability of an index
characteristic, π , to a linear function of the covariate
vector X, including a constant, of the form ln[π/(1 −
π)] = X′β, where π is obtained from the inverse logit

π = exp(X′β)

[1 + exp(X′β)]
. (31)

Suppose we wish to estimate this relationship for
i = 1, . . . , K cells, where the ith cell has sample
size ni = Nqi (N the total sample size) and covariate
vector Xi consisting of the constant and m discrete
covariates with coefficients (β0, β1, . . . , βm), β0

being the intercept. For example, for s binary
covariates, K = 2s and m ≤ K . Within the ith cell,
the observed proportion with the index characteristic
is pi . Since var ln[p/(1 − p)] = 1/[nπ(1 − π)] the
parameters can be estimated through weighted least
squares such that β̂ = (X′�−1X)−1X′�−1Y and
cov(β̂) = �

β̂
= (X′�−1X)−1/N , where

� = diag

{
1

[qiπi(1 − πi)]

}
and

�−1 = diag[qiπi(1 − πi)]. (32)

Note that � is directly obtained as a function of Xi

and β through (31).
The Wald test for a linear hypothesis of the form

H0 : L′β = 0 for an r × (m + 1) matrix L′ is of
the form

χ2 = β̂ ′L(L′�L)−1L′β̂ (33)

on r df with noncentrality parameter

∆ = β ′L(L′�L)−1L′β (34)

= Nβ ′L[L′(X′�−1X)−1L]−1L′β = Nθ2.

Since θ2 is a function of L, X, and β, sample size and
power can readily be obtained as described above.

For example, consider the design matrix X:

X =





1 0 0 0
1 0 0 1
1 1 0 0
1 1 0 1
1 0 1 0
1 0 1 1




,

representing effects for the intercept, three strata (2
df), and two treatments. The expected cell fractions
are specified to be {qi} = (0.075, 0.075, 0.25, 0.25,
0.175, 0.175), which assume that there are equal
sample sizes for each of the two treatment groups
within the three strata, comprising 15%, 50%, and
35% of the total sample, respectively. Under the alter-
native hypothesis we specify β ′ = (1.099, −0.251,
−0.480, 0.925). These are the values of βj which
correspond to a model where the odds ratio for
treatment 1 vs. treatment 0 is exp(β3) ∼= 2.5 and
the associated probabilities for each cell are {πi} =
(0.75, 0.923, 0.70, 0.882, 0.65, 0.770), such that the
odds ratios within each stratum are 4.0, 3.2, and 1.8,
respectively. For the test of H0 : β3 = 0, with vector
L′ = (0 0 0 1), the value of the noncentral fac-
tor is θ2 = 0.0342. For a 1 df chi-square test at α =
0.05, the noncentrality parameter ∆(0.05, 0.10, 1) =
10.5074 provides power = 0.90. Thus, the total N

required to provide 90% power for this test is N =
10.5074/0.0342 = 307.

For this and similar examples, one approach to
specifying the model under the alternative is first to
specify the {πi} and then determine the values of β

which satisfy the model. This can readily be obtained
by generating a set of cell frequencies summing to
a large number, say 10 000 – the frequencies being
proportional to the corresponding probabilities – and
then fitting the logit model to obtain the values of βj .

Factors which Affect Sample Size

In addition to the variance components and noncen-
tral factors described herein, other features of the
observed data may affect precision or power. Two of
the more important are missing data and measurement
errors.

Missing Data

Precision and power are directly related to the amount
of information in the data. In many cases, infor-
mation in the Fisherian sense is proportional to the
total sample size. Thus, if one expects M × 100%
of the observations to be missing completely at ran-
dom (purely by chance), then the sample size required
should be adjusted upwards by the factor 1/(1 − M).
In some cases, however, such as rank tests for sur-
vival data, the information is not directly proportional
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to N alone, but to other factors, such as the pat-
tern of losses to follow-up over time. In such cases
it is necessary to consider the extent to which the
process by which the missing data is generated will
impact on the power of the test (see Missing Data
in Clinical Trials; Missing Data in Epidemiologic
Studies).

Reliability of Measurements

In a simple measurement error model one can express
the observed measurement as Xi = ηi + εi , where
ηi is the true measurement and εi is a random
measurement error with expectation 0 and variance
σ 2

ε independent of ηi . Thus, σ 2
X = σ 2

η + σ 2
ε and the

reliability of the measurements is reflected by ρ =
σ 2

η /σ 2
X . Since σ 2

X = σ 2
η /ρ, power decreases as ρ

decreases and the required N increases. For example,
if N is needed to provide a desired level of power
to detect a given difference in the mean values of
the true measurements, with variance component σ 2

η ,
then N/ρ is required to detect the same difference
in the observed measurements. For example, for ρ =
0.8, the sample size required to detect a difference
between population means is 25% greater than that
for measures without error. This is often an important
consideration since in many cases the reliability of
measurements can be controlled within limits, such as
for laboratory assessments (see Measurement Error
in Epidemiologic Studies).
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Sample Size in
Epidemiologic Studies

Determining the number of subjects to be included
in a study is a crucial step in designing the
study and writing the protocol. To determine
sample size, the study objectives have to be
clearly defined, the general design (e.g. cohort,
case–control) (see Case–Control Study; Cohort
Study) and specific design options have to be
selected, the main outcome and exposure variables
have to be specified, the planned analysis strategy
(i.e. hypothesis testing or estimation) and statistical
methods have to be determined. Therefore, sample
size determination is a very important aspect of
design and cannot be carried out without a thorough
and quantitative understanding of the planned study.

The study sample size should be large enough
that the estimates will be sufficiently precise and
the difference of interest is likely to be detected.
It is usually true that the more subjects that are
included in the study, the better the precision of
the estimates, and the more likely the difference
of interest will be detected. However, an oversized
study may not always be the best choice because of
economic and study time (sometimes ethical) consid-
erations.

Hypothesis Testing and Power: The Case
of a Normally Distributed Outcome

The principle of sample size and power considera-
tions can be illustrated by a simple hypothesis test
for normally distributed data. The normal case study
will build the concepts and form the mathematical
basis for most other sample size procedures, which
will be discussed in later sections.

Suppose n samples are drawn from a popula-
tion that has a normal distribution N(µ, σ 2). To
test a null hypothesis H0: µ = µ0 vs. an alternative
hypothesis Ha: µ = µa(>µ0), we use a test statistic
Z = √

n(X − µ0)/σ0, which follows a standard nor-
mal distribution under H0. For simplicity, we assume
that the variances are known: under H0, σ 2 = σ 2

0
and under Ha, σ 2 = σ 2

a . The null hypothesis will be
rejected if the observed value of Z falls in an extreme
region, i.e. Z > c, where c is a constant to be deter-
mined (see below).

Two types of error can be made with the test. First,
a type I error is that the null hypothesis is true but the
observed Z falls in the rejection region (i.e. Z > c)
such that the null hypothesis is rejected. The type I
error is also called the significance level of the test.
It is often protected by setting an upper limit, e.g.
0.10 or 0.05, for the significance level. Secondly, a
type II error is the probability of failing to reject
the null hypothesis when the alternative hypothesis
is true. Both error rates depend on the sample size,
test statistic Z, and the critical value c. In the normal
distribution, for a given Ha: µ = µa > µ0 (one-sided
test),

Type I error : α = P(Z > c|H0) = 1 − Φ(c),

Type II error : β = P(Z ≤ c|Ha),

where Φ(·) is the standard normal distribution func-
tion. Solving the first equation, we have c = z1−α , the
(1 − α)th percentile of the standard normal
distribution.

The power of a statistical test is defined as the
probability that a statistically significant test statis-
tic will be obtained (i.e. reject the null hypothesis),
given that the alternative hypothesis is true. It equals
one minus the type II error. In the above exam-
ple,

Power = 1 − β = P(Z > c|Ha)

= 1 − Φ

(
z1−ασ0 − √

n(µa − µ0)

σa

)
.

Solving the equation, we obtain the required sam-
ple size to ensure a 1 − β power on detecting the
difference of µa − µ0; that is,

n=
(
z1−ασ0 + z1−βσa

µa − µ0

)2

.

This equation can also be used to find the minimum
detectable difference for given statistical power 1 − β

and sample size n; that is,

∆ = µa − µ0 = z1−ασ0 + z1−βσa√
n

.

This is the smallest difference that can be detected
with given sample size and power.

Although the sample size formula is obtained
from a normal distribution, the relationship among
the parameters of sample size, significance level α,
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power 1 − β, variances, and effect-size ∆ is generally
true for any type of study and distribution. As the
significance level α is getting smaller, or the power
is getting higher, or the variances are getting larger,
or the effect size is getting smaller, a larger sample
size will be required. While the significance level is
usually 5% and the power is usually 80% or 90%, it
is very important to select suitable values for effect
size and variances in designing a study. Investigators
should not use overoptimistic values for the effect
size or variances to avoid having an underpowered
study.

The calculations of sample size, power and min-
imum detectable difference can be generalized to
the case of µa < µ0 by replacing µa − µ0 with
|µa − µ0| in the above formula. The above formu-
las are based on one-sided tests. For a two-sided
alternative hypothesis, Ha: µa �= µ0, the sample size
formula is essentially the same but z1−α is replaced
by z1−α/2.

The choice of a one-sided or two-sided test will
depend on the problem of interest. If one wants to test
only one direction, e.g. µ = µ0 against µ > µ0, or
test whether the population mean is greater than µ0,
then a one-sided test is appropriate. If the interest is to
test the deviation from µ0 from either direction, then
a two-sided test is to be used. In this case, the null
hypothesis will be rejected when the population mean
is either too small or too large statistically compared
with µ0.

Estimation and Precision

In epidemiologic studies, researchers may be inter-
ested in estimating the magnitude of the effect from
exposure instead of testing the hypothesis of no
effect. The precision of an estimate can be mea-
sured by the width of a confidence interval that is
designed to cover the true parameter of interest with
a specified probability (coverage probability), 1 − α.
In the normal distribution example, if we want to
estimate the mean µ with known variance σ 2, then
the 1 − α confidence interval is (X − z1−α/2σ/

√
n,

X + z1−α/2σ/
√

n). With regard to replications of
sampling, we have a 1 − α probability that the true
mean µ will be included in this interval. The larger
the sample size, the narrower the confidence interval,
and therefore the higher the precision of the parame-
ter estimate (see Random Error).

Over the last decades some researchers have been
stressing the advantage of using confidence intervals
rather than testing p-values to present study results
and make statistical inferences. One reason is that
a confidence interval conveys not only information
on the point estimation but also an impression of
the precision of the estimate. Some further discus-
sions of the pros and cons of hypothesis testing and
confidence intervals can be found in Rothman &
Greenland [33].

The sample size calculated from the confidence
interval viewpoint will depend on the objective of the
study. If a study is solely to estimate the effect of a
parameter of interest with a given precision, then the
sample size can be calculated from the width of the
confidence interval. For the normal mean example, if
one wants the width of the 1 − α confidence interval
to be no more than 2δ, that is 2z1−α/2σ/

√
n ≤ 2δ,

then n ≥ (z1−α/2σ/δ)2.
When the objective of a study is effectively to

distinguish the parameter of interest from a specified
value or distinguish among specified values, the
sample size calculation should consider the expected
location of the confidence interval. The sample size
based on the width of the confidence interval alone
will be insufficient [15]. In this case, the sample
size obtained from confidence interval estimation
will be similar to the sample size from hypothesis
testing. In fact, hypothesis testing (two-sided) and
confidence interval estimation are closely related.
A study that yields a test p-value (two-sided) of
precisely α for testing H0: µ = µ0 will have a
1 − α confidence interval that has one end at µ0.
In other words, if the 1 − α confidence interval of
µ contains µ0, then the null hypothesis H0 will not
be rejected with the significance level of α (two-
sided).

Practical Considerations and Outline

In this article, we will focus our presentation on
the determination of sample size from the traditional
hypothesis testing approach and present some lim-
ited results based on estimation and precision. For the
actual study, the sample size, test significance level,
variability, power and minimum detectable difference
(effect size) have to be considered at the design stage.
The relationship among these parameters will allow
investigators to calculate one parameter given the
others.
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In practice, the test significance level is often 5%
and the statistical power is usually 80% or 90%. The
variability and expected difference are often obtained
from previous studies. Special consideration may be
given to the choice of the minimal difference to be
detected. The difference should be reasonable and
suitable, such that it is practically meaningful and the
study can be planned and conducted feasibly. If the
assumed difference is too large and the sample size
is consequently underestimated, then the study may
fail to detect the true difference due to insufficient
power. On the other hand, an oversized study may
be costly to conduct and sometimes may detect a
“tiny” difference that is not practically meaningful.
The factors of time, cost and recruitment of subjects
from the study population should all be considered,
together with the selection of the study sample size,
power and expected difference.

In general, the required sample size for a study
depends not only on the parameters such as α, power
1 − β, and minimal detectable difference but also on
the statistical procedures to be applied in the analysis
and the study design. For epidemiologic studies,
typically cohort studies and case–control studies,
many papers and review articles have been published
for sample size and power determinations (e.g. [2,
24, 25, 36, 43]). In this article we give a broad
overview of sample size determination methods for a
variety of epidemiologic designs. The methodologic
details are skipped and relegated to the references.
In the second section, sample size determination
methods for studies with a binomial outcome (in
cohort and unmatched case–control studies) are
discussed. Methods for matched case–control studies
are discussed in the next section. For cohort studies
with Poisson outcomes, the sample size determination
methods are presented in the fourth section. The
fifth section discusses sample size determination for
cohort studies when the outcome of interest is time
to event. The sample size required for cohort studies
with longitudinal or correlated outcomes is discussed
in the sixth section, while the following section
highlights some sample size calculations when the
problem of interest is estimation and precision. The
final section presents some further considerations on
sample size and power determination followed by a
discussion.

Without loss of generality, we will present the
sample size formulas for one-sided tests in the
following sections. The two-sided formulas can be

obtained by replacing z1−α with z1−α/2 in all instances
unless otherwise specified.

Studies with Binomial Outcomes

Dichotomous Exposure: Cohort Study

In cohort studies with a fixed follow-up time, the
main outcome is typically disease occurrence. Let p0

and p1 be the proportion of subjects who develop the
disease in the unexposed and exposed populations,
respectively. For a one-sided test H0: p1 = p0 vs.
Ha: p1 > p0, assuming an equal number of subjects
n in the exposed and unexposed groups, the required
sample size is given as follows (e.g. [36]):

n =
(
z1−α

√
(2pq) + z1−β

√
(p1q1 + p0q0)

)2

(p1 − p0)2
,

(1)

where q1 = 1 − p1, q0 = 1 − p0, p = (p0 + p1)/2,
and q = 1 − p. The above formula is obtained from
a normal approximation to the test statistic for
comparing two binomial proportions. The formula
can be represented as

n =

[
z1−α

√
(2pq)

+z1−β

√
(p0(1 + r) − p0(1 + r2))

]2

[p0(1 − r)]2
(2)

in terms of the risk ratio r = p1/p0 (see Relative
Risk) to test H0: r = 1 vs. Ha: r > 1.

In general, let πe be the proportion of subjects
in the exposed group. Then the total sample size
required is given by

N =

[
z1−α

√
(pq/πe(1 − πe))

+z1−β

√
(p1q1/πe + p0q0/(1 − πe))

]2

(p1 − p0)2
.

(3)

Dichotomous Exposure: Case–Control Study

The sample size required for an unmatched
case–control study is similar to that for a cohort
study. Let p1 and p0 now denote the proportions
of subjects exposed in the case and control groups,
respectively. For a study with one control per case,
the sample size required can be calculated by eqs (1)
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and (2). For a study with k controls per case, the
number of cases required is given by [36]

n=

(
z1−α

√
((1 + 1/k)p′q ′)

+z1−β

√
(p1q1 + p0q0)

)2

(p1 − p0)2
,

where p′ = (p1 + kp0)/(1 + k) and q ′ = 1 − p′.
In practice, the exposure rate among controls, p0,

is usually obtained from previous studies and esti-
mated from the general population. The relative risk
r = p1/p0 or the odds ratio (OR) = p1q0/p0q1 is
then specified under the alternative hypothesis to cal-
culate the power of the study. For example, consider a
case–control study of a potential association between
congenital heart defects and oral contraceptives used
around the time of conception. An estimate of the
exposure rate among controls is 30%. Given α = 0.05
and β = 0.10, in order to detect a relative risk of
r = 1.5 (so p1 = 0.45), and based on (2), the sample
size required is n = 177 (per group).

When an OR is specified, the exposure rate among
cases can be solved as follows:

p1 = p0OR

[1 + p0(OR − 1)]
.

For the above example, the sample size required
to detect an OR = 2 (so p1 = 0.462), given α =
0.05 (two-sided) and β = 0.10, will be n = 153 (per
group).

Continuous Exposure: Cohort Study

For a continuous exposure variable, sample size
estimation methods for cohort studies have been
derived by several authors (e.g. [24] and [44]). Let
p(x) be the probability of developing a disease
with exposure level X = x over a fixed follow-up
time. Within the framework of logistic regression,
the association between p(x) and the continuous
exposure variable X can be modeled as

log

[
p(x)

(1 − p(x))

]
= δ + θx, (4)

where θ is the log OR for a unit increase in X. Testing
the null hypothesis of no association is equivalent to
testing H0: θ = 0.

Whittemore [44] derived sample size requirements
for Wald tests based on maximum likelihood meth-
ods. To approximate the variance of the maximum

likelihood estimate of θ , the disease probability
is assumed to be small, i.e. p(x) ≈ 0. Under this
assumption, the total sample size for testing θ = 0
with significant level α and power 1 − β is esti-
mated by

N =
[
z1−α

√
ν(0) + z1−β

√
ν(θa)

]2

[θ2
a eδ]

. (5)

In formula (5), ν(θ) = [m/(mm11 − m2
1)](θ) and

m(t) = E[exp(tX)] is the moment-generating func-
tion of X, and m1 and m11 are the first and sec-
ond partial derivatives of m(t) with respect to t ,
respectively. The term eδ is the odds of disease cor-
responding to X = 0 and θa is the log OR under
the alternative hypothesis for a unit increase in the
exposure X. Formula (5) is suitable to use when the
sample size N is large. Tables for various distri-
butions of exposure are given in Whittemore [44].
For example, when X has an N(0, 1) distribution,
with p(0) = 0.07 (the disease probability in con-
trols), exp(δ) = p(0)/(1 − p(0)) = 0.075, α = 0.05
and power = 0.90, approximately N = 543 observa-
tions are needed to detect an OR of exp(0.5) = 1.65
for a unit increase in the exposure X.

Lubin & Gail [24] studied a general method based
on the score test statistic

U(θ0) = ∂ log
L

∂θ
=

∑

i

xi(di − p(xi)) (6)

evaluated under the null hypothesis H0: θ = θ0, where
L is the likelihood function for the logistic model (4)
and di is a disease indicator (i.e. di = 1 and di = 0
for disease and nondisease, respectively). The total
sample size required to test the null hypothesis with
a significance level α and power 1 − β is given by

N =
[
z1−α

√
ν0(U(θ0)) + z1−β

√
νa(U(θ0))

]2

[∆(θ)]2
,

(7)

where ν0(U(θ0)) and νa(U(θ0)) are the variances
of U(θ0) under H0: θ = θ0 and Ha: θ = θa, respec-
tively; and ∆(θ) = Ea[U(θ0)]/N . The evaluation will
depend on the hypothesized parameters θ0 and θa, as
well as the statistical distribution of the exposure vari-
able X. In general, special numerical calculation is
needed to estimate the sample size. Details and some
examples are given in Lubin & Gail [24].
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Continuous Exposure: Case–Control Study

Lubin et al. [25] have derived sample size formulas
for case–control studies with continuous exposure
variables based on the logistic model (4) and score
test (6). Let F1(x) and F0(x) be the distributions of
exposure among cases and controls, respectively. It
is shown that the number of cases required for a one-
sided test with significance level α and power 1 − β

is given by

n = (k + 1)

k

[
z1−ασx + z1−β

√(
kσ 2

1 + σ 2
0

k + 1

)]2

(µ1 − µ0)2
,

(8)

where k is the number of controls for each case (so
total sample size N = (k + 1)n), and (µ1, σ 2

1 ) and
(µ0, σ 2

0 ) are the mean and variance of the exposure
variable under F1 and F0, respectively; and

σx = (σ 2
1 + kσ 2

0 )

(k + 1)
+ (µ1 − µ0)

2k

(k + 1)2
.

The quantities µ0, µ1, σ 2
0 and σ 2

1 may be obtained
from preliminary data such as previous studies that
give estimates of the distributions of the exposure
variable among cases and controls, or calculated
from specifying the distribution functions of exposure
in cases and controls, in which case numerical
integration may be needed. The details are given in
Lubin et al. [25].

When continuous exposure variables are dichoto-
mized in the study (cohort or case–control), the
required sample size will be increased due to loss
of information from dichotomization. The efficacy
losses will depend on the nature of the exposure
distribution and the choice of the cutoff points for the
dichotomization, as discussed in Lubin et al. [25].

Adjustment for Confounding Variables

Whittemore [44] extended the sample size for-
mula (5) to adjust for confounding variables. When
the joint multivariate variables X (a vector of the
variable of interest X1 and the confounding variables
X2, . . . , Xk) follow an exponential family distribu-
tion, the variance term ν(θ) can be obtained from
the moment-generating function for X. For example,
when X has a multivariate normal distribution with

mean µ and positive covariance matrix Σ , Whitte-
more showed that

ν(θ) =
[

var(X1) exp

(
θ ′µ+ θ ′Σθ

2

)
(1 −ρ2

1·2...k)

]−1

where X1 is the exposure variable of interest, ρ1·2...k

is the multiple correlation coefficient relating X1 to
X2, . . . , Xk , and k is the total number of variables.

Lubin & Gail [24] proposed a general method for
determining the sample size required to test whether
exposure is associated with disease outcome, while
adjusting for potential confounding variables. The
method is based on a regression model and can be
applied to both cohort studies and case–control
studies. Let X be the joint multivariate variables of
exposure and potential confounders. It is assumed
that the probability of disease for X = x is given by

p(x; δ, θ, λ) = r(x)

[1 + r(x)]
and r(x) = eδR(x; θ, λ),

where R(x; θ, λ) is a smooth, positive function sat-
isfying R(0; θ, λ) = 1, θ is the parameter of interest
and λ is a vector of parameters (nuisance parame-
ters) associated with the confounding variables. Thus,
the logistic regression model (4) is a special case of
this model when R(x; θ, λ) = exp(xθ). In fact, the
function R(x; θ, λ) can assume a multiplicative or
additive form (see Additive Model; Multiplicative
Model). For a one-sided test of the null hypothe-
sis θ = θ0 vs. the alternative θ = θa, a score test
statistic is again given in (6). The total sample size
required for a significance level α and power 1 − β

is given in (7). However, ν0(U(θ0)), νa(U(θ0)) and
∆(θ) = Ea[U(θ0)]/N contain the nuisance parame-
ters δ and λ. For statistical analysis after data are
collected, these parameters can be estimated by max-
imum likelihood. For sample size evaluation at the
design stage, these parameters are replaced by δ0 and
λ0 to which the maximum likelihood estimates δ̂ and
λ̂ (obtained under H0: θ = θ0) converge when the
alternative hypothesis is true. The method works in
general for both continuous or categorical variables as
long as a joint distribution of X is specified. However,
the sample size formula needs specialized numeri-
cal calculations based on the model specification for
R(x; θ, λ) and the joint distribution of X.

An example discussed in Lubin & Gail [24] is to
test the effect of radon exposure on lung cancer after
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adjusting for smoking. They considered a multiplica-
tive joint OR model,

R(WLM, SMOK) = (1 + θ WLM)(1 + λ SMOK),

where SMOK denotes the mean number of cigarettes
smoked per day and WLM denotes exposure to
radon decay products measured in working level
months. They illustrated the use of this model to
test the null hypothesis θ0 = 0, against the alter-
native hypothesis θa = 0.015 for a five-year study
assuming λa = 0.3. Based on prior knowledge, a
five-year lung cancer mortality rate among nonsmok-
ers is 0.00471. Therefore, δ = log[0.00471/(1 −
0.00471)] = −5.354. For a case–control study with
k = 5 (number of controls per case), α = 0.05 and
power 1 − β = 0.90, they showed that n = 251 cases
are needed (number of controls = 5n = 1255). This
is slightly larger than the 218 cases and 1086 con-
trols required when the SMOK factor is ignored.
This is because the confounding variable SMOK
brings additional variability into the multiplicative
model. The calculation assumes independence of the
radon and smoking exposure distributions. Lubin &
Gail [24] showed that the required sample size would
be much larger if the radon and smoking exposures
were highly and negatively correlated.

Adjustment for Stratification Factors

When samples are drawn from several strata, the
stratification factors should be considered in the data
analysis as well as in the sample size calculation
at the design stage. When the probability of disease
can be modeled in a logistic regression, the method
for adjusting for confounding variables described
above [24] can be used to estimate sample size.
Smith & Day [40] provided extensive tabulation for
the required sample size. They concluded that if the
stratification factor is not strongly related to the
exposure or disease status, then an increase of more
than 10% in the sample size is unlikely to be needed.

Logistic regression is a special case of generalized
linear models. Therefore, the methods proposed by
Self & Mauritsen [38] and Self et al. [39] for gen-
eralized linear models can be used for sample size
and power calculations. The methods are based on a
score test and a likelihood ratio statistic, respectively.
The sample size is estimated by treating the stratifi-
cation factors as nuisance parameters. Their methods

require, in general, specialized numerical calculations
based on a specified joint distribution for the covari-
ates in the model. See the section on a cohort study
with Poisson outcomes for further discussion.

Other methods for sample size estimation for strat-
ified studies can be found in the literature. For testing
unity of a common OR for a collection of several
2 × 2 tables, Munoz & Rosner [28] studied sample
size determination based on the Mantel–Haenszel
test for stratified data (see Mantel–Haenszel Meth-
ods). Their method is appropriate when all mar-
gins of each table are fixed. Woolson et al. [45] and
Nam [29] considered sample size calculations based
on Cochran’s test that do not require fixed margins of
the 2 × 2 tables in each stratum. Nam used a continu-
ity correction to guarantee that the actual type I error
rate of the test does not exceed the nominal level.

Test for Interaction and Trend

When the question of interest is whether the relative
risks among different strata (or levels of confounding
factors) are equal, the problem becomes a test of
interaction between exposure and the stratification
factors (or confounding factors). Smith & Day [40]
presented methods for evaluating power and sample
size for testing the interaction between a dichotomous
stratification variable and a categorical exposure.
They showed that in order to detect an interaction
effect of the same magnitude as a specified main
effect, a sample size at least four times as large as
for testing the main effect is required.

In general, tests for interaction can be addressed by
testing appropriate coefficients in a logistic regres-
sion model. Within this framework, the methods
developed by Lubin & Gail [24] and Self et al. [38,
39] can be used to estimate the required sam-
ple size. The methods will treat the interaction
terms as the parameters of interest and treat all
other factors as nuisance parameters. Usually, the
methods need specialized numerical calculations.
Garcia-Closas & Lubin [11] compared several meth-
ods for sample size calculations on testing gene-
environmental interactions.

Testing for trend can also be addressed
(see Dose–Response) within the framework of
generalized linear models. For example, when an
exposure variable X is ordered categorical, a trend test
is to test whether the disease odds are proportionally
increased as the exposure level increases. This is
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equivalent to testing for a nonzero value of parameter
θ in the logistic model (4). The methods developed
by Lubin & Gail [24] and Self et al. [38, 39] can be
used to estimate the required sample size.

Matched Case–Control Study

To improve comparability and efficiency in case–con-
trol studies, one may match controls with cases
on potential confounders. A pair-matched study
matches one control with each case, which is the sim-
plest matched case–control design. When the number
of cases is limited, more than one control can be
matched to each case to increase statistical precision.
For the matched case–control studies, the matching
should be considered in the data analysis as well as in
the sample size and power calculations (see Matched
Analysis).

Pair-Matched Study

The probabilities of outcomes of a pair-matched
case–control study are laid out in the following
2 × 2 table:

Control

Case + −
+ π11 π10 π1.

− π01 π00 π0.

π.1 π.0 1

The “+” and “−” signs denote exposure and nonex-
posure status, respectively. Let m01 and m10 denote
the number of (−+) and (+−) pairs for (case, con-
trol), and m = m01 + m10 be the total number of
discordant pairs. Conditional on m, the observation
m10 has a binary distribution with p = π10/(π01 +
π10) = ψ/(1 + ψ), where ψ = π10/π01 denotes the
disease–exposure OR.

The test of no disease–exposure association, i.e.
H0: π01 = π10, is equivalent to testing H0: p =
1/2. Schlesselman [36] gave a formula for the total
number of discordant pairs m required to detect a
relative risk R based on a normal approximation to
McNemar’s test,

m =
[
z1−α/2 + z1−β

√
(p(1 − p))

]2

[p − 1/2]2
. (9)

Suppose πd = π01 + π10 is the probability of obtain-
ing discordant pairs. Then the total number of pairs
for the study is estimated by

n = m

πd
. (10)

To estimate πd, some additional information is
required other than the OR ψ and the marginal
exposure rate for controls, π.1. When exposure for
cases and controls within each pair is statistically
independent, Schlesselman gives the following
estimate:

πd = π.1(1 − π1.) + π1.(1 − π.1),

where π1. = ψπ.1/[1 + (ψ − 1)π.1].
For example, Schlesselman shows that to detect

an OR of ψ = 2, from (9) one requires m = 90.3 dis-
cordant pairs for α = 0.05 (two-sided) and β = 0.10.
For a control exposure rate π.1 = 0.30, assuming
independent exposures, π1. = 0.46, πd = 0.485, and
the total number of pairs required for the study is
n = 187.

When the independence assumption does not hold,
Schlesselman’s sample size estimate may be severely
biased (often underestimated). Several corrections
have been proposed to allow for correlation between
the exposure status within pairs that is often induced
in the case of efficient matching. To allow for
exposure association, Fleiss & Levin [7] used the
exposure OR ω = π11π00/π01π10 and corrected the
estimation of discordant probability πd given by
Schlesselman. Under the independence assumption,
ω = 1. In the case of ω �= 1, the corrected estimate
of the discordant probability is

π ′
d = πd

√
(1 + 4(ω − 1)π1(1 − π1.)) − 1

2(ω − 1)π1.(1 − π1.)
.

In the above example, if ω = 2.5, then the corrected
πd = 0.376. Therefore, the required number of pairs
for the study is n = 241 rather than 187.

Dupont [6] presented another correction based on
the contingency coefficient

φ = π11π00 − π10π01√
(π1.(1 − π1.)π.1(1 − π.1))

for the case–control exposure association within a
pair. The discordant probability πd is adjusted as
follows for specified ψ , π.1 and φ,

π ′
d = πd − 2φ

√
(π1.(1 − π1.)π.1(1 − π.1)),
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where

π1. =




2ψπ.1(ψπ.1 + 1 − π.1)

+(ψ − 1)2π.1(1 − π.1)φ
2

−(ψ − 1)π.1(1 −π.1)φ
√

(φ2(ψ − 1)2 + 4ψ)





2[(ψπ.1 + 1 −π.1)2 + (ψ − 1)2π.1(1 −π.1)φ2]
.

Several other methods are discussed and reviewed
by Lachin [17] and Wickramaratne [39]. Lachin rec-
ommended always using a corrected procedure for
sample size estimation. He pointed out that Dupont’s
correction and Fleiss & Levin’s correction give very
similar results. Qiu et. al. [32] proposed a sample size
calculation method to test interaction between a spe-
cific exposure and a risk factor in a pair-matched
case–control study.

Multiple Control per Case Study

For studies calling for k matched controls for each
case (i.e. 1 : k matching), Schlesselman gave an
approximation for the required number of matched
sets, n′ = (k + 1)n/2k, where n is calculated
from (10) with given π.1, ψ , test level α and power
1 − β. This approximation is valid when the exposure
rates in cases and controls are similar.

Taylor [41] and Lui [26] studied other approxima-
tions that do not assume that the exposure rates in
cases and controls are similar. Lui provided simu-
lation results showing that when the OR of expo-
sure between cases and controls is small (≤4), his
method gives more accurate results than that of Tay-
lor; when ORs are large, the formula given by Taylor
is recommended.

All three approximations (i.e. Schlesselman, Tay-
lor and Lui) are based on the assumption of homo-
geneity of exposure among different matched sets.
That is, the probabilities of exposure for cases and
controls are constant across matched sets. Tables for
the required number of case–control sets are given
in Breslow & Day [2] for different values of power,
significance level, relative risk and different matching
ratios.

Two remarks are given as follows. First, a matched
case–control study can be regarded as a special case
of general stratified study in which each matching
category is treated as a unique stratum. The meth-
ods discussed in the previous sections for unmatched
case–control studies with confounding or stratifi-
cation variables can therefore be used for sample

size estimation. However, the methods may break
down when the number of strata is large and data
in each strata are sparse. Secondly, selection of
the number of controls per case is more of a
practical consideration (e.g. availability, time and
cost) than a statistical power concern. In fact, the
power gain is diminished when the number of con-
trols is increased to beyond four controls per case
(see [2]).

Cohort Study with Poisson Outcomes

When the number of events for a cohort study
(e.g. diseases or deaths) is relatively small compared
with the total number of subjects, the probability
of events occurring may be modeled by a Pois-
son distribution (see Poisson Regression). In such
studies, it is often interesting to test the rate of
event incidence rather than the overall probability of
events.

Dichotomous Exposure

In a cohort study with dichotomous exposure, Gail [9]
presents methods to calculate power for studies with
Poisson outcomes when the number of exposed and
unexposed samples are equal. Let µ1 and µ0 be the
incidence rate per unit time for the exposed and
unexposed groups, respectively. We want to test H0:
µ0 = µ1 vs. Ha: µ1 > µ0. Two study designs are con-
sidered by Gail. Design A is to follow subjects until
a predetermined total number of events is observed.
Design B is to follow subjects up to a predetermined
length of time. For design A, Gail provides a table
for the total number of events for given relative risk
r = µ1/µ0, significance level α and power 1 − β.
Brown & Green [4] extend the method to the case
of unequal group sizes. Tables are provided for the
total number of events. For Design B, the event rate
for the unexposed group, λ0, is estimated from given
relative risk, significance level α and power 1 − β.
Tables are provided in Brown & Green [4]. Then,
the expected duration of a study can be estimated as
t = λ0/(µ0 n0), where n0 is the number of subjects
in the unexposed group for the study that is specified
by investigators.

When the expected number of events in the
study is large, approximation formulas are presented
in Gail [9], Brown & Green [4], as well as in
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Breslow & Day [2]. Let k be the ratio between the
numbers of subjects in the exposed and unexposed
groups. For design A, subjects are followed until
a certain number of events, say m, is observed.
Conditioning on m, the number of events observed
in the exposed group, follows a binomial distribution
with probability kµ1/(kµ1 + µ0) = rk/(rk + 1). On
the basis of a normal approximation to the arcsine
transformation of the square root of a binomial
proportion, Brown & Green [4] give

m = [z1−α + z1−β]2

4
[
sin−1 √

(rk/(rk + 1))− sin−1 √
(k/(k + 1))

]2 ,

where r is the relative risk between exposed and
unexposed groups.

On the basis of a normal approximation to a
binomial proportion, Breslow & Day [2] give

m =
[
z1−α

√
k/(k + 1) + z1−β

√
(rk)/(rk + 1)

]2

[rk/(rk + 1) − k/(k + 1)]2
.

(11)

A more accurate estimate is obtained by using Yates’
correction to the chi-squared significance test [42],
which results in multiplying the right-hand side
of (11) by (1 + √

(1 + A))2/4, where

A = 2[rk/(rk + 1) − k/(k + 1)]
[
z1−α

√
k/(k + 1) + z1−β

√
(rk)/(rk + 1)

]2 .

Brown & Green [4] present an example of a study
to compare incidence rates of congenital malfor-
mations among children born in a specific town.
A control population is identified that is twice as
large as the town under study (k = 0.5). To have
90% power to detect a fourfold relative risk, r = 4,
it is estimated that a total of m = 20 events will
be needed (based on the table given in Brown &
Green with α = 0.05). Similar results are obtained
from the approximation formulas. With Brown &
Green’s approximation, one obtains m = 19. With
Breslow & Day’s approximation, one obtains m = 18
without Yates’ correction, and m = 20 with Yates’
correction.

Loglinear Models

A loglinear model may be used to associate the event
rate λ(x) with the exposure level x; namely

log[λ(x)] = δ + θx. (12)

A test of no association is equivalent to testing H0:
θ = 0.

Sample size and power calculations for this model
have been studied by Self et al. [38, 39]. They devel-
oped methods for generalized linear models based
on the score test in their first paper and based on
the likelihood ratio test in their second paper. The
loglinear model for Poisson outcomes is a special
case of the models they discussed. For a categori-
cal exposure variable X (or a finite number of cat-
egorized configurations for a continuous variable),
the required sample size is estimated from a non-
central chi-square approximation to the test statis-
tic. However, there is no explicit sample size or
power formula in general. Sample size determina-
tion is performed numerically for given nuisance
parameters and distribution of X. Simulations are rec-
ommended to check the accuracy of the estimated
sample size. Simulation results [39] show that the
method based on the likelihood ratio statistic usu-
ally gives better results than that based on the score
test.

Test for Trend with Categorical Variable

When the exposure variable X is ordered categorical
with K levels (K > 2), a trend test can be used to
assess whether the event rate λ(x) changes monoton-
ically with exposure (see Dose–Response). Breslow
& Day [2] presented a method to estimate the sample
size based on a chi-square trend test statistic. The test
is based on a score statistic under a loglinear model
for a Poisson distribution (see Poisson Regression).
It contrasts the observed number of events, Ok , with
the expected number of events, Ek , calculated from
external rates. Let xk be the kth exposure level of
X. Then the power of the test is the probability
such that

k∑

k=1

Ok



xk −

∑

j

xjEj

∑

j

Ej



 − z1−α

√
V ≥ 0,
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where z1−α is the (1 − α)th percentile of the standard
normal distribution and

V = W
∑

k

Ok

and

alW =




∑

k

x2
kEk −

(
∑

k

xkEk

)2




∑

k

Ek

.

Under an alternative of a linear trend in relative
risk such that r(x) = 1 + θx, the left-hand side of
the probability equation will have mean µ approxi-
mated by

µ =
∑

k

θxkEk



xk −

∑

j

xjEj

∑

j

Ej





− z1−α

√√√√
(

W
∑

k

(Ek + θxkEk)

)

and variance σ 2 approximated by

σ 2 =
∑

k

(1 + θxk)Ek



xk −

∑

j

xjEj

∑

j

Ej





2

− z1−α

∑

k

θxkEk



xk −

∑

j

xjEj

∑

j

Ej





×
√√√√√

W
∑

k

Ek

+ z2
1−αW

4
.

Therefore, the expected number of events for given
test level α and power 1 − β should satisfy µ =
σz1−β . This equation can be used to solve for the
number of events required for the study under a
given distribution for the exposure variable X and
alternative hypothesis θ = θa. Numerical methods are

needed, in general, except for some special cases;
see [2] for details and examples.

Survival Study

In a cohort study, when the time to an event (e.g.
disease or death) is observed exactly or within a cer-
tain interval, survival analysis can be used for the
comparison of incidence rates (see Survival Anal-
ysis, Overview; Proportional Hazards, Overview;
Cox Regression Model). Survival analysis uses not
only the number of events but also the time when
an event occurs. This often brings more information
for comparing event rates than a method using the
number of events alone. The survival function S(t)

is a probability function that an individual will sur-
vive or be disease free up to a certain time point t .
The hazard function is defined as

λ(t) = − dS(t)/ dt

S(t)
.

It measures an instantaneous mortality or morbidity
risk relative to a survival probability at that time.
A commonly used model for survival analysis is
the proportional hazard model, which assumes that
hazard functions for two groups satisfy

λ1(t) = ψλ2(t).

It is of interest to test the constant hazard ratio ψ =
1 or the constant log hazard ratio θ = log(ψ) = 0
(see Hazard Rate; Relative Hazard).

In a survival study, it is uncommon to observe the
actual event time for all subjects. Usually, for some
subjects, time to event is censored by the end of the
study or at some time point when the subject is lost
to follow-up. The statistical power of testing θ = 0
depends principally on the number of events actually
observed.

Calculating the Number of Events

For a given alternative on the log hazard ratio,
θ = θa, test significance level α and statistical
power 1 − β, the required total number of events is
estimated as

D = 4(z1−α + zβ)2

θ2
a

(13)
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based on a score test under the proportional hazard
model [37]. For example, to detect a hazard ratio of
1.5 with α = 0.05 (two-sided) and 1 − β = 0.90, the
required number of events is D = 256.

An alternative approximation to the required total
number of events based on a normal approximation to
the log rank statistic, assuming constant hazard ratio
ψa = exp(θa), is given by Freedman [8] as

D = (z1−α + zβ)2(ψa + 1)2

(ψa − 1)2
. (14)

Simulation results show that this approximation usu-
ally provides a slight overestimate for the total num-
ber of events [8]. When θa is small (close to 0),
expressions (13) and (14) will give similar estimates
for the total number of events. For the above exam-
ple, ψa = 1.5, the required number of events based
on (14) is D = 263 instead of D = 256 from for-
mula (13).

The sample size formulas (13) and (14) are
obtained assuming an equal number of subjects
allocated in the two study groups. If this is not
the case, then the required total number of events
corresponding to formula (13) is

D = (z1−α + zβ)2

π1π0θ2
a

,

where π1 and π0 = 1 − π1 are the proportions of
subjects to be allocated to the two groups. The corre-
sponding formula for (14) under unequal number of
subjects in the two groups is

D = (z1−α + zβ)2(π1ψa + π0)
2

π1(ψa − 1)2
.

Calculating the Number of Subjects

Suppose P is the average probability of an individual
having an event in the study population. Then the
total number of subjects required for the study
is approximately N = D/P , where D is the total
number of events required for the study.

If a study enrolls all subjects at once (e.g. a cohort
study) and follows every subject up to time f , then
the probability P can be estimated by P = 1 − S(f ),
where S is an average of the two survival functions
for the two study groups; that is, S(t) = [S0(t) +
S1(t)]/2 at any time t .

In many cases, the survival function is approxi-
mated by an exponential distribution; that is, S0(t) =
exp(−λ0t) and S1(t) = exp(−λ1t). The parameters
λ0 and λ1 can be obtained from the specified
median survival time for the corresponding sur-
vival functions. Continuing from the example above,
where the hazard ratio to be detected is 1.5, sup-
pose the median survival times for the unexposed
and exposed subjects are two and three years, respec-
tively. Then λ0 = 0.347, λ1 = 0.231 and S(t) =
[exp(−0.347t) + exp(−0.231t)]/2. If the study has
a three-year follow-up, then the required total sample
size can be estimated as N = 256/0.573 = 447 based
on (13), and N = 263/0.573 = 459 based on (14).

In experimental and cohort studies, subjects may
be enrolled within a period of time, say from 0 to time
T (see Cohort Study; Experimental Study). The
follow-up time for subjects in the study can be any-
where between f (for the last recruited subject) and
T + f (for the first subject in the study). The proba-
bility of events for the study can be approximated by
an average using Simpson’s rule [37]; that is,

P = 1 − 1

6
[S(f ) + 4S(0.5T + f ) + S(T + f )],

where S(t) is again the average of the two survival
functions.

Lachin & Foulkes [18] presented a sample size
and power calculation method based on exponen-
tial distributions. Their method allows for adjustment
on the staggered entry of subjects, loss to follow-up
(including deaths from competing risks), stratifica-
tion, drop-in and lag in the effectiveness (or expo-
sure effect) during the course of study. Lakatos [19]
extended the method using the log rank statistic. Sim-
ulation studies show that Lakatos’s method [19] is
robust even when the proportionality assumption is
not satisfied [20]. Other factors can influence sample
size, including lack of sensitivity in making diag-
noses and alternative methods of analysis such as
comparison of two Kaplan–Meier curves (see, for
example, [10]).

Longitudinal Studies

Longitudinal studies have become popular as the
methods for longitudinal data analysis became avail-
able (see, for example, [5]). In a longitudinal study,
repeated measures are taken from a subject over
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a period of time. A longitudinal study will pro-
vide information (e.g. time effect for individuals)
that cannot be obtained by a cross-sectional study.
This type of study can be used for time-dependent
exposures (e.g. smoking, alcohol use, diet, stress,
blood pressure) and/or recurrence outcomes (e.g.
pain, allergy, asthma, depression). Data from a lon-
gitudinal study require special statistical methods
because the repeated measures from the same subject
tend to be correlated. It is therefore required to con-
sider the correlation among repeated measures while
planning the sample size and power for a longitudinal
study.

Dichotomous Exposure

The impact of repeated measures on sample size
calculations can be illustrated by comparing the aver-
age differences in a continuous response. Suppose
k repeated measures are taken from each subject,
assume the correlation coefficient between any two
measures is ρ, then the average of the k measures
has variance

var(Y ) = 1

k
[1 + (k − 1)ρ]σ 2,

where σ 2 is the variance of each response measure.
Assume the variance and correlation are the same
under the null and alternative hypotheses. Then the
sample size required to detect a difference ∆ with
significance level α (one-sided) and power 1 − β is

n = 2(z1−α + z1−β)2[1 + (k − 1)ρ]σ 2

k∆2
(15)

for each group [5, Chapter 2]. The correlation ρ

will usually be positive. Therefore, the larger the
value of ρ, the larger the required sample size for
the study. This is because there is less independent
information gained from each repeated measurement
as ρ approaches 1. When ρ = 1, the number of
subjects required is the same as in a study with one
measurement per subject.

For example, consider a cohort (or experimental)
study to investigate the association of a certain diet
with total cholesterol level. Subjects in the study will
have their total cholesterol measured quarterly for a
period of a year. Suppose a standard deviation of
80 is assumed for each measure and the correlation
between any two measures is ρ = 0.5. With α = 0.05

and power = 90% to detect a 20-point difference, we
will need n = 172 per group based on (15).

For a binary response variable, the sample size
for a longitudinal study with repeated measures can
be obtained similarly. Suppose p0 and p1 are the
proportions of subjects who develop the disease in the
unexposed and exposed groups, respectively. Then
the required sample size for a longitudinal study with
k repeated measures is estimated as [5, Chapter 2]

n =
(
z1−α

√
(2pq) + z1−β

√
(p1q1 + p0q0)

)2

× [1 + (k − 1)ρ]

[k(p1 − p0)2]
, (16)

where q1 = 1 − p1, q0 = 1 − p0, p = (p0 + p1)/2,
and q = 1 − p. The quantity ρ is the correlation
coefficient of the binomial response variable between
any two repeated measures. It is assumed to be the
same for all subjects under the null and alternative
hypotheses. Because the binomial response takes
values of 0 or 1, unlike for normal distributed
data, the correlation coefficient ρ is constrained in
complicated ways (see [5]). For repeated measures,
the correlation ρ is usually positive and its value may
range in [0, b], where b can be less than 1.

In the above example, if the total cholesterol is
dichotomized and the threshold for elevated total
cholesterol is 200, then the response will be binomial
(yes/no). If one assumes a correlation of 0.5 between
any two responses, with k = 4 repeated measures,
p1 = 60% and p0 = 70%, a sample size of n = 243
per group is required to detect a 10 percentage point
difference in elevated total cholesterol, with α = 0.05
and power = 90%.

Generalized Estimating Equation Method

In general, Liu & Liang [23] presented a method
for computing sample size and power for studies
with longitudinal observations using the generalized
estimating equation (GEE) method. Suppose µij is
the mean of the ith subject at the j th measure. The
generalized linear model with a link function of g is
given as

g(µij ) = Xijθ + Zijλ,

where θ is a vector of parameters of interest, λ is
a vector of nuisance parameters, and Xij and Zij

are covariates related to study design. The sample
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size required for testing H0: θ = θ0 vs. Ha: θ = θa is
derived based on a quasi-score test statistic.

The method can be applied to generalized linear
models with longitudinal observations such as linear
models for continuous responses, logistic models for
binomial response, and loglinear models for Poisson
responses. However, there is no explicit sample size
formula except for some simple special cases, for
which the sample size formulas are provided in Liu
& Liang [23]. The sample size or power values are
estimated numerically, in general.

To calculate sample size and power, we have to
specify the values of the parameters of interest as
well as the nuisance parameters under the alternative
hypothesis. In addition, the element of the correlation
matrix for the longitudinal observations has to be
specified, and this is usually the most difficult part.
Information about correlation may be obtained from
previous studies. In the case of no prior information
about the correlation, a sensitivity analysis may be
performed using various correlation values based on
the investigator’s judgment. The sample size for the
study may be taken conservatively based on the
sensitivity analysis.

On the basis of the GEE method, explicit sample
size formulas are obtained by Liu et al. [22] for com-
paring two means, two slopes and two proportions
under several simple correlation structure.

Estimation and Precision

The sample size determinations discussed so far are
based on achieving a certain probability (power) to
detect a given alternative for a specified statistical
hypothesis test. When the problem of interest is
to estimate the magnitude of the effect, e.g. the
disease–exposure odds ratio, the study planning
must focus on the precision of the estimate, which
is often measured by the width of a confidence
interval. In general, the sample size required for the
study should be increased if the confidence level is
increased, the variability associated with the measure
is increased, or the total width of the confidence
interval is reduced.

There are two different approaches to determining
sample size based on the width of a confidence
interval. One is to have the expected width of the
confidence interval sufficiently small. Another is to
have a tolerance level to guarantee that the width

of the confidence interval will be within a given
precision limit. In the latter case, the width of a
confidence interval is regarded as a random variable.
The latter approach usually requires larger sample
sizes than the former. In this section we illustrate
the two approaches to determining sample size for
estimating ORs and standardized mortality ratios.

OR

Consider a 2 × 2 table generated from an unmatched
case–control study:

Exposure Case Control

Yes n11 n10 n1.

No n01 n00 n0.

n0.1 n0.0 n

The OR is estimated by

OR = n11n00

n01n10
.

For the first approach, O’Neill [31] derived a sample
size equation by replacing the cell counts with their
expected values and then using a logit method to
calculate the confidence interval width. To have the
expected width of the 1 − α confidence interval less
than 2δ, for given values of true OR, exposure rate
π0 for the control group, and the case–control ratio
k (i.e. k = n.0/n.1), the number of cases required is

n.1 =
[

1

π1(1 − π1)
+ 1

π0(1 − π0)

] [z1−α/2

δ

]2
,

where π1 is the exposure rate for the case group,
which can be calculated as π1 = π0OR/[1 + π0

(OR − 1)].
For the second approach, a 1 − α confidence

interval for ln(OR) is obtained from the normal
approximation (e.g. [1, Chapter IV]),

ln(OR) ± z1−α/2

[
1

n11
+ 1

n00
+ 1

n10
+ 1

n01

]1/2

.

The precision of the estimate can be evaluated by
the probability of the confidence interval being within
[−δ, δ]. That is,

P

(
z1−α/2

[
1

n11
+ 1

n00
+ 1

n10
+ 1

n01

]1/2

≤ δ

)

= 1 − β.



14 Sample Size in Epidemiologic Studies

The probability 1 − β is called the tolerance probabil-
ity. The sample size required for the study is obtained
by solving this equation for given values of the true
OR, α, β, δ, the exposure rate π0 for the control
group, and the case–control ratio k. Numerical com-
putation is needed to solve the equation for n. Satten
& Kupper [35] provided tables (as well as a computer
program) for the minimum sample size required to
produce a 95% confidence interval of total width not
greater than 2δ with probability 1 − β for various
values of δ, k, OR, and π0.

Satten & Kupper [35] also gave an example for a
case–control study. The anticipated OR for the study
population is no smaller than 3. For a probability
of exposure in controls π0 = 0.05, with tolerance
probability 1 − β = 0.90, k = 1, and in order to have
the width of the 95% confidence interval no more
than 1.5, n = 271 cases are required (with k = 1,
the number of controls is the same). With O’Neill’s
method, the required number of cases is n = 202.

Standardized Mortality Ratio

The standardized mortality ratio (SMR) is the ratio
between the observed number of events and the
expected number of events. The latter quantity is
usually derived from external studies or vital statis-
tics and is assumed to be known and fixed (see Vital
Statistics, Overview). The SMR is a common mea-
sure of relative risk in occupational epidemiologic
studies (see Occupational Epidemiology).

Assume the observed number of events d in a
cohort study follows a Poisson distribution with mean
λ. The confidence interval of the SMR is obtained
by finding the corresponding confidence limits for
λ and then dividing these limits by the expected
number of events. Using the relation between the
Poisson distribution and the chi-squared distribution,
Gordon [12] derived the 1 − α confidence interval for
λ as

(λL, λU) = [
1
2cα/2(2d), 1

2c1−α/2(2d + 1)
]
,

where cα(k) is the αth quantile of a chi-squared
distribution with k degrees of freedom.

The expectations of λL and λU, and the expected
width of the interval are

E(λL) =
∞∑

d=1

1

2
cα/2(2d)

λd

d!
exp(−λ),

E(λU) =
∞∑

d=0

1

2
c1−α/2(2d + 1)

λd

d!
exp(−λ),

E(w) = E(λU) − E(λL).

Tables are given by Gordon [12] for these expected
values for various values of λ, which can be used to
determine the expected number of events given the
true SMR and an upper limit, a lower limit or the
width of the confidence interval.

The sample size obtained by Gordon is based on
the first approach without having a tolerance level to
guarantee the precision. The estimated sample size
will be too small to distinguish the SMR from a
specified value [15]. For example, to have the upper
bound of the 95% confidence interval no more than
1.0 when the true SMR is 0.7, the expected number
of events estimated by Gordon’s method is 42.9.
However, this sample size will have only a 50%
chance of yielding a 95% confidence interval, which
will exclude the value 1.0 when the true SMR is 0.7.

On the basis of the second approach, Green-
land [15] provided a method to estimate the sample
size needed so that the confidence interval can reli-
ably distinguish between two different values of the
SMR. He concluded that the sample size obtained will
be similar to that based on a hypothesis test to com-
pare the two specified SMR values. For the above
example, in order to have a 90% chance that the
upper 95% confidence interval be smaller than 1.0
when the true SMR is 0.7, the required number of
events is 98.4. This sample size can also be obtained
from a hypothesis test that compares SMR = 0.7 vs.
SMR = 1.0, with significance level 0.05 and power
of 90%.

Further Issues and Discussion

Exact Methods

As computing technology advanced in recent years,
exact methods were developed for analyses of studies
with categorical observations. These methods provide
exact test p-values that may be quite different from
the asymptotic p-values when the sample size and/or
the probability of events is small. If it is planned
to use exact methods for the analysis, then it is
preferable to estimate the sample size for the study
based on the same exact approach.
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For pair-matched case–control studies, a number
of papers have been published for calculating sample
size and power based on McNemar’s test. Lachin [17]
compared several unconditional sample size and
power calculation methods (see Matched Analysis).
Royston [34] published tables of sample sizes based
on the conditional and unconditional approaches.

For ordered categorical data, Hilton & Mehta [16]
developed an algorithm for computing sample size
and exact power. They also considered a Monte Carlo
method for power estimation. They pointed out that
the asymptotic power function works well when the
number of categories is not too small (e.g. more than
five categories).

Lui [27] considered sample size estimation for
the exact conditional test under inverse sampling, in
which one continues to sample subjects until one
obtains a predetermined number of index subjects
(e.g. events). Under inverse sampling, the number
of events to be observed for each exposure group
is fixed, and the number of subjects to be sampled
follows a negative binomial distribution. Conditional
on the total number of subjects, a conditional test
is used to compare event rates for the two groups.
On the basis of a numerical approximation, tables
are provided for the minimum required number of
events given events rates, significance level = 0.05
and power = 0.80 or 0.90.

Adjustment for Loss to Follow-up and
Missing Data

In studies where loss to follow-up or missing data
occur, the planned sample size should reflect the
information loss to maintain the desired statistical
power. If loss to follow-up or missing data are
purely by chance (missing completely at random),
then a simple adjustment on the sample size is to
enlarge the required sample size by the proportion of
information loss. For example, suppose the required
sample size for a cohort study is 400 subjects per
group and a 20% loss to follow-up rate is assumed,
then the total number of subjects for the study may
be enlarged to 500 (= 400/(1–0.2)) per group. This
simple adjustment provides a conservative sample
size estimate if the partial data obtained from the lost
to follow-up subjects can be used in the statistical
analysis (e.g. in longitudinal analysis models). If we
know that 25% data from the 20% lost to follow-up
subjects can be used in the analysis, then a refined
sample size adjustment is n = 400/(1–0.15) = 471.

This simple adjustment can also be used for the
case when missing data are missing at random, i.e.
the probability of missingness depends on at most
the data already observed but not on the missing
data [21]. However, when data are not missing at
random (nonignorable missingness), the probability
of missingness will depend on the missing data. In
this case, it can be difficult to compute the proportion
of missing information. Further discussion of missing
data is beyond the scope of this article and can be
found in Little & Rubin [21] (see Missing Data in
Epidemiologic Studies).

Computation and Software

Several commercial software packages are currently
available for sample size and power calculations
(see Software, Biostatistical; Software, Epidemio-
logical). They include EGRET-SIZ by Cytel Software
Corporation, SamplePower by SPSS Inc., nQuery
Advisor by Statistical Solutions, and PASS by Num-
ber Cruncher Statistical Systems. EGRET-SIZ is the
only package for sample size and power calcula-
tions with the main focus on epidemiologic studies.
It provides sample size estimates for four specialized
statistical models including logistic regression (for
cohort and unmatched case–control studies), Pois-
son regression, conditional logistic regression and
Cox proportional hazards regression. A good feature
of EGRET-SIZ is that there is a Monte Carlo pro-
cedure for one to verify the estimated sample size
and obtain empirical power. SamplePower, nQuery
Advisor and PASS provide sample size estimates for
a broad range of statistical models including tests for
means, proportions, analysis of variance (ANOVA),
regression and survival analysis. Most of the software
packages can be used to estimate one of the parame-
ters among sample size, power, minimum detectable
effect, variances, and test significance level, provided
the other parameters are specified. Some of the pack-
ages (e.g. nQuery, SamplePower) have modules to
estimate sample size from the given width of a con-
fidence interval.

Other “freeware” may be found in public health
service organizations or from individual statisticians.
For example, “Epi info” from the Centers for Dis-
ease Control and Prevention provides some sample
size estimation routines for cohort and case–control
studies. A SAS module/macro for sample size analy-
sis, “UnifyPow”, has been developed and distributed
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by O’Brien [30]. Many computer codes for some spe-
cific and complex statistical methods may be obtained
directly from the authors who developed these meth-
ods. For example, a power and sample size module
for testing interaction has been developed by Lubin
and colleagues at the National Cancer Institute based
on a paper by Lubin & Gail [24]. A sample size
calculation module is included in EPITOME, an epi-
demiologic data analysis package developed at the
National Cancer Institute.

Although many approaches and software packages
can be used to calculate sample size, care should
always be taken to formulate the study problem in
the framework that the computer software requires.
It is necessary to follow the program instructions or
user’s manual to provide input parameters for the
computer packages. In all cases, it is important to
understand the statistical procedures for which the
computer package is calculating the sample size or
power. Otherwise, the calculated sample size can
be erroneous and lead to an underpowered or over-
powered study.

Discussion

Sample size determination is a very important aspect
of the design of any study. It often helps to clarify
important features of a study protocol. Investigators
will not be able to calculate sample size without fully
understanding the nature of the measurements to be
taken, specifying the planned analysis (test statistic
or estimation procedure, significance level and study
power), and obtaining preliminary information on
the effect to be detected and the variability of
the measurements. Some important information can
often be obtained from reviewing the literature or
discussions with other investigators who conducted
previous studies.

In practice, sample size and power evaluation may
be an iterative learning process. The parameters and
distribution characteristics obtained from previous
studies can be used to estimate the required sample
size for planning the current study. If there is no
previous information for a new investigation, then a
pilot study may be designed to gain some knowledge
about the parameters and distribution. The results
from this pilot study will then provide information
for designing the main study. The iterative process
may be integrated to form a two-stage design in
which the results from the pilot study (first stage)

will be used to guide the sample size estimation for
the second stage. The data from both stages will be
used for the final data analysis. For instance, the
impact of additional follow-up in cohort studies was
investigated by Brookmeyer et al. [3]. In randomized
clinical trials, Gould [13] and Gould & Shih [14]
presented methods to adjust the sample size during
the course of a study.

Group sequential procedures have been consid-
ered for experimental studies by health researchers,
in which investigators are allowed to have several
interim analyses. Each interim analysis not only
provides a preliminary estimation of the parameters
of interest before the completion of the study, but
also offers a chance to terminate the study early
when there is sufficient evidence to reach a con-
clusion (either positive or negative). Although this
sequential approach has mainly been used and advo-
cated for experimental and case–control studies
(see Case–Control Study, Sequential), the idea can
be used in cohort studies by performing interim anal-
yses when partial follow-up data are available. How-
ever, there is usually less ethical pressure for early
termination of observational epidemiologic studies
than experimental studies such as randomized clin-
ical trials. Furthermore, the need for a large sample
size is often stressed in epidemiologic studies in order
to estimate the parameters of interest with preci-
sion. For these reasons, sequential methods have not
gained widespread acceptance and use in epidemio-
logic studies.

Usually, new statistical methods are developed
for data analysis before they are considered in sam-
ple size estimation for designing studies. For some
complicated study designs and statistical models,
sample size estimation methods may not be avail-
able (e.g. case–cohort design, two-stage case–control
studies, and structural models for causal infer-
ence; see [33]). Further research will be needed on
sample size estimation for these specialized study
designs and statistical models (see Case–Cohort
Study; Case–Control Study, Two-phase).

Two approaches may be considered to estimate
sample size for a complicated study when there is
no sample size estimation method available. First, a
Monte Carlo simulation may be conducted to esti-
mate the power empirically for several fixed sample
sizes and thus to find the sample size that yields the
required power. Today’s powerful computation tools
make this approach feasible. The second approach is
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to approximate the sample size by using a simpli-
fied study design and/or statistical model for which
a sample size estimation method is available. The
simple model should be chosen so that it requires at
least as large a sample size as would be required
by the more complex and presumably more effi-
cient analysis. There is a tradeoff between using
simpler methods and using more sophisticated mod-
els for sample size estimation. At the design stage,
prior information about the parameters of the statisti-
cal models may be limited. Sample size estimation
requires fewer assumptions with simplified statis-
tical models than with more sophisticated models.
Unless the assumed values of parameters and forms
of distributions are accurate for the designed study,
the sample size estimated from the sophisticated mod-
els may be inaccurate due to misleading assumptions.
Simplified methods, on the other hand, can be more
robust because of fewer assumptions.
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Sample Surveys in the
Health Sciences

Reasons for Conducting Sample Surveys

Perhaps the most compelling argument for using a
sample survey rather than complete enumeration is
that for the same cost a sample survey can pro-
vide results more accurately, with greater scope, and
faster. Studying a well-chosen sample can increase
accuracy by reducing bias and by increasing pre-
cision of the results. By reducing the number of
people to be studied, a sample survey can devote
more resources to finding and persuading nonrespon-
ders to participate, thus reducing nonresponse. Fewer
interviewers are required, so that more effort can be
devoted to training and monitoring them for accuracy.
Replicate measurements may be made to increase the
precision. Sample surveys can also take advantage
of the smaller sample size and more intensive effort
for each person to ask more questions or make more
detailed measurements, thus broadening the scope of
the questions addressed. Finally, sample surveys may
be able to reduce the total time to collect and ana-
lyze the data, thus providing more timely answers to
important questions.

A second important reason for the use of sample
surveys is feasibility. When the target population
is very large, such as the entire population of the
United States, a moderate-sized sample survey, if
well designed, can provide highly accurate results at
substantially less cost than a complete enumeration.
The cost of a complete enumeration can be substantial
both for the researchers and for the participants; one
motivation for using sample surveys is when the
respondents are institutions such as hospitals.

The desire to study certain subgroups in more
depth also leads people to use sample surveys. Policy
issues may require valid estimates for children, peo-
ple aged 65 and older, women, African-Americans,
Hispanics, rural residents, or other subgroups in
the population. A sampling design can oversam-
ple from important subgroups to increase precision
and to ensure that their health can be character-
ized accurately.

Recently, epidemiologic studies have begun to
take advantage of the ability of sample survey designs
to increase power and reduce bias in studies of risk

factors for disease onset and progression (see Obser-
vational Study). The power to conduct comparative
analyses of risk factors is largely determined by the
number of prevalent or incident disease cases iden-
tified for study. To increase the number of cases,
researchers can increase the sample size or the length
of follow-up, an expensive strategy, or try to increase
the proportion of disease cases in the sample by over-
sampling groups at high risk. A clever design can
improve power substantially. Sample surveys also
help reduce bias for epidemiologic studies by pro-
viding a truly comparable group of unaffected people,
sampled from exactly the same population in which
the affected group was identified (see Controls). A
recent study of Alzheimer’s disease in people aged
65 and older in the community in East Boston,
Massachusetts, used a stratified sample design to
oversample from the oldest age groups and those
with poor performance on a simple memory test.
When a neurologist examined the resulting sample,
about 35% were found to have clinical Alzheimer’s
disease, compared with an estimated prevalence of
10% in the community. In addition, the mean age
of the unaffected comparison group was much closer
to that of the Alzheimer’s group in this sample than
in the community, and both diseased and disease-
free participants had received the same interviews and
clinical evaluation [13].

Some History of Sample Surveys

Early Developments at the US Bureau of the
Census

In the early part of the twentieth century, the impor-
tance of using random sampling in surveys was not
generally recognized. Units to be canvassed were still
selected purposively, with the survey managers decid-
ing which units would be most “representative” of the
population of interest (see Quota, Representative,
and Other Methods of Purposive Sampling). Prob-
ability theory had yet to be applied. In the 1930s,
more attention was being paid to R. A. Fisher’s work
on the importance of randomization in experimen-
tal design In 1934, J. Neyman’s paper [43] arguing
in favor of random sampling and establishing the the-
oretical foundation for it, appeared in the Journal of
the Royal Statistical Society (see also [55]). These
developments in statistical theory laid the ground-
work for modern sample surveys. However, the key
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catalyst for the incorporation of probabilistic sam-
pling into the selection of units in sample surveys
(see Probability Theory) was the increasing need
for reliable estimates to use in policy-making.

At the US Bureau of the Census, the first applica-
tion of probabilistic sampling was in a 1937 “check
census” of unemployment. The Bureau used postmen
as canvassers, choosing two out of every 100 postal
routes. The success of this early foray into prob-
abilistic sampling was possibly a decisive moment
for those decision makers who were skeptical of the
value of nonpurposive methods [11].

In the 1940 decennial census of population and
housing, the first “long form” sample was introduced:
5% of the population was asked a set of questions in
addition to the key census battery. This approach is
still an integral part of the decennial census, enabling
the Census Bureau to collect more detailed data with-
out overburdening all respondents, and at a moderate
cost [1, 18, 49].

In 1942, the Bureau was given the Work Projects
Administration’s Monthly Report on the Labor Force
(MRLF), from which were derived unemployment
estimates. In order to develop an efficient sample
design for this survey, the Bureau statisticians under
the direction of Morris Hansen and William Hurwitz
found that they had to develop totally new theory for
the design of sample surveys. Major new develop-
ments included sampling with unequal probabilities,
cluster sampling, optimization in multistage sam-
pling, and estimation methods. These are now con-
sidered standard sampling methods for face-to-face
household surveys. Under the direction of Hansen
and Hurwitz, a relatively small research staff made
further contributions to sampling methods. One of
the more public products of this work, a two-volume
text by Hansen, Hurwitz, and William G. Madow
published in 1953 [22], still stands as a classic work
in statistics.

The MRLF, later named the Current Population
Survey, provided a laboratory for research into sam-
pling and other statistical aspects of survey methods.
It also became a model for household surveys all
over the world. Other current US demographic sur-
veys have used the same basic design. These include:
The National Crime Survey (now The National Crime
Victimization Survey), The National Health Interview
Survey, The Survey of Income and Program Par-
ticipation, The American Housing Survey (formerly
The Annual Housing Survey), and The Consumer

Expenditure Quarterly and Diary Surveys. Data for
all of these surveys are collected by the Bureau of the
Census, typically for sponsoring agencies who pub-
lish the estimates from the surveys. Most of these sur-
veys use as their basic frame (see Sampling Frames)
the list of housing units obtained from the decennial
census; this list is supplemented by frames for new
construction and other special categories. Character-
istics of those housing units and their occupants are
used to stratify units within counties and to group
counties within primary strata.

Extensions of the Survey Methodology to Other
Fields of Study

The combination of the success of the sample survey
method developed and used by the Census Bureau in
the 1940s and 1950s in providing population, hous-
ing and economic data, and the need for new data
on health characteristics of the population led to
the adoption of sampling techniques in conducting
national health surveys, beginning in 1957 and con-
tinuing until the present time (see Surveys, Health
and Morbidity).

It had been established in the 1920s that commu-
nity studies of illness and disability were feasible,
and a major health survey to obtain data on diseases,
injuries, and impairments in the general population
of the United States was conducted from 1935 to
1936 [41]. Following this survey, additional commu-
nity studies on morbidity led to the formation of the
US National Committee on Vital and Health Statis-
tics in 1949, which ultimately recommended “That a
continuing national morbidity survey be conducted. . .

Its purpose would be to obtain data on the prevalence
and incidence of disease, injuries and impairments,
on the nature and duration of the resulting disability,
and on the amount and type of medical care received.
The data would be obtained from a probability sample
of households” [41]. Thus, what is now known as the
National Health Interview Survey (NHIS) was begun.

The data from these continuing surveys have been
used extensively by the US Federal government in
setting policy and developing programs for the con-
tinued benefit of the population. Perhaps, the largest
such program ever enacted is the national health
insurance program for the elderly, known as Medi-
care, which came into existence some eight years
after the NHIS began producing relevant data on the
health of the general population. In addition, data
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derived from the NHIS were used in developing the
1964 recommendations of the US Surgeon General
regarding smoking and health.

Today, data from both national surveys and com-
munity population studies are being used to under-
stand causes and prevention of disease. For example,
most of what we know about the risk factors for
coronary heart disease came from the results of the
long-standing community study known as the Fram-
ingham Heart Study Currently, community studies
utilizing sampling techniques are being conducted in
Hawaii, Illinois, Washington (state), and other areas
to determine risk factors for Alzheimer’s disease and
other dementing illnesses, which may aid researchers
in developing preventive strategies for the future.
Data from a longitudinal supplement to the NHIS
and from a national long-term care survey have sug-
gested that a decline in disability among older people
has been taking place over time [33]. These data will
be useful for planning health care services for the
elderly for the future.

Design and Objectives of Sample Surveys
in Health and Medical Studies

The specification of the design and objectives of a
sample survey form a very important part of the
planning of the study. A clear statement of objectives
is essential for the researcher to be able to stay
on track and design the study effectively. One can
become so engrossed in the details of planning that
one loses sight of the overall purpose for the study,
and perhaps makes decisions that may contradict the
objectives that were originally set.

Objectives of Sample Surveys

As surveys are usually of two types, descriptive and
analytic, the statement of objectives should include
the main purpose. Most large-scale surveys are usu-
ally of the descriptive type, although analytic uses
of the data may ultimately be made. An example of
a statement of objectives that follows comes from
a publication of the National Center for Health
Statistics (NCHS) regarding the redesign of the
NHIS in 1995 [2]:

Improving the reliability of estimates for Hispanic
persons

Improving the reliability of estimates for subna-
tional areas, including states

Continuing to have NHIS serve as a sampling
frame for follow-on surveys

These objectives along with others were used in
developing the criteria for the redesign of the survey,
and, while they serve as an example for us, the
careful statements enabled the NCHS statisticians to
work through the design phase without losing sight
of where they should be going.

Major Design Features of Sample Surveys

While there are numerous features of sample sur-
veys that could be discussed in this article, space
dictates that we limit our discussion to only a few
of the main features seen in most sample surveys
executed in practice. Recall the textbook definition
of simple random sampling in a finite population,
namely, a method of selecting n units out of N such
that each of the possible combinations of N units
taken n at a time has an equal chance of being chosen
(see, for example, [5]). In addition to simple random
sampling, survey statisticians often employ methods
of sampling including, but not limited to, stratifica-
tion (see Stratified Sampling) and clustering (see
Cluster Sampling), and compute estimates using
techniques such as ratio estimation (see Ratio and
Regression Estimates) and poststratification Fol-
lowing discussion of these topics, we will conclude
the section with some information about sources of
error in surveys.

Stratification. Use of stratification in sample sur-
veys involves first the division of the population of
N units into L nonoverlapping subpopulations, called
strata, of size N1, N2, . . . , NL. In order to obtain max-
imum benefit from selecting a stratified sample, the
number of units, Ni , in each stratum must be known.
The sample is then drawn independently from each
stratum.

There are numerous reasons for using stratifica-
tion in sample surveys. As stated in the introductory
section, one reason for stratification is to insure that
one can make estimates of a certain level of pre-
cision for subgroups of the population under study,
by fixing sample sizes separately for each subgroup.
Secondly, if it is known in advance of conducting
the survey that characteristics to be estimated from
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the survey vary at substantially different rates from
one subgroup to another, it is possible to achieve
increased precision in the overall population esti-
mates by creating strata in which within-stratum
variability is small and between-stratum variability
is large. For example, in the National Hospital Dis-
charge Survey [9], larger hospitals (in terms of num-
ber of beds) tend to be more alike among themselves
than they are like smaller hospitals, and similarly
for the smaller hospitals. The variance of within-
stratum estimates of a discharge rate may be quite
small compared to the variance of rates among strata.
A third reason for stratification is that the population
may have natural divisions that lend themselves to
stratification, or layering. For example, field offices
for a given survey may be scattered throughout a
large geographic area, thus dictating that the sample
be stratified according to the geographic breakdowns
inherent in the total population.

To illustrate the computations involved in estimat-
ing a population mean from a stratified sample and
its sampling variance, consider a population that is
divided into two strata with N1 units in the first stra-
tum and N2 units in the second. The unbiased esti-
mate of the mean is xst = Fx1 + (1 − F)x2, where
x1 and x2 are the respective within-stratum sample
means and F = N1/N and 1 − F = N2/N . The vari-
ance of the estimate of the sample mean is

sxst

2 = F 2s1
2

(
1

n1
− 1

N1

)

+ (1 − F)2s2
2

(
1

n2
− 1

N2

)
, (1)

where s1
2 and s2

2 are the sample variances within the
two strata, and n1 and n2 are sample sizes within the
strata. If the within-stratum variances are sufficiently
small, the overall variance of the estimated mean
could turn out to be smaller than the mean of a sim-
ple random sample. Finally, the results shown here
can be extended to estimation of population totals,
proportions, or other characteristics by algebraically
manipulating the formulas given here for the mean.

As an example of the increased precision that can
be achieved through stratification, consider the fol-
lowing data set taken from the Honolulu Asia Aging
Study (HAAS), a study of dementing illness among
Japanese-American men living in Hawaii [57]. The
sample to be studied was selected from three groups
based on the individuals’ performance on a screening

test for cognitive function. Those persons who per-
formed the poorest – and therefore were at highest
risk of dementia – were chosen at the highest rate.
The “good” performers were selected at the lowest
rate, and those in the middle at an intermediate rate,
the objective being to obtain the largest number of
diseased cases possible while not ruling out the possi-
bility that at least a few of the “good” performers may
also have been at risk for dementia. The overall esti-
mate of the prevalence of dementia among these men
was 9.3% with a standard error 1.6% when a simple
binomial model was used to calculate the variance.
However, when the stratified sampling assumptions
were taken into account, as above, the standard error
estimate was reduced to 0.83%. Thus, the stratified
design in this case led to a standard error slightly
more than half that of a simple random sample.

Clustering. Clustering, or sampling in which the
units sampled are chosen in groups or clusters of
smaller units, called elements, is used for two rea-
sons. First, for many surveys a sampling frame, or
list of population units to be sampled, does not exist.
For example, if one were asked to design a sampling
plan for estimating the number of trees in a given
geographic area, say the state of California, clearly
no list of population units exists. Furthermore, the
construction of such lists might be impossible for
some studies, while for others it might be feasible
but prohibitively expensive. However, from maps of
geographic regions or lakes or whatever areas are to
be sampled, it is possible to divide the region into
subregions with definable boundaries. These subre-
gions, which contain clusters of the sampling units
of interest, are selected for study because they solve
the problem of constructing a list of sampling units.

The second reason for selecting cluster samples is
purely economic. Suppose that one were interested
in studying the characteristics of physicians in office-
based practices in the United States. It is known that
the American Medical Association maintains an up-
to-date listing of all such physicians for the United
States. However, if one were to select a simple ran-
dom sample of these physicians and send interview-
ers to collect the data from them, the interviewers
would be traveling all over the country at tremen-
dous expense to reach what would undoubtedly be a
widely scattered sample of physicians. A more prac-
tical approach to conducting the study would be to
select a relatively small sample of geographic areas
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around the nation and conduct interviews with a sam-
ple of physicians limited to those selected areas.
Clearly, a simple random sample of 3000 physicians
would cover the nation more evenly than 100 counties
or metropolitan areas containing an average of 30
physicians each, but greater field costs in locating the
doctors and traveling from place to place to interview
them would outweigh the precision obtainable with
the simple random sample.

The choice of cluster size involves balancing
costs versus precision for a given survey and can
become rather complicated, especially if the design
involves several stages of sampling. Rather than
becoming engrossed in an overly complicated anal-
ysis regarding cluster sampling, let us look at a
simple design in which a simple random sample of
n clusters is selected from N clusters in the popu-
lation, with simple random selection of m elements
(out of M) within each cluster. Let xij represent
the observed value for the j th element in the ith
cluster and let xi be the cluster total. Here we
need to distinguish between two kinds of means: the
mean per cluster X = ∑

xi/N and the mean per

element X/M = ∑
xi/NM . Sampling at two levels

thus introduces variance components for the effect
of sampling clusters and elements within clusters. The
between-cluster component can be calculated from
the sample as

s2
b =

n∑

i=1

(xi − x)2

n − 1
(2)

and the within-cluster component as

s2
w =

n∑

i=1

1

m − 1

m∑

j=1

(xij − xi)
2, (3)

where xi is the cluster mean for the ith cluster.
Then an unbiased estimator of the variance among
all elements in the population is

V = (N − 1)s2
b + N(M − 1)s2

w

NM − 1
. (4)

As stated earlier, these considerations can be
extended to multiple levels of sampling, unequal
numbers of elements within the clusters and stratifi-
cation of clusters prior to sampling, and stratification
of elements within clusters before sampling.

One other aspect of cluster sampling deserves
mention here, namely, the concept of intracluster, or

intraclass, correlation Characteristics of individuals
occupying the same cluster are often likely to be
correlated. For example, in a household health survey,
it would not be unusual to find correlated responses
among members of a household. The intracluster
correlation coefficient is defined to be

ρ = E(xij − x)(xik − x)

E(xij − x)2
. (5)

Then, for the sampling design described above,
the variance of the sample mean per element can be
written in terms of the intracluster correlation coeffi-
cient as

V (x) = 1 − f

n

NM − 1

M2(N − 1)
V [1 + (M − 1)ρ], (6)

where f = n/N , the sampling fraction, and ρ is the
intracluster correlation coefficient. As a final note,
intracluster correlation is closely related to the idea
of overdispersion For further information on cluster
sampling and related topics, the reader is referred to
classic sampling texts such as [5] or [22].

Ratio Estimation. Ratio estimation is a method
in which the statistician takes advantage of known
correlation between a characteristic to be estimated
from a survey and an auxiliary variable available
from a source independent of the survey in order to
increase the precision of the survey estimate. Suppose
that a variable yi is available for every unit in the
sample and that yi is correlated with xi , the variable
of interest in the survey. Suppose further that the
population total Y of the auxiliary variable is known.
Then the ratio estimator of X, the population total of
the x’s, is

X̂R = x

y
Y = x

y
Y, (7)

where x and y are the totals of the xi and yi ,
respectively. Similarly, the population mean could be
estimated by replacing the total Y by the population
mean of the auxiliary variable. The gain in precision
obtained by calculating a ratio estimate can be seen
in the approximate formula for the variance of the
ratio, given by

V (X̂R) = N2(1 − f )

n
(S2

x + R2S2
y − 2RρSxSy), (8)

where ρ is the correlation between x and y and R =
X/Y . Notice that if x and y are highly correlated, the
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variance of the ratio estimator is diminished by the
large value of that correlation. The ratio estimator is
also biased in most applications, but in large samples
the bias is negligible.

Sources of Error in Surveys. In what we have
presented so far, the only errors ascribed to sample
surveys have been those arising from the fact that
only a sample of units are measured instead of
the entire population. However, in complex surveys
that involve multiple measures of quantities, which
may be difficult to measure, additional errors not
related to sampling may be present. In what follows,
we describe four sources of such errors, sometimes
referred to as nonsampling errors.

First, the sample may not adequately cover the
universe of units of interest. Secondly, it may not
be possible to measure some of the units in the
population chosen for the sample. This may occur
for a variety of reasons, including inability of the
fieldwork team to locate certain individuals selected
for the sample, or the respondents’ refusal to answer
some or all of the questions being asked in the
survey. Thirdly, the measuring device may not be
able to determine accurately the characteristics being
measured, or sample individuals may not understand
the question or may not know the correct answer
to the question. Finally, errors may arise in the
recording, coding, editing, and tabulation of the data
(see Data Management and Coordination). The
statistician may find it necessary to modify standard
statistical procedures to account for the occurrence
of such errors in order to make valid inferences from
the data when nonsampling errors are present.

Errors of coverage arise when the sampling frame
does not fully cover the universe of units to which the
sample estimates are to be generalized (i.e. the target
population). For example, suppose that in 1996 one
uses the list of housing units from the 1990 decennial
census as a frame for a sample of households for a US
survey. Without supplemental frames, this list would
exclude housing units constructed since the census.
Thus, any estimates based on the sample would be
generalizable only to the list of units, whereas the true
population of interest is “all housing units in the US
in 1996”. Such coverage error could bias the results,
because the people living in the newly constructed
units might be different, on the variables of interest,
than those living in the older housing units. Even if
we supplemented the list with a frame that captured

new construction since the census (for example, based
on an ongoing survey of building permits or new con-
struction), we might still have coverage error. This is
because even the best lists are subject to errors. Lists
constructed from door-to-door canvassing and listing
of units could be incomplete if some unusual housing
units were missed (e.g. a carriage house turned into
a rental unit). Some lists, such as those constructed
from a census, may not be complete if there was non-
response to the census. And commercial providers of
lists, such as professional associations, will only be
able to supply lists that are as complete as the infor-
mation their members provide.

A related problem is the potential discrepancy
between the true population of inference, such as “all
people in the US over the age of 18”, and the target
population, which might be “all people in the US over
the age of 18 at a particular point in time”. Although
not a coverage error per se, it is an important issue
to consider when defining the research question.

Both types of problems are related to the concept
of “external validity”.

Nonresponse, or failure to measure some of the
units in the sample, is probably the most common
nonsampling error incurred in survey practice. There
are few, if any, surveys that do not experience at least
some level of nonresponse. In the case of household
surveys or surveys involving human respondents, one
way of dealing with nonresponse is recontact with the
nonrespondents in an attempt to obtain the required
data. This may take the form of repeated visits to
the household or repeated telephone calls (see Call-
backs and Mail-backs in Sample Surveys). In some
cases, it is possible to make a valid estimate of the
characteristic under study by recontacting a sample
of the nonrespondents. Whatever method is used to
obtain complete data, it is likely that a “hard core”
of nonrespondents will persist in failing to provide
the requested data. If the percentage of nonresponse
is relatively large, say greater than 5%, it is quite
likely that the results of the study will be biased
an unknown amount by the exclusion of those indi-
viduals who did not provide complete data. As an
example, consider a disability survey in which per-
sons are asked about their ability to perform certain
activities of daily living. Studies have shown that the
people who have the most difficulty in performing
those activities are the ones who are most likely to
refuse to answer the questions. Therefore, estimates
of the prevalence of disability based on complete



Sample Surveys in the Health Sciences 7

responses to the questions are lower than they would
be if the more disabled individuals had answered the
questions. Also, because the sample size is smaller
than if complete response had been obtained, the stan-
dard errors of the estimates will be correspondingly
larger. This, however, can be remedied if the statisti-
cian anticipates the loss of sample size and increases
the sample size accordingly at the design stage.

A considerable body of literature on the adjust-
ment of survey estimates for missing data exists.
These techniques mostly involve weighting adjust-
ments and so-called imputation procedures, which
have been studied by numerous authors (see Mul-
tiple Imputation Methods). For a useful summary
of these methods, see [32].

Analysis of variance models have been applied in
the study of measurement errors in sample surveys
in much the same way as in experimental studies
The simplest models assume that a measurement
includes the true value of what is being measured
plus an error term. However, when the errors depend
in some way on the value of the characteristic or are
correlated with the item being measured, the models
must necessarily become more complicated. One way
to attempt to determine the correct value for an item
is to remeasure it by an independent method that
is more accurate than the original method. In many
surveys, for example, a subsample of respondents will
be reinterviewed by the best interviewers to assess
the correctness of the data obtained in the original
interview. Other methods might involve embedding
controlled experiments in surveys or subdividing the
sample into groups so that there is no correlation
between the groups. Many of these topics have been
carefully reviewed in articles in the literature, such
as [20, 21].

The fourth area of nonsampling errors dealing with
recording, coding, editing, and tabulating data will be
discussed in the section on data management, later in
this article.

Examples of Large-scale Surveys in
Current Use in Health Research

Surveys of the US National Center for Health
Statistics

The National Health Interview Survey. As stated
previously in this article, NHIS was begun by the
US Public Health Service in 1957, and has continued

on an annual basis since that time. It is one of
the major components of the National Center for
Health Statistics of the Centers for Disease Control
and Prevention The NHIS produces information on
the health of the US civilian noninstitutionalized
population, collected by the US Bureau of the Census
in household interviews throughout the United States.
The sample design for this study has been evaluated
and modified after each succeeding census during the
survey’s existence, but currently available data do
not yet reflect the redesign completed following the
2000 census. The description that follows pertains to
the design used to collect the current data, a design
developed following the 1990 decennial census.

In concept, the design of the NHIS has remained
essentially the same since 1957. That is, the sampling
plan follows a stratified multistage probability design,
which permits continuous sampling of the target
population. The sample of households interviewed
each week is representative of the nation and the
weekly samples are additive over time. This allows
great flexibility in the agency’s ability to respond to
rapidly changing data needs.

The basic features of the design include a first-
stage selection of a large number of primary sam-
pling units (PSUs) (see Sampling in Developing
Countries). This is accomplished by sampling with
probability proportional to size (pps) from an area
frame supplemented by a frame of building permits
to enable the inclusion of housing units constructed
since the completion of the previous census. Approxi-
mately one-quarter of the PSUs are self-representing;
that is, they are chosen with certainty. These PSUs are
primarily metropolitan statistical areas, which usually
consist of a large city and its suburban areas. The non-
self-representing PSUs are single counties, or groups
of contiguous counties. Within the PSUs, clusters of
approximately eight households are selected in the
area frame and four households in the permit frame.
This results in a yearly expected number of inter-
viewed households of about 40 000 and about 110 000
interviewed persons.

The respondent rules for the NHIS allow a sin-
gle individual over the age of 17 to respond for all
persons dwelling in the household. However, if other
persons over age 17 are available, they are invited
to respond for themselves. Historically, between 65
and 70% of adults have been self-respondents. They
answer questions for a set of basic health and
demographic items. In addition, one or more sets of
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questions on current health topics are typically asked.
Also, a random subsample of adult respondents is
generally asked to respond to additional questions on
current health topics, which vary from year to year.
Questionnaire topics include demographic character-
istics such as age, sex, race, education, marital status,
and family income. Health characteristics measured
include disability days, physician visits, acute and
chronic conditions, long-term limitations of activity,
and short-stay hospital utilization. In addition, sub-
sets of households are asked about selected chronic
conditions. In the supplements that vary from year
to year, special health items are asked in such areas
as alcohol use, dental care, health insurance, aging,
health promotion and disease prevention, vitamin
and mineral intake, functional limitations, and risk
factors for certain chronic diseases. Data from the
survey are regularly published in the NCHS Vital
and Health Statistics Series 10 reports, as well as in
professional journals in the scientific literature. Stan-
dardized public-use micro-data tapes and CD-ROMs
are also made available for purchase.

As a final word on the NHIS, it should be pointed
out that the redesign developed and implemented in
1985 and continued in 1995 includes a feature that
enables NCHS to integrate the survey designs of sev-
eral of its population surveys. This was accomplished
by using the NHIS sample as a sampling frame for the
other surveys. In this way, the surveys could be linked
analytically and possibly duplication of data collec-
tion could be avoided. Also, NHIS information could
be used to oversample subgroups of the population in
order to achieve sufficient sample size for studying
groups, which otherwise would have been underrep-
resented in the surveys. The successful application of
this method to the design of the NHIS has led to con-
siderably increased efficiency in the overall designs
of NCHS surveys in recent years. For more details
on the research leading to the current NHIS design,
the reader is referred to [2]. The updated design that
was put in place in 1995 will be used until 2004.

The National Health and Nutrition Examination
Survey. The National Health and Nutrition Exam-
ination Survey (NHANES) is one of the NCHS
surveys now linked to the NHIS through the inte-
grated survey design concept. At its inception in
1971, however, the NHANES was conducted using
an independent design. The purpose of the initial
cycle of NHANES, now known as NHANES I, was

to measure the nutritional status of the US popula-
tion and monitor changes in that status over time.
The nutrition component represented an expansion
of a previous series of three cycles of national health
examination surveys, which had been completed on
subsets of the US population between 1959 and 1970.
As in the previous cycles and in the NHIS, the tar-
get population was the civilian noninstitutionalized
population of the US, only for this survey, the pop-
ulation was limited to ages from 1 to 74 because of
a belief that older individuals would not respond to
an examination survey as readily as younger people.
It was also determined at the outset that emphasis
should be placed on studying individuals believed to
be at increased risk of having poor nutritional status,
including segments of the population classified as at
or below the poverty level, young children, and the
aged. Hence, oversampling of these segments of the
population yielded a sample with sufficient numbers
to study these characteristics.

Examinations were carried out in three mobile
examination centers that traveled to the primary
sampling units (PSUs) chosen in the first stage of
sampling for the survey. Within each PSU, a sample
of households was drawn – as in the NHIS – but a
single individual from each household was selected
to be examined in the mobile clinic. Because of the
limited time frame of two years for completing a
cycle of the NHANES, the number of PSUs was
limited to 65. Approximately 30 000 persons were
selected to be examined.

Data collection included both questionnaires and
examinations. All sample persons received general
medical history and dietary intake (both 24-hour
recall and food frequency) questionnaires. A sub-
sample received supplementary questionnaires on
selected medical conditions, health care needs, and
general well-being. The nutritional component exam-
ination included general medical and dental examina-
tions, dermatological and ophthalmic examinations,
anthropometric measurements, hand–wrist X rays,
and an extensive battery of laboratory determina-
tions. In addition, a subset of sample persons in the
so-called “detailed” component received an extended
medical examination, X rays of major joints, audiom-
etry, electrocardiography, goniometry, spirometry,
pulmonary diffusion, a tuberculin test, and additional
laboratory determinations. Additional details of the
design and content of NHANES I are available in
Miller [37].
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A second cycle of the NHANES was conducted
between 1976 and 1980. A major purpose for
NHANES II was to monitor changes in health and
nutritional status since the first cycle. The assessment
of nutritional status was carried out using methods
that were essentially the same as those used in the
first cycle, with some modification. Again high-risk
segments of the population were oversampled. The
most important change in nutritional assessment in
NHANES II concerned anemia, which was discov-
ered to be a significant health problem for the US
population. The approach included additional ques-
tionnaire items on symptoms, signs and causes of
anemia, and additional laboratory measurements.

In the realm of the detailed health examination,
new emphases were placed on diabetes, kidney
pathology, liver disease, osteoarthritis and disk
degeneration, cardiovascular conditions, and the
effects of environmental exposures on health, as
measured by pulmonary function and blood levels
of carbon monoxide, lead, and pesticides. As with
NHANES I, details of the design and content of this
cycle are available in [36].

A third cycle of NHANES was completed between
1988 and 1994, but since 1999, the NHANES has
been conducted on a continuous basis. More informa-
tion on NHANES III is contained in [42] and [24].

One other aspect of the NHANES deserves men-
tion here. Several components of the National Insti-
tutes of Health led by the National Institute on
Aging, combined resources to fund a recontact of
the original NHANES I respondents in 1982, thus
invoking a longitudinal component to the study. Of
approximately 21 000 sample persons examined in
NHANES I, some 14 000 were either located and
reinterviewed or their vital status was determined.
This longitudinal follow-up allowed one of the first
nationally representative epidemiologic studies of its
type to be conducted. A wide variety of data analy-
ses have been completed and published in both the
epidemiologic journal literature and in government
publications. For more information concerning the
design and objectives of this follow-up, see [6].

The National Hospital Discharge Survey. The
NCHS has conducted the The National Hospital Dis-
charge Survey(NHDS) continuously since 1965. The
original sample was selected from a sampling frame
consisting of a listing of health facilities known as
the National Master Facility Inventory. The basic

design of the NHDS, with minor periodic updates,
was followed until a major redesign in 1988. Hos-
pitals were stratified by bed size and were sampled
with probabilities ranging from certainty in the largest
hospitals to 1 in 40 in the smallest. Eligible hospitals
included those with an average length of stay of less
than 30 days and excluded Federal, military, and Vet-
erans Administration hospitals. Within each hospital,
discharges were selected using a systematic random
sampling plan. Information was abstracted manually
at each sample facility, until 1985, at which time the
NCHS began using dual methods for collecting the
in-hospital data. This involved purchasing data tapes
from commercial abstracting services, sampling from
those data tapes for hospitals where such services
were used, and continuing the manual abstracting
of the data in those hospitals that did not use the
abstracting services.

The NHDS was redesigned in 1988 to conform
to the integrated survey design paradigm described
earlier for the National Health Interview Survey. The
new sampling frame consisted of hospitals listed in
the SMG Hospital Market Data Tape [9, 19]. As in
the past, large hospitals (i.e. those with 1000 or more
beds or 40 000 or more discharges per year) were
sampled with certainty. The remaining strata were
sampled using a three-stage design, which began with
a sample of PSUs as in the NHIS, selected propor-
tional to the projected 1985 population in the PSU,
and a subsample of hospitals within the PSUs. Hos-
pitals in the PSUs were then stratified by geographic
region and ordered by PSU, abstracting service sta-
tus, and hospital specialty-size group. A systematic
sample was selected with a probability proportional
to SMG annual numbers of discharges for the most
recently available year. Finally, a systematic random
sample of discharges was selected according to the
hospital’s stratum, and to whether the manual or auto-
mated abstracting system was used in the hospital.
This procedure resulted in a 2001 sample of 504
hospitals, of which 448 were eligible and responded
to the survey. The number of patient records in
the 2001 sample was approximately 330 000 dis-
charge medical record abstracts. Currently, the NHDS
has been merged with other record-based surveys
and expanded into one integrated survey of health
care providers, including ambulatory surgical centers,
hospital outpatient departments, emergency rooms,
hospices, and home health agencies.
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Data collected in the survey include personal
characteristics of the patients, including date of birth,
sex, race, ethnicity, marital status, and expected
sources of payment; administrative data, including
admission and discharge dates, and discharge sta-
tus; and medical information, including diagnoses,
surgical and nonsurgical operations and procedures,
and dates of surgery. Medical information is coded
using the International Classification of Diseases
9th Revision, Clinical Modification (ICD-9-CM). The
large number of medical records in the sample each
year makes possible the study of relatively rare con-
ditions, particularly when it is feasible to combine
several years of NHDS data.

The National Ambulatory Medical Care Survey.
The NCHS conducted the National Ambulatory Med-
ical Care Survey (NAMCS) from 1973 to 1990 as
a survey of nonfederal office-based physicians in
private and group practices throughout the United
States. The purpose of the surveys was to provide
national estimates of the characteristics of patient vis-
its to physicians’ offices, where the overwhelming
majority of ambulatory care is rendered. A multi-
stage stratified probability sample of approximately
3000 physicians was selected to be interviewed each
year. The design consisted of a first-stage selection
of geographically defined primary sampling units, as
in the NHIS and other surveys. Within each PSU, a
sample of physicians was selected from frames pro-
vided by the American Medical Association and the
American Osteopathic Association, stratified by spe-
cialty type. During a randomly selected week of the
year, an interviewer visited the physicians assigned to
that week and selected a sample of patients seen that
week. Typically, about 65 000 patient records were
sampled for the year. Interviewers – sometimes with
the aid of the physician’s staff – collected informa-
tion on such topics as the patient’s reason for the
visit, relevant diagnoses made in the office, labora-
tory procedures performed, treatment(s) received, and
disposition of the visit. National estimates of the char-
acteristics of interest were computed by weighting
the weekly estimates from the sample physicians and
aggregating over time.

One of the limitations of the NAMCS is that
it does not cover visits to hospital emergency and
outpatient departments, the second largest segment
of the ambulatory care system. In 1991, the NCHS
began the National Hospital Ambulatory Medical

Care Survey (NHAMCS) to fill a gap in the cover-
age of ambulatory medical care data. It is known, for
example, that hospital ambulatory patients differ from
office patients not only in their demographic charac-
teristics but likely in their medical characteristics as
well. The need for the new study was also related
to increased efforts at medical care cost containment,
the burgeoning aging population, large numbers of
persons without health insurance, and emerging med-
ical technologies. The result of a series of planning
efforts by the NCHS and its contractors was a sample
design that involved four stages of sampling. The first
stage was a subsample of the NHIS PSUs chosen for
the integrated sample design described above. Within
PSUs, samples of hospitals were selected, then clin-
ics within hospitals, and finally patient visits within
clinics. The resulting sample included 474 eligible
hospitals, 854 clinics from outpatient departments,
462 emergency service areas, 35 114 outpatient vis-
its, and 36 271 emergency service visits. Data were
collected by hospital staff, who had been trained by
survey field staff. They recorded the information on
one of two patient record forms designed to account
for the differences in emergency and outpatient care.
The items on the forms included the demographic
characteristics of the patient and medical items relat-
ing to the patient’s reason for the visit and physician
diagnoses. The outpatient form resembles that used in
the original NAMCS, whereas the emergency service
form was designed to reflect the types of services pro-
vided in that setting. Finally, medical coding follows
the ICD-9-CM classification, and reason for visit is
coded according to the NAMCS reason for visit clas-
sification. For further information on the NHAMCS,
see [34].

The National Nursing Home Survey. What is
now known as the National Nursing Home Survey
(NNHS) began in 1963 with the first Institutional
Population Survey conducted by the NCHS. This
was originally intended to complement the NHIS,
which covered only the noninstitutional population.
The sampling frame for the study was the 1962
Master Facility Inventory (MFI) maintained by the
NCHS and described earlier in this article. The sam-
ple contained institutions of four types: nursing care
homes, personal care homes with nursing, personal
care homes without nursing, and domiciliary care
homes. The sample design was a multistage stratified
design on which strata were defined by type of service



Sample Surveys in the Health Sciences 11

and bed size. The sample was selected systematically
within each of the basic strata. The second stage of
the sample was a systematic selection of residents or
patients living in the sample establishments. A num-
ber of published reports have provided information
on the characteristics of the homes and of the resi-
dents. For a more complete reading of the data, see,
for example, [4].

A second cycle of the National Nursing Home
Survey was conducted from 1973 to 1974 by the
NCHS. The design was similar in nature to that
of the first cycle, but emphasis was placed on the
certification status of the homes. Certification status
was determined by whether the facility was allowed
to admit patients whose care was covered by the
Medicare or Medicaid programs, which were not in
existence at the time of the first survey. Thus, the
design was changed to include certification status as
a stratification variable. As one might expect, only
nursing care homes were certified by Medicare for
reimbursement.

The third cycle of the NNHS was conducted in
1977. Again, the design was constructed to reflect
Medicare and Medicaid certification status. Many of
the reports published using the data from this cycle
involved trends in characteristics of the homes as well
as the patients, comparing results from 1977 and the
1973 to 1974 cycle. A fourth cycle was completed in
1985 and provided additional trend data on the use
of long-term care.

New cycles of the NNHS were conducted in
1995 [54] and 1997 [17]. Data from these suggest
that a movement away from institutional care has
begun, with more older and disabled persons utilizing
newer forms of long-term care, including home-based
care, visiting nurses, and the like. However, as the
aging population continues to grow, it is expected that
additional demands on the long-term care delivery
system will grow as well. For further information on
these survey results, see [17] and [54].

Surveys of Other Health Agencies

The National Medical Expenditure Surveys. To
meet the growing demand for data on current health
policy issues, the US government has sponsored
three national household surveys of the utilization
of health care services received and the expendi-
tures related to use of those services (see Health
Care Utilization Data). First, in 1977 the National

Center for Health Services Research (later named
the Agency for Health Care Policy and Research
and subsequently the Agency for Health Research
and Quality) and the NCHS conducted a National
Medical Care Expenditure Survey (NMCES). A sec-
ond survey, cosponsored by the NCHS and the
Health Care Financing Administration and named the
National Medical Care Utilization and Expenditure
Survey (NMCUES), was completed in 1980. Both
surveys were based on multistage stratified proba-
bility designs, and both were panel surveys in the
sense that the data were collected by a series of peri-
odic interviews with the initial sample of households
during the year of interest. The principal data items
of interest included each dental, doctor, clinic, or
emergency room visit, and each hospital stay. These
data include dates and services received; charges
for the services received; prescribed medicines pur-
chased and their costs; other medical expenses, and
finally sources of payment, including out-of-pocket
and insurance amounts, both public and private. For
more detailed information on the methodological
issues involved in conducting these surveys, see [27].

A third survey, the National Medical Expenditure
Survey (NMES), was conducted by the Agency for
Health Care Policy and Research in 1987. Many of
its characteristics were similar to the NMCES and
NMCUES (see above), but a second component was
added to include information on the population resid-
ing in or admitted to nursing homes and facilities
for the mentally retarded. Furthermore, oversampling
was used to insure greater representation of popula-
tion groups of special policy interest including poor
and low income families, the elderly, the function-
ally impaired, and black and Hispanic minorities. A
detailed description of the design of this survey is
given in [7].

Finally, this series of expenditure surveys has
once again expanded to a survey now known as
the Medical Expenditure Panel Survey (MEPS). In
addition to many of the features of the previous
surveys, the MEPS has now incorporated measures
of the quality of care received by the participants, as
indicated by the change of name of the agency. For
further information on specific statistical features of
the MEPS, see [52].

The National Long Term Care Survey. The 1982,
1984, 1989, and 1994 National Long Term Care Sur-
veys (NLTCS) were designed to measure the point
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prevalence of chronic (90 days or more) disability
in the US elderly Medicare enrolled population, as
well as changes in chronic disability and institution-
alization over time. The 1982 design was a list sam-
ple randomly drawn from Medicare administrative
files. Screening interviews identified 6393 individ-
uals, each with at least one chronic impairment, in
seven Instrumental Activities of Daily Living (IADL)
or nine Activities of Daily Living (ADL). Interviews
were completed with 95% of the sample individuals.

The 1984, 1989, and 1994 surveys included both
cross-sectional and longitudinal components because
new samples of persons who had reached age 65 and
survived since the last interview were drawn from the
Medicare files and screened. The three later surveys
also included an institutionalization component for
those persons who were admitted to nursing homes
during the course of follow-up. A striking and
somewhat unexpected finding from these surveys was
that a slight decline in age-standardized disability
and mortality (see Standardization Methods) was
observed between the 1982 and 1989 surveys [33].

The National Longitudinal Mortality Study
(NLMS). The NLMS is a long-term prospective
study of mortality in the United States. The study
is funded and directed by the National Heart, Lung,
and Blood Institute, and is carried out with the help
of the Bureau of the Census and the National Cen-
ter for Health Statistics. The basic objective of the
study is to investigate socioeconomic, demographic,
and occupational differentials in mortality within the
United States.

The main study population consists of 13 cohorts
of data of over two million records, drawn from the
Census Bureau’s Current Population Survey and from
the 1980 census. The data records are periodically
matched to the National Death Index (NDI), a cen-
tralized, computerized index of death records in the
United States. The NDI is maintained by the National
Center for Health Statistics and was begun in 1979.
A public-use file of the NLMS data is available. For
more information, see [46, 47].

Sample Surveys in Other Countries

Sample surveys in health research are not limited to
the US, although many of the methodologies pre-
sented here stemmed from work done in the United
States. Probably, the best known international effort

in sample survey work is the World Fertility Survey,
conducted in several countries, including developing
countries beginning in the mid-1970s and continuing
into the 1980s. The studies have been described in
several publications, including a large number dealing
with the results of individual countries themselves.
For an overall description, see [59]. A description of
the use of hand-held computers in conducting sur-
veys in developing countries is provided by Forster &
Snow [16]. Other aspects of the World Fertility Sur-
vey, including implications for future such studies,
are discussed by Cornelius [8].

Health surveys are also conducted in developed
countries. Two examples from Canada include the
heart health surveys [40] and the Canadian Health
Survey [25, 26]. Other studies relate to drinking
behavior [10]. Still other countries, such as the
United Kingdom, Sweden, the Netherlands, Israel,
and others, maintain national central bureaus of statis-
tics, many of which are responsible for designing,
conducting, and analyzing social surveys, which often
include questionnaire items pertaining to health and
well-being.

Data Collection and Management

In many studies, biostatisticians play a very active
role in the collection and management of data. At
a minimum, the statistical group needs to be repre-
sented as the data collection and data management
systems are designed and implemented, so that the
statisticians know how the data reached them for
analysis. Decisions made at the data collection stage
can have substantial impact on the analytic process.

Data Collection

Two key decisions about data collection will affect
the statistician directly: how will the participant com-
municate responses to the researcher, and how will
the researcher record and transmit the responses?
Sample surveys can collect data by mail, by tele-
phone, or in person; each approach has both advan-
tages and drawbacks. Furthermore, data can be
recorded on paper forms and keyed in later, or
directly entered into a computer at the time of the
interview. Other means of recording data that has
been in more common use in recent years for some
surveys is to have the respondents record answers
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to questions directly using a touchtone telephone or
the Internet.

Contact with Participant. Mail questionnaires are
used for some sample surveys because they offer a
simple and economical way to request data. However,
they have serious drawbacks. The most crucial one
is the possibility of sampling bias. Bias can occur
because the mailing list used as a frame may not
adequately reflect the target population, or because
of poor response rates in some or all of the com-
munities, or because of difficulty in interpreting and
filling out the forms. A second serious problem is
that some health issues cannot be addressed without
in-person assessment of the participant. Blood pres-
sure, for example, needs to be measured in person,
and self-reported diagnosis of hypertension is a far
less reliable alternative. Mail questionnaires may be
useful for some highly motivated and sophisticated
populations; mail surveys of physicians and nurses
have been used successfully to study many chronic
diseases of major public health importance (stroke,
breast cancer, myocardial infarction, and so on). In
addition, mail surveys may be useful for interim
tracking of participants in longitudinal studies.

Telephone interviews avoid some of the problems
of mail questionnaires, in that direct conversation
may help clarify concerns or confusion of the par-
ticipants (see Telephone Sampling). Bias remains a
problem, both because some people in the popula-
tion do not have telephones and because response
rates may be low and may be different for important
subgroups. In addition, data requiring direct measure-
ment of the participant cannot be collected over the
telephone. In one particular survey conducted by the
National Institute on Aging, the Survey of the Last
Days of Life, the use of the telephone was instru-
mental in securing an acceptable overall response
rate for the study. Many of the participants – recently
bereaved individuals following the death of a spouse
or other family member – were reluctant to be inter-
viewed in person. In spite of a sometimes lengthy
interview, lasting as long as 45 minutes to an hour,
the response rate and the overall quality of the data
remained good [3].

In-person interviews allow the greatest variety
of data to be collected on a participant. Direct
measurements, performance tests, and blood samples
for laboratory work can all be carried out even in
participants’ homes. Developing a suitable frame may

be challenging, and participation rates may be low. In
addition, in-person interviews are the most costly to
conduct. Some studies use a combination of telephone
interviews with in-person interviews of a subsample
(see Interviewing Techniques).

Data Recording and Transfer. Recording the data
and transferring to the computer are key steps, on
which much of the data quality will depend. Perhaps,
the simplest approach is to record the answers on a
preprinted form and have the forms keyed in to the
computer at a later date. In this procedure, there is no
way to check data at the time of collection and prompt
for correction of implausible answers. Some data
checking can (and probably should) be programmed
into the data-entry keying program. Turnaround time
depends on the data-entry service. If the number of
questions is small and the possible responses are
simple, a scanner form can be filled out by the
participant or the interviewer, but this is practical only
for the briefest of questionnaires. Careful design of a
paper form is essential to make it clear and easy to
fill out, and to key for data entry. It is useful to have
a standardized header for paper forms, identifying
the study, the batch, and sequence to record when
a form was sent to data entry for keying, the staff
member filling out the form and the date on which it
was filled out. This information can be vital for data
management (see Questionnaire Design).

Computer-assisted interviews for in-person and
telephone interviews (CAPI and CATI) are becoming
more widely used, especially for large-scale sample
surveys, where they offer preprogrammed checks for
accuracy and rapid turnaround of data. The greatest
drawbacks are the cost of the equipment and its sup-
port and maintenance, the need to train interviewers
in use of the computer and the program, and the ini-
tial investment in time and effort for programming. It
is important to recognize that a CAPI or CATI instru-
ment is a program, and as such needs close attention
to the overall architecture as well as to the details
of branches, range checks, and logic checks. Devel-
oping a computer-assisted data collection instrument
requires close collaboration between the programmer,
the subject-matter specialist, and someone who is
familiar both with computing and with forms design.

Data Management

Data management is the process that takes the data
for the study from the point of its entry into the
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computer system to the time of analysis. The goal
in data management is to build a system that handles
quality control, tracking of study progress, linking of
study components, and access for statistical analysis.
In addition, the data management system needs to
protect the data against loss, corruption, and unau-
thorized access. Each participant in the study should
be assigned a study Identification Number (ID) at the
time of sample selection, and the data management
process should track and refer to participants by ID
rather than by any personal identifier such as name,
social security number, or address.

Quality Control. The goal of quality control is to
ensure that the data to be analyzed are as faith-
ful as possible a representation of the participant’s
true responses, and that any errors in responding,
transcribing, uploading, or processing the data are
identified and corrected. One common and potentially
disastrous error is having a wrong ID on a form. IDs
can be generated to include one or more “check dig-
its”, so that an invalid ID can be caught at the time
of data keying or, if computer-assisted data collection
is used, at the time of the interview. Other checks
that can be carried out at the time of the first com-
puter entry of the form are range checks (Is the value
of the variable within the permitted limits for that
question?), logic checks (Is the value for this vari-
able logically consistent with the value entered for a
previous related variable?), and branch checks (Has
an answer been given for a question that should not
have been asked or, conversely, has a question been
skipped that should not have been skipped?). CATI
and CAPI systems can be programmed to prompt the
interviewer to correct the error at the time of data
entry or, in some cases, to override the prompt if the
response was unlikely but nonetheless correct. How-
ever, these checks can only be carried out within a
single form collected at the same time – not across
multiple forms. Thus, additional checks are probably
needed at the time the data are uploaded into the main
computer in which they are to be stored for analysis.

The quality control process also needs to include
a standardized procedure for error correction. This
should include both global corrections, where all
records with a given value are changed to a new
value, and person-specific corrections. It is useful to
keep a system log of corrections, including the staff
ID of the person who made the correction.

Database Management. Until fairly recently, data
were usually stored on the computer in ASCII files
or flat files, which were simply records in which each
variable was identified by the columns that it occu-
pied (a legacy from an era when data were stored on
punch cards.) More sophisticated options now range
from spreadsheets, to add-ons for statistical packages,
to relational databases (see Database Systems). The
greatest advantage of a relational database is the abil-
ity to link data across studies and across forms within
a study. The database chosen should be able to meet
both operational and analytic needs, as well as being
large and flexible enough to handle all the data col-
lected in a given study. Operational needs include
tracking completion of data for participants, track-
ing performance of interviewers, generating routine
reports, and providing authorized people with interim
access to the data. For statistical analysis, a friendly
link to the statistical package is helpful (see Software
for Sample Survey Data). Some relational databases
have a feature permitting some statistical packages to
access the study directly, including variable labels.
Again, it is crucial that the participant be identified
by a study ID across all forms in the study.

Use of the database requires that the statistician
know all the forms used in the study, the variable
names for each form and the question to which they
correspond, and the meaning of all possible values of
the response, including missing value codes. One use-
ful format for this information is a codebook – having
on-line codebooks can be extremely helpful. The
importance of good documentation of the database
and the management process cannot be overempha-
sized.

A final word on maintaining and managing data
files for a survey involves keeping backup files for
each type of record created for the study. An example
of a disaster that occurred at one statistical agency
serves as a reminder of the importance of keeping
the data properly backed up. Some years ago, seven
cartons containing data tapes from a multi-million-
dollar survey were being moved from one location
to another for “safe keeping”. In the course of this
movement, the cartons were inadvertently left on
the building’s loading dock and were taken by trash
collectors to the city’s sanitary landfill. In spite of a
valiant effort on the part of the agency to recover,
clean, and reprocess the tapes, more than half of the
total data set could not be recovered. Had the data
been properly backed up prior to the movement of
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the tapes, such a disaster could have been avoided.
Attention to such details is of utmost importance.

Analysis

Two considerations should determine the analytic
strategy: What is the scientific question to be
addressed? How was the sample obtained? Surveys
conducted primarily for policy purposes often have as
their primary goal the description of the health sta-
tus of the country or state and important component
groups. Examples would include the types of statis-
tics described in the section on the NHIS: frequency
distributions and cross tabulations of disability days,
prevalence and incidence of acute and chronic con-
ditions, physician visits, hospital utilization, and so
on. Other examples might include national norms for
certain measured quantities such as cholesterol level,
blood pressure, height, and weight (see Normal Val-
ues of Biological Characteristics). Epidemiologic
surveys, however, often are designed with the goal
of analyzing the relationship between characteristics
of the population and the risk of prevalent or incident
disease or disease prognosis. The analytic strategies
for accounting for the sample design in epidemio-
logic studies may differ from those in studies where
the main goal is to characterize a specific population
(see Epidemiology, Overview).

Descriptive Analyses

These analyses usually consist of the presentation
of population estimates of the characteristics under
study and some indication of the sampling variabil-
ity of the estimates. Most standard texts on survey
sampling (e.g. Cochran [5]) provide the necessary
information to construct the desired estimates. Typi-
cal analytic reports from descriptive surveys include
a variety of standard tables containing estimates of
means, totals and percentages, or proportions. If the
survey designs are relatively simple, estimates of
sampling variance can be computed using algebraic
formulas. For more complicated designs, however,
approximation techniques such as Taylor series rep-
resentations (see, for example, [50]) (see Lineariza-
tion Methods of Variance Estimation) or pseu-
doreplication methods [12, 29, 39] (see Resampling
Procedures for Sample Surveys) are usually used
to estimate sampling variability. In the estimation

of variances, one needs to be aware of the possible
necessity of applying a finite population correction
factor, if the sampling rate for the survey is, say, more
than 5 to 10% in a given stratum, even though the
overall sampling rate is much lower than that.

Two other areas of descriptive analysis deserve
mention. First, a considerable amount of work has
been done on the topic of small domain, or small
area estimation Here, one is interested in provid-
ing estimates of health characteristics for either small
strata (such as a subgroup of the population at high
risk for disease) or for small geographic areas, which
are subgroups of the larger area covered by a given
survey. When the sample sizes in the small area are
too small to allow the computation of reliable direct
estimates from the survey, some researchers have pro-
posed the use of so-called synthetic estimators, based
on regression relationships between the characteristic
of interest and ancillary variables available from the
survey. Others have proposed the use of composite
or “shrinkage” estimators that combine direct and
synthetic components. For additional information on
this topic, see [15, 44].

The final topic on descriptive analysis concerns
the description of change from one time period to
another. Estimates of change are usually desired to
study the effects of forces that are known to have
acted on the population under study. For example, if a
hypertension intervention is initiated in a community,
we would like to know whether the intervention has
influenced the prevalence of hypertension in the com-
munity. In such an instance, it is necessary to estimate
the prevalence both before and after the intervention,
and it is best to retain the same sample for both occa-
sions. However, if the goal is to estimate the aggre-
gate average blood pressure level at the two occa-
sions, it is best to select a new sample each time. Each
of these alternatives has advantages and drawbacks.
The first alternative requires careful maintenance of
the sample over the time period for the study and the
statistician must deal with dropouts and other losses
to follow-up. The second alternative necessitates the
drawing of a second sample and all the work required
to recruit and to inform new sample members. More
information on this topic is available in [5].

Epidemiologic Studies

Studies of potential risk factors for the onset
and progression of health problems, in contrast to
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descriptive studies, are likely to rely on regression
models to measure the association between risk
factors and disease and to adjust for other factors
thought to affect the risk. There is general agreement
that descriptive summaries based on survey data must
adjust for the sample design, but there has been less of
a consensus on how to estimate regression parameters
and calculate standard errors for regression analysis
of survey data. One possible approach for estimation
is to analyze the data by a standard approach such
as maximum likelihood treating them as if they
arose from a simple random sample (i.e. ignoring
the sampling design). A second approach is to
assume that the design influences the results primarily
through key variables related to the sampling design,
such as age, sex, or race, and to adjust for those
by including coefficients for those variables as
predictors in the model. In a stratified design, the
variables chosen are typically the stratum definitions,
at minimum. A third approach, more complicated
to implement and thus used less frequently,
is to modify the basic approach to reflect all
features of the design, for example, maximizing the
likelihood over the complete probability distribution
associated with the sampling design (design-
based analysis) (see Superpopulation Models in
Survey Sampling). Finally, a more widely-used
approach is to modify the estimation approach
to reflect the sampling weights, in particular, for
example, by weighting the score function components
to obtain so-called pseudo-maximum-likelihood
estimates (model-based analysis). The estimation of
standard errors associated with the point estimates is
challenging and usually relies on some asymptotic
assumptions. In the past, the ability of some
researchers to adjust for complex sampling was
limited by the lack of commercial software. Software
is now available, however, to adjust for complex
samples for many different kinds of regression
models (see, for example, [50, 56] (see Software for
Sample Survey Data; Software for Sample Survey
Data, Misuse of Standard Packages).

Some researchers have argued that adjustment
is important when describing the parent population
from which the survey sample was drawn, but not
for estimating regression parameters for comparing
risk groups [53]. For example, for standard linear
regression the usual estimator

β̂ = (X′X)−1X′Y (9)

is shown in standard texts to have commendable
properties. If the sampling design is ignored, the esti-
mator is the best linear unbiased estimator (see Least
Squares). In the survey data setting, however, as
Sarndal et al. [48] point out, there are distinct the-
oretical drawbacks to the usual estimator. First, its
optimal properties only hold if the model is cor-
rect. Secondly, obtaining standard error estimates
that reflect the true variability from the sampling
design is difficult. These authors recommend using a
sample-weighted estimator. Other authors [23] have
also stated that “the design is relevant, including
especially the effects of intraclass correlations from
cluster sampling, and perhaps also variable sampling
fractions and other aspects of design. Failure to recog-
nize such effects may lead to serious understatement
of confidence intervals and overstatements of preci-
sion in inferences to the causal system”.

The sample-weighted estimator for likelihood-
based estimators from regression models makes use
of the sampling weights, reflecting how much larger
a segment of the population an individual would rep-
resent than in the sample. In a simple random sample,
the log likelihood would just be the sum of the score
contributions from each individual in the sample. The
sample-weighted estimators assume that each individ-
ual should contribute to the total log likelihood by an
amount reflecting the composition of the whole popu-
lation; thus, the estimated log likelihood is a weighted
sum of the individuals’ contributions. This weighted
sum is not typically the exact log likelihood for the
full sample design. In fact, the design likelihood can
rarely be calculated explicitly. However, the weighted
sum can be thought of as an unbiased estimate of
the log likelihood for the population from which
the sample was drawn, and thus its root is called
the pseudo-maximum-likelihood estimator [51]. For
linear regression, the sample-weighted estimator or
pseudo MLE is given by

β̂w = (X′WX)−1X′WY. (10)

Pseudo-maximum-likelihood estimators have been
worked out for a number of standard procedures
including logistic regression The correct point esti-
mators can be obtained by using weights in stan-
dard software packages (see Software, Biostatisti-
cal), but the standard error estimates obtained by
simply adding weights to a procedure for simple ran-
dom samples will not be correct. More complicated
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standard error estimates, described below, must be
used for pseudo MLEs.

The sample-weighted estimates typically give dif-
ferent parameter estimates for stratified designs with
unequal sampling weights than do the unweighted
estimates, but are not affected by clustering. The
conventional standard errors based on the usual esti-
mates, however, may systematically underestimate
the true sampling variability in the presence of clus-
tering if there is within-cluster correlation. In this
case, the usual regression estimators assume indepen-
dent and identically distributed errors, and overesti-
mate the effective sample size. A more conservative
approach is to take account of the clustering by
using a Taylor series approximation to the design-
adjusted variance, as described in [51] or [48]. Such
estimates can also take account of the sample weights
used in the sample-weighted estimators. Commercial
software is now available that calculates sample-
weighted regression estimators, and calculates the
Taylor series approximation for the standard error for
linear regression, logistic regression, and so on [50].

Another approach to standard error estimation
for sample surveys is resampling or replication.
Balanced repeated replication and jackknife meth-
ods have been used for some time in survey sam-
pling [29, 35]; more recently, these methods have
been extended and, additionally, bootstrap methods
have been applied [12, 28, 31, 45, 58]. These meth-
ods differ from the Taylor series approach in two key
ways: First, unlike the Taylor series approximation,
it is not necessary to write down an explicit differen-
tiable expression for the variance. Second, replication
methods may perform better in small samples than
the Taylor series approximation [48]. Owing to recent
improvements in computing, software is now avail-
able to implement replication-based methods (e.g.
WesVar [38, 39, 56]; VPLX [14]). A widely used sta-
tistical software package, SAS (SAS Institute, Cary,
NC), has added new procedures for analyzing survey
data in its most recent release.

The effect of clustering on the variance can be
substantial if the number of primary sampling units
is not large relative to the number of strata, but
clustering does not affect the parameter estimates.
Sample weighting can affect both the parameter esti-
mates and the variance. If sampling weights are very
unequal, the standard error of the sample-weighted
estimates is typically substantially larger than that

of the unweighted estimates, reflecting the uncer-
tainty in weighting a small number of observations
very heavily in the analysis. Korn & Graubard [30]
have examined these effects for a study based on the
NHANES I survey, and found that different analy-
ses led to very different conclusions. They suggest
that the clustering should generally not be ignored.
However, if extremely unequal sampling fractions
were used, one way to obtain reasonable point esti-
mates without reducing the power of the study is to
include those factors related both to the design and to
the regression variables as covariates in the analysis.
Korn and Graubard note in conclusion, however, that
a better solution might be to plan studies in advance
to have adequate sample sizes in all strata (see Sam-
ple Size Adequacy in Surveys). This would permit
regression models to use the design in the analy-
sis – the more conservative approach, and one that
addresses directly the difficulties of making infer-
ences about risk factors in a population using data
from a complex survey design.
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Sampling Distributions

The concept of a sampling distribution is an essential
feature of statistical inference. A sampling distribu-
tion is a probability distribution that describes the
behavior of a statistic calculated from a random sam-
ple of a particular size. To understand it, we need
to consider briefly the issues of sampling variabil-
ity and parameter estimation. We will then see that
the sampling distribution provides the all-important
connection between probability models and statistical
inference.

Data collected for research studies in medicine,
public health, and other fields are used for the making
of inferences about unknown parameters. Consider
two examples. Researchers in obstetrics may wish
to evaluate the effect of maternal smoking on infant
birthweight among babies born at full term to mothers
between the ages of 18 and 40. Research oncologists
might need to determine the proportion of lung can-
cer patients who experience tumor shrinkage when
administered a chemotherapeutic drug. As we set out
to study these problems, it is often assumed that the
parameter of interest (average birthweight or proba-
bility of tumor response) has some “true” value in
the population as a whole. It is not practicable (and
is usually impossible) to attain the “true” parame-
ter value by assessing the entire population, since
its number is essentially infinite in most instances.
Instead, we choose individuals at random from the
population under study, and make our assessments
on the members of our sample (see Simple Random
Sampling). We use the data from this sample of sub-
jects in order to guess at the true parameter value.
The population or “true” value of the parameter is
unknown and unknowable. What can be obtained is
the sample value of the parameter, estimated from
the data collected during the study. The two values
(population and sample) will almost certainly not be
identical, but we hope that they will be close. One of
the major determinants of the accuracy of a sample
statistic is whether the subjects selected for the study
are representative of the subjects in the population.
Other determinants include the size of the sample and
the probability distribution of the original measure-
ment in the population.

In the frequentist’s approach to statistical
inference, the population (true) parameter value is
assumed to be a fixed quantity. In contrast, its sample

value is a random quantity, since it is a function of
the data collected. For example, suppose we record
the birthweights of 100 infants born at full term.
From these data we compute the mean birthweight,
say X. Provided that our sample is representative of
the population we wish to characterize, the sample
mean, X, represents a reasonable guess as to the
average birthweight in the population. Suppose that
another research group assembles a random sample
of 100 full-term newborns, and computes the mean
birthweight. Surely the two mean values will differ,
simply due to chance. If we conducted the same
study a third time, a fourth time, and so on, then we
would obtain a new estimate of the sample mean for
each group of 100 randomly selected subjects. This
feature is known as sampling variability. Because the
individual birthweight measurements are random, any
function of them (i.e. any sample statistic) is also
random. The behavior of a sample statistic, then, can
be characterized by a probability distribution, just as
the behavior of the individual variable under study
can be described by a probability distribution.

To continue, let us assume that birthweights in
the specified population (babies born at full term to
mothers aged 18–40) are well characterized by the
normal distribution, with a mean of 3500 g and a
standard deviation of 400 g. Remember that these
population parameter values are unavailable to us
in practice; we must instead rely on estimates from
a random sample. How accurate an estimate of
the average birthweight of full-term babies born to
mothers aged 18–40 could we obtain from, say, a
random sample of size 100? Because of sampling
variability, it is very unlikely that the sample mean
based on 100 subjects would be identical to the
overall population mean of 3500 g. It would be useful
to know, however, how precise we can expect our
estimate to be. This is where the sampling distribution
comes into play. It tells us how variable a sample
mean is expected to be in successive samples of a
specified size, and allows us to make statements about
the likelihood of the true mean value falling within a
certain range of the sample mean.

The sampling distribution of a statistic calculated
from n observations is derived from mathematical
principles. This distribution tells us not about the
behavior of the individual observations (e.g. birth-
weight or occurrence of tumor shrinkage), but about
the behavior of the summary statistic based on these
values. If we were to take random samples of size n



2 Sampling Distributions

repeatedly and compute a particular summary statis-
tic (say, the mean, median, proportion of positive
responses, or standard deviation), then the distri-
bution of the summary statistic would be described
by a sampling distribution. Of course, we do not, in
practice, repeat the same study again and again. This
idea is conceptually important as a means of interpret-
ing the distribution of the resulting summary statistic
from a single sample of size n. If we consider the
sample mean, then there is an important statistical
result which tells us that the sampling distribution of
X is approximately normal, with mean equal to the
true population mean, and variance depending on the
sample size (n) and the variability of the measure-
ment in the population (see Central Limit Theory).
This result holds regardless of the probability distri-
bution of the original measurements, so long as n is
sufficiently large.

If the population mean of the variable of inter-
est is µ and its standard deviation is σ , then X

is approximately normally distributed with mean µ

and standard deviation σ/
√

n. The standard devia-
tion of the sample mean (referred to as the standard
error of the mean) is clearly a smaller quantity than
the standard deviation of the original measurements,
and decreases as n increases. Thus, the larger the
sample size, the less variable (i.e. more precise) our
estimate of the sample mean. Knowledge of the sam-
pling distribution allows us to appropriately design
a study, as well as to generate confidence intervals
(see Estimation, Interval) and to conduct hypoth-
esis testing for the parameters under consideration
once the data have been collected.

Consider again the birthweight example. We
assumed earlier that the unknown mean birthweight
for all full-term babies born to mothers aged 18–40 to
be 3500 g, with a standard deviation of 400 g. If we
plan to collect birthweight data from a random sample
of size 100, then there is a 95% probability before

the study is conducted that the true mean will be
within about 80 g of the sample mean. If we increase
the sample size to 500, then there is a 95% chance
before the study is conducted that the true mean will
be within 36 g of the sample mean. The result of
increasing the sample size is to tighten the sampling
distribution around its mean, allowing us to make
more precise inferences about the population mean.

Properties of the sampling distribution also permit
meaningful comparisons of parameters across differ-
ent groups. For example, we might want to compare
the probability of tumor shrinkage for a standard
chemotherapy regimen vs. an experimental one in
patients with lung cancer. Even if the true, group-
specific parameter values were the same in the two
populations, we would not expect to obtain identical
sample statistics across sample comparison groups
because of sampling variability. However, we do
need some way of deciding when a difference in sam-
ple statistics between groups is large enough for us to
conclude that the population parameters are probably
different. The sampling distribution of the statistic
of interest helps us to answer this question. The dif-
ference in parameter estimates is gauged against the
expected variability of the sample statistics, giving
us a formal method by which to make inferences
about the parameter values in the population. Without
knowledge of the sampling distribution, this would be
impossible.

The sampling distribution, then, is a key element
in the conduct of statistical inference. It describes,
in probabilistic terms, the behavior of a statistic
computed from a random sample of size n. Among
the most commonly encountered sampling distribu-
tions are the normal distribution, Student’s t dis-
tribution, chi-square distribution, and F distribu-
tion.

MELISSA D. BEGG



Sampling Frames

Probability sampling allows one to make infer-
ences about large, sometimes infinite, populations
without observing every member. In a probability
sample every member of the population has a known,
nonzero probability of selection. Knowing these prob-
abilities, it is possible to select a subset of the popula-
tion from which to make estimates (see Estimation)
about the entire population with specific degrees of
precision. To draw a probability sample from a pop-
ulation it is necessary to have a list or other selection
process, called a sampling frame, that ensures some
probability of selection for each element in the popu-
lation. The sampling frame defines the portion of the
population from which the sample is selected. Hence,
the quality, completeness, and availability of possible
sample frames are major considerations when select-
ing a population for study using statistical inference.

Frames are usually defined by geographic listings
of blocks or other topographic units, maps, direc-
tories, membership, or other kinds of lists, or they
may be defined from telephone or other electronic
formats. The United Nations Statistical Office [11]
defines the frame content as maps, lists, directo-
ries, and other sources that permit the construction
and selection of sample units. A frame’s specifi-
cations “should define the geographic scope of the
survey; categories of material covered; and include
the date [the frame was constructed] and the source
of the frame” [11]. Wright & Tsao [14, p. 26] also
recommend that the frame should include “any aux-
iliary information (measures of size, demographic
information) that might be used for (i) special sam-
pling techniques such as stratification or selection
with probabilities proportionate to size sample selec-
tions or for (ii) special estimation techniques such
as ratio or regression estimation”. In other words,
a frame contains listings or other relevant demarca-
tions of the population from which sampling units can
be selected and provides related documentation that
helps describe the selection process. Sampling units
may be individual elements or they may be clusters
of elements [6].

In the US or other countries where there is
extensive telephone coverage, telephone interview-
ing has become the data collection mode of choice,
particularly in urban areas, because of cost and
related problems with accessibility of respondents for

face-to-face interviews (see Telephone Sampling).
Although telephone directories are used sometimes
for frames, usually they are incomplete and random
digit dialing (RDD) [12] surveys are now commonly
used. The frames for RDD studies are constructed by
random selection of ten-digit numbers comprised of
the area code, prefix, and suffix of individual tele-
phone numbers, or lists that have been screened to
eliminate banks defined by area code and prefix that
include only business listing, or that contained unas-
signed numbers. (Note that in the US the 10 digit
format is the sampling unit. In other countries the
unit may be some other combination of numbers that
constitutes the full telephone number.) In the US it
is possible to purchase lists that have been purged
of most business numbers and are adjusted for the
proportions of households by county consistent with
an equal probability of selection of element model
(epsem) [13].

Frame Coverage

While there should be a one-to-one correspondence
between the list and population, few lists meet this
requirement. There are two potential sources of vari-
ation between the population of inference and the
sample frame described in the literature [3, 6, 11].
One source of variation results from how the eligi-
ble population is defined [3]. This source of variation
is often deliberately introduced for reasons of fea-
sibility and cost. It amounts to a redefinition of the
population about which inferences are to be made, by
specifically excluding subsegments of the population
that – for reasons of cost or efficiency – may not be
included in the final sampling frame. For example, a
RDD sample for a telephone survey deliberately rede-
fines the population to include only those households
with telephones.

Deliberate differences between what Groves [3]
calls the population of inference and the actual pop-
ulation elements that comprise the frame might be
introduced for several reasons. For example, if infer-
ences are to be drawn about the general US popula-
tion, there may be subgroups within that population
that may be difficult or impossible to interview, or
who differ from the general population in ways that
make them nonrepresentative of the population that
is relevant for the study (i.e. they may be cognitively
impaired or foreign nationals), or they may be housed
or located in ways that make them never available for
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interview during the study period (i.e. they may be
in prison, in college, or permanent residence abroad)
or they may be very rare groups or may reside in
inaccessible places, making the cost of interviewing
them prohibitive.

Individuals in the population of inference, who
might otherwise be available, might not be avail-
able during a particular study because the sample is
selected and interviewed at a specific point in time
in order to fix a point of estimation; for example,
the Current Population Survey is conducted during
the week containing the 19th of the month [3], or
the US Decennial Census is carried out every tenth
year ending in zero during which all residents of
the US are enumerated at their residences as of 1
April. In these cases, elements of the population not
available during the study period have zero probabil-
ity of selection. Groves [3] refers to the population
resulting after excluding these groups as the target
population, which represents the actual population
about which inferences can be drawn based on the
available sampling frame.

The second source of variation results from flaws
in the actual listings of the eligible population that
comprise the frame. A perfect frame is one in which
there is a one-to-one correspondence between the
listing and each element; that is, “every element
appears on the list separately, once, only once, and
nothing else appears on the list” [6]. Perfect frames
are rare. Most often, there are problems which must
be detected and modified, or the frame will produce
a biased sample. In fact, many times there is no
existing frame and one has to be created from other,
imperfect, sources. In such cases, the date the frame
is created and the methods by which the frame is
modified or constructed are included as elements
of the documentation of the frame [11]. However,
whether the variations between the two populations
are deliberately introduced for reasons of efficiency
or result from flaws in the correspondence between
the elements and the listing, these variations need
to be ascertained and decisions made about how to
treat them.

Coverage error, according to Groves [3], is the
difference between statistics based on the population
defined by the sampling frame and statistics based
on the target population. In other words, coverage
error occurs most often in population estimates when
there is a lack of correspondence between the frame
population and the target population. One of the

clearest examples would be differences in population
statistics calculated based on data from a population
defined by telephone numbers and those calculated
based on household data, including those without
telephones.

Kish [6] describes four basic frame problems that
might lead to coverage error in survey data. These
include: (i) missing elements (see Missing Data),
noncoverage, or an incomplete frame; (ii) clustering
in which more than one element is in a single
unit; (iii) blank or foreign elements (ineligible units);
and (iv) duplicate listings. Overall, Kish [6] suggests
three strategies. (i) The problems can be ignored if
their potential impact is small compared with other
sources of error, and correcting them would be too
costly given the value of the corrections in reducing
bias. (ii) As noted above, the target population can be
redefined to fit the frame, assuming that the redefini-
tion still permits accurate estimates of the parameters
of interest in the population. (iii) The frame can be
corrected by splitting clusters or selecting individ-
ual units and weighting the clusters, deleting blanks,
duplicates, or ineligible or foreign elements. In some
cases, such as with duplicates or blanks, the correc-
tions need to be made in advance. The effects of clus-
tering or of missing or under-represented elements
can sometimes be corrected through weighting the
data after the interviewing is completed.

Until the advent of telephone interviewing (see
Telephone Sampling), frame coverage problems
were pretty much as described above. However,
telephone frames have inherent coverage problems
that require special consideration before they are
used. One problem mentioned above is the fact that
telephone frames contain many foreign elements in
the form of business numbers, telephone company
service numbers, nonworking numbers, and computer
and FAX modems [3, 13]. As noted earlier, it
is now common to purchase prescreened lists of
“seed” telephone numbers from which RDD samples
can be generated by deleting the last one to four
digits of the number’s suffix and replacing them
with one to four numbers selected from a table of
random numbers. This strategy is increasingly being
employed in the US as an inexpensive way of creating
a RDD frame [13]. According to the vendors, the
resulting biases in such samples are about 3% due
to missed households. However, the use of these
prescreened banks is an instance in which the cost
in terms of potential bias is very low compared with
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the costs of creating a RDD sample by randomly
selecting and screening full 10-digit numbers using
the Waksberg–Mitofsky method [12].

Groves also notes that telephone frames also suffer
from “over coverage” because some households may
have more than one listing, such as a business tele-
phone, an adolescent telephone, or a second house-
hold number. His estimate, however, was published
almost 20 years ago and suggested that 3%–4%
of US households have second telephones [4]. This
estimate is probably low by current standards, par-
ticularly if households with computer modems are
included in the estimates.

However, by far the greatest concern with tele-
phone frames is the amount of under-coverage due to
the number of households that do not have working
telephones. Under-coverage is a source of consider-
able bias, because it is correlated with sociodemo-
graphic characteristics such as race and income [9].
Although the number of households without a tele-
phone has varied, it could be as high as 15%–20%
among minority and rural households, and even
higher among households in which the income is
very low. Clearly, there are indications that house-
holds without telephones differ substantially from
those with telephones, and these differences are often
correlated with other important substantive variables
[3, 4, 9]. Thus, the potential bias cannot always be
ignored by using a telephone sample frame and desig-
nating only households with telephones as members
of the target population, although this is commonly
done. An alternative solution might be to obtain
data on the demographic characteristics of house-
holds without telephones and then post-weight the
sample to accommodate the potential bias. In the US
the Decennial Census is the most easily accessible
source for such weights, but it too has biases.

Clustering and Stratification Effects

In most large-scale, national household surveys, the
frame includes clusters and strata at various levels.
The effects of these characteristics of the frame are
taken into account by weighting and/or by calculating
design effects on the variances of the key variables.
These effects are included as part of the documenta-
tion of the frame.

When the sampling unit is a household, then
usually the differences between the population of
inference and the target population also concern

definitions of eligibility of individual members of the
household. In most cases the target population will
include residents of households in the geographic
area of the survey at the time of the survey. Thus,
following Groves’ [3] conceptualization, the frame
population would be those in the target population
who can be enumerated prior to the survey. The
survey population would be those in the frame pop-
ulation; “who, if they were selected for the survey,
would be respondents”; that is, they would be acces-
sible to an interviewer. This is, as Groves notes, a
hypothetical population, since if they are not asked
to participate in an interview there is no way to
know whether they would consent. However, those
not asked might also exclude as potential members
of the frame persons who reside in the frame popula-
tion but who – due to incapacity, continuing absence
from any enumeration unit (i.e. a student residing in
a dormitory), speaking a foreign language that has
not been translated for interview, or for some other
reason – might not be able to consent to an interview.
The survey population is always determined after the
household is contacted and those in the frame popu-
lation who are excluded from the survey population
would usually be those designated as ineligible [3].

Ineligibles affect the probability of selection of the
eligibles and, therefore, fall into the second category
of coverage problems described above (clustering of
units). By defining residents of households as the
target population, other residents of the population of
inference with no permanent household residence or
those who are institutionalized would be excluded.
Also excluded might be residents of households in
remote areas, where the cost of obtaining an interview
would be prohibitive relative to the potential bias due
to failing to interview them. Including those who do
not consent to be interviewed, the difference between
the target population and the survey population is
nonresponse [3].

Once the household is established as the
enumeration unit, it becomes necessary to define
what constitutes a household and, beyond that,
who is a member of the household once it is
identified. The definition of a household and its
membership are key elements of the sampling frame.
The elements of the target population are individuals,
whereas the elements of the frame population are
households. This means there is not a one-to-one
correspondence between the frame population and
the target population. Hence, a rule is required to
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establish correspondence between the elements in the
two populations. Groves describes two alternative
correspondence rules [3]. The de jure rule attaches
each person to a single housing unit based on where
they live; and the de facto rule attaches each person
to the residence where they are staying at the time
of the survey. The distinction between these two
rules focuses on what constitutes a dwelling unit or
household and the difference between “living” vs.
“staying somewhere” at the time of the interview.
Failure to make these decisions results in coverage
error due to poor frame specification.

The process of selecting the member of the
target population has also been the subject of much
discussion. There are several ways of going about
this process of defining the eligible respondents in
the target population. The most rigorous is prescribed
by Kish [6], in which all members of the household
are listed in order of age in a table and then
one is randomly selected for interview based on
a prespecified selection procedure. This procedure
generally works well in face-to-face interviewing
situations, but does not work well on the telephone,
where it requires respondents to name all members
of the household to an anonymous telephone caller.
Other techniques which seem more acceptable for use
with the telephone have been proposed by Trodahl
& Carter [10], Salmon & Nichols [7], and Czaja
et al. [1]. These methods require less information
about the entire household and rely on selection by
most recent birth date and, sometimes, gender.

In the cases in which respondents are rare elements
in the target population, techniques designed to
improve the probability of locating a respondent
have been proposed. These are generally described
as multiplicity or network sampling methods [2,
8]. This technique takes advantage of clustering
and depends on linkages between members of a
family or close friends for locating rare respondents.
Initial respondents are asked to list members of
the household plus other selected members of the
family living at other addresses. Then each member
listed is considered part of a cluster of persons
and the probability of selection is determined by
the probability of being listed. The use of weights
allows for unequal probabilities of selection based
on family size.

Where frames are incomplete or do not otherwise
match the population of inference, it is sometimes an
option to select multiple frames. The use of multiple

frames is sometimes used to allow for uneven tele-
phone coverage in which a telephone and an area
frame are used. In the instance described by Groves
& Lepkowski [5], a random-digit dialed sample was
drawn and screened for household members. Inter-
views were conducted with an eligible respondent by
telephone. A second area frame survey was also con-
ducted face-to-face. During these interviews, infor-
mation was obtained about telephone coverage in the
sample. The overall mean for each variable was esti-
mated by a weighted average of the mean values
obtained from households with telephones and those
without them.

This strategy does offer some reduction in cover-
age error, but also poses some administrative prob-
lems that can affect cost and themselves produce
error if not appropriately addressed. Most obviously,
there will be duplicates in the frames. If attempts are
made to identify and eliminate duplicates before data
collection, there is the risk of increased costs and
error due to mismatching. On the other hand, if no
matching is attempted prior to the interviewing, then
duplicates may not be detected, thereby increasing
interviewing costs and error. A second problem could
result from the necessity to initiate more than one
data collection procedure. A list frame may contain
more information about the elements than an area
frame, since the latter is derived from listing. Thus,
the use of area frames often requires greater expense.
Finally, duplicates are usually not purged but, rather,
they are dealt with by weighting. Thus, the estimates
from multiple frames require calculations based on
different combinations of weights because individuals
may be covered by different frames – hence the cal-
culations are more complex than those from a single
frame survey.

Finally, under certain circumstances, coverage
error may be dealt with through post-weighting the
data to adjust for coverage error. However, this
strategy is only useful if there is some way of
estimating the extent of coverage error. As noted
above, national censuses, if they exist, may be the
best source, but biases are also likely in any census
listing, and they are probably the same as those an
investigator might be trying to correct by weighting.
The cost of arriving at those estimates has to be
weighed against the gain in precision of estimates
derived from adjusting the data. Also, the benefits
of adjusting are generally greatest for simple linear
statistics such as a mean or proportion [3].
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Sampling in Developing
Countries

The objective of this article is to discuss issues that
are important in the design and implementation of
sample surveys that are undertaken in developing
countries. Our approach is to discuss the major ele-
ments that anyone planning a sample survey in a
developing country should take into consideration.
For some of these elements, there are no special dif-
ferences between planning a sample survey in the
Third World and planning one in a developed coun-
try. Where there are differences, we will attempt to
outline the special problems that are likely to occur
in Third World surveys.

Objectives of the Survey

From a sampling point of view, it is not enough to
state that a survey aims to provide information about,
for example, potential users of family planning. The
survey objectives must state precisely who will be
sampled (sampling or selection unit), who will be
interviewed (measurement or observation unit), and
about what population will inferences be drawn (anal-
ysis unit) (see Target Population).

For example, a household survey might sample
households, interview all female household members
of childbearing age, and draw national inferences
about children born.

Universe definition is also a very basic concept
in sampling. For example, the objective might be to
draw national inferences, but certain regions of the
country might be considered unsafe or inaccessible
because of reasons such as war, guerrilla activity,
political unrest, disease, and so on. Under these
circumstances, the universe might be redefined to
include the country without certain regions.

Sample Size

Sample size refers to the total number of completed
interviews. Because of a variety of factors such as
nonresponse, it is almost always necessary to select
an original sample larger than the targeted number of
final completed interviews. The basic three issues that
need to be considered in setting the sample size are:

1. available resources;
2. desired level of precision; and
3. analysis plans.

The relationship between available resources and
sample size is the easiest to grasp. If, for example,
the desired precision calls for a sample size of 1000
and the budget allows for 800, then the choice is a
simple one of sampling the maximum permitted by
the budget.

With respect to desired precision, there is fortu-
nately a very simple “family” of statistical formulae
that can be used to determine the sample size. These
formulae permit one to establish a desired level of
precision in terms of a confidence interval and use
this target to derive the necessary sample size. It is
important to note that, in most real-life situations, the
sampling precision does not depend on the population
size (see Sample Size Determination). It should also
be noted that paying for a larger sample size has the
benefit of reducing the standard error and increasing
the precision of the results.

The third and final consideration with respect to
sample size is the analysis plan; most importantly,
the subclasses to be analyzed. The researcher first
needs to decide for which major subclasses will
results and inferences be desired. For example, in a
national survey of condom sale and usage, it might be
important to draw conclusions about individual cities.
In this case, it will be necessary to establish sample
sizes separately for each city and then cumulate these
individual samples to arrive at the total sample size.

A second part of the analysis plan involves antic-
ipating cross-classifications that will be carried out
for each population of interest. For example, let us
consider a survey whose objective is to study the rela-
tionship between education and condom usage. This
goal suggests a cross-classification of the two vari-
ables, and it is important that the expected cell sizes
be sufficiently large to permit the required analyses.
A useful rule of thumb is to aim for minimum cell
sizes of 20.

Sampling Frame

The first step in any sample selection is to produce
a list of the population elements from which the
sample is to be drawn. This is known as the sampling
frame. Whereas samples based on telephone lists
and random digit dialing schemes have become
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part of the sampler’s repertoire, it is highly unlikely
that these methods could be used effectively in most
developing countries. Not only is it often true that
large portions of these countries’ areas simply do
not have telephone service, but even in areas where
telephones are prevalent, the coverage is far from
complete, and hardly a source for reaching targeted
groups such as urban residents.

This leaves the sampler in a developing country
to choose between a list sample and an area sample.
However, again, it is doubtful that accurate and
complete lists of population elements exist in these
countries. Samplers therefore resort to designs based
on area frames, whereby the first stage of sampling
involves selecting relatively large geographic areas
such as counties, districts, zones, municipalities, and
so on. In order to implement this sample design, lists
are required for the total number of such areas in the
country.

Following are some criteria for evaluating sam-
pling frames.

Frame Coverage, Accuracy, and Duplication

Starting with a good sampling frame is extremely
important for a successful sample design. How com-
plete is the frame? Are there elements of the popu-
lation that are missing? If there are known missing
elements, then the frame suffers from undercoverage.
For example, a list of tobacco retail outlets, no matter
how small, in a large city in a developing country is
highly likely to be incomplete.

Are there foreign elements in the frame? That is,
are there elements on the frame that should not be
there? If so, then the frame suffers from overcover-
age. For example, a list of schools in an urban area
should not contain buildings that are not schools, for
example, teacher colleges, kindergartens, and so on.

The information on the frame should be accurate
and up-to-date. A sample drawn from an error-prone
frame will not reflect the population that is the target.

Finally, the frame should be free of duplicates.
If duplicates are known to be present, they should
be removed or the selection probabilities should be
adjusted.

In many developing countries it is often a major
challenge to locate a reliable source to serve as a
sampling frame. Recent censuses can often provide
one solution but, if this source is unavailable, one
must define and select large geographic units based on

the most accurate measures of size that are available.
Once these units are selected, one has to update
constantly their counts (e.g. population, households,
schools).

Not only are sampling frame unit counts often
unavailable or unreliable, but the cartographic details
can also be missing or defective. Accurate limits
of the areas have to be specified and mapped, and
the first visit to these areas necessitates careful car-
tographic work, which needs to be maintained and
updated as part of future surveys in these areas.

With respect to establishment surveys in devel-
oping countries, it is worth pointing out that there
is usually a less-skewed distribution of the units by
size than is found in more industrialized nations. For
example, there is likely to be a higher proportion of
small farms in developing countries as well as lower
concentration of total land and revenue in the larger
agricultural holdings.

Sample Design

Probability sampling designs can include any or a
combination of the following sampling techniques:
simple random sampling, systematic sampling,
stratified sampling, cluster sampling, or multistage
sampling. At any stage in the sampling process, sur-
vey units may be selected with either equal or unequal
probabilities.

Simple random sampling (SRS) and systematic
sampling are two basic methods for randomly select-
ing samples. Both lead to equal probabilities of selec-
tion for every unit in the population, but systematic
sampling is easier to implement.

In a single stage design, every sampled unit is
surveyed. In a multistage design, selections are made
first of larger units and then, in subsequent stages,
subselections are made within these first-stage units.
The units selected in the first stage are called Primary
Sampling Units (PSUs); units selected in the second
stage are called Secondary Sampling Units (SSUs). A
typical household survey employs two to five stages
of selection, the last of which is usually the selection
of one eligible member from the household. The
overall probability of selection of a multistage sample
is equal to the product of the probabilities of selection
at each sampling stage.

One popular sample design leading to equal prob-
abilities of selection is known as sampling with
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probability proportional to size (PPS) by which
first-stage units (PSUs) are selected with probabilities
proportional to some measure of size (e.g. number of
households) and a constant number of second stage
units are selected within each selected PSU. This
approach is often particularly effective for developing
countries where PSUs can vary considerably in size.
Unfortunately, the drawback is that measures of size
are often unknown or known poorly. The solution is
to estimate and record accurately the measures during
the first visit to the PSUs.

Stratification and Clustering

Stratification and clustering are two techniques uti-
lized to group population elements before sample
selection for the purpose of improving the practicality
or the efficiency of the sample design.

Stratification involves the division of a population
into parts called strata. Ideally, each stratum contains
units that are homogeneous with respect to the survey
variables of interest. A random sample is selected
from each stratum. Examples of strata are large geo-
graphic areas such as districts, urban and rural areas
in a country, and high and low socioeconomic status
areas in a city.

Clustering also involves the division of the pop-
ulation into groups but, unlike strata, clusters are
groups of heterogeneous population units. Ideally,
each cluster should be a microcosm of the population.
Some naturally occurring clusters are provinces, city
blocks, and classrooms.

Briefly, stratification is “good” and clustering
is “bad”. Stratification tends to increase precision
and to ensure representativity. Clustering decreases
precision.

Implicit stratification can be very useful when
the sample is being drawn from a list of units. For
example, suppose that one has a list of administrative
areas in a country and for each we have a reasonably
accurate estimate of the total population. Stratification
could be implemented by simply ordering the list of
areas from smallest to largest and then systematically
sampling every nth area starting at the top. Since
small areas are at the beginning of the file and largest
at the end, it is very unlikely that only small or only
large areas will be in the sample. This procedure is
known as implicit stratification, since the objective
of stratification has been achieved without creating
explicit strata.

Another useful concept is the self-representing
stratum, which refers to strata in which no subsamp-
ling takes place at the first stage. For example, it
is typical in a national area-based sample for large
cities to be defined as self-representing strata. Self-
representing strata are usually large densely populated
areas. Once a city has been defined as a self-
representing stratum, sampling is carried out in that
city during subsequent stages of the sample design.

Allocation

Once the strata are created, it is necessary to decide
what size sample to allocate to each (see Stratified
Sampling, Allocation in). One approach is called
equal allocation which consists of assigning to each
stratum an equal sample size. For example, a total
sample of 200 over 10 strata would require 20 sample
elements per stratum. Another approach is propor-
tionate allocation, which calls for allocation of the
total sample to the strata in proportion to the stratum
population sizes.

In practice, there is often a need for oversampling
in certain strata. This would call for a strategy that
is neither equal nor proportionate. This approach can
be justified especially if the analysis calls for separate
reports for the strata being oversampled.

Selecting Households and Respondents in
Household Surveys

One of the most important types of survey is the
household survey, in which households are usually
selected in the penultimate stage and a respondent
or several respondents in the last stage. It should
be pointed out that in many developing countries
the definition of what constitutes a household and
family differs sometimes markedly from concepts
commonly used in more industrialized nations. Care
must be taken that the definition of household is
specific, unambiguous, and easy to implement in the
field.

At some stage in the survey process it is necessary
to select households to interview. This can be done
basically in two ways. One approach would be for
interviewers (or listers) to visit each selected block
and make a complete listing of all households in
those blocks. Clearly, this is a time-consuming and
expensive operation. However, once completed, the
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lists can be used to draw accurate samples, to monitor
field progress, and to draw samples for subsequent
surveys.

A less resource-intensive strategy and one very
often employed in sample surveys in developing
countries is called co-listing, whereby interviewers
both list and interview in one operation. They are
given a map of the block, they are told where to start,
in what direction to proceed (usually “serpentine”),
and with what frequency to select households.

Once a household has been selected, it is often
required to interview one adult in the household, and
this person has to be selected at random. Many proce-
dures have been devised to implement this procedure,
the most rigorous one involving a complete listing of
all persons in the household.

Execution

All sampling procedures need to be tested before
production. Part of the design (PSU creation and
selection) can often be implemented in the head
office, but other stages – for example, selection of
final sampling units – have to be tested and carried
out in the field.

Even the best planned design will be subject to
unpredictable deviations during the execution stage.
Reasons are numerous: nonresponse, imperfect frame
and population data, real change, human error, and so
on. There are at least two corrective actions that can
mitigate the effect of these problems. First, a focused
attempt should be made to predict as many of these
factors as possible and to make contingency plans.
The second part of the solution is to keep meticulous,
accurate, well-organized, and preferably computer-
based quantitative records of all steps in the sampling
process.

As with any large-scale and complex operation
involving teamwork, it is imperative that rigorous
monitoring and quality control be included as an
integral and important part of the survey process. The
work of all field staff, including interviewers – espe-
cially new ones – should be regularly checked for
errors, both accidental and intentional.

The question that is asked almost as often as the
one about sample size is “What level of response rate
is considered acceptable?” First of all, it is not the
response rate per se that is the danger – it is the non-
response bias; that is, the extent to which responders

differ from nonrespondents (see Bias from Nonre-
sponse). It is conceivable, albeit unlikely, that a 20%
response rate sample manifests little bias.

Secondly, there is no substitute for high response
rates, both at the level of the respondent and at
the level of the individual questions. A large part
of the survey resources, training, and overall effort
should be directed to increasing the response rate
as much as possible. Many statistical procedures
(weighting and imputation (see Multiple Imputation
Methods)) have been developed to overcome non-
response, but these should be considered imperfect
solutions to a problem that is much better solved in
the field.

At the risk of sounding arbitrary, we would sug-
gest that surveys that are to be conducted in develop-
ing countries strive to achieve at least a 50% response
rate and preferably a minimum of 60%.

Data Processing

Once data are collected in the field, they have to
be processed; that is, edited, coded, keyed, cleaned,
and analyzed (see Data Management and Coordi-
nation). Between the editing and analysis phases, it
is necessary to calculate survey weights.

Weighting

Before the analysis phases, it is necessary to calculate
survey weights to account for unequal probabilities
of selection (planned or otherwise), other deviations
from the design, and to make final adjustments that
bring the sample results in line with known popula-
tion distributions.

Unequal probabilities may arise at any stage of the
sampling process. A separate weight is required for
each stage of the sampling process in which differing
probabilities are used.

The sampling weight is further adjusted to account
for nonresponse. This entails knowing something
about nonresponding outlets, information which can
be gleaned from looking at response rates across
various subclasses.

In the final stage in the weighting process a post
stratification weight is derived by comparing the
sample and population distributions for basic, known
variables, such as region, age, race, sex, and income.
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Analysis

It would be convenient, although unrealistic, if all
surveys could be based on simple random samples
with no stratification or clustering. However, this is
almost never the case. It then becomes an important,
although often overlooked, requirement of analyses
based on sample survey data to include the complex-
ity of the design in the analysis. The two components
of complexity are stratification and clustering. They
work in opposite directions, the first raising preci-
sion and the second lowering it. Unfortunately, in
typical area-based surveys, the effect of clustering is
dominant, and the overall result is that ignoring the
complexity of the design will result in an underes-
timation of the true sampling variance. What this
means is that results that might seem statistically sig-
nificant are in fact not, if one takes into account the
true sampling variability.

The complexity of the design can be incorporated
by running specific software (see Software for Sam-
ple Survey Data) or by including design effects in
the calculation of sampling errors.

Dissemination

As part of the dissemination plan, in addition to
standard analyses, tables, and other products, it is
very important to include a complete description of
the sample design and all deviations that occurred
in the field (e.g. nonresponse rates). This will help
readers to determine how much confidence they can
have in the results and the conclusions.

As a matter of course, it is also advisable to
include standard errors (correctly calculated) in the
tables.

Further Reading

Clairin, R. & Brion, P. (1996). Manuel de Sondages – Applica-
tions aux pays en developpement , Documents et manuels

due CEPED No. 3. (This publication is a recent, compre-
hensive, yet nontechnical treatment of basic survey design
issues with emphasis on topics that arise in developing
countries.

Cochran, W. (1977). Sampling Techniques, 3rd Ed. Wiley, New
York. (This is a classic, one of the standard texts about
sampling with a heavily mathematical bent.

Food and Agriculture Organization (1989). Sampling Methods
for Agricultural Surveys. FAO Statistical Development
Series No. 3. FAO, Rome. (This document was prepared
by Dr L. Kish and is intended to guide statisticians in their
design of agricultural surveys. Many of the principles
covered in this text can be transferred to other domains
of study.)

Kish, L. (1965). Survey Sampling. Wiley, New York. (Another
classic, but more applied and practical than Cochran
(1977).)

Lohr, S. (1999). Sampling Design and Analysis, Duxbury Press,
California. (Very complete, up-to-date, well-organized,
and an excellent introduction to sampling as well as a
reference source.)

Seijas, F. (1981). Investigación por Muestreo. Universidad
Central de Venezuela, Caracas. (A fundamental text in
the basics of survey research from the perspective of a
statistician whose experience is drawn largely from his
work in Latin America.)

Seijas, F. (1987). Encuesta de Hogares por Muestreo. Oficina
Central de Estadı́stica e Informática, Caracas, Venezuela.
(A primer in household sample surveys with emphasis on
challenges faced by statisticians in Latin America.)

United Nations (1986). Sampling Frames and Sample
Designs for Integrated Household Survey Programmes .
National Household Survey Capability Programme.
United Nations, New York. (This excellent document
represents a detailed and far-reaching treatment of
sampling issues for developing countries especially
for those trying to set up a permanent statistical
system.)

United Nations (1989). Household Income and Expenditure
Surveys: a Technical Study . National Household Survey
Capability Programme. United Nations, New York. (Part
of the same series as United Nations (1986), this text
provides a wealth of information and experience for
statisticians designing household income and expenditure
surveys in developing countries.)
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Sampling With and
Without Replacement

Sampling with replacement is a class of sampling pro-
cedures in which the selected elements are replaced
in the selection pool following each “draw” and
may be reselected on subsequent draws. In contrast,
sampling without replacement is a class of proce-
dures in which the already selected elements are not
replaced in the pool and cannot be selected again [1,
p. 37].

Under simple random sampling without replace-
ment of a sample of size n from a population of size
N , the first element of the sample is selected with a
probability of 1/N ; the second element of the sample
is then selected from the remaining N − 1 elements
with a probability of 1/(N − 1); and so on. Finally,
the nth element of the sample is selected with a prob-
ability of 1/(N − n + 1). It can also be shown from
elementary combinatorial theory that the probability
of the kth element of the population being included
in the sample, under simple random sampling without
replacement is n/N .

Under simple random sampling with replacement
of a sample of size n from a population of size N , n

independent draws are made such that in each draw,
each element of the population has an equal probabil-
ity, 1/N , of being selected. Since, after each draw, the
selected element is replaced into the population, some
elements in the sample may be drawn more than once.
Thus, the probability that the kth element of the pop-
ulation is not included in the sample is (1 − 1/N)n

and its inclusion probability is 1 − (1 − 1/N)n [2,
p. 49].

Some further points concerning the relationship
between sampling with and without replacement are
as follows:

1. The variance of conventional estimators (e.g.
means, total, or ratios) under simple random
sampling without replacement is (N − n)/(N −
1) times its value under simple random sam-
pling with replacement (see Finite Population
Correction), when conventional estimators are
applied [3, pp. 29–30]. That is, the variance in
sampling without replacement is smaller than that
in sampling with replacement. However, the vari-
ances under the two sampling schemes are nearly
equal when the population size, N , is large and
the sample size, n, is small.

2. In practice, almost all sampling is conducted
without replacement, and the “classical” meth-
ods of finite population sampling theory were
developed primarily for this class of sampling
designs.

3. Under certain conditions, results derived under
the assumptions of sampling with replacement
are approximately equivalent to those that would
have been obtained under sampling without
replacement. One example is sampling with
probability proportional to size.
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Sampling With
Probability Proportional
to Size

There are a number of reasons for selecting a sam-
ple with probabilities proportionate to size (PPS). As
the name “proportionate to size” implies, the sam-
pling elements are aggregated or arranged into groups
or units of different sizes. Examples include stu-
dents in schools, people in cities or counties, and
patients served by hospitals. Sampling PPS is an effi-
cient design when: (i) a list of the population is not
available but ancillary information is; (ii) the ele-
ments are in clusters or groups which differ greatly in
size; (iii) it is important to control the sample size;
(iv) costs and equalizing interviewer workloads are
important; (v) the use of natural divisions is possible
and supplementary information is available by the
natural divisions; and (vi) the sample must be drawn
in multiple stages.

The quintessential example of PPS sampling is a
multistage area probability sample (see Multistage
Sampling). A typical study might be of individuals
that reside in households and the research objec-
tives might be to estimate a health characteristic,
action, or belief. An area probability sample sat-
isfies all of the above conditions. In the US, for
example, no complete list of the general population
exists. Lists are available of telephone subscribers,
registered voters, property tax payers, people with
driver’s licenses, and others, but all of these have
major omissions/exclusions and have varying degrees
of currency and turnover. As a result, they are not
acceptable sampling frames for most studies. The
most comprehensive listing of the US population is
the count of the population in various types of domi-
ciles every 10 years by the US Census Bureau. The
decennial census provides counts by various civil
and political areas: in other words, states; counties,
parishes, or boroughs; Indian reservations, towns, or
townships; census tracts or block numbering areas;
and blocks. This information is used to construct the
initial phases of a PPS sampling frame. Social and
economic characteristics of the population are used
to stratify (see Stratified Sampling) and order the
geographic entities before selection.

Because no list of the population exists, the sample
is drawn in stages using population or housing unit

count data. These data indicate how many people
reside in a defined geographic area and how many
households there are in the same area, but they do
not tell us where and what types of housing unit
structures are located within the area, how many
people reside in each household, or which households
are occupied or vacant. The sample design is nested
in that subsequent selections are made within areas
selected in previous stages. At the next to last stage
of selection, which is typically blocks or segments
of blocks, a person trained in the listing of housing
units and households is sent to each selected area.
A comprehensive list of all dwelling units within
every commercial and residential structure is made.
The final sampling rates are applied to these lists of
dwelling units.

An advantage of PPS sampling over simple ran-
dom sampling is control of the final sample size and
the workload for interviewers. We will illustrate the
first point after a brief explanation of the latter point.
Selecting and training interviewers is usually han-
dled in one of two ways. One approach is to hire
and train in one location and then send the inter-
viewers to each sample location. This works well
when travel costs and distances are not very great.
When the sample covers a large geographic area (e.g.
several states or the entire US) a better approach is
to hire interviewers in multiple locations. Training is
then carried out at a number of regional locations to
reduce travel costs. With either approach, it clearly
makes sense to equalize the workload across inter-
viewers. It is not cost effective to hire and train an
interviewer to conduct only a few interviews if the
average workload is 25–40 cases.

In densely populated areas, interviewers are usu-
ally assigned cases in their home counties. In small
towns and rural areas, they are given cases not only
in their home county but also in adjacent or nearby
counties. The travel distances are longer but the travel
times are comparable to large urban areas. Interview-
ers are typically paid for both travel time and expense
from their homes to the sample locations; the actual
time to conduct the interviews is estimated to be
only 25%–40% of the total interviewing costs [7].
A major portion of the total cost is attributable to
interviewer travel time and expenses. Thus, selecting
more than one household at each sample location is
a way to reduce interviewer costs; however, it typi-
cally increases sample variances. Considerations for
addressing this issue are discussed later.
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With the above points in mind, we can now
illustrate why using a PPS design is more efficient
than using an equal probability of selection method
(epsem) at all stages of selection in a multistage
design. Assume that we want to select a sample of
1200 individuals in the State of North Carolina. Fur-
ther assume that we want the design to satisfy the
following conditions: (i) the sample should be epsem
or self-weighting; (ii) the sample size should yield
approximately 1200 interviews; and (iii) the work-
load among interviewers should be fairly equal. There
are two important design components in a multistage
epsem sample: (i) the overall probability of selection,
f , where f = n/N , with n being the sample size
and N being the population size; and (ii) determining
the number of units selected at the first stage of
sampling – the primary sampling units (PSUs) – or
choosing the average number of sampling elements to
be interviewed at the last stage of selection – which
is usually the block level. When the number of PSUs
is large and expensive to subdivide, the number of
PSU selections should not exceed one-fifth of the
total number of units; otherwise, the expense for
this stage of selection cannot be justified [3]. Coun-
ties are frequently used as PSUs because there are
a large number of them (more than 3000 in the
continental US), they are important administrative
and governmental units, they are stable, and mea-
sures of size and other useful sampling information
for them are readily available [3].

North Carolina contains 100 counties. If we want
1200 interviews from a population of approximately
8 million people, the overall probability of selection
PrT = n/N = 1200/8 049 313 = 0.000149, or a sam-
pling rate of 1/6707. If we select an epsem sample
of 20 counties at the first stage of selection, the sam-
pling rate within counties will be 1 in 1341 people,
because 1/6707 = (20/100)(1/1341).

Table 1 presents the results from a systematic
random sample of 20 counties and the number of
cases to be selected within each county using a rate
of 1 in 1341. The results show that instead of 1200
cases being selected, there are only 881: a shortage
of 319 cases or approximately 27%. The number of
cases selected per county varies widely, from a high
of 110 cases in Davidson County to a low of three
cases in Tyrrell.

A related inefficiency of this design is the estimate
of variance of the sample mean. If we assume equal
population variances by county, a PPS sample of 20

Table 1 Expected sample sizes and 1/ni from 20 ran-
domly selected counties.

North Carolina Sample size
counties Population (population/1341) 1/ni

Anson 25 275 19 0.0530
Bladen 32 278 24 0.0415
Caldwell 77 415 58 0.0173
Chatham 49 329 37 0.0272
Columbus 54 749 41 0.0245
Davidson 147 246 110 0.0091
Franklin 47 260 35 0.0284
Granville 48 498 36 0.0277
Haywood 54 033 40 0.0248
Iredell 122 660 91 0.0109
Lenoir 59 648 44 0.0225
Martin 25 593 19 0.0524
Nash 87 420 65 0.0153
Pamlico 12 934 10 0.1037
Pitt 133 798 100 0.0100
Rockingham 91 928 69 0.0146
Stanly 58 100 43 0.0231
Tyrrell 4149 3 0.3232
Washington 13 723 10 0.0977
Yadkin 36 348 27 0.0369
Total 881 0.9638

counties and 60 persons per county would give the
following estimate [7]:

n∑

i=1

σ 2

ni

= 20σ 2

60
= 0.33σ 2.

The estimate from Table 1, however, is 0.9638σ 2, or
2.92 times greater.

A few additional comments about these results,
and about using an epsem when PSUs vary in size,
are in order. The population of North Carolina coun-
ties ranges from a low of 4149 in Tyrrell County to
a high of 695 454 in Mecklenburg; the latter being
more than 167 times larger than the former. Among
the 100 counties, five have a population of 250 000 or
more and 23 have a population greater than 100 000.
The important points to note about the results in
Table 1 are that none of the five largest counties was
selected, only three of the counties with a popula-
tion over 100 000 were selected, and counties with
the fewest sampled cases contribute disproportion-
ately to the higher estimated variance. Sampling with
probabilities proportionate to size at all stages except
the last stage in a multistage design can correct these
design deficiencies.
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Table 2 PPS selection of 20 counties arranged by median household income

No. of Co. County Income Population Cum Pop Sampling Int.

1 Wake 54 988 627 846 627 846 r.s.126 599; 529 031
2 Union 50 638 123 677 751 523
3 Mecklenburg 50 579 695 454 1 446 977 931 529; 1 333 994
4 Cabarrus 46 140 131 063 1 578 040
5 Durham 43 337 223 314 1 801 354 1 736 459
6 Chatham 42 851 49 329 1 850 683
7 Guilford 42 618 421 048 2 271 731 2 138 924
8 Dare 42 411 29 967 2 301 698
9 Orange 42 372 118 227 2 419 925

10 Forsyth 42 097 306 067 2 725 992 2 541 389
11 Iredell 41 920 122 660 2 848 652
12 Lincoln 41 421 63 780 2 912 432
13 Moore 41 240 74 769 2 987 201 2 943 854
14 Johnston 40 872 121 965 3 109 166
15 Currituck 40 822 18 190 3 127 356
. . . . . . . . . . . . . . .

76 Avery 30 627 17 167 7 366 906
77 Mitchell 30 508 15 687 7 382 593 7 370 969
78 Pasquotank 30 444 34 897 7 417 490
79 Duplin 29 890 49 063 7 466 553
80 Anson 29 849 25 275 7 491 828
81 Yancey 29 674 17 774 7 509 602
82 Perquimans 29 538 11 368 7 520 970
83 Alleghany 29 244 10 677 7 531 647
84 Washington 28 865 13 723 7 545 370
85 Richmond 28 830 46 564 7 591 934
86 Ashe 28 824 24 384 7 616 318
87 Martin 28 793 25 593 7 641 911
88 Swain 28 608 12 968 7 654 879
89 Hyde 28 444 5826 7 660 705
90 Warren 28 351 19 972 7 680 677
91 Robeson 28 202 123 339 7 804 016 7 773 434
92 Cherokee 27 992 24 298 7 828 314
93 Bladen 26 877 32 278 7 860 592
94 Columbus 26 805 54 749 7 915 341
95 Northampton 26 652 22 086 7 937 427
96 Graham 26 645 7993 7 945 420
97 Halifax 26 459 57 370 8 002 790
98 Hertford 26 422 22 601 8 025 391
99 Tyrell 25 684 4149 8 029 540

100 Bertie 25 177 19 773 8 049 313

Table 2 illustrates one method of preparing the
sample frame for the selection of PSUs in a PPS sam-
ple. To conserve space, only 40 of the 100 counties
are listed. The counties are arranged in descending
order by a stratification variable, median household
income. The number of people in each county is
listed and the cumulative total is calculated. We can
see, for example, that Wake County has the highest
median household income of 54 988 and a popula-
tion of 627 846, which is the second largest. The

cumulated subtotals are required because at this stage
of selection each county receives a probability of
selection which is proportionate to its population size.

Table 2 shows county population and median
household income data for the 15 counties with the
highest median household incomes and the 25 coun-
ties with the lowest median household incomes. As in
Table 1, we want to select 20 counties systematically,
but this time by probabilities proportionate to their
population sizes. To do this we divide the total
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cumulative population (8 049 313) by the desired
number of PSUs, a = 20. This gives a sampling inter-
val of 402 465. A random start between 1 and 402 465
is selected (126 599), and the sampling interval is
added to the random start until the cumulated total
is exceeded.

The results in Table 2 indicate that four of the
five counties (Cumberland is not shown and was not
selected) with populations exceeding 250 000 were
selected in the sample and that only two of the
last 25 counties were selected. There is a moderate
correlation between population size and household
income and all but two of the 23 largest counties
(population of 1 000 000+) are in the first 55 coun-
ties listed. Note that the sampling interval falls twice
within Mecklenburg and Wake Counties. If we select
approximately 60 cases per county, a double sample
or 120 cases would be selected in these two counties.
Also, because Mecklenburg and Wake were selected
twice, only 18 different counties were selected. Coun-
ties such as Mecklenburg, Wake, and Guilford are
selected into the sample “with certainty” because
their population sizes exceed the sampling interval.

In situations in which some of the PSUs are larger
than the sampling interval, each certainty PSU should
be treated as a separate stratum. The overall sampling
rate is applied to each certainty PSU and the number
of selected cases per PSU is allowed to vary depend-
ing on the size of the PSU. The noncertainty counties
are treated as a separate group. With this approach,
the certainty PSUs are sampled using the initial over-
all selection rate and the noncertainty counties are
allocated the remaining cases and sampled PPS with
a new sampling interval.

To illustrate this approach we proceed as we did
in Table 2. We want to select 20 PSUs and a sample
size of 1200. We calculate the sampling interval as
before, but before we select a random start, we look
over the list of counties to see how many will fall into
the sample with certainty; that is, have a population
greater than 402 465. There are three counties: Wake,
Mecklenburg and Guilford. We now subtract the total
population of these three counties (1 744 348) from
the state total (8 049 313) and divide the new total
(6 304 965) by the number of PSUs that we still want
to select (17). This gives a new interval of 1 in
370 880. Again, we check the list of 97 counties to
see if any are now certainty counties and we see that
none are. If any counties were certainty, we would
deal with them as we did the first three. This process

would continue until no counties were certainty selec-
tions. When that occurs, the final PSUs are selected.

We can see that at this stage in the selection
process the probabilities of selection among the PSUs
are unequal and, therefore, a fixed sampling rate must
be used at the final stage of selection [6]. Since the
PSUs were selected proportionate to size, the final
elements must be selected inversely proportionate
to size in order to give each element the same
overall probability of selection. This is demonstrated
as follows [7]:

PrT = n

N

is the overall probability of selection;

PrPSU = MOS PSU

(N/a)

is the probability of a PSU being selected, where
MOS PSU is the population count for the county and
a is the desired number of PSUs to be selected;

PrW = PrT

PrPSU

is the probability of selection within the PSU.
PrW is known as the selection equation [2]. Essen-

tially, it is the probability of a PSU being selected
multiplied by the probability of an element within
the PSU being selected if its PSU was selected at the
initial stage. This can be seen more clearly by solving
for PrW:

PrW = PrT

PrPSU
= n

N
× N

aMOS PSU
= n

aMOS PSU
.

The number of selected elements in a PSU is deter-
mined by the PSU size multiplied by the probability
of selection within:

ni = MOS PSU

(
n

aMOS PSU

)
= n

a
.

Thus, the same number of elements will be selected
from each noncertainty PSU regardless of the size
of the PSU. For certainty PSUs, PrW = PrT because
PrPSU = 1. The number of elements to be selected
within a certainty PSU is MOS PSU × n/N . Assume
that Wake County and Mitchell County are selected.
Wake is a certainty and Mitchell is a noncertainty
county. For Wake, the number of selected ele-
ments is determined by PrT = n/N = 0.000149 ×
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MOS PSU(627 846) = 93.6. The sample size not allo-
cated to the certainty counties will be allocated
equally among Mitchell and the other noncertainty
counties. Thus, 940 cases allocated to 17 counties
is approximately 55 per county. We can illustrate
this with Mitchell County. The noncertainty selec-
tion interval is 370 880. Mitchell County’s MOS
and probability of selection are 15 687/370 880 =
0.042297.

PrW = PrT

PrPSU
= 0.000149

0.042297
= 0.00352.

The estimated number of selected elements in Mit-
chell County is 15 687 × 0.00352 = 55.2 or 55,
or 57.

The same PPS procedures are used when there are
two or more stages to the selection process. This is
illustrated as follows [7]:

PrPLACE = MOS PLACE

MOS PSU/b

is the probability of a place within a PSU being
selected;

PrBLOCK = MOS BLOCK

MOS PLACE/c

is the probability of a block within a place being
selected;

PrHOUSE = PrT

PrPSUPrBLOCKPrPLACE

= n

N

(
MOS PSU

N/a
× MOS PLACE

MOS PSU/b

× MOS BLOCK

MOS PLACE/c

)−1

= n

abcMOS BLOCK

is the probability of a household within a block or
block area being selected. Here, a is the desired
number of PSUs, b is the desired number of places to
be selected per PSU, and c is the desired number of
blocks to be selected per place. The expected number
of cases per block or block area is

MOS BLOCK × PrHOUSE = MOS BLOCK × n

abc × MOS BLOCK

= n

abc
.

The number of places and blocks selected within a
PSU is based on costs and the degree of homogene-
ity within clusters for the variable being estimated.

These factors will be discussed shortly. If we had
determined that in noncertainty PSUs seven places
and two blocks per place should have been selected,
the number of households selected per block would
be approximately: n/abc = 940/17 × 7 × 2 = 3.95.
For certainty PSUs, where the sample sizes are larger,
the number of places selected is increased while the
number of households selected per block remains
the same.

A number of design considerations from the fore-
going example need to be addressed. Many of the
points raised in the following five items apply to clus-
ter sampling in general.

1. Very seldom do we know the exact sizes of
our sampling units. This is especially true when
dealing with human populations because areas
change in size due to growth, migration, or demo-
lition of housing units. In most situations, good
estimates are available from a recent census, real
estate or neighborhood groups, city and county
governments, and other groups that monitor or
are involved in population change. It is impor-
tant that measures of size be reasonably accurate
so that serious selection problems are avoided. A
serious problem would be selecting a block with
an expected 25 housing units and, upon visiting
the block, finding that a 500-unit condominium
has been built. For a sample to remain epsem, the
cluster size at the final stage of sampling must be
allowed to vary to reflect the differences between
the expected and the actual sizes. Detailed dis-
cussions of listing blocks and areas and how to
deal with high growth and zero household blocks
can be found in Kish [3] and Sudman [7].

2. When we use estimated measures of size, the
sample size becomes a random variable. The
sample mean is estimated by r = y/x, where y is
the sample total for the variable being estimated
and x is the total sample size. This estimator is
not unbiased, but the bias can be ignored when
the coefficient of variation of x (see Standard
Deviation) is less than 0.2 [2]. The general form
of the variance estimator is

v(r) = [v(y) + r2v(x) − 2rc(x, y)]

x2
,

where c(x, y) is the sample covariance between
x and y, and v(y) and v(x) are sample variances.
This formula holds whether or not PSUs are
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stratified and the method of subsampling within
PSUs does not matter [2, 3] (see Ratio and
Regression Estimates).

3. When elements are selected in clusters, two
things occur. The elements are not selected
independently of each other as in simple ran-
dom sampling and elements that are grouped
together usually have some degree of similar-
ity or homogeneity. The degree of homogeneity
within clusters and the average cluster size typ-
ically cause an increase in sampling error. Levy
& Lemeshow [5] provide the following formula
for the standard error of the element mean from
a two-stage cluster sample:

se(xCLU) =
(

σx√
n

)
[1 + δx(c − 1)]1/2.

The only difference between the standard error
for a simple random sample and the above for-
mula is the expression in the square brackets.
This is known as the design effect. It is the ratio
of the variance from a cluster sample to that from
a simple random sample of the same size. c is
the average number of households sampled per
block and δx is the intraclass correlation coeffi-
cient. δx is a measure of the homogeneity among
all possible pairs of elements. This parameter can
take values between +1, when all the elements
are similar on the characteristic, and −1/(c − 1),
which would indicate that there is more variabil-
ity among the elements within a cluster than in a
simple random sample. The intraclass correlation
is typically small, positive and below 0.15 [2].

4. Costs need to be considered when determining
the number of PSUs to select and the average
cluster size per block. A cost function for the
sampling and field costs for a two-stage design is

CT = aC1 + nC2,

where CT is the total cost of sampling and field-
work; a is the number of PSUs; C1 is the average
cost of sampling, listing, and hiring, selecting,
training, and supervising interviewers at each
PSU; n is the total sample size; and C2 is the
average cost of each interview. The optimum
cluster size per block can be determined from

copt =
[

C1

C2

(
1 − δ

δ

)]1/2

.

This expression shows that when C1 is much
larger than C2 and δ is small, the optimum cluster
size can be large. Sudman [7] indicates that the
optimum cluster sizes per block for many social
science variables ranges from three to eight. The
number of PSU selections can be determined
from [1]:

aopt = CT

(C1 + C2copt)
,

where CT, C1, C2, and copt are defined above.
5. The same measure of size information need not

be used at every stage of selection in a multi-
stage design. For example, PSUs can be selected
using population count data and places within
PSUs can be selected using household count data.
This is possible because there is a very high
correlation (0.97) between these items of infor-
mation [7].

Sampling PPS for Telephone Surveys

One of the most innovative random digit dialing
(RDD) telephone sample designs uses PPS sam-
pling [8] (see Telephone Sampling). Early national
RDD samples were designed to select a system-
atic sample of area code/prefix combinations from
a national list frame. Four random digits were added
to these six-digit numbers to form a complete ten-
digit telephone number. The problem with the design
is that 75%–80% of the telephone numbers generated
are not residential household numbers. Waksberg [8]
proposed a two-stage procedure which increases the
proportion of working residential household numbers
by subsampling within banks of numbers where a
household is found at stage 1. Essentially, ten-digit
numbers are formed as described above; however,
if a household is contacted, a new sample number
is created based on the initial number. The Mitof-
sky–Waksberg procedure suggests keeping the first
eight digits (the area code + prefix + first two ran-
dom digits) and substituting two random digits for
the last two digits to create a new ten-digit telephone
number. New numbers are created at the second stage
of sampling until a fixed number of households are
contacted. This is a PPS design because the first-
stage selection probabilities are determined by the
number of residential telephone households in the
100-number bank selected and, since a fixed num-
ber of households are called at the second stage,
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the probabilities at this stage are inversely propor-
tional to size. With this design, about 60% of the
numbers generated at the second stage are residen-
tial households. Lepkowski [4] and others [5] discuss
difficulties encountered with this design and a much
simpler design, list-assisted RDD, that has, in general,
near complete telephone population coverage and a
small bias (see Telephone Sampling).
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Savage, Leonard Jimmie

Born: November 20, 1917, in Detroit.
Died: November 1, 1971, in New Haven.

Leonard Savage lived all his life with very bad eye-
sight. As a result, whenever he read anything, and he
read a lot and widely, he read with deep concentration
and understanding. Not for him the superficial appre-
ciation that the modern information revolution often
imposes. He gained a Ph.D. in mathematics from the
University of Michigan in 1941. His future career was
determined by working in the Statistical Research
Group at Columbia University. This he described as
“one of the greatest hotbeds statistics has ever had”.
Thereafter, his main professionalism was in statis-
tics. From 1946 to 1960 he was at the University
of Chicago. After a brief period at the University of
Michigan, he moved to Yale in 1964.

He gained an international reputation as a result
of the publication in 1954 of his book The Foun-
dations of Statistics [1]. Prior to 1954, statistics had
been a collection of separate techniques. He felt that it
should be treated like any other branch of mathemat-
ics, with its axioms, proofs and theorems. Inspired by
the success of von Neumann in developing an axiom
system for utility, Savage was able to construct a sys-
tem for inference and decision making (see Decision
Theory). In particular, he showed that uncertainty
must be described probabilistically. The axioms of
Kolmogorov became theorems in the new system. He
has been described as the Euclid of statistics.

Savage set out to justify the separate techniques
of statistics, like confidence intervals. They were to
appear as theorems in his deductive system. While
the first half of the book is a triumph, the second, in
which he attempts to justify contemporary statistics,
is a failure. By 1960 he had realized that what he
had done was to destroy frequentist statistics. In its
place, he had constructed what we now call Bayesian

statistics (see Bayesian Methods). In particular, the
confidence interval (a probability statement about an
interval, given the value of a parameter) is replaced
by a probability statement directly about the param-
eter. Savage, thus unwittingly, produced a revolu-
tionary paradigm for inference and decision making.
This revolution is, almost 50 years later, affecting the
whole of statistics and much decision making. The
plethora of significance tests (see Hypothesis Test-
ing) is being replaced by probabilities of hypotheses.
These probabilities, as Savage and de Finetti showed,
are personal, or subjective. Objectivity in science
arises only through the accumulation of data and the
bringing together of different opinions.

Savage was a scholar of the old school. He was
meticulous in his appreciation of the work of others.
He was the first to understand the work of de Finetti
and Frank Ramsey, done in the 1930s. He discovered
independently some of their results and, by his work,
was the first fully to understand what they had done.
Although Bayesian statistics is often in disagreement
with the ideas of Fisher, Savage’s article on his
work [2] is perhaps the best from which to understand
the genius of Fisher. Savage’s collected works, with
further biographical details, appeared in 1981 [3]. He
was a superb writer and lecturer who spoke and
wrote with the scrupulous care that he devoted to
his reading.
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Scan Statistics for Disease
Surveillance

Epidemiologists investigating disease incidence are
drawn to clusters of cases occurring within a short
period of time (see Clustering). Public health spe-
cialists as well as the media focus on clusters of
cases of birth defects, cancer or suicides. Investiga-
tors seek to determine whether such clusters are more
than just chance bunching, and search for common
causative factors. Statistical tests are used to provide
the researcher with a measure of the unusualness (sta-
tistical significance) of the cluster relative to chance
bunching (see Hypothesis Testing). A popular statis-
tic used in disease surveillance, first investigated in
detail by Naus [37], is the scan statistic, the maxi-
mum number of events in a window of predetermined
width, w. Formally, if we rescale time to [0, 1], and
let Yw(t) be the number of events in time [t, t + w],
then the scan statistic, Sw, is

Sw = max
0≤t<1−w

Yw(t). (1)

(Alternatively, without rescaling time, set T to be the
time frame of interest, r the duration of the window
in actual time units, w = r/T , and let Sw be the
maximum of Yr(t) over 0 ≤ t ≤ T − r .)

The most common application of the scan statistic
is testing for clustering conditional on N , the total
number of events observed. Under the null hypothe-
sis, H0, the times of the N events have a uniform
distribution on the unit interval. Rejection of H0

for large values of the scan statistics is a general-
ized likelihood ratio test [38] for testing against the
pulse alternative Ha: that for some unknown τ , rep-
resenting the start of the increase, 0 ≤ τ ≤ 1 − w,
and some relative risk θ > 1, the density is given
by

f (t) =
{

θ/(1 − w + wθ), τ ≤ t < τ + w,

1/(1 − w + wθ), otherwise.

(2)

The scan statistic has been used to detect clus-
tering of a wide variety of reproductive and other
outcomes, including congenital heart disease [41] and
poisonings [20], and is used routinely in the Ontario
Cancer Registry [27]. Applications to a wide variety

of topics including cancer clusters, clusters of inflam-
matory bowel disease, parasuicide clustering, clusters
of HIV in dialysis patients, and visual perceptions are
described in [18].

The unconditional version of the statistic could be
used to sound an alarm in real time in prospective
surveillance applications, and requires the investiga-
tor to specify, a priori, the duration of the interval
under study, and λ, the expected number of events
over the entire time period. The null hypothesis for
this model assumes that events occur at random
according to a Poisson process. An analogous pulse-
type alternative is that for some unknown τ , and
unknown θ > 1, E[Yw(τ)] = θλw, while for t < τ −
w or t > τ + w, E[Yw(t)] = λw. However, since, in
practice, the purpose of monitoring is to stop when
a cluster is observed, the test could be applied when
there are two intensities with an unknown change
point Kulldorff [30] describes a generalization of the
scan statistic for surveillance, in which w, the inter-
val of the presumed increase, need not be specified
in advance.

Often the scan statistic cannot be exploited fully
since the precise times of the events are not known,
but rather the data are grouped in discrete inter-
vals. The most frequent application is when data
are tabulated monthly, but clustering over 3, 6 or
12 months is of interest. The ratchet scan statis-
tic [29, 51] maximizes Yw(t) when t can only take
on values starting at the beginning of a calendar
month.

Weinstock [54] modifies the scan so it can be used
even when there is some underlying temporal trend
to the disease specified by the density f0(t), or if the
population at risk changes. He tests the hypothesis
H0: f (t) = f0(t) by replacing the constant window,
w, by a variable window width ω(t), where

∫ t+ω(t)

t

f0(s) ds = w.

The statistic, however, thus loses its simple interpre-
tation, and the associated optimal properties related
to detecting pulses of length w.

A defect of the scan statistic is that w must be
specified before the data are observed and should
not be based on examination of the data. (For the
surveillance model, both w and the time frame must
be specified in advance.) Cressie [9] notes that it
is better to choose an interval slightly larger than



2 Scan Statistics for Disease Surveillance

the true pulse rather than one slightly smaller. Some
protection against missing a cluster can be achieved
by choosing two window widths and utilizing the
Bonferroni bounds to test each at the α/2 level.
Loader [35] and Nagarwalla [36] present a statistic
for testing H0 against (2) in the case when w is
unknown.

The Exact Distribution

Since the scan statistic does not have a normal
distribution even for large N , and, furthermore,
moments are unavailable, most of the literature has
focused on finding critical values, k, so that under
H0 the occurrence of k or more events in any win-
dow of width w is unlikely to be due to chance.
Naus [37] calculates Pr(S1/2 ≥ k), Pr(S1/3 ≥ k), and
Pr(Sw ≥ k), w ≥ 1/2, under the null distribution of
no clustering. General formulas for the exact distribu-
tion under both the null and the alternative are based
on a generalized ballot problem [6] dealing with
the amount of lead among L candidates. Naus [38]
applies the result to express the distribution under
the null, when w = 1/L, L an integer, as the sum of
L × L determinants. The result was extended to arbi-
trary w [23], and to the distribution under a pulse
alternative [9]. In general, these exact formulas are
difficult to implement for moderate or large samples
and small w, except in specialized cases, because they
involve a large number of summations over many
large determinants.

Approximations and Bounds

Many approximations or bounds are based on
generalized Bonferroni-type inequalities involving
intersections of up to J events, or on tighter versions
of these inequalities for J = 1 [22] or J = 2 [33].
Especially for J = 1 and 2, these methods yield
good approximations for small values of Pr(Sw ≥
k), but are generally poorer for approximating
the median of Sw or upper tail probabilities.
Wallenstein [48] applies the simple bounds with
J = 1 and 2 to Di = sup0≤s≤w Yw(iw + s) ≥ k, i =
0, 1, . . . , [1/w], to tabulate probabilities for a range
of values of w common in disease surveillance
applications. Berman & Eagelson [7] apply the upper
bound with J = 1 based on Ei = {X(k+i−1) − X(i) <

w}, i = 1, . . . N − k, where X(1), X(2), . . . , X(N) are

the order statistics for the N events. Glaz [14,
15] derives tighter, but computationally more
difficult approximations, by applying Bonferroni-type
inequalities with larger J . An approximation that
is both simple and accurate, involving sums and
alternating sum of binomial coefficients, is given
in [17].

Naus [40] develops a highly accurate formula
for type I error for several types of scan statistic,
by noting that conditioning on the recent past is
approximately the same as conditioning on the
entire past, or formally that Pr(Dc

i |Dc
1, . . . , Dc

i−1)
∼=

Pr(Dc
i |Dc

i−1). Thus, Pr(Sw ≥ k) can be approximated
based only on Pr(S1/2 ≥ k) and Pr(S1/3 ≥ k). Huffer
& Lin [21] define Mk to be the number of k-clusters
of length w, note that Pr(Sw ≥ k) = Pr(Mk ≥ 1), and
approximate this probability using the method of
moments.

Applying the Hunter [22] bounds to Pr(∪Di), and
then performing further approximations, a simple
approximation for the null distribution of the scan
statistic is [49]

Pr(Sw ≥ k) ∼= (k/w − N + 1) Pr(Z = k)

+ 2 Pr(Z > k), (3)

where Z ∼ bin(N, w), i.e. Z is a binomial random
variable based on N trials with probability of suc-
cess, w. The first term (with coefficient (k/w − N))
in this approximation is implicit in asymptotic work
by Cressie [10], while Loader [35], based on large
deviation theory, gives an analogous but slightly
more complicated approximation which, at least for
w = 1/2, improves precision.

For the conditional scan, Alm [2] uses asymptotic
theory to find that under the null hypothesis, given
E(N) = λ,

Pr(Sw ≤ k) ∼= Pr(Z ≤ k) exp{−λ(k + 1 − λw)

× (1 − w) Pr(Z = k)/(k + 1)}, (4)

where Z has a Poisson distribution with mean value
λw.

Wallenstein et al. [52] approximate the power of
the scan statistic against a pulse alternative for
the conditional and unconditional cases. A further
approximation for the conditional case yields that for
relative risk θ � 1,

power ∼= Pr(Z ≥ k) + 2 Pr(Z = k)/(θ − 1), (5)
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where Z ∼ bin(N, θw/(1 − w + θw)). Based on si-
mulation results, Sahu et al. [43] suggest sample
sizes to achieve adequate power and compare power
for triangular and rectangular pulses.

Space–Time Clustering, Moments

The scan statistic can be modified [50] to test for
space–time clustering, for the case where “space”
consists of g discrete geographical areas (towns,
schools, cities, etc.) and there is no overall time
trend. The statistic can be viewed as a variant of
the Ederer–Myers–Mantel [11] statistic, where the
maximum number of events within a calendar year is
replaced by the maximum within any 365-day inter-
val. The numerator of the statistic is the difference
between the scan statistic for each geographical area
and its expected value, and the denominator is the
square root of the sum of the variances. When the
number of geographic regions is moderately large,
the central limit theorem indicates that the statistic
has approximately a normal distribution.

Using both exact probabilities (N < 19) and sim-
ulation, the first two moments of the scan are tab-
ulated [50] for six window widths and a range of
Ns from 2 to 1000. Values of N not tabulated can
be obtained from interpolation, or by use of the
suggested linear approximations E[Sw(N)] = wN +
bwN , where the coefficients, bw, are estimated from
the tabulated data. Anderson and Titterington [3]
extend the theoretical concept of the two-dimensional
scan to geographic clustering by stretching or con-
tracting geographic regions so that they have equal
density. They display some empirical critical values
and power for the spatial scan statistic, and compare
it to a statistic based on squaring differences between
the observed and expected densities and then integrat-
ing over the region. Kulldorff and Nagarwalla [32]
describe a generalization of the scan, which is appli-
cable for arbitrary spatial distributions and does not
require specification of an a priori critical distance.
The concept is extended by Kulldorff et al. [31] to
detecting space–time clustering.

Seasonal Clustering

For detecting seasonal clustering (see Seasonal Time
Series), data from several years are merged. The
resulting 365-day period is viewed as a circle, with

December 31 adjacent to January 1. The circular scan
statistic, Cw, is the maximum number of events in a
fraction, w, of the year. Ajne [1] finds Pr(C1/2 ≥ k)

in terms of an infinite sum, in contrast to the much
simpler expression for the line [37]. He also points
out that C1/2 is the most powerful invariant test for
the pulse alternative as θ approaches infinity, while
Cressie [9] extends this result to general w and finds
some interesting asymptotic results.

The pulse alternative differs from the sinusoidal
alternative (peak followed by a trough 6 months later)
for which Edwards’ statistic [12] is often used as a
test of seasonal clustering. The statistic C1/2 is related
to Hewitt’s statistic [19] in which the monthly totals
are replaced by their ranks, and the test statistic
is the maximum over the sums of six consecutive
monthly ranks. Rogerson [42] compares the statistics
C1/4, C1/3, and C5/12 with his generalizations of
Hewitt’s statistic based on the maximum of the sum
of the ranks over 3, 4 or 5 consecutive months.

Except for special cases, the exact distribution of
the circular scan statistic is very difficult to obtain
since it cannot be cast in the form of a ballot
problem, as the first and last “candidates” are the
same. Nevertheless, the computation of Pr(Cw > k)

can be reformulated so that the single probability that
cannot be derived, involving an intersection of [1/w]
events, is very small, and approximations [51] can be
obtained using methods similar to those described for
the line.

Wallenstein et al. [51] propose a modification of
the circular scan, termed the ratchet scan, which is
applicable when only monthly totals are available
and give a figure plotting P values against values
of the statistic. Krauth [28] gives bounds based on
the Bonferroni inequality, so that the P values need
not be read off a figure.

A Generalized Scan Statistic, with
Application to Assessment of
Inhomogeneities in DNA Sequence Data

Glaz & Naus [16] generalize the scan statistic
to the case of N independent random variables,
X1, X2, . . . , XN , where N could be fixed or a random
variable. They let Ym(t) be the sum of m consecutive
random variables Xt to Xt+m−1, and define the scan
statistic, Sm, as the maximum of Ym(t) over the
integers t = 1 to N − m + 1. The special case {Sm =
m} is related to the runs test (see Clustering).
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The special case where X is a binary random
variable could be applied in the context of cluster-
ing of disease. For example, letting X = 1 denote
the event that a birth is associated with a congen-
ital malformation, and X = 0 otherwise, the statis-
tic Sm is the maximum number of cases of con-
genital malformations in a series of m consecu-
tive births. Fu & Curnow [13] show that Sm is
a function of the log likelihood ratio for testing
the hypothesis of a constant probability of disease,
against the pulse alternative of a higher probabil-
ity for m consecutive trials and a lower one else-
where. Under both the null and pulse alternatives,
they give a method to obtain exact probabilities,
which, however, is difficult to implement for m >

20. Saperstein [44] and Naus [39] relate the dis-
tribution of Sm to a generalization of the birth-
day problem, and give results concerning the null
distribution conditional on N . Chen and Glaz [8]
describe and compare several approximations for
the distributions of discrete scan statistic for one
and two dimensions Wallenstein et al. [53] give an
approximation for the power against a pulse alterna-
tive.

Recently, the generalized scan statistic has been
applied to problems in DNA sequencing in which
DNA can be viewed as a sequence of letters from a
four-letter alphabet of nucleotides, a 20-letter alpha-
bet of amino acids derived from triplets of these
four nucleotides, or a three-letter alphabet of charges
of amino acids. Exact or approximate probabilities
for the length of the longest almost matching subse-
quence, or the largest net charge within any series
of m consecutive amino acids, are given by Glaz
& Naus [16], Sheng & Naus [46], and Karwe &
Naus [26]. Asymptotic results for the distribution
of the generalized scan statistic, based on methods
such as the Chen–Stein method of Poisson approx-
imation, are given by Arratia et al. [4, 5], Karlin &
Macken [25], and Karlin & Brendel [24].

These results are often phrased in term of r-scans,
the width of the smallest interval containing r + 1
events, or equivalently the sum of r interarrival times.
Su, Wallenstein and Bishop [48] use a compound
Poisson approximation of Glaz et al. [17], as well
as a modified binomial approximation to approxi-
mate the number of nonoverlapping r scans, and use
the procedure for identifying gene regulatory regions.
Leung and Yamashita [34] describe applications of

r-scans to DNA sequence analysis focusing on iden-
tifying nonrandom clusters of palindromes. Segal and
Wiemels [45] compare the scan statistic, bandwidth
tests, and gap statistics for detection of translocation
breakpoints.
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Scedasticity

Homoscedasticity is the condition in which a random
variable or its observed values have the same degree
of variation for all sampling units in the mathematical
model or data set. By “constant variation” we usually
mean a common variance for all sampling units.
When that condition is not met, the random variable
or data are called heteroscedastic. The origin of these
terms is from the Greek word σκεδάννυµι, “to
scatter or disperse”, and the Greek words for “same”
and “different”.

Linear Regression Analysis

Homoscedasticity is an essential assumption in the
linear regression model and its fit by least squares.
For the simplest case of a single dependent variable
Y and one independent (or explanatory) variable X,
the model is

Yi = α + βXi + ei, i = 1, . . . , N.

The ei are random variables with E(ei) = 0, and
if the homoscedasticity condition holds, var(e1) =
· · · = var(eN) = σ 2. If the random disturbance terms
are heteroscedastic and have different variances
σi

2 = var(ei), the ordinary least squares estimators
of α and β, while still unbiased, no longer have
the Gauss–Markov property of minimum variance
(see Least Squares). If the individual variances are
known up to a proportionality constant, a weighted
least squares fit of the linear model can be obtained
by using the scaled data

Yi

σi

= α

σi

+ βXi

σi

+ ei

σi

.

The usual ordinary least squares estimation process
is applied to the scaled values, with the intercept also
scaled by the known standard deviations σi .

The weighted least squares estimators are eas-
ily displayed by the matrix form of the multiple
regression model with an intercept and p independent
variables:

Y = Xβ + e.

Y is the N × 1 vector of observations on the
dependent variable. X is the N × (p + 1) matrix of
predictor variable values of full rank p + 1, with a

first column of ones for the intercept term. β is the
(p + 1) × 1 parameter vector with the intercept α

in the first position. The N × 1 vector of random
disturbances e has E(e) = 0 and diagonal covariance
matrix

� = cov(e, e′) =
[

σ1
2 · · · 0

· · · · ·
0 · · · σ 2

N

]
.

The weighted least squares estimator of β is

β̂w = (X′�−1X)−1X′�−1Y,

where �−1 is the N × N diagonal matrix, the diago-
nal elements of which are the reciprocals 1/σ 2

i of the
corresponding elements in �. Unfortunately, since
the variances of the disturbance terms are rarely
known, these results are mainly only of theoretical
interest.

Two-Sample t Test

The hypothesis that two independent normal distri-
bution means are equal frequently arises in practi-
cal data analysis. The Student–Fisher t test of that
hypothesis requires that the two populations have a
common unknown variance (see Student’s t Statis-
tics). That assumption is easily tested by the ratio
F = s1

2/s2
2 of the independent sample variances.

Hsu [3] calculated the true type I error probabili-
ties for selected ratios of the population variances
θ = σ1

2/σ2
2 and sample sizes R = N1/N2 for a 0.05

level test (see Level of a Test). If θ is less than one
and R is larger than one, the true type I error rate
will be larger than the nominal 0.05 value. If θ and
R are both larger than one, the true type I probability
will be less than 0.05. These and other properties of
the t test in the presence of unequal variances have
been described by Scheffé [4].

The test of the equality of two means of
independent normal populations is called the
Behrens–Fisher problem, after its original investi-
gators. Welch [5, 6] has proposed an alternative test
with an approximate t distribution when the popula-
tion variances are unequal (see Aspin–Welch Test).

The Analysis of Variance

Box [1, 2] has investigated the effect of heteroscedas-
tic disturbance terms on the one- and two-way anal-
ysis of variance type I error rates. As in the two-
sample t test, the effect of unequal variances in the
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one-way layout is exacerbated by unequal sample
sizes. When the sample sizes are equal, the true type I
error rates are only slightly higher than the nominal
0.05 value. If the treatments with the smaller vari-
ances have larger sample sizes, the type I error rate
may be much greater than 0.05. If the opposite con-
dition holds, or if the ratios of the variances roughly
follow those of the sample sizes, the true type I error
rate may be smaller than the nominal 0.05. For the
two-way layout with a single observation in each cell,
Box showed that unequal column variances led to
row test type I error rates slightly below the nomi-
nal 0.05 value, and to column test type I error rates
slightly above 0.05. Further remarks on heteroscedas-
ticity in the analysis of variance have been given by
Scheffé [4].
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Schneiderman, Marvin
Arthur

Born: December 25, 1918, in Brooklyn, New York.
Died: April 1, 1997, in Bethesda, Maryland.

Marvin A. Schneiderman had a distinguished career
as a statistician and scientific administrator at the
National Cancer Institute (NCI) from 1948 to 1980.
During this period, he made several notable con-
tributions to statistical methods and applications,
including the early development of the coopera-
tive cancer clinical trials program at NCI, some of
the first work on closed sequential boundaries (see
Sequential Analysis) for clinical trials, the eval-
uation and application of the Coulter counter and
related methods for quantifying peripheral blood ele-
ments, low dose extrapolation for the establishment
of “safe” levels of exposure to potential carcinogens,
and the analysis of cancer trends (see Morbidity
and Mortality, Changing Patterns in the Twenti-
eth Century). He made an even greater contribution,
however, in increasing awareness of the utility of bio-
statistics in many areas of application, and in foster-
ing an environment in which statisticians could thrive
and become independent scientists and respected col-
laborators.

After graduation from New Utrecht High School
in Brooklyn, Schneiderman attended City College of
New York, where he received his B.S. degree in
Mathematics and Statistics in 1939, graduating as
a member of Phi Beta Kappa. After a short period
of work at the National Container Corporation, he
joined the US Census Bureau in April 1940 and
served as a clerk in the 1940 census of agriculture.
During this period, he also studied sampling theory
and statistics with Jerome Cornfield and Duane
Evans at the Department of Agriculture Graduate
School.

From 1940 to 1944, he worked in the War Depart-
ment as a quality control officer in the Office of
the Quartermaster General of the Army. From June
1944 to December 1945, he served as a member of
the US Army Air Corps, rising to the rank of Sec-
ond Lieutenant. While in the Air Corps, he studied
management sciences, economics, and statistics at
the Harvard University Graduate School of Business.

Following his military service, he held a civilian posi-
tion as a Statistical Control Officer in the Army Air
Corps until 1948. During this period (1946–1947),
while stationed at Wright Field, he studied economics
at the Ohio State University Graduate School.

In 1948, Jerome Cornfield left the Bureau of Labor
Statistics to work at the National Cancer Institute
(NCI) for Harold Dorn, the demographer and pop-
ulation expert. Cornfield hired Schneiderman as a
(junior) consulting statistician in the NCI’s Biomet-
rics Section. At that time, the attitude of many labora-
tory research workers was “if I need statistics to show
that something has had an effect, then the effect is too
small to be bothered with”. Schneiderman began to
demonstrate the use of statistics to scientists who until
that time, did not see its practical use. His work as a
statistical consultant to such basic research workers
as George Brecher and Fred Stohlman on problems
of counting blood cell elements or in measuring the
production of erythropoietin, the red blood cell stimu-
lating hormone [20, 24], was reflected in hematologic
research world-wide. He was one of the first statisti-
cians on the editorial board of Blood. He was one of
many statisticians who made it respectable for scien-
tists to consult statisticians. Work with Walter Heston
and Michael Shimkin led to models of dose–response
that formed the basis for the Environmental Protec-
tion Agency’s (EPA’s) regulation of toxic materials.
While in the Biometry Branch, he received the M.S.
in Statistics from American University in 1953.

Statisticians count things. As a counting special-
ist, Schneiderman was involved in the evaluation and
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propagation of a simple device to count platelets [3],
the blood element involved in blood clotting. The
visual counting of blood cells by a laboratory tech-
nician eventually gave way to the Coulter counter,
a device for measuring the flow of electric current
across a narrow aperture while a blood sample was
passed across the aperture [4]. He also worked in
other areas such as industrial carcinogenesis [6] and
drug toxicity.

In 1954, C. Gordon Zubrod joined the NCI. Under
his leadership and with Schneiderman as chief statis-
tician, plans were begun for a national program of
cooperative clinical trials in cancer. The US Congress
at this time created a Cancer Chemotherapy National
Service Center (CCNSC), [11], which served as the
major organizational unit for the development and
conduct of the first randomized clinical trials in
cancer. The clinical trials program at NCI enlarged
rapidly from 1955 to 1960, requiring statisticians
for each of the cooperative groups that were estab-
lished. Part of Schneiderman’s responsibility included
recruitment of statisticians all across the country. He
was able to bring to these trials Irwin Bross, Bernard
Greenberg, and James Grizzle (North Carolina); Will
Dixon (UCLA); Donald Mainland (NYU); and sev-
eral others. The North Carolina connection was espe-
cially productive. Several graduates of Greenberg’s
program, including Edmund Gehan, joined the NCI
group.

From 1955 to 1959, Schneiderman served as Act-
ing Chief of the NCI Therapeutic Trials Section and
coauthored the paper reporting the first randomized
control trial in cancer research [10] and similar sub-
sequent studies [28]. In cooperation with a young
visiting scientist at the NCI, Peter Armitage, a multi-
stage sequential scheme was developed for screening
candidate materials using mice as a biological model.
This was the first of the so-called “rational” screening
programs and could be modified to produce a mini-
mum of false negatives (while producing some false
positives – which would be discarded when tested
in humans), or a minimum of false positives – so
that the very ill patients on whom these drugs were
tested would be most likely to receive active, effec-
tive agents [1].

From 1959 to 1960, Schneiderman attended the
London School of Hygiene and Tropical Medicine
under a Rockefeller Public Service Award, continuing
his work with Peter Armitage on epidemiology,
medical research involving humans, controlled

trials, and biostatistics [19]. During his military
service in World War II, he had come upon the
work of Abraham Wald and his student Milton
Sobel on sequential testing. Their aim was to
minimize destructive testing of military supplies
(often ammunition) while attempting to insure the
quality and potential effectiveness of the batches
that “passed”. Recognizing a related problem in
humans with strong ethical overtones, Schneiderman
and his colleagues wished to test, in a controlled
way, potential anticancer drugs, while minimizing
the number of patients exposed to the less effective
drug when making a comparison of two drugs.
They considered it unethical to delay ending a trial
long after enough evidence had been developed to
convince that one treatment was superior to another.
The Wald–Sobel schemes provided a starting place
for such trials – with the drawback that the potential
existed for quite long trials if the evidence indicated
that no firm decision had yet been reached. What was
needed were closed sequential designs. I.D.J. Bross
developed a small number of closed sequential
designs. Armitage modified the Wald–Sobel designs
to give an upper limit to the number of participants
in a trial. Under the mentorship of Armitage at the
London School of Hygiene, Schneiderman developed
a family of sequential schemes that encompassed
the Armitage designs at one extreme and the Wald
designs at the other. Theodore Colton, as a summer
fellow at NCI soon thereafter, developed another
scheme for the early termination of a comparative
trial, as part of a continuing treatment-development
program, which are sometimes referred to as
“horizon” trials.

Returning from London, Schneiderman received
his Ph.D. in Statistics from American University in
1961 and served as Associate Chief of the Biometry
Branch under William Haenszel until 1970. There he
worked with many physicians and statisticians on a
wide range of topics [5, 7, 13–16, 21, 26, 27]. The
Biometry Branch at one time or another included
Marvin Zelen, Sally Fand, Nancy Brombacher, Polly
Feigl, and Emanuel Landau.

The positive effects of having MD-statisticians
working on controlled trials led to recruiting addi-
tional MDs. These included John Bailar (who in
turn recruited David Byar), Sylvan Green, David
Levin, Robert Huse, Mitchell Gail, and Elia Kazam.
The use of these physician–statisticians epitomized
the structure and process whereby research in the
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statistics-related fields proceeded at NCI. The process
involved recruiting very bright young people, having
them work for a short time as juniors and then giving
them their heads – with a minimum of supervision.
When they worked as collaborators or consultants,
Schneiderman was insistent that they be included as
coauthors in the publications that followed. Publica-
tion was extremely important for advancement at the
National Institutes of Health (NIH).

In 1970, Schneiderman was appointed to head
NCI’s Field Studies and Statistics Program, which
consisted of three branches: the Biometry Branch
with William Haenszel as Chief, the Environmental
Epidemiology Branch with Joseph Fraumeni, Jr. as
Chief, and the Clinical Epidemiology Branch with
Robert Miller as Chief. Schneiderman’s philosophy
was to hire good people and to give them the free-
dom and authority to succeed. He provided resources
and support for the Surveillance, Epidemiology, and
End Results (SEER) Program that grew out of the
Third National Cancer Survey, under the guidance of
William Haenszel, John Bailar, and Sidney Cutler.
He needed to defend this program vigorously, as it
appeared to be quite expensive to those accustomed
to funding laboratory research.

Schneiderman encouraged the extension of sta-
tistical methods to many areas and he continued to
write in a variety of areas [2, 9, 12, 17, 18, 22, 23,
25]. He was among the first to support the work of
a young Commissioned Officer, Fred Burbank, who
pioneered the use of computer-generated maps and
regression methods to study US cancer rates. He sup-
ported work on risk assessment, including statistical
methods for analyzing animal studies by Drs John
Gart and Robert Tarone, and methods for low dose
extrapolation and interpretation by Dr Charles Brown
and Mr Nathan Mantel. He supported methodologi-
cal work and “hands on” experience for statisticians
such as David Byar and Mitchell Gail on clinical tri-
als and on the evaluation of diagnostic tests. He
helped to develop the randomized trial to evaluate
the usefulness of mammography screening to reduce
breast cancer mortality (the “HIP” study; see Screen-
ing Trials). He supported epidemiologic work lead-
ing to pathbreaking findings in cancer genetics (for
example, the Li–Fraumeni syndrome; see Genetic
Epidemiology) and environmental epidemiology.

From 1978 until he retired from the NIH in 1980,
Schneiderman served as Associate Director for Sci-
ence Policy in the Office of the Director of NCI.

There, he continued to advocate the wide application
and support of statistical methods, and was a vigorous
spokesman for this cause among scientific adminis-
trators and decision-makers, on numerous advisory
panels, and in the media.

After leaving the NCI, Schneiderman joined the
Environmental Law Institute, where he helped to
develop environmental legislation and prepared sev-
eral papers with Devra Davis, an environmental
activist [8]. After a brief excursion into the work
of an environmental consulting firm, he followed Dr
Davis into a position with the National Academy of
Sciences, National Research Council Board on Envi-
ronmental Studies and Toxicology. He had in the
past been a member of many NAS/NRC commit-
tees. While on one of the committees, and again as a
staff member, his emphasis was on how a statistician
viewed the problem. He continued to be active until
his death in 1997.

Perhaps Marvin Schneiderman’s view of his pro-
fessional life can best be summarized in the following,
which he wrote just before his death:

What pleased me most in my 50 or so years as a
statistician – with its occasional side excursions into
epidemiology – was that it was fun. It was excit-
ing. It seemed to me that it had a positive impact on
this country’s health and environment. First my work
brought me face-to-face with some of mankind’s
most important and intractable problems – problems
of disease and problems of life and death on which
I believe I had a positive effect. Second it enabled
me to work with persons exploding with intellectual
fire and originality. Some were other statisticians and
some were the laboratory research workers for whom
I was a consultant and at times a collaborator. Third
it enabled me to merge my own concepts of appro-
priate human behavior with scientific needs so that
I could participate in ethical research on humans –
and make it possible (or perhaps imperative) that
those who followed me would treat their patients
who happened to be seriously ill as humans and not
only as research subjects. Finally it brought into my
sphere brilliant young men and women whose lives
and professional careers I influenced, and – I hope –
enlarged.

References

[1] Armitage, P. & Schneiderman, M.A. (1958). Statistical
problems in a mass screening program, Annals of the
New York Academy of Science 76, 896–908.



4 Schneiderman, Marvin Arthur

[2] Blokhin, H.N. & Schneiderman, M.A., eds (1979).
Epidemiology of Cancer in the USSR and USA.
Meditsina, Moscow (in Russian).

[3] Brecher, G., Schneiderman, M.A. & Cronkite, E.P.
(1953). The reproducibility and constancy of platelet
counts, American Journal of Clinical Pathology 23,
15–26.

[4] Brecher, G., Schneiderman, M.A. & Williams, G.Z.
(1956). Evaluation of an electronic red blood cell
counter, American Journal of Clinical Pathology 26,
1439–1449.

[5] Carbone, P.P., Spurr, C., Schneiderman, M.A., Scotto, J.,
Holland, J.F. & Shnider, B. (1968). Management of
patients with malignant lymphoma: a comparative study
with cyclophosphamide and vinca alkaloids, Cancer
Research 28, 811–822.

[6] Cutler, S.J., Schneiderman, M.A. & Greenhouse, S.W.
(1954). Some statistical considerations in the study of
cancer in industry, American Journal of Public Health
44, 1159–1166.

[7] Cutler, S.J., Greenhouse, S.W., Cornfield, J. &
Schneiderman, M.A. (1966). The role of hypothesis
testing in clinical trials, Journal of Chronic Diseases 19,
857–882.

[8] Davis, D.L., Bridbord, K. & Schneiderman, M.A.
(1982). Cancer prevention: assessing cause, expo-
sure, and recent trends in mortality for U.S. males,
1968–1978, Teratogenesis, Carcinogenesis and Mutage-
nesis 2, 105–135.

[9] Devesa, S.S. & Schneiderman, M.A. (1977). Increase
in the number of cancer deaths in the United States,
American Journal of Epidemiology 106, 1–5.

[10] Frei, E. III, Holland, J.F., Schneiderman, M.A.,
Pinkel, D., Selkirk, G., Freireich, E.J., Silver, R.T.,
Gold, G.L. & Regelson, W.A. (1958). A comparative
study of two regimens of combination chemotherapy in
acute leukemia, Blood 13, 1126–1148.

[11] Gehan, E.A. & Schneiderman, M.A. (1990). Historical
and methodological developments in clinical trials at
the National Cancer Institute, Statistics in Medicine 9,
871–880.

[12] Hoel, D.G., Gaylor, D.W., Kirschstein, R.L., Saffiotti, U.
& Schneiderman, M.A. (1975). Estimation of risks of
irreversible, delayed toxicity. Journal of Toxicology and
Environmental Health 1, 133–151.

[13] Schneiderman, M.A. (1961). Controlled clinical trials:
Monday’s count-down for Tuesday’s launching, Journal
of New Drugs 1, 250–255.

[14] Schneiderman, M.A. (1963). Is it really bad? A proposal
for the toxicity-testing of drugs, Journal of the Society
of Cosmetic Chemistry 14, 227–232.

[15] Schneiderman, M.A. (1964). The proper size of a clinical
trial: “Grandma’s strudel” method, Journal of New
Drugs 4, 3–11.

[16] Schneiderman, M.A., (1969). Quantitative thinking in
medicine – biostatistics (using numbers to mark the route
from cause to effect and back), in Traumatic Medicine
and Surgery for the Attorney, P. Cantor, ed. Matthew
Bender, New York, pp. 419–477.

[17] Schneiderman, M.A. (1978). Environmental factors and
cancer prevention, in Third National Symposium on
Detection and Prevention of Cancer, New York (April
26–30, 1976). Marcel Dekker, New York.

[18] Schneiderman, M.A. (1978). Legislative possibilities to
reduce the impact of cancer, Preventive Medicine 7,
424–438.

[19] Schneiderman, M.A. & Armitage, P. (1962). A family
of closed sequential procedures, Biometrika 49, 41–56.

[20] Schneiderman, M. & Brecher, G. (1950). The relative
frequency of sparse cell elements – an application to
reticulocyte blood counts, Biometrics 6, 390–394.

[21] Schneiderman, M.A. & Levin, D.L. (1972). Trends in
lung cancer: mortality, incidence, diagnosis, treatment,
smoking and urbanization, Cancer 30, 1320–1325.

[22] Schneiderman, M.A. & Mantel, N. (1973). The Delaney
clause and a scheme for rewarding good experimenta-
tion, Preventive Medicine 2, 165–170.

[23] Schneiderman, M.A., DeCoufle, P. & Brown, C.C.
(1979). Thresholds for environmental cancer: biologic
and statistical considerations, Annals of the New York
Academy of Science 329, 92–130.

[24] Schneiderman, M.A., Mantel, N. & Brecher, G. (1951).
The effect of rejection procedures on the accuracy of
blood counts, American Journal of Clinical Pathology
21, 973–978.

[25] Schneiderman, M.A., Mantel, N. & Brown, C.C. (1975).
From mouse to man – or how to get from the laboratory
to Park Avenue and 59th Street, Annals of the New York
Academy of Science 246, 237–248.

[26] Schneiderman, M.A., Myers, M.H., Sathe, Y.S. &
Koffsky, P. (1964). Toxicity, the therapeutic index, and
the ranking of drugs, Science 144, 1212–1214.

[27] Scotto, J. & Schneiderman, M.A. (1972). Predicting
survival in terminal cancer, British Medical Journal 4,
50.

[28] Zubrod, C.G., Schneiderman, M., Frei, E. III, Brind-
ley, C., Gold, G.L., Shnider, B., Oviedo, R., Gorman, J.,
Jones, R. Jr., Jonsson, U., Colsky, J., Chalmers, T.,
Ferguson, B., Dederick, M., Holland, J., Selawry, O.,
Regelson, W., Lasagna, L. & Owens, A.H. Jr. (1960).
Appraisal of methods for the study of chemotherapy of
cancer in man: comparative therapeutic trial of nitrogen
mustard and triethylene thiophosphoramide, Journal of
Chronic Diseases 11, 7–33.

DAVID L. LEVIN



Scientific Method and
Statistics

The word “statistics” has multiple meanings. For
example, it can refer to numeric summaries obtained
from a body of data, and it can also refer to methods
for analyzing data. This article is chiefly concerned
with the second of these two meanings, and in par-
ticular with how these methods relate to the scientific
enterprise in general. To explore this relationship, we
begin by examining the idea of “scientific method”,
and later see how statistical methods fit in. We shall
see that it is no accident that statistics has been
described as “the science of doing science” [20].

The notion of scientific method has changed over
time but, like the models used within science, models
of the way in which scientists work are idealizations.
They skip such things as serendipity and focus on
the pattern of behavior. Some models are descrip-
tive, seeking to show how scientific advance occurs
in practice, while others are proscriptive, seeking to
show how things should be done. Early views – a
perspective variously attributed to William of Ock-
ham, John Herschel, and John Stuart Mill – saw the
growth of (scientific) knowledge as an essentially
inductive process. That is, they saw science as a
process of accumulating facts by observation, clas-
sifying these facts according to observed regularities,
and hence generalizing them into scientific laws. This
view was formalized in various ways. For example,
Mill’s Canon of Agreement conveys ideas familiar
to all statisticians: “If an instance in which the phe-
nomenon under investigation occurs, and an instance
in which it does not occur have every circumstance
in common save one, that one occurring only in
the former, the circumstance in which alone the two
instances differ is the effect, or the cause, or an indis-
pensable part of the cause of the phenomenon.” [13,
Book III, Chapter 8].

Although experimentation featured in these views,
the emphasis put on its central and fundamental
role is normally attributed to Sir Francis Bacon [8].
The twin pillars of observation and experiment that
Bacon emphasized presented a practical alternative
to the notion that truth lay in ancient authority –
whose conclusions were tacitly assumed to be based
on thought rather than observation. At the time,

Bacon’s approach was even termed “the experimental
philosophy” to contrast it with theorizing.

These views regard observation and experiment as
essentially confirmatory exercises: that is, each sup-
porting result is regarded as adding weight to the
hypothesis under investigation. From this perspective,
science generalizes or abstracts from many particular
observations. We note how long an iron ball takes to
strike the ground when released from various heights
and hence formulate a general law which fits the
observations very well: that is, it is a process of induc-
tion (different from mathematical induction, which is
a more formal procedure), from the particular to the
general.

Inductivism is all very well, but it misses some-
thing important. It leads to a description of phenom-
ena, not an explanation. Moreover, as Popper [16,
17] pointed out, one cannot in fact logically prove
anything by induction: the mere fact that all the
swans you may have seen are white does not imply
that all are white (in fact, black swans were discov-
ered in Australia at a time when all known swans
were white). On the other hand, one can disprove
a universal statement by example: observation of a
black swan disproves the statement that all swans are
white. Thus theories, in general, can be disproven, but
not proven. Scientific method, Popper argued, thus
seeks the falsification, not the verification, of scien-
tific theories. One successively formulates hypotheses
or theories and tests their predictions against experi-
mental observations. When an hypothesis fails a test,
it is modified, refined, or replaced. Advance occurs
because a new hypothesis must pass not only those
tests passed by its predecessor, but also tests that the
predecessor fails. This means that very radical revi-
sions become more difficult as time passes, because
of the mass of accumulated evidence. A key aspect
of this Popperian view is the alternation of theory
and observation: theories are postulated and experi-
ments/observations test them. Like the chicken and
the egg, neither is pre-eminent.

Note that this Popperian view of how science does
and should work is, as we have remarked above, like
all scientific models, an idealization. In reality, given
a conflict between theory and data, we do not neces-
sarily reject the theory. Data may be subject to error.
The lack of a match may simply be due to error in
measurement, not because of a faulty theory. Thomas
Kuhn [10, p. 81] gives a nice example of this:
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. . . during the sixty years after Newton’s original
computation, the predicted motion of the moon’s
perigee remained only half of that observed. As
Europe’s best mathematical physicists continued to
wrestle unsuccessfully with the well-known discrep-
ancy, there were occasional proposals for a modifi-
cation of Newton’s inverse square law. But no one
took these proposals very seriously, and in practice
this patience with a major anomaly proved justified.
Clairaut in 1750 was able to show that only the math-
ematics of the application had been wrong and that
Newtonian theory could stand as before.

If scientific theories themselves become more diffi-
cult to replace by radical alternatives as time passes
(because the theories have already passed more tests),
so also do theories of science. So, Kuhn’s notion
of paradigm shifts, in which the scientific con-
structs are jettisoned in favor of a complete refor-
mulation, is really a refinement of Popper’s notion
of refutations. Kuhn [10, p. 10] defines “normal
science” as “research, firmly based upon one or more
past scientific achievements, achievements that some
particular scientific community acknowledges for a
time as supplying the foundation for its further prac-
tice”. Paradigms are [10, p. viii] “universally recog-
nized scientific achievements that for a time provide
model problems and solutions to a community of
practitioners”. A paradigm shift describes the pro-
cess of moving from one paradigm to another. Kuhn
has emphasized that most scientists do not find such
shifts, but instead are concerned with normal science,
working within a dominant paradigm.

Statistics relates to all this in various ways. Sta-
tistical methods assist in the precise formulation and
selection of theories or models, the quantification of
errors, and in examining the match between the the-
ory and the data. Formulation of models includes such
things as variable selection and parameter estima-
tion. Implicit within this are comparisons between
alternative models. Both falsification and accumula-
tion of supportive evidence occur through the blur-
ring spectacles of the necessary simplifications in the
modeling process. It is in helping to control and
remove this blurring or error that statistics plays
one of its key roles in science. Finally, the match
between theory and data may be examined infor-
mally, perhaps by graphical methods such as residual
plots, or more formally, perhaps via significance tests
(see Hypothesis Testing). Again, for the reasons
mentioned above, we cannot expect perfect matches

or perfect mismatches – and again statistical methods
enable us to judge the quality of a match.

Perspectives on the role and purpose of statis-
tical methods seem to parallel the development of
ideas about how science progresses. For example,
early statisticians such as Karl Pearson adopted an
inductivist perspective: “The classification of facts
and the formation of absolute judgments upon the
basis of this classification – judgments independent
of the idiosyncrasies of the individual – essentially
sum up the aim and method of modern science” ([14,
p. 11], his italics). Modern exploratory data anal-
ysis, techniques aimed at examining data in order
to discern patterns and structure, without specifying
too closely exactly what sort of patterns are sought,
might naturally be thought of as an inductive process.
Moving on, however, we find inductivism combined
with the hypothetico-deductive strategy. Fisher [4],
for example, described how statistical analysis is
essentially what we would regard as the Popperian
view of scientific method writ small: “The statistical
examination of a body of data is thus logically similar
to the general alternation of inductive and deduc-
tive methods throughout the sciences. A hypothesis
is conceived and defined with all necessary exac-
titude; its logical consequences are compared with
the available observations; if these are completely in
accord with the deductions, the hypothesis is justified,
at least until fresh and more stringent observations
are available” [4, 4th Ed., p. 9]. Similarly, Box [2,
p. 383] describes science as proceeding in what is
essentially a Baconian/Popperian way and statistics
as playing a central role in this:

It seems that scientific knowledge advances by a
practice–theory iteration. Known facts (data) sug-
gest a tentative theory or model, implicit or explicit,
which in turn suggests a particular examination and
analysis of data and/or the need to acquire further
data; analysis may then suggest a modified model
that may require further practical illumination and so
on . . .. New knowledge thus evolves by an interplay
between dual processes of induction and deduction
in which the model is not fixed but is continually
developing . . .. The statistician’s role is to assist this
evolution . . .. In doing so he [sic] employs two infer-
ential devices: Criticism and Estimation.

The Bayesian strategy (see Bayesian Methods) may
also be seen as fitting the Popperian framework.
Essentially, the Bayesian approach takes prior beliefs
and modifies them in the light of the data. This
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modification may be rather more subtle than a crude
hypothesis test, in that a distribution of strength of
posterior belief results, so that an initial theory is not
“rejected” or “refuted”, but the basic idea is the same.

If the statistical model fitting process provides a
parallel to the scientific process, it can also shed light
on that process. One of the driving forces in select-
ing between scientific theories is simplicity. From a
set of explanations, each equally effective at explain-
ing a collection of facts, the most simple is to be
preferred. This principle goes under various names,
such as Ockham’s razor or the principle of par-
simony. In science, a simple theory is sometimes
said to be elegant, and to be a preferred explanation
because of its elegance. In statistical model build-
ing (see Model, Choice of), a similar preference is
accorded to simpler models. For example, a set of
ten different points in a plane could be modeled
by an infinite number of curves that pass through
all the points. However, if one of these curves is
a straight line, then that, being the simplest, will
often be the preferred model (unless, for example,
there is some extra aspect to the theory, leading to
some more complicated curve being preferred). Some
approaches to statistical inference, such as the Mini-
mum Message Length [22] and Minimum Description
Length approaches [18, 19] are based directly on this
principle. They essentially provide a formalism for
combining measures of the complexity of a theory
and the complexity of the data (the facts) in terms of
that theory. Current work on computational learning
theory and machine learning [9, 21] is directly con-
cerned with these issues of how well models, based
on a finite set of observations (a training set) will
generalize to other data.

Statistical models come in (at least) two types:
mechanistic and descriptive. The former are based
on some underlying theory or mechanism which pur-
ports to explain the observed phenomena. The latter
seek merely to summarize the data in a convenient
way. One can argue that the term “model” should be
restricted to the former, but common usage applies
it to both. Descriptive models have a role in the-
ory formulation, and also in pragmatic situations. For
example, a prediction rule may be based on empiric
observation of relationships between variables, with-
out there being any underlying theory or explanation
for why those relationships should exist. Bacon dis-
tinguishes models that give light from those that bear

fruit (see [8, p. ix]), and this seems very close to our
mechanistic and descriptive distinction.

If mechanistic models aim to represent some
underlying process, they might be regarded as “true”
or “false” according as they are or are not faithful rep-
resentations of that process. In both science and statis-
tics, this view is no longer generally held. For exam-
ple, in discussing this issue in statistics, Durbin [3]
says that “Undoubtedly most applied workers have
always been aware that any statistical model is at
best an approximation to reality. There is in real
life no such thing as a ‘true model’ ”. He goes
on to criticize debates about the different schools
of statistical inference because of this misconcep-
tion:

. . . much of the discussion of the foundations of sta-
tistical inference that has taken place over the past
half century has been predicated on the assumption
that the model is “true”. The alternative formulations
of the inference problems that have been considered
relate mainly to the properties of models and there
has been too little discussion of the interaction with
the underlying statistical reality. Statements about
parameter values have been discussed as if parame-
ters had a clearly-defined tangible existence, whereas
in most cases they are at best mathematical artifacts
introduced only in order to provide the most use-
ful approximation available to the behavior of the
underlying reality. It is all too easy to lose sight of
the fact that the real purpose of the analysis is to
make statements about this reality rather than about
the models that approximate it.

Durbin [3] continues:

Of course I appreciate that a standard procedure in
science is to postulate a model and make inferences
about the behavior of the phenomena under study on
the assumption that the model is an accurate one. My
point is that because of the manifest imperfections
of many statistical models as descriptions of the
reality under investigation, this process has been
carried a bit too far. The obsessional desire to make
“best possible” statements about parameter values in
artificially small models has been over-indulged to
an extent that seems out of proportion to the true
interests of users of statistical models.

Just as other sciences are not static, but progress as
new theories and new discoveries require their modi-
fication, so statistics, as science or technology [6], is
not static. A glance back over recent decades shows
new problems, new methods, and new ideas chang-
ing the way statistical methods are thought about
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and applied (survival analysis, generalized linear
models, and multidimensional scaling provide just
a few clear examples). Much of this development,
in recent decades, has been the consequence of the
growth in readily available computational resources.
This has had the further consequence that modern
statistics might more naturally be thought of as a
computational science than as a mathematical sci-
ence. And, of course, these developments continue.
Examples of current new perspectives stimulating the
development of new methods are not hard to find.
One is the impact of feedforward neural networks,
originally introduced as complex structures of indi-
vidually simple interacting components, but now seen
as a highly parameterized and very flexible mod-
els for function estimation. Another is the growing
interest in issues of multiple data sets, in contrast
to the earlier situation, in which the focus was on
the single data set to hand (see, example, [7]). Meta-
analysis is one manifestation of this in the statistical
literature. A third, also arising as a consequence of
computational advances, is a concern with very large
data sets, perhaps with many millions or even bil-
lions of observations; here significance tests tend to
lose their relevance.

While clearly (one would hope!) statistics has
had a positive impact on the development of sci-
ence via its methods of data collection and analysis,
it has also had a more subtle, and not necessarily
beneficial impact. The theories of scientific method
outlined above say nothing of the social and cultural
environment in which the scientist works. In partic-
ular, modern scientists communicate their results via
published papers and there is evidence that papers
have sometimes been accepted for publication with
a less than rigorous attitude to the statistical meth-
ods employed. Misapplication of statistical methods
in medical research has been examined by sev-
eral authors (see, for example, [1, 5, 11, 12, 15],
and [23]) – the depressing results being perhaps a
partial consequence of the fact that doctors are pri-
marily trained in the technology of medicine, rather
than the principles of science. From another perspec-
tive, sometimes in research standards are imposed
and practices adopted which most statisticians would
regard as dubious (the classic example is the ten-
dency to require significance tests – and then to favor
papers that show significant results in those tests). We
have already commented about how the computer has

changed, and continues to change, the face of statis-
tical practice. In the present context, we should also
add the remark that electronic communication, in the
form of the Internet, is already beginning to change
scientific practice.
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Scores

We primarily consider the situation where both the
dependent (or response) variable and independent
(explanatory or predictor) variable are categorical.
When either the independent or dependent variable is
ordered, or when both variables are ordered, use of
the standard χ2 test is inappropriate because it does
not exploit the ordering. To increase the power of
tests when the alternative is related to the ordering,
we assign numbers, called scores, to the ordered
categories. The scores should reflect the scientific
meaning of the categories.

Predictor Variable Scores

Scores for the predictor variable (if it is ordered)
arise from the underlying process, i.e. from the
model generating the data. For example, Graubard
& Korn [14] considered the use of midpoints of the
category boundaries, midranks, and equally spaced
scores for the predictor variable (alcohol consump-
tion in mothers) in the analysis of the data in Table 1
on occurrence of congenital malformation in off-
spring. The midpoint scores for these data are 0.0,
0.5, 1.5, 4.0, and 7.0. Midranks, or average category
ranks, may be computed by ranking the observa-
tions as if they were ungrouped, and then taking
the mean of the ranks within each category. Suppose
there are K categories with Ni observations in cat-
egory i, i = 1, . . . , K . Then the midrank of the ith
category is

∑i−1
j=1 Nj + (Ni + 1)/2. For the data in

Table 1, the midranks are 8557.5, 24 365.5, 32 013.0,
32 473.0, and 32 555.5. The equally spaced scores are
1.0, 2.0, 3.0, 4.0, and 5.0. The standardized scores,
i.e scores linearly transformed so that they have zero
mean and unit variance, are plotted in Figure 1. The
closeness of the midrank scores for the three heav-
iest drinking categories is inappropriate from the

Table 1 Occurrence of congenital sex organ malformation
categorized by alcohol consumption of the mother [14]

Alcoholconsumption (average
numberof drinks per day)

Malformation 0 <1 1–2 3–5 ≥6

Absent 17 066 14 464 788 126 37
Present 48 38 5 1 1
Total 17 114 14 502 793 127 38

underlying science which suggests greater relative
effect with higher levels of alcohol consumption.
Hence midrank scores should not be used to analyze
the data [14]. Indeed, the one-sided significance lev-
els varied considerably according to the scores used
(midpoints, P = 0.02; midranks, P = 0.29; equally
spaced, P = 0.10). In general, one should assign rea-
sonable scores based on the substantive meaning of
the categories [1, 3, 8, 14].

If there are two or more sets of plausible scores,
then a single procedure that combines the tests based
on each set seems appropriate. One such procedure
is the maximin efficiency robust test (MERT) [12,
23]. For example, the standardized scores for the
MERT based on the midpoints, midranks, and equally
spaced scores for the above data are also plotted in
Figure 1. The combination property of the MERT
is clearly visible (and its associated P value is
0.05).

Response Variable Scores

Response variables can be ordered quantitatively and
qualitatively. The scale of measurement of these vari-
ables (see Measurement Scale) is also referred to
as interval and ordinal, respectively [1, 21]. Quanti-
tatively ordered variables arise when an underlying
continuous variable, e.g. blood pressure, is grouped
into ordered categories. Data that are ordered but

Figure 1 Standardized scores for several scoring systems
for the Graubard & Korn [14] data (Source: [23])
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without an apparent underlying continuous measure-
ment scale are qualitatively ordered. An example is
patient response to choices: “How do you feel: poor,
fair, good, or excellent?” (see Ordered Categorical
Data).

Quantitatively Ordered Variables

Quantitatively ordered variables arise from data typ-
ically reported with category boundaries such that
Ni observations are in the interval [bi−1, bi), i =
1, . . . , K . We first discuss the assignment of opti-
mal scores if the investigator has some knowledge
of the underlying distribution of the data. We then
discuss the perhaps more usual case where less
formal assignment methods are employed. Optimal
category scores are derived from general rank test
theory for grouped data [10, 11, 25, 27]. Consider
the linear rank statistic S = ∑N

l=1 clal , where the cl

are regression constants and the al are scores. For
example, in the two-sample problem with continu-
ous data, cl = 1 when the lth order statistic is a Y

and cl = 0 otherwise. The scores are derived from
al = J [l/(N + 1)], where J (·) is a score function
that may be selected by the investigator. In partic-
ular, if we know the underlying distribution F (with
density f ), and we want to test for a shift in loca-
tion, then the optimal score function [7, 15, 24] is
J (u) = −f ′[F−1(u)]/f [F−1(u)]. For grouped data
the assigned scores are the average of the rank test
scores in each category. Suppose there is grouping
of the N outcome observations into K categories
with Ni observations in category i. Then we may
estimate the ith fractile, ui , by

∑i
j=1 Nj/N , letting

u0 = 0, and we estimate F−1(ui) by bi . We obtain

the estimated scores ai , i = 0, 1, 2, . . . , K − 1, from

ai = f (F−1(ui)) − f (F−1(ui+1))

ui+1 − ui

= 1

ui+1 − ui

∫ ui+1

ui

J (u) du. (1)

Note that Eq. (1) corresponds to the mean of the
scores that would be assigned to the individual obser-
vations in the interval [bi, bi+1) if we had them.

Table 2 presents ELISA absorbance ratios in
AIDS patients and healthy blood donors [5, 13, 29]
and the estimated optimal Wilcoxon–Mann–Whit-
ney, J (u) = 2u − 1, and inverse Savage (or
exponential or logrank), J (u) = −1 − ln(1 − u),
scores. To illustrate the use of formula (1) we
calculate the first Wilcoxon score, a0, in Table 2:
u0 = 0, u1 = 202/385 = 0.5247, the value of the
integral is u(u − 1)|0.5247

0 = −0.2494, and therefore
a0 = −0.475. Both sets of scores yield highly
significant results (Z = 15.1 using Wilcoxon scores
and Z = 16.0 using inverse Savage scores).

The above procedure generates asymptotically
most powerful rank tests. For small samples, one
might use scores derived from locally most power-
ful tests (LMPRT) [16, 24]. Now the score given to
the observations in the ith group is the mean of the
LMPRT scores if the individual observations were
available.

Nevertheless, some investigators may prefer to
assign scores based on less formal methods. For
example, as in the discussion above for ordered pre-
dictor variables, midpoints of the category boundaries
or equally spaced scores may be assigned. If the
investigator has some idea of the relative distances
between categories, which are perhaps only loosely

Table 2 Distribution of ELISA absorbance ratios in healthy blood donors and AIDS patients [5, 13, 29] and the estimated
optimal Wilcoxon and inverse Savage scores

Absorbanceratio

<2 2–2.99 3–3.99 4–4.99 5–5.99 6–11.99 ≥12 Total

AIDS patients 0 2 7 7 15 36 21 88
Healthy blood 202 73 15 3 2 2 0 297

donors
Total 202 75 22 10 17 38 21 385

Wilcoxon scores −0.475 0.244 0.496 0.579 0.649 0.792 0.945
Inverse Savage −0.674 −0.016 0.381 0.559 0.744 1.30 2.91

scores
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dependent on the actual scale of measurement, then
he or she may be able to assign reasonable scores [2].
These are valid procedures, if scores are assigned
prior to examining the data [8]. That is to say, one
must avoid choosing scores to obtain a desired result.
If more than one scoring procedure seems plausible,
then a combination procedure, such as the MERT
mentioned above, is a reasonable approach.

Qualitatively Ordered Variables

Regardless of the form of the underlying distribution,
when the data are continuous, a measure of the
difference between two distributions FX and FY is
Pr(X < Y). This is the probability that a randomly
selected X is less than a randomly selected Y and is
the basis of the Mann–Whitney form of the Wilcoxon
rank sum test (see Wilcoxon–Mann–Whitney Test).
For data grouped into K categories, let qk = Pr(X =
k), pk = Pr(Y = k), and rk = ∑k−1

j=0 qj + 1
2qk , where

q0 = 0. Then [4],

Pr(X < Y) + 1

2
Pr(X = Y ) =

K∑

k=1

rkpk. (2)

When the underlying data are qualitatively ordered,
Bross [6] used (2) to measure the difference in the
two distributions. He introduced the term ridit for
the partial sum rk and called (2) the mean ridit. The
measure has been used to compare one sample with a
known larger population or to compare two samples.
Formulas for appropriate variances and large sample
normal approximation to the distribution are given
in [4]. Worked examples are given in [6] and [26].

Selvin [26] demonstrated the relationship between
the mean ridit (2) and the Wilcoxon rank sum
test (which uses midranks). Let wi be the midrank
of category i. If ni is the number of Y observa-
tions in category i, then the Wilcoxon statistic W =∑K

i=1 wini . Selvin showed that the mean ridit (2)
is equal to [W − n·(n· + 1)/2]/[(N − n·)n·], where
n· = ∑K

i=1 ni . Indeed, since the right-hand side of (2)
is in the form of a linear rank statistic, with the ridit
rk playing the role of a score assigned to the kth
category, some researchers have used it to analyze
quantitatively ordered data. Although this is a valid
procedure, one might be able to obtain more power
via the methods of the previous section, i.e. using
scores derived from grouped data theory or from the
scientific judgment of the investigator.

Related Topics and Recent Developments

While we have separately considered ordered predic-
tor variables and ordered outcome variables, we note
that the procedures outlined above may be applied
simultaneously when both are ordered. Here one
would employ the linear-by-linear association proce-
dure [1].

Analytic procedures employing scores are dis-
cussed more fully in the entry on ordered categorical
data. Binary outcome data arise in dose–response set-
tings (see Quantal Response Models), and, more
generally, when the predictor variable is ordered
(see Trend Test for Counts and Proportions), for
example, in epidemiologic studies.

Suppose covariate adjustment is needed in the
two-sample problem with ordered outcome data or
in dose–response data with a binary outcome. In
either case, one can form strata based on covariate
levels, where each stratum is a 2 × C table [19,
28]. For the stratified two-sample problem, a test is
constructed by computing stratum-specific linear rank
tests and summing them to obtain a combined test.
One may assign scores independently within each
stratum [17] or, if the category boundaries are the
same across all strata, pool the strata and assign
scores to the pooled observations [19, 20]. In the
continuous case for moderate to large strata the first
assignment method may have power advantages over
the second [22], and this is likely to carry over to
the grouped data situation. In the dose–response set-
up, Tarone & Gart [28] show that the optimum test
depends on the underlying response function, e.g.
logistic, probit, or extreme value. If there are several
plausible underlying response functions, then one can
develop an efficiency robust procedure [12].

While our focus is scores in categorical data anal-
ysis, many practitioners assign scores to qualitatively
ordered responses as though the scores were observa-
tions from continuous distributions. Lipsitz [18] dis-
cusses parameter estimation under a general linear
model using maximum likelihood, ordinary least
squares, and generalized least squares with estimated
weights when the scores are used that way. His
suggestion that the applied statistician use ordinary
least squares is based in part on its relative simplicity.

The occurrence of data where the observations
are correlated, e.g. blood lead levels in children
within households, has stimulated the development
of appropriate analytic methods. Fay & Gennings [9]
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present a ridit permutation test and a permutation test
based on means using predefined scores for clustered
ordinal response data.
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Scree Test

The scree test is a technique for determining the
number of factors to retain in a factor analysis or
a principal components analysis. It was proposed
by Cattell [1] in 1966. He noticed from practical
observation that the variance of the factors levels off
when the factors are mainly measuring random error.
The scree test consists of plotting the eigenvalues
(in descending order of their magnitude) against their
factor numbers and determining this “leveling off”.
In particular, the scree plot typically shows a distinct
break between the steep slope of the larger factors
and the gradual trailing off of the rest of the factors.
The name “scree test” comes from the resemblance
of such a plot to the rubble that accumulates at the
foot of a mountain. Two examples of scree plots are
given in Figures 1 and 2.

The eigenvalues presented in Figures 1 and 2 are
obtained, respectively, from applying a principal
components analysis and a factor analysis to the
Framingham depression data (for data description,
see Principal Components Analysis). Figure 1
(principal components analysis) suggests retention of
five factors, while Figure 2 (factor analysis) suggests
retention of four factors. In general, a factor analysis
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Figure 1 A scree plot from principal components analysis

provides a better scree plot solution than a principal
components analysis.

Instead of examining the scree plot, an alterna-
tive version of the scree test involves an examination
of the eigenvalues and their differences [2]. This
also provides excellent evidence for the number of
salient factors. In this approach, we first set up a
table having the eigenvalues (in descending order of
their magnitude) as the first row. Then, we calcu-
late the successive differences of the eigenvalues and
put them in the second row. When the differences
decrease consistently up to a point, followed by a
substantially larger difference, and followed then by
later differences that are all small (usually less than
0.1), this version of the scree test suggests that the
last nonrandom factor is the one immediately pre-
ceding the substantially larger difference. There is no
precise definition of “substantially larger difference”.
Tables of eigenvalues and their successive differences
are shown in Tables 1 and 2. The eigenvalues from
Tables 1 and 2 are obtained, respectively, from per-
forming a principal components analysis and a factor
analysis on the Framingham depression data.

In Table 1 (principal components solution), the
differences decrease regularly from 2.067 to 0.077,
then there is a substantially larger difference (0.168),
and all the later differences are well below 0.1, except
for the last difference. This suggests retaining the first
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Figure 2 A scree plot from factor analysis
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five components. In Table 2 (factor analysis solution),
the differences decrease from 2.182 to 0.123, then
there is a substantial larger jump (0.173), and all
the later differences are well below 0.1. Therefore,
Table 2 suggests retaining four factors.

The scree test does not always provide a clear
solution to the number of retained factors. Some-
times, the break in the scree plot is not as distinct
as is shown in Figure 1, or the substantially larger
difference is not followed by all small differences in
a table of successive eigenvalue differences. In that
case, we need to rely on other methods to determine
the number of factors to retain (for procedures to

determine the number of factors, see Factor Analy-
sis, Overview).
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Screening Benefit,
Evaluation of

Screening is the testing of apparently healthy
individuals from a population for the purpose of
separating them into groups with high and low proba-
bilities of having a given disease such as cancer. The
screening is usually initiated by those who offer the
tests, and there is thus an implicit promise that those
who are screened will benefit. Therefore those indi-
viduals screened positive should receive diagnostic
follow-up and treatment of proven efficacy if they are
diagnosed to have disease [43]. The early detection of
cancer and other chronic diseases through screening
has long been viewed as a worthwhile public health
goal. Many believe that diagnosing disease earlier
means that the treatment will be more effective than
treatment occurring at the usual time. Unfortunately,
the presumption of benefit may not be correct, and the
value of a screening program must be demonstrated.
This article examines various issues encountered in
assessing the benefit of screening. The discussion is
in the context of cancer screening.

There are two basic types of studies that can be
used to evaluate cancer screening programs, experi-
mental and observational [8, 29, 35]. The exper-
imental study, commonly termed the randomized
controlled trial (RCT), is the method of choice, as
it alone produces an unbiased assessment of effect
(see Clinical Trials, Overview; Screening Trials).
When an RCT is not possible, observational or quasi-
experimental designs may be used. They may be
similar to experimental studies in many respects but,
because they lack randomization, they are gener-
ally difficult to analyze and interpret. Nevertheless,
both cohort and case–control observational studies
have been used for evaluation of screening for sev-
eral types of cancer, and the design and interpretation
of these studies have been discussed [28, 29, 37, 38,
44, 51].

In the evaluation of cancer screening programs,
both the effectiveness of offering screening and the
efficacy of screening are important measures. The
effectiveness of offering screening is the ratio of the
cancer mortality rate for those offered screening to
what their cancer mortality rate would have been
had they not been offered screening. Effectiveness is
of particular importance in considering public health

policy. The efficacy of screening is the ratio of the
cancer mortality rate for those actually screened to
what their cancer mortality rate would have been
had they not been screened. Efficacy is of interest
in considering the value of screening to those who
accept the screening test.

The effectiveness of offering screening can be
estimated directly from a comparison of the mor-
tality rates between the randomized groups in an
RCT. An indirect estimate of efficacy can also
be obtained [10]. Observational study designs typ-
ically provide estimates of efficacy. To achieve
this goal, the design features typically used in
an RCT, such as clearly established criteria for
inclusion or exclusion (see Eligibility and Exclu-
sion Criteria), a well-defined target population,
a carefully defined intervention protocol with qual-
ity control provisions (see Clinical Trials Proto-
cols), and a clear definition of the study end point
(see Outcome Measures in Clinical Trials) with
careful (possibly blind) ascertainment, should be met
by an observational study just as for an experimental
study.

Selection Bias and Observational Studies

The deficiency of all observational studies is the
lack of a control group constructed by a chance
mechanism. The purposes and advantages of ran-
domization are well known [6]. Use of a control
group chosen by any method other than randomiza-
tion requires the assumption either that the control
and intervention groups are identical in all important
variables except the intervention under study, or that
one can correct for all relevant differences. In the
latter case, one must further assume that all fac-
tors affecting the course of the disease are identified
and measured. These assumptions are rarely, if ever,
justified.

In the screening setting, the ability to make valid
inferences inferences from studies of patient groups
or observations of changes in community rates is
severely limited by the difficulty of defining appropri-
ate comparison groups, by the lack of detailed knowl-
edge of disease natural history, and by the inadequate
understanding of reasons for changes over time in
incidence, survival, and mortality rates for various
diseases (see Morbidity and Mortality, Changing
Patterns in the Twentieth Century).
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The essence of the problem with observational
studies is the potential noncomparability of the popu-
lations being compared. In screening, a strong selec-
tion bias may operate with regard to the charac-
teristics of individuals who agree to participate in
a screening program compared to those who refuse
to participate. This has been demonstrated in the
HIP study [46]. The HIP study was designed to
evaluate screening with clinical examination plus
mammography by comparing breast cancer mortal-
ity between a control group and a total study group,
the latter including those who were screened and
those who refused screening. Examination of the data
revealed substantial differences in disease charac-
teristics between the respondents and the refusers.
Overall, among study screened women over a five-
year period, the rate of case detection was about
2.3 per 1000. By contrast, the incidence rate among
study women who refused screening was 1.59 per
1000 per year, while the rate in the control group
was 1.95 per 1000 per year. This suggests that
women with a higher risk of breast cancer tended
to select themselves for screening. In addition, the
death rates from all causes excluding breast cancer
per 10 000 per year after five years of follow-up
were: control group 56.4; total study group 55.1;
study screened group, 42.4; study refused screening
group, 81.0. Thus, general mortality excluding breast
cancer was far lower among the respondents. Given
this self-selection bias, construction of an appropri-
ate comparison group for the women who elected
to be screened was not possible [4, 46]. In con-
trast, it is generally recognized in North America that
women who participate in cervical cancer screening
are at lower risk for cervical cancer incidence and
death.

Lead Time and Length Bias

There is only one outcome variable known to be
valid in cancer screening studies: the cancer mortality
rate. This is the number of cancer deaths per unit
time per unit population at risk (see Person-years
at Risk) [8, 29, 35, 37, 38, 42]. For some screening
procedures which detect presumed precursor lesions,
such as the Pap smear for cervical cancer, a reduction
in cancer incidence is also a useful outcome to
assess, but it is still important to know that the
prevented cancers were those that would have led to

death. Obtaining an accurate estimate of the mortality
measure requires a careful study design and long-
term follow-up of large populations, which is usually
a costly undertaking. Consequently, intermediate or
surrogate outcome measures have been sought, such
as a shift to a more favorable stage at diagnosis
distribution (see Surrogate Endpoints). There are,
however, critical shortcomings associated with these
endpoints [29, 35, 37, 42]. The shortcomings can be
traced to lack of knowledge about the preclinical
natural history of disease and well-known biases
which occur in screening programs, lead time bias,
and length bias.

If an individual participates in a screening program
and has disease detected earlier than it would have
been in the absence of screening, then the amount
of time by which diagnosis is advanced is termed
the lead time. Because of the lead time phenomenon,
the point of diagnosis is advanced and survival as
measured from diagnosis is automatically lengthened
for cases detected by screening, even if length of life
is not increased. This is referred to as lead time bias
and renders the case survival endpoint invalid [23,
29, 35, 37, 38, 42, 55].

Length bias refers to the phenomenon that cases
of disease detected by a screening program are not a
random sample from the general distribution of cases
of preclinical disease in the screened population.
Instead, the longer-duration preclinical disease cases
are overrepresented among the detected cases [1, 29,
35, 37, 54]. The importance of this bias is that
if disease with long preclinical duration is slow-
growing preclinical disease, which then progresses
to slow-growing clinical disease, cases of disease
with more favorable progression rates are the ones
more likely to be detected by screening. Thus, screen-
detected cases will tend to have characteristics of
good prognosis, such as lack of involvement of
regional lymph nodes and a more favorable outcome
even in the absence of screening.

Related to the concepts of lead time bias and
length bias is overdiagnosis bias. There exists the
possibility of a nonprogressive or regressive pre-
clinical disease state in which some cases of the
disease are detectable by the screening test but would
not progress to clinical disease during the individ-
uals’ lifetimes in the absence of screening. This is
potentially a major problem in screening for prostate
cancer, where the autopsy prevalence of prostate can-
cer in elderly men can approach 50% [25]. Clearly,
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the detection of such a case is of no benefit to the
individual, but such cases remain preclinical over a
long time and with repeated screenings are therefore
more likely to be detected. Because the counterparts
to these lesions do not surface in a control population,
a screened population will contain a higher propor-
tion of early-stage cases even if there is no mortality
effect from screening.

Study Endpoints

Three of the most frequently proposed alternative
endpoints are case-finding rate or yield, stage of
disease, and case–survival rate. Consider first the
case-finding rate or the incidence rate. This quan-
tity may provide an early clue as to whether or not
screening might be doing something, in the sense
that more cases should be detected in the presence
than in the absence of screening. However, this rate
yields no information on the effect of the screening
on disease outcome. One would expect case finding
to increase in a screened population, at least ini-
tially, relative to an unscreened population, because
of lead time bias. This can happen in the pres-
ence or absence of a mortality effect. Furthermore,
care must be taken about the definition of discov-
ered cancer in an early detection program. Many
borderline lesions found by screening may not be pro-
gressive disease. This results in overdiagnosis bias,
as noted above. If so, individuals may be unneces-
sarily treated and exposed to other possible risks of
screening.

Stage

The stage of a disease at diagnosis can also be
used as an early indicator that screening might be
accomplishing something, but it can be misleading
and is unsatisfactory as a final endpoint for various
reasons. The measurement and definition of stage
can be subjective, and its proper use requires strict
guidelines and tight control over pathology, each of
which may be difficult to implement in practice. More
importantly, the relationship of stage to survival or
mortality has not been generally established in the
screening setting.

The problem is likely to be most pronounced for
Stage I or localized cases, particularly if a study has a
cutoff point after which new cases are not accrued. In

this circumstance, lead time and length bias can result
in slow-growing, even nonprogressive, cases being
detected in Stage I in a screened group to a greater
extent than in a control group. Their counterparts
in the control group may not surface by the cutoff
point, if ever, and as a result the screened group will
contain a higher proportion of Stage I cases even if
screening has no effect on mortality. If there is a
mortality effect, the magnitude could be exaggerated
by confining an analysis to stage of disease. Thus,
while observation of a stage shift in a screened group
is a sign of early detection, it is insufficient evidence
of an effect on disease outcome.

Survival

A further alternative endpoint is survival, specifically
the case–survival rate. In contrast to mortality, which
is a population measure, the case–survival rate refers
only to cancer cases within a population, being the
proportion of cases alive after some time period.
Because there are losses to follow-up, this end-
point is ordinarily calculated using life table methods
(see Survival Analysis, Overview). While this end-
point does address the final outcome of disease and
gives suggestive evidence of screening effectiveness,
it cannot be relied upon to reflect mortality accurately.
Because diagnosis occurs earlier in a screening pro-
gram, any observed increase in survival from time of
diagnosis is, at least in part, simply a reflection of lead
time. For any given case of the disease, it is impos-
sible to distinguish between a true increase in sur-
vival time and an artificial increase due to lead time
because lead time cannot be observed directly for
ethical reasons. Further, there is as yet no universally
accepted procedure available to estimate lead time or
to adjust survival for lead time, although research in
this area has appeared [50, 53]. Consequently, case
survival is not a valid measure of screening effec-
tiveness.

Furthermore, even if one could adjust for lead
time, the problem of length bias would still exist
in making survival comparisons. For example, the
length bias effect may be different between two
subgroups of cases detected by different screen-
ing modalities. That is, the cases in one subgroup
may have a different distribution of natural histo-
ries than the cases in another subgroup because of
a modality-dependent sampling effect. Thus, even
if one could adjust for lead time, any remaining
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survival difference could be real, or could simply be
a consequence of the difference in disease natural
history between the groups, or a combination of the
two factors. Unfortunately, no general methodology
exists to either estimate the magnitude of a length
bias effect or to adjust the survival for length bias.

An alternative approach is to consider survival
time measured from entry into a study instead of from
time of diagnosis. In this way, all cases of disease
have their survival time starting from the same
time origin, thereby eliminating the lead time bias.
Survival times and survival distributions calculated
in this way are not comparable to survival calculated
in the usual way, but their use can lead to a valid
comparison of time in study between the cases in an
intervention group and the cases in a control group.
While this procedure avoids the lead time problem,
one must still be concerned about length bias [2].

Rate of Advanced-Stage Disease

Another measure which has received increasing atten-
tion as an endpoint in screening studies is the popula-
tion incidence rate of advanced-stage disease [7, 11,
34, 41, 49]. The overall incidence rate or the rate of
early-stage disease should increase with screening,
and could be artificially inflated because of length
bias and overdiagnosis bias as discussed above, ren-
dering these measures invalid as endpoints. However,
if screening reduces the rate of advanced disease or
disease which has metastasized and/or is likely to lead
to death, then it is reasonable to expect that the death
rate from the disease will also be reduced. Whether
this is a valid substitute for mortality must be
established for each cancer separately, by first defin-
ing advanced-stage disease for a particular cancer and
then assessing the relationship between advanced dis-
ease and mortality in properly designed studies.

Randomized Controlled Trial

In the typical RCT of screening, individuals or groups
are randomized to either a study (screening) group
or a control group. Screening is offered to those
in the study group and no screening is offered to
those in the control group. Alternatively, the groups
may be offered different screening modalities. At the
conclusion of the trial, the difference in the cancer
mortality from entry to the end of follow-up for

the two groups is assessed. If screening does detect
preclinical disease and if treatment initiated earlier
than usual is more effective than treatment given at
the usual time of diagnosis, then the intervention
group should have fewer cancer deaths than the
control group.

Several authors [9, 26, 27, 40] maintain that the
screening RCT with mortality endpoint is the only
way to ensure that inferences are not subject to
selection, length, and lead time biases, and that all
other designs are suspect in this regard. Familiarity
with basic screening RCT designs is therefore impor-
tant. Four basic RCT designs are described and their
relative advantages and disadvantages discussed. In
principle, each of these designs can be used to address
a single question in a two-arm design or multiple
questions in a multiple-arm design [16, 36].

Continuous Screen Design

A natural design for a cancer-screening RCT is to
randomize individuals either to an intervention or
a control arm, with the intervention consisting of
periodic screening throughout the trial. Those in the
control arm are not offered the periodic screening;
they follow their usual medical care practices. This is
called the “Continuous screen” design since screening
continues for the duration of the study. The NCI
Cooperative Lung Cancer Screening RCT done in
the mid 1970s to the mid 1980s essentially followed
this design [17]. The major goal of the study was
to determine whether screening for lung cancer with
sputum cytology and chest X-ray was more effective
in reducing lung cancer mortality than screening
using chest X-ray. One drawback of the continuous
screen design is that the cost involved in screening
all intervention group participants for the duration
of the trial may be prohibitive. With this in mind,
an alternative, namely the “stop screen” design, has
been proposed.

Stop Screen Design

The “stop screen” design is similar to the continuous
screen design, except that screening is offered for
only a limited time in the intervention group. How-
ever, both arms are followed for disease incidence
and mortality until the end of the trial. This design is
suggested when it is anticipated that a long follow-up
will be required before a reduction in mortality can be
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expected to emerge, and when it would be expensive
or difficult to continue the periodic screening for the
entire trial period. The HIP study [47] followed this
design. Sixty-two thousand women aged 40–64 from
the HIP population were randomized. The interven-
tion arm was offered four annual screens consisting
of two-view mammography and clinical breast exam-
inations. The screens were offered at entry and for
the next 3 years. Women in the control arm followed
their usual medical practices. Evaluations were done
at 5 and 10 years, but women in both arms were
followed for 15 years to assess long-term effects of
screening.

By stopping screening, the stop screen design can
result in a considerable saving in cost and effort
relative to the continuous screen design. However,
analysis of the stop screen design can be more com-
plex than that of the continuous screen design because
the difference in disease-specific mortality between
the two arms may be diluted by deaths among the
cancers that develop in the intervention arm after
screening stops. In addition, the stop screen design is
the only one that allows for assessment of overdiag-
nosis by screening because, by stopping screening
and continuing follow-up, one can determine if any
excess of cases existing at the time screening stops
persists (overdiagnosis) or disappears.

Split Screen Design

The “split screen” design is a variant of the stop
screen design. The difference is that at the time
the last screen is offered to the intervention arm,
a screen is also offered to all those in the control
arm. The Stockholm Breast Cancer screening trial
is an example of this design [20]. Women were
randomized to intervention or control, beginning in
1981. The intervention consisted of two single-view
mammograms, performed roughly 28 months apart.
The control group was offered a single screen, at
approximately 4.5 years after study entry.

One advantage of the split screen design is that
there is greater potential to identify comparable
groups of cancer cases in the control and intervention
arms for the analysis, since the screen in the con-
trol arm presumably identifies the counterparts to the
cases previously identified in the screened arm. How-
ever, at least some of the control arm cancers detected
by screening may benefit from being screened and, if
so, this benefit may cause some dilution of effect.

Delayed Screen Design

The “delayed screen” design is a variant of the
continuous screen design. The difference is that
periodic screening is offered to the control arm
starting at some time after the start of the study
and continuing until the end of the study. This
design allows one to estimate the marginal effect of
introducing screening at an early time or age, relative
to starting the screening at a later time or age. The UK
Breast Cancer Screening Trial of women under 50
is basically following this design [30]. Specifically,
women in the intervention arm are offered annual
screening starting at age 40–41 and continuing to
age 47–48, then at age 50 all women in both arms
are offered periodic screening as part of the National
Health Care Program in the UK. This study is being
conducted to evaluate starting periodic screening at
age 40–41 relative to waiting until age 50 to start the
screening.

The delayed screen design is particularly well
suited for the situation where screening is already
the standard of care in an older population, and the
research question concerns the benefit of introducing
screening at an earlier age. Otherwise, the additional
costs associated with implementing this design may
render it infeasible.

Observational Study Designs

One useful observational study design involves a
comparison of cancer incidence and mortality in a
defined population before and after the introduction
of a screening program. An alternative is to compare
geographic regions, established to be as comparable
as possible with respect to disease mortality. Time
trends in incidence and mortality can be examined
and interarea comparisons of intensively screened
areas with nonscreened areas can be made. Both
approaches require rapid introduction of the screening
program and virtually full coverage of the population
at risk. For cancer screening, reliable incidence
and mortality data, which are available for at least
a 10-year period prior to the start of screening
and which are predictable for the future, should
be available. Ideally, this would be total incidence
and mortality data, not simply for the cancer of
interest. For other diseases, shorter time spans might
apply. Another requirement is the capability for
accurate, long-term follow-up of the entire population
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at risk. Such an observational study may require
substantially larger populations than an RCT and
may eventually prove more costly than the more
rigorous design. Apart from the potential biases
involved in such an observational study, this design
offers the possibility of estimating either screening
effectiveness or efficacy, depending upon whether
the intervention population involves only screened
individuals or is a population offered screening in
which some individuals accept the testing and some
refuse. This approach has been used to evaluate
cervical cancer screening [21].

The case–control study is another observational
design which can serve as an approach to screening
evaluation [8, 28, 44, 51]. In principle, such studies
can be used to evaluate the efficacy of screening in
the prevention of death, or of invasive disease and
consequently death in situations where the screen-
ing test detects precursor lesions. A number of such
studies have been undertaken, mainly aimed at evalu-
ation of cervical and breast cancer screening [10, 14,
19, 33, 45, 48]. In addition, papers have appeared
which address methodologic issues that arise in the
screening case–control design [3, 5, 10, 13, 15, 22,
28, 29, 31, 44, 51, 52].

For this purpose, appropriate definition of cases
and controls is required. As the primary measure of
cancer screening efficacy is mortality, eligible cases
should be deaths from the disease of interest in the
population under study, irrespective of the means of
diagnosis. Eligible controls are all living individuals
in the population from which the cases were derived,
including individuals with the disease. One then
determines whether or not exposure to screening is
associated with a reduction in the risk of death from
the disease.

This approach also has potential for evaluating
the sensitivity of screening tests, and may yield
information on the relative effectiveness of different
screening strategies. However, the approach is only
applicable for screening tests which have been in use
for several years because screening histories of cases
and controls are required.

A particular concern with both the cohort and
case–control designs involves selection bias among
individuals who choose to be screened as against
those who do not, and the impact of this bias on
the validity of the inference drawn [10, 18, 24,
32]. The case–control design and the related cohort
design in which screened individuals are compared

with refusers both assess whether or not screening
reduces the mortality of those individuals who elect
to be screened relative to those who do not so elect.
This comparison does not estimate efficacy since the
self-selected comparison group does not in general
provide an estimate of the mortality rate of the
screenees if they had not been screened. However,
both designs can provide a valid efficacy comparison
if those refusing to be screened have the same cancer
mortality rate as those accepting screening would
have had had there been no screening, i.e. if there
is no self-selection bias [10].

Information Requirements for Evaluation

Several key data items must be defined and carefully
collected in order to achieve a complete evaluation
of a screening program [7, 11, 12, 36].

1. Population characteristics. The demographic,
socioeconomic, and risk characteristics of the
target population or study population should be
ascertained. In some circumstances, dietary and
occupational history may also be pertinent, such
as in a study of colorectal cancer, where diet
may play an etiologic role, or of bladder cancer,
where occupational exposure to carcinogens may
influence the evaluation of screening.

2. Coverage and compliance. The proportion of
the population offered screening who actually
undergo the initial and subsequent screening tests
should be determined. This indicates the level
of interest in, and acceptability of, the screening
procedure, and whether or not the level is high
enough to have a chance of achieving an impact
in the population.

3. Test yield. The number and proportion of cases
found by screening, particularly in relation to
the cases not discovered by screening (the so-
called interval cases) is important for evaluating
how successful the screening test is in finding the
disease.

4. Stage of disease. This should be ascertained for
each case of the disease in the population under
surveillance, whether detected by screening or
diagnosed clinically. This information can be
used to compare the stage distribution of screen
detected cases vs. other case subsets to determine
if screening might have an impact on mortality,
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and is necessary for defining stage-specific inci-
dence rates.

5. Case survival. Survival time should be deter-
mined for each case of disease. As with stage
information, the survival distribution of screen-
detected cases can be compared with that of
other case groups to seek some indication that
screening might have an impact on disease out-
come.

6. Incidence and prevalence rates. As noted above,
the rate of advanced stage disease may be a
good intermediate indicator of the impact of
screening on mortality. The ratio of prevalence
to incidence yields an estimate of the preclin-
ical duration of disease and can be used to
estimate the average lead time gained by screen-
ing [23] (see Incidence–Prevalence Relation-
ships).

7. Mortality rates. Mortality rates provide the pri-
mary evidence on the effectiveness of screening.
Mortality rates for the disease of interest can
be calculated and compared between a screened
group and a control group to measure the impact
of screening. In addition, the death rates from
other causes should be scrutinized to assess the
comparability of the groups with regard to causes
of death other than the one of interest.

8. Therapy. The therapy used for each case of the
disease should be recorded. At a minimum this
should be the initial therapy, but adjuvant ther-
apy or treatment for recurrence could be noted
as well. This information should be recorded
in the same way in the screened and control
populations within each disease stage, and is rel-
evant for separating the early detection effect
from the treatment component of any screening
impact.

9. Procedures and costs. To perform an assessment
of the cost or cost-effectiveness (see Health
Economics) of a screening program, it neces-
sary to collect data on the costs of all phases
of the program. Alternatively, one can record
the procedures done in each phase so that costs
can be assigned at a later date. Procedures to
be included are efforts to recruit the popula-
tion, the screening tests, all diagnostic procedures
following a positive screen or those used to diag-
nose a case clinically, all treatment procedures,
and any efforts expended to follow the popula-
tion [39].
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The early detection of cancer and other chronic dis-
eases has long been a goal of medical scientists.
Many believe that by moving the point of diagno-
sis backward in time so that the disease is diagnosed
earlier than usual, treatment will be more effective
than treatment given at the usual time. However, this
presumption may not be correct and the effect of
any screening program must be evaluated. Cohort
studies and case–control studies have been used
for evaluating screening for several types of can-
cer, and the design and interpretation of these studies
have recently been the topic of increasing discussion
(see Screening Benefit, Evaluation of). However, an
observational study rarely yields definitive answers
or permits solid conclusions with regard to the public
health consequences of cancer screening. The most
rigorous approach is the randomized clinical trial.
There are special design and analysis issues for such
screening trials.

Design Issues

The randomized controlled trial involves the prospec-
tive testing and long-term follow-up of defined
populations according to a protocol (see Clinical
Trials Protocols). There are several major design
and implementation aspects that should be consid-
ered. First, the target disease(s), the screening test(s),
and the diagnostic and therapeutic regimens must
be determined. Then, the appropriate outcome vari-
able (see Outcome Measures in Clinical Trials)
must be chosen and the sampling unit (see Unit of
Analysis) (individual or group) selected. Next, the
admission and exclusion criteria need to be estab-
lished (see Eligibility and Exclusion Criteria) and a
randomization procedure chosen to allocate eligibles
to the study and control groups (see Randomized
Treatment Assignment). The study and control
groups should be followed up with equal intensity
and in the same time frame, with the outcome vari-
able measured in a blind fashion (see Blinding or
Masking), if possible. Every effort should be made
to maximize adherence to the study protocol for
both groups (see Compliance Assessment in Clini-
cal Trials). It is also important in the analysis that all
individuals in the control group be compared to all

individuals in the study group, including both indi-
viduals accepting the offer of screening and those
rejecting the offer (see Intention to Treat Analysis).

A decision on the number of screening examina-
tions and the interval between examinations (screens)
must be made. The number of screens depends on
the tradeoff between a sufficient number to realize
an effect, if there is one, and the cost of additional
screens. Trials may incorporate screening for essen-
tially the entire follow-up period [35], or employ an
abbreviated screening period typically involving four
or five screening rounds, with a subsequent follow-up
period devoid of screening [22, 32]. Several model-
ing efforts have addressed these issues [6, 16, 18,
19].

Another design problem involves the relation-
ship between study duration, sample size, and the
expected timing of any effect. Sample size and study
duration are inversely related. If these two param-
eters were the only ones to consider, the relation-
ship between follow-up cost, on the one hand, and
recruitment and screening cost, on the other, would
determine the design. However, the time at which a
reduction in mortality may occur must also be con-
sidered. For those cancer screening trials that have
demonstrated a reduction in mortality, a separation
between the mortality rates in the screened and con-
trol groups did not occur until four to five years
or more after randomization [32, 35]. Furthermore,
the difference may continue to increase with time,
even after screening stops [32]. Thus, even with a
very large sample size, follow-up may have to con-
tinue for many years to observe the full effect of
the screening. A follow-up period of at least 10
years is appropriate, but a longer period may be
required if the screening effect is manifested primar-
ily among a subset of patients with slowly growing
cancer (see Sample Size Determination for Clinical
Trials).

Determination of the appropriate endpoint in a
cancer screening study is intimately related to the
disease natural history. For a screening trial, the
relevant natural history is from the time the can-
cer is screen-detected to death. This natural his-
tory is usually not well understood, and potential
early indicators of outcome such as a shift in dis-
ease stage or a lengthening of survival among cases,
which depend on knowledge of this natural history
for their validity, cannot provide a definitive assess-
ment of screening in the absence of this knowledge.
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There is only one outcome variable known to be
valid in a cancer screening trial, namely the popu-
lation cancer mortality rate. This is the number of
cancer deaths per unit time per unit population at
risk [23, 27]. The mortality rate provides a com-
bined assessment of early detection plus therapy. No
improvement in mortality will be seen if either the
screening does not lead to earlier detection or ther-
apy at the time of earlier detection confers no extra
benefit.

Intermediate or surrogate outcome measures have
also been considered (see Surrogate Endpoints).
However, these have critical shortcomings that can
be traced to the well-known biases that occur in
screening programs: lead time bias, length bias,
and over-diagnosis bias [23, 27] (see Screening Ben-
efit, Evaluation of). Among the most frequently
proposed alternative endpoints are the case–finding
rate or yield, stage of disease, and case–survival
rate.

Another measure that has been proposed as
an endpoint in screening studies is the population
incidence rate of advanced stage disease [1, 5],
since, if screening reduces the rate of advanced
disease, disease that has metastasized, or is likely
to lead to death, then it is reasonable to expect
that the death rate from the disease will also be
reduced.

Sample Size

In the hypothesis-testing framework, the sample size
can be calculated from the appropriate formula if
one knows the event rate, effect size, and statisti-
cal procedure, all of which depend on the choice
of endpoint for the study (see Sample Size Deter-
mination). In cancer screening trials, this is the
cancer mortality. Since the analysis involves a com-
parison of the numbers or rates of deaths, meth-
ods for Poisson-distributed data can be used [34,
36]. Other factors that must be taken into consider-
ation are noncompliance in the screened and con-
trol groups, randomized groups of different sizes,
and lower than expected event rates among the
individuals who participate in the study. Several
approaches have been formulated to address these
problems [23, 25].

One approach to sample size estimation is based
on the method suggested by Taylor & Fontana [36],

modified to allow for an arbitrary magnitude of
screening impact, an arbitrary sample size ratio
between the screened and control groups, and arbi-
trary levels of compliance in the screened and con-
trol groups. Let Nc be the number of individuals
randomized to the control group, and Ns the num-
ber randomized to the screened group, with Ns =
f Nc. Assume the study is designed to detect a
(1 − r) × 100% reduction (0 ≤ r ≤ 1) in the cumu-
lative disease-specific death rate over the duration of
the trial. Also, let Pc be the proportion of individu-
als in the control group who comply with the control
group intervention and Ps be the proportion of indi-
viduals in the screened group who comply with the
screened group intervention.

Using a model in which the death rate in the
presence of noncompliance in the screened group is a
linear combination of the screened and control group
death rates, weighted by the compliance levels, one
finds that the total number of disease-specific deaths,
D, needed for a one-sided α-level significance test
with power 1 − β is given by

D = [(Θ1 + f Θ2)Z1−α − (Θ1Θ2)
1/2(1 + f )Zβ]2

f (Θ1 − Θ2)2
,

where Θ1 = r + (1 − r)Pc, Θ2 = 1 − (1 − r)Ps, and
Z1−α and Zβ are the 1 − α and β quantiles of
the standard normal distribution, respectively. The
number of participants required in the control group is
Nc = D/(Θ1 + f Θ2)RcY , where Y is the duration of
the trial from entry to end of follow-up in years, and
Rc is the average annual disease-specific death rate
in the control group expressed in deaths per person
per year.

Calculation of Nc requires an estimate of Rc.
Individuals recruited for a screening trial are expected
to be healthier than the general population due to
selection factors and eligibility criteria. Hence, the
usual cancer mortality rate obtained from national
or registry (see Disease Registers) data is likely to
overestimate the mortality rate of the participants, at
least for the early part of a trial. An ad hoc approach
to this problem is to use the relationship between
the observed and expected death rates in previous
screening trials. Alternatively, one can calculate an
expected event rate using the age-specific incidence
rates of a cancer-free population combined with the
survival rates of these incident cases to arrive at the
expected mortality [23, 25, 26].
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Study Designs

Classic Two-Arm Trial that Addresses a Single
Question

In this design, the study population is randomized to
a group offered screening according to a protocol and
a control group not offered screening. At the end of
follow-up, the mortality rates in the two groups are
compared [28]. The prototype trial for this design is
the Health Insurance Plan (HIP) trial of breast cancer
screening [32].

Designs for Investigating more than One Question
in the Same Study

Extensions of the classic two-arm design have been
used or suggested for cancer screening trials to
answer more than one question in the same study.
This topic has also been discussed for cancer pre-
vention trials [11]. For example, the National Study
of Breast Cancer Screening in Canada involves
two different study populations, but under the same
administrative and scientific umbrella (i) to deter-
mine in women aged 40–49 at entry whether annual
screening by mammography and physical exami-
nation, when used as an adjunct to the highest
standard of care in the Canadian health care sys-
tem, can reduce mortality from breast cancer, and
(ii) to evaluate in women aged 50–59 at entry the
additional contribution of routine annual mammo-
graphic screening to screening by physical exam-
ination alone in reducing breast cancer mortality.
This involves separate randomizations of women in
the two age groups [22] (see Randomized Treat-
ment Assignment). In some circumstances, several
related questions can be addressed by including addi-
tional randomized groups in the trial. An example
is the colon cancer screening trial at the Univer-
sity of Minnesota [14]. Two basic issues are being
addressed; namely, whether screening can reduce
mortality, and whether there is a different effect at
different screening frequencies. Three randomized
groups were formed: a control group, a group offered
annual screening with a test to detect occult blood
in the stool, and a group offered the occult blood
test every two years. Another extension of the basic
design is a two-group trial in which the interven-
tion group includes multiple interventions, known
as the all-versus-none design [11]. One version of

this design involves several interventions, with each
intervention aimed at early detection of a differ-
ent type of cancer. Use of this design requires two
assumptions: first, that the test for any given can-
cer does not affect the case detection or mortality
of any other cancer site, and, secondly, that disease-
specific mortality is independent among the cancers
under study. An example is the Prostate, Lung, Col-
orectal and Ovarian Cancer (PLCO) Screening Trial
sponsored by the National Cancer Institute [15], the
objectives of which are to determine whether: (i) in
females and males, screening with flexible sigmoi-
doscopy can reduce mortality from colorectal cancer,
and screening with chest X-ray can reduce mortality
from lung cancer; (ii) in males, screening with digital
rectal examination plus serum prostate-specific anti-
gen (PSA) can reduce mortality from prostate cancer;
and (iii) in females, screening with pelvic examina-
tion plus CA 125 and transvaginal ultrasound can
reduce mortality from ovarian cancer. Another design
option to answer more than one question at a time is
the reciprocal control design [11]. In this design, the
participants in each arm of a trial receive an interven-
tion, but also serve as controls for an intervention in
another arm of the trial. This requires the assumption
that the intervention aimed at a given cancer does not
affect any of the other cancers under study.

Within each of the above design types there are
options for the relationship between screening and
follow-up [9]. A natural design is to randomize indi-
viduals either to an intervention or a control group,
with the intervention consisting of periodic screen-
ing throughout the trial. Those in the control arm
are not offered the periodic screening; they follow
their usual medical care practices. This is called
the continuous-screen design. The NCI Cooperative
Lung Cancer Screening RCT, conducted in the mid
1970s to the mid 1980s, essentially followed this
design [10].

One drawback of the continuous-screen design is
that the cost involved in screening all intervention
group participants for the duration of the trial may be
prohibitive. An alternative is the stop-screen design
in which screening is offered for a limited time in
the intervention group and both groups are followed
for disease incidence and mortality until the end of
the trial. This design is used when it is anticipated
that a long follow-up will be required before a
reduction in mortality can be expected to emerge, and
when it would be expensive or difficult to continue
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the periodic screening for the entire trial period.
The Health Insurance Plan (HIP) of Greater New
York Breast Cancer Screening Study followed this
design [32]. The stop-screen design can result in a
considerable saving in cost. However, the analysis
can be more complex than that of the continuous-
screen design, because the difference in disease-
specific mortality between the two groups may be
diluted by deaths from cancers that develop in the
intervention group after screening stops.

The split-screen design is a variant of the stop-
screen design in which a screen is also offered to all
those in the control group at the time the last screen
is offered to the intervention group. The Stockholm
Breast Cancer screening trial, conducted in the 1980s,
is an example of this design [13]. An advantage of
the split-screen design is that there is greater potential
to identify comparable sets of cancer cases for the
analysis (discussed below).

The delayed-screen design is a variant of the
continuous-screen design in which periodic screening
is offered to the control group starting at some time
after the start of the study and continuing until the
end of the study. This design allows the estimation
of the marginal effect of introducing screening at
some standard time or age, relative to starting the
screening at a later time or age. The current UK
Breast Cancer Screening Trial of women under 50
is basically following this design to evaluate the
effect of beginning screening before the age of 50
years [24].

Analysis

Screening trials involve special issues in their
analysis, both for the continuous-screen and stop-
screen designs, and for primary and secondary
analyses. Primary analyses are concerned with
evaluating whether there is a statistically significant
difference in disease-specific mortality between the
control and intervention groups. Secondary analyses
are concerned with ascertaining the magnitude of
the mortality difference, and with gaining a deeper
understanding of the underlying mechanisms [9].

Primary Analysis

Proposed statistical methods for primary analy-
sis include a Poisson test statistic comparing the

observed death rates [33], a Fisher exact test com-
paring the observed proportions of cancer deaths [2],
and a logrank test comparing disease-specific death
rates over time in the two groups [2, 3]. For exam-
ple, the Poisson process test statistic for comparing
cumulative mortality rates is

Zr = (PYSDC − PYCDS)

[PYCPYS(DC + DS)]1/2
,

where DC = the number of deaths from the cancer
of interest in the control group through the time of
analysis, DS = the corresponding number of deaths
in the screened group, PYC = the number of person
years at risk of death from the cancer of interest in
the control group through the time of analysis, and
PYS = the corresponding number of person years in
the screened group [34].

Logrank test analysis may be based on the disease-
specific mortality experience of all randomized par-
ticipants, termed the overall mortality analysis, or it
may be based on the mortality experience of compa-
rable groups of cancer cases in the two arms of the
trial, in which case it is termed the limited mortality
analysis [3].

Overall Mortality Analysis

Overall mortality analyses possess the advantage
of comparability of comparison groups formed by
randomization. However, logrank tests comparing
disease-specific mortality can be relatively inefficient.
This is because the logrank test is optimal under pro-
portionality of the disease-specific mortality hazards
in the two groups, whereas, in cancer screening trials,
there is generally a delay from the beginning of the
intervention program to the time that effects on cancer
mortality can be observed, and the magnitude of any
effect may vary over time. In addition, in stop-screen
designs, cases continue to accrue in both groups after
screening stops. The cancer deaths in the interven-
tion group that are due to cancers developing after
screening dilute the screening effect. Thus, the ratio
of hazards decreases with time after some point in
the trial. If the specific form of departure from pro-
portional death rates is known, then efficiency can be
gained by use of a weighted logrank statistic instead
of the usual (unweighted) logrank statistic [8].

Zucker & Lakatos [42] propose a method to
accommodate a possible lag until full screening effect
within a continuous-screen design. They specify a
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range of plausible lag times to full screening effect
and then identify the weighted logrank statistic that
minimizes the worst possible efficiency loss over
this range. Self [29] and Self & Etzioni [30] propose
adaptive testing methods for stop-screen designs.
Their suggestion is to use the observed departures
from constancy of the relative hazards to improve
the efficiency of the test procedure. These methods
are also weighted logrank tests, but the weights are
identified in a data-dependent fashion. Sequential
versions of these procedures are not yet available.

Limited Mortality Analysis

In a limited mortality analysis, one restricts analy-
sis to comparable sets of cancers, one set consisting
of cancers from the intervention group diagnosed
through some designated time interval after the start
of the study, and the other consisting of their counter-
parts in the control group diagnosed during the same
interval. Limited mortality analyses are typically only
applied to split-screen or stop-screen designs. The
split-screen design leads naturally to two presumably
comparable case sets; namely, those diagnosed up to
and including the final screen offered. In the stop-
screen design, however, determination of comparable
case sets is less straightforward. The main question is
how to choose the time interval for ascertainment of
cases for analysis. The end of the case ascertainment
period should not be too long after screening stops,
because the continued accrual of clinically detected
cases in both groups may lead to dilution of the
observed screening effect as described previously. If,
however, we exclude all cases diagnosed after screen-
ing has stopped, another form of dilution can arise.
Among the cases diagnosed in the control group after
screening has stopped, some may correspond to cases
in the intervention group that were screen-detected
and therefore diagnosed earlier than they would have
been without screening. If this set of cancers bene-
fits from the earlier diagnosis due to the screening,
then excluding the control group counterparts to these
cancers also dilutes the screening effect [8].

Comparability

Whatever the method used to select comparable case
sets, the true comparability of the sets selected must
be fully investigated. Both the cases in the selected
sets and the cases that are diagnosed after the time

used to define the selected sets must be evaluated.
Methods have been proposed for assessing the com-
parability of case sets in a stop-screen study [3].
They consider the numerical as well as the biological
comparability of the sets. Numerical comparability
concerns the numbers of cancers in the case sets.
Biologic or qualitative comparability concerns the
composition of the cancer case sets with regard to
their natural history, and especially their survival
characteristics in the absence of screening. Qualita-
tive comparability of candidate sets is assessed by
covariates defined at randomization associated with
the cancer cases.

The identification of comparable case sets is not
straightforward. In a stop-screen design, it may be
impossible to identify comparable sets if screening
is available outside of the trial, and the use of
outside screening differs between the two arms after
trial screening stops. In a continuous-screen design,
it is unlikely that equalization will ever occur. In
such cases, appropriately weighted overall mortality
analysis may be the only valid option.

In summary, the overall analysis is the most
unbiased as it compares all randomized individu-
als. However, this approach may assess a diluted
relative effect of screening in a stop-screen design
and it requires follow-up of all randomized trial par-
ticipants. Alternatively, the limited analysis requires
follow-up of only selected case sets after a certain
point in time and so is less costly. However, the
approach is subject to bias if the case sets are not
truly comparable.

Secondary Analyses

Secondary analyses of cancer screening trials typi-
cally involve information related to the outcome of
cancer cases captured in survival data, and indications
of earlier diagnosis, captured by estimates of the
screening program’s lead time, sensitivity, and the
degree of shifting to an earlier clinical stage at diag-
nosis in the screened group.

Estimates of survival differential are based on the
postdiagnosis survival curves in the two case sets
(see Survival Analysis, Overview). The postdiag-
nosis survival of screen-detected cases includes lead
time, which must be explicitly removed to avoid lead-
time bias. Initial approaches were developed for the
HIP trial assuming a fixed lead time of one year
and considering the k-year actuarial survival from
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diagnosis of control group cases and interval cases
(cases diagnosed in the intervals between screens
because of signs or symptoms) as equivalent to the
k + 1-year survival from diagnosis of screen-detected
cases [33]. Walter & Stitt [39] allowed lead time to
be a random variable with a known distribution.
This approach was extended to nonparametric esti-
mation procedures by Xu & Prorok [40].

Explicit adjustment for lead time requires knowl-
edge of its probability distribution. Direct esti-
mates of mean lead time have been presented by
Shapiro et al. [31], Morrison [23], and Kafadar &
Prorok [17]. The approach of Shapiro et al. and Mor-
rison yields crude estimates of average lead time
based on comparing disease incidence in the con-
trol and intervention groups. Kafadar & Prorok used
differences in survival from entry and from diagnosis
between screened and control group cases to estimate
benefit time and lead time assuming two comparable
case sets like those identified for a limited mortality
analysis.

Other methods for estimating lead time have
been developed by Zelen & Feinleib [41] and Walter
& Day [38]. These approaches may be thought of
as statistical modeling efforts (see Model, Choice
of). Simulation modeling is also being increasingly
employed to estimate screening program properties
and disease natural history, and to project the costs
and benefits (see Health Economics) of alternative
screening strategies [7, 37].

The information on shifts in the distribution of
clinical stage at diagnosis should be interpreted with
caution, since shifts may be due to overdiagnosis or
length bias and therefore need not imply disease-
specific mortality benefit. However, a stage-shift
model has been developed that allows the estima-
tion of the amount of shift between and within stages
due to screening, as well as the associated mor-
tality benefits. The model requires comparable case
sets [4].

Trial Monitoring

Various categories of data and information become
available at successive stages of a screening trial.
These relate to the population under study, acceptance
of the screening test by the population, outcomes and
characteristics of the screening test, and intermediate
and final effect measures or endpoints used for deter-
mining the value of screening. These variables can

be examined on a regular basis for evidence to alter
the protocol or stop the trial, and are also valuable
in assessing the consistency of findings or conclu-
sions. More specifically, the data that can be used
for monitoring include: population descriptors such
as demographic, socioeconomic, and risk character-
istics of the population; the proportion of the study
population offered screening who undergo the initial
screening, the level of compliance with scheduled
repeat screens, and the level of screening contam-
ination in the control group; the yield of cancers
as a result of screening, the interval cancer rate,
and screening test characteristics including sensitiv-
ity, specificity and predictive value; diagnostic and
therapeutic follow-up among individuals designated
suspicious or positive by the screening test and the
costs involved in these procedures; cancer case char-
acteristics such as stage, histologic type, grade, and
nodal involvement; survival of cancer cases; inci-
dence and prevalence rates of the cancer of interest;
the incidence rate of advanced stage cancer; and
mortality rates from the cancer of interest and other
causes [28].

Another aspect of the monitoring process of a trial
is the use of formal statistical stopping rules. These
include various methods aimed at accounting for
repeated looks at the data such as the Lan–DeMets
technique and stochastic curtailment procedures, as
well as Bayesian approaches [12, 20, 21] (see Data
and Safety Monitoring).
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Screening asymptomatic people to allow the early
detection and treatment of chronic diseases is an
important part of modern medicine and public health.
For screening to be both an efficient and cost-
effective medical intervention, it must be carefully
targeted and evaluated. Mathematical models of dis-
ease screening constitute one of the major tools in
the design and evaluation of screening programs.

The purpose of this article is to describe models
for disease screening and how they have developed
in recent years. The discussion will focus on screen-
ing for cancer, because most of the methodologic
advances in screening design and evaluation have
concerned cancer screening. In the first part of the
article we will describe the characteristics of these
models and illustrate them with a discussion of a
simple screening model. In the second part we will
describe the development of the two main types of
model. In the third part we will discuss model fitting
and validation, and in the final part we will briefly
describe models for diseases other than cancer and
discuss the current state and possible future directions
for models of disease screening.

This is not intended to be an exhaustive study
of all modeling of disease screening. Rather, it is
intended to be a description of the main approaches
used and their strengths and weaknesses. For more
detailed reviews of modeling disease screening, see
Eddy & Shwartz [30], Shwartz & Plough [56], Pro-
rok [50, 51], Alexander [5], and Baker et al. [9].

What is Screening?

Screening for disease control can be defined as the
examination of asymptomatic people in order to clas-
sify them as likely or unlikely to have the disease
that is the object of screening. People identified by a
screening test as likely to have the disease are then
further investigated to arrive at a final diagnosis [45].
The objective of screening is the early detection of a
disease where early treatment is either easier or more
effective than later treatment.

Figure 1 is a schematic representation of the main
features of the natural history of a disease which are
relevant to screening. The preclinical phase of the
disease is the phase in which a person has the disease

Preclinical phase
Point of clinical

surfacing

Clinical phase
Detectable preclinical phase

Lead time

Point at which disease
would be detected if
screening were done

Patient seeks medical attention
because of disease symptoms in

the absence of screening

Disease becomes
detectable by

screening

Disease
begins

Figure 1 The natural history of a disease with and without
screening

but does not have any clinical symptoms and is not
yet aware of having it. Screening aims to detect the
disease during this phase. In principle, the preclinical
phase starts with the beginning of the disease, but, in
practice, modeling focuses on the phase commencing
at the earliest point at which the disease is detectable
with a screening test. This is known as the detectable
preclinical phase.

The preclinical phase finishes with the clinical
surfacing of the disease. This is the point at which
the person develops clinical symptoms of the disease,
seeks medical attention for these symptoms, and the
disease is diagnosed. The disease then enters the
clinical phase, where the person has a diagnosable
case of the disease.

The outcome of a screening test is designated
either positive, if the person is identified as likely
to have the disease, or negative if they are not. All
screening tests are open to error either from the test
itself or its interpretation. These errors are designated
as false positive, where a person without the disease
has a positive screening result, and false negative,
where a person with the disease has a negative
screening result. The sensitivity of a screening test
is the probability that a person with the disease
has a positive screening result. The specificity of a
screening test is the probability that a person without
the disease has a negative screening result. Cases of
the disease which clinically surface following a false
negative result (i.e. where the screening test missed
the disease) are known as interval cases.

It is important to note that sensitivity and speci-
ficity are not properties of the test alone. For example,
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mammography is used to screen for breast cancer in
women. In this case the sensitivity and specificity
will depend on characteristics of the test, such as the
nature of the mammography machine and the num-
ber of views taken, as well as on factors such as the
skill of the person interpreting the mammogram, the
size of any tumor in the woman being screened, the
density of her breast tissue, and so on.

The reliability of a test is its capacity to give the
same result, either positive or negative, on repeated
application in a person with a given level of the
disease. The survival time is the length of time
between disease diagnosis, either by clinical surfacing
or detection by screening, and death. The lead time
is the time between the detection of a disease by
screening and the point at which it would have
clinically surfaced in the absence of screening.

The lead time is an important issue in the exami-
nation of screening benefits. The immediate focus of
screening is to detect an early form of the disease.
Hence the lead time can be used as an index of ben-
efit in its own right. It is also important in examining
survival benefits conferred by screening. A simple
comparison of survival times between screened and
unscreened populations is likely to show spurious
screening benefits, since the survival time for a screen
detected disease includes the lead time while that for
a disease which surfaced clinically does not.

There is another, more subtle, reason why such
survival comparisons may be spurious, even if adjus-
ted for lead time. Screening will tend to detect people
with a longer preclinical phase. This is known as
length-biased sampling. Usually this will equate to
a more slowly progressing disease. Since the disease
behavior before clinically surfacing is likely to be
correlated with that after surfacing, this is likely to
result in screen detected diseases having a longer
survival time than clinically surfacing diseases.

Why Use Modeling?

The evaluation of screening usually focuses on whe-
ther or not the screening program has led to a fall
in mortality from the disease in question. As with
most medical interventions, randomized controlled
trials (RCT) (see Clinical Trials, Overview) provide
the most satisfactory empirical basis for evaluating
screening programs. However, they do have signifi-
cant limitations.

RCTs for screening are expensive and time-consu-
ming to run – typically requiring very large sample
sizes and having long time lags until benefits are
apparent (see Screening Trials). For example, the
RCT of mammography screening carried out in the
two Swedish counties of Kopparberg and Ostergot-
land had a total sample size of 134 867. A statistically
significant mortality differential between the control
and study groups did not appear until after six years
of follow-up, with a further four years of follow-
up before the results could be considered defini-
tive [58]. Twenty years of data would be required to
yield results on some aspects of screening program
design [21].

Any one trial cannot address all the issues involved
in designing a screening program. For example, the
Minnesota Colon Cancer Control Study used an RCT
to demonstrate a statistically significant fall in mor-
tality due to screening with a Fecal Occult Blood
Test (FOBT), followed by colonoscopy in those with
a positive screen [43]. However, Lang & Ranso-
hoff [39] have subsequently suggested that the sensi-
tivity of FOBT is considerably less than that reported
in the Minnesota study. FOBT has a high false posi-
tive rate, and they argue that one-third to one-half of
the fall in mortality could be due to chance selection
for colonoscopy where an early cancer or large ade-
nomatous polyp is present but not bleeding and the
FOBT is positive for other reasons. The original RCT
provides no basis for deciding on the role of FOBT
separately from that of colonoscopy.

Models are one way in which the information on
the disease and screening tests from a number of
different sources – including RCTs and other clini-
cal and epidemiologic research – can be combined
with known and hypothesized features of the spe-
cific population to be screened. They can be used to
investigate the effect of different screening regimes
on different subgroups of the population, both on dis-
ease mortality and program costs. For example, one
use of modeling has been to investigate the inclu-
sion of different age groups in the population to be
screened. They can also be used to project the future
course of the disease and screening program, to eval-
uate the changes in costs and benefits over time.

The modeling approach does have limitations. The
extra information is obtained from models only by
imposing assumptions about the screening process.
These include assumptions about the natural his-
tory of the disease, about the characteristics of the
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screening test and about the behavior of the popula-
tion under study. These assumptions can only rarely
be verified, although they can be evaluated as part of
the modeling process.

A further complication in making these assump-
tions is that the natural history of most diseases is
not completely understood, particularly in the asymp-
tomatic preclinical phase, which is the main focus of
screening. This means that one may hypothesize a
disease model that meets the constraints of current
knowledge but which is still ultimately misleading.

Characteristics of Screening Models

Types of Model

Bross et al. [14] proposed a classification of models
used to analyze screening strategies into two types:
surface models and deep models. Surface models con-
sider only those events that can be directly observed,
such as disease incidence, prevalence, and mortal-
ity. Deep models, on the other hand, incorporate
hypotheses about the disease process that generates
the observed events. Their intent is to use the surface
events as a basis for understanding the underlying
disease dynamics. This implies models that explic-
itly describe the disease natural history underlying
the observed incidence and mortality.

Deep modeling permits generalization from the
particular set of circumstances that generated the
surface events. As a result, whereas surface mod-
els provide a basis for interpreting the observable
effects of screening, deep models provide an explicit
basis for determining the outcomes of screening sce-
narios that have not been directly studied in clinical
trials [56]. This article will focus on the application
of deep models to population screening.

These models can be further grouped into two
broad categories – those that describe the system
dynamics mathematically and those that entail com-
puter simulation. The first of these, designated ana-
lytic models, uses a model of the disease to derive
direct estimates of characteristics of the screen-
ing procedure and its consequent benefits. The sec-
ond, designated simulation models, uses the disease
model to simulate the course of the disease in a hypo-
thetical population with and without screening and
derives measures of the benefit of screening from the
simulation outcomes.

Markov Framework for Modeling

Most screening models use an illness–death model
for the disease which is developed within the frame-
work of a Markov chain. A sequence of random
variables {Xk, k = 0, 1, . . .} is called a Markov chain
if, for every collection of integers k0 < k1 < · · · <

kn < ν,

Pr(Xν = i|Xk0, . . . , Xkn
) = Pr(Xν = i|Xkn

),

for all i. (1)

In other words, given the present state (Xkn
), the

outcome in the future (Xν = i) is not dependent on
the past (Xk0 , . . . , Xkn−1 ).

The Markov chain formulation is applied to an
illness–death model in the following way [16]. The
population under study is classified into n states, the
first m of which are illness states and the remaining
n − m of which are death states. An illness state can
be broadly defined to be the absence of illness (a
healthy state), a single specific disease or stage of
disease, or any combination of diseases. In modeling
screening, these states typically refer to a healthy state
and preclinical and clinical phases of the disease.

A death state is defined by cause of death, either
single or multiple. Emigration or loss to follow-up
may also be treated as a death state. In modeling
screening, typically there will be one death state due
to death from the disease and another due to death
from any other competing cause (see Competing
Risks). Entry to a terminal stage of the disease is also
sometimes treated as a death state. Transition from
one state to another is determined by the transition
probabilities, pij , where

pij = Pr(Xk+1 = j |Xk = i),

i, j = 1, 2, . . . , n; k = 1, 2, . . . . (2)

Death states are absorbing states, since once one
reaches that state, transition to any other state is
impossible (i.e. pij = 0, for i = m + 1, . . . , n, and
j �= i). The disease model is said to be progressive
if, once one enters the first stage of the disease, in
the absence of interventions (such as screening) and
competing risks, the only valid transitions are through
the remaining disease stages. Because the disease
is modeled using a Markov chain, the future path
of an individual through the illness and death states
depends only on his or her current state, and the future
distribution of individuals between illness and death
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states depends only on the present distribution and
not on any past distributions.

This basic model can be varied in a number of
ways. The Markov chain treats time as increasing in
discrete steps corresponding to the index k. Thus a
transition between states can only occur at discrete
time intervals. Most screening models extend this to
allow transitions to occur in continuous time. In this
case, the transition probabilities for any two points in
time t1 and t2 are

pij (t1, t2) = Pr(X(t2) = j |X(t1) = i),

i, j = 1, 2, . . . , n. (3)

If pij (t1, t2) only depends on the difference t2 − t1
but not on t1 or t2 separately, the model is time
homogeneous. The simple Markov chain described
above is time homogeneous. This can be varied
to allow the transition probabilities to vary with
time. The probabilities can also be allowed to vary
with age and other relevant characteristics of the
individual. Some of the model formulations also
allow the probability of transition out of a state to
depend on the sojourn time in that state.

A Simple Disease and Screening Model

In this section we describe a simple model pre-
sented (and discussed in greater detail) by Shwartz &
Plough [56], based on a characterization of the dis-
ease process proposed by Zelen & Feinleib [65]. We
assume that a person can be in one of three states – a
healthy state, the preclinical phase of the disease, or
its clinical phase. This characterization also implicitly
assumes a death state following the clinical phase, but
since the focus of the analysis is on the preclinical
phase, the death state is not explicitly used.

The model is progressive in that once a person
enters the preclinical state, in the absence of screen-
ing or death from another cause, the disease will
ultimately surface and enter the clinical phase. If
the person is screened while in the preclinical state,
then the disease may be detected with a probability
depending on the sensitivity of the screening test.

The main assumption underlying this model (and
the whole screening process) is that the earlier in
the preclinical phase the disease is found, the better
will be the prognosis. Hence, the screening benefit is
directly related to the lead time.

For this model we define the following:

1. L is the lead time;
2. g(y) is the hazard rate for entering the preclin-

ical state at age y;
3. p(t) is the hazard rate for clinical surfacing after

the disease has been in the preclinical phase for
time t ;

4. f (t) is the false negative rate of the screen when
the disease has been present for time t ; and

5. b(t) is the probability of ultimately dying from
the disease if it is detected when it has been
present for time t .

For simplicity, we ignore the possibility of death from
other causes.

If we let m and σ 2 be the mean and variance
of the sojourn time distribution, then Zelen & Fein-
leib [65] show that if we assume a constant hazard
rate for disease initiation (i.e. g(t) = g) we obtain the
following expression for the mean lead time:

E(L) = m2 + σ 2

2m
= m

2

[
1 +

(
σ 2

m

)]
. (4)

Note that E(L) > m/2 for σ 2 > 0. This illustrates the
effect of length-biased sampling, since, if the screen
detected cases were selected at random from all of
the cases, one would expect the mean lead time to
be m/2.

This expression also illustrates one of the cen-
tral difficulties with this form of modeling. The lead
time, which is the main index of screening bene-
fit, is a function of the distribution of the sojourn
time in the preclinical phase (see Screening, Sojourn
Time). However, the preclinical phase is, by defini-
tion, unobservable. The question of how to estimate
characteristics of the sojourn time distribution has
been at the center of most of the work done in
this area.

For a person to be in the preclinical state at age
a, then they must have entered the preclinical state
before age a and not leave it until after age a. Hence
the probability of this is a function of the hazard rates
g(·) and p(·). Thus

Pr(preclinical phase at age a)

=
∫ a

0
g(u) exp[−G(u)] exp[−P(a − u)] du. (5)
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Furthermore, the probability that the disease clinically
surfaces in some time interval δa following a is

Pr(clinical surfacing in (a, δa))

=
∫ a

0
g(u) exp[−G(u)] exp[−P(a − u)]

× p(a − u)δa du. (6)

We combine this with the prognosis measure b(·)
to calculate a baseline probability of death from the
disease in the absence of screening:

Pr(death in the absence of screening)

=
∫ ∞

0

∫ a

0
g(u) exp[−G(u)] exp[−P(a − u)]

× p(a − u)δab(a − u) du da. (7)

Now we introduce the effect of screening. We will
consider the case of one screening test performed at
age s. There are four possibilities:

1. the disease is detected by the screening test;
2. the disease clinically surfaces before the test (i.e.

at age a < s);
3. the disease is missed by the screening test and

clinically surfaces after the screen (i.e. it is an
interval case); or

4. the disease both enters the preclinical phase and
clinically surfaces after the screening test.

For the disease to be detected by this test, it must
be in the preclinical phase and the test must not give
rise to a false negative. The probability of this is

Pr(disease detection at age s)

=
∫ s

0
g(u) exp[−G(u)] exp[−P(s − u)]

× (1 − f (s − u)) du. (8)

We have already calculated the probability that the
disease clinically surfaces at age a < s in (6). For
the disease to have been missed by the screen, the
person must be in the preclinical state at age s, the
test must have produced a false negative, and the
disease must have clinically surfaced after the screen.
The probability of this is

Pr(disease missed by test)

=
∫ ∞

s

∫ s

0
g(u) exp[−G(u)] exp[−P(a − u)]

× f (s − u)p(a − u)δa du da. (9)

The probability that the disease both enters the pre-
clinical phase and clinically surfaces after the screen-
ing test is

Pr(disease both develops and surfaces

after the screen) =
∫ ∞

s

∫ ∞

s

g(u) exp[−G(u)]

× exp[−P(a − u)]p(a − u)δa du da. (10)

Once again we can combine these probabilities with
our prognosis measure to obtain the probability of
death from the disease in the presence of screening:

Pr(death in the presence of screening)

=
∫ s

0
g(u) exp[−G(u)] exp[−P(s − u)]

× (1 − f (s − u))b(s − u) du

+
∫ s

0

∫ a

0
g(u) exp[−G(u)] exp[−P(a − u)]

× p(a − u)δab(a − u) du da

+
∫ ∞

s

∫ s

0
g(u) exp[−G(u)] exp[−P(a − u)]

× f (s − u)p(a − u)δab(a − u) du da

+
∫ ∞

s

∫ ∞

s

g(u) exp[−G(u)] exp[−P(a − u)]

× p(a − u)δab(a − u) du da. (11)

This expression gives us our screening figure to
compare with the baseline figure in (7).

Although none of the models used for disease
screening is exactly like the simple model presented
here, they all incorporate its fundamental ideas. In
particular, they all depend on knowing in one form or
another the transition probabilities into and out of the
preclinical state, the distribution of the sojourn time in
the preclinical state, the sensitivity of the screening
test, and the disease prognosis as a function of the
development of the disease (see Natural History
Study of Prognosis).

Analytic Models for Cancer

A mathematical disease model with two states was
first proposed by Du Pasquier [24], but it was Fix
& Neyman [32] who introduced the stochastic ver-
sion and resolved many problems associated with the
model (see Fix–Neyman Process). Their model has
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two illness states – the state of “leading a normal
life” and the state of being under treatment for can-
cer – and two death states – deaths from cancer and
deaths from other causes or cases lost to observa-
tion. Chiang [15] subsequently developed a general
illness–death stochastic model which could accom-
modate any finite number of illness and death states
(see Stochastic Processes). Some of the major ana-
lytic models developed for cancer screening are listed
in Table 1.

Lincoln & Weiss [41] were the first to propose
a model of cancer as a basis for analyzing serial
screening, in this case screening for cervical cancer.
They did not explicitly use a Markov framework,
but their model implicitly uses a classification of the
disease into illness states.

Zelen & Feinleib [65] proposed the simple three-
state, continuous-time, progressive disease character-
ization described in the previous section and used it
in model screening for breast cancer. In a modifica-
tion to this basic model, the authors further divide the
preclinical state into two parts, defined as:

1. a preclinical state in which the disease never
progresses to the clinical state (i.e. the sojourn
time is allowed to be infinite); and

2. a preclinical state in which the disease is progres-
sive and will eventually progress to the clinical
state.

These are used to allow for the possibility that some
individuals with the disease in a preclinical state will
never have the disease progressing to a clinical state.
This approach has been generalized in a number of
ways by subsequent authors, with most focusing on
simple disease models and the estimation of specific
screening characteristics.

Prorok [48, 49] extended the lead time estima-
tion to multiple screens. Blumenson [10–12] calcu-
lated the probability of terminal disease as a func-
tion of disease duration to date, and used this as
a prognostic measure to evaluate screening strate-
gies. Shwartz [54, 55] modeled disease progression
for breast cancer using tumor size and number of
axillary lymph nodes involved to define the preclini-
cal and clinical states. He then determined screening
benefit measures (see Screening Benefit, Evaluation
of), from data on five year survival rate and five year
disease recurrence rate for patients, as a function of
tumor size and lymph node involvement.

Albert and his co-workers [3, 4, 42] developed a
comprehensive model for the evolution of the nat-
ural history of cancer in a population subject to
screening and natural demographic forces. In its gen-
eral formulation, the model uses Zelen & Feinleib’s
classification of the disease into preclinical and clin-
ical phases, but divides the preclinical phase into
states corresponding with prognostic tumor staging
schemes. It also has two death states which corre-
spond to clinical surfacing of the disease or death
from a competing risk. The model is progressive,
but allowance is made for staying indefinitely in any
given state.

This model is then applied to breast and cer-
vical cancer. Breast cancer is modeled with two
illness states, state 1 corresponding to disease with
no lymphatic involvement and state 2 corresponding
to disseminated disease (the contrary case). Cervical
cancer is modeled with three illness states, state 1
corresponding to neoplasms in situ, state 2 corre-
sponding to occult invasive lesions, and state 3 cor-
responding to frankly invasive lesions. The authors
then impose on this model a screening strategy with a
particular probability of a positive screen, depending
on a person’s age and disease state. Using this, they
derive equations describing how the natural history
of cancer (depicted by the distribution of numbers in
each state and associated sojourn times) evolves over
time in the presence of screening. These, in turn, are
used to derive equations for measures of benefit from
screening in terms of the disease status. These bene-
fit measures include the percentage reduction in the
cumulative number of observed cases of late disease
due to screening and the percentage decrease in lost
“salvageables” due to screening. A salvageable is a
person who would have benefited from screening but
who, in the absence of screening, progresses to a late
stage of the disease before discovery.

Dubin [25, 26] developed a general multistage dis-
ease model similar to that of Chiang [15], and applied
this to breast cancer using the same two stage clas-
sification as Albert et al. [4]. He noted the difficulty
in estimating parameter values for detailed disease
models from existing data from screening programs.
His model aimed to avoid these difficulties by main-
taining comparability between the model and the
observable characteristics of a screened population.
He did this by focusing on age and stage-specific inci-
dence and survival times in the presence and absence
of screening. He derived formulas for the proportion
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of disease incidence which had been diagnosed ear-
lier due to screening than it would have been in the
absence of screening, and used these to derive var-
ious measures of screening benefit. Dubin’s model
is not strictly a deep model as defined above. How-
ever, although he makes no explicit hypotheses about
the rate of disease progression, such hypotheses are
implicit in his model.

Day & Walter [22] developed a variation on the
simple three-stage model which has been used exten-
sively. The focus of this model is the sojourn time
in the detectable preclinical phase, for which a prob-
ability distribution is specified. For example, Walter
& Day [63], in applying the model to breast can-
cer, used several alternate distributions, including
the exponential, the Weibull, and a nonparamet-
ric step function. Under the model assumptions, one
may derive expressions for the anticipated incidence
rates of clinical disease among groups with particular
screening histories and for the anticipated prevalence
of preclinical disease found at the various screening
times. One advantage of this model is that it is rela-
tively simple to obtain approximate confidence inter-
vals for parameter values. The model was extended
by Walter & Stitt [64] to permit evaluation of survival
of cancer cases detected by screening.

A useful synthesis of the analytic models described
above applied to breast cancer is presented by O’Neill
et al. [46].

All of the above are progressive models, but there
are some forms of cancer for which the assumption
of progression is not appropriate and for which some
form of regression is required. These are cancers,
such as large bowel cancer and particularly cervical
cancer, where screening detects preinvasive or even
precancerous lesions [13].

A number of models have attempted to address
this. Coppleson & Brown [20] developed a model
for cervical cancer and found that the observed data
could not be explained without allowing for regres-
sion. Albert [2] developed a variation of his ear-
lier model for cervical cancer which allowed for
regression from the carcinoma in situ stage back
to the healthy state. Brookmeyer & Day [13] and
van Oortmarssen & Habbema [59] both developed
similar extensions to the Day & Walter model to
divide the preclinical phase into two. The first stage
allows regression to a healthy state, but once a cancer
reaches the second stage only progression is allowed.

The Coppleson & Brown, Albert, and van Oort-
marssen & Habbema studies provide an interesting
variation on the use of these models, in that the
aim of the model was not to study cancer screen-
ing directly. Rather, the model was used to study the
disease dynamics and, in particular, to examine the
epidemiologic evidence for the existence of regres-
sion in preinvasive cervical cancer.

The models described above follow a common
theme of characterizing the disease as a series of
states (corresponding to health, the various disease
stages, and death), with people moving between the
states with certain transition probabilities and/or cer-
tain sojourn times. Screening is then evaluated by
superimposing on the disease process a screening
process with particular screening regimes and screen
sensitivity. This is in contrast to the next model, due
to Eddy [27], which uses a different strategy.

Eddy’s modeling strategy uses a time varying
Markov framework. However, he models the inter-
action between the screen and the disease in his basic
model. This is a five-stage model defined in terms
of three time points. The first is a reference time
point tp. The way in which this is defined varies with
the cancer under discussion but, as an example, for
breast cancer it is the point at which the disease can
first be detected by physical examination. The occult
interval is then defined as the time interval between
this and the point tM at which the disease is first
detectable by screening (e.g. by mammography). The
patient interval is defined as the time between tp and
the time tΠ at which the patient would actually seek
medical care for the lesion. With Eddy’s model, tΠ ,
tp, and tM can occur in any order. The important
assumption is that once a disease is detectable by
a screening modality (i.e. after tM ), then any screen
using that modality will always detect the disease.
This assumption replaces the assumption commonly
made in models of screening that successive screens
are independent.

The other two states are a “healthy” state (which
includes any preclinical disease which is still unde-
tectable by screening) and a clinical disease state.
Eddy models the probability distributions of the
occult and patient intervals and uses these to derive
formulas for the probabilities of discovering a malig-
nant lesion by screening and by other methods.
Eddy’s model has been applied to several breast
cancer screening data sets as well as to cervical, gas-
trointestinal, lung, and bladder cancer. It has also



12 Screening, Models of

been extended to the case in which there is more
than one type of screening test [31].

Finally, there are three recent analytic models
which provide interesting variations on screening
modeling.

The first of these is the stage shift model [19].
This assumes that the effect of screening is to shift
the diagnosis of a cancer from a higher to a lower
stage or within a given stage to an earlier time of
diagnosis. Connor et al. develop the theory for a
randomized controlled trial with equal sized inter-
vention and control groups, but the equations can be
modified to allow for proportional number of cases
if unequal groups are used. The method of fitting
this model requires a completed trial with follow-up
that has reached the point at which comparable sets
of cancer cases have accumulated in the study and
control groups. For most of the discussion, Connor
et al. ignore variability associated with the estima-
tion process and the determination of the point at
which comparability is reached in order to empha-
size the exploratory nature of the analysis. However,
they do present simple variance estimates based on
the assumption that their data follow a Poisson dis-
tribution. The need for a completed trial and long
follow-up period limits the model’s applicability, but
it has been used to analyze breast cancer screening
data [17].

The second is the peak analysis model [9]. This
uses data from a randomized trial to determine the
time period during which screening has the maxi-
mum effect on mortality. The results of the trial can
then be analyzed restricting attention to that time
period, providing more powerful statistical tests. For
breast cancer screening, for example, this could mean
excluding the mortality experience of the first few
years after the initiation of screening. A disadvan-
tage of this model is that the selection of the peak
time period for the mortality comparison could be
regarded as “data-driven” and subject to the usual
problems of a post hoc analysis [44].

The third is the use of surrogate endpoints for
RCTs to shorten the duration of the trial and to
increase the power [21]. Day & Duffy apply this
approach to a study comparing breast cancer screen-
ing at three yearly and one yearly intervals. Tumor
size is the most important variable in predicting sur-
vival from breast cancer in the screening context, so
they consider the difference in tumor size distribu-
tion between the study groups. They show that using

this as an index of benefit and projecting expected
mortality allows a result after only five years, com-
pared with the 15–20 years required for a trial based
on observed mortality. Furthermore, they demonstrate
the rather surprising result that the use of surrogate
endpoints leads to an increase in the power of the
RCT compared with using the observed mortality.
While completed trials remain necessary to estab-
lish the primary benefits of screening, this approach
allows faster and more efficient resolution of sub-
sidiary issues.

Simulation Models for Cancer

Some of the major simulation models developed for
cancer screening are listed in Table 2. Knox [34]
developed the earliest and most comprehensive sim-
ulation model. As with the analytic models, Knox
uses a healthy state, a number of illness states and
two death states. However, the model involves con-
siderably more illness states, including classifying the
disease as a preclinical, early clinical, or late clini-
cal cancer, and further classifying each of these as
treated or not treated and each cancer as high or low
grade.

Knox defines a transition matrix containing the
estimated transfer rates between the various patho-
logical states, modified according to the age of the
individual or the duration of the state. He then sim-
ulates the evolution of the disease in a hypothetical
cohort of study subjects which has similar character-
istics to the population that he wishes to study (which,
in this case, is the adult female population of England
and Wales) using the transition matrix and a standard
life table to provide the risks of competing causes of
death.

Finally, he adds details of the screening procedures
to be considered, specifying the clinico-pathological
states to which they apply, and their sensitivities
and specificities in relation to each, and the trans-
fers between model states which will occur following
detection or nondetection. The screening policies are
arranged in incremental series, and the results com-
pared with each other and with the results of pro-
viding no screening at all. This allows the appraisal
of benefits and costs in both absolute and marginal
terms.

This model has been applied to both cervical
cancer [34] and breast cancer [35]. It illustrates one
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major difference between the analytic and simulation
approaches – the greater complexity of the disease
and screening models in the simulation case. How-
ever, this extra complexity requires more detailed
information on the disease dynamics in order to spec-
ify the model and this information is often not readily
available. Knox [36] says of his earlier work that

The chief problem of applying the predictions stem-
med from uncertainties about the clinical course of
the early stages of cancer.

In this and in all his subsequent analyses, he simpli-
fied his model to one with only two illness states.
This two-state model is worth discussing in detail
because of its different approach to the population
under study. Whereas the usual approach is to con-
sider all people at risk of a cancer and to use the
model to project mortality with and without screen-
ing, Knox’s approach is to consider only those who
have died from cancer, and to use the model to
estimate how many would have been saved if screen-
ing had been offered. He refers to it as “tearing
down” a graph of age-distributed deaths in successive
steps through the insertion of screening procedures
at selected ages [37]. This means that Knox does not
need to consider variations in the course of the dis-
ease, such as lesions which never clinically surface or
which regress to a healthy state, because all members
of his population have, by definition, a progressive
form of the disease.

The two illness states are designated A and B. Dur-
ing state A the disease is susceptible to early detection
and full or partial cure. During state B, the disease
is incurable. The sojourn time in each state varies
around an age-specific mean. The screening proce-
dure has a probability of detecting the lesion which
rises linearly during period A, while the probability
of curing the disease falls linearly during A.

This model has the advantage of simplicity, which
means that it is relatively easy to find plausible
parameter values for it. However, this simplicity has
disadvantages. The model only considers the situation
of a fully established screening program, so that
it cannot be used to investigate issues surrounding
setting up a new program. Also, because it is focused
on mortality reduction, it cannot be used to consider
issues relating to costs of screening programs.

Researchers at the Australian Institute of Health
and Welfare have extended this approach by com-
bining Knox’s disease model with a costs model

to evaluate the introduction of breast and cervical
cancer screening programs in Australia [6, 7]. They
have also combined the disease model with mortal-
ity projections to investigate the timing of mortality
reductions due to the introduction of a breast cancer
screening program [8].

Parkin [47] identifies a number of advantages of
the cohort simulation approach of transferring year
by year specified proportions of a single cohort in
a deterministic fashion between model states. These
include the model’s ability to:

1. demonstrate the relationships between variables;
2. explore the effects of different acceptance rates

and test characteristics on outcome measures;
3. examine the net cost-effectiveness of differ-

ent screening policies by imputing costs to the
different outcomes of screening tests (see Health
Economics); and

4. explore the effect of different theoretic natural
histories on the outcome of screening.

However, he also identifies some of the disad-
vantages of this approach. First, services have to
be planned, not for a single cohort over an entire
lifespan, but for a very heterogenous population over
relatively short time periods. When a screening pro-
gram providing for testing at certain fixed ages is
introduced into a community, only people younger
than the starting age for the screening policy can pos-
sibly receive the full schedule of tests. Thus, benefits
from screening will at first be small, but will increase
progressively as more of the population receives a
series of examinations. Furthermore, many people
will have already had previous examinations, so the
results of the screening policy will depend on the
existing screening status of the population. This can-
not be simulated by a single cohort model; nor can
differences in the risk of disease in different birth
cohorts.

Secondly, it may be desirable to use characteristics
other than age to identify subgroups of the popu-
lation for selective screening. This is less often of
practical use, since such subgroups are usually not
readily identifiable, but a planning model should be
able to explore the effectiveness of policies involv-
ing differential screening of such subpopulations. In
addition, population subgroups often have different
rates of attendance at screening programs which may
be correlated with different disease risks.
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Finally, screening programs do not exist in isola-
tion from the rest of the health care system. Much
screening activity can take place outside a screen-
ing program. Most models usually treat this activity
as “diagnostic” and ignore it. However, a planning
model should take account of all relevant screening
activity.

Parkin proposes instead a microsimulation app-
roach. Here, the life histories of individual mem-
bers of a population are simulated. The population
in his model has the demographic make-up of that
of England and Wales and its size is governed by
two considerations: (i) the computer time involved
in microsimulation of very large populations; and
(ii) the need for reliable results in a stochastic simu-
lation of relatively rare events.

Each individual is characterized by his or her
values for a set of variables which will be used in
simulating demographic events, the disease natural
history, or screening programs. The values of these
variables are updated annually using sets of condi-
tional transition probabilities (e.g. the probability of
childbirth given age, marital status, and initial parity).
The occurrence of a transition is decided by com-
paring the relevant probability against a randomly
generated number. There is considerable flexibility in
modeling screening programs and, since the model
follows individuals, it is possible to simulate con-
tacts with the health care system and the “incidental”
screening which occurs on such occasions.

Parkin’s microsimulation model was developed
specifically for cervical cancer screening, but a
group working at Erasmus University in the Nether-
lands has developed a general modeling framework
for microsimulation modeling of cancer screening
called MISCAN (MIcrosimulation SCreening ANaly-
sis) [33, 61]. Strictly speaking, MISCAN is not itself
a model, but rather a model generator – a package
that can generate and calculate a variety of these
microsimulation models.

The MISCAN approach, like Parkin’s model, is
based on the actual structure of a population as it
develops in a given country at a particular time.
The mass screening program under consideration is
taken as starting in a particular year and finishing in
a particular year. Standard demographic techniques
(see Demography) are used to project the study
population to a year well after the nominated end
of the program. This allows for both the introduction

of the program to be modeled and the effects, after
the end of the program, to be followed up.

The basic structure of the cancer model is similar
to Knox’s earlier model with a detailed classifica-
tion of clinical and preclinical cancer states, although
it uses a smaller number of states. The interaction
between the disease model and the screening program
is designed to allow projection of screening and treat-
ment costs as well as cancer mortality and morbidity.
MISCAN has been widely used to analyze breast and
cervical cancer screening programs.

Model Fitting and Validation

Eddy [28] proposed four levels of validation for
mathematical models (see Model Checking):

1. First-order validation: this requires that the struc-
ture of the model makes sense to people who
have a good knowledge of the problem.

2. Second-order validation: this involves comparing
estimates made by the model with the data that
were used to fit the model.

3. Third-order validation: this involves comparing
the predictions of the model with data that were
available when the model was fitted but that were
not used in the estimation of model parameters.

4. Fourth-order validation: this involves comparing
the outcomes of the model with observed data
when applied to data generated and collected
after the model was built (for example, data from
a previously unobserved screening program).

In this section we discuss model fitting and valida-
tion for cancer screening in the framework of these
levels.

First-order validation is generally not difficult to
accomplish. The conceptualization of cancer as a
series of preclinical and clinical stages is virtually
universally accepted as a reasonable characterization
of the disease. Problems may arise when the details of
the disease stages are specified, but generally a wide
variety of model formulations are plausible within the
constraints of the limited knowledge of preclinical
cancer.

Second-order validation highlights one of the cen-
tral problems with this sort of deep model. This is the
difficulty of directly relating available data to model
parameters. The mismatch between the data avail-
able, either from screening trials or other sources,
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and the model data requirements for parameter esti-
mation has been recognized from the beginning of
this type of modeling. Lincoln & Weiss [41, p. 188]
note, for example, that

Here we can do no more than introduce plausible
forms for the different functions involved and plau-
sible values for the parameters.

They go on to describe the difficulties in relat-
ing available data to the mathematical functions on
which their model is based. This is a recurring prob-
lem in modeling cancer for screening, and to some
extent affects all of the models described in this arti-
cle.

Some of the analytic models have developed
methods of estimating model parameters using stan-
dard statistical estimation approaches. Dubin [26],
for example, structured his model so that it could
directly use the data from screening trials, although
as a consequence his model relates less to the disease
natural history than do the others. Louis et al. [42]
derived nonparametric models for the probability dis-
tributions specified in their model and proposed the
use of maximum likelihood methods to fit them.
Day & Walter [22] used both parametric and non-
parametric functions for their preclinical sojourn time
and suggested either maximum likelihood methods or
least squares criteria to fit them. However, many
of the analytic models and all of the simulation
models proceed in a more ad hoc fashion by vary-
ing their disease natural history and model param-
eters until their models closely reproduce existing
data.

Knox [35], pp. 17–18 gives an example of how
this ad hoc fitting operates, in fitting his earlier model
to breast cancer screening data. He describes fitting
the natural history data thus:

A statement of the natural history of the disease
process must be provided in the form of a “tran-
sition matrix” which gives estimated transfer rates
between the various pathological states, modified
suitably according to the age of the woman or the
duration of the state. This set of values is adjusted
iteratively until an output is produced which matches
available data on incidence, prevalence and mortal-
ity. If, as sometimes happens, more than one natural
history statement is capable of mimicking these facts,
then the natural history will have to be treated as
one of the uncertainties. Subsequent runs will then
have to be repeated for a range of natural history
alternatives, and each prediction of results will be

conditional upon the accuracy of the natural his-
tory used.

Parkin [47] provides an example of just such an
uncertainty about natural history, with the final model
including three different natural histories as alterna-
tives.

This approach to model fitting has the disadvan-
tage that, particularly for models with a large number
of unknown parameters, the fit of the predicted val-
ues may be close to the observed data whether or
not the model is in any sense valid. However, fit-
ting the model to a number of independent data
sets simultaneously and validating it against each of
these data sets, as was done by van Oortmarssen
et al. [61], provides some protection against this pos-
sibility.

Third-order validation is usually made difficult by
the lack of data. Generally, most available data are
used in determining the parameters of the model [56].
Breast cancer models are a good example of this. The
only real data sources for fitting models for breast
cancer screening are the screening studies, and in par-
ticular the RCTs. The first major study was the Health
Insurance Plan of New York study (HIP) [53]. This
program started screening in 1963. Subsequent stud-
ies were not started for another ten years, with the
Utrecht Screening Program [18] starting screening in
1974 and the Swedish Two-county Randomized Trial
starting in 1977 [58]. This means that many of the
models only had access to the HIP data. Screening
technology has changed significantly since the HIP
program began [61], so when later studies became
available they could not be directly compared with
the HIP program and, in any case, it is question-
able whether models based only on HIP data are
directly relevant to modern screening. Because of
the long time before mortality benefits from screen-
ing are fully apparent, models fitted using solely
data from later studies have only appeared relatively
recently [61] and, at least in their published form,
have generally not addressed the issue of third-order
validation. However, as more screening programs are
implemented, more data should become available for
third-order validation [6].

Eddy [28] recognized that fourth-order validation
is only possible in rare cases. However, there are
at least two examples of studies which use models
in a way that could be called fourth-order valida-
tion, coincidentally both using Eddy’s own model.
Verbeek et al. [62] compare predictions from Eddy’s
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model for breast cancer to data from a mammogra-
phy screening program in Nijmegen. The authors note
that the comparison does not suggest too good a fit.
However, this is only a preliminary study, and fur-
ther validation work remains to be done. Eddy [29]
compares his model for cervical cancer with a later
independent analysis of empirical data. In this case
the model appears to predict accurately the effect of
different cervical cancer screening policies on out-
comes that are important for policy decisions.

The best way to see how these models are fitted
and used in practice is to examine examples. The fol-
lowing three sections describe an example of fitting
a model followed by a description of its application.

An Example of Model Fitting

This section describes the analysis by van Oort-
marssen et al. [61] of breast cancer screening based
on the MISCAN computer simulation package. This
model is designed to reproduce the detection rates
and incidence of interval cancers as observed in the
screening projects in Utrecht and Nijmegen in the
Netherlands.

The basic model structure is shown in Figure 2.
The first state is the state of no breast cancer. Women
stay in this state until a transition occurs to one of
the preclinical states that is detectable by screening
(either mammography or clinical examination). The
preclinical phase is divided into four states. There is
one preinvasive state, intraductal carcinoma in situ
(dCIS), and three screen detectable invasive states
subdivided according to the diameter of the tumor:
<10 mm, 10–19 mm, and ≥20 mm.

The subdivision applied to the preclinical inva-
sive states is also used for the clinical phase and
for screen detected tumors. The state “false posi-
tives” refers to women with a positive screening
examination in whom no breast cancer is found
at further assessment. The two end states of the
model are “death from breast cancer” and “death
from other causes”. Transitions into the “death from
other causes” state (not shown in the figure) are
possible from every other model state and are gov-
erned by the Dutch life table, which is corrected
for death from breast cancer. The values of the
key parameters of the model are summarized in
Table 3.

Parameters relating to clinical breast cancer and
survival can usually be taken directly from avail-
able data. In this case, the preclinical incidence was

estimated from the reported Dutch clinical incidence
figures shifted to younger ages according to the
model’s assumptions about the transitions and dura-
tions in the preclinical stages. The distribution of
the tumor diameters for clinically diagnosed cancers
was obtained directly from data on cancers diag-
nosed outside the screening program in Utrecht and
Nijmegen. Survival is described by a fraction cured
and a survival time distribution for women who are
at risk of dying from breast cancer. The survival
time distribution is based on the lognormal, with
mean and variance taken from a published analy-
sis of the Swedish Cancer Registry data [52]. The
fraction cured was estimated from the Utrecht data
on clinically diagnosed cancers and varied with age
according to another published analysis of Swedish
data on age-specific breast cancer survival [1]. The
combination of model assumptions on clinical inci-
dence, stage distribution, and survival result in a good
fit for the mortality rate for breast cancer in the
Netherlands at all ages.

Parameters relating to the preclinical phase are less
easily specified. Parameter estimation was done by
comparing simulated results from the model with data
from the Utrecht and Nijmegen projects. An initial
set of parameter values, partly taken from an ear-
lier analysis of the HIP screening trial [60], resulted
in many discrepancies between the simulated and
observed data. The model parameters were system-
atically varied until a set of model specifications
was found which gave an adequate overall fit to the
Utrecht and Nijmegen data. Finally, the improvement
in prognosis due to screen detection was calculated
from the results of the Swedish Two-county screening
study [58].

This model passes both first- and second-order val-
idation, in that it is consistent with what is known
about the natural history of breast cancer and with
previous models developed in the literature, and its
results are consistent with the Utrecht and Nijmegen
data used in its fitting. Third-order validation is
more problematic. As noted above, the HIP data
are not directly comparable with those considered
here and the authors used all the other available
data in fitting the model. Similarly, fourth-order
validation is not possible in this case, since pub-
lished results from other breast cancer RCTs were
not available at the time this analysis was carried
out.
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Table 3 Key assumptions of the van Oortmarssen et al. breast cancer screening model

Parameter Assumption

Preclinical incidence Based on Dutch clinical incidence,
1977–82

Clinical stage distribution Independent of age
<10 mm 10%
10–19 mm 22%
≥20 mm 68%

20 year survival of clinically diagnosed breast cancer Age-dependent
(diagnosis at age 55 )

<10 mm 83%
10–19 mm 68%
≥20 mm 51%

Duration of preclinical invasive stages Average duration (years)
Age 40 years 1.6
Age 50 years 2.1
Age 60 years 3.0
Age 70 years 4.7

Sensitivity of mammography Independent of age
dCIS 70%
<10 mm 70%
≥10 mm 95%

Impact of early detection
Mortality reduction for screen detected cancers 52%

Source: van Oortmarssen et al. [61].

An Application of the Model to Breast Cancer
Screening

The breast cancer disease model described above was
applied to Australian data by Stevenson et al. [57] to
simulate the introduction of a breast cancer screen-
ing program. Australian breast cancer data and life
table data were used to estimate cancer incidence and
population life expectancies. Pilot testing of screen-
ing programs suggested that a screening participation
rate of 70% was a reasonable target [6]. All other
model parameters were taken from the van Oort-
marssen et al. model.

The model was applied to five different screen-
ing options defined in terms of the age group offered
screening and the interval between successive screens.
These are listed in Table 4. Taking 1990 as the nomi-
nal starting year, the analysis simulated the introduc-
tion of a screening program phased in over five years
and running for a further 25 years. The simulated total
life years lost in the absence of a screening program
and the life years saved by screening for each of the
screening options are listed in Table 5. These results
show a clear benefit in including women aged 40–49

Table 4 Breast cancer screening options

Option Age group screened Screening interval
number (years) (years)

1 50–69 2

2 50–69 3

3 40–49 1
50–69 2

4 40–49 2
50–69 3

5 40–69 2

in the screening program and of a two year interval
over a three year interval. However, they also show
that decreasing the interval to one year for women
aged 40–49 makes only a marginal improvement.

An analysis of screening should include consid-
eration of costs as well as benefits. A complete
discussion of estimating costs is beyond the scope
of this article, but generally they will be based on
both current screening experience (with, for exam-
ple, screening pilot projects in the location under
study) and model based projections. These estimates



Screening, Models of 21

Table 5 Number and proportion of life years saved among Australian women by mammography screening over a 30
year screening period, as estimated from the van Oortmarssen et al. simulation model

Total life years lost in the Number of life years saved Life years saved as a
absence of a screening as a result of the screening percentage of total life years

Screening option program (’000s) program (’000s) lost

1 3766.6 250.5 6.7
2 3767.0 202.4 5.4
3 3741.2 324.3 8.7
4 3743.1 258.1 6.9
5 3755.6 309.4 8.2

Source: Stevenson et al. [57].
Note: These results are based on the simulation of individual life histories, with the outcomes for each individual being
determined randomly by applying the probabilities of developing the disease and of surviving the disease. This means that the
outcome for each individual may vary between simulations. This accounts for the small variation in the simulated total life
years lost figures.

Table 6 Relative cost-effectiveness of screening at different screening intervals for women aged 40–69

Net present value of costs
to service providers and Net present value of life Average cost per life year

Screening option women ($ million) years saved (’000s) saved ($)

3 1917.8 622.2 3082.3
4 1097.5 628.6 1745.9
5 1374.6 620.6 2215.0

Source: Costs data taken from Australian Health Ministers’ Advisory Council report on breast cancer screening [6].
Projected life years saved data taken from Stevenson et al. [57].
Note: Net present value calculated by applying an annual discount rate of 5%.

Table 7 Percentage of total life years saved among Australian women by mammography screening
as estimated by two simulation models

Life years saved as a percentage of Life years saved as a percentage of
Screening total life years lost – van Oortmarssen total life years lost – Knox two-stage

option et al. model model

1 6.7 12.6
2 5.4 11.1
3 8.7 12.9
4 6.9 11.1
5 8.2 12.8

Source: Stevenson et al. [57].

are usually reported as the present value of the costs.
This involves applying an annual discount rate to
costs projected for future years. Hence, where costs
are compared with benefits, the benefits are usually
also presented in present value terms by applying the
same annual discount rate.

The estimated total costs and costs per life year
saved for the three screening options which include
women aged 40–49 are presented in Table 6. This
shows that the small increase in life years saved

gained by moving to a one year screening interval for
women aged 40–49 is offset by a substantial increase
in the cost per life year saved.

A Comparison of Two Models for Breast Cancer

Stevenson et al. [57] also simulated the introduction
of an Australian breast cancer screening program
using Knox’s two-state disease model described above.
In Table 7 is presented a comparison between the
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percentage life years saved for each screening option
derived from both this model and the van Oort-
marssen et al. model. There are clear differences
between the two models, with the Knox model
estimates consistently higher for all screening options.
Furthermore, the evidence from the Knox model for
including women aged 40–49 is more equivocal.

It is tempting to ask which model is right but,
while there is some reason for preferring the van
Oortmarssen model (because of its more extensive
validation), a more relevant question is which model
more correctly addresses the issue under study. The
Knox model applies to a steady state situation, in
which the screening program has been operating for
long enough so that no one in the target population is
too old to have participated in the full program. The
van Oortmarssen et al. model makes allowance for
the start of the program excluding some women from
fully participating. The effect of this is that the Knox
model will overstate the gains in life years saved at
the start of the program. The difference in the results
for including women aged 40–49 years arise from
more realistic assumptions in the van Oortmarssen
et al. model about the effect of screening at those
ages on subsequent mortality.

Models for Other Diseases

Models for screening can be applied to diseases
other than cancer. For example, screening tests exist
for diabetes and there is a clear value in its early
detection. Undiagnosed diabetes could be considered
as a preclinical phase of the disease and modeling
techniques applied to investigating its characteristics.
Similarly, a disease such as hypertension could be
modeled either for its own sake or as a preclinical
form of cardiovascular disease.

Some work has been done on simulation model-
ing for coronary heart disease [38]. This model used
logistic regression to estimate transition probabili-
ties between risk factor states and heart disease. It
focused on the effects of risk factor reduction, but
did not address details of screening programs. Hence,
it avoided having to model details of the preclinical
phase. There have to date been no significant pub-
lished attempts at modeling the preclinical phase to
investigate specific screening programs for chronic
diseases other than cancer.

On the other hand, modeling of infectious diseases
has a long history in biostatistics (see Communi-
cable Diseases; Infectious Disease Models). Most
recently considerable work has been done on dis-
ease models of AIDS and HIV, although most of
this effort has focused on projecting the spread of
the disease rather than modeling screening programs
(see, for example, Day et al. [23]). However, there
has been some work on modeling screening for infec-
tious diseases.

Lee & Pierskalla’s model [40] is a good illustra-
tion of the similarities and differences in modeling
infectious diseases for mass screening. In this model,
the preclinical phase equates to the period during
which a disease is infectious but without symptoms
and the clinical phase to the period during which
symptoms develop, the person seeks treatment, and
is isolated or removed from the population. The main
quantities used in the modeling are:

1. the number of infected people at a given time;
2. the natural incidence rate of the disease;
3. the rate of transmission of the disease from a

contagious unit to a susceptible;
4. the rate of infected units ending the infectious

period (i.e. clinical surfacing); and
5. the probability that an infected unit will not be

detected by a screening test (i.e. the probability
of a false negative).

The crucial difference here is that disease is ini-
tiated by spread from one unit to another, as well
as by its natural incidence rate. Hence, in addition
to the lead time, the main index of benefit is the
removal of infected units from the population. Indeed,
Lee & Pierskalla show that defining the measure of
screening benefit as the average lead time across the
population under study is equivalent to defining it as
the average number of infected units per time period
in the population.

Taking treatment as the endpoint of the model,
rather than ultimate mortality, has the advantage of
avoiding the necessity of modeling survival in the
presence of screening. However, these models still
have the difficulty of specifying parameters for an
unobserved preclinical phase. For example, Lee &
Pierskalla note that their model is an oversimplifi-
cation, because it assumes that the sensitivity of the
screening test is constant and independent of how
long the person has been infected with the disease.
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They also note that varying this assumption is of little
practical use, since data on transmission rates at the
various disease states are almost nonexistent.

Current State and Future Directions

The problem of model validation and its effect on
the credibility of model based results is still a barrier
to their wider use. Nevertheless, there are a number
of areas in which modeling can make a uniquely
important contribution to our current understanding
of screening.

In the absence of specific RCTs, modeling remains
the only effective way of evaluating different screen-
ing regimes. For example, the inclusion of women
aged between 40 and 50 in a mammography screening
program is still a contentious issue, with no interna-
tional consensus on the effectiveness of screening at
these ages [6]. While it could be argued that deci-
sions on screening these women should not be made
in the absence of reliable evidence on the presence or
absence of the benefits, in practice, governments are
already developing screening programs and modeling
plays an important role in guiding policy-makers.

Modeling also has a crucial role to play in assess-
ing the cost-effectiveness of screening programs.
Even for cheap and easily available screening tech-
nologies, organized mass screening programs are the
best way to insure that the benefits of screening are
fully realized [7]. Modeling is not only necessary in
order to plan these programs, but funding bodies are
unlikely to fund such programs without at least ini-
tial cost–effectiveness studies, and modeling is the
only practical way to derive the necessary estimates
of future benefits and costs.

Miller et al. [44], p. 768 best summarize the cur-
rent situation when, in discussing some recent mod-
els, they say

It is clear that these, and other models already devel-
oped or under consideration, may enhance our under-
standing of the natural history of screen-detected
lesions and the process of screening. However,
they require validation with the best available data,
which is preferably derived from randomized tri-
als, before they could be extrapolated in ways that
might guide policy decisions. As such data become
available, assumption-based models need to be mod-
ified to incorporate this extra information, in order to
improve the extrapolations needed to make policy.

While analytic models have a role in investigating
specific facets of the disease and screening process
(see, for example, [59]), the more comprehensive
simulation models, and particularly the microsim-
ulation models, seem best suited to the overall
assessment of costs and effectiveness in screening
programs and the investigation of different screening
regimes. However, the challenge in using the sim-
ulation approach is to derive disease and screening
models which are sufficiently complex to model all
relevant aspects of screening but sufficiently simple
to enable interpretable second-order validation.
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Screening, Overview

The term “screening” is used to denote a variety of
procedures in medicine and epidemiology. “Screen-
ing for disease” is mostly used to denote “the exam-
ination of asymptomatic people in order to classify
them as likely, or unlikely, to have the disease that
is the object of screening. People who appear likely
to have disease are investigated further to arrive at a
final diagnosis. Those people who are found to have
the disease are then treated” (Morrison [18]).

This definition describes three distinguishing
characteristics of screening for disease. First,
screening is targeted at apparently healthy persons
who are not aware of symptoms for which medical
help would be sought. The prevalence of the disease
in these persons will in general be (very) low.
Secondly, the screening examination will give a crude
distinction between persons with a normal test result,
who do not receive further special attention, and
persons in whom abnormalities are found in the
screening test. Different grades of abnormalities may
lead to more or less intensive follow-up, ranging
from a repeat screening test to immediate treatment.
Thirdly, appropriate treatment of disease which is
detected early is expected to have a favorable impact
on prognosis. The public health goal of screening
for disease, “To reduce mortality or morbidity or
to improve the quality of life” [12], is achieved by
the more favorable outcome of early treatment in the
cases identified by the screening test in comparison
with similar cases that have been diagnosed on the
basis of symptoms.

However, Table 1 shows that this benefit of
screening is accrued by a very small proportion
(group D+) of the persons screened. Inevitably
screening will have a negative impact for other
persons (groups C and D−). The small risks of
some screening tests – for example, the increased
risk of miscarriage following amniocentesis as part
of antenatal screening, or the radiation risk of
mammographic screening – cannot be disregarded
completely given the very large number of tests
performed (groups ABCD). Participation in screening
for a serious disease will lead to anxiety, followed
by relief when the result appears to be negative
(groups A and B). Although this may sometimes be
a relatively small effect, it cannot be neglected given
the large number of persons involved.

False positive test results (group C) might lead to
a (sometimes serious) burden of follow-up diagnos-
tic tests needed to exclude disease. A true positive
test result may still turn out to give adverse effects
when early treatment does not improve the progno-
sis (group D−), but the person has been made aware
of the disease for a longer period of time. Lack of
improvement may occur when the outcome of early
treatment remains unfavorable, but also when a per-
son would have had a very good prognosis without
screening.

Several extensions and modifications to the rather
strict definition of Morrison are being used; see, for
example, Holland & Stewart [13] or Wald [22]. For
example, the term screening is also used to describe
identification of people at high risk of disease (for
example, high cholesterol or blood pressure levels)
instead of early detection of the disease itself. The
public health goal of screening for a disease may also
be achieved indirectly, e.g. by preventing morbidity
and mortality in other persons than those being
screened. For example, specific groups of individuals,
such as employees in the food industry, persons
applying for a driving licence, or a circumscribed
population in which an outbreak of an infectious
disease occurred, may be screened to protect the
general population.

Performing screening tests in an asymptomatic
population can also have a scientific aim, such as
to estimate the population prevalence of certain con-
ditions, for example HIV infection (see Prevalence
of Disease, Estimation from Screening Data). This
extended usage of the term screening is reflected in
the more general definition of McKeown [17]: “A
medical investigation which does not arise from a
patient’s request for advice for a specific complaint”.

In medicine and epidemiology, usage of the term
screening is not necessarily related to testing of
(asymptomatic) individuals, but is often used as a
synonym for “testing”. In clinical medicine, screen-
ing is used to denote testing of symptomatic patients
to establish a diagnosis. It is also used in labora-
tory testing of donor blood for HIV infections, for
example, and in medical research (laboratory, epi-
demiologic surveillance), the term screening is used
to denote testing of chemical agents to identify toxic
substances.

Discussion of screening for disease in this
Section is confined to screening adhering to the
strict definition of Morrison, while admitting that
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Table 1 The different outcomes of screening, their usual impact and frequency. Extended version of
table given by Morrison [18]

Outcome Impact Proportion of target population

O Nonparticipation ? medium–large

A True negative anxiety, relief, side-effects large
of test

B False negative anxiety, false relief, side- very small
effects of test

C False positive moderate adverse effects (very) small

D− True positive, serious adverse (very) small
condition not postponed

D+ True positive, serious large benefit very small
condition postponed

it is difficult to draw exact boundaries for this
definition. Examples will mostly be derived from
cancer screening studies. (See the series Screening
Brief in the Journal of Medical Screening for up-to-
date information on screening programs for specific
diseases.)

A broad distinction can be made between, on
the one hand, genetic screening (see Genetic Coun-
seling; Genetic Markers), and most antenatal and
neonatal screening procedures which involve a sin-
gle screening examination and, on the other hand,
screening for chronic diseases, including screening
for problems during growth of children and screening
for cancer in adults, which typically involve repeated
screening tests with intervals between several months
to years.

Genetic screening can be done at different times
throughout life. It can be performed prior to concep-
tion to inform persons of a high risk of conceiving
a child with a severe disorder, during pregnancy for
early detection and elective termination of pregnancy,
shortly after birth to detect treatable disorders, or later
in life to enable preventive measures which reduce
the risk of developing serious disorders. In antenatal
and neonatal screening, optimal timing of the test is
important because the gestational age or age of the
child determine the sensitivity and specificity of the
test(s) and the possibilities for intervention.

In the case of repeated screening examinations
for early detection of diseases such as (breast, cer-
vical, or colorectal) cancer, proper timing of tests
is even more complicated because of various time-
related factors involved: incidence and prevalence of
the detectable preclinical phase (DPCP) varies with
age, the sojourn time of the DPCP varies between

persons, and test characteristics and the outcome of
early treatment vary during the course of the DPCP.
The number of factors involved, and the dynamic
interrelations between factors, complicate the design,
analysis and evaluation of such screening programs
(see Screening Benefit, Evaluation of; Screening,
Models of).

Important questions in analysis and evaluation of
screening for disease are:

1. Will screening indeed reduce the mortality and/or
morbidity in the population and, if so, what is the
estimated magnitude of the reduction?

2. What are the favorable and adverse effects and
costs of different screening policies, and what
will be the impact on existing health care? A
policy is characterized by the recommended age(-
range) to be screened, the screening test(s) used,
the intervals between examinations in the case of
repeated screening, and the diagnostic follow-up
and subsequent treatment to be applied.

3. What are efficient policies, and is screening
worthwhile?

4. Does the screening program, when implemented
as part of routine care, perform adequately?

These issues are discussed in turn in the following
Sections.

Establishing the Effectiveness of Screening

The effect of a certain screening policy on mortality
and morbidity depends on several factors, such as the
screening test, the natural history of the disease, the
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1−p
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Figure 1 A single screening examination for a disease
with a detectable preclinical phase starting at age x.
Without screening, the disease will remain unnoticed until
progressive cases are diagnosed clinically at age z = x + t .
Screening at age u will lead to false positive test results, but
also to early detection and treatment for part of the prevalent
cases at age u, i.e. in participants for which x < u < x + t

and the test result is correct. These true positive cases will
include persons with nonprogressive disease that would
never have been diagnosed in the absence of screening

x = age at onset of the detectable preclinical phase
I (x) = incidence density of the detectable preclinical

phase
t = sojourn time in the detectable preclinical phase,

probability density f (t)

p = proportion with progressive disease among
incidence I (x)

a = proportion participating in screening at age u

r = relative risk of participants
s = sensitivity of the screening test

Ms(u) = expected loss of health following detection by
screening at age u

Mc(z) = expected loss of health following clinical
diagnosis at age z = x + t

diagnostic and treatment options for the disease, the
improvement in prognosis resulting from early treat-
ment, and, at the level of the population, the degree
of participation in the screening program, including
possible selective participation of high risk groups.
Figure 1 shows these factors for a single screening
examination, one screening test, and a disease with
a fixed duration for the detectable preclinical phase

Screening
test

(a)

(b)

(c)

(d)

(e)

(f)

u
Age

Start of DPCP
Cure point
Clinical diagnosis
Death from disease
Regression
Death, other causes
DPCP

Figure 2 Example disease histories that are missed,
diagnosed without benefit, or diagnosed with favorable
effect, by a single screening examination at age u. The
cure point indicates a hypothetical moment in the disease
history where treatment ceases to be effective. The thick
line indicates the detectable preclinical phase (DPCP)

(see Decision Analysis in Diagnosis and Treatment
Choice; Natural History Study of Prognosis; Risk
Assessment in Clinical Decision Making).

Together, these factors determine not only the pos-
itive health effect of screening, but also its negative
effects and its costs. Figure 2 shows examples of dis-
ease histories, starting from the onset of the detectable
preclinical phase (DPCP), for which screening has
favorable or adverse effects. In these examples it is
assumed that the main goal of screening is to pre-
vent death from the disease, such as, for example, in
cancer screening. A cure point is indicated, denoting
a hypothetical point in the history where treatment
ceases to be effective [9].

In history (a), the disease is detected by a
true positive screening test result, and death from
the disease is to be prevented by screening since
detection occurs before the cure point. Death from
the disease will not be prevented in the case of a
false negative test result or inadequate follow-up in
this history. Screening will also be ineffective and
have merely adverse effects when it is too late (his-
tory (b)), or when the DPCP has a short sojourn time
and is missed by the screen (history (c)). Screening
has no impact on mortality and clear negative effects
in history (d), where clinical diagnosis would also
have occurred before the cure point, in history (e)
of regressive disease where the DPCP would never
have been detected in the absence of screening, and
in history (f) where the person dies from other causes



4 Screening, Overview

before the disease would have been diagnosed clin-
ically. The increasing likelihood of the last type of
history at older ages should be kept in mind in eval-
uating screening for diseases such as cancer of the
prostate that mainly occur in the elderly.

The lead time is the length of the time interval
between the moments of detection by screening and
clinical diagnosis without screening. The average lead
time is indicative of the potential positive effect of
screening, since a longer average lead time means
that more cases can be detected before the cure point
is reached. But in histories (b) and (d), the lead
time only represents a negative effect: the person is
merely aware of having serious disease for a longer
period of time. Histories (a) and (c) illustrate the
length-biased sampling phenomenon, which means
that screening tends to pick up histories with long
sojourn times selectively. Zelen & Feinleib [26] have
pointed out the consequences for the mean lead time
(L) of screen-detected cases at a single screening
examination:

L = 1

2

(
t + σ 2

t

t

)
, (1)

indicating that the mean lead time is longer than the
mean sojourn time t when the variance σ 2

t of the
sojourn time distribution exceeds its mean value.

For the simplified situation of Figure 1 with a
single screening test at age u, the true prevalence
D(u) of preclinical disease is given by

D(u) =
∫ u

x=0

∫ ∞

t=u−x

I (x)f (t) dt dx, (2)

where I (x) denotes the incidence density of the
detectable preclinical phase and f (t) the probability
density function of the sojourn time t in the detectable
preclinical phase.

The expected health effects G(u) for the popu-
lation in which this single screening examination is
taking place accrue to the screen-detected cases. This
is a subset of the prevalent cases, including persons
who participate in screening and have a certain asso-
ciated relative risk, and for whom the test has a
true positive result. The health effect for these cases
is obtained by subtracting the loss of health Mc in
a situation without screening for the fraction p of
progressive cases, which would have been diagnosed
clinically at age x + t , from the loss of health Ms in

all screen-detected cases at age u in the situation with
screening:

G(u) =
∫ u

x=0

∫ ∞

t=u−x

I (x)f (t)ars

× [Ms(u) − pMc(x + t)] dt dx, (3)

where I (x) denotes the incidence density of the
detectable preclinical phase, f (t) the probability
density of the sojourn time t in the detectable
preclinical phase, a the proportion participating in
screening at age u, r the relative risk of participants,
and s the sensitivity of the screening test.

In (3), the lead time for screen-detected progres-
sive cases is x + t − u, the time interval between
detection at screening and clinical diagnosis in the
absence of screening. In the example of a poten-
tially lethal disease as presented in Figure 2, the
measures Mc and Ms for the loss of health might be
taken to represent the lethality from the disease fol-
lowing diagnosis and treatment. Comparison of Mc

and Ms on the individual level is, of course, impos-
sible, because the exact clinically diagnosed coun-
terparts of screen-detected cases will always remain
unknown.

In general it will be difficult to obtain direct esti-
mates of the components of (3), except for Mc(·) and
Ms(·), which may be based on follow-up registries
(see Disease Registers) of clinically diagnosed and
screen-detected patients. Although it is tempting to
compare Mc(·) and Ms(·) directly, this will give rise
to incorrect conclusions because of four sources of
sampling bias that all tend to lead to a too favorable
estimate for the effect of screening.

If not all preclinical stages progress (p < 1.0),
then the comparison will yield a too optimistic esti-
mate because of overdiagnosis bias (see history (e)
in Figure 2.) Self-selection bias (see Selection Bias)
with respect to survival occurs when participants in
screening would have had a better prognosis any-
how, for example because of self-selection of health-
conscious persons. Self-selection may also be related
to the risk of developing the disease. Participants have
been observed to have a higher than average risk
in breast cancer screening [23], but the opposite has
been observed in cervical cancer screening [1]. Lead
time bias occurs when cumulative lethality is com-
pared for equal durations of follow-up after diagnosis,
giving screen-detected cases an advantage equal to
the duration of the lead time even in the absence
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of a real effect of screening. Length-biased sampling
will also lead to biased comparisons if the sojourn
time and Mc are correlated, for example when slowly
developing preclinical disease also has a better-than-
average prognosis.

Lead time bias and length biased sampling are
specific for screening, and different approaches have
been proposed to correct these biases [24]. How-
ever, these correction methods are always based on
assumptions about the sojourn time distribution, and
will not lead to unambiguous evidence about the
effect of screening.

The four biases can only be avoided by conduct-
ing a randomized controlled trial (RCT) (see Clinical
Trials, Overview; Screening Trials). In its basic
form, a population involved in an RCT is randomly
divided (see Randomization) in a study group in
which persons are invited to be screened, and a con-
trol group in which no screening is offered. The
endpoint to be compared between the two groups
is the condition that is to be prevented by early
detection and treatment, for example mortality in can-
cer screening (see Outcome Measures in Clinical
Trials). Use of other endpoints – for example, diag-
nosis of malignancy in cervical cancer screening –
might lead to biased estimates of the effect of screen-
ing when, on average, screen-detected cases are less
severe than clinically diagnosed cases. A huge popu-
lation will be needed to obtain sufficient power, and
several design variants have been proposed to limit
trial costs [9]. The impact of trials has been con-
siderable, both in diminishing the use of screening
for lung cancer, and in speeding up implementation
of breast cancer screening program in several coun-
tries. Screening for lung cancer did not turn out to
be effective according to RCT results, despite clear
differences in survival between screen-detected and
clinically diagnosed patients [10]. In most RCTs con-
ducted thus far, screening for breast cancer has been
found to reduce breast cancer mortality in women
above age 50, but results for women below age 50
are still not conclusive [5, 21].

Use of disease-specific outcome measures in an
RCT is controversial. Critics state that the beneficial
effect should be checked from overall mortality and
morbidity. But this would require an enormous trial
size. Even the combined results of four Swedish
breast cancer trials, with a relative risk for breast
cancer death of 0.80 (95% CI 0.70–0.92) did not

show a discernable effect on overall mortality in the
trial population [20].

Some screening tests that are widely used have
never been rigorously tested in an RCT. One exam-
ple is cervical cancer screening, for which a very
large RCT would be required. In such a situation,
estimates of the effectiveness of screening can only
be obtained from nonexperimental designs, such as
cohort studies, case–control studies, and ecologic
studies.

In cohort studies, a comparison of morbidity and
mortality is made between persons with different
screening experience in the cohort. Case–control
studies for testing the effectiveness of screening have
become increasingly popular, but the outcomes are
highly sensitive to several kinds of bias such as
overdiagnosis bias, self-selection bias, and healthy
screenee bias (see Morrison [18] or Weiss [25]).
This has been demonstrated empirically by per-
forming a case–control study on data from an
RCT [11].

In ecologic studies, an investigation is made into
the association between the morbidity or mortality
and the screening intensity in different populations.
Cervical cancer screening is now generally consid-
ered to be effective on the basis of the findings
of many observational studies: cohort studies and
case–control studies (IARC Working Group [14])
and ecologic analyses (see, for example, Läärä
et al. [16].

The Favorable and Adverse Effects and
Costs of Alternative Policies

When screening is being considered in a country
or region, usually different screening policies are
being considered which might differ in their effects
and costs. Only a limited number of policies have
been rigorously tested in RCTs, which are typically
carried out in countries or regions with marked
differences with respect to, for example, incidence
or mortality rate, participation in screening, and
specific characteristics and quality of the screening
procedures. Furthermore, the long follow-up in many
screening trials implies that their results typically
pertain to screening technology from the past. These
observations complicate both combined analysis of
trial results, and extrapolation of these results to
other situations such as the near future in a new
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country in which screening is being considered.
Also, RCTs tend to focus on the serious health
effects to be prevented by screening (category D+ in
Table 1), paying less attention to the adverse effects
of screening.

Two methods are used to resolve (partially) these
problems – modeling and use of surrogate endpoint
measures.

In building a model, assumptions have to be
made about the factors listed in Figure 1. These
assumptions can be checked (see Model Checking)
by fitting the model to available data from RCTs and
to data from nonexperimental screening studies. For
example, outcomes of cancer screening models are
compared with observed detection rates at successive
screening rounds, incidence of clinical disease in
the interval between screening exams, and with
the stage-distribution of these different types of
cases. Characteristics of, and trends in, background
variables can be taken into account explicitly in a
model. In this way, known differences between trials
can be incorporated in combined analyses of RCT
results (see [5]). Models are increasingly being used
to make predictions about other screening policies
than those tested in trials, and to transfer outcomes
from trials to specific characteristics in other areas
(see, for example, [6]).

Introducing screening for a disease in a population
will change the type and amount of diagnostic and
treatment procedures for this disease. In a first screen-
ing round, a relatively large pool of prevalent cases
will have a positive test result, leading to a temporary
increase in demand for assessment and treatment, fol-
lowed by a decrease in later screening rounds. Models
can make quite detailed predictions of these changes,
which is useful in planning of equipment, recruit-
ment, and training of personnel, and in anticipation
of changes in clinical procedures [4].

The number of assumptions used in screening
models may easily become quite large, and some
of these assumptions lack a thorough foundation.
Use of surrogate outcome measures can be regarded
as an attempt to obtain a more direct empirical
basis in comparing different policies, without the
lengthy follow-up period needed in large RCTs [2]. A
surrogate outcome measure is a short-term observed
result of a screening program that is known (or
suspected) to be closely associated with the long-term
impact on morbidity and mortality. Such a relation
can be estimated from RCT data. For example,

mortality reduction after breast cancer screening has
been shown to be closely associated with particular
changes in the stage distribution of diagnosed cancer
cases.

Surrogate outcome measures can be used to eval-
uate various small adaptations of policies that have
already been proven to be effective. The surrogate
outcome measures of the policy variants can be com-
pared directly, and the observed differences can also
be translated into predicted differences in reduction
of mortality and morbidity.

Efficient Policies

In deciding about screening policies an important cri-
terion is the ratio of the health effects of a screening
program and its incremental costs, i.e. the difference
in (medical) costs between the situation with and
without screening. The incremental costs of a screen-
ing policy are directly related to the cost of admin-
istering and assessing the screening test, but may
also be influenced by the impact of screening on the
demand for diagnostic and treatment procedures. For
each level of the incremental costs, an optimal screen-
ing policy exists which gives the highest effectiveness
(net health benefit) or the best cost-effectiveness ratio
(see Health Economics). Figure 3 shows a typical
intensity–response relationship which emerges when

Unfavorable
health effects

Favorable
health effects

Net health
effects

Inadmissible
policies

0.0
0.0

Screening intensity, incremental costs

H
ea

lth
 e
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s

Figure 3 Relation between intensity of screening and
its favorable and unfavorable health effects (intensity–res-
ponse curve) or similarly between the incremental costs
of screening and health effects (efficient frontier). The net
health benefit summarizes the favorable and adverse effects
of screening
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different numbers of screenings are compared. The
net health benefit is relatively high for a single
screening test. The extra benefit decreases for each
additional screening examination. When the number
of screening tests per person increases, the adverse
effects of screening might well become larger than
the favorable effects. For example, extending screen-
ing to older ages will increasingly lead to detection
of cases that would not have been diagnosed in the
absence of screening, leading to reduction in quality
of life that is no longer compensated for by a decrease
in mortality.

Although the top of the curve in Figure 3 rep-
resents the policy with the maximum effectiveness,
the marginal cost-effectiveness of this policy is very
poor. If the X-axis of Figure 3 represents costs, the
curve can be interpreted as the efficient frontier, i.e.
the set of all Pareto-optimal screening policies –
policies for which no alternative can be found that
give both higher health benefits and lower costs [8].
A good policy on this frontier would be the one which
still shows an acceptable marginal cost-effectiveness
ratio.

Simulation models have been applied to derive
the efficient frontier of screening policies [7, 8, 15].

Monitoring of Screening Program

If screening is not conducted properly, effective-
ness and cost-effectiveness can easily be impaired. A
well-known example is the cervical cancer screening
program in the UK, which has not been able to pre-
vent increasing mortality rates in young women [19].
Each of the stages in the screening process could give
rise to loss of potential benefits, and sometimes also
to excessive negative effects. Sufficient coverage of
the population at risk, adequate administration of the
test and interpretation of test results, compliance with
follow-up in the case of suspicious results, and proper
treatment of early stages of the disease are all nec-
essary to achieve the health benefits at a reasonable
cost. Quality assurance and monitoring are important
in this respect.

Measures of performance can be defined for each
component of a screening program – e.g. the partic-
ipation rate and predictive value of a positive test
result – and should encompass diagnostic and treat-
ment procedures applied to screen-detected disease.
Target values for the short-term results of a screen-
ing program (such as detection rates and incidence of

interval cases) can be specified on the basis of expe-
rience from randomized trials and pilot projects [3].
Regular evaluation of the screening results and of
the costs of the screening program may than lead to
timely revision of the screening policy.
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Screening, Sojourn Time

Screening for disease can take place in a variety of
contexts, notably the control of transmission of infec-
tious disease, as part of an immunization program or
to advance the time of diagnosis to facilitate effec-
tive treatment. Central to the potential suitability of
a disease for screening is the period during which
the disease does not produce symptoms leading to
medical consultation and diagnosis, but is detectable
by a screening test. This is the time between the
point at which a disease case becomes detectable by
screening and the point at which it would become
clinically apparent in the absence of screening. This
period is called the preclinical phase and its duration
is referred to as the sojourn time [4, 18]. One exam-
ple is the period during which a breast tumor is not
palpable and has no symptoms but is detectable by
mammography. Another is the period of HIV anti-
body positivity after seroconversion but before onset
of AIDS-related illnesses.

The sojourn time is an important parameter of the
potential effectiveness of a screening program. It is an
upper limit on the lead time, the advance in the time
of diagnosis achieved by screen detection. In practice,
the parameter estimated is the average sojourn time
of all disease cases (average time from becoming
screen detectable to becoming clinically apparent in
the absence of screening), usually referred to as the
mean sojourn time and often abbreviated to MST. A
long mean sojourn time will indicate a good potential
for screening. The shorter the mean sojourn time, the
more frequently screening will have to take place in
order to be effective [2]. If mean sojourn time is very
short, then it may not be worth screening at all.

In terms of the definition above, the sojourn time
seems a relatively simple concept. There are, how-
ever, various complexities, due either to the varying
effectiveness of the screening tool or the nature of
the disease screened for [8, 18]. To take the first
problem, suppose that in one breast cancer screen-
ing program in women aged 50–69 a mean sojourn
time of 2.5 years is observed and that in a neighbor-
ing region the breast screening program has a mean
sojourn time of 3.3 years. There are two possible
explanations for this: (i) that in the second region
tumors take longer to come to clinical attention, and
(ii) that in the second region the sojourn time begins

earlier in tumor development, due to better sensitiv-
ity (relating to better perceptive skills on the part of
screening staff or better image quality of the X-ray
films). Thus the sojourn time is closely related to the
sensitivity of the screening instrument.

Another complication relates to nomenclature and
the disease screened for. In breast cancer screening
this problem does not arise. The aim of a breast can-
cer screening program is to diagnose breast cancers
while they are small and before they have spread to
the regional lymph nodes, in order to facilitate suc-
cessful curative therapy and thus prevent death from
the disease. In what is nominally a cervical cancer
screening program, the main aim is to detect pre-
malignant dysplasia and to take action which will
avoid even a diagnosis of invasive cervical cancer
in the future. The sojourn time in this case is not
that of cervical cancer alone but of both cancer and
dysplasia which may or may not progress to can-
cer if left untreated. The meaning of sojourn time
becomes even more nebulous if we consider the use
of hepatitis B virus testing in a liver cancer screening
program or Epstein–Barr virus testing in screening
for nasopharyngeal cancer (see Incubation Period
of Infectious Diseases).

Development and Estimation

Although the above complications may arise, the con-
cept is still a crucial one in screening for many
diseases, notably cancers, and considerable research
effort has been expended on methodology for its esti-
mation, in conjunction with estimation of screening
sensitivity. The seminal work on the theory and mod-
eling is by Zelen & Feinleib [19], Prorok [12], and
Walter & Day [18]. Other early research on the sub-
ject includes that of Eddy [8], Shapiro et al. [14],
and Shwartz [15]. Underlying the work is the basic
acknowledgment that the sojourn time varies from
individual to individual. In turn, it is clear that the
mean sojourn time is fundamentally important to the
screening process, and that a postulated distribution
of sojourn time which fits with observed disease inci-
dence and screening data is desirable. An exponential
distribution has many attractive qualities for tempo-
ral data, and Day & Walter [4] found it to be a good
fit to breast cancer screening data.

Given a mathematical model for the sojourn time,
for estimation of the mean sojourn time, it is also
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necessary to model the incidence of preclinical dis-
ease. Also, because of the relationship with sensitivity
mentioned above, it is preferable to take sensitiv-
ity into account when estimating mean sojourn time.
Data on both screen-detected cancers (with diag-
nosis taking place by definition before the sojourn
time expires) and cancers diagnosed in the interval
between screens (with diagnosis at the expiry of the
sojourn time) are necessary to estimate both parame-
ters at once. Clearly a high prevalence at screening
in comparison with expected annual incidence in the
absence of screening suggests a long sojourn time,
as does a low incidence of disease after a nega-
tive screen, although both of these are also affected
by the sensitivity of the screening instrument. Early
work tended to approximate the incidence of pre-
clinical disease by the incidence rate of disease in
the absence of screening, estimated from randomized
trials (see Clinical Trials, Overview) or from his-
torical control data [4, 19]. Estimation procedures
ranged from simple formulae [14, 6] to results from
complex models, involving computer-intensive opti-
mization [4] or algebraically complicated moment
calculations [19].

Current Approaches

Advances in computing power in recent years have
enabled a wider variety of modeling techniques to be
used in the estimation of mean sojourn time. Alexan-
der [1] has adapted the model of Day & Walter [4]
to estimation of the sojourn time when two screen-
ing techniques are used in the same program. Paci
& Duffy [10] have used generalized linear mod-
els to estimate the mean sojourn time. This has the
advantage of being programmable in a few lines
of code using generally available statistical software
(see Software, Biostatistical), but has the disadvan-
tage of having to assume a sensitivity of 100% while
estimating the MST. Van Oortmarssen et al. [17]
have developed powerful computer simulation tech-
niques. This approach is very versatile, but careful
attention has to be paid to assumptions made in the
simulations. More recently, explicit Markov chain
modeling of both entry to and exit from the pre-
clinical phase has been performed, with generalized
estimating equations used as the estimation tech-
nique [7, 2]. This approach requires laborious com-
puter programming, but has considerable potential for

estimation of progression rates with respect to the
disease stage as well as from the preclinical to the
clinical phase.

In the context of HIV disease, there has been con-
siderable recent activity in estimation of the sojourn
time (referred to as the incubation period in this con-
text), as an aid to prediction of the course of the
epidemic. Examples abound in the literature, but per-
haps the most important models and methods are
typified by back calculation and use of Weibull
models [5] and Markov chain models [13].

An interesting example of application is in the
evaluation of breast cancer screening by age. It has
long been known that screening for breast cancer is
less effective in women aged under 50 years than
in women aged 50 or more [16]. Breast tissue is
denser in premenopausal women, and it is thought
that this leads to reduced sensitivity of mammo-
graphic screening. Table 1 below shows simultane-
ous estimates of sensitivity and MST from Markov
chain models applied to data from the Swedish
Two-County Trial of breast cancer screening [2].
The results indicate that more rapid progression,
i.e. shorter sojourn time, is also an important fac-
tor in the differential effectiveness of screening
by age.

Likely Future Developments

One notable gap in the available methodology is the
estimation of mean sojourn time and other screening
parameters in the presence of informative attendance
(i.e. subjects at greater or lesser risk of disease are
more likely to attend for screening). This area seems
ripe for future research. Another topic in the modeling
field which is likely to be increasingly addressed in
the future is the inclusion of attributes of preclinical
disease (e.g. tumor size in cancer screening), possibly
multidimensional, in models for the sojourn time.
Already the simple model of the preclinical phase
has been expanded to include some measure of stage
of development of disease [17, 16, 3]. It is likely

Table 1 Mean sojourn time and sensitivity by age; Swe-
dish Two-County Trial of breast cancer screening

Parameter 40–49 50–59 60–69

MST (years) 2.35 3.75 4.23
Sensitivity (%) 90 100 100
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that more formal and more complex models will be
developed in the future.

The increasing complexity of disease progression
models may require new methods of estimation. A
likely solution is the series of Markov chain Monte
Carlo techniques, which are becoming increasingly
common in biostatistical modeling [9]. One applica-
tion, in a single model of colorectal cancer screening,
has already been published and doubtlessly others
will follow [11].
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Seasonal Time Series

Literally, seasonality is a cyclic variation (see Circa-
dian Variation) driven by the seasons within the year
and, traditionally, seasonal models have been of most
importance for economic or business applications, so
the methodologies so far favor that direction. In such
applications, prediction and seasonal adjustment of
mostly univariate series have been the primary objec-
tives. With many biological measurements, daily
cycles are probably the most natural, but the method-
ology of seasonal adjustment would still play a role,
so it will be convenient to view periodic time series as
being seasonal. However, unlike in economic applica-
tions, it will be quite easy in biostatistical applications
to get replicated time series from different individ-
uals. In such applications, the analysis objectives

of seasonal time series data are likely to be (a) a
comparison of different groups of individuals, each
having a time series record or (b) a comparison of
before-and-after conditions. A general methodology
to address these questions is not commonly available
in the current literature. More relevant data sets need
to be available to encourage methodological devel-
opment. The rest of the article is a description of the
current state of seasonal modeling.

Following the above discussion, to develop a gen-
eral model of seasonality it is more useful and inter-
esting to include any type of periodic patterns such
as a day-and-night or a weekly cycle, or even a peri-
odicity other than that shown by natural cycles. A
famous example of the latter is the Canadian lynx
time series (the annual number of lynx trapped in the
Mackenzie River district of north-west Canada) with
a periodicity of around 10 years [7]. Figure 1 shows

Figure 1 Examples of seasonal time series. In most cases, the seasonality is driven by some natural cycles, except in the
Canadian lynx series. See Cryer [4] for the milk production data and Diggle [6] for the UK pulmonary data. The simulated
series is ARIMA (0, 1, 1) × (0, 1, 1)12 with Gaussian noise
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several examples of time series data that exhibit a
common feature of seasonality or periodicity.

The interest in analyzing a seasonal time series
may lie in the seasonality itself if it is an indication
of some unknown underlying process; this is espe-
cially true when the seasonality does not coincide
with some natural cycle. Another interest, usually
associated with economic time series, is the removal
of the seasonality. In this case, the cause of the sea-
sonality is typically known and is not of analytical
interest. This so-called seasonal adjustment allows
us to gauge effects other than the known seasonality.
For example, we know that the temperature is higher
during the summer, so we must remove the general
summer effect if we wish to know whether a particu-
lar summer has an unusually low or high temperature.

Models for Seasonality: Static

An intuitive and empirical model for a seasonal time
series Xt is of the form

Xt = Tt + St + It , (1)

where Tt is a long-term trend, St a seasonal factor,
and It an irregular component. The model is static
in the sense that it does not specify how the pro-
cess evolves from one point to the next. In most
applications, it is common to model It as random
noise, and Tt and St as nonparametric functions of
time. Low-dimensional parametric regression models
may also be specified for Tt and St : for example,
polynomial and trigonometric functions, but gener-
ally they are too rigid for most time series data. A
simple nonparametric model for St may be based on
any periodic repetition of a function pt defined on
t = 1, . . . , s, where s is the seasonality. For monthly
data, we expect that s = 12; for quarterly data, s = 4,
etc. Then the seasonal component is St = pt(mod s),
where t (mod s) is the integer remainder of t/s; for
example 13 (mod 12) is 1. The function pt may be
estimated from the data by the simple averaging of
appropriate times; for example, we can simply com-
pute a January average, a February average, etc.

Figure 2 shows an analysis of the UK pulmonary
deaths between 1974 and 1980. In this example, one
may be interested in explaining the seasonal varia-
tion of the pulmonary deaths, which is high during
the winter and low during the summer. If the inter-
est is in prediction, it may be computed simply by

extending the periodic component pt beyond the last
measurement. As one might expect, a strongly sea-
sonal series is highly predictable. The residual series
is the seasonally adjusted values Xt − St , centered
at the mean number of deaths of each group. These
adjusted series show, for example, that (a) the male
deaths are decreasing over time, (b) the number of
deaths during winter 1976 was unusually high and
(c) the pattern is similar for males and females, which
suggests a common cause in addition to the seasonal
variation.

The periodic repetition model above is generally
not satisfactory for many time series data as it does
not allow any variation of the function pt over time.
Thus, a straightforward extension is to allow pt to
change slowly over time. One might say that such
time series exhibit a stochastic seasonality. This is
the basis of many seasonal adjustment procedures
currently in use, such as the so-called X-11 program
used by the US Bureau of the Census [10]. Instead
of computing, say, a January average from the whole
time series, the assumption of a slowly varying pt

suggests a local averaging of the nearby January
values. In practice, some weights are usually applied
when computing the average.

Models for Seasonality: Dynamic

The development of autoregressive and integrated
moving-average (ARIMA) modeling by Box &
Jenkins [1] (see ARMA and ARIMA Models)
provides a rich class of dynamic linear models that
also include stochastic seasonal models. Figure 1(d)
shows a simulated ARIMA (0, 1, 1) × (0, 1, 1)12, i.e.
a nonstationary seasonal moving-average process of
the form

(1 − B)(1 − B12)Xt = (1 − 0.25B)(1 − 0.5B12)at ,

(2)

where BXt ≡ Xt−1, so the model specifies

Xt = Xt−1 + Xt−12 − Xt−13 + at

− 0.25at−1 − 0.5at−12 + 0.125at−13, (3)

where at is an uncorrelated Gaussian series. This
is, in fact, a fitted model for the milk production
series (with slightly different parameter values). Note
that the model generates a stochastic seasonality,



Seasonal Time Series 3

Figure 2 Analysis of UK pulmonary deaths. The seasonal component is computed by simple averaging, e.g. January
average, February average, etc. The residual series is the so-called seasonally adjusted series, centered at the mean number
of deaths

one where the periodic function pt changes slowly
over time. This has been the basis for a modified
X-11 procedure called X-11-ARIMA developed by
Statistics Canada. The advantage of the dynamic
modeling is apparent for the estimation of St at the
beginning and ending periods of observations [5].
Another approach is via a separate ARIMA modeling
of the trend and seasonal components. Using a linear
estimation theory, one can estimate St from the time
series data Xt ; see, for example, [2]. The set of
weights generated by this method is, in fact, similar
to that used in the X-11 program.

There is currently quite a large literature on
seasonal models; a keyword search on “seasonal”
in the Current Index of Statistics up to 1992 yields
more than 500 records, most of which are related
to seasonal modeling and adjustments. A recent

reference is Hylleberg [8]. A literature study would
indicate that most of the methodology for seasonal
adjustment currently in use is either of the nonpara-
metric type described above, or some ARIMA-based
modification; a review article by Pierse [9] is still
relevant. For a general statistical program, the X-
11 procedure in SAS implements the Bureau of the
Census X-11 program as well as X-11-ARIMA. The
function stl() in S-PLUS performs nonparametric sea-
sonal adjustment with some robustness capability as
described in Cleveland et al. [3]. (see Software, Bio-
statistical).

Recent development of dynamic nonlinear models
may also provide another wide class of periodic
time series; Tong [11] is the main reference in this
area. One of the most important properties of these
models is the possible existence of limit cycles, a
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phenomena that is absent within the linear models
context. For series that exhibit a periodicity other
than the natural cycles, a nonlinear model may yield a
more satisfactory scientific description of the pattern;
see, for example, [11, Chapter 7] for an extensive
analysis of the Canadian lynx series.
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Secondary Attack Rate

The secondary attack rate (SAR) is the probabil-
ity that infection occurs among susceptible persons
within a reasonable incubation period following
known contact with an infectious person or another
infectious source [7]. The SAR is conditional on
the contact between an infectious source and a
susceptible host, as opposed to the usual uncon-
ditional parameters of epidemiology such as the
incidence rate, hazard rate, or cumulative inci-
dence [10]. It is a special form of the transmission
probability (see Communicable Diseases; Infectious
Disease Models).

The term SAR is a misnomer, because it is actu-
ally a proportion, not a rate. The magnitude of the
SAR depends on covariates of the infectious per-
son and the susceptible person, the type of contact
between the two, and the infectivity of the infectious
agent. For given types of susceptibles, infectives,
and contacts, it provides an epidemiologic measure
of the infectivity of an infectious agent. Measles [1]
and chicken pox [24] have relatively high household
SARs of 86% or higher, while mumps has a lower
household SAR of about 43% [13].

Study Designs to Estimate SAR

The most common study design to estimate the con-
ventional SAR is first to identify infectious persons,
and then to identify the susceptible people who make
contact with them. The initially identified infectious
persons are called the primary or index cases. The
conventional SAR is estimated as the probability of
the occurrence of disease among known (or pre-
sumed) susceptible persons following contact with a
primary case:

SAR =
number of persons exposed

who develop disease
total number of susceptible

exposed persons

. (1)

A clear definition of what is a contact is impor-
tant in designing a study. It can vary from study to
study for the same infectious agent. A potentially
infective contact in a whooping cough study could be
defined as being in a school on one day with someone
with culture-proven whooping cough. Alternatively,
it could be defined as living in the same house during

the presumed period of infectiousness of a person
with clinically diagnosed whooping cough. In a study
of HIV transmission, a potentially infectious contact
could be defined as each sex act between two sexual
partners in a steady relationship, or as simply being
in a partnership with someone who is infectious. The
SAR is often defined for exposure to an infective of
the susceptibles within some small population unit,
such as a household, classroom, or school bus. Within
any given unit, mixing and exposure of the suscep-
tible persons to infection are usually assumed to be
homogeneous.

Another approach to estimating the secondary
attack rate is contact tracing. For example, upon
identification of an infectious person with tubercu-
losis, public health officials locate people who have
made contact with the infectious case and test them
for whether or not they have become infected. The
pooled estimate of the proportion who have become
infected is an estimate of the SAR. The SAR can also
be estimated in experimental studies. In studies of
the infectivity of malaria in humans for mosquitoes,
groups of 20–30 mosquitoes are fed experimen-
tally on an infectious person. After 2 weeks, the
mosquitoes are dissected to see if they have become
infected and how many parasites have developed.
The proportion of mosquitoes becoming infected is
an estimate of the SAR.

The SAR has no explicit time dimension. How-
ever, the time interval during which the infected per-
son is presumed to be infectious determines which of
the people making contact were potentially exposed.
Therefore, the time interval of infectiousness affects
the determination of the denominator of the SAR.
If infection is the outcome of interest, the mini-
mum and maximum latent periods of the infectious
agent define the time interval after exposure in which
exposed people can develop infection and have been
infected by the index case. If disease is the outcome
of interest, the minimum and maximum incubation
periods determine the time interval after exposure in
which exposed people can develop disease and have
been infected by the index case. Thus, either the latent
period or incubation period enters into the determi-
nation of the numerator of the SAR.

Ratios of SARs

The ratio of two SARs can be used to estimate
the relative infectivity or susceptibility of two types
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of people, different infectious agents, or types of
contacts. Let 0 and 1 represent two levels of a
risk factor, such as vaccination status, gender, or
age. Then there are four possible secondary attack
rates for a given infectious agent and definition of
contact – SAR00, SAR11, SAR10, and SAR01 – where
the first subscript represents the infectious person
and the second subscript represents the susceptible
person. The relative susceptibility of a person with
risk factor level 1 compared to risk level 0 conditional
on a given exposure to infection is SAR01/SAR00 or
SAR11/SAR10. The relative infectivity of a person
with risk factor level 1 compared to risk factor level
0 is estimated by SAR10/SAR00 or SAR11/SAR01.
The relative transmissibility between persons of risk
factor level 1 compared to that between persons with
risk factor level 0 is SAR11/SAR00.

Vaccine efficacy can be estimated using the SAR
(see Vaccine Studies). If 0 and 1 represent the unvac-
cinated and vaccinated people, respectively, then
vaccine efficacy for susceptibility, VES, and infec-
tiousness, VEI, are estimated by

VES = 1 − SAR01

SAR00

and

VEI = 1 − SAR10

SAR00
. (2)

The relative SAR between two vaccinated people
compared to two unvaccinated people, i.e. the ratio
SAR11/SAR00, can be thought of as the naive sus-
ceptible equivalent of a vaccinated compared to an
unvaccinated person [11]. It gives the relative con-
tribution of a vaccinated person to the basic repro-
duction number, R0, compared to that of an unvac-
cinated person, and thus information about the effect
of widespread vaccination on reducing the spread of
an infectious agent in a population.

Household Secondary Attack Rate

The household secondary attack rate (SAR) is the
probability that a susceptible individual living within
the same household as an infectious person during
their period of infectiousness will become infected.
The household SAR is a parameter commonly used
for estimating the protective efficacy of a vaccine
in directly transmitted infections, such as pertussis,

mumps, chicken pox, and measles [6, 22]. It can
also be used to estimate the efficacy of a vaccine
in reducing infectiousness [9, 10]. The data required
are the time of onset of disease for each case in
the household, as well as knowledge of who is sus-
ceptible. Estimates or assumptions about the mini-
mum and maximum incubation periods, E1 and E2,
respectively, and the maximum time I that a person
remains infectious are also required and are some-
times obtained from other studies. One sometimes
assumes that the onset of symptoms coincides with
the onset of infectiousness, and that there are no
asymptomatic cases.

The first step in assessing SAR is to define for
the disease under study the time interval after the
index case that would include secondary cases. The
presumed beginning of infectiousness of the index
case is defined as time 0 for each household. Sec-
ondary cases are those with time of onset between
the end of the minimum incubation period E1 rela-
tive to the beginning of infectiousness of the index
case (t = 0) and the end of the maximum incuba-
tion period E2 relative to the time of the maximum
infectious period of the primary case, t = I . Thus,
secondary cases are those occurring in the interval
(E1, I + E2). A case with recorded onset time less
than one minimum incubation period, E1, after that
of the index case, was presumably not infected by the
index case and is called a co-primary case. Tertiary
and higher cases are those occurring after the maxi-
mum allowable time interval for the secondary cases.

Example

For an early efficacy study of pertussis vaccines,
Kendrick & Eldering [12] estimated the infectious
period for the bacteria from studies of throat cul-
tures. In those studies, nearly everyone had a positive
culture up to 21 days after onset of symptoms. They
defined a definite exposure (potentially infective con-
tact) as living in the same house as the index case
or being indoors in another house with the index
case for at least 30 min within Id = 21 days of onset
of symptoms of the index case. The mean incuba-
tion period of pertussis from two other studies was
estimated to be 13 ± 7.6 days and 15.4 ± 1.3 days.
Based on this information, Kendrick & Eldering
somewhat arbitrarily set the minimum incubation
period to E1 = 10 days and the maximum incubation
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period to E2 = 30 days. Under the definition of def-
inite exposure, secondary cases were those occurring
between E1 = 10 and Id + E2 = 21 + 30 = 51 days
after the onset of symptoms in the index case.

Kendrick & Eldering had a second, less strin-
gent, definition for a potentially infective contact
that included outdoor contacts. Based on the obser-
vation that between 21 and 35 days after onset of
symptoms, throat cultures were less often positive,
someone exposed up to Ii = 35 days after onset of
symptoms in the index case was defined as an indef-
inite exposure. For indefinite exposures, secondary
cases were those occurring between day E1 = 10
and Ii + E2 = 35 + 30 = 65 days after the onset of
symptoms of the index case.

The second step in assessing the SAR is to deter-
mine for each ascertained case within each house-
hold whether it is a co-primary, secondary, tertiary,
or higher generation case. The estimated household
SAR is the total number of secondary cases in all
households divided by the total number of at-risk
susceptibles in all households as in (1). Co-primary
cases are excluded from the denominator. Tertiary or
higher cases are excluded from the numerator but are
included in the denominator.

Difficulties in estimating the conventional SAR
include determination of the latent, incubation, and
infectious periods, ascertainment of onset times of
cases, and determining when an exposure to infection
has taken place.

Inference

Possible correlation of responses among susceptibles
exposed to the same infectious source need to
be taken into account in making inferences.
Generalized estimating equations (GEES) [15]
using a logit model or the nested bootstrap [5] can be
used for inference when estimating secondary attack
rates [4]. The GEE approach is usually the preferred
method.

Model-Based Approaches to Estimating
SAR

One problem with the conventional SAR is that it
does not take into account that susceptibles exposed
to the index case could become infected from infec-
tious sources other than the index case. The estimated

SAR would be too high if there is a substantial pos-
sibility of becoming infected from other sources in
the community. An alternative approach is a model
for transmission of an infectious disease in a commu-
nity of households that allows joint estimation of the
SAR as well as the probability of becoming infected
within the community, CPI, by the end of an out-
break [16]. In this model, the probability that during
an outbreak exactly j persons become infected in a
household with s susceptibles is

πjs =
(

s

j

)
πjj (1 − CPI)(s−j)

× (1 − SAR)j (s−j), 0 ≤ j < s,

πss = 1 −
s−1∑

j=0

πjs, (3)

where the likelihood function is the product of the
probabilities πjs, j = 0, 1, . . . , s, over all the house-
holds in the sample. Maximization of the likelihood
provides maximum likelihood estimates of the SAR
as well as the CPI. The advantage of this model
over the conventional secondary attack rate method
is that it requires only final value data, namely, who
is in which household and who becomes infected
during the outbreak. Disadvantages include rela-
tively large standard errors and strong modeling
assumptions.

Similar models have been used by others [2],
as well as for estimating the effects of covari-
ates [8, 19], including vaccine efficacy [14, 17, 18].
Another approach to estimation [20] is to use the EM
algorithm [3] and a generalized linear model [21].
A discrete time model has been developed that
allows estimation of the SAR from the time of
onset data while adjusting for the possibility of
infection from outside the household [23]. The dis-
advantage of the approach is that it requires the
user to specify probability distributions for the
latent, incubation, and infectious periods. Chain
binomial models can also be used to estimate
the SAR.

Summary

The secondary attack rate is defined as the proba-
bility that infection occurs among susceptible per-
sons within a reasonable incubation period following
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known contact with an infectious person or other
infectious source. It is a key epidemiologic param-
eter in infectious diseases that are transmitted by
contact. It can be estimated using a variety of epi-
demiologic study designs, models, and methods of
estimation. Inference needs to take into account corre-
lation of susceptibles exposed to the same infectious
source.
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Segregation Analysis,
Classical

To determine the mode of inheritance of a genetic
disease (or a trait), dichotomous (affected and unaf-
fected) phenotypic data on members of families are
generally collected. Given the phenotypes of par-
ents, the probability of an offspring being affected
depends on whether the gene responsible for the dis-
ease is dominant or recessive. Therefore, inference
regarding the mode of inheritance of the disease is
possible from an estimate of this probability. Statisti-
cal analysis of family data to determine the mode of
inheritance is called segregation analysis.

The probability of an offspring being affected
given parental phenotypes can be estimated from the
proportion of affected offspring in a family. Consider,
for example, a disease determined by a recessive
allele (D) at a single autosomal biallelic locus with
alleles D and d. Suppose in a family one parent
is affected (genotype dd) and the other parent is
unaffected (DD or Dd). Let R denote the number
of affected offspring and S the total number of
offspring in this family. If R �= 0, then the unaffected
parent is of genotype Dd. Hence, an estimator of
θ = Pr (an offspring is affected | parental genotypes)
is R/S. θ is called the segregation probability or
segregation ratio. R/S is actually the maximum
likelihood estimator (MLE) of θ because the
likelihood Lθ(s, r) of the observations S = s, R =
r , conditional on parental genotypes is bin(s, θ).
If, however, R = 0 (a nonsegregating family), then
the genotype of the unaffected parent cannot be
uniquely determined. If the parental mating is d d ×
DD, then the family is incapable of producing an
affected offspring; hence, in this family, θ = 0.
Thus, ascertaining a family through the presence of
an affected offspring (a segregating family) helps
uniquely determine the genotypes of both parents
for a simple recessive disease. If the disease allele
D is dominant, even when the family is ascertained
through an affected offspring, the genotypes of
both parents cannot be uniquely determined; the
affected parent can be of either genotype DD or
Dd. If the mating is d d × DD, then the segregation
probability is θ1 = 1. If the mating is d d × Dd, then
this probability is θ2 = 1/2. The likelihood for the
observations on s offspring of whom r(�= 0) are

affected is a mixture of likelihoods

ω1Lθ1(s, r) + ω2Lθ2(s, r), (1)

where ω1 = Pr(d d × DD | unaffected × affected) and
ω2 =. Pr(d d × Dd | unaffected × affected). ω1 and
ω2 are functions of the D allele frequency in the
population from which the family is drawn.

To avoid the complications arising from a mixture
of likelihoods we shall make an assumption that
enables unique identification of parental genotypes
from parental and offspring phenotypes. Classical
segregation analysis relates to analysis of such data
on offspring for which the likelihood is not a mixture
of likelihoods (see Segregation Analysis, Complex).
We shall assume that the probability of the disease-
causing allele in the population is low (say, 0.01
or 0.001). Under this assumption, in the example
of the autosomal dominant disease given earlier,
the parental mating will virtually always be d d ×
Dd. (For a recessive disease this assumption is not
required to identify parental genotypes uniquely.)

For a rare genetic disease, random sampling of
families is not a method of choice because all
members of most randomly sampled families will
be unaffected and hence will provide no information
for estimating θ . A commonly used method is to
ascertain families through the presence of at least
one affected offspring. An affected individual in a
family through whom the family can be ascertained
is called a proband; the probability of ascertainment
of a proband is defined as π = Pr (individual is
a proband | individual is affected). Ascertainment
can also be made through an affected parent. The
dependent nature of familial data and adoption of
nonrandom sampling schemes require specialized
statistical methodology for analysis of such data. If
an appropriate correction for bias of ascertainment
(bias due to nonrandom sampling) is not made, the
estimate of θ will be positively biased and inference
on the mode of inheritance will be incorrect.

Statistical Methodology

Estimation of θ

If R denotes the number of affected offspring in a
sibship of size S, then its probability density function
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(pdf) is

pθ(S, r) =
(

S

r

)
θr (1 − θ)S−r , (2)

r = 0, 1, . . . , S, 0 ≤ θ ≤ 1. However, if a family is
ascertained through an affected offspring, then fami-
lies with R = 0 will be excluded. Let w(r, π) denote
the probability of ascertaining a family with R = r .
Hence, the pdf of R in ascertained families will
be [10]

p∗
θ (r, π, S) = w(r, π)pθ (S, r)

E[w(R, π)]
. (3)

In the present case, since each ascertained family has
at least one proband [9],

w(r, π) = 1 − (1 − π)r , (4)

E[w(R, π)] =
S∑

r=1

w(r, π)pθ (S, r)

= 1 − (1 − πθ)S. (5)

If π = 1, complete ascertainment, then p∗
θ (r, π, S)

reduces to a truncated bin(S, θ) distribution, trun-
cated at zero. If π � 0, single ascertainment, then
w(r, π) ≈ rπ , and p∗

θ (r, π, S) is a bin(S − 1, θ) dis-
tribution.

In practice, ascertained families will have different
numbers of offspring, both total and affected. If ars

denotes the observed number of independently ascer-
tained families each with s(= 1, 2, . . . , S) offspring
of whom r(= 1, 2, . . . , s) are affected, then the joint
likelihood for observations on all sibships will be

Ls(θ) = ns!
s∏

r=1

ars!

s∏

r=1

[p∗
θ (r, π, s)]ars , (6)

where ns = ∑s
r=1 ars . Let A = ∑S

s=1

∑s
r=1 rars =

observed total number of affected offspring in all
families. Then, it is easy to show [4] that the MLE
of θ is obtained iteratively from the equation

A

θ
=

S∑

s=1

[1 − (1 − π)(1 − πθ)s−1]sns

1 − (1 − πθ)s
, (7)

where π ∈ (0, 1] is assumed to be known. For π � 0,
an explicit solution of θ is easily obtained as

θ̂ = A − N

T − N
, (8)

where N = ∑S
s=1 ns = total number of ascertained

families, and T = ∑S
s=1 sns = total number of off-

spring in all ascertained families. For π = 1, (7)
reduces to

A

N
=

S∑

s=1

sns

1 − (1 − θ)s
. (9)

We note that the value of π may be unknown
and may need to be estimated simultaneously with θ .
The maximum likelihood estimation procedure, score
vectors and information matrices are derived in [2]
and [4] for both cases, π known and unknown. (See,
however, some corrections in [1].) A simpler and
computationally more efficient method of estimating
θ (or, θ and π) using the EM algorithm is given
in [1].

While for a rare recessive disease both parents
in most families will be unaffected, for a relatively
common disease at least one of the two parents may
be affected, and thus families can be ascertained
through an affected parent. If the disease is recessive,
then to identify the genotype of the unaffected parent
uniquely, we restrict ourselves to data on only those
families in which there is at least one affected
offspring. Then, the pdf of R (= number of affected
offspring) in a sibship of size S will be

pθ(S, r|r > 0) =

(
S

r

)
θr(1 − θ)S−r

1 − (1 − θ)S
, (10)

r = 1, 2, . . . , S, which is identical to the pdf [trun-
cated bin(S, θ) distribution] for complete ascertain-
ment through offspring.

If the disease is dominant, then instead of analyz-
ing data on affected persons, we can analyze data on
unaffected persons, which is a recessive trait.

Thus, simple segregation analysis for families with
at least one recessive offspring ascertained through
an affected parent is the same as that for complete
ascertainment through offspring.

Hypothesis Testing

In classical segregation analysis, we generally wish
to test whether a disease is dominant or recessive.
This null hypothesis H0 : θ = θ0 is easily framed,
because θ0 is known for a specific parental genotypic
mating under a model. For example, if the disease is
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recessive, we know that in Dd × Dd families, θ0 =
1/4. Thus, from unaffected × unaffected families
each ascertained through an affected offspring, we
can obtain θ̂ and calculate the test statistic

X2 = (θ̂ − θ0)
2

V (θ0)
, (11)

where V (θ0) is the variance of θ evaluated at θ0. X2

follows a chi-square distribution with 1 df.

Efficient Approximate Methods

For complete ascertainment (π = 1), Li & Mantel [8]
suggested a simple method, the singles method. The
estimator of θ is

θ̂LM = A − J1

T − J1
, (12)

where J1 denotes the number of families with only
one affected offspring. Gart [6], who independently
proposed the method, has shown that θ̂LM is almost
fully efficient as the MLE for all realistic values of S.

It may be noted that for single ascertainment (π �
0), Weinberg [11] proposed a method, the proband
method, and derived the simple estimator given by
(8), which was shown to be the MLE by Haldane [7].

For incomplete ascertainment (0 < π < 1), Wein-
berg [12] had initially suggested an estimator that was
modified by Fisher [5]. However, Davie [3] showed
that these estimators are not very efficient and pro-
posed another estimator which he showed to be very
efficient at all levels of ascertainment. This estima-
tor is

θ̂D = R − J

T − J
, (13)

where J denotes the number of families having
exactly one proband. Not only does θ̂D becomes
identical to θ̂LM for complete ascertainment and to
θ̂ of (8) for single ascertainment, the large sample
variance of θ̂D also becomes identical to the variances

of the corresponding estimates at these two extremes
of ascertainment.
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Segregation Analysis,
Complex

Complex segregation analysis refers to a statistical
genetic method that focuses on the detection and
characterization of the unobserved genes that influ-
ence phenotypic variation. It was originally termed
“complex” because, unlike “classical” segregation
analysis, it considers the situation in which more
than one mating type is possible for a given sib-
ship, thus requiring summation over mating types
in the likelihood [19]. The adjective “complex” is
equally appropriate because the phenotypes that it
considers have multiple determinants (e.g. multiple
loci, environmental factors, etc.). Mendel first dis-
covered the transmission laws that bear his name
by the examination of continuous characters of pea
morphology (see Mendel’s Laws). He was fortu-
nate that the underlying genotypic distributions were
essentially nonoverlapping and thus could easily be
discretized in a biologically meaningful way and that
the leading factors determining them were simple
two-allele polymorphisms. However, for most char-
acters, the form of inheritance is more elaborate.
Multiple genes interact to influence most traits of
relevance to biomedicine. Additionally, most of the
physiological characters that are important in nor-
mal and pathological variation are also influenced
by the environment. Ultimately, genes and environ-
ment interact (see Gene-environment Interaction)
to determine the phenotype.

The primary goal of modern human genetics is
to disentangle this complex web of interacting vari-
ables and to determine the role of genetic variation
in health and disease. Most of the genes influencing
complex phenotypes exhibit small effects, although in
aggregate their joint effect may be large. However, it
is clear that some of the genes influencing phenotypic
variation have moderate to large effects and that the
signal of their Mendelian transmission pattern may
be seen in the examination of variation within and
between families. It is the goal of segregation analysis
to detect these leading genetic factors and to provide
statistical descriptions of their essential features. The
formal application of complex segregation analysis is
used to infer the inheritance model for a trait and to
provide estimates of the underlying genetic parame-
ters. Most often, complex segregation analysis is used

in an attempt to determine whether the transmission
pattern of a phenotype within a family is consistent
with Mendelian expectations (see Genetic Transi-
tion Probabilities). The basic strategy of complex
segregation analysis is to fit a series of inheritance
models, including nongenetic models, to family data,
and then to select the model that best explains the
observed data.

There are three basic models of genetic inheri-
tance. Their distinctions are largely quantitative, yet
inexact. When a phenotype is dominated by the
effects of a single locus, and there is no evidence
for any residual genetic effects, the inheritance pat-
tern is called monogenic. If the trait in question is
influenced by a few loci, then the inheritance is said
to be oligogenic. Finally, when the trait is influenced
by a large number of loci each with small effects, we
have polygenic inheritance. In our search to eluci-
date the genetic architecture of complex phenotypes,
we are primarily interested in finding large genetic
effects due to specific loci. Therefore, for those traits
whose inheritance pattern is monogenic or oligogenic,
we hope to be able to characterize the primary loci
influencing observed phenotypic variability.

The methods of complex segregation analysis are
used to analyze many different types of phenotypes
from continuous characters to meristic traits to dis-
crete phenotypic states, although some latent contin-
uous distribution is usually associated with discrete
traits. In the following, we primarily focus on the
analysis of continuous traits (see Genetic Liability
Model for discrete traits).

The Model

In this Section, the basic model utilized in com-
plex segregation analysis of quantitative traits is
described. Table 1 presents the definition of the
canonical parameters of quantitative trait segregation
analysis to be explicated. The reader should bear
in mind that there are many equivalent alternative
parameterizations.

Modeling the Genotype

Since the goal of segregation analysis is to determine
whether or not there is sufficient evidence for the
effects of a specific locus influencing variation in a
trait, it is necessary to consider more general alter-
native models in which mixtures of environmental
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Table 1 Basic parameters of complex segregation analy-
sis for a quantitative trait

Parameter Definition

pA Frequency of A allele (factor)
µAA, µAa, µaa Genotypic (ousiotypic) means
h2

r Residual heritability
σr Residual phenotypic standard deviation
τAA, τAa, τaa Transmission probabilities

origin are allowed. In most applications of complex
segregation analysis, the number of components in
the mixture distribution is limited to three. These
three distributions can be related to unobservable
genotypes or, more generally, ousiotypes [13], with
or without genetic inheritance.

Ousiotypes are the product of two discrete fac-
tors, A or a. Upper case letters (e.g. A) represent
factors associated with lower levels of the quanti-
tative trait, and lower case letters represent factors
associated with higher levels. The three genotypes
can be denoted as AA, Aa, and aa. To simplify
computations, the frequencies of the genotypes are
usually assumed to follow Hardy–Weinberg pro-
portions ψ = [ψAA, ψAa, ψaa]′ = [p2

A, 2pA(1 − pA),
(1 − pA)2]′, where pA is the frequency of the A fac-
tor (allele); thus only one admixture parameter (pA)

is required. The elements of ψ provide the probabil-
ities that an individual in the founding (i.e. parental)
population has a particular genotype. As an alterna-
tive parameterization, frequencies of genotypes can
be directly estimated, requiring two parameters (ψAA,
and ψAa, since ψaa = 1 − ψAA − ψAa). This relax-
ation of the Hardy–Weinberg equilibrium assumption
may be more appropriate in populations where we
know that random mating does not hold (e.g. small
isolated populations). Regardless, it is assumed that
the probability of a mating between two individu-
als with genotypes ij and kl, respectively, is simply
ψijψkl [20].

Modeling Transmission of the Genotype

The focal source of nonindependence among rela-
tives in complex segregation analysis is due to the
transmission of factors (alleles) between generations
from parents to offspring. Mendelian segregation pro-
vides a decidedly nonrandom and systematic form of
transmission that is unlikely to be mimicked by envi-
ronmental agents. Therefore, in the absence of having

a directly measurable genotype, the inference that a
gene is influencing a particular phenotype is based
on testing whether the observed pattern of phenotypic
variation within families is consistent with Mendelian
transmission. If there is no transmission, then there
is no nonindependence due to the genotype and off-
spring genotypes will not be a function of parental
genotypes. All of the essential features of genotype
transmission are contained in a set of probabilities
that are a function of a vector of arbitrary trans-
mission parameters written as τ = (τAA, τAa, τaa)

′,
whose elements denote the probability that an indi-
vidual of a given genotype transmits factor “A” to an
offspring [22]. Conversely, the probability of trans-
mitting factor “a” is given by 1 − τ . When Mendelian
transmission holds, τ = (1, 1/2, 0). With these three
basic parameters, all of the genetic transition proba-
bilities for offspring can be obtained. For the m2 = 9
possible mating types, we can obtain the 9 × 3 matrix
of probabilities for offspring genotypes by

T =




τ ⊗ τ

τ ⊗ (1 − τ ) + (1 − τ ) ⊗ τ

(1 − τ ) ⊗ (1 − τ )





′

, (1)

where ⊗ is a Kronecker product operator.

Modeling the Phenotype

The phenotype of an individual is usually assumed
to be a linear function of a set of fixed effects
and random effects. Under the mixed model, which
includes both a major factor and a residual polygenic
component [22, 36, 38], the phenotype of the j th
individual with genotype i is

(yj |oj = i) = µi + gj + β ′(xj − s) + ej , (2)

where o is the genotype, µi(i = AA, Aa, aa) is the
mean associated with the ith genotype, and xj is the
j th individual’s vector of covariates (i.e. the j th row
of X) scaled to some baseline s. In this model, the
genotype represents an unobservable discrete random
effect and the covariates represent fixed effects. The g

and e terms represent random effects, with g being an
additive polygenotypic effect and e being a random
environmental deviation or random error. Assuming
that E(g) = E(e) = 0, the expectation of (2) is

E(yj |oj = i) = µi + β ′(xj − s). (3)
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It is generally assumed that the random effects g

and e are normally distributed so that the polygeno-
typic effect can be thought of as the cumulative
sum of additive genetic effects at a large number
of loci [25]. It is also assumed that the two random
factors are independent so that cov(g, e) = 0. Thus,
there is no genotype–environment correlation. Fol-
lowing these assumptions, the conditional variance
of the y is written as

var(yj |oj = i) = σ 2
g + σ 2

e . (4)

The genetic component (σ 2
g ) of the conditional

variance given in (4) represents the residual addi-
tive genetic variance. This residual polygenic com-
ponent is useful to absorb genetic effects other than
the potential major locus. Residual nonindependence
among relatives due to biological kinship is allowed
by including this genetic component (see Genetic
Correlations and Covariances), the residual heri-
tability parameter (h2

r ) refers to the proportion of
phenotypic variance due to additive genetic variance
within each genotype’s phenotypic distribution, and
σr = (σ 2

e + σ 2
g )1/2 is the within-genotype standard

deviation. Therefore, the proportion of phenotypic
variance attributable to random environmental vari-
ation within genotypes is given by 1 − h2

r .
Since g and e are assumed to be normally dis-

tributed and the convolution of two normal densities
is again normal, the conditional density of y is nor-
mal. This density is also known as the penetrance
function in genetic terminology. It provides the prob-
ability density for having a specific phenotypic value
given a specific genotype.

The unconditional variance of y has an additional
variance component attributable to the effect of the
major factor:

var(y) = σ 2
o + σ 2

g + σ 2
e , (5)

where σ 2
o = ∑

ψi(µi − ∑
ψiµi)

2 is the variance
due to the major factor (locus), so that the relative
proportion of phenotypic variance (after controlling
for covariates) that is due to the major factor is
h2

o = σ 2
o /(σ 2

o + σ 2
g + σ 2

e ). If a gene is the source of
this genotypic variation, then h2

o is the heritability
due to this gene. Generally, if the relative variance
due to a locus is approximately 15% or larger, then
it is termed a major gene. However, rare alleles with
large displacements (i.e. the difference between the
means of contrasting genotypes) of several standard

deviations (so-called megaphenic effects) may also
be called major genes, regardless of their relative
importance at the population level.

The Likelihood

The three basic parts of the model outlined above
provide the necessary components for developing
the likelihood function of a phenotypic vector in a
group of relatives. Generally, the term pedigree can
be used for any set of biologically related individu-
als and their mates. Useful pedigrees for segregation
analysis may be as simple as nuclear families or as
complex as multigenerational extended kindreds. The
key relationship in segregation analysis is that of
parent–offspring, which is the fount of information
regarding Mendelian segregation. As multiple gener-
ations are added, segregations can be followed further
down the descendent chain, thus improving the abil-
ity to detect Mendelian transmission. In this Section,
the general form of the likelihood for a pedigree of
arbitrary size and complexity is described.

Joint Density Function of Genotypes and
Quantitative Phenotypes

Let O denote the n × 3n matrix containing all possi-
ble genotypic combinations for a given pedigree of
size n. Given a vector of genotypes oj (which denotes
the j th column of the O matrix), the joint probability
density of genotypes and quantitative phenotypes can
be written as

f (oj , y) = f (oj )f (y|oj ). (6)

The first factor on the right-hand side of (6)
gives the probability of observing the genotypic
vector. This probability is a function of the frequency
of the major factors (alleles) and the transmission
probabilities, and is written

f (oj ) =
nF∏

i=1

ψoij

n∏

k=nF+1

Pr(okj |ofj , omj , τ ). (7)

In (7), ψoij
is the probability of observing the

genotype of individual i, which is equal to the
population frequency of the genotype. The term
Pr(okj |ofj , omj , τ ) is the probability of an individual
exhibiting genotype k given his father’s and mother’s
genotypes, which is simply the appropriate element



4 Segregation Analysis, Complex

of the T matrix obtained in (1). The first product
in (7) is over the nF founders (individuals whose
parents are not represented in the pedigree), while
the second product is over the n − nF nonfounders.
Eq. (7) shows that the probability of the genotypic
vector can be decomposed into a series of univariate
densities, one for each individual. This is possible
because of the Markov pattern of dependence in
which the genotype of the individual depends at most
on those of his/her parents.

The second factor on the right-hand side of (6) is
the conditional density of y given the genotypic vec-
tor, and is assumed to take the following multivariate
normal form:

f (y|oj ) = 2π−n/2|�|−1/2

× exp

[
−1

2
(y − Zjµ)′�−1(y − Zjµ)

]
, (8)

where Zj is an n × 3 indicator matrix whose ith row
is [δAA, δAa, δaa], with δkl equal to 1 only if the ith
individual has genotype kl and equal to 0 otherwise.
In the above density, the phenotypic covariance
matrix of y conditional on knowledge of oj is �. For
the standard mixed model, this residual phenotypic
covariance matrix for the pedigree can be written by

var(y|oj ) = �, (9)

= 2�h2
r σ

2
r + In(1 − h2

r )σ
2
r , (10)

where � is a matrix whose ij th element is twice
the coefficient of kinship between members i and j

(see Inbreeding), and In is an n × n identity matrix.
From the conditional joint density in (6), we can

now write the likelihood function for a pedigree as

L(µ, σr, h2
r , pA, τ |y, O) = f (O, y) (11)

=
3n∑

j=1

f (oj )f (y|oj ), (12)

where the summation is over all possible genotypic
vectors. Eq. (12) shows that the underlying distri-
bution of the quantitative trait is made up of a
mixture of multivariate normal distributions. It also
shows that the model allows for statistical noninde-
pendence among pedigree members due to both the
transmission of the oligogenes and the residual poly-
genic background. The practical utility of the above
exact likelihood formulation is rather limited since it

requires repeated inversions of the potentially large
n × n matrix, �, and the evaluation of all 3n pos-
sible multivariate conditional likelihoods. For large
pedigrees, such a direct approach is likely to be
intractable. For example, a moderately sized human
pedigree with 20 members requires the evaluation of
approximately 3.5 billion genotypic vectors. There-
fore, for practical applications, it is necessary to
consider some algorithmic improvements and like-
lihood approximations.

Calculating the Likelihood:
Approximations and Alternatives

The model presented above poses formidable compu-
tational difficulties. A great deal of research has been
oriented towards reducing this burden. A number
of recursive algorithms, alternative model and like-
lihood formulations, and likelihood approximations
have been suggested [5, 7–9, 17, 22–24, 26–29, 31,
42] (see Elston–Stewart Algorithm for a discussion
of probability calculations on pedigrees).

Approximating the Mixed Model Likelihood

When there is a residual polygenic component, it is
impossible to write the likelihood in a simple form.
We can write the density of y given by (11) and (8) as

f (O, Y )

=
∑

o1

∑

o2

. . .
∑

on

nF∏

i=1

ψoij

n∏

k=nF +1

Pr(okj |ofj , omj , τ )

× 2π−1/2|�|−1/2
n∏

i=1

exp

[
−ωii

2
(yi − µoi

)2

]

×
n−1∏

i=1

n∏

j=j+1

exp
[−ωij (yi − µoi

)(yj − µoj
)
]
,

where ωij is the ij th element of the inverse of the
residual covariance matrix � [24, 28]. The com-
plexity lies in the cross-product terms since there
will not be complete knowledge of the genotype
for both members of any relative pair, other than
parent–offspring and spousal pairs, during the appro-
priate step in the peeling process. There is no sim-
ple solution to this problem. Therefore, in practice,
approximation is employed to reduce computations.
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While this density can also be written in integral
form [5, 22, 23, 27], most approximations implicitly
involve weighting the cross-product terms using the
current approximate probabilities of genotypes [17,
27, 28].

Alternative Formulations

There are several alternative formulations of the
mixed model (if we define the mixed model loosely as
any model allowing both focal genotypic and residual
genetic effects). One option is to employ residual
genotypic effects directly. For example, Morton [35,
37] has argued for absorbing residual genetic varia-
tion using an oligogenic model incorporating a sec-
ond locus with two alleles. Although this is a crude
approximation to a residual polygenic component, it
will tend to absorb much of the residual genetic vari-
ation. Additionally, the likelihood of such a model
can be calculated exactly and rapidly. Other avail-
able alternatives include the finite polygenic mixed
model (see Polygenic Inheritance) and the regres-
sive models.

A disadvantage of all of these alternatives is that
they lack the potential generality that is implicit in
the variance component form of the likelihood. This
variance component model can be extended easily to
allow additional variance components [23, 28] and
complexities such as genotype × environment inter-
action [3] that can lead to violation of the assump-
tions regarding conditional independence among rel-
atives given parental genotypes.

Likelihood Corrections for Nonrandom
Ascertainment of Pedigrees

The likelihood framework sketched above is only
appropriate when pedigrees have been ascertained
randomly (i.e. sampled without regard to particular
phenotypic configurations). Typically, when dealing
with diseases that may be rare, it is necessary to sam-
ple pedigrees nonrandomly so that they are enriched
for the disease or for higher (or lower) values of a
quantitative phenotype that is a concomitant of the
disease. In such cases, the sampling mechanism by
which the selection of a pedigree has occurred needs
to be taken into account by the likelihood model. If
nonrandom ascertainment is ignored, then the esti-
mation of some of the parameters may be severely
biased. This is particularly true for allele frequencies

and relative variance components due to genetic
factors. Therefore, ascertainment corrections to the
likelihood typically require that the selection mech-
anism be known (see Ascertainment; Pedigrees,
Sequential Sampling for a more detailed discussion).

Estimation

Maximum Likelihood Estimation

Given that the likelihood can be calculated exactly
or approximately, estimates of the parameters of
complex segregation analysis are usually obtained
by the standard maximum likelihood method. Maxi-
mization of such a complicated likelihood represents
a considerable numerical problem, with the primary
difficulty being the high probability of observing
multiple maxima (a problem associated with finite
mixture models in general). One approach to this
problem is to search the likelihood surface for all
existing maxima by using random initial parameter
estimates in a Monte Carlo procedure [1]. While
we are primarily interested in the global maximum,
sometimes local maxima appear to supply important
additional information about the underlying genetic
model [1, 4, 6].

Markov Chain Monte Carlo Estimation

One relatively recent approach to parameter estima-
tion in complex segregation analysis involves the
use of Markov chain Monte Carlo (MCMC) meth-
ods [26]. In this approach, the latent genotypes and
polygenotypes are imputed conditional upon the phe-
notypic information and current parameter values
using a Monte Carlo algorithm. After this “missing”
information is completely filled in for a pedigree,
estimation using the augmented data is straightfor-
ward since it utilizes closed-form estimators. The
process is iterated until convergence. The strength
of this method is that it can accommodate mod-
els of great complexity in which it would be dif-
ficult, if not impossible, to calculate the likelihood
directly. The MCMC approach, therefore, opens the
door for the application of more realistic models
in segregation analysis. Also, this method allows
the possibility of performing Bayesian estimation
and inference, if reasonable functional forms for the
prior distributions of the parameters can be speci-
fied [43]. Using this method, it is also possible either
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to estimate likelihood ratio test statistics to compare
models [44] or alternatively to estimate the likelihood
directly [43].

Estimation Using Generalized Estimating
Equations

Another recent approach to parameter estimation in
complex segregation analysis involves the applica-
tion of generalized estimating equations (GEE) [33,
46–48]. This method of estimation makes fewer
assumptions about the distributional form that the
mixture of genotypes takes and therefore may be
more robust. It involves the estimation of parameters
using the first few moments of the observed dis-
tribution by relating observed estimates of moments
to those expected under the model. A set of poten-
tially high-dimensional linear equations are solved to
obtain estimates of the parameters. It has been shown
that evaluation of the first four moments is required
to achieve statistical identification of the parame-
ters of the mixed model [48]. Since these moments
involve all possible tricovariances and quadricovari-
ances within pedigrees, the dimension of the matrices
requiring inversion increases nonlinearly as pedigree
size is increased.

Comparing Models of Inheritance

Competing Transmission Models

In practice, complex segregation analysis involves the
evaluation of several possible models of inheritance
and their comparison with a general model in which
transmission of the genotype is allowed to take
an arbitrary form (i.e. the transmission probability
parameters (τ ) are allowed to vary freely). Each of
the models to be compared to the general model
represents a nested submodel of the general model.

Several classes of restricted models can be tested
against the most general model using the unified
approach of Lalouel et al. [32]. The simplest models
generally considered include sporadic models which
allow only random environmental effects. In this type
of model, all individual trait values are independent
of one another. Therefore, there are no genetic factors
acting on the trait.

When multiple distributions are considered, a spo-
radic model becomes a simple finite mixture (or
commingling) model. It is obtained by forcing the

admixture parameter (pA) to equal the transmission
parameters (pA = τAA = τAa = τaa). This transmis-
sion model preserves the assumption of equilibrium
since the expected genotypic frequencies do not
change from generation to generation. By allowing
pA to vary independently of the τ s, this model per-
mits heterogeneity of mixture proportions between
generations.

A closely related class of model, the environ-
mental transmission model, assumes random envi-
ronmental effects for major factors, but also permits
residual polygenic inheritance (i.e. it is a finite mix-
ture model extended to allow nonindependence due
to genetic kinship among individuals). Again, two
different constraints on the transmission probabilities
are possible: pA = τAA = τAa = τaa or pA �= (τAA =
τAa = τaa), depending on whether it is decided to
force equilibrium between generations. A model with
only one underlying phenotypic distribution allowing
for a polygenic component of variation reduces to
the classical additive polygenic model of quantitative
genetics.

The Mendelian models considered incorporate
transmission probabilities fixed at their Mendelian
expectations (τAA = 1, τAa = 1/2, τaa = 0). Mixed
Mendelian models additionally allow for a residual
polygenic background. Subsets of Mendelian mod-
els include: (i) additive models in which the allelic
effects act additively to determine the mean of a geno-
type (µAa = [µAA + µaa]/2); (ii) recessive models in
which the “a” allele is recessive, leading to µAA =
µAa; and (iii) dominant models in which the “a” allele
is dominant so that µAa = µaa. Analogous constraints
on the genotypic means can be made for both the
environmental and general models.

One potential problem with the general model is
that it does not necessarily preserve the equilibrium
between generations [16]. While this provides some
flexibility with regard to model fitting, it may not
always be biologically relevant. Therefore, if it is
desirable to maintain the assumption of equilibrium,
then the following nonlinear constraint can be placed
on the transmission probability for the heterozygote:

τAa = pA − p2
AτAA − (1 − pA)2τaa

2pA(1 − pA)
. (13)

Likelihood Ratio Tests

Depending upon the availability of a sufficient
data structure, all parameters can be estimated by
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numerical maximization of the likelihood for the data
given the assumed transmission model. Model com-
parison is usually performed using likelihood ratio
tests in which the test statistic is defined by

Λ = 2
[
Sup ln L(θ̂H0+HA |y) − Sup ln L(θ̂H0 |y)

]
,

where θ̂HA+H0 refers to the maximum likelihood
parameter estimates under the alternative hypothesis,
and θ̂H0 refers to the estimates under the null hypoth-
esis. This test statistic is simply twice the difference
between the loge likelihoods of the unrestricted and
restricted models. In some cases, these test statistics
are asymptotically distributed as chi-square variates
with degrees of freedom equal to the difference in
the number of parameters between the two competing
models. However, for the main contrast that we are
interested in, that of the general transmission model
(τ̂AA, τ̂Aa, τ̂aa) against the Mendelian mixed model
(τAA = 1, τAa = 1/2, τaa = 0), two of the constrained
transmission parameters of H0 fall on a boundary
of the parameter space, τAA = 1 and τaa = 0. The
resulting Λ is not distributed as a χ2 variable but
as a complex mixture of χ2 distributions [15, 41]. If
the comparison involves the equilibrium-constrained
general model in which τAa is estimated by (13), then
Λ ∼ 1

4 + 1
2χ2

1 + 1
4χ2

2 and the P value can be calcu-
lated easily [41].

Inferring the Presence of a Major Gene

The inference that a major gene is influencing a trait
requires the sequential elimination of a number of
competing hypotheses. When compared against the
general transmission model, each of the nested sub-
models (e.g. the sporadic model, the polygenic model,
and the environmental model) should be rejected,
while the Mendelian mixed model should not exhibit
a significantly worse likelihood than the general
transmission model. Rejection of the environmental
model is particularly important since such a test effec-
tively guards against simple distributional skewness
being interpreted as a major gene effect. This con-
servative testing framework protects against spurious
findings of major loci but unfortunately tends to lead
to diminished power to detect major genes [11, 12].

Comparing Nonnested Inheritance Models

Sometimes it is useful to compare pairs of nonnested
models. In this case, there is no asymptotic theory

for the distribution of the likelihood ratio test. Gen-
erally, when nonnested models must be compared,
Akaike’s criterion (AIC) can be used to choose the
most parsimonious model, or the distribution of the
likelihood ratio test statistic found empirically using a
Monte Carlo procedure such as the parametric boot-
strap [40].

Extensions of Complex Segregation
Analysis

Genotype-Specific Regressions and
Genotype × Environment Interaction

The model for the phenotype given in (2) con-
tains a number of simplifying assumptions that can
be removed. For example, different genotypes may
exhibit different relationships with covariates. A
number of authors have used genotype-specific reg-
ressions on covariates to model genotype–environ-
ment interaction [3, 18, 30, 34, 39]. Under the
genotype-specific regression model, the phenotype of
the j th individual (with genotype oj = i) is given by

(yj |oj = i) = µi + gj + β ′
i (xj − s) + ej , (14)

where the vector of regression coefficients βi is now
a function of the major genotype. The conditional
variance of y in this model is the same as that in
(4). The unconditional variance has an additional
component due to this interaction and is given by

var(y) = σ 2
o + σ 2

o×c + σ 2
e + σ 2

g , (15)

where σ 2
o×c denotes the variance due to major geno-

type by covariate interaction. Tests of heterogeneity
of these effects among genotypes can be performed
using likelihood ratio statistics. The test of βAA =
βAa = βaa is a direct test of genotype × environment
interaction. Rejecting this null hypothesis leads to
the inference that there is a major locus compo-
nent in the response of the phenotype to the envi-
ronment [3]. However, to safeguard against falsely
inferring the presence of genotype × environment, it
is necessary to also consider tests of polygenotype ×
environment interaction [3]. These latter tests require
application of the fully general variance component
model. Ignoring genotype × environment interaction
may severely compromise the ability to detect major
loci [3, 30, 45].
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Two-Locus Models

The model can also be extended to allow two latent
factors yielding two sets of genotypes/genotypes. If
we assume (or have determined statistically) that both
factors represent genetic loci, we can also allow these
two genotypes to exhibit epistasis (i.e. the two loci
need not have additive effects on genotypic means).
The phenotype of an individual can be modeled as a
function of both loci (oA and oB) as

(yj |oAj = i, oBj = k) = µik + gj + β ′(xj − s) + ej ,

(16)

where µ is now a function of both loci and k =
BB, Bb, bb at the second locus. For two loci, the
unconditional variance of y is given by

var(y) = σ 2
oA + σ 2

oB + σ 2
oA×oB + σ 2

g + σ 2
e , (17)

where σ 2
oA×oB is the variance due to the interaction

(i.e. epistasis) between the two loci.
A reparameterization of the two-locus means

allows direct tests of epistasis [6]. We can classify
a number of mean effect models into two categories
(epistatic vs. additive) which are based on how
the two-locus genotypes map to phenotypes. To
simplify interpretation, we define the mean genotypic
vector as





µAABB

µAABb

µAAbb

µAaBB

µAaBb

µAabb

µaaBB

µaaBb

µaabb





=





1 −1 −1 0 0 1 0 0 0
1 −1 0 0 −1 0 1 0 0
1 −1 −1 0 0 −1 0 0 0
1 0 −1 −1 0 0 0 1 0
1 0 0 −1 −1 0 0 0 1
1 0 1 −1 0 0 0 −1 0
1 1 −1 0 0 −1 0 0 0
1 1 0 0 −1 0 −1 0 0
1 1 1 0 0 1 0 0 0





×





m

aA

aB

dA

dB

aaAB

adAB

adBA

ddAB





, (18)

or, in matrix notation, as

µ = Dγ ,

where µ is the vector of genotypic means, D is
a design matrix, and γ is the vector of two-locus
effects. The backtransformation is given by

γ = D−1µ.

The components of γ have simple interpretations
based on gene action. The parameter m represents
the unweighted mean of the four double homozy-
gotes and serves as a baseline component of all
nine two-locus genotypes. The parameters aA and
aB represent the additive genetic effects of the A
and B loci, respectively. Similarly, dA and dB are
defined as locus-specific dominance effects. The
remaining parameters represent different forms of
epistatic interactions. The aaAB term is a digenic
additive × additive interaction, whereas ddAB repre-
sents dominance × dominance interaction. The terms
adAB and adBA measure the two possible types of
additive × dominance interactions.

This method of defining two-locus effects permits
intuitive specification of a number of hypotheses that
can be tested using the likelihood ratio. For example,
the null hypothesis of no epistasis (i.e. a model in
which effects are additive among loci) can be tested
by comparing a model in which the four digenic
interaction terms are forced to be zero, with the more
general model in which the interactions are estimated.

Multivariate Complex Segregation Analysis

The basic model for the phenotype can be extended
to the multivariate case [2, 5, 6, 10, 21]. Multivariate
segregation analysis can be used to examine the
pleiotropic (multivariate) effects of major loci and
polygenes. For t phenotypes, the expected conditional
covariance matrix for the ith genotype is given by

var(yj |oj = i) = Pw

= G + E,

where Pw refers to the t × t within-genotype pheno-
typic covariance matrix, G is the residual additive
genetic covariance matrix, and E is the residual envi-
ronmental covariance matrix.

For the multivariate mixed model, the total phe-
notypic covariance matrix is

var(y) = PT

= M + G + E,
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where M is the genetic covariance matrix due to
the major locus. There are general matrix formu-
las for calculating M, G, E, and other decompo-
sitions of PT [5]. One fast method for multivariate
segregation analysis uses the approximate mixed
model of Hasstedt [27] and is based on a simplifica-
tion of the multivariate likelihood via a transforma-
tion that simultaneously orthogonalizes Pw, G, and
E. The transformation makes the traits genetically
(for the residual polygenic component) and environ-
mentally uncorrelated. Multivariate conditional like-
lihoods then reduce to the product of t univariate
conditional likelihoods. An alternative bivariate app-
roach using the Class D regressive model also is
available [2, 7].

Given well-known results from finite mixture
distribution theory [14] showing that the asymptotic
variance of the estimator of the mixing weights
always decreases as the number of traits (showing
evidence of the mixture) is increased, multivariate
segregation analysis is likely to be more powerful
than univariate segregation analysis for detecting
major genes. The inclusion of multiple traits, that are
influenced by the pleiotropic effects of a major locus,
provides additional information on the underlying
major locus and leads to increased precision in
the estimation of the parameters of major locus
transmission.

Discrete Phenotypes

All of the above discussion has been oriented
around continuous phenotypes. However, much
of the research in genetic epidemiology involves
dichotomous traits such as affection status or ordered
polytomous variables such as discrete indicators of
disease severity. Such traits are usually assumed
to be the outward indicators of some unknown
continuous process. The assumption of an underlying
continuous liability makes the analysis of these
traits completely analogous to that of quantitative
phenotypes (see Genetic Liability Model).

Examples

Genetics of Thyroxine in Baboons

We recently obtained preliminary evidence for a
major gene influencing quantitative variation of circu-
lating levels of the thyroid hormone, thyroxine (T4),

in the baboon. Thyroid hormones influence many
aspects of physiology, yet little is known regarding
the genetic basis of normal quantitative variability.
Total T4 levels were measured by radioimmuno-
assay in the frozen sera of 248 pedigreed baboons
(Papio hamadryas anubis). After correcting for sex
and age effects, we performed complex segregation
analysis on these data.

A number of competing transmission hypotheses
were evaluated. A series of models of varying com-
plexity were examined, including: (i) a general model
that allows arbitrary transmission probabilities (τ s);
(ii) a finite mixture model in which there is no trans-
mission of the major factor; (iii) a reduced general
model (the free τAa model) in which the transmission
probability of the Aa heterozygote is allowed to take
a non-Mendelian value; (iv) a Mendelian recessive
model; (v) a polygenic model in which there is no
major factor; and (vi) a sporadic model in which there
is no resemblance among relatives. Models incorpo-
rating a major factor (gene) were also allowed to
exhibit a residual polygenic component. Extensive
model comparisons revealed that only two component
distributions were required to account adequately for
observed variation in baboon T4. Therefore, only two-
distribution models are presented in which the het-
erozygote mean µAa is constrained to be equal to that
of the low homozygote, µAA. The best fitting, most
parsimonious, model was chosen as the one that was
not significantly different from the fully parameter-
ized most general model and which also exhibited the
minimum AIC (a measure of both model parsimony
and fit). Table 2 shows the results of this analysis.

Table 2 shows that all models are significantly
worse than the general model except for the free
τAa model and the recessive model. Additionally,
the recessive model is not significantly worse fitting
than the free τAa model (Λ1 = 1.49, P = 0.222) and
also exhibits the minimum AIC value (AIC = 13.54).
Therefore, the recessive Mendelian model repre-
sents the best-fitting, most parsimonious, model for
transmission of quantitative T4 levels. The recessive
model exhibits two distributions. Individuals in the
lower one comprise both AA homozygotes and Aa
heterozygotes and have a mean T4 level of 4.50 µg/dl,
while aa homozygotes exhibit a mean of 6.58 µg/dl.
There was no evidence for a residual polygenic effect
(h2

r = 0.000), and the common within-genotype phe-
notypic standard deviation was estimated as 1.02.
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Table 2 Segregation analysis of thyroxine in 248 baboons: maximum likelihood estimates, AICs, and
Λ statistics. Parentheses identify noniterated constrained parameters; brackets denote parameters that are
constrained as functions of other parameters

Parameter General Environmental Free τAa Recessive Polygenic Sporadic

pA 0.339 0.460 0.387 0.457 – –
τAA 1.000 [0.460] (1) (1) – –
τAa 0.659 [0.460] 0.676 (1/2) – –
τaa 0.153 [0.460] (0) (0) – –
µAA = µAa 4.476 4.513 4.420 4.504 5.144 5.141
µaa 6.592 6.668 6.544 6.580 [5.144] [5.141]
σ 0.991 0.994 1.017 1.015 1.396 1.395
h2

r 0.000 0.000 0.000 0.000 0.204 (0)
AIC 16.00 18.81 14.06 13.54 20.16 21.13
Λ – 8.81 2.06 3.54 14.16 17.13
df – 3 2 2 4 5
P – 0.032 0.357 0.316 0.007 0.004
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Figure 1 Expected distribution of T4 given the best fitting
major locus model. The bars of the histogram show the
observed distribution

The major locus accounted for 47% of the total phe-
notypic variation in baboon T4 variation. Figure 1
shows the expected distribution implied by the fitted
major locus model against the observed distribution
of T4 concentration.

Analysis of IGF-I in Mexican Americans

The second example of complex segregation anal-
ysis involves the analysis of insulin-like growth
factor-I (IGF-I) concentrations. IGF-I is an important
regulator of cell growth/differentiation and exhibits
insulin-like metabolic effects on glucose homeostasis.

Table 3 Segregation analysis of IGF-I in Mexican Amer-
icans: model comparisons. Parentheses identify noniterated
constrained parameters; brackets denote parameters that are
constrained as functions of other parameters

Major factor
Model transmission Λ df P

General τAA [τAa] τaa – – –
Environmental [pA] [pA] [pA] 7.31 2 0.026
Mendelian (1) (1/2) (0) 0.03 2 0.687
Polygenic – – – 106.23 10 <0.001
Sporadic – – – 113.36 11 <0.001

Serum levels of IGF-I decrease markedly with age
and are partly regulated by nutritional factors such
as protein intake. To understand better the role
of genes and genotype × environment interaction in
the determination of normal IGF-I variation, we
measured IGF-I serum levels in 422 Mexican Amer-
icans distributed in 24 pedigrees. Information on
dietary intake was obtained for each individual using
a food frequency questionnaire (see Nutritional
Exposure Measures). Using an extension of segrega-
tion analysis that allows for genotype × environment
interaction [3], we found evidence for the effect
of a major gene influencing IGF-I levels. Table 3
shows the results of the comparisons among com-
peting transmission models. For this analysis, the
equilibrium-constrained general model was used in
which τAa is given by (13). All restricted transmis-
sion models exhibited significantly worse likelihoods
than the general transmission model except for the
Mendelian model. The estimated frequency of the A



Segregation Analysis, Complex 11

allele associated with lowered IGF-I levels was 0.54
± 0.05. The A allele/factor also appeared to be dom-
inant to the a allele/factor in all analyses.

Likelihood ratio tests of the heterogeneity in
genotype-specific regression coefficients revealed
evidence for genotype × sex, geno-type × age, and
genotype × diet interaction. These tests are shown in
Table 4. When these interactions were not considered,
evidence for a major locus was attenuated.

Figure 2 shows the form of the genotype-specific
regressions for two covariates – age and dietary
composition. As can be seen in Figure 2(a), indi-
viduals with genotypes AA and Aa showed a less
marked decline in IGF-I levels with age than that
observed for the aa genotype. Similarly, as shown in
Figure 2(b), IGF-I concentration exhibited a stronger
positive relationship with the relative intake of dietary
protein and carbohydrate in aa individuals than that

Table 4 Tests of MG × E interaction: IGF-I

Interaction Λ df P

Dietary composition 4.70 1 0.030
Sex 6.35 1 0.012
Age 39.93 2 <0.001

observed in the other genotypes. Because of this
genotype × environment interaction, the relative phe-
notypic variance attributable to the major gene is
highly dependent upon age and diet.
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Segregation Analysis,
Mixed Models

The term “mixed model” is used often in the bio-
statistical literature and basically refers to statistical
models that incorporate parameters that quantify a
wide variety of factors thought to influence a spe-
cific outcome. For example, extensions of linear and
variance component models that incorporate param-
eters that estimate the degree to which fixed factors,
i.e. directly measured items such as gender or age
(see Fixed Effects), and random factors, i.e. unmea-
sured or hypothetical items whose presence can only
be dealt with probabilistically (see Random Effects),
contribute to some outcome are often referred to as
mixed models [18]. In parametric pedigree segrega-
tion and linkage analysis contexts the term “mixed
model” refers to models that incorporate parameters
that quantify the degree to which both a single locus
(or few loci) with a large, individually measurable
(but as yet unmeasured) effect, i.e. a “major” locus,
and collective or aggregated loci with small, individ-
ually unmeasurable effects contribute to a particular
phenotype [4]. Segregation analysis mixed models
may also incorporate parameters that quantify the
effects of measured covariates such as age, gen-
der, and race, or include parameters that quantify
fixed or random environmental factors shared by the
pedigree members. Thus, pedigree analysis mixed
models often “mix” more than two types of effect.
The design of efficient, reliable, and computationally
feasible mixed models for segregation and linkage
analysis purposes has been notoriously difficult and
presents quite a history for students of statistical
genetics (see Genetic Epidemiology), especially as
these models relate to the analysis of human quantita-
tive variation. Although mixed models for categorical
or discrete traits have been devised [2], they have
not received as much attention as models for quan-
titative trait analysis. In this brief review, mixed
models for quantitative traits are given exclusive
attention.

Virtually all derivations of pedigree analysis
mixed models for quantitative traits have as a foun-
dation a classical single-locus, two-allele, mixture
distribution-based segregation analysis model [17].
As with all parametric pedigree analysis models,
this single-locus model typically involves two basic

modeling components: a penetrance function which
characterizes the probability that an individual with
a certain genotype will have a certain quantitative
trait value; and a transmission function. Where vari-
ous mixed model formulations differ, however, is in
the way in which they model and parameterize the
aggregate effects of polygenes acting over and above
the major locus (see, for example, [1, 3, 5, 7, 9, 10,
13, 14, 16], and [19]). In the following, a formula-
tion of a mixed model originally attributed to Ott [14]
is described. A description of this model can offer
insight into the modeling and computational issues
that make mixed models difficult to implement.

To introduce Ott’s segregation analysis mixed
model, an overview of how the modeling of the col-
lective action of polygenes that influence the trait
over and above a locus with large and measurable
effect should be discussed. Consider a pedigree with
N members whose trait values can be collected in
a vector Y = [y1, . . . , yN ]. Multivariate normality
of the trait values among the pedigree members is
assumed (see [12] for a discussion), with an N -
dimensional mean vector whose elements consist of
a common mean parameter µ = [µ, . . . , µ] and an
N × N covariance matrix, Ψ , which can be parti-
tioned, for example, in the following way:

� = 2Aσ 2
a + Dσ 2

d + Hσ 2
h + Iσ 2

r , (1)

where σ 2
a is a variance component associated with

additive genetic factors, σ 2
d is a variance component

associated with dominance genetic factors, σ 2
h is vari-

ance component associated with (unmeasured) shared
household factors, and σ 2

r is a variance component
associated with random or individual-specific factors.
The coefficient terms in (1) are N × N matrices that
relate the variance components to the individuals in
the pedigree: A is the kinship coefficient matrix and
characterizes the degree to which related individuals
share genes in expectation [11, 20]; D is Jacquard’s
∆7 matrix and characterizes the degree to which
related individuals share both alleles at a locus [11]
(see Identity Coefficients); H is a matrix that charac-
terizes household sharing, whose ij th element could
be either 1 or 0 depending on whether or not persons
i and j share the same household; and I is the iden-
tity matrix. The likelihood of the parameters can be
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written as

L(µ, σ 2
a , σ 2

d , σ 2
h , σ 2

r |Y)

= 1

(2π)n/2|�|1/2
exp

[
1

2
(Y − µ)′�−1(Y − µ)

]
.

(2)

The next step in Ott’s model is the addition of param-
eters accommodating a specific major genetic locus
effect within the framework of (2). Once this com-
ponent is added to the model in (2), the variance
component parameters characterize “residual” varia-
tion, or variation not explained by the major locus. As
with a simple monogenic segregation analysis model,
Ott’s mixed model considers all possible genotype
configurations at this major locus for the pedigree
members. Ott’s model assumes that a locus with two
alleles (three genotypes) influences a trait, and pro-
duces an extended version of (2) whose formulation
for a pedigree becomes:

L(pa, µAA, µAa, µaa, σ 2
a , σ 2

d, σ 2
h , σ 2

r |Y)

=
G(n)∑

g

τ (g)
1

(2π)n/2|�|1/2

× exp

[
−1

2
(Y − µg)

′�−1(Y − µg)

]
, (3)

where the sum is over all possible genotype config-
urations the pedigree members can have and where
pa is a major locus allele frequency (the other allele
having frequency 1 − pa) and µAA, µAa, and µaa

are mean effect parameters for each of the three
major locus genotypes. τ(g) is the probability of
the genotype arrangement g and is a function of the
allele frequency pa for persons without parents in
the pedigree and is determined by Mendel’s Laws
for those with parents in the pedigree. Consider a
nuclear family with five members, where the two par-
ents are identified as individuals 1 and 2 and their
three offspring are identified as individuals 3, 4, and
5. One possible genotype configuration for this fam-
ily is: g = [AA, Aa, AA, Aa, Aa] (where the geno-
types are given in pedigree member number order).
The probability of this configuration, given a simple
allele frequency parameter, p, and Mendel’s laws,
is τ(g) = (1 − p)2 × 2p(1 − p) × 1/2 × 1/2 × 1/2.

During the evaluation of the likelihood, the mean vec-
tor will change depending on the genotype configu-
ration assessed for the family. Thus, for the genotype
configuration in question, the mean vector would be
µg = [µAA, µAa, µAA, µAa, µAa].

Evaluation of (3) for large pedigrees is extremely
difficult computationally. The total number of possi-
ble genotype configurations for a family of size N

is 3N . However, not all of these genotype config-
urations are compatible with Mendelian theory; for
example, the configuration g = [AA, AA, aa, aa, aa]
is incompatible with Mendelian theory, barring muta-
tion, since it suggests that parents without a alleles
transmit them to offspring. Ott [14] has shown that
for a nuclear family of size N , there are 4 + 3N−2 +
2N Mendelian compatible genotype configurations
for a two-allele, three-genotype model. Although this
number is considerably less than 3N for large N , it
can still be quite large. As a result, the computa-
tional burden associated with segregation analysis of
quantitative traits in large pedigrees via Ott’s mixed
model can be heavy, and this is especially true if
one is analyzing a number of pedigrees or families,
since in this situation the likelihood is given by the
product of the likelihoods associated with each fam-
ily. In addition, the fact that the evaluation of the
residual variation and covariation involves all the
pedigree members does not permit the likelihood to
be broken up in a way that could accommodate the
Elston–Stewart algorithm. Schork [16], however,
has described a version of Ott’s model that allows the
use of the Elston–Stewart algorithm, but at the sacri-
fice of parameters that specify polygenic covariation
among distantly related individuals. Other researchers
have tried to formulate the mixed model in ways that
permit computational ease by eliminating terms in
this manner and have met with varying degrees of
success [1, 9, 10]. Attempts to incorporate residual
parameter terms simply in ways that do not involve
variance components as in (2) suffer from enormous
computational difficulties for large families [15].

The computational complexity associated with
likelihood evaluation is not the only problem plaguing
mixed models. For example, one must often esti-
mate a large number of parameters that are highly
correlated. Since most mixed model likelihoods are
unwieldy analytically, it is often difficult, if not
impossible, to obtain analytic derivatives of the likeli-
hood. Thus, maximization of the relevant likelihoods
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to obtain parameter estimates often requires numeri-
cal methods whose reliability can be hard to gauge in
pedigree analysis contexts. In addition, inclusion of
covariate and other fixed or random effects informa-
tion only exacerbates computational and estimation
difficulties. Also, since the mixed model (as with the
standard major locus segregation model for quantita-
tive traits) often uses a mixture distribution to model
the effects of the major locus genotypes, likelihood
ratio tests of relevant hypotheses suffer a number
of problems whose nature is beyond the scope of this
review (see [6] and [8]). As a result of these and other
problems, the derivation and implementation of reli-
able and easily implemented mixed models will likely
continue to present challenges to statistical geneticists
for some time.
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Segregation Ratios

When parents with known genotypes for a particular
trait have children, the expected ratios of the different
phenotype classes of offspring are called segregation
ratios. If, for example, two parents each have geno-
type Aa at a particular locus, and the phenotypes
corresponding to the three genotypes AA, Aa, and aa
are distinct, then these three classes of offspring are
produced in the segregation ratios 1 : 2 : 1. However,
if the allele A is dominant to the allele a with respect
to the observed phenotype, then the two classes of
offspring (AA/Aa and aa) are produced in the segre-
gation ratio 3 : 1; the same information can also be
expressed by saying that for the mating Aa × Aa the
segregation ratio of the recessive phenotype is 1/4.

More generally, the genotypes of the parents
may not be known, and the segregation ratios are
then quoted conditional on the parent’s phenotypes,
e.g. affected × affected, affected × unaffected, or
unaffected × unaffected mating types. Segregation
analysis is concerned with determining whether
empirical segregation ratios from such mating types
are consistent with simple modes of inheritance,
such as one-locus dominant or recessive inheritance.
Segregation ratios refer to the distribution of offspring
phenotype classes, whereas genetic transition
probabilities refer to the distribution of offspring
genotype classes.

ROBERT C. ELSTON



Selection Bias

Selection bias is a bias that arises when individuals
included in a study are not representative of
the target population for the study. Selection
bias can arise because an inappropriate sampling
frame is used, because inappropriate sampling
methods are applied (see Probability Sampling), or
because some of those sampled refuse to participate
in the study (see Bias from Nonresponse). In
studies relying on samples of convenience, such

as hospital-based case–control studies or clinical
trials in which patients volunteer for particular
treatments, it is difficult to rule out the possibility of
selection bias (see Bias in Case–Control Studies;
Bias in Cohort Studies; Bias in Observational
Studies; Bias, Overview; Missing Data in Clinical
Trials; Missing Data in Epidemiologic Studies;
Validity and Generalizability in Epidemiologic
Studies).
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Semi-Markov Processes

Semi-Markov processes are useful generalizations of
a class of stochastic processes commonly referred
to as a Markov jump process in continuous time.
One of the most famous examples of a Markov jump
process in biostatistics is the illness–death process,
which has been discussed extensively by Chiang [1]
and subsequent editions (see Fix–Neyman Process).
To illustrate the ideas, suppose one takes observations
on the histories of patients who visit a clinic from
time to time. As time passes, any patient may be in
one of a set of states. Among these states are E1,
indicating that a patient has died, and another E2,
indicating that a patient has been lost to follow-up.
From the point of view of an observer in the clinic, no
further data would be available on patients in states
E1 and E2, so in this sense the process terminates.
In general, such states of termination will be called
absorbing states.

From the point of view of health care workers
in a clinic, two other states would be of compelling
interest. One of these states could be labeled E3, indi-
cating that a patient is ill and undergoing treatment,
and another state could be labeled E4, indicating that
the patient is well, or, in the case of cancer, the patient
is in remission. Moreover, as time passes, after an
episode in state E3, a patient may move to state E4;
after an episode in state E4, a patient may move back
to state E3, and so his or her sample path continues
until one of the absorbing states, E1 or E2, is entered.
In general, sets of states such as E3 and E4, among
which a process may move prior to termination, will
be called transient.

If an investigator were to formulate a model of the
situation just described as a Markov jump process in
continuous time with stationary laws of evolution,
then from the sample path perspective, a very simple
picture for the evolution of the process emerges.
Suppose that the process begins in transient state
E3 at time t = 0. Then the length of the episode in
this state follows an exponential distribution with
parameter θ3 > 0, i.e. the probability that the process
is still in state E3 at time t > 0 is exp(−θ3t). Given
that an exit from state E3 occurs, a jump to one
of the states E1, E2, or E4 occurs with probabilities
p31, p32, or p34, respectively. Similar statements hold
for the transient state E4.

A limitation of the exponential distribution as a
model of the waiting time for the occurrence of some
biological event is that it has the memoryless or
nonaging property. To illustrate this property, sup-
pose it is known that the length of an episode in
state E3 is s > 0 time units. Then, given this event,
the past is forgotten in the sense that exp(−θ3t) is the
conditional probability that the process is still in this
state at time s + t . Among other things, semi-Markov
processes were introduced to remove the restriction
that the length of an episode in a state necessarily
follows an exponential distribution. As we shall see,
formulating a model as a semi-Markov process not
only removes this restriction but also provides useful
alternatives for viewing Markov jump processes in
continuous time. Some authors, such as Cinlar [2],
also refer to these generalized models as Markov
renewal processes.

An Overview of the Structure of
Semi-Markov Processes

A first step in formulating a model as a semi-Markov
process is to define a state space �, consisting of two
disjoint sets of absorbing and transient states denoted
by �1 and �2, respectively. For the sake of sim-
plicity, attention will be confined to the case where
the state space is finite. By way of another illustra-
tive example, suppose an investigator is considering
the evolution of a cohort of patients infected with
HIV, the causal agent of AIDS (see AIDS and HIV).
Then, in light of the effects of protease inhibitors in
controlling HIV reported recently in the literature, it
would seem plausible to consider a set �1 of three
absorbing states E11, E12, and E13, denoting death
from a cause other than AIDS, death due to an AIDS
defining disease, and a case in which patients are
cleared of the virus through treatment, respectively.
The elements of the set �2 of transient states could
be symbolized by E2k , k = 1, 2, . . . , 6, representing
classes of CD4+ counts of T-lymphocytes used to
define clinical stages of HIV disease.

In general, let �1 denote the set of r1 ≥ 1 absorb-
ing states and �2 the set of r2 ≥ 1 transient states so
that the state space � has r = r1 + r2 elements. The
evolution of the process is defined by two sequences
of random variables. Let X0 = i ∈ �2 denote the
initial transient state, and let the random variable
Xn denote the state in � entered at the nth jump
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for n ≥ 1. The evolution of the process in time is
accounted for by the increasing sequence of random
variables

0 = T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn ≤ · · · ,
taking values in [0, ∞) and denoting the random
times jumps occur, where, for n ≥ 1, the random
variable Tn is the time that the nth jump occurs.
If Xn = j , a transient state, then Tn+1 − Tn is the
random length of the episode in state j ∈ �2.

A another basic step in formulating a model as a
semi-Markov process is the construction of an r2 × r

matrix,
(aij (t)|i ∈ �2, j ∈ �), (1)

of continuous one-step density functions defined for
t ∈ [0, ∞). In the next section, methods for construct-
ing such densities will be described, but, for the time
being, attention will be focused on the structure of
the process. In describing this structure, functions
defined by

Aij (t) =
∫ t

0
aij (s) ds (2)

will play a basic role.
The sequence of pairs

{(Xn, Tn)|n = 0, 1, 2, . . .}
will be said to have the semi-Markov property if the
condition

Pr[Xn+1 = j, Tn+1 − Tn ≤ t |(Xk, Tk),

k = 0, 1, . . . , n] (3)

= Pr[Xn+1 = j, Tn+1 − Tn ≤ t |Xn]

holds for all n = 0, 1, 2, . . . and t > 0. When Xn =
i ∈ �2, the conditional probability on the right will
be identified as

Pr[Xn+1 = j, Tn+1 − Tn ≤ t |Xn = i] = Aij (t). (4)

According to this formulation, the laws of evolution
of the process are stationary in the sense that the
right-hand side of (4) does not depend on n.

By considering marginal distributions in (4), it
can be seen that the sequence of random variables
(Xn|n = 0, 1, 2, . . .) is a discrete time Markov chain
embedded in a continuous time semi-Markov process

with a one-step transition matrix determined for all
n ≥ 0 by

Pr[Xn+1 = j |Xn = i] = lim
t↑∞ Aij (t) = pij , (5)

where i ∈ �2 and j ∈ �. Similarly, the distribution
function on the random length of time for any episode
in state i is given by

Ai(t) = Pr[Tn+1 − Tn ≤ t |Xn = i] =
∑

j∈�

Aij (t)

(6)

for all n ≥ 0.
When working with a semi-Markov process, it is

often possible to avoid much formidable formalism
by focusing on a matrix representation of the basic
functions governing the evolution of the process. To
this end, one may extend the definition of the one-
step density matrix in (1) to the case i ∈ �1, the set
of absorbing states. For every i ∈ �1, let aii(0) = 1
and let aii(t) = 0 for t > 0, and for i �= j ∈ �, let
aij (t) = 0 for all t ≥ 0 to indicate that any transition
from an absorbing state occurs with probability zero.
Then, for t > 0, the matrix of one-step transition
densities may be represented in the partitioned form

a(t) = (aij (t)) =
[

0r1,r1 0r1,r2

rr2,r1(t) qr2,r2(t)

]
, (7)

corresponding to the sets of r1 and r2 absorbing and
transient states, respectively. Having identified the
dimensions of the submatrices in (7), from now on, to
lighten the notation, subscripts on such matrices will
be dropped. Briefly, the matrix r(t) governs one-step
transitions from transient states to absorbing states,
while the matrix q(t) governs transitions among tran-
sient states.

With the r × r matrix a(t) defined as in (7),
and the atom at t = 0 for absorbing states prop-
erly accommodated in the integrals, the matrix of
functions in (4) may be represented in the parti-
tioned form

A(t) =
∫ t

0
a(s) ds =

[
Ir1 0

R(t) Q(t)

]
(8)

for t > 0, where Ir1 is an identity matrix of order
r1. From this representation it can be seen that the
transition matrix for the embedded Markov chain may
be represented in the partitioned form

P = lim
t↑∞ A(t) =

[
Ir1 0

R Q

]
. (9)
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In their pioneering book on finite Markov chains,
Kemeny & Snell [3] used this partitioned form exten-
sively. As we shall see, numerical answers to many
questions of interest may be expressed in terms of
the matrices R and Q.

On Constructing Transition Densities

As will be shown by illustrative examples, several
approaches may be used in constructing matrices of
these densities. In one approach, based on the classi-
cal theory of competing risks, a point of departure
could be the specification of a matrix of latent risk,
hazard, or rate functions. If, for example, an ill-
ness–death process were being considered, then a
4 × 4 matrix of continuous latent risk functions could
take the form

�(t) =





0 0 0 0

0 0 0 0

θ31(t) θ32(t) 0 θ34(t)

θ41(t) θ42(t) θ43(t) 0



 , (10)

where t ∈ (0, ∞). Because the states E1 and E2 are
absorbing, the latent risks governing transitions out
of these states are 0. But, if a patient is in state
E3 undergoing treatment, then the function governing
his or her rate of entrance into the well state, E4, is
θ34(t). Analogous interpretations may be attached to
the other nonzero risk functions in (10). Also, observe
that all diagonal elements of �(t) corresponding to
transient states are zero, because in jump processes a
state cannot make a transition into itself.

In general, let �(t) = (θij (t)) be an r × r matrix
of latent risk functions. For any transient state i ∈ �2,
the total risk function is

θi(t) =
∑

j∈�2

θij (t). (11)

Thus, by appealing to well-known formulas for
expressing survival functions in terms of risk
functions (see Survival Distributions and Their
Characteristics), it can be seen that if transient state
i is entered at time t = 0, then

Si(t) = exp

[
−

∫ t

0
θi(x) dx

]
(12)

is the conditional probability the process is still in
state i at time t > 0. As in the second section, let

Aij (t) be the conditional probability that a transition
to state j �= i occurs sometime during the time
interval (0, t], t > 0, given that state i was entered
at t = 0. Then, by appealing to the classical theory
of competing risks, it follows that

Aij (t) =
∫ t

0
Si(x)θij (x) dx =

∫ t

0
aij (x) dx. (13)

A simple and useful case arises when all nonzero
latent risk functions are positive constants. For in this
case, (13) takes the form

Aij (t) = [1 − exp(−θi t)]
θij

θi

. (14)

Consequently, when all latent risk functions are
constant, the distribution of the length of any episode
in transient state i is that of a random variable
following an exponential distribution with parameter
θi > 0.

Because of this property, it can be shown that
a model formulated as a semi-Markov process with
constant latent risks is an alternative way of viewing
a Markov jump process in continuous time. Further-
more, it can be seen from (14) that the transition
probabilities for the embedded Markov chain have
the form

pij = lim
t↑∞ Aij (t) = θij

θi

. (15)

If an investigator is inclined to suspect that latent
risk functions would not be constant, then among the
alternative choices would be Weibull risk functions
of the form

θij (t) = αijβij t
αij −1, (16)

where t > 0, αij > 0, and βij > 0. If 0 < αij < 1,
then θij (t) decreases as t increases, but if αij > 1,
then θij (t) increases as t increases, indicating, in
the latter case, that the longer the episode in state
i, the greater is the risk of a transition to state
j �= i. As software becomes more user-friendly and
as desk-top computers increase in power and speed,
the computation of integrals of form (13) become
increasingly feasible.

An alternative approach to the classical theory
of competing risks is to start with “latent” distribu-
tion functions Gij (t) with a finite expectation, µij ,
governing the waiting time for the transition i → j

in the “absence” of other transitions. When there is
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“competition” for transitions out of state i, it seems
plausible that the larger the value of µij , the smaller
the conditional probability, pij , of an eventual tran-
sition from state i to j . Hence, it seems reasonable
to consider transition probabilities for the embedded
Markov chain of the form

pij = ci

µij

, (17)

where ci is a normalizing constant chosen so that
∑

j∈�

pij = 1. (18)

In this formulation the function Aij (t) would be
chosen as

Aij (t) = pijGij (t) (19)

so that the distribution function of the length of any
episode in state i would be the mixture

Ai(t) =
∑

j∈�

pijGij (t). (20)

The construction just described would be most
useful for those families of distributions with non-
elementary risk functions. An example of a family
of such distributions is the gamma, which has
simple Laplace transforms that can be useful in
the numerical analysis of semi-Markov models with
transition densities constructed by this method.

Renewal-Type Integral Equations

Unlike models based on continuous time Markov
jump processes, in which some version of the forward
Kolmogorov differential equations is the focus of pri-
mary attention, renewal-type integral equations play
a fundamental role in the analysis of semi-Markov
processes. Trains of thought, known as renewal type
arguments, are used repeatedly in derivations of these
equations. For example, suppose, at time t = 0, a
process starts in some transient state i ∈ �2 and let
fij (t) be the density function of the waiting time
for the termination of the process in some absorb-
ing state j ∈ �1. Either the process enters state j on
the first step or there is a jump to some other tran-
sient state k �= j at some point s ∈ (0, t], t > 0, with
probability aik(s) ds. At time s the process “renews”
and fkj (t − s) is then the density of the waiting time

to absorption in state j . By integrating and summing
over all possibilities, the following renewal-type inte-
gral equation arises:

fij (t) = aij (t) +
∑

k∈�2

∫ t

0
aik(s)fkj (t − s) ds. (21)

As an aid to understanding the structure of the
process, it will be helpful to cast (21) in matrix
form. Let

f(t) = (fij (t)|i ∈ �2, j ∈ �1) (22)

be an r2 × r1 matrix of absorption densities. Then,
from an inspection of (7), it can be seen that (21)
may be written in the compact matrix form

f(t) = r(t) +
∫ t

0
q(s)f(t − s) ds (23)

for t > 0.
Laplace transforms can be very useful tools in

deducing formulas of interest to understanding semi-
Markov processes. Accordingly, let

f̂(s) =
[
f̂ij (s) =

∫ ∞

0
exp(−st), fij (t) dt

]
, (24)

defined for s ≥ 0, be the r2 × r1 matrix of Laplace
transforms of the absorption densities, and let
the matrices r̂(s) and q̂(s) be defined similarly.
Then, from (23), it follows that these matrices of
Laplace transforms satisfy the following matrix linear
equation:

f̂(s) = r̂(s) + q̂(s)f̂(s). (25)

Given that the process starts in transient state i ∈
�2 at time t = 0, let bij be the conditional probability
that the process eventually terminates in absorbing
state j ∈ �1. Then,

bij =
∫ ∞

0
fij (t) dt = lim

s↓0
f̂ij (s) (26)

connects the elements of the matrix B = (bij ) with
the Laplace transforms in (25). But, from (9), it can
be seen that

lim
s↓0

r̂(s) = R (27)

and
lim
s↓0

q̂(s) = Q (28)
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connect the Laplace transforms with the transition
matrix of the embedded Markov chain. Therefore, by
letting s ↓ 0 in (25) and solving for the matrix B, it
can be seen that

B = (Ir2 − Q)−1R, (29)

provided that the matrix inverse exists.
For many processes it can be shown under rather

general conditions that Qn → 0, an r2 × r2 zero
matrix as n ↑ ∞. Therefore, the inverse matrix in
(29) is the sum of a matrix geometric series:

M = (mij ) = Ir2 + Q + Q2 + · · · = (Ir2 − Q)−1.

(30)

Moreover, mij is the conditional expectation of the
number of episodes in transient state j prior to
termination of the process in some absorbing state,
given that the process starts in transient state i.

A given row of the matrix B of absorption
probabilities is often of fundamental interest. For
example, for the case of a model for the progression
of patients with HIV disease, given that a patient
is first observed in transient state i with some
CD4+ count, the ith row of the matrix B could
be interpreted as the conditional probabilities that a
patient eventually dies from a cause other than AIDS,
an AIDS-defining disease, or is eventually cleared of
the virus by treatment with drugs.

Another useful perspective for viewing the evo-
lution of a semi-Markov process is the state of the
process at time t ∈ [0, ∞). Let the random function
Z(t) denote the state of the process at time t . For
i ∈ �2, a transient state, the conditional probabilities

Pr[Z(t) = j |Z(0) = i] = Pij (t), (31)

which are sometimes referred to as the current state
probabilities, are often the focus of attention. When
working with models formulated on Markov jump
processes in continuous time, it is these probabilities
that are the desired solution to the forward Kol-
mogorov differential equations.

If j ∈ �1, an absorbing state, then for t > 0, the
equation

Pij (t) =
∫ t

0
fij (s) ds, (32)

connecting current state probabilities with absorption
densities, is valid. But, if j ∈ �2, then it can be

shown that the r2 × r2 matrix,

P(t) = (Pij (t)), (33)

of current state probabilities for transient states satis-
fies a renewal-type integral equation.

Let Si(t) = 1 − Ai(t) be the survival function for
transient state i and let D(t) be the r2 × r2 diagonal
matrix defined by

D(t) = (δijSi(t)), (34)

where δij is the Kronecker delta. Then, by a renewal
argument similar to that used in the derivation of (21),
it can be seen that the matrix in (33) satisfies the
following matrix renewal-type integral equation

P(t) = D(t) +
∫ t

0
q(s)P(t − s) ds (35)

for t > 0. If there were no absorbing states, then
this integral equation would be a primary focus of
attention.

Just as in (23), the passage to Laplace transforms
in (35) can yield useful and interesting results. Let
the random variable Vj denote the total time spent in
transient state j ∈ �2 prior to the termination of the
process in some absorbing state. The expected length
of any episode in state j is

ηj =
∫ ∞

0
Si(t) dt. (36)

By passing to Laplace transforms in (35) it can
be shown, after some analysis, that for any initial
transient state i ∈ �2

E[Vj |Z(0)= i]=
∫ ∞

0
Pij (t) dt = lim

s↓0
P̂ij (s)=mijηj .

(37)

This result has a clear and simple interpretation. If
the process starts in transient state i, then mij is the
expected number of episodes in transient state j prior
to the termination of the process in some absorbing
state, and the expected length of each episode in state
j is ηj . Therefore, (37) is valid. If, for example, state
j indicates a patient is in a hospital and the cost
per unit time is known, then (37) could be used to
estimate the expected total cost of an illness.

The ease with which the formulas of this section
could be implemented numerically would depend to
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some extent on the tractability of the Laplace trans-
forms of the transition densities aij (t). If all these
densities belonged to the gamma family and the
construction in (33) were used, then all Laplace trans-
forms would be tractable and all formulas presented
in this section could be evaluated numerically with
relative ease, provided the state space is not too large.
When all latent risks are constant, it is also possible
to use the exponential matrix as a solution of the Kol-
mogorov differential equations, which will require the
construction an r × r rate matrix Q.

To construct this matrix, let � be a constant matrix
of latent risks and let θi be the sum of the elements
of the ith row of �. Then, the matrix Q has the form

Q = � − diag(θ1, θ2, . . . , θr ). (38)

As is well known, for t > 0 the solution of the
Kolmogorov differential equations is the exponential
matrix

P(t) = exp(Qt) (39)

Many computer packages have software designed to
evaluate an exponential matrix either symbolically or
numerically, (see Matrix Computations).

Further Reading

Whenever a model is formulated as a semi-Markov
process, it is usually difficult to use maximum like-
lihood to estimate unknown parameters from data,
because the likelihood function is difficult to derive
and compute. Thompson et al. [6] have proposed an
interesting method for estimating parameters on the
basis of simulating realizations of the process and
minimizing a goodness-of-fit criterion such as a chi-
square test statistic. Such well-known computer soft-
ware packages as MATLAB have built-in programs

for computing the exponential matrix, Packages with
a capability for doing computer algebra, such as
MAPLE, may also be used to produce symbolic forms
of the exponential matrix. Methods for solving dis-
crete time versions of renewal-type integral equations
numerically have been discussed and used exten-
sively in Mode [4]. Tan [5] has presented an exten-
sive array of applications and references to Markov
processes with time inhomogeneous laws of evolu-
tion in cancer research. Many of these models could
also be viewed within a semi-Markov framework
with time inhomogeneous laws of evolution. See [4]
for applications of related processes in demogra-
phy.
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Semiparametric
Regression

Semiparametric regression models are a compromise
between parametric and nonparametric models. The
idea is to retain a certain amount of the parsimony
and structure of a parametric model while gaining
some of the flexibility of a nonparametric model.

There is no widely accepted rigorous definition
of a semiparametric model. Informally we will call
a model semiparametric if it is not fully parametric
but has a finite dimensional parameter of interest. The
most widely used semiparametric regression model is
the proportional hazards (see Proportional Hazards,
Overview) model of Cox [6] (see Cox Regression
Model), in which the conditional hazard at time
t , given explanatory variable z, is λ0(t) exp(β ′z),
where λ0 is an unknown function of t (the non-
parametric component) and β is an unknown (finite
dimensional) vector (the parametric component). It is
often helpful to think of λ0 as an infinite-dimensional
parameter rather than as a nonparametric component.

This informal definition of a semiparametric
model excludes structured nonparametric regres-
sion models such as the generalized additive model:

Yi = α0 + α1(X1i ) + · · · + αp(Xpi) + εi,

in which α1, . . . , αp are mean zero smooth functions
of the variables X1, . . . , Xp; εi is a mean zero “error
term” and α0 = E(Yi) for all i. Although α0 is a one-
dimensional parameter, we assume that it is not of
primary interest in the model.

Here we describe a large class of semiparametric
regression models and identify some special cases
of biostatistical interest. We also discuss the sort of
problems posed by semiparametric regression. Details
of specific models are discussed elsewhere.

Consider the generic model

ψ(Y ) = r(X) + ε, (1)

in which ε is a random element with distribution F .
For a full specification we would have to consider the
distribution of X, but we prefer to view (1) as a model
for Y given X. The model in (1) has three compo-
nents: the transformation function ψ , the regression
function r , and the distribution function F . For the
regression model to be termed semiparametric, r must

have a finite dimensional component of interest, and
at least one of ψ, r , and F must have an infinite-
dimensional component.

Example 1. Semiparametric Regression Functions

1. Partly parametric additive model:

ψ(Y ) = Y, ε ∼ N(0, σ 2), r(X) = β ′X1 + s(X2).

2. Projection pursuit regression. As in (1) but
with r(X) = s(β ′X), where s : R → R is an
unknown function. Only the direction of β is
identifiable.

Example 2. Transformation Model

A general transformation model has an arbitrary
nondecreasing ψ and r(X) = −β ′X. The error dis-
tribution F may be parametric or nonparametric.
When the distribution of ε is Gaussian, one has a
semiparametric extension of the Box–Cox model [3]
(see Power Transformations). The model leads nat-
urally to rank regression. Estimation of β with
censored data has been studied by Cheng et al. [4].
Horowitz [8] considers estimation of ψ and F .

1. The Cox model. The Cox model is a spe-
cial case in which F(t) = 1 − exp(−et ), the
extreme value (minimum) distribution, ψ(Y ) =
log Λ0(Y ), and r(X) = −β ′X. Here Λ0 is a
cumulative hazard function; in particular, it is
nonnegative and nondecreasing.

2. The Clayton–Cuzick model. A multivariate gen-
eralization of the Cox model proposed by Clay-
ton & Cuzick [5] has received much attention.
The model assumes that individuals within the
same “cluster” share a common frailty. The
frailty may be regarded as an unobserved covari-
ate. The hazard for the ith individual is

Ziλ0(t) exp(β ′Xi )

where the frailty Zi is common to all individuals
in the cluster, and is assumed to have a gamma
distribution with mean 1.

Example 3. Accelerated Failure-Time Models

Accelerated failure-time models are simply linear
models for the logarithms of survival times. Such a
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model will usually permit censored survival times.
If the error distribution F is nonparametric, then the
model is semiparametric. One has

log Y = β ′X + ε,

where the ε has distribution function F ∈ F, the
space of all distribution functions on the real line.

Schick [11] considers efficient estimation in the
model in (1) when ψ is the identity function. His
approach takes into account the unknown distribution
of the covariates X. Not all semiparametric regression
models can be described by (1).

Example 4. Partly Parametric Aalen model

McKeague & Sasieni [10] added a parametric
component to the model introduced by Aalen [1]
(see Aalen’s Additive Regression Model). The
model for the hazard function conditional on vectors
x and z is

λ(t |x, z) = α0(t) + α1(t)x1 + · · · + αp(t)xp + β ′z.

It has p + 1 infinite-dimensional components α0, α1,

. . . , αp and a finite-dimensional parameter β.

Example 5. Cox Model with Time-Dependent
Coefficients

Cox Model with Time-Dependent Coefficients
A closely related model is a generalization of the

Cox model which permits the relative hazards to
change over time:

λ(t |x, z) = exp[α0(t) + α1(t)x1 + · · ·
+ αp(t)xp + β ′z].

Here the baseline hazard function is given by
exp[α0(t)]. Whereas no explicit smoothing is required
to obtain n1/2-consistent estimators of β in the partly
parametric Aalen model, all estimators for this model
require smoothing [13, 7].

Example 6. Conditionally Parametric Models

Severini & Wong [12] studied estimation of the para-
metric component of a semiparametric model via the
profile likelihood. The method is particularly useful
in conditionally parametric models, in which, con-
ditional on an explanatory variable X, the model is

parametric, but the dependence on X is nonparamet-
ric. For instance, given X = x, the parameters are
θ and ηx , but ηx = s(x) is a smooth function of x.
The model is closely related to the varying coefficient
models of [7].

Example 7. Semiparametric Regression
Functionals

LeBlanc & Crowley [9] considered semiparametric
models in which a certain linear functional T of the
conditional distribution function FX of Y given X is
assumed to be linear in X:

T [FX(y)] = X′β.

It is further assumed that FX=x is a smooth function
of x. Applications include quantile regression, for
which one would solve the estimating equation

∫
ψ(y, x′β) dF̂n(y) = 0,

where F̂n(y) is an estimate of the conditional distri-
bution function and ψ(y, η) = −q/(1 − q) if y ≥ η

and 1 otherwise.
The book by Bickel et al. [2] on semiparametric

models concentrates on asymptotic bounds for esti-
mation. It discusses how well, in theory, one can
estimate the parameters (both finite- and infinite-
dimensional) in a given model. Some consideration
is also given to construction of estimators, but dif-
ferent methods seem best for different problems. Of
course, all the problems that statisticians have studied
on parametric models may be posed for semipara-
metric models. Most researchers have concentrated
on the problem of efficient estimation (see Efficiency
and Efficient Estimators), but more interest is now
being given to robust estimation (see Robustness).
Other topics that will doubtless be studied in greater
depth include: Hypothesis testing – in particular,
testing between semiparametric models and paramet-
ric submodels (see Model, Choice of); bootstrap
and jackknife methods, and whether these can be
used to perform tests and provide confidence bands;
goodness of fit, model checking and diagnostics;
computing and finite-sample consideration; Bayesian
methods. Additionally, several authors have begun
to relax the independent and identically distributed
assumption common to most papers on semiparamet-
ric models.
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Sensitivity Analysis

Sensitivity analysis is a reassessment of the model
used for data summary that attempts to detect whether
changing any of the assumptions used in a model to
derive the analysis leads to different interpretations
of the outcome.

Sensitivity analysis is commonly used by tak-
ing estimates of parameters from models and vary-
ing them over possible values to detect whether
this variation leads to different interpretation of the
response. For example, in a cost–effectiveness anal-
ysis (see Health Economics), the discount rate for
the cost of future events may be set at the conven-
tional level of 5%. (The cost of a future event in
present-day currency is cheaper than a current unit
because the delay of k years could generate com-
pound interest at the rate r , so the value of a unit
compounded for k years would be (1 + r)k . Hence,
the cost of a future event is said to be discounted at
r% in terms of present currency values. The usual or
conventional discount rate is r = 5%.) The sensitiv-
ity analysis might be varied over the levels, 0%, 5%,
and 10% to decide whether changing the discount rate
over these three levels had any impact of final con-
clusions drawn from the study. If the final conclusion
was insensitive to varying of the factor over its mul-
tiple levels, the conclusion is said to be insensitive
to the choice of discount rate. A sensitivity analysis
that varies one factor at a time is called a “one-
way” sensitivity analysis, while a sensitivity analysis
that simultaneously varies two factors in the model
is called a “two-way” sensitivity analysis; these can
be extended to “n-way” sensitivity analysis, where n

is a positive integer.
A sensitivity analysis can be extended to a Monte

Carlo sensitivity analysis providing the analyst can
get computer-generated samples with random number
algorithms to select amongst the various factor level
combinations (cases) to be used in the sensitivity
analysis. A Monte Carlo sensitivity analysis generally
takes into account all of the factors that are being
varied in the sensitivity analysis. A distribution of
results or a set of summary statistics computed from
the distribution are then used to convey the results.

Readers who are familiar with factorial exper-
iments will recognize that information on multiple
factors as well as changes in the structure of the

model can be detected by using factorial experimenta-
tion rather than “one factor at a time” studies. Indeed,
factorial designs have the possibility of detecting
whether interactions between factors play a role
and can detect smaller effects by increasing preci-
sion using the hidden replication property of factorial
design. (Hidden replication is the term used in the
experimental design literature to characterize the effi-
ciency of a factorial design to estimate the effects of
multiple factors with a sample size used for a single
factor.) However, in the health sciences literature, one
does not usually find factorial experiments conducted
as sensitivity analyses; these sensitivity analyses tend
to deal with one factor at a time.

An explicit definition of sensitivity analysis in
equation form is difficult to find in the literature.
However, there are many applications of these princi-
ples in the health economics literature. For example,
a two-way sensitivity analysis showed that the use of
the drug Misoprostol to prevent gastric bleeding in
rheumatoid arthritis patients who were taking nons-
teroidal anti-inflammatory drugs was an economically
sound decision, provided the background ulcer com-
plication rate was at least 1.5%. This conclusion was
derived from a sensitivity analysis. The authors also
show the results of a Monte Carlo sensitivity analysis,
without changing the conclusions of the study [4].

Some authors have attempted to provide mul-
tiple factor approaches to using the principles of
experimental design in suggesting how a sensitivity
analysis can be helpful to provide conclusions about
studies where judgments have to be made about more
than one factor. One reference has drawn together
examples that use the general linear model from
a factorial experiment to suggest how this may be
used to answer multiple sensitivity questions on the
same set of data. They include applications to pneu-
monoccol vaccination, neonatal intensive care, and
prevention of pulmonary emboli [6].

If one examines the references in the health sci-
ences literature, there are many examples of sensi-
tivity analysis applications to clinical and biological
problems. In Current Index to Statistics [5], there
are 13 entries suggesting applications of sensitivity
analysis to a variety of problems. These include appli-
cations to growth models (see Bacterial Growth,
Division, and Mutation), stochastic flow networks,
(see Stochastic Processes) and structural equation
models.



2 Sensitivity Analysis

Sensitivity analyses tend not to challenge: (i) the
form of the models; (ii) the underlying distribu-
tion of the errors; or (iii) the link between the
model and the error distribution that one conven-
tionally finds in generalized linear models. Hence,
these may be a fruitful areas of research to deter-
mine whether improvements can be made in the
application of sensitivity analysis to a variety of
health care problems by exploiting some of the
recent innovations in generalized linear modeling of
data [8].

Sensitivity analyses have been used more recently
in the field of meta-analysis. Meta-analysis is a tech-
nique for combining outcomes from multiple studies
simultaneously with the hope of increased preci-
sion and increased power to detect important clinical
effects [2, 3]. Sensitivity analysis has been used by
systematically dropping studies, performing subgroup
analyses (see Treatment-covariate Interaction) and
generally using all the conventional statistical tech-
niques to understand the robustness of the analy-
ses [2, 3].

Petitti [9] discusses applications of sensitivity
analyses to gallstone surgery and isoniazid prophy-
laxis in HIV patients, choices of factors for sensitivity
analyses, and how sensitivity analysis can be used in
meta-analysis.

Bailar & Mosteller [1] also define sensitivity
analysis and show various graphical displays that
can help in the interpretation of the findings from
multiway sensitivity analyses, including the use of
estrogens to prevent osteoporosis in postmenopausal
women.

Sensitivity analysis can be described as a measure
and then applied to different estimation methods of
growth rates of algae, heart catheterization data, and
the atomic weight of iodine [10].

Sensitivity analysis can help to understand whet-
her living near a nuclear waste facility relates to
childhood leukemia incidence (see Leukemia Clus-
ters). Here the authors varied the cluster test method,
reference rates, time, and age of children [12].

Smith et al. [11] used sensitivity analysis to help
describe the similarities and differences between
using fixed effects and random effects models in
a meta-analysis.

Hunter [7] applied the principles of sensitivity
analysis to product design by employing the prin-
ciples of experimental design. These principles could

be applied to diagnostic test development (see Diag-
nostic Tests, Evaluation of), drug and therapy eval-
uation.
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Sensitivity

In the context of diagnostic testing or disease screen-
ing, sensitivity refers to the proportion of individ-
uals with the target disease who have a positive
test result. In other words, it is the probability that
an actual case of disease will be correctly diag-
nosed by the test. In probability terms, sensitivity
is Pr(positive test|disease). Consider Table 1 for the
general relationship between the test results and the
true disease state. Then, the sensitivity is given by
a/(a + c). A synonym is the true positive rate, invok-
ing the proportion of positive test results among the
denominator of true disease cases.

Achievement of high sensitivity is important when
case detection is important, specifically where the
implied costs of missing disease cases (i.e. giving
false negative test results to cases) are high relative to
the costs of incorrectly assigning positive test results
to individuals without the disease (the so-called false
positive results). Typically, if the test is designed for
high sensitivity, the false positive rate b/(b + d) will
also be high and the test specificity d/(b + d) will
be low.

A test with high sensitivity is useful clinically
for the purpose of ruling out possible disease; a
negative result from such a test implies a relatively
high chance of not having the disease.

Therapeutic decisions are often considered using
a likelihood ratio calculation. The likelihood ratio,
LR, here is

LR = Pr(positive test|disease)

Pr(positive test|no disease)

or, equivalently the ratio of sensitivity to (1 −
specificity). The positive and negative predictive
values are also relevant.

In simple formulations, sensitivity and specificity
are often assumed to be independent of the preva-
lence of disease in the population. In practice, these
test characteristics may actually depend on preva-
lence, for a variety of reasons. For instance, if testing

Table 1

Disease present Disease absent

Test positive a b

Test negative c d

is carried out in a population in which the preva-
lence is higher because of a greater proportion of mild
disease, one would expect sensitivity to be lower.
Such effects may occur artifactually on occasion; for
instance, because of different clinical definitions of
disease operative in various populations.

A second meaning of sensitivity is used in the
context of describing the measurement properties of
a device. The sensitivity here refers to the smallest
stimulus that the device can detect, or the smallest
input required so that the device can provide an
appropriate output. This idea is commonly used to
describe electronic components, but is also used to
characterize the lowest concentration or amount of a
substance that is detectable by the device, such as
in clinical chemistry testing. A similar interpretation
pertains to the sensitivity of an individual, organism
or biological system, depending on the context.

In the context of data analysis, sensitivity may
refer to the degree of dependence of the results
to assumptions invoked by the particular techniques
employed (e.g. an assumption of normality in a
regression calculation), or to features in the data (e.g.
the presence and position of an outlier observation).
Lack of sensitivity to such characteristics is known as
robustness. For further details of methods to examine
sensitivity (in this sense), see sensitivity analysis.

Further Reading

Altman, D.G. (1991). Practical Statistics for Medical Research.
Chapman & Hall, London, Chapter 14.

Sackett, D.L., Haynes, R.B., Guyatt, G.H. & Tugwell, P.
(1991). Clinical Epidemiology: A Basic Science for
Clinical Medicine, 2nd Ed. Little, Brown, & Company
Boston, Chapter 4.

(See also Clinical Epidemiology; Diagnostic Tests,
Evaluation of; Diagnostic Tests, Multiple; Gold
Standard Test; Receiver Operating Characteristic
(ROC) Curves)
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Separate Families of
Hypotheses

A fundamental problem in statistical analysis is that
of the choice between alternate statistical models. In
this context, the following questions may arise.

1. Is there any evidence that different models give
significantly different fits to the data?

2. If it is assumed that one model is true, what is
the evidence provided by the data as to which is
the true one? (This question is often the basis of
a Bayesian formulation of model choice.)

3. If one model represents the currently main-
tained hypothesis, is there any evidence of a
departure from it in the direction of another
model?

To compare models, the Neyman–Pearson theory
of hypothesis testing may be used if the models
belong to the same family of distributions and the rel-
evant comparisons involve hierarchical (or nested)
models. However, special procedures are needed if
the models belong to families that are separate, in the
sense that an arbitrary member of one family cannot
be obtained as a limit of members of the other.

A considerable amount of research on separate
families of hypothesis has been done since the fun-
damental work of Cox [7, 8], who first dealt with
the problem. For previous reviews and references,
see [11, 15–18, 21, 24].

This article first presents the results of Cox and
some alternatives. Then the Bayesian approach is
introduced. Finally, some references to applications
of this work are given.

Cox Procedure and Alternatives

Let y = (y1, . . . , yn) be independent observations
from some unknown distribution. Suppose that there
are null and alternative hypotheses Hf and Hg spec-
ifying parametric densities f (y, α) and g(y, β) for
the random vector y. Hence α and β are unknown
vector parameters and it is assumed that the families
are separate in the sense defined above. Formal defi-
nitions of separate or nonnested hypotheses are given
in [10] and [27].

The asymptotic tests (see Large-sample Theory)
developed by Cox [7, 8] were based on a modification

of the Neyman–Pearson maximum likelihood ratio.
If Hf is the null hypothesis and Hg the alternative
hypothesis, the test statistic considered was

Tfg = lrfg

(
α̂, β̂

)
− Eα̂{lrfg(α, βα)},

where for a random sample of size n, α̂ and β̂

denote the maximum likelihood estimators of α and
β respectively, lrfg(α, β) = lf (α) − lg(β) is the log-
likelihood ratio, βα is the probability limit, as n →
∞, of β̂ under Hf , and the subscript α means
that expectations and so on are calculated under
Hf .

Cox showed that, asymptotically, under the alter-
native hypothesis Tfg has a negative mean and that
under the null hypothesis Tfg is normally distributed
with mean zero and variance

Vα(Tfg) = Vα{lrfg(α, βα)} − C′
αI−1Cα,

where Cα = ∂Eα{lrfg(α, βα)}/∂α, and Iα is the
information matrix of α.

When Hg is the null hypothesis and Hf is the alter-
native hypothesis, analogous results are obtained for a
statistic Tgf . Therefore T ∗

fg = Tfg{Vα(Tfg)}−1/2 and
T ∗

gf = Tgf {Vβ(Tgf )}−1/2, under Hf and Hg respec-
tively, can be considered as approximately standard
normal variates, and two-tailed tests can be per-
formed. For example, if T ∗

fg is significantly negative,
there is evidence of a departure from Hf in the
direction of Hg . If T ∗

fg is significantly positive, there
is evidence of a departure from Hf in the oppo-
site direction to Hg. The possible outcomes when
both tests are undertaken are shown in Table 1. The
decision-related terms of accept and reject are used
for simplicity. Rejection of both hypotheses suggests
that it is necessary to look elsewhere for an appropri-
ate model. Acceptance of both implies that there is
no evidence with which to choose between the mod-
els. Possible acceptance suggests that further testing
is required, since while one model is not rejected,
the other is rejected in favor of alternatives in a
direction opposite to that of the model which is not
rejected.

As an illustration suppose that Hf specifies that
the distribution is lognormal and Hg specifies that it
is Weibull; that is,

Hf :
1

yi(2πα2)1/2
exp

{−(log yi − α1)
2

2α2

}
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Table 1 Possible outcomes from a pair of separate family significance tests

Tfg

Significantly negative Not significant Significantly positive

Significantly negative Reject both Accept Hf Reject both

Tgf Not significant Accept Hg Accept both Possible acceptance of Hg

Significantly positive Reject both Possible acceptance of Hf Reject both

and

Hg :

(
β2

yi

)(
yi

β1

)β2

exp

{
−

(
yi

β1

)β2
}

.

We then have [23]

Tfg = n{β̂2 log β̂1 − β2α̂ log β1α̂ − log β̂2

+ log β2α̂ − α̂1(β̂2 − β2α̂)}
and

Vα{Tfg} = 0.2183 n,

where

β1α̂ = exp

{
α̂1 + 1

2
(α2)

1/2

}
and β2α̂ = 1

(α̂2)1/2
.

Also,

Tgf = n

{
β̂2(α̂1 − α1β̂ ) + 1

2
log

α̂2

α2β̂

}

and

Vβ{Tgf } = 0.2834 n,

where

α1β̂ = −0.5772

β̂2

+ log β̂1 and α2β̂ = 1.6449

β̂2
2

.

As an alternative to this approach, Cox [7] sug-
gested the combination of the two models in a general
model of which they would be both special cases.
The density could be taken to be proportional to the
exponential mixture [3]

{f (y, α)}λ{g(y, β)}1−λ,

or a linear mixture distribution [28]

λf (y, α) + (1 − λ)g(y, β),

and inferences concerning λ are possible. These
mixtures can be generalized for testing more than two
models. The exponential mixture is the base of much
of the econometric work. Cox also outlined a gen-
eral formulation from the point of view of Bayesian
decision theory.

Likelihood inference was used by Lindsey [13, 14]
to compare models. His approach is based on the
relative likelihoods

Rf (P̃f ) =
∏

j

(
P̃fj

P̂j

)nj

and

Rg(P̃g) =
∏

j

(
P̃gj

P̂j

)nj

,

where P̃fj = ∫ γ

δ
f (yj , α̂) dyj , P̃gj = ∫ γ

δ
g(yj , β̂)

dyj , and P̂j = nj

/∑
i ni , in which P̂j is the

maximum likelihood estimator obtained from a
multinomial with endpoints of the j th interval
defined by δ = yj − 1/2∆j and γ = yj + 1/2∆yj

and where ∆yj is the width of the j th interval.
The higher the relative likelihood, the higher is the
plausibility of that model.

An information criterion was used by Sawyer
[29], who proposed the alternative to Cox statistics,

Sfg(α̂) = E
β̂
{lrfg(α̂, β̂)} − Eα̂{E

β̂
[lrfg(α̂, β̂)]},

with the analogous definition for a statistic
Sgf (β). These statistics are asymptotically normally
distributed.

Shen [34], also using Kullback–Liebler measure
of direct divergence of a density function g(y, β)

from a target density function f (y, α), proposed a
test of Hf against Hg based on a classical chi-
square result for the likelihood ratio (see Likelihood
Ratio Tests) by testing g(y, βα) against g(y, β) since
g(y, βα) is the closest member to f (y, α).
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A test based on the empirical moment generating
function was studied by Epps et al. [9]. The statistic
is based on the asymptotically normal distribution of

Gfg = M(t) − Mf (t, α̂),

where M(t) = n−1 ∑
exp(tyj ) and Mf (t, α) =

Eα{exp(ty)}, are, respectively, the empirical moment
generating function and the moment generating func-
tion of f (y, α).

Sawyer [30], using the distributional results in [8],
proposed a multiple test applied when K alternate
models are under consideration. Let fi(y, αi ), i =
1, . . . , K , be the densities considered, and Tij , the
K − 1 Cox statistics for testing the null hypothesis Hi

against each alternative hypothesis Hj , j �= i, and let
T′

i = (Ti1, . . . , Ti,i−1, Ti,i+1, . . . , Tik). The statistics
for testing Hi against all others Hj , j �= i, is

T′
i�

−1Ti ,

which is asymptotically χ2
k−1 under Hi . Here � is

the covariance matrix Ci (Tij , Ti1) which is obtained
from the results of Cox. An analogous test can be
obtained from the exponential mixture as a Lagrange
multiplier test.

Comparison among these alternative statistics does
not suggest any general preferences.

Finally, other alternative tests for separate families
are based on most powerful invariant statistics [20],
the generalized method of moments [2] and boot-
strap methods [31–33, 36].

Bayesian Analysis

Another general approach suggested by Cox [7] used
Bayesian inference. The posterior odds for Hf vs.
Hg are

πf

∫
f (y, α)πf (α) dα

πg

∫
g(y, β)πg(β) dβ

= πf

πg

Bfg(y),

where πf and πg are the prior probabilities of
Hf and Hg , respectively, and πf (α) and πg(β) are
the prior probabilities for the parameters conditional
on Hf and Hg. Bfg(y) is the Bayes factor and
represents the weight of evidence in the data for
Hf over Hg. Cox also gives a general expression
when loss functions are involved, and a large-sample
approximation.

One difficulty with this approach lies in the fact
that the prior knowledge expressed by πf and πf (α)

must be coherent with that of πg and πg(β). If the
parameter spaces have different dimensions and there
is no simple relation between the parameters, the
problems are not simple. When prior information is
weak and improper priors are used there are also
difficulties and paradoxes with the use of Bayes fac-
tors which are unspecified (see [1, 19]). To overcome
these difficulties due to improper priors the following
alternatives have been proposed recently.

Posterior Bayes Factor [1]

The posterior density πf (α|y) under Hf is, by Bayes’
theorem,

πf (α|y) = f (y, α)πf (α)∫
f (y, α)πf (α) dα

.

Let

lf (α) =
∫

f (y|α)π(α|y) dα

be the posterior mean of the likelihood function under
Hf . Define lg(β) similarly. The ratio of the posterior
means PBfg = lf (α)/lg(β) is called the posterior
Bayes factor.

Partial Bayes Factor [19]

Here, the sample is divided in two parts (y, . . . , yi)

(yi+1, . . . , yn) = (x, z). The first part is used as a
training sample to obtain a proper posterior πf (α|x)

which is taken as a prior distribution to be used with
the second part z of the data. Similarly, πg(β|x) is
obtained. The partial Bayes factor is defined as

PBfg(z|x) =

∫
f (z, α)πf (α|x) dα

∫
g(z, β)πg(β|x) dβ

Intrinsic Bayes Factor [5]

Suppose that y = (x, z) and that x is a minimal
training sample for the comparison of Hf and Hg

if the posteriors for α and β are proper and no subset
of x gives a proper posterior. There are usually many
training samples. Let N be the number of training
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samples x. The idea of an intrinsic Bayes factor is
to use the median or average of all the partial Bayes
factors obtained for the N training samples. If N is
too large the suggestion is to take a random sample
from the collection of possible training samples.

The geometric intrinsic Bayes factor is

IBG
fg(y) =

{
N∏

i=1

PBfg(zi |xi )

}1/N

,

the arithmetic Bayes factor is

IB∆
fg(y) = 1

N

N∑

i=1

PBfg(zi |xi ),

and the median Bayes factor is IBM
fg(y) =

med{PBfg(zi |xi )/i = 1, . . . , N}. Other measures of
location could also be defined.

Fractional Bayes Factor [19]

The Fractional Bayes Factor with training fraction b

is defined by

Bb
fg(y) = qf (y)

qg(y)
,

where

qf (y) =

∫
f (y, α)πf (α) dα

∫
f b(y, α)πf (α) dα

and there is an analogous expression for qg(y).
These different Bayes factors can be interpreted

using Jeffreys’ rule, but their properties are still under
investigation.

Applications

Applications of the procedures of this article are
reviewed in [21, 24], and [17], where the focus
is primarily on econometric research. In econo-
metrics the emphasis is on testing, H0 : y = Xβ +
ε0λ ∼ N(0, Iσ 2

0 ) against Hi : yi = Ziγi + εi , εi ∼
N(0, Iσ 2

i ), i = 1, . . . , m, where X and Zi represent
separate explanatory variables. Pereira [26] tests H0

vs. H1, when the εi follow a Weibull distribution.
He shows that the results of [22] hold also when

the alternative hypotheses specify alternative regres-
sors with alternative error distributions. McAller’s
paper [17] also reviews the linear × loglinear and
the time series hypotheses.

Some biostatistical applications can be found
in [4, 6, 8, 12–14, 25, 32, 33, 35], and [36].
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Sequence Analysis

Owing to the abundant and rapidly increasing avail-
ability of genomic sequence data, we are confronted
with many new methodologic problems, most of
which are statistical in nature. Statistical significance
estimates play a critical role in biologic sequence
comparisons, or, more specifically, in pairwise align-
ment. The most basic sequence analysis task is to ask
if two genomic or protein sequences are homologous.
That is, are they derived from the same evolution-
ary ancestor (see Cladistic Analysis)? This can be
achieved by first aligning the sequences to measure
the sequence similarity by using some scoring func-
tion, and then using a test for statistical significance
of the similarity measures to infer whether alignment
is due to chance alone.

We assume an evolutionary model where the two
sequences have diverged from a common ancestor
by the process of mutation and selection (see Pop-
ulation Genetics). Mutations can be classified by
the type of changes caused by substitution, which
changes one nucleotide to another in a DNA sequence
or changes one amino acid to another in a protein.
Natural selection works as a screening process to
weed out certain deleterious mutations and favors
neutral or advantageous mutations. Comparisons of
two sequences usually cannot determine whether a
deletion has occurred in one sequence or an insertion
has occurred in the other. Insertions and deletions are
together referred to as gaps. When scoring the align-
ment, the gaps are penalized by assigning a cost to
a gap by a function of a gap length. There is a well-
established theory for generating a substitution matrix
for every pair of nucleotides or pair of amino acids.

Let x = x1, x2, . . . , xn and y = y1, y2, . . . , ym be
two sequences of length n and m, respectively, where
xi and yj represent the elements of the set {A, G,
C, T} in the case of a DNA sequence, and they
assume values from the set of 20 amino acids in the
case of proteins. For simplicity, suppose we are given
two aligned sequences of equal length, i.e. n = m.
How do we test for a significantly good match? The
null hypothesis is that x and y do not diverge from
the common ancestor. So, the hypothesis assumes an
underlying random model R where xi in x and yj in
y occur independently and hence the probability of
two sequences is just the product of the probabilities

of each letter in the sequences:

Pr(x, y|R) =
∏

pxi

∏
pyj

. (1)

The alternative hypothesis A is that x and y have
diverged from same ancestor, i.e. x and y have
each independently been derived from some unknown
ancestor sequence z. Let pxiyj

be the probability that
xi and yj are derived from zk . So, the probability for
the whole alignment is

Pr(x, y|A) =
∏

pxiyj
. (2)

The ratio of these two likelihoods gives a reasonable
score for the alignment, since it compares the alter-
native hypothesis that is based on evolution with the
null hypothesis of the random model. To achieve an
additive scoring system, we take the logarithm of this
ratio by defining the entries of the substitution score
matrix by

s(xi, yj ) = log

(
pxiyj

pxi
pyj

)
. (3)

For proteins, we have a 20 × 20 matrix, with s(xi, yj )

in the position i, j in the matrix, where xi and yj

correspond to ith and j th residues. The most com-
monly used scoring matrices are PAM matrices [2]
and BLOSUM matrices [6].

Now, given the scoring system, we need to have
an algorithm to find an optimal alignment for a pair
of sequences. There are several methods for finding
alignment, depending on whether interest focuses on
global alignment, i.e. involving entire sequences, or
on local alignment, i.e. involving just some part of
the sequences. One approach would be to find all the
alignments and then pick the best one. However,
the number of alignments between two sequences is
exponential, and such an approach would result in an
extremely slow algorithm. To find the global align-
ment of protein sequences, Needleman & Wunch [9]
developed a dynamic programming algorithm, and
there are a number of extensions to the original algo-
rithm, most notably by Gotoh [4].

The basic idea of the Needleman & Wunch algo-
rithm is to build up the optimal alignment recur-
sively from the previously aligned subsequences. We
construct a matrix M indexed by i and j corres-
ponding to xi and yj in the sequences x and y,
respectively. Let dij be the score of the optimal align-
ment between the subsequence of x up to xi and
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subsequence of y up to yj . If di−1,j−1, di−1,j , and
di,j−1 are known, then it is possible to calculate dij .
There are three possible ways that the dij could be
obtained. The xi could be aligned to yj , in this case,
dij = di−1,j−1 + s(xi, yj ); or xi is aligned to a gap, in
this case dij = di−1,j + gap penalty; or yj is aligned
to a gap, in this case dij = di,j−1 + gap penalty. The
optimal score will be the largest of these three values,
therefore

dij = max






di−1,j−1 + s(xi, yj ),

di−1,j + gap penalty,

di,j−1 + gap penalty.

(4)

We fill the entries of the matrix M recursively,
and keep a pointer in each cell back to the cell from
which it was derived. The value in the final cell is, by
definition, the best score for an alignment of x and
y. To find the alignment itself, we trace back through
the matrix M in the usual manner, setting our pointer
back from the final cell, and retracing back through
the cell from which it was derived. At the end, we
will reach the start of the matrix, i = j = 0.

Local alignment algorithms are very similar to
the preceding method, except that the goal is dif-
ferent. Instead of trying to find similarity between
the sequences, we are now trying to find the best
alignment between subsequences of x and y. The
highest scoring alignment of subsequences of x and
y is called the best local alignment. The algorithm by
Smith & Waterman [11] is commonly used, and is

dij = max






0,

di−1,j−1 + s(xi, yj ),

di−1,j + gap penalty,

di,j−1 + gap penalty.

(5)

The only difference between this and the global
optimal score (4) given above is that dij can take on
the value 0 if all other options are negative. Because
of the 0 values in the matrix, the score can never
become negative, and hence we will obtain areas of
similarity even if there are long mismatches or gaps
in between them.

Suppose we have optimal alignment. How do
we assess the significance of this alignment statis-
tically? The statistical theory has been well devel-
oped by Karlin & Altschul [7, 8] and Dembo &
Karlin [3] and is implemented in the basic local align-
ment search tool (BLAST) [1]. BLAST returns a list
of high-scoring matched subsequences between the

query sequence and sequences in the database. We
can determine the distribution of the maximum of
N match scores compared with independent ran-
dom sequences. The score of a match to a random
sequence is the sum of many similar random vari-
ables, so can be approximated by a normal distribu-
tion, and the limiting distribution of the maximum of
N identical independent normal variables is known
to be the extreme value distribution (EVD) [5]. So,
we can use the EVD to calculate the probability that
the optimal match from the search of a large num-
ber of unrelated sequences has a score greater than
our observed maximal score. If this is less than some
small value, then the observation is considered sig-
nificant. FASTA [10] is another heuristic sequence
searching package widely used for sequence database
search.
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Sequential Analysis

The subject of sequential analysis was initiated by
Abraham Wald [39, 40] in response to demands for
more efficient sampling inspection procedures during
World War II.

Sequential Tests of Hypotheses

Wald introduced the sequential probability test
(SPRT) of a simple null hypothesis H0 : f = f0

vs. a simple alternative hypothesis H1 : f = f1

based on independent observations X1, X2, . . . having
a common density function f (see Hypothesis
Testing). The test stops sampling at stage

N = first n ≥ 1 such that rn ≤ A or rn ≥ B,

where 0 < A < 1 < B, rn = ∏n
i=1[f1(Xi)/f0(Xi)]

and N is defined to be ∞ if A < rn < B for all
n. The SPRT rejects H0 if rN ≤ A and rejects H1

if rN ≥ B. Wald & Wolfowitz [41] showed that it
has the following optimality property: among all tests
whose expected sample sizes under H0 and H1 are
finite and whose type I and type II error probabilities
(see Level of a Test) are less than or equal to those
of the SPRT, denoted by α and β, respectively, the
SPRT minimizes the expected sample sizes under H0

and H1. Moreover, Wald [39] showed that

α ≤ (1 − β)

B
, β ≤ A(1 − α),

and that these inequalities become equalities if rN

does not “overshoot” the boundary B or A. Ignoring
overshoots, Wald treated these inequalities as equal-
ities and arrived at the approximation A � β/(1 −
α), B � (1 − β)/α to determine the boundaries of the
SPRT from prescribed error probabilities α and β.

Within a few years after Wald’s introduction of
the subject, it was recognized that sequential hypoth-
esis testing might provide a useful tool in biomedical
studies. In particular, making use of Wald’s the-
ory of the SPRT, Morton [26] developed a standard
for proving genetic linkage (see Linkage Analysis,
Model-based). A number of papers appeared dur-
ing the 1950s on modifications of the SPRT for the
design of sequential clinical trials, and an overview
of these developments was given in the first edi-
tion of Armitage’s book [3] in 1960. Subsequently,

Armitage et al. [4] proposed a new alternative to the
SPRT and its variants. This is the “repeated signif-
icance test” (RST), a detailed treatment of which
appeared in the second edition of Armitage’s book
in 1975. The underlying motivation is that, since the
strength of evidence in favor of a treatment from a
clinical trial is conveniently indicated by the results
of a conventional significance test, it is appealing to
apply such a test, with nominal significance level α,
repeatedly during the trial. However, the overall sig-
nificance level α∗, which is the probability that the
nominal significance level is attained at some stage,
may be substantially larger than α.

For example, suppose that X1, X2, . . . are indepen-
dent normal with unknown mean µ and known vari-
ance σ 2. Let Sn = X1 + · · · + Xn. The conventional
significance test of H0 : µ = 0 based on X1, . . . , Xn

rejects H0 if |Sn| ≥ aσ
√

n, where 1 − Φ(a) = α/2.
The RST, with a maximum sample size M , stops
sampling and rejects H0 at stage

T = first n ≥ 1 with n ≤ M such that |Sn| ≥ aσ
√

n.

If |Sn| < aσ
√

n for all 1 ≤ n ≤ M , then the RST
does not reject H0. The overall significance level of
the test is

α∗ = Pr
µ=0

(|Sn| ≥ aσ
√

n for some 1 ≤ n ≤ M)

= 1 − Φ(a) +
M∑

n=2

pn(a),

where pn(a) = Prµ=0 (|Sn| ≥ aσ
√

n and |Sj | <

aσ
√

j for 1 ≤ j < n). Armitage et al. [4] developed
a recursive numerical integration algorithm to
evaluate pn(a). The choice of a is such that the
overall significance level α∗ (instead of the nominal
significance level) is equal to some prescribed
number. For example, for α∗ = 0.05 and M = 71,
Table 5.5 of [3] gives a = 2.84, which corresponds to
a nominal significance level of α = 0.005 = α∗/10.
Note that a = 2.84 is considerably larger than the
value 1.96 associated with a 5% level significance test
with fixed sample size M . The price of the smaller
expected sample size of the RST is, therefore, a loss
of power compared to a fixed sample size test with
the same significance level and the same M .

Haybittle [17], Peto et al. [28], and Siegmund [33]
proposed the following modification of the RST to
increase its power. The stopping rule has the same
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form as the preceding RST but the rejection region
is modified to

T ≤ M − 1 or |SM | ≥ cσ
√

M,

where a ≥ c are so chosen that the overall signifi-
cance level is equal to some prescribed number. In
particular, a = ∞ gives the fixed sample size test and
a = c gives the RST.

Pocock [29] introduced another modification of
the RST. Noting that in practice it is difficult to
arrange for continuous examination of the data as
they accumulate to perform the RST, he considered a
“group sequential” (see Data and Safety Monitor-
ing) version in which Xn above represents an approx-
imately normally distributed statistic of the data in
the nth group (instead of the nth observation) and M

represents the maximum number of groups. Instead
of the square-root boundary aσ

√
n for |Sn| in the

group sequential RST, O’Brien & Fleming [27] pro-
posed to use a constant stopping boundary b that does
not change with n. Siegmund [34] gives an exten-
sive treatment of the theory of truncated sequential
tests, and in particular of the RST and its modifica-
tions.

The problem of group sequential testing for the
mean of a normal distribution with known variance
discussed above serves as a prototype for more
complex situations. Note that a group sequential test
for a normal mean, assuming M equally sized groups,
involves a stopping rule for (S1, . . . , SM) which has
a multivariate normal distribution with var(Sn) =
nσ 2 = cov(Si, Sn) for i ≥ n. For more complicated
statistics Un in more general situations, one has an
asymptotically normal distribution for (U1, . . . , UM)

whose covariance matrix is not known in advance and
has to be estimated from the data. Flexible methods
to construct stopping boundaries of group sequential
tests in these situations have been proposed by Slud
& Wei [35], Lan & DeMets [25], Fleming et al. [13],
and Jennison & Turnbull [18] (see Data and Safety
Monitoring).

For example, consider a clinical trial whose pri-
mary objective is to compare survival times (times
to failure) between two treatment groups. Patients
enter the trial serially and are randomized to either
treatment and then followed until they fail or with-
draw from the study, or until the trial is terminated.
The trial is scheduled to end by a certain time tM
and there are also M − 1 periodic reviews at cal-
endar times t1, . . . , tM−1 prior to tM (see Data and

Safety Monitoring). Let Ui be the logrank statistic
calculated at calendar time ti . Then under the null
hypothesis that the two treatment groups have the
same survival distribution (U1, . . . , UM ) is asymptot-
ically normal, as shown by Tsiatis [38], who con-
sidered more general rank statistics including the
logrank statistics as a special case. It is also shown
in [38] how the asymptotic covariances of the Ui

can be estimated to perform group sequential test-
ing. For the logrank and many other rank statistics,
Ui and Uj − Ui are asymptotically independent for
j > i, so one needs only estimate var(Ui) in this
case.

Whitehead [42] gives a comprehensive overview
of these and other methods for sequential hypothesis
testing in clinical trials. He considers the case where
(U1, . . . , UM ) is asymptotically normal under the null
hypothesis, with Uj − Ui asymptotically independent
of Ui for j > i. Letting Vi denote a consistent esti-
mate of the null variance of Ui for i = 1, . . . , M ,
he advocates the use of certain triangular stopping
boundaries in the (Vi, Ui) plane and has developed
a computer package, PEST, for their implementa-
tion (see Software, Biostatistical). These triangular
boundaries are associated with the problem of mini-
mizing the maximum expected sample size of sequen-
tial tests for the mean µ of a normal distribution
subject to constraints on the type I error at µ = 0 and
type II error at some µ �= 0, as shown by Lai [20].

Sequential Estimation

Analysis of the data at the conclusion of a clinical
study typically not only permits testing of the null
hypothesis but also provides estimates of parame-
ters associated with the primary and secondary end
points. The use of a stopping rule whose distribution
depends on these parameters introduces substantial
difficulties in constructing valid confidence intervals
for the parameters at the conclusion of the study. For
example, consider the simple example of indepen-
dent normal Xi with unknown mean µ and known
variance σ 2. For a sample of fixed size n, the sam-
ple mean Xn is an unbiased estimate of µ and
has a normal distribution with variance σ 2/n, yield-
ing the classical confidence interval Xn ± z1−ασ/

√
n

with coverage probability 1 − 2α for µ, where zα is
the α-quantile of the standard normal distribution. If
n is replaced by a stopping rule T whose distribu-
tion depends on µ, then XT is typically biased and
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√
T (XT − µ)/σ is no longer standard normal but has

a distribution that depends on µ.
Rosner & Tsiatis [31] proposed the following

method to construct a 1 − 2α confidence interval for
µ. For every value of µ, find the quantiles uα(µ) and
u1−α(µ) of

√
T (XT − µ), i.e.

Pr
µ

[
√

T (XT − µ) < uα(µ)] = α

= Pr
µ

[
√

T (XT − µ) > u1−α(µ)].

These probabilities can be computed by the recursive
numerical integration algorithm of Armitage et al. [4]
when T is bounded by M . Hence the confidence
region {µ : uα(µ) ≤ √

T (XT − µ) ≤ u1−α(µ)} has
coverage probability 1 − 2α. Note that this confi-
dence region reduces to an interval whose end points
are found by intersecting the line

√
T (XT − µ) with

the curves uα(µ) and u1−α(µ) if there is only one
intersection with each curve, which is the case com-
monly encountered in practice.

Siegmund [33] proposed another approach based
on ordering the sample space in a certain way, follow-
ing an earlier proposal of Armitage [2]. Chapter 5 of
Whitehead’s monograph [42] gives a comprehensive
treatment of this ordering approach. It also discusses
the construction and properties of bias-adjusted esti-
mates following sequential tests. Emerson & Flem-
ing [12] proposed an alternative ordering and used
it to construct bias-adjusted estimates and confidence
intervals.

A considerably simpler class of sequential esti-
mation problems deals with estimation of a param-
eter θ with prescribed accuracy using a randomly
stopped statistic θ̂N , whose stopping rule N is tar-
geted towards achieving the prescribed accuracy. In
these problems, Anscombe’s [1] central limit the-
orem for randomly stopped sums typically yields
adequate normal approximations for the distribution
of

√
N(θ̂N − θ), which can be used to construct

fixed-width confidence intervals for θ . For exam-
ple, let X1, X2, . . . be independent random variables
from a population with mean µ and variance σ 2.
The variance of the estimate Xn of µ is σ 2/n

and an approximate 1 − 2α confidence interval for
µ is Xn ± z1−ασ/

√
n, which can be made to have

width 2d by choosing n to be the smallest integer
≥ (z1−ασ/d)2, assuming σ to be known. When σ is
unknown, Chow & Robbins [7] proposed to replace it

by the sample variances at successive stages, leading
to the stopping rule

N = first n ≥ m such that nd2/z2
1−α

≥ (n − 1)−1
n∑

i=1

(Xi − Xn)
2 + n−1.

The confidence interval is taken to be XN ± d. This
has approximate coverage probability 1 − 2α when d

is small, since
√

N(XN − µ)/σ has a limiting stan-
dard normal distribution as d → 0 by Anscombe’s
theorem. Schmidt et al. [32] used this procedure to
construct fixed-width confidence intervals for the
concentrations of enzymes in the normal human pan-
creas. Two-stage and three-stage analogs of this fully
sequential procedure were developed by Stein [37]
and Hall [16].

Adaptive Allocation, Sequential Design,
and Decision Theory

Other topics in the field of sequential analysis of
interest to biomedical studies are adaptive treatment
allocation (see Adaptive and Dynamic Methods of
Treatment Assignment) and sequential design of
experiments. The “up-and-down” (staircase) method
in bioassay and dosage determination is an example
of sequential experimentation. A traditional nonse-
quential method for performing a bioassay experi-
ment is to test a prescribed number of animals at
each of several fixed dose levels. In the up-and-down
method, one chooses a series of test levels with equal
spacing (on an appropriate scale, usually log dose)
between doses, and carries out a series of trials using
the following rule: use the next higher dose follow-
ing a negative response and use the next lower dose
following a positive response. Details of implemen-
tation of the design and applications to estimation
of the LD50 (“lethal dose 50” – the dose producing
response on 50% of the subjects) are given by Dixon
& Moood [10] and Dixon [9].

Stochastic approximation, introduced by Rob-
bins & Monro [30], is another example of sequential
experimentation. In the context of quantal bioassay,
Cochran & Davis [8] considered the following ver-
sion of the Robbins–Monro scheme. To start the
experiment, an initial guess x1 of LD50 is made
and m animals are given dose x1. Let c > 0. For
n ≥ 1, let p̂n be the observed proportion of deaths
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in the group of m animals assigned dose xn, and
define

xn+1 = xn − cn−1 (
p̂n − 1

2

)

to be the dose level at which another group of m

animals are tested. The basic idea behind stochastic
approximation is to use the recursive scheme xn+1 =
xn − an(Yn − h) to find the solution θ of the equation
M(θ) = h, in which M(x) is not observable and
all that can be observed for each x is a random
variable Y (x) with E[Y (x)] = M(x) and in which
Yn = Y (xn). Thus, in the quantal bioassay application
above, h = 1

2 and Yn = p̂n. Under certain regularity
conditions, the best choice of an is (βn)−1, where
β is the derivative of M at θ . Adaptive stochastic
approximation schemes that replace the unknown β in
the optimal choice an = (βn)−1 by simple recursive
estimates bn have been proposed and analyzed by Lai
& Robbins [24] and Frees & Ruppert [14].

In classical fixed-sample decision theory, one has
a parameter space containing all possible values of
the unknown parameter θ , an action space consist-
ing of all possible actions a, and a loss function
L(θ, a) representing the loss when the true param-
eter is θ and action a is taken. In sequential decision
theory, one has a sequence of actions a1, a2, . . . and
loss Ln(θ, an) at stage n. For sequential experimen-
tal design problems of the type described above,
an is the choice of the design level xn at stage
n. For sequential hypothesis testing (or estimation)
problems, an represents whether stopping occurs at
stage n and also acceptance of the null or alter-
native hypothesis (or the estimate of the unknown
parameter) when stopping indeed occurs at stage
n. In this case, it is more convenient to repre-
sent the action sequence (a1, a2, . . .) by a stopping
rule denoting when stopping occurs and a termi-
nal decision rule denoting the action taken upon
stopping. Given successive observations Z1, Z2, . . . ,

whose joint distribution depends on θ , a finite-
horizon sequential decision problem, with horizon
M , is to choose action dn = dn(Z1, . . . , Zn) at stage
n on the basis of the current and past observa-
tions, for 1 ≤ n ≤ M (see Adaptive and Dynamic
Methods of Treatment Assignment). The overall
risk of (d1, . . . , dM) is R(θ) = Eθ [

∑M
n=1 Ln(θ, dn)].

In particular, putting a prior distribution G on the
parameter space, one can consider the Bayes rule

that minimizes
∫

R(θ) dG(θ) (see Bayesian Meth-
ods). The solution can be found by the back-
ward induction algorithm of dynamic programming.
Applications of the algorithm to determine opti-
mal stopping boundaries of group sequential tests
have been given by Berry & Ho [5] and Eales
& Jennison [11]. Chernoff’s monograph [6] gives a
comprehensive treatment of optimal stopping prob-
lems in sequential analysis. Spiegelhalter et al. [36]
discuss Bayesian approaches to monitoring clinical
trials.

The handbook edited by Ghosh & Sen [15] gives
extensive references and survey articles on a wide
variety of topics in sequential analysis including
those covered in the present brief review which
is oriented towards biomedical applications. The
monograph by Jennison & Turnbull [19] on group
sequential tests and the review articles by Lai [21,
22, 23] describe important developments in stochas-
tic approximation, interim and terminal analyses of
clinical trials with failure-time endpoints, and other
areas of sequential analysis following the publica-
tion of the First Edition and provide updated lists of
references.
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Sequential Linkage
Analysis

The term “sequential linkage analysis” has several
possible meanings to genetic epidemiologists. One
arises from extending an already sampled pedigree,
by sequentially adding additional contiguous seg-
ments to it based upon the presence of the phenotype
(see Genotype) of interest. This sequential extension
procedure was originally developed for segregation
analysis, but is now sometimes used in linkage analy-
sis (e.g. [12]). A second meaning arises from serially
adding linked loci, as in the variance component
linkage method implemented in the program Sequen-
tial Oligogenic Linkage Analysis Routines (SOLAR),
which is actually closer to a stepwise analysis proce-
dure, rather than a sequential sampling one (e.g. [2]).
But the primary meaning (and the one we discuss
here) arises from the classical development of the lod
score by Morton [8], in which sequential sampling of
independent family units is performed until prespeci-
fied levels for or against linkage are reached. A very
good overview of the history of sequential designs in
genetic linkage studies can be found in Böddeker &
Ziegler [3].

Sequential Probability Ratio Test (SPRT)
and the Lod Score

The roots of the lod score method, like all sequential
ones, go back to Wald’s Sequential Probability Ratio
Test (SPRT) [13]. Wald developed this theory during
the Second World War as a way to minimize measure-
ment costs when testing meant destruction of expen-
sive samples (e.g. firing high-tech proximity-fused
antiaircraft ammunition). Morton recognized that an
analogy existed in genetic linkage, when genotyping
was both limited and expensive, being confined to
a small number of blood markers, with relatively
few genetic epidemiology groups working on any
given problem. He derived the lod score method for
post hoc combining of linkage results across inves-
tigations which, if invented today, might be termed
a meta-analysis or “retrospective collaboration” [7].
Each pedigree is added one at a time, followed by for-
mal analyses to see if we continue sampling or have
reached a conclusion in favor or against linkage, in
which case pedigree sampling stops.

The SPRT approach starts from the recognition
that a hypothesis test depends upon four intercon-
nected quantities:

1. type I error (α) = the probability of concluding
for H1 if H0 is true;

2. type II error (β) = (1 − power) = the probabil-
ity of concluding for H0 if H1 is true;

3. effect size (D) = a measure of how far H1 is
from H0; and

4. sample size (N ).

In traditional (fixed sampling) theory, we hold
both α and N constant, and take whatever relation-
ship we find in the data between the other two factors
(β, D) [usually, N is chosen to achieve a target (β, D)
relationship]. By contrast, the SPRT a priori fixes the
first three quantities (α, β and D), allowing N to
vary with the experiment. It therefore automatically
accounts for sampling fluctuations, as they occur at
every stage of the process, requiring just the right
amount of additional samples to achieve the target
precision in type I and II errors for the target effect
size, D. However, the “price” we pay for being
able to fix these three factors is that N could the-
oretically extend indefinitely. Fortunately, sequential
theory demonstrates that:

• The sequential process will terminate at a finite
N with probability “1” (almost surely).

• On average, the N required under sequential sam-
pling will be smaller than that for the “best” fixed
sample test that gives the same power [13].

For the SPRT applied to the linkage problem, if
θ is the recombination fraction and f (xn|θ) is the
likelihood function of the cumulative pedigree data
xn, up to the nth family unit, then to test the simple
hypothesis H0: θ = 1

2 (no linkage) against any simple
alternative H1: θ = θ1 �= 1

2 (such as θ1 = 0, tight
linkage, for instance), the SPRT procedure defines
the ratio of the probabilities:

Zn = ln
f (xn|θ = θ1)

f
(
xn|θ = 1

2

) for n = 1, 2, . . . .

By the maximum likelihood principle, when data are
more compatible with H1, then this ratio will tend
to grow larger with increasing n, while, if the data
are more compatible with H0, then Zn will tend to
become more negative. Before sampling, prespecified



2 Sequential Linkage Analysis

limits are defined, a∗ < 0 < b∗, which are functions
of the target α, and β. Analysis of additional data
stops when the first Zn falls outside these limits, with
a decision for the corresponding hypothesis.

For convenience, Morton used the base 10 log
instead of the natural log in defining his lod score,
but this just applies a scalar multiplier to the SPRT
statistic. An important theoretical result is that very
simple bounds exist on a∗ and b∗ which can be
used to define slightly wider (more liberal) stopping
criteria, but that are much easier to compute, namely

A = 1 − β

α
≤ a∗ and b∗ ≤ B = β

1 − α
.

If we take type I error = α = 0.001 and power =
(1 − β) = 0.99, we have log(A) = +3 and log(B) =
−2, the values proposed by Morton [8].

Beyond the Lod Score

The SPRT method can be readily extended to both
one-sided as well as two-sided compound hypothesis
tests in many statistical frameworks (e.g. [5, 11, 15],
and [16]). In linkage, sequential adaptations have
been extended beyond strongly model-based linkage
tests in pedigrees to model-free linkage tests, and
to smaller sampling units (e.g. [14]) as well as to
joint linkage/association tests of disequilibrium (see
Linkage Disequilibrium) using group sequential
designs [6]. The sequential sampling philosophy has
also been advocated as an approach to reduce
genotyping costs in linkage. Boehnke & Moll [4]
demonstrated via simulation that considerable savings
can be produced by ranking pedigrees by the evidence
for segregation at a locus and sequentially genotyping
for linkage accordingly.

Sequential Sampling vs. Sequential
Analysis

While sequential testing methods have been widely
available for the past 50 years, they are still relegated
to a relatively small universe of devoted followers,
and are largely ignored by the “fixed sampling” world
of investigators. This is partly due to the analytic
difficulty of obtaining some of the solutions, and
partly to the practical difficulty of conducting a truly
sequentially sampled study. Genotyping in small fam-
ily or relative pair units is not very cost efficient,

and the prospect of having quickly to clean, trans-
form, and reanalyze data at every sampling point is
daunting. Even the more practical block sequential
designs [16] require a higher degree of organization
and immediate response to data than most investiga-
tors are willing or able to commit, although there
is increasing enthusiasm for the promise of such
approaches [6]. But perhaps the most unappealing
aspect of true sequential sampling is the idea that
sample size for a given study should be so com-
pletely dictated by the test of any single hypothesis.
Usually, there are many phenotypic outcomes and
many hypotheses to be tested. This is particularly
true in the context of a genome scan, when one may
want to use the same family data to search for genes
for many phenotypes using a large spanning set of
linkage markers. The requirement of true sequential
sampling would be prespecifying exactly one primary
hypothesis on which to make sampling decisions to
the exclusion of all others, and could very easily
leave one with an inadequate sample for all other
hypotheses of interest. While actual sequential sam-
pling may not be very practicable, sequential analysis
of fixed-sample data is not only practicable but can be
quite efficient, at least in the special case of genome-
wide linkage or association scans. The theory of
sequential sampling predicts that the same power can
be achieved at a substantially lower average sample
number using sequential analysis. Fixed sample advo-
cates usually argue that this “saving” is meaningless
if one has already decided to use a fixed sampling
scheme, since it is too late to make use of the savings.
But in the special case of genome-wide scans, we can
gain a lot if we envision a genome scan as a two-step
process, an initial hypothesis-generation or “training”
phase, in which promising regions are suggested, fol-
lowed by a confirmatory hypothesis testing phase in
which only those few regions are formally tested in
independent samples. A special class of sequential
procedures, called sequential multiple decision pro-
cedures (SMDPs), allow us to formalize and optimize
this concept.

SMDPs

SMDPs [1] provide a powerful generalization of
the traditional two-hypothesis paradigm to allow U

mutually exclusive and exhaustive hypotheses, Hi ,
where i = 1, 2, . . . , U ≥ 2, of which we want to
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select one. In the particular case of a genome-
wide scan [9, 10], we form every possible subset of
markers, (U total) and try to select the one subset that
contains only the truly linked (or associated) ones.
In traditional hypothesis testing, we have only two
hypotheses, H0 and H1, two corresponding decisions,
D0 and D1, and two types of errors, α and β, with
relationship for any test procedure, ℘:

• (1 − α) = Pr℘[make decision D0|H0 is true].
• (1 − β) = Pr℘[make decision D1|H1 is true].

But in the SMDP framework, we have U types of
errors, αi , where

• (1 − αi) = Pr℘[make decision Di |Hi is true] for
i = 1, 2, . . . , U .

We wish to minimize the probability of any incor-
rect decision, or conversely maximize the probabil-
ity of a correct decision (PCD), denoted by P ∗,
on condition that the “distance” between hypotheses
(using an appropriately defined metric) is at least at
a certain prespecified “effect size”. In the case of a
genome-wide scan [9, 10], we compare the relative
evidence for linkage (or association) among the mark-
ers, instead of looking for absolute evidence at each
marker. As evidence accumulates with each succes-
sive data point, the few “signal” markers will even-
tually separate from the more prevalent background
“noise” markers as a distinct subgroup, thus terminat-
ing the sequential analysis and identifying the hypoth-
esis to select. For example, using one of the variations
on the Haseman–Elston (H–E) method (see Linkage
Analysis, Model-free) on a large number of mark-
ers, M , we first rank the linkage evidence, θ[1] ≤
θ[2] ≤ · · · ≤ θ[M], where the [i] denotes index of the
ith ranked marker, using the (sequential estimate of
the) error variance from the H–E regression, σ 2

e[1] ≤
σ 2

e[2] ≤ · · · ≤ σ 2
e[M]. Intuitively, this makes sense, as

the regressions showing the smallest error variances
will be the most significant ones, while the nonsignif-
icant “noise” markers should have error variances
nearly equal to the total variance of the response
variable. Next we try to divide the markers into
two subsets: those highest t showing “nonsignificant”
linkage and the lowest (M − t) “significant” ones, by
splitting between rank [M − t] and rank [M − t + 1].
This is equivalent to choosing the one partition that
correctly separates the (M − t) truly linked ones from
the t unlinked out of all possible ways (U ) to select t

from M populations, [U = M!/(t!M − t)!) hypothe-
ses]. The sufficient statistics for this procedure, ℘B ,
at sib pair h + 1, will be the (transformed) sequen-
tial sums of squared residuals, using the prediction
(H–E) equation for all the previous sib pairs. Then,
the target effect size, D∗, will be characterized in
terms of a minimum “distance” between two adja-
cently ranked error variances at the critical juncture
between [M − t], and [M − t + 1], using the distance
metric

Dij =
∣∣∣∣∣

1

2σ 2
i

− 1

2σ 2
j

∣∣∣∣∣ .

Using these definitions, the SMDP theory guaran-
tees that:

Pr℘B {correct selection} > P ∗, whenever D > D∗.

Since it is sequential, the SMDP zeros in on the hit
regions with predefined, analyst-specified type I and
type II errors, using (on average) a smaller sample
than the corresponding fixed sampling test. Also,
since it is a single test for all regions simultaneously,
questions about the differences between the locus-
wise and genome-wise type I and type II errors do not
arise (as they do when one conducts multiple fixed
sampling marker by marker tests) (see Genome-
wide Significance). Because of these very compelling
advantages, the sequential analysis research continues
to be of interest as a method to dissect the genetic
nature of complex traits.
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Sequential Methods for
Clinical Trials

For the purpose of this article, a “sequential method”
is any approach to the conduct of a clinical trial in
which:

(i) there is the potential to perform a series of
analyses on the accumulating data at different
times during the conduct of the trial;

(ii) each analysis includes a comparison of the
treatments featuring in the trial; and

(iii) each analysis has the potential to lead to stop-
ping the trial.

In (i), the word “potential” is included because the
very first analysis might lead to stopping, the point
being that the number of analyses actually performed
is not fixed in advance. Sample size reviews, also
known as “internal pilot studies” [10, 25, 26, 69]
are excluded from this definition as no treatment
comparison is involved. The number of potential
analyses may be just two, or may be one after every
new patient response. Thus, the definition is intended
to encompass the use of a single interim analysis or
of group sequential methods (see Data and Safety
Monitoring), as well as earlier approaches such as
the sequential probability ratio test.

Part (iii) of the definition excludes purely adminis-
trative looks at the data with no potential for stopping.
However, it is questionable whether comparisons of
the treatments can be made which do not have the
potential to lead to stopping.

Each of the series of analyses will be referred
to as an “interim analysis”. Here only the treatment
comparison and its use in deciding whether to stop the
trial will be considered, although other calculations
might be performed at the same time. Once the trial
has stopped, a “final analysis” will be performed in
which the significance level of the test of treatment
effect will be calculated together with a point estimate
and confidence limits for its magnitude.

In most of what follows it will be assumed
that a Phase III clinical trial (see Clinical Trials,
Overview) is being conducted to establish whether
a single experimental treatment is more efficacious
than some control treatment in respect of a single
primary endpoint (see Outcome Measures in Clin-
ical Trials). The extension of sequential methods to

other forms of trial will be considered briefly at the
end of the article. The exposition will be frequen-
tist throughout: equivalent Bayesian procedures have
been described in [50].

The Past

Traditional statistical approaches to scientific inves-
tigations separate out the phases of design, conduct
and analysis. During the design phase, the sample size
is fixed, and the method for allocating treatments to
experimental units determined. Once the data have
been collected, the analysis is conducted. In agricul-
tural applications, which were so influential in the
early development of statistical methods, the seasonal
nature of farming makes this approach both natural
and perfectly satisfactory.

It was in the context of quality control inspections
that the above statistical pattern was first broken.
Manufactured items are inspected, one at a time, with
a view to accepting or rejecting a batch in terms of
its quality. Double sampling, in our terms the use of
a single interim analysis, was introduced to quality
control by Dodge & Romig [16]. The Second World
War provided the impetus for the development of the
sequential probability ratio test, by Wald [60] in the
US and by Barnard [5] in the UK. In this procedure,
an “interim analysis” is conducted after the inspection
of every individual item.

In quality control, a single sequence of observa-
tions is made, modeled as independent, identically
distributed random variables from some parametric
distribution. The way in which sequential methods
could be applied far more generally, by plotting
against Fisher’s information rather than sample size,
was indicated early in the development of the subject
by Bartlett [6].

The advantages of sequential methods for clinical
trials were also soon noticed. In the medical context
the benefits of stopping early can be ethical as well
as purely economic. Bross [11] introduced sequen-
tial medical plans for comparing two sets of binary
responses, and Kilpatrick & Oldham [32] applied the
sequential t-test to a comparison of bronchial dila-
tors. The latter design was perhaps too effective:
the study was stopped after only four responses. By
1960 there was already enough accumulated theory
and practice to guarantee an audience for the first
edition of Armitage’s book on Sequential Medical
Trials [3].
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The principal limitation of the early theory of
sequential analysis for implementation in clinical tri-
als was the need to perform an interim analysis after
every patient response. To be more precise, a plot
of a comparative sample statistic against sample size
had to be approximated as a continuous Brownian
motion, and its final position after crossing a stopping
boundary had to be treated as being on the boundary.
This “no overshoot” assumption could be justified if
interim analyses were conducted after every response,
or in larger trials, at frequent intervals. Even after
decades of talk of immediate on-line computer data
entry, the reality of such continuous data monitoring
in clinical trials appears to be as far away as ever.

The no overshoot assumption was eventually over-
come in two differing ways, one involving computing
power, the other relying on mathematical sophistica-
tion. The method of recursive numerical integration
introduced by Armitage et al. [4] utilizes the inde-
pendent increments of a Brownian motion to compare
the distribution of the final position of a sequential
sample path, given a series of upper and lower stop-
ping limits. This allows a more precise evaluation
of the properties of designs such as the sequential
probability ratio test applied with infrequent looks
as well as the specification of alternative designs
based on different criteria. The method requires con-
siderable computing input, which even today can be
prohibitive if there are to be very large numbers of
interim analyses.

The stopping criteria, which became popular dur-
ing the 1970s, involved considering each interim
analysis as a miniature fixed sample analysis, con-
ducted with a type I error rate referred to as a “nom-
inal significance level”. It was well known that for
the procedure as a whole to comply with an overall
type I error rate of (say) 0.05, each of these nominal
significance levels had to be less than 0.05. Various
schemes were devised for setting the nominal sig-
nificance levels. Pocock [42] suggested constant val-
ues, and then in 1982 recommended certain varying
sequences [43]. O’Brien & Fleming [38] considered
an increasing sequence of levels for which early stop-
ping was extremely unlikely, so that the final nominal
level would be close to 0.05 (or some other cho-
sen overall value). These methods were referred to
as “group sequential methods”, a title which unfor-
tunately has led to a false distinction from the wider
family of sequential methods of which they are a part.

The mathematical answer to the overshoot
problem was developed from renewal theory by
Siegmund [47]. Earlier theory assumed that the final
position of the sample path was on the boundary.
Siegmund evaluated the expected overshoot of the
boundary. This allows the boundary to be moved
inwards by an amount equal to the expected
overshoot. Now the expected final position of the
sample path is on the original boundary. The
boundary is changed, and the “no overshoot” theory
is left intact and now more accurate. Whitehead
& Stratton [68] and Whitehead [65] explain how
this device can be used to allow “group sequential
methods” to be based on straight-line boundaries
such as the sequential probability ratio test and its
modifications due to Anderson [1]. The resulting
“Christmas tree correction” is extremely accurate in
the case of the triangular test [51], but it can be less
successful for other straight-line boundaries if interim
analyses are few.

The Christmas tree correction offers complete
flexibility over the frequency and timing of interim
analyses while guaranteeing that when they occur
they are conducted according to preordained rules.
By contrast, the early “group sequential methods”
relied on tabulations of critical values which were
accurate only if a prespecified schedule of looks was
followed. The α-spending function method of Lan &
DeMets [34] brought that same flexibility into “group
sequential methods”.

The timing of the interim analysis no longer had to
be prespecified or, more importantly, the amount of
information available at each interim did not have to
be anticipated. Instead, when an interim analysis was
conducted, the amount of information available could
be calculated, and the stopping criteria deduced in
order to ensure that the total null probability of stop-
ping up to and including the current look achieved
some desired value, α(t). Here t is the ratio of the
information accumulated to date and the maximum
possible amount of information. The function α(t)

is defined in advance for all t , and is called the α-
spending function. When t = 1 (information is at its
maximum value), α(1) is equal to the overall type I
error rate (perhaps 0.05). Various α-spending func-
tions have been devised, by Lan & DeMets [34], Kim
& DeMets [33] and Hwang et al. [28] amongst oth-
ers. Some are similar in spirit to older rules, such as
those of Pocock and O’Brien and Fleming.
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During the 1980s research attention focused on
how to analyze a sequential clinical trial once it had
stopped. Unfortunately, some of the language used
to describe sequential methods obscured the main
task. Interim analyses are not interpretations of the
data in the way that conventional statistical analyses
are; they serve only to determine whether the trial
should stop. The term “nominal significance level” is
potentially misleading, as it relates to the significance
level appropriate to a design which was not in fact
used. “Adjusting P values” or “paying a penalty
on α” suggest rather ad hoc procedures, whereas
appropriate analysis methods can be quite precise.

The monitoring of a sequential clinical trial is in
fact best viewed as part of the design phase rather
than being part of the analysis. It is a flexible sample
size computation that avoids unnecessary sampling
while guaranteeing the desired power. Once this sam-
ple size has been reached, and the trial has been
stopped, the analysis phase begins. Frequentist anal-
yses require consideration of those study outcomes
supporting the alternative hypothesis as strongly or
more strongly than was observed. For ease of inter-
pretation it is best to restrict attention to one-sided
alternatives of the form “experimental treatment is
better than control”, and to perform the appropri-
ate multiplication by 2 to obtain two-sided P values.
In a fixed sample study, evidence concerning treat-
ment difference is usually expressed in terms of a
one-dimensional test statistic, and the phrase above
in italics is taken to refer to test statistics as large
or larger than that observed. The frequentist analysis
of a sequential design necessitates contemplation of
repeated runs of the same design, and identification
of which outcomes support experimental superiority
more than others.

Armitage [2] and Siegmund [46] addressed the
ordering of outcomes by degree of support for the
alternative hypothesis in the case of continuous mon-
itoring. In that situation the sample path will end on
the boundary, and an anticlockwise ordering, from
sample paths plunging down to the lower boundary
(least support for superiority), via lengthy horizontal
sample paths, through to sample paths shooting up to
the upper boundary (most support), is natural. This
leads to P values being defined for trials ending pos-
itively on the upper boundary, as the null probability
of earlier stopping on the upper boundary.

Although the anticlockwise ordering will serve to
provide a good approximation when interim analyses

are frequent, it is incomplete in the more common
case in which only a few looks at the data are planned.
Here, a two-dimensional set of possible outcomes
comprising the value of the final test statistic and
the identity of the look at which it was observed
have somehow to be resolved into a single ordering.
The original, and most successful form of ordering in
this case was introduced by Fairbanks & Madsen [20]
and explored further by Tsiatis et al. [59]. For trials
stopping on the upper boundary, in favor of the
experimental treatment, the earlier the stopping, the
stronger the support for superiority. Outcomes with
the same final look are ordered in terms of the value
of the test statistic. On the lower boundary, the later
the final look, the better the support for experimental
superiority (or at least, the less bad). This retains an
anticlockwise element, in common with the ordering
of Armitage and Siegmund.

The ordering of Fairbanks & Madsen [20] is trun-
cation adaptable, to use a phrase later introduced by
Liu & Hall [35]. Computations of analyses are made
conditionally on how much information turned out to
be available at each look, up to the final one. How-
ever, they require no knowledge of whether, when
and how any future interim analyses would have been
conducted, had the trial not been stopped. This means
that analyses based on two designs that share the
same criteria for (say) the first three looks, and then
diverge, will be identical if stopping occurs at one
of the first three looks. In particular, if a sequential
trial is stopped at the first look, then the Fairbanks
& Madsen [20] ordering leads to an analysis which
is identical to the conventional fixed sample analysis.
This is not to be confused with the type I error rates
of the two procedures which, being properties of the
whole design, are definitely different.

Once an ordering of possible outcomes has been
identified, a full frequentist analysis becomes possi-
ble. Let θ denote the advantage of the experimental
treatment over control. Define the P value func-
tion P(θ) as the probability of obtaining evidence
supporting experimental superiority as strongly or
more strongly than observed, according to the order-
ing, when the treatment advantage is θ . Then the
P value against the one-sided alternative of exper-
imental superiority will be P(0), and against the
one-sided alternative of experimental inferiority it
will be 1 − P(0). Taking the smaller of these two
and doubling it will give the P value against the
two-sided alternative. A 95% confidence interval for
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θ is given by (θL, θU), where P(θL) = 0.025 and
P(θU) = 0.975, and a median unbiased estimator of
θ by θM, where P(θM) = 0.05

Other orderings of the sample space have been
suggested by Rosner & Tsiatis [45], Chang [12] and
Emerson & Fleming [18]. The last of these, for exam-
ple, consists of ordering by the magnitude of the final
maximum likelihood estimate θ̂ of θ . These orderings
are not truncation adaptable. For example, if stopping
occurs at the second look, it might have been possi-
ble for a later look to yield a higher value of θ̂ . Thus,
computations of P values and estimates have to take
into account what might have happened later. Worse
still, certain of the orderings of Rosner & Tsiatis [45]
lead to confidence regions which are not intervals,
but instead consist of disjointed separate intervals.
Such flaws would appear to render them unsuitable
for practical use.

Alternative methods for post-trial analysis include
bias-adjusted maximum likelihood estimates [62] and
Woodroofe confidence intervals [58, 70]. These met-
hods modify certain conventional analysis procedures
(maximum likelihood estimation and pivot-based
confidence intervals) for use after a sequential trial.
The former estimates are, to quite an accurate
extent, unbiased in the conventional expectation
sense. These methods also share the need to integrate
over all possible final outcomes in order to compare
expectations of various combinations of test statistic
and information measure. Unfortunately, this need
prevents them from being truncation adaptable. In
practice, various scenarios for the inspection schedule
that would have taken place after stopping can be
imposed, and they make little difference to the
numerical results. All the same, the mere need to
speculate about what might have been is a drawback
to these methods.

Emerson [17] has devised a truncation adaptable
method of computing an unbiased estimate of treat-
ment effect using the method, due to Rao [44] and
Blackwell [8], of taking the expected value of a
simple unbiased estimate conditional on a sufficient
statistic. The simple unbiased estimate used is the
maximum likelihood estimate of θ computed at the
first look, and the sufficient statistic is the bivari-
ate combination of the test statistic and the infor-
mation measure at termination. The mathematics of
the method were explored by Ferebee [21], and the
resulting estimate has been shown to give the uni-
formly minimum variance unbiased estimate within

the class of truncation adaptable estimates by Liu &
Hall [35].

Sequential methods are now widely used in
practice, especially in large-scale studies in serious
and life-threatening diseases. The book edited by
Peace [41] provides a collection of case studies, and
Whitehead [67] provides references to several more.

The Present

Investigators planning a clinical trial today have a
wide range of sequential methods available to choose
from, with software packages such as PEST 4 [37],
EaSt 2000 [15] and the S-PLUS module S +
SeqTrial [36] to facilitate calculations. If the trial
is to be a comparison of two treatments in respect
of a single primary endpoint, with the objective
of discovering whether one treatment is superior to
the other, then it is extremely likely that a suitable
method already exists. This means that infeasibility
or unfamiliarity are no longer excuses for avoiding
interim analyses and stopping rules in such trials,
when ethical or economic purposes would be served
by them.

Sample size determination in any trial begins
with specification of a power requirement. If a cer-
tain treatment advantage (θ = θR) is present, then
significance at level α should be achieved with
power 1 − β. In a fixed sample study there will
inevitably be an interplay between resource limi-
tations and the setting of θR and 1 − β, although
it is unwise to proceed with a sample size that is
underpowered for credible and worthwhile treatment
advantages.

Sequential designs offer more scope, first in the
power requirements available, and second in how
these are to be attained. In a fixed sample design,
assuming a suitable measure θ of treatment differ-
ence, its power is set at 1 − β for θ = θR; it will also
be 1 − β for θ = −θR. This need not be so in sequen-
tial studies. It is possible to set the power to be 1 − β

for θ = θR while accepting a much lower power at
θ = −θR. This is entirely appropriate if the investiga-
tor has no need to distinguish the experimental treat-
ment as being inferior to the control from the case of
no effect. If the experimental treatment is novel and
expensive, then either of these situations will lead to
its development being abandoned, and so it would
not be proper to recruit patients merely to deter-
mine which is true. This sort of specification is called
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Power Requirement I by Whitehead [65], and it leads
to asymmetric designs such as the triangular test.
The opposite situation of requiring a power of 1 − β

for θ = −θR, but not needing to distinguish between
superiority and equivalence, arises in a noninferior-
ity comparison of a cheaper and safer alternative with
an established active control. (Sequential equivalence
and noninferiority designs are discussed by White-
head [64].) Sequential methods can be devised, of
course, for the same symmetric power requirement
as the fixed sample design (known as Power Require-
ment II).

Having chosen a power requirement, the shape
of the plot of the expected terminal sample size
against θ should be considered. This is known as the
average sample number (ASN), within quality control
applications. For a fixed sample size trial the ASN is a
horizontal line. For a triangular test, it rises from low
values over θ < 0, to a maximum around 0.5 θR and
then falls again. A truncated sequential probability
ratio test has lower expected sample sizes for θ < 0
and θ > θR than the triangular test, but rises to a
higher maximum in between. This then is the design
question: For the power requirement set, for what
values of θ should the expected sample size be large,
and for what values should it be small?

Generally speaking, sample sizes should be small
when θ is distant from zero, as in those situations
when one group of patients is being seriously dis-
advantaged relative to the other. For designs con-
structed from Power Requirement I, the ASN will be
asymmetric, with low values whenever θ < 0. When
Power Requirement II is specified, the main choice
concerns whether expected sample sizes should be
small for θ = 0. They can be made so by choosing
a design such as the double triangular test in PEST
or opting for “Early rejection of H0” in EaSt. Such
designs will generally reduce sample size, and may be
suitable for establishing equivalence. In some trials it
is desirable to allow larger sample sizes when θ = 0.
There are seldom ethical concerns about continuation
under H0, and the larger sample size allows scope
for eventual investigation of secondary endpoints and
subgroup effects (see Treatment-covariate Interac-
tion). This option may also provide insurance against
concerns over model fit. Designs such as the restricted
procedure within PEST or methods for two-sided
alternatives and without early rejection of H0 in EaSt
satisfy these objectives. Within the desired class of
procedures, fine tuning can be achieved by varying

parameters such as the slope in PEST or ∆ in EaSt
and investigating the effect on the ASN. Other prop-
erties of final sample size, such as the median or 90th
percentile, can also be used to facilitate choice.

The conduct of a sequential clinical trial is often
within the context of a Data and Safety Monitoring
Board (DSMB). The timings of the interim analyses
are usually fixed in advance, and the plots of the
test statistic against information measure form part of
the report to the DSMB. As far as the mathematical
model of the trial is concerned, it is the prespecified
sequential plan that controls the stopping of the trial;
there is no deviation from the prespecified protocol.
The analysis computations developed over the years
all rely on this being true, and any lack of adherence
to plan will lead to inaccuracy in the computation
of significance levels, point estimates and confidence
limits. However, this is a clinical trial involving
human subjects, and so the mathematical model of the
trial cannot be the whole story. The DSMB will be
presented with data other than the formal sequential
plot, and these data may lead to stopping the trial
earlier than the formal sequential rule or continuing
it for longer. The mathematical modeling may involve
formal interim analyses starting some time after the
trial began, becoming more frequent thereafter. The
DSMB, however, may receive safety data that lead to
stopping even before the first formal interim analysis
has taken place. Part of the art of designing sequential
studies is to make the formal rule as close as possible
to the likely actions of the DSMB. This involves
careful choice of the primary efficacy endpoint, a
detailed presentation of the sequential plan to the
DSMB before the trial begins and, if necessary,
pretrial revision of the plan to make it fit more closely
to the DSMB’s view of safety issues. An account
of the role of the statistician in the DSMB, with
particular reference to sequential studies, is given by
Whitehead [66].

The most likely direction of discrepancy between a
formal sequential plan and the actions of the DSMB
is towards stopping for safety. The Board may see
problems sooner than they are picked up by the
sequential analysis, or concerning patient outcomes
that are not part of the formal procedure. It is far
less likely that the Board will wish to stop the
study earlier than the plan allows in order to claim
increased efficacy. This is because they know that a
positive finding has to be accepted as valid, either
by drug regulatory authorities (see Drug Approval
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and Regulation) or by clinical opinion, before the
new treatment receives widespread use. Departure
from the plan might weaken the authority of the
trial findings and result in delay in their acceptance.
Having set in place a formal plan which does react to
early strong positive evidence, it is most likely that
the DSMB will respect it. The DSMB is also likely
to respect rules governing stopping because the null
hypothesis appears to be true: sometimes this is called
stopping for futility. As scientists, they may wish to
see the accrual of large and informative data sets, but
this is not a safety issue, and in this instance they are
acting to conserve the sponsor’s resources.

The only result of unplanned stopping for safety
can be the negative one of not claiming advantage and
so its only consequence for trials seeking to demon-
strate superior efficacy which do stop positively is to
cause their P values to be conservative and their point
estimates to be biased downwards. This is because,
potentially, true claims of efficacy might be lost due
to these “unofficial” stopping rules. The effect of such
unofficial stopping does, however, have more seri-
ous consequences for equivalence and noninferiority
trials. It is possible to formulate additional safety
monitoring rules to be used in addition to efficacy
sequential plans or within a fixed sample trial; for
examples see Bolland & Whitehead [9].

The final analysis, including computation of the P

value, point estimate and confidence interval, must be
done in a way that is consistent with the sequential
designs used. This need is now being recognized by
regulators [19]. Sometimes a design has been chosen
deliberately to ensure that a conventional analysis is
essentially valid, and an argument to that effect may
be acceptable. However, a numerical demonstration
of the adequacy of the conventional analysis removes
any residual doubt, and it is unwise anyway to
constrain the choice of design in order to avoid the
need to conduct an appropriate analysis.

Between the termination of the study and the final
analysis, extra data may become available that did
not feature in the last interim analysis. These data
may be the result of inevitable delays in reporting,
or they might be responses taken after some weeks
or months of follow-up that could not have been
available any earlier. Provided that these observations
are collected under protocol conditions they should
form part of the final analysis. The inclusion of such
results in an “overrunning analysis” is discussed by
Whitehead [63].

The Future

Current methodological research in sequential anal-
ysis is being directed towards extending its utility
beyond comparisons of two treatments in respect of
a single endpoint.

The multiple treatment problem has long been of
interest, with the general methodology going back
to the elimination procedures of Paulson [39, 40].
Sequential χ2 and F tests have been developed
by Siegmund [48] and Jennison & Turnbull [29].
These procedures are of limited utility in clinical
applications. Elimination procedures allow treatments
to be dropped at each of a series of interim analyses,
and aim to select the best. However, although the
treatment remaining at the end is indeed likely to be
the best, evidence of significant superiority over any
competitor is not guaranteed. Sequential χ2 and F

tests stop when it is evident that the treatments under
comparison differ, but this may not mean that any
individual treatment has yet demonstrated superiority
over others.

More recent work has concerned allowing infe-
rior treatments to be eliminated at interim analyses
while preserving the error rates associated with rec-
ommending effective treatments. Follmann et al. [23]
present a general procedure based on pairwise com-
parisons of k treatments with conservative preser-
vation of error rates. Thall et al. [55, 56] present
two-stage procedures for binary outcomes in which
one of several experimental treatments is selected at
the end of the first stage, and its comparison with a
control is completed during the second. Data from
both stages feature in the final analysis, and the over-
all type I error is controlled. Stallard & Todd [52,
53] take a similar approach, considering general
responses rather than just the binary case, incorporat-
ing extra looks into the second pairwise comparison
stage, and allowing the selection to be based on a
surrogate rather than the primary response.

Methods that allow for the simultaneous mon-
itoring of more than one endpoint are also being
developed. Jennison & Turnbull [30], Cook &
Farewell [13] and Thall & Cheng [54] have devised
procedures in which both efficacy and safety end-
points are considered at each interim analysis.
Todd [57] has looked at more general bivariate pro-
cedures, considering cases in which superiority has
to be demonstrated in each of two efficacy endpoints
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and also cases in which superiority in either will be
sufficient.

A special case of multiple endpoints arises when
subjects are assessed repeatedly in terms of the same
response during the course of follow-up. The inclu-
sion of such longitudinal data in interim analyses
has been considered by Gange & DeMets [24] and
Cook & Lawless [14] amongst others. In each case
it is necessary to make modeling assumptions that
allow the predominantly early follow-up data avail-
able at the first one or two interim analyses to be
used to decide whether to stop a study intended to
investigate longer-term follow-up. This dependence
on extrapolated model assumptions is shared with
long follow-up survival studies, in which context it is
discussed by Gregory et al. [27] and Sooriyarachchi
& Whitehead [49].

The theoretical developments cited above are
ongoing, and have as yet received little implemen-
tation. However, within the pharmaceutical industry
a desire to reduce drug development time and a
need to satisfy regulatory conditions concerning mul-
tiple aspects of treatment safety and effectiveness are
likely to lead to practical exploitation of this work.
The selection procedures can be viewed as ways of
combining Phases II and III, and the multiple end-
point designs may ensure that stopping does not occur
until all trial objectives have been realized. On-line
model checking is an important issue, especially for
long-term survival or longitudinal studies, and the
new methods may be able to address the problems of
making repeated goodness-of-fit assessments along-
side the repeated treatment comparisons.

Another current area of research concerns “adap-
tive designs”. These allow greater freedom of action
as a result of the findings of interim analyses. Exam-
ples include the methods of Bauer & Köhne [7] and
Wassmer [61] as well as the “self-designing clini-
cal trials” of Fisher [22]. Such approaches have the
potential to introduce a great amount of freedom into
the conduct of clinical trials, allowing them to fol-
low more closely the instinctive learning processes
of scientific enquiry, without losing control over error
rates. However, two dangers are present. The first is
that the new found freedom leads to a progressive
reduction of the targeted “clinically relevant differ-
ence” as a trial reveals less and less promise of a new
treatment. This can result in the greatest resources
being devoted to the least important treatments, being
the counterpart of scientific desperation rather than

self-critical enquiry. The second danger lies in the
conflict between the need to limit access to the results
of interim analyses and the desire to act upon them.
Confidentiality of interim results is a necessary pre-
caution to avoid operational bias; that is, the conduct
of the trial being a result of its findings rather than
the other way round. If actions affecting the trial or
the development of the drug involved are taken as a
result of interim findings, then inferences about the
nature of those findings will be drawn. It may be that
mathematical preservation of error rates is the easy
part of developing adaptive procedures.

The future of sequential methods in clinical trials
appears to be assured. The recent appearance of
two up-to-date texts on the subject [31, 65] and the
simultaneous release of three new software packages
for their implementation [15, 36, 37] ensures that the
procedures developed in the past can be routinely
and accurately implemented. The flourishing interest
in methodological research will serve to ensure that
the remit of sequential methods continues to widen.
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Serial Correlation

Many biostatistical investigations involve longitu-
dinal data in which subjects, possibly in naturally
occurring or experimentally determined groups, are
observed on several different occasions over some
particular period of time (see Longitudinal Data
Analysis, Overview). A characteristic of this type
of data is a correlation between pairs of mea-
surements on the same subject, the magnitude of
which usually depends on the time separation of the

measurements – typically, the correlation becomes
weaker as the time separation increases. This serial
correlation needs to be properly accounted for in the
analysis of such data if appropriate inferences are to
be made.

(See also Analysis of Variance for Longitudinal
Data; Durbin–Watson Test; Generalized Linear
Models for Longitudinal Data)

BRIAN S. EVERITT



Serial Dilution Assay

Serial dilution assays were originally developed to
estimate the concentration of viable bacteria in liq-
uid suspension, from observations of the presence or
absence of the organism in samples at different dilu-
tions (see Dilution Method for Bacterial Density
Estimation). Let λ denote the concentration of bac-
teria per unit volume; this is the parameter of interest.
A key assumption is that the bacteria are distributed
at random throughout the suspension, with no ten-
dency to aggregate. This implies that the number of
bacteria in a sample of volume v follows a Poisson
distribution with mean λv. In particular, the proba-
bility that the sample contains one or more bacteria
is 1 − exp(−λv).

The original suspension is diluted m times and, at
the ith dilution, ni samples are taken from the diluted
suspension, each sample containing a volume vi of
the original suspension. The samples are deposited in
tubes containing a suitable culture medium. Follow-
ing incubation, Yi , the number of samples that show
evidence of bacterial growth, is recorded. The second
key assumption is that observable growth will result
from any sample that contains at least one viable
organism, implying that the data indicate reliably the
presence or absence of bacteria in each sample.

The probability of observing bacterial growth at
the ith dilution is therefore

πi = 1 − exp(−λvi) (1)

and, provided that samples can be assumed to be
independent, Yi will have the binomial distribution
bin(ni, πi). This model forms the basis of the statis-
tical analysis.

Bacterial concentrations can also be estimated
by culturing samples on petri dishes and counting
the number of colonies that grow. Colony counting
clearly gives more precision per sample than sim-
ply recording presence or absence of the organism
in the sample. However, the gain in precision per
sample must be balanced against the increased time
needed for counting. Moreover, if the sample is not
sufficiently diluted, then the bacterial colonies will
coalesce and counting becomes impossible.

Serial dilution assays are used routinely to esti-
mate concentrations of micro-organisms in, for exam-
ple, foods, water, and soils. Experimental procedures
differ in detail, but the key assumptions remain that

the number of particles in a sample has a Poisson
distribution and that the observed positive or negative
responses indicate reliably the presence or absence of
the organism in the sample.

Dilution assays are also used to estimate the pro-
portion of individuals in a population that have some
characteristic, when it is not feasible, for economic or
other reasons, to test individuals and estimate the pro-
portion directly. Such assays are often called limiting
dilution assays. For example, in immunology, limit-
ing dilution assays are used to estimate the proportion
of cells, θ say, that are immunocompetent. The proce-
dure is to test random samples consisting of different
numbers of cells to ascertain whether each sample
does or does not contain immunocompetent cells. As
in bacterial estimation, it is assumed that the pres-
ence/absence test is completely reliable. It follows
that the probability that a sample of ri cells contains
at least one immunocompetent cell is

πi = 1 − (1 − θ)ri , (2)

which is equivalent to (1) with vi = ri and λ =
− log(1 − θ). In practice, however, at least in
immunology, limiting dilution assays are often
analyzed on the basis of (1) with vi = ri and λ =
θ . There are two slightly different justifications
for this. First, if θ is small, as it often is
in immunologic applications, then − log(1 − θ) ≈
θ . More importantly, in immunologic applications,
the number of cells tested, ri , is not usually
known exactly. Instead, the number is assumed
to be a Poisson variable with mean ri . The
unconditional probability that the sample contains
immunocompetent cells is then given exactly by (1)
with vi = ri and λ = θ .

This method of estimating a proportion is also
known as group testing [6], although this term is
also used to describe a method of repeatedly testing
individuals in groups to determine precisely which
individuals have the attribute of interest [12].

Point Estimation of λ

Since the observations Yi are binomially distributed,
the log-likelihood for the data, ignoring some terms
that do not depend on λ, is

l(λ) =
m∑

i=1

Yi log[1 − exp(−λvi)] − (ni − Yi)λvi .



2 Serial Dilution Assay

From this one can obtain the maximum
likelihood estimator of λ, λ̂ say, which is often
known as the most probable number (MPN), a
terminology introduced by McCrady [24]. Except
in special cases, iterative methods, such as the
Newton–Raphson method (see Optimization and
Nonlinear Equations), are needed for the calculation
of λ̂, and various special-purpose computer programs
are available, e.g. [22]. Alternatively, the maximum
likelihood estimator of log λ can be obtained as the
constant term in a binomial generalized linear model
with complementary–log–log link function and with
log(vi) as an offset variable [25, Section 1.2.4].
Thus, estimation is possible in any package that
caters for generalized linear models, though ill-
fitting data sets can cause problems occasionally in
packages that estimate parameters by Fisher’s method
of scoring [29].

When all samples are positive, λ̂ = ∞ and the best
that can be done is to estimate a lower confidence
limit for λ. Sometimes this may be sufficient, e.g.
in food safety testing where it is sufficient to know
that the bacterium is present in large numbers.
Alternatively, if it is important to have a more
precise estimate of concentration, then it will be
necessary to do further dilutions until some samples
give a negative result. Conversely, when all samples
are negative, λ̂ = 0. In all other circumstances the
likelihood function is unimodal with a finite, nonzero
maximum.

Fisher [15] used the serial dilution assay as one
of the examples in his original paper on maximum
likelihood estimation. However, for practical applica-
tion he suggested a computationally simpler method
in which the observed number of negative results is
equated to the expected number. He showed that this
method, fully described by Fisher & Yates [17], has
an asymptotic relative efficiency of 88% compared
with maximum likelihood estimation, although Best
& Raynor [3] found the estimators to be very simi-
lar for sample sizes typically used in practice. His-
torically, various other methods of estimation have
been proposed, but maximum likelihood estimation
remains the method most commonly used in practice.

Bias Correction

The maximum likelihood estimator of λ is, however,
positively biased, i.e. it tends to overestimate the

true value of λ (see Unbiasedness). The magnitude
of the bias depends on the value of λ, on the
dilutions used, and on the number of replicates at
the different dilutions, but can exceed 10% in small
assays.

Several authors have therefore considered bias
corrections. Gart [18] derives a bias-corrected esti-
mator as a particular instance of the general asymp-
totic theory given in [8, Section 9.2]. Mehrabi &
Matthews [26] note that this is equivalent to an esti-
mator derived, using a different method, by Salama
et al. [32]. Mehrabi & Matthews [26] also derive
an alternative bias-corrected estimator, based on the
approach of Firth [14].

Strijbosch & Does [34] compare various jackknife
and bootstrap estimators intended to improve bias.
They show in particular that a jackknife estimator
based on omitting each individual sample in turn
succeeds in reducing bias. However, Mehrabi &
Matthews [26] prefer the likelihood-based estimators
because their variance can be estimated reliably,
whereas the variance of the jackknife estimator
cannot.

Garthright [19] has derived a bias-corrected esti-
mator of log λ, arguing that, for many purposes, it
is more important to have an unbiased estimator of
log λ than of λ itself.

Interval Estimation of λ

The distribution of λ̂ is often quite skewed, particu-
larly in small assays, and confidence intervals based
on the standard error of λ̂ are unreliable. However,
the distribution of log λ̂ is more nearly symmet-
rical [7], and approximate 100(1 − α)% confidence
intervals for log λ can be calculated as

log λ̂ ± zα/2 se [log(λ̂)],

where zα/2 is the upper α/2 point of the standard
normal distribution. These limits can then be back-
transformed to give limits for λ itself.

Other “large-sample” methods of forming con-
fidence intervals, based on the score statistic (see
Likelihood) or the likelihood ratio statistic, are dis-
cussed by Gart [18] and Ridout [30]. Cyr et al. [11]
give some alternative large sample methods. For all
of these methods the coverage (the probability that
the interval contains λ) fluctuates around the nominal
confidence level, and depends on λ.
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Alternatively, “exact” confidence intervals can be
constructed. “Exact” here signifies that the intervals
are based on the exact binomial probabilities that
determine the outcome of the assay. The intervals
themselves are conservative, i.e. their coverage is
never below, and generally exceeds, the nominal
level, though this conservatism can be reduced by
the use of mid-P values [21]. The various methods
are well described by Loyer & Hamilton [23].
Roughly speaking their preferred method chooses
the confidence interval as those values of λ for
which the observed outcome of the assay is not
“improbable”. A complication is that some assay
outcomes are improbable, whatever the value of λ,
and so the method can lead to empty confidence
intervals. It can also occasionally lead to disjoint
intervals. Hepworth [21] gives an alternative method
for which these complications do not arise. It is based
on ordering outcomes according to their associated
maximum likelihood estimates, and was proposed
originally by Woodward [36]. Myers et al. [28]
describe a third method based on an exact likelihood
ratio test.

Exact intervals can require large amounts of
computation and are perhaps best suited to small
assays with a standard design, so that confidence
intervals can be tabulated for all possible outcomes.
Ridout [30] compares exact intervals with large
sample intervals for some small assays and
recommends intervals based on the large sample
distribution of the likelihood ratio statistic.

Basu et al. [2] describe a bootstrap method of
constructing confidence intervals for λ. Their method
tends to give shorter intervals than the likelihood ratio
method, but the coverage is often below the nominal
level.

Testing the Validity of the Assumptions

Goodness of fit is often assessed in practice by com-
paring observed and fitted values using the standard
χ2 statistic for binomial data. However, because this
is a general purpose test statistic it tends to have low
power against specific alternatives [4].

An idealized assay involving an infinite number
of dilutions with constant dilution factor and five
replicates at each dilution might yield the following
results:

. . . 5 5 5 3 0 0 2 0 0 0 . . .

The transition from all positive to all negative
results spans four dilutions (with outcomes 3,0,0,2).
Stevens [33] suggested using the length of the
transition as a goodness-of-fit statistic, calling it
the range. Large values of the range indicate a
poor fit. The same test statistic was proposed
independently by Moran [27]. Haas & Heller [20]
develop the test for short series involving only
three or four distinct dilutions (see Infectivity Titra-
tion).

When micro-organisms are not distributed ran-
domly this is almost always because they are aggre-
gated or clustered. Consequently, the distribution
of micro-organisms in a sample is overdispersed
relative to the Poisson distribution. Suppose, for
example, that for a sample of volume v the dis-
tribution is not Poisson with mean λv but a neg-
ative binomial distribution with the same mean
and with variance λv + τλv2. Then the probabil-
ity that the sample contains one or more micro-
organisms is

1 − (1 + τλv)−1/τ ,

which approaches the standard model in the limit
as τ → 0. Testing for this particular departure from
randomness is therefore equivalent to testing the
null hypothesis that τ = 0. A likelihood ratio test
could be used, but this would involve fitting the
alternative model. Cyr & Singh [9] suggest instead
a score test for which it is only necessary to fit
the standard model. This score test is robust insofar
as the same test statistic results from some other
distributions that are overdispersed relative to the
Poisson.

However, some types of overdispersion are not
detectable. For example, if the number of micro-
organisms in a sample of volume v again has a
negative binomial distribution with mean λv, but now
with variance (1 + φ)λv (where φ > 0), then it can
be shown that the standard analysis will incorrectly
estimate λ′ = λ log(1 + φ)/φ instead of λ, but there
will be no apparent lack of fit.

The other principal assumption is that the presence
of at least one bacterium in a sample is sufficient to
produce an observable response. Any departures from
this assumption will result in underestimation of λ.
Particular types of departure that might arise depend
on the specific application. Cyr & Singh [10] develop
score tests for several alternatives that are important
in immunology.
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Planning a Serial Dilution Assay

Fisher [16] showed that to minimize the asymptotic
variance of the maximum likelihood estimator λ̂, the
volume of the original suspension present in every
sample should be v = 1.59/λ. This volume is such
that each sample has a probability of 0.80 of giving a
positive response. This result is not of much practical
use unless a good prior estimate of λ is available.

Most work on planning of serial dilution assays
has assumed instead that the experimenter can indi-
cate an interval (λL, λU) within which the true value
of λ is believed to lie. Finney [13, Section 20.8], for
example, suggests choosing a range of dilutions such
that the expected number of organisms per sample
(λv) is at least 2 at the first dilution and at most 0.5
at the last dilution. Cochran [7] suggests slightly dif-
ferent limits. Dilutions are then made with a constant
dilution factor, d, to cover the required range of vol-
umes. The usual recommendation is that d should be
as small as is practicable. For example, two-fold dilu-
tions would be preferred to five- or 10-fold. This is
because the smaller the value of d, the more nearly
constant is the standard error of log λ, when the same
number of samples are tested in total [7]. One dis-
advantage of a small dilution factor is that there
will be a greater cumulative effect of any pipetting
errors. The results of Chase & Hoel [5] suggest that
small errors of dilution can increase the variance of
λ̂ substantially.

For d ≤ 5, Cochran [7] notes that the standard
error of log10(λ̂) is approximately independent of λ

over the interval (λL, λU) and is given by

0.55

(
log10 d

n

)1/2

,

where n is the number of samples at each dilution
(assumed equal). For d ≥ 10 the approximation is
better if the constant 0.55 is increased to 0.58. This
approximate formula is useful in choosing a suitable
value of n.

Strijbosch et al. [35] give an alternative procedure
which ensures that, for any value of λ in the
interval (λL, λU), there are some dilutions that are
“informative”, in the sense that the probability of a
positive result is not too close to zero or one.

Another approach is to construct Bayesian opti-
mal designs, based on a prior distribution for λ.
Zacks [37] and Ridout [31] have given designs based
on a gamma prior for λ and a uniform prior for

log λ respectively. These authors also discuss two-
and three-stage Bayesian designs.

Multistage designs are also considered by Abdel-
basit & Plackett [1]. Given an initial estimate of
λ, λ0 say, the first stage tests samples with volume
v1 = 1.59/λ0. The second stage tests samples with
volume v2 = 1.59/λ̂1, where λ̂1 is the maximum like-
lihood estimator of λ based on data from the first
stage. At subsequent stages the volume is determined
by the maximum likelihood estimator of λ based on
data from all previous stages. Abdelbasit & Plack-
ett present results on efficiency of designs with up to
five stages. The optimal number of stages depends on
how good the initial estimate λ0 is and on how many
samples are to be tested in total.
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Serial-sacrifice
Experiments

In simple survival experiments with animals to study
the development of one or more particular disease(s),
one observes the age at death along with the presence
or absence of the disease(s) and also, in studies with
competing risks, the cause of death for each animal.
At the end of the experiment (which may be prefixed
by design), there may be a provision for killing all the
animals surviving at that time point, which is called
terminal sacrifice. Such data give little information on
the progress of disease(s), if they can be detected only
at death, and possible interaction between different
disease(s). For example, in many animal carcino-
genicity experiments, development of cancer (occur-
rence of tumor) is of particular interest along with its
contribution to the final death and possible interac-
tion with other causes of death. But simple survival
experiments give insufficient information to study
this aspect, although with the introduction of concep-
tual survival times due to different causes of death
and strong assumption such as independence between
incidence of tumor and subsequent death and death
from other causes, some analyses have been carried
out [16, 20, 23, 27, 42, 52] to estimate the distri-
bution of time to tumor incidence. One can also
circumvent this problem by assuming strong para-
metric models ([10, 14, 26] (see Parametric Models
in Survival Analysis); see also Borgan et al. [7],
who consider piecewise-constant intensity parameters
to demonstrate that serial-sacrifice experiments are
moderately efficient with respect to complete obser-
vation, whereas simple survival experiments have
very low efficiency). There is also a semiparametric
approach wherein parametric assumptions are made
for a part (tumor incidence rate) of the model, thereby
requiring few or only one (terminal) sacrifices [2,
15, 30, 44, 46, 47]. In general also, data from sim-
ple survival experiments are analyzed by introducing
conceptual survival times due to different causes of
death (assumed mutually exclusive and exhaustive)
which are then assumed independent using paramet-
ric or nonparametric methods [19, 22, 40].

Tsiatis [50] has shown that, with data only from
simple survival experiment, identifiability problems
may arise for the distribution of the conceptual

survival times; it is impossible to distinguish the inde-
pendent model from some dependence models. How-
ever, the point is that a simple survival experiment
is not an appropriate one to study development of
different diseases and possible interactions between
them (leading to dependence between the conceptual
survival times).

Serial-sacrifice experiments are an improvement
over simple survival experiment toward achieving
this goal, as indicated above, by allowing interim
observation on some individuals before death occurs.
Intuitively, this will allow one to probe the disease
process and the complex interrelationships between
different diseases before death occurs. Ideally, in
serial-sacrifice experiments, individual animals are
randomly selected and killed (sacrificed) at fixed or
adaptively selected time points, allowing the exami-
nation of presence or absence of different diseases
(which is done also for naturally dying animals);
cause of death for each case may or may not be
recorded [4, 9, 38, 42, 51].

The above serial-sacrifice experiment, in princi-
ple, permits one to test if the different diseases are
independent and to determine the nature of inter-
action if it exists, as considered in a complicated
illness–death model by Berlin et al. [4] assuming
Markov transition rates (see Fix–Neyman Process).
In animal carcinogenicity experiments, as mentioned
earlier, serial sacrifice allows the estimation of tumor
occurrence time distribution under very general con-
ditions (see the next section for more clarification).

Identifiability and Analysis

Clearly, a serial-sacrifice experiment, as described
above, embodies two sampling mechanisms in opera-
tion – one corresponding to death of an animal and
the other to sacrifice. The latter is unbiased in the
sense that all the animals alive at time t have equal
chance of being sacrificed, thus providing an esti-
mate for pA(t), probability of being alive and having
a particular disease combination A at time t . On the
other hand, death is a biased sampling mechanism,
the probability of death at any time depending on the
illness state history of the animal. This will, thus, pro-
vide an estimate of probability of death with the par-
ticular disease combination A, given by µA(t)pA(t),
where µA(t) denotes the mortality rate from disease
combination A. Note that S(t), the probability of
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being alive at time t , can be estimated either in the
Kaplan–Meier style [24] using both death and sac-
rifice information, or simply summing estimates of
pA(t) over all possible As. Hence, the prevalence of
disease combination A (probability of having disease
combination A given alive) at time t, pA(t)/S(t), can
also be estimated. The likelihood function of the
observable quantities is, therefore, a product of terms
such as pA(t) and µA(t)pA(t) for different disease
combinations and different sacrifice and death times,
respectively. Thus, only terms such as the above
two and functions thereof will be estimable (identifi-
able) from serial-sacrifice experiments. Clearly, this
is more than one can do from a simple survival exper-
iment with different diseases. However, as pointed
out by Clifford [9], assuming a progressive Markov
illness–death model, quantities related to transition
from one illness state (alive with a particular disease
combination) to another, and hence quantities related
to events subsequent to an illness state (e.g. mean
residual life after being in an illness state), are not
identifiable even from a serial sacrifice experiment;
that is, these quantities are not expressible in terms
of the above two quantities.

Berlin et al. [4] formulate different cases of inde-
pendence between different diseases leading to rela-
tionships between different µs and ps from relation-
ships between different transition rates. For exam-
ple, if disease a is independent of disease b, then,
besides many others, we should have the relationship
µ(a,b) = µa + µb (notation having the usual mean-
ing). These relationships allow identifiability to some
extent. Thus, hypotheses of disease independence, in
some cases, can be rejected when they are false.
One has to take note of the number of estimable
independent parameters while calculating degrees of
freedom for an asymptotic likelihood ratio test.
However, failure to reject the hypotheses when they
are false may be due not only to a type II error
(see Level of a Test), but also to the nonidentifi-
ability of the model parameters (i.e. the fact that
relationships implied by hypotheses of independence
may not necessarily imply independence).

In this context, two papers by Turnbull and
Mitchell (see [38, 51]) also merit mention. Here, the
authors write the likelihood function in terms of the
estimable parameters of the type pAs and µAs, and
then suggest estimation of these parameters using
the EM algorithm [11]. They also parameterize the
model in loglinear form by taking treatment, time,

and illness states as different factors for reparameter-
izing the “prevalence” and “lethality” parameters cor-
responding to observations from sacrificed and dead
animals, respectively. A generalized EM algorithm is
used, by making use of the iterative proportional fit-
ting algorithm [6] in the M-step, to obtain maximum
likelihood estimates of the parameters for a broad
class of unsaturated models. Tests based on relative
likelihoods are proposed to investigate the effects of
treatment, time, and the presence of other diseases
on the prevalence and lethality of a particular dis-
ease of interest. Mitchell & Turnbull [39] develop a
computer program for this analysis.

In animal carcinogenicity experiments with serial
sacrifice, the tumor occurrence time distribution can
be expressed, at least approximately, in terms of the
estimable quantities as mentioned above ([12, 33,
37]; see [36] for a review). Thus, the tumor occur-
rence time distribution becomes estimable under very
general conditions without assuming independence
between different event times (tumor occurrence,
death with tumor present, and death with no tumor)
and having no cause of death information. McK-
night & Crowley [37] give a closed form estimator
for a function which approximates the tumor inci-
dence rate; this, however, may take a negative value.
A test for differences in tumor incidence rates in
two groups is suggested, by comparing estimates of
the approximate tumor incidence rates. Dewanji &
Kalbfleisch [12] develop an EM algorithm for esti-
mating the tumor incidence rates in a discrete frame-
work. A score test (see Likelihood) is developed for
comparison of two groups with respect to tumor inci-
dence, assuming a polychotomous logistic model for
the tumor incidence rate and death rate with no tumor.
Malani & Van Ryzin [33] give closed form estimates
of the tumor incidence rates, also in a discrete frame-
work, but these may fail to satisfy the nonnegativity
condition in some cases. Malani & Van Ryzin [34]
extend this work to the problem of comparing two
treatment groups.

Design Issues

In designing serial-sacrifice experiments, optimal sac-
rifice schedules have received some attention. The
choice of an optimal design depends on the specific
criterion to be optimized. Thus, a design which is
optimal for one criterion may not be so for a different
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one. Sometimes procedural simplicity dictates selec-
tion of a specific criterion.

Berry [5] considers the determination of an opti-
mal time to terminate an experiment by sacrificing
all surviving animals in terms of maximum Fisher’s
information per unit cost, assuming a Weibull distri-
bution for tumor incidence. It turns out that the opti-
mum strategy is to allow all animals to live out their
lives. Portier [43] addresses the question of finding
optimal fixed sacrifice times for small carcinogenesis
experiments using different optimal criteria including
optimal goodness of fit. The study is very limited,
as it considers only four underlying tumor incidence
distributions and six designs.

It is argued [3] that when no prior knowledge on
tumor incidence is available, information on an opti-
mum sacrifice schedule should be obtained only from
the data. Otherwise, if sacrifices are carried out too
early there will be few animals with tumor and if
sacrifices are too late nearly all animals will have
tumor, leading to very little information on tumor
incidence in either case. Such consideration led to
modification of serial sacrifice schedule in the ED01
study [21, 49] when too few tumors were found at
the beginning of the study. Also, in the FD & C Red
No. 40 mouse experiment [28], unexpected findings
of early reticulo-endothelial (RE) tumors led to an
acceleration of the sacrifice rate. All this suggests
consideration of sequential or adaptive approach for
choosing an optimal design although that requires a
quick histopathological examination of all the sacri-
ficed/dead animals.

Bergman & Turnbull [3] consider this problem for
nonlethal tumors assuming an exponential distribu-
tion for tumor incidence. For a fixed sequence of
times t1 < · · · < tM , at which one or more sacrifice
could be made, their procedure suggests how many to
sacrifice at each time point so that estimation of the
exponential parameter is asymptotically efficient in
the sense that the Fisher information approaches that
as obtained by using the true value of the parame-
ter, as the total number of animals increases. At time
ti , animals are selected one by one at random and
sacrificed until either a stopping rule Ri is satisfied
or there are no animals left for sacrifice, whichever
occurs first. If there are still more animals left after
Ri is satisfied, the next sacrifice is made at time ti+1,
and so on. At the last time tM , all the remaining ani-
mals are sacrificed and the experiment is terminated.

The stopping rule they suggest for achieving asymp-
totic efficiency stops sacrificing at time ti , when the
ratio of the number of animals with tumor plus a
specified constant to the number of animals without
tumor, found at time ti , is sufficiently small.

In order to find optimum sacrifice times, for exper-
imenting with nonlethal tumors, Bergman & Turn-
bull [3] (see also [8] and [18] in a different context)
note, assuming exponential distribution with mean
1/θ for tumor incidence, that Fisher’s information
is maximized by choosing only one sacrifice time
at 1.5936 × θ−1. This result is of no immediate use
as the optimal design depends on unknown θ . Cher-
noff [8] suggests a sequential procedure by which the
ith sacrifice will be at time 1.5936 × θ̂−1

i , where θ̂i

is the current best estimate of θ based on observa-
tion from the i − 1 animals sacrificed so far (see
also [1]). However, this optimal design does not
ensure that the ith sacrifice time will always be later
than the (i − 1)th sacrifice time. Louis [31] proposes
an asymptotically efficient suboptimal rule for time-
ordered sequential design which has favorable small
sample properties (see also [32] and [41]).

Portier [45] gives a brief review of the different
design issues discussed here.

Examples

The earliest example (found in the literature) of
serial-sacrifice experiment is that of Upton et al. [53],
conducted at the Oak Ridge National Laboratory.
Groups of RFM female mice were given various
doses of γ -radiation. Each group included about 4000
mice, of which about 300 were sacrificed at different
times ranging from 150 to 800 days. For all animals,
postmortem examination records presence or absence
of up to eight diseases. Berlin et al. [4] consider two
groups (control and irradiated to 300R) with three
disease categories from the eight for their analysis.
Parts of these data have been considered for analysis
by many other authors [12, 38, 44, 51].

The ED01 study with 2-acetylamino-fluorene (2-
AAF) conducted by the US National Center for
Toxicological Research (NCTR) ([49]; see also a
series of 19 papers in a special issue of Journal
of Environmental Pathology and Toxicology [21] –
Littlefield et al., pp. 17–34, in this series may be
mentioned as one example) is probably the largest
serial-sacrifice experiment so far. This study involved
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over 24 000 mice exposed to one of eight different
doses varying from 0 to 150 ppm in the diet. Serial
sacrifices were carried out at 9, 12, 14, 15, 16, 17, 18,
and 24 months, with a terminal sacrifice at 33 months.
In addition to presence/absence of tumor at different
sites, cause of death was also ascertained. The data
from this study have been extensively analyzed by
many authors [2, 13–15, 30, 35].

Another experiment by NCTR with benzidine
dihydrochloride in mice has been considered for anal-
ysis by many authors [16, 26, 27, 30, 34, 46, 55, 56].
Information on cause of death and presence/absence
of liver tumor was available. Sacrifices were designed
at specific time points (280, 420, and 560 days).

Red 40 data [28] considered the incidence of RE
tumors due to dosing of Red 40. The experiment used
three treated groups and a control in both sexes of
CD-1 HAM/ICR mice with about 50 animals in each
group. A single interim sacrifice of between 14 and
20 animals per group was done at 42 weeks and a
terminal sacrifice at 104 weeks.

There are few other examples of serial-sacrifice
experiments found in the literature. Levitt et al. [29]
studied morphogenesis of pancreatic adenocarcinoma
in Syrian golden hamster induced by N -nitroso-
bis(2-hydroxypropyl)amine. Kennedy et al. [25] con-
sidered 210Po-induced tumor in the peripheral lung of
Syrian golden hamster. Borgan et al. [7] mentioned
an experiment for studying lymphatic leukemia in
mice (see also [17]). Schuller et al. [48] studied pul-
monary toxicity induced by the anticancer drug 1,3-
bis(2-chloroethyl)-1-nitrosourea (BCNU), in F344
rats. Van Nesselrooij et al. [54] considered blood-
filled cavities in estrogen-induced anterior pituitary
tumors in male Sprague–Dawley rats with two treated
and two control animals sacrificed at each of 15 time
points ranging from 7 to 272 days.
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Sex Ratio at Birth

Most human populations contain approximately equal
numbers of males and females. This apparent equality
can clearly be only approximate, since the mortality
and migration rates of the two sexes vary in different
ways with age and with time. In most communities,
the males slightly outnumber the females at birth, a
ratio of about 1.05 being typical, but are subject to
higher mortality rates, so that females are in excess
at higher ages and have the higher expectations of
life. Studies of the variation in the sex ratio are
predominantly concerned with the sex ratio at birth,
conventionally expressed as the ratio of males to
females (sometimes multiplied by 100 or 1000). In
some research studies, it is more convenient to use
the proportion of males, denoted here by p. More
formally, the ratio at birth is the secondary sex ratio,
the primary sex ratio being the ratio at conception.
Reference is sometimes made to the less well-defined
tertiary sex ratio, the ratio of males to females at
an age at which children become independent of
their parents, or perhaps at the onset of reproductive
capacity.

The primary sex ratio is especially difficult to esti-
mate, since many early spontaneous abortions are not
observed. Some workers have suggested that the ratio
is very high, the sperm bearing the Y chromosome
perhaps being more successful in achieving fertil-
ization. However, Hytten [20] argues that in spon-
taneous abortions during the first trimester, females
considerably outnumber males, suggesting that the
primary sex ratio is quite low. Later in pregnancy,
there are more male than female fetuses, but more
males than females miscarry or are stillborn. McK-
eown & Lowe [30] reported that sex ratios in early
stillbirths (after 28 weeks’ gestation) were not greatly
in excess of unity, but that they increased slightly
with gestational age.

The secondary sex ratio (for which we shall use
merely the term “sex ratio”) has been a topic of sta-
tistical interest for over 200 years. Statisticians and
probabilists in the eighteenth and nineteenth centuries
seized on the data emerging from birth registers to
exemplify the developing theory of binary events;
we summarize their work below. During the twen-
tieth century, most studies have been motivated by
demographic, epidemiologic, or genetic considera-
tions. From the demographic point of view, the sex

ratio contributes to an understanding of the age–sex
composition of a population, although its effect is
very limited because it varies between populations to
such a small extent. The epidemiologist is interested
in even small differences in the sex ratio between
population groups, or in trends over time, because
they may point to the possible effects of environ-
mental agents or differing lifestyles.

Much interest has been focused on surveys of the
sex distributions in families of various sizes. These
studies are interesting from a general point of view
and in relation to the effects of family limitation.
Perhaps a more important purpose is to examine the
evidence for variability in the sex ratio, in order to
shed light on the heritability of the sex ratio [9].
If the tendency to produce an excess of offspring
of one or the other sex is genetically determined, it
will be subject to natural selection. Fisher [13] and
others [21, 22] have offered theories as to how such a
mechanism might act. It is therefore of some interest
to see whether distributions of the sex composition
in different families provide any evidence for such
variation. As we shall note later, such evidence is
hard to find.

Early Studies

The following summaries rely heavily on the much
fuller accounts given by Hald [18, 19]. The earliest
statistical study appears to be that of Graunt [17],
who noted the slight excess of males at both christen-
ings and burials, in both London and Romsey. Graunt
regarded the near equality as a justification for the
practice of monogamy rather than polygamy.

Arbuthnot’s study [1] is celebrated as the first
recorded example of a statistical significance test
(see Hypothesis Testing). Arbuthnot noted that for
each of the 82 years between 1629 and 1710, there
were more male than female christenings in London.
A sign test gives a P value of (1/2)82. Arbuth-
not regarded the excess of male christenings (and
hence, presumably, of births) as evidence of divine
providence in compensating for the higher mortal-
ity risks encountered by males. The calculations of
Nicholas Bernoulli [3] showed that the 82 propor-
tions of males are overdispersed relative to the
binomial distribution, although Bernoulli himself
appears to have accepted the hypothesis of homo-
geneity, the mean proportion of males being 0.516.
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Daniel Bernoulli [2] used the normal approxima-
tion to the binomial to study a related data set of
christenings in London between 1664 and 1758. He
noted that the overall estimate of p was 0.513, but
that the value fell to 0.510 during the decade 1721
to 1730. Taking the 10 values during that decade,
he showed that they agreed with normal variation
for p = 0.510 (as judged by the number of years for
which the value fell within probable error limits), but
less satisfactorily for p = 0.513. The demographers
Struyck (1687–1769) and Süssmilch (1707–1767),
in the meantime, had extended Graunt’s descriptive
work to cover data sets from various regions, but
avoiding any probabilistic analyses.

Laplace [25] used the numbers of male and female
births in Paris during 1745 to 1770 to illustrate the
calculation of a posterior probability using the nor-
mal approximation to the binomial, finding, of course,
that the probability of a ratio favoring females was
extremely low. Cournot [4] used a similar approach
to compare sex ratios in different subgroups, showing
an awareness of the danger of multiple compar-
isons. Poisson [32] examined births in France from
1817 to 1826, again using the normal approximation
and found no evidence for overdispersion between
these 10 values. He then examined the yearly figures
for different administrative areas, and found too high
a frequency of instances where female births were
in excess, suggesting that variation between years
and between areas had been obscured in the overall
picture.

Recent Epidemiologic Work

Although the eighteenth- and nineteenth-century
workers were mainly concerned about illustrating
theoretical results by using conveniently extensive
sets of binary data, many of them were interested in
variations in p between different population groups.
Explanations of these differences were less easy
to find.

Modern workers have access to even more exten-
sive data sets, and publications exploring group
differences abound. Yet, explanations remain con-
tentious, and different studies often seem contradic-
tory.

Time trends in national data sets are easily estab-
lished. Between 1838 and 1997, the sex ratio for
live births in England and Wales showed a roughly

sinusoidal curve, with smoothed values falling from
about 1.05 to 1.04 around 1895, rising to about 1.06
between 1945 and 1975, and falling to a little over
1.05 in 1995 [28, Figure 6.5]. A similar trend in
Japan between 1900 and 1995, with a peak at about
1.07 around 1970, and a subsequent fall to about
1.05 in 1995, is reported by Ohmi et al. [31]. Similar
recent falls have been reported for other countries [5].

Many other associations have been reported. Black
populations have frequently been shown to have low
ratios, but extensive ethnic comparisons are hampered
by the lack of reliable data in many developing
countries. The sex ratio tends to decline with maternal
age [27]. A negative relationship with the sex ratio
has been reported for a very wide range of factors,
including maternal smoking, maternal schizophrenia,
fathers who fly extensively, births in late autumn and
winter, and multiple births, with a complex effect
of parents’ hormonal levels and time of conception
during the menstrual cycle [20, 28]. The sex ratio
tends to decline with increases in the stillbirth rate, a
natural consequence of the higher ratio for stillbirths.

Claims for associations need to be replicated with
sufficiently large studies to eliminate random vari-
ation and serendipitous selection. However, there
seems to be a general finding that low sex ratios are
associated with deprivation of some sort. Unexpected
changes in the sex ratio may therefore provide a form
of monitoring to detect adverse environmental effects.
This must, however, be a rather blunt instrument, as
the change in sex ratio may not become evident for
some time after the causative event, and the effect
will be nonspecific. In 1978, the sex ratio in Northern
Ireland (and in three adjacent counties of the Repub-
lic of Ireland) was unusually low (about 1.01), but no
explanation has been found.

Family Studies

Geissler [14] published data on the distributions of
boys and girls in families of various sizes for about
four million births in Saxony from 1876 to 1885. The
data have various deficiencies, being derived from
statements by parents at the time of birth registra-
tion, recording the numbers of previous children of
each sex. They have, nevertheless, been the subject
of extensive analyses by, among others, Gini [15,
16], Fisher [12], Lancaster [23] and Edwards [6].
Much of the research has been concerned with pos-
sible deviations from the binomial distributions to be
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expected from purely random sampling with constant
p. One difficulty here is that parents may be less
likely to stop having children if the current sex distri-
bution is unbalanced; so the sex distributions of com-
pleted families of any given size above two might be
expected to show excess frequencies for the extreme
categories. However, this effect of family limitation
may have been less pronounced in Geissler’s data
than in some later data sets of this type.

Lancaster’s [23] doubts about the reliability of
Geissler’s data were dismissed by Gini [16] and
Edwards [6], but were reiterated by Lancaster [24].
Edwards [6] concluded that the data showed excess
variability of p between families, which they repre-
sented by the beta-binomial distribution, and Lind-
sey and Altham [26] fitted a variety of models for
overdispersion, suggesting that the effect increased
with family size.

Edwards and Fraccaro have analyzed several later
data sets in which the sequence of boys and girls in
each family is recorded: 14 230 French families [7],
5477 Swedish families [10, 11], and 60 334 Finnish
families [8]. The Swedish data show no evidence of
any form of heterogeneity. The French and Finnish
data support the hypothesis of a positive correlation
between the sexes of adjacent births as distinct from
the fixed correlation between all members of the
family that would be expected if there were merely
a between-family variance component.

The possible effect of family limitation on these
data sets is unclear. As Edwards & Fraccaro observe,
the effect may be mitigated by considering the fre-
quencies of different ordered sex combinations in the
first N children in families with N births or more, but
this is not a complete solution to the problem. An
alternative approach is to estimate p directly from
observations of the N th birth, separately for each
ordered combination of outcomes for the first N − 1.
Maconochie & Roman [29] examined in this way a
large collection of 549 048 singleton births in Scot-
land from 1975 to 1988, derived from linked records
of maternity discharges. They found no evidence of
heterogeneity between families, or for the effect of
birth order, maternal age, maternal height, paternal
or maternal social class, year of delivery, or season
of birth, the estimated sex ratio being 1.06.

The evidence for heterogeneity between families
is thus, at best, equivocal. If heterogeneity were to
be clearly established, it would remain to be shown
that this was genetic rather than environmental.

As Edwards [9] remarks, “. . . if genetic variability
exists, it is of a very low order of magnitude”.
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verhältnisses der Geborenen, Zeitschrift des Königlichen
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Shape Analysis

Shape is an essential ingredient of biology and
medicine. The geometrical description of an object
can be separated into two parts: (a) the registration
information and (b) the “shape” (which is invariant
under registration transformations). By registration,
we mean a basic geometrical transformation of an
object, for example, translation, rotation, and rescal-
ing. Objects can be registered into a standard refer-
ence frame or with respect to each other. Equivalent
names for registration include superimposition, super-
position, transformation, pose, and matching.

Shape has been studied for centuries in medicine
and biology, for example, Galileo’s [16] study of
bone shape (see Figure 1). Most studies have relied
on the location of anatomical landmarks, and then
multivariate analysis is carried out on collections of
angles and ratios of lengths [14, pp. 6–7].

Geometrical shape analysis began with the
independent work of Kendall [28, 30], Bookstein [4,
5] and Ziezold [51]. Subsequent developments have
led to a deep differential geometric theory of
shape spaces [31], as well as practical statistical
approaches to analyzing objects using probability
distributions of shape and likelihood-based inference.
Summaries of the field are given by Bookstein [7],
Goodall [20], Small [46], Dryden and Mardia [14],
Kendall et al. [31], and Lele and Richtsmeier [37],
and the main emphasis is on the shapes of labeled
point set configurations.

Shape and Shape Space

General Shape

Shape is defined to be all the geometrical information
that is invariant under registration transformations.
Depending on the application at hand, the registra-
tion transformations may be of little interest (e.g. in
comparing the shapes of bones); the registration and
shape may be equally important (e.g. in object recog-
nition (see Pattern Recognition) in image analysis);
or the registration parameters are the primary interest
(e.g. in medical image registration).

There are several common types of registration
invariance that are encountered in shape analysis.
The most common examples include the Euclidean
similarity transformations (translation, rotation, and

scale), the rigid body transformations (translation
and rotation) and affine transformations (translation,
rotation, and shears).

The types of objects under study are either point
sets of landmarks, curves, surfaces, or solid objects.
The study of shape is particularly well developed
for the study of landmarks, which are points of
meaningful biological or geometrical correspondence.

Two-dimensional Point Sets

When landmarks are available in two dimensions,
the shape space and statistical analysis of shapes are
relatively straightforward (e.g. [5, 14, 30]). Consider
k ≥ 3 points in a plane and use complex notation:
zj ∈ C, j = 1, . . . , k. We remove location (by cen-
tering) zj − z, j = 1, . . . , k, where z = ∑k

j=1 zj/k is
the centroid. We then identify scaled and rotated ver-
sions as an equivalence class, which is the shape of z:

[z] = {λ(zj − z), j = 1, . . . , k, :

λ = reiθ ∈ C \ {0}}. (1)

The shape space is, therefore, the complex projective
space CP k−2 [30], which is the space of complex
lines through the origin (but not including it). So,
the challenge from the statistical point of view is to
provide models and inferential procedures, which are
appropriate for the non-Euclidean shape space.

There are several choices of shape distance that
could be used and a natural choice is the Riemannian
shape distance between two landmark configurations
z = (z1, . . . , zk)

T , w = (w1, . . . , wk)
T :

ρ = arccos

∑
(zj − z)∗(wj − w)

(
∑ |zj − z|2 ∑ |wj − w|2)1/2

, (2)

Figure 1 From Galileo (1638), illustrating the differences
in shapes of the bones of small and large animals. Repro-
duced from [14]
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where z∗ is the complex conjugate of zT . The triangle
case is special since CP 1 ≡ S2 [29]. The shapes of
triangles are represented by points on a sphere of
radius 1

2 and in this case, ρ is the great circle distance.
The size of a configuration is often taken to be the

centroid size:

S(z) =
√√√√

k∑

j=1

|zj − z|2 = ‖Cz‖, (3)

where C = Ik − 1k1k
T /k is the k × k centering mat-

rix, with Ik the k × k identity matrix and 1k the
column k-vector of ones. Other choices such as
square root of area could be used, but are not so
convenient to work with statistically. In order to
represent shape, it is often convenient to specify
suitable shape coordinates, for example, Bookstein
shape coordinates

uB
j = zj − z1

z2 − z1
− 1

2
, j = 3, . . . , k, (4)

where uB
j are the complex coordinates of the land-

marks after translating, rotating, and rescaling so that
point 1 is sent to −1/2 + 0i and point 2 is sent to
1/2 + 0i. When shape variability is small, one can
work in a tangent space to shape space, and hence
use tangent space coordinates (see [14, p. 71]). For
small variations, Bookstein coordinates and tangent
space coordinates are approximately linearly related,
and hence multivariate normal–based inference is
approximately equivalent using either shape coordi-
nate system [32].

Higher-dimensional Point Sets

For higher than two-dimensional point sets, the geom-
etry is not so straightforward. Kendall et al. [31]
discuss the differential geometry of shape spaces in
detail, and one particular problem with the higher-
dimensional shape spaces is that the spaces are not
homogeneous and there are singularities. Neverthe-
less, we can obtain distances and work with care with
such higher-dimensional spaces.

Let X be a k × m matrix of the Cartesian coor-
dinates of the k points in m real dimensions (k ≥
m + 1). We can consider three steps to obtaining the
shape:

1. Remove location (center)

XC = CX (5)

2. Remove size (rescale)

Z = XC

S(X)
= CX

‖CX‖ , (6)

which is the preshape that lies on a sphere (Z ∈
S(k−1)m−1).

3. Finally, the shape is obtained by identifying all
rotated versions as an equivalence class, that is,

[X] = {ZΓ : Γ ∈ SO(m)}, (7)

is the shape of X, where SO(m) denotes the
special orthogonal group of rotation matrices (i.e.
orthogonal matrices with determinant 1).

Statistical analysis of shapes can be carried out
on the preshape sphere subject to invariance under
rotations.

Shape Distances

There are a variety of choices of shape distances for
shape analysis. Some possible choices are Procrustes
distances, Riemannian distance, and Mahalanobis
distance in the Procrustes tangent space. For the m-
dimensional case, some specific shape distances are:

Partial Procrustes distance:

dP (X1, X2) = inf
Γ ∈SO(m)

‖Z2 − Z1Γ ‖,

(0 ≤ dP ≤ √
2). (8)

Riemannian distance:

ρ(X1, X2) = 2 arcsin

(
dP

2

)
, (0 ≤ ρ ≤ π/2).

(9)

Full Procrustes distance:

dF (X1, X2) = inf
r>0,Γ

‖Z2 − rZ1Γ ‖
= sin ρ(X1, X2), (0 ≤ dF ≤ 1). (10)

Note that ρ reduces to equation (2) in the two-
dimensional case. These distances are all quite similar
for shapes, which are close together, in particular,
dF = ρ + O(ρ3) = dP + O(d3

P ) for small ρ, dP .
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Sometimes we may have registration transforma-
tions G, which are not a group: for example, a
smoothing spline deformation. We can still obtain
a discrepancy measure in such cases, for example, a
shape discrepancy measure between Y and T :

D(Y, T ) = inf
g∈G

dist (Y, g(T )), (11)

which is not symmetric in T and Y if g is a smoothing
thin-plate spline for example.

Shape Variability

Shape Distributions

There are various approaches for modeling shape
variability in biomedical objects, for example, (1)
marginal/offset shape distributions, (2) distributions
in preshape space with rotational symmetry, (3)
distributions in shape space, and (4) distributions in
a tangent space. Specifying distributions of shapes is
also an important component of high-level Bayesian
image analysis, where the shape distributions form
part of the prior model.

Marginal/offset Distributions

We first consider a model for a configuration in the
original space of the landmarks. In particular, we take
the mean configuration µ with independent isotropic
zero mean normal perturbations with variance σ 2.
The marginal or offset normal model is the marginal
distribution of shape after integrating out the location,
rotation, and scale information (see Figure 2).

1

2

3

(a)

1 2

3

(b)

Figure 2 The offset normal shape model involves inde-
pendent circular Gaussian perturbations about the mean
landmarks (a), and then transforming to the shape variables
such as Bookstein shape variables where the shape vari-
ability is transformed to the third vertex after fixing points
1 and 2 (b)

The offset normal shape density (with respect to
uniform measure) is [12, 13, 42, 43]

Lk−2(−2κ cos2 ρ(X, µ))exp(−2κ sin2 ρ(X, µ))

where κ = S(µ)2/(4σ 2), S(µ) is the centroid size of
µ and Lj (−x) = ∑k−2

i=1

(
j

i

)
xi

i! is the Laguerre polyno-
mial. The parameters are the Shape(µ): 2k − 4 mean
shape parameters and κ: concentration parameter. For
triangles (k = 3), the shape density is

{1 + 2κ cos2 ρ(x, µ)} exp{−2κ sin2 ρ(x, µ)}.
General covariance matrices and higher dimen-

sions have also be considered by Dryden and Mar-
dia [12] and Goodall and Mardia [21].

Inference with marginal shape models can be car-
ried out, such as testing for mean shape difference
between two groups (see [14, p. 144]), although infer-
ence is not straightforward for general covariance
structures due to overparameterization. We consider
a particular test in the section “Hypothesis Testing”,
which assumes an isotropic covariance structure.

Distributions in Preshape and Shape Space

Other shape distributions include the complex Watson
distribution [44] with density f (z) proportional to

exp{−2κ sin2 ρ}
and the complex Bingham distribution [32] with
density f (z) proportional to

exp(z∗Az), ∈ CSk−1,

where A is Hermitian. Both distributions are specified
on the preshape sphere and have rotational symmetry,
that is, f (z) = f (eiθ z), and hence, they are suitable
for shape modeling. The complex Watson distribution
is a special case of the complex Bingham distribu-
tion, where A has just two distinct eigenvalues. The
models on the preshape sphere have the advantage of
being simple and tractable, but they do impose rather
restrictive symmetries–isotropy for the complex Wat-
son and complex symmetry for the complex Bingham
distribution.

If the rotational information is integrated out, then
the complex Watson and complex Bingham distribu-
tions can be regarded as distributions in the shape
space. In the k = 3 triangle case, both distributions
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reduce to the Fisher–von-Mises distribution on the
shape sphere [39].

Procrustes Tangent Space Models

Another practical approach to specifying shape vari-
ability is to examine principal components from
least squares matching of geometrical objects. Con-
sider n objects of k landmarks in m real dimensions,
that is, T1, . . . , Tn are k × m matrices and Ti ∈ IRkm.
Procrustes matching involves least squares matching
to give T̂j :

µ̂ = arg inf
µ:S(µ)=1

inf
rj >0,Γj ∈SO(m),bj

∑

j

‖µ − rjTjΓj − 1T
kbj

‖2, (12)

where the fitted configurations are T̂j = r̂j Tj Γ̂j +
1kb̂

T
j . Note that if variations are small, the shapes lie

approximately in a linear space (a tangent space to
shape space). Kent and Mardia [35] give a thorough
description of Procrustes tangent space.

After the matching procedure is carried out, the
Procrustes mean is µ̂ = ∑

T̂i/n and the estimated
covariance matrix is

Σ̂ = 1

n

∑
V (T̂i − µ̂){V (T̂i − µ̂)}T , (13)

where V (T ) = vec(T ) is the stacked column vector
of the columns of T . For two-dimensional objects,
the Procrustes matching can be carried out using
a complex eigendecomposition [32], but for higher-
dimensional cases an iterative procedure such as
Generalized Procrustes Analysis [22] must be carried
out.

The structure of variability in the objects can be
examined through the principal components of the
Procrustes matched configurations, that is, through
the eigendecomposition of Σ̂ . We can formulate
the point distribution model for a two-dimensional
configuration matrix X(2k × 1) of k landmarks in IR2

based on the first p PCs as [40]

X = µ +
p∑

j=1

yjγj + ε, (14)

where yj ∼ N(0, λj ), ε ∼ N2k(0, σ 2I), indepen-
dently and the vectors γi satisfy

µTγj = 0, γ T
j γj = 1, γ T

i γj = 0, i 	= j, (15)

and λ1 ≥ λ2 ≥ · · · ≥ λp. In addition, for invariance
under rotation and for translation, the vectors γi

satisfy respectively

γ T
j ν = 0 and γ T

j (1, . . . , 1, 0, . . . , 0)T = 0,

γ T
j (0, . . . , 0, 1, . . . , 1)T = 0, (16)

where ν = (−β1, . . . , −βk, α1, . . . , αk)
T with µ =

(α1, . . . , αk, β1, . . . , βk)
T. Here p ≤ min(n − 1, 2k −

4) and p is preferably taken to be quite small, for a
parsimonious model.

This method of shape modeling has been used to
great success by Cootes et al. [10, 11] and Kent [32].
Effectively, models are specified in the tangent space
to the estimated mean, and hence, they are appropri-
ate for small variations.

Example: T2 vertebrae In Figure 3, we see an
example dataset of 60 landmarks on the outline
of T2 mouse vertebrae, which have been matched
together using Procrustes analysis. The first two
principal components of the T2 vertebrae are given
in Figure 4. PC1 and PC2 explain 65% and 9% of
the shape variability, and PC1 includes the effect
of protrusion at the topmost part of the bone, and
PC2 includes the effect of asymmetry in this part
of the bone. Although the interpretation is relatively
straightforward here, the PCs can be difficult to
interpret in some applications and may consist of
multiple effects.
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Figure 3 A dataset of 23 second thoracic mouse vertebrae
that have been matched using Procrustes registration
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Figure 4 The first two principal components of the mouse vertebrae data. The j th row shows PCj , with the ith column
displaying µ̂ + (i − 4)λ̂

1/2
j γ̂j where µ̂ is the Procrustes mean, γ̂j is the j th PC and λ̂j is the j eigenvalue of the tangent

space covariance matrix

Hypothesis Testing

Hypothesis tests can be constructed using Procrustes
methods, for example, testing for equal mean shapes
in two independent groups. Consider an isotropic
normal model with mean µ and transformed by an
additional location, rotation and scale, that is,

X = β(µ + E)Γ + 1kγ
T, vec(E) ∼ N(0, σ 2Ikm),

(17)

where β > 0 (scale), Γ ∈ SO(m) (rotation) and
γ ∈ IRm (translation), and σ is small. We take
two independent random samples X1, . . . , Xn1 and
Y1, . . . , Yn2 from Model (17) with means µ1

and µ2 respectively, and arbitrary transformation
parameters for each observation. Both populations
are assumed to have a common variance for
each coordinate σ 2. We wish to test H0 :
Shape(µ1) = Shape(µ2){= Shape(µ0)}, say, against
H1 : Shape(µ1) 	= Shape(µ2). Let µ̂1 and µ̂2 be the
full Procrustes means of each sample. Under H0, with
σ small, the Procrustes distances are approximately
distributed as

n1∑

i=1

d2
F (Xi, µ̂1) ∼ τ 2

0 χ2
(n1−1)M,

n2∑

i=1

d2
F (Yi, µ̂2) ∼ τ 2

0 χ2
(n2−1)M,

d2
F (µ̂1, µ̂2) ∼ τ 2

0

(
1

n1
+ 1

n2

)
χ2

M,

where τ0 = σ/δ0 and δ0 = S(µ0) (see Chi-square
Distribution). Proofs of the results can be obtained

using Taylor series expansions. In addition, these
statistics are approximately mutually independent
(exactly in the case of the first two expressions).
Hence, under H0, we have the approximate distri-
bution

F = n1 + n2 − 2

n1
−1 + n2

−1

× d2
F (µ̂1, µ̂2)

n1∑

i=1

d2
F (Xi, µ̂1) +

n2∑

i=1

d2
F (Yi, µ̂2)

∼ FM,(n1+n2−2)M, (18)

and this result is valid for small σ (see F Dis-
tributions). We reject H0 for large values of this
test statistic. This test is the two independent sam-
ple Goodall’s [20] test. An alternative test is a
Hotelling’s T 2 test in the tangent space to a pooled
mean shape estimator, which can have general (but
equal) covariance matrices for each group. Dryden
and Mardia [14], Chapter 7 provide more examples
of hypothesis testing using tangent space approxima-
tions.

Shape and Images

Registration and Matching

In many applications, it is important to match images
or objects. An early example was D’Arcy Thomp-
son’s [48] work on describing differences between
species using simple geometrical transformations.
(see Figure 5)
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Figure 5 D’Arcy Thompson’s [47] famous example of a species of fish Diodon being geometrically transformed into
another species Orthagoriscus

Recent examples include the matching of elec-
trophoresis gel images (e.g. [15]) to assess for dif-
ferences between species, and the registration of a
medical image to an atlas [25]. An algebraically sim-
ple but effective method for matching is the use
of thin-plate splines [6, 8]. Bookstein’s thin-plate
spline transformations are also used in an alterna-
tive to Procrustes PCA called relative warps, where
different aspects of bending (large and small scale)
can be emphasized (e.g. see [14, Chapter 10]). More
sophisticated approaches to image warping include
Christensen et al. ([9]).

High-level Image Analysis

An appropriate method for high-level Bayesian image
analysis is the use of deformable templates, pioneered
by Grenander and colleagues [23, 24]. In many
applications one has prior knowledge on the composi-
tion of the scene, and we can formulate parsimonious
geometric descriptions for objects in the images. For
example, in medical imaging, we can expect to know
a priori the main subject of the image, for exam-
ple, a heart or a brain. Consider our prior knowledge
about the objects under study to be represented by a

template S0. Note that S0 could be a template of a
single object or many objects in a scene. A proba-
bility distribution is assigned to the parameters with
density (or probability function) π(S), which models
the allowed variations S of S0. Hence, S is a random
vector representing all possible templates with asso-
ciated density π(S). Here S is a function of a finite
number of parameters, say θ1, . . . , θp.

In addition to the prior model, we require an image
model. Let the observed image I be the matrix of gray
levels and the image model (or likelihood) be the joint
probability density function of the gray levels given
the parameterized objects S, written as L(I |S). The
likelihood expresses the dependence of the observed
image on the deformed template.

By Bayes’ Theorem, the posterior density π(S|I)

of the deformed template S given the observed
image I is

π(S|I) ∝ L(I |S)π(S). (19)

An estimate of the true scene can be obtained
from the posterior mode (the maximum a posteri-
ori or MAP estimate) or the posterior mean. The
posterior mode is found either by a global search, gra-
dient descent (which is often impracticable due to the
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large number of parameters) or by techniques such as
simulated annealing (see Computer-intensive Meth-
ods) [17] or iterative conditional modes (ICM) [1].
Alternatively, Markov chain Monte Carlo (MCMC)
algorithms (see, for example, [2, 18]) provide tech-
niques for simulating from the posterior density.

There is a wide variety of possible template
parameterizations that we could consider, includ-
ing geometrical parameter templates, landmarks/point
distribution models, graphical templates, continuous
outline templates, and continuous deformation mod-
els (e.g. see [14, Chapter 11]).

Some possibilities for the image model include
(i) a scientific model based on the mode of image
capture (e.g. [26]), (ii) a model based on spatial
smoothness (e.g. Gaussian Markov random field), (iii)
a model based on measurement noise assumptions,
(iv) a feature density, where particular weight is given
to certain features in the image (e.g. [45]) or (v)
combinations of the above. It is often convenient to
also include a blurring term in the model.

The use of image analysis in various branches
of medicine and biology is becoming increasingly
common. Applications include the analysis of cell
shapes to detect malignant versus benign tumors,
the assessment of tumor volume in an MR image,
and the analysis of MRI signals to relate brain
activity with a repeated performed task (see [19], and
the Image Analysis and Tomography entry in this
Encyclopedia).

Discussion

An alternative but complementary approach to the
use of shape space–based methods is to use methods
based on Euclidean distance matrices (see Similarity,
Dissimilarity, and Distance Measure) and Multidi-
mensional Scaling. Visualization is more problem-
atic with this approach, but estimation and testing
procedures can be carried out with similar results for
small shape variability situations (as often encoun-
tered in biology and medicine); see [37] for a review
of this work.

There are many other examples of the use of shape
in high-level image analysis but we have described
the main ingredients of landmark or point set models;
see, for example, [38, 49] for general reviews of
shape measures in pattern recognition.

There is also a wide variety of work on nonland-
mark shape models, such as snakes [27], continuous

outline models such as the circular Gaussian Markov
random field model [33], and Younes’ [50] approach
to continuous shape analysis with applications in
high-level image analysis.

Although we have mainly concentrated on scale
invariance, there are many situations in which the
relationship between size and shape is of major
importance, for example, in the study of growth.
Allometry involves the study of the relationships
between shape and size, and, in particular, in the
manner in which shape depends on size. Sprent [47]
provides a summary of traditional applications, and
Dryden and Mardia [14, Chapter 8] provide discus-
sion of the joint modeling and analysis of shape and
size.

The notion of symmetry and bilateral symmetry
in particular is very important in biology. Mardia
et al. [41] and Kent and Mardia [35] explore decom-
positions of shape variability, which are useful for
investigating bilateral symmetry.

There has been much recent discussion about the
properties of shape estimators and statistical inference
on shape spaces. Consistency issues for Procrustes
estimators have been addressed by Kent and Mar-
dia [34] following work by Lele [36]. Also, statisti-
cal properties of estimators of intrinsic and extrinsic
mean shapes have been investigated by Bhattacharya
and Patrangenaru [3], and these estimators are con-
sistent under a very general class of models.

Finally, we conclude with remarks about the future
opportunities for shape and registration methodol-
ogy to be used in many applications. Geometrical
invariances and registration are increasingly com-
monly found in medicine and biology, such as in the
analysis of functions (EEG traces, mass spectrometry;
see Clinical Signals), the analysis and prediction of
protein structures, the analysis of electrophoretic gel
images, and the analysis of medical image sequences.
One of the key difficulties with many applications
is that the labeling and correspondence between
points/curves/surfaces is unknown. The future devel-
opment of shape and registration analysis in medicine
and biology for the effective analysis of these and
other geometrical data is of great importance.
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Sheppard’s Corrections

Suppose that the discrete variable Y is a continu-
ous variable X rounded to the nearest multiple of
some positive h. Generally, the sample moments of
Y are biased estimates of the population moments
of X. Sheppard’s corrections [2] are simple for-
mulas, valid for small h, that eliminate this bias
(see Unbiasedness).

For example, suppose that X is normal with mean
µ and variance σ 2. If the sample average and variance
of Y are y and s2, then the Sheppard-corrected
estimates are µ̂SC = y and σ̂ 2

SC = s2 − h2/12. That
is, the rounding has negligible effect on the mean but
causes a positive bias in the variance.

One derivation of Sheppard’s corrections relates
the moments of Y to the moments of X. Letting
µk = E[Xk] and νk = E[Y k], the Euler–Maclaurin
quadrature theorem implies

νk =
[k/2]∑

m=0

(
h

2

)2m (
k

2m

)
µk−2m

2m + 1
+ R,

where [·] is the greatest integer function. The remain-
der R becomes small as h → 0 if the density and
several of its derivatives go to zero at the limits of
the range of X, or at some pseudo-limits that contain
most of the probability. The normal distribution is
one special case.

The corrected mean and variance are also
approximate maximum likelihood estimators. The

likelihood based on Y has a series representation
in terms of the density of X (and its derivatives)
evaluated at the observed y. Starting from µ =
y and σ 2 = s2, executing one Newton–Raphson
or EM step leads again to Sheppard’s corrections
(see Optimization and Nonlinear Equations). This
result holds specifically for normal X, but also
for other distributions satisfying certain regularity
conditions.

Although the uncorrected s2 overestimates the
variance of X, the sampling variance of µ̂SC is not
σ̂ 2

SC/n but s2/n. Thus the corrected variance is of
little value unless one specifically wants to estimate
σ 2. The basic formulas are valid for the normal but
possibly not for other distributions. For example, with
uniform data, the proper correction to s2 is to add
h2/12.

For further details and a historical review, see [1].
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Shrinkage Estimation

Starting from the work of Stein [32] (see
James–Stein Estimator), the topic of shrinkage esti-
mation has received an enormous amount of attention
in the statistical literature. The original shrinkage
estimators were developed for the case of estimat-
ing the mean of a multivariate normal distribution
under squared error loss, based on observing X = x,
with X ∼ N(θ, I), a p-dimensional normal random
variable. However, results on shrinkage have been
generalized to the extent that these estimators can
now be applied routinely to actual problems.

In terms of practical applicability, the direction
pointed out by Lindley [29] has proved quite fruitful.
Lindley showed that one could shrink toward a point
chosen by the data, and demonstrated, for p ≥ 4, the
minimaxity of the estimator

dL(x) = x1 +
(

1 − p − 3

|x − x1|2
)

(x − x1),

where 1 is a column vector of 1s and |x − x1|2 =∑
(xi − x)2. A fourth dimension is needed here,

rather than the three dimensions needed for the mini-
maxity of the James–Stein estimator, because we are
now shrinking to a one-dimensional subspace, rather
than the zero-dimensional point toward which the
James–Stein estimator shrinks. The idea of shrink-
ing toward a subspace has enhanced the applicability
of shrinkage estimators, and has connected them with
empirical Bayes estimation. Much of this topic was
developed in a sequence of papers by Efron & Mor-
ris [13–15], where the connection with minimax
estimation is explored thoroughly. A comprehensive
treatment of theory and applications of empirical
Bayes methods is given by Morris [30], and less tech-
nical introductions are given by Casella [9, 10].

On the more theoretical side, in the normal case,
Strawderman [34] was the first to exhibit proper
Bayes minimax estimators – estimators that not only
dominated X, but were themselves proper Bayes
and admissible (see Bayesian Methods). These esti-
mators have the form of Baranchik’s estimators
(see James–Stein Estimator), and a particular one
is given by

dS(x) =
(

1 − c(|x|)
|x|2

)
x, (1)

where

c(|x|) = p + 2 − 2 exp
(− 1

2 |x|2)
∫ 1

0
λp/2 exp(−λ|x|2/2) dλ

.

The estimator (1) can be derived from the Bayes
model

X ∼ Np(θ, I),

θ ∼ Np[0, λ−1(1 − λ)I],

λ ∼ uniform (0, 1),

which is a proper Bayes model if p ≥ 5.
Thus far we have discussed only the normal dis-

tribution; however, domination of the usual estimator
by a shrinkage estimator occurs in many other sit-
uations, even in discrete families. For example, if
Xi ∼ Poisson(λi), i = 1, . . . , p, p ≥ 2, are indepen-
dent, and the loss function is given by

L(λ, d) =
r∑

i=1

(λi − di)
2

λi

,

then, as Clevensen & Zidek have shown [12], the
estimator

dCZ(x) =


1 −
c
(∑

xi

)

∑
xi + b



 x

is minimax if

1. c(·) is nondecreasing,
2. 0 ≤ c(·) ≤ 2(p − 1), and
3. b ≥ p − 1.

This result highlights two differences between the
normal and Poisson cases. First, domination only
requires p ≥ 2, and the loss is now scaled squared
error, instead of ordinary squared error. (The fact
that we only now require p ≥ 2 is discussed by
Brown [6], who described it as a “dimension dou-
bling” phenomenon; see also [27].) Shrinkage esti-
mators continue to dominate in many other discrete
families. Using a different method of proof from
that of Clevensen & Zidek [12], Hwang [24] (see
also [19]) demonstrated dominance of shrinkage esti-
mators in many discrete families.

An interesting exception is the binomial distri-
bution, where Johnson [26] demonstrated that no



2 Shrinkage Estimation

shrinkage estimator will dominate the usual estima-
tor. This result was extended by Brown [8], and
later Guttmann [21, 22] established the somewhat
surprising result that shrinkage estimators can never
dominate in any problem with a finite sample space.
(Domination by shrinkage is often referred to as the
Stein effect, so there is no Stein effect in problems
with finite sample spaces.)

Even with this limitation from finite sample spa-
ces, shrinkage estimation has played a large role
in developments in both theory and practice. On
the practical side, the previously mentioned connec-
tion with empirical Bayes methods (and also hierar-
chical Bayes methods) has allowed the application
of shrinkage estimators in a wide variety of prob-
lems. The theoretical developments have also been
numerous, and have sometimes been accompanied by
advances in the mathematical attack on the problem.

In the normal case all restrictions on the covari-
ance matrix can be removed (see, for example, [20]).
Outside the normal case, shrinkage estimators
exist for spherically symmetric distributions [11, 4],
and some results apply to the entire exponential
family [23]. For the case of estimating a gamma
scale parameter, Berger [2] obtained some interesting
domination results, including domination by some
“expanders” rather than shrinkers. The implications
of this are further discussed by Brown [7].

The theory of superharmonic functions, a type of
multivariate concave function, which was originally
applied to minimax estimation by Stein [33], has also
been valuable in extending shrinkage domination.
George [17, 18] used it to establish dominion by mul-
tiple shrinkage estimators – estimators that can shrink
to more than one target. More recently, Fourdrinier
et al. [16] applied it to construct new families of
proper Bayes minimax estimators based on Cauchy
prior distributions.

Although the use of squared error loss is ana-
lytically convenient, shrinkage domination extends
to other losses as well. For example, variations on
squared error loss that allow weight matrices can eas-
ily be accommodated. Domination under an entire
class of weighted squared error loss functions can
be achieved [5, 31], as well as more general uni-
versal domination [25]. Other results include those
of Brandwein & Strawderman [3], who established
domination results for concave losses, and Berger [1],
who derived necessary conditions for dominance

under a wide variety of losses. A more complete dis-
cussion of this, and many other aspects of shrinkage
estimation, can be found in [28].
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Shrinkage

The problem of estimating the mean of a normal dis-
tribution is central to the practice of statistics. This
simple problem is at the heart of many of the most
common procedures used today, such as the analy-
sis of variance or regression. If we have a random
sample X1, . . . , Xn from a normal population with
mean µ and variance σ 2, then the natural estimator
of µ is the sample mean X = (1/n)

∑
i Xi . A ques-

tion of interest is whether this estimator is the best
estimator of the parameter µ.

When assessing the performance of an estimator;
in particular, whether it is best, it is necessary to
have a criterion against which to measure it. A most
popular measure is squared error loss, where we
measure the performance of an estimator d of a
parameter θ by the function

L(θ, d) = (θ − d)2, (1)

which is called a loss function.
Under the loss function (1), X has many optimality

properties. For example, it is a minimax estimator of
µ, meaning that of all estimators of µ, its loss has the
smallest maximum value. There are other properties
that X enjoys, including the property of admissibility.
An estimator d of a parameter θ is an admissible
estimator of θ under the loss L(θ, d) if there is no
other estimator d ′ that satisfies

Eθ [L(θ, d)] ≥ Eθ [L(θ, d ′)], for all θ,

with strict inequality for some values of θ .
Is X an admissible estimator of θ? Hodges &

Lehmann [3] and Blyth [1] showed that it was. That
is, there is no estimator that is uniformly better.
However, if the problem is made slightly more com-
plex, then an interesting result unfolds. Suppose that,
instead of estimating the mean of one normal pop-
ulation, we are interested in estimating the mean of
many normal populations; that is, we observe Xk ,
k = 1, . . . , p, where Xk is the mean of n observations
from a normal population with mean µk and variance
σ 2, and we want to estimate µ = (µ1, . . . , µp). The
loss of an estimator d = (d1, . . . , dp) is measured by
the sum of squared errors, that is

L(µ, d) =
p∑

k=1

(µk − dk)
2, (2)

and we ask if X = (X1, . . . , Xp) is still an admissible
estimator of µ. For p = 2, Stein [6] showed that the
answer is Yes, but he also showed that, if p > 2, then
the answer is No. Using arguments based on the idea
that, for estimating more than 2 means, X tends to
be “too long”, Stein demonstrated the existence of
a better estimator – a shrinkage estimator. Such an
estimator shrinks the vector (X1, . . . , Xp) toward a
specific point in the parameter space. In [4], it was
shown that the estimator

dJS(X) =
[

1 − (p − 2)σ 2

|X|2
]

X,

which shrinks X toward 0, uniformly dominates X as
an estimator of µ under the loss (2), so X is not an
admissible estimator.

This extremely surprising result has resulted in
an enormous amount of research in areas such as
decision theory and empirical Bayes analysis. Many
superior procedures have been derived since. See the
review article by Brandwein & Strawderman [2], or
the book by Lehmann & Casella [5].
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Sign Tests

The sign test is a simple distribution-free test
(see Nonparametric Methods) that can be applied
easily in a variety of situations. Observations, which
may be difference scores, are replaced by their
positive or negative signs and analyzed using a
binomial test. The specific applications discussed here
are a location test for the median, the Cox–Stuart
test for trend, and the McNemar test for correlated
proportions. Bradley [2] provides a survey of these
and other sign tests. These tests are also discussed
in more detail in many books on nonparametric
statistics, including [1, 3, 5, 7–10, 13–15].

Binomial Test

Consider data consisting of n independent dichoto-
mous (binary) trials, where the outcome of each trial
is classified as a success or a failure. If the proba-
bility of success, p, remains constant from trial to
trial, then B, the total number of successes, has the
binomial distribution with parameters n and p:

Pr(B = b) =
(

n

b

)
pb(1 − p)n−b, b = 0, . . . , n.

(1)

In the sign test, we test the null hypothesis H0 :
p = 0.5 against one- or two-sided alternatives. For
Ha : p > 0.5, the P value of the test is Pr(B ≥ b)

for the observed value b. For Ha : p < 0.5, the P

value is Pr(B ≤ b); for Ha : p �= 0.5, we double the
smaller of the tail probabilities corresponding to the
observed b.

For large n, the P value can be approximated
using the fact that the null distribution of Z = (B −
n/2)/[(n/4)]1/2 is approximately standard normal.
The approximation can be improved by incorporating
a continuity correction of ±0.5 in the numerator of
Z; the sign of the correction is chosen to increase the
probability being calculated.

Location Test for the Median

Let Z1, . . . , Zn be independent observations from
a distribution with median θ . Assume that the
distribution is continuous at θ , so that Pr(Zi = θ) =

0. Then, Pr(Zi > θ) = Pr(Zi < θ) = 0.5. The Zis
may be either a single sample or differences of paired
data, Zi = Yi − Xi .

To test H0 : θ = θ0, define a success as Zi > θ0

and a failure as Zi < θ0. Under H0, the number of
successes has a binomial distribution with parameters
n and p = 0.5. The sign test for the median consists
of a binomial test of p = 0.5 based on the signs of the
Zi − θ0. The alternative hypothesis Ha : θ > θ0 corre-
sponds to Ha : p > 0.5, and Ha : θ < θ0 corresponds
to Ha : p < 0.5.

Although continuity at the median implies that
Pr(Zi − θ = 0) = 0, in practice, Zi − θ = 0 can
occur. A commonly recommended solution is to
discard the zero values and reduce n accordingly [9].
This and other methods of handling zeros are
discussed by Bradley [1, 2] and Emerson &
Simon [6].

The exact power of the sign test can be computed
using the binomial distribution with parameters n

and p = Pr(Zi > θ0). Randles & Wolfe [14] present
results of a Monte Carlo study comparing the small-
sample power of the sign test, Wilcoxon signed-
rank test, and Student’s t test for the uniform,
normal, logistic, double exponential, and Cauchy
distributions. The sign test is the most powerful of the
three tests for the Cauchy distribution and is superior
to the t test for the double exponential. Otherwise, the
sign test has the poorest performance in the situations
studied.

Noether [12] gives a formula for determining
the sample size required to obtain the desired
power against specified alternatives (see Sample Size
Determination). The asymptotic relative efficiency
of the sign test relative to Student’s t test is 0.637 for
the normal distribution, 0.333 for the uniform, 0.822
for the logistic, 2.0 for the double exponential, and
at least 1/3 for any continuous, unimodal symmetric
distribution [14, p. 168].

The sign test can be inverted to construct a con-
fidence interval for the median θ . The lower and
upper limits of the confidence interval are appropri-
ately chosen order statistics of the Zis [9].

Other Sign Tests

Sign Test for Trend

Cox & Stuart [4] proposed a sign test for upward
or downward trend in a sequence X1, . . . , Xn′
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of continuous observations. The observations are
grouped into pairs (X1, X1+c), (X2, X2+c), . . . ,

(Xn′−c, Xn′), where c = n′/2 if n′ is even, and c =
(n′ + 1)/2 if n′ is odd. (If n′ is odd, then the mid-
dle observation is discarded.) A pair (Xi, Xi+c) with
Xi < Xi+c is a success; a pair with Xi > Xi+c is a
failure. A preponderance of successes suggests an
upward trend, and a preponderance of failures, a
downward trend. Under the null hypothesis of no
trend, the number of successes is binomial with
parameters n and p = 0.5, where n is the number
of pairs formed.

A modification of the Cox–Stuart test can be used
to test for correlation between continuous variables
X and Y . The bivariate observations (X, Y ) are
ordered with respect to increasing values of X (or
Y ), and the trend test is applied to the corresponding
values of Y (or X).

McNemar Test

The McNemar [11] test for correlated proportions is
usually considered a sign test, although no signs are
actually involved. The test is used to analyze paired
dichotomous data (see Matched Pairs With Cate-
gorical Data). For example, subjects and matched
controls might be classified according to the presence
or absence of a symptom, or subjects might be asked
a Yes/No question both before and after an interven-
tion. In the latter example, those subjects who answer
Yes at both times and those who answer No at both
times contribute no information about the direction
of any change caused by the intervention. Thus, the
test is based on only those n subjects who change
their answers. Under the null hypothesis of no effect,
the number of subjects who change from No to Yes
is binomial with parameters n and p = 0.5.
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Signed-rank Statistics

Signed-rank statistics are commonly employed for the
analysis of a single sample of data, or for the analy-
sis of matched pairs. Procedures based on signed-rank
statistics are nonparametric as they permit valid sta-
tistical inferences for data from broad families of
probability distributions, such as all continuous, sym-
metric distributions.

The most typical biostatistical setting in which
signed-rank statistics are constructed is for the
matched-pairs study. In this instance intrapair
differences are calculated, and these differences are
ranked according to their absolute (unsigned) values
using the integers 1, 2, . . . , N . Here, 1 is assigned to
the smallest absolute difference, 2 is assigned to the
next largest absolute difference, and so forth, until
the largest absolute difference is assigned the rank of
N . After such ranking of the absolute differences,
the sign of the difference is restored to the rank.
Statistics calculated from these signed-ranks are
termed signed-rank statistics. A well-known statistic
in this class is the Wilcoxon signed-rank statistic,
on which the corresponding Wilcoxon signed-rank
test procedure is based. This test procedure was
introduced by Wilcoxon [4], and is a simple and
powerful competitor to the paired t test.

To illustrate the calculation of signed rank, con-
sider the following study in which resting heart rates
are recorded for nine healthy persons. Measurements
are made both before and six months after initiation
of an aerobic exercise program. The data are dis-
played in Table 1. Each heart rate in the Table is
the mean of five resting heart rates for each person

at each time period. The effectiveness of the exer-
cise program in reducing the resting heart rate can
be assessed by examination of the direction and the
magnitude of the intrapair differences. The positive
signed ranks are those associated with the positive
differences which occur for all subjects, except sub-
jects 3 and 5. Both of these persons have negative
signed ranks.

Two problems can arise in constructing signed
ranks; these are zero differences and differences equal
to one another in absolute value. It is customary
in signed-rank analyses to discard the zero differ-
ences prior to ranking, and then reduce the sample
size accordingly by the number of such zero dif-
ferences; see [3] and [1] for further discussion of
the effects of this convention. Tied absolute differ-
ences are usually resolved by midranking, wherein
the tied values each receive the mean value of the
ranks they would have been assigned had they been
slightly different from one another. For example, sup-
pose the data for subject 2 in Table 1 had been 76
and 72 for the baseline and six-month heart rates,
respectively. The difference would then be +4, which
would be tied in absolute value with the −4 dif-
ference calculated for subject 3. In midranking, the
rank of 2.5, i.e. (2 + 3)/2, would be assigned to each
of these absolute differences. The rank of 4 would
be assigned to the next largest absolute difference,
etc. Data with many such ties require special treat-
ment and adjustments in the analyses; standard text
books on nonparametric methods, such as Hollander
& Wolfe [2], detail the specifics of these adjust-
ments.

A most common distributional assumption in
the construction of signed-rank statistics is that the

Table 1 Resting heart rate of nine people before and after initiation of an exercise regimen

Absolute Rank of
Heart rate Heart rate value of absolute
at baseline at six months Difference difference difference

Subject (yi) (xi) di = yi − xi |di | (sign)

1 80 72 +8 8 5(+)
2 76 70 +6 6 3(+)
3 78 82 −4 4 2(−)
4 90 76 +14 14 9(+)
5 84 86 −2 2 1(−)
6 86 76 +10 10 7(+)
7 81 74 +7 7 4(+)
8 84 75 +9 9 6(+)
9 88 76 +12 12 8(+)
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differences (such as those calculated in Table 1) arise
from a continuous, symmetric distribution. The null
hypothesis in settings like Table 1 is that the dis-
tribution of these differences is centered at zero
(although one can specify any constant, and apply
signed ranking to those quantities). Under the null
hypothesis, each assignment of signs (+ or −) to
each of the N ranks is equally likely, and this
fact is utilized to construct formal hypothesis test-
ing procedures from these signed-rank statistics.
The most common of these tests is the Wilcoxon
signed-rank test [4], described in a separate arti-
cle.
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Similarity, Dissimilarity,
and Distance Measure

Statisticians are familiar with the concept of the
correlation, or other measures of association, bet-
ween two variables, but the concept of the similarity
between two samples seems to have originated out-
side mainstream statistics, in ecology, taxonomy, psy-
chology, and entomology (see, for example, Sneath
& Sokal [6]) (see Numerical Taxonomy). Because
of the taxonomic origins, binary variables are often
termed characters or features; similar terms drawn
from other fields of application are often encoun-
tered. Similarly, the term “sample” used here may
be replaced by case, object, subject, OTU (Opera-
tional Taxonomic Unit), or unit. The most simple
measures of similarity are concerned with binary
variables denoting the presence or absence of char-
acteristics, or perhaps two forms of a character, such
as red and white. We shall see that the logical differ-
ence between these different types of binary variable
affects the algebraic forms of acceptable coefficients.
With two samples labeled i and j , say, we can count
the number of agreements and disagreements among
p binary variables to give Table 1, in which the
two values of a binary variable are denoted by 1
and 0; thus 0/1 may refer to absence/presence or to
red/black.

Thus, Table 1 shows that there are a agreements
among form 1 of the p variables and d agreements
among form 0. There are b (c) cases in which sample
i has form 1 (0) and sample j has form 0 (1). Many
similarity coefficients are simple functions of a, b, c,
and d, where p = a + b + c + d; Hubálek [4] lists
43 similarity coefficients of this type. Two of the
most common are the Simple Matching coefficient,
defined by

SSM = a + d

a + b + c + d
= a + d

p
, (1)

and the Jaccard coefficient, defined by

SJ = a

a + b + c
= a

p − d
. (2)

When a = b = c = 0, we define SJ = 0. Note that
SSM and SJ typify the two major classes of similarity
coefficients, those which include “negative matches”
given by d and those which do not. By a negative

Table 1 Numbers of agreements
and disagreements between binary
variables for two samples

Sample j

1 0

Sample i
1 a b

0 c d

match we mean that both samples lack a character
and a shared missing character may be deemed no
useful evidence of agreement. Thus, that two people
both speak French as a mother tongue is an indication
of a shared characteristic; but two people, neither of
whom speaks French, is no such indication – there
is a lack of symmetry between what is meant by a
score of 1 (presence or +) and a score of 0 (absence
or −). However, two samples that are both black or
both white would, unless there is evidence to sup-
port differential weighting (see below), usually be
deemed of equal similarity in respect of color; note
however, that in genetics “white” may indicate the
lack of a gene controlling the black state. Clearly,
there can be major problems in deciding what is
and what is not a negative match. These introduc-
tory remarks have touched on some of the issues
associated with similarity coefficients, and we shall
expand on these below (see Agreement, Measure-
ment of).

The important problem of matching nucleic or
amino acid sequences is related to that of constructing
general purpose similarity coefficients, but because
DNA sequences require alignment, there are special
problems, with a large literature.

General Properties of Similarity
Coefficients

We have discussed the similarity between samples
i and j , and so, strictly speaking, the entries in
Table 1 should be written aij , bij , cij , and dij , with
a corresponding similarity coefficient; for simplic-
ity, and when there is no ambiguity, it is custom-
ary to drop the suffices i and j . As for the Sim-
ple Matching and Jaccard coefficients, most simi-
larity coefficients Sij are positive, symmetric, and
bounded by zero and unity. A value of zero indi-
cates no matches (aij = 0, and where necessary
also dij = 0). A value of unity implies a complete
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match (aij = p, and where necessary, aij + dij =
p). The property of symmetry implies that aij =
aji , dij = dji and bij = cji . A few coefficients of
inter-sample correlational form satisfy −1 ≤ Sij ≤ 1,
and then the above comments need corresponding
changes. With n samples, the

(
n

2

)
pairs of similar-

ity coefficients may be assembled into a nonneg-
ative symmetric matrix S with unit diagonal ele-
ments. S is termed a similarity matrix and may
be analyzed directly (see Classification, Overview;
Cluster Analysis of Subjects, Hierarchical Meth-
ods) or may be converted into a dissimilarity matrix
D = 11′ − S, which has a zero diagonal and val-
ues 1 − Sij off the diagonal. The obvious question
to ask is to what extent do dissimilarities have the
same properties as distances, usually Euclidean dis-
tances? Gower & Legendre [3] examine the follow-
ing questions:

1. Do the dissimilarities satisfy the metric (triangle)
inequality?

2. Are the dissimilarities Euclidean embeddable
for an explanation, (see Principal Coordinates
Analysis)?

3. As above, but for the square root of dissimilarity.

They also provide tools to help answer these ques-
tions, and answers for many specific similarity coef-
ficients. The metric property is important because if
it is not true, then the dissimilarity between samples
i and j can be greater than the sum of the dissimi-
larities between i and k and j and k, which does not
satisfy intuitive ideas of similarity. Euclidean embed-
dability is of interest in multidimensional scaling
and, writing N for the matrix all of the values of
which are 1/n, we have (see (3) in the article on
Principal Coordinates Analysis) that necessary and
sufficient conditions for (1 − Sij )

1/2 to be embed-
dable is that the centred matrix (I − N)S(I − N) be
positive semi-definite; it is sufficient for S itself
to be positive semi-definite, which is usually more
easily established than for the centred form. Thus,
answers to question 3 relate directly to the proper-
ties of S and, it turns out, are easier to provide than
those to question 2. We know that if S is positive
semi-definite then so is the Hadamard (or element
by element) product S ∗ S, which would imply that
(1 − S2

ij )
1/2 is embeddable, but the answer to question

2 requires an investigation of the definiteness of the
centred form of the similarity matrix with elements

Table 2 How the metric and Euclidean properties of the
families SJ(θ) and SSM(θ) change with positive values of θ

Family Coefficient Nonmetric Metric Euclidean

1 − Sij 0 < θ < 1 θ ≥ 1 *
SJ(θ)

(1 − S2
ij )

1/2 0 < θ < 1
3

1
3 ≤ θ < 1

2
1
2 ≤ θ

1 − Sij 0 < θ < 1 θ ≥ 1 *
SSM(θ)

(1 − S2
ij )

1/2 0 < θ < 1
3

1
3 ≤ θ < 1 1 ≤ θ

1 − (1 − Sij )
2. Gower & Legendre [3] answer some

of these questions, and the results of special interest –
shown in Table 2 – pertain to the following general-
izations of the Simple Matching coefficient, defined
by

SSM(θ) = a + d

a + d + θ(b + c)
, θ > 0, (3)

and of the Jaccard coefficient,

SJ(θ) = a

a + θ(b + c)
θ > 0. (4)

The entries in Table 2 are worst-case scenarios.
Thus, “Nonmetric” means that for the values of
θ shown, nonmetric configurations can always be
found, although some configurations may be metric
or even Euclidean. “Metric” means that all configura-
tions for the indicated values of θ are metric, although
Euclidean representations will exist for some sets of
data. “Euclidean” means that all configurations for
the indicated values of θ are Euclidean. The asterisk
indicates that, for these settings, data which generate
non-Euclidean representations exist for all values of
θ . Note that the case θ = 0 represents a degenerate
set of points coincident at the origin, and is not of
interest.

The families SJ(θ) and SSM(θ) include many pop-
ular similarity coefficients, and the results of Table 2
give some guidance on choices. For both families,
we may note that if Sij (θ) > Spq(θ), then Sij (φ) >

Spq(φ) for arbitrary θ and φ; that is, the coeffi-
cients in each family are monotonically related. It
follows that if they are analyzed by any monoton-
ically invariant method, such as nonmetric multidi-
mensional scaling or single-linkage cluster analysis
(see Classification, Overview), then the results do
not depend on θ .

Multilevel qualitative variables may be dealt with
similarly to binary variables. The simplest method is
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to give a score 0 ≤ sijk ≤ 1 for the match between
the ith and j th samples for the kth variable. Then we
may define similarity by

Sij = 1

p

p∑

k=1

sijk. (5)

When sijk = 1 for a match, otherwise sijk = 0, (5)
is termed the Extended Matching Coefficient SESM,
and becomes SSM when all variables are binary.
If there are a positive matches and a total of L

levels over all p variables, then SESM = a/L. An
alternative approach for handling multilevel quali-
tative variables is to code each qualitative state as
a separate binary variable and then use one of the
binary coefficients, now based on L binary vari-
ables. Assuming that every character must occur in
one of its states, then there are p − a mismatches,
each occurring twice, so that b + c = 2(p − a) and
d = L + a − 2p. Then SSM = (L + 2a − 2p)/[(L +
2a − 2p + 2θ(p − a)] and SJ = a/[a + 2θ(p − a)],
both of which are monotonically related to SESM.
Thus, for many purposes, SESM is equivalent to all
members of both families.

Similarity coefficients may also be defined for
quantitative variables. Denoting the ith value of the
kth variable by xik , most similarity coefficients of this
type have the general form

Sij = 1

p

p∑

k=1

sk(xik, xjk), (6)

in which each variable contributes independently to
overall similarity. Here sk(xik, xjk) denotes a function
that may differ for each variable but, in practice, is
nearly always the same function in any one study.
Typical choices are based on one of the Minkowski
metrics to give for positive values of t :

sk(xik, xjk) = 1 −
{ |xik − xjk|t

r t
k

}1/t

where rk is a normalizer that eliminates the effects
of scales of measurement and is chosen to ensure
that 0 ≤ sk(xik, xjk) ≤ 1. The usual choice is t = 1, 2
giving, respectively, similarities based on absolute
differences and Euclidean distance. Note that for
ratio scales, a logarithmic transform eliminates scale
effects in differences. A simple choice is to set rk

equal to the range of the kth variable, possibly after

transformation, in the sample. Other choices of sim-
ilarity coefficients for quantitative variables and of
normalizers and their metric and Euclidean properties
are discussed by Gower [2] and Gower & Legen-
dre [3].

The different choices of θ in (3) and (4) may be
regarded as simple examples of character-weighting.
In the field of classification, there has been much
controversy over the desirability or otherwise of
weighting, but if one decides to do so, it is sim-
ply done. A general coefficient that includes much
of the above as special cases is to define (see
Gower [1])

Sij =

p∑

k=1

wk(xik, xjk)sk(xik, xjk)

p∑

k=1

wk(xik, xjk)

, (7)

where wk(xik, xjk) is a weighting function. We may
obtain SSM(θ) by setting wk(xik, xjk) = 1 when xik

and xjk match, and wk(xik, xjk) = θ when xik and xjk

do not match. Similarly, we obtain Sj (θ) by setting
wk(xik, xjk) = 1 when xik and xjk match positively,
wk(xik, xjk) = 0 when xik and xjk match negatively,
and wk(xik, xjk) = θ when xik and xjk do not match.
We may also set wk(xik, xjk) = 0 when at least one
of xik and xjk is missing. Among other coefficients
included are recursive similarity coefficients, where
a hierarchy of primary, secondary, tertiary and so on,
characters is recognized. Then the similarity among
the secondary characters may be used to weight the
primary characters, and similarly for characters at
higher levels.

Metrics on Graphs

The Overview of Classification mentions minimal
link trees, leading to ultrametrics, and additive dis-
tances that may be associated with hierarchical repre-
sentations. More generally, distances may be defined
on any connected network: the shortest route between
two nodes, the minimal or maximal link on the route
between two nodes, or measures that have physical
interpretations. For example, one may associate unit
resistance with every link and use Kirchoff’s law
to determine have found applications in molecular
chemistry (see [5]).
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Similarity Between Populations

In the above, we have referred to the similarity
between pairs of samples. In taxonomy, samples
typically refer to whole biological populations and
characters are chosen that have little or no varia-
tion within the populations. This is often acceptable
for qualitative characters – for example, all cats have
claws and all dandelions are yellow – but quantita-
tive variables will nearly always have a distribution
within populations. Taxonomists try to find quanti-
tative characters with little overlap between biolog-
ical populations, which may be represented by their
average or some other typical value. Then, each pop-
ulation may continue to be represented by a single
sample, and similarity computed as discussed above.
In applications that study closely related populations,
the overlap cannot be ignored and inter-population
distances, or other measures of inter-population over-
lap, rather than similarities must be used. These
are discussed elsewhere (see Discriminant Analy-
sis, Linear; Mahalanobis Distance). When, perhaps
as a null hypothesis, the samples can be viewed as
random drawn from a single population, the usual
statistical questions arise concerning the distribution
and joint distribution of the Sij . Because of the nature
of the variables, theoretical results are few (see, for
example, Snijders et al. [7]) and therefore applica-
tions tend to use jackknife and other data-resampling
techniques.
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Simple Structure

In factor analysis, a simple structure is the “ideal”
structure, in which each factor is defined by a sub-
set of the original variables with as little overlap as
possible. In other words, ideally, we want to find a
final factor loading matrix such that each column
has a considerable number of near-zero loadings and
a small number of large loadings, and each row has
only one or a very small number of large entries.
While orthogonal transformations (see Orthogonal
Rotation) are often used, oblique rotations are gen-
erally better for finding a matrix that exhibits a simple
structure. In general, the reference-vector structure
matrix, V, is used to determine simple structure
(see Factor Loading Matrix; Primary Factors).
This matrix usually has at least as many near-zero
loadings on each factor as the number of factors.
Also, this reference structure matrix, which con-
tains the correlations between the variables and the
reference-vector factors, is often used for interpreta-
tion of the factors. The five criteria of simple structure
proposed by Thurstone [4] are often too rigid to be
applied to the real data. We prefer the following two
criteria, discussed in Cureton & D’Agostino [2].

The first condition of simple structure is given
as a criterion of overdetermination. The condition
states that:

There should be at least m near-zero loadings and
usually several more than m in each column of the
reference-vector structure matrix, where m is the
number of the retained factors (i.e. the column of
the matrix).

This first condition is used to overdetermine the loca-
tion of a primary factor by at least m variables, and
usually more than m. This is to make sure the loca-
tions of the primary factors are well determined. This
first condition allows a few variables with nonzero
loadings on all factors as long as there are enough
variables that have near-zero loadings to determine
the locations of the primary factors.

The second condition is based on the idea that
the factors should be maximally distinct from one
another, and that the factorial structure should be
unique. The condition is given as follows:

Among the subset of m or more rows of the
reference-vector structure matrix having near-zero
loadings in any one column, there is at least one
and usually more than one nonzero loading in every
other column. Every one of these rows must have at
least one nonzero loading, and these nonzero load-
ings are distributed over all the other columns. Also
in every column of the reference structure matrix,
the number of negative nonzero loadings should be
a minimum.

Alternative to the criteria of simple structure, a pro-
cedure based on a criterion of simplicity has been
proposed by Bentler [1]. The results given by his
procedure are not very different from those based on
simple structure.

Since the conditions of the simple structure are
given in qualitative terms, it is evident that subjec-
tive judgments are required to determine terms such
as “near-zero” or “large” loadings, and “subset” of
variables. Consequently, various analytic procedures
have been developed for computing a simple struc-
ture. A review of this development can be found in
Harman [3].
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Simplex Models

Simplex models are employed for the analysis of
relationships among variables that can be arranged
according to a logical ordering. In some situations
the ordering is known beforehand. For example, the
ordering can reflect the sequence of trials in a learn-
ing experiment, the age of subjects in a longitudinal
study, or the length of preparatory intervals in a stim-
ulus response task. In other situations, the ordering
refers to some unobservable property of the variable
and has to be inferred from the data. For example,
in the original formulation of the simplex model due
to Guttman [5], the ordering was according to the
complexity of ability tests. A simplex analysis is
applicable only when all intercorrelations are posi-
tive. The primary aim of the analysis is to investigate
the degree of similarity or closeness between succes-
sive variables.

Relationships of the simplex model with Markov
and Wiener stochastic processes were discussed by
Anderson [1]. Jöreskog [6] presented a comprehen-
sive review of different types of simplex models and
showed how these models can be fitted by maxi-
mum likelihood. Most methods for fitting the sim-
plex require a prior knowledge of the ordering of
variables, although two-stage procedures in which the
ordering of variables is estimated in the first stage
have been suggested by Kaiser [8] and by Cureton &
D’Agostino [4, Chapter 15]. A reformulation of the
simplex model that does not require a prior speci-
fication of the ordering of variables was suggested
by Schönemann [10]. He also provided a procedure
for fitting the order free simplex model using an
approach based on multidimensional scaling. The
method of maximum likelihood can also be used
for fitting the order-free formulation of the simplex
model [2, p. 132].

The Perfect Simplex

A classic example of a correlation matrix exhibiting
a simplex pattern, originally presented by Guttman
[5, Table 5] and frequently used since, is given in
Table 1 (see Guttman Scale).

This shows correlations between six verbal ability
tests applied to 1046 Bucknell sophomores. A corre-
lation matrix is considered, since different tests are
on different scales so that variances and covariances

Table 1 Six verbal ability tests: Bucknell College sopho-
mores, N = 1046

Spelling 1 1.000
Punctuation 2 0.621 1.000
Grammar 3 0.564 0.742 1.000
Vocabulary 4 0.476 0.503 0.577 1.000
Literature 5 0.394 0.461 0.472 0.688 1.000
Foreign

literature 6 0.389 0.411 0.429 0.548 0.639 1.000

would not be meaningful. All tests are from the same
domain and all intercorrelations are positive. There
is a noticeable inequality pattern in the correlation
coefficients. Those next to the diagonal are largest
and they taper off as the lower left-hand corner is
approached. This pattern is characteristic of the sim-
plex. It is dependent on the ordering of the tests but
not on direction. A similar pattern will occur if tests
are listed in reverse order, with Test 6 listed first
and Test 1 listed last. In Guttman’s original work,
the fundamental ordering represented complexity, but
other fundamental orderings, such as time, may be
considered.

We distinguish between two types of simplex;
a perfect simplex where no allowance is made for
error of measurement in observing variables, and a
quasi-simplex where measurement error is taken into
account.

Guttman’s Conceptualization of the Perfect
Simplex

Let P represent the correlation matrix of the variates,
X1, X2, . . . , Xp . The basic assumption in Guttman’s
conceptualization is that if P satisfies a perfect sim-
plex, all partial correlations between pairs of nonadja-
cent variables given any variable that is intermediate
in the fundamental ordering will be zero:

ρik·j = 0, 1 ≤ i < j < k ≤ p. (1)

A consequence of the assumption in (1) is that a
typical element of P may be expressed as

ρij = αi

αj

, i < j, (2)

where αi is a parameter that may be interpreted as a
measure of the degree of complexity of Xi . Guttman
named the αi “complexity loadings” and regarded
them as correlation coefficients of the Xi with a
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hypothetical endpoint of the fundamental continuum.
They are defined only up to a constant of propor-
tionality, so that an identification condition should be
imposed. A suitable identification condition is

αp = 1. (3)

If (3) is imposed, αi may be interpreted as the
correlation coefficient of Xi with the most complex
available variable, Xp .

The basic assumption (1) also implies (cf. [1,
p. 209]) that the regression equation of any variable
on the remaining p − 1 variables will have nonzero
partial regression weights only on the adjacent vari-
ables in the fundamental ordering (see Multiple Lin-
ear Regression). Consequently, if p = 5 for exam-
ple, the array of row vectors of regression weights
of each variable on the remaining variables will have
the pattern





– β1.2 0 0 0
β2.1 – β2.3 0 0

0 β3.2 – β3.4 0
0 0 β4.3 – β4.5

0 0 0 β5.4 –



 ,

where βi·j denotes the partial regression weight of
the ith variable on the j th variable.

Since the density of a sample correlation matrix
cannot be expressed in closed form, it is common
practice to treat a correlation structure as a covariance
structure,

�X = Dσ PDσ , (4)

where the diagonal elements, σ1, . . . , σp , of Dσ

represent standard deviations regarded as nuisance
parameters, and P is a function of the parameters of
interest. Estimates are then obtained by maximizing
the Wishart likelihood function (see Wishart Distri-
bution).

The covariance structure for a perfect simplex
model involves 2p − 1 parameters. Maximum
Wishart likelihood estimates may be expressed in
closed form [9, Section 8.11; 6, Section 2.3]. Let S
represent a sample covariance matrix, with typical
element sij , based on a sample of size N , and let R
be the corresponding correlation matrix, with typical
element rij . Maximum likelihood estimates, subject
to the identification conditions (3), are given by

σ̂i = (sii)
1/2, i = 1, . . . , p

α̂i = ri,i+1α̂i+1, i = 1, . . . , p, α̂p−1 = 1, (5)

and the corresponding −2 log likelihood ratio test
statistic is [6, Section 2.4]

G = (N − 1)

[
p−1∑

i=1

ln(1 − r2
i,i+1) − ln |R|

]
.

Under the null hypothesis that the perfect simplex
model holds, the asymptotic distribution of G is chi-
square with 1

2p(p − 3) + 1 degrees of freedom.
The maximum likelihood estimates (5) are particu-

larly easy to calculate and only make use of the p − 1
correlation coefficients adjacent to the main diago-
nal. These estimates are, however, dependent on the
ordering of variables. This is generally not known in
advance.

Schönemann [10] suggested that the (2) for the
elements of a perfect simplex be expressed in the
alternative order-free form

ρij = min(αi, αj )

max(αi, αj )
. (6)

The direction of complexity in (6) is indeterminate,
as α−1

1 , . . . , α−1
p may be regarded as points on an

equivalent fundamental continuum, since

min(α−1
i , α−1

j )

max(α−1
i , α−1

j )
= min(αi, αj )

max(αi, αj )
.

Schönemann [10] pointed out that the elements of the
symmetric matrix P∗, with typical element

ρ∗
ij = − ln ρij = | ln αi − ln αj |,

s represent Euclidean distances between points α∗
i =

ln αi, i = 1, . . . , p, on the real line and showed how
classical multidimensional scaling can be applied
to the corresponding matrix of distance estimates to
obtain estimates, α̂∗

i , of these points. Estimates of the
αi are then obtained by taking antilogarithms: α̂i =
exp(α̂∗

i ). The classical scaling procedure involves
the extraction of the largest eigenvalue and corre-
sponding eigenvector of a symmetric matrix, and the
resulting estimates are invariant under reordering of
the variables.

Stochastic Process Interpretation

A stochastic process is a family of random vari-
ables X(t) indexed by a continuous parameter t, 0 ≤
t < ∞, often regarded as a time parameter. Variables
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are considered to be observations of the process at
the points t1, . . . , tp. Correlation coefficients between
variables, X(ti) and X(tj ), are defined by a function
of ti and tj known as a correlation function.

Anderson [1] considered the simplex from the
viewpoint of the Markov and Wiener stochastic pro-
cesses and pointed out that the partial correlation
property in (1) underlying the simplex is a known
property of a Markov process. The correlation func-
tion of a Markov process is

ρij = ρ(X(ti ), X(tj )) = ρ |ti−tj |, for all i, j. (7)

where ρ is a correlation parameter. This correlation
function may be shown to be equivalent to expres-
sion (6) for the elements of a perfect simplex by
means of the substitution

αi = ρ−ti . (8)

Thus (7) may be regarded as a reparameterization of
(6) involving p + 1 parameters, ρ, t1, . . . , tp instead
of the p parameters α1, . . . , αp.

In some situations the time points are known in
advance and ρ is estimable. Here, the ti are not
known in advance and the correlation parameter is
indeterminate. Two identification conditions must be
imposed. Suitable identification conditions are

t1 = 1, tp = p. (9)

If an order-free approach is employed, t1 and tp
denote the smallest and largest points respectively,
and need not be the first and last points.

These identification conditions fix the endpoints
of the time scale and serve to identify ρ and the
remaining “time” points, which need not assume
integral values. The ti may be regarded as alternate
parameters to be interpreted instead of the complexity
loadings, αi , and values satisfying the identification
conditions in (9) may be calculated from

ti = 1 + (p − 1)
ln αi − ln α1

ln αp − ln α1

where, again, α1 and αp refer to the smallest and
largest complexity loadings if they are not given in
increasing order. The correlation parameter then is
given by

ρ = exp

[
−

(
ln αp − ln α1

p − 1

)]
.

An equally spaced simplex [5] is one where the time
points, ti , are equally spaced on the real line.

A data model (cf. [6, Section 5.6; 7, Section 4.1])
that generates a Markov process is the first order
autoregressive (AR1) time series (see ARMA and
ARIMA Models) with nonhomogeneous autoregres-
sion weights, βi , and nonhomogeneous white noise
variances, ψii :

(Xi+1 − µi+1) = βi(Xi − µi) + Zi+1,

i = 1, . . . , p − 1,

where E(Xi) = µi and the Zi are mutually indepen-
dently distributed white noise terms with variances
ψii, i ≥ 2. We define ψ11 = var(X1). This data model
generates the covariance structure

�X = (I − B)−1Dψ(I − B′)−1, (10)

where Dψ is a diagonal matrix with typical diagonal
element ψii and B is a matrix with zero elements
except for those just below the main diagonal. When
p = 5 for example,

B =





0 0 0 0 0
β1 0 0 0 0
0 β2 0 0 0
0 0 β3 0 0
0 0 0 β4 0



 .

The model of (10) is equivalent (cf. [6, section
5.6]) to the perfect simplex given by (4) and (2).
There are 2p − 1 parameters: β1, . . . , βp−1, ψ11, . . . ,

ψpp. In order to see the relationship between the
autoregression weights and the complexity loadings,
we define the standardized autoregression weight

β∗
i =

(
σii

σi+1,i+1

)1/2

βi,

where σii denotes the ith diagonal element of �X in
(10). Thus β∗

i = βi if the Xi have been standardized
to have unit variances so that �X in (10) has unit
diagonals and is therefore a correlation matrix. The
relationship between the complexity loadings and the
standardized autoregression weights then is

αi =
p−1∏

j=i

β∗
j , i = 1, . . . , p − 1
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Prior knowledge of the ordering of variables is neces-
sary for use of the formulation of the simplex model
in (10).

A Wiener stochastic process has structured vari-
ances (see Brownian Motion and Diffusion Pro-
cesses). Its indexing parameter will be referred to
as s, 0 ≤ s < ∞, with scale points s1, . . . , sp. The
Wiener process has the covariance function

σji = σij = cov[X(si), X(sj )] = si, si ≤ sj ,

(11)

so that the variances σii = si are constrained. It can
be shown that the correlations obtained from the
variances and covariances of (11) have the simplex
structure (2) (cf. [1, pp. 207–208; 6, Section 3.1;
9, Section 8.11]) but the relationship between the
complexity loading, αi , and scale point, si , is

αi = (si)
1/2

and differs from the corresponding relationship (8)
between the complexity loading and the scale point,
ti , of a Markov process. A matrix expression for the
covariance matrix with typical element given by (11)
is [6, Section 3.1]

�X = TDϕT′, (12)

where Dϕ is a diagonal matrix with diagonal elements
ϕ11 = s1 and ϕii = si − si−1, i = 2, . . . , p, and T is
a lower triangular matrix with elements on and below
the diagonal equal to 1. If p = 5, for example,

T =





1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1



 .

Jöreskog [6] referred to the covariance structure
of (12) as a Wiener simplex and to the covariance
structure defined equivalently by (4) with (6) or (7)
or by (10) as a Markov simplex. The Wiener simplex
is more restrictive than the Markov simplex as it
has p parameters, instead of 2p − 1, and imposes
a structure on variances. Unlike the Markov simplex,
the Wiener simplex is scale dependent.

Maximum likelihood estimates in closed form
of the ϕii of the Wiener simplex are provided in
Jöreskog [6, Section 3.2]. Since the Wiener simplex
is both scale-dependent and order-dependent, it is

applicable mainly in situations in which repeated
measurements are taken over time on a number of
subjects. An example is provided in Jöreskog [6,
Section 4.8].

A data model that generates the Wiener simplex
has been suggested by Guttman [5, p. 310]. If

Xi = µi +
i∑

j=1

Vj ,

where the Vj are mutually independently distributed
with E(Vj ) = 0 and var(Vj ) = ϕjj , then �X is given
by (12). Each Vj is interpreted as representing the
increase in complexity between Xj−1 and Xj .

An alternate parameterization of the Markov sim-
plex may be obtained by applying a scaling transfor-
mation to the Wiener simplex to allow variances to
be arbitrary [6]:

�X = Dγ TDϕT′Dγ , (13)

where Dγ is a diagonal matrix with scaling factors,
γi , as diagonal elements. A single identification con-
dition is required; for example,

ϕ11 = 1.

The relationship between the complexity loadings, αi ,
and incremental variances, ϕjj , is then given by

αi =





i∑

j=1

ϕjj

p∑

j=1

ϕjj





1/2

.

We thus have four alternate but equivalent
parameterizations of the covariance structure of
a perfect Markov simplex involving parameters
with different interpretations. In (4) with (6), the
complexity parameters, αi , represent correlation
coefficients with the last variable on the complexity
scale; in (4) with (7), the parameters, ti , are analogous
to time points; in (10), the parameters, βi , are
regression weights on the preceding variable; and
in (13) the parameters, ϕii , represent incremental
variances. Maximum likelihood estimates of the
parameters of each of these parameterizations of the
simplex applied to the data of Table 1 are shown
in Table 2. Since the maximum likelihood estimates
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Table 2 Perfect simplex maximum likelihood estimates:
six verbal ability test data

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 ρ̂

α̂i 0.12 0.19 0.25 0.44 0.64 1.00a

t̂i 1.00a 2.11 2.80 4.09 4.96 6.00a 0.65
β̂∗

i 0.62 0.74 0.58 0.69 0.64
ϕ̂ii 1.00a 1.59 2.12 9.44 15.74 43.30

aParameter value fixed for identification purposes

reported are invariant under scale changes, analysis
of a correlation matrix instead of a covariance matrix
is in order.

Since the four parameterizations of the perfect
simplex model are equivalent they yield the same
goodness of fit, provided that the same ordering is
employed in each. This is the case in the present
example, since the order-free parameterizations of the
model in (6) or (7) with (4) yield the same ordering of
variables as Guttman’s original ordering in Table 1,
used for the parameterizations of (10) and (13). Fit
of the perfect simplex to the data of Table 1 is not
satisfactory. The largest absolute residual between a
sample correlation coefficient and the corresponding
correlation coefficient reproduced from the model is
0.27 and the value of the likelihood ratio goodness
of fit test statistic is 202.6 with associated degrees of
freedom equal to 10.

The Quasi-Simplex

The perfect simplex model is quite restrictive and
seldom fits well in practice. Guttman [5] suggested
several possible modifications that allow for error
and referred to them as quasi-simplex models. One,
Guttman’s δ-simplex, has become generally accepted
as the quasi-simplex.

Suppose now that the variates X1, . . . , Xp, that
have a correlation matrix P satisfying the condition
(1) for a perfect simplex, are unobservable and that,
instead, variates Y1, . . . , Yp may be observed with

Yi = Xi + Ei,

where the Ei are errors, distributed mutually inde-
pendently and independently of the Xi with diagonal
covariance matrix Dθ . It follows that the covariance
matrix, �Y , of the observable variables, Y1, . . . , Yp,
is related to the covariance matrix, �X, of the simplex

variables, X1, . . . , Xp, by

�Y = �X + Dθ , (14)

where �X is defined by any one of the four param-
eterizations for a perfect Markov simplex considered
earlier, or by the perfect Wiener simplex (12).

The introduction of Dθ is accompanied by addi-
tional indeterminacy in the model. In the case of
the quasi-Wiener simplex, defined by (12) with (14),
there is a single indeterminacy involving ϕ11 and θ11

[6, Section 4.2]. A suitable identification condition
is ϕ11 = θ11. Two additional identification conditions
are required when Dθ is introduced in the quasi-
Markov simplex: one involves the error variance, θ11

for the least complex variable and the other, the error
variance, θpp, for the most complex variable [1; 6,
Section 5.1]. Suitable identification conditions (IC)
are as follows:

IC1: θ11 = θ22, θpp = θp−1,p−1 (15a)

or

IC2: θ11 = 0, θpp = 0. (15b)

The choice of identification conditions does not affect
the values of θ22, . . . , θp−1,p−1, but does affect other
parameters in the model that define the structure of
the simplex correlation matrix P in (4). If variables
are ordered according to complexity, the first row
(column) and last row (column) of P are affected.
This implies that hypotheses concerning relationships
of the least complex simplex variable, X1, and most
complex simplex variable, Xp, to the other simplex
variables are not testable.

Maximum likelihood estimates of parameters in
the quasi-simplex model cannot be expressed in
closed form and an iterative computational procedure
is required. When the order-dependent parameteriza-
tions, (10), (13) and (12) of �X are incorporated in
(14), standard structural equation modeling com-
puter programs may be employed (see e.g., [6, 7]). If
the order-free formulations of (6) or (7) are employed,
a computer program that allows a flexible specifica-
tion of the model (see e.g., [3]) is necessary.

In Table 3 are shown maximum likelihood esti-
mates of the error variances and complexity loadings
when a quasi-Markov simplex, using (6), is fitted to
the data of Table 1 under both identification condi-
tions IC1 and IC2 in (15). It is apparent that the
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Table 3 Quasi-simplex. Maximum likelihood estimates:
six verbal ability test data

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

IC 1 θ̂ii 0.212a 0.212a 0.212 0.215 0.218b 0.218b

α̂i 0.381 0.483 0.517 0.713 0.817 1c

IC 2 θ̂ii 0c 0.212 0.212 0.215 0.218 0c

α̂i 0.299 0.428 0.457 0.631 0.722 1c

a,bParameter values equal for identification purposes
cParameter value fixed for identification purposes

Table 4 Quasi-simplex. Simplex variate correlations: six
verbal ability tests

1 2 3 4 5 6

1 1 0.79 0.74 0.53 0.47 0.38
2 0.70 1 0.93 0.68 0.59 0.48
3 0.65 0.93 1 0.73 0.63 0.52
4 0.47 0.68 0.73 1 0.87 0.71
5 0.41 0.59 0.63 0.87 1 0.82
6 0.30 0.43 0.46 0.63 0.72 1

IC 1 above diagonal; IC 2 below diagonal

choice of identification conditions affects the esti-
mates of complexity loadings. The transition between
the two sets of complexity loadings is accomplished
by multiplying α̂2, . . . , α̂5 by the same constant and
α̂1 by a different constant. Consequently, simplex
variable correlations that involve the first simplex
variable or last simplex variable are dependent on the
identification conditions employed. This is apparent
in Table 4, in which simplex variate intercorrelation
estimates under IC1 are shown above the main diago-
nal and those under IC2 below. Correlations affected
by the identification conditions are shown in italics.
While the choice of identification conditions is arbi-
trary in the sense that the fit of the model is not
affected, it seems that IC1 are more plausible because
of the closeness of θ̂22, . . . , θ̂55 in Table 3.

The fit of the quasi-simplex model is reasonably
satisfactory. The largest absolute residual is now 0.09
and the likelihood ratio test statistic is 43.81 with six
degrees of freedom.
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Simpson’s Paradox

Simpson’s paradox can be illustrated with an exam-
ple, as Simpson did in his 1951 paper [8]. In that
example, 40 patients are treated for a certain disease,
whereas the control group consisted of 12 people. The
results are given in the following 2 × 2 × 2 contin-
gency table, which shows the relationship between
treatment and response (whether alive or dead) sepa-
rately for males and females. Table 1 also shows the
marginal table obtained by collapsing over the sex
variable.

The odds ratios (see Odds Ratio) for the first
two 2 × 2 tables (male/female) are both 5/6, which
implies that the treatment is effective for both males
and females. However, the odds ratio of the com-
bined table is 1.0, which means the treatment is
not effective. This phenomenon is called Simpson’s
paradox, which states that the direction of associa-
tion between variables X (untreated/treated) and Y

(alive/dead) may reverse after pooling over a covari-
ate Z (male/female). The paradox can occur because
pooling can lead to inappropriate weighting of the
different subgroups [2].

Yule [11] first discovered this phenomenon, and
it is also called the Yule–Simpson paradox. Numer-
ous real-life examples of Simpson’s paradox have
been reported in many areas, including epidemiol-
ogy, physics, social science, psychology, and sports.
For example, Cohen et al. [3] compared tuberculosis
deaths in New York City and Richmond, Virginia, in
1910. If the population was divided into racial groups,
then Richmond had a lower death rate in both white
and nonwhite categories, but the overall death rate
was lower in New York.

In the context of contingency tables, Simpson’s
paradox is restricted neither to one association
measure – the odds ratio, nor to 2 × 2 × 2 tables.
Let [ai, bi ; ci, di], i = 1, . . . , K , denote cell counts
in a 2 × 2 × K table, and let [a = ∑

ai, b =∑
bi ; c = ∑

ci, d = ∑
di] be the corresponding

marginal table. Let α(ai, bi ; ci, di) represent a
measure of the association, such as the odds ratio
α(ai, bi ; ci, di) = (aidi)/(bici). Simpson’s paradox
occurs if (aidi)/(bici) > 1(< 1) for all i, and
(ad)/(bc) ≤ 1(≥ 1). The paradox is also called
association reversal by Samuels [7]. Good et al. [6]
extended Simpson’s paradox to an amalgamation

paradox, which is defined as follows:

α(a, b; c, d) > max α(ai, bi ; ci, di) or

α(a, b; c, d) < min α(ai, bi ; ci, di),

where the measure of association α can be the odds
ratio or some other measure, such as the relative risk.

It is frequently helpful to collapse high-dimen-
sional contingency tables, since the collapsed table
has larger cell frequencies, fewer parameters, and
is easier to interpret (see Collapsibility). It is then
of interest to know when a table can be safely col-
lapsed, avoiding the paradox. Let X ⊥ Y and X ⊥
Y |Z denote the independence and conditional inde-
pendence of X and Y , respectively. Wermuth [9]
showed that for a 2 × 2 × 2 table we can meaning-
fully pool over a covariate Z and expect to find the
same odds ratio in the marginal table and the partial
tables (strict collapsibility) if and only if X ⊥ Z|Y or
Y ⊥ Z|X (see also Bishop et al. [1]). Strict collapsi-
bility implies that Simpson’s paradox does not occur.
A similar result was obtained for the relative risk [9].
Whittemore [10] showed that an I × J × 2 table is
strictly collapsible if and only if at least one of the
two-factor interactions of Z with X or Y in a loglinear
model is zero. A table is called strongly collapsible
(Ducharme et al. [5]) if it remains strictly collapsible
no matter how it is partially collapsed (the definition
was generalized to n-dimensional contingency tables
by Whittemore). In this case, the odds ratio is totally
independent of the level of the covariate. Ducharme
et al. [5] provided a necessary and sufficient condi-
tion for a table to be strongly collapsible.

The paradox can also be avoided by a carefully
designed experiment. For a 2 × 2 × K table, if the
ratio of the sums of the two rows of each of the
2 × 2 partial tables remains constant, the design is
called row-uniform. A column-uniform design can be
similarly defined. If a design is both row-uniform and
column-uniform, then the odds ratio of the combined
table falls between the maximum and minimum of
that of the individual tables [6], so the amalgamation
paradox is avoided. Samuels [7] gave a necessary and
sufficient condition to avoid association reversal, and
also obtained a similar result in a regression setting.

When Simpson’s paradox does occur in practice,
what will the appropriate conclusion be? For exam-
ple, if a disease is unrelated to a genotype for both
whites and nonwhites but they are related when the
two racial groups are combined, one is interested
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Table 1 Survival by treatment among males and among females

Male Female Combined

Untreated Treated Untreated Treated Untreated Treated

Alive 4 8 2 12 6 20
Dead 3 5 3 15 6 20

in knowing whether the disease is related to the
genotype. Suppose X takes value G (genotype A)
or G (other than genotype A), Y takes value D (dis-
ease) or D (no disease), and Z is a covariate indexing
race. If X ⊥ Y |Z without X ⊥ Y , Simpson’s para-
dox occurs. Dawid [4] defined Z as a sufficient set
of covariates if Y ⊥ I |(X, Z), where I contains the
labels of individual units of the population. In the
above example, race is a sufficient covariate if given
a person’s race and genotype; whether the disease
occurs does not depend on an individual person. If Z

is sufficient and X ⊥ Y |Z, then the disease is unre-
lated to the genotype even though they look related
when the tables are collapsed over Z.
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Simulation

To check his derivation of Student’s t distribu-
tion, W.S. Gossett (“Student”) conducted a simula-
tion experiment:

The material used was a . . . table containing the
height and left middle finger measurements of 3000
criminals . . . The measurements were written out
on 3000 pieces of cardboard, which were then very
thoroughly shuffled and drawn at random . . . , each
consecutive set of 4 was taken as a sample . . . and
the mean [and] standard deviation of each sample
determined . . . This provides us with two sets of . . .

750 [values] on which to test the theoretical results
arrived at. The height and left middle finger . . . table
was chosen because the distribution of both was
approximately normal . . .

The pieces of cardboard of 1908 are redundant in
the computer era. The result of Figure 1 is readily
obtained by the MATLAB code of Figure 2 (see Soft-
ware, Biostatistical). Computers have effectively
made available easily obtained streams of random
variables from any distribution. This has revolu-
tionized the whole of statistics, and in particular
Bayesian methods. Gossett’s use of simulation to
verify a theoretical result has now become standard
practice. The fitting of nonlinear models to data, for
example by maximum likelihood, usually requires
numerical iteration procedures, carried out by com-
puter (see Optimization and Nonlinear Equations).
The correct operation of these procedures should be
checked by first applying them to data simulated from
the model, using known parameter values.

Classical numerical optimization employs deter-
ministic search algorithms. Stochastic search meth-
ods, which allow random excursions over the surface
to be optimized, can be achieved using simulated
annealing techniques – see for example Brooks &
Morgan [6] – which are less likely to be trapped in
local optima. This is just one of the many ways
in which simulation has greatly increased the tools
available to statisticians. Note also for instance the
use of genetic algorithms [34], the requirements of
randomization tests and permutation tests [15, 28],
the use of the bootstrap [11, 16, 21, 41], and
Markov chain Monte Carlo methods (MCMC) [4,
37]. To demonstrate the wide-ranging influence of
simulation on statistics, we outline later Monte Carlo
inference and Monte Carlo testing. We start with a
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Figure 1 Histogram of 750 realizations of 2x/s, where x

and s are respectively the mean and standard deviation of
a sample of size 4 from a normal distribution of mean zero
and variance unity. Also plotted is the underlying probabil-
ity density function, of a t3 random variable, given by

f (t) = 2

π
√

3(1 + t2/3)2
, −∞ < t < ∞

nsim=750;n=4;nbins=40;
x=randn(n,nsim);
z=2*mean(x)./std(x);r=max(z)−min(z);s=r/nbins;
hist(z,nbins);hold on
t=linspace(−10,10,100);
f=2*nsim*s./(pi*sqrt(3)*(1+t.*t/3).^2);
plot(t,f)
title(`Figure 1 )
xlabel(`t )
ylabel(`f(t)*773 )

`
`

`

Figure 2 The MATLAB program which produces and plots
Figure 1

description of how computers produce the random
number streams required.

Pseudo-Random Numbers

Computers generate streams of pseudo-random
numbers, rather than strictly random ones, and they
do this by means of recursion formulae. One which
is frequently adopted is the congruential generator:

xn+1 = axn + b(mod m), for n ≥ 0. (1)

Here a, b and m are suitably chosen fixed integer
constants, and the stream of numbers is initiated from
a seed, x0.
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The integers resulting from (1) all lie in the range
0 to (m − 1), and approximations to random vari-
ables which are uniformly distributed over (0, 1)
are obtained from setting ui = xi/m. Care is needed
in how the fixed integers are chosen (see [33]).
The MATLAB uniform random number generator, for
example, uses a = 75, b = 0, and m = 231 − 1. In
particular, it is important to obtain a long sequence
before x0 reappears and the previous sequence cycles
again and again. Cycling is not what we expect from
random sequences. To put this in perspective, Wich-
mann & Hill [39] produced a generator that would
take more than 800 years to cycle if 1000 of the num-
bers were used each second. The connection of the
sequence of (1) with chaos is shown by Bartlett [2]
and Lawrance [27]. However MCMC methods, for
example, make intensive use of random variables,
and it is advisable to exhibit a degree of caution
when using pseudo-random numbers. A wide range of
tests are available to check that pseudo-random num-
bers satisfy many necessary requirements of random
variables. These range from graphical procedures (we
can check Figure 1 by eye for obvious discrepancies
between the histogram and the probability density
function), through other empirical tests carried out
on generated numbers, to theoretical tests such as the
spectral test [17, 26] (see Spectral Analysis).

Alternative methods have been devised to improve
on the performance of congruential generators. Gen-
eralized Feedback Shift Register (GFSR) methods
provide examples that are widely used. These are
described by Fishman [17], who also emphasizes that
generators need to be easy to implement and portable,
in that they produce the same results in different com-
puting environments.

Generating Nonuniform Random
Variables

The random variable X = − loge U , where U is uni-
formly distributed over the range 0–1, has an expo-
nential distribution. If U1 and U2 are two indepen-
dent such uniform random variables, then the pair of
random variables given by

N1 = (−2 loge U1)
1/2 cos(2πU2),

N2 = (−2 loge U1)
1/2 sin(2πU2) (2),

are independent standard normal variables.

In simulations, such as that producing Figure 1,
we need to be able to generate realizations of any
random variables. The starting point is a stream of
pseudo-random uniform random variables. Random
variable simulation can be done using particular rela-
tionships, as in the Box–Müller [5] method of (2), or
through one of a range of general procedures, such
as the inversion method, the rejection method, and
the composition method, all of which are described
in [32]. For discrete random variables, the analog of
the inversion method is the “table look-up” method.
To take the inversion method as an illustration, if U

is a U (0, 1) random variable and we wish to sim-
ulate a continuous random variable with cumulative
distribution function F(x), then it suffices to set

X = F−1(U),

and this demonstrates immediately why X =
− loge U has an exponential distribution.

The use of trigonometric functions in (2) can be
avoided by setting

N1 = V1

(−2 loge W

W

)1/2

,

N2 = V2

(−2 loge W

W

)1/2

, (3)

subject to W = V 2
1 + V 2

2 ≤ 1, where V1 and V2 are
independent uniform random variables over the range
−1 to 1. If W > 1 then the pair of values (V1, V2)

is rejected and a new pair selected. Thus rejection
occurs for a proportion (1 − π/4) of the pairs, but
results in the computational efficiency gain of using
(3), rather than (2). We can see from (3) that the
ratio V1/V2 has a Cauchy distribution. A general
simulation method based on a ratio of uniformly
distributed random variables has been proposed by
Kinderman & Monahan [24]. It is well suited to
adaptation to simulate from a probability density
function which is specified only up to proportionality,
and is therefore very useful in Bayesian computations
(see [38]).

The general rejection method for any continuous
random variable requires a uniform scatter of points
over the area underneath the probability density func-
tion, f (x), of the random variable. The abscissae of
the points then provide realizations of the random
variable. The required scatter is obtained by simulat-
ing from a density function h(x), chosen both for
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its similarity to f (x), and relative ease of variate
simulation. The density f (x) is then enveloped by
g(x) = kh(x) for a suitable constant k ≥ 1. The
rejection probability is (1 − k−1). Typically, selecting
k involves solving an optimization problem. Exam-
ples are given by Morgan [32].

Random variables may be simulated in many dif-
ferent ways. It is important to use efficient methods,
especially in cases of intensive use, as in MCMC
work and bootstrap sampling. Detailed descriptions
of alternative methods for many univariate and mul-
tivariate distributions are to be found in [10, 12,
17], and [35]. Efficiency can often be increased by
the use of variance reduction methods such as impor-
tance sampling (see Numerical Integration), strat-
ification, and using antithetic or control variates
(see [32]).

Monte Carlo Inference

When a likelihood is difficult to construct, simulation
techniques may be used to produce an approximation
to the likelihood. As a simple illustration, suppose
the random variable Y is given by the convolution:

Y = X1 + X2, (4)

where X1 has a gamma distribution and X2 has
an independent normal distribution. It is easy to
simulate from both X1 and X2, and hence from Y ,
but it is generally not straightforward to write down
the density function of Y , and hence the likelihood
function. Many examples of this nature occur in
statistics – for example in the theory of queues
(see [20]).

Suppose we observe a random sample {yi, 1 ≤
i ≤ n}, from a model with probability density func-
tion f (yi ; θ). To obtain the maximum likelihood
estimates θ̂ , we need to form,

l(θ ; y) =
n∑

i=1

log f (yi ; θ),

and then maximize this with respect to θ .
In Monte Carlo inference we use

l∗(θ ; y) =
n∑

i=1

log f̂ (yi ; θ),

where simulation has been used to form the density
estimate f̂ .

Diggle & Gratton [13] used a kernel approach
(see Density Estimation), resulting in:

f̂ (y) = 1

(sh)

s∑

k=1

K

(
y − xk

h

)
, (5)

where {xk, 1 ≤ k ≤ s} is a simulated sample from
f (y; θ), K(u) is a kernel function, given by

K(u) =
{

0.75(1 − u2), −1 ≤ u ≤ 1,
0, otherwise,

(6)

and h determines the smoothness of the approxi-
mation.

Diggle & Gratton [13] discuss the choice of s, h,
and K . For other applications, see [9] and [19]. In the
latter case, in the context of dependent data, MCMC
methods are used.

Monte Carlo Testing

After a model has been fitted to a data set, multi-
ple samples can be obtained by simulating from the
fitted model, and the model may be fitted in turn to
each of these samples. The resulting sets of parame-
ter estimates may be used for inference. For example,
confidence intervals may be obtained using the per-
centile method, which selects parameter cutoff points
with a percentage, such as 5%, of simulated val-
ues lying outside the resulting interval. This general
approach is called the parametric bootstrap, as repli-
cate samples are obtained from a fitted model.

The goodness of fit of a model to data may
be measured in a variety of ways – for example
by means of a deviance (see Generalized Linear
Model) or a Pearson chi-square statistic (see Chi-
square Tests). Whatever goodness-of-fit statistic is
selected, it may also be calculated for each of the
samples simulated from the model fitted to the origi-
nal data in the parametric bootstrap. In these cases we
know that the model is correct, as we simulate from
it. The values of the statistic from the simulated sam-
ples therefore provide a benchmark set against which
to compare the value obtained from the original data.
Due to Barnard [1], this approach is considered fur-
ther by Hope [22] and Marriott [29], who discuss
power. It may also be used to compare nonnested
models, [7, 40] (see Separate Families of Hypothe-
ses). Monte Carlo tests have been especially useful
in spatial analysis (see Epidemic Models, Spatial).
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An extension to dependent data is considered by
Besag & Clifford [3]. Monte Carlo exact tests are
derived by Forster et al. [18] using Gibbs sampling
(see Markov Chain Monte Carlo).

Computing and Analysis

Computer simulation is widely utilized to mimic the
rules of complex systems. The resulting simulation
models may then be used to study the effect of
changes to those systems. Usually sensitivity stud-
ies (see Sensitivity Analysis) also need to be carried
out, in which predictions are investigated for per-
turbations of the parameter values adopted in the
model. Two examples are provided by Duncan &
Curnow [14] and Byrom & Gettinby [8]. Such mod-
els may be programmed in languages such as C,
FORTRAN, and MATLAB. However the simulations
regularly require standard bookkeeping operations,
and specialized languages exist to simplify such tasks,
such as GPSS, SIMSCRIPT, and SIMULA (see [30]).
Simulated sequences need examination in order to
decide whether they have reached equilibrium, and
this is also a problem in MCMC work (see [23]).
Analysis is frequently complicated by the presence
of serial correlation. Moran [31] investigated the
use of “batching”, in which a sequence is divided
into batches, and analysis then proceeds using batch
means. Overviews are provided by Fishman [17]
and Kleijnen & Groenendaal [25]. Simulation exper-
iments allow statisticians to make use of their design
skills (see, for example, [36]).
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Simultaneous Confidence
Intervals

The terminology simultaneous confidence intervals
(SCI) refers to a confidence region for a multivari-
ate parameter φ, comprised of individual confidence
intervals for the components of φ. For example, in a
medical application whose objective is to compare k

treatment means with a control from N(µi, σ 2), 1 ≤
i ≤ k, and N(µ0, σ 2) populations respectively, θ is
given by θ = (µ0, µ1, . . . , µk, σ ), while φi = µi −
µ0, 1 ≤ i ≤ k. SCI provide an overall assurance at
a specified confidence level of the simultaneous cor-
rectness of all the statements concerning the differ-
ences φi , 1 ≤ i ≤ k. Typically, φ has a finite number
of components φ = (φ1, . . . , φk) but sometimes an
infinite number as in a confidence band for a regres-
sion curve.

Denote by x the data collected in an experiment.
A parametric model Pθ is a family of distributions
describing a random vector X which models the
data collection process. For a fixed 0 < α < 1, a
(1 − α)100% confidence region D(X) for φ is a
random region satisfying

Pθ [D(X) � φ] ≥ 1 − α, (1)

no matter what the value of θ . Some authors use
equality in (1). An SCI for φ = (φ1, . . . , φk) is a
special case of (1) of the form

Pθ [li (X) ≤ φi ≤ ui(X), for all 1 ≤ i ≤ k] ≥ 1 − α.

(2)

The left and right endpoints in (2) provide interval
estimates for φ endowed with the frequentist inter-
pretation that in replicated experiments, in the long
run, these intervals, constructed from the data, will
cover every corresponding parameter simultaneously
(1 − α)100% of the time.

The most universally valid (and “ancient” to quote
Miller [5, p. 67]) approach relies on Boole’s inequal-
ity (or the first Bonferroni inequality),

P

(
k⋂

i=1

Ai

)
= 1 − P

(
k⋃

i=1

Ai

)
≥ 1 −

k∑

i=1

P(Ai)

≥ 1 − α,

applied to a set of univariate (1 − α/k)100% confi-
dence intervals

Pθ [li (X) ≤ φi ≤ ui(X)] ≥ 1 − α

k
,

which yields (2) from the choice Ai = {li (X) ≤ φi ≤
ui(X)} and Ai , the complement of Ai .

Perhaps the most widely studied SCI are those
for multiple comparisons of treatment means for
which there are three (among others) well-known
competitors to the Boole–Bonferroni approach, each
having their own advantages depending on the con-
text. Scheffé’s [6, 7] method as an SCI valid for
all contrasts in an analysis of variance (ANOVA)
was originally proposed as a follow-up to provide
insight when the F -test rejects the null hypothesis
(see Multiple Comparisons). Tukey’s [8] approach,
based on the studentized range distribution, was
derived for comparing the special contrasts of pair-
wise treatment mean differences. Dunnett’s [1] ele-
gant method used the multivariate t distribution for
the further special case of comparing treatments with
a control, rather than all differences in means. The
natural question of which method provides the short-
est intervals has been studied, for instance, by Ury [9]
and Einot & Gabriel [2] (see also Multiple Com-
parisons, for reference to Duncan’s multiple range
test).

As a numerical illustration, we present an example
adapted from Dunnett [1] of blood count measure-
ments on three groups of animals (see Table 1). The
sample standard deviation is s = 1.175 and the cor-
responding multivariate t critical value with 12 df is
2.50. Based on Dunnett’s method, the 95% SCI for
µA − µC and µB − µC are (−1.25, 2.55) and (0.85,
4.41) respectively, while the Boole–Bonferroni inter-
vals are (−1.30, 2.60) and (0.80, 4.46), which are

Table 1 Blood counts (millions of cells per cubic
millimeter)

Control Drug A Drug B

7.40 9.76 12.80
8.50 8.80 9.68
7.20 7.68 12.16
8.24 9.36 9.20
9.84 10.55
8.32

Means 8.25 8.90 10.88
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a little wider. Thus, with 95% confidence we may
conclude that drug A raises the blood count by an
amount between −1.25 and 2.55 million cells per
cubic millimeter, while drug B raises the blood count
by an amount between 0.85 and 4.41 million cells.
For comparison, Scheffé’s intervals, (−1.47, 2.77)
and (0.64, 4.62), are wider, but have higher confi-
dence than 95% since we are dealing only with two
contrasts, not all possible contrasts.

Applications of SCI have been developed in many
other settings, including ANOVA, multivariate anal-
ysis of variance (MANOVA), analysis of covari-
ance, Hotelling’s T 2 test, regression coefficients
(see Multiple Linear Regression), growth curve
analysis (see Nonlinear Growth Curve), and vari-
ance components. References may be found in the
extensive bibliographies in the books by Miller [5],
Hochberg & Tamhane [3], and Hoppe [4].
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[7] Scheffé, H. (1959). The Analysis of Variance. Wiley, New
York.

[8] Tukey, J.W. (1953). The Problem of Multiple Com-
parisons, Mimeographed Notes, Princeton University.
Reprinted in The Collected Works of John W. Tukey, Vol.
VIII – Multiple Comparisons: 1948–1983, H.I. Braun, ed.
Chapman & Hall, New York, 1994.

[9] Ury, H.K. (1979). A comparison of four procedures
for multiple comparisons among means (pairwise con-
trasts) for arbitrary sample sizes, Technometrics 18,
89–97.

(See also Estimation, Interval; Experiment-wise
Error Rate; Simultaneous Inference; Tolerance
Interval; Tolerance Region)

TUHAO CHEN & FRED M. HOPPE



Simultaneous Inference

In a broad sense, simultaneous inference or the
multiplicity problem includes statistical procedures
that assess either more than one parameter in the
course of an experiment or one parameter repeatedly
in the course of an experiment. The problems studied
include multiple comparisons (several parameters,
one for each treatment group), multiple endpoints
(several parameters for each treatment group),
sequential methods or group sequential methods
(one parameter assessed as the data accumulate
during the experiment), and longitudinal data
analysis (one parameter assessed at different time
points). Recent work has focused on hypothesis
testing problems in combination; for example, group
sequential methods for multiple comparisons or
multiple endpoints. Simultaneous inference includes
point and interval estimation (see Estimation) as
well as hypothesis testing and other methods
of inference, such as ranking and selection. We
give examples of hypothesis testing for multiple
comparisons and multiple endpoints, simultaneous
confidence intervals, as well as a more complex
example involving group sequential hypothesis
testing with multiple comparisons. For more detailed
information we refer the reader to a number of
related articles in this Encyclopedia: Multiplicity in
Clinical Trials; Multiple Comparisons; Multiple
Endpoints, Multivariate Global Tests; Multiple
Endpoints, P Level Procedures; Data and Safety
Monitoring; and Longitudinal Data Analysis,
Overview.

Philosophies of Simultaneous Inference

When is it appropriate to consider several parame-
ters simultaneously? In his classic book, Miller [12]
considered a family to be those statements about
parameters resulting from an individual experiment
of a single researcher in a majority of instances. He
went on to say: “There are no hard and fast rules for
where family lines should be drawn, and the statisti-
cian must rely on his own judgment for the problem
at hand.” Hochberg & Tamhane [6] defined a family
as any collection of inferences for which it is mean-
ingful to take into account some combined measure
of errors. This definition still leaves it to the judgment

of the investigators which inferences should be taken
as a family.

For a family F of inferences about a set of
parameters, let N(F) denote its cardinality and let
P be the set of statistical procedures used to decide
if each statement in F is true. In undertaking P ,
we want some protection against falsely rejecting
statements in F when they are, indeed, true. Let
M (a function of both F and P and the data) be
the (random) number of false positives. The fami-
lywise (experimentwise) error rate is the probabil-
ity of making at least one false positive conclu-
sion, i.e. P {M > 0}. The per-family (per-experiment)
error rate is the expected number of false infer-
ences, i.e. E{M}. The per-comparison (comparison-
wise, per-statement) error rate is the expected num-
ber of false inferences divided by the number of
inferences, i.e. E{M}/N(F). [The per-comparison
error rate cannot be defined in many cases when
N(F) is infinite.] Using elementary probability, it is
clear that

E{M}
N(F)

≤ P {M > 0} ≤ E{M},

so that control over the per-family error rate is
stronger than control over the familywise error rate,
which is, in turn, stronger than control over the per-
comparison error rate. The three error rates depend
on the true configuration of the parameters.

In hypothesis testing, the family of inferences, F ,
is taken to be the set of statements included in the null
hypothesis. Procedures that control the familywise
error rate for F and all subsets of F are said to
provide strong control. Procedures that control the
familywise error rate for F alone are said to provide
weak control.

The difference between weak and strong control
of the familywise error rate may be illustrated by one-
way analysis of variance (ANOVA) with A(> 3)

groups. Suppose the first A − 1 means are equal and
the Ath mean is far different. Then a procedure that
provides weak control of the familywise error would
protect against the rejection of the global hypothesis
that all of the means are equal, but would provide
no protection against false rejection of the equality
of the first A − 1 means. Strong protection would
protect against both.

While many authors argue that control over the
familywise error rate is appropriate [6, 12, 23], oth-
ers support controlling the per-family error rate for
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finite families [18] or even the per-comparison error
rate [2, 13, 17]. The relative value of each type of
error rate control will depend on what the inves-
tigators are trying to accomplish. By way of illus-
tration, suppose four experimenters could have col-
lected exactly the same data in a one-way ANOVA
but be interested in different error rates because
they are pursuing different goals. The first inves-
tigator might have several prespecified hypotheses
in mind involving pairwise comparisons and may
want to address each one individually. This inves-
tigator might be primarily interested in controlling
the per-comparison error rate and test each com-
parison at level α. The second investigator might
be searching for effective drugs in a pilot develop-
ment program (e.g. a Phase II trial). In this case a
significant initial F test (see Analysis of Variance)
might lead to a larger clinical trial, whereas a non-
significant F test and a significant result on a single
drug using a per-comparison error rate might lead
to another pilot study on that drug, and no signifi-
cant per-comparison tests would lead to a negative
conclusion. In this situation the investigator is inter-
ested in both the familywise and per-comparison
error rates. The third investigator might test the global
hypothesis of the equality of all of the means (con-
trolling the familywise error rate), but having done
that, perform pairwise treatment comparisons con-
trolling the per-comparison error rate. The fourth
investigator might be performing a definitive trial
comparing several treatments and consider it impor-
tant to control the type I error rate on both the entire
family of null hypotheses and on every subset of that
family.

The first and second investigators above required
per-comparison control of the type I error rate,
although with differing families of inferences. The
third investigator required weak control of the fam-
ilywise error and the fourth required strong con-
trol of the familywise error rate. Thus, depend-
ing on the situation at hand, different degrees of
type I error rate control will be considered appro-
priate. When seeking new drug approval, a man-
ufacturer may conduct a trial of several doses vs.
a placebo and argue that the per-comparison error
rate with a placebo is of interest, but those with
the power to approve the new drug may well
disagree.

Prior to data analysis, careful specification of the
medical question(s) that the analysis is intended to

answer will help investigators focus on what their
family of inferences should be and what kind of
error control is appropriate in a given situation.
Hypotheses that are data driven (i.e. that are tested
without prior specification) require tentative conclu-
sions which need further, definitive test no matter
what P value results. Tukey [24] says, “these give us
hints”.

Examples of Simultaneous Inference

Henceforth we assume that investigators have agreed
that certain inferences constitute a family. Many pro-
cedures have been proposed for various simultane-
ous inference situations. Here we give three exam-
ples and outline several procedures which might
be used.

Example 1. Simultaneous Confidence Intervals for
all Treatment Versus a Control

Suppose we have a clinical trial with A treatment
arms. Let Xij , i = 1, . . . , A, j = 1, . . . , M be the j th
observation of the ith treatment arm. Assume Xij

has mean µi and unknown variance σ 2. Suppose
that µ1 is a control treatment and we are interested
in simultaneous, two-sided 100(1 − α)% confidence
intervals for

µj − µ1, j = 2, 3, . . . , A. (1)

F is a set of N(F) = A − 1 confidence intervals of
the pairwise comparisons with µ1. If we assume that
the underlying data have a normal distribution, then
we may use the procedure of Dunnett [3]. The simul-
taneous two-sided 100(1 − α)% confidence intervals
for treatment minus control differences, µj − µ1, are
given by

(µj − µ1) ∈
[
Y j − Y 1 ± |T |(α)

A−1,ν,1/2S

(
2

M

)1/2
]

,

j = 2, 3, . . . , A, (2)

where S2 is the mean squared error estimate and
|T |(α)

A−1,ν,1/2 is the upper α point of the maximum
of the absolute value of an A-variate multivari-
ate t distribution with ν = A(M − 1) degrees of
freedom and correlation coefficients 1/2. The crit-
ical values of |T (α)|A−1,ν,1/2 are tabulated, c.f. [[6],
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Table 5]. When the sample sizes are not equal, the
correlations between the Y j − Y 1 are no longer 1/2
so that calculations of the critical values are difficult
and approximations must be used. The joint confi-
dence intervals have the property that when many
experiments are undertaken, in 100(1 − α)% of them,
all of the confidence intervals will contain the true
parameters.

Example 2. Hypothesis Testing for all Pairwise
Comparisons

A classic example of simultaneous statistical infer-
ence considers the A-sample multiple comparisons
problem. Suppose we have a clinical trial with A

treatment arms. Let Xij , i = 1, . . . , A, j = 1, . . . , M ,
be the j th observation of the ith treatment arm.
Assume Xij has mean µi and unknown variance σ 2.
Suppose we are interested in testing

H0 : µi = µj , i �= j, i, j = 1, 2, . . . , A, (3)

vs.

H1 : µi �= µj , for some i �= j,

i, j = 1, 2, . . . , A.

Then F is a set of N(F) = A(A − 1)/2 statements
of inferences on all of the pairwise comparisons.

If we assume that the underlying data have a
normal distribution, then we may first perform a one-
way ANOVA F test to test (3). If A = 3, then strong
control and weak control coincide, so assume A > 3.
If the F test rejects H0 at level α, we may follow
with pairwise t tests each at level α, using the pooled
estimate of σ 2, a procedure known as Fisher’s Least
Significant Difference (LSD) for weak control of the
familywise error rate [4].

If we wished strong control of the familywise error
rate, then we would have to enlarge the family F

and consider all statements of equality of means of
all subsets in the null hypothesis. That is, we would
need to consider the null hypothesis

H0 : µ1 = · · · = µA (3′)

and all alternatives, beginning with A − 1 means
equal and one mean different, A − 2 means equal
and the other two means equal but different from the
first A − 2 means, A − 2 means equal and the other
two means each different, etc. We could then use the

closed F procedure or the closed Newman–Keuls
procedure of Begun & Gabriel [1]. In these proce-
dures, if the hypothesis (3′) is not rejected at level α,
then we stop and say there are no treatment differ-
ences at level α. If (3′) is rejected, then we consider
all subsets of the null hypothesis in (3′) in a particular
stepdown manner. If there is no significant difference
at level α when testing the null hypothesis of equal-
ity of p(= A − 1, A − 2, . . . , 3, 2) of the means, then
we say the p treatments are homogeneous and do
not test further subsets of these. Strong control of
α is obtained by simultaneously testing, in addition,
disjoint subsets of the null hypothesis in a particular
manner. For example, if A = 4, then the simultaneous
test of {µ1 = µ2 and µ3 = µ4} is undertaken by test-
ing each pair of hypotheses at level 1 − (1 − α)1/2.
If one of the hypotheses in the intersection set is
not rejected at level 1 − (1 − α)1/2, then neither is
rejected. This implies that in determining whether
there are pairwise differences based on this proce-
dure, the homogeneity of certain means depends on
the homogeneity of other means. In the case A = 4,
if we do not find a difference between µ1 and µ2 at
level 1 − (1 − α)1/2, then we would also not find µ3

and µ4 to differ. While this initially seems strange, it
is the price that this procedure pays for strong con-
trol of α within the family of hypotheses. For A arms,
the tests on the disjoint subsets are performed at level
1 − (1 − α)p/A, where p is the number of hypotheses
undergoing test.

Example 3. Hypothesis Testing for Multiple
Endpoints in a Clinical Trial

Suppose we have a two-armed clinical trial compar-
ing the efficacy of an experimental and a standard
treatment and efficacy is reflected by multiple patient
characteristics. A statistical formulation of this prob-
lem is

H0 : µE = µS (4)

vs.

H1 : µE − µS = δ(> 0),

where µE is the mean of the vector-valued observa-
tions of the experimental group, µS is the mean of the
vector-valued observations of the standard treatment,
and δ is a fixed vector of relative treatment differ-
ences. The formulation of H1 is specific to clinical
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trials, for which we are interested in the alternative
hypothesis that one treatment is better than the other
with respect to k multiple endpoints. F is a set of
statements about the equality of the components of
the vectors µi and has cardinality N(F) = k.

The rationale for the formulation of H0 in (4) is
that we will control the type I error when there is
no difference between the experimental and standard
treatments. The formulation of H1 serves to direct
power to an alternative of particular interest, where all
endpoints derive a meaningful benefit, a situation in
which high power would be desired. In this context,
testing efficacy with multiple endpoints need not be
viewed as a simultaneous inference problem; the test
statistic may be viewed as a univariate measure of
efficacy. (For further discussion, see [15].) However,
a family of hypotheses becomes of interest when
we attempt to identify the individual endpoints that
benefit from treatment.

If we assume that the underlying data have a
normal distribution, we may test (4) using one of
the linear combination test statistics proposed by
O’Brien [14] and Tang et al. [20]. Following rejec-
tion of the global null hypothesis (4), we may make
inferences on the individual endpoints by consider-
ing the family F . Lehmacher et al. [10] proposed a
stepdown procedure which maintains strong control
of α. Following rejection of the global null hypoth-
esis (4), proceed by testing all subsets of size A − 1
endpoints, with each test performed at the α level
using the same procedure P as used on the A end-
points. If a subset of A − 1 endpoints does not differ
(at the α level), then conclude that the treatments do
not differ with respect to each of those A − 1 end-
points. If, however, the test on A − 1 endpoints is
significant at level α, continue with all subsets of
A − 2 endpoints. Once a set of endpoints does not
differ, no further tests are done on those endpoints
and this avoids contradictions. The procedure is con-
tinued until it is determined whether the treatments
differ with respect to each endpoint. An alternative
approach, conferring only weak protection of α, is to
follow a significant global test by tests only on the
individual endpoints, each conducted at the same α

level as used for the global test.
It is worth noting that obtaining strong control

in the multiple endpoint problem in clinical trials
(Example 3) is easier than obtaining it in the multiple
comparisons problem (Example 2) because there is

no need to simultaneously test disjoint sets of subset
hypotheses in the multiple endpoint case.

An alternative approach which does not require the
normality assumption, is the rank sum statistic pro-
posed by O’Brien [14] and the stepdown procedures
are analogous. The rank procedure does not consider
the correlation between endpoints. This may or may
not be desirable, but it should be noted that weight-
ing endpoints according to the correlation structure
produces a different measure of overall efficacy.

Other procedures for multiple endpoints have been
proposed by Westfall & Young [25], Lefkopoulou &
Ryan [9], and Tang et al. [21]. O’Brien & Geller [15]
discuss the importance of the specific question being
asked when choosing a procedure.

An Example of a More Complex
Multiplicity Problem

Recent developments in simultaneous inference entail
theoretical results combining classical multiple com-
parison problems, multiple endpoints, or longitudinal
data analysis along with group sequential monitoring
(cf. [8, 11, 19], and [22]). We give one conceptual
example.

The following trial design was initially proposed
for a Raynaud’s treatment study. Raynaud’s disease is
characterized by episodes or “attacks” in cold weather
of decreases in blood flow through the veins in the
extremities, resulting in extreme cold and pain (and
possible loss of function) in the fingers. Patients
would be randomized to receive a pharmacologic
agent (a long-acting calcium channel blocker), a
thermal biofeedback treatment, or a placebo pill. The
primary outcome would be change from baseline in
the number of Raynaud’s episodes per day. Baseline
incidence would be assessed over a month period
in winter and outcome incidence would be assessed
over the same month, a year later. The trial would
be undertaken on two cohorts of patients during
two successive winters and would be monitored for
efficacy at the end of the first season so that if there
were a strong treatment effect, early stopping could
be considered (see Data and Safety Monitoring).

The major question of the trial may be formulated
in several ways; depending on the formulation, an
appropriate statistical procedure could be applied.
The global null hypothesis of no difference in the
treatment effects overall could be tested using a
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group sequential F test [7, 16]. The question of
whether either of the active treatments differs from
the placebo requires group sequential monitoring of
treatments vs. a control. The question of whether
any of the pairwise treatment comparisons differ
requires group sequential methods for all pairwise
comparisons (cf. [5]). The relevant error rate to be
controlled would need to be specified in the study
protocol.
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Simple Random Sampling

The following definition of simple random sampling
implies that a sample of n enumeration units is
selected from a population of N enumeration units
without replacement (see Sampling With and With-
out Replacement).

A simple random sample of n enumeration units
from a population of N enumeration units is one in
which each of the

(
N

n

)
possible samples has the same

probability of selection; namely, 1/
(
N

n

)
(cf. [1]).

For example, if a particular population consists of
15 households and we wish to take a simple random
sample of 10 households, then there are

(15
10

) =
15!/(10!5!) = 3003 possible samples, with each hav-
ing a probability of being selected of 1/3003 =
0.000333. The above definition is much more restric-
tive than the term random sampling, which can have
many different meanings depending on the specific
context in which it is being used.

In simple random sampling, no prior knowledge
concerning characteristics of the enumeration units
other than their labels or identification numbers is
used in selecting the sample. Thus, other sampling
designs such as stratified sampling which do make
use of such knowledge generally yield estimates that
have lower sampling variability than those obtained
from a simple random sample of the same number of
enumeration units. Likewise, sampling designs such
as cluster sampling and multistage sampling can
be accomplished at lower field costs than simple

Table 1

Population Standard error
characteristic Estimate of estimate

Mean x =

n∑

i=1

xi

n
se(x) = σx√

n

(
N − n

N − 1

)1/2

Total x ′ = Nx se(x ′) = Nσx√
n

(
N − n

N − 1

)1/2

random sampling. Thus, sample surveys, especially
those involving sampling of human populations over
large geographic areas, are rarely based on simple
random sampling.

Estimates of population totals and means are
shown in Table 1 along with their standard errors.
These are appropriate for simple random sampling
when the unit of analysis is the enumeration unit. In
Table 1, the term σx is the standard deviation of the
distribution of the variable x in the population. Also,
the term [(N − n)/(N − 1)]1/2 is known as the finite
population correction and is close to unity when n

is considerably smaller than N .
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SIR Epidemic Models

SIR epidemic models describe the spread of infec-
tious diseases that follow the scheme Susceptible
→ Infected → Removed. This scheme means that
a susceptible, if ever “adequately” contacted by an
infective, becomes infected for some period of time
(the infectious period) after which it recovers and
is immune to the disease (other removal states are
possible after adjustment).

Our review is only concerned with the stochastic
approach, which is more realistic, but also more com-
plex, than the deterministic approach (see Epidemic
Models, Stochastic; Epidemic Models, Determinis-
tic). Standard and recent treatises on the subject are
[1, 3, 11, 12, 16, 31] (see also [32]). For deterministic
models, the reader is referred to [2, 18].

The central situation is when the population is
closed (there is neither birth/death nor immigra-
tion/emigration), homogeneous (all S, I, or R indi-
viduals have similar behaviors), and independently
mixing (meetings between any pair of individuals
occur independently of each other). In the course of
time, the population state is represented by the ran-
dom vector giving the numbers St of susceptibles, It

of infectives, and Zt of removed cases present at time
t ≥ 0. Initially, S0 = n, I0 = m, Z0 = 0 say, and the
population being closed, St + It + Zt = n + m for all
t (thus, any two of these variables specify the epi-
demic process). The epidemic ceases as soon as there
are no more infectives in the population, which arises
with probability one after a finite time T . Then, ST

is the ultimate number of susceptibles escaping the
disease, and ZT = n + m − ST (the final size) is the
total number of infected cases, including the m initial
ones. The statistics ST is of great interest in theory
and practice, and it has received by far the most atten-
tion in the literature. Moreover, it is generally very
difficult to evaluate the epidemic process in transient
condition.

To begin with, we will examine SIR models that
are built with a Markovian structure (see Markov
Chains). In their majority, the proposed models con-
stitute variants or extensions of two well-known epi-
demic models, named the Reed–Frost epidemic (see
Chain Binomial Model) and the general epidemic.
A Markovian modeling has the advantage to make
possible a study of the temporal evolution of the epi-
demic process. A severe drawback, however, is the

associated assumption that the infectious periods are
exponentially distributed, which is unrealistic for
many diseases.

Next, we will turn to SIR models, no longer
necessarily Markovian, that precisely allow an arbi-
trary distribution for the infectious periods. The basic
model, named the generalized epidemic, is the direct
corresponding extension of the general epidemic. It is
a particular case of the so-called collective epidemic
in which infectives contact susceptibles by sampling
of random size. Studying the temporal behavior of
these models is quite complex (or even irrelevant),
and the main purpose is to analyze the ultimate epi-
demic state.

Finally, we will discuss multitype versions of these
models that allow us to incorporate heterogeneities
in susceptibility, infectivity, and/or mixing behaviors.
Such factors play an important role in the mechanism
of spread of infection and for the evaluation of control
policies (see Epidemic Models, Control).

The list of references is very partial (by necessity).
Additional references can be found in the treatises
mentioned above (and in [21] for a review of work
prior to 1990).

Markovian Epidemic Models

The Reed-Frost Epidemic

The model assumes that the periods of time between
the receipt of infection and the onset of infectious-
ness (the latent periods) are of fixed length and
the subsequent infectious periods are contracted to
a single point. Each infective is able to contact any
given susceptible with the probability p = 1 − q, all
these events being independent. A discrete timescale
t = 0, 1, 2, . . . is then used, which corresponds to the
successive generations of infections (separated by the
latent periods). In other words, if at time t there are
It = i infectives, any of the St = s susceptibles will
remain susceptible at t + 1 with the probability qi .
Thus, the epidemic process {(St , It ), t = 0, 1, . . .} is
a Markov chain and the transition law is of binomial
form:

P(St+1 = s − j, It+1 = j | St = s, It = i)

=
(

s

j

)
qi(s−j)(1 − qi)j , j = 0, . . . , s. (1)

This chain-binomial mechanism is very conve-
nient for computations with small populations. For
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example, with initially two susceptibles and two
infectives, four different paths lead to the end
of infection: (2, 2) → (2, 0) with probability q4,
(2, 2) → (1, 1) → (1, 0) with probability 2q3(1 −
q2), (2, 2) → (1, 1) → (0, 1) → (0, 0) with prob-
ability 2q2(1 − q2)p, and (2, 2) → (0, 2) → (0, 0)

with probability (1 − q2)2. In particular, the distri-
bution of ST is given by P(ST = 2) = q4, P(ST =
1) = 2q3(1 − q2) and the remainder for P(ST = 0);
the law of T also follows.

Enumerating all the transient paths becomes cum-
bersome with larger populations. The distribution of
ST , however, can be determined recursively. Putting
x[k] = x(x − 1) . . . (x − k + 1) for any naturals x, k,
we have the n relations:

E{ST,[k]q
kST } = n[k]q

k(n+m), k = 1, . . . , n. (2)

This constitutes a system of n linear equations in the n

unknown probabilities P(ST = s), s = 1, . . . , n. It is
solved recursively for k = n, . . . , 1; then P(ST = 0)

follows [23]. Somewhat surprisingly, the relation (2)
can be extended to a variety of SIR models (see
below).

The General Epidemic

The model neglects the effects of latency and
assumes that the infectious periods are independent
and exponentially distributed with parameter µ.
When infected, an individual makes contacts with
any given susceptible at the time points of a
Poisson process with rate β, all these events being
independent. Thus, the epidemic process {(St , It ), t ≥
0} is a Markov process and the infinitesimal transition
probabilities are

P(St+dt = s − 1, It+dt = i + 1 | St = s, It = i)

= βsi dt + o(dt), (3)

P(St+dt = s, It+dt = i − 1 | St = s, It = i)

= µi dt + o(dt). (4)

The state probabilities ps,i(t) = P(St = s, It = i)

satisfy the forward Kolmogorov differential equations
(see Stochastic Processes):

dps,i(t)

dt
= β(s + 1)(i − 1)ps+1,i−1(t)

+ µ(i + 1)ps,i+1(t) − (βs + µ)ips,i(t), (5)

for s = 0, . . . , n and i = 0, . . . , n + m − s, and with
ps,i(t) = 0 outside this range; initially, pn,m(0) = 1.
A Laplace transform solution is given in [19], and
a simpler method by recursion is developed in [14,
41]. In [38], the algebraic structure of the solution is
exhibited, which allows us to highlight and improve
the recursive technique.

For the end of the epidemic, the distribution of ST

is provided by a system of n linear equations similar
to (2):

E{ST,[k]q
ST

k } = n[k]q
n+m
k , k = 1, . . . , n, (6)

where qk = µ/(µ + βk) (in place of qk).

Varying Susceptibilities

The hypothesis of a common infection rate for all
pairs of susceptible and infective is a simplification.
To account for differences between susceptibles, the
general epidemic is extended by splitting up the
susceptible class into h homogeneous groups, labelled
l = 1, . . . , h, with initial sizes nl . The infectives
form a single class and act independently as before.
Within the susceptible group l, l = 1, . . . , h, each
susceptible can be contacted by any given infective
at the rate βl ; let βS = (β1, . . . , β1, . . . , βh, . . . , βh)

be the row vector of the susceptibility rates for the
n = n1 + · · · + nh susceptibles.

It seems to be intuitive that more heterogeneous
susceptibilities decrease the damage caused to the
whole susceptible class. Indeed, this can be estab-
lished using the concepts of majorization (denoted by
≺) between real vectors of n elements with equal sum
[29] and of usual stochastic order (denoted by ≤st )
between random variables [42]. Consider an identi-
cal epidemic model but built with another vector β ′S
of susceptibility rates; let S ′

t be the associated total
number of susceptibles at time t . Then, it can be
proved [5, 22] that βS ≺ β ′S (a more diverse vector of
susceptibilities) implies n − St ≥st n − S ′

t (a smaller
total infection), for all t and at the end of the epi-
demic. In particular, the worst situation arises when
the susceptibles form a homogeneous group with rate
β

S = (n1β1 + · · · + nhβh)/n.

Some Other Epidemics

Various adaptations or generalizations of the previous
SIR models have been proposed to account for speci-
ficities in the spread of certain infectious diseases. We
present two of them in continuous-time.
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With fatal epidemics, the removal of an infective
is inevitably by death. So, at time t , the surviving
population being of size St + It , the contact rate per
pair of susceptible and infective is no longer constant
but equal to β/(St + It ). This means that the infection
probability (3) is modified as

P(St+dt = s − 1, It+dt = i + 1 | St = s, It = i)

= βsi

s + i
dt + o(dt). (7)

Transient and final behaviors of the epidemic are
investigated in [9, 37]. In particular, a system of n

linear equations still exists for the distribution of ST :

E




ST,[k]

ST −k∏

j=1

qk,j




 = n[k]

n+m−k∏

j=1

qk,j ,

k = 1, . . . , n, (8)

where qk,j = µ(k + j)/[µ(k + j) + βk].
With carrier epidemics, infectives are immediately

detected and removed, and the disease is propagated
by carriers that do not display any symptom. If con-
tacted, a susceptible either becomes a carrier with
probability π , or is recognized as an infective, thus
removed, with probability 1 − π . Denoting the num-
ber of carriers at t by It , the infection probability (3)
is replaced by

P(St+dt = s − 1, It+dt = i + 1 | St = s, It = i)

= βπsi dt + o(dt), (9)

P(St+dt = s − 1, It+dt = i | St = s, It = i)

= β(1 − π)si dt + o(dt). (10)

The model with π = 1 is equivalent to the general
epidemic; π = 0 is a separate case, simpler because
there is no transition from susceptible to carrier. An
analysis of the epidemic is carried out in [35, 36]. For
the distribution of ST , the system (6) is changed as:

E{ST,[k]q
′
k

ST } = n[k]q
′
k

n
qm

k , k = 1, . . . , n.

(11)

where qk = µ/(µ + βk) (as before), and q ′
k = πqk +

1 − π .
Notice that in general, many Markovian epidemics

can be viewed as compartmental models of right-
shift type in which the population is subdivided into

a finite number of cells (here S, I, R) and transitions
are shiftings of one unit from a cell to some other to
its right [20, 38].

We also mention that demographic forces can gen-
erate recurrent epidemic outbreaks for diseases that
confer immunity. A general epidemic model account-
ing for demography, examined in [34], assumes that
new susceptibles arrive at a constant rate θn and
all individuals die at a rate θ (thus, the population
size will fluctuate around n). The study is concerned
with the time to extinction as a measure of the
persistence of infection; it relies on the concept of
quasi-stationary distribution (see Stationarity).

Collective Epidemic Model

A Common Structure

As shown in [28] and subsequent works, the Marko-
vian approach can be relaxed to some extent when
only the final states ST or ZT are under investigation.
A flexible model in this context is the collective epi-
demic presented in [25, 36] (its appellation underlines
the focus on the final outcome).

The model assumes that the infectives act indepen-
dently and their infectious periods are independent
and identically distributed with an arbitrary distri-
bution. The fates of the susceptibles in front of
the risk of infection are similar and interdependent
(probabilistically interchangeable). Specifically, each
infective fails to contact anyone in any given set of
k susceptibles, k = 1, . . . , n, with a probability qk

which is a function of the set size k (and not of the
set itself).

These qk’s are the parameters of the model. They
can be expressed under the form

qk = E

[(
n − k

R

)/(
n

R

)]
, k = 1, . . . , n, (12)

for some random variable R valued in {0, . . . , n}.
An interpretation for (12) is that any infective, j

say, contacts susceptibles by drawing a sample of
random size Rj without replacement among the n

initial susceptibles; all the random variables Rj are
independent and distributed as R (see also [30] for
this formulation).

A standard special model is the generalized epi-
demic. It assumes, as in the general epidemic, that
infectious contacts are ruled by independent Poisson
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processes with rate β (i.e. (3) is kept). The novelty
is that the infectious periods Dj are independent but
with any fixed distribution, that of a random variable
D say. Thus, for this model, qk = E[exp(−βkD)].
In particular, for the general epidemic, D is expo-
nentially distributed with parameter µ, yielding qk =
µ/(µ + βk) as indicated in (6).

The Reed–Frost epidemic too is a collective
model with qk = qk . This is not true for the fatal
epidemic (since the infection rate depends on the
surviving population size). The carrier epidemic is
an extension of the collective model with two possi-
ble types of infection: the carriers, who are removed
after a period distributed as D, and the detected
infectives, who are directly removed; thus, for the ini-
tial carriers, the probabilities of nontransmission are
qk = E[exp(−βkD)] = µ/(µ + βk), while for each
new infection, the probabilities of nontransmission
are q ′

k = E[π exp(−βkD) + 1 − π] = πqk + 1 − π .

The Final State

Different representations of this model can be built,
which allow the study of its final state ST . So, let
us label the infectives according to their order of
removal in the epidemic, and denote by Ŝj , j =
1, 2, . . . , the number of susceptibles that escape con-
tact with the first j infectives; put Ŝ0 = n. It is easily
seen that the process {Ŝj , j = 0, 1, . . .} is a Markov
chain that has the same final state as the collective
epidemic. One can then show that the exact distri-
bution of ST is provided by the system (6) with qk

defined as above [25, 36].
When considering large populations, however,

there is a need for approximation methods. Let n →
∞, and write R = Rn depending on n; for clarity,
m is fixed here. Roughly, three different asymptotic
behaviors can arise.

(a) A minor infection (ST is near n). Suppose that
Rn → R∗ in distribution with E(R∗) ≤ 1. Then, the
final size ZT convergence in distribution to Y∞,
where P(Y∞ < ∞) = 1 and Y∞ is the total progeny
in a branching process having m ancestors and with
all offspring sizes independent and distributed as R∗.
The generating function of Y∞ is given by [φ(z)]m,
where φ(z) satisfies the equation φ(z) = f [zφ(z)],
f (z) being the generating function of R∗.

(b) A possible major infection (with ST around
a positive fraction of n). Suppose that Rn → R∗ in
distribution with E(R∗) > 1. Then, ZT still converges

to Y∞ but now P(Y∞ < ∞) = ρm < 1 where ρm is
the extinction probability of the branching process
(ρ is the unique root in (0, 1) of the equation ρ =
f (ρ)). With probability 1 − ρm, a true epidemic
occurs that infects infinitely many susceptibles, that
is, ST /n → σ < 1 in probability (σ is the unique
root in (0, 1) of the equation σ = exp[−E(R∗)(1 −
σ)]); moreover,

√
n(ST − nσ) has a normal limit

distribution with mean 0 and variance σ(1 − σ){1 +
[var(R∗) − E(R∗)]σ }/[1 − E(R∗)σ ]2.

(c) A drastic infection (ST is bounded). Sup-
pose that Rn → ∞ in probability. Then, convergence
in distribution of ST to a law nondegenerate in 0
can occur under some conditions on the asymptotic
behavior of Rn, and the limit distribution is neces-
sarily a Poisson law with random mean. It reduces
to a Poisson law with fixed mean b if and only if
n[1 − E(Rn)/n]n → b and var(Rn)/n → 0.

The qualitative difference between the behaviors
(a) and (b) depicts a threshold phenomenon (see Epi-
demic Thresholds) in which the threshold parameter
is E(R∗) and the critical value is equal to 1. The
parameter E(R∗) is named the basic reproduction
number; it is usually denoted by R0 and is interpreted
as the expected number of infectious contacts which
one infective would make in a large completely sus-
ceptible population [17]. Considerable work has been
devoted to these questions [4, 8, 27, 30, 39, 44]. The
behavior (c) is peculiar to highly infectious diseases;
it is studied in [6, 24, 26].

As a special case, let us examine the generalized
epidemic, where β = βn is function of n (D being
fixed). Here, Rn in (12) has a binomial law with n tri-
als and random success probability 1 − exp(−βnD).
For (a) and (b), a standard situation is when βn = β/n

(each infective meets, on the average, a limited num-
ber of susceptibles); then, R∗ has a Poisson law with
random mean βD, with R0 ≡ E(R∗) = βE(D). For
(c), convergence can occur under some conditions
on the tail distribution of D and for a sequence
βn that necessarily satisfies n{1 − E[exp(−βnD)]} −
ln(n/bn) → 0 with bn → b; then, the limit distribu-
tion is either a Poisson law with fixed parameter b

or a Poisson law with a random mean based on an
asymmetric Cauchy stable law.

We point out that the alternative situation where
mn → ∞ as n → ∞ can also lead to different asymp-
totic regimes. Results are given in [26, 27, 30]; an
extensive analysis for the generalized epidemic is car-
ried out in [43].
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Varying Infectivities

It is intuitively clear that a lower infectivity power
decreases the total damage caused by the epidemic.
To make this precise, we use the concept of s-
increasing convex order between nonnegative random
variables (denoted by ≤s in the arithmetic case and
by ≤s∗ in the continuous case). When s = 1, it corre-
sponds to the usual stochastic order and when s = 2,
to the classical increasing convex order [25, 42]. Con-
sider a new collective model with parameters q ′

k given
by (12) with some random variable R′ substituted for
R; let S ′

T ′ be the associated final susceptible size.
Then, it can be proved [25] that n − R ≤s n − R′
(a smaller number of contacts per infective) implies
ST ≤s S ′

T ′ (a larger final susceptible state).
For the generalized epidemic, we get that

exp(−βD) ≤s∗ exp(−βD′) (a shorter infectious
period) yields ST ≤s S ′

T ′ (a better protection for the
susceptibles). This result is of practical interest when
the law of D is not known except a few moments.
For instance, suppose that E(D) = d1 and var(D) =
d2 are given. One shows that exp(−βD′′) ≤2∗
exp(−βD) ≤3∗ exp(−βD′) where D′′ is a random
variable degenerate in d1, while D′ is a two-
points random variable of values (d2

1 + d2)/d1 with
probability d2

1 /(d2
1 + d2) and 0 otherwise. Thus,

bounds for ST are S
′′
T

′′ ≤2 ST ≤3 S ′
T ′ . Note that

replacing D by its mean d1 leads to underestimate,
in the increasing convex sense, the ultimate number
of susceptibles.

Multitype Epidemic Models

Individual Heterogeneities

Variability in individual susceptibilities and/or
infectivities is a first kind of potential heterogeneity.
This factor is easily incorporated in the previous
models. For that, we subdivide the whole population
into h homogeneous groups of individuals, labeled
l = 1, . . . , h, with initially nl susceptibles and ml

infectives. Going back to Markovian epidemics, let
us consider the general multitype epidemic. In group
l, each infective is removed at the rate µl , and
while infected, it contacts any given susceptible
within group l′ at the rate βl,l′ . In particular,
the case called proportionate mixing is when βl,l′

is of product form βlγl′ . The collective multitype
epidemic is constructed in a similar way. In group

l, each infective fails to transmit infection within
any given set of k1 susceptibles in group 1, . . . , kh

susceptibles in group h, with a probability q
(l)
k1,...,kh

,
where k1 = 0, . . . , n1, . . . , kh = 0, . . . , nh with k1 +
· · · + kh ≥ 1. In particular, for the generalized
multitype epidemic, then q

(l)
k1,...,kh

= E[exp(−βl,1k1 +
· · · + βl,hkh)D

(l)] where D(l) is the length of an
infectious period in group l.

The study of these multitype models is, roughly,
similar to the homogeneous case. Let us concentrate
on the ultimate numbers of susceptibles S

(l)
T , l =

1, . . . , h, that escape the disease in the different
groups. For their exact joint distribution, we have the
relations:

E

{
h∏

l=1

S
(l)
T ,[kl]

[q(l)
k1,...,kh

]S
(l)

T

}
=

h∏

l=1

nl,[kl][q
(l)
k1,...,kh

]nl+ml ,

(13)

where k1 = 0, . . . , n1, . . . , kh = 0, . . . , nh with k1 +
· · · + kh ≥ 1. This is a system of (n1 + 1) . . . (nh +
1) − 1 linear equations in the final state probabilities
P [S(1)

T = s1, . . . , S
(h)
T = sh], for s1 = 0, . . . , n1, . . . ,

sh = 0, . . . , nh, with s1 + · · · + sh ≥ 1; P [S(1)
T =

· · · = S
(h)
T = 0] follows [36].

Large population limits still hold true. So, putting
n = n1 + · · · + nh, consider the generalized epidemic
where the contact rates are of normalized form
βl,l′/n and each group size is large with nl/n →
νl > 0; D(l) is fixed, and ml too say. Then, the final
sizes vector (Z

(1)
T , . . . , Z

(h)
T ) converges in distribu-

tion to the total progeny vector (Y
(1)∞ , . . . , Y

(h)∞ ) in
a multitype branching process having (m1, . . . , ml)

ancestors, with independent lifetimes distributed as
(D(1), . . . , D(h)) and matrix of birth rates {βl,l′νl′ },
1 ≤ l, l′ ≤ h. Thus, there exists a threshold param-
eter (basic reproduction number) R0 which is the
largest eigenvalue of the matrix of mean offspring
{E(D(l))βl,l′νl′ }, 1 ≤ l, l′ ≤ h. If R0 ≤ 1, the total
progeny of the branching is finite with probabil-
ity one: the epidemic is minor. If R0 > 1, the total
progeny can explode with a strictly positive proba-
bility; on this part, the epidemic is major and the
final sizes vector has asymptotically a multivariate
normal distribution [7]; see also [40].

Structural Heterogeneities

Nonuniform mixing caused by the social or geograph-
ical structure of the population is another kind of
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potential heterogeneity. A simple case with two levels
of mixing, local and global, is motivated by epidemics
among households in which the infection power of
an infective is much higher within its own house-
hold than outside. Extending in this sense the above
generalized epidemic, one obtains again a threshold
behavior for the asymptotic situation in which the
number of households tends to infinity [10]. Such a
model is useful especially when evaluating potential
strategies for the control of disease transmission [13]
(see Epidemic Models, Control).

In spatial epidemics, individuals are located in dif-
ferent sites, and infectives contact others according to
a given spatial distribution (see Epidemic Models,
Spatial). Important aspects are the threshold phe-
nomenon and the velocity of the spread of the disease.
Results can be obtained for some spatial extensions
of the generalized epidemic [15, 33].
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[36] Picard, Ph. & Lefèvre, Cl. (1990). A unified analysis
of the final size and severity distribution in collective
Reed-Frost epidemic processes, Advances in Applied
Probability 22, 269–294.
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Skewness

A statistical distribution which is not symmetric about
some point is said to be skew. The extent of skewness
may be measured in a variety of ways. For example,
the mean, median, and mode generally do not coin-
cide for a skew distribution, and so their relationships
may be used to quantify skewness. Two candidates
are:

skew1 = mean − mode

standard deviation
,

skew2 = mean − median

standard deviation
.

Both were considered by Pearson [6], who noted the
empirical fact that for many distributions, skew1 ≈
3skew2 (Pearson’s law of skewness). Pearson gave
an explanation in terms of his family of type III dis-
tributions (see Gamma Distribution). The definition
skew1 is unattractive in the case of multimodal dis-
tributions, and since the main motivation for skew2

is via Pearson’s law, which also fails in multimodal
cases, neither skew1 nor skew2 has general applica-
tion (see Unimodality).

Today, skewness is usually defined in terms of the
third cumulant of a distribution (see Characteristic
Function), rather than through relationships among
its mean, median, and mode. Nevertheless, the two
approaches are linked; see, for example, Haldane [1]
and Hall [2], who provided an explanation for Pear-
son’s law in terms of the third cumulant and the
central limit theorem.

Given a random variable X with mean µ = E(X),
let σ 2 denote its variance, let µ3 = E(X − µ)3 be its
third cumulant, and define

β1 = µ2
3

σ 6
, skew3 = √

β1 = µ3

σ3
.

The latter is sometimes referred to simply as “the
skewness of the distribution of X”. Its multivariate
analog, for a d-vector X, is the set of all 1

6d(d2 +
3d + 2) third moments of components of Y =
Σ−1/2X, where � denotes the covariance matrix of
X. (There are d terms of the form E(Y (i)3

), d(d − 1)

terms like E(Y (i)Y (j)2
), and 1

6d(d − 1)(d − 2) terms
like E(Y (i)Y (j)Y (k)).)

If the distribution of X has been standardized
for location and scale (i.e. µ = 0 and σ = 1), then

the first terms in Edgeworth and Gram–Charlier
expansions of the distribution or density function
of X are proportional to

√
β1; see, for example, [3,

pp. 28, 30]. This indicates the central role which√
β1 plays in determining properties of “regular”

distributions, relative to other measures of skewness.
Van Zwet [7] proposed a partial ordering of dis-

tributions in terms of skewness, and suggested defin-
ing a distribution with distribution function F to be
skewed to the right if F−1{1 − F(x)} is convex in
x. Oja [5] noted that some skewness measures (e.g.
skew3) preserve van Zwet’s ordering, while others
(e.g. skew1) do not.

Descriptions of skewness in terms of moments
are not always well defined. More robust defini-
tions include that attributed to F. Galton, whose
statistical work stressed the importance of quartiles
(see Quantiles):

skew4 =
lower quartile + upper quartile

−2 × median
upper quartile − lower quartile

.

Each of skew1, . . . , skew4 is estimable, although
the difficulty of estimating the mode makes skew1

unattractive for data analysis. The sample skewness,
for data X1, . . . , Xn, is often defined as

√
b1 =

n−1
n∑

i=1

(Xi − X)3

{
n−1

n∑

i=1

(Xi − X)2

}3/2 ,

and is an estimate of
√

β1. In normal samples,
√

b1

is approximately normally distributed with zero mean
and variance 6/n. More extensive properties of its
moments are addressed in [4, pp. 316–318].
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Slope–Ratio Assay

Slope-ratio bioassays are analytic dilution assays
(see Biological Assay, Overview) that arise mainly
from microbiologic applications. The subject is usu-
ally an inoculum of specified amount of a bacterial
culture. The response is typically either a measure
of the bacterial growth during a fixed time interval
or the amount of a base (alkali) needed to neutralize
the acid that is formed during growth of the bacteria
following application of fixed doses (di) of test and
standard preparations.

The statistical model relating fixed doses of the
standard and test preparations to the response leads to
straight lines that intersect at zero dose. Generally, the
expected response of the standard is assumed to be
linear in some known power of dose. The regression
line for the standard is then

E[yS|dS] = α + βSx,

where x = dλ
S is the dose metameter. In practice,

setting the power parameter (λ) equal to one often
provides an adequate approximation [2]. The dosage
of the test preparation (dT) that provides an equi-
valent response to a specified dose of the standard is
dS = ρdT, where ρ designates the relative potency.
The regression line for the test preparation is thus

E(yT|dT) = E[yS|ρdT] = α + βS(ρdT)λ

= α + βSρ
λdλ

T .

When λ equals one and x = dT, then βT = βSρ

(Figure 1).
The fundamental assumption for validity (condi-

tion of similarity) in a slope-ratio assay implies that
the standard and test preparations intersect at zero
dose. Therefore, the relationship can alternatively be
expressed as a multiple regression equation, such that

E(y) = α + βSxS + βTxT.

The solution for the relative potency is the ratio of
the two slopes from the multiple regression:

ρ =
(

βT

βS

)1/λ

.

When λ = 1, the relative potency is

ρ = βT

βS
.

S

T

E(y)

x

Figure 1 Expected response (E(y)) vs. dose metameter
(x) for standard (S) and test (T) preparations in a slope-ratio
assay

Relative Potency Estimation and Validity
Tests

Estimates of the slopes for the standard and test
preparations are readily calculated using conventional
multiple linear regression techniques. To evalu-
ate fully the model’s assumptions, measurements
of the response at zero dose (blanks) need to be
incorporated in the experiment. For computational
purposes, it is convenient to regard the doses as
N triplets {x0, xS, xT} with associated response y,
where N = N0 + NS + NT (total observations across
blanks, standard, and test preparations). Here, dose
levels are coded as “0” in the triplet for other than the
preparation specified; in other records, (1, 0, 0) corre-
sponds to blanks, {0, xS, 0} to standard, and {0, 0, xT}
to test doses, respectively. A comprehensive anal-
ysis, including estimation of the relative potency,
and validity tests entails computation of three regres-
sion analyses: (i) estimation of three regression coef-
ficients (β̂03, β̂S3, β̂T3) simultaneously using all N

observations; where β̂03 estimates the response at
zero dose; (ii) estimation of two regression coeffi-
cients β̂S2 and β̂T2, simultaneously for the N obser-
vations including the blanks; and (iii) estimation of
β̂S1 and β̂T1 as separate lines based, respectively,
on the NS and NT observations of the standard and
test preparations. Generally, the slopes from (ii) are
utilized to estimate relative potency; that is,

ρ̂ = β̂T

β̂S

= β̂T2

β̂S2

,

assuming that λ = 1. However, when validity tests
indicate a significant F test for blanks (see below)
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in the absence of other forms of invalidity, suggest-
ing curvature at very low doses, it may be advisable
to use β̂T3 and β̂S3 from (i) as well as their corre-
sponding variance terms for calculating confidence
intervals (see below).

Before proceeding to calculate the confidence
intervals for ρ, verification that there is no seri-
ous evidence of invalidity of the assumptions of the
design model is important. The general form of the
analysis of variance formulas needed for slope ratio
assay validation is shown in Table 1. Calculated F

tests are conventionally compared to tabulated values
of the F distribution, F(df1,df2)

, at a 5% significance
level. The specific hypotheses of interest and the cor-
responding variance ratio statistics are as follows:

1. H1 : α = αS = αT; reject if

F = MSI

MSE
> F(1,N−KS−KT−1).

Failure to reject indicates that the fundamental
assumption of validity (the condition of similar-
ity) is not seriously violated. It is analogous to
the test for parallelism in a parallel-line assay.

2. H2 : α = average response for blanks; reject if

F = MSB

MSE
> F(1,N−KS−KT−1).

Rejection of this test suggests the presence of
curvature at very low doses.

3. H3 : βS = βT = 0; reject if

F = MSR

MSE
> F(2,N−KS−KT−1).

A valid assay will have a highly significant test
for regression.

4. H4 : test of deviation of lines from linearity;
reject if

F = MSNL

MSE
> F(KS+KT−4,N−KS−KT−1).

Rejection indicates invalidity of the statistical
assumption of linearity. If H4 is rejected, there
is a need to consider alternative approaches.

When no evidence of invalidity is present, confi-
dence intervals for

ρ̂ = β̂T

β̂S

are calculated through direct application of Fieller’s
theorem for a ratio estimator [1]. In the slope-
ratio assay, the (1 − α) × 100% confidence intervals
are

ρ̂L, ρ̂U =
[
ρ̂ − gν12

ν11
± t σ̂

β̂S

{
ν22 − 2ρ̂ν12 + ρ̂2

ν22

− g(ν22 − ν12/ν11)
1/2

} ] /
1 − g,

where

g = t2σ̂ 2ν11

β̂2
S

, σ̂ = (MSE)1/2

and t(1−α/2) is based on N − KS − KT − 1 df.
The terms ν11, ν12, and ν22 are the coefficients

in the variance–covariance matrix from which the
slopes are estimated. In practice, g is often small in
slope-ratio assays and thus has little effect on the
computations.

For more detailed presentation of the design and
analysis of slope-ratio assays, Chapters 7 and 8 in
Finney’s text [2] and Chapter 3 in Hubert [3] are
useful references.

Additional Remarks

The formulas presented above are general in form
and do not depend on having a symmetrical, bal-
anced design for the assay or equal spacing between
doses. While a symmetric design with equal num-
bers of subjects at each dose level, including the
blanks, is preferable on the basis of efficiency con-
siderations, modern computing tools obviate the need
for the simplified formulas that accompany such
designs. At least three dose levels of the test and
standard preparations and inclusion of blanks are
needed to test validity assumptions fully. Such a
design would usually be referred to as a (3K + 1)
design.

The methodology can easily be extended to accom-
modate designs in which multiple test preparations
are simultaneously compared to the same standard.
For designs with more than one test preparation, con-
sideration of optimal allocation among preparations
given a total number of subjects is relevant. If N0 is
prespecified, then optimal allocation of the remaining
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Table 1 Slope-ratio assay analysis of variance

Source df Sums of squares Mean squares F

Total N − 1 SSy =
∑

0,S,T

Kp∑

i=1

npi∑

j=1

(ypij − y)2 MSy = SSy/(N − 1)

Among doses KS + KT SSD =
∑

0,S,T

Kp∑

i=1

npi(ypi − y)2 MSD = SSD/(KS + KT) MSD/MSE

Regression 2 SSR = SxSy β̂S2 + SxTy β̂T2 MSR = SSR/2 MSP/MSE

Blanks (control) 1 SSB = (Sx0y β̂03 + SxSy β̂S3 MSB = SSB MSB/MSE

+ SxTy β̂T3) − SSR

Intersection 1 SSI = SSD − SSR − SSB − SSNL MSI = SSI MSI/MSE

Nonlinearity KS + KT − 4 SSNL =
∑

S,T




Kp∑

i=1

npi∑

j=1

(ypij − yp)2



 MSNL = SSNL/(KS + KT − 4) MSNL/MSE

−
∑

S,T

(
S2

xpyp

Sxpxp

)

Within doses N − KS − KT − 1 SSE = SSy − SSD MSE = SSE/(N − KS

(error) − KT − 1) = σ̂ 2

Notation (adapted from [2]):

npi = number observations at dose i of preparation p,
ypij = response of subject j to dose i of preparation p,
xpij = dose metameter for subject j to dose i of preparation p,

where

i = 1, 2, . . . , Kp , p = 0 (blanks), S (standard), or T (test)

and

Kp = number dose levels of preparation p,

Np =
Kp∑

i=1

npi, N =
∑

O,S,T

Np,

Sypyp
=

Kp∑

i=1

npi∑

j=1

(ypij − yp)2;

where

yp =



Kp∑

i=1

npi∑

j=1

ypij




/

Np,

Sxpxp
=

Kp∑

i=1

npi∑

j=1

(xpij − xp)2,

where

xp =



Kp∑

i=1

npi∑

j=1

xpij




/

Np,

Sxpyp
=

Kp∑

i=1

npi∑

j=1

(xpij − xp)(ypij − yp).
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NS + NT subjects among r test preparations and the
standard would be

NS = r1/2NT,

assuming that the variance of ρ̂ is approximately
proportional to 1/NS + 1/NT.

Relative potency estimation also assumes both
homoscedasticity and normality for the distribution of
the random errors in y at each dose level. Whenever
sufficient data are available, appropriate tests should
be conducted to assess whether these assumptions are
violated. As noted in Biological Assay, Overview the
statistical properties are suspect for the small to mod-
erate sample sizes that characterize most bioassays.
Finney [2] demonstrates that the analyses described
above may provide very similar estimates of the rel-
ative potency and its confidence intervals even when
the normality assumption is not fulfilled, but other
model assumptions are not seriously violated. The

choice of an appropriate response metameter should
rely not primarily on the statistical evidence within
a single assay, but should reflect information derived
from evaluation of validity across a related class of
independent assays.
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Slutzky–Yule Effect

The practice of smoothing a time series by forming
a moving average of some kind is common, and is,
provided there is no seasonality (see Seasonal Time
Series), a very useful tool; if there is (or may be)
seasonality, it remains useful, but the span and other
details need more careful attention.

It is, however, not without some drawbacks,
first discovered, independently, by Slutzky [2] and
Yule [3].

As a very simple example, suppose that {Xt } is a
time series of completely independent observations,
with a common distribution, white noise (see Noise
and White Noise), and that {Yt } is the result of
applying a moving average of order 3,

Yt = (Xt−1 + Xt + Xt+1)

3
. (1)

Then {Yt } consists of correlated observations, even
though {Xt } was made up of uncorrelated observa-
tions: it is easily calculated that the autocorrelation
(see Autocorrelation Function) of {Yt } is 2/3 at lag
1, 1/3 at lag 2, and 0 at greater lags. In other words,
the process of averaging, and thereby smoothing, has
introduced correlation. (This is not surprising: a series
will appear smooth(er) if values nearby in time are
close(r) together, which is another way of saying that
they are (more) correlated.)

The same is true if {Xt } is operated on by any
linear filter (see ARMA and ARIMA Models): if

Yt =
d∑

i=−c

giXt−i , (2)

say, then again {Yt } consists of correlated observa-
tions, even though {Xt } was made up of uncorrelated
observations.

A different perspective may be had by consider-
ing the spectral approach (see Spectral Analysis).
The spectral density of {Xt }, as white noise, is con-
stant for all frequencies. The spectral density of {Yt }
is then given by the product of this constant and
the transfer function of the linear filter (see ARMA
and ARIMA Models); unless the filter is the trivial
one which corresponds to multiplication by a con-
stant the transfer function will not be constant as a
function of frequency, hence neither will the spectral
density of {Yt } be, and consequently {Yt } will have

nonvanishing autocorrelations. In the special case of
the moving average above, the spectral density of
{Yt } will be proportional to (1 + 2 cos ω)2 at circular
frequency ω.

In fact this effect can have rather more serious
consequences than might appear at first sight. Sup-
pose that the transfer function of the filter takes its
maximum (modulus) at a single nonzero frequency
ω0, and suppose the filter is applied several (many)
times in succession: the resulting combined filter will
strongly emphasize ω0 relative to the rest – in other
words {Yt } will show some approximately periodic
behavior; this is the essence of the Sinusoidal Limit
Theorem. The above moving average cannot directly
produce this effect, but suppose the moving average
is used to estimate the trend, which is then subtracted
from the original series to produce a “detrended”
series for further analysis: the resulting filter is of
the form

Yt = (2Xt − Xt−1 − Xt+1)

3
,

whose transfer function is proportional to (1 − cos ω),
with a maximum at ω = π , or equivalently at fre-
quency (in the usual sense) 1/2 and period 2.

Thus we can produce some oscillatory behavior
in a completely nonperiodic series by operating on
it with a linear filter. Slutzky and Yule noted that
the analysis of data (or even its collection, if in the
collection process we necessarily subject it to a linear
filter) can, for this reason, produce periodicities which
have no real basis and thus some of those actually
observed could be artifacts caused by data processing
or collection.

The effect in practice, with filters that are likely
to be used, will be less immediately striking – for
example, the oscillations will not be regular, either
in period or in amplitude – but the overall impres-
sion may nevertheless suggest the presence of an
oscillatory component in the process, and a statistical
analysis is then quite likely to confirm its existence.
Kendall & Stuart [1] give some results about, and
illustrations of, the average distance apart of peaks
and of upcrossings of the axis, showing the effect
of applying filters. The oscillations observed in real
economic time series, and very likely in those arising
in other fields of application, do have an appear-
ance similar to those which can be generated in this
way.
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The detailed discussion has assumed that {Xt }
is white noise, but clearly the argument applies for
any {Xt }.
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Small Area Estimation

Federally sponsored sample surveys have been de-
signed to meet the needs of government agencies,
legislative bodies, and health professionals for the
comprehensive national estimates needed in the for-
mulation and analysis of national policy initiatives
directed to social, economic, or health related issues.
These national data collection efforts are generally
limited, however, in their capacity to produce reli-
able estimates (see Estimation) at the subnational or
small area level. While unbiased direct estimates can
often be derived at the census region or census divi-
sion level for most nationally based survey efforts,
sample size requirements and budget constraints pre-
clude the capacity for the derivation of state level
estimates and for geographic areas at the sub-state
level such as counties. In spite of these budgetary
constraints, a strong demand persists for accurate and
reliable estimates of sociodemographic, economic,
and health parameters at the subnational level.

Small area estimation can be defined as the appli-
cation of model-based or indirect estimators, using
data from surveys primarily designed to produce
estimates of criterion measures at the national or
regional level, to derive comparable estimates at more
geographically disaggregated levels such as counties
or other small areas. These techniques are typically
characterized by prediction models or indirect esti-
mators that make use of available survey data at the
national or regional level, data on population char-
acteristics at the state or local level, and available
auxiliary (predictor) data at the local level that are
related to the criterion measure of interest [21, 22,
26]. A survey design with sufficient sample size in
every state or local area for which separate estimates
are desired would permit the derivation of unbi-
ased direct estimates of core survey measures with
acceptable levels of precision to satisfy underlying
analytic objectives. Budget and logistical consider-
ations, however, make sample sizes too small to
support estimates of criterion variables at the subna-
tional level in most federally sponsored surveys. This
has resulted in the development of indirect small area
estimators. Such estimators use auxiliary survey data
and population information that characterize the state
or small area, together with national survey data, to
develop a model-based small area estimate. The level
of accuracy and reliability achieved by these small

area estimation strategies is completely dependent
on the degree to which underlying model assump-
tions are satisfied. The type of predictor information
available, the functional relationship of the predictor
information to the specified criterion variables, and
the assumptions underlying each prediction model
narrow the number of procedures that are appropriate
for a particular application.

As a consequence of empirical tests of validity
and widespread usage, a set of small area estima-
tion strategies has gained respectability under certain
qualifying assumptions. This article provides a review
of these alternative small area estimation techniques
that have been developed and are currently being
implemented. Attention is given to the underlying
assumptions and data requirements to operational-
ize the respective estimation strategies. Furthermore,
examples of specific applications of the small area
estimation techniques are also provided to illustrate
their pervasive utility.

Small Area Estimation Techniques

The NCHS Synthetic Estimator

The NCHS synthetic estimator is an approach for-
malized by the National Center for Health Statis-
tics [20, 21, 26]. The underlying assumption of the
model is that within a demographic subgroup, the
estimate of the criterion variable for the small area
is equivalent to that obtained for the nation or the
census region in which the small area is located.

Sociodemographic information such as age, race,
ethnicity, sex, and income must be available both
for the sample survey and for the small areas. D

domains are formed by cross classification of these
demographic variables. To estimate the mean of the
characteristic Y for the small area l, the estimate of
Y (d) for each of the D domains is calculated from
the survey data. The small area estimate, Y s(l), for
area l is the sum of the weighted average of Y (d)

across all domains, where the weight (P (ld)) is the
proportion of the population of small area l that is in
each domain. More specifically,

Y s(l) =
∑

d∈l

P (ld)Y (d),

where Y s(l) is the NCHS small area estimator of
the mean for criterion variable Y in small area l,



2 Small Area Estimation

P(ld) is the proportion of the lth area’s population
that belongs to domain d, and Y(d) is a national or
regional survey estimate of the mean value of the
criterion variable Y for domain d.

The Sample Regression Estimator

The sample regression estimator is based on a regres-
sion model using selected predictor (symptomatic)
variables as independent variables and sample data
for the variable of interest as the criterion or depen-
dent variable. This approach is generally attributed to
Ericksen [8, 9]. Criterion variable data must be avail-
able for a sample of n small areas selected from the
set of N small areas in the total population. These
small areas are referred to as primary sampling units
(PSUs) and the n small areas in the sample as sam-
pled PSUs. Estimates of the criterion variable are
computed for these sampled PSUs. For most national
household surveys, the PSUs are defined as counties
or groups of contiguous counties. Predictor informa-
tion is also needed for the sample PSUs and the
nonsampled PSUs for which small area estimates
are desired. Using predictor data for these PSUs, a
regression model is developed to predict Yr . More
specifically,

Yr = Xβ + ε,

where Yr is an n × 1 vector of values for the criterion
variable in the n sample PSUs, X is an n × (p + 1)

matrix containing the set of p symptomatic indicators
for the n sampled PSUs and an indicator for an
intercept term, β is a (p + 1) × 1 vector of regression
coefficients, and ε is an n × 1 vector of stochastic
errors.

The values of the symptomatic indicators for small
areas, defined at the same level of geographic aggre-
gation as the PSUs, are then substituted into the
estimated regression model to derive the estimate of
the criterion variable for the small areas. Specifically,
the sample regression estimator for small area l (e.g.
county level) is obtained as

Yr(l) = X(l)β̂,

where Yr(l) is the sample regression estimator of the
mean for the criterion variable in small area l, X(l)

is the (p + 1) vector of symptomatic information
for local area l, and β̂ is the regression estimate
obtained in fitting the model for the data from the
sample PSUs.

If the small area of interest is at the state level
(S), the sample regression estimator developed at
the county level would be applied in the following
manner:

Y (S) =
∑

l∈S

P (lS)Yr(l),

where P(lS) is the proportion of the population in
state S in small area (county) l.

The Base Unit Estimator

For those situations in which the linearity assumption
of the sample regression model is suspect, an alter-
native strategy has been developed, which is referred
to as the base unit or poststratified estimator [5, 14].
This small area estimation technique divides the small
area of interest into constituent geographic sectors or
base units, which might be counties, enumeration dis-
tricts, or other geographic subunits. The small area l

for which a criterion variable estimate is to be derived
is referred to as the target area and further subdivided
into target area base units. Counties would be the base
units within target areas such as states. Unlike other
methods that use symptomatic information directly
for estimation, this procedure uses the symptomatic
information to group the base units. G groups are
formed using a suitable clustering algorithm or by
a minimum variance stratification method. All tar-
get base units belonging to the small area of interest
are assigned to one of the G poststrata based upon
the symptomatic information. An estimate of the cri-
terion variable for each of the target base units is
obtained from the sample base units in the poststra-
tum to which it has been assigned. In essence, each
target base unit estimate can be considered as a small
area estimate [4, 6].

An estimate of Y (g), the mean of the criterion
variable of interest, is calculated for each of the G

groups or poststrata by taking a weighted average
of the estimates of the criterion variable across the
sample base units that comprise each group. The
mean estimate of the criterion variable for the gth
group (g = 1, 2, . . . , G) is given by

Y(g) =
∑

i∈g

W(i)Y (i),

where W(i) estimates the proportion of the total
population of sample base units in group g that is
represented by base unit i, and Y (i) is an estimate
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of the criterion variable for the ith sample base unit.
The base unit estimate of the criterion variable for
each small area l is calculated as

Y b(l) =
∑

g∈l

P (lg)Y (g),

where P(lg) is the proportion of the population of
small area l that is classified in group g.

The base unit estimator bears a striking resem-
blance to the NCHS synthetic estimator. The primary
difference lies in the method of poststrata construc-
tion vs. domain formation [24]. The base unit estima-
tor links all individual observations within a sample
base unit to a particular group or poststrata, based on
symptomatic information for the entire unit.

The Composite Small Area Estimator

The composite small area estimator takes the form
of a weighted average of two component small area
estimators for small area l,

Y c(l) = C(l)Y 1(l) + [1 − C(l)]Y 2(l),

where C(l) is an appropriately chosen weight and Y 1

and Y 2 are alternative small area estimators for local
area l.

Schaible [25] has demonstrated that, with a judi-
cious selection of composite weights, the composite
estimator will have a mean square error that is
smaller than the mean square error of the individ-
ual estimators. When the expected value of E[Y 1(l) −
Y (l)][Y 2(l) − Y (l)] is small relative to the mean
square error of Y 2(l), the weight that will minimize
the composite estimator’s mean square error can be
approximated as

C(l) = 1

[1 + R(l)]
,

where
R(l) = MSE[Y 1]

MSE[Y 2]
.

Bayesian Methods Using Hierarchical Models

A hierarchical model has also been utilized to model
the geographic variation of health care measures
expressed in terms of binary outcomes. The primary
objective of this approach is to account for the small

area variation that is generally ignored by the other
small area estimation strategies [17]. As part of the
estimation scheme, available covariates at the local
level are incorporated in the model specification to
improve on the predictive capacity for small areas. In
addition, the variable of response due to local effects
is explicitly incorporated into the model. Estimates
and their accuracy are derived using Bayesian pre-
dictive inference [17].

Using this approach, the small area estimator, Yh,s ,
of a mean for criterion measure of interest at the state
level (s) is based on the posterior mean of Yh,s ,

Yh,s =
∑

cbk∈sp

Ycbk

N

+
∑

cb∈sp

(Ncb − ncb) × E(pcb|Ysp)

N
,

where b represents a demographic class; c represents
a county in state s; k represents an individual in
demographic class b and county c; sp indicates selec-
tion in the sample; Ncb and ncb are the population and
sample sizes in class b of county c; pcb denotes the
probability than an individual in demographic class
b, county c, has criterion measure outcome of interest
(Y has binary measure: Y = 1 indicates yes; Y = 0
indicates no); and E(pcb|Ysp) represents the posterior
mean of pcb, where

ln

[
pcb

(1 − pcb)

]
= Xcbβc

is defined as a logistic regression model, so that
Xcb is a vector of covariates which characterizes the
demographic class within county c.

In this setting the logistic parameter is allowed to
vary across counties to incorporate local error in the
model [17]. Efforts to approximate the mean squared
error for this type of small area estimator have been
made by Prasad & Rao [23].

Applications of Small Area Estimation
Techniques

These small area estimation strategies, and variants
of the techniques described, have been applied to
a widespread set of social, demographic, economic,
and health related criterion variables for which local
area estimates are desired. With respect to health
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specific applications, the NCHS synthetic estimator
has been used to produce state specific estimates of
mortality [15], disability [15, 18, 19, 20], utilization
of medical services [15], infant and maternal health
characteristics [11], and functional dependency [7].
In addition, the base unit method has been used to
derive state specific estimates of health insurance
coverage [3].

Postcensal estimates of population growth have
been derived at the state, county, and local level,
using variants of the sample regression small area
estimator [8, 16]. In addition, indirect regression type
small area estimators have been used to produce state
and county level estimates of personal income and
annual income by the Bureau of Economic Analy-
sis [1]. A composite type small area estimator has
also been used by the Bureau of the Census to pro-
duce state estimates of median annual income for
four-person families [10].

The Bureau of Labor Statistics produces state and
local area employment and unemployment estimates
under a federal–state cooperative program using indi-
rect regression type estimators [27]. The NCHS syn-
thetic estimator has also been used to produce small
area unemployment and housing estimates [12]. In
addition, the Department of Agriculture has imple-
mented regression type small area estimators in the
derivation of county estimates of crop acreage [2] and
has used composite type estimators to derive county
estimates of crop production and livestock invento-
ries [13].
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Small Area Variation
Analysis

This area of investigation in health services research
seeks to detect and explain variation in the amount of
health care consumed by residents in different “small
areas” [7] (see Small Area Estimation). Areas in
which the utilization is higher than average may be
investigated further in the interests of lowering the
costs of health care by preventing unnecessary ser-
vices. Areas with particularly low utilization are of
interest as places in which access to health care may
be inadequate. Ideally, one would study variation
about the desirable utilization rate, but the desirable
or appropriate rate at which a procedure should be
performed is not usually known. Small area variation
analysis was pioneered by John Wennberg and Alan
Gittelsohn, who showed that the probability of hav-
ing a tonsillectomy, hysterectomy, or prostatectomy
varied substantially among small geographic areas in
the northeast United States, while rates for cholecys-
tectomy, appendectomy, and herniorrhaphy showed
substantially less variation [9]. Such studies were the
impetus for the growth in outcomes research, and
a variations analysis is one of the first steps recom-
mended in outcomes research.

A small area may be a zip (postal) code area, a
county, a state, or at times a country. (Related studies
treat all the patients in a hospital or a dental practice
as a “small area”.) Some small areas are created
specifically for variations analysis, e.g. a hospital
market area.

A variations analysis begins with calculation of a
utilization rate, in which the denominator is the num-
ber of residents in the small area and the numerator is
the number of procedures utilized by the residents of
the small area, no matter where they actually received
the procedure. The data for calculating such rates
usually come from hospital billing data, which are
available from some Canadian provinces and, in the
US, from some states and also from the Health Care
Financing Agency for patients enrolled in Medicare.
The rates are usually standardized by age and sex,
often using the method of indirect standardization
because the number of procedures in some strata may
be very small.

Statistical analysis of area variations is often infor-
mal, consisting of graphs of the admission rates by

area, and descriptive statistics. Descriptive statistics
usually include the extremal coefficient (maximum
rate divided by minimum rate), and the weighted
or unweighted coefficient of variation (see Standard
Deviation). These statistics are unsatisfying unless
the numbers of procedures per area are very large,
because they do not distinguish variation among the
areas from variation within the area. The system-
atic component of variation (SCV) [6] does make
this distinction, under the assumption that no indi-
vidual has more than one procedure. The square root
of the SCV is an estimate of the coefficient of varia-
tion under this assumption. The variance among areas
can be calculated from a mixed model analysis of
variance. An estimate of the coefficient of variation
based on a moment estimate of the variance among
areas is the coefficient of variation from analysis of
variance (CVA) [4]. Of all the simple statistics, only
the CVA incorporates a confidence interval and a
significance test (see Hypothesis Testing).

Simulation work has shown that the most popular
descriptive statistics are sensitive to such factors
as the prevalence of the procedure under study,
the number of small areas being considered, the
likelihood of multiple admissions per person, and
the population sizes and relative population sizes of
the small areas [2]. The unweighted coefficient of
variation and the extremal quotient are also less likely
than other statistics to demonstrate true variation
when it occurs [3].

“Variation” is not well defined, and graphs of
admission rates for small areas do not always agree
with the usual descriptive statistics, because the usual
statistics adjust the variance among areas by the
prevalence, permitting a highly prevalent procedure
to have more variation than a low prevalence proce-
dure. The rationale for this has never been formally
justified. The CVA has been shown to be the best of
the usual descriptive statistics that adjust for preva-
lence, in that it is relatively uncorrelated with the
prevalence of the procedure under study [4].

Multivariable statistical methods have been used
to estimate or display the area variation, and impor-
tantly to allow the incorporation of covariates. One
method models the number of admissions per area as
following a Poisson distribution with extra-Poisson
variation (see Overdispersion) [10]. The Poisson
assumption effectively assumes that there are no mul-
tiple admissions [10]. If there are multiple admissions
per person, the extra-Poisson variability can be due
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to that fact, as well as to true variation among the
small areas. Formal hierarchical modeling permits
assessment of trends at the person level as well as at
the area level [5, 8].

Investigators often wish to answer whether there is
“too much” variation, since this could signal a diag-
nosis, procedure, hospital, or small area that merits
further study. If there are not multiple admissions per
person, one can test whether the observed variation is
significantly different from zero, using a simple chi-
square test. Although the alternative hypothesis is
unlikely to be true, some very small data sets will not
pass this test. A second approach is to compare the
variation for (say) the diagnosis of interest to the vari-
ation of another “standard” diagnosis. Hernia surgery
has been suggested as a standard surgical diagnosis
because it usually shows low variation. Confidence
intervals for the CVA can be used in this way, and
there is an associated F -test (see F Distributions)
for the SCV statistic [4, 6]. Similarly, one can com-
pare the variation in one geographic region to the
variation in another for the same diagnosis.

Once the existence of variation has been establi-
shed, it is common to test each area for significant
differences from the standard (usually the average
rate), with the outlier areas subjected to further study
and perhaps intervention. A chi-square test is usually
employed, without accounting either for the possibil-
ity of multiple admissions per person [1] or for multi-
ple comparisons. Such adjustments should probably
be made, however, in situations where conservative
results are important, such as finding differences in
mortality rates among hospitals. Attempts to explain
why rates are too high or too low often fail to find
any inappropriate utilization of services, and often
find that variation in coding practices is responsible
for the observed discrepancies.

Other statistical issues arise when investigators
wish to perform variations analyses in very small
areas, in which a substantial number of areas will
have zero events. Investigators often combine several
years of data in order to increase the number of
events, but this could cause other problems in that

the probability of multiple admissions will increase.
Expanding the procedure or diagnosis of interest to
include additional events may cloud the interpretation
of the findings. Hierarchical modeling is another
approach for handling very small numbers.
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Smith, Cedric Austen
Bardell

Born: February 5, 1917, in Leicester, UK.
Died: January 16, 2002, in London, UK.

Cedric Smith, Weldon Professor of Biometry at the
Galton Laboratory, University College London, from
1964 to 1982, was a leading exponent of biostatistical
human genetics in the United Kingdom. His genetic
work centered on the detection and measurement
of human linkage, and he was influential in the
growing use of Bayesian methods. As Edwards [1]
noted, he was “the principal link between the modern
development and the 1930 pioneers F. Bernstein, L.
Hogben, L.S. Penrose, Julia Bell, R.A. Fisher and
J.B.S. Haldane”, but his major work was done before
the computer-based revolution.

Smith was born on February 5, 1917 in Leices-
ter, and after his schooling there and subsequently in
London, he went in 1935 to Trinity College, Cam-
bridge. Here, he obtained first-class honors in Part II
of the Mathematical Tripos and a distinction in Part
III. He started graduate studies in statistics in 1938
and obtained a doctorate in 1942. Undergraduates of
this period will remember a fascinating talk by Smith
on recurrent functions, entitled “On growing fish from
seed” (these being invented names for specific func-
tions), as an early example of his quirky humor and
curious ingenuity. He was a member of the Society
of Friends and worked during the war as a hospi-
tal porter.

In 1946, he joined the Galton Laboratory at Uni-
versity College London. He remained there through-
out his career and became Weldon Professor of Biom-
etry in 1964. J.B.S. Haldane was a strong influence
and encouraged Smith to work on problems in the
testing and estimation of linkage in human genet-
ics. Smith was attracted to the use of the likelihood

function to provide a test of the null hypothesis
and as a basis for the estimation of the recombina-
tion fraction. In 1953, he applied the word “lods”
(log odds) used earlier by G.A. Barnard. In 1955,
N.E. Morton used lods in applying Wald’s sequen-
tial probability ratio test to the testing for link-
age, but Smith disliked this approach, having moved
firmly toward the Bayesian position. His Bayesian-
ism, though, was not entirely orthodox. For instance,
he investigated the possibility of using ranges of
approximation to prior probabilities, related to the
range of betting odds that the subject would accept. In
1957, in joint work, he introduced counting methods
for estimation of gene frequencies and segregation
ratios, which were early examples of the EM algo-
rithm for maximum likelihood estimation.

In 1954, Smith published Biomathematics, nomi-
nally the third edition of a book by W.M. Feldman
first published in 1923, but essentially a new and
highly original work. This was followed in 1966
and 1969 by a fourth edition in two volumes. As
Edwards [1] remarks, “its charming idiosyncrasies
endeared it to its admirers but rather distracted the
orthodox student.”

Smith was an active member of the Royal Sta-
tistical Society, particularly in the Research Section
and on the Editorial Board of the Journal, Series
B ; of the British Region of the International Bio-
metric Society, serving as President from 1971 to
1972; and of the Genetical Society. He was a notable
coeditor of the Annals of Human Genetics, frequently
contributing personally to the flow of important sta-
tistical papers published in that journal.
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Smoking and Health

Tobacco was introduced to Spain and England in
the sixteenth century by explorers returning from the
New World. In England an import duty of 2 pence a
pound was imposed in 1590. Tobacco attained rapid
popularity and was even praised as a prophylactic
against many ills. Nonetheless, from early times it
was condemned as a “noxious vice”, foul smelling,
loathsome custom, and harmful to the brain and
lungs.

In 1900 an increase in cancer of the lung was
noted by vital statisticians but definite trends in mor-
tality and disease incidence really only became appar-
ent after 1930. Two studies in Germany [24, 32]
were particularly notable. Müller [24] documented
the rise in the proportion of cases of lung cancer at
postmortem from 0.2% to 1% over the period 1918
to 1937 in his institute in Cologne. He associated
this with the 82% increase in tobacco consumption
in Germany over this period, and contrasted this to
a fall in alcohol and coffee consumption. He empha-
sized that over the years the preparation of cigarettes
had changed–over time more and more of the coarse
materials (e.g. stems) from tobacco leaves were incor-
porated in the final product. The relation between
experimental production of cancer in animals by
tobacco tar was described. Müller then went on to
describe a clinical investigation in which he ques-
tioned the surviving relatives of 96 patients who had
died from lung cancer. Only 3% of these patients
had not smoked, while 75% were classified as heavy
smokers. He compared this with a group of healthy
men of the same ages and stated that 16% of these
were nonsmokers and 36% heavy smokers. The lat-
ter group were estimated to smoke 1259 g tobacco
per day, while the cancer of the lung group smoked
2900 g tobacco per day. He investigated the patients’
exposure to other carcinogenic agents, and found that
17 had worked in industries where they were exposed
to possible risk, e.g. painters, printers, and lead work-
ers. He also investigated their experience of other
respiratory illnesses, particularly influenza, but found
no records of such illness in about half the cases. He
concluded that tobacco consumption was the major
cause of lung cancer.

Schairer & Schöniger [32], referring to Müller’s
study, went further, since similar increases in post-
mortems from lung cancer had been shown in their

institute in Jena. They posted questionnaires on
smoking habits, including quantity, illnesses, and
occupational exposure to polluted air, to the relatives
of 195 cases of cancer of the lung who had died
between 1930 and 1941. They posted similar ques-
tionnaires to the relatives of individuals who had died
of stomach, colon, esophagus, and tongue cancer as
controls. Completed questionnaires were returned by
50–60% of those posted. In addition they mailed 700
similar questionnaires to living male residents of Jena
aged 53–54 years (the average age of death of the
cancer of the lung patients). Of these 39% were sat-
isfactorily completed. Of the cancer of the lung cases,
3% were nonsmokers and 52% were heavy smokers.
Amongst the other groups between 11% and 16%
were nonsmokers and 21%–38% heavy smokers.
They were unable to find any association of cancer
of the lung with air pollution or previous respiratory
illnesses. They concluded that one of the causes of the
rise in lung cancer deaths was due to heavy smoking,
but that this could not be the only cause.

Case–Control Studies

Following these early clinicopathologic investiga-
tions, a series of more carefully controlled stud-
ies were designed and undertaken independently by
Wynder & Graham [40], Levin et al. [21], and Doll
& Bradford Hill [6], and published almost simul-
taneously. They all commented on the increase in
mortality of cancer of the lung. Doll & Hill discussed
possible reasons for this increase, in particular general
atmospheric pollution, e.g. from industry, coal fires
and traffic, and from smoking tobacco. They con-
cluded that, in view of the studies described above,
the most likely association was with tobacco.

The British studies were promoted by the Medical
Research Council, which also initiated the studies
by Lawther [19] on bronchitis and air pollution. All
three of these studies followed a similar pattern.
Patients diagnosed as having cancer of the lung and
admitted to hospital were notified to the investigators
and interviewed. In all studies a group of controls
from either the same or similar hospitals was also
interviewed (see Case–Control Study, Hospital-
based).

The study by Doll & Hill [6] has been considered
as the model of a case–control study, and so will be
described in some detail. Twenty London hospitals
notified all patients admitted to them with carcinoma
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of the lung, stomach, colon, or rectum. “On receipt
of the notification a research almoner (medical social
worker) visited the hospital to interview the patient
using a set questionnary”. In addition the almoners
were required to make similar inquiries of a group of
“noncancer control” patients of the same sex, within
the same 5-year age group, and at the same hospital
at or about the same time.

The interviewers had not been told of the hypoth-
esis that was being tested; thus, apart from questions
on smoking habits there were others on, for example,
place of residence, exposure to war gases, occu-
pational hazards, etc. Obviously the interviewers
could not be blinded by the illnesses of the patients
they were interviewing (see Blinding or Masking).
However, a number of the patients thought to have
carcinoma at the time of the interview were subse-
quently found not to have the condition. The smoking
habits of the patients incorrectly considered to have
lung cancer were “sharply distinguished from the
habits of those patients who did in fact have car-
cinoma of the lung”, but did not differ from those of
the other patients interviewed. Thus the authors con-
cluded that the results could not be attributed to the
results of interviewer bias.

All these case–control studies showed that patients
with cancer of the lung were more likely to be
smokers than those with other cancers or noncancer
patients, and that those who smoked, smoked more
cigarettes. None of the other possible suspected
agents, e.g. air pollution, area of residence, or expo-
sure to war gases, showed such a clear differentiation
between the cases and controls. Doll & Hill, in par-
ticular, looked at other possible sources of bias, e.g.
selection of the patients and controls, and were unable
to find any particular bias in their groups (see Bias,
Overview; Bias in Case–Control Studies; Bias in
Observational Studies).

All three groups of authors concluded that the
smoking of cigarettes was associated with cancer of
the lung. Levin went so far as to state “the data
suggest, although do not establish, a causal relation
between cigarette and pipe smoking and cancer of the
lung and lip respectively”. When these results were
reported to the main board of the Imperial Tobacco
Company, according to a participant, the chairman
was so appalled by the findings that he turned to his
board and said “surely these results cannot be correct
since we produce a clean, hygienic product”!

Prospective Surveys

The results of these retrospective studies were con-
firmed by a series of prospective studies (see Cohort
Study). In these the smoking habits of a defined
group were first ascertained and then the causes of
death during several years’ observations recorded.
Different populations and strategies were used in
these investigations. Doll & Hill [7, 8] sent a sim-
ple questionnaire to doctors on the medical register.
They were notified of all deaths in the 34 000 who
provided usable replies by the Registrar General. The
group was enrolled in October 1951, aged 35 years
or more. This group has been followed since that
time. Hammond & Horn [12] enrolled a large num-
ber of American Cancer Society Volunteers, each
of whom was asked to have a questionnaire on
smoking completed by 10 white men aged 50–69
years. These were followed for 44 months only.
Dorn [9] questioned 248 000 men who had served
in the armed forces between 1917 and 1940 and
who held US Government Life Insurance polices.
Dunn et al. [10] questioned 67 000 men aged 35–64
years in nine occupations in California who were
suspected of being subject to a higher than usual
occupational risk of lung cancer, and followed them
for about 48 months. Best et al. [4] questioned 78 000
Canadian veterans and their dependents (pensioners)
aged 35 or more years, and followed them for 72
months.

All these studies showed a consistent gradient
in the total mortality ratio (after adjusting for age)
(see Standardization Methods) from nonsmoker to
heavy smokers, ranging from 1.06 to 1.55 for those
smoking less than 10 cigarettes per day, to 1.85 to
2.5 for those smoking 40 or more cigarettes per day.
For lung cancer the ratios for these amounts varied
from 4.4 to 8.4, and 15.1 to 43.7.

The investigators looked at causes of death other
than cancer of the lung, and consistently demon-
strated an association with smoking for bronchitis and
emphysema, cancer of the larynx, cancer of the oral
cavity, cancer of the esophagus, stomach and duo-
denal ulcers, other circulatory diseases, and coronary
artery disease.

Other aspects of smoking, such as pipes, cigars,
inhalation and stopping smoking, were investigated.
The studies all showed that the risks of develop-
ing cancer of the lung were much less for “pure”
cigar and pipe smokers, and the risks of lung cancer
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diminished with the length of time since the individ-
ual had stopped smoking.

The subjects in these studies were selected by
the answering of a questionnaire, which might have
introduced bias by the inclusion of more or fewer
smokers who are in ill-health at the beginning of
the study. However, in all studies it was shown that
the association between deaths from lung cancer and
smoking was more evident in the later than the earlier
part of the observation period, the reverse of what
would have been expected if there had been selection
bias. A further source of bias might have been the
accuracy of diagnosis, for example, if smokers were
likely to be “overdiagnosed” as having cancer of
the lung. But all studies showed an excess of total
mortality associated with smoking, hence if cancer of
the lung had been overdiagnosed, other causes would
have been “underdiagnosed” (see Bias in Cohort
Studies).

These retrospective and prospective studies of
smoking and cancer of the lung were the seminal
works which laid the benchmark for good case–con-
trol and prospective studies. The use of defined, com-
parable groups of cases and controls, clearly defined
questions, blinding of interviewers, and demonstrat-
ing that patients originally included as “cases”, but
not confirmed, resembled controls are a model of
a good study. The prospective investigations which
showed the need for very large defined groups, ade-
quate follow-up, and consistent diagnostic criteria
have illustrated how the imaginative use of certain
groups, for example, doctors, veterans, and voluntary
organizations, makes such large studies feasible both
financially and operationally.

Policy Toward Smoking

As a result of these studies a variety of bodies
were set up between 7 and 14 years after the ini-
tial studies to examine the evidence of the rela-
tionship between smoking cigarettes and cancer of
the lung, e.g. Medical Research Council [22], Min-
istry of Health [23], National Cancer Institute of
Canada [27], and Netherlands Ministry of Social
Affairs and Public Health [28]. All agreed that the
relationship was established. However, the most thor-
ough reviews of the evidence were those of the Royal
College of Physicians, London [31], in 1962, and of
the US Surgeon-General in 1964 [33].

The former considered a number of possible
explanations of the association of cancer of the lung
and smoking:

1. Years before cancer of the lung becomes manifest
some early process produces the desire to smoke.
This was considered improbable.

2. Smoking may not cause cancer but only deter-
mine the site at which it appears. This is dis-
proved as other forms of cancer are not less
common among smokers than nonsmokers.

3. The rising death rate from lung cancer was
a consequence of the falling death rate from
tuberculosis. There was no evidence for this, and
the gender effects were not consistent.

4. Some factors might be independently associated
with both lung cancer and smoking (see Con-
founding). This hypothesis was contradicted by
studies, for example, in Seventh Day Adven-
tists (all nonsmokers), when the only cases
of lung cancer were in converts who were
ex-smokers.

5. Berkson [2, 3] suggested that nonsmokers are
a highly selected group who are “biologically
self-protective”, and endowed with “robustness
in meeting mortal stress from disease gener-
ally” while Eysenck [11] stressed the “acceler-
ated rate of living” of cigarette smokers as a
possible explanation of their higher death rates.
This hypothesis fails to account for the dispro-
portionate increase in death rates among smokers
from lung cancer as compared with other causes.
Berkson’s objections were refuted by the finding
that the 1952 London smog episode increased
the death rate for a number of causes, in particu-
lar bronchitis and coronary heart disease, but no
one doubted its importance as a cause of mortal-
ity.

6. Since heavy smoking is associated with heavy
drinking the latter was incriminated – but all
studies showed that the effect of smoking was
independent of alcohol consumption.

7. The possibility that motor vehicle exhausts might
be an important cause of the rise in deaths of
lung cancer was dismissed because road haulage
workers and those living near roads did not show
an excess risk independent of smoking.

8. The role of general air pollution was more com-
plex, but since the relation of smoking and lung
cancer could be shown in both urban and rural
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areas this was considered of lesser importance
that the smoking of cigarettes. The differences
between mortality of rural and urban dwellers
were explained, in part, by the duration of
smoking.

The Surgeon-General’s Committee judged the causal
significance of the association on a number of criteria
which had to include:

1. Consistency of the association
2. Strength of the association
3. Specificity of the association
4. Temporal relationships of the association
5. Coherence of the association.

Hill [14] expanded these criteria to:

1. Strength of the association
2. Consistency
3. Specificity
4. Relationship in time
5. Biological gradient
6. Biological plausibility
7. Coherence
8. Experiment
9. Reasoning by analogy (see Hill’s Criteria for

Causality).

This account does not deal with all the other evi-
dence, pathological, biochemical, physiological, etc.
considered by the Surgeon-General’s and RCP Com-
mittees. Both concluded that cigarette smoking was
causally related to lung cancer (see Causation), and
that cigarette smoking far outweighs all other factors.

As a result of these reports, and others, gov-
ernments and most members of the public began
to take the problem of smoking more seriously.
Tobacco companies reduced the amount of tobacco
in cigarettes (from 1 g per cigarette to 0.75 g per
cigarette) and introduced filters in most brands. They
also became involved in a search for what they hoped
would prove to be less harmful products.

Less Harmful Cigarettes

The government in the UK reacted to these initiatives
by setting up an Independent Scientific Committee
under the chairmanship of Lord Hunter [16] in 1973.
The failure of these efforts is chronicled in Holland
& Wood [15] and Waller & Froggatt [37]. A very

large randomized controlled trial (see Clinical Trials,
Overview) was mounted by Withey et al. [38, 39] in
1985 to determine the efficacy of reducing the tar and
nicotine levels in cigarettes. They found that lower-
ing the tar intake did not lead to any improvement in
respiratory health, and there was some evidence that
smokers of the low-tar cigarettes compensated in the
way they smoked these cigarettes in order to absorb
more tar and nicotine. In the US a workshop held at
the World Conference on Smoking and Health [26]
had recommended a number of measures, such as
labeling of cigarettes as being harmful, addition of
filters, and redesigning the cigarette to reduce inhala-
tion. The main recommendations, however, were to
reduce the tar and nicotine content of cigarettes in the
hope that this would reduce harmful effects. The trial
by Withey et al.demonstrated that this strategy was
unlikely to be effective – and thus that only stopping
smoking is likely to lead to any reduction of risk.

Prevention

In view of the failure to reduce the harm from
cigarettes we are left with the options of stopping
people from smoking, or better still stopping them
from taking it up.

The attempt to stop people from smoking through
providing an alternative source of nicotine, such as
nicotine-containing skin patches or nicotine chewing
gum, medicalizes the problem of tobacco addiction.
It does lead to some benefit and governments and
others have supported such efforts. Other approaches,
for example the use of counseling, have had some
success – but none is effective in more than a small
proportion of individuals [17, 30].

Discouraging children from taking up smoking is
perhaps even more important. But this must involve
parents and teachers as well as others such as the
children’s peers. Several studies endeavored to deter-
mine the major factors that lead children to take
up smoking. One of the largest of these studies
by Swan et al. [25, 34] followed about 6000 chil-
dren from entry to secondary school at age 11 to
young adulthood, age 21, in Derbyshire from 1972
to 1983. The results showed that 30% of smoking
was attributable to peer pressure and to exposure
to parental smoking at 11–12 years of age. More
than 70% of children will try smoking before age 16
irrespective of their attitudes and circumstances, but
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only about 3.5% try for the first time after this age.
There was a maximum incidence of regular smok-
ing of about 20% per annum as children moved into
the third year of secondary school, and their smok-
ing behavior changed after they become dismissive
of the health hazards. Thus to prevent regular smok-
ing in adults one needs to create programs before
age 11 which demonstrate and maintain awareness
of the health hazards. This implies changes to the
way education is organized.

Passive Smoking or Environmental
Tobacco Smoke

That cigarette smoking contaminates the atmosphere
and that people exposed to others smoking may expe-
rience nose and eye irritation, cough, and headache
has always been recognized. But there was little evi-
dence of any objective harm to health until two papers
appeared in March and November 1974 in the Lancet.
Harlap & Davies [13] showed in a study of over
10 000 infants studied prospectively that the infants of
mothers who smoked had significantly more admis-
sions to hospital for bronchitis and pneumonia, espe-
cially in the winter, and more injuries. This was
dose-related and independent of birthweight, social
class or birth order. Colley et al. [5, 20] confirmed
the greater incidence of bronchitis and pneumonia
in children aged less than 1 year, and also demon-
strated that it was related to the amount of exposure
to smoking by the parents of the baby. These effects
were independent of sex, parental symptoms and dis-
ease, and number of siblings. Many studies have since
been published of the effects of passive smoking on
health. The most recent authoritative reviews in the
UK [18] and US [35] have confirmed that environ-
mental tobacco smoke increases the risk of chronic
respiratory disease in adults by about 25%, the risk of
respiratory illness in children by 50%–100%, and of
lung cancer by about 24% (95% confidence inter-
val: 11% to 38%). It may also increase the risk of
ischemic heart disease, and exposure in pregnancy
may lower birthweight.

Conditions Associated with Smoking

Apart from cancer of the lung, a number of other
conditions are also related to smoking. It has been
estimated that about 3 million people die each year

from smoking-related diseases in developed coun-
tries [36]. The number dying in the whole world
is of course, much greater, and will rise consider-
ably [29]. Other cancers which have been considered
as satisfying the Surgeon-General’s and Hill’s crite-
ria are upper respiratory, bladder, pancreas, esoph-
agus, stomach, kidney, and leukemia. Respiratory
heart disease, chronic obstructive lung disease, stroke,
pneumonia, aortic aneurysm, ischemic heart disease,
peripheral vascular disease, cataracts, hip fracture,
and periodontal disease also satisfy these criteria.
In pregnancy, smoking increases the risk of limb
reduction defects, spontaneous abortion, ectopic preg-
nancy, and low birthweight [36]. Some suggestions
have been made that smoking protects from the
occurrence of uterine fibroids, endometriosis, hyper-
tensive disorders, vomiting in pregnancy, ulcerative
colitis, and Parkinson’s disease [1].

Current Concerns

The importance of smoking as a health hazard has
now gained universal acceptance amongst the health
professions and most governments. It has become
far less acceptable in society now than it was 20
years ago. The suppression of smoking on transport,
in offices, and in restaurants has had a profound
influence in some countries. However, there have
been counter-pressures. Although some governments
appreciate the effect of a ban on cigarette adver-
tising, or other governmental measures, there has
been a consistent lack of willingness to suppress
the promotion of this health hazard by most West-
ern governments. Some even continue to subsidize
the growth of tobacco. The problem of smoking in
developing countries, in spite of valiant efforts by
the World Health Organization (WHO) are even
greater. Here smoking is still considered a status sym-
bol and tobacco companies intent on preserving their
market export to these countries cigarettes with much
higher tar and nicotine levels than permitted in West-
ern countries in order to foster habituation.

Concluding Comments

The epidemiologic investigation of smoking has been
responsible for the development of case–control
and prospective methods of investigation and for
the formulation of acceptable criteria for assessing
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cause–effect relationships. The studies over the past
50 years have provided superb examples of how to
perform descriptive and experimental epidemiologic
studies. The problem has also illuminated the rela-
tions between epidemiology, medical statistics, and
health policy, and has led to the development of
appropriate preventive strategies.

Although the proportion of individuals who smoke
in the UK and US is now less than half of what it
was in the 1950s, smoking is still the most important
health hazard in these countries. More worrying is the
changes in those who smoke. Whereas up to about
20 years ago the great majority of smokers were
men, now more and more women have adopted this
habit. In the early years of this century smoking was
practiced by upper social class groups; now it is most
common in the poor and deprived, who are least able
to afford it. A further major concern is the targeting
of developing countries in tobacco promotion, whose
populations are only too ready to mimic the more
developed countries.
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Smoothing Hazard Rates

Introduction

In the analysis of lifetime data or time-to-event data,
a primary interest is to assess the risk of an individual
at certain times (or ages) (see Survival Analysis,
Overview). Let T denote a lifetime variable with
distribution function F(t) = Pr(T ≤ t) and probabil-
ity density function f (t) = dF(t)/dt . The risk of
an individual at age t can be measured by the so-
called “hazard rate” or “hazard function”, which is
defined as:

λ(t) = f (t)

1 − F(t)
, for F(t) < 1. (1)

That is, λ(t) dt represents the instantaneous chance
that an individual will die in the interval (t, t + dt)

given that this individual is alive at age t . The hazard
rate provides the trajectory of risk and is widely used
also in other fields. Engineers refer to it as “failure
rate function” and demographers refer to it as “force
of mortality function”. The term “lifetime” simply
denotes the time until the occurrence of an event of
interest.

While parametric models provide convenient ways
to analyze lifetime data, the necessary model assump-
tions, when violated, can lead to erroneous analyses
and thus need to be checked carefully (see Para-
metric Models in Survival Analysis). We give a
brief survey on hazard rate estimation in this article.
No shape restriction on the hazard rate is assumed
except for smoothness. Such a model-free approach
is data driven and can be used for parametric model
checking. The nonparametric approach of hazard rate
estimation typically involves the smoothing of an
initial hazard estimate. The brief survey of vari-
ous smoothing hazard rate estimators provided here
covers grouped lifetime data on the one hand and
continuously observed lifetime data on the other.

For grouped data, the observations occur in the
form of scatter plots (ti , qi), where qi is an initial haz-
ard estimate at the midpoint ti of the ith time interval.
Smoothing for such data corresponds to a scatter-plot
smoothing or nonparametric regression step. As for
continuously observed data, hazard rate estimation
resembles density estimation (smoothing the incre-
ments of a cumulative function estimate). Almost any
density estimation method can be adapted for hazard

rate smoothing. The simplest such method is the ker-
nel method, which should however be employed with
care in the boundary region. More details are given
later in the section “More on Kernel Hazard Estima-
tors for Continuously Observed Data”.

Smoothing Hazard Rates for Grouped
Data: Nonparametric Graduation of
Lifetables

The earliest nonparametric hazard rate estimate was
the life table estimate based on grouped lifetimes (see
Grouped Survival Times), which has been known
for centuries. Assume for simplicity that lifetimes are
grouped into intervals of unit length with midpoints
t1, . . . , tp. Let ni denote the number of individuals
alive (or at risk) at the beginning of interval i, and
di denote the number of observed deaths during this
interval. An ad hoc estimate of the hazard rate for
the ith interval is the so called death rate, qi =
di/ni (for intervals of length ∆ the death rate is
replaced by di/(∆ni)). A plot of the raw death rates
at various times ti typically yields a curve that is
ragged, indicating high variability; see Figure 1 for
an example concerning the death rates of 1000 female
Mediterranean fruit flies. Dead flies were counted
daily, and qi is the death rate at day i.
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Figure 1 Three hazard rate estimates for the survival of
1000 female Mediterranean fruit flies. (a) death rates (thin
line) (b) smoothed hazard rate with fixed bandwidth b = 6
(solid line) (c) smoothed hazard rate with least-squares
cross-validated bandwidth choice b = 30 (bold line)



2 Smoothing Hazard Rates

Since the actual hazard rate λ is typically assumed
to be a smooth function, smoothing the death rates
provides an aesthetically improved estimate (see
Figure 1 for two versions of smoothed death rates).
A smoothing procedure, when applied properly, also
improves the statistical performance of the resulting
hazard rate estimator.

For example, the smoothed death rates typically
have a faster convergence rate than the unsmoothed
death rates. The smoothing of death rates was pio-
neered by actuaries who referred to these smooth-
ing methods as “linear graduation” or “nonparamet-
ric graduation”, in contrast to “analytic graduation”
based on parametric models (see Actuarial Meth-
ods). The term “linear” refers to the fact that these
nonparametric graduation methods yield hazard esti-
mates of the form

λ̂(t) =
p∑

i=1

ci(t)qi, where

p∑

i=1

ci(t) = 1, at each time t. (2)

That is, the resulting hazard estimate at age t is a
weighted average of the death rates with weights ci(t)

specified by the method of graduation and adjusted
locally at each age t .

The graduation (or smoothing) process typically
reduces the variance of the resulting hazard estimates
at the expense of introducing biases. The graduated
or smoothed hazard estimate converges to the true
hazard rate at a slower rate than the

√
n rate, which

holds for a parametric (or analytic) graduated hazard
estimate.

Moving averages, local weighted least-squares
methods and the so-called Whittaker–Henderson esti-
mates have been the earliest proposals among a
variety of different possible graduation methods, and
are commonly adopted by actuaries (see [6, 32]).
Any nonparametric regression method can be used
to graduate life tables in order to obtain a smooth
hazard rate estimate. One just applies the chosen
smoother, which could be a spline or kernel method,
to the scatter plot {(ti , qi), i = 1, . . . , p}. The Whit-
taker–Henderson estimate resembles a spline esti-
mate. The kernel method for graduation (see [4, 8])
is conceptually simple but needs to be applied with
caution in the boundary region of the data, owing to
its large bias there.

For the graduation of grouped data, we recommend
the local polynomial method, which is also called
the locally weighted least-squares method. This grad-
uation method has been credited to the famous
mathematician J.P. Gram, perhaps best known for
his contributions to Gram–Schmidt orthogonaliza-
tion; see [31, 51] for historical reviews. Specifically,
in his doctoral dissertation, Gram [21] suggested a
weighted least-squares method to fit a smooth curve
locally by polynomials. The explicit form of Gram’s
estimate using a local linear fit is given in (4) below.

The local polynomial method is well suited for
graduating initial hazard estimates based on life
tables. As a least squares based procedure, it is simple
to interpret, and automatically includes boundary cor-
rections. For the kernel method, boundary corrections
require the implementation of special boundary ker-
nels. Both kernel and local polynomial methods are
theoretically more tractable than the spline method,
especially for lifetime data, which are often incom-
plete. Some asymptotic results for the local polyno-
mial estimator are reviewed in the next section.

We note that the death rate qi can be replaced
by any initial estimate of the hazard rate. For exam-
ple, the central death rate, qci

= 2di/(ni + ni+1), is
a good alternative. If death rates are used in (2), it
is recommended (see (13) of next section and [60])
to include a transformation of the smoothed death
rates λ̂(t), and to use − log(1 − λ̂(t)) as the final
hazard estimate. This transformation reduces the bias
resulting from grouping the data. This bias can be
substantial at extreme ages (i.e. for large t) and may
result in inconsistent estimates of the hazard rate. If
the central death rates are used in (2), another trans-
formation (see (15) of next section and [42]) of the
smoothed central death rates is recommended instead.

As for the choice of the smoother in (2), it is
a judgment call, and typically, the choice of an
adequate smoothing parameter is more important. The
sampling or asymptotic properties of the resulting
hazard rate estimator are much more complicated
than in the standard regression setting, as the qi

or other initial hazard estimates are not independent
of each other. The incompleteness of lifetime data
further complicates theoretical analysis. Therefore,
much is yet to be explored in hazard rate estimation
based on smoothing life tables.

For an overview and details of the kernel smooth-
ing method, see [59]; for the spline method, [25]; and
for the local polynomial method, [14].



Smoothing Hazard Rates 3

More on Local Polynomial Hazard
Smoothing for Grouped Data

In addition to the grouping, we shall assume that
the lifetimes T1, T2, . . . , Tn, based on a cohort of
n individuals, are subject to random censoring by
C1, C2, · · · , Cn. Let I1, I2, . . . , Ip denote a partition
of p ordered intervals over a time interval of length
L. For the j th individual, the value of δj = 1{Xj =Tj } is
known but not the actual value of Xj = min(Tj , Cj ).
It is only known that Xj ∈ Ii for some i. Observed
are (di , ni), where di = ∑n

j=1 1{Xj ∈Ii ,δj =1} is the num-
ber of observed deaths in the interval Ii , and ni =∑n

j=1 1{Xj ∈Ik, for some k≥i} is the number of individ-
uals at risk at the beginning of the interval Ii .

For simplicity of presentation, we shall assume
that the intervals Ii are of equal length ∆ and that
the first interval starts at zero. The nonequal length
case can be handled similarly as in nonparametric
regression with non-equidistant design points and will
not be discussed here. The grouped data can thus be
summarized in life table form, which consists of data
pairs (ti , qi), i = 1, . . . , p. Here, ti = ∆(i − 1/2) is
the midpoint of the ith interval Ii and qi = q̃(ti) =
di/(∆ni) is the death rate (out of those alive) for
interval Ii . A closer look at q̂ reveals that it is
an empirical estimate of the population death rate
defined by

q(t)=∆−1 Pr

(
T ∈

(
t − ∆

2
, t + ∆

2

) ∣∣∣∣T > t − ∆

2

)
,

(3)

and one expects q(t) to be close to the true hazard
function λ(t), provided that ∆ is small.

The local polynomial smoother due to Gram [21,
22], is based on smoothing the lifetable data {(ti , qi),
i = 1, . . . , p} by locally fitting a polynomial of fixed
degree r . Thus, given a bandwidth or window of
size b = bn, for estimation at age t , a polynomial
g(x − t) of degree r is fitted to all life table data
points (ti , qi) for which |t − ti | ≤ b. The coefficients
of the polynomial g(·) are obtained via the weighted
least-squares criterion and the value of the fitted
polynomial at t (i.e. the intercept) is the hazard
estimate. A common choice is to fit local linear
polynomials (i.e. r = 1).

For r = 1, this estimate, denoted by q̂(t), is equal
to the minimizer for a0 of

p∑

i=1

wiK

(
t − ti

b

)
{qi − [a0 + a1(ti − t)]}2 . (4)

Here wi are case weights, typically chosen as wi =
ni , and K is a nonnegative kernel function satisfying

V =
∫

K2(x) dx < ∞. (5)

We recommend using either the Epanechnikov kernel

K(x) = .75(1 − x2), −1 ≤ x ≤ 1,

or the Gaussian kernel K(x) = (2π)−1/2e−x2/2. (6)

The bandwidths should satisfy

bn → 0 and nbn → ∞; (7)

The weighted least-squares method is used for two
reasons. First, in the spirit of smoothing methods, it
gives remote observations less influence in a way that
can be controlled by choice of bandwidth and kernel
in (4). Second, it allows to address the high degree of
heteroscedasticity (see Scedasticity) of the lifetable
estimate qi , through the choice of the case weights
wi in (4). Bias and variance expressions are derived
in [60] and summarized below.

First, we define a constant that appears in the
leading bias term:

B = 1

2

∫
x2K(x) dx (8)

Under the kernel and bandwidth conditions (5) and
(7), and if in addition

∆ → 0, and ∆ log n/b → 0 as n → ∞, (9)

we have for t with F(t) < 1 and G(t) < 1, and B

and V as in (5), (8),

bias(q̂(t)) = −∆

2
λ2(t) + ∆2

24
[λ(2)(t) + 4λ3(t)]

+ b2λ(2)(t)B + o(b2) + o(∆2) (10)

var(q̂(t)) = 1

nb

{
λ(t)

[1 − F(t)] [1 − G(t)]
V + o(1)

}
.

(11)
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Bias Reduction Transformation

Note that the leading term of the variance in (11) is
the same as for the kernel estimate for continuously
observed data in (24). The terms in (10) involving
b correspond to the bias due to smoothing and are
also the same as for continuously observed data
with k = 2 in (23). The terms involving ∆ in (10)
correspond to an additional bias due to the grouping
of the data. This additional bias can be improved by
the transformation φ(x) = − log(1 − ∆x)/∆, which
is motivated by the relation

∆q(t) = 1 −
1 − F

(
t + ∆

2

)

1 − F

(
t − ∆

2

)

= 1 − exp



−
∫ t+ ∆

2

t− ∆
2

λ(x) dx



 ≈ 1 − e−∆λ(t).

(12)

Thus, we propose the transformed estimate

φ(q̂(t)) = − log(1 − ∆q̂(t))

∆
, (13)

which has the same variance expression (11) as q̂

has, but a bias of smaller order:

bias(φ(q̂(t))) = ∆2

24
λ(2)(t) + b2λ(2)(t)B

+ o(b2) + o(∆2). (14)

Comparing (10) and (14), we see that q̂(t) has
an additional bias, −∆

2 λ2(t) + ∆2

6 λ3(t), as compared
to φ(q̂(t)). In addition to this bias reduction there
are other advantages in using φ(q̂(t)) rather than
q̂(t), especially when hazards at extreme ages are of
primary interest (see [60] for details). If the central
death rate, qci

, is used in (4) instead of the death
rate, qi , a different transformation is proposed in [42],
given by:

ψ(q̂c(t)) = 1

∆
log

2 + ∆q̂c(t)

2 − ∆q̂c(t)
(15)

We close this section by pointing out that the rate
of convergence of q̂(t), φ(q̂(t)), q̂c(t) or ψ(q̂c(t)),
and the choice of the bandwidth b can be derived

analogous to that of the kernel estimate λ̂ in the
section “More on Kernel Hazard Estimators for Con-
tinuously Observed Data”, with ∆ playing a role in
the asymptotic bias term. The program to compute
q̂(t) in (4) or q̂c(t) and their corresponding trans-
formed estimates, φ(q̂(t)) in (13) or ψ(q̂c(t)) in (15)
is very simple, and so is the computation of the cross-
validated bandwidths as employed in [42] and [60].

The hazard rate estimate, based on the least-
squares cross-validated bandwidth, calculated from
the lifetimes for 1000 female Mediterranean fruit flies
is plotted in Figure 1. The lifetimes are grouped into
days. Here the cross-validated bandwidth is fairly
large (b = 30), owing to the large variation of the
death rates after day 60. The hazard plot was trun-
cated at day 81 when there were only 10 flies left.

Smoothing Hazard Rates for Continuously
Observed Data

The grouped data situation discussed in the previous
section is common for demographic data that were
observed at fixed time points or grouped for conve-
nience. The estimation of hazard rates for continu-
ously observed data is conceptually close to density
estimation. To see this, consider, instead of (1), the
hazard rate function as the derivative of the cumula-
tive hazard function Λ(t) = ∫ t

0 λ(x) dx. A hazard rate
estimate can thus be obtained, analogous to a density
estimate, by smoothing the increments of an estimate
of Λ(t).

Watson and Leadbetter [62, 63] were the first to
propose and study such a smoothed hazard estimator
using the empirical cumulative hazard estimate Λn(t)

based on an independent and identically distributed
(i.i.d.) sample of lifetimes (that is, the Λn(t) in
(18) with all δ[j ] = 1). They propose the following
convolution type hazard estimator.

λ̂n(t) =
∫

Wn(t − x) dΛn(t), (16)

where Wn is a sequence of smooth functions appro-
aching the Dirac delta function for large n. This
delta-sequence method is quite general and covers
several types of smoothing methods, including the
kernel method (with Wn(x) = b−1

n K(x/bn)). Another
type of hazard estimator proposed in [63] is of a ratio
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type,

λ̃n(t) = f̂n(t)

1 − F̂n(t)
, (17)

where f̂n can be any density estimate of the life-
time density f and F̂n is an empirical estimate of the
lifetime distribution function F . Both types of hazard
estimators have the same asymptotic variance but dif-
ferent asymptotic biases [49]. The convolution type
estimator λ̂n has prevailed owing to its theoretical
tractability (exact mean square errors available) and
aesthetic superiority over the ratio type estimator λ̃n.

A complete random sample of lifetimes as as-
sumed above is often unavailable. In reality, lifetime
data are often incomplete owing to staggered entry,
loss to follow-up, or early termination of a study. For
simplicity of presentation, we focus on the random
censoring case for the rest of the entry. Basic refer-
ences for hazard estimation for other incomplete data
such as left-truncated and right-censored data can be
found in [26, 58]. The related problem of estimating
transition intensities for a two-state Markov Process
was explored in [34].

Under the random censorship model, the actual
lifetime Ti of an individual may be censored by
another random variable Ci . One observes instead
(Xi, δi), where Xi = min(Ti, Ci), the minimum of
the lifetime and censoring time of the ith individual,
and δi = 1{Xi=Ti }, which is one if the actual lifetime
is observed and zero otherwise. We shall assume that
the censoring times C1, C2, . . . , Cn have a common
distribution function G and that they are indepen-
dent of the lifetimes T1, . . . , Tn. Let (X(i), δ[i]), i =
1, 2, . . . , n, be the ordered sample with respect to
Xi’s (that is, X(1) ≤ X(2) ≤ · · · ≤ X(n), and δ[i] is the
corresponding censoring indicator of X(i)).

Hazard estimators in this situation are ordinar-
ily obtained by smoothing the increments of the
Nelson–Aalen estimator Λn(·) for the cumulative
hazard function Λ(t). Let Nn(t) = ∑n

i=1 1{Xi≤t,δi=1},
and Yn(t) = ∑n

i=1 1{Xi≥t}. The Nelson–Aalen estima-
tor Λn(·), which is instrumental in survival analysis
for censored data, is defined as

Λn(t) =
∫ t

0

1{Yn(s)>0}
Yn(s)

dNn(s)

=
n∑

i=1

δ[i]1{X(i)≤t}
n − i + 1

(18)

if there are no tied observations. Properties of the
random step function Λn(t) have been studied exten-
sively; see, for example, [1, Section IV.1] for details.

Kernel Estimators

Substituting the Λn in (18) into (16) and choosing
Wn(x) = b−1 K((t − x)/b), for a particular choice of
kernel K and bandwidth b = bn, we arrive at the
kernel hazard estimator:

λ̂(t) =
∫

1

b
K

(
t − x

b

)
Λn(x),

=
n∑

i=1

1

b
K

(
t − X(i)

b

)
δ[i]

n − i + 1
, (19)

if there are no tied observations.
Asymptotic properties on consistency are typically
obtained under the following assumptions: (i) the true
hazard rate is k-times differentiable for a k ≥ 0; (ii)
the bandwidths satisfy (7); and (iii) the kernel is of
order k, defined as:

∫
K(x) dx = 1,

∫
K2(x) dx < ∞,

∫
xjK(x) dx = 0 for 1 < j < k,

∫
xkK(x) dx is finite but nonzero. (20)

The choice of the bandwidth is of crucial impor-
tance and regulates the trade off between the bias and
variance of the estimator in (19). A small bandwidth
yields a less smooth curve, with smaller bias but
larger variance, as compared to a larger bandwidth
(see (23) and (24)). Bandwidth choice is particularly
crucial for hazard estimation near the right boundary
of the data as the variance increases to infinity there.
More discussions on bandwidth choice is provided in
the next section.

As for the choice of the kernel, smoothness of
the kernel determines the smoothness of the corre-
sponding kernel estimate, and the order of the kernel
determines the order of the bias (see (23)) and thus
the rate of convergence. Often, nonnegative kernels
are used in practice, and the Epanechnikov kernel in
(6) has certain optimality properties (see [39]).

The kernel hazard estimate is the simplest and
thus a widely adopted smooth hazard estimator. It
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has been studied extensively in the literature, for
example, by Ramlau–Hansen [47, 48], Yandell [65],
Tanner and Wong [57], Burke and Horváth [7], Diehl
and Stute [11] and Müller and Wang [40].

Spline Estimators

Another commonly adopted smoothing method is the
spline method. There are several types of spline meth-
ods. The most widely investigated spline method
for hazard smoothing is the penalized likelihood
approach. Let η(t) = log λ(t) be the log hazard func-
tion. The log-likelihood function for censored data is

	(η) =
n∑

i=1

{
δiη(Xi) −

∫ Xi

0
eη

}
, (21)

which is unbounded if no shape restriction on η is
imposed. A penalty J (η), measuring the roughness
of η, is therefore incorporated and the penalized
likelihood estimate η̂ of η is the maximizer of the
penalized log likelihood

1

n

n∑

i=1

{
δiη(Xi) −

∫ Xi

0
eη

}
− α

2
J (η), (22)

among all η in a Hilbert space. Here α is a smoothing
parameter. Smaller α yields a better fit but a more
variable (rough) curve. A typical choice of J (η) is∫

[η(2)(x)]2 dx, which leads to a cubic spline with
knots at all X′s. More specifically, η̂ is two-times
continuously differentiable and is a piecewise cubic
polynomial between any two consecutive X′s. The
smoothing parameter α plays a similar role to that
of the bandwidth b in a kernel estimate. Cross-
validation is a common way to determine the value
of α; see [43, 44] for computational details and [26]
for asymptotic results.

In (22), the roughness of log λ(t) is penalized so as
to avoid nonnegative constraints on the hazard func-
tion. Other forms of penalty functions were proposed
in [2, 3, 52]. The penalty function J determines the
kind of spline resulted from (22). For example, the
penalty J (η) = ∫

[λ′(X)]2 dx is employed in [2], and
the resulting hazard estimate is a piecewise quadratic
spline. Note that this hazard estimate may yield neg-
ative values under heavy censoring.

The above spline estimates have knots at each
of the observed X values and are called smooth-
ing splines in the literature (see [25, Chapter 2]).

Another type of spline method is regression splines
or B-Splines, which adopt a fixed number of knots
and basis functions; see [35, 50] for details and ways
to select the number and location of knots. A hazard
function estimate with flexible tails, called HEFT, is
proposed in [35] by estimating the log-hazard func-
tion using cubic splines.

Other Hazard Rate Estimators

The ratio type hazard estimator in (17), also due to
Watson–Leadbetter, has been extended to censored
data as well and was studied by Blum and Susarla [5],
Földes, Rejtö and Winter [16] and Lo, Mack, and
Wang [37].

Hjort [30] advocated the use of semiparametric
approaches to estimate hazard rates. The approach
is to start with a possibly crude parametric estimate
and to improve it via some nonparametric procedures.
The motivation is to reduce the bias of a parametric
estimate via nonparametric correction locally, and yet
to arrive at an estimate that is less variable than a fully
nonparametric one.

For reviews of earlier results on hazard rate esti-
mation, see [18, 45], and [54] for uncensored data.

More on Kernel Hazard Estimators for
Continuously Observed Data

The rate of convergence of the kernel hazard estimate
(19) depends on the order of the kernel, the band-
width, and the differentiability of the hazard function.
Typically, the order k of the kernel is chosen to be an
even number with k = 2 being the standard choice.
The resulting bias and variance are respectively

bias(λ̂(t)) = bk[λ(k)(t)Bk + o(1)], (23)

var(λ̂(t)) = 1

nb

{
λ(t)

[1 − F(t)][1 − G(t)]
V + o(1)

}
,

(24)

where Bk = (−1)k/k!
∫

xkK(x) dx and V is as in (5).
The influence of the bandwidth b and the trade

off between the bias and variance is seen from (23)
and (24). The optimal rate for the mean squared
error (MSE) of λ̂(t) is attained when the (bias)2 and
variance are of the same order. This results in an
optimal MSE rate of convergence of n2k/(2k+1), which
is n4/5 for the standard choice of k = 2. This rate is
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slower than the usual parametric rate of n regardless
of the order of k. For the asymptotic distribution,
we further assume that d = limn→∞ nb2k+1 exists for
some 0 ≤ d < ∞. Then

(nb)1/2(λ̂(t) − λ(t))
D→ N

×
(

d1/2λ(k)(x)Bk,
λ(t)

[1 − F(t)][1 − G(t)]
V

)
.

(25)

Extensions to the estimation of derivatives of hazard
functions have been considered as well [40]. These
essentially involve a change in the kernel. Derivatives
are of interest to detect rapid changes in hazard
rates or for data based bandwidth choices, as the
optimal bandwidths in (26) or (27) depend on the
derivatives of the hazard rates. Again, the order k

of the kernel affects the convergence rate and also
asymptotic constants.

Bandwidth Choice

The bandwidth for a kernel hazard estimate can be
fixed at all points (global bandwidth b) or can vary
for different points (local bandwidth b(t)). Usually, a
global bandwidth is employed for a smooth density or
regression estimate owing to its simplicity. However,
for the hazard estimation situation discussed here,
there are compelling reasons to adopt local rather
than global bandwidth choices. According to (24), the
variance of the kernel estimate λ̂(t) eplodes to infinity
as t approaches the right boundary of the data. Thus,
the variance tends to dominate the bias in the right
tail and this needs to be compensated for by a larger
bandwidth.

The optimal local bandwidth of λ̂(t), which min-
imizes the leading term of MSE(λ̂(t)) is

b∗(t) = n−1/(2k+1)

×
{

1

2k

λ(t)

[1 − F(t)][1 − G(t)]

V

[λ(k)(t)Bk]2

}1/(2k+1)

(26)

To find the optimal global bandwidth, we have to
restrict the range of t to a compact interval [0, τ ]
with F(τ) < 1 and G(τ) < 1. The global optimal
bandwidth which minimizes the leading term of

MISE(λ̂) = E
∫ τ

0 [λ̂(x) − λ(x)]2 dx is

bopt = n−1/(2k+1)

{
1

2k

∫ τ

0

λ(x)

[1 − F(x)][1 − G(x)]
dx

× V

B2
k

∫ τ

0 [λ(k)(y)]2 dy

}1/(2k+1)

. (27)

Note that both the local and global optimal band-
widths in (26) and (27) involve unknown quantities.
In practice, one has to find alternatives. There is
an extensive literature on bandwidth selection and
“cross-validation” and “plug-in” techniques are pop-
ular; see [40, 41, 46] for details. A bootstrap method
to select the global bandwidth has been advocated
in [20] as an alternative. In addition to the local
bandwidth choice in (26), which adopts different
bandwidths at different time point t , choosing band-
widths as the distance of t to its kth nearest neighbor
among the remaining uncensored observations is a
convenient way to adapt to the data by allowing
for varying degrees of smoothing; see [17, 56, 57]
for detailed descriptions. Other data-adaptive local or
global bandwidth choices for hazard estimates can be
derived analogously to the density estimation case as
discussed in [53, Section 3.4] and [59, Chapter 3].

Boundary Effects

We close this section with a cautionary remark that
the kernel smoothing method needs to be employed
very carefully near the boundary as there is a bias
problem in such regions, usually referred to in the
literature as boundary effects. Boundary effects may
be attributed to the fact that the support of the kernel
exceeds the available range of data and are not unique
to hazard estimates.

An unmodified kernel estimate is unreliable in the
boundary region, which is the region within one band-
width of the largest or smallest observations. To rem-
edy the boundary effects, different kernels, referred to
as “boundary kernels” can be used within the bound-
ary region. As a consequence, varying kernels are
employed at each location t and the bandwidths are
affected accordingly. The resulting kernel estimate
with varying kernels and varying local bandwidths
takes the form

λ̂(t) =
∫

1

b(t)
Kt

(
t − x

b(t)

)
dΛn(x), (28)
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where both the bandwidth b = b(t) as well as the
kernel K = Kt depend on the point t . Details for the
choices of the kernel Kt and bandwidths b(t) can be
found in [41].

Simulation Comparison of Hazard Estimators and
Software

A very informative and extensive simulation
study was carried out in [29] to compare
the aforementioned kernel-based hazard estimators
with various local and global bandwidth choices
and boundary corrections, the kernel-based hazard
estimators in [17] with varying bandwidth methods
based on kth nearest-neighbor, and the spline-based
estimators in [35]. The results indicated advantages
of using HADES, the aforementioned local optimal
bandwidth choice and boundary correction in [41].
There is significant improvement (over 50% on
the average) in mean square error over the global
bandwidth choice if a local optimal bandwidth is
employed. Boundary corrections will lend additional
efficiency. The locally optimal bandwidth estimators
in [41] with only left boundary correction also
outperformed two publicly available procedures, the
spline estimator in [35] and the nearest-neighbor
estimator in [17]. The latter is based on the
procedures in [56, 57].

A library of Fortran and S-Plus programs for
the HADES estimator in [41] and for the nearest-
neighbor estimator in [17] is available under a
package called “muhaz” at the website of the
authors of [29] :http://odin.mdacc.tmc.edu/
anonftp/ To get the S-code follow the link:
ftp://odin.mdacc.tmc.edu/pub/S/muhaz.
tar.gz The corresponding R program for muhaz is
also publicly available at: cran.r-project.org/
doc/packages/muhaz

The S-plus code of the spline estimator in [35]
called, HEFT is publicly available from the StatLib
software library.

Hazard Regression

Estimating a Baseline Hazard Function

So far, we discussed hazard smoothing for a homo-
geneous population. Often the risk of an individual
varies according to the values of some covariates.

Thus, the hazard function of an individual with
covariate Z ∈ 
d is λ(t, Z) and regression tech-
niques are required. A semiparametric approach with
a regression parameter β and a nonparametric base-
line hazard function λ0(t) is often adopted. Exam-
ples include Cox’s proportional hazards regres-
sion model, where λ(t, Z) = λ0(t) exp(βT Z), and
the accelerated failure-time model, where λ(t, Z) =
λ0(exp(βT Z)t) · exp(βT Z).

A smooth estimate of the baseline hazard is prefer-
able and often necessary to obtain consistent esti-
mates of λ(t, Z). Anderson and Senthilselvan [2]
applied the penalized maximum likelihood approach,
and Gray [23] and Wells [64] applied the kernel
method to estimate the baseline hazard function in
Cox’s proportional hazard model. Andersen et al. [1,
Section VII.2.5] give several examples of estimated
baseline hazard functions.

The Cox proportional model has been extended
in [9] to allow covariate dependent baseline haz-
ard function. The model is λ(t, Z) = λ0(t, Xt )

exp[βT Zt ], where Xt and Zt are predictable covari-
ate processes or covariate vectors. Another type of
extension is to employ, as in [61], an unknown link
function in the proportional model, where λ(t, Z) =
λ0(t)g(βT Z) with g completely unknown and esti-
mated via local partial likelihood method. Etezadi-
Amoli and Ciampi [13] also investigated another
extension of Cox’s proportional hazards and accel-
erated failure-time models of the form: λ(t, Z) =
λ0(g1(α

T Z)t)g2(β
T Z)·, where λ0(t) denotes the

baseline hazard function, which is estimated by the
regression spline method.

Generalized Additive Proportional Hazards Model

Another type of proportional hazards model allows
an arbitrary covariate effect of the form:

λ(t, Z) = λ0(t) exp[g(Z)], (29)

where g is an unspecified smooth function of Z.
LeBlanc and Crowley [36] use the CART (Classi-
fication and Regression Trees) algorithm to estimate
the relative risk g (see Tree-structured Statistical
Methods), Gentleman and Crowley [19] and Fan,
Gijbels, and King [15] use local full or partial like-
lihood methods to estimate g. Although this is the
most general proportional hazards model, it is diffi-
cult to estimate g(Z) when the covariate Z is of high
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dimension, say d ≥ 3. An extremely large sample size
would be needed. This is called the “curse of dimen-
sionality”. Dimension reduction models and methods
are thus called for. Among these, the additive regres-
sion model is a promising alternative to (29).

Under the additional assumption that g is addi-
tive in (29), that is, g(z) = ∑d

i=1 gi(zi), Hastie and
Tibshirani [28] and O’Sullivan [43, 44] use smooth-
ing splines to estimate g (see Generalized Additive
Model). Sleeper and Harrington [55] use B-splines,
and Gray [24] uses penalized splines with fixed knots
to estimate g and incorporate time-varying coeffi-
cients. Apart from the minor differences in the vari-
ous spline methods, all the aforementioned methods
adopt the partial likelihood approach with a penalty
for each gi to be estimated.

Let (Xi, Zi, δi), i = 1, . . . , n denote the observed
data and Y1 < · · · < Yk denote the k distinct fail-
ure times with di failures at time Yi . The penal-
ized log partial likelihood with smoothing parameters
α1, . . . , αd is:

	(g1, . . . , gd)

=
k∑

i=1

δi





∑

j∈Di

g(Zj ) − di log




∑

j∈Ri

eg(Zj )










− 1

2

d∑

i=1

αi

∫ [
g

(2)
i (t)

]2
dt, (30)

where Di is the set of indices of the failures at
observed failure time Xi , and Ri is the set of
indices of individuals at risk at time Xi . Minimiz-
ing 	(g1, . . . , gd) then yields the smoothing spline
estimates (ĝ1, . . . , ĝd ). Calculations of the estimates
can be very time-consuming; see [27, Section 8.3] for
computational issues.

Nonparametric Hazard Regression

A completely nonparametric approach to esti-
mate λ(t, Z) is desirable sometimes. Kooperberg,
Stone, and Truong [35] used loglinear regres-
sion splines and their tensor products to estimate
log λ(t, Z). Gu [26] considered the penalized likeli-
hood approach. Doss and Li [12] used linear polyno-
mials in Z to fit λ(t, Z) locally in a neighborhood of
Z. Martingale convergence theory for counting pro-
cesses was used to derive the weak convergence of
their hazard estimate.

For continuously observed lifetimes, one can
obtain a hazard regression estimate for λ(t, Z) by
smoothing the increments of any cumulative hazard
estimate Λ(t, Z). Such a cumulative hazard estimate
can be found in [10] and is further studied by McK-
eague and Utikal [38]. Again, any of the smoothing
methods discussed so far can be extended to a non-
parametric hazard regression estimate.

Note that by grouping the data along the time
axis and the covariate axis, one can also apply
any nonparametric regression smoother to grouped
data. Gray [24] illustrates this grouping method
through a local linear polynomial smoother and
kernel regression.

Lexis Diagram

An interesting application of nonparametric hazard
regression is the Lexis diagram in which individ-
ual lifelines are represented as line segments between
(time at birth, 0) and (time, age) of death. Here time
at birth can be used in a broad sense, that is, as
the onset time of a disease. If mortality of individ-
uals varies according to time of birth, a covariate Z

based on an individual’s calendar time of birth can
be incorporated to model individual risks at age t

represented by λ(t, Z). Keiding [33] suggests using
bivariate versions of nonparametric smoothing meth-
ods, as discussed above, to estimate λ(t, Z), provided
that the influence of Z on the hazard function is con-
tinuous in Z.

References

[1] Andersen, P.K., Borgan, Ø, Gill, R.D. & Keiding, N.
(1993). Statistical Models Based on Counting Processes.
Springer-Verlag, New York.

[2] Anderson, J. & Senthilselvan, A. (1980). Smooth esti-
mates for the hazard function, Journal of the Royal
Statistical Society B 42, 322–327.
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[20] González-Manteiga, W., Cao, R. & Marron, J.S. (1996).
Bootstrap selection of the smoothing parameter in non-
parametric hazard rate estimation, Journal of The Amer-
ican Statistical Association 91, 1130–1140.

[21] Gram, J.P. (1879). Om Rækkeudviklinger, bestemte ved
Hjælp af de mindste Kvadraters Methode. A.F. H Øst &
SØn, Copenhagen.

[22] Gram, J.P. (1883). Ueber Entwickelung reeller Func-
tionen in Reihen mittelst der Methode der Kleinsten
Quadrate, Journal of Mathematics 94, 41–73.

[23] Gray, R. (1990). Some diagnostic methods for Cox
regression models through hazard smoothing, Biometrics
46, 93–102.

[24] Gray, R. (1992). Flexible methods for analyzing survival
data using splines, with applications to breast cancer
prognosis, Journal of the American Statistical Associa-
tion 87, 942–951.

[25] Green, P.J. & Silverman, B.W. (1993). Nonparametric
Regression and Generalized Linear Models: A Rough-
ness Penalty Approach. Chapman and Hall, London.

[26] Gu, C. (1996). Penalized likelihood hazard estimation:
A general procedure, Statistica Sinica 6, 861–876.

[27] Hastie, T. & Tibshirani, R. (1990a). Generalized Addi-
tive Models. Chapman and Hall, London.

[28] Hastie, T. & Tibshirani, R. (1990b). Exploring the nature
of covariate effects in the proportional hazards model,
Biometrics 46, 1005–1016.

[29] Hess, K.R., Serachitopol, D.M. & Brown, B.W. (1999).
Hazard function estimators: a simulation study, Statistics
in Medicine 18, 3075–3088.

[30] Hjort, N. (1991). Semiparametric estimation of para-
metric hazard rates, in Survival Analysis: State of the
Art, J.P. Klein & P.K. Goel eds. Kluwer, Dordrecht, pp.
211–236.

[31] Hoem, J. (1983). The reticent trio: Some little-known
discoveries in life insurance mathematics by L.H.F.
Oppermann, T.N. Thiele, and J.P. Gram, International
Statistical Review 51, 213–221.

[32] Hoem, J. (1984). A contribution to the statistical the-
ory of linear graduation, Insurance, Mathematics, and
Economics 3, 1–17.

[33] Keiding, N. (1990). Statistical inference in the Lexis
diagram, Philosophical Transactions of the Royal Society
of London A 332, 487–509.

[34] Keiding, N. & Andersen, P.K. (1989). Nonparametric
estimation of transition intensities and transition prob-
abilities: a case study of a two-state Markov process,
Applied Statistics 38, 319–329.

[35] Kooperberg, C., Stone, C.J. & Truong, Y.K. (1995).
Hazard regression, Journal of the American Statistical
Association 90, 78–94.

[36] LeBlanc, M. & Crowley, J. (1992). Relative risk trees
for censored survival data, Biometrics 48, 411–425.

[37] Lo, S.-H., Mack, Y.P. & Wang, J.L. (1989). Density and
hazard rate estimation for censored data via strong rep-
resentation of the Kaplan-Meier estimator, Probability
Theory and Related Fields 80, 461–473.

[38] McKeague, I.W. & Utikal, K.J. (1990). Inference for a
nonlinear counting process regression model, Annals of
Statistics 18, 1172–1187.

[39] Müller, H.G. (1988). Nonparametric Regression Analy-
sis of Longitudinal Data. Springer, New York.

[40] Müller, H.G. & Wang, J.L. (1990). Locally adaptive
hazard smoothing, Probability Theory and Related Fields
85, 523–538.

[41] Müller, H.G. & Wang, J.L. (1994). Hazard rate estima-
tion under random censoring with varying kernels and
bandwidths, Biometrics 50, 61–76.

[42] Müller, H.G., Wang, J.L. & Capra, W.B. (1997). From
lifetables to hazard rates: The transformation approach,
Biometrika 84, 881–892.



Smoothing Hazard Rates 11

[43] O’Sullivan, F. (1988). Nonparametric estimation of rel-
ative risk using splines and cross-validation, SIAM Jour-
nal of Science and Statistical Computation 9, 531–542.

[44] O’Sullivan, F. (1988a). Fast computation of fully auto-
mated log-density and log-hazard estimators, SIAM
Journal of Science and Statistical Computation 9,
363–379.

[45] Padgett, W.J. (1988b). Nonparametric estimation of den-
sity and hazard rate functions when samples are cen-
sored, in Handbook of Statistics, Vol. 7, P.R. Krish-
naiah & C.R. Rao eds. North-Holland, New York, pp.
313–331.

[46] Patil, P.N. (1993). Bandwidth choice for nonparametric
hazard rate estimation, Journal of Statistical Planning
and Inference 35, 15–30.

[47] Ramlau-Hansen, H. (1983a). Smoothing counting pro-
cess intensities by means of kernel functions, Annals of
Statistics 11, 453–466.

[48] Ramlau-Hansen, H. (1983b). The choice of a kernel
function in the graduation of counting process intensi-
ties, Scandinavian Actuarial Journal 10, 165–182.

[49] Rice, J. & Rosenblatt, M. (1976). Estimation of the
log survivor function and hazard function, Sankhya-The
Indian Journal of Statistics Series A 38, 60–78.

[50] Rosenberg, P.S. (1995). Hazard function estimation
using B-splines, Biometrics 51, 874–887.

[51] Seal, H.L. (1981). Graduation by piecewise cubic poly-
nomials: a historical review. Blätter, Deutsche Gesell-
shaft für Versicherungsmathematik 15, 89–114.

[52] Senthilselvan, A. (1987). Penalized likelihood estimation
of hazard and intensity functions, Journal of the Royal
Statistical Society B 49, 170–174.

[53] Silverman, B.W. (1986). Density Estimation for Statis-
tics and Data Analysis. Chapman and Hall, London.

[54] Singpurwalla, N.D. & Wong, M.-Y. (1983). Estimation
of the failure rate – a survey of nonparametric meth-
ods. Part I: Non-Bayesian methods, Communications in
Statistics-Theory and Methods 12, 559–588.

[55] Sleeper, L.A. & Harrington, D.P. (1990). Regression
splines in the Cox model with application to covariate
effects in liver disease, Journal of the American Statisti-
cal Association 85, 941–949.

[56] Tanner, M.A. (1983). A note on the variable kernel
estimator of the hazard function from randomly censored
data, Annals of Statistics 11, 994–998.

[57] Tanner, M.A. & Wong, W.H. (1983). The estimation of
the hazard function from randomly censored data by the
kernel method, Annals of Statistics 11, 989–993.

[58] Uzunogullari, U. & Wang, J.-L. (1992). A comparison
of hazard rate estimators for left truncated and right
censored data, Biometrika 79, 297–310.

[59] Wand, M.P. & Jones, M.C. (1995). Kernel Smoothing.
Chapman and Hall, London.

[60] Wang, J.L., Müller, H.G. & Capra, W.B. (1998). Anal-
ysis of oldest-old mortality: Lifetables revisited, Annals
of Statistics 26, 126–163.

[61] Wang, W. (2001). Proportional hazard regression model
with unknown link function and applications to longi-
tudinal time-to-event data. Ph.D. Thesis, University of
California, Davis.

[62] Watson, G.S. & Leadbetter, M.R. (1964). Hazard anal-
ysis. I, Biometrika 51, 175–184.

[63] Watson, G.S. & Leadbetter, M.R. (1964). Hazard anal-
ysis. II, Sankhya-The Indian Journal of Statistics Series
A 26, 101–116.

[64] Wells, M.T. (1994). Nonparametric kernel estima-
tion in counting processes with explanatory variables,
Biometrika 81, 759–801.

[65] Yandell, B.S. (1983). Nonparametric inference for rates
with censored survival data, Annals of Statistics 11,
1119–1135.

Further Reading

Gray, R. (1996). Hazard regression using ordinary nonparamet-
ric regression smoothers, Journal of Computational and
Graphical Statistics 5, 190–207.

JANE-LING WANG



Smoothing Methods in
Epidemiology

Introduction

Most observational data in the health sciences are
generated by poorly understood and largely nonran-
dom mechanisms of exposure assignment, subject
selection, and measurement error, and are analyzed to
estimate causal structures that are latent under these
mechanisms. In contrast, most statistical methods pre-
sume the data are generated by identifiable random
processes (i.e. distributions known up to a param-
eter vector of dimension no greater than the data),
and that the structures of interest are estimable under
the assumed distributions. Until recently, this chasm
between observational reality and statistical theory
was formally addressed in no general statistics text-
book. As a result, statistical methods for identifiable
random processes are used routinely for inferences
about unidentified structure.

The validity of these inferences depends on latent
independencies (often left implicit or cast as ignor-
ability assumptions) that identify the parameters of
interest. In observational studies of causation, how-
ever, large departures from identifying assumptions
are a distinct possibility. Most reports deal with
these possibilities in a narrative fashion based on
(often incorrect) intuitions about the biasing effects
of departures, rather than on quantitative reason-
ing. Quantification of departure effects, when done
at all, is usually by sensitivity analyses (e.g. [50],
Chapter 19). By embedding assumptions in a larger
parametric framework, these analyses show how
departures would affect summary statistics. They do
not, however, quantify the net uncertainty one should
have in light of uncertainties about the departures.
Furthermore, because the departures are not identi-
fied, the sensitivity results have no inferential inter-
pretation without reference to prior distributions for
the departures [23].

Several approaches have been developed for infer-
ence about parameters (such as causal effects) that
are not identified given the uncertainties about biases
in observational data. Examples include methods for
inference under nonignorable data-generating mech-
anisms [15, 42], Bayesian methods for nonexper-
imental data analysis (e.g. [12, 18, 27, 33, 39)],
and Monte-Carlo sensitivity analyses [29, 38, 48].

In some situations, these latent-structure analyses
may be essential for coherent inferences about cau-
sation in the absence of informative experiments.
But between initial data description and these struc-
tural analyses, one can mark out a preliminary
smoothing or filtering step concerned with estimat-
ing expectations for the observed data, rather than
with making inferences about deeper and latent struc-
ture [20].

In the health sciences, this filtering step is usu-
ally skipped or dealt with by fairly primitive means
(such as adding 1/2 to each cell of a table). The
present article outlines alternatives in which saturated
hierarchical models for random variation are used to
smooth or filter out extraneous noise before structural
exploration (see Generalized Linear Model). It also
provides a brief overview and illustration of basic
methods that can be applied using ordinary regression
software. For further information on those meth-
ods, see penalized maximum likelihood; for other
smoothing methods, see density estimation, general-
ized additive model, geographical analysis, Kalman
filtering and smoothing, nonparametric regression,
smoothing hazard rates, and spline function. At
certain points, an analogy will be drawn between
smoothing methods and methods for imputing miss-
ing data: Both are intended to “clean up” the data
before developing inferences about the population
structures of interest.

Example Data

The observed counts in Table 1 are taken from an
analysis of bias in 14 case–control studies of expo-
sure to residential magnetic fields and childhood
leukemia [29]. On the basis of the earlier work
[33], a cutpoint of 3 milligauss (3 mG, equal to 0.3
microtesla) was used for all the studies except the
United Kingdom Childhood Cancer (UKCC) study.
The latter published only categorizations at 1,2, and
4 mG, hence its estimate compares >4 mG versus ≤
2 mG; this estimate appears consistent with the other
studies, however, and reanalysis of the other studies
using a 4 mG cutpoint changed the pooled estimate by
only 5% [32]. A study by Green et al. based analyses
on quartile categories, resulting in upper cutpoints of
only 1.3 to 1.5 mG, and is excluded here because the
use of such low cutpoints strongly influenced esti-
mates from earlier studies [32]; it did however report
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Table 1 Summary data from 14 case–control studies of magnetic fields and childhood leukemia, smoothed counts for
numbers >3 mG (milligauss), and odds ratios. The smoother preserves all totals so totals are not repeated

No. cases No. controls
Odds ratio

First author Country >3 mG Total >3 mG Total (95% limits)

[Coghill 8] England 1 56 0 56 ∞
Smoothed 0.72 0.28 2.63 (0.52, 13.4)
[Dockerty 11] NZ 3 87 0 82 ∞
Smoothed 2.33 0.67 3.31 (0.74, 14.6)
[Feychting 14] Swedenb 6 38 22 554 4.53 (1.72, 12.0)
Smoothed 4.79 23.21 3.30 (1.30, 8.34)
[Kabuto 35] Japan 11 312 13 603 1.66 (0.73, 3.75)
Smoothed 11.39 12.61 1.78 (0.84, 3.73)
[Linet 41] USa 42 638 28 620 1.49 (0.91, 2.44)
Smoothed 42.22 27.78 1.51 (0.94, 2.43)
[London 43] USa 17 162 10 143 1.56 (0.69, 3.53)
Smoothed 17.13 9.87 1.59 (0.76, 3.36)
[McBride 44] Canadaa 14 297 11 329 1.43 (0.64, 3.20)
Smoothed 14.25 10.75 1.49 (0.71, 3.12)
[Michaelis 45] Germany 6 176 6 414 2.40 (0.76, 7.55)
Smoothed 5.92 6.08 2.35 (0.89, 6.15)
[Olsen 46] Denmarkb 3 833 3 1666 2.00 (0.40, 9.95)
Smoothed 2.83 3.17 1.80 (0.52, 6.20)
[Savitz 52] USa 3 36 5 198 3.51 (0.80, 15.4)
Smoothed 2.40 5.60 2.45 (0.76, 7.90)
[Tomenius 56] Sweden 3 153 9 698 1.53 (0.41, 5.72)
Smoothed 3.37 8.63 1.80 (0.64, 5.08)
[Tynes 57] Norwayb 0 148 31 2004 0
Smoothed 1.49 29.51 0.68 (0.19, 2.40)
UKCC (1999) UKc 5 1057 3 1053 1.66 (0.40, 6.98)
Smoothed 5.26 2.74 1.92 (0.62, 5.96)
[Verkasalo 58] Finlandb 1 32 5 320 2.03 (0.23, 18.0)
Smoothed 0.88 5.12 1.74 (0.40, 7.57)

Totalsd 115 4025 146 8740 1.69 (1.28, 2.23)

a120v 60 Hz systems, V = 1 (others are 220v 50 Hz, V = 0).
bCalculated fields, D = 0 (others are direct measurement, D = 1).
cComparison of >4 mG versus ≤2 mG, excluding 16 cases and 20 controls at 2–4 mG.
dFinal entry is MLE of common odds ratio (lower deviance P = 0.0001, homogeneity P = 0.24), which is unchanged by smoother
to three digits past decimal point.

positive associations upon contrasting the top and
bottom quartiles. Finally, a study by Schüz et al. [53]
with only three highly exposed cases was excluded
because of evidence of severe upward sparse-data
bias [31] in the reported estimates (odds ratios of
5 to 11), and insufficient reporting of data to allow
further evaluation.

Leukemia is a very rare disease and the usual jus-
tifications for interpreting the observed odds ratios
as rate-ratio estimates apply [50, Chapter 7]. The
odds ratios are very consistent across studies (with
homogeneity P = 0.24). The pooled maximum like-
lihood estimate (MLE) of a common odds ratio is

1.69 with 95% confidence limits of 1.28, 2.23, nearly
identical to the Mantel–Haenszel (MH) odds ratio
of 1.68 with 95% confidence limits of 1.27, 2.22.
The association is not explained or modified by any
known study characteristic or feature of the available
data, such as information source (e.g. measurement
method), location, or current type (120v 60 Hz ver-
sus 220v 50 Hz). Covariate adjustment had almost no
impact on the estimates. Results are unchanged using
finer categories (e.g. contrasting >3 mG vs. ≤ 1 mG)
or continuous field measurements, and there is no evi-
dence of publication bias [32] (see Meta-analysis of
Clinical Trials).
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Nonetheless, taking the statistics in Table 1 as
unbiased for the field effect is equivalent to assuming
that each study reported an experiment in which
children randomized to known residential field lev-
els (see Randomization), were never switched from
their initial assignment, and were followed until either
leukemia or selection as a control or random censor-
ing (see Censored Data) occurred. These assump-
tions are unacceptable, and so analyses of the impact
of departures (i.e. bias analyses) were carried out [27,
29]. However, some of the methods used for these
analyses require that all input counts be nonzero;
hence, preliminary smoothing of the counts was done
to eliminate the zeros in the observed table. The goal
of this step is to smooth out obvious “holes” in the
data without disturbing data summaries or patterns.

Some Basic Theory for Smoothing

Notation and Definitions

Let Y be the portion of the data to be treated as
having a random component, that is, Y is a random
variable whose range of possible values is the sam-
ple space. Let X be the portion to be treated as fixed,
a set of known conditions upon which we condition
our expectation for Y . In most of the notation that
follows, X conditioning will be left implicit; in par-
ticular, E ≡ E(Y |X) will denote the regression of Y

on X, whose possible values define an expectation
space Ω . This setup includes multivariate outcomes
by making Y an N -row array, and further extends
to random regressors by treating those regressors as
part of the Y array and including only known fixed
regressors in X. The present development, however,
will be limited to univariate Y and fixed regressors.

Defining the residual vector as ε ≡ Y − E, we
have Y = E + ε, where E(ε|X) = 0, even if Y has
discrete components. Typically, Y = (Y1, . . . , YN)′ is
a random vector of outcomes observed on N subjects
or groups indexed by i = 1, . . . , N, Ω is a subset of
RN , X is an N -by-J observed-covariate matrix with
rows Xi corresponding to the Yi , and X may include
a constant. For the case-control data in Table 1, Y

will be the numbers exposed above 3 mG within the
N = 2(14) = 28 groups defined by disease status and
study, X will contain design variables based on these
groups, and E will be the expected exposed counts
for the groups, given X and the group totals.

Parsimony, Information Loss, and Distortion

Most conventional modeling has the goal of
estimating some parsimonious summary β for E,
usually in the form of the parameter vector in
a model ME(β) for the regression E, coupled
with a model p(ε; υ) for the distribution of ε,
where β and υ have much lower dimension than
E and may overlap. A paradigmatic example is
normal linear regression in which E = ME(β) = Xβ

and p(ε; υ) = {2πdet(υ) exp(ε′υ−1ε)}−1/2, with υ a
simple covariance matrix for ε, for example, υ =
σ 2I with σ 2 functionally independent of β. Another
example is binomial logistic regression in which Y

contains counts and hence ε is discrete (as in the
example), and in which υ = β because the variance
is a fixed function of the mean.

Parsimony also arises from estimation issues.
Nothing in the above setup requires that X has
independent columns or that J < N . Nonetheless,
classical estimation procedures require independent
X columns, and may exhibit many problems unless
the number of X columns J is much less than the
number of observations N . These procedures thus
require parsimonious choice of X columns, otherwise
known as variable selection. That selection should be
heavily guided by contextual theory, such as causal
ordering, but unfortunately is often left to mechanical
testing procedures that distort significance levels and
coverage rates of conventional tests and confidence
intervals (see Level of a Test).

For the present purposes, parsimony gives rise to
information loss. Indeed, conventional model-based
estimates Ẽ of E (more often written Ŷ) must lie
within the final model manifold (i.e. the image of the
β-space traced by ME(β) in Ω), which has dimen-
sion no greater than J and which cannot capture any
pattern not visible in this manifold. For example, if
X contains only a single term for a treatment, the
resulting estimates will be unable to capture (say)
three-dimensional patterns in the relation of that treat-
ment to Y . Thus, parsimony in modeling E (limiting
the number of parameters) entails distortion along at
least some dimensions of E, and thus seems a ques-
tionable goal in an exploratory or smoothing context.

Filtering

Consider instead the rather different goal of “filtering
out” ε from Y to get and estimate Ẽ of E, without the



4 Smoothing Methods in Epidemiology

objective of fitting a particular structure ME(β) to E.
We might wish to do this because we regard ε and E
as representing the components of Y that are purely
random and purely systematic, with the E component
determined both by biases and by effects of interest.
Because it is free of random error, E is preferable to
Y for making inferences about the structure of sys-
tematic variation in Y . This does not mean that E
is sufficient for (say) causal inference (see Causa-
tion), because causal models are unidentified (latent)
structures if there is no identifiable distribution for
confounding effects (such as a randomization dis-
tribution) [3, 19, 47, 49, 51]. Nonetheless, E would
admit more straightforward modeling of latent struc-
tures than would the original Y . The idea here is
akin to imputation of missing values with a goal of
providing a completed data set useful to any subse-
quent analyst, regardless of that analyst’s modeling
objective [42].

To express this idea in a Bayesian formalism, sup-
pose Y and hence ε is uninformative about any latent
structure once E is known, that is, for any structure
of interest ME(β), p(β|E, Y ) = p(β|E, ε) = p(β|E).
For an estimator Ẽ of E to be capable of convey-
ing information in E about any possible structure,
it cannot be constrained to lie in a subspace of Ω .
Thus, the goal of filtering is the estimation of E
under a saturated model, that is, a model whose range
spans Ω; such a model must have at least N func-
tionally independent parameters (see Generalized
Linear Model). This sort of filtering shares few par-
simony considerations with conventional modeling.
For example, because the model is saturated, there
need be no parsimony criterion in model selection
(e.g. parsimony is not an issue in choosing columns of
X, although some covariates might be deemed redun-
dant or uninformative for E) (see Model, Choice of).
In a similar fashion, concerns about mismeasurement
need not arise; for example, even without validation
data, a mismeasured covariate may still provide much
useful information for estimating E. Again, paral-
lel considerations arise when including covariates in
missing-data analyses [42]: a mismeasured covariate
may still be useful for filling in missing values of
other covariates.

“Noise removal” is a more apt term than “smooth-
ing” for this preliminary filtering stage, for in applica-
tions like image processing and threshold detection,
one wishes to sharpen rather than smooth at real
edges or thresholds. An ideal method would remove

as much of the noise as possible while giving back
all potentially informative patterns in E (“signals” in
the Y vector); that is, it would clean out the noise
without removing any potentially important informa-
tion, whether “statistically significant” or not. Again
we have a shift of emphasis from parsimony criteria
(e.g. “include only if significant at level α”) toward
more generous inclusion of model terms. This shift is
needed because filtering is only an intermediate step
between data description and inferential modeling
(which may focus on an entirely latent parameter); it
is an attempt to clean out noise before making the
contextual interpretations that inference represents.
The patterns in the resulting estimates Ẽ are the infor-
mation input to the inferential or structural modeling
stage, and thus need to be preserved; at that later
stage some patterns may be clear and others may be
rejected as too imprecisely estimated to be of use.

To summarize: Much as a museum will clean and
restore art for public display, the goal of filtering and
imputation is to clean and restore data to facilitate
interpretation by a broad audience, not to impose
an interpretation (structural model) ME(β) on the
data. This idea can be especially important when
structural inference is likely to be controversial, as
in the magnetic-field/leukemia example.

Filtering by Shrinkage

Fitting a saturated model (see Generalized Linear
Model) by conventional “unbiased” methods, such
as least squares or maximum likelihood (ML) would
only give smoothed values Ẽ equal to the observed
Y , and so achieve nothing. Choosing methods to min-
imize an expected loss function of E − Ẽ, without
concern for unbiasedness or other classical con-
straints, leads naturally to shrinkage estimation of
E (as opposed to β), in which Ẽ is “stabilized”
by pulling it away from Y , toward a shrinkage
point. These methods include Stein, ridge, penal-
ized, pseudo-Bayes, semi-Bayes, empirical-Bayes,
and random-coefficient estimation [4, 13, 16, 55],
and their modern hierarchical-Bayes variants [6, 15,
40]. Thus, smoothing can be identified with shrinkage
methods for fitting saturated models. For example,
smoothing splines are based on penalized fitting of
an overparameterized “natural” cubic spline [34]. The
key questions are then: what point should Y (the con-
ventional saturated-model estimator of E) be shrunk
toward, and by how much.
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Intuitive answers to these questions arise natu-
rally from noting that all shrinkage procedures can
be cast in a Bayesian format, for example, ridge
and penalty parameters correspond to hyperparame-
ters in a prior distribution p(E) for E [39]. The chief
difference among the procedures is that some (e.g.
empirical-Bayes) estimate all hyperparameters from
the data, while others (e.g. semi-Bayes) fix certain
hyperparameters in advance (usually the variance
components). The resulting shrinkage point corre-
sponds to the estimated prior mean, and the degree
of shrinkage is a function of the random error and
prior variances, where the latter may be estimated
or fixed.

As an example, suppose p(ε; υ) is multivariate
normal (MVN) with information matrix (inverse-
covariance) υ−1 = ιε, and the prior p(E) is MVN
with mean µE and information ιE. With c = (ιε +
ιE)−1, the posterior mean µE|Y of E is c(ιεY + ιEµE),
which is the result of shrinking Y toward µE with
the degree of shrinkage determined by the relative
amount of prior information for ε and E. The poste-
rior mean for ε is µε|Y = Y − µE|Y = cιE(Y − µE),
the result of shrinking the “preposterior” residual
Y − µE toward the origin by the factor cιE; the error
model p(ε; υ) can thus be viewed as an origin-
centered prior for estimating ε, with µE|Y = Y − µε|Y
the result of subtracting the ε estimate µε|Y from
Y . Symmetrically, µE|Y − µE = cιε(Y − µE) is the
result of shrinking Y − µE toward the origin by the
factor cιε.

These relations extend well beyond those in which
the error and prior distributions are approximately
MVN. For example, if p(Y |E) is multinomial with
total T and cell probability vector π = E/T , and the
prior p(π) is Dirichlet with mean Eπ (see Multi-
variate Distributions, Overview) then µE|Y = (1 −
c)Y + cEπ = Y − c(Y − Eπ) where c = P/(T + P)

and P is an “effective prior sample size” [4,
17], [18, Chapter 12]. The same type of relation
holds under product-multinomial-Dirichlet, product-
binomial-beta, and product-Poisson-gamma models
for p(Y |E)p(E), with c varying across the indepen-
dent subvectors (blocks) within Y .

Filtering by Hierarchical Models

Semi-Bayes (SB) or partial-Bayes procedures mod-
ify elementary Bayes procedures by estimating µE

from Y . Usually, the prior mean µE is given a

parametric model form µE = Mµ(β), and so esti-
mating µE reduces to computing an estimate β̃ of
β. This resembles conventional modeling, but now
only µE rather than E is constrained to lie in the
model manifold. Overall, we obtain a hierarchical
structure Y = Mµ(β) + δ + ε where the partial resid-
ual δ = E − Mµ(β) has a mean-zero prior density
p(δ; τ). The entire model is partial-Bayes insofar
as E = Mµ(β) + δ is partitioned into a component
Mµ(β) with no prior on β and a component δ with a
known, mean zero proper prior [1].

Because δ and ε are aliased, the partition of
the estimated preposterior residual Y − µ̃E = Y −
Mµ(β̃) into estimates ε̃ = Y − µ̃E|Y (which will be
discarded after use in diagnostics) and δ̃ = µ̃E|Y −
µ̃E, is determined by the prior p(δ; τ). δ̃ may be
viewed as the result of shrinking the unconstrained
δ estimate Y − µ̃E toward the origin; given p(ε; υ),
the prior p(δ; τ) controls the amount of shrinkage.
The prior parameter vector τ may be viewed as a
smoothing or tuning vector (although more often τ is
a scalar, and λ = 1/τ 2 is called the tuning parame-
ter). Empirical-Bayes (EB) procedures estimate τ as
well as β, usually under a simple model for p(δ; τ),
for example, p(δ; τ) is often assumed MVN(0,τ 2C)
with τ unknown and C a known structured matrix
(identity, exchangeable, autocorrelated, etc). Bayes
empirical-Bayes (BEB) procedures introduce proper
hyperpriors p(β) and p(τ) to estimate β and τ ;
p(τ) may be interpreted as encoding prior informa-
tion about the dispersion of δ, or about how much
smoothing would be best to remove the most noise
without removing too much signal.

Use of lower-dimensional prior models Mµ(β)

and p(δ; τ) for E resurrects questions of model and
covariate choice. Perhaps by analogy with conven-
tional modeling, much of the literature on smoothing
has focused on simple Mµ(β), for example, most
table smoothers shrink toward independence models
or models reduced by a variable-selection algorithm
[4], and many scatterplot smoothers shrink toward a
line [34]. As mentioned earlier, these practices can
be hazardous, insofar as any patterns falling outside
the prior-model manifold will be smoothed (flattened)
out, and perhaps become inapparent as a result. To
avoid this problem, one can keep the prior model very
large, large enough to be capable of approximating
any pattern that a priori might be of interest and of
nonnegligible probability. To cite a phrase attributed
to L.J. Savage, at this stage “all models should be as
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big as a house”; any data-based model reduction risks
conflating inferential objectives with the more limited
goal of noise reduction, which as argued above should
be based on a flexible model Mµ(β) for µE.

A more specific guide for elicitation of the form
of the prior model (as opposed to values of β) is that
Mµ(β) should be rich enough to make the δ compo-
nents independent given β [36]. In this sense, Mµ(β)

should exhaust all structure in any prior beliefs or
information about E, leaving only a random prior
residual. This use of “random” is however distinct
from the description of random error ε: δ represents
an allowance for uncertainty about structure, and may
contain heretofore unsuspected patterns in E (signals),
whereas ε represents truly uninformative noise in Y .
For data in which ε is generated by a known mecha-
nism, such as studies conducted with known random
allocation or sampling designs (and other situations
admitting design-based inference), p(ε; υ) is known,
and hence can be removed from the estimable distri-
bution of Y − µE = δ + ε to estimate p(δ; τ).

In observational data, however, p(δ; τ) and
p(ε; υ) are not separately identified, and τ or some
transform like λ = τ−2 is used as a tuning parameter
that determines how Y − µE will be decomposed
into the signal carrier δ and pure noise ε. When
τ 2 is a prior variance, as τ goes to zero (λ →
∞), smoothing approaches conventional fitting of the
model E = µE = Mµ(β); this extreme is complete
smoothing away of everything outside the model
manifold, and so treats the entire departure from
Mµ(β) as noise. Conversely, as τ grows without
bound (λ → 0) smoothing approaches conventional
fitting of the saturated model; this extreme is no
smoothing at all, and so treats the entire departure
from Mµ(β) as structural. Smoothing can thus be
seen as a compromise between extremes of treating
Mµ(β) as the only structure, and on the other hand
treating all variation in Y as structural (nonrandom
or systematic).

Nonlinear Models

Thus far, I have used an additive decomposition of
E. Nonetheless, all the procedures extend straight-
forwardly to forms such as g(E) = Mµ(β) + δ for
some known link function (see Generalized Linear
Model) g, where g(E) has prior mean Mµ(β) and δ

again has a mean-zero prior density p(δ; τ). These
extensions are just special cases of generalized-linear

and nonlinear hierarchical modeling [15, 36] in which
the first-stage model is saturated: g(E) is the vector of
first-stage coefficients, with β and δ the second-stage
coefficient and residual vectors. If Mµ(β) = Xβ with
β given no prior, β is the fixed effect in a generalized-
linear mixed model with random effect δ [5].

Basic Computations

Some Considerations for Current Platforms

Most current Bayesian texts presume software for
posterior sampling is available, and so emphasize
BEB or more general hierarchical-Bayes approaches
[15], while non-Bayesian texts focus on EB or equiv-
alent variance-components methods [10]. Many if not
most epidemiologists are however committed to one
or a few major packages (SAS, SPSS, or Stata) (see
Software, Biostatistical), which as of this writing
lack posterior sampling; also, most prefer simple pro-
grams, at least for primary analyses. This section
therefore focuses on basic numeric approximations
that can be carried out with popular regression soft-
ware to obtain estimated prior and posterior means
µ̃E and µ̃E|Y .

Smoothing with a flexible Mµ(β) will tend to
make Y − µ̃E close to the origin, and hence δ̃ =
µ̃E|Y − µ̃E will tend to have very small components
roughly proportional to τ when τ 2 is a prior vari-
ance. While this is not a problem if τ is known,
it can make τ estimators from moment-based EB
procedures (used for example in SAS proc Glim-
mix) perform very poorly in sparse binomial data
[5] (see Chi-square Tests), a case in which pre-
liminary smoothing is most important. For exam-
ple, the truncated-EB moment-estimator of τ in the
MVN(0,τ 2C) model for p(δ; τ) often collapses to 0,
resulting in µ̃E|Y = µ̃E, whereas the corresponding
fixed-τ (semi-Bayes) µ̃E|Y behaves more reasonably
under the same conditions [21, 22]. These problems
with “classical” EB procedures reflect the weakness
of data information for separating Y into the three
model components (µE, δ, ε), and the consequent
need for strong prior information in order to produce
a contextually sensible degree of filtering.

When Y is not very informative for τ under the
model but p(τ) is very informative, p(τ |Y ) will dif-
fer little from p(τ) and the µE|Y obtained from a
full BEB procedure using p(τ) will often be well
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approximated by the µE|Y obtained from the corre-
sponding procedure that fixes τ at the mean or median
of p(τ) (which is just BEB with point prior for τ ).
This suggests that, for smoothing purposes, Bayes
or semi-Bayes procedures can be used as convenient
approximations to full hierarchical procedures. Under
the model g(E) = Mµ(β) + δ, µE|Y has first-order
asymptotic approximation µ̃E|Y = g−1[Mµ(β̃) + δ̃],
where (β̃, δ̃) is the posterior mode of (β, δ). One can
obtain (β̃, δ̃) by maximizing the loglikelihood for the
model g(E) = Mµ(β) + δ with penalty ln {p(δ; τ)},
that is, (β̃, δ̃) is the maximum penalized-likelihood
(MPL) estimate of (β, δ) [40]. The negative inverse
of the Hessian at (β̃, δ̃) is then an approximate poste-
rior covariance matrix for (β̃, δ̃), and µ̃E = g−1(Xβ̃)

and µ̃E|Y = g−1(Xβ̃ + δ̃) are approximate prior and
posterior means for E.

Data-augmentation Priors

For beta, Dirichlet, and normal priors and some gen-
eralizations with τ fixed, one can obtain (β̃, δ̃) and
hence µ̃E|Y from conventional regression packages
by augmenting Y and X with “prior data” [1, 7, 25,
28, 30, 37]. To illustrate, suppose p(Y |E) is product-
binomial with n the vector of totals and risks πi =
Ei/ni = expit(Xiβ + δi), where expit(u) ≡ 1/(1 +
e−u). This is a linear-logistic regression with ran-
dom effects δi ; for Table 1, πi and ni are the risk of
high exposure and the size of group i. A mean-zero
independence conjugate prior density for δ is pro-
portional to Πiexpit(δi)

aiexpit(−δi)
ai , a product of

logistic-beta(ai, ai) densities, that is, densities such
that expit(δi) is beta(ai, ai); in particular, ai = 1
yields the standard logistic density. Let a be the
vector of ai , I the N -by-N identity, 0 an N -by-J
matrix of zeros, and � vertical array concatenation.
An ordinary ML logistic-regression program can be
tricked into entering the log of this prior as a penalty
function by augmenting Y , n, and X to Y ∗ = Y � a,
n∗ = n � 2a, and X∗ = (X, I) � (0, I ). The exact
posterior mode (β̃, δ̃) and an approximate posterior
covariance matrix for (β, δ) will then be returned as
the ML estimates; if the program will provide fitted
proportions π̃i (as most will), the first N of the niπ̃i

will be µ̃E|Y .
This data-augmentation prior (DAP) can be gener-

alized in a number of ways [25, 28]. To give β as well
as δ a proper prior, one need only add J more aug-
menting rows to X∗ encoding the priors for the βj .

The heaviness of the prior tails (which decreases with
ai) may be controlled while preserving the scale by
rescaling the density, that is, replacing δi with δi/τi

in the density. Skewness may be introduced while
preserving location by using a logistic-beta(ai, bi)
density with ai �= bi and recentering, that is, replacing
δi/τi with (δi − mi)/τi where mi is the prior mode
before recentering.

Because the conjugate prior approaches normality
as ai increases, one can approximate normal(0,τ 2

i )
densities for the δi by setting ai = (4/h2τ 2

i ) − 1 and
X∗ = (X, I) � (0, hI), where the constant h controls
closeness to normality [25]. Normality is approached
as h approaches 0; estimates would not change mean-
ingfully after h drops below a certain value, but for
rounding errors produced by finite machine precision;
typically, h yielding all ai > 100 provides adequate
numerical approximations. Prior correlations among
the β and δ may be introduced by using a nondi-
agonal matrix in place of hI in X∗, or by using an
uncorrelated reparameterization for the analysis and
then transforming results back to the original param-
eterization.

Specification of the Prior Parameters

Incorporating Contextual Information

Specification of prior parameters from contextual
(subject-matter) information can be done by back-
calculating those parameters from elicited prior per-
centiles (e.g. [9], p. 384; 2, 24, 25, 28). Continuing
the above example, suppose one is 95% certain a pri-
ori that the odds πi /(1–πi) is within an R-fold range
around the prior median exp(Xiβ), which implies
that logit(πi) = Xiβ + δi falls in an interval of width
ln(R) around Xiβ with 95% prior probability. Under
a normal prior for δi , this relation further implies
that the width 2(1.96)τi of a 95% prior interval for
δi is ln(R), so τi = ln(R)/3.92 (e.g. τi = 0.764 when
R = 20). For other prior densities, one may use tables
or numerically solve for the hyperparameter values
that make the difference of the prior 97.5th and 2.5th
prior percentiles for δi equal to ln(R) (see Prior Dis-
tribution).

Because the δi percentiles depend entirely on con-
text, no purely numeric guidelines can be given for
their choice. It should be borne in mind, however,
that δi are residual effects after factoring out effects
in the smoothing model Mµ(β), and so should not
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be very large if the model has been chosen “maxi-
mally,” that is, to capture all systematic (structural)
effects expected in the context. In the present exam-
ple, the only expected systematic effects on the study
results are from measurement type and from power-
system type, both of which will be coded into Mµ(β).
The meaning of “not very large” is rather vague;
nonetheless, in lifestyle, environmental, and occu-
pational epidemiology, odds ratios between 1/3 and
3 or perhaps 1/4 and 4 may be considered not very
large, corresponding to an R of 9 or perhaps 16. Still
larger values are defensible as a conservative choice,
however: Specifying R (and hence τ ) too large rel-
ative to the true residual effects δ leads to overly
wide interval estimates with supranominal coverage,
but specifying R too small leads to overly narrow
intervals with subnominal coverage [20, 21]; hence a
value of R = 20 is used below. Fortunately, as will
be illustrated, intervals sensitive to reasonable vari-
ation in R tend to be those so wide that no useful
inference can be drawn under any reasonable choice.

An alternative approach indirectly fixes τ by
instead specifying the “effective degrees of freedom”
(edf) desired for the smoothing, where edf is defined
as a function of the projection matrix of Y to Ẽ
implicit in the final fit [34]. The rank of X is the
smallest possible value for edf and corresponds to
τ = 0, or simply fitting Mµ(β) as ME(β) (conven-
tional modeling); the total (data) degrees of freedom
is the largest possible value. This type of specifica-
tion may be natural in the context of fitting curves or
surfaces in which a somewhat qualitative prior about
the complexity of the curve can be visualized in rela-
tion to polynomial curves or surfaces, but does not
seem as intuitive for qualitative data.

Traditional Table Smoothing Revisited

Traditional methods of handling sparse count data
can be recast as primitive versions of the data-
augmentation method (see EM Algorithm) with
highly constrained prior parameters [4, Chapter 12].
Adding a constant c (e.g. 1/2) to each count (Yi and
ni − Yi) in the binomial case corresponds to using
independent, symmetric beta(c, c) priors for the πi

rather than the residuals expit(δi), which implies a
prior mean c/2c = 1/2 and variance (c/2c)2/(2c +
1) = 1/(8c + 4) for all the πi . This prior almost
never makes sense contextually. For example, if πi is
an exposure or disease risk, it rarely will have prior

mean 1/2 and (with c = 1/2) variance 1/8 for all πi .
In fact, most disease risks are much less than 1/2
and have fairly well-known dependencies on demo-
graphic covariates, which should be accounted for
by inclusion of those covariates and a constant (or
equivalent) in X. Furthermore, in pooled analyses and
meta-analyses, risks will vary across studies.

Smoothing the Example Data by a
Maximal Model

Specification and Fitting

Let L be the leukemia (case) indicator, with S the
vector of 14 study indicators, D the indicator that the
study used direct measurements (vs. calculated), and
V the indicator of 120 volt 60 Hz power system (vs.
220 volt 50 Hz); there are no D = 0, V = 1 studies,
so these indicators define only three rather than four
groups of studies. The prior design matrix X will be
a function of L, S, D, and V . Because S contains
indicators for every study and because D and V are
functions of S, once S is included, no constant and
no main effect for D or V is needed.

To minimize alteration of data patterns, one should
want a rich prior model Xβ for the logit prior mean.
The richest model is the saturated model, in which X

contains 28 linearly independent columns, for exam-
ple, 14 corresponding to S and 14 corresponding to
the product terms in LS. To avoid zeros in the fitted
values, however, certain products must be excluded
(those with zero sufficient statistics; see [4]). On the
other hand, patterns in results related to measurement
D and power system V were expected. Representa-
tion of such patterns requires LD and LV products;
thus, X was given columns for L, S, LD, and LV
(17 columns). Any larger design matrix defined from
L, S, D, V alone would introduce fitted zeros; thus,
X is maximal for the smoothing objective.

The prior p(δ; τ) was MVN (0,τ 2I). Fitting was
done by data augmentation with numerical constant
h = 0.01, and prior standard deviation τ = 0.764
(R = 20); this adds 28 pseudo-observations with ai =
(2/hτi)

2 − 1 ≈ 68 489 cases and 64 489 controls
each, and 28 augmenting covariate columns equal to
zero everywhere except augmenting column i, which
is set to h in the ith augmenting row.
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Results

Let Z = (X, I) and θ = β � δ. Table 1 shows the
resulting smoothed counts expit(Ziθ̃)ni (the ele-
ments of µ̃E|Y ) for the highly exposed category; the
smoothing model fit by MPL preserves the totals so
those are not repeated in the table. The smoothed
odds ratios are identical whether computed from the
smoothed counts or from the model coefficients as
ω̃ = exp{(ZL1 − ZL0)θ̃}, where ZL1 and ZL0 com-
prise the rows of Z with L = 1 (cases) and L = 0
(controls). Note the modest shrinkage of Y to µ̃E|Y :
The largest absolute change in a count is 1.49, the
changes are less than 1.00 in 12 of the 14 studies, and
the mean absolute change is only 0.45. Also, to the
third decimal point there is no change upon applying
the ML summary point and interval estimators to the
smoothed counts. Thus, as desired, the smoother has
not altered the main summary from these data. In con-
trast, adding 1/2 to each cell inflates these estimators
slightly, to 1.72 (1.31, 2.26).

Turning to patterns across studies, the three a
priori study groups encoded in X(D = V = 0, D =
1&V = 0, D = V = 1) have estimated geometric
mean odds ratios of 1.63, 2.24, 1.72 (P = 0.88
for deviance test of equality of these means). The
smoothing procedure shrinks the odds ratios toward
their group geometric means, but only the most
unstable odds ratios change dramatically. Odds ratios
that were previously infinite (Coghill, Dockerty) or
zero (Tynes) due to zero counts, are pulled back
to much more reasonable values of 2.63, 3.31, and
0.68; for comparison, adding 1/2 per cell to these
studies yields odds ratios of 3.05, 6.83, and 0.21.
The two other outlying odds ratios are 4.53 and
3.51 (Feychting, Savitz); the smoother shrinks these
estimates to 3.30 and 2.45, whereas adding 1/2
inflates them to 4.73 and 3.68.

Estimating Variances of Smoothed Quantities

Given that an end user of a smoothed data set
is likely to need variance estimates for computed
quantities, there is an issue as to whether naı̈ve
computations (treating the smoothed data as if
it were the observed data) are adequate. To
illustrate the issues, Table 1 provides approximate
95% confidence limits ω̃kexp( ± 1.96σ̃k) for the
smoothed odds ratios (k = 1, . . . , 14), where σ̃ 2

k is
the kth diagonal element of the estimated covariance
matrix of the log odds ratio estimates, (ZL1 −

ZL0)Cõv(θ̃)(ZL1 − ZL0)
′, and Cõv(θ̃ ) is the inverse

information matrix from the fitted model. Computing
the limits (incorrectly) by applying the raw-data
variance formulas [50], Chapters 14 and 15 to the
smoothed counts makes little difference for the larger
studies and almost no difference for the summaries;
for example, for the Linet study, the limits from the
correct formula are 0.94, 2.43, whereas the raw-data
formula naı̈vely applied to the smoothed counts yields
0.92, 2.47. Nonetheless, the naı̈ve intervals tend to
be excessively wide because they do not use the
model information to estimate variances. This excess
is small when the smoothing constraints are weak
(due to the large τ and large model) relative to the
data information, as in large studies. For summary
measures, the excess becomes negligible because
those are primarily determined by the large studies.

On the other hand, the excess can be large for
small studies, for example, for the Verkasalo study,
the limits from the correct formula are 0.40, 7.57,
whereas the raw-data formula naı̈vely applied to the
smoothed counts yields 0.18, 17.2. Such a difference
may be of little or no practical importance, however.
First, both intervals are asymptotic and so are ques-
tionable when some cell counts are very small (in
Verkasalo, there is only one highly exposed case);
second, when the two intervals differ greatly, both
are so wide that their message is the same, that is,
little of interest can be said about the odds ratio from
a small study without stronger assumptions about
its relation to odds ratios from other studies (this
consideration is why exact methods or more refined
approximations may seem academic in most epidemi-
ologic applications).

Nonetheless, to avoid variance overestimation aris-
ing from the use of smoothed counts in place of
observed counts, subsequent analyses would have
to be based on Cõv(θ̃ ) rather than naı̈ve variances.
Analogously, in missing-data problems, valid vari-
ance estimation must account for the imputation (see
Missing Data in Clinical Trials), although in those
problems, the naı̈ve formulas underestimate rather
than overestimate the variances [42].

Discussion

Is Sensitivity Analysis Helpful in the Face of
Arbitrary Sensitivity?

A natural question is to ask whether the smoothing
results are sensitive to the choice of τ (or
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equivalently, R or λ) given the smoothing model.
The answer is that, like latent-structure analyses, they
are arbitrarily sensitive within their mathematical
bounds. In the example, when τ > 2 (R > 2500,
λ < 0.25) the smoothed counts in µ̃E|Y are all
within 0.5 of the observed counts in Y ; whereas
when τ = 0 (R = 1, λ = ∞) the smoothed counts
in µ̃E|Y equal the estimated prior counts in µ̃E =
Mµ(β̃), and deviate as much as 3.5 from the
observed counts. These two count vectors bracket
those obtainable under intermediate choices for τ

(2 > τ > 0), which include any remotely reasonable
choice. Consequently, statistics that are almost the
same whether computed under τ = ∞ (i.e. from
the observed counts) or under τ = 0 (i.e. under the
prior model) will be insensitive to any choice of τ ;
for example, the ML and MH summary statistics
hardly change. Conversely, statistics that change
much between these extremes (such as odds ratios
for studies with a 0 count) are those sensitive to
τ ; for example, the odds ratios from Coghill and
Dockerty are implausibly large (5.4 and 9.2) when
τ = 2, but both approach the plausible value of 1.97
as τ approaches 0.

To make contextually meaningful inferences about
parameters with sensitive estimates, one must con-
fine τ to values that are reasonable, that is, values
for τ that assign the bulk of probability to plausi-
ble values for δ. This brings in subjective judgment
about τ as well as δ, which could (some might say
should) be summarized in a prior p(τ). One could
then draw choices for τ from p(τ) or p(τ |Y ) and
repeat the analysis. Averaging the resulting log odds
ratios over p(τ |Y ), however, approximates the BEB
posterior mean log odds ratios, and the BEB posterior
intervals have the advantage of providing a coherent
integration of uncertainties about δ, including uncer-
tainty about τ .

Does BEB then obviate the need for sensitiv-
ity analysis of τ? One might demand a Bayesian
sensitivity analysis, which varies p(τ) in the BEB
analysis. Such a demand only leads back to the prob-
lem of arbitrary sensitivity, however. In the above
example, any p(τ) with support above two nearly
reproduces the observed counts, whereas a p(τ) con-
centrated near 0 reproduces the counts expected under
the prior structural model. Paralleling ordinary sensi-
tivity analysis, we will only see that stable statistics
are insensitive across the range of p(τ), and that
unstable statistics almost completely depend on p(τ).

Again, however, both facts can be seen immediately
by comparing results computed from the raw data
with results computed under the model E = Mµ(β)

(i.e. with τ = 0), or by examining raw-data confi-
dence intervals.

One rationale for presenting analyses with differ-
ent τ is that it provides inferences tailored to readers
with different priors on δ. Nonetheless, such multiple
presentation shifts labor and space toward interpre-
tation of sensitive statistics, which provide a poor
basis for inference. On the other hand, varying τ or
p(τ) will be superfluous for inferences based only
on insensitive statistics, which are a better focus
of inference.

Frequentists often opt to use an “empirical” point
estimate of τ (e.g. from cross-validation) rather than
a prior τ or p(τ). As with use of a prior, how-
ever, this option does not display sensitivity to τ .
It is also objectionable because it can result in a
τ estimate that is both implausible (often seeming
too small) and unstable. The subjectively and objec-
tively poor moderate-sample performance of common
τ estimators (e.g. [21]) seems a crucial problem
often neglected in promotions of so-called “objec-
tive” smoothing techniques based on these estima-
tors. One way to address this problem involves the
same rationale and form as basic shrinkage estima-
tion techniques for E and β: stabilize the τ estimator
by shrinking it toward a prior mean. This solution
introduces a prior p(τ), and so leads back to the
BEB approach.

As a technical note, given the normal-prior spec-
ification (as in the above example), the numeric
constant h is not a statistical parameter in the DAP;
thus there is no philosophic issue concerning sen-
sitivity analysis for h. One simply needs to ensure
that h is small enough so that the numeric results
are stable, but not so small that overflow or under-
flow occurs. This can be done by checking to see that
reducing h leaves the results essentially unchanged,
without introducing numeric warnings. One could
instead treat h as a hyperparameter that determines
departure from normality in the DAP (with increas-
ingly heavy tails as h increases), in which case the
debate of sensitivity analysis for h versus BEB anal-
ysis with a hyperprior p(h) could again be raised.

The issues just described also arise for latent-
structure analyses. For a description of a hierarchical
Bayes alternative to sensitivity analysis in a structural
model involving latent variables, see [27].
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Smoothing and Model-robust Estimation

Another way to view smoothing is as a form of
model-robust regression estimation. A large class of
model-robust approaches (e.g. [60]) justify the use of
a restrictive form E = ME(β) by appeal to theorems
showing that the least-squares or ML estimator of β

converges to a value βp that would be obtained by
fitting the model to the population joint distribution
p(X, Y ), where the latter is not constrained to follow
the model; they also derive standard errors without
assuming the model is correct (robust or “sandwich”
variance estimators). These approaches assume an
absence of sampling biases and measurement errors
in the data generation, and are scientifically justifiable
only if the population summary afforded by ME(βp)

omits no contextually important information about
the true regression E.

As an example in which the latter condition can
fail and appears to have failed severely at times,
consider the controversy over the value of ecologic
(group-aggregate) studies for inference about indi-
vidual risks. With E these risks, and subdividing
the population into groups indexed by k, it is well
known that E = Xβ (risk linearity) induces a group-
mean regression Ek = Xkβ, reflecting the linearity
of means. This relation is often used (incorrectly)
to justify unrestricted inferences from the group to
individual level. If, however, the individual regres-
sion contains important nonlinearities (as for many
cancer risk factors, including age, cigarette use, and
asbestos exposure), the group-mean regression may
not resemble the individual-level regression in form
or even in direction of key associations [26, 54, 59].
This should not be surprising given that the linear risk
approximation can be woefully inadequate, especially
for projecting risks at extreme design points (which
are often the focus of health controversies).

This sort of problem is not addressed by con-
ventional model-robust methods, which dutifully try
to estimate the best approximation of a given form.
Smoothing instead demotes the model form from a
known model ME(β) for E to a model Mµ(β) for the
prior mean of E, thus allowing data departures from
the model (whether “significant” or not) to not only
alter variance estimates (as in conventional model-
robust estimation) but to also alter the fitted values
Ẽ = µ̃E|Y .

Conclusion

Smoothing can be viewed as an exploratory technique
falling between raw-data description and inference
about deeper (and often latent) structures of contex-
tual interest, as well as a modeling technique that
frees one from the rigidity of typical model speci-
fications. It can also be viewed as a data-repairing
technique akin to missing-value imputation. While it
cannot address fundamental data inadequacies (such
as selection bias or poor measurement), like impu-
tation, it can ease subsequent analyses that attempt
to address those inadequacies. The hierarchical-Bayes
format for smoothing (which has been around at least
since the 1960s) provides useful insights for both
specification of smoothing models and parameters,
and eases computation of smoothed data from stan-
dard software. It would thus seem practical and timely
to include such smoothing methods in basic biosta-
tistical training, and encourage their use whenever
problems arise because of unstable or zero counts.
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Alabama. His father, a Presbyterian minister and edu-
cator, worked training young black men for the min-
istry. George completed his B.S. degree in 1905 at the
University of Alabama. He taught, first at the Selma
Military Academy and then at Austin College, from
1905 to 1910. Then he undertook graduate work at the
University of Michigan, receiving a Masters degree in
physics in 1913. From 1913 to 1958 he served on the
staff of Iowa State University in Ames, Iowa, begin-
ning by teaching in the Department of Mathematics.
In 1927, he became one of the two directors of the
Mathematics Statistical Service in the department, a
unit that provided statistical consulting for the cam-
pus. Iowa State organized a separate Statistical Lab-
oratory in 1933 with Snedecor as director. He served
in that position until 1947 when a policy of manda-
tory retirement from administrative duties required a
change. The Statistical Laboratory continued, but in
conjunction with a regular academic Department of
Statistics founded in 1947. Snedecor continued as a
staff member of the department until 1958.

The evidence indicates that George Snedecor rec-
ognized the usefulness of statistical thinking in the
work of science early in his career at Iowa State.
He introduced a course in statistics in 1915. He
worked to bring the methods used at the Rotham-
sted Experimental Station to the researchers of the
Iowa Agriculture and Home Economics Experiment
Station. Henry A. Wallace, later Secretary of Agricul-
ture and Vice President of the United States, shared
Snedecor’s views. In 1924, Snedecor assisted Wallace
with a series of seminars at Iowa State on statistical
methods and the use of business machines in sta-
tistical computing. This led to a publication entitled
Correlation and Machine Calculation [1] in 1925,
revised in 1931, which came to have a worldwide
distribution. The Rothamsted influence came directly
to Ames through summer visits by Ronald Fisher,
first in 1931 and again in 1936. Fisher presented lec-
tures on statistical methods to the local staff and
students as well as visitors from other states and
Canada.

This background, together with experience in
statistical consulting in the experimental and observa-
tional sciences at Ames, led Snedecor to write a ref-
erence textbook on statistical methods [2]. The book
became one of the most widely used and influential
texts on the subject ever written. The first edition of
Statistical Methods Applied to Experiments in Agri-
culture and Biology appeared in 1937. The eighth
edition continued in print in 1996 [3]. The book
has had a lifetime sales of approximately 235 000
copies. Beginning with the fifth edition, Snedecor
asked W.G. Cochran to join in authoring the text.
Cochran added a chapter on survey sampling and
continued revision of the work through its sixth
and seventh editions. The book had few competi-
tors when it first appeared and became a standard
reference and a graduate-level textbook on statisti-
cal methods in the agricultural research community
of the US. Subsequently, it was translated into nine
languages and its influence spread to other fields,
serving as a model for many later textbooks on
statistical methods. Statistical Methods, written by
a man not steeped in mathematics, but endowed
with a vision of the centrality of statistical think-
ing in science reinforced by years of consulting with
active research workers, has strengthened the statis-
tics profession and served the scientific community
very well.

The world recognized the contributions Snedecor
made and conferred many honors and awards includ-
ing two honorary Doctor of Science degrees, one
from North Carolina State University in 1956 and
another from Iowa State University in 1958. Snedecor
served as President of the American Statistical
Association in 1948 and received the Samuel S.
Wilks Memorial Medal in 1970. He became an Hon-
orary Fellow of the British Royal Statistical Society
in 1954. The building housing the statistics depart-
ment on the Iowa State campus received the name
Snedecor Hall in 1969.

George Snedecor directed the graduate work of
Gertrude M. Cox and she received Iowa State’s
first degree in statistics. She, together with one of
Snedecor’s colleagues, Paul G. Homeyer, wrote a
biographical and anecdotal account of the life and
times of George Snedecor in 1975 [4]. The paper con-
tains an appendix listing Snedecor’s published work.

In 1959, Snedecor left Ames for work as a sta-
tistical consultant in the US Navy Electronics Labo-
ratory in San Diego, California, which he continued
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until 1963. He lived his last years in Amherst, Mas-
sachusetts with his son, James. He died in Amherst
on February 15, 1974.

References

[1] Wallace, H.A. & Snedecor, G.W. (1925). Correlation
and Machine Calculation. Iowa State College Official
Publication, Vol. 23. (Revised 1931, Vol. 30.).

[2] Snedecor, G.W. (1937). Statistical Methods Applied to
Experiments in Agriculture and Biology. Collegiate Press,
Ames.

[3] Snedecor, G.W. & Cochran, W.G. (1996). Statistical
Methods, 8th Ed. Iowa State University Press, Ames.

[4] Cox, G.M. & Homeyer, P.G. (1975). Professional and
personal glimpses of George W. Snedecor, Biometrics 31,
265–301.

D.F. COX



Snowball Sampling

Snowball sampling, also known as chain referral sam-
pling, is a nonprobability method of survey sample
selection that is commonly used to locate rare or dif-
ficult to find populations. Although there are several
variations, this approach involves a minimum of two
stages: (a) the identification of a sample of respon-
dents with characteristic x at the zero-stage (s0); and
(b) the solicitation of referrals to other potentially eli-
gible respondents believed to have characteristic x at
snowball stages s1 through sk . In many applications,
this referral process continues (or snowballs) until an
acceptable number of eligible respondents have been
located. Statistical inferences can be drawn from the
zero-stage of a snowball sample, assuming that proba-
bility methods of selection were used. Samples drawn
at s1 through sk , and samples that combine the zero
and snowball stages are not representative, however,
and cannot be used to make statistical inferences.

Goodman [8] provided the first comprehensive
overview of this technique. More recent techni-
cal assessments have been made by Erickson [4],
Frank [6], and TenHouten et al. [19]. Practical con-
siderations in implementing snowball samples have
been reviewed by Biernacki and Waldorf [1]. An
early application of snowball sampling was reported
by Menzel and Katz [15], who used this approach to
study the diffusion of a medical innovation.

Snowball sampling continues to be used widely
in biomedical, social, and behavioral research today.
A review of recently published literature reveals the
use of snowball sampling to identify numerous spe-
cial populations, including homeless adolescents [3],
homosexuals [2], minority community leaders [16],
cancer survivors [9], drug users [12], current and for-
mer smokers [14], and women planning to use artifi-
cial insemination techniques [5]. Snowball sampling
is also a commonly used method for the identification
of social networks in sociometric research [6] and in
qualitative studies [1]. Snowball sampling may also
be used to generate control groups for program eval-
uations by asking program participants to identify
persons similar to themselves who are not participat-
ing in the program [18].

There are several well-known disadvantages of
snowball sampling. Most critical among these is the
nonrandom nature of respondent selection at stages s1

through sk (and in many cases also at s0) Although

some researchers have attempted to deal with this
problem by sampling randomly from among respon-
dents identified at each stage (see Random Sam-
ple), persons embedded in larger social networks will
nonetheless have greater probabilities, and more iso-
lated persons will have smaller probabilities, of being
referred. Selection of respondents at stages s1 through
sk are also based on the subjective judgments of infor-
mants and may therefore be influenced by numerous
considerations not easily assessed or controlled by
researchers. Nominating others, particularly in studies
of deviant behavior, may also raise concerns of con-
fidentiality and discourage informant candor. Finally,
this approach makes the often difficult assumption
that members of the population of interest are known
to one another.

In response to these limitations, several advances
in snowball sampling have been proposed in recent
years. Among these are variations designed to esti-
mate the size of hidden populations [7], a “ran-
dom walk” procedure for examining social net-
works (see Stochastic Processes) [13], a “targeted
sampling” procedure [20], a “targeted personal net-
work sampling” procedure [17], and “respondent-
driven sampling” methodology [10, 11]. The latter
approach, proposed by Heckathorn, may under spec-
ified circumstances be used to develop standard
errors for population estimates constructed using
this technique.

Snowball sampling is also known for sev-
eral important advantages that make it an attrac-
tive approach in many situations. Perhaps, most
importantly, it is a low cost and relatively efficient
method for locating hard-to-find individuals. In many
settings, snowball techniques can also be deployed to
collect data very quickly. As such, it is an effective
method for initially exploring phenomena and popu-
lations for which there are few parameters available
with which to plan more formalized sample designs
(see Sample Surveys in the Health Sciences).
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Social Classifications

Social classifications are needed by studies that aim
to describe variations in health or health care use
according to socioeconomic status (see Health Ser-
vices Research, Overview). Other studies, for exam-
ple on the etiology of specific diseases, need social
classifications to control for confounding or effect
modification by socioeconomic variables. There are
three core indicators of socioeconomic status: educa-
tion, income, and occupation [3–5]. Each indicator is
an independent predictor of health and health care use
and, therefore, each is potentially relevant to studies
in medicine and public health.

Education emphasizes differences among people
in knowledge, skills, and attitudes. Of all socioeco-
nomic indicators, it is the easiest to measure. The
educational level of subjects can be measured as
the highest level of education that has successfully
been completed. If possible, this measure also takes
into account technical and vocational education, and
part-time study or training after leaving school. Edu-
cational levels can be grouped according to a national,
hierarchical classification. Studies among the elderly
should take care to distinguish between elementary
and lower secondary education. Data coding can
largely be avoided by using questions with set answer
categories instead of open questions. Even simpler to
use are questions on the number of years of education
that a person has attended school full-time, or the age
at leaving school.

Income level complements educational level by
its emphasis on material standards of living. It is
preferably measured as the net household income,
if possible corrected for household size. Questions
should ensure that respondents count the incomes of
all household members, and include the most relevant
income components such as wages and salaries, inter-
est, pensions, and transfer payments. Income levels
are measured most accurately by an extensive battery
of questions but might also be approximated by one
or a few general questions. In some instances, proxy
measures of long-term living standards are prefer-
able, such as the possession of durable consumption

goods, house ownership, or the quality of housing.
These indicators have the advantage that they are
more stable over time, and do not create the prob-
lems of nonresponse and inaccuracy that are typical
for questions on income.

Occupation is the most comprehensive socioeco-
nomic indicator. Unfortunately, the use of occupa-
tion as a socioeconomic indicator is laborious. Basic
to its measurement is the classification of subjects
according to a national three-digit classification of
occupational titles. This can be, supplemented with
information on employment status (self-employed or
in employment) and supervisory status (number of
subordinates). It is important to classify economi-
cally inactive men and women (unemployed, retired,
housewives, etc) according to their last occupation.
Married and cohabiting women may also be classi-
fied according to the occupation of their partner. Men
or women with similar occupations can be classified
according to a national social class scheme that distin-
guishes, among others, professionals and managers,
lower nonmanual employees, skilled workers, and
unskilled workers [1]. An alternative is to express the
socioeconomic status of each occupation by means of
their score on one-dimensional status scales [2].
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Social Sciences

Ideally, statistics should be a language, spoken across
all the sciences, which could ease communication
among disciplines, prevent duplication, and encour-
age research that spans disciplines. However, the
types of data encountered in the social sciences are
in many ways different from others. For example, it
is widely acknowledged that the effects of situational
variation among studies is large in the social sciences.
Because of differences like this, particular concerns
come to the surface in different disciplines at differ-
ent times. Statistics has evolved into different dialects
through the different branches of science, and statis-
tical concerns of one group are not always discussed
with others. There are four major issues of particular
concern in the social sciences: teaching statistics,
hypothesis testing, categorical data analysis, and
multilevel modeling.

Teaching Statistics

Nobody should doubt the need for statistics and
methodology training in undergraduate programmes
of any science. Most agree that methodology under-
lies the empirical basis of any stochastic science and
that statistical knowledge is a fundamental aspect of
this. However, debates exist on how students should
be taught. Should students be taught statistics as a set
of tools for handling particular problems or should
they be taught the underlying concepts of statistics?

While this question arises for all people concerned
about students’ statistical training, there is a differ-
ence between the social sciences and some other
sciences with regard to the amount of prerequisite
mathematics. In the social sciences we cannot assume
that our students have taken, for example, calculus. In
fact, we can assume that many will particularly dis-
like anything to do with numbers. Because of this,
many textbooks present each statistical test as an
unrelated algorithm that can passively be applied in
particular situations without any conceptual under-
standing. Similarly, with advances in statistical com-
puting, and the increase in “user-friendly” programs,
some advocate teaching “how to run statistical tests
on the computer” instead of teaching any statisti-
cal concepts. This contrasts with people who claim
that the underlying concepts must be learned before
they should be applied to different problems. My

own view [19] is that at least some of the concep-
tual issues must be taught, although care must be
taken not to make unrealistic demands on students’
mathematical expertise.

Hypothesis Testing

Not only within psychology, but across all the
social sciences, null hypothesis significance testing
(NHST) (see Hypothesis Testing) is often used. It
has been known for some time that there are con-
ceptual and logical problems with this approach.
Cohen [3] suggests that the phrase “statistical hypoth-
esis inference testing” would yield a more appropriate
acronym. The problems are particularly detrimental
to the social sciences. Meehl [13] wrote that NHST
is “one of the worst things that ever happened in
the history of psychology”. He noted [12] a differ-
ence between the physical and social sciences that
he claimed was why NHST has had such detrimen-
tal effects on the social sciences. His claim was
that, in the physical sciences, the null hypotheses
which are put forward will often be based on a
particular model that the scientists actually believe.
Deviations from this substantive model allow it to
be falsified in a Popperian sense (see Popper, Karl
R.). In the social sciences, the null hypothesis is
often a “strawman” hypothesis, like whether the rela-
tionship between social class and voting preference
has changed over the years. There is no doubt that
changes have taken place; it is the magnitude and
direction of changes that are of substantive interest.
In both physical and social sciences improved meth-
ods are increasing precision. In the physical sciences
this means that more substantive models can be prop-
erly falsified. In the social sciences, as the methods
become more precise, more “strawman” hypotheses
are rejected. This counters the importance of falsifi-
cation in theory development and validity.

Improvements have been suggested, including
testing interval hypotheses rather than point
hypotheses, reporting effect sizes and confidence
intervals, considering the power of statistical tests,
and, most importantly, testing the substantive models
of interest.

Categorical Data

The work of Goodman [7, 8] and others (for example,
Clogg & Shihadeh [2]) has made loglinear modeling
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one of the most widely used techniques in the
social sciences. Loglinear modeling is principally
used when examining the relationships among
multiple categorical – sometimes called qualitative –
variables, although quantitative variables can be
incorporated into the approach. In the social sciences,
where assuming any sort of quantitative metric
is often unjustified, the incorporation of loglinear
procedures for nominal and ordinal variables into
the mainstream statistics packages (see Software,
Biostatistical) was welcomed.

The first extensions involved different ways of
partitioning the chi-square variation (see Chi-square,
Partition of) of a loglinear model. The fact that the
independence model does not hold for a typical r × c

contingency table supplies very little practical infor-
mation. There are (r − 1)(c − 1) degrees of freedom
for the residuals of this model, any combination of
which could account for the dependence. Researchers
sought models that incorporated some of these
degrees of freedom into a model that fit the data more
adequately, but still were more parsimonious than the
independence model. A lot of this work has been
done with square contingency tables, where the row
variable is the same as the column variable, except
at a different time or different situation. An example
would be comparing sons’ and fathers’ social class.
The fact that they are related is so obvious to be
uninteresting. However, how they are related, and in
particular where movement off the diagonal occurs,
is interesting. Goodman [8] provides a thorough dis-
cussion of the techniques for square tables.

Another strand of work in the 1990s has involved
extending the loglinear model to the logmultiplica-
tive, or the RC, model (see [2] for an introduction).
This is of a class of models that attempt, in a sense, to
quantify qualitative data. Assume a two-variable con-
tingency table where the row values (R) and column
values (C) are categorical. The RC model estimates
new quantifications for each value so as to maximize
the quantitative (linear) correlation between the two
variables. The RC model can be extended for multi-
ple quantifications or dimensions for each variable in
a manner similar to the way in which classical prin-
cipal components analysis operates with interval
variables. Using Clogg & Shihadeh’s notation, these
models are called RC(M) for the M quantifications.
They demonstrate the value of this approach, exam-
ining the relationship between years of schooling and
occupation.

The growing realization in the value of graphing
data has occurred for every type of statistics, includ-
ing categorical data (see Graphical Displays). One
particular approach has used RC(M) models. Often
under the general title of correspondence analysis,
these procedures (see, for example, [15] and [16] for
details) produce graphical displays of association.
There is some controversy within the social sciences
as to whether these methods can replace some of
the more formal model fitting and confidence interval
approaches, or if they should be used to complement
each other [8].

Consider the following example from Gaskell
et al. [4]. They were interested in differences in age
and gender for “what comes to mind when sci-
ence is mentioned”. They had six age categories and
four categories for the field of science mentioned.
When they asked a sample of about 2000 people
in the UK, the model {age × gender, field} produced
a residual of χ2(33) = 160. This shows that there
are age and/or gender differences. Figure 1 partitions
this deviation into two dimensions (see [17] for the
method used here). It shows that males are more
inclined to think about technology (mostly comput-
ers and engineering) and that older people are less
likely to respond with “physics” (the “other” included
many responses about environmental issues). Also,
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Figure 1 A two-dimensional correspondence analysis
solution using a 12-category variable for gender by age.
Reproduced from Wright [19], Figure 8.9, by permission
of Sage Publications Ltd, 1997
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there appears to be no interaction between age
and gender on the responses {the model[age ×
field, age × gender, gender × field] produces a satis-
factory fit [χ2(15) = 20.43, p = 0.16]}.

The final topic with respect to categorical anal-
ysis is its application to latent structures and path
analysis. Different phrases are used for each of the
possibilities with respect to latent (i.e. unobserved)
and manifest (i.e. observed) variables being contin-
uous or categorical. Latent class analysis is where
latent and manifest variables are qualitative. Latent
trait analysis assumes continuous latent variables but
discrete manifest variables. Latent profile analysis has
continuous manifest variables but discrete latent vari-
ables. Classical factor analysis or LISREL are for
cases with continuous latent and manifest variables.
These models have now been incorporated into path
models (see [11] and [9]).

Multilevel Models

Multilevel modeling is where the data are clustered
(see Clustering) or nested. For example, if you are
doing research on children, you might go to many
schools, visit many classrooms, and receive data
from many children. An assumption in most intro-
ductory statistics textbooks is that the children are
independent and identically distributed. When this
is not true the standard errors are most often too
small and therefore the estimates appear more pre-
cise than they should (e.g. [14]). Multilevel model-
ing accounts for this by allowing random variables
at each level. It requires some strong assumptions
about the distributions of these variables [1]. With
these assumptions, some useful models about the
interactions among groups and individuals are pos-
sible. While these models are used in biostatistics,
they have become particularly popular in educa-
tion and in survey research (where the geograph-
ical area or the household are often used as the
higher level unit). With both of these, the struc-
ture of the hierarchy and its importance are recog-
nized.

Goldstein [6] describes how these hierarchies
occur almost everywhere you look and that ignoring
the problems of independence, and more importantly
not describing the model properly, will often lead
to errant conclusions. These models are a particu-
lar class of random coefficient models. One of the

reasons for the popularity of the multilevel approach
is because of advantages for some estimation pur-
poses. Kreft et al. [10] describe several specialized
programs for this situation.

My own interest in multilevel models arose when
analyzing the data from police eye-witness lineups in
the Greater London area [21]. Many of the suspects
were viewed by multiple witnesses, and hence we
had witnesses nested within suspects. The response
variable was categorical; witnesses could choose
the suspect, a known-innocent person “picked off
the street”, or make no identification. When we
started this work the algorithms were just being
developed for multilevel modeling with categorical
variables [5]. Now they are part of one of the
most popular of the multilevel modeling packages,
MLn [18].

Another aspect of multilevel modeling that is
becoming of more interest is what happens when
there are relatively few cases in a cluster. This hap-
pens, for example, when the hierarchy is family mem-
bers nested within a household. There will be many
households with only one or two people. We faced a
similar situation with our witness data. Many suspects
had only one or two witnesses nested within them.
When we originally analyzed these data, we found
extra multinominal variation. This is often seen as
an indicator that the model and/or the hierarchical
structure has been misspecified. This worried us and
caused us to add various caveats to our reports on
that project. More recently [20], I used simulation
methods and found that, even when the model and
structure were perfectly specified, this sparsity led to
extra binomial variation (see Overdispersion). This
demonstrates the importance of research on the struc-
ture of the hierarchies. While it was a big step to
move from single-level analysis to multilevel analy-
sis, the future is likely to show that not all hierarchies
are the same.
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Society for Clinical Trials

The Society for Clinical Trials, established in 1978,
grew out of a need for professionals working in
the field of clinical trials to exchange ideas, expe-
riences and information. The general purpose of the
Society for Clinical Trials, as stated in its by-laws,
is “to promote the development and exchange of
information for design and conduct of clinical tri-
als and research using similar methods” [6]. Also, it
is stated in the by-laws that “the Society shall serve
as a forum for discussion of philosophical, ethical,
legal, and procedural issues involved in the design,
organization, operation, and analysis of clinical trials
and epidemiological studies using similar methods”.
The Society’s long-term objectives are:

1. Promotion of methodological research emphasiz-
ing design, organization, operation, and analysis.

2. Promotion of the application of sound principles
of design, organization, and operation through
workshops and meetings sponsored by the orga-
nization. Some of these workshops and meetings
may be international in character and held in
countries other than the United States.

3. Promotion of communication by development,
where possible, of standard terminology.

4. Promotion of better understanding to those enter-
ing the field by serving as a resource for the
design and conduct of these studies.

5. Promotion of better communication through the
development of standards for the analysis and
reporting of results.

6. Promotion of better understanding by the general
public of the importance of clinical trials for the
evaluation of health care procedures [6].

The feasibility of conducting randomized clinical
trials was successfully demonstrated in Great Britain
during the late 1940s under the leadership of Sir
Austin Bradford Hill, who also explicated the princi-
ples and methods of randomized trials in numerous
writings. Between the 1950s and 1970s there was a
sustained growth in randomized clinical trials, most
notably in the English-speaking world. This growth,
which gradually involved an increasing number of
clinical specialties and professional disciplines, was
accompanied by an evolution of concepts, strategies
and methodologies for the design and conduct of
clinical trials (see Clinical Trials, Overview). The

clinicians, biostatisticians, nurses and other health
professionals who had been involved in these studies
from the start were gradually joined by epidemiol-
ogists, computer scientists, clinic coordinators, and
ethicists, as well as by professionals from ancillary
disciplines like nutrition, behavioral psychology, and
management science. The evolving concepts, strate-
gies, and methods of clinical trials entailed a broad
range of topics: ethics, design, randomization, data
collection, assurance of data quality, patient recruit-
ment, data analysis, data and safety monitoring,
organization and management of multicenter stud-
ies (see Data Management and Coordination), and
study closeout.

To some extent, of course, there was a sharing of
ideas and information during these decades. Clinical
trials topics were discussed at meetings of specialty
groups and articles were appearing in statistical and
clinical journals, but there was no forum for the
formal and informal sharing of ideas among different
specialties and disciplines. As a result, technology
transfer between specialties was limited.

Many of the persons who had come to devote their
careers to clinical trials were working in multicenter
trials, and these individuals provided an important
stimulus to the formation of a clinical trials soci-
ety. A series of annual Symposia for Coordinating
Center Personnel (Cardiovascular Trials) was orga-
nized by Curtis Meinert in 1973 and continued from
1975 to 1980. As implied by the name, the con-
tent of these well-attended symposia, held in various
locations in the US, was directed mainly at those con-
cerned with the coordination of multicenter studies:
biostatisticians, computer scientists, study coordina-
tors, and data managers. The symposia were meeting
an obvious need for the sharing of ideas and informa-
tion and it soon became apparent that personnel and
topics beyond those concerned with the coordination
of multicenter studies of cardiovascular trials should
be included.

In 1976, Fred Ederer, Curtis Meinert and Dale
Williams – later joined by Harold Roth – proposed
the idea of forming a national or international clin-
ical trials society to the Clinical Trials Committee
of the National Institutes of Health (NIH), asking
for the Committee’s support in the effort. The Com-
mittee expressed interest, but, lacking evidence for
widespread participatory support for a society, sug-
gested holding a conference to test that support.
Accordingly, the National Conference on Clinical
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Trials Methodology, sponsored by the NIH, was held
in October 1977; its proceedings were published in
May 1979 [4]. Attendance of that conference by more
than 700 persons, far more than expected, confirmed
the need for a professional society focused on clinical
trials.

An ad hoc Board of Directors (Harold O.
Conn, Thomas C. Chalmers, Fred Ederer, Robert S.
Gordon, Christian R. Klimt, Paul Meier, Curtis L.
Meinert, Charles Moertel, Thaddeus Prout, Harold P.
Roth, and O. Dale Williams) drew up by-laws and
incorporated the organization under the name Society
for Clinical Trials. Under the Presidency of Harold
Roth, the Society’s first annual meeting was held in
Philadelphia, 6–8 May 1980 [3, 5].

Coincidental with the formation of the Society for
Clinical Trials was the publication of a new journal,
Controlled Clinical Trials , under the editorship of
Curtis Meinert [1, 2]. Its objective was to meet many
of the same needs – in written rather than oral
communication – as the Society. The logical next step
was taken: Controlled Clinical Trials was designated
the official journal of the Society of Clinical Trials.
The program and abstracts of each annual meeting
are published in Controlled Clinical Trials.

Two joint meetings of the Society for Clinical
Trials and the International Society for Clinical

Biostatistics have been held: one in July 1991 and
one in July 1997. A third joint meeting is scheduled
for July 2003.

Additional information about the Society for
Clinical Trials is available through its website
[http://www.sctweb.org] or the Society’s jour-
nal, Controlled Clinical Trials.
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Software for Clinical
Trials

In attempting to summarize and contrast the available
clinical trials software, one immediately encounters
several difficulties. First, there is not a unique set
of analytical techniques for clinical trials. There are
some general characteristics of most clinical trials
that do result in some restriction in the statistical tests
likely to be employed in the analysis. For example,
recommendations for the conduct of a clinical trial
include randomization of patients, sufficient sample
size to have adequate statistical power of answer-
ing the proposed clinical question, and a simple,
easily interpretable clinical measure as the primary
outcome [13, 14] (see Outcome Measures in Clin-
ical Trials). These guidelines usually make it less
likely that methods used primarily for identifying
causal relationships (such as structural equations),
computationally intensive techniques used for small
sample sizes, or more complex analysis of variance
(ANOVA) designs will be used. However, even with
some general restrictions, the wide diversity of poten-
tial clinical outcomes in the biomedical area is greater
than is found in presently existing specialized soft-
ware packages and often leads to utilization of the
more commonly employed general statistical pack-
ages. A treatment of general biostatistical software is
described in [5].

A second problem is that the available software is
constantly changing. This is an advantage to the users
since there is a constant source of new tools available
to address their needs. However, any comparison by
the reviewer contrasting advantages and limitations
of various software rapidly becomes outdated. A third
problem in contrasting available software is that an
individual’s personal preference, general background,
and the group of packages with which the individual
is familiar often affect the selection. Given these
problems, it is not the intent of this article to attempt
to provide an exhaustive list of all available software
for clinical trials or present detailed evaluations of
the strengths and weaknesses of various packages.
Instead, we will provide an overview and inventory
of some of the available software that a researcher
might consider useful in conducting and analyzing a
clinical trial. We have focused mostly on software
that is publicly available with a proven track record.

We will also discuss some of the cautions in using
this software.

In identifying clinical trials software, we consid-
ered the available options from three broad cate-
gories: (1) software used in the design phase of clini-
cal trials, (2) software used in the tracking or conduct
of the day-to-day operation of the clinical trial includ-
ing data collection, and (3) the analysis and reporting
of the data. The last category would not only include
the statistical analysis but also the presentation of the
results in tabular, numerical, and graphical forms.

There has been a gradual change over time in the
availability of new packages and the expanded capa-
bilities of existing software packages. Many vendors
have focused on making their packages run more effi-
ciently and reliably in the current operating systems.
The execution time of some analyses has been dras-
tically reduced and computations that could not be
performed because of software limitations may now
be tractable. Many vendors have enhanced their soft-
ware in its ability to import and export data files in
formats that are not native to the package, thus pro-
viding for easier data exchange between packages.
More vendors are now addressing the criticisms that
the output from analyses, although technically cor-
rect and complete, is often too poorly formatted to
be included in reports. New options and presenta-
tion formats are appearing in software to facilitate the
integration of analytical output into word processed
documents, for example, SAS output can be saved as
MS Word and Adobe PDF files, in addition to the
standard ASCII output files.

Table 1 summarizes some of the available soft-
ware packages with the corresponding vendor and
contact information. The computer environment (i.e.
Mac, DOS, Windows) is not given since this is
often version-dependent and is constantly changing.
The general-purpose packages include many proce-
dures that are seldom used in clinical trials. Con-
versely, given the diversity of potential outcomes in
a clinical trial, it is useful to be familiar with more
than one general package, since often, packages are
more highly developed in some areas than in others.
Detailed comparisons of the specific statistical meth-
ods available on different packages are of limited
usefulness since the major packages are constantly
being updated. For example, version 10 of MINITAB
had procedures neither for actuarial life tables nor for
logistic regression making it an unacceptable package
for several important outcome variables commonly
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employed in clinical trials. However, starting with
version 12, these methods were incorporated mak-
ing the package a more useful tool for clinical trials.
S-PLUS is increasingly being used by many statisti-
cians as an all-purpose package and several textbooks
are available, which incorporate its use in the solu-
tion of biostatistical problems [20–22]. ACLUSTER,
SUDAAN, Stata, and WesVar facilitate better han-
dling of clustered or hierarchical data than many of
the more widely used packages. These methods are
required when randomization is by clinic or physician
rather than by patient (see Cluster Randomization).

Most users will have one or two general pack-
ages with which they are familiar and these usually
meet the majority of the needs occurring for the
analysis of clinical trials data. However, in special
instances, these may need to be supplemented with
specific routines from other general packages or with
the increasing number of programs designed to per-
form more specialized tasks. The choice of a specific
package from several, which provide the same func-
tionality may be based on how easily it integrates
into the user’s current array of software. For exam-
ple, an individual using SAS may choose SUDAAN
over ACLUSTER, Stata, or WesVar for clustered data
analysis (provided the statistical needs are met by the
packages), since the former can be run from SAS as
an add-on module, whereas the others cannot. Horton
[7] provides some additional insight on programs that
handle nested study designs.

Time-to-event data is one of the most common
endpoints (see Outcome Measures in Clinical Tri-
als) analyzed in clinical trials. Generally, packages
that support survival analysis procedures minimally
provide nonparametric procedures, such as actuarial
and Kaplan–Meier estimates, logrank statistics, and
some form of plots. Differences usually arise in the
assortment of parametric procedures supported, the
available models, type of censoring, fit diagnostics,
ability to handle time-dependent covariates, and plot-
ting. Harrell and Goldstein [6] and Oster [12] provide
comparisons for a number of packages supporting
survival analysis.

Even though packages supporting Kaplan–Meier
procedures provide survival plots, it is often advan-
tageous to have software designed specifically for
graphics. Packages such as Axum, SigmaPlot, Cross-
Graphs, DeltaGraph, and GraphExpress give greater
flexibility and control in the look and style of the
plots. Displays can be more easily tailored to include

textual annotations, error bars, and the overlaying
of multiple graphs. All of these packages contain
routines to calculate Kaplan–Meier estimates and
produce the respective plots.

Several recently developed packages have pro-
cedures relevant to the conduct of meta-analysis.
Although meta-analytic procedures have been applied
to a variety of study designs, they are most appropri-
ate for combining results from clinical trials where
randomization eliminates the likelihood of a con-
sistent bias across the studies being combined [18]
(see Meta-analysis of Clinical Trials).

After the design of the study and the formulation
of the hypothesis, sample size and power estimates
are typically calculated. Many of the integrated sta-
tistical packages such as SPSS, SAS, and S-PLUS
provide capabilities for performing such calculations.
However, these packages generally do not provide
algorithms for estimation of power and sample size
for designs involving survival, logistic regression,
analysis of variance (ANOVA), multivariate analy-
sis of variance (MANOVA), and equivalency testing.
Programs designed specifically for power and sample
size estimation such as nQuery Advisor, PASS, Power
and Precision, and STATISTICA Power Analysis pro-
vide for a much richer selection of designs and
outcome variables. For time-to-event data, these pro-
grams provide for the incorporation of various peri-
ods of recruitment and follow-up and various rates
and patterns of recruitment, attrition, and censoring.
Output from these packages often includes tabu-
lated estimates along with graphical displays. Rel-
atively few packages, StatXact and N being notable
exceptions, provide sample size and power estima-
tion for a variety of nonparametric procedures. PASS
provides procedures for estimating sample size for
group sequential designs. However, packages such as
East, PEST and, S + SeqTrial handle group sequen-
tial designs in a more comprehensive manner. These
packages not only provide sample size and power
estimation but also include a full array of tools for
the subsequent analysis of the trial.

New features appearing in recent and soon to
be released versions of various sample size soft-
ware include procedures for estimating the power
relevant to DNA microarray studies. nQuery has
added procedures for the two group t-test for fold
change assuming lognormal distribution (with equal
or unequal sample sizes) and the two-group t-test of
equal fold change with fold-change threshold (equal
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or unequal sample sizes). Other enhancements found
in some software include the use of Monte Carlo
methods to simulate data sets when the parameters of
the statistical design cannot be explicitly described in
closed form.

In general, there are no database management
packages specifically designed and optimized for the
conduct and management of data that is associ-
ated with clinical trials (see Data Management and
Coordination). Typically, users are required to select
a database management system and customize that
package for their particular application. The users
write their own forms, queries, reports, and applica-
tions within the package itself. One guidance offered
is that the selection of such database management
systems should be based on the familiarity and com-
fort of using the package, software capabilities that
match the needs of the project, compatible computer
resources and knowledgeable people within the insti-
tution with respect to the support of that package.

Moving away from strictly database management
packages, three products that assist in the report gen-
eration and display of patient characteristics are Clin-
Plus, Patient Profiles, and PPD Patient Profiles. Clin-
Plus runs under the SAS system and consists of a set
of predefined macro modules that are customizable
for the specific needs of the study. These packages
provide procedures consistent with the requirements
of the US Food and Drug Administration for data col-
lection, report summarization, and statistical analysis.
Patient Profiles and PPD Patient Profiles, produced
by two independent companies, provide data visual-
ization of demographics, medical profiles, and other
relevant patient data that may be stored within a
database. Built into the packages is an assortment
of reports with various graphical and charting dis-
play options. Both, Patient Profiles and PPD Patient
Profiles, provide tools for drilling down into the
data so that the details of specific individuals can
be reviewed. The packages provide for a variety of
data input, and interface with many database manage-
ment systems and spreadsheet programs. This allows
greater flexibility in areas where data management
is performed.

One of the fundamental tasks of any clinical trial
is the actual transfer of data from the paper forms to
an electronic file that resides in the computer. Soft-
ware that assists in this procedure can be divided into
two broad categories: (1) data entry and (2) image
capturing or the abstraction of data directly from

forms. There are a number of packages that provide
data entry support. BMDP Data Entry, EntryPoint,
FALCON, Key Entry III, Rode/PC, SAS/FSP, and
SPSS Data Entry are examples of software packages
that facilitate the direct entering of information from
the paper forms into the computer by an operator.
Depending on the packages, a variety of options are
available to the user including double entry (some-
times referred to as the two-pass verification system),
content verification, and comprehensive editing tools
(see Clinical Trials Audit and Quality Control).
Some of these packages provide facilities to moni-
tor the activities and the performance of the oper-
ator. Typically, these packages generate a data file
in ASCII (American Standard Code for Information
Interchange) format. Packages such as BMDP Data
Entry, SAS/FSP or SPSS Data Entry also create a
system file specific to their respective analytical soft-
ware packages.

The other approach for moving data from forms
to an electronic file format is image capturing or
data capturing. This is provided by a number of soft-
ware packages, including Ascent Capture, FaxWare,
InputAccel, and TELEform. These packages take
advantage of the scanning capabilities of computer
systems through either direct use of a scanner or
information abstracted from faxed material. These
packages provide a mechanism for designing a form
that will be used to capture the data. Programs,
such as DataFax, ImagEntry, VDE, and Quantum
2000, have dual capabilities for direct data entry
and data capturing. Similar to the data entry sys-
tems, various procedures are available for verifying
the integrity of the data, data editing, and for data
updating. Furthermore, they provide varying levels
of data management.

Table 1 also summarizes a variety of special-
ized packages. The scope of these packages is more
focused and provides the user with more comprehen-
sive tools. LogXact, StatXact, Testimate, and XPro
compute exact P values and confidence intervals for
a wide variety of tests, many of which are com-
monly used for testing hypotheses in clinical trials.
This is especially useful for rare events and small
sample sizes. StatXact provides for nonparametric
procedures, XPro for parametric procedures, and Tes-
timate contains both parametric and nonparametric
procedures. LogXact is used for exact inference for
logistic, Poisson, and polychotomous regression. SAS
and SPSS also provide modules for exact testing,
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which incorporate a limited subset of the statistical
engines from LogXact and StatXact. Cytel Corp.,
offers separate products programmed as PROC pro-
cedures (called PROC StatXact and PROC LogXact),
which seamlessly interface with SAS and provide
the full complement of statistical procedures that
are available in respective stand-alone versions of
the software. EquivTest provides methods useful for
the analysis of equivalence trials. Clinical trials that
are designed as equivalence studies (where we are
attempting to prove the hypothesis of no-treatment
effect) are increasing in number and are particularly
applicable when two regimens are expected to have
similar effects on treatment, but different toxicities. A
number of packages are available to perform analysis
for missing data. SOLAS is a package that uses single
and multiple imputation, while SPSS missing value
analysis uses EM algorithms. Although methods for
missing data have been employed mostly in observa-
tional studies, some investigators have suggested that
they be employed in clinical trials [9].

At one time, the toolbox of a good researcher
included an extensive set of tables containing cumula-
tive distribution functions (cdfs) and probability den-
sity functions (pdfs) for various distributions. These
were indispensable when evaluating the significance
of test statistics or computing confidence intervals.
Now the output from statistical software packages
includes these values. Although, the need for statis-
tical tables has diminished over time, there are occa-
sions when such tables are necessary. A researcher
may decide to do some hand computations for a
small dataset, or a power/sample size computation
where P values and critical regions are needed. It
is no longer necessary to consult paper or comput-
erized versions of these tables. “Probability calcula-
tors”, such as Pcalc, StaTable, and NCSS Probability
Calculator provide the same information. There are
some major advantages in using these packages. They
have greater flexibility in that they compute value
of the critical region for any specified P value, or
the P value for any specified critical region. This is
in contrast the older style tables, where interpolation
is necessary when a particular value is not found.
Depending on the program and the version, these
packages cover an extensive array of common and
not so common distributions. Another attractive fea-
ture of these software packages is that they can be
freely downloaded and used for noncommercial pur-
poses. More detailed discussion can be found in [1].

With the use of a variety of software, there is
often the necessity to move data from one package
to another. This may occur when transferring data
from a data entry or data management system to
analytical software, or from one statistical package
to another. The universal format for data transfer is
ASCII text. However, often the data is stored as a
“system” file specific to the software package. Sys-
tem files also contain ancillary information such as
variable and value labels, missing data codes, trans-
formations and computed variables. This provides for
an efficient use of the data within the software but
not between software. Moving data between pack-
ages is accomplished by exporting the data as an
ASCII file from the first program and then import-
ing it into the second program as ASCII. When using
this approach, variable and value names and missing
data codes are usually lost in the transfer. In some
instances, system files from one software package
may be directly read by another and this information
is not lost. However, packages usually support only a
few types of system formats. Two products that spe-
cialize in facilitating data transfer are DBMS/COPY
and Stat/Transfer. Each of these packages have con-
version utilities to directly translate system files from
one package into another. They also have the abil-
ity to filter and transform data thereby creating data
subsets and new variables. DBMS/COPY can be run
as a stand-alone package or integrated into SAS. In
addition, it supports a broad range of system files.

Although statistical procedures are being contin-
uously developed, there is often a time lag between
when these new procedures first appear in the sta-
tistical journals and when the appropriate software
is developed. Although the time between the intro-
duction of new methodology and the development
of corresponding software has decreased consider-
ably in recent years, reliance on only the analy-
ses available in software packages may result in
less than optimum statistical procedures. Increas-
ingly, packages have programming and macro capa-
bilities to aid researchers in the development of
their own “in-house” written software. Researchers
may also program in languages of their choice
such as C, Pascal, and Fortran. In addition, there
are higher and object-oriented languages, such as
Matlab, which handle complex mathematical and
statistical manipulations making the development
of new software considerably easier. To assist in
this process, there are published subroutines and
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numerical algorithms, such as IMSL for Fortran and
C, Numerical Recipes in Fortran and C [15, 16],
and Anderson Statistical Archives. A useful Web site
is StatLib (http://lib.stat.cmu.edu/), which
contains numerous mathematical and statistical codes
for a variety of programming languages and pack-
ages. These are many of the same algorithms found
in published articles and texts. This site also con-
tains numerous data sets appearing in the literature
along with computation results that may be used for
evaluation and comparison purposes. Taking advan-
tage of such resources should lessen considerably the
amount of time spent in code writing and debugging
of programs.

Randomization programs to determine treatment
assignment of patients in a study have been tradi-
tionally lacking. Generally, users create their own
algorithms that are specific to their particular study,
or borrow and modify an existing program from a
previous study. Larger clinical trials research units
usually have an in-house library of software with
patient randomization procedures. RANCODE and
RANCODE professional, developed by idv, are the
few commercially available programs that provide
randomization schemes for a variety of study designs
including parallel group and crossover. Options pro-
vide for fixed and randomly determined block sizes
and stratification across study centers. The program
has the capabilities for generating randomization
lists, adhesive labels, envelope labels, and cards with
patient/treatment assignments.

More rapid development of software for useful
statistical procedures increases the possibility that
some of the software may have “bugs”. The user
must bear the primary responsibility in determining
whether newly developed software is performing the
statistical computations both correctly and using the
method that the user believes is being applied. A use-
ful resource in checking the accuracy of new software
is the Web, where there are example files contain-
ing both data and sample programs. Often data sets
from well-known studies are readily available and can
be used to validate and test software. These may be
found on the vendor’s Web site or at StatlLib. The
results of these tests can then be compared to known
or published results. Another method of testing a
software package is to use data from extreme cases
or boundary points where the answer is known. An
excellent source for this approach is Statistics Quiz
available from SYSTAT, written by Lee Wilkinson,

which provides empirical problems that can be used
in evaluating statistical packages. Although the prob-
lems in Statistics Quiz are presented for the purpose
of comparing programs run on microcomputers, they
can be used for verification in other computer envi-
ronments.

Even if the software uses a “correct” method, the
specific algorithms employed by the software pack-
age may not be clearly indicated. Often, there are
multiple methods of applying the same general tech-
niques, and different decisions on approach by vari-
ous packages can lead to different answers. Situations
where there are often differences among packages
include methods of handling tied observations and
methods of handling missing data. For some statis-
tical tests, some packages use only asymptotic pro-
cedures, while other packages use exact procedures
for small sample sizes and asymptotic methods for
larger samples. The sample size that determines the
crossover from an asymptotic to an exact procedure
may not be the same for different packages. Similarly,
different packages may vary in how they address
missing data. In settings where there are multiple
independent variables, a software package may per-
form listwise deletion, whereby analysis is performed
using all available data for that particular variable; or
case-wise deletion where the entire case is dropped
from the analysis if any of the variables are missing
for a particular case. It is both useful and essential that
documentation be available for the software being
used. This documentation should contain references
and explicit information with regard to computations
being performed within the package. Different soft-
ware vendors utilize differing levels of precision in
the algorithms in their software. A number of articles
have been written suggesting approaches for evaluat-
ing statistical software packages and assessing their
reliability [4, 10, 11]. The American Statistician, a
journal published quarterly, has a section entitled Sta-
tistical Computing and Graphics and often contains
articles discussing issues with respect to various sta-
tistical packages.

As statistical methods become more complex and
the actual use of the analytical software becomes
easier, the potential for applying an incorrect pro-
cedure to a study design increases. The user needs to
understand the full implication of the analyses being
employed and not merely “press a button”. For exam-
ple, generalized additive models (GAM) are often fit
by the S-Plus software package. It has recently been
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demonstrated that the default convergence criteria in
S-Plus (version 3.4) do not assure convergence of
its iterative estimation procedure and can provide
biased estimates of regression coefficients and stan-
dard errors [2]. Thus, the user needs to be savvy
enough to use a more stringent convergence to assure
the convergence of the iterative procedure. How-
ever, this does not necessarily reduce the potential
for the underestimation of the standard error and the
presence of bias in the estimate of the regression coef-
ficients. It has been shown that this underestimation
can occur if concurvity, the nonparametric analog of
multicollinearity is present in the data and might lead
to significance tests with inflated type 1 error (i.e.
rejection of the null hypothesis when it is in fact true)
[17]. This may result in erroneously declaring a statis-
tically significant effect when none exists. Therefore,
even though the software may generate technically
correct results, the appropriateness for the data set
may be questionable.

Software vendors are continually updating and
correcting their software. Aside from version
changes, vendors often issue patches or service
releases that correct errors and bugs. These patches
may also impart additional functionality to the
software. Typically, the researcher must be proactive
in his/her search to find such fixes. More recently,
some vendors have made this task a little less
burdensome by providing a mechanism where the
user can have the software check a predefined website
for the availability of new updates. Generally, this is
initiated by the user and therefore should be done
on a routine basis. Fortunately, some manufacturers
have carried this a step further by incorporating
a “live update” mechanism whereby the software
will periodically check the Web for updates and
automatically notify the user when fixes are available.

Vendor Web sites also provide for compilations
of user notes, macros, and add-ons that extend the
capability of the basic package. Links to “frequently
asked questions”, “knowledge base”, and “technical
support” found on web sites often provide additional
information that may not be readily available in the
manuals that are packaged with the software. Auxil-
iary manuals and technical reports provide a wealth
of information. These web sites may also provide files
of macros and programs. Instead of transcribing pro-
grams from paper textbooks and journal articles, files
can be downloaded. The most current and up-to-date

versions are probably those that are on the Web or
obtained by contacting authors directly.

In the business world, it is common for software
vendors to change names or to be taken over by
other companies. When this happens, it does not
necessarily imply that the software is no longer
available or no longer supported. It may mean that
the product is produced under another name. When
this occurs, the relevant forwarding information is
not readily available, and the user needs to search
the web using the vast array of Internet search
engines that are available at his/her disposal. For
instance, BMDP is no longer available from BMDP
Statistical Software, Inc. However, it is available
through Statistical Solutions as BMDP New System
Professional.

The developments in microcomputer technology
over the past 15 years have provided the capabilities
in computational speed for computer software pack-
ages that are increasingly sophisticated and complex.
There are currently many packages available that are
relevant for clinical trial design and analysis. Users
are not restricted to just one or two standard pack-
ages. With thought and inquiry, it is now possible for
individuals to find software that is tailored exactly or
nearly exactly to meet most of their needs.
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Software for Genetic
Epidemiology

A wide variety of software has been written to facili-
tate the task of managing, error-checking, and analyz-
ing genotype and phenotype data for genetic studies.
An exhaustive review of the software available would
fill an encyclopedia of its own. A list of genetic
analysis software from the Rockefeller University
web site (http://linkage.rockefeller.edu/
soft/list.html) currently includes over 150 pro-
grams. Additionally, both methodologic and software
development in genetic epidemiology are constantly
advancing and any catalog of such software will soon
be rendered incomplete as new programs become
available. Consequently, this review will seek to
describe the types of software that are available, to
discuss and characterize some of the most widely
used programs, and to identify features that may dif-
fer between similar packages.

First we must define what is to be included in the
category of software for genetic epidemiology. This
category will be defined as including any program
specifically designed for the management of genotype
or pedigree data, error-checking of genotype or
pedigree data, or genetic analysis using segregation,
linkage, or linkage disequilibrium based methods.
Excluded from this review are web sites such as
those providing genetic maps, software for sequence
alignment or comparison (see Sequence Analysis),
software for general variance component analysis,
and more general statistical packages, such as SAS
or S-PLUS, which were not designed for genetic
analysis but are often used in its service. Additionally,
we will restrict our consideration to programs that are
used for human genetic analysis, excluding software
written for inbred lines and other study designs that
are only possible in animal models. All the software
discussed in this article is publicly available and,
with the exception of S.A.G.E. and Cyrillic, all
the programs are available free of charge for non-
commercial use.

Programs for the Management and
Display of Pedigree and Genotype Data

Although many researchers use standard database or
spreadsheet software to store data for their genetic

epidemiology studies, management software designed
specifically for genetic data offers several advantages
in terms of error-checking and data formatting.
Errors in genotype or pedigree data may be identi-
fied through checks on Mendelian inheritance (see
Mendel’s Laws) and logical consistency. Data may
be imported from other database systems and for-
matted for export to pedigree drawing or analysis
programs. Commonly used software for error check-
ing, formatting, and display of pedigree and genotype
data is listed in Table 1.

Error-checking

Programs are available for detection of errors in geno-
type, phenotype, and pedigree data. Identification of
apparent genotyping errors in family data through
violations of Mendelian inheritance is performed by
many data preparation and analysis programs. Check-
ing for Mendelian consistency requires inference of
the genotypes of nonsampled individuals and some
error-checking programs will fill in missing marker
genotypes when they can be unambiguously inferred.
Most genetic analysis programs report errors when
Mendelian inconsistencies are detected. However,
only a few (e.g. ASPEX, FBAT, SimWalk2) provide
explicit identifications of the likely source of the error
or automatically eliminate the error by blanking sus-
pect genotypes. PedCheck, PEDSYS, and SimWalk2
perform Mendelian consistency checks in extended
pedigrees, whereas ASPEX and FBAT only accom-
modate nuclear families. SimWalk2 takes this one
step farther and, using allele frequencies and marker
maps, considers the distribution of alleles in sibships
and the locations of apparent recombinations, as well
as violations of Mendelian inheritance, to produce a
posterior probability of error for each genotype for
each individual.

The persistence of apparent genotyping errors over
numerous markers may suggest pedigree errors, such
as nonpaternity. Pedigree errors may also be detected
by comparing empirical kinship, estimated from the
observed identity-by-descent (ibd) allele sharing (see
Identity Coefficients) between individuals, to the
degree of relationship predicted by the assumed
pedigree configuration. The program Siberror iden-
tifies probable pedigree errors in nuclear family data
using genotype data at numerous markers. Simi-
larly, RELCHECK predicts relationships between
individuals (monozygotic twins, full sibs, half sibs,
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or unrelated) based on their sharing at numerous
genotyped markers. RELPAIR and PREST perform
the same type of analysis for slightly larger pedi-
grees, extending to first-cousin relationships. ACT
and ASPEX, although primarily linkage analysis
programs, also perform pedigree error-checking for
sibships or nuclear families.

Pedigree and phenotype errors may be identified
through checks on the logical consistency of demo-
graphic data given the constraints of family relation-
ships. For example, mothers should be female and
fathers should be male. Parents should be older than
their children. Dates at which individuals are exam-
ined should be later than their dates of birth. Pedigree
storage programs are also equipped to manipulate
and fill in pedigree structures. Analysis programs
generally require that individuals who are listed as
parents have their own entry in the database and
some management software will create entries for
missing individuals necessary to complete the pedi-
gree structure. Additional pedigree-based manipula-
tions include trimming of uninformative individuals.
The computational burden of some types of analyses
increases exponentially by pedigree size, making it
most efficient to exclude individuals who are missing
crucial phenotype or genotype data. When eliminat-
ing uninformative individuals, software specifically
designed for the management of pedigree data is
equipped to consider whether individuals with miss-
ing data are necessary to complete the pedigree struc-
ture and thus should be retained. Some of these pro-
grams will also calculate kinship coefficients based on
the provided pedigree structure. PEDSYS performs
all these functions. S.A.G.E. also performs many of
these functions through its specialized programs. Ped-
Hunter is designed to query genealogic databases
and can calculate kinships, find individuals who are
related in a specific way (e.g. find all siblings of a
given individual), or identify the minimum number of
common ancestors to connect a specified set of indi-
viduals (e.g. trim a pedigree to affected individuals
and those necessary to connect them).

Translating Between Data Formats

Genetic analysis programs require specific data for-
mats and there is generally little overlap in the data
structure required by different programs. Manage-
ment software designed specifically for genetic data is
often equipped to produce data files formatted for the

needs of various genetic analysis programs. PEDSYS
can import data from delimited field formats (e.g.
comma or space delimited) and export data formatted
for Pedigree/Draw, FISHER, MENDEL, CRI-MAP,
PAP, SOLAR, or LINKAGE. Mega2 formats data for
use in SimWalk, MENDEL, ASPEX, APM, SLINK,
SIMULATE, S.A.G.E., GeneHunter, TDTMax, and
SOLAR. Cyrillic can import data from programs such
as MLINK, Pedigree/Draw, and CRI-MAP and out-
put data for these programs as well as for LIPED.
PedHunter outputs data formatted for the LINKAGE
or Pedigree/Draw programs. SIB-PAIR, although pri-
marily an analysis program, formats data for APM,
Arlequin, ASPEX, CRI-MAP, FISHER, GAS, GDA,
LINKAGE, MENDEL, PAP and S.A.G.E.

Pedigree Drawing

Drawings of pedigrees are used by both clinicians
(see Genetic Counseling) and researchers to verify
family relationships and to display phenotypes, geno-
types, and haplotypes. Two of the most widely used
pedigree drawing programs are Cyrillic and Pedi-
gree/Draw. The most immediate difference between
these two programs is that Cyrillic runs under Win-
dows whereas Pedigree/Draw is Macintosh based.
Both programs can accommodate large and complex
pedigrees, provide a variety of marking symbols to
denote phenotype and sampling status, and display
genotypes or other text. Cyrillic provides some data
management and formatting capabilities and includes
routines for risk assessment. However, Cyrillic is
a commercial program whereas the other pedigree
drawing programs listed are freely available over
the web. Although less widely used than Cyrillic,
PEDRAW is also Windows based, performs many of
the same functions, and is available without charge
over the web. CoPE is designed to allow multiple
researchers to access the same pedigree database and
is a Java Script program that can be used on any
platform through a web browser. Cyrillic can pro-
vide haplotypes and CoPE will draw haplotypes if
they are specified.

Programs for Construction of Marker
Maps

Although many researchers use online databases
to obtain marker maps, constructing marker maps
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from one’s own data set can be advantageous if
sufficient pedigree information is available. Methods
of multipoint linkage analysis that are based on
correlations in ibd may suffer if an ill-fitting map
is specified (see Genetic Map Functions) and loci
are assumed to be more or less highly correlated
(i.e. closer or farther apart) than is reflected in the
current data. Map construction can also be useful
for error-checking purposes. For example, apparent
expansion of the marker map, as compared with
published maps, may highlight problematic markers
or genotyping errors that cause an apparent excess
of recombinations but not Mendelian inconsistencies.
In some cases, adequate map data simply may not
be available from other sources. Newly identified
variants in candidate genes may not be placed on the
online linkage maps and may be only approximately
localized in physical maps.

Any of the parametric linkage packages (see Link-
age Analysis, Model-based) (listed in Table 2) could
be used to estimate recombination between geno-
typed markers and construct a map. However, several
packages automate this process. CRI-MAP [29] has
a variety of map construction routines that place new
markers relative to a map of old markers and evaluate
the likelihoods of alternative map orders. In its likeli-
hood calculations, CRI-MAP considers only meioses
in which the parental transmission can be unambigu-
ously inferred, whereas standard linkage programs
would weight over the possible values of missing
genotypes that cannot be unambiguously inferred.
This restriction leads to some loss of information
but may be viewed as conservative, particularly when
good estimates of allele frequency are not available.
The chrompic option of CRI-MAP can also be used to
examine pictorially the grandparental origin of each
genotype along a chromosome for the most likely
phase. MultiMap [32] further automates this process,
adding markers to the map in order of locus content,
which can be specified by the user but is generally
measured by the marker’s heterozygosity. MultiMap
uses CRI-MAP for likelihood computation and thus
has the same limitations with regard to the treatment
of missing data. MultiMap also has a module for the
construction of radiation hybrid maps. Both pro-
grams are available for Unix systems and as a C
source code which could be compiled under a variety
of operating systems. MultiMap requires a C compiler
and a Lisp interpreter to run.

Software for Genetic Analysis

Numerous programs are available for genetic analy-
ses using segregation, linkage, and linkage-disequili-
brium based methods and only the most commonly
used of these programs are discussed here. To obtain a
representative sample of the most widely used genetic
analysis software, both the proceedings of Genetic
Analysis Workshop 11 [18] and the pre-conference
abstract book for Genetic Analysis Workshop 12
(held in October 2000) were surveyed. Together these
two volumes contain 320 papers reporting analy-
ses of four data sets ranging from alcoholism and
quantitative measures of evoked brain potentials to
asthma and related risk factors to simulated diseases
and quantitative traits with genome screen and single
nucleotide polymorphism (SNP) data. Any genetic
analysis program that was cited by a total of 5 or
more papers in these two volumes is listed in Table 2.

Segregation Analysis

The programs indicated in the “segregation” column
of Table 2 are those that perform classic quantitative
trait or penetrance model-based segregation analyses
(see Segregation Analysis, Classical; Segregation
Analysis, Complex). PAP and S.A.G.E. can fit a
variety of environmental, polygenic, and Mendelian
models. SAGE also has modules for a variety of
regressive models. Loki models a quantitative trait
as a function of a number of diallelic quantitative
trait loci (QTLs), providing posterior probability
distributions for the number of QTLs, the QTL allele
frequencies, and the additive genetic heritability of
the QTLs. These programs can also be used for
combined segregation and linkage analyses in which
both parameters for the penetrance model or the
QTLs and the location of the trait locus are estimated
simultaneously. Although not marked as segregation
software in the table, programs that perform variance
component analyses may also be used to examine
the genetic architecture of a trait. ACT, GeneHunter,
and SOLAR can be used to estimate the additive and
dominance components of heritability and to compare
the likelihood of models with and without genetic
components of variance.

Linkage Analysis

The linkage programs in Table 2 utilize a wide
variety of statistical models and methods, including
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model-based, affected relative pair, Haseman–Elston,
and variance components (see Linkage Analy-
sis, Model-based; Linkage Analysis, Model-free).
Although there is a general equivalence of meth-
ods between software using the same models, there
are often subtle but potentially important differ-
ences. Among programs using a Haseman–Elston
test, S.A.G.E. and SIB-PAIR include both the
classic [21] and modified Haseman–Elston algo-
rithm [14], whereas GeneHunter and Mapmaker/Sibs
provide only the classic Haseman–Elston [21] algo-
rithm. Among penetrance model-based and variance
component programs, differences in the handling of
multipoint inference (discussed below) may lead to
limitations on the size of pedigree or the number of
genotyped markers that can be considered in practice.

Variance component linkage programs also dif-
fer in the types of data they use and in the ease
with which various models can be parameterized.
ACT and SOLAR make use of singleton individ-
uals in addition to subjects in families to estimate
trait means and standard deviations and covariate
effects. In contrast, GeneHunter eliminates single-
ton individuals. Dominance components of variance
can be automatically incorporated in GeneHunter
but must be manually added in SOLAR through
direct modification of the covariance function. How-
ever, the ability to directly modify the covariance
function in SOLAR also permits advanced users
to incorporate terms for gene–environment inter-
action and to construct joint tests of linkage and
disequilibrium.

Affected relative pair programs differ from each
other in the calculation of the test statistic and
in options for correcting for the nonindependence
among pairs when there are more than two affected
sibs within a sibship. When some individuals are
unavailable for genotyping and descent information is
incomplete, the perfect data approximation of Gene-
Hunter’s nonparametric linkage (NPL) score overes-
timates the variance in its test statistic and becomes
highly conservative. Allegro and GeneHunter+ use
a maximum likelihood method that is not subject
to this problem. When n > 2 affected sibs are avail-
able from a given family, the analytical options may
include using only one pair, using the n − 1 inde-
pendent pairs that can be constructed, or using all
pairs. ASPEX also provides the option to consider
only pairs where ibd sharing can be inferred unam-
biguously.

ASPEX, Mapmaker/Sibs, and SIB-PAIR are lim-
ited to nuclear families, whereas the other linkage
programs listed can accommodate larger pedigrees.
Most of the affected pair and variance component
linkage programs listed estimate marker-specific and
multilocus ibd allele sharing and some will output
ibd matrices which may be useful for error-checking
or for importation into other programs. Some of the
additional features of these programs are noted in
the “Extras” column of Table 2. As discussed above,
some packages check for genotyping errors. A few of
the programs provide haplotypes. Some permit mul-
tivariate linkage analyses of two or more traits. Some
consider multilocus models that incorporate multi-
ple loci influencing the trait with or without epistatic
interaction between the loci. Several packages have
some simulation capacity, permitting the estimation
of empirical P values.

Linkage programs differ in their methods for mul-
tipoint inheritance inferences and these differences
have implications for the type of data that can be
analyzed. LINKAGE, FASTLINK, and VITESSE use
the Elston–Stewart algorithm [13] which results in
exponential increases in computing time with the
number of markers analyzed. FASTLINK incorpo-
rates algorithmic improvements that make it some-
what more efficient than LINKAGE. VITESSE uses
set-recoding and fuzzy inheritance methods to speed
up computations, allowing it to handle more mark-
ers than LINKAGE or FASTLINK, but it is lim-
ited to pedigrees without loops descended from a
single founder couple. ACT, Allegro, GeneHunter,
and GeneHunter+ use the Lander–Green Hidden
Markov Model [29] which incurs an exponen-
tial increase in computing time with the number
of nonfounders in the sample, placing a practi-
cal limit on the size of the pedigrees that can
be analyzed. SOLAR uses a multipoint approxi-
mation based on correlations between ibd at the
individual markers [2, 16]. Computing time for this
approach is linear in both the number of markers
and the number of individuals, permitting analy-
ses of larger pedigrees. However, this approxima-
tion depends on the informativeness of the geno-
typed markers. Thus, while it performs well for
genome scanning with microsatellites, it would be
suboptimal for multipoint ibd estimation given a
map of SNPs. SIB-PAIR also uses this method to
impute ibd between flanking markers in its Hase-
man–Elston linkage routine. Loki and SimWalk2 use
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Markov chain Monte Carlo methods which are also
approximate and linear in the number of individu-
als and the number of markers but do not suffer
the limitations on marker informativeness imposed
by the between marker correlation method. Note
that SimWalk2 requires the program MENDEL [30]
to compute location scores for parametric linkage
analyses.

While not precisely a linkage program, HOMOG
is designed to be used in conjunction with linkage
software. Given the lod scores for each family in a
data set, HOMOG performs heterogeneity testing to
assess whether in some proportion of families the
trait is unlinked to the region in question. HOMOG
extension modules permit consideration of multiple
locus testing, for example models in which the trait
is linked to locus 1 in some families, linked to locus
2 in other families, and unlinked to either locus in
another group.

Linkage Disequilibrium Based Analysis

The programs indicated in the “Disequilibrium” col-
umn of Table 2 generally fall into two broad cat-
egories: those that perform transmission disequilib-
rium tests (TDTs) for linkage in the presence of
disequilibrium with discrete or quantitative traits,
and those that model the mean of a quantitative
trait as a function of genotype. A few programs
perform both these functions. Some programs have
additional association tests that fall into neither of
these categories. GASSOC has a variety of test
statistics optimized for different underlying genetic
models (e.g. recessive, dominant). SIB-PAIR per-
forms standard tests of allele frequency distribution
in affected and unaffected individuals with estima-
tion of empirical P values through gene-dropping
conditional on family structure and allele frequen-
cies.

ACT, ASPEX, FBAT, GASSOC, GeneHunter, the
TDTEX module of S.A.G.E., and SIB-PAIR all per-
form standard TDT tests for di- or multiallelic mark-
ers using parent–child trios derived from nuclear
families. ACT, ASPEX, GeneHunter, S.A.G.E., and
SIB-PAIR use a variety of permutation and Monte
Carlo methods to provide empirical P values, tak-
ing into account factors such as the use of mul-
tiple sibs within a sibship. FBAT allows covari-
ate adjustments. Up to four adjacent, closely linked

marker loci can be included in the TDT in Gene-
Hunter. ACT has a macro for simultaneous consid-
eration of multiple loci through conditional logis-
tic regression. The TDT portion of ACT consists
of SAS macros that require the SAS package to
run.

PAP, the ASSOC module of S.A.G.E., SIB-
PAIR, and SOLAR (which is based on the program
FISHER) can be used for measured genotype test-
ing in which the mean of a quantitative trait is
modeled as a function of genotype. PAP, S.A.G.E.,
and SOLAR accommodate the inclusion of quanti-
tative or discrete covariates in these analyses. PAP
and SOLAR use maximum likelihood methods that
assume a multivariate normal distribution for the
trait values. SOLAR also has a multivariate t dis-
tribution option. S.A.G.E. uses generalized modulus
power transformations that require less stringent
assumptions about the distribution of the trait values.
PAP, SOLAR, and S.A.G.E. directly account for the
nonindependence among family members and model
a residual familial correlation not due to the locus
being tested, whereas SIB-PAIR estimates empirical
P values through gene-dropping within the fami-
lies.

Conclusions

There are many factors that go into deciding which
of these packages to use in any given situation –
the computer resources available to the project, the
size and structure of family data, the type of traits
to be analyzed, and the desired methods of analysis.
Each of the programs discussed above has strengths
and weaknesses and it is impossible to make blan-
ket recommendations that are appropriate for all, or
even most, studies. However, a number of resources
exist that compare the performance and utility of
some of these packages under a variety of conditions.
Some of these reviews address questions of power
and accuracy while others comment on ease of use
and computational intensity. It should be noted that
comparisons of software for genetic analysis reflect,
and often cannot be separated from, comparisons of
the underlying analytical methods, particularly when
addressing questions of power and accuracy. Com-
parison of methods and software for genetic analysis
is the primarily goal of the Genetic Analysis Work-
shop and the proceedings of this conference con-
tain many such comparisons (e.g. [18, 19], and [41]).
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Table 3 Selected publications comparing various software packages

Reference Software compared Context

Cervino & Hill [6] LRAT, RCTDT, SIBASSOC,
TRANSMIT

TDT with differing family structures,
population stratification,
nonpenetrance, nonpaternity

Davis & Weeks [9] ASPEX, GeneHunter, Mapmaker/Sibs,
S.A.G.E., and others

Linkage using affected sibpairs or
sibships

Goldgar & Oniki [17] LINKAGE, MIM Comparison of penetrance model and
ibd-based quantitative trait linkage
analysis

Konigsberg et al. [25] FISHER/MENDEL, PAP, S.A.G.E. Quantitative trait segregation

Schaffer [38] FASTLINK, LINKAGE Model-based linkage with pedigree
loops or ungenotyped individuals

Williams & Blangero [42] Mapmaker/Sibs, SOLAR Quantitative trait linkage

Other manuscripts that compare and contrast various
software packages are detailed in Table 3.

There are also online sources that compare pro-
grams or are a repository of information about
multiple programs. A University of Washing-
ton web site (http://www.cs.washington.edu/
homes/pmork/final-project/) provides a fairly
intensive summary of a selection of programs for
quantitative trait analyses, including FBAT, Gene-
Hunter, LOKI, and SOLAR. The Rockefeller Uni-
versity web site, mentioned in the introduction, is
an excellent resource for finding software often with
links to web sites where the programs can be down-
loaded. Links to downloadable versions of many pro-
grams also can be found at a European Bioinformatics
Institute mirror site (ftp://ftp.ebi.ac.uk/pub/
software/linkage-and-mapping/) or at the
Weizmann Institute of Science Bioinformatics Unit
(http://bioinfo.weizmann.ac.il/reposi-
tory/mapping-software.html). Online docu-
mentation for many programs is available thro-
ugh http://watson.hgen.pitt.edu/docs/ or
http://www.well.ox.ac.uk/docs/index.
html. The Computational Methods and Algorithms
Group at NIH also has an extensive genetic analy-
sis software site at http://cmag.cit.nih.gov/
Lserver.htm.
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Software for Sample
Survey Data, Misuse of
Standard Packages

In the past 15 years, many researchers in the health
sciences have become interested in performing pri-
mary and secondary analyses using data from com-
plex sample surveys. These analyses are often des-
criptive or analytical, but they may also generate
or test hypotheses within the context of a statisti-
cal model. Sample survey statisticians are aware that
specialized software should be used to analyze com-
plex sample survey data, particularly when analyses
are descriptive or analytical and the survey design
includes clustering [1, 4] (see Software for Sample
Survey Data).

However, some researchers are not aware of the
need to use specialized software or, if aware, prefer
not to do so because of the need to learn new analyti-
cal techniques and software. A common error among
data analysts is the inappropriate use of standard sta-
tistical software for sample survey data. Further, data
analysts may be confused when they realize that there
is a difference of opinion, even among sample sur-
vey statisticians, as to methods for analysis of sample
survey data [2, 3, 4, 8], particularly when using sta-
tistical models.

This article uses sample survey data from
BRFSS (Behavioral Risk Factor Surveillance System)
surveys to illustrate that biased point estimates
(see Estimation), inappropriate standard errors
and confidence intervals, and misleading tests of
significance (see Hypothesis Testing) can result from
the incorrect use of standard statistical software
packages (see Software, Biostatistical). This article
is not a critique of standard statistical software but
rather a critique of data analysts inappropriately
choosing such software for survey data. Sample
survey software has become more widely available
in the past decade, giving survey data analysts both
the opportunity and the responsibility to choose
appropriate software for their analyses. The examples
in this article of appropriate and inappropriate
(but common) software choices illustrate the
importance of using sample survey software for
survey data.

Why Specialized Software is Needed

Standard statistical software generally assumes that
the observational units have been obtained via
simple random sampling. Thus, it does not
take into account four common characteristics of
sample survey data: (i) unequal probability selection
of observations, (ii) clustering of observations,
(iii) stratification, and (iv) nonresponse and other
adjustments [6, 7]. Point estimates of population
parameters are impacted by the value of the analysis
weight for each observation. These weights depend
upon the selection probabilities through survey
design features such as stratification, oversampling
and clustering and upon nonresponse adjustments.
Incorrectly choosing to use standard statistical
software without weighting will yield biased
point estimates of population parameters. Estimated
variance formulas for point estimates based on
sample survey data are impacted by clustering,
stratification, and the weights. By incorrectly
choosing standard statistical software and ignoring
these survey design aspects in the analysis, the
estimated variance of a point estimate generally is
underestimated, sometimes substantially so.

Most standard statistical software can perform
weighted analyses, usually via a WEIGHT statement
added to the program code. Use of standard statisti-
cal software with a weighting variable should yield
the same point estimates for population parameters
as sample survey software. However, the estimated
variance of point estimates generally is not correct
since the user is ignoring clustering and stratification.
Further, the estimated variance can be substantially
wrong, depending upon the particular standard soft-
ware program being incorrectly used.

Description of BRFSS Surveys

The BRFSS [10] program, established by CDC
(Centers for Disease Control and Prevention),
provides state-level data to estimate the prevalence
of risk factors for disease and poor health. States
select a continuous probability sample of the adult
noninstitutionalized population using some type of
random digit dialing (RDD) telephone sampling.
The Mitofsky–Waksberg RDD technique [11] was
used for many years, but list-assisted or directory-
based stratified RDD (see Telephone Sampling)
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is commonly used now. Telephone numbers
typically are stratified by density of residential
telephone numbers, and the high-density stratum is
oversampled. Once a residence is reached, almost
all states select one adult, with equal probability, to
undergo a telephone interview. Each state generally
interviews between 1500 and 4500 adults per year.

BRFSS statewide surveys result in an unequal
probability sample of adults because only one adult
per sampled household is selected and there may
be differential sampling fractions of telephone num-
bers in different strata. Weighting adjustments may
be done for first-stage nonresponse (telephone not
answered or household screening/enumeration not
completed) and for second-stage nonresponse (the
selected adult was not interviewed). Further, post-
stratification of the observations to US Census data
is generally done. Hence, each observation (inter-
viewed adult) in the data set has a value for the vari-
able FINALWT (final analysis weight). This value
indicates the number of persons in the population rep-
resented by that observation. The value of FINALWT
varies across observations within a state and between
states, sometimes considerably so.

In addition to differential weighting, the Mitof-
sky–Waksberg RDD method clustered observations
by telephone bank (usually defined as a group of 100

telephone numbers with identical area code, prefix,
and first two digits of the suffix). Under list-assisted
RDD the observations in BRFSS data sets are not
clustered. Further, some states use geographic strati-
fication in their sampling process. Although sampling
details differ across states and across years, cur-
rent statewide BRFSS surveys typically are weighted,
stratified, and not clustered, whereas older surveys
were weighted, clustered, and may be stratified.

This article uses calendar year 1993 BRFSS data
on diabetes for the six states given in Table 1, yield-
ing a total sample size of 20 049 observations over
the six states. Mitofsky–Waksberg RDD was used in
all six states. Presence/absence of diabetes is defined
as a Yes/No answer to “Have you ever been told by a
doctor that you have diabetes?”; the few observations
with other than a Yes/No answer are excluded from
all analyses.

Comparing Appropriate and
Inappropriate Software Choices

Any sample survey software and any standard statis-
tical software could have been chosen to illustrate
these comparisons; numerical results equivalent to
Tables 1–3 would have been obtained. A compre-
hensive and popular statistical software package was

Table 1 Sample size per state and (min, max) and sum of three types of weights per state, 1993 BRFSS Surveys

FINALWT NORMWT STNORMWT
State Sample size, (%) (min, max), sum, (%) (min, max), sum, (%) (min, max), sum, (%)

California 3719 (635, 72 663) (0.280, 32.1) (0.104, 11.9)
(18.6) 22 780 741 10 049 3719

(50.1) (50.1) (18.6)
Florida 3087 (610, 19 131) (0.269, 8.4) (0.178, 5.6)

(15.4) 10 563 183 4659 3087
(23.2) (23.2) (15.4)

Maryland 4361 (70, 3876) (0.031, 1.8) (0.082, 4.5)
(21.8) 3 727 710 1644 4361

(8.2) (8.2) (21.8)
Minnesota 3412 (222, 4182) (0.098, 1.8) (0.232, 4.4)

(17.0) 3 277 173 1446 3412
(7.2) (7.2) (17.0)

Tennessee 3045 (233, 7460) (0.103, 3.3) (0.190, 6.1)
(15.2) 3 747 334 1653 3045

(8.2) (8.2) (15.2)
West Virginia 2425 (118, 2588) (0.052, 1.1) (0.211, 4.6)

(12.1) 1 356 429 598 2425
(3.0) (3.0) (12.1)

Six-state total 20 049 (70, 72 663) (0.031, 32.1) (0.082, 11.9)
45 452 569 20 049 20 049
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Table 2 Estimated prevalence (and standard error) of diabetes by state and analysis procedure

Appropriate choice of
Inappropriate choice of

sample survey software
standard statistical software

State FINALWT ONE FINALWT NORMWT STNORMWT

California 4.48 4.88 4.48 4.48 4.48
(0.373) (0.354) (0.340) (0.340) (0.340)

Florida 5.19 5.64 5.19 5.19 5.19
(0.421) (0.416) (0.400) (0.400) (0.400)

Maryland 4.96 5.10 4.96 4.96 4.96
(0.364) (0.333) (0.329) (0.329) (0.329)

Minnesota 4.23 4.37 4.23 4.23 4.23
(0.370) (0.350) (0.345) (0.345) (0.345)

Tennessee 6.19 6.37 6.19 6.19 6.19
(0.479) (0.443) (0.437) (0.437) (0.437)

West Virginia 6.04 6.68 6.04 6.04 6.04
(0.520) (0.507) (0.484) (0.484) (0.484)

Six-state total 4.86 5.40 4.86 4.86 5.10
(0.219) (0.160) (0.152) (0.152) (0.155)

Table 3 Calculated chi-square statistic and (P value) for testing independence of gender and diabetes, by state and analysis
procedure

Appropriate choice of
Inappropriate choice of

sample survey software
standard statistical software

State FINALWT ONE FINALWT NORMWT STNORMWT

California 1.81 0.001 13 396 5.91 2.19
(0.178) (0.975) (0.015) (0.139)

Florida 2.15 3.44 8436 3.72 2.46
(0.143) (0.064) (0.054) (0.116)

Maryland 5.48 2.96 5616 2.48 6.57
(0.019) (0.085) (0.116) (0.010)

Minnesota 0.11 0.11 104 0.05 0.11
(0.745) (0.743) (0.830) (0.742)

Tennessee 0.57 2.10 802 0.35 0.65
(0.452) (0.147) (0.552) (0.419)

West Virginia 3.09 2.74 1950 0.86 3.49
(0.079) (0.098) (0.354) (0.062)

Six-state total 6.07 8.91 28 662 12.64 13.20
(0.014) (0.003) (<0.001) (<0.001)

used to conduct two standard and common analyses:
(1) estimation of a mean (prevalence) with estimated
standard error and (2) calculation of a chi-square
test. Results obtained from these standard analyses
demonstrate the error of an inappropriate software
choice. SUDAAN Version 8 [9], a specialized pack-
age for sample survey and correlated data analysis,
was used to demonstrate an appropriate software
choice; Taylor Series linearization [5] is used for
variance estimation (see Linearization Methods of
Variance Estimation).

Each state’s sampling plan was described to
SUDAAN in the same way; within a state no strati-
fication was used and observations were clustered in
their appropriate primary sampling unit (PSU), a tele-
phone bank. To perform analyses for each state and
for the combined states, the six-state concatenated
data set was described to SUDAAN as a stratified
(by state) multi-stage clustered survey. The finite
population correction factor was not used in esti-
mated variance calculations. For those familiar with
SUDAAN and BRFSS, the PROC statement included
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DESIGN = WR (with replacement sampling at stage
one), the NEST statement included the state stratifi-
cation variable STSTR and the clustering (telephone
bank) variable PSU, and the WEIGHT statement
included the variable FINALWT.

Inappropriately chosen standard analyses were
conducted using four different approaches, all
of which incorrectly ignored the clustering and
stratification. The four approaches differ in the way
the weighting variable FINALWT is handled in
the standard analyses. The first standard approach
ignored FINALWT and analyzed the data set
unweighted; this is equivalent to using the WEIGHT
statement with the variable ONE (a variable whose
value is 1.0 for every observation in the data
set). In Table 1 (column 2) it is shown that, with
this approach, the CA sample size is 3719 and it
contributes 19% to the total inference population.

The second standard approach used the WEIGHT
statement with the variable FINALWT. There is great
variability in FINALWT; Table 1 (column 3) indi-
cates its range as 70 to 72 663. In Table 1 it is also
shown that using FINALWT implies that the CA sam-
ple contributes 50% to the total inference population,
rather than only 19% in an unweighted analysis.

The third standard approach used the WEIGHT
statement with the variable NORMWT, a normed
weight based on FINALWT. Some data analysts
claim that using normed weights with standard statis-
tical packages yields results comparable to those from
sample survey software. For observation j within
state i, let finalwt (i, j ) be the value of the variable
FINALWT. Then, the value of NORMWT for this
observation is defined as:

normwt(i, j ) = (20049) ∗ finalwt(i, j )

45 452 569
(1)

The figure 45 452 569 is the estimated total adult
population of the six states, which is the sum of
the value of FINALWT over all 20 049 observations
(Table 1, column 3). The variable NORMWT has
values less than 1.0 and greater than 1.0, and the sum
of the values of NORMWT over the entire data set is
20 049, the total sample size. In Table 1 (column 4)
it is shown that, with this approach, the CA sample
contributes 50% to the total inference population.

The fourth standard approach used the WEIGHT
statement with the variable STNORMWT, a second
normed weight calculated from FINALWT, where the
norming is done within state. Hence, the sum of the

values of STNORMWT over all observations within
a state equals the sample size for that state (Table 1,
column 5). Clearly, the sum of STNORMWT over
the entire sample equals the total sample size 20
049. In Table 1 it is shown that, with this approach,
the CA sample contributes 19% to the total infer-
ence population.

First, SUDAAN DESCRIPT and the four inappro-
priately chosen standard approaches were compared
on a descriptive analysis; that is, estimation of dia-
betes prevalence (with estimated standard error) for
the total population (six states combined) and for
each state. The diabetes variable was coded as 1 or
2 for DESCRIPT and coded as 0 (no diabetes) or
100 (have diabetes) for the standard software that
estimated means.

Secondly, SUDAAN CROSSTAB and the four
inappropriately chosen standard approaches were
compared on a chi-square test of the null hypothesis
that gender and diabetes are statistically independent.
These analyses were performed for the total popu-
lation and for each state, with diabetes coded as a
categorical variable (1, 2).

Results

Descriptive Analyses

Sample survey software yields correct point estimates
for diabetes prevalence and for estimated standard
errors (Table 2, column 2). However, the incorrect
choice of unweighted standard software (column 3)
causes diabetes prevalence to be overestimated by
about 10% for the total population (5.40 versus
4.86%) and for half of the states. Note also that the
estimated standard errors in Table 2 are smaller by
incorrectly using unweighted standard software. For
the entire population, the correct estimated standard
error is 35% larger than the standard error estimated
by the incorrect use of unweighted standard soft-
ware (0.219 versus 0.160). The combination of the
biased point estimate and underestimation of the stan-
dard error could result in quite misleading confidence
intervals for the prevalence of diabetes.

In Table 2 (columns 4 and 5), it is shown that stan-
dard software with FINALWT or NORMWT gives
identical results, with correct point estimates for dia-
betes prevalence. However, the incorrect choice of
standard software for analysis still results in estimated
standard errors that are too low. The magnitude of
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underestimation of the standard error by using stan-
dard software with FINALWT or with NORMWT
is somewhat worse than with unweighted standard
software. Thus, standard statistical software with a
WEIGHT statement using FINALWT or NORMWT
yields unbiased point estimates of population param-
eters, but it yields incorrect estimated standard errors.

In Table 2 (column 6), it is shown that standard
software with STNORMWT gives identical results
to standard software with FINALWT or NORMWT
for state-specific analyses, but yields a biased point
estimate for the total population along with an under-
estimated standard error.

Chi-square Analyses

The chi-square analysis tests the null hypothesis that
the prevalence of diabetes is the same for males and
females. In Table 3 (columns 2 and 3), it is shown
that the incorrect choice of unweighted standard soft-
ware, compared to sample survey software, yields a
higher value for the chi-square statistic for the entire
population, giving a smaller P value (0.003 versus
0.014). A comparison state by state shows no con-
sistent pattern; the P value for unweighted standard
software is sometimes higher and sometimes lower
than for sample survey software.

In Table 3 (columns 2 and 4), it is shown that the
incorrect choice of standard software with FINALWT
yields an unreasonably large value of the chi-square
statistic for the total population and for each state.
P values are not included in Table 3 for these very
large chi-square statistics. The standard software with
FINALWT considers the sample size to be the sum of
the values of FINALWT (i.e. 45 452 569) as opposed
to the actual sample size of 20 049. This is the reason
for the very large values of the chi-square statistic.

In Table 3 (columns 2 and 5), it is shown that the
incorrect choice of standard software with NORMWT
yields a chi-square value for the six-state area that
is twice as large (12.64 versus 6.07). However,
this relationship between sample survey and stan-
dard software with NORMWT does not hold for
each of the six states in Table 3. Standard software
with NORMWT yields a larger chi-square statistic
value for some states but a smaller value for other
states. This occurs because, within each state, the
standard software considers the sample size as the
sum of NORMWT. Hence, the sample size for CA
is artificially inflated to 10 049 from 3719, whereas

the sample size for West Virginia (WV) is artifi-
cially deflated to 598 from 2425 (see Table 1). Thus,
the chi-square statistic using standard software with
NORMWT, compared to survey software, is much
larger for CA but much smaller for WV.

In Table 3 (columns 2 and 6), it is shown that
the inappropriate choice of standard software with
STNORMWT yields a chi-square statistic for the
total population about twice as large (13.20 versus
6.07). For each state, the chi-square statistic based
on standard software with STNORMWT is about
15–20% larger than provided by survey software.
Because STNORMWT is normed within a state, the
sum of the weights reflects the statewide sample
size. Hence, the standard software with STNORMWT
shows the common pattern that standard statistical
software packages generally calculate a larger value
of the chi-square statistic compared to sample sur-
vey software.

Discussion

Unweighted Analyses with Standard Statistical
Software

Although the empirical evidence in this article is
based only on one type of survey (BRFSS), only
on six states and only on 1993 data, the findings
are consistent with other similar investigations [1].
Using a standard statistical package with unweighted
analyses to analyze sample survey data generally will
yield (i) biased point estimates of population param-
eters, (ii) underestimates of the standard error for
point estimates, (iii) confidence intervals on popu-
lation parameters that are too narrow, and (iv) tests
of significance that are too likely to reject the null
hypothesis because the standard errors or variability
of statistics generally are underestimated.

The extent of the bias in unweighted point esti-
mates will depend upon the particular data set and is
related to the variability of the FINALWT variable. If
FINALWT has little variability in the data set, then an
unweighted point estimate will be close to a weighted
point estimate. In the six-state BRFSS data set, the
value of FINALWT ranged from 70 to 72 663 over
the six states. This extreme variability in the value
of FINALWT is primarily due to varying sampling
fractions across the states; that is, a small variation in
state sample size (2400 to 4400) but widely different
statewide populations (1.4 to 22.8 million).
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Another factor that contributes to the bias of
point estimates of population parameters based on
unweighted analyses is the relationship between the
value of FINALWT and the variable being analyzed.
In the data set used here, the value of FINALWT is
primarily influenced by the sampling fraction in each
state; you could say that certain states are “oversam-
pled”. If states were strongly related to the analysis
variable (diabetes), then point estimates of diabetes
prevalence from unweighted analyses could be seri-
ously biased. In this data set, the estimated statewide
prevalences of diabetes do not differ dramatically,
ranging from 4 to 6%. If blacks had been oversampled
within each state to a large extent, then the bias in
estimated diabetes prevalence using unweighted anal-
yses would be substantial and positive, since blacks
have a higher prevalence of diabetes than do whites.

In addition to potentially biased point estimates
from unweighted standard analyses, standard errors,
and other measures of variability are generally under-
estimated because of clustering and variability in
FINALWT. The intracluster correlation coefficients
in older BRFSS data sets using Mitofsky–Waksberg
RDD are generally positive but not substantial. This
might be expected because most states only had about
three completed interviews per PSU (telephone bank)
(see Telephone Sampling) with Mitofsky–Waksberg
RDD. Variability in FINALWT, and not clustering,
likely is the most important factor contributing to
the higher estimated variances from sample survey
software using this BRFSS data set. If other sam-
ple survey data sets had been used with a higher
degree of intracluster correlation, an incorrect choice
of unweighted standard analyses would have pro-
duced even smaller estimates of variability, compared
to sample survey software.

Weighted Analyses with Standard Statistical
Software

Using standard statistical software with weighted
analyses (FINALWT or NORMWT) produces unbi-
ased point estimates of prevalence for the entire
population over all six states and for any strata
(states) of interest. Although not illustrated, these
weighted analyses also yield unbiased point estimates
of diabetes prevalence among subpopulations based
on other characteristics, such as race or gender, where
the subpopulations contain observations from all or
some strata. Hence, either of these two weighted stan-
dard approaches is fine if only point estimates of

prevalence are desired. However, weighted standard
statistical software (using FINALWT or NORMWT)
tends to underestimate the standard error of estimated
prevalences. The degree of underestimation depends
upon the size of the intracluster correlation coeffi-
cient for the variables being analyzed; the higher the
intracluster correlation, the more serious the underes-
timation of the variability. Weighted analyses with
standard statistical software (using NORMWT or
FINALWT) may be a reasonable analytical approach
for point estimates of population parameters under the
following condition: all intracluster correlation coef-
ficients are near zero.

The inappropriate choice of standard software with
FINALWT gives substantially incorrect results for
chi-square tests because the sample size is assumed to
be the population size, that is, the sum of the values
of FINALWT. Whether this is true in all standard sta-
tistical packages depends upon the packages’ default
options for weighted analyses in chi-square tests.

The inappropriate choice of standard software with
NORMWT gives a larger chi-square statistic for the
entire population, about twice as large. However, this
procedure yields substantially incorrect chi-square
statistics for state-specific analyses. The state spe-
cific analyses are wrong because the standard soft-
ware assumes an incorrect sample size for the state
analyses. This will occur also whenever subpopula-
tions are analyzed using NORMWT and the variable
that defines the subpopulation is related to the value
of FINALWT.

The inappropriate choice of standard software with
the second normed weight, STNORMWT, gives more
reasonable values for the chi-square statistic for state
level analyses, although the chi-square statistics were
always larger than with survey software. However, if
the weight STNORMWT is used for analyses over the
entire population, a biased point estimate is obtained
for population parameters.

Conclusions

The empirical results above illustrate that using stan-
dard statistical software with the weights FINALWT
or NORMWT are the only two of the four inap-
propriate approaches considered that yield unbiased
point estimates for population and subpopulation
parameters. All four inappropriate choices for analy-
sis using standard statistical software yield incorrect
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standard errors and tests of significance, generally
in the direction of underestimating variability of
statistics. In particular, using normed weights with
standard statistical software, a sample survey data
analytic approach advocated by some data analysts, is
problematic with respect to variance estimation and
in some instances can give biased point estimates
of population parameters. It is recommended that
sample survey software be used to analyze sample
survey data, especially for estimation of population
parameters, descriptive analyses, and analytical anal-
yses. Under certain circumstances, standard statistical
packages can be used to provide results approxi-
mately equal to the results obtained from sample
survey software. However, recognition of these cir-
cumstances and awareness of the potential pitfalls of
using standard statistical packages requires detailed
information about the characteristics of the survey
data set (e.g. sampling plan, weighting scheme, and
intracluster correlation) as well as knowledge of the
particular formulas and default options used by the
standard statistical software for weighted analyses.
In the end, it seems easier and less time consum-
ing to use software developed for sample survey
data analysis.
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Software for Sample
Survey Data

Introduction

A sample survey is a process for collecting data
on a sample of observations that are selected from
the population of interest using a probability sam-
ple design. In sample surveys, certain methods are
often used to improve the precision and control the
costs of survey data collection. These methods intro-
duce a complexity to the analysis, which must be
accounted for in order to produce unbiased estimates
(see Estimation) and their associated levels of preci-
sion. This article provides a brief introduction to the
impact these design complexities have on the sam-
pling variance, and summarizes the characteristics
and availability of software to carry out analysis on
sample survey data.

Complex Sample Designs

Statistical methods for estimating population param-
eters and their associated variances are based on
assumptions about the characteristics and underly-
ing distribution of the observations. Statistical meth-
ods in most general-purpose statistical software tac-
itly assume that the data meet certain assumptions.
Among these assumptions are that the observations
were selected independently and that each obser-
vation had the same probability of being selected.
Data collected through surveys often have sampling
schemes that deviate from these assumptions. For
logistical reasons, samples are often clustered geo-
graphically to reduce costs of administering the sur-
vey, and it is not unusual to sample households
and then subsample families and/or persons within
selected households (see Multistage Sampling). In
these situations, sample members are not selected
independently, nor are their responses likely to be
independently distributed.

In addition, a common survey sampling practice is
to oversample certain population subgroups to ensure
sufficient representation in the final sample to sup-
port separate analyses. This is particularly common
for certain policy-relevant subgroups, such as ethnic
and racial minorities, the poor, the elderly, and the
disabled. In this situation, sample members do not

have equal probabilities of selection. Adjustments to
sampling weights (the inverse of the probability of
selection) to account for nonresponse as well as other
weighting adjustments (such as poststratification to
known population totals), further exacerbate the dis-
parity in the weights among sample members.

Impact of Complex Sample Design on
Sampling Variance

Because of these deviations from standard assump-
tions about sampling, such survey sample designs
are often referred to as complex. While stratification
in the sampling process can decrease the sampling
variance, cluster sampling and unequal selection
probabilities generally increase the sampling variance
associated with resulting estimates. The sampling
variance is a measure of the variation of an esti-
mator attributable to having sampled a portion of
the full population of interest. It is a measure of
the variation of the estimate of a population param-
eter over repeated samples. The sampling variance
becomes smaller as the sample size increases, and is
zero when the full population is observed. The sam-
pling variance differs from the population variance,
which measures the variation among observations in
the population, and is a constant, independent of any
sampling issues.

Not accounting for the impact of the complex
sample design can lead to an underestimate of the
sampling variance associated with an estimate. There-
fore, while standard procedures in general-purpose
statistical software packages can usually produce an
unbiased weighted survey estimate (see Software,
Biostatistical), it is quite possible to overestimate the
precision of such an estimate when using one of these
standard procedures to analyze survey data.

The magnitude of this effect on the variance is
commonly measured by what is known as the design
effect [16]. The design effect is the sampling variance
of an estimate, accounting for the complex sample
design, divided by the sampling variance of the same
estimate, assuming a sample of equal size had been
selected as a simple random sample. A design effect
of one indicates that the design had no impact on the
variance of the estimate. A design effect of unity indi-
cates that the design has increased the variance, and
a design effect less than one indicates that the design
actually decreased the variance of the estimate. The
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design effect can be used to determine the effective
sample size, simply by dividing the nominal sample
size by the design effect. The effective sample size
gives the number of observations that would yield an
equivalent level of precision from an independent and
identically distributed (i.i.d.) sample. For example, an
estimate from a complex sample of size 1500 that has
a design effect of 1.5 is equivalent (in terms of pre-
cision) to that same estimate from a simple random
sample of size 1000. The benefits of the complex
design in this case would be weighed against the cost
of effectively losing 500 observations.

For complex designs, the exact computation of
the variance of an estimate is not always possi-
ble. When estimating a total or a mean (when the
denominator is known), the estimate is in linear form;
that is, y = ∑n

i=1 yi/n can be expressed in the form
θ̂ = ∑

i∈S βiyi . When an estimate is in linear form,
a standard formula for the mean square error of a
linear estimate can be applied to calculate the vari-
ance; however, for a weighted mean estimate, the
form is no longer linear. If wi is the weight associated
with sample member i, then the weighted mean is
calculated as: yw = ∑n

i=1 wiyi/
∑n

i=1 wi . The mean
estimate is now a ratio estimate with a random vari-
ate in both the numerator and denominator because
the sample weights depend on the units selected and
differ from sample to sample.

Variance Estimation Methods

Several approaches have historically been used to
compute an approximation of the true variance of an
estimate when the sample deviates from i.i.d assump-
tions. These techniques fall into two general cate-
gories: (1) the Taylor series linearization technique
(see Linearization Methods of Variance Estima-
tion) and (2) replication techniques. Both of these
were first proposed in the literature for use with
survey data in the 1960s. While over the years gov-
ernment statistical agencies, academic departments,
and private survey organizations implemented their
own algorithms and developed their own software
for carrying out these techniques, several software
packages have emerged for public use, first for main-
frame computer applications, and now for use on
personal computers and in other computing environ-
ments. The variance estimation software available to
the public uses one or the other of the two general

strategies for variance estimation mentioned above.
What follows is a brief description of these two types
of techniques. For more detailed descriptions of these
techniques, the reader is advised to consult the ref-
erences given. Overviews of these techniques can be
found in [1, 10, 15, 19, 25, 31].

Because estimates of interest in sample surveys are
nonlinear, one approach is to linearize such estimates
using a Taylor series expansion. This approach was
first suggested for use with survey estimates in 1968
by Tepping at the US Bureau of the Census [29]. In
essence, the estimate is rewritten in the form of a Tay-
lor series expansion, and an assumption is made that
all higher-order terms are of negligible size, leaving
only the first-order (linear) portion of the expanded
estimate. A standard formula for the mean square
error of a linear estimate can then be applied to the
linearized version to approximate the variance of the
estimate. This approximation works well to the extent
that the assumption regarding the higher-order terms
is correct; see also [32]. Note that, with this approach
to variance estimation, a separate formula for the lin-
earized estimate must be developed for each type of
statistical estimator. Most survey data analysis soft-
ware includes the most widely used estimates (such
as means, proportions, ratios, and regression coeffi-
cients). Binder [2] introduced a general approach that
can be used to derive Taylor series approximations for
a wide range of estimators, including Cox propor-
tional hazards and logistic regression coefficients.

Replication techniques are a family of approaches
that take repeated subsamples, or replicates, from
the data, recompute the weighted survey estimate
for each replicate, and then compute the variance
based on the deviations of these replicate estimates
from the full-sample estimate. This approach was
first suggested for use with survey data in 1966
by McCarthy at Cornell University as part of his
work with the National Center for Health Statis-
tics [22]. The most commonly used replication tech-
niques are the balanced repeated replication (BRR)
method and the jackknife method. Robert Fay at
the US Bureau of the Census has developed his
own replication technique for this purpose as well [9]
(see Resampling Procedures for Sample Surveys).
Other techniques less commonly used for this pur-
pose are bootstrapping [24] and the random group
method [13]. All replication techniques require the
computation of a set of replicate weights, which
are the analysis weights recalculated for each of the
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replicates selected so that each replicate appropriately
represents the same population as the full sample.
Such computing-intensive techniques became practi-
cal only as the computing capacity on mainframes
and then personal computers increased. Unlike the
Taylor series method, replication methods do not
require the derivation of variance formulas for each
statistical estimate because the approximation is a
function of the sample, not of the estimate.

With balanced repeated replication (also known as
balanced half-sampling), forming a replicate involves
dividing each sampling stratum into two primary
sampling units (PSUs) (see Sampling in Develop-
ing Countries), and randomly selecting one of the
two PSUs in each stratum to represent the entire stra-
tum [17, 18, 23]. The jackknife repeated replication
approach involves removing one stratum at a time to
create each replicate [11, 30]. Fay’s method is similar
to the BRR approach, except that, instead of selecting
one of two PSUs in each stratum, the weights of one
of the two PSUs in each stratum are multiplied by a
factor k between 0 and 2 and the weights of the other
PSUs are multiplied by a factor of 2 − k [9]. See
also [7, 8] for a discussion of replication methods.

Software Packages

At the time of this writing (spring 2003), a number of
packages are available to the public designed specifi-
cally for use with sample survey data. A website that
is maintained by Alan Zaslavsky at Harvard Univer-
sity (www.fas.harvard.edu/∼stats/survey-
soft/survey-soft.html) contains a list of a
dozen survey analysis variance estimation packages,
along with their features, contact information, and
comparative reviews. Four of these packages have
been developed by government agencies (Statistics
Canada, US Centers for Disease Control and Pre-
vention, and two from US Bureau of the Census);
three have been developed in academia (Univer-
sity of Essex, University of Michigan, Iowa State
University); and five have been developed by pri-
vate organizations (including SAS Institute, Stata,
Research Triangle Institute, and Westat). Many gov-
ernmental statistical agencies (including those in the
United States, Canada, Sweden, Holland, and France)
have developed their own sample survey software to
meet their needs. This software is sometimes avail-
able from the agencies for use by others, but not
marketed as such.

All but one of the packages described on the
website use the Taylor series approach to variance
estimation, and several of these also offer replication
methods. One supports only replication methods. All
are available for PC (Windows or DOS) platforms,
but several offer other platforms such as Macintosh,
Linux, Unix, and Sun/Solaris. Two of the packages
(other than SAS [26]) require SAS in order to run.
All reportedly handle complex sample designs that
include stratification and cluster sampling. Some are
more sophisticated and handle multistage sampling,
without-replacement sampling (see Sampling With
and Without Replacement), and unequal probabil-
ities at each stage of selection. The range of esti-
mate types available on these packages range from
descriptive statistics (such as totals, means, ratios,
and proportions) to multivariate analytical tech-
niques (such as linear regression logistic regression,
and proportional hazards models). The focus in this
article is on several of the more commonly used pack-
ages (SUDAAN, WesVar, Stata, and SAS/STAT). The
reader is encouraged to visit the web page mentioned
above to find out more about CENVAR, CLUS-
TERS, Epi Info GES, IVEware, PCCARP, R Survey,
and VPLX.

SUDAAN (developed by Babu Shah and others at
the Research Triangle Institute (RTI)) started out as
software called STDERR in 1970 for use on an IBM
mainframe. Starting in 1976, the software was further
developed to carry out a wider array of procedures
(RATIOEST, RTIFREQS, SESUDAAN, SURREGR,
and RTILOGIT), some with the support of various
government statistical agencies with whom the RTI
was working. SUDAAN primarily uses the Taylor
series approach to variance estimation, but has added
replication techniques as options. Because SUDAAN
was originally developed as an SAS procedure, its
syntax in batch mode is similar to that of SAS. There
is a bit of a learning curve in how to specify the
design parameters. It is available as a stand-alone
package or as a SAS-callable procedure.

Among the four packages discussed here,
SUDAAN has the greatest capabilities in terms
of the types of sample designs it accommodates.
It can handle stratification, cluster sampling,
multistage sampling, without-replacement sampling,
and unequal probabilities of selection at each
stage. Specifying without-replacement sampling with
unequal probabilities at the first stage (the most
complicated design structure) requires that the
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user compute joint-inclusion probabilities for each
possible pair of PSUs within each first-stage stratum.
Specifying without-replacement sampling of any kind
(three types are available) requires that the user
supply frame counts at each stage of selection.
Being able to specify without-replacement sampling
becomes a factor when the sampling fraction at
the first stage is relatively high, so that the finite
population correction factor can be incorporated.

Westat first developed its variance estimation soft-
ware for the work that they were doing with the
US Department of Transportation’s National Acci-
dent Sampling System. The first software was devel-
oped as SAS procedures for use on IBM mainframes
in the 1980s by David Morganstein and was called
NASSVAR. Westat’s current survey analysis soft-
ware, WesVar, is a stand-alone PC package that uses
replication methods to estimate variances. WesVar
has the option of one of several replication tech-
niques, including BRR, two variants of the jackknife
approach, and Fay’s method. To use this package, the
user must supply replicate weights, or supply full-
sample weights and allow the software to create the
replicate weights. WesVar can handle most complex
sample designs (stratification, cluster sampling, mul-
tistage sampling), but does not have the capability
of handling without-replacement sampling at the first
stage. It should be noted, however, that in most fed-
eral surveys, with-replacement sampling of PSUs is
commonly assumed in variance estimation even if the
PSUs were selected without replacement (generally a
conservative assumption). WesVar also has as part of
its package, the capability to poststratify the weights
to user-specified counts to account for sample frame
shortcomings, as does SUDAAN.

Stata (Stata Corporation, College Station, Texas)
added survey data analysis capabilities to an existing
general-purpose statistical package in 1995. Stata
uses the Taylor series approach to variance esti-
mation, although there are some user-written addi-
tions that incorporate Jackknife and BRR methods.
Stata is very popular due to its ease of use, good
user support, programmability, comprehensive set of
analytical procedures, and relatively lower price-tag
(compared to SUDAAN and SAS/STAT). In Stata,
the Taylor series capability can be added to any
user-programmable estimator. Like WesVar, Stata can
incorporate most complex sample designs, but can-
not handle a two-stage without-replacement design

with sampling at both stages; that is, it assumes
with-replacement sampling of PSUs.

SAS has added a few procedures to its SAS/STAT
software over the last few years for survey data.
The SURVEYSELECT procedure allows the user
to select probability samples of various designs –
from simple random samples to complex multistage
samples with stratification, clustering, and unequal
probabilities of selection. It also includes two Taylor
series based procedures to estimate totals, means, and
ratios (SURVEYMEANS) and regression coefficients
(SURVEYREG). Future plans are for them to add
similar capabilities for analyzing frequency data and
logistic regression.

Issues in Selecting and Using Sample
Survey Software

There are several ways to evaluate the qualities of
such software packages when deciding which one to
use. The user must first evaluate his or her analytical
needs, such as sample design complexities, statistical
procedures needed, and computing environment, and
then decide among those that will be the easiest to
use. None of the existing packages meet all of the
recommended criteria in the following paragraphs.
For the packages mentioned above, or any that use
either of the two variance estimation approaches
described, there is no need for the user to be con-
cerned about whether the method used to estimate
the variances is statistically sound when choosing
among packages. Both the Taylor series lineariza-
tion approach and replication methods were derived
from well-accepted approaches previously applied to
other statistical problems. Each has certain circum-
stances in which its approximation of the variance is
better than that of the other, and certain replication
techniques work better than others, depending on the
sample design [3, 25]. Empirical evaluations (using
national survey data such as the Current Population
Survey and the National Health Interview Survey)
have revealed little difference in the estimates of the
variance using the different approaches [1, 11, 19].

From a practical standpoint, the software must
work in the computing environment in which the user
works. If the user works primarily on a mainframe
or on a Macintosh, he or she will find that most of
the software packages are available only for use on
DOS- or Windows-based personal computers. And if
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one routinely works with certain types of statistical
estimates, such as those resulting from multivariate
logistic regression or other nonlinear models, the user
may find that many of the software packages do
not have the full array of statistical procedures that
are currently available in the traditional statistical
software packages such as SAS and SPSS [28]. In
addition, the software package should be able to
import the user’s data sets, whether they were created
using standard statistical, database, or spreadsheet
packages, as well as text (ASCII) files.

The software package should be relatively easy to
use; however, there is sometimes a trade-off between
this ease of use and the package’s capabilities in
terms of handling more complex designs or analyses.
Another trade-off of being easy to use is a pack-
age’s propensity for being used inappropriately. Some
packages are relatively straightforward to use, with
a menu-driven or Windows-type approach, enabling
someone unfamiliar with the underlying assumptions
to unknowingly get estimates that are inappropriate
for his or her design. Other packages are less “user-
friendly,” and require writing lines of code to be
submitted as a batch job, which generally requires the
user to learn more up front about the package itself.
However, when a large number of similar analyses
will be run, it is often easier to run analyses in batch
mode than through a menu-driven or Windows-type
mode. Software packages should have an option for
a batch mode of execution.

In any case, user support should be readily avail-
able through thorough and well-written documenta-
tion, helpful error messages, a complete set of “help”
screens, and prompt assistance from the software
provider via telephone and/or electronic mail. Sup-
port from fellow users, who may communicate with
one another via listservers or other means, can also
be quite helpful. It should be kept in mind that most
packages were initially developed to accommodate
a certain type of sample design and a certain type
of user (perhaps a particular government agency and
a particular survey). This tends to make the pack-
ages less user-friendly to those with different data and
analysis needs. Packages should have the capacity to
handle nonstandard designs, or provide guidance in
the documentation as to the most appropriate design
to specify in these circumstances and what the conse-
quences are (such as an overestimate of the variance).
On the other hand, for even the most sophisticated
packages, it should not be cumbersome to specify

a relatively simple design. The statistical package
should provide technical documentation, including
the formulas used for point estimates and the vari-
ance estimates.

Currently, it is commonly the case that a user
creates a data file using SAS, SPSS, or some other
general-purpose statistical package, and then imports
the file into one of these specialized packages. Unless
they are part of a general statistical package (or are
“callable” procedures from such a package), the spe-
cialized packages generally do not allow for much
data editing, variable construction, recoding, or sort-
ing. Depending on the specialized package and the
estimates desired, it may be necessary to then take
the output from the specialized package and carry
out further data manipulation in the original general-
purpose (or yet another) statistical package to obtain
the needed estimates. Sometimes, to carry out sub-
group analyses, it is necessary to create separate files
for each subgroup and go through the entire process
for each subgroup. Over the last several years, vari-
ance estimation capabilities for sample survey data
have been added to general-purpose statistical pack-
ages such as SAS and Stata, and SPSS is planning to
add survey data analysis capabilities as well.

Several of the software packages currently avail-
able or under development are being made available
free to users via the Internet, but sometimes offer less
in the way of support and training. Others can run
over US $1000 for a single-use license, presumably
providing more comprehensive technical support and
training for users and notification regarding upgrades.
Training itself can be in the form of formal in-person
training courses (which can be expensive), Internet-
based training, or documentation that is comprehen-
sive enough to use as a training manual. In many
cases, documentation is merely a reference manual,
and the user must learn how to use the package from
a formal training course or by working with someone
familiar with the package.

The more difficult and/or expensive a software
package is to obtain, learn, and use, the less likely
it would be that analysts are going to use it. Many
analysts do not even realize they should use weights
when deriving estimates, let alone use specialized
software to estimate the variances correctly. It should
be made clear to users of public use data files, through
the accompanying documentation, that it is necessary
to account for the design when creating estimates.
If it is impossible, for confidentiality reasons, to
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provide variables on these files that designate the
stratum, PSU, and weight for each observation, then
the agency, company, or department supplying the
file should be willing and able to provide stan-
dard errors or design effects for certain variables
on request, or should provide generalized variance
curves, tables of standard errors or design effects for
a wide array of variables, or at the very least pro-
vide the average design effect for certain types of
variables for certain subgroups [4]. If there are no
such confidentiality concerns, then the public use file
should come with variables for stratum, PSU, and
weight, that are clearly marked as such. Ideally, such
data files would come with a set of replicate weights
as well. It is unreasonable to expect secondary data
users to derive a rather large set of replicate weights
on their own. As mentioned above, WesVar has a
procedure that can be used create replicate weights
under certain circumstances. (It cannot create repli-
cate weights that adjust for unit nonresponse or other
weighting adjustments other than poststratification.)

In general, to run any of these specialized pack-
ages, one needs to specify variables on the file that
correspond to sampling stratum, PSU, and analysis
weight. In addition, the file needs to be sorted by
stratum and then the PSU within stratum. Further,
there generally have to be at least two PSUs in each
stratum. (If this is not the case, then the user needs
to collapse across strata.) The user should have a
good understanding of the design. Was stratification
employed? How many sampling stages were there?
At each stage of sampling, were the units selected
with or without replacement? Were the units selected
with equal probability or was there disproportionate
sampling (such as oversampling or sampling with
probability proportionate to size)? The user should
also know which variables are continuous or inter-
val, versus categorical or ordinal (see Measurement
Scale). For categorical or ordinal variables, the user
should know the number of categories of each. Exam-
ples of statistical analysis using Stata and WesVar can
be found in Levy and Lemeshow [21].

Several papers have been published that compare
the various software packages. Because many of
these packages have evolved over time, many of the
criticisms and comparisons found in these papers are
no longer valid [5, 6, 15].

There is an ongoing debate as to whether the
sample design must be considered when deriving sta-
tistical models (as opposed to estimates of means,

proportions, totals, and ratios) based on sample sur-
vey data. Analysts interested in using statistical tech-
niques such as linear regression, logistic regression,
survival analysis or categorical data analysis on
survey data are divided as to whether they feel it
is necessary to use specialized software. The model-
based analysts argue that, as long as the model is
specified correctly, they can proceed without recog-
nizing aspects of the survey design (such as stratifica-
tion, clustering, and unequal selection probabilities),
and can therefore use standard statistical packages.
The design-based analysts argue, to the contrary, that
it is important to account for the survey design when
estimating models. The debate between these two fac-
tions has been ongoing for quite a while and is not
likely to be resolved soon [12, 14, 20, 27]. A com-
promise position adopted by some is to use standard
statistical software in modeling analyses, but to incor-
porate into the model the variables that were used to
define the strata, the PSUs and the weights.

Contact information for the providers of the spe-
cialized software mentioned are found after the ref-
erences under the name of the software.
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Software Reliability

The demand for complex software systems has in-
creased more rapidly than the ability to design, imple-
ment, test, and maintain them, and the reliability of
software systems has become a major concern for our
modern society. In the last decade of the twentieth
century, many reported system outages or machine
crashes were traced down to computer software fail-
ures. Consequently, recent literature is replete with
horror stories regarding software problems.

Software failures have impaired several high-
visibility programs in the health industry; they have
even killed people. As described in [12], the Therac-
25 radiation therapy machine was hit by software
errors in its sophisticated control systems and claimed
several patients’ lives in 1985 and 1986. In the UK,
South West Thames Regional Health Authority [28]
reported an incident on October 26, 1992, when
the Computer Aided Dispatch system of the London
Ambulance Service broke down immediately after its
installation, paralyzing the capability of the world’s
largest ambulance service to handle the 5000 requests
to carry patients in emergency situations received
each day. In the aviation industry, although sev-
eral airliner crashes have remained mysteries, experts
pointed out that software control could be the chief
suspect in some of these incidents owing to its inap-
propriate response to the pilots’ desperate inquires
during an abnormal flight condition.

To this end, software companies recognize the
need for systematic approaches to measuring and
assuring software reliability, and they devote a major
share of project development resources to this. The
Institute of Electrical and Electronics Engineers
(IEEE) [8] defines software reliability as

the probability of failure-free software operations for
a specified period of time in a specified environment.

Software reliability engineering is the field that quan-
tifies the operational behavior of software systems
with respect to user requirements concerning relia-
bility. It considers:

1. The definition of various metrics measuring
attributes of product design, the development
process, system architecture, the operational
environment, and the code itself, in as far as the
metrics affect the reliability.

2. The design and implementation of operational
tests and field operation of the software. When
software fails, the code is analyzed to identify
the responsible fault, and this is corrected. (This
operation may introduce a new fault.) Note the
distinction between a fault (erroneous code)
and a failure (the software fails to execute
correctly on a specific test). A single fault may
be responsible for many failures, or none if the
relevant part of the code is never executed.

3. The development of models relating the metrics
in point 1 to the test results. These models can
be used to estimate the current reliability of the
software, and to predict future performance as
the software evolves.

4. Application of these technologies in specifying
and guiding system architecture, development,
testing, acquisition, use, and maintenance.

Reliability is an essential ingredient in customer
satisfaction. In fact, ISO 9000-3 [9] specifies mea-
surement of field failures as the only required quality
metric:

. . . at a minimum, some metrics should be used
which represent reported field failures and/or defects
from the customer’s viewpoint. The supplier of soft-
ware products should collect and act on quantitative
measures of the quality of these software products.

Many of the current software reliability engineering
techniques and practices are detailed in [15]; another
general reference is [21].

In this article we focus on software reliability
models and measurements. A software reliability
model specifies the general form of the dependence
of the failure process on the principal factors that
affect it: fault introduction, fault removal, and the
operational environment. During the test phase, the
failure rate of a software system is generally decreas-
ing owing to the discovery and correction of soft-
ware faults. With careful record-keeping procedures
in place, it is possible to use statistical methods
to analyze the historical record with regard to fail-
ures and faults. The purposes of these analyses is
two-fold: (i) to predict the additional time needed to
achieve a specified reliability objective; (ii) to predict
the expected reliability and faults when the testing is
finished.

Implicit in this discussion is the concept of “time”.
For some purposes this may be calendar time, assum-
ing that testing proceeds roughly uniformly; another
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possibility is to use computer execution time, or
some other measure of testing effort. Another implicit
assumption is that the software system being tested
remains fixed throughout (except for the removal of
faults as they are found). This assumption is fre-
quently violated.

Software reliability measurement is based on two
types of models, static and dynamic reliability estima-
tion models, used typically in earlier and later stages
of development, respectively. These will be discussed
in the following two sections.

Early Stage Models

One purpose of reliability models is to perform
reliability prediction in an early stage of software
development. This activity determines future software
reliability based upon available software metrics
and measures. Particularly when failure data are
not available (e.g. software is in the design or
coding stage), the metrics obtained from the software
development process and the characteristics of the
resulting product can be used to determine reliability
of the software upon testing or delivery. We discuss
two prediction models: the phase-based model and
the Rome Laboratory model.

Phase-Based Model

Gaffney & Davis [6] proposed the phase-based
model, which makes use of fault statistics
obtained during the early development phases (e.g.
requirement review, design, and implementation) to
predict the expected fault densities during a later
phase (e.g. test or operation). In order to do this, the
model makes the following assumptions:

1. Code size estimates are available during the early
phases of a development effort. The faults found
during the requirements analysis and software
design are normalized by these estimates.

2. Faults found in different phases of life cycle
follow a Rayleigh density function.

Denoting the fault density (faults per 1000 lines of
noncommentary source line, or KNCSL) up to the
end of phase t by Vt , the model is expressed as:

Vt = E[1 − exp(−Bt2)],

where E is the total lifetime fault rate expressed in
faults KNCSL; t is the fault discovery index (“1”
means requirements analysis, “2” means software
design, “3” means implementation, “4” means unit
test, “5” means software integration, “6” means
system test, and “7” means acceptance test); and
B = 1/2t2

p , where tp is the fault discovery phase
constant, the peak of the continuous Rayleigh curve
fit to the discrete failure data. This is the point
at which 39% of faults have been discovered. For
example, tp = 2.64 means the peak happens around
2/3 of the way through the design phase and the
implementation phase and is closer to the latter.

As data become available B and E can be esti-
mated. These quantities can also be used to estimate
the number of remaining faults at stage t by multiply-
ing E exp(−Bt2) by the number of source line state-
ments at that point. Note that since the number of data
points available to fit a Rayleigh curve is very limited
(at most seven of them), the prediction for the number
of faults in a future phase could be very rough.

Rome Laboratory Work

The Air Force’s Rome Laboratory [22] model obtains
predictions of initial fault density upon testing by:

d0 = A × D × (SA × ST × SQ)

× (SL × SS × SM × SU × SX × SR),

where d0 is the initial fault density and the other fac-
tors are measures of software characteristics, which
can be classified into four categories:

1. Application type (e.g. real-time control systems,
scientific, information management), denoted
by A.

2. Development environment (characterized by
development methodology and available tools),
denoted by D.

3. Requirements and design representation metrics,
including.
SA for anomaly management
ST for traceability
SQ for incorporation of quality review results

into the software.
4. Software implementation metrics, including:

SL for language type (assembly, high-order,
etc.)

SS for program size
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SM for modularity
SU for extent of reuse
SX for complexity
SR for incorporation of standards review results

into the software.

Note that A takes a baseline fault density value
while all other factors are modifiers (numerical values
close to 1). Rome Laboratory obtained the estimates
of these values for each level based on an empirical
study over 59 projects.

Once the initial fault density has been found, a
prediction of the initial failure rate is made as

l0 = F × K × d0 × KNCSL.

The number of inherent faults is d0 × KNCLS;
F is the linear execution frequency of the program,
which is the average machine instruction rate divided
by the number of object instructions in the program;
and K is the fault expose ratio, the expected number
of failures per execution per fault. Based on historical
data K is between 1.4 × 10−7 and 10.6 × 10−7.

Testing and Operational Stage Models

Software reliability estimation determines current
software reliability by applying statistical inference
techniques to failure data obtained during system test
or during system operation. Its main purpose is to
assess the current reliability. Since reliability tends
to improve during the software testing and operation
periods, the models are also called reliability growth
models. Most current software reliability models
fall into this category. Details of these models can
be found in [15], in which a number of the best
current software reliability tools that implement these
models are also included. Other surveys appear
in [20] and [27].

Using Reliability Models

The success of a model is often judged by how well
it fits a curve µ(t) to the observed “number of faults
vs. time” function. On general grounds, this may have
little to do with how useful the model is in predicting
future faults in the present system (a better fit can
mean worse prediction), or future experience with
another system, unless we can establish statistical
relationships between measurable attributes of the

system and estimated parameters of the fitted models
(refer to the section on Rome Laboratory work for
such an effort).

Different sets of assumptions can lead to equiv-
alent models; for example the assumption that for
each fault the time-to-detection is a random variable
with a Pareto distribution, these random variables
being independent, is equivalent to assuming that
each fault has an exponential lifetime, with these
lifetimes being independent, with the rates for the dif-
ferent faults being distributed according to a gamma
distribution (this is Littlewood’s [13] model). A sin-
gle experience cannot distinguish between a model
that assumes a fixed but unknown number of faults
and a model that assumes this number is random.
Generally, little is known about how well the various
models can be distinguished.

Assumptions

Most of the published models are based on similar
assumptions. These commonly include the following:

1. The system being tested remains essentially
unchanged throughout testing, except for the
removal of faults as they are found. Some models
allow for the possibility that faults are not cor-
rected perfectly. Miller [16] assumes that if faults
are not removed as they are found, then each fault
causes failures according to a stationary Poisson
process; these processes are independent of one
another and may have different rates. By spec-
ifying the rates, many of the models mentioned
below can be obtained.

2. Removing a fault does not affect the chance that
a different fault will be found.

3. “Time” is measured in such a way that test-
ing effort is constant. Musa [18] reports that
execution time (processor time) is the most suc-
cessful way to measure time. Others prefer time
measured as effort in staff hours [5].

4. The model is Markovian, i.e. at any time the
future evolution of the testing process depends
only on the present state (the current time,
the number of faults found and remaining, and
the overall parameters of the model), and not
on details of the past history of the testing
process. In some models a stronger property
holds, namely that the future depends only on the
current state and the parameters, and not on the
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current time. We call this the “strong Markov”
property (see Markov Processes).

5. All faults are of equal importance (contribute
equally to the failure rate).

6. At the start of testing, there is some finite
total number of faults, which may be fixed
(known or unknown) or random; if random,
their distribution may be known or of known
form with unknown parameters. Alternatively,
the “number of faults” is not assumed finite,
so that if testing continues indefinitely, an ever-
increasing number of faults will be found.

7. Between failures, the hazard rate follows a
known functional form; this is often taken to be
simply a constant.

Fixed-Shape Models

In binomial models the total number of faults is
some number N ; the number found by time t has
a binomial distribution with mean µ(t) = NF(t),
where F(t) is the probability of a particular fault
being found by time t . The number of faults found in
any interval of time (including the interval (t, ∞)) is
also binomial. Letting N be Poisson (with some mean
ν) gives the related Poisson model; now the number
of faults found in any interval is Poisson, and for
disjoint intervals these numbers are independent. The
hazard rate at time t is NF ′(t)/(1 − F(t)). These
models are Markovian but not strongly Markovian,
except when F is exponential; this case was studied
in [7, 10, 17, 18, 24], and [25], and for F a Weibull
distribution in [1] and [23]; In [29] F was made
a gamma distribution; and Littlewood’s model [13]
is equivalent to assuming F to be Pareto. In [19]
the hazard rate was assumed to be an inverse linear
function of time; for this ‘logarithmic Poisson’ model
the total number of failures is infinite.

Strongly Markov Models

These can be obtained by specifying how the haz-
ard rate of the failure process depends on the current
state. Moranda [17] assumed that the hazard rate is
constant between failures, and decreases geometri-
cally at each failure. Littlewood & Verrall [14] pro-
posed a class of models in which, after the ith fault is
found, the hazard rate becomes Gi/ξ(i), where ξ(i)

is some simple function (typically linear or quadratic)

and Gi is a random variable (independent for differ-
ent i) with a gamma distribution. Models of this class
were studied in [11].

Reliability Growth Modeling with
Covariates

So far we have discussed a number of different
kinds of reliability models of varying degrees of
plausibility, including phase-based models depending
upon a Rayleigh curve, growth models like the
Goel–Okumoto model, etc. The growth models take
as input either failure time or failure count data, and
fit a stochastic process model to reflect reliability
growth. The differences between the models lie
principally in assumptions made on the underlying
stochastic process generating the data.

However, most existing models assume that there
are no explanatory variables available. When the
models are used to evaluate a testing process, this
assumption is assuredly simplistic for all but small
systems involving short development and life cycles.
For large systems (e.g. greater than 100 KNCSL)
there are variables, other than time, which are very
relevant. For example, it is typically assumed that
the number of faults (found and unfound) in a
system under test remains stable during testing. This
implies that the code remains frozen during testing.
However, this is rarely the case for large systems
since aggressive delivery cycles force the final phases
of development to overlap with the initial stages of
system test. Thus, the size of code, and consequently
the number of faults, in a large system can vary
widely during testing. If these changes in code
size are not considered as a covariate, one is, at
best, likely to have an increase in variability and
a loss in predictive performance, and, at worst, a
poor fitting model with unstable parameter estimates.
Dalal & McIntosh [5] describe a general approach
for incorporating covariates. They also report a
case study dealing with reliability modeling during
product testing when code is changing.

When to Stop Testing Software?

Dynamic reliability growth models can be used to
make decisions related to when to stop testing. Soft-
ware testing is a necessary but expensive process,
consuming one-third to one-half the cost of a typical
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development project. Testing a large software system
costs thousands of dollars per day. Overzealous test-
ing can lead to a product that is overpriced and late
to market, while fixing a fault in a released system is
usually an order of magnitude more expensive than
fixing the fault in the testing laboratory. The ques-
tion of how much to test is therefore an important
economic question. We discuss an economic formu-
lation of the “when to stop testing” issue as proposed
in [2, 3]. Other formulations have also been pro-
posed [4, 26].

Like many other reliability models, Dalal & Mal-
lows’ stochastic model assumes that there are N

(unknown) faults in the software, and the times to
find faults are observable and are independent, iden-
tically distributed (iid) exponential with rate m. Their
economic model defines the cost of testing at time
t to be f t − cK(t), where K(t) is the number of
faults observed to time t and f is the cost of oper-
ating the testing laboratory per unit time. The con-
stant c is the net cost of fixing a fault after rather
than before release. Under somewhat more general
assumptions, Dalal & Mallows [2] found the optimal
stopping rule for large N . It is very nearly: stop as
soon as f (emt − 1)/(mc) ≥ K(t). Besides the eco-
nomic guarantee, this rule gives a guarantee on the
number of remaining faults, namely that this number
has a Poisson distribution with mean f/(mc). Thus,
instead of determining the ratio f/c from economic
considerations, we can choose it so that there are
probabilistic guarantees on the number of remaining
faults. Some practitioners may find that this proba-
bilistic guarantee on the number of remaining faults
is more relevant in their application; see [4] for a
more detailed discussion. Finally, by using reason-
ing similar to that used in deriving (4.5) of [3], it
can be shown that the current estimate of the addi-
tional time required for testing, ∆t , is given by:
(1/m) log cmK(t)/[f (emt − 1)]; for applications of
this, see [3].

Discussions and Conclusions

Software reliability modeling and measurement have
attracted a tremendous amount of attention recently in
various industries concerning the quality of software.
Many reliability models have been proposed, many
success stories reported, several conferences and
forums formed, and much project experience shared.

Here we offer some caution to users regarding the
application of software reliability models.

In fitting any model to a given data set, first one
must bear in mind a given model’s assumptions.
For example, if a model assumes a fixed number
of software faults will be removed within a limited
period of time, but in the observed process the
number of faults is not fixed (e.g. new faults are
added owing to imperfect fault removal), then one
should use another model which does not make this
assumption.

A second model limitation and implementation
issue concerns future predictions. If the software
is being operated in a manner different from the
way it is tested (e.g. new capabilities are being
exercised that were not tested before), the failure
history of the past will not reflect these changes, and
poor predictions may result. Developing operational
profiles, as proposed in [20], is very important if one
wants to predict accurately future reliability in the
user’s environment.

Another issue relates to the software development
environment. Most models are primarily applicable
from testing onward: the software is assumed to have
matured to the point that extensive changes are not
being made. These models cannot have a credible
performance when the software is changing and churn
of software code is observed during testing. In this
case the techniques described in this article should be
used to handle the dynamic testing situation.

Finally, software reliability models cannot make
an impact if they are not tied to software testing and
operational costs to determine the optimal time to
stop testing. We have described a relevant economic
model in this entry.
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Software, Biostatistical

Biostatisticians, and applied researchers using statis-
tics, started to use statistical computer packages (by
which I mean pre-written and compiled instructions
to the computer for performing some form of sta-
tistical analysis) for data analysis during the 1950s.
Almost immediately changes occurred in what data
were analyzed and in how they were analyzed.
Changes in computer hardware have brought changes
in the type and quantity of software available. The
advent of microcomputers in the late 1970s and early
1980s increased the rate of change and the amount
of new software packages. There are currently well
over 1000 statistical software packages available on
a range of computer hardware platforms.

A database of citations to published reviews of
statistical software is available [8]. A good review
should tell potential users what the package does, how
well it does it, how easy the package is to learn and to
use, and how flexible the package is. Also available
is information on how certain extendable packages
make both vendor-written and user-written extensions
available to users; information about the cost, and
example contributions, have been presented in the
“Editor’s notes” of the Statistical Computing Section
of The American Statistician (see, for example, [8]).

Some Historical Notes

The 1950s saw the first occurrence of statistical soft-
ware, usually specialized single purpose programs
that would run on one type of machine only. Some
of these were written by users, but hardware ven-
dors were the first important source (for example,
SSP from IBM). The appearance of FORTRAN in the
late 1950s saw the first real surge of software and the
first occurrence, to my knowledge, of generally useful
software not written by a hardware vendor; this was
“BIMED”, later called BMD, then BMDP, which was
started at the University of California at Los Angeles
about 1960. By the mid-1960s several other packages
had appeared, including PSTAT, SPSS, and SAS in
the US and Genstat from England and Australia. All
of these packages still exist. A number of other pack-
ages also appeared during the 1960s (e.g. OSIRIS,
Datatext), but most of these, as far as I know, are no
longer available.

These packages were neither well integrated nor
comprehensive in coverage by the standards of today.
They often used unacceptable algorithms or were
prone to coding mistakes which gave wrong, or inac-
curate, answers. (For example, Longley [17], using a
multicollinear data set, showed problems in a num-
ber of packages.) However, prior to the availability
of packages such as these, days could be spent, using
a mechanical calculator or pencil and paper, to esti-
mate, say, one regression with two covariates on a
relatively small data set.

The late 1960s and early 1970s not only saw the
appearance of additional software packages, some
highly specialized (e.g. just for sample-size calcula-
tions) rather than general purpose, but also witnessed
the setting up of committees by statistical associations
to work on evaluating and designing software: GLIM
originated under the auspices of a Royal Statistical
Society (RSS) Committee; the American Statistical
Association (ASA) set up a Committee on Statisti-
cal Program Packages in 1973 to help in evaluating
software [3, 4]. The RSS committee, now called the
“GLIM Working Party” still exists, as does the soft-
ware, and the RSS receives a royalty on each version
of GLIM sold. The ASA, however, no longer has any
such committee.

A Categorization Scheme for Biostatistical
Software

The range of software currently available makes any
categorization scheme somewhat problematic. The
categorization presented here is limited to one dimen-
sion: the type of user to whom the vendor expects to
sell (and is further limited to software aimed at pro-
fessionals); a broader categorization scheme can be
found in [9]. It is impossible to include all existing
packages. I primarily included packages well known
to me; within each category the packages are listed
alphabetically. Owing to space limitations, only con-
tact information and a brief overview of the package
are given. Contact information is for the headquar-
ters of the company; many companies have sales and
support offices in other countries.

General Purpose, Useful for Biostatistics

1. Integrated packages, including
(a) BMDP, purchase via Statistical Solutions, 8

South bank, Crosse’s green, Cork, Ireland;
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+353 21 4319629; SPSS Inc., 444 N. Michi-
gan Ave., Chicago, IL 60611, USA; (312)
329-4000; its original design was aimed
squarely at biostatistical goals; it is avail-
able for several computer platforms (DOS,
UNIX, mainframes).

(b) Data Desk, Data Description, Inc., 840 Han-
shaw road, 2nd floor, Ithaca, NY 14850; it
is available on both Macintosh and Win-
dows platforms.

(c) Genstat, Numerical Algorithms Group, Ltd,
Wilkinson House, Jordan Hill Road, Oxford
OX2 8DR, UK; (+44) 1865-511245; runs
under Windows and several workstation
operating systems, including UNIX, VMS
and SunOS.

(d) GLIM, Numerical Algorithms Group, Ltd,
Wilkinson House, Jordan Hill Road, Oxford
OX2 8DR, UK; (+44) 1865-511245; runs
under DOS and several workstation operat-
ing systems (e.g. UNIX, VMS, SunOS).

(e) JMP, SAS Institute, Inc., SAS Campus
Drive, Cary, NC 27513, USA; (919) 677-
8000; it is available for both the Macintosh
and Windows platforms.

(f) Minitab, Minitab, Inc., 3081 Enterprise
Drive, State College, PA 16801, USA;
(814) 238-3280; has been widely used in
educational environments; it is available
for several computer platforms (Macintosh,
Windows, UNIX and mainframes).

(g) NCSS, 329 North 1000 East, Kaysville, UT
84037, USA; (801) 546-0445; runs under
Windows.

(h) SAS, SAS Institute, Inc., SAS Campus
Drive, Cary, NC 27513, USA; (919) 677-
8000; runs under several platforms (Win-
dows, UNIX, mainframes).

(i) SPSS, SPSS Inc., 444 N. Michigan Ave.,
Chicago, IL 60611, USA; (312) 329-4000;
originally designed for use by social scien-
tists; runs under several platforms (Macin-
tosh, Windows, UNIX, mainframes).

(j) Stata, Stata Corp., 702 University Drive
East, College Station, TX 77840, USA;
(800) 782-8272; runs under several plat-
forms (Macintosh, Windows, UNIX).

(k) Statistica, Statsoft, Inc., 2325 East 13th St.,
Tulsa, OK 74104, USA; (918) 749-1119;

runs under Macintosh and Windows oper-
ating systems.

(l) Systat, Systat Software. Inc., 501 Suite
“C”, Point Richmond Tech Center, Canal
Blvd., Richmond, CA 94804; SPSS Inc.,
444 N. Michigan Ave., Chicago, IL 60611,
USA; (312) 329-4000; runs under Macin-
tosh, Windows and UNIX operating sys-
tems.

2. Packages based on programming languages;
many of these, as well as at least some of
the extensible packages mentioned elsewhere,
can use subroutine libraries (see Numerical
Analysis):
(a) Gauss, Aptech Systems, Inc., 23804 SE

Kent-Kangley Road, Maple Valley, WA
98038, USA, (425) 432-7855; runs under
Windows and UNIX; contains numerous
statistical routines; there are also several
“packages” (sets of Gauss routines) written
in Gauss and relevant to biostatistical users.

(b) Matlab, The Mathworks, Inc., 3 Apple Hill
Drive, Natick, MA 01760, USA; (508) 647-
7000; runs under Windows, UNIX; although
most early routines were aimed at engineers,
there are now a sizable number of statistical
routines.

(c) R, a public domain near-clone of S-Plus;
this can be found on Statlib (www address:
http://lib.stat.cmu.edu/).

(d) SC, Mole Software, 34 Greenville Road,
Bloomfield, Belfast BT5 5EP, N. Ireland;
(+44) (0) 1232 282654; runs under DOS.

(e) Insightful Corporation, StatSci Division of
MathSoft, 1700 Westlake Avenue North,
Suite 500, Seattle, WA 98109, USA, (800)
569-0123; based on the AT & T product
“S”; S-Plus runs under Windows and UNIX;
many new forms of analysis first appear as S
(or S-Plus) programs (see S-PLUS and S).

(f) XLISP-STAT, available for free by anony-
mous ftp from umnstat.stat.umn.edu; there
are versions for the Macintosh, Unix, and
Microsoft Windows; there are at least four
research groups that have written packages
based on XLISP-STAT; an introduction to
this package can be found in [22, 23]; intro-
ductions to three of the packages can be
found in [21], [25], and [26].
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Aimed Specifically at Biostatistical Users

1. General purpose:
(a) EAST, CyTel Software Corp., 675 Mas-

sachusetts Avenue, Cambridge, MA 02139,
USA: (617) 661-2011; for design of sequen-
tial trials; runs under DOS.

(b) Epicure, HiroSoft International Corp., 1463
E. Republican Ave., Suite 103, Seattle, WA
98112, USA, (206) 328-5301; runs under
DOS and UNIX.

(c) EpiInfo, originated at the US Centers for
Disease Control (CDC) and since then the
result of collaboration between the CDC and
the World Health Organization; it is avail-
able for free on the Internet (http://www.
cdc.gov/epiinfo); can also be pur-
chased with a printed manual of over 500
pages, from USD, Inc., 2075-A West Park
Place, Stone Mountain, GA 30087, USA,
(770) 469-4098; runs under DOS.

(d) Epilog Plus, Epicenter Software, P.O.
Box 90073, Pasadena, CA 91109, USA;
(626) 304-9487; runs under Windows.

(e) True Epistat, Epistat Services, 2011 Cap
Rock Circle, Richardson, TX 75080, USA;
(214) 680-1376; runs under DOS.

2. Special purpose:
(a) EAST, CyTel Software Corp., 675 Massa-

chusetts Avenue, Cambridge, MA 02139,
USA; (617) 661-2011; for design of sequen-
tial trials; runs under DOS.

(b) PEST, The MPS Research Unit, The Uni-
versity of Reading, Earley Gate, Reading
RG6 6FN, UK; for design and analysis of
sequential trials; runs under DOS.

Special Purpose Software that is Often Relevant to
Biostatisticians

1. Randomization software:
(a) RT, B.F.J. Manly, The Centre for Applica-

tions of Statistics and Mathematics, Uni-
versity of Otago, PO Box 56, Dunedin,
New Zealand; 64-3-479-7774; randomiza-
tion procedures for a number of parametric
procedures, including anova, linear regres-
sion, spatial data, time series; runs on DOS.

(b) StatXact, LogXact, CyTel Software Corp.,
675 Massachusetts Avenue, Cambridge,

MA 02139, USA; (617) 661-2011; StatXact
includes randomization versions of a
large number of nonparametric analyses;
LogXact performs exact logistic regression;
each runs under Windows.

(c) Testimate, idv-Datenanalyse und Versuchs-
planung, Wessobrunner Strasse 6, D-82131
Gauting/München, Germany; 089/8 50 80
01; includes randomization versions of a
large number of nonparametric analyses;

2. Software for estimating sample sizes when
designing studies. The following web site has
information on more than two dozen such soft-
ware packages: http://www.interchg.ubc.
ca/cacb/ power. The following have specific
biostatistical orientations:
(a) EAST, CyTel Software Corp., 675 Mas-

sachusetts Avenue, Cambridge, MA 02139,
USA: (617) 661-2011; for design of sequen-
tial trials; runs under DOS.

(b) N and NSURV, idv-Datenanalyse und Ver-
suchsplanung, Wessobrunner Strasse 6, D-
82131 Gauting/München, Germany; 089/8
50 80 01; runs under DOS.

(c) PASS, 329 North 1000 East, Kaysville, UT
84037, USA; (801) 546-0445; runs under
Windows.

3. Software for correlated data, including longitudi-
nal studies:
(a) standard software: several of the packages

included elsewhere in this list, including
BMDP, LIMDEP SAS, S-Plus and Stata,
include special routines for this type of
analysis.

(b) software for analyzing surveys; only one
package above has adequate routines for
dealing with weighted survey data: Stata;
there are specialized packages, also:
(i) SUDAAN, Research Triangle Insti-

tute, 3040 Cornwallis Road, P.O.
Box 12194, Research Triangle Park,
NC 27709, USA; (919) 541-6602;
runs under Windows, UNIX and main-
frames;

(ii) WESVAR, Westat, Inc., 1650 Research
Blvd., Rockville, MD 20850; (800)
westat2, extension 2006.

(c) software for hierarchical models:
(i) HLM, Scientific Software Interna-

tional, 7383 N Lincoln Ave., Suite
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100, Lincolnwood, IL 60712, (800)
247-6113; runs under Windows or
DOS;

(ii) MLWin, Centre for Multilevel Mod-
eling Project, Institute of Educa-
tion, University of London, 20 Bed-
ford Way, London WC1H 0AL, UK;
+44(0)207 612 6688; runs under Win-
dows.

4. Software from other disciplines: economet-
ric software such as LIMDEP; Economet-
ric Software, Inc., 15 Gloria Place, Plain-
view, NY 11803, USA; (516) 938-5254;
runs under DOS. Many of its routines are
of the same type as biostatisticians use and
it has some unique features, e.g. the survival
analysis routines include left-truncated data
and “cure” models.

5. Software for a specific form of analysis:
(a) Survival; see [10] and [12].
(b) Spatial; some of the above packages,

especially Epilog Plus, Genstat, RT
and S-Plus have some routines; there
are some very specialized packages but
they tend to be oriented to geostatistics
and use very different jargon.

(c) Circular; Oriana, Kovach Computing
Services, 85 Nant-y-Felin, Pentraeth,
Isle of Anglesey LL75 8UY, Wales,
UK; (+44) (0) 1248-450414; specif-
ically oriented to analysis of data in
degrees (e.g. angular data such as
might be used in a study of spinal
injuries) or time (used in health ser-
vices research); runs under Windows;
the only other software I know of are
some user-written routines in Stata.

6. Bayesian software; while there are a
number of Bayesian software packages,
most have never been reviewed anywhere;
overviews appear in [5], [6], and [20].
Newer packages have started to appear,
including
(a) BUGS; World Wide Web address:

http://www.mrcbsu.cam.ac.uk
/bugs; versions for Windows and
UNIX; “carries out Bayesian inference
on complex statistical problems for
which there is no exact analytic solu-
tion”.

(b) B/D: World Wide Web address: http:
//fourier.dur.ac.uk:8000
/stats/bd; runs under Windows; “an
interactive programming language
which allows complete a priori and
diagnostic analyses of Bayesian linear
statistical problems”.

Some Assessment Criteria

The following issues are of particular importance in
assessing any statistical software package, regardless
of whether it is specifically aimed at biostatistical
users: the quality of the manual, the ease of learning
and the ease of use of the package, and the accuracy
of its computations.

Although some vendors would have purchasers
believe that their package is usable without a manual,
there are reasons for users to examine the manual
carefully. Information in the manual should include:

1. Information on what is available (though each
user must decide whether what is available is
what is wanted, and, more importantly, whether
it works in the way wanted and whether all the
options desired are present).

2. At least one index; if it there is at least one, how
good is it?

3. Examples of using the software; are the examples
complete? That is to say, do the examples only
display how the new commands (menu choices,
etc.) work or is everything shown that one would
actually need to complete an analysis?

4. Information on other sources of help, including
courses, books, web sites, etc.

5. Information on how to interface this package
with the operating system and/or with other types
of software packages (such as word processing
software).

6. Technical information relating to the algorithm
used and how the vendor tested the software;
there should be citations to the professional liter-
ature as well. Note that, as yet, very few vendors
actually provide this (for a discussion in the con-
text of a comparative review, see [2]).

7. A list, and explanation, of error messages; these
should be clear to someone who does not have
a PhD in computer science and should also be
given at the same level as the statistical text.
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Manuals can also be used to discover whether the
package appears to be aimed at the right type of user;
for this, you should examine the manual(s) with the
following in mind:

1. What type of language is used in describing and
explaining the package? Jargon is rampant and
differs dramatically across different disciplines.

2. What level of statistical language is used (e.g.
beginner or professional)?

3. What types of graphical output are available and
how integrated are the graphics and the statistical
routines?

4. What types of checks and diagnostic informa-
tion are available to help decide whether there
are problems with the results of an estimation
procedure?

5. How flexible is the software with respect to:

(a) nonstandard problems, e.g. are there choices of
algorithms for standard routines such as linear
regression?

(b) output; can the user affect the output of the
package to ensure that it is in the most usable
format for that particular use?

For a discussion of some criteria useful in assessing
manuals, see [1], [18], the accompanying discussion
of these articles, and the rejoinders by the authors.

A criterion often mentioned is ease of learning
of the package. My experience, however, has been
that this is really only important for people who will
be infrequent users of the software, as these people
will essentially be learning the package over again
each time they use it. However, for others, the cost
of learning is easily overshadowed by ease of use
considerations, especially since, for even the hardest-
to-learn packages, it rarely takes more than a few
hours to learn at least enough to obtain some output.

Ease of use is sometimes, mistakenly, listed with
ease of learning as a criterion. It is however both
different and much more important. It is also, gen-
erally, harder to assess since the determination of
whether something is easy to use is heavily depen-
dent on both the level of the user and what the user
is trying to do, as well as on the structure of the
program. Program structure affects ease of use in
many ways; a simple example relates to the differ-
ence between typing a command and clicking on a
menu item. How this affects a given user depends
on whether the menu defaults are what is primarily

wanted and how easy it is to choose different options.
Of course, at the other extreme, some users want so
much of what they choose to do to be dependent
on the situation, that no menu-driven program could
possibly be considered “easy to use”. Furthermore,
there are many issues that vendors have never con-
sidered and these cannot, of course, be present in
a menu. Whether they are available in a command
system depends on the amount of thought the ven-
dor put into making the package flexible (a detailed
example is provided in [9]). Ease of use can also be
aided by the availability of books about the pack-
ages, user groups, including e-mail lists and Usenet
news groups, vendor newsletters, etc. Integration and
ease of recall of various parts of the numerical and
graphical output, and integration of the packages to
the operating system and to other software (e.g. word
processors), are also important here.

Earlier, I mentioned the issue of whether the lan-
guage used in the manual was appropriate to the
statistical expertise of the user. A related issue has
to do with the ease with which one can assess one’s
analytic output. This is affected by numerous fac-
tors, including the quality of the error messages,
the presence of statistics that can be used to assess
assumptions underlying the technique used, and the
quality and integration with the statistics of the graph-
ics.

The final criterion to be discussed here is the
quality of the numerical algorithms, which affects
not only the accuracy of the result, but whether
the package provides an answer, and, if it does, the
efficiency with which it arrives at the answer.

1. Try the examples in the manual (the vendor
should supply all example data sets on the disk
with the program). If the examples cannot be
reproduced, then immediately contact the vendor.
While this appears to be a very simple test that
no vendor should ever fail, some packages do
fail this test.

2. Check reviews, especially those by reputable
statisticians (e.g. reviews in The American Statis-
tician or in Applied Statistics) (unfortunately,
this latter journal is dropping its review section).
A good review will supply much more informa-
tion than just that related to accuracy; in partic-
ular, information should be included on the level
of user targeted and on the ease of learning and
using the package. Furthermore, I believe that
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comparative reviews are much more useful than
reviews of individual packages.

3. Look in the literature for test data sets. Many
“tests” are so well known that no vendor fails
them anymore (this is true, for example, of
the Longley [17] data). Furthermore, some tests
are not relevant to the work that any particular
user does. However, there are valuable bench-
marks and tests in the literature (see for exam-
ple, [7], [14], [15], [19], and [24]) that will help
users and vendors test (a) whether the algorithms
are appropriate, (b) what happens at the bound-
aries of either allowed data or standard language,
and (c) the quality of the algorithms being used.

4. Build your own library of test data sets that
are important in your own work and for which
problems have previously been found. Try this
library on every new package, and every upgrade
received.

5. Examine the “validation” or “certification” sec-
tion of the documentation, if it exists; unfortu-
nately, most vendors do not yet provide such a
section. If such a section exists, look for informa-
tion regarding the algorithms used and the range
and type of issues and of data used to test the
software. The documentation should also discuss
carefully the issue of how the vendor decided that
the test result was acceptable. Also, note whether
the vendor says that all tests are re-run after mak-
ing any change to the software; this “regression
testing” is necessary since fixing a bug in soft-
ware often introduces one or more new bugs and
this possibility must be checked.

6. Finally, run the analysis in at least one other soft-
ware package and carefully compare the results.
For this final check, the importance of having
algorithm information in the manual is high-
lighted because for many analyses different algo-
rithms should produce different results. This is
especially true in many nonparametric analyses
where the treatment of ties greatly affects the
results.

Where to Go for More Information

There are no good general sources of information
on what software is available. Eventually, there will
probably be a source on the Internet which can
be added to frequently. The number of software

packages, particularly for educational uses, is grow-
ing rapidly. Some information, of course, is already
available: numerous journals print reviews and a
database of citations to these reviews is available [8];
numerous data sets useful for testing exist at statlib
(at Carnegie Mellon University; WWW address:
http://lib.stat.cmu.edu/) and other places on
the internet. A “Statistical Software Guide” is pro-
duced approximately every two-three years. The most
recent appearance of this guide, in print, was [16],
but information is currently being gathered for an
update report. However, none of this information is
either well organized or complete. There is one com-
mercial source of information, SciTech International,
which publishes Software for Science; however, even
their list (almost 2000 products, but including non-
analysis packages such as word-processing software)
is incomplete; they are especially weak, obviously,
regarding shareware and freeware, which is often
specialized and is often available on the Internet.
Many of the vendors mentioned above have Internet
World Wide Web sites; the best source for finding
these in general is via a competitor: Stata, at its site
(http://www.stata.com) maintains links to the
sites of other vendors, including several suppliers of
free software.

The Future – Maybe

Statistical software has been changing rapidly in
recent years. The main changes, as of 1996, relate
to (a) the existence of numerous specialized software
packages; (b) the movement, slowly, of these spe-
cialized routines into general purpose packages; and
(c) a heavy emphasis on graphical analysis, especially
new types of graphics and new ways of integrating
graphics into standard analysis.

While these are valuable, necessary, and will con-
tinue, there are two other changes that would be very
valuable to the profession. The first relates to a better
integration of what we already know about statisti-
cal assumptions with our analysis. For example, we
know that the two-sample t test is somewhat affected
by different variances (the amount depending on the
ratio of the groups’ sample sizes); many would find
it helpful if, along with requested result, the software
gave some information about the validity of this, and
other, assumptions, for the data used. This might also
help guard against the “misuse” of statistical software
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by those who are not well trained in statistics. This
issue has been discussed in numerous articles dating
back to at least the 1970s [11]. Though noting a num-
ber of potential problems, Goodnight clearly favored
this type of “offensive validity checking”. Haux [13]
provides a number of citations on this issue and then
gives a detailed example for the Mann–Whitney test
and notes that BMDP, SAS and SPSS are each unsat-
isfactory. Note that the software should not stop the
user from doing an analysis. Rather, a user should
just want be provided with some additional informa-
tion without making a number of other requests to the
software (e.g. a separate request for equal variances,
for symmetry, for heterogeneity, etc.).

A large part of any project relates to data man-
agement and data manipulation. Much, and in many
projects all, of this is done with the same statistical
software used for analysis. However, no current pro-
gram keeps a reversible history of what the user does
to the data and many do not even keep any history
(or log or journal) of what was done. The unfortunate
result is that often even the analyst cannot reproduce
certain results. Thus, another desirable change is the
implementation of some form of reversible history
of data management and data manipulation so that
any particular state of the data could be recreated.
Some type of coding scheme should be attached to
both this history and to each analysis so that for any
given output it would be clear which state of the
data was used in its production. The current reliance
on ad hoc, individual, schemes is inefficient, ineffec-
tive, and unnecessary. Version control software, as
used in software development, database management
and even some word-processing software should be
generalizable to statistical software.
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Historically, many specialized intellectual domains
have had data analysis software specifically designed
for that domain, including such areas as eco-
nomics, geology, chemistry and epidemiology. Other
domains, including sociology, astronomy and polit-
ical science, have seen little of this specialization.
Furthermore, in those areas, such as epidemiology,
that have had numerous specialized packages, some
of the packages have fallen by the wayside while
others have grown and still others have appeared. In
some areas, such as economics, the major specialized
packages, for example, Limdep, have become more
like standard general-purpose packages. However,
this has generally not happened with the epidemio-
logic packages. Finally, at least one general-purpose
package, Stata, has incorporated a number of epi-
demiologic analytic routines, jargon and all.

In this article I review some of the specialized epi-
demiologic software, whether related to the design of
studies or to their analysis. I also discuss some of the
advantages and disadvantages of having specialized
software for a discipline. Both issues are clarified by
the presence of a general-purpose analytic package
that contains a set of epidemiologic analysis rou-
tines. Other general-purpose packages will generally
be ignored (see Software, Biostatistical).

Why Epidemiologic Software?

To write about epidemiologic software, one must
locate it, one must define it (or at least its boundaries),
and one must have at least some idea regarding what
distinguishes epidemiologic software from other data
analysis software. While I have undoubtedly missed
some small epidemiologic software packages, I hope
that I have included all major packages and at least a
representative selection of the smaller packages. The
following, in alphabetic order, is a list of the packages
I will be emphasizing in this article:

• Cluster, version 3.1 (free from the Centers for
Disease Control (CDC)): this DOS-based package
has 12 different techniques to help in disease
clustering. It is fairly straightforward to use, but
is certainly not elegant.

• Egret for Windows, version 1 (commercial;
other packages from the same company include

StatXact and LogXact): this package is pri-
marily for fairly specialized modeling of epidemi-
ologic and biomedical data. It includes additive
and multiplicative versions of several models
(e.g. logistic and Poisson) as well as random-
effects logistic regression. It is very easy to use,
much easier than when it was a DOS package.
This is its first appearance as a Windows pack-
age. The same vendor sells Egret SIZ, a DOS
package for determining sample size or power
for nonlinear regressions, StatXact, a package
for the exact analysis of tabular data, and includ-
ing a power module for data to be analyzed via
tables, and LogXact, a package for exact logis-
tic or Poisson regression. LogXact also contains
a Monte Carlo option for data sets for which
maximum-likelihood estimates do not converge,
but that are too large for exact analysis. Egret
SIZ is the only package of these that is not easy
to use. Furthermore, it requires the user to col-
lapse continuous predictor variables into categori-
cal variables, which can be difficult to do without
biasing one’s result (see Bias). The material in
Egret SIZ is based on Self & Mauritsen [11].

• Epicalc, version 1.02 (free): this simple Win-
dows package is just for analyzing epidemiologic
tables. It is very easy to use when you already
have summary data.

• Epicure, version 2.10 (commercial): this pack-
age is primarily for specialized modeling of epi-
demiologic and biomedical data. A wide range of
models are included. This package is DOS-based
and is fairly easy to use, but not as easy as, say,
Egret.

• EpiInfo, version 6.04, and EpiMap, version 2
(free from the CDC): EpiInfo has extensive
capabilities regarding questionnaires, data entry
and data checking, but modest analytic capacity.
Taking full advantage requires some program-
ming skill. EpiMap has extensive mapping abili-
ties and uses EpiInfo data directly. If one only
wants a little from these packages, they are easy
to use. However, using their full power requires
some work by the user.

• Epilog Windows, version 1 (commercial): this
package is easier to use as a Windows package
than it was as a DOS package. It is very modular,
which I am not a fan of, but it is also the most
complete of the specialized packages.
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• EpiMeta, version 1 (free from the CDC): rela-
tively easy to use for its quite limited purpose of
simple meta-analyses.

• PEPI, version 3.01 (free): this DOS package is
slowly being made into a Windows package.
It is comprised of a large number of separate
modules, which can make it a pain to use. This
pain is somewhat ameliorated in DOS by an
integrated menu that accesses all modules and
by a Windows help file that tells the user which
module to use. The preliminary parts of the new
Windows version go some way to solving the
problems caused by separate modules. PEPI is
primarily for use on summary data and has no
data management facilities of its own.

• Stata, version 6 (commercial; general purpose):
this large, general-purpose, Windows/Macintosh/
UNIX package is the most complete of all consid-
ered here. It is included because it has specialized
routines for epidemiologists. It is very easy to
use, even at a fairly advanced level. If the user
requires, the program is extensible and there is
a wide-ranging user community that is actively
extending this program. The Windows version
was used in writing this article.

• True Epistat, version 5.3 (commercial): this
is a DOS package and is very modular. I find
the data management facilities awkward to use,
though this version is an improvement over earlier
versions.

• Win Episcope, version 2.0 and WinEpi
Ratios, version 1.0 (free): these simple packages
are easy to use for tables when you already have
summary data.

Note that several major, general-purpose packages are
not included here as they have no specialized epi-
demiologic routines, including the Biomedical Data
Processing Program (BMDP), SAS, SPSS, S-Plus
and Systat. The last four, at least, are under active
development and are used by many epidemiologists.
Each of these has many of the elements discussed
below and/or listed in one of the two tables. How-
ever, because they do not use epidemiologic jargon, I
have not included them in this article (see Software,
Biostatistical).

As part of my preparation, I invited the producers
of each of the above packages (except for Cluster
and EpiMeta) to tell me why they thought there
should, or should not, be specialized epidemiological

software. I received responses from all except the
WinEpi series (note: the WinEpi series is aimed at
veterinary epidemiology). As one would expect, the
providers of specialized epidemiologic software pro-
vided reasons for having such specialized software,
while the people from Stata, a general-purpose
package with some specialized epidemiologic rou-
tines included, provided reasons why one would not
want specialized software. I received a total of seven
responses from different software providers; since
there was a lot of overlap in their responses, I just
summarize the major issues raised:

1. The output produced is the type of output used
by epidemiologists. Three vendors said this, with
one adding that it was desirable to exclude the
“statistical clutter” that general-purpose packages
added even when they also produced the type
of output desired by epidemiologists. This issue
seems best exemplified by tables where many
epidemiologists expect specific output (e.g. odds
ratio (OR) and a confidence interval for this
ratio). An example of the added clutter produced
by some packages might be, I suppose, statistics
such as lambda or Cramer’s V . Note, however,
some problems with this.
(a) There are cases where one should want the

additional statistics; that is, what one per-
son might call “statistical clutter” might be
desirable to other people or even to that per-
son if the person learned about that statistic.
(Lambda is an example of a proportional
reduction in the error statistic; if one uses it
in models, as epidemiologists do, might not
one also want to use it for tables?)

(b) One trend that has clearly increased over
the last 20 years is for analysts in one
area to read, and contribute to, the litera-
ture in other areas. If every discipline used
its own specialized software, this would
be a harder task. Certain choices by soft-
ware providers already make this harder; for
example, Stata, in its epidemiologic tables
routine (epitab), includes McNemar’s test
for matched case–control data. Their out-
put tables even use standard epidemio-
logic language (e.g. the rows and columns
are labeled exposed and unexposed). One
problem arises here because other disci-
plines, including various social sciences,
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call case–control studies by other names
and do not use the words “exposed” and
“unexposed”. A related issue, which ties
this to the first point above, is that Quinn
McNemar was not an epidemiologist – he
was a social psychologist, and when he
designed this test he was not using data
that were related to health in any way.
Rather, he was interested in those who
changed preferences regarding presidential
candidates according to consecutive pub-
lic opinion polls (McNemar [6]). When
general-purpose packages bend a statistic
like this, they endanger their general use
(note: Stata has another, not specifically
epidemiologic, procedure that also produces
McNemar’s test, this time without the epi-
demiologic jargon). When specialized users
refuse to acknowledge other uses, and other
users, they risk becoming dead ends.

(c) While I agree that cluttered output is
undesirable, I see no problem with soft-
ware producers giving users the option
to choose which output is to be shown.
At the extreme, asking for a table would
show only the table with no infer-
ence procedures shown unless specifi-
cally requested, and each type of infer-
ential procedure desired would have to
be specifically requested. Software that
includes macros could include example
macros showing, for example, the output
that an epidemiologist might want, while a
second macro might show the output that a
psychologist would want.

2. Ease of use, particularly via epidemiologic jar-
gon. At least four software providers mentioned
this. Several providers specifically mentioned
the desirability of this for users who were not
full-time epidemiologists. I certainly agree that
extreme ease of use, accompanied by standard
epidemiologic jargon (to the extent it exists)
makes misuse of the software less likely by these
people and is therefore a good thing. Inclusion
of this jargon in general-purpose statistical soft-
ware is, by the same token, dangerous (unless
one feels that the only possible misusers are
the epidemiologists, something I strongly doubt).
Related to this was the idea that single-purpose
packages (i.e. software that only does one type

of analysis, or that is useful with respect to a cer-
tain design issue) are generally easier to use than
are general-purpose packages. Similarly, certain
support issues are clearly part of this, including
manuals that give fully worked out epidemio-
logic examples, textbooks that use a particular
software package, and the presence of Usenet
news groups and/or e-mail list-servers related to
the package. Only the manual examples seem
to argue against general-purpose packages (since
all the others can, and do, easily coexist with
general-purpose packages) and even this can be
handled, though some ways of attempting this
may work better than others.

3. Hard-to-find statistical procedures and tests. This
was mentioned by at least five providers. An
example is disease clustering. There is no ques-
tion that in epidemiology, as in other disciplines,
specialized software packages that include useful
analytic routines not available in most general-
purpose packages are highly desirable. Some of
these might be added to an extensible general-
purpose package by a user, or by the provider,
but some are so unusual, and difficult to pro-
gram, that a specialized package might be the
only realistic alternative.

4. Epidemiology has unique demands for data entry
and for data manipulation. One provider argued
this. The examples provided (double entry and
verification, changing the ordering of categories
in a table) are not convincing since users from
many disciplines need all of these and more.

My conclusion is that there is a place, and a need,
for specialized epidemiologic software, primarily for
routines that are not included, or only rarely included,
in general-purpose statistical software packages.
However, many of the other reasons for specialized
software packages are unconvincing at best. Worse,
specialized packages that offer only “simple” routines
are dangerous. For example, use of tables without
the ability to generalize to a model allows too
much chance of misleading the researcher. Many
epidemiologic tables provide exactly the same result
that one would receive from a simple logistic
regression or Poisson regression. The general-
purpose package that provides both tables and models
allows one to test assumptions and to use covariates –
the specialized tool that only has the tables, no matter
how perfectly epidemiologic they are, is dangerous.
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Software for Designing and Implementing
Studies

Historically, the primary emphasis in software has
been on analyzing data. Specialized packages, outside
of epidemiology, exist for sample size determination
and for the assignment of subjects to groups. Some
of the epidemiologic software discussed here has the
capability of helping a researcher to design or imple-
ment a study and those capabilities are discussed
in this section. The capabilities of nonepidemiologic
specialized software and of other general-purpose
software are not discussed here. Software for determi-
nation of power, or sample size, have been reviewed
elsewhere (e.g. Goldstein [3], Thomas & Krebs [12])
(see Software, Biostatistical). Software for subject
assignment, including matching, has unfortunately
not been generally reviewed, to my knowledge.

Several of the packages included here have rou-
tines for sample size determination. For the most part,
only fairly simple situations are covered. Many statis-
ticians will use simulation for complicated studies,
but most of the specialized epidemiologic software
has no simulation ability. Table 1 shows what is
available for those packages that have any capability
for either sample size determination or for simulation.
In addition, some of the developers of Epicure have
produced a separate, and free, power program that is
unique in that it can easily be used for tests of interac-
tions. This program, “Power”, is currently included
as a module in the package “Epitome” and is being

turned into a stand-alone Windows-based program.
Note that there is little in any of the packages with
respect to calculating power and/or determining sam-
ple size for any type of regression model.

None of the specialized packages includes any
routines, or simulation capability, to allow for the
determination of sample size for research stud-
ies involving complex samples. Furthermore, only
Egret SIZ, a separate product requiring that it be
separately purchased, has extensive regression capa-
bilities and the requirement for categorizing any
continuous predictor reduces the usefulness of this
package. On the other hand, several of the special-
ized packages include the ability to calculate the
needed sample size for simple case–control or for
simple cohort studies, both of which are important
in epidemiology. On the face of it, the above table
is depressing – specialized packages should be, at
least through simulation, capable of much more than
they are. The simple studies that are currently covered
are, in my opinion, mostly useful for beginners and
students.

What other aspects of study design, particularly
of the design of epidemiologic studies, are avail-
able? There are at least three other areas in which
software can help: the design of data collection instru-
ments (e.g. questionnaires); the assignment or allo-
cation of study subjects (e.g. matching or blocked
randomization); and data editing (i.e. data checking
and correction). Unfortunately, in these aspects also,
the various packages are fairly weak. This is not,

Table 1 Type of sample size determination

Software Means Proportions Other modelsa Simulation

Egret SIZ/StatXact StatXact nonlinear reg. Egret SIZ
Epicalcb Yes Yes cc
EpiInfo Yes cc, cohort
Epilog (Power)c Yes Yes
PEPI Yes Yes OLS
Win Episcope Yes Yes cc, cohort
Stata Yes Yes rm Yes
True Epistat Yes Yes survival

aNonlinear reg. refers to Egret SIZ, which will calculate sample sizes for several types of nonlinear
regression: logistic, conditional logistic, Poisson, Cox proportional hazards. cc = case–control study,
cohort = cohort study, rm = repeated measures study, survival = comparison of two survival curves.
bMark Myatt, the provider of Epicalc, also provides some specialized packages for calculating sample
size for simple surveys and for “LQAS triage-style surveys”.
cEpicenter Software, the vendor of Epilog, also sells a program called “Power” specifically for sample
size determination. This was reviewed in Goldstein [3] and in Thomas & Krebs [12], but was not re-
reviewed for this article.
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however, to say that there is nothing available or that
what is available is weak – it is just that too little is
available, even though what is available is generally
pretty good. With respect to data collection, the EPED
module in EpiInfo can be very helpful, particularly
regarding questionnaires. When combined with the
CHECK module for data checking and verification,
EpiInfo can be very helpful to researchers. Some
other packages have provided less useful routines for
data checking including Epilog (Proc Check) and
Stata (assert, inspect, etc.). Any reasonable
analytic package will provide some ability to check
one’s data for problems through standard descriptive
statistics. Epilog’s Proc Check allows one to go a
little further by allowing user input to flag, in different
ways, any problem records as they are found. With
some programming on the part of the user, Stata’s
relevant commands can also provide additional help.

Although many authors have pointed out problems
with matching, it can still be useful in epidemiologic
studies. The biggest problem, for many, is how to find
the matches. Of the packages examined, only Epilog
(Proc Control) provides help here: for example,
caliper matching (i.e. matching within limits, such
as ±5 years of age) is fairly easy to set up and the
user can select the number of matches to select per
case. A related issue is the ability to set up blocked
randomization; PEPI, Stata and True Epistat
have routines for this.

One can easily imagine other tasks that would
be useful. For example, in longitudinal studies, soft-
ware that helped with the tracing process, either
through helping to find people via hooks to internet
databases, or that helped determine which of sev-
eral people found was the correct one, would be
very useful. Stata’s extensibility could be used here,
though it has not been. Another possibility relates
to the presence of multiple control groups – none
of the packages has anything, either on the data
management end or in analysis (except for relatively
simple tables and hypothesis tests) related to this
potentially very useful procedure.

Data Management Issues

Some data management issues (e.g. data entry and
verification) were discussed above. A few others are
mentioned here. However, because of the wide vari-
ety of possible issues, I cannot hope to cover every-
thing. I believe that there is a certain minimum that

each package (except the simplest special-purpose
analysis packages) should contain, including:

• merging files (adding new variables to the same
cases), including many-to-one merges

• appending files (adding new cases to the data set)
• recoding variables
• transformations of variables, including a wide

variety of built-in mathematical, statistical and
string functions; some, at least, should be usable
“on the fly” when estimating models (e.g.
log(y) = f (x1, x2, etc.)

• splitting files
• generating random numbers/samples
• changing files from wide format (repeated mea-

sures as part of the same case) to long format
(each measure as a separate case) and back again;
this is often necessary for different kinds of lon-
gitudinal analysis

• an extensive ability to deal with character data,
especially names, addresses and, at least to some
extent, free text

• the ability to override any automatic decisions
made by the software (e.g. one should be able
to change easily the way data, or results, are
displayed)

• date functions, both so that, e.g. calculation of
age at any given time point is easy, and so that
graphs and other output can easily be labeled in
an appropriate way

• time-series, including seasonal effects
• automatic generation of appropriate indicator

variables from a categorical variable, including
user choice of reference group when estimating
models

• easy ways to find any duplicate cases in the data
• multiple indicators for missing values (to indicate

different reasons for being missing), and correct
handling of missing values during transformations
and the generation of new variables (e.g. when
forming a new indicator variable that is coded as
1 when either x > 5 or y > 3, the new variable
should be equal to 1 if x is equal to 6 even if y

is missing)
• dealing with runs, or spells, or series of events

(particularly those that do not fit into standard
time-series formats).

None of the packages here is ideal in this respect and
most of them are pretty weak with relatively short
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lists of built-in abilities. Stata is the strongest in this
regard, even if one excludes user-added capabilities.
With the addition of user-written routines, Stata
is much stronger than any of the other packages
with respect to data management. Stata even has
the ability to add notes to the data, or to individual
variables in the data, that will be permanently saved
with the data and can be edited.

Data Analysis

The heart of any of these packages is its analytic
capabilities. Unfortunately, this is also the heart of
one of the major disputes between some statisticians
and some epidemiologists: whether to emphasize
OR or relative risk (RR). It appears that many
epidemiologists prefer measures of RR while many
statisticians prefer the OR. In fact, a major strand
of epidemiologic literature deals with the question of
when an event is rare enough so that the OR is a good
approximation of the RR! For many statisticians,
the dependence of RR on the rate in the control
group makes it a poor choice for any use. A cross-
cutting, and more meaningful, dispute is whether to
emphasize absolute or relative measures of effect. In
a sense, the answer to both issues is the inclusion
of multiple measures of effect, or at least the ability
to obtain any effect measure the user desires. For
tables, the software could offer options that the
user could pick from; for models, different effects
result naturally from different models. Thus, offering
numerous models, especially when they are closely
related, seems the obvious answer. For example,
generalized linear models (GLMs) offer, through
different choices of link functions, the ability to
obtain different measures of effect. A simple example
involves models based on the binomial distribution:
using a logit link results in logistic regression with
an OR effect; using a log link gives an RR effect,
while using an identity link gives an effect measured
in rate differences.

Another difference appears to be the dependence
of many users on tables. However, ignoring potential
confounders, or other relevant covariates, can be
dangerous, since their inclusion could mean very
different results. Again, a package that includes both
tables and models should solve this problem. If
the documentation of the package discusses which
models appropriately build on which tables, as does
Stata’s, the user is in the best possible situation.

Table 2 presents a simple checklist of various rele-
vant forms of analysis for the major packages. Those
packages that only include tables (Epicalc and Win
Episcope/WinEpi Ratios) are not included in
the table. Also, the column for EpiInfo includes
the other CDC packages (EpiMeta and Cluster).
The danger of such a table, of course, is that it
can be misleading for certain specialized issues and
packages. There is little doubt that Epicure, for
example, looks weaker than it actually is in such
a table because it has a number of unique models
that are not included but should be considered. In
particular, it is the only included package that has
models that are neither additive nor multiplicative
(see Additive Model; Multiplicative Model). Egret
also suffers in this way, though to a lesser extent.
Even Stata suffers as it is the only package with
a full GLM (though Epicure has aspects of GLM),
which I have not included in the table.

The items in Table 2 were largely selected on the
basis of three sources: Clayton & Hills [2], Oster [8],
and Rothman & Greenland [9]. The table is not com-
plete (an impossible task), but does cover most of
the regularly used analytic procedures. Note that I
have excluded descriptive statistics and epidemio-
logic tables, since all packages include these (PEPI
does, however, have one interesting unique aspect
to its tables: when the user wants kappa, a measure
of agreement, PEPI also provides bias-adjusted and
prevalence-adjusted bias-adjusted versions; see Byrt
et al. [1] and Lantz & Nebenzahl [5]) (see Kappa).
There is little difference in the way that epidemiologic
tables are handled by these packages, too little differ-
ence to matter to most users. The same is true with
respect to tabular analysis of matched case–control
data: all packages offer something, most include some
form of exact analysis and some form of stratifica-
tion. I have also left out nonparametric statistics since
this would require either a simple, misleading row on
whether there are any, or an additional table. Instead,
note that Egret, EpiInfo and PEPI have some non-
parametric techniques, while Epilog, Stata and
True Epistat have quite a lot of nonparametric
statistical routines. All of the named packages have
some exact procedures, but here I mean the more
traditional nonparametric (e.g. Mann–Whitney rank
sum, sign test) techniques.

The following are brief descriptions of those
routines that might not be obvious from their row
title.
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Table 2 Data analysis routines

Analysis Egret Epicure EpiInfo Epilog PEPI Stata True Epistat

Standardization Y Y Y Y Y Y
SMR Y Y Y Y Y
Multidimensional tables Y
Complex surveys Y Y
Disease clustering Cluster Y
Meta-analysis EpiMeta Y Y Y Y
Linear models Y Y Y Simple Y Y
Censored linear models Y Y
Logistic regression Y Y Y Y Y Y
Additive logistic regression Y Y Y
Exact logistic LogXact Y
Ordinal logistic Y Y
Polytomous logistic Y Y
Conditional logistic Y Y Y Y Y Y
Poisson regression Y Y Y Y Y
Cox models Y Y Y Y Y
Parametric survival models Y Y Y Y
Kaplan–Meier analysis Y Y Y Y Y Y
Extensive nonlinear models Y Y Y
Recursive partitioning (trees) Y
Simulations Y Y Y
Bootstrap Y
Multilevel models Y Y Y
Seasonality Y Y
Maps EpiMap Y

Note: Entries in the table, other than “Y”, refer to other packages from the same provider (counting the CDC as one provider).

• Multidimensional tables, often called loglinear
analysis: this refers to tables with three or more
variables. Note that most such tables are relatively
easy to estimate in packages with Poisson regres-
sion. Some people might expect stub-and-banner
tables here, but I have not included them since
only Stata has anything like such tables and its
version is quite limited. “Stub-and-banner” tables
can have multiple variables as the rows and/or
as the columns. They are often used when sum-
marizing the study population in one table (e.g.
showing the distribution by group and by gender,
showing the mean ages of each group, and the
mean time since exposure).

• Complex surveys: this refers to analysis of data
gathered via a nonsimple random sample (e.g.
a clustered random sample). Note that EpiInfo
can only analyze means and rates, while Stata
can also estimate a number of regression models
on these samples.

• PEPI: this provides simple, but not multiple,
linear and nonparametric regression.

• Censored linear models: the Buckley–James
model in Epilog appears to be superior to the
Tobit model in Stata (Moon [7]).

• Parametric survival models: these include, for
example, exponential or Weibull models for
survival analysis. More on various forms of
survival analysis and software can be found
in Goldstein et al. [4] (see Survival Analysis,
Overview).

• Extensive nonlinear models: with the recent inter-
est in neural networks, there has been a cor-
responding increase in statistical models with
extensive nonlinearities among the predictor vari-
ables in a model. Epilog has a neural network
routine. Stata, instead, has more statistical pro-
cedures, including generalized additive models
(GAMs), cubic splines and fractional polynomi-
als. Stata also has a more traditional nonlinear
least squares routine.

• Simulations and bootstrap: as we learn more
about the weaknesses of traditional models, and
as computers become more powerful, many
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researchers are turning to computer-intensive
methods. The row for “exact logistic regression”
is one type of computer-intensive routine, a spe-
cific use of randomization of the data. Simulation
and bootstrap are two other computer-intensive
methods. Their implementation in Stata calls on
the user to write some code for their specific use,
but supplies all the front-end and back-end and
housekeeping work so that actually doing a sim-
ulation to see the effect of errors in the predictor
variables, for example, is very little work. The
work required in Epicure is, however, consid-
erable. Egret has especially easy-to-use Monte
Carlo routines. However, the user can only use
Monte Carlo where offered in the package and
thus there is no flexibility. If it is offered and what
it simulates is what you want (e.g. a p-value or
confidence interval) then it is very easy to use;
if it is not offered, then it cannot be used. Note
that for small samples, either exact or simulated
results will usually provide more accurate results
than will use of the bootstrap.

• Multilevel models, sometime called random coef-
ficient or hierarchic models: these are relatively
limited in epidemiologic software as yet, but some
packages have at least some capabilities (e.g. ran-
dom effects logistic regression).

• Seasonality : the reference here is to epidemi-
ologic uses for, for example, the detection of
seasonal or secular trends in disease incidence (as
compared, for example, with the use of traditional
time-series techniques, which usually need more
data).

Note that those packages that have extensive regres-
sion routines (Egret, Epicure, Epilog, Stata and
True Epistat) also have extensive diagnostics for
these regressions, including goodness-of-fit statistics
and procedures. While there are minor differences in
the offered routines, I believe that any of them would
be sufficient for most users.

There are two other important analytic techniques
that I think should be included: errors-in-variables (or
misclassification) and multiple imputation. It is sur-
prising, and disturbing, that of all the epidemiologic
literature dealing with misclassification, only PEPI
and Stata have anything of relevance, and neither is
very good, though Stata’s simulation abilities can
be of great help. Multiple imputation (Rubin [10],
Vach & Blettner [13]) is of importance when there

are missing data, as, in my experience, there always
are. Stata has an impute command, but it is for
single imputation and will often give a result that
is misleadingly precise – no other package has any-
thing. I believe that these are major failures of all the
included software.

None of the packages has excellent graphics, either
analytic or publication. All could benefit from more
effort in this area. On the other hand, the analytic
graphics in most of the packages are sufficient for
everyday use by a data analyst. Many of the graphic
procedures would have been considered excellent as
recently as 10 years ago – but now they are all behind
the times. In addition, as noted above, many of these
packages are still DOS-based; many of the Windows
graphics adapters do not work well in DOS, further
impairing the value of the graphics offered by these
packages.

I have not specifically commented on importing
or exporting data as a general matter (although
a few comments are scattered above). In general,
the presence of two specialized file-format transfer
packages (DBMS/COPY and StatTransfer) makes
this issue relatively unimportant. Either of these
packages can be used for file import or export.
DBMS/COPY can also be used to summarize data
either for input into one of the summary-data-only
packages (e.g. EpiCalc or PEPI) or for making
stub-and-banner tables for inclusion in a report or
publication. Both of these programs can import
from, and export to, many other packages, including
DBMS programs (e.g. ACCESS), spreadsheets (e.g.
QuattroPro), statistical packages such as Stata,
SAS or SPSS, and even some specialized graphics
packages.

Finally, no matter how much thought a software
provider puts into the output from their data man-
agement and analysis routines, not everyone will be
happy. This presents another advantage of an exten-
sible package – users, or the provider, can provide
alternative ways to analyze the data or to present
results. While several software providers mentioned
output and reporting as one of the reasons for hav-
ing specialized epidemiologic software, the examples
they cited are unimpressive – in almost all cases
users will want to change the presentation of results
for publication purposes; in almost all cases, this
will be very difficult, requiring users to type in the
results anew. The only exception is Stata, where
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user-written routines have added important output
flexibility.

The importance of having an extensible package
is, I hope, clear, even for those who do not expect
ever to extend a package themselves. After all, if
there are easy ways to share extensions, all can
benefit from the extensions of a few. For example,
Stata, the only extensible package here, has sev-
eral ways to share additions to the package: there
is a bimonthly publication, the Stata Technical Bul-
letin (STB) that is filled with new routines from both
users and the vendor (and the software is available
over the Internet); there is an active user commu-
nity that both supplements the company’s techni-
cal support and is a source of additions, primarily
from users, to the package – this e-mail list-
serv can be joined via the company’s web site (see
below).

Documentation

Over the years, I have examined dozens, if not hun-
dreds, of statistical software packages. The packages
discussed here have particularly strong manuals – a
very pleasant surprise. All the commercial packages,
as well as those from the CDC, have extensive doc-
umentation, with extensive professional citations and
fully worked examples of the use of the software.
Furthermore, in general, the free packages, such as
PEPI, at least have extensive help files, which are
unusually good, in my opinion (note that PEPI also
has a complete manual, as does EpiInfo). Sev-
eral of the packages even include references to their
manual in their online help, something I like and
find helpful. The major weakness of most of the
packages is in their indexes: only Egret’s is as
extensive and well-organized as I like (Epicure’s
is almost as good; its major weakness is that one
has to remember to go to the index in the Release
2.0 manual to obtain coverage for all three manu-
als).

Conclusion

My answer to whether there should be special-
ized epidemiologic software is a qualified yes: there
is always a place (1) for relatively limited spe-
cialized software that is primarily useful for quick
calculations on tables and provides output that is

almost exactly what an epidemiologist is expect-
ing, and (2) for analytic techniques that are pri-
marily useful for particular disciplines, and that
have not, yet, made it into general-purpose pack-
ages. However, it is a mistake to think that spe-
cialized software is all that is needed: no discipline
is entirely self-sufficient – there are techniques from
other disciplines that are useful and important for epi-
demiologists. It would be prohibitively expensive for
a provider of epidemiologic software to try to match
Stata, SAS or S-Plus; it would also be a terri-
ble waste of resources. There is also an important
place, in my opinion, for both free and shareware
analytic software and I am glad to find that there
are several healthy free epidemiologic software pack-
ages.

In addition, there is great value to having free
packages available (particularly for students and for
those who are really part-time epidemiologists), espe-
cially if they are very easy to use and include unique
features. Several of the free packages discussed
here are very easy to use and both EpiInfo and
PEPI have unique features. I hope that the com-
mercial vendors pay attention to these, and other,
free packages. However, there is a danger with these
packages. Too little attention has been paid to the
biasing effects of using simple statistical models,
such as 2 × K tables. When combined with the
tendency to ignore misclassification and the effects
of missing data, we can see, I think, one major
need in the field: easy to use packages that allow
users to build from tables to regression models
of various kinds and that allow, and adjust, for
misclassification and other types of errors in vari-
ables.

Software Sources

Cluster: http://www.atsdr.cdc.gov/HS/
cluster.html

Egret for Windows: CYTEL Software Corp., 675
Massachusetts Avenue, Cambridge, MA 02139,
USA; (617) 661–2011; http://www.cytel.
com Epicalc: http://www.myatt.demon.
co.uk/index.htm

Epicure: HiroSoft International Corp., 1463 E.
Republican Ave., Suite 103, Seattle, WA 98112,
USA; (206) 328–5301; http://www.hiro
soft.com
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EpiInfo: ftp://ftp.cdc.gov; directory for
EpiInfo: /pub/software/epi/epi info;
directory for EpiMap (not discussed here):
/pub/software/epi/epimap

Epilog Windows: Epicenter Software, P.O. Box
90073, Pasadena, CA 91109, USA; (626) 304–
9487; http://icarus2.hsc.usc.edu/epi-
center

EpiMeta: http://www.cdc.gov/epo/dpram/
epimeta/epimeta.htm

PEPI: http://www.brixtonbooks.demon.co.
uk/otherbks.htm#PEPI: PEPI for Windows,
test version: http://www.myatt.demon.co.
uk/index.htm

Stata: Stata Corp., 4905 Lakeway Drive, College
Station, TX 77845, USA; (979) 696–4600, (800)
782-8272; http://www.stata.com

True Epistat: Epistat Services, 2813 Clearmeadow
Drive, Mesquite, TX 75181, USA; (972) 222–
3904, (800) 326-1488; epistat@attbi.com

Win Episcope and WinEpi Ratios: http://in
fecepi.unizar.es/pages/ratio/
soft uk.htm
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Soper studied mathematics at Cambridge under
Bertrand Russell. He then worked in electrical
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Pearson in 1907. During the next decade,
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solution of 1915, and various other computational
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Arrays, an individual approach to the use of
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to the theory of measles epidemics, formalizing
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by W.H. Hamer in 1906.
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Spatial Models for
Categorical Data

Spatially referenced counts, proportions, and rates
present particular data analytic challenges. Such stati-
stics typically arise from a set of prespecified regions
partitioning a study area. Cressie [20] refers to such
an arrangement as “lattice data”, where the lattice
may consist of regions formed and arranged regularly
(e.g. a square or hexagonal grid system), or irregu-
larly (e.g. a set of administrative districts such as
United States census tracts, or United Kingdom post
code areas).

To begin, we may think of such data as analogous
to a contingency table, with regions corresponding
to the usual notion of “cells”. Each cell contains an
observed count or proportion, and we often wish to
compare these values to those expected under some
sort of model, perhaps based on regionally specified
covariates. However, unlike traditional contingency
tables, a spatial lattice has no margins, or underlying
row by column independence hypothesis, of scientific
interest. For irregular regions, there are no margins
other than the observed total count, and for regular
regions the margins rarely have substantive mean-
ing (unless the orientation of the lattice happens to
correspond to a particular trend).

The spatial structure of the data complicates direct
application of traditional statistical methods in at least
two more general ways. First, one may be reluc-
tant to employ traditional assumptions of indepen-
dence between observations (here, regional counts
or proportions), instead wishing to allow for pos-
itive correlation between nearby observations, as
would occur in the presence of an influential but
unmeasured covariate with a spatial pattern or trend.
Second, traditional notions of asymptotic approxima-
tion often fail in the spatial setting, where one cannot
add additional regions without either expanding the
study area (increasing domain asymptotics) or subdi-
viding the current set of regions (infill asymptotics)
(cf. [20, pp. 100–101]). Neither of these asymp-
totic approaches provides an entirely satisfactory
scenario for many analyses of spatially referenced
categorical data.

The lost or at least diminished applicability
of these two standard tools for classical statistics

impacts upon the manner in which likelihood-
based methods of estimation and inference may be
employed. Below, we briefly survey three general
classes of statistical methods for modeling spatially
referenced counts and proportions. The first class
builds upon the family of “auto-models” defined
in detail by Besag [6–8]. The second class uses
quasi-likelihood estimation within a generalized
linear model (GLM) framework. The third class uses
mixed models wherein random effects induce spatial
correlation. All approaches build inference from a
GLM foundation based on underlying binomial or
Poisson distributions for counts, resulting in logistic
or Poisson regression models, respectively. Models
for proportions typically consider the denominators
to be fixed and known (e.g. population sizes from a
census), and reduce to count-based GLMs where the
denominator of the proportion becomes an offset in
the model [42, p. 206].

Auto-models

Besag [7] presents a thorough development of the
structure and analysis of so-called “auto-models”.
These are based on Markov random fields wherein,
for i = 1, . . . , I , the distribution of the outcome
in region i, conditional on all other observations,
depends only on those observations occurring
in a set of neighboring regions (see Markov
Chain Monte Carlo). The Hammersley–Clifford
Theorem [7] specifies exactly when a set of
conditional distributions for each region defines
a valid joint distribution, with induced spatial
correlations (see Conditional Probability).

Auto-Gaussian Models

The most flexible and frequently applied family of
auto-models employs conditional Gaussian distribu-
tions yielding (under proper conditions) a valid joint
multivariate Gaussian distribution for the outcome
data (see Multivariate Normal Distribution). While
a multivariate Gaussian joint distribution directly
implies Gaussian conditional distributions, the con-
verse is not so straightforward [3, 10]. However,
as will become clear below, the conditions required
for other conditional distributions to define a valid
joint distribution are often more restrictive than those
for Gaussian distributions. Direct applicability of
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“auto-Gaussian” models to categorical data is limited,
particularly for counts of rare events, where transfor-
mations and approximations are often inadequate to
satisfactorily compensate for the underlying discrete,
non-Gaussian variability.

Auto-logistic Models

For binary data associated with regions (e.g. species
presence or absence), we turn instead to the “auto-
logistic” model originally detailed in [6, 7]. Recent
applications extend the model to allow covariates [30,
33, 34], and we present this more general formulation
here. Let Yi denote a random variable associated
with region i and yi its observed value, for i =
1, . . . , I . For binary data, yi = 0 or 1 for each region.
Assume we observe a vector of covariates xi and let
Ni be a set of region i’s “neighbors” (e.g. Ni = the
set of regions bordering region i). Then, the auto-
logistic model is

logit[Pr(Yi = 1|xi , {yj , j ∈ Ni})]
= x ′

iβ +
∑

j∈Ni

γij yj , (1)

where β represents the vector of covariate effects
and the γij (j ∈ Ni) denote parameters governing the
impact of the neighboring observations on Yi . The
last term in equation (1) follows an autoregressive
format, wherein we regress (within the link function)
each observation on its neighboring observed values
(see ARMA and ARIMA Models).

The autoregressive term in (1) generates an un-
wieldy normalizing constant, thereby hampering tra-
ditional likelihood approaches for all but very small
numbers of regions. Besag [8] addresses this issue
through the introduction of “pseudo-likelihood” esti-
mation, in which one chooses parameter values that
minimize the product of the conditional binomial
probabilities in (1). While this product is not the true
likelihood, it often provides a reasonable approxima-
tion. However, the addition of covariates further com-
plicates matters. Markov chain Monte Carlo (MCMC)
algorithms provide an alternative strategy [34] for
fitting auto-logistic models. Indeed, the conditional
structure of auto-models is custom-made for recur-
sively updating algorithms such as the Gibbs sam-
pler. Geyer [23] defines the use of MCMC to obtain
maximum likelihood estimates (MLEs) in a variety

of statistical models. Gumpertz et al. [30] illustrate
pseudo-likelihood estimation and contrast it with the
MCMC maximum likelihood approach, preferring
pseudo-likelihood in their application for its compu-
tational convenience. Indeed, they note that one can
obtain pseudo-likelihood estimates using maximum
likelihood algorithms available from any standard
logistic regression routine [49, 51, 52]. In contrast,
Huffer and Wu [34] prefer an MCMC approach to
obtain MLEs of model parameters, based on their
simulation study [61] showing that MCMC estimates
provide substantial improvement over pseudo-likeli-
hood results when the amount of spatial interaction
(determined by the parameters γij above) is large. In
practice, the choice of estimation technique is largely
a matter of preference between computational sim-
plicity (pseudo-likelihood) and statistical efficiency
(MCMC MLE), somewhat guided by the suspected
strength of any spatial correlation (see Efficiency and
Efficient Estimators).

Auto-Poisson Models

Besag [7] presents an “auto-Poisson” model for
counts, assigning each regional count a conditional
Poisson distribution with mean dependent upon its
neighboring counts. The auto-Poisson model serves
as an extreme example of the care one must take in
defining auto-models. Owing to the infinite support of
the Poisson distribution, by the Hammersley–Clifford
theorem, a valid joint distribution only exists for auto-
Poisson conditional models with exclusively negative
autoregressive parameters. Auto-Poisson models thus
require neighboring values (counts) to be negatively
correlated, as in resource competition models. This is
quite opposite the intent of most spatial modeling, to
reflect shared latent sources of variation (see also [20,
pp. 427–428]).

Ferrándiz et al. [22] propose the use of an auto-
model based on truncated Poisson counts, where the
regional count of a rare disease is not allowed to
exceed the number of persons at risk within the
region. The truncation avoids the infinite support
problem. They compare maximum pseudo-likelihood
estimates to MCMC MLEs (using a Monte Carlo
scoring approach) in the following model:

Yi |{yj , j �= i} ∼ Poisson(µi)

log(µi) = x ′
iβ +

∑

j∈Ni

γij yj , (2)
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where xi , β, the γij , and Ni are as defined previously.
We can extend the model to rates or proportions (i.e.
models of Yi/ni where ni denotes the (fixed) number
of people or person-years at risk in the ith region),
by including an additive term log(ni) as an offset on
the right-hand side of equation (2).

Kaiser and Cressie [35] formalize the truncation
proposed in [22]. By “Winsorizing” Poisson variables
through the transformation

Y ∗
i = Yi · I{Yi ≤ L} + L · I{Yi > L}, (3)

for some predetermined upper limit L (where I{·}
denotes the indicator function), one can define auto-
models allowing positive spatial correlation for val-
ues Y ∗

i , i = 1, . . . , I (see Trimming and Winsoriza-
tion). Kaiser and Cressie [35] illustrate maximum
likelihood estimation (based on standard iterative
techniques such as Newton–Raphson) for such mod-
els (see Optimization and Nonlinear Equations).
They note the dependence of results upon the choice
of the upper limit L, and suggest use of values of
L considerably larger than the largest observed value
of Yi .

Generalized Linear Models

Quasi-likelihood

The formal development of generalized linear mod-
els [48, 42] includes the class of “quasi-likelihood”
estimation techniques, based on the specification of
the first two moments of the likelihood function
rather than the entire function itself. While directing
most attention to independent observations, McCul-
lagh and Nelder [42, Section 9.3] extend the ideas to
dependent data.

In particular, let X be the matrix with rows x ′
i ,

µ = (µ1, . . . , µI )
′ denote the vector of mean values

for the regional counts Y1, . . . , YI , and g(µ) denote
the link function such that g(µ) = Xβ. Then the
quasi-likelihood function Q(µi ; yi) is defined by the
relationship

∂Q(µ; y)

∂µ
= V −1(y − µ), (4)

where V represents a general symmetric positive
definite matrix whose elements are functions of µ.

Differentiating Q(µ; y) with respect to β, yields the
quasi-likelihood score equations

U = ∆′V −1(y − µ), (5)

where ∆ is the matrix with elements [∂µi/∂βj ] and
j = 0, . . . , p indexes the parameters in the GLM’s
linear predictor. Setting the score equations to zero
and solving for β yields the quasi-likelihood esti-
mates of the model parameters.

McCullagh and Nelder [42, pp. 333–335] note
that the precision matrix V −1 must satisfy several
conditions, some not easily verified in practice, to
guarantee that a solution to the score equations exists.
As a result, Wolfinger and O’Connell [60] and Got-
way and Stroup [26], following Liang and Zeger [40,
63], limit attention to variance–covariance matrices
written as

V = v1/2
µ R(α)v1/2

µ . (6)

Here R denotes a matrix of correlations among
the Y1, . . . , YI , as functions of the parameter vector
α, and v1/2

µ is a diagonal matrix of scale param-
eters, perhaps incorporating overdispersion. Liang
and Zeger [40, 63] show that, under mild regular-
ity conditions, even misspecified correlation matrices
will generate consistent estimators of β. In the spa-
tial setting, Gotway and Stroup [26] suggest estima-
tion of the elements of R via standard geostatistical
techniques (e.g. based on the variogram or correlo-
gram), then substituting the estimated matrix R̂ into
the score equations above, and solving for β.

The quasi-likelihood approach outlined above pro-
vides marginal inference regarding covariate effects
(i.e. estimates of effects averaged across the entire
study population). For related analytic approaches for
spatial data, see [27, 39, 44].

Generalized Linear Mixed Models
(GLMMs)

Including random effects within a GLM allows co-
variate effects to vary between regions, and can offer
different insights into data patterns than the marginal
analyses above. For our purposes, the primary differ-
ence between the two approaches is how the models
structure spatial correlation. Marginal models incor-
porate spatial correlation directly into the likelihood,
while mixed models take an hierarchical approach,
combining spatially correlated random effects with
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conditionally independent observations given the ran-
dom effects (see Hierarchical Models). The random
effects typically follow a multivariate Gaussian joint
distribution. The result is a somewhat simpler first
stage (conditional independence), and a more conve-
nient structure for modeling spatial correlations than
with marginal modeling (i.e. a correlated Gaussian
model rather than a correlated Bernoulli, binomial,
or Poisson model).

The somewhat simpler conceptual structure
still involves complicated inference, especially
from the computational perspective, and various
methods and approximations appear in the literature.
Agresti et al. [2] provide a detailed introduction
to generalized linear mixed models, including
an excellent overview of approaches for model
fitting. We outline two general classes of such
approaches, the first based on modifications to a
likelihood approach and the second based on MCMC
implementations of Bayesian hierarchical models
(see Bayesian Methods; Bayesian Methods for
Contingency Tables).

Approximations to the Likelihood

As noted above (and detailed in [2]), specifying a
GLMM involves two steps. First, conditional on
the random effects, we assume the outcomes fol-
low a distribution within the exponential family (e.g.
Bernoulli, binomial, or Poisson distributions). Sec-
ond, we specify the distribution of the random effects.
In the spatial setting, we typically embed spatial cor-
relations in the distribution of the random effects.
The full likelihood function for the GLMM com-
bines the conditionally independent first stage with
the distribution of the random effects, often resulting
in an intractable (or at least inconvenient) multidi-
mensional integral. Likelihood-based approaches to
fitting GLMMs involve some sort of approximation
to this integral.

The type and extent of approximation varies
between approaches. Some methods employ numeri-
cal integration and others use simulation-based
Monte Carlo approximations (see, e.g. [14] and [59],
respectively). Such approaches converge to “exact”
likelihood inference as one takes finer and finer reso-
lution, or larger and larger Monte Carlo sample sizes,
respectively. The resolution of numerical methods
and the Monte Carlo sample size are computational
components under the control of the analyst and

are not based on particular probabilistic or statisti-
cal approximations. Hence, one can make the “exact”
methods as precise as computational resources allow.

Other approaches trade some amount of “exact-
ness” for computational simplicity and stability,
using additional simplifying approximations, primar-
ily through the use of first-order Taylor series expan-
sions of the integrand around estimates of the random
effects [2, Section 4.2]. Two popular methods using
this strategy are penalized quasi-likelihood (PQL)
(Breslow and Clayton [15], Green [29]) and “pseudo-
likelihood” (PL) [60]. The “penalty” in PQL adjusts
the quasi-likelihood for the presence of the random
effects. The term “pseudo-likelihood” derives from
the use of “pseudo-data” (defined below) and dif-
fers from the “pseudo-likelihood” for auto-models
introduced above, as well as from other uses of the
same term (e.g. [25]), creating some potential for
confusion.

The PQL and PL approaches are very similar
(see [41, Section 11.4.3], and [2]), and both build
from assumed normality (or near-normality) of the
model residual process y − µ, using a “working
dependent variable” (Wolfinger and O’Connell’s
“pseudo data”) defined by

yw = g(µ̂) + ∆µ̂(y − µ̂), (7)

where ∆µ̂ denotes the matrix with elements
[∂g(µi)/∂µi] evaluated at µ̂ (see Residuals). The
working data lead to a system of score equations
involving the fixed effects and the parameters
defining the variance–covariance matrix of the
random effects. The PQL and PL approaches update
the current fixed effect given the current estimate
of the covariance parameters using normal mixed
model theory ([2, Section 4.2]; [50, Section 7.6]),
maximizing the product of the conditional density of
the data given the random effects and the density
of the random effects given the current estimate of
the associated covariance parameters. The update of
the covariance parameters follows an assumed normal
linear mixed model for the working (pseudo) data,
given the current estimates of the fixed and random
effects. Note that both steps involve assumptions of
normality of the working (pseudo) data and linearity
(at least locally) for the application of the normal
linear mixed model theory (e.g. [31]) (see Linear
Mixed Effects Models for Longitudinal Data).

Similar to the quasi-likelihood method outlined
for generalized linear models above, Wolfinger and
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O’Connell [60] focus on variance–covariance matri-
ces of the form

V = v1/2
µ R(α)v1/2

µ . (8)

For marginal models, R represents a spatial correla-
tion matrix and we set the (spatial) random effects to
zero. For conditional models, we set R to an identity
matrix or a diagonal matrix to incorporate overdis-
persion, and incorporate spatial correlation through
the distribution of the random effects.

PQL and PL provide two popular approaches to
fitting GLMMs in general, and spatial GLMMs in
particular, due to their relative simplicity, ease of
implementation, and applicability to large data sets
in comparison with the “exact” maximum likelihood
approaches outlined earlier. (Recall that the latter are
“exact” in the sense that their precision depends only
on computational limitations, rather than on distribu-
tional or linearity assumptions, or on asymptotic or
other approximations, that can introduce additional
biases if unjustified.) McCulloch [43] provides a thor-
ough discussion of the impact of the working pseudo
data assumptions and additional numerical approxi-
mations in PQL and PL, and compares these methods
to other classes of maximum likelihood algorithms
for GLMMs.

Bayesian Hierarchical Models

The two-stage nature of GLMMs naturally lends
itself to a hierarchical Bayes interpretation [16]. Such
models are common in the “disease mapping” lit-
erature, where analysts seek accurate small area
estimates of rates and proportions through “borrow-
ing strength” from neighboring regions (see Map-
ping Disease Patterns). Tsutakawa [55] provides an
early example. He assigns a Gaussian prior dis-
tribution to region-specific logits of disease risk,
producing local estimates that represent a compro-
mise between individual regional estimates and the
overall disease rate. Clayton and Kaldor [18] expand
this basic idea, and associated empirical Bayesian
inference for region-specific standardized mortal-
ity/morbidity ratios (SMRs), to allow spatial cor-
relation between neighboring regions (see Empiri-
cal Bayes). To accomplish this, they consider auto-
Gaussian prior distributions inducing pairwise spatial
dependence between region-specific expected counts.
Besag et al. [11] extend these approaches to a fully

Bayesian setting using MCMC algorithms. Clay-
ton and Bernardinelli [17], Mollié [45], Wakefield
et al. [57], and Congdon [19, Chapter 7] provide thor-
ough introductions to the fully Bayesian approach.
The models in [11] and [18] are widely applied in a
variety of settings, so we detail these below.

Typical disease mapping data contain observed
(Yi) and expected (often age-standardized) disease
counts (Ei) for each region i, i = 1, . . . , I . The
maximum likelihood estimate of the SMR for region
i is Yi/Ei . The first stage of the model presumes
conditionally independent Poisson distributions for
each regional count, parameterized by log-Relative
Risks (θi) associated with each region i, that is

Yi |θi

ind∼ Poisson(Ei exp(θi)), i = 1, . . . , I. (9)

While the disease mapping models involve SMRs,
the setting may be thought of more generally as a
GLM with an offset (here, Ei) for each Yi , where
θi represents a linear function x ′

iβ of region-specific
covariates.

To induce spatial correlation at the second stage of
the model, Clayton and Kaldor [18] propose the addi-
tion of region-specific random intercept terms defined
by an auto-Gaussian prior distribution, resulting in
regional SMR estimates compromising between the
local MLE (Yi/Ei) and the SMRs observed in
neighboring regions. Besag et al. [11] expand this
approach to include, separately, influence of both the
overall disease rate in the entire study area, and the
special influences of neighboring disease rates. In
this case, one replaces θi by a linear combination
of covariate effects and random effects, that is,

θi = x ′
iβ + ui + vi, (10)

where ui and vi denote random effects (intercepts)
measuring spatial similarity and excess heterogeneity
(i.e. overdispersion, extra-Poisson variation), respec-
tively. The basic structure resembles that of the auto-
models above, but incorporates spatial pattern into
random rather than fixed effects.

One typically assumes independence between u
and v, and models excess heterogeneity through a
set of exchangeable priors for the vi , for example,

by vi

ind∼ N(0, 1/τ), i = 1, . . . , I . To model spatial
similarity in residuals, [18] and [11] assign an auto-
Gaussian model defining a conditional autoregressive
structure for the set of ui . Specifically, we define
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the prior distribution of each ui conditional on the
uj , j �= i, as

ui |uj �=i ∼ N




∑

j �=i

wijuj

∑

j �=i

wij

,
1

λ




∑

j �=i

wij








,

i = 1, . . . , I. (11)

The wij denote weights defining the extents to which
regions i and j are neighbors (by convention all
wii = 0), and λ denotes a hyperparameter controlling
how similar ui is to its neighboring uj , j �= i. Typical
applications consider adjacency-based binary weights
where wij = 1 if regions i and j are adjacent and
wij = 0 otherwise, although other options appear in
the literature (e.g. [12]).

As noted above, Besag [7] shows that the collec-
tion of conditional distributions uniquely defines a
corresponding multivariate normal joint distribution.
However, the choice of binary adjacency weights
leads to a joint distribution with singular precision
matrix, so that the spatial similarity implied by the
conditional distributions (in this case, an intrinsic
autoregression) does not translate directly into a
model of spatial correlation [10, 38]. Also, such mul-
tivariate priors are improper by virtue of the singu-
larity, since they only define contrasts between pairs
of the ui . However, the inclusion of any informa-
tive data (through the likelihood function) results in
a proper posterior (see [9, 11]). Finally, the constraint∑I

i=1 ui = 0 is often imposed in order to allow iden-
tifiability of an intercept in x ′

iβ. Detailed discussions
of conditional autoregressive structures are provided
by [7, 10, 11] and [20, pp. 407–408, 410–423].

Specification of the hierarchical model is com-
pleted by defining (vague) priors for the covariate
effects β, and proper hyperprior distributions for
the hyperparameters τ and λ. In practice, conju-
gate inverse gamma distributions are popular for
the latter. Ghosh et al. [24] and Sun et al. [54] dis-
cuss restrictions on parameters for these hyperpriors
to ensure posterior propriety.

Incorporation of two random intercepts ui and vi

for each region overparameterizes the model, so the
likelihood only identifies the regional sums (ui + vi).
The prior distributions allow posterior identifiability
([16], p. 308), however. A related research question

involves determination of a “fair” allocation of prior
variability between τ and λ to balance prior emphasis
on the roles of global and local rates. This issue
is complicated by the marginal nature of τ and the
conditional nature of λ [4, 12, 21].

Inference proceeds via MCMC algorithms, which
provide the analyst with sample-based posterior dis-
tributions for each model parameter. These in turn
allow posterior inferences for SMRs, counts, propor-
tions, and rates.

Extensions

Several authors provide spatiotemporal extensions to
the approaches outlined above. Typically, either space
or time plays a primary role, leading analysts to
investigate temporally evolving spatial structures or
spatially correlated time series [5, 32, 36, 37, 53, 58,
62]. The distinction primarily involves the structure
of the data, with the former arising in space-rich,
time-poor data sets and the latter in space-poor, time-
rich data.

Another area of current development involves the
analysis of data from incompatible spatial scales,
for example, observed counts from census tracts and
covariate values from counties. Such “misaligned”
data complicate matters, particularly for auto-models
and the hierarchical models outlined above, since
such models are defined for a particular set of regions
and do not readily scale up or down to different
regions [1, 13, 46, 47]. Gotway and Young [28]
provide a thorough review of methods from a wide
variety of disciplines that attempt to address this
issue.

In conclusion, the models above provide inference
for spatially correlated counts, proportions, and rates.
Each approach contains its own set(s) of assumptions,
and most involve iterative computational techniques.
Hence, analysts must be aware of the assumptions and
computational requirements involved when applying
such methods.

Finally, while spatial modeling provides inference
for data violating some key assumptions of traditional
statistical inference, spatial techniques are no panacea
for the problems produced by inaccurate or missing
observations, or the inherent major limitations of
ecological inferences. Wakefield [56] provides details
putting spatial modeling in a broader perspective,
and illustrating several key inferential challenges in
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ecologic analyses of observational data that spatial
modeling does not address (see Ecologic Fallacy;
Ecologic Study).
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Spearman Rank
Correlation

In a study of the relationship between two variables,
the use of measures of correlation assumes that nei-
ther is functionally dependent upon the other. So,
for example, we might ask whether body weight
is related to height in 35-year-old men; or whether
examination scores in music theory are related to
examination scores in mathematics for first-year col-
lege students; or whether the blood levels of two
steroid hormones are related in 20-year-old women.
A quantitative measure of the strength of the cor-
relation is a correlation coefficient, which expresses
how closely a change in the magnitude of one of the
variables is accompanied by a change in the mag-
nitude of the other variable. This is also referred
to as a measure of association or of correspondence
(see Association, Measures of).

If the distributions underlying the two variables
are far from bivariate normal, or if the data are ordi-
nal (e.g. we know relative magnitudes–such as man
A is taller than man C but shorter than man D–but
we do not know their actual heights) (see Ordered
Categorical Data), then nonparametric correlation
techniques should be employed to test hypotheses
about the relationship between variables or to set
confidence limits around the correlation coefficients.
Nonparametric correlation also is less sensitive to
outliers than is its parametric analog. The under-
lying assumptions for nonparametric correlation are
that the n pairs of ratio, interval, or ordinal data
(see Measurement Scale) constitute a random sam-
ple and that the two members of each of the n pairs
of data are measurements taken on the same subject.

Among the correlation coefficients proposed by
Charles Spearman [19, 20] is a commonly used
nonparametric correlation measure that Maurice
Kendall formally associated with Spearman’s name a
quarter of a century later [14], and that is one of the
oldest statistics based on ranks. The Spearman rank
coefficient computed for a sample of data is typically
designated as rS.

If each of the n measurements of one of the
variables is denoted as Xi (i.e. X1, X2, . . . , Xn), then
R(Xi) may represent the rank of Xi , where each rank
is an integer, from 1 through n, indicating relative
magnitude. The measurements may be ranked from

Table 1

Person, i 1 2 3 4 5

Height (m), Yi 1.59 1.66 1.82 1.73 1.91
Weight (kg), Xi 75.8 77.2 89.3 72.2 81.5

Rank of height, R(Xi) 1 2 4 3 5
Rank of weight, R(Yi) 2 3 5 1 4

di = R(Xi) − R(Yi) −1 −1 −1 2 1

d2
i 1 1 1 4 1

high to low (e.g. rank 1 indicates the tallest person,
rank 2 the next tallest, and so on, with rank n the
shortest) or from low to high (rank 1 denotes the
shortest and rank n the tallest). Similarly, each of
the n measurements of the second variable may be
denoted as Yi (i.e. Y1, Y2, . . . , Yn), and R(Yi) would
denote the rank of Yi , where the sequence of ranking
(either high to low or low to high) is the same as for
R(Xi). This is shown in Table 1.

An rS = 0 (“no correlation”) indicates that the
magnitudes of the ranks of one variable are inde-
pendent of the magnitudes of the ranks of the second
variable. A positive value of rS (“positive correla-
tion”) indicates that the R(Xi)s tend to increase as
the R(Yi)s increase; a negative rS (“negative corre-
lation”) indicates that the R(Xi)s tend to decrease as
the R(Yi)s increase.

If the sequence of ranks were identical for the
two variables, we would say that there was a perfect
positive correlation, and rS = 1.0. This would occur,
for example, if five pairs of data had these ranks:

1 2 3 4 5

1 2 3 4 5
or these:

1 2 4 3 5

1 2 4 3 5

A perfect negative correlation (where rS = −1.0)
would be one in which the magnitudes of the ranks
for one variable vary inversely with the sizes of the
ranks of the second; for example,

1 2 3 4 5

5 4 3 2 1

Computing the Coefficient

The widely used parametric correlation coefficient,
known as the Pearson product–moment correlation
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coefficient (see Correlation), is defined as

r =
∑

(Xi − X)(Yi − Y )

[∑
(Xi − X)2

∑
(Yi − Y )2

]1/2 , (1)

and commonly computed as

r =



∑

XY −
∑

X
∑

Y

n




/








∑

X2

−
(∑

X
)2

n








∑

Y 2 −
(∑

Y
)2

n










1/2

, (2)

where X and Y are the means of the Xis and the
Yis, respectively, and where the summations (

∑
) are

each over all n data.
The Spearman rank correlation coefficient, rS,

may be obtained by subjecting the ranks, instead of
the raw measurements, to the above calculations. For
the example above, and substituting R(Xi) for Xi

and R(Yi) for Yi :
∑

Xi = 1 + 2 + 4 + 3 + 5 = 15,

∑
(Xi)

2 = 12 + 22 + 42 + 32 + 52 = 55,

∑
Yi = 2 + 3 + 5 + 1 + 4 = 15,

∑
(Yi)

2 = 22 + 32 + 52 + 12 + 42 = 55,

and
∑

(XiYi) = (1)(2) + (2)(3) + (4)(5) + (3)(1)

+ (5)(4) = 51.

Then,

X = 15/5 = 3 and Y = 15/5 = 3,

and
∑

(Xi −X)2 = (1 − 3)2 + (2 − 3)2 + (4 − 3)2

+ (3 − 3)2 + (5 − 3)2 = 10,
∑

(Yi −Y )2 = (2 − 3)2 + (1 − 3)2 + (5 − 3)2

+ (3 − 3)2 + (4 − 3)2 = 10,

∑
(Xi −X)(Yi −Y ) = (1 − 3)(2 − 3)+ (2 − 3)

× (3 − 3)+ (4 − 3)(5 − 3)

+ (3 − 3)(1 − 3)+ (5 − 3)

× (4 − 3) = 6.

Eq. (1) yields

rS = 6

[(10)(10)]1/2
= 6

10
= 0.60,

while (2) yields

rS = 51 − (15 × 15)/5
[(

55 − (15)2/5
) (

55 − (15)2/5
)]1/2

= 6

[(10)(10)]1/2
= 0.60.

As the sum of integers 1 through n (i.e. the
sum of all n ranks) is n(n + 1)/2, (2) employed for
Spearman rank correlation may be written as

rS =
∑

R(Xi)R(Yi) − n(n + 1)2/4





{[∑
R(Xi)

2 − n(n + 1)2/4
]

×
[∑

R(Yi)
2 − n(n + 1)2/4

]}1/2






. (3)

Also, as the sum of the squares of all n ranks
is n(n + 1)(2n + 1)/6, (2) using ranks can be
reduced to

rS =
12
[∑

R(Xi)R(Yi) − n(n + 1)2/4
]

n3 − n
(4)

or

rS =
12
∑

R(Xi)R(Yi)

n3 − n
− 3(n + 1)

n − 1
. (5)

Alternatively, the difference, di , for each pair of
ranks may be obtained, and the following equa-
tion used:

rS = 1 −
6
∑

d2
i

n3 − n
, (6)

which, for the above example, is

rS = 1 − 6(1 + 1 + 1 + 4 + 1)

53 − 5

= 1 − 48

120
= 1 − 0.40 = 0.60.
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Eq. (6) is most commonly encountered in textbooks,
but (1) is very convenient on a computer.

Instead of the differences between pairs of ranks,
one may use the sums of the ranks for each pair [15,
p. 227; [20]]:

rS =
6
∑

S2
i

n3 − n
− 7n + 5

n − 1
, (7)

where
Si = R(Yi) + R(Xi). (8)

It can be shown [13] that in bivariate normal popu-
lations the Pearson correlation coefficient, ρ, is

ρ = 2 sin
(π

6
ρS

)
. (9)

Tied Ranks

If two or more data have the same value, then they
are said to be “tied”, and each of their ranks may be
set equal to the mean of the ranks of the positions
they occupy in the ordered data set. For example, in
the data set 70, 74, 74, 78, and 79 kg, data 2 and 3
are tied; the mean of 2 and 3 is 2.5, so the ranks of
the five data are 1, 2.5, 2.5, 4, and 5. In the data set
1.6, 1.7, 1.9, 1.9, and 1.9 m, data 3, 4, and 5 are tied;
the mean of 3, 4, and 5 is 4, so the ranks of the five
data are 1, 2, 4, 4, 4.

Then these ranks would be subjected to (1), or,
equivalently, the following calculation [9, p. 366]
would be used as an alternative to (4):

rS =
(

12
[∑

R(Xi)R(Yi)

−n(n + 1)2/4
]) / {[

(n3 − n) − 12
∑

tx

]

×
[
(n3 − n) − 12

∑
tY

]}1/2
(10)

and the following [12, p. 38; [20]] is an alternative
to (6):

rS =
(
(n3 − n)/6 −

∑
d2

i −
∑

tX −
∑

tY

) /

{[
(n3 − n)/6 − 2

∑
tX

]

×
[
(n3 − n)/6 − 2

∑
tY

]}1/2
, (11)

where
∑

tX =
∑

(t3
i − ti )

12
, (12)

where ti is the number of tied values of X in a
group of ties (two in the paragraph above) and the
summation is over all groups of tied Xs, and

∑
tY =

∑
(t3

i − ti )

12
, (13)

where ti is the number of tied values of Y in a
group of ties (three in the paragraph above) and the
summation is over all groups of tied Y s. Similarly,
the following [21] is an alternative to (7):

rS =






∑
S2

i − [(n3 − n)/6][(7n + 5)/(n − 1)]

−
∑

tX −
∑

tY










{[
(n3−n)/6−2

∑
tX

]

×
[

(n3−n)/6−2
∑

tY

]}1/2






,

(14)

If
∑

tX and
∑

tY are both zero, then (10) is equiv-
alent to (4), (11) equals (6), and (14) is equivalent
to (7). The results from these equations for tied and
nontied data are noticeably different only if there are
many ties.

Testing Hypotheses

The rS calculated from a sample of data is an estimate
of ρS, the Spearman rank correlation coefficient that
would be obtained from the entire population of data
from which that sample came; ρS is sometimes called
“Spearman’s rho”.

A common desire in rank correlation analysis is to
test the null hypothesis that there is no correlation
in the population between the paired ranks, i.e. we
wish to test the two-tailed hypotheses H0 : ρS = 0
vs. Ha : ρS �= 0 (see Hypothesis Testing). There are
many tables of critical values of rS, and if rS is greater
than the relevant critical value, then H0 is rejected.
The use of

∑
d2

i , instead of rS, as the test statistic
for rank-correlation testing is sometimes called the
“Hotelling–Pabst test” [10].

∑
d2

i is small when rS

is large, and H0 is rejected if
∑

d2
i is less than the

critical value. Published tables offer critical values for
various sample sizes, n, and levels of significance,
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α. The most extensive of such tables for rS are
those of Zar [22, Appendix, pp. 115–116] and, with
slight improvements, of Ramsey [17]. If there are tied
data, critical values are only approximate. It should
be noted that computer software packages may use
approximations that are not as accurate as published
tables.

One-tailed hypotheses may also be considered. For
H0 : ρS ≤ 0 vs. Ha : ρS > 0, H0 is rejected if rS is
positive and greater than the critical value for α/2.
For H0 : ρS ≥ 0 vs. Ha : ρS < 0, H0 is rejected if rS

is negative and its absolute value is greater than the
critical value for α/2. If n is larger than that in these
large tables, then one may compute

t = rS

s
, (15)

where s, the standard error of rS, is

s =
(

1 − r2

n − 2

)1/2

, (16)

for which two- and one-tailed critical values of t

(Student’s t distribution), for df = n − 2, are readily
found. Equivalently, one may employ

F = 1 + |rS|
1 − |rS| (17)

[2], referring to two- or one-tailed critical values of
the F distribution for numerator and denominator
df = n − 2. Using t or F is valid even with tied data,
and is preferable in any case to employing the normal
approximation,

Z = rS(n − 1)1/2. (18)

The Fisher Transformation

If n is at least moderately large, the Spearman cor-
relation coefficient may be subjected to the Fisher z

transformation by

z = 0.5 ln
1 + rS

1 − rS
, (19)

and there are tables, e.g. [22, Appendix pp. 110–111],
available to obviate the need to perform this compu-
tation. With this transformed value, one may test null
hypotheses that ρS equals some value other than zero;

i.e. H0 : ρ = ρ0 vs. Ha : ρ = ρ0, where ρ0 �= 0. This
is done via

Z = z − ζ0

σz

, (20)

where z is the transform of rS; ζ0 is the transform of
the hypothesized coefficient, ρ0; the standard error of
z is approximated by

σz =
(

1.060

n − 3

)1/2

(21)

[7, 8], and Z is a normal deviate. In this fashion both
two-tailed and one-tailed hypotheses may be tested.

Confidence Limits

The z transformation also allows the setting of
approximate 1 − α confidence limits for ρS. The con-
fidence limits for the z transformation are

z ± Zασz, (22)

where Zα = tα(∞). Then, the lower confidence limit
of the transformation, L1 = z − Zασα , is converted
to the lower confidence limit of ρS by

exp(2L1) − 1

exp(2L1) + 1
, (23)

and the upper confidence limit of the transformation,
L2 = z + Zασα , is converted to the upper confidence
limit of ρS by substituting L2 for L1 in (23) above.
Published tables, e.g. [22, Appendix, pp. 112–114],
execute these conversions.

Power of Testing

For data that meet the normality assumptions of
parametric correlation analysis, use of the Spearman
method has a relative efficiency of 9/π2 = 0.912
compared with the parametric procedure for testing
hypotheses about the population correlation coeffi-
cient [10]. For other data distributions, the Spearman
procedure may perform even better. The power of
hypothesis tests for ρS, and the determination of the
minimum sample size needed to achieve a desired
power, may be approximated by an adaptation of the
procedures of Cohen [4, p. 546], as shown by Zar
[22, pp. 379–380, 392].
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Other Rank Correlation Measures

The Kendall rank correlation coefficient [11, 12] is
the other commonly encountered rank correlation
measure (see Rank Correlation). It is often referred
to as Kendall’s tau, with the population parameter
designated as τ and the sample estimate of τ denoted
as τ̂ , t, T , or (unfortunately) τ . Whereas τ̂ is an
unbiased estimate of τ , rS is a biased estimate of ρS,
with E(rS) = [3τ + (n − 2)ρS]/(n + 1) [6], but this
bias disappears rapidly as n increases.

The two rank-correlation procedures have differ-
ent underlying premises and influences (e.g. rS is
more affected by larger dis), so they do not necessar-
ily yield identical coefficients, τ̂ and rS; indeed, data
sets may have the same τ̂ s yet different rSs. How-
ever, there is a very strong correlation between the
two coefficients, and they each may range between
−1.0 and 1.0. Daniels [5] found the relationship

−(n − 2) ≤ 3nτ̂ − 2(n + 1)rS ≤ (n − 2),

which, for large n, is

−1 ≤ 3τ̂ − 2rS ≤ 1.

A better relationship was proved by Durbin & Stu-
art [6] to be

3nτ̂ − (n − 2)

2(n + 1)
≤ rS ≤ 1 − (1 − τ̂ )

2(n + 1)

× [(n − 1)(1 − τ̂ ) + 4].

Whether rS or τ̂ is preferable depends upon the crite-
ria employed to make the judgment; Chow et al. [3]
judged rS to be the preferable estimator.

Spearman’s [19, 20] introduction of correlation
between ranks was accompanied by a correlation
measure of which he was fond, the “Spearman
footrule”, based upon

∑ |R(Xi) − R(Yi)| instead of∑
[R(Xi) − R(Yi)]2. This measure is less useful than

rS in statistical analysis and is no longer encountered.
If one’s interest is predominantly in the correla-

tion among the largest (or smallest) members in the
two populations, then the weighted rank correlation
concept [18, 16; see also [22], pp. 392–395] might
usefully be employed.

The Spearman rank correlation coefficient, rS, is
related to the Kendall coefficient of concordance, W ,
when there are two sets of ranks, as

W = (rS + 1)

2
. (24)

Basler [1] discusses a relationship between
∑

d2
i

and the chi-square test statistic in a fourfold contin-
gency table with ordinal marginal categories
(see Two-by-Two Table).
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Specificity

For diagnostic or screening tests, the specificity is
the probability that an individual without the disease
will receive a correct, negative test result. A synonym
is the true negative rate, this being the proportion of
negative results assigned among the denominator of
true noncases of disease. In the table for the entry
on sensitivity, the specificity is d/(b + d). The false
positive rate b/(b + d) is the complement of speci-
ficity; in other words, it is the probability that an indi-
vidual without disease will get a positive test result.

A test with high specificity is useful clinically for
ruling in potential disease; a positive result from such
a test implies a relatively high chance of having the
disease. Typically, if a test is designed to have high
specificity, its false negative rate c/(a + c) will also
be high and the test sensitivity a/(a + c) will be
correspondingly low.

Achievement of high specificity is important when
the implied costs of giving false positive test results to
noncases are high relative to the costs of incorrectly

assigning negative test results to individuals with
the disease (the so-called false-negative results). For
instance, in population screening programs for rare
diseases such as cancer, high specificity is desirable to
avoid large numbers of false positive test results that
would require clinical follow-up to determine their
true, nondisease status.

A second meaning of specificity refers to the
capability of a measuring device (e.g. in the clinical
chemistry laboratory) to detect a particular target
substance in a sample of material, as opposed to
giving a false positive reading with other substances.

In multivariate analysis, particularly in factor
analysis, specificity refers to the proportion of total
variation that is associated with a factor.

(See also Clinical Epidemiology; Diagnostic Tests,
Evaluation of; Diagnostic Tests, Likelihood Ratio;
Diagnostic Tests, Multiple; Gold Standard Test;
Receiver Operating Characteristic (ROC) Curves)

STEPHEN D. WALTER



Spectral Analysis

Often when examining a time series {X(t)} we are
interested in cyclic effects (see Circadian Varia-
tion); that is, effects, g(t), which repeat themselves at
regular intervals. Sometimes such cyclic or periodic
effects are fairly clear to the eye (see Figure 1), but
this may not always be so. The study of this kind of
cyclic behavior gives rise to harmonic analysis and
spectral analysis. The spectral analysis of time series,
with its concern with cyclic effects, can give quite dif-
ferent insights to time domain methods (see ARMA
and ARIMA Models).

We start with the basic ideas of periodic functions.
Formally, we say that a function g(t) is periodic if it
repeats itself at a fixed interval, so

g(t) = g(t ± s) = g(t ± 2s) = · · ·
= g(t ± ks) = · · · .

The smallest (nonzero) s value is called the period
of the function. The frequency f of oscillations is
the number of repeats, i.e. periods or cycles per unit
time. The frequency f = 1/s is measured in cycles
per unit time. Cycles per second, the most common
measure in engineering, are called hertz.

Because the study of cycles will involve time, we
will naturally have to take into account the interval
∆t between observations, often known as the sam-
pling interval, since we will assume a series observed
at discrete time points. In theory we can have con-
tinuous records, often known as analog signals, but
we shall assume a digital signal. The traces given in
Figures 1 and 2 are examples of two quite different
series; Figure 2 is sampled at 100 times per second,
while the other, in Figure 1, is sampled annually.

Harmonic Analysis

An obvious idea is to model a time series
X1, X2, X3, . . . , XN , the result of observations
at times ∆t, 2∆t, 3∆t, . . . , N∆t using regression
techniques. If our interest is in cyclic effects, then we
can think of trigonometric terms like cos(2πkt/N∆t)

and sin(2πkt/N∆t) as providing the explanatory
variables in a multiple regression. Since we may not
know the periodic frequencies we could postulate a
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model of the form

Xt =
[N/2]∑

k=0

{
ak cos

(
2πkt

N∆t

)
+ bk sin

(
2πkt

N∆t

)}
,

(1)

where the constant term becomes the coefficient at
zero frequency. Notice that the highest frequency we
may observe, the Nyquist frequency, is 1/2∆t .

We can imagine performing some kind of stepwise
regression procedure to find the nonzero coefficients
and, consequently, the real frequencies. An early
example of this is [6]. If we do the calculations, then
we find that the component of the regression sum
of squares explained by cos(2πkt/N∆t) is just â2

k ,
the square of the estimated coefficient of the cosine
term. In the same way, b̂2

k is the contribution from
the sin(2πkt/N∆t) term; see [8] for details. Since
these sums of squares give the importance of the
corresponding frequency all we have to do is to plot



2 Spectral Analysis

0.12

0.1

0.08

0.06

0.04

0.02

0
0 10 20 30 40 50 60 70 80 90 100

k
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the periodogram, P(2πk/N∆t) = â2
k + b̂2

k , against
2πk/N∆t or, more simply, k. If the plot has a peak at
k, then this implies that the corresponding frequency
may well correspond to a periodic effect. Thus a spike
at frequency 2πk/N∆t implies an interesting cyclic
effect with frequency k/N∆t (or period N∆t/k).

In Figure 3 the periodogram of an ECG trace, we
see peaks in the periodogram at k = 40 and k = 80
indicating possible cyclic effects, one with period
200/40 = 5 hundredths of a second or 0.05 s and
another of 0.025 s.

Using the periodogram becomes even more attrac-
tive when we find, after some algebra, that the coef-
ficients ak and bk have particularly simple forms. If
we write our model in the usual complex form

Xt =
N/2∑

k=0

[
ak cos

(
2πkt

N∆t

)
+ bk sin

(
2πkt

N∆t

)]

=
N/2∑

k=0

{
ck exp

[
i

(
2πkt

N∆t

)]}
, (2)

where ck = ak + ibk so that the periodogram is
|ck|2 = a2

k + b2
k and in addition

ck =
(

2

N

)1/2 N∑

t=1

Xt exp

(
−2πkt

N∆t

)
,

k = 0, 1, . . . ,

[
N

2

]
. (3)

These complex trigonometric sums are widely
used in engineering and signal processing where they

are known as discrete Fourier transforms, or DFTs.
These are popular because the coefficients ck or,
equivalently, the ak and bk give a unique description
of the series; that is, if we know the c0, c1, . . . , cN

then we can reconstruct the original series since one
can show that

ck =
(

2

N

)1/2 N∑

t=1

Xt exp

(
−2πkt

N∆t

)
. (4)

Many spectral calculations are based on the DFT
of a series and because of the importance of DFTs, a
fast and efficient method of computing them, known
as the Fast Fourier transform (FFT), has been
developed.

We have seen that the coefficients ck express
the contribution of periodic components at differing
frequencies to the observed series. This can be useful
in modifying a series. If we consider (4), we could
modify a series by setting the coefficient ck to
zero for frequencies of some chosen value f0 thus
eliminating higher frequency oscillations. After using
(4) to recover the (modified) Xt using the modified
cks, the resulting series with just the lower frequency
contributions will be smoother. To demonstrate the
effect of the just lower frequencies we set all the cks
for the ECG data to zero after the 41st. The resulting
plot in Figure 4 shows the effect of this operation. For
a comprehensive account of DFTs see [9] or [16].

Angular Frequencies and Notation

We have used conventional frequencies f and have
ended up with some quite complex formulas. To
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make matters more confusing, mathematical texts
use angular frequencies, ω, measured in radians
per unit time. This approach has the advantage of
simplifying the formulas and is widely used in the
(nonengineering) literature, so giving a more uniform
notation. We shall use angular frequencies from now
on and we will also simplify matters by assuming that
sampling interval ∆t is one. This means that we use
the sampling times as the basic time measurement.
To convert from f measured in cycles per unit time
to angular frequencies ω is simple, we use ω = 2πf ,
while in the other direction f = ω/2π .

The Concept of the Power Spectrum

The clear and rather useful connections between the
observed series and sums of trigonometric terms in
the harmonic analysis above hint at a more intimate
connection. Suppose we modify the expression in (2),

Xt =
p∑

k=0

{ak cos ωk + bk sin ωk}, (5)

and think of the {ak} and {bk} as zero mean sequences
of independent random variables having variances σ 2

j .
We can regard a model of this form as an attempt
to explain the signal Xt in terms of contributions
at the “angular frequencies” ω0, ω1, ω2, ω3, . . . , ωp.
A close analogy is that of a musical instrument; a
note played on an instrument is the sum of harmonic
vibrations at different frequencies.

We can rewrite (5) as

Xt =
p∑

k=0

{ak cos ωk + bk sin ωk} =
p∑

k=−p

zk exp(iωk)

(6)

for some p, and in angular terms. Here the z’s are
complex for 0 < |j | < p, while at the end point
zp = ap. The frequencies ω−k are to be taken as
−ωk , and if we take the obvious step of writing
z−k as the complex conjugate of zk , then we have
a nice equation and the novel idea of a “negative
frequency”.

If we use this complex formulation, then we can
show that var(Xt ) = ∑p

j=0 σ 2
j , so the variance of the

process is made up of contributions from the indi-
vidual frequencies. Suppose now we imagine that the
number of frequency points in our model becomes
very large and becomes a continuous range. Then the
contributions from individual frequencies will tend to
zero and we have a smooth function which describes
the distribution of the variability over frequency. This
is an exact analogy to the cumulative distribution
function of a continuous random variable. We think
of the contribution to the total variance made in a fre-
quency band rather than at a specific frequency, thus
the band [ω, ω + δω] contributes h(ω)δω to the total
variation. Notice we have assumed that there is no
dominant frequency contributing a finite amount of
power and the contribution from any point frequency
is zero. This function h is called the power spectrum,
and describes the amount of power contributed to the
variance of the series in a narrow band.

The reader should keep in mind that the h need not
be a smooth and continuous function. If a frequency
ω contributes a finite amount of power, then the
spectrum will have a singularity or peak at that
frequency ω; indeed, a major use of the spectrum is
to locate the peak and hence find to the frequencies
which give finite power.

Properties of the Spectrum

For any second-order stationary time series we can
define a power spectrum h(ω) defined on −π ≤ ω ≤
π and

1. The power spectrum h(ω) defines the amount of
“power” or the contribution to the total variance
made by frequencies in the band [ω, ω + δω].
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2. Harmonic components with finite power produce
spikes or delta functions in h(ω).

3. The spectrum is symmetric (for real series), i.e.
h(ω) = h(−ω).

4. In the case where the power spectral h(ω) has no
spikes we can show that the spectrum h(ω) and
the autocovariance at lag k, γ (k), are related by

h(ω) = 1

2π

∞∑

k=−∞
γ (k) cos kω,

− π ≤ ω ≤ π, (7)

γ (k) =
∫ π

−π

h(ω) exp(−ikω) dω,

k = 0, 1, 2, . . . . (8)

For real processes we can simplify a little, because
γ (k) = γ (−k), to give

h(ω) = 1

2π

∞∑

k=−∞
γ (k) cos kω, −π ≤ ω ≤ π. (9)

So if we have the autocovariances we can (with
difficulty) calculate the spectrum, and vice versa.
The implication is that all the information in the
autocovariances is also contained in the spectrum, and
vice versa. Some examples of spectra are:

1. A white noise process (see Noise and White
Noise). Now h(ω) = ∑∞

k=−∞ γ (k) cos kω for
−π ≤ ω ≤ π and the autocovariances are zero
apart from the first which is σ 2 so h(ω) =
σ 2/2π , a flat spectrum.

2. A first-order autoregressive (AR) model Xt =
αXt−1 + εt , where {εt } is white noise (see
ARMA and ARIMA Models). Using the
autocovariances and some algebra we get

h(ω) = σ 2

2π(1 + α2 − 2α cos ω)
.

3. A moving average (MA) process, say Xt = εt −
βεt−1

h(ω) = σ 2(1 + β2 − 2β cos ω)

2π
.

The flat white noise spectrum shows that the
contributions to the variance are equally distributed
across the entire frequency range, while for the AR
model, here with parameter 0.5, the contributions are
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Figure 5 Three power spectra

greater from the low frequency and hence long period
end. This would imply that there are rather weak short
period effects and in consequence a smoother series
than white noise. The MA spectrum, again with a
parameter of 0.5, shows the opposite effect; the power
is concentrated towards the high frequency end of
the frequency range and in consequence we expect a
strong high frequency, i.e. short period effects giving
an irregular appearance to a realization generated by
such a model. (See Figure 5.)

The Spectral Representation

Looking back at (6) we have written the series as a
sum of complex random variables of the form Xt =∑p

k=−p zk exp(ωkt). One might ask: What happens
to this as the number of individual frequencies
becomes infinite? We can handle this by defining
a stochastic process Z(ω) which is in some sense
the accumulation of the zj s up to frequency ω. We
take the limiting form as Xt = ∫ π

−π
exp(iωt) dZ(ω),

where the process Z(ω) satisfies E[ dZ(ω) dZ(φ)] =
0 when ω �= φ and E[| dZ(ω)|2] = h(ω) dω.

This representation, known as the spectral
representation, is mainly of technical interest for
those who study the theory of spectra.

Linear Filters

Suppose we have a series {Xt } which passes into a
“black box”, which produces {Yt } as output, rather
as in the schematic in Figure 6. We could regard the



Spectral Analysis 5

Xt Yt

OutputInput

Figure 6 Black box

effect of the box as an operation on the input giving
output, say Yt = LXt . This would model many com-
mon situations; for example, the impact of a bump
on the road is modified by the suspension system to
give an output to the car occupants. The model is
so general that it is difficult to handle, so we make
two restrictions: (i) that the relationship is linear, and
(ii) that the relationship is invariant over time. While
it is not obvious, these restrictions mean, in effect,
that for any t , Yt is a weighted linear combination of
past and future values of the input, namely

Yt =
∞∑

j=−∞
ajXt−j , with

∞∑

j=−∞
a2

j < ∞. (10)

For technical details, see, for example, [11].
We call the relationship in (10) a linear filter

and much of time series analysis is concerned with
the study of such filters. Their virtue is that the
relationship between the input and output spectra is
simple. If the input series {Xt } has a power spectrum
hx(ω) and the output {Yt } a corresponding spectrum
hy(ω), then they are related by

hy(ω) =
∣∣∣∣∣

∞∑

j=−∞
aj exp(−iωj)

∣∣∣∣∣

2

hx(ω). (11)

If we write hy(ω) = |Γ (ω)|2hx(ω), where Γ (ω) =∑∞
j=−∞ aj exp(−ijω), then the function Γ (ω) is

called the transfer function or the frequency response
function, while |Γ (ω)| is often called the amplitude
gain. The squared value, |Γ (ω)|2, is known as the
gain or the power transfer function of the filter. The
argument arg{Γ (ω)} is the phase gain or just the
phase. There is rather a rich variety of nomenclature
since filters are widely used in many fields, especially
in engineering.

We can see the value of this result in a simple case.
Suppose we apply a moving average to a series, say
a five-point moving average:

Yt = Xt−2 + Xt−1 + Xt + Xt+1 + Xt+2

5

= 1

5

2∑

j=−2

Xt−j .

We know that this will remove a cycle in the data of
period 5. Now we can investigate its properties using
the transfer function. We can work out the transfer
function as follows:

5Γ (ω) = exp(−2iω) + exp(−iω) + 1

+ exp(iω) + exp(2iω)

= 1 + 2 cos ω + 2 cos 2ω,

and the squared gain is plotted in Figure 7. If this
filter is applied to a series with a cycle of period
5, i.e. frequency ω = 2π/5, then the resulting output
spectrum, given by hy(ω) = |Γ (ω)|2hx(ω), will have
a zero at this frequency and in consequence the
output series will not contain this cyclic effect.
Thus, as we expect, the moving average is a filter
that removes cycles of period 5. In addition we
see from Figure 7 that low-frequency (long-period)
effects are not diminished, while high-frequency
terms are reduced by the filter, so the filter will also
smooth the series and will have only a small effect
on long-term, low-frequency, components.

The filter above describes an action in the time
domain in frequency terms, but in some circum-
stances it is natural to work in the other direction.
Thus we might decide that the ECG trace could
be distorted by the effects of the mains frequency
(60 Hz) in our recording instrument. To eliminate this
effect we would try to find a filter with a gain which
is zero in a band around the 60 Hz mark. To find a
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Figure 7 Squared gain for a five-point moving average
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filter with a gain specified in this way requires some
work (see [4]).

We can also make the black box serve our own
purposes. Suppose our black box is a measuring
instrument with the output signal being our experi-
mental result. Suppose, further, that the instrumenta-
tion has an effect which distorts the observed signal.
We can eliminate this effect by finding the gain due
to the instrument. To do this we input a signal with
a known spectrum, say a flat white noise spectrum,
fw(ω), and find the output spectrum, fo(ω). The gain
due to the system is then just the ratio of these two
spectra, giving us the response of the instrument. This
is rather like seismic surveying where an explosion
provides an input signal which passes though rock
while the reflected noise gives an output. The aim is
to deduce the properties of the black box, the rock
though which the signal has passed.

The design of filters is of considerable importance
and much attention has been paid to the problems
involved. See [4, 5], and [13].

Estimation of the Power Spectrum

We have discussed the spectrum and its uses but have
avoided any statistics. We now consider estimation
of the power spectrum. The obvious approach is to
replace the autocorrelations in definition (9) by their
estimates, r(s), giving

ĥ(ω) = 1

2π

m∑

s=−m

r(s) cos(sω), (12)

where m is some suitable number of autocorrelations.
Depending on our choice of covariance estimates we
find that this is, approximately, a multiple of the
periodogram.

Unfortunately, the periodogram is a poor estimate
of the power spectrum. It is not a consistent estimator
and because its values at adjacent frequencies are
independent it is an erratic fluctuating function. Since
the periodogram fluctuates wildly, one possibility is
to smooth the function to make it more tractable. This
nonparametric or windowed approach (see Window
Estimate) uses as an estimate

ĥ(ω) = 1

2π

∫ π

−π

W(ω − θ)IN (θ) dθ. (13)

The window W(θ) is a suitably chosen function, with∫ π

−π
W(θ) dθ = 1 and

IN(ω) = 1

2πN

∣∣∣∣∣

N∑

t=1

Xt exp(−itω)

∣∣∣∣∣

2

is the (modified) periodogram. We choose the
functions W(θ) which are concentrated around zero
and which decay to zero as |ω| becomes large. In
fact, since the periodogram is calculated at discrete
frequency points we should really have a sum
(1/N)

∑N
j=i W(ω − ωj)IN(ωj ), the idea being to

average the periodogram ordinates near the frequency
of interest, ω. It is rather convenient, however, to use
the integral form as a notation, and this appears in
much of the literature.

The problem is to select the window function
W(θ) to ensure a reasonable estimate. For a sharply
peaked function we can approximate crudely as
follows:

E[ĥ(ω)] ≈ h(ω)

∫ π

−π

W(θ) dθ, (14)

var[ĥ(ω)] ≈ 2
h2(ω)π

N

∫ π

−π

W 2(θ) dθ, (15)

cov[ĥ(ω)ĥ(φ)] ≈ 2π

N

∫ π

−π

(ω − θ)

× W(φ − θ)h(θ)2 dθ. (16)

A fairly sharply peaked window is generally a
good idea, but if the window has subsidiary peaks, so-
called “side lobes”, then the estimate at a particular
frequency ω may be contaminated by effects at
other frequencies. The resulting distortion is called
“leakage”. To get some feel for the parameters we
require we must define the peakedness or bandwidth
of the window function. A simple definition of
the bandwidth Bw is the width of a rectangular
window having the same maximum height as W(ω)

and the same area in the frequency of interest.
Thus,

Bw = 1

W(0)

∫ π

−π

W(θ) dθ = 1

W(0)
.

Three common windows are given in Table 1.
These have differing bandwidths, etc. as can be
seen from Table 2. The shape of the window is
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Table 1 W(θ) functions

Unit Bartlett Parzen

1

2π

{
sin

(
M + 1

2

)
θ

sin(θ/2)

}
1

2πM

{
sin(Mθ/2)

sin(θ/2)

}2 3

8πM3

{
sin(Mω/4)
1
2 sin(ω/4)

}4

Table 2

Window Bandwidth
Variance

h2(ω)

Equivalent degrees
of freedom (EDF)

Unit 2(π/M) 2.00(M/N) N/M

Bartlett 2(π/M) 2M/3N 3(N/M)

Parzen 8π/3M 0.54(M/N) 3.7(N/M)

important if we are to have a well-resolved esti-
mate, i.e. one that does not change very much over
the bandwidth of the window. There have been
many arguments over the choice of window; hap-
pily in almost all cases there is very little differ-
ence.

The choice of M is problematic. Obviously, we
would like to make M as large as possible so as to
decrease the bandwidth. If we do so, then the variance
of the estimate at any frequency must increase. Thus,
we need to find some compromise value for M .
The usual pragmatic approach is to try values of M

between N/3 and N/5. As M increases, the estimate
becomes smoother and we choose a value that seems
“smooth enough”.

If there is a peak in the spectrum which is of
interest and has a bandwidth, say Bf , which we
can specify, we can choose the bandwidth W(θ), Bw,
to fit this criterion. We require Bw < Bf and take
as a reasonable choice Bw = 1

2Bf. Without a min-
imum bandwidth, Bf, any choice of the parameter
M is somewhat arbitrary. For a fixed length of
series the requirements of bandwidth and variance
are contradictory. If one decreases the other increases
and we need to come to some sensible compro-
mise.

Lag Windows

We can look at these estimates in a rather different
light if we assume that

W(θ) = 1

2π

∞∑

−∞
λj exp(−iθj).

In this case our spectral estimate can be written

h(ω) = 1

2π

M∑

j=−M

λj r(j) exp(−iθj) (17)

for some M < N . As we see, this is a weighted
sum of estimated autocorrelations, r(j), the weight
sequence {λj } being known as the lag window. We
can in consequence think of the smoothed peri-
odogram as a weighted sum of covariances, the trick
being to choose a suitable sequence {λj } or window
W(θ).

An illustration of the effects of smoothing by
changing the parameter in the spectral window is
given in Figure 8. Here we look at a fox series
of 93 annual observations [9], taken from Hud-
son Bay records. We use a Parzen window, and
M values of 0.1N , 0.2N , and 0.3N are 9, 18,
and 28.

As the truncation point decreases we have, as
expected, a smoother estimate. The 0.1N seems
rather too smooth so we concentrate on the 0.2N

value. We are being rather arbitrary but having no
background information it is not possible to set up
any bandwidth arguments to select the appropriate
smoothness. We have an apparent peak at frequency
0.26 cycles per year (1.62 radians per year) corre-
sponding to a period of around four years and a
subsidiary one at frequency 0.39.

Sampling Properties of the Smoothed Spectral
Estimate

Given that the estimates we have considered
are weighted sums of periodograms and the
periodograms are independent χ2 variables, we
would expect to be able to approximate the
distribution of our spectral estimates by a χ2

distribution. In fact:

1. The spectral estimate ĥ(ω) has a distribution
which is approximately χ2 with ν degrees of
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Figure 8 Estimates of spectrum of the fox series with three different truncation points

freedom. The equivalent degrees of freedom
(EDF), ν, is defined as

ν = 2
{E[ĥ(ω)]}2

var(ĥ(ω))
.

These are given in Table 2 for three windows.
2. Spectral estimates at least one bandwidth apart

will be assumed to be independent.

Given this approximate distribution it is easy
to produce a confidence interval for the ĥ(ω). If
we are given α, if a and b are the α/2 quantiles
of the χ2 distribution with ν degrees of freedom
say, Pr(χ2 ≤ a) = Pr(χ2 ≥ b) = α/2, then the (1 −
α)100% confidence interval is [νĥ(ω)/b, νĥ(ω)/a].
This gives a pointwise estimate rather than a
confidence interval over a frequency band. For most
cases this will suffice. One can find a band over all
frequencies and in this case the reader is referred to
[4, Chapter 6].

It is rather more satisfactory to consider
logh(ω) since the corresponding confidence intervals
[log ĥ(ω) + log(ν/b), log ĥ(ω) + log(ν/a)] have uni-
form width and are much easier to handle.

Tapering and Prewhitening

Two common techniques used for cutting down the
bias in periodogram-based estimates are prewhitening
and tapering. Prewhitening is a simple concept, the

aim being to flatten the spectrum by filtering before
estimating the spectrum. This is sensible because
the most difficult spectra to estimate are those with
sharp peaks and large ranges. In practice it is rather
more complex since to design a filter to perform
this “whitening” we need to know the form of
the function we wish to estimate. Nevertheless it
can be a valuable option and it is common for an
approximate autoregressive model to be fitted to the
data and for this to be used as a prewhitening filter.

Tapering is another bias reduction technique and
involves adjustment of the data by multiplying by
a sequence of constants {at }. The resulting values,
Yt = atXt , are then used for the spectral analysis.
If we regard the time series as extending into the
infinite future, then our finite sample X1, . . . , XN is a
tapered version of the infinite series with ht = 0 for t

exceeding N and at = 1 for t ≤ N . The periodogram
is then

1

2πN

∣∣∣∣∣

N∑

t=1

Yt exp(−iωt)

∣∣∣∣∣

2

= 1

2πN

∣∣∣∣∣

N∑

t=1

atXt exp(−iωt)

∣∣∣∣∣

2

and we can show that the smoothed spectral estimate
based on the tapered data has an effective smoothing
window of the form

∫ π

−π
D(θ)W(ω − θ) dθ , where

D(ω) = |A(ω)|2/ ∫ π

−π
|A(ω)|2 dω and A(ω) is the

Fourier transform of the taper sequence. The “finite
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taper” above has a rectangular shape whose sharp
corner gives a pronounced “ringing”. The taper
should smooth this corner and reduce the bias in the
spectral estimate.

An important and interesting extension of this
idea, called multi-tapering, was proposed by Thomp-
son [17]. The data are smoothed with a sequence
of “orthogonal tapers”, i.e. a taper which give
rise to uncorrelated periodogram estimates. The
resulting periodogram estimates can then be aver-
aged. The method appears to be very successful in
reducing bias, especially at low frequencies. For a
good account see Percival & Walden [13] and Wal-
dren [18].

Parametric Spectral Estimates

The most popular parametric estimate for the spec-
trum are the so-called “autoregressive estimates”.
These are obtained by fitting an autoregressive model
Ψ (B)Xt = at and using as a spectral estimate h(ω) =
σ 2/2π |Ψ [exp(−iω)]|2 with the model estimates of
σ and the autoregressive coefficients. A criterion is
of course required to select the order (see [10]) of
the autoregression and Akaike’s information crite-
rion (AIC) is often used. Parzen [12] suggested an
alternative CAT criterion, while Akaike [1] suggested
selecting the order that minimizes the final prediction
error (FPE). There is little useful theory to help one
choose a criterion (see [10]) while experience shows
that the procedures tend to select AR orders in the
range N/3 to N/2 for reasonable results.

A relatively simple approach is to use the
Yule–Walker equations and solve to obtain
estimates for the model

Xt + ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3

+ · · · + ϕpXt−p = εt

and then to estimate σ 2 using the following equation:

γ (0) + ϕ1γ (1) + ϕ2γ (2) + ϕ3γ (3)

+ · · · + ϕpγ (p) = σ 2.

The log of the lynx series was chosen as an
example (see Figure 9) and the spectrum is given in
Figure 10. The least squares estimates gave a model
of the form

Xt − 1.139Xt−1 + 0.508Xt−2 − 0.213Xt−3
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Figure 10 Nonparametric estimate of log lynx spectrum

+ 0.270Xt−4 − 0.113Xt−5 + 0.124Xt−6

− 0.068Xt−7 + 0.040Xt−8 − 0.134Xt−9

− 0.185Xt−10 + 0.311Xt−11 = εt ,

with residual variance 0.226. The resulting spectrum
is then

h(ω) = 0.226

2π
|1 − 1.139 exp(−iω)

+ 0.508 exp(−i2ω) − 0.213 exp(−i3ω)

+ · · · + 0.311 exp(−i11ω)|−2.

The contrast with the nonparametric estimate is
characteristic of the method, see Figures 9 and 10.
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While least squares is commonly used to esti-
mate the parameters, a variant known as “maximum
entropy” spectral estimation due to Burg [7] is pop-
ular: see also [2] and [3] for further details.

Multiple Series

We can extend our spectral techniques to more than
one series and, as in the time domain, we get a rich
and interesting theory. The drawback is that the
complexity increases.

For simplicity we concentrate on the bivariate
case, that is with a pair of stationary series Xt , Yt .
This is often written as a vector of the form Xt =
(Xt , Yt ). We assume a zero mean and covariance
matrix:

C(k) =
[

E[XtXt+k] E[XtYt+k]

E[YtXt+k] E[YtYt+k]

]

=
[

γxx(k) γxy(k)

γyx(k) γyy(k)

]
.

We also define the spectral density matrix H(ω) as

1

2π

∞∑

k=−∞
C(k) exp(−ikω) =

[
hxx(ω) hxy(ω)

hyx(ω) hxy(ω)

]
.

Here γxx(k) and γyy(k) are the autocovariances of
each series while γxy(k) and γyx(k) are called the
cross-covariances. In the same way, hxx(ω) and
hyy(ω) are the univariate or autospectra, while
hxy(ω) is the cross-spectrum.

From the definition

hxy(ω) = 1

2π

∞∑

k=−∞
γxy(ω) exp(−ikω)

= 1

2π

∞∑

k=−∞
γyx(−ω) exp(−ikω) = hyx(ω)

since γxy(k)=E[Xt , Yt+k]=E[Yr−k, Xr ]=γyx(−k),
so hxy(ω) and hyx(ω) are complex conjugates. Be-
cause we are dealing with a complex valued quantity,
hxy(ω), it is best to work in one of the traditional
representations of complex numbers, either

1. hxy(ω) = cxy(ω) − iqxy(ω), where cxy is known
as the co-spectrum and qxy as the quadrature
spectrum, or

2. The alternative polar form hxy(ω) = αxy(ω)

exp[iφxy(ω)], where αxy(ω) is the amplitude
spectrum and φxy(ω) the phase spectrum.

Most people find it useful to work with coherency
spectrum, or coherency,

c(ω) = |hxy(ω)|
[hxx(ω)hyy(ω)]1/2

and the gain

Gxy(ω) =
∣∣∣∣
hxy(ω)

hxx(ω)

∣∣∣∣ .

We use the cross-spectrum in its various guises,
usually the coherency or its modulus and gain, to
understand the relationship between series.

The modulus of the coherence measures the
strength of the relationships between corresponding
frequency components of the two series in almost
exactly the same way as a correlation coefficient. The
gain is the analog of the regression of the frequency
ω component of the first series on the second. The
lead or lag of this relationship is measured by the
slope of the phase.

We can show that the coherence is unchanged
under linear transformations. If Zt is a filtered version
of Xt , say

Zt =
(

a11(B) a12(B)

a21(B) a22(B)

)
Xt ,

then the coherency does not involve any of the filter
functions aij (z).

For a rather simpler case, suppose Xt = βYt−d +
εt . Then φxy(ω) = −ωd. This illustrates an important
point: when there is a time delay the phase spectrum
is a linear function of frequency with the slope
representing the size of the delay. If we go further
and assume that the εt process is uncorrelated with
the Yt series, then

γyx(k) = E[YtXt+k] = E[Yt {βYt+k + εt+k}]
= βγyy(k) for k �= 0,

so hxy(ω) = βhyy(ω), while hxx(ω) = β2hyy(ω) +
σ 2/2π , and hence the coherency is 1/{1 +
σ 2/(2πβ)}1/2. As we might expect, this decreases as
the variance of the added noise increases.

One important application to linear relationships
with extra noise is a slight extension of the above.
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Suppose we have Yt = ∑∞
S−∞ gsXt−s + ηt . Then

we have hyx = Gyx(ω)hxx(ω), where Gyx is the gain
defined above. In addition, if Xt and the noise series
are uncorrelated, then

hyy(ω) = |Gyx(ω)|2hxx(ω) + hηη(ω).

Now φyx(ω)= tan−1{hyx(ω)}, while the gain |hyx(ω)|
is |Gyx(ω)|hxx(ω). Thus the transfer function,
complete with the gain and the phase information, can
be computed from the spectral matrix.

As one might expect, there are rather more prob-
lems involved in estimating the spectral matrix than
in estimating the individual spectra. Another prob-
lem, the alignment of the series, arises because the
cross-covariance is not necessarily an even function
and hence its maximum need not occur at the zero
lag. For details of a suitable procedure, see [14].

Evolutionary Spectra

We have only considered stationary series when
dealing with spectra. The extension of the idea to
types of nonstationary processes is possible, but
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Figure 11 Log series

raises some interesting problems. Suppose we have
a nonstationary process and we consider a represen-
tation of the form

Xt =
∫ π

−π

exp(iωt)At (ω) dZ(ω),

where for each value of ω the sequence of func-
tions {At(ω)} has a (generalized) Fourier transform.
The evolutionary spectral density function ht (ω) is
defined as

ht (ω) dω = |At(ω)|2E[| dZ(ω)|2], −π < ω < π.

The evolutionary spectrum gives the decompo-
sition of total power in the neighborhood of time
point t .

To reduce the possibilities for the representations
of the series, Priestley suggests that At(ω) should be
a slowly changing function of time with a Fourier
transform which is concentrated about zero. This
leads to the concept of a semistationary series, which
is one for which such a representation exists.

The estimation of evolutionary spectra is a two-
stage process. First the series is filtered using a filter

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

50

100

150
Measles

Frequency

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frequency

P
ow

er
P

ow
er

0

20

40

60

80

100

120

Chickenpox

Figure 12 Periodograms



12 Spectral Analysis

centered on a frequency ω0, then the output of the
filter is averaged in the neighborhood of time t to
give the appropriate estimate. A good exposition is
given by Priestley [15] who has been responsible for
much of the development.

We use the techniques we considered above on two
series, the reported monthly cases of measles and the
reported monthly cases of chickenpox (1931–1972)
in New York City. In fact, both of the observations
are fairly skewed and we shall work with the log of
both series.

There is a fairly obvious annual cycle in both
series as can be seen from series plots and the
periodograms; see Figures 11 and 12.

If we filter out a 12-month cycle in each series
both spectra have spikes indicating power at period
240 months.

This seems quite curious, we almost include cross-
correlations with the sunspot series! What we have
done is to look at the cross spectrum between the two
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Figure 13 Spectra of smoothed series
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series; see Figure 13. As we expect at high frequen-
cies (short periods) the high coherence indicates that
the two series are very similar, they are both like
noise.

However, there is an interesting long period effect
in the coherence with a corresponding phase change;
see Figure 14. This probably reflects the fact that the
series are very similar in the long term, this is the
common 10-year effect while in the short term they
both look random.
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Sphericity Test

The equal-density contours of a p-variate normal
distribution (see Multivariate Normal Distribution)
with covariance matrix � reduce to hyperspheres
in the p-dimensional real space �p with the mean
vector µ as the center, when � = σ 2Ip. The most
common test of the sphericity hypothesis H0 : � =
σ 2Ip against H1 : � �= σ 2Ip, where µ and σ 2 are
unknown, is the likelihood ratio test, based on a
random sample of size N from the p-variate normal
distribution Np(µ, �) with mean µ and covariance
matrix �, which rejects H0 when

λ ≡ |S|N/2

(tr(S)/p)Np/2

is too small, where S is the sample covariance matrix.
Here tr(S) means the trace of the matrix S. This test
was proposed by Mauchly in 1940 [11].

For p = 2, the distribution of W ≡ λ2/N is beta
((n − 1)/2, 1), where n = N − 1; see Mauchly [11]
and Anderson [1]. Steffens [16] has suggested a
Student’s t test for this case. The exact null
distributions of W for p = 3, 4, and 6 are obtained
by Consul [3]; see also Mathai & Rathie [10], and
John [6]. The exact null distribution of W in a
series form has been derived by Nagarsenker &
Pillai [13] for general p. The asymptotic expansion
of the distribution of nρ log W under H0, where ρ =
1 − (2p2 + p + 2)/6pn, is given in Anderson [1];
the first term of this expansion is the chi-
square distribution with p(p + 1)/2 − 1 degrees of
freedom (df).

The nonnull distribution of W is obtained by
Girshick [4] in the two-root case, and by Pillai &
Nagarsenker [14] and Khatri & Srivastava [7] in the
general case. The asymptotic distribution of W under
H1 is given by Sugiura [17] and Gleser [5].

Kiefer & Schwarz [8] have shown that the above
test is Bayes and admissible (see Decision Theory).
Sugiura & Nagao [19] have proved its unbiasedness.
A special monotonicity property of its power func-
tion is obtained by Carter & Srivastava [2].

The locally best invariant test of H0 against H1

rejects H0 if T = tr(S2)/(tr S)2 is too large; see
Sugiura [18] and John [6]. The asymptotic expansion
of the null distribution of T is given by Nagao [12].
Sugiura [18] has obtained the asymptotic distribution
of T under H1.

The union–intersection principle of Roy leads
to a test that rejects H0 if (l1 + lp)2/4l1lp is too
large, where l1 and lp are the extreme roots of S;
see Srivastava & Khatri [15]. Percentage points for
the null distribution of l1/lp are given by Krishnaiah
& Schuurmann [9] for some values of the parameters.

The sphericity test discussed above can be used
to test that the covariance matrix � = (σij ) has the
following form:

σij =
{

σ 2, for i = j ,

ρσ 2, for i �= j .

Such a problem arises in a repeated measure analysis
(see Longitudinal Data Analysis, Overview). To
use the sphericity test, note that the above structure
of � is equivalent to the following: C′�C = (1 −
ρ)σ 2Ip−1, where C is a p × (p − 1) matrix, the
columns of which form an orthonormal basis of the
linear space orthogonal to the linear space spanned
by the unit vector 1 (see Orthogonality).
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Spiegelman, Mortimer

Born: December 10, 1901, in Brooklyn, New York.
Died: March 25, 1969, in New York.

Mortimer Spiegelman was an important contributor to
biostatistics, particularly in the areas of demography
and public health. His major contribution to the field
of public health and epidemiology came toward the
end of his career when he conceived of, coordinated,
edited, and carried to a successful conclusion the
publication of a series of monographs sponsored by
the American Public Health Association (APHA)
and published by the Harvard University Press. Each
monograph pertained to a specific set of diseases in
which the 1960 Census was used in a standard way
as the denominator for rates of disease. In his role
as editor of this series he used his considerable pow-
ers of persuasion with the authors of the monographs
to ensure comparability among them and to make
certain that the work on each was completed. Six-
teen monographs resulted from this effort, covering
a wide range of topics as evidenced by the follow-
ing titles: Accidents and Homicides; Infectious Dis-
eases; Trends and Variations in Fertility in the U.S.;
Infant, Perinatal, Maternal, and Childhood Mortal-
ity; The Epidemiology of Oral Health; Tuberculosis;
Syphilis and Other Venereal Diseases; Cardiovascu-
lar Diseases in the U.S.; The Frequency of Rheumatic
Diseases; Digestive Diseases; Mental Disorders and
Suicide; Cancer in the U.S.; The Epidemiology of
Neurological and Sense Organ Diseases; Mortality
and Morbidity in the U.S.; Differential Mortality in
the U.S.

In 1970, the Mortimer Spiegelman Gold Medal
Award was established by his family and has been
presented annually by the Statistics Section of the
APHA to a young statistician (under 40 years of age)
who has made important contributions to the field of
health statistics. This has been, from the beginning,
a coveted award and the list of awardees is most
impressive. Many of the awardees are now heads
of departments of biostatistics, deans or associate
deans of schools of public health, and heads of large
statistical agencies. A list of awardees from 1970 to
2001 follows:

1970 Edward Perrin
1971 P.A. Lachenbruch

1972 Manning Feinleib
1973 Joseph Fleiss
1974 Gary Koch
1975 Jane Menken
1976 A.A. Afifi
1977 David Hoel
1978 Ross Prentice
1979 Mitchell Gail
1980 Norman Breslow
1981 Robert F. Woolson
1982 Joel Kleinman
1983 J. Richard Landis
1984 Stephen Lagakos
1985 John Crowley
1986 Anastasios Tsiatis
1987 L.J. Wei
1988 Thomas Fleming
1989 Colin Begg
1990 Kung-Yee Liang
1991 Scott Zeger
1992 Ronald Brookmeyer
1993 Martin Tanner
1994 Louise Ryan
1995 Christopher Portier
1996 Jeremy Taylor
1997 Margaret Pepe
1998 Peter Bacchetti
1999 Danyu Lin
2000 Bradley Carllin
2001 Daniel Weeks

Mr Spiegelman was a native of Brooklyn, New
York, and received a masters of engineering degree
from the Polytechnic Institute of Brooklyn in 1923
and a masters of business administration degree from
Harvard University in 1925. He spent 40 years on
the staff of the Metropolitan Life Insurance Com-
pany where he published many articles and volumes
that attained national and international recognition.
He coauthored with Dublin and Lotka The Money
Value of Man and Length of Life, both of which
have been standard reference volumes. Although his
employment was in an organization that was con-
cerned primarily with actuarial science, his interests
were much broader. He published two editions of
Introduction to Demography, which has been a stan-
dard text in demography. The second edition, in
particular, is oriented toward the general demogra-
pher and student of public health statistics rather
than toward the actuary. He did extensive work on
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life tables including what he referred to as “seg-
mented generation” mortality. This approach allows
one to follow the mortality experience of a given age
group over successive 10-year periods as an alterna-
tive to analyzing trends in the current mortality. His
development of the APHA monograph series further
illustrates the breadth of his interests. Mr Spiegelman
was a Fellow of the Society of Actuaries, Fellow of

the American Statistical Association, and Fellow of
the American Public Health Association. Each year,
upon the presentation of the Mortimer Spiegelman
Award, he is remembered again for his extraordinary
contributions to public health statistics.

EARL POLLACK



Spline Function

Suppose we have n observations (tj , yj ), j =
1, 2, . . . , n, where yj and tj are related by the model

yj = µ(tj ) + ej , (1)

where {ej } are zero mean uncorrelated random
variables with common variance σ 2. Here µ(t)

is usually known as the regression function. If
µ(t) = ∑p

j=1 βjxj (t), where x1(t), x2(t), . . . , xp(t)

are known functions, then the estimation of
(β1, β2, . . . , βp) given (y1, y2, . . . , yn) is a classic
multiple regression problem. This is known as a
parametric regression problem. In the nonparametric
regression context one assumes that µ(t) belongs
to some infinite dimensional collection of functions.
For example, µ may be differentiable with square
integrable second derivatives. One can estimate µ(t)

by considering the estimators of the form

µλ(t) =
n∑

j=1

K(t, tj , λ)yj , (2)

where K(t, tj ; λ), j = 1, 2, . . . , n, is a collection of
weight functions. The weights are derived from a sin-
gle function K(·) that is independent of the design.
These are called kernel estimators. A detailed discus-
sion of these estimators can be found in the book by
Eubank [1, chapter 4]. An alternative approach is the
spline approach.

Smoothing splines are related to polynomial
regression. Consider model (1), and assume a ≤ t1 ≤
· · · ≤ tn ≤ b, and µ(t) belongs to W

(m)
2 [a, b]. Hence

W
(m)

2 [a, b] is the set of all functions on [a, b], where
the j th derivative, µj(t), j = 0, 1, 2, . . . , m − 1, is
absolutely continuous, and µm(t) ∈ L2[a, b]. One can
expand µ(t) in the form

µ(t) =
m−1∑

j=0

θj t
j + Rem(t), (3)

where

Rem(t) = [(m − 1)!]−1
∫ b

a

µ(m)(x)(t − x)m−1
+ dx,

(4)

(x)+ = max{0, x}. If Rem(t) can be neglected, then
estimating µ(t) reduces to the estimation of the

coefficients {θj } of the polynomial
∑m−1

j=0 θj t
j . One

can show

sup
t∈[a,b]

|Rem(t)| ≤ c[Jm(µ)]1/2,

where c depends on m but not on µ. Here Jm(µ) =∫ b

a
[µ(m)(t)]2 dt . We can now find an estimate µ by

minimizing (1/n)
∑n

j=1[yj − f (tj )]2 subject to the
condition that Jm(µ) ≤ ρ for some ρ ≥ 0. Here f ∈
W

(m)

2 {a, b}. This is essentially equivalent to estimat-
ing µ by minimizing

1

n

n∑

j=1

[yj − f (tj )]
2 + λ

∫ b

a

[f (m)(t)]2 dt (5)

over f ∈ W
(m)
2 [a, b]. This is also called the rough-

ness penalty approach (see [2]) and λ > 0, is called
the smoothness parameter. The function f that min-
imizes (5) is unique and is a natural spline, and it is
clear that splines are related to polynomials. Splines
are defined as piecewise polynomials subject to a
maximum number of continuity constraints.

A spline of order r with knots of ζ1, ζ2, . . . , ζk is
defined to be any function

g(t) =
r−1∑

i=0

θi t
i +

k∑

i=1

δi(t − ζi)
r−1
+ . (6)

This definition of a spline is equivalent to the follow-
ing specifications:

1. g(t) is a piecewise polynomial of order r on any
subinterval [ζi, ζi+1];

2. g(t) has r − 2 continuous derivatives; and
3. g(t) has an (r − 1)th derivative that is a step

function with jumps at ζ1, ζ2, . . . , ζk.

If we impose further restrictions on g(t) we would
arrive at natural splines. A natural spline of order
r = 2m with k = n knots at (ζ1, ζ2, . . . , ζn) is defined
as a polynomial g(t) which satisfies conditions 1–3
and further satisfies the extra condition, namely:

4. g(t) is a polynomial of order m outside [t1, tn].

We can define Sr(t1, t2, . . . , tk) as the set of all
functions of the form (6) with knots (ζ1, ζ2, . . . , ζk).
We note that (1, t, t2, . . . , tn−1, (t − ζ1)

n−1+ , . . . (t −
ζk)

r−1+ ) form the basis of this space. We can denote
the collection of all natural splines with knots at
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(t1, t2, . . . , tn) by S2m(t1, t2, . . . , tn) and this is a sub-
space of S2m(t1, t2, . . . , tn).

Let (x1(t), x2(t), . . . , xn(t)) be the basis of
S2m

1 (t1, t2, . . . , tn). Then one can write

xj (t) =
m−1∑

i=0

θij t
i +

n∑

i=1

δij (t − ti )
2m−1
+ , (7)

and the minimizer f that minimizes (5) is of the form
[1, p. 205]

fλ(t) =
n∑

j=1

βλjxj (t), (8)

where β ′
λ = (βλ1, βλ2, . . . , βλn) and is the solution of

(x′x + nλ�)βλ = x′y, (9)

Ω = (
∫ b

a
x

(m)
i (t) x

(m)
j (t) dt ; i, j = 1, 2, . . . , n) and

y′ = (y1, y2, . . . , yn). We note that the above solution
depends on the smoothness parameter λ, and one
can estimate λ by the method of cross validation.
We refer to the books of Green & Silverman [2]
and Eubank [1] for actual numerical evaluations, and
also to several papers by Wahba referred to in the
those books.

One interesting application of the above approach
is in the context of time series [3, 4]. Suppose we
have a zero mean second order discrete parameter
Gaussian time series (x1, x2, . . . , xn). Let R(s) =
cov(xt , xt+s) and let

f (w) = 1

2π

∞∑

−∞
R(s) exp(isw),

and let g(w) = ln f (w). Consider the problem of
estimation of g(w). It is well known that the peri-
odogram I (w), where

I (w) = 1

2πn

∣∣∣∣∣

n∑

t=1

xt exp(itw)

∣∣∣∣∣

2

provides an unbiased estimator of f (w), but it
is not a consistent estimator (see Spectral Analy-
sis). Hence one can estimate f (w) by smoothing
I (w) using a set of suitably weighted functions.
Alternatively, as done earlier, one can use a spline
approach [3, 4].

Let us estimate g(w) at the frequencies
wj = 2πj/2n, j = −(n − 1), . . . , 0, 1, 2, . . . , n. To
a good approximation, we can write I (j) =
I (wj ) = f (wj )Uj , where Uj , j = 1, 2, . . . , n − 1,
are independent, identically distributed as chi-square
random variables. Let yj = lnIj + Cj , Cj = C be
the Euler constant for j = 1, 2, . . . , n − 1, and C0 =
Cn = (ln2 + C)/π . Then

yj = g(wj ) + εj , (10)

where εj = lnUj + cj . The model (10) is similar
to (1), and estimating the logarithm of the spectral
density is similar to the estimation of µ(tj ) in (1).
We refer to [3] and [4] for further details.
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Introduction

Assume we have observations (xi, yi), i = 1, . . . , n,
on a (one-dimensional) regressor variable x and a
response variable y, that follow the model yi =
r(xi) + εi , where the εi’s are i.i.d. errors and r(·) is an
unknown regression function. This problem is called
a nonparametric regression problem if we allow
the regression function r(·) to belong to some infinite
dimensional collection of functions. For example, we
may assume that r(·) is differentiable or differentiable
with a square integrable derivative, and so on.

Over the past few decades, several methods for
estimating r(·) have been proposed and studied inten-
sively. Among these methods are kernel smoothers,
orthogonal series estimators, wavelet smoothers, and
spline smoothers. This entry provides a brief descrip-
tion of the latter by discussing regression splines,
smoothing splines, and penalized splines.

Most (if not all) regression smoothing methods
mentioned in the previous paragraph can be viewed
as trying to estimate the response variable via

ŷi = â1f1(x) + â2f2(x) + · · · + âkfk(x),

i = 1, . . . , n, (1)

where the ŷi’s are the fitted values, the fi(·)’s are
some basis functions (that depend on the smoothing
method used) and the âi’s are estimated coefficients.
The way the âi’s are estimated also differs from
method to method. Spline smoothing methods typ-
ically use either ordinary least squares or ridge
regression to estimate the coefficients; as basis func-
tions fi(·), they use (piecewise) polynomials. Note
that if the coefficients âi’s were calculated by ordi-
nary least squares, then k has the interpretation as
being the degrees of freedom of the fit; otherwise, it
would be necessary to resort to approximate degrees
of freedom for the fit.

An example of a spline smoother is given in
Figure 1 using the follicle data set from [1]. This data
set contains information on the number of ovarian
follicles counted from sectioned ovaries of women
of various ages. Here, age was used as the regressor
variable, and the number of ovarian follicles, on a log

scale, as the response variable. The figure shows the
data with a smoothing spline superimposed; details
on how this was done using the R software [32] is
given at the end of this entry. From this figure, it is
clear that there is a nonlinear relationship between
these two variables.

Preliminaries

To fix notation, a spline function s(·) of order p + 1
with knots at τ1 < τ2 < · · · < τm is defined to be any
function such that (see also [36])

1. is piecewise polynomial of order p + 1 on any
subinterval [τi, τi+1];

2. has p − 1 continuous derivatives; and
3. whose pth derivative is a step function with

(possible) jumps at τ1, . . . , τm.

An important subset of spline functions, called
natural spline functions, is defined by one further
restriction. If p + 1 = 2q is even, then s(·) is a
natural spline if, in addition to conditions 1 to 3, it
also fulfills the following condition:

4. s(·) is a polynomial of order q outside of [τ1, τm].

For illustrative and theoretical purposes, it is often
convenient to parameterize spline functions using the
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Figure 1 The picture shows a spline smooth fitted to the
data on the number of ovarian follicle for women of various
ages. The age of the women is depicted on the horizontal
axis and the logarithm of the number of ovarian follicles is
shown on the vertical axis
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truncated power basis:

s(x) = β0 + β1x + · · · + βpxp +
m∑

i=1

γi(x − τi)
p
+,

(2)

where (x − τi)+ = max(0, x − τi), and (x − τi)
p
+ =

{max(0, x − τi)}p.
Any spline function of order p + 1 with knots

τ1, . . . , τm can be expressed in the form (2). This
shows that the space of spline functions of order p +
1 with knots at τ1 < τ2 < · · · < τm is a m + p + 1-
dimensional space. Hence, since condition 4 imposes
p + 1 = 2q constraints, the space of natural spline
functions of order p + 1 with m given knots is an
m-dimensional space.

For practical purposes, it is usually preferable to
use other basis functions that have better numerical
properties, for example, B-splines (see, among others,
[4] and [7]) or the Demmler–Reinsch basis functions
(see, among others, [10]). Basis function such as B-
splines also provide an easier parameterization of
natural splines. To represent natural splines using (2),
one would have to impose some awkward constraints
on the parameters β0, . . . , βp, γ1, . . . , γm.

The next sections discuss some of the main
approaches to spline smoothing; more details can
be found in the books of Eubank [10], Gu [15],
Wahba [48] and some chapters of Schimek [42]. Dis-
cussion on spline smoothing techniques can also be
found, among others, in [13, 17, 18, 35] and [41],
although these books concentrate more on statistical
applications of spline smoothing.

Regression Splines

Regression spline smoothing is most conveniently
discussed using representation (2). After choosing p

(typically p = 3) and the locations for the knots,
the problem of estimating r(·) reduces to a multiple
linear regression problem with design matrix,

X =




1 x1 . . . x
p

1 (x1 − τ1)
p
+ . . . (x1 − τm)

p
+

1 x2 . . . x
p

2 (x2 − τ1)
p
+ . . . (x2 − τm)

p
+...

...
...

...
...

1 xn . . . x
p
n (xn − τ1)

p
+ . . . (xn − τm)

p
+



 .

(3)

Together with the vector Y = (y1, . . . , yn)
′ of res-

ponses, we can calculate estimates (β̂ ′, γ̂ ′) =

(β̂0, . . . , β̂p, γ̂1, . . . , γ̂m) using least squares regres-
sion:

minimize
β,γ

(
Y − X

(
β

γ

))′ (
Y − X

(
β

γ

))
.

To estimate r(·) at an arbitrary point x0, we just
evaluate

r̂(x0) = β̂0 + β̂1x0 + · · · + β̂px
p

0 +
m∑

i=1

γ̂i (x0 − τi)
p
+.

(4)

The advantage of this approach to spline smooth-
ing is that the parameter estimates are least squares
estimates and, hence, to study the regression esti-
mate r̂(·), one has the power of multiple linear regres-
sion theory available.

Not surprisingly, the biggest difficulty with this
approach is the choice of the number of knots and
their placement. Choose too many knots and the
regression estimate r̂(·) may show spurious features
and is too wiggly, that is, the estimate shows too
much variability. With too few knots the regression
estimate is too restricted and may not be able to detect
some important features of the underlying regression
function r(·), that is, the estimate has too much bias.
For some data sets, empirical evidence indicates that
regression spline estimates that differ with respect to
the placement of knots but not their number may vary
markedly and give different impressions about the
underlying regression function.

Thus, much research has focused on how to
select the number of knots and where to place these
knots. Essentially, two approaches to this problem
exist. The first approach tries to choose the knots
τ1, . . . , τm from among the observed regressor vari-
ables x1, . . . , xn. This can be done by traditional vari-
able selection tools as proposed by Smith [44] (see
also [46]), by Bayesian variable selection approaches
[6, 43], or by other recently proposed variable selec-
tion methods such as the LASSO [28]. The second
approach allows the knots τ1, . . . , τm to freely vary
within the range of the observed regressor variables;
see [24, 25, 31] and the references therein.

Simulation studies that compare regression splines
with other smoothing methods and compare some
of the different knot selection schemes are reported,
among others, in [2] and [49].



Spline Smoothing 3

Smoothing Splines

Smoothing splines try to estimate r(·) by minimizing
the residual sum of squares over a certain space of
functions, typically, for technical reasons, a Sobolev
space, that is, a space of functions with derivatives up
to order q and the integral of the squared qth deriva-
tive being finite. Unrestricted minimization, however,
would lead to a nonunique estimate, as any func-
tion in that space that interpolates the yi’s would be
a solution. To avoid this nonuniqueness, a penalty
is imposed on the roughness of the regression esti-
mate r̂(·) with the natural roughness measure being∫ {r(q)(u)}2 du, where r(q) is the qth derivative (see
Penalized Maximum Likelihood).

Thus, smoothing splines are the solution to the
following optimization problem:

minimize
r(·)

n∑

i=1

(yi − r(xi))
2 + λ

∫
{r(q)(u)}2 du, (5)

where λ > 0 is given. Here, λ controls the influence
of the penalty term and hence the smoothness of the
solution of (5).

It can be shown that the solution to (5) is a nat-
ural spline of order p + 1 = 2q with n knots and
the set of knots equals the set of observed regres-
sor variables. (Here, we assume for simplicity that
the xi’s are distinct.) Hence, problem (5) reduces to
a finite dimensional minimization problem. Specifi-
cally, if b1(·), . . . , bn(·) denotes a basis for the natural
splines of order 2q with knots at x1, . . . , xn (e.g. the
B-splines basis), then we can estimate r(·) at an arbi-
trary point x0 as

r̂(x0) =
n∑

i=1

β̂ibi(x0), (6)

where in this case, the parameter estimates β̂1, . . . , β̂n

are obtained from

minimize
β

(Y − Xβ)′ (Y − Xβ) + λβ ′Kβ

with

X =





b1(x1) . . . bn(x1)

b1(x2) . . . bn(x2)...
...

...
b1(xn) . . . bn(xn)





and

K =
(∫

b
(q)

i (u)b
(q)

j (u) du

)n

i,j=1

. (7)

Thus, we see that smoothing splines are essen-
tially ridge regression estimators. The theoretical and
statistical properties of smoothing splines are dis-
cussed in depth in [10, 11, 48], and the references
given therein.

In (5), the smoothing parameter λ controls the bal-
ance between the residual sum of squares and the
roughness penalty. If λ is small, the residual sum of
squares term dominates (5) and the regression esti-
mate will be rough and wiggly, that is, very variable,
and will nearly interpolate the yi’s. However, for a
large λ, the penalty term will dominate (5) and the
regression estimate tends, in the limit λ → ∞, toward
a polynomial of order q.

Hence, to calculate a smoothing spline for some
given data, one has to choose q and λ. A popular
choice is q = 2 leading to cubic smoothing splines.
Once q and λ are chosen, fast and numerically stable
algorithms exist to calculate the solution of (5); see
[21, 22, 37, 38]. The case q = 2 is also discussed
in [13].

From a practical point of view, the choice of λ

is much more crucial since this parameter con-
trols the smoothness of the estimate. A popular
way to choose λ using the data is via general-
ized cross-validation, originally proposed in [3]. A
recent discussion on smoothing-parameter selection
for smoothing splines is given in [47], and a simula-
tion study comparing different methods for selecting
the smoothing parameter can be found in [23].

Penalized Splines

While regression splines use only a few knots (whose
placement is important), smoothing splines use a
large number of knots (typically n) and achieve
smoothness of the regression estimate by imposing
a roughness penalty. A middle way, now popularized
under the name “penalized splines”, between these
two extremes was suggested in [29, 30]; but see also
[9] and [40].

These approaches use a moderate number of knots,
more than a regression spline would use but less than
smoothing splines. With such a number of knots, a
regression spline estimate would be too rough and,
hence, these approaches also incorporate a roughness
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penalty. Typically, this roughness penalty is discrete
and not continuous as in the case of smoothing
splines. For example, [9] uses a B-spline basis with
equidistant knots and penalizes the sum of squared
higher-order finite differences of the coefficients of
adjacent B-splines.

Here, we describe in more detail the approach
given in [40], which is best explained using the
truncated power basis (2). The knots are selected
from the observed xi’s and details about this are
given below. The design matrix X is the same as
in the section “Regression Splines” and the response
vector is Y . In addition, we require a smoothing
parameter λ whose value [40] is allowed to vary
from knot to knot to achieve spatial adaptiveness.
Here, for the sake of simplicity, we describe a simpler
version. Ruppert and Carroll [40] suggest the use
of estimates (β̂ ′, γ̂ ′) = (β̂0, . . . , β̂p, γ̂1, . . . , γ̂m) that
solve the equation

minimize
β,γ

(
Y − X

(
β

γ

))′ (
Y − X

(
β

γ

))
+ λγ ′γ.

To estimate r(·) at an arbitrary point x0, we just
evaluate

r̂(x0) = β̂0 + β̂1x0 + · · · + β̂px
p

0 +
m∑

i=1

γ̂i (x0 − τi)
p
+.

(8)

This shows that, like smoothing splines, penalized
splines are essentially ridge regression estimators. To
solve this ridge regression problem in a fast and
numerical stable manner, the algorithms described in
[39] and [50] can be used. The theoretical and statis-
tical properties of penalized splines are discussed in
depth in the references given above. It can be shown
that the approaches in [9] and [40] are identical if the
xi’s are equidistant.

A suggestion is to choose the number of knots m

to be in the range 5 to 40 and to set τi to the
i/(m + 1)th sample quantile of the unique xi’s; see
[40]. Another suggestion is to use m = min(n/4, 35)

knots and to choose τi as the (i + 1)/(m + 2)th
sample quantile of the unique xi’s. The question on
how to choose the number of knots is further explored
in [39]. However, it seems that, as long as m is
large enough, the number and placement of the knots
are not as important as the choice of the smoothing
parameter λ.

As for smoothing splines, λ is usually chosen by
optimizing some criterion such as, say, generalized
cross-validation. However, it seems that there is an
intrinsic relation between mixed models and smooth-
ing procedures, as first noted in [45]. For penalized
splines, this relationship is thoroughly explored in
[41]. This approach relates the smoothing parame-
ter λ to the variance of certain random effects in
a mixed model and, thus, leads to a new way for
automatically choosing λ, which seems promising.
Details of this approach are discussed in [41] and
the references given therein.

Extensions and Generalizations

We note further extensions and generalizations of
spline functions. The ease with which spline functions
can be extended and adapted to more complicated
settings is one of the reasons why they are popular
for regression smoothing.

Pseudo splines, proposed in [16] and which have
not been discussed here, are related to penalized
splines.

Splines can be used in multivariate smoothing
problems where one would want to estimate a regres-
sion function of several parameters. Here, essentially
two approaches exist – tensor splines, and thin-plate
splines. Details can be found, among others, in [12,
14, 27].

Splines can be used as building blocks for more
complicated models, for example, (generalized) add-
itive models [17] or semiparametric models [41].
They can also be used to extend well-known models
such as generalized linear models; see [13]. How-
ever, these more complicated models typically use
iterative methods to calculate the final estimates and
care has to be taken with the choice of convergence
criteria. Problems that can arise if these convergence
criteria are not stringent enough are discussed in [8]
which compares three different approaches that use
spline smoothing, in an ongoing study that has major
implications for public health decision making.

Finally, it is also straightforward to incorporate
qualitative constraints into the regression estimate,
such as monotonicity (see, among others, [19] or
[33]). Constraints can be incorporated in essentially
two ways. Either one restricts the function space over
which (5) is minimized to a suitable function space
that contains only functions that have the desired
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property (see, among others, [5] and [26]), or one can
modify the penalty term in (5) such that the penalty
term enforces the desired property onto the regression
estimate (see [20] and [34]).

Notes

The figure shown in the introductory section was produced
using R [32] by the following code:

library(sm)
provide.data(follicle)
plot(Age, log(Count))
follicle.spl <- smooth.spline(Age,

log(Count))
lines(follicle.spl)

To run this code snippet, the R installation must include
the additional package sm.
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Split Plot Designs

The term “split plot” derives from agricultural exper-
iments in which investigators test one treatment, such
as a method of irrigation, on large plots of land
referred to as whole plots. These whole plots then
often can be separated into smaller subplots or split
plots to test a second treatment, such as a type of
fertilization, as part of the initial or primary exper-
iment [11]. Assignment of treatments requires two
stages. First, treatment A, with a levels, is assigned
randomly (see Randomization) to the whole plots
(there are ar whole plots or r replicates). Then,
treatment B, with b levels, is assigned randomly
to the split plots or subplots, so that every whole
plot has a subplot receiving each of the b lev-
els of treatment B. These investigations possess a
“nested design”, since the treatment applied to the
subplots is “nested” within the treatment applied to
whole plots. The essential feature within the agricul-
tural context is the two-stage randomization: whole
plots are assigned randomly to treatment and each
whole plot receives all of the subplot treatments. This
basic design is seen to have applications in areas of
research, such as engineering and epidemiology, that
extend beyond the agricultural framework. In these
areas, some researchers have employed the term “split
unit”, instead of “split plot”, to describe the study
design [1].

We now present four examples to demonstrate the
wide applicability of the split plot design. In each
case, we measure some quantity (such as yield in
bushels per acre) which we denote as Yijk meaning
the ith replication for the kth subplot of the j th whole
or main plot.

1. Three fields are selected from each of five farms
to test the effects of herbicides and insecticides
on yield. Each of the three fields is subdivided
into four plots. Three concentrations of herbi-
cides are assigned randomly to the three fields,
and four different insecticides are assigned ran-
domly to each of the four subplots within each
field [8]. Yijk represents the yield per acre. This
example demonstrates the classical split plot
design as it developed within the agricultural
framework [3]. The whole plots are represented
by the three fields from each of the five farms.

The split plots are represented by the four divi-
sions within each field. Treatment A (a = 3) is
the application of the three herbicide concentra-
tions, and treatment B (b = 4) is the application
of the four insecticides. There are five replicates
(r = 5) represented by the five selected farms.

2. To measure the activated life of batteries, an
engineer randomly assigns 18 batteries to be
examined at three different temperatures. At each
temperature, the battery is tested using four elec-
trolytes [10]. Yijk represents the life of the bat-
tery under specified testing conditions. For this
application, the whole plot corresponds to the
particular battery, and the split plots to the four
different electrolytes used in each battery tested.
Treatment A becomes the temperature for testing
(a = 3) and treatment B becomes the electrolyte
applied (b = 4). There are six replicates (r = 6),
representing the number of batteries tested at
each temperature–electrolyte combination. Here
we identify a split plot as a repeat test on the
same experimental unit.

3. To study the effects of population density or
crowding on the prevalence of upper respiratory
tract infection, six families are chosen randomly
from each of three neighborhoods (18 fami-
lies in total) that are classified as overcrowded,
crowded, or uncrowded [1]. Each family consists
of a mother, father, and three children, designated
1, 2, and 3 by descending age. Yijk is the num-
ber of positive swabs for pneumococcus. For this
application the whole plot is represented by the
family, seen as a unit and the split plot by the
family member. Treatment A (a = 3) becomes
the level of crowding and treatment B (b = 5),
the status within the family (mother, father, or
child 1, 2, or 3). There are six replicates (r = 6),
representing the six families from each of the
different neighborhoods. Here, we replace ran-
dom treatment assignment with sampling strata
(see Stratification).

4. To determine sex differences in levels of insulin
growth factor-one (IGF-1), an investigator selects
one group of males and one group of females.
Blood samples are drawn from each participant,
and each sample split into two aliquots. Each
of the two aliquots is assigned randomly to dif-
ferent laboratories, and each laboratory supplies
an IGF-1 determination. Yijk is the determina-
tion of IGF-1. For this application, the whole
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Table 1 IGF-1 determinations at two laboratories, by sex

Replicate 1 2 3 4 5 6 7 8 9 10

Males

Laboratory 1 152 119 119 113 131 117 134 136 112 118
Laboratory 2 149 117 122 119 131 109 140 142 126 126

Females

Laboratory 1 163 169 150 173 163 158 145 151 173 190
Laboratory 2 156 163 151 169 170 146 155 148 164 189

plot is represented by the blood sample, and the
split plot is represented by the aliquot. Treatment
A (a = 2) becomes gender, a stratified sam-
pling, and treatment B (b = 2), the laboratory.
Ten replicates (r = 10) are conducted for each
laboratory–sex combination. The determinations
presented in Table 1 will be used to demonstrate
numerical calculations. (These are simulated data
based on an actual experiment.)

Split Plot Analysis

We now examine data collected from a split plot
design format using a split plot analysis of variance.
The analysis owes its derivation to the split plot
model, which we represent by the following equation:

Yijk = µ + ρi + αj + βk + (ρα)ij + (αβ)jk + eijk,

(1)

where µ is a constant depicting the “grand mean”,
and ρi, αj and so on, are parameters representing
“effects”. For example, αj represents the effect of
treatment A at level j , and βk represents the effect of
treatment B at level k. The effects may be fixed, ran-
dom, or a mixture of both [12]. We assume that the
ρi and (ρα)ij effects are random. Some researchers
refer to this as the fixed-effects model [12], while
others label it the random block-effects model [9].

We make the following assumptions:

1. The ρi are independent N(0, σ 2
ρ ) (see Normal

Distribution).
2. The (ρα)ij are distributed N(0, σ 2

ρα), and∑b
j=1(ρα)ij = 0 for every i.

3. The eijk are independent N(0, σ 2).
4. The ρi, (ρα)ij , and eijk are mutually indepen-

dent.

The additional fixed effects in the model are such
that:

1. The αj are constants with
∑a

j=1 αj = 0.

2. The βk are constants with
∑b

k=1 βk = 0.
3. The (αβ)jk are constant with

∑a
j=1(αβ)jk = 0

for every k, and
∑b

k=1(αβ)jk = 0 for every j .

With these assumptions, E(Yijk)=µ + αj + βk +
(αβ)jk . All observations have the same variance
(var(Yijk) = σ 2

ρ + σ 2
ρα + σ 2). Observations within a

whole plot have a constant correlation, (σ 2 +
σ 2

ρα)/(σ 2 + σ 2
ρ + σ 2

ρα).
The general analysis of variance for the split plot

design is presented in Table 2, and in Table 3 is pre-
sented the specific analysis of variance for the data
in Table 1. The whole plots comprise ar = 20 units,
with 19 degrees of freedom (df) for between whole-
plot comparisons. These 19 df among whole plots can
be partitioned further into r − 1 = 9 df for replicates;
a − 1 = 1 df for treatment A; and (a − 1)(r − 1) =
10 df for error in whole plot comparisons. Within
each whole plot, there are (b − 1) = 1 df associ-
ated with variation within the whole plot, giving a
total of ar(b − 1) = 20 df for comparisons within
whole plots. These 20 df are partitioned further into
b − 1 = 1 df for treatment B, (a − 1)(b − 1) = 1 df
for the interaction between treatments A and B,
and a(b − 1)(r − 1) = 18 df for error in whole-plot
comparisons.

There are three hypotheses of interest concerning
the effects of treatments when using split plot designs:
(i) no effect of treatment A; (ii) no effect of treatment
B; and (iii) no interaction effect. When these three
null hypotheses are true, we derive the F statistics
presented in Table 2. The correctness of these tests
can be seen intuitively by examining the expected
mean squares provided in the table. For example,
when there are no main-plot effects, all of the αj
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Table 3 Analysis of variance for data in Table 1

Source SS df MS F P

Gender
comparisons
Gender 12 744.9 1 12 744.9 31.58 0.0003
Replicates 1 954.9 9
Error (gender) 3 632.1 9 403.6

Laboratory
comparisons
Lab 0.9 1 0.9 0.04 0.8420
Interaction 72.9 1 72.9 3.31 0.0854
Error (laboratory) 396.2 18 22.0

Total 18 801.9 39

are 0, so the MSA and MSE(A) are independent
with the same expected value, (σ 2 + bσ 2

ρα). Table 3
documents a sizable gender effect (F = 31.58, P =
0.0003), but no effect due to laboratory assignment
(F = 0.04, P = 0.842) or to laboratory by sex inter-
action (F = 3.31, P = 0.0854).

Table 2 demonstrates an important feature of the
split plot design: comparisons can be made more
precisely within whole plots, including comparisons
of interaction effects of treatments, than between
whole plots. When comparing the average IGF-
1 for males with that for females in example 4,
we compare the mean among males to the mean
among females. Using common notation, we state the
comparison as follows: Y ..1 − Y ..2. The variance for
the difference uses the estimator of σ 2 + bσ 2

ρα . To
compare the two laboratories. we use the difference
in average IGF-1 determinations, Y ..1 − Y ..2. The
variance of this difference uses the estimator of
σ 2, which is clearly smaller than σ 2 + bσ 2

ρα . These
examples demonstrate that the estimations of within-
plot differences are more precise than estimations
between plots. We show this theoretically by making
the simple assumption that all observations have
variance σ 2, and that each pair of observations within
a whole plot has the correlation ρ [3]. This feature
of the split plot design leads some investigators to
advocate its use when the estimation of one effect
takes precedence over others [10, 12].

Extensions and Related Analyses

There are many situations for which the term
“split plot” is genuinely descriptive of the analyses

concerned, as is the case with our examples provided
above. The data fit nicely into the classical split plot
design model. The design and analytic method as
employed in these examples, however, have limited
application. It may be advantageous to extend the use
of split plot design to perform four additional types
of analyses: (i) to achieve additional levels of nest-
ing; (ii) to adjust for covariates using an analysis of
covariance; (iii) to extend distributional assumptions
beyond normal distributions; and (iv) to generalize
assumptions concerning the correlation structure of
data.

In our examples, we assume that each whole plot
is split into subplots and that the subplot receiv-
ing treatment B is nested within the whole plot
receiving treatment A. We can extend this con-
cept to design studies in which each subplot is
further divided into c sub-subplots. We then nest
treatment C (at c levels) within treatment B. The
resulting design is referred to as a split-split plot
design [6]. Theoretically, the division of split plots
into smaller and smaller subplots can continue indef-
initely.

When conducting observational studies, we may
find it necessary to adjust for a covariate by
measuring its effects as part of the split plot
design. This is accomplished by including additional
terms for covariate effects in the model specified
in (1) [6, 7].

To derive the F statistics in Table 2, we assume
data from a normal distribution. We can however,
employ (1) with the assumptions of the generalized
linear model. Cologne et al. [4], for example, adapt a
split plot analysis that assumes Poisson observations
to a study of micronucleus frequencies and radiation
sensitivity.

Finally, the requirement that the correlation
between observations within a whole plot remains
constant is often unreasonable. The split plot analysis
of variance may be used to examine longitudinal
data or repeated measures. For these analyses we
consider measurements taken at different times to be
the split plot observations. With this definition we
may consider crossover trials to be a special type of
split plot design [2]. The assumptions that we employ
for (1) lead to the requirement that the data within
one whole unit be equally correlated. When the split
plot represents time, however, it is more realistic to
assume that the correlation between measurements
that are closely timed are higher than those between
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measurements further apart in time. Extension of the
correlation structure can be accomplished using the
generalized estimating equation approach of Zeger
and co-workers [5, 13].
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S-PLUS and S

S is an interactive programming language (see Com-
puter Languages and Programs) developed at Bell
Labs, Murray Hill, NJ, for data analysis and graphics
(see Graphical Displays). S-PLUS is the commer-
cially available software implementation of S devel-
oped and marketed by the Insightful Corporation,
Seattle. In 1999, the originator of S, John Cham-
bers, was presented with the ACM Software Systems
Award for his work on the S system. The name “S” is
usually reserved for the language and “S-PLUS” for
the interactive environment and software tools based
upon it.

The original purpose of S was to provide a vehi-
cle for technology development, testing, and transfer
within the data analysis and graphics community of
Bell Labs. The S-PLUS implementation has made its
facilities accessible to a general data analysis commu-
nity, but it remains a fully configured developmental
tool for professional data analysts.

On Unix or Linux, an S-PLUS session typically
uses a command-line interface with printed output
displayed in the session window and graphical output
on one or more graphics windows. Since S-PLUS
version 4 (released March 1997) of Windows, there
has been a graphical user interface available as an
alternative, with an object explorer tool, a spread-
sheet-like data browser and menu-driven commands
for many standard tasks (but only on the Windows
platform).

In 1999, a revision and extension of the S language
was issued by Chambers and is described officially
in his book [4]. This new language version forms
the basis of S-PLUS on all software platforms from
Release 6 for Unix, Windows, and Linux.

The main facilities provided within the environ-
ment are

1. an interpreter for an object-oriented C-like pro-
gramming language, S,

2. support for a wide variety of static and dynamic,
color graphics facilities,

3. software for a wide variety of basic compu-
tations, data analysis techniques, and statistical
procedures, and

4. dynamic loading of routines written in C or
Fortran, and hence open access to other software.

An unusual feature of S-PLUS is that the objects it
creates are permanent and available in later S-PLUS
sessions until the user removes them.

Data Analysis Software Available

Since S is a complete programming language, a user
may, at least in principle, write a function to do
any calculation. In practice, however, user-written
functions in S are typically very short and for special
purposes. Most standard operations are already part
of the software available within the system and most
large-scale computations are done using compiled
code written in C or Fortran. The categories of
software available in the S-PLUS implementation
include:

1. Linear regression models, including multistra-
tum analysis of variance, mixed effects and
multivariate multiple regression models and a
suite of local, smooth, or robust regression tech-
niques;

2. Generalized linear (including some generalized
linear mixed models) and generalized additive
models;

3. Nonlinear regression models, including ran-
dom effects, and general nonlinear optimiza-
tion;

4. Regular and irregular time series with time-
domain and frequency-domain analyses;

5. Parametric and nonparametric survival analysis
(see Parametric Models in Survival Analysis;
Survival Analysis, Overview; Survival Analy-
sis, Software);

6. Classification and regression trees (see Tree-
structured Statistical Methods), clustering
algorithms (see Cluster Analysis of Subjects,
Hierarchical Methods; Cluster Analysis of
Subjects, Nonhierarchical Methods) and multi-
variate scaling (see Multidimensional Scaling).

In addition to standard built-in software, a large
collection of add-on libraries exists, which offer many
other, often new techniques. These are largely writ-
ten by users and contributed to the user commu-
nity.

In addition to libraries, S-PLUS offers “modules”,
which are extensive additions to the suite of func-
tions available, which can be purchased under a
separate license. These include software for financial
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modeling, wavelets, spatial analysis, environmental
statistics, experimental design, sequential analysis,
and large-scale optimization.

Some Literature

What is now called “old S” was described in [1]
and [2]. Release 3 of S is described in [3] and the
current revision, Release 4 of S, is described in [4].
Both references are still relevant. The basic modeling
software was later added and described in [5]. Third
party books include [6–10].
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Sports Medicine

The statistical methods used in sports medicine dif-
fer little from those in general clinical medicine.
There is a variation in the degree of sophistication of
research methods applied in different subsections of
sport and exercise medicine, which reflects the devel-
opment of this particular field. The earliest major
research studies in sport and exercise medicine were
the epidemiologic studies of the benefits of exercise
by Morris [11] and Paffenbarger et al. [15]. These
studies were the first to demonstrate the possible
cardiovascular benefits of physical activity on mortal-
ity, but were subject to many possible confounding
effects. They were the forerunners of many epi-
demiologic investigations including studies by Powell
et al. [16] and Berlin & Colditz [2], who were able
to confirm that regular exercise was associated with a
reduction in the incidence of coronary heart disease.
We now have further evidence from large observa-
tional cohort studies of both men and women for up
to 25 years demonstrating that low physical fitness
is an important precursor of mortality [3]. Scientists
continue to explore the relationship between physical
activity and cardiovascular risk factors and, in gen-
eral, are able to provide evidence linking specific risk
factors with physical activity and fitness using cross-
sectional population studies [9]. Additional evidence
of a relationship may be explored using intervention
studies (see Clinical Trials, Overview), and short-
term case–control studies [19].

Sports injuries are usually first reported as case
studies or a group of injuries collected into case
series. Observations may then be explored further
in a case–control study [6]. It is difficult to estab-
lish the incidence of sports injuries in the population
because of problems in defining the denominator.
Most evidence of population sports injury is recorded
in surveys of attendance at a hospital casualty [1] or
sports injury clinic [10]. A better method of record-
ing incidence and exploring associated factors is the
prospective cohort study. The highest quality method-
ology is of course the randomized controlled trial.
Unlike most clinical investigations in which it is rela-
tively easy to undertake a randomized controlled trial
and blind participants (see Blinding or Masking), it
is more difficult to apply this method to investigations
in sport and exercise medicine where the intervention
may involve some form of activity or physical device.

Recruitment is often open, or by advertisement, and
few people wish to be allocated to a control group.
Blinding is usually impossible, and with any exercise
program there is always the possibility of contamina-
tion. When the randomized controlled trial is applied
successfully it leads to valuable high-quality research
with clinical implications [8].

Another important consideration in sport and exer-
cise sciences is how to identify the effects of risk
factors (e.g. physical inactivity, dietary composition,
and smoking) on health-related fitness variables (e.g.
VO2 max, grip strength, leg power, and arterial blood
pressure) in the presence of confounding effects (e.g.
differences in age or body weight). One obvious
solution is to use techniques such as the analysis
of covariance. However, the frequency distribu-
tions of many health-related fitness variables are
known to be positively skewed (see Skewness) with
heteroscedastic errors (see Scedasticity) [7, 12–14],
and thus deviate considerably from the normal dis-
tribution with constant error variance. In addition,
the relationship between many such variables and
age, for example blood pressure [14], is certainly
not linear. To accommodate these characteristics and
associations, a multiplicative model with allomet-
ric body size components has been proposed [13, 14]
that can explain the known proportional relationship
with body size, the nonlinear age factor, and the het-
eroscedastic and positively skewed errors.

Prediction of athletic performance appears to be
another constant source of fascination for many statis-
ticians. When analyzing running times recorded in the
Olympic Games between the years 1900 and 1976,
Chatterjee & Chatterjee [5] generated a fierce debate
as to the inaccuracies in their data [17] and the lack of
evidence for their claimed asymptote [20]. A recent
paper by Blest [4] continues to explore the relation-
ship between running times and distance, by fitting
separate power function models to the running times
taken from the Olympic Games between the years
1912 and 1992. Based on these fitted exponents, the
author tries to predict the limits of future performance
using a variety of nonlinear curve fitting models. An
alternative approach by Royston [18] uses fractional
polynomials, to model changes in running speed over
distance rather than running time. An examination
of the residuals from both models favors the latter
approach, which appears more successful in removing
systematic residual effects from the running perfor-
mance data.
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Spreadsheet

The term spreadsheet is derived from the sheet of
paper employed by an accountant to set out financial
calculations, often so large that it had to be spread
out on a table. The first electronic spreadsheet, Visi-
Calc, was developed in 1979 by Bob Frankston and
Dan Bricklin at Harvard. Originally designed as a
business problem-solving tool, the remarkable versa-
tility of the spreadsheet package has made it a popular
working environment among computer users in many
professions. The most commonly used spreadsheet
packages include Excel, Lotus 1-2-3, Quattro Pro, and
SuperCalc.

In medicine and the health sciences spreadsheets
have proved useful in a wide variety of applications.
For example, in resource management spreadsheets
are used for scheduling [5], budgeting [10], fore-
casting [2], quality monitoring [9], “what-if” scenar-
ios [7], and cost–benefit analysis [6]. Spreadsheet
models [4] of complex systems and processes can
be used to simulate behavior under varying con-
ditions, allowing optimization [8] and sensitivity
analysis [3] to be conducted. On a more mundane
level the spreadsheet interface is easy to use by
nontechnical personnel for data-entry and routine
computation – for example, dosage calculations [1].

A basic spreadsheet comprises a rectangular array
of cells with, say, columns referenced by letters A, B,
C . . . and rows by number 1, 2, 3 . . .. Thus the cell
F3 would be in the third row of the sixth column.
Cells may contain text, numbers, or formulas, or
may be empty. Figure 1 shows the (formatted) results
of a randomized block experiment (see Randomized
Complete Block Designs). Cell A3 contains the text
“Block 1”, cell B3 contains the number 12.3, while
cell F3 contains the formula = AVERAGE(B3:E3)

which is calculated to be (12.3 + 11.2 + 16.4 +
13.2)/4 = 13.275. Formulas can be copied to other
cells if a similar calculation is required. If the formula
in F3 is copied into cell F4 it is automatically
modified to = AVERAGE(B4:E4), it being assumed
that any reference to row 3 should become row 4.
In some situations this automatic modification needs
to be overridden. To calculate the residuals {yij −
yi· − y·j + y..} in Figure 2 corresponding to data
{yij } in Figure 1, the required formula for cell B10
would be = B3 − F3 − B6 + F6. However, were
we to copy this into B11, say, it would become =
B4 − F4 − B7 + F7 – totally incorrect. Instead a
$ symbol can be used to force a row or column
reference to remain unchanged during copying. Thus
if the formula in B10 is written as = B3 − $F3 −
B$6 + $F$6 it may safely be copied throughout
the range B10:E12. Spreadsheets can be made more
“transparent” to other users by attaching names to key
cells or ranges. For example, in Figure 1, if the range
B3:E3 were to be named “Block 1” then the formula
in F3 could be entered as = AVERAGE(Block 1) –
much more readable.

Formulas are dynamically linked to the cells from
which they are calculated. Hence if any of the cells
B3, C3, D3, or E3 is changed, the average in F3 is
automatically recalculated. Automatic re-execution of
formulas when data or model parameters are changed
distinguishes the spreadsheet from a standard statis-
tical package such as SAS (see Software, Biosta-
tistical) where the program would need to be rerun.
The spreadsheet thereby provides an interactive com-
puting environment. Suppose, for example, that the
investigator discovers that the response for Treat-
ment II in Block 2 was actually missing and should
not have been recorded as zero. The least squares
estimate of the missing value can be found by trial

A B C D E F
1
2 Response Treat I Treat II Treat III Treat IV Mean

3 Block 1 12.3 11.2 16.4 13.2 13.275

4 Block 2 18.4 0 19.5 18.4 14.075

5 Block 3 12.8 11.9 14.4 12.7 12.95

6 Mean 14.5 7.7 16.766667 14.766667 13.433333

7

Figure 1 Data from a randomized block experiment
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8
9 Residual Treat I Treat II Treat III Treat IV Mean

10 Block 1 −2.0417 3.6583 −0.2083 −1.4083 0.0000

11 Block 2 3.2583 −8.3417 2.0917 2.9917 0.0000

12 Block 3 −1.2167 4.6833 −1.8833 −1.5833 0.0000

13 Mean 0.0000 0.0000 0.0000 0.0000 0.0000

14

Figure 2 Residuals from analysis of randomized block experiment (continued from Figure 1)

and error, adjusting the value in C4 until the resid-
ual in C11 is seen to be zero. An alternative solution
would be to employ a circular formula = C4 − C11
in C4, pressing the recalculation key to obtain suc-
cessive iterates. (In fact, after 17 recalculations the
missing value is estimated to be 16.6833.)

AVERAGE() is an example of an inbuilt
function which calculates the arithmetic mean.
Most spreadsheet packages provide functions for
calculating simple descriptive statistics and linear
regression coefficients. Microsoft Excel is notable
for its wide range of additional statistical functions.
These include all the major probability distribution
functions (and their inverses) used to calculate
P values (or critical values) in significance tests.
There have been unfortunate errors in the algorithms
employed by some spreadsheet packages. For
example, in Excel 5.0 it was possible to obtain
negative r2 values when fitting a regression through
the origin. Such errors cast doubt on the suitability
of spreadsheets for serious statistical analysis.

An impressive feature of some recent spreadsheet
packages is the facility to produce high-quality charts.
These may either be stored on separate sheets in
the same “workbook” as their data, or pasted onto
the spreadsheet itself. Charts can be customized
using different styles, fonts, colors, etc. Figure 3
shows a typical example. It is important not to
rely on the default settings of the various options,
otherwise “chart-junk” may result – visually beautiful
but totally meaningless! Like a formula, a chart is
dynamically linked to the data which it portrays.
Indeed, in Excel the linkage can be selected to be two-
way, so that when a data point on the chart is moved
(by dragging with the mouse) the corresponding cell
contents change accordingly.

The statistical facilities available within a spread-
sheet package can usually be extended by writing
subprograms (or macros) in the spreadsheet’s own
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Figure 3 Spreadsheet chart of data from randomized
block experiment

language – for example, Visual Basic in Excel 5. A
suite of macros may even be supplied as optional
“add-ins” with the software. In theory this allows
even the most advanced statistical techniques to be
implemented in spreadsheet form. In practice there is
a danger that, unless care is taken with the algorithm
and double-precision arithmetic used when appropri-
ate, rounding errors will accumulate and numerical
accuracy will suffer. Moreover the macro-output will
not be dynamically linked to its input, and the spread-
sheet will have lost its transparency. The prolifera-
tion of “add-ins” in spreadsheet packages, coupled
with spreadsheet-like data entry facilities in statisti-
cal packages (see Software, Biostatistical), makes it
likely that the distinction between the two types of
package will gradually disappear. The major statisti-
cal packages such as SAS, SPSS, and Minitab already
provide interface facilities with the popular spread-
sheet packages, so that users can enjoy the best of
both worlds.
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Square Contingency Table

An R × C contingency table – that is, contingency
table with R rows and C columns – is frequently seen
in biomedical studies. When R = C, the contingency
table is often referred to as a square table. Square
tables usually arise in repeated measures experi-
ments, in which a subject has his or her outcome
variable observed repeatedly. Examples of repeated
measures studies include longitudinal studies (observ-
ing the same subject over time); rater agreement
studies (two investigators rate each subject in the
study); and paired data studies (data obtained from
a husband and wife, father and son, or case and con-
trol) (see Matched Pairs With Categorical Data;
Case–Control Study).

First, we introduce some notation. Suppose that
two discrete random variables, Yi1 and Yi2, are
observed on each of n independent subjects, where
Yi1 can take on values 1, . . . , R, and Yi2 can take on
values 1, . . . , C. Let the probabilities of the multino-
mial joint distribution of Yi1 and Yi2 be denoted by

pjk = Pr(Yi1 = j, Yi2 = k),

for j = 1, . . . , R and k = 1, . . . , C. Since all the
probabilities must sum to 1, there are (RC − 1)
nonredundant multinomial cell probabilities. We let p
denote the (RC − 1) × 1 probability vector of pjk’s;
for simplicity, we delete pRC , and we take R = C

below. The marginal probabilities of the contingency
table are pj+ = Pr(Yi1 = j) and p+k = Pr(Yi2 = k),
where the plus signs denote summing over the sub-
script they replace. We let njk denote the number of
subjects with response level j on Yi1 and level k on
Yi2, and let n = n++ be the total number of subjects
in the study.

Models for square tables fall into three general
classes – marginal models, loglinear models, and
conditional models. Marginal models describe the
similarity between the row and column marginal dis-
tributions. With loglinear models, we model the cell
probabilities of the table. For example, the proba-
bilities may be symmetric about the main diagonal,
and a loglinear model can be used to describe this
relationship among the cell probabilities. Conditional
models model the conditional probabilities of the col-

umn variable given the row variable and are popularly
used in longitudinal studies, letting the row vari-
able represent a response at time 1 and the column
variable represent the response at time 2. Often, in
square tables, we are not always interested in mod-
eling the data, but are interested in determining the
association or agreement between the row and col-
umn variables.

Marginal Models

In a crossover study, a subject is given one treat-
ment, has a washout period, and is then given a new
treatment. Suppose that the response to each treat-
ment is success, partial success, or failure. We are
often interested in whether the marginal distribution
of the outcome is the same for both treatments, often
called marginal homogeneity. Under marginal homo-
geneity, the sum of the cell probabilities (i.e. the
marginal probability) in the j th row of the contin-
gency table equals the sum of the cell probabilities in
the j th column; that is, pj+ = p+j for j = 1, . . . , R.
Lipsitz et al. [10] show that the maximum likeli-
hood estimates for the pjk’s under marginal homo-
geneity can be obtained via a linear model of the
form

p = Xβ,

for the appropriate “design” matrix X, which we now
describe for R = 3, but which generalizes to any R.
For R = 3, we can write the vector p in terms of
the four cell probabilities, {p11, p12, p21, p22} and the
four marginal probabilities, {p1+, p2+, p+1, p+2}, as
follows:





p11

p12

p13

p21

p22

p23

p31

p32





=





p11

p12

p1+ − p11 − p12

p21

p22

p2+ − p21 − p22

p+1 − p11 − p21

p+2 − p12 − p22





.

Under marginal homogeneity, the row and column
marginal probabilities are equal – that is, pj+ =
p+j = pj – which leads to the following linear model
for the cell probabilities:
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p11

p12

p13

p21

p22

p23

p31

p32





=





p11

p12

p1 − p11 − p12

p21

p22

p2 − p21 − p22

p1 − p11 − p21

p2 − p12 − p22





=





1 0 0 0 0 0
0 1 0 0 0 0

−1 −1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −1 −1 0 1

−1 0 −1 0 1 0
0 −1 0 −1 0 1









p11

p12

p21

p22

p1

p2





= Xβ. (1)

The maximum likelihood estimates (MLEs) can
be obtained in any generalized linear modeling pro-
gram, such as SAS Proc GENMOD [14], without any
additional programming or iteration loops. In these
programs, the outcome is the count njk , the covariates
are the appropriate row of X in (1) without an inter-
cept, and we specify a linear link with Poisson errors
(we actually must include n33 as a value of the out-
come, as described in [10]). Firth [7] also describes
a method for obtaining the linear model for the pjks
using Latin squares. Another method found in the
literature for obtaining the MLE under homogeneity
uses Lagrange multipliers [11].

After the estimates of the cell probabilities under
marginal homogeneity have been obtained, a likeli-
hood ratio statistic can be used to test whether
marginal homogeneity holds. This statistic is approx-
imately chi-square with R − 1 degrees of freedom
under the null. Alternately, a Wald statistic [3] (see
Likelihood) can be used. It does not require the
use of iterative techniques, since only the estimates
of the cell probabilities for the saturated model are
needed. The maximum likelihood estimate of pjk for
the saturated model (with R2 − 1 nonredundant prob-
abilities) is

p̂jk = njk

n
, (2)

and the MLEs of the marginal probabilities are p̂j+ =
nj+/n and p̂+j = n+j /n. Suppose that we let the

vector

U = [p̂1+ − p̂+1, . . . , p̂R−1,+ − p̂+,R−1]′

contain the first R − 1 differences in the marginal
probabilities (the Rth difference is redundant). Under
the null of marginal homogeneity, E(U) = 0. If we let
V̂ be the estimated covariance matrix of the vector
U under the alternative (see [3]), then the Wald test
statistic for homogeneity is the quadratic form

X2 = U′V̂−1U, (3)

which will be approximately chi-square with R − 1
degrees of freedom under the null. If, instead of
estimating the variance under the alternative in (3),
we let V̂ be the estimated covariance of U under
the null of homogeneity, and if there are only two
rows and columns in the table (R = C = 2), then (3)
reduces to

X2 = (n12 − n21)
2

n12 + n21
. (4)

The test statistic in (4) is popularly known as McNe-
mar’s test for equality of correlated proportions [13].

In the crossover study discussed earlier, the out-
comes “success”, “partial success”, and “failure” are
examples of ordered categorical data. Suppose that
we want to test for marginal homogeneity, taking
this ordering into account. We can put an ordinal
model on the margins, such as the proportional-odds
model [12], and test whether the parameters of the
proportional-odds models in the two margins are the
same. The test statistics are similar to those given for
the nominal case above. The Wald test for marginal
homogeneity for proportional-odds marginal models
can be obtained in SAS Proc CATMOD [15] using
methods derived in [9]. The likelihood ratio statis-
tic can be obtained in a generalized linear models
program, but will require some additional program-
ming. More details on marginal modeling can be
found in [2, Chapter 9] and in the article on marginal
models.

Loglinear Models

The models just discussed involved testing whether
the marginal probabilities of the table are equal. Now,
we discuss models which describe the relationship
among the cell probabilities of the R × R table. One
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such model for the cell probabilities is a symmetry
model, in which

pjk = pkj , for j �= k. (5)

Note that symmetry implies marginal homogeneity
since, under (5),

pj+ =
R∑

k=1

pjk =
R∑

k=1

pkj = p+j .

In fact, when R = C = 2, marginal homogeneity and
symmetry are identical, and both imply that p12 =
p21.

For modeling purposes, symmetry is most easily
written as a loglinear model. Loglinear models for
contingency tables are usually written in terms of the
expected cell counts

mjk = E(njk) = npjk.

In terms of the expected cell counts, symmetry is
written as

mjk = mkj , for j �= k.

Then, the symmetry loglinear model is

log mjk = µ + βj + βk + βjk, (6)

where βjk = βkj , with the appropriate identifiability
constraints on the parameters, such as βR = 0 and
βRj = βjR = 0 for j = 1, . . . , R. Since βjk = βkj , it
is easy to show that mjk = mkj , and symmetry holds
for (6).

The MLEs for the expected cell counts under
symmetry are

m̂jj = njj and m̂jk = njk + nkj

2
.

The estimated cell probabilities are just p̂jk = m̂jk/n.
Intuitively, since symmetry does not concern the
diagonal cells, the estimated expected diagonal counts
are just the observed diagonal counts. Also, an esti-
mated off-diagonal count is just the average of the
observed counts in cells jk and kj . Under the sym-
metry model, we only need to estimate R(R − 1)/2
off-diagonal probabilities on one side of the diagonal,
so we have placed R(R − 1)/2 constraints on the cell
probabilities under the null, and the likelihood ratio
test statistic, score test statistic (see Likelihood), or
Wald test statistic for symmetry are approximately

chi-square with R(R − 1)/2 degrees of freedom. The
score test statistic (equivalent to Pearson’s chi-square
for this problem) is the simplest [1]:

X2 =
∑

j<k

(njk − nkj )
2

njk + nkj

. (7)

Recall that, when R = C = 2, marginal homogeneity
and symmetry are identical, so that (7) is also a test
statistic for marginal homogeneity when R = 2, and
is identical to the McNemar test statistic discussed
earlier.

The symmetry loglinear model puts many con-
straints on the probabilities. A loglinear model that
has fewer constraints (and more parameters) does not
force the row and column main effects in (6) to be
equal,

log mjk = µ + αj + βk + (αβ)jk, (8)

where (αβ)jk = (αβ)kj . The loglinear model in (8) is
called quasi-symmetry [5]. If symmetry holds, then
αj = βj . The Bradley–Terry model [4] for paired
comparisons is a special case of this quasi-symmetry
model.

Using the identifiability constraints αR = 0, βR =
0, and (αβ)Rj = (αβ)jR = 0 for j = 1, . . . , R, the
interaction parameter (αβ)jk is the log-odds ratio for
the j th and Rth rows and kth and Rth columns:
that is,

(αβ)jk = log

(
pjkpRR

pjRpRk

)
.

Then, in the quasi-symmetry model, since (αβ)jk =
(αβ)kj , the log-odds ratio for the j th and Rth
rows and kth and Rth columns equals the log-odds
ratio for the kth and Rth rows and j th and Rth
columns. In particular, these log-odds ratios are sym-
metric.

One last loglinear model that we discuss is a quasi-
independence model. If the row and column variables
are independent, then

pjk = pj+p+k,

or, equivalently, in terms of the loglinear model,

log mjk = µ + αj + βk. (9)

In repeated measures studies, most of the agree-
ment is often on the diagonal, so that the diagonal
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elements are longer than expected under indepen-
dence, with independence holding in the off-diagonal
elements. A simple loglinear model that expresses
such a relationship is the quasi-independence loglin-
ear model,

log mjk = µ + αj + βk + γj I (j = k), (10)

where I (j = k) equals 1 for diagonal elements j = k

and 0 for off-diagonal elements. For off-diagonal
elements, (10) is identical to (9), and, if γj > 0, then
the diagonal elements are longer than expected under
independence.

When the rows and columns are ordered, these
loglinear models can be extended by assigning scores
to the rows and columns (see, for example, [8]). For
more details on loglinear models, see [1].

Conditional Models

Often in longitudinal studies, we are interested in
transitions or change in states, such as the response
at time 2 given the response at time 1. In general,
in crossover designs, polling studies, or employ-
ment studies (mover–stayer studies), investigators are
interested in these conditional probabilities for the
column variable given the row variable. When the
row variable represents a response at time 1, and col-
umn variable represents the response at time 2, we
model the probability of response k at time 2 given
response j at time 1:

pk|j = Pr[Yi2 = k|Yi1 = j ], j = 1, . . . , R. (11)

Suppose that, in an arthritis clinical trial for the
effectiveness of a single treatment, the subjects are
observed once before treatment, then are given the
new treatment, and then observed again. Suppose
that the possible outcomes at the two times are “no
pain”, “mild pain”, and “severe pain”. Then, we are
interested in the changes in pain, as modeled by
the conditional probabilities of pain status at time 2
given the pain status at time 1. If there are two lev-
els (R = 2), then we can apply logistic regression to
the model given in (11), treating Yi1 as a covariate.
If (R > 2) and the levels are not ordered, multino-
mial logistic regression can be used (see Polytomous
Data); if the levels are ordered (as in this example),
an ordinal logistic model such as the proportional-
odds model [12] can be used.

Measures of Association and Agreement

For general (R × C) tables, we are often interested
in the association between the row and column vari-
ables (see Association, Measures of). For a (2 × 2)
table, the odds ratio is a popular measure of asso-
ciation. In an (R × R) square table, the log-odds
ratios, as described above, can be used to measure
association. For the row and column variables to be
associated, you should be able to predict one from
another. For example, if the odds ratio is 0, the row
and column variables in a (2 × 2) are perfectly neg-
atively associated. In repeated measures studies, and,
in particular, inter-rater reliability studies, in which
two investigators rate each subject in the study, we
are interested in how well the row and column vari-
ables (the two ratings on each subject) agree. When
two ratings agree, most of the observations in the con-
tingency table will be on the diagonal (most ratings
are similar). Two variables can be highly associated,
but agreement between the two could be very low.
Suppose that both diagonal elements in a (2 × 2)
table are zero: then the raters completely disagree,
and agreement (by any measure) is very low. How-
ever, the odds ratio is 0, and, as discussed above,
the two variables are perfectly negatively associated.
The kappa coefficient [6] is a popular measure of
agreement corrected for chance agreement (see the
articles on Kappa and Agreement, Measurement
of).
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Staggered Entry

A biostatistical survival study is said to have stag-
gered entry if the study subjects are entered into
the study at times which are related to their own
disease history (e.g. immediately following diagno-
sis at a particular hospital for a specified disease,
if other criteria for entry are met), but which are
unpredictable from the point of view of the study.
The most common method of dealing with such data,
especially in the case of analysis at a single chrono-
logical time, is via the life-table method one ignores
the chronological times of entry and treats as response
variable the time from entry until event (primary
endpoint, e.g. survival time, or censoring) together
with an indicator of whether the primary endpoint is
observed [27]. Implicit in this simplest method is the
assumption that the probabilistic mechanism of fail-
ure changes over time only through the time since
entry into the study. However, the life-table method
does not (without modification) allow survival stud-
ies with staggered entry to be monitored repeatedly or
sequentially over calendar time (see Data and Safety
Monitoring). Occasionally, for reasons of biomedical
interpretability and statistical simplicity, the inves-
tigator will choose to analyze the data using age
or time from onset of some exposure or disease
condition as primary time-scale [19], and here also
explicit consideration of the staggered exposure times
at entry is necessary. In any case, biological age or
calendar time of entry can be included as covari-
ates or stratifying variables in the statistical analysis
(see Stratification). A crucial assumption in analyz-
ing data with staggered entry is that the prospective
time until the primary study endpoint for individual
patients can be considered stochastically independent
of the calendar time of entry, at least conditionally
given some other time-scale value such as biological
age at entry. In other words, one must assume that
there is no (unmodeled) tendency for the patients with
worse prognosis to enter the study either systemati-
cally earlier or systematically later than the patients
with better prognosis.

Mathematically, the special features of a study
with staggered entry arise from the presence of at
least two time-scales relevant to survival, which
bear an unpredictable relationship to one another for
individual study subjects. For demographic or epi-
demiologic population studies – with cross-sectional,

cohort, or mixed designs – the relation between the
calendar and individual age time-scales has classi-
cally been presented in the form of a Lexis diagram,
which plots an individual’s lifetime as a vector from
study entry to failure (or censoring), using calendar
time as x-axis and age or study time as y-axis. See
Figure 1 for an illustrative Lexis diagram concern-
ing 15 patients from a recent clinical trial, where
times are given in months. Keiding [16, 17] gives
a historical perspective on Lexis’s work, with many
references. However, features of multiple time-scales
exist also in many other types of failure-time data
not ordinarily regarded as coming from studies with
staggered entry. Other examples of such time-scale
pairs include: time from diagnosis and chronological
time; time since diagnosis and time since onset of
some related risk factor or exposure; and chronolog-
ical time and cumulative exposure. In studies of the
reliability of manufactured components, times to fail-
ure collected chronologically are often also studied
in terms of the operational time [3, 32], which can
for example be the cumulative time under significant
loading, or the CPU time in a computer setting.

The random data observed in a (singly right-
censored) staggered entry study are generally of the
form (T , δ, (Z(t), 0 ≤ t ≤ T )), where T denotes the
time for a single study subject from a specified time
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Figure 1 Lexis diagram drawn for 15 selected patients
from a clinical trial. Entry time in days from the begin-
ning of 1990 for each study subject is displayed as the
initial x-coordinate for a 45° segment. At the upper-right
endpoint of the segment, a dot is plotted if an observed
failure occurred; otherwise, that subject’s failure time was
right-censored due either to loss to follow-up or to final
reporting (at the time, equal to 1400, marked by the vertical
dashed line) of the study results
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origin (study entry) until the earlier of the primary
endpoint and loss to follow-up; δ is the indicator
variable for the event that the primary endpoint pre-
cedes loss to follow-up; and Z(t) denotes a vector
process of covariates, some of which may be inde-
pendent of time, observable at time t ≤ T after entry.
There is often at least one covariate-component Zk(t)

affecting survival which measures a cumulative time
variable for the study subject from some time ori-
gin α until t time units following study entry. In
the standard staggered entry survival study, or epi-
demiologic study accounting for time from onset of
some condition or risk factor which never disappears,
Zk(t) = Ak + t is completely determined by the time
from origin α to study entry; but in studies account-
ing for the cumulative measurement of intermittent
exposure or another operational time, Zk(t) may also
exhibit random variation for t > 0. Although there
are large literatures on general or multiple censoring
(see [1, Chapter 3]), and on responses more complex
than a single survival endpoint, we restrict attention
for the rest of this article to the case described above,
of right-censored survival data.

Many of the most important themes in statistical
survival analysis – both theoretical and practical –
are closely connected to the analysis of survival
studies with staggered entry. These include: semi-
parametric modeling and inference for failure haz-
ards, with a parsimonious choice of time-scale and
covariates; analysis of left truncated and randomly
right-censored data; biased sampling frames which
can arise in cross-sectional designs, where some
strata of the population are oversampled due to time-
dependent and random entry criteria; and sequential
monitoring of survival studies. In the next several
paragraphs, we briefly describe the most important
papers and results connecting these topics with stag-
gered entry survival data.

Failure Models with Modified Time-Scale
or Time-Dependent Covariates

Suppose that the observable data (T , ∆, E, Z) on
each study subject consist of an event time T (time
from entry until death or censoring), an observed fail-
ure indicator ∆, a biological age E at entry, and
a vector of possibly time-dependent covariates Z.
The conditional failure hazard intensity λZ,E(t |z, u)

at study-time t and entry age u, given E = u,

Z = Z(t) = z, is a general three-variable function,
which one could attempt to model further by treat-
ing the age-at-entry variable as a continuous time-
independent covariate or the age-at-event variable
E + T = t + u as a time-dependent covariate. In
many clinical studies, where the age-at-entry vari-
able E is found not to be significantly predictive
of survival, one can simply drop the dependence
of λZ,E on E and restrict attention to the possi-
ble relationship between survival measured on the
time-since-entry time-scale T and the (usually time-
independent) covariates Z.

At least in the absence of other covariates Z, the
purpose of the Lexis diagram is to help understand
the dependence of λ on the two time variables T ,
T + E. A general nonparametric estimator for the
corresponding two-time-variable cumulative hazard
function Λ(t, s) = ∫ t

0

∫ s

0 λ0(x, y) dy dx is given by
McKeague & Utikal [23], who also address under
minimal assumptions the basic statistical problem
of testing for the presence of the covariate-adjusted
relationship between a specified covariate such as
treatment or exposure and the waiting time until
the primary endpoint. The methodology of Cox [11],
later elaborated by many authors (see [1]), applies
directly when λZ,E(t |z, u) depends either on t alone
for both values of z or on t + u alone, in which cases
we call respectively T or T + E the primary time-
scale. Another common approach [6] is to analyze
data taking into account a cohort effect via a Cox
model stratified upon (5- or 10-year groupings of)
age at entry. Alternatively, Oakes [25] discusses the
possibility of combining the time variables T and
T + E into a single time variable with respect to
which survival data could be analyzed by conven-
tional methods. The choice between the age at event,
T + E, or time since entry, T , as the primary time-
scale can be important if, for example, the covari-
ate enters a Cox [11] proportional hazards regres-
sion model through a variable such as ln(E + T ) or
(E + T )b for known b. Korn et al. [19] discuss the
choice of primary time-scale with special reference
to examples where T + E is the better choice. Here
“better” means implicitly that the resulting model is
simpler or more parsimonious, without the need for
a time-dependent covariate involving the secondary
time variable. However, it should be noted that the
correctness of a “simplest” model with noticeable
entry-time-dependent or cohort effects implies that
any model without such effects must be misspecified.



Staggered Entry 3

Left Truncation and Right Censoring

Suppose that subjects of a survival study are drawn
from a population who have some condition or risk
factor (either the disease under investigation or some
other factor), but for whom the time of onset of
the condition is not known. (This can occur even in
the commonest situation, where study subjects are
recruited at the time of diagnosis, within popula-
tion strata defined by presence or absence of some
risk factor(s) at baseline.) Then the survival data
are left-truncated in the sense that no information is
collected on individuals without the condition who
might otherwise have been included in the study
(see Delayed Entry). It is well known that left-
truncated and right-censored survival data can be
analyzed via (a slight modification of) the life-table
method [18]. Intuitively, this works because the life-
table method infers prospective rates of failure, in
terms of time since entry, from the fraction of each
risk group of individuals under observation at spec-
ified time since entry, t , who survive to later times
t ′.

Random right-censoring is a characteristic fea-
ture of survival studies with staggered entry. Clinical
studies are often designed to have a fixed calendar
duration. If subjects were entered in a cross-sectional
cohort, then those subjects without observed pri-
mary endpoints have censoring times from entry until
analysis of the data which are identical to the (non-
random) duration of the study. By contrast, if entry
into the study is staggered, then censoring times are
the waiting times from entry until the end of the
study. Since recruitment into clinical studies is often
assumed to be uniformly distributed over a specified
period of calendar time, the censoring times would
also be uniformly distributed. In this context, the
assumption that time of entry is unrelated to survival
time is equivalent to the assumption of independence
between survival and right-censoring times, without
which any estimation of survival-time distributions is
problematic [37].

Biased Sampling for Cross-Sectional Data

Cross-sectional recruitment into survival studies at
first sight seems to be the polar opposite of stag-
gered entry. Here the subjects are entered at a single
calendar time, but their biological ages, times of

onset of risk factors and exposures, and times of
diagnosis are still unpredictable with respect to one
another. Therefore, the chronological and biological
time-scales are still staggered with respect to one
another, and the same considerations of modeling
and analysis and multiple time-scales discussed above
come into play. The papers of Keiding [16], Wel-
don & Potvin [41], Wang [40], and Yang & He [42]
discuss various aspects of inference of disease preva-
lence and incubation periods as well as distributions
for waiting times until medically interesting study
endpoints. These papers also explicitly recognize
that cross-sectional and some other sampling frames
can be biased in the sense that study subjects are
oversampled (as compared with the general patient
population) in some population strata and underrep-
resented in others. For example, in cross-sectional
studies where data on coronary risk factors are col-
lected initially, subjects with long durations between
onset of the risk factor and the study endpoint will
be overrepresented. Slud & Kopylev [36] study the
effect of such biased sampling in inducing depen-
dence between death and censoring times. All of the
papers mentioned in this paragraph warn that when
covariate risk indicators are left-censored, as naturally
happens when data are sampled cross-sectionally,
straightforward regression analyses in terms of these
covariates can lead to biases.

Sequential and Group-Sequential Analysis

We have described above several ways in which stag-
gered entry affects the modeling of survival data, but
staggering plays a direct role in the two-sample infer-
ence of treatment effectiveness primarily in repeated
or sequential statistical survival analyses (see Data
and Safety Monitoring). The mathematically most
sophisticated work related to staggered entry has been
done under this heading.

Although the early parametric sequential method
of Breslow & Haug [5] did allow for random
staggered entry over an accrual period, most effort
has gone toward extending nonparametric statistics,
repeated significance tests and (group) sequential
procedures to the staggered setting where the
calender time parameter used for repeated testing
is not the same as the underlying time on test.
Early work on the group-sequential approach to
repeated significance tests in clinical trials [2, 26, 28]
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advocated repeated monitoring (with possible early
termination) in chronological time. Initially, the
necessary asymptotic distribution theory with respect
to survival-time statistics such as the logrank was
available only for trials with progressive censoring,
in which subjects were accrued simultaneously
in a cohort or in which interim analyses would
follow the termination of accrual [9, 20]. For
the realistic case of trials with staggered entry,
Jones & Whitehead [15] proposed – for both the
logrank and Gehan-modified Wilcoxon statistics –
that the asymptotic distribution theory for statistics
repeatedly calculated in chronological time would
be given by treating the statistics plotted against
the cumulative statistical (Fisher) information as
a Brownian motion process. For the logrank, this
was completely substantiated: Tsiatis [39] proved
it for the case of finitely many calendar times;
then Sellke & Siegmund [30], with cumulative
(estimated) statistical information replacing calendar
time, and Slud [34], using actual calendar time,
showed that the two-time-parameter normalized
logrank statistic converges weakly to a continuous
Gaussian process with two-dimensional time. For
the modified Wilcoxon statistic in a staggered
entry setting, Slud & Wei [38] showed that the
asymptotic theory differed from that proposed by
Jones & Whitehead, and that the repeatedly calculated
statistic has dependent increments. By contrast, Slud
[34, Corollary 2.4 and Proposition 2.5] (in which
the functions q(u) and L(u) should additionally
be assumed nonrandom) showed that weighted
logrank statistics have uncorrelated increments
(which are asymptotically jointly Gaussian, and
therefore independent) if the weighting function does
not depend upon calendar time.

The asymptotic distribution theory for statistics
of clinical trials with staggered entry has required
an understanding of the behavior of these statistics
as two-time-parameter stochastic processes when
calculated using all data available up to time on
test, s, and chronological time, t . Majumdar &
Sen [22] early on had the idea (further developed
by Sen [31] and Sinha & Sen [33]) of using a
two-time-parameter process, with time on test and
number of subjects entered as the two time-scales.
They provided the relevant asymptotic distribution
theory, based on an assumed target sample size,
for the maximum of the logrank statistic calcu-
lated at all times and numbers accrued. The more

fruitful direction has been to develop the theory
of clinical trial statistics as two-time-parameter pro-
cesses with respect to the time on test and chrono-
logical time-scales. Sellke & Siegmund [30] and
Slud [34] obtained their results on such processes
via one-time-parameter martingale theory. Slud [35]
represented (weighted) logrank statistics as stochas-
tic integrals with respect to compensated two-time-
parameter counting processes, using results from
the theory of two-parameter (strong) martingales
(see the next section) to show the weak con-
vergence of a two-time-parameter Kaplan–Meier
estimator. Gu & Lai [12] gave a general treat-
ment using empirical process theory (in the case
of independent and identically distributed (iid) data
records for study subjects) of two-parameter weighted
logrank and Kaplan–Meier statistics. This work
could be used to design sequential and group-
sequential clinical trial monitoring schemes based
on Kaplan–Meier estimators. The empirical pro-
cess approach has culminated in recent works by
Gu & Ying [13] and Bilias et al. [4] on two-
time-parameter analysis of Cox model estimators
and partial likelihood score statistics under Cox-
type semiparametric models with staggered entry,
which could be implemented in real clinical trials
if model-based group-sequential analyses were of
interest.

Mathematical Tools in the Underlying
Theory

It remains to describe briefly the main mathemati-
cal tools and techniques which have been used to
establish the theoretical results surveyed above. To
fix ideas, consider the case of iid staggered entry sur-
vival data (Ei, Ti, ∆i, Zi) as above, where the binary
variables Zi are randomized treatment-group indica-
tors. Define

Ni(s, t) = I[Ei+Ti≤t,Ti≤s] · ∆i,

Yi(s, t) = I[Ei+Ti≥t,Ti≥s].

Just as one defines a compensator for counting pro-
cesses in a single time-scale, one defines a compen-
sator for the two-time-scale process N , namely

Ai(s, t) = H(min(s, Ci, t − Ei)),
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where H is the cumulative failure hazard, assumed
identical for all study subjects. Then the compen-
sated processes Mi(s, t) = Ni(s, t) − Ai(s, t) is a
two-parameter (strong) martingale in the sense that
for all t, Mi(·, t) is a martingale with respect to the
filtration F study

s generated by all random variables
observable up to study time s, and for all fixed
s, Mi(s, ·) is a martingale with respect to the filtration
F chron

t generated by all random variables observable
up to chronological time t . The two-parameter strong
martingale property is a very special one, and holds
in the iid staggered entry case essentially because,
for each subject, after entry the two time-scales are
deterministically related to one another.

Since M(·, t) is the usual compensated failure-
counting process based upon data available up to
chronological time t , the usual weighted logrank and
Kaplan–Meier statistics have well-known represen-
tations as stochastic integrals with respect to

M(s, t) =
n∑

i=1

Mi(s, t),

M(1)(s, t) =
n∑

i=1

ZiMi(s, t).

Many of the inequalities and limit theorems for
one-parameter martingales have immediate exten-
sions to the case of strong two-parameter martingales.
The (Doob submartingale) maximal inequality has a
counterpart proved by Cairoli [7]; the basic defini-
tions and properties of stochastic integrals are due to
Cairoli & Walsh [8]; the Burkholder inequalities have
generalizations due to Métraux [24], Ledoux [21],
and Chevalier [10]. These inequalities lead [35] to
a two-parameter functional central limit theorem
of the type of McLeish–Rebolledo–Helland [14],
which Slud [35] used to obtain a two-time-parameter
weak convergence theorem for the Kaplan–Meier
statistic.

The papers of Gu & Lai cited above, begin-
ning with [12], took a completely different and
extremely productive approach to the theory of two-
time-parameter weak convergence. They relied on
deviation estimates and inequalities from empirical
process theory [29]. These, together with functional
central limit theorems for processes (derived from)
M(s, t), M(1)(s, t) above, carry over naturally to the
two-time-parameter setting.
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Standard Deviation

The standard deviation of a random variable X is a
measure of the variable’s spread or dispersion around
its mean. The mean is the average or expected value
of X, and is a measure of the center of its distribution.
The mean can also be viewed as a “typical” value of
X. By definition, however, the outcome of a random
variable is unpredictable and will vary from one
trial to the next; the standard deviation describes the
amount of variation that can be expected around the
average value. If the mean of X is represented by
E(X), then its variance is defined by

var(X) = E[X − E(X)]2

= E(X2) − [E(X)]2,

provided that E(X) exists. The standard deviation is
the positive square root of the variance,

sd(X) = [var(X)]1/2.

The mean of a random variable X is often denoted
by µ, its variance by σ 2, and the standard deviation
by σ .

From the preceding definition, the standard devi-
ation of X is a sort of average of the deviation of
X from its mean. If X is a measurable quantity such
as length or temperature, then, unlike the variance,
the units of measurement for the standard deviation
are the same as the units for X. If X is measured
in meters, for example, then sd(X) is measured in
meters as well. In general, a large standard devi-
ation indicates that the outcomes of X are widely
distributed around its mean, while a small standard
deviation means that the outcomes are more homo-
geneous and cluster tightly around the center.

To calculate the standard deviation of a random
variable, it is necessary to know the probability dis-
tribution of X. If X is a discrete random variable with
mean E(X) = µ, then

var(X) =
k∑

i=1

(xi − µ)2 Pr(X = xi)

=
[

k∑

i=1

x2
i Pr(X = xi)

]
− µ2,

where x1, x2, . . . xk are all outcomes of X such that
Pr(X = xi) > 0. If X is a continuous random variable

with probability density function f (x) and mean
E(X) = µ, then

var(X) =
∫ ∞

−∞
(x − µ)2f (x) dx

=
[∫ ∞

−∞
x2f (x) dx

]
− µ2.

In each case, sd(X) is the square root of the variance.
A linear transformation of the random variable

X affects the standard deviation in a straightforward
manner. If a and b are constants and if the random
variable Y = aX + b, then

sd(Y ) = |a|sd(X).

There is no variability in a constant.
In practice, the standard deviation of a distribution

can be estimated using the information contained in
a sample of observations drawn from that distribu-
tion. If x1, x2, . . . xn is a random sample of size n

selected from a population with mean µ and stan-
dard deviation σ, then the sample standard deviation
is represented by s and is defined by

s =
[

n∑

i=1

(xi − x)2

/
(n − 1)

]1/2

=







n∑

i=1

x2
i −

(
n∑

i=1

xi

)2 /
n




/

(n − 1)




1/2

,

where x is the sample mean

x =

n∑

i=1

xi

n
.

Just as σ describes the dispersion of a distribution
around its mean µ, s describes the spread of a sample
of values around the sample mean x. It can be thought
of as a form of average of the deviations of the
observations from the sample mean. While s2 is an
unbiased estimator of σ 2 over all possible random
samples of size n, meaning that E(s2) = σ 2, s is not
an unbiased estimator of σ .

Together, the sample mean x and standard devi-
ation s are very useful for summarizing a set of
measurements. The mean indicates where the obser-
vations are centered; the standard deviation quan-
tifies the amount of dispersion around the cen-
ter. More explicitly, Chebyshev’s inequality states
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that for any k which is greater than or equal to
1, at least [1 − (1/k)2] of the measurements lie
within k standard deviations of the mean. Given
k = 2, for example, at least [1 − (1/2)2] = 3/4 of
the values lie in the interval x ± 2s. Equivalently, it
can be said that this interval encompasses at least
75% of the observations in the group. Similarly,
the interval x ± 3s contains at least 89% of the
measurements. These statements are true no matter
what the values of x and s, and regardless of the
shape of the distribution from which the sample was
drawn.

The summary provided by the sample mean and
standard deviation can often be made more precise
when the shape of the distribution of values is, in fact,
known. If the data are symmetric and unimodal, for
instance, then approximately 95% of the observations
lie in the interval x ± 2s, and almost all of the values
are contained in x ± 3s.

The sample mean and standard deviation can
also be used to compare the variability of data sets
representing different quantities or different types
of measurements. The coefficient of variation is
defined as

CV = 100% × s

x
,

and is a measure of relative variability. Because s and
x share the same units of measurement, these units
cancel out and leave CV a dimensionless number.
Since it is independent of measurement units, the
coefficient of variation can be used to compare the
amount of dispersion for any two sets of values. A
larger coefficient implies that there is more variability
among the measurements.

(See also Mean Deviation; Moments)
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Standard Error

The term standard error (se) is used to refer to the
standard deviation (sd) of an estimator or sample
statistic. As such, it is a measure of the estimator’s
variability around its expected value (expectation) or
mean.

More specifically, standard error often refers to
the standard deviation of the sample mean x. If
x1, x2, . . . xn is a random sample of size n selected
from a population with mean µ and standard devia-
tion σ , then the sample mean is defined by

x =

n∑

i=1

xi

n
.

The sample mean can be used to estimate the true
population mean µ. This statistic is itself a random
variable; its value is unpredictable and will vary from
one sample to the next. This variability or dispersion
can be characterized by the standard deviation of the
estimator x, where

sd(x) = se(x)

= σ√
n

.

To illustrate this idea, suppose that we were to
select repeated samples of size n from the underly-
ing population with mean µ and standard deviation
σ and calculate the mean of each one. We would
end up with a set of sample means x1, x2, x3, etc.
Each of these means can be treated as a unique
observation; their collective distribution is called a

sampling distribution. While σ measures the stan-
dard deviation of the original population and tells us
how much variability to expect among the individual
observations, se(x) = σ/

√
n measures the standard

deviation of the sampling distribution and tells us
how much variability to expect among the means.
Although the standard error is related to the popu-
lation standard deviation σ , there is less variability
among the sample means than there is among the
individual observations. Even if a particular sample
contains one or two extreme values, it is likely that
these values would be offset by the other measure-
ments in the group. As n increases, the amount of
sampling variation – and thus the dispersion among
the means – decreases.

The standard error of the sample mean x can
be estimated by substituting the sample standard
deviation s for σ , where

s =









n∑

i=1

(xi − x)2

n − 1









1/2

.

Therefore,
ŝe(x) = s√

n
.

The estimated standard error plays an important role
in statistical inference on a population mean; it is
vital to the construction of confidence intervals and
the performance of hypothesis tests.

K. GAUVREAU



Standard Gamble
Technique

In recent years the concept of utility has been intro-
duced to both clinical decision making (i.e. decisions
regarding the best course of action for a patient;
see Decision Analysis in Diagnosis and Treatment
Choice) and program evaluation (i.e. the best way
of using available health care resources or economic
evaluation of health care programs). The Standard
Gamble (SG) technique is a classic method of mea-
suring an individual’s utility (i.e. preferences) under
uncertainty. The measurement of individuals’ pref-
erences under uncertainty is important because deci-
sions about health interventions at both the individual
and the community levels (stemming from the unique
nature of health as a nontransferable goal) are made
under uncertainty [2]. It is used to measure von
Neumann–Morgenstern (vNM) utility functions [20]
over life-years and health states, preference weights
to be used in the QALY (quality-adjusted life-years)
calculations (see Quality of Life and Health Status)
and the healthy years equivalent (HYEs).

The SG Technique

The SG technique is a lottery-based technique where
the respondent is asked to indicate a state of indif-
ference when comparing two lotteries or a lottery to
a sure thing. The SG question is a general question.
However, to be able to interpret the answers we need
an underlying theory [20]. The most common one is
the vNM utility theory. The SG in the context of a
vNM type individual will be the focus of this article.
For a review of this method and its application in
general see [4], and for its use in health care see [19]
or [6]. For simplicity, but without loss of generality,
most of this article deals with the case of estimat-
ing a preference value for a chronic health state. In
this situation an individual has a particular number of
remaining life years in a given constant health state.

We use the following notations and definitions.
Let Q and T denote two attributes of the outcome
of concern (Q = the health state of the individual,
T = remaining life years). Let FH represent the
state of full health and D death (D ≤ Q ≤ FH). Let
U(Q, T ) be a vNM utility function that describes the
utility of being in a given health state, Q, starting

now, for a period of T years, followed by death, as
viewed now by the individual. For the case of chronic
health state the SG technique is applied as follows
(see also Figure 1):

The subject is offered two alternatives. Alternative
1 is a treatment with two possible outcomes: either
the patient is returned to normal health and lives for
an additional T years (probability p), or the patient
dies immediately (probability 1 − p). Alternative 2
has the certain outcome of chronic state I (Q using
the above notation) for life (T years). Probability p

is varied until the respondent is indifferent between
the two alternatives at which point the required
preference value for state I (Q using the above
notation) is simply p∗ [19, p. 20].

Props and visual aids are recommended for use to
help respondents understand the task.

Using the notation defined above it can be shown
that U(Q, T ), the preference value of living T years
in health state Q, is equal to p∗. More specifically,
using the vNM utility theory (also known as expected
utility theory) at the indifference point, the follow-
ing relation holds: U(Q, T ) = p∗U(FH, T ) + (1 −
p∗)U(D, T ), where p∗ is the indifference probability.
Denoting U(FH, T ) = 1.0 and U(D, T ) = 0.0, we
have U(Q, T ) = p∗.

An important question is whether one can measure
the utility of a health state for a unit of time, say
one year [i.e. U(Q, 1)]. Gafni [6] deals with this
question extensively. In brief, even though in theory
this is an option, it seems that in practice it will
not work. For example, we can ask individuals to
imagine living one year, followed by death, in each
of the outcome alternatives. This is likely to be seen
as threatening by participants, especially when they
are evaluating less severe health states and are not
very old. A common problem in many studies is that
they do not incorporate any explicit statement about

p

1 − p

Healthy (FH) for
rest of life (T )

Immediate death

Chronic health 
state (Q ) for rest
of life (T )

Alternative 1

Alternative 2

Figure 1 The Standard Gamble method for eliciting util-
ities for a chronic health state, Q, for rest of life T
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the time period spent in the health state and what
will happen after this period is over [6]. If this is
not done one does not know what the respondent
assumed about the length of time spent in the health
state and the future states when responding to the
SG question. If individuals assume different durations
and future states, then their responses will embody
an additional component of variation that cannot be
tested out.

Interpreting the Scores

The health of an individual is unlike many other
outcomes studied in decision theory or economics.
For example, the health of an individual has a time
aspect inextricably bound to it. Thus, one cannot
measure only the preference value attributed by indi-
viduals to different health states while ignoring the
time spent in this health state. In this sense, health is
a two-dimensional phenomenon. In particular, Gafni
& Torrance [5] argue that the utility (or preference
value) for additional time in a given health state –
measured using the SG method – depends on a quan-
tity effect (related to the duration in the state), a
time effect (reflecting time preference), and gambling
effect (reflecting risk attitude). Recently, Gafni [7]
added another factor – sequence effect (the order
of bad and good events). Thus, observed values
of U(Q, T ) already embody the individual’s risk
attitude, time preference pattern, attitudes toward
additional quantities of life, and the sequences of
events.

As explained, the SG technique provides an indi-
vidual’s preference score for living in a given health
state for a given period of time, that is, U(Q, T ).
Yet many researchers interpret this value as a “time-
less” one. They define a general utility scale where
a score of 1.0 represents a normal or “healthy” state
and 0.0 represents the health state dead. Interpret-
ing the values measured as “timeless” allows the
development of tables in which different health states
are organized in declining order from healthy (1.0)
to death (0.0) (and even states worse than death),
regardless of the time spent in each health state
and assuming that the preference value attributed
to a health state is independent of the sequence of
other health states in the individual’s lifetime health
profile.

Another way to interpret these values is to assume,
for example, that a “constant proportional trade-off”

exists between quality of life (Q) and time (T ),
which has been shown to be a prerequisite for using
the SG scores as weights in QALYs calculations
(see [17]). Under this assumption, the proportion of
remaining life that one would trade for a specific
quality improvement is independent of the amount
of remaining life. For the case of a lifetime health
profile (i.e. the case where the individual can expe-
rience different health states during his or her life-
time) an additional assumption is required – that in
the person’s preferences, qualities of life at different
times are strongly separable [3, 16]. In other words,
the person’s preferences about the quality of his or
her life in any particular point in time are inde-
pendent of the qualities of his or her life in other
years.

It is important to emphasize that the constant
proportional trade-off assumption and the strong
separability assumption are additional assumptions
to those underlying the theoretical foundation of
expected utility theory (or vNM utility theory). In
other words, an individual can be an expected util-
ity maximizer without following these particular
assumptions. Indeed, many who have invoked these
assumptions admit that they are very restrictive and
unlikely to represent individuals’ behavior. Further-
more, these assumptions have no normative appeal
(i.e. they do not reflect the discipline view of the
world regarding how an individual should behave)
nor are they supported by empirical evidence [3, 9].
Hence in treating preferences for health states as
“timeless” we are thus at risk of misrepresenting
the actual preferences of people (see, for exam-
ple, [6]).

Aggregation of SG Scores

Until now we have concentrated on the measure-
ment of an individual’s preferences. For program
evaluation (i.e. cost–utility analysis) we need a
social perspective (see Health Economics). The cur-
rent practice is that in cost–utility analysis “the
aggregation across subjects is achieved by mea-
suring all individual utilities on the common 0–1
dead–healthy scale and taking the arithmetic mean”
[19, p. 17]. This simple (nonweighted) mean of indi-
viduals’ responses is used to derive a “social valu-
ation” of the weights (per unit of time) to be used
in QALYs calculations. The question of aggrega-
tion of individual utilities and its validity has been
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addressed by many authors (for example, [1, 11,
12, 14], and [18]). In this section I do not deal
with the question of whether or not it is valid
to aggregate individual utilities but assume that it
can be done (albeit under a very restrictive set of
assumptions).

In this section I question the meaning of aggre-
gating individual preference scores measured using
different time horizons, based on the simple arith-
metic mean. As explained, each preference score
represents the utility of living a period of time in
a given health state [i.e. U(Q, T )]. For the chronic
health state (which we use as an example), the time
span is usually defined as the individual’s expected
life span (see Life Expectancy). In most health
programs individuals who participate have different
expected life spans. Thus, the simple aggregation
rule implies subscribing to the equity criterion that
the reference state of full health for the rest of the
individual’s life should be treated as of equal value
for all individuals. However, as shown by Gafni
& Birch [8], the equity criteria used to justify this
method of aggregation differ from the one indicated
above.

Whether a particular equity criterion is appropriate
or not is a subjective issue. However, equity consid-
erations (i.e. the relative values or weights attributed
to different individuals or groups) are an intrinsic part
of any evaluation. It is thus important that considera-
tion is given to the question of whether the procedure
measuring the outcome is consistent with the stated
equity criteria. Gafni & Birch [8] deal with this issue
extensively and derive adjustment algorithms based
on the axioms of vNM utility theory, taking into
account the different equity criteria adopted in the
literature. It is important to emphasize that these
adjustment algorithms add to the complexity of the
measurement task.

Alternative Uses for the SG Technique

For those who do not want to subscribe to the strong
assumptions of the QALY model, two alternatives
exist. The first one is to use the SG technique to
measure vNM utility scores directly for different
potential lifetime health profiles. This can be done
by asking one SG question for each lifetime health
profile that we want to measure, i.e. using a holistic
approach. These values can be used as measures of

outcome at the endpoints of a decision tree. We can
then calculate the expected utility of each treatment
option and choose the one with the highest expected
value. The disadvantage of this option is that it
creates a communication problem. Expected utility
is a theoretical notion that has no direct empirical
meaning. In other words, the unit of outcome (i.e.
util) has no intuitively appealing meaning to many
users (e.g. clinicians or administrators). For example,
it will be difficult for them to understand the meaning
of cost per util.

Following the need to improve communication
(i.e. to preserve the intuitively appealing meaning
of the QALY measure) in a way which is consis-
tent with the concept of utility, Mehrez & Gafni [15]
suggested an alternative measure – HYE (healthy
years equivalent). This measure, based on the the-
oretical foundation of utility theory, stems directly
from the individual’s utility function and thus does
not require that the individual subscribes to the addi-
tional assumptions of the QALY model (or even to the
underlying assumptions of the vNM utility model). It
only requires that the individual’s preferences should
be measured under conditions of uncertainty. It com-
bines outcomes of both quality of life (morbidity) and
survival (mortality) and thus can serve as a common
unit of measure for all programs, allowing compar-
isons across programs. It preserves the intuitively
appealing meaning of the QALY by using years of
life in full health as the unit of measurement.

For the case of a decision tree and a vNM
type individual, the following two-stage, lottery-
based procedure can be used [7, 10, 13]. In stage
I, we first use the SG method to measure the utility
of all potential lifetime health profiles (i.e. a holis-
tic approach), and secondly calculate the expected
utility for each treatment option. In stage II, we “con-
vert” the expected utility of each treatment option to
HYE again using the SG method but with a different
type of question. In the second SG question the sub-
ject is offered two alternatives. Alternative 1 is the
same lottery offered in the previous SG question with
one change. The probabilities for the two outcomes
are now known (i.e. p = EU and 1 − p = 1 − EU ,
where EU = expected utility from the treatment).
Alternative 2 is living H years in full health. H is var-
ied until the individual is indifferent between the two
alternatives. The indifference point H ∗ defines the
certainty equivalent number of years in full health
(HYE) that produces utility (i.e. preference value)
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equal to the expected utility of the treatment. Note
that this procedure illustrates the communication role
of the HYE measure. By comparing the expected
utility of each treatment option one can determine
which treatment is preferable. However, the outcome
is presented in units that are difficult to understand
(i.e. utils). By adding the second stage we are able
to “translate” the results to more meaningful units
and thus achieve the goal of communication. For
adjustment algorithms that take into account differ-
ent equity criteria for the case of HYE see Gafni &
Birch [8].

Debate in the literature has centered mainly around
the theoretical properties of QALYs and HYEs. It
seems that the theoretical superiority of the HYE
has been established (e.g. in [13]); however, doubts
have been raised about the feasibility of measuring
HYEs. A recent paper [10] deals with this issue. In
brief, the authors discuss the feasibility of measure-
ment using the algorithm described above and the
respondent burden in terms of the number and com-
plexity of questions posed. They conclude that HYE
will generally involve greater measurement burden
than QALYs, but this need not always be restrictive.
When the additional measurement burden on subjects
is restrictive, they show how the task can be sim-
plified and the measurement burden shared between
respondents. Although the number of profiles to be
assessed will make HYE infeasible for complex (i.e.
very large) decision trees, analysts must view this
study design issue in the broader context of the trade-
off between precision of the model vs. bias when
valuing outcome.
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Standard Normal Deviate

If a random variable X follows a normal distribu-
tion, then the standard normal deviate measures the
distance between a particular outcome of X and the
mean of X in units of the standard deviation.

Suppose that X is a normally distributed random
variable with arbitrary mean µ and standard deviation
σ . While µ represents the center of the distribution
of X, σ specifies the amount of dispersion or spread
around the mean. Together, these two parameters
completely define the shape of the normal curve.

We often wish to evaluate probabilities associated
with various outcomes of the random variable X. For
instance, if c is a constant, we might wish to know
Pr(X ≤ c). One way to determine this is to look
up the probability using a table of areas calculated
for this specific normal curve. Since a given normal
distribution can have an infinite number of values
for its mean and standard deviation, however, it is
impossible to tabulate the probabilities associated
with each and every curve. Instead, only a single
curve is tabulated – the special case for which µ = 0
and σ = 1. This curve is known as the standard
normal distribution.

To use the table of the standard normal distribution
to look up probabilities associated with a generic

normal random variable X which has mean µ and
standard deviation σ , we must rescale X to have mean
0 and standard deviation 1. The rescaled random
variable is defined by

Z = (X − µ)

σ
;

we take the random variable X, subtract its mean,
and divide by its standard deviation. Instead of eval-
uating Pr(X ≤ c) directly, therefore, we would eval-
uate

Pr(X ≤ c) = Pr

(
X − µ

σ
≤ c − µ

σ

)

= Pr

(
Z ≤ c − µ

σ

)
.

An outcome of this rescaled random variable – (c −
µ)/σ in the example above – is known as a stan-
dard normal deviate or a z-score. Unlike the original
outcome c, it does not have any units of measure-
ment. It tells us how far the value c lies from the
mean µ, measured in standard deviations. If Z = −2,
for instance, then c must be two standard deviations
below the mean.

K. GAUVREAU



Standardization Methods

Standardization methods are used to adjust for the
effects of age and sex, and possibly other factors, in
the comparison of disease rates between two or more
populations. In what follows, adjustment for age will
be described, but all the methods can be extended to
adjust for other factors, such as sex.

Standardization methods have a long history, and
rank among the earliest statistical tools developed.
Keiding [21] has traced their origins to eighteenth
century actuarial mathematicians (see Actuarial
Methods), though they were reinvented a century
later by Neison and Farr. Neison was a famous
statistician of his day, writing regularly in the
Journal of the Statistical Society on a wide variety
of subjects. Farr was a government official who
worked as the “compiler of abstracts” in the
Office of the Registrar General for England and
Wales from 1839 to 1880. These two eminent
men recognized that the comparisons of crude
death rates (see Vital Statistics, Overview) were
not sufficient for examining mortality patterns over
time (see Morbidity and Mortality, Changing
Patterns in the Twentieth Century), or between
geographic areas (see Geographic Patterns of
Disease; Mortality, International Comparisons).
They also showed that the average age at death was
not an appropriate index for assessing differences in
mortality [25].

In 1841, Farr published age-specific death rates
and compared them to rates for the previous three
years to show how the pattern of mortality had
changed (Registrar General 1841; see [37]). Exam-
ination of age-specific rates (usually stratified by sex
as well) is widely considered to be the most com-
prehensive way of comparing disease rates across
populations. However, when many populations and
types of disease are to be studied, the number of
individual rates requiring scrutiny, rapidly becomes
awkwardly large. A further summarization of the data
is therefore required.

Farr introduced the idea of an external standard
population, against which other populations could
be compared (Registrar General, 1853; see [37]).
His standard was the so-called “healthy counties” in
England and Wales. He calculated a set of standard
death rates for these counties against which those for
other counties could be compared. He then took each

of the age-specific rates in the “healthy counties”
and multiplied them by the numbers of people of
comparable age in the county of interest. In this way
he derived an expected number of deaths in each
age group.

This was not an entirely new method, as Neison
had performed similar calculations on rates from two
areas of London to prove that the method of com-
paring average ages at death was flawed [25]. Farr,
however, went on to sum the age-specific expected
deaths to give the total number of deaths in each
county that would be expected if the mortality was the
same as in the “healthy counties”. The expected num-
ber could be compared with the observed number to
assess how each county’s mortality differed from that
in the standard (see Excess Mortality). Multiplying
the ratio of observed to expected deaths by the crude
rate in the standard population provided a standard-
ized rate for each county (Registrar General 1857;
see [37]). This method is now known as indirect stan-
dardization and it has remained in widespread use to
this day. Since then, other methods have been sug-
gested, but indirect standardization is possibly still
the most popular.

Rates and Ratios

Standardized rates, such as those produced by Farr,
are expressed as the number of deaths (or cases of
disease) per head of population. These can be com-
pared with crude rates in the standard population and
are expressed in the same units as normally used for
the presentation of rates (e.g. number of deaths per
100 000 population). Possibly more often, however,
standardized ratios are quoted. These compare the
disease burden (see Burden of Disease) in the popu-
lation of interest with that in the standard population.
A ratio of 1 therefore indicates that the populations
are similar in terms of the disease in question. Often,
ratios are presented as percentages by multiplying
them by 100, although this convention will not be
used here. Some of the methods that will be described
do not provide standardized rates per se, but mul-
tiplying the ratio by the crude rate in the standard
population is a way of obtaining an adjusted rate.

Choice of Standard Population

Most methods of standardization require a standard
population against which the population of interest
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Table 1 Notation

Index Standard
Description population population

Population in age group i ni Ni

Total population n = ∑
ni N = ∑

Ni

Deaths/events in age group ia di Di

Total number of deaths/events d = ∑
di D = ∑

Di

Death/event rate in age group i ri = di/ni Ri = Di/Ni

Crude death/event rate r = d/n R = D/N

Number of deaths from all causes in age group i ai Ai

Proportion of all deaths due to cause of interest in pi = di/ai Pi = Di/Ai

age group i

Number of deaths from all causes other than the si = ai − di Si = Ai − Di

specific cause of interest in age group i

Odds of death from specific cause compared to mi = di/si Mi = Di/Si

other causes
Number of years in age group i yi

Mid-point of ith age group hi

aFor proportional analyses, this is the numbers of deaths from a specific cause in age group
i. For all other indices, this can refer to deaths from all causes or specific causes, or to other
disease rates.

(index population) is to be compared. Usually, the
choice of standard is fairly obvious. Thus, for exam-
ple, in trying to summarize age-specific rates for
geographic regions within a country, the national
population could be used as a standard. When exam-
ining rates for a variety of countries, a world popu-
lation or the population of the appropriate continent
would be suitable standards. Frequently, however, the
sum of the set of index populations to be examined
is used as the standard.

A variety of standard populations have been used
in the successive volumes of Cancer Incidence in
Five Continents [31]. These have included estimated
African and European and world populations, and
a truncated world population that only includes the
ages 35–64 in five year age bands. The reason
behind the choice of this unusual population was to
avoid the examination of rates being dominated by
cancers occurring at older ages; cancers at younger
ages may give more clues to etiology than those
occurring later in life. The most recent volume on
cancer incidence [35] has, however, used only the
approximate world population.

The important point to note is that different
choices of standard population can give rise to differ-
ent results. Thus identifying a suitable standard is a
prerequisite for applying standardization methods. All
standardized measures represent a comparison with a
chosen standard population.

Notation

The notation used for the formulas for standardized
rates and ratios varies widely. The notation used here
is given in Table 1.

Indirect and Direct Standardization

Indirect and direct standardization are the two most
widely used methods for standardizing rates. Other
methods have been proposed, but have not achieved
the same popularity.

Indirect Standardization

The information required for use of the indirect
method is as follows:

1. age-specific rates in a standard population;
2. the size of the index population in each age

group; and
3. the total number of deaths (or cases of disease)

in the index population.

The formula for the indirectly standardized ratio is

d∑
niRi

.
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Such ratios are widely known as Standardized Mor-
tality Ratios (SMR) when deaths have been studied.
Similar names are adopted for morbidity, such as
Standardized Incidence Ratios for cancer incidence
rates. An alternate way of considering an indirectly
standardized ratio is as a ratio of the observed num-
ber of events to the number expected in the index
population on the basis of standard rates; in other
words,

SMR = d

e
, where e =

∑
niRi.

One can then obtain the indirectly standardized rate
by multiplying the ratio by the crude rate in the
standard population:

dR∑
niRi

.

Direct Standardization

A challenge to the indirect method of standardization
came in 1883 from within the Registrar General’s
Office (Registrar General, 1883; see [37]). Ogle pro-
posed the use of what is now known as the direct
method of standardization. The method can be con-
sidered as the opposite of indirect standardization.
The type of information required on the standard pop-
ulation for the indirect method is required for the
index population in the direct method and vice versa.
Thus the information needed for calculating a directly
standardized ratio is:

1. age-specific rates in the index population;
2. the size of the standard population in each age

group; and
3. the total number of deaths (or cases of disease)

in the standard population.

The formula for the directly standardized ratio, usu-
ally termed the Comparative Mortality Figure (CMF)
when deaths are being considered, is as follows:

∑
Niri

D
.

Analogous to the formula for the SMR, the CMF can
be expressed as a ratio of the expected deaths in the
standard population on the basis of index rates to the
total number of deaths in the standard population; in

other words,

CMF = E

D
, where E =

∑
Niri .

Multiplying by the crude rate in the standard popula-
tion gives the standardized rate as follows:

R
∑

Niri

D
=

∑
Niri

N
,

since D/R = N .

Discussion of Direct and Indirect Methods

The direct method is often advocated as the ideal,
because it preserves consistency between different
index populations. Thus if each age-specific rate in
one index population is greater than the rate for the
same age group in another index population, then
the standardized rate in the former should be greater
than in the latter. This is not necessarily true for
indirect standardization. When a large number of
index populations are compared to the same standard,
the consistency property is important. Often, the
standardized rates will be compared between index
populations to make statements about differences
between their disease rates. A method that may fail
to preserve consistency could give rise to misleading
conclusions about the disease burdens in different
populations. However, it is hard to find examples in
practice in which serious problems of this nature have
arisen.

Direct standardization can be useful in a situation
in which disease rates in the appropriate standard
population are unavailable. For example, the Can-
cer Incidence in Five Continents volumes as men-
tioned above [31, 35] have used approximate world,
African, and European populations. Since cancer reg-
istration is patchy worldwide, world cancer incidence
rates are unknown. Estimating world rates by sum-
ming the numbers of cancers and population sizes
in those countries with data would under-represent
the cancer burden in Africa, for example. It is much
easier to derive an approximate population distribu-
tion by age for the world than to estimate world can-
cer rates. The actual numbers in each age group need
not be world figures as long as the ratios between
different age groups are approximately correct. Once
standard population numbers are available, directly
standardized rates can be produced from the age-
specific rates from the countries of interest.
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Conversely, if age-specific rates in the index pop-
ulation are unavailable, the direct method cannot be
used. It is rare to know the total number of cases
of disease but not their ages. However, in such a
situation, provided that the age distribution of the
population is known, then the indirect method could
be used.

One might wonder why the indirect method is used
so widely, and indeed this question is still a subject
of debate. The argument for the indirect method is
that it is more stable when studying rates based on
small numbers of deaths. If the age-specific rates in
the index population are zero for a number of age
groups, then the directly standardized rate or ratio
is poorly estimated and can have a large standard
error. Indeed, the SMR generally has a lower stan-
dard error than the CMF, no doubt in part because
it is the first approximation to the maximum likeli-
hood estimate of the index under the assumption that
the number of deaths follows a Poisson distribution.
These factors have led to the indirect method being
widely used, particularly in Britain, for analyses of
small geographic areas or occupational groups (see,
for example, Office of Population Censuses and Sur-
veys, 1986, 1990 [32, 33]; and see Geographic Pat-
terns of Disease; Occupational Mortality; Small
Area Variation Analysis). Breslow & Day [2] have
pointed out that the SMR is preferred for the analy-
sis of cross-sectional data according to birth cohort
rather than calendar period. This is because the age
intervals for which age-specific rates are available
tend to vary for different generations, which pre-
cludes calculation of the CMF.

SMRs are widely used in analyses of cohort
studies. The members of the study (index) popula-
tion are followed through time, and the numbers of
events, such as deaths or cancers, are recorded. Per-
son–years-at-risk are calculated for each age group
and calendar period, which provide the ni to be multi-
plied by the age- and calendar period-specific rates Ri

from the standard population (usually national rates).
We thus obtain an expected number of events, which
is compared with the observed number in the study
population. The ratio of the observed to expected
numbers gives the SMR. When many different causes
of death or cancer sites are to be studied, many of the
age-specific rates in the study population are zero and
so the direct method is rarely used. Only in very large
cohort studies does the use of CMFs become feasible
and, even then, only for major causes of death.

Other Methods

A wide variety of other methods has been proposed
since 1883, when the direct method was advocated.
Many have been suggested for the analysis of mortal-
ity rates and thus have the word “mortality” in their
name. There is no reason, though, why other forms of
disease rates should not be summarized using these
methods. The formulas for the various rates and ratios
are given in Table 2; some methods only provide a
standardized rate and no ratio, or vice versa. The
origins of these methods and the reasons for them
have been reviewed by Inskip et al. [19]. Most of
the methods have been suggested in an attempt to
circumvent problems identified in the two main meth-
ods. Sadly, nothing can circumvent the difficulty that
the only reliable way of comparing disease rates is
by examining age-specific data.

Few of these methods have become widely used
and so they are not discussed in detail here. One
that is used regularly, however, is Day’s cumulative
rate [7]. This has been used in the Cancer Incidence
volumes since its proposal. It is one of the few
methods ever suggested which does not require a
standard population, and therefore, perhaps should
not be counted as a “standardization” procedure per
se. The principle is simple, in that it is the sum of the
age-specific rates for each year to age 74. Usually,
rates are only available in age bands comprising a
number of years. The cumulative rate is then obtained
by multiplying each age-specific rate by the number
of years it spans, before summing them. The resulting
rate is an approximation to the cumulative risk of
acquiring the disease from birth to age 74. This
gives a useful measure of the disease burden in the
population and comparisons can readily be made
between two populations of interest. The method
does, however, assume that there is no other cause
of death to be considered, and this would argue
against its use for comparing two populations with
widely differing all-cause mortality rates (such as
comparing rates in Africa with those in Europe). No
ratio is usually derived from this method, although,
intuitively, two groups can be compared by taking
the ratios of their cumulative rates.

Proportional Methods

Problems arise when no reliable estimates of the pop-
ulation at risk are available. Routine occupational
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Table 2 Formulas for standardized rates and ratios

Rate Ratio

Name Formula Name Formula

Comparative
mortality
rate

1
2

∑(
ni

n
+ Ni

N

)
ri Comparative

mortality
index [39]

∑
(ni/n + Ni/N)ri∑
(ni/n + Ni/N)Ri

Equivalent
average
death
rate [44]

∑
yiri∑
yi

Yule’s index [44]

∑
yiri∑
yiRi

Cumulative
rate [7]

∑
yiri Yerushalmy’s

relative mortality
index [43]

∑
yiri/Ri∑

yi

Liddell’s relative
mortality
index [24]

∑
(Niri/NRi)

Relative risk
index [26]

∑ Niniri

(Ni + ni)Ri

/
∑ Nini

Ni + ni

Kerridge’s inverse
method [22]

∑
(di/nRi)

Fisher’s Ideal
Index [11]

(
d∑
Rini

×
∑

riNi

D

)1/2

mortality analyses usually suffer from this problem.
This is because there are differences in the questions
asked about a person’s occupation in censuses and
those asked of informants of a death. Indeed, the per-
son notifying the death may be unable to give as accu-
rate a description of the occupation as the deceased
would have provided on a census form. While SMRs
have been widely used for occupational mortality
analyses, their weaknesses have to be acknowledged,
and they are often biased (see Occupational Epi-
demiology; Occupational Health and Medicine).

A different approach has been adopted in many
analyses of this type. In each age group, the popula-
tion size in each age group is replaced by the number
of all-cause deaths. Thus the rates are replaced by the
proportions of all deaths due to the cause of interest.
A method analogous to that for the SMR is then used
to provide a Proportional Mortality Ratio (PMR):

d∑
aiPi

.

Analyses of proportional mortality (although not
as ratios) have a longer history than other

standardization methods. As far back as 1662,
John Graunt [16] considered the proportion of
deaths due to different causes in order to assess
the importance of different diseases in leading to
death. However, it was not until the twentieth
century that proportional methods became popular
in a variety of contexts, particularly occupational
analyses. The analysis of occupational mortality in
England and Wales for 1931 (Registrar General,
1938; see [38]) gave some proportions of deaths
due to the cause of interest, but it was not until
the comparable report for 1961 (Registrar General,
1971; see [38]) that the ratios were given. They
have been used ever since in the analysis of
occupational mortality for England and Wales, but
it was only in the latest report that they have
been used exclusively (Office of Population Censuses
and Surveys, 1995 [34]). Indeed, the latest volume
also describes cancer incidence data by occupation,
again using proportional measures, but these are
Proportional Incidence Ratios (PIR), with all types
of incident cancer forming the denominator of the
proportions, rather than all deaths.
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When suitable populations at risk are unavailable,
proportional methods have to be used. Analysis of all-
cause mortality does, however, become impossible,
as the ratios take the value of unity. Criticisms of
the method focus on the problems of bias. If the
PMR is used as a proxy for the SMR, it will be
biased upward when the all-cause SMR is low (and
vice versa). Kupper et al. [23] and Decouflé et al. [8]
have discussed the relationship between the PMR and
the SMR; the PMR is approximately equal to the
ratio of the cause-specific SMR to the all-cause SMR.
Kupper et al. [23] termed this ratio the relative SMR
(RSMR). In the absence of standardization for any
factors, the RSMR and PMR are identical. Since the
aim is to standardize, this is unhelpful, but empirical
studies have shown that the PMR is a useful proxy for
the RSMR [40]. If one is only interested in disease
rates in comparison with the standard population, this
presents problems for the analysis of groups with very
low or high all-cause mortality. However, changes
in the distribution of disease within groups should
not be ignored, and so the PMR is of value in its
own right. PMRs may well lead to useful etiologic
clues, particularly in occupational groups with low
overall mortality. In such groups, diseases with rates
comparable to those in the standard population would
be missed by an SMR analysis but would be identified
by an elevated PMR.

PMRs can also be biased by abnormally low or
high mortality from causes other than that of interest.
This problem has been examined by McDowall [29].
He pointed out that it is only the largest causes
that seriously influence the PMR for other causes.
This led him to suggest recalculations of the PMR,
successively excluding the major causes of death
from both the standard and index proportions.

The method of calculation of the PMR is similar
to that for the SMR, as it employs an indirect stan-
dardization approach, albeit of proportions instead of
rates. In 1983, Zeighami & Morris [45] proposed an
alternative to the PMR which is analogous to a direct
standardization method, the formula being

∑
Aipi

D
,

but this does not appear to have been widely used.

Mortality Odds Ratio

A different approach to proportional mortality analy-
ses was proposed by Miettinen & Wang [30]. Their

ratio is equivalent to the odds ratio used in the
analysis of case–control studies. The “cases” are
deaths from the cause of interest and the “controls”
are deaths from all other causes. “Exposure” is then
membership of the study group of interest (e.g. a par-
ticular occupational group, or residence in a specific
geographic area), and the “unexposed” are all those
not in the group of interest and form the “standard”
for this method. The formula for the Mortality Odds
Ratio is

d∑
siMi

.

This index is attractive, as it can be interpreted in
a similar way to a case–control study, although the
choice of other deaths as controls is not necessarily
ideal. It is straightforward to show that the unadjusted
PMR is always more conservative than the MOR.
When such methods are being used for screening
large amounts of data, such as in routine occupational
mortality statistics, many false positives are identi-
fied. The use of a more conservative index may be
an advantage. With the current speed of computers,
the fact that the PMR is simpler to calculate is a minor
point, but may still be a consideration if large data
sets are to be analyzed (see Proportional Mortality
Study).

Person-Years-of-Life Lost

One concern about most standardization methods
is that they give most weight to the age groups
that contain the largest numbers of events. In most
mortality or morbidity analyses, the elderly therefore
receive most emphasis. Restriction of the age groups
under study can help, and indeed Yule’s method [44]
(see Table 2) and Day’s cumulative rate [7] require
an upper age limit for their calculation. However,
for certain analyses, deaths occurring at younger ages
may be of greatest interest.

In the early 1950s, there was considerable discus-
sion about this problem [10, 17, 27, 28]. Whether
examining changes in mortality over time, or com-
paring occupational groups, it is often of interest
to know whether there are differences at younger
ages that are missed by analyses dominated by many
events among the elderly. Haenszel [17] loosely
defined person–years of life lost as “the total num-
ber of years lost through the failure of individuals
to live some allotted life span”, and pointed out that
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working-years lost “refer to those falling between the
productive ages between 20 and 65”. He went on to
point out that “it has long been recognized that a
count of deaths alone did not give a complete picture
of mortality, and measures have been sought which
would make some allowance for the widely held intu-
itive idea that a death at age 70, for example, does
not represent as great a loss to society as death at
age 35”.

While standardized rates of years of life lost can be
calculated and used for comparison of groups, ratios
are usually more readily understood. To obtain either
rates or ratios, the deaths in each age group in the
index and standard population are multiplied by the
years of life lost in each age group.

Two different forms of years of life lost factors
have been suggested. The first is simply to choose an
upper age limit of interest and subtract from it the
mid-age of each age group. Thus, if years to age 70
were of interest, the years-of-life lost in age group
35–39 would be 33. The formula for the standardized
ratio is therefore

∑
di(70 − hi)

∑
niRi(70 − hi)

This is equivalent to a weighted indirectly standard-
ized ratio, and by analogy the directly standardized
form is ∑

Niri(70 − hi)
∑

Di(70 − hi)
.

Upper age limits other than 70 can be used and,
indeed, a lower age limit such as 15 or 20 for occu-
pational mortality can be incorporated by ignoring
deaths in childhood.

The other form of weights to represent years of
life lost are obtained from life table estimates of life
expectancy. The number of years that a person at the
mid-age of each age group can be expected to live
is estimated from life tables derived from death rates
for the standard population. These weights can then
be used in the above formulas replacing 70 − hi .

Variances and Standard Errors

In estimating standard errors, we usually assume
that the standard rates and populations are stable and
their sampling errors can be ignored. This is not

always true, but, rightly or wrongly, the assumption
is usually made. We also assume that the populations
in the index population are fixed. Therefore, the only
random variables to consider are the age-specific
rates in the index population, or, more simply, the
numbers of events in each age group in the index
population. The events in each age group are also
assumed to be independent of each other.

It is worth noting that almost all the formulas
for standardized rates and ratios can be written as
a weighted sum of the age-specific rates in the index
population: ∑

wiri,

where the wi are the weights.
Thus, for the directly standardized rate, the

weights are

wi = Ni

N
,

while for the indirect method they are

wi = niR∑
niRi

.

Similar formulas exist for the ratios. Most of the
ratios can be written as a weighted average of the
age-specific ratios in the form

∑
(wiri/Ri)
∑

wi

or, sometimes more conveniently, as a ratio of the
weighted age-specific rates:

∑
wiri

∑
wiRi

.

Using the first form, the weights for the Comparative
Mortality Figure (directly standardized ratio) are
Di and for Standardized Mortality Ratio (indirectly
standardized ratio) are niRi . All the other rates and
ratios in Table 2 can be written in this form with
differing values of wi , the only exception being
Fisher’s Ideal Index [11].

The next step is therefore to consider the standard
error of the ri (or di). There are two approaches
to this.
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Use of the Binomial Distribution

Chiang [6] developed an approach based on the
binomial distribution. He noted that rates ri are
not proportions, but derived a formula for each rate
as a function of the proportions of deaths di in the
hypothetical population from which the deaths were
drawn. This requires knowing the distribution of the
ages of the events within each age group. As an
approximation it is reasonable to assume that all
events occur in the middle of the age range. Chiang’s
formula for the variance of the ri then becomes

ri(2 − yiri)

ni(2 + yiri)
.

This leads to the variance of the standardized rate
being ∑

w2
i var(ri),

and that of the ratio being

∑[
w2

i

R2
i

var(ri)

]

(∑
wi

)2 .

The standard errors are then the square roots of the
variances.

Use of the Poisson Distribution

The alternate approach to estimating the standard
errors is to assume that the numbers of events
in each age group follow a Poisson distribution.
(It is worth nothing, however, that this assumption
may not be valid and that extra-Poisson variabil-
ity (see Overdispersion) may need to be investi-
gated [3]. The variance of a Poisson variable is equal
to its expectation, for which the observed number
of events is the best approximation available. The
denominators of the rates (the ni) can be absorbed
into the weights and so the formulas for the variances
of the rates and ratios become

∑
w2

i ri

ni

and ∑ w2
i ri

R2
i ni

(∑
wi

)2 ,

respectively.

Table 3 Variances of directly and indirectly stan-
dardized rates and ratios

Method Rate Ratio

Direct
∑

(N2
i ri/N

2ni)
∑

(N2
i ri/D

2ni)

Indirect

∑
R2

i di
(∑

niRi

)2

d
(∑

niRi

)2 = d

e2

Note that when SMRs are under discussion alone, the
variance is usually given as O/E2, although the use of
upper case letters and O for the total number of (observed)
deaths is not consistent with the notation used here for
index and standard populations.

These formulas reduce to fairly simple forms for
direct and indirect standardization, and these are
given in Table 3.

The formulas for the standard errors of Pro-
portional Mortality Ratios (indirectly and directly
obtained) are similar to those in Table 3. The num-
bers in the populations are replaced by the numbers
of all-cause deaths, and the rates are replaced by the
proportions of deaths. However, it is worth noting
that the proportions of deaths due to the cause of
interest are true proportions, unlike rates, and so the
binomial distribution could be used in the derivation
of the standard errors.

Confidence Intervals

In deriving confidence intervals for rates and ratios,
similar assumptions are made as for the estimation
of standard errors (se). Again, we have to make
assumptions about the distribution of the rates and
ratios.

Confidence Intervals for Rates

Confidence intervals for rates can be derived by
assuming that the rates follow a normal distribu-
tion. The method, therefore, is to add and subtract
1.96 times the standard error from the rate. If rates
are small, this leads to problems, as negative values
can occur. In such cases, it is preferable to consider
the standard error of the logarithm of the rate. Using
the standard approximation

var(log x) = var x

x2
,
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the standard error of the logarithm of a standardized
rate can be obtained as

se (log(rate)) = (se (rate))

rate
.

Using this, a 95% confidence for the logarithm of the
rate can be obtained, and taking exponentials gives
the 95% confidence interval for the rate itself.

Such estimates of confidence intervals rely on the
adequacy of the normal assumption, either for the
rate or its logarithm. The assumption tends to be
poor when the rates are low. This is particularly
a problem when we are calculating weighted sums
of the age-specific rates, each of which may be
small. Dobson et al. [9] have addressed this issue.
They have discussed a number of alternate methods
for estimating the confidence interval for a Poisson
parameter, and derived an improved estimate for the
confidence interval for a weighted sum of the events
in each age group.

The lower point and upper point of the interval
are

standardized rate +
(

V

d

)1/2

(dL − d)

and

standardized rate +
(

V

d

)1/2

(dU − d),

where
V =

∑
w2

i ri ,

and dL and dU are the lower and upper confidence
interval for the total number of observed deaths,
d. Various tables of confidence intervals for Pois-
son variables exist, usually for a number of levels
of confidence. Those given by Gardner [14] provide
90%, 95%, and 99% confidence intervals. Alterna-
tively, Dobson et al. [9] provide a list of approximate
methods for obtaining dL and dU.

Recently, there has been considerable research into
improved methods for obtaining confidence intervals
for standardized rates. As Swift [42] has noted, most
of these have been computer intensive methods,
and none appears to have been used routinely.
Swift himself suggested an approximate bootstrap
method which he compared with other methods using
simulation studies. It appears that the debate on
calculation of confidence intervals has not yet run its

course. Since all methods are approximate, a sensible
approach might be to produce a number of confidence
intervals calculated in different ways to see how they
vary.

Confidence Intervals for Ratios

Similar considerations apply to the confidence inter-
val for a ratio. Ratios are decidedly nonnormal and
often the logarithm is considered, with its approx-
imate standard error being calculated as described
above. The formula for standard error of the loga-
rithm of the directly standardized ratio (CMF) is

(∑
N2

i ri/ni

)1/2

∑
Niri

,

whereas that for the logarithm of the indirectly
standardized ratio (SMR) reduces to

1√
d

.

An alternate method for the calculation of confidence
intervals for the SMR (and for the indirectly stan-
dardized PMR) requires us to assume that the total
number of observed deaths in the index population,
d, is a Poisson variable. dL and dU, the lower and
upper points of the confidence interval for d, are first
obtained from tables or approximations and then the
corresponding confidence interval for the SMR is

dL

E
− dU

E
.

These formulas are now widely used for the calcu-
lation of confidence intervals, and it is unusual to
derive confidence intervals for SMRs using the stan-
dard errors. Computationally intensive methods could
also be used, but the above formula is considered
appropriate for most needs.

Regression Models

Increasingly, mortality rates are being modeled using
regression techniques. Keiding [21] discusses some
of these approaches at the end of his historical
review paper. Generalized linear modeling can be
used to analyze rates, and a number of papers have
explored the issues relating to such analyses [12,
13]. More recently, there has been increasing interest
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in Bayesian approaches using Monte Carlo meth-
ods [1] and generalized estimating equations.

Recurrent Outcomes

An important new development in the standardization
of rates is the consideration of recurrent outcomes.
Most of the methods described above have been
developed with a single outcome per person in mind,
notably death. Even when cancer has been of interest,
the number of people with multiple cancers is so
small that the cancers have been assumed to be
independent. Epidemiology has moved on from there,
to deal with outcomes that can occur more than
once within an individual. Examples are admission to
hospital, episodes of back pain, and attacks of asthma.

Although the standardized rates can be calcu-
lated as for nonrecurrent events, the standard errors
are larger because of the lack of independence of
recurrent events. Glynn et al. [15] used the negative
binomial distribution to account for departures from
the assumption, inherent in the use of the Poisson dis-
tribution, that the recurrent events occur randomly.
The variance of each age-specific rate in the index
population is then

(ri + r2
i /k)

ni

,

where k is an index of extra-Poisson variation in
the rate, with smaller values of k indicating larger
departures from the Poisson distribution. k has to be
estimated from the data and Glynn et al.suggest use
of the method of moments estimator.

The variance of the standardized rate is then
∑

(w2
i )var(ri),

from which the standard error can be obtained by
taking the square root. Again, to obtain confidence
intervals, taking logarithms as described above is
recommended.

Often one wishes to compare a number of stan-
dardized rates (for recurrent or single events). Car-
riere & Roos [5] have developed a simple test for the
comparison of H standardized rates against a stan-
dard rate that can be compared with the chi-square
distribution on H degrees of freedom. If Sh is the
standardized rate in the hth index population, and R

is the crude rate in the standard population, then the
test statistic is ∑

(Sh − R)2

var(Sh)
,

where the summation is over the H populations of
interest. If the standard rate is simply the overall rate
obtained from the combined index populations, then
the test statistic should be compared with the chi-
square distribution on H − 1 degrees of freedom.

More complex approaches are recommended when
the data are available for each individual followed up
over time. In this way, the events occurring for each
person are known. The analysis of such outcomes
requires approaches used for the analysis of longitu-
dinal data. Methods mentioned above such as gen-
eralized estimating equations, Bayesian approaches
using Markov chain Monte Carlo methods, and
other methods for multilevel modeling could be
applied. These are, however, computationally inten-
sive and analysis of large data sets can be very
time-consuming.

Computation

Despite the long history of standardization meth-
ods, few standard statistical packages allow for their
use. Many users write their own procedures and link
their data to the standard rates. STATA [41] is one
package that now incorporates procedures to perform
direct and indirect standardization, and Immonen-
Räihä et al. [18] published a macro for use in SAS
(see Software, Biostatistical). Spreadsheets are prob-
ably the most common computational method used to
derive standardized rates/ratios; the columns of the
spreadsheet hold the events/population numbers by
age for the index and standard populations respec-
tively, and the appropriate calculations performed.

For modeling approaches (see Model, Choice of)
to the analysis of rates, many packages are available
and will not be outlined here.

Discussion of Methods

Over the years, many methods of standardization
have been proposed. No single method has emerged
on top and a variety are in use. Direct and indirect
standardization are undoubtedly the most popular, but
other methods such as PMRs have to be employed in
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certain circumstances. A recent report of occupational
mortality in Italy [20] gave a table summarizing
occupational mortality analyses from many countries
worldwide in recent years. The method used for
obtaining standardized ratios in each analysis was
listed, and four different methods had been employed.
None used a direct method, whereas this is commonly
used in cancer studies (see, for example, Parkin
et al. [35]) and in many geographic analyses (see, for
example, Pickle et al. [36]).

Estimating standard errors and deriving confidence
intervals are not straightforward, and many methods
are in widespread use. The final verdict has not yet
been reached as to which methods are best, and the
debate is likely to continue for many years.

As a final note, and to return to where we began,
we must be aware that in any standardization proce-
dure we lose something. Much of the debate about
which methods to use is due to the fact that no
standardized measure can replace the analysis of the
age-specific rates themselves. We should understand
that summaries can be distorted by patterns in partic-
ular age groups. Before one employs any standardiza-
tion, one should scrutinize the individual age groups.
Burack et al. [4] have argued forcibly for examining
the age-specific rates, but it has to be acknowledged
that in large-scale studies of routine data, even exam-
ining the standardized rates or ratios for each subset
of the population (such as each occupational group)
is an unwieldy task. Scrutiny of the age-specific rates
for every group would be impossible. However, per-
haps we should take the advice of Burack et al., at
least in part, and before commenting on any partic-
ular standardized rate or ratio as being particularly
high or low we should be more prepared to examine
the original age-specific data.
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Standardized Coefficients

A linear regression model relates a response variable
to a linear predictor

α + β1X1 + · · · + βkXk,

where the Xs correspond to explanatory variables
and the βs are termed the regression coefficients.
The regression coefficient βi represents the change in
the linear predictor corresponding to a one unit shift
in the variable Xi , if all other variables remain the
same. Thus direct comparison of the size of regres-
sion coefficients is usually meaningless, since their

interpretation depends on the specific explanatory
variable.

Standardized regression coefficients represent an
attempt to circumvent this problem. If all the explana-
tory variables are standardized to have a mean of
zero and a variance of one, then the coefficients
corresponding to these standardized variables are
termed standardized regression coefficients. Because
unit shifts in these transformed variables are more
comparable, then so are the corresponding regression
coefficients. Note that the mean standardization is not
essential, since it is reflected only in α.
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Stationarity

The concept of stationarity of a time series is con-
cerned with the series being in statistical equilibrium;
the equilibrium behavior may exhibit a rich variety
of features but the features themselves must not be
evolving over time. This lack of evolvement is at the
heart of stationarity. From practical and visual points
of view the behavior of the series, in stretches of suf-
ficient length, must appear statistically identical. A
qualification about sufficient length is needed since
apparently nonstationary features over the short term
are not precluded from a stationary series; they must,
however, be nonunique and be a repeatable feature
over the long term. This aspect makes stationarity
a rather slippery concept to verify in practice. Most
analysts would only regard a series as stationary if
there were some clear evidence of repeatability in its
features. Evidence against stationarity would include
cyclic behavior (see Seasonal Time Series) and the
values trending over time; in the latter case, the local
level or average of the series would indicate a clear
pattern over the length of the series. The nonstation-
arity might be not in a level, but in the variability
about a level; extremes, say, might become more or
less frequent as time passes, and, more generally,
the distribution of fluctuations of the values could be
changing. A more subtle type of behavior ruling out
stationarity would be a change in dependency, such
as autocorrelation. Other simpler features, such as a
sudden and sustained change in level, are absent from
stationary series but would present little difficulty in
identification. There are no particularly biostatistical
aspects to stationarity, or to much of time series anal-
ysis in general, most existing methods being readily
applicable. One text orientated towards biostatistics
is Diggle [4]. Classical texts include Box & Jenk-
ins [1], Priestley [5], Brillinger [2], and Brockwell &
Davis [3].

Technical Definitions

Time series are usually measured either at discrete
evenly-spaced time-points or continuously over time.
This makes a considerable difference to their
specification or modeling as stochastic processes, but
little difference as far as definitions of stationarity are
concerned. In definitions, time series are represented

by random variables X(t1), X(t2), . . . , X(tn) at
a series of times (t1, t2, . . . , tn), n ≥ 1, and the
invariance of their joint distribution to a common
translation in time is the key aspect of stationarity.
Thus, the requirement of the strongest form of
stationarity, called strict or full stationarity, is that
the joint distribution of [X(t1), X(t2), . . . , X(tn)]
should be identical to that of [X(t1 + t), X(t2 +
t), . . . , X(tn + t)] for all integers n and all allowable
t, −∞ < t < ∞. This form of stationarity is often
unnecessarily rigorous and would be impossible to
investigate practically in its entirety. It is, however,
satisfied by independent and identically distributed
random variables, although such a time series
structure is usually no more than a useful null
hypothesis model. Simpler forms of stationarity are
employed in practice, beginning with stationarity
in mean, which requires that E[X(t)] does not
depend on t . A generalization would be to marginal
stationarity, in which the marginal distribution of
X(t) does not depend on t . The most used form
of stationarity, second-order or weak stationarity,
requires that the moments up to the second-order,
E[X(t)], var[X(t)] and cov[X(ti + t), X(tj + t)], 1 ≤
i, j ≤ n, do not depend on translation time.

These definitions, and the main discussion here,
are limited to univariate time series; with several
time series considered simultaneously, there will be
straightforward generalizations involving vector time
series quantities.

Stationarity of Linear Time Series Models

In discrete time, t = 0, ±1, ±2, . . . , a linear time
series model is usually given in the form:

X(t) = c0ε(t) + c1ε(t − 1) + c2ε(t − 2) + · · · ,
where ε(t), t = 0, ±1, ±2, . . . , is an independent and
identically distributed sequence of random variables,
and c0, c1, c2, . . . is a sequence of constants. For the
model to be strictly stationary, the sequence of con-
stants must be such that c(x) = ∑∞

i=0 cix
i converges

for |x| ≤ 1. A practically useful class of linear mod-
els, having a finite number of parameters, are autore-
gressive and moving-average processes (see ARMA
and ARIMA Models) of the form

X(t) = a1X(t − 1) + a2X(t − 2) + · · · + apX(t − p)

+ ε(t) + b1ε(t − 1) + · · · + bqε(t − q),
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where p, q ≥ 0 and a1, a2, . . . , ap and b1, b2, . . . , bq

are constants. The stationarity condition just men-
tioned is now equivalent to requiring that the roots
of the pth-order polynomial equation,

1 − a1x − a2x
2 − · · · − apxp = 0,

lie outside the unit circle in the complex plane. This
type of exposition was first simply set out by Box &
Jenkins [1].

Statistical Analysis of Stationarity

Most series will not be stationary, and yet the sta-
tistical repeatability implied by stationarity is central
to much statistical analysis of time series data. This
is because the identification and elimination of non-
stationary features, such as trend and seasonality,
as often required, is supposed to leave a stationary
series. For trend in mean, differencing of successive

data values, producing the series [X(t) − X(t − 1)]
is suggested, with iterative differencing when neces-
sary; subtraction of a smoothed version of the series
from itself is another method. Transformation by log-
arithms has been suggested to eliminate trend in
seasonality.
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Statistical Consulting

Statistical consulting, the provision of statistical ad-
vice and/or services to those who request it, applies
statistical methodology to problems in other disci-
plines. Consultants assist with design and conduct of
the study, including randomization of subjects, data
collection, and data analysis. They help to report the
results of the study and to ensure that conclusions
reached are supported by the data. The consultation
may range from a five-minute chat in a hallway,
involving only advice about some aspect of the study,
to a many years’ collaboration on a project. Although
the terms consulting and collaboration are often used
interchangeably, a collaboration implies more respon-
sibility and involvement, both intellectual and time,
by the statistician. In a collaborative relationship, a
statistician is a full-fledged member of the team of
investigators conducting the study, has more author-
ity, receives credit for contributions made, and coau-
thors the research paper reporting the project. This
is a relationship most conducive to statistical contri-
bution. To connote a broad range of services, some
statisticians now refer to the practice of statistics,
meaning the communication of statistical information
across disciplinary boundaries by persons who have
training in statistics and related quantitative fields.

Biostatistical consulting is the application of sta-
tistical expertise in the biological or health sciences.
Within the arenas of medicine, dentistry, and pub-
lic health, biostatisticians work with physicians, basic
scientists, dentists, nurses, pharmacists, epidemiolo-
gists and other health professionals. A biostatistician
may be a faculty member in a school of public
health or a professor in a quantitative sciences depart-
ment in a medical or dental school or at a medical
research center [4]. In this capacity, they teach grad-
uate courses in biostatistics while working collabo-
ratively on research grants, jointly with medical col-
leagues. In addition, the biostatistician might perform
analyses for reports, manuscripts, and presentations
for medical clients. In many universities, consult-
ing biostatisticians belong to a statistical consulting
unit [14], often within a biostatistics department that
offers statistical and computing services. Some uni-
versities and schools of public health have statistical
or clinical trials centers in which biostatisticians have
a primary role [1]. Some biostatisticians work in can-
cer centers or other disease-specific research centers

that may be part of a larger network [25]. Such
centers are usually in a university setting; others may
be independent entities. State and federal govern-
mental agencies in the US, such as the Food and
Drug Administration (FDA), the National Insti-
tutes of Health (NIH), the National Center for
Health Statistics (NCHS), and the Centers for Dis-
ease Control (CDC), employ many biostatisticians
in a variety of capacities. Pharmaceutical companies
usually have a biostatistics unit that works with a
team of research investigators in designing and ana-
lyzing clinical trials [10] (see Statisticians in the
Pharmaceutical Industry (PSI)). Other biostatis-
ticians might be employed in a contract research
organization (CRO) (see Proprietary Biostatisti-
cal Firms) that provides statistical and other ser-
vices to pharmaceutical or biotechnology companies.
Finally, some biostatisticians work independently as
consultants and contract individually with clients or
sponsors.

Role of a Biostatistical Consultant

The role that a biostatistical consultant plays is deter-
mined by the type of organization in which they
work [9, 20]. The several roles described below
demonstrate the variety of circumstances in which
biostatisticians are engaged.

Biostatistician in a Medical School

Kerry is the senior of four faculty biostatisticians
employed in a clinical trials center at a medical school
in a major university in the south east of the US. Hav-
ing worked closely with physicians for more than
20 years to build and develop the center, he has
had years of experience, primarily in cardiovascular
clinical trials (see Cardiology and Cardiovascular
Disease). Working with physicians and other med-
ical investigators within a collaborative setting, he
offers advice and provides statistical input for the
design and analysis of trials of cardiovascular dis-
ease. When the trials are being designed, the medical
school cardiologists meet with Kerry and investiga-
tors from pharmaceutical companies. In designing the
trials, Kerry considers both statistical and clinical
factors. He seeks to understand the clinical issues
in these studies; he provides sample size calcula-
tions (see Sample Size Determination for Clinical
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Trials), input on study design, advice on interim
analyses, and randomization schedules (see Ran-
domized Treatment Assignment). He usually writes
the statistical portions of the study protocol (see Clin-
ical Trials Protocols). As the trial progresses, he
works with junior statisticians to monitor the trial (see
Data and Safety Monitoring) and supervises the
analysis. When the trial has been completed, many
manuscripts reporting various aspects of the study
are produced, for which Kerry specifies the appropri-
ate statistical methods and supervises the analysis by
junior biostatisticians. In addition, he is the principal
investigator of three clinical trials.

Kerry’s greatest strengths as a consultant are his
ability to listen intently and to explain statistical
design and methodology principles to physicians
clearly (see Teaching Statistics to Physicians). In
addition, he often conducts research conferences for a
mixed audience of physicians, statisticians, trial coor-
dinators, and other team members in the organization.
His ability to speak systematically and to present
statistical ideas simply make him sought after as a
lecturer. He also teaches a class of physicians and
other health professionals who are enrolled in a bio-
statistics training program to obtain a master’s degree.
In all aspects of Kerry’s varied role, he communicates
effectively with physicians, health professionals, and
other statisticians, in a group setting or individually.

Biostatistician in a Pharmaceutical Company

Ellen is a doctoral-level biostatistician in the Clinical
Biostatistics Department of a major pharmaceutical
company on the East Coast of the US. As the lead
statistician for all of the clinical trials of ophthalmic
preparations that are in development or are currently
manufactured by the company, she collaborates with
clinical researchers to plan and design clinical trials
for protocols to study new chemotherapeutic treat-
ments. She writes the statistical sections, including
plans for the designs and the analyses of the studies
that will be part of a New Drug Application (NDA)
(see Drug Approval and Regulation). She analyzes
clinical trial data; she writes the results sections of
clinical study reports and statistical technical sections
of regulatory submissions; she coauthors manuscripts
submitted to medical journals. Ellen attends and often
presents the statistical aspects of the clinical trial at
meetings with regulatory agencies and responds to
queries, verbal or written, concerning the statistical

aspects of the study. She serves as the statistical
liaison for studies subcontracted to CROs and she
organizes work for a team of masters and doctoral
statisticians and statistical programmers. As the lead
statistician for ophthalmic preparations, she compiles
periodic reports to inform the upper management of
the activities of her department concerning the sta-
tus of projects, resource requirements, and important
technical and regulatory issues. As the lead statisti-
cian, she is an integral member of the project team
for ophthalmic preparations, a cross functional team
made up of people in various areas of the com-
pany, including Basic Research, Biostatistics, Clinical
Pharmacology, Clinical Research, Data Coordination,
Drug Metabolism, Epidemiology, Marketing, Manu-
facturing, Project Planning, Regulatory Affairs, and
Safety Assessment. The project team meets regularly
to coordinate activities concerning the approval and
promotion of ophthalmic products, to communicate
new information to its members, and to make recom-
mendations to the senior management of the company
about key decisions. On the ophthalmic project team,
she represents her department, participates in dis-
cussions that require statistical input and thinking,
submits a time schedule of work to be accomplished,
reports on the progress of projects, and presents clin-
ical trial results to the project team.

Biostatistician in a Dental School

Stuart, a member of the biostatistics faculty of a den-
tal school on the west coast of the United States, acts
primarily as a collaborative researcher but also works
on relevant methodological problems in biostatistics,
teaches research methods courses, and mentors mas-
ter’s degree students. In most situations, he is a
consultant, which always has a teaching component.
He consults with clinical faculty members (dentists
and hygienists), postgraduate residents, basic scien-
tists, including basic laboratory researchers, oral epi-
demiologists, and public health dentists. He works
on many studies including clinical trials of caries
risk management, community intervention trials for
spit tobacco cessation, observational studies of peri-
odontal disease and temporomandibular disorders,
and case–control studies of early childhood caries.
Stuart also helps to write grant proposals, refines
study designs, performs power analyses and sam-
ple size determinations, develops analysis plans,
coordinates data management activities (see Data



Statistical Consulting 3

Management and Coordination), and conducts data
analyses.

Dental studies present particular statistical struc-
tures, most notably clustered observations (e.g. jaws,
teeth, tooth surfaces, and periodontal probing sites)
(see Clustering) within people. In addition, the vari-
ability of dental disease, both for sites within and
among individuals, and lack of consistency over
time (areas can heal and later relapse) create chal-
lenges for epidemiologic studies and sample surveys
designed to estimate, for example, incidence and
prevalence. Appropriate modifications are needed in
sample size calculations and analyses. Issues of relia-
bility (see Agreement, Measurement of) and valid-
ity often arise since many responses are measured on
categorical scales. In all these activities, Stuart con-
sults with colleagues, asks probing questions about
the subject matter, refines study research questions,
explains possible design and analysis options, and
resolves the problems with clients in a partnership
to develop statistically appropriate solutions based on
goals and available resources.

Biostatistician in a Governmental Agency

Debby leads a biostatistical group in one of the Insti-
tutes at the National Institutes of Health in the US.
Because her Institute recognizes the value of statis-
tics in the design, analysis, and interpretation of
medical studies, the group of biostatisticians finds
itself in constant demand. Debby sees her consulting
role divided into three very different functions –
intramural consulting, participation in discussions on
issues related to funding, and collaboration with non-
government investigators. For the intramural scien-
tists within the Institute, she serves as an ad hoc
statistical consultant, with all the excitement and
frustration that role entails. The investigators, often
postdoctoral fellows, look to statisticians as the pur-
veyors of small P values, those precious tickets to
publication. Debby’s first contact with an investigator
may be a frantic call demanding immediate statisti-
cal input for an abstract that is complete “except for a
few numbers”. She recognizes that these encounters
afford an opportunity for teaching young researchers
about the value of statistical collaboration. More-
over, a fruitful short-term statistical fix may lead to
long-term collaboration with an investigator who has
become convinced that statistical thinking enhances
scientific research.

In her second consultative role, Debby’s activities
have broad influence on public health. The NIH, as
one of the primary sponsors of clinical studies, estab-
lishes priorities for funding of types and fields of
studies. In her capacity as an Institute biostatisti-
cian, Debby helps to formulate the statistical aspects
of research programs. Her medical colleagues at the
Institute have sophisticated understanding of statis-
tical ideas, and the biostatisticians understand the
medical problems. Thus, the joint medical and sta-
tistical collaboration allows rigorous formulation of
the scientific basis of scopes of work for contracts or
broad areas to fund for grants. This aspect of Debby’s
consultation, although perhaps her most anonymous
activity, is the one she finds most rewarding.

Debby’s third role has one foot in government
and one in academe. Her Institute funds many long-
term clinical trials and epidemiologic studies and she,
along with other members of the Institute, serves
on committees for these studies. As a committee
member, she acts just like everyone else. In some
capacities she plays a role distinct from the academic
researchers. As a government employee, she sits as
an observer on many data and safety monitoring
boards. Thus she brings to data monitoring a wealth
of experience. Investigators, both within NIH and
outside, call upon her to consult on forming data mon-
itoring boards, planning interim analyses, and helping
coordinating centers prepare statistical reports.

Debby’s consulting spans a wide range of activ-
ities. Like any effective biostatistical consultant,
she must understand the studies with which she is
involved; she must be aware of new biostatistical
methodology, and she must be poised to develop new
techniques. What distinguishes her role from that of
other biostatistical consultants is the perception that
when she expresses an opinion, she is speaking for
the government.

Biostatistician in a Department of Biostatistics
and Director of a Consulting Unit

Gary, a professor in a department of biostatistics
at a major university in the south east of
the US, teaches two categorical data courses,
mentors numerous doctoral dissertations, and directs
a biostatistical consulting laboratory staffed by
students in the department (see Teaching Medical
Statistics to Statisticians). The role of the laboratory,
which provides statistical consultation primarily
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to investigators from the university’s Schools of
Medicine, Dentistry, and Public Health, is to provide
funding and training for students in academic
biostatistics programs and to encourage practice-
oriented statistical research, particularly for master’s
degree papers and doctoral dissertations – and, of
course, the investigators benefit by having the
statistical aspects of their research problems solved.
In addition to clients within the university, Gary
also arranges cooperative agreements between the
laboratory and sponsors in the biopharmaceutic
industry.

Gary has created a structure for consultation
that fosters learning and teaches team work. The
doctoral students have a direct liaison with him,
delegate projects to master’s and undergraduate
students, and mentor them. The doctoral students are
responsible for meeting deadlines and writing and
reviewing statistical reports. The master’s students
work with the doctoral students for large projects
and manage databases (see Database Systems),
write programs and reports, and learn to handle
smaller projects directly with clients. They also
mentor the undergraduates. The undergraduates
perform support services including data entry,
word processing, and basic programming. The
benefits for students of this arrangement include
mentoring by Gary, reinforcement of course work,
practice in communication skills and report writing,
publications, and thesis topics.

A wide variety of projects are available to students
in the consulting laboratory. One example is a longi-
tudinal periodontal study for the university’s Depart-
ment of Dental Ecology. Patients were examined at
baseline and at three other time points. Attachment
loss was measured at multiple sites on each tooth
and for multiple teeth per person. There were also
numerous other site-level, tooth-level, and person-
level variables. The primary question was whether
attachment loss during one period in time was asso-
ciated with higher risk for attachment loss at a
subsequent period. Analysis of these data involved
using special software (see Software, Biostatisti-
cal) to adjust for the clustering of observations
within each person. Three journal publications and
two master’s papers resulted from this investiga-
tion.

Another example is a study of Alzheimer’s disease
for the university’s Department of Family Medicine.
Data were collected from a sample of specialized

dementia care units and traditional care units in five
states. A case–control matched pair design was used,
in which 307 residents from 31 specialized units
and 318 patients from 32 traditional units were ran-
domly selected. Data were obtained from question-
naires, medical record review, and direct observation.
The key question was whether the use of physical
restraints or pharmacologic restraints was different
based on whether the individual was in a traditional
or specialized care unit. Logistic regression, which
accounted for clustering of individuals within the
same unit, was used to adjust for other factors in
modeling use of physical or pharmacologic restraints.
A manuscript was published in a prominent medical
journal.

Gray has many strengths as a consultant, including
his ability to listen discerningly as clients explain
their investigations. He has a great ability, based
on years of experience, to assess problems and
determine the appropriate statistical methodology
for the situation. As he involves students in many
facets of the work, he allows them to observe
his interactions with clients and the development
of solutions to research problems both during and
after the consultation. He also explains his ideas to
the students, and why he is using certain statistical
techniques. Contact and coaching with real research
problems in this way is excellent training for the
students. Gary is a caring mentor and is highly
regarded by students, faculty, and clients for both
his insightful use of statistics and his ability to teach
these skills to others.

Characteristics of a Successful
Biostatistical Consultant

A successful biostatistical consultant possesses many
skills [13, 16, 18]. The consultant must have a solid
technical background in biostatistics, good knowl-
edge of the subject matter area, excellent computing
skills, and the ability to apply – or develop if neces-
sary – statistical methods innovatively in a variety of
settings. A successful biostatistical consultant should
be aware of his or her limitations and know when to
ask for assistance from a statistical or subject matter
colleague or to learn about the appropriate statisti-
cal methodology in the literature. Other important
characteristics are: enthusiasm in participating as a
member of a team of research investigators; the capa-
bility of formulating problems in statistical terms; a
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proclivity for problem-solving; and excellent commu-
nication skills, both oral and written.

Being a good consultant requires skills beyond
ability in mathematics and knowledge of the theory
and methods of statistics. Any investigation requires
high-quality data, so the successful consulting bio-
statistician should become familiar with data collec-
tion procedures and methods for assuring the quality
of the data. He or she should be genuinely interested
in the subject matter area in order to become aware
of issues that may have important statistical implica-
tions. Many clients fear mathematical and statistical
ideas, but it is crucial that the client understand the
statistical aspects that the consultant is discussing.
Thus, a successful biostatistical consultant should be
a good teacher who is willing to explain the statistical
aspects of design and analysis in terms that a client
can understand.

Working effectively on several research projects
simultaneously means that the consultant should man-
age time efficiently and meet appropriate deadlines.
Sometimes, the consultant should aim to achieve
an acceptable solution to a problem when an ideal
solution would require too much time, effort, and
expense. Having good interpersonal skills is essential,
since many personalities are encountered; sometimes
the biostatistical consultant functions as an expert,
while at other times he or she is a strategist or confi-
dant. A willingness to admit mistakes and learn from
failures helps a consultant in working on subsequent
projects with clients.

Challenges of Consulting

Consultations are complex interactions in which the
biostatistician may use many skills simultaneously.
The successful biostatistical consultant often listens
to the client’s problem and constructs a statistical
formulation. If the client brings data to be analyzed,
the consultant should assess the statistical design
of the project, explore the assumptions of statistical
tests, discuss limitations of the analyses, and suggest
appropriate solutions. After arriving at a statistical
solution, the consultant should write a coherent report
that is understandable to the client. Delivery of raw
computer output or an uninterpreted set of tables does
not serve either medicine or statistics. The consultant
biostatistician should be aware that the nontechnical
aspects of consulting may be at least as important

as the technical aspects [2, 27]. Projects often have
deadlines and budgetary constraints. Some clients
apply pressures to achieve a favorable outcome, but
the biostatistician must deal ethically and provide an
honest report of the study. The best clients are those
who understand that an honest report of the project
is in the highest interest of science.

Excellence in communication is another essen-
tial skill for the consulting biostatistician. Adequate
technical knowledge is simply not sufficient if the
biostatistician is poor at communicating ideas to
clients. Often, biostatisticians have to learn to lis-
ten and to ask questions that gradually lead to a
revelation of the client’s problem. This is especially
important when the client is unfamiliar with statis-
tics. Being able to discuss problems in the language
of the client is a definite aid to communication.
Being knowledgeable in the client’s discipline, and
being supportive and willing to educate the client,
are attitudes that are most helpful in establishing
good client–biostatistician relationships. Therefore,
while a basic technical knowledge is necessary and
presumed for consulting, the nontechnical aspects of
consulting are often the most challenging.

Consultation may have a negative side, for the
biostatistician may not receive sufficient recognition
by the client and by the institution or organization
in which the consultant is employed. In univer-
sities, promotions and tenure are based primarily
on research, followed by teaching and service or
practice-oriented research. Consulting, which usually
falls into the category of supportive practice-oriented
research, often is not valued greatly. Extremely active
consultants who are consulting with a variety of
disciplines simultaneously may not publish enough
methodological research in peer-reviewed statisti-
cal journals [26]. The biostatistician spends a lot of
time learning the discipline of the investigators and
communicating with them regularly, particularly in
large, long-term projects. The lack of recognition of
consulting activities by academic departments when
discussions are held about promotions and tenure,
coupled with the lack of time for methodological
research, compounds the frustration of an academic
consultant. In addition, some clients believe that pay-
ment for services is sufficient recognition for a con-
sultant’s efforts. When the biostatistician has devoted
substantial time and energy to a project, the client’s
failure to acknowledge the intellectual contribution,
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in the form of authorship, also frustrates the con-
sultant. Even when consultants are authors, rarely
are they first authors. Since first authorship is given
greater emphasis during reviews for promotion, con-
sulting contributions tend to be undervalued. Some
frustrations may be eliminated when there is a dis-
cussion with the client prior to the initiation of the
project concerning authorship of papers and charges
for statistical services. Some academic institutions
realize that consulting biostatisticians contribute sub-
stantively to publications and subject matter areas,
and consider this during reviews for promotions.
Many contributions to statistical methodology have
arisen through consulting projects. Also, as more
attention is given to utilization of appropriate statisti-
cal methodology in research papers (e.g. the Journal
of the National Cancer Institute has 20 consulting
statistical editors), perhaps academic institutions will
award more credit when a biostatistician is the coau-
thor of a medical paper.

Challenges may be different in other settings. In
an organization in which consultation constitutes the
primary role of the biostatistician, it may be difficult
to satisfy the requests of several clients simultane-
ously in a manner consistent with the priorities of
the organization. Often, the ideal analysis of a set of
data may require more time and money than has been
allocated to the project. The challenge to the biostatis-
tician is to set priorities firmly and complete projects
in a timely manner, subject to budgetary constraints.

Whatever the setting, biostatistical consultants
must stay current with the statistical literature while
maintaining their other responsibilities. In addition,
they must maintain their computing skills in the face
of evolving technology and a plethora of software
packages. It is challenging to stay abreast of these
developments in the field while simultaneously meet-
ing work demands.

Special Challenges of Consulting with
Physicians

A biostatistician working with physicians faces many
challenges. Some problems are universal issues that
occur with clients from all fields, and others seem
to derive from differences in mind-set, approach,
or inherent differences in the nature of physicians
and statisticians. Physicians are trained to produce
quick responses when presented with a set of patient

characteristics; indeed, the patient usually expects an
immediate assessment. In some clinical specialties,
these decisions are made in a life-threatening situa-
tion. Physicians may weigh the results of a number of
tests or factors as they make the decision. If most of
the evidence leads to a certain conclusion, they often
do not quibble over slight vagaries. In the clinical
setting, physicians need and want the best answer
in the shortest length of time. On the other hand,
biostatisticians tend to be meticulous. They examine
the data, check for discrepancies and outliers, test
assumptions, and often approach questions from sev-
eral angles. They like to do a thorough job. When
physicians bring their clinical mind-set to the sta-
tistical consultation, they sometimes complain that
biostatisticians are overly conscientious. And bio-
statisticians frequently complain that physicians want
conclusions before the relevant data have been fully
analyzed and interpreted! Each party should recog-
nize the inherent differences in style and modify
their approaches somewhat, moving toward a more
“central” position. “Differences” seen in this light
allow better understanding between physicians and
biostatisticians.

Another complication that often surfaces when
biostatisticians work with physicians is the psyche
of the physician. Physicians are used to being “in
charge”. When coming to a biostatistician for assis-
tance, they can feel either a lack of control because
of a lack of familiarity with biostatistics or a need
to dominate the biostatistician about what “statis-
tics” should be done. Sometimes, physicians who do
not understand the statistical arguments adopt a pas-
sive–aggressive stance, accepting with question the
results presented by the biostatistician. This situation
is usually stressful for the biostatistician and physi-
cian alike. Often this can be alleviated by a frank
characterization of the situation and a statement by
the biostatistician of their commitment to work with
the physician, perhaps suggesting an ongoing collabo-
ration. This, combined with some respectful coaching
of the physician on statistical terms and practice by
the consultant, can mollify the situation.

Many physicians and biostatisticians develop
extremely productive collaborations that continue for
years. This occurs most often when the physician has
come to value the impact that the biostatistician has
had on their work in terms of efficiency and accuracy
of methodology, leading to an increase in the number
of grants or papers accepted for publication. And
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that usually occurs when the biostatistician has taken
the time to become educated in the discipline of the
physician and has fostered the relationship. In these
long-term relationships, biostatisticians often have
concentrated their consulting efforts in a particular
area of medicine and become “experts” in the
analyses that are used most often in that area.

Biostatistical Consultants as Ambassadors

The relationships that a biostatistician establishes
with people in other fields can have an important
impact on how those collaborators view statistics as
a discipline. Often, the only contact that investiga-
tors have with statistics is through their consultant.
By seeking out opportunities to demonstrate the use-
fulness and the power of statistics, the consultant
can enhance the image of statisticians both locally
and on a broader scale [3]. Locally, they can give
a talk, a short course, or a workshop to a client’s
department or unit. Making use of actual data from
designed studies in the client’s field is an effective
method to illustrate statistical principles. In a con-
sulting practice, the biostatistician can also reflect
interest in the client’s projects by visiting the client’s
laboratory or office to learn about the conduct of the
research project. Suggestions for improving the con-
sulting process can come by soliciting feedback from
the client directly. Feedback questionnaires adminis-
tered anonymously can also elicit useful suggestions.

A biostatistician can enhance the image of statis-
tics both nationally and internationally. For example,
many biostatisticians participate in the review process
for scientific manuscripts and research proposals [6].
They can serve on a journal’s editorial board and
develop standards for statistical review [12, 17] (see
Statistical Review for Medical Journals). Numer-
ous research journals have supported commentaries
or tutorial articles on statistical issues relevant to the
journal’s readers [7]. All of these activities have a
far-reaching impact on how clients view statisticians.

Another emissary role of a biostatistician is service
on advisory committees for state or federal agencies.
In particular, biostatisticians serving the Food and
Drug Administration (FDA) or the National Institutes
of Health (NIH) and other governmental agencies
not only represent the profession, but also have
an opportunity to shape decisions and make policy
that may have a major impact in the health and

medical sciences. Besides the statistical input, they
can provide for the process of decision-making,
and they can also raise awareness of the need for
statistical thinking about research projects at the
highest levels of these organizations.

Training of Biostatistical Consultants

Most practicing biostatisticians have graduate
degrees, often from a school of public health. Under-
graduate degrees are often in mathematics, statistics,
or biostatistics. However, many biostatisticians have
their first degree in a field such as biology, psy-
chology, or pharmacy. Graduate training includes the
usual theoretical and applied courses for a statisti-
cian as well as courses in epidemiology and other
public health fields. In the past, most of the students’
practical consulting experience obtained in graduate
programs came from apprenticeship participation on
projects with faculty advisors or from working in
consulting centers, usually under faculty direction.
However, the past 10–15 years has seen a growing
interest in the design and development of courses in
consulting to teach the specific skills needed; some of
these courses have been implemented in departments
of biostatistics. Although most people agree with the
list of skills needed by statistical and biostatistical
consultants, and many articles in the statistical lit-
erature attest to them [5, 11, 13, 15, 21], only a few
people have actually designed courses to model these
skills and to cultivate them in students. Most bio-
statisticians have not been simultaneously trained in
psychological or communication skills. Even if a bio-
statistician does naturally possess the traits necessary
for consulting, he or she may not know how to trans-
mit these characteristics to others systematically. In
addition, a university may not reward spending time
in such an endeavor.

A variety of approaches have been taken to edu-
cate students about consulting. They usually include
some analysis of “real” data, which most consider
the main skill needed for consultation, and report
writing. Other courses focus mainly on the psycho-
logical and communication aspects of consulting [19,
24]. More and more, though, the courses take a
broad approach and incorporate the skills needed to
carry out an entire project from start to finish. These
courses offer exercises and discussions to develop and
improve skills in communication, organization, anal-
ysis, and presentation of oral and written results [8,
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22, 23]. Often using videotaped consultations, stu-
dents are shown how to elicit information from and
deliver technical information to clients as well as how
to manage a consulting session. Students are often
videotaped in mock or actual consultations. Carry-
ing out a full-fledged project during the class pro-
vides experience with time management, organization
and documentation of project materials, discussion of
appropriate analysis approaches, writing of statisti-
cal reports, and opportunities to discuss budgets and
the billing of clients. Courses such as this are usu-
ally prerequisites or adjuncts to the actual consulting
experience.

Many students find additional ways to gain practi-
cal experience during their graduate programs. They
either work part-time or participate in internship pro-
grams. This experience gives both parties a chance
to assess potential future relationships. However, on-
the-job training is perhaps the primary method for
learning consulting. Being aware of what works and
what does not work, and changing one’s procedures
accordingly, is the ultimate strategy for success in
consulting. Add years of experience and you will
have a seasoned consultant.

Incentives for Biostatistical Consulting

Consultation has many rewards for a biostatistician.
The skills required may match those of the indi-
vidual, whereas a career spent entirely in teaching
and research may be less rewarding. A biostatistical
consultant will almost surely design an experiment
and analyze data, whereas many academic biostatis-
ticians may have no real experience in these areas. In
addition, many problems encountered in consulting
relationships are challenging. Since most new sta-
tistical methodology arises from realistic problems,
being a consulting biostatistician is a way to learn
about new projects requiring advances in statistical
methodology. Also, there is the excitement of par-
ticipating as a collaborating member of a team on a
research project that is addressing an important sci-
entific or health related question. Another incentive
is that financial benefits accruing to the biostatistical
consultant are often greater than for those partici-
pating only in academic work. Additional benefits
derive from being coauthors on medical publications,
making presentations at scientific meetings, and con-
tributing generally to the betterment of society.
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Statistical Dependence
and Independence

Statistical dependence is a type of relation between
any two features of units under study. These units
may, for instance, be individuals, objects, or various
aspects of the environment. Deterministic dependence
and statistical independence can be regarded as the
two opposite extreme types of relation, but also as
being qualitatively distinct from the possible other
forms of relation. If deterministic dependence and
independence are excluded, then the remaining inter-
mediate types of statistical dependence involve both
features as proper variables such that there are differ-
ences in the distributions of one variable for at least
some of the levels of the other.

If proper variables are statistically independent,
then the distribution of one of them is the same no
matter at which fixed levels the other variable is con-
sidered and observations for such variables will lead
correspondingly to nearly equal frequency distribu-
tions. If there is deterministic dependence, then the
levels of one of the variables vary in an exactly deter-
mined way with changing levels of the other. In other
words, under independence, knowledge about one
feature remains unaffected by information provided
about the other, while under deterministic dependence
it follows with certainty which level of one variable
occurs as soon as the level of the other variable is
known.

The definition of these opposite extreme types
of relation is symmetrical between the two features
involved, but in its intermediate forms, statistical
dependence may or may not be considered in a
symmetric way, depending on the substance matter
context. A symmetrical type of dependence will be
appropriate if the variables involved are considered
to be on an equal footing, such as symptoms of a
disease, or as length, height and depth of produced
objects, or as personality characteristics of individu-
als. By contrast, an asymmetrical form of dependence
is of main interest if, instead, one of the variables is
considered as a possible response to the other, such
as weight to caloric intake, or as depression to anxi-
ety. The terms symmetric association and directed
association are often used to capture this distinc-
tion.

Given observations on independent units, statis-
tical dependence shows in a number of different
ways depending on several aspects. Important are, in
particular, the types of variable involved, the con-
ditions under which the relation is recorded, and
the type of association measures used to summa-
rize the data. These issues are addressed next, in
turn.

Relations Depending on Types of Variable

One important distinction for variables is whether
they are qualitative or quantitative. Quantitative vari-
ables have levels that are numerical values with a
substantive meaning, such as kilograms, as ranks,
or as sumscores of questionnaires. Qualitative vari-
ables have, instead, categories as possible levels.
With a nominal scale the categories are just of a
qualitatively similar kind such as blood groups;
numbers possibly assigned to them play the role
of codes; that is, of mere labels. In the case in
which levels of a qualitative variable can be ranked,
the scale becomes ordinal. This information may
sometimes be exploited to improve formal analysis
(see Measurement Scale).

First, data summaries appropriate to detect the
form of pairwise dependence change with the types
of variable involved. They are, typically, contingency
tables for qualitative or discretized quantitative vari-
ables, scatter plots for quantitative variables and
frequency distributions (or at least selected character-
istics of the distributions) of the quantitative variable
displayed within each category of the qualitative vari-
able (see Graphical Displays).

Accordingly, a great variety of more formal
techniques is available. In the case of symmetric
associations examples are loglinear models for qual-
itative variables, covariance selection for quantita-
tive variables (see Variable Selection), and mixed
interaction models for both qualitative and quanti-
tative variables. In the case of directed associations
examples are logistic [2] and probit [6] regression
for discrete responses (see Quantal Response Mod-
els), linear regression for quantitative responses, and
combinations of these for mixed joint responses. In
any case it is essential to check systematically [4] for
more complex dependencies involving several vari-
ables or, possibly, nonlinear relations among quanti-
tative variables.
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Relations Depending on the Conditioning
Set

Every statistical dependence among observed vari-
ables is a conditional relation, since there is always
some conditioning, at least implicitly on time and
location of the study. A more explicit form of condi-
tioning may result by design or by statistical analysis
involving several recorded variables. In that case the
distinction between conditional and marginal depen-
dence and conditional and marginal independence
becomes relevant. Both may convey different infor-
mation. A marginal dependence of a response on a
potential explanatory variable may, for instance, be
completely explainable in terms of a corresponding
conditional independence statement given an inter-
mediate variable, which itself is strongly related to
both.

One example from the German labor market in
1986 is shown here with the following 23 contingency
table, adapted from job placement statistics [1]. The
response is successful job placement, A, the interme-
diate variable is field of study, B, and the potential
explanatory variable is gender of the applicant, C. If
the marginal dependence of job placement on gen-
der is considered, i.e. the overall association of pair
(A, C), shown on the right-hand side of Table 1,
it appears as if there were discrimination against
women, since females have a much lower chance than
men of obtaining a job.

This dependence can, however, be explained in
the following way: home economics was a preferred
field of qualification for women, while mechanical
engineering was strongly preferred by men. At the
same time there were many more successful job
placements for mechanical engineers than for home
economists, simply because many more job openings
were available for the former. Within each of the two

fields of qualification there was the same percentage
of successful job placements for both, women and
men. In other words, A is conditionally independent
of C given B (see Simpson’s Paradox).

This conditional independence, together with the
strong marginal associations for pairs (A, B) and
(B, C) both having variable B in common, imply
the observed dependence for (A, C); that is, this
dependence is generated by the intermediate vari-
able B. The data are also an example of a simple
Markov chain [8] and, more generally, of a graphi-
cal Markov model, a general framework (see [4, 5],
and [7]) within which sequences of response, inter-
mediate and explanatory variables, both types of
variables, qualitative and quantitative, distinct levels
of conditioning and interactive as well as nonlinear
relations, may be modeled explicitly.

Judgment of Relations as Dependent on
Measures of Association

In many contexts it is possible to summarize depen-
dencies concisely with a few carefully chosen mea-
sures of association (see Association, Measures of).
One example for a quantitative response and equally
spaced levels of a quantitative explanatory variable
is the set of coefficients of a polynomial regression.
If, for instance, the dependence can be well captured
by an orthogonal polynomial in three coefficients,
then the dependence is additively decomposed into
an overall mean, a linear, and a quadratic effect. A
direct extension is, conceptually though not techni-
cally, the decomposition of a time dependence into a
general level, a linear trend, and seasonal effects.

Some measures of association arise as parameters
in multivariate distributions. In such distributions,
it is typical that discrete random variables model

Table 1 Overall dependence in spite of conditional independence

B, field of qualification
Overall; that is,

Home economics Mechanical engineering summed over B

C, gender C, gender C, gender
A, successful
job placement Female Male Female Male Female Male

Yes 15 2 4 95 19 97
(3.61%) (3.64%) (20.0%) (21.1%) (4.4%) (19.2%)

No 400 53 16 355 416 408

Sum 415 55 20 450 435 505
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qualitative features and continuous random variables
model quantitative features. For symmetric associ-
ations one prominent example is the exponential
family called the conditional Gaussian (CG) distribu-
tion, in which the continuous variables have a joint
Gaussian distribution for each level combination of
the discrete variables.

In the bivariate versions of the CG distribution, the
canonical association parameters are log odds ratios
for two discrete variables, multiples of the simple
correlation coefficient for two continuous variables,
and a weighted difference in means for the mixed
case. In higher dimensions these association param-
eters are generalized in such a way that null values
of all terms involving a particular pair of variables
imply conditional independence of the pair given
all remaining variables: the measures of association
are then conditional log odds ratios, multiples of
partial correlation coefficients, and weighted differ-
ences of means, corrected for effects of the remaining
variables.

The obvious danger in using measures of associa-
tion which are part of a well studied joint distribution
is that the true distribution of the features under study
may be quite different. For instance, if the judgment
of dependencies among quantitative variables were
based only on simple and partial correlation coeffi-
cients, then substantial misjudgments of the actual
relations might result. If the simple correlation is
zero, then strong nonlinear relations of a particular
type may still be present, but at least, if the simple
correlation is nonzero, the variable pair will always
be marginally dependent. The situation is much worse
with partial correlations.

Every partial correlation coefficient is a simple
correlation coefficient for residuals obtained after
linear regression on some common set of further
variables. As for the simple correlation, there may
be strong nonlinear conditional associations even if
a partial correlation coefficient is zero. However,
the reverse may happen as well; that is, the partial
correlation coefficient may be high in spite of condi-
tional independence. This is best illustrated with an
example.

Let Z, U , and V be mutually independent vari-
ables, each having a standardized Gaussian distribu-
tion; that is, in particular, each having mean zero and
variance one. Define Y and X as follows:

Y = (Z2 − 1) + U, X = (Z2 − 1) + Z + V.

Then Y is conditionally independent of X given Z,
written as Y || X|Z, because given Z only U and V

are variable, and they are independent by assumption.
But the simple correlation between the residuals from
linear regression is 2/3; that is, the partial correlation
coefficient ρxy.z is sizeable.

To see this, note that linear – instead of the
appropriate nonlinear – regression of Y on Z and of
X on Z would give as conditional means

Elinear(Y |Z) = 0, Elinear(X|Z) = Z,

and hence as residuals from these linear regressions

RY.Z = (Z2 − 1) + U, RX.Z = (Z2 − 1) + V.

Since the square of a standardized Gaussian variable
has a chi-square distribution on one degree of
freedom, the variable Z2 has mean 1 and variance 2
and the residuals both have zero means. Furthermore,
both residuals have variance 3 and their covariance is

cov(RX.Z, RY.Z) = var(Z2 − 1) = 2,

so that ρxy.z = cov(RX.Z, RY.Z){var(RX.Z)var
(RY.Z)}−1/2 = 2/3 even though the corresponding
conditional independence statement Y || X|Z holds.
Of course, if for corresponding observations system-
atic checks for nonlinearities and interactions were
used [3], then it would certainly be detected that non-
linear associations are present and hence it would be
noticed that correcting for only linear relations of Y

on Z and of X on Z is inadequate.
An alternative to assuming that a set of vari-

ables has a particular distribution is to define the
joint distribution only implicitly via a sequence of
recursive conditional distributions. This is typical for
graphical Markov models corresponding to so-called
chain graphs. In that case, conditional dependencies
of potential explanatory variables are modeled sepa-
rately for each response in accordance with available
substance matter knowledge [4, 9]; nonlinear rela-
tions and interactions among continuous variables
may be part of the model. In addition, for a given
model it may often be deduced which independencies
and associations are implied under other conditioning
sets than those specified with the given model [10].

Another important additional advantage of such
conditional modeling is that issues such as censor-
ing, measurement error (see Errors in Variables),
missing values, time dependencies, and effects of hid-
den random variables may in principle be directly
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integrated into the modeling process. To date, how-
ever, the actual implementation might for some com-
binations still require substantial further theoretic and
technical developments.
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Statistical Forensics

When genetic evidence is used for individual identifi-
cation, there are generally competing explanations for
the observations. A typical forensic situation arises
when biological material at the scene of a crime is
typed, found to have some profile A, and the circum-
stances of the crime suggest that the material was left
by the perpetrator P. A person S suspected of having
committed the crime is also typed, and is found to
have the same profile. The evidence E is that the two
profiles are of type A.

The competing explanations are:

Hp: the crime sample is from S
Hd: the crime sample is not from S

and the relative merits of these two explanations
are compared by means of a likelihood ratio. This
compares the probability of the evidence under the
two explanations:

L = Pr(E|Hp)

Pr(E|Hd)
. (1)

Values of L greater than 1 favor the explanation
Hp over Hd. If there are prior odds Pr(Hp)/ Pr(Hd)

on S being the contributor, then the posterior odds
Pr(Hp|E)/ Pr(Hd|E) follow from Bayes’ Theorem as

posterior odds = L × prior odds.

One of the most common errors in interpreting
genetic evidence is to confuse the posterior odds
with the likelihood ratio. This transposition of the
conditional is more commonly made by prosecutors,
giving rise to the term “prosecutor’s fallacy”. It is
generally the case that Pr(E|Hp) = 1, and the value
of Pr(E|Hd) might be 10−6. The likelihood ratio is
then one million, but the posterior odds depend on
the prior odds. They are not a million to one on
guilt. Although odds on guilt is very much the kind
of information desired by courts, it cannot be found
from genetic evidence alone.

Conditional Probabilities

Eq. (1) can be modified by the rules of conditional
probability. If SA and PA mean that S and P,

respectively, have genetic profile A, then

L = Pr(SA, PA|Hp)

Pr(SA, PA|Hd)

= Pr(PA|SA, Hp) Pr(SA|Hp)

Pr(PA|SA, Hd) Pr(SA|Hd)
.

It may generally be assumed that the profile type of S
does not depend on either explanation of the matching
profiles, so Pr(SA|Hp) = Pr(SA|Hd), and that a match
is certain under Hp, so Pr(PA|SA, Hp) = 1, and then

L = 1

Pr(PA|SA, Hd)
.

The focus on conditional probabilities greatly sim-
plifies the interpretation of matching profiles. The
question is clearly seen to be “What is the probability
that the perpetrator of the crime is of type A given
that S is of type A, when these two people are not the
same?” The smaller this probability, the stronger the
evidence against S. By emphasizing that L depends
on the probability of an event, comparisons between
L and the size of the population are avoided. There
is no inconsistency between an L of one million and
a population size of one thousand. One has nothing
to do with the other.

In the special case that profile probabilities of dif-
ferent people S and P are independent, the likelihood
ratio reduces to the reciprocal of the profile probabil-
ity (“profile frequency”)

L = 1

Pr(PA)
. (2)

This equation will not hold if S and P are related,
or if they both belong to the same subpopulation.
In one case the two people are related by virtue of
being in the same family, and in the second they
are related in an evolutionary sense. Although the
second dependence cannot be zero for two humans
(see Inbreeding), it is usually negligible.

The Product Rule

If dependencies between profile probabilities can be
ignored, (2) shows that what is needed is the probabil-
ity with which an unknown (or untyped) person has
a specific profile. These profiles are the joint geno-
types at several loci. If ali is allele i for locus l,
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and has frequency pli , the probability PA of m-locus
genotype A = ∏m

l=1 aliali ′ is

PA =
∏

l

2hl plipli ′,

where hl = 0 if the profile is homozygous at the lth
locus, ali = ali ′ , and hl = 1 if it is heterozygous,
ali �= ali ′ . This result holds only if independence of
all alleles can be assumed (see Hardy–Weinberg
Equilibrium; Linkage Disequilibrium).

Independence of alleles among loci is usually a
reasonable assumption for unlinked loci, but depen-
dence within loci may exist. For a population with
departures from Hardy–Weinberg equilibrium char-
acterized by inbreeding Fl at locus l, the profile
probability would need to be modified to

PA =
∏

l

{
(1 − hl)[p

2
li + Flpli(1 − pli)]

+ hl2plipli ′(1 − Fl)
}
.

This increase for homozygotes and decrease for
heterozygotes is appropriate for departures from
Hardy–Weinberg equilibrium due to inbreeding. A
more likely cause of Hardy–Weinberg departures
for human populations, however, is admixture
(see Admixture in Human Populations). For genes
with multiple alleles, admixture increases the
frequency of homozygotes in the total population
over the squared total allele frequency, but the
frequency of any particular heterozygote may be
increased or decreased over twice the product of
total allele frequencies. Such doubts as to the
proper adjustment for one-locus frequencies could
be avoided by using observed genotype frequencies
at each locus, instead of the product rule, and
then multiplying genotype frequencies over loci.
This procedure has difficulties for highly variable
loci, when specific genotypes may not be present
in population samples. A better way of avoiding
doubts is to return to the conditional probabilities
instead of approximating them by unconditional
profile probabilities.

Relatives

A plausible defense for a suspect whose genetic
profile matches that found in a crime scene
sample is that he may be related to the true

Table 1

Genotype A Relationship Pr(PA|SA)

aiaj Full brothers (1 + pi + pj + 2pipj )/4
(i �= j) Father and son (pi + pj )/2

Half brothers (pi + pj + 4pipj )/4
Uncle and nephew (pi + pj + 4pipj )/4
First cousins (pi + pj + 12pipj )/8
Unrelated 2pipj

aiai Full brothers (1 + pi)
2/4

Father and son pi

Half brothers pi(1 + pi)/2
Uncle and nephew pi(1 + pi)/2
First cousins pi(1 + 3pi)/4
Unrelated p2

i

perpetrator, so that the match has little probative
value. Unless the suspect’s relatives are typed, this
claim must be met by calculating the conditional
probability of two relatives having the same profile.
A full treatment of this issue, allowing either
relative to be inbred, requires the full set of four-
allele identity coefficients. For noninbred relatives,
however, calculations are fairly simple, and involve
considering whether or not the relatives share alleles.
Results for some common cases are given in
Table 1 [2].

Population Structure

Another plausible defense for a suspect found to have
a profile matching that in a crime scene sample is that
he and the true perpetrator both belong to a particular
subpopulation in which the profile is more common
than in the population at large, but that probability
calculations have been performed with data taken
from the whole population.

To address this question completely the condi-
tional probability would need to be estimated for
that subpopulation. This will not be feasible in gen-
eral, and not even possible if the subpopulation is
not well-defined. However, there is a framework for
addressing the issue. The article on Inbreeding dis-
cusses conditional allelic probabilities, and gives the
result for allele ai ,

Pr(ai |ai) = pi + θ(1 − pi). (3)

This is the probability that two people in the same
subpopulation share allele ai , with the answer being
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given as an average over all subpopulations. The
allele frequency pi applies to the total population,
and may be estimated from a population-wide
sample. The coancestry (or kinship) coefficient θ

cannot be estimated directly without data from these
subpopulations, but may be given an appropriate
value from other studies or from some value
considered to be a plausible upper bound.

For matching profiles, an expression equivalent
to (3), but for genotypes, is needed. Such
expressions require relationships among four alleles,
two per person, but adequate approximations derived
from evolutionary-equilibrium theory have been
proposed [1]. They are:

Pr(aiai |aiai) = [pi + θ(2 − pi)][pi + θ(3 − pi)]

(1 + θ)(1 + 2θ)

≥ p2
i

and

Pr(aiaj |aiaj ) = 2[pi +θ(1−pi)][pj +θ(1−pj )]

(1 + θ)(1 + 2θ)
.

Provided θ ≥ 0, the conditional probabilities always
exceed the total probabilities for homozygotes and
usually for heterozygotes. The same approach is
therefore valid for all genotypes, and it is necessary
only to select an appropriate value of θ . It is
unlikely that θ would be as great as 0.05 for
human populations (it is 0.0625 for first cousins),
and so these conditional probabilities are very close
to the Hardy–Weinberg probabilities when allele
frequencies are 0.1 or higher.

Mixtures

Some crime-scene samples contain genetic material
from more than one person. This is the case for
vaginal swabs from a rape victim, for example.
Unless the typing procedure indicates that some
elements of the mixture necessarily come from
the same person, interpretation of mixed samples
proceeds very much as for single stains. Suppose
the crime sample has a set {e} of alleles for a
gene. Explanation Hp is that some specified people
contributed to the sample, and that p unknown people
must have contributed alleles {u} of that set, but
did not have any alleles not in {e} between them.
The probability of this event is written as Pp(u|e).
Similarly, Pd(v|e) is the probability of the event

specified by explanation Hd : a number d of unknown
people must have contributed alleles {v} but did
not carry any alleles not in {e} between them. The
likelihood ratio is

L = Pp(u|e)
Pd(v|e) .

As an example, consider the case where a woman
has been raped by two men. A vaginal swab reveals
alleles abcde for a gene. The victim is of type ab, and
the type of a single suspect is cd. The prosecution
explanation is that the victim, the suspect, and one
unknown man were the contributors to the sample.
The defense explanation may be that the victim
and two unknown men were the contributors. The
likelihood ratio is

L = P1(e|abcde)

P2(cde|abcde)
.

Assuming allelic independence, and the absence
of effects of relatives, inbreeding or population
structure,

Px(u|e) = T 2x
0 −

∑

i

T 2x
i +

∑

i

∑

j �=i

T 2x
ij − · · · ,

where T0 is the sum of frequencies of all the alleles
in {e}, Ti is T0 minus the frequency of the ith allele
in {u}, Tij is Ti minus the frequency of the j th allele
in {u}, and so on [3].

Conclusion

This discussion has focused on the probabilities
of coincidental matches of genetic profiles from
two people. It has ignored nongenetic issues, such
as the possibility that a match has been declared
falsely, whether by error or fraud. The discussion
may be of temporary relevance because of the
increasingly discriminatory power of genetic profiles.
The technology has advanced to the point where it
may no longer be reasonable to believe that any two
people, identical twins excepted, could have the same
profile. At that point, the term “genetic fingerprint”
would be appropriate.
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Statistical Map

A map can be defined as “a collection of spatially
defined objects” [13, 14].

As such, a map is simply a display of the spatial
properties of an object set. This usually implies a two-
dimensional display of the Cartesian or polar coor-
dinate locations of objects and also their attributes,
e.g. a street map displays the locations of streets
and houses on these streets (if the resolution of the
map is high enough). In addition, the houses may
have attributes that relate to the population of each
household. Hence a variety of maps could be con-
structed even from this simple example. We could
have a simple street map, a more detailed house
map, and a map of household attributes at the high-
est resolution. The display of such varied information
in a graphical form has been the concern of car-
tography for a considerable time [13]. Many of the
concerns of those within statistics about the repre-
sentation of data in graphical forms have also been
explored within geography for mapped displays. The
psychological/visual perceptual implications of cho-
sen mapping methods has been studied extensively
[14, Chapters 3– 6], and these issues also apply to
the construction of maps of statistical information.
Walter [22] has examined visualization issues related
to medical mapping. The stages of map construction
can each be associated with some form of processing
of spatial information and hence can be of concern
to anyone wishing to use such methods of presenta-
tion.

The main stages are:

1. choice of scale
2. choice of symbolization or representational pro-

cessing
3. further processing required to construct a suitable

map.

In stage 1, a suitable scale for the map must
be chosen. Any choice of scale, however, inevitably
leads to a process of averaging of spatial informa-
tion from higher levels of resolution. For instance,
a street map of a city will usually be represented
as sets of linear features depicting street locations,
but if a larger country scale was to be used, within
which the city was but a small part, then the city
streets could be represented by a dot. Hence in this
case, the scale change has resulted in averaging of

the spatial information. Stage 2 is also represented
in the street map example. At the detailed scale, lin-
ear features represent the streets, while at the country
scale the whole city is represented by a dot. This
represents a change in symbolic representation as
well as scale change. This can both have a visual
perceptual effect for the map user and represent an
averaging of spatial information. Stage 3, that of fur-
ther processing, can occur when information on the
spatial structure of the objects and/or attributes is not
available in the form required by the representational
system. For example, often one needs to compute a
map representation from a set of sampling points that
are predefined, whereas we need to have measure-
ments at the intersections of a fixed grid which do
not correspond to the sampling points. This arises in
many statistical mapping problems and leads to the
use of interpolation or smoothing of data. Another
example of further processing is the use of trans-
formations of the mapped data to represent some
feature of the spatial structure. Map projections [14,
Chapter 2] are a classic example of transformation.
Schulman et al. [17] give an example of using pro-
jection and transformation in a medical statistical
application.

Hence, in two of the three stages of map pro-
duction, some form of statistical processing of the
spatial information usually occurs. This applies in
most forms of mapping exercise and hence it can
be claimed that map construction is, to a large
extent, a statistical processing task. Figures 1 and 2
display the transition between street and city level
representations.

Figure 1 The streets of San Francisco: street level map.
Map made with Mapinfo Professional.  1997 Mapinfo
Corporation
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Figure 2 The streets of San Francisco: city level zoom
scale change. Map made with Mapinfo Professional. 
1997 Mapinfo Corporation

Statistical Maps and Mapping

The three stages of map production discussed above
map easily onto the data types that are often the
basic ingredients for mapped representation. Within
the subject of spatial statistics a spectrum of spatial
information and data formats is found. This spec-
trum ranges from the locations of points or objects
(point and object processes; see Point Processes) to
the measurements made on random variates at spe-
cific spatial locations (random fields). In the former
case, the subject area of stochastic geometry con-
cerns the probabilistic modeling of the locations of
objects [19]. In the latter case, the subjects of geo-
statistics and image processing (see Image Analysis
and Tomography) deal with observations made on
random fields [2]. Image processing characteristically
studies random fields observed on a grid mesh of reg-
ular sampling points (pixels), and its task is usually
restricted to the processing of the pixel data to obtain
the underlying “ground truth” or noise-free image.
Hence, this form of processing is not closely akin to
mapping as there is usually no need for interpolation
or scale averaging. However, the subject of geo-
statistics does involve smoothing and interpolation
and can involve the estimation of areas or blocks of
information that are averages of underlying sampling
point data. In addition, the analysis of object pro-
cesses often involves the averaging and scale change
from locational data to localized intensity data, i.e.
the locations of objects are converted into a contin-
uous surface describing the local density/intensity of

objects. Both of these data types lead to scale change
and interpolation/smoothing operations that are inte-
gral to the mapping process.

As image processing can be considered a special
case of geostatistics, for brevity we will consider here
the construction of maps and map interpretation and
properties for object processes and for geostatistical
data only. A review of map construction issues for
disease atlases can be found in [3] (see Mapping
Disease Patterns).

Object Process Mapping

An object process map is a presentation of the spa-
tial locations of objects, usually in two dimensions.
Define xi , i = 1, . . . , n, to be the locations of the
objects within a spatial window T . The area of T

is denoted |T |. Usually objects are mapped at a
specified point (the associated point), which can be
uniquely identified for each object. For example, a
process of circles could have the circle centers as
associated points. Hence to construct a map of such a
process it suffices to plot the locations of such points
and then to construct circles with given radii. For this
example, the locations of the circles could follow a
stochastic process and the circle radii could be the
realization of a random variable. A simpler example
of this idea is the point process, which simply has a
point location as its observation unit and the realiza-
tion of point locations are the objects. For example,
the address locations of cases of a disease form a
point process and a map of all addresses of disease
within T would be a mapping of the process. Figure 3
depicts a case address map for respiratory cancer in
a small Scottish town for the period 1966–1976.

Often it is important to transform an object map
by converting the object locations into a continu-
ous surface representation of the objects. This kind
of transformation can be achieved by computing
the local density of objects. Density estimation [18]
can be used to provide such local densities and
the resulting density surface can be mapped over
the study window. Usually such a surface is dis-
played as a contour plot or, in three dimensions,
as a surface perspective view. The contour plot is
often preferred, as some spatial information is hid-
den in perspective views. To demonstrate how scale
and symbolization affect such mapping, the con-
tour plot of a density estimate of the case event
data in Figure 1 has been drawn for two different
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Figure 3 Arbroath: central Scotland: object map of cases
of respiratory cancer within a fixed time period. Map made
with Mapinfo Professional.  1997 Mapinfo Corporation
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Figure 4 Contour map of case events in Figure 3: 10
contour heights. Map made with Mapinfo Professional.
 1997 Mapinfo Corporation

contour densities (10 and five heights) in Figures 4
and 5. Note that the arbitrary choice of fewer con-
tours effectively produces a smoother surface and can
change the perception of the object map. In addition,
the derivation of these contour maps has proceeded
through a number of stages that may affect the final
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Figure 5 Contour map of case events in Figure 3: five
contour heights. Map made with Mapinfo Professional. 
1997 Mapinfo Corporation

visualization. First, the process of density estima-
tion involves the production of estimates in a grid
mesh (interpolation) and the choice of a smooth-
ing constant (bandwidth) that controls the smooth-
ness of the gridded data. Then a graphic package
has constructed contours using a further interpola-
tion/smoothing step.

Geostatistical Mapping

Geostatistical data differ from the above in that a net-
work of sites is usually used to sample or measure
some spatially distributed variate. For example, the
early geostatistical work related to estimation of
geological structures in mining applications where
concentrations of particular minerals were sampled
at fixed locations [2, 21]. Within biostatistics, many
examples can be found where data are sampled at
spatial sites. One common example is the mapping
of disease rates located at the centroids of small
geographic areas (see Geographic Patterns of Dis-
ease), such as census tracts. While the rate represents
an average over the whole region, the approxima-
tion of allocating the rate to a centroid is often
made. In this case the rate (e.g. a standardized mor-
tality ratio (SMR) [7]; see Standardization Meth-
ods) is regarded as being associated with a fixed
spatial location. Another application arises when a
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spatially distributed covariate must be interpolated
to a set of locations within an ecologic study. An
example of this would be the use of interpolated
pollution measurements as a covariate in a study of
the distribution of respiratory disease morbidity (e.g.
asthma). In principle, the basic mapping considera-
tions apply in this case also: for visualization, the
data can be displayed as an object map with each
sample site becoming the location of an object repre-
senting the measurement at that site. For example, a
circle of radius equal to the measurement could depict
the distribution. Other display forms are available,
such as needle plots where vertical lines of length
scaled to represent the measurement are drawn at
the sites [15]. Often a surface interpolated from the
measured data is to be constructed. This surface also
requires an interpolation or smoothing step to pro-
vide a gridded data set, which can be subsequently
contoured. Such interpolation can be achieved by a
wide range of smoothing techniques. The method of
Kriging was developed within geostatistics to pro-
vide such processing. This method is not directly
applicable to data that have a positivity constraint
(e.g. SMRs or counts), but can be modified [10,
12].

Other notable forms of smoothing available for
such data are: nonparametric regression or ker-
nel smoothing [6], and thin plate splines [5, Chap-
ter 7]. A wide variety of mathematical interpolation
methods are available also, e.g. finite element meth-
ods [8].

Statistical Accuracy

Any step of map production which requires statisti-
cal estimation will have associated with it a measure
of the reliability or variability of that estimation.
Hence any map of estimated values (such as inter-
polated or smoothed data) should have a variance
estimate available at the estimation points. The vari-
ance estimate can also be represented as a surface,
or a pointwise confidence interval for the estimated
surface can be produced. The visualization of such
surfaces can cause some problems as there are no
simple clear methods of displaying multiple surfaces
without losing spatial information. If areas of the
estimated surface that exceed limits of variability
are of interest, then it may be possible to construct
a Monte Carlo P-value surface [4] (see Markov
Chain Monte Carlo).

Edge Effects

In most mapping exercises where statistical data
are to be represented, edge effects are present and
may require to be accommodated in the analy-
sis. When spatial data are spatially autocorrelated
then observations made within a study window will
relate to unobserved data outside the window. This
is a form of spatial censoring. Even when data
are not autocorrelated, the method used to esti-
mate the smoothed surface representation of the data
will have greater variability at the edges. This is
because such smoothing operators use neighboring
data observations to compute estimates and at edges
these neighborhoods are censored. Also, if only data
within the window are used to estimate edge val-
ues, then a bias will appear in this edge estima-
tion. The use of guard areas or data augmentation
at the edges of maps may be useful [16, 20]. An
example of a disease mapping application where
edge effects may have a significant impact is given
in [1].

Aggregation

Finally, it is important to consider the intercon-
nection between some mapping concepts and the
related statistical issue of aggregation. The effect of
aggregation of data into spatially larger areas has a
variety of effects on the subsequent interpretation.
First, aggregation is a scale change; by accumulat-
ing observations into larger spatial units the scale of
analysis is changed. In addition, aggregation acts as
a smoothing operation. That is, by accumulation of
data detailed variation in the data will be lost and
will not be retrievable. A classic example of this
is the arbitrary regionalization of case events into
census tracts in medical small area studies. In that
case the detailed spatial variation of cases is lost
within the census tract count (for discussion see [9]
or [11]). This type of averaging of spatial effects is
inherent in scale changes, and it is important that
any spatial structural effects observed in data at one
scale are scale labeled, i.e. the scale at which the
effect is found is permanently associated with the
effect. For example, clustering of disease data in
space may occur on a case event map, but when
aggregated into census tract counts this effect may
disappear.
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Statistical Methods in
Medical Research

Statistical Methods in Medical Research is an interna-
tional review journal that was first published in 1992.
Its aim is to provide medical statisticians and others
with up-to-date reviews of those areas of statistics
that are most important in medical and health inves-
tigations. The journal is published six times a year,
with four of the issues consisting of four or five com-
missioned review papers on a particular topic, and the
other two papers submitted and refereed in the usual
way. Each issue also contains an editorial either by
one of the editors (B.S. Everitt and T. Holford) or
by a guest editor, most often chosen from the 25 or
so members of the editorial board, and a number of
book reviews.

Some recent issues of the journal have dealt with

1. Multi-state models

2. Nonparametric longitudinal data analysis
3. Ethics, Statistics and Statisticians

The content of the issue on Ethics was as follows:

1. On the ethical aspects of the testimony of statis-
ticians in court, E.A. Gehan.

2. The ethics of consulting for the tobacco industry,
D.R. Rubin.

3. Ethics, data-dependent designs, and the strategy
of clinical trials: time to start learning as we go?
C.R. Palmer.

4. Ethical considerations concerning treatment allo-
cation in drug development trials, S. Senn.

5. Placebos that harm: sham surgery controls in
clinical trials, A.J. London and J.B. Kadane.

6. Ethical issues in oncology biostatistics, P.F.
Thall.

The journal is published by Edward Arnold,
London.

BRIAN S. EVERITT



Statistical Review for
Medical Journals,
Guidelines for Authors

In 1978, a panel of statisticians, practicing physi-
cians, and medical editors convened at a statistical
conference and concluded that medical articles often
contained incomplete reporting of statistical results
and methods, and that this problem was associated
with the use of faulty statistical designs and analyses
in published medical studies [11]. The panelists rec-
ognized the need for complete statistical reporting,
to make medical studies both interpretable and con-
vincing, and the role of medical journals in enforcing
good statistical practice and reporting. The panel pro-
posed the development of standards governing the
format and content of reports of statistical methods
and results in medical articles.

In 1980, Mosteller et al. [10] reviewed the orig-
inal reports of 147 cancer trials cited in a com-
prehensive clinical anthology, and they found that
important statistical issues, in particular the statis-
tical methods used, were reported only 25% of the
time, with statistical power and intended sample
size (see Sample Size Determination) almost never
reported. DerSimonian et al. [5] reviewed the reports
of a chronological sample of 67 clinical trials appear-
ing in four leading British and American medical
journals, in 1979 and 1980, and found that patient
eligibility (see Eligibility and Exclusion Criteria),
method of randomization, loss to follow-up, statis-
tical methods, and statistical power were reported
ambiguously, or not at all, on average 44% of the
time. Other surveys focused on individual issues.
Schulz et al. [13] found that ambiguous reporting of
the method of concealment of the treatment alloca-
tion (see Blinding or Masking) was associated with
larger estimates of treatment effect, suggesting that
inadequate methods might lurk behind inadequate
reporting. Pocock et al. [12] found poor reporting of
prioritization of multiple endpoints and statistical
comparisons, of whether subgroup analyses or strate-
gies for multiple testing over time were pre-defined
(see Multiple Comparisons), and of whether sam-
ple size and interim stopping rules (see Sequential
Analysis) were defined prior to the start of the study
(see Treatment-covariate Interaction). They indi-
cated that, without such provisions, multiple testing

leads to serious problems of interpretation, since the
nominal significance levels no longer reflect the true
significance levels. For repeated interim monitor-
ing, in particular, this was dramatically demonstrated
by the simulations of Green & Fleming [7]. Moher
et al. [9], in a comprehensive review of the negative
trials published in three leading British and Ameri-
can medical journals in 1975, 1980, 1985, and 1990,
found that the majority failed to report an intended
sample size. A related finding was that 64% of the
trials failed to have at least 80% power to detect a
50% relative improvement. Finally, George [6], in a
survey of 98 medical journals (with 83 respondents),
found only 16% to have a policy guaranteeing statis-
tical review.

There have been a series of efforts by statisticians
and clinicians to address the above issues. Altman
et al. [1] published a detailed and comprehensive set
of statistical guidelines for medical journals. Bailar
& Mosteller [3], expanding on the concise guidelines
adopted by the International Committee of Medical
Journal Editors [8], produced a similarly comprehen-
sive set. Zelen [17] and Simon & Wittes [14] focused
their detailed guidelines on the particular issues of
clinical trial reporting, as did Baar & Tannock [2] in
the annotations of their whimsical twin examples of
a well executed trial report and a poorly executed
one. Recently, a working group of statisticians and
clinicians [4], made up of representatives of two pre-
vious such groups [15, 16], issued the “CONSORT
Statement”, a proposal for the structured reporting of
clinical trials, following a detailed list of statistical
guidelines.

The following is a melding of the above sets
of guidelines, structured according to and closely
following the CONSORT proposal, but expanded to
include additional stipulations made by the other
authors. It is not meant to be either definitive or
all-inclusive. Each statement is referenced to allow
the reader to refer to the original sources for further
explanation.

Structured Statistical Guidelines for
Medical Journals

Introduction

State prospectively defined hypotheses and planned
subgroup or covariate analyses [1, 4].
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Methods: Protocol Design

Describe the planned study population, together with
inclusion/exclusion criteria [1–4, 14, 17].

Give the primary and secondary outcome mea-
sure(s) and the minimum important difference(s), and
indicate how the target sample size was projected [2,
4, 14].

Describe the rationale and methods for statisti-
cal analyses, giving the main comparative analyses
and whether they were completed on an intention-
to-treat basis, with enough detail to permit repli-
cation [1, 3, 4, 14]. Give assumptions concerning
the distribution of the variables which underly the
statistical methods used [1]. For randomized studies,
an intent-to-treat comparison should be included for
major endpoints [14].

Give the prospectively defined stopping rules [4,
14, 17].

For observational studies, explain the design,
describing the selection of controls and the matching
procedures, whether the study is case–control, cross-
sectional, or cohort, and what was the participation
rate [1].

Methods: Treatment Assignment

Give the unit of randomization (e.g. individual,
cluster, or geographic) (see Unit of Analysis) [3, 4].

Describe the method used to generate the allo-
cation schedule (see Randomization; Randomized
Treatment Assignment) [1, 3, 4, 17].

Describe the method of allocation concealment
and the timing of assignment [4, 17].

Give the number of eligible patients not entered
or not randomized, and the reasons [2, 4, 17].

Methods: Treatment Blinding

Describe the mechanism of treatment blinding, if
used, and the evidence for successful blinding of
subjects and investigators, as appropriate [1, 3, 4].

Methods: Quality Control

Briefly describe the methods used to ensure that
the data are complete and accurate, that all patients
entered on study are reported, and that the assessment
of major endpoints is reliable [14, 17]. The study
should not have an inevaluability rate for major

endpoints in excess of 15% [14] (see Missing Data
in Clinical Trials).

Results: Follow-up Schedule and Loss to
Follow-up

For each randomized group, give the timing of
follow-up and the number of patients withdrawn or
lost to follow-up [3, 4, 14, 17]. Not more than 15%
of eligible patients should be lost to follow-up [14].

Results: Analysis

State the estimated effect of treatment on primary
and secondary outcome measures, including the point
estimate (see Estimation) and confidence interval
[1, 3, 4, 14]. Give precise P values, but not to more
than two or three decimal places [1, 3].

Claims of therapeutic efficacy should be based
upon comparisons with a control group, except in spe-
cial circumstances, such as when each patient is his
own control [14]. Where historical controls are used,
patient characteristics should be compared in detail
with those of the experimental group, and potential
sources of bias should be discussed [14, 17]. Com-
parison of survival between responders and nonre-
sponders can not be used to establish efficacy [2, 14].

Significance tests not relating to pre-specified
hypotheses must be considered exploratory [1] (see
Hypothesis Testing). Claims of subset-specific
treatment differences must be documented to be based
on more than the random results of multiple-subset
analyses [14].

Present summary data and appropriate descriptive
and inferential statistics (see Inference) in sufficient
detail to permit alternative analyses and replica-
tion [1, 14, 17].

Cite statistical software packages used [1, 3] (see
Software, Biostatistical).

Do not use technical statistical terms, such as sig-
nificance and correlation, in a general fashion [1, 3].

Describe prognostic factors, by treatment group,
and any attempt to adjust for them [1, 4, 17].

Describe protocol deviations (see Clinical Tri-
als Protocols), including the number of randomized
patients subsequently found ineligible or not treated
as assigned, together with the reasons [1, 4, 14].
In general, observations that appear to be incon-
sistent with the main body of data should not be
excluded unless there are additional reasons to doubt
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their credibility, and any such exclusion should be
reported [1].

Comment

State specific interpretation of study findings, includ-
ing sources of bias and imprecision [4].

State general interpretation of the data in light of
the totality of the available evidence [4].
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Statistical Review for
Medical Journals,
Journal’s Perspective

Recently I met a woman doctor who had just read the
medical journal I edit – the British Medical Journal
(BMJ) – for the first time in 25 years. “It doesn’t have
any medicine in it any more. It’s full of statistics,”
she complained. To begin an article in a biostatistical
encyclopedia with a study that has a sample of one
may seem ingenuous in the extreme, but such Rip
van Winkle characters are rare: most doctors who
stopped reading medical journals 20 years ago have
never started again. And I am fascinated that her first
observation should be the predominance of statistics.
It could have been the appearance of molecular biol-
ogy or references to computers or the increase in
sociological, economic, and political material. Per-
haps the biggest change in medical journals in the
past 25 years has been the dramatic increase in the
amount of statistical material they contain.

Medical journals of 25 years ago did, of course,
contain some statistics. Austin Bradford Hill pub-
lished a ground-breaking series of articles on statistics
in the Lancet in 1937, [14]. Hugh Clegg, the edi-
tor of the BMJ from 1947 to 1965, was a personal
friend of Bradford Hill and was persuaded by him of
the importance of statistics for medicine and medical
journals. The BMJ carried one of the first randomized
controlled trials (see Clinical Trials, Overview) in
1948 (see Medical Research Council Streptomycin
Trial), and in 1976 the journal published a book on
elementary statistics written not by a statistician but
by the deputy editor, Dougal Swinscow [18]. The
book, Statistics at Square One, has remained in print
ever since and sold almost 100 000 copies – three
times as many copies as any other book published
by the BMJ Publishing Group. Many other journals
have also published educational articles on statistics,
and the BMJ has published further books.

But a survey of all papers published during
1978–79 in the New England Journal of Medicine
(NEJM), the world’s leading general medical jour-
nal, showed that 58% included no statistical method
or descriptive statistics only [8]. Three-quarters of
the original papers did, however, include statistical
methods. By 1990 this proportion had increased to
89%, and there was a marked increase in the use of

more advanced methods of analysis [3]. Generally,
medical journals have moved away from the case
reports and accounts of series of patients (see Case
Series, Case Reports) that were once their staple
fare to experimental studies, particularly random-
ized controlled trials, and epidemiologic studies that
use increasingly complex statistical methods. Medi-
cal journals have, however, moved at different rates.
The leading general medical journals – the Annals
of Internal Medicine, BMJ, Journal of the American
Medical Association (JAMA), Lancet, and NEJM –
increased the proportion of papers that depended on
statistical analysis much more rapidly than specialist
medical journals.

The appearance of statistical methods in medi-
cal journals was quickly followed by a realization
that the methods were commonly misused. A great
many studies have now shown that basic statisti-
cal errors – in design, analysis, and presentation –
are common in medical journals [3]. A particular
problem has been many studies too small to reach
a confident conclusion of the absence of an effect.
Many of the statistical errors found in medical papers
were so serious that the conclusions of the papers
were not supported by the evidence they contained
(see Statistical Review for Medical Journals).

The Story of Statisticians Moving to the
Heart of the BMJ

The appearance of studies on poor statistics in med-
ical journals led editors, most of whom had little or
no training in statistics, to recognize that they needed
help. From the late 1970s medical journals began
to recruit statistical advisers, although there are still
many medical journals that have no regular statistical
advice. I arrived at the BMJ in May 1979, and I have
lived through the incorporation of medical statisti-
cians into the heart of the editorial process. I want to
describe the path taken by the BMJ – partly because I
know it so well, and partly because it is, I know, very
similar to the path taken by most medical journals and
still being followed by many.

We began in the 1970s by recruiting a statisti-
cal adviser, the late Martin Gardner. He assembled
a small group of statisticians who agreed to review
BMJ papers. We thought it essential from the begin-
ning to work with statisticians who had practical
experience of medical research. We were having to
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learn each other’s way of thinking, and we worried
that the gulf between medical editors and statisti-
cians with no knowledge of medical research would
be unbridgeable. In the early days we made the mis-
take of thinking that statistics was a much more exact
science than clinical research and that we had to
go along with exactly what the statisticians advised.
Eventually we learnt that there was room for negotia-
tion over what was acceptable. We, as editors, always
did – and still do – feel vulnerable when caught in
the middle of statisticians arguing with each other.

In the early days we sent our statistical advisers
only those papers where we were worried about the
statistics. This usually meant that we sent papers that
had complex statistics, but we gradually learnt that
some of the most egregious errors occurred in papers
that used only simple statistical tests. There might
be errors in design, sampling, and data collection.
We sent only some papers because the statisticians
were seen as a limited resource. But slowly over
5–10 years we moved to the point that all research
papers with any statistical content at all, which is
virtually all of them, were sent for a statistical opinion
before publication. Statisticians are, however, usually
involved towards the end of our peer review process.
We reject 85% of papers (a figure that is roughly
the same for the main general journals), and about
60% are rejected without ever having had a statistical
opinion. Letters – which in the case of the BMJ
are all in response to material already published in
the journal – are still published without a routine
statistical opinion, although we ask for one if we are
worried.

A very important step for us was when we began
to involve statisticians in our “hanging committee” –
the committee of two editors and two outside doctors
that takes the final decision on whether to publish
research papers. This committee meets every week,
and from the mid-1980s we began to include a statis-
tician on some occasions and from the early 1990s
on every occasion. The beauty of this arrangement is
that it means that the editors, doctors, and statistician
can discuss all aspects of a paper together – recogniz-
ing the inevitable trade-offs between statistical purity,
what can actually be done in clinical research, and
what matters to doctors treating patients. My expe-
rience is that being able to discuss a paper with
a statistician is much preferable to simply having
a written report. This is particularly because peer
review is in my mind more about improving the

papers we do publish than simply deciding which
to publish. Another advantage of being able to dis-
cuss papers is that it is highly educational for those
attending: we learn from each other in a way that
is not possible if everything is done on paper. After
moving to a system of having a statistician present
at every meeting, none of the editorial team could
imagine moving back to a system where they were
not present.

Statistical Policies

One of the first jobs of our statistical advisers was to
develop published advice to authors on statistics and
to produce checklists that could be used when assess-
ing papers. They also advised us on statistical policy.
In 1983 we published “for debate” comprehensive
guidelines on statistical aspects of manuscripts [5];
these were soon recommended in our Instructions to
Authors (see Statistical Review for Medical Jour-
nals, Guidelines for Authors). In 1986 we published
checklists used by statistical referees [12] and began
to require confidence intervals whenever appropri-
ate (see [11]). From the early 1990s we have not
published controlled trials in which patients are allo-
cated to different interventions in any way other
than randomly (unless an acceptable argument is
given on why random allocation was not possible;
see Randomized Treatment Assignment) [2]. Cur-
rently we are moving towards policies on publishing
absolute risks as well as relative risks and includ-
ing the “number needed to treat” in appropriate
studies. A debate is beginning on including much
more Bayesian statistics in medical journals [10].
And medical journals have also become increasingly
interested in meta-analyses and publish more and
more [7].

Standards Across Journals

The result of these moves is that statisticians have
become central to the peer review process of the
BMJ. The same is true of other leading journals, but
not of all journals. George [13] and Altman [1] have
produced recommendations on the statistical aspects
of medical journals:

1. All papers should be reviewed by a statistician
prior to publication (perhaps only after a favor-
able subject-matter review).
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2. Journals should recruit statistical reviewers.
3. The statistical reviewers should at least be offered

the option to see the revised manuscript.
4. Journals should publish their policy on statistical

review.
5. Journals should adopt written standards or guide-

lines for statistical reporting (usually previously
published guidelines).

Altman observed some years ago that few jour-
nals meet more than two of these five recommenda-
tions [3], but my impression is that more and more
are moving towards fulfilling all five. I sit on the edi-
torial boards of the 25 specialist journals of the BMJ
Publishing Group, and most are beginning to follow
all five recommendations.

Another important move is that statisticians who
advise different journals are coming together to
produce advice that will be useful to all medical
researchers and journals. A good example is the
CONSORT proposals on how to present random-
ized controlled trials, [6]. These have already been
adopted by more than 20 journals and will certainly
be accepted by many more. Statisticians have also
persuaded the International Committee of Medical
Journal Editors to produce general guidelines on the
use of statistics in medical journals [15].

All this activity should be raising the quality of
statistics in medical journals, but there is so far
little hard evidence that this is the case. I think that
we urgently need to study whether the standard of
statistics has improved.

Statisticians: A Fundamental Influence on
Medicine

The influence of statisticians on medical journals –
and medicine – has, I believe, been fundamental,
and we are only just becoming aware of their full
impact. Medicine is currently experiencing an intense
debate over the need to move towards evidence-
based medicine [17], and statisticians have been
key in this debate [4]. Evidence-based medicine is
a movement that encourages doctors to base their
practice on the best evidence available. All doctors
know that much medical practice is based on opinion
and experience rather than on scientifically sound
evidence, but they also recognize that good scientific
evidence is not available on whether much of medical
practice is effective. Those who are encouraging

the move to evidence-based medicine are trying to
work out what doctors know and what they do not
know; promote research into what is not known;
extract from medical journals the small proportion of
studies that are scientifically sound and disseminate
them; produce evidence-based guides to practice;
and interest practitioners in critically appraising the
evidence presented to them. All of this activity
is based on statistical ideas of what constitutes
good evidence. This movement will, many predict,
transform medical practice.

Another important area where statisticians have
had a great influence is in identifying and managing
the problem of scientific fraud. Editors of medical
journals – and other scientific journals – are learn-
ing that some of the papers submitted to them are
fraudulent [16]. Researchers may have invented data,
stolen them, or manipulated them in dishonest ways.
Peer review does not easily detect fraud, but statisti-
cians are able to help. Some statisticians, for instance,
have developed tests that will help identify “the fin-
gerprint” of invented data [9].

Statisticians have also raised consciousness of
more minor scientific dishonesty. Since doctors have
had access to computer programs to help them
analyze data they have learnt that they can “torture
the data until they confess”. For instance, if doctors
do not find a significant difference between placebo
and a treatment in a randomized controlled trial they
may keep doing subgroup analyses until they find a
significant difference. Statisticians have taught us that
we must declare the hypotheses we are going to test
in advance, and the post hoc analyses are suspect.
There are many other similar concerns.

My conclusion has to be that statisticians have
become central to medical journals and to medical
practice. There is still much room to raise statistical
standards in medical journals, but statisticians have
done more than simply improve statistical design,
analysis, and presentation in medical journals. They
have played an important part in what is looking
increasingly like a paradigm shift in medicine – from
opinion to evidence-based medicine.
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Statistical Review for
Medical Journals

The statistical content of medical and epidemiologic
journals has undergone a radical transformation over
the past 25 years. As recently as the 1960s, arti-
cles in the major medical [13] and epidemiology [14]
journals employed only the most rudimentary statis-
tical methods. Most papers reported only means and
standard deviations, while an author would occa-
sionally use simple linear regression. By the end of
the 1980s, however, the statistical content of articles
published in the leading journals had changed dra-
matically. Emerson & Colditz [6] found that, of 115
Original Articles published in the New England Jour-
nal of Medicine in 1989, 33% employed one or more
advanced statistical methods. An equally dramatic
shift occurred in the design and size of studies [14].
While most studies published in the 1960s were lab-
oratory investigations or small observational studies,
often uncontrolled, the majority of today’s investiga-
tions of human populations are of two major types,
controlled epidemiologic studies with explicit and
carefully crafted designs (see Analytic Epidemiol-
ogy) and randomized clinical trials.

In response to this shift in the statistical and epi-
demiologic character of submissions, many clinical
and epidemiologic journals have increased the inten-
sity of their statistical reviews. For more than a
decade, The New England Journal of Medicine has
retained a team of statistical consultants who attend
weekly editorial meetings and review every potential
publication with statistical or epidemiologic content.
The Journal of the National Cancer Institute has a
total of 20 statistical editors! All articles with statis-
tical content receive statistical review. Other leading
medical journals have made similar arrangements.

The move toward increased emphasis on statisti-
cal review has been stimulated in part by periodic
controversies about the design or analysis of stud-
ies that subsequently play an important role in drug
approval (see Drug Approval and Regulation) (for
one example, see Groothuis et al. [7], McIntosh [11],
or Ellenberg et al. [5]) or national biomedical policy
(for one example, see Berkel et al. [1] and Bryant
& Brasher [2]). Although no review process can be
completely successful in identifying weaknesses in

the design, conduct, or analysis of scientific stud-
ies, the increasing intensity of statistical review has
improved the quality and clarity of presentation of
statistical methods employed in articles published in
major medical journals. This article discusses the role
of the statistical reviewer and reflects on the bound-
aries and limitations of statistical review.

The nature and complexity of a statistical review
depends to a great degree on the design of the
study under review. Review of randomized clinical
trials is often straightforward because the method-
ologic paradigm is both well established and achiev-
able. Review of epidemiologic studies can be more
challenging for statisticians, because such reviews
frequently require a deeper understanding of the
biological question and its implications for design and
analysis. We discuss some of the issues in each type
of review in subsequent paragraphs, then conclude
by mentioning some study designs and methods of
analysis that are growing in importance and which
present new challenges to the reviewer.

Randomized Clinical Trials

Statistical review of randomized clinical trials is often
straightforward, at least when the responsibilities of a
statistical reviewer are interpreted narrowly, because
the standards for design and analysis of clinical trials
are so clear. DerSimonian et al. [3] identified 11
aspects of the design and analysis of clinical trials that
they considered important to assessing the quality of
a study. They were:

1. eligibility criteria;
2. admission decision preceding treatment assign-

ment;
3. random allocation to treatment;
4. the method of randomization;
5. patients’ blindness to treatment (see Blinding

or Masking);
6. blinded assessment of outcome;
7. information about treatment complications;
8. loss to follow-up data;
9. quality of statistical analysis;

10. complete description of statistical methods;
11. power.

Criteria for selection of patients bear primarily on
the generalizability of the study. Consistent applica-
tion of those criteria, however, including evidence



2 Statistical Review for Medical Journals

that all patients seen during a specified time period
were screened for eligibility, insures that the study
sample reflects the stated criteria, thus providing a
firm basis for generalization (see Validity and Gen-
eralizability in Epidemiologic Studies).

Procedures for randomizing patients are now well
standardized (see Randomized Treatment Assign-
ment). The sequence of treatment assignments should
be derived from computer-based randomization, and
no aspect of the assignment procedure should enable
investigators to anticipate assignments before they
are revealed. These assignments should be revealed
only after the decision to enroll a patient has been
made. Problems associated with randomization usu-
ally result from failures of implementation rather than
failures of design. There have been a number of
well-publicized examples of breaches of procedure
by study personnel who had access to envelopes or
other insufficiently secured information about treat-
ment assignments.

Randomization is not always ethical or feasible.
In studies of, for example, survival after lung or
heart transplantation, the high level of risk and ethos
surrounding care of the transplant candidate have
prevented consideration of randomized trials. In those
settings, the reviewer must judge whether unblinding
of patients or study personnel could have introduced
bias into the comparison of treatment groups. This
assessment depends in part on the degree to which
the endpoints are objective (see Outcome Measures
in Clinical Trials).

In the ideal trial, patients, caregivers, and evalua-
tors are blind to treatment assignment. Knowledge of
treatment assignments should be concealed from all
three groups to the maximal extent feasible and ethi-
cally defensible (see Ethics of Randomized Trials).
Again, in the ideal design, every patient should be
followed throughout the trial and measured on every
scheduled occasion. This ideal is never met in clini-
cal research. Losses to follow-up are an unavoidable
part of clinical trials involving extended follow-up.
The statistical reviewer should be aware that loss
to follow-up threatens the integrity of a random-
ized trial, and that no statistical method for anal-
ysis of incomplete data can protect against bias if
losses to follow-up are informative [10]. Thus, the
reviewer must judge whether (i) the investigators
have achieved the best possible follow-up rate in the
particular study setting, and (ii) whether the extent

and nature of missing data have the potential to pro-
duce bias in treatment group comparisons comparable
in magnitude to the treatment effects under investi-
gation.

The statistical methods used by authors of reports
of clinical trials are usually sound in their fundamen-
tals, both because the design suggests the appropriate
comparisons and because trialists tend to be expe-
rienced investigators. It is common, however, for
statistical reviewers to find problems of emphasis
or selection. Investigators may, for example, empha-
size results in a subgroup (see Treatment-covariate
Interaction) or for an endpoint that was not identified
a priori as the primary hypothesis without appropri-
ate statistical adjustment in the analysis. Simon [12]
discuss statistical methods for analysis of subsets in
clinical trials.

Given the importance of the distinction between a
priori and a posteriori hypotheses in the interpretation
of randomized trials, as well as the frequent diffi-
culty of evaluating statistical methods from the brief
synopses provided in typical submissions to medical
journals, it would be helpful for statistical reviewers
to receive copies of the statistical methods sections of
study protocols, yet this is rarely done on a routine
basis. When the study employed a less commonly
used design, such as repeated measures, the reviewer
must be more vigilant about the validity of the ana-
lytic approach.

Serious deficiencies of design or analysis of clini-
cal trials are not always apparent from the manuscript
submitted for review. Review of primary data has
sometimes uncovered problems or discrepancies in
study results that would not be detectable from a
careful review of the scientific article. The risk of
hidden deficiencies is unavoidable, because it will
not be possible for reviewers to examine the details
of every study submitted for publication. The sta-
tistical reviewer can address this concern to some
degree by asking probing questions of the authors
that require more detailed discussion of study proce-
dures.

One challenging aspect of statistical review for
this writer has been the judgment about whether a
small, preliminary clinical trial is worthy of publi-
cation. This judgment can depend not only on the
size of a trial and the strength of its evidence, but
also on the degree to which the therapeutic strategy
is innovative, and upon the urgency of the public
health problem it addresses. When one has difficulty
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making that judgment in an area in which one is not
fully acquainted with the state of the field, it can be
helpful to acknowledge the issue and provide clear
information to the editor about the strength of the
study.

Epidemiologic Studies

Epidemiologic studies are intrinsically more chal-
lenging than randomized trials for most statistical
reviewers, because interpretation of an epidemiologic
study often requires a high level of understanding of
the scientific issues. One helpful concept is the asser-
tion that epidemiologic studies should be conducted
according to scientific principles governing the design
and conduct of randomized trials in every respect
save the use of randomization for assignment of treat-
ments. Thus, epidemiologic studies should be based
on a written scientific protocol, hypotheses should be
stated a priori, subjects should be completely enumer-
ated, losses to follow-up should be minimized, and
so on. Several individuals and groups have prepared
guidelines for the design, conduct, or evaluation of
epidemiologic studies.

Even when this principle is honored, however,
observational studies have pitfalls. Both patient
selection and control of potential confounders are
important issues in most epidemiologic studies. Sta-
tistical reviewers for medical journals must be con-
versant with the criteria for evaluation of such
designs. Most contemporary epidemiologic studies
employ either the cohort or case–control design,
and thus include concurrent controls. The evalua-
tion of such studies, especially case–control studies,
requires special expertise and understanding of the
issues involved in selection of controls, measurement
of confounders, and the implications of matching
(see Bias in Case–Control Studies; Bias in Cohort
Studies; Bias in Observational Studies).

The parallels in data analysis between epidemio-
logic studies and randomized trials are much closer
than those in design. Statistical reviewers should be
knowledgeable about statistical methods for the anal-
ysis of cohort and case–control studies, including
the effects of matching (see Matched Analysis) and
stratification on the analysis. In practice, epidemio-
logic studies are less likely than randomized trials to
follow a written protocol that specifies the primary
and secondary study hypotheses. Thus, the reviewer

should attend to whether the endpoints and hypothe-
ses emphasized in the report are the natural primary
questions that motivated the study.

New Challenges to Statistical Reviewers

The use of multivariate methods in biomedical
research has developed sporadically (see Multivari-
ate Analysis, Overview). Logistic regression analy-
sis emerged as an important analytic tool in the 1960s,
multivariate survival analysis was popularized in the
1970s, and methods for the analysis of longitudinal
and clustered data (see Cluster Analysis, Variables)
became increasingly important in the 1980s. In part,
this reflected the maturation of research on chronic
diseases. While early studies focused on survival and
severe morbidity, more recent studies have focused
on changes in quality of life over time and in the
development of risk factors for chronic disease. Both
of these questions require study designs that employ
repeated measures. Unfortunately, there is at present
no easy introduction to the principles of longitudi-
nal data analysis. The landmark book by Diggle
et al. [4] is comprehensive but challenging. A recent
SAS publication on mixed effects models [9] pro-
vides some helpful illustrations of the use of mixed
linear and nonlinear models for analysis of repeated
measures.

Perhaps the 1990s will be remembered for
the growing importance of investigations based
on genetic and molecular data. Some studies can
be classified as examples of either molecular
epidemiology or population genetics. In a molecular
epidemiology study, a classifiable genetic trait of
an individual is used as either a risk factor or an
effect-modifier for a disease outcome. Although such
studies require sophisticated molecular methods for
patient characterization, the principles of study design
and data analysis are identical to those encountered
in epidemiologic studies using other types of risk
factors. Thus, they present no fundamentally new
challenges to the statistical reviewer.

The same cannot be said of studies involving
linkage analysis, segregation analysis, and inves-
tigation of polygenic inheritance of disease. Such
studies require new study designs [8] and new meth-
ods for quantifying relationships at the molecular
level. Statisticians wishing to be broadly knowledge-
able about statistical issues in biomedical research
should master these ideas.
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Statisticians in the
Pharmaceutical Industry
(PSI)

PSI (Statisticians in the Pharmaceutical Industry Lim-
ited) is a nonprofit organization, which converted to
a limited company early in 2003. Though primar-
ily UK-based, currently around 20% of PSI members
reside outside of the United Kingdom, and further
members from all over the world are welcomed. PSI
is open to all people interested in the application of
statistics in the pharmaceutical industry. Its major
objectives are:

1. To promote professional standards in the appli-
cation of statistics in matters pertinent to the
pharmaceutical industry

2. To provide a forum for regular discussion on
statistics and matters relating to the practice of
statistics in the pharmaceutical industry

3. To influence regulatory direction and scien-
tific methodologies that are applied to drug
development

4. To contribute to the development of statistics as
a profession.

PSI was founded in 1977 with around 50 mem-
bers. The organization has grown rapidly, with the
development of the role of statistics in the highly reg-
ulated pharmaceutical industry (see Drug Approval
and Regulation) and now has over 1000 members.
The majority of members are statisticians and sta-
tistical programmers working within sponsor phar-
maceutical and biotechnology companies or Contract
Research Organizations (see Proprietary Biostatis-
tical Firms), in all areas of the drug development
process, including research, preclinical and clini-
cal development (see Clinical Trials, Overview),
production, quality control, marketing, and market
research. Further members include independent statis-
ticians and statistical programmers, academic statis-
ticians, teachers, students and nonstatisticians from
within the industry.

PSI arranges regular scientific meetings, with a
view to creating an environment where members have
the opportunity to exchange scientific information.
A three-day conference and a number of one-day
scientific meetings are held each year. In addition,

special interest groups (SIGs) communicate regularly
on topics of particular interest (e.g. the Statistical
Computing SIG often runs half-day meetings on top-
ics of current interest). From time to time, working
parties are established to investigate particular statis-
tical issues, and members are actively encouraged to
participate. One such group is the Clinical Research
Computer Systems Validation Working Party (jointly
sponsored by PSI and the Association of Clinical
Data Management, ACDM), which has recently pub-
lished the second edition of the “Computerised Sys-
tems Validation in Clinical Research” Guideline. The
guideline can be purchased via the ACDM website
(see http://www.acdm.org.uk).

PSI runs a program of training courses, with the
aim of bringing members up-to-date in a particular
area without having to commit to a lengthy period
away from the office or to extensive follow-up read-
ing. An “Introduction to Industry” course is run each
year for new entrants to the pharmaceutical industry,
as well as three or four short courses on statisti-
cal topics, each usually lasting two to three days
(see Teaching Medical Statistics to Statisticians).

Contact is maintained with academic statisti-
cal groups and professional organizations (such as
the Royal Statistical Society, (RSS)), as well as
other pharmaceutical bodies (such as the Pharma-
ceutical Research and Manufacturers of America,
PhRMA), thereby promoting the public image of PSI,
both within and outside the pharmaceutical industry.
Together with other European statistical organiza-
tions, PSI is a member of the European Federa-
tion of Statisticians in the Pharmaceutical Indus-
try (EFSPI), in which capacity PSI monitors and
responds to appropriate regulatory statistical issues
within the pharmaceutical industry. PSI organizes
occasional workshops to discuss important regula-
tory issues, and invites an expert statistical group
to provide comments on draft regulatory documents.
Feedback from members is coordinated in conjunc-
tion with the Association of the British Pharmaceu-
tical Industry (ABPI) and EFSPI to ensure appro-
priate input to regulatory authorities and industry
organizations.

In 2002, PSI launched the statistical journal,
Pharmaceutical Statistics, in conjunction with the
publishers John Wiley and Sons (http://www3.
interscience.wiley.com/cgi-bin/jhome/93
012805). This international journal, sponsored by
PSI, is issued electronically on a quarterly basis to
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all PSI members as part of their annual PSI sub-
scription. The journal aims to disseminate informa-
tion and practical examples of the use of statistics
in all stages of drug development, from discovery
to production. Also, in 2002, PSI redesigned its
website (http://www.psiweb.org) to include a
resource center, membership discussion forums, and
job/service advertisements in addition to electronic
journal access. PSI continues to publish a quarterly
newsletter, SPIN, to keep its members informed about
PSI activities and other relevant events.

PSI promotes careers within the industry by pub-
lishing careers material and arranging a program
of talks for universities. More recently, PSI has

collaborated with the RSS and other organizations
in attempts to nurture statistical interest in schools. A
Grants Fund is available to subsidize student atten-
dance at relevant PSI scientific meetings.

PSI employs a professional executive secretary in
order to ensure efficient administration. For further
information please contact: PSI Executive Office,
Resources for Business, Association House, South
Park Road, Macclesfield, Cheshire SK11 6SH, UK.
Tel: +44 (0) 1625 267882; Fax: +44 (0) 1625
267879; e-mail: admin@psiweb.org.
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Statistics in Medicine

Statistics in Medicine is among the leading journals
of medical statistics and epidemiology. It publishes
papers on the practical applications of statistics and
other quantitative methods to medicine and its allied
sciences. It embraces all aspects of the collection,
analysis, presentation, and interpretation of medical
data, including areas such as clinical trials, diagnos-
tic studies, quality control, laboratory experiments,
epidemiology, and health services research.

The journal emphasizes the relevance of statistical
techniques and aims to communicate statistical and
quantitative ideas in a medical context. Examples of
applications of statistics to specific projects, articles
explaining new statistical methods, and reviews of
general topics are published.

The ultimate goal of Statistics in Medicine is
to enhance communication between statisticians,
clinicians, and medical researchers with the common
purpose of advancing knowledge and understanding
of quantitative aspects of medicine. It is intended
that both the readers and authors of the journal
include statisticians, clinicians, epidemiologists,
health researchers, mathematicians, and computer
scientists interested in medicine.

Statistics in Medicine was launched as a quarterly
journal in 1982, under the editorship of T. Colton
(Boston), and L. Freedman and A. Johnson (Cam-
bridge); the first volume included 40 papers in 380
pages. It progressed to six issues in 1986 with 64
papers in 678 pages; to eight in 1987, and to 12 in
1988, when L. Freedman emigrated to Bethesda, and
the original editors were joined by D. Machin (Cam-
bridge). Further expansion to 16 issues occurred in
1992, and, ultimately, to 24 in 1993; in 2003, the jour-
nal published 83 papers in 3914 pages. L. Freedman
retired as an editor in 1993, an occasion marked
by an account of the foundation and early devel-
opment of the journal (13(1), 1–2 (1994)). He was
succeeded by R. D’Agostino (Boston) Deputy editors
R. Glynn (Boston) and J. Greenhouse (Pittsburgh)
were appointed in the US at the beginning of 1995,
and C. Palmer and S. Stenning (Cambridge) in the
UK in September 1996. Tony Johnson stepped down
in June 1999. The journal has an editorial board of
over 70 eminent statisticians and epidemiologists in
many centers of excellence throughout the world.

In addition to papers that are peer reviewed by
the editorial board and other advisory referees, the
journal welcomes letters commenting on published
papers, as well as those embracing more general
issues. It also includes reviews of books and reports
of general interest to medical statisticians under the
guidance of the book reviews editor [P. Macaskill,
Sydney) The position of deputy editor was abol-
ished at the end of 2001 when four editors-in-chief
(D’Agostino, Greenhouse, Machin and Campbell)
were appointed. Machin retired at the end of 2002, to
be succeeded by J. Matthews (New castle). In 1995,
the journal launched two further topical features:
first, a series of expository articles on the application
of specific biostatistical techniques, including those
introduced comparatively recently, under the title of
Biostatistical Tutorials, with R. D’Agostino (Boston)
as editor; and, secondly, a series of occasional articles
under the title Statistics in the Medical Literature for-
merly the editorship of D. Altman (Oxford) and now
S. Evans (London) drawing attention to specific pub-
lications dealing with some aspect of biostatistics or
epidemiology, and published in the biomedical liter-
ature.

Apart from the regular papers submitted to the
journal, a major feature is the publication of spe-
cial issues, many under the directorship of invited
guest editors. Four of these have honored emi-
nent colleagues whose work has been of funda-
mental importance in the foundation and develop-
ment of medical statistics. Sir Austin Bradford Hill
(1(4), October 1982), P. Armitage (9(6), June 1990),
D. Newell (14(2), January 1995) and Sam Green-
house (22(21) November 2003). Several more have
been devoted to workshops on statistical methodol-
ogy organized by the National Institutes of Health,
Centers for Disease Control, Johns Hopkins Uni-
versity, United Kingdom Coordinating Committee on
Cancer Research, and others. It also publishes the
proceeding of the annual conference of the Interna-
tional Society for Clinical Biostatistics.

In 1991, a decade of publication was celebrated by
a special anniversary issue which included overviews
of advances over the previous ten years in clinical
trials, epidemiology, diagnosis and quality of life,
and a competition for younger medical statisticians
in the US (10(12), December 1991).

The journal is published by John Wiley in Chich-
ester, UK, and operates from one editorial office
at Boston University School of Public Health, 80
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East Concord Street, Boston, Massachusetts 02118,
USA (editorial assistant, S. Thompson), since Jan-
uary 2004 the journal runs under an electronic sys-
tem www.sim-wiley.manuscriptcentral.com
from which submission details are available. Most

papers are peer reviewed, usually by two expert
referees.

THEODORE COLTON, ANTHONY L. JOHNSON &
DAVID MACHIN



Statistics, Overview

This article is an inevitably personal view of the gen-
eral position of statistical science, as seen in the mid-
1990s, a period of rapid development. Even within
medical statistics the range of applications is great,
and in statistics more broadly the variety is even more
extreme, making sweeping statements about the rela-
tive importance of, for example, different techniques
and different approaches difficult to substantiate in
any generality.

The term statistical science is sometimes used for
statistical theory and its applications to the natural
and social sciences and to science-based technology
and this roughly corresponds to the scope of the
present article.

The interlinked pillars of statistics as a field of
study are

1. The mathematics of probability.
2. The general principles for the design, analysis

and interpretation of investigations. Formal prin-
ciples of statistical inference are a part, but only
a part, of this.

It may be tempting to add a third pillar, which gave
the subject its name, namely the collection and study
of economic and social statistics for government, so-
called official statistics, and the closely related issues
concerning large enterprises. While this aspect of the
subject has indeed developed rather separately over
many years, at some level the general principles seem
unlikely to be different from those involved with
applications to science and science-based technology.
For medical statisticians official statistics connected
with health have always been important (see Vital
Statistics, Overview), and if the term biostatistics
is interpreted more widely to include, for example,
agricultural statistics, then there are other links with
official statistics.

Probability

The first part of the article thus concerns the math-
ematics of probability; that is, issues concerned
with the meaning and philosophy of probability are
excluded.

Historically and, often but not always, in introduc-
tory teaching, probability starts from combinatorial

problems, i.e. from the counting of the proportion
of “favorable” cases in the enumeration of a set of
possibilities assumed equally likely a priori. Mod-
ern probability theory has blossomed from that into
a rich chapter of modern mathematics with links to
other areas of pure mathematics. Some of the modern
developments are, at the moment, fairly remote from
statistical applications although study at a relatively
advanced level is required:

1. To derive and underpin various statistical meth-
ods. Instances where mathematically elaborate
methods have been deployed include the use of
martingale theory in connection with survival
data [1] (see Counting Process Methods in
Survival Analysis) and more generally the rigor-
ous derivation of limiting results in semiparamet-
ric inference (see Semiparametric Regression).

2. To derive special stochastic models for phe-
nomena, usually systems developing in time
(see Stochastic Processes; Epidemic Models,
Stochastic).

We deal here with the second of these.
Stochastic models supply an important route for

developing mathematical models of systems involv-
ing a nontrivial random element, both for the insight
that the models themselves can supply and as a basis
for introducing a substantive base into the interpreta-
tion of empirical data.

Among the fields in which such work has a solid
history combined with much current activity are

1. Epidemic theory, again with a long history, with
developments up to 1970 summarized by Bai-
ley [4], and with major recent developments [26]
stemming largely but not entirely from the study
of AIDS [10, 2]. For an application to BSE
(bovine spongiform encephalopathy), see [3].

2. The study of congestion and more broadly in
operational research, dating back to the work
of A.K. Erlang at the Copenhagen Telephone
Company and congestion theory being stimulated
nowadays by the study of complex networks.

3. Finance theory.
4. Genetics, for example, in particular, phylogenet-

ics and genetic epidemiology.
5. A number of other areas of mathematical biol-

ogy, such as competition processes, including
predator–prey models.

6. Geomorphology and hydrology.
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7. Statistical physics, with a very long history
of the use of probabilistic ideas, often in a
way that seems idiosyncratic from the viewpoint
of other developments in probability theory.
More recently, however, there has been rather
more contact between statistical physics and
the mainstream of work in stochastic processes.
Two fundamental problems in physics, i.e. the
foundations of quantum theory and the nature
of the process generating turbulence, both seem
likely to have some stochastic element to them.

In the present context, it is helpful to draw a rough
distinction between four types of probability model:

1. Purely empirical models.
2. “Toy” models.
3. Intermediate models.
4. Quasi-realistic models.

Models for rainfall provide a convenient illustra-
tion. A purely empirical model for, say, daily rainfall
at a single site [41] might specify the binary sequence
of (no rain, rain) as an m-dependent Markov chain
with seasonally varying transition matrix and the
amount of rain, conditionally on its being nonzero,
as having a lognormal distribution or gamma dis-
tribution with seasonally varying parameters. This
might provide a valuable and accurate representation
of the frequency properties of the rainfall process,
but there would be no direct link with the underly-
ing physical process or corresponding interpretation
of the parameters.

A “toy” model is one in which a highly idealized
representation is used to explore the particular cir-
cumstances under which a phenomenon of interest
could be generated from simple starting assumptions.
Examples are the use of idealized cascade models
(clusters of clusters of . . .) to show some conditions
under which scaling, i.e. self-similarity, of the rain-
fall spatial field can occur [21], and simple models
showing conditions for the explosion or extinction
of epidemics, or the extinction of species by com-
petition. Elaborate fitting to empirical data is often
inappropriate.

An intermediate model is one in which some
aspects of a complex physical or other process are
represented with the objective of obtaining a form
that can be fitted to empirical data in such a way
that the resulting parameter estimates do have a link
with the underlying generating process. An example

with rainfall is the use of models in which there is
a Poisson process of storms. Each storm consists of
a random number of rain cells, displaced from the
storm origin, each cell being of random duration and
depth, the total rainfall depth consisting of the sum of
all contributing cells. The notion of a rain cell has a
physical interpretation and the resulting process can
produce a reasonable fit to the rather complicated
time series of say five-minute rainfalls, in which
within periods of rain there is a large highly non-
Gaussian distribution of intensity interspersed with
short periods of zero rainfall. The models [36] also
have the major advantage that they can be generalized
to spatial–temporal form [14].

A corresponding quasi-realistic model would be
a global circulation model in which the nonlinear
partial differential equations representing the phys-
ical processes involved are solved numerically [30].
Similar models involving complex processes are used
in studying global warming [24] and many other
types of system, physical, biological, or economic.
The models are frequently, although not inevitably,
deterministic rather than having an explicit stochastic
element.

A few general issues in this broad area of work
are as follows.

1. When is the introduction of a stochastic element
into a model likely to be crucial, i.e. when are
deterministic models broadly adequate?

2. The relationships between a deterministic
model and a roughly corresponding stochastic
model [44, 25] are important in settling the kind
of formulation suitable. For models consisting
of linearly superimposable components the
deterministic model gives the corresponding
stochastic mean, but even then the mean may, for
small systems, give a poor idea of the behavior
of sample paths. For nonlinear systems, such
as epidemic models, the deterministic model
gives an approximation to the stochastic mean
valid in large systems (see Epidemic Models,
Deterministic).

3. “Toy” models can be highly enlightening. (The
term “toy” should not be taken pejoratively!)
How can they best be used in combination
with more realistic and elaborate models? One
route is in the interpretation of results from a
complex simulation model by examining the
ratio of relevant response variables as simulated
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to those predicted by a “toy” model. This ratio, or
correction factor, may be expected to vary much
more slowly with relevant parameters than the
response itself [12].

4. Issues arise over the fitting of intermediate mod-
els in that likelihood functions may be hard to
compute and, not always relevant and estimating
functions constructed by equating observed and
fitted features may have a strong element of arbi-
trariness.

The study of deterministic models, of stochastic
models and of the analysis of empirical data has often
been undertaken by separate groups of investigators.
While the reasons for this may be clear the separation
is to be regretted.

Design, Analysis, and Interpretation

Preliminaries

The remainder of the article is concerned with the
design, analysis, and interpretation of investigations.
In a broad sense the same principles apply to exper-
iments, observational studies, and the secondary
analysis of data collected for some not very specific
research purpose, for example a large family expen-
diture survey or a cancer registry. We assume that
the starting point is a question or issue or research
hypothesis of interest, although sometimes prelim-
inary analysis may be needed to clarify the issue
involved. In all types of study the key initial questions
of design are

1. What individuals should be studied?
2. What properties should be measured and what do

the measurements really mean?
3. What contrasts, including interactions, should

be examined?

The broad requirements are

1. The avoidance of systematic error.
2. The control of random error.
3. The exploitation of the factorial structure of

contrasts (see Factorial Experiments).
4. The formulation of special objectives.

So far as the last point is concerned we can for
the most part regard the purpose to be the estimation
of relevant parameters and corresponding standard

errors, but a specific decision or prediction objective
may alter the whole focus of the study. For example,
the design of a plant-breeding programme for varietal
selection would involve quite different considerations
from that for the comparison of a small number
of specific varieties. In the former, emphasis is to
be placed on the properties of the small number of
varieties ultimately chosen for intensive investigation
rather than on specific internal comparisons among a
small number of varieties.

The differing relative emphasis on the above
requirements, especially the first three, explains why
the literature on design appears so different in the
clinical trial context from that in, say, the chemical
engineering field. In the former, but not the latter,
avoidance of systematic error is of key importance.
In the design and analysis of observational studies
too, attempts to eliminate systematic error are often
of central importance.

It is disappointing that awareness of some of the
basic principles of design has not percolated more
widely into the laboratory sciences. Even in physics,
where investigations of great subtlety are common,
the widely held view that refinement of laboratory
technique is always to be preferred to statistical
technique as a base for error control is probably much
less valid than it used to be.

The reason for neglect of the statistical aspects of
the design of investigations may partly be that the
theory of statistical design is quite widely identified
with the use of complex designs. These have their
place, but they are often not appropriate, key issues
more commonly being simple techniques for method-
ical bias elimination and error control.

Measurement Issues

The techniques of analysis connected with variance
components were developed in the 1930s and 1940s
tied to balanced data and continuous roughly norma-
lly distributed data. The restriction to balanced data
was removed in pioneering work by C.R. Henderson
in connection with animal breeding and synthesized
most satisfactorily in the residual (or restricted)
maximum likelihood (REML) method of Patterson
and Thompson [32]. Systematic extensions to Pois-
son, ordinal, and binomial data are the focus of
current work [29].

Such techniques provide the basis for the design
and analysis of interpersonal and interlaboratory
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studies of measuring techniques, common in some
fields of study, especially connected with the physical
sciences, but regrettably less common in a medical
context.

They also are in principle appropriate in instru-
ment development. The psychometric notions of
reproducibility, and of face, criterion, and concept
validity and of comparison with a gold standard
are not normally presented in terms of compo-
nents of variance but would probably be better
done so (see Psychometrics, Overview). Systematic
techniques for the more detailed analysis of instru-
ments consisting of many relatively similar items are
needed. This is especially relevant in connection with
quality of life, i.e. health status [13].

Classical work on error assessment in experiments
and surveys emphasized the often multilevel or time
series structure of error. Treating error variables as
independent and identically distributed typically leads
to an underestimate of the standard error of contrasts
of primary interest. A more empirical adjustment
for such overdispersion may be via the direct esti-
mation of correction factors to apply to standard
errors [6, 31, 19].

Methods of Analysis

Some methods of analysis do not depend on an
explicit probability model and recent developments,
especially in computer graphics, are of interest both
for exploratory work and also in presenting the con-
clusions of more elaborate analyses; indeed, as in
very elaborate analyses the connection between the
data and the conclusions may get rather remote,
the need for insightful methods of presentation
increases.

Nevertheless the rest of this section concentrates
on methods that depend at least in part on an explicit
probabilistic base.

Some requirements for a probabilistic model are
as follows, although not all are relevant in every
application.

1. The model should establish a link with underly-
ing substantive knowledge or theory.

2. The model should allow comparisons with pre-
vious related studies of the topic.

3. The model should be consistent with or suggest
a possible process that might have generated the
data.

4. Parameters defining primary features of the sys-
tem should have individually clear substantive
interpretations.

5. The error structure should be represented suffi-
ciently realistically that meaningful measures of
precision are obtained for the primary compar-
isons.

6. The fit to data should be adequate.

We comment here on only some of these points.
The first three items are related to the general issue

of preferring what we previously called intermediate
models to purely empirical models. Such a prefer-
ence was indicated in much of the applied work of
J. Neyman; it can have the disadvantage of making
the analysis of fairly simple sets of data overcompli-
cated and there is a difficult broad strategical issue to
be faced in each application concerning the weight to
be placed on substantive vs. purely empirical models.

In fields with a quantitative theoretical base this
will typically provide a key to a suitable model. In
the social sciences and in some areas of biology there
is often the problem of incorporating background
knowledge that is essentially qualitative. Here the
ideas of chain graphs, expressing directional relation-
ships between variables and of substantive research
hypotheses [43] expressing some conditional inde-
pendencies and some strong dependencies provide a
route to insertion of such knowledge. The graph the-
ory ideas are a development from Sewell Wright’s
path analysis. For accounts with a strong statistical
focus, see [18, 15] and [16], and for a more theoreti-
cal account see [28]. Spiegelhalter et al. [39] discuss
applications to probabilistic expert systems.

The need to connect to previous work is in
superficial conflict with the Fisherian notion that
investigations provide their own estimate of error.
However, the need to relate the primary conclu-
sions in different studies is clear; this includes
the examination of consistency of the conclusions.
There is a broad connection with overviews, or so-
called meta-analysis, of much current interest in
medical research. The statistical principles were set
out by Yates and Cochran [45] and developed fur-
ther by Cochran [11]. The most challenging issues
there, however, concern the choice of material for
synthesis.

Models suggesting or consistent with a data-
generating process provide some possible link with
a causal interpretation; see the further discussion
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below. While the term causal has a number of inter-
pretations, a very cautious usage tends to be favored
in statistical discussions, in particular that strong
evidence for causality can only come from the syn-
thesis of different kinds of data. Analysis that points
towards a potentially causal interpretation can, how-
ever, be valuable; this is one reason for the impor-
tance of chain graph representations (see Causation).

The preference for primary parameters that have
individual interpretations links to the previous point
and to the Fisherian notion that in analysis of
variance “treatment” sums of squares should if
possible be split into single degrees of freedom.

Detailed Techniques

Specific developments in methods of analysis are
described throughout this Encyclopedia. Among
some predominant themes in current research are the
following:

1. Nonlinearity is a widely occurring theme, as
in so many areas of modern mathematical sci-
ence. Nonlinear time series models provide one
important example;

2. Nonparametric regression and density estima-
tion have been intensively studied in their theo-
retical aspects. The main value in applications is
likely to be in the preliminary stages of analysis.

3. Semiparametric methods in which the primary
aspects of the model are represented by param-
eters, and such issues as distributional form
are left nonparametric, raise very interesting
theoretical issues. It is, of course, for consid-
eration in each case whether the greater com-
plication and loss of transparency involved as
compared with fully parametric formulations is
really justified.

4. Markov chain Monte Carlo methods provide a
powerful general tool for the fitting of relatively
complex models.

5. Computer simulation methods, cross-validation,
and the bootstrap, provide fairly general
methods of assessing precision without elabo-
rate theoretical analysis, although some under-
lying assumed simple structure is needed
(see Computer-intensive Methods).

6. Methods for addressing data imperfections, such
as missing data, including selective nonre-
sponse, and for the analysis of nonstandard sam-
pling schemes, are important in many fields.

7. Higher-order asymptotic theory [5] aims to pro-
vide a basis for choosing between procedures
equivalent to the first order of asymptotic the-
ory and of providing more refined distributional
approximations (see Large-sample Theory).

Interpretation

Design, analysis, and interpretation might suggest a
sequence in which narrowly statistical considerations
stop at analysis, for example ending with the esti-
mation of relevant parameters, whereas interpretation
involves essentially subject-matter considerations not
specifically statistical. While, of course, there is some
truth to this distinction, the emphasis on model for-
mulation, in particular some of the criteria listed
under Methods of Analysis, and the considerations
of the section on Probability, are aimed, in line with
current thinking, to break down that barrier.

For example, there has been increasing discussion
in statistical circles of the conditions under which
conclusions can be said to be causal; see, for exam-
ple, [23, 38] and [16], Section 8.7. The discussion is
prompted in part by developments in the computer
science and philosophical literature in which a weaker
definition of causality tends to be employed [33, 34,
40], much less cautious than the traditional statisti-
cal and epidemiological view summarized in Hill’s
criteria [22] (see Causation).

Closely connected with this are the issues of gen-
eralizability and specificity and the importance of
absence of interaction. For example, in the light of a
well-conducted randomized clinical trial showing evi-
dence of the superiority of treatment A over treatment
B, what is the basis for hoping that the conclusions
generalize to a new population of patients and what
is the basis for thinking that A rather than B will be
beneficial for a specific new patient? (See Validity
and Generalizability in Epidemiologic Studies.)

Decision Analysis

Wald [42], in effect continuing in the Neyman–Pear-
son tradition, proposed that all statistical problems
could be formulated as a choice between possi-
ble decisions (see Decision Theory). In Wald’s for-
mulation a utility (or loss) function was assumed
known but prior distributions enter only as tech-
nical devices to produce a complete class of decision
functions.
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The qualitative ideas that one should consider the
objectives of the study, the possible actions that might
be taken on the basis of the results and their potential
consequences are clearly important. In fields such as
sampling inspection and control theory, or where spe-
cific point forecasting is involved, a full specification
of utilities and prior distribution will yield the pre-
ferred solution, but for most purposes summarization
of evidence via the estimation of relevant parameters
seems a more suitable objective. Thus formulations
of clinical trials as decision making procedures, while
giving valuable qualitative insights, have not been
widely accepted as a realistic model of how trials are
used.

Formal Theories of Inference

Much discussion in the more theoretical literature
has for many years focused on the formal theory of
statistical inference, in particular on the meaning of
probability when used to assess the uncertainty in
conclusions. The issues are important partly in setting
the broad approach to specific problems and partly in
detail in developing particular methods of analysis
and interpretation.

There are many different approaches but, leaving
aside a pure decision-theoretical approach, they can
be broadly classified as

1. Pure likelihood [17].
2. Fisherian, putting emphasis on likelihood, suffi-

ciency, conditionality, ancillarity.
3. Neyman–Pearson, reaching many of the same

conclusions as 2 but emphasizing operational
criteria such as power.

4. A Bayesian approach based on standardized
impersonal priors [27], now often called refer-
ence priors [8, 7] (see Bayesian Methods).

5. An emphasis on personalistic (or subjective)
probability leading to a wholly Bayesian analy-
sis and rejecting the above approaches as inco-
herent, or at best as approximations to something
else [9].

This is a controversial area on which it seems
improbable (in any sense!) that unanimity will be
reached. There are, however, some signs of a fairly
broad agreement perhaps along the following eclectic
lines:

1. Many of the issues addressed in this article, and
of direct concern in applied statistical work, do
not depend critically on the choice of approach
to formal inference.

2. Likelihood, or some adaptation thereof, is of
key importance but typically needs calibration
into posterior intervals, confidence intervals or
whatever.

3. Probability, as representing idealized properties
of the real world, has to be distinguished
from probability as measuring a state of an
individual’s knowledge.

4. Problems with many similar parameters are
usually best formulated in empirical Bayes
form, powerful numerical methods now being
available for their solution.

5. Reference priors in a small number of
dimensions usually produce answers with good
properties also from the confidence interval
viewpoint.

6. It is necessary to have some notion that
one’s methods of analysis have good proper-
ties, or at least are not systematically mislead-
ing, when hypothetically they are used repeat-
edly.

7. To the extent that the previous notion is
formalized, some element of conditioning is
needed, although overconditioning must be
avoided, for example to escape the C.R. Rao
paradox of sampling theory [35].

8. The Bayesian formalism provides a valuable
representation of the merging of “prior” knowl-
edge with new knowledge from data under
analysis, although it does not deal adequately
with the possibility of conflict between the two
sources.

9. The Bayesian axioms of coherent personalistic
probabilities are a valuable guide to opinion
formation by individuals, but are not com-
pelling as a basis for public discussion, partly
because they put weight on internal consis-
tency rather than on consistency with the real
world.

10. While the importance of formal statistical sig-
nificance is commonly overstated, some such
notion, with a null hypothesis and alter-
natives (usually not formalized probabilisti-
cally), is needed partly to formalize an escape
route from an initial unsatisfactory formaliza-
tion.
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Statistics and Public Affairs

The primary emphasis in this article has been on
statistics in science and science-based technology.
The organization of government statistics varies
between countries with somewhat differing emphasis
placed on the one hand on the provision of
information and advice for direct use by government,
somewhat akin to the provision of such information
in a business context, and on the other hand on
the provision of information to society at large
and to social science research workers in particular.
For both purposes independence is crucial; in the
provision of advice one would hope for government
statisticians to be the firm voice of reason in
the face of political and economic dogmatism. In
the second role, collaboration between government
statisticians and social science research workers,
including statisticians, is important.

One important area of social policy concerns risk
assessment and management, i.e. especially as con-
cerns extremely small or maybe even nonexistent
risks. This has been discussed extensively by engi-
neers, toxicologists, epidemiologists, psychologists,
social anthropologists, sociologists, economists, and
political scientists [37], but surprisingly little has
appeared in the statistical literature. The role of
judgmental probabilities in such situations is cen-
tral.

The importance of appreciation by the general
public of central principles of the interpretation of
evidence shows itself in many aspects of material
appearing in newspapers and presented on radio or
television. For sample surveys, issues like the sam-
ple size, the sampling scheme, the response rate, and
limits of error, are probably reported rather more
often nowadays than in the past. Sensible interpreta-
tion of so-called league tables of the performance of
schools, hospitals, and the like [20] depends crucially
on a critical attitude to empirical data. The reporting,
sometimes rather sensationally, of the results of often
badly designed small medical studies is of particular
concern.

Conclusion

The years 1925–1960 can be regarded as a golden era
of statistical thought. For example, in terms of issues
of formal inference, the period embraces most of the

work of R.A. Fisher, of Neyman and E.S. Pearson,
and of Wald, the objectivist Bayesian contribu-
tions of Jeffreys and the personalistic approach of
F.P. Ramsey, de Finetti, and Savage. Aspects of
the design of experiments and sample surveys were
developed to a high pitch of elaboration; many of the
key ideas of time series analysis and multivariate
analysis were formulated. Statistical quality control
and randomized clinical trials were firmly established.

While further important developments took place
between 1960 and 1985, these years may best be
seen as primarily a period of consolidation. At the
beginning of that time most statisticians had access
to an electronic computer but obtaining useful results
could be a lengthy chore. By the end of the period all
the “standard” methods, and more, were fairly readily
available to a wide spectrum of users.

Encouraging features of the last 10 years or so
are that while a massive educational job remains,
the appreciation of statistical ideas is more widely
spread among research workers in many disciplines,
as shown by the relative sophistication of statistical
ideas in subject-matter journals, and by an increase in
the amount of substantial collaborative work involv-
ing statisticians, in contrast to short-term “consulting”
on very specific and often minor details.

Viewed over a rather longer period, there has
been a massive growth in the subject, as indicated
by the amount of work published per year, by the
introduction of new journals, by the number of
people employed and by the career prospects for new
graduates.

There is currently no shortage of interesting new
ideas and challenging problems, many stemming
from the relatively large sets of data now so common.
For individual research workers freedom to follow
one’s own judgment of topics likely to be important
and to which one is equipped to contribute is needed
and is under threat from the short-term policies of
many of the sources of financial support. Neverthe-
less, if statisticians as a group become increasingly
involved in important issues in science, technology,
and public affairs, if imaginative new ideas can be
encouraged, and if fragmentation of the subject can
be avoided, then the prospects for an important new
period of major development are strong.
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StatXact

StatXact is a specialized software package for the
exact analysis of small-sample categorical and non-
parametric data with special emphasis on data in
the form of contingency tables. The term “small-
sample” applies equally to datasets with only a few
observations, to large but unbalanced datasets, or to
contingency tables with zeros and small cell-counts
in some of the cells but large cell-counts in other
cells (see Structural and Sampling Zeros). In these
settings, StatXact produces exact P values and exact
confidence intervals instead of relying on possibly
unreliable large-sample theory for its inferences.
The inference is based on generating permutation dis-
tributions of the appropriate test statistics in a condi-
tional reference set (see Randomization Tests). For
a discussion of the theory underlying exact inference,
references to numerical algorithms that perform the
computations, and several examples involving the
analysis of biomedical data by StatXact, (see Exact
Inference for Categorical Data). Different reviews
of StatXact were published by Lynch, Landis and
Localio [2], Wass [5], and Oster [4].

The current version, StatXact-6, offers exact P

values for one, two, and K-sample problems, 2 × 2,
2 × c, and r × c contingency tables, and measures
of association. The data may be either unstratified
or stratified. Both independent and blocked samples
are accommodated. StatXact-6 computes the exact
confidence intervals of odds ratio in case of 2 × 2
and 2 × c contingency tables and exact confidence
interval of median shift in ordered 2 × c contin-
gency tables. StatXact-6 has inference procedures that
cater explicitly to binomial data, nominal categorical
data, ordered categorical data, ordered correlated
categorical data, continuous complete data, and con-
tinuous right-censored data. StatXact-5 also offers
analysis of data that follow Poisson distributions.
In case the computation of exact P value becomes
infeasible due to lack of time and memory, StatXact
produces exact P values with at least two decimal
digits accuracy using efficient Monte Carlo simula-
tion strategies. Changing the number of Monte Carlo
simulations can change the accuracy.

StatXact-6 also computes the exact unconditional
confidence interval for a difference or ratio of two
independent as well as related binomial proportions
and computes exact P values for tests of equivalence

and noninferiority of two binomial proportions (see
Proportions, Inferences, and Comparisons).

In addition to all the tests mentioned above,
StatXact-6 also provides exact power and sample
size calculations for different tests on 2 × 2 and
ordered 2 × c tables.

StatXact-6 runs on Microsoft Windows NT/2000/
XP as a stand-alone product. In addition, a special
version, StatXact PROCs for SAS users, is available
as external SAS procedures for both the Microsoft
Windows and Unix operating systems.

LogXact is a companion product to StatXact fea-
turing exact inference for binary data in the pres-
ence of covariates. An underlying logistic regression
model is assumed. Both exact and asymptotic infer-
ences are provided. The current version of LogXact-5
uses powerful Monte Carlo procedures that enable
fast exact inference for much larger data sets. LogX-
act handles matched case–control data under general
M:N matching, by conditional likelihood inference.
Asymptotic inference is based on maximizing the
unconditional likelihood function for unstratified data
and on maximizing the conditional likelihood func-
tion for stratified data see Maximum Likelihood;
Logistic Regression, Conditional). Exact inference
is based on generating the conditional distributions of
the sufficient statistics for the coefficients of inter-
est, nuisance parameters being eliminated by fixing
their respective sufficient statistics at the observed
values. For a detailed discussion of the theory under-
lying exact logistic regression, references to numer-
ical algorithms that perform the computations, and
several examples involving the analysis of biomedi-
cal data by LogXact, refer to [3].

LogXact also provides exact and asymptotic infer-
ence for Poisson regression. Reviews of LogXact
were published by Lemeshow [1] and Oster [4].

LogXact runs on Microsoft Windows NT/2000/XP
as a stand-alone product. In addition, a special ver-
sion, PROC-LogXact for SAS users, is available as
external SAS procedures for Microsoft Windows.
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Stereology

Stereology is the science of inference about three-
dimensional structures based on two-dimensional
sections or one-dimensional probes. The name was
coined at a meeting of scientists from various dis-
ciplines in 1961. This was the first recognition that
scattered results in geometrical probability could con-
stitute a coherent field of study.

The subject has important applications in min-
eralogy, petrology, and metallurgy. In medical and
biological research, microscope slides are thin slices
through specimens of material. They can give infor-
mation about the volume of different types of tissue
in the specimen, about the area of membranes, and
about the length of capillaries. An example of a lin-
ear probe is given by a microelectrode penetrating
nervous tissue. It allows inference about the size and
distribution of nerve cells and their cell membranes.

Inference is also possible about geometrical and
topological properties of structures in the specimen.
The curvatures of one- and two-dimensional objects
may be of interest. Connectivity between structures
is often important, and some progress is possible in
investigating these features.

Early Results

The first stereological result to be published was the
“Delesse Principle”, in 1849 [17]. It states that the
proportion of area occupied by a particular substance
or “phase” in a random section of a specimen is an
unbiased estimate of the proportion of volume of that
phase in the specimen.

“Buffon’s needle” gives the mean number of inter-
sections between two systems of lines in a plane.
The result dates from 1733, but was not published
until 1777 [2]. Barbier [1], in 1860, gave the three-
dimensional extension of the problem. It makes it
possible to estimate the length of linear systems from
counts of their intersections with a section.

The theory of geometrical probability was first
seriously investigated by Crofton. In 1869, his first
paper on the subject appeared [7], and his Encyclo-
pedia Britannica article in 1885 [8] summarizes the
theory.

In 1925, Wicksell [46] published a paper on the
“corpuscle problem”, discussing how to estimate the

size distribution of spherical particles from their cir-
cular intersections with a plane. In 1926 [47], he
investigated the much more difficult problem of ellip-
soidal objects. These were the first statistical papers
in the field of stereology, and they were followed by
a number of related studies; see [23].

Sampling

If the aim of a study is to estimate the volume
fractions of different phases in an object, the sampling
problem is straightforward. Parallel section may be
selected by any of the standard sampling procedures;
see [4]. Usually, systematic sampling is preferred.
Estimates of the volume ratio can then be made
from each section, and combined, either by weighting
according to the area of the section of the object, or
by subsampling proportionally to this area.

Other stereological formulae, however, depend on
the orientation of the section. For them to be valid,
the section must be random in direction, as well as
in position. Isotropic sampling of biological speci-
mens for microscope slides is virtually impossible.
In petrology, it may be an option if sufficiently large
specimens are available, and isotropic linear sampling
may be feasible. Otherwise, no statistical analysis is
possible except on slides from different specimens
unless it is assumed that the specimen is isotropic –
generally highly implausibly for biological material.

For discussions of the sampling problem, see [13,
14, 28, 29], and [30]. The two basic types of sample
that give unbiased estimates are isotropic uniform
random and area weighted.

For discussions of the errors that can arise from
misuse of statistics in the stereological analysis of
biological material, see [34] and [43].

Fundamental Formulae of Stereology

The basic results of stereology can be expressed
in terms of ratios. In the original three-dimensional
specimen, interest may center on the volume of a par-
ticular phase, the area of an interface or membrane,
the length of some linear feature, or the number of
particles; these can all be expressed per unit volume.
They are estimated from measurements of area, or
length, or from counts on sections or linear probes,
expressed per unit area, or per unit length.
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A standard notation is used for these formulae.
The subscripts V , A, and L refer to the divisor in
the specimen, in sections, and in probes, respectively.
The letters V , A, L, and N refer to volume, area,
length, and count. Thus, AV means the area of some
feature per unit volume in the original specimen.

One other concept is required; H is the mean
caliper length of a set of particles. This is defined as
the mean projected length of the particles on a line
normal to the section. If the sections are isotropic, or
if the particles are spherical or randomly orientated,
the value of H is taken to be the same for all sections.

Table 1 shows the fundamental formulae. The first
line shows the Delesse principle, relating the volume
ratio, the area ratio, and the length ratio. These results
do not depend on isotropic sampling or structures.
The second line shows estimates of area per unit vol-
ume; note that the relationship between the two esti-
mates corresponds to the ordinary two-dimensional
Buffon’s needle. The third line gives the estimate,
from a section, of the length per unit volume of some
linear feature of the specimen. The fourth line is a
possible way of estimating the number of particles or
cells; it depends on a knowledge, or a separate esti-
mate, of mean caliper length. This traditional estimate
is not necessarily the best; for a discussion of it and
other approaches, see [12].

Curvature

Given an interface I between two phases, there are
various measures of average curvature of the surface;
see [31]. At the center of an element dS, the principal
curvatures κ1, κ2 are defined as the reciprocals of the
minimum and maximum radii of curvature (which are
orthogonal). The radii and the curvatures are signed;
they are usually taken to be positive for elements that
are convex toward the bounding phase. The integral

Table 1 Fundamental formulae of stereology

Specimen Section Probe

VV AA (Delesse) LL

AV

4

π
LA 2NL (Buffon)

LV 2NA (Barbier)

NV

1

H
NA

of mean curvature is defined as

K =
∫

I

1

2
(κ1 + κ2) dS (1)

If the surface I is imbedded in a volume V , a
possible measure of average curvature is KV = K/V .
DeHoff [15] (see also [6]) introduced a method of
estimating KV for a phase boundary from sections.
This is based on the area tangent count. Given an area
A, a section of an isotropic uniform specimen with
a phase bounded by I , choose a fixed direction. As
a line with this direction is moved across the area, it
is sometimes tangential to the boundary. The tangent
count is divided into two parts. T+ is the number
of times the line is tangential to a convex element of
the interface, T− the corresponding count for concave
elements (see Figure 1). Now define

TAnet = T+ − T−
A

. (2)

DeHoff has shown [16] that

K̂V = πTAnet (3)

is a consistent measure of the integral mean curvature
per unit volume.

The Spherical Particle Problem

The problem first studied by Wicksell [46] is that of
estimating the distribution of the radii of spherical
particles from the observed distribution of the radii
of the circular sections in a random section. Suppose
the sphere radii have density function f (r), with
moments µ′

k , and the radii of the sections have
density g(x), with moments ν ′

k . The density of the
radii of spheres cut by a random plane has the form

rf (r)
∫ Rm

0 rf (r) dr
= rf (r)

µ′
1

(4)

where Rm is the maximum value of r . The conditional
density of x is given by

g(x|r = R) = x

R(R2 − x2)1/2
(5)

and finally

g(x) = x

µ′
1

∫ Rm

x

f (r)

(r2 − x2)1/2
dr. (6)



Stereology 3

= ×

= ×
−×

−= m = m = ×

−×

×

T+ = 47; T− = 13

A

TA+

TA−

A

Test line

Figure 1 Procedure for measuring the net area tangent count (From DeHoff [15])

This is known as Wicksell’s integral equation. The
values of x are observed, and the problem is the
estimation of f (r). There are two difficulties with
the solution. First, small values of r are underrepre-
sented, and in theory, there might be large numbers
of particles so small that they almost never appear
in sections. This is not a real difficulty in biological
applications, as extremely small cells or similar struc-
tures are not viable. Secondly, if the spheres are all
virtually the same size, the solution may not give a
density, as the variance of x may be lower than that
arising from a homogeneous population of spheres.

Wicksell [46] himself suggested the following two
approaches:

1. The moments of r and x are related by the
equations

µ′
k+1 = 1

hk

µ′
1ν

′
k k ≥ −1, (7)

where

hk = 1

2
B

(
k + 2

2
,

1

2

)
. (8)

These equations are valid for k = 0 and k = −1,
with ν ′

0 = 1 and 1/ν ′
−1 the harmonic mean of the

section radii, so that µ′
1 = (π/2)/ν ′

−1. It is then
possible to estimate the moments of the sphere
radii, and approximate the density by fitting a
member of some family of curves, such as the
Pearson family (see Pearson Distributions).
This method is not satisfactory because of the
problem of very small values of x. These may
often be missed, and their influence on the har-
monic mean is large.

2. Wicksell [46] also suggested a nonparamet-
ric approach, based on an approximate numer-
ical solution of the integral equation. Suppose
the observed data – the x values – are grouped
in a histogram (see Frequency Distribution),
and suppose Rm, the maximum radius of the
spheres, is known or assumed. Then it is easy
to calculate the probability that a value of r

in a short range gives rise to a value of x in
each cell of the histogram. This gives a set
of linear equations relating the probabilities of
the cells in a histogram of r values to the
observed frequencies in the histogram of xs.
Solving these equations, described as “unfold-
ing” the observed histogram, gives an estimated
histogram for r .
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This method works well, provided the histogram
intervals are well chosen and the underlying
distributions are well behaved. There is no guar-
antee that the estimated probabilities will be
positive; a gap in the distribution of r may give
small negative estimates. A number of authors
have used this numerical procedure modified in
various ways; see [44]. For details of the numer-
ical procedure, see [10].

Particles of Other Shapes

Wicksell [47] also studied the problem of estimat-
ing the distribution of the properties of a population
of general ellipsoidal particles from a section show-
ing elliptical sections. This is much more difficult;
there are obviously problems of identifiability. The
general problem is that of inference about the joint
distribution of three variables (the three axes of the
ellipsoids) from the joint distribution of two. Fur-
ther assumptions are needed. These depend on the
material examined, and the solutions are mathemati-
cally quite difficult. Cruz-Orive [9, 11] has solved the
problem for spheroids. He shows how to estimate the
distribution of measurements on particles assumed to
be oblate spheroids, or prolate spheroids, and shows
that there is no way, from the distribution of the prop-
erties of elliptical sections, of discriminating between
the two cases.

Other particle shapes have been investigated.
Nicholson [32] gives a general mathematical
discussion, and illustrates, in particular, the possible
sections of cylindrical particles. Sections of polyhedra
are important in crystallography, but probably not
in biological applications. Coleman [5] deals with
sections of two-phase particles, such as cells with
nuclei.

Effects of Section Thickness

Sections are usually thin slices. If a specimen has two
phases, one opaque and one translucent, and a slide
is examined by transmitted light, the finite thickness
of the slice can cause bias in standard stereological
estimates. The interface is not, in general, normal to
the section, and the area ratio of the opaque phase is
an overestimate of the volume ratio. This bias was
first recognized by Holmes [21], and is known as the
Holmes effect.

The appropriate correction in the isotropic case
was given by Cahn and Nutting [3]. For a section of
thickness t , the adjusted estimate is given by

V̂V = AA − 1

4
AV t, (9)

where AV is the volume fraction of the interface.
This, of course, is not observable, and must be esti-
mated from

ÂV = 4πLA, (10)

where LA is the area fraction of the interface in the
section. This gives, finally,

V̂V = 1

π
LAt. (11)

This is not an unbiased estimate, since the Holmes
effect also implies that LA is reduced in sections
of finite thickness, but for thin sections the effect
is small. If the assumption of isotropy is false, the
adjustment can be seriously misleading; see [45] for
a discussion of the anisotropic case, with application
to the structure of trabecular bone.

Finite section thickness also affects the estimation
of particle size distributions. For spherical particles,
Wicksell’s integral (6) becomes

g(x) = tf (r)

µ′
1 + t

+ x

µ1 + t ′

∫ Rm

x

f (r)

(r2 − x2)1/2
dr.

(12)

The solution to this equation, with the further mod-
ification of a truncation point – a minimum observ-
able section radius – is discussed by Coleman [6];
see also [40] and [22].

Tessellations

A tessellation is a subdivision of p dimensions into
closed subsets, divided by edges of dimension p − 1.
In stereology, we are concerned with tessellations of
R3, and tessellations in R2 produced by sectioning
them.

The Dirichlet tessellation of a point process sub-
divides the space into those sets nearest to each point
of the process. This gives convex polyhedra in R3, or
convex polygons in R2. (These are sometimes known
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as Voronoi polygons or polyhedra). The particular
case when the underlying point process is Poisson
(see Poisson Processes) has been widely studied
under the name of the cell model. “Seed” are ran-
domly scattered, and grow at the same rate until the
circles or spheres meet, and eventually fill the com-
plete space. The model has been used in studies of
crystal growth, and in various ecological applications,
such as ground cover by plants, and territories of ani-
mals.

Figure 2 A two-dimensional cell model (the Dirichlet
tessellation of a Poisson process). The points show the
seeds. From Okabe et al. [33]

Figure 3 A two-dimensional section of a three-dimen-
sional cell model. From Lorz [24]

The two-dimensional cell model consists of con-
vex polygons, with an average of six edges. (This
applies to all Dirichlet tessellations of random pro-
cesses; it is simply a consequence of the fact that
three or more boundaries meet in a point with zero
probability). A two-dimensional section of the three-
dimensional cell model has similar properties. In fact,
Miles [29] has shown that it is a Dirichlet tessella-
tion of a point process, but not of a Poisson process
of constant intensity. The main visual difference is
that the section has more cells much smaller than
the average. Figures 2 and 3 show an example of a
two-dimensional cell model, and of a section of a
three-dimensional cell model. Table 2 lists some of
the more important properties of the models. Notice
that the number of vertices and the perimeter, in terms
of µ, both show higher variance for the section than
for the two-dimensional model.

Another model proposed for crystal growth, the
Johnson–Mehl model, has seeds generated by a Pois-
son process in space and time, which then grow at
a constant rate. The resulting tessellation has edges
that are quadratic curves or surfaces. The cells are not
convex, but have the property that all lines through
the seed cut the surface twice only. Sections of this
model are difficult to interpret, since a single cell may

Table 2 Some properties of the cell model in R2 and
R3, and of two-dimensional sections of the R3 model. The
intensity of the Poisson process of seeds is represented by
λ, and the intensity of centroids in the section by µ. Entries
with an asterisk were obtained by Monte Carlo simulation

Cell model in R2

Vertices/cell E(N) 6
E(N2) 37.781

Perimeter/cell E(P ) 4λ1/2

E(P 2) 16.945λ−1

Cell model in R3

Vertices/cell E(M) 27.071
Edges/cell E(E) 40.606
Faces/cell E(F) 15.535

Cell model in R3; 2-D section

Intensity of
centroids

1.458λ2/3 µ

Edges/cell E(N) 6
E(N2) 38.827∗

Perimeter/cell E(P ) 3.136λ−1/3 3.79µ−1/2

E(P 2) 11.308λ−2/3 16.49µ−1∗
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be represented by more than one area in the section.
Properties have been studied mainly by simulation.

Early work on these models [19, 26] established
the main properties, and Miles [27, 29] derived fur-
ther results. Many variations are possible, by chang-
ing the underlying process, the definition of distance,
or the rate of growth. For details, see [33].

Mathematical Morphology

Mathematical morphology was developed for the
study of properties of three-dimensional structures
from sections, particularly in the context of petrol-
ogy and the porosity of rocks; see [25]. Properties of
interest (porosity, the strength of bones, the healthi-
ness of lungs) may not depend in a simple way on
the standard stereological measurements, such as the
area ratio. More complicated measurements on the
sections might be used; an alternative is to apply
transformations to the image, and investigate the rela-
tionships between the properties and measurements
on the transformed images.

An image is represented by a pixel map on a
regular lattice. The work of Matheron [25] and Serra
[38] is based on a hexagonal lattice, but computer
graphics is more often referred to a square lattice.
Each pixel has an associated value z. For a black and
white image, z is binary. The original theory was
concerned with binary images; later work extends it
to grey-level images.

Consider a binary image in which black objects
(z = 1) appear on a white background (z = 0). There
are now two basic operations in the calculus:
Erosion consists in peeling a layer, one or more pixels
deep, off each object.
Dilatation adds a layer of one or more pixels to each
object.

These operations may be combined:
Opening is erosion followed by dilatation.
Closure is dilatation followed by erosion.

Notice that changing the coding, so that white
objects (z = 1) lie on a dark background (z = 0) sim-
ply interchanges erosion and dilatation, and opening
and closure.

Opening has no effect on large, regular objects;
dilatation simply restores the layer removed by ero-
sion. Small and thin objects, and small irregularities
on the surface of larger objects, are removed by ero-
sion and not restored by dilatation. Opening thus
gives a “smoothed” image, with a lower area ratio
than the original. Closure operates in the same way
on background irregularities, and gives an image with
higher area ratio. Note, however, that edge effects
must be considered separately.

A more formal treatment, allowing generalizations
and extensions to the simple operations, was given by
Serra [38, 39]. Denote by X the lattice with elements
x, by A the object defined by Z(x) = 1, and sup-
pose B is a structuring element. B is typically an
approximation to a disk, defined on the lattice. On
a triangular lattice, B may be hexagonal, the small-
est structuring element consisting of a central point
and six surrounding points. On a square lattice, it
is less easy to approximate circular disks with small
pixel patterns; the smallest suitable structuring ele-
ments are a point with its four nearest neighbors,
or a nine-point square. The structuring element has
an origin, the central point in these simple exam-
ples.

Table 3, from [37], shows the basic operations
defined in terms of the structuring element B.

Minkowski addition gives a score of 1 whenever
a point of A scores 1, or when a point not in A is
covered by B with its origin on a point of A.

The reflection of B in the origin is B̌; for the
simple structures described above, B̌ = B.

Dilatation and erosion are defined in terms of
the structuring element; different structuring elements
give different interpretations to the idea of adding or
peeling off a layer.

Table 3 Basic operations of Serra’s set calculus

Minkowski addition A ⊕ B = {x + y |x ∈ A, y ∈ B} = ∪y∈B(A + y)

Reflection B̌ = {−x |x ∈ B}
Subtraction A � B = (Ac ⊕ B)c = {x |(x − B) ⊂ A}
Dilatation of A by B AB = A ⊕ B̌ = {x |(B + x ) ∩ A}
Erosion of A by B AB = A � B̌ = {x |(B + x ) ⊂ A}
Opening of A by B AωB = (A � B̌) ⊕ B = ∪{B + x |(B + x ) ⊂ A}
Closure of A by B Af B = (A ⊕ B̌) � B = ∩{B + x |(B + x ) ∩ A 
= ∅}
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Opening and closure are erosion followed by
dilatation, and dilatation followed by erosion respec-
tively, as discussed above.

The extension of the set calculus to grey-level
images is straightforward. An image in R2 can be
represented by a three-dimensional plot in which the
axis normal to the plane of the image indicates the
grey level. This plot is known as the umbra. A
structuring element B is defined as before in the
plane, and its origin is moved to each pixel of the
image. Erosion then reduces the grey level at the
origin to the minimum level in any point of the
image covered by B, and dilatation raises it to the
maximum. Opening and closure are defined as before.
Both effect a smoothing of the image, the former by
flattening the peaks and the latter by filling in the
troughs in the umbra.

Figure 4 illustrates, in section, the opening and
closure of a grey-level function.

This section covers only the most basic functions
of mathematical morphology. For further details,
see [38] and [39]. Many of the extensions are of
more importance in the field of pattern recognition
than in the analysis of two-dimensional sections or
projections.

Computation and Software

Devices for taking measurements on two-dimensional
images have been available since the 1960s. The
Quantimet was the earliest practical instrument; it
could scan black and white images, record the areas
of the two phases, and, using the principle of Buffon’s
needle, measure the length of an irregular curve. It
was first described in 1963, and became commer-
cially available in 1967. For details about the early
developments, see [43], Chapter 7. For a more recent

fB
f

f B

f
f

f−fB

t t t

x x x
(a) (b) (c)

Figure 4 Grey-level morphology. (a) and (b) show respec-
tively the opening and closure of a function by a compact
convex set. (c) shows the difference between the function
and its opening – the peaks smoothed off by opening. (From
Serra [38])

account of image processing software, see [36] (see
Image Analysis and Tomography).

Software for image processing is available, and
is being developed and elaborated all the time.
SCILAIM is a package developed by a group in Ams-
terdam; see [20]. The KHOROS system contains a
large number of algorithms for image processing. The
TargetJr software was initiated in the General Electric
Corporate Research and Development department. It
was originally designed primarily for photointerpreta-
tion and X-ray image analysis. Image Understanding
Environment (IUE) is a project started in the United
States in 1989 and still under development there and
in Europe.

Bibliography

A number of books have been written on stereology;
unfortunately, many are out of print or difficult to
obtain. They include [6, 10, 18, 35, 41, 42, 44]. The
Buffon Bicentenary meeting was influential in bring-
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There have been regular congresses on stereol-
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ferences on Stereology and Stochastic Geometry were
held in 1981, 1983, 1985, and 1987. Papers presented
at these meetings are often published in the Journal
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Image analysis and mathematical morphology is
an ever-growing subject. Serra [38] gives the basic
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Stimulus–Response
Studies

Introduction

Exposure of individuals to environmental stress, such
as heat or noise, can be damaging to health. A
psychologist wishing to investigate the effect of heat
on concentration, for example, might give a number
of human subjects a recognition task, which proceeds
as follows:

At each of a number of trials, the subjects are
either presented with a signal or not, where the signal
could, for example, be a light flashing on a screen. In
cool conditions, each subject records his/her impres-
sion of whether the signal was present or not, and
the experiment is then repeated in heat. A “hit” cor-
responds to a positive response to a signal, while a
“false alarm” results from a positive response when
no signal is present. For each subject, the overall
responses to the experiment may be summarized by
the proportions of hits and of false alarms recorded,
for each of the two conditions.

A simple probability model for the behavior of
the subject in such a stimulus–response situation is
to suppose that the stimulus induces a latent random
variable, X, from one of two distributions (see Latent
Class Analysis). If the signal was present, then X is
supposed to be a random variable with cumulative
distribution function FP (x), and if the signal was
absent, then X is supposed to be a random variable
with the cumulative distribution function FA(x). The
subject’s response is then governed by the value of
the latent variable; the subject’s response is positive
(the signal was present) if and only if X > c, where
c is some cut-off value determined by the subject’s
natural level of performance. In this case, we can see
that the probabilities of a hit and of a false alarm are
given as

Pr(Hit) = 1 − FP (c); Pr(False alarm) = 1 − FA(c).

(1)

It is usual to assume that FP (x) = F(x − d ′), and
FA(x) = F(x), for some cumulative distribution F(),
which is the case illustrated in Figure 1. Typically,
a normal or logistic form is adopted for F().
The value of c varies between subjects, and may

also be manipulated artificially by means of suit-
able reward schemes. Changing c, but without vary-
ing d ′, produces different points on the receiver
operating characteristic (ROC) curve illustrated in
Figure 2.

The transformation of hit and false alarm rates
into a single measure d ′, to represent the separation
of the signal from noise (when no signal was present)
is very attractive, and the tables of Freeman [8],
providing estimates of d ′ from empirical proportions
of hits and false alarms, have proved very popular.
Thus, for example, the effect of heat on performance
may be examined by comparing two ROC curves, or
equivalently, the two corresponding estimates of d ′.
A latent bivariate normal model was proposed by
Metz et al. [16], for the case when the same subjects
are used in both conditions, and De Long et al. [5]
use the theory of generalized U -statistics to provide
a nonparametric approach for comparing correlated
ROC curves.

Designed originally for engineering problems,
ROC curve methodology now has wide application,
not just in psychology, but also in areas such as
medicine and ecology; see [10]. An introduction is
given by McNicol [15], and reviews are provided
in [1, 12, 21, 23].

d ′ xc

Figure 1 The basic model for the Yes–No signal-detection
experiment. A subject responds “Yes” if and only if the
latent variable X > c. The latent variable has cumulative
distribution function F(x) when only noise is presented
(probability density function shown by ) and cumu-
lative distribution function F(x − d ′) when signal is present
(probability density function shown by - - - - )
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Figure 2 The ROC curve that results from varying c in
Figure 1

Extensions

The simple experimental paradigm and model des-
cribed above may be varied in various ways. In a
forced-choice experiment [15, 8], a subject is told
that on one of two trials a signal is present, and
the task is to decide which of the trials contained
the signal. A rating-method experiment is a natural
extension of the basic stimulus–response experiment,
allowing a subject to express a degree of uncertainty,
rather than simply stating “Yes” or “No”. The model
for this experiment simply extends that of Figure 1,
by increasing the number of cut-offs. For example, if
there are two cut-offs, c, and c2, then if c1 ≤ X < c2,
the response “maybe” would result. Maximum likeli-
hood model-fitting for the rating-method experiment
is described in [11]. For the case of two or more cut-
offs, the two underlying distributions are not required
to have equal variances, though typically, the same
distributional form would be assumed. The two cut-
off example is then saturated, and explicit maximum
likelihood estimates result for the full set of parame-
ters (including the cut-offs).

This model is generally useful for contingency
tables with ordered categories ([14]) and also for
quantal response models with intermediate cate-
gories of response, such as when embryos, say, are
classified as deformed, as well as dead or alive;

see [17]. Usually, the cut-off values are regarded as
nuisance parameters, but in some cases, they are
also of interest; see [4]. If the underlying distribu-
tion is logistic, we have a proportional-odds model,
while if it is extreme value, we obtain a propor-
tional hazards model; see also [18].

Applications

Applications to diagnostic medicine (see Diagnostic
Tests, Evaluation of) use the terms “specificity”, for
1− Pr(False alarm), and “sensitivity”, for Pr(Hit).
The latent variable of engineering and psychology
applications is explicit when it plays the role of
a disease indicator, which may be measured. Mur-
taugh [19] investigated ROC curve methodology for
the case when several such markers are measured on
each subject. Such data may alternatively be mea-
sured through space, rather than time, and this typi-
cally occurs in ecological monitoring studies.

The area, A, under the ROC curve is used as a
measure of accuracy of a diagnostic test, for example,
in radiology [1], and of discrimination in discrimi-
nant analysis. The Gini coefficient is defined as 2(A-
1/2). A shrinkage correction for both A and the ROC
curve is given in [3]; see also [7]. The nonparametric
area estimator of [13] is equivalent to a Wilcoxon test
for comparing diseased and normal subjects; how-
ever, this assumes exact diagnosis. When diagnosis
is imperfect, it is necessary to examine the effect of
verification bias. This was done by Gray, Begg, and
Greeves [9] in the case of a maximum likelihood esti-
mator of area; Zhou [22], obtained a nonparametric
maximum likelihood estimate after formulating the
problem in the framework of missing data, and mak-
ing the missing-at-random assumption.

If X and Y denote the ranks of two observations,
one from each of two independent populations, it
is frequently important to evaluate Pr(X < Y) and
Pr(X < Y) − Pr(Y < X); see [6, 20]. Brownie [2]
showed how ROC analysis may be used in this
context.
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Stochastic Approximation

In the mathematical sciences, iterative methods to
find roots of equations have a long and honored
history dating back, of course, to Sir Isaac New-
ton (see Optimization and Nonlinear Equations).
Stochastic approximation, which is concerned with
the same problem when these roots are observable in
the presence of statistical variation, has been avail-
able for less than half a century. The seminal paper by
Robbins & Monro [26] appeared in 1951. Applica-
tions of stochastic approximation have been primarily
in the areas of adaptive control, statistical simula-
tion and sequential estimation. Biomedical areas that
have used stochastic approximation include quantal
response, evolution and survival analysis.

Sampson [29] provides an excellent overview of
stochastic approximation from a statistical viewpoint.

Theoretical Development and Overview

Suppose an experimenter is concerned with obtaining
the (unique) root of M(x); that is, the value θ

such that M(θ) = m0. However, M(x), a real-valued,
differentiable function of x, is not directly observable.
What one does observe is a random variable Y (x)

with cumulative distribution function (cdf) F(y|x),
where the expected value of Y (x) is M(x). That is,

E(Y |x) =
∫ ∞

−∞
y(x) dF(y|x) = M(x) < ∞, (1)

for all x. The principal idea is to determine the value
of θ by successive approximation.

To this end, suppose {Xn}, n ≥ 1 is a sequence of
random variables wherein X1 is selected arbitrarily
and, upon its selection, the succeeding values are
defined by

Xn+1 = Xn − an[Y (Xn) − m0], (2)

where {nan} is a sequence of bounded, positive con-
stants. Robbins & Munro [26] proved that Xn con-
verges to θ , stochastically, (Xn

p→ θ) as n → ∞
provided the following conditions hold:

1. there exists a θ , such that M(θ) = m0,
2. Y (x) is uniformly bounded for all x, almost

surely,

3. var X1 < ∞,
and
4. M(x) is nondecreasing and M ′(θ) > 0.

Since the original development by Robbins &
Munro [26], there has been a myriad of refinements,
improvements and significant advances in stochastic
approximation. While not an all-inclusive list, the fol-
lowing synopsis provides some of the more important
results that have accrued since 1952.

1. Wolfowitz [35] shows that condition 2 can be
replaced with the weaker conditions that M(x) is
uniformly bounded for all x as is E[Y − M(x)]2.
He also gives conditions under which condition 4
can be relaxed.

2. Kiefer & Wolfowitz [18], using ideas of both
Robbins & Munro [26] and Wolfowitz [35], ob-
tain a stochastic approximation procedure for
finding the maximum of a regression function.

3. In 1954, Blum [1] is able to weaken, further,
conditions that were considered in [18] and [35].
He also solves a similar problem when M(x)

is the median rather than the mean of the cdf
F(y|x). Further, Kallianpur [16] obtains an esti-
mate of the order of magnitude of the nth itera-
tion xn in terms of E(xn − θ)2. Finally, Blum [2]
considers multivariate stochastic approximation
procedures.

4. Subsequently, Dvoretzky [7] develops a more
general stochastic approximation scheme that
includes both the Robbins–Munro and Kiefer–
Wolfowitz procedures as special cases. Blum [1]
also obtains a generalized version of the Rob-
bins–Monro process that is related to the Dvoret-
zky procedure.

5. Issues, such as stopping rules, constrained opti-
mization, and asymptotic normality, have been
considered by several authors. Further infor-
mation, including relevant references, can be
obtained in [29].

Applications

Stochastic approximation has been used, to some
extent, in the biomedical sciences. In particular, neu-
ral network research has been the focus of many of
these applications.

Table 1 provides a selection of some of
the biomedical studies that have used stochastic
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Table 1 Application of the stochastic approximation method in biomedical sciences

Study area Application References

Population biology Pharmacokinetics [21]
Genetic mutation rates [17]
Genetics [24]
Population ecologies [31]
Evolution of reproduction efforts [25]

Epidemiology Disease monitoring [19]
HIV [32] and [33]
Illness–death [4]
Survival analysis [30]
Maximum likelihood estimation [5]

Forestry Regression estimation [20]
Forest fire protection [9] and [10]

Fisheries Management [3] and [27]

Environmental Water management–pollution [15]

Biology Electrophysiology [6]
Myocardial contraction [12]
50% dosing and other drug dosing [28]

Psychology Memory, learning [14]
Learning, pattern recognition [23]
Psychophysical measurement– [34]

threshold determination

Neural networks Numerous studies [8, 11, 13], and [22]

approximation. Table 1 is, of course, not an all-
inclusive list. However, it does indicate that
stochastic approximation has been a useful technique,
especially in neural network research.
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Stochastic Limit and
Order Relations

The O and o notation for nonstochastic functions and
sequences (see Orders of Magnitude) can be gen-
eralized to stochastic random variables, leading to
the Op and op notation. The stochastic order rela-
tions were derived originally by Mann & Wald [2],
and discussed by Chernoff [1] and Pratt [3].

Assume that {Xn} is a sequence of random vari-
ables on the extended real line [−∞, ∞], with prob-
ability distribution {Pn}. Let an denote a sequence of
points on [−∞, ∞].

Definition 1. We write Xn = op(an) if, for every
η > 0,

Pn

{∣∣∣∣
Xn

an

∣∣∣∣ ≤ η

}
→ 1 as n → ∞.

That is, the sequence {|Xn/an|} approaches zero
in probability. Note that Xn = op(1) is also written:

Xn

p−−−→ 0.

Definition 1 is equivalent to Definition 1′ as fol-
lows.

Definition 1′. Xn = op(an) if, for every positive ε

and η, there exists an N such that

Pn

{∣∣∣∣
Xn

an

∣∣∣∣ ≤ η

}
≥ 1 − ε, for n > N.

Definition 1′ has a suitable analog for the Op notation
as follows.

Definition 2. We write Xn = Op(an) if, for every
positive ε, there exist N and η > 0 such that

Pn

{∣∣∣∣
Xn

an

∣∣∣∣ ≤ η

}
≥ 1 − ε, for n > N.

That is, the sequence {Xn/an} is bounded in prob-
ability.

The following theorems, derived by Pratt [3], are
useful in derivations of large sample theory and rate
of convergence for approximations.

Theorem. If Yn − Zn = op(1), Zn = Op(1), and g

is a continuous function, then g(Yn) − g(Zn) =
op(1).

Theorem. If Yn − Y = op(1) and Zn − Z = op(1),
and f (y, z) is jointly continuous, then f (Yn, Zn) −
f (Y, Z) = op(1).

Example: Normal Approximation for the Binomial
Distribution

Assume that X ∼ Bin(n, π) is a binomial random
variable with index n and probability π . Then all
cumulants of X (see Characteristic Function) are
O(n) and

X − nπ

[nπ(1 − π)]1/2
∼ N(0, 1) + Op(n−1/2).
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Stochastic Processes

Time, life, and risks are three basic elements in
empirical processes studied in biostatistical research.
Risks of birth, risks of illness, risks of death, and
other risks continuously act on human beings with
varying degrees of intensity and varying degrees of
frequency. Recent advances in stochastic processes
have made it possible to study systematically these
risks in the human population from a probabilistic
point of view. Many have contributed to the the-
oretical development of stochastic processes to the
high level of sophistication they enjoy today. Among
them we mention Markov, Kolmogorov [22, 23],
Feller [17], Doob [13, 14], and Chung [12]. The pur-
pose of this article is to review various processes
which have applications in biostatistical and epi-
demiologic research. Solutions are given for most
problems described here, but theoretical justifications
may not always be adequate. For the reader who will
not take a formula or a theorem at face value without
a formal proof, further references are given.

The order of presentation in this article is from
discrete processes to continuous processes. The major
form of discrete process is the Markov chain. In
continuous processes, we proceed from a general
birth process through the birth–death processes to
the finite Markov process. A few special topics
of interest are discussed in the sections between
these on the birth processes and the birth–death
processes. We end this brief introduction with a
definition:

A stochastic process {X(t); t ∈ [0 , ∞)} is a family
of random variables describing an empirical process,
whose development is governed by probability laws.
The parameter t , which is often interpreted as time,
is real-valued, but it may be either discrete or con-
tinuous. The random variable X(t) may be real- or
complex-valued, or it may take the form of a vector.
In diffusion processes, for example, both t and X(t)

are continuous variables, whereas in Markov chains,
t and X(t) take on discrete values. In the processes of
population growth, time t is a continuous parameter,
but the random variable X(t), the population size at
time t , has a discrete set of positive integers.

In some stochastic processes the one-dimensional
time parameter is replaced by a multidimensional
parameter, such as the coordinates of a point in mul-
tidimensional space. These are called random fields.

A simple example would be a process describing
the random fluctuations in some variable observed
at points on a two-dimensional surface. The term
may be applied also to more complex generalizations
(see [1]).

Random Walk

The one-dimensional random walk is an extension
of Bernoulli trials (see Binary Data). It is closely
related to branching processes and to gambler’s
ruin in probability theory (see, for example, [27]
and [17]), to Brownian motion and diffusion pro-
cesses, to sequential analysis [28], and to sequential
clinical trials [2] (see Data and Safety Monitoring).
It is presented here as a prelude to the discrete-time
Markov chains.

Position of Particle

In a one-dimensional random walk of a particle
starting from the origin, the position of the particle
is designated by ±1, ±2, . . .. Let Xi be the outcome
of the ith move, with Pr{Xi = +1} = p and Pr{Xi =
−1} = q, where p + q = 1. The expectation of Xi is
E[Xi] = p − q, and the variance of Xi is var(Xi) =
4pq. The probability generating function of Xi is

gi(s) = ps + qs−1.

Let Zn = X1 + · · · + Xn be the position of the
particle after n moves. We need the probability
Pr{Zn = k}. The probability generating function of
Zn is

GZn
(s) = [ps + qs−1]n = s−n[ps2 + q]n

=
n∑

i=0

(
n

i

)
piqn−i s2i−n.

Substituting k = 2i − n so that i = (n + k)/2,
we find

Pr{Zn = k} =
(

n
n + k

2

)
p(n+k)/2q(n−k)/2,

with expectation E(Zn) = n(p − q) and variance
var(Zn) = 4npq. The values that Zn assumes may
be odd numbers or even numbers depending on
whether n is odd or even. When n is an odd num-
ber, the probability that Zn will assume even values
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is zero. When n is an even number, the probability
that Zn will take on odd values is zero. For Zn to
assume a value k, the particle must take (n + k)/2
steps to the right and (n − k)/2 steps to the left so
that [(n + k)/2 − (n − k)/2] = k is the net displace-
ment to the right of the origin. Of course, k can be
either positive or negative. When Zn = 0, the particle
returns to the origin. When n is odd, the probability
of the particle returning to the origin is zero. When
n is even,

Pr{Zn = 0} =
(

n
n

2

)
pn/2qn/2.

We now consider two extensions of the simple
random walk.

Limiting Case of a Diffusion Process

The notion involved in the random walk is clear
and the mathematics is simple. It is therefore quite
helpful to use the random walk to explain rather
more subtle concepts of Brownian movement and
diffusion processes. When both the size of step and
the time needed to make a move are infinitesimal,
the density function of the total displacement up to
time t is continuous and satisfies a partial differential
equation, known as the Fokker–Planck diffusion
equation. While a direct approach to establishing
the differential equation from the viewpoint of
diffusion processes is somewhat difficult, as a
limiting case of the random walk the differential
equation becomes logical (see Brownian Motion
and Diffusion Processes).

Two-Dimensional Random Walk

The one-dimensional random walk presented in this
section can be extended to a random walk in a two-
dimensional plane or in a high-dimensional space. In
a two-dimensional random walk, let Xij be the out-
come of the j th move in the ith coordinate, with
Pr{Xij = +1} = pi and Pr{Xij = −1} = qi , where
pi + qi = 1, for i = 1, 2 and j = 1, 2, . . .. Let Zin =∑n

j Xij be the total displacement on the ith axis after
n moves. The probability Pr{Zin = ki} is computed
separately for each coordinate i. The total displace-
ments in the two coordinates are represented by the
vector Zn = (Z1n, Z2n). Therefore, the whole exten-
sion process is quite simple, and can carry over to a
random walk in any high-dimensional space.

The components Z1n and Z2n, however, should
not be treated as independent random variables in a
bivariate vector. They are merely the coordinates of
the particle after n moves. Furthermore, the particle
will not reach everywhere in the two-dimensional
plane. It will reach only those positions where the
sum, in absolute values, of Z1n and Z2n is zero
or a multiple of 2. For example, the particle could
be in a position with coordinates (3, 5), or (−3,
5), but not in a position with coordinates (4, 5),
or (3, 6).

Combining the above two extensions, we see
that a continuous-time random walk in a three-
dimensional space will be a close description of
Brownian movement, since that describes phenomena
in three-dimensional space.

Gambler’s Ruin

Two players A and B, with their initial a and b, play
a series of games. Their respective probabilities of
winning a game are p and q. We seek to determine
the probability, Ra , that the ruin of player A will
eventually occur and the probability, Rb, that the
ruin of player B will eventually occur, if the game
is to be played until one of them becomes bankrupt.
In the language of the random walk, these are the
probabilities that a particle will be absorbed at the
barriers x = 0 and x = a + b, respectively.

To determine the probability of A’s ruin, Ra , we
first establish, and then solve, a system of difference
equations. Consider more generally Rx , the probabil-
ity of A’s ruin when his capital is x, and establish
a difference equation as the result of the first sub-
sequent move. Gambler A may win the game with
a probability p and then his probability of ruin will
be Rx+1, or he may lose the game with a probabil-
ity q and then his ruin probability will be Rx−1. It
follows that

Rx = pRx+1 + qRx−1, x = 1, 2, . . . , a + b − 1,

which has the general solution

Rx = c + d

(
q

p

)x

.

The constants c and d are to be determined by
the boundary conditions. If x = 0, then A’s ruin is
certain; if x = a + b, then A’s ruin is impossible.
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Therefore the boundary conditions are R0 = 1 and
Ra+b = 0. Using these conditions, we find

Rx = (q/p)x − (q/p)a+b

1 − (q/p)a+b
.

When x = a, the probability of A’s ruin is

Ra = (q/p)a − (q/p)a+b

1 − (q/p)a+b
.

Similarly, the probability of B’s ruin is

Rb = 1 − (q/p)a

1 − (q/p)a+b
.

Since Ra + Rb = 1, it is certain that either A or B
will eventually lose all his initial capital. An infinite
series of games should not be expected.

When p = q = 1/2, we use L’Hôpital’s rule to
obtain the probabilities

Ra = b

a + b
and Rb = a

a + b
.

Expected Gain

Ra and Rb are the probabilities of A’s gain of −a

and +b, respectively. Hence, his expected gain is:

E(G) = −aRa + bRb.

When a = b,

E[G] = a
1 − (q/p)a

1 + (q/p)a
.

In this case E[G] > 0 if q < p, and E[G] < 0 if
p < q. When p = q = 1/2, E[G] = 0.

The probabilities Ra and Rb depend not only on
the probability of losing or winning a single game,
but also on the amount of a player’s initial capital.
Suppose B is so enormously rich that b = ∞. Taking
the limit in the formula of Ra as b → ∞ yields the
probability of A’s eventual ruin:

Ra =






1, if p < q,

1, if p = q,
(

q

p

)a

, if p > q.

The second case above is interesting. Even if the
game is fair (p = q), A’s eventual ruin is certain
simply because B is much richer than he is.

Expected Number of Games (Duration of Play)

Suppose that player A has an initial capital of x;
the series of games ends as soon as either A loses
all his capital or his capital becomes a + b. Let Dx

be the expected number of games to be played. It is
easy to show that Dx satisfies the following difference
equation:

Dx =pDx+1+qDx−1+1, x =1, 2, . . . , a + b − 1.

The series terminates when x = 0 or x = a + b.
Therefore the boundary conditions are D0 = 0 and
Da+b = 0. The above difference equation is almost
the same as the equation for Rx , except for the
addition of unity. This addition makes the equa-
tion nonhomogeneous. Clearly, Dx = x/(q − p) is a
solution. The general solution of the equation is the
sum:

Dx = x

q − p
+
[
c + d

(
q

p

)x]
.

Using the boundary conditions D0 = 0 and Da+b = 0
to determine the constants c and d, we find the
solution

Dx = x

q − p
− a + b

q − p

[
1 − (q/p)x

1 − (q/p)a+b

]
.

The expected number of games depends on the
values of p and q. For given a + b and x, Dx

increases as p (and q) approaches 1/2. When p =
q = 1/2, the expected number of games is Dx =
x(a + b − x). The expected number takes a max-
imum value of Dx = [(a + b)/2]2 when x = (a +
b)/2. If a = $100 and b = $100, and A and B play
a series of fair games at a stake of $1 per game,
they will, on average, be expected to play 10 000
games before either one of them loses his entire cap-
ital.

Markov Chains

Most statistical and probability theory has been devel-
oped for cases where the random variables involved
are independent. The classical central limit theo-
rem and the law of large numbers are prominent
examples. In many practical situations, however, the
random variables involved are neither independent
nor identically distributed. Such phenomena are espe-
cially prevalent when the observations are made in
sequence.
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For example, in sampling without replacement
from a dichotomous population consisting of “suc-
cesses” and “failures”, the probability of choosing
a “success” is a function of the previous elements
sampled. In the random walk discussed in the pre-
vious section, the location of a particle after a
given move depends on the previous moves. In
the Markov chain, we study dependence of a par-
ticular kind. When random variables are observed
in sequence, the distribution of a random variable
is dependent on only the immediately preceding
observed random variable and not on those that came
before it.

The theory of Markov chains, or discrete-time
Markov processes, is named after A.A. Markov,
who in 1907 introduced the concept of chains
with a discrete parameter and finite number of
states. Kolmogorov [23] extended the theory for
the denumerable case; Doob [13] and Paul Levy in
1951 introduced continuous-parameter chains. While
many others have contributed to the advancement of
Markov theory, W. Feller and K.L. Chung are among
those responsible for the present status in probability
theory that the Markov chain enjoys. Chung [12]
gave a comprehensive theoretical treatment of the
subject, and Feller [17] gave a most lucid account
of both theoretical and practical aspects of Markov
chains.

The purpose of this section is to introduce the
Markov chain from a practical point of view. Included
are the essentials necessary for an understanding and
appreciation of the topic. A good reference is [17];
see also [10]. For further discussion, see the article
on Markov Chains.

Definition 1. A sequence of random variables
{Xα, α = 0, 1, . . .} is called a Markov chain if, for
every collection of integers, α0 < α1 < · · · < αn <

β, the conditional distributions of Xβ satisfy the
relation:

Pr{Xβ = iβ |Xα0 , . . . , Xαn
} = Pr{Xβ = iβ |Xαn

},
for all iβ . (1)

Thus, given a knowledge of the present state (Xαn
),

the outcome in the future (Xβ = iβ) is no longer
dependent upon the past (Xα0 , . . . , Xαn−1).

Absolute Probabilities and Transition
Probabilities

We denote for each Xα the absolute probability by

Pr{Xα = iα} = aiα , (2)

and for every pair of random variables Xα and
Xβ, α < β, the transition (conditional) probability by

Pr{Xβ = iβ |Xα = iα} = Piα,iβ , (3)

with the conditions that
∑

iα

Pr{Xα = iα} =
∑

iα

aiα = 1 and

∑

iβ

Piα,iβ = 1.

Therefore, the joint probabilities of Xα, Xβ, Xγ , for
α < β < γ , are given by

Pr{Xα = iα, Xβ = iβ, Xγ = iγ } = aiαPiα,iβ Piβ ,iγ .

Generally, for any collection of integers α < β <

· · · < δ < ε the joint probabilities are

Pr{Xα = iα, Xβ = iβ, . . . , Xδ = iδ, Xε = iε}
= aiαPiα,iβ . . . Piδ,iε . (4)

An important feature of the Markov chain, and indeed
of stochastic processes in general, is that the random
variables are observed in sequence and the order of
the sequence, such as the one in (4), should not be
disturbed. In a Markov chain describing a stochastic
process, the totality of possible values of random
variables Xα constitute the state space of the system.
The event associated with the absolute probability in
(2) is that the system is in state iα at time α (or the
αth step). The conditional probability in (3) describes
a transition from state iα at α to state iβ at β. A
Markov chain with state space being the set of all the
nonnegative integers is completely determined by the
initial absolute probability distribution

Pr{X0 = i0} = ai0 , i0 = 1, 2, . . .

and the transition probabilities

Pr{Xα+1 = iα+1|Xα = iα}
= Piα,iα+1 , iα, iα+1 =1, 2, . . . for α=0, 1, . . . .
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Example 1. Life Table Urns

Balls are drawn with replacement from an infinite
sequence of urns numbered 0, 1, . . .. In the αth
urn, there is a proportion pα of white balls and a
proportion qα of black balls with 0 < pα < 1 and
pα + qα = 1. Beginning with the 0th urn, X0 = i0

balls are drawn of which X1 = i1 are white; a total of
i1 balls is drawn from the first urn of which X2 = i2

are white; i2 balls are then drawn from the second urn
of which X3 = i3 balls are white, and so on. In gen-
eral, the number Xα+1 = iα+1 of white balls drawn
from the αth urn is the number of balls to be drawn
from the (α + 1)th urn. The experiment terminates as
soon as the number of white balls drawn from an urn
is zero. Clearly, X1, the number of white balls drawn
from the 0th urn, has a binomial distribution:

Pr{X1 = i1|i0} =
(

i0

i1

)
p

i1
0 q

i0−i1
0 , i1 = 0, . . . , i0.

The number of white balls drawn (X2) from the
first urn depends only on the number of drawings
(X1) from that urn but not on i0. Therefore, given
X0 = i0, X1 = i1, the probability of X2 is

Pr{X2 = i2|i0, i1} = Pr{X2 = i2|i1}
= pi1,i2 =

(
i1

i2

)
p

i2
1 q

i1−i2
1 ,

0 ≤ i2 ≤ i1 ≤ i0.

Generally,

Pr{Xβ = iβ |i0, . . . , iα} = Pr{Xβ = iβ |iα} = Piα,iβ ,

iα > 0; iβ = 0, . . . , iα.

This urn model was devised to describe the life
table where X0 was the size of the original cohort
with which a life table starts. The number Xα is the
number of people of exact age α, and Xα+1 is the
number surviving to the end of the αth age interval.

Time-Homogeneous Markov Chains

A Markov chain is homogeneous with respect to time
if the transition probabilities

Pr{Xα+1 = j |Xα = i} = pij (5)

are independent of α. We shall be studying mainly
time-homogeneous Markov chains in this section. A

chain is a finite chain if there are a finite number of
states, an infinite chain if there are an infinite number
of states. In any case, the transition probabilities pij

can be arranged in the form of a matrix

P =





p11 p12 p13 . . .

p21 p22 p23 . . .

· · · . . .

· · ·
· · · . . .




(6)

if the state space contains 1, 2, . . ., or

P =





p00 p01 p02 . . .

p10 p11 p12 . . .

· · · . . .

· · · . . .





if the state space contains nonnegative integers. These
matrices are known as stochastic matrices with tran-
sition probabilities pij as their elements. The sub-
scripts of each probability are the states associated
with a transition from i to j . Given Xα = i,
∑

j

Pr{Xα+1 = j |Xα = i} =
∑

j

pij = 1,

so that each row sum in a stochastic matrix is unity.
When a system has only two states, denoted by

(1,0), they may represent occurrence and nonoccur-
rence of an event E. In this case, p01 is the pas-
sage probability to the occurrence of E, and p11 is
the recurrence probability of event E. The process
becomes a renewal, or recurrence, process.

Example 2. Gambler’s Ruin

The possible states of the system, which range from 0
to a + b, represent the amount of money that player A
may possess during the course of the game. For 0 <

i < a + b, pi,i+1 = p and pi,i−1 = q; and the game
ends at 0 or a + b. The (a + b + 1) × (a + b + 1)

transition probability matrix is

P =





1 0 0 0 . . . 0 0 0

q 0 p 0 . . . 0 0 0

0 q 0 p . . . 0 0 0
· · · · . . . · · ·
· · · · . . . · · ·
· · · · . . . · · ·
0 0 0 0 . . . q 0 p

0 0 0 0 . . . 0 0 1





.
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Example 3. The Ehrenfest Model of Diffusion

This model has s + 1 states: 0, 1, 2, . . . , s. Transi-
tions are possible only for one step to the right
or one step to the left, with the respective proba-
bilities pj,j+1 = 1 − j/s and pj,j−1 = j/s, for j =
0, 1, . . . , s. The transition probability matrix is:

P =




0 1 0 0 . . . 0 0
1

s
0

1 − 1

s
0 . . . 0 0

0
2

s
0

1 − 2

s
. . . 0 0

· · · · . . . · ·
0 0 0 0 . . . 0

1

s
0 0 0 0 . . . 1 0





.

This model originally was described by P. &
T. Ehrenfest [15] as a conceptual urn experiment
where s molecules are distributed in two containers A
and B. At each trial a molecule is chosen at random
and moved from its container to the other. The state
of the system is the number of molecules in A.
Feller [17] interpreted the Ehrenfest experiment as
a diffusion process with a central force in the sense
that the transition probability pj,j+1 is greater than
or less than 1/2 depending on whether j is less than
or greater than 1/2.

Example 4. The Bernoulli–Laplace Model of
Diffusion

This model was proposed by D. Bernoulli in 1769
and analyzed by Laplace in 1812 as a probabilistic
analog for the flow of two incompressible liquids
between two urns. There are 2s particles in total,
of which s are white and s are black. The system
is in state k if there are k white particles in the
first urn. At each trial one particle is taken from
each urn and they are interchanged. The transition
probabilities are:

pj,j−1 =
(

j

s

)2

, pj,j = 2j (s − j)

s2
,

pj,j+1 =
(

1 − j

s

)2

,

so that pj,j−1 + pj,j + pj,j+1 = 1, for j = 0,

1, . . . , s. The corresponding transition probability
matrix P is (s + 1) × (s + 1). With the exception
of the 0th row and the sth row, the matrix P has
the probabilities pj,j on the diagonal line, pj,j+1

on the upper diagonal line, and pj,j−1 on the lower
diagonal line, and zeros elsewhere. The 0th row is
(0, 1, 0, . . . , 0) and the sth row is (0, 0, . . . , 0, 1, 0).
For details, see [17].

High-Order Transition Probabilities pij (n)

The transition probability pij defined in (5) is associ-
ated with a transition taking place in one step, from
Xα = i to Xα+1 = j . When a transition from i to j

takes place in n steps, we have an n-step transition
probability:

Pr{Xα+n = j |Xα = i} = pij (n).

The matrix P(n), with pij (n) as its elements, is
related to P(1) by

P(n) = [P(1)]n.

Classification of States

Transition from one state to another is not always
possible, depending upon the type of states. The
state j is said to be reachable from state i if there
exists some positive integer n such that the probabil-
ity pij (n) > 0, and we write i → j . For n = 0, we
define pii(0) = 1 and pij (0) = 0 for j �= i. If state
j is reachable from state i and state i is reachable
from state j , the two states are said to be commu-
nicative, and we write i ↔ j . If state k is reachable
from state j and state j is reachable from state i,
then state k is reachable from state i. It is clear that
the communication relation has the following prop-
erties:

1. Reflexivity: i ↔ i, as pii(0) = 1.
2. Symmetry: if i ↔ j , then j ↔ i.
3. Transitivity: if i ↔ j and j ↔ k, then i ↔ k.

Therefore, the communication relation is an equiva-
lence relation.

For every two states i and j, pij (n) is the proba-
bility that, starting from state i, the system will enter
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state j at the nth step, regardless of the number of
entrances into j prior to n. Now we introduce the
probability that state j is reached for the first time at
the nth step, or the first passage probability :

fij (n) = Pr{Xn = j and Xm �= j ;

m = 1, . . . , n − 1|X0 = i}.
The two types of probability are related as follows:

pij (n) =
n∑

�=1

fij (�)pjj (n − �) and

fij (n) = pij (n) −
n−1∑

�=1

fij (�)pjj (n − �).

The sum ∞∑

n=1

fij (n) = fij

is the probability that, starting from state i, a system
will enter j eventually. If fij = 1, the sequence
{fij (n)} is the probability distribution of the first
passage time to state j . In this case, the expectation

µij =
∞∑

n=1

nfij (n)

is the mean passage time from state i to state j .
When j = i, we have the first return (recurrence)

probability at the nth step,

fii(n) = Pr{Xn = i and Xm �= i; m = 1, . . . ,

n − 1|X0 = i}, n = 1, 2, . . . .

The probabilities pii(n) and fii(n) are related by the
following two formulas:

pii(n) =
n∑

�=1

fii(�)pii(n − �) and

fii(n) = pii(n) −
n−1∑

�=1

fii(�)pii(n − �).

The sum ∞∑

n=1

fii(n) = fii

is the probability of eventual return to the original
state i.

Now we introduce various types of state in
terms of the passage probabilities and the return
probabilities.

1. Transient state. A state i is called a transient
state if fii < 1. In this case there is a positive
probability 1 − fii that, starting from state i, a
system will not return to state i in a finite number
of steps.

2. Recurrent state. A state i is called a recurrent
state if fii = 1. In this case, the sequence {fii(n)}
represents the probability distribution of the first
return (recurrence) time. The expectation

µii =
∞∑

n=1

nfii(n)

is the mean recurrence time for state i.
3. Recurrent null state and recurrent nonnull state.

A recurrent state i is called a null state if
the expectation µii = ∞, and a nonnull state if
µii < ∞.

4. Periodic state and aperiodic state. A state i is
periodic with period t > 1 if pii(n) = 0 except
for n = t, 2t, . . ., where t is the largest integer
with this property. In the gambler’s ruin problem,
the event that a player will break even has a
period of t = 2: his winnings can only be zero
at the nth game for n = 2, 4, . . .. The number of
white balls drawn from an urn in the life table
example is aperiodic.

5. Ergodic state. An aperiodic recurrent state with
a finite recurrence time is an ergodic state.

6. Absorbing state. A state i is an absorbing state
if and only if fii(1) = 1. Clearly, if i is an
absorbing state, fii = 1, µii = 1.

The types of state may be defined also in terms of
the probabilities pii(n) and pij (n). The following the-
orems in effect further express the relations between
fii(n) and pii(n) by way of these definitions.

Theorem 1. State j can be reached from state i if
and only if fij > 0; states i and j communicate if
and only if fij fji > 0.

Theorem 2. State i is transient if and only if∑∞
n=0 pii(n) < ∞, and is recurrent if the infinite sum

diverges.
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Theorem 3. If state j is transient, then
∑∞

n=1 pij (n)

< ∞, and in this case limn→∞ pij (n) = 0.

Closed Sets and Irreducible Markov Chains

Closed Set. A set C of states is closed if for every
i in C ∑

j∈C

pij = 1,

where the summation is taken over all states j belong-
ing to the set C. Generally, for every n ≥ 1

∑

j∈C

pij (n) = 1.

Therefore, any closed subset of a system can be
studied independently of all other states.

The totality of all states that can be reached from
a given state i form a closed set. A closed set may
contain states which do not communicate. A closed
set of communicating states is a class. If C is a class,
then for every pair i and j in C, there exists a positive
integer n for which pij (n) > 0. An absorbing state is
considered a class.

Irreducible Chain. A Markov chain is called an
irreducible chain if there exists no closed subset other
than the set of all states.

Theorem 4. In an irreducible Markov chain every
state can be reached from every other state.

Theorem 5. The states in a class are of the same
type; they are either all transient or all recurrent null
or all ergodic.

Corollary. The states in an irreducible Markov
chain are of the same type.

Theorem 6. All states of a class have the same
period.

Corollary. All states in an irreducible Markov
chain have the same period.

Ergodic Chain. An irreducible Markov chain with
ergodic states is called an ergodic chain.

The above concepts are illustrated by an example.

Example 5

The stochastic matrix P is given by

P =





1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0
3

8

1

6

11

24
0 0 0

0 0 0
3

8

1

2

1

8
0 0 0

0 0 0 0 0 0 0
1

3

2

3

0 0 0 0 0 0
2

4

1

4

1

4

0 0 0 0 0 0
1

2

1

2
0





.

describes transitions in a system of nine states num-
bered from 1 to 9. We divide these states into four
subsets: C1 = {1}; C2 = {2, 3}, C3 = {4, 5, 6}; and
C4 = {7, 8, 9}. The set C1 consists of a single absorb-
ing state 1; it is a closed set and a class. In set C2

states 2 and 3 communicate and both have a period
t = 2; C2 is closed and is a class. C3 is also a closed
set but not a class since neither states 5 nor state 6
can be reached from state 4. State 4 is a class and
is a proper closed subset of C3; the subset {5, 6} is
not a class because it is not closed. Finally, the set
C4 is closed and is a class where states 7, 8, and 9
communicate.

It is clear, then, that a Markov chain correspond-
ing to subset C2 is an irreducible chain with period
t = 2, while a chain corresponding to subset C3 is
not an irreducible chain since C3 contains a proper
closed subset; neither is a chain corresponding to sub-
set {5, 6} is irreducible chain since the subset is not
closed. A Markov chain corresponding to set C4 obvi-
ously is irreducible.

To summarize, we have considered examples of
the following types:

1. irreducible periodic chains – C2;
2. chains which are not irreducible, because

(i) the corresponding state set contains a
proper closed subset – C3, or

(ii) the state set is not closed – {5, 6};
3. irreducible and aperiodic chains – C4.
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The matrix P can be decomposed into four sub-
matrices corresponding to these four subsets:

P =





P1 0 0 0

0 P2 0 0

0 0 P3 0

0 0 0 P4



 , (7)

where the zeros are matrices of various dimensions.
The zeros in the first row, for example, (from left to
right) are 1 × 2, 1 × 3, and 1 × 3 matrices (or row
vectors), respectively. The nonzero submatrices are:

P1 = [1], P2 =
(

0 1
1 0

)
,

P3 =





1 0 0
3

8

1

6

11

24
3

8

1

2

1

8



 ,

P4 =





0
1

3

2

3
2

4

1

4

1

4
1

2

1

2
0




.

each corresponds to a sub-Markov chain.
The matrix on the right-hand side of (7) having

submatrices on the diagonal line and zeros elsewhere
is known as a quasi-diagonal matrix. Direct compu-
tations show that the square of the matrix P is also a
quasi-diagonal matrix with the squares of the subma-
trices on the diagonal line. In general, the nth power
of a quasi-diagonal matrix P is also a quasi-diagonal
matrix with the nth power of the submatrices on the
diagonal line. In the present example,

Pn =





Pn
1 0 0 0

0 Pn
2 0 0

0 0 Pn
3 0

0 0 0 Pn
4



 . (8)

Relation (8) reveals interesting properties of transi-
tions of a Markov chain. First, the states in different
classes do not communicate: pik = 0 whenever i and
k belong to two different classes. Second, for every i

and j belonging to the same class Cα , the transition
probabilities pij (n) are computed from the corre-
sponding submatrix only and are independent of the

other matrices. This is true even if Cα is not a class
(such as C3) and the corresponding Markov chain is
reducible. Therefore, a Markov chain may be studied
in terms of individual subchains, each corresponding
to a closed set of states.

Asymptotic Behavior of Transition Probabilities
pij (n)

We have seen in the preceding section that the tran-
sient probabilities pij (n) behave differently for dif-
ferent types of state. The following theorem describes
the limiting probability of pij (n) as n → ∞.

Theorem 7. If state i is either transient or recurrent
null, then limn→∞ pii(n) = 0. If state i is recurrent
with period t , then limn→∞ pii(n) = t/µii , where µii

is the mean recurrent time for state i. If state i is
ergodic, then limn→∞ pii(n) = 1/µii .

Theorem 8. If state j is either transient or recurrent
null, then for all i limn→∞ pij (n) = 0; if state j is
ergodic, then for all i limn→∞ pij (n) = 1/µjj .

Stationary Distribution

Definition 2. A probability distribution {πi} is
called stationary for a given Markov chain if it
satisfies the relation

πj =
∑

i

πipij .

For a stationary distribution, we have, for any inte-
ger n,

πj =
∑

i

πipij (n).

Theorem 9. If all the states in an irreducible
Markov chain are ergodic, then the limits

lim
n→∞ pij (n) = πj

exist and are independent of the initial state i. Fur-
thermore, πj > 0,

∑

j

πj = 1, (9)
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and the limiting distribution {πj } is stationary so that
∑

i

πipij = πj . (10)

Conversely, if a stationary distribution of an irre-
ducible Markov chain exists and satisfies (9) and (10)
then all the states of the Markov chain are ergodic and
the stationary distribution is the limiting distribution
of the chain.

It is easy to deduce from Theorems 8 and 9 that
for each state j in an ergodic Markov chain,

µjj = 1

πj

. (11)

Formulas for High-Order Transition Probabilities
pij (n)

For a finite Markov chain having states 1, 2, . . . , s,
and a stochastic matrix

P =




p11 p12 · · · p1s

p21 p22 · · · p2s...
... · · · ...

ps1 ps2 · · · pss


 , (6a)

with
s∑

j=1

pij = 1, i = 1, . . . , s,

we introduce a characteristic matrix

A(λ) = (λI − P)

=




λ − p11 −p12 . . . −p1s

−p21 λ − p22 . . . −p2s...
... . . .

...

−ps1 −ps2 . . . λ − pss


 ,

(12)

where I is an s × s unit matrix. The determinant
|A(λ)| is an s-degree polynomial in λ. The charac-
teristic equation

|A(λ)| = 0 or |λI − P| = 0 (13)

has s roots: λ1, λ2, . . . , λs . These are known as the
characteristic roots, or eigenvalues, of the matrix P.
The magnitude of these roots is given in the following
theorem.

Theorem 10. The eigenvalues of the stochastic
matrix P are not greater than unity in absolute value
and one of the eigenvalue is λ = 1.

The cofactor of the (i, j )th element of the matrix
A(λ), Aij (λ), is an (s − 1) × (s − 1) determinant
after the ith row and the j th column are deleted from
A(λ) and multiplied by (−1)i+j .

When λ = 1, the cofactors of the elements in the
same row of A(1) are equal:

Aij (1) = Aii(1), i, j = 1, 2, . . . , s.

The adjoint matrix of A(λ) is a matrix whose
elements are the cofactors of A(λ), with the indices
transposed: the element in the ith row and the j th
column is Aji(λ), for i, j = 1, 2, . . . , s.

Theorem 11. If the stochastic matrix P in (6) of a
Markov chain has distinct eigenvalues λ1, λ2, . . . , λs ,
then the nth-order transition probabilities are
given by

pij (n) =
s∑

�=1

Aji(λ�)λ
n
�

1
s∏

m=1
m�=�

(λ� − λm)

i, j = 1, . . . , s; n = 1, 2, . . . . (14)

Furthermore, the right-hand side of formula (14) is a
real function of pij even if (13) has complex roots.

For the derivation of formula (14) and those in
Theorem 11, see [10].

Limiting Probability Distribution

We have shown in Theorem 9 that the limiting prob-
ability distribution {πj } of an irreducible ergodic
Markov chain exists and is stationary. We now pro-
vide explicit formulas for the limiting probabilities.

Theorem 12. Let P defined in (6) be the stochastic
matrix of a finite ergodic Markov chain. The limiting
probabilities

lim
n→∞ pij (n) = πj , i, j = 1, . . . , s,

are given by

πj = Ajj (1)
s∑

k=1

Akk(1)

, j = 1, . . . s,
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and the mean recurrence time by

µjj =

s∑

k=1

Akk(1)

Ajj (1)
, j = 1, . . . , s,

where Ajj (1) is the (j, j)th cofactor of the matrix
A(1) = I − P.

Theorem 12 also confirms the relation between the
mean recurrence time µjj and the limiting probability
πj in formula (11).

Example 6

In a two-state Markov chain with the stochastic
matrix:

P =
[

1 − p1 p1

p2 1 − p2

]
,

where 0 < p1 < 1 and 0 < p2 < 1, the equation
|λI − P| = 0 admits two eigenvalues: λ1 = 1 and
λ2 = 1 − p1 − p2. The differences between the ei-
genvalues are λ1 − λ2 = p1 + p2 and λ2 − λ1 =
−(p1 + p2), and the corresponding characteristic
matrices are

A(λ1) =
[

p1 −p1

−p2 p2

]
,

A(λ2) =
[−p2 −p1

−p2 −p1

]
.

Substituting these values in formula (14) yields the
final formula:

P(n)

=
[

p11(n) p12(n)

p21(n) p22(n)

]
= 1

p1 + p2

×
[

p2 + p1(1 − p1 − p2)
n p1 − p1(1 − p1 − p2)

n

p2 − p2(1 − p1 − p2)
n p1 + p2(1 − p1 − p2)

n

]
.

Since λ1 = 1, we find from A(λ1) = A(1) the limit-
ing probabilities:

π1 = p2

p1 + p2
and π2 = p1

p1 + p2
,

which can be obtained from P(n) as n → ∞. There-
fore the mean recurrence times for the two states are

µ11 = p1 + p2

p2
and µ22 = p1 + p2

p1
.

Example 7. An Application in Genetics

To describe the heredity process in a given locus
(see Mendel’s Laws) in terms of Markov chain, the
number of A genes in the population is denoted by
p and the number of a genes by q, with p + q = 1.
The possible genotypes, AA, Aa and aa, are iden-
tified with the numbers 1, 2, and 3, respectively.
The transition probability pij denotes the probabil-
ity that an offspring will have genotype j given
that a specific parent has a genotype i. Using a
mother–son pair as an example, and when i = 1
and j = 2,

p12 = Pr{the son will have genotype Aa|the mother

has genotype AA} = q.

For the son to have the genotype Aa, he must inherit
one A gene from his mother with probability one
and acquire one a gene from the male population,
through his father, with probability q. And this gene
selection is the only possibility for the child to have
the genotype Aa. Therefore p12 = q. Using a similar
calculation, we find the other transition probabili-
ties, and the following one-step transition probability
matrix:

P(1) =



p11 p12 p13

p21 p22 p23

p31 p32 p33





=





p q 0(
1

2

)
p

1

2

(
1

2

)
q

0 p q





which is well known in population genetics. The
matrix P(1) also shows that the corresponding
Markov chain is an irreducible ergodic chain.

To find the n-step transition probabilities pij (n),
we first formulate a characteristic matrix:

A(λ) = [λI − P]

=





λ − p −q 0

−
(

1

2

)
p

λ − 1

2
−
(

1

2

)
q

0 −p λ − q





From |A(λ)| = 0, we find the eigenvalues: λ1 =
1, λ2 = 1/2, λ3 = 0, so that (λ1 − λ2)(λ1 − λ3) =
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1/2, (λ2 − λ1)(λ2 − λ3) = −(1/2)2 and (λ3 − λ1)

(λ3 − λ2) = 1/2.
For each eigenvalue, we formulate the correspond-

ing characteristic matrix, compute the cofactors, and
find the adjoint matrix. For λ1 = 1,

A(λ1) = A(1)

=





1 − p −q 0

−
(

1

2

)
p

1 − 1

2
−
(

1

2

)
q

0 −p 1 − q



 ,

and the adjoint matrix:

‖Aji(1)‖ =





(
1

2

)
p2 pq

(
1

2

)
q2

(
1

2

)
p2 pq

(
1

2

)
q2

(
1

2

)
p2 pq

(
1

2

)
q2




,

For λ2 = 1

2
,

A(λ2) = A
(

1

2

)

=





(
1

2

)
− p −q 0

−
(

1

2

)
p 0 −

(
1

2

)
q

0 −p

(
1

2

)
− q




,

and the adjoint matrix:

‖Aji

(
1

2

)
‖ =





−
(

1

2

)
pq

(
1

2

)
q(p − q)

(
1

2

)
q2

−
(

1

2

)2

p(p − q) −
(

1

2

)2

(p − q) −
(

1

2

)2

q(p − q)

(
1

2

)
p2 −

(
1

2

)
p(p − q) −

(
1

2

)
pq





.

In this problem, λ3 = 0, so there is no contribution
to pij (n).

Now substituting the eigenvalues, the cofactors,
and the products of the differences of eigenvalues in

formula (14) for pij (n), we find

P(n)

=





p2 2pq q2

+pq

2

n−1 +q(q − p)/2n−1 −q2/2n−1

p2 2pq q2

+p(q − p)/2n +(p − q)2/2n +q(p − q)/2n

p2 2pq q2

−p2/2n−1 +p(p − q)/2n−1 +pq/2n−1





.

This formula has appeared in [17] and [24] from
different approaches.

As n → ∞, the limiting transition probability
matrix is:

lim
n→∞ P(n) =




p2 2pq q2

p2 2pq q2

p2 2pq q2





and the limiting probability distribution

(π1 π2 π3) = (p2 2pq q2),

is stationary, since

(p2 2pq q2)




p2 2pq q2

p2 2pq q2

p2 2pq q2



 = (p2 2pq q2).

The mean recurrence times are µ11 = 1/p2, µ22 =
1/2pq , and µ33 = 1/q2.

A General Birth Process

In this general birth process, the time scale t is con-
tinuous. For every t ∈ [0, ∞), the random variable
X(t) is defined as the number of births occurring at
or before time t , so X(t) takes on discrete values.
The term “the number of births” is used here quite
loosely. It refers to the number of “events” occurring
up to t , whatever the “event” may happen to be in a
particular study. The “event” may be an accident, an
incoming telephone call, a new species in a genus,
a new infected case during an epidemic, or even a
death. If a birth process is regarded as an “increas-
ing” process and a death process as a “decreasing”
process, the general birth process described here
applies to both increasing processes and decreasing
processes.
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As the number of events occurring increases with
time, the distribution of X(t) is a increasing func-
tion of time. The purpose in this section is to review
the general formula for the transition probability from
which a desired transition probability for a particular
process can be derived.

Let

pi,k(0, t) = Pr[X(t) = k|X(0) = i}
be the transition probability from X(0) = i at time
t = 0 to X(t) = k at time t , for k = i, i + 1, . . ..
Given X(t) = k, let the probability of having a
birth during (t, t + ∆) be λkβ(t)∆ + o(∆). The prod-
uct λkβ(t) is the birth intensity function, which
plays a major role in determining the process. Here
β(t) is an integrable function of t such that the
integral

∫ t

0
β(τ) dτ → ∞ as t → ∞,

and λj is an arbitrary function of j subject to the
condition that λi �= λj , for i �= j . Under these condi-
tions, the transition probabilities satisfy the following
differential equations:

d

dt
pi,i(0, t) = −λiβ(t)pi,i(0, t) (15a)

and

d

dt
pi,k(0, t) = −λkβ(t)pi,k(0, t)

+ λk−1β(t)pi,k−1(0, t), (15b)

for k = i, i + 1, . . .. Eq. (15a) has the solution

pi,i(0, t) = exp

[
−λi

∫ t

0
β(τ) dτ

]
. (16)

Using (16) and solving (15b) successively beginning
with k = i + 1 yields the general formula:

pi,k(0, t) = (−1)k−iλi . . . λk−1

×





k∑

j=1

exp

[
−λj

∫ t

0
β(τ) dτ

]

k∏

�=i
��=j

(λj − λ�)





, (17)

for k = i, i + 1, . . .. An inductive proof of (17) is
given in [10].

Now we use (17) to deduce the formulas of the
transition probability pi,k(0, t) in some well-known
processes.

Yule Processes

The intensity functions are:

λj = jλ and β(t) = 1

(see Yule Process). Substituting these values in for-
mula (17) yields:

pi,k(0, t) = (−1)k−i[iλ] . . . [(k − 1)λ]

×





k∑

j=1





exp(−jλt)

k∏

�=i
��=j

(jλ − �λ)









,

(18)

where

[iλ] . . . [(k − 1)λ] = λk−i

(
k − 1

k − i

)
(k − i)!

and

k∏

�=i
��=j

(jλ − �λ) = λk−i(−1)k−j

(
k − i

j − i

)−1

(k − i)!.

Therefore (18) can be rewritten as

pi,k(0, t) =
(

k − 1
k − i

)
exp(−iλt)

×



k∑

j=i

(
k − i

j − i

)
exp(−λt)j−i





=
(

k − 1
k − i

)
exp(−iλt)[1 − exp(−λt)]k−i ,

for k = i, i + 1, . . ., a familiar formula in the Yule
process.
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If the intensity function β(t) remains a function
of t , then we have the time-dependent Yule process:

pi,k(0, t) =
(

k − 1
k − i

){
exp

[
−λ

∫ t

0
β(τ) dτ

]}i

×
{

1 − exp

[
−λ

∫ t

0
β(τ) dτ

]}k−i

for k = i, i + 1, . . ..

Pólya Process

The Pólya process usually records the events occur-
ring during the interval (0, t], so the initial value at
t = 0 is X(0) = 0. The intensity function is:

λk = (1 + λk) and β(t) = (1 + λt)−1.

Using these intensity functions and with reference to
formula (17) for p0,k(0, t), we evaluate

exp

[
−(1 + jλ)

∫ t

0
(1 + λτ)−1 dτ

]

= (1 + λt)−(1/λ+j),

(1 + λ)(1 + 2λ) . . . [1 + (k − 1)λ]

=
( 1

λ
+ k − 1

k

)
λkk!,

and

k∏

�=0
��=j

[(1 + jλ) − (1 + �λ)] = λk

(
k

j

)−1

k!(−1)k−j ,

and substitute these formulas in (17). As a result,

p0,k(0, t) =
( l

λ
+ k − 1

k

)
k∑

j=0

(
k

j

)

× (−1)j (1 + λt)−(1/λ+j)

=
( l

λ
+ k − 1

k

)
(1 + λt)−1/λ

(
λt

1 + λt

)k

for k = 0, 1, . . ., which is the formula of the transition
probability in the Pólya process.

Birth Process with Immigration

Another plausible function for λj is linear:

λj = jλ + η and β(t) = 1.

Here the linear term jλ corresponds to birth and
the constant term η corresponds to immigration
(see Migration Processes). With reference to (17),
we compute

[iλ + η][(i + 1)λ + η] . . . [(k − 1)λ + η]

= λk−i

(
k +
(η

λ

)
− 1

k − i

)
(k − i)!

and

k∏

�=i
��=j

[(jλ + η) − (�λ + η)]

= λk−1(−1)k−j

(
k − i

k − j

)−1

(k − i)!

As a result,

pi,k(0, t) =
(

k +
(η

λ

)
− 1

k − i

)
[exp(−λt)]

i+
(η

λ

)

× [1 − exp(−λt)]k−i , (19)

for k = i, i + 1, . . .. If β(t) remains a function of
time t , the transition probability pi,k(0, t) will be the
same as in formula (19) but with t being replaced by
the integral

∫ t

0 β(τ) dτ .
From (19) we see that the difference X(t) − i

has a negative binomial distribution with parameters
i + η/λ and exp(−λt). (see Accident Proneness).

Death Process

Let i individuals alive at t = 0 be subject to the
same force of mortality, or hazard, µ(t), and let
the random variable X(t) be the number of deaths
occurring during the interval (0, t], with X(0) = 0.
The transition probability is defined by

p0,k(0, t) = Pr{X(t) = k|X(0) = 0}.
Under the assumption of independence of mortality,
the intensity functions are

λj = i − j and β(t) = µ(t).
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Substituting these functions in (17), we find

exp

[
−(i − j)

∫ t

0
µ(τ) dτ

]

=
{

exp

[
−
∫ t

0
µ(τ) dτ

]}i−k

×
{

exp

[
−
∫ t

0
µ(τ) dτ

]}k−j

,

(i − 0)(i − 1) . . . (i − k + 1) =
(

i

k

)
k!

and

k∏

�=0
�=j

[(i − j) − (i − �)] = (−1)j
(

k

j

)−1

k!.

Therefore,

p0,k(0, t) =
(

i

k

){
exp

[
−
∫ t

0
µ(τ) dτ

]}i−k

×
{

1 − exp

[
−
∫ t

0
µ(τ) dτ

]}k

for k = 0, 1, . . . , i, which is the binomial distribution,
with the exponential function being the survival func-
tion (see Survival Distributions and Their Charac-
teristics).

A Divergent Process

This process was mentioned in [17]; in it λj = j 2 and
β(t) is a function of t . The probability derived from
(17) is

pi,k(0, t) =
(

k − 1
k − i

)2 k∑

j=i

(−1)j−i

×
(

k − i

k − j

)2 (
2j − 1
j − 1

)−1 (
k + j

k − j

)−1

× exp

[
−j 2λ

∫ t

0
β(τ) dτ

]
,

k = i, i + 1, . . .. According to this model, the rate of
population growth is proportional to the square of the

population size j within each time element (t, t + ∆),
and for every given t there is a positive probability,

1 −
∑

k=i

pi,k(0, t) > 0,

that the population will become infinitely large. This
model may not be an accurate description of human
population growth, but it may be applicable to the
growth of microorganisms or to nuclear fission.

Poisson Process

While formula (17) holds for cases where λi �= λj ,
for i �= j , the transition probability in the Poisson
process may be derived from the general birth pro-
cess as a limiting case as λj → λ. That is,

lim
λj →λ

(−1)kλ0 . . . λk−1

k∑

j=0

exp(−λj t)

k∏

�=0
��=j

(λj − λ�)

= exp(−λt)(λt)k

k!
.

A description of the limiting process may be found
in [10, pp. 255–256].

An Equality in Stochastic Processes

Transition probabilities pi,k(0, t) are the basic ele-
ments in stochastic processes. Explicit formulas for
the probabilities are needed not only for an appreci-
ation of stochastic processes as an analytic tool, but
also for a better understanding of the problems on
hand through analyses of the data. Generally, efforts
are made to obtain explicit solutions, but these are
not always successful. The equality presented in this
section is a general property of (increasing) stochas-
tic processes, but it is useful for derivation of explicit
formulas when other methods have failed.

Let X(t) be the number of “births” up to time
t , with birth intensity function λjβ(τ) and transition
probabilities

pi,k(0, t) = Pr{X(t) = k|X(0) = i}, (20)

as defined in the general birth process. Let j be
an arbitrary but fixed integer between i and k and
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consider the transition j → j + 1. Instead of a simple
transition from i to k, there is now a sequence
of transitions: i → j → j + 1 → k. The transition
j → j + 1 must take place somewhere between 0
and t ; let it take place in (τ, τ + dτ). The probability
for the sequence i → j → j + 1 → k is

pi,j (0, τ )λjβ(τ) dτpj+1,k(τ, t).

For different values of τ , the corresponding
sequences of transitions i → j → j + 1 → k are
mutually exclusive; the integral

∫ t

0
pi,j (0, τ )λjβ(τ)pj+1,k(τ, t) dτ (21)

is the probability that the sequence i → j → j +
1 → k will occur during the interval (0, t). Since
the process must admit state j and the transition
j → j + 1 before arriving at the value k at time t ,
the integral in (21) is equal to the expression in (20).
That is,

pi,k(0, t) =
∫ t

0
pi,j (0, τ )λjβ(τ)pj+1,k(τ, t) dτ.

(22)

Formula (22) was proposed in [8]; a formal proof
using the Riemann integral is given in [10]. It is easy
to verify that the Yule processes and others in the
section on the general birth process all satisfy (22).

Example 8. The Poisson process with i = 0,

λjβ(τ) = λ, has transition probability

p0,k(0, t) = exp(−λt)(λt)k

k!
,

which is the left-hand side of (22). The right-hand
side is
∫ t

0

[
exp(−λτ)(λτ)j

j !

]
λ dτ

×
[

exp{−λ(t − τ)}[λ(t − τ)]k−j−1

(k − j − 1)!

]

= exp(−λt)(λt)k

j !(k − j − 1)!

∫ 1

0
θj (1 − θ)k−j−1 dθ

= p0,k(0, t),

where θ = τ/t , and the beta function in the last
integral is equal to j !(k − j − 1)!/k!, justifying the
last equality.

Equality (22) can be extended to any number
of intermediate values between X(0) and X(t).
Suppose there are two intermediate fixed values
j and k, such that i < j < k < l; the transition
probability

Pr{X(t) = l|X(0) = i} = pi,l(0, t)

satisfies the equality

pi,l(0, t) =
∫ t

0

∫ τ2

0
pij (0, τ1)λj (τ1)pj+1,k(τ1, τ2)

× λk(τ2)pk+1,l(τ2, t) dτ1 dτ2.

An Application: Simple Stochastic Epidemic

In a simple stochastic model, a population con-
sists of two categories of individuals: susceptibles
and infectives (see Epidemic Models, Stochastic).
There are no removals, no deaths, no immunes,
and no recoveries from infection. Suppose that
at the initial time t = 0, there are N suscepti-
bles and 1 infective. Let X(t) be the number
of infectives at time t , so that there are N +
1 − X(t) susceptibles. The primary purpose is to
derive an explicit formula for the transition proba-
bility

p1,n(0, t) = Pr{X(t) = n|X(0) = 1}. (20a)

Under the assumption of homogeneous mixing of
infectives and susceptibles, the intensity functions in
the general birth process are:

λj = j (N + 1 − j) = aj

and ∫ t

0
β(τ) dτ = θ(t),

where β(t) is known as the infection rate and is a
function of t , the “age” of an epidemic, and θ(t)

tends to infinity as t → ∞.
For n < (N + 1)/2, aj �= ai , for i �= j , formula

(17) in the general birth process applies. This means
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that the solution is

p1,n(0, t) = (−1)n−1a1 . . . an−1

×





n∑

i=1





exp[−aiθ(t)]
n∏

α=1
α �=i

(ai − aα)









,

(17a)

for n = 1, 2, . . . , [(N + 1)/2].
Formula (17) no longer applies for n > (N +

1)/2, since in this case, a1, a2, . . . , an are not all
distinct. In particular,

aj = j (N + 1 − j) = aN+1−j .

However, an explicit formula for the probability
p1,n(0, t) can be obtained by applying formula (22):

p1,n(0, t) =
∫ t

0
p1,k(0, τ )akβ(τ)pk+1,n(τ, t) dτ.

(22a)
The integer k must be so chosen that the aj s in
the probability pi,k(0, τ ) are distinct and the aj s
in pk+1,n(τ, t) are also distinct. When N is even,
k = N/2; when N is odd, k = (N + 1)/2. With these
values of k, we apply (17) to the two probabilities
p1,k(0, τ ) and pk+1,n(τ, t) to obtain

p1,k(0, τ ) = (−1)k−1a1 . . . ak−1

×





k∑

i=1





exp[−aiθ(τ )]
k∏

α=1
α �=i

(ai − aα)









(17b)

and

pk+1,n(τ, t) = (−1)n−k−1ak+1 . . . an−1

×





n∑

j=k+1





exp{−aj [θ(t) − θ(τ)]}
n∏

β=k+1
β �=j

(aj − aβ)









.

(17c)

Substituting (17b) and (17c) in (22a) and simplifying
the resulting expression, we find.

p1,n(0, t) = (−1)n−1a1 . . . an−1

×




−
n∑

j=k+1




θ(t) exp[−aj θ(t)]
n∏

β=1
aβ �=aj

(aj − aβ)




+

k∑

i=1

n∑

j=k+1
ai �=aj





exp[−aiθ(t)] − exp[−aj θ(t)]

(ai − aj )

k∏

α=1
α �=i

(ai − aα)

n∏

β=k+1
β �=j

(aj − aβ)









,

for n = k + 1, k + 2, . . . , N + 1, where k = N/2
when N is even and k = (N + 1)/2 when N is odd.

Infection Time and the Duration of an Epidemic

The length of time elapsed up to the occurrence of
the nth infection is a continuous random variable
taking nonnegative real values. Let it be denoted by
Tn, for 1 ≤ n ≤ N + 1, with T1 = 0. The duration of
an epidemic is TN+1, the length of time elapsed up to
the infection of the last number of the population. The
purpose of this section is to derive explicit formulas
for the density function fn(t), the distribution Fn(t),
and the expectation and variance of Tn.

The density function fn(t) has a close relationship
with the probability p1,n(t). By definition, fn(t) dt is
the probability that the random variable Tn will take
values in (t, t + dt). This means that at time t there
are n − 1 infectives, and the nth infection takes place
in the interval (t, t + dt). Therefore,

fn(t) dt = p1,n−1(0, t)an−1β(t) dt,

and the distribution function

Fn(t) =
∫ t

0
p1,n−1(0, τ )an−1β(τ) dτ,

for n = 2, . . . , N + 1.

Using the formulas for the probabilities in the pre-
ceding section, we can write down explicit functions
for fn(t) and Fn(t) for each n. For example, for
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n ≤ (N + 1)/2, we use formula (17a) to obtain the
density function

fn(t) dt = (−1)n−2a1 . . . an−1

×





n−1∑

i=1





β(t) exp[−aiθ(t)]
n−1∏

α=1
α �=i

(ai − aα)









dt

and the distribution function

Fn(t) = (−1)n−2a1 . . . an−1

×
n−1∑

i=1

1 − exp[−aiθ(t)]
n−1∏

α=1
α �=i

(ai − aα)ai

.

As t approaches infinity,

lim
t→∞ θ(t) = lim

t→∞

∫ t

0
β(τ) dτ = ∞,

Fn(∞) = (−1)n−2a1 . . . an−1

×
n−1∑

i=1

1
n−1∏

α=1
α �=i

(ai − aα)ai

= 1.

A proof of Fn(∞) = 1, for 1 < n ≤ N + 1, is given
in [10].

The expectation and variance of Tn can be com-
puted directly from the definitions

E(Tn) =
∫ ∞

0
tfn(t) dt

and

var(Tn) =
∫ ∞

0
[t − E(Tn)]

2fn(t) dt.

Explicit formulas depend on the function β(t). How-
ever, when the infection rate is independent of time,
with β(t) = β, there is an alternative approach which
is simpler.

The length of time elapsed until the occurrence of
the nth infection may be divided into two periods:
a period of length Tn−1 up to the occurrence of the

(n − 1)th infection; and a period of length tn between
the occurrences of the (n − 1)th and nth infections.
The sum of the two periods is equal to the entire
length of time:

Tn = Tn−1 + tn, (23)

where Tn−1 and tn are independently distributed non-
negative random variables, with respective density
functions

fn−1(t) = p1,n−2(0, t)an−2β

and
gn(t) = pn−1,n−1(0, t)an−1β. (24)

According to (23), the distribution of Tn is the
convolution of the distributions of Tn−1 and tn, and
the density functions satisfy the equation

fn(t) =
∫ t

0
fn−1(τ )gn(t − τ) dτ.

Now, the density function in (24) is exponential,

gn(t) = an−1β exp{−an−1βt)},
with expectation and variance

E(tn) = 1

an−1β
and σ 2

tn
= 1

a2
n−1β

2
.

However, (23) can be extended so that

Tn = t2 + t3 + . . . + tn,

where t2, t3, . . . , tn are independently distributed
exponential random variables. It follows that the
expectation and the variance of Tn are, respectively,

E(Tn) = 1

β

n−1∑

i=1

1

ai

and

σ 2
Tn

= 1

β2

n−1∑

i=1

1

a2
i

, n = 2, . . . , N + 1.

This epidemic model was originally formulated by
Kermack and McKendrick [21, 26]. It has since been
extensively studied; see, for example, [3], [4], [5]
and [20]. An important feature of this model is
that the coefficients an are quadratic functions of
n, and the differential equations of the transition
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probabilities are of second order and cannot be easily
solved. The Laplace transform does not provide an
explicit formula for the transition probability either.
The present method, relying on the general birth
process formula (17) and the equality (22), is based
on [29].

Death Processes and Survival Distributions

In the death process deduced from the general birth
process in the preceding section, the time interval
[0, t) was fixed and the number of deaths occurring
in [0, t) was a random variable. In this section, the
survival time of an individual is treated as a random
variable and the purpose is to derive its distribution.

Let a random variable T be the survival time,
or lifetime, of an individual with mortality intensity
function, or force of mortality, µ(t), so that, the sum
µ(t)∆ + o(∆) is the probability that an individual
alive at time t will die in the time interval (t, t + ∆).
The distribution function of T at t , FT (t) = Pr{T ≤
t}, is the probability that an individual will die at
or before time t . The complement 1 − FT (t) is the
survival function of T at t .

Consider now the distribution function of T

at time t + ∆, FT (t + ∆) = Pr{T ≤ t + ∆}. For an
individual to die before t + ∆, either he dies before
t , or else he must survive to t and die during the
interval (t, t + ∆). Symbolically,

FT (t + ∆) = FT (t) + [1 − FT (t)][µ(t)∆ + o(∆)],

which leads to the differential equation:

d

dt
FT (t) = [1 − FT (t)]µ(t)

or
d

dt
ln[1 − FT (t)] = −µ(t). (25)

Clearly at t = 0, FT (0) = 0. The solution of the
differential equation (25) is:

1 − FT (t) = exp

[
−
∫ t

0
µ(τ) dτ

]

and

FT (t) = 1 − exp

[
−
∫ t

0
µ(τ) dτ

]
. (26)

The survival function and the distribution function in
(26) are the same as those in the death process in

the section on the general birth process. The density
function of T is

f (t) = µ(t) exp

[
−
∫ t

0
µ(τ) dτ

]
. (27)

Formulas (26) and (27) both depend on µ(t), and are
the basic functions in a survival analysis. One can
derive formulas for a particular survival distribution
by making assumptions about the mortality intensity
function µ(t). The following are a few examples.

Gompertz Distribution

In a celebrated paper on the law of human mortality,
Benjamin Gompertz [18] attributed death to either
one of two causes: chance or deterioration of the
power to withstand destruction (see Aging Models).
In deriving his law of mortality, however, Gompertz
considered only deterioration, and assumed that a
person’s power to resist death decreases at a rate
proportional to the power itself. Since the force of
mortality µ(t) is a measure of a person’s susceptibil-
ity to death, Gompertz used the reciprocal 1/µ(t) as
a measure of a person’s resistance to death and thus
arrived at the formula:

d

dt

(
1

µ(t)

)
= −h

(
1

µ(t)

)

or
d

dt
µ(t) = −hµ(t),

from which he found the force of mortality µ(t) =
Bct . The distribution function and the density func-
tion are, respectively,

FT (t) = 1 − exp

{−B(ct − 1)

ln c

}
.

and

fT (t) = Bct exp

{−B(ct − 1)

ln c

}
.

Makeham Distribution

Makeham [25] suggested the modification µ(t) =
A + Bct to restore the missing component “chance”
in the Gompertz formula (see Aging Models). The
corresponding distribution function is

FT (t) = 1 − exp

{
−
[
At + B(ct − 1)

ln c

]}



20 Stochastic Processes

and the density function is

fT (t) = (A + Bct ) exp

{
−
[
At + B(ct − 1)

ln c

]}
.

Weibull Distribution

When the force of mortality is assumed a power
function of t, µ(t) = ctc−1, the distribution function
and the density function are:

FT (t) = 1 − exp{−t c}
and

fT (t) = ctc−1 exp(−t c).

This distribution, proposed by Weibull in 1939 for
studies of the lifespan of materials, is used frequently
in survival analysis (see Weibull Distribution).

Exponential Distribution

If µ(t) = µ is a constant, then the distribution
function and the density function are:

FT (t) = 1 − e−µt

and
fT (t) = µe−µt ,

which were used for illustration of the theory of life
testing [16] (see Exponential Distribution).

A Staging Process and Stages of Disease

Development of many chronic conditions is charac-
terized by stages. Generally, diseases advance with
time from a mild stage through intermediate and
severe stages to death. The process often is irre-
versible, but a patient may die while being in any of
the stages. In the natural progression of cancer, for
example, there are stages of the disease determined
by the size of tumor and metastasis of cancer. AIDS,
too, can be classified by stages.

Birth order and child spacing are another example
of a staging process. Here the process begins when
the couple decides to start a family; stages are
defined by the parities of the woman, from parity
zero (no children) to parity one (one child), to
parity two (two children), and so on. The process
is clearly irreversible, and it terminates when the

S1 S2 Sk
. . .

R

Figure 1 The stages of a disease

couple decides to stop reproducing. We can find
staging phenomena in many other areas, such as
metamorphosis in biology, foraging processes in
wildlife, and cascade processes in nuclear physics.
Since this process was originally proposed in [9] for
statistical studies of chronic illnesses, we shall use
chronic diseases as an example for illustration.

Denote the stages of a disease by S1, S2, . . . , Sk ,
and the death state by R. We can describe the disease
process schematically as in Figure 1. The arrows
indicate the directions in which that transitions take
place. From each stage Si , for i = 1, 2, . . . , k − 1,
the disease process may enter the next stage Si+1,
or enter the death state R. From the final stage
Sk , the process enters the death state R. We shall
derive the distribution function of the survival time
T of an individual who is in stage S1 at the initial
time t = 0.

The following identities are needed in deriving the
formulas for the distribution function, expectation and
variance of the survival time T . For proofs of these
identities, see [9] and [10].

Lemma 1. For distinct numbers λ1, λ2, . . . , λn,

n∑

i=1

1
n∏

j=1
j �=i

(λi − λj )

= 0, (A)

n∑

i=1

1
n∏

j=1
j �=i

(λi − λj )λi

= (−1)n−1 1
n∏

i=1

λi

, (B)

n∑

i=1

1
n∏

j=1
j �=i

(λi − λj )λ
2
i

= (−1)n−1 1
n∏

i=1

λi

(
n∑

i=1

1

λi

)
,

(C)
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and
n∑

i=1

1
n∏

j=1
j �=i

(λi − λj )λ
3
i

= (−1)n−1 1
n∏

i=1

λi

×



n∑

j≥i

n∑

i=1

1

λiλj



 . (D)

Intensity Functions

For an individual in stage Si a time τ, 0 ≤ τ < ∞,
let

νi,i+1β(τ) dτ = Pr{the individual will enter

stage Si+1 in (τ, τ + dτ)},
and

µiβ(τ) dτ = Pr{the individual will enter

R in (τ, τ + dτ)}

and let

νiiβ(τ) = −[νi,i+1β(τ) + µiβ(τ)],

i = 1, . . . , k − 1.

For an individual in the final stage Sk at time τ , we let

µkβ(τ) dτ = Pr{the individual will enter

R in (τ, τ + dτ)}
and

νkkβ(τ) = −µkβ(τ).

The function β(t) is such that

θ(t) =
∫ t

0
β(τ) dτ

tends to infinity as t → ∞.
While diseases develop continuously, the time

of transition from one stage to the next follows a
definite order. Suppose the transition from stage Si

to stage Si+1 takes place during the time interval
(τi, τi + dτi), for i = 1, 2, . . . , k − 1, and that 0 <

τ1 < τ2 < . . . < τk−1.

Density Function of Survival Time T

When death occurs during the interval (t, t + dt), the
individual must be in one of the states S1, S2, . . . , Sk

at time t . By definition, fT (t) dt is the probabil-
ity that the individual who is in stage S1 time
t = 0 will die in (t, t + dt). Since he may enter
the death state R from any one of the k states
S1, S2, . . . , Sk , the product fT (t) dt is the sum of k

terms:

fT (t) dt = f1(t) dt + f2(t) dt

+ f3(t) dt + · · · + fk(t) dt. (28)

Each fj (t) dt in (28) corresponds to the sequence
of transitions. S1 → S2 → . . . → Sj → R. The first
term f1(t) dt , for example, is the probability of
transition S1 → R occurring in (t, t + dt),

f1(t) dt = exp{ν11θ(t)}µ1β(t) dt. (29)

The function f2(t) dt represents the sequence of
transitions S1 → S2 → R. For the transition S1 → S2

to take place during a particular interval (τ1, τ1 +
dτ1), the probability of the sequence S1 → S2 →
R is

exp

{
ν11

∫ τ1

0
β(τ) dτ

}
ν12β(τ1) dτ1

× exp

{
ν22

∫ t

τ1

β(τ) dτ

}
µ2β(t) dt. (30)

Integrating (30) from τ1 = 0 to τ1 = t yields

f2(t) dt = ν12µ2β(t)

[
1

ν11 − ν22
exp{ν11θ(t)}

+ 1

ν22 − ν11
exp{ν22θ(t)}

]
dt. (31)

Generally, for the sequence S1 →S2 → · · · →Sj →
R,

fj (t) dt = ν12 . . . νj−1,jµjβ(t)

j∑

i=1

1
j∏

�=1
��=i

(νii − ν��)

× exp{νiiθ(t)} dt, j = 2, . . . , k. (32)
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Substituting (29), (31) and (32) in (28) gives the
density function of the survival time T :

fT (t)

= exp{ν11θ(t)}µ1β(t) +
k∑

j=2





ν12 . . . νj−1,jµjβ(t)

×
j∑

i=1



exp[νiiθ(t)]

/
j∏

�=1
��=i

(νii − ν��)









. (33)

Expectation and Variance of Survival Time T

When β(t) = 1, θ(t) = t . In this case the density
function of T is

fT (t) = µ1 exp{ν11t} +
k∑

j=2

{
ν12 . . . νj−1,jµj

×
j∑

i=1


exp{νii t}

/
j∏

�=1
��=i

(νii − ν��)








,

(34)

and the distribution function is

FT (t)

= µ1

ν11
(exp{ν11t} − 1)+

k∑

j=2





ν12 . . . νj−1,jµj

×
j∑

i=1



(exp{νii t} − 1)

/
j∏

�=1
��=i

(νii − ν��)νii









.

As t → ∞, the distribution function FT (∞) = 1,
which can be proven using (B) in Lemma 1. There-
fore, the distribution is proper.

Using the density function in (34) we find the
formula for the expectation E(T ), and then using for-
mula (C) in the lemma we simplify the formula to

the following:

E[T ] = 1

−ν11
+ ν12

−ν11

(
1

−ν22

)

+ ν12

−ν11

ν23

−ν22

(
1

−ν33

)

+ · · · +
k−1∏

i=1

νi,i+1

−νii

(
1

−νkk

)
. (35)

Each factor

νi,i+1

−νii

= νi,i+1

νi,i+1 + µi

.

in (35) is the conditional probability of transi-
tion Si → Si+1 given that a transition out of Si

takes place, while the factor (−1/νi+1,i+1) is the
expected duration of stay in stage Si+1. In other
words, the expectation E(T ) in (35) is the sum of
expected durations of stay in S1, S2, . . . , Sk , as it
should be.

The variance of the survival time T is:

var(T ) = 2




(

µ1

−ν11

)
1

ν2
11

+ ν12µ2

ν11ν22

2∑

j≥i

2∑

i=1

1

νiiνjj

+ · · · + (−1)k

(
k−1∏

i=1

νi,i+1

νii

)

× µk

νkk

k∑

j≥i

k∑

i=1

1

νiiνjj



− [E(T )]2.

The staging process described in this section is a
special case of the illness – death process, in which
transitions between states of illness may be reversible.
Another particular case is the Fix–Neyman pro-
cess.

Birth–Death Processes

The stochastic processes presented so far in this
article have been either increasing processes like
the Yule processes, or decreasing processes like
the death processes. We now consider processes
that allow a population to grow as well as to
decline, which are more relevant to the biological
and the human populations in which both births and
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deaths occur. The concept of birth–death processes
existed before the theory of stochastic processes.
Kendall [19] was among the first to seek a general
solution of the processes. Methods of solving the
differential equations have since been revised and
refined. In this section, explicit solutions for two
cases are presented.

Again, we let X(t) be the population size at time
t , for 0 ≤ t < ∞, and the transition probability

pi,k(0, t) = Pr{X(t) = k|X(0) = i},
for k = 0, 1, . . . .

Given X(t) = k, let λk(t) and µk(t) be the birth
intensity and death intensity functions, respectively.
The transition probabilities satisfy the following dif-
ferential equations:

d

dt
pi,0(0, t) = −[λ0(t) + µ0(t)]pi,0(0, t)

+ µ1(t)pi,1(0, t), (36a)

d

dt
pi,k(0, t) = −[λk(t) + µk(t)]pi,k(0, t)

+ λk−1(t)pi,k−1(t)

+ µk+1(t)pi,k+1(t). (36b)

The system of differential equations in (36) and the
initial conditions,

pi,i(0, 0) = 1 and pi,k(0, 0) = 0 for k �= i,

completely determine the probability distribution
{pi,k(0, t)}. Since the differential equations are
dependent on the intensity functions λk(t) and µk(t),
two specific forms of the intensity functions are
assumed in the following discussion.

Linear Growth

Suppose both λk(t) and µk(t) are independent of time
but proportional to k,

λk(t) = kλ and µk(t) = kµ,

where λ and µ are constant. In this case, the
differential equations (36) become:

d

dt
pi,0(0, t) = µpi,1(0, t) (37a)

and
d

dt
pi,k(0, t) = −k(λ + µ)pi,k(0, t)

+ (k − 1)λpi,k−1(0, t)

+ (k + 1)µpi,k+1(0, t),

k = 1, 2, . . . . (37b)

Each of differential equations in (37b) has three
unknown probabilities, pi,k−1(0, t), pi,k(0, t), and
pi,k+1(0, t), and cannot be solved with the meth-
ods used in the general birth process. We resort to
the method of probability generating functions (pgfs).
The pgf of X(t) is defined by

GX(s; t) =
∞∑

k=0

skpi,k(0, t),

which is a polynomial in s, the coefficient of sk

being the transition probability pi,k(0, t), for k =
0, 1, . . .. Therefore, when an explicit formula for the
pgf is derived, one can obtain the desired transi-
tion probability by identifying the coefficient of the
corresponding sk .

In addition to the probabilities, the pgf also
generates the expectation and the variance of X(t).

Using the differential equations (37) we find that
the generating function satisfies the partial differential
equation,

∂

∂t
GX(s; t) + (1 − s)(λs − µ)

∂

∂s
GX(s; t) = 0,

with the initial condition at t = 0 given by
GX(0)(s; 0) = si . The solution of the partial differ-
ential equation is:

GX(s; t) =
{

α(t) + [1 − α(t) − β(t)]s

1 − β(t)s

}i
, (38)

where

α(t) = µ
1 − exp{(λ − µ)t}

µ − λ exp{(λ − µ)t} and β(t) = λ

µ
α(t).

Now it is a simple matter of expanding the pgf as
a polynomial in s, and identifying the coefficient
of sk to obtain the formula for the probability
pi,k (0, t).
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The numerator on the right-hand side of (38) is a
binomial function:

{α(t) + [1 − α(t) − β(t)]s}i

=
i∑

j=0

(
i

j

)
[α(t)]i−j

[1 − α(t) − β(t)]j sj .

For the denominator, since clearly |β(t)s| < 1,

{1 − β(t)s}−i =
∞∑

j=0

(−i

j

)
(−1)j [β(t)]j sj

=
∞∑

j=0

(
i + j − 1

j

)
[β(t)]j sj .

Hence the probability

pi,k(0, t) =
min[i,k]∑

j=0

(
i

j

)(
i + k − j − 1

k − j

)
[α(t)]i−j

× [β(t)]k−j [1 − α(t) − β(t)]j , (39)

for k = 1, 2, . . .. For k = 0,

pi,0(0, t) = [α(t)]i

is the probability that the population will become
extinct at time t .

When i = 1, formula (38) is the pgf of the
population size at time t when the initial population
is X(0) = 1. This means that the random variable
X(t) discussed above is the sum of i independent and
identically distributed random variables, each having
the pgf defined in (38) with i = 1. In other words,
the i populations reproduce and perish independent
of each other, but their growth is subject to the same
probability law {p1,k(0, t)}.

Differentiating the pgf in (38) with respect to s

yields the expectation of X(t),

E[X(t)] = i exp{(λ − µ)t},
and the variance of X(t),

σ 2
X(t) = i

(
λ + µ

λ − µ

)
exp{(λ − µ)t}

× [exp{(λ − µ)t} − 1].

Two terms had been suggested for the birth–death
processes, depending upon the relative values of the
birth parameter λ and the death parameter µ. If λ >

µ, then the birth–death process is called supercritical;
if λ < µ, then the process is subcritical.

When λ = µ, the probabilities are

pi,k(0, t) =
min[i,k]∑

j=0

(
i

j

)(
i + k − j − 1

k − j

)
(λt)i+k−2j

× (1 − λt)j (1 + λt)−i−k+j , k > 1,

and

pi,0(0, t) =
{

λt

1 + λt

}i
.

The expectation and the variance of X(t) are

E[X(t)] = i and σ 2
X(t) = 2iλt.

Thus, when the birth rate λ is equal to the death rate
µ, the population size has a constant expectation but
an increasing variance with time t .

As t approaches infinity, the limiting behavior
of the birth–death process depends on the relative
values of the birth rate λ and the death rate µ. The
following are the asymptotic values of the probability
generating function.

lim
t→∞ GX(t)(s, t) =






1, if λ ≤ µ,
(µ

λ

)i
, if λ > µ.

(40)

Now when s = 0, GX(0; t) = pi,0(0, t) is the proba-
bility that the population will become extinct at time
t . According to (40), if the birth rate λ is smaller than
or equal to the death rate µ, then the probability of
extinction tends to unity as t → ∞, and the popu-
lation is certain to die out eventually. On the other
hand, if the birth rate λ is greater than the death rate
µ the probability of ultimate extinction is (µ/λ)i .
Furthermore, since the limiting pgf is a constant,
the population will either die out with probability
(µ/λ)i , or increase without bound with probability
1 − (µ/λ)i ; no intermediate course is possible.

The relative values of λ and µ also influence the
asymptotic values of the expectation and the variance
of X(t). As t approaches infinity,

lim
t→∞ E[X(t)] =






0, if λ < µ,

i, if λ = µ,

∞, if λ > µ,
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and

lim
t→∞ var[X(t)] =

{
0, if λ < µ,

∞, if λ ≥ µ.

When λ = µ, we have an interesting case in which
the probability of extinction tends to unity, yet the
expected population size tends to i. These seemingly
contradictory facts may be intuitively explained by
the large value of the variance. Although most
populations will eventually become extinct, a few will
attain huge sizes, so that the average size will be i.

Time-Dependent Birth–Death Process

We may generalize the birth–death process presented
above by letting both the birth intensity function λ(t)

and the death intensity function µ(t) be functions
of time t . In this case the differential equations
for the transition probability pi,k(0, t) assume the
same general form as those in formulas (37a) and
(37b) with the functions λ(t) and µ(t) replacing the
constants λ and µ, respectively.

Again we derive the formulas for the transition
probabilities pi,k(0, t) by way of the probability
generating function, Which turns out to be

GX(s; t) =
{

α(t) + [1 − α(t) − β(t)]s

1 − β(t)s

}i
, (38a)

where

α(t) = 1 − 1

exp[γ (t)] +
∫ t

0
λ(τ) exp[γ (τ)] dτ

,

β(t) = 1 − exp[γ (t)][1 − α(t)],

γ (t) = −
∫ t

0
[λ(τ) − µ(τ)] dτ.

Except for the definitions of α(t) and β(t), the pgf
is of the same general form as in (38). Consequently,
the formulas for the transition probabilities pi,k(0, t)

assume the same form as those in (39).
The expectation of X(t) is

E[X(t)] = i exp

{∫ t

0
[λ(τ) − µ(τ)] dτ

}
.

Thus E[X(t)] → ∞ if the integral diverges,
E[X(t)] → 0 if the integral approaches minus
infinity, and E[X(t)] → i if λ(τ) = µ(τ), whatever
the value of τ, 0 ≤ τ < ∞.

The probability of population extinction can be
obtained directly from the pgf by setting s = 0,

pi,0(0, t) =






∫ t

0
µ(τ) exp[γ (τ)] dτ

1 +
∫ t

0
µ(τ) exp[γ (τ)] dτ






i

,

which approaches unity if and only if the integral

∫ t

0
µ(τ) exp

{
−
∫ τ

0
[λ(ξ) − µ(ξ)] dξ

}
dτ

diverges as t → ∞. Obviously, the divergence occurs
if and only if µ(τ) > λ(τ) for every τ > 0. This
conclusion is consistent with that reached in the
consideration of E[X(t)] → 0.

Finite Markov Processes

In a finite Markov process, a system has a finite or
denumerable number of states: 1, 2, . . .. The state
of a system at time t is identified by the value of
a discrete random variable X(t). “The system is in
state j at time t” is the same as “X(t) = j”. In the
birth–death processes, for example, the state of the
system at time t was the population size at t , and
was identified by the value X(t) = k. But there was
a rather restrictive assumption that, within a small
time interval (t, t + ∆t), the population size may
increase, or decrease, by only one. We now remove
this restriction and allow a system to move from any
state in the system to any other state in the system.
And we assume that the set of states is closed and
contains no proper closed subset in the set but itself.
For a time interval (τ, t), for τ < t, τ, t ∈ [0, ∞),
we let

pij (τ, t) = Pr{X(t) = j |X(τ) = i},
for i, j = 1, 2, . . . (41)

be the transition (conditional) probabilities, with sum∑
j pij (0, t) = 1, for every i. Formula (41) shows

the stochastic dependence of X(t) on X(τ). Two
important forms of dependence are defined below:

Definition 3. A discrete-valued stochastic pro-
cess {X(t) : t ∈ [0, ∞)} is a Markov process if,
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for any t0 < t1 < . . . ti . . . < tj and any integers
k0, k1, . . . , ki, . . . , kj ,

Pr{X(tj ) = kj |X(t0) = k0, X(t1) = k1, . . . , X(ti) = ki}
= Pr{X(tj ) = kj |X(ti) = ki}. (42)

Thus, in a Markov process, given X(ti) (present), the
conditional probability of X(tj ) (future) is indepen-
dent of X(t0), . . . , X(ti−1) (past).

Definition 4. A Markov process {X(t); t ∈ [0, ∞)}
is homogeneous with respect to time, or time-
homogeneous, if the transition probability in (41)
depends only the difference t − τ and not on τ or
t separately. In such a case we may write

Pr{X(t) = j |X(τ) = i} = Pij (0, t − τ },
i, j = 1, 2, . . . . (43)

The simple Poisson process is an example of a time-
homogeneous process.

Chapman–Kolmogorov Equations

Let ξ be a fixed point in the interval (τ, t), so
that τ < ξ < t , and let X(τ), X(ξ), and X(t) be the
corresponding random variables. According to the
assumption in (42),

Pr{X(t) = k|X(τ) = i and X(ξ) = j }
= Pr{X(t) = k|X(ξ) = j } = Pjk(ξ, t)

and

Pr{X(ξ) = j and X(t) = k)|X(τ) = i}
= Pij (τ, ξ)pjk(ξ, t). (44)

Formula (44) is the probability of a passage from
X(τ) = i to X(t) = k by way of a particular state j

at time ξ . At time ξ , the system must be in one of the
states [1, 2, . . .], and the set of the states is closed,
Pr{X(ξ) = 1 or X(ξ) = 2 or . . .} = 1. Therefore,

pik(τ, t) =
∑

j

pij (τ, ξ)pjk(ξ, t)

i, j, k = 1, 2, . . . , τ < ξ < t, (45)

which is known as the Chapman–Kolmogorov equa-
tion. In the case of a time-homogeneous process, (45),
may be replaced by

pik(0, τ + t) =
∑

j

pij (0, τ )pjk(0, t),

i, j, k = 1, 2, . . . . (46)

Kolmogorov Differential Equations

Kolmogorov [22] derived two systems of differen-
tial equations for the transition probabilities pij (τ, t):
the forward differential equations, where the differ-
entiation of pij (τ, t) is taken with respect to t ; and
the backward differential equations, where the dif-
ferentiation is taken with respect to τ . When the
transition probabilities pij (τ, t) satisfy certain regu-
larity conditions, both systems may be derived from
the Chapman–Kolmogorov equation (45). Follow-
ing Kolmogorov, Chung [12], Doob [14], Feller [17],
and others have discussed in detail theoretical aspects
of these differential equations. Feller, for example,
has shown that, if

∑
j pij (τ, t) = 1, then there always

exists a unique solution pij (τ, t) that satisfies both
the forward and the backward differential equations.
In this article we shall present explicit solutions for
the individual transition probabilities pij (0, t) for
the time-homogeneous Markov processes. Reference
may be made to [7] and [11].

Let the transition intensity functions be defined as
follows:

νij∆ + o(∆) = Pr{X(t + ∆) = j |X(t) = i},
for j �= i; i, j = 1, 2, . . . , s,

and

νii = −
s∑

j=1
j �=i

νij , i = 1, 2, . . . , s.

Denote the intensity function matrix ||νij || by V.
In the time-homogeneous Markov processes, the

forward Kolmogorov differential equations are

d

dt
pik(0, t) =

s∑

j=1

pij (0, t)νjk, (47)

and the backward differential equations are

d

dt
pik(0, t) =

s∑

j=1

νijpjk(0, t), (48)
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with common initial condition

pik(0, 0) = δik; (49)

δik is the Kronecker delta, i.e. δik = 1 if k = i and
δik = 0 if k �= i.

Formulas for Transition Probabilities pij (0 , t)

Derivation of the formulas for the transition proba-
bilities requires the following result:

Lemma 2. For distinct numbers ρ1, ρ2, . . . , ρs ,

s∑

i=1

ρr
i

s∏

j=1
j �=i

(ρi − ρj )

=
{

0, for 0 ≤ r < s − 1, (50)
1, for r = s − 1. (51)

See [6] for proof of (50) and (51).
Formulas (47) are first-order ordinary differen-

tial equations with constant coefficients; the solu-
tion should be exponential functions of t, pij (0, t) =
cij exp{ρt}. Substituting the suggested solution in
(47) and canceling out the nonvanishing exponen-
tial functions yields a system of s × s simultane-
ous homogeneous equations in cij . In order for
the system to have nontrivial solution for cij , the
matrix of the coefficients must be zero. That is,
A′(ρ) = |Iρ − V′| = 0, with roots ρ1, ρ2, . . . ρs . This
means that these roots are the only values of ρ for
which the suggested solution is a valid solution for
pij (0, t).

For each root, say ρ = ρ�, there is be a system of
s × s simultaneous homogeneous equations for the
unknown cij�. Since the simultaneous equations are
homogeneous, cij� are proportional to the cofactors
of the matrix A′(ρ�), or cij� = ki�A

′
ij (ρ�), for each

�. When the roots ρ1, ρ2, . . . , ρs are distinct, the
general solution of the differential equation (47) is
the following sum:

pij (0, t) =
s∑

�=1

ki�A
′
ij (�)e

ρ�t , i, j = 1, . . . , s. (52)

At the initial time t = 0, pii(0, 0) = 1 and pij (0, 0) =
0. These initial conditions impose restrictions on
ki� in (52). Expanding each cofactor A′

ij (�) as a

polynomial in ρ�, and using the identities (50) and
(51) in the lemma, we find

ki� =



s∏

m=1
m�=�

(ρ� − ρm)





−1

.

Substituting these values of ki in (52) yields the
solution:

pij (0, t) =
s∑

�=1

A′
ij (ρ�) exp{ρ�t}
s∏

m=1
m�=�

(ρ� − ρm)

, i, j = 1, . . . , s.

(53)

The limiting probabilities can be obtained from
(53), as t approaches infinity:

lim
t→∞ pij (0, t) = Vjj

s∑

�=1

V��

, i, j = 1, . . . , s, (54)

where Vjj are the principal minors of matrix V.
The proof of this result is as follows: Since ρk < 0

for k = 2, . . . , s, exp{ρkt} tends to zero as t → ∞.
From (53),

lim
t→∞ pij (0, t) = A′

ij (ρ1)

s∏

m=2

(ρ1 − ρm)

. (55)

Here A′(ρ1) = ρ1I − V′ and ρ1 = 0; therefore,

A′
ij (ρ1)=(−1)s−1V ′

ij =(−1)s−1Vji =(−1)s−1Vjj ,

(56)

since Vji = Vjj . For the denominator in (55), we
write

(−1)s−1ρ2 . . . ρs = (−1)s−1[V11 + . . . + Vss]. (57)

Substituting (56) and (57) in (55) yields (54).
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Solution of Backward Differential Equations

Formula (53) for the transition probability also sat-
isfies the backward Kolmogorov differential equa-
tions (48). Substituting (53) in (48) yields the equa-
tion

s∑

�=1

A′
ik(ρ�)

s∏

m=1
m�=l

(ρ� − ρm)

ρ� exp{ρ�t}

=
s∑

j=1

νij

s∑

�=1

A′
jk(ρ�) exp{ρ�t}

s∏

m=1
m�=�

(ρ� − ρm)

, (58)

which holds if, for each �,

ρ�A
′
ik(ρ�) =

s∑

j=1

νijA
′
jk(ρ�)

or

ρ�Aki(ρ�) −
s∑

j=1

νijAkj (ρ�) = 0. (59)

The left-hand side of (59) is an expansion of the
determinant |A(ρ�)| using the kth row cofactors and
the ith row elements. It is equal to zero for i �=
k, and is equal to the determinant |A(ρ�)| = 0 for
i = k, since ρ� is a root of the equation |A(ρ)| = 0.
Therefore, equation (59) is true. This implies (58),
which means that (48) is satisfied.

A Time-Dependent Markov Process

When the transition intensity is a product of two
functions, one being a function of the states involved
in the transition and the other a function of the time
at which the transition takes place, we have a time-
dependent Markov process. Specifically,

Pr{X(t + ∆) = j |X(t) = i} = νij β(t)∆ + o(∆).

The corresponding differential equations are

d

dt
pik(0, t) =

s∑

j=1

pij (0, t)νjkβ(t),

i, k = 1, 2, . . . , s,

and the formulas for the transition probabilities are

pij (0, t) =
s∑

�=1

A′
ij (ρ�) exp[ρ�

∫ t

0 β(τ) dτ ]
s∏

m=1
m�=�

(ρ� − ρm)

for i, j = 1, 2, . . . , s, where A′
ij (ρ�) and ρ� have the

same meaning as those in (53).
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Stocks, Percy

Born: November 5, 1899.
Died: December 18, 1974.

After qualification in medicine and public health,
Stocks joined the public health service in Bristol,
before moving to Karl Pearson’s department at Uni-
versity College London (UCL) in 1921, where, in
1926, he became Reader in Medical Statistics. He
became Chief Medical Statistician at the General
Register Office (GRO) from 1933 until retirement in

1950. At UCL and at the GRO he conducted epidemi-
ologic studies, and at the GRO he played a leading
part in revising the International Classification of
Diseases. After retirement, he was a research fellow
in cancer until 1957, and published studies on cancer
epidemiology. In an obituary notice in the Journal
of the Royal Statistical Society, A. Bradford Hill
wrote “Percy Stocks will be remembered, nationally
and internationally, as one of the great contributors
to the development and use of medical statistics”.
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Stratification

Stratification refers in epidemiology to a design
that improves the efficiency of analytical proce-
dures to control for confounding by causing controls
to have the same distribution over strata defined
by levels of potential confounders as cases in a
case–control study or as the exposed cohort in
a cohort study (see Matching; Frequency Match-
ing). Stratification (or stratified analysis) also refers to
the analytical strategy that controls for confounding
by estimating the association between exposure and

disease status within strata defined by categorized
levels of potential confounders and then combining
stratum-specific results to obtain an overall estimate
of exposure effect (see Mantel–Haenszel Methods;
Matched Analysis).

In the context of survey sampling, stratification
is an efficient design that usually allocates larger
samples to strata of the population within which
the estimate has a large variance (see Stratified
Sampling).

MITCHELL H. GAIL



Stratified Sampling,
Allocation in

Allocation describes the size of the sample to be
selected in each stratum. The fact that a fixed sample
size can be selected from each stratum is due to
the two defining characteristics of a stratified design:
(i) all members of the population can be partitioned
into strata and (ii) samples of these members can be
selected independently among strata (see Stratified
Sampling).

Whether the total sample allocation is constrained
by fixed sampling costs or whether an estimate with
a specific variance is needed at any cost, a judi-
cious allocation of sample size to strata can result
in significant survey gains. If costs are fixed, then a
good sample allocation can produce estimates with
a smaller variance than other estimates sampled at
equal costs. If a target variance is specified for an
estimate, then a good allocation will produce esti-
mates with variance equal to costlier alternatives.
Gains in allocation are greatest when either the stra-
tum variances or differential stratum sampling costs
vary widely. To achieve a gain, only knowledge of the
relative values of stratum variances is needed. Rough
guesses of stratum variances and costs, possibly using
related data and surveys, may even be enough to
achieve large gains. Lastly, although the allocation
of sample will influence the precision of an estimate
and can reduce the cost of a sample, there is no wrong
allocation in the sense that unbiased estimates of lin-
ear population parameters can always be made from
any allocation in which each stratum is sampled.

When estimates of the population mean or pop-
ulation total are needed, proportional allocation or
the all-encompassing optimal allocation is usually
used. When individual strata estimates or estimates of
strata differences are needed, equal allocation is most
commonly used. Note that the population mean is
defined as Y = ∑L

j=1 NjY j/N·, where L is the num-
ber of strata, Nj is the number of elements in stratum
j, Y j = ∑Nj

k=1 Yjk/Nj is the stratum mean and N· =∑L
j=1 Nj is the total population size. The (unbiased)

estimator of the population mean, considered here,
is y = ∑L

j=1 Njyj/N·, where yj = ∑Nj

k∈s Yjk/nj is
the stratum mean based on a sample of size nj . The
population total is defined as Y = ∑L

j=1 NjY j with

an estimator: ŷ = ∑L
j=1 Njyj .

As its name implies, proportional allocation
involves allocating the total sample size proportion-
ally to strata size. Given that a total sample of size n

will be selected and that the number of individuals in
stratum j is Nj , the proportional allocation of sample
to stratum j is

nj = n
Nj

N
.

Even though proportional allocation is most appro-
priate when both the variability of individuals within
each stratum and sampling costs are constant across
strata, it is often employed when little is known
about the strata variances or collection costs. This
is because it is believed that a good stratification,
in producing homogeneous strata, may also produce
strata having similar variances.

An optimal allocation is the sample allocation
that produces an estimate with the smallest variance
among all sample allocations under consideration.
Note that for any allocation:

vary =
L∑

j=1

(
Nj

N

)2 (
1 − nj

Nj

)
S2

j

nj

,

where

S2
j =

Nj∑

k=1

(Yjk − Y j )
2

(Nj − 1)
and varŷ = N2vary.

If there are L strata and the variance within stratum j

is S2
j , then the optimal allocation to stratum j , when

the total sample is of size n is

nj = n
NjSj

L∑

k=1

NkSk

.

This type of allocation is also referred to as Neyman
allocation, after J. Neyman, who showed in 1934 that
it is optimal among all fixed-sized samples [6].

Costs may vary widely when the strata utilize
different sampling methods. For example, one stratum
may contain households with a telephone and another
stratum households without a telephone. Here the
cost of sampling a household with a telephone is
generally cheaper than a nontelephone household
since it involves making a telephone call instead
of a face-to-face interview. If the cost per element
in stratum j is cj , and only allocations of cost, c,
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are allowed, i.e. c = ∑L
j=1 nj cj , then the optimal

allocation to stratum j is

nj = c
NjSj /

√
cj

L∑

k=1

NkSk/
√

ck

.

This allocation finds the sample n1, . . . , nL that
minimizes vary (or, equivalently varŷ), subject to the
cost constraint c = ∑L

j=1 nj cj . An estimator based
on this allocation will have a variance smaller than
one based on any other allocation of equal cost.

A number of facts can be observed by viewing the
sample allocation formula listed above. Given equal
strata costs, the optimum allocation selects relatively
more units from strata with large variances and,
given equal strata variances, the optimal allocation
selects relatively more units from the cheaper strata.
Comparing the optimal allocation with proportional
allocation, it can be seen that proportional allocation
is, itself, optimal when the within-strata variance is
proportional to the cost. (The most common case is
when both collection costs and variances are constant
across strata.) Neyman allocation can be seen to be
optimal for a fixed cost design when strata collection
costs are constant.

Instead of a fixed cost design, an allocation may
be needed to obtain an estimate with fixed variance.
Given the same linear cost structure, the optimal
allocation with fixed variance takes the same form
as the optimal fixed cost allocation except that the
cost c is unknown and must be solved. The minimal
cost to achieve a fixed variance V is

c =

(
L∑

k=1

NkSk

√
ck

)2

N2V −
L∑

k=1

(NkSk)
2

.

Detailed derivations of all the above allocation for-
mulas are in most sampling books (see, for example,
Cochran [1] or Sarndal et al. [7]).

Equal allocation is used if estimates for individual
strata or strata differences are needed. Generally,
this will not be a good allocation for estimating
the population mean or total unless sampling costs,
stratum variances, and stratum sizes are all constant
across strata (in this case equal, proportional, and

optimal allocations are identical). Allocation for strata
means (or differences of means) is an example of
multipurpose design since the objective, now, is to
lower more than one variance. More on multipurpose
allocation will be given below.

The allocations described above apply to
unbiased, linear estimates (estimates consisting of
weighted averages of sampled values) with a linear
cost (when applicable). In reality, estimates may
be nonlinear (e.g. ratio or regression estimators)
as may be the costs. In practice, allocations for
nonlinear estimators and nonlinear costs usually are
determined by first replacing estimates and costs by
their approximate, linearized versions.

Using the basic formulas given above, a few minor
problems can arise. The allocations may not be inte-
gral valued. Also, the allocation to a stratum can
sometimes be larger than the stratum population size,
or it may be less than one. The nonintegral problem
can be bypassed by using integer programming tech-
niques that will only find optimal integral solutions.
However, rounding the allocations to their nearest
integer will give nearly optimal results. Allocations
that are out of bounds can be avoided by using lin-
ear programming techniques. This approach is not
commonly employed because it does not provide an
easy-to-use formula and the following quick fix is
usually adequate. When an allocation in stratum j

is above Nj , just select Nj from that strata and re-
allocate the remaining n − Nj to the remaining L − 1
strata using as before. This procedure can also be
applied for sample sizes smaller than one. That is,
a sample size of one is allocated to a stratum with
allocation less than one. The stratum is then removed
from the variance formula and the remaining sample
is allocated to the remaining strata. Note that since
unbiased estimates of variance require a sample size
of at least two, only allocations that include at least
two sample units per stratum are usually considered.
A more detailed explanation of correcting for alloca-
tions out of bounds can be found in [1, p. 104] or [7,
Section 12.7].

Owing to high costs per sampling unit, most sur-
veys collect many items. In such a situation, an allo-
cation is needed to provide precise estimates for every
item. An allocation that provides the minimal vari-
ance for estimates of all items is clearly impossible,
unless each item exhibits the same relative strata
variances. Since only one allocation can actually be
fielded, no allocation will be optimal for all items.
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There are, however, several compromise methods
used in practice. For example, if it is important to
measure one item with as much precision as possi-
ble, then the allocation should be based solely on
that item. Proportional allocation is also used in this
context because, if subpopulations are not of inter-
est, strata variances may be relatively constant for
most items. If a fixed precision is required for each
estimate, then the solution is clear: determine the
minimal cost sample size in which all minimum pre-
cisions are obtained. Numerical solutions requiring
linear programing methods are available to do this
(see, for example, [4]).

Fixed cost multipurpose design places a further
constraint on allocation. The concept of an admissible
allocation can be used to determine a subset of
acceptable allocations. An admissible allocation, with
respect to multiple estimators, is one which cannot
be uniformly improved on. For example, denote a
possible allocation by n. Given R estimators, denote
the variance of the rth estimator using allocation
n by var(y(r)|n). An allocation n0 is admissible if
there is no allocation, n, such that var(y(1)|n) ≤
var (y(1) | n0), . . . , var (y(R) | n) ≤ var(y(R) | n0) and
var(y(r)|n) < var(y(r)|n0) for at least one r, 1 ≤ r ≤
R. Folks & Antle [3] give the solution for all
admissible strata allocations based on R responses.
When both individual strata means and an overall
population mean are needed for one item, Bankier [2]
advocates power allocations. This method provides
a subset of admissible allocations ranging between
proportional allocation (good for populations mean)
and equal allocation (good for strata means). Graphs
of the tradeoffs in precision can be viewed to
determine an acceptable compromise.

If the measurements are all on the same scale,
an allocation that minimizes the maximum variance
(minimax) can be useful. For example, suppose that
an allocation is needed to estimate each stratum mean.
The minimax allocation that will produce estimates
of equal precision is the solution to

(
1 − n1

N1

)
S2

1

n1
= · · · =

(
1 − nj

Nj

)
S2

j

nj

= · · ·

=
(

1 − nL

NL

)
S2

L

nL

.

This solution can be determined by a numerical
search procedure. Note that if all Ni are large, then
an approximate minimax allocation is the solution
to

S2
1

n1
= · · · = S2

j

nj

= · · · = S2
L

nL

.

For a fixed sample size, the minimax solution is seen
to be

nj = n
S2

j

L∑

k=1

S2
k

,

giving equal allocation when all variances are equal.
Minimax allocations are very useful for all types

of multiple objective surveys, as was shown by
Malec [5], who employs the concept of admissible
designs to find minimax designs.
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Stratified Sampling

Stratified sampling is a probability sampling method
that is frequently implemented in sample surveys.
In general, a population’s elements (or in prac-
tice the sampling frame members) are divided into
distinct groups or strata based upon the similarity
of selected characteristics important to the survey.
Typically, each stratum is independently sampled
using a method for which an unbiased estimator
of stratum total or stratum mean can be computed.
These estimated stratum totals may then be added
to obtain an estimator for the population total. Sim-
ilarly, a stratum-weighted average of the estimated
stratum means may be computed to estimate the
overall population mean (see Estimation). Strati-
fication is used to increase the efficiency of a sample
design with respect to cost and estimator preci-
sion.

In this article we discuss the theoretical founda-
tions of stratified sampling. For simplicity, we focus
on the most elementary sampling structure, stratified
random sampling. Here, the population elements are
sampled by simple random sampling. “Real-life”
surveys tend to use stratified multistage cluster sam-
pling (see Cluster Sampling; Multistage Sampling),
but most of the elementary foundations presented
here can be extended to these more complicated
structures.

Two simple examples of stratified populations are
as follows:

1. A population of physicians is stratified by state
of practice and specialty (e.g. cardiology or neu-
rology). One such stratum is New York cardiol-
ogists.

2. A population of hospital discharged patients in
the US is stratified by region, and size of hospital
classified by bed size. A typical stratum could be
hospitals in the South with 500 or more beds.

After we establish some basic groundwork on
stratification, some actual surveys will be discussed.

Basic Foundations for Stratification

The planners of a sample survey usually start by
having a set of analytic survey objectives, includ-
ing domains of study and precision requirements for

target estimators. Additionally, costs and administra-
tive constraints are an integral part of the survey
design process. Cochran [1, Section 5.1] discusses
four principal reasons why planners consider a strat-
ified design:

1. The population contains subpopulations or sub-
domains which are of primary interest to the sur-
vey planners. When distinct estimates of known
precision are needed for these selected subdo-
mains, it is advisable to treat each subpopulation
as a “population” in its own right. Sample sizes
within a designated subpopulation stratum may
be increased to meet target precision levels.

2. It may be administratively convenient to stratify.
An agency conducting a survey may have field
offices which may be used to stratify a popula-
tion. Each field office may be responsible for the
survey administration of its part.

3. Distinct groups within a population may differ to
such a degree that different sampling procedures
are required. Also, since the population of study
may be partitioned by multiple frames with
different operational characteristics, a stratified
sample may be the only workable option.

4. Stratification may improve the precision of sam-
ple estimators of the entire population. It may
be possible to divide a heterogeneous population
into subpopulations, each of which is internally
homogeneous. Sampling variability within each
stratum should be much smaller than sampling
variability over the population as a whole. Pre-
cise estimates of the means of each stratum can
be obtained by targeted sample sizes, and then the
estimates combined to form an estimate for the
entire population. With an appropriate allocation
of sample, this estimator will be more precise
than one created from the same size sample, but
without stratification.

The gaining of precision through stratification,
as outlined in reason 4 above, can be justified
theoretically for many commonly used sampling
methods. For simplicity, the mathematical theory
presented here will focus upon simple random sample
methods and linear estimators; for example, totals and
means having a known base.

Suppose that a population of N elements has
already been divided into L strata of known sizes
Nh, h = 1, 2, . . . , L, and that stratum h contains
population elements Yhi , i = 1, 2, . . . , Nh. The true



2 Stratified Sampling

stratum population means and variances are defined
as Yh = ∑Nh

i=1 Yih/Nh and S2
h = ∑Nh

i=1(Yhi −
Yh)

2/(Nh − 1), respectively, and the true total pop-
ulation mean and variance may be expressed as
Y = ∑L

h=1

∑Nh

i=1 Yhi/N = ∑L
h=1(Nh/N)Y h, and

S2 = ∑L
h=1

∑Nh

i=1(Yih − Y )2/(N − 1), respectively.
Now, if a simple random sample (SRS) of size n

is taken from the entire population, the typical esti-
mator of Y is the sample mean, ysrs = ∑n

j=1 yj/n.
For stratified random sampling over L strata, a
random sample of size nh is taken independently
within each group. The sample stratum mean, yh =∑nh

i=1 yhi/nh, is calculated and weighted by rela-
tive stratum size to define the stratified estimator,
ystr = ∑L

h=1(Nh/N)yh. Both estimators are unbi-
ased for the true population mean – that is, E(ysrs) =
E(ystr) = Y – and they have respective variances:

var(ysrs) =
(

1 − n

N

) S2

n
and

var(ystr) =
L∑

h=1

(
Nh

N

)2
S2

h

nh

(
1 − nh

Nh

)
.

Note that for an estimator of population total, one
just multiplies the above mean estimators by N and
the variances by N2.

The impact of stratification on survey costs and
estimator precision depends upon how the sample of
n units is allocated to the strata. If the unit cost of
sampling varies by some naturally defined strata, few
survey planners would consider an unstratified sam-
ple. Most surveys are conducted under the constraint
of a fixed budget, and the survey planners must have
some ability to control sample sizes by stratum costs.
For example, the National Hospital Discharge Survey
(NHDS), a survey of hospital procedures performed
throughout the year, stratifies hospitals into those the
records of which have been automated and are served
by an abstract service and into those the records of
which must be processed manually. An “automated-
record” hospital costs considerably less to sample and
process than a “manual-record” hospital. This topic
of optimal sample allocations with respect to cost and
precision requirements is discussed in greater detail
in Sukhatme et al.[7, Chapter 4] (see Stratified Sam-
pling, Allocation in).

For surveys in which sample unit costs are identi-
cal over strata, both stratified and nonstratified sam-
pling can readily be compared for various allocations

of a fixed total sample size n. First, under some mild
conditions it can be shown that the optimal allocation
of the total sample size n into L independent samples,
nh, is defined by

nh = n
NhSh

L∑

h=1

NhSh

,

with Sh the stratum population standard deviation.
This is referred to as the Neyman allocation. This
is optimal in the sense that var(yNeyman) ≤ var(ystr)

for any other stratified sample allocation. Intuitively,
the largest strata are the most important in estimating
the population mean, and more sample should be
allocated to the large strata. Also, the strata with the
largest dispersions require more sample for precise
estimation. The proportionality factor NhSh can be
can be thought of as a combined measure of these
two intuitive concepts. In practice, a true Neyman
allocation is rarely implemented, because the true Sh

is usually unknown. Instead, survey planners use a
variable that has a close relationship with the variable
of interest. For example, in the NHDS discussed
earlier, hospitals are stratified in part by geographic
location, type of hospital, and bed size. Bed size is
positively correlated with the number of discharges
that a hospital produces and could be used to define
a Neyman allocation.

Another commonly used stratified sampling me-
thod is proportional sampling, where nh = n(Nh/N).
In practice, this method is easy to implement pro-
vided that the true sizes, Nh, of the strata are known.
If the Sh do not deviate much by strata, then propor-
tional sampling will be close to the Neyman optimal.
If the strata sizes Nh are large, then the follow-
ing relationships among the variances for Neyman,
proportional, and unstratified SRS sampling can be
established:

var(ysrs) = var(yprop) + (1 − n/N)

n

×
L∑

i=1

(
Nh

N

)
(Y h − Y )2

with

var(yprop) =
(

1 − n

N

)(
1

n

) L∑

h=1

(
Nh

N

)
S2

h
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and

var(yprop) = var(yNeyman)+ 1

n

L∑

i=1

(
Nh

N

)
(Sh − S)2.

From the above two equations, one sees that the
proportional allocation will provide a sampling vari-
ance at least as small as an unstratified simple ran-
dom sample. The greatest sampling efficiencies occur
when the true stratum means vary to a large degree.
Neyman allocation will reduce the variance by a
factor proportional to the variance of the stratum
standard deviation. It should be noted that for a
fixed proportion allocation on the same strata, both
var(yprop) ≤ var(ysrs) and var(xprop) ≤ var(xsrs) for
different characteristics y and x. This is an attrac-
tive property of stratified proportional sampling. For
a Neyman allocation determined by a variable y, but
also used for an other unrelated survey variable x,
it is possible that var(xNeyman[y]) ≥ var(xsrs). Such
a phenomenon may occur if Sh(x) and Sh(y) are
negatively correlated. For example, in a population
stratified by income level, a Neyman allocation tar-
geted to estimate occupational work-loss days would
probably be quite inefficient for estimating health
insurance coverage for the unemployed. Thus while
proportional sampling may not be optimal, it would
be a safe strategy to use when several different
variables are to be estimated using the same sam-
ple.

While stratified proportional sampling reduces
the variance relative to unstratified SRS, Kish [3,
Section 3.4] points out that, in practice, the relative
gains may be only small or moderate. This is because
survey planners do not have population variables
available to define a highly efficient stratification.
A special case of interest is the impact of stratifica-
tion on estimating a population proportion, p. Here,
the population variance is p(1 − p), and the stratum
variance becomes S2

h = ph(1 − ph), with ph the stra-
tum proportion. The nature of this variance makes
it somewhat insensitive to stratification if the result-
ing strata phs are in the central range of 0.20–0.80.
However, for stratified cluster sampling, typical in
major surveys, the efficiency gains for proportional
sampling are greater than the element sampling dis-
cussed here.

If the strata themselves are of interest and com-
parisons are to be made among strata, then the

individual stratum estimates, yh, and not the aggre-
gate, ystr, are most important in meeting precision
requirements. Equal allocation of sample to strata,
nh = n/L, could be used. In such cases, especially
when the strata sizes, Nh, vary greatly in size,
var(ystr) may exceed var(ysrs). For several compu-
tationally detailed examples of the stratified random
sampling method, the reader is referred to Levy &
Lemeshow [4].

The above discussion has assumed that a mean
or total for an entire population is the target of
estimation. Also important is the subdomain or sub-
population estimator. Frequently, subdomains dictate
the main precision requirements of a survey. The
estimation of the mean of a population subdomain
is a special case of ratio estimation (see Ratio and
Regression Estimates). Here, the target population
parameter is

Y D =

N∑

i=1

Yiδi

N∑

i=1

δi

,

where δi = 1 if unit i is in subdomain D and 0 if not.
A combined ratio estimator is yD,strc = (yd)str/dstr,
where the (yd)str and dstr are the stratified estimators
of the numerator and denominator of Y D. For this
ratio estimator, the denominator may be random, and
the linearization method may be used to derive
approximate variance formulas.

Real Examples of Stratified Sampling

The following examples are taken from the National
Center for Health Statistics (NCHS) family of
surveys. They should be typical of the large-scale
surveys conducted by government agencies to pro-
duce official statistics. The somewhat involved design
structures of the NCHS surveys, as with most large-
scale surveys, require some oversimplification to con-
ceptualize the fundamentals. Furthermore, the design
structures of NCHS surveys tend to change over time
as objectives change. Most of the examples below
should be considered as core design structures which
will be somewhat modified for any specified year.
The reader should refer to the NCHS references
to get a more thorough description of any specific
survey.
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Example 1: National Maternal and Infant Health
Survey (NMIHS)

One component of the NMIHS targets mothers who
have recently given live birth or experienced fetal
or infant death. Sample mothers are contacted by
mail or telephone whenever possible. With this mode
of data collection, certificates of live births, certifi-
cates of infant death, and official reports of fetal
death are used as sampling frames. These frames
are stratified and sampled as follows. Since birth
and death records are collected and processed within
a registration area, typically a state, these areas
define an imposed administrative stratification. Moth-
ers of low-birthweight infants and of black infants
are specific targets of investigation. To meet these
two study objectives, the live-birth certificates are
partitioned by black and nonblack status and then
cross classified by the infant’s birthweight to form
race–birthweight strata within each state. Simple ran-
dom samples are taken within each stratum, but
to meet precision goals for low-birthweight and/or
black infants, these particular strata are oversam-
pled, i.e. nB/n > NB/N , where B is any oversampled
stratum.

Example 2: National Ambulatory Medical Care
Survey (NAMCS)

For NAMCS, the target population consists of all
patient visits to physicians engaged in office-based
practice in a given year. The mode of data collection
for this survey involves an experienced interviewer
conducting face-to-face interviews with the sampled
physicians. To keep costs manageable, a stratified
multistage cluster sample is used. The primary sam-
ple units (PSUs) are a sample of “representative”
counties (or equivalent territorial divisions) from a
stratification of all counties in the US. Counties are
stratified within four regions of the US by criteria
involving the similarity of US Bureau of Census clas-
sifications (e.g. metropolitan status) and Decennial
Census statistics available at the county level (e.g.
county income or minority populations). PSUs are
selected by sampling with probability proportion-
ate to size. The size used for the NAMCS’ PSUs has
been the person population size, not the number of
physicians. For cost considerations, the same sampled
counties have served as sampled PSUs for other sur-
veys. Since the sizes of the person population and

physician population in a county are highly corre-
lated, little efficiency is lost. Next, a sampling frame
of licensed physicians taken from recent professional
directories is created. This frame associates physi-
cians with the counties and, furthermore, the physi-
cians’ specialty (e.g. family practice or neurology) is
available on the frame. Ambulatory care should vary
somewhat by the physicians’ specialty, so within each
sampled PSU the physicians are then substratified
by specialty. Physicians are selected within specialty
substrata by SRS, in such a way that over the first
two sampling stages, any physician in the US has
the same probability of being in the sample. This is
called a self-weighting sample and may be expressed
as follows.

If a physician b lives in PSU a then

Pr(b is sampled) = Pr(b sampled given PSU a is

sampled) Pr(PSU a is sampled)

=
(

nah

Nah

) (
Ma

Ms

)
= 1

SI
,

where Ms is the size of the stratum containing PSU
a, Ma is the size of county a, Nah is the size of the
specialty substratum h in PSU a, SI is a sampling
interval determined to meet design objectives, and
nah = (Nah/Ma)(Ms/SI) defines the sample size of
physicians to be taken from substratum h in county
a. Finally, a SRS sample of about 30 patient visits
is sampled from each physician’s practice. The size
at this level is determined so not to burden the
physicians.

Example 3: National Health Interview Survey
(NHIS)

The NHIS, a major health survey sampling about
50 000 households and about 120 000 persons, is
conducted annually over the US noninstitutionalized
population. It targets numerous health variables on
age–race/ethnic–sex domains for specified precision
levels. The mode of data collection involves a face-
to-face interview which requires a stratified multi-
stage geographic cluster sample to be cost effective.
The target population is not directly available as
a sampling frame, but is covered for the most
part by two distinct frames. An area sample frame
consisting of small geographic areas with dwelling
units covered by the most recent US Decennial
Census includes most of the target population. To
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keep the coverage current, a frame consisting of
places where new residential housing has been con-
structed since the last Decennial Census is also
created. The former frame contains Decennial Cen-
sus social–economic–demographic information, but
the latter frame contains only location. For the sur-
vey design implemented from 1995 to 2004, a survey
objective is to make the NHIS more conducive to
possible future dual frame surveys at the state level.
This objective results in the population primary sam-
pling units (PSUs), counties (or equivalents), being
stratified within each state by metropolitan status and
poverty status. Large states have more strata than
small states. For national statistics, this stratification
is not as efficient as one that would allow stratum
geographic boundaries to cross state borders. Within
each PSU, smaller geographic units, called segments,
are classified into 20 race–ethnicity substrata by the
density of black and Hispanic populations covered by
the area frame, and into a substratum containing the
new construction frame.

At the first stage of sampling, either one or
two PSUs are selected from each stratum, with
probability proportional to population size. The very
large population PSUs – for example, New York
City and Los Angeles – are self-representing; that is,
they are in the sample with certainty. At the second
stage, a SRS sample of segments is taken from each
race–ethnic substratum within a sampled PSU. At
the third stage, all black or Hispanic households are
sampled within each segment, while a SRS of the
complement households is taken. The second- and
third-stage SRS sample sizes are defined in such
a way as to obtain precise estimates for minority
populations. The end result is that black and Hispanic
samples are a much greater proportion of the sample
than are their population proportions. This allows
for precise estimation on small minority age–sex
subdomains.

Example 4: National Health and Nutrition
Examination Survey (NHANES)

The NHANES family of surveys assess the health of
the noninstitutionalized population. They are much
more in-depth than the NHIS in that they target
about 30 000 sample subjects to be given a complete
physical examination. This examination is conducted
in a specially designed mobile examination center,
and it takes 6 years of data collection. Opera-
tional constraints and costs dictate that only about

89 geographic sites in the US can be visited, each
for a period of about one month to collect data.
NHANES planners have the objectives of measur-
ing hundreds of health related variables for 52 dif-
ferent age–sex–race/ethnic subdomains of the US
population, with an emphasis on black and Mexican-
American domains. A comparison of domain con-
siderations dictates that each domain should have a
sample size of 560 or more to meet the following
precision requirements:

1. If D is a targeted domain, then se(p̂D)/E(p̂D) ≤
0.30 whenever E(p̂D) = 0.10 (relative standard
error requirement).

2. If D1 and D2 are two distinct targeted domains,
then a test of hypotheses (see Hypothesis Test-
ing) H0 : E(p̂D1 − p̂D2) = 0.0 vs. H1 : |E(p̂D1 −
p̂D2)| ≥ 0.10 should have power at least 0.90 for
a size 0.05 test.

A county is the primary sampling unit, just as
in the NHIS. While age and sex define domains
of interest, and one might expect health variables
to differ on these domains, age and sex make poor
stratification variables when aggregated at the county
level. This is because counties vary little in their pro-
portional age–sex composition. On the other hand,
race–ethnic aggregates make good county stratifiers,
since they vary greatly by county. NHANES used
Decennial Census information on race/ethnicity along
with income and metropolitan status to stratify the
counties into 47 strata. Unlike the NHIS, the mea-
sure of size of a county is not the total population,
but a composite measure that placed more weight
on a county’s black and Mexican-American compo-
nents. One or two counties are sampled from each
stratum, and then multiple stage sampling is used to
obtain a sample of persons. The precision objectives
for minority populations leads to the black, Mexican-
American, and the white/other populations to have
approximate sample proportions of 0.30, 0.30, and
0.40, respectively, while the population proportions
are about 0.13, 0.07, and 0.80, respectively.

Defining Strata

The discussion so far has considered sampling meth-
ods while treating the strata as already given, but
the construction of the strata themselves is also
important. Some basic issues involve the selection
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of stratification variables, the boundaries between
strata, and the number of strata to use (see Särndal
et al.[6, Chapter 12]). Most optimality results cannot
be implemented in practice, due to limited popula-
tion information, conflicting design objectives, cost
considerations, and administrative restrictions. Fre-
quently, survey planners consider several stratified
sampling options with respect to cost and precision
to determine a design that will perform well over a
wide spectrum of target variables; the selected design
may not be optimal for any given variable.

Some stratification boundary defining rules have
been studied under theoretic conditions. The best
known is the cum

√
f rule. This rule states that

if y is a continuous variable, and f (y) is the
density function of y with support [AL, AU ] then an
approximate optimal stratification of the population
into H units with boundaries AL = a0 < a1 < a2 <

. . . < aH−1 < aH = AU, each to be sampled by the
Neyman allocation, would result from creating the H

strata in such a way that

∫ aH

aH−1

[fY (y)]1/2 dy = 1

H

∫ AU

AL

[fY (y)]1/2 dy.

That is, each stratum accounts for 1/H of the total
integral of

√
f . In practice, a variable related to y

would be used. Using a histogram approach, Cochran
[1, Section 5.A.7] provides a computational example
of this method.

For element sampling, it is suggested by Kish [3,
Section 3.6I] and Cochran [1, Section 5.A.8] to keep
the number of strata modest in size. This suggestion is
based in part on some simple theoretic structures. Let
y be a linear regression on x, with ρ the correlation
between y and x in the unstratified population. If the
population is partitioned into L strata defined by the
variable x, using the optimal strata boundaries along
with sample sizes of n/L in each stratum, then

var(ystr)

var(ysrs)
≥

[
ρ2

L2
+ (1 − ρ2)

]
.

As L becomes large, the lower bound tends to (1 −
ρ2), and a point of little return in variance reduction
can be established. For ρ < 0.95, little reduction
occurs for more than six strata. This argument would
assume that, overall, estimators rather than individual
stratum estimators are important.

Stratification after Sampling

Frequently, variables well-suited for partitioning the
population into strata do not exist before sampling. In
this case, an estimation technique, called poststratifi-
cation can be used. Here, the sampled data are
stratified after sampling, and then an estimator for
population mean or total is created as if the sam-
ple had come from a presample stratification. More
precisely, in the case that a simple random sam-
ple of size n is taken from an unstratified popula-
tion, the sample is first poststratified into H strata,
with sample stratum means yg , for g = 1, 2, . . . , H ,
and then a poststratified mean estimator is defined:
ypstr = ∑H

g=1(Ng/N)yg, where Ng/N are the popu-
lation totals of the poststratification classes (see [8,
Section 11.6]).

While the functional forms of the stratified and
poststratified mean appear identical, there are some
important distinctions as to implementation and
statistical properties. First, selected poststratifica-
tion classes must have known population sizes (or
independently known accurate estimates of size).
For example, in large-scale surveys, age–race–sex
classes are frequently used for poststratification, since
the US Bureau of the Census produces very accurate
national tabulations, which it updates quarterly. How-
ever, a poststratification on a health status variable
would be difficult, since the true class totals could not
be obtained. Second, the sample sizes, ng , observed
within the poststratification cells are themselves ran-
dom variables. If these sample sizes are reasonably
large, perhaps having ng > 20 in each class, then this
method is almost as precise as the proportional strat-
ified sampling discussed earlier. This method can be
extended to more complicated sampling schemes.

Other Stratification Issues

In many large-scale surveys, the process of creat-
ing multiple levels of stratification and simple ran-
dom samples can become quite involved. Instead, a
process called implicit stratification along with sys-
tematic sampling is used [5]. For example, for an
official survey of a metropolitan area, the US Bureau
of the Census may provide a large sampling frame
which partitions the area into identified blocks along
with each block’s urban status (central city or not),
percentage minority population, and median income.
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This frame may be sort-ordered by these variables.
This example is a three-layer implicit stratification.
Next, a systematic sample, say 1 of every 50 blocks or
sampling interval of 50, can be taken from the ordered
frame to obtain the sample. This method is very easy
to implement and has frequently been used to obtain
the within PSU samples of many NCHS surveys. The
expected systematic sample sizes are proportional to
the total size within any sort level. For variance
estimation purposes, coarse levels containing large
samples are often treated as stratified proportional
samples. This facilitates analysis using conventional
software (see Software for Sample Survey Data).

Well-designed surveys plan a method to compute
unbiased estimators of variance for the basic total
and mean estimators. In large-scale multistage cluster
samples, such as NAMCS or NHIS, some strata may
have only one sampled cluster. In such cases, no
unbiased estimator exists. For such cases, collapsed
strata may be created for variance estimation (see
[2, Section 8.6]). Original strata may be collapsed by
combining strata with similar stratum characteristics.
The sampled clusters within a collapsed stratum are
treated as having been sampled with replacement (see
Sampling With and Without Replacement).
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Stroke

World Health Organization criteria define stroke in
humans as a sudden onset of signs of focal or global
disturbance of cerebral function lasting more than
24 hours unless interrupted by surgery or death, with
no apparent nonvascular cause [39]. For example,
stroke can be characterized by the sudden loss of
the ability to use the right hand and arm, the loss
of the capability to produce and comprehend speech,
or the loss of ability to see to one side. The causes
of stroke vary. The most common is the sudden
occlusion of a brain artery by a blood clot (ischemic
stroke). Another cause is bleeding from a brain artery
into the brain itself (intracerebral hemorrhage) or
into the fluid-filled space around or within the brain
(subarachnoid hemorrhage). Stroke is a major cause
of morbidity and mortality in the world. In the US and
other industrialized countries stroke is the third most
common cause of death [2]. Although mortality has
been in an accelerated decline from 1965 to 1985,
studies suggest the decline is primarily attributable
to a decrease in case–fatality rates rather than a
decrease in incidence [4, 40].

Of the 500 000 strokes that occur each year,
only 100 000–150 000 are fatal [2]. For most patients
who survive a stroke, there is wide variability in
impairment of physical and neurological function.
Symptoms are highly dependent on time from stroke
onset. During the course of disease, symptoms usu-
ally worsen, then gradually improve, albeit usually
not completely. The disability can be a personal
disaster for the patient. Loss of independence or a
prolonged period of nursing home care is a common
outcome [30].

Historical Development

Until 1995 no treatment was available for stroke.
Studies focused on describing the epidemiology of
stroke and on clinical trials of interventions for
primary or secondary stroke prevention. Studies of
mechanisms and etiology initially were restricted to
animal models. With the advent of safer methods of
measuring cerebral blood flow and the development
of noninvasive imaging techniques such as nuclear
magnetic resonance imaging and positron-emission
tomography, humans could be studied (see Image

Analysis and Tomography). The intense pain that
accompanies a myocardial infarction, bringing pat-
ients quickly to the hospital, is rarely present in
patients with stroke. Patients attribute symptoms to
“flu” or symptoms go unnoticed because observers
believe the patient was “sleeping”. Also, in pre-
vious years, when there was no available treat-
ment, patients with strokes were a lower priority
for transport by emergency medical systems. Thus,
few patients have been available for study early in
their disease. With the advent of a treatment for
stroke that must be given early in the course of
the stroke [33], and more education of the public
about the signs and symptoms of stroke, there may
be more patients available for study early in the
course of their stroke. However, the introduction of
effective therapeutic strategies presents the medical
community with new challenges. Efficient detection
of treatment effects among the diverse outcomes
for patients with stroke is often difficult. Given the
traditional focus on risk factors and secondary pre-
vention where the outcome is presence or absence of
stroke, and given the types of symptoms that charac-
terize stroke, standard tools for evaluating different
degrees of disability due to stroke have developed
slowly.

Types of Study

Risk factors for stroke have been identified both ret-
rospectively, using case–control methodology, and
prospectively. Methods of preventing stroke, both ini-
tially in high-risk individuals and secondarily after
an initial stroke, and approaches to stroke treat-
ment have been studied using standard clinical trials
methodology.

Landmark Studies

Prospective epidemiologic studies of stroke risk fac-
tors include the Framingham Study and Honolulu
Heart Study that assessed stroke as an adjunct to
cardiovascular disease, and studies in Japan, Swe-
den, Denmark, Norway, Finland, the Netherlands,
and Australia. Whisnant et al. reference and dis-
cuss these epidemiologic studies in their report on a
case–control study of stroke risk factors in Olmsted
County, Minnesota [38]. Sacco [30] also provides a
summary of some case–control studies of stroke risk
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factors. Primary risk factors include age, gender,
race/ethnicity, heredity, hypertension, diabetes melli-
tus, ischemic heart disease, transient ischemic attack,
atrial fibrillation, mitral valve disease (other than pro-
lapse), and current smoking (although not in Japan).

Landmark studies of stroke prevention included
studies of both surgical and nonsurgical treatments. A
major surgical trial was the Extracranial/Intracranial
(EC/IC) Bypass Trial [10], notable because surgery
was found to be no better than best medical care.
Although the results of this trial generated great
debate, the results were accepted by the medical com-
munity and the procedure is now rarely used in stroke
prevention. Three other landmark primary stroke pre-
vention trials of surgical procedures were the North
American Symptomatic Carotid Endarterectomy Trial
(NASCET) [25], European Carotid Surgery Trial
(ECST) [12], and Asymptomatic Carotid Atheroscle-
rosis Study (ACAS) [3]. In contrast to the EC/IC trial,
these trials demonstrated the effectiveness of carotid
endarterectomy in reducing the incidence of subse-
quent strokes for those with symptomatic and asymp-
tomatic severe carotid artery stenosis (60–70%).
Dyken [9] provides a summary of these and other
landmark primary and secondary prevention stud-
ies through 1992, including the Physicians’ Health
Study [31]. The latter study, while a landmark for
cardiovascular disease prevention, gave equivocal
data on the usefulness of aspirin in preventing stroke,
suggesting heart and brain are different in their
response to treatment. A meta-analysis of random-
ized trials of cholesterol reduction provided another
example of the potential difference between heart and
brain. Based on their meta-analysis, Aitkins et al.
concluded that lowering serum cholesterol did not
reduce stroke morbidity or mortality in middle-aged
men [1].

In the early 1990s several emergent stroke treat-
ment trials were initiated. In 1995, the National Insti-
tute of Neurological Disorders and Stroke (NINDS)
t-PA Stroke Treatment Trial investigators reported
a beneficial effect for patients with acute ischemic
strokes treated with tissue plasminogen activator (t-
PA) within 180 minutes of stroke onset [33]. The
genetically engineered drug, t-PA, was previously
used to break up clots in patients with heart attacks.
The success of t-PA opened the field of stroke to a
plethora of new treatment trials aimed at salvaging
brain function after an ischemic stroke. At the same
time, new surgical procedures showed some promise

in treating hemorrhagic stroke [22] and Nimodipine,
a calcium channel blocker, was shown to be effective
in treating subarachnoid hemorrhage [27].

Statistical Concepts, Problems, and
Techniques

Outcome Measures

Standard statistical approaches for prevention trials
and risk factor studies can be applied in stroke. For
modeling recurrent stroke, Foulkes suggests that a
linear hazard rate function may fit better than the
more commonly used proportional hazard function
or other parametric approaches [13] (see Parametric
Models in Survival Analysis). For studies estimat-
ing incidence and mortality, the biases noted in many
hospital or clinic-based studies pertain [11, 14, 32].
Stroke treatment trials present more of a challenge
to statisticians. By contrast to cardiovascular trials,
mortality is seldom considered the sole outcome for
stroke treatment trials, since, as noted above, most
patients survive. Of the outcome measures avail-
able in the late 1990s, there was no single accepted
measurement for quantifying stroke-related disabil-
ity or the course of stroke recovery. Many trials
use the Barthel Index [21], a measure of functional
status. Other common measures include the Rankin
Scale [29] and the Glasgow Outcome Scale [17],
more general summary measures than the Barthel
Index, and outcomes such as the National Insti-
tutes of Health (NIH) Stroke Scale [6], the Cana-
dian Neurological Scale [7], and the European Stroke
Scale [16] that measure neurological function. The
outcome measures are highly correlated but each
scale or index gives slightly different information
about the patient’s disability [8, 24].

Quantification of infarct volume or brain func-
tion with methods such as computerized tomography
or measures of cerebral blood flow has only dupli-
cated with technology the immense complexity of
the clinical assessment of neurological conditions.
Measurements of infarct volume are intuitively sim-
ple, but in practice tediously difficult and, to date,
of limited value compared with the relative ease of
determining more clinically relevant functional out-
comes.

Clinical interpretation of the numeric value of the
scale score also presents challenges. For example, a
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10-point difference in the means between two treat-
ment groups for a scale such as the Barthel Index
or NIH Stroke Scale is difficult for both patients and
clinicians to interpret. Using scores as a continuum
of numeric values requires that a value be placed on
death, and scales such as the NIH Stroke Scale or
Barthel Index do not provide such a value in their
scoring system. Hallstrom describes one approach
for stroke trials, based on developing a consensus
among clinicians as to the score for death [15]. For
scales measuring neurologic or physical disability, the
overall summary score may have limited meaning as
the scale is composed of multiple components, any
one of which can represent a serious disability. To
avoid interpretation of a continuous measure, some
stroke trials require a specified degree of patient-
specific improvement from baseline. In other trials,
investigators dichotomize scales into favorable or
unfavorable outcomes or into “cure” vs. “no cure”,
considering these outcomes more clinically meaning-
ful [5, 33]. Categories or approaches to dichotomiza-
tion should be chosen before starting the trial and
they should represent clinically meaningful categories
for the intervention being tested. A treatment such
as t-PA that is expected to have severe side effects
such as hemorrhage and potentially large benefits
might be categorized differently than an intervention
expected to have few expected side effects and mod-
erate benefits. Dichotomization or categorization of
scores allows deaths to be assigned to the category
representing the worst outcome.

Methods of Analysis

The choice of the method of analysis is also an
issue. A J-shaped or U-shaped distribution is typical
for many outcome measures in stroke trials. Lesaf-
fre et al. [20] give an example for the Barthel Index.
Where there are equal sample sizes, skewness alone
does not affect validity of the t-test (see Student’s
t Statistics) [23]. However, sample size calculations
for the t-test and the Wilcoxon–Mann–Whitney
nonparametric test suggest that a binary categoriza-
tion of the data and analysis by chi-square test
or other approaches such as logistic regression can
reduce the required sample size (see Sample Size
Determination for Clinical Trials) [35]. Logistic
regression with multiple ordered categories, partic-
ularly when death is considered a category, should
be considered cautiously in analyzing stroke-related

data, as it is possible that underlying assumptions may
be violated.

Global Tests

A global test provides a single test statistic for
comparing groups that combines correlated infor-
mation on multiple outcomes per individual. Global
tests for continuous and binary data are described
by O’Brien [26], Pocock et al. [28], Lefkopoulou
et al. [18] and Legler et al. [19]. Global tests have
application to stroke trials since, as noted previously,
no single outcome measures all degrees of disability
after stroke. Of interest is whether there is a prepon-
derance of evidence that patients in the intervention
group experience a better outcome than patients in
the control group using multiple measures of dis-
ability. For dichotomized outcomes, we can calculate
a Wald statistic (see Likelihood) using generalized
estimating equations (GEE) with a log link to take
correlations among multiple outcomes for a single
individual into account. We can obtain an odds ratio
and its confidence limits in addition to a P value.
The odds ratio can be useful to clinicians in their
interpretation of stroke trial data. The GEE approach
also allows for inclusion of covariates, important for
stroke trials where baseline covariates must be taken
into account (see Baseline Adjustment in Longitu-
dinal Studies). Tilley et al. [34] describe the use of
global testing in the NINDS t-PA Stroke Trial [33].

The global approach differs from Hotelling’s T2,
a statistic that tests whether there is a treatment asso-
ciation with multiple outcomes, despite the direction
of the association across the outcomes, a question
of little interest in stroke trials. The global approach
to the analysis of stroke trial data also differs from
the composite outcome often used for cardiovascular
disease. In cardiovascular disease, we may consider
a patient a treatment failure if the patient has a new
myocardial infarction or dies or has severe angina
or perhaps severe congestive heart failure requir-
ing hospitalization. This is considered a composite
outcome. For stroke trials we could construct a com-
posite outcome by defining a category for failure on
each scale of interest (Barthel, NIH Stroke Scale,
Rankin, etc.). However, considering a patient a fail-
ure because of a failure on only one of multiple
outcomes may set too stringent a criterion. Con-
versely, requiring a patient to have a favorable result
on every outcome to be a success might be too
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stringent. The power of a composite test as com-
pared to the global test depends on the correlation
among outcome measures, but is generally less than
the power of the global test [18]. The power of the
global test is greater than or equal to the power of
any test of a single outcome included in the global
test and power is greater than adjusting for multiple
outcomes using a Bonferroni approach [28]. Thus
the use of global tests in stroke trials can potentially
reduce sample sizes, if the investigator is willing to
have less power to detect differences in individual
outcomes.

Anticipated Developments and Unresolved
Problems

The primary unresolved problem in the study of
stroke remains the definition of an outcome (see
Outcome Measures in Clinical Trials). Given that
t-PA has been shown to be effective for only a
brief interval after stroke onset and has a risk of
hemorrhage, many other treatments for stroke are
now under investigation. These trials, even those
that are not successful, will provide more informa-
tion on stroke outcome measures and may lead to
the development of new measures. There is also the
potential for further development of existing outcome
measures. Researchers using the SF-36 measure,
which assesses health-related quality of life [37],
have quantified scales that incorporate several dimen-
sions of an outcome by calculating scores for each
dimension measured by the scale rather than an over-
all score. As yet, such an approach to analyzing the
Barthel Index or NIH Stroke Scale as a set of scores
for different dimensions of disability has not been
thoroughly evaluated. Also, as technology improves,
as magnetic resonance imaging can be done more
quickly and becomes more widely available, and as
statistical methodology in this field develops, this
technology may become more useful as an out-
come measure or in identifying subgroups of stroke
patients who could benefit from different types of
therapies.

A potential analytic development relates to the
measure of association in global testing. The use
of the odds ratio as a measure of association in
global testing has only partially solved the problem of
clinical interpretation. Relative risk as a measure of
association is sometimes preferred for clinical trials.

Work is currently in progress to expand the work of
Wacholder [36] to allow computation of relative risks
rather than odds ratios when using global tests.

Another anticipated development will be the use
of Phase II trial methodology in stroke. The Phase II
approach in stroke is as yet untested and may identify
potentially beneficial treatments more quickly for
Phase III testing. Most stroke trials consider short-
term outcomes (3–6 months after stroke) but have
been using Phase III approaches to the design of pilot
trials, adding to the time and cost of stroke research.

Because of the advent of a successful stroke treat-
ment and the upsurge of interest in studying stroke,
stroke will be a fertile area for biostatistical research.
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Structural and Sampling
Zeros

Structural and sampling zeros are cells with zero fre-
quency in contingency table models formed by the
cross-classification of categorical variables. Structural
zeros arise because of the impossibility of observing a
given combination of categorical factors comprising
a contingency table. That is, structural zeros occur
with probability equal to one. In contrast, sampling
zeros occur with probability less than one, which is
a function of table size, sample size, and the patterns
of association between the factors pertaining to the
table.

The focus on structural and sampling zeros relates
closely to loglinear models and associated lack-of-fit
statistics. The ensuing results extend in a straight-
forward manner with minor modifications to logistic
regression models involving categorical covariates,
as these models are derived from loglinear mod-
els [9]. We do not address logistic models with con-
tinuous covariates here, since the corresponding con-
tingency tables are typically too complex to consider
in terms of sampling zeros.

Structural Zeros

Many examples of structural zeros occur in biomed-
ical studies. For example, in the cross classification
of sex with cancer type, structural zeros occur for
the following combinations: females and testicular
or prostate cancer, and males and ovarian or uterine
cancer.

The ease of accommodating structural zeros
depends upon the method of analysis. Com-
monly used data analysis packages such as SAS
(see Software, Biostatistical), generally offer two
different ways of analyzing contingency table data:
(1) chi-square and associated statistics (e.g. exact
tests and measures of association) based upon cross-
classification tables (e.g. PROC FREQ in SAS); and
(2) model-based analyses (e.g. PROC LOGISTIC in
SAS; and the glm function in S-PLUS). With the first
approach, it is difficult if not impossible to accom-
modate structural zeros. In contrast, the modeling
approaches provide much flexibility in this regard.
If the data analyst wants to impose a structural
zero, then he or she may take one of at least three

approaches: (i) omit the corresponding cases from the
analysis; (ii) assign weights of zero to these cases and
one to the remaining cases; or (iii) fit unique param-
eters to the cases corresponding to the structural
zero. Under all of these approaches, the data analyst
should determine any collinearity among covariates
resulting from omitting structural zero cases. One
may deal with such collinearities as in any regres-
sion context; for example by removing one or more
covariates from the model. Such adjustments allow
the degrees of freedom for a particular model to be
computed in a conventional way by packages such
as SAS (e.g. PROC GENMOD and PROC LOGIS-
TIC). These adjustments for structural zeros assume
that maximum likelihood or weighted least squares
methods are employed to fit the models of interest.
Under another estimation approach, iterative pro-
portional fitting, one sets initial table frequencies for
structural zeros to zero at the start of the algorithm,
such that final estimates for the corresponding cells
are zero. Bishop et al. [4] address this issue, in addi-
tion to discussing different patterns of structural zeros
and corresponding degrees of freedom computation
and closed form parameter estimation.

Sampling Zeros

Factors influencing the likelihood of sampling zeros
include the number and type of factors that constitute
a contingency table, and/or the size and nature of the
sample of observations contributing information to
the table. For example, cross-classifying 100 patients
by sex, age intervals, and a wide range of cancers
is more likely to yield an observed zero count for
a particular cell, such as breast cancer in young
men, than cross-classifying 100 subjects according
to sex and a binary cancer classification (e.g. lung
cancer vs. no lung cancer). The size of the three-
dimensional table, the rare occurrence of breast
cancer in young men, and the limited sample size
increase the probability of a sampling zero relative
to the analogous probability in the two-dimensional
table for lung cancer and gender. Increasing the size
of the sample by a factor of ten would reduce the
probability of sampling zeros in each case.

Accommodating sampling zeros in the analysis of
contingency tables has been a topic of debate [2, 3,
5, 6, 9, 10]. The focus of this dialog has been on
the computation of degrees of freedom for loglinear
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models fitted to contingency tables under sampling
zeros and the consequences for related chi-square
statistics for lack of fit. The discussion by Haslett [9]
of the different approaches for handling sampling
zeros serves as the basis for the ensuing review.

The debate over sampling zeros has centered on
the first of two ways in which sampling zeros impact
degrees of freedom calculations: (1) by causing zeros
in marginal tables; and (2) by causing pathologic
sampling zeros [4], or what Haslett [9] calls “parity-
based inestimability”. The latter zeros will not be
discussed further, as algorithms for detecting them do
not appear to be available, and they impact only the
highest-order interactions of saturated loglinear mod-
els, i.e. those models that yield expected frequencies
equaling observed table frequencies.

A marginal table is formed by collapsing a mul-
tidimensional table down to a table representing the
cross classification of fewer factors. This is achieved
by summing over the categories or levels of the
factors left out of the marginal table. For example,
starting with the cross classification of three fac-
tors, sex, age, and cancer, one may form a marginal
table for sex and cancer by summing the frequen-
cies across all age categories for each sex–cancer
combination.

Zero cells in marginal tables have two ramifi-
cations: (i) causing estimated cell frequencies to be
zero, that is, fitted zero frequencies; and (ii) leading
to the lack of existence of parameter estimates under a
loglinear model, that is, to inestimable parameters [7]
(see Identifiability). The two methods that account
for sampling zeros differ in how they treat these two
consequences of sampling zeros in the computation
of degrees of freedom. The first method (method 1)
subtracts the number of parameters in a given model,
adjusted for inestimable parameters, from the number
of zero cells in the table, adjusted for the number of
fitted zero frequencies [2, 4, 5, 7]. The second method
(method 2) adjusts only for inestimable parameters,
ignoring fitted zero frequencies [9, 10]. Specifically,
under this approach one subtracts the number of
parameters of a given model, adjusted for inestimable
parameters, from the adjusted number of parameters
in the corresponding saturated model. Finally, a third
point of view [3] advocates ignoring sampling zeros
altogether in computing degrees of freedom, arguing
that degrees of freedom should depend upon whether
expected frequencies are zero (i.e. structural zeros)

rather than whether estimated or observed frequen-
cies are zero. This view is based upon the fact that
parameter estimates always exist under certain mod-
els other than loglinear models. The focus of the
debate on sampling zeros has been on the first two
methods.

The distinction between methods 1 and 2 for
adjusting degrees of freedom – that is, adjusting or
not adjusting for fitted zero frequencies – relates to
the method of fitting loglinear models. Typically,
estimation procedures used for loglinear models are
unconditional, in that they do not condition on the
frequency counts in marginal tables, as opposed to
conditional estimation approaches; for example, exact
estimation procedures. Stirling [10] and Haslett [9]
maintain that method 1 is appropriate for conditional
estimation but not for unconditional estimation. That
is, they assert that adjusting for fitted zero frequen-
cies is necessary only if one is conditioning on
marginal counts. Exact conditional tests based upon
the hypergeometric distribution are not impacted
by sampling zeros, as asymptotic distributions based
upon degrees of freedom are not an issue for these
tests.

Methods 1 and 2 may be extended to logistic
regression models fitted conditionally (see Logistic
Regression, Conditional) or unconditionally. Aston
& Wilson [2] present method 1 calculations for a
logistic model fitted conditionally to an example data
set. Haslett [9] discusses the extension of method 2
to logistic models fitted unconditionally, while con-
trasting the two-degree-of-freedom methods in the
context of conditional and unconditional likelihood
estimation.

Parameter inestimability under loglinear models,
which is a major factor in the debate about calculating
degrees of freedom, is attributable to sampling zeros
in marginal tables [1, 8]. To circumvent the problem
of inestimable parameters due to marginal sampling
zeros, some statistical packages (e.g. SAS PROC
CATMOD and PROC FREQ) allow the user to add a
small constant (e.g. 0.5) to every cell in a contingency
table with sampling zeros. In general, this results in
forcing estimates of association parameters closer to
their null values (e.g. log odds ratio estimates are
closer to zero). Agresti [1] suggests trying different
constants that are very small (e.g. 10−8) to assess
the resulting sensitivity of parameter estimates and
lack-of-fit statistics.
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In addition to impacting the existence of parameter
estimates and degrees of freedom of chi-square lack-
of-fit statistics, sampling zeros have other effects.
By diminishing expected cell frequencies, sampling
zeros may affect the adequacy of chi-square approx-
imations to the sampling distributions of lack-of-fit
statistics. Agresti [1] provides a review of the lit-
erature on such effects of sparse tables in general.
The bias of parameter estimates under the loglinear
model may also be affected by sampling zeros, as
this bias is a function of the size of the marginal
table cells corresponding to the parameters of inter-
est [8].
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Structural Equation
Models

Structural equation models refer to general statisti-
cal procedures for multiequation systems that include
continuous latent variables (“factors” or “unmeasured
variables”), multiple indicators of concepts, errors
of measurement, errors in equations, and observed
variables that are continuous, ordinal, dichotomous
(binary), or censored (see Measurement Scale).
One way to view these models is as an interre-
lated system of regression equations where some
of the variables have multiple measures, and where
measurement error is taken into account when esti-
mating relationships (see Errors in Variables). From
another perspective, these are factor analysis mod-
els in which some factor loadings are restricted to
zero or other constants, and the researcher allows
factors to affect each other, directly and indirectly.
The most general form of the structural equation
model encompasses analysis of variance (ANOVA),
analysis of covariance (ANOCOVA), multiple lin-
ear regression, multivariate multiple regression,
seemingly unrelated regressions, recursive and nonre-
cursive simultaneous equations, path analysis, con-
firmatory factor analysis, classical test theory (see
Psychometrics, Overview), dichotomous and ordi-
nal probit, tobit, and a variety of other procedures
(see Quantal Response Models) as special cases.
Occasionally, the term “structural equation model”
refers to the simultaneous equation models of classi-
cal econometrics. Increasingly, though, it has come to
refer to its more general form. Covariance structure
models, LISREL models, analysis of moment struc-
tures, and structural equations with latent or unob-
served variables are largely interchangeable terms for
structural equation models.

Model and Notation

The structural equation models are represented
in a variety of notations, but researchers most
commonly use the one derived from Jöreskog [19,
20], Keesling [23], and Wiley [31]. It is called
the LISREL notation, named after Jöreskog &
Sörbom’s [22] software package. The model has
two primary components, a latent variable and a

measurement model. The latent variable model is

η = α + Bη + �ξ + ζ , (1)

where η is an m × 1 vector of latent endogenous
variables, ξ is an n × 1 vector of latent exogenous
variables, α is an m × 1 vector of intercept terms, B
is an m × m matrix of coefficients that give the influ-
ence of the ηs on each other, � is an m × n matrix of
coefficients for the effect of the ξ on η, and ζ is the
m × 1 vector of disturbances that contains the unex-
plained parts of the ηs. The term “endogenous” refers
to variables that are influenced by other variables in
the model. “Exogenous” describes variables that are
determined outside of the system of equations.

The model assumes that E(ζ ) = 0, that cov(ξ ,

ζ ′) = 0, and that (I − B) is nonsingular. The
covariance matrix of the latent exogenous variables
is represented by an n × n matrix, �, and the m × m

matrix � is the covariance matrix of the equation
disturbances, ζ . Implicit in (1) is a subscript to index
the observations. Since the same model holds for
all cases, the subscript is omitted to simplify the
notation.

The traditional LISREL notation has two equa-
tions for the measurement model:

y∗ = νy + 	yη + ε, (2)

x∗ = νx + 	xξ + δ, (3)

where y∗ is the p × 1 vector of indicators of the
latent variables in η, νy is the p × 1 vector of inter-
cept terms, 	y is the p × m factor loading matrix
of coefficients giving the linear effect of η on y∗,
and ε is the p × 1 vector of measurement errors
or disturbances. The model assumes that E(ε) = 0
and that cov(η, ε′) = 0. The covariance matrix for
ε is the p × p matrix, �ε . Analogous definitions
and assumptions hold for (3), with �δ the q × q

covariance matrix for errors in x∗. In addition, we
assume that ε, δ, and ζ are mutually uncorrelated
(see Correlation). Here too the observation index
is omitted, but is implicit. The disturbance or error
term for each equation in the latent variable or
measurement model typically has different variances
for different equations but, for a single equation,
the assumption is that the disturbance’s variance is
homoscedastic (see Scedasticity) and uncorrelated
across observations.

Eqs. (1)– (3) make up the classical form of
the LISREL model, in which it is assumed that
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the latent and observed variables are continuous
variables. More recently, Jöreskog & Sörbom [21],
Muthén [26], and others have generalized the model
by allowing categorical or censored observed
variables. In this case, some of the variables in y∗
and x∗ are “latent indicators” that are only observable
through categorical or censored observed variables.
Here the model requires an additional set of equations
to link the observed variables to their underlying
continuous counterparts:

y = f (y∗, τy), (4)

x = f (x∗, τx), (5)

where y and x are the vectors of observed variables,
some or all of which can be categorical or censored,
and τy and τx are vectors that contain threshold
parameters that determine the values taken by y and
x, respectively. For instance, suppose that y1 is a four-
category ordinal variable. In this case, we would have

y1 =






1, if y∗
1 ≤ τ01,

2, if τ01 < y∗
1 ≤ τ11,

3, if τ11 < y∗
1 ≤ τ21,

4, if τ21 < y∗
1 ,

(6)

where τ01, τ11, and τ21 are the three thresholds that
determine whether the ordinal y1 variable falls in the
1, 2, 3, or 4 category. Alternately, if the y4 variable
is censored from below, we would have

y4 =
{

0, if y∗
4 ≤ 0,

y∗
4 , if 0 < y∗

4 .
(7)

The single threshold point is zero and when y∗
4 is

above zero, y∗
4 and the observed y4 are the same. If

the observed variables are continuous, we have no
need for (4) and (5). But when we have noncontin-
uous observed variables, (4) and (5) are nonlinear,
deterministic equations that relate the observed vari-
ables to their underlying continuous indicator.

Many of the more familiar statistical models are
derivable from this general model. Table 1 illustrates
how restrictions on the general model can lead to
more familiar techniques. If, for instance, we assume
a scalar, continuous dependent response variable, no
measurement error in the dependent or explanatory
variables, and only dummy explanatory variables,
we are led to the restrictions shown in the first row
that leads to analysis of variance (ANOVA). Keep-
ing the same restrictions, except allowing continuous
or dummy explanatory variables, leads to multiple
regression. Probit regression has the same constraints

Table 1 Common statistical models as special cases of structural equation models (SEMs)

Statistical model νy 	y �ε νx 	x �δ y

ANOVA 0 1 0 0 I 0 = y∗, scalar
Multiple regression 0 1 0 0 I 0 = y∗, scalar
Probit regression 0 1 0 0 I 0 1, 2, . . . , k

Tobit regression 0 1 0 0 I 0 = 0 if y∗ ≤ 0
= y∗ if y∗ > 0

Classical econometrics 0 I 0 0 I 0 = y∗
Classical factor analysis – – – –

√
Diagonal –

(deviation scores)
Confirmatory factor analysis – – – –

√ √
–

Statistical model τy x τx α B � �

ANOVA – Dummy variable – Scalar 0
√

Scalar
Multiple regression – Dummy/continuous – Scalar 0

√
Scalar

Probit regression (k − 1) Dummy/continuous – Scalar 0
√

Scalar
Tobit regression = 0 Dummy/continuous – Scalar 0

√
Scalar

Classical econometrics – Dummy/continuous –
√ √ √ √

Classical factor analysis C – Continuous – – – – –
(deviation scores)

Confirmatory factor analysis – Continuous – – – – –
√

, Present in model; – , absent from model.
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as multiple regression, except that we have a dichoto-
mous or ordinal dependent variable (see Ordered
Categorical Data). Classical econometrics is a spe-
cial case of the model that assumes perfect measure-
ment and the absence of multiple indicators. From
this perspective, structural equation models have less
restrictive assumptions than many better known pro-
cedures. In addition, we can estimate many models
that are not treated by the traditional procedures.

Steps in Modeling

An analysis that uses structural equation models has
several components to it. These concern (i) model
specification, (ii) the implied moment matrix, (iii)
identification, (iv) estimation, (v) model–data fit
assessment, and (vi) respecification. These are
examined in the next six subsections.

Model Specification

The first step is to specify the hypothesized relations
between all latent and observed variables. In other
words, the researcher needs to describe the specific
form that all the matrices in Table 1 take for the
specific example of interest. Typically, not all of the
matrices are required, so that the task is simplified.
However, model specification requires the substantive
expertise of the analyst to be able to formulate a
set of restrictions that defines the model. A person
who has little or no knowledge about the substantive
area will not fare well with structural equation models
(see Model, Choice of).

A path diagram for a hypothetical example, to
illustrate model specification, is shown in Figure 1. A
more detailed description of path diagrams is given
in the article on path analysis, but in brief it pro-
vides a pictorial representation of the multiequation
model that a researcher specifies. The ovals or circles
enclose the latent variables, boxes signify observed
variables, and the disturbances and error terms are
not enclosed. The single-headed straight arrows indi-
cate a linear impact of the variable at the base of the
arrow on the variable at the head of the arrow. Curved
two-headed arrows show linear covariances (correla-
tions) between variables that are not explained within
the model and they signify the covariances between
exogenous variables or between disturbances/errors.
To simplify it, the diagram does not include the

x1

g11

ζ 1

ζ 2

x 2 h 1 h 2
g12 b21

x2 x3 y1 y2 y3

l x22 l x32 l y11 l y22 l y32

d2 d3 e 1 e 2 e 3

Figure 1 An hypothetical example of a structural equation
model with three latent variables and six observed variables

regression constants that enter the equations for each
endogenous variable.

An alternative to the path diagram is to represent
the model specification using (1)–(3). In this specific
example, (1) is

[
η1

η2

]
=

[
α1

α2

]
+

[
0 0

β21 0

] [
η1

η2

]

+
[

γ11 γ12

0 0

] [
ξ1

ξ2

]
+

[
ζ1

ζ2

]
, (8)

(2) is

[
x1

x2

x3

]
=

[ 0
νx2

νx3

]
+

[ 1 0
0 λx22

0 λx32

] [
ξ1

ξ2

]
+

[ 0
δ2

δ3

]
,

(9)

and (3) is

[
y1

y2

y3

]
=

[
νy1

νy2

νy3

]
+

[
λy11 0

0 λy22

0 λy32

][
η1

η2

]
+

[
ε1

ε2

ε3

]
.

(10)

The observed variables are continuous, so that (4)
and (5) are x = x∗ and y = y∗. These relations are
substituted into the above three equations. This also
means that we will not need any threshold param-
eters (τx, τy) in the model. In addition, (9) shows
that x1 is perfectly measured (i.e., x1 = ξ1) and this
explains the use of x1 in place of ξ1 in the path
diagram in Figure 1. The covariance matrices of the
exogenous variables and disturbances/errors are not
represented in path diagrams. In the example, these
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matrices are

� =
[

φ11 φ12

φ21 φ22

]
,

� =
[

ψ11 ψ12

ψ21 ψ22

]
, (11)

�δ =
[ 0 0 0

0 Θδ22 0
0 0 Θδ33

]
,

�ε =
[

Θε11 0 0
0 Θε22 0
0 0 Θε33

]
. (12)

The zero in the (1,1) position of �δ follows since x1

contains no measurement error. If we had correlated
errors of measurement specified, then some of the
off-diagonal elements of �δ or �ε would contain
free parameters rather than zeros.

Implied Moment Matrix

Once a model is specified, it implies that the first
and second moments (means, variances, and covari-
ances) of the observed variables are functions of the
model parameters. Few have examined the higher-
order moments of the observed variables and their
relation to the model parameters. Most structural
equation models focus on the implied covariance
matrix, �(θ). The general expression for �(θ) comes
from the cov(z∗, z∗′), where z∗′ is [y∗′x∗′]. The link-
age to the model parameters comes from substitution
of (3) in for x∗ and the reduced form equation in
for y∗,

y∗ = νy + 	y(I − B)−1(α + �ξ + ζ ) + ε. (13)

The reduced form of an equation results by solving
the right-hand side of the equation, so that it con-
tains only exogenous variables, disturbances, errors,
and coefficient matrices. After these substitutions
and taking the cov(z∗, z∗′), the implied covariance
matrix is

�(θ) =
[

C(���′ + �)C′ + �ε C��	′
x

	x��C′ 	x�	′
x + �δ

]
,

(14)

where C = 	y(I − B)−1 and θ is the t × 1 vec-
tor that contains all of the model parameters to be
estimated in a given model. The upper left quad-
rant of �(θ) is the implied covariance matrix for

y∗ (called �y∗y∗(θ)), the lower right quadrant is the
implied covariance matrix for x∗ (�x∗x∗(θ)), and the
off-diagonal quadrants are the implied covariance
matrices for y∗ with x∗(�x∗y∗(θ)).

The implied mean vector, µ(θ), is

µ(θ) =
[

νy + C(α + �κ)

νx + 	xκ

]
, (15)

where κ equals the mean vector of ξ [E(ξ ) = κ].
These general expressions for the first and second
implied moments apply to any specific model. For
the model in Figure 1, the implied covariance matrix
for y∗ is

�y∗y∗(θ)

=





λ2
y11var(η1)

+Θε11

λy11λy22 λ2
y22var(η2)

×β21var(η1) +Θε22

λy11λy32 λy22λy32 λ2
y32var(η2)

×β21var(η1) ×var(η2) +Θε33




,

(16)

with

�x∗y∗(θ)

=





λy11 λy22β21 λy32β21

×cov(ξ1, η1) ×cov(ξ1, η1) ×cov(ξ1, η1)

λx22λy11 λx22λy22β21 λx22λy32β21

×cov(ξ2, η1) ×cov(ξ2, η1) ×cov(ξ2, η1)

λx32λy11 λx32λy22β21 λx32λy32β21

×cov(ξ2, η1) ×cov(ξ2, η1) ×cov(ξ2, η1)




,

(17)

and

�x∗x∗(θ)

=





φ11

λx22φ21 λ2
x22φ22

+Θδ22

λx32φ21 λx32λx22φ22 λ2
x22φ22

+Θδ33




, (18)

where

var(η1) = γ 2
11φ11 + 2(γ11γ12φ12)

+ γ 2
12φ22 + ψ11,
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var(η2) = β2
21var(η1) + ψ22,

cov(η1, ξ1) = γ11φ11 + γ12φ12,

cov(η1, ξ2) = γ11φ12 + γ12φ22. (19)

With these implied moment matrices we have a
one-to-one relation between a mean, variance, or
covariance of the observed variables and a function
of the parameters in the model. For instance, in
the model the variance of x2 equals λ2

x22φ22 + Θδ22.
These connections are critical to the issues of model
identification, estimation, and fit assessment.

Model Identification

Model identification concerns the question whether
it is possible to determine uniquely the parameters
of a model from the means, variances, and covari-
ances of the observed variables (see Identifiability).
The last section gave the relation between these
moments and the model parameters. Identification
concerns whether it is possible to uniquely solve for
the model parameters in terms of the moments of the
observed variables using these equations. To illustrate
this point, consider a simple example with a single
observed variable, x1, that equals ξ1 + δ1. Here �(θ)

has a single element, φ11 + Θδ11 and µ(θ) is κ1, the
mean of ξ1. The only second moment of the observed
variable is the population variance of x1, and the sin-
gle first moment element is the population mean of
x1, µx1. The mean of x1 identifies κ1, but the sin-
gle variance for x1 is insufficient to identify the two
parameters, φ11 and Θδ11. For any given value of the
variance of x1, an infinite set of values of φ11 and
Θδ11 would satisfy the equation for the implied vari-
ance. The model is underidentified. More generally,
if in a model θa and θb are any two sets of values for
θ such that �(θa) = �(θb) and µ(θa) = µ(θb), then
θa = θb must be true if the model is identified.

A necessary but not sufficient condition for iden-
tifying a model is that the researcher must assign
a scale to each latent variable that is measured with
error. One way to do this is to choose an indicator for
each latent variable and set the coefficient or factor
loading for the indicator to one. The intercept for the
same observed variable should be set to zero. With
this scaling, the latent variable has a metric that is
similar to that of the observed variable. In the model
in Figure 1, for instance, we could set λx11, λy11, and
λy22 to 1, and set νx11, νy11, and νy22 to zero to assign

scales to ξ1, η1, and η2. An alternate method to scale
the latent variable is to set the variance of the latent
variable to one and its mean to zero. This latter option
is less desirable when analyzing panel data or when
testing whether models are the same across different
groups.

Establishing model identification in the general
structural equation model can be difficult. Algebraic
manipulation of the implied moment equations can
sometimes establish that each model parameter has a
unique solution in terms of the means, variances, or
covariances of the observed variables. In complicated
models, this becomes less feasible. In special cases,
such as the classical econometric model or confirma-
tory factor analysis, there are rules of identification
that are helpful or that researchers can combine
to establish model identification (see, for exam-
ple, Fisher [13]; Bollen [6, pp. 88–104, 238–254,
326–333]). Also widely used are empirical checks
on model identification that are based on whether the
information matrix of the model parameters from a
maximum likelihood solution is nonsingular. Singu-
larity suggests that the model is underidentified. In
most cases the empirical tests of identification work
well, but it is possible for them to fail (see, for exam-
ple, Bollen [6, pp. 246–251]).

Estimation

The earliest developments of structural equation mod-
els assumed that y and x were continuous and multi-
normally distributed. The maximum likelihood esti-
mator under this assumption is

FML = ln |�(θ)| + tr(S�−1(θ))

+ (z − µ(θ))′�−1(θ)(z − µ(θ))

− ln(|S|) − (p + q),

where S is the sample covariance matrix of the
observed variables and z is the vector of sample
means of the observed variables. Numerical mini-
mization procedures find the θ̂ that minimizes FML.
The θ̂ has the usual maximum likelihood estimator
properties of being asymptotically unbiased, asymp-
totically efficient, consistent, asymptotically normal,
and an asymptotic covariance matrix that is the
inverse of the information matrix of θ̂ (see Large-
sample Theory).

Fortunately, the θ̂ from FML retains many of its
desirable properties under some conditions when y
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and x are not from multinormal distributions. For
instance, if x = ξ – that is, x is exogenous – then
the usual properties hold assuming that the distur-
bances, ζ and ε, are from multinormal distribu-
tions. Even if x does not equal ξ and y and x
are nonnormal, θ̂ remains a consistent estimator.
Corrections to the asymptotic standard errors from
the usual maximum likelihood procedures also are
available (see, for example, [9] and [28]). Further-
more, there are robustness conditions under which
the usual maximum likelihood asymptotic standard
errors and significance tests hold for observed vari-
ables from nonnormal distributions (see, for example,
Sattora [27]).

Another class of estimators are explicitly designed
to take account of nonnormality rather than relying on
robustness conditions or correcting standard errors.
For instance, Browne [9] proposed an asymptotically
distribution free estimator (also called the weighted
least squares) that applies to observed variables
from distributions with finite eighth-order moments.
Although the estimator appears to work well in mod-
erately large samples with models that do not involve
many parameters, the performance of this estimator
has been disappointing in large models. An instru-
mental variable estimator, two-stage least squares,
is a limited information estimator that also does
not require observed variables from multinormal dis-
tributions. Hägglund [16] developed this estimator
for factor analysis models with uncorrelated errors
of measurement. Recent work proposed a two-stage
least squares estimator for all the coefficients of
both the measurement model and the latent vari-
able model with or without correlated errors of
measurement [7]. The two-stage least squares esti-
mator has known asymptotic properties including
standard errors that allow significance tests with-
out assuming multivariate normality of the observed
variables. The finite sample properties of the esti-
mator are not well studied in latent variable mod-
els.

The estimation of parameters is more complicated
when some of the endogenous observed variables
are categorical. This would be the case if the
indicators of a latent variable are ordinal, censored,
or dichotomous variables, or in other situations in
which the “dependent” variable of a relationship
is noncontinuous. Analysts have proposed several
approaches to incorporate such variables into a
structural equation model, but they all share a similar

strategy. It is assumed that all observed endogenous
noncontinuous variables have underlying continuous
variables that correspond to them. So, for example,
we assume that underlying our five-point ordinal
scale on self-reported health is a continuous variable
of perceived health. The first step is the estimation of
the correlation (covariance) matrix of the continuous
variables that underlie the noncontinuous observed
variables. The next step takes this matrix and analyzes
it with the arbitrary distribution function (weighted
least squares) estimator. Thus the main difference
when endogenous categorical variables are part of the
analysis is that we take the extra step of estimating
what the correlation (covariance) matrix would look
like if these variables were measured on continuous
scales.

Model–Data Fit

Once the researcher estimates a model, attention turns
to assessing its goodness of fit. Model fit assessments
have two parts: (1) overall fit and (2) component
fit. Overall fit refers to summary measures of how
well the model as a whole corresponds to the data.
The most widely used measure of overall fit is a
test statistic (see Hypothesis Testing) that asymp-
totically approaches a chi-square distribution when
the population covariance matrix equals the implied
covariance matrix; that is, the null hypothesis is
H0 : � = �(θ). In the case of FML described above,
the test statistic is T = (N − 1)FML, evaluated at
the final parameter estimates. The degrees of free-
dom equal 1

2 (p + q)(p + q + 3) − t , where p and
q are the number of y and x variables and t is
the number of unrestricted parameters estimated.
The first term gives the number of nonredundant
elements in the covariance matrix of the observed
variables and the number of sample means. If the
distributional assumptions of the test are satisfied,
a significant value of the test statistic suggests that
the model is misspecified (see Misspecification). In
large samples the power of the significance tests
is sometimes so great that even trivial departures
lead to rejection of H0. In small samples, the power
of the test might be too weak to detect prob-
lems.

In response to these difficulties a variety of
other overall fit measures have arisen. The residual
matrices, S − �(θ̂) and z − µ(θ̂), are two simple
measures. These values show the departures of
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the observed and the predicted covariance matrices
and mean vectors of the observed variables.
Standardization of the residuals that take account of
the scaling of the observed variables or the standard
errors of the residuals are sometimes employed.
Numerous other overall fit measures appear in the
literature. Most are normed to range approximately
from 0 to 1, where the value of 1 represents an ideal
fit. The fit indices are the subject of debate in the
literature on structural equation models (e.g. Bollen
& Long [8]).

A second type of fit assessment occurs for the
components of the model rather than the overall fit of
the model. These components of fit are ones that are
familiar to researchers using regression techniques.
Researchers examine such things as the signs and
the significance of coefficients, variances, and covari-
ances, and the R-squares for equations. They also
check for “improper” solutions such as negative vari-
ances or correlations greater than one.

Respecification

It is not unusual to find that an initial model speci-
fication provides an inadequate match to the data. A
common reaction is to attempt to improve the model.
Once the researcher enters this more exploratory
mode of analysis, the usual significance tests cannot
be interpreted in the usual way. It is then important
to seek to replicate the final model on an independent
data set. The substantive expert of the research is the
most valuable source for possible modifications of
the initial model. It is not unusual for the analysts to
have considered several plausible relationships that
were excluded from the initial model. These mod-
ifications are natural ones to consider, if the initial
model fit is poor.

Empirical methods that can help in respecifi-
cation also are available. The residual covariance
matrix and mean vector described above show poorly
fit parts of the data. But care must be taken in
using such residuals [10]. Other aids are Lagrangian
multiplier (and Wald) test statistics, that estimate
the decrease (increase) in the chi-square test statis-
tic for the freeing up (restricting) one or more
parameters at a time [2]. Too great a reliance on
these empirical methods can lead to problems (e.g.
MacCallum [25]), but when used in conjunction
with substantive expertise, they can prove help-
ful.

Historical Origins

We can trace the ancestry of contemporary structural
equation models to several sources: Sewall Wright’s
(1918 [32], 1921 [33], and 1925 [34]) path analysis,
the factor analysis tradition in psychometrics, simul-
taneous equation work in econometrics, and the 1960s
and early 1970s synthesis of these areas in sociomet-
rics. Although contemporary structural equation mod-
els are distinct in many ways, Wright’s path analysis
is probably the closest relative. Path analysis begins
with a model specified prior to estimation. It provides
a method of testing the consistency of a model to the
data and a method to trace the influences of variables
through a system of equations. The path diagram
invented by Wright in 1921 [33] is a pictorial rep-
resentation of the model. It provides a simple way to
represent the complex relations between a large num-
ber of latent or observed variables. These diagrams
are standard in structural equation models. Wright
also used these diagrams to distinguish the direct,
indirect, and total effects of one variable on another.
The direct effects are the influences of one variable on
another that do not pass through any other variable.
The indirect effect is an impact that is through at least
one other variable, while the total effect is the sum
of the direct and indirect effects of one variable on
another. This decomposition of effects is still part of
structural equation models, although researchers have
elaborated the definitions to include reciprocal rela-
tions and the presence of latent variables and have
debated their “causal” meaning (see Causal Direc-
tion, Determination).

Another lasting influence of Wright’s path
analysis is the practice of writing the variances
and covariances between variables as functions of
the model parameters (e.g. coefficients, variances,
and covariances of exogenous variables and
disturbances). Wright used these relations to explore
issues of model identification and the estimation of
the parameters in a path model. Through examples,
he demonstrated how path analysis could incorporate
latent variables (factors), reciprocal relations, and
recursive relations into statistical models. See the
entry on path analysis for further details.

Wright’s [32] first application of path analysis,
appearing in 1918, was a factor analysis of bone size
measurements. Unknown to Wright, Spearman [29]
had proposed factor analysis over a decade ear-
lier to analyze whether a general intelligence factor
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underlied individuals’ performances on tests. Spear-
man’s work launched the beginning of the factor anal-
ysis tradition in psychometrics. Factor analysts soon
moved from single to multiple-factor solutions and
developed various methods of “rotating factors” to
improve interpretability (see Rotation of Axes). Psy-
chometricians became the most experienced group in
the analysis of latent variables measured with mul-
tiple indicators. Some applied factor analysis to test
prior hypotheses about the dimensionality of mea-
sures. However, most researchers used factor analysis
as a data reduction tool, in which the number of
factors and the pattern of influences of the latent vari-
ables on the observed variables were determined by
the statistical procedures rather than by being speci-
fied in advance.

A related but separate development in psycho-
metrics was classical test theory [24]. It shared with
factor analysis a concern with latent or true score
variables, but each observed variable was a func-
tion of a true score and error rather than being
possibly influenced by multiple factors. In addition,
factor analysis conceives of each variable as having
a specific variance that is distinct from the factors
and separate from the pure random error. The true
score from classical test theory would include spe-
cific variance as part of the true score, not a part
of the residual term. Classical test theory developed
distinct definitions and approaches to the reliabil-
ity and validity of measures. And these concepts of
reliability and validity still hold influence in contem-
porary structural equation modeling, although such
models lead to far more general relations between
variables than those included in classical test the-
ory by allowing correlated errors of measurement
and multiple latent variables to influence observed
variables.

The contribution of econometrics to structural
equation modeling comes largely from its work
on simultaneous equations. These models focused
on observed rather than latent random variables.
They dealt with issues of identification and esti-
mation of a system of equations [15]. Econometri-
cians proposed general rules of identification for
simultaneous equations [13] that systematized the
study of this issue and greatly influenced the
contemporary perspective on identification in the
more general structural equation models. Similarly,
econometricians’ work on limited information (e.g.
Theil [30] and Basmann [1]) and full information

estimators [18] led to the more sophisticated estima-
tors that are commonly applied to structural equation
models.

In the 1960s and early 1970s, sociometrics set
the stage for the cross fertilization of path anal-
ysis, factor analysis, and econometric models that
eventually merged into the contemporary form of
structural equation models. Blalock [4], for instance,
demonstrated the power of path analysis and par-
tial correlations in examining a researcher’s model
of hypothesized relationships. Duncan’s [11] didac-
tic paper on path analysis in 1966 had a tremen-
dous impact on the spread of path analysis in soci-
ology as well as in psychology and other disci-
plines. Duncan et al. [12] illustrated the synthesis
of latent variable and simultaneous equation mod-
els using path analysis in a classic 1968 study of
peer influence. In 1969, Heise [17] shed new light
on the use of panel data to explore reliability and
stability in the measurement of variables. A clas-
sic 1971 edited volume by Blalock [5] illustrates
the early merging of these techniques and the dif-
fusion of statistical approaches from one field to
another.

Although separated by only a couple of years, a
1973 edited volume by Goldberger & Duncan [14]
revealed the more sophisticated approach to struc-
tural equation models that now dominates the field.
Included in the volume is the highly influential paper
by Karl Jöreskog, where he presented an early ver-
sion of the LISREL model. The papers marked a more
general approach to model specification, the implied
covariance matrix, identification, estimation, and test-
ing that is typical of current research.

Structural equation models have diffused through
most of the social sciences and have begun to
appear in the biostatistics and public health literature.
Numerous software packages to estimate structural
equation models are available with LISREL [22] and
EQS [3] being the two most widely used ones. Pub-
lications using structural equation models are com-
mon in sociology, marketing, psychology, and edu-
cation, and the technical literature continues to grow.
Structural Equation Modeling is a journal devoted
to the technique, but other statistical journals also
publish work in this area. SEMNET is a listserver
devoted to structural equation models and to date
has over 1400 subscribers. Structural equation mod-
els remains an active area of research and applica-
tions.
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Structural Nested Failure
Time Models

Structural nested failure time models (SNFTMs) are
causal models for the effect of a time-dependent treat-
ment or exposure on a survival time outcome in
the presence of time-dependent confounding covari-
ates [1, 10, 11, 15–17, 19, 20, 23, 31, 32] (see
Confounding). The simplest SNFTMs map a sub-
ject’s observed failure time T , observed treatment
and confounder history, and an unknown parameter
ψ0 into the time U at which the subject would have
failed if, possibly contrary to fact, treatment had been
withheld. The causal parameter ψ0 is identified if, as
in a sequentially randomized experiment, the treat-
ment at time t is randomly assigned (i.e. ignorable)
conditional on past treatment and confounder history.
The method of g-estimation provides computationally
convenient and robust semiparametric estimators of
ψ0 when ψ0 is identified [16, 26].

The usual approach to the estimation of the effect
of a time-varying treatment on survival has been
to model the hazard of failure at t as a function
of past treatment history using a time-dependent
proportional hazards model. In the next section, we
show that the usual approach may be biased, whether
or not one further adjusts for past confounder history
in the analysis, when (i) there exists a time-dependent
risk factor for, or predictor of, the event of interest
that also predicts subsequent treatment, and (ii) past
treatment history predicts subsequent risk factor level.
The following two examples demonstrate conditions
(i) and (ii) will be true in studies in which there is
treatment by “indication” and/or a time-dependent
covariate that is simultaneously a confounder and
an intermediate variable on the causal pathway from
treatment to failure.

The drug AZT, used in the treatment of AIDS, is
a direct red blood cell toxin that is often withheld in
anemic subjects, since the toxic effects of AZT can
worsen the anemia. Furthermore, anemic patients are
at increased risk of death. Thus in a study of the effect
of AZT on survival of patients with AIDS, the time-
dependent covariate anemia is both a risk factor for
death and a predictor of subsequent treatment with
AZT. Furthermore, as a red blood cell toxin, past
AZT treatment is a risk factor for the development of
anemia. In occupational mortality studies, unhealthy

workers who terminate employment early are at an
increased risk of death compared to other workers
and receive no further exposure to the chemical agent
under study. Therefore, the time-dependent covariate,
employment status at time t , is an independent risk
factor for death and a predictor of future exposure
to the study agent. In addition, previous exposure
to the study agent may lead to early termination of
employment if the agent causes a disabling illness.
Epidemiologists refer to covariates such as anemia
or employment status in the above examples as time-
dependent confounders.

This article is organized as follows. We first
describe the fundamental assumption of no unmea-
sured confounders that, if true, allows us to test
for and estimate causal effects from longitudinal
data. In the next section we describe a valid α-level
test, the g-test, of the null hypothesis of no causal
effect of treatment on survival. We then describe the
potential for bias and lack of robustness of alterna-
tive testing procedures. In the section “Deterministic
Structural Nested Failure Time Models” we introduce
the simplest SNFTMs – the deterministic SNFTMs.
In the section “g-Estimation of ψ0” we show that
g-estimation of deterministic SNFTMs provides a
unified approach to estimation of and testing for the
effect of a time-dependent treatment. In the section
“Sensitivity Analysis”, we describe how the con-
sequences of violations of our assumption of no
unmeasured confounders can be explored through
a sensitivity analysis. In these sections, we assume
censoring is absent. In the following section we
extend our methods to allow for censoring by end
of follow-up, loss to follow-up, and competing risks.
In the section “Inference Based on Instantaneous-
Rate RPSNFTMs”, we show that it is difficult to
incorporate a priori biological knowledge as restric-
tions on the functional form of our deterministic
SNFTMs. However, it is straightforward to incor-
porate biological knowledge if we adopt a more
general class of causal models, the instantaneous-
rate rank-preserving structural nested failure time
models (RPSNFTMs), which model the effect of
a final instantaneous blip of treatment on survival.
The parameters of an instantaneous-rate RPSNFTM
can be consistently estimated using g-estimation.
Instantaneous-rate RPSNFTMs allow the magnitude
of the treatment effect to depend on the measured
factors but not on unmeasured factors. This restric-
tion is often biologically implausible. We therefore
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introduce, in the following section, the class of
instantaneous-rate SNFTMs which allow the mag-
nitude of the treatment effect to depend on both
measured and unmeasured factors, and include the
instantaneous-rate RPSNFTMs as a special case. It
is of scientific and public health interest to estimate
the survival curves that would be expected under
various treatment regimes in order to determine the
optimal regime with which to treat future patients.
Hence, we consider estimation of regime-specific
survival curves. Finally, we briefly describe an alter-
native nonnested structural failure time model that
may sometimes have advantages in survival curve
estimation.

Structural nested models for repeated measure and
other nonfailure time outcomes (see Longitudinal
Data Analysis, Overview) are considered in [15, 17,
18, 20], and [21]; they are not considered in this
article.

Causal Inference from Observational Data

The Data

For pedagogic purposes we consider a study of the
effect of AZT treatment on the survival of AIDS
patients. Let Ti be a continuous variable record-
ing the survival time for the ith study subject, i =
1, . . . , n, with time measured from study enrollment.
Let Ai(t) record subject i’s AZT dosage rate at
t and Li (t) record the value at t of a vector of
various time-dependent and time-independent covari-
ates such as CD4 lymphocyte count, presence of
anemia, and gender. For any time-dependent ran-
dom variable Zi(t), let Zi(t

−) = {Zi(u); 0 ≤ u <

t} be the history of the Z-process up to but not
including time t and let Zi(t) be the history of
the process through t . Note that Zi(t) is defined
only for t ≤ Ti . For the time being, we assume
there is no censoring. In the absence of censoring,
the observable variables are then {Ti, Ai(Ti), Li (Ti)},
which we assume are independent and identically
distributed, and henceforth suppress the i subscript
denoting subject. Following [3, 13, 14], and [29],
we shall also assume there exists a latent (possibly
counterfactual) “baseline” failure time random vari-
able U representing a subject’s survival time had,
possibly contrary to fact, AZT always been with-
held.

The Fundamental Assumption of No Unmeasured
Confounders

Our fundamental assumption of no unmeasured con-
founders is

U
⊔

A(t)|L(t−), A(t−), T ≥ t, (1)

where A � B|C means A is independent of B given
C [4]. We will also refer to assumption (1) as the
assumption that treatment A(t) is sequentially ignor-
able or randomized given the past. Assumption (1)
states that, conditional on AZT history and the his-
tory of all recorded covariates prior to t , increments
in AZT dosage rate at t are independent of the base-
line failure time random variable U . This assumption
will be true if all risk factors for, i.e. predictors of,
the baseline failure time U that are used by patients
and physicians to determine the dosage of AZT at t

are recorded in L(t−) and A(t−). For example, since
physicians tend to withhold AZT from anemic sub-
jects, and in untreated subjects anemia is a predictor
of survival, assumption (1) would be false if L(t−)

does not contain anemia history. It is the primary
goal of the epidemiologists conducting an observa-
tional study to collect data on a sufficient number of
covariates to ensure that our assumption (1) will be
at least approximately true.

Assumption (1) is the fundamental condition that
will allow us to draw causal inferences from
observational data (see Causation). It is precisely
because (1) cannot be guaranteed to hold in an
observational study and is not empirically testable
that it is so very hazardous to draw causal inferences
from observational data. Note that if, as in a
sequentially randomized trial, at each time t , the dose
of AZT was chosen at random by the flip of a coin,
then (1) would be true even if the probability that the
coin landed heads depended on past covariate and
AZT history. It is because physical randomization
guarantees (1) that most people accept that valid
causal inferences can be obtained from a randomized
trial (see Randomization). See [5, 13], and [29] for
further discussion. In a later section we describe how
the consequences of violations of (1) can be explored
through sensitivity analysis.

For convenience, until a later section we shall
assume that the treatment A(t) received at time
t is dichotomous, i.e. A(t) = 1 if on treatment
at t and zero otherwise. Robins [16] and Robins
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et al. [26] consider nondichotomous treatments. For
A(t) dichotomous, assumption (1) can be written

λA(t |A(t−), L(t−), U) = λ(t |A(t−), L(t−)), (2)

where, if A(t) is an instantaneous-rate pro-
cess, λA(t |A(t−), ·)= limδt→0 Pr[A(t + δt) �= A(t−)|
A(t−), T ≥ t, ·]/δt is the hazard of the treatment
process jumping in the infinitesimal interval [t, t +
δt) given A(t−) and ·. However, λA(t |A(t−), ·) =
Pr{A(t) �= A(t−)|A(t−), T ≥ t, ·} is a discrete hazard
if A(t) can only jump at nonrandom discrete times
t1, t2, . . ., as would be the case if the A(tk) recorded
whether a subject was on AZT at weekly clinic visits.
Owing to measure theoretic subtleties, (2) but not (1)
is a mathematically precise statement of our assump-
tion of no unmeasured confounders.

A g-Test of the Causal Null Hypothesis

The sharp causal null hypothesis of no treatment
effect on survival is that each subject’s observed and
baseline lifetimes are the same. That is,

U = T w.p.1, (3a)

where w.p.1 stands for with probability 1. Given our
assumption (2), the restriction on the distribution of
the observables implied by (3a) is that the hazard of
treatment jumps at t does not depend on the survival
time T given past treatment and covariate history.
That is,

λA(t |A(t−), L(t−), T ) = λA(t |A(t−), L(t−)). (3b)

Hence, if the A process is a instantaneous-rate
process, then we can test (ii) by specifying a time-
dependent Cox (proportional hazards) regression
model

λ0(t) exp[α′W(t)] (4)

for λA(t |A(t−), L(t−)), where W(t) is a known
vector-valued function of (A(t−), L(t−)), α is an
unknown parameter vector, and λ0(t) is an unspec-
ified baseline hazard function. If the A process
jumps only at fixed discrete times, we interpret (4)
as a model for the odds λA(t |A(t−), L(t−))/{1 −
λA(t |A(t−), L(t−))}. If model (4) is correctly spec-
ified, an asymptotic α-level Cox partial likelihood
score, Wald (see Likelihood), or likelihood ratio
test of the hypothesis θ = 0 in the extended model

that adds a term θT to α′W(t) in (4) is an asymp-
totically α-level test (see Level of a Test) of the
sharp null hypothesis (3a) under the assumption (2)
of no unmeasured confounders. Robins [16] refers to
such a test as a g-test. Note a g-test first models
the hazard of the treatment process as a function of
the survival time T and past treatment and covari-
ate history, and then tests whether the coefficient
θ of T is significant. In fact, we obtain an α-level
test of (3b) by testing θ = 0 in the extended model
that adds the term θQ(t) to α′W(t) in (4), where
Q(t) = q(t, A(t−), L(t−), T ) is a function chosen by
the data analyst. The choice of Q(t) effects the power
but not the level of the g-test. The g-test is a general-
ization to time-dependent treatments and confounders
of Rosenbaum’s [27, 28] test for the effect of a single
time-independent treatment.

Bias of Standard Methods

To understand why standard approaches that use Cox
regression to model the hazard of failure as a function
of past treatment history are biased whether or not
one adjusts for past confounder history, we consider
a group of AIDS patients who are alive at 10 months,
dichotomized into those who developed anemia by 8
months and those who remain free of anemia at 8
months. A Cox regression analysis that estimates the
rate ratio at 10 months attributable to AZT exposure
in the interval 8–10 months without adjusting for or
stratifying on anemia status can make AZT appear
falsely beneficial, since anemic subjects are at a
higher risk of dying at 10 months and are less likely to
receive AZT therapy in months 8–10. That is, anemia
status at 8 months is a confounder for the causal effect
of AZT treatment received in the interval from 8 to
10 months.

However, because AZT causes anemia, even if
both AZT and anemia have no causal effect on the
survival of any subject, the above Cox regression
analysis may continue to suggest falsely that AZT
is beneficial even when we adjust for anemia at 8
months. To see why, for simplicity, suppose now
that 300 subjects receive AZT by 4 months, and 300
subjects never receive AZT. In both groups of 300,
suppose that, regardless of AZT treatment or treat-
ment for anemia, 100 individuals are poor-prognosis
subjects who are destined to die at 10 months, 100
are moderate-prognosis subjects destined to die at 20
months, and 100 are good-prognosis subjects destined
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Table 1 A Hypothetical study

Anemia by 8 months No anemia

Time to death (months) Time to death (months)

10 20 30 10 20 30

No AZT 100a 0 0 No AZT 0 100b 100c

AZT by 4 months 100a 100b 0 AZT by 4 months 0 0 100c

aPoor-prognosis patients.
bModerate-prognosis subjects.
cGood-prognosis subjects.

to die at 30 months. Suppose AZT causes ane-
mia in moderate-prognosis patients. Specifically, all
moderate-prognosis patients would develop anemia at
8 months if given AZT, whereas none would develop
anemia without AZT. All poor-prognosis and no
good-prognosis patients develop anemia regardless
of AZT therapy. Under these assumptions, the data
would be as shown in Table 1. Inspecting Table 1,
we observe that, within the stratum defined by the
presence of anemia at 8 months, the mortality rate at
10 months is less in those who received AZT than in
those who did not. Similarly, in the stratum defined
by the absence of anemia, the mortality rate at 20
months is less in those who received AZT than in
those who did not. Thus, a Cox analysis that adjusts
for (or stratifies on) past anemia history would falsely
suggest that AZT has a beneficial effect on survival.
This bias is attributable to the fact that in Table 1
AZT by 4 months is a risk factor for subsequent ane-
mia, and that anemia is a noncausal risk factor for
death, since the death rate at 10 months is greater
in those with anemia than in those without anemia
among subjects without AZT, and the death rate at
both 10 and 20 months is greater in those with anemia
than in those without anemia among subjects with
AZT. Note, by construction of our example, anemia is
not a causal risk factor for death; rather, it is a proxy
for the unmeasured prognosis variable. Furthermore,
anemia is not an intermediate variable on the causal
pathway from AZT treatment to death since, by con-
struction, there is no such causal pathway (see Path
Analysis).

It follows that we must control for the confounder
“anemia status at month 8” to estimate the causal
effect of AZT in the interval (8,10). However, we
must not control for the variable “anemia status at
month 8” to estimate the causal effect of AZT therapy
in the interval (0,8) on survival. If, however, we

summarize AZT history over the interval (0,10) in
terms of cumulative dosage, average dose intensity,
or the time since the initiation of AZT therapy,
these requirements cannot be met, since we lose
the ability to separate out AZT in the interval (0,8)
from AZT in the interval (8,10). However, the g-
test of the previous subsection is specifically designed
to control for confounding by variables affected by
earlier treatment by never lumping treatment received
at different times. Specifically, the g-test checks, at
each time t , for association between treatment A(t)

received at t and the failure time T after adjusting
for confounder and treatment history before t , but
without adjusting for the “post-treatment” variables
“covariate and treatment history subsequent to t”. It
is essential to the validity of the g-test that treatment
history A(t−) before t be adjusted for as a potential
confounding factor for the effect of the treatment A(t)

received at t .
Formally, results in this section reflect the fact that

the null hypothesis (3b) does not imply either that

λT (t |A(t−)) = λT (t) (5)

or that

λT (t |A(t−), L(t−)) = λT (t |L(t−)), (6)

where λT (t |·) is the hazard of failure at t given ·.
However, Robins [12] proves that (3b) does imply
(5) if either of the following are true:

λT (t |A(t−), L(t−)) = λT (t |A(t−)) (7)

or
λA(t |A(t−), L(t−)) = λA[t |A(t−)]. (8)

If (7) holds, we say L(t) is not an independent
predictor of failure. If (8) holds, we say L(t) is not
an independent predictor of subsequent treatment. If
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either (7) or (8) holds, we say that the L(t) process is
not a confounder for the effect of A(t) on survival. In
that case, we can test the sharp null hypothesis (3a)
under assumption (2) by ignoring data on L(t) and
testing (5) using a time-dependent Cox model for
failure.

Computational Complexity and Nonrobustness of
Tests Based on the g-Computation Algorithm

In this subsection, to avoid the need for product inte-
gral notation, we assume the covariate history L(T )

can jump only at fixed times k = 0, 1, 2, . . .. This is
no practical limitation, since, for example, we could
take the time interval between the jump times k and
k + 1 to be 1 second. The g-computation algorithm
formula r(t, a, l(m−)) of Robins [13, 14] for the
effect of a treatment regime a = {a(u); 0 ≤ u < ∞}
on survival to time t conditional on L(m−) = l(m−)

and A(m−) = a(m−) is

r(t, a, l(m−))=
∫

. . .

∫
exp

{
−
∫ t

0
λT (u|l(u−), a(u−))

}

×
int(t)∏

k=m

dF [l(k)|l(k−), a(k−)], (9)

where int(t) is the greatest integer less than t ,
and λT (u|·) is the conditional hazard of failure at
u given ·. Robins [13, 14] showed that under a
sequential randomization assumption, r(t, a, l(0−)) is
the probability of survival to t had, contrary to fact,
all subjects followed treatment regime a until failure.
Researchers studying causal models based on directed
acyclic graphs [12, 30] have recently rediscovered
that g-computation algorithm formula. In addition,
Arjas & Eerola [2] and Klein et al. [7] have also
considered estimation of causal effects using this
formula.

The g-null theorem of Robins [13] states that (3b)
is true if and only if, for all (t, a, l(m−)), r(t, a,

l(m−)) depends on a only through a(m−). It
follows that one can, in principle, test the
null hypothesis (3a) under the assumption (2) of
no unmeasured confounders by: fitting a Cox
proportional hazards model for λT (u|a(u), l(u−))

depending on parameters θ and a parametric
or semiparametric model for f (l(k)|l(k−), a(k−))

depending on parameters η, using the fitted model to
construct an estimator r̂(t, a, l(m−)) of r(t, a, l(m−))

for various choices of t, a, l(m−) by evaluating
the right-hand side of (9); deriving estimates of
the standard errors of the r̂(t, a, l(m−)); and
finally constructing a test of the hypothesis that
r(t, a, l(m−)) only depends on a through a(m−)

using the estimates r̂(t, a, l(m−)) and their estimated
standard errors.

The difficulty with this procedure is twofold. First,
it is computationally extremely demanding since
(i) the integral on the right-hand side of (9) cannot
in general be evaluated analytically, and a Monte
Carlo approximation must be used; and (ii) it is dif-
ficult to compute delta-method estimators for the
standard error of r̂(t, a, l(m−)), and bootstrap stan-
dard errors may be computationally too demanding
because of (i). Secondly, there will in general be no
simple function ψ of the parameters (θ, η) that takes
a fixed value (say zero) if and only if r(t, a, l(m−))

only depends on a(m−). As discussed in [19], this
fact implies that the tests based on the r̂(t, a, l(m−))

will be exquisitely sensitive to inevitable model mis-
specification. In summary, we suggest the g-test
described earlier be used to test the null hypothe-
sis (3b).

Deterministic Structural Nested Failure
Time Models

The g-test of the hypothesis θ = 0 in the extension
of model (4) is an asymptotic α-level test of the
sharp null hypothesis (3a) if model (4) is correctly
specified and if the assumption (2) of no unmeasured
confounders is true. However, we also wish to
estimate the size of the treatment effect when the
causal null is false. To do so, we introduce g-
estimation of structural nested failure time models
which will provide a unified approach to estimation
of and testing for the effect of a time-dependent
treatment.

The simplest SNFTM is a deterministic transfor-
mation model which assumes the counterfactual fail-
ure time U is a known function h(T , A(T ), L(T ), ψ0)

of the observed data (T , A(T ), L(T )) and an un-
known parameter ψ0; that is

U = H(ψ0), (10a)

where

H(ψ) ≡ h(T , A(T ), L(T ), ψ). (10b)
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A specific example of a deterministic SNFTM is
the strong version of the accelerated failure-time
model of Cox & Oakes [3] which assumes

h(T , A(T ), L(T ), ψ) =
∫ T

0
exp{ψA(t)} dt. (11)

Any deterministic SNFTM (11) satisfies the follow-
ing:

if A(T ) ≡ 0, then U = T ; (12a)

T ≡ U w.p.1 if and only if ψ0 = 0. (12b)

Statement (12a) is a natural consistency assumption
stating that if a subject is, in fact, untreated, then the
observed failure time T equals the failure time U

when treatment is withheld. Statement (12b) implies
the null hypothesis ψ0 = 0 corresponds to the causal
null hypothesis (3a) that treatment has no effect.
To understand the implications of (11) when ψ0 �=
0, consider a subject who is continuously treated.
Then, by (10) and (11), U = eψ0T so T = e−ψ0U .
That is, a subject’s untreated survival time U is
expanded or contracted by the factor e−ψ0 by constant
treatment. Hence, if ψ0 > 0, treatment is harmful and
lessens survival; if ψ0 < 0, treatment is beneficial
and increases survival. Robins et al. [26] referred to
deterministic SNFTMs as rank-preserving structural
failure time models.

g-Estimation of ψ0

We now describe how to obtain consistent asymp-
totically normal point and interval estimates of the
parameter ψ0 consistent with the g-tests of introduced
above in the sense that 95% confidence intervals
for ψ0 will fail to include zero if and only if the
corresponding 0.05 level g-test rejects. As a sim-
ple example, consider the deterministic SNFTM (11)
with ψ one-dimensional. We estimate ψ by a “grid
search”. First, we note that for each value of ψ, H(ψ)

can be computed by (11) from the observed data.
Hence, under the reasonable biological assumption
that |ψ0| < 3, separately, for each of the 61 val-
ues of ψ in the set {−3, −2.9, . . . , 0, . . . , 2.9, 3},
we perform a Cox partial likelihood score test (g-
test) of the hypothesis θ = 0 in the extended model
that adds a term θQ(t, ψ) to α′W(t) in (4) with
Q(t, ψ) = q(t, A(t−), L(t−), H(ψ)) a function cho-
sen by the data analyst. A valid 95% large-sample

confidence interval for ψ0 is the set of ψ for which
the score test fails to reject at the 0.05 level pro-
vided our no-confounding assumption (2), our Cox
model (4), and our deterministic SNFTM (10)–(11)
are correct. Furthermore, the g-estimate ψ̂ is a con-
sistent asymptotically normal estimator of ψ0, where
ψ̂ is defined to be the value of ψ for which the
partial likelihood score test of θ = 0 is precisely
zero. The parameter ψ is treated as a fixed constant
when calculating the score test. The choice of the
function q() affects the length but not the cover-
age rate of the interval. The optimal choice of the
function q∗() is given in [16]. The method of g-
estimation can be extended to estimate the parameter,
say, ψ = (ψ1, ψ2)

′ of a multiparameter deterministic
SNFTM such as

H(ψ) =
∫ T

0
exp{ψ1A(t) + ψ2L

∗(t)A(t)} dt. (13)

In model (13), L∗(t) represents a known function of
the covariate history L(t−). If the true value ψ20 of
ψ2 is nonzero, then there is a treatment–covariate
interaction in the sense that the magnitude of the
effect of the time-dependent treatment A(t) depends
on a subject’s time-dependent covariate history L(t−)

through the function L∗(t). A g-estimate of the
parameter vector ψ of (13) is obtained by choosing
Q(t, ψ) to be a known vector-valued function of dim
ψ chosen by the data analyst and θ to be a (dim ψ)-
valued parameter with dim ψ the dimension of the
vector ψ .

Estimation with Instrumental Variables

Suppose A(t) = (A1(t), A2(t)), with A1(t) recording
a physician’s prescribed treatment and A2(t) record-
ing the actual treatment at time t . One then might
suppose that

A1(t)
⊔

U |L(t−), A(t−), T > t (14)

is true but (1) is false if one believed that a predic-
tor of both U and actual treatment A2(t) had not
been included in L(t−). Under assumption (14), g-
estimation of the parameter ψ0 of the deterministic
SNFTM (10) can proceed as before, except we view
model (4) as a model for the cause-specific hazard
λA1(t |A(t−), L(t−)) for jumps in the A1(t) process,
thus ignoring jumps in the actual treatment A2(t)

process in our estimation procedure. In this setting,
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A1(t) is often referred to as an instrumental variable
process, especially when prescribed treatment A1(t)

has no direct causal effect on survival except through
the actual treatment process A2(t). A familiar exam-
ple of an instrumental variable is when A1(0) is the
randomization indicator for assignment to treatment
arm in a randomized clinical trial in which there is
possibly nonrandom noncompliance and A2(t) is the
actual treatment dose. (In such a setting, A1(t) can
be defined to be zero by convention for times t �= 0.)
Then the g-estimation method described above is
the method for adjusting for nonrandom noncompli-
ance in randomized clinical trials described in [17].
For alternative rank estimation procedures, see [11]
and [25].

Sensitivity Analysis

In observational studies, our fundamental assump-
tion (2) of no unmeasured confounders cannot be
empirically tested from the data. Hence, it is impor-
tant to conduct sensitivity analyses to determine how
point and interval estimates for ψ0 would change
under increasingly severe violations of (2). Let η

be a sensitivity parameter that we will vary (but
not estimate) in our sensitivity analysis and consider
the model

λA(t |A(t−), L(t−), U) = λ0(t) exp[α′W(t) + ηU ].
(15)

When η = 0, both the assumption (2) of no unmea-
sured confounders and our Cox model (4) are true.
As |η| increasingly deviates from zero, (2) is increas-
ingly violated. Our goal, in a sensitivity analysis, is to
obtain valid point and interval estimates for the causal
parameter ψ0 of our deterministic SNFTM under the
assumption that (15) is correctly specified, with α

an unknown parameter to be estimated but with η

known. Specifically, a 95% confidence interval for
ψ0 under these assumptions is obtained as the set of
ψ for which the score test of the hypothesis θ = 0
fails to reject at the 0.05 level in model

λA(t |A(t−), L(t−), H(ψ))

= λ0(t) exp[α′W(t) + ηH(ψ) + θQ(t, ψ)], (16)

when η and ψ are treated as fixed and known
when maximizing the partial likelihood over α. The
data analyst should then display point and interval

estimates for ψ for a moderately large number of
choices for the sensitivity parameter η.

Censoring

In this section we extend our results to allow for
right-censoring. We handle censoring by administra-
tive end of follow-up differently from censoring by
competing risks or by loss to follow-up (see Bias
from Loss to Follow-up).

Censoring by End of Follow-Up

We assume that there is a fixed known calendar date
at which the follow-up of all subjects will end. We
then define the potential censoring time C for a sub-
ject to be the difference between this end-of-follow-
up date and the date at which the subject entered
follow-up. Hence, the potential censoring time C is
known for all subjects, even those who fail before
the end-of-follow-up date. Because the potential cen-
soring time C is known at start of follow-up (t = 0),
we can and do regard C as a time-independent “pre-
treatment” covariate that is contained in L(t−) for
each time t ≥ 0. If, as we assume in this section, the
only cause of censoring is by end of follow-up, the
data available for data analysis for each subject are
{X = min(T , C), A(X), L(X)}.

Since H(ψ) can only be computed for uncen-
sored individuals, it might seem natural when cal-
culating g-estimates of ψ0 to replace the now par-
tially unobservable H(ψ) by the new random vari-
able X∗(ψ) obtained by replacing T by X in (10b).
Unfortunately, this approach fails since, if ψ0 �=
0, then X∗(ψ0) is not independent of A(t) given
(A(t−), L(t−), X ≥ t) even under the assumption (2)
of no unmeasured confounders. Thus, an alterna-
tive approach is necessary. The key to our approach
is to define new variables (X(t, ψ), ∆(t, ψ)) that
(i) in contrast to both T and H(ψ), but like X∗(ψ),
are observed for all subjects, including those cen-
sored, and (ii) like H(ψ0), but unlike X∗(ψ0), satisfy,
for t < C,

λA[t |A(t−), L(t−), X(t, ψ0), ∆(t, ψ0)]

= λA[t |A(t−), L(t−)] (17)

under assumption (2) and model (10). We can then
estimate ψ0 by g-estimation as before, except with
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Q(t, ψ) now a function q(t, L(t−), A(t−), X(t, ψ),
∆(t, ψ)). Below, we define X(t, ψ) and ∆(t, ψ)

only for the deterministic SNFTM (11). Robins [17,
Appendix 4] gives the appropriate definitions for
arbitrary SNFTMs. Let

X(t, ψ) = min{H(ψ), C(t, ψ)},
∆(t, ψ) = I {X(t, ψ) < C(t, ψ)},

where C(t, ψ) ≡ C − t + ∫ t

0 exp{ψA(t)} dt if ψ ≥ 0
and C(t, ψ) = ∫ t

0 exp{ψA(t)} dt + (C − t)eψ if ψ <

0. Eq. (17) is satisfied since X(t, ψ0) and ∆(t, ψ0)

are only functions of A(t−), H(ψ0) and C. Also
X(t, ψ) and ∆(t, ψ) are observables, since one can
calculate that X(t, ψ) is the minimum of the two
observables X∗(ψ) and C(t, ψ). When ∆(t, ψ) =
0, we say an individual is ψ-censored. Note that
when ψ �= 0, some failures will be ψ-censored. In
practice, if efficiency is not of overriding concern,
then it is convenient to use a very simple function
Q(t, ψ) that produces reasonably efficient estimators
of ψ0. The indicator function ∆(t, ψ) has been
found often to satisfy this criterion in a number of
examples [32]. The efficient choice of Q(t, ψ) is
given in [17, Appendix 4]. The simple sensitivity
analysis methodology of the previous section can be
extended to the censored data setting by replacing
ηU by ηX(ψ) in (15); however, better methodology
should be developed.

Censoring by Competing Risks

In this section, we assume that in addition to cen-
soring by end of follow-up C, there is additional
censoring by loss to follow-up and/or competing
risks. Let Q be the minimum of time to loss to
follow-up or to a competing risk event. For ease of
exposition, we no longer distinguish censoring by loss
to follow-up from censoring by competing risks and
simply refer to Q as time to censoring by competing
risks. The data available are X∗ = min(T , C, Q) =
min(X, Q), τ = I (X∗ �= Q), A(X∗), L(X∗) so that
τ = 1 if and only if a subject was either observed
to fail or to reach end of follow-up without suffering
a competing risk. To adjust for censoring by compet-
ing risks, we assume that we have recorded data on a
sufficient number of potential confounding factors in
L(t−) so that there are no unmeasured confounders

for censoring due to competing risk. That is,

λQ[t |A(t−), L(t−), X > t, X] = λQ[t |A(t−),

L(t−), X > t], (18)

in which case we shall also say that censoring by Q is
ignorable given the past. Here, λQ(t |·) is the hazard
for the random variable Q given ·.

Given the ignorable censoring assumption (18),
our next task is to estimate the probability K(X)

of a subject surviving to X = min(T , C) without
suffering a competing risk, which will be used
as an inverse weight in the weighted g-estimation
procedure described below. To do so, we fit the Cox
proportional hazard model

λ0Q(t) exp{α∗′
W∗(t)} (19)

for the hazard λQ(t |A(t−), L(t−), X > t), where
W∗(t) is a known vector-valued function of A(t−)

and L(t−), α∗ is the vector of unknown parameters,
and λ0Q(t) is an unspecified baseline hazard. We then
estimate K(X) by multiplying together the estimated
conditional probabilities of not suffering a competing
risk before X using the time-dependent Cox model
version of the Kaplan–Meier estimator [6]. Specifi-
cally, at each time Qj where any subject j suffered a
competing risk, we compute the Cox baseline hazard
estimator

λ̂Q(Qj ) = 1

/ n∑

i=1

{exp[α̂∗′
W∗

i (Qj )]I (X∗
i ≥ Qj)}

of λ0Q(Qj ). We then estimate a subject’s K(X)

by the Cox model version of the Kaplan–Meier
estimator

K̂(X)=
∏

{j ;Qj ≤X,τj =0}
{1 − λ̂Q(Qj ) exp[α̂∗′

W∗(Qj )], }

which is the product, over the competing risk times
Qj < X, of the subject’s estimated conditional prob-
abilities of not suffering a competing risk. Note that
a subject’s estimated probability K̂(X) depends on
his/her treatment and covariate history through the
covariate W∗(t).

Having estimated K̂(X) for each subject with
X = min(T , C) observed, we then estimate ψ0 by
replacing, in our g-estimation procedure of the previ-
ous subsection, the function Q(t, ψ) by Q∗(t, ψ) ≡



Structural Nested Failure Time Models 9

Q(t, ψ)/K̂(X) for each person who did not suf-
fer a competing risk (τ = 1) and by Q∗(t, ψ) = 0
for each person who did (τ = 0). For example, if
we use the simple function Q(t, ψ) = ∆(t, ψ), then
Q∗(t, ψ) = τ∆(t, ψ)/K̂(X).

We now give an intuitive explanation of why
the g-estimate ψ̂ obtained by this method should
be consistent for ψ0. Given the correctness of our
Cox model (19) and of our assumption of ignorable
censoring by competing risks (18), the following will
be true: for each person with X observed (τ = 1) and
an estimated cumulative probability of, say, K̂(X) =
0.25 of avoiding censoring by competing risks, there
would, on average, have been three other persons
(i.e. ghosts) who were censored by competing risks
before X(τ = 0), and who would have had a similar
value of X and a similar covariate and treatment
history up to X, had censoring by competing risks
been prevented. We therefore assign this person with
τ = 1 and K̂(X) = 0.25 a weight of 4 in the g-
estimation procedure by multiplying her covariate
∆(t, ψ) by the factor 4; she needs to count not only
for herself but also for the three other similar subjects
for whom X could not be observed due to censoring
by competing risks and thus had Q∗(t, ψ) set to zero.

This argument can be formalized to prove that the
“competing risk” g-estimator ψ̂ is a CAN estimator
of ψ0. However, the previous method of obtain-
ing confidence intervals and P values is no longer
valid because the contributions to the Cox partial
likelihood score of the extended Cox model (4) for
the treatment process are no longer uncorrelated for
two distinct reasons. First, K(X) and, therefore, the
time-dependent covariate τQ(t, ψ)/K(X) at time t

depend on a subject’s treatment and covariate his-
tory beyond t , disrupting the “martingale” structure
of the Cox partial likelihood score. Secondly, the
probability K(X) of avoiding a competing risk is
replaced by the estimate K̂(X) which depends on all
the data. However, if we fit the extended model (4)
using a Cox proportional hazards program that com-
putes the so-called “robust variance” [8], the resulting
g-intervals and tests are guaranteed to be conser-
vative, i.e. in large samples, nominal 95% confi-
dence intervals are guaranteed to cover ψ0 at least
95% of the time and 0.05 level g-tests are guaran-
teed to reject the null hypothesis ψ0 = 0 when true
no more than 5% of the time. If the conservative
“robust variance” g-intervals are too long to dis-
tinguish important substantive alternatives, narrower

intervals that cover ψ0 95% of the time in large sam-
ples can be obtained using the formulas provided in
Appendix 1.

Remarks. Often it is reasonable to assume that
censoring by end of follow-up C is also ignorable.
To incorporate this assumption, we redefine Q to be
the minimum of time to loss to follow-up, competing
risks, and end to follow-up and replace C by a
constant c∗ which is slightly less than the maximal
follow-up time max{Ci ; i = 1, . . . , n} so that K(c∗)
is bounded away from zero w.p.1. Then g-estimation
and testing can proceed as above.

Estimation of Direct Effects

Suppose now we wish to estimate the direct effect
of AZT A(t) on survival when another treatment,
say aerosolized pentamidine (AP), is not taken. If a
reasonably large fraction of the study population, say
at least 30%, were untreated with AP until failure
or censoring, a quite robust approach is to regard a
subject as censored at the first time the subject is on
AP therapy; redefine Q to be the minimum of time to
censoring by competing risks, time to loss to follow-
up, and time to being on AP therapy; and estimate
ψ0 using the methods of the previous subsection.

If only a small fraction of the study population
avoided AP therapy, then one can redefine A(t) to
be the joint treatment AP and AZT taken at time
t and specify a deterministic SNFTM (10) that has
separate parameters for the AZT effect and for the
AP effect as described in [16, Section A2.12]. An
alternative, and preferred approach is to specify a
direct effect structural nested model as described
in [21]. Discussion of these latter models is beyond
the scope of this article.

Inference Based on Instantaneous-Rate
RPSNFTMs

Difficulties Incorporating a Priori Biological
Knowledge with Deterministic SNFTMs

In our simple deterministic SNFTM (11), the sci-
entific meaning of the parameter ψ0 was relatively
straightforward; exp(−ψ0) was the factor by which
continuous treatment extended life. More specifi-
cally, since ∂T /∂H(ψ0) = exp{−ψ0A(T )}, Cox &
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Oakes [3] suggest interpreting exp{−ψ0A(t)} as the
relative rate at which real time is being used up com-
pared to baseline time at real time t . Thus, if an
individual has U years of baseline time to be used
up if treatment is withheld, then the actual time T at
which the U years of baseline time will have been
used is determined by (11). One might hope that the
physical interpretation of ∂T /∂H(ψ0) as the relative
rate at which real time is being used up compared
to baseline time would serve in more complex set-
tings to allow us to easily incorporate prior biological
knowledge as specific functional form restrictions on
our deterministic SNFTM models. However, the fol-
lowing example suggests that this is not the case.

Suppose, based on a priori biological understand-
ing, it is known that any treatment received at time
t would have no effect on survival unless the subject
is destined to fail within the next 5 weeks with-
out additional treatment. An example would be a
setting in which (i) failure is death from an infec-
tious disease, (ii) if death occurs, it always occurs
within 5 weeks from the time of initial unrecorded
subclinical infection, and (iii) A(t) is a preventive
antibiotic treatment at t which is of no benefit unless
the study subject is already infected by t . The chal-
lenge then is how to incorporate such biological
knowledge into the functional form of a determin-
istic SNFTM (10). We will see that it is difficult to
succeed at this challenge if we try to incorporate
the biological knowledge directly into a determinis-
tic SNFTM. However, incorporating such biological
knowledge is straightforward in a more general class
of causal models, the instantaneous-rate (locally)
RPSNFTMs which model the effect of a final instan-
taneous blip of treatment on survival. Since each
instantaneous-rate RPSNFTM mathematically entails
a unique deterministic SNFTM (10) as a solution to
a particular differential equation, it follows that by
solving this differential equation, we can determine
the restrictions on the functional form of our deter-
ministic SNFTM (10) implied by the restriction that
only treatment received within 5 weeks of failure can
affect failure.

Instantaneous-Rate RPSNFTMs

To describe instantaneous-rate RPSNFTMs, we shall
require a number of additional definitions.

Definition. A treatment regime or plan a ≡ a(·) ≡
{a(t); 0 ≤ t < ∞} is a continuous from the right

with left-hand limits (cadlag) function on [0, ∞)

that is everywhere continuously differentiable except
possibly on a countable set of discontinuity points,
only finitely many of which are contained in any
bounded interval.

Remark. If (i) A(T ) is generated by a marked point
process with hazard λA(t |A(t−), L(t−)), and (ii) we
define A(t) ≡ 0 if t > T , then, with probability 1,
sample paths of the stochastic process A(t) are
treatment regimes with discontinuity set the fixed
or random jump times for the process depending on
whether the process can jump only at fixed discrete
times or in continuous time.

We assume that L(T ) as well as A(T ) have cadlag
sample paths w.p.1. We define the set Dis to be the
possibly random set of times at which L(T ) or A(T )

are discontinuous.

Definition. Given a, let Ua be the (possibly) coun-
terfactual survival time that would be observed if
subjects followed treatment regime a until failure.

Note that the baseline failure time U is Ua for the
function a that is everywhere zero.

Definition. Given a ≡ a(·), let (a(t), 0) be the
regime that agrees with a for u ≤ t and is zero for
u > t . Ua(t),0 is the survival time had regime a been
followed through t and treatment withheld after t .

We assume Ua obeys the following natural con-
sistency assumptions that essentially assert that the
future cannot affect the past.

Consistency Assumption A. Given a and t > u,
the following are equivalent: Ua(u),0 > u, Ua > u,
Ua(t),0 > u.

Consistency Assumption B. Given a and a∗ such
that a(u) = a∗(u), Ua(u),0 = Ua

∗
(u),0.

The following consistency assumption links the
counterfactual variables Ua to the observable vari-
ables (T , A(T )).

Consistency Assumption C.

T = U
A(T ),0 w.p.1. (20)

The instantaneous-rate RPSNFTM studied in this
section requires the assumption of local rank preser-
vation. In the following definition, parts (i) and
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(ii) are the substantive parts. Part (iii) contains tech-
nical assumptions used later.

Definition of Local Rank Preservation. There is
local rank preservation w.p.1 if:

(i) Ua(t),0 is continuous in t w.p.1 and

lim
∆t↓0

{U
A(t+∆t),0 − U

A(t),0}/∆t

= D(U
A(t),0, t) whenever U

A(t),0 > t, (21)

where

D(u, t) ≡ d{u, t, L(t), A(t)}
(ii) d(u, t, L(t), A(t)) = 0 if a(t) = 0;

(iii) for t �∈ Dis on which A(T ) or L(T ) is dis-
continuous, D(u, t) is bounded and its partial
derivatives with respect to u and t are bounded
and uniformly continuous.

Eq. (21) states that if U
A(t),0 > t , then, for infini-

tesimal positive ∆t ,

U
A(t+∆t),0 − U

A(t),0 = D(U
A(t),0, t)∆t. (22)

Now recall that by A(t) cadlag w.p.1, A(t) is constant
in [t, t + ∆t) for ∆t sufficiently small. The left-hand
side of (22) is the additive increment in survival
time attributable to a final blip of treatment A(t)∆t

in the interval [t, t + ∆t) administered at dose rate
A(t). Thus (22) states that the additional increment
D(U

A(t),0, t)∆t is deterministic function of L(t), A(t)

and U
A(t),0. Hence we will refer to D(u, t) as the

instantaneous blip function.
To help understand the meaning of the instan-

taneous blip function D(u, t), consider the infec-
tious disease example presented earlier; it follows
from (22) that the restriction on the instantaneous blip
function D(u, t) implied by the biological knowledge
that the treatment received A(t) at time t is only
harmful or beneficial to those destined to fail by t + 5
if they receive no further treatment (i.e. to those with
U

A(t),0 − t < 5) is that

D(u, t) = 0, if u − t > 5. (23)

We now define a instantaneous-rate RPSNFT model
under the assumption of local rank preservation.

Definition. If the assumption of local rank preser-
vation holds, then we say the data follow an

instantaneous-rate RPSNFT D(u, t, ψ) if D(u, t) =
D(u, t, ψ0), where ψ0 is an unknown parameter
and D(u, t, ψ) ≡ d(u, t, L(t), A(t), ψ) is a known
continuously differentiable function of ψ satisfy-
ing (i) D(u, t, 0) = 0, (ii) D(u, t, ψ) = 0 if A(t) =
0, and (iii) for each fixed value of ψ , assumption (iii)
in the definition of local rank preservation holds.

We will now show that any instantaneous-rate
RPSNFTM implies a unique deterministic SNFTM
(10). We first show that the instantaneous-rate RPSN-
FTM

D(u, t, ψ) = 1 − exp{ψA(t)} (24)

implies the deterministic SNFTM (11). Model (24)
states that the effect of a final instantaneous brief
bit of treatment A(t)∆t is to add or subtract [1 −
exp{ψ0A(t)}]∆t to a subject’s lifetime, so that ψ0 =
0 implies no effect of treatment on survival. The reg-
ularity conditions in assumption (iii) of the definition
of local rank preservation and Theorem 2.3 of [9,
Section 6] on the existence and uniqueness of solu-
tions to differential equations guarantee that w.p.1
there exists a unique continuous solution U(t) ≡
U

A(t),0 to the differential equation

dU(t)

dt
= D{U(t), t} (25)

satisfying consistency assumption C that U(T ) ≡ T .
We now solve the differential equations (25) cor-

responding to model (24). Integrating dU(t)/ dt =
1 − exp{ψ0A(t)}, we obtain U(t)= t − ∫ t

0 exp{ψ0

A(u)} du + c. Imposing the initial conditions U(T ) =
T of consistency assumption C, we obtain c =∫ T

0 exp{ψ0A(u)} du so U(t) = t + ∫ T

t
exp{ψ0A(u)}

du. Hence U ≡ U(0) = ∫ T

0 exp{ψ0A(u)} du, repro-
ducing model (10)–(11) as promised. It is interesting
to note that the additive effect {1 − exp[ψ0A(t)]}∆t

of the treatment A(t)∆t implies, by model (11), a
multiplicative effect of constant unit treatment, i.e.
Ua≡1 = exp(−ψ0)U where a ≡ 1 is the regime that
always gives unit treatment. The reason for this is
a “compound interest effect” of continuous treat-
ment: any additional increment of survival time due
to treatment received at t is itself later subjected to
treatment, adding a further increment to survival time,
etc. Summing the resulting “infinite series” produces
the multiplicative effect on survival time of constant
treatment.

More generally, for any instantaneous-rate RPSN-
FTM D(u, t, ψ), there exists a unique solution



12 Structural Nested Failure Time Models

H(t, ψ) to the differential equation

∂H(t, ψ)

∂t
= D(H(t, ψ), t, ψ) (26)

satisfying the initial condition H(T, ψ) = T . Note
H(t, ψ) is a function h(t, T , A(T ), L(T ), ψ) of ψ

and the data. If the RPSNFTM is correctly spec-
ified with true value ψ0, then we have by the
uniqueness of the solutions to (25) and (26) that
H(t, ψ0) = U(t) ≡ U

A(t),0. In particular, abbreviat-

ing H(0, ψ0) to H(ψ0) and h(0, T , A(T ), L(T ), ψ0)

to h(T , A(T ), L(T ), ψ0), we obtain the unique deter-
ministic SNFTM U = H(ψ0) of (10).

It follows that a CAN g-estimator ψ̂ of the param-
eter ψ0 of the instantaneous-rate RPSNFTM can
be obtained by g-estimation under the assumptions
described earlier (including the assumption (1) of no
unmeasured confounders).

Consider next the instantaneous-rate RPSNFTM

D(u, t, ψ) = I (u − t < 5){1 − exp{ψA(t)}}, (27)

which satisfies the assumption (23) that treatment
at t only affects those destined to fail by t +
5 in the absence of further treatment. Integrat-
ing (25) with D(u, t) = D(u, t, ψ0) and impos-
ing the initial condition U(T ) = T , we obtain
U(t) = t − ∫ T

t
exp{ψ0A(u)} du for U(t) − t ≤ 5.

For U(t) − t > 5, U(t) solves U(t) = {U(t) − 5} +∫ T

U(t)−5 exp{ψ0A(u)} du, i.e.
∫ T

U(t)−5 exp{ψ0A(u)}
du = 5. It follows that U ≡ U(0) = ∫ T

0 exp{ψ0A(u)}
du for U < 5 and U satisfies

∫ T

U−5 exp{ψ0A(u)} du =
5 when U > 5. This implies that ∂U/∂T = exp{ψ0

A(T )} when U < 5 and ∂U/∂T = exp[ψ0{A(T ) −
A(U − 5)}] when U ≥ 5. It follows that when A(u)

varies with time u, we do not have a closed-
form expression for U or for ∂U/∂T . Hence, for
the corresponding deterministic SNFTM (10), we
will not have a closed-form expression for the
function H(ψ) = h(T , A(T ), L(T ), ψ) or its deriva-
tive ∂H(ψ)/∂T , although H(ψ) is easily evaluated
by numerical means. This “nonobvious” form of
∂H(ψ0)/∂T = ∂U/∂T justifies the remarks of the
previous subsection.

Instantaneous-Rate SNFTMs

Biological Implausibility of Local Rank
Preservation

Consider two subjects, say i and j , who have identi-
cal survival times and covariate and treatment histo-
ries (T , A(T ), L(t)). It follows from the uniqueness
of the solution to the differential equation (25) that,
under the assumption of local rank preservation, the
two subjects would have identical survival times U if
treatment had been withheld. This assumption is bio-
logically implausible. To see why, again consider the
infectious disease example of the previous section.
Suppose A(t) is the dose of treatment taken at t , treat-
ment has a beneficial biological affect, subject i and
j are both infected at time t , subject i fails to absorb
his/her dose due to gastrointestinal difficulties, while
subject j successfully absorbs his/her dose. Then
we would expect Ui = Ti = Tj > Uj since subject
j but not subject i experiences the benefit of treat-
ment. Dependence of the magnitude of the treatment
effect on unmeasured factors such as bioabsorption
and genetic endowment is the rule. In this section,
we describe the general class of instantaneous-rate
SNFTMs which allow the magnitude of the treat-
ment effect to depend on unmeasured factors. Specif-
ically, the class of instantaneous-rate SNFTMs does
not require that U be a deterministic function of
{T , A(T ), L(T )}, and contains the instantaneous-rate
RPSNFTMs as a subclass. Furthermore, the param-
eter ψ of a instantaneous-rate SNFTM can be con-
sistently estimated using the g-estimation procedures
described previously.

We now define a new function that will allow us to
relax the assumption of local rank preservation. Given
continuously distributed failure time variates T1 and
T2 with survivor functions S1(u) and S2(u), recall
that the quantile-quantile function v(u) = S−1

1 {S2(u)}
is the unique function v(u) such that v(T2) has the
same distribution S1(u) as T1. We now let U

A(t),0
and U

A(t+h),0 play the roles of T1 and T2 where,
by convention, A(u) ≡ 0 if u > T . Specifically, let
V(u, t, h) ≡ v(u, t, h, L(t), A(t)) be the unique func-
tion such that U

A(t+h),0 and V(UA(t),0,t, h) have the

same conditional distribution given L(t), A(t), T >

t . That is,

Pr[U
A(t+h),0 > V(u, t, h)|L(t), A(t), T > t]

= Pr[U
A(t),0 > u|L(t), A(t), T > t].
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Note V(u, t, 0) = u. We now make a smoothness
(differentiability) assumption.

Assumption (∗). We assume that (i) D(u, t) ≡
limh↓0{V(u, t, h) − V(u, t, 0)}/h exists and is bound-
ed for all (u, t) w.p.1 where the function D(u, t) ≡
d(u, t, L(t), A(t)) satisfies assumption (iii) in the
definition of local rank preservation, and (ii), for
t > x,

Pr[U
A(t),0 > u|L(x), A(x)] is continuous in t. (28)

We have reused the notation D(u, t) in Assumption
(∗) because, under local rank preservation, D(u, t) as
just defined is equal to D(u, t) as defined previously.
Even without local rank preservation under Assump-
tion (∗), we can regard D(u, t)∆t as the effect of a
last blip of observed treatment A(t) at t sustained
for an instantaneous time ∆t on quantiles of U

A(t),0.
That is, for infinitesimal positive ∆t , if, conditional
on L(t), A(t), u is, say, the zth quantile of U

A(t),0,
then u + D(u, t)∆t is the zth quantile of U

A(t+∆t),0.
As before, D(u, t) may be discontinuous for t ∈ Dis.

Remark. It is important to note that we no longer
assume U

A(t),0 is continuous in t . This is scientifically
important since U

A(t),0 will be discontinuous at t

if A(·) is exposure to cigarette smoke and a single
molecule of benzpyrene inhaled at time t initiates
lung cancer. However, (28) remains reasonable since
the probability of lung cancer being initiated in [t, t +
∆t) is small. However, (28) and thus Assumption (∗)
would be inappropriate if A(t) recorded whether a
subject received a mammogram or any other truly
“point-source” exposure at time t , where A(t) is
a point source if exposure of {t ; A(t) �= 0} is a
finite set w.p.1. Models for the effect of point-source
exposures, such as mammography, will not be further
discussed in this chapter; the SNFTMs discussed in
[16, Appendix 2] are appropriate.

It then follows from Theorem 2.3 of [9, Section 6]
that there exists a unique continuous solution H(t) ≡
h(t, T , L(T ), A(T )) to the differential equation
dH(t)/dt = D(H(t), t) satisfying H(T ) = T .

Under local rank preservation, we have seen that
this unique solution H(t) is precisely U(t) ≡ U

A(t),0.
This will not be true in the absence of local rank
preservation, since U(t) will no longer satisfy (25).
However, our main result is the following theorem

which states that H(t) and U(t) continue to have the
same conditional distributions.

Theorem 1. H(t) and U
A(t−),0 have the same condi-

tional distribution given (L(t), A(t), T > t). In par-
ticular, H ≡ H(0) and U have the same marginal
distributions.

As yet, Theorem 1 has only been proved in the
special case where the jump times of the A(t) and
L(t) processes are fixed rather than random [22],
although it is almost certain that Theorem 1 holds
in general. The limitation to nonrandom jump times
for the measured L and A processes is no limitation
in practice, since we can suppose them to have been
measured, say, every second rather than continuously,
and then the theorem is true.

We say the data follow a instantaneous-rate SNDM
if there is a function D(u, t, ψ) satisfying D(u, t) =
D(u, t, ψ0) with D(u, t, ψ) satisfying the conditions
previously described under the definition of a instant-
aneous-rate RPSNFTMs.

Again letting H(t, ψ) ≡ h(t, T , A(T ), L(T ), ψ)

be the solution to the differential equation (26) and
setting H(ψ) ≡ H(0, ψ), it immediately follows by
uniqueness that H = H(ψ0). Hence, a CAN estimator
ψ̂ of the causal parameter ψ0 of a instantaneous-rate
SNFTM can be obtained by g-estimation if, as we
assume, (2) holds with U

A(t−),0 replacing U . .

Estimating the Distribution of Ua

Given an instantaneous-rate SNFTM D(u, t, ψ), we
have shown how to obtain a CAN estimator ψ̂ of
ψ0 under the assumptions given above. However, we
often wish to estimate the survival curves SUa

(t) of
Ua for various treatment regimes a. Suppose cen-
soring is absent. Then ŜU (t) = n−1 ∑

i I {Hi(ψ̂) >

t} is a CAN estimator of SU(t). The main tool
we shall use to estimate other SUa

(t) is the blip-
up function B(u, t) ≡ b(u, t, L(t), A(t)) defined to
be the unique continuous solution to dB(t)/ dt =
D(B(t), t) through (0, u).

Example

For model (24) with D(u, t) = 1 − exp{ψ0A(t)}, we
obtain upon integrating that B(t)= t−∫ t

0 exp{ψ0
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A(u)} du + c. By the initial condition B(0) = u, we
obtain c = u, so

B(u, t) ≡ B(t) = u + t −
∫ t

0
exp{ψ0A(u)} du.

(29)

In general, B(u, t) is related to the blip-down
function H(t) by B(H, t) = H(t) where H ≡ H(0).
For any covariate and treatment histories l and
a defined on [0, ∞), define b∗(u, l, a) to be the
solution t∗ to t∗ = b(u, t∗, l(t∗), a(t∗)) if one exists
and b∗(u, l, a) ≡ ∞ otherwise. Note b∗(H, L, A) =
T , since T = B(H, T ), where L(u) ≡ A(u) ≡ 0 if
u > T .

Example

With B(u, t) given by (29), b∗(u, l, a) = b∗(u, a) is
the unique solution to u = ∫ b∗(u,a)

0 exp{ψ0a(u)} du.
If (i), as in model (24), d(u, t, l(t), a(t)) ≡

d(u, t, a(t)) does not depend on l(t), i.e. there is
no treatment–covariate interaction, so b∗(u, l, a) =
b∗(u, a), and (ii) there are no unmeasured con-
founders for each Ua , i.e.

Ua

⊔
A(t)|L(t−), A(t−), T > t, (30)

then
SUa

(t) = Pr{b∗(U, a) > t}. (31)

By Theorem 1, U can be replaced by H in (31).
Robins [17, Appendix 1] discusses conditions
weaker than (30) which imply (31). It now fol-
lows that given a CAN g-estimator ψ̂ of
ψ0, n−1 ∑

i I {b∗(Hi(ψ̂), a, ψ̂) > t} is a CAN esti-
mator of SUa

(t) where b∗(u, a, ψ) is b∗(u, a) under
ψ = ψ0.

Models for Cure

The fact that b∗(u, a) can be infinite reflects the pos-
sibility of “cure” (see Cure Models). As an exam-
ple, suppose U represents the time from diagnosis
to death from pancreatic cancer in the absence of
treatment. Suppose untreated pancreatic cancer is
uniformly fatal so that U is finite w.p.1. Suppose,
however, that Pr{b∗(U, a) = ∞} = p �= 0. Then a
fraction p of the population will be cured under treat-
ment regime a.

Consider the multiplicative blip model

D(u, t, ψ) = (u − t)ψA(t). (32)

By the formula for solutions to linear first-order
differential equations [9, Chapter 6],

b(u, t, a(t)) = exp

[∫ t

0
ψ0a(x) dx

]{
u −

∫ t

0
xψ0a(x)

× exp

[
−

∫ x

0
ψ0a(v) dv

]
dx

}
,

which simplifies, when a is the constant-dose regime
a∗, to exp(ψ0a

∗t)[u − (ψ0a
∗)−1] + t + (ψ0a

∗)−1.
Hence, b∗(u, a) = ln{−(ψ0a

∗)−1/[u − (ψ0a
∗)−1]}/

{ψ0a
∗} if u < (ψ0a

∗)−1 and b∗(u, a) = ∞ if u >

(ψ0a
∗)−1. Thus, the probability of cure under a is the

probability that U exceeds 1/{ψ0a
∗}. The intuition

behind this result is that, according to model (32),
d(u, t, a(t), ψ0) exceeds 1 at t = 0 if and only if
uψ0a

∗ > 1. If d(u, t, a(t), ψ0) > 1, then a blip of
treatment a∗ at t sustained for duration ∆t adds more
than ∆t years to a subject’s survival time. If, as in
our model when u > (ψ0a

∗)−1, the instantaneous blip
function exceeds 1 for each time t , then the subject
is cured.

If the failure time variable is death from all causes,
we would want b∗(u, l, a) to be finite for all u, l, and
a which is guaranteed by having d(u, t, l(t), a(t)) <

1 − σ, σ > 0, for all u, t, a(t), l(t). A natural param-
eterization of an instantaneous-rate SNFTM that
essentially accomplishes this is D(u, t ; ψ)=1 −
exp{r(u, t, L(t), A(t), ψ)} for some function r(·) as
in models (24) and (27).

Covariate–Treatment Interaction

If d(u, t, l(t), a(t)) depends on l(t), we can obtain
independent draws from the distribution of Ua under
assumption (30) when the covariate process L(t) only
jumps at non random times, say 0,1,2, . . . as follows.

Step 1. Draw U from its marginal distribution.
Step 2. Draw L(0) from f {l(0)|U = u}.
Step 3. Set m = 1.
Step 4. If b[U, m − 1, L(m − 1), a(m − 1)] ≤ m,

set Ua to b∗(U, L, a) where L(t) = 0 for
t > m and agrees with the drawn L(m−)

up to time m. Otherwise, draw L(m)

from f [L(m)|(L(m−), a(m−), U, T > m],
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increment m by 1, and return to the start
of this step.

To carry out this algorithm in practice, we first
obtain a g-estimate ψ̂ of the parameter ψ0 of
an instantaneous-rate SNFTM; draw U from the
empirical distribution ŜU (t) = n−1 ∑

i I (Hi(ψ̂) >

t); replace the functions b(·) and b∗(·) by
b(·, ψ̂) and b∗(·, ψ̂); and estimate the den-
sity f [l(m)|l(m−), a(m−), U, T > m] by specifying
a parametric model f [l(m)|l(m−), a(m−), U, T >

m; η] and evaluating it at η̂ which maximizes

n∏

i=1

int(Ti )∏

m=0

f [Li(m)|Li (m
−),

Ai(m
−), Hi(ψ̂), Ti > m; η].

A heuristic explanation of the above algorithm
is as follows. If a stimulated subject with baseline
time U manages to survive to time m under regime
a, we randomly draw L(m) and then use the blip-
up function b(u, t, l(t), a(t)) to determine whether
the subject has survived to time m + 1 or whether
the subject has died at a time Ua , determined by
the function b∗(u, l, a) in the interval (m, m + 1].
This explanation is heuristic in that it implicitly
but unnecessarily assumes local rank preservation.
Robins et al.[26, Appendix 2] discusses how to
generalize the results of this section to allow for
censoring. A drawback of SNFTMs is that in the
presence of a covariate–treatment interaction SUa

(t)

cannot be calculated without modeling the law of
L(m) given {L(m−), A(m−), U, T > m}. Estimation
of the nonnested structural Cox proportional hazard
models for Ua described in Appendix 2 can obviate
this problem.

Appendix 1: Calculation of the Variance of the
g-Test Statistic Numerator

We shall require some notation. Given a stochas-
tic process G(·), let UA{G(·)} = ∫ X

0 dMA(u){G(u) −
E[exp[α′W(u)]G(u)]/E[exp[α′W(u)]} where α′W(u)

is from model (4), dMA(u) = dNA(u) − λ0(u)

exp[α′W(u)] du and NA(u) counts the number of
jumps in the A(u) process through time u.

Now define U1 ≡ UA{τQ(·, ψ0)/K(X)} and U2 ≡
UA{W(·)}. Then define V1 ≡ E[{U1 − E[U1U

′
2]

E[U⊗2
2 ]−1U2}⊗2]. V1 is the “robust variance” of the

g-test numerator (i.e. Cox partial likelihood score
test numerator) of the hypothesis that θ = 0 in the
extended Cox model (4) when the true K(X) is used.

Now define V ≡ V1 − Vcorr, where Vcorr is the
correction to the variance V1 required when we
replace K(X) by its estimator K̂(X). Specifically,
Vcorr = V2 + V3, where V2 = E[

∫ ∞
0 dNQ(u){LQ(u,

J (u))}⊗2], NQ(u) = I [Q ≤ u, τ = 0], J (u) ≡ ∫ X

0
dMA(t)Q(t, ψ0)/K(u) and, for any G(u),LQ{u,

G(u)} ≡ E[K(u) {K(X)}−1 τ G(u) I (X∗ > u)

exp[α∗′
W∗(u)]/E[I (X∗ > u) exp[α∗′

W∗(u)] with α∗′

W∗(u) from model (19).
V3 = V31{V32}−1V ′

31, V31 = E[
∫

dNQ(u){LQ{u,

J (u)W∗(u)} − LQ(u, J (u))LQ(u, W∗(u))}] and V32

is the expected partial information matrix for α∗ from
Cox model (19). Since Vcorr is nonnegative definite,
the robust variance V1 is greater than or equal to
the true variance V in the nonnegative definite sense.
A consistent estimator V̂ of V is obtained by sub-
stitution into the above formulas according to the
following six steps.

1. Replace any expectation by a sample average
over the n study subjects.

2. Replace α and α∗ by their partial maximum
likelihood estimates.

3. Replace ψ0 by the value of ψ being tested in the
g-test.

4. Replace K(·) by K̂(·).
5. Replace dMA(u) by dNA(u) − dΛ̂0(u) exp[α̂′

W(u)], where Λ̂0(u) is the Cox cumulative
hazard estimate from model (4).

6. Estimate V32 by the observed partial information
matrix from the fit of model (19).

Now let Û1(ψ) be U1 with the substitutions
described in steps 1–6 above. The g-statistic numer-
ator is precisely

∑n
i=1 Û1i (ψ). We then have the

following theorem on which our inferences are based.

Theorem. Given that (2) and (18) and that mod-
els (4), (10), and (19) are correct, then, when ψ =
ψ0, n−1/2 ∑

i Û1i (ψ) is asymptotically normal with
mean zero and asymptotic variance V that can be
consistently estimated by V̂ .

The proof is analogous to that given in [17,
pp. 284–285] using the methods developed in [24].
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Appendix 2

A (nonnested) structural Cox proportional hazard
model specifies

λUa
(t) = λ(t) exp[r{t, a(t−), β0}] (33)

where r(·) is a known function and λ(t) an unspec-
ified baseline hazard. For simplicity, assume A(t)

is dichotomous. Then a consistent asymptotically
normal estimator β̂ of β0 under assumptions (18)
and (30) and models (4), (19), and (33) is the solu-
tion to the weighted Cox score equation for T

0 =
∑

i

∫ ∞

0

{
dNT i(u)

Ω̂i(u)

}

×
{
Pi(u, β) − Ê[P(u, β), β]/Ê[1(u), β]

}
,

where (i) NT (u) = I [X∗ ≤ u, X∗ = T ]; (ii) P(u, β)

= p
[
u, A(u−), β

]
is a vector function of dimβ cho-

sen by the analyst such as ∂r
(
u, A(u−), β

)
/∂β;

(iii) 1(u) = 1 is the identity; (iv) Ê[J (u, β), β] =∑
i I (X∗

i > u) exp
[
r
{
u, A(u−), β

}]
Ji(u, β)/Ω̂i(u);

(v) Ω̂i(u) = K̂i(u)K̂Ai(u), K̂(u) as defined in the
text; (vi) K̂A(u) = exp

[
− ∫ u

0 λ̂A

[
t |L(t−), A(t−)

]
dt

]

∏
{t ;t<µ and A(t)�=A(t−)} λ̂A

(
t |L(t−), A(t−)

)
, where λ̂A[

t |L(t−), A(t−)
] = λ̂0(u) exp

[
α̂′W(u)

]
andλ̂0(u) is

now a kernel smoothed version of the Cox estimate
of λ0(t) of model (4) as in [31]. β̂ combined with the

estimate λ̂(t) = ∑
i dNT i(t)/

{
Ω̂i(t)Ê

[
1(t), β̂

]}
of

λ(t) produces an estimate of λUa
(t) and thus of

SUa
(t). In the above, we have assumed that Q is

the minimum of time to loss to follow-up, com-
peting risk, and end to follow-up as discussed in
the remark in the section “Censoring by Compet-
ing Risks” above. Note that K̂A(u) is a consistent
estimate of probability that a subject would have his
observed history A(u) through time u.
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Structural Time Series
Models

Structural time series models are set up in terms of
components, such as trends, seasonals, and cycles,
which have a direct interpretation. They can then be
used not only for forecasting but also for providing
a description of the main features of the series.
Structural time series models have been used to
tackle a wide range of problems; for example, the
monograph by Harvey [8] includes applications in
economics, meteorology, criminology, energy, and
association football. Other illustrations are in the
books by Durbin and Koopman [4], Jones [17] and
Kitagawa, and Geisch [18].

The next section sets out the principal univariate
structural time series models and describes their prop-
erties. The following section explains how to bring
explanatory variables into a single equation model,
thereby bringing together regression and time series
techniques. Intervention analysis (see Intervention
Analysis in Time Series) is treated as a special case.
In a multivariate model several series are modeled
jointly. Structural time series models extend naturally
to this situation and are described in the section on
multivariate models. Of particular interest is the fact
that such models provide a framework within which
to handle control groups.

The section on data irregularities explains how
structural time series models can be adapted to handle
problems such as outliers, missing observations and
data not recorded at equally spaced intervals of time.
In the final section we look at methods for handling
non-Gaussian data such as counts, consisting of small
integers, or qualitative variables, recorded as zeros or
ones.

Univariate Structural Time Series Models

The basic idea of structural time series models is that
they are set up as regression models in which the
explanatory variables are functions of time, but with
coefficients which change over time. Thus within
a regression framework a simple trend would be
modeled in terms of a constant and time with a
random disturbance added on. That is,

yt = α + βt + εt , t = 1, . . . , T . (1)

The model is straightforwardly estimated by ordinary
least squares, but suffers from the disadvantage that
the trend is deterministic. This is too restrictive in
general and the necessary flexibility is introduced by
letting the coefficients α and β evolve over time as
stochastic processes. In this way the trend can adapt
to underlying changes. The current, or filtered, esti-
mate of the trend is obtained by putting the model
in state space form and applying the Kalman filter.
Related algorithms are used for making predictions
and for smoothing, which means computing the best
estimate of the trend at all points in the sample using
the full set of observations. The extent to which the
parameters are allowed to change is governed by
hyperparameters. These can be estimated by maxi-
mum likelihood but, again, the key to this is the state
space form and the Kalman filter. All these methods
and algorithms are described in detail in Harvey [8],
Durbin and Koopman [4], and Koopman. The STAMP
package of Koopman et al. [21] carries out all the cal-
culations and is set up so as to leave the user free to
concentrate on choosing a suitable model. If desired,
the weights implicitly assigned to observations in
computing a trend, or indeed any component, may
be obtained by using the algorithm set out in [20].

The model selection methodology for structural
models is somewhat different to that used for autore-
gressive integrated moving average (ARIMA) models
(see ARMA and ARIMA Models) in that there is
less emphasis on looking at the correlograms of var-
ious transformations of the series in order to get an
initial specification; see Box & Jenkins [3]. Instead
the emphasis is on formulating the model in terms of
components suggested by a knowledge of the appli-
cation or an inspection of the graph. Once a model
has been estimated, the same type of diagnostics tests
as are used for ARIMA models can be performed on
the residuals. In particular, the Box–Ljung statistic
can be computed, with the number of relative hyper-
parameters subtracted from the number of residual
autocorrelations to allow for the loss in degrees of
freedom. Standard tests for nonnormality and het-
eroscedasticity can also be carried out, as can tests of
predictive performance in a postsample period. The
structural framework also allows tests for outliers and
structural breaks to be performed; these are based on
what Harvey & Koopman [11] call “auxiliary residu-
als”. Plots of residuals can be augmented by graphs of
the smoothed components. These can often be very
informative since they enable the model builder to
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check whether the movements in the components cor-
respond to what might be expected on the basis of
prior knowledge. Finally, it is shown by Andrews [1],
among others, that the forecasting performance of
structural time series models is as good as, and some-
times even better than, the performance of ARIMA
models.

A Bayesian approach to structural time series
modeling is described in West & Harrison [28].
Recent developments in Bayesian techniques, such
as Markov chain Monte Carlo, are discussed in [4]
and [6].

The principal univariate structural time series
models are set out below. In the last subsection the
formal relationship between structural and ARIMA
models is discussed.

Local Level

The simplest structural time series model addresses
a situation in which the underlying level of the
series changes over time. This level is modeled by
a random walk, on top of which is superimposed a
random, or white noise (see Noise and White Noise)
disturbance. The specification is therefore

yt = µt + εt , εt ∼ NID (0, σ 2
ε ), t = 1, . . . , T ,

µt = µt−1 + ηt , ηt ∼ NID (0, σ 2
η ), (2)

where NID denotes normally and independently dis-
tributed, and the two disturbances are mutually uncor-
related. An important practical feature of this model
is that the estimator of the level, based on currently
available information, is given by an exponentially
weighted moving average (EWMA) of past observa-
tions, that is

µ̃T = λ[yT + (1 − λ)yT −1 + (1 − λ)2yT −2

+ (1 − λ)3yT −3 + · · ·], (3)

where the “smoothing constant”, λ, is a function
of the signal-to-noise ratio, q = σ 2

η /σ 2
ε . Forecasts of

future observations, however many steps ahead, are
given by exactly the same expression. This was estab-
lished by Muth [24]. For a pure random walk, q

is infinite and λ = 1, leading to a forecast equal to
the last observation. As q moves towards 0, λ also
goes to zero and the forecast becomes the sample
mean. That this happens is not apparent from the for-
mula above, which is actually an approximation to

the exact forecast function produced by the Kalman
filter [8, Chapter 3]. The important point about the
Kalman filter when applied to a nonstationary model
like (2) is that it is initialized with what is called a
diffuse prior. There has been considerable progress
in the statistics literature recently on developing sta-
ble algorithms for this situation [19]. The estimation
of q, the main hyperparameter in the model, can
be carried out by maximum likelihood, which basi-
cally entails minimizing the sum of squares of the
one-step-ahead prediction errors throughout the sam-
ple.

Within a medical context, µt might be thought of
as the underlying state of a patient, while εt represents
measurement error. A doctor wishing to monitor the
state of the patient’s health needs to have as good
an estimate as possible of µt given the information
which is currently available. If the model is correct,
the Kalman filter delivers such an estimate, together
with its root mean square error (RMSE). Hence a
confidence interval can be constructed around the
estimate, and the doctor can use this as a guide
as to whether it is reasonable to suppose that the
level of whatever is being monitored is acceptable
see [12].

Local Linear Trend

The local linear trend model replaces the determin-
istic trend in (1) by a stochastic trend. The exact
formulation is

yt = µt + εt , εt ∼ NID (0, σ 2
ε ),

t = 1, . . . , T ,

µt = µt−1 + βt−1 + ηt , ηt ∼ NID (0, σ 2
η ),

βt = βt−1 + ζt , ζt ∼ NID (0, σ 2
ζ ),

(4)

with the level and slope disturbances, ηt and ζt mutu-
ally uncorrelated and uncorrelated with εt . The extent
to which the level, µt , and slope, βt , change over
time is governed by the relative hyperparameters,
qη = σ 2

η /σ 2
ε and qζ = σ 2

ζ /σ 2
ε . The forecast function is

a straight line starting from the estimates of the level
and slope at the end of the sample. In the limiting
case when both relative hyperparameters are zero, the
deterministic trend model is obtained with α = µ0.
Other special cases of interest arise when qζ = 0, in
which case the trend is a random walk plus drift and
qη = 0, in which case the smoothed trend is related
to a cubic spline (see Spline Function).
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Stochastic Seasonality

Many series recorded quarterly or monthly are subject
to seasonal variation. What are effectively seasonal
effects also occur when observations are recorded
within the day. Just as more flexibility needs to be
given to a trend by allowing it to be stochastic, so
a seasonal component needs to be allowed to change
over time. Although the case for a stochastic seasonal
component is arguably less compelling than the case
for a stochastic trend, there are many reasons why
changes in the seasonal pattern may take place.

If the seasonal component is deterministic, it
should have the property that it sums to zero over
the previous year; this ensures that it cannot be con-
founded with the trend. Adding a disturbance term to
the sum of seasonal effects over the past year allows
the seasonal pattern to evolve over time. This is a
“dummy variable” form of stochastic seasonality,

γt = γt−1 + · · · + γt−s+1 + ωt ,

ωt ∼ NID (0, σ 2
ω). (5)

An alternative way of capturing a deterministic sea-
sonal pattern is by a set of sine and cosine functions.
Allowing these to be stochastic leads to the “trigono-
metric form” of stochastic seasonality [8, Chapter 2].
It is better than the dummy variable stochastic sea-
sonal model because it allows the seasonal pattern to
evolve more smoothly; it can be shown that the sum
of the seasonals over the past year follows a MA
(s − 2) rather than white noise.

Seasonal effects are typically combined with trend
and irregular components, usually after taking log-
arithms. This leads to the basic structural model
(BSM),

yt = µt + γt + εt , t = 1, . . . , T , (6)

where the stochastic trend component, µt , and the
irregular component are defined as in the local lin-
ear trend model above; see, for example, [18]. This
model has been widely applied and can be used as
the basis for seasonal adjustment of time series.

Cycle

A deterministic cycle can be expressed as a sine–
cosine wave, that is

ψt = α cos λt + β sin λt, t = 1, . . . , T . (7)

In the previous section it was pointed out that
a seasonal pattern could be modeled by a set of
stochastic cycles defined at the seasonal frequencies
(see Seasonal Time Series). A somewhat different
situation arises when we wish to model a cycle, which
may be stochastic, and, unlike the seasonal cycles,
may be stationary. The statistical specification of such
a cycle, ψt , is as follows:
[

ψt

ψ∗
t

]
= ρ

[
cos λc sin λc

− sin λc cos λc

] [
ψt−1

ψ∗
t−1

]
+

[
κt

κ∗
t

]
,

t = 1, . . . , T , (8)

where λc is the frequency, in radians, in the range
0 ≤ λc ≤ π, κt and κ∗

t are two mutually uncorrelated
white noise disturbances with zero means and com-
mon variance σ 2

κ , and ρ is a damping factor, such
that 0 < ρ ≤ 1. Note that the period is 2π/λc. For
some purposes it is useful to take the variance of
ψt , rather than the variance of κt , as a hyperparame-
ter. Then since σ 2

κ = (1 − ρ2)σ 2
ψ , a deterministic, but

stationary, cycle is obtained when ρ = 1. The auto-
correlation function (ACF) of ψt is

ρ(τ) = ρτ cos λτ, τ = 0, 1, 2, . . . . (9)

This is a cycle which damps down to zero as τ goes
to infinity, except when ρ = 1. The spectrum has a
peak around λc, denoting irregular, or pseudocyclical,
behavior (see Spectral Analysis). The peak becomes
sharper as ρ approaches one, and in the limiting case
when ρ equals one it manifests itself as a jump in the
spectral distribution function. A test that the cycle is
deterministic is given in Harvey and Streibel [14].

Cyclical components of this type have proved
useful in economics for modeling the business cycle;
an extended class of cycles is presented in [15].
Cycles can be combined with other components, such
as trend and seasonal, as well as with other cycles or
perhaps autoregressive processes.

Reduced Form ARIMA Models

All the structural time series models described in
the previous section are linear and hence there is a
corresponding ARIMA model which gives identical
predictions. Since the ARIMA model contains only a
single disturbance, it is called the “reduced form”.

The specification of the reduced form can be found
very easily for the simpler models. Thus for the local
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level, (2), taking first differences yields

∆yt = ηt + εt − εt−1, t = 2, . . . , T . (10)

The ACF has the same form as that of a first-order
moving average process, and so the local level has
an ARIMA (0, 1, 1) reduced form,

∆yt = ξt + θξt−1, t = 2, . . . , T . (11)

Equating the first-order autocorrelations in the two
models gives the following relationship between the
structural and reduced form parameters:

θ = [(q2 + 4q)1/2 − 2 − q]

2
. (12)

Note that θ is constrained to be negative. In more
complicated models, the constraints tend to be
stronger.

The reduced form of the local linear trend model is
ARIMA (0, 2, 2), while that of the BSM, given in (6),
is shown by Maravall [22] to be quite close to that of
the “airline” model of Box–Jenkins analysis, namely
the seasonal ARIMA of order (0, 1, 1) × (0, 1, 1)s .

Explanatory Variables and Interventions

Observable explanatory variables may be added to
the right-hand side of a structural time series model.
Some or all of these variables may be under the
control of the researcher, for example they may
represent the levels of drugs administered.

To keep the discussion simple, we will assume
that the only component, apart from the irregular, is
a random walk as in (2), and that there is a single
explanatory variable, xt . Then

yt = µt + δxt + εt , t = 1, . . . , T . (13)

The rationale for such a model is that the explanatory
variable does not capture all the underlying move-
ments in the level of the series. If it did, q would
be zero, µt would be constant, and we would be
left with a classical regression model. At the other
extreme, if σ 2

ε were zero, the model could be treated
as a regression in first differences. More generally,

∆yt = δ∆xt + (ηt + εt − εt−1), t = 1, . . . , T ,

(14)

and it should be clear from the discussion surround-
ing (11) that the disturbance in curly brackets is

equivalent to a first-order moving average process.
Thus the model in (13) is equivalent to a transfer
function model in which the stochastic part has an
ARIMA (0, 1, 1) specification. An example of such
a specification can be found in [3, pp. 409–412]
and in [16], where it is used to model the effect
of pollution on respiratory diseases in children. The
interpretation of the structural formulation is more
direct and the route by which it is obtained is simpler.

The model can be generalized so as to allow for
a lag in the response of y to a change in x. There is
an enormous literature, particularly in econometrics,
on how to put restrictions on the lag structure so as
to obtain a more stable lag structure.

Intervention variables are dummy variables which
are used to take account of outlying observations
and structural breaks. These data irregularities are
usually thought of as arising from a specific event,
for example, a specific hot day in the case of outliers
or a change in policy or treatment in the case of a
structural break. Consider the local level model of (2)
and suppose that there is a shift in the level due to
an intervention at a known time t = τ . The model is
then

yt = µt + λwt + εt , εt ∼ NID (0, σ 2
ε ),

t = 1, . . . , T , (15)

where wt takes the value zero for t < τ and is one
thereafter. Other components and explanatory vari-
ables can be added to the right-hand side. An example
of the use of intervention analysis in structural time
series models can be found in [10] on the effect of
the 1983 seat belt law in Great Britain.

Multivariate Models

In a multivariate time series model there are obser-
vations on a number of individuals or groups over a
period of time, and the model tries to capture the cor-
relations and interrelationships between these series
(see Multiple Time Series).

As before, each series may depend on various time
series components, both nonstationary and stationary,
and observable explanatory variables, including inter-
vention effects. For example, with N series,

yit = µit + ψit + x ′
it δi + λiwit + εit ,

i = 1, . . . , N, t = 1, . . . , T . (16)
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This may represent a situation in which an exper-
imental group is subject to some treatment, which
varies over time and is measured by xit , and a con-
trol group which is not subject to the treatment or has
it at a different level. An intervention variable would
be used for a treatment which is either on or off.
The role of the time series components is to pick up
changes which occur over time independently of the
treatments. It may sometimes be reasonable to sup-
pose that these effects are common to both groups.

The above framework can also be used for a
situation where there are observations on a number
of individuals over time. These individuals may be
given different treatments or they may be subdivided
into experimental and control groups. In economics,
such cross sections of time series are known as “panel
data”, though in medicine, the term “longitudinal
data” is more common [17].

The first subsection below generalizes the univari-
ate structural time series models to multivariate series
and explores their properties. It is then shown how
such models can be used in connection with interven-
tion analysis and control groups. The last subsection
looks at longitudinal data.

Seemingly Unrelated Time Series Equations

In the seemingly unrelated time series equations
(SUTSE) model, each series in an N × 1 vector
of observations, yt = (y1t , . . . , yNt )

′, is modeled as
in a univariate structural time series model, but
the disturbances in each of the components may
be correlated across series. There are no dynamic
interactions between the series in a SUTSE model.
Such features can be introduced, for example by
including a vector of components which follows a
stationary vector autoregression (VAR). Explanatory
variables can also be included in the models.

To understand the implications of SUTSE models
we focus on the special case of a multivariate local
level model,

yt = µt + εt , εt ∼ NID (0, �ε),

t = 1, . . . , T ,

µt = µt−1 + ηt , ηt ∼ NID (0, �η), (17)

where �ε and �η are the (N × N) covariance matri-
ces, and ηt and εt are multivariate normal distur-
bances which are mutually uncorrelated in all time

periods. The long-run connections between the series
are captured by the covariances in the off-diagonal
elements in �η, while the short-run correlations are
in �ε. These long-run and short-run correlations may
be completely different. In the special case when
they are the same, the system is said to be homo-
geneous. Because �η = q�ε, where q is a positive
scalar, the statistical treatment is simplified consider-
ably [8, Chapter 8].

Common Factors

The form of a common factor model is similar to
that of a SUTSE model except that some or all of the
components are driven by disturbance vectors with
covariance matrices which are less than full rank.
Such models may be formulated in terms of common
factors.

Consider the bivariate local level model,

y1t = µt + ε1t , t = 1, . . . , T ,

y2t = θµt + µ + ε2t , (18)

where µt is a univariate random walk. The long-
run components in the two series depend on the
same underlying source, with the level in the second
series being a linear function of the level in the first.
If θ = 1, the underlying levels remain a constant
distance apart, while if µ = 0 they are identical. An
important feature of this model is that the common
nonstationary level can be removed by a certain linear
combination of the two series. This property is known
as cointegration in the econometrics literature [5]. In
the present case it leads to the following relationship
between y1t and y2t :

y2t = αy1t + µ + εt , t = 1, . . . , T , (19)

where α = θ and εt = ε2t − αε1t .
When there are more than two series, there may be

more than one common factor for each component,
and these factors are not unique. A factor rotation
may sometimes give components with an interesting
interpretation.

Control Groups and Intervention Analysis

Suppose we wish to assess the effect of an interven-
tion on a series. This can be done by a univariate
model as described in the section on explanatory
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Figure 1 Monthly crashes on rural interstate highways in Arizona.

variables. However, if observations are available on
another series correlated with the series of interest but
unaffected by the intervention, it is possible to con-
struct a bivariate model in which this second series
acts as a control group.

Consider the following model:

y1t = µ1t + ε1t , t = 1, . . . , T ,

y2t = µ2t + λwt + ε2t , (20)

where the first series contains the observations on the
control group. The higher the correlation between the
two trends, the bigger the gain is likely to be. The
most extreme case is when the two series are driven
by a common level, so that they are cointegrated. The
model is as in (18) except that the second equation
becomes (21):

y2t = θµt + µ + λwt + ε2t , t = 1, . . . , T , (21)

and so (19) becomes

y2t = αy1t + µ + λwt + εt , t = 1, . . . , T . (22)

In contrast to (15), there is no stochastic level in (22).
As a result the intervention effect can be estimated
consistently and large gains can be expected when
there are only a small number of observations after
the intervention. For example, Harvey [9] shows that
the standard error of the estimate of the parameter
measuring the effect of the British seat belt law is

more than halved when a control group is used.
Another example, taken from [2, p. 22–4], concerns
the relaxation of the speed limit on certain rural
highways in the US in 1987. Figure 1 shows the
random walk trend extracted from a model fitted
to monthly data on crashes in rural Arizona, with
the intervention in April of that year. A seasonal
component was also included. The t-statistic on the
intervention was 2.21, but a joint model with the
series on crashes on urban highways, where the speed
limit was not changed, increased the t-statistic to 2.41.
The gain arose from the correlation of 0.81 in the
level disturbances.

Longitudinal Data

When there are observations on a large number of
individuals over time, the unrestricted SUTSE model
becomes unmanageable. However, in such situations
it is quite reasonable to suppose that, for each
component, the correlation between the disturbances
in any two individuals is the same. This restriction
may be introduced by assuming that there is an effect
common to all individuals and that the individual
specific effects are mutually independent. Thus, in
the local level model, with observable explanatory
variables

yit = µt + µ∗
it + x′

itβ + εt + ε∗
it ,

i = 1, . . . , N, t = 1, . . . , T , (23)
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where µt is the common level driven by a disturbance
with variance σ 2

η , µ∗
it , i = 1, . . . , N , are the individ-

ual specific levels each driven by a disturbance with
variance σ 2

η∗, and εt and ε∗
it are the common and spe-

cific irregular disturbances with variances σ 2
ε and σ 2

ε∗,
respectively; see [12], and [23].

Data Irregularities

It is not unusual for time series to suffer from data
irregularities such as missing and irregularly spaced
observations. A discrete time model can handle
missing observations by using the state space form
and letting the Kalman filter skip over the missing
observations. Irregularly spaced observations pose a
more fundamental problem and the solution is to set
up a model in continuous time and then use the state
space form to construct the relevant discrete time
model; see [13] and [17]. For a local level this is
very easy. Let δt be the time interval between the
observation at time t and the observation at time
t − 1. The level is assumed to evolve as a Wiener
process, or Brownian motion, and if the observations
are equally spaced, that is δt = 1, the corresponding
discrete time model is just (2). With unequally spaced
observations the only difference is that var(ηt ) =
δtσ

2
η , where σ 2

η is a parameter defined with respect
to the continuous time white noise process driving
the Wiener process. Handling this model within the
state space framework presents no problem since,
although the system is not time invariant, the way
in which it varies with time depends on the δ′

ts and
so is known.

Outliers may also arise in time series. These are
observations which appear to be inconsistent with
a model which is appropriate for most of the data.
The simplest kind of outlier is one which is iden-
tified as an incorrect measurement, in which case
it may be handled by an intervention variable or
treated as a missing observation; the second solu-
tion is preferable if there are a large number of such
cases. A less extreme case arises if some observa-
tions are known to be more reliable than others. For
example, suppose that the t th observation is con-
structed as the average of the values of nt units.
In this case it may be appropriate to let the vari-
ance of the measurement error, εt , be proportional
to 1/nt . As with irregularly spaced observations,
there is no problem in handling such a situation with

the state space form. An example involving survey
data is in Pfeffermann [25]. Finally, outliers might
be handled by allowing the disturbance in the mea-
surement equation to have a heavy-tailed distribution.
This makes the model more robust. References to the
techniques used for dealing with heavy-tailed distri-
butions are given in the next section, but a specific
example can be found in Dubin and Koopman K [4,
p. 233–5].

Non-Gaussian Observations

Suppose it is felt that a Poisson distribution is
suitable for a set of count data. In the general-
ized linear model framework, the mean is assumed
to depend on a linear combination of explanatory
variables which determine the mean of the distribu-
tion via an exponential link function. A deterministic
time series model can be constructed by letting the
explanatory variables be functions of time. How-
ever, for all the reasons given earlier this may not
be satisfactory. The functions of time may there-
fore be given stochastic coefficients as in the models
described earlier. However, because of the nonnor-
mality of the observations, the Kalman filter is no
longer appropriate. There is no simple analytic solu-
tion and a number of ways of designing suitable
filtering and estimation procedures, based on simu-
lation techniques such as importance sampling, have
been suggested; see, for example, [4], and [26]. An
alternative approach is to design transition equa-
tions such that the density of the mean, conditional
on the information in the previous time period, is
conjugate to the observation density so that there
exists an exact analytic solution. This turns out to
be possible for a number of observation distribu-
tions in the simplest situation when the level of the
series is assumed to change, that is the analog of
the Gaussian local level model of (2); see [7, 10],
and [27].

The above techniques may also be applied to other
distributions used for count data and to the binomial
distribution as used for qualitative data.
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Studentization

Suppose that X1, X2, . . . , Xn is a random sample
from a normal population with mean µ and stan-
dard deviation σ , then Z = √

n(X − µ)/σ follows
the standard normal distribution. Here, X is the
mean of the sample. If, in Z, σ is replaced by the
sample standard deviation S = [

∑
(X − X)2/(n −

1)]1/2, then the random variable T = √
n(X − µ)/S

follows a Student’s t distribution with n − 1 df. The
process of obtaining T is called Studentization, ini-
tiated by William Sealy Gosset (1876–1937, with
the pseudonym “Student”). Since then, studentization
has been extended to studentized range, studentized
extreme deviate (see Extreme Values), studentized
residuals, and others.
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Studentized Range

Let Yij ∼ N(µi, σ 2), j = 1, . . . , n, i = 1, . . . , k, be
independent observations in a (balanced) one-way
layout with k treatments. Let Y 1, . . . , Y k be the
sample averages and let S2 be the usual independent
and unbiased estimator of σ 2 based on ν = k(n − 1)

df. Let W be the range of the Y i and consider the
studentized range Q,

Q = W

S/
√

n
.

According to David [2]: “The beginning of inter-
est in the studentized range is attributed by Egon
Pearson [15] to a letter he received from ‘Student’
(W.S. Gosset) in 1932. Referring to the comparison
of selected differences in variety means. . .”. The test
statistic for Hij : µi = µj against a two-sided alter-
native is

|Tij | = |Y i − Y j |
S(2/n)1/2

,

but in view of a potential selection effect, Pearson and
Gosset considered contrasting each |Tij | with upper
α quantiles of

max
1≤i<j≤k

|Tij | = √
2Q.

That constituted the basis for two different multiple
comparison procedures (MCPs).

The Newman–Keuls (NK) Method

Newman [13] provided approximate tables of upper
percentage points of Q using Pearson’s [14] method
for approximating the distribution of the range of
a normal sample. Keuls [10] proposed a stepwise
coherent MCP for testing all subset homogeneity
hypotheses based on Newman’s tables, and the
method became known as “the NK method”. The
NK method rejects a given subset-homogeneity
hypothesis (of means in a one-way layout, say)
if, and only if, all tests of subset-homogeneity
hypotheses which imply the given one end in
rejection. Accordingly the NK method is a stepdown
procedure starting with the overall homogeneity
hypothesis, continuing testing all its subsets of size

k − 1 if, and only if, rejected, etc. The test of
any given subset homogeneity hypothesis is an α-
level studentized range test with means pertaining
to the given subset, and a common pooled S2

from all observation in the experiment. Hochberg &
Tamhane [9] discuss various properties of the original
NK procedure and some of its modifications that
were proposed in order to turn it into a familywise
error-rate (FWE) controlling MCP as well as other
stepwise MCPs (e.g. Duncan’s [4] method) which
followed the NK method.

Tukey’s T -Method

This is a simultaneous confidence estimation and
testing MCP for all pairwise comparisons in a bal-
anced one-way layout. With probability 1 − α simul-
taneously for all i �= j ,

µi − µj ∈
[
Y i − Y j ± SQ

(α)
k,ν/

√
n
]
,

where Q
(α)
k,ν is the 1 − α percentile of Q. Tukey [20]

extended his method to all contrasts and to all lin-
ear combinations of the µi . The latter is based on
percentiles of the (Studentized) augmented range
defined as the maximum between the studentized
maximum modulus

√
2 max1≤i≤k{|Y i − µi |/(S/

√
n)}

and Q. Tukey [20] also proposed other extensions
of his original method. One of his suggestions
involved the use of the critical points of the stu-
dentized range also for (all pairwise) comparisons in
unbalanced designs. His suggestion was essentially
repeated by Kramer [11], and has become known
as the “Tukey–Kramer (TK) procedure”. Tukey’s
original conjecture on the conservative nature of
such a procedure in unbalanced analysis of variance
(ANOVA) was proved by Hayter [7]. These and other
extensions and comparisons between Tukey’s method
(as well as other single-step MCPs which stemmed
from it) and the NK method (as well as other stepwise
MCPs) are discussed in Hochberg & Tamhane [9].

The Internally Studentized Range

David [1] indicated that the term studentized range
was also used in a different sense. “Let X1, . . . , Xn

be a random sample from a normal N(µ, σ 2) popu-
lation and let X(1) ≤ · · · ≤ X(n) be the corresponding
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order statistics. Then W = X(n) − X(1) is the sam-
ple range. . . Let S2 = ∑

(Xi − X)2/(n − 1) . . . we
call. . . Q = W/S the internally studentized range”
(ISR). He refers to the first similar ratio discussed
above as “the externally studentized range” (ESR). In
the case of the ESR there is independence between W

and S. In contrast, in the case of the ISR, W and S are
associated. David [2] discusses the history of the ISR,
including applications, approximations, and theoret-
ical derivations of its distribution. He indicates that
Snedecor [17] discussed several applications of the
ISR “even before any appropriate theory was devel-
oped”. Snedecor [17] considered applications of the
ISR under the heading of “short cuts”. He wrote: “. . .
we introduce a topic of great utility in the common
sense understanding of statistics. . .”. He references
earlier work by Tippett [19], who apparently “has
given a mathematical statement of the problem, pro-
viding an extensive table. . .” but indicates that, “In
Tippett’s table the sample range is divided by the
population standard deviation.” Snedecor [17] studies
the relation between W and S empirically in normal
samples of different sizes, provides a table for the
expected ratio Q, and discusses various applications,
some of which are indicated in David [2].

David [2] indicates that the ISR was proposed as
a test of normality [by David, H.A., Hartley, H.O.
& Pearson, E.S., Biometrika 41 (1954) 482–493]
and was found (“In empirical sampling studies”) to
possess “particularly good properties against symmet-
ric, especially short-tailed (e.g. uniform) distributions
but seems to have virtually no power with respect
to asymmetry” (see Normality, Tests of). David [2]
also discusses some distribution-free bounds on Q

due to Thompson [18]. Interesting results on the
power of the ESR as a test of the global null
hypothesis in one-way layouts are discussed in David
et al. [3].

Exact Distributions and Tables

According to David [2], “. . . definitive tables” for
the cumulative distribution function (CDF) of the
ESR are given by Harter [5] based on Hartley [6].
He also indicated that for larger values of ν one can
use Pearson & Hartley’s [16] percentage points of Q

and that “A computing algorithm for upper tail CDF
and percentage points of Qν is given by Lund &
Lund [12].”

David [1] discusses how the distribution of the
ISR was facilitated by the independence of Q and
S in normal samples and indicates that this result
can also be established based on Fisher, R.A., Pro-
ceedings of the Royal Society of London, Series A 130
(1931) 16–28 and Geary R.C. (1933), Biometrika 25,
184–186. He also describes various numerical meth-
ods for approximating its percentage points.

Related Topics

Hayter [8] discusses a one-sided studentized range
statistic with potential use in problems with ordered
alternatives (see Isotonic Inference). David [2] dis-
cusses bivariate studentized range statistics and indi-
cates potential applications.
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Student’s t Distribution

The probability density function (pdf) of the Stu-
dent’s t distribution is given by

f (x) = Γ [(ν + 1)/2]

(πν)1/2Γ (ν/2)
(1 + x2/ν)−(ν+1)/2,

where −∞ < x < ∞ and ν > 0. The parameter ν is
called the degrees of freedom (df) of the distribution.
Suppose that Z is a standard normal random variable
(see Standard Normal Deviate), Y is a chi-square
random variable with ν df, and Z and Y are statisti-
cally independent (see Random Variable). Then the
random variable T obtained by

T = Z

(Y/ν)1/2

has a t distribution with ν df.

The t distribution is symmetric around 0. If X is a
random variable that follows the t distribution, then
E(X) = 0, var(X) = ν/(ν − 2), skewness = 0, and
kurtosis = 6/(ν − 4). Furthermore, as ν increases,
the t distribution approximates the standard normal
distribution. The percentage points of t distributions
have been tabulated and can be found in many
statistical texts. The t distribution plays an impor-
tant role in confidence intervals and hypotheses
tests.

(See also Student’s t Statistics)
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Student’s t Statistics

A Student’s t statistic may arise from many hypothe-
sis testing problems. In general the Student’s t statis-
tic utilizes a Student’s t distribution to determine
the critical value (see Critical Region) for rejecting
or not rejecting the null hypothesis. The most com-
mon Student’s t statistics are given below.

1. One-sample t statistic. Suppose that X1, X2, . . . ,

Xn is a random sample from a normal
population with mean µ and variance σ 2. To test
the null hypothesis that µ = µ0, one constructs
the t statistic by T = √

n(X − µ0)/s, where X

is the mean of the sample and s2 = Σ(Xi −
X)2/(n − 1), the sample variance. For a given
level of significance (see Level of a Test), the
one-sample t-test compares T with the critical
value found from the Student’s t distribution with
n − 1 degrees of freedom (df).

2. Two-sample t statistic. Suppose that X1, X2, . . . ,

Xn is a random sample from a normal
population with mean µx and variance σ 2

x , and
Y1, Y2, . . . , Ym is another random sample from a
normal population with mean µy and variance
σ 2

y . Assume also that XS and YS are independent
samples and that σ 2

x = σ 2
y = σ 2. In testing the

null hypothesis that µx = µy , the t statistic is
calculated from

T = X − Y

sp

(
1

n
+ 1

m

)1/2 ,

where X and Y are the sample means of XS and
YS, respectively, and

s2
p = (n − 1)s2

x + (m − 1)s2
y

n + m − 2
.

Here, s2
p is a weighted average of the sample

variances s2
x and s2

y of XS and YS, respectively,
and called the pooled estimate for σ 2. For a
given level of significance, the two-sample t

test compares T with the critical value found
from the Student’s t distribution with n + m −
2 df. However, if the assumption of homogene-
ity in variance (σ 2

x = σ 2
y ) is violated, the actual

probability of type I error (see Hypothesis Test-
ing) may deviate largely from the given level
of significance. In the statistical literature, this
is referred to as the Behrens–Fisher problem.
In this case, another test (for example Welch’s
approximate τ ; see Aspin–Welch Test) is rec-
ommended.

3. The t statistic for testing significance of the
regression coefficient. In linear regression anal-
ysis, the t statistic T = b/se(b) is computed for
testing significance (i.e. being statistically differ-
ent from zero) of the regression coefficient β,
using its least squares estimate b.

4. The t statistic for testing significance of the cor-
relation coefficient. In correlation analysis, one
computes the t statistic T = (n − 2)1/2r/(1 −
r2)1/2 and compares it with the critical value
from the Student’s t distribution with n − 2 df.
Here, r is Pearson’s product–moment correlation
coefficient.

Different types of Student’s t statistic arise from other
hypothesis testing problems.
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Study Population

The term study population is often used to refer to the
population from which observations are drawn; that
is, the sampled population (see Target Population).
In other writings, it has been used to refer to the study
sample [1].
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Subjective Probability

Subjective probability provides a language for orga-
nizing and expressing uncertainty, to articulate expert
knowledge, and/or to serve as a meaningful frame-
work for Bayesian statistical inference. Subjective
probabilities refer directly to the strength of a per-
son’s beliefs regarding the propositions in question.
The currently dominant frequentist view of probabil-
ity, by contrast, claims that probabilities exist in the
real world as physical properties, potential long-run
frequencies. Under the frequentist notion, probabili-
ties lack meaning as uncertainties, and their numerical
values are typically unknown (although they can be
subject to inference from statistical data).

Bruno de Finetti [1, 2] gave subjective probabil-
ities an operational definition as personal prices for
lottery tickets, in which $P(A) is interpreted as the
person’s price for a ticket that pays $1 if A. To avoid
being a potential sure loser, a person must choose his
prices to have coherent values, i.e. values for which
no set of hypothetical transactions exists at these
prices that would combine to guarantee the person
will suffer a net loss for every possible outcome. Such
coherence is equivalent to numerical agreement with
at least one probability measure, satisfying a finitely
additive version of the usual probability axioms.

De Finetti’s Fundamental Theorem of Probability
enables a person to assert probability values sequen-
tially for an open-ended sequence of propositions.
Coherence is preserved at each step by restriction
to an interval of available values whose endpoints
are obtained by linear programming. Expert opinion
can be articulated and quantified in probability form
by this method (or by further restricting the choices
to satisfy some parameterized subjective-probability
model).

An equivalent alternative theory of subjective
probabilities satisfying the mathematical axioms
(together with subjective utilities) proceeds by
axiomatizing, first, the person’s preferences for
lottery tickets and corresponding rewards. This
approach by L.J. Savage [5] was inspired by ideas in
Ramsey [4], and von Neumann & Morgenstern [3].
To emphasize the dependence of degree of belief
on the believer, Savage used the term, “personal
probability”.

Conditional subjective probability was defined by
de Finetti as the person’s price, now, in a trans-
action that will be voided (with reimbursement) if
the conditioning proposition turns out not to be true:
$P(A|B) is the person’s price for a ticket that pays
1 if A and reimburses $P(A|B) unless B. With
transactions of this new type included, the require-
ment of coherence can be shown to be equivalent
to the probability axioms plus the usual relationship
between conditional and unconditional probability:
P(A|B) = P(A and B)/P (B), if P(B) > 0. Thus,
conditional probability has a natural interpretation
as what the person thinks, now, that his/her opinion
should be if and when B is learned. Unfortunately,
there is no completely satisfactory coherence-type
justification in the literature for the requirement that
after B becomes known, the person’s new opinion
conforms to such previous conditional probabilities.
There is no normative theory of temporal coherence.

Bayesian statistics, however, is based on the
notion that inference should proceed by probabil-
ity conditioning. Bayesian posterior probabilities,
“posterior” to statistical data B, are conditional
probabilities P(A|B), which can be computed from
the “prior” probability P(A) and the statisti-
cal sampling probabilities of the data B, P(B|A),
P(B|NotA), by use of Bayes’ theorem: P(A|B) =
P(B|A)P (A)/[P(B|A)P (A) + P(B|NotA)P (Not
A)]. So, subjective probabilities can be of practical
use as Bayesian prior or posterior probabilities, with
the prior probabilities elicited from a subject-matter
expert and the corresponding posterior probabilities
obtained by Bayes’ theorem.

Frequentist sampling probability can, itself, be
viewed as a special limiting case of conditional
subjective probability, namely probability express-
ing opinion of further future data conditional on a
long sequence of observed data. According to de
Finetti’s Representation Theorem for Exchangeabil-
ity, an infinite exchangeable random sequence is
representable as a probability mixture of indepen-
dent, identically distributed (iid) random sequences.
The iid random sequences are mathematically the
same as a statistical sampling model with unknown
physical probabilities, and the mixing probabilities
are interpretable as a corresponding prior distribution
of the unknown probabilities. Hence, a person who
has exchangeable uncertainties concerning an infi-
nite sequence of observable experimental outcomes
behaves as if he/she believed there to be a real-world
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iid statistical model with unknown physical probabil-
ities. Thus, frequentist probability can be subsumed
within the theory of coherent subjective probability.
(For a mathematically elementary treatment of the
representation, see [6].)
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Sufficiency

Sir R.A. Fisher introduced the concept of sufficiency
in [3] and claimed in [4] that the “sufficient statis-
tic” is equivalent, for all subsequent purposes of
estimation, to the original data. More generally, the
sufficiency principle states that any inference should
be based on the sufficient statistic. This principle is
widely accepted by statisticians.

Two related principles are the likelihood principle
(see Foundations of Probability) and the condi-
tionality principle. The likelihood function LX(θ)

is defined as LX(θ) = Pθ(X) [where Pθ(X) is the
density function of the data X] and is regarded as a
function of the parameter θ for final X. The likelihood
principle states that a statistical procedure should
depend only on LX(θ). It further then states that
if two different experiments with the same param-
eter result in proportional likelihoods for the data
observed, then identical conclusions should be drawn
in the two experiments.

In particular, the likelihood principle implies
that conclusions should be based only on the
data observed, and not on any data which might
have been observed. Hence such considerations
as unbiasedness, size (see Level of a Test),
power, risk (see Decision Theory), and so on,
which involve averaging over the sample space,
may violate the likelihood principle. Maximum
likelihood estimates and Bayesian methods based on
posterior distributions, on the other hand, do satisfy
the likelihood principle.

The conditionality principle states that if the
experiment actually performed is chosen randomly
and independently of θ from a collection of possible
experiments, then the statistical conclusions should
not depend on any experiment not performed.

A famous result of Birnbaum [2] shows that, for
discrete distributions, the sufficiency principle plus
the conditionality principle are equivalent to the
likelihood principle. Berger & Wolpert [1] extend
this result to general distributions and give an
extensive discussion on these principles and many
related ones. They, and many others, argue that

the likelihood principle ought to be followed, and
that the Bayesian approach is the most reason-
able way of guaranteeing its implementation. Oth-
ers, including eventually Birnbaum himself, have
argued that the likelihood principle is not universally
valid.

In practice, we commonly have less than com-
plete faith in our statistical models and perform
residual and other analyses intended to assess model
reasonableness. Even if our model appears consis-
tent with the data, it is almost certainly the case
that “nearby” models exist which fit the data essen-
tially as well and which may well have a differ-
ent set of minimal sufficient statistics. The devel-
opment of robust methods indicates the utility of
extending a given model (for example, a normal
location model) to a broader model (for example,
ε-contamination models), where the relatively sim-
ple sufficient statistics of the original model (such
as the sample mean) are no longer sufficient for the
expanded model. In this case sufficiency may provide
no reduction at all for the expanded model, and the
sufficiency principle may provide little in the way of
guidance.

A very large collection of commonly used sta-
tistical procedures, however, owe at least a part of
their development and desirable properties to the suf-
ficiency principle and the optimality properties of
sufficient statistics.
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Sufficient Statistic

A sufficient statistic is a statistic (i.e. a function
of the data) such that the conditional distribution
of the data given the sufficient statistic does not
depend on any unknown parameters. If I know the
value of a sufficient statistic, then I can, with the
use of an auxiliary randomization using this condi-
tional distribution, reproduce “data” which has the
same (unconditional) distribution as the original data.
In this sense the sufficient statistic contains all the
information in the original data. The notion of suf-
ficiency was introduced by R.A. Fisher in [5], and
has played an important role in the development of
statistical theory and practice.

A simple but concrete example should help to
fix ideas. Suppose that we wish to estimate the
probability θ that a particular medication will cure
migraine headaches. We select two migraine patients
randomly and treat them with the medication. Let
Xi = 1 if the ith patient is cured and 0 if not, and
let T = X1 + X2. If T = 0, then the data (X1, X2)

is (0,0) with probability 1. Similarly, if T = 2, then
(X1, X2) = (1, 1). If T = 1, then the data is either
(1,0) or (0,1) each with probability 1

2 regardless of
the value of θ . Hence T is a sufficient statistic.

If T is known, then we may reconstruct a set
of “data” (X1, X2) with a distribution equal to the
original data (X1, X2) as follows. If T = 0, then
(X∗

1 , X∗
2) = (0, 0). If T = 1, then toss a fair coin and

set (X∗
1, X∗

2) = (1, 0) if the coin comes up heads and
(X∗

1 , X∗
2) = (0, 1) if tails. If T = 2, then (X∗

1, X∗
2) =

(1, 1). The distribution of (X∗
1, X∗

2) is thus the same
as that of (X1, X2).

Note that if δ(X1, X2) is any estimator of θ

(see Estimation), then the “estimator” δ(X∗
1, X∗

2) has
the same distribution as δ(X1, X2) regardless of the
value of θ and hence the same bias, variance, mean
square error, and so on. Since δ(X∗

1, X∗
2) is based

only on knowledge of T (and an auxiliary toss of a
fair coin), we see that knowledge of T “is equiva-
lent, for all subsequent purposes of estimation, to the
original data from which it was derived”, as Fisher
claims in [6].

It should be reasonably clear from the previous
example that, in general, knowledge of a sufficient
statistic allows the construction of a (random) set of
data X∗ with a distribution equivalent to the orig-
inal data X. Hence given any estimator δ(X) one

may construct a (randomized) procedure δ(X∗) with
the same behavior (bias, variance, etc.) as δ(X). In
addition, in many problems, a sufficient statistic may
provide a dramatic reduction in the complexity of the
data. For example, if in the above example we treated
n patients instead of 2, then T = ∑n

i=1 Xi (= total
number of people cured) is a sufficient statistic. T is
one-dimensional and takes on the values 0, 1, . . . , n.
By contrast, the original data (X1, . . . , Xn) is an
n-dimensional vector and may take on any of 2n dif-
ferent values. Hence the sufficient statistic is simpler
in structure (dimension n vs. 2n) and in the number
of values it takes on (n vs. 2n).

In what follows I give a somewhat more formal
definition of sufficiency, discuss how to find sufficient
statistics, give other results indicating that reduction
by sufficiency results in no loss of information, and
discuss some related notions and results.

Finding Sufficient Statistics

A statistical model consists of data X which takes
values in the sample space X and has a probability
distribution Pθ(x) depending on an unknown param-
eter θ which takes values in the parameter space Θ .
Unless explicitly stated otherwise, we assume that
both X and Θ are contained in Euclidean vector
spaces of possibly different dimension. A statistic is a
(measurable) function, T (X) possibly vector valued,
defined on X, which does not depend on θ . A suffi-
cient statistic is a statistic such that the conditional
distribution of X given T does not depend on θ (with
probability one).

A rigorous discussion of sufficiency requires mea-
sure theory because the required conditional dis-
tributions are not necessarily uniquely defined for
all values of T . For a rigorous measure-theoretic
treatment, see Halmos & Savage [8], Lehmann [10],
Bahadur [1], or Hurzurbazar [9]. We assume through-
out that X is either discrete or continuous with den-
sity pθ(x).

In some cases, such as in the example in the
introductory section, it is relatively easy to find the
conditional distribution of X given a statistic T . In
general, however, it is quite difficult. A basic tool for
determining sufficiency is the factorization theorem
due originally to Fisher [5] and made more rigorous
by Neyman [15] and Halmos & Savage [8].
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Theorem 1 (factorization theorem). A statistic T

is sufficient if and only if pθ(x) = k(x)g(T (x), θ) for
some functions g and h.

It follows immediately that if S(X) is an invertible
function of a sufficient statistic T (X) then S(X) is
also sufficient.

Example 1

Let X1, X2, . . . , Xn be independent, Xi ∼ N(µ, σ 2).
Then X = (X1, . . . , Xn) and θ = (µ, σ 2). If T =
(T1, T2) = (∑

X,
∑

X2
)
, then T is sufficient, since

pθ(x) = (2π)−n/2σ−n exp

(
T1µ

σ 2
− T2

2σ 2
− nµ2

2σ 2

)
.

Furthermore, X = T1/n and

S2 =
∑

(Xi − X)2

n − 1
= T2 − T 2

1 /n

n − 1
;

the sample mean and variance also form a sufficient
statistic since (X, S2) is an invertible function of
(T1, T2).

Minimal Sufficiency

In any model the data X itself clearly is a sufficient
statistic. It is of interest to find the sufficient statistic
which in some sense has the simplest structure. One
way in which to formalize this idea is to define a
minimal sufficient statistic as a sufficient statistic that
is a function of every other sufficient statistic.

One way in which to find a minimal sufficient
statistic, due to Lehmann & Scheffé [12], is the fol-
lowing. Define an equivalence relation on the sample
space X by x1 ≡ x2 if pθ(x1) = h(x1, x2)pθ (x2) for
all θ , where h is not zero and does not depend on θ .
Let Cx = {y ∈ X : y ≡ x} be the set of ys equivalent
to x. Then Cx defines a partition of the sample space.
Any statistic T (x) which takes on different values on
different sets of the partition but is constant on each
such set is a minimal sufficient statistic.

In fact, any (sufficient) statistic S(x) defines a par-
tition where a generic member is Cx = {y : S(y) =
S(x)}. The partition defined in the previous paragraph
is unique and is called the minimal sufficient par-
tition. The partition corresponding to any sufficient
statistic is a refinement of the minimal sufficient parti-
tion in the sense that any set in the minimal sufficient

partition is the union of (at least one) sets in the given
partition.

Furthermore, two sufficient statistics are invertible
functions of one another if and only if they generate
the same partition. It follows that if T is minimal
sufficient and S is an invertible function of T , then S

is also minimal sufficient. See Lindgren [13] for an
extended discussion.

Perhaps the most useful example of the
Lehmann–Scheffé construction of a minimal suffi-
cient statistic is the following

Theorem 2 (exponential family). Let pθ(x) =
c(θ)h(x) exp[

∑k
1 ηi(θ)Ti(x)]. If η1(θ), . . . , ηk(θ) are

linearly independent, then [T1(x), . . . , Tk(x)] is
minimal sufficient.

Example 2

For the setup of Example 1, it is easily seen
that T = (∑

Xi,
∑

X2
i

)
is minimal sufficient as

is (X, S2). Here θ = (µ, σ 2), η1(θ) = µ/σ 2, and
η2(θ) = −1/(2σ 2).

Many of the families of distributions of classical
statistics, including the binomial, Poisson, and
gamma, provide examples of so-called exponential
families of distributions to which the above theorem
applies. In these examples the dimension of the
sufficient statistic T is equal to k, the number
of components of [η1(θ), . . . , ηk(θ)]. Often, as in
Example 2, this is also the dimension of θ , but not
always. For example, if in Example 2 σ 2 = µ2, then
the dimension of θ = µ is 1 but η1(θ) = 1/µ and
η2(θ) = −1/2µ2 are still linearly independent and
hence (X, S2) remain minimal sufficient.

Occasionally, minimal sufficiency provides very
little reduction of the original data. For example if
X = (X1, . . . , Xn), where the Xi are independent
and identically distributed with a Cauchy or double
exponential distribution with unknown location
parameter, then the order statistics (X(1), . . . , X(n))

are minimal sufficient.

Ancillary Statistics

The degree of reduction achieved by minimal suffi-
cient statistics varies greatly from problem to prob-
lem. As we have just mentioned, the order statistics
are minimal sufficient when the data is from a Cauchy
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population with an unknown location. By contrast,
if the population is normally distributed with an
unknown location, it follows from Theorem 2 that
the sample mean is minimal sufficient.

In the former case, the minimal sufficient statistic
contains ancillary information in the sense that,
for example, the distribution of the sample range
(the maximum minus the minimum) is a function
of the minimal sufficient statistic, but contains no
information about the location θ . A statistic V (X)

the distribution of which does not depend on θ is said
to be an ancillary statistic. Reduction by sufficiency
seems most successful when the minimal sufficient
statistic contains no ancillary information. This is
closely related to the notion of a complete sufficient
statistic, which we now discuss.

Complete Sufficient Statistics

T (X) is a complete sufficient statistic if Eθf (T ) = 0
for all θ implies that f (T ) = 0 for all T (actually,
for almost all T ). The following result of Basu (see
for example, Lehmann [10]) implies that a complete
sufficient statistic carries no ancillary information.

Theorem 3 (Basu). If T is a complete sufficient
statistic, then any ancillary statistic V is independent
of T .

It follows that if f (T ) is any function of a com-
plete sufficient statistic T , then f (T ) is independent
of T , and by completeness must be constant. Hence
no nontrivial function of a complete sufficient statistic
can be ancillary.

A complete sufficient statistic is minimal com-
plete. A result which gives a complete sufficient
statistic for many classical statistical models is the
following.

Theorem 4 (completeness for exponential fami-
lies). If in the exponential family setup of Theo-
rem 2, the set N = {η = [η1(θ), η2(θ), . . . , ηk(θ)] :
θ ∈ Θ} contains an open set, then T is a complete
sufficient statistic.

Hence X is a complete sufficient statistic for
sampling from a normal population with unknown
location (and known scale). Similarly, (X, S2) is a
complete sufficient statistic if both the location and
scale are unknown.

If, however, we sample from a normal population
with unknown mean, µ, and variance equal to µ2,
then (X, S2) is minimal sufficient (by Theorem 2)
but not complete since E(nX

2
/(n + 1) − S2) = 0 for

all µ. Here [η1(θ)η2(θ)] = (1/µ, −1/(2µ2)) and N

is a curve in two dimensions, which does not contain
a two-dimensional open set.

It is not necessary that N contain an open set
in order for T to be minimal sufficient. For exam-
ple, Messig & Strawderman [14] show that a class
of commonly used quantal response models are
exponential family models with a complete sufficient
statistic, but that the space N does not contain an
open set.

Some Uses of Sufficiency

There are a variety of results in different contexts
which allow us to find a statistical procedure based
on a sufficient statistic which is as good as, or better
than, a given procedure. We discuss some of these
results in this section. We suppose throughout that
we are given data X with distribution pθ(x) and that
T (X) is a sufficient statistic.

Estimation

Suppose that we wish to estimate τ(θ), a possibly
vector valued function of θ , and that δ(x) is any
estimator. Define δ∗(T ) = E[δ(x)|T ]. Since T is
sufficient, δ∗(T ) does not depend on θ and hence is
itself an estimator of τ(θ). By elementary properties
of conditional expectation Eθ δ(x) = Eθ δ

∗(T ), and
hence δ∗ is unbiased for τ(θ) if δ is. Furthermore,
the variance of δ∗ is at least as small as the variance
of δ and is, in fact, strictly smaller for every θ if δ(x)

is not itself a function of T (and the variance of δ is
finite).

If, in addition, T is a complete sufficient statistic,
δ∗ is the unique estimator of minimum variance
among all estimators with expectation equal to that
of δ(x) for all θ . In particular, if δ(x) is unbiased for
τ(θ), then δ∗ is the unique minimum variance esti-
mator provided that an unbiased estimator with finite
variance exists (see Minimum Variance Unbiased
(MVU) Estimator; Unbiasedness).

The above results can be considerably broadened
along the following lines. A loss function L(θ, a)

measures the “loss” (see Loss Function) when we
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estimate τ(θ) by a and θ is the true value. The
risk function of an estimator δ(x) is defined by
R(θ, δ) = EθL[θ, δ(x)]. For example, a common loss
is so-called squared error loss, L(θ) = [τ(θ) − a]2

[if τ(θ) is one-dimensional]. In this case, the risk
function R(θ, δ) = Eθ [δ(x) − τ(θ)]2 is mean square
error. We may generalize the above results to the
following theorems.

Theorem 5 (Rao–Blackwell). If L(θ, a) is a
(strictly) convex function in a, then R(θ, δ∗) ≤
R(θ, δ) with (strict) inequality for all θ provided that
δ is not a function of T and R(θ, δ) is finite [16].

Theorem 6 (Lehmann–Scheffé). Let L(θ, a) be
convex in a and let T be a complete sufficient
statistic. If δ(x) is an unbiased estimator of τ(θ)

with finite risk, then δ∗ uniformly minimizes the risk
among all unbiased estimators.

Hypothesis Testing

Consider testing the hypothesis H0 : θ ∈ Θ0 against
Ha : θ ∈ Θc

0 . Let φ(x) be any critical function (or
test function) defining the probability of inclusion
in the critical region for an observation x, and let
φ∗(T ) = E[φ(x)|T ] (see Hypothesis Testing). Then
φ∗ is also a critical function. Furthermore, Eθφ =
Eθφ

∗ and hence φ and φ∗ have the same power
function. If φ is unbiased, so is φ∗.

Completeness is particularly helpful in obtaining
uniformly most powerful unbiased (UMPU) tests of
and one- and two-sided hypotheses concerning a one-
dimensional parameter in the presence of nuisance
parameters (see Alternative Hypothesis).

Suppose, for example, that the statistical model is
a k + 1 parameter (θ = (µ, γ1, γ2, . . . , γk)) exponen-
tial family with density pθ(x) = c(µ, γ1, γ2, . . . , γk)

h(x) exp[µU(x) + ∑
γiTi(X)], and we wish to test

a hypothesis about µ. To be specific, suppose that
we wish to test H0 : µ ≤ µ0 against Ha : µ > µ0.
Here (γ1, . . . , γk) are the nuisance parameters. The
boundary between the null (H0) and alternative (Ha)

hypotheses is ΘB = {θ = (µ, γ1, . . . , γk) : µ = µ0}.
With θ restricted to ΘB, X has a k parameter
exponential family with complete sufficient statis-
tic T (X) = [T1(X), T2(X), . . . , Tk(X)]. Furthermore,
the distribution of U(X) conditional on T (X) is a
one-parameter exponential family with parameter µ.

The uniformly most powerful test of H0 against Ha

based on this conditional distribution is easily found
to be a one-sided test φ∗(U, T ) based on U (condi-
tional on T ) with the property that Eµ0 [φ(U, T )|T ] =
α.

However, any unbiased size α test∗φ(x) must be
such that Eθφ(x) = α for all θ ∈ ΘB . Completeness
of T for θ ∈ ΘB implies that Eµ0 [φ(x)|T ] = α for
all T , or that φ has what is called Neyman structure.
But as the above one-sided test is uniformly most
powerful among all such tests, it is uniformly most
powerful among all unbiased size α tests and is
therefore UMPU. Similar arguments work for two-
sided hypotheses about µ in this model. For a
more detailed development, see Lehmann [11] and
Ferguson [4].

It is important to remark that the one-dimensional
parameter µ about which we wish to test a hypothesis
may be any one-dimensional affine function of the so-
called natural parameters. In this way UMPU tests
may be found, for example, for the equality of two
binomial or two Poisson parameters.

Likelihood Methods and Information

The function g(T (X), θ) in the factorization theorem
(Theorem 1) may be taken to be the density of
T . Thus, for example, the maximum likelihood
estimator of θ will depend on X only through T (X)

and coincides with the maximum likelihood estimator
obtained if only T (X) is observed. Furthermore, the
likelihood ratio test depends only on the sufficient
statistic T and is the same as that for which only
T is observed. It also follows from the factorization
theorem that the Fisher information in a sufficient
statistic T is equal to the Fisher information in the
original sample X.

Bayesian Methods

Bayesian methods in statistics rely on treating the
parameter θ as a random variable that has a prior dis-
tribution π(θ). The statistical model pθ(x) is treated
as the model of the distribution of x conditional on
the value of the random variable θ . Statistical pro-
cedures are based on the posterior distribution, the
conditional distribution of θ given the data X which
is proportional to pθ(x)π(θ), the constant of propor-
tionality depending on x.
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If T (X) is a sufficient statistic it follows from the
factorization theorem that the conditional distribution
of θ given x is the same as the conditional distribution
of θ given T (X). Hence Bayesian statistical methods
will depend on X through the sufficient statistic
T (in regular models). See, however, Blackwell &
Ramanoorthi [2] for an example of a nonregular
model in which the Bayesian notion of sufficiency
does not coincide with the classical one.

Invariance

The important role of sufficiency in statistics is due
to the fact that it allows a reduction in the complex-
ity of the sample space without a loss of information.
Invariance is another method of reduction which is
often useful. Briefly, a statistical model is invariant
under a group of invertible transformations, g ∈ G,
of the sample space on to itself if, for each g ∈ G

and θ ∈ Θ , the distribution of gX is Pθ ′ for some
θ ′ ∈ Θ . In many problems reduction by both suffi-
ciency and invariance is helpful. In some of these
problems, it makes a difference which method of
reduction is applied first. As reduction by invariance
typically involves some loss of information, Fergu-
son [4] suggests reducing first by sufficiency. For
details about the relationship between sufficiency and
invariance, see Hall et al. [7].

It often happens that a best invariant procedure (if
one exists) may be calculated as a Bayes procedure
relative to a particular invariant prior measure. It fol-
lows from the discussion in the previous subsection
that in this case the best invariant procedure will be
a function of the sufficient statistic T .

Concluding Comments

Virtually every textbook on mathematical statistics
discusses sufficient statistics. Lindgren [13] is a par-
ticularly nice nonmeasure theory treatment, especially
of minimal sufficiency and minimal sufficient parti-
tions: see also Casella & Berger [3]. Ferguson [4] has
a nonmeasure theory discussion of sufficiency in the
context of decision theory. Lehmann [11] presents a
nice measure theory treatment of the basic properties

of sufficiency and remains the basic reference to
hypothesis testing.
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Summary Measures
Analysis of Longitudinal
Data

The method of summary measures is one of the most
important and straightforward methods for the anal-
ysis of longitudinal data. If the measurements and
observation times on the ith individual in a study are
written as the vector xi , then a scalar-valued func-
tion f is chosen so that si = f (xi ) summarizes some
essential feature of the response over time for that
individual; the si are known as summary measures
and some specific examples are given in the next
section. Further analysis proceeds by applying stan-
dard univariate methods to the summary measures.
The approach has been in use for many years [1, 3–6]
and has been referred to by various names, including
response feature analysis and profile analysis.

Choosing Summary Measures

The key step is the definition of the summary measure
f . There are few restrictions on the type of summary
that can be used, the main one being that the summary
should make sense both in terms of the study and in
the broader scientific context in which the study takes
place. It is also advantageous if the summary can
be specified before the data are collected, although
this is not always possible. Some commonly used
summaries include:

1. The rate at which an outcome changes (e.g. a
growth rate), for which a suitable f may be the
slope of a regression line (Figure 1(a)).

2. The general level of the response, which could be
measured by the mean or median of all responses
(Figure 1(b)); in many studies, especially in
pharmacology, the area under the response curve
is used.

3. Summaries defined in terms of the time axis, such
as the time to the peak response or the time that
a drug concentration stays above a therapeutic
level: these can have particular clinical relevance
(Figure 1(c)).

Although many summary measures will be closely
related to one of the above types, any form of

f that gives a valid numerical representation of
a scientifically important aspect of the response is
allowed. Indeed, there may be circumstances when
the observation at a single time point is a suitable and
comprehensible summary. However, such analyses
must be distinguished from the flawed approach that
analyzes separately all time points (see Time-by-
time Analysis of Longitudinal Data).

Advantages of the Method

Three advantages of the method are: (i) the anal-
ysis avoids the need to consider the correlation
structure of the whole response xi , and the dif-
ferent si can reasonably be assumed to be inde-
pendent, so the statistical basis of the method is
sounder than that of some methods in widespread use
(see Analysis of Variance for Longitudinal Data);
(ii) the final analysis of the si uses simple meth-
ods that are well known; and (iii) the analysis is
readily interpreted because it is based on summaries
that have been chosen for their relevance to the
study.

Furthermore, determining what is a relevant sum-
mary measure forces the investigator to think care-
fully and quantitatively about the questions the study
addresses; if this process occurs before data are
collected, then it can lead to improvements in the
design of the study, such as the proposed times at
which outcomes will be recorded. It should also be
noted that many summary measures will be corre-
lated with the observed value at time zero, so if
this is a legitimate covariate (as it would often be
in, for example, a clinical trial), then using it in
the analysis can lead to substantial gains in preci-
sion.

More than One Summary Measure

In many studies, more than one aspect of the response
is of interest and, provided some care is taken, more
than one summary can be defined in the analysis of a
single study. Indeed, if a second summary measure,
ti = g(xi ), has been identified, then not only can
the si and ti be analyzed separately, but the relation
between the summaries can be considered; often this
will amount to no more than producing a scatterplot,
but more formal methods might be adopted.
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Figure 1 Examples of some common types of summary measure: (a) slope of regression line; (b) mean response; (c) time
above a therapeutic level

Care must be taken to ensure that different
summary measures address distinct features of the
response. As with many aspects of this method,
scientific judgment is as important as statistical
expertise in deciding what constitutes “distinct
features”. The statistician should always be alert to
the possibility that two apparently distinct summaries
may measure the same thing. For example, in a study
in which tumors of approximately the same size are
transplanted into laboratory animals, the slope of
the regression line of tumor size against time over
the first 10 days may represent essentially the same
information as the size of the tumor at the tenth day.

In practice, there are likely to be few studies in
which the use of more than two or three summary
measures will be helpful.

Missing Data and Irregular Time Points

In many instances, the definition of a summary mea-
sure is sufficiently flexible that missing values can
easily be accommodated. Suppose measurements are
anticipated on six occasions and the summary is their
mean; then, if one of the measurements is missing,
the summary is taken to be the mean of the remain-
ing five observations. In practice, if the proportion of
missing data points is small, then this type of device
is likely to be satisfactory but there are two prob-
lems.

The first is that if the si are based on xi that have
widely differing structures then, even within appar-
ently homogeneous groups, the si will not share a
common distribution, contrary to the assumptions of
most of the methods of analysis that are likely to
be applied to the summaries. For example, means

based on different numbers of observations, regres-
sion slopes based on differently located observations
and maxima of sets of different sizes, will not share
common distributions. Even in complete data sets,
observations may be taken at different times on differ-
ent individuals and this presents the same problems.
The importance of this needs to be judged in each
application, and will depend particularly on the rel-
ative sizes of sampling error and between-individual
variation [2].

The second problem, potentially more serious, is
the effect of why the observations are missing. If
interest focuses on the maximum drug concentration
and some adverse effect of high concentrations stops
this being observed, for example by preventing atten-
dance at the clinic, then it would be seriously mislead-
ing simply to use the maximum of the observations
obtained. Of course, such problems occur through-
out statistics but, because missing values present few
computational difficulties for this technique, the ana-
lyst needs to be especially aware that this confers
no special immunity from the potential dangers of
missing data.

Disadvantages

The main problem with the method is that it might
not be suitable for certain applications. In some
instances, it may simply be impossible to identify
a suitable summary measure. If there is interest in
how changes over time in the response (for example,
postoperative pain relief) relate to another variable
(for example, plasma concentration of analgesic),
then the method of summary measures has little to
offer.
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Superpopulation Models
in Survey Sampling

A finite population is any collection of distinct
entities (units) such as people, businesses, medical
files, hospitals, or schools. Finite population sam-
pling, sometimes called survey sampling, is con-
cerned with selecting subsets (samples) of the units,
observing features of the units, and then using the
observations to make inferences about the entire pop-
ulation. For example, the population is “all short-stay
hospitals in the United States,” a sample of short-
stay hospitals is selected, and for each hospital in the
sample the number of patients discharged during a
particular calendar year is measured. The goal might
be to estimate the total number of discharges in the
entire US (see Estimation).

Invariably, we bring a host of preconceptions and,
possibly, hard relevant information (auxiliary data),
to the study of the population. For example, we may
know the number of beds in each of the hospitals
in the population, and may strongly suspect that the
number of discharges is related to number of beds.

A superpopulation model of a particular popula-
tion is a probability model characterizing the popula-
tion, formalizing our conceptions and knowledge of
the population. Quantities of interest in the population
are posited to be realizations of random variables
with a particular joint probability distribution. For
example, in the case of the hospital population, we
might suppose

Yi = βxi + x
1/2
i εi , i = 1, 2, . . . , N, (1)

where, for the ith of the N hospitals constituting the
population, Yi is the to-be-realized number of patient
discharges per year, xi is the known number of beds,
β is an unknown constant of proportionality, and εi

is a random error with mean zero and constant
variance σ 2, and is assumed to be independent across
units. The inclusion of the x

1/2
i factor in the error term

is meant to capture the idea of greater variation in the
larger hospitals.

Such models are invaluable aids in planning sam-
ple selection, in constructing estimators of quantities
of interest, and in assaying the precision of estimates.

Surveys can be undertaken with two distinct sorts
of estimation in mind [5, Chapter 7]. In the first sort,

referred to most commonly as analytic or inferen-
tial, the aim is to understand the process underlying
relations between variables in the population. In this
context, the superpopulation model is understood to
be an attempt to characterize the way the population
(and possibly others like it) has come to be. In any
case, the goal is to estimate the parameter(s) of the
superpopulation model. Thus, by definition, a super-
population model is necessary for analytic estimation.
We might, in the hospital example, be interested in the
law of proportionality between beds and discharges,
i.e. in estimating the unknown parameter β. A charac-
teristic of analytic inference is that even if the entire
population were available, there would be uncertainty
in the estimates of the model parameters.

The second, and in fact, more common, goal, is
descriptive: the estimation of functions, like total,
mean, or quantiles, of the population quantities them-
selves. Thus, in the hospital example, we might
wish to estimate T = ∑N

i=1 yi , the total number of
discharges from the hospitals. Such quantities are
sometimes referred to as “descriptive parameters”. In
distinction to the analytic case, if the whole popula-
tion were known, there would remain no uncertainty
about the value of the descriptive parameter.

Suppose, in the hospital example, that a sample s

of size n is taken from the population P and yields
yi , i ∈ s. The plot in Figure 1 of sample discharges
(y) against corresponding sample beds (x), appears
to be in keeping with the superpopulation model (1).
Then part of T is known, namely the realization of the
total for sample units, Ts = ∑

s Yi . The total on the
remainder r = P − s, namely Tr = ∑

r Yi , is unreal-
ized and unknown, but the sample ys in combination
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beds in 50 short-stay hospitals
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with the already known corresponding xs can be used
to estimate the slope β. We might, for example, use
the best linear unbiased estimator β̂ = ∑

s Yi/
∑

s xi ,
not for the sake of getting β itself (as in analy-
sis), but as a means to estimating, or more precisely,
predicting, Tr = ∑

r Yi . The predictor T̂r = β̂
∑

r xi

can readily be shown to be unbiased for Tr , in
the sense that EM(T̂r − Tr) = β

∑
r xi − β

∑
r xi =

0, where the expectation is with respect to the
superpopulation model (1). Basically, one fills in the
unknown ys by their predicted values under (1) based
on the sample data, and uses these as surrogates to
predict the unknown total Tr . Overall, one estimates
the population total T by T̂R = Ts + T̂r = β̂

∑
P xi ,

which is well known as the ratio estimator (see Ratio
and Regression Estimates) (note that if s = P , then
T̂ = T ). Then T̂ will be the best linear unbiased
predictor (BLUP) of T , under (1) (see Theorem 1
below).

(It should be noted in the above example, that no
strictures were made about how to choose the sample
s, other than that (implicitly) it not be in such a way
as to make the sample pairs (xi, Yi) deviate from the
model (1). In particular, no assumption was made
about using a random sampling plan.)

This idea – of using a superpopulation model
such as (1) to predict unknown characteristics of the
population – has become known as the prediction,
or model-based, approach, to survey sampling. The
question arises: Can every population be character-
ized by a corresponding superpopulation model?

The presence of auxiliary data, such as number
of beds, is not needed in order to posit a reasonable
model. If a population is homogeneous (and that is
all one knows), then a reasonable model is

Yi = µ + εi, i = 1, 2, . . . , N, (2)

where, for the ith of the N units constituting the
population, Yi is the to-be-realized variate of interest,
µ is an unknown constant, and εi , the random error,
is assumed independent across units and has mean
0 and variance σ 2. It can be shown that T̂ = NYs ,
where Y s is the mean of sample Y s, is the BLUP
under (2); see Theorem 1 below.

This particular estimator corresponds exactly to
the classic expansion estimator for a total, that is
unbiased with respect to the probability distribution
of samples generated by a simple random sample
(SRS) sampling scheme. It might be argued that this

randomization distribution (of the sampler’s activity
in choosing the sample) is the adequate basis for
choosing the expansion estimator and analyzing its
properties. The method of inference that relies only
on the random sampling plan for its probability dis-
tribution is known as design-based inference. To see
that design-based inference is inadequate, consider
the following thought experiment.

Suppose that one had an utterly heterogeneous
population of items. For example, suppose that item
1 is a raisin, item 2 a 1957 Chevrolet, . . . , item N

a bit of dust. Suppose that the nature of any partic-
ular unit is unknown prior to sampling, and that one
seeks the mean weight in grams of the items in the
population. In this case, knowledge of any number of
measurements of sampled items conveys no informa-
tion regarding any of the nonsampled items. This will
be the case whether or not the sample is constructed
using SRS or any other probabilistic (or nonprob-
abilistic) scheme. Thus, we can make no inference
from sample mean to population mean (or from any
sample quantity to any population quantity) in this
extreme sort of population. This is a reflection of the
fact that neither the model (2), nor any other model,
fits the population and can serve as an inferential
bridge from sample to population.

(The software-ready reader might try the follow-
ing simulation experiment intended to mimic to a
degree the above thought experiment: generate a pop-
ulation of size N = 1000 having y-values αi with
α = 1.1, i = 1, 2, . . . , N ; this population has mean
y ≈ (2.72)(1039). Suppose that the mode of genera-
tion of the population, and, in particular, the sequence
number i of each unit and the constant α are unknown
to you the sampler. Taking SRS samples of size
n = 100, for each of the, say 1000, samples, cal-
culate the sample mean ys , the SRS sample vari-
ance v = n−1(1 − n/N)(n − 1)−1 ∑

s(yi − ys)
2, and

the t-statistic (ys − y)/v1/2 (see Student’s t Statis-
tics). Consider the distribution of the t-statistic. For
adequate inference, the t statistic should lie between
−2 and 2 in about 95% of runs.)

There has been much debate about the merits of
model-based versus design-based inference. A key
distinction between the two is that, given a sample,
the model-based approach seeks to describe proper-
ties of estimators in the particular sample selected, in
contrast to the design-based approach which calcu-
lates statistical properties by averaging across all the
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samples that could have been selected using a speci-
fied sampling plan. Interesting additional reading can
be found in [1, 9, 12, 14, 17, 23, 26].

The Need for Robustness to Model Failure

We suppose then, that, for inference from sample to
population to be possible, there must be at least an
implicit model of the population that the sampler can
make explicit. But in making the model explicit, there
are bound to be simplifications and even distortions.
For example, in the model (1) adopted for the hospital
population above, it was assumed implicitly that
there was no curvature characterizing the relation
between x and Y , that the variance went up as
x rather than, say, x2. Thus, if one is to make
serious use of a superpopulation model in sampling
inference, it is necessary to take into account the
likelihood of deviations from the model, which may
or may not be detectable from the sample data. It
is necessary to “robustify” inferences against model
failure (see Robustness).

One way to do this is to examine the effects, espe-
cially the bias, that arise if one model – the working
model – is used as a basis for an estimator, and
another model is correct. This idea goes back to
the early stages of modern sampling: in his introduc-
tion of what effectively was a linear superpopulation
model, Cochran [3] raised the question of the effect
of having a quadratic model. The most serious work
in this regard has been carried out by Royall and his
colleagues [4, 15, 19, 20], who introduced the notion
of balanced samples as a means of protecting against
model failure of certain estimators.

To illustrate, let (1) be the working model, and
suppose that if we had the population as a whole, we
would recognize that the expected value of Yi obeys

EM(Yi) = α + βxi + γ x2
i , i = 1, 2, . . . , N. (3)

Then it is readily shown that the ratio estimator
T̂R = β̂

∑
P xi , based on the working model (1) has

a bias, given by

EM(T̂ − T ) = Nα

(
x

xs

− 1

)
+ Nγ

(
x

xs

x(2)
s − x(2)

)
,

(4)

where x(2) = N−1 ∑
P x2

i and x(2)
s = n−1 ∑

s x2
i . If

the sample is selected to have the moments xs and

x2
s equal to the corresponding population moments,

then the bias (4) is zero. Such a sample is called
balanced. Similarly, by balancing on moments up to
the J th order, the ratio estimator is protected against
bias, if the underlying model is a polynomial of order
J . Since smooth functions can be approximated by
polynomials of high order, the implication is that, if
the underlying model is unspecified but smooth, bal-
anced sampling makes the ratio estimator bias-robust
against a very wide range of underlying conditions.

This idea of balance can be generalized to a
wide range of estimators (see [8, 15] and Theorem 2
below). Thus, for example, the best linear unbiased
estimator T̂ based on the superpopulation model

Yi = βxi + γ x2
i + xiεi, i = 1, 2, . . . , N, (5)

where εi is mean zero with constant variance,
independent across units, will be bias-robust against
high-order polynomials, if x(j−1)

s = x(j)/x, for j =
0, 2, . . . , J – a sort of weighted balance with weights
equal to x−1

i ; it will be more efficient than the ratio
estimator if, as in the model (5), the variance of Y is
proportional to x.

Balance is not a panacea; for example, it does
not help if the goal is to estimate a distribution
function F(t) = N−1 ∑

P I (Yi ≤ t) [where I (A) =
1, if A holds, and is zero otherwise]. In such cases,
manipulation of the form of the estimator is necessary
to protect against model misspecification [2, 7, 8].

Variance Estimation

Reduction or elimination of bias is not an end in
itself. However, if the bias is low relative to the
square root of the variance, then sound inference, in
the form of valid confidence intervals or hypoth-
esis tests, is achievable, if we can form consistent
variance estimators. A major concern in model-based
sampling is the construction of variance estimates
that are unbiased for v ≡ varM(T̂ − T ), despite devi-
ations of the working model, including its variance
component, from the correct model.

The basic idea underlying a variety of vari-
ance estimators is as follows. Under the working
model, we can write the estimation error, T̂ − T , as∑

s aiYi − ∑
r Yj , where the as depend on the known

values in the working model, so that, under a model
with independent errors, v = ∑

s a2
i σ

2
i + ∑

r σ 2
j , with
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σ 2
i = varM(Yi). For example, in the case of the ratio

estimator, ai = ∑
r xi/

∑
s xi . Then the first term

in v, i.e. the sum over the sample points, domi-
nates if, as is typical, N − n � n, and the key idea
is to replace the σ 2

i by (usually slightly adjusted)
squares of the residuals r2

i = (Yi − x′
i β̂)2, where xi

is a vector of auxiliaries and β̂ is an estimated
parameter vector. These squared residuals are nearly
unbiased for σ 2

i , even when the variance compo-
nent of the working model is misstated. The second,
relatively minor component, can be estimated by
[(N − n)/n]

∑
s r2

i or in more sophisticated ways.
The net result is a variance estimator v̂ = ∑

s a2
i r

2
i +

(an estimate of
∑

r σ 2
j ) that, if the working model of

expectation is correct, is consistent for v as n, N

grow to infinity and n/N goes to zero. In the case in
which the working model is incorrect, but the sam-
ple is balanced, v will be conservative. The reader
is referred to the literature for explicit alternatives to
the unadjusted residuals, and for further details; see
especially [4, 13, 16–18, 25].

The impact of model-based sampling has
been very large. Although present theorists and
practitioners are relatively few, many new ideas
and considerations, for example, the development
of “model-assisted” survey sampling, are traceable,
in large measure to model-based inspiration; cf. the
remarks of Särndal et al. [21, p. 535].

In the remainder of this article, we outline some
theory for the general linear model, give a theorem
on weighted balance, sketch results for the case in
which errors in the model are correlated, useful for
cluster sampling, and indicate other work in model-
based sampling, not covered here.

Prediction Theory under the General
Linear Model

The estimation problem can be formulated for a
general linear model and the best linear unbiased
predictor derived under that model. The finite popula-
tion consists of N units, each of which has a value of
a target variable y associated with it. In the prediction
approach, the population vector y = (y1, . . . , yN)′ is
treated as the realization of a random vector Y =
(Y1, . . . , YN)′. A common goal is to estimate a lin-
ear combination of the Y s, such as the total of all
the Y s or their mean. A linear combination of the Y s
is defined to be γ ′Y, where γ = (γ1, . . . , γN)′ is an

N -vector of constants. If, for example, each γi = 1,
then the prediction target is the total; if γi = 1/N ,
the target is the mean. Because the target Y s are
modeled as random variables, any linear combina-
tion γ ′Y is a random sum, and our problem is one
of prediction. The population vector of Y s, given a
particular sample s, can be reordered so that the first
n elements are those in the sample and partitioned as
Y = (Y′

s , Y′
r )

′, where the subvectors Ys and Yr are
n × 1 and (N − n) × 1. To proceed we need to define
the terms “linear estimator” and “estimation error”.

Definition 1. A linear estimator of θ = γ ′Y is
defined as θ̂ = g′

sYs , where gs = (g1, . . . , gn)
′ is an

n-vector of coefficients.

Definition 2. The estimation error of an estimator
g′

sYs is θ̂ − θ = g′
sYs − γ ′Y.

We study this prediction problem under the general
linear model:

E(Y) = Xβ, var(Y) = V, (6)

where X is an N × p matrix of auxiliaries, β is a
p × 1 vector of unknown parameters, and V is a pos-
itive definite covariance matrix. To compute some
estimators generated from Theorem 1 below, it is
necessary that all auxiliary values be known for each
unit in the population, although for others summary
population statistics like means are sufficient. If the
population elements are rearranged so that the first n

elements of Y are those in the sample, and the first
n rows of X are for units in the sample, then X and
V can be expressed as

X =
[

Xs

Xr

]
, V =

[
Vss Vsr

Vrs Vrr

]
,

where Xs is n × p, Xr is (N − n) × p, Vss is n × n,
Vrr is (N − n) × (N − n), Vsr is n × (N − n), and
Vrs = V′

sr .
The auxiliaries being known for each unit in the

population, implies that a sampling frame has been
constructed that lists every unit that is in the survey
universe. In a universe of hospitals, auxiliaries could
include, in addition to the aforementioned number of
beds, the number of patients admitted during a pre-
vious time period, or the type of hospital – general
medical and surgical, psychiatric, rehabilitation, and
so on. There are many practical situations, particu-
larly in surveys of households, where a complete list
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of every population unit is not available. Such cases
may require multistage sampling, which is addressed
in the section on clustered populations.

Given a model, we can also define unbiasedness
and variance as they apply in the context of predic-
tion theory.

Definition 3. The estimator θ̂ is prediction unbi-
ased for θ under a model M if EM(θ̂ − θ) = 0.

Definition 4. The error variance or (equivalently
prediction variance) of θ̂ under a model M is
EM(θ̂ − θ)2.

The general theorem [11], giving the BLUP of θ̂

under model (6) is an extension of a standard result
in prediction theory [27]:

Theorem 1. Among linear, prediction unbiased
estimators θ̂ of θ , the error variance is minimized by

θ̂opt = γ ′
s Ys + γ ′

r

[
Xr β̂ + VrsV−1

ss (Ys − Xs β̂)
]
,

(7)

where β̂ = (X′
sV

−1
ss Xs)

−1X′
sV

−1
ss Ys . The error vari-

ance of θ̂ is for As = X′
sV

−1
ss Xs

varM(θ̂ − θ) = γ ′
r (Vr − VrsV−1

ss Vsr )γr

+ γ ′
r (Xr − VrsV−1

ss Xs)A−1
s

× (Xr − VrsV−1
ss Xs)

′γr . (8)

A feature of the BLUP, as noted earlier, is that it
equals the weighted sum for the sample units, γ ′

s Ys

plus a predictor of the weighted sum for the nonsam-
ple units, γ ′

r [Xr β̂ + VrsV−1
ss (Ys − Xs β̂)]. When the

sample and nonsample units are uncorrelated, Vrs =
0, the BLUP simplifies to θ̂opt = γ ′

s Ys + γ ′
r Xr β̂. The

assumption that Vrs = 0 will often be reasonable in
situations in which single-stage sampling is appropri-
ate, such as institution or establishment sampling.

To appreciate the formulation of the problem
as one of prediction, rather than estimation, it is
instructive to look at the results for the optimum θ̂ if
we minimize its variance, varM(θ̂) = g′

sVssgs instead
of the error variance varM(θ̂ − θ). In that case,
the minimum variance estimator is θ̂∗ = γ ′Xβ̂. In
other words, the value for each unit in the population
is estimated as its expected value from the estimated
regression model. Contrast this to θ̂opt, where the sum

for the sample units, γ ′
s is used directly, and the sum

for the nonsample units is predicted by the estimated
regression mean, γ ′

r Xr β̂ plus an adjustment based on
sample residuals, γ ′

r VrsV−1
ss (Ys − Xs β̂).

Many commonly used estimators can be derived
by applying Theorem 1 to particular models. In the
examples below, the estimation target is the finite
population total T = ∑N

i=1 yi , implying that γ = 1N

is a vector of N ones. The model that leads to the
ratio estimator, for example, is (1). The estimator
itself is T̂R = β̂

∑
P xi and its error variance under

the model is

varM(T̂R − T ) = N2

n
(1 − f )

xrx

xs

σ 2, (9)

where xr is the mean of x for the nonsample units,
x is the population mean, and f = n/N .

The linear regression estimator comes from
the model Yi = α + βxi + εi , with the εis being
independent with mean 0 and variance σ 2. The
BLUP is T̂LR = N [Y s + b(x − xs)], where b =∑

s(Yi − Y s)(xi − xs)/
∑

s (xi − xs)
2. The error vari-

ance is varM(T̂LR − T ) = N2(1 − f )σ 2[1 + (xs −
x)2/{(1 − f )cs}], where cs = ∑

s(xi − xs)
2/n.

Another common estimator is the stratified expan-
sion estimator. A set of strata is a collection of mutu-
ally exclusive groups that covers the entire population
(see Stratified Sampling). Strata might be regions
of a country, for example. Suppose that h denotes a
stratum and that the model is Yhi = µh + εhi , with
the εhis being independent with mean 0 and vari-
ance σ 2

h . The BLUP is T̂st = ∑
h NhY hs , where Nh

is the number of population units in stratum h,
Yhs = ∑

sh
Yhi/nh, sh is the set of sample units in

stratum h, and nh is the number of sample units in
the stratum. The error variance is varM(T̂st − T ) =∑

h N2
h(1 − fh)σ

2
h /nh, where fh = nh/Nh.

A final example is the mean-of-ratios estimator,
which flows from the model Yi = βxi + xiεi .
The BLUP is T̂ = ∑

s Yi + β̂
∑

r xi , where β̂ =∑
s Yi/(nxi). The error variance is varM(T̂ − T ) =

σ 2[(N − n)2 x2
r /n + ∑

r x2
i ]. When the sampling

fraction f is small, the BLUP is approximated by the
mean-of-ratios estimator T̂MR = Nx

∑
s Yi/(nxi).

Per Unit Weights

When constructing a database from a sample survey,
it is often operationally convenient to have a “weight”
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associated with each unit in the sample that is used to
calculate linear estimates. The weights are intended
to be applicable to possibly several variables of
interest y.

Now for a single y variable, the n × 1 optimal
vector of coefficients in a linear estimator, implied
by Theorem 1, is

gs = V−1
ss [Vsr − XsA−1

s (X′
r − X′

sV
−1
ss Vsr )]γr + γs .

Unit i would be assigned a weight equal to the
ith component of the vector gs . The optimal weight
depends, through the covariance structure, on the
particular y variable being considered and on the
way in which the population is split between the
sample and nonsample units. Some examples fol-
low.

For the expansion estimator gi = N/n, for all
i ∈ s. The ratio estimator has gi = Nx/(nxs). The
linear regression estimator has gi = N [n−1 + (x −
xs)(xi − xs)/

∑
j∈s (xj − xs)

2]. The weight for the
stratified expansion estimator is gi = Nh/nh, for i ∈
sh, and for the mean of ratios estimator is gi =
Nx/(nxi).

Notice that the coefficients ai , in terms of which it
is convenient to express the variance ν = ∑

s a2
i σ

2
i +∑

r σ 2
j (discussed above for models with independent

errors), are given by ai = gi − 1.
Although common survey practice is to use the

same weight to make an estimate for different y vari-
ables, this would appear to be reasonable only when
the ys follow the same general form of model. If
one variable follows the expansion estimator model
while another follows the regression estimator model,
using the same weight for each is not generally sen-
sible. However, in the case in which the sample is
balanced, in the sense given in the next section,
estimators of many forms can in effect be sub-
sumed under one form, so that per unit weights are
well-grounded.

It is worth noting that all of the examples that we
have considered share a certain common structure.
Let 1N and 1s be vectors of N and n ones. Suppose
that V is diagonal and that the ith diagonal element
can be expressed as νii = σ 2f (xi ), with f (xi ) =∑p

j=1 cixij a known function and xi the vector of
auxiliaries for unit i. In matrix terms, suppose that
V1N = Xc for a p × 1 vector c. The BLUP becomes
T̂ = 1′

N Xβ̂ (see Lemma 1 below). Note that this form
of T̂ is the same as would be obtained under the gen-
eral linear model if we minimized varM(T̂ ) rather

than varM(T̂ − T ). Even if the variance condition
V1N = Xc does not hold, T̂ = 1′

NXβ̂ is still predic-
tion unbiased under (6). The weight for the ith sam-
ple unit is then gi = Nx[

∑
s xix′

i/f (xi )]−1xi/f (xi ),
where x = (x1, . . . , xp)′ is the vector of population
means of the auxiliaries.

Weighted Balance and Robustness

Models that satisfy the variance condition V1N = Xc
play a key role in robustness and optimality. Let
M(X : V) refer to the general linear model (not
necessarily polynomial) with matrix X of auxiliary
variables, and covariance matrix V given by (6). we
first note the following.

Lemma 1 [15]. If V1N = Xc for some vector c,
then the BLUP and its error variance are

T̂ (X : V) = 1′
N Xβ̂,

varM [T̂ (X : V) − T ] = (1′
N XA−1

s X′1N − 1′
N V1N)σ 2.

(10)

Definition 5. The collection of samples that satisfy

1

n
1′

sW
−1/2
s Xs = 1′

NX
1′

N W1/21N

(11)

will be denoted by B(X : W) and said to balanced
with respect to the weights root(W) or root(W) bal-
anced. Here W is an N × N matrix and Ws is the
n × n submatrix for the sample units.

When W = I, B(X : I) is the set of samples that
are balanced on the columns of X, i.e. 1′

sXs/n =
1′

NXN/N . If the model for y is a polynomial in
x, then B(X : I) is the set of samples satisfying
x(j)

s = x(j), the balance conditions introduced earlier.

Theorem 2 [15]. Under M(X : V), with V diago-
nal, if both V1N = Xc and V1/21N = Xd, for some
vectors c, and d, then

varM [T̂ (X : V) − T ] ≥ [n−1(1′
N V1/21N)2

− 1′
N V1N ]σ 2.

The bound is achieved if and only if s ∈ B(X : V),
in which case

T̂ (X : V) = n−1(1′
N V1/21N)(1′

sV
−1/2
ss Ys).
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For a given variance structure V, the theorem states
that under mild conditions on the X matrix, the esti-
mator T̂ (X : V) will have two important properties
under root(V) balance: (i) it will be bias robust, since
the best linear unbiased estimator for any other auxil-
iary matrix (satisfying the mild conditions) will equal
T̂ (X : V); and (ii) it will be most efficient under
M(X : V), since the variance is the smallest possible
across samples.

By way of illustration, consider the case in which
the variance is proportional to x. It has already
been seen that the common ratio estimator, under
standard balance, will be bias robust. Now con-
sider the model Yi = γ1/2x

1/2
i + γ xi + x

1/2
i εi . Call

the best linear unbiased estimator based on this model
T̂ (γ1/2x

1/2 + γ x : x). The lower bound on its vari-
ance is [(

Nx(1/2)
)2

n
−

N∑

i=1

xi

]
σ 2, (12)

achieved in any sample balanced in the sense that
x(1/2)

s = ∑N
i=1 xi/

∑N
i=1 x

1/2
i . Bias protection against

general polynomial models is obtained by balancing
on additional powers:

∑

s

x
j−1/2
i /n =

N∑

i=1

x
j

i

/
N∑

i=1

x
1/2
i

for j = 0, 1, 2, . . . , J,

that is, under root(x) balance (of order J ). In
addition, by Theorem 2, T̂ (γ1/2x

1/2 + γ x : x) has the
minimum variance in every sample under the working
model Y = γ1/2x

1/2
i + γ xi + x

1/2
i εi .

Note that (12) is less than the variance (9) of the
ratio estimator under the balance condition xs = x.
The ratio estimator arises on the basis of a model
with variance proportional to x, but is not bias robust
under root(x) balance and does not yield the minimal
variance, in contrast to T̂ (γ1/2x

1/2 + γ x : x). When
root(x) balanced sampling is feasible, there can be no
justification for ever using the ratio estimator, except
when one is absolutely sure of a simple through the
origin model.

A word on practical methods of achieving bal-
anced samples is in order. Consider sampling with
probability proportionate to size (pps), for which
there are a variety of modes of implementation. If
the variable according to which pps is carried out is
ν

1/2
i = [varM(Yi)]1/2, so that (for fixed sample size n)

the inclusion probabilities are πi = nν
1/2
i /

∑N
i=1 ν

1/2
i ,

then the sample will be balanced in (design) expec-
tation:

Epps





∑

s

ν
−1/2
i xji

n



 =

N∑

i=1

xji

N∑

i=1

ν
1/2
i

,

for X = (xji).
This says that an appropriate pps scheme aims at

balance. One reasonable approach to getting a bal-
anced sample is to generate some (say 100) pps sam-
ples, and choose one among them that comes closest
to meeting the criterion of balance. Herson [10] illus-
trated this type of restricted randomization when
selecting simple random samples. There may be some
trade-off between one column of X and another; in
some cases, one may wish to go beyond the original
set of samples.

It is to be noted that balance will not always
be achievable. For example, in the case of root(x)
balance, the expression (12) for the variance at
balance implies that n ≤ [(x(1/2))2/x]N , so that for
large enough n balance is impossible. It can be
shown that if the sample inclusion weights πi =
nν

1/2
i /

∑N
i=1 ν

1/2
i are less than one (so that the

corresponding pps sampling is possible), then n is
small enough for balance. Thus a general strategy for
getting balance is first to weed out the units from the
population for which πi exceeds one, putting these
into a separate certainty stratum, and balance on the
remainder of the population.

Large Sample Normality

For any linear estimator θ̂ = g′
sYs of θ = γ ′Y,

whether best linear unbiased or not, the estimation
error θ̂ − θ is a linear function of the elements
of Y. Thus, under a model for which θ̂ is
prediction unbiased and the Y s are independent,
the standardized error (θ̂ − θ)/[varM(θ̂ − θ)]1/2 has
an asymptotic standard normal distribution under
some reasonable conditions [16]. When a consistent
variance estimator ν̂ (see above) is substituted in the
denominator of the standardized error, (θ̂ − θ)/

√
ν̂

will also be approximately normally distributed with
mean 0 and variance 1 in large samples. An interval
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of the form θ̂ ± zα/2

√
ν̂ will then have a confidence

level of (1 − α)% asymptotically, with zα/2 being the
α/2-quantile from the standard normal distribution
(see Confidence Intervals and Sets).

Clustered Populations

Many naturally occurring populations exhibit clus-
tering in which units that are, in some sense, near
each other have similar characteristics. Households
in the same neighborhood may tend to have similar
incomes, education levels of the heads of household,
and amounts of expenditures on food and clothing.
Business establishments in the same industry and
geographic area will pay similar wages to a given
occupation because of competition. This similarity
among “nearby” units can express itself statistically
as a correlation between the target variables for
different units.

In clustered populations, the methods of data col-
lection may also differ from the methods used in
other populations. In a household survey, for exam-
ple, a complete list of households to use for sampling
is usually not available, especially if the population
is large. In the US, for instance, there are nearly
100 million households. The households may be geo-
graphically dispersed so that fieldwork can be more
economically done when sample units are clustered
together to limit travel costs. A practical, and widely
used, technique is to select the sample in stages,
using, at each stage, sampling units for which a
complete list is available. In the household exam-
ple, geographic areas may be selected at the first
stage. At the second stage, each first stage sam-
ple unit may be further subdivided and a sample
of the subdivisions selected. A list of the house-
holds in each sample subdivision is then compiled
and data collected from each. In a business popu-
lation, establishments may be selected at the first
stage, a list of occupations compiled in each sam-
ple establishment, and a sample of occupations then
drawn from each list. Although occupations are the
units ultimately sampled, a complete list of occu-
pations for each establishment in the universe is
unlikely to be available while a list of establishments
often is. Selecting establishments at the first stage is
also sensible because survey costs may depend on
the number of sample establishments more than the
number of sample occupations. Cooperation must be

elicited at the establishment level; and the more estab-
lishments in the sample, the more the survey will
cost.

An Intracluster Correlation Model for a
Clustered Population

The population of units is divided into N clusters.
Cluster i contains Mi units with the total number
of units in the population being M = ∑N

i=1 Mi . We
suppose that the clusters sizes Mi , and hence the
population size M , are all known. Associated with
unit j in cluster i is a random variable Yij the finite
population total of which is T = ∑N

i=1

∑Mi

j=1 Yij . One
simple working model is

EM(Yij ) = µ,

covM(Yij , Yi ′j ′) =





σ 2
i , i = i ′, j = j ′,

σ 2
i ρi, i = i ′, j 
= j ′,

0, otherwise.

(13)

The model posits that units all have a common
mean µ. Within cluster i, units have a common
variance σ 2

i , which can be different from one cluster
to another. Units in the same cluster also have a
common correlation ρi . This type of model can also
be combined with stratification to describe some
populations better.

Elements are selected by a two-stage sampling
scheme. First, a sample s of n clusters is chosen from
the N . Denote the set of nonsample clusters by r .
Then, from the Mi elements in sample cluster i, a
sample si of size mi is selected. The total number of
units in the sample is m = ∑

s mi . The population
total is then naturally represented in three parts –
the total for the observed elements, the total for
unobserved elements in sample clusters, and the total
for nonsample clusters:

T =
∑

i∈s

∑

j∈si

Yij +
∑

i∈s

∑

j /∈si

Yij +
∑

i /∈s

Mi∑

j=1

Yij . (14)

The optimal estimator of T under model (13) is

T̂BLU =
∑

s

∑

si

Yij +
∑

s

(Mi − mi)
[
wiY si

+ (1 − wi)µ̂
] +

∑

r

Miµ̂, (15)
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where wi =miρi/[1+(mi − 1)ρi], Y si =∑
si

Yij /mi ,
and µ̂ is a weighted average of the sample means,
µ̂ = ∑

s uiY si , with weights

ui =
mi

/ {
σ 2

i [1 + (mi − 1)ρi]
}

∑

s

mi

/ {
σ 2

i [1 + (mi − 1)ρi]
} .

Note that the estimator of the nonsample total for
each sample cluster in the second term of T̂BLU is a
kind of composite estimator.

Because the parameters σ 2
i and ρi must be

known or estimated in order to compute T̂BLU, the
practical use of this estimator is limited. For that
reason, estimators of the form T̂ = (N/n)

∑
i∈s λi T̂i

are often used where T̂i = MiY si and λi is a
constant. Note that these will be unbiased under
(13) if (N/n)

∑
i∈s λiMi = M . The estimator T̂p =

(M/n)
∑

s Y si is in this class, for example (it is
also the Horvitz–Thompson estimator under a plan
in which clusters are selected with probabilities
proportional to the cluster sizes Mi and an equal
probability sample is selected within each cluster.)

Estimators can also be used for clustered pop-
ulations that make use of a variety of auxiliary
data, in cases in which E(Y) = Xβ is appropri-
ate. In many situations in which cluster models
and multistage sampling are used, summary auxil-
iary data on a population may be available even
though individual data for all units in the popula-
tion may not. In a human population, for example,
census counts of the number of persons by age,
ethnic group, and sex may exist from a recent pop-
ulation census. If those variables are also related
to the targets of a survey, regression estimation
may be quite useful. The incidence and preva-
lence of some health conditions may depend on
demographic characteristics, such as age, ethnic
group, and sex, and on geographic place of resi-
dence, for instance. When E(Y) = Xβ, the predic-
tors T̂1 = 1′

N Xβ̂ and T̂2 = ∑
s Yi + 1′

N−nXr β̂, with
β̂ = (X′

sXs)
−1X′

sYs , are both prediction unbiased.
In addition, the vectors 1′

N X and 1′
N−nXr are the

totals of the auxiliaries for the full population and
the nonsample, respectively. If Y is set equal to X,
then T̂1 and T̂2 reproduce these totals – a feature
sometimes known as calibration in finite population
sampling [6] Although generally suboptimal, since
they do not account for the covariance structure

var(Y) = V, T̂1 and T̂2 are practical choices because
they do incorporate important auxiliary information
and because V may be unknown and difficult to
estimate.

Other Topics

Beyond what has been discussed here, superpopula-
tion models have found many other areas of appli-
cation in survey sampling. Much of biostatistical
data on human populations is qualitative; for exam-
ple, whether or not a person has a health condition,
whether or not a certain medication is used, whether
the average daily intake of calories is above a given
level, and so on. Natural models for such variables
include the logistic and other choices for binary
responses that are often used in analysis of biosta-
tistical data. These models can also be applied when
estimating finite population totals [24]. Estimation of
cumulative distribution functions and quantiles such
as the median and first or third quartiles, may also
be of interest in studies in which simple descriptive
statistics alone do not suffice [2, 7, 8]. More com-
plex, multivariate analyses of survey data also call
for the use of superpopulation models [22]. A gen-
eral reference on prediction-based survey sampling
is [26].
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Support Vector Machines

Introduction

Over the past 10 years, kernel methods such as
Support Vector Machines and Gaussian Processes
have become a staple for modern statistical esti-
mation and machine learning. The groundwork for
this field was laid in the second half of the twenti-
eth century by Vapnik and Chervonenkis (geometri-
cal formulation of an optimal separating hyperplane,
capacity measures for margin classifiers), Mangasar-
ian (linear separation by a convex function class),
Aronszajn (Reproducing Kernel Hilbert Spaces), Aiz-
erman, Braverman, and Rozonoér (nonlinearity via
kernel feature spaces), Arsenin and Tikhonov (regu-
larization and ill-posed problems), and Wahba (regu-
larization in Reproducing Kernel Hilbert Spaces).

However, it took until the early 1990s when pos-
itive definite kernels became a popular and viable
means of estimation. Firstly, this slow uptake was due
to the lack of sufficiently powerful hardware, since
kernel methods require the computation of the so-
called kernel matrix, which requires quadratic storage
in the number of data points (a computer of at least a
few megabytes of memory is required to deal with
1000+ points). Secondly, many of the previously
mentioned techniques lay dormant or existed inde-
pendently and only recently the (in hindsight obvious)
connections were made to turn this into a practical
estimation tool. Nowadays, a variety of good refer-
ence books exist and anyone serious about dealing
with kernel methods is recommended to consult one
of the following works for further information [5, 12,
8, 15]. Below, we will summarize the main ideas of
kernel method and support vector machines, building
on the summary given in [13].

Learning from Data

One of the fundamental problems of learning theory
(see Machine Learning) is the following: Suppose
we are given two classes of objects. We are then faced
with a new object, and we have to assign it to one of
the two classes. This problem, referred to as (binary)
pattern recognition, can be formalized as follows:
we are given empirical data of m pairs

(x1, y1), . . . , (xm, ym) ∈ X × {±1}, (1)

and we want to estimate a decision function f :X →
{±1}. Here, X is some nonempty set from which
the patterns xi are taken, usually referred to as
the domain; the yi are called labels or targets. A
good decision function will have the property that it
generalizes to unseen data points, achieving a small
value of the risk

R[f ] =
∫

1

2
|f (x) − y| dP(x, y). (2)

(see Decision Theory). In other words, on average
over an unknown distribution P that is assumed to
generate both training and test data, we would like
to have a small error. Here, the error is measured by
means of the zero–one loss function c(x, y, f (x)) :=
1/2|f (x) − y|. The loss is 0 if (x, y) is classified
correctly, and 1 otherwise.

It should be emphasized that so far, the patterns
could be just about anything, and we have made no
assumptions on X other than it being a set endowed
with a probability measure P (note that the labels y

may, but need not, depend on x in a deterministic
fashion). Moreover, (2) does not tell us how to find
a function with a small risk. In fact, it does not even
tell us how to evaluate the risk of a given function,
since the probability measure P is assumed to be
unknown.

We therefore introduce an additional type of struc-
ture, pertaining to what we are actually given – the
training data. Loosely speaking, to generalize, we
want to choose a fitted value f (x) such that (x, f (x))

is in some sense similar to the training examples
(1), for example, that |y − f (x)| is small. To this
end, we need notions of similarity in X and in {±1}.
Characterizing the similarity of the outputs {±1} is
easy: in binary classification, only two situations can
occur: two labels can either be identical or different.
The choice of the similarity measure for the inputs,
that is, x, on the other hand, is a deep question that
lies at the core of the problem of machine learn-
ing.

One of the advantages of kernel methods is that the
learning algorithms developed are quite independent
of the choice of the similarity measure (see Simi-
larity, Dissimilarity, and Distance Measure). This
allows us to adapt the latter to the specific problems
at hand without the need to reformulate the learning
algorithm itself.



2 Support Vector Machines

Kernels

Let us consider a symmetric similarity measure of the
form

k:X × X → �, where (x, x ′) �→ k(x, x ′),

that is, a function that, given two patterns x and x ′,
returns a real number characterizing their similarity.
The function k is often called a kernel.

Kernels as Similarity Measures

General similarity measures of this form are rather
difficult to study. Let us therefore start from a par-
ticularly simple case, the dot product

〈
x, x′〉, and

generalize it subsequently.
The geometric interpretation of the canonical dot

product is that it computes the cosine of the angle
between the vectors x and x′, provided they are nor-
malized to length 1. Moreover, it allows computation
of the length (or norm) of a vector x as

‖x‖ = √〈x, x〉. (3)

Being able to compute dot products amounts to being
able to carry out all geometric constructions that
can be formulated in terms of angles, lengths and
distances. However, this is not really sufficiently
general to deal with many interesting problems.

• First, we have deliberately not made the assump-
tion that the patterns actually exist in a dot
product space (they could be any kind of object).
We therefore first need to represent the patterns
as vectors in some dot product space H, called
the feature space using a map

Φ:X → H where x �→ x := Φ(x). (4)

Note that we use a boldface x to denote the
vectorial representation of x in the feature space.

• Second, even if the original patterns lie in a dot
product space, we may still want to consider
more general similarity measures obtained by
applying the map (4).

Embedding the data into H via Φ has two main
benefits. First, it allows us to deal with the patterns
geometrically, and thus lets us study learning algo-
rithms using linear algebra and analytic geometry.

Second, it lets us define a similarity measure from
the dot product in H,

k(x, x ′) := 〈
x, x′〉 = 〈

Φ(x), Φ(x ′)
〉
. (5)

The freedom to choose the mapping Φ enables us
to design a large variety of similarity measures and
learning algorithms.

Examples of Kernels

So far, we have used the kernel notation as an
abstract similarity measure. We now give some con-
crete examples of kernels, mainly for the case where
the inputs xi are already taken from a dot product
space. The role of the kernel then is to implicitly
change the representation of the data into another
(usually higher dimensional) feature space. One of
the most common kernels used is the polynomial one,

k(x, x ′) = 〈
x, x ′〉d , where d ∈ �. (6)

It corresponds to a feature space spanned by all prod-
ucts of order d of input variables, that is, all products
of the form [x]i1 · · · [x]id . Hence, the dimension of
this space is O(Nd), but since we are using the ker-
nel to evaluate dot products, this does not affect us.
Another popular choice is the Gaussian kernel

k(x, x ′) = exp

(
−‖x − x ′‖2

2 σ 2

)
, (7)

with a suitable width σ > 0.
Examples of more sophisticated kernels, defined

not on dot product spaces but on discrete objects such
as strings, are the string matching kernels proposed
in [16] and [7].

In general, there are several ways of deciding
whether a given function k qualifies as a valid kernel.
One way is to appeal to Mercer’s theorem. This
classical result of functional analysis states that the
kernel of a positive definite integral operator can be
diagonalized in terms of an eigenvector expansion
with nonnegative eigenvalues. From the expansion,
the feature map Φ can explicitly be constructed.
Another approach exploits the fact that k is the kernel
of a Reproducing Kernel Hilbert Space; see [12] for
references and details.



Support Vector Machines 3

Support Vector Classifiers

Statistical Learning Theory shows that it is imperative
to restrict the set of functions from which f is chosen
to one that has a capacity suitable for the amount of
available training data. It provides bounds on the test
error, depending on both the empirical risk and the
capacity of the function class. The minimization of
these bounds leads to the principle of structural risk
minimization [15].

Support Vector Machines (SVM) can be consid-
ered an approximate implementation of this principle,
by trying to minimize a combination of the training
error (or empirical risk),

Remp[f ] = 1

m

m∑

i=1

1

2
|f (xi) − yi |, (8)

and a capacity term derived for the class of hyper-
planes in a dot product space H [15],

〈w, x〉 + b = 0 where w ∈ H, b ∈ �, (9)

corresponding to decision functions

f (x) = sgn (〈w, x〉 + b). (10)

Hard Margin Solution

Consider first problems, which are linearly separa-
ble. There exists a unique optimal hyperplane [15],
distinguished by the maximum margin of separation

between any training point and the hyperplane. It is
the solution of

maximize
w∈H,b∈�

min {‖x − xi‖ |x ∈ H, 〈w, x〉
+ b = 0, i = 1, . . . , m } . (11)

Moreover, the capacity of the class of separating
hyperplanes can be shown to decrease with increas-
ing margin. The latter is the basis of the statistical
justification of the approach; in addition, it is compu-
tationally attractive, since we will show below that it
can be constructed by solving a quadratic program-
ming problem for which efficient algorithms exist.

As one can see from the example given in
Figure 1, in order to construct the optimal hyper-
plane, we need to solve

minimize
w∈H,b∈�

1

2
‖w‖2

subject to yi(〈w, xi〉 + b) ≥ 1 for all i = 1, . . . , m.

(12)

Note that the constraints ensure that f (xi ) will be +1
for yi = +1, and −1 for yi = −1. (One might argue
that for this to be the case, we do not actually need
the constraint “≥1”. However, without it, it would
not be meaningful to minimize the length of w: to
see this, imagine we wrote “>0” instead of “≥1.”
Now assume that the solution is (w, b). Let us rescale
this solution by multiplication with some 0 < λ < 1.

,
w

{x | <w,x> + b = 0}

{x | <w,x> + b  = +1}
{x | <w,x> + b = −1} <w,x1> + b = +1

<w,x2> + b = −1

<w,(x1 − x2)> = 2

(x1 − x2)  = 

x2 x1

Note:

=>

=>
w

||w||
2

||w|| ,yi = −1

yi = +1

♦
♦

♦
♦

Figure 1 A binary classification toy problem: separate balls from diamonds. The optimal hyperplane is shown as a
solid line. The problem being separable, there exists a weight vector w and a threshold b such that yi(〈w, xi〉 + b) > 0
(i = 1, . . . , m). Rescaling w and b such that the point(s) closest to the hyperplane satisfy | 〈w, xi〉 + b| = 1, we obtain a
canonical form (w, b) of the hyperplane, satisfying yi(〈w, xi〉 + b) ≥ 1. Note that in this case, the margin (the distance of
the closest point to the hyperplane) equals 1/‖w‖. This can be seen by considering two points x1, x2 on opposite sides
of the margin, that is, 〈w, x1〉 + b = 1, 〈w, x2〉 + b = −1, and projecting them onto the hyperplane normal vector w/‖w‖
(from [12])
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Since λ > 0, the constraints are still satisfied. Since
λ < 1, however, the length of w has decreased. Hence
(w, b) cannot be the minimizer of (12).)

The constrained optimization problem (12) is
dealt with by introducing Lagrange multipliers αi ≥
0 (α := (α1, . . . , αm)) and a Lagrangian

L(w, b, α) = 1

2
‖w‖2 −

m∑

i=1

αi (yi(〈xi , w〉 + b) − 1) .

(13)

L has a saddle point in w, b, and α at the optimal
solution of the primal optimization problem. This
means that it should be minimized with respect to the
primal variables w and b and maximized with respect
to the dual variables αi . Furthermore, the product
between constraints and Lagrange multipliers in L

vanish at optimality, that is,

αi(yi(〈xi , w〉 + b) − 1) = 0 for all i = 1, . . . , m.

(14)

To minimize w.r.t. the primal variables, we require

∂

∂b
L(w, b, α) = −

m∑

i=1

αiyi = 0 (15)

∂

∂w
L(w, b, α) = w −

m∑

i=1

αiyixi = 0 (16)

The solution thus has an expansion (16) in terms of a
subset of the training patterns, namely those patterns
with nonzero αi , called Support Vectors (SVs). Often,
only few of the training examples actually end up
being SVs.

By the Karush–Kuhn–Tucker conditions (14)
known from optimization theory, the SVs lie on
the margin (cf. Figure 1) – this can be exploited
to compute b once the αi have been found. All
remaining training examples (xj , yj ) are irrelevant:
their constraint yj (

〈
w, xj

〉 + b) ≥ 1 could just as
well be left out. In other words, the hyperplane is
completely determined by the patterns closest to it.

By substituting (15) and (16) into the Lagrangian
(13), one eliminates the primal variables w and b,
arriving at the so-called dual optimization problem,

which is the problem usually solved in practice:

maximize
α∈�m

m∑

i=1

αi − 1

2

m∑

i,j=1

αiαjyiyjKij

subject to αi ≥ 0 for all i = 1, . . . , m

and
m∑

i=1

αiyi = 0. (17)

where Kij := 〈
xi , xj

〉
. Using (16), the decision func-

tion (10) can thus be written as

f (x) = sgn

(
m∑

i=1

yiαi 〈x, xi〉 + b

)
, (18)

where b is computed via (14); for details, see [5, 8,
12, 15].

The Kernel Trick

We now have all the tools to describe SVMs.
Everything above was formulated in a dot product
space, which we think of as the feature space H (see
(4)). To express the formulae in terms of the input
patterns in X, we employ (5) and replace

〈
x, x′〉 by

k(x, x′) wherever it occurs. This substitution, which
is sometimes referred to as the kernel trick, was used
by Boser et al.. [3] to develop nonlinear SVMs. Now
f can be rewritten as

f (x) = sgn

(
m∑

i=1

yiαik(x, xi) + b

)
. (19)

Furthermore, in the quadratic program (17) the defini-
tion of Kij becomes Kij = k(xi , xj ). Figure 2 shows
a toy example.

Soft Margin Solution

In practice, a separating hyperplane may not exist,
for example, if a high noise level causes a large
overlap of the classes. To accommodate this case, one
introduces slack variables ξi ≥ 0 for all i = 1, . . . , m

in order to relax the constraints of (12) to

yi(〈w, xi〉 + b) ≥ 1 − ξi for all i = 1, . . . , m.

(20)
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Figure 2 Example of an SV classifier found using a radial
basis function kernel k(x, x ′) = exp(−‖x − x ′‖2). Circles
and points are two classes of training examples; the middle
line is the decision surface; the outer lines precisely meet
the constraint of (12). Note that the SVs found by the
algorithm (sitting on the dotted constraint lines) are not
centers of clusters, but examples which are critical for the
given classification task (from [13])

A classifier that generalizes well is then found by
controlling both the classifier capacity (via ‖w‖) and
the sum of the slacks

∑
i ξi . The latter can be shown

to provide an upper bound on the number of training
errors.

One possible realization of such a soft margin
classifier is obtained by minimizing the objective
function

1

2
‖w‖2 + C

m∑

i=1

ξi (21)

subject to the constraints on ξi and (20), where the
constant C > 0 determines the trade off between
margin maximization and training error minimization.
This again leads to the problem of maximizing
(17), subject to modified constraints where the only
difference from the separable case is an upper bound
C on the Lagrange multipliers αi .

Another realization uses the more natural ν-
parameterization. In it, the parameter C is replaced
by a parameter ν ∈ (0, 1], which can be shown to
provide lower and upper bounds for the fraction of
examples that will be SVs, and those that will have
nonzero slack variables, respectively.

Its dual can be shown to consist in maximizing
the quadratic part of (17), subject to

0 ≤ αi ≤ 1

νm
,

∑

i

αiyi = 0, and
∑

i

αi = 1.

(22)

Discussion

Extensions

The applicability of the “kernel trick” extends signif-
icantly beyond the classification setting and in recent
years a large number of kernel algorithms have been
proposed to solve as diverse tasks as the estimation
of the support (or, more generally, quantiles) of a
distribution, of a regression function, or of a nonlin-
ear manifold. Below, we give a brief overview of the
most popular methods:

• Regression: Just as classification can be formu-
lated as a quadratic optimization problem, so
can regression. Here, the maximum margin con-
dition is replaced by the requirement of finding
the flattest function, which performs a regres-
sion within ε deviation from the observations.

• Principal Component Analysis: It can be
extended to nonlinear settings by replacing PCA
in input space by a feature space representation.
The final algorithm consists of solving an eigen-
vector problem for the kernel matrix.
Similar modifications can be carried out to
obtain nonlinear versions of projection pursuit,
for example, via sparse kernel feature analysis.

• Independent Component Analysis: Recently, an
algorithm was suggested in [2] to find indepen-
dent components via a modification of canon-
ical correlation analysis. This is currently an
active topic of research and it is likely to lead
to novel criteria for factorizing distributions.

• Quantiles of a Distribution: In this problem, one
attempts to find sets such that the probability
of data occurring outside this set is controlled.
This is done by ensuring that the set contains
a certain fraction of the training data while
at the same time keeping the set “simple”
(where simplicity is determined by an SVM-
style regularization term). This can be done
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also for high-dimensional problems, and one
can show that it can be cast as a classification
problem with only one class. Kernel extensions
exist.

• Estimation of Manifolds: Here one aims at
finding smooth manifolds which approximate
a dataset (i.e. manifolds for which the error
incurred by projection of the data onto the man-
ifold is small). Again, one can find optimization
problems similar to the SV optimization prob-
lem (i.e. a regularization term plus a mispredic-
tion cost) and generate a kernel expansion.

These and many more kernel methods plus the
corresponding references can be found in [12].

Implementations

An initial weakness of SVMs was that the size of
the quadratic programming problem scaled with the
number of SVs. This was due to the fact that in (17),
the quadratic part contained at least all SVs – the
common practice was to extract the SVs by going
through the training data in chunks while regularly
testing for the possibility that patterns initially not
identified as SVs become SVs at a later stage. This
procedure is referred to as chunking; note that without
chunking, the size of the matrix in the quadratic part
of the objective function would be m × m, where m

is the number of all training examples.
What happens if we have a high-noise prob-

lem? In this case, many of the slack variables ξi

become nonzero, and all the corresponding examples
become SVs. For this case, decomposition algorithms
were proposed on the basis of the observation that
not only can we leave out the non-SV examples
(the xi with αi = 0) from the current chunk, but
also some of the SVs, especially those that hit the
upper boundary (αi = C). The chunks are usually
dealt with using quadratic optimizers. Several pub-
lic domain SV packages and optimizers are listed on
http://www.kernel-machines.org.

Empirical Results and Applications

Modern SVM implementations made it possible to
train on some rather large problems. Success stories
include the 60 000 example MNIST digit recognition
benchmark (with record results), as well as problems

in text categorization and bioinformatics, where two
main areas of application are worth mentioning:

Firstly, there are classification and gene selection
problems in DNA microarray analysis (see Bioinfor-
matics in Functional Genomics). Given the high
dimensionality of the data to begin with, the use
of kernels is not advisable in this case. Instead, a
linear classifier with a suitable penalty on the expan-
sion coefficients favoring sparse expansions is found;
see [4, 6] for further details and references. Finding
suitable variable selection criteria is an active area
of research (see e.g. [1], which points out substantial
problems with the approach taken in [6], mainly due
to improper testing). Reference [11] contains further
empirical results on SVM performance.

Secondly, sequence analysis can often be cast into
the form of a classification problem, requiring the
design of custom tailored kernels for this purpose.
Such research has led to excellent results (see [9, 7,
17, 16, 14, 10] and the references therein for further
details).

Conclusion

During the last few years, SVMs and other kernel
methods have rapidly advanced into the standard
toolkit of techniques for machine learning and high-
dimensional data analysis. This was probably due to a
number of advantages compared to neural networks,
such as the absence of spurious local minima in the
optimization procedure, the fact that there are only
few parameters to tune, enabling fast deployment
in applications, the modularity in the design, where
various kernels can be combined with a number
of different learning algorithms, and the excellent
performance on high-dimensional data.
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Surgery

Surgeons have long been on the receiving end of
criticism that they have a rather casual approach
to the evaluation of new interventions. Pocock [18]
discusses the problem from an objective perspec-
tive in the context of a discussion of the key role
of randomization, but Horton [14] puts forward a
more emotive argument in an editorial entitled “Sur-
gical research or comic opera: questions but few
answers”. However, one approaches the issue, there is
overwhelming evidence that few surgical procedures
have been evaluated using randomized controlled
trials [19] (see Clinical Trials, Overview), and the
trials which have been conducted are often woefully
inadequate methodologically [12, 17].

The history of surgery is littered with examples
of procedures which were described and then widely
adopted, only to be dropped when subjected to eval-
uation. The most recent example of a surgical “band-
wagon” is laparoscopic surgery, and laparoscopic
cholecystectomy in particular. This example is dis-
cussed in detail below.

What is unfair in much of the criticism of the
scarcity of landmark trials in surgery is the impli-
cation that surgeons are unaware of the problem.
Controlled trials in surgery are inherently more com-
plex than drug trials, and numerous articles have been
written by surgeons discussing the obstacles to per-
forming trials in surgery. It has also been argued that
the randomized clinical trial is not the only tool which
can provide useful information on the efficacy of a
surgical procedure, and surgical audit in particular is
discussed later in this article.

The Necessity of Clinical Trials

Hierarchy of Evidence

Virtually all statisticians, and the large majority of
clinicians, would agree that the randomized controlled
trial is the “gold standard” for the evaluation of
medical (and surgical!) interventions. However, it
should be recognized that trials are not beyond crit-
icism. In rather emotive terms, an editorial in the
Lancet [1], which was discussing a proposed trial
where one treatment arm involved hysterectomy,
asked how we could convince a woman “that it is

necessary to sacrifice her womb on the altar of sci-
ence”. The same article argues that trials are unnec-
essary in situations where “it stands to reason that
the new procedure is indeed less risky”. One could
accept that argument if only there were not so many
well-documented examples of procedures which were
“obvious” advances until they were actually eval-
uated. One thinks, for example, of “gastric freez-
ing”, internal mammary artery ligation (see below),
or extracranial–intracranial arterial anastomosis. This
last procedure was widely practiced as a measure
to reduce the risk of stroke, until a landmark trial
demonstrated that the procedure was ineffective and
possibly even harmful [8].

It is worth rehearsing the different sources of
evidence on the efficacy of procedures, which were
ranked by Chalmers [3] in terms of their credibility:

1. Clinical impressions. These should have no place
in any scientific evaluation, but they do seem
to be a basis for much of what is practiced in
medicine.

2. Case reports and uncontrolled case series.
Around 50% of the articles in leading surgical
journals consist of case series [14], but their role
in evaluation is severely limited. They are subject
to selection bias and many other potential biases,
including, even for surgery, a placebo effect.
Their main role should be in refining procedures,
and as an aid in screening potentially useful
interventions prior to more formal evaluation.

3. Case series with nonrandomized controls. Such
studies have more potential to provide useful
information, but they are still prone to many
sources of bias. For example, an experimental
procedure might be introduced first with “low
risk” patients, where the prognosis is atypically
favorable. Alternatively, a new procedure, such
as laparoscopic cholecystectomy, can be adopted
so enthusiastically as to distort the indications for
the procedure, so that on average a much fitter
group of patients are undergoing the procedure.
Comparing outcomes with historical controls
then becomes a self-fulfilling prophesy because,
of course, results improve when a more fit patient
population is treated (see Bias from Historical
Controls).

4. Randomized controlled trial. This is the only
methodology which can control for the effects of
potential biases in selection and evaluation. Any
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new pharmacological agent needs to be tested to
this level of rigor before it can be approved for
marketing, but as yet there are no mechanisms
which require “licensing” of surgical procedures.

Case Study – Internal Mammary Artery Ligation

The history of this procedure gives enormous insight
into the role of trials in surgery, and also serves
to highlight many of the associated problems. A
very detailed history can be found in a chapter by
Barsamian [2]. It was first proposed in the late nine-
teenth century that a heart which was receiving an
inadequate blood supply via the coronary arteries
could have the blood supply augmented through col-
lateral circulation. Based on a number of animal
studies and one anecdotal case report, a number of
surgeons in the mid 1950s adopted an operation in
which the internal mammary artery was ligated (tied
off). This was used to treat patients with angina, on
the principle that the operation ought to increase the
blood supply to the heart. Many patients so treated
experienced marked symptomatic improvement, and
the operation grew in popularity. However, further
animal studies failed to demonstrate any measurable
effects on the blood supply, and in an uncontrolled
study where 24 patients with angina were told in
advance that the operation was experimental and
with no physiological basis, it was reported that
their response to the treatment was far less impres-
sive. In all but four patients the anginal symptoms
returned to their preoperative levels after a brief
period of improvement. This suggested strongly that
the response to the operation was determined by the
patient’s expectations, and this was reinforced by a
report of two patients whose symptoms improved
after an untied ligature was placed around the internal
mammary arteries. When the ligatures were sub-
sequently tied, the patients experienced no further
improvement in their symptoms.

The issue was finally settled when almost
simultaneously two controlled trials were reported.
The studies were small (18 and 17 subjects,
respectively), but they were randomized and well
controlled. Indeed, the control procedure was a sham
operation. All patients had their internal mammary
arteries exposed, and then according to a random
allocation the arteries were ligated or not, and the
wound was closed. The results of both studies showed
a clear improvement in symptoms in the control

group and the ligated group, with no statistically
significant difference between the response rates.
In spite of the very small numbers, these two
controlled trials led very quickly to the operation
being abandoned.

This story has a number of profound implications.
First, the studies showed unequivocally that surgery
can have a placebo effect. This in turn throws severe
doubts onto any procedure which is evaluated solely
on the basis of an uncontrolled case series. Secondly,
there are major ethical difficulties in surgical trials
(see Ethics of Randomized Trials). There does not
appear to be any other published clinical trial which
has used sham operations as a control, and indeed by
current standards of research ethics it is difficult to
see that such a study would be regarded as ethical.
Thirdly, it shows how quickly a new procedure can
become popularized, based on a plausible argument
for a mechanism and the most slender of anecdotal
evidence.

Obstacles to Clinical Trials in Surgery

As previously mentioned, several authors have
described various obstacles to performing clinical
trials in surgery. Not all of these reasons are
necessarily valid, but their perception as barriers has
certainly dissuaded many surgeons from embarking
on a clinical trial.

Blinding

The rationale for the controlled clinical trial is that
it gives a mechanism which can control bias. The
two key concepts which combine to achieve this are
randomization and blinding. It is therefore a clear
obstacle to surgical trials that rather obviously the
operating surgeon cannot be blind to the procedure
being undertaken! However, it is still possible to
achieve the benefits of blinding provided (i) the allo-
cation procedure is blinded in that the individual
explaining the study to the patient, assessing the eli-
gibility of the patient, and obtaining informed consent
is unaware of the treatment which will be assigned
should the patient be enrolled, and (ii) the individual
assessing the response to treatment is also unaware
of which treatment was allocated. There is no excuse
for failing to blind the allocation procedure, and that,
incidentally, is the main flaw in allocation schemes
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based on apparently “random” mechanisms such as
the final digit of a patient’s hospital number, or the
parity of the date of enrollment (see Randomized
Treatment Assignment).

Blinding of the assessment of response to treat-
ment will not always be straightforward, but ingenuity
can help. Majeed et al. [16] describe a randomized
comparison of a laparoscopic procedure with an
open procedure, where the patients’ “wounds” were
dressed in an identical fashion, complete with mask-
ing bloodstains, irrespective of which procedure was
performed. The impact of any loss of blinding on
the assessment can also be minimized by the use
of objective outcome measures, but even here care
must be exercised. For example, in a trial of the man-
agement of severe head injuries, one might take death
within seven days of injury as an end point. Death
is a relatively objective end point, but in this context
the precise time of death is essentially a function of
when it is decided to begin the procedure for assess-
ing brain stem death. It is conceivable that knowledge
of the allocated treatment might induce a bias where
deaths were delayed until after the 7-day threshold.

Consent

It can easily be seen that, in general, patients will
often be unwilling to consent to a trial which involves
a random choice between two surgical procedures,
or between a surgical procedure and medical man-
agement. In a drug trial the effects will usually be
reversible, and if a patient receives a drug which
results in an undesirable side-effect, then the drug
can be discontinued. Similarly, if the patient with a
chronic condition is allocated to the drug which is
subsequently found inferior, then at the end of the
trial they can be switched to the preferred treatment.
However, surgical procedures tend to be more perma-
nent, and patients are very likely to have a preference
for one or other treatment. For example, in a trial of
breast-conserving surgery vs. mastectomy for early
breast cancer, it is clear that some women would
have a strong preference for mastectomy, to be sure
that “all of the cancer is removed”. Similarly, other
women would have a strong preference for the less
mutilating surgery because of concerns for their body
image. Both opinions are perfectly valid, and it would
be totally unethical to pressure a woman with a strong
preference for either treatment to enter the trial. Thus,

recruitment rates are likely to be slower than for trials
of medical treatments.

It has been argued that the very procedure of
seeking consent and implicitly or explicitly admitting
uncertainty over what is the most appropriate treat-
ment can undermine the patient’s confidence in the
surgeon. However, this is an argument which should
be countered, since the patient–doctor relationship
is totally dependent on each being truthful with the
other.

One helpful approach to the problem of conduct-
ing a trial in the face of strong preferences for one
or other treatment is to perform a patient preference
trial, where patients with a clear preference for one
type of treatment receive their preferred procedure,
and patients with no preference are randomized. This
results in a randomized trial together with a large
body of supporting evidence which can help to place
the randomized trial in context. A further solution
which has been put forward is the randomized con-
sent trial.

Surgical Skill

This is the area where surgical trials differ most
obviously from drug trials. In general, a drug does
not require any great skill to administer, and it is
simple to standardize the administration to eliminate
any potential effect of the physician. By contrast,
surgeons will vary in their levels of skill, experience,
and enthusiasm, and inevitably the effect of surgery
will be confounded with the effect of the surgeon.

One aspect of this issue is the “learning curve”,
where one could argue that to give a fair assessment
of an operation one should only recruit surgeons
who are thoroughly familiar with the procedure. This
needs to be balanced by an appreciation of how
quickly an operation can become “standard practice”
without any formal evaluation. If one waits until there
are several surgeons fully trained and experienced in
a new procedure, then the procedure could easily be
so firmly established as to make a trial impractical,
or even for a trial to be considered by some to be
unethical. Chalmers [4] has argued that, to avoid this
bandwagon effect, one should randomize from the
very first patient.

A related problem is the question of how to com-
pare two procedures where the surgeons participating
in the trial are skilled in one procedure but inex-
perienced in the other. An extreme form of this
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problem is when comparing procedures which would
be performed by different specialists, say a conven-
tional surgical procedure vs. a procedure performed
by an interventional radiologist. Here, the only feasi-
ble design is to randomize the patients to the different
specialities, meaning that the comparison of the pro-
cedures is completely confounded with the compar-
ison of the individuals. This needs to be considered
very carefully when discussing the generalizability
of the results. For example, if one is comparing an
“average” group of general surgeons with an atypical
group of highly skilled and innovative radiologists,
then the treatment comparison might be biased in
favor of radiology and not generalize when the pro-
cedure becomes part of routine radiologic practice.

Technical Points

In addition to the “high-level” obstacles described
above, there are several other technical difficulties
which can arise in surgical trials. Many of these relate
to the choice of an appropriate end point. For routine
minor procedures the rate of serious complications
will generally be low, but this means that without a
very large sample size it would be possible to fail to
detect a substantial and clinically relevant increase in
the number of serious complications. This sample size
issue is very relevant to the discussion of laparoscopic
cholecystectomy which follows in the next section.

Another difficulty is in deciding when to assess
outcome. In many procedures in surgical oncology
the most relevant outcome measure is long-term
survival, so there is a risk that a procedure might
be obsolete even before it is fully evaluated. A
more difficult question arises when the treatments
compared attempt to strike different balances between
short-term and long-term outcome. Typically, one
might be comparing a major operation which has a
high rate of early complications, but with the prospect
of a long-term cure, against a more conservative
procedure which might control local symptoms but
compromise long-term prognosis. If such a study is
analyzed too soon, then there will be a strong bias
in favor of the treatment with the better short-term
outcome, which might mask an important long-term
benefit.

An extreme example of this problem is the assess-
ment of a prophylactic operation such as carotid
endarterectomy, where one operates on an individ-
ual thought at high risk of suffering a stroke in

an attempt to reduce this risk. There is significant
morbidity associated with the operation, and so the
question is whether it is appropriate to accept the
immediate risks of surgery in the hope of avoiding a
stroke at some later date.

The example of carotid endarterectomy raises a
further important issue, in that the problem is not to
evaluate the procedure per se, but to identify patients
where the procedure is indicated. There is good evi-
dence that patients with severe stenosis (narrowing)
of their internal carotid artery (70%–99% stenosis)
do tend to benefit from the procedure, and those
with mild stenosis (0%–29%) are more likely to be
harmed than to benefit. The key statistical question
is therefore not whether carotid endarterectomy is an
effective treatment, but rather the problem is to esti-
mate the threshold for percent stenosis above which
the procedure is indicated. A refinement of this ques-
tion would be to individualize this threshold to take
account of each patient’s constellation of risk factors.
Preliminary results of a study of patients with moder-
ate stenoses have been reported [9], but their analysis
fails to address directly the question of estimating the
threshold which determines whether the operation is
indicated.

Case Study – Laparoscopic Cholecystectomy

Cholecystectomy, or removal of the gall bladder, is
a very common surgical procedure. In the US, for
example, approximately 500 000 such operations are
performed annually. In the early 1980s a number
of surgeons began experimenting with performing
this operation laparoscopically rather than through
a conventional incision, and by the early 1990s the
laparoscopic approach had become so popular that
several audits reported that over 80% of cholecys-
tectomies were performed laparoscopically. The per-
ceived advantages included less postoperative pain,
a smaller scar, a shorter hospital stay, and a quicker
return to normal activities. Indeed, the laparoscopic
procedure is seen as such an advance over conven-
tional surgery that the indications for cholecystec-
tomy have been relaxed, and an increase of over
20% has been observed in the number of cholecys-
tectomies performed.

In spite of the huge number of procedures
performed worldwide, there is a remarkable dearth
of scientifically secure data to evaluate the
new approach. Cuschieri [6], one of the leading
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proponents of laparoscopic surgery, has called the
explosive growth in uptake of the new procedure
“the greatest unaudited free-for-all in the history of
surgery”.

A recent review [7] identified 841 articles specif-
ically on laparoscopic cholecystectomy published
between January 1987 and October 1994. Of these
841 articles, only 15 were randomized trials, and of
these, only three contained at least 50 patients in
each group. Between 1994 and 1996 there have been
over 1500 publications in English on laparoscopic
surgery in general, but only 11 report randomized
trials large enough to allow useful comparisons [15].
This is quite extraordinary given the number of proce-
dures which are performed annually, and given that
much of the debate over laparoscopic cholecystec-
tomy centers around the risk of bile duct injury. This
is a serious complication, but with an incidence of
1% or less. Clearly, to make a useful comparative
statement about such a low complication rate would
require a study of several thousand patients. How-
ever, it must be stressed that, for such a common
procedure, which is generally performed to relieve
symptoms in otherwise fit individuals, a complication
rate of 1% is clinically important. Moreover, given
the large number of procedures being undertaken, it
would be eminently feasible to perform a trial based
on several thousand individuals.

It is only now, ten years after the enthu-
siastic and widespread adoption of laparoscopic
cholecystectomy, that a more balanced picture of the
costs and benefits is beginning to emerge (see Health
Economics). An influential randomized trial by
Majeed et al. [16] used blinded assessment tech-
niques to assess rates of recovery and length of hospi-
tal stay, and observed no difference between laparo-
scopic cholecystectomy and small-incision chole-
cystectomy. A number of audits have suggested
that laparoscopic cholecystectomy is associated with
approximately a twofold increase in bile duct injury
and in other complications requiring readmission to
hospital. Johnson [15] concludes his discussion of
laparoscopic surgery by saying

Laparoscopic surgery is not easier, quicker, cheaper,
or safer; nor does it avoid general anesthetic. It may
lead to a shorter initial hospital stay but readmissions
for complications and other procedures have to
be added. [. . .] Laparoscopic surgery [. . .] must
be classified as an expensive luxury rather than a
surgical revolution.

Surgical Audit

As discussed above, the randomized clinical trial
should be regarded as the “gold standard” for the
evaluation of surgical interventions. However, as also
mentioned above, one of the most difficult variables
to handle is the skill of the individual surgeon. In
what has been an enormously influential paper, Field-
ing et al. [10] reported data from the Large-Bowel
Cancer Project which showed dramatic differences
between surgeons in the rate of breakdown of anas-
tomoses (i.e. surgical joins of the bowel). In the
summary of that paper it is stated

The data in the current study show that the surgeon
who has clinical responsibility for the care of the
patient is probably the most important single factor
influencing anastomotic integrity. Such a statement
about surgical technique may be thought controver-
sial, but there is a sixfold range of results (about
5–30%) that cannot be accounted for by any obvious
differences in patient population.

If such results are indeed representative of surgery
in general, then we could be straining at gnats
when conducting trials looking for subtle differences
between two variants of the same procedure, when
the surgical outcome is largely determined by the
responsible surgeon.

In certain unusual situations it might be feasible
to conduct a randomized trial which compared dif-
ferent surgeons undertaking the same procedure, but
the assessment of individual performance, which is
termed “surgical audit”, is generally undertaken less
formally. There is a very large literature on surgi-
cal audit, and a review by Hayes & Murray [13]
gives many of the key references. Surgical audit has
many parallels with the equally controversial topic
of school league tables (see Quality of Care), and
a review of the statistical issues underlying both
medical and school league tables is given by Gold-
stein & Spiegelhalter [11]. This paper brings out the
idea of multilevel modeling, which is very rele-
vant in a context where the data can have a clear
hierarchical structure – with, say, data on individual
patients, under the care of an individual consultant,
working as part of a surgical team, within a hospi-
tal, within an administrative region (see Hierarchical
Models).

The history of surgical audit goes back to at least
the 1850s, when Florence Nightingale was working
during the Crimean War. Throughout the first half of
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the twentieth century surgical audit was developed
in the US, very much from the point of view of
regulation, and without notable success. An excel-
lent review of these early historical developments
is given by Wilkin & McColl [20]. There is also a
long history of surgical audit in the UK, but always
with more of an emphasis on education than on
the “big stick”. The Royal College of Surgeons of
England now hosts a Surgical Epidemiology and
Audit Unit, and provides a Comparative Audit Ser-
vice.

The fundamental problem with all clinical audits
is that one does not compare like with like. Differ-
ences in case mix confound direct comparisons of
outcome, but this does not prevent such mislead-
ing data being sensationalized in the media. Many
attempts have been made to build statistical models
which can adjust for case mix, and hence give a bet-
ter measure of “added value”. The paper by Hayes &
Murray [13] describes some of the better known scor-
ing systems, and highlights some of their limitations.
The POSSUM Score [5] is one scoring system which
has been developed specifically for general surgery. It
can be used either to identify patients whose outcome
was unexpected, so that the case can be reviewed in
detail, or else to compare the expected outcomes in
a series of patients with the outcomes which were
actually observed. POSSUM requires a large vol-
ume of data to be recorded, but it is claimed that
the system can work in practice. One problem with
the system is that the model is not well calibrated,
and, in particular, the predicted risk of death can-
not be below 1.08%, no matter how fit the patient
or how trivial the operative procedure. Perhaps more
seriously, some of the factors which are included in
the model, such as blood loss, may actually reflect
surgical competence. Thus one is assessing compe-
tence, adjusting for competence, which rather defeats
the purpose!

No system for case mix adjustment is ever going
to be perfect, but equally it seems likely that the
demand for “league tables” will continue to grow.
Certainly within the UK there is a growing require-
ment for purchasers of health care to be able to
measure quality, and so further research into how
best to adjust performance indicators for case mix
needs to be a priority. Equally there is a press-
ing need to educate the consumers of “league
tables” of their limitations, even after correction for
case mix.
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Surrogate Endpoints

The selection of the primary “outcome measures” or
“endpoints” is a very important step in the design of
clinical trials (see Outcome Measures in Clinical
Trials). Typically, the primary goal of the clinical
trial is to assess definitively a treatment’s effect on
these endpoints. Two major criteria should guide their
selection. The endpoints should (i) be sensitive to
treatment effects and (ii) be clinically relevant. Ade-
quate attention is usually given to ensuring that the
first criterion is satisfied. Unfortunately, ensuring that
the endpoints also satisfy the criterion of clinical rel-
evance is often improperly addressed. We focus on
this second criterion and the corresponding contro-
versial issues arising when surrogate endpoints are
used as study outcomes.

The nature of clinical relevance depends on the
stage of clinical experimentation. In Phase II trials,
which provide a screening evaluation of treatment
effect, the primary objective usually is to assess a
treatment’s biological activity. Relevant endpoints in
such a trial in cancer patients might be measures of
tumor shrinkage; in HIV-infected persons, measures
of viral load or immune function; and in patients
with cardiovascular disease, blood pressure or lipid
levels. In contrast, in Phase III clinical trials, where
the intent is to define the role of a therapy in standard
clinical practice, the primary objective should be
to assess the treatment’s clinical efficacy through
outcome measures that unequivocally reflect tangible
benefit to the patient. In the treatment of patients
with life-threatening diseases, such clinical efficacy
measures include improvement in the duration of
survival or in the quality of life (QOL).

Often, there is a sense of urgency in the evaluation
of promising new interventions for patients having
life-threatening diseases. When survival is the pri-
mary endpoint, clinical trials frequently require large
sample sizes and very lengthy intervals of follow-up.
The subjective nature of QOL outcome measures
presents additional difficulties through the need to
identify validated and widely accepted QOL instru-
ments. To reduce the trial cost, size, and duration
and to avoid complexities of QOL assessments, con-
siderable attention has been given, in the design of
definitive Phase III trials, to identifying surrogate or
replacement endpoints for the true clinical efficacy
endpoint. As defined by Temple [21],

a surrogate endpoint of a clinical trial is a laboratory
measurement or a physical sign used as a substitute
for a clinically meaningful endpoint that measures
directly how a patient feels, functions or survives.
Changes induced by a therapy on a surrogate end-
point are expected to reflect changes in a clinically
meaningful endpoint.

Measures of biological activity have been chosen fre-
quently as surrogates because usually they are readily
available early in a clinical trial and because often
they are strongly correlated with clinical efficacy.

Unfortunately, treatment effects on the clinical
efficacy endpoints may not be predicted reliably by
the observed effects on surrogate endpoints, even
when natural history data reveal that these surrogates
are strongly correlated with the clinical efficacy out-
comes. As indicated by Fleming & DeMets [9], there
are several possible explanations for this failure.

Even though a surrogate endpoint may be a correlate
of disease progression, it might not involve the same
pathophysiologic process that results in the clinical
outcome. Even when it does, it is likely there are
disease pathways causally related to the clinical
outcome and yet unrelated to the surrogate endpoint.
Of the disease pathways affecting the true clinical
outcome, the intervention may only affect (i) the
pathway mediated through the surrogate endpoint
or (ii) the pathway(s) independent of the surrogate
endpoint. Most importantly, the intervention might
also affect the true clinical outcome by unintended
mechanisms of action independent of the disease
process. The intervention’s effects mediated through
intended mechanisms could be substantially offset
by an array of mechanisms that are unintended,
unanticipated and unrecognized.

The example of lipid-lowering agents clearly illus-
trates the existence and impact of these unintended
mechanisms. In a comprehensive overview of 50 ran-
domized trials (see Meta-analysis of Clinical Tri-
als) of cholesterol-lowering agents by Gordon [12],
an average reduction in cholesterol of 10% was
achieved along with an intended 9% reduction in
coronary heart disease (CHD) mortality. However,
overall mortality was unchanged, due to an unin-
tended 24% increase in non-CHD mortality.

Illustrations

Research across a broad array of clinical settings
confirms that many powerful correlates of clinical
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efficacy outcomes have been poor surrogates for true
clinical efficacy [8, 9]. Anti-arrhythmic drugs effec-
tively suppress ventricular arrhythmias after myocar-
dial infarction (MI), yet lead to more than three-fold
increases in death rate. Drugs improving cardiac out-
put as treatment for congestive heart failure have
increased mortality. The rate of vessel reperfusion
has not predicted adequately the effect of throm-
bolytic therapies on mortality. Cholesterol-lowering
interventions, such as diet, fibrates, hormones, resins,
and lovastatin, have not lowered mortality rates. Anti-
hypertensive calcium channel blockers reduce blood
pressure, but now appear to increase the risk of
myocardial infarction. Calcium antagonists reduce
the risk of developing new angiographic lesions of
atherosclerosis in patients with MI, yet increase the
death rate. Sodium fluoride increases bone mineral
density in postmenopausal women with osteoporosis,
yet substantially increases the risk of bone frac-
tures. In patients with retinitis pigmentosa, vitamin
A provides a favorable slowing of decline on elec-
troretinograms, yet has no effect on any direct mea-
sure of visual function. In addition to these false
positive leads, surrogates can provide false nega-
tive leads as well. Gamma interferon fails to have a
measurable effect on superoxide production and bac-
terial killing in children with chronic granulomatous
disease, yet substantially reduces the rate of serious
life-threatening infection.

Validation of Surrogates

Proper validation of a surrogate endpoint is a dif-
ficult task. Insights about validity can be provided
by empiric evidence from an array of clinical tri-
als documenting treatment effects on both surrogate
and clinical efficacy endpoints, as well as by a thor-
ough biological understanding of causal pathways in
the disease process and of mechanisms of treatment
effect (see Causation).

Prentice [19] provides a definition of a valid surro-
gate, and gives two sufficient conditions that jointly
ensure this validity, thereby providing guidance for
how one might approach using empiric evidence to
assess validation. By his definition, a surrogate is
valid if “a test of the null hypothesis of no rela-
tionship (of the surrogate endpoint) to the treatment
groups must also be a valid test of the corresponding
null hypotheses based on the true endpoint”. Pren-
tice’s first condition to ensure this validity is the

“correlate” requirement, i.e. a valid surrogate end-
point must be correlated with the true clinical end-
point. This condition usually holds since, in practice,
potential surrogates are often selected by identifying
measures that are strongly correlated with clinical
efficacy endpoints. Prentice’s very restrictive sec-
ond condition requires the surrogate to capture fully
the treatment’s “net effect” on the clinical endpoint,
where the net effect is the aggregate effect account-
ing for all mechanisms of action. The restrictiveness
of this condition provides important insight into why
correlates are rarely valid surrogates. In applications,
extensive analyses have been performed to assess sur-
rogacy of CD4 cell count, using data from several
large clinical trials evaluating nucleoside analogs in
HIV/AIDS patients. While these analyses show con-
sistently that CD4 cell count is a correlate of the
“progression to symptomatic AIDS or death” end-
point, thereby satisfying Prentice’s first condition,
CD4 has not been established as a valid surrogate
endpoint, since the second condition of Prentice con-
sistently fails to hold [3, 6, 14, 15, 22].

The validity of Prentice’s restrictive second con-
dition, requiring a surrogate to capture fully the net
effect of an intervention on the clinical efficacy end-
point, has been explored by Freedman et al. [11] in
an epidemiologic setting. Their methods involve esti-
mating the proportion of the net treatment effect
apparently captured by the marker, allowing assess-
ment of the strength of evidence about whether this
proportion is near unity. It should be recognized,
however, that while particular interest often is in eval-
uating the effect of treatment on the disease process
pathway(s) causally inducing the clinical events, it is
not possible to determine the proportion, p, of that
effect that is accounted for by effects on a surrogate
endpoint [20]. To demonstrate how this nonidentifia-
bility arises, DeGruttola et al. [7] consider a simple
example in which the clinical efficacy endpoint is
death and where, on the control regimen, the death
rate induced by the causal pathways of the disease
process is µh, while the death rate due to other
causes is µo. They suppose further that the experi-
mental intervention alters the death rate induced by
the causal pathways of the disease process by the
multiplicative factor r , to rµh, but increases the death
rate due to other causes (including those influenced
by unintended mechanisms of the drug) by the mul-
tiplicative factor k, to kµo. If it is assumed that
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the treatment-induced change in the surrogate end-
point would only influence the death rate induced
by the causal pathways of the disease process, then
this change would alter the overall death rate by a
multiplicative factor

rso = (µh + µo) − p(1 − r)µh

µh + µo
. (1)

This parameter rso can be measured using data on
control patients from the study itself or natural his-
tory databases that allow modeling the association of
death with surrogate endpoints. One can also measure
the observed overall “net effect” of the intervention
on death rate,

ro = rµh + kµo

µh + µo
(2)

and, using (1) and (2), can compute the observed
portion of the net effect accounted for by the
treatment-induced change in the surrogate endpoint,

po = 1 − rso

1 − ro

= p(1 − r)µh

(1 − r)µh + (1 − k)µo
. (3)

By (3), po = p if either µo = 0 (i.e. death can only
be caused by the causal pathways of the disease
process) or k = 1 (i.e. the intervention has no effect
on the other causes of death). However, in the
more common setting where µo > 0 and k > 1, even
when p � 1, the observed proportion po approaches
unity as k approaches [1 + (µh/µo)(1 − r)(1 − p)].
Thus, surrogate endpoints, which capture only a small
fraction of the change in the death rate induced
by treatment effects on the causal pathways of the
disease process, may appear to capture an observed
portion, po, near unity, simply due to unanticipated
and unrecognized harmful effects of the intervention
on the other causes of death.

To formulate estimators of po in epidemiologic
data, Freedman et al. [11] used linear logistic regres-
sion models, while Choi et al. [3], O’Brien et al. [17]
and DeGruttola et al. [7] used proportional hazards
models to conduct similar analyses in the setting of
censored failure time data. Specifically, these three
sets of authors assume that the failure rate at time t

in treatment group Z is

λ(t |Z) = λo(t) exp(βZ), (4)

where Z = 0 for control and Z = 1 for experimental
treatment, β is an unknown constant, and λo(t) is an
arbitrary positive function. From (2) and (4), the “net
treatment effect” is ro = eβ . In turn, incorporating the
effect of the surrogate X(t) on the failure rate at time
t , DeGruttola et al. [7] assume the model

λ[t |Z, X(t)] = λ̃o(t) exp(βaZ) exp[αX(t)], (5)

where βa and α are unknown constants, and λ̃o is
an arbitrary positive function that might differ from
λo. Strictly speaking, models (4) and (5) cannot hold
simultaneously; however, they may hold approxi-
mately when either α or

∫
λ̃o(t) is small. We will

assume that the effects of model misspecification are
negligible (see Lin et al. [16] for a rigorous discus-
sion of this issue). By (4) and (5),

rso = exp(β − βa).

Thus,

po = 1 − exp(β − βa)

1 − eβ
.

Freedman et al. [11] approximate po by

p∗
o = 1 − βa

β
.

The two quantities, po and p∗
o , are equivalent when

βa = β or βa = 0, and differ only slightly for inter-
mediate values. Of course, as shown above, the quan-
tities are equal to p only in very special cases. Note
that while p, the proportion of the intended effect on
causal pathways of the disease process captured by
the surrogate, is always a proportion in the mathemat-
ical sense of lying in the interval [0, 1], po need not
lie in the interval [0, 1]. When βa and β differ in sign
(a situation that arises when the surrogate captures
all of the benefit so that only the harmful effect is
reflected in βa), po exceeds 1; when βa > β > 0, po

is negative.
The problems of interpretation of po and p∗

o
are compounded by the high variability of their
estimators [11]. Let β̂ and β̂a denote the estimates of
β and βa, obtained by the usual method of maximum
partial likelihood. Then p∗

o is estimated by

p̂∗
o = 1 − β̂a

β̂
.
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Lin et al. [16] showed that, for large samples, p̂∗
o

is approximately normal with mean p∗
o and with

variance

σ 2 = Vβ

β2

{
Vβa

Vβ

+ (1 − p∗
o)

2 − 2(1 − p∗
o)

Vββa

Vβ

}
,

(6)

where Vβ and Vβa
are the variances of β̂ and β̂a, and

Vββa
is their covariance.

Formula (6) indicates that the factors that deter-
mine the variance of p̂∗

o include the coefficient of
variation for β (i.e. the inverse of the unadjusted treat-
ment effect relative to its standard error), the value
of p∗

o itself, and the values of Vβa and Vββa relative to
Vβ . For illustration, suppose α is small and the cor-
relation between treatment and marker is low. Then
Vβ ≈ Vβa ≈ Vββa , in which case

σ ≈ |p∗
o |

se(β̂)

|β| . (7)

Suppose that we have a large unadjusted treatment
effect which is four times its standard error, i.e.
β/se(β̂) = 4. Then (7) implies that the mean width
of the 95% confidence interval for p∗

o is equal
to p∗

o itself. In practice, (7) tends to underestimate
the true variability of p̂∗

o because Vβa is generally
larger than Vβ . The estimate β̂a becomes increasingly
unstable as the correlation between treatment and
marker increases. (An extreme scenario occurs when,
in a placebo-controlled trial of a treatment, all treated
and no untreated patients have a marker response.)
Thus, an unadjusted treatment effect that is greater
than four times its standard error is a necessary,
though insufficient, condition for precise estimation
of p∗

o . Similar observations are made by Freedman
et al. [11].

Clinical studies with treatment effects that are
many times their standard errors are unusual, because
studies with large treatment effects tend to be stopped
early, and because most studies do not compare
treatments with greatly different degrees of efficacy.
Thus, meta-analyses that combine evidence across
studies usually would be required for statistical
evaluation of the reliability of surrogate endpoints.

There are a number of ways to make use of data
collected across studies. The first is simply to estimate
p∗

o (and its associated variance) corresponding to
a given surrogate for each individual study, and
examine the consistency of these estimates. This may

be especially useful when there have been a variety of
treatments under study, with differing mechanisms of
action and toxicity profiles. More formally, one could
treat the true values of the p∗

o for each study as latent
variables, and estimate their underlying distribution
(or features of the distribution) across studies. In
settings where p∗

o appears to be highly variable across
studies, it might be of interest to assess whether such
factors as class of drug or population under study
explain this variability. While such efforts are not free
from the problems of identifiability described earlier,
values of p∗

o that are consistently near 1 for studies
investigating different classes of treatments may
provide more persuasive evidence about the validity
of a surrogate than do results from individual studies.
An alternative approach to using data across studies,
proposed by Daniels & Hughes [5], uses Bayesian
methods to construct prediction intervals for the true
difference in clinical outcome associated with a given
estimated treatment effect on the potential surrogate.

A factor that further complicates analyses of sur-
rogacy, especially analyses across studies, is that
marker values are generally not measured continu-
ously or without error. Measurement error and the
fact that marker values are available only at certain
times – times that are often influenced by the disease
under study – can result in bias in the estimation of
α, and hence of β and p∗

o . Tsiatis et al. [22] explored
methods for correcting for bias resulting from issues
related to measurement.

Auxiliary Variables

Rather than serving as surrogates to replace clinical
efficacy endpoints, response variables, such as the
measures of biological activity discussed earlier, can
be used to strengthen clinical efficacy analyses. Such
variables, S, are then called auxiliary. Suppose one’s
interest is in the effect of treatment on time to a
clinical endpoint, T . Suppose, furthermore, that the
auxiliary information, S, is readily observed, whereas
T is censored in a substantial fraction of the patients
because they have relatively late clinical endpoints. If
S and T are strongly correlated, one can expect that S

will provide useful additional information about the
timing of the clinical endpoint for those patients in
which T is censored.

Three approaches have been proposed for using
auxiliary variables, and are referred to as “variance
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reduction”, “augmented score” and “estimated likeli-
hood”. The variance reduction method, explored by
Kosorok & Fleming [13], is applicable when S is a
time-to-event endpoint and when the treatment rela-
tionship with S is described by a statistic X with
zero mean, such that cor(X, Y ) ≡ ρ is positive, where
Y is a standard statistic used to assess the effect of
treatment on T . The statistic Y − ρX proposed by
Kosorok & Fleming makes use of auxiliary infor-
mation to provide a variance-reduced alternative to
using Y .

The “augmented score” and “estimated likelihood”
methods were explored by Fleming et al. [10]. Both
approaches assume the proportional hazards model of
(4) for the relationship between the covariate vector
Z and the hazard function for the clinical outcome
T . Denote the cumulative hazard for λo by Λ0.
Assume Ti and Ui are independent latent failure and
censoring variables for the ith patient (i = 1, . . . , n),
and denote Xi = min{Ti, Ui} and δi = I{Xi=Ti }, where
I{A} denotes an indicator for A.

To motivate the “augmented score” approach,
recall that in the semiparametric regression setting
where λo is unspecified, the Cox [4] maximum par-
tial likelihood estimate of β is obtained by solving
the score estimating equation:

n∑

i=1

ZiM̂i(Xi |β) = 0, (8)

where, for any t ≥ 0,

M̂i(t |β) = I{Ti≤t} − exp(β ′Zi)Λ̂0(t ∧ Ti)

is the martingale residual (see Counting Process
Methods in Survival Analysis) evaluated at β,
and where Λ̂0 is the semiparametric Breslow [1]
estimator of Λ0 evaluated at β.

Censorship reduces the information available in
(8) that is used for the estimation of β. Specifi-
cally, M̂i(t |β) is only known over t ∈ [0, Xi] rather
than over t ∈ [0, Ti] and, in (8), less information is
available to formulate Λ̂0. Fortunately, the surrogate
information, Si , does allow recovery of some of this
lost information. Suppose τ denotes some arbitrary
large time. To recover some information over (Xi, τ ]
for a censored case (i.e. with δi = 0), consider

eM̂i
(β) ≡ E[M̂i(τ |β) − M̂i(Xi |β)|Xi, δi = 0, Si],

which essentially is the conditional expectation of
the lost information over (Xi, τ ], given available

information on case i to Xi . Fleming et al. [10]
formulate an estimator êM̂i

(β) in the special case
in which Si is a censored time-to-event endpoint,
and propose estimation of β based on solving the
“augmented score equation”:

n∑

i−1

ZiM̂i(Xi |β) +
n∑

i=1

(1 − δi)I{Xi<τ }ZiêM̂i
(β) = 0.

In the “estimated likelihood” approach, follow-
ing Pepe’s [18] semiparametric approach in which λo

temporarily is assumed to be known and that involves
nonparametric estimation of P(S|T , Z) to obtain
greater robustness, the corresponding estimated like-
lihood is

L̂(β) =
∏

δi=1

Pβ(Ti |Zi)
∏

δi=0

Pβ(T > Xi |Zi)

×
∏

δi=0

P̂β(Si |T > Xi, Zi), (9)

where Si can be an arbitrary right-censored vector-
valued process providing auxiliary information. The
first two terms on the right-hand side of (9) represent
the usual likelihood when the auxiliary information,
S, is not taken into account. Under (4), these two
terms reduce to the usual Cox partial likelihood
when λo is considered to be unspecified and, in
turn, is estimated by the piecewise linear approach
presented in Breslow [2]. Turning to the third term
in the estimated likelihood in (9), the amount of
improvement provided by the estimated likelihood
relative to the usual partial likelihood depends on the
degree of dependence of Pβ(Si |t, Zi) on t .

Improvements in efficiency with these approaches
using auxiliary information are likely to be small
unless S and T are highly correlated and unless there
is one pool of patients having longer-term follow-up
and another pool of patients with auxiliary infor-
mation but with relatively short-term follow-up on
the clinical endpoint. In spite of these limitations,
approaches using auxiliary information are of inter-
est since they avoid the substantial risks for false
positive or false negative conclusions that arise when
surrogate endpoints are used to replace measures of
clinical efficacy.
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Conclusions

It would be rare to be able to establish rigorously
the validity of a surrogate endpoint. False positive
and false negative error rates in definitive trials eval-
uating intervention effects on clinical outcomes are
required to be very low, typically in the range of
2.5% to 10%. Hence, to be a valid replacement end-
point, a surrogate must provide a very high level of
accuracy in predicting the intervention’s effect on the
true clinical endpoint. Predictions having an accuracy
of approximately 50%, such as was provided by the
CD4 surrogate in the HIV setting (see Fleming [8]),
are as uninformative as random tosses of a coin. The
statistical methods for validation discussed in this
article usually require meta-analyses since the sam-
ple sizes needed are much larger than those necessary
for the typical phase III evaluation of interventions
(see Sample Size Determination for Clinical Tri-
als). Proper validation of surrogates also requires
in-depth understanding of the causal pathways of the
disease process, as well as the intervention’s intended
and unintended mechanisms of action. Such in-depth
insights are rarely achievable.

Surrogate endpoints should be used in screening
for promising new therapies through the evaluation
of biological activity in preliminary Phase II trials.
Results of such studies can guide decisions about
whether the intervention is sufficiently promising to
justify the conduct of large-scale and longer-term
clinical trials. In these definitive Phase III trials,
while information on surrogate endpoints can provide
valuable additional insights about the intervention’s
mechanisms of action, the primary goal should be to
obtain direct evidence about the intervention’s effect
on safety and clinical outcomes.
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Surveillance of Diseases

Modern public health surveillance of disease has
been defined by Langmuir [14] as “the continued
watchfulness over the distribution and trends of
incidence through the systematic collection, consol-
idation and evaluation of morbidity and mortality
reports and other relevant data”. It is now usual to
add to this definition the final link of applying these
data to prevention and control [26]. But this public
health activity is not new. One of the earliest exam-
ples of population surveillance was that developed
in the City of London in the sixteenth and seven-
teenth centuries to detect plague, so that the City
Fathers could decide when to close theaters and limit
the assembly of crowds, and the Royal Court could
leave for the countryside [31]. Data on plague deaths
were collected by parish clerks, summated each week
and reported in the “Bills of Mortality”. The sys-
tem neatly illustrates the steps in surveillance, which
are the systematic collection of data, analyses to
produce statistics, interpretation to provide informa-
tion–which is then reported fast enough so that action
can be taken–followed by continuing surveillance to
evaluate the success of the action.

The concept of surveillance is simple, but in prac-
tice there is a tendency for surveillance systems to
drift from their original objectives and too easily
lose their focus on public health action–“Reporting
does not equal surveillance”. It is therefore impor-
tant that surveillance as a dynamic public health
activity is distinguished from managing registries
(see Disease Registers) and other health information
systems such as registrations of births and deaths
(see Vital Statistics, Overview), though these may
be useful data sources for surveillance. It is also
important to recognize that public health surveillance
differs from epidemiologic research in a number of
important ways [24] (Table 1). The need for ongo-
ing reporting (which distinguishes surveillance from
occasional surveys) to provide information for action
requires that surveillance systems are simple in con-
struction, place minimal demands on data providers,
and report accurate, readily understood, and timely
information. Systems have often degenerated because
data requirements have not been agreed with data
providers and have become overburdened with sec-
ondary objectives. Consequent failure to report in a
timely way had led to the loss of credibility with

data providers. Recent successful infectious disease
surveillance systems have used electronic reporting
to minimize the burden on data providers and provide
high-quality, rapid reporting [11, 29].

Guidelines on the evaluation of surveillance sys-
tems have been proposed by the Centers for Disease
Control (CDC) [13], although few national systems
appear to have been audited as recommended. The
criteria include:

1. a description of the public health importance of
the health event, including incidence and preva-
lence, severity of disease as measured by mortal-
ity rates and case fatality rates, and preventabil-
ity;

2. a description of the system, including the objec-
tives, the population under surveillance, case def-
initions, a flowchart of data collection, details of
data transfer, data analyses, and dissemination of
information;

3. a measure of the usefulness of the surveillance
system, including decisions and actions taken as
a result of the information generated;

4. evaluation of key attributes of the system, includ-
ing simplicity, flexibility, acceptability, sensi-
tivity, positive predictive value, representative-
ness, and timeliness;

5. the cost of the system.

Surveillance Systems

Up until the 1960s, public health surveillance
activities were developed mainly for infectious
disease control (see Communicable Diseases). Since
then surveillance has been applied to many diseases,
including congenital malformations (see Teratology),
injuries, occupational illness (see Occupational
Epidemiology), and adverse drug reactions (see
Postmarketing Surveillance of New Drugs and
Assessment of Risk), principally through the work
of Langmuir at CDC [25]. Similar approaches
have been taken to the surveillance of uptake of
vaccines, and the surveillance of hazards, such as
chemical accidents and the surveillance of behavioral
risk factors [9]. Surveillance systems for chronic
diseases have been less well developed [26]. Specific
objectives of surveillance include:

1. early detection of changes in disease or risk
factor prevalence and incidence to trigger rapid
investigation and control;
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Table 1 Distinctions between public health surveillance and epidemiologic research (adapted
from Thacker & Berkelman [24])

Surveillance Epidemiologic research

Main purpose Problem detection Hypothesis testing
Problem description Problem description
Trigger either investigation

or intervention
Suggest hypotheses

Data collection
Frequency Ongoing Time-limited
Methods Normally routine systems Specially tailored for

study
Volume of data Minimal Considerable
Completeness of data Often incomplete Usually complete

Data analyses Usually simple and descriptive Often complex

Dissemination of information Timely, regular, targeted to Not timely, sporadic,
public health agencies targeted to academics

and clinical audience

2. measuring trends in disease, hazards, microbial
agents, and risk factors to set priorities for
interventions, and to evaluate disease-control
programs;

3. to describe the basic epidemiology and natural
history of disease in order to develop hypothe-
ses about causation, which can be tested by
separate research studies (see Descriptive Epi-
demiology).

Data Collection

Surveillance data may be sought actively or acquired
passively by making use of routinely generated data
such as death registrations (see Death Certification)
or hospital admissions. A common weakness of
surveillance systems is the lack of agreed case
definitions. This applies to most laboratory reporting
and notifiable diseases in the United Kingdom. In the
United States, CDC have published surveillance case
definitions for infectious diseases [30].

Statistical Analysis

Usually, the routine analysis of surveillance data
is simply the presentation of incidence rates by
time, place, and person, using graphs, histograms,
and maps. However, more sophisticated methods
are increasingly being used [23]. Particular statisti-
cal issues include the use of time series analysis to

model epidemics (see Epidemic Models, Stochas-
tic), the early recognition of unusual events in routine
data against a variable baseline rate [4], small area
analysis of clustering, adjustment for delays and
incompleteness of reporting, the use of surveillance
data to predict the course of epidemics (e.g. AIDS)
(see Projections: AIDS, Cancer, Smoking).

Reporting

Timely reporting to those responsible for public
health action is an essential part of a bona fide surveil-
lance system. Timeliness is defined by the objectives
of the surveillance. For infectious disease, timely
reporting may need to be measured in hours, a tar-
get which can now be achieved globally through the
Internet [7]. For chronic diseases, annual and quar-
terly reporting may be sufficient. Typically, surveil-
lance reports appear either as specifically produced
publications (e.g. Communicable Disease Report, Of-
fice of National Statistics Monitor, Morbidity and
Mortality Weekly Report, and Weekly Epidemiolog-
ical Record, or as electronic bulletins, such as
EPINET [19]).

Infectious Diseases Surveillance

The best recent example of the power of surveil-
lance is the case of AIDS. Following the first reports
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Table 2 Statutorily notifiable diseases in England and Wales

Under the Public Health (Control of Disease) Act 1984
Cholera Relapsing fever
Food poisoning Smallpox
Plague Typhus

Under the Public Health (Infectious Diseases) Regulations 1988
Acute encephalitis Ophthalmia neonatorum
Acute poliomyelitis Paratyphoid fever
Anthrax Rabies
Diphtheria Rubella
Dysentery (amoebic and bacillary) Scarlet fever
Leprosy Tetanus
Leptospirosis Tuberculosis
Malaria Typhoid fever
Measles Viral hemorrhagic fever
Meningitis Viral hepatitis
Meningococcal septicemia (without meningitis) Whooping cough
Mumps Yellow fever

Notes
“Viral hemorrhagic fever” means Argentine hemorrhagic fever (Junin), Bolivian
hemorrhagic fever (Machupo), Chikungunya fever, Congo/Crimean hemorrhagic
fever, Dengue fever, Ebola virus disease, hemorrhagic fever with renal syndrome
(Hantaan), Kyasanur forest disease, Lassa fever, Marburg disease, Omsk hemor-
rhagic fever, and Rift valley disease.
There are minor differences in notifiable diseases in Scotland and Northern Ireland.
Some diseases are notifiable locally; for example, psittacosis in Cambridge.
AIDS is not statutorily notifiable, but clinicians report cases voluntarily, in strict
confidence, to the directors of the CDSC in England and Wales and of the SCIEH
in Scotland. Advice about reporting is available from these centers and from genito-
urinary medicine physicians.

of a new clinical disease, surveillance based on a
complex case definition quickly established the risk
groups of AIDS and thereby the probable routes
of transmission, so enabling preventive advice to
be promulgated, even before the HIV virus was
discovered. Subsequent surveillance using clinical
reports of AIDS and laboratory reporting of HIV
infection has been important in confirming the risk
groups, reassuring the population about the absence
of risk from casual contact and identifying local-
ities of high incidence so that services can be
targeted. Mathematical modeling using surveillance
data has enabled prediction of the epidemic and
has identified key transmission factors (e.g. number
of sexual partners) in the maintenance of the dis-
ease [20].

Statutory Notification

In England and Wales, mandatory notification of
infectious disease was introduced nationally in 1899.

The current list of diseases is shown in Table 2. Noti-
fications are made by registered medical practitioners.
In England and Wales, weekly summaries of these
data are now published in the Public Health Labora-
tory Service (PHLS) Communicable Disease Report
(CDR). The data are later corrected and published
quarterly and annually by the Office for National
Statistics (ONS). The chief advantages of these data
are that they are available quickly, and they relate
to defined populations so that rates by age and sex
can be calculated. The defects of the data are lack of
case definitions and variable under-notification. Inter-
estingly, the fee to medical practitioners to notify did
not improve notification rates [18].

Laboratory Reporting of Microbiological Data

The PHLS developed laboratory reporting in the
1940s and 1950s [8]. Data are analyzed within a week
of receipt by the Communicable Disease Surveillance
Center to produce tables and line lists which are
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used in compiling narrative reports for publication
in the CDR. The recent introduction of CoSurv [11]
has substantially replaced manual with electronic
reporting. The main benefits of laboratory reports
are that they are highly specific since they are
based on laboratory-diagnosed infections and the fine
typing of the infecting organisms [27], they often
include clinical and epidemiologic details, and they
allow for free-text comment. The reporting system
is flexible, and unusual or new infections can be
reported, even though they were not included in the
original reporting instructions. However, the reports
are limited to infections for which there is a suitable
laboratory test.

General Practice Reporting of Clinical Data

The Royal College of General Practitioners (RCGP)
set up a reporting system in 1966 based on first
consultations to a limited number of volunteer prac-
tices [6]. In 1996 there were 367 participating general
practitioners in 93 practices, serving a population of
about 70 000 people; similar systems exist in Wales,
Scotland, and the European countries [22]. They act
primarily as early warning systems, particularly for
influenza epidemics, providing data rapidly, and they
have the advantages that the data are related to
defined practice populations; they are useful for some
common diseases which are not notifiable and for
which laboratory tests are not usually performed, such
as chicken pox.

Serological Surveillance

In 1990 in the UK, a serologic study to mea-
sure the spread of human immunodeficiency virus
(HIV) infection in the population was begun; it has
continued since and become a routine surveillance
system [21]. Samples from sera collected for clini-
cal purposes are unlinked from personal identifiers
but remain linked to epidemiologic information (see
Record Linkage); sera remaining unused are then
tested for HIV infection.

Surveillance of Vaccine Preventable Diseases,
Vaccine Uptake, and Vaccine Reactions

A comprehensive system of surveillance of vaccine-
preventable diseases has been developed using the

notification system, laboratory reporting, and regu-
lar serologic surveys of antibody levels in stored
sera taken for other purposes [1]. Vaccine uptake
is followed by the COVER [2] system in the UK,
which uses the national child health system in which
all children in the UK are registered by a health
authority. Successive cohorts of children born within
three-month periods are identified and their vacci-
nation status at predefined target dates determined.
Quarterly reports are published by the Communica-
ble Disease Surveillance Centre and the comparative
uptake rates are known by Districts within a few
months. Health authorities have used the data to
study and remedy reasons for low uptake. Surveil-
lance of vaccine safety has used the Yellow Card
Scheme, but record linkage of district health author-
ity child health records and computerized hospital
admissions records is a promising new method of
postmarketing surveillance of vaccine safety [5]. Vac-
cine efficacy can also be the subject of surveillance
if population rates of disease and the proportion of
cases vaccinated (PCV) and the proportion of the
population vaccinated (PPV) can be routinely mea-
sured [3]. Vaccine efficacy is calculated by the fol-
lowing expression:

1 − PCV

1 − PCV
× 1 − PPV

PPV

(see Vaccine Studies).

Injury Surveillance

Particularly in Australia [10], hospital-based Emer-
gency Room data have been used successfully to
follow trends in injuries and identify etiologic risk
factors. In the UK, injury surveillance currently relies
on mortality data and hospital admissions, which
will miss most common injuries such as fractures.
Locally developed population-based schemes have
illustrated the potential benefit of using Emergency
Room databases [16]. In the US, systems have been
developed to monitor spinal cord, firearm, and sports
injuries [24].

Surveillance of Birth Defects

Following the thalidomide disaster, registries of con-
genital malformations were set up in several countries
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for the early detection of malformations in order
to investigate causes. However, incompleteness and
inaccuracy of reports has reduced their potential
effectiveness. Monitoring etiologically linked groups
of malformations rather than single defects has been
recommended [12]. In Europe, the European Regis-
tration of Congenital Anomalies (EUROCAT) con-
certed action project of the European Union col-
lates standardized data from national and regional
registries.

Occupational Illness and Injury
Surveillance

In the United Kingdom, occupational illness and
injuries are reportable by law under RIDDOR (the
Reporting of Injuries Diseases and Dangerous Occur-
rences Regulations Act), which came into force on 1
April 1986. The Health and Safety Executive are the
responsible agency who will investigate incidents and
develop guidelines and regulations for prevention.

Pharmacosurveillance

In many countries voluntary reporting systems for
adverse reactions to drugs and vaccines have been
developed. In the UK, the Yellow Card Scheme is run
by the Committee on Safety of Medicines. In the US,
the Food and Drug Administration collects data
from physicians and reports findings in the FDA Drug
Bulletin. The World Health Organization has set
up an international registry linked to national centers
(see Pharmacoepidemiology, Overview).

Chronic Disease Surveillance

The use of mortality data for surveillance was the
basis of the pioneering work of William Farr, who,
as Compiler of Abstracts at the General Register
Office from 1839 to 1879, used vital statistics to alert
government and the public to health problems [15].
He developed a classification of diseases that even-
tually led to the International Classification of Dis-
eases. The routine, timely analysis and reporting of
cause and age-specific death rates continued today by
the Office of National Statistics can legitimately be
considered as chronic disease surveillance, as is illus-
trated by the London smog epidemic in 1952 [17].

Publication of the death registration totals for the
week ending December 13 in London identified con-
siderable excess mortality, leading to a government
enquiry and eventually to the Clean Air Act. Another
example is the identification of excess deaths during
heat waves in the US, which has resulted in develop-
ment of advice for prevention. In Russia and Eastern
Europe, a sudden increase in death rates in men has
been observed since 1991 [28], which highlights the
utility of monitoring crude death rates in identifying
chronic disease problems, and emphasizes the need
for chronic disease surveillance.
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Surveys, Health and
Morbidity

One of the methods to assess features of health and
morbidity in a population is to conduct a specific
survey by means of which information on a target
population is obtained by measuring a representa-
tive sample of that population. Besides measuring
health, surveys can also be used to investigate related
variables such as living conditions, housing demands,
and participation in the labor force. A health survey
includes measures of health characteristics, health-
related behavior, and a variety of demographic and
socioeconomic characteristics. If the target popula-
tion for such a survey is all persons living in a
certain country, the survey is usually referred to
as a national health survey. If survey data are col-
lected through face-to-face interviews, the survey is
commonly referred to as a “health interview sur-
vey”. Survey methodology can be used to assess the
health of many different target populations, depend-
ing on the purpose of the survey. Examples of target
populations are: population living in a country; popu-
lation living in a certain area (e.g. a town); population
of a specific age group (e.g. the elderly); population
registered in a health service register (e.g. a register of
a general practitioner); a specific occupational group
(e.g. nurses), or the population belonging to an eth-
nic group. A health survey can also be limited to one
single key subject such as pain, health expenditure,
or dental health.

To assess information on the health and morbid-
ity situation of such target populations, it is usually
not practicable to measure every subject of that pop-
ulation. In most cases this is also not necessary –
probability samples are usually sufficient to make
reliable estimates for the target population. To gather
information on the health and morbidity of the sub-
jects in the sample, structured questionnaires and/or
specific physical examinations are used. Most health
surveys are carried out using only structured ques-
tionnaires administered by personal interview, tele-
phone interview, or post. Surveys that consist of
physical examinations (e.g. functional assessment of
lungs) and/or laboratory measurements (e.g. of blood
or urine) are usually called health examination sur-
veys. It may be desirable to combine physical exami-
nations with personal interview data in one survey

because the collected data can be complementary,
although the logistics of such a combined data col-
lection are complex.

The health survey method is very popular, and
applications are found in many countries as national
health surveys, pain surveys, dental surveys, health
expenditure surveys, and as health surveys for spe-
cific groups such as the elderly and ethnic minorities.

Survey data are used in national, regional,
and local health statistics and information systems
(see Administrative Databases; Health Services
Organization in the US) and form an important base
for planning, monitoring, and evaluating public health
actions. One additional benefit of health surveys is
that they can be used to explore the interrelationships
between health, health-related behavior (see Health
Care Utilization and Behavior, Models of), use of
services (see Health Care Utilization Data), and
social, economic, and demographic variables.

In comparison with the other sources of health and
morbidity information and in particular in comparison
with health service registers, the advantages of health
surveys are:

1. extensive data on both health and morbidity and
use of health services can be assessed

2. data on sociodemographic and other background
variables, lifestyle, and many other possible
determinants are assessed for the same individu-
als as the health and morbidity characteristics

3. subjective data such as perceived health and
knowledge of health services, coping strategies,
and opinions can be assessed

4. data can be collected on many subgroups in the
population, including those not having contact
with health services

5. they are relatively cheap and quick.

Disadvantages of health surveys compared with
health service registrations include:

1. failure to contact everybody in the sample, and,
therefore, the possible introduction of bias

2. questionable reliability for some topics assessed
by self-reports

3. detailed medical information usually cannot be
collected.

The design of a survey requires many deci-
sions regarding the information that is needed, the
instruments to be used (see Questionnaire Design),
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sampling methods and other methodologic proce-
dures. Survey design decisions should be directed by
the desired quality of the data that are to be col-
lected. The quality of the data is determined by the
quality of the responses and the coverage of the tar-
get population. To establish an adequate insight into
the health status of a population and its determinants
and consequences, every detail of design of the sur-
vey should be considered in relation to the desired
data quality. After designing a health survey, the
implementation phase can start, and this also requires
constant check-ups and management to warrant good
quality. Protocols have to be carried out in detail,
and adjusted when necessary. After data are collected,
the coding of responses, building of data files, anal-
ysis, and reporting of the survey findings must be
carried out.

Two important aspects in the design and
implementation of a health survey are the kinds
of information that are needed about the target
population and the methodologic characteristics of
the survey. Other important considerations include
analysis and reporting of the data and the required
survey management.

To illustrate these aspects the national health
population survey will be used. A national health
population survey is a general information source
for those involved in health policy analysis and
development. Health surveys are essential sources of
information that cannot be collected routinely through
registers (see Disease Registers), health records, or
other available sources. National health and morbidity
data are needed to provide a better foundation for
decisions on priorities for public health policy action
and for the effective allocation of resources.

A number of countries have experience with
national health population surveys. However, the
findings are usually applicable only in the country and
for the population studied; international comparisons
of this type of data pose problems due to differences
in the methods and instruments used. Limited interna-
tional comparability also may limit the use of data at
the national level, since comparisons with other coun-
tries may be useful in providing insight into cultural,
environmental, and economic factors associated with
health problems. These limitations can be overcome
not only by using comparable survey methods but
also by using comparable methods of analysis and
presentation. Efforts on harmonization of methods
and instruments of national health interview surveys

have been described in a joint World Health Orga-
nization/Statistics Netherlands publication, on which
this article has partly been based [4]. Although the
design and implementation of specific health surveys
other than the general national health survey can have
additional problems not covered in this article, most
of the methodologic aspects described here should be
considered by every health survey professional.

Kinds of Information Assessed by Health
Surveys

The kinds of information assessed by health sur-
veys are determined by their purpose. The classic
health population survey includes questions on health
and morbidity characteristics, use of health services
(see Health Services Research, Overview), lifestyle
characteristics, and sociodemographic characteristics.
An overview of the most important characteristics can
be found in Table 1. Health surveys can be extended
with many other relevant subjects such as psychoso-
cial factors, environmental characteristics (e.g. noise
pollution), drugs use, accidents, and sexual behav-
ior.

Detailed specification of the desired information
can be seen as the first phase in designing a survey.
What information is needed? At what level of detail
is information needed? The choice of the content
of the survey depends on many factors, including
resources, actual health problems, and the need for
specific information. Priorities have to be set in
this phase because the length of the questionnaire
must be limited to reduce both survey costs and
respondent burden. After deciding on the content of
the survey, specific instruments have to be chosen.
In this context, the term “instrument” refers to a set
of questions (or one question) which measure the
characteristic of interest. The selection of instruments
and the construction and wording of the questions is
very important because this is the basis for the quality
of the data. Ideally, instruments should:

1. Be as short as possible, i.e. the respondent burden
should be kept as low as possible.

2. Collect information on characteristics that are not
too rare in the target population (characteristics
are only justified to be measured in a probability
sample of the population if they are relevant for
a sufficiently large proportion of that population.
If not, other methods are preferable, such as
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Table 1 Relevant characteristics measured in health
surveys

Health and morbidity characteristics
Perceived health
Diseases
Disability, impairments, handicaps
Health complaints
Dental health
Mental health
Anthropometric characteristics
Height
Weight
Birthweight
Health services
General practitioner
Medical specialist
Hospital admission
Physiotherapist (and other paramedic professions)
Preventive services (e.g. participation in screening

services such as cervical smear,
Mammography, and influenza vaccination)
Dentist
Maternity care (including information on pregnancy

and delivery)
District nursing
General social work
Use of contraceptives
Medicine use
Alternative/complementary medicine (e.g. acupuncture

and homeopathy)
Lifestyle
Smoking
Alcohol consumption
Physical activity
Food consumption
Breastfeeding
Psychosocial factors
Personality characteristics
Coping strategies
Social support
Sociodemographic characteristics
Age
Sex
Place of residence
Social class
Education
Work situation
Income
Economic position
Housing
Living arrangements
Health insurance

oversampling of subsets of the target population
known to have a higher probability of possessing

the characteristic, or previously identified by
their response on a screening question in a larger
scale survey).

3. Be simple to administer, and provide data that
are easy to process (unnecessarily complex pro-
cedures should be avoided; otherwise errors may
be introduced). Most of the time questions with
fixed answer categories, so-called “closed ques-
tions”, are preferable because “open-ended ques-
tions” require extensive efforts in the coding
phase. The fixed responses should cover every
possible answer to avoid the exclusion of impor-
tant responses

4. Be reliable: the reliability refers to the repro-
ducibility of the results.

5. Be valid: validity refers to the issue of whether
the instrument really assesses the information
that is meant to be assessed.

Adequate selection of instruments requires exten-
sive knowledge about available instruments in each
specific area. This knowledge is often obtained by
consultation with experts and by extensive literature
review. When available, adoption of standard ques-
tionnaire batteries should be considered. Construction
and content of such standard instruments usually
have been tested extensively. Additional advantages
include the increased possibility of comparing the
results with other data – an important consideration
in the framework of international comparisons. Most
countries have standard routines for questions on
sociodemographic variables. Less standardization is
found for the other domains in the likely content of
a health survey.

Often, survey researchers use adaptations of sets
of questions from existing instruments. Arguments
for adapting the original instruments include their
being too long or not entirely relevant for the specific
setting. Modification of existing instruments and
scales requires, as in the case of designing one’s
own questions, extensive pretesting and assessment
of reliability and validity. Most of the time many
revisions are necessary before the questionnaire is
ready.

Careful attention has to be paid to the precise
wording of the questions and the response categories.
They should be simple to understand and should
have a consistent meaning for all respondents. Use
of introductory texts to the questions to prepare
respondents for the questions following should be



4 Surveys, Health and Morbidity

chosen carefully because the context of the questions
also affects response.

Additional requirements for the choice of instru-
ments and the development of survey questionnaires
are that they should not be biased by age or sex of
the respondent, or by differences in culture, language,
and socioeconomic status.

For most characteristics to be measured in health
surveys, a large variety of instruments is available.
Especially with respect to self-reported health, some-
times referred to as “quality of life” measures, an
enormous literature has emerged. In general, the
instruments that are selected for the health survey
should be in correspondence with the latest develop-
ments in the field. Several handbooks with summaries
of available instruments and evaluation of their qual-
ity (i.e. validity and reliability) are available [10].
However, there are often no internationally agreed
standard instruments available. For national surveys
that will be used in international comparisons this
is a significant problem because the comparability
becomes limited or impossible. Several efforts have
been undertaken to reach international harmoniza-
tion of methods and instruments in national health
surveys.

A joint action of the World Health Organization
Regional Office for Europe and Statistics Nether-
lands has led to the first step in harmonization of
survey instruments on general health characteris-
tics for the countries of Europe. These efforts were
guided by the wish to have internationally com-
parable data for WHO’s “Health for All” indica-
tors [17]. A number of recommendations for com-
mon instruments which measure these indicators have
been brought forward [4]. Some of these recom-
mended instruments are presented here to give some
examples of the possible content of a health sur-
vey. These illustrative examples of instruments deal
with the first four domains of the content of a
health survey as shown in Table 1: health and mor-
bidity characteristics, anthropometric characteristics
(see Anthropometry; Growth and Development),
the use of health services, and lifestyle characteristics.

Health and Morbidity

The health and morbidity characteristics are part of
the core characteristics measured in health surveys.
The most important indicators are: subjective health

Table 2 Perceived health

How is your health in general?
• Very good
• Good
• Fair
• Bad
• Very bad

Source: [4].

assessment, disability, chronic conditions, and mental
health.

Subjective or self-perceived health is a principal
health characteristic assessed by health surveys, an
example question being shown in Table 2.

Even in its simplest form (see example) and
despite its very general, seemingly subjective, char-
acter, perceived health is strongly associated with a
number of health problems and the use of health
services. It is also a strong predictor of survival in
elderly people.

Many more extensive instruments measuring
self-perceived health, or health-related quality of life
measures, are available. These instruments usually
distinguish several domains of interest, such as
well-being, quality of life, life satisfaction, pain,
functional disability, and handicap. Examples of
such health instruments are: Nottingham Health
Profile [8], the Sickness Impact Profile [3], and the
MOS 36-item short-form health survey (SF36) [14].
Sometimes such instruments are referred to as generic
health instruments to emphasize the distinction
between them and the many disease-specific health
instruments available.

These general health measures usually also have
items to measure several kinds of disabilities, impair-
ments, or handicaps. It is important to distin-
guish between temporary disability and long-term
disability. Temporary disability refers to tempo-
rary restriction in an individual’s level of function-
ing. Information on temporary disability is usually
obtained by questions about days of restricted activ-
ity and bed-days. Measurement of the period of time,
together with some notion of the severity of disability,
can provide information on the time lost to ill-health
in the society (see Table 3).

Because of changes in public health in relation
to chronic diseases and the aging of the popula-
tion, long-term disability has become an important
concern to public health. It refers to long-term lim-
itations in major daily activities. Especially for the
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Table 3 Temporary disability

Think about the two weeks ending yesterday. Have
you cut down on any of the things you usually do
about the house, at work or in your free time
because of illness of injury?

• Yes [ask questions (a) and (b)]
• No

(a) How many days was this in all during these
two weeks, including Saturdays and
Sundays? (01–14)

(b) On how many of these days were you in
bed for all or most of the day? (00–14)

Source: [4].

elderly, in which morbidity is often characterized
by multiple pathology, long-term disability is useful
as an overall indicator of health problems associ-
ated with disease. Since the 1960s a large number
of instruments have been developed for the assess-
ment of long-term disability. In 1980 the International
Classification of Impairments, Disabilities and Handi-
caps (ICIDH) [15] was introduced. This classification
is a basic conceptual scheme, that has been used
as a guide for the further development of instru-
ments. Important domains of disability are: loco-
motion, self-care, continence, hearing, and vision.
Self-care disabilities include problems with dressing,
washing, feeding, and using the toilet. Instruments
differ in their number of disability domains, the lev-
els of severity, and the specification of details. In
addition it can be important to distinguish between
capability and performance: is it necessary to assess
whether persons cannot or do not carry out an activ-
ity. Survey data on disabilities are also required to
measure the disability-free life expectancy of a pop-
ulation [12].

Health surveys are also useful in providing data
on the prevalence of diseases such as cancer, car-
diovascular diseases, rheumatic disorders, respiratory
disorders, and mental health disorders. These, often
chronic, diseases are important because they are often
accompanied by pain, suffering, inconvenience, and
loss of physical capacity. They put pressure on health
services and society in general, especially in the
industrialized countries. Commonly used instruments
for the assessment of the incidence and the preva-
lence of physical chronic conditions are still lacking.
Most countries have their own list of diseases that
are considered suitable for self-reporting. The avail-
able instruments show great variety in methodology,

e.g. differences in the nature of the diseases, in the
number of the diseases, and in the definition of
severity and in the wording of the questions. Con-
ditions like hypertension, asthma, bronchitis, thyroid
disorders, diabetes, chronic skin condition, chronic
heart disease, chronic cystitis, chronic dental prob-
lems, chronic back problems, arthritis, and stroke
can be part of a general list of diseases measured in
health surveys. For some specific disorders, such as
cardiovascular diseases, internationally used survey
instruments are available [13]. The wording of the
questions must be based on the respondent’s ability
to understand the described condition. In some cases,
the disease name or a popular synonym in the specific
language is sufficient; in others, additional questions
or lists of symptoms are necessary. For each condition
measured in terms of diagnosis, respondents should
be asked whether a health professional has made the
diagnosis. Several methodological aspects on the sur-
vey assessment of diseases have been investigated.
These include reliability and validation studies and
the effects of construction of the instruments. For
instance, using an “open” question such as “Do you
suffer or did you last year suffer from a disease, and
if as what disease(s)?” gives different results than
asking the same question but showing a list of all
diseases from which one can choose (“one-by-one
method”). In addition, it has been shown that many
diseases can be adequately assessed in a health sur-
vey. However, many methodologic problems are still
to be tackled to reach internationally agreed survey
instruments for many chronic diseases.

In designing or selecting an instrument to mea-
sure morbidity one should bear in mind that it is
preferable to be able to summarize the results on
disease prevalences into broad ICD-10 [16] cate-
gories (see International Classification of Diseases
(ICD)).

In selecting diseases and the instruments to be
used for population survey assessment, it is also
important to distinguish between chronic mental con-
ditions and chronic physical conditions. Of the more
than 120 mental diagnoses that are now distin-
guished [2, 16], a selection of relevant disorders has
to be made for inclusion in the health survey. On the
basis of prevalence, severity, and duration, disorders
like dementia, mental retardation, anxiety disorders,
schizophrenia, and affective disorders are important
for establishing public health policies. Because the
knowledge of respondents about these diseases is
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generally poor, instruments have to be based on a
symptom approach. Such an approach is very time-
consuming, as a large number of symptoms have to
be checked to diagnose a mental disease. To reduce
time and expense, a two-stage procedure should be
considered: some screening questions followed by
an extensive interview procedure. Apart from gen-
eral mental health measures, such as the GHQ-12 [7],
assessment of mental disorders can only be done in
specialized surveys.

Anthropometric Characteristics

Data on weight and height are commonly assessed
by health surveys, for instance to analyze problems
related to obesity. Obesity is usually defined by the
body mass index (BMI) or Quetelet’s index – weight
(in kilograms) divided by the square of height (in
meters). Most respondents are able to state weight
in kilograms and height in centimeters. Self-reported
weight and height show small but systematic errors:
height tends to be overstated and weight under
reported. If precise information on the characteristics
is necessary, actual weight and height instruments are
needed.

Birthweight is a commonly used indicator for
the nutritional and health status of the newborn.
It is considered to be an important determinant of
the survival of the infant and its ability to develop
normally. A low birthweight is commonly defined
as one less than 2500 g. Administrative records such
as birth registration or maternity records are usually
the main source for this information, but if linking
of these external records to the survey questionnaires
cannot be done, a question on birthweight should be
included in the survey (see Table 4).

Health Services

Health surveys can be used to measure the level of
use of health services. For health services for which
good registers are available, it is sometimes seen
that the health survey data on service use does not
completely represent the total service use: on the
basis of health surveys an underestimation of health
services is sometimes seen. However, for many ser-
vices there are no registers available, so the only
tool to provide insight into service use is the health
survey. In addition, the health survey allows the

Table 4 Birthweight

1. Is the child twin or triplet?
• Yes (multiple birth)
• No

2. Was the child born before it was due?
• Yes
• No (go to question 4)

3. Was it less than one month before it was due or
more than that?
• less than one month
• more than one month

4. How much did the child weight at birth?
(record in grams)

Source: [4].

study of the relationships among the use of differ-
ent health services and the relationships of measures
of health, lifestyle, and sociodemographic charac-
teristics to health services use. Another important
advantage of a health survey is having data on the
characteristics of nonusers of health services; for
instance, to be able to investigate equality of access
to health services. Also high users of health care can
be of specific interest because it should be known to
what extent the health care dependency is justified.

Beside the measurement of use of services and
reasons for use, it can also be relevant to assess the
knowledge of persons on specific health services or
the availability of services – for instance, preventive
services (see Preventive Medicine).

The actual measures to assess the different char-
acteristics of health service use can be very different.
It is, for instance, very important to evaluate the ref-
erence period (which should not be too long in order
to prevent recall bias) and the definition of “use of”
(or consultation). An example of questions on quan-
titative information regarding the consultation of a
general practitioner (GP) is shown here as an illustra-
tion. With these questions the percentage of persons
consulting in 1 year and the number of consultations
in 1 year can be derived. Such questions can be fol-
lowed by questions on reasons for consultation, where
or how the consultation took place, whether there was
a referral to a specialist, a hospital, or otherwise. In
countries where there is no clear distinction between
GPs and specialists, other questions should be used
(e.g. using the term “medical doctor” instead of “GP”;
see Table 5).
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Table 5 Consultation of general practitioner

Introduction: “The following questions concern contacts with your GP. They relate to visits during surgery
hours and house-calls, but also to telephone calls for other reasons than to make an appointment.”

. . . . . . . . . . . . .

1. How often have you consulted your GP during the past two weeks ending yesterday, so since . . . . . . .

(date)?
• . . . . . times (go to question 3)
• no one single time (go to question 2)

2. When did you last consult your GP?
• on . . . . . . . (date) or (if date not known) . . . . . . . weeks/months/years ago
• never

If last consultation <2 months ago go to question 3.

3. How often have you consulted your GP during the past 2 months, so since . . . . . . . (date)?
• . . . . . . . times

Source: [4].

Lifestyle

To assess data on lifestyle and to study the rela-
tionship between lifestyle characteristics and health
and morbidity, the health survey is an essential
tool. For instance, studying the health effects of
smoking, food consumption, and physical activity
has expanded to specific scientific areas requiring
specialized knowledge on measurements, analyses,
and interpretation of these topics. For both food
consumption [18] (see Nutritional Exposure Mea-
sures) and physical activity [1, 5], many instru-
ments are available and evaluated in numerous
review articles and handbooks. However, it has
been difficult to agree on standard instruments
internationally.

Smoking is seen as the major cause of lung can-
cer, ischemic heart disease, chronic bronchitis, and
emphysema (see Smoking and Health). Health sur-
veys are an important source of data on smoking
behavior. They can supply information on proportions
of daily smokers, occasional smokers, ex-smokers,
and those who have never smoked. Other rele-
vant parameters include number of cigarettes and
other tobacco products used per day, total numbers
of years smoking, whether a person has reduced
smoking, how long ago a person stopped smok-
ing, attempts to stop smoking, and opinions on
the harmfulness of tobacco. The possibilities on
measuring passive smoking, for instance by ask-
ing questions on exposure to tobacco smoke at
work and at home, should also be considered (see
Table 6).

Table 6 Illustration of a minimal set of health survey
questions on smoking

1. Do you smoke?
• Yes, daily
• Yes, occasionally (go to question 3)
• No (go to question 4)

2. How many cigarettes do you usually smoke on
average each day?
• Does not smoke cigarettes
• Fewer than 20
• 20 or more (heavy smoker)

3. Compared to two years ago would you say you
now have reduced smoking?
• Yes (end)
• No (end)

4. Have you ever smoked?
• Yes, daily
• Yes, occasionally
• No (end)

5. How long ago did you stop smoking?
• Less than two years ago
• Two years ago or more

Source: [4].

Questionnaire Construction

After selection of the necessary information and the
choice of instruments, the health survey questionnaire
has to be constructed.

The questions and instruments should be ordered
in a logical way, determined by psychological and
behavioral knowledge. In addition, the transitions
from one set of questions to the other should be
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clear, to indicate the content of the questions in a
friendly but impersonal way. The actual introductory
texts used to prepare and inform the respondent on
the questions following should be carefully worded
and standardized.

It is desirable to ask the respondents only those
questions in the interview schedule that are rele-
vant for them. For example, a man should not be
asked about diseases that only affect women, and vice
versa, and a college student should not be asked what
profession he or she has. Besides the use of com-
pletely different questionnaires for different groups
of respondents, special routings or questionnaire skip
patterns are often used. Such routings are also nec-
essary when in some sections of the questionnaire a
procedure involving two or more stages is used. Com-
plex routing of questions makes high demands on the
design and layout of the questionnaire and increases
the burden on the interviewer or, in the case of self-
administered questionnaires, the respondent. The use
of computer-assisted interviews for data collection
in the field of health surveys has resolved many prob-
lems with complex routing, although it requires a
heavy input of skilled resources in the preparatory
phase.

During face-to-face interviews, showcards, that
include the set of answers to a question, can be used.
The showcard should be given to the respondent the
moment the interviewer asks the specific question.
This procedure can be used for two reasons:

1. to inform the respondent about the response
possibilities, and

2. to encourage the respondent to give the correct
rather than a socially desirable answer. This is
facilitated when answers are precoded on the
card, and the respondent needs only to reply with
the appropriate code.

The extent to which answers have to rely on
the memory of the respondent should be minimized,
because recall from memory can be a source of bias.
The magnitude of recall bias depends on the length
of the recall period and the saliency of the events to
be recalled.

Questionnaire length is least restricted in the
face-to-face interview because people accept long
interviews better than long self-administered ques-
tionnaires. Nevertheless, the length of a questionnaire
is not unlimited because respondent burden should be

as low as possible, i.e. to prevent reduction in moti-
vation and tiredness. Interviews of 60–90 min are not
uncommon. For telephone interviews (see Telephone
Sampling) the duration is usually no longer than
between 30 and 50 min, but is preferably shorter.

Mail questionnaires should not be longer than 12
pages; in general, most range between four and 12
pages. Longer questionnaires can be considered when
the respondents are highly motivated. In general,
respondents have to be rewarded for their participa-
tion; they have to be “pampered” and continuously
motivated for their participation in a health survey.
For self-administered questionnaires, the layout of the
questions should be as attractive as possible. Easy to
read type fonts, different colors, frames, “flowcharts”,
etc. should be used.

Health Examination Survey

The kind of information assessed by a health survey
can be extended by information gathered by physical
examinations. These examinations can be carried out
by trained interviewers. Sometimes trained nurses,
physicians, or laboratory personnel are necessary.
Health examination surveys may include physical
examinations (e.g. anthropometric measurements),
functional assessment (e.g. ability tests and spirom-
etry), laboratory tests on blood or urine samples
(e.g. cholesterol level in blood), and the application
of specific imaging techniques such as X-ray and
MRI. Adding such measurements to a health sur-
vey requires extra effort in survey design, conduct,
and analysis, and there will be increased respondent
burden and extended duration of the survey.

Some examinations can be carried out by trained
interviewers visiting respondents at home. Examples
of such examinations are weight and height mea-
sures, blood pressure tests, and mobility tests. Other
examinations require specific instruments that are not
suitable for routine assessment at home, so specific
arrangements have to be made. Respondents can be
invited to visit a laboratory or clinic in order to be
able to carry out the examinations. An alternative
is the use of a mobile laboratory which can visit
persons at home; the geographic spread of potential
respondents should not be too large, otherwise such
an approach would not be cost-effective.

Although the costs are very high, the general
advantages of a health examination survey include
the acquisition of objective medical data from



Surveys, Health and Morbidity 9

a population-based study sample, which can be
important to assess population norms, and the pos-
sibilities to validate questionnaire-assessed data. An
example of a study that combines a health interview
and a health examination survey is the US National
Health and Nutrition Examination survey [11].

Methodologic Considerations

There are many ways to design a health survey.
The most important components of survey methodol-
ogy are highlighted here. Methodologic aspects are
broadly divided into those concerning the popula-
tion and in those concerning data collection. All
aspects of the survey process that may affect response
quantity and quality should be taken into account.
However, most decisions about survey design will
depend on the resources available. Therefore an ade-
quate balance between costs and quality will have to
be pursued.

Survey Population

The definition of the target population depends on the
purpose of the study and the practical possibilities
of the available sampling frames. For a national
health survey the sample should represent the general
population. To get a representative sample for the
target population concerned it is necessary to have a
data file with all information of the subjects of the
population, including information on how to locate
them. The sample can be drawn by several methods,
for example, by using:

1. address or postal files
2. electoral registers
3. population registers
4. telephone registers.

If available (and accessible as public records for sam-
pling purposes), population registers should be used
to obtain a representative sample. Data on name, age,
sex, and address of all persons legally living in a
country or a subarea are known within a population
registry. An additional advantage of sample frames
that include data on age and sex is the opportunity
for stratified sampling – for example, stratification
by age group and sex. Population registers seem to
be nearly complete in some countries, but alterations

such as changes of address may only be entered
slowly, resulting in registers that are not fully up-
to-date. The main limitation of the electoral register
is that as a rule only those people are listed who are of
legal voting age and who meet other voting require-
ments. Alternate sampling frames, e.g. address and
telephone registers, have the disadvantage that not
every person has the same chance of being selected.
For those files the sample unit is the household living
at the address or telephone number selected (see Unit
of Analysis). When everybody in the household is
interviewed, a maximum of, for example, four per-
sons is often used to reduce “household” burden
(see Cluster Sampling). Sometimes one person is
interviewed on all health characteristics of the per-
sons belonging to the household. If that is the case,
the one who knows most about the health of the fam-
ily is questioned. If a random choice of one person
in the household is needed, then the selection can be
decided by the one who is the first to have their birth-
day. If one person per household is invited to partici-
pate, those living in single households have a greater
chance of being selected than those living in a house-
hold with more members. When there are unequal
selection probabilities, the final responses have to
be corrected by weighting procedures. Another dis-
advantage of address and telephone samples is the
inclusion of inappropriate units, such as businesses,
and the exclusion of certain subjects, such as the
homeless. Those living in institutions such as nurs-
ing homes, homes for the handicapped, and prisons
are also more difficult to reach due to sample frame
limitations.

The actual sampling can have very different man-
ifestations. A probability sample is to be preferred
because precision of the sample estimates can be cal-
culated. The strategy of generating a sample may
involve several stages (see Multistage Sampling).
For instance, when using address files for the sam-
ple and interviewers visiting subjects at home, first a
sample of municipalities can be drawn before sam-
pling the addresses. Such a strategy reduces the travel
time of the interviewer.

The decision about sample size depends on many
factors, including the required level of detail of the
results; the finer the detail, the greater the sample size
needed to provide estimates with acceptable confi-
dence limits. This approach of calculating the neces-
sary sample size (see Sample Size Determination)
on the basis of sampling errors has two limitations.
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First, most surveys are designed to make numerous
estimates, and the necessary precision will vary. Sec-
ondly, in health surveys the sampling error is not the
only or main source of error in a survey estimate. The
decision will in most cases not depend on estimates
for the total population but should depend on the esti-
mates for the smallest subgroups of importance. The
sample also depends on the expected percentage of
individuals in the sample for which no data will be
collected – the nonrespondents (see Nonresponse).

Nonresponse

There are several reasons why subjects eligible for the
health survey are not measured (see Missing Data in
Epidemiologic Studies). Groups of nonparticipating
subjects include:

1. Subjects who cannot be reached – those who
cannot be located because they have moved or
have died. This number of nonresponders due to
sample-frame defects should be determined to be
able to calculate the net response.

2. Subjects who do not react, the not-at-homes or all
those from whom no reaction is received. Efforts
to reduce this group of nonresponse include
increasing numbers of attempts to contact them
by visits, reminders, and (multiple) telephone
calls.

3. Subjects who refuse to participate. This is a dif-
ficult group because most of the time there is
hardly any information on reasons for nonpartic-
ipation and so there is no possibility of tackling
the question of selection bias. However, several
approaches can be explored to get information on
them, including the use of a small questionnaire
with information or a preprinted refusal card with
some additional questions on reasons for refusal
and some additional information, e.g. perceived
health and smoking habits.

4. Subjects who are unable to participate because
they are too ill, do not speak the language of the
interviewer, or whose reading and writing skills
exclude them from filling in self-administered
questionnaires. If specific subgroups are impor-
tant for inclusion in the health survey, specific
efforts are necessary to get information on such
subjects, e.g. using proxy questioning.

Increasing motivation for participation is one of
the most difficult and important aspects of a health

survey. Traditionally, response figures for health
surveys are high because health and morbidity belong
to the most important aspects of life. Unfortunately,
like other surveys, health surveys are experiencing
reduced response rates in many countries.

General guidelines on increasing motivation for
participation include (see, for example, [9]):

1. the topic should be of interest to potential respon-
dents

2. the confidentiality of survey responses should be
clear

3. advance contacts should be made
4. specific incentives should be used, e.g. gifts,

money, or reporting back on the health status of
the respondent

5. repeated visits, reminders, or telephone calls
must be employed when appropriate (see Call-
backs and Mail-backs in Sample Surveys)

6. use of trained interviewers, attractive question-
naires, etc.

Besides these points, the approach to the potential
respondent is essential to their motivation. For inter-
view surveys, an informative advance letter should
be sent including information on the purpose of the
study, why it is important, that confidentiality is
assured, that it is approved by official institutions,
how the person was sampled, and why it is important
that they will participate. The advance notification
should consist of an official letter, preferably signed
by hand, to include the most important information,
and an attractive and informative flyer about the
research project and the participating institutions.

In spite of costly efforts to reduce nonresponse,
not all eligible sample subjects will participate. When
presenting results, the quality of the response group
should be indicated by

1. response rate
2. estimates of nonresponse bias
3. corrections for nonresponse
4. describing to what extent the response population

is representative of the target population.

In reporting on survey data, one of the key num-
bers readers look for is the response rate. In its
most general form the response rate is the num-
ber of respondents divided by the number of people
sampled, usually expressed as a percentage. If the
denominator is reduced by those who could not be
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reached for legitimate reasons, the response rate is
usually higher. This net response figure is usually
reported.

Although a low nonresponse is desirable it should
always be considered whether it is likely or not that
bias is introduced by the nonresponse, and what the
possible size of that bias is. It is even possible that
a survey with a 90% response rate is more biased
than a survey with a 70% response rate. It depends
on the selectivity of the response group with regard
to the subject(s) of interest. “One usually does not
know how biased nonresponse is, but it is seldom a
good assumption that nonresponse is unbiased” [6].

Insight into nonresponse bias is only possible
when there is information on the nonrespondents. In
general a comparison of the response group and the
nonresponse group on the basis of the sampling frame
information is carried out. This information includes
residence, and sometimes also age and sex. To correct
for differences in these variables weighting strategies
can be applied. In some cases, a nonresponse study
has to be considered to measure nonresponse bias.
This can be carried out by trying to contact (a random
sample of) the nonresponders, using extreme extra
efforts.

The main strategy to adjust for nonresponse
is weighting adjustment. The response group is
weighted in such a manner that the resulting response
group has the same distribution of general sociode-
mographic characteristics as the sample or the target
population. Evaluation of the representativeness of
a response group depends on both the quality of
the sample frame and the quality of the response
group. One specific form of nonresponse is the item
nonresponse, which refers to the part(s) of the ques-
tionnaires that are not answered or filled in by
every respondent. This problem can be minimized by
using the personal interview technique, but it is very
common in self-administered questionnaires. Numer-
ous missing data usually give big problems during
analysis. Some methods of imputation are available
and should be considered to reduce missing data
(see Missing Data) [9].

Data Collection

An essential decision in the design of a health sur-
vey is the choice of the method of data collection,
which could be either face-to-face interviews, tele-
phone interviews, self-administered questionnaires,

or a combination. Interviews can be conducted dur-
ing visits to respondents at home, during the visits of
respondents to a specific laboratory, or using the tele-
phone. Self-administered questionnaires can be sent
by post or can be an addition to an interview. The
choice depends on the purpose of the study, sample
frame, research topic, characteristics of the sample,
and available resources.

Face-to-Face Interviews and Self-Completion

Personal interviews or face-to-face interviews carried
out by trained interviewers who visit respondents
at home and who ask questions and assess the
answers by means of a structured questionnaire
are generally considered to be the preferred mode
of data collection (see Interviewing Techniques).
Advantages include good response rates, and the
questionnaires are usually filled in more completely
than with other methods.

Furthermore, people will tolerate relatively long
interviews much better than very long self-
administered questionnaires, and the interviewers can
have direct control of the quality of the response.
For some topics, however, it may be useful to
introduce some type of self-completion by the
informant. Those measures are preferred when the
questions refer to sensitive subjects, such as alcohol,
drugs, contraception, sexual behavior, and/or when
it is difficult to ensure privacy for an interview.
One method is to introduce a self-administered
questionnaire during the interview and to allow the
informant time to complete it before carrying on with
the interview. Another is to leave the questionnaire
behind after the interview and collect it later.

Owing to some specific disadvantages of face-to-
face interviews (see Interviewer Bias), the method-
ology of alternatives has gotten a lot of attention.
These disadvantages include frequent long periods
of fieldwork, high rates of “not at homes” because
more persons in one household work and/or spend
more leisure time outside the home, and high rates
of persons who have moved. In addition, the safety
of interviewers cannot be guaranteed in some areas.
Furthermore, the alternatives – postal questionnaires
and telephone interviews – are relatively cheap.

Postal and Telephone Surveys

Postal and telephone surveys are cheap alternatives
for face-to-face interviews. Telephone surveys have
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the advantages of use of interviewers, e.g. reduction
of item nonresponse and control of data quality, but
are limited to those persons who have a telephone,
and there are measurement constraints: no visual aids
or complex response categories can be used. For
postal surveys, such visual aids and complex response
categories can be used, and the response is the most
anonymous of all data collection methods, which is
preferred for sensitive topics. However, there is less
control of data quality, and good reading and writing
skills of the respondents are required.

Interviewers

The interviewer has the important task of tracking
down the persons to be interviewed, taking care of
their participation, and controlling the data quality.
Considerable attention has to be paid to selection,
training, and supervision.

Proxy Informants

In cases where a person acts as an informant for
others, the term proxy informant is used. This is
a useful approach if information on a household is
needed and one person can provide all the answers.
Proxy informants are usually essential for children
and persons with mental or sensory disabilities, and
also for the reduction of nonresponse where people
are difficult to contact – for instance, married men
and young single adults. In all these cases a spouse
or significant other – partner or parent, or other
family member (brother or sister) – can provide the
necessary information. For some indicators the use of
a proxy informant is not totally appropriate, such as
for questions on feelings, opinions, and knowledge.
Information on most other health survey assessed
characteristics, such as obvious health problems and
use of health services, can usually be provided
adequately by proxies. Opinions on the role of proxy
interviewing in relation to features such as alcohol
intake and smoking differ substantially. On the one
hand, it can be argued that proxy questioning may
lead to increased, and possibly truer, estimates of
consumption than self-reporting in areas where these
habits are considered socially undesirable. On the
other hand, proxies will not always know fully such
habits of another person. Depending on the purpose
of the survey and the cultural characteristics of the
population to be investigated, the use of proxies can

be considered, especially when it helps in reducing
nonresponse. The philosophy of proxy use differs
considerably by country. While in the UK proxy
interviews are only accepted as a last resort, in France
and the Netherlands they are used as a standard
practice.

Specific Groups

The use of general methods can result in underrepre-
sentation of some specific groups in the population.
This can be due to the fact that they are more dif-
ficult to reach or because methods and instruments
should be adapted to the specific abilities of specific
groups. Problems can be caused by specific lifestyles
or living situations, by language or cultural differ-
ences, and/or by their age. Groups that always have to
be considered because general methodology can lead
to an underrepresentation of them are the institutional
population, children, elderly, homeless persons, and
ethnic groups.

Because a lot of national surveys are based on
address samples, it is usually the case that all non-
private establishments are excluded. This means that
people living in nursing homes, hospitals, prisons,
hostels, and other places, such as some type of student
and nurses’ accommodation, the so-called institu-
tional population, are excluded from the sample.
Although they only make up a small proportion of the
population, from a health point of view these people
may be very different from people in private house-
holds, particularly regarding health problems such as
dementia and long-term disability. To get national
data, for instance, it can be recommended that the
size of this part of the population has to be assessed
adequately, and depending on the specific purpose of
the study specific subsurveys should be considered.
For children the most important source of informa-
tion is the parents. Usually, separate questionnaires
are necessary. If it is desirable to question chil-
dren themselves, for instance with respect to topics
like smoking and drinking, specific attention should
be paid to a confidential environment and children
should not be encouraged to exaggerate. Parental
consent to interview children may be required or
advisable.

Many countries have significant minorities in the
population who may not be fluent in the main lan-
guage. The use of questionnaires in different lan-
guages, interviewers with adequate knowledge of
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alternative languages, or interpreters should be con-
sidered when the expected effect of excluding these
groups is not marginal. There are some countries
in which questionnaires in two main languages are
essential, e.g. Canada and Belgium. In general there
is some loss of standardization in questions when
different languages are used – it is not always possi-
ble to find words or phrases with precisely the same
meaning. In addition, the importance of health and
health-related problems can differ between cultures,
which may also hamper the comparability of data.

Collection Period

Many topics related to health, such as use of health
services, accidents, and temporary disability are influ-
enced by the period(s) in the year in which the field-
work takes place. To rule out such seasonal effects,
data collection should be spread evenly through-
out the year, also including spreading evenly across
weekdays. When analysis of trends is considered
more important than average figures per year, an
alternative is to collect data in the same period
each year.

Frequency of Survey

Although a one-shot health survey can provide
relevant data, some regularity – continuous or
repeated – in assessment is usually relevant,
especially to monitor changes in health status and
health-related factors and to monitor effects of public
health decisions.

If some regularity is needed, the costs and ben-
efits of a continuous or regularly repeated survey,
for instance every 3 years, should be carefully con-
sidered. For many health aspects, large differences
are not likely to be observed from year to year.
However, for any large-scale survey, the design and
start-up costs will be great because large numbers
of interviewers and other staff have to be recruited
and trained. For this reason continuous surveys may
be more cost-effective than repeated surveys. One
option would be to have a continuous survey, with
core questions asked each year and with a rotating
element containing other items at regular intervals in
turn. Additional advantages of such procedures are
that new health topics can be added when necessary,
and that the rotating elements can also include other
national survey areas.

Data Processing and Presentation

After collection of the data they must be transformed
into an appropriate form for analyses using comput-
ers. Relevant phases include deciding on the format of
the data, data entry, data cleaning, weighting adjust-
ment, and analysis of data to present the results
(see Data Management and Coordination).

The format of the data in the computer refers to
the way the data are organized: what kind of codes
are necessary for the responses and what kind of
variables should be used for what kind of questions?
Information on each question is usually represented
in at least one variable. A question with multiple
responses can be represented by many variables.

After deciding how the data need to be organized,
they should be entered into the computer. Because
usually many respondents are questioned and a lot of
information per respondent is assessed, the number of
codes to be entered is very large. When data have to
be entered by hand, specific software to assist the data
entry should be used. When interviews are carried out
using (laptop) computers, the data collection phase
and data entry phase are the same. An alternative
for data entry when written questionnaires are used
is a method of computer optical scanning of the
responses. These scanning procedures make specific
demands for questionnaire layout. Data entry by
hand can result in many errors, and with the use of
computer-assisted personal interviewing such errors
can be minimized.

The phase of data cleaning consists of check-
ing the data file on inconsistencies and removing
traceable errors. Three types of errors are usually
distinguished: a range error (e.g. an age of 234), a
consistency error (e.g. a person 6 years old and mar-
ried), and a routing or skip pattern error.

Weighting adjustments may be needed to correct
for unequal selection probabilities in the sample and
to correct for nonresponse bias. This implies that not
every respondent contributes equally to the results;
the contribution depends on the specific subgroup to
which the respondent belongs (most of the time based
on characteristics such as age group, sex, household
composition, marital status, and region).

To present the results adequately, different forms
of data analysis are necessary. Many strategies are
possible to make adequate tabulations of results and
to analyze associations between the features assessed.
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Survey Management and Logistics

The number of interviewers needed for conducting
the fieldwork of a health survey largely depends on
the content, the sample size, and the time period
available. The usual face-to-face interview survey
contains questions that can be handled by lay inter-
viewers who have no medical skills. But when the
survey includes physical examinations, these should
often be left to appropriate staff (nurses, doctors, and
laboratory personnel).

The number of full-time and/or part-time inter-
viewers needed to perform an interview survey within
a given period of time can be calculated when
(i) the estimated duration of one interview (usually
no longer than 30–45 min, to be tested in the pilot
phase), (ii) the number of working days available for
the fieldwork, and (iii) the net sample size are known.
It should be kept in mind that interviewers may need
a lot of time for traveling and other activities (phone
calls, etc.) for making contacts with the respondents;
time lost due to nonresponse should also be taken
into account as far as possible.

For face-to-face interviews the administrative
tools used to be “paper and pencil”, but in recent
years many of the larger survey organizations make
use of laptop computers for conducting the fieldwork.
Several software packages have been developed for
managing the questionnaires in the laptops. The main
advantages of using laptops in the field are that the
actual entry of the data is done without extra effort
by the interviewers (instead of afterwards at a cen-
tral location by special staff) and above all that the
number of administrative errors is reduced because
the data can be checked and corrected interactively.

The number of scientific and administrative staff
needed for an interview survey largely depends on
the “history” of the survey, content and length, and
the time available for preparations, analysis, and
publication. A completely new survey needs more
time in preparation than one that is more or less
a repetition of an earlier effort. The number of
organizations, ministries, and other institutes that
have a say in the survey may also be an important
factor of influence on the time needed for preparation
and other activities. When a fairly large part of
the questionnaire is not “standard” or “routine”, the
(scientific) staff time needed for developing and
testing instruments for measuring a new topic is at
least in the range of a few man-months. Once the

questionnaire is ready, the scientific staff should also
be involved in training the interviewers for the survey
at hand (taking for granted that the interviewers have
sufficient general experience).

Scientific staff should be available during the pilot
phase of the fieldwork for answering the questions
of interviewers and if necessary for adaptations to
the questionnaire. During the fieldwork period, staff
should be available for data entry and/or data check-
ing and cleaning; preparations for the tabulations and
further analyses may also be made during this period.
In other words, preparations for analysis and publica-
tion should not wait until the fieldwork is completed,
and staff for building the data file should be active
from the very beginning. For timely reporting it
is essential that a complete file becomes available
shortly after conclusion of the fieldwork. Specialists
in sampling and weighting – if not present in the sci-
entific staff for the survey – should be hired at the
time they are needed for the respective activities.
Nowadays the technical equipment for the analysis
of survey data, even if these consist of hundreds
of variables and thousands of records, is no longer
a problem: the storage capacity and speed of rela-
tively cheap desktop computers is sufficient for timely
and advanced analysis by means of software like
SAS and/or SPSS (see Software, Biostatistical). But
experienced scientific staff are needed to analyze
the data and publish the results in a way that is
practical and understandable for the users. In prac-
tice, the procedure may be that first the bare essen-
tials are analyzed and published, followed by more
profound analysis and publication at a later stage.
Staff are also needed for making a well-documented
micro data file – with sufficient protection of the pri-
vacy of respondents – for users who are willing and
capable to make their own specific analysis of the
data.

Finally, considerable workload may result from
first and later publications of the results: questions
coming from the users of the data need to be
answered; additional requests for tabulation and anal-
ysis call for extra efforts that – even if additional
costs are covered – need to be met by experienced
staff. Although exact estimates cannot be given (all
depend on the content, length, sample size, and “envi-
ronment” of the survey), it is clear that any substantial
health survey needs to be run by a more or less per-
manent staff, consisting of scientific, technical, and
administrative members.
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Survival Analysis,
Overview

Survival analysis is the study of the distribution of
life times, that is, the times from an initiating event
(birth, start of treatment, employment in a given job)
to some terminal event (death, relapse, disability pen-
sion). A distinguishing feature of survival data is the
inevitable presence of incomplete observations, par-
ticularly when the terminal event for some individuals
is not observed; instead, it is only known that this
event is at least later than a given point in time: right
censoring (see Censored Data).

The aims of this entry are to provide a brief
historical sketch of the long development of survival
analysis and to survey what we have found to be
central issues in the current methodology of survival
analysis. Necessarily, this entry is rich in cross-
references to other entries that treat specific subjects
in more detail. However, we have not attempted to
include cross-references to all specific entries within
survival analysis.

History

The Prehistory of Survival Analysis in
Demography and Actuarial Science

Survival analysis is one of the oldest statistical dis-
ciplines with roots in demography and actuarial
science in the seventeenth century; see [49, Chap-
ter 2]; [51] for general accounts of the history of vital
statistics and [22] for specific accounts of the work
before 1750.

The basic life-table methodology in modern ter-
minology amounts to the estimation of a survival
function (one minus distribution function) from life
times with delayed entry (or left truncation; see
below) and right censoring. This was known before
1700, and explicit parametric models at least since
the linear approximation of de Moivre [39] (see e.g.
[22, p. 517]), later examples being due to Lambert
[33, p. 483]:

(
1 − x

96

)2 − 0.6176
(

exp
(
− x

31.682

)

− exp
(
− x

2.43114

))
(1)

and the influential nineteenth-century proposals by
Gompertz [19] and Makeham [37], who modeled the
hazard function as bcx and a + bcx , respectively.

Motivated by the controversy over smallpox inoc-
ulation, D. Bernoulli [5] laid the foundation of the
theory of competing risks; see [44] for a histori-
cal account. The calculation of expected number of
deaths (how many deaths would there have been in
a study population if a given standard set of death
rates applied) also dates back to the eighteenth cen-
tury; see [29] and the article on Historical Controls
in Survival Analysis.

Among the important methodological advances in
the nineteenth century was, in addition to the para-
metric survival analysis models mentioned above, the
graphical simultaneous handling of calendar time and
age in the Lexis Diagram [35, cf. 30].

Two very important themes of modern survival
analysis may be traced to early twentieth century
actuarial mathematics:

Multistate modeling in the particular case of dis-
ability insurance [41] and nonparametric estimation
in continuous time of the survival function in the
competing risk problem under delayed entry and right
censoring [13].

At this time, survival analysis was not an inte-
grated component of theoretical statistics. A charac-
teristic scepticism about “the value of life-tables in
statistical research” was voiced by Greenwood [20]
in the Journal of the Royal Statistical Society, and
Westergaard’s [50] guest appearance in Biometrika
on “Modern problems in vital statistics” had no
reference to sampling variability. This despite the
fact that these two authors were actually statistical
pioneers in survival analysis: Westergaard [48] by
deriving what we would call the standard error of
the standardized mortality ratio (rederived by Yule
[52]; see [29]) (see Standardization Methods); and
Greenwood [21] with his famous expression for “the
‘errors of sampling’ of the survivorship tables”, (see
below).

The “Actuarial” life table and the Kaplan–Meier
Estimator

In the mid-twentieth century, these well-established
demographic and actuarial techniques were presented
to the medical–statistical community in influential
surveys such as those by Berkson and Gage [4]
and Cutler and Ederer [13]. In this approach, time
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is grouped into discrete units (e.g. one-year inter-
vals), and the chain of survival frequencies from
one interval to the next are multiplied together to
form an estimate of the survival probability across
several time periods. The difficulty is in the devel-
opment of the necessary approximations due to the
discrete grouping of the intrinsically continuous time
and the possibly somewhat oblique observation fields
in cohort studies and more complicated demographic
situations. The penetrating study by Kaplan and
Meier [28] (see Kaplan–Meier Estimator), the fas-
cinating genesis of which was chronicled by Bres-
low [8], in principle, eliminated the need for these
approximations in the common situation in medical
statistics where all survival and censoring times are
known precisely. Kaplan and Meier’s tool (which
they traced back to Böhmer [7]) was to shrink the
observation intervals to include at most one observa-
tion per interval. Though overlooked by many later
authors, Kaplan and Meier also formalized the age-
old handling of delayed entry (actually also covered
by Böhmer) through the necessary adjustment for
the risk set, the set of individuals alive and under
observation at a particular value of the relevant time
variable.

Among the variations on the actuarial model, we
will mention two.

Harris et al. [23] anticipated much recent work in,
for example, AIDS survival studies in their general-
ization of the usual life-table estimator to the situation
in which the death and censoring times are known
only in large, irregular intervals (see Grouped Sur-
vival Times).

Ederer et al. [(14)] developed a “relative survival
rate. . . as the ratio of the observed survival rate in a
group of patients to the survival rate expected in a
group similar to the patients . . .” thereby connecting
to the long tradition of comparing observed with
expected; see, for example, [29] and the article on
Historical Controls in Survival Analysis.

Parametric Survival Models

Parametric survival models were well-established in
actuarial science and demography, but have never
dominated medical uses of survival analysis. How-
ever, in the 1950s and 1960s important contributions
to the statistical theory of survival analysis were
based on simple parametric models. One example is
the maximum likelihood approach by Boag [6] to

a cure model assuming eternal life with probability
c and lognormally distributed survival times other-
wise. The exponential distribution was assumed by
Littell [36], when he compared the “actuarial” and
the maximum likelihood approach to the “T -year sur-
vival rate”, by Armitage [3] in his comparative study
of two-sample tests for clinical trials with staggered
entry, and by Feigl and Zelen [16] in their model
for (uncensored) lifetimes whose expectations were
allowed to depend linearly on covariates, generalized
to censored data by Zippin and Armitage [53].

Cox [11] revolutionized survival analysis by his
semiparametric regression model for the hazard,
depending arbitrarily (“nonparametrically”) on time
and parametrically on covariates (see Cox Regres-
sion Model). For details on the genesis of Cox’s
paper, see [42, 43].

Multistate Models

Traditional actuarial and demographical ways of
modeling several life events simultaneously may be
formalized within the probabilistic area of finite-state
Markov processes in continuous time. An impor-
tant and influential documentation of this was by
Fix and Neyman [18], who studied recovery, relapse,
and death (and censoring) in what is now commonly
termed an illness–death model allowing for compet-
ing risks (see Fix–Neyman Process). Chiang [9], for
example, in his 1968 monograph, extensively docu-
mented the relevant stochastic models (see Stochastic
Processes), and Sverdrup [46], in an important paper,
gave a systematic statistical study. These models have
constant transition intensities, although subdivision
of time into intervals allows grouped-time method-
ology of the actuarial life-table type, as carefully
documented by Hoem [24].

Survival Analysis Concepts

The ideal basic independent nonnegative random
variables Xi, i = 1, . . . , n are not always observed
directly. For some individuals i, the available piece
of information is a right-censoring time Ui , that
is, a period elapsed in which the event of interest
has not occurred (e.g. a patient has survived until
Ui). Thus, a generic survival data sample includes
((X̃i , Di), i = 1, . . . , n) where X̃i is the smaller of
Xi and Ui and Di is the indicator, I (Xi ≤ Ui), of
not being censored.
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Mathematically, the distribution of Xi may be
described by the survival function

Si(t) = Pr(Xi > t). (2)

If the hazard function

αi(t) = lim
∆t→0

Pr(Xi ≤ t + ∆t | Xi > t)

∆t
(3)

exists, then

Si(t) = exp(−Ai(t)), (4)

where

Ai(t) =
∫ t

0
αi(u) du (5)

is the integrated hazard over [0, t). If, more generally,
the distribution of the Xi has discrete components,
then Si(t) is given by the product-integral of the
cumulative hazard measure. Owing to the dynamical
nature of survival data, a characterization of the dis-
tribution via the hazard function is often convenient.
(Note that αi(t)∆t when ∆t > 0 is small is approx-
imately the conditional probability of i “dying” just
after time t given “survival” till time t .) Also, αi(t) is
the basic quantity in the counting process approach
to survival analysis (see e.g. [2], and the article on
Survival Distributions and Their Characteristics).

Nonparametric Estimation and Testing

The simplest situation encountered in survival anal-
ysis is the nonparametric estimation of a survival
distribution function based on a right-censored sam-

ple of observation times (X̃1, . . . , X̃n), where the true
survival times Xi, i = 1, . . . , n, are assumed to be
independent and identically distributed with common
survival distribution function S(t), whereas as few
assumptions as possible are usually made about the
right-censoring times Ui except for the assumption
of independent censoring (see Censored Data). The
concept of independent censoring has the interpreta-
tion that the fact that an individual, i, is alive and
uncensored at time t , say, should not provide more
information on the survival time for that individual
than Xi > t , that is, the right-censoring mechanism
should not remove individuals from the study who
are at a particularly high or a particularly low risk of

dying. Under these assumptions, S(t) is estimated by
the Kaplan–Meier estimator [28]. This is given by

Ŝ(t) =
∏

X̃i≤t

[
1 − Di

Y (X̃i)

]
, (6)

where Y (t) = ∑
I (X̃i ≥ t) is the number of individ-

uals at risk just before time t . The Kaplan–Meier
estimator is a nonparametric maximum likelihood
estimator and, in large samples, Ŝ(t) is approximately
normally distributed with mean S(t) and a variance
that may be estimated by Greenwood’s formula:

σ̂ 2(t) = [Ŝ(t)]2
∑

X̃i≤t

Di

Y (X̃i)[Y (X̃i) − 1]
. (7)

From this result, pointwise confidence intervals for
S(t) are easily constructed and, since one can also
show weak convergence of the entire Kaplan–Meier
curve {√(n)[Ŝ(t) − S(t)]; 0 ≤ t ≤ τ }, τ ≤ ∞ to a
mean zero Gaussian process (see Brownian Motion
and Diffusion Processes), simultaneous confidence
bands for S(t) on [0, τ ] can also be set up.

As an alternative to estimating the survival distri-
bution function S(t), the cumulative hazard function
A(t) = − log S(t) may be studied. Thus, A(t) may
be estimated by the Nelson–Aalen Estimator

Â(t) =
∑

X̃i≤t

Di

Y (X̃i)
. (8)

The relation between the estimators Ŝ(t) and Â(t)

is given by the product-integral from which it fol-
lows that their large-sample properties are equivalent.
Though the Kaplan–Meier estimator has the advan-
tage that a survival probability is easier to interpret
than a cumulative hazard function, the Nelson–Aalen
estimator is easier to generalize to multistate situ-
ations beyond the survival data context. We shall
return to this below. To give a nonparametric esti-
mate of the hazard function α(t) itself requires some
smoothing techniques to be applied (see Smoothing
Hazard Rates).

Right censoring is not the only kind of data-
incompleteness to be dealt with in survival analysis;
in particular, left truncation (or delayed entry) where
individuals may not all be followed from time 0 but
maybe from a later entry time Vi conditionally on
having survived until Vi , occurs frequently in, for
example, epidemiological applications. Dealing with
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left truncation only requires a redefinition of the risk
set from the set {i: X̃i ≥ t} of individuals still alive
and uncensored at time t to the set {i: Vi < t ≤ X̃i}
of individuals with entry time Vi < t and who are
still alive and uncensored. With Y (t) still denoting
the size of the risk set at time t both (6), (7), and (8)
are applicable though one should be aware of the fact
that estimates of S(t) and A(t) may be ill-determined
for small values of t due to the left truncation (see
Truncated Survival Times).

When the survival time distributions in a number,
k, of homogeneous groups have been estimated
nonparametrically, it is often of interest to test
the hypothesis H0 of identical hazards in all
groups. Thus, on the basis of censored survival
data ((X̃hi , Dhi), i = 1, . . . , nh) for group h, h =
1, . . . , k, the Nelson–Aalen estimates Âh(t) have
been computed, and based on the combined sample
of size n = ∑

h nh with data ((X̃i, Di), i = 1, . . . , n),
an estimate of the common cumulative hazard
function A(t) under H0 may be obtained by a
Nelson–Aalen estimator Â(t). As a general statistic
for testing H0, one may then use a k-vector of sums
of weighted differences between the increments of
Âh(t) and Â(t):

Zh =
n∑

i=1

Kh(X̃i)[∆Âh(X̃i) − ∆Â(X̃i)]. (9)

Here, ∆Âh(t) = 0 if t is not among the observed
survival times in the hth sample and Kh(t) is 0
whenever Yh(t) = 0, in fact all weight functions used
in practice have the form Kh(t) = Yh(t)K(t). With
this structure for the weight function, the covariance
between Zh and Zj given by (9) is estimated by

σhj =
n∑

i=1

K2(X̃i)
Yh(X̃i)

Y (X̃i)

[
δhj − Yj (X̃i)

Y (X̃i)

]
Di,

(10)

and, letting Z be the k-vector (Z1, . . . , Zk)
′ and

Σ the k by k matrix (σhj , h, j = 1, . . . , k) the test
statistic X2 = Z′Σ−Z is asymptotically chi-squared
distributed under H0 with k − 1 degrees of freedom
if all nh tend to infinity at the same rate. Here, Σ− is
a generalized inverse for Σ (see Matrix Algebra).

Special choices for K(t) correspond to test statis-
tics with different properties for particular alternatives

to H0 (see Linear Rank Tests in Survival Analy-
sis). An important such test statistic is the logrank
test obtained for K(t) = I (Y (t) > 0). For this test,
which has particularly good power for proportional
hazards alternatives, Zh given by (9) reduces to
Zh = Oh − Eh with Oh the total number of observed
failures in group h and Eh = ∑

DiYh(X̃i)/Y (X̃i) an
“expected” number of failures in group h. For the
two-sample case (k = 2), one may of course use the
square root of X2 as an asymptotically normal test
statistic for the null hypothesis. For the case where
the k groups are ordered, and where a score xh (with
x1 ≤ . . . ≤ xk) is attached to group h, a test for trend
is given by T 2 = (x′Z)2/x′Σx with x = (x1, . . . , xk)

′
and it is asymptotically chi-squared with 1 df.

The above linear rank tests have low power
against certain important classes of alternatives such
as “crossing hazards”. Just as for uncensored data,
this has motivated the development of test statis-
tics of the Kolmogorov–Smirnov and Cramèr–von
Mises types, based on maximal deviation or inte-
grated squared deviation between estimated hazards,
cumulative hazards or survival functions.

Parametric Inference

The nonparametric methods outlined in the previ-
ous section have become the standard approach to
the analysis of simple homogeneous survival data
without covariate information. However, parametric
survival time distributions are sometimes used for
inference, and we shall here give a brief review.
Assume again that the true survival times X1, . . . , Xn

are independent and identically distributed with sur-
vival distribution function S(t ; θ) and hazard func-
tion α(t ; θ) but that only a right-censored sample
(X̃i, Di), i = 1, . . . , n, is observed. Under indepen-
dent censoring, the likelihood function for the param-
eter θ is

L(θ) =
n∏

i=1

(α(X̃i ; θ))Di S(X̃i ; θ). (11)

The function (11) may be analyzed using standard
large-sample theory. Thus, standard tests, that
is, Wald-, score-, and likelihood ratio tests are
used as inferential tools (see Chi-square Tests).
Two frequently used parametric survival models
are the Weibull distribution with hazard function
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αρ(αt)ρ−1, and the piecewise exponential distribution
with α(t, θ) = αj for t ∈ Ij with Ij = [tj−1, tj ), 0 =
t0 < tj < · · · < tm = ∞. Both of these distributions
contain the very simplest model, the exponential
distribution with a constant hazard function as
null cases (see Parametric Models in Survival
Analysis).

Comparison with Expected Survival

As a special case of the nonparametric tests discussed
above, a one-sample situation may be studied. This
may be relevant if one wants to compare the observed
survival in the sample with the expected survival
based on a standard life table. Thus, assume that a
hazard function α∗(t) is given and that the hypothesis
H0 : α = α∗ is to be tested. One test statistic for H0 is
the one-sample logrank test (O − E∗)/(E∗)1/2 where
E∗, the “expected” number of deaths is given by
E∗ = ∑

[A∗(X̃i) − A∗(Vi)] (with A∗ the cumulative
hazard corresponding to α∗). In this case, θ̂ = O/E∗,
the standardized mortality ratio, is the maximum like-
lihood estimate for the parameter θ in the model
α(t) = θα∗(t). Thus, the standardized mortality ratio
arises from a multiplicative model involving the
known population hazard α∗(t). Another classical
tool for comparing with expected survival, the so-
called expected survival function, arises from an addi-
tive or excess hazard model (see Excess Mortality;
Expected Number of Deaths; Historical Controls
in Survival Analysis).

The Cox Regression Model

In many applications of survival analysis, the interest
focuses on how covariates may affect the outcome;
in clinical trials, adjustment of treatment effects for
effects of other explanatory variables may be crucial
if the randomized groups are unbalanced with respect
to important prognostic factors, and in epidemiolog-
ical cohort studies, reliable effects of exposure may
be obtained only if some adjustment is made for con-
founding variables. In these situations, a regression
model is useful and the most important model for
survival data is the Cox [11] proportional hazards
regression model. In its simplest form, it states the
hazard function for an individual, i, with covariates
Zi = (Zi1, . . . , Zip)′ to be

αi(t ; Zi ) = α0(t) exp(β ′Zi ), (12)

where β = (β1, . . . , βp)′ is a vector of unknown
regression coefficients and α0(t), the baseline hazard,
is the hazard function for individuals with all covari-
ates equal to 0. Thus, the baseline hazard describes
the common shape of the survival time distributions
for all individuals while the relative risk function
exp(β ′Zi ) gives the level of each individual’s haz-
ard. The interpretation of the parameter, βj for a
dichotomous Zij ∈ {0, 1} is that exp(βj ) is the rel-
ative risk for individuals with Zij = 1 compared
to those with Zij = 0 all other covariates being the
same for the two individuals. Similar interpretations
hold for parameters corresponding to covariates tak-
ing more than two values.

The model is semiparametric in the sense that the
relative risk part is modeled parametrically while the
baseline hazard is left unspecified. This semiparamet-
ric nature of the model led to a number of inference
problems, which was discussed in the literature in
the years following the publication of Cox’s article
in 1972. However, these problems were all resolved
and estimation proceeds as follows. The regression
coefficients β are estimated by maximizing the Cox
partial likelihood

L(β) =
n∏

i=1

[
exp(β ′Zi )∑

j∈Ri
exp(β ′Zj )

]Di

, (13)

where Ri = {j : X̃j ≥ X̃i}, the risk set at time X̃i ,
is the set of individuals still alive and uncensored
at that time. Furthermore, the cumulative baseline
hazard A0(t) is estimated by the Breslow estima-
tor

Â0(t) =
∑

X̃i≤t

Di∑

j∈Ri

exp(β̂
′
Zj )

, (14)

which is the Nelson–Aalen estimator one would
use if β were known and equal to the maximum
partial likelihood estimate β̂. The estimators based
on (13) and (14) also have a nonparametric maxi-
mum likelihood interpretation. In large samples, β̂ is
approximately normally distributed with the proper
mean and with a covariance, which is estimated by
the information matrix based on (13). This means
that approximate confidence intervals for the relative
risk parameters of interest can be calculated and that
the usual large-sample test statistics based on (13)
are available. Also, the asymptotic distribution of the
Breslow estimator is normal; however, this estimate
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is most often used as a tool for estimating survival
probabilities for individuals with given covariates,
Z0. Such an estimate may be obtained by the prod-
uct integral ̂S(t ; Z0) of exp(β̂

′
Z0)Â0(t). The joint

asymptotic distribution of β̂ and the Breslow esti-
mator then yields an approximate normal distribution
for ̂S(t ; Z0) in large samples.

A number of useful extensions of this simple Cox
model are available. Thus, in some cases, the covari-
ates are time-dependent, for example, a covariate
might indicate whether or not a given event had
occurred by time t , or a time-dependent covariate
might consist of repeated recordings of some mea-
surement likely to affect the prognosis. In such cases,
the regression coefficients β are estimated replacing
exp(β ′Zj ) in (13) by exp[β ′Zj (X̃i)].

Also, a simple extension of the Breslow estima-
tor (14) applies in this case. However, the survival
function can, in general, no longer be estimated in
a simple way because of the extra randomness aris-
ing from the covariates, which is not modeled in the
Cox model. This has the consequence that the esti-
mates are more difficult to interpret when the model
contains time-dependent covariates. To estimate the
survival function in such cases, a joint model for the
hazard and the time-dependent covariate is needed
(see Joint Modeling of Longitudinal and Event
Time Data).

Another extension of (12) is the stratified Cox
model where individuals are grouped into a num-
ber, k of strata each of which has a separate baseline
hazard (see Stratification). This model has impor-
tant applications for checking the assumptions of
(12). The model assumption of proportional haz-
ards may also be tested in a number of ways,
the simplest possibility being to add interaction
terms of the form Zijf (t) between Zij and time
where f (t) is some specified function. Also, vari-
ous forms of residuals as for normal linear models
may be used for model checking in (12) (see Good-
ness of Fit in Survival Analysis; Residuals for
Survival Analysis). In (12), it is finally assumed
that a quantitative covariate affects the hazard log-
linearly. This assumption may also be checked in
several ways and alternative models with other rel-
ative risk functions r(β ′Zi ) may be used. Special
care is needed when covariates are measured with
error (see Measurement Error in Survival Analy-
sis).

Other Regression Models for Survival
Data

Though the semiparametric Cox model is the regres-
sion model for survival data that is applied most
frequently, other regression models, for example,
parametric regression models also play important
roles in practice. Examples include models with a
multiplicative structure, that is, models like (12) but
with a parametric specification, α0(t) = α0(t ; θ), of
the baseline hazard, and accelerated failure-time
models.

A multiplicative model with important epidemio-
logical applications is the Poisson regression model
with a piecewise constant baseline hazard. In large
data sets with categorical covariates, this model has
the advantage that a sufficiency reduction to the num-
ber of failures and the amount of person-time at risk
in each cell defined by the covariates and the division
of time into intervals is possible. This is in contrast to
the Cox regression model (12) where each individual
data record is needed to compute (13). The substantial
computing time required to maximize (13) in large
samples has also led to modifications of this estima-
tion procedure. Thus, in nested case–control studies
the risk set Ri in the Cox partial likelihood is replaced
by a random sample R̃i of Ri (see Case–Control
Study, Nested).

In the accelerated failure-time model, the focus
is not on the hazard function but on the survival
time itself much like in classical linear models. Thus,
this model is given by log Xi = α + β ′Zi + εi , where
the error terms are assumed to be independent and
identically distributed with expectation 0. Examples
include normally distributed (εi , i = 1, . . . , n), and
error terms with a logistic or an extreme value
distribution, the latter giving rise to a regression
model with Weibull distributed life times.

Finally, we shall mention some nonparametric
hazard models. In Aalen’s additive model, αi(t) =
β0(t) + β(t)′Zi (t) (see Aalen’s Additive Regression
Model), the regression functions β0(t), . . . , βp(t) are
left completely unspecified and estimated nonpara-
metrically much like the Nelson–Aalen estimator
discussed above. This model provides an attractive
alternative to the other regression models discussed
in this section. There also exist more general and
flexible models containing both this model and the
Cox regression model as special cases (see Addi-
tive–Multiplicative Intensity Models).
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Multistate Models

Models for survival data may be considered a special
case of a multistate model, namely, a model with a
transient state alive (0) and an absorbing state dead
(1) and where the hazard rate is the force of transi-
tion from state 0 to state 1. Multistate models may
conveniently be studied in the mathematical frame-
work of counting processes with a notation that actu-
ally simplifies the notation of the previous sections
and, furthermore, unifies the description of survival
data and that of more general models like the com-
peting risks model and the illness–death model to
be discussed below. We first introduce the counting
processes relevant for the study of censored sur-
vival data [1] Define, for i = 1, . . . , n, the stochastic
processes

Ni(t) = I (X̃i ≤ t, Di = 1) (15)

and
Yi(t) = I (X̃i ≥ t). (16)

Then (15) is a counting process counting 1 at time X̃i

if individual i is observed to die; otherwise Ni(t) = 0
throughout. The process (16) indicates whether i is
still at risk just before time t . Models for the survival
data are then introduced via the intensity process,
λi(t) = αi(t)Yi(t) for Ni(t), where αi(t), as before,
denotes the hazard function for the distribution of
Xi . Letting N = N1 + · · · + Nn and Y = Y1 + · · · +
Yn the Nelson–Aalen estimator (8) is given by the
stochastic integral

Â(t) =
∫ t

0

J (u)

Y (u)
dN(u), (17)

where J (t) = I (Y (t) > 0). In this simple multistate
model, the transition probability P00(0, t), that is,
the conditional probability of being in state 0 by
time t given state 0 at time 0 is simply the survival
probability S(t), which, as described above, may be
estimated using the Kaplan–Meier estimator, which
is the product-integral of (17). In fact, all the mod-
els and methods for survival data discussed above,
which are based on the hazard function have imme-
diate generalizations to models based on counting
processes. Thus, both the nonparametric tests and the
Cox regression model may be applied for counting
process (multistate) models (see Counting Process
Methods in Survival Analysis).

One important extension of the two-state model
for survival data is the competing risks model with
one transient alive state 0 and a number, k, of absorb-
ing states corresponding to death from cause h, h =
1, . . . , k. In this model, the basic parameters are the
cause-specific hazard functions αh(t), h = 1, . . . , k,
and the observations for individual i will consist
of (X̃i , Dhi), h = 1, . . . , k, where Dhi = 1 if individ-
ual i is observed to die from cause h, and Dhi = 0
otherwise. On the basis of these data, k counting pro-

cesses for each i can be defined by Nhi(t) = I (X̃i ≤
t, Dhi = 1) and letting Nh = Nh1 + · · · + Nhn, the
integrated cause-specific hazard Ah(t) is estimated
by the Nelson–Aalen estimator replacing N by Nh in
(17). A useful synthesis of the cause-specific hazards
is provided by the transition probabilities P0h(0, t) of
being dead from cause h by time t . This is frequently
called the cumulative incidence function for cause h

and is given by

P0h(s, t) =
∫ t

s

S(u)αh(u) du, (18)

and hence it may be estimated by (18) by inserting
the Kaplan–Meier estimate for S(u) and the Nel-
son–Aalen estimate for the integrated cause-specific
hazard. In fact, this Aalen–Johansen estimator of
the matrix of transition probabilities is exactly the
product-integral of the cause-specific hazards.

Another important multistate model is the ill-
ness–death or disability model with two transient
states, say healthy (0) and diseased (1) and one
absorbing state dead (2). If transitions both from 0
to 1 and from 1 to 0 are possible, the disease is
recurrent, otherwise it is chronic. On the basis of
such observed transitions between the three states, it
is possible to define counting processes for individual
i as Nhji(t) = number of observed h → j transitions
in the time interval [0, t] for individual i and, further-
more, we may let Yhi(t) = I (i is in state h at time
t−). With these definitions, we may set up and ana-
lyze models for the transition intensities αhji(t) from
state h to state j including nonparametric compar-
isons and Cox-type regression models. Furthermore,
transition probabilities Phj (s, t) may be estimated by
product-integration of the intensities.

Other Kinds of Incomplete Observation

A salient feature of survival data is right censoring,
which has been referred to throughout in the present
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overview. However, several other kinds of incom-
plete observation are important in survival analysis.

Often, particularly when the time variable of inter-
est is age, individuals enter study after time 0. This
is called delayed entry and may be handled by left
truncation (conditioning) or left filtering (“viewing
the observations through a filter”). There are also
situations when only events (such as AIDS cases)
that occur before a certain time are included (right
truncation) (see Truncated Survival Times). The
phenomenon of left censoring, though theoretically
possible, is more rarely relevant in survival analysis.

When the event times are only known to lie in an
interval, one may use the grouped time approach of
classical life tables (see Grouped Survival Times;
Life Table), or (if the intervals are not synchronous)
techniques for interval censoring may be relevant.

A common framework (coarsening at random)
was recently suggested for several of the above types
of incomplete observation.

Multivariate Survival Analysis

For multivariate survival, the innocently looking
problem of generalizing the Kaplan–Meier estimator
to several dimensions has proved surprisingly intri-
cate. A major challenge (in two dimensions) is how
to efficiently use singly censored observations, where
one component is observed and the other is right
censored.

For regression analysis of multivariate survival
times, two major approaches have been taken. One is
to model the marginal distributions and use estimation
techniques based on generalized estimating equa-
tions leaving the association structure unspecified
(see Marginal Models for Multivariate Survival
Data.) The other is to specify random effects models
for survival data based on conditional independence
(see Frailty.) An interesting combination between
these two methods is provided by copula models
in which the marginal distributions are combined
via a so-called copula function thereby obtaining an
explicit model for the association structure.

For the special case of repeated events, both
the marginal approach and the conditional (frailty)
approach have been used successfully (see Repeated
Events).

Concluding Remarks

Survival analysis is a well-established discipline in
statistical theory as well as in biostatistics. Most
books on biostatistics contain chapters on the topic
and most software packages include procedures for
handling the basic survival techniques (see Survival
Analysis, Software). Several books have appeared,
among them the documentation of the actuarial and
demographical know-how by Elandt–Johnson and
Johnson [15]; the research monograph by Kalbfleisch
and Prentice [27], the first edition of which for a
decade maintained its position as main reference on
the central theory; the comprehensive text by Law-
less [34] covering also parametric models, and the
concise text by Cox and Oakes [12], two central con-
tributors to the recent theory. The counting process
approach is covered by Fleming and Harrington [17]
and by Andersen et al. [2]; see also [25]. Later, books
intended primarily for the biostatistical user have
appeared. These include [10, 31, 32, 38, 40]. Also,
books dealing with special topics, like implementa-
tion in the S-Plus software [47], multivariate survival
data [26], and the linear regression model [45] have
appeared.
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Survival Analysis,
Software

Most, if not all, techniques for the analysis of time-
to-event data (see Survival Analysis, Overview)
requires specialized software (see Software, Biosta-
tistical). For example, many of the estimators used
with censored data do not have closed-form solu-
tions and require iterative solutions to estimating
equations (see Estimating Functions).

The specialized software for survival data may be
in a stand-alone package such as SURVIVAL [16] or
may be an integrated part of a more comprehensive
package such as SAS or SPSS. Whatever the pack-
age, there are a minimal number of requirements that
a program should have. The package should have the
ability to handle right-censored data and to properly
handle tied observations (see Tied Survival Times).
Better packages should have the ability to handle
other types of censoring such as left and interval cen-
soring (see Censored Data). Some packages can also
handle left truncated data (see Truncated Survival
Times).

The types of analysis for survival data fall into
four main areas. The first area is summary or uni-
variate statistics. Here, most packages have rou-
tines to compute the Kaplan–Meier estimator (see
Kaplan–Meier Estimator) for right-censored data
and make summary plots.

The second area is hypothesis testing. Most pack-
ages have routines to compute the logrank test for
right-censored data. More inclusive packages have
routines for weighted logrank tests.

The third area is semiparametric regression mod-
eling. Most packages have at least a routine to fit the
Cox proportional hazards model (see Cox Regres-
sion Model; Proportional Hazards, Overview) with
fixed time covariates to right-censored data. Some
packages have routines for checking model assump-
tions (see Model Checking) of which a check of
the proportional hazards assumption is most common
(see Goodness of Fit in Survival Analysis). Most
packages allow for time-dependent covariates.

The final area is parametric models for right-
censored data (see Survival Distributions and Their
Characteristics). Most packages have routines for at
least the Weibull model. More complete packages
have routines for the lognormal and log-logistic

models. Many of these packages allow for regression
analysis for right-censored data.

Several authors have compared the adequacy of
statistical packages for survival data. These include
surveys by Dain et al. [6], Goldstein et al. [9], and
Harrell and Goldstein [10]. We refer the interested
reader to these sources for a comparison of packages
for the PC.

In the remainder of this article, we compare and
contrast the abilities of five of the most common sta-
tistical packages in use. These are SAS (Version 8.2),
S-PLUS (version 6.1.2), SPSS (Version 11), STATA
(Version 7), and BMDP (New system 2.0). We have
chosen these five packages since they are comprehen-
sive packages that include a wide range of statistical
routines. They are available for a number of plat-
forms including the PC and UNIX systems. In our
interaction with other biostatisticians, we have found
that these are the packages that seem to be most popu-
lar. Contact information (many packages have contact
sites outside the US as well) and worldwide web site
address for these packages are listed below. Newest
update information, new features and modules, user’s
manuals, and technical support information are often
available on these web sites.

1. BMDP, SPSS Inc., 233 S. Wacker Drive,
11th Floor, Chicago, IL 60606, USA; (312)
651–3000; http://www.statsol.ie/bmdp/bmdp.
htm.

2. SAS, SAS Institute Inc. 100 SAS Campus Drive,
Cary, NC 27513-2414, USA; (919) 677–8000;
http://www.sas.com.

3. SPSS, SPSS Inc., 233 S. Wacker Drive,
11th Floor, Chicago, IL 60606, USA; (312)
651–3000; http://www.spss.com.

4. S-PLUS, Insightful Corporation Global Head-
quarters, 1700 Westlake Avenue, North Suite
500, Seattle, WA 98109-3044, USA; (800) 569-
0123; http://www.splus.com.

5. STATA, STATA Corporation, 4905 Lakeway
Drive, College Station, Texas 77845, USA;
(800)-782-8272; http://www.stata.com.

Summary of Univariate Statistics

Each of the five packages provides the Kaplan–Meier
estimator for right-censored data. The packages
all present estimates of the standard errors using
Greenwood’s formula. Each package provides
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estimates of the median survival function based on
the Kaplan–Meier estimator and confidence intervals
for the median survival based on the Brookmeyer and
Crowley procedure [4]. All these interval estimates of
the median are based on the naı̈ve confidence interval
for the survival function except for the interval
found in STATA that uses a log–log transformed
confidence interval for the survival function. Each
package provides estimates of the mean survival
and its standard error; however, when the last
observation is censored these estimates may differ.
SAS estimates the restricted mean as the area under
the Kaplan–Meier curve up to the last event, while
each of the other packages estimates the area under
the curve up to the largest on study time. STATA
allows for an alternative estimator of the mean based
on completing the tail of the Kaplan–Meier estimator
by an exponential curve as suggested by Brown
et al. [5].

Each of the packages has additional features that
are not shared by all the other packages that we
now summarize.

BMDP. BMDP allows right-censored data only. It
allows the user to produce plots of the estimated
survival function, log survival function and cumula-
tive cumulative hazard function (i.e. − log{Ŝ(t)}).
It provides estimates of the standard error of the
median. BMDP does not give confidence intervals
for the survival function. BMDP also computes life-
table estimates of the survival function and hazard
rate based on grouped survival data.

SAS. SAS also only handles right-censored data.
It provides Kaplan–Meier estimator in the rou-
tine PROC LIFETEST and the Nelson–Aalen esti-
mator of the cumulative hazard rate can be
obtained in PROC PHREG. Naı̈ve confidence inter-
vals are constructed for the survival function
based on the Kaplan–Meier estimator. Both the
Kaplan–Meier and the Fleming–Harrington [8] esti-
mators (exp{−Λ̂(t)}) of the survival function, where
Λ

(̂t)
is the Nelson–Aalen estimator of the cumula-

tive hazard function, can be put into a SAS data set
from which a wide range of plots can be made. SAS
also provides classical life-table estimates based on
grouped data.

S-PLUS. S-PLUS is the most flexible of the pack-
ages. It has versions of the Kaplan–Meier estima-
tor that handle right-, left-, and interval-censored

data [18, 19]. For right-censored data it allows the
user to select between three variance estimators [11]
and three types of confidence intervals [2] (naı̈ve,
log, and log–log transformed). It also provides the
Nelson–Aalen estimator of the hazard rate and Flem-
ing–Harrington’s estimator for the survival proba-
bility. It plots the estimated survival function and
log survival function. Besides making default plots,
a user can easily make custom plots using saved
analysis results and S-PLUS’s powerful graphical
capability. However, it does not provide estimates
based on classical life-table results.

SPSS. SPSS handles right-censored data only. It
plots the estimated survival function. It does not
provide confidence intervals for the survival function.
SPSS does allow the user to perform a life-table
analysis on grouped event time data.

STATA. STATA handles right-censored data. It is
the only one of the five packages to allow the data
to be left truncated. In fact, it allows for more
complicated truncation where patients may move
in and out of the risk set. It provides log–log-
transformed pointwise confidence intervals for the
survival probabilities. It also allows computation of
the Nelson–Aalen’s estimator for the cumulative
hazard function and for confidence intervals based
on this statistic. It does not provide classical life-
table analysis.

Hypothesis Tests

Statistical hypothesis tests for the equality of K ≥ 2
populations using survival data are typically based on
the weighted logrank test (see Linear Rank Tests in
Survival Analysis). This test is based on quadratic
forms constructed from the statistics

Zj =
∑

ti

W(ti )

{
dij − Yj (ti)

d•i

Y•(ti)

}
, (1)

where the sum is over the event times, ti , in the
combined sample, Yj (ti) is the number at risk, and
dij the number of events at time ti in the j th sample.
Here Y•() and d•i are the total number at risk and
number dead in all K groups.

The most common choices for the weight function
are W(t) = 1, which leads to the Mantel–Haenszel
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logrank test and W(t) = Y (t), which gives the Bres-
low–Gehan [3] version of the Wilcoxon test. These
weights are available in all five packages. Other
weight functions that can be used are summarized
in Table 1. Further details on these statistics can be
found in Chapter 7 of [12].

In addition to these tests STATA, BMDP, and S-
PLUS all have tests of trend that can be obtained
using these weight functions. Stratified tests are
directly available in BMDP and STATA. In SAS, the
“STRATA” command in PROC LIFETEST is used to
invoke weighted logrank tests to compare the survival
over subgroups, but the package does not directly
compute stratified tests.

Semiparametric Regression Modeling

All five packages have extensive routines for the
Cox proportional hazards model. These routines all
allow for stratified regression models with both fixed
and user defined time-dependent covariates. They all

allow for right-censored data. At a minimum the
packages return estimates of the risk coefficients,
standard errors of the risk coefficients, and Wald tests
of significance of the risk coefficients. Each of the
packages has the ability to produce estimates and
plots of the predicted survival function for models
with fixed covariates. All the packages have some
type of diagnostic plots.

The packages do differ in what they can com-
pute in a number of ways. Table 2 summarizes the
differences between the packages.

From the table we see that BMDP and SPSS
do not allow delayed entry or left truncation of the
data. Both S-PLUS and STATA allow for individuals
to enter and leave the risk set at multiple times.
SAS also allows for discontinuous time at risk
by using multiple records for individuals and the
counting process form of input. While one can
handle categorical variables in all models, only SPSS
allows the user to specify variables as categorical so
that the appropriate multiple degree of freedom test
is performed.

Table 1 Additional weight functions available for logrank tests

Weight BMDP SAS S-PLUS SPSS STATA

Peto–Peto–Prentice [15] W(t) = Pooled Kaplan–Meier (SKM(t)) YES NO YES NO YES
Tarone and Ware [17] W(t) = Y(t)1/2 YES NO NO YES YES
Fleming–Harrington [7] S(t)p(1 − S(t))q NO NO For q = 0 only NO YES

Table 2 Comparison of features related to the Cox model

BMDP SPSS SAS S-PLUS STATA

Type of Data
Left truncation N N Y Y Y
Discontinuous time at risk N N Y Y Y
Categorical variables N Y N N N

Inference properties
Choice of likelihood for ties N N Y Y Y
Allows robust variances N N Y Y Y
Allows general risk function N N N Y Y
Stepwise model building Y Y Y N N
Frailty modeling N N N Y N
Penalized likelihood N N N Y N

Residuals
Cox–Snell Y Y Y Y Y
Martingale N Y Y Y Y
Deviance N N Y Y Y
Schoenfeld residuals N Y Y Y Y
Weighted Schoenfeld residuals N N Y N Y
Score residuals (DfBeta) N Y Y Y N
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When there are ties in the data, there are a number
of choices for the partial likelihood in the literature
(see [12]) SAS, S-PLUS, and STATA allow the user
to chose between these likelihoods. S-PLUS, SAS,
and STATA allow for robust versions of the variance
of the Cox model including sandwich estimators that
correct for correlation between estimates (see [13]).
S-PLUS allows the user to use a penalized likelihood
approach to smooth estimators. They also use the
penalized likelihood to deal with random effect or
frailty models.

SAS, SPSS, and BMDP all have routines for
forward, backward, and stepwise model building (see
Variable Selection). With the exception of SPSS
these packages do not treat categorical variables as
factors and the results of these automated features
are suspect at times. We recommend model building
by hand, which can be done quite efficiently with any

of the packages. Table 2 also list which residuals the
packages have available (see Residuals for Survival
Analysis). Definitions of these residuals can be found
in Chapter 11 of [12].

Parametric Modeling

Parametric models are often used to analyze survival
data. The accelerated failure-time model has been
suggested as an alternative to the Cox model when
one wants to adjust for covariates. All of the pack-
ages, except SPSS, are able to perform parametric
regression analysis. Parametric survival data analy-
sis depends on the chosen distribution and residuals
can be used in model diagnosis. Available distribu-
tion functions and residual types vary among the
four packages. Packages can handle different types

Table 3 Capabilities in parametric analysis among various packages

BMDP SAS S-PLUS STATA

Available distributions:
Exponential Yes Yes Yes Yes
Gompertz No No No Yes
Generalized gamma No Yes No Yes
Log-logistic Yes Yes Yes Yes
Lognormal Yes Yes Yes Yes
Rayleigh Yes No Yes No
Weibull Yes Yes Yes Yes
Fitting model with no covariate Yes Yes Yes Yes

Data type:
Left censoring No Yes Yes No
Right censoring Yes Yes Yes Yes
Interval censoring No Yes Yes No
Left truncation No No Yes Yes
Time-dependent covariate No No No Yes
Tests significance for individual covariate:
Wald Yes Yes Yes Yes
Likelihood-ratio Yes No No No
Score Yes No No No
Stratified regression model No No Yes Yes

Type of residuals:
Cox–Snell Yes Yes No Yes
Deviance No No Yes Yes
Df-beta No No Yes No
Likelihood displacement No No Yes No
Martingale type No No No Yes
Standardized Yes No Yes No

Multiplicative frailty model:
Gamma frailty No No No Yes
Inverse-Gaussian frailty No No No Yes
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of censored data. Table 3 shows the capabilities of
each of the four packages.

Discussion

The five packages we have discussed have the
ability to compute many of the statistics a practicing
biostatistician needs to analyze survival data. Several
of the packages (SAS, S-PLUS, and STATA) allow
the user to program additional statistical methods.
These programs can also take results from the built-in
routines and perform further analysis on these results.
S-PLUS has an extensive collection of routines for
expected survival, which can be used to compare
survival data to known mortality rates.

The completeness of the packages and the abil-
ity to add additional routines make S-PLUS, SAS,
or STATA the best packages we have found to ana-
lyze survival data. However, the sophistication and
personal preference of the user makes the choice
between the packages difficult.

We close this article with a plea to the manufac-
turer of this software to consider adding important
missing routines for survival data. These include sta-
tistical procedures for competing risks. In particular,
routines for the cumulative incidence function, and
routines for inference for the cumulative incidence
function are needed. Also missing are routines for
either Aalen’s [1] or Lin and Ying’s [14] additive
hazard regression model or for other semiparamet-
ric alternatives to the Cox model.
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Survival Distributions and
Their Characteristics

Many applications in biostatistics involve the model-
ing of lifetime data. In these applications the outcome
of interest is the time, T , until some event occurs.
This event may be death, the appearance of a tumor,
the development of some disease, recurrence of a
disease, conception, cessation of smoking, and so
forth. Here T is a nonnegative random variable from
a homogeneous population (see Survival Analysis,
Overview).

In this article we examine how the distribution of
T can be characterized. Four functions characterize
the distribution of T : the survival function, which
is the probability of an individual surviving beyond
time t ; the hazard rate, which is approximately
the chance an individual of age t experiences the
event in the next instant in time; the probability
density (or mass) function, which is the approximate
unconditional probability of the event occurring at
time t ; and the mean residual life at time t , which
is the mean time to the event of interest, given the
event has not occurred at t . If we know any one
of these four functions, then the other three can be
uniquely determined. These functions are introduced
for continuous, discrete and mixed random variables
in the following sections and the interrelationships
among the four functions are discussed.

The distribution of the time to an event can also
be characterized by the aging properties of the dis-
tribution of T . Aging classes are based on certain
properties of one of the four basic quantities that
describe the distribution of T . These classes are
defined and some basic properties of these classes
are discussed in the final section.

The Survival Function

The basic quantity employed to describe time-to-
event phenomena is the survival function. This func-
tion, also known as the survivor function or survivor-
ship function, is the probability an individual survives
beyond time t . It is defined as

S(t) = Pr(T ≥ t).

In the context of equipment or manufactured item
failures, S(t) is referred to as the reliability function.

Note that the survival function is a nonincreasing
function with a value of 1 at the origin and 0 as t

approaches infinity.
If T is a continuous random variable, then S(t) is

a continuous monotone decreasing function and the
survival function is the complement of the cumula-
tive distribution function F(t) = Pr(T ≤ t). That is,
S(t) = 1 − F(t). The survival function is the integral
of the probability density function f (t). That is,

S(t) = Pr(T ≥ t) =
∫ ∞

t

f (u) du.

Thus, we have the following relationship:

f (t) = − dS(t)

dt
.

Note that f (t)∆t may be thought of as the “approx-
imate” probability of the event occurring at time t

and that f (x) is a nonnegative function with the area
under f (x) being equal to one.

Example

A common distribution used in many applications
is the Weibull distribution with probability den-
sity function f (t) = λαtα−1 exp(−λtα), λ > 0, α >

0. The exponential distribution is a special case
of the Weibull distribution when α = 1. The sur-
vival function for the Weibull distribution is S(t) =
exp(−λtα), λ > 0, α > 0. Survival curves with a co-
mmon median of 6.93 are exhibited in Figure 1
for λ = 0.26328, α = 0.5; λ = 0.1, α = 1; and λ =
0.00208, α = 3.

When T is a discrete random variable then the
survival function is a nonincreasing left-continuous
step function. If T can take on values t0 < t1 <

t2 < . . . with probability mass function (pmf) p(tj ) =
Pr(T = tj ), j = 1, 2, . . . , then

S(t) = Pr(X ≥ t) =
∑

j :tj ≥t

p(tj ).

Note that the survival function and probability mass
function are related by

p(tj ) = S(tj ) − S(tj+1).

Here we have defined S(t) = Pr(T ≥ t) as was the
case in [3] and [5]. This definition was used to make
later formulas for the discrete case simpler. Other
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Figure 1 Comparison of Weibull survival functions

authors (see [4] and [6]) have defined S(t) = Pr(T >

t), which makes the relationship S(t) = 1 − F(t)

hold for both the discrete and continuous case.

The Hazard Function

A basic quantity, foundational in survival analysis,
is the hazard function. This function is also known
as the conditional failure rate in reliability, the force
of mortality in demography, the age-specific failure
rate in epidemiology, the inverse of Mill’s ratio in
economics or simply as the hazard rate. The hazard
rate is defined as

h(t) = lim
∆t→0

Pr(t ≤ T < t + ∆t |T ≥ t)

∆t
. (1)

The hazard rate is a nonnegative function. It tells
us how quickly individuals of a given age are expe-
riencing the event of interest. The quantity h(t)∆t is
the approximate probability that an individual who
has survived to age t will experience the event in the
interval (t, t + ∆t).

This function is particularly useful in determining
the appropriate failure distributions utilizing qualita-
tive information about the mechanism of failure and
for describing the way in which the chance of experi-
encing the event changes with time. There are many
general shapes for the hazard rate. Some generic
types of hazard rate are increasing, decreasing, con-
stant, bathtub-shaped or hump-shaped. Models with
increasing hazard rates arise when there is natural
aging or wear-out. Decreasing hazard functions are
much less common, but find occasional use when
there is a likelihood of very early failure, as in certain
types of electronic devices, or in patients experienc-
ing certain types of transplant. Decreasing hazard
rates often arise as models for heterogeneous pop-
ulations where the hazard rates of members of the
population are random (see Frailty). Most often a
bathtub-shaped hazard is appropriate in populations
followed from birth. Most population mortality data
follow this type of hazard function: early in the pro-
cess, deaths result primarily from infant diseases; then
the death rate stabilizes; later, an increasing haz-
ard rate sets in, due to the natural aging process.
Finally, if the hazard rate is increasing early and
eventually begins declining, then the hazard is termed
‘hump-shaped’. This type of hazard rate is often used
in modeling survival after successful surgery where
there is an initial increase in risk due to infection,
hemorrhaging, or other complications just after the
procedure, followed by a steady decline in risk as the
patient recovers.

If T is a continuous random variable, then

h(t) = f (t)

S(t)
= − d

dt
ln[S(t)].

A related quantity is the cumulative hazard function,
H(t), defined by

H(t) =
∫ t

0
h(u) du = − ln[S(t)].

Thus for continuous lifetimes we have the following
relationship:

S(t) = exp{−H(t)} = exp

{
−

∫ t

0
h(u) du

}
.

The Weibull distribution is flexible enough to
accommodate increasing (α > 1), decreasing (α <

1), and constant hazard rates (α = 1). Figure 2 plots
hazard rates, h(x) = αλxα−1, for the same Weibull
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distributions as in Figure 1. One can see that, though
the three survival functions have the same basic
shape, the three hazard functions are dramatically
different.

When T is a discrete random variable, the hazard
function is

h(tj ) = Pr(T = tj |T ≥ tj ) = p(tj )

S(tj )
, j = 1, 2, . . . .

Since p(tj ) = S(tj ) − S(tj+1), we have

h(tj ) = 1 − S(tj+1)

S(tj )
, j = 1, 2, . . . ,

so the survival function is related to the hazard
function by

S(t) =
∏

j :tj <t

[1 − h(xj )].

For discrete lifetimes the “cumulative hazard” func-
tion is defined by

H(t) =
∑

j :tj <t

h(tj ). (2)

Notice that for this definition the relationship S(t) =
exp[−H(t)] no longer holds true. Some authors [3]
prefer to define the cumulative hazard for discrete
lifetimes as

H(t) =
∑

tj <t

ln[1 − h(tj )]. (3)

Note that for this definition the relationship for con-
tinuous lifetimes, S(t) = exp[−H(t)], will then be
preserved for discrete lifetimes. If the h(tj ) are small,
(2) will be a first-order approximation to (3).

The hazard rate is a well-defined quantity for
the case where T has both discrete and continuous
components. In this case the hazard function defined
by (1) will have a continuous part, hc(t) and a discrete
part with mass hj at time t1 < t2 < . . . . The survival
function in this case can be expressed as

S(t) = exp

{
−

∫ t

0
hc(u) du

} ∏

j :tj <t

(1 − hj ).

For any survival function one can express the
relationship between the hazard rate and the survival
function by the using the notion of a product integral.
For a function, G(), define the product integral of
1 − dG(u) over the range a to b by

P b
a [1 − dG(u)] = lim

r∏

k=1

{1 − [G(uk) − G(uk−1)]},

where a = u1 < · · · < ur = b and the limit is taken
as r → ∞ and uk − uk−1 → 0. Here G is a function
of locally bounded variation which is continuous
from the right and has finite left-hand limits. If we
define the cumulative hazard rate as

H(t) =
∫ t

0
hc(u) du +

∑

j :tj <t

hj ,

then the survival function in the continuous, discrete
or mixed case is given by

S(t) = P t
0 [1 − dH(u)].

Because of this property the product integral plays an
important role in survival analytic techniques.

The Mean Residual Life Function

The fourth basic parameter of interest is the mean
residual life (mrl) at time t . This parameter measures,
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for individuals of age t , their expected remaining
lifetime. It is defined as

mrl(t) = E(T − t |T ≥ t).

It can be shown, using integration by parts or a partial
summation formula, that the mean residual life is the
area under the survival curve to the right of t divided
by S(t). Note that the mean life, µ = mrl(0), is the
total area under the survival curve.

For a continuous random variable we have

mrl(t) =

∫ ∞

t

(u − t)f (t) du

S(t)
=

∫ ∞

t

S(u) dt

S(t)

and

µ = E(T ) =
∫ ∞

0
uf (u) du =

∫ ∞

0
S(u) du.

Also the variance of T is related to the survival
function by

var(T ) = 2
∫ ∞

0
uS(u) du −

[∫ ∞

0
S(u) du

]2

.

In some applications the median residual life,
rather then the mean residual life, is of interest.
To define this quantity recall that the 100pth per-
centile (or pth quantile) of a random variable X with
cumulative distribution function (survival function)
F(x)(S(x)) is the value xp such that

F(xp) ≥ p and S(xp) ≥ 1 − p.

The median lifetime is the 50th percentile, x0.5, of
the distribution of X. If X is a continuous random
variable then the pth quantile is found by solving the
equation S(xp) = 1 − p. It follows that the median
lifetime (mdrl), for a continuous random variable X,
is the value x0.5 such that

S(x0.5) = 0.5.

The median residual life time of T at time t , mdrl(t),
is defined as the median time to the event for an indi-
vidual who has survived to time t . That is, mdrl(t) is
the solution to the equation

S(mdrl(t))

S(t)
= 0.5.
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The population median is simply the median residual
life at time 0.

To illustrate these quantities consider the three
Weibull distributions considered earlier. Figure 3
shows the mean residual life function for the Weibull
models with α = 0.5, 1.0 and 3.0. As the figure
shows, the mean residual life is constant for the
exponential distribution (α = 1), decreasing for the
case where α = 3 and increasing for the case where
α = 0.5. Note that the trend in the mean residual
life is reversed from the trend in the hazard rate
in that when the hazard rate is increasing, reflecting
aging, the mean residual life is decreasing. Figure 4
depicts the median residual life functions for the three
Weibull models. The shapes of the functions are quite
similar to those of the mean residual life functions.

Relationship Between Characterizations

Interrelationships between the characterizations dis-
cussed earlier, for a continuous lifetime T , may be
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summarized as follows:

S(t) =
∫ ∞

t

f (u) du

= exp

{
−

∫ t

0
h(u) du

}

= exp{−H(t)}

= mrl(0)

mrl(t)
exp

{
−

∫ t

0

du

mrl(u)

}
;

f (t) = − d

dt
S(t)

= h(t)S(t)

=
(

d

dt
mrl(t) + 1

)(
mrl(0)

mrl(t)2

)

× exp

{
−

∫ t

0

du

mrl(u)

}
;

h(t) = − d

dt
ln[S(t)]

= f (t)

S(t)

=

(
d

dt
mrl(t) + 1

)

mrl(t)
;

and

mrl(t) =

∫ ∞

t

S(u) du

S(t)

=

∫ ∞

t

(u − t)f (u) du

S(t)
.

For a discrete random variable we have the fol-
lowing relationships:

S(t) =
∑

j :tj ≥t

p(tj )

=
∏

j :tj <t

[1 − h(tj )].

If T is an integer-valued random variable with mean
residual life at time k equal to mk, k = 0, 1, 2, . . . ,

and m0 is finite, then we have

S(k) = 1 + m0

mk

k∏

j=0

mj

1 + mj

.

Also, for any discrete survival function, we have

p(tj ) = S(tj ) − S(tj+1)

= h(tj )S(tj ), j = 1, 2, . . . ;

h(tj ) = p(tj )

S(tj )
;

and

mrl(t)=
[tk+1 − t]S(tk+1) +

∑

j :tj ≥tk+1

[tj+1 − tj ]S(tj+1)

S(t)
,

for tk ≤ t < tk+1.

Classes of Aging Distributions

An important characteristic of survival distribution is
its aging properties (see Aging Models). There are
a number of classes that have been suggested in the
literature to categorize distributions based on their
aging properties or their dual. The first aging class is
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the class of increasing hazard rate (IHR) distributions
and the dual class of decreasing hazard rate (DHR)
distributions. A survival distribution is said to be in
the IHR (DHR) class if and only if

S(t + x)

S(t)
= S(x|t) is decreasing (increasing)

in t for all x.

The definition says that T has the IHR aging property
if the probability an individual of age t survives
an additional period of time x is decreasing with
time. If T is a continuous random variable then an
equivalent definition of the IHR (DHR) class is that
the hazard rate h(t) is increasing (decreasing) for
all t . Examples of distributions that fall in the IHR
class are the Weibull distribution with α > 1 and the
gamma distribution with shape parameter greater than
one.

A second, more general, aging class is the class
of increasing (decreasing) hazard rate on the average,
IHRA (DHRA), distributions. A distribution is said
to fall in the IHRA (DHRA) class if and only if

−
(

1

t

)
ln[S(t)] is increasing (decreasing) in t. (4)

The definition arises by declaring a distribution to be
in the IHRA class when its cumulative hazard rate,
− ln[S(t)] is increasing faster than the cumulative
hazard rate of an exponential random variable, t .
Since the exponential distribution reflects a model
with no aging, this class is one of the distributions
for which individuals are, on the average, aging.
There are several equivalent definitions of a IHRA
class. Since (4) implies that S1/t (t) is increasing in t

we have that T is in the IHRA class if and only
if S(θt) ≥ Sθ(t). A second characterization of the
IHRA class is that if T is in the IHRA class, then for
any λ > 0 the quantity S(t) − exp(−λt) has at most
one change of sign, and if it does have a change
in sign then it is from positive to negative. The
class of IHRA distributions is larger than the class
of IHR distributions in that every IHR distribution is
an IHRA distribution but the converse is not true.

A third aging class is the class of decreasing
(increasing) mean residual life, DMRL (IMRL), dis-
tributions. A distribution is said to be in the DMRL

(IMRL) class if

mrl(t)=

∫ ∞

t

S(x) dx

S(t)
is decreasing (increasing) in t.

This aging class, which includes all IHR models, is
one where the mean remaining life of an individual
of age t is becoming shorter as t increases.

A fourth aging class is the class of new better
(worst) than used, NBU (NWU), distributions. Here a
distribution is in the NBU (NWU) class if and only if

S(x + t) ≤ (≥)S(x)S(t), for any x and t.

An equivalent definition for the NBU class is

S(x + t)

S(t)
=Pr(T ≥ x+t |T ≥ t)≤Pr(T ≥ x)=S(x).

From this second definition we see that T has an NBU
distribution if the probability an individual of age t

lives an additional x time units is smaller than the
probability an individual of age 0 survives to age x.
This aging class includes all the IHRA distributions.

A fifth aging class is the class of new better
(worse) than used in expectation, NBUE (NWUE),
distributions. A distribution is in the NBUE (NWUE)
class if its mean, µ, is finite and

∫ ∞

t

S(u) du ≤ (≥)µS(t), for all t.

The NBUE class is one where the mean residual life
of an individual of age t is less that the mean of an
individual of age 0.

A final aging class is the class of harmonic new
better (worse) than used in expectation, HNBUE
(HNWUE), distributions. A distribution is said to be
in the HNBUE (HNWUE) class if its mean is finite
and ∫ ∞

t

S(u) du ≤ µ exp

(−t

µ

)
.

An equivalent definition for the HNBUE class is

{
1

t

∫ t

0

dx

mrl(x)

}−1

≤ mrl(0).

This means that for a HNBUE distribution the inte-
gral harmonic value of the residual life of an individ-
ual of age t is smaller than the same quantity for a
newly born individual.
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The aging classes are ordered as follows:

IHR��⇒ IHRA��⇒NBU��⇒NBUE��⇒HNBUE;

IHR��⇒DMRL��⇒NBUE��⇒HNBUE;

DHR��⇒DHRA��⇒NWU��⇒NWUE��⇒HNWUE;

DHR��⇒ IMRL��⇒NWUE��⇒HNWUE.

Further discussion of these failure classes can be
found in [1] and [2].
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Synergy of Exposure
Effects

Although environmental regulation of chemical expo-
sures is typically based on laboratory studies in which
animals are dosed to single agents, humans are invari-
ably exposed to mixtures. People who drink may
smoke as well. Cigarette smoke itself is an exam-
ple of a mixture. Modeling and predicting the effects
of combined exposures, or of exposures experienced
in a particular temporal sequence, remain challenges
to toxicologists and epidemiologists.

The effect associated with several exposures in
combination sometimes far exceeds what would have
been expected on the basis of their separate effects, a
phenomenon known as “synergism” (or “synergy”).
One example is the occurrence of lung cancer in rela-
tion to exposure to cigarette smoking and arsenic,
where the risk in those exposed to both is high [6].
While the etiologic basis for this particular mutual
enhancement of effect is not well understood, the
demonstration of synergism of exposures can pro-
vide important insight into causal mechanisms and
can suggest strategies for intervention. For example,
mental retardation invariably ensues when a child has
the metabolic disorder phenylketonuria and also con-
sumes the amino acid phenylalanine in his or her diet;
removal of dietary phenylalanine prevents the adverse
effect. Negative synergism, known as “antagonism”,
can also arise, as when exposure to the polio virus
follows exposure to the polio vaccine. Examples of
more subtle forms of antagonism include scenarios
where two different chemical exposures compete for
the same population of receptor sites or when one
interferes with the absorption or metabolism of the
other.

While most would agree that epidemiologic syn-
ergism among exposures exists, defining it is prob-
lematic. Usually “synergism” is said to be present
when the effect of exposure to a combination of fac-
tors exceeds the sum of the separate, factor-specific
effects. We must then define what it means to “sum”
effects. Such a definition would establish a model for
independence, compared with which positive depar-
tures could be considered synergistic, and negative
departures, antagonistic. Synergism and antagonism
cannot be defined except in relation to some definition
for independence of effect, except in rare scenarios

where only one of the two factors has an effect when
experienced without the other, and the effect of the
combined exposures exceeds that of the one factor
alone. The phenylketonuria example and the polio
vaccine example were both of the latter, unambigu-
ous type.

Most instances of mutual enhancement of effect
are not of that simple, pure form, so a more general
definition is needed. When the outcome of interest is
binary, e.g. the occurrence of a particular disease, the
exposure–response formulation often includes speci-
fication of a function to serve as a “link” between the
risk of disease and the exposures. If the risk of dis-
ease, r , is first subjected to a “logit” transformation,
by taking the logarithm of the “odds”, r/(1 − r), then
effect additivity on this inherently multiplicative scale
is very different from additivity on the untransformed,
“absolute”, i.e. additive scale (see Additive Model).
Thus, for example, if two factors each increase the
risk of disease, and their combined effect can be
correctly represented by a logistic model with no
interaction (“product”) term, then an additive for-
mulation would require a positive interaction term.
Conversely, the adequacy of an additive model for
the combined effects would mean that a multiplica-
tive model would require an interaction term. The
distinction between this kind of statistical interaction,
which corresponds simply to departure from addi-
tivity on some mathematically convenient scale, and
biologic interaction, which corresponds to true bio-
logic mutual enhancement of a causal mechanism,
has long been appreciated by biostatisticians and
epidemiologists [7, 16], who have searched for a for-
mulation with biologic interpretability. The notion of
synergism or “biologic interaction” can be defined as
“the inter-dependent operation of two or more causes
to produce disease” [15]. A related concept is that
of independence of two factors (say, A and B) in a
public health sense, which is said to occur “when
the number of cases of disease that would occur
in the population does not depend on the extent to
which A and B occur together in the same individu-
als” [15].

While synergism or antagonism can involve
causative factors or protective factors, the choice of
null model can be different for the joint effect of
protective factors [2, 23]; or for the joint effect of
a protective and a causative factor. The discussion
that follows will apply only to the combined effect
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of causative factors, i.e. factors that each can increase
the risk of the disease under study.

Rothman [14] proposes a conceptual framework
for disease causality, where several “component”
causes act together to form in their aggregate a
“sufficient” cause, for which each component cause
is necessary to its completion. (This conceptual
model can be extended to continuous exposures by
supposing that exceedence of a particular level of
exposure is required for each sufficient cause in
which the continuous exposure participates.) A single
exposure may participate in (i.e. be a necessary
component in) several different sufficient causes
if there are several distinct pathways that involve
it and can lead to the disease. If two exposures
participate in the same sufficient cause, then that
cause can only produce the disease when both are
present, and such a pathway would imply synergism
between the two exposures in a biologic sense [14]
(see Causation).

For a single exposure, the difference between
the incidence of the disease among those with the
factor and among those without the factor can be
interpreted as the incidence rate of completion for
those sufficient causes that require that factor. By
extension, the incidence rate for those with two fac-
tors, say A and B, minus those with neither is
the sum of the incidence rate for completion of
those sufficient causes involving A and not B and
the incidence rate for completion of those suffi-
cient causes involving B and not A, unless there
exist one or more sufficient causes that require both
A and B. In this way, the “causal pies” model
proposed by Rothman leads naturally to the fol-
lowing model for independence based on incidence
rates:

IAB − I
AB

= I
AB

− I
AB

+ I
AB

− I
AB

, (1)

where the overbar indicates the absence of the factor.
This can be seen as additivity on the “risk difference”
or absolute scale, and Rothman argues that abso-
lute additivity is the only proper epidemiologic null
model for “independent” effects. (Notice, however,
that unless the lifetime risks are very small, model (1)
does not imply the independence of A and B in the
public health sense defined above: to the extent that
A and B co-occur, the A-dependent and B-dependent
pathways will compete for the same victims.) Such a
model can easily be fitted to cohort data using stan-
dard statistical packages, such as SAS (the GENMOD

procedure) and GLIM [19] (see Software, Biostatis-
tical). The data are considered to provide evidence
for synergism if the fit is significantly improved by
inclusion of an interaction term, i.e. a nonzero γ , in
the following model:

R[D|A,B status] = µ + α(A present) + β(B present)

+ γ ( both A and B present),

where R denotes the incidence of the disease. For
multilevel exposures, d1 and d2, to two exposures
that now are not simply present or absent, the above
zero-γ null formation generalizes to linearity in f (d1)

and g(d2), for exposure-specific exposure–response
functions f (·) and g(·).

It is instructive to think about what self-
independence would mean for a single exposure.
Exposure to 40 units of an exposure can be thought of
as a combined exposure to two doses of 20 units each,
or to 30 units, together with 10 units, and so on. For
these separate exposures to combine independently,
one can show that the exposure–response must
be linear. Low-level alpha radiation provides
an example where self-independence is plausible.
Irreparable chromosomal damage at the cellular level
caused by bombardment by a passing alpha particle is
random, rare, and heritable, providing radiobiologists
with a strong theoretical justification for a linear
exposure–response.

Returning to the binary exposure scenario, when
a case–control design is used to study the etiology
of a rare disease, the incidence rates in (1) cannot
be estimated. However, dividing through by the
background incidence, and letting RRAB denote the
relative risk for the combined exposure, relative
to the background risk, leads to the approximate
relation:

RRAB = RR
AB

+ RR
AB

− 1.0, (2)

and thus independence can be assessed using
case–control data. Wacholder & Weinberg [20]
provide methods for evaluating the fit of the additive
model to case–control data, under various designs.

We have thus far considered effects of two expo-
sures on disease risk, presuming that the unexposed
state is unambiguously defined, whereas Greenland &
Poole [4] point out that the choice of coding of one
level as “unexposed” can be arbitrary. One example is
sex, where males could be considered unexposed (to
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being female) or females could be considered unex-
posed (to being male). This raises the question as to
how such factors should be incorporated in evalua-
tions of synergistic effects. One can use algebra to
show, however, that the above additivity criterion for
independence is invariant under recoding of such a
variable.

Under the usual understanding of the sufficient
causes model, the disease invariably occurs once
all components of a particular sufficient cause have
been assembled, and in this sense Rothman’s con-
ceptual model is deterministic. Others have pre-
ferred to begin with a more stochastic conceptual
approach and have nonetheless arrived at the same
null model (1) for independence. In this way, diver-
gent approaches to conceptualizing independence
converge to a common mathematical formulation for
the null model.

The stochastic approach has its roots in toxicology.
Bliss [1] defines “independent joint action” between
“poisons” as meaning that “the poisons or drugs
act independently and have different modes of toxic
action”. Finney [3] provides mathematical rigor by
specifying that “simple independent action” between
two factors obtains if the outcomes are probabilisti-
cally independent. For one exposed to levels d1 and
d2 of two different factors, the probability of avoid-
ing the outcome (1 minus the risk) can be denoted
Q(d1, d2), so that the background “spontaneous”
probability of nonoccurrence is Q(0, 0). Probabilistic
independence implies the following relationship:

Q(d1, d2) = Q(d1, 0)Q(0, d2)

Q(0, 0)
. (3)

This reflects a scenario where the two causal mech-
anisms are completely separate and unrelated and
where each of the exposure-dependent causal pro-
cesses is independent of the background causal
processes, i.e. those mechanisms that can pro-
duce the disease in the absence of either expo-
sure.

Weinberg [23] describes a paradigm for this ideal-
ized model (3) in relation to two hunters, unaware of
each other’s presence, but shooting at the same ducks.
To survive, a duck must stay clear of both. Under
this independence scenario, the probability that the
duck will survive some interval of time is the product
of the probabilities that it escapes both hunters and
also does not die of causes unrelated to being shot.

This is the simplest probability-based notion of inde-
pendence, corresponding to the situation where the
exposures have completely separate biological modes
of action.

This model, which can be written in generalized
linear model form as additive in the log of the nonre-
sponse, ln[Q(d1, d2)], has been applied to assessing
synergism in animal experiments [21] and Korn &
Liu [9] proposed a Mantel–Haenszel-type statistic
for synergism based on follow-up with continuous
failure times.

Mathematically, models (1) and (3) are equivalent.
If one integrates risk over any fixed length of
time, then the additive formulation (1) can be seen
(replacing the factor A by the continuous d1 and
B by d2) as equivalent to model (3), where the
function Q(d1, d2) is interpreted as the probability
of survival without the disease over the specified
follow-up interval for those with rates as given by
(1). Conversely, the model given by (3) can be
shown to imply model (1), because the negative of
ln[Q(d1, d2)] converges in the limit, as the interval
of time (hence the associated risk) becomes small,
to the incidence rate associated with the combined
exposure (d1, d2).

In the context of a rare disease, either formulation
leads naturally to the case–control-based index for
synergism proposed by Rothman [13]:

S = RRAB − 1

RR
AB

+ RR
AB

− 2
,

who also defines a synergism index for cohort data
and provides standard error formulas for computing
confidence intervals. Another index for synergism,
resembling the usual interaction term in analysis of
variance, provides a direct estimate for the excess
risk associated with synergistic effects among those
with both exposures: T = RAB − R

AB
− R

AB
+ R

AB

has certain advantages but can only be estimated
in the context of a cohort study [7]. Wahrendorf
et al. [21] propose a different index that can be used
in cohort studies:

W = Q(A, B)Q(0, 0)

A(AB)Q(A, B)
,

which, for a rare outcome, is approximately exp(−T ),
and should, in general, be one under independence.
Weinberg [23] refers to W as a “health ratio” similar
to a risk ratio (see Relative Risk), but interpretable
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as the proportion avoiding the disease divided by
the expected (based on independence) proportion
avoiding disease, among those with both exposures.
Simulations comparing W , T , and a third index, G,
proposed by Korn & Liu [9], revealed that tests based
on ln (W ) had close-to-nominal size and relatively
good power [12].

Statistics representing the fractional excess in the
disease rate that is attributable to the synergistic
effects of two factors have been developed, based
on this model for independence. Hamilton [5] defines
the “proportion of disease attributable to synergism”
by taking the difference between the observed and
expected risk among those with both divided by the
overall risk and multiplying by the prevalence in the
population of the combined exposure. Walker [22]
later defines the “proportion of disease attributable
to the combined effect of two factors” differently, by
subtracting the expected from the observed rate of
disease in those exposed to both factors and dividing
by the observed rate. The difference between the
indices proposed by Hamilton, and Walker, is that
the Hamilton index divides by the overall population
rate, while that of Walker divides by the disease rate
among those with both exposures. Thus, the latter is
more focused on etiology and the former on public
health.

Darroch & Borkent [2] have recently revisited
the question of how to assess the proportion of
disease attributable to synergistic effects, within the
context of a deterministic paradigm described by
Hamilton [5]. They begin with the presumption that
there are six types of people in the population: those
who will get the disease regardless of their exposure
to A and/or B; those who will not get the disease
regardless of their exposure to A and/or B; those
who will get the disease with A but will not with
B or with neither; those who will get the disease
with B but will not with A or with neither; those
who will get the disease with A or with B but will
not with neither; and those who will only get the
disease in the presence of both A and B. Because
only four parameters are estimable on the basis of
relating the combined exposure to the observable
risk of the disease, the fraction in the synergistic
category, who would only get the disease with both
exposures, cannot be directly estimated. Darroch &
Borkent [2] propose an estimate based on maximum
entropy, and illustrate its application to the problem
of partitioning the cases of lung cancer among those

exposed to both smoking and radiation into four parts:
the fraction caused by smoking alone; the fraction
caused by radiation alone; the fraction that would
have developed even with neither exposure; and the
fraction that developed as a result of the combined
exposure. Extensions of this approach to multilevel
exposures remain to be developed.

Both conceptualizations, the deterministic one
championed by Rothman and Hamilton, and the
probabilistic one preferred by toxicologists, are useful
for clarifying our thinking about causality, but both
have limitations. Suppose there are two distinct
sufficient causes for the disease of interest, one
requiring A and one requiring B. Koopman [8] points
out that if they have a component cause in common,
say C, then A and B will compete for the same pool
of susceptibles, i.e. those with C, and this competition
can produce apparent antagonism. This will be true
even if we presume that the two sufficient causes
are independent among those with C. Such shared
causes may be common. Genetic factors, for example,
can interact with exposures to produce disease; the
existence of genetically based contributory causes,
while usually unknown to the investigator, may be
the rule rather than the exception.

Seen in the hunter paradigm for probabilistic inde-
pendence, some ducks, depending on their size and
coloring, are easier to see (hence to shoot) than oth-
ers. Such variation among individuals in inherent
susceptibility can produce apparent nonindependence,
even when the causal processes (the two hunters)
are truly functioning independently at the level of
each individual at risk. Darroch & Borkent allow for
the resulting inherent nonidentifiability of parame-
ters within a deterministic conceptual framework by
proposing a maximum entropy approach, while oth-
ers [10, 23] compute upper and lower bounds for
synergism indices that allow for covarying suscep-
tibilities to A and to B across individuals in the
population.

Whenever the epidemiologist begins with param-
eter relationships observed in the data and draws
inferences regarding the likelihood that causal mech-
anisms for two different exposures are biologically
linked, warning bells should sound: the same epi-
demiologic data can be consistent with very differ-
ent underlying biologic scenarios, as discussed at
length by Thompson [18]. Nevertheless, epidemiol-
ogy can provide important clues regarding interde-
pendent causal mechanisms.
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A related set of issues not discussed here
involves the epidemiologic identification of “initia-
tor/promoter” relationships among pairs of exposures,
where their temporal ordering can have an effect on
risk [11] and [17] (see Effect Modification).
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Systematic Error

Systematic error is the bias that results when a data-
gathering process or method of analysis leads to
results expected to deviate from the true quantity
to be estimated. Unlike random error, systematic
error is not ameliorated by increasing sample size,
which only serves to obtain more precise biased
estimates of the desired quantity (see Random Error

for a simple example of systematic error.) Specific
types of systematic errors in epidemiologic stud-
ies are discussed in several articles (see Bias in
Case–Control Studies; Bias in Cohort Studies;
Bias in Observational Studies; Bias, Overview;
Confounding; Validity and Generalizability in Epi-
demiologic Studies).

MITCHELL H. GAIL



Systematic Sampling
Methods

Systematic sampling is a simple and convenient
sampling technique that is widely used in practice
(see Sampling Frames). While it is attractive in its
simplicity and ease of use, care should be taken in the
application of this sampling technique. Depending on
the structure of the study population, systematic sam-
pling can be at best the optimal selection method, or
at worst a method that provides no more information
beyond the taking of a single observation at random.

Reviews of the literature of systematic sampling,
as well as some applications of systematic sampling,
may be found in Bellhouse [2], Buckland [4],
Iachan [13], and Murthy & Rao [17]. Monographs
with significant technical detail on systematic
sampling have been written by Cochran [7], Levy
& Lemeshow [15], Murthy [16], and Sukhatme
et al. [20].

To take a systematic sample the population must
first be sequentially ordered in some way. This
ordering may have structure to it, such as houses
on a street or an alphabetic list of names from a
directory. Alternatively, there may be no structure,
such as a frame listed in random order of the sampling
units. A systematic sample is chosen by selecting
an initial unit using a random start in the ordered
population and then by selecting subsequent units at
equal intervals from the random start. Since only
one unit has been randomly selected, there is no
estimate of variation that is unbiased with respect
to the sampling design.

More formally, the study population may be
defined over a fixed set of units labeled u = 1, . . . , N ,
with measurement yu attached to the unit labeled u. A
systematic sample of size n is obtained by drawing a
random integer r from 1, . . . , N , and sampling the set
of units given by s = {r, r + k, r + 2k, . . . , r + (n −
1)k}. The term k is called the sampling interval. For
any j for which r + jk > N , then the unit selected
is r + jk − N . The selection method reduces to the
usual notion of systematic sampling when N/n is
an integer and when k is chosen as N/n. This
type of systematic sampling is equivalent to cluster
sampling with the selection of a single cluster. When
N/n is not an integer, the selection method is known
as circular systematic sampling. The typical choices

for k in this case are the greatest integer in N/n or
the integer nearest N/n. Most classical and modern
textbooks on sampling discuss systematic sampling
from a finite population.

Applications of systematic sampling are wide
ranging and include any population which can be put
into a list. Systematic sampling is also useful when
a sampling frame or list of the ultimate sampling
units is not available. Kalton [14] has given several
examples of this. His examples pertain to the use
of systematic sampling for the sampling of human
populations when they are mobile. These examples
range from exit polls on election day in which every
kth person leaving a polling station is interviewed to
road traffic surveys in which every kth vehicle in a
particular lane of traffic is sampled.

For any finite population, means and variances
of sample statistics are calculated through the first-
and second-order inclusion probabilities. These are
respectively πu, the probability that unit u is included
in the sample, and πuv, the probability the units u and
v are both included in the sample. For systematic
sampling, πu = n/N . For the special case in which
N/n is an integer, the joint inclusion probability
πuv = n/N when |u − v| is divisible by the sampling
interval k, and is 0 otherwise.

Alternately, the population may be defined on a
continuum with the measurement yu attached to u,
where u is in the interval [0, N ]. The initial unit
r is chosen from the interval [0, k] and, as before,
the set of sampled units is given by s = {r, r + k, r +
2k, . . . , r + (n − 1)k}. It is not necessary that k be an
integer in this case. Populations on a continuum are
encountered in the stereologic examination of tissues.
Sampling problems here are problems in geometric
probability. Detailed descriptions of the theory and
application of systematic sampling to stereology
are given in Gundersen & Jensen [9] and Cruz-
Orive [8]. An application of systematic sampling in
this area is given in Pache et al. [18]. They describe
techniques for the estimation of lung volume and
the volume of other structures inside the lung, such
as bronchi and arteries. Volume is estimated from
serial sections of lung specimens using a CT scan.
The serial sections are obtained through systematic
sampling.

In descriptive surveys, the parameter that is usu-
ally of interest is the population mean Y , which may
be expressed as

∑N
u=1 yu/N for the finite population,

or as
∫ N

0 yu du/N for the population defined on a
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continuum. For either situation the estimator of Y

is given by the sample mean for the systematic sam-
ple chosen by the random start r, yr = ∑n−1

j=0 yr+jk/n.
The variance of this estimator, denoted by Vsys, is
given by

∑N
r=1(yr − Y )2/N in the finite popula-

tion framework. When N/n is an integer and when
k = N/n, then Vsys reduces to the more common
expression of the variance

∑k
r=1(yr − Y )2/k. The

equivalent expression in the population defined on
a continuum is

∫ k

0 (yr − Y )2 dr/k.
Often, there is structure to a population which can

be modeled mathematically. In most situations with
structure present, systematic sampling can be used
to advantage in the sense of reducing the variance
of the estimate of Y when compared with estimates
obtained from other sampling designs. The assumed
structure is usually modeled by assuming that the
measurement yu is an random variable and by
making assumptions about the first- or second-order
moments of this random variable. There are now
two sources of random variation to consider, one due
to the sample selection procedure and the other to
assuming that yu is a random variable. One generally
accepted measure of the variation of an estimator
in this case is to average the variance obtained
under the sampling design over the distribution of
the random variable assumed on the measurement
yu. For systematic sampling this may be denoted by
EmVsys, where Em is the expectation with respect to
the model assumption on yu. This measure was first
introduced by Cochran [6].

There are several examples of populations with
models assumed on the first moment:

1. Em(yu) = µ;
2. Em(yu) = α + βu;
3. Em(yu) = α + βu + γ u2; and
4. Em(yu) = ∑∞

v=−∞ cv exp(2π ivu/p) where π =
3.14159 . . . , i = (−1)1/2, cv are Fourier coeffi-
cients and p is a constant.

For each of these examples it is assumed that
the ys are uncorrelated and that the second central
moment is σ 2, a constant. Models 1, 2, and 3 describe
constant, linear and quadratic trends in the measure-
ment with respect to the label number. Model 4 is
a model of periodic variation with period p. Under
model 1, systematic sampling has the same efficiency
as simple random sampling without replacement
(see Sampling With and Without Replacement) or

any other design with constant probability of inclu-
sion for each of the sample units. Under models 2 and
3, systematic sampling is more efficient than simple
random sampling but is less efficient than strati-
fication (see Stratified Sampling). The efficiency
of systematic sampling can be markedly improved
under models 2 and 3 by changing the estimator.
In particular, the new estimator is the sample mean
plus a weight times the difference between the mea-
surements with the largest and smallest labels. The
resulting estimator, known as Yate’s end corrections
estimator, eliminates both α and β as components
of the variance (see Variance Components). In the
special case of N = nk, the end corrections estimator
is given by yr + (2r − k − 1)(yr − yr+(n−1)k)/[2(n −
1)k]. The estimator under circular systematic sam-
pling is described in Cochran [7]. Under the model
for periodic variation, given as model 4, the best and
worst of situations can occur. When the sampling
interval k coincides with the period p, then system-
atic sampling is equivalent to taking a simple random
sample of one unit. When the sampling interval is the
half period, or k = p/2, then the only component of
variance is σ 2.

The most common model assumption for the
second central moment is autocorrelation. The first
moment is assumed to be as in model 1, with the
second-order central moments given by Em(yu+t −
µ)(yu − µ) = σ 2ρ(t) with ρ(0) = 1, where ρ(t) is
the autocorrelation function at lag t . When ρ(t) is
concave and decreasing in t , systematic sampling is
more efficient than any other sampling scheme which
has constant probability of inclusion for each of
the sample units. Concave decreasing autocorrelation
functions are obtained when the ys are modeled by
an autoregressive process of any finite order such that
the roots of the characteristic equations are real.

A simplifying assumption that is often made for
systematic sampling is that the units are in random
order. Then the sample that is obtained is treated
as if it were from a simple random sample. More
formally, the random ordering corresponds to the
assumption that the set of finite population measure-
ments y1, . . . , yN are a random permutation of a set of
fixed numbers z1, . . . , zN . Under this random permu-
tation model, expressed in a linear model framework
originally by Rao [19] (see General Linear Model),
systematic sampling is equivalent in efficiency to any
sampling design with constant inclusion probability.
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As noted previously, since a single random start
was used to obtain a systematic sample, there is
no unbiased estimator of the variance of the sample
mean. Here unbiasedness is meant to be with respect
to the sampling design or method of sampling. In
view of this, there are at least three ways to obtain an
estimate of variability based on the single systematic
sample:

1. Make a simplifying assumption. In particular
assume random ordering of the units so that the
sample obtained is equivalent to a simple random
sample.

2. Assume a trend in the data and base the variance
estimate on squared differences between succes-
sive observations in the sample.

3. Use the data to estimate the model parameters in
EmVsys, and use this as the estimate of Vsys.

In the first case, the unbiased variance estimator from
simple random sampling (N − n)s2/(Nn) may be
used, where s2 = ∑n−1

j=0(yr+jk − yr)
2/(n − 1) is the

variance within the obtained systematic sample. If
the random ordering assumption is correct then this
estimator is unbiased for Vsys, where un-biasedness
is observed with respect to the random permutation
model. This estimator generally works well when
there is no trend in the population or when the
trend is weak. When a linear trend is present as in
model 2, the variance is a function of β2, where
β is the slope in the linear trend function. The
variance estimator suggested in the second case will
also be a function of β2. The estimator is then of
the same form as in the first case, with s2 replaced
by

∑n−2
j=0(yr+jk+k − yr+jk)

2/2(n − 1). This variance
estimator, which tends to work well under various
types of trends, and other similar variance estimators,
are described in Wolter [22]. If the third strategy is
followed, it is necessary that the model assumption be
correct. The variance estimator will work well under
the correct model assumption but may not be robust
to departures from the model.

If a design unbiased estimate of variance is of pri-
mary concern, then a change to the sampling design
must be considered. One way to achieve an unbiased
estimator while retaining some of the convenience of
systematic sampling is take more than one random
start, or repeated systematic samples. When N = nk

this is equivalent to cluster sampling with more than
one cluster selected. Under autocorrelation and trend

models, this method is less efficient than systematic
sampling of equivalent sample size with a single
random start. What is gained in unbiased variance
estimation is lost in efficiency and in some conve-
nience. If the units are in random order, then they are
equally efficient so that convenience is the only issue.
A second approach is to augment the single random
start systematic sample with a small simple random
sample. This retains most of the convenience of sys-
tematic sampling. However, the unbiased estimate of
variance can be negative.

In many large-scale surveys with stratification and
two or more stages of sampling (see Multistage
Sampling) the primary sampling units, or the units
at the first stage of sampling, are often chosen by
sampling with probability proportionate to the size
of the primary. There are several sampling methods
which yield the inclusion probability for a unit pro-
portional to some size variable. These are reviewed
in Brewer & Hanif [3]. Among these methods, prob-
ability proportional to size (pps) systematic sampling
is simple and convenient to execute. An application
of pps systematic sampling to a large-scale survey
is given in Chambless [5]. He describes a survey
taken in and near Augsberg, Germany, as part of
the World Health Organization’s MONICA program
(Monitoring Trends in Cardiovascular Diseases). The
purpose of this international program was to study the
relationship between risk factor levels, estimated by
sample surveys, and the incidence rates for coronary
heart disease, estimated from population registers.
The design reported by Chambless for sampling out-
side of Augsberg was a pps systematic sample of
administrative areas, where the size variable was
population size, and then a stratified sample of indi-
viduals within the chosen areas. The stratification was
done on age and sex. This design yields an approxi-
mate equal probability of selection for each individual
in the population.

As in the equal probability case, the population
units can be or can be put in random order. Ran-
domized pps systematic sampling, as well as the
nonrandomized version, has been used extensively for
primary sample unit selection in the 1970s and 1980s
for Canada’s national monthly survey of employ-
ment and unemployment, the Canadian Labour Force
Survey. Probability proportional to size systematic
sampling was used in favor of other pps sampling
methods because of the flexibility of its use in



4 Systematic Sampling Methods

sampling on successive occasions and because of the
ease with which the sample can be expanded.

To describe the pps systematic sampling scheme,
denote the size variable for unit u by xu. Any pps
sampling design will yield πu ∝ xu or πu = nxu/X,
where X = ∑N

u=1 xu is the population total of the
size variables. A pps systematic sample is chosen
in the following way. Form the cumulative totals
Tu = ∑u

i=1 xi for u = 1, . . . , N . Draw a random
integer r from 1, . . . , X, and obtain the set of
integers given by s = {r, r + k, r + 2k, . . . , r + (n −
1)k}. The sampling interval k is the integer nearest
X/n. If for any j, r + jk > X, then the integer
selected is r + jk − X. Unit u is selected for the
sample if Tu−1 < r + jk ≤ Tu. The selection method
reduces to systematic sampling with equal probability
when xu = 1 for all u. When X/n is an integer then,
similar to the equal probability case, the selection
procedure is equivalent to drawing the random start r

from 1, . . . , k. Randomized pps systematic sampling
is obtained when the N population units are in placed
in random order prior to sample selection. As in the
equal probability sampling case if the simplifying
assumption of random ordering of the population
units is made, or if random ordering is imposed, then
relatively simple and valid variance estimates can be
obtained.

The estimate of Y is given by the Horvitz–
Thompson estimator,

∑
u∈s yu/(Nπu). For large

population sizes and small sampling fractions (less
than 5%), the variance of the estimate may be approx-
imated by applying the appropriate formula for pps
sampling with replacement. For other situations, the
Yates–Grundy form of the estimate of variance may
be used. This involves knowledge of the joint inclu-
sion probability πuv . For randomized pps systematic
sampling Hartley & Rao [10] have provided, to order
N−4, an approximation to this inclusion probability.
This approximation can be accurate for populations
as small as N = 10. Hidiroglou & Gray [11] have
provided Fortran code for the exact calculation of
πuv which is useful for small N .

Systematic sampling techniques have also been
developed for sampling units with a spatial
or two-dimensional ordering. Bellhouse [2] and
Thompson [21] provide reviews of the theory of
spatial sampling with some applications. Early
applications of these techniques were in geography;
a review is given in Holmes [12]. More recent
applications have been in ecology and in other areas:

for example, Bellhouse [1] applied two-dimensional
systematic sampling techniques to the excavation of
middens at Iroquoian Indian archeological sites.
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Target Population

The concept of a target population is an informal
one, sometimes defined as “the population about
which information is wanted” [1] or the “totality
of elements which are under discussion and about
which information is desired” [4]. Often, the word
“population” refers to this concept; see, for example,
Kendall & Stuart [3] or Freedman et al. [2]. The word
“target” emphasizes, however, that this population is
not necessarily the same as the one that we end up
sampling. The latter population is sometimes called
the sampled population [1, 4] or (in epidemiology)
the source population [6]. Ideally, in descriptive
epidemiologic studies, the two populations would
be identical, but practical concerns usually lead to
large discrepancies. For example, when a poll of the
entire US population is desired but, for cost reasons,
only a telephone survey of four cities is done, the
sample population contains only persons who have a
telephone and live in those cities, and is much smaller
than the target (US) population.

In studies of causal effects (see Causation) it may
be helpful or even essential for the sampled popu-
lation to extend beyond or even exclude the target
population. Consider a target population comprising
five persons who were exposed to high asbestos levels
during a job assignment, one of whom later devel-
oped mesothelioma (a very rare form of cancer). The
question of whether this high rate of the disease was
caused by the asbestos could not be approached by
sampling the target. Only by comparison to a much
larger reference experience (namely, the extensive
prior data on the rate of mesothelioma in workers
exposed and not exposed to asbestos) can we make

any meaningful inference about the target. In set-
tings such as this example, in which inferences about
structural relations in the target are inferred from
observations on other populations, it has been pro-
posed to refer to the latter as evidentiary populations
[5]. Such evidentiary populations are typically larger
and sometimes more accurately measured than the
target, although they may not be comparable to the
target population in all important respects (see Con-
founding).

Issues of inferences from the sampled population
to the target are sometimes classified as problems of
generalizability or external validity. These issues are
distinct from the issues that arise in making infer-
ences about the sampled population from a sample
(see Validity and Generalizability in Epidemio-
logic Studies).
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Teaching Medical
Statistics to Statisticians

A degree in statistics does not usually prepare a
graduate adequately for a career in biostatistics. Fur-
ther training is needed in those aspects of statistics
applicable to the health sciences, both in postgraduate
degrees, and in continuing education courses for the
statistician already working in a particular field (e.g.
pharmaceuticals, public health, clinical medicine).
In this account of teaching biostatistics, we do not
intend to provide outline course contents. Rather,
we bring forward a number of considerations that
could help in course planning. The course planner
then necessarily takes into account the assumed back-
ground knowledge of the student group, the time,
physical and personnel resources available, and reas-
onable expectations of what the student will have
acquired by the end of the course. The wide-ranging
scope of this Encyclopedia makes it clear that no
statistician can expect to be expert in every aspect of
biostatistics. Those who plan and teach such courses
must of necessity be selective.

Collaboration

Etymologically, the word biostatistics is a hybrid, its
mixed parentage combining bio- (life; hence, care
for health) with the statistician’s art and sciences.
Accordingly, instruction in biostatistics could well
begin – and continue throughout – with an emphasis
on the necessity of collaboration between the statisti-
cian and the health professional. Thus, it is important
to recognize that even concepts which appear trivial
(in the mathematical sense) to the statistician may be
not only unfamiliar to, but often alien to the thought
processes of, the health scientist, causing great dif-
ficulty in communication. Both teacher and pupil
will benefit from an emphasis on the advantages of
simplicity – in language, avoiding or explaining any
jargon; and in the design, analysis and interpreta-
tion of studies. The student can be helped to develop
consultancy skills by attending and contributing to
consultations with health professionals who come to
the teacher with real problems (see, for example,
[2]) (see Statistical Consulting). Difficulties can also
arise when an inappropriate statistical method has
been used in a key publication in the client’s area,

which then spawns imitations. A common example is
the use of repeated significance tests (see Sequential
Analysis) at a series of time points in a longitudinal
study, when one or more summary measures could
well be more informative.

Other ways of improving understanding between
the professions include organizing a “Meet the
Clients” course, in which a number of estab-
lished clinicians from various medical specialties,
other carers, hospital laboratory staff, health care
administrators, epidemiologists, pharmaceutical sci-
entists, etc., present their own accounts of how bio-
statistics has impinged on their work. Discussions
following such presentations can be both lively and
rewarding to all concerned. Interdisciplinary under-
standing can also be enhanced by study of carefully
selected publications from the health science liter-
ature, concentrating on the statistical methods that
have been used or misused in the study design and
analysis, and on the validity of the conclusions and
the summary. The aims of these exercises are not
only to develop constructive critical skills, but also
to help to prepare the student for joint authorship
with future collaborators. As medical teaching and
practice is increasingly turning towards such critical
appraisal of the literature to assist clinical decision
making, statisticians should be aware of the impor-
tant contribution of their discipline (see, for example,
[1]) (see Teaching Statistics to Medical Students;
Teaching Statistics to Physicians).

Examples from the literature can also be used to
illustrate common pitfalls in the use of statistics –
comparing the noncomparable (inappropriate choice
of control subjects); not properly defining the
denominator, or even ignoring it altogether, in the
calculation of rates (see Denominator Difficulties);
failing to adjust for confounders such as age and
sex, by standardization methods or otherwise.
Another pitfall common in health research is
failure to recognize the long-established phenomenon
of regression to the mean, which many find
counterintuitive at first sight. If a patient is identified
because her blood pressure reading is high, it seems
strange that a subsequent reading is expected to
be lower, even if no treatment has intervened.
The same phenomenon will often explain why a
treatment appears to produce better results in subjects
with more severe disease, even when it is actually
uniformly effective for all degrees of severity. These
two apparent anomalies can be inspirational in
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attracting bright young statisticians to this field of
application – “there’s more to biostatistics than meets
the eye!”.

How is Biostatistics Different?

What differentiates biostatistics from other appli-
cations of statistical methods? It is essentially the
human context. We note three aspects: ethical issues,
the failure of patients to behave as ideal “experimen-
tal units” and, in common with other biological rather
than mechanical subjects, more difficulty in establish-
ing causation.

Ethics

Human ethical implications arise both in research
and in the implementation of health programs based
on the interpretation of statistics. It is sometimes
argued that ethical considerations are solely the
responsibility of the health professional, and statis-
ticians should be dispassionate and value-free in
their contributions. In some instances the statistician
is, however, very well placed to stand aside from
the enthusiasms of a health researcher in the lab-
oratory, the clinic or in the organization of health
systems, and to see more clearly the ethical impli-
cations. These ethical issues are often important in:
the design of a study (choice of subjects, sample
size, likely effects of treatments, the concept of ran-
domization of humans), the conduct of the study
(in addition to the normal clinician–patient relation-
ship, in most studies every patient is a volunteer
and deserves to be treated as such), and the impli-
cations for the health of others of the results of the
study, whether to individuals or to communities as
part of a more general health program (see Ethics
of Randomized Trials; Medical Ethics and Statis-
tics).

Human Fallibility

Patients do not always behave as perfect experi-
mental units. Some do not take their treatment as
specified, often for very good reasons. This may
occur during an experimental trial or subsequently
after a successful trial when the treatment is made
more generally available. Doctors may not be con-
sistent, or even logical, when defining or making a

diagnosis. Sources of variability, such as between or
within observers or analytical methods, can often be
identified, measured, and taken into account. Human
biological variability may affect the precision of a
diagnostic test (see Diagnostic Tests, Evaluation
of). The dramatic effect of targeting screening to
an at-risk population in which the prevalence of
the disease is substantially greater than in the gen-
eral community can be demonstrated as an appli-
cation of Bayes’ Theorem. The resulting increase
in the positive predictive value of a screening test
with a given sensitivity and specificity has impor-
tant practical and financial implications. Cultural
or educational background may affect a patient’s
response to a question. A biostatistician must be
aware of these problems, and use personal or shared
experience to take them into account in modeling
the collection, analysis, and interpretation of the
data.

Causation

Students will be aware that association does
not necessarily imply causation, but the health
professional expects the biostatistician to go further
than that bald, and not particularly helpful, conclusion
of an association. A number of accounts have been
given on the topic; perhaps the most accessible is
that given by Bradford Hill, one of the founders of
twentieth century biostatistics. Drawing on, amongst
other things, his literally vital contributions to
establishing cigarette smoking as a cause of lung
cancer (see Smoking and Health), he suggested
a wide-ranging approach to establishing causation
from observational studies on chronic diseases.
Considerations include the strength of the association,
consistency between studies in varied circumstances,
specificity of the association, temporal consistency,
dose–response, biological plausibility, coherence,
experimental evidence, and analogy (see Hill’s
Criteria for Causality). The length of this list makes
it clear that the biostatistician has responsibilities
other than the purely mathematical. Health programs
will seldom be mounted solely on the basis of
statistical associations. A credible presentation of
a causative link between a modifiable risk factor
and a disease is necessary, and the statistician has
important contributions to make to that presentation.
Training should prepare the statistician for that
role.
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Study Types

At this stage, the epidemiologic approach to causal-
ity and the strength of evidence from various types
of study may be of value in the course. In ascend-
ing order of strength of evidence for a causative
link between a putative risk factor and a disease
are: the ecologic study, the cross-sectional study,
the case–control study, the cohort study, the ran-
domized controlled trial (RCT) (see Clinical Tri-
als, Overview), and the meta-analysis of RCTs.
While the usual statistical methods of assessing
and comparing means or proportions often conclude
studies of all these types, other statistical ques-
tions arise in connection with each. Course designers
may choose to structure courses on the study types,
expanding on the statistical methods arising in each,
or, more traditionally, to structure the course on sta-
tistical methods, giving the related study types as
illustrations of their application. Whichever approach
is used, examples of life-saving interventions that
have been demonstrated by the various types of study
design will be helpful.

We illustrate the former approach because it is a
little unusual. It could be a more stimulating approach
for the students, who will already be familiar with at
least the theoretical aspects of logistic regression and
perhaps survival analysis.

Observational Studies

While ecologic studies may be cited as evidence
of coherence (countries or districts with higher per
capita sales of cigarettes have higher death rates from
disease X), they are more useful in a teaching context
to illustrate the risks of confounding and the ecologic
fallacy.

The cross-sectional study requires much attention
to questionnaire design, use of focus groups, pilot
studies, and methods of achieving adequate response
rates, as well as the intricacies of sampling proce-
dures and analyses which take account of the sam-
pling details. No opportunity should be lost to draw
attention to routinely collected statistics, national or
regional (see Vital Statistics, Overview). It is all too
easy for a study to produce a poor imitation on a small
scale of a routine analysis, ignoring the accumulated
experience of the official statisticians in data collec-
tion, coding, validation, analysis, interpretation, and
limitations (see Bias in Observational Studies).

In a case–control study the main epidemiologic
difficulty is to define the appropriate populations
from which the controls should be selected. For
example, selecting controls from hospital inpatients
can lead to considerable bias. Other biases may arise
in the diagnosis and coding of the disease outcome,
or in the measurement of exposure to possible risk
factors, which relies on recall or historical records
collected for other purposes. The statistician needs to
be trained to identify such biases before undertaking
any analysis (see Bias in Case–Control Studies).

Case–control studies provide an ideal opportunity
to introduce the concept of odds ratios and their
interpretation as an approximation to relative risk for
a rare disease. An example in which there is hetero-
geneity of the odds ratio across strata of another vari-
able can be used to illustrate statistical interaction, or
“effect modification” as it is more helpfully termed
by epidemiologists. Furthermore, logistic regression
is a way of obtaining an estimate of the approximate
relative risk of the disease for those exposed to a
particular risk factor, after adjusting for confounding
variables. For the situation where the controls have
been individually matched to the cases, conditional
logistic regression can be demonstrated.

A cohort study may be affected by many of the
same problems as case–control studies. In addition,
attention should be drawn to the healthy worker effect
in occupational cohorts (see Bias in Cohort Studies).

Randomized Trials

The randomized controlled trial has a central role
in the evaluation of interventions in both clinical
medicine and public health. Biostatisticians should
have a thorough understanding of such trials, whether
or not they are going to be directly involved in
conducting trials. Historically, statisticians have con-
tributed greatly to the development of valid trials,
and it is good for a professional to know something
of past achievements. Perhaps more importantly, the
RCT introduces many apparently nonstatistical ideas
that are essential to producing valid statistical analy-
ses and interpretations. For example, randomization
of subjects to treatments (see Randomized Treat-
ment Assignment) raises important ethical ques-
tions including patient consent and what is meant by
“informed” consent. Before randomization, however,
a strict protocol (see Clinical Trials Protocols) is
required to specify the population to be studied and to
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whom the results will be applicable (see Target Pop-
ulation): diagnostic details, eligibility and exclusion
criteria.

Careful sample size calculations are also impor-
tant for both ethical and economic reasons. Sim-
ple randomization can be improved by techniques
such as blocking and stratification, which should
be taken into account in the analysis to increase
power. If practical considerations lead to subjects
being randomized in clusters (e.g. families, school
classes, villages, etc.), failing to incorporate this
in the analysis can produce seriously misleading
conclusions (see Group-randomization Designs).
Methods of blinding help to avoid the patient and
the professional assessors of health status knowing
which treatment each patient is receiving – human
fallibility could introduce biases. Fallibility may also
cause the patient not to receive the complete course of
treatment as specified: analysis should almost always
follow the “intention-to-treat” principle, which is
sometimes not intuitive, particularly to the surgeon
whose allocated patient dies before reaching the oper-
ating table.

Because RCTs often involve follow-up of sub-
jects over time, survival analysis is often the most
appropriate technique for evaluating the results. Many
good medical data sets are available in the literature
for demonstrating the calculation of an actuarial life
table for grouped data or a Kaplan–Meier life table
for individual survival data, discussing the underly-
ing assumptions of these, illustrating the use of the
logrank test to compare treatments, Cox regression
to adjust for confounders, assessment of the propor-
tional hazards assumption, and ways of dealing with
violations of that assumption.

Meta-analysis is a powerful statistical method for
combining the results of several RCTs. A single trial
demonstrating the efficacy of a therapy is unlikely to
lead to its adoption worldwide. Meta-analysis raises
issues of heterogeneity and fixed effects vs. random
effects models, which merit attention in this and other
applications.

General Considerations

A mathematical statistics course may well omit meth-
ods relevant to biostatistics, from the very simple to
the highly sophisticated. Students may be unfamiliar
with, for example, the simplified formula for cal-
culating the test statistic for a 2 × 2 table, or with

McNemar’s test for paired proportions, which is
merely an application of the binomial distribution
with probability 1/2. There are also many practical
uses of the Poisson distribution, ranging from the
simple calculation of tail probabilities in the study
of disease outbreaks, to modeling disease frequen-
cies using Poisson regression. If students are given
real data sets to analyze, they can learn some of the
pragmatic aspects of biostatistical modeling, such as
how the choice of model variables depends not only
on statistical considerations, but also on biological
plausibility, face validity, the “cost” of measuring a
variable, confounding, and whether a risk factor is
modifiable. The extent to which model assumptions
may be violated can also be discussed. Students will
benefit from becoming familiar with at least one of
the major statistical computing packages (see Soft-
ware, Biostatistical). In matching the assessment of
a biostatistics course to its objectives, one needs to
consider whether computers can be used, either in
an open-book examination in a classroom equipped
with computers, or in a take-home exam for which
students have computer access.

It is clear from the above that it is appropri-
ate to use a variety of teaching methods – lectures,
seminars, computing practicals, tutorials, small-group
exercises – to interest, stimulate, and extend the stu-
dents. As they are mature students, the principles of
adult teaching and learning should be employed. In
particular, lectures are best used sparingly to moti-
vate and expound concepts, rather than to give detail
that can be better absorbed by reading, either before
the lecture or afterwards.

Whatever is covered in a biostatistics course, it
cannot be exhaustive, so it is important to teach and
encourage students to continue their own education.
They should be made aware of the resources available
on the Internet for communicating with colleagues,
finding relevant articles on unfamiliar topics, and
keeping abreast of recent developments in the lit-
erature. The importance of maintaining contact by
attending local meetings and conferences could also
be emphasized.

We have deliberately avoided being prescriptive
and giving an exhaustive list of topics to be included.
Rather, we have tried to give the flavor of the pro-
cess leading to decisions about course content. Those
decisions will inevitably, and rightly, reflect the expe-
rience and research interests of the teachers.
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Teaching Statistics to
Medical Students

It is difficult to pinpoint just when statistics was
introduced into the medical curriculum, what medical
school was the first to include lectures on statistics,
and who was the first statistics lecturer to medical
students. Clearly, the incorporation of statistics into
the medical curriculum parallels publication of the
early textbooks in medical statistics, with that by
Austin Bradford Hill in 1937 being the first [13].
In the US, Colton [4] presented anecdotal material
to indicate that at Johns Hopkins University, where
the first US school of public health was established,
there was clearly, by 1948, a course in biostatistics
for medical students taught by Margaret (“Mag-
gie”) Merrell. Obviously, the initiation of the course
dates several years earlier. Nevertheless, it is of inter-
est to note that, in 1948, medical students at Johns
Hopkins, a group that was almost exclusively male,
received the required instruction in biostatistics from
a female instructor who, moreover, was a profession-
ally trained statistician and a nonphysician.

Perhaps the earliest published material on teaching
statistics to medical students is an editorial written by
Bradford Hill in 1947 for the British Medical Journal
with the intriguing title, “Statistics in the Medical
Curriculum?” [14]. Note the question mark in the title
for which Hill comments:

. . . I should replace my querying title, “Statistics in
the Medical Curriculum?”, by “What Statistics in the
Medical Curriculum?” (though I am well aware that
some clinical teachers will prefer to read it as “What!
Statistics in the Medical Curriculum?”).

Hill enunciates what has become a common theme
underlying the rationale for teaching statistics to
medical students, namely,

. . . the medical worker, and his readers, must be
at least on speaking terms with the elements of
statistical reasoning and methods of analysis, and
thus be able themselves to weigh numerical evidence
justly in the balance.

His conclusion, which portends much discussion and
debate that has appeared in the literature in the
subsequent 50 years or so, is:

Arithmetic guided by logic has been given as a fairly
accurate definition of simple statistical methods, and

it is that kind of teaching that would, it is my belief,
be of real benefit to the medical student. It should
introduce him not only to . . . general viewpoints
. . . to be borne in mind in considering statistical
evidence, but also teach him the appropriate methods
of handling and presenting data, and familiarize him
with the statistical concepts of variability, the ideas
lying behind elementary tests of significance, simple
means of measuring and interpreting associations,
and so on . . ..

Thus, in addition to having written the first text in
medical statistics, Bradford Hill is apparently among
the first to state in print the rationale for teaching
statistics to medical students as well as to propose
the general content for such instruction.

In the US, an early publication on teaching statis-
tics to medical students is the report in 1953 of a
Committee of the Statistics Section of the American
Public Health Association charged with considera-
tion of the training in statistics needed by medical
students, as well as that needed by public health stu-
dents, including those who intended to specialize in
medical and public health statistics [6]. With regard
to training of medical students, the report included the
findings of a questionnaire survey in 1952 sent to 90
medical schools in the US and Canada for which 82
replies (91%) were received. Of those replying, 82%
indicated that instruction in biostatistics was a com-
ponent of their undergraduate medical curriculum,
with 46% stating that the course given was primar-
ily one designated as biostatistics. (In the remaining
schools that indicated they taught the subject, bio-
statistics was taught as a part of another course such
as preventive medicine or scattered among several
other courses such as pharmacology and physiology.)
The predominant pattern was to teach biostatistics in
the first two years as part of the basic science curricu-
lum and to require the course of all medical students.
Thus, by the mid-1950s, biostatistics instruction to
medical students was well ensconced in the US and
Canada and a clear pattern of the format and nature
of such instruction was evident.

It is of interest to note the Committee’s synthesis
of areas of agreement among the Committee mem-
bers, the respondents to the survey, and other medical
school faculties whose opinions were solicited. The
report states the “general agreement on a number of
issues”, as follows:

It is desirable that all medical students receive
statistical instruction. The important issues cannot
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well be discussed in a course of less than
some 25–30 hours. The basic principles of the
experimental method and of the statistical approach
must be stressed, but there must also be an
abundance of practical applications. The committee
believes that the teaching should be done by
a professional statistician (M.D., Ph.D. or other)
well oriented with medical problems. People whose
primary interest and concentration is in another field
usually do not do the most efficient job of teaching
statistics.

Subsequent to this report, findings of several other
surveys of US and Canadian medical schools have
been published – namely, surveys conducted in 1957
[16], in 1969–1970 and 1973–1974 [3], in 1986 [8],
and most recently in 1993 (Looney, Grady & Steiner,
personal communication). Most of the “issues of
agreement” cited above in the 1952 survey prevail
throughout the various surveys and remain areas of
agreement today, except, perhaps, for the proposed
25–30 hours of class time for biostatistics. With the
global trends of drastic reductions in formal lecture
time, this amount of class time for biostatistics is
most unrealistic in contemporary medical curricula
in North America.

Another impetus in the US for the incorporation of
biostatistics into the undergraduate medical curricu-
lum has been the inclusion of questions in biostatis-
tics on medical licensure examinations – namely, on
the nationwide examinations administered by the US
National Board of Medical Examiners that most US
medical schools require their students to take. Tradi-
tionally, the bulk of the statistical questions appear on
the Step 2 (formerly Part II) examination, the portion
of the licensure examination usually taken at comple-
tion of the fourth year of medical school. At the time
of the initial survey in 1952 of biostatistics instruction
in US and Canadian medical schools, the biostatistics
questions constituted 15% of the Preventive Medicine
and Public Health component (one of six compo-
nents) of the Part II examination. Undoubtedly, the
inclusion of statistics questions on US medical licens-
ing examinations offers some explanation for the
proliferation of biostatistics instruction in US medical
schools by the mid-1950s.

Parallel to the expansion of biostatistics instruction
in medical schools in the 1950s and 1960s, additional
textbooks in biostatistics began to appear and became
the assigned texts for these courses. Those more
commonly employed as course texts, in addition
to Hill’s pioneering text, were those by Donald

Mainland published in 1952 [19], Huldah Bancroft
published in 1957 [2], and Olive Jean Dunn published
in 1964 [10]. In fact, by 1966, Hill’s text appeared
in its eighth edition.

In the US in 1969, a key event occurred – namely,
the beginnings of the Subsection on Teaching of
Statistics in the Health Sciences of the American
Statistical Association (ASA). In early 1969 Anita
Bahn sent a letter to several statisticians whom
she knew and who had responsibility for teaching
statistics to medical students. Her letter opened with
the following paragraph:

As a new teacher of biostatistics in a medical school,
I have been faced with a number of problems in
attempting to develop a meaningful learning experi-
ence. The rapidly changing horizon – new goals of
medical schools and ways of doing things, core cur-
ricula, integrated National Board Examinations and
other aspects – impinges on our teaching. It is chal-
lenging to keep one step ahead of the game.

She concluded by asking that those who shared
her concerns meet informally that summer at the
annual ASA meeting. The informal meeting was most
successful, with keen interest indicated by virtually
all who attended. Among the key next steps was the
establishment of a Newsletter for which one of us
(TC) served as the first editor. In the first Newsletter
issued in Fall 1969, the rationale for this organization
was stated as follows:

Why is such a group needed and what are its
objectives? Foremost is the need for communication
among these educators to exchange information
on how best to deal with the problem of student
motivation, limited class time, integrated subjects,
core curricula, changing medical school goals. There
is much that we can learn from each other. One
respondent stated that he never could understand
why there has not been, heretofore, a mechanism
for communication in such a sorely needed area.

Shortly after this meeting in 1969, the ASA was
petitioned to form a Subsection (of the Section
on Statistical Education) and thus this organization
had its birth. Although the primary force behind
its formation was statistics instruction to medical
students, the target was more broadly defined as
students in the Health Sciences, as reflected in the
title. The Subsection’s Newsletter continued and at
each subsequent annual ASA meeting an invited
papers session has appeared on the program where
statistics instructors of students in the health sciences
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could share their concerns, describe innovative course
offerings and teaching techniques, and commiserate
on their difficulties in reaching students as well as
in preserving their courses intact under continued
pressure from Curriculum Committees to reduce
class time. In the 1990s the Subsection designation
was removed and full Section status in ASA was
established. Instruction of medical students remains
as the key focus of the Section.

When the Subsection started, one of the major
concerns of its members was the nature of the statis-
tics questions on the National Board Examinations.
Although statistics was indeed a required compo-
nent of the examination, there was no professionally
trained statistician responsible for determining the
statistics questions that would appear on the exam-
inations. On the preclinical examination (currently
Step 1 and previously Part I), it was behavioral sci-
entists who composed the statistics questions, and
on the clinical examination (currently Step 2 and
previously Part II) it was public health and preven-
tive medicine specialists. Many of the questions that
appeared on these examinations did not reflect ade-
quately what the statistics instructors were teaching in
their courses and, in several instances, the technical
statistical basis of examination questions was incor-
rect. The Subsection lobbied successfully to place
a professionally trained biostatistician, one of the
founding members of the Subsection, on the National
Board Test Committee responsible for creating and
choosing the examination questions. By the 1970s,
it was a biostatistician who composed and shared in
the choice of statistics questions that would appear
on the examination.

Another major effort in the early days of the
Subsection was the formation of a Subcommittee
to consider development of a core curriculum in
biostatistics. The Committee did issue a report and
its proposed core curriculum was published in 1975
[5].

In the UK, the embodiment of statistics into
the medical curriculum proceeded at a considerably
slower pace. Lowe [17] describes an inquiry he
conducted in 1962 among the 27 undergraduate
medical schools in the UK. He reports that there
was some form of statistics instruction in 19 schools
(70%), but that at most schools such instruction
was voluntary (no examination was required) and
in one school such instruction consisted of but a
single hour’s lecture. Despite Bradford Hill’s editorial

in 1947, it was not until the late 1960s that there
was “official” recognition in the UK for inclusion of
statistics in the medical curriculum, although as Lowe
has indicated there were a substantial number of
medical schools that did offer such instruction. This
recognition occurred in 1968 with what has come to
be known as the Todd Report [22]. With regard to
statistics, this report by the Royal Commission on
Medical Education states:

Some knowledge of the principles of the statistical
approach is now necessary so that doctors can make
some judgement for themselves of the validity of
the claims for medical advances made in journals
and other communications. Instruction in statistics
is a necessary part of the process of producing a
graduate who can apply a scientific outlook to his
future experience.

An interesting feature of the Todd Report is its
Appendix, which reports the results of a survey of
some 5000 students on their reactions to 18 specified
courses in their curricula with regard to interest,
usefulness, and difficulty. For statistics, which was
offered in only some of the curricula among the
schools surveyed, the report states that it

. . . was considered dull (eighteenth and last in rank
of interest), useless (seventeenth in the rank of
helpfulness) and very difficult (first in degree of
difficulty). This was true for all schools with the
exception of Oxford where it was ranked of medium
interest (ninth), of medium usefulness (ninth), and
of great difficulty (first in degree of difficulty).

Consequently, by the 1970s statistics was well embo-
died into the medical curricula in the UK.

Over the past 25 years or so, the topic of teach-
ing statistics to medical students has been of much
concern to biostatisticians and other medical school
faculties. In addition to the annual meetings of the
Section on Teaching Statistics in the Health Sci-
ences of ASA and their occasional published pro-
ceedings (the latest, at this writing, is [1]), there
have been a number of symposia and workshops
devoted to the topic. These include the follow-
ing: a 1962 international symposium on Teaching
of Statistics to Undergraduate Medical Students in
Europe, organized by the World Health Organiza-
tion (WHO); a UK conference in 1971 organized by
the Medical Section of the Royal Statistical Soci-
ety and the Society for Social Medicine [15]; a
1978 Inter-regional Conference on Teaching Statistics
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to Medical Undergraduates organized by WHO, the
International Epidemiological Association (IEA), and
the Government of Pakistan and that resulted in a
publication entitled The Successful Teaching of Statis-
tics to Every Medical Student [21]; and several con-
ferences and workshops in the UK, a more recent one
being that held in 1989 whose proceedings have been
published in Statistics in Medicine [9]. The interested
reader will find additional published commentaries
and thoughts on this subject from the references in
the above-cited publications. It is of interest to note as
well that WHO and IEA had also sponsored publica-
tion in 1978 of a handbook entitled Health Statistics:
A Manual for Teachers of Medical Students [18].

Where do we now stand with regard to teaching
statistics to medical students, the contents of the
courses taught, and the settings of these courses? At
this writing, the most recent available information
is the survey in 1993 of 125 US medical schools
undertaken by Looney, Grady & Steiner (personal
communication) and modeled after the previous US
surveys. There were 100 responses (80%) among the
125 medical schools surveyed. Of those responding,
83% stated that their school offered such a course
with 74% of those responding stating that it was
a required course. Among 93% of schools that
offered such a course, it occurred during the first
2 years (preclinical) and the median course length
was 20 hours. Among responders who offered a
course, 91% indicated provision of course notes to
students, and 77% indicated use of a textbook. The
three textbooks most frequently cited were those
by Dawson-Saunders & Trapp [7], Morton, et al.
[20], and Fletcher et al. [12]. Among the responders,
73% indicated that there was some integration of
the biostatistics course with other subject matter in
the curriculum. Among only 9% of the responders
was there a sole instructor for the course who was
a physician; in all other instances the instructor for
the course had a Ph.D. or master’s degree or was
a nonphysician who shared with a physician major
responsibility for the course. One trend noted in
comparison with previous surveys is an increase in
the proportion of biostatistics course directors who
are full-time faculty members at their respective
schools. This reflects the growing trend for US
medical schools to recognize their need for and to
recruit biostatisticians as full-time faculty members.

Surprisingly, with the computer revolution over
the past decade, computers did not play an important

role in the biostatistics courses. Only 27% of the
respondents indicated use of computer-based tutorials
and only 19% of respondents said they included
instruction on the use of computers.

As with several of the previous surveys, the 1993
survey included questions on the topics covered in
the various courses. Table 1 indicates responses to
the topics covered, classified according to descriptive
statistics and probability, inference, and epidemiol-
ogy and clinical research (columns) and whether 75%
or more of responses indicated coverage of the topic
(top panel), 50%–74% indicated coverage (middle
panel), or less than 50% indicated coverage (bottom
panel). The survey investigators, in comparison with
findings from the previous 1970 survey [3], note a
shift in emphasis from more standard statistical topics
to those considered more epidemiologic. There has
likewise been a substantial increase compared with
1970 in coverage of power analysis. Undoubtedly,
much of the shift in course content is commensu-
rate with trends in the nature of the papers published
in leading general medical journals such as New
England Journal of Medicine, Journal of the Ameri-
can Medical Association, Lancet, and British Medical
Journal, where there has been a substantial increase
in publication of rather statistically sophisticated ran-
domized clinical trials and epidemiologic cohort
studies and case–control studies. Correspondingly,
the issue of statistical power has received much more
attention currently in the contemporary medical liter-
ature in research articles, letters to the editor, and
editorials than it received at the times of the previous
surveys.

It is of interest to compare the empirical results in
Table 1 of what is taught in medical statistics courses
in US medical schools with the topics designated
as being covered currently in the Step 2 US Med-
ical Licensing Examination [11]. Table 2 indicates
the topics in Applied Biostatistics and Clinical Epi-
demiology that the 1997 examination covered. It is
not surprising that there is considerable concordance
between the topics listed in Tables 1 and 2.

Another item of interest in the 1993 survey is a
solicitation of the respondent’s perception of how the
course was received by the students. This was com-
pared with analogous data reported from Colton’s
survey in 1970 [3]. The 1993 survey investigators
note that, compared with 1970, a considerably greater
proportion of respondents perceived that the stu-
dents had a very favorable or favorable opinion of
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Table 1 Topics covered in biostatistics courses; 1993 survey of US and Canadian medical schools

Descriptive statistics Epidemiology and
and probability Inference clinical research

Covered in 75% or more of the courses

• Interpretation of tables and graphs • Hypothesis testing • Rates
• Frequency distribution • P values • Incidence and prevalence
• Descriptive statistics • Interpretation of confidence limits • Descriptive studies
• Central tendency • Interpretation of the role of chance • Cross-sectional studies
• Variability • t tests • Study design characteristics
• Normal distribution • Chi-square tests • Cohort studies
• Probability • Correlation • Case–control studies

• Randomized clinical trials
• Diagnostic tests

Covered in 50%–74% of the courses

• Scales of measurement • Linear regression • Adjusted rates
• Measurement issues • Power analysis

Covered in less than 50% of the courses

• Construction of tables and graphs • Analysis of variance • Stratified analysis
• Binomial distribution • Multiple comparisons

• Wilcoxon–Mann–Whitney test

Table 2 Items in applied biostatistics and clinical epidemiology covered on the Step 2 US Medical Licensing Examination,
1997

1. Applications of concepts of measurement in medical practice (e.g. central tendency; variability, probability, and
distribution; scales of measurement; disease frequency; case fatality, survival rate; relative risk, odds ratio,
standardized morality rate; risk differences, attributable risk: sensitivity, specificity; positive and negative values;
decision analysis).

2. Interpretation of the medical literature: study design (e.g. clinical trials, community intervention trials; cohort,
case–control, cross-sectional case series; community surveys: subject eligibility and sampling; randomization,
self-selection, systematic assignment; outcome assessment; validity; advantages and disadvantages of different
designs; sample size).

3. Interpretation of the medical literature: statistical inference (e.g. hypothesis generation, hypothesis testing, and test
statistics; statistical significance and type I error: statistical power and type II error; confidence intervals).

the course; correspondingly, a lesser proportion of
respondents felt that the students’ opinion of the
course was neutral. Although one cannot exclude
entirely the possibility of a shift over the past 20
years or so in the optimism among those who teach
statistics to medical students, there is some indica-
tion that contemporary medical students are more
favorably inclined to the subject and that they more
readily perceive their need to understand these princi-
ples, regardless of whether or not they intend a career
in medical research. Surely, one would like to think
that the dismal survey results cited previously in the
Appendix to the Todd Report in 1968 no longer apply
to medical students in the late 1990s, both in the US
and worldwide.

Finally, on a more personal note, one of us (TC)
has had many years’ experience in teaching statis-
tics to medical students at several schools in the US
and Canada. Sometimes it has been successful and
other times it has been as disastrous as had been
cited earlier in this article from the Todd Report
[22]. Some view medical students as perhaps one of
the toughest audiences one might have, particularly
for a course in statistics. Colton [4] tried to articu-
late the difficulties in teaching statistics to medical
students, at least those in North America, particu-
larly in their preclinical years when such courses are
almost always taught. We characterize the handicaps
that the statistics instructor faces with medical stu-
dents as their being the following: young, immature
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and arrogant; highly competitive with one another;
poorly motivated in all disciplines of public health;
swamped by heavy demands of other courses; without
any grasp or appreciation of the realities of clinical
research; of considerably heterogeneous quantitative
backgrounds; and a difficult group for whom to find
good role models of practicing physicians as instruc-
tors. (We note that the latter has changed over time
and there now is a more prevalent group of prac-
ticing physicians who are both appreciative of and
knowledgeable in statistics.)

On the other hand, there are indeed some advan-
tages to having medical students as one’s audience.
We characterize these advantages as their being the
following: highly selected for academic performance;
finely honed in knowing how to perform well in a
course and to meet the instructors’ demands; and
that if the instructor reaches only a handful of stu-
dents among a large class and can convey to them an
appreciation for and enthusiasm with statistics, then
the rewards and gratification are considerable.
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Teaching Statistics to
Physicians

There should be little disagreement over the propo-
sition that a practicing physician requires a sound
grasp of statistical concepts, and it is not surpris-
ing that medical statisticians have emphasized this
[2, 4, 6]. It is, however, particularly encouraging that
professional medical bodies such as the UK General
Medical Council argue that the attributes of a prac-
ticing clinician should include [8]:

1. reasoning and judgement in the application of
knowledge to the analysis and interpretation of
data, in defining the nature of the problem, and in
planning and implementing a strategy to resolve
it, and

2. understanding of the contribution of research
methods, and interpretation and application of
others’ research in the doctor’s own specialty.

The very essence of clinical medicine is decision
making under uncertainty. When a patient first
presents, the physician needs to adopt a strategy that
drives an investigation plan. This involves a sequence
of decisions. Using any available prior information
on the patient, together with the presenting symptoms
and a knowledge of the epidemiology and etiology of
disease, the doctor must decide what investigations
are needed to confirm a working diagnosis, or
to exclude an implausible but sinister diagnosis.
Once the diagnosis is clarified, the attention turns
to prognosis and treatment. Is the condition self-
limiting, requiring at most symptomatic treatment, or
is the prognosis so grim that only palliative treatment
is appropriate? Is the condition such that it is
appropriate to intervene in an attempt to improve the
prognosis, and, if so, what evidence is there to support
the use of different treatments for this individual?
The likely side effects and cost implications need to
be considered, and if treatment is initiated, whether
further monitoring would be required. Would there
be any obvious early signs that the treatment is
not having the desired effect, and, if so, what
modification to the treatment would be appropriate?
On the other hand, if the problem does resolve,
are there likely to be any long-term sequelae which
mean that the patient should be monitored closely in
future? At every step along this process, the physician

needs to make decisions against a background of
uncertainty, and such decisions should be informed
by an understanding of statistical principles.

Much of what has been written about teaching
statistics to physicians has focused on research, and
in particular it has highlighted the many statistical
failings that can be found in the medical literature [3,
10, 13]. This is hardly surprising, as most medical
statisticians work with a highly selected group of
academic clinicians who are actively involved in
conducting research. However, I would argue that
it is even more important that a practicing clinician
should, for example, have a sound grasp of how
the results of an investigation should update the
prior probability of a particular diagnosis. This does
not necessarily mean that every clinical decision
should be based on a back-of-an-envelope application
of Bayes’ Theorem, but in selecting a test and
interpreting its results a physician should at least be
aware of the distinction between a highly sensitive
screening test and a highly specific investigation
which might precede a final decision to undertake a
major operation (see Decision Analysis in Diagnosis
and Treatment Choice).

What Statistics should be Taught?

In line with the suggestions of Leinster [9], I agree
that we should be targeting three identifiable groups
of physicians with quite different requirements in
terms of statistical education. The first and by far
the largest group consists of those practicing clin-
icians who are never likely to work in a research
environment. The second group consists of the doc-
tors who at some stage in their clinical training
will take time out to work on research as part of
their career development. Finally, there is the rela-
tively small group of doctors who will remain within
the academic environment and be active researchers
throughout their careers. I shall refer to these three
groups as “practitioners”, “casual researchers”, and
“professional researchers”, respectively.

Practitioners

These doctors require a core knowledge of statis-
tics very much in line with the attributes set out
by the General Medical Council and quoted above.
Thus, these individuals should be aware of the
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basic principles of problem formulation and strate-
gies for problem solving, particularly in the context
of diagnosis and prognosis. In addition, practitioners
need to be sufficiently familiar with the “scientific
method” to be able to use the research results of
others to inform and guide their own clinical prac-
tice.

It is implicit in this that doctors should keep
up to date with the literature in their specialty, by
reading research reports and/or systematic reviews.
Thus, any teaching should include an introduction
to critical appraisal and the principles of evidence-
based medicine.

Casual Researchers

The rather pejorative label that I have assigned to
this group is not without just cause, as much that
is wrong with medical research has its roots in the
system which makes a curriculum vitae embellished
with a number of token publications a prerequi-
site for career development. This argument is very
well developed in an editorial by Altman entitled
“The scandal of poor medical research” [1]. Alt-
man argues that it is the system which should be
changed. While heartily endorsing this view, I think
that until such a change is achieved we have to
accept that a very substantial volume of research is
being undertaken by clinicians who are ill-equipped
as researchers, and we must seek strategies for dam-
age limitation.

For this group the priority should be to teach
the principles of study design, and in particular the
requirement to have a well defined question. Almost
by definition, a well designed study that addresses
a well defined question will generate data that can
be presented and analyzed using a very limited set
of statistical tools, and so this group does not need
to be exposed to a large volume of methodological
detail. However, they do need to be taught when
it is appropriate to seek advice from a more expe-
rienced researcher, including perhaps a professional
statistician.

Professional Researchers

One could argue that this group, which is small in
number but highly influential, should be the priority
for our teaching efforts [11]. Not only are these
individuals active in conducting their own research,

but they are responsible for training and supervising
junior research workers. They are the individuals who
edit journals and review submitted manuscripts (see
Statistical Review for Medical Journals), and they
also review grant applications. They therefore have
great influence on what research is undertaken, and
on how results are reported. These individuals not
only require a sound grasp of research methodology,
but also need to be aware of their own limitations,
and should recognize the benefits of working closely
with an experienced statistician from the outset of a
research project.

When should Statistics be Taught?

Practitioners

The only practical mechanism for reaching all prac-
titioners is to include statistics in the undergraduate
medical curriculum (see Teaching Statistics to Med-
ical Students). Dixon [6] has proposed a syllabus for
such a core course based on current practice in UK
medical schools, but this tends to emphasize tech-
niques rather than “deep” understanding.

The situation with regard to teaching statistics in
the UK medical schools is very well documented.
Since 1980, there has been an annual meeting of
the individuals responsible for this teaching, and a
summary of each school’s undergraduate and post-
graduate teaching is compiled each year [5]. In what
was an admittedly rather cynical exaggeration, Peters
[12] described the situation with undergraduate teach-
ing of medical statistics as “all get it, while few
of them want it”. At least part of the problem is
that, in the majority of medical schools, the statis-
tical teaching comes very early in the curriculum,
while the students are concentrating on pre-clinical
subjects and before they have been exposed to any
clinical problems that would motivate the use of
statistical methods. Current moves within the UK
to change undergraduate medical courses to become
more integrated, with clinical problems being dis-
cussed from the very outset, might help to make
the relevance of our discipline more obvious to the
students. Dunn & Everitt have recently published
an introductory textbook [7] which presents medi-
cal statistics from this angle, and which should be a
useful backup to teaching in a more integrated cur-
riculum.
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Researchers

By the time that clinicians are actively involved in
research there is generally no problem with moti-
vation, although often the cry for statistical help
comes too late, when a poorly designed study is
beyond salvage. These individuals should have the
opportunity of attending a comprehensive course in
research methodology at the outset of their research.
As mentioned above, this would emphasize study
design, and the importance of the formulation of the
research question. A healthy dose of skepticism and
the acquisition of skills in critical appraisal nurtured
at this stage will be invaluable to their research,
whether or not the individuals eventually become
career researchers.

How should Statistics be Taught?

Undergraduate

Given the size of a typical undergraduate medical
class, the usual practice is for much of the teach-
ing of medical statistics to be based around formal
lectures. The paper by Dixon [6] describes a typical
undergraduate curriculum, but Appleton [4] suggests
that a series of well chosen case studies might be
more effective in demonstrating key concepts such
as variability and bias. An alternate approach that is
used in the University of Edinburgh Medical School
is to use a self-tutoring work book. The work book is
supplemented by a small number of formal lectures,
and by small group tutorials [5].

With the introduction of more integrated medical
courses, there is potential to make the relevance of
statistics far more obvious. For example, if a basic
practical class in physiology was based around the
measurement of blood pressure and heart rate before
and after exercise, then there would be great scope to
incorporate a statistical component looking at issues
such as observer variability (see Observer Reliabil-
ity and Agreement), bias, graphical representation of
data (see Graphical Displays), and correlation and
association. Moreover, if experienced statisticians
were involved more actively in teaching which was
integrated with other medical disciplines, it would
help to ensure that bad practices were not being
promoted by teaching staff who were inexpert in
statistics.

An issue to consider is the role of computers in
teaching medical statistics. There are two aspects
to this; namely, the use of computers as a tool for
data handling and statistical analysis, and the use
of computers to deliver teaching materials. I would
see the former as a low priority for undergraduate
courses, but computer-assisted learning might well
have a role in teaching even very large classes. One
commercial package, for example, is Statistics for
the Terrified (Version 3, Radcliffe Medical Press Ltd,
Abingdon, UK), which could be a complement to a
series of lectures.

Postgraduate

Teaching at a postgraduate level can be much
more flexible, as the numbers of students are more
manageable. One format that I have used extensively
is an introductory course with seven or eight two-
hour sessions, each session consisting of a lecture
followed by a practical exercise that reinforces the
lecture material. Topics covered include statistics
in the medical literature, looking at data, testing
(see Hypothesis Testing) and estimation, study
design, and case studies based on data provided
by the students. The practical sessions have been
computer-based, using the statistical package Minitab
(see Software, Biostatistical). Such an approach is
not without its problems, as it risks confusing the
students with both the statistical concepts and the
computing! However, an almost universal finding
in our course assessment questionnaires is that the
students find the interplay between the concepts and
their practical outworking very helpful, reinforcing
their understanding. It is also unrealistic to pretend
that medical researchers do not have access to
computers and statistical software, and so it is surely
important to teach good practice such as using
graphical presentations to explore the assumptions
underlying a formal statistical analysis.

At this level, statistical education should be an
ongoing activity rather than simply an initiation into
the world of research. An introductory course can
be followed up by more specialist courses that might
be discipline-based (e.g. clinical trials in cardiology)
or topic-based (e.g. systematic reviews; see Meta-
analysis of Clinical Trials). As a further part of this
continuing education, there is a healthy trend for med-
ical journals to publish series of expository articles on
statistical topics. The British Journal of Cancer, the
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British Medical Journal, and the Journal of the Amer-
ican Medical Association, for example, all have a
good track record in publishing statistical articles that
are accessible to a general medical readership (see
Medical Journals, Statistical Articles in). This not
only has a direct educational effect, but such endorse-
ment by leading journals also helps to highlight the
key role of statistics in medical research.

Finally, I would also view my role as a
statistical consultant as an educational opportunity
(see Statistical Consulting). Whether seeing a client
in a one-off advisory role, or working long-term as a
full member of a multidisciplinary research group,
there is ample opportunity to reinforce statistical
principles.

Summary

It is clear that a knowledge of statistical techniques
and the “scientific method” is crucial for both prac-
ticing clinicians and research workers. Yet there is
ample evidence that as a profession we have fre-
quently failed in our efforts to educate our clinical
colleagues. Undergraduate students are confused and
alienated, and published medical research continues
to demonstrate a widespread and fundamental lack
of understanding of key statistical principles. I have
considered the situation in the UK, but the position
is broadly similar in many other countries.

If we are to succeed in resolving some of these
problems, then I believe that we need to focus on
three areas. First, we should aim to equip all clini-
cians with the statistical skills necessary for day-to-
day decision making, recognizing that most clinicians
will only ever be consumers of medical research. Sec-
ondly, we should recognize that much research is
being conducted by inexperienced research workers
whose motivation is at least partly career develop-
ment. This group needs to be taught primarily the
principles of study design, and helped with the pre-
sentation and interpretation of their data. Thirdly, we

should be committed to developing long-term work-
ing relationships with senior clinical colleagues, so
that their statistical education can be extended and
reinforced in the context of their own work.
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Telephone Sampling

The use of the telephone for sample survey data col-
lection requires the selection of samples of telephone
numbers to identify sampling units for interviewing.
The sampling techniques employed to make these
selections are those used for many other problems
where samples must be selected. However, several
unique features of the sampling frames, the sets of
materials useful for sample selection, have stimulated
the development of sample designs specific to tele-
phone surveys.

The available frames vary from one country to the
next as telephone system characteristics vary. Since
our own experience has been limited to telephone
sampling frames available in the US, the discussion
here concerns frames and sampling methods to select
telephone households in the US. Frames and sampling
methods in other countries will have similar features
to those described here, although specific aspects of
the frames and methods may require modification to
improve the efficiency or other properties of survey
operations.

Telephone sampling methods have largely devel-
oped and been applied in the context of household
surveys. The methods can and have been adapted to
other populations such as establishments. The present
discussion is restricted, though, to sampling methods
for household populations.

The presentation is divided into four major sec-
tions. Background on frames and basic telephone
sampling methods are described in the next section.
The following section addresses specific telephone
sample designs, while the subsequent section presents
estimators for the principal telephone sampling meth-
ods. The final section is a comparison of designs
based on cost, variance, implementation, and bias
considerations.

Frames and Basic Telephone Sampling
Methods

The Telephone Household Population

Often the population of interest is broader than tele-
phone households, seeking to include all households
regardless of whether they have a telephone. To
reduce the costs of data collection through the use
of the telephone, investigators decide to compromise

on the target population, defining a survey pop-
ulation of telephone households when in fact they
seek to make inferences about all households. The
disjuncture between target and survey population
for many telephone surveys raises several important
issues concerning noncoverage of households without
telephones and the appropriateness of inference to a
population other than the survey population.

Noncoverage of households without telephones
can introduce bias into sample estimates. The bias
depends both on the proportion of households that are
not covered and the differences between telephone
and nontelephone households on the characteristics
of interest. Approximately 5% of US households do
not have a telephone, and the percentage of persons
who live in such households is even smaller. While
the overall rate of noncoverage is small, and may be
reassuring to some investigators, noncoverage varies
substantially with a number of characteristics that
may be related to variables being measured in a
survey. For example, nontelephone households tend
to have younger and more mobile populations and
to be located in rural areas of the South of the
US and in central cities. Noncoverage rates can rise
to 15% or higher for some subpopulations, a level
that is considered unacceptable to those who need to
produce estimates for many small subgroups of the
US population from the survey data.

The characteristics of nontelephone households
have been examined in several reviews (see, for
example, [15]). Nontelephone households tend to
have higher rates of unemployment, have higher rates
of smokers, and experience higher rates of crime vic-
timization. Telephone surveys could produce biased
estimates of employment, health, or social charac-
teristics. Adjustments to telephone survey data to
attempt to compensate for noncoverage may reduce
the bias. The use of poststratification, or population
control adjustments, for this purpose are discussed
later.

Telephone Systems

Telephone systems vary from country to country, but
there are features of the systems that are similar
despite the variation. Telephone numbers are grouped
into geographical areas. For example, in the US,
telephone numbers consist of three parts: a three-digit
area code, a three-digit prefix (or central office code),
and a four-digit suffix. The area code and prefix
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are established as part of an international system
that extends across the US, Canada, Mexico, and
the Caribbean. These numbers are not, of course,
assigned at random across the entire geographic area
covered by the phone system. Area codes are assigned
to specific geographic regions that in the US do not,
for the most part, cross state boundaries but otherwise
do not correspond to political boundaries. Thus, there
is a one-to-one correspondence between an area code
and a geographic area. For instance, area code 313 is
assigned to a region of southeast Michigan including
a sizable portion of Detroit.

Prefixes are repeated across area codes, and within
area codes are not generally geographically defined.
However, prefixes are grouped into geographic areas
called exchanges which are defined for the purposes
of providing public service and maintaining the phone
service. For example, the Ann Arbor exchange within
the 313 area code is a geographic area roughly
approximating the city of Ann Arbor and surrounding
areas and is assigned more than 20 different prefixes.
Households and businesses requesting a telephone
service within the geographic area defined as the
Ann Arbor exchange must be assigned a telephone
number whose prefix is one of 20 serviced by the
exchange. No other exchange within the same area
code can use the prefixes assigned to the Ann Arbor
exchange. There is little further geographic differenti-
ation within most exchanges with respect to prefixes.
Some exchanges with large numbers of prefixes will
be divided into wire centers responsible for a sub-
division of the area covered by the exchange and
containing a subset of the prefixes assigned to the
entire exchange.

The majority of the exchanges in the US are
assigned only a single prefix. Exchanges have been
until the recent past areas designated by public ser-
vice commissions within which companies were able
to obtain exclusive rights to provide a phone ser-
vice. Service requirements are such that the land area
covered by an exchange is limited, yet population
density for a given exchange can vary enormously.
Thus, some exchanges have very few customers,
and enough numbers are available in a single pre-
fix to assign to all customers. Other exchanges have
large numbers of customers, and multiple prefixes are
assigned to the exchange.

Suffixes are grouped in sets of 10 000. They are
typically assigned by local telephone service person-
nel based on existing assignment patterns. There does

not appear to be any particular system by which new
customer requests for services are assigned suffixes
within a prefix.

However, patterns of the assignment of suffixes
within prefixes do emerge when the entire system
is examined. In exchanges with multiple prefixes
and larger numbers of customers, prefixes and suf-
fixes are assigned haphazardly, depending on the
availability of unassigned numbers within a prefix
at the time of assignment. But in exchanges with a
single prefix and a small number of customers, suf-
fixes have been assigned in groupings to reduce the
cost of assignment and to make telephone assignment
easier. Older electromechanical switching equipment
allowed smaller companies to assign all numbers in a
single “1000-bank” of consecutive numbers all begin-
ning with the same first digit of the four digit suffix. A
company would only have to purchase a single bank
of 1000 switches for its customers, thereby reduc-
ing costs. Telephone numbers in the more numerous
single-prefix exchanges are thus effectively clustered,
often at the 1000-bank level, as well as at the
100-bank level. Several telephone sampling meth-
ods described subsequently take advantage of this
clustered assignment of numbers to improve the effi-
ciency of identifying telephone numbers assigned to
residential units.

Sampling Frames

There are four types of frame problems that arise
in telephone sampling: listings on the frame that are
not elements of the population (referred to as blanks);
elements in the population for which there is no corre-
sponding listing (noncoverage); listings on the frame
which yield multiple elements in the population (clus-
tering); and elements in the population which have
two or more listings on the frame (duplicates). Each
of these deficiencies can lead to bias in survey esti-
mates or inefficiency in survey operations. Sampling
statisticians develop selection procedures which try
to reduce or eliminate bias due to these deficiencies.
They also have been instrumental in finding selection
procedures which reduce the inefficiencies associated
with some of these deficiencies.

Three principal frames are used for telephone
sampling: telephone numbers, directories, and com-
mercial lists. The frame of telephone numbers can
be created through a combination of a list of area



Telephone Sampling 3

code and prefix combinations with randomly gen-
erated suffixes. The area code prefix combinations
can be obtained for local studies from examination
of local telephone directories, which are fairly up to
date at the prefix level. For surveys covering larger
areas than a local community, area code prefix com-
binations can be obtained in the US from Bell Core
Research, Inc. The BCR frame is updated monthly
and contains all area code and prefix combinations
for the US, as well as for Canada, Mexico, and the
Caribbean. The area codes and prefixes must be sub-
set to the US to reduce the amount of screening of
generated numbers for US telephone household sur-
veys.

While the BCR frame affords virtually complete
coverage of telephone households, it suffers from a
substantial number of blank listings. Less than 25%
of the generated numbers are assigned to residential
units. It is operationally inefficient to use a simple
random digit dialing scheme of area code, pre-
fix, and randomly generated suffix. Other methods
have been developed to take advantage of the inher-
ent clustering of residential numbers in 1000 banks
that increase the proportion of generated numbers
assigned to residential units to more than 60%.

The BCR frame with randomly generated suf-
fixes also has the disadvantage of duplicate listings.
Households with more than one telephone number
used for residential purposes are represented on the
frame multiple times. Probability sampling meth-
ods require that the number of telephone numbers
in a household be acquired and used to develop a
compensatory weight for estimation.

Directories have been widely used as a frame
for local studies. They are inexpensive to acquire
for a local area, and simple list sampling methods
can be used to select samples quickly, although not
necessarily easily. Directory frames are difficult to
assemble for wider geographic areas, with more than
5000 directories published across the US each year.
Their popularity as a sampling frame is due to cost
and convenience and to the lower proportion of blank
listings in the directory compared to the telephone
number frame: approximately 10%–15% of listings
in a residential directory in the US are no longer
residential.

On the other hand, directory frames suffer from
noncoverage of the telephone household popula-
tion due to unlisted numbers and changes in the
telephone status of households. The percentage of

telephone households which do not appear in direc-
tories exceeds 35% in the US, varying from low
percentages (10%) in suburban and rural areas to
more than 60% in some urban locations in the West
such as Los Angeles. Survey designers generally
do not ignore these high proportions of unlisted or
out-of-date listings, and choose to use random digit
dialing methods or other schemes that afford higher
coverage.

Further, directories have higher levels of duplicate
listings because subscribers can purchase additional
listings. For example, a married couple at the same
address with different surnames may choose for a
small fee to appear in the directory under both
names. The duplicate listing increases the chance
of their telephone household being selected, which
must, from a probability sampling point of view,
be compensated through a weight for the household.
Thus, a telephone directory has duplicate listings both
because of multiple telephone numbers per household
and multiple listings of the same telephone number
in the directory.

Commercial firms now assemble electronic files
in the US based on directories collected from across
the country. Directory entries (name, address, and
phone number) are either keyed or added to the file
when an electronic format is available. Lists based on
directories are supplemented by lists of automobile
registrations obtained from approximately 30 states
that release such data publicly. The combined file
is subjected to processing to assign a zip code to
each entry for the purposes of mailing. Several firms
have taken advantage of the availability of telephone
numbers in such files to create national directories
and to draw and sell samples of telephone numbers
from them. The commercial frames suffer from a
small proportion of blank listings as well as the
failure to cover unlisted numbers as well as duplicate
listings described for directory frames.

Each of the three frames described here have
generated different sampling methods that attempt to
take advantage of strengths of the frame and reduce
the impact of weaknesses in the frame. The methods
are often classified as one of three types: simple
list frame sampling methods suitable for directories;
random digit dialing methods based on the telephone
number frame; and list-assisted methods based on
directories or commercial lists generating samples
that include unlisted numbers as well. We do not
discuss the sampling methods as applied to directories
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here, but do examine the random digit dialing and
list-assisted methods in the next section.

Telephone Sample Designs

All of the sampling designs discussed in this section
assume the availability of a frame of telephone
numbers which includes all possible telephone num-
bers in the target population. Very limited auxiliary
information is available for the telephone numbers in
the BCR frame: exchange name, geographic coordi-
nates for the center of the exchange, and time zone.
Importantly, though, the BCR frame does include
new area code–prefix combinations approximately 3
months before they are added to the telephone system.
Thus, in principle, the BCR-generated frame will pro-
vide complete coverage of the telephone household
population but with little auxiliary information for the
purposes of stratification or other design efficiencies.

The primary problem with commercial list frames
is incomplete coverage of the telephone household
population. Conversely, the primary problem with
the BCR-generated frame is the inclusion of many
telephone numbers which are not assigned to a house-
hold. The development of telephone sampling designs
has been motivated almost entirely by a desire to
develop an efficient methodology for sampling from
the BCR frame.

Sample Designs Using the BCR Frame

The sample designs in this section document statis-
tical sampling methodology for sampling residential
households using only the BCR frame. Since approx-
imately 95% of all residential households (and not
only telephone households) can be linked to this
frame, the researcher must give careful consideration
to the question of how well the telephone population
represents the target population with respect to the
variables of primary interest.

Simple Random Digit Dialing (RDD). The sim-
plest and most direct approach to utilizing the BCR
frame is to select telephone numbers from the frame
randomly, call the selected numbers and conduct the
requisite interview for each number that is found to
be connected to an in-scope household. Numbers are
selected and called until the desired sample size, say
n, of in-scope households is attained. As noted earlier,

only about 20%–25% of the sample telephone num-
bers will be assigned to households, so the number
of calls required, say n′, will be considerably larger
than n. The expected number of required calls is
n/p, where p is the proportion of telephone numbers
assigned to residential households. Thus, in order to
account for the ineligible listing, the sample of tele-
phone numbers from the BCR frame must be four to
five times as large as the desired sample of n tele-
phone households.

In general, the determination of the status of a
telephone number is a costly matter, especially for
telephone numbers not assigned to households. Fre-
quently, a number must be dialed several times in
order to determine its status. Since procedures must
be specified for each type of dialing outcome, the
use of the BCR list (or any list with a high pro-
portion of spurious listing) will greatly increase the
administrative and operational costs of telephone sur-
vey operations. This general subject is discussed in
detail by Lepkowski [9]. For the purpose of con-
structing a simple cost model, let c0 be the cost of
determining the status of a number not assigned to
an in-scope household, c1 the cost of determining the
status of a number assigned to an in-scope household,
and c2 the cost of conducting the survey interview.
The total cost of the survey is then given by C =
n(c1 + c2) + (n′ − n)c0 and the expected total cost
of a simple random digit dialing survey is given by
E(C) = n[(c1 + c2) + c0(1 − p)/p]. Obviously, for
p in the neighborhood of 0.20–0.25, the compo-
nent of expected cost due to unproductive calls, i.e.
nc0(1 − p)/p, will be a substantial proportion of total
expected cost. The telephone designs described in the
following sections were all motivated by a desire to
reduce the proportion of cost due to unproductive
calls.

The Mitofsky–Waksberg Design. The two-stage
random digit dialing design proposed by Mitofsky
[10] and more fully developed by Waksberg [17] has
been so widely employed in telephone surveys that it
has become nearly synonymous with RDD telephone
surveys. The method capitalizes on the clustering
of telephone numbers assigned to residential house-
holds within banks of consecutive telephone numbers.
As noted above, only about 20%–25% of the num-
bers in the BCR frame are assigned to households;
however, among banks of 100 consecutive numbers
with at least one number assigned to a household,
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over 60% of the numbers are assigned to residen-
tial households. Clearly, if the 100-banks with one or
more residential numbers could be identified and if
sampling were restricted to those banks, then the pro-
portion of unproductive calls could be substantially
reduced.

The Mitofsky–Waksberg technique starts by
grouping the numbers in the BCR frame into 100-
banks by using the area code, the three-digit prefix,
and first two digits of the suffix to specify each bank.
In the first stage 100-banks are selected at random,
with replacement (see Sampling With and Without
Replacement), and a telephone number within the
bank is selected at random and dialed. If the selected
number is found to be eligible, then the bank is
retained for second-stage sampling. The process is
continued until a specified sample of m 100-banks
is attained. Within each retained 100-bank, telephone
numbers are selected at random, without replacement,
until a total of k eligible numbers (including the
original number used to retain the 100-bank) have
been identified.

Thus, the Mitofsky–Waksberg technique utilizes
a two-stage design where 100-banks are selected –
with probability proportional to number of eligi-
ble telephone numbers (see Sampling With Prob-
ability Proportional to Size) – in the first stage
and a fixed-size sample of eligible households is
selected in the second stage. Thus, the sample of n =
mk eligible households is selected with equal (but
unknown) probability. The efficiency of the Mitof-
sky–Waksberg technique derives from the fact that
the eligible telephone numbers are concentrated in
a relatively small proportion of the 100-banks. Let-
ting t be the proportion of 100-banks with no eligible
numbers, then the total expected number of calls is
n[1 − t (k − 1)/k]/p and the expected total cost is

E(C) = n

{
(c1 + c2) + c0[1 − p − t (k − 1)/k]

p

}
.

Clearly both the expected number of calls and the
expected cost decrease as k increases. Nationally, t

is in the neighborhood of 0.65, so even modest values
of k can lead to substantial cost savings.

Although the Mitofsky–Waksberg technique
offers an elegant method to improve telephone survey
efficiency, there are practical problems. The most
obvious is that some 100-banks may have fewer
than the requisite k eligible households, in which
case all numbers in the bank will, of necessity, be

called. Even then, compensatory weighting will be
required. Another problem is that it is not always
possible to determine accurately the eligibility status
of a selected number. In the first stage this may
lead to the incorrect inclusion or exclusion of 100-
banks. In the second stage, some numbers may still
be unresolved at the end of the survey period, so that
fewer than k eligible households are identified for
the bank. Another more subtle, problem is intrabank
correlation, which is discussed in more detail in a
later section.

The Potthoff Design. The design suggested by
Potthoff [11] is similar to the Mitofsky–Waksberg
design, except that eligibility is extended to a broader,
larger class of telephone number which he termed
auspicious numbers. Typically the auspicious num-
bers include not only the residential household num-
bers, but also ring-without-answer numbers and other
results for which the residential status is unknown.
This broader definition reduces the amount of screen-
ing needed for the first stage and the amount of
replacement required at the second stage. Another
innovative development by Potthoff [11, 12] speci-
fies that c ≥ 2 numbers be selected per bank in the
first stage. Sampling in the second stage depends on
the number of auspicious numbers observed in the
first stage, but this is not discussed in detail here.

The Potthoff sampling design yields an equal
probability sample of eligible numbers. Replacement
is required for only a small number of selected prefix
areas and it reduces ambiguities about the status of
numbers dialed at the first stage. Also, as c increases,
the chances of obtaining a bank that will be exhausted
in the second stage are reduced.

Implementation of the Potthoff design requires
knowledge about the proportion of auspicious num-
bers that are actually eligible numbers in order to
determine the appropriate sample size. The admin-
istrative structure is more complex and the training
requirements are increased for this procedure relative
to the Mitofsky–Waksberg.

Sample Designs Utilizing Published Residential
Telephone Numbers

As discussed in the first section, lists of published
residential telephone numbers for the entire US are
available from several vendors. Since 85%–90% of
the telephone numbers on these lists are connected
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to residential households, a straightforward random
or systematic selection of numbers from such a list
would be much more efficient than the designs used
for sampling the BCR list. Unfortunately, the typi-
cal directory-based list only includes about 70% of
the residential telephone households. Comparisons
of telephone households with and without published
numbers indicates that substantial bias may result if
households without published numbers are omitted
from the sampling frame [2]. The designs discussed
in this section attempt to capitalize on the efficiency
inherent in directory-based sampling while extending
the coverage of the design to include the entire
residential telephone population.

Designs Based on Plus Digit Dialing. Plus digit
dialing is a directory-assisted procedure in which a
sample of telephone numbers is selected from the
directory and an integer is added to the suffix of the
selected number. For instance, in plus-one dialing the
integer “one” is added to the suffix of each number
selected from the directory. The resulting sample of
telephone numbers generally includes both listed and
unlisted numbers; in addition, it yields a higher pro-
portion of productive numbers than does the simple
RDD design. Unfortunately this procedure has a num-
ber of theoretical problems. In general, the numbers
in the target population have unequal and unknown
probabilities of selection. In fact, some of the unlisted
numbers may have a zero probability of selection
unless the unlisted numbers are evenly mixed among
the listed numbers. Such a mixing phenomena is, at
best, difficult to verify. Generalizations of this design
in which the last d digits (two or more) are replaced
by a randomly generated d digit number have been
suggested.

A closely related design, based on half-open inter-
vals of telephone numbers, was suggested by Frankel
& Frankel [5]. In numeric-order directories a cluster
is defined to consist of a listed telephone number
together with all numbers up to, but not includ-
ing, the next listed number. A sample of clusters
is selected from the directory by simply selecting
a simple random sample of telephone numbers
from the directory. This method achieves known,
nonzero, probabilities of selection for all telephone
households; however, the potentially large variation
in cluster size can introduce formidable operational
problems. Furthermore, this method is subject to esti-
mation difficulties as cluster size and sample are both

random variables. This basic design can be modi-
fied for use with alphabetical-order directories, but in
this case the theoretical and operational problems are
compounded by reporting error problems.

A Design Based on Two-Stage Sampling. A two-
stage sampling design, utilizing a directory list, was
proposed by Sudman [14]. This procedure, which was
originally suggested by Stock [13], uses 1000-banks
of telephone numbers (which are identified by the first
six digits of the telephone number) as the first-stage
sampling unit. The selection of 1000-banks is similar
to the first-stage selection in the Mitofsky–Waksberg
method except that the directory of listed numbers is
used to select the first-stage sample. Thus, the prob-
ability of selection in the first stage is proportional
to the number of listed numbers in the 1000-bank.
In the second stage, numbers are selected until a
predetermined fixed number of listed numbers are
selected, and interviews are attempted for households
with both listed and unlisted numbers. It should be
noted that unlisted numbers in 1000-banks with no
listed number have zero probability of selection, but
in most cases this is not a serious problem. Of more
concern is the fact that the determination of listing
status often depends on a respondent report which
can be in error; however, use of a directory in reverse
telephone number order can eliminate this source of
error.

Unlike the Mitofsky–Waksberg method, the Sud-
man procedure will produce unequal-size clusters of
sample telephone households, although the variation
in cluster size is usually not very large. Also, the
potential for exhausted clusters exists, but with 1000
numbers (instead of 100 numbers, as in the Mitof-
sky–Waksberg method) this is of minor concern.

Designs Using Both the BCR Frame and
Published Telephone Numbers

It should be noted that the designs discussed ear-
lier require only the BCR frame, while those just
discussed require only a published list of residen-
tial telephone numbers. The designs discussed in this
Section require both. The basic idea behind these
designs is to unite directly the desirable coverage
properties of the BCR frame with the relatively high
sampling efficiency of a frame of listed telephone
numbers.
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Dual Frame Designs. An RDD sample of nB tele-
phone households is selected from the BCR frame
and simultaneously a sample of nD telephone house-
holds is selected from the directory list frame. Letting
n′

B and n′
D be the respective number of calls required

to achieve the desired sample sizes, the cost of the
dual frame design is given by

C =(nB + nD)(c1 + c2) + c0(n
′
B + n′

D − nB − nD).

The expected cost of a dual-frame survey is given by

E(C) = n

{
c1 + c2 + c0

[
λ(1 − pB)

pB

+ (1 − λ)(1 − pD)

pD

]}
,

where n = nB + nD is the total sample size, λ =
nB/n is the proportion of the total sample allocated
to the BCR frame, pB is the proportion of telephone
numbers in the BCR frame assigned to residential
households, and pD is the proportion of telephone
numbers in the directory frame assigned to residen-
tial households. As pB is in the neighborhood of
0.20–0.25 and pD is usually in the neighborhood of
0.80–0.85, the expected cost (for a fixed total sample
size n) will decrease as λ decreases.

There are several possible ways to combine the
data from the two frames for estimation. In gen-
eral, dual-frame estimators are more complicated than
the estimators for the previously discussed designs.
Groves & Lepkowski [6] provide a detailed discus-
sion of the issue of dual-frame estimation and the
problem of sample allocation to the two frames so as
to attain the minimum cost for a specified variance.

To implement dual-frame methodology, the direc-
tory status (i.e. listed or unlisted) of each residential
household from the BCR sample must be known. To
avoid using potentially unreliable respondent reports
regarding their listing status, numbers selected from
the BCR frame can be matched to the directory list
at the time of sample selection. If the directory frame
contains addresses for the listed numbers, then it is
possible to send advance letters for the purpose of
improving response rates. In general, the dual-frame
design requires a sophisticated administrative oper-
ation; also, costs may be increased by the need to
match the BCD sample to the directory frame and by
the use of a more complicated estimator. The benefits
of a higher response rate should more than offset the
costs of advance letters.

Directory-Based Stratification. For this design the
directory list is used for the purpose of stratifying the
BCR frame so as to improve sampling efficiency. In
a typical application, the directory list is used to iden-
tify all 100-banks in the BCR frame with one or more
directory listed telephone numbers. The BCR frame
is then partitioned into two strata; one stratum con-
tains all telephone numbers in 100-banks with one or
more listed numbers and the other stratum contains
all other numbers. The first stratum is often referred
to as the high-density stratum, while the second is
referred to as the residual stratum. Simple RDD sam-
ples are then selected from each stratum, with a much
larger sample selected from the high-density stratum.
The basic strategy behind this design is the same as
for the Mitofsky–Waksberg method, i.e. telephone
numbers for residential households tend to be highly
clustered within 100-banks with listed numbers, so
if banks containing such telephone numbers can be
identified and sampled at a higher rate, then sam-
pling efficiency can be greatly improved. Casady &
Lepkowski [3] found that at the national level the pro-
portion of the BCR frame assigned to the high-density
stratum would be approximately 0.38 but it would
contain about 95% of the numbers assigned to resi-
dential households. Thus, the proportion of numbers
in the high-density stratum assigned to households is
approximately 0.55, while the proportion of numbers
assigned to households in the residual stratum is only
about 0.02.

Assume that an RDD sample of n1 telephone
households is selected from the high-density stratum
and that a sample of n2 telephone households is
selected from the residual stratum. Then, the cost for
the stratified design is given by

C = (n1 + n2)(c1 + c2) + c0(n
′
1 + n′

2 − n1 − n2),

where n′
1 and n′

2 are the respective numbers of calls
required to achieve the desired sample sizes. The
expected cost of the stratified sample is

E(C) = n

{
c1 + c2 + c0

[
γ (1 − p1)

p1

+ (1 − γ )(1 − p2)

p2

]}
,

where n is the total sample size, γ = n1/n is the
proportion of the total sample allocated to the high-
density stratum, p1 is the proportion of telephone
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numbers in the high-density stratum assigned to res-
idential households, and p2 is the proportion of tele-
phone numbers in the residual stratum assigned to
residential households. As p1 is in the neighborhood
of 0.55 and p2 is usually in the neighborhood of 0.02,
the expected cost (for a fixed total sample size n) will
decrease as γ increases. The allocation of the sample
to the strata to minimize the cost for a fixed vari-
ance (or minimize the variance for a fixed cost) is
discussed in detail in [3].

The probability of selection is known, positive,
and equal within a stratum, so the estimation of
population totals is straightforward. The estimation
of a population mean at the stratum level is also
straightforward, but the estimation of the overall
population mean requires that the total residential
telephone population be estimated and then a ratio
estimator (see Ratio and Regression Estimates)
be used to estimate the population mean. A more
detailed discussion of estimated means and variances
is given later.

Under the relatively simple cost model given
above, this design compares favorably with the Mitof-
sky–Waksberg design. In practice, directory-based
stratification with simple RDD sampling within stra-
tum has proven to have an advantage with respect
to implementation and administration. There are two
costs associated with this design that are not included
in the simple model: the cost of the commercial list
itself and the cost of stratifying the BCR frame. The
cost of the commercial list will vary with vendor and
with time, but for any large-scale, continuing survey
operation this should be a relatively minor cost com-
ponent. Both the costs cited above are fixed costs
and can be amortized over multiple studies to reduce
greatly the impact on any single study.

Directory-Based Truncation. This approach is
really a special case of the preceding one in that no
sample is allocated to the residual stratum, i.e. the
BCR frame is truncated by removing the residual stra-
tum. The greatly increased hit rate, together with the
other advantages of the directory-based stratification
design, make this an extremely attractive approach.
The obvious disadvantage is that not all of the target
population is accessible when the frame is truncated.
In the example given above, approximately 5% of the
telephone population will not be covered by the trun-
cated frame. However, experience has indicated [1]
that for many variables the out-of-scope population is

very similar to the target population, so that very lit-
tle bias results from truncation. As previously noted,
approximately 5%–7% of the household population
is not included in the telephone population, and any
additional bias due to truncation of the BCR frame is
probably minimal.

Estimation

The probability features of these designs must be
taken into account in the computation of estimates
from the samples. The basic principles of such
estimation are described briefly here for means (and
by implication, for proportions) and their sampling
variances. In addition, poststratification, or popula-
tion control adjustment, is in some cases applied
to telephone survey data to attempt to adjust the
telephone household sample to the distribution of all
households.

Estimating Means

For the simple RDD design, let Y RDD be the simple
mean of the n observations of the household variable
y. Similarly, let Y MW be the simple mean of the mk

observations under the Mitofsky–Waksberg design.
Both Y RDD and Y MW are design-unbiased for the
population mean µ; furthermore, var(Y RDD) = σ 2/n

and var(Y MW) ∼= (σ 2/mk)[1 + ρ(k − 1)], where σ 2

is the population variance and ρ is the intra-100-bank
correlation for the variable y.

The estimation of the population mean for the
directory-based stratified designs is somewhat more
complicated. Sampling within stratum is RDD, so Yh

(the simple mean of the nh observations from the
hth stratum) is unbiased for the stratum population
mean µh. It follows that Y ′

t = ∑H
h=1 Nh(nh/n′

h)Y h is
approximately unbiased for the population aggregate
of the y values for telephone households and N ′

t =∑H
h=1 Nh(nh/n′

h) is approximately unbiased for the
total number of telephone households, say Nt. Thus,
the ratio estimator, Y Strat = Y ′

t /N
′
t , is approximately

unbiased for the population mean and

var(Y Strat) ∼=
H∑

h=1

z2
hσ

2
h [1 + (1 − ph)λh]

nh

,

where ph is the proportion of telephone numbers in
the hth stratum assigned to residential households, zh



Telephone Sampling 9

is the proportion of the telephone household popu-
lation included in the hth stratum and λh = (µh −
µ)2/σ 2

h .
Several other statistical issues should be kept in

mind when utilizing telephone designs:

1. In general, ratio estimators are required for esti-
mating subclass means, in which case the rela-
tively simple variance expressions above are not
applicable.

2. The designs above yield samples of house-
holds, not persons. If persons are selected within
households then additional weighting and more
complex estimators are required.

3. To have unbiased estimators, the weights of
households with multiple telephones must be
adjusted to account for their higher probability
of selection.

4. The estimators above are based on the use of
random digit dialing to achieve fixed sample
size. This requires that the status of all numbers
selected be determined, which, in turn, requires
careful record keeping and close supervision.
Because fixed sample sizes are required for
each retained 100-bank, the Mitofsky–Waksberg
method is more complex and thus the need for
tight control is even more important.

Estimating Sampling Variance

For the purpose of estimating var(Y RDD), we let Yi

be the value of the variable y for the ith household
selected. An unbiased estimator for var(Y RDD) is
given by v̂ar(Y RDD) = σ̂ 2/n, where

σ̂ 2 =

n∑

i=1

(Yi − Y RDD)2

n − 1
.

For the Mitofsky–Waksberg sampling we let Yij be
the value of the variable y for the j th selected
household in the ith retained 100-bank. An unbiased
estimator for var(Y MW) is given by

v̂ar(Y MW) = 1

m

m∑

i=1

(Y i − Y MW)2

m − 1
,

where

Y i =

k∑

j=1

Yij

k
.

For the stratified design we let Yhi be the value of
the variable y for the ith household selected in the
hth stratum. Applying the linearization technique to
the ratio estimator Y Strat yields the variance estimator

v̂ar(Y Strat) =
H∑

h=1

ẑ2
hσ̂

2
h [1 + (1 − p̂h)λ̂h]

nh

,

where

p̂h = nh

n′
h

,

ẑh = Nhp̂h

N ′
t

,

σ̂ 2
h =

nh∑

i=1

(Yhi − Yh)
2

nh − 1
,

and

λ̂h = (Y h − Y Strat)
2

σ̂ 2
h

.

Although results are not given in detail, the lineariza-
tion technique can also be used to derive estimators
for the variance of the ratio estimators required for
subclass means.

Poststratification

In traditional sampling theory, poststratification arises
when the variables to be used to create strata are not
available at the time of selection. That is, one may
be interested in partitioning the population into G

poststrata using variables collected during the survey.
As under proportionately allocated stratified sam-
pling, improvements in precision are possible with
suitable modification to variance estimation. Post-
stratification requires that for each sample element
the poststrata be known and that poststratum weights,
say Wg , are available for each poststratum. The post-
stratum weights must come from an outside source
such as a census, census projections, or administra-
tive records. For example, poststrata based on age and
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gender may be created for the respondents if suitable
population counts or proportions Wg can be found
for age and gender groups in the population. In tele-
phone sampling, poststratification often adjusts not to
the population residing in telephone households, but
rather to the population residing in all households.
This form of poststratification is applied to obtain
estimates that have, in a certain sense, been adjusted
to the distribution of the population in all households
and not just telephone households.

In summary, poststratification is applied as
follows:

1. Sort the sample into G poststrata based on some
observed characteristic(s).

2. Obtain sample weights Wg for the population,
typically from an outside source such as a larger
survey, census or census projection data, or
administrative records.

3. Compute the means Yg for the characteristic
of interest separately for each poststratum and
compute the overall mean Y ps = ∑G

g=1 WgYg .
4. For variance estimators, use

v̂ar(Y ps) ∼= 1

n




G∑

g=1

WgS
2
g

+
G∑

g=1

Wg(1 − Wg)
S2

g

Ng





or, alternatively,

v̂ar(Y ps) ∼= 1

n

G∑

g=1

WgS
2
g

[
1 + 1 − Wg

Ng

]
,

where S2
g is an estimator for the within-poststra-

tum element variance, and Ng is the population
size for poststratum g. The form of the estimators
S2

g will depend on the sample design.

In almost all practical situations the poststratified
estimate Y ps will have smaller variances than the
estimated mean without the poststratification.

Poststratification is also often referred to as popu-
lation-control adjustment. Generally, poststratified
weights are applied at the element level, and weighted
estimates computed using the poststratified weights
are “adjusted” to the outside distribution represented
by the Wg . In the case of the RDD design the effects

of this adjustment can be seen more clearly if we
reexpress the poststratified estimate of the mean as
follows. Let r denote the number of respondents in
the sample and rg denote the number of respondents
in the gth poststratum. In addition, let Ygi denote
the value of characteristic Y for the ith respondent
in the gth poststratum. Then the poststratified mean
can be written in terms of element weights wgi as
follows:

Y ps =
G∑

g=1

WgYg =

G∑

g=1

NgY g

N

=

G∑

g=1

( r

N

)(
Ng

rg

) rg∑

i=1

Ygi

G∑

g=1

( r

N

)
Ng

=

G∑

g=1

rg∑

i=1

wgiYgi

G∑

g=1

Ng/N

1/r

=

G∑

g=1

rg∑

i=1

wgiYgi

G∑

g=1

rg∑

i=1

(
1

rg

)
Ng/N

1/r

=

G∑

g=1

rg∑

i=1

wgiYgi

G∑

g=1

rg∑

i=1

wgi

.

That is, the weight wgi is the ratio of the pro-
portion in the population in the gth poststratum to
the proportion in the sample in the gth stratum:
wgi = (Ng/N)/(rg/r). Thus, poststratification of a
telephone household sample of respondents to a dis-
tribution based on all households provides a simulta-
neous adjustment for nonresponse and noncoverage
of the households without telephones.

There are several features of poststratification for
telephone samples that are important to observe. Typ-
ically, the Wg are census or other related data for
all households, not just telephone households. Sec-
ondly, while the poststratification adjustment may
be viewed as an adjustment for both nonresponse
and noncoverage (see Nonsampling Errors) it is
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often applied in practice after some form of non-
response compensation through weighting. Thirdly,
it may not be possible to obtain population weights
Wg across a full cross-classification of characteris-
tics for the population, but marginal distributions
may be available. Raking ratio adjustment proce-
dures can be used to generate a complete distribu-
tion of the cross-classification based on the marginal
distributions. For example, population weights may
be available for age and education, but not their
cross-classification. Raking ratio estimation can be
used to generate the cross-classification based on a
“main effects” model for age and education. The
raked cross-classification weights for the popula-
tion are then applied to the respondent distribu-
tion to generate element-level weights as indicated
above.

Comparison of Designs

Cost–Variance Tradeoffs

The cost function, together with the variance of the
estimator of the population mean given before, can
be used to determine the size of the within-100-bank
sample size k that will minimize that expected cost
for a fixed variance (or minimize the variance for a
fixed cost) for the Mitofsky–Waksberg design. An
explicit expression for the optimal value of k can be
found in [17]. Similarly, the cost function, together
with the variance of the estimator of the population
mean given before, can be used to determine the
sample allocation to the strata that will minimize the
expected cost for a fixed variance (or minimize the
variance for a fixed cost) for directory-based stratifi-
cation. Explicit expressions for sample allocation can
be found in [3].

Using generally accepted values of cost factors
and population parameters for the simple cost models
and the variance expressions cited above, Casady &
Lepkowski concluded that both the Mitofsky–Waks-
berg design and directory-based stratification offer
considerable improvement over the simple RDD
design. They also concluded that on the basis of the
simple cost model alone there was little difference
in efficiency between the two approaches; however,
if the possibility of additional bias could be toler-
ated, then the truncated design was by far the most
efficient.

Implementation Considerations for Telephone
Samples

There are a host of features of the telephone sys-
tem that affect the implementation of the designs
described in the preceding section. We discuss here
several of the more important ones briefly.

The identification of the residential status of each
telephone number generated in RDD or list-assisted
samples is not always an easy process. Numbers
that are answered must be checked for residential
use, and those used for mixed residential and busi-
ness purposes must be suitably classified (usually
any residential use is sufficient to classify a number
as residential). Some numbers are readily identified
as nonresidential because they are not in service,
and a recording clearly indicates that status. Many
numbers that are not in service are not connected
to a recording to indicate their status, but are con-
nected to a “ringing machine”. Thus, interviewers
screening telephone numbers to determine residential
status cannot distinguish residential numbers where
no one is at home from numbers not currently in
service.

This latter problem of numbers that repeatedly
ring without answer is an important consideration in
the implementation of some designs. It is difficult
to manage the ring-without-answer numbers in two-
stage RDD designs that require the replacement of
nonresidential numbers, particularly in time-limited
survey data collection periods. Many survey organi-
zations treat ring-without-answer numbers that have
been called at varying times of day and days of the
week as nonresidential. If the nonresidential classi-
fication is made late in the study period, then the
replacement number has a relatively short period dur-
ing which it can be called. Replacements often do
not get the same variation in time of day and day of
week calling that can be applied to original num-
bers. Thus, many survey organizations now prefer
sampling procedures that give them a fixed sam-
ple of telephone numbers rather than one that may
generate new telephone numbers late in the survey
period.

At the end of the study period, ring-without-
answer numbers that have been called repeatedly
must be classified as residential or not in order to
close out the study. If a number has been called
at a variety of times and days, then it may be
arbitrarily classified as nonresidential. It thus does
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not count against the response rate for the survey
because it has been classified as nonsample. On
the other hand, ring-without-answer numbers that
have not been called enough times are typically
classified as residential and nonresponding, leading
to a conservative calculation of the response rate.

To overcome these difficulties, and to reduce the
costs of screening telephone numbers for residential
status, automated screening systems have been devel-
oped to identify at a minimum telephone numbers that
are connected to recordings indicating whether they
are in service. The typical recording is preceded by a
“tri-tone” without any ringing of a telephone number.
Proprietary hardware and software has been devel-
oped which dials telephone numbers and detects the
tri-tone recording. Numbers with a tri-tone recording
are dropped from further sampling. Numbers with-
out the tri-tone will often have a “ring splash” in
which the telephone will ring momentarily while the
hardware disconnects the call.

Surveys that are statewide or national in scope
have geographic boundaries for the population that
correspond to area code boundaries. Sample num-
bers generated within the sample area codes will be
assigned to residences within the target geographic
area. Many surveys target geographically defined
populations whose boundaries do not match area code
and exchange boundaries. In these cases, one may
redefine the population, limiting it to that residing in
specified exchanges, or one may select a sample from
a set of exchanges that covers the entire geographic
area but includes areas outside the target. Telephone
numbers must then be screened not only for residen-
tial status but also for location of residence, based on
respondent self-reporting. The classification of ring-
without-answer numbers is even more problematic in
these screening surveys.

Identification of duplicates in each of the frames
also typically involves a respondent self-report. Res-
ponding households are asked if they have more than
one telephone number assigned to the household, and,
if so, the number of such numbers assigned. This
self-reported number of telephone numbers through
which a household may be reached is subsequently
used to generate a weight for estimation. Many sur-
vey organizations also check for wrong connections
and operator misdialing. Misdialed numbers are dis-
carded, as are wrong connections, to avoid further
complications in the weighting process for duplicate
listings of a household.

Social science and health surveys (see Surveys,
Health and Morbidity) also frequently select a sin-
gle eligible person in a household for more inter-
viewing. For example, on a survey involving mar-
ital satisfaction, a single adult will be selected to
avoid contamination of responses among adults who
converse about the content of the survey between
interviews. Respondent selection must be done at
an early stage in the interview. The procedure for
objective respondent selection described by Kish [7]
has been widely used in telephone surveys for this
purpose, but it leads to an undesirable consequence –
increased nonresponse rates. Households are reluctant
to participate in a survey when the first questions are
designed to obtain a roster of eligible persons liv-
ing in the household. Alternative methods include a
procedure described by Troldahl & Carter [16] and
the nearest-birthday method (see [8] for a descrip-
tion). These latter procedures have been shown to be
biased, but they continue to be used because they
are easy to apply and avoid concerns about increased
nonresponse rates.

Finally, answering machines and cellular tele-
phones are posing increasing problems for telephone
sampling operations. Answering machines do allow,
for the most part, ready identification of residential
units. Messages can be left asking that the house-
hold call a toll-free number, and calling of households
with answering machines can be scheduled at a vari-
ety of times of day and days of week to try to
reach the household at a time when a person will
answer the phone. Cellular telephones pose a differ-
ent problem. Are such telephone numbers residential
or business? Further, the subscriber incurs a charge
when they receive such calls. Cellular telephone num-
bers may be mixed in with other numbers with the
same prefix, making identification difficult. Yet they
are more readily answered than telephones at a res-
idence. In addition, a well-trained interviewer can
make arrangements to call a household at another
number, thus reducing the cost to the telephone
subscriber.

Bias

A critical issue in the use of the truncated frame
is the magnitude of the bias introduced by drop-
ping the low-density stratum. Various studies have
shown that an average of less than 5% of the US
household population are in the low-density stratum
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[1, 4]. Thus it is likely that the additional cover-
age bias will not be substantial for many charac-
teristics of the total population. Connor & Heeringa
[4] show that the coverage bias associated with the
truncated frame is negligible for economic attitude
measurements. Brick et al. [1] show that the cover-
age bias for the sociodemographic measure is also
small, although for some characteristics and for some
subgroups of the population, the additional cover-
age bias may be large enough to be of concern.
Generally, though, the empirical investigations have
confirmed the speculation that the additional cover-
age bias associate with the truncated frame can be
safely ignored.

Choice Among Alternative Designs

As indicated previously, the choice among alterna-
tive designs is largely based on a consideration of
cost and error properties of each design. Typically,
three basic cost factors are considered: the cost of
generating the sample of telephone numbers, the cost
of screening the sample, and the “convenience” of
working with the sampling procedure in implemen-
tation (a cost consideration that is often difficult to
quantify). On the error side, there are two principal
concerns: coverage of the telephone household pop-
ulation and sampling variance.

If we examine three main competitors on these
characteristics, we can see why organizations are
today making particular choices among alternative
designs. For example, it is inexpensive to generate
telephone numbers in the Mitofsky–Waksberg two-
stage RDD sample design. Screening is efficient in
the second stage since nearly 65% of the telephone
numbers are residential. The Mitofsky–Waksberg
design presents a number of difficulties in implemen-
tation, including replacement of nonresidential num-
bers and exhausted clusters. These can be substan-
tial inconveniences for some survey operations, and
alternative methods that avoid these problems have
substantial attraction. On the error side, the Mitof-
sky–Waksberg design does provide complete cover-
age of the telephone household population. Sampling
variances are larger than for element sample designs
because of the cluster sample selection and well-
known increases in variance due to within-cluster
homogeneity among sample elements. That is, design
effects for Mitofsky–Waksberg samples are greater
than one.

The stratified design has a somewhat different set
of characteristics. The sample-generation costs can
be high. The listed stratum sample can be purchased
from a commercial sampling firm at a reasonably
low cost per sample number, but the unlisted stratum
sample requires further stratification of numbers and
two-stage RDD samples drawn from each unlisted
stratum. Screening costs are also higher than for the
Mitofsky–Waksberg design since approximately 50%
of the sample telephone numbers in the listed stra-
tum are residential, and an even lower percentage
are residential in the unlisted stratum. Given that
different sampling methods are used across strata,
sample selection is less convenient for the strati-
fied design than for the Mitofsky–Waksberg design.
However, the stratified design does eliminate the
need to replace numbers in the listed stratum, and
there will be no exhausted clusters in that stra-
tum either. In terms of error, the stratified design
does cover the entire telephone household popu-
lation. Sampling variances will be smaller for the
stratified design than for the Mitofsky–Waksberg
design because it is element sampling, and some
improvements in precision due to stratification can
be expected.

The truncated design has the disadvantage relative
to the Mitofsky–Waksberg and stratified designs of
noncoverage of telephone households in 100-banks
with no listed numbers. The level of noncoverage
is low, and empirical investigations have shown that
the difference for many characteristics between the
covered and noncovered populations is small. Sam-
ples drawn using the truncated design are inexpensive
when obtained from commercial sampling firms. The
screening costs of the truncated design are interme-
diate to those of the Mitofsky–Waksberg and the
stratified designs since approximately 50% of the
generated telephone numbers will be residential. The
truncated design is the most convenient among the
three designs considered here since no replacement
numbers are needed, and the sample is drawn only
from the listed stratum; no two-stage sampling is
needed for the unlisted stratum. The sampling vari-
ances of estimates should be the smallest for the
truncated design since it is a stratified element sample
with no cluster sampling.

The sampling practitioner is faced with a choice
between designs which provide complete coverage
but a number of inconveniences in selection and a
design with less complete coverage but a number
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of conveniences in selection. Given the empirical
evidence on the size of the bias due to the non-
coverage of telephone households in 100-banks with-
out listed numbers, current practice favors the latter
truncated design. That is, practitioners are choosing
truncated sampling methods for telephone surveys
based on a classic, although informal, cost–error
tradeoff.
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Teratology

Aristotle used terata to mean monsters, which
he interpreted as the result of forces upsetting
reproduction from its normal natural development.
Thus teratology (derived from Greek terata, meaning
monster/prodigy, + logy) became the term used in
medicine and biology for the study of monstrosities
and abnormal forms in man, animals, or plants as
described by Warkany [17].

This article is restricted to the occurrence of these
abnormal births in man. Literature on birth defects in
laboratory animals exposed to pharmaceutical sub-
stances in the search for new treatments is described
by Shepard [14] and Schardein [13].

The first use of the term, teratology, is generally
attributed to Isidore Geoffroy Saint-Hilaire of Paris,
son of Etienne, a distinguished teratologist. Teratol-
ogy encompasses what are now known to be geneti-
cally inherited conditions, developmental conditions,
e.g. Down syndrome, which are not inherited by any
Mendelian (see Mendel’s Laws) or other mecha-
nisms, and the common birth defects or congenital
malformations whose etiology is largely unknown.
This very heterogeneous collection of defects affect-
ing the newborn and children comes within the health
services remit of the medical or clinical geneticist.

Historical Development

Historically, abnormal births were viewed with a mix-
ture of curiosity and superstition and were generally
regarded as a portent of ill luck. The Chaldeans used
their occurrence to predict the future, as documented
on clay tablets in the Royal Library of Nineveh in the
reign of Ashurbanipal, King of Assyria in 700 BC.
Likewise, the Romans used monstrous births for div-
ination and also developed the concept of maternal
impression whereby mental modification of expec-
tant mothers was thought to influence their offspring.
The Spartans passed a law requiring pregnant women
to look at statues of Castor and Pollux so that their
babies might be born perfect and strong. An ancient
Egyptian anencephalic mummy was found in a sepul-
chre used for animals, monkeys, and sacred ibises,
in the catacombs of Hermopolis. In Paris it was
unwrapped by Etienne Saint-Hilaire and his assis-
tants who found it not to be a monkey but an eighth

month of gestation human fetus with anencephalus.
The specimen joined the collection of the King of
Prussia in Berlin. During bombing of that city in
World War II the museum was hit, the collection
destroyed, and this specimen disappeared.

From the time of the Renaissance onwards
collections of descriptions of abnormal births were
published including a text by the famous French
surgeon, Ambroise Paré, an eight-volume treatise
in Italian by Taruffi, German texts by Förster and
Ahfeld, and Ballantyne’s works in English together
with the journal Teratologia which he set up and
edited. By the beginning of this century a large
number of birth defects were known, statistical
methods of measuring the degree of likeness between
relatives by correlation (co-relation) analysis had
been discovered by Galton and the study of
Mendelian and other types of inheritance was under
way. From the 1950s onwards studies were made of
early abortions, human cells and chromosomes, and
birth defect registers (see Disease Registers) and
monitoring systems (see Surveillance of Diseases)
were set up.

Types of Study

Teratological investigations in humans can be classi-
fied as descriptive epidemiological studies, analytic
epidemiological studies, and case reports (see Case
Series, Case Reports). Descriptive epidemiological
studies describe the frequency (usually the pre-
valence at birth) of congenital anomalies in a par-
ticular community and how this frequency varies by
geographic area, year and month of birth, or with
characteristics of person such as socioeconomic sta-
tus, maternal age, and parity. This type of study usu-
ally is based on information available from existing
sources such as birth certificates, death certificates,
or hospital records.

Broadly classified, analytic epidemiologic studies
include case–control and cohort studies, and clinical
trials. In case–control studies in the field of
teratology, a group of index cases (births/fetuses
with anomalies, other adverse reproductive outcomes
such as miscarriages) is identified and information
is sought about prior exposures, often during a
reference period such as periconception. A control
series is identified on whom similar information is
obtained. The purpose of the control series is to
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provide information on the distribution of exposure
in the population at risk of the adverse reproductive
outcome under consideration. Information on the
distribution of exposure is compared between cases
and controls, and a measure of association, the odds
ratio, may be calculated which closely approximates
the relative risk. Important issues in evaluating the
validity of data from case–control studies include the
appropriateness of the control group or control groups
chosen, and the similarity in the degree of accuracy
of the data on exposures for cases and controls.

In a cohort study as applied to teratology, a group
of women is classified in terms of exposure status
at some defined point in time prior to the occur-
rence of the outcome of interest and are followed up
to determine reproductive outcome. Exposure status
may refer to the fact of exposure vs. nonexposure,
e.g. work with video display units during pregnancy
or with the husband or partner working in a spe-
cific occupation during pregnancy, or it may relate to
degree of exposure, for example the reported intake
of specific dietary factors per week. The frequency of
adverse reproductive outcomes is compared between
the groups, and on this basis the relative risk asso-
ciated with the exposure may be calculated. Fewer
cohort studies than case–control studies have been
carried out because, for comparable statistical power,
substantially greater numbers of subjects need to be
studied. Another potentially important problem of
cohort studies in this context is that ascertainment
may be influenced by knowledge of the exposure
status of the mother of the infant being examined.
Studies of familial aggregation may be classified as a
special type of cohort study in which the “exposure”
is having an affected relative. Special techniques of
analysis have been applied in some of these studies,
such as segregation analysis and linkage analysis.

Another special type of cohort study is the clinical
trial. In trials, assignment to exposure is determined
by the investigator. The randomized control trial is
the definitive method of evaluating interventions. If
the trial is of adequate size, then the randomiza-
tion ensures comparability of the group assigned
to receive the intervention and the control group
for potentially confounding factors, both known and
unknown. A further refinement is to make both the
woman receiving the intervention and those respon-
sible for her care and that of the child unaware of
whether or not she has received the intervention. This
minimizes the chance that the women will change

their behavior in a way that is related to the inter-
vention and also the possible effect of knowledge
of exposure status on the ascertainment of reproduc-
tive outcome (see Blinding or Masking). The only
randomized trials carried out to date in the field of
teratology have related to vitamin supplementation
during the periconceptional period. Nonrandomized
trials have been carried out regarding the possible
preventive effect of multivitamin supplementation
against recurrent NTDs and orofacial clefts.

In teratology, the number of analytic epidemio-
logic studies carried out is small compared with the
fields of cancer or heart disease in adults.

Classification and Frequency

Classification and how this relates to morphology
is fundamental to any understanding of teratology.
However, this subject is complex. Unlike plant taxon-
omy, no Linnaeus has appeared to embrace the whole
field of diverse birth defects and classify them accord-
ing to any universally agreed order. The modern-day
equivalents of the collections of the last century
are McKusick’s catalog [10] and the Birth Defects
Encyclopedia [2]. The former is mainly concerned
with genetically inherited conditions although it does
include a large number of birth defects and associated
syndromes. Other useful reference sources are those
made by the March of Dimes Birth Defects Foun-
dation in the US and the International Clearinghouse
for Birth Defects Monitoring Systems [8].

The usual definition of an incidence rate is the
number of occurrences of a disease that manifest in
a unit of time in a known population of individuals
at risk. This definition is not easy to apply to con-
genital anomalies, as it implies a process occurring
regularly over the period of time chosen. In embry-
onic development, the frequency of an event in one
week is unlikely to be the same as in the next week.
It is more natural to think of prevalence, that is the
proportion of living embryos with the condition, at a
point in time or at the time of an event, such as birth.
Prevalence is more simple because the denominator
changes rapidly as a result of pregnancy loss, and
because many congenital anomalies represent not so
much something that occurs, but something that does
not occur, such as fusion of the palatal shelves (cleft
palate) or neural tube closure (NTDs). If it were
possible to obtain complete information, then the
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progress over time of a cohort of embryos could be
followed, documenting depletion as a result of mis-
carriage and the events relating to organogenesis in
the survivors.

The cumulative incidence rate is the total fre-
quency of an event in a cohort of at-risk subjects up
to a relevant time. There are theoretical and practi-
cal problems of estimating both the numerator and
the denominator of this incidence rate. Theoretical
problems concern the manifestation of anomalies
throughout development. There is evidence that the
mammalian embryo is capable of regeneration and
of repairing itself. If these findings were applica-
ble to man, then an apparently normal child may
have shown defects at an early stage of intrauterine
development, leading to underestimation of cumula-
tive incidence. The practical problems of estimat-
ing incidence rates include pregnancy termination,
undetected abortion, and problems of ascertainment.
Antenatal diagnosis with selective termination of
pregnancy has had a substantial impact on the num-
bers of births with certain types of congenital anoma-
lies diagnosed at the time of delivery. Only the cases
from pregnancies which went to term are eligible to
be notified to the national birth defects monitoring
scheme. Failure to include fetuses from terminated
pregnancies may greatly distort the epidemiologic
information, so it is now accepted practice to include
fetuses with anomalies detected by antenatal diagno-
sis with subsequent termination of pregnancy in the
estimation of the “prevalence at birth” of congeni-
tal anomalies.

Landmark Studies

Frequency and Types of Birth Defects

One of the first studies to address this lack of
information about the frequency and types of birth
defects throughout the world was that by the World
Health Organization (WHO) in 1958 and later
discussed at an informal meeting at Ann Arbor,
Michigan, in April 1959. Stevenson and colleagues
conducted a WHO supported prospective study of
births in 24 centers in 16 countries and described
the occurrence and types of birth defects found
in stillborn and liveborn infants [16]. Outcomes
relating to 421 781 pregnancies were traced based
on 416 695 single births, 5022 sets of twins, 63 sets
of triplets, and one set of quadruplets. A 400 page

book containing basic tables for each center was
published. The group recognized biases in the data,
particularly in the centers which recorded hospital
births only. This research demonstrated the large
impact of NTDs on fetal wastage and a correlation
between these defects and dizygous twinning (see
Zygosity Determination). Consanguinity between
parents increased stillbirth rates and early infant
mortality rates, these being highest where parents
are most closely related.

Vitamin A Deficiency

Why do birth defects occur? For the majority and
wide spectrum of abnormalities observed, environ-
mental factors have been identified in only a few
instances. Hale observed a Duroc–Jersey sow, who
received a ration deficient in vitamin A, at the Texas
Agricultural Experimental Station. She gave birth on
March 29, 1932, to 11 pigs, all of which were born
without eyeballs [7]. Ten were alive at birth, one
lived 4 days, one lived 3 hours, while all the oth-
ers died within 5 minutes after birth. He postulated
that the abnormalities were caused by vitamin A
deficiency. The study marked the beginning of exper-
imental teratology and led to many future studies
using animal models for the experimental investi-
gation of birth defects. The pharmaceutical industry
built on this work extensively to investigate nutri-
tional imbalances, drugs, chemicals, irradiation, and
many other postulated teratogenic substances. Some
60 years later the Chief Medical Officer of the UK
issued a warning that women who were pregnant
or might become pregnant must not take excessive
quantities of vitamin A. While this message relates to
overprovision rather than underprovision, the origin
of this work goes back to Hale’s key paper.

German Measles

In the first 6 months of 1941 in Sydney, Australia,
there were an unusual number of cases of congenital
cataract. Gregg, an ophthalmologist, personally saw
13 cases [6]. He noted that as well as these babies
being born with bilateral cataract, they were of small
size, ill-nourished, and difficult to feed. Many had
congenital heart defects. There were a few with
monocular cataract which in two-thirds of cases was
associated with microphthalmia. Close questioning of
the mothers revealed that they had German measles
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during early pregnancy. There had been a widespread
and severe epidemic in Australia in 1940. Altogether
78 children with congenital cataract were ascertained
and of these 68 were associated with a definite history
of maternal rubella infection.

Thalidomide

At a meeting of the German Paediatric Society at
Kassel in October, 1960, Kosenow and Pfeiffer pre-
sented photographs and X-rays of two infants with
aplasia of the extremities and various other defects.
Within a few months another doctor, Wiedemann,
reported similar cases. At the Paediatric Society meet-
ing on November 18, 1961, Lenz suggested that the
drug, thalidomide, might be the cause, as it appeared
in 17 out of the 20 maternal records that he had inves-
tigated [9]. The manufacturers withdrew thalidomide
(trade names Contergan, Distaval, Softenon) and all
other preparations containing this substance from the
market on November 25, 1961. However, the damage
was done. Some 129 cases were studied by Lenz at
the University of Hamburg. Another 203 cases were
reported to him by letter from the rest of West Ger-
many and also isolated cases from Belgium, Brazil,
England, Egypt, Israel, Sweden, Switzerland, and a
few cases from the US. The much more strict enforce-
ment of food and drugs legislation in the US (see
Drug Approval and Regulation) ensured that many
fewer births were affected in North America than in
Europe.

Thalidomide is a derivative of glutamic acid,
discovered in Germany, and first marketed in 1956.
It was well tolerated, considered safe, and used as
an analgesic, sedative, and hypnotic agent. By the
time of the papers by Lenz & Knapp in 1962 [9], at
least 2000 children with drug-induced abnormalities
had been born in West Germany. Worldwide it is
thought at least 8000 children had been affected by
thalidomide.

Identification of the Relationship between Diet
and Neural Tube Defects (NTDs) as a Paradigm
of Teratological Investigation

Several features of the descriptive epidemiology of
NTDs led to a dietary hypothesis for their etiology.
Details are contained in [5]. There was an increased
prevalence at birth of NTDs in the offspring of
women of lower socioeconomic status compared

with the offspring of other women. In the British
Isles, and some other areas, the highest rates of
anencephalus were amongst babies conceived in the
spring and early summer, possibly linked to a lack
of fresh vegetables in the winter. Body stores of
certain nutrients are low in the spring. Improved all-
year availability of various nutrients might in part
explain the recent changes in seasonal pattern. It
was known from the 1950s that therapeutic abortions
could be induced by giving a folic acid antagonist
4-aminopteroylglutamic acid taken orally. This was
interpreted to indicate that folic acid deficiency could
induce abortion and possibly malformations.

A Case–Control Study

In western Australia, Bower & Stanley, using
notifications to the local malformation registry in the
period 1982–84 ascertained 77 infants with NTDs
[1]. They were compared with two control groups
each matched by date of last menstrual period:
a group of 77 infants with other malformations
registered in the same way, and a group of 154
normal infants. A telephone interview was conducted
to obtain details of demographic and other factors.
A three-part questionnaire was mailed to each
mother, comprising a section on food frequencies (see
Nutritional Exposure Measures) during the period
from 9 months before to 9 months after the last
menstrual period, a section on illness and drugs taken
for nausea in pregnancy, cooking methods, changes
in diet and other factors over the same period, and a
24-hour dietary record to be completed on a specified
day after receipt. These data were used to assess the
daily dietary intake of folate, including that provided
by supplementation, and intakes of a number of other
nutrients. Participation rates were very high: 93%
for mothers of cases, 88% for mothers of infants
with other malformations, and 84% for mothers of
normal infants. A statistically significant association
of reduced NTD risks with increased reported intake
of total folate was observed.

A Cohort Study

Milunsky et al. [12] reported a cohort study based on
information collected on women undergoing prenatal
testing by maternal serum α-fetoprotein screening or
amniocentesis in Massachusetts. Information on diet
in the first 8 weeks of pregnancy was obtained using
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a food frequency questionnaire, and on vitamin sup-
plementation in the 3 months before and 3 months
after conception, was collected by telephone inter-
view. A total of 22 715 study subjects was available
for analysis, of whom 49 had an infant with a neural
tube defect. There was a statistically significant pro-
tective effect of taking multivitamins at least once a
week before conception and during the first trimester,
with a relative risk of 0.36 (95% confidence interval
0.15–0.83). The effect was almost entirely restricted
to preparations containing folic acid. The relative
risk associated with folic acid supplementation in the
first 6 weeks of pregnancy was 0.29 (95% confidence
interval 0.15–0.55). Amongst women who did not
use supplements containing folic acid, the relative
risk of NTDs associated with a dietary intake of more
than 100 micrograms daily was 0.42 (95% confidence
interval 0.16–1.15).

A Nonrandomized Clinical Trial

Smithells and colleagues carried out a multicenter
nonrandomized prospective trial of periconceptional
multivitamin supplementation in the prevention of
NTDs [15]. They selected mothers who already had
had one affected offspring. The oral tablets taken
(Pregnavite Forte-F, made by Bencard) consisted of
a mixture of folic acid, numerous vitamins, and a
mineral supplement containing iron, calcium, and
phosphorus. There were three groups. The fully sup-
plemented group of 185 mothers, who took one tablet
three times a day for at least 28 days prior to con-
ception until the date of the second missed period,
produced 178 infants or fetuses, of whom one (0.6%)
had an NTD. This compared with 13 births with an
NTD (5.0%) out of 260 infants or fetuses of unsup-
plemented mothers; a significant difference (relative
risk 0.12, p < 0.01). There was also a third group of
partially supplemented mothers defined as those con-
ceiving within 28 days of beginning supplementation
or commencing supplementation after conception but
known to have missed tablets for more than one day.
These results produced immediate and widespread
interest.

An early and sustained criticism was why a ran-
domized design had not been used. Smithells et al.
eventually stated that they originally intended to
use a double-blind randomized design (see Blind-
ing or Masking; Clinical Trials, Overview) but that

this protocol was rejected by three separate hospi-
tal research ethics committees. Owing to the absence
of randomization, women therefore selected them-
selves into the supplemented and nonsupplemented
groups (see Selection Bias). There were other crit-
icisms. There was no true placebo group; which
preparation might be effective, multivitamin or folic
acid, was not clear.

A Randomized Clinical Trial

The debate for and against the need and ethical
justification for a larger and valid randomized trial
of folic acid supplementation continued (see Ethics
of Randomized Trials). By September 1982 the UK
Government had approved funding for 3 years and
asked the Medical Research Council to carry out such
a study.

The MRC vitamin study [11] was a random-
ized double-blind prevention trial with a factorial
design conducted at 33 centers in seven countries to
determine whether supplementation with folic acid
or a mixture of seven other vitamins (A, D, B1,
B2, B6, C, and nicotinamide) around the time of
conception can prevent NTDs (anencephalus, spina
bifida, encephalocele). Some 1817 women who had
at least one previous affected pregnancy with an NTD
were allocated at random to one of four groups (see
Table 1).

Some 1195 had a completed pregnancy in which
the status of the fetus or infant was ascertained
with respect to having or not having an NTD.
A known abnormality occurred in 27: six in the
folic acid groups and 21 in the other two groups.
This is a 72% protective effect (relative risk 0.28,
95% confidence interval 0.12–0.71). No significant
protection effect was found with respect to the

Table 1 The 2 × 2 factorial design used
in the UK Medical Research Council ran-
domized trial of folic acid and other dietary
supplementation in high-risk pregnancies

Folic acid

Group Yes No

No A C
Multivitamins

Yes B D

Note: all women had a previous offspring with
NTD and all received minerals supplement.
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other vitamins (relative risk 0.80, 95% confidence
interval 0.32–1.72). Of the centers, 17 were in the
UK, seven were in Hungary, three in Australia,
three in Canada, and one each in Israel, Moscow,
USSR, and Lyon, France. The randomization was
carried out by the Clinical Trials Service Unit at
Oxford. Women took one capsule a day from the
date of randomization until 12 weeks of pregnancy,
estimated from the first day of the last menstrual
period. The folic acid capsules contained 4 mg of
the substance. The multivitamin groups contained
various amounts of the various vitamins. The control
substance consisting of minerals contained dried
ferrous sulfate and calcium phosphate. There was an
independent data monitoring committee (see Data
Monitoring Committees) which reviewed progress
every 6 months. The trial was double-blind with
neither patients nor their medical attendants knowing
which regime had been allocated.

There was a 2 × 2 factorial design:

A Folic acid and minerals. C Minerals only.
B Folic acid, minerals and D Minerals and other

other vitamins. vitamins.

In this design the effect of folic acid is determined
by comparing groups A and B together vs. groups
C and D together. The effect of multivitamins is
determined by comparing groups B and D together
vs. groups A and C together. If it is thought that
there might be a synergistic action between folic
acid and multivitamins then only group B would
benefit. This factorial design with 2000 participants
would give a statistical power of 80% to detect
a reduction in recurrence from 4% to 2% using a
one-sided significance level of 0.05 (see Alternative
Hypothesis). This degree of difference is similar
to that observed by Smithells et al., who reported
a reduction of recurrence risk from 4.7% to 0.7%.
About one woman was being recruited each working
day and it was thought that the trial would continue
until around 1993. However, in April 1991 the data
monitoring committee recommended that the trial be
stopped. The results of the trial had been kept under
review and assessed by sequential analysis for which
the cumulative difference between the number of
NTDs occurring in the folic acid and nonfolic acid
groups was plotted against the total number of NTDs
occurring in the study.

By April 12, 1991, results showed that this dif-
ference had passed the preset lower boundary in the

sequential analysis. At this point 1817 women had
been randomized and findings were known on 1195
informative pregnancies. The findings were very clear
and showed a significant beneficial effect specific
to folic acid supplementation. This important trial
was based on measuring the reduction in recurrence
risk. Roughly, only 5% of mothers who produce
offspring with NTDs have previously had at least
one affected birth. The great majority, about 95% of
mothers who produce NTD births have only one such
occurrence.

This key question of whether a periconceptional
vitamin supplementation with folic acid or multivita-
mins would prevent the first occurrence of NTDs in
a similar fashion was studied by Czeizel & Dudás in
Hungary and reported in 1992 [3]. They randomized
women in two groups. Some 2104 women received
the folic acid and vitamin supplement and 2052
women received a trace element supplement which
contained copper, manganese, zinc, and vitamin C.
Birth defects were significantly more prevalent in
the group receiving the trace element supplement
compared with the folic acid and vitamin supple-
ment group (22.9 per 1000 and 13.3 per 1000 births,
respectively; P = 0.02).

The mechanism whereby folic acid supplemen-
tation in the periconceptional period reduced the
occurrence and recurrence risk of NTDs has not
been determined. It is clear that supplementation
does not act to correct a simple nutritional defi-
ciency, because most pregnant women carrying an
affected fetus have levels of folate above the deficient
range. Therefore, the possibility that an abnormal-
ity in folate metabolism is responsible for a large
proportion of NTDs is being investigated. Func-
tional variants in some of the enzymes involved in
folate metabolism can be identified by demonstrat-
ing differences in the genes encoding them. Three
studies have suggested that homozygosity (see Het-
erozygosity) for the V677T mutation in the gene
coding for 5,10-methylenetetrahydrofolate reductase
(MTHFR), which results in a thermolabile variant
of the MTHFR enzyme, is a risk factor for spina
bifida.

Particular Statistical Concepts, Problems,
and Techniques

It is useful to compare progress in teratology with
research in another field such as cancer. In the latter,
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descriptive studies have led to case–control studies
of each of the common cancers, possible treatments
have been identified and tested using clinical trials.
In teratology these developments have not happened.
There is the difficulty of direct observation, and
the major problem of assessing exposure. However,
compared with cancer, the interval between exposure
and outcome in a fetus or newborn is relatively short
and new cohorts of births are formed by the natural
process of conception, gestation, and birth.

Another key problem relates to the frequency
of birth defects. For example a case–control study
would need at least 750 cases and a similar number of
controls to detect an exposure factor which changed
the incidence of any of the most common birth
defects, e.g. NTDs, by a factor of 50% (see Sample
Size Determination). In turn this would require a
population of around 750 000 births corresponding to
a total population of at least 50 million persons. This
corresponds to an entire year of births in France or
England and Wales and at least 2 years of births in
Australia or Canada. In the MRC trial of folic acid we
have noted that this required collaboration between
33 centers drawn from 14 countries. It follows that
there is a great need for international collaboration.

Fundamental problems exist relating to classifica-
tion (see Classification, Overview). The debate is
summarized by the phrase “lumpers and splitters”.
Birth defects rarely, if ever, occur as an all or nothing
phenomenon. Taxonomy is crucial. Further difficul-
ties arise due to the observation of more than one
defect occurring in the same individual and the large
number of complex syndromes that have now been
described. A systematic study of each of the major
common birth defects using rigorous case–control
studies has not yet been completed. Once the selec-
tion of subjects for study has been made there may
be errors and bias in observations (see Measurement
Error in Epidemiologic Studies). One of the most
difficult to assess is logical and not statistical, and
relates to the definition of affected individuals. Errors
of measurement may occur. Bias is common, most
frequently due to incomplete ascertainment.

Solutions to These Problems

Classification problems may be clarified by new
and better observations and techniques. Detailed
biochemical studies and possible genetic defects

have been identified using DNA methods (see DNA
Sequences) in the case of NTDs. The human genome
project will undoubtedly provide a great deal of
knowledge relating to teratology. Progress could be
made by extending existing malformation registers.
These should contain more accurate observations,
preferably verified by experienced clinicians, more
complete ascertainment of birth defects in a defined
community, and in due course larger data sets.
Analysis specifically of cases with malformations of
more than one system may have greater statistical
power to detect associations with putative teratogens
if the exposure of interest is primarily associated with
a pattern of multiple defects of unknown cause rather
than with isolated defects.

Monitoring

Several surveillance systems for births with mal-
formations were established after the thalidomide
tragedy of 1961. Tests for statistically significant
increases in observed numbers of cases as com-
pared with baseline expected numbers are made on
a monthly basis in England and Wales and Nor-
way, on a 1, 2, 3, 6 and 12 monthly basis in
Atlanta, and on a quarterly basis in the Birth Defects
Monitoring Program in the US. Many of the surveil-
lance schemes participate in the International Clear-
inghouse for Birth Defects Monitoring Systems. Most
of these are based solely on malformations recorded
in the neonatal period. There are also systems in
which malformations are recorded irrespective of the
age at detection. In Europe, a number of this type
are included in the EUROCAT Project, a concerted
action project on registration of congenital abnormal-
ities and twins (see Twin Registers) in the European
Community.

The statistical methods used have been of the
following types: (i) graphical display of frequencies;
(ii) chi-square linear trend analysis (see Trend Test
for Counts and Proportions); (iii) comparison of
observed numbers of cases of specific types of
congenital anomalies with the numbers expected
according to the Poisson distribution; (iv) “self-
reinforcing” techniques, notably the cumulative sum
(“cusum”) technique and the sets method; and
(v) scan analysis (see Scan Statistics for Disease
Surveillance). Some comparisons of these techniques
have been carried out. In applications with small
denominator populations, the Poisson technique was
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found to be inefficient compared with the sets
method and the cusum technique. In applications
with larger denominator populations, the cusum
technique is somewhat more efficient than the Poisson
and sets techniques. In simulation analysis for
four specific groups of malformations, the cusum
technique showed greater sensitivity, specificity, and
accuracy than the sets method. One obvious limitation
of these techniques, which applies to certain types
of malformations only, is the difficulty of obtaining
data on terminations of pregnancy in which fetuses
with certain types of anomalies have been detected
by antenatal diagnosis. The size of the population
surveyed is a crucial issue in view of the fact that
most teratogens identified to date have had a low
prevalence of exposure, and the background rate of
specific anomalies is low.

Clustering in Time and Space

The recognition and investigation of clusters of con-
genital anomalies, and particularly the assessment of
whether the occurrence of clustering or a partic-
ular cluster is purely a chance phenomenon, leads
to considerable methodological and practical diffi-
culties. The available studies can be classified into
one of three groups based on the motivation for the
investigation: (i) studies carried out to test if cluster-
ing exists within a predefined population of births,
in the absence of specific spontaneous reporting of
clusters or a specific hypothesis concerning an envi-
ronmental agent; (ii) studies carried out when the
existence of the cluster has been suspected and spon-
taneously reported, usually either by clinicians or
local inhabitants; and (iii) studies initiated because
of concern about specific environmental exposures.
In the 1970s, recognition of the problems of inves-
tigating spatial clustering led to investigation being
focused more on the identification of time space clus-
tering using the methods of Ederer et al. [4]. All of
these approaches have been used in investigations of
neural tube defects; no clear-cut evidence of cluster-
ing was found in any study.

Anticipated Developments and Unresolved
Problems

Progress in teratology, as in other fields, requires
accurate and perceptive observation which in

turn relates to the power and sophistication of
techniques and instruments available at the time.
It is likely that this will be revolutionized by the
new work in genome research, the identification
of chromosomal differences between mothers of
affected and nonaffected offspring, and in due
course by the detection of how these differences are
manifest via biochemical pathways or other means.
The definition and identification of clusters of birth
defects is unresolved and continues to be of concern.
Such outbreaks are notified from time to time usually
accompanied by requests for investigation. These
are difficult, expensive and time-consuming and the
majority so far have rarely led to finding any new
cause.

The etiology of most types of congenital
anomalies remains unknown. For many types
of anomaly there is an elevated recurrence
risk, probably due to a combination of genetic
and environmental factors (see Gene-environment
Interaction). Advances in molecular genetics have
made it possible to genotype large numbers of
individuals by polymerase chain reaction (PCR)
techniques. This greatly simplifies the investigation
of genotype–environment interaction. For example,
research has identified an increased risk of orofacial
clefts among individuals with the uncommon allele
for transforming growth factor alpha (TGFα).

Progress is being made at finding reasons why
some rare defects occur, but this has had a small
effect to date on the overall burden of the common
teratological defects (see Burden of Disease), which
remain a major public health problem.
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Textbooks in Clinical
Trials

Introduction

As the number of drug, biologic, and device clinical
trials increases at an ever-expanding rate, the number
of texts discussing clinical trials seems to grow just
as quickly. And just as there are a wide variety of
clinical trials and aspects of clinical trials (e.g. proto-
col, design, monitoring, data management, regulatory,
statistical analysis, and reporting results), so are there
numerous texts covering these different types and
aspects. Further, within each clinical trial aspect (e.g.
statistical analysis), there are still a wide variety of
texts. For example, some statistical texts may give an
overview on how to apply standard statistical tech-
niques to clinical trials data, while others may focus
on specific topics such as analyzing crossover trials,
Bayesian methods or generalized estimating equa-
tion (GEE) techniques. Overall, in order for anyone
working with or interested in clinical trials to choose
a reference text best suited to one’s needs, one must
first decide what one’s needs are in this field. Is one
new to the clinical trials field and thus interested in
getting a general overview of clinical trials? Is one
interested in regulatory aspects? (see Drug Approval
and Regulation; Data management) Is one an entry-
level statistician in a pharmaceutical company and
wants to learn how standard statistical techniques are
used to analyze clinical trials data? Is one a veteran
of statistical analysis of clinical trials, but wants to
learn more about a specific specialized topic?

In addition to the large amount of choices an
individual has in choosing appropriate clinical tri-
als texts, another consequence of the clinical trials
boom is that more and more academic institutions are
offering courses or entire programs in clinical trials.
The variation in these courses mimics the variation
in the types and aspects of clinical trials. There is
not necessarily one course that could be considered
a standard clinical trials course. As with texts, some
courses may focus on introduction, conduct, ethics,
components, and/or design of a clinical trial; other
courses may focus on analysis. Within the different
types of courses, there is not necessarily a stan-
dard syllabus that could be developed. For example,
analysis courses have the following (not necessar-
ily exhaustive) list of topics from which to choose,

all of which could not be covered in a standard
one semester course: Statisticians role in data man-
agement; randomization; power and sample size
calculations; reporting results; NDA/PLA/PMA writ-
ing; application of the more common statistical
techniques (ANOVA, ANCOVA, Chi-Square, Man-
tel–Haenszel Statistics, Logistic Regression, Sur-
vival Analysis, Repeated Measures (see Longitu-
dinal Data Analysis, Overview)) to clinical tri-
als; handling treatment-by-center and treatment-by-
covariate interactions; confounding; the application
of more complex yet now widely used statistical
techniques of mixed models, GEE techniques, and
missing data techniques (especially for dropouts);
interim analyses (see Data and Safety Monitoring),
group sequential methods, and data safety monitor-
ing boards; crossover trials; noninferiority trials (see
Equivalence Trials); analysis of safety data; intent-
to-treat versus per-protocol analysis; multiplicity
(multiple endpoints; multiple treatment groups; mul-
tiple looks at the data); and Bayesian methods.

Clearly, as it would not be possible for a course
to cover these topics in one or even two semesters,
the organizers and instructors of clinical trials courses
have the not-too-easy task of first choosing the appro-
priate topics to cover in one course or in a set of
courses, followed by the task of choosing the appro-
priate text to use as a reference or as a textbook.
Given the wide variety of texts and courses, an
instructor may have a difficult time finding a book
that would be a one-to-one correspondence with the
topics he or she desires to cover in a given course.

In general, whether you are a student, clinical
trials professional, or an instructor, choosing ref-
erences or course textbooks can be overwhelming,
even after deciding upon a specific learning objec-
tive. In this article, we hope to offer guidance on
appropriate textbooks or references for those inter-
ested in (a) an introduction or overview of the design
and components of clinical trials; and (b) statistical
analysis of clinical trial data. What follows is not
a critical review of texts, since the number of texts
is too numerous for such handling here. However,
if this author knows of a review that does exist in
journals, it is noted. Rather, what follows is a brief
description of various texts discussing clinical trials
and the audience for which the text is meant. Also
presented is this author’s judgment on whether each
text might be more useful as a textbook or a reference
for a clinical trial statistics course or for a clinical
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trial introduction/overview/design course. Note that,
again, this article focuses on various texts giving an
introduction or overview of clinical trials, and on
those texts focusing on analysis. The numerous other
texts focusing on issues such as regulatory aspects or
data management, or focusing on clinical trials in cer-
tain indications (e.g. AIDS, cancer) are not included
here. Also, given the ever-increasing advances in the
conduct and analysis of clinical trials, the concentra-
tion of this article is on clinical trials texts that have
been developed or updated within approximately the
last 10 years (however, a discussion of some of the
books generally considered as “classics” by the sta-
tistical and clinical trial community that do not nec-
essarily satisfy the time criterion is also given).

Discussion of Clinical Trials Texts

Table 1 gives an outline of several available clinical
trials text focusing on (a) an introduction or general
overviews of clinical trials, or (b) the general statisti-
cal analysis. Any text not included here must not be
considered a reflection on the quality of the omitted
text, but is rather due to the fact that the book was
published after to the finalization of this report (i.e.
through beginning of 2004), is not focused on design
or general statistics in clinical trials in this author’s
opinion, was not published within approximately the
last 10 years, or, despite efforts, is an oversight of the
author. The table is sorted by the year of publication,
with the more recent texts being listed first. Included
in this table for each text is the title, author, year of
publication and publisher. Also included for each text
is an assessment of the level of the text (either grad-
uate level or undergraduate level), highlights of the
text’s contents, this author’s assessment of whether
the text is more useful as a reference or textbook, the
type of course where the text is most useful (catego-
rized into two classes: introduction/overview/design,
or statistics), and references for a detailed review of
text, if a review is available. Note that for virtually
all texts listed below, the intended audience includes
both statistical and clinical researchers, where “clini-
cal researcher” includes any nonstatistician involved
in clinical trials, such as investigators and clinical
trial monitors.

Note that any text listed in the table as a possibility
for being used as a textbook in a clinical trials
course does not necessarily imply the text has practice

problems and exercises. Rather, it indicates that, in
this author’s (and only this author’s) opinion, the text
covers a relatively wide range of topics in detail,
yielding sufficient quantity and quality material on
which a course could be based. Unless otherwise
noted, texts indicated as possible use in a clinical
trial statistics course are most useful if the student
has already had a one-year elementary statistics or
biostatistics course. Texts indicated as possible use
in as introduction/overview/ design of clinical trials
often do not necessarily require such a prerequisite
(nor do they usually require a medical background).

In addition to the texts listed in the table, there
are numerous texts that focus on a specific sta-
tistical aspect of clinical trials (e.g. sample size;
crossover designs; group sequential methods; sample
size). Many of these texts are excellent references, or
could be considered as textbooks for courses designed
in such a specific topic, and are listed below:

Sample Size Calculation
Sample Size Calculation in Clinical Research by
Chow S-C, Shao, J, Wang H (2003).
Publisher: Marcel-Dekker (This is a complete
overview of sample size calculation methods for
a wide variety of clinical trial scenarios; includes
a discussion of sample size re-estimation in
interim analyses).

Randomization
Randomization in Clinical Trials: Theory and Prac-
tice by Rosenberger WF, Lachin JM (2002).
Publisher: Wiley.

Safety
Drug Safety Evaluation by Gad SC (2002).
Publisher: Wiley.
Drug Safety Assessment in Clinical Trials by G.S.
Gilbert (1993).
Publisher: Marcel-Dekker.
Review in: Biometrics (1994); 50:1231–1232;

JRSS-A (1994), 157:503.

Cross-over Trials
Design and Analysis of Cross-Over Trials, Second
Edition by Kenward MG and Jones B (2003).
Publisher: Chapman & Hall/CRF.
Review in: Statistics in Medicine (1990); 9:1007;

Biometrics (1991); 47:787;
JASA (1991); 86:232.

(this list is continued after Table 1 )
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Cross-over Trials in Clinical Research by Stephen
Senn (2002).
Publisher: Wiley.
Reviews of first edition in:

JRSS-A (1993); 156:512–513;
Biometrics (1994); 50:586;
Statistics in Medicine (1994); 13:298–300.

Cross-over Trials edited by Hothorn L (1996).
Publisher: Fischer, Stuttgart.
Cross-over Experiments: Design, Analysis, and Appli-
cation by Ratkowsky DA, Evans M.A. and Alldredge
JR (1993).
Publisher: Marcel Dekker.
Review in: Biometrics (1994); 50:586;

JASA (1994); 89:356–357
Statistics in Medicine (1994); 13:28–300;
JRSS-A (1995); 158:200.

Bayesian Methods
Bayesian Methods and Ethics in a Clinical Trial
Design, edited by Kadane JB(1996).
Publisher: Wiley.
Review in: JASA (1997. 92:384–385.

Sequential Methods/Interim Analyses
Data Monitoring Committees in Clinical Trials: A
Practical Perspective by Susan S. Ellenberg, Thomas
R. Fleming, David L. DeMets (2002).
Publisher: Wiley.
Group Sequential Methods with Applications to
Clinical Trials by Jennison C and Turnbull BW
(1999).
Publisher: Chapman & Hall/CRC, London.
The Design and Analysis of Sequential Clinical Trials,
Second Edition by Whitehead J (1997).
Publisher: Ellis Horwood.

Quality of Life
Quality of Life Assessment in Clinical Trials: Methods
& Practice by Staquet MJ (1998).
Publisher: Oxford University Press.
Quality of Life Assessments in Clinical Trials by
Spilker B (1990).
Publisher: Lippincott-William & Willkins.

Meta-Analysis
Meta-Analysis of Controlled Clinical Trials by
Whitehead A (2002).
Publisher: Wiley.

Discussion

Whether one wants to learn more about statistical
issues in clinical trials, is a clinical trials professional,
or is planning or teaching a course in the design or
analysis of clinical trials, the number and type of texts
from which to choose is tremendous. The number of
books will only increase in the future, as theory and
technology further develop. Before choosing the text
(or texts), the reader needs to first determine his or
her objectives (not necessarily an easy task itself).
After that determination, it is hoped that the above
discussion and the Table 1 provide a useful guidance
to those wishing to find an appropriate reference or
textbook.

JOSEPH M. MASSARO



Thiele, Thorvald Nicolai

Born: 24 December, 1838, Copenhagen, Denmark.
Died: 26 September, 1910, Copenhagen, Denmark.

T.N. Thiele trained as an astronomer at the University
of Copenhagen and held the position of Professor
of Astronomy there from 1875 to his retirement
in 1907. He worked out the actuarial basis for
the new life insurance company Hafnia which was
founded in 1872 and had Thiele as its mathematical
director until 1901. Along with these activities, Thiele
made deeply original contributions to mathematical
statistics, described by Hald [2–4], Lauritzen [5–7]
and Edwards [1].

Thiele contributed to the theory of skew distri-
butions, particularly in his study of what is often
called the Gram–Charlier type A distribution, and
he invented cumulants (see Characteristic Func-
tion), calling them semi-invariants, and developed a
theory for them, with the proposal to use empirical
cumulants as estimators. He contributed importantly
to linear models (see General Linear Model), using
what was then a modern algebraic definition of the
canonical form of the linear hypothesis and empha-
sizing the role of the residuals in model checking.
The special cases of one- and two-way analysis of
variance were considered separately.

In time series, Thiele studied a fascinating model
consisting of a sum of a regression component, a
Brownian motion and a white noise, as we should
call it now. Along the way, he gave an attractive
geometric construction and explanation of what we

now call the Kalman filter. Lauritzen [5, 6] applied
this model to the temporal development of hormone
levels during pregnancy.

In estimating a binomial probability, Thiele made
explicit use of the idea of likelihood using the spe-
cific Danish term “Rimelighed”, which has a similar
relation to “Sandsynlighed” (probability) as that of
the corresponding English terms. Finally, Thiele con-
tributed to the theory of grouped observations.

For a more detailed account, see [7].
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Tied Survival Times

Tied survival, or failure, times frequently occur in
survival studies. Although theoretically a lifetime is
a continuous variable, in practice it is often mea-
sured to a degree of fineness due to measurement
limitations on the way failure times are recorded, and
the expense of more accurate measurements may out-
weigh the value of added information. If the number
of ties are substantial, discrete failure time models
may need to be considered. Therefore, discrete fail-
ure time methods or grouped data techniques such
as life tables should be used. However, if there
are only a few ties, then the regular procedures in
handling continuous data may be used with some
adjustment for tied observations. In the literature,
adjustment for ties has been proposed and studied
for various statistical procedures in survival analysis
(see [1, 6, 7, 8, 9], and [10]). Here, we only dis-
cuss adjustment for ties for some common statistical
procedures.

Consider the method of handling ties in the
Kaplan–Meier or product-limit (PL) estimator of the
survival function. If only one individual fails (no ties
are present) at time t , then the factor for the sin-
gle death in the PL estimator is [1 − 1/Y (t)], where
Y (t) counts the number of individuals at risk at time
t−. For tied uncensored observations, suppose d fail-
ures occur at time t . Split the times of the d failures
infinitesimally so that the factor for the d failures in
the PL estimator is

[
1 − 1

Y (t)

] [
1 − 1

Y (t) − 1

]
. . .

×
[

1 − 1

Y (t) − d + 1

]
= 1 − d

Y (t)
.

If censored and uncensored observations are tied
at time t , then consider the uncensored individuals
as having failed just before the censored observa-
tions.

In the k-sample test, the weighted logrank test
statistic is

Zh(t) =
∫ t

0
K(s) dNh(s) −

∫ t

0
K(s)

Yh(s)

Y·(s)
dN·(s)

for h = 1, 2, . . . , k − 1, where K is the weight func-
tion, Nh(s) and Yh(s) are the number of failures
during time period [0, s] and number of individuals

at risk prior to time s for the hth sample, respec-
tively, and N· = ∑

h Nh, Y· = ∑
h Yh. The covariance

of [Zh(t), Zj (t)] may be estimated consistently by

σ̂hj =
∫ t

0
K2(s)

Yh(s)

Y·(s)

[
δhj − Yj (s)

Y·(s)

]
dN·(s),

where δhj is a Kronecker delta, i.e. δhl = 1 if h = l,
and 0 otherwise. In the presence of tied observa-
tions, the covariance of [Zh(t), Zj (t)] needs to be
adjusted to

ˆ̂σhj =
∫ t

0
K2(s)

Yh(s)

Y·(s)

[
δhj − Yj (s)

Y·(s)

]

× Y·(s) − ∆N·(s)
Y·(s) − 1

dN·(s).

Clearly, when there are no tied observations, σ̂hj and
ˆ̂σhj coincide.

Cox’s partial likelihood has been commonly used
to estimate the coefficients, β, in Cox’s (propor-
tional hazards) regression model. Let t1 < t2 <

· · · < tk be the k ordered event times. Let the set Di

consist of the di individuals who failed at time ti and
Ri be the risk set prior to ti . Denote si = ∑

l∈Di
zl ,

where zl is the covariate vector for individual l. If
there are ties among event times, then the following
adjusted partial likelihoods have been proposed:

1. Breslow [2] suggests a partial likelihood of

L1(β) =
k∏

i=1

exp(β ′si)



∑

l∈Ri

exp(β ′zl)




di

.

2. Efron [5] proposed an alternative partial likeli-
hood of

L2(β) =
k∏

i=1



exp(β ′si)

/
di∏

j=1




∑

l∈Ri

exp(β ′zl)

−j − 1

di

∑

l∈Di

exp(β ′zl)







 .

3. The third partial likelihood due to Cox [3] is
based on a discrete-time hazard rate model. The
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discrete logistic likelihood is

L3(β) =
k∏

i=1

exp(β ′si)∑

q∈Qi

exp(β ′s∗
q)

,

where Qi is the set of all subsets of di individuals
who could be selected from the risk set Ri and
s∗
q = ∑di

j=1 zqj
(see Logistic Regression).

4. The fourth alternative partial likelihood is
(see [4])

L4(β) =
k∏

i=1




∫ ∞

0

di∏

j=1




1

− exp



−


exp(β ′zj)

/
∑

lεR∗
i

exp(β ′zl)



t










× exp(−t) dt



 ,

where R∗
i = Ri\Di is the set of individuals

whose event or censored times exceed ti or
whose censored times are equal to ti . It is often
called exact likelihood.

Note that, when the number of ties is small,
Breslow’s and Efron’s likelihoods are quite close. Of
course, if no ties occur at the event times, all four

likelihood functions reduce to the regular Cox partial
likelihood.
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Time Lag Effect

The term time lag effect refers to the delay between
the time of an intervention or exposure onset, such as
the date on which a person begins smoking cigarettes,
and the subsequent development of a health outcome,
such as the diagnosis of lung cancer. A variety of such

time lag effects are described in the article, Latent
Period. To design and to analyze prevention tri-
als efficiently, one must account for the sometimes
considerable time lag between the onset of interven-
tion and subsequent beneficial health effects.

MITCHELL H. GAIL



Time Origin, Choice of

In survival analysis and more general event history
analysis there is often more than one relevant origin
for the time to the event(s) under consideration. This
problem is sometimes discussed under the somewhat
unsatisfactory name “choice of time scale” – it is the
origin, not the scale (which could be hours, years,
decades, etc.), which is under debate.

Here, I briefly mention some subject matter issues
as well as some technical statistical points regard-
ing the choice of time origin. To the former I
append some brief remarks on the rare occasions
where alternative time scales, literally speaking, are
relevant.

Subject-Matter Issues in Choosing Time
Origin

A fundamental discussion in many epidemio-
logic studies of incidence and mortality, as
well as the derived concepts of prevalence
(see Incidence–Prevalence Relationships), is the
age–period–cohort problem (also briefly mentioned
in the article on the Lexis Diagram). In its basic
version, this issue regards the decomposition of the
effect on certain rates (incidence, mortality, lethality)
of calendar time t , age a, and “cohort”, i.e. time of
birth t − a. It has been well known for many years
in sociology as well as epidemiology that there are
only two identifiable linear effects here (see the above
entries for references; see Bayesian Methods; Iden-
tifiability).

Regarding clinical contexts, hazards of relapse,
death, or other endpoints, often depend both on age
and certain duration variables, such as time since
disease onset, since primary treatment, or since onset
of remission (see Duration Dependence).

In clinical trials with staggered entry, the substan-
tively interesting time origin is usually duration on
trial, but since the trial takes place in “real” (calen-
dar) time, this time variable can rarely be ignored in
design and analysis (see Interim Analysis of Cen-
sored Data; Staggered Entry).

In the examples given so far, only the time origin
was under debate, and the fact that the several “time
scales” all run parallel and equally fast means that
apparently multivariate time representations such as
the Lexis diagram may fool the uninitiated observer

(see [4] and [2, Chapters 6, 31] for further discussion
and the technical consequences for statistical model-
ing). However, in certain clinical contexts the cumu-
lative time on (intermittent) treatment may be of
central substantive interest, sometimes as a proxy for
the cumulative dose, which may itself in some cases
be treated as a time variable. Such general situations
are covered in the brief discussion by Farewell &
Cox [3], although their particular example concerns
the choice of time origin. The considerable body of
literature on multivariate survival analysis seems to
be surprisingly modest in its discussion of classes of
practical situations where the several time variables
are not constrained to move in parallel [i.e. in the
direction given by the vector (1, 1, . . . , 1)].

Technical Statistical Issues in Choosing the
Time Origin

The semiparametric idea in the Cox regression
model is to fix attention on one time variable (that
is, one definition of time origin) which is modeled
“nonparametrically” in the underlying intensity, rel-
egating other time variables to the parametric part of
the model as time-dependent covariates. It is then
useful (though surprisingly sparsely discussed in the
literature, except for [2, Chapter 31]) to put some
detailed thought into choosing the “underlying” time
variable, usually as that for which (i) the variation in
the hazard is unknown or is expected to be dramatic
and (ii) a parametric description is less important.
Other time variables yielding less dramatic variation
in the hazard or requiring parametric description for
interpretation purposes can more usefully be mod-
eled in the parametric part. In many clinical studies
it will be wise to choose duration since entry on
study as the underlying variable and age as a time-
dependent covariate. (Note that using the techniques
of delayed entry, it is perfectly possible to choose
freely.)

In the piecewise constant intensity models (often
termed “Poisson regression”, see Grouped Survival
Times) all time “scales” enter symmetrically and the
above complications disappear.

Arjas (see Real Time Approach in Survival
Analysis) has advocated that one should always use
parametric models with “real”, i.e. calendar, time as
time variables, and let the statistical modeling handle
other time origins of interest.



2 Time Origin, Choice of

A different set of problems concerns the tech-
nical analysis of semi-Markov processes (see [1,
Examples X.1.7-8] for a survey). Here the basic
problem is that, if duration in a state is taken as
the basic time variable, then some desirable martin-
gale properties are lost, necessitating more compli-
cated mathematical derivation of asymptotic statisti-
cal properties.
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Time Series Regression

Time series regression is concerned with the sit-
uation in which the dependent and independent
variables are measured over time. Examples might
include mortality from sudden infant death syn-
drome (SIDS) and environmental temperature [2], or
hospital admissions and air pollution [7]. An alter-
native is transfer function modeling [1] but the
advantage of regression is that the method is flex-
ible and the interpretation familiar and straightfor-
ward.

The potential for confounding in time series
regression is very high – many variables either sim-
ply increase or decrease over time, and so will be
correlated over time [8] (see Correlation). In addi-
tion many epidemiological variables are seasonal,
and this variation would be present even if the fac-
tors were not causally related. It is important that
seasonality and trends are properly accounted for
(see Seasonal Time Series). Simply because the out-
come variable is seasonal, it is impossible to ascribe
causality because of seasonality of the predictor vari-
able. For example, SIDS is higher in winter than
in summer, but this does not imply that tempera-
ture is a causal factor; there are many other fac-
tors that might affect the result, such as reduced
daylight, or the presence of viruses. However, if
an unexpectedly cold winter is associated with an
increase in SIDS, or very cold days are consis-
tently followed after a short time by rises in the
daily SIDS rate, then causality may possibly be
inferred.

Often when confounding factors are correctly
accounted for, the serial correlation of the residuals
disappears; they appear serially correlated because of
the association with a time-dependent predictor vari-
able, and so conditional on this variable the residuals
are independent. This is particularly likely for mor-
tality data where, except in epidemics, the individual
deaths are unrelated. Thus, one can often use conven-
tional regression methods followed by a check for the
serial correlation of the residuals and need only pro-
ceed further if there is clear evidence of a lack of
independence. For further details of parametric and
semiparametric approaches to modeling confounders,
see [7].

Effect of Correlated Residuals on Least
Squares Estimates

If the inclusion of known or potential confounders
fails to remove the serial correlation of the residuals,
then it is known that ordinary least squares does not
provide valid estimates of the standard errors of the
parameters

For a continuous outcome, suppose the model is

yt = β ′xt + vt , t = 1, . . . , n, (1)

where vt = εt − αvt−1, yt is the dependent variable
measured at time t , xt is a vector of the predictor
variables, β is a vector of regression coefficients and
the εt are assumed independent normally distributed
variables with mean zero and variance σ 2. Thus, we
assume that vt is generated by an AR(1) process with
parameter α (see ARMA and ARIMA Models). If
we also assume that xt is generated by an AR(1)
process with parameter γ , then it is possible to show
[4] that using ordinary least squares to estimate β, the
ratio of the estimated variance to the true variance, is
approximately (1 − αγ )/(1 + αγ ). Since, in general,
xt and vt are likely to be positively correlated, the
effect of ignoring serial correlation is to provide
artificially low estimates of the standard error of the
regression coefficients and thus to imply significance
more often than the significance level would suggest,
under the null hypothesis of no association.

Estimation using Correlated Residuals

Given the above model, and assuming α is known,
a method of generalized least squares, known as the
Cochrane–Orcutt procedure, can be employed [3].

Write y∗
t = yt − αyt−1 and x∗

t = xt − αxt−1. We
can then obtain an estimate of β using ordinary
least squares on y∗

t and x∗
t . However, since α will

not usually be known, it can be estimated from the
ordinary least squares residuals et by

a =

n∑

t=2

etet−1

n∑

t=2

e2
t−1

. (2)
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This leads to an iterative procedure in which we can
construct a new set of transformed variables and thus
a new set of regression estimates and so on until con-
vergence. The iterative Cochrane–Orcutt procedure
can be interpreted as a stepwise algorithm for com-
puting maximum likelihood estimators of α and β,
where the initial observation y1 is regarded as fixed
[4]. If the residuals are assumed to be normally dis-
tributed, then full maximum likelihood methods are
available, which estimate α and β simultaneously and
this can be generalized to higher order autoregressive
models and fitted using, say, PROC AUTOREG in
the computer package SAS [6] (see Software, Bio-
statistical). However, caution is advised in using this
method when the autocorrelations are high, and it is
worth making the point that an autoregressive error
model “should not be used as a nostrum for models
that simply do not fit” [6, p. 192].

Regression with Counts

Many epidemiological series consist of counts, and
require Poisson regression rather than ordinary lin-
ear regression. Zeger [9] described a method similar
to the Cochrane–Orcutt method to allow for serial
correlation, and using generalized estimating equa-
tions to estimate the parameters.

Essentially we assume a model of the form
E(Yt ) = µt , where µt = exp(ηt ) and ηt = β ′xt (a
loglinear model). A latent process ε, where ε′ =
(ε1, . . . , εn), is assumed to generate the autocorre-
lation. However, conditional on ε, we suppose that
Yt is a sequence of independent counts such that
E(Yt |ε) = var(Yt |ε) = εtµt . This type of model is
likely to be found in practice since the reason for
the counts being serially correlated is their mutual
dependence on another, possibly unmeasured, vari-
able. The covariance matrix is assumed to be of the
form σ 2D1/2R(α)D1/2, where D = diag(µt + σ 2µ2

t ),
R(α) is an autocorrelation matrix generated by an
autoregressive model, and σ 2 is the variance of the
latent process. The order of R(α) is determined from
the data and may be greater than one. Details of
implementation are given in [2] and [8]. Further
details of this type of model and others is given
in [5].

Figure 1 Daily sudden infant deaths (SIDS) in England
and Wales from 1979 to 1983, with the mean temperature
in London averaged over the period from two to five days
earlier, with the lowess smoother plot

Example

Campbell [2] analyzed the dependence of daily deaths
from SIDS in England and Wales from 1979 to 1983
on mean daily environmental temperature measured
in London. A plot of the daily deaths against the
temperature averaged over the period two to five days
prior to the event is given in Figure 1, together with a
lowess smoother plot with a bandwidth of 0.5. It can
be seen that there appears to be a uniform decline in
deaths with increasing temperature.

The predictor variables in the model were trend,
annual and six month cycle sine and cosine terms, a
weekend dummy variable, and the temperature aver-
aged over the period two to five days prior to the
event. The coefficient associated with mean tem-
perature was −0.041 (se 0.005). We interpret this
as saying that a 1 °C drop in temperature is asso-
ciated with a rise in SIDS by about 4%. Further
investigations demonstrated that the relationship was
approximately linear.

Often in practice, after controlling for seasonality
and trend, the magnitude of the serial correlation is
low, and estimates of the regression parameters will
be little changed by incorporating serial correlation
[6]. Thus, using Poisson regression on the SIDS data,
having fitted annual and six-month sine and cosine
terms and trend, the coefficient associated with mean
temperature is −0.043 (se 0.005), which is very close
to the Zeger estimate.
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If the mean value for the counts is high, then meth-
ods assuming normality can be used and for this the
standard software referred to earlier is available.
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Time Series Similarity
Measures

Introduction

Time series is the simplest form of temporal data. A
time series is a sequence of real numbers collected
regularly in time, where each number represents a
value. Time series data come up in a variety of
domains, including stock market analysis, environ-
mental data, telecommunications data, medical data,
and financial data. Therefore, time series account for
a large fraction of the data stored in commercial
databases.

One interesting problem with time series data is
finding whether different time series display similar
behavior. More formally, we need to define a dis-
tance (or equivalently a similarity) function between
two time series (see Similarity, Dissimilarity, and
Distance Measure). Such a distance function can be
used to cluster a set of time series in order to discover
general patterns, or to classify a new time series. Dif-
ferent notions of distance between time series have
been proposed in data mining research. The prob-
lem is hard because the similarity model should allow
for imprecise matches, be efficient to compute, and
allow the design of efficient indexing structures that
can be used to find the most similar time series to a
query [6].

Time Series Similarity

Generally, time series similarity models can be des-
cribed in the following framework:

Time Series Similarity Functions

Let X = (x1, . . . , xn) and Y = (y1, . . . , yn) be two
time series with n values. Let F1 and F2 be functions
Fi : Rn → Rk , for k ≤ n, and D be a function D :
Rk × Rk → [0, 1]. Then the distance of the two time
series is a function D(F1(X), F2(Y )). The design of
the functions F1, F2, D determine the characteristics
of the distance function.

Setting the Function D

The simplest form for D is the p-norm distance
between two k-dimensional vectors:

D(X, Y ) =
(

∑

1≤i≤k

|xi − yi |p
) 1

p

. (1)

Usually, p is either two (Euclidean distance) or one
(Manhattan distance). Such a function is easy to
compute, allows efficient approximation, and also
allows the design of efficient indexing techniques.
The main disadvantage is that it does not allow
shifting of the time series in time.

Figure 1 shows how to compute the Euclidean
distance of two time series (in this case, the time
series have been derived from electrocardiograms).
The ith value of one sequence is matched to the i-th
value of the other sequence. This can result in a large
error if the two sequences are out of phase.

Reference [3] introduces the technique of dynamic
time warping to time series similarity. Dynamic time
warping is an extensively used technique in speech
recognition, and allows acceleration–deceleration of
signals along the time dimension. We are allowed
to extend each sequence by repeating elements, thus
creating X′, Y ′. The dynamic time warping distance,
DT W(X, Y ), is defined as:

DTW (X, Y ) = min
∀X′,Y ′ such that |X′ |=|Y ′ |

L1(X
′, Y ′)

(2)

Figure 2 demonstrates the use of the dynamic time
warping technique. All values of each time series are
matched with at least one value of the other time
series. However, we are allowed to extend each time
series by repeating some values.

A straightforward quadratic algorithm uses
a bottom-up dynamic programming approach,
where the smaller subproblems DTW ((X1, . . . , Xi),
(Y1, . . . , Yj )) are solved first, which are then
used to solve the larger subproblems, until finally
DTW (X, Y ) is computed.

A different technique is to find the longest com-
mon subsequence (LCSS ) of X and Y , and set
D(X, Y ) = n − LCSS (X, Y ) [4]. The LCSS shows
how well the two sequences can match one another
if we are allowed to stretch them but we cannot rear-
range the sequence of values. It can also be computed
by a bottom-up dynamic programming algorithm:
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Euclidean matching

Figure 1 Using the Euclidean distance measure: the i-th
value of time series X is matched to the ith value of the
time series Y

0 0.2 0.4 0.6 0.8 1.0 1.2

Time warping

Figure 2 Using the dynamic time warping distance mea-
sure: a given value in each of the two time series can be
matched to one or more consecutive values in the other
time series. In the figure, the two time series have been
separated vertically to make the matching clear

Given sequences (x1, . . . , xi), (y1, . . . , yj ),
if xi = yj, then LCSS((x1, . . . xi), (y1, . . . , yj )) =

1+ LCSS((x1, . . . , xi−1), (y1, . . . , yj−1))
else LCSS((x1, . . . xi), (y1, . . . , yj )) =

max(LCSS((x1, . . . , xi), (y1, . . . , yj−1)),
LCSS((x1, . . . , xi−1), (y1, . . . , yj ))).

Since the values are real numbers, we typically allow
approximate matching. Figure 3 gives an example.

The LCSS model allows shifting of the time series
in time. One disadvantage of the LCSS model is that
the triangle inequality does not hold, and therefore it
is not formally a metric.

Setting F1 , F2

There are many diverse proposals for what the func-
tions F1 and F2 can be. They can be broken down
into three main categories. However, techniques from
different categories can be composed.

The first category is normalization functions: Let
µ(X) and σ(X) be the mean and variance of sequence
X. The sequence X is replaced by the normalized
sequence X′, where

x ′
i = xi − µ(X)

σ(X)
. (3)

Other similar transformations include moving aver-
ages for smoothening the time series [9, 15].

In the second case, the functions F1 and F2

are a specific transformation that is applied to
the time series. A time series is represented as a
point in n-dimensional space, and the transformation
maps it to a point in a k-dimensional space
(k ≤ n). Such dimensionality-reduction techniques
generally approximate the Euclidean distance of
the original time series in the new space. The

0 0.2 0.4 0.6 0.8 1.0 1.2

Longest common subsequence

Figure 3 Using the longest common subsequence distance
measure: Only similar values in the two time series are
matched. Dissimilar values in one or both time series are
dropped. The fraction of matched values determines the
similarity of the time series
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advantage of using a dimensionality reduction
technique is that the distance computation is
faster, and indexing structures are generally more
efficient when used in lower dimensionality objects.
Dimensionality reduction techniques that have been
proposed include: the singular value decomposition
(SVD) [12] (see Matrix Computations), the Fourier
transform [1] (see Fast Fourier Transform (FFT)),
the Wavelet decomposition [5], random projection
techniques [10], FastMap [7], and Linear partitioning
[13]. These techniques have specific strengths and
weaknesses, making some of them better suited for
specific applications and settings.

Another alternative is to define a family of func-
tions F, such that F1, F2 ∈ F. The objective is to
find those F1, F2 in F that minimize the distance.
The distance between two time series X, Y is then

argminF1,F2∈FD(F1(X), F2(Y )).

The family of functions F can be global scaling, local
scaling, global scaling, and different baselines.

This technique has generally been used with the
LCSS notion of similarity. In [2], the authors develop
a similarity measure that uses LCSS -like similarity
with local scaling functions.

A simpler approach is to try and incorporate a sin-
gle global scaling function with the LCSS similarity
measure. In [4], an LCSS-like similarity measure is
described that derives a global scaling and translation
function that is independent of outliers in the data.
The basic idea is that two sequences X and Y are sim-
ilar if there exist constants a and b and long common
subsequences X′ and Y ′ such that Y ′ is approximately
equal to aX′ + b. The scale + translation linear func-
tion (i.e. the constants a and b) is derived from the
subsequences, and not from the original sequences.
Thus, outliers cannot taint the scale + translation
function.

Probabilistic and Generative Methods

A different class of approaches to time series sim-
ilarity is the class of probabilistic and generative
similarity measures. Such measures have been stud-
ied in [8, 14]. Given a sequence X, the basic idea
is to construct a probabilistic generative model MX,
that is, a probability distribution on waveforms. Once
a model MX has been constructed for a sequence
X, we can compute similarity as follows. Given a

new sequence pattern Y , similarity is measured by
computing p(Y |MX), that is, the likelihood that MX

generates Y .
An alternate approach was undertaken by [11],

who describe a general similarity framework involv-
ing a transformation rules language. Each rule in the
transformation language takes an input sequence and
produces an output sequence, at a cost that is asso-
ciated with the rule. The similarity of sequence X to
sequence Y is the minimum cost of transforming X

to Y by applying a sequence of such rules. The actual
rules language is application specific.

References

[1] Agrawal, R., Faloutsos, C. & Swami, A. (1993). Effi-
cient similarity search in sequence databases, in Interna-
tional Conference on Foundations of Data Organization
(FODO), Chicago, IL.

[2] Agrawal, R., Lin, K.-I., Sawhney, H.S. & Shim, K.
(1995). Fast similarity search in the presence of noise,
scaling, and translation in time-series databases, in
Proceedings of the 21st International Conference on Very
Large Databases (VLDB-95), Zurich, Switzerland.

[3] Berndt, D.J. & Clifford, J. (1994). Using dynamic
time warping to find patterns in time series, in KDD
Workshop, Seattle, Washington.

[4] Bollobas, B., Das, G., Gunopulos, D. & Mannila, H.
(2001). Time-series similarity problems and well-
separated geometric sets, Nordic Journal of Computing,
8(4) 409–423.

[5] Chan, K. & Fu, W. (1999). Efficient time series matching
by wavelets, in Proceedings of the IEEE International
Conference on Data Engineering, Sydney, Australia.

[6] Faloutsos, Christos (1996). Searching Multimedia Data-
bases by Content. Kluwer Academic Publishers, Boston.

[7] Faloutsos, C. & Lin, K.-I. (1995). FastMap: a fast
algorithm for indexing, data-mining and visualization of
traditional and multimedia datasets, in ACM SIGMOD
Conference, San Jose, CA, 163–174.

[8] Ge, X. & Smyth, P. (2000). Deformable Markov model
templates for time-series pattern matching, in Proceed-
ings of the ACM SIGKDD, Boston, MA.

[9] Goldin, D.Q. & Kanellakis, P.C. (1995). On similarity
queries for time-series data: constraint specification and
implementation. Proceedings of the 1st International
Conference on Principles and Practice of Constraint
Programming, Cassis, France.

[10] Indyk, P. & Motwani, R. (1998). Approximate nearest
neighbors: towards removing the curse of dimensional-
ity, in Proceedings of the STOC, Dallas, TX.

[11] Jagadish, H.V., Mendelzon A.O. & Milo, T. (1995).
Similarity-based queries, in Symposium on Principles of
Database Systems (PODS), San Jose, CA.



4 Time Series Similarity Measures

[12] Jolliffe, I.T. (1989). Principal Component Analysis.
Springer-Verlag, New York.

[13] Keogh, E., Chakrabarti, K., Pazzani, M. & Mehro-
tra, S. (2001). Dimensionality reduction for fast simi-
larity search in large time series databases, Journal of
Knowledge and Information Systems. 3(3), 263–286.

[14] Keogh E.J. & Smyth., P. (1997). A probabilistic
approach to fast pattern matching in time series data-
bases, in Proceedings of the KDD, Newport Beach, CA,
24–30.

[15] Rafiei, D. & Mendelzon, A. (1997). Similarity-based
queries for time-series data, in Proceedings of 1997 ACM

SIGMOD International Conference on Management of
Data, Tuscon, AZ.

(See also Cluster Analysis of Subjects, Hierar-
chical Methods; Cluster Analysis of Subjects,
Nonhierarchical Methods; Principal Components
Analysis)

DIMITRIOS GUNOPULOS



Time Series

A time series consists of values of a variable
recorded, usually at regular intervals, over a long
period of time. Such data arise frequently in medical
investigations; for example, weekly admissions into
a hospital, monthly mortality rates for a particular
disease and daily concentrations of a pollutant. The
observations in such a series are usually denoted
by x1, x2, . . . , xn, where n is the length of the
series. Such data usually require special methods
for their analysis because of the presence of serial
correlation. In a series of hourly blood pressure
readings, for example, a “high” reading at 1 p.m.
is likely to have a certain inertia and to remain
relatively high at 2 p.m. Neighboring observations in
a time series will frequently be positively correlated,
with this correlation declining as the time interval
between observations increases. The existence of a
possibly complex pattern of dependency between the
observations in a time series implies that methods
of analysis that assume that the observations are
independent will not be appropriate.

Preliminary Analysis of Time Series

Many time series can be considered to be a mixture
of the following four components:

1. A trend or long-term movement.
2. Fluctuations about the trend of greater or lesser

regularity.
3. A deterministic cycle; for example, a pronounced

seasonal component.
4. A residual, irregular or random effect.

Part of the analysis of a time series might aim
to provide a description of regular or systematic
variation; for example, by identifying periodic effects
or cycles (see Circadian Variation). Additionally, it
might be hoped to develop models for the series that
allow inferences about the mechanisms generating
the series and also open the possibility of making
predictions about the future value of the series, i.e.
forecasting. An essential first step, however, when
considering any time series is simply to plot the
observations against time. Figure 1, for example,
shows a plot of the number of deaths per quarter
from ischemic heart disease for males in the UK, from

Figure 1 Number of deaths per quarter from ischemic
heart disease for males in the UK – 1967–1991

Figure 2 Reported cases of chicken pox in New York –
1928–1972

1967 to 1991. Figure 2 shows the reported cases of
chicken pox in New York in the years 1928–1972.

Simple plots such as those shown in Figures 1
and 2 are often valuable in highlighting qualitative
features of a time series; for example, a trend,
seasonality, or outliers, although such patterns are
frequently obscured by “noise”, making them less
easy to detect without some formal analysis.

The simplest hypothesis that might be entertained
about a time series is that it is random, i.e. a white
noise series (see Noise and White Noise). A number
of tests of randomness are available and are described
in [2] (see Cox’s Test of Randomness). In general,
however, such tests are not applied to the original
series, since, in most instances, this will clearly be
nonrandom, but to the residuals arising after fitting
some model or other to the series.

Stationarity

Stationarity signifies that the probability structure of
a time series does not change with time. In particular,
a stationary series has a constant mean and variance
and a covariance structure that depends only on the
difference between two time points. Many time series
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Figure 3 Time series with a trend

Figure 4 Time series in which variance is changing

encountered in medical studies are not stationary for
a variety of reasons, the most common of which is
the presence of a trend – see, for example, Figure 3.
This feature of a series needs to be described and
estimated in some way so that it can be removed
before the series is analyzed further. One possibility
is the use of some form of moving average. Another
is to transform to a series of first differences,

zt = xt − xt−1. (1)

In some circumstances it might be more appropri-
ate to take some simple transformation of the ori-
ginal series before attempting to remove any trends.
If, for example, it is found that the variance is related
to the mean, then a variance-stabilizing transforma-
tion would be needed. Such a series is shown in
Figure 4.

Analyzing Time Series

Modern methods for the analysis for time series
can be divided roughly into two classes – frequency
domain methods and time domain methods.

Frequency Domain Methods

The primary aim of frequency domain methods for
the analysis of time series is to identify oscillations
of major importance, in the sense of explaining a
large proportion of the variance in an observed series.
Methods in this class are derived from the early ideas
of Fourier analysis in which a series of observations
is represented as a superposition of independently
varying cosine and sine curves (see Fast Fourier
Transform (FFT)). A typical sine wave, for example,
has the form

xt = A sin(2πf t + φ), (2)

where the constant A is called the amplitude, f the
frequency, and φ the phase. The curve is periodic
with a period, T = 1/f . This simply means that the
plot of xt against t is the same at t + 1/f, t + 2/f, . . .,
etc. as at t . An example of a sine wave is shown in
Figure 5.

An early tool for the analysis of time series
data that used the idea of Fourier decomposition
was the Schuster periodogram [4]. The time series
observations are expressed as a sum of cosine curves
of the form:

xt = A0 +
(n−1)/2∑

k=1

Ak cos(2πfkt + φk). (3)

The amplitude, Ak , and phases, φk , can be calculated
from the data, with Ak indicating the importance of
oscillations of period 1/fk in the observed series.
The periodogram is simply a plot of nA2

k against k.
If the original series contains a well-defined cyclic
component, then the periodogram can be expected
to have a sharp peak at the appropriate value of k.
In practice, however, such a peak is often masked
because the great variability in the Ak values makes

Figure 5 Sine wave
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the plot extremely irregular. In other cases, apparent
peaks may appear, even in the absence of genuine
cycles, because one or more local maxima will seem
substantially larger than neighboring values.

Most current frequency domain analyses are less
concerned with the discovery of exact periodicities
and more concerned with assessing how the variance
of a series is distributed amongst oscillations of
different frequencies by estimating the spectrum of
the series (see Spectral Analysis). Such an approach
has been most widely applied in the medical field in
the analysis of EEG signals – see [1].

Time Domain Methods

The techniques used for the analysis of time series
in the time domain are based on direct modeling
of the lagged relationships between a series and its
past. An important initial step in the search for an
appropriate model for a time series is an examination
of the dependence structure of the series via the
correlogram (see Autocorrelation Function), which
is a plot of the lagged correlations of a series against
lag size.

The models most commonly used for time series
data are those known as ARMA – autoregressive
moving-average models or ARIMA – autoregressive
integrated moving-average models (see ARMA and
ARIMA Models). The parameters in such models
can be estimated by likelihood methods. Examples
of situations in which such models are of impor-
tance are:

1. Epidemiologists are often faced with assessing
the relationship between a target or output series,
such as the daily number of patients coming to
a clinic, and explanatory or input series, such as
the daily concentration of a pollutant.

2. Questions about changes in time series are fre-
quently of great importance in medicine. An
investigator might, for example, be interested in
assessing how the pattern of morbidity in a pop-
ulation changes after an environmental accident,

or in measuring the effectiveness of a campaign
to make teenagers aware of the dangers of AIDS.

3. Accurate forecasts of the future values of a
time series may be of great value in many
areas of medicine. Public health organizations,
for example, need to know what frequencies
of diseases might be expected in coming years
in order to plan how to allocate often limited
resources.

Summary

The analysis of time series is a large and complex
area. The main techniques are spectral analysis and
ARMA or ARIMA models. All the main software
packages have facilities for implementing both forms
of analysis (see Software, Biostatistical). The S-
PLUS package has facilities for more extensive and
exotic analyses. A further software package, STAMP,
developed by Koopman et al. [3], is useful for the
analysis of time series using regression models in
which the explanatory variables are functions of
time, but with coefficients that change over time (see
Structural Time Series Models).
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Time to Pregnancy

The time from initiating attempts to become pregnant
until conception occurs (time-to-pregnancy or TTP) is
gaining importance as a measure of natural fecundity
[9]. This article highlights some special features in
modeling and design for this special application of
survival analysis methods.

Models for Time-to-pregnancy (TTP) Data

Statistical models for time-to-pregnancy (TTP) data
belong to the general area of survival analysis. Often,
the focus is on menstrual cycle as the time unit, which
makes time intrinsically discrete and has motivated
most authors’ use of discrete-time survival models.
However, the actual measurement is often not made
in cycles but rather in months, either as a surrogate for
menstrual cycles or because months are considered
to be of interest in themselves, and then there would
seem to be no harm in using continuous time survival
models.

The statistical models need to be able to accom-
modate known heterogeneity between couples in the
form of covariates, and one will often also want to
incorporate residual random heterogeneity.

Let t = 1, 2, . . . be the number of menstrual cycles
since “initiation”, that is, since attempts at getting
pregnant started, and let xt be a vector of covariates
at time t . The task is to model the discrete hazard
rate

λ(t |xt ) = P(T = t |T ≥ t, xt ), (1)

which is the probability of becoming pregnant at
cycle t , given that this did not happen before t , and
given the covariates.

An early influential model by Weinberg and
Gladen [10] assumed

log(λ(t |xt )) = x ′
t β, (2)

where log is natural logarithm and

x ′
t β = x1t β1 + · · · + xktβk. (3)

The model has the disadvantage that when β varies
across (−∞, ∞), λ(t |xt ) is not restricted to the range
[0,1] of a probability. This problem was avoided by
Scheike and Jensen [6] who postulated

log(− log(1 − λ(t |xt ))) = x ′
t β (4)

in line with current practice in discrete-time survival
models [2]. This model may be interpreted as a
grouped-time version of the Cox regression model.

Weinberg and Gladen incorporated unobserved
heterogeneity in a model with no covariates by
assuming that the hazard for each given couple was
constant over time: λ(t) = r , and that r follows a
beta distribution across the population. The resulting
marginal hazard in the population is

λ(t) = 1

α + µ(t − 1)
(5)

with parameters α and µ given by the beta distri-
bution. Weinberg and Gladen extended this model to
accommodate covariates by postulating

λ(t) = 1

α + µ(t − 1)
+ x ′

t β, (6)

although the interpretation of a mixture across the
population is then lost; indeed, the parameter β has no
interpretation at the individual level, only marginally
for the population (see Marginal Models).

In contrast, Scheike and Jensen [6] extended their
model to incorporate a random effect Ri for couple i

by assuming

log(− log(λ(t |Ri, xit ))) = Ri + x ′
itβ. (7)

In this model, the individual interpretation of β

is conserved. Scheike et al. [7] discussed generaliza-
tions of this model to allow several times to preg-
nancy per couple and connected to the current dis-
cussion of frailty models and multivariate survival
analysis, including an important discussion of the
interpretations of conditional versus marginal param-
eterizations. Ecochard and Clayton [1] generalized to
a three-parameter distribution, while assuming con-
stant baseline, and also allowed several pregnancies
per couple.

Sampling Designs

The two most common and obvious designs are a
cohort (follow-up) study where couples are followed
forward in time from when they start attempting
to become pregnant, or a retrospective study of
pregnant women where couples are interviewed about
when they started their attempt to become pregnant.
A variation of the cohort study is the historically
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prospective design where a general sample (usually
of women) from the population is asked to recall their
reproductive history. Below, we discuss these designs
as well as the possibilities of using cross-sectional
samples, referring to Weinberg and Wilcox [11] for
a broader epidemiological discussion.

Prospective Sampling

In principle, the cohort approach leads to standard
right-censored survival data, where the couples who
have not conceived at the end of follow-up are
counted as right-censored. Note that couples recruited
into a prospective study at a known time t after
initiation will have to be counted with delayed entry
(left truncation) at t . In practice, prospective studies
are not very common, usually rather small, and often
marred by considerable self-selection problems (see
Selection Bias). A particular difficulty with assessing
the effect of calendar time is whether to score it at
initiation, at conception (which creates difficulties at
least for the censored couples), or as current calendar
time along the way. The historically prospective study
suffers from recall bias and also mixes experience
over a long calendar time period.

Retrospective Sampling

Large TTP surveys are often retrospective, data being
gathered from pregnant women. There are obvious
weaknesses with these, primarily the biased sam-
pling based on fecundity, particularly, the nonpres-
ence of the sterile or nonfecund couples, but also
under representation of the subfecund. Juul et al. [4]
demonstrated how a true age-decreasing fecundity
in a heterogeneous population can be made to look
age-increasing by naive analysis of a retrospective
sample.

However, even beyond these unavoidable difficul-
ties, the correct analysis of retrospective TTP data is
more intricate than often realized, particularly when
the focus is on revealing the dramatic trends in ini-
tiation intensity, which must be behind the observed
secular trends in birth rates. As an example, in a com-
mon design, the data are gathered from interviews in
a fixed time window. It is then clear that if calen-
dar time is related to initiation, long TTPs will be
over represented in the early phase, short TTPs in

the late phase, with intricate patterns of left and right
truncations [6]. As pointed out by Jensen et al. [3],
dramatic artificial temporal trends in fecundity may
be generated by disregarding the effects of these trun-
cations. These phenomena were defined away by a
tacit (hardly tenable) assumption of stationarity in the
classical work of Weinberg and Gladen [10], as made
explicit in Weinberg et al. [8, p. 679]. Incorporation
of several TTPs per couple in a retrospective design
is possible through careful likelihood constructions;
see [7] for details.

Current Durations in a Cross-sectional
Sample

A simple procedure would be to ask a cross-sectional
sample of a population (or subpopulation) of women
whether they are currently attempting to get pregnant
and if so, for how long have they attempted to
do so. With this design, it would seem reasonably
realistic to minimize selection bias: there is no a
priori exclusion of sterile couples as in retrospective
sampling and minimal self-selection in contrast to
most prospective studies. This design was briefly
mentioned by Weinberg and Gladen [10] and studied
in some detail by Keiding et al. [5].

It may be useful to summarize the distributions
involved in these three main sampling designs, as
follows.

For each attempt at becoming pregnant, let T be
the time to pregnancy, U the time to discontinuation
without pregnancy (for reasons such as death of the
woman, disappearance of partner, couple gives up
trying; in some cases, the start of fertility treatment
should perhaps be included), and V the time to
discontinuation of follow-up since the start of the
attempt. We are interested in the distribution of T . In
a prospective design, the problem reduces to standard
survival analysis with T as the time to endpoint
and min(U, V ) = U∧V the time to censoring. In
the retrospective design (based on pregnant women),
we have a complete sample from the conditional
distribution of T |T < U . (Note that this situation is
different from right truncation of T by U , which
corresponds to observing the conditional distribution
of (T , U)|T < U ).

In the current-duration design, let X = T ∧U

be the waiting time until termination for what-
ever reason, successful or not, with probability
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density f (x), survival function S(x) = ∫ ∞
x

f (a) da,
and expectation µX = ∫ ∞

0 xf (x) dx = ∫ ∞
0 S(x) dx,

which we shall assume finite. Cross-sectional sam-
pling takes place at some fixed time t0, and assume
that initiations happen according to a Poisson pro-
cess in calendar time t with intensity β(t). In the
time-homogeneous situation, β(t) = β, which should
suffice in most situations where only short calen-
dar intervals are considered for each “cross-section”,
the observed experienced waiting time at t0 (“current
duration”), Y = X ∧ V = T ∧ U ∧ V will be dis-
tributed as a backward recurrence time in a renewal
process in equilibrium with renewal distribution
f (x), that is, the density of Y is

g(y) = S(y)

µX

. (8)

Note in particular that 0 < g(0) < ∞. Thus, Y has
a decreasing density proportional to the survival
function of X.
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Time Trade-off Technique

Decisions on medical treatments and the setting
of health programs involve both technical and
value judgments. An important one, for example,
is evaluating tradeoffs between quality of life and
length of life or between different domains of
quality of life. In recent years the concept of
utility has been introduced into medical decision
making (see Decision Analysis in Diagnosis and
Treatment Choice) to help estimate the preferences
that individuals attach to the consequences of various
courses of action. This information is useful for
decisions at the patient level (i.e. clinical decision
making) and the program level (i.e. the best way of
using available health care resources or economic
evaluation of health care programs; see Program
Evaluation).

A commonly used measure of outcome for such
analyses is QALY (i.e. quality-adjusted life-years).
The QALY definition and calculation can be found
elsewhere (e.g. [4]) (see Quality of Life and Health
Status). In brief, the number of years spent at a
given health status is multiplied by the corresponding
weight (typically between zero (death) and one (full
health)). The adjusted years are summed and dis-
counted to reflect societal time preference (i.e. the
rate that future benefits, and costs, should be adjusted
to reflect their present value to society). This rate
represents societal willingness to exchange present
for future consumption. The number generated repre-
sents the equivalent in quality-adjusted life-years of
a potential lifetime health profile (i.e. years of life
in different health states). The time tradeoff (TTO)
technique is one of the methods used to generate
the preference weights to be used in the QALY
calculations.

The Time Tradeoff Technique

The time tradeoff (TTO) technique was first sug-
gested by Torrance et al. [19] as a substitute for
the standard gamble (SG) technique, which is
seen as the classical method of measuring car-
dinal preferences [18]. The need for a substi-
tute for the SG technique stems from the empir-
ical observation that subjects sometimes find it
difficult to relate to probabilities. Compared with

the SG technique, the TTO technique has the
advantage of being simpler to use. This tech-
nique has been used extensively in many empir-
ical studies to estimate individuals’ value prefer-
ences for different health states. In this section
we describe the TTO as suggested by Torrance
et al. [19].

The TTO technique involves a paired comparison
in which the subject chooses between two alternatives
(a more detailed description of the TTO technique can
be found in [4]). For simplicity we use the chronic
health state (i.e. the case of an individual being in
the same health state for the rest of their life) as
an example. In this case the individual is presented
with two options: alternative 1 (see Figure 1) is to
have the health state under consideration (denoted
as i) for time t (the remaining life expectancy of
the individual) followed by death; alternative 2 is
a shorter period of time (denoted as x, x < t) in
full health. The period of time x is varied until the
subject is indifferent between the two alternatives.
The required preference value for state i (denoted as
hi) is then calculated to be hi = x/t . Props and visual
aids are recommended for use to help respondents
understand the task.

An example for the use of this procedure is as
follows. Suppose one wants to measure the preference
value for the health state “severe pain”. The first step
is to construct scenarios describing the health states
of “severe pain” and “full health”. These scenarios
will be used in the second step. In the second step,
individuals are approached and presented with two
options: alternative 1 is to have the health state
“severe pain” for time t (say 20 years, which is
the remaining life expectancy of that individual);
alternative 2 is a shorter period of time (denoted as
x) in full health. The period of time in full health
is varied until the subject is indifferent between
the two alternatives. Say x = 5 years at the point
of indifference. Then, using the equation described
above, the required preference value for the health
state “severe pain” is then calculated to be 5/20 =
0.25.

An Indifference Curve Interpretation for
the TTO

Unlike the SG method, the TTO technique, suggested
by Torrance et al. [19], was not related in a general
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Figure 1 Time tradeoff for a chronic health state

way to any existing behavioral theory. Relating a
measure to a behavioral theory is important because
it helps us interpret what we measure as well as
understand and test the assumptions which underlie
the measurement procedure. A general theoretical
interpretation for the TTO technique was provided
later [10]. If the measure is to be used in the context
of an economic evaluation it is also important to make
sure that it is consistent with the principles of the
discipline. In economics, one starts from choosing
a welfare theory as the basis for the analysis. The
choice of the underlying welfare theory determines,
amongst other things, the types of outcome measure
that can be used in the analysis [5] (see Health
Economics).

Mehrez & Gafni [10] argue that the TTO technique
is a method which enables us to identify different
points on an individual’s indifference curve in his
evaluation space. An evaluation space is defined as
the set of all potential alternatives (or outcomes).
An indifference curve is the locus of all points
(alternatives) in the individual’s evaluation space
among which he is indifferent. In other words,
following classical utility theory, individuals are
assumed to have a mechanism (that can be described
as a mathematical function) which associates a real
number to each alternative in the evaluation space.
This function describes the individual’s preferences.
The indifference curve is defined as the locus of all
points which have the same numerical score.

Following the above, the TTO can be seen as
a two-stage procedure. First, a comparison of two
alternatives in the individual’s evaluation space is
performed. Using the concept of indifference curves,
this stage can be seen as follows: given one point

in the individual’s evaluation space (point B in
Figure 1; the health state under consideration for
period t), we search for another point (point A in
Figure 1, full health for period x) which lies on
the same indifference curve. In the second stage we
attribute a preference score to the health state under
consideration using the method described earlier.
As shown in [10], in the second step additional
assumptions are required about the functional form
of the individual’s preference function in order to
calculate a preference value for the chronic health
state. These assumptions, however, are not required
for the first step.

To illustrate this important point, let V denote
the individual’s preference function. By definition,
because the individual has indicated indifference
between alternatives 1 and 2 (points A and B in
Figure 1), then V2 = V2, i.e. the “numbers” generated
by the individual’s preference function will be the
same for both alternatives. However, the preference
value for health state i cannot be calculated without
knowing the exact functional form of the preference
function. Assume, for example, that the individual
has a preference function of the type V = hiT ,
where hi and T are the two attributes of concern
(hi = preference value for health state i, 0 ≤ hi � 1,
1 = full health, 0 = death, and T = years). Using
alternatives 1 and 2 in Figure 1, the score of
alternative 1 is V1 = hit and of alternative 2 is V2 =
1.0x. With indifference between the alternatives, hi =
x/t (which is the formula currently recommended to
calculate hi [4]). However, if the individual has a
different preference function, say V = hiT

a(a �≈ 1),
it would be incorrect to calculate the value of hi as
being equal to x/t . It is important to note that there is
no empirical evidence to support the assumption that
all (or most) individuals have a preference function
of the functional form of V = hiT . Neither are
there appealing normative arguments (e.g. reflecting
the discipline view of the world regarding how an
individual should behave) why we should impose
such preference patterns on individuals.

TTO: Some Empirical Observations

The TTO technique was offered as an empirical sub-
stitute to the SG method, and hence it is important
to compare the two. From a theoretical perspective
it is clear that the two techniques measure different
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phenomena [10]. The two techniques have also been
compared from an empirical perspective. Torrance
[17] and Wolfson et al. [20] reported high corre-
lations between health status ratings with SG and
TTO. Read et al. [13] found a reasonable correla-
tion between the SG and the TTO rating. However,
they also found large systematic differences in the rat-
ings obtained by the two methods. They concluded
that the SG and TTO techniques produce different
scale values for outcomes of clinical problems, which
coincides with the claim made by Mehrez & Gafni
[10] on theoretical grounds. In more recent studies,
Patrick et al. [12] reported much lower correlations,
and Hornberger et al. [7] report even lower correla-
tion. Using other statistical methods, the studies by
Stiggelbout et al. [16] and Nease et al. [11] report
large discrepancies between TTO and SG scores.

With respect to the added assumptions about the
functional form of the preference function, which are
needed in the second step, it is important to ask
whether they have any empirical support or normative
appeal. The answer is No. An important assumption
which is made is of a constant proportional tradeoff
between years of life and health states. This implies
that the weight which is used in the QALY calculation
is constant. In other words, the value attached to any
given health state is independent of the time spent in
this health state. Two recent studies, Stiggelbout et al.
[15] and Dolan et al. [3], found that this assumption
was violated when tested. Another assumption is that
the person has a zero time preference (i.e. s/he is
indifferent between benefits (and costs) occurring at
present or in the future). This assumption does not
have normative appeal [2] or empirical support [6, 9].

Other Ways of Using the TTO Technique

For those who do not want to subscribe to the strong
assumptions which are required at the second step,
the TTO can still be used as a useful measure of
outcome. If we just want to convert years in ill health
to years in full health or lifetime health profiles (i.e.
allowing individuals to be in different health states
over their lifetime) to their equivalent in years in
full health, then this can be done using the first step
of the TTO method. As shown by Mehrez & Gafni
[10], in the first step of the procedure no assumption
is made (or necessary) about the functional form of
the individual preference function. Hence, this step

can be used to measure what Mehrez & Gafni call
HYE (healthy years equivalent), i.e. the number of
years in full health which is equivalent (preference-
wise) to a given lifetime health profile. This measure
combines both outcomes of quantity and quality of
life and, like the QALY, can serve as a common
unit of measurement for all programs, thus allowing
comparisons across programs. It also maintains the
intuitively appealing meaning of the QALY measure.
However, using the TTO base HYE as a measure of
outcome at the endpoints of decision trees requires
additional assumptions [10].

An alternative version of the TTO technique has
been suggested by [14]. This version is identical
to the first step of the TTO technique and does
not proceed to calculate a preference value for the
health state in question. This method is not widely
used in empirical studies reported in the literature.
Furthermore, the authors do not provide any rationale
for their suggestion.

Finally, the major limitation of the TTO tech-
nique is that it measures individuals’ preferences
under conditions of certainty [10]. Because deci-
sions about health interventions at both the indi-
vidual and the community levels are made under
uncertainty [1], we need a measure of outcome that
capture individuals’ preferences under conditions of
uncertainty. Recently, Johannesson [8] suggested a
modified TTO question that will enable us to mea-
sure the HYE of a risky health profile. Following
Johannesson [8], “. . . the risky health profile to be
assessed is framed as a probability distribution and is
equated to the certainty equivalent number of healthy
years” (p. 47). This approach has not yet been tried
empirically. Johannesson questions the practical fea-
sibility of this approach and states that “it is unclear
whether that type of information can be processed
in a meaningful way” (p. 47). However, as Johan-
nesson acknowledges, this is an empirical question
and thus researchers should not be discouraged from
trying this method in practice.
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Time-by-time Analysis of
Longitudinal Data
Graphs such as Figure 1, and the associated analysis,
are frequently found in reports of studies in which
two groups are observed over time. The main features
of the figure are:

1. Profiles based on the mean response at each time
are shown.

2. Bars indicating some multiple of a standard error
are displayed at each time.

3. The results of testing the equality of the group
means at each time are indicated, usually by
symbols, such as NS, ∗, ∗∗ for, respectively,
P > 0.05, P < 0.05, P < 0.01.

Similar graphs and analogous analyses can be pre-
sented when more than two groups are involved. This
kind of display, and the analysis it reports, has several
serious drawbacks.

One problem is that the structure of the data is
ignored: at no stage does this analysis use the infor-
mation that indicates which observations are from the
same individual. Consequently, the standard errors
are based on between-subject variation, which for
most purposes will be the wrong variance compo-
nent. It is most unlikely that an analysis that ignores
such an important feature of the data will be correct.

Another group of problems concerns the hypoth-
esis tests. Since several tests are performed, the
problems of multiple testing arise (see Simultaneous
Inference); moreover, any attempt at interpretation
will be complicated further because these tests, being
based on the same individuals, are dependent. It
is also highly questionable whether the hypotheses
being tested; namely, the equality of the group means
at each time, are of any interest. To use this collection

Figure 1 Typical presentation of time-by-time analysis of
two groups observed over time

of hypotheses to assess the equality of two or more
curves is unnatural and unhelpful.

The profiles of the response in each group are sum-
marized by the graph of means. There are applications
where the graph of means is misleading, insofar as
it may bear little resemblance to the profile of any
individual. Whether it is reasonable in a particular
application to summarize the response by the profile
of means is, to some extent, a matter of judgment for
the analyst. In making this judgment it is important
that separate plots of the profile of each individual
should have been studied.

(See also Analysis of Variance for Longitudinal
Data; Longitudinal Data Analysis, Overview;
Summary Measures Analysis of Longitudinal
Data)
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Time-dependent Covariate

Introduction

Regression models for survival data are frequently
specified via the hazard function for the distribution
of the survival time X (see Survival Distributions
and Their Characteristics). Thus, the model speci-
fies the conditional probability

α(t | Z) ≈ P(X ≤ t + dt | X > t, Z)

dt
(1)

of failing just after time t given survival till time t and
given the covariates, Z. Examples include the Cox
proportional hazards regression model and Aalen’s
nonparametric additive hazards model.

In many cases, some of the covariates change over
time.

1. In a medical follow-up study where t refers to
time since start of treatment, the current age of
the patients, and the current calendar time period
are, obviously, time-dependent.

2. In an industrial life-testing experiment, the
stress at which the components are tested may
be designed to vary over the time period of the
experiment.

3. In medical follow-up studies, events may hap-
pen to the patients under study in an unpre-
dictable way, which may alter their prognosis.

An example of the latter kind is provided by the
classical Stanford Heart Transplantation Study [17]
where the hazard of patients waiting for a transplant
(hopefully) changes once a transplantation is carried
out.

The specification (1) lends itself to include time-
dependent covariates by letting the hazard function at
time t

α(t | Z(·))
≈ P(X ≤ t + dt | X > t, (Z(u), 0 ≤ u ≤ t))

dt
(2)

depend on the entire covariate history over the time
interval from 0 to t .

4. An example is a study of the effect of blood
pressure on mortality where the blood pressure
was recorded continuously and where at time

t (> ∆t) the hazard was modeled to depend on
the current blood pressure Z(t) and the change
in blood pressure Z(t) − Z(t − ∆t) over the
preceding ∆t hours.

Further examples of this type were discussed in
[3, 24].

An important complication implied by the added
generality of (2) over (1) has to do with the rela-
tion between the hazard function α(·) and survival
probabilities like

S(u | t) = P(X ≥ u | X ≥ t, (Z(s), 0 ≤ s ≤ t)),

u > t. (3)

In the fixed covariate model (1) this is simply given
by

S(u | t) = exp

(
−

∫ u

t

α(s | Z)ds

)
, (4)

whereas for the model (2), S(u | t) will depend on the
stochastic structure of (Z(s), t ≤ s ≤ u). Kalbfleisch
and Prentice [23, Section 6.3] introduced a classi-
fication of (time-dependent) covariates in survival
analysis into external and internal ones. This clas-
sification is, in fact, identical to that used in econo-
metrics where one distinguishes between exogenous
and endogenous variables. One way of thinking of
this classification is that external covariates are those
for which it makes sense as in (3), at time t , to con-
dition on the path of Z(·) over the prediction interval
from t to u, and internal covariates are those for
which it does not make sense. Thus, external covari-
ates include time-fixed covariates (constant from t to
u), defined covariates whose path is fixed from t to
u (e.g. current calendar time period in example 1.
above), or ancillary covariates whose development
over (t, u) is not influenced by the failure history of
the individual (e.g. the stress level in the life-testing
experiment of example 2. above or, as exemplified
in [23, p. 197], the level of air pollution as a risk
factor for the occurrence of respiratory diseases). In
these examples, the survival probability is given by

S(u | t) = P(X ≥ u | X ≥ t, (Z(s); 0 ≤ s ≤ u))

= exp

(
−

∫ u

t

α(s | Z(s))ds

)
. (5)

A mathematical condition on the joint distribution of
X and (Z(t), t ≥ 0) for (5) to hold was given in [36].
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This may be taken as a formal definition of external
covariates.

For internal covariates, however, as exemplified
in examples 3 and 4 above, one cannot condition
on Z(s) for s ∈ (t, u) since the mere existence of
Z(s) will imply that X > s. In this case, the survival
probability is given by

S(u | t) = E exp

(
−

∫ u

t

α(s | Z(s))ds

)
, (6)

where the expectation is taken with respect to the
conditional distributions of Z(s) given X ≥ s and
Z(v), 0 ≤ v < s for t ≤ s < u. The interpretation is
that the (marginal) survival probability at u given the
past up to t is the average over the possible paths
among survivors for Z(s), t ≤ s < u.

For internal covariates, a joint model for X and
Z(·) is, therefore, in general, needed in order to
calculate the survival probabilities in (3). Examples
with discrete time-dependent covariates modeled as
Markov processes were given in [4; 6, Section VII.2;
8] and examples with continuous time-dependent
covariates in [21, 22, 33, 34, 37] (see Joint Mod-
eling of Longitudinal and Event Time Data). An
alternative approach for estimation of the marginal
survival probabilities was discussed in [29].

Furthermore, effects of time-dependent covariates
estimated in a model like (2) may only be interpreted
as effects on the hazard function for given covari-
ate histories and not as effects on the probability of
survival. As a consequence, treatment effects from
randomized clinical trials adjusted for the effect of a
time-dependent covariate Z(t) should be interpreted
with great caution since Z(t) may serve as an inter-
mediate variable that may predict survival and whose
development over time may be influenced by treat-
ment in such a way that the treatment effect on the
hazard function may be masked. (In an epidemiologi-
cal setting, Z(t) would not be a confounder variable
in this case and should, therefore, not be adjusted for
when evaluating the treatment effect.)

The Cox Regression Model

The concept of time-dependent covariates was intro-
duced by Cox [14] in the fundamental paper on the
proportional hazards model where

α(t | Z) = α0(t) exp(β ′Z). (7)

Here, β is a vector of unknown regression coeffi-
cients and α0(t), the baseline hazard, is the hazard
function for individuals with Z = 0. Cox’s origi-
nal use of time-dependent covariates was to test
the basic assumption in (7) by adding a defined,
and hence exogenous, time-dependent covariate, for
example, Z1 · t , to the time-fixed covariates already
in the model and examining whether the correspond-
ing regression coefficient is zero. This is a power-
ful way of testing for proportional hazards and an
important application of time-dependent covariates.
Only later were models studied where the effect of
certain internal time-dependent covariates was of sci-
entific interest. Early examples are the analyses of
the Stanford Heart Transplantation Data [17] and the
study [20] of multiple infections. A review was given
in [5].

Estimation of β is based on the Cox partial
likelihood

L(β) =
n∏

i=1




exp(β ′Zi (Ti))∑

j∈R(Ti )

exp(β ′Zj (Ti))





Di

, (8)

[15] where T1, . . . , Tn are independent times of obser-
vation (Ti being the failure time, Xi , if Di = 1 and a
right-censoring time if Di = 0) and R(t) = {i : Ti ≥
t} is the risk set at time t . Furthermore, the integrated
baseline hazard A0(t) = ∫ t

0 α0(u)du is estimated by
the Breslow estimator [12]

Â0(t) =
∑

Ti≤t

Di∑

j∈R(Ti )

exp(β ′Zj (Ti))
. (9)

The large sample properties of (β̂, Â0(·)) were de-
rived in [7]. (Note that the integrated hazard A0(t)

and the estimator (9) are both well-defined in the
presence of time-dependent covariates, even though
the transformation S0(t) = exp(−A0(t)) may not be
interpreted as a survival probability; see the Introduc-
tion above.

It is seen that in order to compute (8) and (9), the
covariate values Zj (Ti) for individuals j at risk at
time Ti are needed. If, for example, Zj (t) is observed
as repeated measurements over time for individual
j , then the value Zj (Ti) may not be measured. If
Zj (Ti) is (naively) replaced by the latest observation
available for individual j before time Ti , then the
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estimated coefficients based on (8) tend to be biased
[10, 31]. Alternative methods use interpolation on the
basis of smoothing of the observed series of repeated
measurements of Z(·) [18, 27, 32] or joint models
for X and Z [21, 22, 34, 35] (see Joint Modeling of
Longitudinal and Event Time Data). A conditional
score approach was introduced in [31] while some
simpler methods were discussed in [10, 19].

To compute the denominators in (8) and (9) for
models with time-fixed covariates, a very simple
algorithm is available. Going backwards in time
from the final risk set R(+∞) = ∅, one simply adds
exp(β ′Zj ) when passing Tj (and if the survival times
are left-truncated, one subtracts exp(β ′Zj ) when
passing the entry time Vj ). In models with time-
dependent covariates, however, one has to recalculate
each sum from scratch and this increases the com-
puting time considerably. This, among other things
has led to suggestions to replace the risk set R(Ti)

in these sums by some subset of the risk set usu-
ally including the individual, i, failing at that time
[11, 26, 30]. Such nested case–control designs may
save computing time and (other resources) without
losing much efficiency (see Case–Control Study,
Nested).

Other Regression Models

Aalen [1, 2] introduced and studied a nonparamet-
ric regression model with time-dependent effects of
covariates and which can also readily take time-
dependent covariates into account:

α(t) = β0(t) + β(t)′Z(t). (10)

Nonparametric estimation of the integrated regression
functions Bj (t) = ∫ t

0 βj (u)du are fairly straightfor-
ward generalizations of the Nelson–Aalen estimator.
A simpler version of (10) where β(t) is constant was
discussed in [25].

The accelerated failure-time model for time-
fixed covariates is usually defined by

log X = −β ′Z + ε, (11)

where ε is an error term and is, thus, not given
by its hazard function. If U is a random variable
distributed as exp(ε), that is, as the lifetime of an
individual with Z = 0, then, in distribution, X =

exp(−β ′Z)U , or

U =
∫ X

0
exp(β ′Z)dt. (12)

On the basis of this, one may study a generalization
of (11) allowing for time-dependent covariates by
assuming (in the case of no censoring) U1, . . . , Un,
where

Ui =
∫ Xi

0
exp(β ′Zi (t))dt, (13)

to be i.i.d. A parametric model of this kind was
studied in [16, Section 5.2] and a semiparametric
model with the distribution of U completely unspec-
ified and with estimation based on linear rank tests
in [28].

Several Timevariables

In the models studied so far, the hazard function has
been assumed to depend on a single timevariable but
in many examples, more than one time origin may
be of relevance (see Time Origin, Choice of). Thus,
one may wish to consider time on study and age, age
and calendar time, time on study and time since a
given event, and so on.

When using a Cox regression model in such cases,
it is necessary to consider one timevariable as the
“basic” timescale and to model the effect of other
timescales using time-dependent covariates. As an
example, we may consider the three-state illness-
death model with states 0: healthy, 1: diseased, and 2:
dead (see Fix–Neyman Process). If the three transi-
tion intensities α01(·), α02(·), and α12(·) all depend
only on a given time, t , the modeled process is
Markov, but if α12(·) also depends on the duration
d = t − T01 of time spent in state 1 the modeled
process is semi-Markov and this may be modeled
by including the duration d or some function of it
as a time-dependent covariate. A model of this type
may also be used for testing the Markov hypothesis
in the obvious way. Examples were provided in [6,
Section X.1].

In a Poisson regression model with a piecewise
constant hazard function [13], several timevariables
may be modeled simultaneously in a simple way.
Dependence on both age and duration may be mod-
eled by assuming the hazard function to be constant
in “cells” given by a partition of age and duration,
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thus treating the two timescales in “parallel” without
considering one of them as basic. Criteria for choos-
ing between Cox and Poisson regression models were
discussed in [9, 13].
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Time-varying Treatment
Effect

Comparing the effects of fixed, time-invariant
treatments on a single outcome is basic to
biostatistics. In this article we are concerned with
the extension to the time-varying situation, i.e.
the way that treatments that vary in time within
an individual affect outcomes (effects of time-
varying treatments). For example, consider the Lipid
Research Clinics Coronary Prevention Trial [8], a
placebo-controlled, double-blind, randomized trial
(see Clinical Trials, Overview) of the efficacy
of cholestyramine for reducing heart disease by
lowering the level of cholesterol. The usual approach
treats this as a comparison of fixed strategic decisions
(treat with cholestyramine or placebo; see Blinding
or Masking), reflected in the randomization,
and statistical analysis follows the principle of
“intention-to-treat”. This approach stays close to
the experimental basis for inference about causal
effects of treatment (randomization) and therefore
subsumes “noncompliance” or other changes in
treatment after randomization under the heading of
the “pragmatic” effects of the strategies: “try to give
cholestyramine” vs. “try to give placebo”. This is not
always completely satisfactory to investigators, who
may want to know more about the effects of levels of
compliance with the active treatment. This involves
temporal variation in the treatment, and thus can be
seen as a realistic generalization of the causal model
that motivates the usual design and analysis of the
RCT (see Causation; Compliance Assessment in
Clinical Trials; Pharmacoepidemiology, Adverse
and Beneficial Effects).

For example, an investigator might want to know
what would have happened if all patients had been
100% compliant with medication assignment for the
entire duration of the study. Efron & Feldman [2]
(with commentary) discuss the problem of estimation
of the dose–response relationship from such a clini-
cal trial with uncontrolled compliance. Another inves-
tigator might try to estimate the effects on current
cholesterol levels of varying periods of treatment with
cholestyramine, or varying total cumulative dose.
These are examples of the effects of time-varying
treatments. Once the analysis departs from its basis

in the randomization, many difficulties arise (see
below).

To define these effects more precisely, we intro-
duce some notation. Consider a population of patients
U , a set of alternative treatments R, and a collection
of possible treatment sequences specifying treatments
up to time s < S (an arbitrary upper time horizon):

Z(s) = {z(t)}0≤t≤s<S, z(t) ∈ R. (1)

To fix ideas, let U be the population of patients
with depression and R be the set of possible doses
of antidepressant drug that could be prescribed for
some interval. Then, at each time 0 ≤ t < S, z(t)

specifies the treatment to be given during the inter-
vals (t, t + 1], and Z(s) is one particular sequence
of treatments specified up to time s. Treatment
sequences without arguments define specific treat-
ments for the entire span of time up to S (Z, for
example). To define causal effects it is necessary
to make a distinction between the set of possible
treatment sequences and the one that is actually real-
ized for a given patient. The notation is sufficiently
general for realistic purposes, since treatment deci-
sions are effectively discrete time processes, possibly
with very short time intervals in some critical care
situations.

Let the sequence of outcomes that would be real-
ized up to time s if patient u received treatment
sequence Z be denoted by

YZ(s, u) = {yt,Z(u)}0≤t≤s≤S. (2)

For example, each yt,Z(u) could be a vector of symp-
tom scores, quality of life scores, and side-effect
scores, that would have been observed at time t . If it
is necessary to distinguish them from the outcomes,
then covariate histories X(s) can be specified as
well. This generalization to time-varying treatments is
implicit in the “potential outcomes” framework due to
Rubin [13–15], who explicitly treats such important
subtleties as the “stable unit treatment value assump-
tion” (that the response by one patient to a treatment
does not depend on the treatment assignments of
the other patients). Robins [10, 12] and Lavori et al.
[6, 7] exploit these ideas in the context of longitudinal
treatments.

We suppose that the treatment decision z(t) speci-
fies the treatment received by the patient for the inter-
val of time starting just after time t , taking effect after
the measurement of the outcome yt . Considerations
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of causality then make it plausible to assume that
the outcomes up to and including time s depend on
the given treatment sequence only through its val-
ues up to time s − 1. Thus, if treatment history Z1

agrees with Z2 up to and including time s − 1, then
YZ1(s, u) = YZ2(s, u) and notation such as YZ(s)(k, u)

is well defined for k ≤ s + 1.
Then, following Rubin, define individual causal

comparisons of the effects of pairs of treatments
Z1, Z2 as functionals of YZ1(S, u), YZ2(S, u). For
example, suppose that y(t) is a score measuring
severity of depressive symptoms at time t , and
Z1, Z2 are, respectively, the treatment sequences
{1, 1, 1, . . . , 1} and {1, 1, 1, . . . , 1, 0, . . . , 0}, where
there are S 1s in the first sequence, denoting
constant treatment with antidepressant, and s0 < S

1s in the latter sequence. Then we can define one
particular individual causal effect (for patient u) of
continuous treatment vs. dropping treatment after
time s0 as the difference in time-averaged scores
(1/S)

∑
t yt,Z(u) under the particular antidepressant

treatment schedules Z = Z1 or Z = Z2.
The problem of inference from observed data

arises (just as it does in the fixed-treatment situation)
because it is only possible to observe YZ(S, u)

if Z is the actual realized treatment sequence in
patient u. Holland [4] refers to this as the “central
problem” of causal effects inference. The statistical
approach attempts to estimate some kind of average
causal effect (over U ) by making assumptions about
the nature of the actual assignment of patients to
treatment sequences. For example, at time s, the
clinician considers the patient’s current and past state
of depression, level of side-effects of the medication,
social functioning, etc. observed under the treatment
sequence defined up to the previous assignment (at
s − 1), and then assigns the dosage z(s) that will
be taken for the next interval. What do we need to
assume about this process to estimate causal effects
from the observed outcomes?

Ignorability of Treatment

In the fixed-treatment problem, Rubin [13–15]
has defined the requirements for using observed
responses to realized treatment conditions to make
valid estimates and inferences about average causal
effects. These are the “ignorability” conditions,
which (for fixed treatments) are guaranteed by

randomization of treatments. The crux of the matter
is that the treatment actually received should be
independent of the potential responses to the treat-
ments being compared (more generally, conditionally
independent given measured pretreatment covariates).
Generalization of the ignorability conditions to the
time-varying case raises a new issue, concerning the
intermediate outcomes that may be used as “covari-
ates” to determine subsequent treatment decisions.
One omnibus ignorability condition is the following:

for all times s and all outcomes Y (s)

realized up to s,

for all treatment sequences Z0(s − 1)

defined up to s − 1,

for all possible treatments z1(s), z2(s),

received at s,

and for all treatment sequences Z agreeing

with Z0(s − 1) up to s − 1,

for all t ≥ s, Pr[YZ(t, u)|YZ0(s−1)(s), Z1(s)]

= Pr[YZ(t, u)|YZ0(s−1)(s), Z2(s)].

(3)

In words, given any history of treatments and
outcomes observed by time s, subgroups defined by
the choice of treatment in the interval (s, s + 1] have
the same distribution of potential future outcomes on
any treatment strategy that agrees with the observed
treatment history up to s − 1 and extends it arbitrarily
into the future. This would be satisfied if patients
were subclassified on treatment and outcome history
at s and then randomly assigned to treatment during
(s, s + 1]. Here we sweep all covariates into Y , to
avoid unnecessary notation. The idea is that each
alternative assignment of treatments during (s, s +
1] produces “comparable” patient groups, in the
sense of having the same distribution of potential
responses to treatment, across all possible treatments
determined by arbitrarily extending the observed
treatment assignment past s. This assumption is
unobservable, and can only be known to be true under
random assignment, possibly stratified by observables
(see Stratification).

Treatment Strategies and Decision Rules

Fixed treatments can also have effects that apparently
vary with time (time-varying effects of treatment).
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This is not the focus of the current article, but it is
useful to contrast it with the concept of effects of
time-varying treatment, since they can easily be con-
fused. Consider the comparison of survival of patients
with heart disease under two alternative strategies:
(i) immediate surgical treatment vs. (ii) medical treat-
ment at first and then surgical treatment if the
patient worsens. The hazard ratio may favor medical
treatment at first, because of surgical complications,
but then the balance may shift over time in favor of
surgery. It is commonplace that “all survival curves
cross”. In our notation, there is only one occasion of
treatment decision, defining z(0).

The natural longitudinal extension of the fixed
treatment is the fixed strategy, or decision rule. For
example, Gelenberg et al. [3] studied the effects on
relapse rates in patients in remission from manic
depression of two treatment strategies: adjust the dose
of lithium carbonate to achieve either a “standard”
serum lithium level or a “low” level. The actual
prescribed doses of lithium varied in response to the
patient’s current serum levels, to steer within the
target ranges, but the treatment decision was fixed
at the outset, and is thus not time-varying in our
sense.

In principle, any set of longitudinal treatment
strategies can be specified in advance, patients
randomized to all of them, and then the out-
comes measured and compared. But this breaks
down quickly in practice, due to the complexity
of possible decision rules. An important excep-
tion, when treatments are assigned without regard
to previous outcomes, is the standard crossover
design.

Crossover studies involve explicit use of the vari-
ation in treatments within an individual over time to
reduce the interindividual variation in response. In the
standard crossover study, treatment sequence assign-
ments are randomized, and thus ignorable (barring
missing data, dropouts, etc.) The aim is to compare
the effects of fixed treatments, and the effects of the
longitudinal component of the variation in treatment
(carryover, period, and treatment by period interac-
tion) are threats to the validity of the analysis rather
than explicit targets of estimation. The usual analy-
sis of the two-period two-treatment crossover study
tests for the presence of treatment by period interac-
tion effects, and then, given no rejection of the null,
goes on to analyze the data as if the order of treat-
ments were immaterial [5]. Thus, the time-varying

part of the treatment effect is suppressed. More elab-
orate and powerful designs, with multiple crossovers,
essentially suppress higher-order interactions to make
better use of the within-individual variation in treat-
ment, but the target is still an effect estimate in the
context of a Markovian hypothesis about the irrele-
vance of some or all of the past history of treatment
(see Markov Processes).

Observational Studies in Medicine

In medicine, simple designs with fixed treatments
dominate the experimental literature, partly because
of the extreme difficulty in controlling complex pat-
terns of treatments over time in patients whose clin-
ical state demands constant attention and commands
instant revision of the individual’s treatment pro-
tocol when side-effects or worsening exceed toler-
ance. Represent the clinical decision-making process
(see Decision Analysis in Diagnosis and Treatment
Choice) as an iteration of the following single step:
measure current outcomes and other covariates, recall
past outcomes and treatments, and, on the basis of
these facts, determine the next treatment choice by
a particular fixed decision rule. No controlled trial
can compare many complex versions of the decision
rule applied at each step, with randomization among
the alternatives. Therefore, time-varying treatment
effects appear in nonexperimental studies (see Obser-
vational Study), and in the secondary analysis of
data from simple randomized studies when inves-
tigators try to define the effects of noncompliance,
uncontrolled adjuvant treatments, and other natural-
istic complications of controlled experiments.

The study of the effects of time-varying
naturalistic treatment is formally identical to the
study of the effects of environmental exposures
(see Environmental Epidemiology) that vary in
time, and this links the growing literatures in
both medical and epidemiologic fields [10]. Since
epidemiologists are usually concerned with exposures
that are not the result of planned experiments, issues
of confounding with time-dependent covariates are
central, including variables that are in the causal
pathway from exposure to outcome (intervening
variables). An important difference between the
epidemiologic and medical treatment contexts is
that few epidemiologic exposures are “selected”
in order to produce a therapeutic effect. This has
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enormous consequences for the likelihood that there
are unmeasured confounders.

Adjustment for Confounders

There is little controversy over the principles govern-
ing adjustment for covariates that are measured prior
to treatment (or exposure). In contrast, adjustment
for time-varying confounders in the longitudinal set-
ting can yield causally incorrect interpretations (see
below). Careful statement of the goals and assump-
tions is critical to avoiding pitfalls of inference. Mark
& Robins give a detailed discussion of this point [9].

For example, in analyzing the effect of drop-
ping antidepressant treatment in patients with major
depression in remission, one may suspect that the
decision to drop treatment may be influenced by the
patient’s current state of symptoms, which may vary
enough to convince the patient (or clinician) to con-
tinue treatment but not enough to qualify as a full
relapse. However, adjusting for the patient’s current
level of symptoms without simultaneously stratifying
on the history of treatment can distort the estima-
tion of causal effects on full relapse if the current
level of symptoms predicts future relapse and also
future treatment, and past treatment predicts current
symptoms.

Because of the importance of qualitative changes
in health state, such as death, onset of disease,
and recurrence of acute illness, survival and other
“time-to-event” studies predominate in medicine and
epidemiology. Here we concentrate on examples
of time-varying treatments in a “survival” setting
(including circumstances where the event is not fatal).
The survival context offers a substantial statisti-
cal simplification: the total probability of the indi-
vidual trajectory can be factored into a sequence
of conditional survival probabilities, with no need
to consider the past history of events. This can
be generalized by counting process techniques (see
Counting Process Methods in Survival Analysis)
to cover situations with reentrance into the risk
set [1].

Suppose that measurements of survival and covari-
ates are available, and decisions about a dichotomous
treatment are taken, at discrete times 0 (baseline),
1, 2,. . . , S. Specializing the notation from the first
section above to a dichotomous treatment situation,
and separating the notation for the survival outcome

and possible confounders, let

z(t) =





1, if patient is treated during
(t, t + 1],

0, otherwise;

Z(s) = {z(t)}0≤t≤s<S,

(4)

so that Z(s) defines a particular treatment history.
Suppose that each individual u has a set of survival
times – one for each possible treatment history –
so that Tu,Z is the survival time for individual u

that would be observed if that individual followed
treatment history Z. Note that this is a summary of
the sequence of dichotomous indicators of survival
at each time: YZ(S, u) = {yt,Z(u)}0<t≤S . (Assume for
simplicity that S is larger than any survival time.)
Then the obvious individual causal effect of treatment
Z1 vs. Z2 is just Tu,Z1 − Tu,Z2 , and population average
causal effects are functionals of the corresponding
survival distributions over U :

SZj
(t) = Pr(TZj

> t), j = 1, 2. (5)

In the depression maintenance example used above,
the “event” could be “relapse into depression”, and
the treatment dichotomy could be defined by whether
the patient continued to receive antidepressant
medications during the interval. Some obvious
comparisons include “always treat” vs. “never treat”
or “treat up to k and then stop”. Most possible
sequences would be irrelevant or uninteresting; we
usually are interested in sequences that are realized
naturalistically by many patients.

To introduce possible confounders, let x(t) and
X(t) be, respectively, the value of the covariate
(vector) measured at time t and the entire history of
the covariate up to and including time t . Robins [10]
generalizes Rubin’s “ignorable treatment assignment”
in the following way, stated informally: for each
treatment regimen defined up to but not including
time s, patients who have survived that regimen and
are observed to have the same covariate history up
to and including s fall into two groups defined by
the actual treatment assignment at time s (treated or
not). The assignment is ignorable if the two groups
are “comparable” in the sense that their survival
distribution from s on would be the same under every
treatment history that extends the regimen observed
up to but not including s. That is, not only are
the groups similar in the unobservable probability of
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surviving through s + 1, on both the treatment they
received and the other option, but also with respect
to survival on any future version of the treatment. In
symbols,

Pr[TZ > k|Z0(s − 1), X(s), z(s) = 1]

= Pr[TZ > k|Z0(s − 1), X(s), z(s) = 0]
(6)

for all Z agreeing with Z0(s − 1), up to s − 1 < k.
Robins [10] shows that, under this set of assump-

tions, causal effects can be calculated by summing
(over all possible covariate histories) the joint sur-
vival and covariate probabilities of each covari-
ate history, under the two treatment histories being
compared. Of course, one must have observed these
histories.

Mark & Robins [9] point out that, even with
these assumptions and a well-specified time-varying
Cox regression model for survival given treatment
and confounders, the model-based test of the treat-
ment null hypothesis does not necessarily test the
causal null hypothesis that for each individual the
survival times are identical across treatment histories.
The example they give involves a hypothetically
impotent treatment which has a correlation with
the discrepancy between the measured confounder
and the actual prognostic (latent) variable that it
purports to measure. Robins et al. [12] describe an
example involving prophylaxis for the intervening
variable “onset of pneumocystis carinii infection” in
prevention of death from AIDS. Lavori et al. [6]
investigate a more restricted set of treatment alterna-
tives, defined by the time of cessation of antidepres-
sant therapy, and a “prompt” treatment effect, and
find that under these circumstances the time-varying
Cox regression model gives valid causal inferences.
Robins has also noted that prompt effects can be esti-
mated with the Cox model. Thus, the causal interpre-
tation of the “effect” estimates from the time-varying
Cox model depends on more than just the correct
specification of the model for the observed data. This
is a lively area that should see much activity in the
coming years.

Structural Models for Treatment Effect

In the sociological literature, structural equation
models (see Path Analysis) are routinely used to
model panel data (see Panel Study) with mul-
tiple independent and dependent variables. Such

models can be used to analyze time-varying treat-
ment effects, although the assumptions necessary for
identification of the parameters include ignorability
assumptions that are hidden from view by the struc-
tural formulation. Holland [4] contrasts the typical
structural equation setup for causal inference with
the experiment-based setup described above, which
is most familiar to biostatisticians (in its fixed treat-
ment form), and which has come to be known as
“Rubin’s causal model”.

Closely related to the structural equation models
used by the sociologists are similar methods used
by economists. In particular, instrumental variables
approaches are often used in econometrics to analyze
the structural effects of decisions, inputs, or other
variables, which often vary with time. Issues of
identification are paramount.

Robins & Tsiatis [11] have proposed an approach
to the estimation of causal effects on survival that
relies on a structural parametric model for the lon-
gitudinal causal effects (an accelerated failure-time
model). In this model, the strong parametric assump-
tions make it possible to infer the time to failure
of an individual under every possible assignment to
treatment, given the observed time to failure under
the actual treatment received, and the unknown value
of the coefficients of the model. Thus, the parameters
have direct causal interpretations. Of course, the
method relies on the correct specification of the
parametric model for unobservable effects, which is
stronger than the usual assumption that the observ-
ables are correctly modeled. It will be useful to have
several such methods available, to test the sensitivity
of conclusions to the specific structural assumptions.
This area is currently a focus of intense effort.
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Tolerance Interval

Tolerance intervals are statistical intervals that con-
tain (or cover) at least a proportion β of a population,
either on average, or else with a stated confidence, γ .
Tolerance intervals (and in the multivariate case tol-
erance regions) summarize uncertainty about values
of a random variable, usually a future observation.
This should be contrasted with confidence intervals
and regions, which provide confidence statements
about uncertainty in unknown constants (parameters).
Tolerance intervals are sometimes referred to as toler-
ance bounds or tolerance limits. Prediction intervals
and confidence intervals on quantiles can be regarded
as special cases of tolerance limits.

The statistical theory of tolerance intervals,
although conceived to address problems in man-
ufacturing [31, 38], has numerous applications to
problems in biostatistics. Some examples include
clinical chemistry [9, 30] (see Normal Clinical Val-
ues, Reference Intervals for) and bioequivalence
[3]. Tolerance interval theory parallels that of confi-
dence intervals in most respects. There is a theory of
nonparametric tolerance intervals, a well-developed
normal theory, a less complete theory for other para-
metric families, as well as tolerance limits for linear
models. We review some of these areas in this article,
with an emphasis on normal theory – which, because
of its flexibility, is most important in applications.

Definitions

Let Y1, . . . , Yn denote a sample from a probability
distribution with distribution function F . A (β, γ )

two-sided β-content tolerance interval is a statistical
interval [L(Y1, . . . , Yn), U(Y1, . . . , Yn)] for which

Pr[F(U) − F(L) ≥ β] ≥ γ. (1)

The constants β and γ are referred to as the content
(or coverage) and the confidence, respectively. A
two-sided β-expectation interval satisfies

E[F(U) − F(L)] ≥ β;

that is, it has an expected content of at least β.
As was first noted by Paulson [26], β-expectation
tolerance limits are equivalent to prediction intervals
for a future observation.

We define one-sided intervals in the obvious
way. A (β, γ ) lower tolerance limit is a statistic
L(Y1, . . . , Yn) such that

Pr[F(L) ≤ 1 − β] ≥ γ.

That is, at least a proportion β of the distribution of F

exceeds L with confidence at least γ . A (β, γ ) lower
tolerance limit is thus a lower confidence limit on the
1 − β quantile of F , with a confidence coefficient
of at least γ . Upper tolerance limits are defined
similarly.

General References and Bibliographies

The only book-length treatment of statistical tolerance
intervals in English is a monograph by Guttman
[4], which is particularly useful for its exposition
of nonparametric tolerance region theory, and for its
discussion of normal and Bayesian theory for sim-
ple random samples. Tolerance intervals are also
discussed in some detail in books by Aitchison &
Dunsmore [1, Chapters 5 and 6] and, more recently,
by Hahn & Meeker [6]. The encyclopedia article by
Guttman [5] is also useful for nonparametric, normal,
and Bayesian theory for simple random samples, and
the article by Noether [20] discusses nonparametric
intervals.

The most extensive bibliography of the literature
up to 1989 has been published by Jilek, in two parts
[10, 11]. Review articles by Patel on tolerance inter-
vals [24] and prediction intervals [25] are particularly
useful for their coverage of univariate theory for var-
ious parametric families.

An Example: Serum Glucose
Measurements

In the remainder of this article we discuss tolerance
limits for simple random samples, and briefly review
tolerance limits for linear models. We use the follow-
ing numerical example to illustrate various statistical
methods.

At the National Bureau of Standards, measure-
ments were made using isotope dilution/mass spec-
trometry (ID/MS) of the concentration of glucose in
frozen bovine serum. Glucose concentration in frozen
serum tends to decrease with time, so these measure-
ments were made on several days over a period of
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Table 1 ID/MS concentration of glucose in frozen
bovine serum (mg/l)

Serum age (days)

1 8 15 140 290

1980 1979 1988 1957 1940
1981 1982 1987 1951 1923
1986 1978 1982 1948 1945
1975 1978 1982 1953 1938

2000

1980

90% prediction intervals
(0.90, 0.95) tolerance intervals
(0.90, 0.95) simultaneous
                    tolerance intervals
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1940
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Figure 1 Glucose in bovine serum

months (see Table 1 and [28, p. 14]). A simple plot
(e.g. Figure 1 below) of these data suggests that mea-
surements on days 1, 8, and 15 can be pooled, and
this is supported by formal tests. However, there is a
roughly linear decrease in concentration for the last
two sets of measurements.

Simple Random Samples

We begin by assuming that Y1, . . . , Yn are inde-
pendent and identically distributed (iid). We con-
sider primarily nonparametric tolerance intervals, and
tolerance intervals under normality, illustrated using
the data in Table 1.

Nonparametric

In one of the earliest papers on tolerance intervals
[38], Wilks discusses nonparametric limits (see
Nonparametric Methods). He notes that if Y(1) ≤
Y(2) ≤ · · · ≤ Y(n) are the order statistics of an iid

sample from a continuous distribution F , then, for
1 ≤ i < j ≤ n, the Pr[F(Y(j)) − F(Y(i)) ≥ β] does
not depend on F , and can be calculated. This follows
from the well-known fact that F(Y(i)) and F(Y(j))

have beta distributions. To determine a (β, γ )

tolerance interval, one can select i and j for which
∫ 1−β

0

{
1 − beta

[
β

(1 − x)
; j − i, n − j + 1

]}

× beta′(x; i, n − i + 1) dx ≥ γ, (2)

where beta (·, λ1, λ2) denotes the beta distribution
with parameters λ1 and λ2, and beta′ (·, λ1, λ2)

denotes the corresponding density. The above
integral, derived by conditioning on F(Y(i)), is
straightforward to evaluate numerically. Some tables
(e.g. [6, pp. 318–324]) and graphs (e.g. [19] and
[27, p. 123]) are available. Voluminous tables are
avoided through the use of the concept of statistically
equivalent blocks [27, 33], an idea which is central
to the theory of multivariate nonparametric tolerance
regions. In this univariate case it can be shown
that the random variables Ci = F(Y(i)) − F(Y(i−1)),
where Y(0) ≡ −∞ and Y(n+1) ≡ ∞, have the same
distribution as the differences of successive order
statistics from a sample of size n from a uniform
distribution. Also, the sum, St , of any t of
the Ci has a beta (t, n + 1 − t) distribution. If
q denotes the smallest t for which Pr(St ≥ β) ≥
γ , then (Y(i), Y(i+q)), i + q ≤ n + 1, is a (β, γ )

nonparametric tolerance interval. Since E(Ci) =
1/(n + 1), the expected content of this tolerance limit
is simply q/(n + 1).

If we pool the data in Table 1 for the first
three days, we have n = 12, Y(1) = 1975, and Y(12) =
1988. Substituting i = 1, j = 12, and β = 0.6613
into (2) gives γ

.= 0.9500; so [1975, 1988] is a
(0.6613, 0.95) nonparametric tolerance interval, with
expected content 11/13 = 0.846. Note that for n =
12 and γ = 0.95, nonparametric tolerance intervals
of this form do not exist for β > 0.6613. One-
sided nonparametric tolerance limits involving linear
combinations of order statistics have been proposed
[8, 34]. These limits are valid for a smaller class of
distributions than the Wilks limits, but they do not
have sample-size limitations.

Normal Distribution

Let Y1, . . . , Yn be an iid sample from a normal
distribution, and denote the usual sample mean and
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standard deviation by y and s. We can determine
one- and two-sided (β, γ ) tolerance limits of the form
y − ks, y + ks, or y ± ks, where k is an appropriate
constant. Extensive tables of tolerance limit factors,
k, are available; the best source of such tables is
Odeh & Owen [21]. For one-sided tolerance limits,
the tolerance limit factors are easily shown (e.g. [21,
pp. 269–270]) to be proportional to quantiles of a
noncentral Student’s t distribution. For two-sided
tolerance limits, Wald & Wolfowitz [36] show that
k ≈ ru, where u = [(n − 1)/χ2

n−1,1−γ ]1/2 and r is the
solution to

1

(2π)1/2

∫ r+1/
√

n

r−1/
√

n

exp

(−t2

2

)
dt = β. (3)

This Wald–Wolfowitz approximation is usually very
good, and was used almost exclusively before the
advent of modern computing capabilities. Today,
exact tolerance limit factors are easy to obtain numer-
ically, and extensive tables are available (e.g. [21]).

Normal tolerance limits for which, with confidence
γ , (1 − β)/2 of the population is both less than
the lower limit and greater than the upper limit are
discussed by Owen [23], and corresponding tolerance
limit factors have been tabulated [21, pp. 115–145].
From definition (1), one can see that this symmetry
condition is not required for a tolerance limit.

Returning to the example dataset (days 1, 8, and
15), we have n = 12, y = 1981.5 and s = 3.9196.
To construct, for example, a (0.90, 0.95) two-sided
β-content normal tolerance interval, use k = 2.670
(e.g. from [21, Table 3.4.1, p. 98]), and calculate
the desired limit (1971.0, 1992.0). For a (0.90, 0.95)
tolerance limit which controls the probability in both
tails, we would use k = 2.978 [21, Table 4.4.1,
p. 128]. For a β-expectation (i.e. prediction) interval
with β = 0.9, it is easy to show that k = t(1+β)/2

(n − 1)[n + 1)/n]1/2 = 1.869 is appropriate.

Other Distributions

Tolerance interval methods for simple random sam-
ples are available for many distributions, continuous
and discrete. Patel [24] provides a review. For a log-
normal model, one need only transform the data by
taking logarithms, calculate normal-theory tolerance
limits, and exponentiate the result. For the Weibull
distribution (and, taking logarithms, the extreme

value distribution), Thoman et al. [32] obtain one-
sided tolerance limits using quantiles of pivotal ran-
dom variables obtained by simulation; a good source
for the necessary tables is [2]. Lawless [13] demon-
strates that if one conditions on ancillary statistics,
then one-sided Weibull tolerance limits can be deter-
mined numerically, without the need for simulation or
tables. One-sided tolerance limits for the log gamma
distribution are discussed by Jones et al. [12] in an
article that emphasizes regression models. For some
discussion of discrete distributions, see [24] and [25],
and the references cited therein.

Linear Regression

The concept of a tolerance limit can also be applied
to linear regression models, and the literature in
this area is extensive. Let Y ∼ N(Xα, σ 2In), where
α is a p × 1 vector of unknown constant parame-
ters, and X is a known (for convenience, full rank)
n × p matrix of covariates. The least squares esti-
mator α̂ = (X′X)−1X′Y is normally distributed with
expectation α. The residual mean square S = (Y −
Xα̂)′(Y − α̂)/(n − p) is σ 2 times a χ2

n−p (chi-square
distributed) random variable divided by its degrees
of freedom. For any p × 1 vector w, w′α̂ is nor-
mally distributed, and an independent estimate of its
variance is proportional to a χ2 random variable. As
a consequence, the theory developed for normal tol-
erance and prediction intervals for a simple random
sample can be applied directly to fixed-effects regres-
sion problems. This was apparently first demonstrated
by Wallis [37], who employed what amounts to the
approximation of Wald & Wolfowitz [36]. Although
the Wald–Wolfowitz approximation is easy to use,
and usually quite accurate, exact computations are
straightforward using modern computers.

Similarly, it is reasonable to extend the notion of
a prediction interval to a regression setting. Predic-
tion intervals for a single future observation are, of
course, classical results in most elementary regression
analysis textbooks. Various formulations of multiple
prediction problems, along with corresponding solu-
tions, are reviewed by Hahn [7], Hahn & Meeker [6],
and Patel [25].

Random-Effects and Mixed-Effects Models

Consider a large (effectively, infinite) population of
individuals who respond differently to a treatment,
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with each individual having his/her own mean
response. Assume that the response for each
individual is normally distributed with a common
variance σ 2, and that means for individuals are
themselves distributed N(µ, σ 2

b ). On the basis of, say,
J measurements on each of I individuals, one might
be concerned with estimating an interval that contains
at least a proportion β of the population of potential
measurements from a randomly selected member of
the population, with confidence γ . Or one might want
a prediction interval for a future measurement made
on a randomly selected person. This is an example
of a random effects tolerance limit. Mee & Owen
[17] provide conservative methods for one-sided
β-content tolerance limits, and Mee [16] treats two-
sided tolerance and prediction intervals. Vangel [35]
presents an approach for approximate one-sided
tolerance intervals for (possibly unbalanced) mixed
models having two components of variance.

Simultaneous Tolerance Intervals

We now return to the usual regression setup; that is,
the data have the form y = Xα + ε, where X is a
known n × p matrix of covariates, α is an unknown
vector of fixed coefficients, and ε ∼ N(0, σ 2In).
Simultaneous prediction intervals constructed for m

future xs, when m is large, can often be so wide as to
be unusable. For such situations, one would typically
use tolerance intervals, or simultaneous tolerance
intervals.

A regression tolerance interval covers, for any
fixed vector of covariates x, at least a proportion
β of future responses y(x), with confidence γ . A
simultaneous regression tolerance interval is a band
about a regression surface such that if x∗

1, x∗
2, x∗

3, . . .

denote arbitrary covariate vectors, and if y∗
1 , y∗

2 ,
y∗

3 , . . . denote the corresponding future ys, then at
least a proportion β of these future responses will
be contained within a tolerance interval, with confi-
dence γ . One can think of the regression sample as
being a “training sample” used to estimate a surface,
which provides a bound on arbitrarily many future
responses. The simultaneous tolerance interval state-
ment means that for at least a proportion γ of repeat-
edly estimated regression surfaces, at least 100β% of
all future y∗s will fall within the simultaneous tol-
erance intervals. Various approximate simultaneous
tolerance limit procedures, using different approxima-
tions, have been proposed; among these are methods

of Lieberman & Miller [14], Limam & Thomas [15],
Scheffé [29], and Mee et al. [18].

Regression tolerance intervals, individual and
simultaneous, are important in multiple-use cali-
bration. In this scenario, a regression curve, once
estimated, is to be used many times to obtain esti-
mates and confidence intervals for x∗s based on future
y∗s. For a discussion of the use of tolerance inter-
vals in calibration, see the review by Osborne [22];
Lieberman & Miller [14] present an immunoassay
example.

An Example Using Serum Glucose Data

In Figure 1, a straight line is fit, and three two-sided
tolerance bands are displayed, for the data in Table
1. The innermost band consists of individual 90%
prediction intervals (that is, β-expectation tolerance
limits) for a single observation, and the outermost
bands provide (0.90, 0.95) tolerance intervals: indi-
vidual and simultaneous. The simultaneous intervals
in this figure were calculated using the method of
Mee et al. [18].
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Tolerance Region

Let Y1, Y2, . . . , Yn denote iid p-dimensional vectors
with distribution function F . A (β, γ ) β-content
tolerance region is a set R(Y1, Y2, . . . , Yn) such that

Pr

(∫

R

dF ≥ β

)
≥ γ.

The constants β and γ are referred to as the content
(or coverage) and confidence of the tolerance region
R, respectively. A β-expectation tolerance region (or
prediction region) is a region R for which E[Pr(Y ∈
R)] ≥ β. Univariate tolerance regions, often called
Tolerance Intervals, are discussed in a separate arti-
cle, which also contains references to bibliographies
and reviews on multivariate theory.

The statistical theory on this topic consists mostly
of nonparametric and normal theory. We provide
an introduction to the main ideas of nonparametric
theory below (see Nonparametric Methods). Some
references for multivariate normal methods include
the monograph by Guttman [3], and articles by Chew
[1] and Hall & Sheldon [4].

Nonparametric Regions

Multivariate tolerance regions are determined using
statistically equivalent blocks, a concept due to Tukey
[6], which is introduced in the article on Tolerance
Intervals, but which we can better appreciate in the
multivariate case.

Let Y(1), Y(2), . . . , Y(n) be the order statistics from
an iid univariate sample with continuous distribu-
tion F . The intervals Ci = F(Y(i)) − F(Y(i−1)) (with
Y(0) ≡ −∞ and Y(n+1) ≡ ∞) are an example of sta-
tistically equivalent blocks of exchangeable random
variables, each of which has the same beta distribu-
tion as the difference in consecutive uniform order
statistics. The expectation of each of these random
variables is 1/(n + 1), and the sum of any t of them

has the same distribution as the t th order statistic
of a uniformly distributed sample of size n. As a
consequence, we can easily construct β-content and
β-expectation tolerance intervals; this is discussed in
some detail in Tolerance Interval.

Wald [7] generalizes this idea to multiple dimen-
sions, providing essentially the following algorithm
for a multivariate tolerance region. First, construct
a one-dimensional tolerance interval by ordering the
data according to one of the coordinates, keeping
only those data values that correspond to blocks
chosen to provide a tolerance interval in that coor-
dinate. Repeat this with each coordinate in turn. The
region that results is a multivariate tolerance region.
Tukey [6] extends Wald’s work greatly, introducing
the concept of ordering functions. Fraser [2] provides
further results; Pratt & Gibbons [5] give an elemen-
tary introduction.
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Total Time on Test

Total time on test (TTT) statistics [6] and plots [3, 5]
have been discussed quite frequently in the reliability
literature on failure-time data as tools for assessing
that a hazard (or intensity) is constant. The ideas
have been phrased in terms of the multiplicative
intensity model for counting processes by Aalen &
Hoem [1] and Gill [7], and surveyed by Andersen
et al. [2]. In this article we introduce this methodol-
ogy (in counting process notation) with emphasis on
biostatistical applications, and present an example of
testing constant hazard of death in a follow-up study
of liver cirrhosis patients.

We consider a univariate counting process N(t)

on an interval [0, τ ] satisfying the multiplicative
intensity model, i.e. it has an intensity process of the
form

λ(t) = α(t)Y (t),

where we want to test the hypothesis that there exists
a θ such that

H0 : α(t) = θ

for all t . Let

R(t) =
∫ t

0
Y (s) ds;

then under H0 the counting process N(t) has θR(t) as
its compensator and the usual decomposition yields

N(t) = θR(t) + M(t),

with M a (local square integrable) martingale. There-
fore, we have

E[R(t)] = E

[
N(t)

θ

]

(provided that the expectations exist), and it follows
that a plot of R(t) against N(t) should give approx-
imately a straight line with slope θ−1. This plot may
be transformed to the unit square by choosing a
(possibly random) time T and plotting R(t)/R(T )

against N(t)/N(T ). This is the TTT plot, the name
being due to the fact that R(t) measures the “expo-
sure” or “total time on test” when Y (t) is the
size of the risk set. This is, for instance, the case

when N(t) = ∑
i I (Xi ≤ t, Di = 1) counts the num-

ber of failures in [0, t] among independent, identi-
cally distributed (iid) (possibly right-censored) sur-
vival times X1, . . . , Xn with Di being the failure
indicator. In this case Y (t) = ∑

i I (Xi ≥ t) equals
the number at risk at time t−. The plot should approx-
imate a straight line with unit slope under H0, which,
for survival data, corresponds to the exponential dis-
tribution.

We plot R(t)/R(T ) against N(t)/N(T ) for all
t ∈ [0, T ] and connect the vertical lines one gets in
this manner by horizontal lines.

The TTT plot is especially well-suited for situ-
ations where the alternative to the hypothesis H0

of special interest is that α(t) is monotone. Since
we have

E[N(t)] = E

[∫ t

0
α(s)Y (s) ds

]
=

∫ t

0
α(s) dE[R(s)],

it is seen that dE[R(t)] = dE[N(t)]/α(t). Therefore,
the TTT plot will tend to be concave for an increasing
α(t) and convex when α(t) is decreasing.

Closely related to the TTT plot is the cumulative
total time on test statistic, defined as N(T ) times
the area under the TTT plot. According to the just-
mentioned properties of the TTT plot, this statistic
for testing H0 tends to take on large values when α(t)

is increasing and small values when it is decreasing.
One may also use a Kolmogorov–Smirnov-type test,
i.e. reject the hypothesis when the maximum distance
between the TTT plot and the diagonal line y = x is
large.

To study formally the properties of the TTT plot,
we follow Aalen & Hoem [1] and note that in the new
(random) time scale measured by “the total time on
test” R(t), N is transformed into a counting process
N∗ given by

N∗(u) = N [R−1(u)],

on the (random) interval [0, R(τ)]. Here, R−1(u) =
inf {t : R(t) ≥ u}. This counting process has intensity
process λ∗(u) = α[R−1(u)], and under H0 it is a
counting process with a constant intensity process θ

on [0, R(τ)], i.e. a randomly stopped Poisson process
with constant intensity.

As shown by Barlow et al. [4] and Barlow &
Campo [3] for certain censoring patterns, and by Gill
[7] in greater generality, the asymptotic distribution
of the signed area between the TTT plot and the



2 Total Time on Test

diagonal line y = x, times [N(T )]1/2, is the same as
that of

∫ 1
0 W 0(x) dx, W 0 being the standard Brownian

bridge. Therefore, the normalized cumulative total
time on test statistic

[N(T )]1/2

[
1

N(T )

N(T )∑

i=1

R(Ti)

R(T )
− 1

2

]

(with T1 < T2 < · · · being the jump times of N ) is
asymptotically normally distributed with mean zero
and variance 1/12 under the hypothesis. Furthermore,
the Kolmogorov–Smirnov-type test for hypothesis
H0 is to reject at the level α when

[N(T )]1/2 sup
0≤t≤T

∣∣∣∣
R(t)

R(T )
− N(t)

N(T )

∣∣∣∣ > eα,

where eα is the upper α fractile in the distribution of
sup0≤x≤1 |W 0(x)|.

Example

In a clinical trial of prednisone vs. placebo
treatment of liver cirrhosis, patients entered during
1962–1969 and were followed until September
1974. We consider the survival experience of the
237 placebo patients which could be reevaluated
histologically [8]. Figure 1 shows the TTT plot with
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Figure 1 Total time on test plot for mortality of liver
cirrhosis patients, including the identity line and boundaries
corresponding to the Kolmogorov–Smirnov test

T = 4892 days and N(T ) = 150 observed deaths.
The plot is generally convex, corresponding to a
generally decreasing hazard rate. The plot crosses
the boundaries ±eα[N(T )]1/2 around the identity line,
where e0.05 = 1.36 [9, Table 9], indicating significant
departure from the hypothesis of exponentiality as
judged by a Kolmogorov–Smirnov test at the 5%
level. Indeed, the maximal deviation is 0.1214,
yielding a Kolmogorov–Smirnov test statistic of
(150)1/2 × 0.1214 = 1.486, corresponding to P =
0.024. The cumulative TTT statistic takes the values
−0.8234, corresponding to an approximately normal
deviate of (12)1/2 × (−0.8234) = −2.85 or a (two-
sided) P = 0.004.
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Transfer Function Models

Time series data arise in a wide range of subject
areas; biology and medicine (see, for example, [4]),
environment, engineering, economics, etc. To analyze
and model such data a number of different tools are
available. The simplest is the univariate stochastic
model, which associates the value of a variable at
time point t to some function of its values at previ-
ous time points, i.e. Yt = f (Yt−1, Yt−2, . . . ; ν, {Nt}),
where ν is a vector of parameters and {Nt } a noise
process. Often the series {Yt } is thought to be related
to a second series {Xt }. A simple example of a
transfer function model relating the two time series
would be

Yt = ν0Xt + ν1Xt−1 + · · · + Nt, (1)

where {Xt } is referred to as the “input” series and {Yt }
the “output” series. Transfer function models have
proved very useful in the assessment of relationships,
if any, between time series measurements, and for
prediction and forecasting [2, 9]. For example, relat-
ing “the daily number of patients attending a clinic
for respiratory disease” (output) to “daily pollen
count”, “daily level of air pollutant”, “daily humid-
ity value” (inputs); “monthly employment statistics”
related to “inflation rate”, “level of investment”, etc.,
in previous months; or, “daily demand for electricity”
related to “daily mean temperature” and “mean night
temperature”.

Assuming there to be no noise (see Noise and
White Noise) in the system, we can write (1) as

Yt = ν(B)Xt (2)

where B is the usual backward shift operator
BhXt = Xt−h, the operator ν(B) = ∑∞

i=0 νiB
i a

polynomial in B known as the transfer function of
this linear filter, and the set of weights, ν0, ν1, . . . the
impulse response function of the system.

Note that if yt = ∇Yt = Yt − Yt−1 and xt =
∇Xt = Xt − Xt−1 denote incremental changes in Y

and X, then we have

yt = ν(B)xt (3)

the same transfer function model.
Eq. (2) contains a large, possibly infinite, number

of parameters and in many systems there may be a

time lag, b, in Yt for a change in Xt . In this case, we
can reparameterize the system as

Yt = δ−1
r (B)ωs(B)Xt−b, (4)

where δr(B) = (1 − δ1B − δ2B
2 − · · · − δrB

r) and
ωs(B) = (ω0 − ω1B − ω2B

2 − · · · − ωsB
s). Thus, if

Ω(B) = ωs(B)Bb , the transfer function of this noise-
free model is ν(B) = δ−1

r (B)Ω(B), the ratio of two
finite-order polynomials, and in this case νk = 0 for
k = 0, . . . , b − 1.

For many practical applications values of r and
s that are both ≤2 provide suitable models. Box &
Jenkins [2] give details of the properties of transfer
function models for all combinations of r = 0, 1, 2
and s = 0, 1, 2.

If multiple input series are available, then the basic
model (4) can be generalized to

Yt =
J∑

j=1

δ−1
j (B)ωj (B)Xj,t−bj

, (5)

where each input Xjt has a transfer function repre-
sentation the same as for the single-input case, with
time lag bj . The same property for differencing as
that stated in (3) also applies in this multiple-input
case.

For the potential user of transfer function models,
the most important task is to identify (fit) the model
that best describes the process under investigation.
This is frequently a mixture of art and science! There
are, however, some basic steps to be followed.

Model Identification

An output series {Yt } will almost always be subject
to some kind of error. Let us consider the process of
identification of a combined transfer function–noise
model of the form

yt = δ−1
r (B)ωs(B)Xt−b + Nt, (6)

where {Nt} is a noise process assumed to be generated
by an ARIMA (see ARMA and ARIMA Models)
process statistically independent of the input pro-
cess {Xt }. If nt = ∇dNt , where ∇ = 1 − B denotes
the (backward) difference, is a stationary process,
then (6) can be rewritten as

yt = δ−1
r (B)ωs(B)xt−b + φ−1

p (B)θq(B)at , (7)

where {at } is a white noise process.
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In the same way that estimated autocorrelation and
partial autocorrelation functions are used to identify
univariate ARIMA models, so the estimated cross
correlation function is used in the identification of
transfer function models.

The cross correlation function between two sta-
tionary series {Ut} and {Vt } at lag k is defined as

ρU,V (k) = γU,V (k)
√

σ 2
Uσ 2

V

, k = 0, ±1, ±2, . . . ,

where γU,V (k) = E{[Ut − E(Ut )][Vt+k − E(V )]}, and
σ 2

U and σ 2
V are the variances of the input and output

series, respectively.
If data (ut , vt ; t = 1, . . . , m) is available, then an

estimate of the cross correlation function is given by

ρ̂U,V (k) = γ̂U,V (k)
√

σ̂ 2
U σ̂ 2

V

,

where

γ̂U,V (k) =
m−k∑

t=1

(ut − u)(vt+k − v)

m
,

σ̂ 2
U =

m∑

t=1

(ut − u)2

m
, and

σ̂ 2
V =

m∑

t=1

(vt − v)2

m

are estimates of the covariance and variances, respec-
tively. If the two time series, U and V , are not cross
correlated and one is white noise, then the standard
error for ρ̂U,V (k) is 1/

√
m. This result is used to test

the statistical significance of cross correlations at each
lag k.

Step 1. Identify univariate ARIMA models for both
the input and output series. The ARIMA model for
the input series converts the correlated series {Xt }
into an approximately independent series {αt }. Sup-
pose that this fitted ARIMA model is

αt = φ̂X(B)θ̂−1
X (B)Xt (8)

The identical ARIMA model is then applied to the
output {Yt } to produce a new series

βt = φ̂X(B)θ̂−1
X (B)Yt ; (9)

this process is known as prewhitening [2].

The transfer function model then becomes

βt = ν(B)αt + εt , (10)

where εt = φ̂X(B)θ̂−1
X (B)Nt is the transformed noise

process.

Step 2. Furthermore, it can be shown that νk =
ραβ(k)σβ/σα . Although statistically inefficient, a rea-
sonable initial estimate for νk is ν̂k = ρ̂αβ(k)σ̂β/σ̂α .
Because {αt } is an approximately independent white
noise series, the result stated above can be used
to identify which cross correlations are significantly
different than zero. This step provides an initial
estimate of the impulse response function {ν̂k}.
Step 3. The next step is to use {ν̂k} to “estimate”
b, r , and s in (4). The general approach is initially to
consider values of r, s ≤ 2, and to use the results that
{νk} comprise

1. b zero values ν0, ν1, . . . , νb−1;
2. a further s − r + 1 values νb, νb+1, . . . , νb+s−r ,

with no fixed pattern;
3. values νj , j ≥ b + s − r + 1, follow the pattern

dictated by an rth order difference equation
which has starting values νb+s , . . . , νb+s−r+1.
Starting values for νj , for j < b, will be zero.

Examining the set of values {ν̂k} in the light of these
results, it is possible to obtain preliminary choices for
r, s, and b.

Step 4. The identity ν(B) = δ−1
r (B)Ω(B) can be

established, and by comparing coefficients of powers
of B, preliminary estimates for δ′ = (δ1, . . . , δr ) and
ω′ = (ω0, . . . , ωs) can be obtained.

Step 5. Approximations to the maximum likelihood
estimates of parameters δ′, ω′, φ′, and θ ′ are obtained
by minimizing the conditional sum of squares
function

S0(δ
′, ω′, φ′, θ ′) =

m∑

t=1

a2
t (δ

′, ω′, φ′, θ ′|b, x0, y0, a0),

(11)

where at = θ̂−1
X (B)φ̂X(B)n̂t , n̂t = yt − ŷt , ŷt = δ̂−1

r

(B)ω̂s(B)x̂t−b , and b, x0, y0, and a0 are starting val-
ues. This step involves the use of an algorithm to
minimize the nonlinear function S0.
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Further details, for each of these steps, can be
found in [2] and [9].

Model Checking

The adequacy of any fitted model must be exam-
ined. Residual analysis is used to do this. Sup-
pose that the identification process gives resid-
uals {ât (δ̂

′, ω̂′, φ̂′, θ̂ ′); t = 1, . . . , m}. The autocor-
relation function of these residuals, ρ̂â,â(k) =
γâ,â(k)/σ 2

â
, should be that of white noise. If this is

not the case, then the identified model is not correct.
The inadequacy of either the transfer function

or noise process can be checked by examining
the cross correlation function, ρ̂α,â(k), between
the prewhitened input {αt } and the residuals
{ât (δ̂

′, ω̂′, φ̂′, θ̂ ′)}.
If ρ̂â,â(k) exhibits structure – e.g. significant cor-

relations – and ρ̂α,â(k) does not, then the noise model
alone is incorrect, whilst if both exhibit structure, then
the transfer function and noise model are incorrect.
Box & Jenkins [2] provide a number of additional
diagnostic checks, and statistical tests, that can be
carried out to assess the adequacy of various parts of
the fitted model.

The application of these models is therefore a
cycle of identification → fitting → checking → re-
identification. A number of software packages are
available to assist this process, including BMDPTM

[1] and SASTM [10] (see Software, Biostatistical).

Examples

Example (A)

Helfenstein [5] (see also [6]) gives an example of
the use of a transfer function model to examine the
relationship between environmental time series (daily
concentrations of SO2, NO2, and other factors) and
the incidence of respiratory disease in young children
(daily number of respiratory symptoms). Measure-
ments were made over a period of approximately
one year. Autoregressive models AR(1) were iden-
tified for both input series ln(SO2) and NO2, and
an autoregressive integrated moving average model
ARIMA(0,1,1) identified for the symptoms output
series. Transfer function models were identified using
the prewhitened cross correlation function for three

cases: ln(SO2) and ln(NO2) as univariate input series,
and then both of these as a two-input series.

The paper also gives details of a special case of
a transfer function model known as an intervention
model (see Intervention Analysis in Time Series).
Intervention models incorporate sudden and unusual
events into the identification process. In this particular
example the sudden event was a chemical spillage.

Example (B)

Crabtree et al. [3] present several examples of the
analysis of biomedical time series data. In one
of these a transfer function model is identified
to describe the relationship between exercise
(miles walked per day) and fasting blood glucose
concentration (mg/dl). The exercise input series was
identified as an autoregressive process with lags at
5 and 8. After prewhitening, the cross correlation
function was calculated and revealed a significant
negative peak at lag 1. This indicated that exercise
significantly reduced blood glucose the following
day.

Some other examples of the use of transfer func-
tion models in biostatistics can be found in [7, 8],
and [11].
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Transformations

Statistical analyses make use of transformations which
change some quantity into a function of the quan-
tity in a variety of ways. Common
transformations are the taking of logarithms, the cal-
culation of powers (see Power Transformations),
and exponentiation but there are many other pos-
sibilities. The primary purpose of transformation is
frequently to permit the application of standard sta-
tistical methodology in a situation in which some
features required for the methodology are not present.

In a statistical model, transformations can be
applied to a response variable, an explanatory vari-
able, or to a parameter of the model. The first two
situations can be illustrated in the context of linear
regression which relates a response variable, Y , to
an explanatory variable, X. The normal distribu-
tion assumptions necessary may not be satisfied for
the response Y , but may be more reasonably supposed
for some transformation of Y such as its logarithm or
square root. Furthermore, the linear dependence of
the response on X, represented by the linear predic-
tor α + βX, may be extended to represent a nonlinear
relationship between Y and X by adding powers of
X to the model. For example, consideration of the
quadratic function α + βX + γX2 is often used to
provide a first test of the assumption of a linear

relationship (see Polynomial Regression). There also
may be features of the application which make mod-
els which involve nonlinear functions of the explana-
tory variables particularly appealing (see Nonlinear
Regression). Similar considerations apply in the use
of other regression models.

The transformation of a parameter may be required
because the natural parameter of interest is not the
most convenient for statistical analysis. For exam-
ple, in epidemiologic studies interest often focuses
on odds ratios, but inferences are most conveniently
undertaken for the logarithm of odds ratios. In this
case, the parameter of interest is transformed for the
purposes of inference and, most sensibly, the result-
ing inferences are transformed back to be summarized
in terms of the original parameter.

Another illustration of this arises in generalized
linear models which are based on “linking” a func-
tion of the mean of a response to a set of explana-
tory variables. In the special case of normal theory
regression, the mean itself is used but, for exam-
ple, with binary data, the mean of the response
is equal to the probability of “success”, say, and
logistic regression links the logarithm of the odds,
Pr(success)/Pr(failure), to a linear predictor involving
the explanatory variables.

VERN T. FAREWELL



Transfusion Medicine

Transfusion medicine is the branch of medicine con-
cerned with all aspects of the use of blood prod-
ucts and components – from donor selection and
care, through testing (blood grouping and microbiol-
ogy), component preparation, and the indications for
their clinical use. The discipline also encompasses
pregnancy testing for blood group incompatibilities
between mother and baby. New areas in transfusion
medicine now overlap with hematology to include tis-
sue banking, stem cells, and immunotherapy. Useful
background is provided in references [1, 4, 8, 9].

History of Transfusion

The science of transfusion medicine had a false start
for about 2500 years with the mistaken belief that
blood letting was actually beneficial for sick patients.
Eventually, in the seventeenth century, William Har-
vey (1578–1657) discovered that blood circulates
around the body, and this was the start of experimen-
tation with blood transfusion. In 1666, the English
anatomist Richard Lower (1631–1691) found that the
pressure difference between an artery and vein would
force blood from donor to recipient, and the first
successful animal transfusion was achieved, using
two dogs as donor and recipient. The first, albeit
unsuccessful, human to human transfusion occurred
in London in 1818. Although blood transfusion was
eventually found to be effective in some recipients,
others experienced a severe, sometimes fatal, reac-
tion. This led to the discovery in 1900, by the Aus-
trian biologist Karl Landsteiner (1868–1943), that the
blood of one donor was sometimes incompatible with
the blood of another and the A, B, and O, blood
groups were identified; these are determined by the
presence or absence of the antigens A and B in the
erythrocytes, and the agglutinating antibodies anti-A
and anti-B in the plasma. A fourth group, AB, was
discovered two years later. Other blood subgroups
were later identified, one of the most important being
RhD (Rhesus factor), named after its discovery in
Rhesus monkeys, which frequently had fatal impli-
cations for foetuses and neonates. These are now
rare due to a highly successful prevention programme
involving administration of anti-D to RhD negative
mothers at delivery to prevent sensitization.

During the Great War, it was discovered that the
addition of sodium citrate would stop blood clotting
outside the body and prolong its life when refrig-
erated. The theory of blood transfusion was even-
tually put into practice during World War II, when
thousands of transfusions were needed to save sol-
diers’ lives and the evidence supporting its use was
unequivocal. This marked the birth of the specialty
of transfusion medicine, which needed to make huge
advances to keep up with demand. It was found
that albumin and plasma could be used instead of
whole blood, and that plasma could be pooled and
fractionated to isolate clotting factors, such as fac-
tor VIII, for the treatment of hemophilia. Unfor-
tunately, this later led to HIV infection in thou-
sands of sufferers worldwide before HIV screening
was introduced (see AIDS and HIV). Blood clot-
ting is a mechanism to seal the circulatory system
after injury. The wound is initially blocked with
platelets, some of which rupture to release chemi-
cals that combine with proteins and enzymes in the
plasma to form a tough fibrous clot. These clot-
ting factors play an essential role in this mecha-
nism.

Blood Transfusion Today

Whole blood is collected from suitable donors, scree-
ned for viral infection, and typed for blood group.
As it is inefficient to transfuse whole blood, dona-
tions are separated into the three major components
of red cells, platelets, and plasma. Leucocytes are
discarded to minimize the risk of variant Creutzfeldt-
Jakob disease (vCJD) transmission. Individual blood
components, such as platelets or plasma, can also be
collected by apheresis, where the selected individual
components are separated during donation and the
remaining components are returned to the donor. The
components are stored at blood banks under appro-
priate conditions until they are either released for
transfusion, or expire.

Transfusion of blood products to patients depends
on the clinical indication. The evidence base for
the efficacy of transfusion lies mainly in clinical
experience and laboratory-based research rather than
through clinical trials. The key purpose of red cell
transfusion is to improve the delivery of oxygen to
the tissues, while platelets and plasma are used to
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treat and prevent life-threatening bleeding by clot-
ting the blood. Plasma can be fractionated to pro-
duce several components, such as clotting factor
concentrates, to treat congenital coagulation deficien-
cies, like hemophilia; immunoglobulins to treat acute
infections and to treat immunological disorders; and
albumin. This last product was used to treat hemor-
rhagic shock, although the evidence for this is now
doubtful; it is now used for patients with low albumin
levels. Transfusions are mostly given without remov-
ing blood from the recipient, but exchange transfu-
sions can be performed where the patient’s own blood
is removed and replaced with donor blood. This is
done to counteract the effects of severe jaundice in
neonates, or to reduce the proportion of distorted cells
in sickle disease.

Millions of blood units are transfused each year,
an estimated 23 million in the United States of
America, 6 million in Africa, and 2.6 million in the
United Kingdom.

The safety of blood is of paramount importance,
and safely procedures are in place at every step
from donation to transfusion to help prevent trans-
fusion of incompatible blood and infection. There
are limits for the shelf life of each component;
this depends on the viability of cells and potential
for bacterial contamination after prolonged periods.
As well as screening for infectious agents, com-
ponents and recipient blood samples are screened
for antibodies that could cause serious allergic reac-
tions in recipients. Numerous safety checks are per-
formed by the nurse at the bedside prior to transfu-
sion to ensure a patient receives correctly matched
blood. Despite these safety measures, blood trans-
fusion still carries some risk, and should only be
used when absolutely necessary. Several alternatives
to transfusion can be considered, such as erythropoi-
etin to improve patient’s own red cell production,
volume expanders, and red cell substitutes. Tech-
niques to retransfuse the patient’s own blood are
also employed to minimize the risks of donor trans-
fusion. In the United Kingdom, the Serious Haz-
ards of Transfusion (SHOT) organization exists to
audit serious transfusion complications and publishes
an annual report on its findings to guide blood
safety policies.

Articles on transfusion medicine are published in
general medical journals, hematology journals such
as Blood, and the specialist journals, Transfusion,
Transfusion Medicine, and Vox Sanguinis.

Statistics and Transfusion Medicine

Statistics has had limited use in transfusion medicine,
but one of its important practical applications is in
quality control, and in studies of transfused ver-
sus untransfused patients, to look for associations
between perioperative transfusion and adverse clin-
ical outcomes such as risk of cancer recurrence [10].
Parametric models are also employed to determine
time to restoration of blood cell concentration, and
to select the optimum transfusion time and triggers
for transfusion. Models have also been used to esti-
mate induction time of transfusion associated HIV
infection and in monitoring survival of transfusion
recipients.

Clinical Studies

Blood banks store the products derived from vol-
unteer donations, maintaining meticulous records of
vital information, including identity of donors, blood-
screening procedures, processing, and dates. They
also keep very precise records of the issue of each
pack of blood product, including its storage, despatch
from blood bank, destination, and the patient who
will receive it. Thus, while much information is
routinely available about the use of packs of drug
products, even within individual hospitals over com-
paratively short periods, there is a paucity of infor-
mation about the recipients. Such information is now
of vital importance when implementing hemovigi-
lance, a surveillance system for monitoring trans-
fusion safety, through notification of unexpected or
adverse events linked to transfusion. This problem
was addressed in a landmark study in France by
taking a random sample of blood recipients using
a complex multistage sampling process [6]. At the
first stage, the 39 regional blood centers in France
were stratified into small, medium, and large, annual
(1997) total of blood units distributed, and five or six
centers were randomly selected within each stratum.
The selected centers provided lists of the public and
private hospitals they each supplied, and the hospi-
tals themselves were then stratified into two groups
according to small or medium versus large number
of units used. The second stage sampling randomly
selected hospitals within these two strata. Within each
hospital, all patients who received a transfusion dur-
ing a specified calendar period of 7 or 14 days were
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noted, and details of the first transfusion recorded
were analyzed. The recipients were characterized by
age, medical history, and ICD-10 diagnostic category,
and provided, for the first time, detailed information
about transfusions at the population level.

The first population-based survey of the use of red
cells in the United Kingdom, was reported in a study
confined to north England in 2002 [11]. It was based
on transfusion information covering two 14-day peri-
ods in 1999 and 2000, and reported broad indications
for red cell transfusion, as well as distribution of use
among surgical procedures. In addition, it provided
age-specific use of red cells, and projected regional
demand in 2008. Such surveys will become increas-
ingly important during the next decade, and will
require extension to longitudinal designs to assess
the consequences of multiple transfusions, and to
study survival.

Reducing the amount of unnecessary blood trans-
fused is a key aspect of improving blood safety
and can be implemented by the augmentation of
current guidelines to rationalize the indications for
transfusion. One method is to reduce the trigger for
transfusion to lower thresholds. In a Canadian trial,
Hébert et al. randomized 838 critical care patients
between 1994 and 1997 to either a restrictive red cell
transfusion strategy, where they were transfused if
their hemoglobin fell to less than 7 g/dL, or a liberal
strategy, where transfusion was administered if the
hemoglobin fell to less than 10 g/dL [5]. They found
no evidence that the restrictive policy was worse in
terms of 30-day mortality, with 19% deaths in the
restrictive group versus 23% in the liberal arm. Car-
son et al. carried out a meta-analysis of nine red cell
trigger trials in critical care, cardiac, and orthopedic
surgery and found that where a lower trigger was
used, the probability of receiving a transfusion was
reduced without affecting mortality except in patients
with serious cardiac disease [2].

The same logic has been applied to other blood
components. A trial carried out by Rebulla et al.
in Italy randomized 276 patients between 1994 and
1996 with acute myeloid leukemia to either receive
platelet transfusions when their platelet count fell
below 10 × 109/L, or when it fell below 20 × 109/L
[7]. They found no difference in the risk of major
bleeding, which was 22% amongst those assigned the
lower threshold compared to 20% in the liberal group,
with no evidence of a difference in mortality. Of
all the blood components, and despite its widespread

use, least is known about the efficacy of fresh frozen
plasma, useful in treating some congenital deficien-
cies of clotting factors, and thrombotic thrombocy-
topenic purpura; its ability to provide benefit in major
bleeding remains unconfirmed. A meta-analysis of tri-
als in the use of fresh frozen plasma (FFP) in cardiac
surgery found no evidence that its use resulted in
reduced blood loss compared to patients receiving no
FFP or placebo infusions [3]. Trials in transfusion
medicine present more practical issues than standard
drug trials, for example, the composition of a compo-
nent can differ between countries, and timing of ran-
domization also presents difficulties, as a transfusion
may not ultimately be needed in all eligible patients.
It is also almost always impossible to achieve blind-
ing due to the essential identity checks on the blood
bag at the time of transfusion. Clinicians may also be
reluctant to randomize patients to receive transfusion
or no transfusion, in some clinical situations in which
there is limited evidence of benefit; dependent on
their perception of risks and benefits involved, some
may decide that it is unethical to transfuse, whereas
others could take the opposite view.

Limitations of Current Evidence

The clear-cut benefits of transfusing blood in emer-
gency situations, and of routine transfusions in dis-
eases such as leukemia, together with understanding
of the severity of outcomes resulting from transfusion
of the wrong blood, have led to transfusion medicine
becoming a major speciality of medicine. However,
the evidence base for current practice is still very lim-
ited; there have been very few randomized clinical
trials, many of which are underpowered, and poorly
designed and conducted.

While there is no question that transfusion can
rectify blood loss and imbalances caused by some
haematological diseases, or that the biochemical and
immunological properties of blood have been proven,
it remains to be shown whether the transfusion of
blood or blood components is always effective in
the treatment of certain diseases and conditions, and
whether the benefits of transfusion outweigh its risks.
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Transition Models for
Longitudinal Data
Suppose that the sequence of random variables
Y1, Y2, . . . , YT represents the observations from a
subject in a longitudinal trial or study. In a transition
model, the distribution of each variable is considered
conditionally on previous outcomes in the sequence.
That is, the model represents the behavior of
changes from the previously established position.
More formally, the model is expressed in terms of
the conditional functions:

f (Yt |y1, . . . , yt−1), t = 2, . . . , T .

In practice, a model may use only the most recent
history of the process. For example, in a first-order
model:

f (Yt |y1, . . . , yt−1) = f (Yt |yt−1), t = 2, . . . , T .

A general discussion of transition regression models
can be found in [1].

Such a construction should be contrasted with a
marginal regression model in which the behavior of
Yt is considered after averaging over the possible out-
comes at all other times. Unlike the marginal model,
the transition model has no representation in terms
of cross-sectional data. Generally, the parameters in
analogous regression structures embedded in the two
types of model will differ in their interpretation and

the choice of the appropriate type should be based on
the inferences that are required from the analysis.

Due to the conditional form of the transition
model, the associated likelihood is typically easy to
construct using the chain rule for probabilities. As
a consequence, the models are often comparatively
straightforward to use in practice. Applications with
binary data, for which the transition models represent
Markov chains, are widespread. See, for example,
[2] and [3]. In contrast, the marginal distribution of Yt

is typically a very complicated function of the param-
eters of the defining transition model. This may have
served to inhibit the theoretical development of the
models, which is, at present, less extensive.

References

[1] Diggle, P.D., Liang, K.-Y. & Zeger, S.L. (1994). Analysis
of Longitudinal Data. Clarendon Press, Oxford.

[2] Korn, E.L. & Whittmore, A.S. (1979). Methods for
analyzing panel studies of acute health effects of air
pollution, Biometrics 35, 795–802.

[3] Zeger, S.L., Liang, K.-Y. & Self, S.G. (1985). The analy-
sis of binary longitudinal data with time-independent
covariates, Biometrika 72, 31–38.

(See also Multivariate Methods for Binary Longi-
tudinal Data)

M.G. KENWARD



Transplantation

The first successful human corneal transplant was
around 1900 by Zirm, corneal xenografting having
been tried as early as 1837 but without notable
success. From the early 1950s, Calne envisaged
kidney transplantation as practicable therapy; and
surgical, immunological, and immunosuppressive
advances made it so by the mid-1980s. By 1970,
Barnard had pioneered heart transplantation; and liver
transplantation was also under way. Xenografting
from transgenic pigs is the challenge of the next
decades, together with improvements in unrelated
donor bone marrow transplantation and therapeutic
exploitation of stem cell banking. Interventional
ventilation has not been proceeded with, and there has
been more emphasis on realizing national potentials
for living related kidney transplantation together with
ethical and matching safeguards for unrelated living
renal transplantation.

By 1990, transplantation had achieved one-year
graft survival rates of 80% or more for most
solid organs, and has done so through surgical
innovation, advances in immunosuppression, bene-
ficial and favourable matching of kidney donor to
recipient, better preservation solutions, and by study-
ing center variation in donor rates as well as in
transplant outcome. In the 1990s, shortage of cadav-
eric donor organs has been a limiting factor that use
of split livers or of domino heart transplants from
cystic fibrosis heart-lung block recipients has mit-
igated only very partially. Epidemiological studies
monitor malignancies secondary to immunosuppres-
sion. Quality of life as well as length of life (see Life
Expectancy) is improved by transplantation.

Statistical science has underpinned most of
this progress. Well-conducted randomized controlled
trials (see Clinical Trials, Overview) of new
immunosuppression therapies and preservation fluids
have been published [26]; there has been occasional
but critical early stopping of trials, because of
overimmunosuppression, on the basis of surrogate
endpoints of rejection episodes and major infections
[16]. Proposals for the design and analysis of
randomized trials with recurrent events [3] have had
application in kidney transplantation. Two small trials
in bone marrow transplantation were used to illustrate
a new statistical measure to aid in the interpretation
of published trials [1].

Beneficial matching [9, 12]; that is, the rules by
which cadaveric donor kidneys have been exchanged
in the UK, had a statistical basis and has persisted
for 10 years up to 1997 when extended, also on
statistical grounds, to favorable matching. Similar
work on matching and matchability (see below) has
been done independently by Mickey and colleagues
[14, 24]. Validation studies have featured, whether
in independent data sets (matching effects in distinct
epochs of follow-up [11, 29, 31]) or by meta-analysis
(DR mismatching in corneal transplantation [19]).
Matchability score, dependent upon human leukocyte
antigen (HLA) phenotype and exchange rules, for
patients on the kidney transplant waiting list was
introduced by Gilks [8, 10, 12] to summarize a
patient’s chance of getting a well-matched donor
kidney in two or five years, and hence to aid
individual decision-making on whether to accept or
reject an offered kidney.

Special studies such as Corneal Transplant Follow-
up Study (CTFS) and International Marrow Unrelated
Search and Transplant (I MUST) Study have been
set up to establish the core data that national
registries (see Disease Registers) should seek to
collect because they determine either waiting times
[20], tissue allocation or prognosis [21] or quality of
outcome, for which visual acuity is a natural measure
[30]. In the I MUST Study, minimization, as in
randomized trials, was adapted to select prospectively
a control cohort of twice as many HLA-identical
sibling transplants to correspond to the unrelated
donor transplants in terms of marginal frequency
for age group, diagnosis, risk, and transplant center.
A second aspect of the design of the I MUST
Study is noteworthy: in unrelated bone marrow
donor searches, the patients for whom the search
procedure finds an unrelated HLA-identical donor
are effectively selected by “genetic randomization”,
which has broader epidemiological application than
in studies of transplantation, for example, to
understanding environmental determinants of disease
[5]. A time-dependent covariate indicator (or
several to account fully for nonproportionality of
hazards (see Proportional Hazards, Overview) post
transplant) can be switched on at that time and,
by following all patients for whom an unrelated
donor search was initiated, the effect of unrelated
HLA-identical bone marrow transplantation against
alternative management can be estimated in an
unbiased manner. Effective randomization makes
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the proposed analysis even more powerful than the
use of a time-dependent indicator to switch patients
from “awaiting cardiac transplantation” to “recipient
status” [23], leading to appropriate analyses of
the cost-effectiveness of heart transplantation (see
Health Economics).

Cardiothoracic transplantation has posed other
important statistical problems, including analysis of
repeated biopsies after cardiac transplantation [28],
informative censoring of quality-of-life measure-
ments [4], and individualization of cyclosporine dose
by monitoring the variability of cyclosporine blood
levels and also the patient’s kidney and liver func-
tion [2]. Kalman filter techniques [22], applied to
weight-adjusted reciprocal creatinine for detection of
kidney rejection episodes, were pioneering but did not
become routine, perhaps because they were devel-
oped before cyclosporine. Sharples [13, 27] used
a Gibbs sampling approach (see Markov Chain
Monte Carlo) to modeling the longer-term risk of
developing coronary occlusive disease after heart
transplantation and thereby showed that there were
particularly high transition intensities from mild to
severe disease and from severe disease to death; thus,
once mild disease developed, a patient’s deterioration
was rapid and research should focus on reducing pro-
gression from mild to severe disease.

Renal graft failure rates have been published in
the UK on a center-anonymized basis since the early
1970s. This tradition in transplantation was in con-
tradistinction to center-identified “name and shame”
publication of performance data in the public services
that took hold in UK in the late 1990s. Dissemi-
nation strategies were among the issues reported in
October 2003 by a Royal Statistical Society Work-
ing Party on Performance Monitoring in the Public
Services (see www.rss.org.uk for “Performance
Indicators: Good, Bad, and Ugly”). Center variation
has reduced considerably in the post-cyclosporine era
[7] and further analysis by the confidence ranking
methods developed by Goldstein & Spiegelhalter [15]
would allow comparison of centers over calendar
time, with or without adjustment for case mix, but
taking account of center covariates such as whether
a department of transplant immunology or transfu-
sion medicine was responsible for tissue typing and
cross-matching. In renal transplantation where cen-
ters’ policies, let alone practice, on acceptance of
older or asystolic donors, adherence to favorable
matching, and retransplantation of older or diabetic or

highly sensitized recipients may differ greatly, there
is merit in no adjustment for case mix on the basis
that the case mix is effectively center-determined.
Ohlssen [25] used center variation in mortality after
transplantation as one of three running examples
that motivated a predominantly Bayesian analytical
framework, easily programmable in WINBUGS, for
the identification of unusual performance in a limited
number of, versus many, centers.

Donor statistics are as important in transplantation
as understanding the determinants of graft outcome.
Confidential audit of all deaths in intensive care
units in England and Wales in 1989–1990 [17, 18]
showed that the second reason, after relatives’ refusal,
for missed suitable organs differed for the different
organs – e.g. failure to ask in the case of kidneys
but nonprocurement of offered suitable livers. That
confidential audit also showed that even if all poten-
tial kidney donors in intensive care units became
actual donors the need for cadaveric kidneys would
not be met. Since then, the problem of nonprocure-
ment of donor livers has been solved by designation
of new centers but the shortage of donor kidneys
has been exacerbated by the successful introduction
of rear seat-belt legislation which saves lives. UK’s
most recent donor audit, begun in 2003, additionally
records ethnicity because special allocation measures
have had to be introduced to achieve better equity
for blood group B patients on the kidney transplant
waiting list, and differential relatives’ consent rate
by ethnicity needs to be investigated. Worryingly,
preliminary results suggest that, overall, relatives’
consent rate in 2003 had reduced markedly compared
to 1990. Reduced altruism may be an adverse conse-
quence of an organ-retention scandal emanating from
the Royal Liverpool Children’s NHS Trust, which has
led to a revised Human Tissue Bill [6].
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Travel Medicine

The subject of travel medicine is aimed at preventing
illnesses associated with travel or travelers. The spe-
ciality provides advice and protection for travelers,
immigrants, and refugees, and covers issues relat-
ing environmental, climatic, physical, and infectious
agents during or after a journey. In the nineteenth
century, colonial expansion led to the development
of the speciality of tropical medicine in order to
maintain the health of colonists working in the trop-
ics. As tropical medicine changed with world poli-
tics, it became clear that preventing disease dissem-
ination and transmission of cholera, smallpox, and
yellow fever required international control and reg-
ulation. The World Health Organization enacted
statutes requiring travelers to show certificates of
immunization from registered centers for smallpox,
yellow fever, and cholera. On the eradication of
smallpox, with control of yellow fever, and with
the recognition that cholera was not controlled by
immunization, vaccination centers focused on other
common travel health problems. Research focused
on the epidemiology of diseases imported by trav-
elers, particularly diseases preventable by vaccines
or prophylactic drugs. Steffen [6] quantified health
problems that afflicted Swiss travelers, and noted that
travelers’ diarrhea was the most frequent cause of ill-
ness. Surveillance studies in travelers revealed that
vaccine preventable illnesses such as polio, typhoid,
tetanus, and hepatitis B occurred very rarely. Patterns
of illness were not always similar across nations;
for example, hepatitis A in UK travelers was sig-
nificantly lower than the incidence of hepatitis A in
Swiss travelers [2, 6]. For problems where preven-
tive measures existed, investigators established their
effectiveness and safety.

Malaria is important, as it poses a threat to most
tropical travelers, and therefore its prevention has
attracted much research. Using surveillance reports,
Phillips-Howard [5] described the pattern of malaria
imported into the UK and factors associated with a
high risk of infection. Ethnic travelers visiting West
Africa to visit friends and relatives were at particu-
larly high risk. It was also noted that region of travel
and the reason for travel and use of a chemoprophy-
lactic regimen had a bearing on the risk of developing
malaria. Large-scale questionnaire-based surveillance
studies of returning and returned travelers allowed

estimates of protective efficacy of various malaria
chemoprophylaxis regimens to be made. The largest
study, of 145 500 European travelers returning from
Mombassa in Kenya, undertaken by Steffen et al.
[7], reported comparative prophylaxis effectiveness
of mefloquine 91% (95% confidence interval 85–94)
to chloroquine/proguanil 72% (95% CI 56–82). The
study did not report CI between the drug regimens.
The authors identified at least six different malaria
regimens used by tourists visiting Kenya.

The study was also used to estimate adverse
events associated with chemoprophylaxis use. Prob-
lems associated with this and other studies of adverse
events are in the definitions of an adverse event
and in using these definitions across studies. In this
cohort, serious was defined as life threatening, dis-
abling, or fatal, and occurred in 1 in 10 000 trav-
elers using mefloquine. In a more recent study of
adverse events associated with malaria prophylaxis,
Barrett et al. [1] describe severe adverse reactions as
those associated with hospital admission and define a
disabling reaction as that which interferes with nor-
mal daily activity. In relation to mefloquine use, the
incidence of severe reactions was 0.5%, and dis-
abling side-effects were reported to occur in 0.7%
of users.

Much confusion now exists on the true rate of
adverse events and how they should be defined. The
size and cost of such projects has restricted subse-
quent confirmatory or supportive studies. The study
relied on adverse events reported on return and on
follow-up. This design meant that individuals who
developed reactions that prevented them from trav-
eling (most travelers start prophylaxis a week or
two before traveling) would not be recognized, a
design fault that may have significantly biased the
true estimates of adverse events. Evaluations of inter-
ventions on avoidance of travelers’ diarrhea, looking
at the impact of advice on food and water hygiene
and the benefits of chemoprophylaxis against a prob-
lem that affected up to 50% of travelers, have been
undertaken by many clinicians. Advice to change
travelers’ eating and drinking had no impact on
diarrhea incidence [4], but antibacterial chemopro-
phylaxis used in a double blind (see Blinding or
Masking) controlled clinical trial in students visit-
ing Mexico had a significant impact. The method of
randomization was unclear, but two groups received
a daily antibacterial agent and the third received a
placebo. One third of the placebo group suffered
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diarrhea in a 14 day period, while only one of the
subjects receiving trimethoprim–sulphamethoxazole
had diarrhea [3]. More recent research methodologies
have focused on the risk to benefits of interven-
tions (see Data Monitoring Committees), especially
where drugs/vaccines have appreciable toxicity and
the risk of infection is variable. As many vaccines and
drugs are costly, the cost–benefit [2] of preventive
measures is also under investigation (see Health Eco-
nomics). Many of the studies examining interventions
use standard statistical methods, and the study design
is occasionally difficult, as monitoring events in trav-
eling subjects requires innovative techniques.
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Treatment Delay

Patients showing symptoms characteristic of a life-
threatening disease are always advised to report to a
physician without delay. Early reporting and subse-
quent diagnosis permit early treatment intervention.
Prognosis is likely to be improved by early diagnosis
and treatment, although the benefit may be small or
zero if the disease has already progressed irrevocably
at the time of diagnosis, or if no effective treatment
is available.

The assertions made in the above paragraph can-
not be confirmed by randomized trials (see Clinical
Trials, Overview) because it would be both uneth-
ical and impracticable to require patients to incur
unnecessary delay in reporting symptoms or receiv-
ing treatment. However, it seems clear on general
grounds that delays in diagnosis or treatment cannot
be beneficial except in the unlikely event that the
treatment to be offered is actually harmful.

Paradoxically, many data sets appear to show the
opposite [3]. Table 1 describes a historically inter-
esting series of 950 cases of breast cancer operated
on between 1889 and 1931 [2] (reported in [3]), of
whom 420 had died by 1932. The mean duration of
survival after operation is related to the preoperative
delay. There is little effect of delays less than three
years, but four-year delay appears to be associated
with longer postoperative survival. The effect is more
remarkable when survival is measured from onset of
symptoms, since patients in the last group in Table 1
survived some five years longer, after onset of symp-
toms, than those in the first group.

Other series reported in [3] show higher five-year
postoperative survival rates in patients with very short

Table 1 Preoperative delay and mean duration of survival
after operation, in a series of patients with breast cancer

Mean duration of
Preoperative Number of survival after

delay (months) patients operation (years)

0– 66 3.87
3– 67 2.86
6– 50 3.07
9– 66 2.57

12– 74 3.54
24– 20 3.65
36–48 17 4.91

From [2], quoted in [3, p. 163].

Table 2 Delay in admission to hospital and case–
fatality rate, in patients with clinical tetanus

Time from first symptom to Deaths/total
admission (hours) (% fatality rate)

1–9 53/89 (60)
10–18 90/150 (60)
19–36 120/302 (40)
37–72 69/388 (18)
73–144 31/262 (12)

145– 5/90 (6)

Based on [1, Table 3].

delays or very long delays, with poorer results for the
intermediate lengths of delay.

It would be easy, but wrong, to conclude from
such evidence that patients benefit by deliberate delay
in seeking diagnosis and treatment. Long delay will
tend to occur with relatively slow progression of dis-
ease (for instance, with a slowly growing tumor),
and patients with this type of disease will tend to
survive longer after onset of symptoms and longer
after initiation of treatment. The malignancy of the
disease, with the consequent rapidity of progression
of symptoms, acts as a confounder, being associ-
ated negatively with both pretreatment delay and
survival. A slight reversal of the positive corre-
lation between delay and survival may occur for
the group of patients with the very shortest delays,
because this group may include some patients whose
prognosis is improved by early access to effective
treatment.

A similar phenomenon was noted in a study
[1] of prognosis in patients with clinical tetanus.
Table 2 shows the relation between the time from
first symptoms to admission to hospital, and the
case–fatality rate. Patients with a delay in admis-
sion of less than 10 hours had a fatality rate of 60%,
whereas those with a delay longer than 145 hours
had a fatality rate of 6%. There is great variation in
the rapidity of development of symptoms in clinical
tetanus, and mildly affected patients may experience
delay in admission but nevertheless have a favorable
prognosis.
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Treatment-covariate
Interaction

A treatment–covariate interaction (TCI) is said to
exist when the effect of a treatment varies accord-
ing to the value of a specified covariate, the latter
being a function of one or more patient characteris-
tics measured at baseline. The existence of such an
interaction is important for the clinical practice of
medicine, because it implies that the optimal choice
of treatment differs for different patients. For exam-
ple, knowledge of aspects of the patient’s history and
clinical presentation may permit a better treatment
selection than would be possible without that knowl-
edge.

The usual objective of a controlled clinical trial
is to study the effects of a particular treatment given
to patients of a particular type. The main conclu-
sion from the trial is usually assumed to relate to
any persons who meet the trial’s eligibility crite-
ria (see Eligibility and Exclusion Criteria). For
instance, Fischl et al. [4] reported the results of a
trial of two drug regimens for delaying disease pro-
gression in patients with “advanced” HIV disease,
where the investigators defined “advanced” opera-
tionally as either symptomatic disease with a CD4
cell count of not more than 300 cells/mm3 or asymp-
tomatic disease with a CD4 cell count of not more
than 200 cells/mm3.

Two natural questions arise. First, do the results
of this trial apply equally to all of the types of per-
sons represented in the study? Because individuals
differ in an unlimited number of ways, there is unfor-
tunately no certain answer to the question. However,
as we describe below, one can address a more limited
question when suitable data are in hand.

Secondly, one might also inquire whether the
results of this trial apply to some types of persons
who were excluded from entering. For example, do
the results apply to individuals with “limited” HIV
disease? This second question has to do with study
generalizability and involves a somewhat different set
of issues.

Interaction Modeling

To approach answering the first question in a lim-
ited manner, suppose that the data from the trial

include variables indicating not only the treatment
and the clinical outcome, but also patient characteris-
tics measured at baseline, such as gender, age, overall
health status (such as the Karnofsky performance sta-
tus score), stage or extent of disease, and other factors
that may be prognostic.

A TCI may be defined, estimated, and tested for
significance within the framework of commonly used
regression models. To keep the exposition relatively
simple, suppose that the aim of treatment is to affect
the average value of outcome which is normally
distributed, namely, Y ∼ N(µ, σ 2). We choose a
model that expresses the influence of the binary vari-
able for treatment (x1, say) and baseline covariates
(xi, i = 2, . . . , p) on outcome through the relation-
ship µ = x′β.

Suppose that the covariate for age is x2. To
introduce an interaction between treatment and age
into the model, define the new variable xp+1 =
x1x2, and append it to the list of variables
x in the model µ = x′β. Mean outcomes for
individuals with covariate values x2, . . . , xp+1 are
β1x11 + β2x2 + · · · + βpxp + βp+1x11x2 and β1x12 +
β2x2 + · · · + βpxp + βp+1x12x2, with x11 and x12

designating the two treatment variable values. The
difference between these means, or treatment effects,
is β1(x11 − x12) + βp+1(x11 − x12)x2, which depends
on x2 unless βp+1 = 0. If x2 is a continuous covariate,
βp+1 is the amount by which the treatment effect
changes per unit change in x2. As a special case, if x2

is binary, taking values 0 and 1, or 1 and 2, say, βp+1

is the amount by which the treatment effect changes
when the covariate changes from one level to the
other. Then, to assess the statistical significance of a
particular TCI, one can test the null hypothesis H0 :
βp+1 = 0, using standard methods (see Hypothesis
Testing).

Because the data often include many covariates,
one can test many TCIs. One set of choices involves
the definitions of covariates to evaluate for charac-
teristics with more than two possible categories, such
as age or prior therapy. Another issue is whether to
consider higher-order interactions. Note especially for
continuous covariates that interactions that appear to
be substantial may largely disappear under a trans-
formation of the covariate (e.g. from a linear to a
logarithmic scale).

Making these choices can leave the analyst with
a large multiple testing problem (see Multiplicity in
Clinical Trials), arousing suspicion that any large
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observed interaction is spurious. Many writers (e.g.
Buyse [1]) recommend limiting the analysis to a
small number of TCIs, preferably those identified as
plausible before the trial.

Qualitative Interactions

Qualitative interactions are said to exist “when the
direction of the true treatment differences varies
among subsets of patients” [6, p. 361]. Differences
in the magnitudes, when all are in the same direc-
tion, are considered to be unremarkable. A change
in direction, however, implies a change in recom-
mended treatment. Interactions that are not qualitative
are called quantitative. Quantitative interactions are
model-dependent, because it is sometimes possible
to remove them by a monotone transformation of the
covariate. Qualitative interactions are model indepen-
dent [2]. A focus on qualitative interactions will thus:
(i) concentrate on cases involving different treatment
preferences for different types of patients; (ii) reduce
the interactions claimed that are really artifacts of the
model chosen; and (iii) limit exposure to multiplicity
effects.

Gail & Simon [6] derived a likelihood ratio test
of the null hypothesis that there is no qualitative
interaction when the covariate is categoric. Start-
ing with statistically independent estimates Di, i =
1, . . . , I , of the treatment effect differences in each
of I nonoverlapping categories, or subsets, and their
variances σ 2

1 , one calculates Σ(D2
i /σ

2
i )I (Di > 0)

and Σ(D2
i /σ

2
i )I (Di < 0), where I (S) is the indica-

tor function for the set S. If both of these quantities
exceed a critical value from Table 1 of Gail & Simon
[6], which depends on both the nominal type I error
rate (see Hypothesis Testing) and the number of cat-
egories being examined, then the null hypothesis is
rejected.

Most workers in the field believe that qualitative
interactions are quite uncommon. Indeed, it seems
implausible that a treatment beneficial in one sub-
group (e.g. young patients) would actually be harmful
in another (e.g. the old), even though it would not be
at all surprising if the average benefit of the treat-
ment varied in magnitude among subgroups. Byar
[2] did observe a qualitative interaction concerning
the use of diethylstilbesterol (DES) for the treatment
of prostate cancer. Patients with advanced stage dis-
ease who received DES had lower mortality from

prostate cancer than their counterparts not receiving
DES, and this was the predominant cause of death
in this group. Patients with early stage disease who
received DES also had lower prostate cancer mortal-
ity but higher mortality from cardiovascular causes
than similar patients who did not receive DES. In
this early stage disease group, prostate cancer did not
predominate as the cause of death, and the increased
mortality from cardiovascular diseases became the
overriding factor. It would be wrong, Byar concluded,
never to look beyond overall results.

Bayesian Approach

A Bayesian approach (see Bayesian Methods) can
be useful in some situations. Starting with estimated
regression coefficients at least approximately nor-
mally distributed, Dixon & Simon [3] proposed using
exchangeable normal priors centered at zero for the
regression coefficients corresponding to TCIs, and
vague priors for the other regression coefficients. This
model leads to a shrinking of estimates of subset-
specific treatment differences toward the estimated
overall treatment difference. The precision of the esti-
mates, however, need not be reduced on account of
multiplicity. Dixon & Simon [3] illustrated this fea-
ture of a Bayesian approach using data from a clinical
trial of chemotherapy for colorectal cancer.

Subgroup Analysis

As indicated earlier, when describing the parametric
model for studying TCIs, the real interest is in
detecting subgroups of patients for whom the optimal
treatment differs from the overall patient population.
An alternative to studying interactions in a parametric
model, one that has been used very often in the
clinical research literature, is simply to compare
treatments in each of a number of patient subsets
or subgroups, and to highlight those subgroups in
which the treatment difference attains conventional
statistical significance.

Uncritical presentation of numerous subgroup-
specific tests of a significant treatment effect is
certainly to be discouraged. For one thing, clinical
trials accrue sufficient participants to provide ade-
quate precision for estimating quantities of primary
interest, usually overall treatment effects. Confin-
ing attention to subgroups almost always results in
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estimates of inadequate precision. Furthermore, the
chances of making a type I error increase rapidly
with the number of subgroups examined. Provided
that the parametric model above holds, there is a
one-to-one correspondence between nonzero regres-
sion coefficients for interaction terms and a collection
of subgroup-specific treatment effects that vary from
one subgroup to another. Testing hypotheses about
interactions, however, is a much more efficient way
to detect these variations than to compare treatments
within many different subgroups.

In addition, there is usually good reason for
regarding the overall treatment groups as comparable
in a randomized trial. Subgroups may not enjoy the
same degree of balance in patient characteristics,
leading to apparent treatment differences, due to
the two treatment groups within a subgroup having
markedly different prognoses.

Finally, there are multiple ways to create sub-
groups. For example, one may examine four mutually
exclusive subgroups determined by the cross classifi-
cation of two binary covariates, as well as two pairs of
subgroups determined by the two covariates consid-
ered marginally. The choice of subgroups to examine
is thus almost boundless, and selection is inevitably
somewhat arbitrary.

Gender and Minority Subgroups

In the past few years, assessment of TCIs has
assumed new importance because of its relationship
to questions of generalizability of findings from clin-
ical trials and access to clinical trials by traditionally
under-represented groups. If one assumes no TCIs,
one is free to design a study of usual size, or one
may even reduce the sample size by favoring vol-
unteers at highest risk of the unfavorable outcome
being observed. In the extreme, this leads to omitting
whole classes of individuals; for example, women.

The problem is that this leaves no possibility of later
checking for the existence of TCIs using data from
the trial. It therefore seems scientifically sensible to
provide reasonable access to clinical trials of new
treatments by all segments of the general population.

Unfortunately, a trial just large enough to evaluate
an overall treatment effect reliably will almost
inevitably lack precision for evaluating differential
treatment effects between different population
subgroups. Meta-analyses of similar trials may
carry sufficient power, however, especially if one
is interested mainly in qualitative interactions. For
a thorough exposition of these issues, see Freedman
et al. [5].
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Trees, Probabilistic
Functional

Decision Trees

A decision tree (see Computer-aided Diagnosis)
uses a divide-and-conquer strategy. It attacks a com-
plex problem by dividing it into simpler problems
and recursively applying the same strategy to the
subproblems. The solutions of subproblems can be
combined in a form of a tree to yield a solution of the
complex problem. The power of this approach comes
from the ability to split the instance space into sub-
spaces and each subspace is fitted with different mod-
els. This recursive partitioning (see Tree-structured
Statistical Methods) idea is behind well-known deci-
sion tree–based algorithms, such as CART [4] and
C4.5 [17]. More recently several statistical packages,
S-PLUS, Statistica, SAS, and SPSS (see Software,
Biostatistical) [14] have incorporated functions that
implement decision trees for classification and regres-
sion problems.

Formally, a decision tree is a direct acyclic graph
in which each node is either a decision node with
two or more successors or a leaf node. A leaf node
is labeled with a class. A decision node has some
condition based on attribute values. The hypothesis
space of these algorithms is within the disjunctive
normal form (DNF) formalism. Classifiers generated
by those systems encode a DNF for each class. For
each DNF, the conditions along a branch represent
conjuncts and the individual branches can be seen as
disjuncts. Each branch forms a rule with a conditional
part and a conclusion. The conditional part is a
conjunction of conditions. Conditions are tests that
involve a particular attribute, operator (e.g. =, ≥,
etc.) and a value from the domain of that attribute.
These kinds of tests correspond, in the input space,
to a hyperplane that is orthogonal to the axes of
the tested attribute and parallel to all other axis.
The regions produced by these classifiers are all
hyperrectangles. Each leaf corresponds to a region.
The regions are mutually exclusive and exhaustive
(i.e. cover all the instance space). It is known that
the problem of building a minimal decision tree
(in terms of number of nodes), consistent with a
set of data, is an NP hard problem [18]. Usually,
algorithms exploit heuristics that locally perform a
one-step lookahead search. Once a decision is taken,

it is never reconsidered. This hill-climbing search
without backtracking is sensitive to the usual risks
of converging to locally optimal solutions that are
not globally optimal. However, this strategy allows
building decision trees in time linear to the number
of examples.

The standard algorithm to build univariate trees
consists of two phases. In the first phase, a large
tree is constructed. In the second phase, this tree is
pruned back. The algorithm to grow the tree follows
the standard divide-and-conquer approach. The most
relevant aspects are the splitting rule, the termina-
tion criterion, and the leaf assignment criterion. With
respect to the last criterion, the usual rule consists
of assignment of a constant to a leaf node. Consid-
ering only the examples that fall at this node, the
constant is usually the constant that minimizes the
loss function: the mode of y values in the case of
classification problems or the mean of the y values
in the regression setting. With respect to the splitting
rule, we distinguish between nominal attributes and
continuous ones. In the former, the number of parti-
tions is equal to the number of values of the attribute;
in the latter, a binary partition is obtained. To esti-
mate the merit of the partition obtained by a given
attribute, several heuristics have been used [4, 17]. A
nice review appears in [13]. In any case, the attribute
that maximizes the criterion is chosen as test attribute
at this node. The pruning phase consists of travers-
ing the tree in a depth-first order. At each non–leaf
node two measures should be estimated. An estimate
of the error of the subtree below this node, which is
computed as a weighted sum of the estimated error
for each leaf of the subtree, and the estimated error
of the nonleaf node if it was pruned to a leaf. If
the latter is lower than the former, the entire sub-
tree is replaced to a leaf. All of these aspects have
several and important variants (e.g. [4, 17]). Never-
theless, all decision nodes contain conditions based
on the values of one attribute, and leaf nodes predict
a constant.

Multivariate Trees

One of the most appealing extensions to the basic
decision tree algorithm is the use of combinations of
attributes in decision tree learning. One of the earliest
works is CART [4] where a linear multivariate split
is found using a hill-climbing search. An extension to
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avoid local minima has been proposed in [15]. Other
methods include the use of gradient descent to con-
struct attribute combinations. In [9], in each decision
node, a multilayer perceptron is trained with back-
propagation leading to a binary split. In [5], in each
decision node, a linear machine is trained leading to
a k-way splitting. Methods using linear program-
ming have been used, for example, in [1, 2]. All
these methods are search intensive; they are prone
to overfitting and local minima. The most successful
methods seems to be those based on discriminant
analysis that have been used in [6, 7, 11, 12]. A
related research line explores the use of functional
tree leaves. Functional tree leaves is almost the rule
[16, 20, 8], in regression problems. In the classifi-
cation setting, few works explore this idea [22, 10,
19, 8].

Probabilistic Functional Trees

Multivariate trees can be seen as a combination of
multiple models. This idea has been fully explored in
functional trees. Functional trees combine a standard
univariate tree with a discriminant function by means
of constructive induction. At each decision node, a
discriminant function is built using the examples that
fall at that node. Each of these examples is extended
with new attributes computed as the probability that
the example belongs to a class. The merit of each new
attribute is evaluated, in competition with the original
attributes, using the meritfunction of the univariate
tree. If one of the new attributes is chosen by the merit
function, this corresponds to a multivariate split.
Functional trees use two types of decision nodes:
those based on a test of one of the original attributes,
and those based on the values of the discriminant
function.

Once a tree has been constructed, it is pruned
back. The basic mechanism consists of replacing
a decision node by a leaf based on an estimation
of the error. Functional trees consider two types
of leaves. Those that predict a constant and those
that make a prediction using the discriminant func-
tion stored at the node before pruning. The pruning
algorithm produces two different types of leaves:
ordinary leaves that predict a constant, and discrim-
inant leaves that predict the value of the discrimi-
nant function learned (in the growing phase) at this
node.

Conclusions

Functional trees extend and generalize multivariate
trees. Functional trees generate hybrid models that
combine a univariate tree with a discriminant function
using a kind of local stacked generalization [23]. The
components of the hybrid algorithm use different rep-
resentation languages and search strategies. While the
tree uses a divide-and-conquer method, a discriminant
function performs a global minimization approach.
While the former performs feature selection, the latter
uses all (or almost all) the attributes to build a model.
From the point of view of the bias-variance decom-
position of the error [3], a decision tree is known to
have low bias but high variance, while discriminant
functions are known to have low variance but high
bias. This is the desirable behavior for components of
hybrid models. An extensive experimental study [8]
has shown that functional trees are competitive algo-
rithms both in terms of accuracy and learning times.
An analysis of the bias-variance decomposition of
the error shows that the use of multivariate decision
nodes is a bias reduction process, while the use of
multivariate leaves is a variance reduction process.

It is interesting to note that there are standard algo-
rithms for topological transformations on decision
trees: trees to decision rules [17], multivariate trees
to multilayer networks. [21] This is an interesting
aspect because it points to a common representation
for different generalization languages.
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Tree-structured Statistical
Methods
This article is about binary tree-structured methods
for biostatistics. The techniques, sometimes called
“recursive partitioning,” can facilitate the automation
of diagnoses and prognoses in clinical contexts. A
brief account of the larger topic of rules for clinical
prediction provides context for the more specific
discussion that follows. Wasson et al. [42] give a
broad view of such rules.

Classifying patients is a central element of the
physician’s work. Typically, the physician asks ques-
tions like these. “Is this patient with chest pain
suffering a heart attack, or does he simply have a
strained muscle? What is the best diagnostic test for
this patient with chest pain? During the next year,
is this survivor of a heart attack likely enough to
die that I should do a costly test that might detect
a life-threatening, correctable problem?” Answering
questions helps in crafting good care, but it also is
essential for matching health care resources to the
patients who need them the most.

Until recent decades physicians had no choice
but to answer these questions in a subjective, intu-
itive, idiosyncratic manner. Skill probably depended
on clinical experience, but equally experienced physi-
cians varied in their levels of skill. Physicians seldom
wrote down the clinical findings that they used to
estimate probabilities or their rules for combining
findings. As a result, there was, and is, interphysician
variability and intraphysician variability in estimating
probabilities and in making prognoses. Data-based
rules are now available for these purposes. They
enable the physician to interpret a patient’s findings
in quantitative terms by reference to a large number
of patients with similar findings and a known diagno-
sis or clinical outcome. The goal of using a clinical
prediction rule is to use clinical findings to place the
patient in a subgroup whose disease prevalence, out-
come rate, or survival rate is known and to use that
placement to infer some aspect of the patient’s course.

Clinical prediction rules are, as we have indicated,
empirical. Their basis is a cohort of patients with
known clinical findings and a known diagnosis or
outcome. This cohort, the training set (also called the
learning sample), is the set of patients from whom
the key clinical predictors and the rule for combining
them are discovered. Applying the rule to a separate

cohort, the test set, can provide the subgroup-specific
disease prevalences or outcome rates that are the
basis for estimating probability or prognosis in an
individual patient.

There are several steps involved in developing a
clinical prediction rule.

Assemble the cohort. The first step is to decide
upon the criteria for including the patient in the cohort
that will form the training set. The investigator must
ask, “What is the problem to be solved? Estimating
a probability of coronary artery disease in patients
with chest pain? Estimating the one-year death rate
in heart attack survivors?” The answers to these
questions determine the clinical criteria for admitting
a patient to the cohort. One must also pay attention
to the generalizability of the findings when defining
the cohort. Will the clinical prediction rule apply to
all hospitals or clinics? If so, the study must enroll
patients from a variety of care settings. Will the
findings apply to all patients with the cohort-defining
problem (e.g. chest pain) or just those of a certain
age, gender, or socioeconomic standing?

The second step in assembling the cohort is to
decide on the size of the training set, though circum-
stances frequently limit the choice. A large cohort
maximizes the chance that the clinical prediction rule
will be optimal for other populations of patients. One
empirical rule is to include five patients in the small-
est outcome category for every clinical predictor in
the rule.

Decide upon the outcome measure. One must
answer this question, “What is the outcome to be
predicted?” Then, one must state the criteria for
deciding if the outcome has occurred, being sure
that it is possible to collect the outcome criteria on
all patients. Ideally, the measure is an unequivocal
feature of the outcome, such as the result on a reliable
indicator that disease is present (the “gold standard
test”) or death from the disease. The outcome should
be useful to a clinician, such as an intermediate point
on the path to a decision.

Decide which predictors to obtain. The predictors
should be pertinent to the clinical problem. Obtaining
the information should be feasible. Precise instruc-
tions on how to obtain the information are important
to the clinician who wants to classify a patient accu-
rately. The list of predictors should include all the
clinical findings that could be pertinent, so that the
study does not overlook an important predictor.



2 Tree-structured Statistical Methods

Collect the data and determine the outcome on a
series of patients. It is fundamental here to avoid bias
in collecting the data and deciding upon outcome. If
the outcome is a clinical diagnosis, then it is all too
easy to define it from the predictors for a patient
for whom the outcome is not obvious. This can lead
to excessive optimism regarding the worth of the
predictors at hand. Thus, it is important that, for
purposes of the study, predictors and outcome are
distinct. Moreover, a source of bias is avoided if the
person who assigns the diagnosis is ignorant of any
findings that comprise or inform the determination of
predictors.

Identify the predictors and the rule for combining
them. Most of what remains of the article is a detailed
description of this step.

Determine the misclassification rate of the rule.
The most important principle is to measure the mis-
classification rate in a new cohort of patient (the
test set). If it is not possible to follow this princi-
ple, there are several cross-validatory techniques by
which to estimate misclassification rates on new pop-
ulations by using the training set patients. By far the
best approach is to enroll a new cohort of patients,
preferably by a new research group in a new clinical
setting. The article by Wasson et al. [42] describes
the measurement of the misclassification rates. See,
especially, [2] and [14].

The tree-structured statistical techniques we have
mentioned are by now widely used in biostatisti-
cal inference, e.g. [1, 3, 4, 11, 17, 18, 24, 45–51],
and [52]. While there are many approaches, all have
in common the successive partitioning of a “fea-
ture space” of predictors into subsets. The parti-
tioning is done on the basis of a learning sam-
ple, and then, if one is fortunate, it is validated
by a test sample. In this article, it is always the
case that a nonterminal node of a tree has only
two daughter nodes; thus the trees are binary trees.
Each node of the trees corresponds uniquely to a
subset of the feature space and thus to a unique
set of constraints on the predictors of outcome.
A decision rule or summary statistic or value of
a regression, depending on the application, is the
same within the region determined by the termi-
nal node. Learning sample observations have (pre-
dictor, outcome) pairs. The hope is to partition so
that regions are simple enough to be understand-
able in terms of the subject matter, yet homoge-
neous as to outcome. Prediction is made to future

data for which predictors are known but outcomes
are not. These techniques have been applied with
success to classification, regression, survival analy-
sis, and clustering. One popular way to form trees
from data is that of Classification and Regression
Trees (CARTTM). Depending on the nature of the
response, the techniques may be referred to as clas-
sification trees (discrete response), regression trees
(continuous response), survival trees (censored posi-
tive response), or tree-structured vector quantization
(when the predictors and response are the same,
univariate, or vectorial but there are constraints on the
complexity of the prediction). In the literature, all of
them are termed tree-based (or tree-structured) meth-
ods or recursive partitioning techniques. Those of the
many ideas they have in common are well described
by Breiman et al. [2], and Zhang and Singer [48],
which has much historical background [8, 15, 16,
19, 32].

In what follows, we first present an early tree-
based analysis that will serve to illustrate many
aspects of tree-based methodology, not least the sim-
plicity of the ultimate answers. Secondly, we lay
out the key and common ground for all of the
tree-based methods. Then, we fill in details to dis-
tinguish the major types of tree-based methods. In
light of the recent surge of the development and use
of survival trees, we devote particular attention to
this area. Finally, we discuss some common tips,
tricks, and traps one encounters in applying the tree-
based methods.

An Example

One early notable application of binary classifica-
tion trees was for the purpose of diagnosing patients
who enter hospital emergency rooms with chief com-
plaints of acute chest pain [18]. See also Goldman
et al. [17]. Starting with about 100 initial variables
that were thought to be predictors of a heart attack,
Goldman and colleagues went through a preliminary
screening of the predictors and selected 40 of them
for further consideration. Their goal was to construct
a classification rule that can guide physicians in emer-
gency rooms to decide in a timely manner (i.e. before
levels of fundamental enzymes are known) whether
a patient has suffered or is suffering a myocardial
infarction (MI, or heart attack). Although a defini-
tive diagnosis of heart attack is typically done by
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Figure 1 Classification tree for diagnosing heart attack. Table 1 provides the questions (Q1–Q13) used in this tree. This
figure is based on Figure 1 of Goldman et al. [18]

testing the levels of these enzymes which tend to
be released by damaged heart muscle, the impor-
tance of the computerized decision rule is that it
is based on clinical measurements that are available
almost immediately when a patient is admitted. By
answering a maximum of 13 questions (Figure 1),
any patient can be classified as having a high or low
risk for heart attack.

Outline of the Tree-Based Methods

The Data and the Objective

Suppose that we have observed p covariates x and a
response y for n individuals. For the ith individual,
the measurements are

xi = (xi1, . . . , xip)′ and yi, i = 1, . . . , n.
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The objective is to model the probability distribution
of Pr(y|x) or some functional of this conditional dis-
tribution. Here, x can be an array of mixed categorical
(nominal or ordinal) and continuous variables. Some
components may have missing values. It is the nature
of y that mandates the choice of methodology. In
most applications, the outcome, y, is either a con-
tinuous (with or without censoring) or categorical
variable. Recently, the tree-based methods have been
developed to allow for vectorial y [16, 36, 44]. Here,
our discussion focuses on binary and censored con-
tinuous y, for (i) these are the situations where the
tree-based methods are applied for the most part
in medicine, and (ii) logistic regression and linear
discriminant function analysis (binary case), and
the Cox regression model for proportional hazard
modeling (in the case of survival analysis) are stan-
dard approaches to analyzing such outcomes; it is
worthwhile to understand the strengths and limita-
tions of both the more classical and the tree-based
methods.

Basics of the Tree-Based Technique

Look again at the tree in Figure 1. This tree has eight
layers of nodes. In general, the number of layers
varies from case to case. The first layer is always
the unique root node, namely, the circle on the top.
There are 13 internal (the circle) and 14 terminal
(the box) nodes that are scattered among the various
layers. The root and the internal nodes are connected
to two nodes in the next layer that are called left
and right daughter nodes, but terminal nodes do not
have “children”. Moreover, the tree is not necessarily
“balanced” in that not all nodes in the same layer have
daughter nodes. The thrust of the tree-based technique
is to answer these questions:

1. What are the contents of the nodes and how do
we split a node?

2. How do we declare a node terminal?
3. What inferences do we make for the various

terminal nodes?
4. What have we learned about our data and the

possibly complex relationships among the pre-
dictors and outcome as a result of studying the
tree?

The subsection below, “Splitting a Node”,
addresses the first item, and it is followed by a

subsection on Terminal Nodes. There, we discuss how
to determine terminal nodes. The last question is best
answered on a case-by-case basis.

Splitting a Node

The root node contains the learning sample. The
learning sample summarizes the information from
past experience and allows us to learn the underlying
data structure. In Goldman et al. [18], it contains
482 patients. The terminal nodes correspond, as
was indicated, to disjoint subgroups of this learning
sample. The union of two subgroups in the daughter
nodes comprises the subgroup of their parent node.
For example, the root node in Figure 1 has 482
patients who are divided into two subgroups: one
with 443 patients and the other with 39. So, a node
is merely a subgroup of the learning sample.

A critical step of the tree-based technique is to
determine the split from one parent node to the
two daughter nodes. Since splitting the root node
is identical in terms of criterion to that for other
nodes, it suffices to explain how to split the root node.
Thus, we consider how the 482 patients in the study
of Goldman et al. [18] might be divided into two
subgroups.

First, the division of the root node is described and
implemented by means of a predictor. The purpose
of splitting is to generate two offspring whose union
is preferred to the root node in some sense. As was
mentioned earlier, there were 40 selected potential
predictors of a heart attack, denoted by x, that entered
into the tree-based analysis. If xj is an ordered
covariate such as age, two subgroups result from the
question of the form “Is xj > c?” Here the cutoff
point c is in the range of the observed values of
xj . The ith subject goes to the right or left node
according to whether or not xij > c. Q2, 8, 9, 12,
and 13 in Figure 1 and Table 1 are precisely this
type of question. On the other hand, many medical
studies involve nominal covariates. For example, the
body sites of pain in the present example include the
chest, shoulder, and neck. We can send a patient to the
left or right node by asking questions such as “is the
pain in the neck only?” and “is the pain in the neck
and shoulder?” Given the number of covariates (here,
it is 40) and the number of possible cutoff points for
every covariate, there are many possibilities to split
the root node into two nodes. Therefore, we must be
specific in what we mean by a desirable split.
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Table 1 Questions used in Figure 1

Label Question

Q1 Does the emergency room EKG show ST-segment elevation or a Q wave that is suggestive of
infarction and is not known to be old?

Q2 Did the present pain or episodes of recurrent pain begin 42 or more hours ago?
Q3 Is the pain primarily in the chest but radiating to the shoulder, neck, or arms?
Q4 Does the emergency room EKG show ST-segment elevation or a Q wave that is suggestive of

ischemia or strain and not known to be old?
Q5 Is the present pain (a) similar to but somehow worse than prior pain diagnosed as angina or (b) the

same as pain previously diagnosed as an MI?
Q6 Does local pressure reproduce the pain?
Q7 Has the chest pain associated with diaphoresis?
Q8 Is the patient 40 years or older?
Q9 Is the patient 70 years or older?
Q10 Was this pain diagnosed as angina (and not an MI) the last time the patient had it?
Q11 Is the pain primarily in the chest but radiating to the left shoulder?
Q12 Did the present pain or episodes of recurrent pain begin 10 or more hours ago?
Q13 Is the patient 50 years or older?

These questions are taken from Figure 1 of Goldman et al. [18]

Table 2

Non-MI MI

Left node (tL) xj ≤ c n11 n12 n1·
Right node (tR) xj > c n21 n22 n2·

n·1 n·2

If we take age as a tentative splitting covariate and
consider its cutoff at 40, as a result of the question
“Is xj (age) > c (40)?”, then we have Table 2. What
would be desirable in this case? Obviously, we would
want to choose a split so that the distributions of y in
the daughter nodes are homogeneous. To reflect this
idea in the table above, a desirable left (right) node
tL (tR) should have the property that either n11 (n21)

is much greater than n12(n22) or vice versa. In other
words, we force most of the MI cases to either
the left or right node. In a perfect situation where
n11 = n22 = 0, the two nodes are pure (or completely
homogeneous) because each of them contains only
one value of the outcome. In contrast, their parent
node includes a mixture of n11 non-MI and n22 MI
patients. This is what we mean by “more desirable”
here. Mathematically, one frequently used measure
of node homogeneity is defined through the entropy
function as follows:

h(tL) = n11

n1·
log

(
n11

n1·

)
+ n12

n1·
log

(
n12

n1·

)
. (1)

Then, we select a split that maximizes the weighted
node homogeneity:

n·1
n

h(tL) + n·2
n

h(tR). (2)

It is also interesting to view the criterion (1) from
other points of view. Thus, suppose that y in node tL
has a binomial distribution with a frequency of θ

so that
Pr(y = 1|tL) = θ.

Then, the log likelihood function from the n1· obser-
vation in node tL is

n11 log(θ) + n12 log(1 − θ).

The maximum of this log likelihood function is
proportional to (1). Not surprisingly, many criteria
of “more desirable” are couched as maxima of
certain likelihood functions. See the section “Use of
Likelihood Functions” below.

Terminal Nodes

After the node-splitting procedure described above
is applied to the root node, the resulting daughter
nodes can also be split in the same way, followed by
the granddaughter nodes, and so on. This splitting
process always terminates because the number of
study subjects is finite. For example, the number of
possible splits for the data of Goldman et al. [18]
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cannot exceed 481. Of course, we can force the
process to stop at any point. In usual practice, we end
up with a large tree, which is generally too large to
be useful. In order that we end up with a useful tree,
a rigorous rule for pruning some overfitting nodes
is required. Goldman and colleagues did not know
a priori the 14 terminal nodes in Figure 1. Initially,
these terminal nodes had offspring.

For the purpose of illustration, take a part of Figure
1 as displayed in Figure 2, and use it as if it is an
entire initial tree. The question is: “can we prune
away some of the nodes?” If we can answer this
question in a general way, then we will know how to
prune any tree. To this end, we introduce a measure
of the quality of a tree. Recall that the objective
of the tree-based method is to extract homogeneous
subgroups of the study sample. Whether we have
achieved it depends on whether the terminal nodes are
indeed sufficiently homogeneous. Hence, the quality
of a tree, denoted by T , is really the quality of its
terminal nodes, and we have

R(T ) =
∑

t∈T̃

p(t)r(t), (3)

where T̃ is the set of terminal nodes of tree T , r(t)

summarizes the quality of node t , and p(t) is the

1
0.70

0.52

2
0.39 0.31

D
0.16

0.23

A
0

0.21 3
0.11

0.15

B
0

C
0.01

0 0.01

Figure 2 An illustrative tree for pruning. The root node
(labeled 1) here comes from the node above the split,
Q5, in Figure 1. It contains 194 subjects. Inside each
node is the node label and the misclassification cost. The
misclassification cost from a test sample is given outside
the node

proportion of subjects falling into node t . For binary
outcomes, r(t) is usually taken to be the within-node
misclassification cost.

The size of a tree is another important aspect,
which here is the fundamental measure of its com-
plexity. Note that the total number of nodes in a tree,
T , is 2|T̃ | − 1, where |T̃ | is the number of the ter-
minal nodes of T . Hence, the complexity of T can
be defined directly as |T̃ |. Usually, a unit cost, called
a complexity parameter, is assigned to each terminal
node, and the sum of all costs becomes the penalty
for the tree complexity. Therefore, the final quality
measure of a tree is the following cost-complexity:

Rα(T ) = R(T ) + α|T̃ |, (4)

where α(> 0) is the complexity parameter.
For a given complexity parameter and an initial

tree such as the one in Figure 2, there is a unique
smallest subtree of the initial tree that minimizes the
cost-complexity measure (4). Importantly, if α1 > α2,
then the optimally pruned subtree corresponding to α1

turns out to be a subtree of the one corresponding to
α2. So, as we increase the complexity parameter, we
have a sequence of nested optimally pruned subtrees.
This sequence has to have finite length, and the last
one is the root node. That the successive optimally
pruned subtrees are nested can entail important sav-
ings in computation [2].

Here is how pruning works for the tree in Figure 2.
Before we start, we must specify a misclassification
cost that reflects the severity of the mistake that
results when an MI patient is classified to non-MI
or vice versa. Let C(i|j) be the misclassification
costs that a class j patient is classified as a class
i patient. Here, there are two classes of patients:
0 for non-MI and 1 for MI patients. For medical
reasons, it is natural to choose C(0|1) > C(1|0)

because the consequence is potentially more severe
when an MI patient is wrongly diagnosed than when
a non-MI patient is. As did the authors, we take
C(1|0) = 1 and C(0|1) = 15, which means that a
false positive diagnosis costs as much as 15 false
negative ones. Table 3 gives the misclassification
costs for all nodes and their designated classes. The
third and fourth columns list the misclassification
costs as a result of classifying the node as MI and
non-MI, respectively. The minimum of these two
types of cost determines the final class membership
(column 5) of a node. The expected node cost, r(t),
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Table 3 Misclassification costs

Node Node
Misclassification costsa

Designated Weighted
label size MI non-MI class r(t)b costc

1 194 185 9 × 15 = 135 Non-MI 0.70 0.70
2 169 154 5 × 15 = 75 Non-MI 0.44 0.39
3 37 22 5 × 15 = 75 MI 0.59 0.11
A 132 132 0 Non-MI 0 0
B 20 20 0 Non-MI 0 0
C 17 2 5 × 15 = 75 MI 0.12 0.01
D 46 31 4 × 15 = 60 MI 0.67 0.16

aNumber of misclassified subjects multiplied by the cost unit. bMisclassification cost divided by the
node sample size. c r(t) multiplied by p(t), the proportion of subjects in the node.

Table 4 Nested sequence of subtrees

Subtree Range of α Nodes in the subtree Cost complexity

T0 0–0.1 1, 2, 3, A, B, C, D 0.01 + 0.16 + 4 × 0.005 = 0.19
T1 0.1–0.215 1, 2, 3, A, D 0.11 + 0.16 + 3 × 0.19 = 0.74
T2 0.215+ 1 0.70 + 0.28 = 0.98

is the minimum of the two costs divided by the
node size; for instance, r(D) = min(31, 60)/46 =
31/46 = 0.67. The final within-node cost (the last
column) is obtained by weighting r(t) by p(t). For
example, within node 3, r(3) = 0.59 and p(3) =
37/194 = 0.19. Hence, the final cost equals 0.59 ×
0.19 = 0.11.

From Table 3 we calculate the misclassification
cost for the tree in Figure 2 as follows. Note that
it has four terminal nodes, labeled A, B, C, and D.
As is defined in (3), the tree misclassification cost is
the sum of the weighted misclassification costs of its
terminal nodes. Based on the last column of Table 2,
the weighted costs for terminal nodes A through D
are, respectively, 0, 0, 0.01, and 0.16. Thus, the tree
misclassification cost is

0 + 0 + 0.01 + 0.16 = 0.17.

The complexity of this tree is 4 because it has four
terminal nodes. If we choose a complexity parameter,
α = 0.005, it follows from (4) that the present
tree cost complexity equals 0.17 + 4 × 0.005 = 0.19.
Table 4 provides three ranges of the complexity
parameter that correspond to three nested subtrees.
The cost complexities are also given in this table
when a complexity parameter is chosen in the range.
The thresholds of the range are determined by these
considerations. We prune off some terminal nodes

only if the tree cost complexity is improved after
the pruning. This decision obviously depends on
the choice of the complexity parameter, α. For
instance, if α = 0, then the initial tree, T0, has a
smaller cost complexity than any of its subtrees.
Therefore, we cannot prune off any terminal nodes
with α = 0. What is the smallest α such that some
of the terminal nodes can be removed? It turns out
to be

min
t �∈T̃0

r(t)p(t) − R[T (t)]

|T̃ (t)| − 1
,

where T (t) is a subtree rooted at node t and
the minimization is over all internal nodes of T0

[2]. Now, T0 has three internal nodes 1, 2, and
3, and 0.1 is the minimum of the corresponding
three numbers: (0.7 − 0.17)/(4 − 1) = 0.18, (0.39 −
0.01)/(3 − 1) = 0.19, and (0.11 − 0.1)/(2 − 1) =
0.1. When α = 0.1 is applied, we can prune
off terminal nodes B and C without loss of
cost complexity, leading to tree T1 in Table 4.
Next, we can ask the same question: what is
the smallest α such that some of the terminal
nodes of T1 can be removed? This tree has two
internal nodes labeled 1 and 2. It is easy to see
that the smallest α equals 0.215 and it leads to
the single node tree, T2. In general, we repeat
the same process until we reach the single node
tree.
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The next step is to select a subtree from the
nested sequence. A special aspect of the study of
Goldman et al. was that the tree was used to clas-
sify patients at another hospital [18]. These addi-
tional data constitute a validation data set, also
called a test sample. The misclassification costs for
the three nested trees were, respectively, Rts(T0) =
0.45, Rts(T1) = 0.59, and Rts(T2) = 0.52. Because
Rts(T0) is the smallest, T0 is the best choice, imply-
ing that we cannot prune any nodes. When an
independent test sample is not available, a cross-
validation procedure is usually recommended. We
refer to Breiman et al. [2] for details; see [28] for
a different approach.

Survival Trees

In this Section, we explain how to use the ideas
expressed above to analyze censored survival data.
Censored survival data arise from many medical
studies; see, for example, [1, 3], and [4] for some
typical examples. We face the same basic issues.
One is to define a splitting criterion by which to
divide a node into two, and the other is to choose
a “right-sized” tree for subsequent use. Many criteria
have been proposed in the literature, but they differ
primarily in the way of declaring what daughter nodes
are desirable. Segal [37] and Intrator & Kooperberg
[23] are two important and helpful reviews. See
also LeBlanc & Crowley [27] and Crowley et al.
[9].

Gordon and Olshen’s Rule

One early proposal was made by Gordon & Olshen
[22]. The idea is this: when a node is divided into two,
we can compute the Kaplan–Meier curves (see, for
example, [31]) separately for each. A desirable split
can be characterized as one that results in two very
different survival functions in the daughter nodes.
They used the so-called Lp Wasserstein metrics,
dp(·, ·), as the measure of discrepancy between
the two survival functions. Specifically, for p = 1,
the Wasserstein distance, d1(SL, SR), between two
Kaplan–Meier curves, SL and SR, is the shaded area
in Figure 3.

An optimal split is chosen to maximize the dis-
tance, d1(SL, SR). Here, SL and SR are, respectively,
the Kaplan–Meier curves for the left and right daugh-
ter nodes. Replacing the quantity (2) with d1(SL, SR)

1

0

SL

SR

Figure 3 The L1 Wasserstein distance between two
Kaplan–Meier curves. Note that one curve (SL) is darker
than the other (SR)

we can produce an initial tree as described above in
the section on Splitting a Node.

To prune an initial survival tree, T , Gordon
& Olshen [22] suggested a tree cost complexity
as follows. Consider a terminal node, t ∈ T̃ . First,
estimate the Kaplan–Meier curve St . Secondly, find
the closest δt to St in terms of d1(St , δt ); here δt

must be chosen from piecewise constant survival
functions that have at most one point of disconti-
nuity. That is, δt has at most two constant pieces.
Then, define the within-node cost, R(t), as d1(St , δt ).
This can be viewed as the deviation of survival
times about their median. Finally, applying the same
formula (4), we have the tree cost complexity. Obvi-
ously, the same principle applies as we use differ-
ent Wasserstein metrics. It should be noted, how-
ever, that when censoring depends on the covariates,
the Lp Wasserstein metrics tend to produce splits
(due to structure in the censoring) when in fact
there is no dependence of survival upon covariates
[9].

Use of the Logrank Test

In survival analysis, the logrank test is a popular
approach for testing the significance of differences
between the survival times of two groups. Motivated
by this fact, Ciampi et al. [7] and Segal [35] sug-
gested selecting a split that results in the largest
logrank test statistic, which is defined as follows. A
partition gives a sequence of 2 × 2 tables at times
when failures occurred (Table 5).
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Table 5

Dead Alive

Left node (tL) xj ≤ c ai mi1

Right node (tR) xj > c

ni1 ni

The logrank test statistic is

LR =

k∑

i=1

(ai − Ei)

(
k∑

i=1

Vi

)1/2 ,

where k is the number of distinct failure times,

Ei = mi1ni1

ni

,

and

Vi =
[

mi1(ni − mi1)ni1

ni(ni − 1)

](
1 − ni1

ni

)
.

The logrank test (or any similar two-sample test) is
a measure of between-node difference. However, with
this approach a measure of cost for each node is not
readily available for use in pruning. Segal [35] also
recommended a practical bottom-up procedure. The
basic idea is this. For each internal node (including
the root node) of an initial tree, we assign it a value
that equals the maximum of the logrank statistics over
all splits starting from the internal node of interest.
Then, we plot the values for all internal nodes in
increasing order and decide a threshold from the
graph. If an internal node corresponds to a smaller
value than the threshold, then we prune all of its
offspring.

LeBlanc & Crowley [26] introduced the notion
of “goodness-of-split” complexity as a substitute for
cost complexity in pruning the tree. Let G(t) be the
value of the logrank test at node t . Then the split-
complexity measure is

G(T ) =
∑

t �∈T̃

G(t) − α(|T̃ | − 1).

Note that the summation above is over the set
of internal (nonterminal) nodes and |T̃ | − 1 is the
number of internal nodes. The negative sign is

a reflection of the fact that G is to be maxi-
mized, whereas the cost complexity R is minimized.
LeBlanc & Crowley [26] recommend choosing α

between 2 and 4 (when the logrank test is expressed
in the χ2 form) and using bootstrap techniques
to deflate the value of G. An alternative pruning
method based on permutation of P values for the
logrank test is described in LeBlanc & Crowley
[27].

In some medical situations such as in cancer,
the goal of a tree-based analysis is to arrive at a
few (perhaps three or four) groups that define the
“stages” of disease. Treatment strategies or random-
ization algorithms within a clinical trial can then be
designed with these prognostic groups or stages in
mind. Even an optimally pruned tree may have many
terminal nodes, so nodes with similar survival need
be combined in a final staging system. Ciampi et al.
[7] termed this process “amalgamation”, and sug-
gested combining terminal nodes based on compar-
isons using the logrank statistic. LeBlanc & Crowley
[26] define an ordered categorical variable (based, for
example, on median survival) describing the terminal
nodes, and subject that single variable to a recur-
sive partitioning scheme to amalgamate the nodes.
Less formal techniques are described in LeBlanc &
Crowley [27].

Use of Likelihood Functions

Several likelihood-based splitting and pruning criteria
have been proposed. Davis & Anderson [12] assume
that the survival function within any given node is
an exponential function with a constant hazard. The
splitting criterion of LeBlanc & Crowley [25] and
Ciampi et al. [6] are both based on the assumption
that the hazard functions in two daughter nodes are
proportional, but unknown. The difference between
their two approaches is whether the full or partial
likelihood function in the Cox proportional hazards
model should be used. For the same logic, these
authors defined various tree cost complexities using
the likelihood ratio statistic by comparing the survival
times in a parent node with those in its daughter
nodes. A related method due to Therneau et al. [41]
makes use of what are termed martingale residuals
from the Cox model as the input to a cost-complexity
scheme using least squares as the cost (see Residuals
for Survival Analysis).
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A Straightforward Extension

Zhang [43] examined a straightforward tree-based
approach to censored survival data. Note that we
observe a binary death indicator and the (failure
or censored) time. If we treat these two outcomes
separately, then we can compute the within-node
impurity, iδ , of the death indicator and the within-
node quadratic loss function, iy , of the time as already
defined by Breiman et al. [2]. Then, the within-node
impurity for both the death indicator and the time is
a weighted combination, wδiδ + wyiy . Some choices
of weights wδ and wy have been recommended by
Zhang [43].

Several applications to real data have indicated
that this approach and the use of the logrank
test produce very similar tree structures. Perhaps
surprisingly, a preliminary simulation suggests that
this simple extension outperforms the more sophisti-
cated ones in discovering the underlying structures of
data. More extensive simulations are still warranted to
study the performance of the various splitting criteria.

Which is Better?

This is still an open question, and perhaps it has
no clear answer. Obviously, there is no shortage of
splitting criteria for survival analysis. There is, how-
ever, very little evidence to suggest which approach
is best under what circumstances. Some limited sim-
ulations comparing several of the methods have been
reported in the literature [9, 10, 43]. Our recommen-
dation is to construct survival trees using a number
of approaches. Experts are likely to see, on their own
subject matter grounds, which tree makes better sense
than others.

Software

The best tested software is the commercial CART
program as distributed by Salford Systems, San
Diego. It has various versions for Windows,
DOS, Macintosh, and Unix systems. A tree
function is also available in S-PLUS [40]. Free
software for survival trees is available, but
it is less organized and tested. Four of the
splitting criteria introduced above are implemented
together in the C language and are available
upon request to heping.zhang@yale.edu. Specific

programs are also available by sending e-mail
to various sites, such as dstein@scott.cts.com
(Salford Systems), mark@biostat.ucsf.edu [35],
rdaids@sdac.harvard.edu [12], and mikel@fh
crc.swog.org [26].

Other extensions of the tree-structured method
have also been developed to analyze longitudinal
data and clustered binary responses (see Corre-
lated Binary Data). Manuscripts and programs are
available upon request to mark@biostat.ucsf.edu
for continuous longitudinal data [36] and hep-
ing.zhang@yale.edu for multiple correlated binary
responses [44]. Also see Dr. Zhang’s website
(http://peace.med.yale.edu) for additional informa-
tion.

Discussion

The application of tree-structured methods to many
areas of research is growing (see, for example,
[1, 3–5, 11, 24, 46–51], and [52]). Nevertheless,
logistic regression for binary data and Cox pro-
portional hazard models for censored survival data
still dominate applications. The main advantage of
tree-based methods is their ability to produce intu-
itive and appealing tree structures without requiring
the users to specify and select conventional models.
This advantage is more obvious when the classi-
cal, parametric models are not appropriate (see [23]
for interesting examples). Several authors have com-
pared the tree-structured methods with other methods
[29, 38, 39]. Related programs are available upon
request from wjl@mit.edu in addition to the sites
given above. The computational complexity was an
issue, but is no longer. To date, the application of the
tree-based methods has been mostly for exploratory
and secondary analyses. Recently, Zhang & Bracken
[46] have demonstrated the use of tree-based meth-
ods as an intermediate step in hypothesis testing.
Tree stability is another important concern. The tree
is not a parameter, and it is not necessarily stable to
small perturbations in the data. However, the result-
ing decision rules tend to be. Bayes theory may shed
some light on this problem (see Bayesian Meth-
ods). Much work remains to strengthen the basis
for statistical inference in this area. The theoretical
properties of the tree-structured methods are largely
unexplored, but exceptions include [13, 19–21, 26,
30, 33], and [34].
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Trend Test for Counts
and Proportions

In the comparison of counts or proportions across
various populations, it is often important to con-
sider the intrinsic ordering of the populations with
regard to some particular characteristic. For example,
one may be interested in assessing whether the pro-
portion of women reporting insomnia increases with
age group, or whether the number of car accidents
is increasing over calendar periods. Such a com-
parison can be accomplished through the use of a
trend test. Trend tests arise naturally within a wide
variety of biostatistical applications, such as animal
bioassays, epidemiologic studies, and evaluations of
environmental exposures, in which demonstration of
a dose–response relationship may be important. The
characteristic of the population may be measured on
a continuous scale, such as an assigned treatment
level, or on an ordinal scale (see Ordered Categor-
ical Data), such as age group or initial severity of a
health condition.

In considering a trend test for counts arising from
independent populations, suppose that Yi is a random
variable representing the count of interest and xi is the
quantitative (continuous or ordinal) covariate for the
ith population. In addition, let wi be a known design
variable for the ith population; this often relates to the
sample or population size so that Yi/wi represents a
“rate” of a certain event. The general data framework
for a trend test is shown in Table 1.

We assume that the expected count can be related
to the covariate through a continuous function f , as
follows:

E[Yi] = wif (xi).

Under the general null hypothesis, there is no differ-
ence in expected counts due to differences in xi , so

Table 1 Data framework for trend test

Population Observed Expected
Population covariate Weight count count

1 x1 w1 y1 w1f (x1)

2 x2 w2 y2 w2f (x2)...
...

...
...

...
i xi wi yi wif (xi)...

...
...

...
...

k xk wk yk wkf (xk)

that the null hypothesis can be stated as:

H0: f (xi) = f (xj ), for all i, j.

Note that, because the sample or population sizes (or
other relevant known weights) wi may differ across
populations, the expected counts themselves may not
necessarily be equal even under the null hypothesis.

The general alternative to this null hypothesis
is that f (xi) �= f (xj ) for i �= j . However, the trend
test considers a narrower alternative, which reflects
either an increasing or decreasing ordered alternative.
For example,

Ha1: f (xi) < f (xj ), for xi < xj

reflects an increasing trend alternative, while

Ha2: f (xi) > f (xj ), for xi < xj

reflects a decreasing (or reverse) trend alternative.
When either alternative is true, the trend tests tend to
have more power than tests of the general alternative.

Trend tests are typically developed for the sit-
uation in which independent random samples are
selected from each of the i = 1, . . . , k populations.
However, they can often be applied to data collected
under other types of data sampling, such as cross-
sectional studies, where the sample sizes in each of
the k groups become known only after the study is
completed. More detail on data sampling plans is pro-
vided in Fleiss [14].

The trend test can be developed by considering
the function f (x) to be restricted to a linear function
of x,

f (x) = α + βx, (1)

or a monotone (increasing or decreasing) continuous
function of the above; that is

f (x) = g(α + βx). (2)

Examples of functions commonly used in this con-
text include the normal cdf, logistic, arcsine, extreme
value, and one-hit models. Several of these models,
especially the normal and logistic, have been justified
in toxicological applications as arising from toler-
ance distributions, where x represents the dosage (or
log dosage) of exposure to a particular chemical [12,
23, 32] (see Logistic Regression; Quantal Response
Models). Similarly, the one-hit model g(x) = 1 −
exp[−(α + βx)] has been used extensively in cancer
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risk assessment (see Dose–Response Models in Risk
Analysis). The inverse of g(x) is referred to as the
link function, and allows g−1[f (x)] to be modeled
as the linear function (α + βx). For example, the
link functions for the normal, logistic, and extreme
value models are the probit, logit, and complementary
log–log links, respectively. Use of such link func-
tions has facilitated the development of trend tests
using generalized linear models, quasi-likelihood
methods, and generalized estimating equations [32,
41].

After choosing the appropriate model (see Model,
Choice of), a test for trend can be constructed as a test
of H0 : β = 0, with the alternative of an increasing
trend Ha1 : β > 0 or decreasing trend Ha2 : β < 0.
The specific form of the trend test depends on the
distribution of the random variables Yi . Three cases
will be considered here:

1. Y1, . . . , Yk are independent binomial random
variables (see next section);

2. Y1, . . . , Yk follow a multinomial distribution
(see the section “Trend Tests for Multinomial
Counts” below);

3. Y1, . . . , Yk are independent Poisson random var-
iables (see the section “Trend Tests for Poisson
Counts” below).

The trend test for proportions follows the same form
as that for independent binomial random variables,
and will be discussed in the next section. For all three
cases, it can be shown that the sufficient statistic for
the trend test is

∑
xiYi . In the special case in which

the covariates xi are equally spaced or represent
ordinal categories, the sufficient statistic for the trend
test can be simplified to

∑
i Yi .

Trend Tests for Binomial Counts and
Proportions

When Y1, . . . , Yk represent independent binomial ran-
dom variables, then the design variable wi is equal to
the sample size for the ith population, wi = ni , and
the function of interest is

f (xi) = pi = g(α + βxi),

such that

E[Yi] = nipi = nig(α + βxi).

In this situation, the null hypothesis of interest is

H0: p1 = p2 = · · · = pk (3)

and the alternatives of increasing trend and decreas-
ing trend can be written, respectively, as

Ha1: p1 < p2 < · · · < pk,

Ha2: p1 > p2 > · · · > pk.

To test these ordered alternatives, the likelihood
must be specified in terms of the model chosen for
pi . For example, when g is the identity function as
in (1), the likelihood becomes

k∏

i=1

(
ni

yi

)
p

yi

i (1 − pi)
ni−yi

=
k∏

i=1

(
ni

yi

)
(α + βxi)

yi [1 − (α + βxi)]
ni−yi .

In general, one obtains the maximum likelihood
estimator β̂ = (α̂, β̂) by solving the following score
equations:

u(α̂, β̂) =
k∑

i=1

[
1

xi

]
[yi − nip̂i] =

[
0

0

]
,

where p̂i = g(α̂ + β̂xi). For the particular case in
which g is the identify function, the maximum like-
lihood estimator for β is

β̂ =

k∑

i=1

xi(yi − nip̃)

k∑

i=1

ni(xi − x)2

,

where p̃ = ∑
yi/

∑
ni and x = ∑

xini/
∑

ni . Un-
der other models, such as the logistic regression
model,

pi = exp(α + βxi)

1 + exp(α + βxi)
, (4)

there may be no closed form solution for the max-
imum likelihood estimators, but iterative techniques
such as the Newton–Raphson or Fisher scoring algo-
rithm can be used to identify the MLEs (see Opti-
mization and Nonlinear Equations).
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When pi can be written as g(α + βxi), then a
score test (see Likelihood) of the null hypothesis
H0: β = 0 can be constructed as

Z2
linear = u(α0, β0)

′I−1(α0, β0)u(α0, β0),

where β0 = 0, and I−1(α0, β0) is the inverse of the
information matrix evaluated at the null hypothesis.
The information matrix can be shown to be:

I(α, β) =
[

Iα2 Iαβ

Iαβ Iβ2

]

= −





∂2 log L(α, β)

∂α2

∂2 log L(α, β)

∂α∂β

∂2 log L(α, β)

∂β∂α

∂2 log L(α, β)

∂β2





=
k∑

i=1

nipi(1 − pi)

[
1 xi

xi x2
i

]

=
k∑

i=1

var(Yi)xix′
i ,

where x′
i = [1 xi]. After taking the inverse, we have

I−1(β) = (Iβ2 − IαβI−1
α2 Iαβ)−1

= p(1 − p)





k∑

i=1

nix
2
i −

(
k∑

i=1

nixi

)2

k∑

i=1

ni





= p(1 − p)

k∑

i=1

ni(xi − x)2,

so that the score test can be written as

Z2
linear = u(β)2

I−1(β)

=

[
k∑

i=1

xi(yi − nip̃)

]2

p̃(1 − p̃)

k∑

i=1

ni(xi − x)2

. (5)

There are many other algebraically equivalent
forms of the score test, some of which facilitate

numerical computations, including

Z2
linear

=

[
k∑

i=1

ni(xi − x)(p̂i − p̃)

]2

p̃(1 − p̃)

k∑

i=1

ni(xi − x)2

=

[
k∑

i=1

ni(xi − x)p̂i

]2

p̃(1 − p̃)

k∑

i=1

ni(xi − x)2

=

[
k∑

i=1

(xi − x)(yi − nip̃)

]2

p̃(1 − p̃)

k∑

i=1

ni(xi − x)2

=

[
k∑

i=1

xi − x

k∑

i=1

yi

]2

p̃(1 − p̃)

{
k∑

i=1

nix
2
i −

[(∑
nixi

)2
/∑

ni

]}

or, in matrix form, as

Z2
linear = x′(Y − E)[x′Vx]−1

where x = [(x1 − x), . . . , (xk − x)]′, Y = [y1, . . . ,

yk]′, E = [n1p̃, . . . , nkp̃]’, and V is the diagonal
matrix with elements nip̃(1 − p̃) on the diagonal.

For the special case in which g is the identity
function, it is also possible to express the Wald test
(see Likelihood) in closed form. When the asymp-
totic variance is evaluated under the null (i.e. pi = p

for all i), this test statistic is equivalent to the score
test, as follows:

Z2
Wald,H0

= (β̂0)
2

v̂ar ˆ(β)

=

[
k∑

i=1

xi(yi − nip̃)

]2

p̃(1 − p̃)

k∑

i=1

ni(xi − x)2

.
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The test statistic Z2
linear is widely known as the

Cochran–Armitage trend test, based on the work of
Armitage [2] and Cochran [8]. Asymptotically, it
follows a chi-square distribution with one degree of
freedom. Alternately, its square root Zlinear follows
a normal distribution. A test of Ha1: β > 0 is
constructed by rejecting the null hypothesis of no
trend if Zlinear > z(1−α), where z(1−α) is the α-level
upper critical value of the normal distribution.
Similarly, a test of Ha2 is constructed by rejecting
H0 for Zlinear < zα . When the values of xi represent
integer scores or rankings, then a test of monotone
trend can be analogously constructed by replacing xi

with i in (5) to form Z2
monotone. Cox [10] demonstrated

that these tests are uniformly most powerful for their
respective alternatives under the logistic model given
by (4). Although Agresti [1] notes that they are not
uniformly most powerful (UMP) for any departure
from independence, Tarone & Gart [38] showed
that both the monotone and linear trend tests are
asymptotically locally optimal C(α) tests, provided
that g is a twice differentiable monotone function
of x. Other extensions of the Cochran–Armitage
trend test and associated power considerations have
been described by Chapman & Nam [7], Gross [21],
Tarone & Gart [38], and Wood [44].

Although the maximum likelihood estimators may
not have closed form expressions for many choices
of the link function g, it is also possible to construct
both Wald tests and likelihood ratio tests of the
null hypothesis of no trend using the appropriate
numerical estimates; these test statistics are provided
along with the score test in most statistical software
packages. The Wald test is calculated as

Z2
Wald,Ha

= (β̂)2

v̂ar(β̂)
,

where the asymptotic variance of β̂ is estimated under
the trend alternative as

v̂ar(β̂) =

k∑

i=1

nip̂i(1 − p̂i)(xi − x)2

[
k∑

i=1

ni(xi − x)2

]2

and p̂i = g(α̂ + β̂xi) is the estimate of pi under the
alternative. Similarly, a likelihood ratio test statistic

for trend can be calculated as

D2
linear = 2{log[L(α̂, β̂)|Ha] − log[L(α̃, 0)|H0]}

= 2
k∑

i=1

[
yi log

(
p̂i

p̃

)
+ (ni − yi)

× log

(
1 − p̂i

1 − p̃

)]
,

where α̃ is the MLE for α under the null, and
p̃i = g(α̃). Like the Cochran–Armitage trend test
Z2

linear, the above two test statistics are approximately
χ2

1 in large samples under the null hypothesis of no
trend. When some cells of the contingency table
are sparse or sample sizes are otherwise not ade-
quate for asymptotic approximations, exact tests for
trend can be based on the multiple hypergeometric
distribution [1, 10, 39] (see Exact Inference for
Categorical Data). To accomplish this, one calcu-
lates Z2

linear for all tables with the same fixed row
and column margins, and then sums the probabilities
from the multiple hypergeometric distribution associ-
ated with all tables having values of Z2

linear equal to
or exceeding that of the observed table.

The goodness of fit of the linear model specified
by the trend hypothesis can be assessed by comparing
the chi-square statistic for testing the hypothesis of
independence, that is, the general alternative to the
null hypothesis given by (3), to the trend statistic.
For example, the difference between the score tests
of independence (i.e. the Pearson chi-square test)
and trend (i.e. the Cochran–Armitage trend test) can
be calculated as

χ2
gof = χ2

ind − Z2
linear,

where Pearson’s chi-square test is given by

χ2
ind =

k∑

i=1

ni(p̂i − p̃)2

p̃(1 − p̃)
.

Similarly, one can construct an analogous goodness
of fit test from the corresponding likelihood ratio test
statistics:

D2
gof = D2

ind − D2
linear,

where

D2
ind =

k∑

i=1

yi log

(
yi

ni p̃

)
.
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Under the linear trend model, the goodness-of-fit
test statistics χ2

gof and D2
gof both follow a chi-square

distribution with k − 2 df.
It can be shown that there is a simple relationship

between the Cochran–Armitage Trend test and the
Pearson correlation coefficient. If the j th individual
from sample i is defined to have the binary random
variable yij and covariate xij , then

Zlinear =

k∑

i=1

xi(yi − nip̃)

[
p̃(1 − p̃)

k∑

i=1

ni(xi − x)2

]1/2

= N1/2corr(xij , yij ),

where y = p̃ is the sample mean of the yij s, N =∑
ni , and corr(xij , yij ) is the Pearson correlation

between the individual responses yij and individual
scores xij . Agresti [1, p. 284] derived a similar
formulation, but with N − 1 in place of N in the
above equation. Mantel [30] proposed an extension
of this correlation-based statistic for stratified data.

In cases in which the observed p̂is reflect slight
departures from the hypothesized ordering under the
trend alternative (e.g. p̂i > p̂j for some i < j under
Ha1), the isotonic regression approach of Barlow
et al. [3] can be applied. The hypothesis of no trend
can be tested by

Z2
iso =

k∑

i=1

ni(p̂
∗
i − p̃)2

p̃(1 − p̃)
,

where p̂∗
i is the estimate of pi under the appropriate

order restriction (Ha1 or Ha2). Collings et al. [9]
demonstrated that Z2

iso and Z2
linear have the same

asymptotic power for rejecting the null in favor of
the trend alternative.

Much discussion has surrounded the issue of
the appropriate scores xi to use in constructing the
trend test. For example, in a bioassay study with
laboratory animals randomly assigned to one of four
doses (say 1, 10, 100, and 1000 mg) of a chemical
carcinogen, one may question whether to use the
actual doses or the dose levels on the log10 scale
(i.e. 0, 1, 2, and 3). In general, any set of scores
will give a valid test under the null hypothesis and
will protect the type I error rate (see Level of a

Test). However, the most powerful scores to assign
are those of the true model pi = g(α + βxi), which
may be unknown in practice. Gross [21] has shown
that if model (4) holds and the true scores are
x1, . . . , xk , but the incorrect scores z1, . . . , zk are
used in the trend test, then the asymptotic relative
efficiency of the Cochran–Armitage trend test is
equal to the squared Pearson correlation between the
scores, [corr(zi , xi)]2.

Often, the explanatory variable has an underlying
continuous scale, but data have been either collected
or summarized into groups which specify a range of
the continuous variable. For example, a variable such
as age may be summarized as 20–29 years, 30–39
years, 40–49 years, and ≥50 years. In such situations,
the midpoint of each interval is often chosen as xi .
When the highest or lowest category is specified
only as above or below a certain cutoff, as in the
previous example, one possible choice is to use the
median level of xi among the individuals in that
group (if such data is available) (see Categorizing
Continuous Variables). An alternate selection of
scores for ordinal covariates can be provided by the
approach of ridit analysis, as described by Bross [6],
Fleiss [14], and Mantel [31]. Further discussion of
the choice of scores is given by Agresti [1], Armitage
[2], Cochran [8], Graubard & Korn [20], Snedecor &
Cochran [35], and Yates [45] (see Scores).

Analysis of animal bioassay data was one
of the original applications and motivations for
development of trend tests (see Tumor Incidence
Experiments). In a typical bioassay, animals are
randomized to various exposure or “dose” levels
of a drug, chemical, or other stimulus, and the
proportion exhibiting the response of interest is
observed. An example of bioassay data and associated
trend tests is shown in Table 2. In this study, female
mice were administered one of three doses of the
chemical 1, 2-dichloroethane, and the proportion with
lung tumors was observed. The Cochran–Armitage
trend test yields Z2

linear = 10.64 (df = 1, P = 0.001).
A goodness of fit test for the linear model
is calculated as χ2

gof = 11.09 − 10.64 = 0.45 (df =
1, P = 0.650), where χ2

ind = 11.09 is the Pearson
chi-square test for independence; the nonsignificance
of χ2

gof suggests that the linear model is appropriate.
A logistic regression model fit to this data yields
likelihood ratio and Wald tests for trend of D2

linear =
11.51 (df = 1, P = 0.001) and Z2

Wald,Ha
= 9.54 (df =

1, P = 0.002), respectively. Based on these results,
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Table 2 Binomial counts for lung tumors in female mice exposed to 1,2-dichloroethane

Dose Number Number Percentage
(mg/kg) exposed with tumor with tumor(%)

0 40 2 5
1 50 7 14
2 48 15 31

Test statistics

Chi-square
Test statistic Label statistic df P value

Cochran–Armitage trend test Z2
linear 10.64 1 0.001

LR test of trend D2
linear 11.51 1 0.001

Wald test of trend Z2
Wald,Ha

9.54 1 0.002

we can conclude that the data provide evidence of
an increasing trend in tumor rates with higher 1, 2-
dichloroethane doses.

There is a wealth of literature on the application of
trend tests to bioassay data. Bliss [4, 5] and Finney
[12, 13] provided some of the original treatises on
the subject of logit and probit models for analyzing
trend in bioassays. More recent texts include those
by Gart et al. [18], Govindarajulu [19], Hubert [23],
and Morgan [32]. Adjustments to trend tests for
bioassay data have been proposed by Gart et al.
[17] to account for differential survival, and by
Ibrahim & Ryan [24], Ryan [34], and Tarone [36]
to incorporate information on historical controls into
trend tests.

Extensions of the trend test have been suggested
for stratified analysis, multiple outcomes, clustered
data, and missing data. Using an example of com-
bining information from animal bioassays conducted
in several different sex-species groups, Tarone &
Gart [38] described how the trend test for a general
(2 × k) contingency table can be extended to incorpo-
rate stratification factors. Trend tests are also applied
routinely to data from developmental toxicity bioas-
says, in which pregnant dams are exposed but primary
interest lies in assessment of the effects of exposure
on development and growth of their offspring. Since
there are typically multiple outcomes of interest, trend
tests in this setting must take into account both the
clustering induced by litter effects and the correlation
between multiple outcomes measured on the same
embryo (see Correlated Binary Data). A test for
global trend was proposed by Lefkopoulou & Ryan
[29]; this test evaluates the overall effect of exposure

on multiple correlated outcomes which may also be
clustered. Williams & Ryan [42] adapted this test to
account for missing data, and examined the efficiency
of such global trend tests under various patterns of
missing data. Because of the complexity of max-
imum likelihood analysis in such settings, use of
quasi-likelihood methods and generalized estimating
equations (GEEs) has become very popular in evalu-
ating trends in proportions in the context of clustered
binary data [32, 33, 43] (see Quasi-likelihood). An
example of fitting three different types of models –
logit, probit, and extreme value – to the probabil-
ity of fetal malformation resulting from exposure to
ethylene glycol is shown in Figure 1. These models
were fit using both standard estimation methods and
GEEs. While the parameter estimates for α and β

were actually fairly similar, the standard errors for
the standard models (which ignored clustering) were
underestimated and led to inflated trend test statistics;
for example, the trend Z statistic for the logit model
was 14.6 based on the standard method and 8.4 using
the GEE method.

Trend Tests for Multinomial Counts

In the case in which (Y1, . . . , Yk) represents a
vector of counts following a multinomial distribution
with

∑k
i=1 Yi = N and corresponding probabilities

p1, . . . , pk, we again assume that the probabilities
pi are linked to ordinal or continuous covariates xi

which are monotonically increasing or decreasing.
Lee [26] described a method for testing the null
hypothesis that the probability of falling into any
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Figure 1 An illustration of logit, probit, and extreme
value models fitted to the EG data on malformation

level is equal, that is,

H0: p1 = p2 = · · · = pk = 1/k

vs. the increasing trend alternative

Ha: p1 ≤ p2 ≤ · · · ≤ pk.

In fact, a slightly narrower alternative than Ha is con-
sidered by Lee as H∗

a : pi+1 ≥ λipi , where λi ≥ 1, i =
1, . . . , k − 1, with strict inequality for at least one λi .
The trend statistic was then developed by choosing
the test which maximized the minimum power over
the parameter space Ω(λ), i.e. a minimax test.

This approach was later generalized, again by Lee
[27], to one that allows incorporation of weights for
each pi . The test for trend is specified in terms of the
related probabilities πi which are subject to weights
wi , such that

pi = f (wi, πi),

where
∑

wi = 1. Consider, for example, a cross
sectional sample of N subjects summarized in a (2 ×
k) contingency table, with the first row representing
the response of interest and the columns indicating
the levels of the covariate (x1, . . . , xk). Since each
of the N subjects can fall into only one of the
2k cells, the vector (Y11, Y21, . . . , Y1k, Y2k) follows
a multinomial distribution. In addition, conditional
on

∑k
i=1 Y1i , the vector of counts (Y11, . . . , Y1k) also

follows a multinomial distribution with probabilities
(p1, . . . , pk). The weights wi in this case are the
proportion of the total sample N falling into the
ith covariate level, that is wi = (Y1i + Y2i )/N , and
the functional relationship is pi = wiπi , where πi =

δi/
∑k

i=1 wiδi and δi is the conditional probability of
response given the subject has covariate level xi . The
values of πi can be related to the covariates via the
function g, so that πi = g(xi)/N . The null hypothesis
and alternative hypotheses are then stated as

H0: π1 = π2 = · · · = πk

vs.

Ha1: π1 < π2 < · · · < πk

or

Ha2: π1 > π2 > · · · > πk,

with
∑k

i=1 wiπi = 1. Lee showed that the linear trend
test for multinomial counts is:

Zlinear =

k∑

i=1

xi(yi − Nwi)

{
N

[
k∑

i=1

wi(xi − x)2

]}1/2 ,

where x = ∑
wixi/

∑
wi . The monotone trend test

Zmonotone can be constructed by replacing xi with i

in Zlinear. These test statistics follow an asymptotic
standard normal distribution, and are both minimax
tests. Like the tests derived in the binomial count
setting, they are asymptotically efficient. Lee recom-
mends use of the monotone trend test statistic, since it
is more generally applicable regardless of the values
of λi or the functional form of g. Tiwari & Sen [40]
derived a rank statistic which incorporates historical
control data for testing for a trend in multinomial
proportions.

An example is shown in Table 3 for a sample of
1178 HIV-infected patients enrolled in a clinical trial
comparing treatments for prevention of Mycobac-
terium avium complex (MAC) disease, a serious
opportunistic infection contributing towards mortality

Table 3 Multinomial counts for MAC disease by pre-
entry CD4 count

CD4 lymphocyte level
(cells/mm3)

<25 25–50 50–75 >75 Total

MAC disease 78 25 11 7 121
No MAC disease 473 251 150 183 1057

Total 551 276 161 190 1178
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Table 4 Estimated multinomial probabilities by pre-entry CD4 count

Estimated Estimated Estimated
Number multinomial conditional trend

with MAC probability Weight probability value
CD4 level (Y1i ) (p̂i ) (wi) (δi) (πi)

<25 78 0.645 0.467 0.142 1.378
25–50 25 0.207 0.234 0.091 0.882
50–75 11 0.091 0.137 0.068 0.665
>75 7 0.058 0.161 0.037 0.359

Total 121 1.000 1.000 – –

in this population. The 1178 patients are cross-
classified as to their MAC disease status and pre-entry
CD4 lymphocyte count (cells/mm3). Conditional on
the 121 total observed cases of MAC disease, the vec-
tor of counts of patients with MAC disease in each of
the four CD4 categories follows a multinomial distri-
bution. While the estimated multinomial probabilities
shown in Table 4 appear to follow a decreasing trend,
such a comparison neglects the fact that the overall
proportions of patients in the four CD4 levels are not
equal. Instead, the appropriate trend test is based on
the conditional probabilities of response δi given CD4
level xi . This can be formulated as a test of trend in
πi = pi/wi ; the values of πi are proportional to δi

but satisfy the constraint that
∑

pi = ∑
wiπi = 1.

For the data shown in Table 3, the linear trend test
based on setting xi equal to the median values of CD4
for each level (10, 36, 63, and 93, respectively) yields
Zlinear = −4.210 (P < 0.0001). Since the values of xi

are almost evenly spaced, this result is very similar to
that of the monotone trend test Zmonotone = −4.227.
Either test indicates a significant departure from the
null hypothesis of equal values of πi in favor of the
reverse trend alternative Ha2.

Trend Tests for Poisson Counts

For the case in which Y1, . . . , Yk are indepen-
dent Poisson random variables, we still assume that
E[Yi] = wif (xi) where xi is an ordered covariate,
but now f (xi) = λi is the mean of the Poisson vari-
able Yi . Lee [28] has noted that we may consider the
weights wi arising from one of two scenarios: either
(i) Yi may be the number of rare events during an
interval of length wi , where λi is the event rate per
unit time; or (ii) each Yi may be a sum of wi indepen-
dent Poisson random variables, that is Yi = ∑wi

j=1 Yij ,

where Yi1, . . . , Yiwi
are identically distributed with

mean λi . The former situation may also be relevant
when wi is the cumulative exposure in units such as
person-years. Examples of Poisson data in biostatis-
tical applications include incidence of new AIDS or
cancer cases per calendar year, number of injuries or
accidents over a set time period, number of bacteria
per unit volume of suspension, number of revertants
in microbial mutagenesis assays, or number of tumors
observed in wi animals exposed to dose xi in an ani-
mal bioassay.

Our interest is again in testing for an increasing
or decreasing trend in the means λi = E[Yi]/wi with
increasing levels of xi . The relationship between λi

and xi is specified as

λi = g(α + βxi), (6)

where g is a twice-differentiable monotone function.
Commonly used functions in the context of Poisson
data include g equal to the identity function or
g(x) = exp(x), with the latter implying the loglinear
regression model (see Poisson Regression)

log(λi) = α + βxi . (7)

The special case in which g is the identity and the
intercept is zero, resulting in the regression through
the origin λi = xiβ, has been considered by Frome
et al. [15], Gart [16], and Jorgensen [25]. The test of
trend developed by Gart in this context is exact, while
the other two rely on asymptotic approximations.

Armitage [2] derived a chi-square test for trend in
frequencies based on the asymptotic distribution of β

in the model
λi = α + βxi,

and Cochran demonstrated that this test was valid for
Poisson data under the assumption of equal weights,
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wi = w for all i. For the more general model given
by (6), the likelihood can be written as

L = C(y1, . . . , yk)

k∏

i=1

exp{−wig(α + βxi)}

× {g(α + βxi)}yi ,

where C is a constant not involving α or β. The
maximum likelihood estimators α̂ and β̂ are found
by solving the score equations ∂ logL/∂α = 0 and
∂ logL/∂β = 0 simultaneously, but iterative numeri-
cal methods such as the Newton–Raphson approach
or Fisher scoring algorithm are necessary. Frome
et al. [15] described iterative approaches for obtain-
ing estimates by the methods of maximum likelihood,
weighted least squares, and minimum chi-squared cri-
teria leading to “best asymptotically normal” (BAN)
estimates of parameters, and noted that these esti-
mates are computationally equivalent under certain
conditions.

Since score tests only require MLEs under the null,
this approach proves more practical for deriving tests
of trend which have a closed form representation.
Tarone [37] showed that a score test of the null
hypothesis H0: β = 0 in (6) could be derived as

χ2
Poisson =

[
k∑

i=1

xi(yi − wiy)

]2

y

k∑

i=1

wi(xi − x)2

, (8)

where y =∑k
i=1Yi/

∑k
i=1wi . Asymptotically, χ2

Poisson
is distributed as chi-square with one degree of free-
dom under H0. While this statistic is identical to that
proposed by Armitage [2], Tarone [37] provided a
more rigorous justification for its use by demonstrat-
ing that it was asymptotically locally optimal against
any smooth monotone alternative, i.e. regardless of
the choice of g, provided g was a smooth mono-
tone function on [0, xk]. In addition, Tarone noted
that when g(x) = exp(x) as in (7), the chi-square test
proposed in (8) is an asymptotic approximation to
the UMP test of H0: β = 0. Because the Poisson dis-
tribution is the limiting distribution of the binomial
for small pi and large ni , the efficiency properties
described for tests of trend for binomial proportions
extend to the Poisson setting.

A number of computational difficulties can arise
when applying the BAN method or other estimation
approaches which require inversion of the informa-
tion matrix, particularly if the values of E[Yi] are
small [28]. When sample sizes are moderate to large,
however, maximum likelihood estimates of α and
β can be obtained from statistical software pack-
ages such as GLIM and Stata. These estimates and
their associated asymptotic standard errors can be
used as the basis for constructing a Wald or like-
lihood ratio test of trend, using methods analogous
to those described for binomial data in an earlier
section.

Lee [28] suggested that an alternative approach is
first to condition on the sum of the Poisson random
variables,

∑k
i=1 Yi , and then use the methods derived

for multinomial data. Since the vector of Poisson
random variables (Y1, . . . , Yk) follows a multinomial
distribution conditional on

∑
Yi , the tests Zlinear and

Zmonotone of the previous section can be considered
as conditional minimax tests when applied to tests of
trend for Poisson means.

Jorgensen [25] extended the trend tests for Pois-
son regression to multiple variables, and both linear
and nonlinear extensions of the zero-intercept model
are addressed by Frome et al. [15]. Both Gart [16]
and Frome et al. [15] have discussed methods for
evaluating the goodness of fit of the Poisson regres-
sion model. Tarone [37] used an approach similar
to that employed for binomial data [36] to incor-
porate historical control data into tests for trend
in Poisson means; this technique is appropriate for
dose–response experiments which include a con-
trol group. El-Sayyad [11] described a Bayesian
method and a related Bayesian approximation to test
for trends in Poisson-distributed data. Hakulinen &
Dyba [22] have described use of trend models for
Poisson data to predict future disease incidence, and
developed associated prediction intervals for new
cases of melanoma and lung, stomach, or colon can-
cer. In cases in which the variance of Poisson counts
appears to be inflated relative to the mean, quasi-
likelihood methods can be used to account for such
overdispersion ([1, pp. 456–457], and see Overdis-
persion; Quasi-likelihood).

An example of Poisson data for which a trend test
is of interest is presented in Table 5. This table shows
the number of cases of melanoma reported between
1969 and 1971 for six age groups, along with the
person-years of employment in each age group. Also
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Table 5 Poisson counts of melanoma cases by age group

Observed rate Predicted rate
Age group Number of observed Person-years per 100 000 per 100 000
midpoint melanoma cases of exposure person-years person-years

(xi) (Yi) (wi) (yi/wi × 105) (λ̂i × 105)

30 61 2 880 262 2.12 3.90
40 76 564 535 13.46 6.64
50 98 592 983 16.53 11.29
60 104 450 740 23.07 19.22
70 63 270 908 23.26 32.70
80 80 161 850 49.43 55.66
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Figure 2 An illustration of Poisson regression to mela-
noma data

shown is both the observed rate of melanoma per
100 000 person-years, and the predicted rate based
on fitting the loglinear model in (7) (see Figure 2).
The MLE for β is 0.0532 with associated asymptotic
standard error of 0.0025, yielding a Wald test of
trend of ZWald,Ha = 21.2. The score test of trend is
calculated as 23.5, leading to a similar conclusion
that the data indicate a significant increasing trend in
rates of melanoma with increasing age level.
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Trigonometric Regression

This is essentially a method of fitting a periodic
regression function to data of the form {yi, ti ; i =
1, 2, . . . , n}, where y is a response variable and t usu-
ally denotes time. Common applications arise in mod-
eling biological cycles that are tied to environmental
cycles such as the 24 h solar day, the approximately
25 h lunar day, or the annual cycle of 12 months (sea-
sonal variation; see Circadian Variation). In such
cases the fundamental period is determined a priori.
Other biological cycles, such as the menstrual period
in women, have no clear link to the environment and
may vary in length between individuals; so it may be
of interest to estimate the length of the cycle in addi-
tion to its amplitude and phase. Furthermore, many
diurnal cycles may be slightly changed in length by
changes in the environment, such as exposure to con-
tinuous light (or dark). Applications where t is spatial
rather than temporal arise in modeling variation with
orientation on a circle (see Circular Data Models).
Bliss [2, Chapter 17], gives examples and references.

Consider a model equation

yi = g(ti ) + ei, (1)

where g is periodic with period τ , i.e. g(t + τ) =
g(t) for all t , and ei are error random variables with
zero mean. In the simplest nontrivial case, g(t) is
a single cosine (or sine) wave with amplitude ρ,
angular frequency, ω, and phase angle φ. This may
be written in the equivalent forms

g(t) = ρ cos(ωt − φ) (2)

= ρ sin(ωt − φ + π

2
) (3)

= α cos ωt + β sin ωt, (4)

where α = ρ cos φ and β = ρ sin φ. Expressing ρ and
φ in terms of α and β gives

ρ = (α2 + β2)1/2 and φ = tan−1

(
β

α

)
.

The function g(t) given by 2, 3, or 4 is periodic
with period τ = 2π/ω time units; ω is the angular
frequency in radians per unit time, and ω/2π = 1/τ

is the frequency in cycles per unit time. The value of
g(t) cycles between ρ and −ρ and reaches its first
peak after t = 0 at time tφ = φ/ω. The parameters α

and β are useful for fitting models; they may then be
transformed to ρ and tφ for interpreting results.

The model equation (1) for a constant term plus a
single cosine wave becomes

yi = α0 + α cos ωti + β sin ωti + ei . (5)

When the period τ (and hence the frequency ω) is
known, this is equivalent to an ordinary linear regres-
sion model with a constant term and explanatory
variables x1i = cos ωti and x2i = sin ωti . Note that,
unless the phase is known, it is not sensible to include
one of these terms without the other. The constant
term α0 can be regarded formally as a trigonometric
function 4 with ω = 0, α = α0, and β = 0.

A cosine wave is limited in shape, but in principle
a periodic function of any shape can be expressed
as a linear combination of sine and cosine terms
with frequencies ω, 2ω, 3ω, . . ., see, for example, [8,
p. 11]. Here ω is called the fundamental frequency
and 2ω, 3ω, . . . are higher harmonics. Thus consider

g(t) = α0 +
m∑

j=1

(αj cos jωt + βj sin jωt). (6)

This is still periodic with period τ = 2π/ω, because
a function that repeats itself every 2π/jω time units
also does so every 2π/ω time units. Again, when ω

is known, and with the usual assumptions about the
errors ei , (1) is an ordinary linear regression model
once we have fixed which terms to include.

In applications where the cycle varies about a
nonstationary trend, the model equation may need to
be generalized further – for example, by adding to
6 a parametric trend function, such as a low-order
polynomial in t or a low-frequency trigonometric
function to be fitted along with the cyclic function, or
alternatively by removing the trend nonparametrically
before fitting (6).

When the period τ (or frequency ω) is regarded as
an unknown parameter, then (1) with g(t) given by
6 is no longer a linear regression model. However,
a natural approach is to fit 6 by linear regression
for each of a range of values of ω and to choose
ω to optimize the fit. If the ei are assumed to be
independent and normal, then maximum likelihood
estimates for ω and the other parameters may be
obtained by this method.

There are obvious extensions to generalized lin-
ear models, or types of error models other than
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independent normal. For example, yi might have a
Poisson distribution with mean exp {g(ti )}, indepen-
dently for each i, where g(t) is given by 6. When ω is
known, this is a standard loglinear model. For a sin-
gle trigonometric term, the frequency and phase have
the same meaning as before, but ρ is now the ampli-
tude on a log scale, so that E[y(t)] cycles between
µ0eρ and µ0e−ρ .

Another type of extension of the model is to non-
independent errors. Particularly when y1, y2, . . . , yn

is an observed time series, it may sometimes be
more reasonable to assume that the ei are correlated,
perhaps described by a low-order moving average
or autoregressive process (see ARMA and ARIMA
Models).

When observed at a sufficient number of reason-
ably spaced times, different trigonometric functions
are nearly orthogonal. These orthogonality proper-
ties are exact for the equally spaced times and fre-
quencies discussed in the next section, which makes
trigonometric functions particularly convenient for
modeling periodic phenomena.

Equally Spaced Times and Fourier
Frequencies

Often y is observed at n equally spaced times. We
now take unit time to be the sampling interval and
denote the data by {yt , t ; t = 1, 2, . . . , n} to avoid
possible confusion with the complex number i which
is sometimes used in the derivation of the orthogo-
nality results used here and in related representations.

The shortest period that can be observed is τ =
2, corresponding to ω = 2π/2 = π , so without loss
of generality we consider frequencies in the range
0 ≤ ω ≤ π . A trigonometric function 4 with ω = π

may be written as

α cos πt + β sin πt = α(−1)t , (7)

which is represented by just one parameter, α. The
absolute value of α is the amplitude and the sign of
α determines the phase (tφ = 0 or 1). Thus, to fit a
function with period 24 h one would need to observe
it at least every 12 h; and observing it every 12 h
would just allow one to fit (7).

For reasonably large n, the frequency range 0 ≤
ω ≤ π is well spanned by the set of Fourier frequen-
cies

ωj = 2πj

n
, j = 0, 1, 2, . . . , m, (8)

where m = n/2 when n is even and m = (n − 1)/2
when n is odd. Furthermore, the sampling interval is
usually chosen so that the frequencies of interest are
a subset of 8. For these frequencies it can be shown
(see, for example, [1, p. 95]) that the functions

cos ωj t, sin ωj t, cos ωkt, sin ωkt

for j �= k, are mutually orthogonal. That is, the sum
over t = 1, 2, . . . , n of products of any pair of these
is zero.

We present results for the case n even, so m =
n/2. The formulas for n odd are the same except
that there is no one-parameter term corresponding to
ω = π . The saturated model equation, including sine
and cosine terms at all frequencies 8, is now

yt = α0 +
m−1∑

j=1

(αj cos ωj t + βj sin ωj t)

+ αm cos πt + et . (9)

This has n coefficients. If these are all estimated by
least squares, then the data will be fitted exactly. In
practice, a model with a subset of these terms, cor-
responding to the fundamental frequency and some
higher harmonics for each underlying periodicity, will
be of interest. Because of the orthogonality, such a
model may be fitted simply by selecting the rele-
vant terms from the saturated model, analogously to
using orthogonal polynomials (see Orthogonality) in
polynomial regression.

The least squares estimates for j = 1, 2, . . . , m −
1, are

α̂j = 2

n

n∑

t=1

yt cos ωj t, β̂j = 2

n

n∑

t=1

yt sin ωj t, (10)

and for j = 0, m, are

α̂0 = 1

n

n∑

t=1

yt , α̂m = 1

n

n∑

t=1

(−1)t yt . (11)

These estimates are unaffected by omitting other
terms from the model. Under the usual sampling
model for linear regression, where the errors et are
uncorrelated with mean 0 and variance σ 2, all of the
estimates (10) and (11) are mutually uncorrelated.
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Table 1 Harmonic analysis of variance

Source frequency
(cycles per n Degrees of Sum of
time units) freedom (df) squares (ss)

0 1 ny2

1 2 (n/2)(α̂2
1 + β̂2

1)

2 2 (n/2)(α̂2
2 + β̂2

2)

. . . . . . . . .

m − 1 2 (n/2)(α̂2
m−1 + β̂2

m−1)

m 1 nα̂2
m

Total n
∑n

t=1 y2
t

Each of the estimates (10) has variance 2σ 2/n, and
each of 11 has variance σ 2/n.

There is a corresponding harmonic analysis of
variance, described in Table 1. Sources of variation
are the different frequencies j in cycles per n sam-
pling intervals, or corresponding periods in numbers
of sampling intervals. The frequency j = 0 corre-
sponds to the constant term; this is usually omitted
from the analysis of variance table, but is included
here for completeness. The sums of squares are pro-
portional to the squared amplitude of each fitted
cosine wave.

The n coefficients 1
2 α̂j , 1

2 β̂j , α̂0, and α̂m given by
10 and 11 constitute the discrete Fourier transform of
the data, and the sums of squares in Table 1 constitute
the periodogram. These are basic statistics used in the
frequency domain analysis of time series.

Example

As an illustrative example consider the data in
Table 2. The height of the tide at a point on a tidal
river in West Scotland has been measured every 62
min for n = 24 times.

The interval between successive high tides at the
relevant time of year is known to be 12 h 24 min, so
there should be exactly two tidal cycles in these data.
Here it is convenient to take the time unit as 62 min.
Strictly speaking, two successive tidal cycles within
a day are not identical, but as the data are limited
to just one lunar day we fit a single function with
period 12.

Table 3 shows the analysis of variance (cf. Table 1)
along with the parameter estimates for the saturated
model, and hence for any submodel.

To fit a model with period 12, one would include
only terms with j even. The remaining terms (j =
1, 3, 5, 7, 9, 11) can be pooled to provide a residual
mean square of 1.53 with 12 degrees of freedom.
Including all of the even terms (12 parameters)
effectively fits an arbitrary periodic function with
period 12. The j = 2, 4, and 8 mean squares are
individually significantly large by an F test. The
pooled mean square for j = 6, 10, and 12 is only 1.97
with five degrees of freedom, so the tidal variation is
well explained by just the 2, 4, and 8 terms. This
leads to the fitted model:

yt = 10.07 + 7.04 cos(t − 23.6)
π

6

+ 2.58 cos(t − 0.81)
π

3

+ 1.62 cos(t − 1.01)
π

3
+ et ,

with error standard deviation σ estimated (from the
pooled mean square for j = 6, 10, 12 and j odd) to
be 1.29 feet.

Figure 1 shows a time plot of the data along
with each component cosine wave separately and
fitted models with and without the j = 8 term. The
higher harmonics j = 4 and 8 have no particular
meaning on their own. The j = 4 term has the
effect of shaping the basic wave so that it spends
8 time units dropping from maximum to minimum

Table 2 Height of tide yt (ft) at 24 equally spaced times t

t 1 2 3 4 5 6 7 8 9 10 11 12

yt 19.8 18.1 12.7 13.5 10.5 10.5 6.8 2.4 1.4 4.7 6.0 13.6

t 13 14 15 16 17 18 19 20 21 22 23 24

yt 20.8 16.7 14.6 14.0 8.3 9.2 9.2 3.5 1.1 4.7 8.8 10.7
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Table 3 Parameter estimates and ANOVA for the data in Table 2

Frequency Period Phase Amplitude Degrees of freedom Sum of squares
(j) (24/j) α̂j β̂j (t̂φj ) (ρ̂j ) (df) (ss)

0 ∞ 10.067 10.067 1 2432.27
1 24 −0.001 −0.141 17.97 0.141 2 0.24
2 12 2.320 6.650 2.36 7.043 2 595.30
3 8 −0.327 −0.298 4.94 0.442 2 2.35
4 6 1.708 1.934 0.81 2.581 2 79.91
5 4.80 0.221 0.066 0.22 0.231 2 0.64
6 4 −0.517 0.317 1.65 0.606 2 4.41
7 3.43 −0.856 −0.498 2.00 0.991 2 11.78
8 3 −0.842 1.386 1.01 1.621 2 31.54
9 2.67 −0.256 −0.315 1.71 0.406 2 1.98

10 2.40 −0.653 −0.134 1.28 0.667 2 5.34
11 2.18 −0.230 −0.244 1.37 0.335 2 1.35
12 2 0.067 0.00 0.067 1 0.11

20

10

0

20

10

0

20

10

0

0 4 8 12 16 20 24

Time (units of 62 min.)

Data

j = 2

j = 4

j = 8

j = 2, 4

j = 2, 4, 8

Height (ft)

Figure 1 Plot of height of tide vs. time, individual
trigonometric terms with j = 2, 4, and 8 cycles per 24
time units, and fitted regression functions with j = 2, 4 and
j = 2, 4, 8

and 4 time units climbing back to the maximum.
This is presumably due to the flow of the river. The
j = 8 term puts steps into the wave to that it does
not decrease monotonically. This seems physically
implausible, though not impossible; for example, it

might be due to local currents caused by a sandbank.
Although there is some hint of this feature in both
cycles of the data, one should beware of reading too
much detail into the fitted curve.

Extensions and Further Material

This topic is discussed in [2, Chapter 17] and in books
on time series analysis, particularly [1, Chapter 4] and
[3, Chapter 2]. Related Encyclopedia articles include
[6] and [7].

There is a generalization of 9, minus the error
term, that is fundamental to the frequency domain
theory of stationary time series, i.e. when the coef-
ficients αj and βj are independent (or in some con-
texts merely uncorrelated) random variables with zero
means and variances given by var(αj ) = var(βj ) =
σ 2

j . The second-order properties of the model are
defined by the set of variances σ 2

j , which constitute
the (discrete, nonnormalized) spectral density func-
tion (see Spectral Analysis). It can be shown that,
when this model is extended to the continuous range
of frequencies 0 ≤ ω ≤ π , it defines the class of all
second-order stationary processes (with zero mean).

For cyclic phenomena that are not strictly periodic
there are other types of model that may be more
parsimonious. Perhaps the simplest is the second-
order autoregression

yt = µ0 + α1yt−1 + α2yt−2 + et ,

where µ0 is a constant term, et are independent errors
with zero means and common variance σ 2, and the
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coefficients α1 and α2 are such that −1 < α2 < 0 and
α2

1 + 4α2 < 0 (see, for example, [4, Section 3.2.4]).
Such a process displays pseudo-periodic behavior,
oscillating with varying frequencies around ω0 given
by cos ω0 = |α1|/2

√−α2, i.e. a large amount of
the variation in yt comes from frequencies in the
neighborhood of ω0. Among published examples
of such modeling are several analyses of data on
annual trappings of the Canadian lynx, including two
discussion papers: Tong [9] fitted an autoregression
of order 11, while Campbell & Walker [5] fitted a
superposition of a pure sine wave and a second-order
autoregression.
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Trimming and
Winsorization

There are several practical problems with the popu-
lation mean, µ, and its usual estimator, the sample
mean, X. First, µ is not robust. Roughly, this means
that a small proportion of a distribution can dominate
its value. Also, very small shifts in a distribution can
result in large changes in µ. For example, µ might
correspond to the 0.8 quantile, in which case, at least
in some situations, it provides a poor reflection of
the typical subject under study. The sample mean is
not resistant (see Robustness), meaning that a sin-
gle unusual observation can completely dominate its
value. Another problem is that slight departures from
normality can inflate its standard error, which in
turn can result in relatively low power for hypothe-
sis testing. Also, a single unusual value, or outlier,
can inflate the estimate of the standard error. It might
be hoped that these problems rarely arise in applied
work, but the exact opposite seems to be true.

The contaminated normal distribution provides
the classic example of how small departures from
normality can inflate the standard error of X. The
distribution is given by

H(x) = (1 − ε)Φ(x) + εΦ(x/k),

where Φ(x) is the standard normal distribution.
That is, with probability 1 − ε, an observation is sam-
pled from a standard normal distribution; otherwise,
sampling is from a normal distribution having stan-
dard deviation k. The standard normal and contami-
nated normal distributions for ε = 0.1 and k = 10 are
shown in Figure 1. The distributions are similar (as
measured by the Kolmogorov distance function; see
Kolmogorov–Smirnov Test), yet the contaminated
normal has variance 10.9 versus a variance of 1 for
the standard normal.

When testing hypotheses or computing confi-
dence intervals, more problems arise. First, standard
methods for computing confidence intervals can
have probability coverage substantially different from
the nominal level. The probability coverage can
be too low when sampling from skewed, light-
tailed distributions, and it can be too high when
distributions have heavy tails. The left panel of
Figure 2 illustrates the first problem by showing the
distribution of the one-sample Student’s t statistic

Figure 1 Normal and contaminated normal distributions

Figure 2 The probability density function of Student’s t

when sampling from a lognormal distribution (the solid line
is the assumed distribution)

when sampling from a lognormal distribution.
Under standard assumptions, the distribution is
symmetric about zero, as shown by the solid line
in Figure 2. In actuality, the left tail is too thick,
the right tail is too thin, and the mean of the
test statistic is approximately −0.5, not zero as
is commonly assumed. The result is that power
can go down as we move away from the null
hypothesis, although eventually it goes up. For a
lower-tail test at the 0.05 level, the actual probability
of a type I error is approximately 0.15. The right
panel of Figure 2 shows that the tail of the actual
distribution is still too thick when n = 100. Just how
large the sample size has to be, to ensure accurate
probability coverage, is unknown. From [4], n =
160 is not large enough. In the comparison of two
or more distributions, similar problems arise when
distributions have unequal skewnesses. The second
problem arises because sampling from heavy-tailed
distributions inflates the sample variance, resulting in
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confidence intervals that are too long, which, in turn,
can mean poor power.

When attention is focused on making infer-
ences about distributions using some measure of
location, trimming and Winsorization provide one
approach that has been found to be relatively effec-
tive for dealing with the problems just described.
(M-estimators (see Robustness) represent another
approach.) The resulting measure of location is more
robust than the mean, efficiency is not overly sen-
sitive to small changes in the tails of the distri-
butions, and accurate confidence intervals can be
computed for a wider range of situations vs. meth-
ods based on means, particularly when distributions
are skewed.

Trimming deals with problems associated with
the tails of a distribution by removing them. That
is, it concentrates on the “middle” portion of the
distribution. For example, 20% trimming means that
a distribution would be trimmed at the 0.2 and
0.8 quantiles. This is not to say that observations
in the tails are uninteresting or unimportant, but for
certain purposes they do more harm than good. For
a random sample, X1, . . . , Xn, let X(1) ≤ . . . ≤ X(n)

be the order statistics (the observations written in
ascending order). The sample trimmed mean is

Xt = X(g+1) + · · · + X(n−g)

n − 2g
,

where g = [γ n], the notation [γ n] meaning that γ n

is rounded down to the nearest integer, and γ is
the desired amount of trimming. The optimal amount
of trimming varies from one situation to another. A
common recommendation is γ = 0.2 (20%), because
it maintains reasonably high efficiency under the
normal model, and it can have substantially higher
efficiency, vs. the sample mean, when distributions
have heavy tails. In terms of probability coverage for
confidence intervals, there are advantages to having
γ close to 0.5, but a negative consequence is low
efficiency under normality. Also, it seems that as the
amount of trimming increases, problems in obtaining
accurate confidence intervals diminish substantially
up to about γ = 0.2.

A common misconception is that trimming is
equivalent to randomly discarding 2g observations.
Another common mistake is to apply standard meth-
ods for means after trimming. The problem is that
the order statistics X(g+1), . . . , X(n−g) are dependent

random variables, so application of the usual esti-
mate of the standard error of the sample mean to
these n − 2g values, to estimate the standard error of
Xt , is inappropriate. If 2g observations are randomly
removed, the remaining observations would be inde-
pendent, which differs from trimming. The result is
that some of the practical advantages of trimming are
not intuitive to many researchers.

A practical problem is to find an appropriate
estimate of the standard error of the trimmed mean,
and there are theoretical results that supply a useful
solution. The resulting estimator depends in part
on the Winsorized sample mean (named after the
American statistician, C.P. Winsor),

Xw = 1

n
ΣWi,

where

Wi =





X(g+1), if Xi ≤ X(g+1),

Xi, if X(g+1) < Xi < X(n−g),

X(n−g), if Xi ≥ X(n−g).

(1)

An estimate of the squared standard error of Xt is

1

n2(1 − 2γ )2

∑
(Wi − W)2.

Another, nearly equivalent, estimate, that seems to
have a slight practical advantage in certain situa-
tions, is

1

nh

∑
(Wi − W)2,

where h, the so-called effective sample size, is n −
2g, the number of observations left after trimming.
Both estimates are slightly biased, but a Winsorized
unbiased estimate can be obtained by replacing n2 in
the first estimate with n(n − 1). (See [5] for details.)

Methods for comparing trimmed means have been
examined by simulations for many problems includ-
ing one-way and two-way designs, repeated mea-
sures (see Longitudinal Data Analysis, Overview),
random effects models and multiple comparisons.
Extensions to split plot and higher-way designs are
relatively straightforward. Trimming and Winsoriza-
tion also play a role in correlation and regression.
Details about all of these methods, with related tech-
niques, are summarized in [5]. For relevant theoreti-
cal results, see also [1–3].
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Truncated Survival Times

Truncation of survival data arises when observa-
tion of an experimental subject can only occur if
the value of the failure time (survival time) lies
within a certain interval, (l, r), where l or r may
be infinite. When the failure time is outside the
truncation interval, no information about the sub-
ject is observable; hence the subject is said to be
“sampled from a conditional distribution”. This fea-
ture distinguishes truncation from censoring; in the
latter situation, subjects are known to have failure
times greater (or less) than some fixed constant. An
important example of truncation in the analysis of
data on AIDS arose from investigation of blood
transfusions contaminated with the human immun-
odeficiency virus (HIV) [11] published in 1986. Data
from an AIDS registry that included date of onset
of AIDS and retrospective determination of transfu-
sion times were used to estimate the distribution of
latency times from HIV infection to onset of clini-
cal disease (see Latent Period). Lui et al. [11] were
able to observe only latency times short enough to
result in onset of AIDS before the end of the obser-
vation period, December 1985. For example, they
knew about only those contaminated transfusions
from June 1982 that were associated with latency
periods of less than 3.5 years. These data are said to
be right-truncated with a truncation time equal to the
difference between the end of the observation period
and time of transfusion. Because AIDS was not iden-
tified until 1981, latency periods of greater than 2
years were required for transfusions that took place
in 1979 to be included in the AIDS registry. When
failure times must exceed a certain value for the
subject to be observable, such data are said to be left-
truncated. In the transfusion case, truncation times
are equal to the difference between the beginning of
the observation period and the time of transfusion.
Thus, some transfusion dates result in data that are
only right-truncated; other dates yield data that are
left- as well as right-truncated. The following sections
describe estimation procedures for data that are only
right-truncated, or both left- and right-truncated; for
methods for data that are only left-truncated, see
Delayed Entry.

Nonparametric Maximum Likelihood
Methods

Methods for closed-form nonparametric maximum
likelihood estimation are available when data are
truncated only on one side; the simplest situation
occurs when data are only left-truncated. Following
an approach described by Kaplan & Meier [7] and
the formalization of Keiding [8], let l1, . . . , ln be arbi-
trary left-truncation times, and X be the underlying
random variable (latency period in our example)
with continuous distribution function F . Consider
Y1, . . . , Yn to be independent failure times, with Yi

following the conditional distribution of X given
X > li . Here and throughout this section we assume
there are no ties (see Tied Survival Times). We can
calculate the number at risk at time x as

R(x) = n(li ≤ x) − n(Yi < x),

where n(·) refers to the number of subjects. The
product-limit estimator of F is given by

1 − F̂ (x) = Pr(X > x) =
∏

Yi≤x

(
1 − 1

R(Yi)

)
.

Left truncation is equivalent to delayed entry into the
risk set. The Nelson–Aalen estimator may be used
to estimate the integrated hazard under left truncation

Λ̂(x) =
∑

Yi≤x

1

R(Yi)
.

When data are right-truncated, F is identifiable
only if the longest right-truncation time, rM =
sup{ri}, exceeds the longest possible time of
failure. Otherwise one can identify only G(x) =
F(x)/F (rM) [10]. Let zi denote the chronologic
time of transfusion, and R∗ denoted the end of
the observation period. The right-truncation times
ri are equal to R∗ − zi . Once again, we let
Yi denote the observed failure times (latency in
our example), sampled from X given X < ri .
Nonparametric maximum likelihood estimation in the
setting where only right truncation occurs can also
be performed using a product-limit estimator. Once
again, the presence of right censoring can easily
be accommodated. Intuition into the approach is
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provided by considering the problem in reverse time.
Consider a “reverse time” transformation, S = R∗ −
X, which transforms right truncation into (easier to
deal with) left truncation. We define a risk set at
(reverse) time s

R(s) = n(R∗ − ri ≤ s) − n(R∗ − Yi < s).

Thus, R(s) consists of subjects who have zi , such
that zi ≤ s (or ri ≥ x), and failure times such that
R∗ − Yi ≥ s or (Yi ≤ x). The product-limit estimator
is then

Pr(S > s|S ≥ 0) =
∏

R∗−Yi≤s

(
1 − 1

R(R∗ − Yi)

)

for R∗ − YM ≤ s ≤ R∗, and 1 for 0 ≤ s ≤ R∗ − YM ,
where YM is the maximum of the observed failure
times. Since

Pr(S > s|S ≥ 0) = Pr(X < R∗ − s|X < R∗)

= G(R∗ − s),

Ĝ(x) =
∏

Yi≥x

(
1 − 1

R(R∗ − Yi)

)
,

for 0 ≤ x ≤ YM , and 1 for YM ≤ x ≤ R∗. In practice
one can compute these estimates with software for
product-limit estimates that permit left truncation
(delayed entry). Subjects enter the risk set at time
zi and fail at time R∗ − Yi . Asymptotic properties of
the estimators have been studied by Woodroofe [19],
Wang et al. [18], and Keiding & Gill [9].

Example 1

Lagakos et al. [10] have considered the problem
of estimating and comparing the induction-time
distribution for 258 adults (group 0) and 37 children
(group 1) infected by blood transfusion, diagnosed
by June 30, 1986, and reported to the Center for
Disease Control before January 1, 1987. The data
were been condensed by grouping dates of infection
and AIDS into 3-month intervals beginning April
1, 1978. Thus z = 0 denotes an infection occurring
between April 1, 1978 and June 30, 1978, z =
0.25 denotes an infection occurring between July
1, 1978, and September 30, 1978, and R∗ = 8.
The data are right-truncated because only cases
(zi , Yi) such that zi + Yi ≤ R∗ were observed. Since
there are ties of Yis in this example, we have to

modify the methodology described above. Following
[10], let v1 < . . . < vm denote the distinct values
of (Y1, . . . , Yn), let uj = R∗ − vj , and define nj =
n(Yi = vj ), for j = 1, . . . , m. Notice that Nj in
[10] is the risk set R(R∗ − vj ). The nonparametric
maximum likelihood estimator of G(x) is

Ĝ(x) =
∏

vj ≥x

(
1 − nj

Nj

)
,

for 0 ≤ x ≤ vm, and 1 for vm ≤ x ≤ R∗.
Figure 1 shows the estimates Ĝ(x) for the groups

of adults and children. Conditional on being less
than 8 years, the induction times for children tend
to occur sooner than those for adults, with estimated
medians of about 3 and 5.5 years, respectively.
To compare to the above nonparametric results,
Lagakos et al. [10] also used a parametric likelihood
method to estimate F . They fit the Weibull model
F(x) = 1 − exp{−(θx)r } to the adult data, giving
a likelihood function that is extremely flat over a
range of parameter values representing a wide range
of induction distributions. Figure 1 also displays the
maximum likelihood estimates of G corresponding
to Weibull distributions with medians of 8.5 years
and 210 years. Both parametric maximum likelihood
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Figure 1 Nonparametric estimates of G based on data in
Table 1: - - - - - children; adults. Parametric
estimates of G based on Weibull distributions with medians
of: – – – 8.5 years; 210 years. Reprinted from
[10] by permission of Biometrika
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estimates agree with the nonparametric maximum
likelihood estimate Ĝ(x) reasonably well, indicating
that very different F(·) distributions can have similar
G(·) components. See also [5, 9], and [13].

When both left and right truncation occur,
closed-form solutions are not possible. A method
for obtaining the nonparametric maximum likelihood
estimate (NPMLE) was proposed by Turnbull [17],
that also accommodates left, right, and interval
censoring (see Turnbull Estimator). Turnbull
described a self-consistent approach to estimation that
turns out to be a version of the EM algorithm. In the
presence of both arbitrary censoring and truncation,
however, Turnbull’s self-consistent algorithm has
to be modified [3]. Alioum & Commenges [1]
provide a detailed correction of Turnbull’s method
and an extension to the regression analysis. Here,
we consider only the problem of truncation, and
assume that the failure times are uncensored. Let the
observed times of failure be at Yi, i = 1, . . . , N . Let
the probabilities of failure associated with Yi be pi .
The likelihood can be written as

L(p1, . . . , pN) =
N∏

i=1

pi∑
βijpj

,

where βij is 1 for all Yj that are within the truncation
interval for the ith person. Each observed individual
might be considered to represent others–Turnbull
called them “ghosts”–whose events occurred outside
the truncation interval. For example, in the transfu-
sion example above, the ghosts corresponding to case
i would include people infected by transfusion at time
zi but who had latencies longer than R∗ − zi . The
expected number of such subjects who will have dis-
ease onset at time Yj is

E(Iij ) = (1 − βij )pj∑
βikpk

. (1)

Once again, in order for F to be identifiable, rM must
exceed the longest possible failure time.

Expression (1) permits construction of an EM
algorithm. The complete data log likelihood (if Iij

were known) is

log Lc =
∑

ij

(αij + Iij ) log pj ,

where αij = 1 if the ith subject is observed to fail at
time j and 0 otherwise. Therefore the rth iteration of

the E-step is evaluation of

Er (log Lc|p, Y ) =
∑

ij

(αij + Er (Iij )) log pj

using (1); and the M-step maximizes this simple
expectation to obtain

pr+1
k =

∑

i

αik + Er (Iik)

∑

ij

αij + Er (Iij )
.

Regression Models

Regression models have also been developed for
settings in which the effect of covariates on failure
time is of interest. Suppose that we are interested
in determining whether a covariate, Z, such as age
at transfusion, chronologic time of transfusion, or
region, affected the time from transfusion to onset of
AIDS. We divide the time interval [0, R∗] into units
of equal length, where 0 is the time of the earliest
transfusion. Let A(j |z) denote the number of cases
corresponding to covariate z that have latency j for
0 ≤ j ≤ T , where T is the longest latency time that
can be reliably estimated. Since the observed cases
have different transfusion times and are observed
in the same chronologic time interval [0, R∗], the
observed portion of A(j |z), denoted A(j |z, r)(0 ≤
j ≤ r), depends on the truncation interval [0, r].

If the A(j |z) are regarded as multiple responses at
0 ≤ j ≤ T , models in categorical data analysis can
be used to model A(j |z). A number of investigators
have considered the following multinomial response
model (also with censoring), where failure time X

takes only discrete values j . The probability that
failure time, X, equals j , given covariate Z is

p(j |Z) = Pr(X = j |Z) = exp(ηj (Z))
∑

exp(ηk(Z))
,

where

ηj (Z) =
{

0, if j = 0,

αj + Z′βj , if 1 ≤ j ≤ T .

An alternative is the discrete proportional hazards
model [15]:

Pr(X = j |Z)
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=






(p0, . . . pj−1)
exp(Z′β)[1 − p

exp(Z′β)

j ],
if j < T,

(p0, . . . pT −1)
exp(Z′β),

ifj = T ,

where

pj = Pr(X > j + 1|X > j), for 0 ≤ j ≤ T − 1.

This model implies that the probability that a case is
reported at lag time j conditional on being reported
at time j or later is given approximately by

P(X = j |z, X ≥ j) = exp(αj + z′β),

where αj = log(− log(pj )).
We let θ = (α, β) and denote the dependence

of p(j |Z) on θ by p(j |Z, θ). We also denote the
truncation interval for the ith subject as [0, ri]. The
log likelihood under a chosen model and an observed
sample of size N , denoted {A(j |zi , ri)}1≤j≤ri ;1≤i≤N ,
is given by

log L(θ) =
N∑

i

ri∑

j

A(j |zi , ri)

×



log[p(j |zi , θ)] − log




ri∑

j=0

p(j |zi , θ)








 .(2)

Note that the second term above is the result of right
truncation and disappears if the data are not truncated.

Estimation of model parameters as well as
the variance–covariance matrix can be obtained
by maximizing the log likelihood above using
the Newton–Raphson method (see Optimization
and Nonlinear Equations). When the data are
not truncated, the analytical calculations of the
first- and second-order derivatives, necessary for
the Newton–Raphson method, are simplified. In
this case, some standard software packages can
be utilized to obtain the estimates. For example,
estimation of the parameter vector θ for the
multinomial response model can be consistently
estimated by using the loglinear model

log[µj(z)] = φ(z) + αj + zTβj , 0 ≤ j ≤ T , (3)

with the error following a Poisson distribution, where
µj (z) = E[A(j |z)] and the nuisance parameter
φ (z) is termed incidental [12]. So statistical
packages such as GLIM, which also implement

the complementary log-log model (see Quantal
Response Models), are easily utilized to estimate
the parameter vector θ . The simplicity of estimation
in the absence of truncation suggests using the EM
algorithm for estimation under either model, in the
presence of truncation [14].

Some other discrete-time regression models for
right-truncated data have been developed and applied
in the analysis of AIDS incidence and induction-time
distributions [2, 4, 6, 16]. Alioum & Commenges
[1] discussed methods for fitting a continuous pro-
portional hazards model for truncated and censored
data.

Example 2

We illustrate the use of regression models for
right-truncated data by applying these methods to
a problem that arises in analyses of data on AIDS
surveillance (see Surveillance of Diseases) in the
US. A data set released by the US Centers for
Disease Control in the first quarter of 1990 includes
AIDS diagnosis date and reporting date in six
geographic regions: Northeast, Central, West, South,
Mid-Atlantic, and Other. In this setting, R∗, the end of
the observation period, is the first quarter of 1990, and
the observed portion of A(j |Z), 0 ≤ j ≤ r , depends
on the truncation interval [0, r], where r = R∗ − x

and x is the chronologic time of AIDS diagnosis. To
adjust for reporting delay, we first model the covariate
effects of the chronologic time of AIDS diagnosis and
region by fitting the multinomial response model [14]
with

ηj (Z) = αj + region × γj + xζj

+ (region × x)ψj , 0 ≤ j ≤ T ,

where x is the year of diagnosis, and “region” is a
vector of five indicator variables that designate any
five of the six regions. When ψj = 0, for 0 ≤ j ≤ T ,
there is no interaction between region and x and the
delays have the same trend across the regions.

The reported cases were grouped on quarterly
intervals, and cases reported with a delay time
of more than 12 quarters were grouped into one
category, T = 12. The EM algorithm was used for
estimation under the model, as described above.
The median reporting delays for the six geographic
regions obtained from the above model are plotted
in Figure 2. The reporting delays appear to have
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Figure 2 Reporting delays for six geographic regions.
Reprinted from Biometrics, with permission

lengthened in the late 1980s, except for the Central
region and Other, in which the delays seem to have
shortened from 1983 to 1990. The South region has
the longest delay in reporting. Figure 2 also shows
strong interaction between the chronologic time trend
and geographic regions. Such analyses allow us to
distinguish between trends in reporting and in AIDS
incidence; without reporting delay estimates, AIDS
surveillance data are uninterpretable. The estimated
AIDS incidence can be obtained by dividing the
AIDS incidence at each chronologic time period by
the estimated probability that an AIDS case would be
reported in time for inclusion in the data base.
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Tukey, John Wilder

Born: June 16, 1915, New Bedford, Massachusetts.
Died: July 26, 2000, New Brunswick, New Jersey.

John Wilder Tukey (JWT) was one of the most
influential statisticians of the twentieth century. The
combination of his unorthodox education, scientific
interests, and exposure to a diverse range of applied
problems facing scientists and engineers across many
disciplines, enabled him to make significant contribu-
tions in many areas and to advance a new basic phi-
losophy for how statisticians approach data. He may
be best known to statisticians for founding the field
of exploratory data analysis [70], for introducing the
jackknife as a tool for characterizing the uncertainty
in a statistic [63], and for guiding and contributing to
research in robust methods [3, 8, 67]. But his name is
familiar to scientists in many other fields for diverse
reasons: Tukey’s lemma (mathematics); fast Fourier
transform, or FFT (digital computing, engineering,
and medicine), for which he received the Medal of
Honor from the Institute of Electronic and Electrical
Engineers (1982); multiple comparisons (psychol-
ogy and education); principles of sampling (social
science and medicine); binomial probability paper
(quality control); cloud seeding experiments (mete-
orology); spectrum and cepstrum estimation (geo-
physics); smoothing (science and engineering); and
coining the word “bit” (computer science).

Tukey had tremendous vision, addressing prob-
lems with solutions whose need was recognized,
sometimes only years or decades later. Two notable
examples are exploratory data analysis [70], with its
emphasis on statistical graphics (see Graphical Dis-
plays), and Index to Statistics and Probability [69],
forerunner to the present Current Index to Statistics
[2]; both foreshadowed needs to cope with the data
explosion of the 1990s. He believed that solving
the exact problem, even with only an approximate
solution, was better than solving the convenient and
easier (but only approximate) problem with the exact
solution: “Far better an approximate answer to the
right question, which is often vague, than an exact
answer to the wrong question, which can always be
made precise” [68, p. 13]. Consequently, an impor-
tant theme throughout his work is the validity of
inference that does not depend heavily on assump-
tions (e.g. Gaussian-distributed errors). He published

over 300 papers (nearly 100 of which appeared after
his federally mandated retirement in 1985), graduated
55 Ph.D. students, and advised countless others, both
undergraduate (e.g. David L. Donoho, William F.
Eddy, Paul A. Tukey) and graduate (e.g. Frederick
Mosteller, Marvin L. Minsky, Yoav Benjamini).

Tukey received numerous awards, including hon-
orary doctorates from seven universities; Deming
and Shewhart Medals (American Society for Qual-
ity); S.S. Wilks Medal (American Statistical Asso-
ciation); James Madison Medal (Princeton Univer-
sity); and the National Medal of Science from Pres-
ident Nixon in 1973, “for his studies in mathe-
matical and theoretical statistics. . .and for his out-
standing contributions to the applications of statistics
in the physical, social, and engineering sciences”.
His entire career was devoted to academic, gov-
ernment, and public service, through his association
with Princeton University (1937–2000), employment
and consultant for the Bell System (1945–2000),
membership in the National Academy of Sciences
(1961–2000), and participation on numerous gov-
ernment panels and academic committees. He was
a member of the President’s Scientific Advisory
Committee (PSAC) for Presidents Eisenhower and
Kennedy, and headed PSAC working groups for Pres-
idents Johnson and Nixon (environment, 1964–1965;
chemicals and human health, 1971–1972). He was
also a member of Technical Working Group 2 of
the Conference on the Discontinuance of Nuclear
Weapons Tests in Geneva (1959) and the United
Nations Conference on the Human Environment in
Stockholm (1972) for the US State Department.
Retired Chairman of the Board of Bell Laborato-
ries William O. Baker commented on his influential
contributions to the labs and to science at large, say-
ing, “We have watched at least four Presidents of the
United States listen to him and heed his counsel” [38,
p. 335].

Tukey’s career included a variety of projects that
led to important methodological developments in
biometry and biostatistics:

The National Halothane Study. This study [16, 42]
was conducted under the auspices of the National
Research Council in response to concerns about a
possible association between the use of halothane as
an anesthetic in surgical operations and fatal hepatic
necrosis (liver failure). The critical statistical issue
was the quantitative comparison of death rates for
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various anesthetics (halothane, ether, cyclopropane,
nitrous oxide-barbiturate, “other”), in the presence
of unavoidable confounding variables (e.g. type of
operation; hospital where operation was performed;
length of operation; and age class in 10-year inter-
vals, gender, ethnicity, and physical status of the
patient), whose effects grossly dominated the differ-
ences among the anesthetics. With millions of covari-
ate combinations and only 800 000 cases, Tukey and
his colleagues developed a method to standardize
rates (see Standardization Methods), or adjust for
the joint effects of suitably selected combinations
of variables, which they called “smear-and-sweep
analysis” [48]. Similar issues arose in quantifying
the effect of sulfinpyrazone after myocardial infarc-
tion [5]. Tukey returned to the important issue of
adjustment in the 1980s in connection with the US
decennial census [25]: in the spirit of approximate
solutions to right problems, he wrote, “adjustment to
reduce bias cannot wait for perfection but must be
considered as soon as we recognize that it will help.
Incomplete adjustment to reduce bias, since that is
all we can ever do, is desirable and not to be deni-
grated” [76, p. 127].

Multiple Comparisons. The widely circulated 1953
manuscript, “The problem of multiple comparisons,”
appeared in Volume VIII of The Collected Works of
John W. Tukey [80]. It set out the concepts of “error
rate per comparison/determination”, “error rate per
family/batch”, and “error rate familywise/batchwise”,
as well as “error rate budgeting” [80, p. 5],
which guided the research into these methods
for the next 40 years. He advocated the “wholly
significant difference” (WSD), for the allowance
when comparing any two means in a fixed-effects,
one-way analysis of variance (see Experimental
Design) or linear regression model (based on
the Studentized range statistic, and later called
“honestly significant difference” (HSD); see [41,
p. 92]), as opposed to the “least significant
difference” (LSD), which is based on the F -
statistic (see F Distributions) in a one-way analysis
of variance; see also [9] for a broad overview.
With increasing volumes of data (e.g. microarrays,
county rates of disease mortality and incidence),
Tukey returned to this area in the 1990s, in
his advisory role on committees for the National
Assessment of Education Progress (NAEP), which
involved thousands of comparisons of measures

among various states in the United States [1], and
for presenting results of plant breeding experiments
[7] and of animal studies [22, 82]. He acknowledged
“the usefulness of – and need for – a variety of
procedures reflecting the varied strength of different
experiments” [81, p. liv].

Jackknife. In perhaps the most oft-cited abstract in
the statistics literature, Tukey described, in only six
sentences, the jackknife as a procedure for assessing
the uncertainty in a statistic [63]. By leaving out
one observation (or one group of observations) at
a time, one can recompute the statistic, and then
calculate the usual sample standard deviation of
these “leave-out-one” statistics, to obtain an estimate
of the standard error of the statistic computed
on the entire sample (see also [43, Chapter 7]).
The use of the jackknife had a huge impact on
statistical practice intervals. Efron later analyzed the
bias and variance of such jackknifed estimates of the
standard error, leading him to propose the bootstrap
[23, 24]. Fernholz, Morgenthaler, and Tukey [27]
later combined jackknife samples using principles
of experimental design and Hadamard matrices (see
Response Surface Methodology) to derive methods
of “nominating” outliers.

Clinical Trials. Tukey’s recommendations for the
design and analysis of clinical trials included the
unequivocal value of the focused randomized clinical
trial and the ethical consequences of lesser, unfo-
cused alternatives [71], the combination of covariates
in assessing treatment effects [77], problems of mul-
tiplicity [78], and designs whose analysis relies on
“probability statements that depend on only exactly
how the trial was conducted – not at all on assump-
tions”, which he termed the “platinum standard”
[79, p. 266]. Several of the ideas recommended by
Brillinger, Jones, and Tukey [15], for the design
of cloud-seeding experiments, are applicable to the
design of clinical trials with tight constraints.

Statistical Problems of the Kinsey Report. In the
appendix to their evaluation of the “Kinsey report”
[17], Cochran, Mosteller, and Tukey discussed
important principles in survey sampling (see Sam-
ple Surveys in the Health Sciences), such as sample
selection, generalization from sample to population,
accuracy of interview data, systems of interviewing,
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methods of checking and analyzing data, and the
reporting of results [17–19].

Statistical Mapping. Tukey emphasized graphical
displays and used them heavily in all his work,
particularly for geographical data. In “Statistical map-
ping: what should not be plotted” [74], he argued that
chloropleth (“patch”) maps inappropriately draw too
much attention to region size and political bound-
aries, and that displayed rates, adjusted properly for
age, should be further adjusted for other variables
known to have strong effects (e.g. lung cancer and
smoking, or a proxy for smoking such as urbaniza-
tion; see [31]), and then smoothed [72, 74]. The Atlas
of United States Mortality [44] implemented many of
these ideas.

Tukey was famous for parallel processing; rarely
did he engage in only one activity at a time. Seminar
speakers recall seeing him in the audience, working
on an entirely different project or even seemingly
completely asleep, yet rising at the end to deliver
insightful comments on the presentation [37, p. xlv] –
often telling the speaker not only what he did wrong,
but also how he might do it right the next time [32].
He was a large man, often seen wearing a black polo
shirt, whose pocket bulged with his address book and
four-color pens. He relaxed by frequenting mystery
book stores and organizing birding expeditions in
various places where meetings took him, all over the
world. He was able “to carry out two or three times
the load of ordinary men” [12]. He was also known
for “making up words” – but those who worked with
him knew that he proposed a new word only when
he was absolutely certain that no other word (in
any of the large number of languages that he knew)
precisely matched his intended meaning (e.g. “hinge”
or “fourth” versus “sample quartile”; “batch” versus
“random sample”; [34, p. 4]).

Tukey was born in New Bedford, Massachusetts,
the only child of Adah M. (Tasker) and Ralph H.
Tukey, both 1898 graduates (first and second) of
Bates College (Lewiston, Maine), and both educa-
tors (his father earned a Ph.D. degree in classics and
chaired the Latin department at New Bedford High
School). Recognizing JWT’s genius at age 3, they
educated him at home. He did attend high school
“for one term in French and some mechanical draw-
ing” [14, p. 26], and spent much time in the New
Bedford public library, reading the Journal of the

American Chemical Society and the Transactions of
the American Mathematical Society. He was admit-
ted to Brown University in 1933 on the basis of his
College Board Examinations. He received the Sc.B.
and Sc.M. degrees in chemistry in 1936 and 1937 and
entered the Ph.D. program in chemistry at Princeton
in September 1937. His concurrent interest in mathe-
matics flourished around the stimulating environment
at Fine Hall and the Institute for Advanced Study at
Princeton, so he soon transferred to the Mathemat-
ics Department, passed his oral examinations in May
1938, and completed his dissertation the following
spring (Tukey [52], published by Princeton Univer-
sity Press as Convergence and Uniformity in Topol-
ogy, [53]). During his years as a graduate student,
his friends and later collaborators included physi-
cists Richard Feynman and Lyman Spitzer [49, 50];
mathematicians Ralph Boas [11] and Arthur Stone
[51]; William Baker, later chairman of the board of
Bell Laboratories; and Frederick Mosteller, a life-
long friend and frequent collaborator (of four books
and 24 articles). Tukey joined on the mathemat-
ics faculty at Princeton, as Instructor (1939–1941),
Assistant Professor (1941–1948), Associate Profes-
sor (1948–1950), Professor (1950–1965), and later
as Professor of Statistics (1965–1985), Donner Pro-
fessor of Science (1976–1985), and Professor Emer-
itus and Senior Research Statistician (1985–2000).

During World War II and while teaching at Prince-
ton, Tukey held the position of Research Associate
in the Fire Control Research Office (1941–1944). He
worked closely with his mentor, Charles P. Winsor,
for whom he later named the robust location esti-
mate, “Winsorized mean” [30, 66], and to whom he
dedicated the book Exploratory Data Analysis [70].
Tukey and his colleagues worked on projects related
to the war effort, including stereoscopic range find-
ers and testing of rocket powders. In 1945, he joined
Bell Laboratories, first as a Member of the Technical
Staff (MTS), working on anti-aircraft guided missiles
(later Nike and Nike-Ajax). Samuel S. Wilks in the
Mathematics Department at Princeton asked him to
teach statistics, and Tukey remained part-time at both
institutions for the next 40 years. His dual career at
Bell Labs proceeded from MTS to Assistant Director
of Research in the Department of Communications
Principles (1958–1961), and then as Associate Exec-
utive Director of Research in Information Sciences
(1961–1985) and consultant (1985–2000), working
on problems of signal processing, communications
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engineering, and information retrieval and interpre-
tation. The Measurement of Power Spectra from the
Point of View of Communications Engineering [10]
was the leading authoritative work on spectrum anal-
ysis (see Spectral Analysis); its principles were used
even more widely after Tukey introduced computer
scientists to an algorithm that permitted fast and
efficient computation of fast Fourier transforms
(FFT); [20].

In the 1950s and 1960s, Tukey wrote papers
on concepts in mathematical statistics, regression
and analysis of variance, and methodology that
assume no particular distributional form (i.e.
nonparametric); for example, population tolerance
limits and confidence bands for a continuous,
cumulative, distribution function [46, 47]; means,
variances, and covariances of order statistics
for small samples from Gaussian (see Normal
Distribution) and non-Gaussian distributions [33];
a useful bound on the ratio of the variance of the
mis-weighted mean to the variance of the optimally
weighted mean [54]; the robustness of Student’s t
confidence intervals (Tukey [55]; see also [6]).

His numerous contributions in Biometrics have
had important consequences for later practice and
research in statistics. Tukey [56] derived the
allowance for comparing all pairwise differences
among several means in a one-way analysis of vari-
ance based on the studentized range distribution
(distribution of the range of Gaussian random vari-
ables all having the same variance, estimated by
the mean square for error), now called “Tukey’s
method of multiple comparisons.” In “One degree
of freedom for nonadditivity” [57], Tukey developed
a test for an interaction term (of a specific form)
between the two factors in a two-way layout with no
replication. McNeil and Tukey [40] proposed diag-
nostic plots for estimating this interaction parame-
ter (see also [43, Chapter 9], and [35, Chapter 3]).
A short abstract published in Biometrics [65] con-
tained technically advanced theory for the develop-
ment of highly fractionated and saturated experimen-
tal designs (see Fractional Factorial Designs) to
investigate many factors in very few runs (see also
[64]), potentially applicable to the design of clinical
trials today. Several other papers addressed the analy-
sis of single and higher-order classifications [59–61]
Papers on transformations, which he later called
reexpressions (which later included combinations of
two or more transformations to different segments of

the data), also have had a lasting impact on statistical
practice ([28, 62]; see also [34]).

Tukey’s association with Winsor led him to
distrust analyses that relied heavily on often
unverifiable assumptions about the data. Many of
his papers provide methods with minimal reliance
on distributional assumptions. Cornfield and Tukey
[21] concentrated on the expectation of mean squares
in crossed and nested classifications, “based on a
model of sufficient generality and flexibility that the
necessary assumptions concern only the selection
of the levels of the factors [e.g. fixed or random]
and not the behavior of what is being experimented
upon [e.g. the underlying distributions]” (p. 907).
In “Components in regression,” Tukey was “princi-
pally concerned with simple linear regression where
both variates are subject to ‘error”’ [58, p. 34], and
laid out the problems later addressed by the field
now known as “errors in variables.” In a semi-
nal paper, “A survey of sampling from contaminated
distributions,” Tukey [82] showed that the asymp-
totic variance of the mean absolute deviation from
the mean is less than that of the sample standard
deviation if the underlying distribution is a contami-
nated normal, when the fraction of the contamination
by a normal distribution having three times the stan-
dard deviation of the target normal, is as small as
0.0018 (less than two observations per thousand).
This paper guided the development of robust methods
(see Robustness) for the next two decades, including
the “Princeton Robustness Study” [3], which inves-
tigated the performance of 65 estimators of location.
A by-product of this research was the development
of a clever simulation algorithm, called the Monte
Carlo Swindle, described in Andrews et al. [3, § 4D,
pp. 61–63]. Later, Beaton and Tukey [8, p. 151]
proposed the “biweight” as a robust estimator of loca-
tion; (see also [43, pp. 205–206]). Beaton and Tukey
were concerned with a regression coefficient, but the
biweight has been shown to be remarkably efficient
and to perform extremely well in a variety of other
contexts.

Tukey’s extensive experience with data and asso-
ciation with Charles P. Winsor and Edgar Ander-
son led him to develop a more flexible approach
to data, “exploratory data analysis”, which he later
described as “an attitude, a state of flexibility, a
willingness to look for those things that we believe
are not there, as well as for those we believe
might be there. Except for emphasis on graphs, its
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tools are secondary to its purposes” [73]. His book,
Exploratory Data Analysis , or EDA [70] describes
many such tools, including stem-and-leaf displays;
boxplots (extended by McGill, Tukey, Larsen [39],
and by Rousseeuw, Ruts, Tukey [45]); letter value
displays; robust smoothing by running medians;
median polish; and resistant line fitting. Subsequent
books [34–36] emphasized the exploratory approach
in practice. His methods were designed to extract the
“fit” in the data decomposition data = fit + residual ,
with special emphasis on graphical displays. “Pro-
jection pursuit,” an algorithm to identify interesting
unexpected structure in higher-dimensional data [29],
has a similar goal. In contrast, “confirmatory anal-
ysis” emphasized fitting specific models and test-
ing particular hypotheses. Despite the distinction
between these two approaches, Tukey nonetheless
believed that, “We need both exploratory and con-
firmatory” [75].

Even after this age-mandated retirement from AT
& T and Princeton in 1985, Tukey’s commitment
was unflagging. He continued to write, attend
conferences and workshops, and discuss statistical
problems until his final days. He consulted
extensively for various organizations, including
Xerox Palo Alto Research Center (1985–2000),
which led to 10 patents on which his name
appears as coinventor; Health Effects Institute,
which sponsors epidemiological studies on matters
related to health; Merck Laboratories (1952–2000);
Educational Testing Service (1965–2000); Schering-
Plough; and Pfizer. He remained generous with his
time and ideas to both students and colleagues, and
the research ideas that he conceived continue to be
pursued today. Upon his death, a press release from
Princeton University (26 July 2000) quoted Princeton
Emeritus Professor of Physics John A. Wheeler
as saying: “I believe that the whole country –
scientifically, industrially, financially – is better off
because of him and bears evidence of his influence.”

Further information about his life appears in var-
ious sources: The Collected Works of John W. Tukey
(brief biography by Frederick Mosteller); The Prac-
tice of Data Analysis ([14]; biography, pp. 5–8;
interview conducted by L.T. Fernholz and S. Mor-
genthaler, pp. 26–45), [13], interviews conducted by
Anscombe [4] and Fernholz and Morgenthaler [26],
and special issues of Technometrics (August 2001),
The Annals of Statistics (May 2002), and Statistical
Science (August 2003).
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[47] Scheffé, H. & Tukey, J.W. (1945a). Non-parametric
estimation, I: Validation of order statistics, Annals of
Mathematical Statistics 16, 187–192.

[48] Scott, R.C. (1988). Smear and sweep, in Encyclopedia
of Statistical Sciences, Vol. 8, S. Kotz, N.L. Johnson &
C.B. Read, eds. Wiley, NY, pp. 515–517.

[49] Spitzer, L. & Tukey, J.W. (1949c). Interstellar polar-
ization, galactic magnetic fields, and ferromagnetism,
Science 109, 461–462.

[50] Spitzer, L. & Tukey, J.W. (1951c). A theory of interstel-
lar polarization, Astrophysical Journal 114, 187–205.

[51] Stone, A. & Tukey, J.W. (1942b). Generalized “sand-
wich” theorems, Duke Mathematical Journal 9,
356–259. Reprinted in The Collected Works of John
W. Tukey, Volume VI: More Mathematical, 1938–1984 ,
C.L. Mallows, ed. Wadsworth, Monterey, 1990, pp.
11–13.

[52] Tukey, J.W. (1939b). Denumerability in Topology,
Ph.D. Thesis, Princeton University, Princeton, (Pam
4572).

[53] Tukey, J.W. (1940a). Convergence and uniformity in
topology, Annals of Mathematical Studies, Number 2.
Princeton University Press, Princeton.

[54] Tukey, J.W. (1948b). Approximate weights, Annals of
Mathematical Statistics 19, 91–92.

[55] Tukey, J.W. (1948c). Some elementary problems of
importance to small sample practice, Human Biology 20,
205–214.

[56] Tukey, J.W. (1949f). Comparing individual means in the
analysis of variance, Biometrics 5, 99–114.

[57] Tukey, J.W. (1949h). One degree of freedom for non-
additivity, Biometrics 5, 232–242. Reprinted in The
Collected Works of John W. Tukey, Volume VII: Facto-
rial & Anova, 1949–1962 , D.R. Cox, ed. Wadsworth
Advanced Books & Software, Pacific Grove, 1992, pp.
1–13.

[58] Tukey, J.W. (1951a). Components in regression, Biomet-
rics 7, 33–49.

[59] Tukey, J.W. (1956d). Variances of variance components:
I. Balanced designs, Annals of Mathematical Statistics
27, 722–736. Reprinted in The Collected Works of John

W. Tukey, Volume VII: Factorial & Anova, 1949–1962 ,
D.R. Cox, ed. Wadsworth Advanced Books & Software,
Pacific Grove, 1992, pp. 157–178.

[60] Tukey, J.W. (1957a). Variances of variance compo-
nents: II. The unbalanced single classification, Annals
of Mathematical Statistics 28, 43–56. Reprinted in The
Collected Works of John W. Tukey, Volume VII: Facto-
rial & Anova, 1949–1962 , D.R. Cox, ed. Wadsworth
Advanced Books & Software, Pacific Grove, 1992, pp.
241–260.

[61] Tukey, J.W. (1957b). Variances of variance components:
III. Third moments in a balanced single classification,
Annals of Mathematical Statistics 28, 378–384.

[62] Tukey, J.W. (1957c). On the comparative anatomy of
transformations, Annals of Mathematical Statistics 28,
602–632. Reprinted in The Collected Works of John
W. Tukey, Volume VI: More Mathematical, 1938–1984 ,
C.L. Mallows, ed. Wadsworth, Monterey, 1990, pp.
167–209.

[63] Tukey, J.W. (1958g). “Bias and confidence in not-
quite large samples [abstract],” Annals of Mathematical
Statistics 29, 614. Reprinted in The Collected Works
of John W. Tukey, Volume VI: More Mathematical,
1938–1984 , C.L. Mallows, ed. Wadsworth, Monterey,
1990, p. 391.

[64] Tukey, J.W. (1959d). Discussion of the papers by
Messrs. Satterthwaite and Budne, Technometrics 1,
166–174.

[65] Tukey, J.W. (1959g). Little pieces of mixed factorials
(abstract), Biometrics 15, 641–642.

[66] Tukey, J.W. (1960d). Discussion of Anscombe and
Daniel papers, Technometrics 2, 159–163.

[67] Tukey, J.W. (1960f). A survey of sampling from
contaminated distributions, Chapter 39 in Contribu-
tions to Probability and Statistics: Essays in Honor of
Harold Hotelling, I. Olkin, S.B. Churye, W. Hoeffd-
ing, W.C. Madow, H.B. Mann, eds. Stanford University
Press, Stanford, pp. 448–485.

[68] Tukey, J.W. (1962a). The future of data analysis, The
Annals of Mathematical Statistics 33(1), 1–67. Reprinted
in The Collected Works of John W. Tukey, Volume IV:
Philosophy and Principles of Data Analysis, 1949–1964 ,
L.V. Jones, ed. Wadsworth & Brooks/Cole Advanced
Books & Software, Monterey, pp. 391–484.

[69] Tukey, J.W. (1973f). Index to Statistics and Probability:
Citation Index, Volume 2 of the Information Access
Series . The R&D Press, Los Altos.

[70] Tukey, J.W. (1977a). Exploratory Data Analysis.
Addison-Wesley, Reading.

[71] Tukey, J.W. (1977d). Some thoughts on clinical tri-
als, especially problems of multiplicity, Science 198,
679–684. Reprinted in Evaluation Studies Review
Annual, T.D. Cook & Associates, eds. 3, Sage: Beverly
Hills, 1978, pp. 327–332.

[72] Tukey, J.W. (1979e). Methodology, and the statistician’s
responsibility for BOTH accuracy AND relevance, Jour-
nal of the American Statistical Association 74, 786–793.



8 Tukey, John Wilder

[73] Tukey, J.W. (1979f). Discussion on ‘Nonparametrics
statistical data modeling’ by E. Parzen, Journal of the
American Statistical Association 74, 121–122. Reprinted
in The Collected Works of John W. Tukey, Volume IV:
Philosophy and Principles of Data Analysis, 1949–1964 ,
L.V. Jones, ed. Wadsworth & Brooks/Cole Advanced
Books & Software, Monterey, pp. 805–809.

[74] Tukey, J.W. (1979g). Statistical mapping: What should
not be plotted, Proceedings of the 1976 Workshop on
Automated Cartography, DHEW Publication No. (PHS)
79–1254, 18–26. Reprinted in The Collected Works
of John W. Tukey, Volume V: Graphics, 1965–1985 ,
W.S. Cleveland, ed. Wadsworth & Brooks/Cole
Advanced Books & Software, Pacific Grove, 1988, pp.
109–121.

[75] Tukey, J.W. (1980a). We need both exploratory and
confirmatory, The American Statistician 34, 23–25.
Reprinted in The Collected Works of John W. Tukey,
Volume IV: Philosophy and Principles of Data Analysis,
1949–1964 , L.V. Jones, ed. Wadsworth & Brooks/Cole
Advanced Books & Software, Monterey, pp. 811–817.

[76] Tukey, J.W. (1985d). Comment on: Estimating the popu-
lation in a census year: 1980 and Beyond (E.P. Ericksen,
J.B. Kadane), Journal of the American Statistical Asso-
ciation 80, 127–128.

[77] Tukey, J.W. (1991o). Use of many covariates in
clinical trials, International Statistical Review 59(2),
123–137.

[78] Tukey, J.W. (1992r). Souvenir sheets for ‘Seventeen
points relevant to multiplicity in clinical trials’ Unpub-
lished manuscript (distributed at the Merck-Temple con-
ference, 13 November 1992).

[79] Tukey, J.W. (1993i). Tightening the clinical trial, Con-
trolled Clinical Trials, 14, 266–285.

[80] Tukey, J.W. (1993b). The Problem of Multiple Com-
parisons, 1953 unpublished manuscript, printed in The
Collected Works of John W. Tukey, Volume VIII: Multi-
ple Comparisons, 1948–1983 , H.I. Braun, ed. Chapman
& Hall, New York, 1993, pp. 1–300.

[81] Tukey, J.W. (1994). Foreword to the multiple com-
parisons volume, in The Collected Works of John W.

Tukey, Volume VIII: Multiple Comparisons, 1948–1983 ,
H.I. Braun, ed. Chapman & Hall, New York, 1993, pp.
liii–liv.

[82] Tukey, J.W., Ciminera, J.L. & Heyse, J.F. (1985p). Test-
ing the statistical certainty of a response to increasing
doses of a drug, Biometrics 41, 295–301.

Further Reading

Dolby, J.L. & Tukey, J.W. (1973e). The Statistics CumIndex.
The R&D Press, Los Altos.

Hoaglin, D.C. (1983). Letter values: a set of selected
order statistics, Chapter 2 in Understanding Robust and
Exploratory Data Analysis, D.C. Hoaglin, F. Mosteller &
J.W. Tukey, eds. Wiley, New York.

Mason, T.J., McKay, F.W., Hoover, R., Blot, W.J. &
Fraumeni, J.F., Jr. (1975). Atlas of Cancer Mortality
for U.S. Counties: 1950–1969, DHEW Publication No.
(NIH)75–780, U.S. Government Printing Office, Wash-
ington.

Quenouille, M.H. (1956). Notes on bias in estimation, Bio-
metrika 43, 353–360.

Ross, I.C. & Tukey, J.W. (1973g). Index to Statistics and
Probability: Locations and Authors, Volume 5 of the
Information Access Series . The R&D Press, Los Altos.

Tukey, J.W. (1959a). A quick, compact two-sample test to
Duckworth’s specifications, Technometrics 1, 31–48.

Tukey, J.W. (1962c). Keeping research in contact with liter-
ature: citation indices and beyond, Journal of Chemical
Documentations 2, 34–37.

Tukey, J.W. (1963f). A citation index for statistics and proba-
bility Bulletin of the International Statistical Institute 40,
747–756.

Tukey, J.W. (1963g). A tagging system for journal articles and
other citable items: a status report, Annual Report for
1963 under National Science Foundation Grant NSF-GN-
297 (from the Office of Science Information Services).

KAREN KAFADAR



Tumor Growth

Since the control of tumor growth is the purpose of
cancer treatment, it is natural to ask: What are the
characteristics of that growth which can be measured
in a quantitative fashion for prognostic, diagnostic or
explanatory purposes? Loosely, there are three dif-
ferent types of measurements that might be made to
describe the growth of a tumor. The simplest mea-
sure of total growth is a series of sequential size
measurements to produce an overall growth curve.
At the cellular level, measurements can be made of
proliferative markers related to the growth of the
tumor and, possibly, to the mechanisms controlling
growth. Finally, at the molecular level, measurements
are made of genes and gene products controlling
the proliferation of a tumor. Each of these mea-
surements has limitations, but can be of great inter-
est.

Tumor Growth Curves

Of the different types of measurements, that of the
total tumor growth is undoubtedly the most impor-
tant, but often unavailable for analysis in the clinical
setting. Indeed, if the future growth of a tumor could
be predicted then it might be possible to develop
individualized treatments for patients depending on
the specific properties of their tumors. In practice,
comparing the growth patterns of tumors induced in
animals following treatment is a standard method for
screening potential anti-cancer agents prior to clinical
use and for the study of carcinogenesis (see Ani-
mal Screening Systems; Tumor Incidence Experi-
ments).

There are several reasons why total tumor growth
measurements may not be possible. Normally, unless
the patient chooses otherwise, treatment begins as
soon as the tumor is discovered. While retrospective
studies of earlier diagnostic procedures, e.g. mammo-
grams, can sometimes be done with detection of the
tumor at an earlier size [9], it is more likely that
only bounds on the rate of growth can be found.
Even in animal studies, the growth rate of tumors
can usually be followed only for short periods of
time because of ethical considerations or early death
of the animal. For example, in murine tumors, com-
monly used in radiation biology studies, the tumors

seldom can be measured for much more than four
volume doublings so that a comparison of growth
rates is usually determined among murine experimen-
tal tumors on the basis of growth between 4.0 mm
mean geometric diameter and 12.5 mm [12]. (Meth-
ods do exist for obtaining estimates at smaller sizes,
but these are less precise.) Inferential estimates on
tumor growth rates can be made also on the basis of
size at detection [2] and as done in some carcinogen-
esis studies [15].

While the actual form of the total growth curve
is unknown, it is generally accepted that tumors,
unlike cells in tissue culture, do not increase expo-
nentially. (A detailed study of different models has
been made in model systems by Marusic et al. [8].)
The key question then is to understand and pre-
dict the changing nature of tumor growth. Gener-
ally, it is agreed [10, 11] that there are three cel-
lular determinants of the population growth. First
is the cell cycle time TC, or the minimal time
required for a cell to grow, duplicate its DNA, and
divide. Second is the fraction of cells in a tumor
actively dividing, known as the growth fraction, GF.
Third is the rate of death or cell loss from the
tumor. Since the tumor doubling time of an indi-
vidual tumor is not accessible, a variety of methods
have been devised to identify surrogate markers of
proliferation in the population reflecting the over-
all growth of the tumor on the basis of measure-
ments made at a single time, such as at biopsy
or surgery.

Proliferation Markers

At the cellular level, the methods of analytical cyto-
metry [3] are employed to identify subpopulations
of tumor cells having specific markers associated
with growth such as DNA content. Since cells go
through a regular progression of DNA contents or
phases, known as G1 (post-mitotic and the state of
the majority of cells in tissues), S (actively syn-
thesizing DNA), G2 (pre-mitotic), and M (mito-
sis), it is possible to measure the fractions of cells
in a population in any given state of the divi-
sion cycle. If we assume that the population is in
a steady state where the fraction of cells in each
phase is constant, from branching process theory
[6] we assert that the phase fractions are propor-
tional to the time spent in each phase. Thus, one
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can, for example, compare the fractions of cells
in the S-phase in two tumors and argue that the
tumor with the greater fraction synthesizing DNA
will be the faster growing. Unfortunately, these meth-
ods only give the relative fractions in each phase and
two tumors with widely differing cycle times might
appear identical [13]. There is an extensive literature
on the validity of such markers as prognostic factors
[3, 4].

An alternative approach to obtaining dynamic
markers of proliferation, including specific times for
each tumor, is based on the fact that certain halo-
genated thymidine analogs, e.g. bromodeoxyuridine,
which label cells exclusively during DNA synthe-
sis, can be detected by monoclonal antibodies. It is
thus possible to identify a cell’s bivariate analysis
of DNA content and label. The duration of the S-
phase, TS, can then be estimated from the change in
DNA content of the labeled cells [1]. Using the phase
fractions and the known TS, an estimate of the dou-
bling time, known as the potential doubling time or
Tpot, can be computed [14]. Tpot, introduced by Steel
[11], is related to TC by Tpot = ln(1 + GF)TC/ ln 2
and is considered to be the doubling time that would
occur without the presence of cell loss. Usually
the GF cannot be measured so that TC cannot be
determined, but Tpot may provide a useful dynamic
estimate of the state of a tumor. As such Tpot has
formed the basis for a series of prospective trials
for assigning patients to altered radiotherapy treat-
ments [12].

Other proliferation markers, such as Ki67 and
PCNA, are commonly studied and new ones [5] are
continually being developed. The advantage of these
markers is that they can be determined in individual
cells so that population averages may be determined,
but in many cases, such as DNA content, these
markers are removed from the molecular machinery
controlling cell proliferation and may not be closely
associated with long-term tumor growth.

Molecular Markers

Most recently, at the molecular level, a series of
methods are being employed to determine the growth
status on the basis of the occurrence of aberrant gene
products. In this methodology, specific genes or gene
products known to control cell regulation are mea-
sured in cells obtained from tumors. Unfortunately,

the tools are largely qualitative, leaving one with a
series of statements such as p53 is overexpressed or
BCL is upregulated in a tumor without it being possi-
ble to describe the fraction of cells actively involved
in this process. The advantage of this methodology is
that it provides a systematic approach for gene ther-
apy to suppress specific genes and possibly control
the tumor growth. For a current overview of these
approaches, see [7].
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Tumor Incidence
Experiments

The primary purpose of a typical tumorigenesis study
is to evaluate the rate at which new tumors develop.
Thus, the focal point in the analysis of such an
experiment should be the tumor incidence rate. Con-
sequently, the ideal statistical analysis treats tumor
onset as the endpoint of interest, estimates the tumor
incidence rates, and formally compares treatment
groups with respect to these incidence rates.

In practice, several factors complicate what other-
wise might be a straightforward failure-time (or
survival) analysis. Among the complexities are: no
uncensored onset times (see Censored Data), dif-
ferential survival, and tumor lethality. Some of the
proposed solutions, which introduce complications of
their own, include: focusing on a different endpoint
(see Response Variable), assuming a particular level
of tumor lethality, assigning individual causes of
death, requiring some animals to be sacrificed, spec-
ifying parametric models, and imposing functional
restrictions. This article summarizes the advantages
and disadvantages associated with these approaches,
and gives a short description of each method.

Background

Tumor Incidence

Tumor incidence refers to the rate of tumor onset
during a given time period, where onset is the earli-
est stage of tumor development at which the lesion
could be detected microscopically. The time inter-
val over which new tumors are accrued can vary
in length from infinitesimal to an entire lifetime. If
time is treated as continuous, the incidence rate is
the hazard rate for tumor onset, which is an instan-
taneous (conditional) failure rate. Often, the timescale
is partitioned into intervals, and a discrete incidence
rate can be defined for each interval. Here, the inci-
dence rate is the probability that tumor onset occurs
in a particular interval, conditional on being alive and
tumor-free upon entering that interval. If time is com-
pletely ignored, by treating the entire study as one
large time interval, the incidence rate reduces to the
lifetime probability of developing a tumor.

Study Design

Generally, studies involve both sexes of two rodent
species, usually one strain of mice and one strain of
rats. Exposures often begin when animals are 6–8
weeks of age and typically continue for two years,
which corresponds to late middle age in these rodents,
at which point all live animals are killed and necrop-
sied. Some two-year studies incorporate interim sac-
rifices, which call for randomly selected subsets of
animals to be killed and examined at intermediate
times (see Serial-sacrifice Experiments). For each
sex/species combination, the study usually includes
one control group and several (e.g. three) exposed
groups. For a single type of exposure, the treatment
groups differ, in theory, only with regard to the dose
level of exposure. After being stratified on weight,
typically 50 animals are randomly assigned to each
group, with perhaps ten more animals per group for
each interim sacrifice planned.

Conditions and Assumptions

We focus on a single sex/species combination and we
restrict attention to tumors at a single site. All tumors
are assumed to be irreversible and, except for illus-
trating the ideal analysis, all tumors are assumed to be
occult (unobservable in live animals). When multiple
tumors occur at the site of interest, we do not adjust
for multiplicity; we simply classify animals as tumor-
free or tumor-bearing. In these situations, tumor onset
refers to the onset of the first tumor. The time vari-
ables are measured from a common origin, such as
birth, weaning, or study initiation. The term “sacri-
fice” refers to the intentional killing of a randomly
selected animal, which acts as a random censoring
mechanism with respect to the failure times, where
failure might represent either tumor onset or death.

Stochastic Model

The simplest way to view the problem is in terms
of a competing risks framework, in which each
animal is subject to two competing risks: tumor
onset or death without the tumor. Each animal is
initially tumor-free, but eventually either develops
the tumor or dies without the tumor. Thus, we can
imagine a three-state stochastic model with one initial
state (alive and tumor-free), one transient state (alive
and tumor-bearing), and one absorbing state (dead)
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(see Fix–Neyman Process). If followed long enough,
each animal would travel from the initial state to the
absorbing state, either directly or through the transient
state. We observe which of the two paths is taken
from birth to death, as well as the sojourn time for
the overall journey, but not the sojourn times for the
transitions to and from the intermediate state.

Notation

Let X denote the time to the first event, either tumor
onset or tumor-free death, and let T denote the time
to (natural) death. Sacrifices randomly censor both
X and T . Define an indicator Y (t) (see Dummy
Variables) that is 1 if the tumor is present at time t

and 0 otherwise. Let Y indicate whether the tumor is
present or absent at death, either from natural causes
or sacrifice.

Suppose that X and T are continuous variables.
The transition intensities associated with the two
competing risks can be expressed as event-specific
hazard functions:

λ(t) = lim
ε→0

Pr(t ≤ X < t + ε, Y (X) = 1|X ≥ t)/ε,

(1)

β(t) = lim
ε→0

Pr(t ≤ X < t + ε, Y (X) = 0|X ≥ t)/ε,

(2)

where λ(t) represents the tumor incidence rate and
β(t) is called the tumor-free death rate. Once an
animal develops a tumor, say at time x, the risk of
death at time t is

α(t |x) = lim
ε→0

Pr(t ≤ T < t + ε|T ≥ t,

Y (t) = 1, X = x)/ε, (3)

where t ≥ x > 0. Some analyses involve a simplified
version of this conditional death rate:

α(t) = lim
ε→0

Pr(t ≤ T < t + ε|T ≥ t, Y (t) = 1)/ε,

(4)

which can be regarded as an average rate of death
among all animals having the tumor.

Define the following “pseudo” survivorship func-
tions:

Sλ(t) = exp

[
−

∫ t

0
λ(u) du

]
,

Sβ(t) = exp

[
−

∫ t

0
β(u) du

]
, (5)

Sα(t |x) = exp

[
−

∫ t

x

α(u|x) du

]
,

which are used purely for notational convenience and
have no particular interpretation.

Observed Data

The basic information that we observe for each ani-
mal is the time of death and an indicator of whether
a tumor was found at the organ site of interest. In
particular, we observe {T = t, Y (t) = y} if an ani-
mal dies of natural causes, and {T > t, Y (t) = y} if
an animal is sacrificed (y = 0, 1). Note that among
animals that die of natural causes, Y (t) generally
is not observable for t < T , except in special situ-
ations such as when tumors are palpable or visible in
live animals. Occasionally, we have access to addi-
tional information, such as the tumor’s role in causing
death, but these extra data are not routinely available.

Suppose that there are K ≥ 1 exposed groups
and a single control group. Let Nk denote the
number of animals randomized to the kth group
(k = 0, 1, . . . , K). Let d0 < d1 < · · · < dK denote
the ordered dose levels, where the control value
is assumed to be d0 = 0. Often, transforms of the
dose levels are used, such as logarithms or equally
spaced scores, in which case dk represents the trans-
formed value. Let J be the number of distinct natural
death times across all groups, with t1 < t2 < · · · < tJ
denoting their ordered values.

Likelihood Contributions

Sacrifice times randomly censor tumor onset times
and natural death times. Thus, an animal sacrificed
at time t and found to be tumor-free contributes only
the information that the time to the first event exceeds
t : Pr(X > t). In terms of the underlying transition
intensities, the likelihood contribution from such an
animal can be expressed as

Sλ(t)Sβ(t). (6)

Similarly, a tumor-free animal that dies of natural
causes at time t contributes

β(t)Sλ(t)Sβ(t). (7)
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The likelihood contributions from animals having an
occult tumor are more complicated, as the compo-
nents must be integrated over all possible (unob-
served) tumor onset times. Thus, an animal sacrificed
at time t and found to have an occult tumor con-
tributes

∫ t

0
λ(x)Sλ(x)Sβ(x)Sα(t |x) dx, (8)

whereas the corresponding contribution for a natural
death with an occult tumor is

∫ t

0
λ(x)Sλ(x)Sβ(x)Sα(t |x)α(t |x) dx. (9)

The overall likelihood is the product of contributions
such as those in (6)–(9).

If tumors were observable, contributions for
tumor-bearing animals would simply be the inte-
grands in (8) and (9), and maximization of the like-
lihood would be much easier. For occult tumors,
the likelihood often is simplified by making assump-
tions about tumor lethality, cause of death, parametric
models, or functional restrictions. With enough sac-
rifices, these additional assumptions are unnecessary
and the likelihood can be maximized nonparametri-
cally by treating certain failure times as discrete.

Goals

The main objective of a carcinogenicity study is to
compare treatment groups with respect to tumor inci-
dence and to provide summaries of the incidence rates
within these groups. Thus, the analysis should focus
on estimating the incidence rate in the kth group, say
λk(t), as well as testing the null hypothesis of equal
incidence rates across groups

Hλ : λ0(t) = λ1(t) = · · · = λk(t), (10)

against certain alternative hypotheses of interest.
The usual choices are the general alternative that not
all incidence rates are identical (i.e. group hetero-
geneity) and the specific alternative that incidence
rates increase linearly with dose (i.e. a positive linear
trend). Often, pairwise comparisons of each exposed
group with the control group are performed. These
comparisons can be viewed as special cases of test-
ing Hλ against either of the above alternatives when
there are only two groups (K = 1).

Lifetime Incidence Rates

The simplest incidence analysis focuses on lifetime
incidence rates, comparing the group-specific propor-
tions of animals that develop the tumor during the
experiment. The lifetime incidence rate, say θ , can
be expressed in terms of the age-specific incidence
rate, λ(t), and the tumor-free death rate, β(t):

θ = Pr(X ≤ T ∗, Y (X) = 1)

=
∫ T ∗

0
λ(x)Sλ(x)Sβ(x) dx, (11)

where T ∗ is the time at which the study ends.

No Survival Adjustment

The standard nonparametric estimate of the lifetime
incidence rate in the kth group, denoted by θk , is the
overall group-specific proportion of tumor-bearing
animals:

θ̂k =
∑

yik/Nk, (12)

where yik is the observed value of Y for the ith
animal in the kth group and the summation is over
all i from 1 to Nk . In general, the null hypothesis of
equal lifetime incidence rates across groups neither
implies, nor is implied by, the hypothesis of equal
age-specific incidence rates, Hλ. Usually, pairwise
comparisons are based on Fisher’s exact test; an
overall assessment of group heterogeneity is based
on an omnibus chi-square test; and dose-related
changes are judged on the basis of the linear trend
test of Cochran [11] and Armitage [3] (see Trend
Test for Counts and Proportions). See Haseman
[26] and Gart et al. [25] for a review of these tests
and for some worked examples based on data from
real carcinogenicity studies.

The primary advantage of this approach, in addi-
tion to using well known statistical methods, is that it
does not rely on the usual simplifying assumptions.
The analysis of lifetime tumor incidence rates does
not make tumor lethality assumptions; occult tumors
pose no problems; and there is no need for sacrifice
data, cause-of-death information, parametric models,
or functional restrictions. The major drawback is that
the lack of any time adjustment can lead to biased
inferences when mortality rates differ across groups.

Tests regarding lifetime incidence rates assume
that all animals in the same group have the same
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lifetime risk of developing a tumor, which clearly
is violated if some die earlier than others. Even so,
if mortality patterns are similar across groups, then
these unadjusted tests are valid [24], though possi-
bly less powerful than survival-adjusted tests [48]
(see Power). Misleading results can be obtained,
however, when mortality rates differ across groups.
For example, if exposure causes animals to die early,
then unadjusted tests can miss true carcinogens if
treated animals die before having a chance to develop
many tumors. In fact, tumorigenesis analyses should
focus on λ(t) rather than θ , and tests comparing life-
time incidence rates will tend to reject Hλ less often
than desired when exposure is toxic because θ is a
decreasing function of β. Again, true carcinogens can
be missed when no survival adjustments are incorpo-
rated, and thus all analyses discussed subsequently
make some adjustment for survival.

Adjusting for Survival

One simple way to adjust for survival when analyzing
lifetime incidence rates is to modify the number of
animals at risk by reducing the denominator of each
rate. Rather than giving equal weight to all animals,
less weight can be assigned to those dying early with-
out a tumor. For example, Gart et al. [24] assign a
weight of zero to any animal dying without the tumor
at a time before the first death with the tumor, while
assigning all other animals a weight of one. Extending
this idea, Bailer & Portier [5] assign a weight of one
to animals dying with the tumor and otherwise assign
a weight proportional to a fixed power of the time on
study, where the choice of the time exponent depends
on the assumed shape of the tumor onset distribution.
Bieler & Williams [7] propose a variance correction
for the Bailer–Portier procedure. Often, the survival
adjustment made by these methods is helpful; but,
generally, an analysis focusing on age-specific inci-
dence rates is preferable to one focusing on lifetime
incidence rates, as inferences about the latter are not
necessarily well correlated with inferences about the
former.

Age-Specific Incidence Rates

There are various ways to adjust for survival, but no
one method is appropriate in all situations. Several
factors complicate the adjustment, and the proper

analysis depends on what additional data can be
obtained or which extra assumptions are plausible.
For example, unless tumors are observable in live
animals, all onset times are censored. Tumor lethality
worsens the problem; if animals with the tumor die
at a different rate than those without the tumor, then
deaths from natural causes do not randomly censor
tumor onset times. Thus, without direct observations
on the onset times, survival adjustments usually are
accomplished at the expense of additional data or
assumptions.

Observable Tumors

Ideally, an incidence analysis should focus on the
tumor onset times directly, which is only possible
for observable tumors, such as visible skin tumors
or palpable mammary tumors. When event times are
observable, most analyses use standard nonparametric
survival methods (see Kalbfleisch & Prentice [28]),
which typically treat event times as discrete random
variables. If X is discrete, then the tumor incidence
rate at time tj is

λj = Pr(X = tj , Y (X) = 1|X ≥ tj ). (13)

Within the kth group, let Ojk be the (observed)
number of animals developing a tumor at time tj and
let Rjk be the number of animals at risk of developing
a tumor at time tj :

Ojk = #{Xik = tj , Y (Xik) = 1} and

Rjk = #{Xik ≥ tj }, (14)

where #{e} is the number of animals experiencing
event e and Xik is the value of X for the ith animal
in the kth group. Under Hλ, the expected counts and
variance–covariance terms associated with Ojk are

Ejk = Rjk

[
Oj+
Rj+

]
and

Vjkm =
[

Oj+(Rj+ − Oj+)

(Rj+ − 1)

] [
Rjk

Rj+

]

×
[
Akm − Rjm

Rj+

]
, (15)

where the plus sign indicates the summation over all
K + 1 groups and Akm is an indicator that equals 1
if k = m and 0 otherwise. For each k (and m), create
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group-specific summaries for the observed counts,
expected counts, and variance–covariance terms:

Ok =
∑

Ojk, Ek =
∑

Ejk, Vkm =
∑

Vjkm,

(16)

where the summations are over all J times. Let
D′ = (d1, . . . , dK) be the vector of dose levels, let
O′ = (O1, . . . , OK) be the vector of observed counts,
let E′ = (E1, . . . , EK) be the vector of expected
counts, and let V be the matrix of variance terms
Vkm(k = 1, . . . , K; m = 1, . . . , K). Note that these
arrays do not include the summary terms from the
control group (k = 0).

The nonparametric estimate of the incidence rate
at time tj in group k is

λ̂jk = Ojk/Rjk. (17)

The usual test for heterogeneity of groups is based
on the statistic:

χ2
H = (O − E)′V−1(O − E), (18)

which follows asymptotically the chi-square distri-
bution on K degrees of freedom (df) under Hλ.
Often, the test for a dose-related trend in incidence
rates is based on the logrank statistic

χ2
T = [D′(O − E)]2/(D′VD), (19)

which is also distributed asymptotically as chi-square
under Hλ, but on a single df. Finally, a test for
departures from linearity can be based on the statistic

χ2
D = χ2

H − χ2
T, (20)

which is distributed asymptotically as chi-square on
K − 1 df under the null hypothesis that tumor inci-
dence rates increase linearly with dose. For details on
these tests and other related analyses, see Tarone [50],
Tarone & Ware [51], Kalbfleisch & Prentice [28], and
Gart et al. [25].

The only disadvantage of this approach is that
most tumor types are unobservable in live animals.
Thus, in the remaining sections we discuss meth-
ods that require additional data or assumptions to
overcome the complications associated with occult
tumors.

Rapidly Lethal Tumors

We assume that lethality refers to an intrinsic prop-
erty of the tumor type and does not change on an
individual animal basis, as opposed to the concept of
cause of death, which allows each tumor’s effect on
death to vary across animals. The presence of a non-
lethal tumor does not alter the risk of death, whereas
a lethal tumor increases the risk of death. Conceiv-
ably, a tumor can be protective if it lessens the risk
of death, although such instances are rare and are
not considered here. The degree of tumor lethality is
often characterized by how much a tumor’s presence
hastens death.

Suppose that a tumor type is rapidly lethal, which
means that post-onset survival is short and thus time
to death with the tumor is a good surrogate for
time to tumor onset. If this rapid lethality assumption
is accurate, then the analysis can focus on time to
death with the tumor, which is an observable event.
Therefore, as with the observable tumors discussed
previously, ordinary life table analyses based on
the estimates in (17) and the tests in (18)–(20) are
reasonable when tumors are rapidly lethal.

The main problem with this approach is that few
tumor types are instantly lethal, and life table analyses
perform worse as tumor lethality decreases, especially
as the mortality patterns across groups become more
disparate. Tests comparing the rates of death with
the tumor can yield biased conclusions about tumor
incidence rates when the post-onset survival times are
relatively long. The bias is in the opposite direction
of the bias in the unadjusted analysis, and Gart et al.
[24] characterize this effect as an over-adjustment
for survival. For example, if exposure is toxic and
causes treated animals to die sooner than controls,
then nonlethal tumors will be discovered earlier in the
exposed groups and a life table analysis might falsely
conclude that exposure is carcinogenic even when
the tumor incidence rates are identical across groups.
Thus, a life table test applied to data on tumors that
are not rapidly lethal rejects too often [34].

Nonlethal Tumors

Suppose that the tumor type of interest is strictly
nonlethal, so that tumor presence has no effect on the
risk of death. In this situation, the incidence rate is a
one-to-one function of the prevalence rate, which in
turn equals the response rate. Therefore, a standard
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prevalence analysis of tumor response rates, which
are directly observable, allows us to make inferences
about the incidence rates of nonlethal tumors.

The tumor prevalence rate, say π(t), is the
expected proportion of animals having a tumor
among those alive at time t , which can be
expressed as

π(t) = Pr(Y (t) = 1|T > t). (21)

In general, π(t) is a function of the incidence rate,
λ(t), and the death rates, β(t) and α(t |x):

[1 − π(t)]−1 = 1 +
∫ t

0
λ(x) exp

{∫ t

x

[λ(u)

+ β(u) − α(t |u)] du

}
dx. (22)

When the tumor type is nonlethal, the conditional
death rates for tumor-free and tumor-bearing animals
are equal, α(t |x) ≡ β(t), and thus π(t) reduces to a
function of λ(t) only:

π(t) = 1 − Sλ(t). (23)

Similarly, the tumor response rate, say p(t), is
the expected proportion of animals having a tumor
among those dying at time t , which can be
expressed as

p(t) = Pr(Y (t) = 1|T = t). (24)

In general, p(t) is a slightly different function of the
three underlying transition rates:

[1 − p(t)]−1 = 1 + β(t)−1
∫ t

0
λ(x) exp

{∫ t

x

[λ(u)

+ β(u) − α(t |u)] du

}
α(t |x) dx, (25)

but when tumors are nonlethal, p(t) also reduces to
1 − Sλ(t), and thus equals π(t).

For stabilization purposes, a nonparametric analy-
sis of the response rates usually groups the data into
time intervals. Within the j th interval, say Ij , the
response rate is

pj = Pr(Y (T ) = 1|T ∈ Ij ). (26)

The nonparametric estimate of the j th tumor response
rate in the kth group is simply

p̂jk = #{Tik ∈ Ij , Y (Tik) = 1}/#{Tik ∈ Ij }. (27)

Depending on the intervals, these estimates can fluc-
tuate greatly. Of course, there is no consensus on
the best way in which to choose intervals. Some
analyses specify fixed intervals, while others use data-
dependent intervals that contain equal numbers of
deaths. As the response rates are nondecreasing when
tumors are nonlethal and irreversible, Hoel & Wal-
burg [27] apply the pool-adjacent-violators algorithm
[4] to estimate p(t) under a monotonicity constraint.
The resulting isotonic regression estimate of p(t)

is constant over data-dependent intervals, with step
heights of the form given in (27).

Hoel & Walburg [27] propose a survival-adjusted
prevalence analysis that uses intervals to stratify on
death times, compares observed and expected counts
within time intervals, and applies Mantel–Haenszel
methods [39] to combine results over the intervals.
Regardless of how time intervals are determined, the
test statistics still are given by (18)–(20), except
that now for group k the observed count (Ojk) is
the number of deaths in Ij with a tumor and the
number at risk (Rjk) is the total number of deaths
in Ij .

One potential problem is that differential mortal-
ity can yield time intervals within which all (most)
of the deaths come from the same group and thus
these intervals make no (little) contribution to the
test statistics. With this in mind, Dinse & Lagakos
[22] model tumor response as a logistic regres-
sion on age and dose. Likelihood methods can
be used to estimate and to compare prevalence
rates. This regression approach avoids the arbitrari-
ness of choosing time intervals at the expense of
parameterizing the time term. Despite its paramet-
ric nature, however, the logistic analysis is fairly
robust. For example, linear age and dose terms
produce a test with operating characteristics that
match or exceed those of the interval-based tests
[14].

Similar to the problems that arise when a life table
analysis is applied to nonlethal tumors, the use of a
prevalence analysis when the tumors are lethal also
can produce misleading results, except that the bias
is in the opposite direction. Once again, suppose that
exposure is toxic and causes the treated animals to die
sooner than the controls. As the tumor response rate,
p(t), is a decreasing function of the tumor-free death
rate, β(t), a prevalence test oriented toward detecting
an increase in p(t) will not reject as often as a test
appropriate for assessing Hλ should reject, unless
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tumors are nonlethal. Therefore, a prevalence test
applied to data on lethal tumors will not reject often
enough [34], which could result in a true carcinogen
being missed.

Fixed Intermediate Lethality

In general, it is unlikely that death always follows
tumor onset immediately or that death is completely
unaffected by tumor onset. More realistically, all
tumors of a given type might have a fixed but inter-
mediate level of lethality, which could even vary
with age. Formally, lethality usually is defined as
some function of the conditional death rates, β(t) and
α(t |x). If this lethality function is known, then λ(t) is
identifiable, and thus appropriate incidence estimators
and tests can be derived [40].

Typically, tumor lethality is unknown. Often, both
life table and prevalence methods are applied in
hope that the two procedures will give similar results
[26]. While this approach has some intuitive appeal,
the two tests do not always give the same results.
Lagakos & Louis [35] show that the significance lev-
els from life table and prevalence analyses need not
bracket the P value from a test based on an intermedi-
ate lethality. Alternatively, Lagakos & Louis suggest
a sensitivity analysis, which evaluates the data for
various assumed lethalities and illustrates the range of
possible inferences. A more definitive solution, how-
ever, requires additional data or assumptions.

Cause of Death

Rather than assuming that lethality is an intrinsic
property of the tumor type itself, suppose that an
individual context of observation [43, 44] can be
specified for each tumor discovered, which character-
izes that tumor’s effect on the risk of death. Within
this framework, tumors that do not alter longevity
and are observed merely as the result of a death from
an unrelated cause are classified as incidental. Con-
versely, tumors that affect mortality either by directly
causing death, or by indirectly increasing the risk of
death from other causes, are classified as fatal. This
information on context of observation commonly is
referred to as data on cause of death.

The availability and reliability of cause-of-death
data are subject to debate. Many pathologists will
not make these assessments and several investigations
have shown that cause-of-death data, when available,

can be inaccurate [33, 36]. Nevertheless, suppose that
accurate cause-of-death data are provided, at least for
a subset of the animals. Note that any tumor found
in a randomly sacrificed animal is observed in an
incidental context.

Information on cause of death allows us to identify
the tumor onset distribution and perform a survival-
adjusted incidence analysis without lethality assump-
tions, sacrifices, parametric models, or functional
restrictions. Let C denote cause of death. We extend
the three-state model to four states by replacing the
single absorbing state with two absorbing states:
death from the tumor (C = 1) and death from other
causes (C = 0). Deaths without the tumor must be
due to other causes; thus, the tumor-free death rate is

β(t) = lim
ε→0

Pr(t ≤ T < t + ε, C = 0|T ≥ t,

Y (t) = 0)/ε. (28)

The death rates with fatal and incidental tumors
among the tumor-bearing animals are

γ (t |x) = lim
ε→0

Pr(t ≤ T < t + ε, C = 1|T ≥ t,

Y (t) = 1, X = x)/ε, (29)

δ(t |x) = lim
ε→0

Pr(t ≤ T < t + ε, C = 0|T ≥ t,

Y (t) = 1, X = x)/ε. (30)

Note that the death rate for tumor-bearing animals is
the sum of two cause-specific death rates, α(t |x) =
γ (t |x) + δ(t |x). Define a marginal rate of death from
the tumor among all of the tumor-bearing animals:

γ (t) = lim
ε→0

Pr(t ≤ T < t + ε, C = 1|T ≥ t,

Y (t) = 1)/ε. (31)

Finally, as an incidental tumor does not affect mortal-
ity, the associated death rate is the same as the death
rate in the absence of the tumor:

δ(t |x) ≡ β(t), for all t ≥ x > 0. (32)

Kodell & Nelson [31] propose a parametric esti-
mator for the incidence rate by assuming Weibull
models for all of the transition rates. Later, within
a nonparametric framework, Kodell et al. [32] derive
an estimator for the tumor onset distribution under the
assumption that tumor prevalence is a nondecreasing
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function of age. Dinse & Lagakos [21] and Turn-
bull & Mitchell [53] generalize this analysis to allow
nonmonotonic prevalences (see also [16]).

Peto [43] and Peto et al. [44] describe a testing
procedure that simultaneously compares groups with
respect to tumor prevalence and tumor mortality. This
approach applies a prevalence analysis to the subset
of animals dying from other causes, applies a life
table analysis to all animals, and combines these two
components to obtain an overall assessment of group
differences. The life table component treats deaths
from the tumor as uncensored events and deaths from
other causes as censored events. Regression exten-
sions of this combined analysis have been proposed
[22, 23], based on a logistic model for the prevalence
part and a proportional hazards model [12] for the
life table part (see Cox Regression Model). Lagakos
& Louis [35] derive the Peto test as a partial likeli-
hood score test under linked proportional-odds and
proportional hazards models for the prevalence and
mortality rates, respectively (see also [9]).

Pathologists are reluctant to label every tumor as
definitely incidental or definitely fatal, and classifi-
cation errors can produce biases [34, 47]. Peto et al.
[44] suggest adding categories for probably fatal and
probably incidental. In practice, however, the analysis
often combines categories to form a new dichotomy
and then proceeds as usual. Lagakos [34] considers
a single intermediate category to allow an unknown
cause of death and proposes two strategies: (i) relabel
the unknowns as incidentals and fatals according to
the proportions observed in those categories; or (ii)
relabel all unknowns as incidentals in the lifetable
component and as fatals in the prevalence compo-
nent. Alternatively, analyses can formally account for
uncertain contexts of observation either by having a
pathologist assign a probability to each category [47]
or by estimating these probabilities from the data [2,
15, 16, 30].

There are several difficulties with cause-of-death
analyses. Most studies do not provide information on
cause of death, and even when these data are avail-
able, they are often unreliable. Furthermore, even
if data on cause of death are available and accu-
rate, most tests are oriented toward prevalence and
mortality rather than incidence, and Hλ does not
always correspond to π0(t) = π1(t) = · · · = πK(t)

and γ0(t) = γ1(t) = · · · = γK(t). In fact, the preva-
lence portion of a Peto type test focuses on p(t)

rather than on π(t), and thus its validity depends

on whether tumor patterns in animals that die from
other causes are representative of those in live ani-
mals, an assumption that is not always true [1, 36].
Finally, given that representativeness holds, McK-
night & Wahrendorf [41] discuss situations in which
these cause-of-death tests should provide appropriate
inferences about tumor incidence.

Random Sacrifices

The intentional killing and examination of a random
sample of healthy animals gives a cross-sectional
view of the tumorigenic process. The proportion of
animals having the tumor among those sacrificed at
time t provides an unbiased estimate of π(t). There-
fore, together with observations on time to death and
tumor response, sacrifice data permit an analysis of
tumor incidence. The advantage of having sacrifice
data is that lethality assumptions, cause-of-death data,
parametric models, and functional restrictions are not
necessary. The survival adjustment improves with the
number of sacrifice times and the number of animals
killed at each sacrifice time. The main disadvantages
of multiple sacrifices are the extra expense and com-
plexity associated with a large experiment.

McKnight & Crowley [40] state that without kn-
owledge of how tumor incidence affects the risk of
death, sacrifice data are needed to identify λ(t). They
express the tumor incidence rate in terms of the
prevalence rate, its derivative, and two death rates:

λ(t) = [π ′(t) + g(t) − π(t)h(t)]/[1 − π(t)], (33)

where π ′(t) is the derivative of π(t), g(t) is the rate
of death with the tumor

g(t) = lim
ε→0

Pr(t ≤ T < t + ε, Y (T ) = 1|T ≥ t)/ε,

(34)

and h(t) is the overall death rate:

h(t) = lim
ε→0

Pr(t ≤ T < t + ε|T ≥ t)/ε. (35)

Lacking further structure, however, the prevalence
rate is estimable only at the sacrifice times and thus
the “resolution” of a nonparametric incidence analy-
sis is limited by the number of sacrifice times. For
example, a nonparametric analysis is generally based
on intervals with endpoints at the sacrifice times. The
amount of age adjustment increases with the number
of sacrifice times and most experiments have few, if
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any, in addition to the terminal sacrifice. Even car-
cinogenicity studies with one or two interim sacrifices
would yield very coarse nonparametric estimates of
the derivative of the prevalence rate, and thus poor
estimates of the incidence rate.

McKnight & Crowley [40] describe the advantages
of multiple sacrifice times, discuss identifiability, and
give nonparametric estimators and tests for the inci-
dence rates. Dewanji & Kalbfleisch [13] propose an
iterative maximum likelihood analysis, while Malani
& Van Ryzin [38] suggest a closed form solution
that coincides with the maximum likelihood analy-
sis when the data are well behaved, but otherwise
can produce negative incidence estimates. Williams
& Portier [54, 55] derive similar explicit nonpara-
metric estimators, with and without restricting the
incidence rates to be positive.

Many other authors have dealt with sur-
vival/sacrifice experiments, but most have assumed
parametric models or have not focused on tumor inci-
dence rates. Turnbull & Mitchell [52] consider the
simultaneous analysis of several diseases, but they
use loglinear and logistic models to investigate tumor
prevalence and lethality rates (see also [6] and [42]).
On the basis of a piecewise constant model for the
transition rates, Borgan et al. [8] show that multi-
ple sacrifices can greatly increase efficiency. In rare
cases, such as in the ED01 study [10], an experi-
ment is large enough and has a sufficient number of
sacrifices to support a reasonable nonparametric anal-
ysis of tumor incidence rates, but this is clearly the
exception rather than the rule. In practice, an anal-
ysis should not rely on routinely having numerous
sacrifice times.

Parametric Models

Kalbfleisch et al. [29] discuss a fully parametric set-
ting and suggest that a maximum likelihood analysis
is complicated, but feasible, if the assumed models
are identifiable. Borgan et al. [8] describe a special
case in which the underlying intensities are piecewise
constant. By reformulating in terms of more easily
estimable quantities, Dinse [17] uses simple, flexi-
ble models to produce reasonable estimates of the
incidence rate and a measure of tumor lethality. With-
out additional data, though, such as from multiple
sacrifices, the modeling assumptions in a paramet-
ric analysis are untestable. Conclusions based on one
model can differ greatly from those based on another.

Thus, one must take care to select a biologically sen-
sible model, or at least a general model that is fairly
robust to misspecification.

Several recent analyses combine the benefits
of parametric models and sacrifice data. That is,
much information on tumor incidence can be gained
through relatively few sacrifices as a result of the
increased structure provided by a parametric model.
For example, Portier [45] proposes a semiparametric
analysis that assumes a Weibull distribution for the
tumor onset times, which gives incidence rates of the
form

λ(t) = bctc−1, (36)

but imposes no parametric model on the conditional
death rates and requires only two sacrifice times (see
also [16] and [46]).

Functional Restrictions

Rather than assuming particular distributions for
the underlying random variables or modeling the
components of the onset/death process, constraints
can be placed on the way in which the components
relate to each other. For example, Dinse [18] proposes
a constant risk difference model, which assumes that
the difference between the death rates for animals
with and without the tumor in the kth group is
constant over time:

αk(t |x) − βk(t) ≡ ∆k. (37)

Dinse [18] also considers a constant risk ratio model,
which assumes that the ratio of these death rates is
constant over time:

αk(t |x)/βk(t) ≡ ρk. (38)

Although multiple sacrifice times are useful, only one
is needed to fit these models.

Under either restriction, the tumor incidence rates
and tumor-free death rates can vary with each death
time tj ; which, together with ∆k or ρk , can yield
as many as 2J + 1 unknowns per group in this
nonparametric setting. The number of unknowns can
be reduced by modeling either λk(t) or βk(t) as a
function of time t . In fact, any of the quantities
λk(t), βk(t), ∆k , or ρk can be modeled as functions
of dose and other covariates. Lindsey & Ryan [37]
describe a constant risk ratio model with piecewise
constant tumor incidence rates and tumor-free death
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rates. Ryan & Orav [49] propose a constant risk ratio
model and suggest incorporating covariates such as
tumor size and histology, although they focus on
tumor prevalence rather than tumor incidence.

This approach enjoys several advantages, as it
adjusts for differential mortality, allows for occult
tumors, avoids lethality assumptions, and does not
require information on cause of death. Only one
sacrifice time is necessary, in theory, and certain
functional constraints seem less restrictive than many
parametric models. One downside is that the validity
of any functional constraint can not be tested without
additional information, such as data from multiple
sacrifices. Thus, the appropriateness of such methods
in general must be judged on the basis of simulations
and large data sets, such as the ED01 study [10].
The estimates and the operating characteristics of
tests derived under the constant risk difference model
appear promising [18–20].

Discussion

Our understanding of the tumor onset/death process
has evolved over time, as has our appreciation
of which endpoints are important, what data must
be collected, and how studies should be designed.
If our goal is to analyze tumorigenesis, then we
must focus on the time to tumor onset, which
is characterized by the tumor incidence rate. In
the vast majority of organ sites, however, tumors
simply are not observable in live animals and thus
the experiment provides no direct observations on
the primary endpoint of interest. Consequently, we
must either focus on secondary endpoints, collect
additional data, design studies differently, or make
unverifiable assumptions.

If our goal is to estimate and to compare
tumor incidence rates, an analysis oriented toward
some other endpoint is unacceptable, unless a clear
equivalence exists between tumor incidence and
the other endpoint. The common alternatives, such
as time-specific tumor prevalence, time to death
with tumor, and time to death from tumor, suf-
fer various shortcomings. Except in special situ-
ations, an analysis based on one of these other
endpoints can produce biases with respect to infer-
ences about tumor incidence. The best strategy, in
general, is to focus on tumor incidence if at all
possible.

In a perfect world, with no budgetary limits,
the ideal study would have many interim sacri-
fices. Given enough sacrifice data, the analysis could
focus on tumor incidence without worrying about
tumor lethality, cause of death, parametric models,
or functional restrictions. Unfortunately, such studies
are extremely rare, and thus analyses that rely on an
abundance of sacrifices are not routinely applicable,
regardless of how satisfying they are conceptually.
In general, cost and other practical considerations
demand an approach that can be applied with few
sacrifice times.

Assumptions about tumor lethality provide the
simplest survival-adjusted analysis of tumor inci-
dence rates. In this case, however, simplicity comes at
the expense of general applicability. Most researchers
would agree that there are few organ sites for which
all tumors are strictly nonlethal or all tumors are
instantly lethal. Consequently, analyses based on
either of these extreme lethality assumptions pro-
duce biased inferences with regard to tumor incidence
when that lethality assumption is false. Techniques
that rely on cause-of-death determinations, which are
not commonly available, experience similar problems
due to misclassification errors.

The last resort seems to be the use of paramet-
ric models or functional constraints. Without sacri-
fice data, or other extraordinary information such as
reliable cause-of-death data, parametric assumptions
typically are untestable. Methods that rely on unver-
ifiable assumptions must be used with caution. The
increased structure of a parametric model, however,
provides many benefits and thus such models should
be considered carefully.

In conclusion, perhaps the most promising
approach is based on a combination of some sacrifice
data and some type of formal structure. Although
multiple sacrifice times are rare, most studies are
terminated after a fixed period of time, at which
point all of the remaining animals are killed. In many
cases, the data from this terminal sacrifice can provide
enough information about the overall tumorigenesis
puzzle to allow an analysis that makes limited
parametric assumptions or imposes some functional
restrictions. The terminal sacrifice data permit the
incidence function to be identified even when only
a subset of the underlying transition intensities is
modeled parametrically or constrained in some way.
For example, assuming a constant difference between
the death rates for animals with and without the tumor
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is sufficient to provide an otherwise nonparametric
analysis of the tumor incidence rates. This approach
and other similar methods appear to be the most
fruitful avenues for future research.

References

[1] Archer, L. & Ryan, L. (1989). On the role of cause-
of-death data in the analysis of rodent tumorigenicity
experiments, Applied Statistics 38, 81–93.

[2] Archer, L. & Ryan, L. (1989). Accounting for misclas-
sification in the cause-of-death test for carcinogenic-
ity, Journal of the American Statistical Association 84,
787–791.

[3] Armitage, P. (1955). Tests for linear trends in propor-
tions and frequencies, Biometrics 11, 375–386.

[4] Ayer, M., Brunk, H., Ewing, G., Reid, W. & Silver-
man, E. (1955). An empirical distribution function for
sampling with incomplete information, Annals of Math-
ematical Statistics 26, 641–647.

[5] Bailer, A. & Portier, C. (1988). Effects of treatment-
induced mortality and tumor-induced mortality on tests
for carcinogenicity in small samples, Biometrics 44,
417–431.

[6] Berlin, B., Brodsky, J. & Clifford, P. (1979). Testing
disease dependence in survival experiments with serial
sacrifice, Journal of the American Statistical Association
74, 5–14.

[7] Bieler, G. & Williams, R. (1993). Ratio estimates, the
delta method, and quantal response tests for increased
carcinogenicity, Biometrics 49, 793–801.

[8] Borgan, Ø., Liestøl, K. & Ebbesen, P. (1984). Efficien-
cies of experimental designs for an illness–death model,
Biometrics 40, 627–638.

[9] Burnett, R., Krewski, D. & Bleuer, S. (1989). Efficiency
robust score tests for rodent tumorigenicity experiments,
Biometrika 76, 317–324.

[10] Cairns, T. (1980). The ED01 study: introduction, objec-
tives, and experimental design, Journal of Environmental
Pathology and Toxicology 3, 1–7.

[11] Cochran, W. (1954). Some methods for strengthening
the common χ 2 tests, Biometrics 10, 417–451.

[12] Cox, D. (1972). Regression models and life-tables (with
discussion), Journal of the Royal Statistical Society,
Series B 34, 187–220.

[13] Dewanji, A. & Kalbfleisch, J. (1986). Non-parametric
methods for survival/sacrifice experiments, Biometrics
42, 325–341.

[14] Dinse, G. (1985). Testing for a trend in tumor prevalence
rates: I. Nonlethal tumors, Biometrics 41, 751–770.

[15] Dinse, G. (1986). Nonparametric prevalence and mor-
tality estimators for animal experiments with incomplete
cause-of-death data, Journal of the American Statistical
Association 81, 328–336.

[16] Dinse, G. (1988a). Estimating tumor incidence rates
in animal carcinogenicity experiments, Biometrics 44,
405–415.

[17] Dinse, G. (1988b). Simple parametric analysis of animal
tumorigenicity data, Journal of the American Statistical
Association 83, 638–649.

[18] Dinse, G. (1991). Constant risk differences in the
analysis of animal tumorigenicity data, Biometrics 47,
681–700.

[19] Dinse, G. (1993). Evaluating constraints that allow
survival-adjusted incidence analyses in single-sacrifice
studies, Biometrics 49, 399–407.

[20] Dinse, G. (1994). A comparison of tumor incidence anal-
yses applicable in single-sacrifice animal experiments,
Statistics in Medicine 13, 689–708.

[21] Dinse, G. & Lagakos, S. (1982). Nonparametric esti-
mation of lifetime and disease onset distributions from
incomplete observations, Biometrics 38, 921–932.

[22] Dinse, G. & Lagakos, S. (1983). Regression analysis of
tumour prevalence data, Applied Statistics 32, 236–248;
corrigenda 33, (1984) 79–80.

[23] Finkelstein, D. & Ryan, L. (1987). Estimating carcino-
genic potency from a rodent tumorigenicity experiment,
Applied Statistics 36, 121–133.

[24] Gart, J., Chu, K. & Tarone, R. (1979). Statistical
issues in interpretation of chronic bioassay tests for
carcinogenicity, Journal of the National Cancer Institute
62, 957–974.

[25] Gart, J., Krewski, D., Lee, P., Tarone, R. & Wahren-
dorf, J. (1986). Statistical Methods in Cancer Research,
Vol. III: The Design and Analysis of Long-term Animal
Experiments. IARC Scientific Publications No. 79. Inter-
national Agency for Research on Cancer, Lyon.

[26] Haseman, J. (1984). Statistical issues in the design, anal-
ysis and interpretation of animal carcinogenicity studies,
Environmental Health Perspectives 58, 385–392.

[27] Hoel, D. & Walburg, H. (1972). Statistical analysis of
survival experiments, Journal of the National Cancer
Institute 49, 361–372.

[28] Kalbfleisch, J. & Prentice, R. (1980). The Statistical
Analysis of Failure Time Data. Wiley, New York.

[29] Kalbfleisch, J., Krewski, D. & Van Ryzin, J. (1983).
Dose–response models for time-to-response toxicity
data, Canadian Journal of Statistics 11, 25–49.

[30] Kodell, R. & Chen, J. (1987). Handling cause of
death in equivocal cases using the EM algorithm,
Communications in Statistics – Theory and Methods 16,
2565–2585.

[31] Kodell, R. & Nelson, C. (1980). An illness–death
model for the study of the carcinogenic process using
survival/sacrifice data, Biometrics 36, 267–277.

[32] Kodell, R., Shaw, G. & Johnson, A. (1982). Nonpara-
metric joint estimators for disease resistance and survival
functions in survival/sacrifice experiments, Biometrics
38, 43–58.

[33] Kodell, R., Farmer, J., Gaylor, D. & Cameron, A. (1982).
Influence of cause-of-death assignment on time-to-death
analyses in animal carcinogenesis studies, Journal of the
National Cancer Institute 69, 659–664.



12 Tumor Incidence Experiments

[34] Lagakos, S. (1982). An evaluation of some two-
sample tests used to analyze animal carcinogenicity
experiments, Utilitas Mathematica 21B, 239–260.

[35] Lagakos, S. & Louis, T. (1988). Use of tumor lethality
to interpret tumorigenicity experiments lacking cause-
of-death data, Applied Statistics 37, 169–179.

[36] Lagakos, S. & Ryan, L. (1985). On the representative-
ness assumption in prevalence tests of carcinogenicity,
Applied Statistics 34, 54–62.

[37] Lindsey, J. & Ryan, L. (1993). A three-state multi-
plicative model for rodent tumorigenicity experiments,
Applied Statistics 42, 283–300.

[38] Malani, H. & Van Ryzin, J. (1988). Comparison of
two treatments in animal carcinogenicity experiments,
Journal of the American Statistical Association 83,
1171–1177.

[39] Mantel, N. & Haenszel, W. (1959). Statistical aspects
of analysis of data from retrospective studies of disease,
Journal of the National Cancer Institute 22, 719–748.

[40] McKnight, B. & Crowley, J. (1984). Tests for differ-
ences in tumor incidence based on animal carcinogenesis
experiments, Journal of the American Statistical Associ-
ation 79, 639–648.

[41] McKnight, B. & Wahrendorf, J. (1992). Tumor incidence
rate alternatives and the cause-of-death test for carcino-
genicity, Biometrika 79, 131–138.

[42] Mitchell, T. & Turnbull, B. (1979). Log-linear models
in the analysis of disease prevalence data from sur-
vival/sacrifice experiments, Biometrics 35, 221–234.

[43] Peto, R. (1974). Guidelines on the analysis of tumor
rates and death rates in experimental animals (editorial),
British Journal of Cancer 29, 101–105.

[44] Peto, R., Pike, M., Day, N., Gray, R., Lee, P.,
Parish, S., Peto, J., Richards, S. & Wahrendorf, J. (1980).
Guidelines for simple, sensitive significance tests for
carcinogenic effects in long-term animal experiments,
in Long-term and Short-term Screening Assays for
Carcinogens: a Critical Appraisal. IARC Monographs,

Annex to Supplement 2. International Agency for
Research on Cancer, Lyon, pp. 311–426.

[45] Portier, C. (1986). Estimating the tumor onset distribu-
tion in animal carcinogenesis experiments, Biometrika
73, 371–378.

[46] Portier, C. & Dinse, G. (1987). Semiparametric analysis
of tumor incidence rates in survival/sacrifice experi-
ments, Biometrics 43, 107–114.

[47] Racine-Poon, A. & Hoel, D. (1984). Nonparametric
estimation of the survival function when cause of death
is uncertain, Biometrics 40, 1151–1158.

[48] Ryan, L. (1985). Efficiency of age-adjusted tests in
animal carcinogenicity experiments, Biometrics 41,
525–531.

[49] Ryan, L. & Orav, E. (1988). On the use of covariates for
rodent bioassay and screening experiments, Biometrika
75, 631–637.

[50] Tarone, R. (1975). Tests for trend in life table analysis,
Biometrika 62, 679–682.

[51] Tarone, R. & Ware, J. (1977). On distribution-free tests
for equality of survival distributions, Biometrika 64,
156–160.

[52] Turnbull, B. & Mitchell, T. (1978). Exploratory anal-
ysis of disease prevalence data from survival/sacrifice
experiments, Biometrics 34, 555–570.

[53] Turnbull, B. & Mitchell, T. (1984). Nonparametric
estimation of the distribution of time to onset for specific
diseases in survival/sacrifice experiments, Biometrics 40,
41–50.

[54] Williams, P. & Portier, C. (1992a). Analytic expressions
for maximum likelihood estimators in a nonparametric
model of tumor incidence and death, Communications
in Statistics – Theory and Methods 21, 711–732.

[55] Williams, P. & Portier, C. (1992b). Explicit solutions
for constrained maximum likelihood estimators in sur-
vival/sacrifice experiments, Biometrika 79, 717–729.

GREGG E. DINSE



Tumor Modeling

Introduction

There are various stages in the development of a par-
ticular cancer into a life-threatening disease. In the
first of these, one or more mutations occur within
an individual cell. The uncontrolled division of that
cell leads to the growth of a (small) avascular tumor,
which may then remain dormant unless and until
it acquires its own blood system by the process of
angiogenesis (see Tumor Growth). The resulting
vascular tumor is relatively well-supplied by nutri-
ents and may grow to a much larger size. Finally,
malignant tumors are able to invade the surrounding
tissue, leading to metastatic spread, with secondary
tumors arising elsewhere in the host. Further muta-
tions within the population of tumor cells, including
drug resistance, may underpin these later stages of
development.

Tumorigenesis, the process by which normal cells
transform into cancer cells, is associated with the
progressive loss of function of a range of regulatory
genes, including repair genes that correct mutations
and DNA damage before cell division and tumor
suppressor genes that signal for cell-cycle arrest or
induce programmed cell death (apoptosis) if substan-
tial genetic damage is detected.

Once a solid tumor has developed and been
detected, it may be categorized in many ways, such
as: according to the tissue and cell-type of origin, the
fractal dimension of its periphery [24] and whether it
is benign or malignant.

A further classification is based on whether it
possesses a blood supply: vascular tumors have a
blood supply, whereas avascular ones do not. Dif-
fusion controls the delivery of nutrients (e.g. oxygen
and glucose) to, and the removal of waste products
from, avascular tumors [13, 43]. The diameter to
which avascular tumors grow is thus limited to sev-
eral millimeters and they are relatively harmless. By
contrast, vascular tumors are life-threatening for two
reasons. Firstly, being connected to the host’s blood
supply, they have access to an almost limitless sup-
ply of nutrients. The consequent rapid growth of such
tumors may impair the function of neighboring vital
organs.

Second, tumor fragments that enter the vasculature
may be transported to other parts of the body where

they may establish secondary tumors (metastases)
that further jeopardize the host. The switch from avas-
cular to vascular growth is effected by angiogenesis
[12]. During this process, the tumor cells secrete a
range of diffusible chemicals (e.g. vascular endothe-
lial growth factor and tumor necrosis factor-β), which
are known collectively as angiogenic factors. The
angiogenic factors stimulate neighboring blood ves-
sels to proliferate and migrate towards the tumor,
eventually furnishing it with a circulating blood sup-
ply so that vascular growth may commence.

Invasion of the surrounding tissue is another key
feature of solid tumors: contact with the tissue stim-
ulates the production of enzymes such as matrix
metallo-proteases, which digest the tissue. This cre-
ates spaces into which the tumor cells may then
migrate [40].

At a cellular level, the sequence of events that
are needed to establish a well-developed, vascularized
tumor may be associated with genetic mutations. For
example, mutations in the tumor suppressor gene
p53 have been linked with tumor angiogenesis and
cell immortality, the latter being a hallmark of many
tumors [37, 39].

Tumorigenesis

As stated above, disruption of a number of regulatory
genes is necessary for tumorigenesis (the initiation of
tumor growth), the number and type of genes required
remaining open questions [19]. The earliest models
of tumorigenesis were stochastic and developed to
investigate the age-specific incidence rates for certain
adult cancers [3]. These multistage carcinogenesis
models were extended to distinguish between inher-
ited and spontaneous cancers [22, 29] and adapted
to investigate the effects of apoptosis [46] and vari-
able mutation rates [47]. More recently, Plotkin and
Nowak [36] developed a stochastic model that inves-
tigates the extent to which loss of DNA repair genes
and tumor suppressor genes contribute to tumorigen-
esis.

The corresponding literature for deterministic
models is less well developed. Coldman and Goldie
develop compartmental models in which reversible
mutations may occur [10]. Thompson and Royds
[45] study competition between subpopulations of
tumor cells that differ in the status of the tumor
suppressor gene p53 (the gene functions normally in
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one population and gives a survival advantage under
low oxygen to the second population). Norris [33]
has extended these concepts to allow for the effects
of spatial variation within avascular tumors.

Avascular Growth

During avascular growth, nutrients that enter the
tumor are consumed by live, proliferating cells as
they diffuse towards the tumor center. As the tumor
grows, the amount of nutrient reaching the cen-
ter declines until there is insufficient to sustain
viable cells. There ensues the formation of a central
core of dead (necrotic) cellular material whose size
increases as the tumor continues to grow. Thus, a
well-developed avascular tumor comprises an outer
rim of nutrient-rich, proliferating cells and a cen-
tral core of nutrient-starved, necrotic debris. These
regions may be separated by a layer of oxygen-
poor (hypoxic) cells, which are quiescent (viable but
nonproliferating).

Many mathematical models of avascular tumor
growth that reproduce the phenomena described
above have been developed and shown to exhibit
good qualitative and quantitative agreement with
experimental data. Probabilistic models that focus
on individual cells and their interactions with
neighboring cells use concepts ranging from Markov
chain processes [17], through cellular automata [11]
to stochastic energy minimization techniques [42].
By contrast, deterministic models tend to focus on
cell populations or continua and are formulated
as systems of ordinary differential equations [30],
spatiotemporal partial differential equations [6, 15,
16, 30, 50] or age-structured partial differential
equations [16].

Angiogenesis

Deterministic models of angiogenesis, the process by
which an avascular tumor acquires a blood supply
from the host tissue, have successfully reproduced
many macroscopic features of the developing vascu-
lar network. These include: the acceleration of the
vascular network and the increase in the number
of capillary tips as the vascular network approaches
the tumor [7] and regression of the vasculature in
response to angiogenic inhibitors such as angio-
statin [27].

However, such deterministic models are unable
to provide details of microscopic features, such as
vessel lengths and distances between buds or anasto-
moses, that can be obtained using stochastic models
[41] and hybrid deterministic-stochastic models in
which certain processes (e.g. nutrient diffusion and
its consumption by the tumor cells) are viewed deter-
ministically while others (e.g. cell proliferation, death
and migration) are treated probabilistically [2].

Vascular Growth

Once a tumor has acquired its own blood supply by
angiogenesis (see [28], for example, for an approach
to modeling the onset of vascularization), it is able
to grow to a large (ultimately life-threatening) size.
There has been relatively little modeling work on this
crucial stage of tumor development, in part reflecting
the complexities that arise; these include the follow-
ing: the interactions between angiogenesis and the
growing tumor (e.g. [32, 34]); the balance between
nutrient delivery by the vasculature and nutrient con-
sumption by the tumor (e.g. [1]); the complexities of
the immature vascular networks through which the
nutrients are delivered, in terms both of their highly
tortuous geometry and of the interactions between
blood flow and interstitial fluid pressures within the
tumor (see [31, 38, 52], for instance); and the com-
plex microenvironments (as described in [5, 23], for
example), involving both spatial and temporal varia-
tions in oxygen tension and pH in particular, which
arise because of nonuniformities in nutrient delivery
and waste product removal [35] by the vasculature.
These effects have important implications for the
effectiveness of different, blood-borne treatment pro-
tocols [21].

Invasion

One of the earliest approaches to the modeling of
tumor invasion and metastatic spread, pioneered by
Greenspan [15], involves linear stability studies of
existing models for the growth of radially symmetric
tumors; the growth of fingers due to the instability
of the symmetric state provides a mechanism for a
tumor to invade the surrounding tissue. Such studies,
which typically involve an analysis of the interactions
between nutrient-limited growth and the physical
properties of a growing tumor, remain an active
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area of research (see [8], for instance). However,
numerous additional complexities have also now
been incorporated, including: the role of degradative
proteases, for example, in leading to a distinction
between noninvasive (benign) tumors, which are
often confined by a capsule comprised of connective
tissue, and malignant ones (see, for example, [20, 25,
26]); the role of pH (e.g. [51]); interactions with the
immune system (surveyed in [4]); interactions with
the underlying tissue matrix (e.g. [49]); interactions
between primary and secondary tumors (e.g. [14]);
and the implications of “diffuse” invasion for imaging
and therapy (see [44]). Because cellular mutation may
enhance a tumor’s invasiveness and because a single
cell can lead to metastatic spread, stochastic effects
have a crucial role to play in invasion; [48] provides a
discussion of the role of deterministic and stochastic
models.

Conclusions

The modeling of tumor growth continues to present
enormous challenges. A vast range of scales is
involved, from subcellular through cellular and tumor
to patient. Numerous phenomena are thus of inter-
est, from stochastic effects relating, in particular, to
the mutation or survival of single cells to mechanical
ones, which may not only influence the interactions
of a growing tumor with the surrounding tissue [9,
18] but may also create difficulties in, say, delivering
drugs against an adverse pressure gradient [52]. Mul-
tiple (and age-structured) populations of cell types are
present and three-dimensional effects can be crucial,
leading to severe computational challenges. The value
of the insights, which experimentally validated mod-
eling can provide is nevertheless, increasingly widely
recognized.
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Turnbull Estimator

The Turnbull estimator [27] is a nonparamet-
ric maximum likelihood estimator (NPMLE) of
the distribution function F of a real-valued ran-
dom variable X based on N independent, arbitrar-
ily interval-censored and/or truncated observations
(X1, X2, . . . , XN) of X. The observation Xi is said
to be truncated by a set Bi if Xi is drawn from the
conditional distribution F(x : Bi) = Pr(X ≤ x|X ∈
Bi), and Xi is said to be interval-censored if Xi

is only known to lie in an interval [Li, Ri].
Interval censoring occurs naturally when Xi rep-

resents the time to an event of interest and there
is intermittent monitoring for this event. For exam-
ple, in AIDS studies interval-censored data arise in
connection with the time of infection with human
immunodeficiency virus (HIV) in individuals exposed
to the virus. Since only periodic assessment of HIV
status is feasible, the time to infection with HIV will
be known only to lie in an interval specified by the
last negative and the first positive assessment, or it
will be right-censored if no positive assessment was
made by the time of last examination.

Truncation occurs if Xi is drawn from the pop-
ulation in which observations with values outside
truncating set Bi have been removed (see Truncated
Survival Times). For example, if X is a survival
time associated with a chronic disease, and individu-
als suffering from the disease are not followed from
the time of diagnosis, but instead are recruited into a
study at some later times, then Xi will be included in
the sample only if Xi > Vi , where Vi is the time from
the diagnosis to the time of recruitment (see Delayed
Entry). Thus, Xi is drawn from the population of
observations with the same time of diagnosis but from
which observations with survival times shorter than
Vi were removed. The observation Xi is then said to
be left-truncated by Bi = (Vi, ∞).

The observations can be both truncated and
interval-censored as in [2, Example I.3.11]. In this
example, the data set includes interval-censored
and left-truncated observations on the time from
the diagnosis of diabetes to the onset of severe
complications associated with diabetes.

The sample of truncated and interval-censored
observations is then represented by N pairs
(A1, B1), (A2, B2), . . . , (AN, BN), where Xi is trun-
cated by Bi and furthermore is censored by Ai =

[Li, Ri] ⊆ Bi . In particular, Xi is right (left) cen-
sored if Ri = +∞ (Li = −∞) and is known exactly
if Li = Ri . Interval, right, and left truncation are
defined in a similar manner. The truncating sets, Bi ,
and censoring sets, Ai , can be either fixed or random.
Turnbull’s method of estimation is also applicable
when Ai is a union of disjoint closed intervals.

We note that grouped data are a special case
of interval-censored data in which, for each i, the
censoring interval [Li, Ri] is a member of a known,
fixed partition of the range of X.

Interval-censored and/or truncated data arise in a
wide range of research areas including AIDS studies
(see e.g. [4, 5, 7], and [25]) and cancer research
(see for example, [12] and [24]). Examples of studies
which involve application of the Turnbull estimator
to medical data are [21, 22], and [24].

Derivation of the Turnbull Estimator

We sketch the derivation of F̂ , the NPMLE of F .
Assuming that either (Ai, Bi) are fixed, or that they
were generated by a random mechanism independent
of Xi , the likelihood function is proportional to

L(F) =
N∏

i=1

[F(Ri+) − F(Li−)]

PF (Bi)
, (1)

where PF (Bi) = Pr(X ∈ Bi).
The estimator is derived in two steps. In the first

step it is shown that F̂ increases on only a finite num-
ber of disjoint intervals. This characterization of the
support of F̂ is used in the second step to compute
the estimator. For the case of nontruncated, interval-
censored data Peto [23] proposed a Newton–Raphson
algorithm (see Optimization and Nonlinear Equa-
tions) for computation of F̂ . Turnbull [27] developed
a simple and intuitively appealing self-consistency
algorithm for obtaining F̂ .

The Support of the Turnbull Estimator

When data are not truncated, i.e. PF (Bi) = 1, (1 ≤
i ≤ N), the intervals on which F̂ may increase are
derived as follows. Let L = (Li, 1 ≤ i ≤ N) and
R = (Ri, 1 ≤ i ≤ N), be the sets of left and right
endpoints of censoring intervals. The form of (1)
indicates that L(F) will be maximized when the
values of F(x) are as large as possible for x ∈ R
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and as small as possible for x ∈ L subject to the
constraint that F is the distribution function. Accord-
ingly, let C = ⋃m

j=1[qj , pj ], where q1 ≤ p1 ≤ q2 ≤
p2 < . . . < qm ≤ pm, be a union of disjoint, closed
intervals whose left and right endpoints lie in the
sets L and R, respectively, and which contain no
other members of L or R. Then on examination of
L(F) it can be seen that the support of F̂ is con-
tained in C, and that for fixed values of F(pj+) and
F(qj−), L(F ) is independent of the behavior of F

within each interval [qj , pj ]. Thus, F̂ is flat outside C

and is only unique up to the class of distributions with
the same values of F̂ (pj+) − F̂ (qj−), 1 ≤ j ≤ m.

When data are also truncated the described con-
struction is in general not valid. The necessary mod-
ification of Turnbull’s construction of the support of
F̂ in the presence of truncation involves endpoints
of truncation intervals and is discussed by Frydman
[14]. In the following we assume that, if data are
truncated, the set C is constructed as in [14].

Let sj = F(pj+) − F(qj−), for 1 ≤ j ≤ m. The
foregoing discussion shows that the problem of find-
ing the NPMLE of F reduces to one of maximizing

L(s) =
N∏

i=1




m∑

j=1

αij sj

/
m∑

j=1

βij sj



 (2)

with respect to s = (s1, . . . , sm), subject to
∑m

j=1 sj =
1 and sj ≥ 0, 1 ≤ j ≤ m, where αij = 1 if [qj , pj ] ∈
Ai, 0 otherwise, βij = 1 if [qj , pj ] ∈ Bi, 0 otherwise.

The Self-Consistency Algorithm

Turnbull proposed an algorithm for the maximization
of L(s) based on the idea of self-consistency. This
idea was introduced by Efron [11] and is described,
for example, by Cox & Oakes [6]. We briefly describe
the algorithm. For 1 ≤ i ≤ N and 1 ≤ j ≤ m, let
Iij = 1 if Xi ∈ [qj , pj ] and 0 otherwise. Also let
Jij be the number of individuals corresponding to
the observation Xi who were never observed because
their X-values are in the complement of Bi and which
have X-values in [qj , pj ]. Turnbull termed these Xis
“ghosts”. Because of censoring Iij is in general not
known but its expectation conditional on the observed
data computed under a given value of s is equal to

E(Iij |data, s) = αij sj

/
m∑

k=1

αiksk ≡ µij (s). (3)

The expectation of Jij conditional on the observed
data, under s, is given by

E(Jij |data, s) = (1 − βij )sj

/
m∑

k=1

βiksk = νij (s).

(4)

A self-consistent estimate of s is defined as a solution
to the following system of equations

sj =
N∑

i=1

[µij (s) + νij (s)]

/
N∑

i=1

m∑

j=1

[µij (s) + νij (s)],

1 ≤ j ≤ m. (5)

It can be demonstrated that (5) are simply loglike-
lihood equations for the maximization of L(s) with
respect to s. This shows that ŝ, the maximum like-
lihood estimator (MLE) of s, is a self-consistent
estimator of s. The algorithm for finding the MLE of s
starts with the initial value s0 > 0, and the improved
estimate s1 is obtained from the right-hand side of
(5) evaluated at s0. One iterates in this fashion until
convergence is achieved. We note that the described
algorithm is an example of the EM algorithm [9]. The
complete data likelihood function is based on the fact
that the random variables

∑N
i=1(Iij + Jij ), 1 ≤ j ≤

m, have a multinomial distribution with cell proba-
bilities (s1, . . . , sm). Combining the E-step, where the
expectations are computed as in (3) and (4), with the
M-step gives self-consistency equations in (5). The
convergence of the algorithm was demonstrated by
Turnbull [27], but it is also assured by the theory of
the EM algorithm for an exponential family of dis-
tributions of which the multinomial distribution is a
member.

The Turnbull estimator of F is given by

F̂ (x) =






0, if x < q1,

ŝ1 + ŝ2 + · · · + ŝj , if pj < x < qj+1,
1 ≤ j ≤ m − 1,

1, if x > pm,

and is undefined for x ∈ [qj , pj ], 1 ≤ j ≤ m, so that
the way an increase ŝj occurs over an interval [qj , pj ]
is arbitrary. Thus, when plotted, F̂ is a step function
with gaps which occur over the intervals in C.



Turnbull Estimator 3

Special Cases

For some special cases of interval-censored data
an NPMLE of F has an explicit representation. If
all observations are exact or right-censored only,
then F̂ is the well known Kaplan–Meier estimator
[17]. Current status data arise when all observations
are either right- or left-censored; see the survey by
Diamond & McDonald [10]. In this case, F̂ also has
an explicit representation [3, 16]; see also [18] for an
exposition.

Asymptotic Properties

Groeneboom & Wellner [16], using an elegant
approach based on isotonic regression theory,
demonstrated consistency and developed asymptotic
distribution theory (see Large-sample Theory) for
an NPMLE of F derived from current status data.
They also demonstrated consistency and presented
partial asymptotic distribution results for an NPMLE
of F obtained from “case 2” interval-censored
data. The “case 2” interval censoring is the same
as arbitrary interval censoring except that exact
observations can never be observed.

The asymptotic distribution result obtained by
Groeneboom & Wellner [16] for an NPMLE of F

derived from current status data is nonstandard and
involves 3

√
n norming. This shows that there will

never be a completely general asymptotic result for
the Turnbull estimator of F derived from arbitrarily
interval-censored data.

However, assuming that exact observations occur
with some positive probability, Li et al. [20] pre-
sented an EM algorithm for obtaining a self-
consistent estimator of F defined on (0, ∞). The
obtained estimator is a smoothed version of the Turn-
bull estimator. The authors state that consistency and
asymptotic normality of the smoothed estimator are
established in [28].

Generalizations

Turnbull’s method has been generalized by a num-
ber of authors to the estimation of multistate survival
models in which times of transitions to states may
be interval-censored and/or truncated (see Multivari-
ate Survival Analysis). Many generalizations were
motivated by the problems encountered in AIDS

studies (unknown time of infection with HIV, left
truncation of the incubation period of AIDS, and
delays in the reporting of AIDS cases), where the
typical framework is an irreversible three-state dis-
ease model (state 1, not infected; state 2, infected;
state 3, clinical AIDS). For example, De Gruttola
& Lagakos [7] simultaneously estimated the distri-
bution of the time of infection with HIV, and the
distribution of the incubation time (time between
infection and the appearance of clinical symptoms of
AIDS; see Latent Period), assuming independence
between these times, in the case where the time of
infection is interval-censored and there is no trun-
cation. Assuming that a three-state disease model is
a time-nonhomogeneous Markov process, Frydman
[13] proposed a self-consistent algorithm for estimat-
ing the cumulative transition intensities for data of
the same form as in [7]. Other generalizations are
given by De Gruttola et al. [8], Sun [25], and Fryd-
man [15]. The generalizations by Kim et al. [19], Tu
et al. [26], and Alioum & Commenges [1] incorporate
covariates.
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Twin Analysis

The first use of twin resemblance as a means of
resolving alternative hypotheses about the causes of
human differences appears to have been in 426 AD by
Augustine of Hippo in Book V of the City of God.
Augustine argued that since twins, who were highly
correlated in their times of birth, nevertheless had
such discrepant life histories, there was little empiri-
cal support for planetary influence on human destiny.
For Augustine’s purpose, it was sufficient that at
least some twin pairs showed markedly different life
histories. In the nineteenth century, Sir Francis Gal-
ton suggested the etiologic basis of the distinction
between identical (monozygotic or “MZ”) and frater-
nal (dizygotic or “DZ”) twins [15] (see Heterozygos-
ity). He viewed twins as a unique natural experiment
which allowed the resolution of the effects of hered-
ity and environment on human development. These
effects had been confounded in his studies of hered-
itary human traits in nuclear families and derived
pedigrees [16]. Galton solicited letters from twins
describing some of their experiences and character-
istics. Based on these anecdotal data, Galton likened
the developmental trajectories of identical twins to
the path of two sticks dropped simultaneously into a
stream. Although the eddies of the stream meant that
the sticks would probably alternate in relative posi-
tion as they flowed downstream, the overwhelming
pressure of the current, corresponding to hereditary
influences on human development, ensured that, on
average, the sticks moved at essentially the same rate.

Galton’s data, and his approach to data analysis,
would receive little recognition today. In the century
since Galton’s pioneering studies, the twin study,
though still subject to many inherent difficulties, has
played a critical part in establishing the prima facie
case for a significant role of genetic factors in a
wide range of human traits and disorders. This article
outlines some of the principal contours of past and
current thought on the analysis of twin data.

Basic Analytic Method for Continuous
Measures

Although the study of twins separated at birth (see
Adoption Studies) has obvious appeal [48], practical
issues of obtaining large and representative samples

have dictated that the majority of twin studies employ
twins reared together. Furthermore, although there
are reports of other kinds of twins [3], we focus
on the two most frequent classes: monozygotic (MZ)
and dizygotic (DZ) twins, who most often have been
reared together since birth.

Currently, there is no single perfect method of
twin data analysis. The approach taken will depend
somewhat on the kinds of data being analyzed and
the genetic and environmental issues being explored.
It is convenient, however, to begin with the approach
laid down by Jinks & Fulker [24], as this is based
on the familiar analysis of variance. Twin pairs
are regarded as random samples from a popula-
tion of pairs, and hence as a random sample of the
genetic and environmental factors creating variation
in the population of interest. Twins within a pair are
assumed to sample at random the genes segregat-
ing within a family and the environmental differences
operating within families. Birth order notwithstand-
ing, there is no reason a priori to order the twins
within a pair, so the data for each kind of twin pair
may be summarized (Table 1) by a nested analysis
of variance recognizing sources of variation within
and between pairs or by the derived intraclass cor-
relation coefficient. The strength of the twin method
stems from the fact that the components of variance
within and between pairs involve different propor-
tions of the genetic and environmental contributions
in MZ vs. DZ pairs.

Under the simplest model, which assumes no
genotype × environment interaction (G × E) and
no genotype–environment covariance (CGE), the
contributions of genes and environment to the com-
ponents of variance are shown in Table 2, where G1

and G2 are, respectively, the components of vari-
ance due to genetic differences within and between
sibships, and E1 and E2 are, respectively, the com-
ponents due to environmental differences within and
between sibships.

Table 1 Expectations under a nested analysis
of variance of n families of size m, in terms of
between (σ 2

b ) and within (σ 2
w) components of

variance

Source df Expected MS

Between families n − 1 σ 2
w + mσ 2

b
Within families n(m − 1) σ 2

w
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Table 2 Variance components for MZ and DZ twin pairs,
reared together or apart, under a simple genetic model. Sub-
scripts 1 and 2, respectively, denote within- and between-
family components of genetic (G) and environmental (E)
variance; G = G1 + G2 and E = E1 + E2. These compo-
nents contribute to within (σ 2

w), between (σ 2
b ), and total (σ 2

t )
variance components in the analysis of variance

Reared together Reared apart

Compo- MZ DZ MZ DZ
nent twins twins twins twins

σ 2
w E1 G1 + E1 E1 + E2 G1 + E1 + E2

σ 2
b G + E2 G2 + E2 G G2

σ 2
t G + E G + E G + E G + E

Other authors sometimes use different notations,
especially for the between-families environmental
component (also known as “common” environment,
“CE”, “shared” environment, or “family” environ-
ment). The total variance is G + E for all relatives
under the model. The expectations of the intraclass
correlations t = σ 2

b /(σ 2
b + σ 2

w) for MZ and DZ twins
reared together are

tMZT = G∗
1 + G∗

2 + E∗
2 ,

tDZT = G∗
2 + E∗

2 ,

where the asterisks denote the components of vari-
ance expressed as proportions of the total.

The proportion of the total variance attributable
to genetic differences (the “broad heritability”) is
G∗

1 + G∗
2. Early twin researchers proposed a number

of tests for the importance of genetic effects in
twin studies and ratios intended to summarize the
relative importance of genetic factors. Holzinger
[23] proposed using the ratio H = (rMZ − rDZ)/(1 −
rDZ) = G1/(G1 + G2). Similarly, Vandenberg [51]
proposed a statistic F = 1/(1 − H) = (G1 + E1)/E1

that measures the relative contribution of genes and
environment to differences within families. Signif-
icance levels and confidence intervals could be
obtained from the sampling distribution of the intr-
aclass correlation coefficient and variance ratio as
appropriate. However, under the model above, it
is clear that neither of these ratios corresponds to
the broad (or narrow) heritability understood by
geneticists.

Genetic Meaning of Statistical Parameters

Two components of variance G1 and G2 are merely
convenient ways of partitioning the genetic variance
in twin pairs into those effects that arise as a result
of segregation (G1) and those that arise because of
the sampling of parents (G2). They do not correspond
directly to the additive, dominant, or epistatic effects
of the genes contributing to variation. Considering
only the additive (VA) and dominant (VD) components
of genetic variance, it may be shown (e.g. 32) that
G1 = 1

2VA + 3
4VD and G2 = 1

2VA + 1
4VD when mat-

ing is random. Thus, in the absence of dominance,
G1 = G2 = 1

2VA.

Discontinuous Traits

Univariate analysis of discontinuous data, specifically
concordance rates and relative risks, is described
in the article on Twin Concordance. Multivariate
analysis of both continuous and discontinuous traits
is described below.

Structural Equation Model for Twin
Resemblance

Although the biometric genetic model allows for
the specification of additive and nonadditive genetic
components, it does not deal well with the effects
of assortative mating and the various forms of non-
genetic inheritance. The approach of path analysis,
though not ideal for the specification of nonlinear
effects, provides a convenient way of representing
family resemblance in the presence of assortative
mating and cultural inheritance [12, 49]. The basic
path model for the similarity of MZ and DZ twins
reared together is shown in Figure 1 (cf. [39]). The
model allows for the additive and dominance effects
of genes (A and D), and for the common (shared)
family environment (C) and the unique (within-
family) environment (E). The basic model assumes
polygenic autosomal inheritance, random mating, and
the additivity and independence of genetic and envi-
ronmental effects. In the simplest model, it is assumed
that genes and environment have the same effects in
males and females.

Model Fitting

If MZ and DZ twins are random samples of the
genetic and environmental effects in the population,
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A1 C1 E1 D1 A2 C2 E2 D2

1 1 1 1 1 1 1 1

a c e d a c e d

P1 P2Twin 1 Twin 2

1.0 (MZ) or 0.5 (DZ)

1.0 (MZT,DZT) or 0.0 (MZA,DZA)
1.0 (MZ) or 0.25 (DZ)

Figure 1 Univariate model for data from monozygotic
(MZ) or dizygotic (DZ) twins reared together (T) or apart
(A). Additive (Ai ) and dominant (Di ) genetic, and common
(Ci ) and specific (Ei ) environment latent variables cause the
phenotypes Pi in a linear additive structural equation model

then there should be no difference between the means
of MZ and DZ twins, nor any difference between
their total phenotypic variances. Some types of social
interaction, such as sibling contrast effects [5, 9],
can produce zygosity differences in mean or variance
or both, as can nonrandom sampling. The model of
Figure 1 yields the following predicted values for the
covariance matrices of phenotypic values in pairs of
MZ and DZ twins:

� =
[

a2 + c2 + e2 + d2 αia
2 + βic

2 + δid
2

αia
2 + βic

2 + δid
2 a2 + c2 + e2 + d2

]
,

(1)

where a, c, e, and d are path coefficients for additive
genetic, common environment, random environment,
and genetic dominance effects, respectively; αi = 1.0
for MZ and 0.5 for DZ twins; δi = 1.0 for MZ and
0.25 for DZ; and βi = 1.0 for twins reared together
and 0.0 for twins reared apart.

The parameters of the structural equation model
for the pattern of MZ and DZ covariance may be esti-
mated by several approaches, including maximum
likelihood and weighted least squares. Parameters
a, d, c, and e cannot be estimated simultaneously
from the “classical twin study”, which consists of
data on MZ and DZ twins living together. Dominance
effects tend to reduce the DZ correlation relative to
that of MZ pairs, whereas the common environment
tends to increase the DZ correlation relative to that of
MZs. If d and c are both zero, then the DZ correlation
is predicted to be exactly half that of MZs as long as
mating is random. Typically, a set of reduced models
(omitting either c or d) is fitted to the covariances
to explore the major contributions of genes and envi-
ronment to family resemblance. Where appropriate,

likelihood ratio tests of alternative hypotheses may
be conducted (e.g. that c or d is zero) and confidence
intervals obtained for the parameter estimates [44].
These operations can be conducted efficiently, with
many programs currently available for the structural
equation modeling of covariance matrices. Recently,
Mx [38] has been widely used in twin and adop-
tion studies. It has the advantage of being able to
fit models to raw data, which enables appropriate
treatment of data missing completely at random or
missing at random [30] (see Missing Data) as well
as the detection of outliers.

Multiple Variables and Developmental
Change

The univariate model for the analysis of twin data
directly extends to the multivariate case. Multivariate
path analysis [52] may be used to derive predicted
covariances between relatives measured on several
variables. In Figure 1, every latent and observed vari-
able is replaced by a vector of variables. Thus the
path coefficients are replaced by matrices of path
coefficients, which are organized such that column
variables cause row variables. The predicted covari-
ances among twins are then:

� =





AA′ + CC′ + EE′ αiAA′ + βiCC′

+DD′ +δiDD′

αiAA′ + βiCC′ AA′ + CC′ + EE′

+δiDD′ +DD′



 .

The form of the matrices A, C, E, and D dictates the
form of the multivariate model for each component.
One simple form is the Cholesky decomposition, in
which all matrices are square and lower triangu-
lar. This decomposition provides a robust way to
estimate the genetic and environmental sources of
variation in, and covariation between, multiple mea-
sures. Covariance due to additive genetic sources
is simply AA′, and this matrix may be standard-
ized to obtain additive genetic correlations between
traits. The genetic variances and covariances may be
expressed as proportions of the total (phenotypic)
covariances, to obtain a multivariate analog of the
narrow heritability coefficient, yielding information
on the relative importance of genetic vs. environ-
mental factors to covariation between traits. Some
caution is required because it is possible for some
sources of covariance to be negative while others are



4 Twin Analysis

positive. Such estimates might arise, for example, if
the phenotypic covariance between traits is zero, but
the cross-twin cross-trait covariance is positive. Thus
the multivariate twin study has a remarkable poten-
tial to identify relationships between traits that are
uncorrelated within individuals.

The Cholesky decomposition is not a theory-based
model – it merely factorizes the covariance matrices
A, D, C, and E. Other forms of the path coefficient
matrix can be used to test alternative (usually sim-
pler) models. A natural example from confirmatory
factor analysis is to postulate that a single latent
factor is responsible for all genetic (or environmen-
tal) covariation between traits, along with residual
factors specific to each trait. Models of this type
are called biometric factor or independent pathway
models. Matrix A would be specified as a partitioned
matrix F:D, where F is an m × 1 vector of paths from
the latent factor and D is an m × m diagonal matrix of
residual factors. The form of the environmental factor
matrices might be similarly constructed, but there is
no obligation to keep the factor structure the same for
the different variance components. If specific envi-
ronmental variation consists of measurement error,
a diagonal form for E would be sufficient.

Another natural branch of multivariate model is
the phenotypic factor, or common pathway, model
[26, 33], in which the genetic and environmental
factors combine to form a latent factor which subse-
quently causes variation and covariation between the
phenotypes. In addition, there may be trait-specific
genetic and environmental factors. This common
pathway model predicts that the cross-trait variation
and covariation due to the general genetic and envi-
ronmental factors is proportionate for all traits. Usu-
ally, this model has fewer parameters than the bio-
metric factor model and does not fit as well by the
χ2 criterion. However, the model may prove to be
a simpler, more parsimonious, account of the data,
as judged by other indices of fit such as Akaike’s
information criterion [1].

Understanding of the sources of variance and
covariance between traits gleaned from multivariate
analyses can greatly enhance our knowledge of the
role of risk factors in the interplay between genotype,
environment, and phenotypic outcome. In studies of
complex disorders, it is not good practice to assume
that a risk factor is purely environmental, nor that it
is a cause rather than a consequence of liability to a
disorder. Multivariate genetically informative studies

are particularly useful for the identification of risk
factors and for the quantification of their effects.

Longitudinal Genetically Informative Studies

Just as the measurement of twins on many variables at
a single occasion can provide information about the
proportion of covariance between traits that is due
to genetic vs. environmental factors, so can multiple
measures made on the same twins at several points
in time yield information about the sources of lon-
gitudinal stability and change. One starting point for
analysis is the use of the Cholesky decomposition,
which has a good conceptual basis if the variables
P1, . . . , Pt are ordered chronologically from occasion
1 to t . The first Cholesky factor F1 causes varia-
tion at all occasions. The second causes variation
at all occasions except the first, and may be con-
ceived of as sources of variation not present at the
first occasion, i.e. new variance or “innovations” at
the second occasion. All subsequent Cholesky fac-
tors Fi=3,...,t represent innovations which occur at
time i of measurement. In the context of twin stud-
ies, this distinction between persistent and innovation
variance can be made separately for genetic and
environmental components. Either genetic or envi-
ronmental factors or both may account for patterns
of stability and change over time, and the longitudi-
nal twin study allows us to test alternative hypotheses
about the origins of individual differences in change
over time.

In 1986, Eaves et al. [10] described a number
of alternative models of genetic and environmental
stability and change. Because data are collected at
several points in time, and because causation by defi-
nition operates from earlier to later events, it is natural
to think of earlier variables causing later ones, and not
vice versa. Such models are known as Markov chain,
or Simplex, and have been used in psychological sci-
ence for at least half a century [18]. In the context of a
twin study, each of the components of variation may
have a Simplex form, so that, for example, environ-
mental variance at each occasion is partitioned into
that due to previous occasions, and that due to inno-
vation since the previous measurement. Application
of the genetic Simplex to twin data is described in
[39].

A novel component to the Eaves et al. [10] app-
roach was the development of methodology to deal
with irregular spacing of intervals between study.
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Though not widely used, these methods are valuable
for taking into account differences in age between
subjects, which is particularly useful when the twin
study is expanded to include other relatives.

Application to Discontinuous Data

In the univariate case, data analysis may proceed
by maximum likelihood analysis of the contingency
tables of twin 1 against twin 2 (see Twin Con-
cordance). Most analyses assume that there is an
underlying normally distributed liability continuum
on which there are one or more abrupt thresholds
that subdivide the population into ordinal classes. In
principle, it is possible to analyze multivariate data
this way, but the likelihood computations require the
computation of multivariate normal integrals over
twice (for twins) as many dimensions as there are
variables in the analysis. Beyond-bivariate analysis of
twin data (requiring four-dimensional integration) is
numerically tedious at this time, even with advanced
integration methods [17].

As an alternative to direct maximum likelihood
analysis of multivariate ordinal data, it is possi-
ble to fit models to matrices of polychoric and
polyserial correlations computed using software such
as PRELIS [25], together with a weight matrix based
on fourth-order moments [4]. These methods are
practical only when the sample sizes are very large
relative to the number of variables being analyzed;
with small sample sizes the departure of the fit
statistics from chi-square can be substantial.

Other Models

There are many approaches to the analysis of twin
data, only some of which involve more elaborate
structural equation models. To some extent, any mul-
tivariate statistical method can be applied to twin
data, often yielding tests of salient genetic and envi-
ronmental hypotheses. However, it is rare that a
statistical method developed for unrelated subjects
can be directly applied to data collected from twins.
Methodologic development is usually required to
specify that the subjects are related and that while
certain parameters may be expected to be equal, oth-
ers may need reparameterization to reflect the a priori
knowledge from Mendelian (see Mendel’s Laws) or
Fisherian theory of the degree of genetic relatedness.

Continuous Indices of the Environment

A common misconception is that variation for some-
thing that seems environmental – like socioeconomic
status – is purely environmental. Often, empirical
inquiry with a twin or adoption study reveals sub-
stantial genetic variability for such traits. Therefore,
it is wise to collect genetically informative data on
all variables, wherever possible, before exploiting one
or other variable as an environmental index. If a suit-
able environmental index does exist, it is possible
(in principle) to identify genetic variance in an oth-
erwise confounded design [36]. Such situations are
relatively rare, so the multivariate twin or adoption
study – which does not require the existence of an
environmental index and is therefore of ubiquitous
utility – is more widely used.

G × E and G × Sex Interactions

A common question is whether the set of rele-
vant genetic and environmental factors, and the sizes
of their effects, remain the same under different
conditions [32]. One example would be examina-
tion of exposure to stressful experiences (though
this may not be entirely environmental). Another
example is male vs. female sex. In both cases multi-
group structural equation modeling is a viable sta-
tistical approach. Twin pairs may be subclassified as
concordant for exposure, discordant, or concordant
for nonexposure. The basic procedure is to fit models
in which parameters are allowed to differ between
the subsamples, and to compare them, by likelihood
ratio tests, with models in which the parameters are
constrained to be equal across all groups. This com-
parison tests whether the magnitude of the parameters
is the same under different environmental conditions.
It is possible to carry out this test separately for one
or more of the genetic or environmental sources of
variation, to test whether, for example, differences in
genetic effects alone are sufficient to account for dif-
ferences in phenotypic variability. The subtler ques-
tion of whether the same genetic and environmental
factors are operating in the different groups may be
addressed by developing a more elaborate model,
which involves genetic and environmental factors that
only operate on those individuals exposed to the envi-
ronment (see Figure 2). In the special case of sex
interactions, the twin study is limited to assessing
sex-specific effects for either additive or dominance
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Figure 2 Path diagram of genotype × environment inter-
action in twins discordant for environmental exposure. For
MZ pairs, α = 1.0 and β = 1.0; for DZ pairs, α = 0.5 and
δ = 0.25. The subscripts u and e identify variables and
parameters for unexposed and exposed twins, respectively

(or common environment) genetic effects but not both
(a′

e or d ′
e in Figure 2). This limitation is because the

identical twins are always of the same sex.
While the method may in principle be extended

to test simultaneously the effects of several
environmental variables, the number of subgroups
increases quadratically, requiring an even greater
increase in sample size to maintain sufficient numbers
in the less frequent subgroups. To some extent this
problem – which also occurs when more than a
binary subclassification of twin pairs is used – can
be mitigated by the analysis of the raw data instead
of summary statistics [38].

Age Effects

Age can affect parameter estimates in a twin study
in many different ways. Perhaps the simplest way,
and one that is easiest to correct, is where there is
a linear relationship between age and the phenotype.
Assuming that the age distribution is equivalent in the
MZ and DZ pairs, that the members of a twin pair are
measured at the same age, and that twin pairs span a
variety of ages, the linear effects of age will inflate
the estimate of c2. Neale & Martin [42] showed
how the linear effects of age could be added to the
structural equation model for twin data to control for,
and estimate, the effects of age. Another approach is
to regress out the effects of age on the phenotype prior
to structural equation modeling. This latter technique
is useful when nonlinear effects of age are of concern.
Failure to correct for age in extended twin designs
(twins plus their parents, children, or other relatives)
where age difference is unequal for different types of

relationship (such as parent–offspring vs. twin) can
give rise to biased parameter estimates.

Similar to genotype × environment interaction,
the impact of genes and the environment may vary
between ages. In addition, different genetic and envi-
ronmental factors may be operating at different ages.
Such age × genotype or age × environment interac-
tions are best resolved with longitudinal, genetically
informative studies (see above).

A further recent development in genetic studies
is the use of growth curve modeling [43]. Based on
dynamical systems theory, specific functional forms
for asymptotic growth or decay are specified. It is
then possible, in a single-step analysis, to estimate
genetic and environmental components to variation
in initial level, rate of growth, and final asymptote
components of variation in growth. Such models have
great economy for predicting means, variation, and
covariation of relatives across many points in time.

Censoring

A common statistical problem concerns the nonran-
dom observation of test scores. For example, exam-
ination scores from a sample of students may be
available only for those who passed. Such a sam-
ple is termed censored. Uncorrected analysis of data
from twin pairs in which both members passed the
examination would yield biased estimates of genetic
and environmental components of variation for the
population. Typically, such censoring biases correla-
tions towards zero, but in a nonlinear fashion [46],
so the impact on additive genetic and common envi-
ronment estimates depends on their true population
values.

Correction for censoring requires knowledge of
the proportion of the sample that has been censored,
and, in the case of twins, some assumption about
the underlying distribution so that the correlated
ascertainment can be controlled. Assuming that a
variable is normally distributed in the population, the
likelihood for a pair of censored observations is

φ(xi)

A
, (2)

where φ(xi) is the bivariate normal pdf

|2π�|−n/2 exp
[− 1

2 (xi − µi)
′�−1(xi − µi)

]
,

in which � is the population covariance matrix, µi is
the (column) vector of population means of x1 and x2,
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and |�| and �−1 denote the determinant and inverse
of the matrix �, respectively. The divisor A in (2)
is the ascertainment correction, and is the probability
that a pair will both have passed the examination. If
the passing grade is t , the correction term is

A =
∫ ∞

t

∫ ∞

t

φ(xi) dx2 dx1.

In a similar fashion, data from the pairs discordant
for passing the examination may be analyzed jointly.
These data increase the precision of the estimates
of the means and variances of the examination
scores, but add little to the precision of the estimated
covariances between the twins, and hence add little to
the precision of estimates of heritability or common
environmental variance.

Nonrandom Sampling

Similar to the analysis of data from censored samples,
other forms of nonrandom sampling are sometimes
used to increase statistical power. For example, in
“four corners” sampling, pairs are selected because
both members have scores either above a cutoff point
t or below −t . This design will, after correction,
yield estimates of genetic and environmental effects
that are more precise (i.e. have smaller confidence
intervals) than those from a random sample of equal
size. By itself, this observation is of little practical
use because scores on the whole sample are required
in order to effect the nonrandom sampling, in which
case the data from the whole sample should be used.
However, the method gains value when subjects are
being screened for a more expensive measurement
protocol such as genotyping (see below).

Another common source of nonrandom samples in
twin data occurs when all patients at a hospital are
asked if they are a twin. In this case a key concept
is the probability of ascertainment, usually denoted
as π . Maximum likelihood based methods for esti-
mating π and twin concordances are available [2].
Especially for rare disorders, nonrandom sampling,
such as that through hospital records, can yield large
gains in statistical power [45]. However, nonrandom
sampling may suffer from nonrepresentativeness, if,
for example, hospital cases do not constitute a random
sample of cases in the population.

Co-Morbidity and Causation

An interesting feature of the classical twin study is its
ability, under certain conditions, to test causal mod-
els of the relationship between traits or disorders [8,
22, 39] (see Causation). The principle can be seen
in a simplified example, in which trait A correlates
between twins, and trait B does not. However, trait
A and trait B correlate within individuals. If trait
A causes trait B, then we would predict a cross-
correlation between trait A in twin 1 and trait B

in twin 2. On the other hand, if B causes trait A,
then the cross-twin, cross-trait correlation would be
predicted to be zero. This simple example extends
to the more general case; identification of the model
requires that the twin correlation (either MZ or DZ)
for trait A differs from the twin correlation for trait
B. A limitation of this method is that, to avoid incor-
rect inferences about causation, measurement error
variance should be approximately equal for the two
traits.

Simple causation is only one of a variety of
possible sources of covariation between traits, or
of co-morbidity between disorders. We discussed
above several multivariate models of resemblance
based on genetic and environmental correlations
between traits. In addition to these, there are a
number of other models of co-morbidity that are
clinically relevant [28, 41]. In particular, there is
the idea that succumbing to a disorder in and of
itself causes an increase in liability to a second
disorder. This is quite distinct from simple corre-
lation or causation between the liabilities to two
disorders, and has different implications for etiology
and treatment.

Other models of co-morbidity are based on
hypotheses that two disorders are either a single-
liability dimension, two correlated dimensions, or
three independent dimensions, where excess co-
morbid cases are a third, independent disorder [41].
All the models described in this section can be
assessed with a maximum-likelihood or minimum
χ2 goodness-of-fit function. When cell frequencies
are low, minimum χ2 often performs better than
maximum likelihood.

Dimensionality

Biostatisticians and psychometricians frequently rely
on the joint distribution of the items on a test to
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discern the dimensionality of a trait. Item response
theory, latent class analysis, and multidimensional
scaling are all examples of devices to assess dimen-
sionality with multivariate data. Twins offer a unique
perspective on dimensionality, gleaned from the pat-
tern of covariance between twins measured on a
single scale. A simple example of this is for cigarette
smoking, where individuals may be current smok-
ers, ex-smokers, or nonsmokers [21]. The question
is whether these categories represent an ordinal scale
based on a single underlying continuum of liability or
whether there are different processes involved in ini-
tiation vs. persistence of tobacco use. Data from twins
may be summarized as contingency tables, and used
to test against frequencies predicted under a bivariate
normal model with two thresholds and a polychoric
correlation coefficient. This single-liability dimension
model may be compared with two main alternatives.
First is a model of two independent normally dis-
tributed liability dimensions in which one dimension
discriminates between those who initiate and those
who do not, and the second dimension discrimi-
nates between those who quit smoking and those
who persist. Second is a combined model, which is
the same as the two-dimensional model except that
those intermediate on the initiation dimension invari-
ably become ex-smokers. Empirically, the combined
model has the greatest support, and the single-liability
dimension model is usually statistically rejected, indi-
cating that smoking status cannot be regarded as a
unitary trait.

Latent Class Analysis

It is possible to extend latent class analysis [34] for
use with twin data by constraining the pattern of joint
class frequencies in pairs of twins [11] to accord
with various models of twin resemblance. A simple
form of patterning allows members of a twin pair
to correlate for class membership. The usual repa-
rameterization to estimate variation due to additive
genetic, shared environmental, and random environ-
mental components can be applied to class member-
ship frequencies, assuming some ordering of classes
(polychoric correlation) or nonparametric associa-
tion such as Cramer’s C [6]. Of greater interest
from a biometric genetic standpoint is the pattern-
ing of classes according to gene frequencies under
a major locus model (see Table 3). Optionally, these
cell frequencies may be multiplied by penetrance

Table 3 Pairwise class membership frequencies for MZ
and DZ twins under a single biallelic major locus model,
with gene frequencies p and q = 1 − p

MZ twin 1 DZ twin 1

1 2 3 1 2 3

1 p2 0 0 p4 2p3q q2p2

Twin 2 2 0 2pq 0 2p3q 4p2q2 2pq3

3 0 0 q2 q2p2 2pq3 q4

parameters, which estimate the probability that each
genotype gives rise to the three latent classes. Not all
penetrance parameters can be estimated in this model.

Extending the Twin Design

The classical twin study should be regarded only
as a good starting point for genetic epidemiologic
investigations. It is clearly limited in a number of
ways, several of which can be overcome by extending
the twin design to include other relatives. As noted
above, data from either MZ or DZ twins reared apart
enable the joint estimation of the effects of both dom-
inance genetic factors and the common environment,
along with the effects of additive genes and specific
environment. However, data from adoptees are them-
selves subject to a number of critical assumptions (see
Adoption Studies), so it is worthwhile to consider
extended twin designs.

A simple and practical extension is to assess
twins and their parents [13, 47]. Parents yield two
new types of data: marital and parent–offspring
covariances. The marital covariance provides infor-
mation about the presence of assortative mating.
Usually, assortment is assumed to be phenotypic [12].
The consequences for the twin study are an increase
in total phenotypic variance, the same increase in MZ
covariance (hence no increase in correlation) and the
same increase for DZ twins. Functionally, with the
MZ and DZ covariances increasing by equal amounts,
assortative mating will be estimated as part of the
shared environment variance in the uncorrected clas-
sical twin study. It should be noted that appropriate
modeling of twin–parent data will yield estimates of
heritability that include a portion due to the effects
of assortment.

Parent–offspring covariances can be used to iden-
tify several alternative parameters. When environ-
mental transmission between generations is assumed
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to be absent, the parent–offspring covariance may
be used to identify genetic dominance, as parents
and their offspring do not share genetic dominance
deviations (see Genotype). It seems naive to the
behavioral scientist to suppose that human parents,
who expend much effort in rearing their offspring,
do not influence the environment of their children.
A genetically informative design, such as twins and
their parents or a full adoption study, is required
to discriminate between genetic and environmental
transmission from parent to child. Path models for
mixed environmental and genetic transmission in the
twin–family design appear to have been described
first by Fulker [13]. Of these models, those that
involve an effect of the parents’ phenotypes on
their offspring (P → E transmission) generate geno-
type–environment covariance because the genes and
the environment have a common origin (parental
genes affect both parental phenotype, and hence
children’s environment as well as children’s geno-
types). Genotype–environment covariance is typi-
cally assumed to be at equilibrium over generations,
yielding a nonlinear constraint among the parameters
of the model.

Much parent–child environmental transmission is
modeled in a univariate fashion, e.g. a parent’s body
mass is assumed to form part of the environment
for their children’s body mass. Transmission might,
however, operate indirectly via other variables, e.g.
a parent’s dietary preference forms part of the envi-
ronment for their children’s body mass. Multivariate
models which overcome this limitation have been
described [47]. Twin–parent data are still limited by
the assumption that heritability is the same in both
generations. While this may be defensible for adult
populations where the age of the children from some
families overlaps that of the parents in others, it is
much more questionable in studies of juvenile twins
and their parents.

Beyond twins and parents, the next most obvi-
ous extension is twins, their spouses, and their chil-
dren. Interestingly, twins and their spouses – and
in-law data in general – allow the resolution of sev-
eral alternative models of assortative mating [20].
Of particular note is the distinction between pheno-
typic homogamy – a matching of the phenotypes of
spouses – from social homogamy, where there may
be some social stratification or other environmental
basis for spouse similarity. These models have quite
different consequences for genetic and environmental

sources of variation, so incorrect modeling of marital
resemblance can give rise to biased estimates, espe-
cially when the mate resemblance is high.

A great advantage of twins and their children is
that both generations contain a genetically informa-
tive design – the classical twin study in the parental
generation, and siblings, cousins, and half-siblings
related through MZ twins in the offspring generation.
Thus a test of equality of heritability over generations
is possible by a likelihood ratio test. If heritability
varies continuously over the lifespan, and different
genetic and environmental factors operate at differ-
ent ages, then longitudinal data would be needed to
quantify these changes.

Recently, models for twins, their parents, spouses,
siblings, and children have been devised and applied
[50]. Initially, these models were fitted to z-
transformed correlations using a weighted least-
squares procedure, but more recently Mx has been
used to fit the models to the raw data, enabling
statistically appropriate maximum likelihood analysis
of pedigrees of irregular size and structure.

Measured Genotypes in Studies of Twins

Assessments of the genotype, such as blood groups,
have long been used to help distinguish MZ from
DZ twins [35]. More recently, greater precision has
been obtained through polymorphic markers, against
which questionnaire methods have proved approxi-
mately 95% accurate. Beyond zygosity determina-
tion, DZ twins can be regarded as a special type of
sibling, where age and intrauterine effects have been
matched. As such, they are suitable for studies of
genetic linkage and association.

Genetic marker studies fall into three broad cat-
egories: studies of candidate loci, studies of linkage,
and studies of association. A candidate locus is a
specific region of the genome that is thought to
cause phenotypic variation. DZ twins, who may share
zero, one, or two genes identical by descent (IBD)
at this locus, can yield information about the locus’
effects, but MZ twins, who share two alleles IBD
at every locus (somatic mutations notwithstanding),
are uninformative about the effects of the candidate
locus [37].

Studies of genetic linkage use data from highly
polymorphic genetic markers approximately evenly
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spaced along the genome. Two branches of link-
age studies concern binary traits – especially puta-
tive genetic disorders – and quantitative traits. Again,
DZ twins are informative for linkage, whereas MZ
twins provide information to resolve background
genetic from common environment effects. Several
approaches to the analysis of linkage data have been
described, from the regression methods of Hase-
man & Elston [19] to recent multipoint maximum-
likelihood methods [29]. All rely on estimating the
probabilities, p(0), p(1), and p(2), that a sib-pair
shares zero, one, or two alleles IBD, and the asso-
ciation of these probabilities with the phenotypic
resemblance. These probabilities may be estimated
by a variety of methods; those of Kruglyak & Lan-
der [29] are currently popular. There are two main
ways of using the probabilities: separately to weight
the likelihood under different models, or jointly using
the summary statistic π̂ = 0.5p(1) + p(2). In addi-
tion, there are two main ways to utilize univariate
data from sib-pairs or DZ twins: signed intrapair dif-
ferences or raw data. Intrapair differences may be
convenient when selected samples are used, but they

carry a cost of loss of information and hence sta-
tistical power. Similarly, use of π̂ can simplify data
analysis but lose statistical power, although – in some
cases at least – less so than the use of intrapair dif-
ferences [14].

Structural equation modeling can clarify the use
of genetic marker data to detect the effects of
quantitative trait loci, and provides a straightforward
extension to the multivariate case. Figure 3 shows
path diagrams for the alternative approaches with π̂

and weighted models. The likelihood maximized with
the π̂ approach is based on the multivariate normal
pdf, but the predicted population covariance matrix
� changes for each sib-pair, according to the p(i)

values. The log likelihood of the weighted model is
given by

LM = log
2∑

i=0

piLi,

where Li is the likelihood under the model for
siblings that share i alleles IBD, and pi is the
probability based on the marker data that the siblings
share i alleles IBD. Likelihood for mixtures of

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

A Q E A Q E A Q E A Q E

A Q E A Q E A Q E A Q E

a q e a q e a q e a q e

a q e a q e a q e a q e

a p
∧

a 0

a 1a 0.5

PT1 PT2 PT1 PT2

PT1 PT2 PT1 PT2

(a) (b)

(c) (d)

Figure 3 Models for quantitative trait locus effects (Q) in data from monozygotic (MZ) or dizygotic (DZ) twins reared
together. Additive polygenic background (Ai ) and specific (Ei ) environment latent variables also cause the phenotypes (Pi )
in a linear additive structural equation model. Figure (a) shows the use of π̂ as an estimate of the correlation between QTL
effects of siblings; models (b) through (d) are used jointly to compute the likelihood from weighted mixture distributions
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normal distributions can be evaluated in the structural
equation modeling program Mx [38].

Estimates of the path coefficient in Figure 3 from
Q to the phenotype give an indication of the impact of
the putative QTL on the phenotype, and likelihood-
based confidence intervals may be obtained to judge
their statistical significance. A formal likelihood ratio
test may be used for this purpose by fixing the
parameter q to zero and comparing the goodness
of fit under the two models. An alternative test is
available through the LOD score, being the log of
the odds under the model where the sibling IBD
0, 1, and 2 probabilities are fixed at 0.25, 0.5,
and 0.25, respectively, against the model where the
probabilities are set to their estimated values. The log
likelihood has well-known distributional properties
for the multivariate case (where Q affects multiple
traits) and is therefore a natural choice. It should be
noted that there remain problems with the method in
that the likelihood ratio does not asymptote exactly to
χ2, so alternative methods using bootstrapping may
be preferred.

Problems of the Twin Method

Several assumptions of the twin method are open to
question. Most of these may be tested empirically
either within the twin study itself, by reference to
population statistics, or through expansion of the twin
study to include other relatives.

Representativeness

A general problem with any observational or
experimental study is that the sample collected
may not be representative of the population,
and therefore any conclusions drawn would not
necessarily generalize to the population. Of course,
studies that use volunteer samples always run the
risk of being unrepresentative of nonvolunteers. In
twins, some information concerning the degree of
volunteer bias can be obtained by comparison of pairs
discordant for study participation with concordant
participating pairs [40]. This method requires nonzero
correlation between twins for volunteering, which is
commonly observed.

Obstetric Complications

A particular concern with twin data is that their uter-
ine development is unusual, and that this has lasting

effects on development. However, these effects, if
they exist, are hard to detect because the means and
variances of twins are comparable with population
norms in many different domains, from personality
and psychopathology to body mass index and car-
diovascular function. There is evidence that twins
have lower than average verbal abilities, but this
seems to be associated with the social aspect of hav-
ing a same-aged companion rather than biological
complications [35]. One possibility that has not yet
been tested thoroughly is the effects of chorionicity
(MZ twins may occupy either one or two amniotic
sacs, depending on the time in development at which
the zygote splits). Systematic ascertainment of twins
during pregnancy – such as currently occurs in Bel-
gium – may help address this question.

Sibling Interaction

As mentioned above, twins may have a direct influ-
ence on one another during development. If they
do, we would predict differences in total variance of
twins compared to nontwins [9]. Even within the twin
study, if the MZ and DZ correlations differ prior to
interaction, then we would expect differences in their
total variance. Structural equation modeling of twin
data implicitly tests few these effects, for substantial
sibling interaction will cause the model to fit badly.
Few cases of sibling effects have been observed in
empirical studies. Few parental ratings of activity in
their children interaction seems to exist, but multi-
variate analyses and those of behavioral observations
suggest that this is a parental contrast (rater bias)
effect rather than genuine interaction.

Equal Environments

The “equal environments” assumption requires that
MZ and DZ twins share environmental experiences
to the same extent. It is often found that MZ twins are
dressed more similarly and are treated more similarly
than are DZ twins. However, the important factor
here is whether or not these similarities lead to appre-
ciable variation in measured phenotypes. Usually this
is tested by examining the correlation of absolute
intrapair differences with the measure of treatment
similarity (contact between twins is amenable to sim-
ilar methods). More recently, treatment effects have
been incorporated into structural equation models
[27]. In general, the assumption appears valid for
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psychopathology and other behavioral traits [27, 31].
Furthermore, to the extent that MZ twins elicit more
similar treatment by others than do DZ twins, vari-
ation is correctly estimated as, and is ascribed to,
genetic factors, albeit that they are acting through
the environment. Effects of this type are sometimes
referred to as those of the extended phenotype [7].

No Genetic Dominance

The confounding of genetic dominance with the
common environment is a difficult problem which
is best overcome by the addition of further types of
family relatives, as described above. Failure of the
assumption without test will cause an underestimation
of the effects of the common environment; however,
twice as much genetic dominance as common envi-
ronment would be needed to mask it completely.

No Assortative Mating

Tests for assortative mating are best carried out by
assessing a sample of parents; as noted above, the
parents of twins make an excellent sample for this
purpose.

Linearity

Almost all models considered to date assume a linear
effect of genotype on phenotype. Nonlinear effects
are entirely plausible, but are difficult to test in data
from human subjects. In practice, most nonlinear
effects carry a substantial linear component, and it
is good scientific practice (Occam’s razor) to keep
the models simple unless further complications are
warranted.

The Future of the Twin Method

The rise of molecular genetics led some researchers
to infer that the twin study is dead. As may be seen
from this article, we believe such reports to be a
great exaggeration. While the proportion of funds
and research effort devoted to molecular genetics has
clearly grown to dwarf that spent on twin studies, the
latter continues to grow in absolute terms. Indeed,
the effort spent on twin studies seems to be growing
faster than traditional epidemiologic areas. Twin
studies have the advantage that linkage studies which

include MZ and DZ twins can assess the proportion
of QTL and non-QTL genetic variance. In addition,
there are large databases of twin data that have been
gathered on a variety of phenotypes worldwide. These
are valuable resources from which samples may be
specially selected (for extreme phenotypic values) to
increase the power of linkage studies.

Finally, it should be said that the best way to study
the environment is to use a genetically informative
design. Without controlling for genotype – which the
twin study allows us to do statistically – putative
environmental factors almost always may have a
biological component. Thus the twin study will
likely play a significant role in the assessment of
environmental as well as genetic causes of individual
differences and disease.
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Twin Concordance

The comparison of similarity, or concordance, for a
binary trait between monozygotic (MZ) and dizy-
gotic (DZ) twin pairs can be used to test the null
hypothesis that genetic factors do not influence the
variance of that trait. Under the classic twin model
it is assumed that nongenetic factors relevant to the
trait variance are shared to the same extent within
MZ pairs as they are within DZ pairs, so that greater
concordance within MZ pairs is evidence against the
null nongenetic hypothesis and in favor of a genetic
alternative.

For binary traits there are several measures of
association within twin pairs, such as the Pearson
correlation (which is related to the classic test for
independence in a two-by-two table), the tetrachoric
correlation, the odds ratio, and several probabilities
conditional on the trait status of one or both twins.
The latter conditional probabilities have been referred
to traditionally in the twin literature as “concordance
rates”.

Some methods of estimation allow adjustment
for measured factors that might influence trait
prevalence. This is important. For example, if the
expression of the trait depends on age, methods
that do not take this into account will give higher
estimates of concordance. This is because twins
within a pair are perfectly matched for age, whereas
twins from different pairs may differ in age. In the
classic twin method, failure to adjust for such putative
factors would be misleading if those factors were
not independent of zygosity. Crude measures that use
only the numbers of twins in the cells of the 2 × 2
table implicitly assume that the MZ and DZ pairs are
comparable for such factors.

Statistical Framework and Definitions

Let Y1 and Y2 be random variables representing the
binary trait status of twin 1 and twin 2, respectively,
within the same pair. Often the trait represents dis-
ease status, and this situation will be used for illus-
trative purposes. Let Yj = 1 if twin j is affected,
otherwise let Yj = 0, for j = 1, 2. For simplicity, let
the probability that a twin is affected be the same
for both members of a pair, i.e. let P = Pr(Yj =
1) be independent of j . Define the joint proba-
bilities as: P11 = Pr(Y1 = 1, Y2 = 1), P10 = Pr(Y1 =

1, Y2 = 0) = Pr(Y1 = 0, Y2 = 1) = P01, and P00 =
Pr(Y1 = 0 and Y2 = 0). Note that

P11 + P10 + P01 + P00 = 1 and

P = P11 + P10 = P11 + P01. (1)

The casewise concordance, Pc, the probability that
one member of a pair is affected given that the other
twin is affected, is

Pc = Pr(Y2 = 1|Y1 = 1)

= Pr(Y1 = 1|Y2 = 1)

= P11

P
. (2)

The pairwise concordance, Pp, the probability that
both members of a pair are affected given that at least
one member is affected, is

Pp = Pr(Y1 = 1 and Y2 = 1|Y1 = 1 or Y2 = 1)

= P11

P11 + 2P10
. (3)

Therefore, casewise and pairwise concordance are
two different measures, and the decision of which
to work with depends on the question(s) being asked.
For example, if as in genetic counseling one wants to
know the probability that a twin will become affected,
given that the other twin is affected, then casewise
concordance is appropriate. However, if interest is in
predicting the pair disease status when all one knows
is that at least one twin is affected, then pairwise
concordance is relevant.

The Pearson correlation is

ρ = cov(Y1, Y2)

[var(Y1)var(Y2)]1/2

= P11 − P 2

P(1 − P)

= Pc − P

1 − P
. (4)

Note that

Pjk = Pr(Y1 = j) Pr(Y2 = k) + δjkρD, (5)

where D = P(1 − P) and δjk = 1 if j = k, else −1.
The odds ratio is

ψ = P11P00

P10P01
. (6)
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It can be shown from (1), (5), and (6) that

ρ2 − ρ

(
2 + 1

K

)
+ 1 = 0, (7)

where K = (ψ − 1)P (1 − P).
The tetrachoric correlation is the Pearson corre-

lation of a presumed underlying normally distributed
“liability” score, which, when dichotomized at appro-
priate cut-points, gives expected proportions in the
four cells that best approximate the observed numbers
in the 2 × 2 table (see Genetic Liability Model).

Estimation

If all twin pairs in a defined population are sampled
at random, estimation of the above measures of
association is straightforward. If pairs are studied
only because (at least) one twin is affected, the
correlations and odds ratio cannot be estimated. The
concordances may be estimable, but to do so the
process whereby the pairs were “ascertained” needs
to be known. If there is complete ascertainment, the
concordance rate estimator one would naturally use
when all pairs are randomly sampled is appropriate; it
is an unbiased estimator of the respective conditional
probability. When there is incomplete ascertainment,
however, this natural estimator is no longer unbiased.

Under Random Population Sampling

Let nij be the number of twin pairs with Y1 = i

and Y2 = j, n d = n01 + n10 be the number of pairs
discordant for disease, and n be the total number of
pairs observed.

The maximum likelihood estimates of P and Pc

are, respectively,

P̂ = 2n11 + n d

2n
(8)

and

P̂c = 2n11

2n11 + n d
. (9)

The asymptotic variances of these estimates are

P̂ (1 − P̂ )

n
− n d

4n2

and

P̂ 2
c (1 − P̂c)

[
1

n11
− 1

n d

]
,

(see [1, Appendix C], where in addition an expression
for the asymptotic variance of the maximum likeli-
hood estimate of ρ is given).

Smith [2] presents methods for interpreting the
casewise concordance (referred to there as the
“proband concordance rate”; see below) in terms
of an estimate of the tetrachoric correlation, and a
standard error.

The square of the maximum likelihood estima-
tor of ρ is X2/n, where X2 = (n11n00 − n10n01)

2n

÷[(n00 + n01)(n00 + n10)(n01 + n11)(n10 + n11)] is
Pearson’s χ2 statistic (see Chi-square Tests) for
the 2 × 2 table of disease in pairs with n10 = n01 =
1/2n d. This provides a simple approximate χ2

1 test
of the hypothesis ρ = 0.

Sampling of Affected Pairs Only

Suppose that pairs are observed only if one or both
twins are affected. Under complete ascertainment, the
maximum likelihood estimate of Pc is

P̂c = 2n11

2n11 + n d
, (10)

and for large samples the standard error is approxi-
mately [P̂c(1 − P̂c)(2 − P̂c)/[2n11 + n d)]1/2.

The maximum likelihood estimator of Pp is

P̂p = n11

n11 + nd
, (11)

with standard error [P̂p(1 − P̂p)/(n11 + nd)]1/2 =
[n11nd/(n11 + nd)

3]1/2.
Under incomplete ascertainment, for the n11 pairs

concordant for disease a distinction must be made
between those n11D doubly ascertained pairs in which
both twins were found to be affected in the original
sampling from the population, and those n11S singly
ascertained pairs in which only one member was
found to be affected in the original sampling, and the
other was subsequently found to be affected only on
further examination, for whatever reason. Therefore
n11 = n11D + n11S. The ascertainment probability, π ,
is the probability that an affected twin will be identi-
fied from the original sampling from the population.
Its maximum likelihood estimator is

π̂ = 2n11D

2n11D + n11S
. (12)
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The probandwise estimator is

P̂pr = 2n11D + n11S

2n11D + n11S + nd
. (13)

Therefore, whereas under complete ascertainment P̂c

is the maximum likelihood estimator of the casewise
concordance, Pc, under incomplete sampling the
maximum likelihood estimator of Pc is P̂pr. P̂c given
in (10) becomes (2n11D + 2n11S)/(2n11D + 2n11S +
nd), which is not equal to P̂pr. This shows that under
incomplete ascertainment P̂c is a biased estimator of
Pc. If π is close to 1, however, the bias is small.

The asymptotic variances of π̂ and P̂pr are

π̂2(1 − π̂)2

[(
1

n11D

)
+

(
1

n11S

)]

and

P̂pr(1 − P̂pr)
2 {

1 + [
(4n11D + n11S)n d

/(2n11D + n11S)
2
]}

/n d.

Unfortunately, the difference between the con-
cordance in the population (in statistical parlance a
parameter) and the concordance estimator based on
the observed numbers of pairs sampled, has usually
been obfuscated in the twin literature through use of
the same notation for both entities.

In summary, therefore:

1. Under random or complete ascertainment:
(a) the casewise estimator is unbiased for the

casewise concordance, and
(b) the pairwise estimator is unbiased for the

pairwise concordance.
2. Under incomplete ascertainment:

(a) the casewise estimator is biased for the
casewise concordance, and

(b) the pairwise estimator is biased for the
pairwise concordance, but

(c) the probandwise estimator is unbiased for
the casewise concordance.

Taking into Account Main Effects of Measured
Variables on the Trait Mean

As mentioned at the start, the trait mean may depend
on measured factors, and inference about the binary
trait covariance (concordance) may differ depending
on whether or not these are taken into account. The
maximum likelihood methods can be extended to
allow the parameter P to depend on these factors,
introducing a new set of parameters. By using a
numerical maximization routine all parameters can
be straightforwardly estimated, allowing the twin
concordance to be estimated while adjusting the
trait prevalence for covariates. Furthermore, the twin
concordances can also be estimated as functions
of measured factors, such as zygosity, age, sex,
cohabitation status, years living apart; see [1]. This
allows for a more critical appraisal of the null and
alternate genetic hypotheses.
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Twin Registers

Twins offer unusual and interesting opportunities for
biomedical research [7, 19]. In the classic (and widely
used) twin study design the degree of similarity
(concordance) of identical (presumed monozygotic)
and like-sex nonidentical (presumed dizygotic) twin
pairs are compared [7] (see Zygosity Determina-
tion). This approach indicates an upper limit to the
relative importance of genetic factors, in the context
of the prevailing lifestyle and environment, although
it has long been recognized that the method cannot
rigorously prove genetic causation [14]. However,
potential uses of twins extend well beyond the clas-
sic twin method to studies in molecular genetics,
environmental epidemiology, developmental biol-
ogy and behavioral science. In combination, such
research can address the influence of both genetic and
environmental factors, and their interaction [3, 8, 17].

Dizygotic twins who are concordant or highly
discordant for disease or a quantitative trait may be
studied for genetic markers as a special case of the
sib-pair technique [5, 15]. Monozygotic pairs who are
discordant for a particular condition, however rare,
offer powerful evidence for nongenetic determinants
of disease [4]. Experimental studies based on
monozygotic twin pairs are particularly informative
for outcomes where a powerful gene–environment
interaction is suspected [2]. Twins differ from
singletons in both intrauterine environment and
upbringing. Comparison of adult characteristics of
twins and singletons may point to long-term effects
of these unusual early experiences [1]. Certain
experiences which are unique to twins, such as the
occurrence of death or disease in a co-twin, may also
deserve special study.

The rarity of twins in general population samples
poses a problem for research studies focusing on
dichotomous disease outcomes, rather than continu-
ously measured physiological, psychological or other
variables. Twin series based on volunteers or respon-
dents to mass media appeals may be biased in impor-
tant respects [7, 14, 19], in particular towards an
excess of females and identical pairs concordant for
behavioral and disease characteristics [10]. To over-
come these problems, national twin registers have
been compiled in Sweden [13], Norway [11], Finland
[9], and Denmark [6, 12]. No national twin register

exists in the UK, although the UK shares with Scan-
dinavian countries the basic ingredients required to
create one: a near-complete population register and
identity numbers allocated at birth or in other ways
which are informative with regard to twin status [18].

Work with the Scandinavian registers has shown
that, among adults and older children, zygosity can
be determined reliably in most cases by postal ques-
tionnaire, enquiring about the visual identity of co-
twins [16]. Twins who are visually identical are
almost always monozygotic, although a few monozy-
gotic pairs are sufficiently dissimilar to be con-
sidered visually nonidentical. This simple method
of estimating zygosity can be validated by more
objective methods, such as tissue typing or DNA
“fingerprinting” (see DNA Sequences), techniques
which may be required to ascertain zygosity reli-
ably in infants and younger children. These more
expensive and invasive techniques have yet to be
applied systematically to national twin registers,
although a selective application, to pairs in whom
the questionnaire information is equivocal, may be
considered.
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Two-by-Two Table

A two-by-two table is a 2 × 2 array of frequen-
cies, obtained by classifying items according to two
dichotomous characteristics. We denote by nij the
frequency in row i and column j (i, j = 1, 2). The
marginal row totals are ni· = ni1 + ni2 (i = 1, 2),
the marginal column totals are n·j = n1j + n2j (j =
1, 2) and the total frequency is n = n11 + n12 + n21 +
n22

n11 n12 n1·
n21 n22 n2·
n·1 n·2 n

Two-by-two tables arise very often in biomedical
studies. The following are three examples:

Example 1 Consider a clinical trial (see Clinical
Trials, Overview) to compare two treatments. If
the outcome variable has only two categories, say
“recovered” and “not recovered”, then the results can
be displayed in a 2 × 2 table with rows corresponding
to the treatments and columns to the outcomes. For
example, n11 is the number of patients who received
the first treatment and have recovered.

Example 2 Consider a study to compare men and
women with respect to cigarette smoking. Samples
of n1· men and n2· women are drawn from the target
population, and each person is classified as “smoker”
or “nonsmoker”. The results can be summarized in
a 2 × 2 table where the rows represent males and
females, and the columns represent the two outcome
categories.

Example 3 To investigate the association between
smoking and a certain lung disease, a sample of n

persons is drawn from the target population and each
sampled individual is classified with respect to both
smoking status (smoker or nonsmoker) and disease
status (diseased or nondiseased).

It is important to note a difference between the
first two examples and the last one. Examples 1
and 2 represent comparative studies, where the row
totals ni·, which are the number of patients in each
treatment group in Example 1, and the number
of persons from each gender in Example 2, have
been determined before the beginning of the study.
However, Example 3 represents a cross-sectional

study, where only the total sample size, n, is fixed
in advance, while the marginal totals ni· and n·j are
random. We refer to these two situations as case 1
(row totals are fixed, column totals are random) and
case 2 (both row and column totals are random),
respectively. While most analytical methods for 2 × 2
tables are the same in both cases, it is important
to understand the differences between the two cases
for the sake of formulating the questions regarding
a specific table and for the interpretation of the
results of the statistical analysis. In case 1, the main
interest is to compare the two rows with regard
to the probability of a specific outcome (i.e. the
probability of being in a specific column of the table).
Denote by pi the probability of the first column
for an individual in row i (i = 1, 2). Then the main
interest is the comparison of p1 and p2. In case 2,
one is mainly interested in the association between
the two characteristics. The natural null hypothesis
in this case is that of independence, i.e. that the
probability pij of falling into row i and column j

equals the product of the marginal probabilities pi·
of row i and the marginal probability p·j of column
j . An equivalent formulation of this hypothesis is
p11p22 = p12p21.

Measures of Association and Agreement

Numerous measures of the strength of the association
(see Association, Measures of) between the row
and column classifications in a 2 × 2 table have
been proposed over the years. In case 1, one may
be interested in the difference p1 − p2 or in the
ratio p1/p2. When the first category of the outcome
variable represents a disease, then these measures
are known as the risk difference and the risk ratio,
respectively (see Relative Risk). To estimate these
measures, one simply replaces each pi by its natural
estimator ni1/ni·. In case 2, the most important
measure of association in medical applications is the
odds ratio p11p22/p12p21, which can be estimated
by the observed odds ratio, n11n22/n12n21. The odds
ratio is also a useful measure in case 1, where it
is defined as p1(1 − p2)/[p2(1 − p1)]. For example,
in case-control studies the odds ratio is used as an
approximation to the risk ratio, which cannot be
measured directly in this kind of study.

A measure of a different type is the kappa
coefficient of agreement. It is used to assess the
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amount of agreement between two raters who assign
the same item to one of two (or more) categories. This
coefficient, which is often used in reliability studies
(see Reliability Study), is defined as follows:

κ = p0 − pe

1 − pe
,

where p0 = p11 + p22 is the probability that both
raters classify an item to the same category, and
pe = p1·p·1 + p2·p·2 is the probability of agreement
expected by chance.

Tests of Hypotheses

The main hypothesis of interest in case 1 is that the
probability of an item being classified into the first
column is the same in both rows, i.e. H0: p1 = p2.
The most commonly used test for this hypothesis
is based on the statistic comparing the observed
proportions in the two groups:

Z = p̂1 − p̂2

[p̂(1 − p̂)(1/n1· + 1/n2·)]1/2
,

where p̂i = ni1/ni· is the estimated probability of the
first column in row i, and p̂ = n·1/n is the estimated
pooled probability of the first column under H0. The
denominator in the expression for Z is the standard
error of the numerator, hence the distribution of Z

under H0 is approximately standard normal as long
as the sample sizes are not too small. A one-sided test
against the alternative H1: p1 > p2 rejects H0 when
Z ≥ z1−α , where z1−α is the upper 100α percentile
of the standard normal distribution. A two-sided test
against the alternative H1: p1 �= p2 rejects H0 when
|Z| ≥ z1−α/2.

From a computational viewpoint, it is more con-
venient to use Pearson’s χ2 statistic (see Chi-square
Tests), defined as:

χ2 = n(n11n22 − n12n21)
2

n1·n2·n·1n·2
.

The two-sided test rejects H0 when χ2 exceeds the
upper 100α percentile of the χ2 distribution with one
degree of freedom. Since χ2 = Z2, the two tests are
equivalent when the alternative is two-sided. In the
one-sided case, it is more natural to use the Z test.

In case 2, the main hypothesis of interest is that
of independence of the row and column classification

variables, i.e. H0: pij = pi·p·j . It can be shown that
Pearson’s χ2 test is appropriate in case 2 as well.

The adequacy of the use of the χ2 distribution as
an approximation to the exact sampling distribution
of Pearson’s statistic has been investigated by several
statisticians. A conservative rule of thumb requires
all the expected frequencies under H0, eij = ni·n·j /n,
to exceed 5. A more liberal rule allows one of the
expected frequencies to be as small as 1, as long as
the other three are at least 5. Other statisticians sug-
gested modifications to Pearson’s statistic in attempts
to improve the χ2 approximation for small samples.
The most frequently used modification is Yates’s
continuity correction. The Yates-corrected χ2 statis-
tic is defined as

χ2
C =

n
(
|n11n22 − n12n21| − n

2

)2

n1·n2·n·1n·2
.

This correction is obtained by subtracting 1
2 from

the two frequencies nij which are larger than the
corresponding expected frequencies eij , and adding
1
2 to the other two frequencies (which are smaller
than the expected frequencies under H0). Since χ2

C
is always smaller than χ2, the test based on Yates’s
correction is more conservative.

An alternative approach to the small sample prob-
lem is the use of an exact test (see Exact Inference
for Categorical Data). One should note that the term
“exact” does not mean that the test has a probabil-
ity of exactly α of rejecting H0 when this hypothesis
is true. All it means is that the test is based on the
exact sampling distribution (under H0) of a partic-
ular test statistic. An exact test may be conditional
or unconditional. The difference between these two
types of exact tests will be explained in the context
of case 1. Under the null hypothesis, the distribution
of the observations nij , and therefore the distribution
of every test statistic, depends on the unknown com-
mon value of p1 and p2, denoted by p. Let T be
a test statistic, and suppose that H0 is rejected for
large values of T . Then one must determine a critical
value, say t1−α , such that PrH0(T ≥ t1−α) ≡ α. How-
ever, this last probability depends on the unknown
value of p; hence, it is usually impossible to deter-
mine a single critical value which will guarantee a
type I error probability of exactly α for every p. One
way to overcome this problem is to use the condi-
tional distribution of T when the marginal column
totals, n·j , are fixed at their observed values. This
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distribution is independent of p and hence one can
find a critical value such that PrH0(T ≥ t1−α|n·j ) ≡ α.
Alternatively, one can calculate the conditional P

value as PrH0(T ≥ t0|n·j ), where t0 is the value of
T for the observed table, and then reject H0 when
this conditional P value is less than the nominal α.

The conditional distribution of the cell frequencies
when the marginal totals are held fixed is hypergeo-
metric (see Hypergeometric Distribution):

Pr(n11, n12, n21, n22|n·1, n·2) =

(
n·1
n11

)(
n·2
n12

)

(
n

n1·

) .

Therefore, the conditional P value can be calculated
as the sum of the hypergeometric probabilities of all
the possible 2 × 2 tables (with the same marginal
totals as the observed table) for which the value of T

is greater than or equal to the observed value, t0.
The most popular conditional exact test for 2 × 2
tables is Fisher’s exact test, where the test statistic
T is Pearson’s statistic χ2. It is easy to see that if
another test statistic, T ′ is a monotonic function of T

in the conditional sample space, then the conditional
exact tests based on T and T ′ are equivalent. For
the one-sided test, n11 is a monotonic function of
χ2; hence, the one-sided Fisher test can be based on
n11. In the two-sided case, Fisher’s test can be based
on the absolute difference between the observed
and the expected frequencies, |n11 − e11|, which is
a monotonic function of χ2. (The absolute difference
is the same for all four cells.)

To derive the unconditional distribution of a
test statistic under H0 one uses the fact that when
the column totals are considered random, then n11

and n21 are independent binomial variables (see
Binomial Distribution) with a common probability
p of success. Thus:

Pr(n11, n12, n21, n22;p) =
(

n1·
n11

) (
n2·
n21

)
pn11+n21

(1 − p)n12+n22 .

If T is, as before, a test statistic and H0 is rejected
for large values of T , then the type I error probability
associated with a critical value c is

α(c, p) =
∑

T ≥c

Pr(n11, n12, n21, n22;p).

The summation is over all the possible 2 × 2 tables
(with the fixed values of the row totals and any
values of the column totals) for which the test
would reject H0. This critical value depends on the
unknown value of the nuisance parameter p. One way
to eliminate p is by averaging according to some
prior distribution. Alternatively, one can substitute
the estimate p̂ for p. However, in order to stay
within the traditional framework of the theory of
testing hypotheses, it seems more natural to require
that the size of the test, i.e. the maximum (over p)
of the type I error probability, will never exceed the
nominal significance level α. Thus, the critical value
for the unconditional exact test based on T is the
smallest value of c for which

max
0≤p≤1

α(c, p) ≤ α.

Unconditional tests of this type have been discussed
and compared by McDonald et al. [10], Suissa &
Shuster [11], and Haber [6].

The development of computation technology ena-
bled statisticians to investigate the properties of
asymptotic and exact tests for 2 × 2 tables. Actual
type I error probabilities and powers were calcu-
lated either by complete enumeration of all possible
outcomes or via simulations. The results of these
computations lead to a controversy regarding the use
of conditional exact tests. The opponents of the con-
ditional exact tests argue that these tests are very
conservative and, as a result, their power is much
lower as compared with unconditional exact tests.
The proponents of the conditional approach have
raised several arguments, four of which are presented
here:

1. The correct sample space should be the
conditional one, since once a particular 2 × 2
table has been observed, the only other 2 × 2
tables of interest are those with column totals
equal to the observed values of n·1 and n·2. The
conditional exact tests are not too conservative
when their conditional type I error and power
are calculated.

2. The column totals do not provide any relevant
information regarding the equality of p1 and p2,
and hence conditioning on these marginal totals
should not result in any loss of information.

3. Fisher’s exact test, when supplemented by a
randomization process to ensure that the size
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of the test will be equal to the nominal level
of significance (α), is uniformly most powerful
among the unbiased tests (UMPU) (see Most
Powerful Test), and therefore the conditional
approach provides the “optimal” test.

4. Fisher’s exact test seems conservative when one
uses a fixed nominal α. However, for most
practical purposes one is interested in the P

value as a measure of the degree to which
the data support H0, rather than as a tool for
deciding whether to “accept” or “reject” the null
hypothesis. When tests are compared with regard
to their attained P values, Fisher’s test is no
longer conservative or powerless.

The first argument is a philosophical matter; there
is no “correct” or “incorrect” sample space. The
second argument seems unconvincing, as the lack
of information provided by the column totals is not
a sufficient reason to consider them as fixed. The
third argument has two major flaws: (i) in practice,
nobody uses a random device to decide whether to
accept or reject H0 when the test statistic equals
the critical value; (ii) the optimality property in this
case is meaningless, since none of the tests used in
practice is unbiased. (An unbiased test is one for
which the probability of rejecting H0 is always larger
when p1 �= p2 than when p1 = p2.) In fact, there are
situations when an unconditional biased test has a
larger power than the UMPU test [6]. The fourth
argument is incorrect. Calculations have shown [7]
that when tests are compared with respect to their
attained P values, Fisher’s test is still conservative
and has a low relative efficiency compared to other
tests.

Despite all this, there are two pieces of evidence
that suggest that conditioning on the column totals per
se is not the cause for conservatism of the conditional
tests: (i) the conservatism (and the resulting lack of
power) almost completely disappears when larger
tables (e.g. 2 × 3 tables) are considered; (ii) a simple
modification of Fisher’s test has adequate power even
though it is still a conditional test [5]. For an exact
test which rejects H0 for large values of a statistic T ,
this modified test defines the P value as

Pr(T > t0) + 1
2 Pr(T = t0),

where the probabilities are calculated in the condi-
tional sample space. It rejects H0 when this P value
is less than α. This procedure is known as the mid

P value test. Thus, it seems that the main reason
for the conservatism of Fisher’s exact test is the
very small number of points in the conditional sam-
ple space for a 2 × 2 table, rather than any loss of
information resulting from conditioning. For exam-
ple, when n1· = n2· = 10, and a table with n·1 = 5
and n·2 = 15 is observed, then the conditional sam-
ple space has only six points, compared with 121
points in the unconditional sample space. Therefore,
one can expect a large difference between Pr(T > t0)

and Pr(T ≥ t0), both of which could be used as mea-
sures of the amount of evidence for or against H0.

In summary, is seems that the mid P value
test should be acceptable to both proponents and
opponents of the conditional approach. It is based on
the conditional distribution of the test statistic, but its
attained type I error probability is usually close to the
nominal significance level and its power is similar to
that of unconditional tests.

Sample Size Determination

A common question asked by investigators when
designing a study is “How large should our sample
be?” Determination of the sample sizes (see Sample
Size Determination) will be discussed here in the
context of a comparative study, i.e. case 1. The row
totals n1· and n2· represent the sizes of the samples
drawn from the two groups compared. It is assumed
that Pearson’s χ2 statistic is used to test the null
hypothesis p1 = p2 at a given significance level α,
and that the desired power of the two-sided test is
1 − β when the actual absolute difference between
p1 and p2 is δ. If nothing is known about the
probabilities p1 and p2, then the total sample size
is minimized with n1· = n2· [9]. However, if the
relative magnitude of p1 and p2 is known, then it is
advantageous to take a larger sample from the group
whose p is closer to zero or one [1]. The following
discussion is limited to the case of equal sample sizes.

Let m denote the common value of n1· and n2·.
Suppose first that one has some rough estimates of
p1 and p2 and let p = (p1 + p2)/2. Then a first
approximation to the required sample sizes is [3]

m′ = {
z1−α/2[2p(1 − p)]1/2

+ z1−β[p1(1 − p1) + p2(1 − p2)]
1/2}2

/
δ2.

It turns out that the actual power attained with
this value of m is less than the specified value of
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1 − β. Casagrande et al. [2] suggested to adjust m′
as follows:

m = m′

4

[
1 +

(
1 + 4

m′δ

)1/2
]2

.

This value of m provides a close approximation to the
desired power. Fleiss [3] gives tables of the values of
m derived by this method for various combinations
of α, 1 − β, p1, and p2.

If nothing is known about the actual values of p1

and p2, then one can obtain a conservative estimate
of the required sample size for each group, m, by
replacing each of the three products of the form
p(1 − p) in the expression for m′ by 1

4 [since p(1 −
p) ≤ 1

4 for all 0 ≤ p ≤ 1].
There are several other methods for determining

the required sample sizes (see [4] for a recent review).
A computer program that calculates the sample sizes
based on the arcsine transformation is included in the
NCSS-PASS package [8]. Software for calculating
sample sizes for exact tests can be found in StatXact
(see www.cytel.com).
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Two-mutation
Carcinogenesis Model

Stochastic models of carcinogenesis were first pro-
posed in the 1950s [1, 2, 34] to explain the obser-
vation that the age-specific incidence curves of many
human carcinomas increase roughly with a power of
age (see Multistage Carcinogenesis Models). In the
four decades since the introduction of these models
our understanding of the processes underlying malig-
nant transformation has increased considerably. Yet
the basic assumption – that a malignant tumor arises
from a single cell that has sustained a small number
of critical insults to its genetic apparatus – on which
these early models were predicated remains valid
today. From the perspective of carcinogenesis model-
ing, perhaps the most important insight has been the
realization that, in addition to heritable changes to the
genome (mutations), the kinetics of cell division and
apoptosis (programmed cell death) play an important
role in carcinogenesis (see Cell Cycle Models).

In 1971, on the basis of epidemiologic observa-
tions, Knudson proposed a model for retinoblastoma,
a rare tumor of the retina in children [16]. In contrast
to earlier models of carcinogenesis, Knudson’s model
took explicit account of cell proliferation kinetics.
Subsequent work in molecular biology leaves little
doubt that the salient features of Knudson’s model for
retinoblastoma are correct [3]. Knudson’s so-called
recessive oncogenesis model has been generalized
and applied to analyses of both epidemiologic [14,
18, 25, 31] and experimental data [17, 22, 30]. In
its modern garb, this model is often referred to as the
two-mutation clonal expansion model. The main goal
of this article is a brief discussion of this model.

Although there is much that we do not understand
about the biological events underlying carcinogene-
sis, there are some things we do know. Disruption of
normal cell proliferation and differentiation are the
sine qua non of the malignant state. Conversely, as
indicated above, there is accumulating evidence that
the kinetics of cell proliferation and differentiation in
normal and premalignant cells are important in the
carcinogenic process. Increases in cell division rates
may lead to increases in the rates of critical muta-
tional events, and an increase in cell division without
a compensatory increase in differentiation or death

leads to an increase in the size of target cell pop-
ulations, leading to increased probability of malig-
nant transformation. It is these important aspects of
the process of carcinogenesis that the two-mutation
clonal expansion model attempts to capture.

The two-mutation clonal expansion model has
been used for analyses of time-to-tumor data in epi-
demiologic and experimental studies (see Tumor
Incidence Experiments), and for analyses of data
on the number and size distribution of intermediate
lesions on the pathway to malignancy in initiation-
promotion experiments. The requisite mathematical
and statistical development required for these appli-
cations is briefly described.

The Model

The version of the two-mutation model discussed
here has been widely used for data analysis. Simi-
lar models were considered by Armitage & Doll [2],
Neyman & Scott [33] and Kendall [15]. A detailed
description of the model can be found in Moolgavkar
& Luebeck [26]. The development here follows the
development in that paper and uses the same nota-
tion. The fundamental biological assumptions are:
(i) In any tissue there is a pool of cells susceptible to
malignant transformation. This pool is generally iden-
tified with the stem cell pool in the tissue of interest
and may change in size during life. (ii) Malignant
tumors are clonal, i.e. they arise from a single pro-
genitor cell that has become malignantly transformed.
(iii) Malignant transformation of a susceptible cell is
the result of two specific, rate-limiting, hereditary (at
the level of the cell) and irreversible events. For a
discussion of the biological interpretation of the two
events, see Moolgavkar & Luebeck [26] and Mool-
gavkar & Knudson [25]. The model also provides a
natural framework for the interpretation of initiation
and promotion, as discussed in [25] and [26]. Suc-
cinctly, the first rate-limiting event is identified with
initiation, the second rate-limiting event with progres-
sion, and the clonal expansion of initiated cells with
promotion.

The following assumptions are used in the mathe-
matical development. Let X(s) represent the number
of normal susceptible cells in the tissue of interest at
time (age) t , and suppose that intermediate cells, i.e.
cells that have sustained the first rate-limiting event
on the pathway to malignancy, arise from normal
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cells as a nonhomogeneous Poisson process with
intensity ν(s)X(s), where ν(s) is the first event rate.
Note that although ν and X are not separately iden-
tifiable, it is preferable to model the two separately
because information on one or the other may be
available from independent sources. In the time inter-
val (s, s + ∆s), an intermediate cell divides into two
intermediate cells with probability α(s)∆s + o(∆s);
it dies or differentiates with probability β(s)∆(s) +
o(∆s) (note that death and differentiation are equiv-
alent events for carcinogenesis because both events
remove the cell from the pool of susceptible cells);
it divides into one intermediate cell and one cell that
has sustained the second event (malignant cell) with
probability µ(s)∆s + o(∆s); the probability of more
than one event is o(∆s). In many applications the
parameters are assumed to be constant or piecewise
constant. In particular, this implies that the distribu-
tion of waiting times to cell division and cell death
is assumed to be exponential.

Some comments on these mathematical assump-
tions are in order. The cell kinetics of intermediate
cells are modeled in primitive fashion. There are
entire tomes on the mathematical modeling of the
cell cycle and it is clear that cells do not divide or
die with exponential waiting times. Nevertheless, in
the context of carcinogenesis modeling these simpli-
fications appear to be entirely appropriate as a first
approximation. Once a malignant cell is generated it
is assumed to give rise to a detectable tumor after
a suitable lag time. This assumption is clearly false
and there is clearly a time-to-detection distribution.
Furthermore, malignant cells undoubtedly execute a
birth–death process and as a consequence become
extinct with nonzero probability.

The Hazard Function

Let Y (t) and Z(t), represent the number of interme-
diate and malignant cells, respectively, at time t and
let

Ψ (y, z; t) =
∑

j,k

Pj,k(t)y
j zk

be the probability generating function, with

Pj,k(t) = Pr[Y (t) = j, Z(t) = k|Y (0) = 0,

Z(0) = 0].

Then (Y (t), Z(t)) is a Markov Process, and Ψ

satisfies the Kolmogorov forward differential equa-
tion

Ψ ′(y, z; t) = ∂Ψ (y, z; t)

∂t
= (y − 1)ν(t)X(t)Ψ (y, z; t)

+ {µ(t)yz + α(t)y2 + β(t)

− [α(t) + β(t) + µ(t)]y}∂Ψ

∂y
(1)

with initial condition Ψ (y, z; 0)=1 [26] (see
Stochastic Processes). Ψ (1, 0; t) is the survival
function for this model, and the hazard (incidence)
function is given by

h(t) = −Ψ ′(1, 0; t)

Ψ (1, 0; t)
. (2)

It follows immediately from the Kolmogorov
equation that

Ψ ′(1, 0; t) = −µ(t)
∂Ψ

∂y
(1, 0; t)

and thus

h(t) = µ(t)E[Y (t)|Z(t) = 0] (3)

where E denotes the expectation and we have used
the relationship

E[Y (t)|Z(t) = 0] = ∂Ψ

∂y

1, 0; t

Ψ (1, 0; t)
.

If the probability of tumor is small enough, then
E[Y (t)] ≈ E[Y (t)|Z(t) = 0] and h(t) ≈ µ(t)E[Y (t)].
The differential equation, derived from the Kol-
mogorov equation, for E[Y (t)] can be readily solved
to yield

h(t) ≈ µ(t)

∫ t

0

{
ν(s)X(s)

× exp
∫ t

s

[α(u) − β(u)] du

}
ds. (4)

This approximate solution sometimes has been
used for the analysis of epidemiologic data. It is rea-
sonably accurate when tumors are rare, as in epidemi-
ologic data. However, even with epidemiologic data,
this approximation could yield misleading results (see
below).

The exact hazard function can be obtained by
solving the characteristic equations associated with
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the Kolmogorov equation. The survival function is
given by

Ψ (1, 0; t) = exp
∫ t

0
[y(u, t) − 1]ν(u)X(u) du, (5)

where, for each t > 0, y(u, t) satisfies the Riccati
equation

dy

du
= −{µ(u)yz + α(u)y2 + β(u)

− [α(u) + β(u) + µ(u)]y},
with y(t, t) = 1.

The hazard function is then given by

h(t) = −Ψ ′(1, 0; t)

Ψ (1, 0, t)

= −
∫ t

0
ν(u)X(u)yt (u, t) du, (6)

where yt denotes the derivative of y with respect to t .
Suppose now that 0 = t0 < t1 < · · · < tk = t , and

suppose that the parameters α, β, and µ are piece-
wise constant, i.e. on (ti−1, ti) the parameters are
αi , βi , and µi . Suppose, furthermore, that Ai and
Bi are the two roots of the polynomial αix

2 − [αi +
βi + µi]x + βi . It can be easily shown that 0 < Ai <

1 < Bi . Then, for u ∈ (ti−1, ti), y(u, t) can be defined
inductively by

y(u, t)

=
Bi − Ai

y(ti , t) − Bi

y(ti , t) − Ai

exp[αi(Ai − Bi)(u − ti )]

1 − y(ti , t) − Bi

y(ti , t) − Ai

exp[αi(Ai − Bi)(u − ti )]
,

(7)

with y(tk, t) = 1. The derivative yt (u, t) is now
straightforward, albeit cumbersome, to compute by
repeated use of the chain rule. The equations for
Ψ (1, 0; t) and h(t) can be integrated using the
values of y(u, t) and yt (u, t) computed above. If
ν(u) is piecewise constant too and if, as is often
the case, X(u) is taken to be constant, then, in
principle, these equations can be integrated in closed
form.

Sometimes, the time-scale of interest is not the
age of the animal, or time since start of treat-
ment, but the age of individual intermediate clones.

Then, (Y (t), Z(t)) is not Markovian, and the Kol-
mogorov differential equation does not exist. A
second approach, described in [29] can then be
used.

Properties of the hazard function are discussed in
detail in [11] and [29]. See also [36]. A brief sum-
mary is given here. For a general class of multistage
models, the hazard function for the kth malignant
transformation (given that k − 1 malignant transfor-
mations have already occurred) is given by an expres-
sion that is analogous to (3) above:

hk(t) = µn(t)E[Yn−1(t)|Z(t) = k − 1],

where Yn−1(t) represents the number of cells in
the penultimate stage on the pathway to malig-
nancy and µn(t) is the last mutation rate, i.e.
the rate of transition from the penultimate stage
into the malignant stage [6]. Then h1(t) is just
the usual hazard function. It can be quite easily
shown that, for any k, hk(t) > hk−1(t). This inequal-
ity implies, for example, that the hazard function
for a second malignancy is higher than that for
the first. This phenomenon has been observed and
attributed to biological changes (decrease in resis-
tance) associated with the first malignancy. While
this may well be true, it is worth remembering
that an increased hazard for a second malignant
tumor is a logical consequence of a multistage pro-
cess.

The approximate expression h(t) = µn(t)

E[Yn−1(t)] has often been used. The Armitage–Doll
approximation, for example, retains only the first
nonzero term in the Taylor series expansion of this
approximate expression [23]. While replacing the
conditional expectation in the exact hazard function
with the unconditional expectation would appear, at
first glance, to lead to a good approximation if the
probability of tumor is low, the qualitative behavior
of the approximate hazard function is quite different.
For example, consider exposure to an environmen-
tal carcinogen that increases the hazard by affect-
ing one or more of the parameters of the model.
When exposure stops, the exact hazard function even-
tually approaches the background hazard, whereas
the approximate hazard function never returns to
background levels [11, 18, 29]. This has important
implications for interpretation of epidemiologic data.
For example, the relative risk of lung cancer among
smokers who quit declines with time since smok-
ing cessation (see Smoking and Health). It is not
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generally appreciated that this phenomenon, which is
often attributed to repair, is predicted by multistage
carcinogenesis.

For likelihood construction and applications to
analyses of time-to-tumor data, the reader is referred
to the original papers [22, 28, 32]. Identifiability
of parameters of the two-mutation clonal expansion
model is discussed in publications [8–11]. Likeli-
hoods for case–control studies are discussed in [13,
24]. The impact of covariate measurement errors on
parameter estimates is discussed in [12]. Extensions
of the model to incorporate more than two mutations
can be found in [18, 20, 27, 36, 37].

Number and Size Distribution of Intermediate
Lesions

In the two-mutation clonal expansion model, clones
of cells in the intermediate compartment can be
identified with premalignant lesions that arise in ini-
tiation–promotion experiments, which are typically
done with the mouse skin or the rodent liver as
the target organs. In the rodent liver the lesions
of interest are microscopic foci that exhibit typical
enzyme alterations characterized by specific stains.
The number and sizes of these altered foci (in two-
dimensional sections) are generally reported as func-
tions of the doses of agents of interest and time
since beginning of exposure. The requisite mathe-
matical quantities for analyses of such lesions have
been developed [7, 19], and used for analyses of sub-
stantial data sets (e.g. [21, 26], and [32]). Since the
observations are made in two-dimensional sections of
three-dimensional objects (the foci) stereologic con-
siderations play an important role in the analyses (see,
for example, [5] and [35] and the references above).
In the mouse skin system, the intermediate lesions are
papillomas. These lesions are directly observable, so
that the animal does not have to be sacrificed for
the data to be collected. Typically, several observa-
tions are made on the same animal over the course of
the experiment. This leads to correlated longitudinal
observations. The reader is referred to the articles by
Kopp-Schneider & Portier [17] and Dewanji et al. [4]
for more details.
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Two-phase Sampling

Historical Background

Suitably enough, the theory of two-phase sampling
was created by Jerzy Neyman [8] in response to a
problem posed at a conference on sampling human
populations in April, 1937. Neyman [8] introduces
his solution “by describing the problem in much the
same form as it was stated to me, without using any
mathematical symbols”: Simply put, a field survey
is to be undertaken to determine the average value
of some character of a population; for example, the
amount of money families spend on food. As the col-
lection of data requires long interviews by specially
trained enumerators, the cost per family is quite high.
The cost of the survey is constrained within a speci-
fied amount but the sample does not appear to yield
an estimate of desired precision because of the great
variability of the character. Nevertheless, the charac-
ter is correlated with a second character that can be
determined at a lower cost per family so that a precise
estimate of the distribution of this second character is
readily obtained. Hence, a more precise estimate of
the original character can be found by first estimating
the distribution of the second character alone from a
large random sample, then dividing this sample, as
in stratified sampling, into classes or strata according
to the value of the second character and to draw at
random from each of the strata a small sample for
the costly procedure of measuring the first character.

Neyman [8] called this method double sampling,
and this term remains in use among statisticians
working in the area of quality control and assurance.
Survey statisticians, however, tend instead to use
the term two-phase sampling so that this method
is distinguished from two-stage sampling. Two-phase
sample designs differ from two-stage sample designs
in that the stratification occurs after the first sample
is collected (i.e. post hoc) in the case of two-phase
designs rather than before the first sample is collect
(i.e. ante hoc) in the case of two-stage designs. It is
understandably regrettable and a source of confusion
that the biometrics literature refers to a two-phase
survey sampling design as a two-stage design, as
noted by Whittemore [13].

In the case of genetic epidemiology, the interest
lies primarily with the estimation of means associated
with Bernoulli distributed random variables, such as

disease prevalence and allele frequencies (see Gene),
rather than economic variables. Nevertheless, two-
phase sampling designs are applicable to quantitative
phenotypes.

Formulation and Allocation

Assume a finite population size N of which n′ are
to be selected by a simple random sample without
replacement at the first phase of the design. Suppose
that there are determined to be K strata with (possibly
unknown) population size Nh for the hth stratum.
Suppose n′

h sample units are observed to be in the
hth stratum in the first phase sample with a sample
mean of yh. Let Yh denote the population mean
and S2

h the population variance for the hth stratum.
Let s2

h denote the usual unbiased estimator of S2
h

based on the n′
h sample units in the first phase. Let

nh denote the sample size for the hth stratum at
the second phase. For convenience, let Wh = Nh/N ,
wh = n′

h/n′, and νh = nh/n′
h with 0 < νh ≤ 1 for all

h. Assuming that Pr(n′
h = 0) = 0 for all h, Rao [9]

showed that an unbiased estimator of the population
mean Y = ΣWhYh is y = Σwhyh with variance

var(y) =
(

1

n′ − 1

N

)
S2 +

K∑

h=1

WhS
2
h

n′

(
1

νh

− 1

)
,

where S2 is the population variance. These results
are available elsewhere in the literature, but Rao
[9] obtained them under the assumption that the
second-phase sample sizes {nh} for the strata are
random variables, unlike Cochran [1] who assumed
that they are fixed values. Rao [9] further showed that
a nonnegative unbiased estimator of var(y) is

v(y) = 1

Nn′




(

N − 1

n′ − 1

) K∑

h=1

n′
hs

2
h

(
1

νh

− 1

)

+
(

N − n′

n′ − 1

)


K∑

h=1

1

νh

nh∑

j=1

y{hj }2 − n′y2







,

provided n′ is sufficiently large so that Pr(nn ≥ 2) =
1 for all h. Särndal & Swensson [10] showed that
the result for v(y) continues to be valid if K is a
random variable or if there is random nonresponse at
the second phase described by a Bernoulli distribution
with a fixed but unknown probability of inclusion
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within each stratum with the possibility that the
probability of inclusion varies among strata.

With respect to the optimal allocation of the first-
phase sample size n′ and the second-sample sampling
fractions {νh}, the cost function is taken as

C = n′c′ +
K∑

h=1

nhch,

where c′ is usually much smaller than ch. Since C is
a random variable, we take

C∗ = E(C) = n′
(

c′ +
K∑

h=1

Whchνh

)
.

From the Cauchy inequality, the optimal νh for the
hth stratum for given C∗ and var(y) is

νh = Sh



 c′

ch

(
S2 −

∑
WhS

2
h

)




1/2

.

As noted by Singh & Singh [12], it is important to
realize that the upper limit on the second-phase sam-
ple size is n′

h if randomly sampled without replace-
ment from the first-phase sample. As suggested by
Rao [9] in this case for which νh > 1, set the cor-
responding νh = 1 and repeat the procedure until all
the νh ≤ 1.

By Rao [9], if the strata weights {Wh} are not
known, then the subsampling fraction νh = nh/n′

h

varies as a function of the observed value of n′
h.

Nevertheless, in this case, replace Wh by its estimate
wh.

Bayesian Approaches

Draper & Guttman [3] assumed that the observa-
tions {yhj } are normally distributed with independent
improper prior distributions for the mean µh and vari-
ance σ 2

h of the hth stratum given by

p(µh) dµh ∝ dµh, p(σ 2
h ) dσ 2

h ∝ dσ 2
h

σ 2
h

.

Draper & Guttman [3] further assumed that C, K , and
{n′

h} are fixed with Σnhch < C but with the prior
information concerning the means and variances of

the strata available before the first phase and showed
that the posterior distribution of

Th = (n′
h + nh − 1)(µh − µ̃h)

σ̃h

is student’s t with n′
h + nh − 1 degrees of freedom

where, if {xhj } denotes the observations from the first
phase,

µ̃h = n′
hxh + nhyh

n′
h + nh

,

and

σ̃ 2
h = 1

n′
h + nh

[(
n′

hnh

n′
h + nh

)
(xh − yh)

2

+ (n′
h − 1)s2

h + (nh − 1)t2
h

]

with xh and s2
h the usual unbiased estimators of the

mean and variance of the h stratum from the first
phase and y and t2

h , respectively, from the second
phase. Furthermore, Draper & Guttman [3] showed
that the posterior distribution of (nh − 1)s2

h/σ
2
h is

χ2
n′

h
−1. From these results concerning the posterior

distributions, the posterior exception of µ = ΣhWhµh

is
K∑

h=1

W 2
h

(n′
h − 1)s2

i

(n′
h + nh)(n

′
h − 3)

.

Choosing the sample size nh for the h stratum at the
second phase subject to nh ≥ 0 for all h leads to

nh = C

ch

qh − n′
h,

where

qh =

(
nh − 1

nh − 3

)1/2

Whsh

√
ch

∑

h

(
nh − 1

nh − 3

)1/2

Whsh

√
ch

.

There is the possibility that this allocation rule will
lead to negative nh for some strata. This merely
indicates that the hth statum has been oversam-
pled. Draper & Guttman [3] discussed an algorithmic
adjustment to the optimal allocation rule to compen-
sate for this.

If, on the other hand, the posterior after the first
phase is used to provide the prior for the second
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phase, then by Draper & Guttman [3], the optimal
allocation rule becomes instead nh ∝ Cqh/ch. Com-
pare this with the optimal allocation rule

C
WhSh∑

h

WhSh

of Neyman [8] assuming {Wh} are known with n′
and

∑
h nh fixed. This so-called Neyman allocation

can also be obtained from the expression derived by
Rao [9] for var(y) using the Lagrange multiplier.

Draper & Guttman [3] also considered the situ-
ation when the strata weights {Wh} are no longer
known but rather follow a Dirichlet prior distribution
with parameter vh corresponding to the hth stratum.
In this case, the answer is the same as the case for
{Wh} known except that the unbiased estimator

w̃h = n′
h + vh∑

h

(n′
h + vh)

replaces Wh everywhere. Note that Jeffrey’s prior
coincides with the uniform prior (all vh = 1).

For a multivariate normal extension to this
approach, see Draper & Guttman [4]. Although the
approach of Draper & Guttman [3, 4] is suitable for
quantitative phenotypes with a normally distributed
likelihood, it is not suitable for estimation of disease
prevalence or allele frequencies for which a solution
is given by Zacks [15] assuming a hypergeometric
likelihood and a discrete uniform prior distribution
for the number of successes out of the number
of trials for the hth stratum. For a heterogeneous
situation in which the prevalence varies among strata,
see the optimal allocation rules of Newbold [7] which
assumes the invariant Jeffreys’ prior distribution

p(Ph) ∝ P
−1/2
h (1 − Ph)

−1/2

and a binomial likelihood for the parallel cases
comparable to those of Draper & Guttman [3].

Prevalence Estimation and Practical
Considerations

For a Bayesian solution to the problem of estima-
tion of prevalence in a two-phase sampling design
using a Markov chain Monte Carlo method for a
Dirichlet conjugate prior distribution for sensitivity,

specificity, and prevalence jointly with a beta poste-
rior distribution, see Erkanli et al. [5].

On the other hand, the results of Neyman [8] and
Rao [9] do not assume a distributional form for the
likelihood and thus apply to the problem of estimation
of disease prevalence. While these results do assume
a finite population, the hypothetical case of an infinite
population is easily derived as a limiting case.

As discussed by Deming [2], a two-phase design
is not necessarily more efficient than a one-phase
design, nor is Neyman allocation necessarily more
efficient than proportional allocation: nh ∝ wh for
all h.

Calculations in Deming [2], suggest that, as a rule-
of-thumb, it is only when the ratio of interview cost
per sampling unit at the second phase compared with
screening cost per sampling unit at the first phase
exceeds 6 : 1 that two-phase sampling will be more
advantageous. Note that the ratio is likely to be high
when the screening and stratification is done on the
basis of records, typically on the order of 40 : 1 or
100 : 1 according to Deming [2].

A sample design using Neyman allocation that
incorporates an estimate of the proportion of false
negatives that is wide of the mark may well yield
an estimate of the prevalence with greater variance
than the estimate by proportional sampling. Deming
[2] also noted that it is easy “to fall into the trap in
the planning stages by putting unwarranted credence
into an advance estimate” of the proportion of false
positives when in fact a large sample or a long history
of usage of the exact plan of screening is required.
The example of the heavy workload encountered by
a psychiatrist interviewing 30 subjects for a pilot
study is cited despite the fact that the estimate of
a small proportion of false positives in such a small
sample is subject to a wide standard error. Whereas,
a fairly large preliminary sample will often reveal
problems that one would not otherwise foresee, for
example, a set of admission records intended to
contain individuals only aged 21 to 60 but actually
including admissions of age 20 and under.

For a discussion of two-phase sampling designs
in the context of prevalence for a rare disease for
which all those screened positive in the first phase
must ethically be included in the second phase, see
Shrout & Newman [11].

For a discussion concerning the estimation of
disease prevalence with nonresponse at the second
phase, see Särndal & Swensson [10], and Gao et al.
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[6] for a representation incorporating a logistic model
for nonresponse that is not completely random.

A maximum likelihood approach for the multino-
mial distribution with discussion of options involving
the EM algorithm and the bootstrap method are
given in Zhou et al. [16] together with a likelihood
ratio test for the null hypothesis of completely ran-
dom nonresponse.

Multistage Sampling in Genetic
Epidemiology

One of the greatest challenges to successfully
concluding a disease–marker association study is
heterogeneity in the distribution of alleles among
races, ethnic and regional groups (see Bias in
Case–Control Studies). For example, cystic fibrosis
(CF) can be caused by many different mutations.
The most common mutation in the North American
non-Ashkenazi population is ∆508. The proportion
of CF genes that are ∆508 varies widely among
different countries, within a country, and among
different ethnic and racial groups. But in the case
of CF, these observations were noted after the gene
was successfully cloned.

A case–control study using a two-phase design is
discussed by Whittemore & Halpern [14] in which
men were asked whether they were diagnosed with
prostate cancer and whether they had a first degree
male relative with prostate cancer at the first phase.
The subjects are stratified according to diagnosis
and family history in preparation for second-phase
sampling. The parameters of interest in this study
were prostate cancer hazard rates in carriers and
noncarriers and the probability that an arbitrary allele
contains a deleterious mutation. The study budget
could accommodate a second-phase sample of size
570 from the first-phase sample of size 1500. Calcula-
tions showed that Neyman allocation of 570 sampling
units resulted in little loss of efficiency compared with
a complete one-phase sample of 3000 with respect to
the variances of the three parameter estimators.

With respect to the theoretical discussion in Whit-
temore & Halpern [14], the use of the Horvitz–
Thompson estimating equation for multiphase sam-
pling is treated in greater detail in Whittemore [13]
where it is noted that although it can yield estimates
less efficient than the maximum likelihood estimates,
substantial efficiency loss appears to occur chiefly
when multiphase sampling is unnecessary.
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Two-stage Least Squares
Regression

This procedure is widely used in econometrics where
ordinary least squares regression (OLS) gives inconsistent
estimators (see Consistent Estimator) for systems
of simultaneous equations if some explanatory vari-
ables are correlated with errors. Two-stage least
squares (2SLS) was proposed by Theil [5] to over-
come this difficulty. A description for extensive sys-
tems is given by Amemiya [1] but the principle may
be illustrated by a two-equation econometrics model.
This is discussed more fully by Johnston [3].

If yt represents consumption expenditure, xt

income and zt nonconsumption expenditure in period
t , where zt (often called an exogenous or instrumental
variable) is determined by external influences such
as taxation, interest rates, savings, or mortgage
contracts, it may be reasonable to model income and
expenditure by the equations

yt = β0 + β1xt + εt , (1)

xt = yt + zt . (2)

In more general cases, (2) may contain coefficients
and an error term.

We assume that the εt for different t are indepen-
dent and that for all t , E(εt ) = 0 and var(εt ) = σ 2,
and that zt is independent of εt . Then, using (1) to
eliminate yt from (2) gives

xt = β0

1 − β1
+ zt

1 − β1
+ εt

1 − β1
,

whence

E(xt ) = β0

1 − β1
+ zt

1 − β1

and

E{εt [xt − E(xt )]} = σ 2

1 − β1
,

implying that εt and xt are correlated. The OLS
estimate of β1, obtained from (1) is easily shown to
be inconsistent.

In 2SLS, the first stage is to form the OLS esti-
mators, say p0 and p1, of intercept and slope, for
the regression of xt on zt and use this fitted regres-
sion to give estimators x̂t of xt . In the second stage,
these estimators are inserted in (1) in place of xt ,

and OLS is applied to the amended equation to esti-
mate β1. In practice, the two stages may be telescoped
and a direct estimate of β1 obtained as b = syz/sxz,
where syz and sxz denote the usual sums of prod-
ucts of deviations from the mean. Estimators with
this structure also occur in procedures described by
Barnett [2] which involve instrumental variables in
models that allow for errors in explanatory variables
(see Errors in Variables).

Applications outside econometrics are not com-
mon, but Permutt & Hebel [4] applied 2SLS using
a slightly different model to results of a clinical
trial designed to estimate the effect of smoking by
pregnant women upon birth weight of offspring. The
smokers were randomly allocated to a control and
treatment group, and in the latter group intervention
measures to discourage smoking were used. Although
the original analysis indicated higher birth weights
among the treatment group, it did not give an accurate
measure of birth weight gain associated with giving
up smoking because, despite the intervention, not all
women in the treatment group gave up smoking. The
authors proposed and justified an alternative model:

B = β01 + β11S + ε1,

S = β02 + β12I + ε2,

where S is the number of cigarettes smoked per day
during the eighth month of pregnancy, B the birth
weight and I an indicator variable for control or treat-
ment group. Although B does not occur explicitly in
the second equation, I , which is related to B, does.
A 2SLS analysis was recommended on the basis of
evidence that ε1 and ε2 were correlated for some indi-
viduals because heavy smokers with the same inter-
vention status may tend systematically to have lighter
(or perhaps heavier) offspring for reasons other than
smoking. This introduces correlation between S and
ε1. Details of the analysis using 2SLS are given in [4].
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Type-specific Covariates
in Survival Analysis

The presentation will be in terms of the Cox regres-
sion model [3] for survival data, though the concept
of type-specific covariates is equally relevant for
other regression models.

The Cox regression model in its simplest form
states that the hazard function α(t) for an individual
with covariates Z has the form

α(t) = α0(t) exp(β ′Z), (1)

where β is a vector of unknown regression coeffi-
cients and the baseline hazard, α0(t), is an unknown
and unspecified hazard function for individuals with
covariates Z = 0.

In some cases, however, individuals may expe-
rience several types (h = 1, . . . , k) of events, the
intensities of which may all be of scientific interest.
Examples include the competing risks model, where
h = 1, . . . , k refers to different causes of failure,
and the Markov illness–death model for a chronic
disease, with states 0 = healthy, 1 = diseased, and
2 = dead, and where the types of events may be
h = 01 (occurrence of disease), h = 02 (death with-
out disease), and h = 12 (death while diseased) (see
Stochastic Processes). In such cases, an immediate
extension of the model (1) would be

αh(t) = αh0(t) exp(β ′
hZ) (2)

for events of type h. If, however, some regression
coefficients are the same for different types of events,
then it is often more convenient to define type-
specific covariates Zh, h = 1, . . . , k, and formulate
the model as

αh(t) = αh0(t) exp(β ′Zh) (3)

(see, for example, Andersen et al. [1, Section VII.1]).
To illustrate this, consider an example of a com-

peting risks model with two causes of death (A and
B) and with covariates sex (S), age (A), and treatment
(T ). Suppose that S has different effects on causes A
and B, A has the same effect on causes A and B,
while T only affects A. Then the model formulated
as (2) would be

αA(t) = αA0(t) exp(βA1S + βA2A + βA3T )

and

αB(t) = αB0(t) exp(βB1S + βB2A),

where βA2 = βB2. To write the same model in the
form (3), type-specific covariates for A and B are
defined as follows: for cause A, let

ZA1 =S, ZA2 =0, ZA3 =A, ZA4 =T ,

and for cause B, let

ZB1 =0, ZB2 =S, ZB3 =A, ZB4 =0.

Then the covariate vector β in (3) is

β ′ = (βA1, βB1, βA2 = βB2, βA3).

To test the hypothesis βA1 = βB1 of identical effects
of S for causes A and B, one may replace the
model above with one where both (ZA1, ZA2) and
(ZB1, ZB2) are replaced by S. It is seen that, to formu-
late the model using type-specific covariates, one has
to define, for all types h = 1, . . . , k, a p-dimensional
covariate vector where p is the total number of
regression coefficients to be estimated.

Type-specific covariates provide a flexible means
for analyzing multistate survival regression models.
Since model (3) is formally identical to a stratified
Cox regression model, estimates may be obtained
using standard software for this model. Thus, to
analyze the model exemplified above based on com-
peting risks survival data, we create a new input file
by duplicating each patient’s data in the following
way: in version A, we include the survival/censoring
time, the indicator for failure of type A, and the
type-specific covariate vector ZA, and set the stra-
tum variable to A; in version B, we include the
survival/censoring time, the indicator for failure of
type B, and the type-specific covariate vector ZB, and
set the stratum variable to B. An example of this is
described in detail by Andersen & Keiding [2].
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Unbiasedness

The term unbiasedness is used in somewhat different
senses in the theories of estimation and hypothe-
sis testing, with a unified interpretation in decision
theory.

Unbiased Estimation

There is usually more than one way to estimate a
parameter. Applying alternate estimation procedures
to the same data set, it is possible to obtain distinct
estimates of the same quantity. Making an informed
choice among such estimates may be difficult or
impossible if the choice is to be made simply on
the basis of the estimates themselves, particularly if
little is known about the quantity being estimated
(the estimand ). The choice must be governed by the
typical performance of the estimators that produced
the estimates.

It is helpful to imagine a large collection of hypo-
thetical data sets, replicates obtained under essentially
similar conditions to those which generated the data
at hand. In application to these, a single estimator pro-
duces a collection of replicate estimates of the same
estimand; summaries of these hypothetical replicates
provide means for evaluating the performance of the
estimator.

In particular, it is desirable that the average of
the values produced by an estimator be close to the
value of the estimand. The difference between the
average value of an estimator and the estimand is
called bias; an estimator is said to be unbiased if its
bias is zero.

The existence of an unbiased estimator depends,
in varying degrees, on the parameter being estimated
and on the nature of the data. We illustrate this in the
following examples, supposing that X1, X2, . . . , Xn

is a sample of random variables with common distri-
bution function F(x) = Pr(X ≤ x).

Example 1

If F has a finite mean µ, then the sample mean
X = (1/n)

∑
i Xi is unbiased for µ, without making

any assumptions on the parametric form of F , or even
whether the Xs are independent.

Example 2

If F has a finite variance σ 2, then the sample vari-
ance S2 = ∑

(Xi − X)2/(n − 1) is unbiased for σ 2

provided that the Xs are independent. However, if
the Xs are not independent, S2 is likely to be biased.
For example, if corr(Xi, Xj ) ≡ ρ for all i �= j , the
expected value of S2 is E(S2) = (1 − ρ)σ 2.

Example 3

If F is an exponential distribution, then Tp =
−X ln(1 − p) is unbiased for the pth quantile of F .
The unbiasedness of this estimator is a consequence
of the relation between means and quantiles of expo-
nential random variables; Tp is likely to be biased if
F is not an exponential distribution.

The criterion of unbiasedness is not without inad-
equacies, some of which are discussed in the next set
of examples (see also [6] and [9]).

Example 4

Unbiasedness is not maintained by transformation.
E[g(X)] is rarely the same as g[E(X)]; this is
true if g(·) is linear, but seldom otherwise. Con-
sequently, if θ̂ is unbiased for θ , it is not to be
anticipated that g(θ̂) is unbiased for g(θ): the oppo-
site is usually the case. For example, the unbiasedness
of S2 for σ 2 in Example 2 guarantees that S is
biased for σ ; 0 < var(S) = E(S2) − [E(S)]2 = σ 2 −
[E(S)]2 implies that E(S) < σ .

Example 5

Unbiased estimators may not exist. If X is a binomial
random variable with index N and success parameter
p, unbiased estimators of ψ(p) exist if and only if ψ

is a polynomial of degree ≤N . Thus, for example,
there does not exist an unbiased estimator of the
expected number of trials until the next success; that
is, ψ(p) = 1/p.

In cases such as this, a reasonable biased esti-
mator can be constructed by considering a surro-
gate parameter for which an unbiased estimator does
exist. Setting θ = 1/p, it is easily demonstrated that
θ = θ∗ − B, where

θ∗ =
N∑

i=0

(1 − p)i
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and

B = −(1 − p)N+1

p
.

Since θ∗ is a polynomial of degree ≤N in p, an
unbiased estimator of θ∗ exists; namely, θ̂∗ = (N +
1)/(X + 1). Considered as an estimator of θ , θ̂∗ has
bias B < 0, which is readily seen to be a negligible
fraction of the estimand, for large N . It can be shown
that θ̂∗ is a consistent estimator of θ .

The bias of an estimator can sometimes be reduced
through the use of bootstrap or jackknife tech-
niques [2, 3, 8].

Example 6

When unbiased estimators exist, they may be obvi-
ously unreasonable. Let X be a Poisson random
variable with mean λ. We consider the problem
of estimating θa = exp(aλ), for some known value
a �= −1. The unique unbiased estimator of θa is
Ta(X) = (a + 1)X.

For negative values of a, 0 < θa < 1. However,
a < 0 implies that Pr[0 < Ta(X) < 1] < 1; there is
a chance that the estimator will not fall within the
range of the estimand. In fact, for a ≤ −2, Pr[0 <

Ta(X) < 1] = 0, so the estimator never falls within
the range of the estimand. A similar problem can
occur in estimating variance components: unbiased
estimators of variance sometimes produce negative
estimates.

An alternative estimator of θa is Sa(X) =
exp(aX). It can be shown that if a < 0, the average
squared distance from θa to Sa(X) is smaller than
that from θa to Ta(X). Thus, even though Sa(X) is
biased, it has a smaller mean square error (MSE)
than Ta(X).

Example 7

More than one unbiased estimator may exist. If
X1, X2, . . . , Xn are independent and uniformly dis-
tributed on (0, θ), then the following estimators are
all unbiased for θ : θ̂1 = (n + 1)Xmin, θ̂2 = 2X1, θ̂3 =
2X, θ̂4 = Xmin + Xmax, and θ̂5 = [(n + 1)/n]Xmax.

When more than one unbiased estimator exists,
selection can be made on the basis of the variance of
the estimators. The variances of estimators θ̂1, . . . , θ̂5

can be shown to be in the proportions

n2 :
n(n + 2)

3
:

n + 2

3
:

2n

n + 1
: 1 ;

on this basis, the estimator θ̂5 is clearly the best. In
fact, it can be shown that θ̂5 is a uniformly minimum
variance unbiased estimator (UMVUE): no unbiased
estimator exists having smaller variance.

Under regularity conditions, a lower bound for
the variance of an unbiased estimator is available;
an estimator with variance equal to this lower bound
is therefore a UMVUE. This “Cramér–Rao lower
bound” [1] is the reciprocal of the Fisher informa-
tion number I(θ): in words, I(θ) is the expecta-
tion of the squared derivative with respect to θ of
the log likelihood. It is possible, however, that a
UMVUE does not attain this bound. Construction of
UMVUEs is facilitated by the Lehmann–Scheffé the-
orem, which states that the conditional expectation
of an unbiased estimator given a complete sufficient
statistic is a UMVUE [1].

The existence of a UMVUE does not rule out
consideration of other estimators. It is easily demon-
strated that if T is unbiased for θ and var(T ) = aθ2,
then S = T/(1 + a) has smaller MSE than does T .
This result can be used to show that the UMVUE
of a normal variance, S2, has larger MSE than does
[(n − 1)/(n + 1)]S2: in Example 7, the UMVUE θ̂5

has larger MSE than does [(n + 2)/(n + 1)]Xmax.
Other considerations may weigh against the choice

of a UMVUE. In Example 7, the UMVUE θ̂5 has
a skewed distribution so that, for any sample size
n > 5, there is a better than 60% chance that the
UMVUE exceeds θ . Thus, θ̂4, while more variable
than θ̂5, may be deemed superior on the basis of the
symmetry of its distribution. Since Pr(θ̂4 ≤ θ) = 0.5,
θ̂4 is said to be median unbiased.

Unbiased Hypothesis Testing and Risk
Unbiasedness

Let F0 and F1 denote disjoint collections of
distribution functions. A test of H0 : F ∈ F0 is said to
be unbiased against H1 : F ∈ F1 if, for any F0 ∈ F0

and F1 ∈ F1, Pr(Reject H0|F0) ≤ Pr(Reject H0|F1);
one is at least as likely to reject the null hypothesis
when the alternative is true, as when the null is true.
This criterion of unbiasedness is of importance in the
theory of uniformly most powerful tests [7].

Unbiased estimation, unbiased hypothesis testing,
and other optimal procedures for testing and esti-
mation are unified by the general decision-theoretic
concept of risk unbiasedness [4, 5] (see Decision
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Theory). Given data X and a loss function L(θ, d),
a decision rule δ(X ) is said to be risk unbiased
if Eθ [L(θ∗, δ(X ))] ≥ Eθ [L(θ, δ(X ))] for all θ, θ∗.
For example, choosing a squared-error loss function,
L(θ, d) = [ψ(θ) − d]2, risk unbiasedness of δ(X ) is
equivalent to unbiasedness of δ(X ) as an estimator
of ψ(θ).
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Uniform Distribution

We can distinguish between the discrete and contin-
uous uniform (or rectangular) distributions.

Discrete Uniform Distribution

Let X be a random variable taking integer values
from m1 to m2 with the probability function

Pr(X = j) = 1

m2 − m1 + 1
, m1 ≤ j ≤ m2.

There are many examples where a uniform distribu-
tion is appropriate. For example, observing a number
from tossing a die, or drawing a random digit from
0 to 9, are two common examples.

Mean and Variance

E(X) = m1 + m2

2
,

var(X) = (m2 − m1 + 1)2 − 1

12
.

Continuous Uniform Distribution

Let X be a random variable taking real values from
a to b with probability density function (pdf)

f (x) = 1

b − a
, a ≤ j ≤ b.

It is common to denote X ∼ U(a, b).

Properties

Mean and variance:

E(X) = a + b

2
,

var(X) = (b − a)2

12
.

Linear transformation:
For any constants c > 0 and d,

Y = cX + d ∼ U(ac + d, bc + d).

In particular,

Y = X − a

b − a
∼ U(0, 1).

More Properties of U(0, 1)

1. Probability integral transformation. Let F(x) be
the cdf of a continuous random variable X, then
Y = F(X) ∼ U(0, 1).

2. Inverse cdf transformation. If the F(x) in point 1
is strictly increasing, then for Y ∼ U(0, 1), F−1(Y ) is
a random variable with cdf F(x). This result enables
us to simulate observations of a continuous random
variable that has as its cdf F(x). For example,

(i) − ln Y has an exponential distribution
with mean 1;

(ii) ln[Y/(1 − Y )] has a logistic distribution;
(iii) Y 1/n has a beta(n, 1) distribution.

3. We can also use Y ∼ U(0, 1) to simulate obser-
vations of a discrete random variable. In partic-
ular,

X = m1 + [(m2 − m1 + 1)Y ]

will have a discrete uniform distribution from m1 to
m2. Here [x] is the largest integer ≤ x.

For additional properties and references related to the
uniform distribution, see [2, 3], and [4].

Characterization

For two independent random variables, U and V ,
Deng & George [1] gave some characterizations of
a function g such that g(U, V ) ∼ U(0, 1) is inde-
pendent of V if and only if U ∼ U(0, 1). They also
studied several classes of function g(u, v) which
yield a U(0, 1), if U and/or V follows a uniform
distribution. Examples of such functions are

1. g1(u, v) = min[u/v, (1 − u)/(1 − v)],
2. g2(u, v) = u + v mod 1,
3. g3(u, v) = min(u, v)/ max(u, v),
4. g4(u, v) = log u/(log u + log v).
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Uniform Random
Numbers

The use of empirical studies based on computer-
generated (pseudo)-random numbers has become
a common practice in the development of statistical
methods, particularly when the analytical study of a
statistical procedure becomes intractable. Often there
are several generating methods that can be used to
produce a random number sequence for a given dis-
tribution. Most often these methods are based on the
generation of independent variates from the uniform
distribution, U(0, 1). Usually, pseudorandom inte-
gers from 0 to m are generated and then they are
transformed into [0, 1] by a scale of 1/m. Several
common uniform number generators are presented
here.

Linear Congruential Generator (LCG)

The congruential method, proposed by Lehmer [19],
is the most commonly used pseudorandom number
generator. A sequence of random numbers is obtained
by setting

Xi = (BXi−1 + A) mod m, i ≥ 1,

where Xi, B, A, and m are nonnegative integers. The
quality of the generator is determined by the choice
of the increment A, multiplier B, initial seed X0, and
modulus m.
Case 1
If A = 0, then it is called a multiplicative linear
congruential generator (MLCG), in which case it
becomes

Xi = BXi−1 mod m, i ≥ 1.

The maximum period of the sequence {X0, X1, X2,
. . .} generated depends on the choice of the modulus
m [14, p. 20]:

1. m = 2t , t > 3. The maximum period attainable
is 2t−2.

2. m = p > 3, a large prime number. The maxi-
mum period attainable is p − 1.

3. Any composite modulus. See Knuth [14, p. 21]
for a formula of the maximum period attainable.

However, a composite modulus (other than 2t ) is
rarely used for a MLCG.

Case 2
If A is not zero, it is possible to achieve the full period
m [14, p. 16]. However, according to Marsaglia [24],
the “effective period” cannot be greater than the
period of the corresponding MLCG. The value of
A does not have any effect on the structure of
the random number sequence. For example, dif-
ferent values of A give the same results in the
spectral test [14, p. 91] and the lattice test [4,
p. 28].

In the early days, a popular choice of m was
2w−1 (w is the machine word-size) for efficiency
considerations. For example, the IBM generator
RANDU used m = 231, B = 65539, and A = 0.
However, sequences generated using m = 2t have a
serious drawback: the lower-order bits of Xi are not
very random. The Lth least significant bit of the Xi

has period equal to max(1, 2L−2). The lowest-order
bit is always 1 (odd); the second-lowest-order bit has
an order of 1 (if B = 8k − 3) or 2 (if B = 8k + 3).

Recently, m = 231 − 1, a well-known Mersenne
prime number [14, p. 390], has become the most pop-
ular modulus. It is also the maximum positive number
representable in a 32-bit computer. The multiplier
B = 16807 was suggested by Lewis et al. [20]. It is
also used in the scientific library from IMSL. Payne
et al. [28] suggested the use of B = 630360016,
which is commonly used in the SIMSCRIPT II sim-
ulation programming language.

Marsaglia [23] was the first to show that suc-
cessive overlapping sequences of k random num-
bers fall on at most (k!m)1/k planes, where m

is the modulus chosen. This shortcoming may
yield grossly wrong results for certain applications,
such as in the Monte Carlo multiple-integration
method.

Shift Register Generator (SRG)

Tausworthe [29] suggested combining L-bits of a
binary sequence generated by the linear recurrence
relation

Xi = (α1Xi−1 + · · · + αkXi−k) mod 2, i ≥ k,

for any initial nonzero binary vector (X0, . . . , Xk−1),
where αj = 0 or 1 for 1 ≤ j ≤ k − 1 and αk = 1.



2 Uniform Random Numbers

The necessary and sufficient condition for achieving
the maximum period 2k − 1 is that the polynomial
f (x),

f (x) = xk − α1x
k−1 − · · · − αk,

is a primitive polynomial over the finite field consist-
ing of {0, 1} and gcd (L, 2k − 1) = 1. For computing
efficiency, we usually consider only the primitive tri-
nomial

f (x) = xk + xh + 1, 1 ≤ h ≤ k − 1.

Watson [30] tabulated primitive polynomials with
degree ≤ 100. A more comprehensive listing of prim-
itive trinomials with modulus 2 was given in [34]
and [35].

The advantage of the Tausworthe generator is that
if we choose parameter values carefully, then the gen-
erated sequences are guaranteed to have a nice prop-
erty of equidistribution over some multidimensional
space. The disadvantage is that it is not efficient
because it requires L to be big enough to resemble
a continuous random variable over [0, 1]. Lewis &
Payne [21] proposed a more efficient method known
as the generalized feedback shift register (GFSR) in
which numbers are formed by phase-shifted elements
of the binary sequence generated by a primitive tri-
nomial. One of the shortcomings of the GFSR is
that no theoretical equidistribution over multidimen-
sional space can be proved for all GFSRs. Fushimi &
Tezuka [9] gave a necessary and sufficient condition
for the k distribution of the GFSR.

Although the Tausworthe shift register generator
has a k-space equidistribution property, its empiri-
cal performance gives poor results (see, for exam-
ple, [25]).

Multiple Recursive Generator (MRG)

The MRG is a natural extension of the SRG. It
is generated from a degree k primitive polynomial
[14, pp. 28–29]

f (x) = xk − α1x
k−1 − · · · − αk,

with period pk − 1, by

Xi = (α1Xi−1 + · · · + αkXi−k) mod p, i ≤ k,

for any initial nonzero vector (X0, . . . , Xk−1), where
p is a large prime number. A polynomial of degree k

is said to be a “primitive polynomial modulo p” if this
polynomial has a root that is a primitive element of
the field with pk elements. Knuth [14], Zierler [33],
Golomb [10], and Lidl & Niederreiter [22] proved
and summarized several very important properties
about the primitive polynomial and the MRG. The
main difference is that the classical SRG uses the
modulus p = 2, large L (decimation), and large
degree, k, whereas the MRG uses small k, L = 1,
and very large modulus p. Clearly, when k = 1, the
MRG is reduced to the LCG. Therefore, the MRG
includes both the LCG and the SRG as special cases.

Knuth [14, p. 29, conditions (i)–(iii)] gave a
search algorithm for finding primitive polynomials.
L’Ecuyer & Blouin [17] implemented Knuth’s algo-
rithm into a computer program using the generalized
spectral tests [14] to find the MRG. The main draw-
back of Knuth’s algorithm is that it involves polyno-
mial modulus arithmetic, and it needs some additional
programming work. Deng et al. [7] proposed an effi-
cient search algorithm using only usual arithmetic and
no polynomial arithmetic was required.

Example Modulus m = p = 2 31 − 1

A listing of two MRGs and their periods for k ≤ 3
is given in Tables 1–3. For additional listings with
other prime modulus and/or a larger k, see [7].

When k = 1, period = 232 − 2 = 2, 147, 483, 646.
As mentioned before, the MRG is reduced to the LCG
when k = 1. When k = 2, period = 4, 611, 686, 014,

Table 1 k = 1

No. α1

1 16 807
2 630 360 016

Table 2 k = 2

No. α1 α2

1 7 732 19 398
2 1 644 975 444 1 454 071 610

Table 3 k = 3

No. α1 α2 α3

1 34 482 41 200 20 226
2 1 090 176 785 2 064 992 429 1 835 451 531
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132, 420, 608. When k = 3, period = 9, 903, 520,
300, 447, 984, 150, 353, 281, 022.

Matrix Congruential Generator (MCG)

The matrix generator, considered by Franklin [8],
Grothe [11], and Niederreiter [26], is defined by

Xi = BXi−1 mod p, i ≥ 1,

where the Xis are k-dimensional vectors, B is a
k × k matrix, and p is usually chosen as a large
prime number. The maximum period of the MCG
is pk − 1. A brief review of the matrix generator
is given by L’Ecuyer [16]. Niederreiter [27] derived
the “discrepancy” of the sequence generated by
the matrix generator. The procedure proposed in
Grothe [11] of finding the matrix multiplier B with
the maximum period depends on the availability of
the primitive polynomial of degree k. Deng et al. [7]
also proposed an efficient algorithm for searching the
MRG and MCG.

Example: Modulus m = p = 2 31 − 1

A sample listing of the matrix B for two MCGs and
their periods for k ≤ 3 is given below. When k = 1,
the MCG is again reduced to the LCG. When k = 2,
period = 4 611 686 014 132 420 608.

(
17 943 43 665

9 283 33 768

)
,

(
1 238 321 839 1 336 529 607

995 629 446 359 802 910

)
.

When k = 3, period = 9 903 520 300 447 984 150 353
281 022.
( 1 853 8 475 32 652

25 307 36 979 23 868
39 567 34 683 41 419

)
,

( 1 347 553 617 1 521 896 970 1 565 253 766
1 454 071 610 1 644 975 444 1 616 800 968

519 234 310 1 463 044 428 2 045 396 196

)
.

Combination Generator

Consider the following n multiplicative linear
congruential generators (MLCGs), proposed by

Lehmer [19]:

Xj,i+1 = BjXj,i mod mj , i ≥ 0,

j = 1, 2, 3, . . . , n,

where Xj,0 (initial seed), Bj (multiplier) are positive
integers and mj (modulus) are different prime num-
bers. Wichmann & Hill [31] suggested adding three
MLCGs and take the fractional part:

UW,i =
3∑

j=1

Xj,i

mj

mod 1.

Through a simple example, they claimed that this
procedure “ironed out” the imperfections in the
component variates.

Example

Listed in Table 4 are the three MLCGs used in
Wichmann & Hill [31]. The period of this gen-
erator is l cm, (m1 − 1, m2 − 1, m3 − 1) ≈ 6.95 ×
1012. Zeisel [32] observed that a linear combina-
tion of several MLCGs with different moduli is
equivalent to another MLCG with a large multi-
plier (B = 16 555 425 264 690) and a large modulus
(m = 27 817 185 604 309).

L’Ecuyer [15] considered a variation of Wich-
mann & Hill’s method:

UL,i =
n∑

j=1

δjXj,i

m1
mod 1,

where δj = (−1)j−1. He proved that if generators
are independent of each other and if one of the
generators is uniformly distributed, then the com-
bined generator will also be uniformly distributed.
L’Ecuyer & Tezuka [18] studied the structural prop-
erties for these two classes of the combined random
number generators (RNGs) and extended the obser-
vation by Zeisel [32].

Table 4

j Bj mj

1 170 30 323
2 171 30 269
3 172 30 307
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Empirical and Statistical Justifications

The technique of combining several random
number generators to obtain a “more random”
generator has been suggested by many authors.
Wichmann & Hill [31], Marsaglia [25], Collings [3],
L’Ecuyer [15], and Anderson [1] all suggested the
use of the combination generator. In fact, as
pointed out in [7] the, MRG (and MCG) can
also be considered as a combination generator.
Marsaglia [25] concluded that the combination
generator seems to be the best, according to
his empirical study of several popular generators.
Several other authors also performed empirical
studies about the combination generator. Collings [3],
L’Ecuyer [15], and Anderson [1] also found good
empirical performance of the combination generators.

Some theoretical support for the combination
generator is given in the literature. See, for
example, Horton [12], Horton & Smith [13], Brown
& Solomon [2], Marsaglia [25], and Deng &
George [5]. However, they all made an unrealistic
assumption that the individual generators are
independent of each other. Deng et al. [6] proved
the (asymptotic) uniformity and independence of the
combined generator without assuming independence
between the generators. Deng et al. [7] also gave
some intuitive explanations on the excellent
performance of the combination generators.
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Unimodality

Let X be an absolutely continuous random variable
with density function f (x) and corresponding distri-
bution function F(x). We say that X is unimodal if
f (x) is either decreasing, increasing, or, more typi-
cally, increasing to the mode m and then decreasing
(in other words, F(x) is convex if x < m and con-
cave if x > m). For example, normal and gamma
random variables are unimodal.

Often we are interested in some characteristic θ

of X (e.g. median, 95th percentile; see Quantiles).
If we know f (x), then θ is easily calculated. If we
know that f (x) belongs to some parametric family,
then θ is a function of the parameters of the family.
If we have no information on f (x), then little can be
said about θ .

The question we entertain is: If we know that
f (x) belongs to the class of unimodal density func-
tions, what can be said about θ? Two results are
described:

1. Chebyshev’s inequality. If we know that f (x) is
unimodal, what can we say about Pr(|X − µ| >

x)?
2. Interpolation. If we know that f (x) is uni-

modal and the values of F(x) at selected points;
F(ai) = pi for i = 1, . . . , n + 1, what can be
said about F(b) or F−1(p) for some b and p

of interest?

Chebyshev’s inequality states that Pr(|X − µ| ≥
x) ≤ σ 2/x2. Camp [2] and Meidell [9] showed that,
if X is unimodal with mode at 0, then, for any x > 0,

Pr(|X| ≥ x) ≤
(

r

r + 1

)r E(|X|r )
xr

for any r > 0.

(1)

The result for r = 2 dates back to Gauss [6]. If X is
unimodal and symmetric about µ (i.e. has a mode at
µ), then (1) provides the following modification to
Chebyshev’s inequality:

Pr(|X − µ| ≥ x) ≤ 4

9

σ 2

x2
. (2)

For example, if x = 2σ , then Chebyshev’s bound is
1/4, while the bound in (2) is 1/9. This bound is
achieved by mixing a point mass at x = µ with a
uniform density function. In [1] this bound is further
refined if, in addition to unimodality and symmetry,

smoothness conditions in the form of bounds on
|f ′(x)| are assumed. Specifically, if |f ′(x)| does not
exceed the maximum of |f ′(x)| for a normal random
variable, then the bound is further reduced from 1/9
to 0.067. Similar results for restrictive classes of
distributions also appear in [3, 10].

The interpolation result appears in [8]. We present
the result for a nonnegative random variable with
decreasing density; the result for unimodal densities,
which appears in [8], is more complicated and in the
same spirit.

Assume that the p of interest is in the j th interval
(i.e. pj ≤ p ≤ pj+1). The bound on the pth quan-
tile is determined by the line connecting (ai, pi)

to (ai+1, pi+1) with slope si = (pi+1 − pi)/(ai+1 −
ai). This line crosses the line y = p at ti,p = (p −
pi)/si + ai :

F−1(p) ≥ LB

≡





max(0, t2,p), if j = 1,

max(tj−1,p, tj+1,p), if 2 < j < n,

tn−1,p, if j = n,

(3a)

and

F−1(p) ≤ UB ≡ tj,p. (3b)

A reasonable estimate for F−1(p) is (LB+UB)/2.
The results for the exponential random variable with
λ = 1, where ai = 0.5i, i = 1, . . . , 8, are presented
in Table 1.

Two other questions have been raised regarding
unimodal densities. The first is: When is the sum
of two unimodal densities unimodal? If the modes
of the two random variables are not the same, then
the sum need not be unimodal. For example, the
sum of two normal random variables with different
means (i.e. modes) is not unimodal if the means
are sufficiently different. Even if the modes are the
same then it is also necessary (see the example
in [5]) and sufficient [11] that the random variables
are symmetric.

The other question that has received attention
is: What is the relationship between the mode (m),
mean (µ), and the median (ν) for unimodal densities?
Groeneveld & Meeden [7] showed that if FY1(y) ≤
FY2(y), where Y1 = (X − ν)+ and Y2 = (ν − X)+,
then m ≤ ν ≤ µ (see Skewness).

The reader is referred to Dharmadhikari & Joag-
dev [4] for a more mathematical treatment of the
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Table 1 Interpolation of exponential quantiles

p θ = F−1(p) LB UB θ̂ = (LB + UB)/2 (θ̂ − θ)/θ

0.5 0.693 0.635 0.723 0.679 −0.020
0.75 1.386 1.347 1.407 1.377 −0.007
0.90 2.303 2.223 2.331 2.277 −0.011
0.95 2.996 2.995 2.997 2.996 0.0

above topics, and for extensions to multivariate uni-
modal densities.
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Union Internationale
Contre le Cancer (UICC)

The International Union Against Cancer (UICC) is
devoted to all aspects of the worldwide fight against
cancer (see Oncology). Its objectives are to advance
scientific and medical knowledge in research, diag-
nosis, treatment, and prevention of cancer, and to
promote all other aspects of the campaign against
cancer throughout the world. Founded in 1933, the
UICC is a nongovernmental, independent associa-
tion of more than 270 member organizations in about
80 countries. Members are voluntary cancer leagues
and societies, cancer research and/or treatment cen-
ters and, in some countries, ministries of health. The
UICC has played a major role in the field of cancer
biostatistics, notably by creating the TNM committee
and the Controlled Clinical Trials Committee.

The TNM committee was created in 1954 with the
aim of characterizing and classifying malignancies.
The TNM system, devised by Pierre Denoix, was
based on:

1. the tumor (T),
2. regional lymph nodes (N), and
3. distant metastases (M).

Precise clinical description and classification of
malignant neoplasms by anatomical extent of disease
may serve a number of related objectives, namely:

1. to aid the clinician in the planning of treatment.
2. to help the clinician to making a prognosis.
3. to facilitate the exchange of information between

treatment centers.
4. to pursue studies on the natural history of cancer.

Finally, the TNM classification improved the quality
of clinical trials; first, by precisely defining the type

of patients concerned, and secondly, by enabling the
comparison of treatment efficacy between groups,
the stage of malignancy being controlled. The TNM
staging system is still being actively developed by
UICC.

The Controlled Clinical Trials Committee, cre-
ated in 1966, was composed of a dozen members
(clinicians, surgeons, and biostatisticians) of various
nationalities. I was the first President, later succeeded
by Robert Flamant. There were two main aims.

The first was to analyze the different method-
ologic, ethical, and practical problems encountered
during clinical trials, and to offer solutions. Commit-
tee meetings were held yearly to discuss new aspects.
UICC technical reports on a large number of method-
ologic points were prepared and distributed.

The committee’s second objective was to estab-
lish a list of all randomized cancer trials throughout
the world, either completed or ongoing. This infor-
mation was aimed at avoiding redundancy: teams
planning duplicate trials could either withdraw or join
forces. In 1968 the International Information Office
was set up under the direction of Robert Flamant;
five compilations of clinical trials were published.
The International Information Office only ceased
its activity when the US National Cancer Institute
(see National Institutes of Health (NIH)) created
the International Data Bank (ICRDB), a body with
the same vocation.

Independently of these actions, the UICC has
conducted and is still conducting a program on epi-
demiology and prevention. Current studies include in
particular Chernobyl Disaster Follow-up, Evaluation
of Primary Prevention of Cancer, Familial Cancer and
Prevention, and Nutrition, Diet, and Cancer.

In these and other fields of cancer research UICC
has made an important contribution.

D. SCHWARTZ



Union–Intersection
Principle

Multivariate analysis refers to the branch of statis-
tics in which we attempt to analyze multiple response
(or dependent) variables simultaneously. This is in
contrast to the simpler situation of univariate analysis
in which we focus on only one response vari-
able. Not surprisingly, multivariate analysis is more
complex than univariate analysis and this is especially
true for hypothesis testing. Roy [8] developed the
union–intersection principle as a tool for solving sta-
tistical inference problems in multivariate analysis.

We illustrate the applicability of the union–
intersection principle with an example. Suppose we
have an experimental situation in which we measure
pretreatment and posttreatment values of p response
variables on each of n subjects, and we are interested
in determining whether the treatment has an effect.
For convenience, we let µ = [µ1 . . . µp]′ denote the
p × 1 vector of population means for the post- minus
pretreatment responses. A treatment effect is appar-
ent if µ is different from the null vector. Therefore,
we form our hypothesis testing problem as

H0 : µ = 0 vs. H1 : µ �= 0 (1)

We let X1, . . . , Xn denote the p × 1 vectors of
responses for the subjects 1, . . . , n, respectively, and
we let X = (1/n)

∑n
i=1 Xi denote the p × 1 vector

of sample means. We attempt to determine from X
whether there is enough evidence to reject H0 in favor
of H1. If our situation consisted of only one response
variable (p = 1) that followed a normal distribu-
tion, then we could apply the paired t test,

t = √
n

X

s
, (2)

where s is the sample standard deviation. The statistic
t in (2) follows a tn−1 distribution (Student’s t
distribution on n − 1 degrees of freedom).

However, for the multivariate testing problem in
(1) we want to test the null hypothesis that simulta-
neously p response means are different from zero.
To apply the union–intersection principle, we let
b = [b1 . . . bp] be any nonnull p × 1 vector. Then
µ = 0 if and only if b′µ(= ∑p

i=1 biµi) = 0 for every
nonnull vector b. Analogously, µ �= 0 if and only

if b′µ �= 0 for at least one nonnull vector b. This
suggests that we consider the following hypothesis
testing problem for each nonnull vector b:

H0(b) : b′µ = 0 vs. H1(b) : b′µ �= 0. (3)

Over all nonnull vectors b, the null hypothesis
described in (1) is equivalent to the intersection of
all the null hypotheses described in (3), and the
alternative hypothesis in (1) is equivalent to the union
of all the alternative hypotheses described in (3). In
other words,

H0 ≡
⋂

b

H0(b) and H1 ≡
⋃

b

H1(b). (4)

This decomposition of the null and alternative
hypotheses leads to the chosen nomenclature of the
union–intersection principle.

For a particular nonnull vector b, we let T (b) be a
statistic for the hypothesis testing problem in (3) and
we let R(b) denote its critical region. If we observe
T (b) within R(b), then we reject H0(b) in favor of
H1(b). In general, we strive to select a statistic T (b)

that has optimal properties, such as uniformly most
powerful, unbiased, etc. If large values of T (b) lead
to the rejection of H0(b), then H0 is rejected if any
T (b) is in the critical region R = ∪R(b). However,
this is equivalent to rejecting H0 for large values of

T = sup
b

{T (b)}, (5)

which we label as the union–intersection statistic.
With respect to our particular example, under the

assumption that the post- minus pretreatment respon-
ses follow a multivariate normal distribution, we
select T (b) as the paired t statistic, described in (2).
For convenience, we use

T 2(b) = nb′XX
′
b

b′Sb
, (6)

where S is the sample p × p variance–covariance
matrix,

S = 1

n − 1

n∑

i=1

(Xi − X)(Xi − X)′. (7)

It turns out that the vector b = S−1X yields the
union–intersection statistic

T 2 = nX′S−1X. (8)
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The statistic in (8) is known as Hotelling’s T2

and (n − p)T 2/p(n − 1) follows an F distribution
with (p, n − p) degrees of freedom. In the same
context, if we let T 2

1−α,p,n−p denote the 100 (1 − α)
upper percentile from Hotelling’s T 2 distribution,
then the union–intersection principle leads to the
following simultaneous probability statement for all
linear combinations b′µ:

Pr

{
b′X −

[(
1

n

)
b′Sb

]1/2

×T1−α,p,n−p ≤ b′µ ≤ b′X

+
[(

1

n

)
b′Sb

]1/2

×T1−α,p,n−p

}
= 1 − α. (9)

The above examples with multivariate paired data are
the simplest applications of the union–intersection
principle. The union–intersection principle also
provides test statistics and simultaneous confidence
regions in the context of the multivariate two-
sample problem, multivariate multiple regression,
and multivariate analysis of variance [7]. Other
applications of the union–intersection principle
include testing sphericity of the variance matrix, i.e.
proportionality of the variance matrix to the identity
matrix [6, 11], and hypothesis testing in multivariate
settings when the alternative hypothesis imposes
restrictions on the model parameters [1–5, 9, 10, 12].
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Unit of Analysis

The unit of analysis in a given study is the type of
item on which data values are summarized in order to
draw statistical inferences. It is what “n” counts. In
hierarchical data sets, the unit of analysis specifies
a level of aggregation.

Introductory Examples

In many research situations, there is one obvious
choice for the unit of analysis. In a simple two-
arm clinical trial, for example, individual patients
are assigned at random to either of two treatments,
and an outcome is observed for each patient. The
results are expressed in terms of how many patients
received each treatment and the distribution of out-
comes among the patients in each treatment group.
The patient is the unit of allocation, the unit of mea-
surement, and thus the natural unit of analysis.

Ambiguity about the unit of analysis may arise,
however, in more complex study designs. Consider
the following situations.

1. Community intervention trials. A multicommu-
nity study to determine whether a mass-media
campaign motivates smokers to quit smoking
might involve allocating entire communities en
bloc to intervention or control groups. The pri-
mary endpoint, however, may be whether a per-
son who smoked at baseline had quit smoking by
the end of the study period, which is determined
at the individual-person level. Communities are
the units of allocation, while individual people
nested within those communities are the units of
observation. Is the unit of analysis the commu-
nity or the individual? A similar question may
arise in group-randomization studies more gen-
erally.

2. Multilevel observational studies. A study that
seeks to identify the determinants of compliance
with guidelines on mammographic screening in a
large managed care plan might measure charac-
teristics of individual female enrollees, attributes
and care practices of these women’s physicians,
and local barriers or conveniences at several
clinic sites at which these physicians practice.
Individual women are nested within physician
practices, which are nested within clinic sites.

Data are obtained at all three levels. What is
the appropriate unit of analysis (see Multilevel
Models)?

3. Longitudinal studies. A study of prognosis among
AIDS patients may seek to model time trends
in CD4 lymphocyte counts, which reflect the
effects of AIDS on the immune system. If the
CD4 counts are obtained in the course of routine
clinical care of each patient rather than at fixed
time points dictated by a common protocol, then
the number and timing of CD4 count values will
vary among patients, and measurement occasions
can be considered as nested within (rather than
crossed with) patients. Is the unit of analysis the
individual CD4 count or the patient?

Study Design Features That Lead to
Uncertainty About Unit of Analysis

Four features seem to characterize studies such as
these, in which ambiguity arises about the unit of
analysis. First, they involve nested (or hierarchical)
data arrangements in which there is clustering of sub-
units within aggregates (see Cluster Sampling). In
the three examples above, individuals are clustered
within communities, patients within provider pan-
els within clinic sites, and CD4 test measurements
within patients. In general terms, the issue is whether
the subunit or the aggregate should be the unit of
analysis. Some studies involve two or more levels
of nesting, as in the mammography example; how-
ever, the underlying analytic issue does not depend
critically on the number of levels of nesting, and the
discussion here will consider only the simplest, two-
level case.

Secondly, at least some of the observations are
made at the subunit level. Thus, subunit-level data
can either be collapsed to the aggregate level or not,
depending on the choice of a unit of analysis. (If
only aggregate-level data were available, this decision
would not arise; see Ecologic Study.)

Thirdly, aggregate-level effects on outcome are
likely. This phenomenon can be viewed equiva-
lently in two ways: (i) greater variability in outcomes
among aggregates than would be expected based
on within-aggregate variation; or (ii) less variabil-
ity within aggregates than would be expected from
total variation among subunits across all aggregates.
In other words, observations on subunits within a
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given aggregate tend to be correlated, for any of
several reasons. One mechanism is self-selection. In
the community-trial context, people can choose to
reside in a certain community because they share
attributes of other community residents and thus “fit
in”, and those shared characteristics may in turn
be predictors of the outcome variable. Contagion is
another mechanism. Attitudes, norms, and behaviors
may be transmissible from person to person within
a community, leading to homogeneity. Shared expo-
sures constitute yet another mechanism. Patients of
a certain physician are all subject to his or her indi-
vidual practice style. Similarly, observations on the
same patient over time are influenced by systematic
differences between that patient and other patients as
well as by temporal autocorrelation. Regardless of
the mechanism, because of this kind of clustering,
subunit-level observations cannot be assumed to be
statistically independent across aggregates.

Fourthly, the particular aggregates studied repre-
sent, in some sense, a sample from a universe of
similar aggregates to which we may wish to gen-
eralize the study findings. In analysis of variance
parlance, the aggregate-level design factor can be
considered a random effect rather than a fixed effect.

Approaches to Analysis

An Incorrect Approach: Treat Subunit-level Data
as Statistically Independent

A naive and incorrect approach to analysis of data
from studies fitting this description is to analyze data
at the subunit level, treating the subunits as though
they were statistically independent across aggregates.
Failure of the data to conform to this indepen-
dence assumption leads to inflated type I error rates
(see Hypothesis Testing), sometimes substantially
so [2, 9, 11]. Unfortunately, reviews of published
medical research suggest that this incorrect practice
is all too common [3, 9, 10].

Analysis Based on Aggregate-level Means

An alternative approach that avoids this pitfall is to
use the aggregate, rather than the subunit, as the
unit of analysis. Subunit-level data are combined to
yield a mean value for each aggregate, and these
means are then treated as elementary data points to

be compared across aggregates. (If there are two or
more levels of nesting, further aggregation may be
necessary to reach a level of aggregation at which the
independence assumption is likely to be satisfied.)

Applying this method to the community-trial
smoking-cessation example, a “quit rate” for each
study community would first be obtained. These quit
rates can be regarded as community-specific mean
values of an individual-level indicator variable that
takes the value 1 for each smoker who quits smoking
and 0 for each smoker who continues to smoke. The
success of the community-level intervention would
then be assessed by comparing the location of the
distribution of quit rates between all intervention
and all control communities, possibly using a t-
test (see Student’s t Statistics) or a nonparametric
analog.

Basing the analysis on group means has long
been advocated for group-randomized studies, such
as community intervention trials. It follows the clas-
sical Fisherian principle to “analyze as you random-
ize” [4, 6]. Under the null hypothesis, randomiza-
tion justifies an assumption of independence among
the communities within a treatment group, even if
no such assumption holds among individuals within
each community.

But while analysis based on aggregate-level means
circumvents some difficulties, it has important short-
comings. If the number of subunits varies markedly
among aggregates, then estimates of aggregate-level
means based on many subunits will be more precise
than those based on fewer subunits. This difference
in precision implies violation of the homoscedastic-
ity assumption (see Scedasticity) behind many stan-
dard statistical tests. In principle, this problem can
be circumvented by conducting a weighted analysis,
weighting each mean in proportion to the inverse of
its estimated variance (taking care to include both
subunit- and aggregate-level components), but other
superior methods of analysis described below obviate
the need to do so.

A second major difficulty is that subunit-level
covariates are not easily accommodated in an anal-
ysis based on aggregate-level means. Their omission
from the analysis may prevent the removal of bias
due to subunit-level confounding factors and may be
a lost opportunity to enhance power. For example,
if women in some physicians’ practices are gener-
ally younger than those in other practices, then dif-
ferences in mammographic screening practices may
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Table 1 Abridged ANOVA tables

Source of variation Symbol df MS E(MS)

For the model given in (1)
Treatment group Gi g − 1 MSG σ 2

P + pσ 2
C + pcΣG2

i

Community Cj(i) g(c − 1) MSC σ 2
P + pσ 2

C

Person Pk(ij) gc(p − 1) MSP σ 2
P

For the model given in (2)
Treatment group Gi g − 1 MSG σ 2∗ + σ 2

C + cΣG2
i

Community Cj(i) g(c − 1) MSC σ 2∗ + σ 2
C

be partly due to patient age differences rather than
to practice style. In addition, the ability to detect
treatment effects can be enhanced if otherwise unex-
plained variability in outcomes can be reduced by
including patient-level predictors of outcome. Finally,
absence of subunit-level covariate data from the main
analysis sacrifices the ability to consider interaction
effects involving those factors.

Multilevel Analysis

Fortunately, several analytic methods are now avail-
able that obviate the need to choose between using
subunits or aggregates as units of analysis. They
accommodate data from two or more levels at once
and account properly for the nonindependence of sub-
units within aggregates.

The mixed-model analysis of variance is histor-
ically the oldest of these methods, being based on
classical analysis of variance (ANOVA) theory. Both
subunits and aggregates are treated as random effects.
In a community-trial context, a simple statistical
model for a continuous outcome variable Y would be:

Yijk = µ + Gi + Cj(i) + Pk(ij), (1)

where Yijk is the outcome value for person k (k =
1, . . . , p) within community j (j = 1, . . . , c) within
treatment group i (i = 1, . . . , g), µ is the grand
mean, Gi is the effect of being in treatment group
i, Cj(i) is the effect of being in community j within
treatment group i, and, Pk(ij) is the effect of being
person k within community j within treatment group
i. Basically, a particular value of Y is regarded as the
sum of treatment-group, community, and individual-
person effects.

Because there is only one observation per person,
variation among individuals within a community
is implicitly combined with measurement error

in Pk(ij). The model includes two random effects,
one at the subunit level and one at the aggregate
level: Pk(ij) ∼ N(0, σ 2

P ) and Cj(i) ∼ N(0, σ 2
C). The

one fixed effect is for treatment group: Gi . This
simple model includes no covariates at the subunit
(person) or aggregate (community) levels.

If the number of individuals per community, p,
is assumed to be constant across communities and
the number of communities per treatment group, c,
is constant across treatment groups, then an abridged
ANOVA table for the model given in (1) is shown
in the top panel of Table 1. A test of the main study
hypothesis about treatment effectiveness (H0 : Gi =
0 for all i) would be F = MSG/MSC , with g − 1 and
g(c − 1) degrees of freedom in the numerator and
denominator, respectively, neither of which depends
on p.

It is interesting and satisfying to note that, for
a balanced study design and in the absence of
covariates, an analysis based on community-level
means yields the same test statistic for the main
study hypothesis. In particular, the corresponding
additive statistical model for a community-level mean
would be:

Y ij = µ + Gi + Cj(i) + ej (i), (2)

where Y ij is the mean outcome value for commu-
nity j within treatment group i, ej (i) is the random
error of a community-specific mean, and other sym-
bols are as defined above for the model given in (1).
Here, ej (i) ∼ N(0, σ 2∗ ). Because there is only one
“observation” (a mean value of Y ) per community,
σ 2∗ and σ 2

C cannot be separately estimated, and the
expected mean square for community is their sum.
But σ 2∗ is the sampling variance of an estimated
community-specific mean based on p randomly cho-
sen individuals, while σ 2

P is the variance of Y in
the community from which those individuals were
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sampled. Hence σ 2∗ = σ 2
P /p. With this substitution,

the F statistics for a treatment-group effect become
equivalent in the top and bottom panels of Table 1.

Modern statistical software (see Software, Bio-
statistical), such as PROC MIXED in SAS, substi-
tute restricted maximum likelihood estimation for
classical least squares estimation, thus relaxing the
need for a balanced study design in order to estimate
the parameters of the model given in (1) and to
calculate a valid test of the null hypothesis of no
treatment-group effect [8].

The flexibility and utility of multilevel modeling
is illustrated in several sources describing closely
related statistical approaches that accommodate co-
variates at both the subunit and aggregate levels
to explain variation at those levels. Bryk & Rau-
denbush [1] describe how hierarchical linear mod-
eling combines subunit- and aggregate-level linear
models into a single framework, with an emphasis
on continuous response variables. Hedeker et al. [5],
describe random-effects regression methods that have
been developed to accommodate clustered data with
unbalanced designs. Generalized estimating equa-
tions [7] offer yet another way in which to create
multilevel models for outcome variables with nonnor-
mal distributions in a general linear model frame-
work.
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Univariate Response

The term univariate response is used to refer to a
single response variable and contrasts with a multi-
variate response which refers to a number of response
variables. Traditionally, multivariate analysis con-
siders a number of response variables jointly, and
univariate analysis considers a single or univariate
response variable.

Many analyses, however, examine the relationship
between a response variable and one or more
explanatory variables. A univariate response may
be related to a single, or to multiple, explanatory

variables, as can a multivariate response. It is
increasingly common in the medical literature to
use the term univariate analysis to refer to analyses
which examine only a single explanatory variable’s
relationship to a response variable. Similarly,
multivariate analysis is often used to refer to analyses
like multiple linear regression which examine a
number of explanatory variables jointly. The term
multifactorial is sometimes used in the latter situation
to avoid confusion, but the context usually makes the
intention clear.

VERN T. FAREWELL



University Group
Diabetes Program
(UGDP)

The University Group Diabetes Program (UGDP)
was one of the first multicenter clinical trials
designed and implemented to evaluate treatments for
a chronic disease. It was designed to test the accepted
and widely used methods available in the late 1950s
and early 1960s for treating adult-onset, noninsulin-
dependent diabetes. The three major objectives were:
(i) evaluation of the effects of different hypoglycemic
treatments (diet, insulin, and oral agents) on the
development of vascular complications in patients
with adult-onset diabetes; (ii) study of the natural
history of vascular disease in noninsulin-dependent
diabetics; and (iii) development of methods appropri-
ate for the design and conduct of cooperative clinical
trials.

Twelve clinics, two lipid laboratories, and a Coor-
dinating Center participated in the study. Each clinic
was responsible for recruiting patients, for collect-
ing observations on these patients according to a
common study protocol (see Clinical Trials Proto-
cols) and for providing medical care to each patient
enrolled in that clinic. The Coordinating Center was
the data repository for all study forms and data. The
Coordinating Center staff helped to design the study,
were responsible for the inventory, filing, editing, and
storing of all study material and had major responsi-
bility for the analysis of study data. The study was
funded by grants from the National Institute of Arthri-
tis, Metabolism and Digestive Diseases, US Public
Health Service.

Patient recruitment was started in February 1961
and was completed in February 1966, after 1027
patients were enrolled. Follow-up examinations were
scheduled through the end of August 1975. Thus
patients were followed for 10.0–14.5 years; the mean
follow-up for all patients was 12.25 years.

Methods

Patient Eligibility

Patients were considered for enrollment only if the
diagnosis of diabetes had been established within the

12-month period preceding the date of the screening
examination. In addition, the diagnosis of diabetes
had to be confirmed by a glucose tolerance test
performed during the screening examination. Each
clinic physician was asked to use his best judgment
to screen prospective study candidates for absence
of life-endangering diseases so as to select patients
with a good prognosis for five-year survival. The
study design was described in detail in several study
reports [9, 10, 11, 13, 16] (see Eligibility and Exclu-
sion Criteria).

Candidates for the study were placed on a diet
with caloric content designed to achieve or to
maintain the patient’s body weight within ±15% of
his/her desirable body weight. The prescribed diet
consisted of a fixed proportion of calories derived
from fat, protein, and carbohydrates. Each patient was
observed for four weeks on treatment with diet alone
and only those patients who did not develop major
diabetic symptoms, in particular ketosis, were asked
to participate in the study. Only the patients who
met all of the above requirements and who indicated
a willingness to participate, including a willingness
to accept any of the treatments under study, were
enrolled and allocated to treatment. Initially, patients
were asked to give verbal consent after a detailed
explanation of the study had been given. Later, all
patients including those already enrolled were asked
to sign a consent form after the study design and
methods were reviewed in detail (see Ethics of
Randomized Trials).

Treatments

Patients were randomly assigned to one of the five
treatments listed in Table 1 (see Randomized Treat-
ment Assignment). There were two insulin treatment
groups. The insulin variable treatment was designed
to resemble as much as possible the use of insulin in
clinical practice. Adjustments in the insulin dosage
for patients assigned to the insulin variable treatment
group during the course of the study were based on
blood glucose values from an abbreviated glucose
tolerance test (short GTT). The insulin dosage was
to be increased by at least two units per day when-
ever the fasting blood glucose value obtained from
this test was 110 mg per 100 ml or greater and the
one-hour value from this test was 210 mg per 100 ml
or greater. The fasting value for this test was based
on a blood sample drawn from the patient after a
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Table 1 Study treatments

Treatment Abbreviation Dosage

Insulin variable (U-80 Lente
Iletin or other insulins)

IVAR Amount required to maintain
“normal” blood glucose;
minimum dose five units per day

Insulin standard (U-80 Lente
Iletin insulin)

ISTD 10, 12, 14, or 16 units per day,
depending on the patient’s body
surface

Tolbutamide (Orinase) TOLB 1.5 g per day

Phenformina (DBI-TD) PHEN 100 mg per day

Placebo PLBO Dosage schedules similar to those
used for the oral agents

aAdded to the study 18 months after patient recruitment started for the other four treatment groups.

12-hour fast. The one-hour value for this short GTT
was based on a blood sample drawn 1.5 hours after
the patient took his assigned study medication and
one hour after ingesting a drink containing 50 g of
glucose. The insulin dosage was to be decreased if
hypoglycemic episodes were reported by the patient.
In the second insulin group, each patient was given
a prescription which was based solely on an estimate
of the individual’s body surface (function of height
and weight). The range of dosage was 10–16 units
per day.

Two oral agents were studied: tolbutamide, a
member of the sulfonylurea family of compounds,
and phenformin, a member of the biguanide family
of compounds. Tolbutamide was selected because in
1960 clinical experience with this agent was greater
than with any of the other sulfonylurea drugs. A dose
of 1.5 g per day (1 g in the morning and 0.5 g in
the evening) was used for all patients. The dosage
of phenformin was 100 mg per day (50 mg before
breakfast and 50 mg before the evening meal).

Phenformin was added to the study approximately
18 months after the study had started for the other
four treatment groups. When the decision was made,
six of the original seven UGDP clinics were so far
along with patient recruitment that it was decided
not to include phenformin as one of the study treat-
ments in these six clinics. Five additional clinics
were recruited for the study when phenformin was
added. These five clinics, along with one of the orig-
inal seven clinics, had allocation schedules providing
for assignments to all five treatment groups. In these
clinics, three times the number of assignments were
made to phenformin as were made to each of the

remaining treatment groups. This procedure was used
to provide almost the same total number of assign-
ments to phenformin in these six clinics as were made
to each of the other four treatment groups in all 12
clinics at the end of patient recruitment. This design
feature required that the evaluation of phenformin
effects be based on the results for patients in the
six clinics administering phenformin rather than the
results from all 12 clinics.

Separate randomization schedules were used for
each clinic, and these schedules were designed to
provide balance in the number of patients assigned
to the different treatment groups at specified inter-
vals throughout the period of patient recruitment. All
treatment allocations were issued by the Coordinat-
ing Center. The oral agents were administered in a
double-blind fashion; that is, neither the patient nor
the physician knew whether the patient was receiving
an active drug or placebo.

Examination Schedule

Patients were given an extensive battery of exami-
nations at the time of enrollment and at three-month
intervals thereafter. A general clinical review as well
as a detailed examination of the eyes, heart, kid-
ney function or peripheral vascular and neurologic
systems was performed in conjunction with each
quarterly follow-up visit to the study clinic.

Results for Tolbutamide Therapy

The use of tolbutamide therapy was discontinued in
June 1969 when it became apparent that there was
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an excess cardiovascular mortality for patients in the
tolbutamide treatment group compared with the mor-
tality experience for patients in the placebo treatment
group as well as compared to patients in either of the
two insulin treatment groups (see Excess Mortality).
As soon as possible after June 1969 patients assigned
to tolbutamide or placebo tablets were recalled by
the clinics to discontinue the prescription for these
tablets. A closing date of October 7, 1969, was used
for the evaluation of tolbutamide therapy for the first
published report on findings for patients treated with
tolbutamide [10].

A total of 89 deaths was reported for the four
treatment groups considered in the analysis of tolbu-
tamide findings. The number and percentage of
patients who died in each of the treatment groups
by cause are given in Table 2. As indicated, more
patients in the tolbutamide group were observed to
have died from all causes, as well as from cardiovas-
cular causes, than in the other groups. The cumulative
annual mortality rates per 100 population at risk were
computed with life table methods, and the results
are shown in Figure 1 for all causes as well as for
cardiovascular causes. The final judgment regarding
the principal cause of death of each deceased study
patient was made by a special review team with-
out knowledge of the treatment group to which the
patient had been assigned. Their decision regarding
principal cause of death was based on information
provided in a detailed death report prepared at the
clinic (see Cause of Death, Underlying and Multi-
ple).

Except for blood glucose levels, few differences
in evaluations made at scheduled follow-up examina-
tions were observed among the groups treated with
placebo and diet, tolbutamide and diet, or insulin and
diet [10, 11, 14]. The fasting blood glucose levels in
the tolbutamide treated group were lower than the
levels in the placebo group and about the same as
the levels in the group treated with a fixed dose of
insulin. The patients treated with variable doses of
insulin had consistently lower levels than the patients
in the other three groups (Figure 2).

Most of the excess mortality observed in the tolbu-
tamide treated group over that of patients treated
with diet or diet plus insulin appeared to be a
result of increased mortality due to myocardial infarc-
tion among the tolbutamide treated patients [14].
The mortality for all patients who had at least one
myocardial infarction during the course of follow-up
was 50% for patients in the tolbutamide group, and
18% for patients in the placebo group, 35% for
patients in the insulin standard group, and 40% for
patients in the insulin variable group.

Results for Phenformin Therapy

The observed mortality for all causes and from car-
diovascular causes for patients assigned to phen-
formin was higher than the mortality in any of the
other treatment groups about two years after the
decision concerning tolbutamide. Also, there was no
evidence that phenformin was more effective than
any of the other treatments in preventing nonfatal

Table 2 Number of deaths by cause, October 7, 1969

PLBO, TOLB, ISTD, IVAR,
Cause N = 205 N = 204 N = 210 N = 204

Myocardial infarction 0 10 3 2
Sudden death 4 4 4 5
Other heart disease 1 5 1 2
Extracardiac vascular disease 5 7 5 3

All cardiovascular (CV) 10 26 13 12

Cancer 7 2 4 2
Other or unknown 4 2 3 4

All causes 21 30 20 18

Percent dead
CV causes 4.9 12.7a 6.2 5.9
All causes 10.2 14.7 9.5 8.8

aChi-square P value = 0.005 for PLBO vs. TOLB comparison.
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Figure 1 Cumulative mortality rates per 100 population at risk by year of follow-up, as of October 7, 1969. (a) All causes;
(b) cardiovascular causes
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Figure 2 The percentage change in fasting blood glucose
levels from baseline to each follow-up examination for
the cohort of patients followed through the 19th follow-up
examination, as of October 7, 1969

vascular complications. For these reasons, all patients
originally assigned to phenformin and those assigned
to the corresponding placebo were recalled by the
UGDP clinics for a special examination in order to
discontinue phenformin or placebo capsules as soon
as possible after May 15, 1971, the date of the UGDP
decision to discontinue this therapy in the UGDP.
A preliminary report on these findings was pub-
lished based on mortality findings through January 6,
1971, shortly after the decision was made to discon-
tinue phenformin [12]. A more complete report based

on data through October 7, 1971, was published
later [13], and these results are summarized here.

The number and percentage of patients who died
in each treatment group by cause are given in Table 3.
The cumulative annual mortality rates per 100 pop-
ulation at risk calculated with life table methods are
shown in Figure 3. The mortality results for patients
in the two insulin groups were quite similar although
the amount of insulin received was different, as spec-
ified by protocol. Furthermore, there was no evidence
of beneficial or adverse effects for either of the insulin
therapies compared to diet alone (placebo group).
Therefore, the results in these three treatment groups
were pooled to obtain a larger population for compar-
ison with the patients in the phenformin treated group.
In the phenformin group, one death was attributed to
lactic acidosis, there were also two reported cases
of nonfatal lactic acidosis. The possibility that this
side effect is a consequence of phenformin ther-
apy had been reported in the literature previously,
although there was no convincing proof of causal
relationship.

The changes in fasting blood glucose levels during
the course of follow-up are shown in Figure 4. There
was a large drop in blood glucose levels in all
treatment groups after the initiation of treatment, but
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Table 3 Number of deaths by cause, October 7, 1971

PLBO, PHEN, ISTD, IVAR, PL + INS,
Cause N = 64 N = 204 N = 68 N = 65 N = 197

Myocardial infarction 1 5 1 0 2
Sudden death 1 6 2 1 4
Other heart disease 0 8 1 0 1
Extracardiac vascular disease 1 8 2 2 5

All cardiovascular (CV) 3 27 6 3 12

Cancer 3 3 0 0 3
Other or unknown 1 4 0 1 2

All causes 7 34 6 4 17

Percent dead
CV causes 4.7 13.2a 8.8 4.6 6.1
All causes 10.9 16.7a 8.8 6.2 8.6

aChi-square P value = 0.02 for PL + INS vs. PHEN comparison.
PL + INS = PLBO + ISTD + IVAR.
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Figure 3 Cumulative mortality rates per 100 population at risk by year of follow-up, as of October 7, 1971. (a) All causes;
(b) cardiovascular causes

the changes did not persist except in the insulin
variable group. Patients in the phenformin-treated
group had an increase in both systolic and diastolic
blood pressure levels and in heart rate. These adverse
effects of phenformin on blood pressure and heart rate
in addition to the observed excess mortality led to the
discontinuation of phenformin in the UGDP.

Results for Insulin Therapy

A preliminary report of the findings for the two
insulin groups was published in 1978 [15] and a more

detailed report in 1982 [16]. The number and percent-
age of patients who died in the two insulin groups
are shown in Table 4. The cumulative mortality rates
per 100 population at risk are shown in Figure 5.
Almost the same number of cardiovascular deaths
was observed in the three treatment groups; more can-
cer deaths were reported for placebo patients than for
patients in either of the two insulin groups.

The changes in fasting blood glucose levels
observed during the course of follow-up for each
treatment group are presented in Figure 6. There
was a large drop in blood glucose levels in all



6 University Group Diabetes Program (UGDP)

10

0

−10

−20

−30

2 4 6 8 10 12 14 16 18
Follow-up exam PLBO (N = 38)

PHEN (N = 138)

ISTD (N = 44)

IVAR (N = 48)

P
er

ce
nt

ag
e 

ch
an

ge
 fr

om
 b

as
el

in
e

Figure 4 The percentage change in fasting blood glucose levels from baseline to each follow-up examination for the
cohort of patients followed through the 23rd follow-up examination, as of October 7, 1971

Table 4 Number of deaths by cause, August 31, 1975

PLBO, ISTD, IVAR,
Cause N = 205 N = 210 N = 204

Myocardial infarction 1 7 4
Sudden death 12 10 12
Other heart disease 4 5 6
Extracardiac vascular 14 10 9

disease

All cardiovascular (CV) 31 32 31

Cancer 17 10 8
Other or unknown 12 10 13

All causes 60 52 52

Percent dead
CV causes 15.1 15.2 15.2
All causes 29.3 24.8 25.5

treatment groups after the initiation of treatment.
However, the fasting blood glucose levels for patients
in the placebo and insulin standard treatment groups
showed a trend toward baseline and then exceeded
baseline values. The lower fasting blood glucose
levels in the insulin variable treatment group were
maintained during the course of the study by
increasing the mean number of units of insulin
from ten units at the first quarterly follow-up
examination to 47 units at the 39th quarterly follow-
up examination in the cohort followed for 39 quarters.

The occurrence of microvascular complications
such as diabetic retinopathy and diabetic nephropathy
was remarkably low during the course of follow-
up and there were no differences among the three
treatment groups. The UGDP investigators pointed
out

. . . the 12–14 years of observations on the course
of vascular complications in patients with type II
disease in the UGDP show that in spite of the gradual
progression of the carbohydrate abnormality and in
spite of a relatively high incidence of cardiovascular
risk factors, the overall mortality and the proportion
of mortality due to cardiovascular complications
were not significantly greater than would be expected
in a nondiabetic population of comparable age, race
and sex [16].

Discussion

Meinert [5] provided a detailed chronology of the
University Group Diabetes Program as well as a
summary of criticisms of the UGDP and comments
on these criticisms. He also provided an assessment
of the impact of the UGDP on prescribing practices
in the United States. Meinert concluded that the study
did have some effect on treatment practices, but
perhaps the most important result was that it had led
physicians to reexamine the underlying rationale for
treatment of noninsulin-dependent diabetics.
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Figure 6 Mean fasting blood glucose levels at baseline
and each follow-up examination for the cohort of patients
followed through the 39th follow-up examination, as of
August 31, 1975

The methods and procedures used in the UGDP
Coordinating Center provided a framework for stan-
dards of operations for such Coordinating Centers
in multicenter clinical trial. The Coordinating Center
investigators (C.R. Klimt, C.L. Meinert, G.L. Knat-
terud, and P.L. Canner) utilized the UGDP expe-
rience to further the development of clinical trial
methodology and the development of procedures for
Coordinating Center operations in the implementa-
tion of many multicenter clinical trials conducted
after the UGDP was initiated. Two statistical pro-
cedures, Monte Carlo monitoring procedures and a
likelihood approach, were used to evaluate the effects

of tolbutamide [10] and the effects of phenformin
therapy [13]. The monitoring approach developed by
Canner and colleagues [2, 3] used a computer simu-
lation procedure to generate boundaries to evaluate a
test statistic at different times during the course of a
study (see Data and Safety Monitoring). The likeli-
hood approach was developed by Cornfield [3, 4] and
this Bayesian method was designed to evaluate treat-
ment effects. The value generated by this approach
was called “relative betting odds” (see Relative
Odds) and for a drug–placebo comparison estimated
the odds in favor of the null hypothesis of no differ-
ence relative to a specified set of alternatives. In the
case of tolbutamide, these procedures were applied
after the investigators realized that there was an unfa-
vorable trend for patients treated with tolbutamide.
It is perhaps worth pointing out that the UGDP did
not have an independent Data Monitoring Committee
(see Data Monitoring Committees) to review accu-
mulating results for adverse or beneficial trends. The
strategies used in the UGDP have been replaced by
other methods, but perhaps their use in the UGDP
pointed out the need for approaches to take account
of interim monitoring in the assessment of treatment
effects.

Few clinical trials have generated such an unusu-
ally acerbic and long lasting controversy as the
UGDP. Every aspect of the design, execution, anal-
ysis and results of the trial have been subjected to
extraordinary scrutiny. Two audits (Bilstad et al. [1],
and Report of Committee for the Assessment of
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Biometric Aspects of Controlled Trials of Hypo-
glycemic Agents [7]) of the UGDP were conducted.
Both of these identified some shortcomings that had
already been acknowledged by the UGDP investiga-
tors. The two audits concluded that any errors in data
reporting or processing that did occur were infrequent
and no more than might be expected in a long-term
multicenter clinical trial.

The UGDP findings which precipitated this con-
troversy were the results for tolbutamide which were
first presented at the American Diabetes Associa-
tion annual meeting and subsequently published in
Diabetes [10]. The UGDP investigators review of
mortality and occurrence of nonfatal events had led
to formulation of the following conclusion:

All UGDP investigators are agreed that the findings
of this study indicate that the combination of diet
and tolbutamide therapy is no more effective than
diet alone in prolonging life. Moreover, the findings
suggest that tolbutamide and diet may be less effec-
tive than diet alone or than diet and insulin at least
insofar as cardiovascular mortality is concerned. For
this reason, use of tolbutamide has been discontinued
in the UGDP. . . . It should be noted that any conclu-
sion reached in this study pertains only to the type of
patient studied and the specific hypoglycemic agents
and dosage schedules used. Extrapolation of find-
ings to other dosage schedules of the same drug or
to other chemically related hypoglycemic agents not
included in this study must be made on a judgmental
and nonstatistical basis.

It is remarkable that such a conservative conclusion
should have generated such controversy. The UGDP
investigators responded to several of the criticisms of
the study in 1972 [6].

The results of phenformin were released to the
medical community by a short report in the Journal
of the American Medical Association [12] rather than
by means of a presentation at a national meeting.
This report did not generate the same controversy.
The results for the two insulin treatment groups were
initially released at the time of the presentation of
the tolbutamide findings and the lack of differences
among the insulin groups and the diet alone group
did not change substantially from that time through
the end of follow-up. The reports on insulin ther-
apy reopened the challenges to the study. The UGDP
investigators’ perspective on the extended contro-
versy was summarized in the detailed report on the
insulin findings [16].

Since the last UGDP major report was published
in 1982, the Diabetes Control and Complication
Trial [8] has provided strong evidence that control
of blood glucose by diet and insulin will delay
microvascular diabetic complications. Such evidence
has not yet been provided from a study of oral
hypoglycemics or adult-onset noninsulin-dependent
diabetics.
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Up-and-Down Method

In biological experiments, often the response is
dichotomous (or binary); for example, death or
survival of an animal exposed to a toxic substance. In
the standard situation, there are k levels of exposure,
where, at the ith level, ni + mi animals are placed,
of which ni show a positive response, for instance
by death. The probability of a positive response, pi ,
is a function of the exposure level, Zi . If, over the
k levels of response, animals are independent within
and among these levels, the likelihood over the entire
experiment is

L =
k∏

i=1

(
ni + mi

ni

)
p

ni

i (Zi)q
mi

i (Zi), (1)

where qi(·) = 1 − pi(·), i = 1, . . . , k.
It should be noted, concerning (1), that Zi , instead

of being a scalar quantity such as exposure level, is
more generally a vector that includes other covari-
ates related to response. Furthermore, pi(Zi) can
be represented by a plethora of possible models
(see Quantal Response Models). Three examples
are probit analysis [11], logistic regression [19], and
reliability growth [16].

Dixon & Mood [10] describe a modification of
(1), for which the response of the ith animal at expo-
sure level Zi determines the next exposure level.
More precisely, assume that the first animal receives
a particular stimulus at a dose level Z0. Should the
animal respond positively, the next animal receives
a smaller dose Z−1, whereas a negative response
implies that the next animal receives a larger dose Z1.
This process is then repeated, sequentially, with either
Z−1 or Z1 as the dose for the next animal, depend-
ing on whether the first animal responded positively
or negatively to Z0. (Compare this with the play-
the-winner rule [36] (see Adaptive and Dynamic
Methods of Treatment Assignment) and sequential
analysis [34].)

The basic theory assumes an initial dose level Z0

and dose increments of amount d. Hence, the ith dose
level (or logarithm thereof) is

Zi = Z0 + jd, (2)

i = 0, 1, . . . , where j is the excess of negative over
positive responses at doses 0 to i − 1, inclusive. The

likelihood is

L(n, m|Z0) = K
∏

i

p
ni

i q
mi

i , (3)

where qi = 1 − pi and K is a constant, independent
of the pi and qi . Furthermore, in probit analysis the
tolerance (dose or logdose at which an animal would
respond positively; see Quantal Response Models)
is assumed to be normally distributed with mean and
variance µ and σ 2, respectively.

Hence, if Zi is the dosage metameter that is
normally distributed,

qi = Φ

(
Zi − µ

σ

)
, (4)

i = 0, 1, . . .. The parameters µ and σ 2, and
hence pi and qi , are estimated by maximum
likelihood. Details of the procedure are found in [10].
(See Median Effective Dose.)

Example

Table 1 displays a hypothetical up-and-down experi-
ment to estimate the LD50 (the dose that produces a
response in 50% of all subjects under test) of a new
analgesic. First, a series of concentrations of 1%, 4%,
8%, 16%, 32%, and 64% was used. Furthermore, the
number of tests performed in this series is N ′ = 8.
However, as Dixon [7, 8] indicates, it is convenient
to reduce the nominal sample size by one less than
the number of like responses at the commencement
of the trial. This provides a nominal sample size of
N = 6. There is no loss in information in estimating
an appropriate dosage level since all early responses
are used in the tabled estimates.

In this example, an estimate of the LD50 is
obtained as Zf + θd where Zf is the final dose that

Table 1 Example of testing an analgesic

Log dose Results of testsa

1.806
1.505 +
1.204 − + +
0.903 − − −
0.602 −
0

a+ indicates a positive response, − indicates a negative
response.
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Table 2 Application of the up-and-down method in biomedical studies

Study area Application References

Anesthesiology Determination of the minimum
alveolar concentration

[24, 28], and [30]

Anesthesia dosing [20, 31], and [33]

Toxicity studies Drug dosing [3]
Determination of the LD50 of

toxic agents
[21] and [35]

Visual studies Determination of visual
perception

[13, 18, 29], and [32]

Visual acuity studies [17, 23], and [25]
Visual testing studies [15, 17], and [38]
Visual threshold determination [27]

Auditory studies Auditory perception [1, 6], and [22]
Auditory facilitation [26]
Auditory awakening threshold [37]

Miscellaneous Taste testing in diabetics [12]
Analysis of dental adhesive stress [2]
Determination of defibrillation

threshold in dogs
[5]

Psychophysical pain assessment [14]
Pain measurement [4]

is administered, d is the common interval between
doses and θ is obtained from [9, Table 19–3], or [8,
Table 1]. Thus, θ = 0.831 and Zf = 1.153.

Applications

The up-and-down (or “staircase”) method is a very
practical and useful technique that has enjoyed a
wide variety of scientific applications. In particu-
lar, many biomedical applications are featured. Most
of these applications indicate that the up-and-down
method saves both time and money as well as provid-
ing improved subject tolerance when compared with
alternate sampling methods. Table 2 indicates a selec-
tion of the type and number of biomedical studies that
have used the up-and-down method. While Table 2 is
not an all-inclusive list of the biomedical applications
of the up-and-down method, it does indicate the wide
application and usefulness of this technique.
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U-Shaped Distribution

A U-shaped distribution is a probability distribu-
tion or frequency distribution shaped, more or less,
like a letter U, although not necessarily symmetri-
cal. Such a distribution has its greatest frequencies
at the two extremes of the range of the variable.
An example of a variable which commonly has
a U-shaped distribution and is often encountered
in medical research is the Barthel index; this is a
quality-of-life measure used to assess the ability of
a patient to perform daily activities. A score of zero
corresponds to complete dependence on others (and,
in some investigations, to the death of a patient),
and a score of 100 implies that the patient can per-
form all usual daily activities without assistance. An
example of the distribution of the Barthel index for
the patients in a particular investigation is shown in
Figure 1.

Variables having U-shaped distributions, such as
the Barthel index, are sometimes referred to in
the statistical/medical literature as bounded scores

(see [2]); that is, scores bounded below and above,
in which the bounds can and will be attained in a
nontrivial proportion of the population. Such vari-
ables might be analyzed by considering patients
scoring zero (or the lower bound) separately from
the others. In some cases, this will correspond to
analyzing the mortality rate separately from the
values of the variable amongst survivors. Alter-
nately, the two-sample Wilcoxon–Mann–Whitney
rank sum test might be used to test for a differ-
ence between, for example, a group given an active
treatment and one given a placebo. Some discus-
sion of the appropriateness of this approach is given
in [1].

The problem of calculating sample sizes in stud-
ies with bounded outcome scores having U-shaped
distributions is taken up in [2].
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U -Statistics

Given a random sample (a sequence of inde-
pendent random variables X1, . . . , Xn with com-
mon distribution function F ), the study of the
statistical properties of the sample mean, Xn =
n−1 ∑n

i=1 Xi , is a well-established part of probabil-
ity theory. The notion of averaging over the obser-
vations has been generalized by Hoeffding [14] in
the following way: given a measurable real-valued
function h, symmetric in its m arguments, a U-
statistic is obtained by averaging over the out-
comes h(Xi1 , . . . , Xim) where (i1, . . . , im) ∈ Cnm =
{(i1, . . . , im) ∈ INm : 1 ≤ i1 < . . . < im ≤ n}, i.e.

Un =
(

n

m

)−1 ∑

Cnm

h(Xi1 , . . . , Xim).

Note that, because of the symmetry of h (a nonre-
strictive assumption), it is sufficient to average over
the ordered m-tuples. Un is called a U -statistic with
kernel h of degree m. We assume, of course, that
n ≥ m.

Many statistics in estimation and testing theory
can be represented as U -statistics. We give two
illustrations.

Example 1

Assume 0 < σ 2 = var(X1) < ∞. The sample vari-
ance S2

n = (n − 1)−1 ∑n
i=1(Xi − Xn)

2, the minimum
variance unbiased estimator for σ 2, can be rewrit-
ten as

S2
n =

(
n

2

)−1 ∑

1≤i<j≤n

(Xi − Xj)
2

2
.

Therefore, the sample variance is a U -statistic with
kernel h(x, y) = (x − y)2/2. In general, we have that
the minimum variance unbiased estimator of the mth
central moment is a U -statistic with kernel of degree
m. See, for example, Hoeffding [14, p. 295] and
Serfling [21, p. 176] for details.

Example 2

The Cramér–von Mises statistic (see Kolmogorov–
Smirnov and Cramer–Von Mises Tests in Survival
Analysis), a goodness-of-fit statistic to test if

the unknown distribution function F equals some
specified distribution function F0, is given by

Vn =
∫ +∞

−∞
[Fn(x) − F0(x)]2 dF0(x),

with Fn(x) = n−1 ∑n
i=1 I{Xi ≤ x}, the empirical dis-

tribution function of the sample X1, . . . , Xn. With

h(x, y) =
∫ +∞

−∞
[I{x ≤ t} − F0(t)][I{y ≤ t}

− F0(t)] dF0(t)

we can write Vn = n−2 ∑n
i=1

∑n
j=1 h(Xi, Xj ). An

asymptotically equivalent statistic is the U -statistic

Un =
(

n

2

)−1 ∑

1≤i<j≤n

h(Xi, Xj ).

See de Wet [7] for a detailed discussion.
For both examples we have that the parameter of

interest is of form

θ(F ) = Eh(X1, X2)

=
∫ +∞

−∞

∫ +∞

−∞
h(x, y) dF(x) dF(y).

With h as in Example 1 we have θ(F ) = σ 2, and
with h as in Example 2 the goodness-of-fit parameter
is θ(F ) = ∫ +∞

−∞ [F(x) − F0(x)]2 dF0(x). Under the
null hypothesis F = F0 we have θ(F0) = 0. If, in
general, a real-valued functional θ defined on a set
F of distribution functions can be written as the
expectation with respect to F ∈ F of a properly
chosen kernel h of degree m, the functional θ is
called a regular functional. Such functionals have U -
statistics as minimum variance unbiased estimators.
See Lee [19, Chapter 1] for details. His book also
includes a variety of further examples (Chapter 6).

Note that a naive estimator for θ(F ) can be
obtained by the plug-in method (replace F by Fn),
i.e. use θ(Fn) as an estimator for θ(F ). The resulting
(biased) estimator is the von Mises statistic. The
goodness-of-fit statistic, Vn, in Example 2 is a plug-
in estimator. U -statistics and von Mises statistics are
closely related.

A U -statistic with kernel of degree m can be
written in terms of uncorrelated U -statistics of degree
1, . . . , m. In fact,

Un − θ(F ) =
m∑

c=1

(
m

c

)
Ucn,
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with

Ucn =
(

n

c

)−1

Scn =
(

n

c

)−1 ∑

Cnc

hc(Xi1 , . . . , Xic ).

See Lee [19, Section 1.6] for the explicit expression
of hc and an excellent further discussion. This H-
decomposition is due to Hoeffding [15]. Other impor-
tant structural properties are the forward martingale
structure of {Scn,Fn}n≥c, with Fn = σ(X1, . . . , Xn)

and the reverse martingale structure of {Un, F̃n}n≥m,
with F̃n = σ(X1:n, . . . , Xn:n, Xn+1, Xn+2, . . .) and
Xi:n the ith order statistic of X1, . . . , Xn [19,
Section 3.4] (see discussion of martingales in Count-
ing Process Methods in Survival Analysis).

So far we have demonstrated that many statis-
tics are in fact U -statistics and we have discussed
some structural properties. Also highly relevant is
the appearance of U -statistics as terms in stochas-
tic approximations of smooth statistics. U -statistics
are, for example, extremely useful to approximate
important estimators in nonparametric density esti-
mation and nonparametric regression theory (see,
for example, [13] and [20]) and survival analy-
sis (see, for example, [5]). The basic idea is that
the estimator of interest can be approximated by
a sum of uncorrelated U -statistics. This idea is
closely related to the H -decomposition of a U -
statistic (see [19, Section 4.1] and [9]) and to von
Mises expansions, a generalization of the projec-
tion method (a technique discussed in more detail
below). For further reading we refer to [21, Chap-
ter 6] and [10].
A more detailed discussion would require a number
of technical concepts and definitions. We therefore
restrict ourselves to one illustration.

Example 3

Let T1, . . . , Tn denote iid nonnegative survival times
with a continuous distribution function F and let
C1, . . . , Cn denote iid nonnegative censoring times
with a continuous distribution function G. For
i = 1, . . . , n, we denote Xi = min(Ti, Ci) and δi =
I{Ti ≤ Ci}. Let F̂n(t) denote the product-limit or
Kaplan–Meier estimator for F(t). With Λ̂n(t) the
Nelson–Aalen estimator and Λ(t) the cumulative
hazard function, a U -statistic representation has been
established in [5] for Λ̂n(t) − Λ(t). On the basis of

the relation

F̂n(t) − F(t) = exp[−Λ(t)]

× {1 − exp[−(Λn(t) − Λ(t)]}
and using Taylor expansion ideas, a U -statistic rep-
resentation for the Kaplan–Meier estimator can be
obtained.

Asymptotic Properties

A basic contribution to the study of the asymptotic
behavior of U -statistics (see Large-sample Theory)
is the following result.

Theorem 1. If E|h(X1, . . . , Xm)| < ∞, then Un →
θ(F ) almost surely (a.s.).
This theorem states that the classical strong law of
large numbers for the sample mean generalizes to
U -statistics. Different proofs are available. They rely
on the martingale structure of U -statistics mentioned
above. For full proofs and references to the original
papers, see Lee [19, Section 3.4].

Next, we briefly discuss the asymptotic distribu-
tion theory for U -statistics. The limit distribution of
a (properly standardized) U -statistic will be Gaussian
if we can obtain a stochastic approximation, Ûn, of
iid structure that is close to Un (in the sense that Un

inherits the asymptotic distributional behavior of Ûn).
The appropriate approximation is obtained from the
projection technique, which is in fact the first term in
the H -decomposition. We have

Ûn =
n∑

i=1

E(Un|Xi) − (n − 1)θ(F ).

With

h1(x) =
∫ +∞

−∞
. . .

∫ +∞

−∞
h(x, x2, . . . , xm) dF(x2) . . .

× dF(xm) − θ(F )

we can write

Ûn − θ(F ) = m

n

n∑

i=1

h1(Xi).

If h1 ≡ 0, then the U -statistic is called degenerate
or pure; otherwise, the U -statistic is nondegenerate.
Pure U -statistics do not admit an iid approximation,
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and as a consequence the limit distribution is not
Gaussian. For nondegenerate U -statistics the follow-
ing central limit result is valid.

Theorem 2. [14]. If Eh2(X1, . . . , Xm) < ∞ and
ζ1 = varh1(X1) > 0 (Un is nondegenerate), then

√
n[Un − θ(F )]

(mζ
1/2
1 )

d−−−→ Z,

with Z a standard normal random variable.
A simple calculation shows that

ζ1 = E{[h(X1, X2, . . . , Xm) − θ(F )]

× [h(X1, Xm+1, . . . , X2m−1) − θ(F )]}.
For a pure U -statistic (the first term in the H -
decomposition vanishes and ζ1 = 0) with ζ2 =
E{[h(X1, X2, X3, . . . , Xm)−θ(F )] [h(X1, X2, Xm+1,

. . . , X2m−2) − θ(F )]} > 0, the H -decomposition is

Un − θ(F ) = m(m − 1)

n(n − 1)

∑

1≤i<j≤n

h2(Xi, Xj )

+
m∑

c=3

(
m

c

)
Ucn.

For h2, define the operator

Az(x) =
∫ +∞

−∞
h2(x, y)z(y) dF(y)

with z square integrable with respect to F . Let
λ1, λ2, . . . denote the (not necessarily distinct)
eigenvalues corresponding to the distinct solutions
z1, z2, . . . of the equation Az = λz.

Theorem 3. [12]. If E[h2(X1, . . . , Xm)] < ∞ and
ζ1 = 0 < ζ2, then

n[Un − θ(F )]
d−−−→ m(m − 1)

2
Y,

with Y a random variable of the form Y =∑∞
j=1 λj [χ2

j (1) − 1], where χ2
1 (1), χ2

2 (1), . . . are
independent χ2(1) random variables (see Chi-square
Distribution; Convergence in Distribution and in
Probability).

Example 1 (Continued)

For the sample variance an application of Theorem 2
yields (with µk the kth central moment): if µ4 < ∞

and µ4 − µ2
2 > 0, then

√
n(S2

n − µ2) has a limiting
normal distribution with mean zero and variance
µ4 − µ2

2.

Example 2 (Continued)

Under the null hypothesis F = F0 the Cramér–von
Mises statistic is easily seen to be a pure U -statistic.
Theorem 3 is applicable, the eigenvalues are λj =
(jπ)−2. See [7] for details.

Remarks and Extensions

1. For U -statistics with a kernel of degree
m > 2, more terms in the H -decomposition
might vanish (higher order degeneracy). Asymp-
totic distribution theory has been established.
The resulting limit distributions are charac-
terized in terms of multiple Wiener inte-
grals [8].

2. We reviewed some basic results for one-
sample U -statistics. Extensions to multisample
or generalized U -statistics are available. See
the books by Lee [19], Koroljuk & Borovs-
kich [18] and Borovskikh [4] for details. These
books also deal with other variations on
the theme: incomplete U -statistics, random U -
statistics, weighted U -statistics, generalized L-
statistics, Edgeworth expansions for U -statistics,
etc.

3. Bootstrap theory for U -statistics is reviewed in
Janssen [17]. Bickel & Freedman [3] is a basic
reference.

4. A further important topic, especially for
applications in nonparametric density and
regression estimation, is the study of U -statistics
with the kernel depending on the sample
size n. Key references are Jammalamadaka &
Janson [16] and Mammen [20]. We also mention
the work by Frees [11] on infinite order U -
statistics.

5. In Serfling [22] the study of U -processes
and U -quantiles is initiated. Important recent
contributions on U -processes and U -quantiles
include Arcones & Giné [2], Stute [23], and
Arcones [1]. Key words in the development of
new results for U -processes are martingales and
decoupling. For details we refer to the book by
de la Peña & Giné [6].
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Utility in Health Studies

Utility is a technical term from economics and deci-
sion theory with a very precise meaning based on an
underlying theory to be described later. However, in
a general way, utility can be thought of as a measure
of strength of preference. Utilities are applicable, and
are used, in all sectors of the economy including busi-
ness, defense, environment, education, and health.
Applications of utility in pharmacoepidemiology do
not differ from applications of utility to health in
general. Accordingly, the utility material described
in this article applies not just to pharmacotherapy but
equally well to all interventions or programs designed
to improve health.

In health applications the preferences generally
relate to different outcomes that can be achieved, but
could equally well refer to different programs or treat-
ments. As an example of utilities for outcomes, if a
particular individual prefers outcome A to outcome
B, and in turn prefers outcome B to outcome C, car-
dinal numbers can be assigned to each outcome such
that they represent the preferences of the individual
on an interval scale. For example, if the numbers so
assigned are A = 12, B = 6, and C = 4, then they
would indicate that the individual prefers A to B and
B to C, and that their preference difference between A
and B (6 units) is three times as great as their prefer-
ence difference between B and C (2 units). Note that
it would not indicate that the person prefers A twice
as much as B, because the preference scale is only an
interval scale and not a ratio scale (see Measurement
Scale).

More formally, utility can be defined by a precise
set of axioms that form the foundation of expected
utility theory [36, 64, 71]. The axioms represent a
fundamental statement or definition of consistent and
rational decision making under uncertainty. That is,
they represent compelling rules that are widely seen
as logical and appropriate for rational decision mak-
ing when there are uncertainties regarding the out-
comes. Clearly this applies to decision making in
health – hence the view that utilities can play a useful
role in the analysis of alternative courses of action in
the field of health (see Decision Analysis in Diag-
nosis and Treatment Choice).

When utility is defined formally on the basis of
the axioms mentioned above, it is properly referred
to as “von Neumann–Morgenstern utilities”, or NM

utilities for short. NM utilities are measured using a
technique called the standard gamble. The standard
gamble is a direct application of one of the fundamen-
tal axioms of expected utility theory. In the standard
gamble an individual expresses his or her preference
by choosing between two alternatives. For example,
the individual described above, who preferred A to
B to C, would be asked to choose between one alter-
native in which outcome B would be received with
certainty and a second alternative in which outcome
A would be received with probability p and outcome
C with probability (1 − p). The probability p would
then be varied until the individual was indifferent
between these two choices. The indifference prob-
ability is used to calculate the NM utility that the
individual has for outcome B relative to the utilities
for outcomes A and C. Details of the methods are
widely available [6, 24, 48, 62].

In addition to the technical and precise use of
the term utility to represent NM utilities measured
according to the fundamental theory, the term is also
used broadly to refer simply to preferences, however
measured. This is unfortunate, and causes consider-
able confusion in the literature. When readers come
across the term utility they should first determine
whether it is being used in the technical NM sense
or in the broader sense of preferences.

We prefer to use the term preference to refer to the
broad construct, and the term utility to refer to NM
utilities. We also prefer to make a distinction between
preferences that are measured with a standard gamble
instrument, which contains uncertainty, and other
instruments such as the time trade-off and rating
scales that do not. The former are called utilities,
while the latter are called values. However, readers
should beware that many writers fail to make this
distinction.

Utility as a Measure of Health-Related
Quality of Life

Quality of life is an extremely broad concept that
includes health, wealth, freedom, environment, polit-
ical system, family, future prospects, and indeed an
endless list of all-encompassing considerations. How-
ever, within this list is a subset that is generally
known as “health-related quality of life”. It is widely
accepted that the goal of the health system is to
improve both the quantity of life (life expectancy)
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and the health-related quality of life. Accordingly,
many health status instruments have been developed
to measure health-related quality of life. A useful
taxonomy for these instruments is that developed
by Guyatt and colleagues in which the instruments
are partitioned into three major sets: specific instru-
ments, generic profiles, and utility measures [18, 28,
30].

Specific instruments include those that are disease-
specific, such as the Functional Living Index–
Cancer [12] or the Western Ontario–McMaster Oste-
oarthritis Index [5]. Specific instruments also include
those designed for individuals in a particular age
group, for example, the Care and Resource Evalua-
tion Tool for the elderly [23]. Specific instruments are
generally felt to be the most sensitive and responsive,
but they clearly lack generalizability [29].

Generic profiles include instruments such as the
Short Form 36 [72], the Sickness Impact Profile [13],
and the Nottingham Health Profile [43]. These instru-
ments produce scores on a number of different
dimensions (profile of scores), are applicable to
a wide variety of diseases and individuals, and
accordingly are more generalizable but probably less
responsive than specific instruments [29].

The third category, utility measures, produces a
single summary index that represents health-related
quality of life by a cardinal number. Like the generic
profiles, these approaches are applicable to a wide
variety of diseases and individuals and thus are highly
generalizable. However, they are likely to be the least
responsive of the three approaches [29].

A major advantage of the utility approach is that
the single cardinal score for health-related quality
of life can be combined with quantity of life to
provide an integrated measure of health improve-
ment that captures both the impact on quantity
of life and the impact on quality of life. The
usual method of combining quality and quantity of
life is to calculate the quality-adjusted life years
(QALY) involved, although alternative measures such
as the healthy years equivalent [44] or the disability-
adjusted life years (DALY) [45] have been suggested.
The single measure of QALY, or its alternative,
can be used in economic evaluation studies such as
cost-effectiveness analysis and cost–utility analysis
(see Health Economics) and can also be used as an
outcome measure in clinical trials [27, 63].

Which measure of health-related quality of life
should be used in a study? Our general answer to

that question is that if health-related quality of life is
an important outcome for the study, then the study
should contain one instrument from each of the three
types. The specific instrument is likely to be the
most informative at a detailed level, particularly to
clinicians interested in the impact on the disease and
in specific patients. The generic profile will be useful
in comparing the health impact more broadly to
other types of patients and other diseases. The utility
measure is necessary if one wishes to undertake
economic evaluations such as cost–effectiveness or
cost–utility analyses. The utility measure is also
necessary if the intervention has an impact on both
quantity and health-related quality of life and one
wishes to have a single effectiveness measure that
aggregates both of these effects.

Utility for Economic Evaluation Including
Pharmacoeconomics

The primary application of utility is for use in
economic evaluation. Economic evaluation is the
comparative analysis of the costs and consequences
of two or more alternative treatments or programs
to improve health [15]. The techniques of economic
evaluation include cost analysis, cost–effectiveness
analysis, cost–utility analysis, and cost–benefit
analysis (see Cost–Benefit Analysis, Willingness
to Pay). When these approaches are applied
to pharmacotherapy they have been labeled as
pharmacoeconomics. However, the methods are the
same whether the intervention being evaluated is a
pharmaceutical product or a nondrug therapy.

When quantity of life and health-related quality
of life are both important, the principal approach in
economic evaluation is to use the utility approach,
broadly defined. That is, utilities may be measured
according to expected utility theory using the stan-
dard gamble instrument, or they may be measured
more generally using other instruments such as the
time trade-off or rating scales. The most common
approach is to use the utility score to combine the
quantity and health-related quality of life into a sin-
gle outcome measure, the quality-adjusted life year
(QALY) gained. This is then used as the denom-
inator to determine the cost per QALY gained for
one intervention or program as compared to another.
The approach is known as cost–effectiveness analysis
or cost–utility analysis, depending upon the writer.
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CUA is a special case of CEA, and some researchers,
including ourselves, distinguish it with its own title,
while others do not [27]. Methods for calculating
QALYs and for undertaking economic evaluation are
widely available [15, 27, 56, 63, 64].

Utility as an Outcome Measure for
Clinical Studies

Because utilities can be used to combine the impact
on quantity of life and health-related quality of life, it
makes an ideal outcome measure for clinical studies
that affect both. Utilities have been used in this
way as secondary measures of effectiveness for some
time [1, 3, 8, 49, 50, 59, 61]. Recently, utility has
been designated as the primary effectiveness measure
for a planned Canadian randomized multicenter trial
of lung volume reduction surgery for patients with
pulmonary emphysema [46]. We expect that use of
utility as a primary clinical endpoint in trials will
become more common in the future.

How to Measure Utility

Utilities can be measured directly or indirectly;
see [67] for a comprehensive review.

Direct Measurement of Utility

As mentioned above, and discussed elsewhere,
utilities can be measured directly using a number
of different instruments: the standard gamble, the
time trade-off, and the rating scale with its variant,
the visual analog scale. The conventional approach
to using these instruments is to interview the
respondent face-to-face, with a carefully trained and
scripted interviewer leading the respondent through
a highly structured interview, complete with visual
aids and props to elicit the relevant preferences
(see Interviewing Techniques). This approach is
elaborate and costly, but has been included in
many studies to date [11, 14, 37, 40, 41, 42, 49,
51, 54, 55, 58, 68, 69, 73]. Recently, a number
of new and more efficient approaches have been
developed and are being tested. These include
telephone administration [35], self-administration by
pencil and paper [47], and self-administration by an
interactive computer program [27, 52]. In fact, a

number of commercial systems are now available
to provide computer interactive self-administered
interviews for utility assessment. Although these are
recent developments, they are likely to become the
standard approach for direct measurement of utility
in the future on many types of respondents.

Indirect Measurement of Utilities

An alternative approach that is being increasingly
and widely used in studies is to use one of the
multiattribute health status classification systems that
include a utility scoring formula [31]. Three such
systems are the Quality of Well-Being [30, 31], the
Health Utilities Index [17, 22, 25], and the EQ-
5D [39, 53]. All of these systems are similar in that
they consist of attributes of health status (such as
physical function, emotional function, or cognitive
function) and levels on each attribute ranging from
good function to bad or no function. Patients in stud-
ies, or populations under study, are classified into the
system, and a scoring formula provides the utility
score for the particular combination of levels across
attributes. The systems differ in terms of the attributes
included, the levels described for each attribute, and
the type of scoring formula provided. As one example
of the systems, we will describe the Health Utilities
Index.

The Health Utilities Index (HUI) has developed
through a series of studies over a number of years
[9, 10, 19, 20, 65, 66]. The studies defined and
refined the attributes and levels in the system, and the
methods for determining the utility scoring formula.
Currently there are two versions of the system, which
are closely interrelated – the HUI2 (Table 1) and the
HUI3 (Table 2). Scoring formulae are available for
each [22, 69]. HUI2 and HUI3 have been widely
used in clinical studies, and HUI3 has also been used
widely in population health studies [7, 32, 57, 70,
74]. Thus, population norm data are available for
HUI3. Currently, our recommendation is that studies
incorporate both systems by using a combined ques-
tionnaire, which we have developed. The self- admin-
istration version consists of 15 questions and provides
all of the information required to map the health sta-
tus of the respondent into both HUI2 and HUI3. The
questionnaire is available in a number of formats:
self-administered, interviewer-administered face-to-
face, and interviewer-administered by telephone. It is
currently available in a wide range of languages, and
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Table 1 Health status classification system for HUI2

Attribute Level Level description

Sensation 1 Ability to see, hear, and speak normally for age
2 Requires equipment to see or hear or speak
3 Sees, hears, or speaks with limitations even with equipment
4 Blind, deaf, or mute

Mobility 1 Able to walk, bend, lift, jump, and run normally for age
2 Walks, bends, lifts, jumps, or runs with some limitations but does not

require help
3 Requires mechanical equipment (such as canes, crutches, braces, or

wheelchair) to walk or get around independently
4 Requires the help of another person to walk or get around and requires

mechanical equipment as well
5 Unable to control or use arms and legs

Emotion 1 Generally happy and free from worry
2 Occasionally fretful, angry, irritable, anxious, depressed, or suffering

night terrors
3 Often fretful, angry, irritable, anxious, depressed, or suffering night

terrors
4 Almost always fretful, angry, irritable, anxious, depressed
5 Extremely fretful, angry, irritable, or depressed, usually requiring

hospitalization or psychiatric institutional care

Cognition 1 Learns and remembers schoolwork normally for age
2 Learns and remembers schoolwork more slowly than classmates as

judged by parents and/or teachers
3 Learns and remembers very slowly and usually requires special

educational assistance
4 Unable to learn and remember

Self-care 1 Eats, bathes, dresses, and uses the toilet normally for age
2 Eats, bathes, dresses, or uses the toilet independently with difficulty
3 Requires mechanical equipment to eat, bathe, dress, or use the toilet

independently
4 Requires the help of another person to eat, bathe, dress, or use the toilet

Pain 1 Free of pain and discomfort
2 Occasional pain; discomfort relieved by nonprescription drugs or

self-control activity without disruption of normal activities
3 Frequent pain; discomfort relieved by oral medicines with occasional

disruption of normal activities
4 Frequent pain, frequent disruption of normal activities; discomfort

requires prescription narcotics for relief
5 Severe pain; pain not relieved by drugs and constantly disrupts normal

activities

Fertilitya 1 Ability to have children with a fertile spouse
2 Difficulty in having children with a fertile spouse
3 Unable to have children with a fertile spouse

aFertility attribute can be deleted if not required. Contact developers for details. Source: Table II in [19]

further translations are under way. The questionnaire
takes from 2 min (interviewer-administered telephone
version) to under 10 min (self-administered written
version) to administer, has been used on thousands
of respondents, and is simple to complete. Proxy

respondents can be used for patients who are unable
to answer the questions on their own.

The HUI system is useful in clinical studies in two
ways. First, the classification is useful in its own right
and has been widely used as a systematic method
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Table 2 Health status classification system for HUI3

Attribute Level Level description

Vision 1 Able to see well enough to read ordinary newsprint and recognize a
friend on the other side of the street, without glasses or contact
lenses

2 Able to see well enough to read ordinary newsprint and recognize a
friend on the other side of the street, but with glasses

3 Able to read ordinary newsprint with or without glasses but unable to
recognize a friend on the other side of the street, even with
glasses

4 Able to recognize a friend on the other side of the street with or
without glasses but unable to read ordinary newsprint, even with
glasses

5 Unable to read ordinary newsprint and unable to recognize a friend on
the other side of the street, even with glasses

6 Unable to see at all

Hearing 1 Able to hear what is said in a group conversation with at least three
other people, without a hearing aid

2 Able to hear what is said in a conversation with one other person in a
quiet room without a hearing aid, but requires a hearing aid to
hear what is said in a group conversation with at least three
other people

3 Able to hear what is said in a conversation with one other person in a
quiet room with a hearing aid, and able to hear what is said in a
group conversation with at least three other people with a
hearing aid

4 Able to hear what is said in a conversation with one other person in a
quiet room without a hearing aid, but unable to hear what is said
in a group conversation with at least three other people even
with a hearing aid

5 Able to hear what is said in a conversation with one other person in a
quiet room with a hearing aid, but unable to hear what is said in
a group conversation with at least three other people even with a
hearing aid

6 Unable to hear at all

Speech 1 Able to be understood completely when speaking with strangers or
friends

2 Able to be understood partially when speaking with strangers but able
to be understood completely when speaking with people who
know the respondent well

3 Able to be understood partially when speaking with strangers or
people who know the respondent well

4 Unable to be understood when speaking with strangers but able to be
understood partially by people who know the respondent well

5 Unable to be understood when speaking to other people (or unable to
speak at all)

Ambulation 1 Able to walk around the neighborhood without difficulty, and without
walking equipment

2 Able to walk around the neighborhood with difficulty, but does not
require walking equipment or the help of another person

(continued overleaf )
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Table 2 (continued )

Attribute Level Level description

3 Able to walk around the neighborhood with walking equipment, but
without the help of another person

4 Able to walk only short distances with walking equipment, and
requires a wheelchair to get around the neighborhood

5 Unable to walk alone, even with walking equipment; able to walk
short distances with the help of another person, and requires a
wheelchair to get around the neighborhood

6 Cannot walk at all

Dexterity 1 Full use of two hands and ten fingers
2 Limitations in the use of hands or fingers, but does not require special

tools or help of another person
3 Limitations in the use of hands or fingers, is independent with use of

special tools (does not require the help of another person)
4 Limitations in the use of hands or fingers, requires the help of another

person for some tasks (not independent even with use of special
tools)

5 Limitations in use of hands or fingers, requires the help of another
person for most tasks (not independent even with use of special
tools)

6 Limitations in use of hands or fingers, requires the help of another
person for all tasks (not independent even with use of special
tools)

Emotion 1 Happy and interested in life
2 Somewhat happy
3 Somewhat unhappy
4 Very unhappy
5 So unhappy that life is not worthwhile

Cognition 1 Able to remember most things, think clearly and solve day to day
problems

2 Able to remember most things, but having a little difficulty when
trying to think and solve day to day problems

3 Somewhat forgetful, but able to think clearly and solve day to day
problems

4 Somewhat forgetful, and having a little difficulty when trying to think
or solve day to day problems

5 Very forgetful, and having great difficulty when trying to think or
solve day to day problems

6 Unable to remember anything at all, and unable to think or solve day
to day problems

Pain 1 Free of pain and discomfort
2 Mild to moderate pain that prevents no activities
3 Moderate pain that prevents a few activities
4 Moderate to severe pain that prevents some activities
5 Severe pain that prevents most activities

Source: Table III in [19].

of describing and comparing patients and monitor-
ing their changes over time [1–4, 21, 26, 38, 60]. In
addition, the scoring formula for the HUI is based
directly on NM utilities measured on a random
sample of the community. Thus the HUI scores

represent both appropriate utility weights (NM util-
ities) for calculating quality-adjusted life years and
undertaking cost–effectiveness or cost–utility analy-
ses, and they represent the appropriate source of these
preferences, i.e. the community at large [27].
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Given the ease and simplicity of using these mul-
tiattribute systems in clinical studies, we generally
recommend their use, rather than the direct measure-
ment of utilities using a standard gamble or other
instrument. The latter is generally reserved for stud-
ies in academic centers that also have methodologic
hypotheses about the utilities being measured. Inves-
tigators who simply wish to use utilities are gener-
ally better served by using one of the multiattribute
systems.

Conclusions

Utilities are being incorporated increasingly into clin-
ical studies. They can be used as a measure of
health-related quality of life, as an outcome mea-
sure for the trial either in terms of health-related
quality of life or in terms of a combined index of
quality and quantity of life, and they can be used
to undertake economic evaluations of interventions
or programs. For most studies the simplest and most
appropriate method of obtaining utilities is to use a
multiattribute health status classification system that
includes a utility scoring formula. In some studies the
researchers may wish to measure the utilities directly
using one of the preference measurement tools avail-
able.
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Utility

Utility theory is concerned with the quantitative rep-
resentation of individual preferences for the outcomes
of a decision. In biomedical research, utility the-
ory is used to provide guidance for individual and
sometimes societal decisions regarding health, and
to provide a rational foundation for the choice of
appropriate experimental designs and data analysis
strategies (see Decision Theory).

The ideas underlying modern utility theory arose
during the Age of Enlightenment with the work
of Daniel Bernoulli [3, 5] (see Bernoulli Family).
Bernoulli analyzed the behavior of rational individu-
als in the face of risk from a Newtonian perspective,
viewing science as an operational model of the human
mind. His empirical observation that prudent and
thoughtful individuals do not necessarily take the
actions that maximize their expected monetary return,
as in the St Petersburg’s paradox [3, 11], led him
to investigate a formal model of individual choices
based on the direct quantification of value, and to
develop a prototypical utility function for wealth.

Quantification of value has been a central compo-
nent of economic thought since then, and has more
recently gained an important role in the theories of
decision making under uncertainty, both descriptive
and normative. (Descriptive theories aim at portray-
ing the way individuals or groups make decisions,
while normative theories aim at guiding decision
making based on adherence to accepted fundamental
principles. While descriptive theories are important
in public health areas such as risk communication
(see Risk Assessment) and patient counseling, this
article is concerned with normative theories.)

Most utility theories consider the problem of rep-
resenting an individual’s preferences for the elements
of a set R of possible outcomes. Examples of out-
comes relevant for biomedical applications are the
health states following a treatment or intervention, the
consequences of marketing a drug, the change in the
exposure to a toxic agent that may result from a reg-
ulatory change, the knowledge gained from a study
design, and so forth. If r1 and r2 are two outcomes
in R, then r1 ≺ r2 indicates that r2 is preferred to r1.
Formally, ≺ is a binary relation on R, usually taken
to be asymmetric. Indifference between two outcomes
(neither r1 ≺ r2 nor r2 ≺ r1) is indicated by r1 ∼ r2.

A cardinal utility function is a real-valued score u

assigned to the outcomes in R, so that

r1 ≺ r2 ⇐�⇒ u(r1) < u(r2). (1)

Not all preferences are amenable to this kind of
representation, but, for example, if R is a countable
set, and if both ≺ and ∼ are transitive relationships,
then a u that represents these preferences can be
constructed. An in-depth discussion of conditions for
the existence of such cardinal utility representations
of preferences is in [6].

Expected Utility Theory

One contribution of utility theory to decision making
is in the possibility of characterizing preferences over
complex sets of options in terms of much simpler
utility specifications. In the prototypical problem of
decision under uncertainty, a decision maker must
choose an action whose consequences are uncertain.
Each action is then described by a given probability
distribution p over the set R of possible outcomes.
A simple operational approach is to assign a utility
score u(r) to each of the outcomes, and choose the
action p that maximizes the expected value of the
utility of the outcome, or

u(p) =
∑

r∈R

p(r)u(r). (2)

A fundamental contribution to the foundations of
this approach is the work of von Neumann & Mor-
genstern [21], who showed how the expected utility
representation (2) can be derived from conditions on
the ordinal relationships among the set of all actions
P . In particular, they provided necessary and suffi-
cient conditions for preferences over a convex set P

of options to be representable by a utility function
of the form (2). These conditions can be thought of
as basic rationality requirements, and are taken to be
the primitives, or axioms, in the von Neumann &
Morgenstern theory of utility. To gain a basic under-
standing of these axioms, assume that R is countable
and that P is the set of all probability distributions on
R. The decision maker has preferences over elements
of P . The axioms, in the format given in [10], are:

1. Weak order axiom. Both ≺ and ∼ are transitive.
2. Archimedean axiom. If p1 ≺ p2 ≺ p3, then there

are α and β in (0, 1) such that αp1 + (1 −
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α)p3 ≺ p2 ≺ βp1 + (1−β)p3. Here αp1 + (1−
α)p3 indicates the action that leads to out-
come r with probability αp1(r) + (1 − α)p3(r).
In words, p3 can be preferred to p2, but not so
strongly that mixing p3 with p1 cannot lead to a
reversal of preference. So p3 cannot be incom-
mensurably better than p2. Likewise, p1 cannot
be incommensurably worse than p2.

3. Independence axiom. If p1 ≺ p2, then, for every
p3 in P and α in (0, 1), αp1 + (1 − α)p3 ≺
αp1 + (1 − α)p2. In words, the two composite
lotteries should be compared solely based on the
component that is different.

Axioms 1, 2, and 3 hold if and only if there is a
real-valued utility u such that the preferences for the
options in P can be represented as in (2). A given
set of preferences identifies a utility function u only
up to a linear transformation with positive slope.

The von Neumann & Morgenstern theory also pro-
vides the basis for practically assessing an individual
decision maker’s utilities for outcomes. A widely
used approach is the so-called “standard gamble”,
illustrated here in the case of a finite set of out-
comes R. If we avoid the trivial case in which all
outcomes are equally valued by the decision maker,
then the weak ordering assumption permits us to
identify a worst outcome r1 and a best outcome r2.
For example, in assessing the utility of health states,
“death” is often chosen as the worse outcome and
“full health” as the best, although in some prob-
lems there are health outcomes that could be ranked
worse than death [20]. Worst and best outcomes need
not be unique. Because all utility functions that are
positive linear transformations of the same utility
function lead to the same preferences over P , we
can arbitrarily set u(r1) = 0 and u(r2) = 1, leading
to a convenient and interpretable utility scale.

Then a decision maker’s utility for outcome r can
be inferred by eliciting the value of π such that the
decision maker is indifferent between the following
two actions:

p1: outcome r for certain;

p2: outcome r1 with probability 1 − π

and outcome r2 with probability π.

The existence of a value of π reaching indifference
is implied by the Archimedean and independence
properties of the decision maker’s preferences. It

is easy to check that the expected utility of both
actions p1 and p2 is π , and that therefore u(r) �
π . Alternative assessment methods used in health
sciences are reviewed by [20].

Expected utility maximization proved to be a
fundamental tool in guiding practical decision mak-
ing under uncertainty, including clinical decision
making (see Decision Analysis in Diagnosis and
Treatment Choice) and cost-effectiveness analysis
(see Health Economics). The literature on the exten-
sions of this characterization is extensive. Good entry
points are [13, 8], and [9]. Because of the central-
ity of the expected utility paradigm, the von Neu-
mann–Morgenstern axiomatization and its deriva-
tives have been deeply scrutinized and criticized from
both descriptive and normative perspectives. Empir-
ically, it is well documented that individuals some-
times violate the independence axiom [1, 12, 13, 19].
Normative questions have also been raised about the
weak ordering assumption [17, 18].

Subjective Expected Utility Theory

A more general decision setting occurs when out-
comes depend on uncertain events, whose probabili-
ties are not given externally, as in the theory of von
Neumann–Morgenstern, but must be assessed by the
decision maker together with the utilities. An action
can then be described as a function a(s) from states
s ∈ S to outcomes r ∈ R: the states describe the alter-
native realizations of the uncertain events that affect
the outcome of the decision. For example, consider
deciding whether to be vaccinated against influenza
in anticipation of the cold season. The two actions are
“vaccine” and “no vaccine”. A simple description of
the problem could include four states, defined by the
combinations of the events “adverse reaction to the
vaccine” and “influenza is contracted later in the win-
ter”. To each state S there corresponds an outcome
r(s) that could be a description of health states, costs,
and so forth, ensuing from state s.

Extending the results of von Neumann & Morgen-
stern, and echoing earlier groundbreaking work by
Ramsey [14], L.J. Savage [15] developed a system
of axioms for preferences over the type of actions
exemplified above. These axioms hold if, and only
if, there is a utility function u over outcomes and a
probability distribution p over states that represent
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the agent preferences by

u(a) �
∑

s∈S

p(s)u[r(s)]. (3)

Savage’s theory is based on seven axioms [15]. As
an alternative to the rewarding but demanding reading
of Savage’s fundamental book, one can consult [13]
or [7]. Some of the axioms are similar in spirit to
those of von Neumann & Morgenstern. An important
additional requirement is the so-called state inde-
pendence of utilities, which in essence requires the
decision maker to give the same value to identical
outcomes ensuing from different states. A critical
appraisal of the consequences of this assumption is
in [16]. Later work on subjective expected utility the-
ory is reviewed in [7].

In addition to having direct implications for deci-
sion making under uncertainty, Savage’s theory aims
at providing a rational foundation for statistical infer-
ence. The actions represent the results of a statistical
analysis, such as rejecting a hypothesis; the states are
the alternative values of the parameters of interest
such as the null and the alternative hypotheses; the
outcomes represent the rewards, or losses, resulting
from the analysis. If an agent’s preferences satisfy the
axioms, then the agent’s choices will be consistent
with assigning a subjective probability distribution
to the states and a utility function to the outcomes,
and choosing the action that maximizes the resulting
expected utility. In particular, all Bayesian optimal
procedures (see Bayesian Methods) are consistent
with Savage’s system of rationality axioms.
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Validation Study

Validation studies obtain information on measure-
ment errors in exposures and other covariates used
in epidemiologic studies by comparing the conven-
tional exposure measurements with “gold standard”
measurements. Reliability studies, unlike validation
studies, provide information on the measurement
error process by replicating the conventional expo-
sure measurements. Validation studies can be applied
to study a broader range of error processes than reli-
ability studies, which are based on a special error
model. Data from validation studies or reliability
studies are needed to correct relative risk estimates
for bias and to obtain valid inference in the presence
of measurement error (see Misclassification Error).

To define these ideas more precisely, let Y
be the response variable, and let X be the true
value(s) of the covariate. In some cases, X can
never be observed and can be thought of as
a latent variable. In other cases, X is a “gold
standard” method of covariate assessment which
is infeasible and/or expensive to administer to
large numbers of study participants. Usually, instead
of observing X, an error-prone measurement W
is observed. Finally, there may be covariates Z1

upon which the model for response depends that
are never misclassified or measured with error.
In main study/validation study designs, the main
study yields the data (Yi , Wi , Zi ), i = 1, . . . , n1.
If the validation study is internal, it yields the
observations (Yi , Wi , Xi , Zi ), i = n1 + 1, . . . , n1 +
n2. If the validation study is external, it produces
observations (Wi , Xi , Z2i ), i = n1 + 1, . . . , n1 + n2

observations. There may be covariates, denoted
Z2, upon which the measurement error and/or
misclassification model depend but of which the
model for response is independent; we denote the
unique elements of Z1 and Z2 by Z. An external
validation study is a useful option only when there
are a priori reasons to believe that measurement
error/misclassification is nondifferential, i.e. that
f (Y|W, X, Z) = f (Y|X, Z). This definition can be
rewritten as f (W|Y, X, Z) = f (W|X, Z), in which
form the nondifferential error feature is more
apparent.

Without validation or reliability data, it is pos-
sible only to perform sensitivity analyses under
hypothesized scenarios for measurement error and/or

misclassification. Without information about the nat-
ure and extent of the measurement error and/or mis-
classification, sensitivity analyses yield wide ranges
of the parameter(s) estimates, and cannot assess the
true uncertainty of the estimates. It is possible in cer-
tain instances to test hypotheses about X, however,
even in the absence of validation data. For gener-
alized linear models with dim(X) = dim(W) = 1,
the usual score test, based upon the main study
data alone, will have the correct size, although its
power will be reduced unless X is linearly related
to W and Z [16]. The same results apply for the
global null hypothesis about X. Validation and/or
reliability data are required for valid estimation and
inference in nearly all other circumstances. An excep-
tion occurs when the model for Y given (X, Z1) is
logistic and the model for X given (W, Z2) is Gaus-
sian (see Normal Distribution). In this case, when
dim(X) = dim(W) = 1, the parameters of both mod-
els are identifiable from the main study alone [10],
although as yet unpublished work by Spiegelman &
Rosner indicates that estimates of these parameters
are difficult to obtain, and when obtained, are usually
very imprecise.

A reliability study can be used to estimate
variance components in the classic, random within-
person, measurement error model

W = X + U, (1)

where U is a mean zero error term with variance–co-
variance Σ . It is only when (1) applies that replicate
data, as would be obtained in a reliability study,
can be used for valid estimation and inference in
the presence of covariate measurement error. Eq. (1)
has been applied to the assessment of measurements
of blood pressure, serum hormones, and other serum
biomarkers such as vitamin concentrations.

A validation study can be used for a wide range
of error models. A validation study may be expen-
sive or infeasible because it requires that the true
value X be observable, at least in some small
sample of n2 study participants. That is, a “gold
standard” technique for measuring the quantity of
interest without error must be available. In most situ-
ations, it is impossible to measure exposure perfectly.
If measurement error/misclassification methods are
used with an “alloyed” or imperfect gold standard, X′,
the results of the analysis can be misleading. If X′ and
Z are uncorrelated, however, the results may be inter-
preted as those which would have been obtained had
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the (imperfect) gold standard measurements X′ been
available for all study participants, rather than just
those in the validation study. Under certain circum-
stances, if the errors in X′ and W are uncorrelated, the
regression calibration estimate will provide unbiased
measurement error correction for the gold standard,
X [14, 18]. In some realistic examples, the bias in
regression calibration estimates is small even when
the errors are moderately correlated.

In this article it is assumed, unless stated other-
wise, that the validation study is sampled completely
at random. That is, if V is a random variable which
equals 1 if a participant is in the validation study and
0 otherwise, we assume Pr(V = 1|Y, X, W, Z) = π ,
independent of Y, X, W, and Z.

Two-stage designs (see Case–Control Study,
Two-phase) allow V to depend upon Y, W and
Z. Two-stage designs allow one to control the
selection of validation study participants so as to
increase statistical efficiency or reduce cost. These
options require the validation study to be internal.
Two-stage designs have several limitations. Many
validation studies yield data on numerous covariates.
For example, in a prospective cohort study yielding
information on cancer and cardiovascular endpoints,
it may be necessary to validate many nutrient
measures simultaneously. An optimal design for
one response/covariate pair may be inefficient for
another. Although some authors have found that the
optimal sampling probability function, π depends
on Y ([17] and as yet unpublished work by
Holcroft & Spiegelman) in cohort studies and many
nested case–control studies, it will not be possible
to identify the optimal π as a function of Y,
since covariate status is best ascertained before
observing Y.

The remainder of this article will discuss strategies
for optimizing (n1, n2), assuming that the validation
sample is taken completely at random. Solutions to
this problem are mathematically complex, and soft-
ware is not widely available. In a two-stage design,
(n1 + n2, π) must be optimized, which poses an even
more difficult theoretical and computational problem.
Nevertheless, further research on two-stage designs
may lead to improvements on the designs presented
below.

The valid use of an external validation study
requires that the measurement error model f (X|W,
Z2) is the same in the external population as in
the main study. This assumption is necessarily true

for an internal validation study, supplied completely
at random. By Bayes’ Theorem f (X|W, Z2) =
f (W|X, Z2)f (X, Z2)/f (W, Z2). Although in many
instances it may be reasonable to assume that
f (W|X, Z2) may be “transportable” from one pop-
ulation to the next, provided the instruments used to
measure X and W are identical, it is less reason-
able to assume that the unobservable marginal density
f (X, Z2) in the main study population is the same as
that in an external validation population. Thus, an
internal validation study is more convincing than an
external validation study.

Two recent epidemiologic textbooks devote a
chapter to the design and analysis of validation and
reliability studies. Armstrong et al. [1, Chapter 4]
focus primarily on the design and analysis of reli-
ability studies, but there is some consideration of
validation studies as well. Willett [19] discusses val-
idation study design for dietary intake questionnaires
(see Nutritional Exposure Measures). Willett gives
a simple formula for calculating the sample size of
a validation study, based on the criterion of testing
H0 : ρ = ρ0 vs. Ha : ρ = ρA with prespecified power
1 − β and nominal size α, where ρ is the correlation
between the usual exposure method (W) and the gold
standard (X):

n = 3 + (Zα + Zβ)2

|ρA − ρ0| ,

where Zα and Zβ are the standard normal devi-
ates for α and β, respectively (see Sample Size
Determination). This criterion for validation study
sample size is not designed to ensure adequate sample
size for measurement error correction, and is strictly
useful only when the estimation of the correlation
between X and W is the end goal. Willett reports
some otherwise unpublished data which examined the
influence of validation study sample size on the preci-
sion of odds ratio corrected for measurement error by
regression calibration, where it had been found that
for “realistic conditions” (0.5 < ρ < 0.7), validation
studies with more than 150–200 subjects provide lit-
tle additional precision.

Design of Main Study/Validation Studies

Choice of the Optimization Criterion for Efficient
Study Designs

In the biomedical research setting, research proposals
will usually not be approved for funding unless the
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proposed study has power of 80% or more to test the
central scientific hypothesis. The study design pro-
cess seeks to minimize the proposed budget while
assuring adequate statistical power. Because the unit
cost of measuring X can be 100 or more times that
of measuring W, validation studies can be expen-
sive, and efficient main study/validation study designs
are essential. Incorporating these design features is
important, because it is seldom possible to collect
validation data after the main study has been com-
pleted. Calculation of a point estimate, typically an
odds ratio or hazard ratio, and the construction of
confidence intervals around this estimate are often
primary analytic goals in observational biomedical
research, where measurement error and misclassifica-
tion frequently arise. Greenland proposed the discrim-
inatory power criterion [5] for these settings. One
specifies the two sample sizes needed, respectively,
to test the null hypothesis, H0 : β = βL against the
alternative, Ha : β = βU, each with prescribed size
and power. According to the discriminatory power
criterion, the required sample size is the maximum
of these two sample sizes. In relative risk models,
because the variance of the estimate of the parameter
of interest, β̂, depends on the value of the param-
eter of interest, β, typically the log odds ratio or
log hazard ratio, the discriminatory power criterion
will usually produce optimal sample sizes larger than
those produced by the traditional power criterion. An
alternative criterion is to specify the expected confi-
dence interval width at a specified relative risk, but
this criterion may produce designs with unknown,
possibly subnominal confidence levels for different,
equally plausible values of the relative risk.

Given unit costs rY, rW, and rX for a single
measurement of Y, W, and X, respectively, the
optimization criterion we prefer minimizes the total
study cost, C, with respect to (n1, n2), subject to
minimum discriminatory power requirements. In a
main study/external validation study design,

C(n1, n2) = (rD + rW)n1 + (rW + rX)n2

and maximization over (n1, n2) is subject to the
constraints

1 − Φ

[
Z1−α/2[VL(n1, n2)]1/2 − βU + βL

[VU(n1, n2)]1/2

]
≥ Π,

and

Φ

[−Z1−α/2[VU(n1, n2)]1/2 − βL + βU

[VL(n1, n2)]1/2

]
≥ Π.

Here VL(n1, n2) and VU(n1, n2) are the expected
values of the variances of β̂ evaluated at βL and
βU, respectively, over the distribution of (D, X, W)
for the study population to be investigated, Π is the
minimal acceptable discriminatory power, and zγ is
γ th quantile of the standard normal distribution. For
a main study/internal validation study design, the cost
function

C(n1, n2) = min[(rD + rW)n1 + (rW + rX + rD)n2,

(rD + rX)n∗
2]

is used, since there may be a discontinuity point
in the main study/internal validation study design
optimization equations at which the fully validated
design, consisting only of observations (Yi , W, Z1i),
i = 1, . . . , n2, is optimal.

Within this framework, one must supply the neces-
sary design specifications, which will vary from one
setting to another, and substitute the appropriate for-
mulas for VL and VU to obtain the optimal values of
n1 and n2. Even with a simple formula for varβ̂, the
solution cannot be written in closed form because the
constraints are complex. Numerical solutions can be
found using a nonlinear multiparameter optimization
subroutine such as DNCONF in IMSL [8], with a
call to an application-specific subroutine implement-
ing the appropriate variance formula.

Although the design criteria discussed above are
all functions of the variance of β̂ as well as other
parameters, the expected confidence interval width
criterion is simply proportional to the square root of
this variance. A limitation of most of the papers on
validation study design is that they investigate design
issues only by the criterion of expected confidence
interval width.

Optimal Study Design for Misclassified Binary
Exposure Variables

When binary exposure variables are subject to mis-
classification, the simplest misclassification model,
f2(X|W; θ), can be completely described with two
parameters, θ = (ω, ϕ), namely the sensitivity

ω = Pr(W = 1|X = 1),
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and the specificity

ϕ = Pr(W = 0|X = 0).

This model is less restrictive than the measurement
error model (1), since the error distribution depends
on X, except in the special case when ω = 1 − ϕ.
Further complexity in the misclassification model can
be introduced by allowing that ω and/or ϕ vary with
Y, as in the case of recall bias in a case–control
study, or allowing ω and/or ϕ to vary with some
other covariate(s), Z. In most instances, optimal study
designs will depend on the underlying true exposure
prevalence, Pr(X = 1).

Palmgren [11] studied internal validation designs
for case–control studies and with the same propor-
tions of the sample allocated to validation for cases
and controls. Palmgren found the optimal allocation
proportion, n2/(n1 + n2), to minimize the null vari-
ance of the estimated log odds ratio, β̂, subject to
fixed cost. She also determined the optimal alloca-
tion proportion to minimize the variance of β̂ subject
to fixed cost. She did not base her designs on a clas-
sical power criterion nor on the discriminatory power
criterion.

To use Palmgren’s formulation, the investigator
must specify the odds ratio, the sensitivity and
specificity for measuring exposure, the exposure
prevalences in cases and controls, and the costs of
measuring W and X. When β = 0 and the sensitivity
and specificity are assumed to be the same for cases
and controls, the optimal design for minimizing the
variance of β̂ is the fully validated design, (n1 = 0),
unless the square of the correlation between W and
X is greater than the cost ratio rW/rX, in which
case the optimal design is the main study only (n2 =
0). When sensitivity and specificity are allowed to
depend upon case status, the optimal allocation ranges
between 0 and 1, depending on the other design
parameters. Palmgren also provided some results for
minimizing the variance of the maximum likelihood
estimator of β, for β �= 0, subject to fixed cost, under
the assumptions that the sensitivity and specificity
are equivalent for cases and controls and for a
one-to-one case–control ratio. It is shown that for
small β, case–control ratios near one-to-one and
in most cases when the cost ratio, rX/rW, ≥ 4, the
main study/internal validation study design is more
efficient than the fully validated design. When the
exposure is rare, the optimal design depends more
heavily on the value of the specificity parameter,

and when the exposure is common, the optimal
design depends more heavily on the sensitivity
parameter.

A useful contribution of [11] are equations (A1)
and (A2), which give the nonnull and null formulas
for the variance of the maximum likelihood estimator
of β.

Greenland [6] also minimized the variance of β̂

subject to fixed cost, but he used the matrix method
for estimating β [2, 7, 12], rather than maximum
likelihood. Greenland found that the optimal pro-
portion allocated to the validation study increases
dramatically when differential misclassification is
assumed. He concluded that the fully validated design
is optimal or near optimal in many cases and
has the additional advantages of permitting stan-
dard methods of data analysis and of assuring rep-
resentativeness of the validation sample. Although
Greenland’s recommendations are clearly appropri-
ate for low cost ratios (rX/rW ranging between 3
and 12) and high case–control ratios (e.g. where
Pr(Y) ≈ 0.50), it is not clear at what point this
recommendation no longer applies. For cost ratios,
rX/rW, above 100, or lower case–control ratios, the
main study/validation study design is likely to be
preferable.

Chernoff & Haitovsky [4] and Zelen & Haitovsky
[20] considered optimal design in the estimation and
testing settings, respectively. They admitted as the
class of optimal designs a linear combination of the
eight designs derived from four possibilities for case
and controls: (i) main study only; (ii) validate all
subjects with W = 1; (iii) validate all subjects with
W = 0; and (iv) validation study only. Designs were
optimized by minimizing the variance of the estimate
of Pr(X = 1|Y = 1) − Pr(X = 1|Y = 0), for fixed
cost, and differential misclassification was assumed
at known misclassification rates. They found that the
optimal design was a combination of two of the
eight sampling plans, one for cases and the other for
controls. As long as the sensitivity, specificity, and
costs of collecting the data are the same for cases and
controls, the same type and sample size of design for
cases and controls is optimal.

Optimal Study Designs for a Continuous
Covariate Measured with Error

Buonaccorsi [3] provided optimal allocation formu-
las for minimizing the variance of the estimate of the
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odds ratio subject to specified cost, when dim(X) =
dim(W) = 1, dim(Z) is arbitrary, and Y is a binary
outcome. These formulas apply when (X, W, Z)
are jointly multivariate normal given Y but where
the measurement error model, f2(X|W), may be
a function of Y or dependent on other covariates
Z2. Under these assumptions, the odds ratio can be
validly and efficiently estimated through the normal
discriminant analysis model instead of the logistic
regression model. Buonaccorsi derived a closed-form
expression for the optimal proportion of study sub-
jects validated under the main study/internal valida-
tion study design, n2/(n1 + n2), as a function of six
quantities: (i) unit costs for Y, (W, Z) and X (rY, rW,
and rX); (ii) total cost for the study (C); (iii) value
for the log odds ratio of Y from a unit change in X
(β); (iv) multiple correlation between X and (W Z)
(this quantity can be taken to represent the extent of
measurement error resulting from failure to observe
X); (v) the variance of X (σ 2

x ); and (vi) the marginal
probability of Y [Pr(Y)]. With the exception of the
measurement error parameter and the quantities relat-
ing to cost, all of these quantities would be required
for study design calculations even when X were per-
fectly measured. Buonaccorsi gave a simple formula
for the variance of the measurement-error corrected
estimate of β.

Spiegelman & Gray [13] also investigated opti-
mal study design for binary regression in the case
of a single continuous covariate measured with error
but, unlike Buonaccorsi, they relied on the discrimi-
natory power criterion. In addition to considering the
main study/internal validation study design paradigm,
they also considered the main study/external valida-
tion study designs. Since external validation study
data will often be obtained as an afterthought at
the end of a prospective study, choosing the opti-
mal sample sizes, n1 and n2, is of less practi-
cal importance. However, it is instructive to com-
pare cost, power, and sampling ratios as given by
optimal internal and external validation study set-
tings. From efficiency considerations, it was shown
that an internal validation study is optimal. How-
ever, as Pr(Y) becomes small, the efficiency advan-
tage of the main study/internal validation study
design virtually disappears relative to the main
study/external validation study design.

Rather than assuming that (W, X, Z) are jointly
normal given Y, Spiegelman & Gray assume that
X|W is multivariate normal. Unlike Buonaccorsi,

they did not consider the presence of additional
perfectly measured exposure variables Z, and they
require that E(X|W) is linear. Without the joint
multivariate normality assumption, the normal dis-
criminant model cannot be used to obtain an unbi-
ased estimate of β. Instead, the logistic regression
model must be used. This is the model upon which
Spiegelman & Gray based their sample size calcula-
tions. Iterative methods must be used to find optimal
main study and validation study sample sizes when
f2(X|W) is normal and f1(Y|X), the model for the
outcome conditional on the true exposure, is logistic.
In order to find the optimal design in this framework,
the investigator needs to identify six quantities: (i)
rY, rX, and rW; (ii) Pr(Y); (iii) βL and βU, the two
values of the log odds ratio between which the study
is designed to discriminate; (iv) the mean and vari-
ance of W; (v) the parameters for the conditional
mean of X given W, α′, and γ , where E(X|W) =
α′ + γ W, and var(X|W); and (vi) the desired con-
fidence level, α, and the required discriminatory
power, Π .

Spiegelman & Gray found that the fully vali-
dated design is optimal only when rX/rW is small,
Pr(Y = 1) is large, and the magnitudes of βU and βL

are relatively far from the null but close together.
They found that the optimal percent allocation to
the validation study increased as the unit cost of
Y increased. Figure 1 shows the cost of the opti-
mal main study/internal validation study designs for
sample disease frequencies [Pr(Y)] equal to 0.005. In
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Figure 1 Plot of minimized cost to discriminate between
two hypothesized odds ratios, against γ , where E(X|W) =
α′ + γ W. When X and W are standardized, γ is corr
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this figure RY , RX, and RW are the unit costs for
measuring Y, X, and W, respectively, and, when X
and W are standardized, γ corresponds to the corre-
lation between X and W. Designs are optimized to
discriminate with 95% power between two hypoth-
esized values of the odds ratios, and the scenarios
considered are given in the legend. Cost increases
dramatically as the distance between the two hypothe-
sized odds ratios decreases, and as measurement error
increases.

In the context of nutritional epidemiology, two
additional papers on validation study design have
appeared. Stram et al. [15] considered validation
study design for minimizing the variance of the
regression calibration estimate of the odds ratio,
under the constraint of fixed total cost for an external
validation study. They derived equations for the opti-
mal choice of the number of subjects and the number
of days per subject of diet records or diet recalls
(X′) when the food frequency questionnaire (W) is
used to assess diet in the main study. It is assumed
that the relationship between X and X′ is given by
the assumption of random within-person variation,
following (1). They found that the optimal valida-
tion study size and number of replicates per subject
depend on the ratio between the costs of the initial
and subsequent 1-day diet records, and on the ratio of
the variance in a single replicate of X′ to the variance
of the true underlying diet. The authors concluded
that, in most settings, the optimal study design will
rarely require more than five 1-day diet records per
validation study participant. Kaaks et al. [9] derived
a closed-form expression for the increase due to mea-
surement error in the number of cases needed in
a main study/external study design using regression
calibration, as a function of the validation study sam-
ple size, the correlation between X and W, the odds
ratio, and the conditional variance of X given W.
They inverted this expression to optimize n2 as a
function of these other parameters, subject to a spec-
ified degree of precision in the regression calibration
estimate of β per subject.

Conclusion

In main study/validation study design, the criterion
used for design optimization should be carefully
chosen. For both validity and efficiency considera-
tions, internal validation studies are preferred over
external ones. Particularly when the sample disease

frequency is not rare and when the cost of the
gold standard is not prohibitive, completely validated
designs may be optimal. Owing to the lack of user-
friendly software, it does not appear that explicitly
optimized main study/validation study designs have
been used by scientific investigators. Further work
could involve making the identification of optimal
designs more accessible in the field.
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Validity and
Generalizability in
Epidemiologic Studies

The validity of a study of human subjects is often sep-
arated into two components: the validity of the infer-
ences drawn as they pertain to members of the source
population (internal validity), and the validity of the
inferences as they pertain to people outside that pop-
ulation (external validity or generalizability). Internal
validity parallels the statistical concept of generaliz-
ing from sample to source population, while general-
izability involves more informal inference beyond a
source population to target populations.

Scientific generalization extends beyond statistical
generalization of study results to the formulation
of abstract concepts relating the study factors. The
concepts are abstract in the sense that they are not
tied to specific populations; instead they amount to
the specification of a more general scientific theory.
Internal validity is a prerequisite for the study to
contribute usefully to this process of abstraction, but
the generalization process is otherwise separate from
the concerns of internal validity and the mechanics
of the study design.

Validity

Internal validity implies validity of inference for the
study subjects themselves. Specifically, it implies an
accurate measurement apart from random errors.
Numerous types of biases can detract from inter-
nal validity; for examples, see [19]. The distinction
among these biases is occasionally difficult to make,
but three general types can be identified: selection
bias, confounding, and information bias. These cate-
gories are not always clearly demarcated; factors that
appear to be responsible for a selection bias can also
be viewed, under some circumstances, as confound-
ing factors. Occasionally, certain information biases
can also be construed as confounding.

Selection Bias

Most epidemiologic studies involve a comparison of
two or more groups with regard to either disease or
exposure frequency. Bias is a distortion of the effect

that is measured. Selection biases are distortions that
result from procedures used to select subjects, and
from factors that influence study participation.

Self-Selection Bias. One form of such bias is
self-selection bias. When the Centers for Disease
Control (CDC) investigated subsequent leukemia
incidence among troops who had been present at the
Smoky Atomic Test in Nevada [3], 76% of the troops
identified as members of that cohort (see Cohort
Study) had known outcomes. Of this 76%, 82% were
traced by the investigators, but the other 18% con-
tacted the investigators on their own initiative in
response to publicity about the investigation. This
self-referral of subjects is ordinarily considered a
threat to validity, since the reasons for self-referral
may be associated with the outcome under study [6].
In the Smoky study, there were four leukemia cases
among the 0.18 × 0.76 = 15% of cohort members
who referred themselves and four among the 0.82 ×
0.76 = 62% of cohort members traced by the inves-
tigators, for a total of eight cases among the 76% of
the cohort with known outcomes. These data indicate
that self-selection bias was a small but real prob-
lem in the Smoky study. If the 24% of the cohort
with unknown outcomes had a leukemia incidence
like that of the subjects traced by the investigators,
then we should expect that only 4(24/62) = 1.5 or
about one or two cases occurred among this 24%,
for a total of only nine or 10 cases in the entire
cohort. If, however, we assumed that the 24% with
unknown outcomes had a leukemia incidence like that
of subjects with known outcomes, then we would cal-
culate that 8(24/76) = 2.5 or about two or three cases
occurred among this 24%, for a total of 10 or 11 cases
in the entire cohort.

Self-selection can also occur before subjects are
identified for study. For example, it is routine to
find that the mortality of active workers is less
than that of the population as a whole [9, 15]. This
“healthy-worker effect” presumably derives from a
screening process, perhaps largely self-selection, that
allows relatively healthy people to become or remain
workers, whereas those who remain unemployed,
retired, disabled, or otherwise out of the active
worker population are as a group less healthy [23]
(see Occupational Epidemiology).

Diagnostic Bias. Another type of selection bias
occurring before subjects are identified for study is
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diagnostic bias [19]. When the relation between oral
contraceptives and venous thromboembolism was
first investigated with case–control studies of hos-
pitalized patients, there was concern that some of
the women had been hospitalized with a diagnosis
of venous thromboembolism because their physicians
suspected a relation between this disease and oral
contraceptives and had known about oral contracep-
tive use in patients who presented with suggestive
symptoms [20]. A study of hospitalized patients with
thromboembolism could lead to an exaggerated esti-
mate of the effect of oral contraceptives on throm-
boembolism if the hospitalization and determination
of the diagnosis were influenced by the history of oral
contraceptive use.

Many varieties of selection bias could be des-
cribed. The common element of such biases is that the
relation between exposure and disease is different for
those who participate and those who should be theo-
retically eligible for study, including those who do not
participate. The result is that associations observed in
the study represent a mix of forces determining par-
ticipation as well as forces determining disease. It is
sometimes (but not always) possible to disentangle
the effects of participation determinants from those
of disease determinants using analytic methods for
the control of confounding.

Confounding. The term confounding has been
used for several different concepts. Although this bias
can occur in experiments, it is a considerably more
important issue in nonexperimental research.

On the simplest level, confounding may be consid-
ered a confusion of effects. Specifically, the apparent
effect of the exposure of interest is distorted because
the effect of an extraneous factor is mistaken for or
mixed with the actual exposure effect (which may be
null). The distortion introduced by a confounding fac-
tor can be large, and it can lead to overestimation or
underestimation of an effect depending on the direc-
tion of the associations that the confounding factor
has with exposure and disease. Confounding can even
change the apparent direction of an effect.

A more precise definition of confounding begins
by considering the manner in which effects are esti-
mated. Let us assume that we wish to estimate
the degree to which exposure has changed the fre-
quency of disease in an exposed cohort. To do so, we
must estimate what the frequency of disease would
have been in this cohort had exposure been absent.

To accomplish this task, we observe the disease
frequency in an unexposed cohort. But rarely could
we take this unexposed frequency as fairly repre-
senting what the frequency would have been in the
exposed cohort had exposure been absent, because
the unexposed cohort would differ from the exposed
cohort on many factors that affect disease frequency
besides exposure. To express this problem, we say
that the comparison of the exposed and unexposed
is confounded, because the difference in disease fre-
quency between the exposed and unexposed results
from a mixture of several effects, including (but not
limited to) any exposure effect.

The extraneous factors responsible for difference
in disease frequency between the exposed and unex-
posed are called confounders. In addition, factors
associated with these extraneous causal factors that
can serve as surrogates for these factors are also com-
monly called confounders. The most extreme exam-
ple of such a surrogate is chronologic age. Increasing
age is strongly associated with aging – the accumu-
lation of cell mutations and tissue damage that lead
to disease – but increasing age does not itself cause
such pathogenic changes, for it is just a measure of
how much time has passed since birth.

Regardless of whether a confounder is a cause of
the study disease or merely a surrogate for such a
cause, its chief characteristic is that it would be pre-
dictive of disease frequency within the unexposed
(reference) cohort – otherwise it could not explain
why the unexposed cohort fails to represent prop-
erly what the exposed cohort would experience in
the absence of exposure. For example, suppose all
the exposed were men and all the unexposed women.
If unexposed men would have the same incidence
as unexposed women, then the fact that all the unex-
posed were women rather than men could not account
for any confounding that is present.

Information Bias

Once the subjects to be compared have been iden-
tified, the information to be compared must be
obtained. Bias in evaluating an effect can occur from
errors in obtaining the needed information. Informa-
tion bias can occur whenever there are errors in the
measurement of subjects, but the consequences of
the errors are different depending on whether the
distribution of errors for one variable (for example,
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exposure or disease) depends on the actual value of
other variables. and errors in other variables.

For discrete variables, measurement error is usu-
ally called classification error or misclassification.
Classification error that depends on the values of
other variables is referred to as differential misclassi-
fication (see Differential Error). Classification error
that does not depend on the values of other vari-
ables is referred to as nondifferential misclassification
(see Nondifferential Error).

Differential Misclassification. Suppose a cohort
study were undertaken to compare incidence rates
of emphysema among smokers and nonsmokers.
Emphysema is a disease that may go undiagnosed
without unusual medical attention. If smokers,
because of concern about health-related effects of
smoking or as a consequence of other health effects
of smoking (such as bronchitis), seek medical
attention to a greater degree than nonsmokers, then
emphysema might be diagnosed more frequently
among smokers than among nonsmokers simply
as a consequence of the greater medical attention.
Unless steps were taken to ensure comparable follow-
up, an information bias would result: a spurious
excess of emphysema incidence would be found
among smokers compared with nonsmokers that is
unrelated to any biologic effect of smoking. This
is an example of differential misclassification, since
the underdiagnosis of emphysema, a classification
error, occurs more frequently for nonsmokers than for
smokers. Unlike the diagnostic bias in the studies of
oral contraceptives and thromboembolism described
earlier, it is not a selection bias, since it occurs among
subjects already included in the study. Nevertheless,
the similarities between some selection biases and
differential misclassification biases are worth noting.

In case–control studies of congenital malforma-
tions, the etiologic information may be obtained
at interview from mothers. The case mothers have
recently given birth to a malformed baby, whereas
the vast majority of control mothers have recently
given birth to an apparently healthy baby. Another
variety of differential misclassification, referred to as
recall bias, can result if the mothers of malformed
infants recall exposures more thoroughly than moth-
ers of healthy infants. It is supposed that the birth of
a malformed infant serves as a stimulus to a mother
to recall all events that might have played some role
in the unfortunate outcome. Presumably such women

will remember exposures such as infectious disease,
trauma, and drugs more accurately than mothers of
healthy infants, who have not had a comparable stim-
ulus. Consequently, information on such exposures
will be ascertained more frequently from mothers of
malformed babies, and an apparent effect, unrelated
to any biologic effect, will result from this recall bias.
Recall bias is a possibility in any case–control study
that uses an anamnestic response, since the cases
and controls by definition are people who differ with
respect to their disease experience, and this difference
may affect recall.

The bias that is caused by differential misclas-
sification can either exaggerate or underestimate an
effect. In each of the examples above, the misclassi-
fication serves to exaggerate the effects under study,
but examples to the contrary can also be found.
Because of the relatively unpredictable effects of
differential misclassification, some investigators go
through elaborate procedures to ensure that the mis-
classification will be nondifferential, such as blinding
of exposure evaluations with respect to outcome sta-
tus. Unfortunately, even in situations when blinding
is accomplished or in cohort studies in which disease
outcomes have not yet occurred, collapsing continu-
ous or categorical exposure data into fewer categories
can induce differential misclassification [8, 21].

Nondifferential Misclassification. Nondifferential
exposure or disease misclassification occurs when the
proportion of subjects misclassified on exposure does
not depend on disease status, or when the propor-
tion of subjects misclassified on disease does not
depend on exposure. When the misclassification is
independent of other errors, bias introduced by such
nondifferential misclassification of a binary exposure
or disease is predictable in direction, namely toward
the null value [5, 11, 12, 17] (see Bias Toward the
Null). Contrary to popular misconceptions, however,
nondifferential exposure or disease misclassification
can sometimes produce bias away from the null,
especially if the errors in exposure and disease classi-
fication are correlated [4, 7, 13, 22]. If the misclassifi-
cation is extreme, the misclassification can go beyond
the null value and reverse direction.

When the exposure is polytomous (that is, has
more than two categories) and there is nondifferen-
tial misclassification between two of the categories
and no others, the effect estimates for those two
categories will be biased toward one another [1,



4 Validity and Generalizability in Epidemiologic Studies

22]. In particular, the effect estimate for the lower
exposure category will be shifted toward that of the
higher exposure category, and away from the null
value. It is also possible for independent nondiffer-
ential misclassification to bias trend estimates away
from the null or reverse a trend [7]. Such examples
are unusual, however, because trend reversal cannot
occur if the mean exposure measurement increases
with true exposure [24].

Nondifferential Misclassification of Disease. The
effects of nondifferential misclassification of disease
resemble those of nondifferential misclassification of
exposure. In most situations, nondifferential misclas-
sification of a binary disease outcome will produce
bias toward the null, provided that the misclassi-
fication is independent of other errors. There are,
however, some useful special cases in which such
misclassification produces no bias in the risk ratio
(see Relative Risk); in addition, the bias in the risk
difference is a simple function of the sensitivity and
specificity. For a discussion, see Rothman & Green-
land [18].

Pervasiveness of Nondifferential Misclassification.
Since the bias from independent nondifferential mis-
classification of a dichotomous exposure is always in
the direction of the null value, historically it has not
been a great source of concern to epidemiologists,
who have generally considered it more acceptable
to underestimate effects than to overestimate effects.
Nevertheless, such misclassification is a serious prob-
lem: the bias it introduces may account for certain
discrepancies among epidemiologic studies. Many
studies ascertain information in a way that guaran-
tees substantial misclassification, and many studies
use classification schemes that can mask effects in a
manner identical to nondifferential misclassification.

Suppose aspirin transiently reduces risk of myocar-
dial infarction. The word transiently implies a brief
induction period. Any study that considered as expo-
sure aspirin use outside of a narrow time interval
before the occurrence of a myocardial infarction
would be misclassifying aspirin use: there is relevant
use of aspirin, and there is use of aspirin that is irrel-
evant because it does not allow the exposure to act
causally under the causal hypothesis with its specified
induction period. Many studies ask about “ever use”
(use at any time during an individual’s life) of drugs
or other exposures. Such cumulative indices over

an individual’s lifetime inevitably augment possibly
relevant exposure with irrelevant exposure, and can
thus introduce a bias toward the null value through
nondifferential misclassification.

In cohort studies in which there are disease cat-
egories with few subjects, investigators are occa-
sionally tempted to combine outcome categories to
increase the number of subjects in each analysis,
thereby gaining precision. This collapsing of cate-
gories can obscure effects on more narrowly defined
disease categories.

Nondifferential exposure and disease misclassifi-
cation is a greater concern in interpreting studies that
seem to indicate the absence of an effect. Conse-
quently, in studies that indicate little or no effect, it is
crucial for the researchers to consider the problem of
nondifferential misclassification to determine to what
extent a real effect might have been obscured. On the
other hand, in studies that describe a strong nonzero
effect, preoccupation with nondifferential exposure
and disease misclassification is rarely warranted, pro-
vided that the errors are independent. Occasionally,
critics of a study will argue that poor exposure data
or a poor disease classification invalidate the results.
This argument is incorrect, however, if the results
indicate a nonzero effect and one can be sure that the
classification errors produced bias towards the null,
since the bias will be in the direction of underesti-
mating the effect.

Generally speaking, it is incorrect to dismiss a
study reporting an effect simply because there is
substantial nondifferential misclassification of expo-
sure, since an estimate of effect without the mis-
classification could be even greater, provided that
the misclassification probabilities apply uniformly to
all subjects. Thus, the implications of nondifferential
misclassification depend heavily on whether the study
is perceived as “positive” or “negative”. Emphasis on
measurement instead of on a qualitative description
of study results lessens the likelihood for misinter-
pretation, but even so it is important to bear in mind
the direction and likely magnitude of a bias.

Misclassification of Confounders. If a confound-
ing variable is misclassified, the ability to control
confounding in the analysis is hampered [2, 10, 14].
While independent nondifferential misclassification
of exposure or disease usually biases study results
in the direction of the null hypothesis, independent
nondifferential misclassification of a confounding
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variable will usually reduce the degree to which
confounding can be controlled and thus can cause
a bias in either direction, depending on the direction
of the confounding. For this reason, misclassification
of confounding factors can be a serious problem.

If the confounding is strong and the exposure–
disease relation is weak or zero, misclassification of
the confounding factor can lead to extremely mis-
leading results. For example, a strong causal relation
between smoking and bladder cancer, coupled with
a strong association between smoking and coffee
drinking, makes smoking a strong confounder of any
possible relation between coffee drinking and bladder
cancer. Since the control of confounding by smoking
depends on accurate smoking information, and since
some misclassification of the relevant smoking infor-
mation is inevitable no matter how smoking is mea-
sured, some residual confounding is inevitable [16].
The problem of residual confounding would be even
worse if the only available information on smok-
ing were a simple dichotomy such as “ever smoked”
vs. “never smoked”, since the lack of detailed spec-
ification of smoking prohibits adequate control of
confounding. The resulting confounding is especially
troublesome because to many investigators and read-
ers it may appear that confounding by smoking has
been controlled.

Generalizability

Many epidemiologists and statisticians have taught
that generalization from a study group depends on
the study group being a representative subgroup of
the target population, in the sense of a sample. If
scientific generalization were simply a matter of sta-
tistical generalization, however, it would be limited
literally to those individuals who might have been
included, through sampling, as study subjects. If this
notion were correct, there would be no application to
humans of any results obtained from animal research.
In addition, every population would require its own
set of studies, and these studies would have to be
repeated for every new generation.

The tendency to use “representative” study groups
probably derives from early experience with surveys
for which the inferential goal was only description
of the surveyed population. Social scientists often
rely on statistical inference because decisions about
what is relevant for generalization are more dif-
ficult in the social sciences, and populations are

considerably more diverse in sociologic phenomena
than in biologic phenomena. In the biologic sci-
ences, however, investigators conduct experiments
using animals with characteristics selected to enhance
the validity of the experimental work rather than to
represent the target population. Epidemiologic study
designs are usually stronger if subject selection is
guided by the need to make a valid comparison,
which may call for severe restriction of admissible
subjects to a narrow range of characteristics, rather
than by an attempt to make the subjects represen-
tative, in a sampling sense, of the potential target
populations.

Ultimately, the goal of a purely scientific study
is to contribute to scientific knowledge. The process
of synthesizing knowledge from observations is, after
centuries of examination, not yet well understood. In
most sciences, however, the process involves moving
from the particulars of a set of observations to the
abstraction of a scientific hypothesis or theory that
is more or less divorced from time and place: the
abstractions apply to a broader domain of experience
than that observed or sampled from. Such scientific
generalization amounts to moving from time- and
place-specific observations to an abstract “universal”
hypothesis, such as “cigarette smoking causes lung
cancer”. This process is neither mechanical nor sta-
tistical, nor does it involve specific target populations
(although the hypothesis may be limited to certain
biological subgroups, such as a specific genotype). In
this sense, the term external validity is a misnomer,
and the term generalization must be interpreted as
abstraction. Selection of study groups that are repre-
sentative of larger populations in the statistical sense
will generally not enhance the ability to abstract uni-
versal statements from observations, but selection of
study groups for characteristics that enable a study to
distinguish effectively between competing scientific
hypotheses will do so.

In addition to scientific goals, some studies also
have a goal of measuring effects and predicting the
impact of interventions in a specific target population.
In contrast to scientific inference, these pragmatic
goals may depend more closely on the representa-
tiveness of study subjects with respect to the target
population. For example, if a clinical trial is con-
ducted using patients with a good prognosis, the
results from the trial may not predict well the results
when the new intervention is applied to patients with
a poor prognosis. Thus, some effort may be needed
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in the study design to ensure that enough subjects
are included from each of several major subgroups
of the target, such as males and females. Even in this
situation, complete representativeness is not always
desirable, for a more efficient study might be obtained
by oversampling some subgroups and then standard-
izing the study estimate to the target population.
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Variable Selection

Automated variable selection is often used for the
selection of explanatory variables in regression
(see Multiple Linear Regression). This may be in
the context of linear or nonlinear models with con-
tinuous or categorical data. More broadly, variable
selection concerns the choice of variables derived
from an original set of available explanatory vari-
ables, including interaction and nonlinear terms, and
orthogonal series decompositions (principal compo-
nents (see Principal Components Analysis), Fourier
series, splines, wavelets (see Orthogonality). This
involves substantive considerations of the application,
and cannot necessarily be based on automated means.
In short, it concerns the modeling process.

The most common use is for the selection of
explanatory variables in least squares linear regres-
sion, often by automated means, to arrive at a single
“best” model. Variables are included or excluded on
the basis of:

1. Statistical tests that regression coefficients or
groups of regression coefficients are zero.

2. Model choice criteria (see Model, Choice of),
e.g. Mallows’ Cp statistic, Bayes information
criterion (BIC) (see the section “Bayes Selection”
below).

3. Cross-validation or bootstrap prediction.

The first of these broadly relates to estimation accu-
racy, whereas the latter two relate to prediction
accuracy.

Many caveats need to be attached to such auto-
mated procedures, and we discuss some of them later
in this article. With k explanatory variables there are
2k possible regression models, depending on whether
or not each variable is included. When k is more than
about 15 (or perhaps less) a complete search of all
models is often abandoned in favor of a restricted
automated search, broadly categorized as:

1. backward, forward, and stepwise selection
2. using a branch-and-bound algorithm
3. using a stochastic algorithm for finding a good

model.

The search algorithms may also aim to provide
a subset of models, all of which may be judged to
be alternative good models. One may then wish to

choose from within this primitive subset a model
which makes physical sense or alternatively report
the range of suitable models, or even provide predic-
tions based on averaging the range of good models;
see, for example, [6] and [18]. The use of stochastic
algorithms is mushrooming, especially in the area of
Bayesian variable selection (see Bayesian Methods),
using Markov chain Monte Carlo (MCMC).

Before considering these aspects in more detail we
illustrate some simple selection algorithms with data
on the factors associated with infant birth weight, col-
lected from Baystate Medical Centre, Massachusetts,
during 1986, given by Hosmer & Lemeshow [12].
The birth weights of the 189 infants ranged from
709 g to 4990 g. It was thought that variation in birth
weight might be explained by nine variables: AGe of
mother (years), WeighT in pounds at last menstrual
period, SMoking status during pregnancy, number of
PRevious premature births, HYpertension presence,
uterine IRritability, number of physician VIsits dur-
ing first trimester, and two race dummy variables to
define BLack and OTher to cover the three categories,
White, Black, and Other. Our purpose here is not to
examine whether these are the most sensible variables
to employ, but rather to illustrate some of the selec-
tion issues elaborated on in the following sections
of this article. The regression equation for all nine
variables included is

Birthwt = 2928 − 3.57AG + 4.35WT − 352SM

− 48PR − 593HY − 516IR − 14.1V I

− 488BL − 355OT. (1)

Only 24% of the variation is explained, and Student’s
t-ratios on individual coefficients range from 3.72
on IR to 0.30 on VI (in absolute terms), with three
<2: AG, PR, and V I . If one successively removes
the most insignificant variable, refitting the remaining
variables and stopping when all remaining variables
are significantly different from zero on the basis of a
nominal 5% F test, then a six-variable model results.
This model is

Birthwt = 2837 + 4.24WT − 356SM − 585HY

− 526IR − 475BL − 348OT. (2)

The t ratios for the six variables (based on newly
estimated residual error) range from 2.53 to 3.90
in absolute terms with 24% variation explained. In
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fact, this model contains all the variables significant
at the 5% level. None of the remaining variables,
either singly or in combination, explains significant
variation. It also happens to be the preferred model of
the various search methods based on statistical testing
as well as Cp model choice. In this example it hardly
leads to an impressively well-fitting model, and has a
sizable residual standard deviation of 646, and yet at
least has coefficients which are plausible in direction.
A more detailed summary of alternative models is
given in Table 1, with the best two models of each
size from 1 to 8 together with the full nine-variable
model.

The residual standard deviation in the full model,
σ̂ = 650.3, is used for

Cp = RSSp

σ̂ 2 + 2p − n
(3)

in all p variable models fitted, p = 1, . . . , 9. Here,
RSSp is the residual sum of squares for the particular
p-variable model, and the estimated residual variance
for this model is s2 = RSSp/(n − p − 1).

If one were to base choice of model on percentage
of variation explained (R2), then the full nine-variable
model is best. Adjusted R2, given as

adj. R2
p = 1 − (

1 − R2
p

) n

(n − p)
, (4)

suggests a six-variable model with WT , SM , PR,
IR, BL, and OT included. Mallows’ Cp leads to the
same six-variable model.

The hoped for advantage of subset models rests
with reduced mean square error loss, to be achieved
by reduction of variance at the expense of minimal
increase in bias. It may offer prediction or estimation
robustness by avoiding those variables whose effect
is nonlinear or which interact with other variables.
Occasionally there is real benefit in terms of reduced
cost in not needing to measure particular variables,
and this may be particularly true in the medical
context where some measurements may be invasive
to the patient.

Automatic selection procedures are perhaps most
appropriate when there is a large number of can-
didate variables and no clear prior knowledge of
variables likely to be related to the response. These
procedures are built into many statistical packages
(see Software, Biostatistical). With least squares
multiple regression they provide perhaps the most
heavily used, and abused, statistical technique. Focus-
ing on just one model often ignores other good
models and the uncertainty, due to the process of sift-
ing, that ought to attach to that selection. Some of the
technical aspects are described below. For further dis-
cussion of strategic considerations both in the choice
of measurement and measurement scale, and choice

Table 1 Best two models of each size for predicting birth weight from nine explanatory variables, percentage variation
explained (R2), adjusted R2, Mallows’ Cp , and residual standard deviation

Variables

Size R2 Adj. R2 Cp s AG WT SM PR HY IR V I BL OT

1 8.1 7.6 32.3 701 X
1 3.6 3.1 42.8 718 X
2 11.2 10.3 26.8 691 X X
2 11.1 10.1 27.2 691 X X
3 14.8 13.4 20.4 679 X X X
3 14.7 13.3 20.6 679 X X X
4 18.9 17.1 12.7 664 X X X X
4 17.7 16.0 15.4 669 X X X X
5 21.4 19.2 8.9 655 X X X X X
5 20.5 18.3 11.0 659 X X X X X
6 24.0 21.5 4.6 646 X X X X X X
6 21.6 19.0 10.3 656 X X X X X X
7 24.2 21.2 6.3 647 X X X X X X X
7 24.1 21.2 6.3 647 X X X X X X X
8 24.2 20.9 8.1 649 X X X X X X X X
8 24.2 20.8 8.1 649 X X X X X X X X
9 24.3 20.5 10.0 650 X X X X X X X X X
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of variables, see [5]. Raab [22], in a cross-sectional
study of blood lead levels on children’s abilities,
emphasizes the importance of study design to sep-
arate confounders from exposure variables and the
desirability of purposeful predetermined inclusion of
some covariates. Related topics are Model, Choice
of, Parsimony, Akaike’s Criteria, Model Check-
ing, Diagnostics, and Residuals.

Restricted Search Methods

Forward, Backward, and Stepwise Selection

These methods are all based on significance tests
as to whether to enter or delete a variable. The
estimated residual variance is usually kept constant
during the search, either being specified from the
full model with k variables or from replicates or
near replicates in the data. For stepwise selection
there are two quantities, FADD and FDROP, and
these may be specified by the appropriate value of
the tabulated F distribution (see F Distributions)
to test whether the coefficient can be assumed to
be zero for the candidate variable in the context of
the currently entertained model involving p of the
k regressors, typically on 1 and n − k − 1 degrees
of freedom. Suppose the model currently includes
explanatory variables X1, X2, . . . , Xp. For each of
these p variables the F statistic (= square of t statis-
tic) is compared with FDROP. If the minimum F

statistic is less than FDROP, then that variable is
removed from the current model, p ← p − 1, and
the variable goes into the pool of variables not cur-
rently used, otherwise no variable is dropped at this
stage. Each variable in this pool of unused variables
is examined now in turn to see whether it should be
added to the current model. If the largest F statistic
from augmenting the model with a variable from the
available pool is greater than FADD, then the vari-
able is added to the current model and p ← p + 1,
otherwise no variable is added at this stage. Clearly,
to make sense, FADD ≥ FDROP . The process of
adding or subtracting variables continues until the
model no longer changes, and all variables included
have F statistics greater than FDROP and all vari-
ables not included have F statistics for inclusion
less than FADD. The stepwise algorithm may start
from either no variables in the model and build up
the model, or from all variables in the model and
strip down the model. It might also start from some

arbitrarily specified model with some of the main
variables included, or even a randomly chosen start-
ing set. The build-up mode is the only feasible option
when there are more variables than observations and
the full variable model is overparameterized, and fits
perfectly, with zero residual variation.

Often in stepwise regression one chooses
FADD = FDROP . A value around 4 corresponds
to a 5% significance test (1.962 = 3.84) for infinite
error degrees of freedom and consequent normality
of the estimated regression coefficient. For moderate
or few degrees of freedom on the residual error
estimate, then the FADD, FDROP pair ought to be
correspondingly larger than 4. The use of Mallows’
Cp as a criterion for subset choice implies FADD =
FDROP = 2 since the residual sum of squares for
the candidate p variable model, divided by estimated
residual variance, is penalized by adding 2p, that is
2 per new variable added. Thus Mallows’ Cp will
tend to choose larger models than arising out of 5%
significance tests. However, Cp was not designed by
Mallows [19] as an automatic selection procedure,
but rather as a graphical method of comparing models
of differing dimensions exhaustively.

Forward selection and backward elimination may
be thought of as special cases of the stepwise
algorithm. Forward selection starts with no variables
in the model and has FDROP = 0, so that variables
are added one at a time until no variable not in the
equation has an F statistic for entry greater than
FADD. There is no guarantee that the variables in the
final equation all have F statistics greater than FADD,
since once entered in the sequential process they are
not considered for removal at any future stage.

Backward elimination corresponds to the stepwise
algorithm with FADD = ∞ – in practice, some
chosen large number. It starts from all variables in
the equation. The procedure stops when no variable
in the model has an F statistic less than FDROP.

None of these methods guarantees that the model
chosen is the best out of the 2k possible models.
Particular combinations of variables may be missed
completely. The attraction of the algorithms is that
they are very fast, whereas a complete enumerative
search of the 2k models becomes infeasible for k

much greater than about 15.
A number of issues are raised by adoption of one

of these automatic procedures, aside from whether
they find the “best” model. First, the idea of find-
ing a single best model is suspect because there may
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be other near “best” models which are much more
plausible and substantively interesting. Secondly, the
extent of the sifting process with repeated signifi-
cance tests and search for the maximum F statistic
is not quantified in terms of increased uncertainty
that the optimal model is best or even good. This is
discussed in some detail by Miller [20, Chapter 3].
Breiman & Spector [3] evaluate backward selection
techniques in terms of prediction error with special
emphasis on a bootstrap and cross-validation choice
of model. Bootstrap and 5-fold cross-classification
choices fare particularly well.

Branch-and-Bound Algorithms

Criteria such as minimizing the residual sum of
squares or prediction error have a particular mono-
tonicity property. If A is a set of variable labels and
B is a subset of A, then

RSS(A) ≤ RSS(B).

Many of the criteria used in identifying the “best”
subset of variables are monotone in RSS given sub-
sets with the same number of independent variables.
These include adjusted R2 and Mallows’ Cp; excep-
tions are the bootstrap procedures of Breiman &
Spector [3] and the leave-one-out cross-validatory
statistic PRESS of Allen [2], although the latter is
asymptotically equivalent to Cp [25].

The branch-and-bound algorithm, in its most sat-
isfying form given by Furnival & Wilson [9], relies
on this simple monotonicity. If a model with p < p∗
variables has a smaller RSS (and cannot therefore be
a subset), then the model with p∗ variables and all
its submodels must be inferior to the model with the
alternative set of p variables. If models are thought
of as being generated by a binary tree, then the
branch with the particular set of p∗ variables can
be cut off and all its submodels ignored. Furnival
& Wilson’s approach provides a clever exploitation
of this with an implementation that simultaneously
creates two tableaux, one being for bounds, mov-
ing through the tree in complementary directions
(see Tree-structured Statistical Methods).

The procedure can be readily modified to provide,
say, the five best subsets of each size. Whilst all-
subsets regression is only feasible for up to around
15 variables, the branch-and-bound algorithm can
extend this to 30 or more variables, although its ben-
efits reduce with increasing correlation between the

independent variables. It cannot begin to tackle data
generated by modern instruments used for chemo-
metrics in the pharmaceutical industry, where 700
explanatory absorbances/reflectances at 700 wave-
lengths are not unusual. See [4, Chapter 7] for a
variety of graphical and algorithmic techniques for
such high dimensions.

Non-Gaussian Models

The techniques described readily extend to nonnor-
mal models, common in medical studies. The residual
sum of squares for a Gaussian model considered
above is equal to −2 × ln likelihood maximized over
the regression parameters, aside from a scale fac-
tor of 1/σ 2. In the non-Gaussian case this so-called
deviance (see Generalized Linear Model, or [7]),
can be used as a basis of using likelihood ratio tests
for comparison of two models, with either an assumed
asymptotic chi-square distribution or an F distri-
bution when the scale factor is estimated, in direct
analogy with the Gaussian case.

In moving from Gaussian to non-Gaussian
models, there is usually the need for iterative
methods in fitting models by maximum likeli-
hood (see Optimization and Nonlinear Equations).
This imposes a considerable computational overhead.
Lawless & Singhal [14] use a first-order approxima-
tion to the log likelihood of the submodel to speed
up computations. Nordberg [21] shows how to incor-
porate such approximations so that standard least
squares regression computer packages may be used,
together with their associated best subsets/stepwise
selection routines.

Bayes Selection

Model Choice

Suppose M1 and M2 denote two different regres-
sion models, with p1 and p2 variables and nonzero
regression parameters β1 and β2, e.g. 1 and 2 above,
respectively. The Bayes factor for M1 vs. M2 is

B12 = P(Y |X, M1)

P (Y |X, M2)
,

where

P(Y |X, Mi) =
∫

P(Y |X, βi, Mi)P (βi |Mi) dβi
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is the probability of the data n-vector Y averaged
over the prior distribution of the regression vector
βi . One way of comparing models is through Bayes
factors. In fact under a wide set of model assumptions
and prior assumptions, as n becomes large, it may be
shown that

2 ln B12 ≈ Λ − (p1 − p2) ln(n).

Here Λ is the generalized log likelihood ratio, and the
relative error of the approximation implied for B12 is
O(1); see [13]. Large values of B12 support model 1
compared with model 2, and if p1 > p2 then the log
likelihood ratio is penalized by ln(n) times the dif-
ference in dimensions. This ln(n) factor, known as
the Bayes information criterion (BIC) [23], contrasts
with the value 2 (AIC) argued by Akaike [1], and
corresponds to Mallows’ Cp in the special case of
least squares multiple regression. The adjusted R2

of 4 involves a factor (1 − p/n)−1 =̇ 1 + p/n and
therefore penalizes by 1 rather than the 2 of Mallows’
Cp. The F test 5% significance method described
earlier produces a penalization factor of around 4.
Both AIC and BIC penalize maximum likelihood
for overfitting. For large n the BIC penalization is
much greater and leads to smaller models being pro-
moted. For n smaller than e2 = 7.4, AIC tends to
favor smaller models. The BIC procedure is consis-
tent as n → ∞, whereas AIC is not [24], but BIC is
not asymptotically efficient as p → ∞. Consistency
requires at least a penalization factor that increases
with n. A factor of 2c ln ln(n), c > 1, is necessary
and sufficient in the special case of autoregression;
see [11]. Consistency may be regarded as less impor-
tant when the aim is prediction rather than estimation.

Bayes Averaging

Whether the focus be estimation or prediction, any
reasonable loss function (apart from 1–0 loss) will
lead to model averaging rather than selection of a
single “best” model if applying Bayesian decision
theory. One exception is where costs on observ-
ing variables are included, as in [17], leading to a
minimum expected posterior loss submodel. For pre-
diction of a future Yf at xf ,

P(Yf |xf , D)

=
∑∫

P(Yf |X, βi, Mi)P (βi , Mi |D) dβi,

where D represents the n observation data. When
there are 2k models and k is large, this involves sum-
mation over a very large number of models. Madigan
& Raftery [18] propose an Occam window principle
(see Parsimony) which reduces the summation to be
over the subset of models that are more probable
a posteriori. Interestingly, ridge regression may be
viewed as a particular weighted average of all subset
models; see Leamer & Chamberlain [16].

Other Prior Distributions

A class of prior distributions with equiprobability
contours proportional to

∏

i

(γ + |βi |δ)

has been shown [15] to generate a range of densities
which generate modal models favoring subsets. The
idea seems to have been rediscovered by Frank &
Friedman [8] to lend insight into a variety of chemo-
metric regression tools, and taken up in a particular
instance by the lasso of Tibshirani [26], correspond-
ing to a double exponential prior distribution, with
δ = 1, γ = 0.

An approach gaining sway and more in keeping
with model averaging is based on mixture models.
Each regression parameter βi is thought to come from
one of two distributions, each one centered on zero,
but one having a much smaller variance than the
other, and may even be zero corresponding to a spike
of probability at zero. There is an indicator random
variable γi which determines whether the parameter
has large variance (γi = 1) or small variance (γi = 0).
The posterior distribution of the k-vector γ gives all
the information about probable subset models. With
a natural conjugate prior distribution and Gaussian
errors, direct computation is feasible provided 2k is
not too large, say with k < 20. Otherwise Markov
chain Monte Carlo (MCMC) allows one to summa-
rize the posterior distribution by simulation; see [10].

References

[1] Akaike, H. (1974). A new look at the statistical identifi-
cation model, IEEE Transactions on Automatic Control
19, 716–723.

[2] Allen, D.M. (1971). Mean square error of prediction
as a criterion for selecting variables, Technometrics 13,
469–475.



6 Variable Selection

[3] Breiman, L. & Spector, P. (1992). Submodel selection
and evaluation in regression. The x-random case, Inter-
national Statistical Review 60, 291–319.

[4] Brown, P.J. (1993). Measurement, Regression, and Cal-
ibration. Clarendon Press, Oxford.

[5] Cox, D.R. & Snell, E.J. (1974). The choice of variables
in observational studies, Applied Statistics 23, 51–59.

[6] Dempster, A.P. (1973). Alternatives to least squares in
multiple regression, in Multivariate Statistical Inference,
D.G. Kabe & R.P. Gupta, eds. American Elsevier, New
York, pp. 25–40.

[7] Firth, D. (1991). Generalized linear models, in Statistical
Theory and Modelling: In Honour of Sir David Cox,
D.V. Hinkley, N. Reid & E.J. Snell, eds. Chapman &
Hall, London, pp. 55–82.

[8] Frank, I.E. & Friedman, J.H. (1993). A statistical view of
some chemometrics regression tools (with discussion),
Technometrics 35, 109–147.

[9] Furnival, G.M. & Wilson, R.W. Jr (1974). Regressions
by leaps and bounds, Technometrics 16, 499–511.

[10] George, E.I. & McCulloch, R.E. (1997). Approaches
for Bayesian variable selection, Statistica Sinica 7,
339–373.

[11] Hannan, E.J. & Quinn, B.G. (1979). The determination
of order of an autoregression, Journal of the Royal
Statistical Society, Series B 41, 190–195.

[12] Hosmer, D.W. & Lemeshow, S. (1989). Applied Logistic
Regression. Wiley, New York.

[13] Kass, R.E. & Raftery, A.E. (1995). Bayes factors, Jour-
nal of the American Statistical Association 90, 773–795.

[14] Lawless, J.F. & Singhal, K. (1978). Efficient screen-
ing of nonnormal regression models, Biometrics 34,
318–327.

[15] Leamer, E.E. (1978). Regression selection strategies
and revealed priors, Journal of the American Statistical
Association 73, 580–587.

[16] Leamer, E.E. & Chamberlain, G. (1976). A Bayesian
interpretation of pretesting, Journal of the Royal Statis-
tical Society, Series B 38, 85–94.

[17] Lindley, D.V. (1968). The choice of variables in mul-
tiple regression (with discussion), Journal of the Royal
Statistical Society, Series B 30, 31–66.

[18] Madigan, D. & Raftery, A.E. (1994). Model selection
and accounting for model uncertainty in graphical mod-
els using Occam’s window. Journal of the American
Statistical Association 89, 1535–1546.

[19] Mallows, C.L. (1973). Some comments on Cp , Techno-
metrics 15, 661–675.

[20] Miller, A. (1990). Subset Selection in Regression. Chap-
man & Hall, London.

[21] Nordberg, L. (1982). On variable selection in generalized
linear and related regression models, Communications in
Statistics – Theory and Methods 11, 2427–2449.

[22] Raab, G.M. (1994). Selecting confounders from covari-
ates, Journal of the Royal Statistical Society, Series A
157, 271–283.

[23] Schwarz, G. (1978). Estimating the dimension of a
model, Annals of Statistics 6, 461–464.

[24] Shibata, R. (1976). The selection of order of an
autoregressive model by Akaike information criterion,
Biometrika 63, 117–126.

[25] Stone, M. (1977). An asymptotic equivalence of choice
of model by cross-validation and Akaike’s criterion,
Journal of the Royal Statistical Society, Series B 39,
44–47.

[26] Tibshirani, R. (1996). Regression shrinkage and selec-
tion via the lasoo, Journal of the Royal Statistical Soci-
ety, Series B 58, 267–288.

(See also Shrinkage)

P.J. BROWN



Variance Component
Analysis

Fisher [7] introduced the concept of environmental
and genetic correlations and covariances in 1918.
He assumed that a trait could be influenced by
unmeasured genetic factors transmitted from parent to
offspring in accordance with Mendelian inheritance
(see Mendel’s Laws), and showed that under cer-
tain conditions these factors would result in genetic
components of variation that would make a stable
contribution to population variance. It is also possi-
ble to develop models for environmental components
of variation to represent the effects on trait covaria-
tion of sharing nongenetic factors.

These variance component models can be fitted
to data collected on sets of individuals, generally
referred to as pedigrees. Each pedigree could con-
sist of a single individual on its own, a twin pair, a
nuclear family or a multigenerational kinship. Pooled
pedigrees need not all be of the same size and struc-
ture; see, for example, [9]. Although some methods
for fitting variance components may be applicable
to pedigrees that are “regular”, in that they are all of
the same size and structure (such as twin pairs), more
general methods are needed to analyze data from sets
of “irregular” pedigrees.

Even if a variance component model appears to
give a good or parsimonious fit to the data, this does
not necessarily imply that the hypothesized compo-
nents correctly represent the true causes. The ability
to differentiate the effects of shared (usually unmea-
sured) genes from those of (usually unmeasured)
shared environment is strongly dependent on the
design and the ability to model correctly the putative
causes of familial associations.

A General Model

Within each pedigree, let Y = (Y1, . . . , Yn)
′ be a vec-

tor of possibly dependent measures on a continuous
trait. Let µ = (µ1, . . . , µn)

′ be the vector of con-
ditional trait means expressed as a not necessarily
linear function, f , of measured covariates specified
by a set of parameters α = (α1, α2, . . .)′. Similarly,
for any two individuals i and j , let the covariance
cov(Yi, Yj ) = �ij (β) be a not necessarily linear func-
tion of measured covariates specified by a set of

parameters β = (β1, β2, . . .)′. The covariance matrix
can be modeled in terms of variances and correla-
tions, or the covariances themselves, or it can be
modeled in terms of variance components. It can
also be modeled in terms of path coefficients derived
from path diagrams; although this approach is often
referred to as path analysis, it is essentially the same
as variance component analysis.

A Descriptive Model for Familial
Associations

The covariance between relatives can be modeled by,
for example, letting cov(Yi, Yj ) = σ 2 if i = j , ρsibσ

2

if i and j are siblings, ρPOσ 2 if i and j are parent
and offspring, ρspσ

2 if i and j are a spouse pair, and
so on, where ρsib, ρPO, and ρsp are the correlations
between sibling, parent–offspring, and spouse pairs,
respectively. Note that σ 2 can itself be modeled in
terms of measured characteristics of the individuals,
such as their age and sex. In this case, the expression
above for the covariance must be adjusted to allow
two individuals, i and j , to have different variances
by replacing σ 2 by (σ 2

i σ 2
j )1/2, and allowing σ 2

i and
σ 2

j to depend on those variables.

A Basic Variance Component Model

A basic variance component model is represented by

Yi = µi + Ci + Ei, (1)

where Ci and Ei are independent random variables
with zero mean, and variances σ 2

c and σ 2
e represent-

ing factors common to a group of individuals, and
factors specific to the individual, respectively. That
is, for i, j = 1, . . . , n, cov(Ci, Cj ) = cij σ

2
c , where

cii = 1 and −1 ≤ cij ≤ 1, while cov(Ei, Ej ) = σ 2
e

if i = j , and 0 otherwise. If C and E are indepen-
dent, then cov(Yi, Yj ) = cov(Ci, Cj ) + cov(Ei, Ej ),
and the variance of Y is σ 2 = σ 2

c + σ 2
e . This

model can be extended to include multiple vari-
ance components representing independent familial
factors, C1, C2, . . ., in which case cov(Yi, Yj ) =
cov(C1

i , C1
j ) + cov(C2

i , C2
j ) + · · · + cov(Ei, Ej ), and

the total variance of Y is σ 2 = σ 2
c1 + σ 2

c2 + · · · + σ 2
e .

The model can be extended by letting cij take
different values depending on the characteristics of
the individuals i and j , such as their relationship to
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one another, or whether they actually live together
and for how long, and how often they see each
other. The coefficients cij can also be considered as
parameters, and estimated rather than fixed a priori.
They can also be estimated as a function of measured
variables (see below).

The descriptive model can be represented as a
variance component model as follows: let C repre-
sent factors common to, for example, siblings, so that
cij = 1 if i and j are siblings, otherwise 0. The cor-
relation between siblings, ρsib, is therefore σ 2

c /σ 2.
The variance component E encompasses measure-
ment error, which sets an upper limit on the ratio
σ 2

c /σ 2, “the amount of variation attributed to the vari-
ance component” C.

Note that in the descriptive model above, and in
this simple variance component model, the causes
of familial aggregation need not be specified. The
correlations between relatives, and the variance com-
ponents representing factors common to relatives,
could be caused by genetic and/or nongenetic factors
shared by the relatives.

A More General Variance Component
Model

A more general model that allows interpretation of
variance components is given by

Yi = µi + Gi + Ci + Ei, (2)

where G, C and E are independent with zero mean,
and represent genetic factors, factors common to rel-
atives, and factors specific to an individual (including
measurement error), respectively.

The variance of G, or genetic variance σ 2
g , can be

decomposed into σ 2
a , the additive genetic variance,

representing the additive effects of alleles at a locus,
and σ 2

d , the dominance genetic variance, representing
the nonadditive effects of alleles at a locus [7]. This
applies whether there is one, several or a multitude of
loci influencing the trait. It has traditionally been
used to model the effects of one or more puta-
tive genetic loci that have not been measured, and
is used to make inferences about the existence and
magnitude of genetic etiologies, even though the
genes responsible are not identified. The model can
be extended to include epistasis (see Genotype),
and there are a number of ways of expressing the

genetic correlations and covariances in terms of iden-
tity coefficients. Furthermore, the components of
variance themselves can be modeled as a function
of measured covariates, in particular age and sex.
Variations in the genetic variance with age or, for
example, with geographic location, are consistent
with gene–environment interactions.

The dominance component is difficult to detect in
the presence of additive genetic factors, even with
a large number of observations on relatives (e.g.
twin pairs), because in most designs the correlation
between the estimate of σ 2

a and the estimate of σ 2
d

is typically close to −1 (for an example, see the
section “Statistical Power” below). Although in the-
ory a dominance effect can occur at a single locus
without there being an additive effect [in which case
the heterozygote must be on a different side of the
mean than the homozygote(s)], a polygenic domi-
nance component is implausible without a polygenic
additive component (see Polygenic Inheritance).

Even when there is a “purely” dominant or reces-
sive effect (in that one homozygote and the heterozy-
gote have the same residual value about the mean that
is different to the residual value of the other homozy-
gote) there is both an additive and a dominance
variance component. That is, “dominance variance”
is not the same concept as “dominant inheritance”;
one refers to a variance component and the other to a
pattern of (expected) trait values for given genotypes.
Furthermore, estimates of the dominance component
are strongly confounded with those of a common sib-
ling environment component in most designs.

As indicated above, the environmental variances
that represent the effects of factors common to rela-
tives, C, can be defined in a number of ways. For
example, cov(Ci, Cj ) = σ 2

c if i and j live in the
same household, or 0 otherwise, represents a com-
mon household effect. An effect related to length of
cohabitation and to time spent living apart might take
the form

cov(Ci, Cj ) =
{

σ 2
c (1 − e−λt ), if t ≤ t ′,

σ 2
c (1 − e−λt ′)e−ν(t−t ′), if t > t ′,

(3)

where t represents time measured from when i and
j begin living together possibly up to and beyond
a time t ′, when i and j begin to live apart. The
parameters λ and ν can be allowed to vary across rela-
tionships. Some theoretical justifications have been
proposed [5, 14, 19].
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Example 1: Blood Lead Levels

The lead content of blood was measured in 617
individuals from 80 families of two or three genera-
tions [14, 15]. After extensive descriptive modeling,
which examined the shape of correlations as a func-
tion of type of relationship and ages of pairs, the fol-
lowing model was fitted to the log transformed blood
lead levels: Yi = µi + Gi + C1

i + C2
i + Ei , where G,

C1, C2 and E are independent with zero mean, and
represent additive genetic factors, factors common
to siblings, factors related to cohabitation, and fac-
tors specific to an individual (including measurement
error), respectively, with variance components σ 2

a ,
σ 2

c1, σ 2
c2 and σ 2

e , respectively. For two members i and
j of the same family, cov(Gi, Gj ) = 2φijσ

2
a (i.e. it

is assumed there are no dominance effects so that
σ 2

d = 0), cov(C1
i , C1

j ) = σ 2
s if i and j are siblings,

otherwise 0, and cov(C2
i , C2

j ) follows (3) with t ′ set
at 16 years.

A parsimonious model gave the following esti-
mates (standard errors in parentheses): σ 2

c1 = 0.008
(0.005), σ 2

c2 = 0.037 (0.009), σ 2
e = 0.042 (0.017),

with σ 2
a = 0. [When σ 2

a was fitted it was estimated
to be 0.007 (0.008), justifying its exclusion.] Refer-
ring to (3), the estimates were: λ = 0.072 for par-
ent–offspring pairs, ∞ for sibling pairs, and 0 for
spouse pairs; and ν = 0.140.

The predicted correlations between parent–off-
spring and between sibling pairs based on this fit
are depicted in Figure 1, across the possible range
of cohabitation times and times spent living apart of
pairs of study subjects. For sibling pairs both under 16
years the predicted correlation was (σ 2

c1 + σ 2
c2)/σ

2 =
(0.008 + 0.037)/0.087 = 0.52, where σ 2 = σ 2

c1 +
σ 2

c2 + σ 2
e , while for older sibling pairs the effect

of C1 halved every log 2/ν = 5 years towards the
asymptote σ 2

c1/σ
2 = 0.09. For parent–offspring pairs

the correlation was [1 − exp(−0.072a)]σ 2
c1/σ

2 for
offspring of age a, being 0.22 for a = 10, and
peaking at 0.30 for a = 16, then halving for every
5 years thereafter. When sibling correlations were
estimated from pairs of specific ages they were about
0.5 for siblings aged 11–18, 0.2 for siblings both
aged 30 or older, and 0.1 for siblings both over the
age of 50, in general accord with the predicted values
displayed in Figure 1.

The factor C can also be used to represent mea-
sured genetic factors. Suppose a genetic marker is
measured using DNA from individuals i and j ; an
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Figure 1 Predicted values of correlation in blood lead
levels as a function of years, t , since cohabitation began,
based on the fitted model. For sibling pairs, t is the age
of the younger sibling, while for parent–offspring pairs t

is the age of the offspring. It is assumed that individuals
live in the same household as their parents up until the age
t ′ = 16 years. Reproduced from [16] with permission from
Blackwell Science

additive effect could be modeled by cov(Ci, Cj ) =
σ 2

c if i and j share both alleles, 1
2σ 2

c if i and j

share one allele, 0 otherwise, so that trait similar-
ity is equated with the number of shared alleles [14,
17, 25]. By considering sharing of alleles both within
and across pedigrees, in which case alleles are said to
be shared “identity-by-state”, the factor C represents
a random association effect. If i and j are in the same
pedigree, then it may be possible to determine how
many of the alleles are shared identical-by-descent
(ibd), or at least the probability that 0, 1 or 2 alle-
les are shared ibd. With cij equal to either half the
observed number of alleles shared ibd, or half the
expected number based on the probabilities, the fac-
tor C represents a random linkage effect (see below).

A Model for Twin and Family Data

Data from pairs of monozygous (MZ) and dizygous
(DZ) twins can be used to test if there is evidence for
a genetic component of variance, under the assump-
tions of the classic twin model (see Twin Analysis).
By including data from relatives of the twins, or by
supplementing the twin data with data from nontwin
families, more critical assessment can be made of
the underlying causes of familial aggregation. For
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example, the coefficients of a common environment
component can be defined by cij = 1 if i and j are
members of the same twin pair, irrespective of zygos-
ity (see Zygosity Determination), csib if i and j

are siblings, cpo if i and j are a parent–offspring
pair, csp if i and j are spouse of one another, etc.
Unlike Fisher’s model for the genetic components of
variance, which are defined in terms of the identity
coefficients, there is no established model for the rela-
tionship between these environmental coefficients,
csib, cpo, csp, . . . . Nevertheless, within the limitations
of the design, the coefficients can be estimated [9].
This model presumes that the common environment
effects are strongest within twin pairs, and the effects
within other pairs of individuals are the same, or
a proportion of, those effects. If, for example, the
correlation within spouse pairs is more than can be
explained by this parameterization of a common envi-
ronment, then the model may not be realistic (e.g.
there could be spouse-specific effects not shared by
twins or other relatives), or there could be effects of
assortative mating.

Example 2: Height

Height was measured in 2959 adult individuals in 783
families, including 89 MZ and 86 DZ twin pairs [9].
Figure 2 shows that the correlations for age- and
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Figure 2 Correlation coefficients and their standard errors
for the following pairs of family members: spouse–spouse,
parent–offspring, nontwin siblings, DZ twins, MZ twins for
height, Victorian Family Heart Study, 1990–1996. Repro-
duced from [9] by permission of Oxford University Press

sex-adjusted height. Independent of the sex of the
parent or offspring, or the sexes of sibling pairs,
the correlations in parent–offspring pairs were no
different to the sibling correlations with all estimates
in the range 0.4–0.5. The correlation in DZ pairs
was 0.6 (standard error about 0.1). For MZ pairs the
correlation was more than 0.9, adhered closely to the
pattern anticipated under a model that attributes most
familial aggregation to additive genetic factors with a
small component to shared environment, and includes
assortative mating (the correlation in spouse pairs was
0.4). After taking into account assortative mating [7],
55% of variance was attributed to additive genetic
factors, 15% to the effects of environmental factors
common to siblings, twins and parent–offspring pairs
while they cohabited in the past, and the remainder
to effects specific to individuals.

Estimation, Statistical Inference and
Model Fitting Under Multivariate
Normality

Least squares analysis of variance (ANOVA), max-
imum likelihood and Bayesian methods have all
been used to estimate variance components from
samples of pedigrees [11, 12, 23, 31]. For simple bal-
anced or “regular” designs, such as collections of twin
pairs, the mean squares between and within pairs are
sufficient statistics to estimate variance components.
For more complex pedigree structures and unbal-
anced designs, ANOVA-type methods do not use the
data efficiently and have unknown sampling proper-
ties, so that maximum likelihood (ML) methods are
usually preferred because of the desirable asymptotic
properties of estimates.

Perhaps the most flexible and practically useful
approach, given the current wide availability of high-
speed computers, assumes that Y has an n-variate
normal distribution with mean µ and variance–co-
variance matrix �, and uses ML estimation to simul-
taneously estimate mean and (co)variance parame-
ters [23, 31]. Within a pedigree, the log likelihood
(LL) of the observed values y = (y1, y2, . . . , yn)

′ is,
to a constant,

LL = − 1
2 log |�| − 1

2 (y − µ)′�−1(y − µ), (4)

where µ is a function of fixed effects parameters
α and the covariance matrix � defined by a set of
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parameters β. For a sample of k independent pedi-
grees, not necessarily of the same size and structure,
asymptotically unbiased parameter estimates can be
obtained by maximizing the sum of LLs over all pedi-
grees. Asymptotic standard errors can be calculated
from the inverse of the observed information matrix.
The (Fisher) information matrix contains minus the
second differentials of LL with respect to the param-
eter estimates. A choice between nested models, the
selection of a parsimonious model, and hypothesis
testing can be carried out using the likelihood ratio
criterion.

Typically the size of pedigrees is of the order
of 2 to 20, and small relative to the total number
of pedigrees, which is often in excess of 100. In
such instances the negative bias in ML estimates
of variance components is small, even when within
pedigree correlations are large.

The ML estimation of variance components in
effect assumes that the fixed effects are known with-
out error, which leads to biased estimates of the
variance components. [In the simplest case of Yi =
µi + Ei and n observations, the ML estimate of
σ 2

e is
∑

(y − y)2/n, which is biased by a factor of
n/(n − 1).] When the number of observations is large
relative to the number of fixed effects or covariates
to be estimated, this bias is small. In residual (or
restricted) maximum likelihood (REML) [27], only
the part of the likelihood that is independent of fixed
effects is maximized, by taking into account the loss
in degrees of freedom by estimating fixed effects.
In balanced designs, REML estimates are identical
to ANOVA estimates of variance components. For
the analysis of samples from human populations, the
number of covariates is usually small relative to the
number of observations, so that the use of either ML
or REML is likely to lead to the same statistical
inference.

Transformation of Data

In order to apply the above methodology, the
distribution of the residuals about the mean µ

must be approximate multivariate normal. If this
condition is not satisfied, then it may be after
scale transformation and modeling of the mean,
for example using a power transformation [3].
Transformation may have other desirable properties,
such as stabilizing the variance.

Tests of Fit and Detection of Outliers

Under a fitted model, the observed trait of an indi-
vidual can be compared with its expected distribution
independent of, or conditional on, all or a subset
of the observed traits of other individuals in the
pedigree [14, 16]. The conditional residuals can be
orthogonally transformed to approximately indepen-
dent univariate normal variates. These can reveal
potential outliers, and such individuals may have trait
values that are typical for the population but atypical
given the trait values of their relatives and the patterns
of within-family associations evident in the pooled
data. Goodness of fit can be assessed by comparing
the overall distribution of these residual variates with
the standard normal distribution, and by examining a
plot of expected vs. observed normal order statistics.

Outlying pedigrees may be identified by noting
that, after replacing µ and � by their estimated
values, the observed quadratic form for a pedigree,
Q = (y − µ)′�−1(y − µ), has an approximate χ2

distribution with n degrees of freedom. For each
pedigree, P = P(χ2

n > Q) should have a uniform
distribution on [0, 1]. An excess of small values for
P can be detected by counting the number of values
less than a particular cutpoint, e.g. 0.1, 0.05 or 0.01,
and comparing with the binomial distribution defined
by the number of pedigrees and the cutpoint [2]. The
detection of outliers is important not only because
of the implications for valid statistical inference, but
also because of the potential biologic insights that can
follow, e.g. evidence for a genetic locus with a major
influence.

Robustness of Statistical Inference

It is well known that outliers can be masked when
estimation is based on normal theory, under which
standard tests on means are influenced by skewness
while tests on variances are influenced by kurtosis.
Departures from normal theory influence statistical
inference on the genetic regressions between rel-
atives [4]. Under non-normality, ML estimates of
components of variance and correlation are robust
in the sense of being not greatly biased, but are
inefficient [29]. Standard errors are under- or over-
estimated when there is positive or negative kurtosis,
respectively [30].

One robust approach to calculating standard errors
for variance components is based on the observed
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covariance matrix of the score vectors [1]. Although
the likelihood ratio test is not robust, the score test
may be modified using a consistent estimate of the
variance to allow hypotheses regarding specific com-
ponents to be tested without relying directly on the
assumption of multivariate normality.

Other robust procedures exist. One involves down-
weighting observations with large standardized resid-
uals [18]. Another involves replacing the multi-
variate normal distribution by a multivariate t

distribution [22]. In theory this approach can be
extended to other non-normal distributions, including
nonsymmetric ones.

Adjustment for Ascertainment

If pedigrees are sampled (ascertained) through one
or more individuals (probands) with particular fea-
tures, e.g. having an extreme value on the trait, then
the data are no longer a random sample (see Ascer-
tainment). Suitable adjustments must be made to
avoid major biases in estimates. One approach is to
maximize the LL conditional on the observed trait
value of proband p, yp , LLc = LL − LLp, where
LL is given by (4), µp is the expected mean, and
LLp = − 1

2 log |Ω| − 1
2 (yp − µp)2/σ 2. However, if it

is known that probands have trait values above a
given threshold, or have been selected by a specific
criteria, then the conditional LL should reflect that
information. This may be problematic in practice,
however, because it would necessitate computation of
an area under the multivariate normal density. Condi-
tioning on the observed value of a proband can lead
to biased estimates if probands are selected under
specific criteria [2, 6].

Estimability

An important issue in the estimation of multiple
(co)variance parameters is whether there is sufficient
information to estimate each parameter. Although
models containing a number of components can be
specified, the components may not be identifiable
from a given data set. For example, from twin data
alone it is not possible to estimate uniquely σ 2

a , σ 2
d ,

σ 2
c and σ 2

e , where σ 2
c represents the variance due

to common environmental effects shared by twins
independent of their zygosity, under the classic twin
model. Often lack of identifiability is obvious from

the design, or becomes evident during model-fitting
computations due to matrix singularities, or by cor-
relations between estimates being close to −1. Prob-
lems arise, however, when researchers ignore realistic
components, or model them simplistically or poorly.

Perhaps the most important issue is the confound-
ing between the additive genetic factor and a shared
environment factor. For both these factors, theoreti-
cal considerations and common sense predict that the
associated correlation between relatives will decrease
the weaker is their relationship to one another. Often
model fits attribute this pattern of correlations in
pedigree data to a genetic, rather than a shared envi-
ronment, component. This could be a consequence of
the genetic model predicting a more detailed pattern
of correlations within a pedigree than that predicted
by the usual simplistic model of the shared features
of the environment (such as a dichotomous “common
family” or “common household” effect, presumed
to be independent of the age, sex, cohabitational
status, etc. of pedigree members). The classic twin
model, where any increase in the MZ pair correla-
tion over the DZ same-sex pair correlation can only
be attributed to genetic effects, is an extreme case of
this bias. There are a number of other reasons why
the typical modeling paradigm used historically to fit
genetic and environmental components of variance
to twin data tends to conclude that familial aggrega-
tion is due to genetic factors, and not to the effect of
shared environment [13].

Note that if it is presumed that common environ-
ment effects do not exist, then the standard error
of the genetic component(s) of variance will be
greatly reduced from what they would be if it was
assumed that common environment effects do exist,
even though they may not be nominally statistically
significant. For example, consider the classic twin
model and suppose there exists a common environ-
ment effect even though it may not be highly likely
to go undetected given the sample size. When fitting
both an additive genetic component and a common
environment component, the estimate of σ 2

a is based
on twice the difference in covariance between MZ
and DZ pairs. Its standard error must be greater than
the sum of the standard errors of the MZ and DZ
covariance estimates. If, instead, it is assumed that
there is no common environment effect, then the esti-
mate of σ 2

a is based on a weighted pooling of the MZ
and DZ covariance estimates, and will therefore have
a considerably smaller standard error.
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For human traits for which it is known that envi-
ronment or lifestyle factors influence the mean values,
and that these factors are themselves familial (i.e.
correlated in individuals within families), it would
be hard to argue that there are definitely no effects
of common environment on variation in trait val-
ues across the population. Furthermore, real devia-
tions from the assumption of the effect of common
environment is independent of zygosity (in that MZ
pairs actually share those effects more strongly than
DZ pairs) will result in overestimating the additive
genetic component, and consequently underestimat-
ing the common environment component and making
it more likely to be “not significant”. Therefore it
would seem prudent always to quote a confidence
interval for the genetic component, or for the heri-
tability, by reference to the fits of a variance com-
ponents model that included a common environment
effect, even if the estimate of that variance component
were negative.

A negative estimate of a variance component
designed to represent factors causing similarities
between individuals may occur if, in reality, there are
factors causing dissimilarities between individuals.
The existence of such “competition” effects has been
recognized in behavioral studies, where for exam-
ple outgoing or extroverted behavior in an individual
may induce introverted behavior in a close relative.
Note, however, that many software packages that esti-
mate (co)variance components using ML have inbuilt
constraints that allow only positive-definite covari-
ance matrices. With these packages one would not
be able to observe a negative estimate of a variance
component.

Analysis of Multivariate Traits

The likelihood framework is easily extended to mul-
tiple traits, allowing the estimation of genetic and
environmental correlations and covariances between
traits [20]. The main difficulty regarding multitrait
analysis is computational, because many parameters
are estimated and they may be strongly negatively
correlated. For an analysis of k traits and I random
effects per trait, a total of l ∗ k(k + 1)/2 parameters
are estimated.

Another approach to considering the genetic and
environmental links between multiple traits is to con-
duct a univariate analysis of a “primary” trait, and

to fit the effect of one or more “secondary” traits as
fixed effects on the mean of the primary trait. As each
secondary trait is entered into the equation represent-
ing that mean, the residual variance will decrease.
The extent to which the genetic or environmental
components of variance decrease reflects the path-
ways through which the secondary trait(s) influence
the primary trait. The approach of adjusting the mean
of a trait for different factors and observing the rel-
ative reductions in variance components can also be
applied to multivariate analyses.

Example 3: Bone Density and Lean Mass

Hip bone density and lean mass were measured
in 56 MZ and 56 DZ female twin pairs [28]. After
adjusting mean bone density for age, the correlation
(standard error in parentheses) was 0.62 (0.08) in
MZ pairs and 0.33 (0.11) in DZ pairs. When a
variance component model was fitted the estimates
were 109 for σ 2

a and 65 for σ 2
e (for this exercise,

σ 2
c was set at zero). After adjusting mean lean mass

for age, the correlations were 0.87 (0.03) and 0.30
(0.11) for MZ and DZ pairs, respectively, and the
same variance component modeling gave estimates
of 17.4 and 2.5 for σ 2

a and σ 2
e , respectively. After

also adjusting mean lean mass for height, the variance
component estimates became 8.6 and 2.2 for σ 2

a and
σ 2

e , respectively, indicating that about half the genetic
variation in lean mass for age was explained by the
association between lean mass and height.

The (cross-trait) correlation between age-adjusted
hip bone density and age-adjusted lean mass in the
same individual was 0.43 (0.06). The (cross-trait
cross-twin) correlation between these two measures
in different members of a twin pair was 0.31 (0.07)
in MZ pairs and 0.09 (0.09) in DZ pairs (one-
sided P value = 0.05). This is consistent with about
75% of the covariance between the two traits being
attributable to genetic factors that influence variation
of both traits.

After adjusting the means of both traits for height
as well as age, the cross-trait correlation reduced to
0.26 (0.07), suggesting that about 40% of the original
within-person association between the two traits was
explained by their height being associated with both
traits. The cross-trait cross-twin correlations, how-
ever, were no longer different between MZ and DZ
pairs, becoming 0.16 (0.08) and 0.13 (0.09), respec-
tively. This suggests that, after also adjusting for



8 Variance Component Analysis

height, genetic factors no longer explained the resid-
ual correlation between hip bone density and lean
mass. Furthermore, the genetic factors that explained
the original association between the two age-adjusted
traits must be associated with height.

Variance Component Linkage Analysis

Fisher introduced the concept of variance, and its
partitioning into causal components, partly to sepa-
rate unmeasured genetic from unmeasured nongenetic
sources of variance [7]. With the advent of molecular
genetics, it is now possible to decompose the genetic
variance further, in contributions from individual loci
[quantitative trait loci (QTL)]. The above theory and
estimation procedures readily lend themselves for
this extension. The essence of detection of a QTL
is that observed proportions of alleles shared ibd at
genetic marker loci are used instead of (co)variances
among relatives based upon the expected proportion
of alleles shared ibd. This allows the estimation of
within-family genetic variance and therefore the par-
titioning of genetic variance into components due
to individual trait loci. One way has already been
described above as the last example of a More Gen-
eral Variance Component Model.

Haseman & Elston [10] proposed a simple least-
squares method to detect linkage between a QTL
and a marker locus for collections of sibling pairs,
essentially by estimating a variance component asso-
ciated with a marker locus. For each pair of sib-
lings i and j , let Zi = Yi − µi and Zj = Yj − µj ,
and use all pairs to fit the linear regression model
(Zi − Zj )

2 = a + bπij , where πij is the proportion
of alleles shared ibd between individuals i and j ,
at a marker locus. For a fully informative marker,
π takes the values 0, 1

2 or 1. The expected value
of the regression coefficient is b = −2(1 − 2θ)2σ 2

q ,
where θ is the recombination fraction between the
marker and QTL, and σ 2

q the variance component
due to the QTL. ML variance component methods
have subsequently been proposed for linkage analy-
sis in sib pairs and in more complex pedigrees [32].
The mixed linear model [(3)] is readily extended to
incorporate random QTL effects. The difficulty in
estimating QTL variance for complex pedigrees is in
deriving the probabilities of sharing 0, 1 or 2 alleles
ibd for all pairs of members within a pedigree from
multiple marker loci, when individual marker loci are

not fully informative and when marker genotypes are
available on a subset of the pedigree only.

Statistical Power

The statistical power of a balanced random-effect
ANOVA design to estimate variance components has
been addressed [24] by assuming a general random-
effect model and considering the test statistic F =
MSx/MSy , where MSi is the mean squares for stra-
tum i. Let n(x) and n(y) be the degrees of free-
dom pertaining to each stratum. Then, to obtain a
power of (1 − β), a sample size is needed such that
Fn(x),n(y),[1−α] = [E(MSx)/E(MSy)]Fn(x),n(y),[β].

As a simple example, consider a sample of n

pairs under the basic variance component model Yi =
µi + Ci + Ei given by (1), with cij = 1 for all i, j =
1, 2. Assume that Ci ∼ N(0, σ 2

c ) and Ei ∼ N(0, σ 2
e ),

and let c2 = σ 2
c /(σ 2

c + σ 2
e ). The test statistic F =

MSC/MSE is distributed as F ∼ [1 + 2c2/(1 −
c2)]Fn−1,n, and the power of the test is Pr[F(n−1),n >

(Fn−1,n,[1−α])/(1 + 2c2/(1 − c2))].
Another approach is to consider the ML esti-

mate of the correlation between two traits, Pearson’s
product moment correlation coefficient, r . When esti-
mated from n pairs, r estimates c2 and has an asymp-
totic variance of (1 − r2)2/(n − 1). The sampling
distribution tends to normality slowly, so that even if
the two traits follow a bivariate normal distribution
the distribution of r is not normal, especially if the
true value correlation is close to 1 or −1 when it has
substantial skewness. The Fisher z-transform, z =
1
2 log[(1 + r)/(1 − r)], has an approximate variance
1/(n − 3) and a distribution that tends to normal-
ity rapidly as the sample size increases, irrespective
of the true value of r . Provided the true values of
r is between −0.4 and 0.4, there is little difference
between r and z (i.e. if r = 0.4, z = 0.42), but as r

increases in absolute value, the difference increases
rapidly (i.e. if r = 0.6, z = 0.69, and if r = 0.8, z =
1.10). For 80% power at the 0.05 level of significance
(one-sided) the true value must be 2.45 times the stan-
dard error of the test statistic. Therefore, at least for
true correlations or values of c2 in the range of −0.4
to 0.4, a sample size of about n = (2.45/c2)2 + 3 is
needed (compare with Table 1).

That is, the number of pairs required is small if the
correlation between members of the pairs is large, or
equivalently if the variance component representing
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Table 1 Number of pairs, n, needed to detect a variance
component that explains the proportion c2 or more of total
variance, or a correlation between members of the pair of
r , with 80% or more power at the 0.05 level of significance
(one-sided)

c2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
n 617 152 66 36 22 15 10 7 5

effects common to the pair is large relative to the
overall variance. When the correlation is small, which
may particularly apply to effects of a QTL, the sample
size to detect even a substantial variance component
can become very large.

For the classic twin model, let the sample size
be sufficiently large that the total variance, σ 2,
is estimated with negligible error. Let A and C

be the estimates of a2 = σ 2
a /σ 2 and c2 = σ 2

c /σ 2,
respectively so that A = 2(rMZ − rDZ) and C =
2rDZ − rMZ [and the correlation between A and C

is −(0.9)0.5 = −0.95]. Given that the twin pairs
are independent, however, the standard errors of A

and C are 2[var(rMZ) + var(rDZ)]0.5 and [4var(rDZ) +
var(rMZ)]0.5, respectively. (Note that most of the
variance of C comes from the variance of rDZ, which
can only be reduced by increasing the number of
DZ pairs.) Let the correlations within both MZ and
DZ pairs be < 0.4, say, and let there be the same
number, n, of MZ pairs as there are DZ pairs, so
their sampling variances are each approximated by
1/(n − 3). The standard error of A is then about
2.83(n − 3)0.5, and the standard error of C is about
2.24(n − 3)0.5. Therefore, if c2 is zero or small, one
would need more than 4800, 1200, 500 or 300 pairs
of each zygosity to detect values of a2 = 0.1, 0.2,
0.3 and 0.4, respectively. Similarly, if a2 is zero or
small, one would need more than 3000, 750, 330
or 200 pairs of each zygosity to detect values of
c2 = 0.1, 0.2, 0.3 and 0.4, respectively. Conversely, if
n = 1000, say, and the true situation is that a2 = 0.3
and c2 = 0.2, then the standard error of A will be
about 0.09 and the standard error of C about 0.07,
so there would be about 95% power of detecting the
additive effect, and about 90% power of detecting the
common environment effect. If n = 100, the standard
errors would be 0.29 and 0.25, respectively, and the
powers would be reduced to about 25% and 20%,
respectively. That is, failure to detect evidence for a
genetic effect, or for a common environment effect,
must be interpreted carefully after consideration of

sample sizes. For a further discussion of power in
twin studies, see [26].

Statistical Software Packages

There are a great many statistical packages capa-
ble of being used for variance component analy-
sis in general. For specific applications to pedigree
data, the multivariate normal model can be fitted
by ML using the program FISHER [21]. REML
can be fitted using ASREML [8]. Mx is specifically
written for structural equation modeling of pedi-
gree data, in particular for regular designs [26]; see
[http://views.vcu.edu/mx].
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Variance Components

In a simple random sample, one observation is made
on each of a number of separate individuals and the
variation is assumed to be represented by independent
and identically distributed random variables, one for
each individual. This forms the basis of regression
and other models widely used in biostatistics. How-
ever, there are two ways in which the assumption
of a single random component corresponding to each
individual might fail to be adequate. In the first, the
random variation may have a more complex structure
arising from several identifiable sources. The varia-
tion is then considered to have multiple components,
which we call components of variance. This is the
classical field of variance components and has a long
history dating from the nineteenth century. The sec-
ond way in which the assumption can fail is when the
parameters describing the systematic part of the varia-
tion may themselves change randomly, for example,
between individuals or groups of individuals. This
forms the basis of hierarchical or multilevel model-
ing in which the emphasis is on computer intensive
methods for handling unbalanced or nonnormal data.

We begin this article with three examples to illus-
trate the key concepts and objectives involved in
variance component analysis. Example 1 presents the
simplest situation of the balanced one-way model.
Example 2 describes a more complex model for
microarray data, which involves nesting and cross-
classification and helps distinguish these features.
Examples 1 and 2 are classical variance component
models. Example 3 outlines a linear random effects
regression for a marker of HIV/AIDS disease and is
an example of a multilevel model.

Example 1 One-way balanced model. Consider a
group of patients, each of whom has a ‘true’ value of
cholesterol say, or blood pressure, denoted by µj ,
j = 1, . . . , nJ . For each patient, one measurement
is made by a conditionally unbiased method; this
means that for a given patient, µj has corresponding
observation Yj = µj + εj , where the random term
εj has mean zero and variance σ 2

ε . We call σ 2
ε the

component of variance within patients, which usually
represents sampling or measurement error or some
such.

Suppose now that the nJ patients are to be
regarded as a random sample from a hypothetical

infinite population of patients of true mean µ. This
situation could arise, for example, in a clinical trial
in which a homogeneous group of patients has been
randomized to a treatment and interest centers on
the efficacy of that treatment. The mean for patient
j becomes a random variable, which can be written
as the sum of the overall population mean, µ, and an
independent random contribution from the patient, ξj .
This gives Yj = µ + ξj + εj , where ξj has mean zero
and variance σ 2

ξ . The latter is called the component
of variance between patients. It follows that the vari-
ance of Y is the sum of two components, σ 2

ξ + σ 2
ε ,

which are not separately estimable without either an
external estimate of σ 2

ξ from other studies or repeated
measurements on each patient.

Suppose that several measurements are made on
each patient for whom the response is assumed to
remain stable. This gives observations

Yj = µ + ξj + εjs (1)

in which nS , s = 1, . . . , nS , repeat observations are
nested within patients. This means that observation
1 on patient i is assumed to have no special con-
nection with observation 1 on a different patient k,
and so on. The simplest situation assumes that all
the random variables ξ and ε are mutually uncorre-
lated, but such an assumption should not be made
uncritically. For example, errors would be uncorre-
lated if repeated samples were taken from a patient,
homogenized, then split into nS subsamples. Many
such considerations relate to the design of the inves-
tigation.

This is the balanced one-way model in which
there are two components of variance, between-
patients and within-patients, each with zero mean.
The random variables are usually, although by no
means necessarily, assumed independently normally
distributed. Repeat observations for a randomly cho-
sen patient are correlated in the one-way model with
intraclass correlation coefficient ρ = σ 2

ξ /(σ 2
ξ + σ 2

ε ).
This is a dimensionless measure and such measures
are in general useful for formal inference, such as in
genetics, but the variance components themselves are
more informative as a basis for comparing the spread
between and within patients.

Some statisticians prefer to represent variance
component models via covariance matrices rather
than random variables. The covariance matrix of the
full nJ nS × 1 random vector formed by stacking the
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rows of {Yjs} into a single column is a block diagonal
matrix of the form

(τξJnS
+ τεInS

) ⊗ InJ
= τξUξ + τεUε, (2)

where ⊗ denotes the Kronecker product [27], and
InS

and JnS
are the nS × nS identity matrix and

the matrix all of whose elements are one, respec-
tively; Uξ , Uε are associated matrices connected with
indicator matrices defining the contribution of the
component random variables to the observations (see
Matrix Algebra). This formulation paves the way
for a very general version with each separate com-
ponent of variance identified with its own associated
matrix. For interpretation and inference, however, we
regard the representation in terms of component ran-
dom variables as primary and this is the focus of the
present article.

Example 2 A model for cDNA microarray data
(see DNA Sequences). In cDNA microarrays, known
single-stranded DNA clones are robotically spotted
out and fixed onto a glass microscope slide. At the
same time, two mRNA samples from the cell popu-
lations to be compared are reversed transcribed into
cDNA and separately labeled with dyes, usually red
(Cy5) and green (Cy3). The two labeled targets are
mixed together and applied to the microarray slide.
During hybridization, single strands in the target solu-
tion competitively combine with their complementary
base-pair nucleotide sequences spotted on the slide.
The relative intensities of red and green at a spot are
extracted by image processing the scanned microar-
ray images. The motivation for the technique is that
the mRNA in the original cell sample reflects which
genes are being used by the cell, and that the intensity
ratio at a spot is a measure of the relative abun-
dance of that gene in the two samples. The intensity
ratios are usually adjusted for background noise on
the slide, normalized to remove systematic sources of
variation, transformed to log base 2 to induce approx-
imate normality and additivity of effects, and denoted
by the random variable M . For a detailed description
of the biological and technical background, see [29].

In a study of osteoarthritis, n bone samples from
diseased patients are compared to n bone samples
taken from the same site in nondiseased control
cadavers. The aim of the investigation is to iden-
tify which genes are differentially expressed in the

osteoarthritis and control bone samples. In a simpli-
fied situation, the patients are assumed to be homo-
geneous for the risk factors age and sex. There is
no shortage of slides so each case i is hybridized
with each control j , m times. Replicates are assumed
to be independent. One model for the observed log
intensity ratio for gene g is

Mgijk = µg + ξD
gi + εD

gi − ξN
gj − εN

gj + εgijk, (3)

where µg represents the true mean difference in
expression of gene g in the two samples and all
the remaining terms are independent random vari-
ables with zero means. In particular, ξD

gi and ξN
gj are

crossed random effects specific to the diseased and
control individuals with variances σ 2

gξD and σ 2
gξN ,

respectively. The random variable εD
gi is an error term

with component of variance σ 2
gεD specifically associ-

ated with the ith diseased case and believed to arise
from random errors accumulating through the mRNA
extraction, amplification, and labeling steps prior to
hybridization; σ 2

gεN is the analogous component of
error for the j th control sample. Finally, εgijk is the
measurement error associated with the hybridization,
scanning and image processing of patient i with con-
trol j and is assumed to have variance σ 2

gε for gene
g. The k replicates across slides are nested within the
disease-control classification (i, j ). The variance of
Mgijk is then

var(Mgijk) = σ 2
gξD + σ 2

gεD + σ 2
gξN + σ 2

gεN + σ 2
gε.

(4)

In practice, it may not be feasible to estimate
the separate components of variance in the model,
not least because many sources of systematic and
random variation in microarray experimentation are
still not well understood. In this example, it would
be adequate for determining differential expression
to combine the sources of error into a single vari-
ance component term corresponding to the variability
between log intensity ratios across slides for gene g.
This illustrates an important general point that it is
often adequate to use a model in which many sources
of error are combined into a single variance term.

Microarray data analysis is receiving increasing
attention from statisticians. Speed and Yang [44] are
among the first researchers to critically examine the
assumption of independent random variables and
replication in this context.
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Example 3 A random effects regression model. Sup-
pose that a marker of disease progression such as log
viral load or CD4 cell count in individuals infected
with HIV varies roughly linearly over time in each
individual. An initial analysis might be reasonably
based on a linear regression with time, in which each
individual j has intercept and slope parameters β0

and β1, that is,

Yjt = β0 + β1xt + εjt . (5)

(see Nonlinear Mixed Effects Models for Longitu-
dinal Data).

However, a cohort of infected individuals would
be very unlikely to have the same parameters. The
next step might then be to regard the intercept and
slope as responses regressed on individual character-
istics, or to consider models in which the parameters
themselves have random structure; that is, to model
the slope for individual j as β1j = β1 + ξ1j , where
β1 is the mean slope and ξ1j is a random term,
and similarly for the intercept, which we write as
β0j = β0 + ξ0j . In this model, interest focuses on
the magnitudes of the random variation of individual
responses about their regression line, in the variation
in the intercepts and slopes, as well as on explana-
tory determinants of the regression parameters. The
random effects themselves are often assumed to be
normally distributed although it may not be possible
to test the assumption, and it will nearly always be
essential to allow these random terms to be correlated
so that σ 2

ξ denotes the covariance matrix of (ξ0j , ξ1j ).
These ideas generalize to nonnormal response data
and to binary logistic regression models in particular.

There are only really two key ideas involved in
these examples and in variance component problems
generally. The first is the distinction between nesting
and cross-classification. This is a qualitative rather
than a statistical issue, and is to do with the design
and logical structure of the data under study and
not with any probabilistic or distributional model
assumptions (see Experimental Design). The second
key idea is statistical: are we going to treat the levels
of factors as intrinsically interesting (i.e. as fixed
effects) or are the factors to be regarded as random
variables (i.e. as random effects) where interest
might be in their variances? For example, in genetics,
an investigator may want to partition the variability
into environmental versus inherited components (see
Twin Analysis).

Both dichotomies are subject-matter considera-
tions. There are some general principles, which can
be helpful in deciding whether a factor should be
regarded as fixed or random. If the levels of a fac-
tor are treatments, for example, different therapies for
breast cancer, they would usually be treated as fixed
effects. Exceptions arise, such as in a clinical trial
comparing the effects of many antibiotics.

The key to variance component analysis is to build
models that represent different situations and explain
levels of variability that are plausible approximations
of what we actually observe. The motivation may be
intrinsic interest in the variance components them-
selves, such as in a comparison of different measuring
techniques, or on estimating the precision of the mean
or other model parameters. Alternatively, the moti-
vation may be the design of further studies via a
synthesis of variance, which we discuss below.

History

The idea of partitioning variability can be traced
at least as far back as Airy’s interest in errors of
measurement in astronomy [1]. The more recent sys-
tematic study of splitting variation into components
dates from R.A. Fisher’s introduction of the analysis
of variance; his original motivation was to improve
on the intraclass correlation. There followed periods
of intense activity during the last century in bio-
metrical genetics as described by Bulmer [6] (see
Polygenic Inheritance), in the analysis of variability
in industrial processes dating from the 1930s work
in the cotton industry by Tippett [46] and in the
wool industries by Daniels [12], and on error struc-
tures especially in randomized experimental designs
in the 1950s [8]. Eisenhart made explicit the dis-
tinction between fixed and random interpretations of
an analysis of variance and introduced this terminol-
ogy [13].

Much of the early work dealt with balanced data.
Henderson, in a long series of papers starting in
the 1950s, gave noniterative methods for handling
unbalanced data based on equating suitable quadratic
forms to their expectation [18, 19]. This more intu-
itive approach has now largely been replaced by
likelihood-based methods. Hartley and Rao [17] gave
a general matrix formulation and maximum like-
lihood estimation for the unbalanced linear model.
The important subsequent generalization of maxi-
mum likelihood to REML (reduced, restricted or
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residual maximum likelihood, which we discuss in
the next section) for unbalanced data was developed
in detail by Patterson and Thompson [30]. Searle
et al. [38] provide a very detailed and systematic
account of the normal theory formulations and the
associated matrix algebra for balanced and unbal-
anced data. Rao gives a broad account of normal
theory aspects too [35]. Rao and Kleffe [34] empha-
size the point estimation of variance components
using quadratic error loss, and we discuss this and
other methods of estimation in the next section.

Variance component problems with discrete re-
sponse data have a long history going back to
the Lexis urn models of dispersion associated with
the binomial distribution; see, for instance, [20]
(see Overdispersion). For an early paper on the
beta-binomial distribution, see [40]. Greenwood
and Yule [16] derived the negative binomial
distribution as a Poisson distribution with an
additional source of variation in connection with
an analysis of accidents to London bus drivers
(see Accident Proneness). Anscombe [2] compared
the theoretical properties of various methods of
estimation of its parameters. Cox [9] proposed simple
methods for variance components in multiplicative
models for Poisson variables.

The literature on multilevel modeling has
been steadily growing over the past decade and
is now very large. See Goldstein [15] for a
thorough discussion. In addition to the references
already mentioned, Snijders and Bosker [41] contains
important computational work and guidance for
fitting random effects and other models and Verbeke
and Molenberghs [48] give an extremely thorough
account of linear mixed models. McCulloch and
Searle [28] discuss generalized, linear, and mixed
models as do Fahrmeir and Tutz [14]. Pinheiro
and Bates [32] focus on nonlinear normal theory
models (see Nonlinear Mixed Effects Models for
Longitudinal Data).

Variance components arise implicitly or explic-
itly in many problems in sampling and experimental
design. Important applications include industrial pro-
cesses and reliability studies, genetics, animal and
plant breeding, econometrics, the design and analysis
of interlaboratory standardization trials, epidemiol-
ogy, psychometric testing, and education. Khuri and
Sahai [23] review developments in variance com-
ponents analysis to the mid-1980s and include a
comprehensive bibliography, and a recent issue of

Statistical Methods in Medical Research was devoted
to variance components [42].

Estimation

The most important and often most difficult issue
in variance component problems is the appropriate
formulation of a model, or equivalently, the formu-
lation of an analysis of variance table. We begin
with the simplest situation described in Example 1.
It is well known from the analysis of variance that
for balanced systems, there are parallel orthogonal
decompositions of the data vector, of sums of squares
of the components, and of the degrees of freedom.
The observation vector is decomposed into orthogo-
nal components as

Yjs = Y .. + (Y j. − Y ..) + (Yjs − Y j.), (6)

and if we write the data as one long vector, orthog-
onality implies that the cross-product terms on the
right-hand side vanish.

It is conventional to write out the analysis of vari-
ance table for the components and this is shown
in Table 1, in which MS denotes Mean Square.
Roughly, the mean square measures the sum of
squares per dimension for the component. The anal-
ysis of variance formulation is entirely structural and
does not involve model or distributional assumptions.
For interpretation, we bring in the probability model,
although we still only need the theory of a simple
random sample to derive the key properties, in par-
ticular, for equating mean squares to their expected
values.

For the one-way balanced arrangement, the first
important property is that E(MSε) = σ 2

ε , which only
concerns how repeat observations for an individ-
ual vary around the true mean for that individual.
It is also straightforward to show that E(MSξ ) =

Table 1 Analysis of variance table for the one-way bal-
anced variance component model

Source SS df

Mean Σj,sY
2
.. 1 MS

Between individuals Σj,s(Y j. − Y ..)
2

nJ − 1 MSξ

Within individuals Σj,s(Yjs − Y j.)
2

nJ (nS − 1) MSε

Total Σj,sY
2
js nJ nS
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nSσ
2
ξ + σ 2

ε , from which we deduce σ 2
ξ is estimated

via (MSξ − MSε)/nS .
If we are interested in the overall mean µ, for

instance, to compare the means in two or more groups
treated in different ways, we want E(Y ..) = µ and
var(Y ..) = σ 2

ξ /nJ + σ 2
ε /(nJ nS). Hence, a pivot for

the estimation of µ is

Y .. − µ
√

MSξ /(nJ nS)
.

Assuming the pivot is approximately normally dis-
tributed, we can also obtain (approximate) confidence
limits for µ.

These estimates are sometimes called the least-
squares–based estimators and are unbiased estimates
of the variance components. The overall approach can
be generalized to more complex situations in which
estimating equations are formed by equating suitable
functions of the data (here sums of squares) to their
expectations under the assumed model (see Estimat-
ing Functions). Alternative (biased) estimators are
given by the method of maximum likelihood and
these are discussed below.

If we make the further assumption that all the ran-
dom variables are independently normally distributed,
several important properties follow that also extend
to general balanced cases. The most important is that
the two sums of squares and the sample mean are
minimal sufficient statistics implying various strong
optimum properties, and in particular, that as long as
the model is adequate, all we need for analysis are
the sums of squares and the mean. The assumption of
normality should not be made uncritically however,
and some effort should be expended on investigating
the sensitivity of the conclusions. We discuss ways
of assessing model adequacy later.

Certain exact inferential procedures for the three
unknown parameters µ, σ 2

ξ , and σ 2
ε follow from the

assumption of normality. For example, a technical
refinement of the pivot for µ is that it then has
the Student t distribution with nJ − 1 degrees of
freedom. However, only certain combinations of the
parameters can be tackled by these procedures, which
may not be of substantive interest. For example, we
can obtain exact confidence limits for the ratio of
variances σ 2

ξ /σ 2
ε , but not for σ 2

ξ itself, which is of
interest in comparing estimates from two or more
similar sets of data, subject to checks of homogene-
ity. The safest general procedure for doing this is the

use of profile likelihood or one of its generalizations.
There are however simpler and essentially equivalent
methods. For example, if T is an approximately unbi-
ased estimate of a positive parameter θ with effective
degrees of freedom d, then logT is approximately
normally distributed around mean logθ with variance
2/d, and further issues of analysis are in a normal
theory least-squares framework. See [11] for a more
thorough discussion of these less standard procedures.

Example 4 Angiogenesis microarray data. In a col-
laborative study, the author has been investigating
genes involved in the growth of blood vessels, a
process known as angiogenesis. The ability to stim-
ulate new blood vessel growth is a prerequisite for
the expansion of a solid tumor and future anticancer
treatments are postulated to involve therapy directed
to both cancer cells and the expanding vascular sys-
tem. COX2 (Prostaglandin endoperoxide synthase 2)
is a gene known to regulate angiogenesis and cell
migration, and served as a control gene in a cDNA
microarray experiment comparing mRNA samples
from time three hours with time zero. The microar-
ray consisted of a subtracted library of 10 400 clones,
each duplicated on the slide. The duplicate spots were
printed next to each other and are therefore spatially
correlated, but we will ignore this special feature of
the data. Four slides were hybridized and we assume
that the hybridized slides are independent.

The observed log intensity ratios for COX2 are
given in Table 2, which illustrates the data struc-
ture for the simple one-way model with two replicate
observations. Note that in general, the ordering of
the observations within rows is arbitrary. In the nota-
tion of Table 1, nJ = 4 and nS = 2. The appropriate
analysis is based on the pivot for the mean, µ,
which under the null hypothesis of no differential
expression and the assumption that the log ratios are
normally distributed, is t with 3 degrees of freedom.

Table 2 Log intensity ratios for a COX2 in a cDNA
microarray experiment with four slides and duplicate spots
within slides

Slide Log ratios M

1 3.5040 3.4757
2 3.7160 3.7896
3 3.6215 3.7496
4 2.9467 2.8873
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Thus, T = 3.4613/(0.3796/2) = 18.23 on 3 degrees
of freedom. The associated P value is 0.00036 with
an estimated 95% confidence interval for the true
mean difference in expression (2.8572, 4.0654), indi-
cating that COX2 is significantly upregulated at three
hours.

We are ignoring here issues of multiple testing,
which can be important in microarray experiments
when many thousands of genes are analyzed simul-
taneously (see Multiple Comparisons).

Negative estimates: All variances are by defini-
tion nonnegative. However, the standard least-squares
estimates of the upper variance component in the one-
way balanced model are based on differences of mean
squares and hence may sometimes be negative. The
simplest way to deal with negative estimates arising
from this and similar situations is to replace them
by zero. For example, we would take max{(MSξ −
MSε)/nS, 0} as an estimate of σ 2

ξ . There are two qual-
ifications to this recommendation. Firstly, if the mean
square between individuals is substantially smaller
than the mean square within individuals, this indi-
cates that the data are inconsistent with the model
and may be a warning that a systematic effect has
been omitted. Alternatively, it may be a warning that
important correlations between the random variables
have been ignored. Secondly, in an analysis that syn-
thesizes an estimate of σ 2

ξ from several separate sets
of data, such as in a meta-analysis of case–control
studies, then negative values should be retained to
avoid systematic error in the pooled estimate.

The procedures described so far extend directly to
more complex models provided the data are balanced.
In practice, however, data are often not balanced,
either by design or as a result of various forms of
missingness. The concepts involved are not affected
by lack of balance, but the analytical details are. In
particular, the decompositions for the balanced case
no longer hold and the underlying algebra is more
complicated. It is not always obvious how to find the
variance estimates for more complicated models and
general procedures are required. One very powerful
procedure is maximum likelihood for which we find
algebraically, or more commonly numerically, the
combination of parameter values that maximize the
likelihood.

Maximum likelihood and REML: It is well known
that the maximum likelihood estimate of the variance
in a simple random sample is biased, having divi-
sor nS rather than nS − 1. In more complex models,

the resulting estimates of variance may be entirely
unsatisfactory especially if the number of nuisance
parameters is large, and alternative methods of esti-
mation need to be deployed. The most widely used
method and preferred basis for the formal analysis
of unbalanced normal models is REML, which max-
imizes the likelihood of judiciously chosen parts of
the data, rather than that of all the data.

REML may be formulated as follows for the one-
way analysis. We may apply an orthogonal transfor-
mation to each individual (or sample) to replace the
nS values by the quantity Y j.

√
nS and nS − 1 vari-

ables, which are independently normally distributed
with zero mean and variance σ 2. The contribution
of the individual to the likelihood is thus the prod-
uct of two factors, one depending on µj and σ 2,
and the other depending only on σ 2 and involving
the data only via

∑
(Yjs − Y j.)

2. In many problems,
especially when little is known initially about µj ,
the first factor contains little or no information about
σ 2. Thus, for inference about σ 2, we use only the
second factor. This leads to a loglikelihood based
on nJ (nS − 1) observations that are independently
normally distributed with mean zero and variance
σ 2. The corresponding maximum likelihood estimate
then has the correct divisor, which is the degrees of
freedom within individuals. The same idea can be
applied to the general linear mixed model with fixed
and random effects.

REML has the advantage of returning the usual
least-squares estimates of the variance components
for balanced data. It is a particular case of the use
of marginal likelihood and conditional likelihood;
see [21] for a general study of both. Barndorff-
Nielsen and Cox [3] show that REML is a special
case of modified profile likelihood.

Alternative methods of estimation: Powerful and
efficient methods for model fitting are important.
Indeed, the lack of such methods for unbalanced data
held the subject of variance components back until
relatively recently. A disadvantage of these develop-
ments, however, is that the relationship between the
data and the conclusions can be obscure, and for com-
plicated problems, simpler methods may be useful for
conceptual clarity and interpretation.

For the unbalanced one-way arrangement, the two
simplest procedures are to base the estimation of
the upper-level variance component σ 2

ξ on either the

unweighted sum of squares
∑

(Y j. − Y
(u)

.. )2, where
Y j. is the mean of the rj responses for individual j
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and Y
(u)

.. is the unweighted average of these means,
or on the usual analysis of variance sum of squares∑

rj (Y j. − Y
(r)

.. )2, where Y
(r)

.. is the average of the
Y j. weighted by the group size. The idea is to decide
informally whether the upper or lower component
of variance is dominant and to use the unweighted
or standard analysis of variance sum of squares as
a basis for examining the upper-level component of
variance. The same idea can be extended to general
models. These simpler approaches are related to the
various methods of estimation proposed by Hender-
son and are described in detail in [38].

An important special case is when T1, . . . , TnJ
are

estimates of a parameter θ obtained from independent
sets of data, each with its own internal estimate of
error. For example, in combining the results of a num-
ber of case–control studies, θ could be the log odds
ratio for treatment versus control after adjustment
by maximum likelihood logistic regression for imbal-
ance with respect to explanatory variables, which
might be different in the different studies. Note that
it is not necessary that the same model is fitted to
each group of data, only that the parameter θ has
the same interpretation. The estimates may vary more
than would be expected on the basis of internal error
and it may not be feasible to explain the extra vari-
ability as systematic. In this case, we may represent
the additional variability as random, and in particular,
take as a reasonable approximation Tj = θ + ξj + εj ,
where the ξ and ε are approximately normally dis-
tributed and independent. The idea is that a simple
analysis helps decide whether a component of vari-
ance σ 2

ξ is necessary, whether there are outlying
groups, and which of the weighted or unweighted
estimates of θ are likely to have high efficiency.
Similar arguments apply if θ is a vector. Cox [10]
outlines the approach and Cox and Solomon [11] give
details of these simpler procedures in applications to
nonnormal response data and random effects logistic
regression.

We mention briefly another class of methods
for estimating variance components known as mini-
mum norm quadratic unbiased estimators (MINQUE)
described in detail in [34]. In this and related criteria,
low moment assumptions are made about the com-
ponent random variables and attention focusses on
quadratic point estimates that satisfy conditions such
as unbiasedness and minimum variance (see Mini-
mum Variance Unbiased (MVU) Estimator).

Synthesis of Variance

This refers to the process of putting the variance
components back together with a view to determining
what the variability would be in different sampling
situations, or the variance that should be attached to a
nonstandard type of comparison. Calculations of this
sort are particularly important in designs of systems
to achieve a balance between the number of groups
or individuals that need to be studied and the number
of replicates within each individual.

The simplest example is to estimate the vari-
ance of a mean if nS1 repeat observations are to
be made on each of nJ1 individuals. This is (σ 2

ε +
nS1σ

2
ξ )/(nJ1nS1), which can be estimated. We may be

interested to know how much better will the preci-
sion be if we take three or four repeat observations
on each individual rather than one, say. If the differ-
ent individuals are very different, that is, σ 2

ξ is large,
then there is little point in replicating more within
individuals. But if σ 2

ε is large relative to σ 2
ξ , there

will be an nJ1nS1 effect and increasing the number
of replicates will improve the precision of the overall
mean.

The estimated synthesized variance of the mean
under the new design with nS1 rather than nS repeated
observations within each individual is

1

nS1nJ1

(
MSε + nS1

MSξ − MSε

nS

)
,

where the observed mean squares and degrees of
freedom are those from the original data.

Example 4 revisited: Angiogenesis microarray
data. The estimated components of variance for the
gene COX2 in Example 4 are 0.3731 for the between-
slide component and 0.0131 for the within-slide
component. In view of the considerations outlined
above, increasing the number of replicate spots within
a slide would have little impact on the precision
as compared with increasing the number of slides
hybridized in the experiment.

Components of Covariance and Regression

In the simplest case of a number of groups with
a regression of Y , say, on X within each group,
work on multilevel modeling has tended to stress
the effect of the correlation and additional variation
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within groups on the regression coefficient of Y on
X and its standard error. But if the groups represent
bivariate populations, there are two regression coef-
ficients, one within groups and another that would
be defined by a scatterplot of the means of X and
Y . In an early exposition of analysis of covariance,
Pearson stressed the distinction between these coeffi-
cients [31].

To formulate the issues explicitly, consider the
bivariate one-way balanced model in which each
observation Yjs is a 1 × 2 row vector giving an
nJ nS × 2 data matrix Y . The pairs of observations
are

Yjs = µY + ξY
j + εY

js,

Xjs = µX + ξX
j + εX

js, (7)

for which there are four variances σ 2
Yξ , σ 2

Xξ , σ 2
Yε

and σ 2
Xε as well as covariances cov(ξY

j , ξX
j ) and

cov(εY
js , εX

js). In the general case with p response
variables, each observed random variable is replaced
by a set of p components.

As explained above, we can view the bivariate
decomposition in two different ways. If Y and X are
treated on an equal footing, we have two covariance
matrices for the interpretation of associations at the
two different levels. Sometimes it may be helpful to
estimate separately the two correlations corr(ξY

j , ξX
j )

and corr(εY
j , εX

j ). The second possibility is that X

should be considered as explanatory to the response
Y . Then there are two regression coefficients of Y

on X, namely, βξ,YX and βε,YX, regression coeffi-
cients from the between- and within-group structure,
respectively.

Suppose as an illustration that on a large sample
of subjects of stable health and in a narrow age
range, measurements are made of blood pressure,
Y , and sodium (Na) intake, X. For each subject,
the observations are repeated some months later. If
we ignore possible time trends, we may consider a
one-way analysis. The regression coefficient βε,YX

measures the mean increase in blood pressure Y when
the Na intake, X, of a particular subject varies by
one unit, for example, 10 mg per day. By contrast
βξ,YX is the average difference in the mean blood
pressure of two different subjects whose long-run
mean Na intakes differ by 10 mg per day. The naive
interpretation of βξ,YX would imply that if subjects
changed their long-run mean Na intake by 10 mg per

day, then there would be a corresponding change
in long-run mean blood pressure as determined by
βξ,YX. The naive interpretation of βε,YX would imply
that individuals increasing their Na intake by 10 mg
per day would on average have an increase in blood
pressure determined by the regression coefficient.

In an observational study, both interpretations
involve substantial assumptions and would be quite
speculative. If individuals had been randomized to
Na levels on the other hand, the interpretation of the
regression coefficients would be unambiguous. In the
absence of randomization, however, there may be
explanatory variables, observed or unobserved, and
long-run features of individuals that are themselves
explanatory to both Y and X. These arguments extend
to more complicated structures. The difficulties of
applying aggregate-level conclusions to individuals
in this way is often called ecological.

Empirical Bayes

When a frequency probability analysis is based on
empirical data with structural assumptions, for exam-
ple, that certain terms in a regression are random, we
call the analysis empirical Bayes. No special con-
ceptual issues to do with defining a suitable prior
probability and so forth are involved.

Classical empirical Bayes analysis proceeds as fol-
lows. Consider the univariate one-way model again
where, as before, the ξj and the εjs are independently
normally distributed with zero mean. There are three
unknown parameters in the model, θ = (µ, σ 2

ξ , σ 2
ε ).

Suppose θ is known and that interest is in the mean
of the first group, µ + ξ1; ξ1 is an unobserved random
variable, which itself partly determines the distribu-
tion of the observations. It is therefore appealing, and
can be justified formally from various points of view
that information about ξ1 is best summarized by its
conditional distribution given the data. This is derived
by Bayes’s theorem. We can show [11, Chapter 3]
that the required conditional distribution is normal
with mean of the form of an optimally weighted mean
obtained from combining the information from the
data y1. and that from the distribution of ξ1 around
µ, denoted ξ̃1. In effect, the sample mean y1. is
shrunk towards the general mean (see Shrinkage).
By the same argument, the estimate of any contrast
is obtained by shrinking the sample contrast towards
zero (see Shrinkage Estimation).
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It can be shown that if in the originating model, the
random variables are not normally distributed, then
the above estimates are in a sense the best linear
estimates. Viewed as a point predictor of ξ1, the
quantity ξ̃1 has a property summarized in the term
best linear unbiased predictor (BLUP; see [37]).

Nonnormal Models

There are broadly parallel developments for the Pois-
son and binomial distributions with one extra level
of variability to those discussed above for continuous
random variables. An alternative approach to analysis
may be to use (approximate) weighted least-squares
methods on the basis of an empirical transform of
the response variable, for example, the square root
or logarithm of Poisson variables and the empiri-
cal logistic, probit, or log–log transform of binomial
variables.

There may be some loss of efficiency in these
approximate procedures. But a more general dis-
cussion of variance component models for gener-
alized linear models and normal theory nonlinear
regression is difficult, primarily due to the fact that
formally efficient methods of estimation involve high-
dimensional integration. The general form of the full
likelihood is given by

∫
lik(θ | ξ ; y) dF(ξ ; τ),

where F(ξ ; τ) is the distribution function of ξ

depending on parameters τ , which are typically com-
ponents of variance and their generalizations. In cases
without time series or similar structure, ξ will consist
of independent components so that F(ξ ; τ) factorizes
into a product component by component. The inte-
gral will factorize into subintegrals but, even so, the
dimension of each may be large.

In the special case in which, given the random
terms ξ , the observations have an exponential family
distribution, we obtain a generalized linear mixed
model. In the simplest formulation, the random
effects ξj are independently and identically normally
distributed with zero mean and q-dimensional vari-
ance matrix D(τ), where τ is a vector of unknown
variance components; D is often called the dispersion
matrix. The conditional independence of the observa-
tions within an individual or cluster allows us to write

the exact marginal likelihood

lik(β, τ ; y) =
nJ∏

j=1

∫ rj∏

s=1

f (yjs |ξj ; β)g(ξj ; τ) dξj ,

(8)

where g is the link function for the generalized linear
model.

Formal inference can be based on maximum like-
lihood or on Bayesian considerations, and there are
currently three ways to approach the numerical inte-
gration problem. The most direct and appealing
method is direct or preferably adaptive quadrature.
The second, applicable when the integrals can be
resolved into a sequence of one-dimensional inte-
grals, is to use an analytical approximation, usually
based on a few terms of a Laplace expansion [5,
39, 43]. Such expansions are based on the idea that
integrals involving an exponential of a function are
dominated by behavior of that function near its max-
imum. This method can sometimes yield relatively
simple interpretable results. Calculation of higher
terms in the expansions may be feasible, especially
if aided by computerized algebra. Higher terms are
important to give at least a partial check on the ade-
quacy of the approximations but there is often some
uncertainty about the range of applicability of the
approximations.

The third method is Markov chain Monte Carlo
(MCMC). In the Bayesian version, a Markov chain
is defined, which has as its equilibrium distribution,
the posterior distributions of interest. The chain is
then simulated a very large number of times and if the
realizations appear to have converged to stationarity,
the frequency distribution of realized values, exclud-
ing a run-in period, is used to estimate the posterior
distributions. MCMC is a powerful and general tech-
nique but there is the possibility, in theory at least,
that apparent convergence to a stationary state is illu-
sory. Some protection can be achieved by starting the
simulations from very different initial states.

There are also at least two other approaches to
these problems. Lee and Nelder [25, 26] study a
notion of h-likelihood in which, in effect, realized
values of individual random variables representing
portions of variability are treated like unknown
parameters. This is likely to be effective when there
is substantial information about each such realized
value. Another mode of analysis called penalized
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quasi-likelihood concentrates on the underlying
estimating equations and their justification in a
broader setting than a fully parametric one [4,
5, 24, 45] (see Penalized Maximum Likelihood;
Quasi-likelihood). Rabe-Hesketh et al. [33] provide
a valuable comparison of methods for estimation in
generalized linear mixed models.

In survival or event history data, a random term
for each individual with an associated variance com-
ponent is often called frailty. The terminology arises
from applications in which the randomly occurring
events are failures or adverse reactions of some kind.
See Frailty for a detailed discussion of these and
related models.

Model Assessment and Prediction

Although there is a very large literature on formal
and informal tests of model adequacy, little of it
is directly relevant to variance component models
(see Model Checking). The most important type of
failure of a model stems from omitting a substantial
effect, for example, treating a cross-classification as if
nested. This destroys the independence assumptions
underlying the discussion and is likely to be detected
by anomalous behavior of the mean squares, possibly
leading to substantial negative estimates of variance.

Outlying observations or individuals can influence
the usual quadratic estimates of variance. For exam-
ple, in the one-way arrangement, an anomalous single
observation has a large effect on the estimated com-
ponent of variance within individuals, but relatively
little effect on the estimated component between
individuals. In more complex situations, the distinc-
tion between outliers at the different levels becomes
harder to detect empirically. Robust methods provide
one way of dealing with outlying observations but do
not retain key parameter properties, which are cen-
tral to variance component analysis, in particular, the
additivity of variance as a parameter.

Other important departures from the standard for-
mulation include nonnormality of one or more of the
component random variables, or dependence between
the variability within an individual and the individual
mean. Mild nonnormality of the variances within or
between individuals may be of relatively minor con-
cern, but the dependence described above may lead to
inappropriate predictions or supplementary analyses.
Solomon and Cox [43] suggested a formal analysis

in which the nonnormal variances and dependence
features are separated.

Further, special topics on model criticism and
improvement include the prediction of exceedances,
the analysis of panel data, fitting more elaborate
models, transformations, and study of the distribu-
tional form of the underlying random variables. Many
of these methods and ideas are discussed in detail
in [11]. An important general point when assessing
model adequacy is that the analysis should focus on
issues that are of substantive importance. For exam-
ple, discriminating between heterogeneous variances
versus constant variances with differing individual
means is only worth attempting if the distinction can
be given a physical interpretation.

Generalizations and Further Topics

There are many additional areas of current work
related to variance components including the follow-
ing.

Measurement error models: The main emphasis in
this article has been on the estimation of variance
components as parameters of intrinsic interest. One
situation where the real emphasis lies elsewhere and
the components of variance are of concern because
they affect this primary aspect, is the effect of mea-
surement error in explanatory variables on regression
analysis (see Errors in the Measurement of Covari-
ates). Measurement error models have a long his-
tory and an extensive literature; see, for example, [7,
36] for a recent application.

Design of investigations: The objective of vari-
ance components analysis is the study of patterns
of variation as they exist rather than the assess-
ment of interventions under controlled conditions,
which is the purpose of formal design of experiments.
However, many of the general principles of exper-
imental design, and especially those common with
the principles of sampling (see Sample Surveys in
the Health Sciences), apply. Khuri [22] gives a sys-
tematic review and bibliography of work on design
for the estimation of variance components, and Cox
and Solomon [11, Chapter 3] present some new ideas.

Finite population aspects: Occasionally, the indi-
viduals are not regarded as individuals or as sampled
from an infinite population but as from an existing
finite population of known size, or in particular,
as forming the whole of the population in which
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variation is to be assessed. The finite population
variance component is relevant only in very special
situations, and in some industrial problems in partic-
ular. The importance of distinguishing between finite
and infinite populations when defining variance com-
ponents was first stressed by Daniels in the context
of studies of variation in industrial processes [12].
Tukey [47] extended these ideas to sampling a finite
population. A formulation relevant to the industrial
context is outlined in [11].

Synthesis of studies: In many fields of application,
the synthesis of information from several studies is
crucial. Variation between studies and interactions
of such variation with the treatment effects under
investigation may involve representation by compo-
nents of variance. In biostatistics, the term overview
or meta-analysis is often used and is an integral
part of evidence-based medicine. A representation in
terms of random effects would only be indicated if
no direct explanation of important observed variation
in treatment effect is apparently available, such as
nonconstancy of the treatment effect being confined
to certain contrasts. The use of variance components
in meta-analysis is not without controversy.
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Variance

The variance of a random variable X is a measure of
the variable’s spread or dispersion around its mean.
The mean is the average or expected value of X,
and is a measure of the center of its distribution. The
mean can also be viewed as a “typical” value of X.
By definition, however, the outcome of a random
variable is unpredictable and will vary from one
trial to the next; the variance describes the amount
of variation that can be expected around the average
value. If the mean of X is represented by E(X), then
its variance is defined by

var(X) = E[X − E(X)]2

= E(X2) − [E(X)]2,

provided that E(X) exists. The mean of a random
variable X is often denoted by µ and its variance
by σ 2.

From the preceding definition, the variance of X is
the average value of the squared deviation of X from
its mean. Since a quantity which is squared cannot
be negative, the variance is never less than 0. If X is
a measurable quantity such as length or temperature,
then the units of measurement for the variance are the
square of the units for X. If X is measured in meters,
for example, then the variance of X is measured in
meters squared. This is a major drawback in the vari-
ance’s use a measure of dispersion – it is difficult for
most people to think in terms of squared units. Nev-
ertheless, a large variance indicates that the outcomes
of X are widely distributed around its mean, while a
small variance means that the outcomes cluster tightly
around the center. In practical applications, a measure
of dispersion called the standard deviation is often
used in place of the variance; the standard deviation is
the positive square root of the variance and is denoted
by σ .

To calculate the variance of a random variable,
it is necessary to know the probability distribution
of X. If X is a discrete random variable with mean
E(X) = µ, then

var(X) =
∑

i

(xi − µ)2 Pr(X = xi)

=
[
∑

i

x2
i Pr(X = xi)

]
− µ2,

where x1, x2, . . . xi . . . are all outcomes of X such
that Pr(X = xi) > 0. If X is a continuous random
variable with probability density function f (x) and
mean E(X) = µ, then

var(X) =
∫ ∞

−∞
(x − µ)2f (x) dx

=
[∫ ∞

−∞
x2f (x) dx

]
− µ2.

A linear transformation of the random variable X

affects the variance in a straightforward manner. If
a and b are constants and if the random variable
Y = aX + b, then

var(Y ) = a2var(X).

A constant has variance 0.
In practice, the variance of a distribution can

be estimated using the information contained in a
sample of observations drawn from that distribution.
If x1, x2, . . . , xn is a random sample of size n

selected from a population with mean µ and variance
σ 2, then the sample variance is represented by s2 and
is defined by

s2 =

n∑

i=1

(xi − x)2

n − 1

=

n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

n

n − 1
,

where x is the sample mean

x =

n∑

i=1

xi

n
.

Just as σ 2 describes the dispersion of a distribution
around its mean µ, s2 describes the spread of a
sample of values around the sample mean x. It can be
thought of as the average squared deviation of each
observation from the sample mean. While it might
seem more natural to estimate σ 2 by the true average
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squared deviation, or

σ̂ 2 =

n∑

i=1

(xi − x)2

n
,

this estimator is seldom used in practice. This is
because s2 is an unbiased estimator of σ 2 over all

possible random samples of size n – meaning that
E(s2) = σ 2 – while σ̂ 2 is not unbiased.

(See also Moments)

K. GAUVREAU



Varimax Rotation

Varimax rotation is probably the most popular ortho-
gonal rotation procedure for use with principal
components analysis and factor analysis. Given a
matrix V of dimension p × k consisting of a set of
k vectors defining a set of principal components or
factors, a new set of transformed variables is obtained
by an orthogonal rotation of V, namely B = V�. �

is a k × k matrix determined such that the coefficients
of B, a p × k matrix, will maximize the quantity

Q =
k∑

j=1




p∑

i=1

b4
ij −

(
1

p

)(
p∑

i=1

b2
ij

)2


 ,

where p is the number of original variables
and k is the number of retained components
or factors. Varimax rotation is a special case
of orthomax rotation with c = 1.0 (see Factor
Analysis, Overview; Rotation of Axes) In this
procedure, the sums of squares of B are maximized
columnwise as contrasted with quartimax rotation,
which maximizes them rowwise. Varimax is due to
Kaiser [3, 4] and was used in the original Little
Jiffy of Kaiser & Rice [5]. It is the default in some
computer packages. The form above is referred to
as raw varimax and, in this form, the effect of each
variable on the rotation is a function of the amount
of the variability in that variable accounted for by the
retained components or factors. To put the variables

on an equal footing, the individual b2
ij may be divided

by the corresponding diagonal element of VV′. The
resultant form is called normal varimax, and is the
default in some other computer packages. To deal
with some pathological situations which could arise,
Cureton & Mulaik [2] introduced another version
called weighted varimax. The standard errors for the
vector coefficients produced by varimax rotation were
given by Archer & Jennrich [1].

For the decathlon example introduced in the arti-
cles on Rotation of Axes and Factor Analysis,
Overview, V and B are repeated here in Table 1.
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Table 1 Decathlon data: characteristic and rotated vectors

Characteristic vectors Varimax rotation

v1 v2 v3 v4 b1 b2 b3 b4

100 m run 0.69 0.22 −0.52 −0.21 0.88 0.14 0.16 −0.12
Long jump 0.79 0.18 −0.19 0.09 0.63 0.19 0.52 −0.01
Shotput 0.70 −0.53 0.05 −0.18 0.24 0.82 0.22 −0.15
High jump 0.67 0.13 0.14 0.40 0.24 0.15 0.75 0.08
400 m run 0.62 0.55 −0.08 −0.42 0.80 0.07 0.10 0.47
110 m hurdle 0.69 0.04 −0.16 0.35 0.40 0.15 0.64 −0.17
Discus 0.62 −0.52 0.11 −0.23 0.19 0.81 0.15 −0.08
Pole vault 0.54 0.09 0.41 0.44 −0.04 0.18 0.76 0.22
Javelin 0.43 −0.44 0.37 −0.24 −0.05 0.74 0.11 0.14
1500 m run 0.15 0.60 0.66 −0.28 0.05 −0.04 0.11 0.93



Variogram

The variogram is a description of the second-order
dependence properties of a stochastic process. It
was first proposed by Jowett [4] in the context of
industrial sampling and subsequently popularized by
the French geostatistical school [5], where it is a
fundamental ingredient in the method of spatial pre-
diction known as kriging. Its importation to the field
of longitudinal data analysis stems from Diggle [2].
In this article we will describe the variogram in the
context of longitudinal data analysis. For a coun-
terbalancing view emphasizing spatial applications,
see [1].

For a stochastic process Y (t), where t denotes
time, the covariance function is the function γ (t, s) =
cov{Y (t), Y (s)}. If Y (t) is stationary, the covariance
between Y (t) and Y (s) only depends on u = |t − s|,
in which case we write the covariance function as
γ (u). The variogram of Y (t) is the function

V (u) = 1
2 Var{Y (t) − Y (t − u)}, (1)

if this function exists. Note that if E[Y (t)] = µ, a
constant for all t , then

V (u) = E[ 1
2 {Y (t) − Y (t − u)}2].

Some authors call V (u) the semivariogram. The
variogram exists for all stationary processes Y (t) and
for a limited class of nonstationary processes. In the
stationary case, V (u) = γ (0) − γ (u).

One practical advantage of the variogram over the
covariance function is that estimation from observed
data is more straightforward, especially when the
underlying stochastic process is observed at irregular
time-points. Consider a set of longitudinal data in the
form (tij , yij ) : j = 1, . . . , ni ; i = 1, . . . , m, in which
yij denotes the j th of ni observations on the ith of m

subjects, and tij the corresponding observation times.
We assume that yij is a realization of Y (tij ) and that
observations from different subjects (different values
of i) are independent.

The empirical variogram is the set of points
(uijk, vijk): k > j ; i = 1, . . .m, where uijk = |tij −
tik| and vijk = 1

2 (yij − yik)
2. A scatterplot of the

points (uijk, vijk) is called a variogram cloud. In
principle, the variogram cloud can be used to sug-
gest a parametric model for V (u), and to obtain
quick, if inefficient, estimates of the parameters of

V (u) by nonlinear ordinary least squares regres-
sion, the justification for this being that E(vijk) =
V (uijk). The usefulness of the variogram cloud for
exploratory data analysis is limited by the fact that
the sampling distributions of the empirical vari-
ogram ordinates vijk are typically highly variable
and highly skewed. For example, if Y (t) is a Gaus-
sian process, then vijk/V (uijk) has a χ2

1 sampling
distribution. Furthermore, pairs of variogram ordi-
nates from the same subject are typically depen-
dent.

A more useful graphical display is the sample var-
iogram, defined by averaging empirical variogram
ordinates vijk at common values of uijk . In most
designed longitudinal studies there is a high degree
of commonality amongst the observation times asso-
ciated with the different subjects, and the averaging
imparts a high degree of stability to the sample var-
iogram by comparison with the empirical variogram.
When each of the subjects have their own unique set
of observation times, an alternative graphical display
can be obtained by averaging the vijk corresponding
to approximately equal values of uijk , or by apply-
ing a nonparametric scatterplot smoother to the points
(uijk, vijk). See, for example, [3, p. 53].

Because variogram ordinates from different sub-
jects are independent, in the stationary case an esti-
mate of γ (0) = var{Y (t)} can be obtained as the
average of all quantities of the form 1

2 (yij − yi ′k)
2

for all j, k and i ′ > i.
Mathematically legitimate forms for the theoreti-

cal variogram V (u) are constrained by the need for
V (u) to correspond to a legitimate covariance struc-
ture. An algebraic condition that a variogram must
satisfy is that

∑n
i=1

∑n
j=1 aiajV (ti − tj ) ≤ 0, for any

positive integer n, set of times ti ; i = 1, . . . , n, and
real numbers ai, i = 1, . . . , n, such that

∑n
i=1 ai = 0.

For examples of variogram models for longitudinal
data, see [3, Chapter 5]. Common features of V (u)

in the longitudinal setting are the following:

1. A nonzero value at the origin. We interpret V (0)

as the expectation of one half the squared dif-
ference between two independent determinations
of Y (t) from the same subject. If we think in
terms of a model in which Y (t) is observed with
additive measurement errors, V (0) is the variance
of the measurement error. In the spatial setting,
V (0) is called the nugget effect.
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2. Increasing trend. An increasing function V (u)

corresponds to a decreasing γ (u). Most mod-
els for the serial correlation in longitudinal (or
spatial) data assume that correlation decreases
monotonically with increasing time-separation.

3. Limiting behavior at large time-separation. The
difference between the estimated variance of Y (t)

and the limiting value of V (u) as u → ∞ arises
because of variation between subjects, which is
included in var{Y (t)} but excluded from V (u).

Often, in practice, the available data are generated
by a model of the form yij = µi(tij ) + zij where the
function µi(t) represents the mean response for sub-
ject i at time t and zij is a realization at time tij
of an underlying stationary random process Z(t).
In this case, we estimate the unobservable zij as
ẑij = yij − µ̂i (tij ) and use the ẑij as the basis for
calculating the empirical or sample variogram. In a
designed experiment with a common set of observa-
tion times for all subjects, the effects of estimating the
µi(tij ) can be minimized by fitting a saturated model
for the mean response. More generally, the recom-
mended practice is to base the estimates µ̂i(tij ) on
a deliberately over-parameterized model. For further
discussion, see [3, Chapter 5].

Figure 1 shows the sample variogram derived
from a set of data on the log-bodyweights of 27
cows, allocated amongst four treatment groups. Each
cow was weighed at 23 unequally spaced time-points
over a period of approximately two years. The var-
iogram was computed using the residuals from a
saturated treatments-by-times model for the mean
response. The horizontal line denotes the estimate of
the variance of the residual process, assuming that
this process is stationary. The large number of plotted
points is a consequence of the fact that time intervals
between successive weighings were not common to
all cows, which limits the opportunities for averaging
the empirical variogram ordinates. The other salient
features of Figure 1 are:

1. Behavior near the origin. Simple extrapolation
suggests that V (0) is close to zero, which in turn
suggests, reasonably, that the measurement error
in determining the log-bodyweight is negligible.

2. Increasing trend. Log-bodyweights at different
times become less correlated as the time-separa-
tion increases; the shape of this rising trend

Figure 1 The sample variogram of ordinary least squares
residuals from a saturated treatment-by-times model fitted
to data on the log-bodyweights of cows

conveys information about the shape of the
underlying covariance function γ (u); note, how-
ever, that the sampling fluctuations in V̂ (u) are
substantial, and increase with u.

3. Difference between the estimated variance and
the values of V̂ (u) at large values of u. Assum-
ing that V (u) has leveled out within the plotted
range of u, this difference appears to be substan-
tial, suggesting a large component of variance
between cows.
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Vector Field Plot

Slope Fields

One may think of a slope field as a scatterplot (see
Graphical Displays) where at each selected pair
(x, y) denoting a location with respect to abscissa
and ordinate axes is plotted the expected change in
y for a one unit change in x as indicated by a short
line segment of that slope. As an example, suppose
a variable y were related to its slope with respect to
time t such that

∆y(t)

∆t
= β(y(t) − C), (1)

where y(t) is some time varying score, ∆y(t)/∆t is
the expected change in y(t) over some fixed interval
of time ∆t , β is some fixed coefficient, and C is some
asymptotic value (i.e. fixed point equilibrium). From
this equation, a slope field may be plotted such that
on each point in a grid of pairs of values of Y and
t a line segment is centered with the expected slope
given that pair of values (i.e. initial conditions)(see
Figure 1). The lengths of the line segments are all
equal to one another. Three salient characteristics of
the slope field shown are that (a) since each row of
line segments has no variance in slope, the slopes
are independent of time, (b) since each column of
line segments has variance in slope, the slope is not
independent of y, and (c) since the slopes are near
zero when y is near 60, the equilibrium C in this plot
must be near 60.

Slope fields may be plotted in which one variable
represents time, or may also be plotted so as to visu-
alize the expected slope of two variables with respect
to each other. The expected slope could potentially
vary with respect to the value of one, both, or neither
of the two variables.

Vector Fields

Vector fields differ from slope fields in that they are
directional, implying some evolution of the slope (i.e.
first derivative) with respect to time. Vector fields are
useful for visualizing the implications of differential
equations over a range of initial conditions [5, 10].
A vector field is composed of a grid of arrows that
may vary in direction and length. Direction and length
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Figure 1 Slope field plotted for Equation 1

may be mapped to a variety of concepts. The most
commonly used vector field display maps the vectors
so that given the values of the variables in a system at
time t plotted as the base of a vector, the length and
the direction of the vector point to the values of those
variables after some chosen interval τ has elapsed.

As an example in continuous time, the relationship
between two variables X and Y might be modeled as
a set of simultaneous differential equations

dX

dt
= αx + βxX(t) + γxY (t)

dY

dt
= αy + βyY (t) + γyX(t), (2)

where the coefficients (α, β, γ ) for each variable
are used to describe the instantaneous trajectory of
the bivariate processes. Or equivalently in discrete
time might be formed a set of simultaneous difference
equations

∆X(t)

∆txαx

+ βxX(t − ∆t) + γxY (t − ∆t)

∆Y(t)

∆txαy

+ βyY (t − ∆t) + γyX(t − ∆t), (3)

where ∆t is defined by the application, and the
coefficients for each variable describe the step-by-
step trajectory of the bivariate processes [4, 6, 9].
Such a system is plotted in Figures 2 (a) and (b).

Vector field plots such as that shown in Figure 2b
can be read to provide several forms of information.
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Figure 2 Trajectories and vector field generated from coefficients estimated from WISC data from N = 204 Children
aged 6–11 [7]. (a) Hypothetical individual trajectories evolving over a lifetime from a few selected initial conditions. (b)
A vector field plotting the evolution of a grid of initial conditions over a short interval of time
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Figure 3 (a) Time series plot and (b) vector field plot of a damped linear oscillator conforming to Equation 4

In areas of the graph where vector lengths are small,
the system is near an equilibrium. If vectors point
away from an equilibrium, then that equilibrium is
unstable. If vectors point towards an equilibrium, then
that equilibrium is stable. If vectors appear to “circle”
an equilibrium, then the system may oscillate under
some initial conditions.

Vector fields are also used to visualize the rela-
tionship between a variable and its first and second
derivatives with respect to time [1, 3]. The vector
field in Figure 3 plots the expected change in x and

its first derivative ẋ over a short interval of time for
the damped linear oscillator system

ẍ = ηx + ζ ẋ (4)

when η and ζ are both negative. This system has a
stable equilibrium at x = 0 and oscillates about that
equilibrium for a time that is dependent on its initial
conditions.
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Statistical Slope Fields

When performing exploratory analyses on longi-
tudinal data, it is often useful to visualize the
expected change of one variable with respect to
another or in a variable with respect to time. Sta-
tistical slope fields employ nonparametric methods
of local aggregation or smoothing to develop local
estimates of the derivatives of systems and then plot
these empirically derived estimates. Typically, a sta-
tistical slope field appears similar to a parametric

slope field, but varies the length of the line segment
as a means of displaying the relative proportion of
the data near to the center of the line segment.

As an example, suppose a random sample of
100 individuals of different ages were drawn from
a population whose scores were evolving according
to the autoregressive system from (1) (see ARMA
and ARIMA Models). Suppose each of these indi-
viduals were measured at two occasions separated by
15 years and that the measured score were the sum of
a true score and normally distributed independent
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Figure 4 (a) Longitudinal time series plot and (b) statistical slope field plot of an autoregressive process conforming to
Equation 1
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Figure 5 A statistical vector field plot of data from an autoregressive process conforming to Equation 1
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error. These longitudinal scores could be plotted
as in Figure 4(a). The statistical slope field of the
same data was calculated using loess smoothing (see
Graphical Displays) to locally estimate the deriva-
tive of the score with respect to time at the center
of each point in a grid of age and score pairs. In
some areas, there is no data and thus no estimate is
made. Derivative estimates with larger Ns are plotted
as longer line segments.

Statistical Vector Fields

A statistical vector field [2] is similar to a statistical
slope field except that there is a time direction of
the evolution of the system and an estimate of the
variability of the slopes is made in the locality of
each initial condition pair. The direction of the vector
represents the expected change in the value of the
variable shown on the ordinate axis with respect to
a unit change in the variable shown on the abscissa.
The length of the vector plots the proportion of the
data in the vicinity of the initial condition pair at the
base of the vector. The estimated standard deviation
of this slope is plotted as a gray arc centered around
the vector. An example statistical vector field of data
conforming to (1) is plotted in Figure 5 [8, 9].
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Viral Population Growth
Models

Viruses are amongst the most dangerous and dev-
astating threats to human health. They may invade
a human or animal population and spread rapidly
amongst its members, sometimes causing a large
number of fatalities, possibly on a recurrent basis. A
well-known case is the influenza virus, a new strain
sweeping the globe and causing approximately 25
million deaths in 1919. At the present time, there are
several countries, particularly in Africa, with up to
35% of their populations between the ages of 15 and
50 years infected by human immunodeficiency virus
(HIV) (see AIDS and HIV). Throughout the world,
already over 16 million deaths have been caused
by this virus. More recently, a corona virus causing
SARS (severe acute respiratory syndrome) [9] has
created panic and economic chaos in certain southeast
Asian countries. Renewed interest in the dynamical
processes involved in the spread of viruses has also
arisen recently because of the threat of bioterrorist
attacks, especially with such viruses as smallpox [6],
which was eradicated many years ago. We will first
briefly describe in a simplified fashion some of the
processes that determine the outcome of a viral inva-
sion [14].

Viral Reproduction

Viral reproduction depends on host cells. The
sequence of steps after the virus has penetrated the
body’s initial physical barriers (skin, mucosal lining)
is

(a) the virus attaches to a host cell at a receptor on
the cell surface,

(b) penetration occurs,
(c) the virus sheds its protein coat and releases its

nucleic acid (RNA or DNA) into the cell,
(d) transcription occurs followed by replication of

the virus genetic material and the production of
proteins for new coats, and

(e) virus particles are assembled and released and
may infect new host cells; the original host cell
may die.

The time taken for some of these steps is
extremely variable. For HIV, replication is unpre-
dictable but may occur in a few hours; with her-
pes virus there may be a delay of weeks or up to
many years, which seems to be an evolutionary strat-
egy [25].

Models of viral population growth may be dis-
tinguished by whether they consider the within-host
population, or the total across all individuals. To
determine the latter, the dynamics of transmission
amongst members of the host population are needed
and this is usually the domain of classical models
such as SIR (susceptible infected, recovered). These
are discussed, for example, in Bailey [2] and Het-
hcote [8]. Recently, we have formulated nonlinear
dynamical spatial network models for determining the
total viral load (see [28], and references therein). In
this work, we only consider within-host dynamics.

Deterministic Models

Since the growth of a viral population depends
on the ability of the virus to penetrate new host
cells, the simplest growth model has the following
three components for a given volume of tissue:
x(t) = number of uninfected cells; y(t) = number
of infected cells; and v(t) = number of free virus
particles. Then,

dx

dt
= λ − µx − βvx (1)

dy

dt
= βvx − αy (2)

dv

dt
= cy − γ v − βvx, (3)

where uninfected host cells are supplied at rate λ

and have a per cell death rate of µ, the parameter
β describes the rate at which virus infects host cells,
c is the rate at which free virions are produced per
infected cell, and α and γ are the “per capita” rates
of attrition of infected cells and virions, respectively.
Equation (3) is a slightly modified version of the
standard model formulated by Herz et al. [7], which
is analyzed in [18]. The modification, suggested by
Tuckwell and Le Corfec [27] and others consists of
the additional term −βvx in (3) to allow for the
fact that whenever a cell is attacked, a free virus
must disappear. The more complete model (1)–(3)
is analyzed in detail by Tuckwell and Wan [29].
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The system (1)–(3) has two equilibrium points:

P1 =
(

λ

µ
, 0, 0

)
,

P2 =
(

αγ

βc
,
λ

α
− γµ

βc
,

cλ

αγ
− µ

β

)
. (4)

For λ > 0, P1 is either a saddle point or an asymptot-
ically stable node, but for usual parameter values, the
former. P2 is usually an asymptotically stable spiral
point. Note that P2 is unphysical when βcλ < αγµ.
When P2 is in the first octant, solutions of the system
(1)–(3) approach this point in an oscillatory fashion
so that eventually there remain infected cells, viri-
ons, and uninfected cells in equilibrium. In the less
usual case that P2 is unphysical, the free virus must
be extinguished.

The above model does not include an “immune
response”. The presence of infected cells may stimu-
late the production of cytotoxic T -cells, which attack
infected cells. If these have concentration z(t), then a
plausible model system is given by (1) and (3) with
(2) changed by the addition of a term representing
the removal of infected cells

dy

dt
= βvx − αy − ρyz (2′)

and an additional equation for the cytotoxic cells:

dz

dt
= kyz − δz, (5)

where δ is their natural death rate. In (2′), ρ is
the per capita rate of removal of infected cells per
immune cell, and k is the per capita rate of production
of immune cells per infected cell. Some dynamical
properties of the model (1),(2′),(3) (without the
correction term) and (5) are also discussed in [18].

HIV

The virus that has attracted the most dramatic atten-
tion in the previous two decades is HIV (human
immunodeficiency virus, usually type 1). A distin-
guishing feature of this virus is that the infected
cells are those of the immune system itself, being
CD4+ T -cells (helper cells). After infection, there is
a rapid initial rise of virion density followed usually
by a similarly paced fall, the latter being originally
ascribed to an immune response. Modeling indi-
cated that the early dynamics might be reasonably

explained without invoking such a response [12, 21],
and this has been mainly vindicated by subsequent
studies. However, fitting the data on viral loads after
the primary peak in some patients seemed to require
the introduction of more complex dynamics such as
the inclusion of cytotoxic T lymphocytes [23]. There
is a large number of models that have been posited to
describe these phenomena, and they may be distin-
guished by whether they address only the early phases
or the later phases of the disease – Perelson and Nel-
son [20] and Nowak and May [18] can be consulted
for numerous references.

The general model of McLean et al. [12] was later
used in a different context by Phillips [21] to explain
the decline in viral load in HIV after the initial
rise to about 5000 per mm3. Two classes of infected
cells [17] are introduced because the insertion of viral
genetic material may be followed by a delay before
virions emerge. Thus, x(t) is the density of uninfected
CD4+ T -cells, but now u(t) is the density of latently
infected cells and w(t) is the density of infected cells
producing virus. With v(t), the density of free virions
in the plasma we have, with an added correction term
for dv/ dt :

dx

dt
= λ − µx − βvx (6)

du

dt
= βpvx − (µ + α)u (7)

dw

dt
= β(1 − p)vx + αu − aw (8)

dv

dt
= cw − γ v − βvx. (9)

Here, p is the fraction of infected cells, which become
latent, α is the rate of conversion of latent to actively
infected cells, and a is the death rate of actively
infected cells. The term λ in (6) gives the rate at
which new T -cells are created from sources in the
body. Another term may be added, such as a logis-
tic, to represent growth due to the proliferation of
existing T -cells. The parameters are possibly time-
varying so that, for example, if the immune response
is weakening, then γ may decrease. A long-term
model not dissimilar to the above and which leads
to the break down of immunity (AIDS) was analyzed
in [24].

In all the above dynamical models, not only for
HIV but also for other viruses, the law of “mass
action” is assumed to operate giving a rate of
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new infections proportional to the product of viral
and host cell numbers. However, there are strong
grounds for sometimes questioning the validity of
this assumption. For such a law to apply, there must
be homogeneous mixing and the latter is unlikely if
there are only one or two virions and say 1011 host
cells. The law may, nevertheless, be accurate for a
very restricted volume of tissue or fluid. It is also
worth mentioning that the viral density in plasma
may be low, or essentially zero, but that due to the
continued existence of latently infected host cells, the
viral density may increase at a later time, making the
disease extremely difficult to eradicate.

Other Viruses

There has been a considerable effort to model
the invasion and within-host growth of influenza
virus populations, sometimes with very complex
systems [3]. Although there have been many
epidemiological studies of the spread of such
viruses as smallpox, measles, herpes, and so on,
mathematical models for the growth of their within-
host viral populations have been sparse. Nowak
and May [18] have described simple differential
equations for the hepatitis B virus, which presently
afflicts about 300 million people, and Neumann
et al. [15] have analyzed the dynamics of the hepatitis
C virus.

Stochastic Dynamical Models for HIV

As pointed out by Tan and Wu [26], a stochas-
tic description of viral population growth is more
realistic than a deterministic one because of the
nature of the subcellular processes. Furthermore,
it is expected that a stochastic approach can pro-
vide a more accurate quantitative basis for eval-
uating the efficacy of drug treatments in infected
host populations. Nevertheless, relatively little atten-
tion has been given to stochastic dynamical viral
growth models. From an analytic viewpoint, this
is probably due to the complexity of the systems.
The general viral growth model (1)–(3) does not
have a stochastic counterpart, though one could
easily be developed using approaches similar to
those described below for HIV. One of the first
stochastic models for HIV was a simple branching
process [13].

In general, the following effects are stochastic:

(a) generation and fluctuations in the rate of appear-
ance of new host cells,

(b) contacts between viruses and the host cell and
random attachment,

(c) transition to active or latent infected cell,
(d) time for the emergence of new virions,
(e) number of new virions emerging from a host

cell,
(f) death process for infected and uninfected host

cells and virions,
(g) mutation to other viral strains, and
(h) appearance and action of immune system com-

ponents, which assist in the removal of virions.

Models for a Single Viral Genotype

Here, it is assumed that all virus particles have the
same genetic properties. Vector valued Markov pro-
cess models for the growth of HIV populations have
been introduced by Tuckwell and Le Corfec [27] and
Tan and Wu [26]. Both models have the same four
biological components. A comparison of these mod-
els was made in Kamina et al. [10], but the nature
of the boundaries for the diffusions (see e.g. [4])
needs further investigation. The Tuckwell–Le Corfec
model is a four-dimensional diffusion process and as
it is simpler than Tan and Wu’s model, it will be
described first, after a consideration of a more funda-
mental model involving Poisson processes.

Stochastic Model for Early HIV Growth. In this
work, emphasis is on the early period (to several
weeks) after infection and not on the later progres-
sion to the acquired immune deficiency syndrome,
which may follow. The stochastic properties included
are (b) and (c) in the above list, so that empha-
sis is on the viral production process. It is assumed
that the number of virions produced by each actively
infected cell and the birth and death rates of the vari-
ous components take fixed mean values, so variability
is underestimated but with the advantage of simplifi-
cation and far fewer parameters.

Letting the components be Xk , k = 1, 2, 3, 4, we
have that at time t (days) after initial infection, for
a fixed and relatively small (in order to enhance
the validity of the mass action principle) volume of
plasma, X1(t) is the number of uninfected CD4+ T -
cells (called “activated” by Phillips [21]), X2(t) is



4 Viral Population Growth Models

the number of latently infected cells, X3(t) is the
number of actively infected cells, and X4(t) is the
number of circulating HIV-1 virions. The attachment
of virus to CD4+ T -cells (assumed to be one on
one) occurs according to a Poisson process N =
{N(t), t ≥ 0} with rate βX1X4 so that the system of
stochastic differential equations corresponding to the
above deterministic model is

dX1(t) = (λ − µX1(t) dt − dN(t) (10)

dX2(t) = −(µ + α)X2(t) dt + dX(t) (11)

dX3(t) = (αX2(t) − aX3(t)) dt + dY (t) (12)

dX4(t) = (cX3(t) − γX4(t)) dt − dN(t). (13)

The random variable X(t) is binomial with
parameters N(t) and p and Y (t) is binomial with
parameters N(t) and 1 − p. That is, at time t for each
of N(t) virus-uninfected cell interactions, the proba-
bility of a transition to a latently infected cell is p; and
the probability of a transition to an actively infected
cell is (1 − p). Note that N has different units in,
for example, (10) and (13), but equal numerical val-
ues. In a diffusion approximation [27] (see Brownian
Motion and Diffusion Processes), the evolution of
the system is described by

dX1 = (λ − µX1 − βX1X4) dt

− √
(βX1X4) dW (10A)

dX2 = [βpX1X4 − (µ + α)X2] dt

+ √
(βpX1X4) dW (11A)

dX3 = [β(1 − p)X1X4 + αX2 − aX3] dt

+ √
(β(1 − p)X1X4) dW (12A)

dX4 = (cX3 − γX4 − β ′X1X4) dt

− √
(β ′X1X4) dW. (13A)

The model parameters are as defined above for the
deterministic model. The prime on β indicates that
this parameter has different units from those of β.
Note that there is only one primary Wiener process,
not four as portrayed in [10] as each component
carries the same one, derived from the Poisson
process N .

For the four-component diffusion process (10A)–
(13A), the transition probability density function
P(y, t ; x, s), s < t , where y is a 4-vector of forward
variables and x is a 4-vector of corresponding

backward variables, satisfies the following backward
Kolmogorov equation [5]

∂P

∂s
+ LxP = 0, (14)

where the operator Lx is defined through

Lx = [
λ − µx1 − βx1x4

] ∂

∂x1

+ [
βpx1x4 − (µ + α)x2

] ∂

∂x2

+ [
β(1 − p)x1x4 + αx2 − ax3

] ∂

∂x3

+ [
cx3 − γ x4 − β ′x1x4

] ∂

∂x4

+ x1x4

[
1

2

{
β

∂2

∂x2
1

+ βp
∂2

∂x2
2

+ β(1 − p)
∂2

∂x2
3

+ β ′ ∂2

∂x2
4

}

+ β
√

p
∂2

∂x1∂x2
+ β

√
1 − p

∂2

∂x1∂x3

− √
ββ ′ ∂2

∂x1∂x4
+ β

√
p(1 − p)

∂2

∂x2∂x3

− √
ββ ′p

∂2

∂x2∂x4
− √

ββ ′(1 − p)
∂2

∂x3∂x4

]
.

For the diffusion model, some simulated sample
paths obtained with a strong Euler scheme for X1,
X2, and X4 are shown in Figure 1. Good agreement
with the time course and variability of the acute
phase of HIV-1 infection is found. In addition, it was
found useful to find the times at which the virion
density attains levels corresponding to the thresholds
for detection of the virus in plasma samples; a typical
distribution is shown in the bottom part of Figure 1.
Such results are useful in ascertaining the risks in
tests of blood donations for infection by HIV [11].

It is possible to find the properties of the distri-
bution of the time to detection by using first passage
time theory for diffusion processes, which results in
the following analytical framework. Let the thresh-
old level of detection of the virus be θ /mm3. Let A

be a set in R4 containing the initial value x of the
process such that x4 ∈ (0, θ). In particular, let A =
(x ′

1, x ′′
1 ) × [0, x ′′

2 ) × [0, x ′′
3 ) × (0, θ). Then, we con-

sider the time to detection as the first exit time, Tθ (x),
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Figure 1 Numerical solutions of the stochastic differential equations (10A)–(13A), showing 20 sample paths for the
components X1, activated uninfected cells, X2, latently infected cells, and X4, free plasma virus. For more details, see
Tuckwell and Le Corfec [28]. An estimate of the distribution of the time to reach an assumed detection threshold (100
virions/cubic millimeter) is also shown, based on 500 trials

of the process (X1, X2, X3, X4) from A. Here, x ′
1 is

chosen small enough and both x ′′
2 and x ′′

3 are cho-
sen large enough so that escapes through x1 = x ′

1 or
x2 = x ′′

2 or x3 = x ′′
3 are extremely unlikely. Also, the

actual initial value of X1 must be less than x ′′
1 .

The distribution function of this quantity,
Fθ (x; t) = Pr{Tθ (x) ≤ t}, satisfies

∂Fθ

∂t
= LxFθ , (15)

with initial condition Fθ (x; 0) = 0, if x ∈ A and
Fθ (x; 0) = 1, if x /∈ A, with boundary condi-
tion Fθ (x; t) = 1, x /∈ A, t ≥ 0. Furthermore, the
moments µn = E

[
T n

θ (x)
]
, n = 1, 2, . . . , satisfy the

recursive system

Lxµn = −nµn−1, (16)

for x ∈ A, with boundary conditions µn(x) = 0, x ∈
∂A. Here, µ0 = 1 is the probability of ever leaving A.
There may be some escape of probability mass at zero
virion level but this is expected to be insignificant
compared to that associated with paths, which attain
level θ , so Tθ (x) will be very close to the time to
detection.

Approximation for Small Times. The above four-
component framework can be simplified to a two-
component one at early times by not distinguishing
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between latently and actively infected CD4+ T -
cells, as in [7], and by considering the number of
uninfected CD4+ T -cells as constant. Neglecting also
the interaction term in the viral dynamical equation,
one obtains a simplified stochastic model for the
very early (less than 15 days) period of HIV-1
dynamics [30].

Long-term Stochastic HIV Model. The mathemati-
cal model of Tan and Wu [26] has the same four
components as above, but the dynamics of the unin-
fected cells are more complicated. These are gener-
ated by a means of a (possibly temporally nonhomo-
geneous) Poisson process with rate s(t) (replacing
the constant λ), the rate declining as free virion
level increases. Furthermore, these cells are stimu-
lated by HIV and antigen to produce new X1 by
a stochastic logistic birth process with rate r(t) =
r0[1 − (X1 + X2 + X3)/Tmax], where r0 is a constant
and Tmax is the saturating level of host cells in all
stages. The proportion of infected cells that become
latent is possibly time dependent and given by ω(t)

and the number of virions released by an actively
infected cell is (possibly) random and given by M(t).
Furthermore, the three kinds of host cells and free
HIV die according to simple death processes with
rates µ1, µ2, µ3 and µ4, respectively (see Stochastic
Processes). The stochastic equations take the form

dX1 = s(t) dt + r(t)X1 dt − X1[µ1 + k1X4] dt

+ ε1(t) dt (17)

dX2 = ω(t)k1X1X4 dt − X2[µ2 + k2] dt

+ ε2(t) dt (18)

dX3 = [1 − ω(t)]k1X1X4 dt + k2X2 dt − µ3X3 dt

+ ε3(t) dt (19)

dX4 = M(t)µ3X3 dt − k1X1X4 dt − µ4X4 dt

+ ε4(t) dt. (20)

The constants k1 and k2 are the interaction rate
between HIV and uninfected cells and the transition
rate from X2 to X3. Note that here virions are released
(only) whenever an X3 cell “dies”. The terms εk, k =
1, . . . , 4, are “random noises”. The means of the Xk’s
are not the same as the deterministic model. By means
of simulation, Tan and Wu were able to distinguish
three regimes: (a) an early infection period; (b) a
transition period; and (c) a steady state period. Using

parameters estimated from patient data, in both their
simple and complex models, they found there was
a positive probability of approaching a noninfected
state (X3 = X4 = 0), even in the absence of drug
treatments.

Models with Mutant Virus Strains

It is important to address the effects of the appearance
of mutant strains of virus, which may lead to ineffec-
tive or less effective drug treatments [1, 16, 18, 22].
Abundo and Rossi [1] consider a multicomponent
diffusion process model. In addition to distinguishing
viral strains, Vi, i = 1, . . . , n, each of which has its
own unique growth rate ri , it was assumed that there
are associated specialized classes of CD4+ T -cells,
Xi . There are also an uninfected cell population Y

and a nonspecific class of activated cells, X. A virus
of any strain may attack host cells. The drift terms
correspond to the deterministic model of Nowak et
al. [19]. The process of viral mutation does not
appear explicitly in the model, which seems unde-
sirable. However, in the simulated solutions of the
diffusion model, explosions of viral load eventually
occur, accompanied by the collapse of the immune
system. For a perspective on the ramifications for
strategies of drug treatment, see [22].

Statistical Models and Drug Treatments

Using simple differential equations, similar to those
in the section ”Deterministic Models”, modified to
incorporate the effects of drug treatments, patient data
on CD4 cell counts and HIV loads may be used to
estimate model parameters from explicit solutions.
For example, using nonlinear regression analysis,
the viral clearance rate constant, and the rate of
loss of virus-producing cells were estimated for each
of a group of patients [20]. However, as there is
presently no suitable long-term HIV model, Wu and
Zhang [32] have applied a class of semiparametric
nonlinear mixed-effects models developed for longi-
tudinal data [33] (see Random Coefficient Repeated
Measures Model). At the population level, combina-
tion antiretroviral therapies (ARV) are widely used
to treat HIV, but drug-resistant strains have quickly
evolved and the overall impact that ARV will have on
HIV epidemics remains unclear. Velasco-Hernandez
et al. [31] used a mathematical model to determine
the effectiveness of current therapies in reducing the
severity of HIV epidemics. They claimed that even
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a high-prevalence HIV epidemic could be eradicated
using current ARV.

Conclusions

Mathematical models of viral dynamics are poten-
tially very useful for understanding the progression
and treatment of virally induced diseases. Simple sta-
tistical models and the incorporation of mutant viral
strains can lead to optimized drug treatments for HIV,
which ameliorate the disease but do not eliminate
it. The stochastic modeling of viral dynamics is in
its infancy, and existing models omit many impor-
tant agents and properties of both virus, host cell and
immune response.
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Vital Statistics, Overview

Vital statistics, as a scientific discipline, is a
subdomain of demography, the study of the
characteristics of human populations. Vital statistics
comprises a number of important events in human
life including birth, death, fetal death, marriage,
divorce, annulment, judicial separation, adoption,
legitimation, and recognition. The term “vital
statistics” is also applied to individual measures of
these vital events. Thus, a birth rate is an example of
a vital statistic and an analysis of trends in birth rates
is an example of an application in the field of vital
statistics. A vital statistics system is the total process
of collecting by civil registration, enumeration, or
indirect estimation, information on the frequency of
occurrence of vital events, selected characteristics
of the events and the persons concerned, and the
compilation, analysis, evaluation, and dissemination
of these data in summarized statistical form. Other
life events of demographic importance such as
change of place of residence (migration), change of
citizenship (naturalization), and change of name are
not included, mainly because information on these is
usually derived from other statistical systems such as
population registers [1].

Systems for Collecting Vital Statistics

It is generally accepted that the preferred method
for individual countries to collect vital statistics is
through a civil registration system. This is recognized
by the United Nations (UN) and other international
organizations, as well as by the many countries that
have had civil registration laws and regulations in
place and in operation for many years [1, 2]. Never-
theless, a number of newly emergent and developing
nations, facing the difficulties and length of time it
takes to create a satisfactory civil registration sys-
tem, have instituted alternative procedures to acquire
statistical data to describe the levels and trends for
key vital events, particularly for fertility and mortality
measurements. The UN recognizes the importance of
a civil registration system for each country as the pre-
ferred source of vital statistics data for the long run.
However, use of an alternative data collection system
is recommended as an interim measure for meeting
needs for essential information where a civil registra-
tion system of acceptable quality does not yet exist.

Other systems include, for example, probability area
samples (see Probability Sampling), purposeful area
samples, records-based surveys, and record linkage.
Furthermore, the UN recommends a priority order for
the types of vital statistics data to be collected. The
highest need is given to data on births and deaths, fol-
lowed in order by marriages, divorces, fetal deaths,
annulments, judicial separations, adoptions, legitima-
tions, and recognitions [1].

Uses of Vital Records and Vital Statistics

Vital records created through a civil registration sys-
tem have two classes of use. They have value indi-
vidually as legal documents for the persons named
thereon; they also constitute the input, when aggre-
gated, for the various vital statistics measures that
are used to study the demographics and health of
populations and population subgroups.

For the individual, a birth record is a legal docu-
ment establishing name, parentage, birth data, order
of birth for multiple births, legitimacy, and citizen-
ship, nationality, or geographic place of birth. A wide
variety of individual rights and civil entitlements
depends on these facts, including proof of age for
school entrance, motor vehicle drivers’ licenses, mili-
tary service and other age-related activities, establish-
ment of eligibility for family allowances, insurance
benefits, tax benefits, inheritance rights, issuance of
passports, etc. The death record provides documen-
tary proof of the facts of death needed for social secu-
rity and insurance purposes such as time and place of
death and the medical cause of death. Proof of death
and the associated facts are also used for property
inheritance rights, for remarriage rights of surviv-
ing spouses, etc. Marriage and divorce records serve
to document rights to special social and economic
programs and benefits for the married, including tax
privileges for couples, alimony, change of national-
ity based on marriage, and the right to remarry. Many
rights of children, their parents, and their guardians
are dependent on records of adoption, legitimation,
and recognition.

Individual vital records may also be used admin-
istratively as the basis for initiating maternal and
child health services, including child immunization
programs, or for epidemiologic investigations into
disease outbreaks or assessments of causes of acci-
dents and injuries. Another important administrative
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use of individual vital records especially of death
records (see Death Certification), is for the updating
or clearing of files such as electoral rolls, social secu-
rity files, disease registers, cohort follow-up studies,
tax registers, etc.

In aggregated form, vital records become a col-
lection of vital statistics, most often in the form of
means, medians, and various ratios such as propor-
tions and rates. Whether collected by civil registra-
tion or by other means, vital statistics serve as key
demographic variables in the analysis of population
size, growth and geographic distribution, especially
when used in conjunction with periodic population
censuses. When census data are used as a base, cur-
rent intercensal estimates of population size can be
made, and projections into the future can be pre-
pared using estimates of future trends in fertility,
natality, and mortality linked with estimates of net
migration. In addition to the importance of vital
statistics to the study of population size and growth
trends, other national and subnational economic and
social concerns such as health, welfare, education,
occupation, housing, urbanization, family structure,
and income are also affected by these measures. In
the fields of public health and medicine, for example,
levels and trends of infant and perinatal mortal-
ity are often used as surrogate measures of levels
and trends in the overall health and well-being of
nations. Life expectancy at birth is also frequently
used to compare the overall effects of mortality and
its determinants. Cause of death information pro-
vides a foundation upon which much research into
diseases and disease prevention is based.

Differentials in mortality by sex, age, racial groups,
and other variables are often the basis for the planning
of health and medical intervention programs. In addi-
tion, the planning and provision of public and private
housing, educational facilities, social security and pri-
vate insurance plans, medical facilities, and consumer
goods of all kinds are examples of activities depen-
dent on vital statistics data. At the international level,
vital statistics provide a basis for comparing impor-
tant demographic, social, and economic differences
and trends over time among countries or regions of
the world.

Definitions of Selected Vital Events

Standard statistical definitions of vital events have
been promulgated by international agencies [1, 5]. In

some cases, legal definitions may differ from the
international standards in varying degrees, but, in
many cases, national vital statistics reports are either
based on the standard statistical definitions or do
not differ in principle. In cases where comparability
among countries is compromised because of the use
of nonstandard definitions, international agencies and
others presenting national comparisons of tabular,
graphical or descriptive vital statistics usually provide
appropriate cautions to users. Nevertheless, users of
vital statistics data need to ascertain the comparability
of the data before drawing reliable conclusions about
national differences. The World Health Organiza-
tion (WHO) promulgates a number of vital statistics
definitions as part of the International Classification
of Diseases (ICD). These definitions are incorporated
in regulations adopted by the World Health Assembly
and which each WHO member country has agreed to
follow [4]. Nevertheless, it is still necessary to ensure
that the standard definitions have been followed for a
given data set. The international standard definitions
for selected vital events are given below.

Live Birth. This is the complete expulsion or extrac-
tion from its mother of a product of conception,
irrespective of the duration of the pregnancy, which,
after such separation, breathes or shows any other
evidence of life, such as beating of the heart, pulsa-
tion of the umbilical cord, or definite movement of
voluntary muscles, whether or not the umbilical cord
has been cut or the placenta is attached; each product
of such a birth is considered liveborn [5].

Fetal Death. This is death prior to the complete
expulsion or extraction from its mother of a product
of conception, irrespective of the duration of preg-
nancy; the death is indicated by the fact that after such
separation the fetus does not breathe or show any
other evidence of life, such as beating of the heart,
pulsation of the umbilical cord, or definite movement
of voluntary muscles [5].

Maternal Death. This is the death of a woman while
pregnant or within 42 days of termination of preg-
nancy, irrespective of the duration and the site of
the pregnancy, from any cause related to or aggra-
vated by the pregnancy or its management, but not
from accidental or incidental causes. Maternal deaths
may be subdivided into two groups: direct obstetric
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deaths which are the result of obstetric complica-
tions of the pregnant state (pregnancy, labor, and the
puerperium), from interventions, omissions, incorrect
treatment, or from a chain of events resulting from
any of these; and indirect obstetric deaths which are
the result of previously existing disease or disease
that developed during pregnancy and which was not
due to direct obstetric causes, but which was aggra-
vated by physiologic effects of pregnancy [5].

Infant Death. This is the death of a liveborn infant
who dies before completing its first year of life.

Neonatal Death. This is the death of a liveborn
infant who dies during the first 28 completed days
of life. These may be subdivided into early neonatal
deaths, occurring during the first seven days of life,
and late neonatal deaths, occurring after the comple-
tion of the seventh day but before the completion of
28 days [5].

Perinatal Death. This is the death of a fetus or
newborn infant occurring after 22 completed weeks
(154 days) of gestation (the time when fetal weight
is normally about 500 g), but prior to the completion
of seven days after birth [5].

Marriage. This is the act, ceremony or process by
which the legal relationship of husband and wife is
constituted. The legality of the union may be estab-
lished by civil, religious, or other means recognized
by the laws of each country [1].

Divorce. This is a final legal dissolution of a mar-
riage which confers on the parties the right to
remarriage under civil, religious, or other provisions,
according to the laws of each country [1].

Definitions of Selected Vital Statistics
Measures

Raw vital statistics most often are comprised of
counts of how often a specified vital event has
occurred, rather than on measurements of continuous
variables such as height, weight, or blood pressure.
The analysis of vital data depends mainly on the con-
version of observed frequencies into indices, ratios,
and probabilities. Counts of vital events often do have

utility, but, for the majority of uses, absolute frequen-
cies are not sufficient and it becomes necessary to
compute relative numbers, including crude rates, var-
ious types of specific rates, percentages, probabilities,
and other ratios.

Some of the more commonly encountered vital
statistics relative numbers are defined and calculated
as follows.

Crude Death Rate

The most common form of mortality measurement
is the crude death rate. It is computed from the
following formula [3]:

mcd =
(

D

P

)
k,

where mcd is the crude death rate, D is the total num-
ber of deaths for a given area and time period, usually
a calendar year, P is the size of population at risk
of dying, usually taken as the estimated population at
the midpoint of the calendar year, and k is a constant,
usually taken as 1000.

The crude rate is so named to differentiate it from
various specific and adjusted rates and represents
the total or overall death rate without regard to
the various component elements which combine to
produce the total figure. The crude death rate is
usually expressed as “the number of deaths per 1000
persons” for a specified place (country, city, state,
etc.) for a given year.

Specific Death Rate

Detailed analyses of vital statistics frequently go
beyond the overall risk of death in the population
as a whole. Many studies deal with subsets of the
population or with particular classes of deaths. Epi-
demiologists often focus on deaths from a particular
disease or class of diseases. Actuaries and demogra-
phers are concerned with differences in mortality by
sex and in different age groups within the population.
Environmental and occupational health specialists
are interested in the differential risks of dying in
selected occupations, and in different geographic sub-
divisions such as urban and rural areas. To meet these
kinds of needs, various specific death rates are calcu-
lated. Specific rates for different age groups are called
age-specific death rates; rates for males and females
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are called sex-specific death rates, rates for particular
causes of death are called cause-specific death rates.
Rates may be specific for combinations of charac-
teristics. For example, age–sex–race-specific death
rates are computed separately for each age group by
race and sex. Specific death rates are approximations
of true probabilities. That is, the denominator of the
ratio is an estimate of the total number of events of a
particular type that could happen, while the numerator
is a count of those that did happen.

Specific death rates are computed as follows [3]:

msd =
(

di

pi

)
k,

where msd is the specific rate for any defined ith class,
di is the number of deaths occurring in the ith class
for a given area and time, pi is the number of persons
in the ith class of the population for the same area
and time, and k is a constant, usually 100 000.

For cause-specific death rates, the denominator,
pi , in the above formula is replaced by P , the total
population exposed to the risk of death. Therefore, a
cause-specific death rate measures the risk in the total
population of dying from a specified cause of death.

Infant Mortality Rate

The infant mortality rate is considered by many
as one of the important indicators of the overall
level of health and social well-being of a country
or other geopolitical area. This is, in part, because
a large proportion of deaths in the first year of life
are considered to be preventable through adequate
prenatal care, good nutrition for women and infants,
and improved control of the environment, including
injury prevention.

The infant mortality rate is computed as fol-
lows [3]:

mi =
(

d<1

B

)
k,

where mi is the infant mortality rate, d<1 is the
number of deaths to liveborn infants under one year
of age during a specified time period, usually one
year, B is the total number of live births during the
same time period, and k is a constant, usually 1000.

The infant mortality rate is a proxy for the age-
specific death rate for the “under one year of age
group” and is intended to be a measure of the risk
of dying during the first year of life. The numerators

of the infant mortality rate and the “under one year
of age” age-specific death rate are the same. For a
denominator, however, a reliable estimate of the size
of the population under one year of age for a given
time period is hard to obtain, even in a census year.
As a proxy measure, the denominator may be consid-
ered to be the number of births occurring during the
period. For either of these choices of denominator,
there is some mismatch with the numerator in terms
of a true probability number. Not all events in the
numerator arise from the events in the denominator.
For example, in the infant mortality rate, some of the
deaths under one year of age in a given year and
counted in the numerator were actually born in the
previous year and are not represented in the denom-
inator, while some of the births represented in the
denominator will die before their first birthday but
the deaths will occur in the next year and are not
included in the numerator. However, when the birth
rate is fairly stable from one year to the next, cal-
culation of the infant mortality rate results in a ratio
that closely approximates the probability of a live-
born infant dying within the first year of life. When
the birth rate is not stable from year to year, a more
accurate mortality rate may be computed by follow-
ing each live birth occurring during a one year period
and measuring how many of them die before their
first birthday.

Neonatal, Early Neonatal and Postneonatal
Mortality Rates

The neonatal mortality rate is defined as follows [5]:

mn =
(

d<1 mo

B

)
k,

where mn is the neonatal mortality rate, d<1 mo is
the number of deaths of infants under 1 month of
age during a specified time period, B is the number
of live births occurring during the same time period,
and, k is a constant, usually 1000.

The neonatal mortality rate, like the infant mor-
tality rate, is a proxy for an age-specific death rate.
It approximates the risk of dying in the first month
of life. The relative importance of an infant mortal-
ity rate compared with the corresponding neonatal
mortality rate depends on the proportionate age distri-
bution of the deaths under one year of age. Generally,
when the infant mortality rate is low, a large pro-
portion of infant deaths occur during the first month
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of life. The neonatal mortality rate then reflects an
important measure of the mortality risk for infants.
Conversely, when the infant mortality rate is high,
larger proportions of deaths fall into the older age
groups under a year. Often it is useful to partition
the deaths of infants under one year of age into two
groups: those dying before one month of age, and
those dying between one month and their first birth-
day. The former comprise the numerator, d<1 mo, of
the neonatal mortality rate, while the latter can be
used to calculate the postneonatal mortality rate:

mpn =
(

d1 mo – 1 yr

B

)
k,

where mpn is the postneonatal mortality rate,
d1 mo – 1 yr is the number of deaths occurring between
1 month and 1 year of age during a specified time
period, B is the number of live births occurring
during the same time period, and k is the same
constant used in the neonatal mortality rate, usually
1000.

In similar fashion, the neonatal deaths may be
partitioned into those dying within the first week of
life and the remainder that survive the first seven days
but die before one month of age. The risk of dying
in the first week of life is measured by the early
neonatal mortality rate, men, as follows [5]:

men =
(

d<7 days

B

)
k,

where the components of the calculation are the same
as in the neonatal and postneonatal mortality rates,
except that the numerator contains only those deaths
to infants occurring during the first week of life.

Perinatal Mortality Rate

The perinatal period, as defined earlier, is the period
of time surrounding the event of birth. It includes the
time that a fetus spends in utero after it has reached
22 weeks of gestation and continues through the birth
process until the end of the first week of life after
birth. The perinatal mortality rate measures mortality
occurring during this period. The rate, therefore,
combines deaths of fetuses of specified gestational
age with deaths of liveborn infants who die in their
first week of life. The determination of whether a
fetus is born dead or whether it shows any sign of
life before expiring is not always clear-cut; social,

economic, and cultural factors, as well as medical
and biological considerations, tend to push the fetal
death rate in one direction or the other in different
societies, thus making comparisons of neonatal or
infant mortality among countries difficult. By using
the perinatal mortality rate for comparisons, this
difficulty is minimized since fetuses dying just before
or during the birth process as well as those born alive
but dying shortly thereafter are all included in the
calculation [5]:

mperi =
[

dperi

F + B

]
k,

where mperi is the perinatal mortality rate, dperi is the
number of deaths of fetuses of 22 or more weeks
of gestation plus deaths of liveborn infants of less
than 7 days of age during a specified period, usually
a calendar year, F is the number of fetal deaths of 22
or more weeks of gestation during the same period,
B is the number of live births during the same period,
and, k is a constant, usually 1000.

Note that, unlike the infant and neonatal mortality
rates, the denominator of the perinatal mortality rate
combines both the number of live births and the
number of fetal deaths of 22 or more weeks of
gestation. This denominator is called “total births”
and better approximates the population from which
the numerator could arise than would a denominator
restricted to only live births. On the other hand, it is
recognized that it is easier to collect reliable counts
of live births than of fetal deaths, thus introducing
another source of error into the calculation of the
perinatal mortality rate.

Maternal Mortality Rate

The maternal mortality rate is calculated as fol-
lows [5]:

mm =
[

dmd + dmi

B

]
k,

where mm is the maternal mortality rate, dmd is the
number of direct maternal deaths in a specified time
period, usually 1 year, dmi is the number of indirect
maternal deaths in the same period, B is the number
of live births in the same period, and k is a constant,
usually 10 000 or 100 000.

A related measure, the direct obstetric mortality
ratio, may be calculated from the above formula
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but using in the numerator only the direct maternal
deaths, dmd.

Proportionate Mortality

Proportionate mortality, sometimes known as the
death ratio (see Proportional Mortality Ratio
(PMR)), is defined as [3]:

pd =
(

di

D

)
k,

where pd is the proportionate mortality, di is the
number of deaths in a specified class during a stated
time period, D is the total number of deaths in the
same time period, and k is a constant, usually 100 or
1000.

Proportionate mortality ratios may be calculated
for any class of deaths, but their most common uses
are for given causes or group of causes of death
expressed as percentages of deaths from all causes, or
for deaths at a specified age expressed as percentages
of deaths at all ages.

Crude Birth Rate

The crude birth rate is the most frequently used
overall measure of the reproduction of a population.
Like its counterpart, the crude death rate, it is
influenced by many factors and represents a proxy for
more specific fertility measurements. It is calculated
as follows [3]:

mcb =
(

B

P

)
k,

where mcb is the crude birth rate, B is the total
number of live births for a given area and time period,
P is the total population at the midpoint of the time
period, and, k is a constant, usually 1000.

Comparing Vital Statistics Data

Aggregated vital statistics data, whether in tabular or
graphical form, often appear as time trends for par-
ticular variables such as causes or groups of causes
of death, or for age and sex groups of the population.
They also appear frequently as comparisons between
countries or other geographical entities for a point in
time, usually a particular year. In either case, great

care must be taken to ensure that the quality of the
data in the groups being compared warrants making
the comparisons. In registration based systems, mea-
sures or estimates of completeness of reporting of
vital events should be known. In sample based sys-
tems, the representativeness of the sample and the
nonresponse rate is important. In the comparison of
data between two or more geographic places, it is
important to ascertain if common definitions and pro-
cedures were used to collect, process, analyze, and
present the data; in looking at time trends, it is essen-
tial to know if the definitions of the events and the
procedures for classifying the data remained constant
over the entire time period being studied. This lat-
ter point is particularly important when looking at
trends in causes of death since the instrument for
grouping diseases into categories for study, the ICD,
is revised approximately every 10 years (see Mor-
bidity and Mortality, Changing Patterns in the
Twentieth Century; Mortality, International Com-
parisons). Vital statistics data are often presented in
statistical compendia published by official national
and international organizations that attempt to include
important notes for interpretation of the data in head-
notes and footnotes to tables, appendices, etc. (see
Data Access, National and International). The user
is cautioned to pay careful attention to such explana-
tory or cautionary notes.
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Wald, Abraham

Born: October 31, 1902, in Cluj, Rumania.
Died: December 13, 1950.

Abraham Wald emigrated to the US in 1938 and, in
the period from 1938 till his death in a plane crash in
1950, he studied and revolutionized modern statistics.
His most important contributions were in introducing
decision theory and sequential analysis.

As the son of an orthodox Jew, he would not attend
school on Saturday, the Jewish sabbath, and was not
admitted to the local gymnasium (high school). He
studied by himself with the help of an older brother,
Martin, an electrical engineer, and was later admitted
to the University of Cluj. After graduating, he spent
a year in the engineering school at Vienna, and was
finally admitted to the University of Vienna in the fall
of 1927. After introducing himself to Karl Menger
and expressing his interest in geometry, he spent
some time serving in the Rumanian army instead of
at the university.

In February 1930, Wald began to attend Menger’s
lectures and became part of an exciting group of
young mathematicians taking part in an active math-
ematical colloquium. He received his Ph.D. in 1931.
At this time of political and economic unrest, it was
impossible to get a position at the university, and
Menger recommended that he become involved with
applied mathematics. Menger introduced Wald to
Karl Schlesinger, a well-to-do banker and economist
who wished to broaden his knowledge of higher
mathematics. The association between Schlesinger
and Wald led to publications on the existence of
meaningful solutions for systems of equations of the
theory of production, and on the cost of living index,
and to contact with Oskar Morgenstern. Morgenstern
was then director of the Institut für Konjunktur-
forschung, and later became a coauthor with von Neu-
mann of their book on the theory of games [5]. He
employed Wald at his institute and in the late 1930s
Menger, Morgenstern, and Wald emigrated to the US.

Before emigrating, in the summer of 1938, to
become a fellow of the Cowles Commission for
Research in Economics at the University of Chicago,
Wald also worked on a problem of the consistency
of the von Mises concept of “Kollektiv”, which lies
at the heart of the von Mises axiomatization of
probability.

In the fall of 1938, the Cowles Commission
released Wald to accept a fellowship of the Carnegie
Corporation, obtained for him by Harold Hotelling
at Columbia University. Wald spent a busy year
learning modern statistics by reading and attending
Hotelling’s lectures. At the same time, he started writ-
ing the publications on probability and statistics that
are the foundation of his fame. The following year,
he also began his career as an outstanding teacher of
statistics at Columbia University. One of his earliest
contributions in statistics, one considered by his fre-
quent collaborator Jacob Wolfowitz to be his most
important paper, was published in 1939, introducing
decision theory [6].

On July 1, 1942, the Statistical Research Group
(SRG) was formed to assist in the war effort. It was
sponsored by Columbia University under the director-
ship of W. Allen Wallis. Shortly afterwards, another
group was formed, the Statistical Research Group at
Princeton, sponsored by Princeton University under
the directorship of Samuel S. Wilks. In response to
a question on sampling inspection raised by Cap-
tain Schuyler of the US Navy, Wallis and Milton
Friedman proposed the use of sequential methods in
sampling inspection. Failing to find a satisfactory res-
olution, they approached Wald in April 1943 [10].
At first, Wald was cool to the concept that seemed
to violate a basic dogma of statistical inference, but
the next day he changed his mind and produced the
Sequential Probability Ratio Test, and derived some
of its properties the day after that.

In 1941, Wald married Lucille Lang (who died
with him in the plane crash, leaving two children,
Betty and Robert born in 1943 and 1947). Columbia
University recognized Wald’s talent and quickly pro-
moted him from Assistant Professor of Economics
to Associate Professor and then to full Professor
in 1944.

In 1946, Hotelling was recruited by Gertrude
Cox to go to the University of North Carolina in
support of her grand plan for the Institute of Statis-
tics combining departments at the University and at
North Carolina State. His departure led Columbia
University to start a Statistics Department in the
Faculty of Political Sciences with Wald as chair.
The department had Wolfowitz and T.W. Anderson,
Jr as regular appointees and, to supplement this
small faculty, the department invited visitors to
give courses. Among these visitors were J. Neyman,
J.L. Doob, R.C. Bose, M.M. Loeve, E.J.G. Pitman,
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and S.N. Roy. In the next few years, H. Scheffé and
H. Levene were added to the regular faculty. In this
postwar period, many relatively mature students, sup-
ported by the G.I. bill, returned to school, and the
Statistics Department had a substantial collection of
students who later became prominent in the field.

Much of the above text has been paraphrased
from the more detailed articles by J. Wolfowitz,
K. Menger, and G. Tintner, which were written in
memorials for the Annals of Mathematical Statis-
tics [3, 4, 12, 13].

The theoretical work of R.A. Fisher, suggested
by applied problems, did much to accelerate the pro-
cess of introducing mathematical considerations into
theoretical statistics. The Neyman–Pearson theory
helped to clarify many of the issues of inference that
had hitherto been implicit, but never clearly artic-
ulated. These developments opened up a world of
research for mathematical statisticians, the recogni-
tion of which led to the publication of the Annals
of Statistics in 1930 and The Institute of Mathemati-
cal Statistics in 1933. When Wald arrived in the US,
the number of talented mathematicians working in
statistics was still quite small, but ready to explode.
Hotelling had published a list of problems, the solu-
tion of which he felt would contribute much to the
advancement of statistical theory. This was an envi-
ronment well suited for talented mathematicians, and
especially for those who had good statistical insights.
Wald had the ability to know which problems were
important, how to solve those that were tractable, and
how to get good approximations for those that were
not tractable.

The first paper on decision theory did not get an
exceptionally good reaction, but one of his collab-
orators, Henry B. Mann, introduced it in a reading
course in statistics in the summer of 1945 at Brown
University. Wald returned to that subject in 1946.
This formulation of the problem of statistical infer-
ence completed the work of Neyman and Pearson, by
introducing cost considerations into hypothesis test-
ing as well as in estimation and inference in general.
It clearly points out one essential source of subjectiv-
ity in inference, since different investigators may very
well have different cost functions. This formulation
may be regarded as that of a game of the statistician
against nature, with the difference that nature can-
not be regarded as an active opponent. It has been
suggested that this paper may have been influenced

in part by a 1928 paper by von Neumann on game
theory [11].

Although there was considerable resistance against
this formulation, and, in particular, against Wald’s
tentative proposal of the minimax criterion, that
resistance has died down, and it is difficult to deny
the essential clarity it has contributed to the under-
standing of inference. The book on the subject [8]
was not easy to read, since it dealt with some of the
mathematical difficulties in deriving general results
in this field.

Sequential analysis was immediately accepted by
theoreticians. The initial results applied to the test
of a simple hypothesis against a simple alterna-
tive (see Hypothesis Testing). Wald proved that the
sequential probability ratio test (SPRT) would termi-
nate with probability one and that the error probabil-
ities and expected sample size under both hypotheses
could be approximated very accurately. In typical
applications, he obtained effective savings of about
50% in the sample size required to achieve given
error probabilities. (In theory, for problems involv-
ing nearby alternatives and small error probabilities,
this saving approaches 75%.) Wald conjectured that
the SPRT was optimal, but was unable to prove that
until his paper with Wolfowitz in 1948 [9] established
a unique optimal property. The SPRT minimizes the
expected sample sizes for the two hypotheses among
all tests that achieve a given pair of error proba-
bilities or better. The proof in this paper had some
measure-theoretic difficulties that were resolved in a
later paper by Arrow et al. [2], which was a founda-
tion paper for dynamic programing. But the essential
idea of relating the SPRT to the solution of a Bayes
problem appeared in the Wald–Wolfowitz paper. In
fact, the original derivation of the SPRT was based on
a Bayesian approach, but Wallis convinced Wald to
omit this from his publications, since the published
results at that time did not require prior probabili-
ties. Wald often used Bayesian arguments as part of
his analysis to derive frequentist results. At the time,
Bayesian methods were generally regarded as unac-
ceptable.

While the main results were for testing a simple
hypothesis vs. a simple alternative, Wald extended
the method for testing composite hypotheses by intro-
ducing the notion of an indifference region. As with
many of his approximations, this device worked
remarkably well for the typical problems dealt with
by most experimenters. However, it failed to address
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the real problem in a satisfactory fashion designed to
derive optimal results. Wald published a remarkably
clear and simple presentation of his main results in a
book [7], with an elegant appendix with more math-
ematical detail, in 1947, before the derivation of the
optimality result.

While sequential analysis was an important tool
in military applications where each observation was
extremely costly, and the need to reduce sample
size important, it tended to be neglected in applied
work until recently when it began to be used more
often in clinical trials. In much engineering work a
major cost of experimentation is the setup cost, and
it is relatively inconvenient to sample and observe
the results one at a time. In the early post-World
War II days, the computational complexity, more
apparent than real, inhibited its use. A foundational
problem also played a role here. When a sequential
test with significance level 0.05 leads to rejection, it
is possible that the investigator, acting as though the
random sample size had been selected in advance,
will calculate the P value and find a value quite
different than 0.05 in either direction. With a fixed
sample size, rejection would always lead to a smaller
P value. The naive investigator would have difficulty
in interpreting the data. The sophisticated investigator
with Bayesian leanings would reject the concept that
the interpretation should depend on the rule that was
used to decide when sampling should be stopped.

Although we have concentrated on Wald’s most
important contributions to the statistical literature, his
publications covered an enormous range of problems
of importance where his mathematical skills and his
statistical insights were effective. These included con-
tributions to asymptotic theory, econometrics, theory
of nonparametric methods, analysis of variance,
experimental design, multivariate analysis, and the
exploitation of the theorem of Lyapounov on the
range of a vector measure. The following is a very
brief description of some of these papers.

In asymptotic theory, Wald characterized asymp-
totically optimal procedures, presented a clarifying
proof of the consistency (see Consistent Estimator)
of maximum likelihood estimates, treated problems
where the number of parameters approached infinity,
and described a calculus of stochastic limit and order
relations (see Order Statistics). In econometrics he
dealt with the identification problem and presented
one of the earliest effective attacks on the estima-
tion of a linear relationship when observations on

both variables are subject to error (see Regression).
Exploiting the Lyapounov theorem with Wolfowitz
and Dvoretzky, together they showed that in prob-
lems involving continuous distributions, inference did
not require randomization to achieve specified sig-
nificance levels. Moreover, the sufficiency conditions
of Neyman–Pearson theory were also necessary. At
SRG, he was responsible for revolutionizing the
Air Force view of vulnerability with a report that
exploited his insight that the places where returning
planes did not have bullet holes were the ones that
needed reinforcement.

Wald collaborated with several statisticians. His
most frequent collaborator was J. Wolfowitz. Sev-
eral interesting papers were written with H.B. Mann
and, as indicated above, Dvoretzky and Wolfowitz
worked with Wald on the consequences of the Lya-
pounov theorem. He also wrote with C. Stein and
M. Sobel. As one of his students, Chernoff devel-
oped his asymptotic approach to the Fisher–Behrens
problem in his thesis.

I wish to thank Professor T.W. Anderson for infor-
mation about Wald’s life [1] and for helpful com-
ments on a previous draft of this biography.
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Wald’s Identity

Wald [1, 2] discovered a remarkable identity which
can solve approximately, or sometimes exactly, a
number of boundary problems on random walk in one
dimension with discrete time steps (see Stochastic
Processes). Let X1, X2, . . . denote a sequence of
independent and identically distributed random vari-
ables. Assume that M(t) = E[exp(tX1)], the mo-
ment generating function of the sequence {Xn},
exists for all real values t in some interval. Con-
sider the restricted random walk problem such that
the walk ends as soon as the sum

Sn = X1 + · · · + Xn

satisfies the condition that Sn ≥ a or Sn ≤ −b, for
some finite constants a > 0 and b > 0. Let N = n be
the first integer for which Sn ≥ a or Sn ≤ −b. Then
Wald shows that

E[M(t)−N exp(tSN)] = 1 (1)

for every real or complex value of t for which
1 ≤ |M(t)| < ∞.

Differentiating (1) once and letting t = 0, we get
the useful Wald equation.

Wald’s Equation

Let X1, X2, . . . be independent and identically dis-
tributed random variables having finite expectations.
Assume that the integer-valued random variable N is
a stopping time for the sequence X1, X2, . . . (i.e. the
event {N = n} is independent of Xn+1, Xn+2, . . . for
all n = 1, 2, . . .) such that E[N ] < ∞; then

E[SN ] = E[N ]E[X1]. (2)

Differentiating (1) twice and letting t = 0, we get
another useful equation:

E[(SN)2] = E[N ]E[X2
1]. (3)
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Wavelet Analysis

Wavelet analysis is an approach to signal represen-
tation that has grown in popularity by virtue of its
ability to overcome some of the limitations of Fourier
series approximation (see Time Series; Fast Fourier
Transform (FFT)). Whereas Fourier analysis pro-
vides a stationary approximation of a signal in terms
of its frequency components but lacks the ability to
capture the local features of a signal, wavelet analysis
does not suffer from this drawback. It is thus used
extensively to capture transient behavior in signals.
The technique derives its name from the character-
istic shape of the analytic functions that replace the
sines and cosines used in Fourier analysis.

Like sines and cosines, wavelet functions also
show oscillatory behavior about zero, but unlike sines
and cosines, they decay to zero, a property underpin-
ning their ability to detect local features in a signal
(see Figure 1). The so-called “father” wavelets inte-
grate to a value of 1, and represent the smooth low
frequencies well. In contrast, “mother” wavelets inte-
grate to a value of zero and represent the detail and
high-frequency features well. There are many differ-
ent types of wavelet functions, with properties that
lend themselves to different approaches to wavelet
analysis and the detection of different features of sig-
nals [4]. The first few wavelet coefficients contain
information about the overall shape of the time series,
whilst the higher-order coefficients describe local-
ized trends.

Fundamentally, wavelet analysis involves decom-
position of a signal by computation of its inner
products, with analysis functions formed by dilation
and translation of a prototypical wavelet. The value
of a wavelet coefficient (magnitude of the inner prod-
uct) will be maximal when the shape and position of a
particular feature in the image match those of the cho-
sen wavelet (hence the choice of different wavelets
for the analysis of different types of signals).

Using Unser’s notation [4], the so-called continu-
ous wavelet transformation can be represented as

(Wϕf )(a, b) = (f, ϕ(a,b))

ϕ(a,b) = a−1/2ϕ

(
x − b

a

)
, (1)

where ϕ(a,b) is a set of analysis functions derived by
applying scalings and translations to a wavelet. The

scalings, a, capture the properties of the signal at
different resolutions (analogous to the frequency rep-
resentation in a Fourier series), and the translations,
b, capture local behavior.

The continuous wavelet transform maps a func-
tion of a single independent variable (e.g. time) to
a function of two independent variables (scale and
position in the time series) and is thus redundant
and computationally inefficient. This problem can
be overcome by sampling the transform on a dis-
crete grid in the scale/position plane, leading to the
discrete wavelet transform (DWT). With a suitable
choice of wavelet (e.g. the orthogonal wavelet set
described by Daubechies [1]) and the so-called pyra-
midal decomposition scheme described by Mallat [3],
a rapid, invertible DWT can easily be accomplished.
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2 Wavelet Analysis

Wavelet analysis/transformation has been exten-
sively used in data compression, where a signal
can often be represented by a number of wavelet
coefficients equal to only a small fraction of the num-
ber of data points in the original data set. It has also
been used for signal denoising. Donoho and his col-
leagues [2] have worked extensively in this area and
have pioneered the technique of wavelet shrinkage.
This technique involves an initial DWT, followed by
computation of a threshold value for wavelet coeffi-
cients, rejection of coefficients below this threshold,
and inversion of the DWT, using the modified coeffi-
cient set. Another important aspect of the DWT is its
so-called decorrelating property. Thus, strong corre-
lations existing in the temporal or spatial domain are
often much less evident following DWT, a property
that has begun to be exploited in statistical analysis.
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Weibull Distribution

A commonly used model for survival data is the two-
parameter Weibull model with hazard rate h(t) =
λαtα−1, α > 0, λ > 0. This is a flexible model that
has an increasing hazard rate when α > 1, a decreas-
ing hazard rate when α < 1, and a constant hazard
rate when α = 1 (see Exponential Distribution). Its
survival function is S(t) = exp(−λtα) and the density
function f (t) = λαtα−1 exp(−λtα).

The cumulative hazard rate of the Weibull is
H(t) = λtα , so that ln[H(t)] = ln λ + α ln t . This
characterization can be used to assess whether the
Weibull model fits data by plotting an empirical
estimate of the cumulative hazard rate on a log–log
scale. Such a plot should be linear if the model holds.

The rth moment of the Weibull distribution
is [Γ (1 + r/α)]λ−r/α . The mean and variance
are [Γ (1+ 1/α)]λ−1/α and {Γ (1 + 2/α) − [Γ (1 +
1/α)]2}λ−2/α , respectively, where Γ (α) is the
gamma function. The pth quantile of the Weibull
distribution is xp = {−[ln(1 − p)]/λ}1/α .

The Weibull distribution arises as a limiting dis-
tribution of the minimum of n independent random
variables. If X1, . . . , Xn are a random sample from a
population with a survival function which, for t close
to 0, is of the form S(t) = 1 − λtα + o(tα), then the
limiting distribution of Tn = n1/α min(Xi, . . . , Xn) is
Weibull with shape parameter α and scale parame-
ter λ.

The Weibull distribution arises from a multistage
model of carcinogenesis. In this model, cancer in a
cell occurs if r different mutations in the cell occur.
Suppose that θj is the mutation rate at the j th locus
per unit time and that the probability that a mutation
at the j th locus occurs in a cell prior to time t is
approximately equal to θj t , a small number. For each
cell the probability that the required r mutations occur
prior to time t is (

∏r
j=1 θj )t

r . The average number
of clones that develop from mutated cells up to time
t is µ = c(

∏r
j=1 θj )t

r = λtr , where c is the number
of cells at risk of mutation. If the number of clones at
time t has an approximate Poisson distribution with
mean µ, then the waiting time to first occurrence
of disease follows a Weibull distribution with shape
parameter r and scale parameter λ [1].

The Weibull distribution is related to the extreme-
value distribution. If we let Y = ln T , then Y has an
extreme-value distribution with density function

α exp

(
α

[
y −

(− ln λ

α

)]

− exp

{
α

[
y −

(− ln λ

α

)]})
, −∞ < y < ∞.

If we let µ = − ln λ/α and σ = α−1, then Y =
µ + σE, where E has the standard extreme-value
distribution.

Estimation in the Weibull model based on
independent, possibly right-censored survival times
X1, . . . , Xn is usually based on maximum likeli-
hood. The estimator (α̂, λ̂) is not given in a closed-
form expression, but many of the standard software
packages may be used for the estimation.

Two popular models that are used to adjust the
survival function for covariates are the proportional
hazards model (the Cox regression model) and the
accelerated failure-time model. For the proportional
hazards model, the conditional hazard rate of T , given
a set of covariates Z, is of the form

h(t |Z) = h0(t) exp(β ′Z),

while, for the accelerated failure-time model,

h(t |Z) = h0[t exp(−β ′Z)] exp(−β ′Z),

where β is a vector of unknown parameters. The
Weibull regression model is the only model which
admits both an accelerated failure-time model and a
proportional hazards model representation.
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Weighted Distributions

Traditional statistical theory and practice have
been occupied largely with statistics involving
randomization and replication (see Experimental
Design). However, in biomedical and public health
work, observations also fall in the nonexperimental,
nonreplicated, and nonrandom categories (see
Observational Study). The problems of model
specification and data interpretation acquire special
importance and great concern (see Misspecification).
The theory of weighted distributions provides a
perceptive and unifying approach for the problems of
model specification and data interpretation. Weighted
distributions take into account the observer–observed
interface, i.e. the method of ascertainment, by
adjusting the probabilities of actual occurrence of
events to arrive at a specification of the probabilities
of those events as observed and recorded. Failure
to make such adjustments can lead to wrong
conclusions.

The concept of weighted distributions can be
traced to the study of the effect of methods of
ascertainment upon estimation of frequencies by
Fisher [5]. In extending the basic ideas of Fisher,
Rao [16, 17] saw the need for a unifying concept,
and identified various sampling situations that can
be modeled by what he called weighted distribu-
tions. Within the biomedical context of cell kinetics
and the early detection of disease, Zelen [23] intro-
duced weighted distributions to represent what he
broadly perceived as length-biased sampling intro-
duced earlier by Cox [1]. In a series of papers with his
co-workers, Patil has pursued weighted distributions
in theory and practice for purposes of encountered
data analysis, equilibrium population analysis subject
to harvesting and predation, meta-analysis incor-
porating publication bias and heterogeneity, model-
ing clumping and extraneous variation, etc. See, for
example, [2, 7–13, 15], and [20], and for more ref-
erences, see [14].

To introduce the concept of a weighted distribu-
tion, suppose X is a nonnegative observable ran-
dom variable (rv) with its natural probability density
function (pdf) f (x; θ), where the natural parameter
θ ∈ Ω , the parameter space. Suppose a realization x

of X under f (x; θ) enters the investigator’s record

with probability proportional to w(x, β), so that

Pr(recording|X = y)

Pr(recording|X = x)
= w(y, β)

w(x, β)
.

Here, the recording (weight) function w(x, β) is
a nonnegative function with parameter β represent-
ing the recording (sighting) mechanism. Clearly, the
recorded x is not an observation on X, but on the rv
Xw, say, having pdf

f w(x; θ, β) = w(x, β)f (x; θ)

ω
,

where ω is the normalizing factor obtained to make
the total probability equal to unity by choosing ω =
E[w(X, β)]. The rv Xw is called the weighted version
of X, and its distribution in relation to that of X is
called the weighted distribution with weight function
w. Note that the weight function w(x, β) need not
lie between zero and one, and actually may exceed
unity, as, for example, when w(x, β) = x, in which
case, X∗ = Xw is called the size-biased version of
X. The distribution of X∗ is called the size-biased
distribution with pdf

f ∗(x; θ) = xf (x; θ)

µ
,

where µ = E[X]. The pdf f ∗ is called the length-
biased or size-biased version of f , and the corre-
sponding observational mechanism is called length-
or size-biased sampling. The concept of weighted
distributions has been much used recently as a use-
ful tool in the selection of appropriate models for
observed data, especially when samples are drawn
without a proper frame. In many situations, the model
given above is appropriate, and the statistical prob-
lems that arise are the determination of a suitable
weight function w(x, β) and drawing inference on
θ . Appropriate statistical modeling approaches help
accomplish unbiased inference in spite of the biased
data and, at times, even provide a more informative
and economic setup (see [13]).

The following examples may help illustrate a few
situations generating weighted distributions and their
applications.

Example 1: Analysis of Family Data,
w(x, β) = w(x) = x

Various demographic studies involve family size
and sex ratio as important factors which have some
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Table 1 Analysis of family data

Family size 1 2 3 4 5 6 7 8 9 10 11 12 13 15 Total
No. of families 1 6 6 13 12 7 14 11 12 8 6 5 2 1 104
Brothers 1 8 12 34 34 29 59 50 54 46 32 31 16 8 414
Sisters 0 4 6 18 26 13 39 38 54 34 34 29 10 7 312

bearing on the main study. This example shows how a
weighted distribution arises as a result of size-biased
sampling.

Consider the data in Table 1 relating to brothers
and sisters in families of 104 boys admitted to a
postgraduate course. Assume that in families of given
size n, the probability of a family with x boys coming
into the record is proportional to x. Also, suppose that
the number of boys follows a binomial distribution
with probability parameter π . Then

f (x; π) =
(

n

x

)
πx(1 − π)n−x,

w(x) = x, ω = nπ,

f w(x; π) =
(

n − 1
x − 1

)
πx−1(1 − π)n−x,

E

[
Xw

n

]
= π + 1 − π

n
> π, and

E

[
Xw − 1

n − 1

]
= π.

If k boys representing families of size n1, n2, . . . ,

nk report x1, x2, . . . , xk boys, an unbiased estimate of
π is

π̃ =
∑

xi − k
∑

ni − k
= 414 − 104

726 − 104
.= 1

2

(see [14] and [19]).

Example 2: Analysis of Intervention Data,
w(x, β) = w(x) = x

The expected value of the duration to the comple-
tion of a random event sampled randomly at the
end of its duration turns out to be approximately
equal to the expected duration to its random inter-
vention. This can be explained using the concept
of size-biased/length-biased sampling with weight
function w(x, β) = w(x) = x, where x represents the
duration of the random event. The applications in
medical and public health sciences include: (i) cell

cycle analysis and pulse labeling [23]; (ii) efficacy of
early screening for disease and scheduling of exam-
inations [23]; and (iii) cardiac transplantation [22].
Simon [18] uses length-biased sampling in etiologic
studies for estimation of antigen frequencies to com-
pare patients with the antigen that are more likely
to be alive and included in the study than patients
without the antigen.

Example 3: Analysis with Damaged Observations,
w(x, β) = βx

Consider a damage model where an observation X =
x is reduced to y by a destructive process with pdf
d(y|x). Then the probability that the observation X =
x is undamaged is d(x|x), and the distribution of the
undamaged observation is the weighted distribution
with w(x) = d(x|x). For example, under the bino-
mial survival model, d(x|x) = θx, 0 < θ < 1. An
investigator recording only undamaged observations
will need to work with a corresponding weighted
distribution.

Example 4: Modeling Clumped Sampling,
Heterogeneity, and Extraneous Variation,
w(x, β) = w(x, β, θ)

During their examination of the problem of toxo-
plasmosis, Diaconis & Efron [3, 4] looked at the
data sets coming from different cities with different
rainfall and found that there was more dispersion in
the data sets than the existing models could accom-
modate (see Overdispersion), and therefore they
introduced a model called the double exponential
family (DEF). This family enjoys the exponential
family properties simultaneously for the mean and
the dispersion parameters. It allows the data ana-
lyst to model overdispersion while carrying out the
usual regression analyses for the mean as a func-
tion of the predictors. The overdispersion may be
due to one or more possible causes, such as clumped
sampling (see Clustering), heterogeneity, selection
bias, etc.
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Interestingly, the DEF can be seen as a weighted
distribution (see [9] and [13]). The weight function
turns out to have the following interesting form:

w(x, β) = w(x, β, θ) = exp(1 − β)I [x, µ(θ)],

where I (x, µ) is the Kullback–Leibler distance
function between x and µ(θ) = µ = E(X) of the
usual exponential family density function f with
parameter θ . Kullback–Leibler distance increases
with the distance from the mean µ, thus allow-
ing a more distant observation larger weight and
accommodating extra dispersion in the data set when
1 − β > 0.

Example 5: Meta-analysis Incorporating
Heterogeneity and Publication Bias

Meta-analysis consists of quantitative methods for
combining evidence from different studies about a
particular issue. Its objective is to summarize quanti-
tatively a research literature with respect to a par-
ticular question and to examine systematically the
manner in which a collection of studies contributes
to knowledge about that question.

The weight function enters the analysis to repre-
sent the publication/selection bias and the heterogene-
ity among different studies. It also helps model the
overdispersion/underdispersion in the data caused by
publication bias and the inherent heterogeneity.

The weight functions examined include a:

1. Critical value model: w(x) = (x/xcrit)
β if |x| <

xcrit, and = 1, otherwise,
2. half-normal model: w(x) = exp[−βp(x)2], and
3. negative exponential model: w(x) = exp[−βp

(x)].

Here p(x) is the P value when the test statistic
takes value x, and xcrit stands for the critical value
under the test statistic (see [6, 7], and [13]).

Example 6: Statistical Analysis Incorporating
Overdispersion and Heterogeneity in Teratologic
Binary Data in Developmental Toxicity Studies

The problem of overdispersion and heterogeneity in
binary data arises quite naturally in developmental
toxicity studies. Since a pregnant female is exposed
to the chemical dose, litter becomes the primary unit.
The random effect of the litter, i.e. the biological
response of the mother to the chemical dose, affects

the toxic responses of the fetuses. This potential ran-
dom litter effect causes heterogeneity, extravariation,
and also intralitter correlation between the responses
of two fetuses within the litter.

To incorporate this random litter effect in the anal-
ysis of such binary data, research workers have intro-
duced the beta-binomial model. The beta-binomial
model, regarded as the binomial mixture model,
takes care of overdispersion, heterogeneity, and also
the clumping of observations within the litter. This
clumping of observations occurs because of the ten-
dency of the fetuses within the litter to “behave”
alike. For this reason, the use of the double bino-
mial family model seems in place as an alternative
model in the analysis of developmental toxicity data.

The beta-binomial model provides an estimate of
the index of overdispersion and also an estimate of
intralitter correlation coefficient, while the double-
binomial model provides an estimate of the overdis-
persion parameter.

The problem of analysis of overdispersed binary
data coming from different litters at a given dose or
coming from different cities with given rainfall can
also be looked upon as the problem of encounter data
where one is trying to combine the observational data
coming from different sources. Therefore, one can
look upon both the beta-binomial and the double-
binomial as weighted binomial distributions where
each model has its own separate weight function.

The two distributions are quite comparable in their
capability for describing overdispersed binary data.
It appears that the choice between them may be
made on such grounds as parameter interpretation and
inferential convenience (see [15] and [21].
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Wigner–Ville Distribution

The Wigner–Ville distribution is a time–frequency
distribution developed for the analysis of time-
varying spectra [1]. Indeed, the interpretation of clas-
sic Fourier analysis (see Fast Fourier Transform
(FFT)), which decomposes the power of a signal
into frequency components by quantifying the power
spectrum, may became problematic when the fre-
quency content changes over time. In fact, the power
spectrum cannot indicate when specific spectral com-
ponents occur or how they change in intensity and
frequency. Thus, when the signal is characterized by
a time-varying spectrum, it is preferable to decom-
pose the signal power by a joint function of time and
frequency. The Wigner–Ville distribution W (t, f )
quantifies the fraction of the power in a certain fre-
quency band during a certain time range, representing
the “instantaneous” spectrum of a nonstationary sig-
nal s(t). It is defined by

W(t, f ) = 1

2

∫
s∗

(
t − 1

2
τ

)

× s

(
t + 1

2
τ

)
e−j2πf τ dτ, (1)

where s∗(t) is the complex conjugate of s(t).
W(t, f ) satisfies the marginal conditions, which

means that the integral of the distribution over the
frequency f at a certain time t gives the instantaneous
energy of the signal, |s(t)|2, and the integral over the
time t at each frequency f gives the energy spectrum
E(f ) (the power spectrum is the energy spectrum per
unit of time). Thus, W(t, f ) satisfies the intuitive idea
of a time-varying spectrum of s(t), and the product
W (t, f ) dt df can be interpreted as the fraction of
the s(t) energy at time t and frequency f in the
(dt × df ) cell.

The formulation of the Wigner–Ville distribution
for a discrete time signal s(n) is

W(n, ω) = 1

π

+∞∑

k=−∞
s∗(n − k)s(n + k)e−j2ωk (2)

A negative characteristic of the Wigner–Ville dis-
tribution is the presence of important interference

terms. In fact, when s(t) is a multicomponent signal
(e.g. the sum of sinusoids occurring at different fre-
quencies and/or in different time ranges), the W (t, f )
distribution may be not zero during time periods
when the signal is not expected or in frequency
bands where spectral components are not expected.
Moreover, interference terms may also produce neg-
ative W (t, f ) values, which cannot be considered
energy components of s(t). These undesired com-
ponents have no physical meanings but can be in
part suppressed by smoothing W (t, f ). However, a
smoothed W (t, f ) has a lower resolution in time and
frequency and might not satisfy the marginal condi-
tions. A popular smoothed W (t, f ) is the smoothed
pseudo-Wigner–Ville, PSW (t, f ), proposed in [2]:

PSW (t, f ) =
∫ ∣∣∣∣h

(τ

2

) ∣∣∣∣
2 ∫

g(u − t)s∗

×
(

u − 1

2
τ

)
s

(
u + 1

2
τ

)
du × e−j2πf τ dτ (3)

The h() window provides frequency smoothing and
g() suppresses interference terms. The Wigner–Ville
distribution has been successfully implemented to
detect changes in the structure of several biologi-
cal signals, like nonstationary cardiovascular signals,
ultrasonic Doppler signals, auditory neuron activity,
and acoustic signals [3] (see Clinical Signals).
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Wilcoxon Signed-rank
Test

The Wilcoxon signed-rank test, due to Wilcoxon [9],
is a nonparametric test procedure (see Nonparamet-
ric Methods) used for the analysis of matched-pair
data or for the one-sample problem. In the
matched-pair setting it is used to test the hypothe-
sis that the probability distribution of the first sample
is equal to the probability distribution of the second
sample (see Hypothesis Testing). This hypothesis
can be tested from statistics calculated on the intrapair
differences. The hypothesis commonly tested is that
these differences come from a distribution centered
at zero.

Consider the following example. A study was con-
ducted in which nine people of varying weights were
put on a particular exercise regimen to determine
the program’s effect on the resting heart rate of
the subjects. Given that a low resting heart rate is
beneficial in reducing blood pressure and increasing
overall cardiovascular fitness, this exercise regimen
was developed to help people lower their resting heart
rate. To test the effectiveness of the regimen, the
resting heart rate measurement for each subject was
taken before the induction of the regimen, and at six
months after beginning the regimen. Table 1 presents
the data from this study.

Because this study involves before and after mea-
surements of the same individuals, an independent
sample test procedure cannot be executed. The null
hypothesis in the Wilcoxon signed-rank test is that
the set of pairwise differences have a probability
distribution centered at zero. A key assumption is
that the differences arise from a continuous, symmet-
ric distribution. In the example, the null hypothesis
would be that there is no resting heart rate difference
before and after the exercise regimen (H0 : µd = 0).
In this instance, µd represents the location parameter
for the distribution of differences. One alternative
hypothesis is that the resting heart rate before the
exercise regimen is higher than the resting heart rate
after the exercise regimen (H1 : µd > 0).

To execute the test, the absolute values of the
differences, |di |, are computed. These values also
are given in Table 1. After computing the absolute
values, one must order them from smallest to largest
disregarding any zeros (see Ranks). In the case of

absolute differences being tied for the same ranks,
the mean rank (mid-rank) is calculated and assigned
to each tied value. The rankings for the absolute
differences are also given in Table 1. Test statistics
for the Wilcoxon signed-rank test are calculated by
either summing the ranks assigned to the positive
differences (T+) or by summing the ranks assigned
to the negative differences (T−). If there are n

differences, then the two sums are related through

T− =
{

[n(n + 1)]

2

}
− T+. (1)

In the example, the sum of the ranks of the positive
differences is

T+ = 5 + 3 + 9 + 7 + 4 + 6 + 8 = 42.

Note that {[n(n + 1)]/2} = 45 so

T− = 45 − 42 = 3.

To test the null hypothesis, a rejection region can
be determined for the test statistic, T+. This rejec-
tion region can be determined from the exact null
hypothesis distribution of T+. This null distribution
is easily derived from a permutational argument, as
each of the possible configuration of signs (+ or −)
is equally likely under the null hypothesis. Tables
of this exact null distribution are available in stan-
dard nonparametric texts such as [3, 4], or [7]. This
null distribution depends only on n, hence the test
procedure is nonparametric, i.e. distribution-free.

For large samples the standard normal distribu-
tion Z, can be used as an approximation to test
hypotheses. For this situation a two-tailed rejection
region for the null hypothesis based on T+, is given:

Z+ =

{
[T+ − n(n + 1)]

4

}

{
[n(n + 1)(2n + 1)]

24

}1/2 > Z1−α/2 (2)

or

Z− =

{
[T− − n(n + 1)]

4

}

{
[n(n + 1)(2n + 1)]

24

}1/2 > Z1−α/2. (3)

A one-tailed test is conducted in a similar fashion
with the comparison made to Z1−α .
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Table 1 Resting heart rate of nine people before and after initiation of an exercise regimen

Absolute Rank of
Heart rate Heart rate value of absolute
at baseline at 6 months Difference difference difference

Subject (yi) (xi) di = yi − xi |di | (sign)

1 80 72 +8 8 5(+)

2 76 70 +6 6 3(+)

3 78 82 −4 4 2(−)

4 90 76 +14 14 9(+)

5 84 86 −2 2 1(−)

6 86 76 +10 10 7(+)

7 81 74 +7 7 4(+)

8 84 75 +9 9 6(+)

9 88 76 +12 12 8(+)

Other issues regarding the Wilcoxon signed-rank
test include its testing efficiency and the construction
of estimators. The asymptotic relative efficiency
(ARE) of this test relative to the paired t test
is never less than 0.864 in the entire class of
continuous symmetric distributions, and is 0.955 if
the underlying distribution of differences is normal,
see [2]. The handling of ties and zeros is discussed
by Pratt [5] and Cureton [1]. Point and confidence
interval estimators are easily derived from the test
procedure, and details are described in Lehmann [4].
Lehmann [4] also describes power properties for
the test procedure when shift alternatives are of
interest. Extensions to censored data are discussed
by Woolson & Lachenbruch [10] and Schemper [8].
References for other aspects of the Wilcoxon signed-
rank test are given by Randles & Wolfe [7] and
Randles [6].
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Wilcoxon, Frank

Born: September 2, 1892, in County Cork, Ireland.
Died: November 18, 1965, in Tallahassee, Florida.

Photograph supplied by the Department of Statistics, at
Florida State University

Frank Wilcoxon is best known in statistics for
his fundamental work on ranking methods (see
Nonparametric Methods; Ranks), but he was also
an excellent chemist and made research contributions
to physical chemistry, biochemistry, plant pathology,
and entomology. Also, Frank Wilcoxon was an
outstanding human being, with an enthusiasm for
understanding the world and communicating his
excitement to all around him.

Wilcoxon was born in Glengarriffe Castle near
Cork, Ireland, of wealthy American parents. He was
raised in Catskill, New York, and developed a lasting
love for nature there. In his early years, he had varied
experiences as a merchant sailor, pumper of gas,
and tree surgeon before receiving his B.S. degree
from Pennsylvania Military College in 1917. After
World War I, Wilcoxon received an M.S. degree
in chemistry from Rutgers University in 1921 and
a Ph.D. degree in physical chemistry from Cornell
University in 1924. At Cornell, Frank met Frederica
Facius, an undergraduate, and they were married in
1926. Frank and Freddie were long-time attendees at
the Gordon Research Conferences on Statistics and

Chemistry and Chemical Engineering, and became
well known and loved in the statistical community.

From 1924 to 1950, Frank Wilcoxon did research
related to chemistry, first at the Boyce Thompson
Institute for Plant Research in Yonkers, New York,
and later at the Nichols Copper Company in Queens,
Long Island and the Ravenna Ordance Plant operated
by the Atlas Power Company. He worked at the
American Cyanamid Company beginning in 1943
and continued until his retirement in 1957, first with
the Stamford Research Laboratories as head of a
group developing insecticides and fungicides and
later as head of the statistics group of the Lederle
Division in Pearl River, New York. Subsequent to
his retirement from American Cyanamid, he served
as a consultant to various organizations until 1960,
when he joined the faculty of the newly formed
Department of Statistics at Florida State University
in Tallahassee. He remained active in research and
teaching and contributed to the development of the
Department until his death in 1965. Florida State
University honored Wilcoxon by designating the
statistics library and reading room as the Frank
Wilcoxon Memorial Room.

Wilcoxon’s interest in statistics began in 1925 with
a study of R.A. Fisher’s book, then newly published,
Statistical Methods for Research Workers [6]. This
study was done in a small reading group, of which
W.J. Youden was a member and C.I. Bliss was a vis-
itor. Wilcoxon’s first publication in a statistics journal
was on the usage of statistics in plant pathology [8],
and in the same year he published his most significant
contributions to statistics, the two-sample rank sum
statistic and the one-sample signed rank statistic, both
proposed in a very brief paper [9]. These statistics are
well known as the Wilcoxon two-sample rank-sum
test (see Wilcoxon–Mann–Whitney Test) and the
Wilcoxon signed-rank test, and inspired much sub-
sequent research on ranking methods, in addition to
having a major impact on applied statistics, especially
for applications in the social sciences.

In collaboration with Bradley and other col-
leagues, Wilcoxon extended the basic rank proce-
dures to sequential testing situations [2, 3, 11, 12],
including screening-type experiments. Wilcoxon was
also interested in multiple comparisons problems,
and the 1964 revision of the booklet, Some Rapid
Approximate Statistical Procedures [10], gives mul-
tiple comparison procedures based on the rank-sum
test for one- and two-way designs. This booklet was
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widely circulated and played a significant role in the
widespread use of nonparametric multiple compari-
son procedures.

In collaboration with Cuthbert Daniel, Wilcoxon
devised factorial experimental designs that would
be robust against certain linear and quadratic trends.
From their paper, “The basic idea, due to Frank
Wilcoxon, is that certain of the ordered contrasts
appearing in the 2p−q system are orthogonal to linear
and quadratic trends.” [4].

Wilcoxon made contributions to chemistry and
biochemistry with about 40 publications. His pub-
lications spanned varied areas: acidimetry and alka-
limetry; the mode of action of sulphur and copper
fungicides; a mercury reduction method for the deter-
mination of pyrethrin I; synthesis of a number of plant
growth substances; and research leading to the devel-
opment of the insecticides Parathion and Malathion.

Although Wilcoxon was not an academician for
most of his career, he was a teacher and student
throughout life. He communicated his enthusiasm
for statistics to students at Florida State University
and was always available to talk about problems. He
had wide interests including being an accomplished
musician, a student of languages, and was fascinated
by mathematical games, puzzles, combinatorics, and
other pursuits. Through middle-age, he and his wife
often traveled by bicycle, and he did not own
an automobile until late in life. At Florida State
University, he regularly rode a motorcycle to work.

Wilcoxon was a Fellow of the American Statis-
tical Association and of the American Association
for the Advancement of Science. He was an early
chairman and leader in the development of the Gor-
don Research Conferences on Statistics in Chemistry
and Chemical Engineering. The Chemical Division
of the American Society for Quality Control annu-
ally awards a Frank Wilcoxon prize for the best
papers of the year on practical applications published
in Technometrics.

For a fuller account of his life and work, see [1]
and [5], and a complete bibliography is given in [7].
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Wilcoxon–Mann–Whitney
Test

This test for comparing two samples with respect to
their “general size” is based on ranking the observa-
tions – both samples combined – and then comparing
the average ranks in the two samples. Though this
idea had appeared several times in various disci-
plines [2], the statistical community first recognized
the idea when Wilcoxon proposed it in 1945 [9];
thereafter developments followed fast, the first of
which was Mann & Whitney’s paper [3].

Representations of the Test

To fix ideas we introduce some notation. Until further
stated, we consider continuous data, thus excluding
ties. Let X1, X2, . . . , Xm be independent and identi-
cally distributed, with unknown cumulative distribu-
tion function F . Define

Fm(t) = 1

m

m∑

i=1

u(xi, t), (1)

where the function u(a, b) = 1 if a < b and zero
if not.

Similarly, define Y1, Y2, . . . , Yn, and G,

Gn(t) = 1

n

n∑

j=1

u(yj , t), (2)

and write N = m + n.
If ri = r(xi) is the rank of xi in the combined

sample, let R(x) = ∑m
i=1 r(xi); and if si = s(yi) is

the rank of yj in the combined sample, let R(y) =∑n
j=1 s(yj ).
Observe that R(x) + R(y) = N(N + 1)/2 since

each side represents the sum of the integers
1, 2, . . . , N .

Define

U(x < y) =
m∑

i=1

n∑

j=1

u(xi, yj ), (3)

where again u(xi, yj ) = 1 if xi < yj and zero other-
wise.

U(x < y) reports how many of the mn distinct
pairs comprising one xi and one yj have xi < yj .
Mann & Whitney showed that

R(y) = n(n + 1)

2
+ U(x < y), (4)

and that, hence, properties of Wilcoxon’s test
could be learned by studying U(x < y). The
relation between R(y) and U(x < y) also implies
that one may choose to calculate whichever
is more convenient with any particular data
set. (In what follows we write W-M-W for
Wilcoxon–Mann–Whitney.)

Because a monotone continuous transformation
(like x1/2 or log x) does not change order relations,
both U(x < y) and R(y) are also unaffected.

Distribution Theory When F = G (i.e. H0
Holds)

The exact distribution of U(x < y) is obtained by
enumeration, which is much expedited by using
recursion relationships.

Under H0 the mean and variance of U(x < y) are:

E0[U(x < y)] = mn

2
(5)

and

var0[U(x < y)] = mn(N + 1)

12
. (6)

Both results are readily obtained by regarding R(y)

as the sum of n random observations chosen without
replacement from (1, 2, . . . , N ; see Sampling With
and Without Replacement).

Asymptotic normality (shown below) provides
good approximation to the exact distribution for m

and n both large (m ≥ 8, n ≥ 8, suffices at 2p =
0.05; see Large-sample Theory).

Owen [7] tabulates distributions of both U(x < y)

and R(y).

Distribution Theory: General Case; x and
y Continuous

It is evident that

E[u(xi, yj )] = 1 × Pr(x < y) + 0 × Pr(y < x)

= Pr(x < y),
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whence

E

[
1

mn
U(x < y)

]
= 1

mn
E

m∑

i

n∑

j

u(xi, yj )

= Pr(x < y).

Hereafter we write P̂r(x < y) for U(x < y)/mn.
Now,

P̂r(x < y) = 1

mn

m∑

i

n∑

j

u(xi, yj )

= 1

n

n∑

j=1

[
1

m

m∑

i=1

u(xi, yj )

]
.

Hence, applying (1),

P̂r(x < y) = 1

n

n∑

j=1

Fm(yj ). (7)

It follows that, as m → ∞ [and hence Fm(t) →
F(t)],

lim P̂r(x < y) = 1

n

n∑

j=1

F(yj ). (8)

From (8), for large m, P̂r(x < y) is nearly an aver-
age of n independent identically distributed bounded
random variables, and hence is asymptotically nor-
mally distributed as n (in addition to m) grows large
(see Central Limit Theory).

From (7),

P̂r(x < y) = 1

n

n∑

j=1

Fm(yj ) =
∑

Fm dGn,

which estimates
∫

F dG.
Examination of (8) yields a one-sample version

of the Wilcoxon–Mann–Whitney test [4]. If F is
known (say from census figures), then we can test
whether a given set of data (y1, . . . , yn) comes from
that distribution, against an alternative that G(y) is
some other distribution with

∫
F dG �= 1/2.

Under H0, G = F and the statistic (1/n)∑n
j=n F (yj ) is a sum of uniform (0, 1) random vari-

ables; the statistic has mean 1/2, variance 1/12n, and,
if n is large (say 8 or more), its distribution is effec-
tively normal, providing the test for H0: G = F .

Some Properties of the Test

In comparison with the two-sample t test (see
Student’s t Statistics), the W-M-W enjoys a
very strong property as a test against translation
alternatives. First, if normality, with σ 2

x = σ 2
y ,

governs the data, the asymptotic relative efficiency
of the W-M-W procedure is 0.955 = 3/π , which is
nearly 1. Secondly, if the data come from a heavy-
tailed distribution, then that efficiency rises above 1.0
and, for some distributions, much above 1.0. Hodges
& Lehmann showed [1] that the asymptotic relative
efficiency of W-M-W vs. the t test never falls below
0.864 for translation alternatives.

Some Practical Aspects

Where the distributions F and G are believed to
differ by translation, a confidence interval for that
translation can be constructed by a simple graphical
procedure, based on W-M-W test theory [5].

The parameter Pr(x <y) and its estimate P̂r(x <y)

are sometimes readily interpretable. They are unit-
free, and can serve as indicators of “effect size”.

We have seen that P̂r(x < y) is asymptotically
normal, and unbiased for Pr(x < y) under H0 when

var[U(x < y)] = mn(N + 1)

12
and

var[Pr(x < y)] = N + 1

12mn
.

Unfortunately, except when F = G, the standard
error of P̂r(x, y) is not a simple matter, though the
following upper bound can be justified; se[P̂r(x <

y)] = [p(1 − p)]1/2/k, where p denotes Pr(x < y)

and k denotes the smaller of m and n [7].

Tied Data (Discrete Probabilities)

When ties occur only in the xs or only the ys, they
do not affect anything. However, where there are t

observations, including at least one x and at least one
y, sharing a common value, they are handled in the
following manner. To calculate U(x ≤ y), count each
tied pair (xi , yj ) in the tied set as contributing 1/2 to
U(x ≤ y).

To calculate R(y), consider the t consecutive
ranks that would be assigned were the tied data per-
turbed slightly to become distinct. The average of
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those t distinct ranks is then assigned as the rank
for every observation in that tied set. These two
approaches are consistent – they lead to compatible
values of R and U . The variance of R (and U ) is
somewhat reduced by the ties. Indeed, the variance
appropriate for untied data is multiplied by CF (for
“correction factor”) as follows:

CF = 1 −
∑

(t3 − t)

N3 − N
,

where the sum runs over all the sets of x-with-y ties,
and t denotes the length of such a tie.

If no x-with-y tie includes as many as half of the
observations, the variance will need correction only
in borderline situations, as the correction factor stays
near 1.0 unless at least half the observations are in
one tied set.

Example (Table 1)

CF = 1 −

{
[(213 − 21) + (203 − 20)

+(233 − 23) + (243 − 24)]

}

883 − 88

= 0.93665.

So the routine null standard σ = [(22 × 66 ×
89)/12]1/2 is reduced; it is multiplied by

√
0.93665 =

0.9678.
For this table, P̂r(x, y) is calculated thus:

P̂r(x < y) =

{ {2(47) + 4(31) + 5(13) + 1
2 [2 × 19

+4 × 16 + 5 × 18 + 11 × 13}
}

22 × 66

= 0.3103.

In the above calculation we have organized our work
by choosing successive subgroups of x; thus, the 2
xs in “poor” form (x, y) pairs, where x < y, with

Table 1

Poor Fair Good Excellent

x 2 4 5 11 22 m

y 19 16 18 13 66 n

t 21 20 23 24 88 N

16 + 18 + 13 = 47ys, etc. The tied x, y pairs each
contribute 1/2.

The example illustrates a salient application of W-
M-W methodology. It is mistaken to apply the usual
chi-square test of significance where the categories
have a relevant order, because that order, the key
to the problem, is not taken into account by the χ2

statistic. For these data χ2
3 = 8.64 (p = 0.0345), and

the W-M-W statistic is

Z = 0.31026 − 0.5000
(

89

12 × 22 × 66

)1/2

(0.9678)

= −0.18974

0.06917

= −2.74 (2p = 0.0061).

A more detailed treatment of the ordered 2 × k con-
tingency table appears in [6] (see Ordered Categor-
ical Data).
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Wilcoxon-type Scale Tests

Populations (distributions) are often described and
compared on the basis of certain features or aspects
called “parameters” (see Estimation). Two of the
most widely used parameters are the location and
the scale. The location parameter measures “cen-
tral tendency” and represents the size of a typical
observation, whereas the scale parameter indicates
how variable or spread out the observations can be.
Related to the idea of scale is the concept of disper-
sion, which indicates how close the observations are,
on an average, to a central value. The mean and the
median are two popular location parameters while
the standard deviation, the mean absolute deviation
(see Mean Deviation), the range and the interquar-
tile range are often used to represent the scale or dis-
persion. If the application at hand permits a specific
parametric model assumption (such as normality; see
Normal Distribution) about the underlying distri-
bution(s), suitably designed techniques can be used
to make statistical inference regarding the location
and/or the scale parameters. These methods are called
parametric statistical methods of inference. On the
other hand, if a complete model assumption is hard to
justify (perhaps because not much is known about the
populations), use of nonparametric or distribution-
free methods is advocated. Nonparametric methods
are often intuitively appealing and their implementa-
tion is quite simple. Of course, when the true distribu-
tion is indeed of a specific form, the nonparametric
methods will be less efficient than their parametric
counterparts, but the fact is that in many practical
situations the form of the true distribution cannot be
specified completely. Distribution-free methods for
scale parameters are the focus of this article. We use
the terms nonparametric and distribution-free inter-
changeably, since readers from different areas might
be familiar with one of the terms and not the other.

One of the most popular distribution-free tests to
compare the location parameters of two populations is
the Wilcoxon rank-sum test. The rank-sum test statis-
tic is linearly related to the Mann–Whitney statistic,
so that the corresponding tests are equivalent (see
Wilcoxon–Mann–Whitney Test). In the rank-sum
form of the statistic, observations from two indepen-
dent random samples drawn from two populations are
combined into a single array and are ranked from
the lowest to the highest, keeping track of whether

each observation was from the first sample or the
second. When ties occur (i.e. more than one of the
observations have the same value), the average of
the tied ranks is assigned to each of the tied obser-
vations. The rank-sum test is based on the sum of
ranks of the observations that are, say, from the first
sample. In the Mann–Whitney form of the statistic,
each observation from the first sample is compared
with each observation from the second, and, assuming
there are no ties, a score of 1 or 0 is given depend-
ing on whether or not the observation from the first
sample is larger or smaller than the observation from
the second. When there is a tie, a score of 1/2 is
assigned to that comparison. The test statistic is sim-
ply the sum of these scores summed over all such
comparisons.

The idea behind the Wilcoxon–Mann–Whitney
(WMW) test has been extended to the problem of
testing for scale differences between two populations
and such tests are referred to as Wilcoxon-type scale
tests. Here observations are often first “centered” by
subtracting some measure of the central tendency and
the WMW tests is applied to the absolute values of
the deviations. A nice feature of the Wilcoxon-type
tests is that they lead to a confidence interval for
the ratio of the scale parameters, which can be used
for a test of hypothesis as well as for estimation
purposes.

A review of Wilcoxon-type scale tests is given by
Gibbons [6]. Discussions on various nonparametric
tests for scale can be found, for example, in [8,
Chapter 9] and [7, Chapter 10]. A general review of
scale tests, including distribution-free tests, is given
by Fligner [4], who also gives examples of situations
where inference on the scale parameter is of interest.

Assumptions

Let X1, X2, . . . , Xm and Y1, Y2, . . . , Yn be two inde-
pendent random samples from continuous popula-
tions from the “location-scale” family, with cumu-
lative distribution functions (cdfs) F1(x) = F {(x −
θx)/τx} and F2(y) = F {(y − θy)/τy}, where is some
unknown continuous cdf, θx and θy are the respective
location parameters, and τx and τy are the respec-
tive scale parameters. Thus, F1 and F2 are assumed
to have the same shape, but they could have differ-
ent location and/or scale parameters. To understand
this better, note that we can write Xi = θx + τxZ and
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Yj = θy + τyZ, where Z is a continuous random vari-
able with cdf F (·). Therefore, X and Y can be viewed
as linear functions of the random variable Z and it is
clear that a change in the location parameter(s) shifts
the center of the distribution(s), whereas increasing
(decreasing) the scale parameter(s) causes the dis-
tribution(s) to be more (less) spread out. While the
locations of two distributions are usually compared
on the basis of the difference θx − θy , the scale com-
parison is often done in terms of the ratio γ = τx/τy .
We are interested in distribution-free methods of
inference about γ . Both tests of hypothesis and con-
fidence intervals are considered. The latter can also
be used for estimation purposes.

Tests: Locations Unknown

For ease of presentation, suppose that the location
parameters are the respective medians of F1 and F2.
Consider the situation in which the two medians are
known, and we would like to test the null hypothesis
H0 : γ = γ0, where γ0 is some specified value. If only
the equality of the scale parameters is of interest, γ0

is set equal to 1.
Two tests are available, both based on the

absolute values of the adjusted variables Si = (Xi −
θx)/γ0, i = 1, 2, . . . , m and Tj = (Yj − θy), j =
1, 2, . . . , n. Absolute values of the differences are
used, since they reflect dispersion about the respective
medians. Under the null hypothesis the distributions
of |Si | and |Tj | are identical, which implies that their
medians must be the same. This leads us to proceed
as in the case of the usual Wilcoxon rank-sum test
for location, except that now we work with the
absolute values of the deviations from the medians.
Therefore, we arrange the |S1|, |S2|, . . . , |Sm| and
|T1|, |T2|, . . . , |Tn|, from the lowest to the highest,
and assign ranks 1, 2, . . . , m + n to each of the
ordered values (the lowest gets rank 1, the highest
gets rank m + n; use average ranks if there are ties),
keeping track of whether an observation was an S or
a T . The test statistic is W ∗, the sum of the ranks of
the absolute values of the Ss. The test is consistent
when the F(·) is symmetrically distributed about 0;
that is, when F1 and F2 are symmetrically distributed
about θx and θy , respectively. The rejection regions
for the test can be argued as follows. Letting F ∗

1 and
F ∗

2 represent the cdfs of |S| and |T | respectively, it
can be seen that when γ is greater (less) than γ0, F ∗

1

is stochastically larger (smaller) than F ∗
2 . Thus, when

the alternative hypothesis is γ > (<)γ0, we should
reject H0 if W ∗ is large (small).

The critical values as well as the P values can
be found from the distribution of W ∗ under the null
hypothesis. As explained earlier, the null distribution
of W ∗ is the same as that of the Wilcoxon rank-sum
test statistic for comparing two location parameters.
The latter has been shown to depend only on the
sample sizes m and n and has been studied and tabu-
lated by several authors, the most extensive tabulation
being available in [16]. These tables can be used to
implement the test. Note, however, that since W ∗ is
a discrete random variable, not all commonly used
levels of significance might be exactly achievable for
all m and n (see Level of a Test). When the sample
sizes are large, a normal approximation to the criti-
cal value or the P value can be found. This is based
on the fact that the distribution of the “standardized”
random variable

Z∗ = W ∗ − m(m + n + 1)/2

[mn(m + n + 1)/12]1/2
(1)

can be approximated by the normal distribution with
mean 0 and variance 1 (the standard normal dis-
tribution). Using the normal approximation is conve-
nient in practice, since the standard normal tables are
widely available. The normal approximation-based
rejection regions are given in Table 1. In situations
in which a number of ties are present in the data,
it is advisable to “correct” the null variance of W ∗
and use the corrected variables in the standardized
statistic Z∗. The correction for ties is detailed, for
example, [8, p. 300].

A continuity correction of 0.5 can improve the
approximation. The asymptotic relative efficiency
(ARE) of this test relative to the normal theory F

test (see F Distributions) is 6/π2 = 0.61, when the
underlying populations are normal.

The second test that one could use with known
medians is the Sukhatme [13] test. Here the positive
Ss and T s are put in one group and the negative Ss

Table 1 Rejection regions for various alternative
hypotheses

Alternative hypothesis Rejection region

Ha : γ > γ0 Z∗ > zα

Ha : γ < γ0 Z∗ < −zα

Ha : γ �= γ0 Z∗ > zα/2 or Z∗ < −zα/2
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and T s are put in a second group. The first group of
values are ranked and we let S+ be the sum of the
ranks of the Ss.

For the second group, absolute values are ranked
and we let S− be the sum of the ranks of the
Ss. The Sukhatme test is based on WS = T + + T −.
Actually, the original Sukhatme [13] test is based
on a Mann–Whitney-type “U-statistic”, which is a
linear function of WS . The exact distribution of WS is
complicated, since this must be obtained conditioned
on the number of positive (or negative) deviations,
which itself is a random variable. For large m and
n, Gibbons [6] states that normal approximation can
be used with mean m(m + n + 2)/4 and variance
mn(m + n + 7)/48, to find an approximate critical
value or a P value. Sukhatme [13] showed that the
test is consistent without the assumption of symmetry.
When the underlying distributions are normal, the
ARE of the Sukhatme test relative to the F test is
0.61, which is the same as the ARE of the W ∗ test
relative to the F test. On the other hand, when the
underlying distributions are double-exponential, the
ARE of the Sukhatme test relative to the F test is
0.94. Laubscher & Odeh [11] showed that the normal
approximation to WS is good for m and n larger
than 10, when used with a continuity correction.
They also considered a statistic, which is a linear
function of WS and tabulated the exact critical values
for 2 ≤ m, n ≤ 10.

To summarize, when the populations can be
assumed to be symmetrically distributed about their
known medians, one should use the test based on W ∗.
When symmetry cannot be assumed, the test based on
WS should be used.

Tests: Locations Unknown

In many practical applications, the underlying medi-
ans θx and θy are likely to be unknown. First, assume
that the two population medians are the same but the
common median is unknown. Fligner & Kileen [5]
suggested using the median of the combined sam-
ple of X′s and Y ′s, say M , to estimate the common
median and applying the Wilcoxon rank-sum test,
to the absolute deviations |Xi − M| and |Yj − M|.
The resulting test, although not a linear rank test, is
distribution-free and the same tables for the Wilcoxon
rank-sum test, cited earlier, can be used to implement
it. They showed that the test is consistent whether or

not the underlying distributions are symmetric. In a
small sample study with normal and double exponen-
tial distributions, the power of their test was found
to be significantly higher than some popular linear
rank tests for scale. Moreover, when the medians are
unknown and unequal, their test was shown to be
consistent for scale differences as long as the popu-
lations are symmetrically distributed and the sample
sizes are equal.

In situations in which the population medians
are both unknown and cannot be assumed to be
equal, one approach would be to use the sample
medians Mx and My to calculate |Xi − Mx | and
|Yj − My | and apply the W ∗ test on these absolute
deviations. However, such a test might not always be
distribution-free, not even when the sample sizes are
large; see [4, 12] for some discussions on this issue
and recommendations for tests to be used in this case.

Sukhatme’s test can also be used when medi-
ans are unknown and unequal, by applying the test
based on WS discussed earlier, to |Xi − Mx | and
|Yj − My |. Sukhatme [14] showed that the resulting
test has the same asymptotic null distribution as that
of WS and is asymptotically distribution-free when
F1 and F2 are symmetrically distributed about their
respective medians and have bounded density func-
tions. Fligner [4] remarked that in terms of power,
these rank-like tests based on the absolute values of
the estimated deviations do not compare very well
with what are called robust (see Robustness) tests
for scale. See his paper for proposed robust tests.

Confidence Intervals

If the two medians are known and the populations
can be assumed to be symmetrically distributed
about their respective medians, a confidence
interval for γ can be constructed from the ratios
|Xi − θx |/|Yj − θy |. The procedure is similar to that
of finding a confidence interval for the difference
between two population medians based on the WMW
test. Here, the mn values of the ratio are arranged
from the lowest to the highest. The 100(1 − α)%
confidence interval is obtained simply by locating
the uth smallest and the uth largest of the mn

ratios. For a given confidence level, the integer u is
calculated from the null distribution of a two-sample
Wilcoxon rank-sum test. In fact, as described in [8],
it is often convenient to think of u as the rank of
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a left-tail critical value for the Wilcoxon rank-sum
test, at a level of significance α/2. When m and n

are small, an exact table for the null distribution of
the rank-sum test statistic should be used to find the
confidence interval. Table J in [8] is useful for this
purpose. To illustrate, suppose that m = 4, n = 7,
and that a 95% confidence interval is desired. Then
we have α/2 = 0.025 and, from Table J in [8], we
find that the closest we can come to the desired
confidence level is 100(1 − 2 × 0.021) = 95.8% and
this corresponds to a left-tail critical value of 13,
which has the rank of 4. Thus, u = 4 and a 95.8%
confidence interval for it is obtained by arranging the
mn = 28 values of the ratio in an increasing order
and locating the fourth smallest and the fourth largest
(or the 28 − 4 + 1 = 25th value from the smallest).
This also highlights the fact that for small sample
sizes, the desired confidence coefficient often cannot
be achieved exactly. When m and n are moderately
large, the normal approximation, with a continuity
correction, to u can be found as

u =
[

mn

2
+ 0.5 − zα/2

(
mn(m + n + 1)

12

)1/2
]

,

(2)

where [a] denotes the greatest integer in a (e.g. if
a = 3.5, then [a] = 3) and zα/2 is obtained from the
standard normal table, so that α/2 is the area to the
right of zα/2. For our example, u = [4.12] = 4, so that
the normal approximation yields the same solution as
the exact answer.

Corresponding to the Sukhatme test, the confi-
dence interval for γ is obtained from the ratios
(Xi − θx)/(Yj − θy) that are positive. It may be noted
that this ratio will be positive when both the numer-
ator and the denominator have the same sign. These
positive ratio values are arranged from the lowest to
the highest, and the 100(1 − α)% confidence interval
is given by the uth smallest and the uth largest of the
positive ratios. The quantity u can be found from the
tables of Laubscher & Odeh [11]. For large m and
n, the normal approximation to u with a continuity
correction, can be found from

u =
[

mn

4
+ 0.5 − zα/2

(
mn(m + n + 7)

48

)1/2
]

.

(3)

Generalizations

Deshpande & Kusum [2] considered a generalized
version of Sukhatme’s test where the location
parameter is some quantile. When the scale
parameters of more than two populations need
to compared, the well-known Kruskal–Wallis test
(see Nonparametric Methods) can be used after
transforming the data into absolute values of the
deviations from the respective locations parameters.
Tsai et al. [15] compared the performance of
this procedure with other multisample tests for
scale. Duran [3] gave a comprehensive survey of
distribution-free tests for scale.

In some situations, we are interested in comparing
both the location and the scale parameters. There is
a body of literature for distribution-free tests for this
type of problem; see [9] for a review.

Blair & Thompson [1], following Moses [12],
considered a class of distribution-free rank-like tests
for scale differences when the locations are unknown.
Their tests do not require the assumptions on the
location parameters discussed earlier. In addition, the
tests are “robust for skewed data, are resolving and
have significant power advantages”. One of their test
statistics is the Wilcoxon rank-sum test applied to the
absolute values of the differences |Xi − Xj |. They
studied asymptotic properties of the tests, including
a normal approximation and the asymptotic relative
efficiency. The asymptotic relative efficiency was cal-
culated for several distributions. An extension to the
multisample problem was also considered.

Kössler [10], also following Moses [12], proposed
a distribution-free test in the case of unequal and
unknown location parameters. The two samples are
randomly separated into groups of size k and the
Wilcoxon test or the Savage test is applied to the
ranges or the variances of the subgroups; k = 4 is
recommended. Asymptotic power function of the pro-
posed test is derived and simulation studies are
carried out for small to moderate sample sizes. Power
calculations suggest using the Wilcoxon test for orig-
inal densities with long tails and using the Savage test
for original densities with small or medium tails.
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Window Estimate

The most common occurrence of this terminol-
ogy is in the context of frequency domain esti-
mation in time series analysis. Suppose that an
observed time series is a realization of a stationary
random process {Yt } with spectral density f (ω) =
(1/2π)

∑∞
k=−∞ γk cos(kω), where γk is the autoco-

variance function of {Yt }. The fundamental tool for
estimating f (ω) is the periodogram, I (ω), which can
be shown to be estimated by the discrete Fourier
transform of the sample autocorrelation function
rk , of the observed series (Yt ; t = 1, . . . , n). It is
given by c0{1 + 2

∑n−1
k=1 rk cos(kω)}, where c0 is the

sample autocovariance at lag k [8, p. 56]. There are
certain unsatisfactory statistical properties possessed
by I (ω), such as inconsistency [11, p. 426]. The peri-
odogram (see Spectral Analysis) at Fourier frequen-
cies of the form ωj = 2πj/n, j = 1, . . . , n/2, are
asymptotically independent of each other [8, p. 96],
so that if we take a simple average of the estimates
I (ωj ), the resultant statistic f̂ (ωj ) will gain in preci-
sion as n increases. More generally, weighted aver-
ages are used. Thus, an equivalent way of improving
the estimates is provided by introducing a nonincreas-
ing sequence of weights, λk called a lag window, and
defining f̂λ(ω) = c0{1 + 2

∑n−1
k=1 λkrk cos(kω)}. The

function f̂λ(ω) is called the spectral window, after
Blackman & Tukey [2].

A good deal of effort has been put into investigat-
ing the statistical properties of windowed estimates
and choosing the sequence λk . More than 11 dif-
ferent lag windows are reviewed by Priestley [11,
Section 6.2.3]. However, using lag windows is no
longer fashionable, mainly because of computational
considerations: since the periodogram is essentially a
discrete Fourier transform, it can be computed very
quickly using a Fast Fourier transform (FFT) [7]. In
the early days of this development in spectral anal-
ysis, computing power was relatively expensive, and
using lag windows reduced this cost. It is now more
logical to compute the periodogram first, perhaps
using a FFT, and then to smooth it. A more recent
development for locally adaptive windows is given
by Buhlmann [4].

The idea of window estimates also arises in
the context of time domain estimation in time
series analysis. Let Y1, Y2, . . . , Yn be n observations

from a time series {Yt } with mean µ, theoreti-
cal autocorrelation function ρk , and variance σ 2

Y .
Estimates of these and other summary statistics for
a time series usually use all n observations, but
it is sometimes useful to divide the data up into
segments or windows as follows. Consider a sub-
set of m observations in the data as indicated in
Y1, Y2, . . . , Yl, . . . , Yl+m−1 , Yl+m, . . . , Yn. If we let

l = 1, 2, . . . , (n − m + 1) then this represents a (for-
ward) moving window of fixed length m. If we fix
l = 1, and let m = p + 1, p + 2, . . . , n for fixed p,
this represents a window of increasing size with start-
ing length p. The estimates of statistics within the
moving window can be useful to judge whether those
statistics are changing through time. In general, the
statistics can be plotted against window number, and
a visual assessment made of whether they are chang-
ing. Formal significance tests on the window esti-
mates can be carried out, but these are complicated
by the fact that successive estimates will be highly
correlated. In the case of the window increasing in
size from a fixed starting length, p, the estimates
are sometimes called recursive. The use of recur-
sive residuals in time series regression was pioneered
by Brown et al. [3] and generalized for lagged val-
ues of the dependent variable by Kramer et al. [9]
and Ploberger & Kramer [10]. Another approach is
to make one- or multistep predictions of data outside
the window and judge whether these are consistent
with the data that actually occur.

The term window is also used in kernel density
estimation. The classic books on this topic are Sil-
verman [12] and Wand & Jones [13]. Suppose that
X1, X2, . . . , Xn is a set of continuous random vari-
ables having common density f . A nonparametric
density estimator assumes no prespecified functional
form for f . Such an estimator is given by f̂ (x; h) =
(nh)−1 ∑n

i=1 K{(x − Xi)/h}. Here, K is a function
satisfying

∫
K(x) dx = 1, called the kernel, and h is

a positive number called the bandwidth or window
width. The simplest and most common density esti-
mate is the histogram defined by f̂ (x; h) = (nh)−1

(number of Xi in the same bin as x). Each bin,
or rectangle, may be regarded as a window that
summarizes the behavior of the data between the bin
extremities. The choice of origin and h can greatly
affect the appearance of the histogram. In the general
case defined above, much effort has been put into
determining optimal values for h [13, Chapter 3].
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So-called kernel and regression smoothers are
designed locally to smooth data by slicing through
it in windows of fixed width. See, for example, [1]
for an introduction to the topic. Special cases include
average smoothers that use the within-slice average
to summarize the data in a slice, and regression
smoothers that use a fixed proportion of the data in a
specified neighborhood. In this context, Cleveland [5]
introduced the locally weighted scatterplot smoother
(lowess) and this has become the most commonly
used method in modern graphical and regression anal-
yses. See, for example, [6, p. 31].
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Wishart Distribution

Suppose that X1, X2, . . . , Xn is a random sample
from a normal population with mean µ and variance
σ 2. Also let f = n − 1, the sample mean X =∑

Xi/n, and the sample variance s2 =∑
(Xi −

X)2/f . It is known that f s2/σ 2 is distributed as
χ2

f , where χ2
f represents a chi-square distributed

random variable with f degrees of freedom. In
other words, v = f s2 = ∑

(Xi − X)2 is distributed
as σ 2χ2

f . The probability density function (pdf) of v

is given by

f (v) = 1

Γ (f/2)(2σ 2)f/2
v(f −2)/2 exp

( −v

2σ 2

)

∝ v(f −2)/2

(2σ 2)f/2
exp

( −v

2σ 2

)
, v > 0. (1)

It is a gamma distribution with parameters f/2
and 2σ 2.

Let us now consider a bivariate normal ran-
dom variable X with mean vector µ and covariance
matrix �, where

X =
(

X1

X2

)
, µ =

(
µ1

µ2

)
and

� =
(

σ11 σ12

σ21 σ22

)
.

Suppose X1, X2, . . . , Xn is a random sample on X.
Define the sums of squares v11, v22, and the sum of
cross-products v12 as follows:

v11 = (n − 1)s2
1 =

∑
(X1j − X1)

2,

v22 = (n − 1)s2
2 =

∑
(X2j − X2)

2,

v12 = v21 = (n − 1)s12 =
∑

(X1j − X1)(X2j − X2).

Also, let

V =
(

v11 v12

v21 v22

)
.

Then the joint distribution of v11, v22, and v12 is
given by

f (V) ≡ f (v11, v22, v12) = c
|V|(f −3)/2

|�|f/2

× exp

[
−1

2
tr

(
�−1V

)]
, (2)

where both V and � are positive definite. Here, c is
a normalizing factor which is defined later.

For the sake of comparison with (1), let us assume
that σ12 = 0. Then (2) reduces to

f (v11, v22, v12) ∝ (v11v22 − v2
12)

(f −3)/2

(4σ 2
1 σ 2

2 )f/2

× exp

[
−1

2

(
v11

σ 2
1

+ v22

σ 2
2

)]
.

The marginal distribution of v11 or v22 is (1).
Assume that X is now a p-variate multivariate

normal random vector with mean µ and variance–
covariance matrix �. Define

V =
n∑

i=1

(Xi − X)(Xi − X)′.

The distribution of V is given by

f (V) = c
|V|(f −p−1)/2

|�|f/2
exp

[
−1

2
trace

(
�−1V

)]
,

(3)

where both V and � are positive definite, and f (V) =
0 otherwise. The normalizing constant is

c =


2fp/2πp(p−1)/4
p∏

j=1

Γ

(
f + 1 − j

2

)


−1

.

The distribution with the pdf (3) is called the
Wishart distribution and is denoted as W(�, p, f )

or Wp(f ; �). It has the first moment

E(V) = f �.

Furthermore, if V1, V2, . . . , Vm are independently
distributed as W(�, p, fk), k = 1, 2, . . . , m, then
the sum V = V1 + V2 + · · · + Vm is distributed as
W(�, p,

∑
fk). A detailed derivation of the pdf and

its properties are given by Johnson & Kotz [1].
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Women’s Health
Initiative: Statistical
Aspects and Selected
Early Results

Introduction

The women’s health initiative (WHI) is perhaps the
most ambitious population research investigation ever
undertaken. The centerpiece of the WHI program is
a randomized, controlled clinical trial (CT) to eval-
uate the health benefits and risks of three distinct
interventions (dietary modification, postmenopausal
hormone therapy, and calcium/vitamin D supple-
mentation) among 68 132 postmenopausal women.
Participating women were identified from the gen-
eral population living in proximity to any one of 40
participating clinical centers throughout the United
States. The WHI program also includes an observa-
tional study (OS) comprising 93 676 postmenopausal
women recruited from the same population base as
the CT. Enrollment into WHI began in 1993 and
concluded in 1998. Intervention activities in the com-
bined hormone therapy component of the CT ended
early in July 2002 when evidence had accumulated
that the risks exceed the benefits for combined hor-
mone therapy. Follow-up on all participating women
is planned through March 2005, giving an average
follow-up duration of about 8.5 years in the CT and
7.5 years in the OS.

WHI Clinical Trial and Observational
Study

The WHI CT includes three overlapping components,
each a randomized controlled comparison among
women who were postmenopausal and in the age
range of 50 to 79 at randomization. The dietary mod-
ification (DM) component randomly assigned 48 835
(target 48 000) eligible women to either a sustained
low-fat eating pattern (40%) or self-selected dietary
behavior (60%), with breast cancer and colorectal
cancer as designated primary outcomes and coronary
heart disease as a secondary outcome (see Outcome
Measures in Clinical Trials). From the outset, the
nutrition goals for women assigned to the DM inter-
vention group have been to reduce total dietary fat

to 20%, and saturated fat to 7% of corresponding
daily calories and, secondarily, to increase daily serv-
ings of vegetables and fruits to at least five and of
grain products to at least six, and to maintain these
changes throughout trial follow-up. The randomiza-
tion of 40%, rather than 50%, of participating women
to the DM intervention group was intended to reduce
trial costs, while testing trial hypotheses with speci-
fied power.

The postmenopausal hormone therapy (PHT) com-
ponent is composed of two parallel randomized,
double-blind (see Blinding or Masking) trials among
27 347 (target 27 500) women, with coronary heart
disease (CHD) as the primary outcome, with hip
and other fractures as secondary outcomes, and with
breast cancer as a potential adverse outcome. Of
these, 10 739 (39.3% of total) had a hysterectomy
prior to randomization, in which case there was
a 1 : 1 randomized double-blind allocation between
conjugated equine estrogen (E-alone) 0.625 mg/day
or placebo. The remaining 16 608 (60.7%) of women,
each having a uterus at baseline, were randomized
1 : 1 to the same preparation of estrogen plus contin-
uous 2.5 mg/day of medroxyprogesterone (E + P) or
placebo. These numbers compare to design goals of
12 375 for the E-alone comparison, and 15 125 for the
E + P comparison, based on an assumption that 45%
of women would be post hysterectomy. Over 8000
women were randomized to both the DM and PHT
clinical trial components.

At their one-year anniversary from DM and/or
PHT trial enrollment, all women were further
screened for possible randomization in the calcium
and vitamin D (CaD) component, a randomized
double-blind trial of 1000 mg elemental calcium
plus 400 international units of vitamin D3 daily,
versus placebo. Hip fracture is the designated primary
outcome for the CaD component, with other fractures
and colorectal cancer as secondary outcomes. A total
of 36 282 (53.3% of CT enrollees) were randomized
to the CaD component. While the WHI design
estimated that about 45 000 women would enroll in
the CaD trial component, protocol planning activities
also included projected sample sizes of 35 000 and
40 000 and noted that most WHI objectives could be
met with these smaller sample sizes.

The total CT sample size of 68 132 is only 60.6%
of the sum of the individual sample sizes for the
three CT components, providing a cost and logistics
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justification for the use of a partial factorial design
with overlapping components.

Postmenopausal women of ages 50 to 79 years,
who were screened for the CT but proved ineligible
or unwilling to be randomized, were offered the
opportunity to enroll in the observational study (OS).
The OS is intended to provide additional knowledge
about risk factors for a range of diseases, including
cancer, cardiovascular disease, and fractures. It has
an emphasis on biological markers of disease risk,
and on risk factor changes as modifiers of risk.

There was also an emphasis on the recruitment
of women of racial/ethnic minority groups. Overall
18.5% of CT women and 16.7% of OS women
identified themselves as other than white. These
fractions allow meaningful study of disease risk
factors within certain minority groups in the OS.
Also, key CT subsamples are weighted heavily in
favor of the inclusion of minority women in order to
strengthen the study of intervention effects on specific
intermediate outcomes (e.g. changes in blood lipids
or micronutrients) within minority groups.

Age distribution goals were also specified for the
CT as follows: 10%, ages 50 to 54 years; 20%, ages
55 to 59 years; 45%, ages 60 to 69 years; and 25%,
ages 70 to 79 years. While there was substantial inter-
est in assessing the benefits and risks of each CT
intervention over the entire 50 to 79 year age range,
there was also interest in having sufficient repre-
sentation of younger (50–54 years) postmenopausal
women for meaningful age group-specific interme-
diate outcome (biomarker) studies, and of older
(70–79 years) women for studies of treatment effects
on quality of life measures, including aspects of
physical and cognitive function. Differing age and
incidence rates within the 50 to 79 age range,
and across the outcomes that were hypothesized to
be affected, favorably or unfavorably, by the inter-
ventions under study, provided an additional moti-
vation for a prescribed age-at-enrollment distribu-
tion.

The enrollment of such a large number of women,
meeting designated eligibility and exclusionary cri-
teria [11] for each CT component and for the OS
proved to be a challenge, particularly for the PHT
component of the CT, since many women who vol-
unteered for WHI were already taking hormones and
did not wish to be randomized to take hormones or
placebo, while other women had already made a deci-
sion against the use of hormones.

Study Organization

In addition to the clinical centers, the study is
implemented through a Clinical Coordinating Center
(CCC) located in Seattle with various collaborators
providing specific expertise, as described below (see
Multicenter Trials). The National Heart Lung and
Blood Institute (NHLBI) sponsors the program with
input from the National Cancer Institute, the National
Institute of Aging, the National Institute of Arthri-
tis and Musculoskeletal and Skin Diseases, the NIH
Office of research on women’s health, and the NIH
director’s office. A steering committee, consisting of
the principal investigators of the 40 CCs, CCC, and
NHLBI representatives are responsible for major sci-
entific and operational decisions. An executive com-
mittee identifies, prioritizes, and coordinates items for
the steering committee discussion. Program activi-
ties are implemented through a regional organization
that categorizes CCs geographically (West, Midwest,
Northeast, Southeast). Principal investigators, and
staff groups defined by project responsibilities (clinic
manager, clinic practitioner, nutritionist, recruitment
coordinator, data coordinator, outcomes coordina-
tor) meet regularly through conference calls within
regions to discuss implementation plans and issues,
and regional staff group representatives also confer
regularly to ensure national coordination. Nine stand-
ing advisory committees (behavior, calcium and vita-
min D, design and analysis, dietary modification, hor-
mone therapy, morbidity and mortality, observational
study, publications and presentations, special popula-
tions) composed of study investigators having exper-
tise in the major substantive areas involved in the
program, provide recommendations on relevant issues
as they arise. The CCC participates and provides liai-
son support in these various contexts. Figure 1 shows
the WHI governance more generally, including NIH
advisory committees. Specifically, the directors of
participating NIH institutes and offices form a consor-
tium that advises the NHLBI director concerning the
WHI. A special working group of the NHLBI council
also advises the NHLBI director concerning the WHI.

Principal Clinical Trial Comparisons,
Power Calculations, and Safety and Data
Monitoring

This section provides sample sizes by age for each
CT component and for the OS, and provides power
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Figure 1 Organizational structure of the Women’s Health Initiative. NHLBI: National Heart, Lung, and Blood Institute;
NIH: National Institutes of Health; PI: Principal Investigator; SC: Steering Committee; CC: Clinical Center; CM: Clinic
Manager; LN: Lead Nutritionist: CP: Clinic Practitioner; DC: Data Coordinator; OC: Outcomes Coordinator

calculations for key outcomes for each continuing
CT component. Relative to the basic WHI design
manuscript [11], these calculations have been updated
to reflect the sample size and age distribution
achieved, and to reflect the actual average follow-up
duration, which will be realized by March 2005.

The target sample sizes noted above were based
on consideration of the probability of rejecting the
null hypothesis of no treatment effect (i.e. power)
on the designated primary outcome under a set of
design specifications concerning age-specific control
group primary outcome incidence rates, interven-
tion effects on incidence rates as a function of time
from randomization, intervention adherence rates,
and competing risk mortality rates. These assump-
tions have previously been listed in [11] where an
extensive bibliography is cited providing the rationale
for these assumptions.

The power calculations were based on weighted
logrank statistics that accumulate the differences
between the observed numbers of primary outcome
events in the intervention group and the expected
number of such events under the null hypothesis,
across the follow-up time period. Early events that
may be less likely to be affected by intervention

activities are downweighted relative to later events.
Specifically, the observed minus expected differences
are weighted linearly from zero at randomization to
a maximum value of one at a certain time from
randomization and are constant(at one) thereafter.
For cardiovascular disease and fracture incidence,
this “certain time” was taken to be three years,
whereas for cancer and mortality, it was taken to
be 10 years. For coronary heart disease, incidence of
the event times are grouped into three-year follow-
up periods, in order to accommodate the inclusion
of silent myocardial infarctions detected by routine
electrocardiograms, which are to be obtained at
baseline and every three years during follow-up for
CT participants. A weighted odds ratio test statistic
is then used to acknowledge this grouping.

Table 1 shows the number of enrollees, and per-
centages of the total, by age category for each com-
ponent of the CT and the OS. Note the degree of
correspondence to the target age distribution, espe-
cially in the PHT component. Such correspondence
was achieved by the closure of age-specific cells as
the target numbers were approached.

Table 2 shows the projected power; that is, the
probability of rejecting the null hypothesis, for the
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Table 1 Women’s Health Initiative sample sizes (% of total) by age group (as of 4/1/00)

Postmenopausal hormone therapy

Age group
Dietary

modification
Without uterus

(E-alone)
With uterus

(E + P)
Calcium and

vitamin D
Observational

study

50–54 6961 (14) 1396 (13) 2029 (12) 5157 (14) 12 386 (13)
55–59 11 043 (23) 1916 (18) 3492 (21) 8265 (23) 17 321 (18)
60–69 22 713 (47) 4852 (45) 7512 (45) 16 520 (46) 41 196 (44)
70–79 8118 (17) 2575 (24) 3575 (22) 6340 (17) 22 773 (24)
Total 48 835 10 739 16 608 36 282 93 676

Table 2 Statistical power for each component for the CT

Disease probability (%)
(×100)a

Intervention Avg. follow-up Projected
Outcome Control Intervention effectb (%) duration (yrs) power (%)

Dietary modification component – – – – –
Breast cancer 2.72 2.35 14 8.5 84
Colorectal cancer 1.39 1.12 19 8.5 87
CHD 3.78 3.27 14 8.5 84

Postmenopausal hormone therapy – E-alone – – – – –
CHD 4.63 3.67 21 8.5 72
Hip fracture 2.86 2.25 21 8.5 55
Combined fracturec 11.02 8.81 20 8.5 97
Breast cancer 4.38 5.36 (22) 13.5 71

Calcium and vitamin D – – – – –
Hip fracture 2.23 1.77 21 7.5 88
Combined fracturec 8.93 7.23 19 7.5 >99
Colorectal cancer 1.25 1.02 18 7.5 66

a Cumulative disease probability to planned termination (×100)
b One minus ratio of control to intervention cumulative incidence rates at study termination (×100)
c Includes proximal femur, distal forearm, proximal humerus, pelvis, and vertebra

key outcomes for each continuing component of
the CT, taking account of the age-specific sample
sizes in Table 1. Projected power is given at planned
termination in early 2005, in which case the aver-
age follow-up duration will be about 8.5 years in
the DM and PHT components and about 7.5 years in
the CaD component. The intervention effects shown
in Table 2 represent the projected effect size after
accounting for assumed nonadherence and loss to
competing risks. Comparison with projected power
calculations at the design stage [11] indicates that
a somewhat prolonged recruitment period, and the
minor departures from target in sample sizes by age
category had rather little effect on projected study
power. The CHD and hip fracture power projec-
tions for the E-alone versus placebo comparison is
somewhat reduced by a smaller than targeted sample

size (10 739 versus 12 375) in this CT component.
Power calculations for representative comparisons in
the OS have been previously given [11].

An independent Data and Safety Monitoring
Board (DSMB) is charged with monitoring the CT
to ensure participant safety, to assess conformity
to program goals, and to examine whether there
is a need for early stoppage or other modification
of any CT component. The DSMB is composed
of senior researchers, otherwise not associated with
the study, who have expertise in relevant areas of
medicine, epidemiology, biostatistics, clinical trials,
and ethics. The DSMB meets biannually to review
study progress, including its status in the context of
emerging external data. The Board provides recom-
mendations to the NHLBI Director (see Figure 1).
The DSMB reviewed and approved the protocol
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(see Clinical Trials Protocols) and consent forms
(see Ethics of Randomized Trials) prior to study
implementation. They are apprised of any significant
changes to protocol.

Throughout the period of study conduct, the
DSMB reviews data on recruitment, adherence, reten-
tion, and outcomes. The DSMB is the only group
given access to treatment arm comparisons outside
of the necessary CCC and NHLBI staff. As such,
they determine whether the existing data demon-
strate either significant or unanticipated risk or
unexpectedly strong benefits, in which case early trial
termination, or modification, may be recommended
(see Benefit/Risk Assessment in Prevention Trials).
A particular complexity in this study, as often exists
in prevention studies, is the need to consider effects
on multiple disease processes that may differ in direc-
tion, timing, and magnitude.

In the WHI, CT monitoring for consideration of
early stopping (see Data and Safety Monitoring) is
based on the following principles and procedures:

• Each trial component (DM, Estrogen alone, Estro-
gen plus Progestin, CaD) is evaluated sepa-
rately, so that a stopping decision for one will
not necessarily impact the continuation of the
other three.

• The evaluation of each intervention includes an
assessment of the overall intervention effects
on health, through the use of a global index.
This global index is defined for each woman as
time to first incident event. The events to be
included were selected on the basis of a priori
evidence for each intervention, and supplemented
with evidence of death from other causes to
capture serious unanticipated intervention effects,
as shown in Table 3.

• Early stopping for benefit would be considered, if
the primary endpoint comparison crossed a 0.05
level O’Brien–Fleming (OBF) boundary (see
Data and Safety Monitoring), and the global
index provided supportive evidence defined by
crossing the 0.1 level OBF in favor of the inter-
vention. For the DM, a Bonferroni correction
is used to acknowledge the fact that there are
two designated primary endpoints. This correction
allows a stopping recommendation to be made
if the boundary is crossed for either of the pri-
mary endpoints, without exceeding the designated
probability (0.05) of falsely rejecting the overall
null hypothesis.

• Early stopping for adverse effects uses a two-
step procedure with a 0.1 level OBF boundary for
primary safety endpoints, a Bonferroni corrected
0.1 level OBF boundary for all other safety
endpoints, and a lower boundary of z = −1.0 for
the global index to signify supportive evidence
for overall harm.

As mentioned above, weighted logrank test statis-
tics are used to test the difference between interven-
tion and control event rates for each outcome. These
weights were specified to yield efficient test statistics
for the primary outcome under CT design assump-
tions. As such, these tests may not be sensitive to
unexpected effects, whether adverse or beneficial, on
any of the study outcomes. Consequently, the DSMB
also informally examines unweighted logrank statis-
tics, as well as weighted and unweighted tests for
various intervals of time since randomization and for
selected subgroups of participants (e.g. specific age
groups), toward ensuring participant safety. Further
detail on CT monitoring methods and their rationale
is given in [6].

Table 3 Trial monitoring endpoints for the WHI clinical trial components

PHT (E-alone and E + P) DM CaD

Primary endpoint CHD Breast cancer,
Colorectal cancer

Hip fractures

Primary safety endpoint Breast cancer N/A N/A

Other endpoints included
in the global index

Stroke,
Pulmonary embolism,
Hip fractures,
Colorectal cancer,
Endometrial cancer,
Death from other causes

CHD,
Death from other causes

Colorectal cancer,
Breast cancer,
Other fractures,
Death from other causes
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CT monitoring reports, prepared on a semiannual
basis throughout trial follow-up, also present data
on the adherence to intervention goals, the rates
of participation in follow-up and other program
activities, and control group incidence rates. These
data are used to update power calculations, along
the lines of Table 2, to help assess conformity to
overall design goals, and to alert the DSMB to
emerging problems. Data on selected biomarkers and
intermediate outcomes are also assembled, as such
data can provide an objective assessment of the
extent to which intervention goals are achieved, and
can provide insights into processes that can explain
intervention effects on disease outcomes.

Biomarkers and Intermediate Outcomes

Beyond testing primary and secondary hypotheses,
the CT is designed to support specialized analyses to
explain any treatment effects in terms of intermedi-
ate outcomes, and both the CT and OS are designed
to produce new information on risk factors for car-
diovascular disease, cancer, and other diseases. To
do so, the basic WHI program supports a substan-
tial infrastructure of archival blood product storage,
which includes serum and plasma from CT and OS
participants at baseline, and at selected follow-up
times (one year from enrollment in the CT and three
years from enrollment in the OS). In addition, base-
line white blood cells (buffy coat) are stored in both
the CT and OS. These blood specimens are used for
specialized studies related to participant safety and
CT intervention adherence, and for externally funded
ancillary studies. Stored blood components collected
from each CT and OS participant during screening
include 7.2 mL serum (in 4 × 1.8 mL vials), 5.4 mL
citrated plasma (in 3 × 1.8 mL vials), 5.4 mL EDTA
plasma (in 3 × 1.8 mL vials), and two aliquots of
buffy coat.

Intermediate outcome data collected in the CT
include electrocardiograms (obtained as baseline, 3,
6, and 9 years among all CT women) to ascer-
tain “silent” myocardial infarctions and other car-
diac diagnoses, and bilateral mammograms (obtained
annually for PHT women and biennially for other CT
participants). In addition, all PHT women, 65 years
of age and older, have cognitive function assessment,
and a 25% sample have functional assessment, at
baseline and follow-up. A sample of women in both

the CT and OS (all those who are enrolled at any
one of three specified clinical centers) have dual x-
ray absorptiometry at baseline, and at follow-up years
1 (CT only), 3, 6, and 9, to measure change in bone
mass in the hip, spine, and total body; these women
also provide urine specimens that are stored for stud-
ies of the interventions’ effects on bone metabolites.

Analyses to explain CT treatment effects, and
CT/OS analyses to elucidate disease risk factors, gen-
erally take place in a case–control or case–cohort
fashion, to limit the number of specialized analyte
determinations. Extensive self-report questionnaire
data at baseline and selected follow-up times are also
available for use in these analyses, and can be used
to inform the case–control sampling procedure.

Data Management and Computing
Infrastructure

The size and scope of the WHI creates a large
and rather complex data processing load (see Data
Management and Coordination). Each clinical site
has recruited at least 3000 participants creating a
local data management load as large as that for many
multicenter trial coordinating centers.

The data collected for WHI fall roughly into three
categories: self-report, clinical measurements, and
outcomes data. Self-reported information includes
demographic, medical history, diet, reproductive his-
tory, family history, and psychosocial and behavioral
factors. For these areas, standardized questionnaires
were developed from instruments used in other stud-
ies of similar populations. Current use of medications
and dietary supplements is captured directly from pill
bottles that participating women bring to the clinic
(see Compliance Assessment in Clinical Trials).
To capture details of hormone therapy use prior to
WHI enrollment, an in-person interview was con-
ducted with each woman at baseline to determine her
entire history of postmenopausal hormone use. For
additional diet information in the DM trial beyond
routine food frequency questionnaires, 4-day food
records and 24-hour recall of diet are obtained from a
subsample of women. Dietary records are completed
by the participant, reviewed and documented by cer-
tified clinic staff, and a subsample is sent to the CCC
for nutrient coding and analysis. The 24-hour recalls
of diet are obtained by telephone contact from the
coordinating center and these data were coded using
the same methods as for the dietary records.
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Clinical measures such as anthropometrics, blood
pressure, functional status, and results from gyne-
cologic exams are obtained by certified WHI clinic
staff using standardized procedures and data col-
lection forms and key-entered into the local study
database. Limited blood specimen analyses are con-
ducted locally and recorded. The remaining blood
specimens are sent to a central blood repository where
they are housed until the appropriate subsamples
are identified and sent to the central laboratory for
the selected analyses. Electrocardiogram and bone
densitometry data are submitted electronically to
respective central reading and coordination facilities.

Information on significant health outcomes is
initially obtained by self-report. If the type of event
is of particular interest for WHI research, additional
documentation is obtained from local health care
providers and this information is used by a clinic
physician to classify and code the event. Additional
details of outcomes definitions and methods appear
elsewhere [5].

Data quality assurance mechanisms are incorpo-
rated at several levels, in addition to the overall
quality assurance program described below (see Clin-
ical Trials Audit and Quality Control). Data entry
screens incorporate range and validity checks, and
scanning software rejects forms containing critical
errors. Routine audits of randomly selected charts
document errors and provide feedback to CC and
CCC staff. Additional data quality checks are used in
creating analytic data sets. Multiple versions of most
forms have been used, so some data items require
mapping across versions.

To support the large requirement of local oper-
ations as well as central analyses and reporting,
the CCC developed and implemented a standardized
computing and database management system that
serves each clinical center site and the coordinat-
ing center. This computing system can be logically
divided into three major areas: computing at the clin-
ical centers, computing at the CCC, and a private
wide area network (WAN). The study-wide database
uses this infrastructure to provide the appropriate data
management tools to all sites.

Each clinical center is equipped with its own local
area network consisting of a file server, ethernet
switch, 10 to 20 workstations, two or more printers,
a mark sense form reader, bar code readers, and
a router. The router provides connectivity back to
the CCC over the WAN. In some cases, the router

also provides connectivity to the parent institution.
The file server is configured with Windows NT
Advance Server and runs its own instance of the
study’s Oracle database. The server also provides
standardized office applications (Microsoft Office)
and e-mail (Microsoft Exchange Web client). The
workstations are Windows 98 clients.

The CCC maintains a cadre of application
servers dedicated to the development, testing,
and warehousing of the consolidated database,
currently requiring 100 GB. The CCC also maintains
several other servers dedicated to statistical analysis,
administrative support for CCC staff, website and
e-mail services for study-wide communication, and
centralized automated backup for all study servers.
The website and e-mail system dedicated to WHI
staff and investigators is critical to managing the
challenges of study communications with nearly 1500
WHI staff and investigators spread across 5 time-
zones. The website provides a kind of electronic glue
for bringing together disparate groups. WHI e-mail
access is available through the website either over
the WAN or through the Internet.

The WHI WAN is a private network, which
connects CCs to the CCC using a combination of
56 k and T1 frame-relay circuits. The WAN enables
the CCC to conduct nightly backups of clinical center
file servers. It also facilitates remote management
and troubleshooting of clinical center equipment. In
addition, it provides CCs direct access to the WHI
e-mail system and website.

The WHI database management system is a dis-
tributed replicated database, implemented in Oracle
8.0 for Windows NT. Database design and table struc-
ture are identical across CCs but are populated only
with data specific to that site. The average clini-
cal center database currently requires approximately
15 GB of space. Data acquisition relies heavily on
mark sense scanning, supplemented with traditional
key entry and bar code reading. The database sup-
ports and enforces the study protocol through its par-
ticipant eligibility confirmation, randomization, drug
dispensing, and collection, visit and task planning,
and outcomes processing functions. Security is pro-
vided both by password protection and by limiting
access to specific data based on the identified role
of the user. Local access to clinical site-specific data
is supported through centrally defined reports and a
flexible data extract system.
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The CCC database provides the superstructure into
which the CC data are consolidated routinely. Addi-
tional data are obtained from the central laboratories
and specimen repository and are merged with, and
checked against, the corresponding participant data.
The central database serves as the source of all data
reports and analyses.

Quality Assurance Program Overview

The WHI program involves a complex protocol,
with an extensive set of required procedures. The
CT intervention goals and the study timeline are
demanding program elements. With these challenges,
an organized quality assurance (QA) program was
needed to identify and correct emerging problems.
The QA program is an integral part of the study
protocol, procedures, and database, and covers all
aspects of WHI. The program seeks to balance
the need to assure scientific quality of the study
with available resources. The complexity, size, and
fiscal responsibility of WHI necessitated establishing
priorities to guide local and central QA activities.

The WHI QA priorities were developed by a task
force comprising WHI investigators and staff, under
the premise that aspects critical to the main scientific
objectives of WHI would be of highest priority. As
the centerpiece of WHI, the fundamental elements
of the CT are considered of highest priority. The
next highest priority is given to key elements of
the OS and elements of the CT that are important
for interpretive analyses. The remaining elements are
given a lower priority. The implementation of these
priorities is manifested in the frequency and level of
detailed QA activities.

QA methods and responsibilities include activ-
ities performed at the CCs as well as activities
initiated and coordinated by the CCC. The QA Pro-
gram includes: extensive documentation of proce-
dures; training and certification of staff; routine QA
visits conducted by the CCC (all CCs received an ini-
tial and an annual QA Visit while subsequent visits
are done approximately every other year, or more fre-
quently as needed); and database reports for review
by CCs and pertinent committees describing the com-
pleteness, timeliness, and reliability of tasks at the
CCs. For example moving average monthly inter-
vention adherence rates, and major task completeness
rates, for each CC are used as one up-to-date indicator
of CT status.

WHI has established performance goals for var-
ious important tasks that are centrally monitored.
These goals were determined on the basis of design
assumptions and, where available, on previously pub-
lished standards of quality and safety.

The performance of each CC is reviewed on a
regular basis under a performance monitoring plan.
This plan is used to identify clinic-specific perfor-
mance issues in a timely fashion, to reinforce good
performance and to provide assistance or to institute
corrective action if performance is inadequate. Much
of this work is conducted under the auspices of a
performance monitoring committee (PMC), compris-
ing representatives of the CCC, CCs, and PO. The
PMC follows up on persistent issues with specific
CCs, and conducts site visits to facilitate the reso-
lution of specific areas of concern. Some additional
detail on the implementation of the WHI design is
given in [2].

Early Results from the WHI Clinical Trial

In late May 2002, after an average follow-up of
5.2 years, the DSMB recommended the early stopping
of the E + P trial component because the weighted
logrank test for invasive breast cancer exceeded the
OBF stopping boundary for this adverse effect and
the global index supported risks exceeding benefits.

Participating women in the E + P trial were asked
to stop taking their study pills on July 8, 2002
and principal trial results were published soon there-
after [13]. Women in the E + P trial continue to be
followed without intervention through 2005, and a
plan is under development for the additional nonin-
tervention follow-up of PHT women from 2005 to
2007.

On the basis of data through April 2002, the E + P
trial generated hazard ratio estimates and nomi-
nal 95% confidence intervals as follows: coronary
heart disease 1.29 (1.02–1.63), breast cancer 1.26
(1.00–1.59), stroke 1.41 (1.07–1.85), pulmonary
embolism 2.13 (1.39–3.25), colorectal cancer 0.63
(0.43–0.92), endometrial cancer 0.83 (0.47–1.47),
hip fracture 0.66 (0.45–0.98), and death due to other
causes 0.92 (0.74–1.14). The global index, defined
as the earliest event of these just listed, had a hazard
ratio estimate (nominal 95% confidence interval) of
1.15 (1.03–1.28). Absolute excess risks per 10 000
person years were estimated as seven for coronary
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heart disease, eight for stroke, eight for pulmonary
embolism, and eight for breast cancer, while corre-
sponding absolute risk reductions were estimates as
six for colorectal cancer and five for hip fracture.
The absolute excess risk for global index events
were estimated as 19 per 10 000 person years. Con-
fidence intervals adjusted for sequential monitoring
(see Sequential Methods for Clinical Trials), and
for multiple testing (see Multiplicity in Clinical Tri-
als) in accordance with the CT monitoring plan are
also given in [13].

Even though these risk alterations are fairly mod-
est, they have substantial population implications for
morbidity and mortality. As a result of these findings,
various professional organizations have altered their
recommendations concerning combined hormone use,
and labeling changes have been made or are under
consideration. These results follow decades of obser-
vational studies supporting a cardioprotective benefit
for hormone therapy, and the discussion following
the reporting of E + P trial results has sharpened
the understanding of comparative properties of trials
and observational studies among scientific groups and
the general population. Additional outcome events
through July 7, 2002 have been adjudicated and
several more specialized results papers have been
published [1, 3, 4, 7, 8, 12]. An ancillary study exam-
ining the effects of E + P on dementia and cognitive
function has also been published [9, 10].

Summary and Discussion

The WHI, CT, and OS was implemented in close cor-
respondence to design specifications [11]. Departures
from design assumptions concerning sample size, age
distribution, and projected average trial follow-up
have limited effect on the adequacy of primary out-
come study power for continuing CT components,
with the possible exception of the E-alone versus
placebo comparison, where some power reduction
for coronary heart disease arises from a smaller than
targeted sample size. Substantial infrastructure for
specimen storage, routine analyte determination, data
management and computing, and for data and proto-
col quality control was also implemented. Principal
results from the trial of combined hormones (E + P)
have been presented following the early stopping of
intervention.

Ongoing challenges in the CT and OS include
retaining the active participation of study subjects

over a lengthy follow-up period, ensuring the unbi-
ased and timely ascertainment of outcome events in
each CT component and in the OS and, perhaps
the most challenging, ensuring an adequate adher-
ence to intervention goals for each continuing CT
intervention.

The astrogen-alone component of the WHI clinical
trial stopped early on March 1, 2004 with principal
results presented in the Journal of the American
Medical Association 291; 1701–1712, 2004.
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Worcester, Jane

Born: December 5, 1910.
Died: October 8, 1989, in Falmouth, Mass.

Jane Worcester was the first female Department
Chair of Biostatistics at Harvard School of Pub-
lic Health. Her career in the department spanned
from 1931, when she came to the department as a
mathematical computing assistant after receiving her
A.B. from Smith College, to 1977, when she retired
as Department Chair and Professor of Biostatistics
and Epidemiology. Dr Worcester liked to relate to her
students the story of her first position in the depart-
ment as “Computer”. Dr Worcester received a Dr.
P.H. from Harvard in 1947 and an honorary Sc.D.
from Smith in 1968. She was one of the earliest
non-Radcliffe women to become a full professor at
Harvard at a time when there were no women in the
Faculty of Arts and Sciences, the Law School, or
the Medical School. She served as an important role
model for many women in academics.

During the 46 years that Dr Worcester spent with
the department, she devoted her time to research,
teaching, and service both to the School and to the
discipline of biostatistics. She was the center of grav-
ity of the department for a very long time, during
which both faculty and students sought her advice.
Dr Worcester stimulated her students to achieve more

than they thought they could accomplish and encour-
aged them to grow (see Teaching Medical Statistics
to Statisticians). In describing Dr Worcester’s influ-
ence on the students in the department, Ray Neff,
Sc.D. ‘77, considered her “an archetypal mentor”.
Charles Ralph Buncher, Sc.D. ‘67, remembered the
story of when Dr Worcester returned from the oral
qualifying examination of Joseph Brain, now Profes-
sor and Chair of the Department of Environmental
Health at the School. She exclaimed, “What a joy it
was because I learned so much!”

Dr Worcester provided a consulting role for
research in a range of areas in public health.
She worked very closely with the editors and
editorial board of the New England Journal of
Medicine and taught her students how to review
the medical literature (see Statistical Review for
Medical Journals). She also worked with laboratory
scientists and the Department of Nutrition at the
School and viewed the involvement as a tool to
provide students with an active, practical, learning
environment and also to offer help to other scientists.
Jane Menken, Ph.D., described Dr Worcester as
“someone whose intense dedication to the School and
scientific inquiry were obvious to all who knew her,
and those who associated with her were indeed very
fortunate”.

NAN M. LAIRD



World Health
Organization (WHO):
Biostatistics and
Epidemiology

The World Health Organization (WHO) was estab-
lished in April 1948 as a specialized agency of the
United Nations, taking over the functions of the
Office International d’Hygiène Publique, the Health
Organization of the League of Nations, and the Health
Division of the United Nations Relief and Rehabilita-
tion Administration (UNRRA). The practical tasks of
WHO were seen as supplying technical aid in com-
bating epidemics such as cholera, malaria, smallpox,
tuberculosis, etc., and particularly as assisting less
developed and financially weak countries to improve
their medical and health services.

In the general area of health statistics and epi-
demiological surveillance, WHO’s responsibilities
included the establishment and maintenance of ad-
ministrative and technical services, including epi-
demiologic and statistical services; the provision
of information, counseling and assistance in the
field of health; and the founding, with revision
where necessary, of an international nomenclature
of diseases, causes of death and public health prac-
tices (see International Classification of Diseases
(ICD)). Member States had corresponding obliga-
tions to communicate to WHO important laws, reg-
ulations, official reports, and statistics relating to
the health field, and especially to provide appro-
priate statistical and epidemiologic reports. For a
more detailed historical account of developments
over the period 1948–1988, see the excellent review
by Uemura [8].

In addition to WHO’s headquarters (WHO/HQ)
in Geneva, there are separate Regional Offices in
the six regions of Africa, the Americas, Eastern
Mediterranean, Europe, South-East Asia and the
Western Pacific, besides several other special offices.
Like many other international organizations, WHO’s
staff and responsibilities are widely, but thinly,
spread and increasingly insufficiently funded. Despite
these difficulties, much excellent work is carried
out in maintaining a high standard of public health
review through the mechanism of Expert Committees,
promotion of collaboration with country projects,

development of advisory services and training
programs, etc.

Essential statistical activities were developed and
formulated by the WHO Expert Committee on Health
Statistics, and in 1949 a Health Statistics Division
was created in WHO/HQ. The direct use of bio-
statistical methods expanded only gradually until in
1967 a special effort was made to establish at HQ a
Division of Research in Epidemiology and Commu-
nication Science (RECS). This Division incorporated
individual units covering communicable diseases,
noncommunicable diseases, social systems, environ-
mental aspects, operational research, and computer
science – following the installation of a central com-
puter facility in 1966.

In principle, this development should have greatly
increased WHO’s stature and capabilities over the
whole area of applied biostatistics. Unfortunately, the
expected collaboration between RECS and the long-
standing Units and Divisions of WHO/HQ never took
place. A great deal of first class research work was
carried out and duly published, but as the initial
expectations were not realized, RECS was disbanded
in 1972 after five years of serious biostatistical
efforts.

Most of the RECS technical staff were then trans-
ferred to other areas of WHO/HQ, and the Division
of Health Statistics was itself greatly strengthened
in this way. In particular, one can cite the develop-
ment of dynamic modeling applied to several com-
municable diseases including typhoid fever, cholera,
tetanus, diphtheria, whooping cough, and tuberculo-
sis. Early on there was the epidemiologic modeling
of the spread and control of tuberculosis by Waaler
& Piot [9] in the Tuberculosis Unit which involved
some discussions with RECS. Later on it became
clear that one of the most significant achievements
of RECS was the construction of a malaria model
closely tied to field investigations in Africa (see
Dietz et al. [4]). Also to be mentioned are the books
by Bailey on the mathematical theory of infectious
diseases [1] and the biomathematics of malaria [2].
Many other studies, such as the MONICA project
on monitoring trends and determinants in cardiovas-
cular disease [10], carried out in a large number of
countries, were also promoted and strengthened by
the spread of ideas and techniques arising from the
RECS period. For further discussion of these matters
see Uemura [8], as already mentioned above.



2 World Health Organization (WHO): Biostatistics and Epidemiology

On the other hand, there is the failure of WHO’s
communicable disease statistics, dealing largely
with limited country-by-country data, to elucidate
the worldwide process of spatial diffusion. Much
important work of direct practical relevance has
already been done by geographers and statisticians.
See, for example, Cliff et al. [3] on the spread
of measles; Gould [5], and Gould & Wallace [6],
on the spatial diffusion of HIV and AIDS;
as well as a whole recent issue of Statistical
Methods in Medical Research [7] entitled “Spatial
Epidemiology” (see Epidemic Models, Spatial).

Now, what is the role of biostatistics in the whole
WHO program? Most technical biostatistical publi-
cations are highly mathematical, and are largely not
understood, even in principle, by those who might
use the methods and results in practical applications
to medicine, epidemiology, and public health. Even
when the research papers seem to be applied they are
often using simplified real data only for illustrative
purposes. The real-life problems faced by admin-
istrators and decision-makers are therefore mostly
neglected. A fully effective application of biostatistics
in the whole public health field requires a major col-
laborative effort of an operational research character.

Finally, let us consider what should be done.
Well-organized multidisciplinary teams to cover
the epidemiologic modeling of both communicable
and noncommunicable diseases, involving relatively
small groups of individuals with overlapping skills,
should be established so as to include a spectrum
from purely scientific expertise to those engaged in
real-life decision-making. This implies operational
research on a global level.

The world clearly needs all the applied technical
skills it can get to control, and eradicate where
possible, a very wide range of life-threatening dis-
eases – some well known, others newly emerging.
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World Health
Organization (WHO):
Global Health Situation

To recognize the development of epidemiologic and
statistical activities and trend assessment in the World
Health Organization (WHO), it is first important to
review the contribution of epidemiology to world
health. Epidemiology originated in response to a need
to understand and control the highly infectious epi-
demic diseases, such as cholera, plague, smallpox,
and yellow fever. It was only with time that appre-
ciation grew of the fact that all conditions of disease
and ill-health are interrelated, and that the emerging
science of epidemiology provided the tools for help-
ing to understand the major factors underlying these
issues as well [1].

International health work also began with a con-
centration on infectious diseases (see Communicable
Diseases), and then moved towards a wider concept
of health as part of overall development. The roots
of the World Health Organization, as an international
health agency, go back to efforts in the last century,
and early in this century, particularly to the Rome
Agreement of 1907, which established the Office
International d’Hygiène Publique, with the express
purpose “to combat infectious diseases”. The progres-
sive shift of the concept of health, from the prevention
of infectious diseases to viewing health as “a state of
complete physical, mental and social well-being and
not merely the absence of disease or infirmity”, is
reflected in the successive evolution of the Pan Amer-
ican Sanitary Bureau, founded in 1902, the health
services arm of the League of Nations, founded in
1918, and finally WHO, founded in 1948 [1].

Epidemiology has provided the tools for a better
understanding of the incidence, prevalence, natu-
ral history, causes (see Causation), and effects of
control and other measures that are relevant to each
of the communicable disease control programs of
WHO. More than this, the epidemiologic sciences
have enabled us also to understand noncommunicable
diseases such as cancer (see Oncology), cardiovascu-
lar diseases, (see Cardiology and Cardiovascular
Disease), and genetic disorders (see Genetic Epi-
demiology). In the area of primary prevention this
understanding has allowed for intervention before the
onset of disease [1].

WHO has a constitutional responsibility for the
global epidemiologic surveillance of disease. It
receives information on outbreaks of communicable
disease and distributes this information throughout
the world by telecommunication and its publication
Weekly Epidemiological Record. The WHO system
of international epidemiologic surveillance provides
countries with access to information. This includes
the countries that otherwise would not be able to
communicate directly with each other. WHO is
responsible for the International Health Regulations,
the International Classification of Diseases, and a
great many international standards, which together
make international epidemiologic comparisons possi-
ble. WHO also publishes the World Health Statistics
Quarterly, the World Health Statistics Annual, the
World Health Report, and other publications of an
epidemiologic nature [1].

Twenty years ago, the Thirtieth World Health
Assembly decided that the main social target of
governments and WHO in the coming decades should
be health for all by the year 2000. One year later, in
1978, at a major international conference at Alma-
Ata, primary health care was declared to be the
key to attaining this goal, in the spirit of social
justice. The policies and strategies for “health for
all” have subsequently been defined by the World
Health Assembly at an international level, in the
light of its own health and socioeconomic situation.
Furthermore, WHO Member States have committed
themselves, with the Organization, to monitoring
progress towards and evaluating the attainment of this
common goal, using a basic set of global indicators
in addition to those applicable within each country.
For the first time in the history of international health
work, an epidemiologic framework is being applied
on a global scale. The implication is that the science
of epidemiology must be applied for strategic health
planning and evaluation, in a systematic manner, in
practically all countries of the world, for national and
international health development purposes [1].

The health-for-all monitoring and evaluation pro-
cess is intended to establish a baseline of current
health and socioeconomic conditions, against which
progress towards defined targets and objectives can
be measured. Periodic measurement should establish
trends that will permit anticipation of future con-
ditions, and to start planning for them in advance.
The three cycles of monitoring and evaluation of the
health-for-all strategy that have taken place so far
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make WHO optimistic that the information obtained
can be used to reorient national and international pri-
orities and directions for health development work, on
the basis of sound epidemiologic evidence, reported
by countries with honesty [1].

The latest evaluation was carried out late
1996/early 1997; national reports will be consolidated
into regional reports to be reviewed by WHO regional
committees in September–October 1997; the global
findings will be reported to WHO Governing Bodies
in 1998.

At the present time epidemiology and evaluation
are used substantially to support health future trend
assessment through scenario planning at the global,
regional, and country level. A new reorientation of
health statistics is also taking place in response to the
trend for broader and higher-quality data requested by
users. In WHO, approaching the end of the twentieth
century, epidemiology, statistics, and future trend
assessment provide a substantive contribution to the
formulation of the health-for-all policy and strategy
for the next century.

Program Activities to the End of the
Twentieth Century

The Health Situation and Trend Assessment Program
is at present responsible for global health situa-
tion analysis and projection; strengthening of country
health information; and partnerships and coordination
of epidemiology, statistics, and trend assessment.
Global epidemiologic surveillance is under the res-
ponsibility of the Emerging and other Communicable
Diseases Surveillance and Control Program. Vari-
ous epidemiologic and statistical activities are also
carried out by technical programs at WHO headquar-
ters, e.g. Expanded Program on Immunization; Health
and Environment; Information System Management;
Special Program of Research, Development, and
Research Training in Human Reproduction; Special
Program for Research and Training in Tropical Dis-
eases; and also its six regional offices.

As already mentioned, one of the normative func-
tions of WHO is monitoring the health situation and
trends throughout the world, for which the compila-
tion, use, and coordination of relevant health infor-
mation and statistical activities are essential. WHO
evaluates the world health status and trends every
6 years and publishes its findings. It also assesses

the global health status annually and, since 1995, has
published The World Health Report. The report gives
an overview of the global situation and identifies
priority areas for international health action; it also
links the work of WHO to global health needs and
priorities (see Morbidity and Mortality, Chang-
ing Patterns in the Twentieth Century; Mortality,
International Comparisons).

In headquarters this Program is carried out by
the Division of Health Situation and Trend Assess-
ment, which is comprised of the Units of Health
Situation Analysis and Projection and Strengthen-
ing Country Health Information, and the Director’s
Office responsible for partnerships and coordination
in epidemiology, statistics, and trend assessment and
the International Statistical Classification of Diseases
and Related Health Problems (ICD) besides provid-
ing direction and supervision of the Program.

The six regional offices of WHO also undertake
health situation and trend assessment activities. From
the Program review in 1995 the focus of the regional
programs is as follows.

African Region

In the African Region priority is given to gener-
ation and utilization of epidemiologic and health
information, particularly through the strengthening of
national health information systems (see Adminis-
trative Databases) and epidemiologic surveillance
systems. The development of epidemiology prac-
tice is based on the following approaches: integrated
management of epidemiologic information systems;
strengthening both data management capacity and
decision-making processes, particularly at local level;
combined training in epidemiology and management
of health programs and health systems. Efforts are
made to equip all district teams with a set of essen-
tial epidemiologic capabilities. WHO established a
position of epidemiologist in each Country Office in
order to support this effort.

Region of the Americas

The major achievements of the Region of the Amer-
icas include coordinating the response to the cholera
epidemic, supporting the evaluation and strengthen-
ing of national health surveillance systems, support
for modernization of records and statistical infor-
mation systems, implementation and application of
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the ICD-10, Geographic–Epidemiologic Information
Systems (see Geographic Patterns of Disease; Geo-
graphic Epidemiology), supporting national studies
of social inequities that affect health status, producing
regional publications of the health situation (Health
Conditions in the Americas, Strategies to Monitor
Health for All (HFA), PAHO Epidemiological Bul-
letin, and Health Statistics from the Americas), and
establishing a technical information system including
country profiles, databases on mortality and popu-
lation, and a bibliography on epidemiology. Efforts
will continue to strengthen national epidemiologic
capacities, to study inequity in health, training in
epidemiology, statistics, and health situation analysis
and systems, and to disseminate information (see
Health Services Data Sources in Canada; Health
Services Data Sources in the US).

Eastern Mediterranean Region

The Eastern Mediterranean Region has cooperated
and will continue to cooperate in the development
of health information systems in Member States, by
providing technical support, strengthening national
capabilities through fellowships and workshops,
developing a regional database and publishing
guidelines and manuals to improve health information
management design, implementation, and use in the
decision making process.

European Region

In the European Region the main tasks are collect-
ing and analyzing health information for periodic
reports of progress towards health for all by the year
2000 (entitled “Health in Europe”), regularly updat-
ing and disseminating information from the health-
for-all database to Member States (available also
from http://www.who.dk), and supporting training
in epidemiology and health information. A Euro-
pean Public Health Information Network (EUPHIN)
is being established (together with the EC) to enable
telematic reporting and exchange of data for interna-
tional comparisons. As part of this initiative, efforts
continue to improve international data comparabil-
ity by developing and encouraging countries to use
standard definitions, measurement instruments, and
methods.

At the country level, the European Regional Office
assists countries in developing and using national

health and health service databases like the health-
for-all database, as a means for making better use
of available health data at national and local level.
The European Regional Office also produces country
“highlights” which give an overview of the health
and health-related situation in a given country and
compare, where possible, its position in relation to
other countries in the WHO European Region (also
available from http://www.who.dk).

The intention in all cases is to make better use of
available health information, which will in itself help
to improve data quality and comparability, and enable
national and local agencies and institutions with
health responsibilities to have easy access and benefit
from the activities and product of the European
Regional Office (see Health Services Data Sources
in Europe).

Southeast Asia Region

In the Southeast Asia Region support to countries
has focused on the strengthening of health manage-
ment information systems at the central and district
level, and the enhancement of mortality and morbid-
ity statistics (see Vital Statistics, Overview). Atten-
tion will continue to focus on developing health
management information systems in interested coun-
tries. Epidemiologic surveillance, the use of “health
futures” methodology, and health data processing and
rational use is being further enhanced.

Western Pacific Region

The Western Pacific Region is engaged in technical
cooperation to strengthen epidemiologic surveillance
and cholera control, support field epidemiology
training, improve medical records, birth registration
documentation and health information systems, and
provide guidelines and manuals. Future activities
include reformulation and construction of a new
regional database, increased coordination with
technical units, strengthening of current activities,
and research on more sensitive indicators and
associated analytic methods for monitoring and
evaluation.

Main Activities at Global and Regional Level

The Program’s main activities at the global and
regional level from around 1997 to 1999 can be
summarized as follows:
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1. Global health situation analysis and projection.
Updating databases on mortality, health-for-all
data resulting from the third global evaluation
and global health futures information; reporting
on the third global evaluation of the implementa-
tion of the health-for-all strategy (to be published
in the World Health Report 1998); improving
and formulating new indicators and updating the
common framework for the fourth monitoring
of the implementation of the health-for-all strat-
egy; issuing the World Health Statistics Annual
1997 and 1998, and the World Health Statistics
Quarterly, volumes 51 and 52; updating the doc-
uments “Global health situation analysis and
projection” and “Demographic data for health
situation and projections”; and validating global
health and health-related data and information.
At the regional level preparing and distributing
regional reports on the world health situation;
maintaining and updating databases of health
statistics; and improving the health-for-all strat-
egy through the findings of the third evaluation
of the implementation of the Strategy.

2. Strengthening country health information. Con-
tributing to defining universal public health
functions; providing guidance on assessing per-
formance of public health functions and defin-
ing the minimum information required for their
monitoring and management; preparing method-
ology for rapidly assessing availability and use
of information for managing the essential public
health functions; preparing guidance materials
and supporting processes for enhancing vari-
ous information functions and support systems;
and undertaking a series of applications of the
above methods within interested countries. At
the regional level providing advisory services and
support to countries; enhancing national informa-
tion systems and assisting countries in applying
various methodologies such as health futures and
rapid evaluation.

3. Partnerships and coordination in epidemiology,
statistics, and trend assessment. Forming partner-
ships and coordination in epidemiology, statistics
and trend assessment with related WHO pro-
grams, regional offices and international orga-
nizations; preparing an international agreement
on a taxonomic approach for medical proce-
dures and guidelines for establishing national
classifications; providing guidance on medical

certification of causes of death. At the regional
level improving partnerships in epidemiology,
statistics, and trend assessment, and holding
computer-based training courses in the use of
ICD-10.

It is important to note that the Division of Health
Situation and Trend Assessment is responsible for
the development, maintenance, and coordination of
the International Statistical Classification of Diseases
and Related Health Problems (ICD) and other mem-
bers of the “family” of disease and health-related
classifications in both English and French.

The future prospect of ICD can be highlighted
as follows. More than 60 Member States submit
national mortality data to WHO on a routine basis.
Twenty-eight of these Member States have already
implemented the tenth revision of the ICD (ICD-10),
which was published by WHO in 1992–93, for either
mortality or morbidity coding or both. Twenty-two
Member States in the Region for the Americas have
received training in the use of ICD-10 but have not
yet implemented it. A further nine Member States
have indicated that they plan to implement it before
the year 2000. It can be assumed, therefore, that by
the year 2000 the vast majority of the countries cur-
rently submitting mortality data will have moved to
ICD-10, though the actual data may not be avail-
able until some 2–3 years later. It is hoped that the
planned publication of a simplified three-character
version of ICD-10 will encourage more developing
countries to use the classification. In general, it is
estimated that, approaching the twenty-first century,
most developed countries will have implemented
ICD-10. On the other hand, in developing countries
the classification will be implemented step by step
in line with the speed of the strengthening of the
capability of their vital and health statistical infras-
tructures.

At the global level the Division of Emerging and
other Communicable Diseases Surveillance and Con-
trol publishes the Weekly Epidemiological Record ;
updates annually International Travel and Health;
revises the International Health Regulations; and
rapidly exchanges information through electronic
media with WHO Collaborating Centers, public heal-
th administrations and the general public.

At the present time the Health Situation and
Trend Assessment Program is implemented with
support from various professional staff, especially
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epidemiologists, statisticians, medical officers, and
public health specialists.

Vision for the Use and Generation of Data
in the First Quarter of the Twenty-first
Century

Epidemiologic and health statistical activities in
WHO are now operational through dynamic
networking with various parties at the global,
regional, and country level. From experience at the
global and regional level and in many countries,
the trend of information required by users is
towards more specific and higher-quality information.
Figure 1 highlights the information on health status
and determinants required by most users.
The generation of data and information can usually
be grouped into four main activities:

1. Collection, validation, analyses, and dissemina-
tion of data and information.

2. Support activities and resources, especially
through cooperation with Member States in
strengthening country health information.

3. Research and development activities.
4. Partnerships and coordination of information

activities.

Figure 2 shows these activities and their interconnec-
tion. From experience this diagram is helpful in visu-
alizing the complex issues of information activities.

On the basis of experience and future prospects
the trends of the use and generation of information
are briefly described in Table 1. The trends here
shown take into consideration the main change in
the use of data and the various activities involved
in the generation of data. It is hoped that the main
trends from 1975 to the end of the century are clearly
highlighted in the table.

From the WHO Global Health Situation Analysis
and Projection from 1950 to 2025 it is possible to
foresee the future prospects of health situation and
trend assessment in the early part of the twenty-first
century, as summarized below.

1. The various users of information will request
many types of information or data, all of which
should be up-to-date and of high quality. This
kind of request will not only come from the user
in developed countries but also from many users
in developing countries.

2. On the generation of information:
(i) In the collection, validation, analysis

and dissemination of data and informa-
tion the emphasis will be on data con-
cerning health status (see Quality of
Life and Health Status) (health, life
expectancy, mortality, disability, morbid-
ity), health resources (including finan-
cial) (see Health Care Financing), physi-
cal and manpower resources (see Health
Workforce Modeling), health services,
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Figure 1 Health status and determinants. Adapted from Sistem Kesehatan Nasional [National Health System], Annex 1.
Jakarta, Ministry of Health, 1984 and Public Health Status and Forecast, Figure 1.3.3, The Hague, National Institute of
Public Health and Environmental Protection, 1994



6 World Health Organization (WHO): Global Health Situation

Future trend
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Activating,
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2
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Information
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and 
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1

Feedback/
reporting

Direction,
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Figure 2 Relationship between information and implementation, management and development activities

Table 1 Brief review of development of main health situation and trend assessment activities at country, regional, and
global level

Main activities 1975–87 1988–95 1996–2001

1. The use of information For planning, management
and evaluation Limited
quality of data could be
tolerated

Limited use of
information for past and
present trends Limited
quality of some data
could be tolerated

Broader use, including
future trends, of
information and data
High quality of data is
needed

2. The generation of
information

(i) Collect,
validate,
analyze, and
disseminate data
and information

Data on health status,
utilization of services,
resources, and
demographic, social and
environmental data

Emphasis on data on
monitoring and
evaluation of Health for
All

Emphasis on data on
mortality, morbidity,
disability

Partial support of
informatics

Continue to give emphasis
to data on monitoring
and evaluation of
Health for All

Full support of informatics

(ii) Research and
development
activities

Developments of indicators;
methods of presentation
and dissemination;
operational research
methods

Development of
monitoring and
evaluation

Further development of
health indicators
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Table 1 (continued )

Main activities 1975–87 1988–95 1996–2001

Statistical support to health
research

Started health futures
trend assessment

Health futures trend
assessment

ICD ICD, ICIDH Further development of
health futures methods

Implementation of ICD
(iii) Support

activities and
resources

Support given country by
country

Strengthening country
health information –
started cooperation with
Member States,
especially developing
countries and countries
in transition, through
regional offices

More on strengthening
country health
information through
regional offices

Support health futures
trend assessment

Support the monitoring
and evaluation of HFA

Support the enhancement
of statistical capabilities

Support the use of
computers

(iv) Partnerships and
coordination of
information
activities

Improve the uniformity and
comparability of data

Balancing between
decentralized and
centralized systems

Dynamic networking of
health information

and
statistical activities

Coordination of various
information,

statistical
activities, and trend
assessment

Cooperation between
statisticians and users

Started through dynamic
networking of health
information and
statistical activities

Source: Division of Health Situation and Trend Assessment, WHO.

socioeconomic environment (especially
economic, sociocultural, and technologi-
cal environment), and biological and phys-
ical environments (including pollution)
(see Environmental Epidemiology). Full
informatic support in these information
activities will become a reality.

(ii) The future focus on research and develop-
ment will be on health measurement of the
above-mentioned data and various health
classifications in a more elaborated way.
Besides this, further development of future
trend assessment in support of scenario
planning will be needed by many countries.

(iii) The trend in support activities and resources
will continue to focus on providing support
to many developing countries, especially to
the least developed countries in strengthen-
ing their country health information.

The specific support activities and resour-
ces as mentioned in Table 1 will continue
throughout the beginning of the twenty-first
century.

(iv) Partnerships, coordination and provision
of direction of information activities
will become WHO’s most important and
challenging tasks in health situation and
trend assessment in the future.
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X-Linkage

In humans, there are 22 pairs of homologous chromo-
somes called autosomes, and an additional pair of sex
chromosomes, denoted by X and Y. Normal females
are XX and normal males are XY. The Y chromo-
some is small and lacks most of the loci found on the
X chromosome; loci found only on the X chromo-
some are called X-linked loci. Regions of homology
between the X and Y chromosomes are called the
pseudo-autosomal regions (see below).

The phenomenon of X-linked inheritance has
been recognized since ancient times in the case of
hemophilia. Jewish law banned the circumcision of
male offspring of females with a family history of
bleeding; however, this ban did not apply to the
offspring of males who were members of fami-
lies with a history of bleeding. Hemophilia became
infamous in the nineteenth and early twentieth cen-
turies with the spread of hemophilia through the
royal houses of Europe. Queen Victoria of Great
Britain was a carrier of the disease gene, which
she passed on to her son Prince Leopold as well
as to numerous other members of the royal fam-
ily. The most famous victim was her great-grandson
Alexis Romanov who met his demise not from
hemophilia but when he was executed at the age
of 14 with his family at Ekaterinburg in 1918.
The causes of X-linked recessive hemophilia A and
hemophilia B are now known to be due to muta-
tions in the factor VIII gene, which maps to Xq28
and in the factor IX gene mapping to Xq27.1–q27.2,
respectively.

In 1911, color blindness was localized to the
X chromosome [27]. This was the first trait to be
mapped to the X chromosome in mammals. To date
a large number of genes for X-linked traits have
been mapped and isolated. They include the genes
for retinitis pigmentosa 2 [26], retinitis pigmentosa
3 [25], and X-linked Alport syndrome [1]. These are
a few examples of the over 1000 X-linked traits and
genes described in Online Mendelian Inheritance in
Man [22].

X-linked Transmission and Modes of
Inheritance

For X-linked diseases, affected males pass their only
X chromosome to all their female offspring, therefore

100% of their female children carry a chromosome
with the disease gene. Since males can only pass
their Y chromosome to their male offspring, there
is no male-to-male transmission for X-linked traits.
A heterozygous female has two copies of the X
chromosome and therefore passes the X chromosome
carrying the disease gene to 50% of her children,
regardless of their sex. For many X-linked reces-
sive traits (see Genotype), females are unaffected
carriers of the trait, while males express the disease
phenotype; a female is affected only in the rare cir-
cumstance of receiving a copy of the mutated gene
from both her mother and father. As an example,
X-linked color blindness has a frequency of 8% in
western European males but also affects about 0.6 %
of females. In X-linked dominant inheritance, both
males and females who carry only one copy of the
disease allele are affected.

For some X-linked recessive traits, female carri-
ers display a milder phenotype than affected males.
For example, for sensorineural deafness caused by
the DFN4 gene, affected males display congenital
bilateral profound sensorineural hearing impairment
affecting all frequencies, while female carriers man-
ifest a much milder phenotype of bilateral mild
to moderate high frequency sensorineural hearing
impairment with onset during adulthood [17]. In the
case of retinitis pigmentosa 3, carrier females display
tapetal-like retinal reflex (a brilliant, scintillating,
golden-hued, patchy appearance most striking around
the macula), but no visual defect [10].

Ascertainment of Families

From which individuals should DNA samples be col-
lected, when ascertaining a kindred segregating an
X-linked recessive trait? For the example in Figure 1
(the “a” indicates the family member should be geno-
typed), all females are phenotypically normal and it is
only possible to determine whether they are carriers
if they have an affected son. For example, it is not
possible to determine the carrier status of II.4 or II.5,
since neither female has a male offspring. Therefore,
they do not provide linkage information. In addition,
the affected male II.10 cannot pass the disease gene
to his sons (who need not be ascertained), but his
daughter III.10 has an affected son and therefore is a
carrier; III.10 and her son IV.1 should be ascertained.

Even if DNA cannot be collected for an individual,
in certain circumstances they should still be retained
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Figure 1 Pedigree 1: ascertainment scheme for an X-linked recessive trait. Individuals marked with an “a” subscript are
appropriate for ascertainment for a linkage study

in the pedigree for linkage analysis. For example,
individuals III.1 and III.2 should be retained in the
analysis even if they lack genotypic information,
since the number of unaffected sons that II.3 has
changes the probability of whether or not she is
a mutant allele carrier, with the probability of her
being a carrier decreasing with increasing number of
unaffected sons. In addition, affected male offspring
III.8 and IV.1 should be retained in the analysis even
if a DNA sample cannot be obtained; including them
in the analysis classifies the carrier status of their
mothers II.9 and III.10.

If it is possible to identify whether or not the
females are carriers (or the trait is X-linked dominant
and females with one copy of a mutated allele are
affected), then ascertainment should be extended to
include additional females whose affection or carrier
status is known.

Linkage Analysis for X-linked Loci

For complex diseases, it may be difficult to deter-
mine whether one or more susceptibility loci are
X-linked; in this case, the whole genome, including
the X chromosome, should be scanned. In general,
the phenomenon of X-linkage can be distinguished
from other sex-related phenomena, such as parental
effects and sex-dependent penetrances. Segregation
analyses may be carried out to determine whether or
not an X-linked model of inheritance best fits a set
of pedigree data.

If there is strong evidence that a disease or
trait segregating in a pedigree is X-linked, then
genotyping of markers is usually restricted to the

X chromosome. Markers that are located on the
X chromosome can be selected from a variety of
genetic maps; for example, maps created at the
Marshfield Medical Center for Medical Genetics [2]
and the Foundation Jean Dausset Centre d’Etude du
Polymorphisme Humain (CEPH) [7]. Markers that
are approximately 5 cM–10 cM apart can be geno-
typed initially to perform a scan of the X chromo-
some. Additional markers can then be genotyped to
aid in establishing linkage and to fine map a locus to
a region.

Model-based Linkage Analysis

Model-based methods for X-linked loci may be
viewed as modifications of model-based methods for
autosomal diseases (see Linkage Analysis, Model-
based; Linkage Analysis, Multipoint); as a result,
relatively little methodologic literature on analysis of
X-linkage is available. A summary of early work is
given by Edwards [9]. For X-linked loci, the trans-
mission probability (the probability that an individual
of a given genotype transmits a particular gamete to
his or her offspring) depends on the sex of both par-
ent and offspring. First, consider a single X-linked
locus [6]. Let k = 1, 2, . . . , K denote the possible
alleles at a given locus and let 0 denote a null
(absent) allele. For a male parent, the genotype is in
a haploid state for one of these possible alleles. Let
τk0m→k′m (τk0m→k′f ) be the probability that a male
parent with genotype k0 transmits a k′ allele to a
male (female) offspring. Then τkm→k′m = 0 for all
k, k′, and τk0m→k′f = 1, if k = k′, and 0 otherwise.
For a female parent, the transmission probabilities
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are the same as in the autosomal case, regardless of
offspring sex.

When two loci are analyzed together in a link-
age analysis, the recombination fraction is included
as a parameter in the transmission probabilities. For
X-linked loci, no recombination occurs in the male
parent and the transmission probabilities are the same
as above, substituting the two-locus haploid geno-
type for the single locus haploid genotype. Only the
transmission probabilities associated with the female
parent include the (female) recombination fraction;
these transmission probabilities are the same as in
the autosomal case.

Next, consider the mode of inheritance. For X-
linked traits, the penetrance functions are usually
defined separately for males and females. For a two-
allele locus, the possible genotypes for a female are
DD, D+ or ++, where D is the disease allele and +
is the wild type allele. The male has only one copy
of the X chromosome; the Y chromosome does not
carry the locus. The possible genotypes for a male
are therefore DY or +Y. As examples of X-linked
traits with full penetrance for disease genotypes and
no phenocopies, Table 1 gives penetrances for an
X-linked recessive trait, Table 2 for an X-linked dom-
inant trait, and Table 3 for an X-linked recessive trait
for which female carriers can be identified.

Morton [20] recommends using, as a critical va-
lue, a lod score of 2.0 in order to establish link-
age of a trait locus to the X chromosome. For a
scan of only the X chromosome using a dense map
of markers [18], a lod score of 2.0 corresponds to
a significance level of 0.024 (see Genome-wide Sig-
nificance).

Model-free Linkage Analysis

For model-free methods, sometimes called nonpara-
metric methods, the mode of inheritance of a trait
is not specified a priori (see Linkage Analysis,
Model-free). Like the case of model-based analysis,

Table 1 Penetrances for an X-linked recessive trait with-
out phenocopies or reduced penetrance

Female Male

Disease status DD D+ ++ DY +Y

Affected 1 0 0 1 0
Unaffected 0 1 1 0 1

Table 2 Penetrances for an X-linked dominant trait with-
out phenocopies or reduced penetrance

Female Male

Disease status DD D+ ++ DY +Y

Affected 1 1 0 1 0
Unaffected 0 0 1 0 1

Table 3 Penetrances for an X-linked recessive trait with-
out reduced penetrance or phenocopies, but for which car-
riers can be identified

Female Male

Disease status DD D+ ++ DY +Y

Affected 1 0 0 1 0
Carriers 0 1 0 – –
Unaffected 0 0 1 0 1

model-free linkage analysis of X-linked traits can
be viewed as a modification of model-free linkage
analysis of autosomal traits. When analyzing relative-
pair data, the number of alleles shared identical-by-
descent (ibd) (see Identity Coefficients) between the
members of the pair is estimated, conditional on the
available marker data. For an autosomal marker, sib-
lings can share either 0 or 1 maternal alleles (each
with probability 1

2 ) and 0 or 1 paternal alleles (each

with probability 1
2 ). Therefore, for autosomal mark-

ers and under the null hypothesis of no linkage, the
expected probabilities of sibs sharing 0, 1, and 2 alle-
les ibd are 1

4 , 1
2 and 1

4 , respectively.
For X-linked markers, female–female sib pairs

must share exactly 1 paternal allele ibd, male–male
sib pairs must share exactly 0 paternal alleles ibd
(because the Y chromosome does not carry the locus
of interest), and opposite-sex sib pairs must also share
exactly 0 paternal alleles ibd. For alleles inherited
from the mother, both same-sex and opposite-sex sib
pairs can share either 0 or 1 allele ibd (each with
probability 1

2 ). Therefore, under the null hypothesis of
no linkage, female–female sib pairs can share either 1
or 2 alleles ibd (each with probability 1

2 ), male–male
sib pairs can share either 0 or 1 allele ibd (each with
probability 1

2 ), and opposite-sex sib pairs can share 0
or 1 allele (each with probability 1

2 ).
Once ibd-sharing probabilities are estimated, they

can be incorporated into standard methods of model-
free analysis, with the caveat that, for some methods,
different parameters are estimated for the three types
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of sex-specific pairs (female–female, male–male,
and male–female), and the results then combined
for an overall test of linkage. For example, Cordell
et al. [4] gives an extension of the Risch [24] affec-
ted-relative-pair likelihood method for autosomal loci
to the analysis of X-linked loci. To derive their
method, they specify sex-specific genetic variances
and covariances and use them to obtain sex- and pair-
type-specific recurrence risk ratio parameters and
their corresponding multinomial parameters.

In general, let zRi be the probability that
an affected relative pair of type R (sex-specific)
shares i alleles ibd, for i = 0, 1, 2, and let αRi

be the associated prior probability. In the case of
sib pairs, αbb2 = αbs2 = αss0 = zbb2 = zbs2 = zss0 =
0 (where bb = brother–brother, bs = brother–sister,
and ss = sister–sister). The remaining αs equal 1

2 .
Within each sex-specific pair type, the zs must sum
to one; therefore, there are three free parameters
in the likelihood: zbb0, zbs0, and zss1. For each
sex-specific pair type, the lod score is maximized,
subject to constraints on the parameters consistent
with genetic inheritance. The asymptotic distribution
of the corresponding likelihood ratio statistic is a
50 : 50 mixture of a point mass at zero (χ2

0 ) and χ2
1 .

The three lod scores can then be summed to give
an overall lod score; the asymptotic distribution of the
corresponding likelihood ratio statistic is a mixture
of χ2

0 , χ2
1 , χ2

2 , and χ2
3 , with mixing proportions equal

to the binomial probabilities 0.125, 0.375, 0.375,
and 0.125, respectively. To achieve the nominal
(point-wise) significance level of 0.05, a lod score
exceeding 1.18 is required [21]. If the entire genome
is scanned, then the Lander & Kruglyak [18] criteria
for suggestive and significant linkage correspond to
lod scores equaling 3.06 and 4.62, respectively, on
the X chromosome [21].

The Cordell et al. [4] method is general, allowing
for different recurrence risk ratio parameters for
each sex-specific sib-pair type at the expense of
additional degrees of freedom. For X-linked recessive
inheritance, the probabilities of sharing a maternal
allele are the same for each type of affected sib
pair [13]. As a result, all maternal ibd sharing can
be combined and a single parameter (here denoted
as z1) to be estimated. The null hypothesis H0:
z1 = 1

2 is tested against the alternative Ha: z1 >
1
2 ; the asymptotic distribution of the corresponding
likelihood ratio statistic is distributed as a 50 : 50
mixture of χ2

0 and χ2
1 . Nyholt [21] argues that this

statistic has the same properties as the likelihood ratio
statistic from a model-based analysis and that, as a
result, the Morton [20] criterion applies if only the
X chromosome is scanned and the standard Lander &
Kruglyak [18] criteria for model-based analysis apply
if the entire genome is scanned.

The Pseudo-autosomal Regions

There are two small regions on the X chromosome
where recombination does occur with the Y chromo-
some, the distal regions on Xp [3] and on Xq [11].
These are known as the pseudo-autosomal regions;
inheritance of loci and traits in these regions of the
sex chromosomes mimic autosomal inheritance. As a
result, when testing for linkage within the pseudo-
autosomal regions, penetrance functions take the
same form as for the autosomal case (i.e autosomal
dominant or recessive) [23]. If the trait locus is within
a pseudo-autosomal region and the marker locus/loci
lies outside this region, a different set of penetrance
functions must be used (see [23]).

Dupuis & Van Eerdewegh [8] present a method to
carry out affected-sib-pair analysis within the pseudo-
autosomal regions. This method takes into account
the fact that, in the pseudo-autosomal regions, same-
sex siblings will share more genetic material ibd, even
when a disease locus is not present. This increased
sharing will be greater in those regions closer to the
sex-specific region. Likewise, opposite-sex siblings
will share less genetic material ibd. If this difference
is not taken into account, for either dichotomous
or quantitative traits, then those samples with more
same-sex siblings will have higher type I error rates,
while samples with an abundance of opposite-sex
siblings will have reduced power to detect linkage.

Software for Analysis of X-linked Traits

Programs that can be used to carry out model-
based linkage analysis for X-linkage include LINK-
AGE [19], FASTLINK [5], GENEHUNTER2.1 [16],
and ALLEGRO1.1 [12]. For affected-sib-pair data,
programs include MAPMAKER/SIBS [15], which
incorporates the methods of Cordell et al. [4],
and ASPEX, an exclusion mapping program that
incorporates a one-parameter model [14]. GENE-
HUNTER2.1 and ALLEGRO1.1 also perform non-
parametric analysis of more general pedigrees (see
Software for Genetic Epidemiology).
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Yates’s Algorithm

Yates’s algorithm is a computationally efficient me-
thod of calculating main effects and interactions in a
balanced factorial experiment. The method, devel-
oped by Frank Yates [13] in 1937, originally applied
to designs in which all factors have two levels, but
it is easily extended to include factors with three
or more levels. The calculations can be performed
readily by hand through a series of multiplications
and additions, and are easily programmed. A reverse
algorithm yields fitted values and residuals.

The structural characteristics that lead to the com-
putational efficiency of Yates’s algorithm form the
basis of the fast Fourier transform [1, 5, 8, 9],
and also bear a direct relationship to computational
aspects of wavelet shrinkage [7, 11] in, for example,
nonparametric regression.

Standard Order of Experimental
Conditions

The calculations for Yates’s algorithm are organized
in a table, with the data arranged in what is known as
standard order in the first column. Before illustrating
the method through examples, let us establish some
notation. Consider an experiment with three factors,
A, B, and C, each at two levels, designated “high”
and “low”. Combinations of the lowercase letters
a, b, and c represent experimental conditions defined
by the levels of these factors. The presence of a letter
indicates that the corresponding factor is at its higher
level, and its absence indicates that the factor is at
its lower level. Accordingly, ab denotes observations
at the high levels of A and B and the low level of
C. Now suppose that an additional factor, D, with
three levels, is included in the design. Successive
levels of this factor are written, 1, d, and d2. Hence,
the letters bd2 stand for an observation at the low
levels of A and C, the high level of B, and the
highest level of D. The observation at the lowest
level of all factors is denoted 1. For factors with
unordered levels, the designations “low” and “high”
are, of course, arbitrary.

Observations arranged in standard order start at
the lowest level of all factors, and cycle through the
levels of the first factor most rapidly. In the notation
just introduced, this consists of writing the levels of

the first factor, then writing the letters for each level
of the next factor times these terms, one level at a
time, and continuing on to succeeding factors in the
same manner. For example, the standard order for
three factors A, B, and C with two levels each is:

1 a b ab c ac bc abc.

Standard order for a 2 × 2 × 3 design with factors
A, B, and D is:

1 a b ab d ad bd abd d2 ad2

bd2 abd2.

Notice that the first four symbols are like those for a
2 × 2 experiment, that multiplying each of these by
d produces the next four symbols, and multiplying
them by d2 produces the last four.

Yates’s Algorithm for 2k Factorial Designs

Table 1 illustrates the steps of Yates’s algorithm for
a 24 factorial design. The column labeled Treatment
total contains the data, the totals over r replications
for each experimental condition, arranged in standard
order. Columns (1)–(4) are calculated from these
totals as follows. To generate column (1), first group
the data in the preceding column into pairs. Then
calculate the top half of the column as the sums of
these pairs and the bottom half as their differences,
subtracting the second member of the pair from the
first. Thus, the entries in the top half of column (1) are
24.9 = 15.8 + 9.1 through 63.0 = 22.6 + 40.4, and
the entries in the bottom half are −6.7 = 9.1 − 15.8
through 17.8 = 40.4 − 22.6. Generate columns (2)
and (3) from their preceding columns in the same
manner, with sums of pairs in the top half and
differences in the bottom. The number of columns
calculated in this way is the same as the number of
factors in the design. The final such column contains
the effect totals, or raw effects.

The mean effects, which are the main effects
and interactions identified in the final column,
are obtained by dividing the effect totals by
r2k for the average effect and by r2k−1 for all
other effects. These effects are orthogonal, and
their corresponding one-degree-of-freedom sums of
squares are calculated as [effect total]2/2k . The stan-
dard errors of the mean effects are (2σ 2/r2k−1)1/2.
Replicates, when available, provide an estimate of
the error variance. In the absence of replication,
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Table 1 Yates’s algorithm for a 24 design

Mean effect Sum of squares
Effect = =

Experimental Treatment total Effect total/ Effect total2/
condition total (1) (2) (3) (4) Divisor divisor r2k Identification

1 15.8 24.9 58.7 124.4 324.6 r2k = 16 20.29 6585.32 Average
a 9.1 33.8 65.7 200.2 30.2 r2k−1 = 8 3.78 57.00 A

b 14.6 27.8 88.2 −2.2 44.0 8 5.50 121.00 B

ab 19.2 37.9 112.0 32.4 48.0 8 6.00 144.00 AB

c 16.8 38.6 −2.1 19.0 30.8 8 3.85 59.29 C

ac 11.0 49.6 −0.1 25.0 14.4 8 1.80 12.96 AC

bc 16.1 49.0 10.0 22.8 4.2 8 0.53 1.10 BC

abc 21.8 63.0 22.4 25.2 1.4 8 0.18 0.12 ABC

d 19.8 −6.7 8.9 7.0 75.8 8 9.48 359.10 D

ad 18.8 4.6 10.1 23.8 34.6 8 4.33 74.82 AD

bd 19.3 −5.8 11.0 2.0 6.0 8 0.75 2.25 BD

abd 30.3 5.7 14.0 12.4 2.4 8 0.30 0.36 ABD

cd 22.2 −1.0 11.3 1.2 16.8 8 2.10 17.64 CD

acd 26.8 11.0 11.5 3.0 10.4 8 1.30 6.76 ACD

bcd 22.6 4.6 12.0 0.2 1.8 8 0.23 0.20 BCD

abcd 40.4 17.8 13.2 1.2 1.0 8 0.13 0.06 ABCD

the higher-order interactions are often taken to be
zero, and their effects pooled to obtain an estimate of
σ 2. A half-normal plot of the absolute standardized
effects [|effect total|/(divisor)1/2], preferably exclud-
ing main effects, is useful in determining which
higher-order effects to pool.

Yates’s Algorithm for Factors with More
than Two Levels

In general, orthogonal contrasts among factor levels
determine the steps of Yates’s algorithm. For a factor
with two levels, the contrasts are unique, but for
a factor with three or more levels, these contrasts,
which decompose the average and main effect into
one-degree-of-freedom effects, can be chosen in any
number of ways. If the factor levels are quantitative
and evenly spaced, then polynomial contrasts are
appropriate. The columns of C2 and C3 below contain
the polynomial contrast coefficients for two and three
factors, with the sums of squared coefficients in the
margins. The steps just described for a 2k design
clearly correspond to use of the coefficients in the
columns of C2:

C2 =
Average Linear

1 −1[ ]
1 1
2 2

,

C3 =

Average Linear Quadratic
1 −1 1[
1 0 −2

]

1 1 1
3 2 6

Table 2 contains the steps of Yates’s algorithm
for a 2 × 3 × 2 design using polynomial contrasts.
Because A and C each have two levels, columns (1)
and (3) are calculated from the preceding columns by
computing sums and differences of pairs as described
above for 2k designs. Thus, only calculation of col-
umn (2) corresponding to the three-level factor B

remains to be explained. To obtain this column, first
divide the preceding column into groups of three
(the number of levels of the factor). Then apply the
coefficients in the columns of C3 to these groups.
That is, compute the first third of column (2) as
the sums of each group, compute the middle third
using the coefficients −1, 0, 1 for the linear contrast,
and compute the last third using the coefficients 1,
−2, 1 for the quadratic contrast. Thus, the first four
entries in column (2) are 74.5 = 21.8 + 18.0 + 14.7
through 53.5 = 12.1 + 15.6 + 25.8; the next four
are 12.9 = 34.7 − 21.8 through 13.7 = 25.8 − 12.1,
and the last four are 20.5 = 21.8 − 2 × 18.0 + 34.7
through 6.7 = 12.1 + 2 × 15.6 + 25.8.

The contrasts not only define the operations on
the column elements in Yates’s algorithm, but also
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Table 2 Yates’s algorithm for a 2 × 3 × 2 design using polynomial contrasts

Mean Sum of
effect = squares =

Experi- Effect Effect Effect
mental Treatment total total/ total2/ Identifi-

condition total (1) (2) (3) Divisor divisor divisor cation

1 10.6 21.8 74.5 183.8 2 × 3 × 2 × r = 12r 15.317 2815.30 Average
a 11.2 18.0 109.3 69.6 2 × 3 × 2r = 12r 5.800 403.68 A

b 7.2 34.7 16.1 33.6 2 × 2 × 2r = 8r 4.200 141.12 BL

ab 10.8 29.9 53.5 25.0 2 × 2 × 2r = 8r 3.125 78.13 ABL

b2 11.4 28.8 12.9 43.4 2 × 6 × 2r = 24r 1.808 78.48 BQ

ab2 23.3 50.6 20.7 12.0 2 × 6 × 2r = 24r 0.500 6.00 ABQ

c 8.9 0.6 11.3 34.8 2 × 3 × 2r = 12r 2.900 100.92 C

ac 21.0 3.6 13.7 37.4 2 × 3 × 2r = 12r 3.117 116.56 AC

bc 6.6 11.9 20.5 7.8 2 × 2 × 2r = 8r 0.975 7.61 BLC

abc 22.2 12.1 22.9 2.4 2 × 2 × 2r = 8r 0.300 0.72 ABLC

b2c 12.4 15.6 5.3 2.4 2 × 6 × 2r = 24r 0.100 0.24 BQC

ab2c 38.2 25.8 6.7 1.4 2 × 6 × 2r = 24r 0.058 0.08 ABQC

Coefficients: 1st half: 1st third: 1st half:
1, 1 1, 1, 1 1, 1

2nd half: 2nd third: 2nd half:
−1, 1 −1, 0, 1 −1, 1

Last third:
1, −2, 1

determine the divisors used to obtain mean effects and
sums of squares from effect totals. The divisors are
products of the sums of squared contract coefficients,
with each factor in the design contributing to the
product. If a particular factor is not involved in
the effect (e.g. C is not in the AB interaction),
then its average contrast supplies its contribution
to the divisor. Thus, the divisor for the A main
effect is 2 × 3 × 2 = 12(Alinear × Baverage × Caverage);
the divisor for the ABQ interaction is 2 × 6 × 2 =
24(Alinear × Bquadratic × Caverage).

The Reverse Algorithm

The reverse algorithm operating on the mean or
raw effects produces the original data. If certain
effects that are considered negligible or nonsignif-
icant are set to zero, then the reverse algorithm
produces the fitted values for the corresponding
model. On the other hand, if significant effects are
set to zero and the values for the nonsignificant
effects retained, then this back-transformation pro-
duces residuals.

The reverse algorithm for 2k designs is straight-
forward. Starting with raw effects, columns are again

generated as sums and differences of pairs of elements
in the preceding column. However, in the reverse
algorithm, the bottom half of the column consists of
sums of pairs and the top half of differences obtained
by subtracting the second member of the pair from
the first. These steps correspond to taking linear com-
binations with coefficients from the columns of C′

2.
Equivalently, the reverse algorithm can be imple-
mented by applying the forward algorithm to the raw
effects listed in reverse standard order, which pro-
duces the original data (fitted values, residuals) in
reverse order as well [2].

When the design includes factors with more than
two levels, the reverse algorithm is applied to mean
effects rather than effect totals and no divisors
are used. The steps for two-level factors are as
described above. The columns of C′

3 contain the
coefficients for calculating each third of a column
corresponding to a three-level factor, assuming poly-
nomial contrasts have been used in the forward
algorithm:

C′
2 =

[
1 1

−1 1

]
, C′

3 =
[ 1 1 1

−1 0 1
1 −2 1

]
.
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Table 3 The reverse algorithm for a 2 × 3 × 2 design using polynomial contrasts
(a) Fitted values

Mean Fitted values Experimental
Identification effect (1) (2) (3) condition

Average 15.32 9.52 10.26 11.45 1
A 5.80 1.07 −1.19 10.55 a

BL 4.20 1.81 15.60 6.12 b

ABL 3.13 −0.22 5.05 11.48 ab

BQ 1.81 0.97 5.90 11.65 b2

ABQ 0.00 0.00 −0.22 23.27 ab2

C 2.90 21.12 17.50 9.07 c

AC 3.12 7.33 6.02 20.65 ac

BLC 0.97 1.81 12.40 5.68 bc

ABLC 0.00 6.02 0.75 23.52 abc

BQC 0.00 0.97 30.26 13.15 b2c

ABQC 0.00 0.00 6.99 37.25 ab2c

(b) Residuals

Mean Residuals Experimental
Identification effect (1) (2) (3) condition

Average 0.00 0.00 −0.50 −0.84 1
A 0.00 0.00 0.34 0.64 a

BL 0.00 −0.50 0.50 1.08 b

ABL 0.00 0.00 −0.14 −0.68 ab

BQ 0.00 −0.30 1.00 −0.24 b2

ABQ 0.50 0.04 −0.08 0.04 ab2

C 0.00 0.00 −1.00 −0.16 c

AC 0.00 0.00 −0.32 0.36 ac

BLC 0.00 0.50 −0.50 0.92 bc

ABLC 0.30 0.00 −0.26 −1.32 abc

BQC 0.10 0.30 0.50 −0.76 b2c

ABQC 0.06 0.16 0.46 0.96 ab2c

Coefficients: 1st half: 1st third: 1st half:
1, −1 1, −1, 1 1, −1

2nd half: 2nd third: 2nd half:
1, 1 1, 0, −2 1, 1

Last third:
1, 1, 1

Table 3 illustrates the reverse algorithm for the 2 ×
3 × 2 example presented in Table 2, with two-way
interactions involving the quadratic effect of B and
all three-way interactions set to zero a priori. Calcu-
lations of fitted values and residuals follow exactly
the same steps, so we describe only the former. To
compute column (1) corresponding to the first factor
which has two levels, group the preceding column
into pairs. Apply the coefficients −1, 1 from the

first column of C′
2 to obtain the differences 9.52 =

15.32 − 5.80, and so forth in the top half of column
(1). Similarly, apply the coefficients in the second
column of C′

2 to obtain the sums of each pair in the
bottom half of column (1). Since the second factor
has three levels, compute column (2) by first divid-
ing the preceding column into groups of three. Then
apply the coefficients in each column of C′

3 to obtain
the linear combinations that fill each third of the



Yates’s Algorithm 5

column:

10.26 = 9.52 − 1.07 + 1.81 using 1, −1, 1...
...

5.90 = 9.52 − 2 × 1.81 using 1, 0, −2...
...

12.40 = 9.52 + 1.07 + 1.81 using 1, 1, 1...
...

Column (3), the last column calculated in this man-
ner, contains the estimated effects for the fitted model
with terms A + BL + BQ + C + ABL + AC + BLC.

Computational Efficiency: Yates’s
Algorithm, and the Fast Fourier and
Wavelet Transforms

Yates’s algorithm for a t1×t2×. . . × tk design requi-
res (t1+t2+. . . + tk)N multiplications and additions,
in contrast to the N2 operations in direct calculation
from the design matrix, X. The former quantity
is proportional to N log2 N , with constant of
proportionality that is a weighted average of
t1/ log2 t1, . . . , tk/ log2 tk [8, 5]. The computational
efficiency of Yates’s algorithm derives from the fact
that X′, which is the direct (Kronecker) product of the
transposes of the relevant t × t contrast matrices, can
be written as the usual matrix product of sparse N ×
N matrices with at most t × N nonzero elements.
Calculation of columns (1) through (k) in Yates’s
table corresponds to multiplication by these sparse
matrices.

Good [8, 9] generalized Yates’s algorithm as pre-
sented above and demonstrated its application to the
calculation of Fourier series. Cooley & Tukey [5]
developed the fast Fourier transform based on this
work. McCullagh [11] noted the similarity in thresh-
olding of wavelet coefficients and back-transforma-
tion in Yates’s algorithm, and Donoho & John-
stone [7] verified that the formal manipulations of
Yates’s algorithm are exactly the same as computa-
tions in particular cases of wavelet transformation.

Yates’s algorithm is described and illustrated in
various books on the statistical analysis of designed
experiments in addition to those cited, such as Box
et al. [3], Cochran & Cox [4], Daniel [6], Johnson &
Leone [10], and Miller & Freund [12].
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Yates’s Continuity
Correction

For testing the null hypothesis of independence in a
2 × 2 contingency table,

a b n1

c d n2 ,
m1 m2 N

Yates [4] defined a continuity correction to provide a
P value that approximates the P value from Fisher’s
exact test better than that based on the uncorrected
chi-square test statistic,

T = N(ad − bc)2

m1m2n1n2
. (1)

Yates’s continuity-corrected chi-square statistic is

Tc = N
(|ad − bc| − 1

2N
)2

m1m2n1n2
. (2)

Conditional on the table’s margins, only one cell
count, say A = a, is random (A denotes a random
variable taking value a). The discrepancy of outcome
A from its expected value under H0, A′ = A − E(A),
where E(A) = m1n1/N , identifies outcomes in oppo-
site tails of the distribution. Keeping these tails dis-
tinct, Yates’s [4, 5] two-sided exact P value is twice
the one-sided P value, with a maximum of one:

P =
{

2 Pr(A′ ≤ a′), if a′ < 0,

2 Pr(A′ ≥ a′), if a′ > 0,
(3)

where Pr(A′ = a′) = Pr(A = a) is the hypergeomet-
ric probability of outcome a,

Pr(A = a) =

(
n1

a

)(
n2

m1 − a

)

(
N

m1

) , (4)

and max(0, m1 + n1 − N) ≤ a ≤ min(m1, n1).
A two-sided asymptotic P value, F(t) [or F(tc)],

is found by referring t (or tc) to the chi-square dis-
tribution with 1 df; F is the cumulative distribution
function of this distribution and F = 1 − F .

The exact distribution is discrete and its tails
Pr(A′ ≤ a′) and Pr(A′ ≥ a′) can be asymmetric,
whereas the approximating distribution is contin-
uous and assumes that these tails are symmetric.
The continuity-corrected chi-square P value greatly
improves the approximation to the exact P value.

Example

For the 2 × 2 table with a = 5 and margins {m1 =
6, n1 = 8, N = 14}, we obtain E(A) = 3.429 and
a′ = 1.571. Table 1 lists the seven possible val-
ues of a, conditional on the margins, showing the
two tails of the distribution. The two-sided exact
conditional P value is 2 Pr(A′ ≥ 3.429) = 0.2424.
The chi-square statistics are t = 2.941 (uncorrected)
and tc = 1.367 (continuity-corrected); the asymptotic
P values are F(t) = 0.0864 and F(tc) = 0.2423,
respectively. Table 1 illustrates general results: F(t)

underestimates the exact distribution, while F(tc) is
nearly identical to it, and F(tc) is slightly conserva-
tive when very small (but can be improved by using
the Fisher–Yates reference table VIII [2]).

Table 1 Two-sided exact and asymptotic P values for all 2 × 2 contingency tables with margins
{m1 = 6, n1 = 8, N = 14}

Exact Not corrected Corrected

a a′ Pr(A = a) P t F (t) tc F (tc)

0 −3.429 0.0003 0.0006 14.00 0.0002 10.21 0.0014
1 −2.429 0.0160 0.0326 7.024 0.0080 4.430 0.0353
2 −1.429 0.1399 0.3124 2.431 0.1190 1.027 0.3109
3 −0.429 0.3730 1.0000 0.2187 0.6400 0.0061 0.9379
4 0.571 0.3497 0.9418 0.3889 0.5329 0.0061 0.9379
5 1.571 0.1119 0.2424 2.941 0.0864 1.367 0.2423
6 2.571 0.0093 0.0186 7.875 0.0050 5.110 0.0238
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Discussion

Much of the continuing controversy over Yates’s con-
tinuity correction is really over the exact reference
distribution. It makes sense to use this correction if
one believes that the conditioning used in Fisher’s
exact test is appropriate. Opponents argue that the
reference distribution should sometimes be uncondi-
tional, depending on the underlying sampling pro-
cess [3, 5].

In addition, Yates’s reference P value, [3], which
is based on outcomes in the observed tail only, has
been misrepresented by a P value based on outcomes
in both tails [Pr(|A′| ≥ |a′|)], and, in turn, his approx-
imation has been miscalculated [1, 5]. Eq. (3) is
increasingly recognized as correct [3, p. 369]; it is
a smooth function of |a′|, while the miscalculated P

value is not.
Yates recommends the continuity correction when-

ever the smallest expected value is less than 500 [2].
In practice, however, the exact P value itself is

typically computed today (see Exact Inference for
Categorical Data).
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Yates, Frank

Born: May 12, 1902, in Manchester, UK.
Died: June 17, 1994, in Harpenden, UK.

Reproduced by permission of the Royal Statistical Society

Frank Yates spent almost the whole of his work-
ing life as Head of the Statistics Department at
Rothamsted Experimental Station, the large agricul-
tural research station situated some 40 km north-
west of London. The department had been founded
by R.A. Fisher on his appointment to Rothamsted
in 1919. He recruited Yates in 1931 and, shortly
afterwards, left to take the Chair of Eugenics at
University College, London. Yates was left in charge
with just one other member of staff; his long career
saw the department grow to a total of over 20
statisticians and he maintained its reputation as one
of the world’s leading centers of statistical research.

Before going to Rothamsted, Yates had been work-
ing in the Gold Coast (present-day Ghana) as mathe-
matician to the colony’s geodetic survey. Here, he
obtained a thorough grounding in the theory and
practice of least squares calculations, a body of
knowledge that provided a foundation for much of
his future work. At Rothamsted, his first main field
of interest was experimental design. Fisher had
laid down the basic principles of replication, ran-
domization, stratification, and factorial treatment
structure (see Factorial Experiments) in the 1920s

and these had been adopted remarkably quickly by
agricultural research workers, but some of the com-
plexities had been imperfectly appreciated, even by
members of Fisher’s staff. Yates was able to put
the subject onto a sound footing and to relate it
properly to the analysis of variance, a technique
at which he became a virtuoso. His work on fac-
torial designs, including mixed factorials and Latin
square designs, was expounded in his booklet The
Design and Analysis of Factorial Experiments [5],
which was, for several years, the only available man-
ual on the subject. At the same time, he developed
the wide range of incomplete block designs, includ-
ing the quasi-factorial lattices (see Lattice Designs),
and solved a variety of the associated combinatorial
problems [8].

Throughout this period and later, the Rothamsted
department was responsible for the analysis of the
field experiments done on the Rothamsted farm, as
well as for many other calculations. Yates brought to
this work an unrivaled concern for numerical accu-
racy, which he had developed during his work on
geodetic surveys. His ongoing interest in computa-
tional matters was to bear fruit later on.

During World War II, Yates’s interests moved to
different areas. He was responsible for undertaking
several large exercises in what would today be called
meta-analysis, examining and summarizing all the
available evidence on responses to fertilizers and
on the feeding of dairy cattle [1]. These studies – a
good deal more sophisticated than most in current
practice – were the basis for the wartime control of
imported fertilizers and animal feedstuffs. He was
also engaged in operations research work under
S. Zuckerman. At the same time, he and the Rotham-
sted department became involved in the design and
analysis of several large-scale sample surveys, and
the theory and practice of survey work became the
second of Yates’s main areas of interest. His work
was summarized in his book Sampling Methods for
Censuses and Surveys [6].

Yates’s interest in computation led him to experi-
ment productively with punched-card equipment, but
came to full fruition with the advent of electronic
computers in the 1950s. He was, in fact, among the
first to realize the enormous potential importance of
these machines for the development of statistics. In
1954, Rothamsted was able to install the first British
electronic computer to operate away from its design-
ers. Within a year or two this machine (unimaginably
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small-scale and primitive by today’s standards) was
in regular use for the analysis of experiments and
surveys on a large scale, and for much other work,
notably in the area of multivariate analysis. Yates
played a leading role in the design and construction
of the necessary programs, insisting from the start on
a degree of discipline and user-friendliness that was
most unfamiliar at the time.

Experimental design, sample survey, and comput-
ing were the three main headings under which Yates’s
work can be classified, but there were other notable
contributions. An important and neglected article [7]
discussed an economic argument for deciding upon
the amount of experimentation justifiable on a given
topic, showing that in an agricultural context a much
larger number of experiments than usually envisaged
would amply pay for themselves. It should be noted
that concepts of size and power, the conventional
determinants of sample size (see Sample Size Deter-
mination), did not enter into the case. An important
paper on the analysis of two-by-two tables was pub-
lished in 1934 [4] and followed (surely uniquely) by
a substantial sequel just 50 years later [9] during his
active retirement. It is ironic that “Yates’s continuity
correction”, which he may not even have originated,
seems to be his best-known contribution among non-
statisticians. Also worthy of mention are the several
editions of Fisher and Yates’s Statistical Tables [2],
a collection (with its substantial introduction) that is
still useful even in the computer era.

Yates’s working life was spent mainly in an agri-
cultural research setting. He is a giant figure from
the heroic age of modern statistics, rivaling Student

(William Sealy Gosset) as the greatest of applied
statisticians, and much of his work has yet to be
taken full advantage of by the biostatistical commu-
nity.

A fuller account of Yates’s career appears in [3].
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Youden Squares and
Row–Column Designs

The technique of blocking is used to control variabil-
ity due to extraneous sources, each source of variabil-
ity constituting a blocking factor. Two sources can be
controlled using a Youden square or a row–column
design, the rows and columns comprising two differ-
ent systems of blocking. For example, in a medical
study, if each subject is to be used several times,
then rows and columns may represent subjects and
occasions, respectively. In an animal experiment con-
ducted over several days, litters of animals and days
may comprise the row and column blocking factors,
respectively. As an illustration, the following design
is a row–column design for four treatments in four
rows and six columns:

1 3 1 4 4 2
2 1 2 3 1 4
4 4 3 2 2 3
3 2 4 1 3 1

Let D1 be the block design obtained by taking rows as
blocks, ignoring the columns. Similarly, D2 denotes
the design obtained by taking columns as blocks,
ignoring the rows. D1 and D2 are called the row
and column component designs, respectively. In the
above design the row component design D1 is vari-
ance balanced for estimating paired comparisons of
treatment 1 with treatments 2, 3, and 4. The column
component D2 is a randomized complete blocks
design. It is important to arrange the treatments in
rows and columns so that the design has a high over-
all efficiency factor and the individual contrasts of
interest are also estimated with high efficiencies. With
this in mind, classes of row–column designs have
been defined based upon the orthogonality of the
component designs D1 and D2. A design in which
both D1 and D2 are randomized complete block
designs is called a Latin square. Therefore, Latin
squares are row–column designs with the numbers of
rows, columns, and treatments all equal, and all the
treatments occur once in each row and in each col-
umn. If practical constraints do not make it possible to
have both D1 and D2 as randomized complete block
designs, one of them may be taken to be an incom-
plete block design. A row–column design in which
D1 is a randomized complete block design and the

other component D2 is a balanced incomplete block
design is called a Youden square. Obviously, the roles
of D1 and D2 are interchangeable. Incomplete Latin
squares of Yates [60], obtained by deleting a row
or a column from a Latin square, are examples of
Youden squares. Youden [61] constructed them using
symmetrical balanced incomplete block designs; the
construction method was later provided by Smith &
Hartley [57] for all symmetrical balanced incomplete
block designs. A Youden square for seven treatments
in three rows and seven columns is shown below:

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

Analysis of Designs

We first consider the analysis of a general
row–column design for v treatments arranged in p

rows and q columns. The analysis of a Youden square
design will be provided later as particular case. It is
assumed that a treatment is allocated to each of the
combinations of rows and columns, which means that
the row and column classifications are orthogonal.
For a valid randomization of row–column designs,
we first randomly permute the rows and then
randomly permute the columns [47]. Let treatment
t be assigned to the experimental unit in the ith
row and j th column, and let yijt be the observed
response from this unit. Then, the model for the data
is assumed to be

yijt = µ + ρi + γj + τt+ ∈ij t ,

where µ is the overall mean, ρi and γj are the
effects of the ith row and j th column, respectively,
τt is the effect of the t th treatment, and ∈ij t are
random errors assumed to be independently dis-
tributed with zero mean and a constant variance
σ 2, i = 1, 2, . . . , p; j = 1, 2, . . . , q; t = 1, 2, . . . , v.
Let N1 and N2 be the incidence matrices of the row
and column component designs D1 and D2, respec-
tively. The (i, j )th element of N1(N2) equals 1 if the
ith treatment occurs in the j th row (column), and
is zero otherwise. Then the reduced normal equa-
tions for estimating treatment parameters are given
by Cτ = Q, where τ = (τ1, τ2, . . . , τv)

′,

C = rδ − 1

q
N1N′

1 − 1

p
N2N′

2 + 1

n
rr′
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is the information matrix of the design, r =
r1, r2, . . . , rv)

′, ri is the number of replications of
treatment i, rδ is the diagonal matrix with elements
those of r, a prime denotes transpose,

Q = T − 1

q
N1T1 − 1

p
N2T2 + G

n
1

is the vector of adjusted treatment totals, 1 is a
column vector of ones, T, T1, T2 are the vectors
of treatment, row and column totals, respectively,
G is the grand total of observations, and n = pq is
the total number of observations. A solution to the
normal equations is given by τ̂ = �Q, where � is a
generalized inverse of C satisfying C�C = C. It is
important to note that τ cannot be estimated uniquely,
and only contrasts among treatment parameters are
estimable. The adjusted treatment sum of squares
is τ̂ ′Q = Q′�Q. The analysis of variance table is
constructed as shown in Table 1.

The sum of squares due to error is

SSE = Y′Y − T′
1T1

q
− T′

2T2

p
− Q′�Q + G2

n
.

The information matrix C has rank less than or equal
to v − 1. A design is said to be connected if the rank
of C is equal to v − 1, otherwise it is said to be dis-
connected. All treatment comparisons are estimable
in a connected design. We will assume that all com-
parisons among treatments are of interest, and thus
we restrict our attention to connected designs only.
Connectedness in row–column designs has been con-
sidered by Shah & Khatri [54], Raghavarao & Fed-
erer [49], Russell [50], and Sia [56]. Let s′τ , s′1 = 0,
be a contrast of interest. The (unique) least squares
estimate of s′τ is given by s′τ̂ = s′�Q with variance

Table 1 Analysis of variance calculations

Source of Degrees of Sum of
variation freedom squares

Treatments (adjusted) v − 1 Q′�Q

Rows p − 1
T′

1T1

q
− G2

n

Columns q − 1
T′

2T2

p
− G2

n

Error (p − 1) (q − 1) SSE
×(v − 1) (by subtraction)

Total (corrected) n − 1 Y′Y − G2

n

var(s′τ̂ ) = s′�sσ 2. The sum of squares due to s′τ is
(s′�Q)2/s′�s. For a Youden square, C = (λv/p)(I −
1/vJ ) and � = (p/λv)I, where λ is the number of
times each pair of treatments occurs in D2. Therefore,
the adjusted treatment sum of squares is (p/λv)Q′Q,
and s′τ̂ = (p/λv)s′Q with var(s′τ̂ ) = (p/λv)s′sσ 2.

Classes of Designs

A design is variance-balanced if all pairwise compar-
isons between treatments are estimated with the same
variance. For variance-balanced designs C = α[I −
1/vJ] and � = 1/αI, where I is the identity matrix,
J is the square matrix of 1s, and α is a constant whose
value depends upon the design. Youden squares are
variance-balanced since for these designs var(τ̂i −
τ̂j ) = (2p/λv)σ 2, i �= j = 1, 2, . . . , v. The follow-
ing design given by Pearce [46] is also variance-
balanced:

1 4 2 3 1 4
3 3 4 1 2 2
4 2 3 2 4 1
2 1 4 1 3 3
2 2 3 4 1 1
3 4 1 4 3 2

For this design, var(τ̂i − τ̂j ) = (3/25)σ 2, i �=
j = 1, 2, 3, 4. Generalized Youden designs by
Kiefer [33], which have been listed by Ash [2],
provide a large class of variance-balanced designs.
The earliest example of a variance-balanced design in
which both D1 and D2 are partially balanced appears
to be the design of Kshirsagar [34] for v = 9, p =
q = 6. In some experiments all pairwise comparisons
among treatment parameters are not of equal
importance. Supplemented balanced, or S, designs
introduced by Hoblyn et al. [22] and Pearce [45]
are useful where the main object is to compare
several test or new treatments with a standard
treatment which is called the control treatment. With
treatment 1 coded as the control, in these designs,
var(τ̂1 − τ̂i ) = a1σ

2 and var(τ̂i − τ̂j ) = a2σ
2, i �=

j = 2, 3, . . . , v, where a1 and a2 are some constants.
In the block design setting, reinforced designs of
Das [11] obtained by augmenting each block of a
balanced incomplete block design with a constant
number of replications of the control treatment
are of type S. In the incomplete block design
setting, Bechhofer & Tamhane [5] called type S
designs balanced treatment incomplete block designs.
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Several methods of constructing optimal type S
block designs have been provided in the literature;
excellent review are by Hedayat et al. [21] and
Majumdar [40]. The row–column design for four
treatments in four rows and six columns which was
given in the introduction is an S design with var(τ̂1 −
τ̂i ) = (51/140)σ 2, var(τ̂i − τ̂j ) = (48/140)σ 2, i �=
j = 2, 3, 4. Note that there is only a small difference
between the two variances, such designs being
called nearly balanced. In general, var(τ̂1 − τ̂i ) <

var(τ̂i − τ̂j ), i �= j = 2, 3, . . . , v, for S designs, as
is the case for the following design:

1 1 2 3 4
1 1 4 2 3
2 3 1 4 1
3 4 1 1 2
4 2 3 1 1

For this design var(τ̂1 − τ̂i ) = 0.3σ 2, var(τ̂i − τ̂j ) =
0.4σ 2, i �= j = 2, 3, 4. Ture [59] gave a catalog of
efficient type S row–column designs. Some type
S row–column designs can be constructed using
the methods of Gupta et al. [20], Kumari et al. [36],
Majumdar [39], Majumdar and Tamhane [41] and
Pearce [48]. Nair & Rao [43] defined intra- and inter-
group balanced designs that are not restricted to two
types of treatments; Pearce [46] referred to them as
multipartite designs. In factorial experiments the
contrasts of interest among treatment parameters rep-
resent different main effects and interactions. Let
s′
iτ represent these single df main effects and inter-

action normalized contrasts, normalized such that
s′
isi = 1, i = 1, 2, . . . , v − 1. Then var (s′

i τ̂ ) = aσ 2

in a variance-balance design, where a is some con-
stant. The variance-balanced design given earlier in
this Section for v = 22, p = q = 6, is appropriate
for a 22 experiment for which var(s′

i τ̂ ) = 0.06σ 2,
i = 1, 2, 3. Practical constraints often dictate the use
of a partially variance-balanced design for factorial
experiments. In a partially balanced design with fac-
torial balance (Shah [52], and Kshirsagar [35]), or
balanced confounded designs of Nair & Rao [44],
all the single df contrasts belonging to the same
main effect or interaction are estimated with the
same variance. The contrasts belonging to two dif-
ferent factorial effects may have unequal variances.
A wide class of such designs for two-factor experi-
ments is provided by group divisible designs. Some
group divisible designs may have factorial balance
even when more than two factors are involved. In

a group divisible design treatments are divided into
m groups, each group containing n treatments, and
v = mn. Pairwise comparisons of any two treatments
in the same group are all estimated with the same
variance, say a1σ

2, and pairwise comparisons of any
two treatments belonging to two different groups are
also estimated with the same variance, say a2σ

2,
with a1 �= a2, where a1, a2 are some constants. With
appropriate coding of the treatment labels, as men-
tioned earlier these designs are balanced factorially
as well for two-factor experiments. A group divisible
row–column design is shown below:

1 4 2 6 5 3
2 5 1 3 4 6
3 6 5 1 2 4
4 1 3 2 6 5

Several designs for two or more than two factors
have been given by Suen & Chakravarty [58]. John &
Lewis [29] gave a wide class of row–column designs
for factorial experiments using a generalized cyclic
method of construction, but their designs may not be
factorially balanced. Under the general setting, Free-
man [18] gave several series of partially balanced
designs and Freeman [19] considered designs with
unequal replications.

A design is called row-orthogonal if the row
component D1 is orthogonal to the treatments. The
group-divisible design given above satisfies the con-
dition of row orthogonality. Statistical properties of a
row-orthogonal design can be evaluated from its col-
umn component D2. Several group divisible designs
listed by Clatworthy [6] can be rearranged to pro-
vide row-orthogonal row–column designs. Cyclic
designs of John et al. [31] and Lamacraft & Hall [37]
also provide a wide class of efficient row-orthogonal
designs. A row–column design has adjusted orthog-
onality [15, 16] if the estimates of the row (column)
parameters do not depend on whether or not col-
umn (row) parameters are included in the model. For
adjusted orthogonal designs, the information matri-
ces of D1, D2 and the row–column designs have the
same eigenvectors [14]. All row-orthogonal designs
have adjusted orthogonality. The α-designs of John
& Eccleston [28] provide a wide class of efficient
adjusted orthogonal designs. Some useful adjusted
orthogonal designs have also been considered [1, 4,
12, 38, 53]. Row–column designs satisfying various
optimality criteria have been considered in [3, 7–10,
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17, 23–27, 30, 39, 42, 55], and [59]. General algo-
rithms for constructing row–column designs using
computers have been considered in [13, 32, 49],
and [51].
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Yule Process

The Yule process is a birth process (see Stochastic
Processes) based on the assumptions of independence
and of a constant birth rate, λ. Consider a time inter-
val (t0, t) and let X(t) be the number of individuals
present at time t , with the initial number X(0) = n0

at t = t0. The transition (conditional) probabilities
of X(t),

Pn0,n(t0, t) = Pr[X(t) = n|X(0) = n0],

n = n0, n0 + 1, . . . , (1)

satisfy the differential equations:

d

dt
Pn0,n0(t0, t) = −n0λPn0,n0(t0, t) (2a)

and

d

dt
Pn0,n(t0, t) = −nλPn0,n(t0, t)

+ (n − 1)λPn0,n−1(t0, t), (2b)

for n = n0 + 1, n0 + 2, . . ., with the initial conditions
at t = t0,

Pn0,n0(t0, t0) = 1 and Pn0,n(t0, t0) = 0,

for n �= n0.

Solving the differential equations (2a) and then (2b)
successively, beginning with n = n0 + 1, we find:

Pn0,n(0, t) =
(

n − 1
n − n0

)
[exp(−λt)]n0

× [1 − exp(−λt)]n−n0 ,

n = n0, n0 + 1, . . . . (3)

Now let Y (t) = X(t) − n0 be the number of births
occurring during the interval (t0, t). Then

Pr[Y (t) = k] = Pr[X(t) = k + n0|X(0) = n0]

=
(

k + n0 − 1
k

)
[exp(−λt)]n0

× [1 − exp(−λt)]k, k = 0, 1, . . . ,

(4)

which is a negative binomial distribution with
parameters n0 and exp(−λt). The expectations of
Y (t) and X(t) are

E[Y (t)] = E[X(t)] − n0 = n0[exp(λt) − 1],

and the variances are

var[Y (t)] = var[X(t)] = n0 exp(λt)[exp(λt) − 1].

This type of distribution was first studied by
G.U. Yule [2, 3]. In his mathematical theory of evo-
lution, Yule studied the number of species in a genus,
where n0 is the number of species at initial time
t = t0, Y (t) is the number of species produced dur-
ing the time period (0, t), and X(t) is total number of
species in a genus present at time t . Yule did not use
differential equations, but derived formulas (3) and
(4) by a limiting process.

A General Case

Suppose r observations [X(t1), X(t2), . . . , X(tr )] are
made at r points [t1, t2, . . . , tr ] on the time axis.
Since clearly the distribution of any random variable
X(ti) depends only on the values of the random
variable X(ti−1), and not on any random variable
before ti−1, the joint probability distribution of
[X(t1), X(t2), . . . , X(tr )] is a product of r conditional
probabilities:

Pr[X(t1) = n1, X(t2) = n2, . . . , X(tr ) = nr |X(t0)]

=
r∏

i=1

Pr[X(ti) = ni |X(ti−1) = ni−1]

=
r∏

i=1

(
ni − 1

ni − ni−1

)
[exp(−λτi)]

ni−1

× [1 − exp(−λτi)]
ni−ni−1 , (5)

where τi = ti − ti−1, for any positive integer r .
Now let Y (ti) = X(ti) − ni−1 be the number of

births taking place during the interval (ti−1, ti). The
joint distribution of [Y (t1), Y (t2), . . . ,

Y (tr )] is obtained directly from formula (5) with the
substitution of ni − ni−1 = ki :

Pr[Y (t1) = k1, Y (t2) = k2, . . . , Y (tr ) = kr ]

=
r∏

i=1

(
ni − 1

ki

)
[exp(−λτi)]

ni−1

× [1 − exp(−λτi)]ki , (6)
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for any positive integer r . Formula (6) is a chain of
negative binomial distributions [1].
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Yule, George Udny

Born: February 18, 1871, near Haddington, Scot-
land.

Died: June 26, 1951, in Cambridge, UK.

Reproduced by permission of the Royal Statistical Society

George Udny Yule was educated at Winchester
College from where, at the age of only 16,
he transferred to University College London to
study engineering. Karl Pearson, then Professor of
Applied Mathematics, was beginning to develop his
own interest in statistics, and in 1892 offered Yule
a post as demonstrator. In 1896, Yule was appointed
Assistant Professor of Applied Mathematics, a post
that he held for three years, until he resigned it in
favor of more remunerative employment.

His continuing interest in statistics, however, led
to his appointment as Newmarch Lecturer in Statistics
at University College in 1902, a post which he held
concurrently with his other work until 1909, and
which led to the publication of the book which made
his name, An Introduction to the Theory of Statistics.
The first edition appeared in 1911 [4], and during
his lifetime there were 13 further editions. The 11th
edition was the first to be jointly undertaken with
M.G. Kendall [6], and by the time of the 14th and
last edition of “Yule & Kendall”, in 1950, Kendall’s
own two-volume The Advanced Theory of Statistics

was already establishing itself. It, and its present-day
descendants, still bear the marks of Yule’s pioneering
effort.

In 1912, a Lectureship in Statistics was established
for Yule by the University of Cambridge, to be
held in the Faculty of Agriculture, and this, coupled
with a Fellowship at St John’s College from 1922,
provided him with congenial employment (save for
the war years) until 1931 when he retired, by then
Reader in Statistics. He kept up his College teaching
until the second war, and died in Cambridge in
1951.

Yule played an important part in the affairs of the
Royal Statistical Society, of which he was honorary
secretary for 12 years and subsequently President
(1924–1926). He was elected a Fellow of the Royal
Society in 1922.

Yule’s main contributions in the theoretical field
were concerned with regression and correlation,
association in contingency tables, Mendelian
genetics (see Mendel’s Laws), epidemiology, and
time series. In the Pearsonian fields of regression
and correlation he gave more prominence than his
mentor to the former, perhaps easing the path
toward R.A. Fisher’s invention of the analysis of
variance.

Yule’s studies of the correlation of continuous
variables led him, in 1900 [1], to study measures
of association for discrete variables, in particular
the cross ratio θ (odds ratio) in a two-by-two
table and its transform Q = (1 − θ)/(1 + θ), now
known as “Yule’s coefficient”. This led to an alter-
cation with Pearson, in which Pearson’s capacity
for acrimonious and ill-directed criticism was dis-
played, in marked contrast to Yule’s gentler mode
of expression. Even Fisher, who as a young man
had also felt the sharpness of Pearson’s pen, was
later moved to remark “Pearson attacked Yule’s work
at one time much more violently than ever he did
mine”. In 1903 [3], Yule, making use of his under-
standing of partial correlation, described what was
much later to be termed Simpson’s paradox, in
which the pairwise associations at two levels in a
2 × 2 × 2 table can be seemingly incompatible with
the marginal association. In his work on associa-
tion, all of his numeric examples were drawn from
biology.

In Mendelian genetics, Yule [2] was the pioneer
in suggesting that the observed correlations between
parent and offspring could be accounted for by
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multifactorial Mendelian inheritance, as Fisher fully
acknowledged in his classic treatment of the correla-
tion between relatives in 1918.

In 1914, in collaboration with F.L. Engledow,
Yule invented the method of minimum chi-square for
estimating a genetic recombination fraction, and the
following year, with M. Greenwood, he was the first
to recognize that there was something wrong with
Pearson’s chi-square test of association in respect
of the degrees of freedom used, as Fisher was later
to prove. He introduced the simple birth process of
stochastic theory (the “Yule process”) in connection
with evolution in 1924 [5].

F. Yates ended his Royal Society obituary notice
of Yule as follows: “We may . . . justly conclude
that although Yule did not fully develop any com-
pletely new branches of statistical theory, he took
the first steps in many directions which were later to
prove fruitful lines for further progress. . . . In the
biological field . . . his work provided a corrective
to many of the errors committed by the biometric
school, and served to spread the use of statistical
methods amongst biologists who might otherwise
have been wholly repelled by them. He can indeed
rightly claim to be one of the pioneers of modern
statistics.”
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Yule–Walker Equations

The sequence {Xt : t = 0, ±1, ±2, . . .}, defined by

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + et , (1)

where φp �= 0 and {et } is a sequence of uncorrelated
random variables each with zero mean and vari-
ance σ 2, is called an autoregressive time series of
order p (see ARMA and ARIMA Models). The
notation AR(p) is commonly used. Define φ(B) =
1 − φ1B − φ2B

2 − · · · − φpBp , where B is the back-
ward shift operator (see Backward and Forward
Shift Operators) such that BXt = Xt−1. Then the
condition for stationarity is that the roots of the
equation φ(Z) = 0 must lie outside the unit circle
[1, Section 3.2]. Under this condition, Xt may be
expressed as a convergent (in the mean square sense)
series in terms of es , s ≤ t .

An important recurrence relation for the autocor-
relation function of a stationary autoregressive
process AR(p) is found by multiplying by Xt−k

throughout (1) to obtain

Xt−kXt = φ1Xt−kXt−1 + φ2Xt−k

Xt−2 + · · · + φpXt−kXt−p + Xt−ket , (2)

On taking expected values in (2), we obtain the
difference equation

γk = φ1γk−1 + φ2γk−2 + · · · + φpγk−p, k > 0,

(3)

where γk is the autocovariance function, defined by

γk = E[(Xt − EXt)(Xt−k − EXt−k)] = EXtXt−k,

since EXt = EXt−k = 0. Note that the expectation
E(Xt−ket ) vanishes when k > 0, since Xt−k is a linear
combination of es up to t − k, which are uncorrelated
with et . On dividing through in (3) by γ0, it is seen

that the autocorrelation function satisfies the same
form of the difference equation

ρk = φ1ρk−1 + φ2ρk−2 + · · · + φpρk−p, k > 0,

(4)

where the autocorrelation function ρk is defined by
ρk = γk/γ0.

If we substitute k = 1, 2, . . . , p in (4) and use
ρk = ρ−k , we obtain a set of linear equations for
φ1, φ2, . . . , φp in terms of ρ1, ρ2, . . . , ρp. Then

ρ1 = φ1 + φ2ρ1 · · · + φpρp−1

ρ2 = φ1ρ1 + φ2 · · · + φpρp−2...
...

... · · · ...
ρp = φ1ρp−1 + φ2ρp−2 · · · + φp.

(5)

These are usually called the Yule–Walker equa-
tions [3, 4]. If we first estimate the autocorrela-
tion functions by moment estimators we can then
use the Yule–Walker equations to obtain estima-
tors of {φ1, . . . , φp}. These estimators are called the
Yule–Walker estimators.

For the multivariate Yule–Walker equations, see
[2, Section 2.8].
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Z Analysis

Z-analysis is a method for determining the asso-
ciation between two probabilistic events, A and B,
on the basis of the calculation of a statistical link
coefficient, Z(A, B). The Z(A, B) coefficient may
range between −1, when A and B are mutually
exclusive events, and +1, when A is included within
B; it is equal to 0 when A and B are independent.
Intermediate values between −1 and 0 quantify the
partial exclusion of B by A, while values between 0
and +1 quantify the partial dependence of B on A.

Let us call p(A) and p(B) the probabilities of
A and B, and p(B|A) the probability of B when A

occurred. Z(A, B) is defined as [2]

Z(A, B) = [p(B|A) − p(B)]

[1 − p(B)]

when p(B|A) − p(B) ≥ 0 (1)

Z(A, B) = [p(B|A) − p(B)]

p(B)

when p(B|A) − p(B) < 0. (2)

Z(A, B) is continuous in zero because both (1)
and (2) tend to 0 when p(B|A) tends to p(B). If
A and B are mutually exclusive, p(B|A) = 0 and
Z(A, B) = −1 from (2). If A is included within B,
then p(B|A) = 1 and Z(A, B) = 1 from (1).

Z(A, B) can be estimated by approximating the
probabilities by the observed frequencies:

Z∧(A, B) = [nAB/nA − nB/N ]

[1 − nB/N ]

when
nAB/nA − nB

N
≥ 0 (3)

Z∧(A, B) = [nAB/nA − nB/N ]

[nB/N ]

when
nAB/nA − nB

N
< 0, (4)

where nA = number of times that A occurred, nB =
number of times that B occurred, nAB = number
of times that A and B occurred simultaneously,
and N = total number of observations. Simulations
showed that Z∧(A, B) is an unbiased estimator of
Z(A, B) [2].

The computation of Z can be clarified by the
following fictitious study investigating the association

between the smoking habit and educational level in
a sample of 48 subjects. Three educational levels
are considered: lower than high school (L1), high
school graduate (L2), and college graduate (L3).
Subjects are classified as heavy smokers (h, more
than 10 cigarettes smoked daily), mild smokers (m,
less than 10 cigarettes), or nonsmokers (n). Data are
summarized in Table 1.

The association between heavy smoking and each
educational level is quantified by Z(L3, h), Z(L2, h),
and Z(L1, h). To calculate Z(L3, h), we first observe
that the number of heavy smokers in the L3 class
is nL3,h = 2 (first cell of the last column) and that
(nL3,h/nL3-nh/N) = (2/15–17/48) is lower than 0.
Thus, we should use (4), obtaining

Z(L3, h) = (nL3,h/nL3 − nh/N)

(nh/N)

= (2/15 − 17/48)

(17/48)
= −0.62. (5)

Similarly, we also obtain

Z(L2, h) = (nL2,h/nL2 − nh/N)

(nh/N)

= (6/17 − 17/48)

(17/48)
= −0.003. (6)

Since (nL1,h/nL1 − nh/N) = (9/16 − 17/48) is
greater than 0, we calculate Z(L1, h) from (3):

Z(L1, h) = (nL1,h/nL1 − nh/N)

(1 − nh/N)

= (9/16 − 17/48)

(1 − 17/48)
= +0.34. (7)

Z(L3, h) < 0 and Z(L1, h) > 0 indicate respectively
that heavy smoking is partially excluded by the high-
est educational level and associated with the lowest
level. Z(L2, h) close to 0 means that the probability

Table 1 Number of heavy (h), mild (m), or non (n)
smokers in each educational level

Smoking
Educational level

habit L1 L2 L3

h 9 6 2 nh = 17
m 5 5 4 nm = 14
n 2 6 9 nn = 17

nL1 = 16 nL2 = 17 nL3 = 15 N = 48
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Table 2 Example of Z-analysis to assess the links between systolic blood pressure (SBP) and RR-interval
(RR) series; beat-by-beat data is derived from a 24-h recording in a healthy subject. First row and first column
contain 10 SBP and 8 RR classes, cells show Z∧(A,B) only for couples of classes with nAB > 10. Black,
grey, and white backgrounds indicate cells of exclusion (Z∧ ≤ −0.2), independence (−0.2 < Z∧ < 0.2), and
bond (Z∧ ≥ 0.2) respectively

0.41 0.53 0.45 0.22

0.33 0.39

SBP(mmHg)

RR (ms)

<80 80−

97.5

97.5−

115 

115−

132.5

132.5 −

150

150−

167.5

167.5−

185

185−

202.5

 202.5−

220

> 220

<500

500−

625

625 −

750 

750−

875 

875−

1000

1000−

1125

1125−

1250

1250−

1375

−0.83 0.00 0.02 0.04

−0.97 −0.77 −0.11 0.02 0.07 0.15 0.20 0.29

−0.29 −0.91 −0.56 −0.09 0.12

−0.61 −0.82 0.00 0.07 0.06 −0.02 −0.29 0.01

0.17 −0.05 −0.36 0.04 0.09 0.01 −0.58 −0.87

0.01 0.07 −0.20 −0.43 −0.77

−0.42 0.14 0.03 −0.55 −0.80 −0.80

0.02 0.01 −0.84

of finding a heavy smoker does not change if we
know that the subject belongs to the L2 educational
class.

Z-analysis can be also used to quantify the sta-
tistical link between two time series, {xn} and {yn}
(see Coherence Between Time Series). In this case,
the A and B events are the occurrence of xn and
yn within specific amplitude intervals. By choosing
N intervals for {xn} and M for {yn}, Z(A, B) is
defined over a grid of N × M couples of (A, B)
events. An example is shown in Table 2, where a
matrix of Z(A, B) estimates is obtained from a 24-h
monitoring of systolic blood pressure and RR-interval

data. Similar grids of Z(A, B) have been used to
separately quantify the links between blood pressure
and heart rate time series due to direct central con-
trols and those due to the baroreflex control of blood
pressure [1].
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Zelen Leadership Award
and Lecture

The Marvin Zelen Leadership award was instituted
by the Department of Biostatistics at the Harvard
School of Public Health (HSPH) in 1997 to com-
memorate Professor Zelen’s contributions to statisti-
cal science. The award recognizes an individual in
government, industry, or academia, who by virtue of
his/her outstanding leadership, has greatly influenced
the theory and practice of statistical science. While
individual accomplishments are considered, the most
distinguishing criterion is the awardee’s contribution
to the creation of an environment in which statis-
tical science and its applications have flourished.
The selection committee consists of two members
from the Department of Biostatistics (HSPH), and
the three previous awardees. Nominations for can-
didates for the award are solicited from all members
of the profession and are due in the fall of each year.
Nominators should include a letter describing the
contributions of a candidate, specifically highlighting
the criteria for the award, and a curriculum vita.

The award is given annually each spring at a
ceremony in Boston in which the awardee delivers
a lecture of their choosing. The awardees and the
lecture titles are:

1997 Dr. C. Frederick Mosteller, Professor Emeri-
tus, Harvard University, “The Importance of
Clinical Trials in Education”

1998 Sir David Cox, Nuffield College, University
of Oxford, “Graphical Models in Statistics: A
Review”

1999 Dr. John W. Tukey, Professor Emeritus,
Princeton University, “A Smorgasbord of
Handy Techniques That Can Help In Analyz-
ing Data”

2000 Dr. Lincoln Moses, Professor Emeritus, Stan-
ford University, “Deciding Whether Large
Clinical Trials And Meta-Analyses Agree Or
Not”

2001 Professor Niels Keiding, Professor of Bio-
statistics, University of Copenhagen, “Event
Histories And Their Analysis”

2002 Dr. Robert O’Neill, Director of the Office of
Biostatistics, Center for Drug Evaluation and
Research, U.S. Food and Drug Administra-
tion, “A Perspective on the Development and
Future of Statistics at the FDA”

2003 Dr. Wayne A. Fuller, Emeritus Distinguished
Professor in Liberal Arts and Sciences, Iowa
State University, “Analytic Studies with
Complex Survey Data”

2004 Professor Robert C. Elston, Case Western
University, “The analysis of Case-control
Data to Detect Candidates Genes”
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Zero Padding

Zero-padding is a procedure that consists of extend-
ing the length of a time series by adding zeros. For
instance, if {x0, x1, . . . , xM−1} is a sequence of M

data, the zero-padded sequence of length N = M + 5
is {x0, x1, . . . , xM−1, 0, 0, 0, 0, 0}.

Adding zeros to a time series before computing
the Discrete Fourier Transform (DFT) results in the
evaluation of a Fourier transform with additional
interpolated values. In fact, if {yk} is obtained by
padding P zeros to a time series {xk} of length M ,
the DFTs before and after appending zeros are

Xm =
M−1∑

k=0

xke−j2πmk/M

m = 0, 1, . . . ,
M

2
. (1)

Ym =
M+P−1∑

k=0

yke−j2πmk/(M+P)

=
M−1∑

k=0

xke−j2πmk/(M+P )

m = 0, 1, . . . ,
M + P

2
. (2)

The equations differ for the exponents only, indicat-
ing that the two DFTs provide components of the
same Fourier transform evaluated, however, at differ-
ent frequencies. In both cases, the maximum angular
frequency is π , but after zero-padding, there are P /2
additional components, resulting in a more densely
spaced DFT. Interpolation by zero-padding does not
improve the basic resolution of the spectral estimate,
but results are smoother and the identification of spec-
tral peaks may be easier (Figure 1).

Zero-padding is also used when Fast Fourier
Transform (FFT) algorithms, which require the
number of data to be a power of two, are applied
on shorter time series. Zeros are appended to cause
the sequence length to become a power of two, and
the FFT is calculated on the zero-padded sequence.

yk

xk

1

0

0

0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

30

60

0

30
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−1

N

Hz Hz

Xm Ym

Figure 1 Effects of zero-padding. The series {xk} contains
16 samples of a 0.1-Hz sinusoid sampled at 1 Hz (1 cycle
and half), and its DFT {Xm} has 8 components only; {yk} is
obtained by adding 112 zeros to {xk}, and the DFT {Ym} has
64 components, 8 of which coincide with {Xm}. Although
the frequency resolution of the two DFTs is the same, the
0.1-Hz spectral peak is much more easily identifiable after
zero-padding

Zero-padding can be also applied to a DFT in
order to interpolate in the time domain. Given a
DFT {Xm}m=0,1,...,M/2, complex zeros are added after
the component with m = M/2. The frequency of this
component is half the sampling rate of the input series
{xk} of length M . The maximum frequency of the
DFT increases by adding P /2 zeros, and the padded
DFT corresponds to the DFT of a new series {yk}
sampled at a higher rate. The inverse DFT after zero-
padding gives the series {yk} of length M + P , which
is an interpolation of {xk} of length M .
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Zygosity Determination

Accurate determination of whether a twin pair
is identical/monozygotic or fraternal/dizygotic has
important implications with regard to the validity
of research studies utilizing twins to assess the
importance of genetic and/or environmental factors
in explaining observed variation in specific traits
or disease susceptibilities (see Twin Analysis).
It is also important to an individual twin pair
where questions of organ transplantation or risk
for specific inherited diseases might arise. The
approaches used in assigning zygosity include:
(i) genetic markers, (ii) use of questionnaires to
obtain self- or surrogate-reported information related
to the similarity of pair members, (iii) number
of fetal membranes, (iv) comparison of physical
similarities of pair members, and (v) Weinberg’s
differential rule.

Zygosity Determination Using Genetic
Markers

Zygosity determination methods using polymorphic
marker systems (see Polymorphism) such as blood
type (see Blood Groups), red cell enzymes, or DNA
sequence markers have the advantage over other
methods in that they provide an objective measure
of twin concordance that is based upon qualita-
tive genetically determined biological markers whose
population frequency and modes of transmission are
known. The efficiency of a given genetic marker is
dependent upon the number of alleles and their fre-
quency in the population from which the twin pair
has been sampled. Since the chance of differentiat-
ing a dizygotic (DZ) twin pair from a monozygotic
(MZ) pair increases with the inclusion of additional
independent genetic markers, zygosity determination
is usually based on typing information for a number
of marker systems. Opposite-sexed pairs are assumed
to be DZ on the basis of the sex difference, so that
zygosity determination using genetic marker infor-
mation is usually only done on like-sexed twin pairs.
Any like-sexed pair that is found to be discordant for
any marker is automatically classified as dizygotic.
Since all MZ pairs and only a few DZ pairs will be
concordant for all of the genetic markers examined,
the probability statistic that is of primary interest with

regard to an individual twin pair is the likelihood that
that pair, if concordant, is DZ.

The probability that a pair of DZ twins will
be concordant for all of n independent loci is∏n

i=1Pri (C|D), where Pri (C|D) is the probability of
concordance for marker i given that the twin pair is
dizygotic. As Lykken [13] has shown, this probability
can be written in terms of the odds that a concordant
twin pair is DZ, where

oddsDZ|Ci
= Pri (C|D)

Pri (C|M)
= Pr

i
(C|D).

In the situation where parental genotype is com-
pletely known, the final probability of dizygosity is
simply the product of all of the probabilities that both
members of the dizygotic pair are concordant, i.e.
received the same allele from each parent, for each
of the genetic makers examined. In most cases, how-
ever, marker information is available for only the
twin pair, the probability that a DZ twin pair will
be concordant for a given marker must be inferred
from population frequencies, and all possible mat-
ing combinations capable of producing the observed
phenotypes must be taken into account.

The estimate of the total probability that a ran-
dom DZ twin will be concordant for a given genetic
marker or markers provides a measure of the effi-
ciency of the markers used in distinguishing MZ
from DZ twins. A more detailed discussion of the
estimation of the probability of mono- or dizygosity
using genetic marker information has been provided
in [17] and [18]. Historically, the genetic marker
systems typically used in zygosity determination
have included blood group type (see Blood Groups)
(ABO, Rh, MNS, P, Lewis, Lutheran, Kidd, Kell,
and Duffy), serum group (haptoglobin, C3, Gc, and
lipoprotein), and red cell enzyme (PGM, adenylate
kinase, adenosine deaminase, and acid phosphatase).
Jablon et al. [11] found an average “efficiency” of
4% for five marker systems that included ABO, Rh,
MN, haptoglobin, and Gm, while Magnus et al. [14]
calculated it in their sample to be 0.0023 using 17
marker systems. DNA polymorphisms have come
into wide use in zygosity determination as increased
numbers of markers have become available and the
cost associated with the molecular genetic analy-
ses involved has decreased. In comparisons of DNA
with other markers, both Derom et al. [5] and Eufin-
ger et al. [8] have found DNA markers to be more
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efficient in determining the correct zygosity than
the other markers used in the past. Another impor-
tant advantage of this method lies in the extremely
small DNA sample needed to carry out analyses.
This method is less invasive than those requiring
larger samples because adequate amounts of DNA
for zygosity determination can be extracted from buc-
cal scrapings or from blood spots obtained as part of
newborn screening.

Zygosity Assignment by Questionnaire

Issues of cost and efficiency generally preclude the
use of genetic markers or DNA as a means of assign-
ing twin zygosity in large-scale epidemiologic stud-
ies. As has been shown by a number of investigators,
the use of self- or surrogate-reported information on
the degree of similarity of twin pair members has
been found to be an inexpensive and generally reli-
able method for zygosity determination in large-scale
questionnaire surveys.

Cederlöf et al. [4] examined the accuracy of ques-
tions about the twins’ similarity when growing up and
the degree to which they were confused as children
when both questionnaire and genotyping information
were available on five independent blood group sys-
tems. On the basis of responses to two questions:
“When growing up, were you and your twin ‘as
alike as two peas in a pod’ or of ordinary fam-
ily likeness only?” and “Were you and your twin
mixed up as children by parents, brothers and sis-
ters or teachers?” the diagnosis of monozygosity
agreed with blood-typing results in 72 of 73 cases
for MZ twins and 99 of 108 cases for DZ twins, with
19 pairs being unclassifiable on the basis of ques-
tionnaire information. Over all, it was possible to
assign the correct zygosity accurately in 92% of the
twin pairs examined using questionnaire information.
In a similar study of twins identified from a sam-
ple of US high school juniors who took the Nation
Merit Scholarship Qualifying examination, Nichols &
Bilbro [15] found that zygosity could be accurately
assigned on the basis of questionnaire information
on physical similarity of pair members in 93% of
cases; however, as was found previously, zygosity
determination using this approach was more accu-
rate for MZ than for DZ pairs. Magnus et al. [14]
examined the accuracy of questionnaire information
in determining zygosity in a sample of Norwegian

twin pairs where zygosity had been previously estab-
lished using genetic markers for 17 polymorphic
systems. Twins were queried as to whether they were
as alike as “two drops of water” in childhood, or
were just as alike as siblings; the extent to which par-
ents, siblings, grandparents, classmates, teachers and
strangers had difficulty in telling the twins apart; the
degree of similarity of eye color, hair color, hair type,
height, weight, teeth, voice, muscular strength, dex-
terity, temperament, musicality, and language ability;
whether they thought they were identical or frater-
nal or did not know; and why they thought they
were identical or fraternal. Results of discriminant
analyses of this information estimated that the zygos-
ity would be misclassified for 2.4% of the pairs if
the questionnaire responses of both pair members
were used and for 3.9% of the pairs if questionnaire
information was provided by only a single pair mem-
ber. These results indicated that zygosity could be
reasonably accurately assigned on the basis of infor-
mation provided by a single twin pair member. Eisen
et al. [7] obtained similar results for male veteran
twin pairs, which suggested that the results obtained
were independent of nationality and provided fur-
ther evidence that questionnaire surveys are a reliable
means of assigning twin zygosity in large epidemio-
logic studies.

Although a number of studies have been con-
ducted to establish the reliability of questionnaire
information obtained from adults as a method of
zygosity determination, less information is available
with regard to the reliability of this method for chil-
dren. Bønnelykke et al. [2] examined the reliability
of information on twin pair similarity obtained from
mothers of twins between 6 months and 6 1

2 years
of age. When compared to the results of zygosity
determination based on genotyping information, the
frequency of misclassification using information pro-
vided by the mother concerning whether the twins
had ordinary or more than ordinary family likeness,
the same hair and eye color or different hair and/or
eye color, and whether the mother did or did not
have difficulty in telling the twins apart was 4%. Five
percent of pairs could not be classified using ques-
tionnaire information. Goldsmith [9] has constructed
a zygosity determination questionnaire specifically
for use in studies of infants and young children. How-
ever, information on the validity and reliability of
this instrument in assigning correct zygosity is not
available.
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Zygosity Determination Based upon the
Number of Fetal Membranes

Dizygotic twins arise from the independent fertiliza-
tion of two eggs by two sperm. The two blastocysts
then implant separately in the wall of the uterus,
which results in each embryo being wrapped it its
own chorionic membrane. Although these membranes
can fuse as a result of the blastocysts being implanted
in close proximity in the uterus, the placenta is always
of the dichorionic-diamniotic type, i.e. two chorions
and two amnions. Fusion between the chorionic mem-
branes of DZ twins occurs in about 50% of cases.
Monozygotic twins, on the other hand, arise from a
division of the embryo that can occur either before or
after the formation of the blastocyst, or, if it occurs
after implantation of the blastocyst in the uterine wall,
before or after the development of the amnionic mem-
branes. If the division occurs before development of
the blastocyst, placental development will occur in
the same manner as seen for DZ twins and the pla-
centa will be dichorionic-diamniotic. This occurs in
approximately one third of MZ twin pairs making
them indistinguishable from DZ pairs with regard to
placenta type. If the division of the embryo occurs
after implantation of the blastocyst in the uterus, there
is only one chorion and the placenta is of the mono-
chorionic type. MZ twin pairs arising from the divi-
sion of the blastocyst after implantation but before
the development of the amniotic cavity have individ-
ual amnions but only one chorionic membrane and
are termed monochorionic-diamniotic. Those arising
from division of the blastocyst after development of
the amniotic cavity share that cavity and have a single
chorionic membrane and are termed monochorionic-
monoamniotic.

Since DZ twins cannot have monochorionic pla-
centas, examination of the number of fetal mem-
branes present in a twin placenta can be and has
been successfully used for zygosity determination
with regard to MZ pairs. In general, examination
of fetal membranes is the only method currently
available for identifying MZ twins with complete
certainty [6]. An accurate assessment of fetal mem-
branes, however, can only be made by an experienced
pathologist since, in many cases, it will require micro-
scopic examination of a cross-section of the placenta.
Since fused dichorionic placentas are virtually indis-
tinguishable to the naked eye from monochorionic
placentas, information that there was only a single

placenta at birth, in the absence of a pathology report,
does not support the conclusion that the twin pair is
identical.

Zygosity Determination Based on
Comparisons of Physical Similarities

Similarity for physical characteristics such as height,
weight, hair and eye color, and dermatoglyphic or
fingerprint patterns have also been used in assigning
twin zygosity. Allen [1] examined the diagnostic effi-
ciency of fingerprint differences in zygosity determi-
nation and found both finger ridge count and pattern
type to be useful in discriminating between MZ and
DZ twin pairs. Jablon et al. [11] examined the reli-
ability of zygosity determination on the basis of
recorded height and weight, hair and eye color and
fingerprints in 2805 twin pairs who served in the
Armed Forces of the US during World War II. On
the basis of fingerprint information alone, the average
rate of zygosity misclassification was 22.6%. When
fingerprint data were supplemented by information on
height, weight, hair color and eye color, the average
misclassification rate dropped to approximately 13%.
Segal [16] found results of dermatoglyphic analyses
to agree with those based on blood typing in 85% of
cases and noted that, although fingerprint patterns are
highly heritable, they are sensitive to environmental
influences inutero which can differ between members
of a twin pair depending upon the type of placental
membrane structure present and should not be used as
primary indices for assigning zygosity. Similar cau-
tion should be exerted when zygosity determination is
based on a global impression of zygosity reached dur-
ing a face to face contact with a twin pair. It should
be noted that the effects of twin–twin transfusion
syndrome can still be seen in many cases even into
adulthood, and there can be significant differences
in heights and body sizes of affected MZ twin pair
members.

Weinberg’s Differential Rule

In large population studies where it is only possible
to obtain the sex of the twin pair, the frequency
of MZ and DZ twin pairs can be estimated for
that population using Weinberg’s Differential rule.
Under the assumptions that males account for 50%
of DZ twins and the sex of both members of a
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DZ pair is independently determined, this method
estimates the number of MZ twins as L − U and
the number of DZ twins as 2U , where L is the
number of like-sexed pairs and U is the number
of unlike-sexed pairs. Bulmer [3] has shown that
the effects of violating the first assumption are
negligible. Although James [12] has raised a number
of points that suggest that Weinberg’s rule is flawed,
Vlietinck et al. [19] and Husby et al. [10] found the
observed distributions of MZ and DZ pairs in two
consecutive series of twins to be in agreement with
those predicted using Weinberg’s rule. This suggests
that this method is valid as a rule of thumb but
should not be considered as definitive for estimating
the distribution of MZ and DZ twin pairs within a
given population.
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